
Program Product

SC33-0025-3
File No. S370-29

OS PL/I Optimizing Compiler:
Execution Logic

Optimizing Compiler 5734-PL 1
Resident Library 5734-LM4
Transient Library 5734-LM5

(These pro~ram products ,are also available
as composite package 5734-PL3)

Release 5 (5.0 and 5.1)

-~------- - ------- ~ ---- - ----------~-,-

Fourth Edition (September 1985)

This is a major revision of SC33-0025-2, which incorporates
technical newsletters SN26-8171 and SN33-6l73. This edition
applies to Release 5.1 of:

OS PllI Optimizing Compiler, Program Product 5734-Pl1,
as Pl/I Resident library, Program Product 5734-lM4,
as Pl/I Transient library, Program Product 5734-LM5,
Composite package, Program Product 5734-PL3,

and to any subsequent version, release, and modification until
otherwise indicated in any new editions or technical
newsletters.

Specific changes are indicated by a vertical bar to the left of
the change. These bars will be deleted at any subsequent
republication of the page affected. Editorial changes that have
no technical significance are not noted.

Changes are made periodically to this pUblication; before using
this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this pUblication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1971,
1972, 1976, 1985

PREFACE

The main purpose of this publication is to explain, in general
terms, the way in which programs compiled by the 0/5 PL/I
Optimizing Compiler (Program Number 5734-PLl) are executed. It
describes the organization of object programs produced by the
compiler, the contents of the load module, and the main storage
situation throughout execution. The information provided is
intended primarily for those involved in maintenance of the
compiler and its related library program products. The
publication will also provide valuable information for
application programmers, because a knowledge of the way in which
source program statements are executed will lead to the writing
of more efficient programs. The book also contains a chapter on
how to obtain and read a PL/I dump.

Although different source programs produce different executable
programs, the structure of every executable program produced by
the compiler is basically the same. This structure is explained
in Chapter 1. Chapters 2, 3, 4, and 5 describe the various
elements that make up the load module. Chapters 6 and 7 explain
the housekeeping and error-handling schemes. Chapters 8, 9, 10,
and 11 describe the implementation of various language features,
the majority of which are handled by a combination of compiled
code, PL/I library routines, and Operating System routines.
Chapter 12 is the guide to obtaining and using dumps. Chapter
13 deals with interlanguage communication. The final chapter,
Chapter 14, discusses those aspects of execution that apply only
to a multitasking environment. In addition, Appendix A contains
details of all control blocks that can exist during execution.

The reader of this publication is assumed to have a sound
knowledge of PL/I, and a working knowledge of the IBM System/370
Operating System and its assembler language. It is recommended,
therefore, that the reader should be familiar with the content
of the following publications.

RECOMMENDED PUBLICATIONS

REFERENCE PUBLICATIONS

OS and DOS PL/I language Reference Manual, GC26-3977

System/370 Principles of Operation, GA22-7000

This book makes reference to the following publications for
related information that is beyond its scope:

OS PL/I Opt~mizing Compil~r: Programmer's Gyide, SC33-0006

gs PL/I Optimizing Compiler: Program Logic, lY33-6007

QS PL/I Oetimiz~ng ~omeiler: In§tallatiQO' SC33-0026
(Release 4.0 only)

gs ~L/I Op!imizing Compil~r: Instaliitign for MVS, SC26-4121

OS PL/I Qptimizing Compil~r: Installation for CMS, SC26-4122

OS Pl/! Resident library: Program logic, lY33-6008

OS Pl/I Transient librarYI Program Logic, LY33-6009

MVS/Extended Architecture Data Manaaemen! Macro
Instryctions, GC26-4014

OS/VS2 MVS Data Managemen! Macro Instruc!ions, GC26-3873

Preface iii

IBM SYstem/370 Reference Summary, GX20-1850

OS/VS2 System Programming Library: MVS Diagnostic
Techniques, GC28-0725

MVS/Extended Architectyre Linkage Editor and Loader,
GC26-4011

OS/VS linkage Editor and loader, GC26-3813

iv OS PL/I Optimizing Compiler: Execution logic

CONTENTS

Chapter 1. Introduction 1
Processing a PL/! Program I

Compilation I
Link-Editing 3
Execution 3

Factors Affecting Implementation 3
Key Features of the Executable Program 4

Communications Area 4
Dynamic Storage Allocation 4
Use of Library Subroutines 6
Initialization/Termination Routines 6

Contents of a Typical Load Module 7
The Overall Use of Storage 7
The Process of Execution 10

Chapter 2. Compiler Output 12
Introduction 12

The Organization of This Chapter 14
Listing Conventions 14

STATIC-STORAGE MAP 15
OBJECT-PROGRAM LISTING 18

Static Internal Control Section 21
Program Control Section 22

Register Usage 22
Dedicated Registers 23
Work Registers 24

Library Register Usage 24
Handling and Addressing Variables and Temporaries 2S

Automatic Variables 25
Compiler-Generated Temporaries 26

Temporaries for Adjustable Variables 26
Controlled Variables 26
Based Variables 26
Static Variables 27
Addressing Beyond the 4K Limit 27
The Pseudo-register Vector (PRV) 27

Addressing Controlled Variables and Files 27
The Location of the PRV 29
Initialization of the PRV 29

Program Control Data 29
Handling Data Aggregates 29
Arrays of structures and Structures of Arrays 30
Array and Structure Assignments 31

Handling Flow of Control 31
Activating and Terminating Blocks 31
Prolog and Epilog Code 32

Prolog 32
Epilog 35
CALL Statements 35
Function References 35
Return Statement 36

GOTO Statements 36
GOTO within a Block 36
GOTO Out of Block 37
GOTO Label Variable 38
Errors When Using Label Variables 38
GOTO-Only ON-Units 39
Interpretive GOTO Routines 39

Argument and Parameter Lists 39
Library Calls 40

Setting-Up Argument Lists 41
Addressing the Subroutines 41

DO-Loops 42
Compiler-Generated Subroutines 43
Optimization and Its Effects 44

Examples of Optimized Code 44
Elimination of Common Expressions 44

Contents v

Example 1: Value held in register 45
Example 2: Value held in temporary storage 45
Movement of Expressions Out of Loops 46
Elimination of Unreachable statements 47
Simplification of Expressjons 47
Modification of DO-Loop Control Variables 48
Branching around Redundant Expressions 49
Rationalization of Program Branches 50
Use of Common Constants and Control Blocks 50
The INTERRUPT Option 51

FETCH and RELEASE Statements 51

Chapter 3. The PL/I Libraries 53
Resident and Transient Libraries 53
Naming Conventions 54
The Multitasking Library 54
Library Workspace 55

Format of Library Workspace 56
Allocation of Library Workspace 56

Library Modules and Weak External References 57
The Shared Library 58

Communication between Program Region and Link-Pack-Area 59
Execution When Using the Shared Library 62
Program Initialization 62
Initializing the Shared Library 62
Multitasking Considerations 62

Chapter 4. Communication between Routines 64
Passing Arguments and Returned Values 65
Notes on Terminology 66

Descriptors and Locators 67
String Locator/Descriptor 68
Area locator/Descriptor 68
Aggregate locator 68
Array Descriptor 69
structure Descriptor 69
Aggregate Descriptor Descriptor 69
Arrays of Structures and Structures of Arrays 71

Data Element Descriptors 71
Symbol Tables and Symbol Table Vectors 72

Chapter S. Object Program Initialization 74
Link-Editing 74
Program Initialization 75

Fast-Path Initialization/Termination 76
Initialization and Termination Routines 76

Initialization/Termination Routine IBMBPIR 77
The Process of Initialization 77
Handling Execution-Time Options 77
Acquiring the ISA 78
Initialization of the Program Management Area 78
Initializing PL/I Error Handling 78
Error Situations 80

The Process of Termination. 80
The Program Management Area 81

Translate-and-Test Table 81
Dump File Block 81
Loaded Module or Ordered Delete List 81
Dummy Tasks end Event Variables 81
Dummy DSA 81
Library Workspace (LWS) 81
Pseudo-Register Vector 82

Multitasking 82
Program Management Under CICS 82

Initialization/Termination 82

Chapter 6. storage Management 84
The Initial Storage Area 84
Types of Dynamic Storage Required 84

Contents of LIFO (Last-in/First-out) Storage 85
Contents of Non-LIFO Storage 85

Dynamic Storage Allocation 85
Fields Used in Storage Handling 88

Allocating and Freeing LIFO Storage 89

vi OS PL/I Optimizing Compiler: Execution Logic

Allocating and Freeing Non-LIFO Storage When Heap Is Not
Used 91

Allocating and Freeing Heap Non-lIFO Storage 92
Acquiring a New Segment of LIFO Storage 93
Storage Management Routines 95

Allocating Non-lIFO Storage (Entry A) 96
Freeing Non-LIFO Storage (Entry B) 96
Segment Handling (Entry C and Entry D) 97

Storage Reports 98
Action during Initialization 99
Action during Execution 99
Action on Termination 100
Storage Reports for Multitasking Programs 101

Storage Management in Programmer-Allocated Areas 102
Multitasking Considerations 103

Acquiring the ISA When Multitasking 103
CICS Considerations 103

Chapter 7. Error and Condition Handling 105
Terminology 105

Background to Error Handling 106
System Facilities 106

Pl/I Facilities 107
Implementation of Error Handling 111
Detecting the Occurrence of Conditions 117

System Detected Conditions 117
Software Detected Conditions 117

Detecting I/O Conditions 117
Executing SIGNAL Statements 118
Passing Information about Interrupts 118
Error Code 119
Condition Built-In Functions 119

Chain of ONCAs 119
Establishment and Enablement Information 122

Enablement 122
Qualified Conditions 123

Establishing and Executing On and Revert Statements 123
Qualified Conditions 124
Unqualified Conditions 125

Handling ON-Units 125
The Logic of the Error Handler 126

IBMBERR--Error Handling Module 126
Program Checks Interrupt 128
Software Interrupts 128
Return to the Point of Interrupt 130

Software Interrupts 130
Program Check Interrupts 130

THE CHECK CONDITION 131
Raising the CHECK Condition 131
Testing for Enablement 132
Searching for Established ON-Units 134
Standard System Action 134

Error Messages 134
Message Formats 134
Interrupts in library Modules 135
Identifying the Erroneous Statement 135
Identifying Entry Point Name and Statement Number 135
Filename and Name of CONDITION Condition 136

Message Text Modules 136
Diagnostic File Block 137

Dump Routines 137
Dump File 139

Miscellaneous Error Modules 139
ABEND Analyzers 140

Exceptional Error Message Modules 140
The FLOW and COUNT Options 141

Use of Branching Information for FLOW 141
Use of Branching Information for COUNT 141

Implementation of FLOW and COUNT 142
Tables Used by FLOW and COUNT 142
Executable Code for FLOW and COUNT 145
Action during Compilation 145
Action during Program Initialization 147
Action during Execution 147

Contents vii

IBMBEFL When Called at Branch-In and Branch-Out Points 148
Action on Output ISO
Interpreting the Flow Statement Table 150
Interpreting the Statement Frequency Count Tables 151

Error Handling under CICS 151
PLIDUMP on CICS 151

Chapter 8. Record-Oriented Input/Output 154
Introduction 154
Summary of Record I/O Implementation 154

File Declarations 154
OPEN statements 156
Transmission Statements 156
CLOSE Statements 156
Implicit Open 156
Implicit Close 157

Access Method 159
File Declaration Statements 161

Execution 162
OPEN Statement 162

Compiler Output 162
Execution 162
Actions Carried Out by Transient Open Routines 163
VSAM Data Sets 163
The FCB and File Addressing 166

Transmission Statements (Library-Call I/O) 167
Compiler Output 167
Execution 170
Transmitter Action 171

EVENT Option 171
Execution 172
Use of the IOCB 173
Allocation of IOCBs 173
IOCBs and Dummy Records 173
Raising Conditions in Ev.ent I/O 173
Exclusive I/O 173

CLOSE statements and Implicit Close 174
Compiler Output 174
Execution 174

Implicit Open for Library-Call I/O 176
Compiler Output 176
Execution 176

Error Conditions in Transmission Statements 176
General Error Routines (Transient) 180
ENDFllE Routine 180
TRANSMIT Condition 180

In-Line I/O Statements 180
Control Blocks 180
Executable Instructions 181
Error Conditions 181
Implicit Open for In-line Calls 181

Chapter 9. stream-Oriented Input/Output 185
Note on Terminology 18S

Introduction 185
Operations in a Stream I/O Statement 187
Stream I/O Control Block (SIOCB) 190

File Handling 190
Transmission 190
Opening the File 191
Implicit Open 191
Keeping Track of Buffer Position 191
Enqueuing and Dequeuing on SYSPRINT 191

Handling the Conversions 193
Handling GET and PUT Statements 193
List-Directed GET and PUT Statements 193

PUT LIST Statement 193
GET LIST Statement 197

Data-Directed GET and PUT Statements 198
Identifying the Name 201

Edit-Directed GET and PUT Statements 201
Compiler-Generated Subroutines 203
Handling Control Format Items 208
Matching and Nonmatching Data and Format Lists 208

viii OS PL/I Optimizing Compiler: Execution Logic

Formatting for Print Fil~s 210
Handling Format Options 210
Input and Output of Complete Arrays 210
Pl/I Conditions in Stream I/O 210

TRANSMIT Condition 210
CONVERSION Condition 211
NAME Condition 211
ENDFIlE Condition and Unexpected End of File 211

Built-In Functions in Stream I/O 211
The COpy Option 212

Handling the Copy File 212
The STRING Option 213

Completing String-Handling Operations 213
The Conversational System and Conversation Files 214

Conversational Transmitter Modules 214
Output Transmitter IBMBSOC 214
Input Transmitter IBMBSIC 214

Formatting 215
Formatting Module IBMBSPC 215

Summary of Subroutines Used 215
Initializing Modules 216
Director Modules 216

Library Director Routines 216
Modules Used with Compiler-Generated Subroutines 217
Module for Complete library Control of Edit-Directed I/O of

a Single Item 217
Compiler-Generated Director Routines 217

Transmitter Modules 217
Formatting Modules 218

Library Subroutines 218
Compiler-Generated Subroutine 218

External Conversation Director Modules 218
Conversational Modules 218
Miscellaneous Modules 219

I/O Under CICS 219

Chapter 10. Data Conversion 220
Note on Terminology 220

Introduction 220
The library Conversion Package 221

Conversion Module Naming Conventions 222
Specifying a Conversion Path 222
Housekeeping When More Than One Module Is Used 222
Arguments Passed to the Conversion Routines 223
Communication between Modules 223
Free Decimal Format 223

In-line Conversions 223
Note about Picture Variables 226
Example: Fixed-Binary to Fixed-Decimal (Compiler Conversion
No.6) 227

Multiple Conversions 228
Hybrid Conversion 228

Raising the Conversion Condition 229

Chapter 11. Miscellaneous Library Sub~outines and System
Interfaces 230

Computation and Data-Handling Subroutines 230
Arithmetic and Mathematical Subroutines 230
Array, String, and Structure Subroutines 231

Hand~ing Interleaved Arrays (IBMBAIH) 232
Structure Mapping (IBMBAMM) 234

Miscellaneous System Interfaces 234
TIME 235
DATE 235
DELAY 235
DISPLAY 235
Sort/Merge 236

Housekeeping Problems 236
Resto~ation of the Pl/I Environment on Exit from SORT 237
Summary of Work Done by the SORT Module 237
Storage for SORT 238

Checkpoint/Restart 239
WAIT 240

Event Variables 240

Contents ix

WAIT Statement (Nonmultitasking) 241
Housekeeping Problems 241
Control Blocks 244
Wait Module (IBMBJWT) 244

Chapter 12. Debugging Using Dumps 248
How to Use This Chapter 248

Section 1: How to Obtain a Pl/I Dump 250
CALL PLIDUMP 250

Tasking Options 251
Recommended Coding 251
Avoiding Recompilation 253
Contents of a PL/I Dump 254

Headings 254
Trace Information 254
File Information 256
Hexadecimal Dump 257
Block Option 258

Section 2: Recommended Debugging Procedures 258
Debugging Overlaid Storage 259
Debugging Procedures 260

PL/I Dump Called from ON-Unit 260
System ABEND Dump 261

Section 3: Locating Specific Information 263
Contents 263

Key Areas of a PL/I Dump 263
Key Areas of an ABEND Dump 263
Stand-Alone Dumps 263
Housekeeping Information in All Dumps 263
Finding Variables 264
Control Blocks and Fields 264

Key Areas of a PL/I Dump 264
PI: Statement Number and Address Where Error Occurred (Dump
Called from ON-Unit Only) 264

P2: Type of Error (Applies to Dump Called from ON-Unit
Only) 265

P3: Register Contents at Time of Error or Dump
Invocation 265

P4: The DSA Chain 267
PSI The TCA 268
P6: Timestamp 268

Key Areas of an ABEND Dump 268
01: Address of Interrupt 268
02: Type of Interrupt 268
031 Register Contents at the Point of Interrupt 268
04: The DSA Chain 269
05: The TCA 269
061 Finding the Program Interrupt Element (PIE/EPIE) 269

Stand-alone Dumps 269
51: Finding Key Areas in Stand-Alone Dumps 269

Housekeeping Information in All Dumps 269
H1: Following the DSA Back-chain 269
H2: Associating Instruction with Correct 269
H3: Following Calling Trace 272
H4: Associating DSA with Block 272
H5: Finding Relevant ONCA 272
H6: Following the Chain of ONCAs 272
H7: Finding Information fromIBMBERR's DSA 272
H8: Finding and Interpreting Register Save Areas 273
H9: Register Usage 273
HIO: Following the ISA Free-Area Chain 273
HIl: Finding the Task Variable 274
H12: Block Structure of Program (Static Back-chain) 274
HI3: Forward Chain in DSAs 274
H14: Action If Error Is in a library Module 274
HIS: Discovering Contents of Parameter Lists 274
H16: Finding Main Procedure DSA 274
HI7: Finding the Relationship between Tasks 275
HI8: Finding the Tasking Appendage 276
H19: Finding the TCA from the Tasking Appendage 276
H20: Following the heap free-area chain 276
H21: Following the heap storage chain 276

Finding Variables 277
VI: Automatic Variables 277

x OS Pl/I Optimizing Compiler: Execution logic

V2t Static Variables 277
V3: Controlled Variables 277
V4: Based Variables 277
V5: Area Variables 278
V6: Variables in Areas 278

Control Blocks and Fields 278
Cl: Quick Guide to Identifying Control Fields 278

Section 4: Special Considerations for Multitasking 280

Chapter 13. Interlanguage Communication 281
Summary of Interlanguage Facilities 281

Background to Interlanguage Communication 282
Differences in Data Aggregatp-s 282
Use of Locators 282
Differences of Environment 283
The Principles of !nterlanguage Communication 283

PL/I Calls COBOL or FORTRAN 284
FORTRAN or COBOL Calls PL/I 286
Retaining the Environment 287

Handling Changes of Environment 289
Interlanguage Housekeeping Routines and their Control

Blocks 289
Handling FORTRAN and PL/I Initialization/Termination
Routines 293

Handling the INTER Option 295
STOP and STOP RUN Statements 297

Housekeeping Module Descriptions 297
COBOL When Called from PL/! (IBMBIEC) 297

Before Entry to COBOL Program 297
On Return from COBOL Program (IBMBIECC) 297
Action on Interrupt in COBOL with INTER 298
ZERODIVIDE ON-Units 298
Handling STOP RUN Statements 298

FORTRAN When Called from PL/I (IBMBIEF) 299
Before Entry to the FORTRAN Program 299
Action on Return from FORTRAN Program (IBMBIEFC and

IBMBIEFD) 299
Action on Interrupt in FORTRAN 300
Termination of Caller 301
STOP Statements 301

PL/! Called from COBOL or FORT~AN (IBMBIEP) 301
Before Entry to PL/I Program (IBMBIEP) 301
Action after the PL/I Program Is Completed 302
Interrupt Handling 302
Termination of PL/I Environment 302
STOP and STOP RUN Statements 303

Handling Data Aggregate Arguments 303
ARRAYS 303
STRUCTURES 303
Methods Used to Handle Data Aggregate Arguments 304
NOMA?, NOMAPIN, and NOMAPOUT Options 304
Calling Sequence 305

ASSEMBLER Option 305
COBOL Option in the Environment Attribute 306

Chapter 14. Multitasking 307
Introduction 307

The Concept of the Control Task 308
Communication between Tasks 309
Holding the Priority of the Task 311

Multitasking Housekeeping 311
The Multitasking Library 315
How the Control Task Operates 317
Attaching a Task 317

Failure of CALL ... TASK Statements 318
Detaching a Task 318

Abnormal Termination of a Task 319
The Get-Control and Free-Control Routines 319
Altering COMPLETION and PRIOkIl~ Values 320
Executing the WAIT Statement 320

The Wait Module IBMTJHT 323
Enqueuing and Dequeuing on SYSPRINT 325

Appendix A. Control Blocks 326

Contents xi

Area Locator/Descriptor 326
Function 326
When Generated 326
Where Held 326
How Addressed 326

Area Descriptor 326
Area Variable Control Block 327

Function 327
When Generated 327
Where Held 327

Aggregate Descriptor Descriptor 328
Function 328
When Generated 328
Where Held 328
How Addressed 328
General Format 328
Structure Element 328
Base Element 329

Aggregate Locator 330
Function 330
When Generated 330
Where Held 330
How Addressed 330

Array Descriptor 331
Function 331
When Generated 331
Where Held 331
How Addressed 331
Arrays of Strings or Areas 331
General Format 331

CICS Appendage 333
Function 333
When Generated 333
Where Held 333
How Addressed 333

Controlled Variable Block 335
Function 335
When Generated 335
Where Held 335
How Addressed 335

Data Element Descriptor (DED) 337
Function 337
When Generated 337
Where Held 337
How Addressed 337
Format of DEDs 337
DED for STRING Data 339
DED for FLOAT Data 339
DED for FIXED Data 339
DED for PICTURE STRING Data 339
DED for PICTURE DECIMAL Arithmetic Data 340
DED for Program Control Data 341

FORMAT DEDs (FEDs) 342
DED for F and E FORMAT Items (FED) 342
DED for G FORMAT Items (FED) 342
DED for PICTURE FORMAT Arithmetic Items (FED) 342
DED for PICTURE FORMAT Character Items (FED) 343
DED for C FORMAT Items (FED) 343
DED for CONTROL FORMAT Items (FED) 343
DED for STRING FORMAT Items (FED) 343

Declare Control Block (DClCB) 344
Function 344
When Generated 344
Where Held 344
How Addressed 344

Diagnostic File Block (DFB) 345
Function 345
When Generated 345
Where Held 345
How Addressed 345

Dynamic storage Area (DSA) 346
Function 346
When Generated 346
Where Held 346

xii os Pl/I Optimizing Compiler: Execution logic

How Addressed 346
Dump Block (DUB) 349

Function 349
When Generated 349
Where Held 349
How Addressed 349

Entry Data Control Block 350
Function 350
When Generated 350
'1here Held 350
Mow Addressed 350

Environment Block (ENVB) 351
Function 351
When Generated 351
Where Held 351
How Addressed 351

Event Table (EVTAB) 354
Function 354
When Generated 354
Where Held 354
How Addressed 354

Event Variable Control Block 355
Function 355
When Generated 355
Where Held 355
How Addressed 355
Flags 355

Exclusive Block IOCB (XBI) 356
Function 356
When Generated 356
How Addressed 356

Exclusive Block File (XBF) 353
Function 358
When Generated 358
How Addressed 358

File Control Block (FCB) 360
Function 360
When Generated 360
Where Held 360
How Addressed 360
Common Section 360
Record I/O Section 366
Stream I/O Section 367

Fetch Control Block (FECB) 368
Function 368
How Addressed 368
Where Held 368
When Generated 368

Flow Statement Table 369
Function 369
When Generated 369
Hhere Held 369
How Addressed 369

Interlanguage Root Control Block (IBMBILC1) 371
Function 371
When Generated 371
Where Held 371
How Addressed 371

Interlanguage VDA 372
Function 372
When Generated 372
Where Held 372
How Addressed 372

Interrupt Control Block (ICB) 373
Function 373
When Generated 373
Where Held 373
How Addressed 373

Input/Output Control Block (IOCB) 374
Function 374
When Generated 374
Where Held 374
How Addressed 374
Common Section 374

Contents xiii

Non-VSAM Section 376
VSAM Section 376

Key Descriptor (KD) 378
Function 378
When Generated 378
Where Held 378
How Addressed 378

Label Data Control Block 379
Function 379
When Generated 379
Where Held 379
How Addressed 379
Label Variable and Label Temporary 379
Label Constant 379

Library Workspace (LWS) 380
Function 380
When Generated 380
Where Held 380
How Addressed 380

ON Communications Area (ONCA) 381
Function 381
When Generated 381
Where Held 381
How Addressed 381
Dummy ONCA 381

ON Control Block (ONCB) 383
Function 383
How Addressed 383
When Generated 383
Where Held 383
Static and Dynamic ONCBs 383
Dynamic ONCB 383
Static ONCB 383

Open Control Block (OCB) 385
Function 385
When Generated 385
Where Held 385
How Addressed 385

Ordered Delete List (ODL) 386
Function 386
When Generated 386
Where Held 386
How Addressed 386

PLIMAIN 387
Function 387
When Generated 387
Where Held 387
How Addressed 387

PLISTART Parameter List 388
Function 388
When Generated 388
General Format of PlISTART 388

Record Descriptor (RD) 390
Function 390
When Generated 390
Where Held 390
How Addressed 390

Request Control Block (RCB) 391
Function 391
When Generated 391
Where Held 391
How Addressed 391

statement Frequency Count Table 393
Function 393
When Generated 393
Where Held 393
How Addressed 393

Statement Number Table 395
Function 395
When Generated 395
Where Held 395
How Addressed 395
Sections of Table 395
Statement Number Format 395

xiv OS PL/I Optimizing Compiler: Execution Logic

Line Number Format 395
Storage Report Table 397

Function 397
When Generated 397
Where Held 397
How Addressed 397
Non-multitasking and PL/I Task Table 397
Control Task Table 398

Stream I/O Control Block (SIOCB) 400
Function 400
When Generated 400
Where Held 400
How Addressed 400

String Locator/Descriptor 402
Function 402
When Generated 402
Where Held 402
How Addressed 402
Allocated length 402
String Descriptor 402
GRAPHIC Option of ENVIRONMENT 402

Structure Descriptor 403
Function 403
When Generated 403
Where Held 403
How Addressed 403
General Format 403

Symbol Table (SYMTAB) 404
Function 404
When Generated 404
Where Held 404
How Addressed 404

Symbol Table Vector 406
Function 406
When Generated 406
Where Held 406
How Addressed 406
General Format 406

Task Communication Area (TCA) 407
Function 407
When Generated 407
Where Held 407
How Addressed 407
Flags (TFLG) 409

TCA Implementation Appendage (TIA) 411
Function 411
When Generated 411
Where Held 411
How Addressed 411

TCA Tasking Appendage (TTA) 413
Function 413
When Generated 413
Where H.eld 413
How Addressed 413
Post Codes to Control Task 414

Task Variable (TV) 415
Function 415
When Generated 415
Where Held 415
How Addressed 415

Wait Information Table (WIT) 416
Function 416
When Generated 416
Where Held 416
How Addressed 416

Zygo1ingual Control List (ZCTL) 417
Function 417
When Generated 417
Where Held 417
How Addressed 417

Index 419

Contents xv

FIGURES

1. The Process of Running a PL/I Program 2
2. Use of PL/I Dynamic Storage without Heap Storage 5
3. Contents of a Typical Load Module 8
4. Use of Storage 9
5. Flow of Control During Execution 10
6. The Output from the Compiler 13
7. Contents of listing and Associated Compiler Options 15
8. Example of Static Storage listing 17
9. Part of an Object Program listing 19

10. Register Usage in Compiled Code 22
11. library Register Usage 25
12. Use of the Pseudo-register Vector (PRV) 28
13. Typical Prolog Code 33
14. Contents of Typical Compiled Code DSA 34
15. Epilog Code 35
16. Examples of library Calling Sequences 40
17. Mnemonic letters in library Module Entry-Point Names 41
18. Offsets Where Addresses of library Modules Are Held in the

TCA 42
19. Modification of DO-loop Control Variable 49
20. Branching Around Redundant Expressions 50
21. Use of Common Constants 51
22. library M~dule Naming Conventions 55
23. Program Management library Workspace 56
24. Example of Use of WXTRNs 57
25. The Shared library During Execution 59
26. The Format of Shared library Modules 60
27. Addressing a Module in the Shared library 61
28. Example of Descriptorl locatorl DEDI and Storage location

of an Array 65
29. Descriptorsl locatorsl and Symbol Tables: When Generated l

Where Held 68
30. Example of Handling a Structure Containing an Adjustable

Extent 70
31. Symbol Tables and Symbol Table Vectors 73
32. Flow of Control During Execution 76
33. Program Management Area 79
34. Use of storage in the ISA if Heap Storage is Not Used 86
35. Use of storage in the ISA if Heap Storage is Used 87
36. Principles Involved in Allocating and Freeing LIFO

Storage 90
37. Principles Involved in Allocating and Freeing Non-LIFO

Storage in the ISA 91
38. Principles Involved in Allocating and Freeing Non-LIFO

Storage in HEAP. 93
39. Principles Involved in Allocating and Freeing Segments of

Pl/I Dynamic Storage 94
40. Format of Element on Free-Area Chain 97
41. Format of Second and Subsequent Segments of the LIFO

Stack 98
42. Storage Management under CICS 104
43. Machine Interrupts Associated with Pl/I Conditions 106
44. Static and Dynamic Descendency 107
45. Pl/I Conditions 108
46. The Principles of Error Handling 112
47. The Major Fields Used in Error Handling 113
48. An Example of Error Handling 115
49. Accessing a Built-In Function Value from the Chain of

ONCAs 121
50. Meaning of Enablement Bits 122
51. Addressing ON-Units 124
52. Simplified Flowchart for IBMBERR 127
53. Handling the CHECK Condition 133
54. Interrelationship of Dump Routines 138
55. How Branch Counts Are Used to Calculate the Number of Times

Each Statement Is Executed 143
56. The Contents of the Flow Statement Table and the Statement

Frequency Count Table. 144

xvi OS Pl/I Optimizing Compiler: Execution logic

57. Outline of Error Handling 152
58. The Arrangement of PLIDUMP Modules for CICS 153
59. The Principles Used in Record I/O Implementation 155
60. Library Subroutines Used in Record I/O 157
61. Access Methods and File Types 159
62. The Fields Used in Implementing Record I/O 160
63. Information in the File Declaration Is Held in the ENVB and

the DCLCB Until the File Is Opened 162
64. OPEN Statement 164
65. Addressing Files Via DCLCB and PRV 166
66. Handling a Transmission Statement 169
67. Handling the EVENT Option 172
68. The Execution of an Explicit CLOSE Statement 175
69. The Addressing Mechanism Used during Implicit Open 177
70. Record I/O Error Modules 178
71. The Fields Used in Record I/O Error Handling 179
72. In-Line I/O Transmission Statement 182
73. Overview of Record I/O 183
74. Conditions under Which I/O Statements Are Handled

In-Line 184
75. The Principles Used in Stream I/O 186
76. Record Boundaries Do Not Affect Stream I/O 187
77. Simplified Flow Diagram of a Stream I/O Statement 189
78. Stream I/O Control Block (SIOCB) 190
79. The Use of FREM and FCBA in Recording Buffer Position 192
80. Flow of Control through a PUT LIST Statement 195
81. Code Generated for Typical List-Directed I/O Statement 197
82. Handling a GET DATA statement 199
83. Typical Data-Directed Code 202
84. The Use of the Library in Edit-Directed I/O 203
85. Edit-Directed Statement with Matching Data and Format

Lists 205
86. Code Generated for an Edit-Directed statement with Matching

Data and Format Lists 207
87. Code Sequences Used for Matching and Nonmatching Data and

Format Lists 209
88. The Current Buffer Pointer FCBA and FCPM, the Copy Pointer,

Keep Track of the Data to be Copied 212
89. Internal Forms of Data Types 221
90. Data Conversions Performed In-line 224
91. Fundamental In-line Conversions 226
92. Multiple Conversions 228
93. Arithmetic Operations Performed by Library Subroutines 230
94. Array, Structure, and String Subroutines 232
95. Indexing Interleaved Arrays 233
96. DSA Chaining during the Execution of SORT 238
97. Summary of Action during Use of a SORT Exit 239
98. Example of WAIT Implementation Problems 242
99. Summary of the WAIT Statement 246
100. How to Use this Chapter When Debugging 249
101. Code for Debugging 252
102. Suggested Method of Obtaining a Dump when Recompilation is

Particularly Undesirable 253
103. An Example of PLIDUMP 255
104. Abbreviations for Condition Names Used in PLIDUMP Trace

Information 256
105. Error Code Field Lookup Table 257
106. The Contents of IBMBERR's DSA After a System Detected and

a PL/ I Interrupt 266
107. The Chaining of DSAs 267
108. The Register Save Area in the DSA 273
109. Normal Register Usage 275
110. The Principles of Interlanguage Communication 284
Ill. Calling Sequence When PL/I Calls COBOL or FORTRAN 285
112. Code Generated When PL/I Passes a Structure to a COBOL

Routine 286
113. The Sequence of Events When FORTRAN or COBOL Calls

PL/I 288
114. Chaining of Save Areas When PL/I is Called from a COBOL or

FORTRAN Principal Procedure 289
115. Example of Chaining Sequences (PL/I Principal

Procedure) 291
116. Examples of Chaining Sequences (FORTRAN Principal

Procedure) 292

Figures xvii

117. The Concept of Save Area Rechaining 294
118. Rechaining of Save Areas When FORTRAN Is Called from PL/I

and tne FORTRAN Environment Needs Initializing 295
119. Rechaining of Save Areas When PL/I Is Called from FORTRAN

or COBOL and the Environment Requires Initialization 296
120. Multitasking Is Implemented by Use of a Multitasking

Library 307
121. The Functions of the Control Task 308
122. The Hierarchy of Tasks 309
123. The Post and Wait ECBs 310
124. Modules in the Multitasking Library 312
125. Back-chains in Multitasking 313
126. The Chaining of Tasks through Their Tasking

Appendages 314
127. A Simplified Flowchart of IBMTPJR 316
128. Reusing Event Variables, and the Need for the EVTAB

Chain 321
129. Chains and pointers used in implementing the WAIT

statement 322

xviii OS PL/I Optimizing Compilerl Execution Logic

CHAPTER 1. INTRODUCTION

PROCESSING A PL/I PROGRAM

COMPILATION

Figure 1 on page 2 shows the process through which a PL/!
program passes from its inception to its use. There are four
stages:

1. Writing the program and preparing it for the computer.

2. Compilation: translating the program into machine
instructions (that is, creating an object module).

3. Link-editing: producing a load module from the object
module. This includes linking the compiled code with PL/I
library modules, and possibly with other compiled programs.
It also includes resolving the addresses within the code.

4. Execution: running the load module.

The process is not necessarily continuous. The program may, for
example, be kept in a compiled or link-edited form before it is
executed, and it will be executed a number of times once
compiled.

Compilation is the process of translating a PL/I program into
machine instructions. This is done by associating PL/I
variables with addresses in storage and translating executable
PL/I variables into a series of machine instruction. For
example, the Pl/I statements:

DCl I,J,Ki
I=J+K;

would typically result in the generation of machine instructions
corresponding to the assembler language instructions shown
below:

LH 7,88(0,13)
AH 7,90(0,13)
STH 7,96(0,13)

Load J into register 7
Add K to J
Place result in I

(The variables I, J, and K are held at offsets 96, 88, and 90,
respectively, from the address in register 13.)

The OS PL/I Optimizing Compiler does not translate all PL/I
statements directly into the necessary machine instructions.
Instead, certain statements are translated into calls to
standard subroutines held in the as PL/l Resident Library. Some
of the resident library routines may, in turn, call further
library routines from either the resident or the transient PL/I
library. The following PL/I statements would, for example,
result in a call being made to a resident library routine.

DCl X,Yi
X=SINCY);

Chapter 1. Introduction 1

PREPARE

COMPILE

LINK-EDIT

PL/I library
modules

EXECUTE

Initialization
routines

Receive control r-->
from system, and
sets up PL/I
environment

v

Source
Program

Pl/!
Optimizing
Compiler

Object
module

v

Load
module

!

Object
program

v

Carries out
actions
specified in
source program

Other
object
modules

Termination
routine

---> Closes any files
still open, and
returns control
to system

Figure 1. The Process of Running a PL/I Program

2 OS PL/I Optimizing Compiler: Execution Logic

LINK-EDITING

EXECUTION

The code that would typically result from such statements is
shown below:

LA 14,92(0,13) Place in address of Y in register 14

LA 15,96(0,13) Place in address of X in register 15

STM 14,15,80(0,3) Place addresses in argument list

LA 1,80,(0,3) Point register 1 at argument list

L 15,88(0,3) Load register 15 with the address of the
resident library routine IBMBMGSA.

BALR 14,15

(This is held in the form of an address
constant generated by the compiler and
resolved by the linkage editor.)

Branch to the library routine, which will
carry out the required function.

Link-editing links the compiler output with external modules
that have been requested by the compiled program. These will be
PL/I resident library routines, and possibly, modules produced
by further compilations. As well as linking the external
modules, the linkage editor also resolves addresses within the
object module.

The optimizing compiler produces code that requires a special
arrangement of control blocks and registers for correct
execution. This arrangement of control blocks and registers is
know as the PL/I environment. Execution consequently becomes a
three-stage process:

1. Setting-up the environment. This is handled by the Pl/I
initialization routines IBMBPIRA and IBMBPIIA.

2. Executing the program.

3. Completing the job after execution. This consists of
closing any files that are left open and returning control
either to the supervisor or to a calling module. It is
handled by a return to the initialization routine which
calls a termination routine.

FACTORS AFFECTING IMPLEMENTATION

Three major factors influence the design of the executable
programs produced by the optimizing compiler. These factors are
inherent in the language, and are:

1. The modular structure of PL/I programs

The PL/! language allows the programmer to divide the
program into a series of blocks that can be written and
compiled independently of each other.

2. Ibe dynamic allocation and freeing of storage

Automatic, controlled, and based variables all have their
storage allocated and freed dynamically. This implies a
system of reuse of storage to reduce space requirements.

3. The comprehensive facilities offered by the Pl/I language

The Pl/I language offers more facilities than most
high-level languages. These facilities include allowing the

Chapter 1. Introduction 3

PL/I program to control the flow of execution after any PL/!
interrupt.

KEY FEATURES OF THE EXECUTABLE PROGRAM

COMMUNICATIONS AREA

Taken together, the factors outlined above are responsible for
the main features of the executable program produced by the
compiler. These features are:

• A communications area addressed by a dedicated register
throughout the execution of the program.

• A scheme to handle dynamic storage allocation.

• The use of standard subroutines from the PL/I libraries, to
handle such standard tasks as the housekeeping scheme and
error handling.

• The use of initialization routines to set up the
communications area and initiate the housekeeping scheme.
All PL/I modules are compiled on the assumption that the
initialization routines have been called before they are
entered.

• The issuing, by the initialization routines, of SPIE/ESPIE
and STAE/ESTAE macro instructions to trap interrupts and
ABENDs, and allow them to be handled as defined by PL/I.

These features are discussed further below.

The facilities offered by PL/I language, particularly the
error-handling facilities, imply that certain items must be
accessible at all times during execution. To simplify accessing
such items, a standard communications area is set up for the
duration of execution. This area is known as the task
communications area (TCA), and is addressed by register 12
throughout execution.

DYNAMIC STORAGE ALLOCATION

The principles of the dynamic storage scheme are illustrated in
Figure 2 on page 5.

The allocation and freeing of automatic storage on a
block-by-block basis implies an automatic facility for the reuse
of such storage. This problem and the problem of inter-block
communications are solved by having, for each block, a save area
that contains register save information, automatic variables,
and housekeeping information. This area is known as dynamic
storage area (DSA). It consists of the standard operating
system save area concatenated with certain housekeeping
information and with storage for automatic variables. DSAs are
held contiguously in a last-in/first-out (LIFO) storage stack
and are freed and allocated by the alteration of pointer values.

On an entry to a block, the registers of the preceding block are
stored in the previous DSA and a new DSA is acquired. A
back-chain pointer to the previous DSA is placed in the new DSA.
This arrangement allows access to information in previous
blocks. Register 13 is pointed at the head of the DSA for the
current block. The code that carries out this and any other
block initialization is known as the prolog code. To obviate
the need for special coding in the main procedure, a dummy DSA
is set up by an initialization routine, and register 13 points
at this dummy DSA on entry to the main procedure.

4 OS Pl/I Optimizing Compiler: Execution logic

I
Initial
storage
area
(ISA)

I

L,----"
1 The initial

storage area
(ISA) is acquired

Program
."gmt area

LIFO storage

SA

Major free
area

4 When LIFO storage
is freed, the most
recently allocated
element is the first
to be freed. It is
freed by being
reabsorbed into the
major free area.

I

Program
mgmt area

2 The program
management area

SA

(a PL/I communications
area) is place at the
head of 'che ISA.

Program
mgmt area

LIFO storage

Major free
area

Non-LIFO
storage

5 Elements not
freed on a last in/
first out basis
(non-LIFO storage)
are allocated at
the high address end
of the free storage.

I

I

Program
mgmt area

LIFO storage
SA

Major free
area

3 All storage freed on
a last in/first out
basis (LIFO storage)
is allocated at the
low address end of
the remaining unused
storage.

Program
mgmt area

LIFO storage

Major free
SA area

Non-LIFO storage

Freed
non-LIFO storage

6 When non-LIFO storage
is freed, it is,
where possible,
absorbed into the
major free area.
Where this is not
possible it is placed
on a chain of free
storage. The head of
this chain is held at
a fixed offset in the
program management
area. Areas on this
chain are reused
where possible.

Figure 2. Use of PL/I Dynamic Storage without Heap Storage

Chapter 1. Introduction 5

In addition to automatic variables, certain other types of
storage are allocated and freed dynamically. Such items as are
not freed on a last-in/first-out basis are kept in a second
stack called non-lIFO storage. This storage is sometimes also
called heae. If items within this stack are freed, they are
placed on a free-area chain. The storage scheme is handled
partly by a compiled code and partly by a resident library
routine. Compiled code acquires and frees space in the LIFO
storage stack.

The library routine IBMBPGR is called when.

• Non-LIFO dynamic storage has to be allocated or freed

• There is insufficient space for an allocation of storage in
the lIFO stack

• Additional calls overflow

USE OF LIBRARY SUBROUTINES

The use of library subroutines simplifies compilation. On the
other hand, using such routines slows execution because they
cannot be tailored for the particular situation in hand, and
because they incur the overhead of saving and restoring
registers. library subroutines are used for handling standard
jobs such as program initialization and I/O error handling, and
for those items that require interpretive code. Interpretive
code is required when a significant part of the data will not be
available until execution.

Two PL/I libraries are used by the OS PL/I Optimizing Compiler:
the OS PL/I Resident library and OS Pl/I Transient library.
Transient Library routines have the advantage of saving space,
because they require storage only when they are actuallY in use.
Resident library routines, however, have the advantage of speed,
because they do not have to be loaded during execution of the
PL/I program. Dividing subroutines into transient and resident
types enables the compiler to balance the advantages of both
types and so to produce programs that combine fast execution
with reduced space overheads~

INITIALIZATION/TERMINATION ROUTINES

The job of initialization is to prepare a standard environment
for all procedures compiled by the PL/I Optimizing Compiler.
This consists of setting up the TCA and initializing the storage
scheme. A SPIE/ESPIE macro instruction is issued so that all
the program checks will be intercepted by the Pl/I error
handling facilities. A STAE/ESTAE macro instruction is issued
to trap ABENDs. On completion of the main procedure control is
returned to initialization routine by the epilog code of the
main procedure. The program is terminated under the control of
the initialization routine. Using standard library routines for
these tasks reduces the amount of special-case coding that is
needed for a main procedure. A consequence is that subroutines
can be compiled and tested individually and then joined with
other procedures and run without recompilation. If this is
done, care must be taken that the main procedure is the first
passed to the linkage editor.

Note: Use of the linkage editor ENTRY statement will not have
the desired results as the program must be entered via one of
the initialization routines.

6 as PL/I Optimizing Compiler: Execution logic

CONTENTS OF A TYPICAL LOAD MODULE

The contents of a typical load module are shown in Figure 3 on
page 8. The contents ares

• Compiled code (the executable machine instructions that have
been generated).

• Link-edited routines. These routines include resident
library routines, many of which are included in every
executable program phase. These are the initialization
routine, IBMBPIR, and the error handler, IBMBERR. Other
resident routines are included as required.

As well as the executable machine instructions, the program
requires certain control information and addresses. Some of
these are listed in Figure 3, but the full details are given in
Chapter 2, "Compiler Output" on page 12. The figure also shows
PLISTART, which passes control to the initialization routine,
and PLIMAIN, which holds the address of the start of compiled
code.

THE OVERALL USE OF STORAGE

The overall use of storage is illustrated in Figure 4 on page 9.
As can be seen, an area known as the initial storage area (ISA)
is acquired for the program management and PL/I dynamic storage.
The program management area is set up by the initialization
routines, and includes the TCA and the dummy DSA discussed
above. The remainder of the ISA is used for PL/I dynamic
storage allocations. The LIFO stack starts beyond the end of
the program management area and expands, as necessary, ·toward
the end of the ISA. Storage for I/O buffers and transient
library routines is acquired by issuing GETMAIN macro
instructions.

Non-LIFO dynamic storage may start at the end of the ISA and
expand toward the LIFO stack. If heap storage is used, separate
storage areas may be obtained.

Chapter 1. Introduction 7

LOAD MODULE

PLISTART

PLIMAIN

~-------------------------------,<------~

ADDRESSES
Addresses of:
Library modules,
PL/I subroutines and
entry points,
Label constants,
External procedures, etc.

CONTROL BLOCKS
Various control blocks
needed during
execution

CONSTANTS
Storage for any constants
used in the program

STATIC VARIABLES
Storage for variables
declared as STATIC
INTERNAL

Static
internal
control
section

~------------------------------~<-------

OTHER CONTROL SECTIONS
storage for variables
declared as STATIC EXTERNAL.
Control blocks and
other data for
external files, etc.

PROGRAM CONTROL SECTION
Compiled code

LIBRARY MODULES
Link-edited library
modules, includings
IBMBPIR, and IBMBERR

Figure 3. Contents of a Typical load Module

8 OS PL/I Optimizing Compilera Execution Logic

Other storage
obtained by issuing
GETMAIN macros

storage for:
Transient library
routines I/O
bufTers

Plus:
Further allocation
of dynamic storage
if required

Other storage for
HEAP (if used)

Storage for
CONTROLLED and
dynami ca 11 y
allocated BASED
val'iables, if
HEAP is used

Figura 4. Use of Storage

LOAD MODULE -l Compiled code
Library modules Load M oula
Addresses

~ Control blocks
Constants
Static var'iables -----

PROGRAM
MANAGEMENT AREA

TCA (task communications area)
Dummy DSA (dynamic storage area)
Other housekeeping control blocks

LAST-IN/FIRST-QUT
(LIFO) STORAGE

DSAs and VDAs (variable data areas).
Storage for automatic variables and
compiler-generated temporaries, and
other items allocated and freed on
a block and procedure basis Init il

Stor ae
Area
(ISA)

MAJOR FREE AREA

NON-LIFO STORAGE

Storage for CONTROLLED and BASED
variables if HEAP is not used,
and for PL/I Library routines

Chapter 1. Introduction 9

THE PROCESS OF EXECUTION

The process of execution is illustrated in Figure S. The
processes involved for a sample program are described below.

'---

SAMPLE: PROC OPTIONS(MAIN)j
INPUT: GET LIST(Y,Z)j

PLISTART

Receives control from
system

Prolog code

Acquires DSA for main
> procedure, ~n~t~al~zes

control blocks, etc.

Epilog code

Restores IBMBPIR's
> registers

•
•
•

(process data as required)
•
•
•
PUT LIST(X)j
IF X<500 THEN GO TO INPUTi
END;

Initialization routines

Set up TCA, initialize
storage and issue

f-> SPIE/ESPIE & STAE/ESTAE

-

to initialize
PL/I error-handling
scheme. Pass control
to the address in
PLIMAIN.

Functional code

Carries out function
> requ~red ~n source

program. This usually
involves calls to
library subroutines

Termination routines

Close any files still
> open and return control

to the operating system

Figure 5. Flow of Control During Execution

10 OS PL/I Optimizing Compiler: Execution Logic

""'"--

During execution:

1. The control program passes control to the control section
PlISTART, which has been generated by the compiler.

2. PlISTART calls the resident library initialization routine,
IBMBPIR.

3. IBMBPIR and IBMBPII (called by IBMBPIR) set up the Pl/I
environment. IBMBPIR then passes control to the main
procedure compiled code, with register 12 pointing at the
TCA and register 13 pointing at the dummy DSA. The address
to which IBMBPIR passes control is held in the control
section PLIMAIN.

4. Compiled code prolog stores the contents of the registers
used by IBMBPIR in the dummy DSA and acquires a DSA for the
main procedure.

5. Compiled code calls the library routines used for stream
I/O. These in turn call transient routines to open the
standard files and further transient routines to interface
with data management routines.

6. Processing is carried out by compiled code. Further calls
to the library may be involved if, for example, mathematical
functions are used.

7. The stream output will involve further steps similar to
those described in 5, above.

8. When the END statement is reached, the epilog code is
entered. This restores the registers of IBMBPIR, the
initialization routine, and returns control to IBMBPIR.

9. IBMBPIR may raise the FINISH condition, calling the resident
error-handling module IBMBERR, when a FINISH ON-unit is used
in the main procedure. Otherwise, IBMBPIR calls IBMDPIT to
carry out certain housekeeping tasks, including calling
entry point IBMBOCLB in module IBMBOCL to close files.
IBMDPIT returns control to IBMBPIR; if user-exit IBMBEER is
present Pl/I either ABENDs or returns control to the calling
program.

This program illustrates the main points mentioned earlier in
the chapter. The initialization routines are used in steps 3
and 9, to set up and discard the Pl/I environment. The storage
environment scheme is illustrated in the prolog and epilog code
in steps 4 and 8. The communications area (TCA) is set up by
the initialization routine, and the use of library subroutines
is shown in steps 5 and 7. The use of special error and PL/I
condition handling code is shown in step 9.

Chapter 1. Introduction 11

CHAPTER 2. COMPILER OUTPUT

INTRODUCTION

This chapter describes the part of the load module that is
generated by the compiler. The compiler output is a relocatable
object module consisting of a series of records in card-image
forwat. These records contain either machine instructions,
constants, or external or internal addresses to be resolved by
the linkage editor. The records are known aSl

TXT records
Contain machine instructions or constants.

RlD records
Contain internal addresses that require updating for a
load module.

ESD records
Contain external names to be resolved (bound) with
other programs and data areas.

Further information about the output passed to the linkage
editor is given in the publication OS Pl/! Optimizing Compiler:
Program Logic.

There are two main control sections produced by the compiler.
These are:

• The program control section, holding the executable
instructions translated from the PL/! program.

• The static internal control section holding constants,
addresses, and static variables.

A number of other control sections are also generated. These
either handle certain housekeeping functions, or are used for
external data which may have identical control sections
generated for it by by other compilations.

Workspace and storage for automatic variables is acquired during
execution, normally by the prolog code that is executed at the
start of every block.

The output from the compiler is shown in Figure 6 on page 13 and
listed below:

1. Control sections that are always generated

Program control section
Containing executable instructions.

Static internal control section

PlISTART

Containing addresses, control blocks,
constants, and STATIC INTERNAL variables.

The entry point for the executable program
phase. Passes control to initialization
routine.

12 OS PL/I Optimizing Compilerl Execution logic

COMPILER

Housekeeping vi
control sections

PLISTART
Contains:

Instructions
passing control
to initialization
routine

PLIMAIN
Contains:

Address of n,ain
procedure

t-PLIFLOW- - - ~
Contains:

External reference I
to library module
used in FLOW
option

PLICOUNT
Contains:

External reference
to library module
used in COUNT
option

V

fA ~o~t;ol ;e~tio~ for 1
compiler-generated
~u~r~u~i~e_ _ _ _ _ J

-->
-->

-->
-->

Program control section

Contains.

Executable instructions
translated from source
program

Static internal
control section

Containsl

Addresses
Constants
Control information
Static internal
variables

Control sections for
data declared
EXTERNAL V

A separate control section
for each external:

Variable
File
Procedure
User condition
Symbol table for external data

Dummy Section V

r-A-d~m;y-s~cti~n- - ~
containing addres~
information for
file and controlled
variables.

Becomes the I
pseudo-register

L-v=c:o~ :P~V~ ___ ~

Note: Control sections surrounded with broken lines are generatedonly when required.

Figure 6. The Output from the Compiler

2. Control sections that are generated only when required

PLIMAIN

PLIFLOW

Containing the address of the entry point of the
main procedure. (Generated only for procedures
with OPTIONS (MAIN).)

A control section generated when the compiler FLOW
option is specified. (See Chapter 7.)

Chapter 2. Compiler Output 13

PLICOUNT A control section generated when the COUNT
compiler option is specified.

static external control sections
A static external control section is generated for
every external variable, file, and procedure.

Plus control sections for
Each user-defined condition, and each
compiler-generated subroutine used.

3. Dummy sections

Pseudo-register vector
A dummy section used in addressing files and
controlled variables.

The two control sections, PLISTART and PLIMAIN, are used during
program initialization. PLISTART holds the address of the
library initialization routine IBMBPIR, which will be entered at
the start of the program. PLIMAIN holds the address of the
start of the code for the main procedure. This is the address
to which the library initialization routine branches when
initialization is complete; it is marked "*REAL ENTRY" in the
object-program listing.

A PLIMAIN control section is generated for every procedure for
which OPTIONS (MAIN) is specified in the procedure statement.
When two such procedures are run together, control passes to the
first of the procedures processed by the linkage editor.

The format of PLIMAIN and PLISTART is given in
Appendix A, "Control Blocks" on page 326.

If the compiler FLOW option is being used, a control section
called PLIFLOW is also generated. This contains code that
results in the link-editing of the trace module IBMBEFL and also
contains the values of Un" and Om" specified in the option. The
format of PLIFLOW is given in Chapter 7, "Error and Condition
Handling" on page 105.

The Organization of This Chapter

LISTING CONVENTIONS

The remainder of this chapter describes the contents of the
static internal control section and the program control section.
First the conventions used in the object program listing and the
static storage map are described. Descriptions of the two
control sections follow. The description of the program control
section covers the conventions used in the objec·t program code
such as register usage, method of handling flow of control, and
addressing information. The chapter is completed by a short
discussion of the effects of optimization.

Figure 7 shows all the program listing information that can be
produced by the compi 1 e;~. I t a Iso shows the reI evant campi I er
options and summarizes the information that will be produced if
these options are specified. Some or all of these options may
be deleted at installation time. To obtain deleted options, the
correct password (specified at installation time) must be
specified in the CONTROL option.

This chapter describes the contents of the static-storage map
and the object-program listing. Information on the other items
generated is given in the OS PL/! Optimizing Compiler:
Programmer's Guig~.

14 OS PL/I Optimizing Compiler: Execution logic

Compiler
Name Contents Option

Source program Source program statements SOURCE

Aggregate table Names and storage requirements of structures AGGREGATE
and arrays

Storage Names and storage requirements of all STORAGE
requirements procedures

ESD references Name, type, and identifier of all external ESD
references generated by the compiler 1

Static storage Contents of static internal and static MAP and LIST
external control sections in hexadecimal
notation with comments

Table of offset and Offsets, within code, of the start of each OFFSET
statement number statement

Object program The contents of the program control section LIST
in hexadecimal and translated into a
pseudo-assembler-language format

Variables offset The offsets of automatic and static internal MAP
MAP variables from their defining base

Figure 7. Contents of Listing and Associated Compiler Options

STATIC-STORAGE MAP

Note to Figure 7:

External references within library modules are not included.

The static-storage map is a formatted listing of the contents of
the static internal and static external control sections. You
obtain this listing by specifying the MAP option in the PROCESS
statement. The static control sections contain items grouped in
the following order:

1. Address constants for entry points to procedures, and for
branch instructions.

2. Address constants for resident library subroutines.

3. Address constants for addressing static storage beyond 4K.

4. The constants pool, which contains source program constants,
data element descriptors, locator/descriptors, symbol
tables, declare control blocks (DCLCBs), and other control
blocks.

5. Static variables.

The constants pool and the static-variable sections of static
storage begin on doubleword boundaries.

The static control section is listed, each line comprising the
following elements:

1. Six-digit hexadecimal offset.

2. Hexadecimal text, in 8-byte sections where possible.

3. Comment, indicating the type of item to which the text
refers; a comment appears against only the first line of the
text for an item.

Chapter 2. Compiler Output 15

:
I

A typical static listing is shown in Figure 8 on page 17.

The following comments are used (xxx indicates the presence of
an identifier):

A •• Address constant

COMPILER LABEL CL.nn
Compiler-generated label followed by CL plus
number

CONDITION CSECT Control section for programmer-named condition

CONSTANT

CSECT FOR EXTERNAL VARIABLE

D ••

DED ..

ENVB

DCLCB

FED ..

KD ..

ONCB

PICTURED DED ..

RD ..

SYMTAB

USER LABEL xxx

xxx

Control section for external variable

Descriptor

Data element descriptor

Environment control block

Declare control block

Format element descriptor

Key descriptor

On control block

Pictured DED

Record descriptor

Symbol table

Source program label for xxx

Name of variable. If the variable is not
initialized, no text appears against the
comment; there is also no static offset if the
variable is an array. (The static offset can
be calculated fro~ the array descriptor if
required.)

16 OS PL/I Optimizing Compiler. Execution Logic

SOURCE
1 EXAMPLE: PROC OPTIONSeMAIN) REORDER;
2 1 DeL XelO),Y,Z INITIAL CO);

3 1 GET EDITeX,Y)(F(3),X(11»;

(. 1 DO 1=1 TO Y;
5 1 1 Z=Z*X(I);
6 1 1 END;
7 1 PUT EDITeZ)(A);
8 1 END;

STATIC INTERNAL STORAGE MAP STATIC EXTERNAL CSECTS

000000 EOOOOOF8 PROGRAM ADCON 000000 0000000000000000 DClCB
000004 00000008 PROGRAM ADCON 0000000000000000
000008 0000005E PROGRAM ADCON 000OOO140005E2E8
OOOOOC 00000068 PROGRAM ADCON E2C9D500
000010 00000068 PROGRAM ADCON
000014 00000000 A .. I ELCGIX
000018 00000000 A .. I ElCGIB 000000 FFFFFFFC41201000 DCLCB
OOOOlC 00000000 A .. IBMBCACA 02D70FOOOOOOOOOO
000020 00000000 A .. IBMBCEDB 000000140008E2E8
000024 00000000 A .. IBMBCHFD E2D7D9C9D5E30000
000028 00000000 A .. IBMBCTHD
00002C 00000000 A .. IBMBCVDY
000030 00000000 A .. IBMBOCLA
000034 00000000 A .. IBMBOCLC
000038 00000000 A .. IBMBSAOA
00003C 00000000 A .. IBMBSEDB
000040 00000000 A .. 1BMBSEIA
000044 00000000 A .. IBMBSEIT
000048 00000000 A .. IBMBSFIA
00004C 00000000 A .. IBMBSIIA
000050 00000000 A .. IBMBSIOA
000054 00000000 A .. IBMBSIOT
000058 00000000 A .. IBMBSXCA
00005C 00000000 A .. STATIC
000060 08040680 DED .. X
000064 500000030080 FED
00006A 6000000B FED
00006 E 58010000 FED
000072 OOOA CONSTANT
000074 0001 CONSTANT
000076 0004 CONSTANT
000078 91E091EO CONSTANT
00007C 00000000 CONSTANT
000080 46008000 CONSTANT
000084 00000000 A .. DClCB
000088 00000000 A .. DClCB
00008C 00000000 A .. DeLCB
000090 80000000 A .. TEMP
000094 00000000 A .. DCLCB
000098 80000000 A .. TEMP
00009C
OOOOAO 0000010600000068 COMPILER LABEL CL.11

Figure 8. Example of Static Storage Listing

Chapter 2. Compiler Output 17

OBJECT-PROGRAM LISTING

By including the option LIST in the PROCESS statement, the
programmer can obtain a listing of the compiled code, known as
the object-program listing. This listing consists of the
machine instructions plus a translation of these instructions
into a form that resembles assembler language, and number of
comments such as the statement number. The format of this
listing is shown in Figure 9 on page 19. As can be seen, blocks
of code are headed by the number of the statement in the PL/I
program to which they are equivalent. When optimization has
resulted in code being moved out of a statement, this is
indicated. Only executable statements appear in the listing.
DECLARE statements are not included, because they have no direct
machine-code equivalent. To simplify understanding of the
listing, the names of PL/! variables are inserted, rather than
the addresses that appear in the machine code. Special
mnemonics are used when referring to control blocks and other
items.

statements in the object program listing are ordered by block.
Statements in the outermost block are given first, followed by
statements in the inner blocks. Thus the order of statements
will frequently differ from that of the source program.

Every object-program listing begins with the name of the
procedure. The name is defined as a constant in a DC
instruction. This is followed by another constant containing
the length of the procedure name. Then comes the name of the
procedure, as a comment, followed by code under the heading
"REAL ENTRY." This is the point at which the code will,in fact,
be entered. The second section of code is the prolog, which
carries out various housekeeping tasks and is described more
fully later in this chapter. The end of the prolog is marked by
the message "PROCEDURE BASE." This is followed by a translation
of the first executable statement in the Pl/I source program.

The comments used in the listing are as follows:

• PROCEDURE xxx--identifies the start of the procedure labeled
xxx.

• REAL ENTRY xxx--heads the initialization code for an entry
point to a procedure labeled xxx.

• PROLOG BASE--identifies the star"t of the prolog code common
to all entry points into that procedure.

• PROCEDURE BASE--identifies the address loaded into the base
register for the procedure.

• STATEMENT LABEL xxx--identifies the position of source
program statement label xxx.

• PROGRAM ADDRESSABILITY. REGION BASE----identifies address to
which the program base is updated if the program size
exceeds 4096 bytes and consequently cannot be addressed from
one base.

• CONTINUATION OF PREVIOUS REGION--identifies the point at
which addressing from the previous program base recommences.

• END OF COMMON CODE--identifies the end of code used in the
execution of more than one statement.

• END PROCEDURE xxx--identifies the end of the procedure
labeled xxx.

• BEGIN BLOCK xxx--indicates the start of the begin block with
label xxx.

• END BLOCK xxx--indicates the end of the begin block with
label xxx.

18 OS PL/I Optimizing Compilers Execution Logic

PAGE 7

00004A 91 40 F 02C TM 44(15),X'40' 000030 58 FO 7 03C L 15, 60(0, 7)
00004E 47 80 7 056 BZ +1+8 000034 18 E6 LR 14,6
000052 96 80 1 010 01 16(1),X'80' 000036 07 FF BR 15
000056 48 50 F 050 LH 5,80(0,15) 000038 DC AL4(0)
00005A 4B 50 E 002 SH 5, 2(0,14) 00003C DC AL4(0)
00005E 91 CO E 001 TM 1 (14) ,X' CO'
000062 47 EO 7 076 BNO +1+20 +I END OF COMPILER GENERATED SUBROUTINE
000066 4B 50 E 002 SH ~8f~~j~~140' 00006A 91 40 F 026 TM
00006E 47 80 7 076 BZ '1-+8 +I STATEMENT NUMBER
000072 06 50 BCTR 5,0 000000 DC C'EXAMPLE'
000074 06 50 BCTR 5,0 000007 DC ALl (7)
000076 40 50 F 050 STH 5,80(0,15)
00007A 58 50 F 04C L 5,76(0,15) +I PROCEDURE EXAMPLE
00007E 50 50 1 000 ST 5, O(0,1)
000082 4A 50 E 002 AH 5,2(.0,14) +I REAL ENTRY
000086 91 CO E 001 TM 1 (14) ,X' CO' 000008 90 EC o DOC STM 14,12, 12(13)
00008A 47 EO 7 09E BNO +1+20 OOOOOC 47 FO F 014 B +1+16
00008E 4A 50 E 002 AH ~8f\~j ~~140' 000010 00000000 DC ~I~~~T' NO. TABLE)
000092 91 40 F 026 TM 000014 00000130 DC
000096 47 80 7 09E BZ +1+8 000018 00000000 DC A(STATIC CSECT)
00009A 41 55 0 002 LA 5, 2(5, 0) 00001C 58 30 FOlD L 3, 16(0, 15)
00009E 50 50 F 04C ST 5,76(0,15) 000020 58 10 0 04C l 1, 76(0,13)
0000A2 58 50 1 01C L 5,28(0,1) 000024 58 00 F DOC L 0,12(0,15)
0000A6 02 03 1 01C o 04C MVC 28(4,1),76(13) 000028 1E 01 AlR 0,1
OOOOAC 07 F6 BR 6 00002A 55 00 C DOC CL 0, 12(0, 12)
OOOOAE 58 FO 7 OCC l 6rl~~;~?661 00002E 47 DO F 030 BNH +1+10
0000B2 95 60 E 000 Cli 000032 58 FO C 074 l 15,116(0,12)
0000B6 47 70 7 OBE BNE +1+8 000036 05 EF BALR 14,15
OOOOBA 58 FO 7 000 l 15,208(0,7) 000038 58 EO o 048 l 14,72(0,13)

lPL/1 OPTIMIZING COMPILER EXAMPLE: PROC OPTIONS(MAIN) REORDER; PAGE 8
-00003C 18 FO lR 15,0 000002 05 AA BAlR 10,10

00003E 90 EO 1 048 STM 14,0, 72(1) 000001. 47 FO 09E B CL.l1
000042 50 DO 1 004 ST 13, 4(0,1) 000008 CL. 10 EQU +I

000046 41 01 0 000 LA 13, O(1,0) 0000D8 41 EO 3 064 LA 14,100(0,3)
00004A 50 50 0 058 ST 5,88(0,13) OOOOOC 58 10 D OFO L 1,240(0,13)
00004E 92 80 0 000 MVI 0(13),X'80' OOOOEO 58 70 3 014 L 7,A .. I ELCGIX
000052 92 24 0 001 MVI 1 (13) ,X'24' 0000E4 05 67 BALR 6,7
000056 D2 03 0 054 3 078 MVC 84 (4,13), 120 (3) 0000E6 58 FO 048 L 15,A .. IBMBSFIA
00005C 05 20 BALR 2,0 OOOOEA 05 EF BALR 14,15

OOOOEC 58 70 018 L 7, A .. I ELCG I B
+I PROLOGUE BASE OOOOFO 05 67 BALR 6,7

0000F2 05 AA BALR 10,10
+I INITIALIZATION CODE FOR Z 0000F4 41 EO 3 06A LA 14,106(0,3)
00005E 78 40 3 07C LE 4,124(0,3) 0000F8 58 10 0 OFO L 1,240 (0, 13)
000062 70 40 0 OBC STE 4,Z OOOOFC 58 70 3 014 L 7,A .. I ELCGIX
+I END OF INITIALIZATION CODE FOR Z 000100 05 67 BALR 6,7

000102 47 FO 070 B CL.10
000066 05 20 BALR 2,0 000106 CL.ll EQU +I

... PROCEDURE BASE
+I STA TEt1ENT NUMBER 4
000106 78 00 D OB8 LE O,Y

+I STATEMENT NUMBER 00010A 70 00 0 OF8 STE 0,248(0,13)
000068 41 70 0 100 LA 7,256(0,13) 00010E 48 70 3 074 LH 7, 116(0, 3)
00006C 50 70 3 090 ST 7, 144(0, 3) 000112 40 70 0 OCO STH 7, I
000070 96 80 3 090 01 144(3),X'80' 000116 48 40 0 OCO LH 4, I
000074 41 10 0 100 LA 1,256(0,13) 00011A 50 40 0 128 ST 4,296(0,13)
000078 50 10 D OFO ST 1,240 (0,13) 00011E 48 40 3 080 LH 4,128(0,3)
00007C 92 24 0 111 MVI 273(13),X'24' 000122 40 40 0 128 STH 4,296 (0,13)
000080 41 EO 3 OAO LA 14,160(0,3) 000126 97 80 D 12A XI 298(13),X'80'
000084 50 EO 0 118 ST 14,280(0,13) 00012A 78 20 0 128 LE 2,296(0,13)
000088 41 10 3 08C LA 1, 140(0, 3) 00012E 7B 20 3 080 SE 2,128(0,3)

PAGE 8

00008C 58 FO 04C L 15,A .. IBMBSIIA 000132 39 20 CER 2,0
000090 05 EF BALR 14,15 000134 47 20 2 114 BH CL.3
000092 41 AD 2 070 LA 10,CL.l0 000138 CL.2 EQU +I

000096 48 50 3 074 LH 5, 116(0, 3)
00009A 50 50 0 OF4 ST 5,244(0,13)
00009E CL.5 EQU +I +I STATEMENT NUMBER
00009E 18 45 LR 4,5 000138 48 90 D OCO LH 9, I
OOOOAO 8B 40 0 002 SLA 11,2 00013C 8B 90 0 002 SLA 9,2
0000A4 41 E4 D OC4 LA 14, YO .. X(4) 000140 78 40 0 OBC LE 4,Z
0000A8 41 FO 3 060 LA 15,OEO .. VO .. X 0001 114 7C 49 0 OC4 ME 4,VO .. X(9)
OOOOAC 58 10 0 OFO L 1,240 (0, 13) 000148 70 40 0 OBC STE 4,Z
OOOOBO 90 EF 1 008 STM 14,15, 8(1)
0000B4 05 AA BALR 10,10
0000B6 4A 50 3 074 AH 5, 116(0,3) +I STATEMENT NUMBER 6
OOOOBA 50 50 0 OF4 ST 5,244(0,13) 0001 1.C 48 70 0 OCO LH 7, I
OOOOBE 49 50 3 072 CH 5, 114(0, 3) 000150 4A 70 3 074 AH 7, 116(0, 3)
0000C2 47 CO 2 036 BNH CL.5 000154 110 70 0 OCO STH 7, I
0000C6 41 EO D OB8 LA 14,Y
OOOOCA 41 FO 3 060 LA 15,OEO .. Y +I CODE MOVEO FROM STATEMENT NUMBER 4
OOOOCE 90 EF 1 008 STM 14,15, 8(1) 000158 48 70 0 OCO LH 7, I

lPL/1 OPTIMIZING COMPILER EXAMPLE: PROC OPTIONS(MAIN) REOROER; PAGE
-00015C 50 70 0 128 ST 7,296(0,13) 0001EA 07 07 NOPR

000160 48 70 3 080 LH 7,128(0,3)
000164 40 70 D 128 STH 7,296(0,13) +I END PROGRAM
000168 97 80 0 12A XI 298(13) ,X'80'
00016C 78 60 0 128 LE 6,296(0,13)
000170 7B 60 3 080 SE 6,128(0,3)
000174 79 60 0 OF8 CE 6,248(0,13)
000178 47 CO 2 000 BNH CL.2

Figure 9. Part of an Object Program Listing

Chapter 2. Compiler Output 19

• BEGIN BLOCK--GENERATED NAME BLOCK.nn--indicates the start of
an unnamed begin block for which the compiler has generated
the name BLOCK.nn, where nn is two hexadecimal digits.

• END BLOCK.nn--indicates the end of the begin block with
compiler-generated name BLOCK.nn.

• STATEMENT NUMBER n-identifies the start of code generated
for statement number n in the source listing.

• INTERLANGUAGE PROCEDURE xxx--identifies the start of
encompassing procedure xxx (see Chapter 13).

• END INTERLANGUAGE PROCEDURE xxx-identifies the end of
encompassing procedure xxx. (See Chapter 13)

• COMPILER GENERATED SUBROUTINE xxx-indicates the start of
compiler-generated subroutine xxx.

• END OF COMPILER GENERATED SUBROUTINE--indicates the end of
the compiler-generated subroutine.

• ON-UNIT BLOCK--indicates the start of an ON-unit block.

• ON-UNIT BLOCK END-indicates the end of the ON-unit block.

• END PROGRAM-indicates the end of the external procedure.

• INITIALIZATION CODE FOR OPTIMIZED LOOP FOLLOHS--indicates
that some of the code that follows has been moved from
within a loop by the optimization process.

• CODE MOVED FROM STATEMENT NUMBER n--indicates object code
moved by the optimization process to a different part of the
program and gives the number of the statement from which it
originated.

• CALCULATION OF COMMON ED EXPRESSION FOLLOHS--indicates that
an expression used more than once in the program is
calculated at this point.

• METHOD OR ORDER OF CALCULATItJO EXPRESSIONS CHANGED
indicates that the order of the code following has been
changed to optimize the object code.

In certain cases, mnemonics are used to identify the type of
operand in an instruction, and, where applicable, this is
followed by the name of a PL/I variable. The following prefixes
are used:

A ••

ADD ..

BASE ..

BLOCK.nn

CL.nn

D ••

DED ..

WSP.n

L ••

LOCATOR ..

RKD ..

Address constant

Aggregate descriptor descriptor

Base address of a variable

Label created for an otherwise unlabeled block

Compiler-generated label

Descriptor

Data element descriptor

Workspace, followed by decimal number of the block
of allocated workspace

Length of variable

Locator

Record or key descriptor

20 OS PL/I Optimizing Compilerz Execution Logic

VO .. Virtual orlgln (the address where element 0 would be
held for a one-dimensional array, element 0, 0 for a
two-dimensional array, etc.).

STATIC INTERNAL CONTROL SECTION

The static internal control section contains the majority of
items that are not executable instructions. The contents of a
typical static control section are shown in Figure 8 on page 17.

The first part of the static illternal control section contains
addresses. These are held in the order:

1. Addresses in static CSECT and code CSECT

2. Addresses of library modules

3. Addresses of entry points

4. Addresses of label constants that may be assigned to label
variables

5. Addresses of external procedures (other than library
modules)

The address section is followed by a section known as the
constants pool. This contains the following items (if required
by the program):

Constants Constant values used by compiled code.
"-

ONCBs Control blocks used in error handling.
(See Chapter 7, "Error and Condition
Handling" on page 105)

Descriptors, Control information used by compiled code
locators and and library. (See
DEDs (data Chapter 4, "Communication between Routines"
element on page 64.)
descriptors)

Symbol table Control information used in data-directed
address vector I/O. (See Chapter 4, "Communication

between Routines" on page 64.)

Diagnostic Information on statement numbers.
staten,ent table

Items are arranged according to their alignment requirements,
those requiring doubleword alignment first, followed by
fullword, halfword, byte, and bit.

The next section of the static internal control section holds
the static variables. These are held in size order, with the
smallest being first.

The final section of the static internal control section
contains branch tables for those select-groups for which
optimized code has been produced, the statement number tables
containing GOSTMT and GONUMBER data (if one of those options has
been specified) and the TIMESTAMP data (if this option has been
specified at installation time).

Chapter 2. Compiler Output 21

PROGRAM CONTROL SECTION

REGISTER USAGE

Dedicated
Registers

0

1

2 Address of
program
base

3 Address of

The program control section contains the executable instructions
that are a translation of the PL/I source program. The format
of each program control section depends on the contents of the
source program. The discussion that follows covers items that
will be common to all source programs.

To keep discussions of subjects as complete as possible the
chapter also includes descriptions of certain library functions
when they are closely allied with the subject under discussion.

Details of register usage during the execution of compiled code
are given in Figure 10.

Work Registers
(plus special use) Preferred Registers Notes

General Cannot be used
as base

General + address
of parameter list

Saved during
in-line record
I/O and TRT
instructions

static base

4 Address of
temporary base
if DSA size
greater than
3896 bytes

5 General + static Preferred register
back-chain on for DO-loop control
entry to procedure variable

6 General

7 General

8 General

9 General

10 General Preferred register
for DO-loop control
when BXLE
instruction is used

11 General Preferred register
for DO-loop control
when BXLE
instruction is used

12 Address of
TCA

Figure 10 (Part 1 of 2). Register Usage in Compiled Code

22 OS PL/I Optimizing Compiler: Execution Logic

Dedicated Work Registers
Registers (plus special use) Preferred Registers Notes

13 Address of
current DSA

14 General + branch-
and-link to
library and other
routines

15 General + branch-
and-link to
library and other
routines

Figure 10 (Part 2 of 2). Register Usage in Compiled Code

Dedicated Registers

Four general registers are used as bases for addressing various
types of data; these are known as dedicated registers. The
remainder of the registers are used as they are required and are
known as work registers.

Dedicated registers are:

R2 Program base

R3 Static base

Rl2 TCA pointer

R13 DSA pointer

This arrangement of dedicated registers allows compiled code the
use of five even/odd work register pairs. These are (0,1),
(6,7), (8,9), (10,11), and (14,15).

Certain registers have special tasks for which they are always
used, or for which they are preferred and used when available.
These tasks are shown in Figure 10 on page 22.

REGISTER 2--PROGRAM BASE REGISTER: Register 2 is the program
base register and is used for branching within the code. When
the code exceeds 4K, register 2 is updated so that all branching
is done on this register. During in-line I/O (when data
management calls are handled by compiled code rather than by
library subroutines), and during the execution of TRT
instructions, the program base register contents are saved and
the register used for other purposes.

REGISTER 3--STATIC BASE REGISTER: Register 3 points to the
start of the static internal control section. The items to be
found in this control section in any particular program are
listed in the static-storage map put out by the compiler. (See
"Static Internal Control Section" on page 21). When the static
control section is larger than 4K bytes, a further base register
is used.

REGISTER 12--TCA: Offsets from register 12 are used to address
the various fields in the TCA. The TCA is discussed further in
Chapter 5, "Object Program Initialization" on page 74. Its
format is shown in Appendix A, "Control Blocks" on page 326.

Chapter 2. Compiler Output 23

Work Registers

REGISTER 13--CURRENT DSA: Register 13 points to the current DSA
and is used to address the automatic variables declared in the
current procedure or block. References to offsets from register
13 which do not appear as names in the assembler language
listing are references to the housekeeping fields held in every
DSA. These are discussed in Chapter S, "Object Program
Initialization" on page 74; the format of the housekeeping
information in a DSA is given in Appendix A, "Control Blocks" on
page 326.

REGISTER 4: When the DSA is larger than 3896 bytes register 4
is used as a base for compiler generated temporaries.

Special or preferred uses for work registers are shown in
Figure 10 on page 22. Special uses are those for which the
register is 'freed and always used. Preferred uses are those for
which the register is used when possible.

FLOATING-POINT REGISTERS: Floating-point registers are all used
as general work registers for floating-point data.

LIBRARY REGISTER USAGE

Register usage in library modules is different from that in
compiled code. It is shown in Figure lIon page 25.

In both library and compiled code usage, register 12 points at
the TCA, and register 13 at the current DSA. Registers 14 and
15 are used by both library subroutines and compiled code to
branch and link between routines.

A further point about library register usage is worth noting.
Registers 14 through 4 are normally saved by the library. This
is because the majority of library subroutines use only these
registers. Consequently, time can be saved by reducing
save-restore requirements. However, some library routines also
save one or more of registers 5 through 11.

24 OS PL/I Optimizing Compilera Execution Logic

Register

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 11.

Usage

Work register

Work register

Program base register (dedicated)

Work register

Work register

Work register

Work register

Work register

Work register

Work register

Work register

TeA pointer (dedicated in both library and
compiled code)

DSA pointer

Work register (always used for branch-and-link
to other routines)

Work register (used with register 14 for
branch-and-link)

Library Register Usage

HANDLING AND ADDRESSING VARIABLES AND TEMPORARIES

AUTOMATIC VARIABLES

Automatic variables have storage allocated on a procedure or
begin-block basis. Variables whose length is known during
compilation have storage allocated within the DSA of the block
in which they are declared. Variables, whose length is not
known until execution, have their storage allocated in variable
data areas (VDAs). VDAs are held in the last-in/first-out
storage stack and are acquired in the prolog code after the DSA
has been acquired. The same method is used as is used for
acquiring the DSA, as described in "Prolog" on page 32.

Automatic variables, when used in the block in which they are
declared, are addressed from register 13, if they are held in
the DSA. If they are held in a VDA, a separate base is set up
for the VDA and they are addressed from this.

Automatic variables known in any block are those that are
declared in that block, or in any encompassing blocks. The
method used to address automatic variables in outer blocks is a
static back-chain.

The compiler-generated prolog for a procedure saves the address
of the static back-chain DSA. This address can then be accessed
from register 13. Frequently, the value is retained in the

Chapter 2. Compiler Output 25

register and not reloaded when the variable is accessed.
Typical code would be:

L 7,96(0,13) Pick up address of correct DSA

L 8,108(7) Place value in register 8

COMPILER-GENERATED TEMPORARIES

Because PL/I statements can contain an unlimited number of
operands, it is frequently necessary to set up fields containing
intermediate results. These fields are known as temporarY
variables (temporaries) and are allocated within the DSA of the
associated block, provided that the size of storage required is
known at compile time. Temporaries are addressed from register
13, unless the DSA is longer than 4096 bytes. Because temporary
storage is continually being reused, the same offset will not
always refer to the same temporary.

Temporaries for Adjustable Variables

CONTROLLED VARIABLES

BASED VARIABLES

Where a temporary is needed to hold a value for an adjustable
variable, its size is not predictable until execution. In such
cases, a VDA is acquired for the temporary value.

Controlled variables are addressed through the pseudo-register
vector, as described below under "The Pseudo-register Vector
(PRV)" on page 27. When no allocations of the controlled
variable have been made, the PRV offset points to the dummy FeB.
Otherwise, it points to the most recent allocation of the
controlled variable.

Each controlled variable is headed by a four-word control block
that holds the address of the previous allocation (if any), the
length of the variable (including the control block), the
pseudo-register vector offset, and the task invocation count.
The format of this control block is shown in
Appendix A, "Control Blocks" on page 326.

Storage for controlled variables is allocated in non-LIFO
storage, or in separate heap storage. If there is room in the
ISA and heap is not being used, it is allocated within the ISA.
Otherwise, a GETMAIN macro instruction is issued to obtain
storage.

Stacking and unstacking of controlled variables is handled by a
resident library routine, IBMBPAFA. IBMBPAFA calls on IBMBPGR
to obtain and release the storage.

Based variables are addressed by using the contents of the
pointer on which they are based. The pointer is addressed in
the usual manner, depending on its storage class.

When a based variable is allocated, a call to the storage
management module IBMBPGR is made. IBMBPGR acquires storage in
the heap storage area or in the ISA non-LIFO dynamic storage
area. IBMBPGR then returns the address of the storage in
register 1. The address held in register 1 is then placed in
the pointer on which the allocated variable is based.

When the variable is freed, a further call to IBMBPGR is made to
free the storage.

POINTERS: Pointers and offsets are held as fullwords. The null
pointer value is X'FFOOOOOO'.

26 OS PL/! Optimizing Compiler: Execution Logic

STATIC VARIABLES

Static internal variables are held in the static internal
control section and are addressed from register 3.

Static external variables are held in separate control sections
and are addressed from an address constant in the static
internal control section.

ADDRESSING BEYOND THE 4K LIMIT

As described above, variables can, in the simplest case, be
addressed by using an offset from one of the base registers.
However, as the space required for any particular type of
storage can exceed the maximum offset allowed in addressing
(4096 bytes), it is necessary to have a scheme to allow
addressing of variables beyond this limit.

The method used is to divide storage for automatic variables,
temporaries, and static variables into sections of 4096 bytes.
The addresses of the second and subsequent sections are then
placed in the first section. Addressing of an automatic
variable beyond the 4096-byte limit is typically done by code
resembling the following:

l 6,92(0,13)

AH 7,96(0,6)

Place address of 4K boundary in register 6.

Address variable by using offset from 4K boundary
placed in register set up in last instruction.

A similar system is used for addressing any static variables
which are at an offset greater than 4096 bytes. The addresses
are held in the following areasz

Automatic Immediately following the housekeeping information
of the DSA.

Static At the head of the first section of static storage.

Temporaries At the head of temporary storage, following bases
of parameters, register save area, and addresses of
any outer DSAs.

Constants and variables are held in order of size, with the
smallest first. This minimizes the number of items that
overflow the 4K boundary.

THE PSEUDO-REGISTER VECTOR (PRV)

Addressing Controlled Variables and Files

In order to address controlled variables, fetched procedures,
and files, PL/! uses a control block called the P§eudo-register
~ctor (PRV). This control block is mapped by the linkage
editor as a dummy section with a fullword field for each
uniquely named controlled variable or file. During execution,
the addresses of the storage allocated to the variables, fetched
procedures, or files are placed in the PRV.

For an introduction to pseudo-registers, see OS/VS Linkage
Editor and Loader, or MVS/Extended Architecture linkage Editor
and Loader.

The use of the linkage editor is necessary because controlled
variables and files may be external and, consequently, it may be
necessary to access them in separately compiled procedures.
Other external items are compiled as CSECTs, but this is not
possible for files or controlled variables because their
associated storage is not allocated until execution. Controlled
variables have storage allocated during the execution of an

Chapter 2. Compiler Output 27

ALLOCATE statement; files are addressed from file control blocks
(FCBs), which are created when the file is opened during
execution. The use of the linkage editor means that FETCHed
procedure can not use controlled variables or files, except
SYSPRINT.

References to controlled variables and files are compiled as
assembler Q-type address constants. During link-editing, the
assembler DXD facility of the linkage editor is used, and the
PRV is set up as an external dummy section. The address of the
PRV is placed in the TCA. Each uniquely named file or
controlled variable is allocat~d an offset within the PRV by the
linkage editor. The Q-type address constants are then replaced
by this offset.

Controlled variables and files are addressed via the PRV
regardless of whether they are external or internal. The
compiler prefixes internal items with the name of their
procedure so that their names will be unique. The use of the
PRV is summarized in Figure 12.

During compilation

1. Each controlled variable or file reference is compiled as a
Q-type address constant that will be used as an offset
within the PRV.

2. The compiler generates a DXD instruction for every item
requiring pseudo-register addressing.

During link-editing

1. The number of unique names requ1r1ng pseudo-register
addressing is calculated and placed in a field that can be
accessed by a CXD instruction.

2. Each reference to a name generated as a Q-type address
constant is replaced by the appropriate offset from the
start of the PRV.

During program initialization

1. The length required for the PRV is obtained by use of a CXD
instruction. storage for the PRV is then obtained in the
program management area. The address of the PRV is placed
in the TCA.

2. The address of the dummy FCB is placed in every field of the
PRV.

During execution

1. When storage is allocated to the FCB or controlled variable,
the address of the storage is placed in the associated field
in the PRV. Comparison with the dummy FCB address can then
be made, to determine whether storage has been allocated for
the item.

Figure 12. Use of the Pseudo-register Vector (PRV)

28 OS PL/I Optimizing Compiler: Execution Logic

The Location of the PRY

The pseudo-register vector is held in the program management
area, and is addressed from the TCA.

UNDER MULTITASKING: Whenever a new task is attached, the PRV of
the attaching task is copied into the program management area of
the attached task. This means that, at the point when the task
is attached, the files and controlled variables addressed from
the subtask will be the same as those in the parent task.
However, because each task has its own PRV, either task may
change the addresses without affecting the other.

Initialization of the PRY

To simplify implicit opening of a record I/O file, the PRV is
initialized with every field set to point to a control block
known as the dummy FCB. Use of this control block as if it were
a genuine FeB results in control being passed to the open
routines: the file is opened, and a real FeB is created. The
address of the real FCB is then placed in the PRV.

Pseudo-register fields for controlled variables are also
initialized to point to the dummy FCB, so that the controlled
variable allocation mechanism can determine whether an
allocation has been made by comparing the PRV value with the
address of the dummy FeB. (The address of the dummy FCB is held
throughout the program in the TCA, so that the comparison can be
made.)

PROGRAM CONTROL DATA

Program control data comprises pointer, offset, file, area,
entry, event, task, and label data.

Pointer and offset data items are each held in fullword. The
data item in both cases consists of an address that is held
right-adjusted in the field, padded on the left with zeros. For
both data types, the null value is represented by hexadecimal
X'FFOOOOOO'.

A file variable is held as a fullword containing the address of
the declare control block (DCleD); the DClCD corresponds to a
file constant.

The formats of area, entry, event, task, and label data are
given in Appendix A, "Control Blocks" on page 326.

HANDLING DATA AGGREGATES

Pl/I data aggregates are structures and arrays, and include both
arrays of structures and structures of arrays.

Array elements are addressed from the virtual origin of an
array. This is the point at which the element whose subscripts
are all zeros is held, or would be held if there had been such
an element included in the array. Each element can be accessed
by using a multiplier for each dimension. The multiplier is the
distance between elements in a cross-section of an array.

For example, in an array B(9,9) the multiplier for the first
dimension is the distance between elements BCl,l) and B(2,1);
the multiplier for the second dimension is the distance between
elements BC1,1) and B(1,2).

If the bounds of the array and the length of the elements of the
array are known during compilation, the values of multipliers
can be calculated and placed as constants in the static internal
control section. For accessing an element with a constant
subscript, the offset from the virtual origin can be calculated
during compilation. If the subscript value is a variable, the

Chapter 2. Compiler Output 29

multiplier must be picked up from static storage during
execution and the value calculated.

If the bounds or extents of an array are not known during
compilation, a control block known as an array descri~ is set
up. This control block is used to hold necessary information
about bounds, multipliers, etc. The information is placed in
the array descriptor during execution. Array descriptors are
described in Chapter 4, "Communication between Routines" on
page 64.

Structures are treated in a similar manner. Where all
information about a structure is known, it is mapped during
compilation and offsets to each item from the start of the
structure are known to compiled code. If a structure cannot be
mapped during compilation, it is mapped during execution, and
the offsets within the structure are placed in a control block
known as a structure descriptor. To access an item in the
structure, compiled code finds the offsets and calculates the
address of each element from them. Structure descriptors and
the process of mapping during execution are described in
Chapter 4, "Communication between Routines" on page 64.

ARRAYS OF STRUCTURES AND STRUCTURES OF ARRAYS

Arrays of structures and structures of arrays are held as they
are declared.

The array of structures

I S(2),
2 B,
2 Cj

would be held in the order

Sel).B S(I).C S(2).B S(2).C

Band C are known as interleaved arrays, because the elements
within each array are not contiguous.

The structure of arrays

I S,
2 B(2),
2 C(2);

would be held in the order

S.BCI) S.B(2) S.CCI) S.C(2)

Elements are accessed as array elements in both cases. In the
array of structures shown above, both Band C are treated as
separate arrays with their own virtual origins and multipliers.
The difference would be in the value of the multipliers. When
possible, the values of multipliers are calculated during
compilation. When adjustable bounds or extents are involved,
the necessary data for both arrays of structures and structures
of arrays is placed in a structure descriptor (see
Chapter 4, "Communication between Routines" on page 64).

30 OS PL/I Optimizing Compiler: Execution Logic

II

ARRAY AND STRUCTURE ASSIGNMENTS

Assignments between structures and arrays of the same format are
done by MVC instructions. Provided an array is not interleaved,
an assignment is made to it as a whole, and the elements are not
moved one at a time. Similarly, structures that are contiguous
and have the same format are moved as a whole.

HANDLING FLOW OF CONTROL

In PL/I, five types of statemerit can result in nonconsecutive
flow of control. These statements arez

CALL statements
END statements
RETURN statements
Function references
GOTO statements

The first four of these are concerned with the block s·tructure
of the PL/I program and involve passing control from one block
to another. GOTD statements can result in branches to code that
is either in the current block, or in any other active block.

Consecutive flow of control also ceases when an error or program
interrupt occurs. The methods used to handle error and PL/I
condition situations are described in Chapter 7, "Error and
Condition Handling" on page 105.

ACTIVATING AND TERMINATING BLOCKS

BEGIN, CAll, END, and RETURN statements, and function references
all result in the activation or termination of blocks. The
block structure of PL/I, as explained in Chapter 1, is
implemented by means of a hierarchy of DSAs.

Each block (begin block, procedure block, or ON-unit block)
executes on its own program base that is set up at the end of
the prolog code for each block. This base is marked in the
object code listing with:

* PROCEDURE BASE

In the Pl/I optimizing compiler, blocks are always called by
means of a BALR instruction on registers 14 and 15. Within the
prolog code, the registers are stored in the DSA of the calling
block, and a new DSA is set up to hold the automatic variables
of the new block plus a certain amount of environmental
information such as the enablement or disablement of certain
conditions.

When a block is terminated, the registers of the calling block
are restored, and a branch is made on register 14. This
immediately returns control to the instruction after the BALR
issued in the preceding block. The DSA of the called block is
automatically discarded because all fields in the DSA, including
the pointer to the next available byte of free storage, were
addressed from register 13. Because register 13 has been
altered, the values that apply to the calling block
automatically become current when the calling block's registers
are restored.

Chapter 2. Compiler Output 31

PROLOG AND EPILOG CODE

Prolog

Except for certain single statement ON-units, every PL/I begin
block or procedure block has a prolog and an epilog. The prolog
prepares the environment for the associated block and acquires
storage for automatic variables, compiler-generated temporaries,
and workspace. The epilog frees the storage acquired for the
block, restores the registers of the caller, and returns control
to the caller.

The prolog appears on the object-program listing between REAL
ENTRY and PROCEDURE BASE or BLOCK BASE. Every prolog has to
acquire a dynamic save area (DSA) for the new block. (The DSA
is a register save area concatenated with housekeeping
information, plus storage for automatic variables and
temporaries.) Other jobs that may be done in the prolog code
are:

• Initialization of automatic variables that have the INITIAL
attribute.

• Initialization of pointers and locators that have the
INITIAL attribute.

• Movement of parameter addresses passed to the procedure to
the correct location.

• Acquisition of storage for adjustable variables.

• Initialization of certain items for argument lists.

• Setting-up certain interrupt-handling information such as
ONCBs and enable cells. (See Chapter 7, "Error and
Condition Handling" on page 105).

An example of prolog code is shown in Figure 13 on page 33.

32 as PL/I Optimizing Compiler z Execution Logic

STM 14,12,12(13)
B *+16
DC A(STMT. NO. TABLE)
DC F'304'
DC A(STATIC CSECT)

L 3,16(0,15)
L 1,76(0,13)
L 0,12(0,15)
ALR 0,1

CL 0,12(0,12)
BNH *+10

L 15,116(0,12)

BAlR 14,15
L 14,72(0,13)
LR 15,0
STM 14,0,72(1)

ST 13,4(0,1)
LA 13,0(1,0)
ST 5,88(0,13)
MVI 0(13),X'80'
MVI 1(13),X'24'
MVC 84(4,13),120(3)

Other code as required

Store registers of calling program.
Branch around constants.
Constant - address of statement number table.
Constant - length required for new DSA.
Constant - address of static internal

CSECT filled in by linkage editor.
Set up R3 as static base.
Set R1 to old NAB (start of new DSA).
Place length required for new DSA in RO.
Add old NAB (in R1) and length required

for DSA (in RO).
Compare with EOS in TCA.
Branch around library call if new DSA

fits in segment.
load address of stack overflow routine

(IBMBPGR) from TCA.
Branch to overflow routine.
Load address of LWS from old DSA.
Set up new NAB address.
Set LWS, NAB, and end-of-prolog NAB in

DSA.
Place back-chain in new DSA.
Point register 13 to new DSA.
Set up static back-chain.
Set up housekeeping flags - see

Appendix A.
Set up enable cells - see Chapter 7.

Other tasks may be carried out at this point,
such as initialization of variables with
the initial attribute, acquiring a VDA for
adjustable variables, and setting up
certain error-handling fields.

BAlR 2,0 Set R2 as program base.

Figure 13. Typical Prolog Code

After saving the registers, the prolog tests to see if there is
enough room for the DSA in the current segment of storage. This
is done by adding the length of the new DSA, calculated at
compile time, to the address of the next available byte. For
further details on how the storage management overflow routine
operates, see "Storage Reports" on page 98.

If the result is greater than the end-of-segment pointer (EOS)
placed in the TCA during initialization, the library overflow
routine (IBMBPGR) is called to try to acquire a further segment
from the free-area chain. This process is further described in,
"Acquiring a New Segment of LIFO Storage" on page 93.

If space for the DSA is available, the next-available-byte
pointer (NAB) is updated to point at the first a-byte boundary
beyond the end of the new DSA. The remaining instructions set
up housekeeping fields and point registers at various standard
fields, including register 13 to the start of the new DSA, and
register 4 to the start of storage for temporaries. The final
BALR instruction establishes register 2 as the program base
register.

Two back-chains are set up. The dynamic back-chain, which
points to the DSA of the calling or preceding block, and the
static back-chain, which points to the DSA of the statically
encompassing block. For the main procedure, the dynamic
back-chain points to the dummy DSA, and the static back-chain is
set to zero. The address of the statically encompassing block
is passed in register 5.

Chapter 2. Compiler Output 33

Static back-chains are used in tracing the scope of names and
the enablement of PL/I conditions.

For PL/I procedures with COBOL or FORTRAN in the OPTIONS option,
the prolog is considerablY different. See
Chapter 13, "Interlanguage Communication" on page 281.

The format of the DSA is shown in Figure 14; full details are
shown in Appendix A, "Control Blocks" on page 326.

R13--->~--------------------------------~

Housekeeping information
See Appendix A

Items<9 bytes in length

Held in alignment orders
doubleword
fullword
halfword
byte
bit

Items 9-2048 bytes in length

Held in alignment order as above

Items>2048 bytes

Held in alignment order as above

Parameter storage area
Addresses of any parameters
passed to the associated
procedure are stored here

Register bind storage area

Used by compiled code when
registers must be saved

Local temporary storage

Used for temporaries required
for duration of statement

Global temporary storage

Used by temporaries required
for duration of block

Storage for automatic
variables declared in
the block, dynamic
ONCBs etc.

Temporary storage

Figure 14. Contents of Typical Compiled Code DSA

34 as PL/I Optimizing Compilers Execution Logic

Epilog

CALL statements

Epilog code consists of the instructions generated for END or
RETURN statements. These instructions restore the registers to
the values that were held when the current block was called.
The register values are those stored in the previous DSA.
Typical epilog code is shown in Figure 15.

Epilog code for main procedure

LR 0,13
L 13,4(0,13)
L 14,12(0,13)
LM 2,12,28(13)
BALR 1,14

Save current DSA address
Back-chain
Pick up value of R14
Restore registers 2 through 12
Branch to initialization routine retaining
current address in Rl

Epilog code for subroutine or begin block

L
LM
BR

13,4(0,13)
14,12,12(13)
14

Back-chain
Restore registers of preceding block
Return

Figure 15. Epilog Code

The completion of a main procedure results in the ra1s1ng of the
FINISH condition, and this may result in the execution of an
ON-unit.

Consequently, the address of the current DSA and the address of
the current statement must be retained (the DSA is needed to
search for the ON-unit; the address of the current statement is
needed if a SNAP trace is requested in the FINISH ON-unit).
Epilog code for a main procedure therefore takes a different
form to that generated for a subroutine.

CALL statements are executed by picking up the address of the
block to be called from static storage. A BALR instruction is
then carried out on registers 14 and 15. If arguments are being
passed to the called procedure, an argument list is set up in
temporary storage, the first bit of the last argument is set to
'I', and register 1 is pointed at the argument list.

Typical code would be:

LR 5,13 00031A
00031C
000320

18 50
58 FO
05 FF

3 020 L 15,A ... X
Load static back-chain address
Pick up address of procedure X
Branch to procedure

Function References

BALR 14,15

Function references are compiled in exactly the same way as CALL
statements. If the function returns a value, an extra field is
placed as the last argument in the list. The returned value is
placed in this field when the function is completed. In those
cases where the compiler cannot build the parameter list, the
typical code might be:

Chapter 2. Compiler Output 35

0001FE 41 90 6
000202 50 90 3
000206 41 90 6
00020A 50 90 3
00020E 18 56
000210 41 10 3

000214 58 FO 3

000218 05 EF

Return statement

GOTO STATEMENTS

OB4 LA 9,B
OBC ST 9,188(0,3)
OBO LA 9,A
OCO ST 9,192(0,3) Set up parameter list

LR 5,13 Load static back-chain address
OBC LA 1,138(0,3) Point register 1 at parameter

list
008 L 1S,A ... DOUBLE Place address of function

(DOUBLE) in R15
BALR 14,15 Branch to function

RETURN statements are executed in a similar way to END
statements, but result in the termination of a procedure rather
than a block. Consequently, before the restoration of the
registers, a back-chain must be made to correct DSA. A
back-chain is made through any BEGIN blocks. The depth of
nesting can be determined during compilation, so the back-chain
can be loaded the required number of times before the branch is
made.

Typical code would bel

0003FO
0003F4
0003F8

58 DO D 004
98 EC D OOC
07 FE

l
lM
BR

13,4(0,13) Pick up DSA back-chain
14,12,12(13) Restore registers
14 Branch to procedure

Note: If the procedure in which the RETURN statement occurs is
a main procedure, the code will take the form compiled for an
END statement for an external procedure.

The implications of a GOTO statement depend on whether the label
branched to is within the block or external to it. If the label
is outside the block, the branch implies that one or more blocks
must be terminated. If the label in the GOTO statement is a
label variable, it is not always possible to determine during
compilation whether the label will be in the same block as the
GOTO statement. Consequently, interpretive code is used for
label variables.

For GOTO statements to a label constant within the block, the
compiler produces a straightforward branch instruction. For
GOTO statements that may pass control to another block, compiled
code calls the interpretive code in the TCA.

This interpretive code is held in the TCA. The compiled code
branches to the interpretive code to implement a GOTO that will
or may transfer control out of the block. This TCA code
determines whether it is one of a small number of special cases,
and, if it is, calls a library routine--IBMBPGO. In other
circumstances, the GOTO code in the TCA handles the branch and
any block termination involved.

GOTO within a Block

The optimizing compiler produces code that assumes that the
registers retained across the execution of a labeled statement
will be 2, 3, 12, and 13. These are the program base, the
static base, the address of the TCA, and the address of the
current DSA. All other register values may be different when
control passes through the labeled statement on different
occasions.

The enablement of conditions maY differ in the GOTO statement
and in the labeled statement. Within a block, the enablement
status may be varied only for the duration of a single

36 OS PL/I Optimizing Compiler: Execution Logic

statement. The GOTO therefore resets the block enablement
status before the branch is taken. If the labeled statement has
a different enablement status from the block, it will be
automatically reset in the labeled statement.

As explained in Chapter 7, "Error and Condition Handling" on
page 105, the enablement of conditions is recorded by enable
cells. Two sets are used: the block enable cells retain the
enablement situation at the start-ot the block, which can
consequently be restored at any time; the current enable cells
hold the enablement situation that is current, which, as
explained earlier, may differ from that at the start of the
block.

A GOTO within block normally takes the form of a simple branch
instruction plus any alteration of the enablement bits that may
be necessary to reset the enablement situation to that at the
start of the block. Typical code would be:

OOOFIA 47 Fa 2 OC8 B INPUT Branch to correct address in
compiled code (label name is
"INPUT")

GOTO Out of Block

The optimizing compiler attempts to retain the same block base
for all branches within a block. However, this is not always
possible and, if the code for the block is longer than 4096
bytes, it may be necessary to set up a new base when a GOTO
statement is executed. As all labels are stored with both their
address and their base this presents no problem. The address of
the label and the value of its base form the value of the label
constant. The value of the base is placed in register 2, and a
branch is made to the label address.

When a GOTO to a label within the block is made, there is no
need to reset registers 3, 4, 12, or 13 as these are not altered
within a block. When OPTIMIZE (TIME) is specified an attempt is
made to retain other register values across labels.

labeled statements within a block have an effect on optimization
in that, apart from the bases and block addresses mentioned
above, values cannot normally be retained in registers beyond a
labeled statement.

GOTO statements that transfer control from a block have to
overcome the problems described above, plus problems of block
termination.

For a GOTO out of block or to a label variable, compiled code
makes a call to the GOTO code in the TCA, which is held at
offset 128 (decimal). The GOTO code receives, through registers
14 and 15, either the contents of the label variable or the
equivalent information for a label constant, namely the address
at which the label constant is held, and the address of the DSA
of the block in which the label appears.

The GOTO code restores registers 3 and 4 from the DSA passed to
it, loads register 2 from the second word of the label constant,
and loads register 13 from register 15. It then branches to the
appropriate point in code which is picked up from the address of
the label constant, passed in register 14.

The enablement situation at the start of the block has to be
restored, and this is done by setting the current enable cells
in the DSA to the value of the block enable cells. If the
current enable cells indicate that CHECK is enabled, a search is
made for qualified CHECK ONCB, so that the enable cells may be
set to the start-of-block situation in this ONCB.

In a similar manner, it may be necessary to restore the NAB
value to that at the start of the block. This will be necessary

Chapter 2. Compiler Output 37

if the statement that left the block acquired a VDA. Th.
start-of-block NAB value is retained in the DSA and is known as
the end-of-prolog NAB. If a VDA has been acquired, the fact is
flagged in the flag byte of the DSA, and the GOTO places the
end-of-prolog NAB value in the current NAB field.

Such action is never required within a block, as VDAs are only
acquired for the duration of one statement and are never used
for GOTO statements. Typical code would be:

GOTO label-constant (out of block)

000226 18 E6 15,6 Place address of DSA in R15
000228 41 EO 3 088

LR
LA 14,136(0,3) Place address of label

constant in R14
00022C 47 FO C 080 B 128(0,12) Branch to GOTO code in TCA

GO TO Label Variable

GOTO label variable statements are treated in different ways
depending on whether optimization has been specified.

For NOOPTIMIZE, they are all treated as GOTO out of block; for
OPTIMIZE (TIME), a check is made to determine whether they could
be out-of-block branches. The check is made by testing a label
list, which is a list of the label constants to which the label
variable may be assigned. If the programmer has supplied a
label list, it is used. Otherwise, a list is generated
containing all the label constants that are assigned to label
variables. If a branch to any of the labels in the list could
result in a GOTO out-of-block, all GOTO statements referring to
the label variable are treated as GOTO out-of-block situations.
Typical code would be:

GOTO label-variable

OOOODO 98 EF D DAB

OOOOD4 47 FO 0 080

lM 14,15,168(13) load R14 and R15 with label
variable

B 128(0,12) Branch to GOTO code in TCA

Errors When Using Label Variables

Although it is invalid PL/I, it is possible for a GOTO statement
using a label variable to result in transfer of control to an
inactive block. The optimizing compiler has no method of
checking such errors, and the consequences are unpredictable.
Such errors can occur because a label variable is not reset when
the block containing the label constant to which it refers is
terminated. When an attempt is made to GOTO a label variable,
the address of the DSA is passed in register 14. The GOTO code
verifies this address to be the address of an active DSA, and
acts accordingly. Three possibilities arises

1. The original DSA has not been overwritten, and the program
will execute.

2. The DSA of another active block has overwritten the original
DSA. The results are then unpredictable, as the code
branched to will be accessing an incorrectly mapped DSA.

3. The original DSA has been overwritten with other
information. Again, the results are not predictable. When
PL/I determines that the data in the DSA is not another DSA,
ERROR condition code 9002 is raised.

It should be noted that, because of the method used to allocate
DSAs, the chances of one DSA starting at the same address as a
previous DSA are high.

38 as PL/I Optimizing Compiler: Execution Logic

GOTO-Only ON-Units

As explained in Chapter 7, "Error and Condition Handling" on
page 105, certain ON-units are not executed as separate program
blocks. Instead, the required action is taken under the control
of the error handler. ON-units containing only a GOTO statement
(GOTO-only ON-units) are handled in this way.

The error handler accesses ON-units through control blocks known
as ON control blocks (ONCBs). The ONCB for a GOTO-only ON-unit
is specially flagged, and the last word of the ONCB is
initialized to hold an offset. At this offset in the DSA of the
block containing the ON-unit, the address of the label
information is held. For a label variable, the offset contains
the address of the label variable; for a label constant, the
offset contains the address of a label temporary that is
initialized to the value of the label constant. The
initialization is done during the execution of the prolog of the
block that contains the ON-unit.

The error handler loads the information in the label variable or
the label temporary into registers 14 and 15, and calls the GOTO
code in the TCA.

Interpretive GOTO Routines

If the test in the GOTO code in the TCA reveals that an abnormal
situation exists, the interpretive GOTO routine is called. This
routine is a subroutine of the program initialization routine.

Two abnormal cases can arisel

GOTO out of SORT exit routine

GOTO from an event I/O ON-unit (certain cases only)

When either of these situations could occur a flag is set in the
TCA. Sort exits are also flagged in the DSA of the procedure
involved.

The SORT exit DSA requires special action because the GOT a will
involve the terminati~n of SORT if it transfers control to
another block.

The GOTO during an event I/O ON-unit can cause the termination
of a number of HAlT statemen~s. This involves removing
information about these statements from the various chains that
are set up during event I/O.

These two situations are explained further under the headings
"SORT/MERGE" and "WAIT" in Chapter 11, "Miscellaneous Library
Subroutines and System Interfaces" on page 230.

If CHECK enablement has to be changed because of a GOTO, the
interpretive GOTO routine calls the library routine IBMBPGO to
reset check enablement. IBMBPGO is described in the licensed
pUblication, as PL/I Resident library: Program logic.

ARGUMENT AND PARAMETER LISTS

In PL/I usage, a parameter list is a list of the items a program
expects to receive; an argument list is a list of the items that
are passed by the calling routine.

Between PL/I routines, addresses are always passed rather than
the arguments themselves. For strings, structures, arrays, and
areas, the addresses of locators are passed rather than the
addresses of the arguments themselves. The format of locators
and the reasons for their use are given in
Chapter 4, "Communication between Routines" on page 64.

Chapter 2. Compiler Output 39

LIBRARY CALLS

When arguments are passed to routines whose entry points are
declared with the ASSEMBLER, COBOL, or FORTRAN attributes, the
address of the data itself must be passed. The method used is
described in Chapter 13, "Interlanguage Communication" on
page 281.

Arguments are passed in an argument list addressed by register
1. For nonreentrant, non recursive code, the list is set up in
static storage and completed by the compiler if the values are
are known at compile time. If the procedure is reentrant,
recursive, or fetched, the list is moved into the temporary
storage area in the DSA before the call is made; otherwise the
parameter list is moved into automatic storage.

The addresses passed in the argument list are moved into the
parameter storage area, which is held at the head of temporary
storage and is addressed by register 4. (See Figure 13 on
page 33) Parameters are then accessed by picking up the
addresses from this area.

Dummy arguments, when they are required, are set up by the
calling program. Consequently, the called program can treat all
arguments in the same manner.

Library calls are a feature of every object program. All
library calls that appear in the object-program listing are to
modules in the resident library. Transient library routines are
called by routines in the resident library.

The number of library calls used depends on the source program
and the level of optimization specified. For OPTIMIZE (TIME),
the minimum number of library calls will be made. If NOOPTIMIZE
is specified, library calls will be made where this will speed
compilation. The standard default is NOOPTIMIZE.

Figure 16 shows examples of sequences used for calling library
modules. The majority of library calls can easily be recognized
by the appearance in the listing of the letters "IBMB" followed
by four letters specifying the module name and entry point. To
call a module, its address is loaded into register 15, and a
BALR instruction is carried out on registers 14 and 15.

txample 1. Call to library routine that has been link-edited
and whose address is held in the static internal control
section. The arguments passed are addressed by register 1.

LA 1,40(0,4)
LA .. 14,VO .. U(II)
LA IS,DED .. VO ..

U(II)
STM 14,15,0(1)
L 15,A .. IBMBSLO

BALR 14,15

Point Rl at argument list
Load address of argument in register
Load address of argument in register

Store into argument list
Pick up address of routine from static
internal control section and place in RI5
Branch and link to routine

txample 2. Call to library routine whose address is held in TCA

L 15,116(0,12)
BALR 14,15

Load address of routine held in TCA
Branch and link to routine

Figure 16. Examples of Library Calling Sequences

40 OS PL/I Optimizing Compiler: Execution logic

The fifth letter of the entry point name is mnemonic, indicating
the type of module that is being called. Figure 17 gives the
meaning of the mnemonics. Full details of the library modules
are given in the program product publications OS PL/I Transient
Library: Program Logic and OS PL/I Resident Library: Program
logic.

A further discussion of library module naming conventions is
given in Chapter 3, "The PL/I Libraries" on page 53.

Mnemonics

IBMBA

IBMBB

IBMBC

IBMBE

IBMBI

IBMBJ

IBMBK

IBMBM

IBMBO

IDMBR

IBMBS

IBMBT

Figure 17.

Setting-Up Argument Lists

Meaning

Array handling

String handling

Conversion

Error handling

lnterlanguage communication

Date/time/delay/wait

Dump/sort/checkpoint/restart

Mathematical

Open/close

Record I/O

Stream I/O

Completion pseudo-variable routine

Mnemonic Letters in library Module Entry-Point Names

Before a call is made to a library module, an argument list must
normally be set up. This is done in one of several ways,
depending on the library module. The majority of library calls
require the method shown in Figure 16 on page 40, example 1.
This consists of loading the list into sequential registers
starting at register 14, and then using a store-multiple
instruction to place the arguments into an area of static
storage, whose address is then loaded into register 1. Argument
lists are set up as far as possible during compilation and,
where necessary, completed during execution.

Addressing the Subroutines

As can be seen in example I of Figure 16 on page 40, library
addresses are generally held in static storage and addressed as
an offset from register 3. However, the addresses of certain
library routines are held in the TCA or the TCA appendage and
addressed from register 12. They are addressed either directly
or indirectly as shown in example Figure 16 on page 40. The
names of these routines do not appear on the listing; however,
they can be identified by their offset from the start of the TCA
(see Figure 18 on page 42).

Chapter 2. Compiler Output 41

Offset from Offset from
start of TCA start of TCA
(Re~ister 12) (Register 12) Name of Module
Dec mal Hex Entry Point Use

72 48 IBMBPGRD Stack overflow routine to
get VDA

84 54 IBMBEFL FLOH module

108 6C IBMBPGRA Get non-LIFO dynamic
storage

112 70 IBMBPGRB Free non-LIFO dynamic
storage

116 74 IBMBPGRC Stack overflow routine for
prolog

120 78 IBMBERRB Error handler software
interrupt

264 108 IBMBJWTA WAIT module

268 lOC IBMBTOCA Completion pseudo-variable
routine

272 110 IBMBTOCB Event variable assignment
routine

Figure 18. Offsets Where Addresses of Library Modules Are Held in the TeA

DO-LOOPS

Where possible, DO-loops are carried out by means of a BXLE
instruction, because this is more efficient than using a simple
BCT instruction. BXLE DO-loops can be used where the control
variable cannot be altered except at the head of the loop, and
where it is not subsequently accessed after the completion of
the loop. BXLE DO-loops cannot be used for the outer of a
number of nested DO-loops. For outer loops, other branch
instructions are used. Code for a number of typical DO-loops is
shown below. Note that the code will differ according to the
content of the loop.

42 OS PL/I Optimizing Compiler: Execution Logic

Source program

DO I = 1 to 10;
DO J = 1 to 10;

END;
END;

Object program

I. Code for outer do-loop

lH
STH

Cl.I EQU

LH
AH
STH
C

BNH

5,596{0,3)
5,1
3E

5rI
5,596{0,3)
5,1
5,598(0,3)

CL.l

Pick up 1 from constants pool
Place 1 in I

Increment and
store in I
Compare I and constant 10
in static storage

2. Code for inner do-loop

LH
LH
LH

CL.2 EQU

BXlE

5,596(0,3)
10,596(0,3)
11,598(0,3)
3E

5,10,Cl.2

Place 1 in first operand
Place 1 in second operand
Place 10 in comparand

Increment, test, and branch if necessary.

COMPILER-GENERATED SUBROUTINES

The compiler uses internal subroutines to carry out certain
functions. These have the advantage over library modules,
because they can be tailored for the most common case. When
special cases arise, the library routines are called.
Compiler-generated subroutines have the further advantage that
they are internal to compiled code and consequently need not
follow the standard operating system calling sequence.

Compiler-generated subroutines are used for the following
purposes.

IELCGIX

IELCGIB

IELCGOG

IElCGOH

Stream I/O input--provides address of source of next
edit-directed data or format item

Stream I/O input--housekeeping after transmission of
data item

Stream I/O output--provides address of target of next
edit-directed data or format item

Stream I/O output--updates FCB, counts data item, and
frees VDA if one was used

Chapter 2. Compiler Output 43

IELCGOC Stream I/O--processes X format items

IELCGMY Move long (registers 6,7,8,9)

IELCGCY Compare long (registers 1,6,7,8,9)

!ELCGCB Compare long bits

IELCGON Dynamic ONCB chaining

IELCGRV Revert VDA chaining

IELCGBB Test for ' 1 ' bits

IELCGBO Test for ' 0 ' bits

Compiler-generated subroutines are held in separate control
sections and are printed at the head of the object-program
listing when they are used in a program.

OPTIMIZATION AND ITS EFFECTS

Optimization is the attempt to produce the most efficient
possible object program. The OS PL/I Optimizing Compiler adopts
a threefold approach:

1. It attempts to compile each statement in the most efficient
manner.

2. It modifies ths resulting code for each block, in an attempt
to make it more efficient (for example, by maintaining
values in registers and by using common control blocks for
similar items).

3. It examines the source program to discover whether statement
flow can be reorganized to produce a more efficient program
(for example, by moving code out of loops).

The effect of specifying the compiler option OPTIMIZE (TIME) is
that the compiler loads and calls the optimization phases, and
executes optimization code in other phases. The optimization
phases are described in the pUblication OS PL/! Optimizing
Compiler: Program Logic.

When NOOPTIMIZE is specified, the optimization phases are not
called; no attempt is made to study the flow of the program, and
the examination of compiled code for possible improvements is
not undertaken on a global basis. More library calls will
generally be made if NOOPTIMIZE is specified.

EXAMPLES OF OPTIMIZED CODE

A number of the more noticeable effects of optimization are
shown below. These show code sequences which may prove
difficult to understand without knowledge of the objectives of
optimization. Where possible, the examples of code given are
expansions of the examples shown in the language reference
manual for this compiler. The examples do not cover all
optimization carried out by the compiler.

Elimination of Common Expressions

Elimination of common expressions is handled by avoiding
multiple calculations of the same expression, the value being
retained either in temporary storage or in a register. In the
examples shown below, the common expression is "B+C." In the
first example, the value is held in a register. In the second.
it is held in temporary storage, because the value to which it
is first assigned is altered. In certain circumstances, the
code could be compiled to move the value from the variable to
which it was originally assigned to the second variable.

44 as PL/I Optimizing Compiler: Execution Logic

Example 1: Value held in register

Source program

2 A=B+Ci
3 If X<Y THEN X=Y;
4 D=B+C;

Object program

* STATEMENT NUMBER 2
OOOOSE 78 00 D OBC
000062 7A 00 D OCO
rr00066 70 00 D OB8

* STATEMENT NUMBER 3
00006A 78 60 D OC4
00006E 79 60 D OC8
000072 47 BO 2 020
000076 78 60 D OC8
00007A 70 60 D OC4

* STATEMENT NUMBER 4
00007E CL.2

LE O,B
AE O,C
STE O,A

LE 6,X
CE 6,y
BNL CL.2
LE 6,Y
STE 6,X

EQU *
* CALCULATION OF COMMONED EXPRESSION FOLLOWS
00007E 70 00 D OCC STE O,D

Example 2: Value held in temporary storage

Source program

2 A=B+C;
3 IF X<Y THEN A=6;
4 D=B+C;

Note: A may be altered before subsequent use of expression.

Object program

* STATEMENT NUMBER 2
OOOOSE 78 00 D OBC LE O,B
000062 7A 00 D OCO AE O,C
000066 38 20 LER 2,0
000068 70 20 D OB8 STE 2,A

* STATEMENT NUMBER 3
00006C 78 60 D OC4 LE 6,X
000070 79 60 D OC8 CE 6,y
000074 47 BO 2 022 BNL Cl.2
000078 78 20 3 Ole LE 2,28(0,3)
00007e 70 20 D OB8 STE 2,A

* STATEMENT NUMBER 4
000080 Cl.2 EQU *
* CALCULATION OF COMMONED EXPRESSION FOLLOWS
000080 70 00 D oce STE OllD

Chapter 2. Compiler Output 45

Movement of Expressions Out of Loops

46

When expressions cannot be altered inside a section of code that
may be executed a number of times, the expression is moved out
of the loop to a position where it will be executed only once,
regardless of the number of times that the loop is executed.
The process is known as movement of invariant expressions. The
most obvious example is in DO-loops. However, the compiler
analyzes the source program for other types of loop and also
moves code from these.

Example 1 shows code moved from a DO-loop. Example 2 shows code
moved from a loop that has been detected by the compiler. It
should be noted that code moved out of loops frequently involves
conversion and is not obvious in the source program.

Example 1: DO-loop

Source program

2
3
4

Do 1=1 TO N;
J=3;
END;

Object program

* STATEMENT NUMBER 2
00005E 48 EO D OBA
000062 18 BE
000064 48 AO 3 018
000068 18 5A
00006A 40 50 D OB8
00006E 19 5B
000070 47 20 2 026
000074

* STATEMENT NUMBER 3
000074 48 60 3 01A
000078 40 60 D OBC

Cl.2

Example 2: Compiler-detected loop

Source program

2 L: IF X>Y THEN GOTO BED;
3 J=I-Nj
4 X=X+J;
5 GO TO L;
6 BED: A=Xj

Object program

* STATEMENT NUMBER 2

* STATEMENT LABEL L
00005E 78 00 D OB8
000062 79 00 D OBC
000066 47 20 2 038

* STATEMENT NUMBER 3
00OO6A 48 60 D OC6
00006E 4B 60 D OC8
000072 40 60 D OC4

* STATEMENT NUMBER 4
000076 50 60 D OEO
00007A 48 60 3 Ole
00007E 40 60 D OEO
000082 97 80 D OE2
000086 78 60 D OEO

OS PL/I Optimizing Compiler: Execution Logic

LH
LR
LH
LR
STH
CR
BH
EQU

LH
STH

LE
CE
BH

LH
SH
STH

ST
LH
STH
XI
lE

14,N
11,14
10,24(0,3)
5,10
5,1
5,11
Cl.3

*

6,26(0,3)
6,J

/*LOOP

/*LOOP

O,X
0, Y
BED

6,1
6,N
6,J

BEGINS*/

ENDS*/

6,224(0,13)
6,28(0,3)
6,224(0 .. 13)
226(13),X'SO'
6,224(0,13)

00008A
00008E
000090

7B 60 3 OIC
3A 60
70 60 D OB8

* STATEMENT NUMBER 5
000094 07 F2

* STATEMENT NUMBER 6

* STATEMENT LABEL
000096 70 00 D OCO

Elimination of Unreachable statements

BED

SE
AER
STE

BR

STE

6,28(0,3)
6,0
6,X

2

O,A

If the source program contains statements that can never be
executed because they are unconditionally branched around, these
statements will be ignored by the compiler.

In the example below, the statements between 5 and 8 can never
be reached. Consequently, no code is compiled for these
statements, and a compiler diagnostic message is issued to
indicate that this is the case.

Example

Source program

5 GOTO LABELj
6 IF A<B THEN

IF B<C THEN
IF A<X THEN
B=B*Cj

7 EL SE C=B*Cj
8 LABEL: X=X+l;

Object program

* STATEMENT NUMBER 5
00008A 47 FO 2 028

* STATEMENT NUMBER 8

* STATEMENT LABEL LABEL
00008E 78 60 D OAC
000092 7A 60 3 018

000096 70 60 D OAC

Compiler message reads:

B LABEL

LE 6,X
AE 6,24

(0,3)
STE 6, X

"6,6,6,7 STATEMENT MAY NEVER BE
EXECUTED. STATEMENTS IGNORED."

Simplification of Expressions

Certain expressions are simplified for speedier execution. For
example, multiplication is simplified to addition, as in the
following example.

Example: Multiplication into addition

Source statement

2 X=3*B

Chapter 2. Compiler Output 47

Modification of

Object erogram

* STATEMENT NUMBER 2
000062 78 20 D OA4 LE 2,B
000066 3A 22 AER 2,2
00006A 7A 20 D OA4 AE 2,B
00006E 70 20 D OAO STE 2,X

or

6 X=3*B**2

Object e r 05lrillD

* STATEMENT NUMBER 6
0000E2 78 40 D OBC lE 4,B load B
OOOOE6 3C 44 MER 4,4 B**2
OOOOE8 38 64 LER 6,4
OOOOEA 3A 66 AER 6,6 2*B**2
OOOOEC 3A 64 AER 6,4 3*B~nE2
OOOOEE 70 60 D OB8 STE 6,X

DO-Loop Control Variables

When the DO-loop control variable is used for accessing array
elements, it is frequently modified to simplify addressing of
the array elements.

If, as in the example in Figure 19 on page 49, the elements of
the array are four bytes long, it simplifies addressing to
increment the loop control variable by 4 rather than by 1. When
this is done, the increment becomes the distance between the
start of successive array elements. Provided that the original
value of the loop control variable is the same as that of the
first bound of the array, the loop control variable in turn
becomes the offset of the element from the virtual origin of the
array.

If the loop control variable is altered, this means that the
increment and final value must also be altered. Thus the loop
in the example instead of being incremented from 1 to 10 by 1,
is incremented from 4 to 40 by 4. Note that the value of the
loop control variable is set at the start of the loop but is not
incremented. If the value of the loop variable is required
after the loop has been executed, this type of optimization
cannot take place.

In the example, the control variable is held in register 5 using
a BXLE instruction. The array elements are addressed by using
register 5 as the offset from the virtual origins of arrays C
and D. As register 5 starts the loop with the value of 4 and is
incremented by 4 for each iteration of the loop, this gives the
correct address. Both arrays begin 4 bytes from their virtual
origins, and each array element is 4 bytes long.

48 OS Pl/I Optimizing Compilers Execution logic

Source program

2 DCL C(10) FLOAT DECIMAL (6);
3 DCl B(10) FLOAT DECIMAL (6);
4 DO 1=1 TO 10i
5 C (l)=B(l);
6 END;

Object Program

* STATEMENT NUMBER 4
OOOOSE 48 60 3 018
000062 40 60 D OB8

LH 6,24(0,3)
STH 6,I

Piclc. up 1 from static
Place in I

* INITIALIZATION CODE FOR OPTIMIZED LOOP FOLLOWS

* CODE
000066
00006A
00006 E
000070
000072

MOVED FROM STATEMENT NUMBER 5
48 EO 3 alA LH 14,26(0,3)
48 80 3 OIC LH 8,28(0,3)
18 88 LR 11,8
18 AE LR 10,14
18 5E LR 5,14

* CONTINUATION OF STATEMENT NUMBER 4
000074 CL.2 EQU *

* STATEMENT NUMBER 5
000074 78 05 D aBC
000078 70 05 D OE4

* STATEMENT NUMBER 6
00007C 87 5A 2 016

LE O,VO .. B(5)
STE O,VO .. C(5)

BXlE 5,10,CL.2

Load 4 into R14 from static
Load 40 into R8 from static
Load 40 into Rll for BXLE
Load 4 into RIO
Load 4 into R5

Pick up VO .. 8+R5
Place in VO .. C+R5

Increment R5 by 4, test
for end of loop, and
branch or continue

I Figure 19. Modification of DO-Loop Control Variable

Branching around Redundant Expressions

If a series of tests are to be made and action taken if any of
the tests proves positive, the compiler takes the requisite
action as soon as the first positive test is found.

In the example in Figure 20 on page 50, a test is first made to
see if A=D. If so, the value of Y+Z is assigned to X without a
further test being made to see if C=D. Note that the last test
is for inequality, so that if the variables are equal, control
will continue with the code that assigns the value to X.

Chapter 2. Compiler Output 49

Soyrce erQgram

2 IF (A=D) I (C=D) THEN
X=Y+Z;

Object erogram

* STATEMENT NU~lBER 2
000062 78 00 D OAO lE O,A Pick up A
000066 79 00 D OA4 CE O,D Compare A and D
00006A 47 80 2 018 BE Cl.3 Branch if equal
00006 E 78 40 D OA8 lE 4,C Pick up C
000072 79 40 D OA4 CE 4,D Compare C and D
000076 47 70 2 024 BNE Cl.2 Branch if not equal
00007A Cl.3 EQU * 0OOO7A 78 60 D OBO LE 6,Y
00007 E 7A 60 D OB4 AE 6,Z X=Y+Z
000082 70 60 D OAC STE 6,X
000086 CL.2 EQU *

Figure 20. Branching Around Redundant Expressions

Rationalization of Program Branches

When the length of a program is greater than 4096 bytes and,
consequently, it cannot be addressed from one base register, an
attempt is made to update the base at the most efficient point,
so that there will be as few changes of program base as possible
during execution. The aim is to avoid any program branches
which move from the scope of one base register to the scope of
another.

The program base register is register 2, and this is updated
when necessary. As register 2 is required for in-line record
I/O and TRT instructions, the program base is saved and restored
after such use.

Use of Common Constants and Control Blocks

Constants and control information used more than once are
generated only once in static storage. Thus for the statements
X=768, Y=768, the constant value of 768 will be picked up from
the same address in both cases. Similarly, compiler-generated
control descriptors (see Chapter 4, "Communication between
Routines" on page 64, are generated only once if a number of
variables require identical control information.

The process of avoiding duplication is known as commonin9. It
should be noted that constants may not be commoned if they are
not used in the same way. In the example in Figure 21 on
page 51, constant '123' is stored in a different form for
assignment, multiplication, and exponentiation.

50 OS PL/! Optimizing Compiler: Execution Logic

Source erogram

2 X=123; /}ECOMMONED ITEM3U
3 Y=123*Zi
4 V=V~BH23;
5 A=I23j /*COMMONED ITEM*/

Obje~t erogram

00005E 78 00 3 OIC LE 0,28(0,3) /}ECOMMONED ITEM*/
000062 70 00 D OB8 STE O,X

* STATEMENT NUMBER 3
000066 78 20 D OCO LE 2,Z
00006A 7C 20 3 OIC ME 2,28(0,3)
00006 E 70 20 D OBC STE 2,Y

* STATEMENT NUMBER 4
000072 41 70 D OC4 LA 7,V
000076 50 70 3 024 ST 7,36(0,3)
00007A 50 70 3 02C ST 7,44(0,3)
00007 E 96 80 3 02C 01 44(3),X'80'
000082 41 10 3 024 LA 1 1 36(0,3)
000086 58 FO 3 014 L I5,A .. IBMBMXSA
00008A 05 EF BALR 14,15

* STATEMENT NUMBER 5
00008C 78 00 3 01C LE 0,28(0,3)
000090 70 00 D OC8 STE O,A /*COMMONED ITEM*/

Figure 21. Use of Common Constants

The INTERRUPT Option

If the INTERRUPT option is in effect during compilation, extra
code is inserted in the compiled program to poll for attention
interrupts. The code is inserted at branch in points and before
END and RETURN statements of procedures. The code takes the
form:

L 15 1 288(12)
BALR 14, 15

At 288 off register 12 is the TCA field TATP, which is the
address of a branch instruction. Normally the branch is simply
a return on register 14 to the polling point in compiled code.
However when the attention condition is raised the address is
altered to an entry point in IBMBEATA (IBMBEATB). Thus if an
attention interrupt has occurred the ATTENTION condition will be
raised after polling. The change of address in TATP is
specified by the STAX macro instruction issued during program
initialization if any of the procedures in the load module are
compiled with the INTERRUPT option.

FETCH AND RELEASE STATEMENTS

The PL/! FETCH and RELEASE statements are implemented by
compiled code calling the library module IBMBPFR I and by having
a PRV offset field for each module that is mentioned in a FETCH
statement.

For a FETCH statement, IBMBPFR checks in the PRV to see if the
module specified in the FETCH statement has already been loaded.
If it has been loaded, control is returned to the compiled code.
If it has not been loaded, IBMBPFR issues a LOAD macro
instruction and places the address of the loaded module in the
PRV. IBMBPFR then creates a FETCH control block (FECB) which it

Chapter 2. Compiler Output 51

attaches to the chain of FECDs addressed from the TIA. Control
is then returned to compiled code.

For a RELEASE statement, IBMBPFR issues a DELETE macro
instruction, and sets the address field in the PRV to the value
of the PRV initialization word.

52 OS Pl/I Optimizing Compilers Execution logic

CHAPTER 3. THE PL/I bJBRARIES

This chapter explains the use of libraries by the as PL/!
Optimizing Compiler. The topics covered are: when and why
library routines are called, why there is both a transient
library and a resident library, naming conventions, and two
implementation topics that cover all library modulesl the use
of library workspace and the use of weak external references.
Also covered are the multitasking and shared libraries.

The as PL/I Optimizing Compiler is designed to be used in
conjunction with the OS PL/I Resident Library and the as PL/I
Transient Library. These libraries consist of sets of standard
subroutines that are used for the majority of interfaces with
the system and for those jobs that can be most efficiently done
by the use of interpretive subroutines. The main areas where
library modules are used are: input/output, error handling,
storage management, conversions, mathematical functions, and
various string- and array-handling operations.

Use of library routines simplifies compilation by enabling the
compiler to set up an argument list and generate a call to a
subroutine, rather than compile the complete code. However,
library subroutines are less efficient than compiled code, since
they must be generalized routines, whereas compiled code can be
specially tailored to the particular program being executed.
Furthermore, a library call involves the overhead of saving and
restoring registers, and may require the setting-up of various
additional control blocks to describe the data (See Chapter 4).
For these reasons, programs that are optimized for time use as
few library calls as possible.

The majority of interfaces between compiled code and the
operating system are implemented via library routines. This is
done mainly for reasons of implementation convenience, as such
interfaces are in this way localized and minimized.

RESIDENT AND TRANSIENT LIBRARIES

The as PL/I subroutine library is divided into two separate
program products: the OS PL/I Resident Library (Program Number
5734-LM4) and the as PL/I Transient Library (Program Number
5734-LM5). Resident library modules are link-edited with the
executable program phase. Transient library modules are loaded
into dynamic storage when they are required; when they are no
longer needed, the storage is freed and may be overwritten.
Resident library routines have the advantage of speed; transient
library routines have the advantage of saving space. By using
both types of library, it is possible to produce more efficient
programs.

Routines in the transient library arel input/output
transmitters, open and close modules, error message modules, the
storage management routines and PLIDUMP routines. All other
library routines are held in the resident library, including a
number of bootstrap routines that load and call transient
routines.

The as PL/I libraries reside on three direct-access data sets.
The resident library is on SYSl.PLIBASE and SYSl.PLITASK. The
transient library resides on SYSl.PLILINK.

The internal logic of individual library modules is described in
the publications as PL/! Resident Library: Program Logic and as
PL/I Transient Library: Program logic. However, in such cases
as I/O, error handling, and conversion, where compiled code and
a hierarchy of library modules are used in implementing certain
features of PL/!, the overall logic is described in this
publication. Similarly, an overall explanation of storage

Chapter 3. The PL/I libraries 53

NAMING CONVENTIONS

management and interlanguage communication is given in this
publication.

Most PL/I library modules have names of seven letters, the first
three letters being IBM. This identifies the module as
belonging to one of the PL/I libraries. The remaining letters
indicate which particular library the module was written for,
and the use of the module.

Each resident library module has two names, the control name
(which uniquely identifies the module) and the link-edit name
(which appears in the linkage editor map and the object-program
listing). The majority of the modules in the OS resident
library have a control name with the fourth letter ~ for example
IBMBOCL. This module has a link-edit name of IBMBOCLA. Some
modules, however, have a fourth letter T in their control name,
indicating that they are used only in a multitasking environment
and some a fourth letter F indicating that they are for use when
operating under CICS. The link-edit names of these modules
nevertheless have a fourth letter B. An example of this is the
multitasking priority-alteration routine IBMTTPRA. The
link-edit name for this module is IBM~TPRA. -(See Figure 22 on
page 55.)

The result of this arrangement is that a number of library
modules can share the same link-edit name. Consequently, the
compiler can generate the same code regardless of whether the
program is going to operate in a multitasking, non-multitasking,
or CICS environment. Some CICS modules are held in
SYSI.PLIBASE, and others are link-edited during installation and
held as load module DFHSAP in SYSl.PLILINK.

Entry point names are given additional letters alphabeticallY.
The primary entry point name usually ends in an "A." Other
entry points are named "B", "C", etc. For example, the primary
entry point of the module with control name IBMBOCL is IBMBOCLA
and the secondary entry point is IBMBOCLB. Many modules have
only one entry point, such as the PL/I modules that work with
CICS, and are listed by the full entry point name. The module
names in SYSI.PLIBASE is almost always the primary entry point
name.

The naming convention for conversion modules is slightly
different. Arithmetic conversion modules have entry points
indicated by a two-letter mnemonic code.

THE MULTITASKING LIBRARY

The resident library is held on two data sets: SYSl.PLIBASE and
SYS1.PLITASK. SYSl.PLIBASE holds all modules that are needed to
execute non-multitasking programs. SYSl.PLITASK holds the
multitasking versions of all modules that differ for
multitasking and non-multitasking environments.

As explained above, both multitasking and non-multitasking
modules have the same link-edit names for their entry points.
Multitasking modules have a fourth letter Ti non-multitasking
modules have a fourth letter H, in their control names.

The use of the same link-edit name permits the compiler to
generate the same code for library calls, regardless of whether
the program is multitasking or non-multitasking. For
multitasking programs, the data set SYSl.PLITASK must precede
SYSl.PLIBASE in input to the linkage editor. In this way, the
multitasking modules will be link-edited and the program will
run in a multitasking environment. Further details of this
arrangement are given in Chapter 14, "Multitasking" on page 307.

54 OS PL/I Optimizing Compiler: Execution Logic

I I
Identify module
as part of a
PL/I Library

I

CONTROL NAME

IBM

I

B
T
F

xyz

! I

I I
B=Base Module
T=Multitasking Module
F=CICS

LINK-EDIT NAME

I
IBMBxyz

ENTRY POINT NAMES
I

I I

I

Mnemonic of
module's
functions

EXAMPLES

IBMTPIRA
IBMBEOCA
IBMBJWTA
IBMFEAIA

IB~1BPIRA
IB~1BEOCA
IBMBJWTA

Resident library modules Transient library modules

I I
Link-edit name followed by

A,B,C, etc.
Control name followed by

A,B,C, etc.
IBMBPIRA
IBMBREFA

Conversion modules sometimes have only two mnemonic
letters to identify the function, IBMBCH

IBMBCHXD and use two mnemonic letters to identify entry points.

Figure 22. library Module Naming Conventions

LIBRARY WORKSPACE

DSAs (dynamic storage areas) for certain library routines are
not acquired in the same way as they are for source program
subroutines. Instead of the storage being acquired from the
LIFO stack, space is allocated, in the program management area,
for two preformatted DSAs. These DSAs are known as levels of
library workspace. Their format can be seen in Figure 23 on
page 56. Library workspace (LWS), provides a fast method for
library routines to obtain DSAs. All the library routines have
to do is to address the DSA and set the chainback field. There
is no need to test to see if there is enough space for the DSA,
as the space is already allocated. The NAB pointer does not
have to be reset, because the next available byte is not
changed.

Chapter 3. The PL/I Libraries 55

,..->
I Flags Offset to ONCA

Chain back field (to last DSA)

Standard save area

r- -Address of next library workspace 1st level

Current NAB J Workspace for library modules

>
Flags I Offset to ONCA

Chains back field

Standard save area

Address of this level of LWS 2nd level
(used only when addressing the ONCA)

Current NAB

Workspace for library modules

Current ONCA

Figure 23. Program Management Library Workspace

When it becomes possible that more than two lWS-type routines
might be active concurrently, two more library workspaces are
preallocated in LIFO space.

The library routines that can use library workspaces are those
that do not need working storage but can call other routines.
Library routines that need no working storage and do not call
other routines do not change Rl3.

FORMAT OF LIBRARY WORKSPACE

Library workspace is designed so that either level can be
treated by the housekeeping routines in the same way as a DSA.
Chainback fields to the calling block's save areas are held in
the head of library workspace and, where more than one level of
library workspace is used, a chainback field is set up to the
previous level. Figure 23 illustrates the method of chaining
employed.

ALLOCATION OF LIBRARY WORKSPACE

library workspace is originally allocated within the program
management area by the initialization routine IBMBPII. However,
whenever an interrupt occurs and an ON-unit is to be entered, a
further two levels are allocated. This allows library modules
to be called within an ON-unit, without overwriting library
workspace which may have been in use at the time of interrupt.
Library workspace is acquired by a subroutine of IBMBPIR that is
addressed from the TCA.

Attached to each allocation of library workspace, including the
initial allocation in the program management area, is an ON

56 OS Pl/I Optimizing Compiler: Execution Logic

communications area (ONCA). This is a control block used in
error handling to hold condition built-in function values.
ONCAs are described fully in "Detecting the Occurrence of
Conditions" on page 117.

LIBRARY MODULES AND WEAK EXTERNAL REFERENCES

IBMBSFI

F-format input
conversion director.
Contains WXTRNs for:
IBMBCCSA, IBMBCTHD,
etc.

Because of the modular structure of the library, a group of
modules is frequently used to carry out some particular task.
Conversions, for example, are normally done by using a series of
modules, and so are many of the mathematical built-in functions.
For this reason, many library modules contain a number of
external references to modules which may not be needed in a
particular program. An example of this is shown in Figure 24.
To prevent unnecessary modules being link-edited, "weak external
references" (WXTRNs) are used. WXTRNs are a special type of
external reference designed to cater for this situation.

IBMBCCS

Special string conversion
V module. Contains WXTRNs for:

IBMBCCAA, IBMBCACA, etc.

~

"

IBMBCTH

"- E- or F-format-to-arithmetic
conversion module. Contains

I WXTRNs for:
I IBMBCEZX, IBMBCHZD, etc.
I

Figure 24. Example of Use of WXTRNs

Chapter 3. The PL/I Libraries 57

THE SHARED LIBRARY

Those entry points that are called only optionally are coded as
WXTRNs. This prevents the linkage editor from loading these
modules unless a separate external reference is made to them by
the compiler. Thus the executable program phase does not
contain modules that it never uses.

Figure 24 on page 57 shows part of a hierarchy of modules with
alternative paths through them. When such a hierarchy exists,
the actual path to be taken through the modules will be known to
the compiler, and external references will be made to all the
required modules whose names are coded as WXTRNs. The effect of
this is that the linkage editor loads only the required modules.

The shared library is a PL/! facility that allows an MVS
installation to load PL/! resident library modules into the
link-pack area (LPA) so that they are available to all PL/I
programs. This reduces space overheads.

The modules to be included in the shared library can be chosen
by the installation. They must include the initialization
routine, the error handling routine, the open file routine, and
all modules addressed from the TCA that are not identical in
multitasking and non-multitasking programs. Further details on
the shared library and the optional modules are described in:
OS PL/! Optimizing Compiler: Installation for MVS.

The routines in the shared library are held in two of three
link-pack-area modulesl IBMBP$M, and either IBMBPSL or its
multitasking equivalent IBMTPSL. Each of the link-pack modules
contains a number of library routines, and is headed by an
addressing control block known as a transfer vector. IBMBPSM
contains those modules in the shared library that are common to
both multitasking and non-multitasking PL/I environments.
IBMBPSL contains the non-multitasking versions of those modules
that are not identical in multitasking and non-multitasking PL/!
environments. This module has a multitasking counterpart,
IBMTPSL, which holds the multitasking versions of such modules.

Two further modules are also involved in handling the shared
library. These are the shared library addressing modules
IBMBPSR and its multitasking counterpart IBMTPSR. One or other
of these modules is link-edited with compiled code and held in
the program region: IBMBPSR for non-multitasking programs, or
IBMTPSR for multitasking programs. These two modules often use
the alias PLISHRE. IBMBPSR and its multitasking counterpart
hold dummy entry points, called ~bs, that duplicate the names
of all entry points of modules within the shared library.
References to such entry points in compiled code are resolved to
the stubs in IBMBPSR or IBMTPSR.

The situation during execution is shown in Figure 25 on page 59.
In the link-pack-area are two link-pack modules: IBMBPSM and
IBMBPSL (or its multitasking counterpart); these contain all the
routines in the shared library. In the program region is the
shared library addressing module IBMBPSR (or its multitasking
counterpart). All references by compiled code to entry points
in the shared library have been resolved by the linkage editor
to IBMBPSR (or IBMTPSR).

58 OS PL/I Optimizing Compiler: Execution Logic

PROGRAM REGION
TCA

R12->

TPSR

TPSL

TPSM >

Program region
module IBMBPSR
or IBMTPSR

Transfer vector
Dummy entry
points with
duplicate names
to all entry
points in the
shared library

Address >
constant Dummy Entry

Point

link pack module
IBMBPSM

Transfer vector
Dummy entry
point with
duplicate names
to all entry
points called
by shared
library modules
but not in
shared library.

Shared library
routines.

>

Link pack module
IBMBPSL or IBMTPSL

Transfer vector
Dummy entry
point with
duplicate names
to all entry
points called
by shared
library modules
but not in
shared library.

Housekeeping
and environment
dependant
modules in the
shared library.

Figure 25. The Shared Library During Execution

communication between Program Region and Link-Pack-Area

Communication between the link-pack-area and the program region
is handled by the transfer vectors that are held at the head of
each module. Communication is necessary in both directions.
The compiled program will need to call library subroutines that
are held within the link-pack modules in the link-pack-area.
Similarly, certain of the modules in the link-pack-area may need
to call modules that are not included in the shared library.
The link-pack-area modules IBMBPSL and IBMBPSM, are headed by
transfer vectors, which are followed by the individual library
modules in the shared library. The individual modules and the
transfer vector are link-edited to form one module when the
shared library is created.

The program region module IBMBPSR consists of a transfer vector
and stubs. (The format of the shared library modules is shown
in Figure 26 on page 60.) During program initialization, the
addresses of the three modules being used (and consequently the
address of the transfer vector) are placed in the TCA.

Chapter 3. The Pl/I Libraries 59

Program region
IBMBPSR and IBMTPSR

Link pack area (shared library
IBMBPSl, IBMBPSM & IBMTPSM

~----------------------~--- r---

VCONs and WXTRNs for
all modules that may
be called from shared
library but are not
included in it.

Dummy entry points
for all modules in
the shared library,
followed by addressing
code the passes
control to the real
modules.

,......-Transfer-
vectors

VCONs for all modules
held in the shared
library.

Dummy entry points all
modules that may be
called from the
shared library but are
held in the program
region. These entry
points are followed by
addressing code that
passes control to the

~----------------------~--- real modules.

library
routines -

'--

-

-

Figure 26. The Format of Shared library Modules

Individual modules
in the shared
library.

The transfer vectors contain three types of data:

1. Dummy entry points for all modules that are not held in that
area (that is, the program region transfer vector contains
dummies for all entry points that are held in the shared
library; the link-pack transfer vector contains entry points
for all modules that could be called from the shared library
but are not included in it).

2. Code, following the dummy entry points, that passes control
from the dummy entry point in one area to the real entry
point in another area. The code takes the form:

LIS, offset(12)

lIS, xxx(15)

BR 15

where:

offset

xxx

is the address of IBMBPSM, IBMBPSl, or IBMPSR.

is the displacement into a table of V-type address
constants (VCONs).

The code (2) transfers control in the manner shown in
Figure 27 on page 61.

a. It picks up the address of the relevant transfer vector
from the TCA, where it was placed during program
initialization.

60 OS PL/I Optimizing Compiler: Execution logic

b. It picks up the address of the module it requires from a
known offset from the start of the transfer vector.

c. It branches to the address, thus passing control to the
required library routine.

The code does not use any register except register 15. The
link register (14) is not altered, and control returns
directly from the module to the caller.

3. An ordered list of addresses for all routines that are held
in the same area as the vector. Addressing is shown in
Figure 27.

PROGRAM REGION LINK PACK AREA

Compiled code TCA

IBMBPSM

V(IBMBCCAA) t-. > r-. ACIBMBPSM) -->

I>
Stub
IBMBCCAA

L

Figure 27.

Pick up
address of
IBMBPSM
from TCA.

Pick up
address
and branch.

- > A(IBMBCCAA) -

<.
IBMBCCAA

The compiled code
address constant
for IBMBCCAA is
resolved to the
stub IBMBCCAA in
the module IBMBPSR.
This dummy module
picks up the
address of IBMBPSM
from the TCA, adds
a known offset,
and picks up the
address held at
this offset. This
is the address of
IBMBCCAA in the
shared library
link pack area.

Addressing a Module in the Shared library

Chapter 3. The Pl/! libraries 61

Execution When Using the Shared Library

Use of the shared library is specified by the linkage editor
statement INCLUDE PLISHRE. PLISHRE is an alias for the program
region modules IBMBPSR and IBMTPSR. The appropriate module will
therefore be loaded by the linkage editor (IBMBPSR for
non-multitasking programs; IBMTPSR for multitasking programs).
All compiled code external references to shared library module
entry points are then resolved to the dummy entry points in
IBMBPSR (or IBMTPSR). Similarly WXTRNs in the program region
module are resolved if compiled code issues an EXTRN for the
entry point.

Program Initialization

At the start of the program, control is passed to one of the
entry points of the initialization routine. This entry point
will, in fact, be a dummy entry point in the shared library
program region module. Each entry point is followed by code
which requests the system to load the shared library link-pack
modules. If the modules are already loaded, the system simply
returns their addresses. If they are not loaded, it loads them
into the link-pack-area, and then returns the addresses.

The addresses of the two link-pack-area modules and of IBMBPSR
are added to the parameter list for IBMBPIR. IBMBPIR is then
called in the usual shared library manner, that is via the
transfer vector in one of the link-pack modules.

It is the standard action of the initialization routines to load
these parameters into the appropriate fields in the TCA. When
the shared library is not in use, meaningless information is
loaded into these fields. However, as they are only accessed by
the shared library modules, this does no harm.

Initializing the Shared Library

The shared library is initialized by the use of the PLISHR macro
instructions, as described in OS PL/I Optimizing Compilers
Installation for MVS.

All five modules must be created at the same time. During the
process, the table of VCONs in the link-pack modules, transfer
vectors are generated, and the offsets to these VCONs from the
head of the transfer vector are placed in the code following the
dummy entry points in the program region modules.

A similar process is carried out for addresses in the program
region. The VCONs within the link-pack modules are resolved by
the linkage editor when the link-pack modules are created. The
VCONs within the program region modules are qualified by WXTRNs,
and are only resolved if compiled code generates an EXTRN for
the entry point. Such EXTRNs are generated when required, as a
normal part of the compilation process, regardless of whether
the shared library is being used. The VCONs in the program
region modules are resolved by the linkage editor when the
program is link-edited.

For further details on the options available in the shared
library, see OS PL/I Optimizing Compiler: Installation for MVS.

Multitasking Considerations

The shared library has been designed so that multitasking does
not affect it. If PLITASK is specified before PLIBASE, the
linkage editor statement INCLUDE PLISHRE will result in the
module IBMTPSR being loaded and linked in the program region.
When control passes to the code following the IBMBPIR entry
point in IBMTPSR, a request is made to the system to load the
multitasking shared library module IBMTPSM. The program then
runs in the usual manner, with the multitasking modules.

62 OS PL/I Optimizing Compilers Execution Logic

An installation can specify a shared library that includes only
the multitasking or the non-multitasking modules. However, both
multitasking and non-multitasking versions of the program region
module will still be created. The module for the unwanted
environment will be a dummy. This prevents problems should an
INCLUDE PLISHRE statement be included in a program that is
intended to run in the environment with no shared library. If
this process was not carried out, such a statement could result
in the incorrect environment being initialized.

Chapter 3. The PL/I Libraries 63

CHAPTER 4. COMMUNICATION BETWEEN ROUTINES

Pl/! allows the programmer the choice of a large number of data
attributes. Normally there is no need for explicit attribute
information to be retained until execution, because the methods
used to handle the data can be resolved during compilation.
However, there are certain situations where this cannot be done.
For example, adjustable bounds or extents may prevent the data
attributes being fully known at compile time, or the data may be
being passed to another PL/! procedure or library subroutine.
When these situations arise, it is necessary to retain some or
all of the data attributes in an explicit form throughout
execution.

The names of variables fall into a similar category. Normally,
they need not be explicitly known during execution. However,
for data-directed input/output and the CHECK condition, the
names of the variables need to be known so that they can be
associated with the correct values.

When such information must be retained until execution, special
control blocks are set up for the purpose. These control blocks
are described in this chapter.

The control blocks are:

DESCRIPTORS: These hold the extent of the data item (that is,
string lengths, array bounds, and area sizes).

LOCATORS: These hold the address of a data item and, if they
are not concatenated with the descriptor, hold the descriptors
address.

DESCRIPTOR DESCRIPTORS: These hold the logical structure
levels, dimensions, and lengths, of all elements within a
structure.

DATA ELEMENT DESCRIPTORS (DEDS): These hold the attributes of a
variable required for data manipulation, except for extents,
which are held in descriptors.

SYMBOL TABLES: These hold the names of the variables and
associate them with the appropriate storage locations during
execution.

SYMBOL TABLE VECTOR: This associates symbol tables with the
block in which they are known.

DESCRIPTOR/LOCATOR: This is a term used to describe the control
block consisting of a descriptor concatenated with a locator.

An example of the way in which data is related to its locators,
descriptors, and DEDs is given in Figure 28 on page 65.

64 OS Pl/I Optimizing Compiler: Execution Logic

PL/I Statement
DCl TABLE(lO)
FLOAT DECIMAL (6);

Storage

> TABLE (0) -. <---Virtual origin

L

TABLE (1)

TABLE (9)

TABLE (10)

I

Short floating-point decimal 6
I

Address of TABLE

Address of descriptor

>. .
*RVO=4

Multiplier=4

Upperbound=lO Lowerbound=l

*RVO (Relative virtual origin) is
the offset of the actual origin
of the array from the virtual
origin (the position that element
TABLE (0) would hold if it existed)

Array TABLE (10)

DED

Aggregate locator

Array descriptor

Figure 28. Example of Descriptor, Locator, DED, and Storage Location of an Array

Passing Arguments and Returned Values

When arguments are passed between PL/I routines register I is
used to point to a list of addresses known as a parameter list.
These addresses are the addresses of the data items for
nonaggregate arithmetic items. For other items, where the
receiving routines may be expecting data about length or format
in addition to the data itself, descriptors and locators are
used. For control information, such as files or entries other
control blocks are used because the item itself cannot properly
be said to have an address. The addresses within a parameter
list are shown below.

Data Type Passed

Arithmetic items

Array or structure

String or area

File constant (passed to
resident library subroutines
only)

Address Passed

Data

Aggregate locator

Locator/descriptor

DCLCB

Chapter 4. Communication between Routines 65

Data Type Passed Address Passed

File constant or variable File variable
(passed to routines other than
above)

Entry EntrY data control block

label label data control block

Pointer Data

Offset Data

Task Data (task variable)

Event Data (event variable)

locators and descriptors are described later in this chapter. A
file variable is a full word holding the address of the DelCB.
The layout of all other control blocks is shown in
Appendix A, "Control Blocks" on page 326.

The last entry in the list is marked by having the first bit in
the word set to 1.

If a function reference is used the last field is used for the
address of the returned value or its appropriate control block.
Thus there is one more field in the parameter list than there
are arguments passed.

Notes on Terminology

Pl/I only returns a return code when it returns to an outside
caller via its termination routine. No return code is passed
between Pl/I procedures. When a non-Pl/I routine that returns a
return code is called l the value of the return code can be
accessed if the procedure is declared with the RETCODE option.
For example:

DCl ASMSUB OPTIONS (ASSEMBlER,RETCODE);

For such entries the compiler generates code that saves the
value returned in register 15 from such a program and makes it
available when the PLIRETV built-in function is specified. The
method of setting up the return code when Pl/I returns to the
system or an outside caller is described in " The Process of
Termination." on page 80.

The following terms are used in this chapter.

Virtual origin (VO)

Actual origin (AO)

Relative virtual origin (RVO)

Structure element

Base element

The address where the element of
an array whose subscripts are
all zero is held or, if such an
element does not appear in the
array, where it would be held.

The address of the first item in
the array or structure.

Actual origin minus virtual
origin.

A minor or major structure that
contains a number of base
elements.

A data element or array within a
structure.

66 OS Pl/! Optimizing Compiler: Execution Logic

DESCRIPTORS AND LOCATORS

Descriptors are generated when adjustable extents are involved,
or when an item is to be passed as an argument and the
associated parameter is the type that can be declared with an
asterisk among its attributes. For example, DCL X CHAR eN); or
DCL X CHAR e*); would both result in the generation of a
descriptor. In the first case, code for the SUBSTR built-in
function would have to be interpretive if STRINGSIZE were
enabled. The appropriate library module would be called, and it
would make use of the descriptor to discover the length of the
string. This length would have been placed in the descriptor by
the prolog code of the block in which the string was declared.
In the second case, where the length of the string is signified
with an asterisk, the program that is passed the string will
expect to receive the length of the string in a descriptor.

Data items that can be declared with an adjustable value or an
asterisk are: string lengths, array bounds, and area sizes.
Descriptors are, therefore, needed for strings, arrays, and
areas. They are also needed for structures, because structures
can contain strings, arrays or areas.

In order to connect the data with its descriptor, a further
control block is generated. This is the locator. The locator
addresses both the descriptor and the variable. For strings and
areas, the locator is concatenated with the descriptor and
contains only the address of the variable. For structures and
arrays, the locator is a separate control block and holds the
address of both the variable and the descriptor. Called
routines are normally passed the addresses of locators, rather
than the addresses of arguments when arguments requiring
descriptors are passed.

When the descriptor and locator are not concatenated, it is
possible to use the same descriptor for a number of different
data items, provided that these items have the same attributes.
This process is known as "commoningR and is used to conserve
space. Where possible, the compiler commons structure and array
descriptors and aggregate descriptor descriptors.

Except for controlled variables, descriptors and locators are
always held in the static internal control section, regardless
of the attributes of the data that they describe. Reentrant
programs that require update are copied into AUTOMATIC storage.

For controlled variables, the descriptor and, sometimes, the
locator are held immediately before the data. (For details see
"Controlled Variable Block" on page 335).

The following types of descriptor and locator are generated.
Figure 29 on page 68 summarizes the conditions under which they
are generated and gives their storage locations. In the main,
they are set up during compilation and completed during
execution, if necessary.

Chapter 4. Communication between Routines 67

Conditions under which it is Location
Name of control block generated (control section)

Data element descriptor When conversion or stream I/O Static internal
(DED) library modules are called.

Array descriptor When an array has adjustable Static internal
bounds or may be passed to a
library, subroutine or other
PL/I routine.

Aggregate locator When structure or array Static internal
descriptor is generated.

Area Locator/Descriptor When an area is declared with Static internal
an adjustable size or may be
passed as an argument.

String locator/descriptor When a string is declared with Static internal
an adjustable length or is
passed as an argument.

Structure descriptor When a structure is declared Static internal
with adjustable elements or is
passed as an argument.

Aggregate descriptor When a structure contains Static internal
descriptor elements declared with

adjustable bounds.

Symbol table When an item may appear in Static internal
data-directed I/O or in a for internal
CHECK list. items. Separate

CSECT for
external items.

Symbol table vector When GET DATA or PUT DATA is Static internal
used without a data list, or
when SIGNAL CHECK is used
without a data list.

Figure 29. Descriptors, Locators, and Symbol Tablesl When Generated, Where Held

string Locator/Descriptor

The string locator/descriptor holds the byte address of the
string, information on whether or not it is a varying string,
and the maximum length of the string. For a bit string, the bit
offset from the byte address is held. For further details, see
"String locator/Descriptor" on page 402.

Area Locator/Descriptor

Aggregate Locator

The area locator/descriptor holds the address of the start of
the area and the length of the area, as shown in "Area
Locator/Descriptor" on page 326.

The aggregate locator holds the address of the start of the
array or structure and the address of the array descriptor or
structure descriptor. This locator is shown in "Aggregate
Locator" on page 330.

68 OS Pl/I Optimizing Compilers Execution Logic

Array Descriptor

structure Descriptor

The array descriptor holds:

1. The relative virtual origin (RVO) of the array.

2. The high and low bounds for the subscripts in each
dimension.

3. The multiplier for each dimension.

When the array is an array of strings or areas, the string or
area descriptor is concatenated with the end of the array
descriptor to provide the necessary additional information.
Array descriptors are commoned where possible. That is, one
descriptor is used for a number of similar arrays. (See "Array
Descriptor" on page 331.)

The structure descriptor consists of a series of fullwords,
giving the byte offset of the start of each base element from
the start of the structure. If a base element has a descriptor,
the descriptor is included in the structure descriptor,
following the appropriate fullword offset. Where a bit offset
is involved, this will be held in the descriptor for the bit
string, or in the relative virtual origin if the item is a bit
string array.

A structure must be mapped during execution if any of the
elements in the structure have adjustable bounds or extents, or
if the REFER option is used. Where possible, structure
descriptors are commoned. That is, one descriptor is used for a
number of similar structures. If a structure or an array of
structures contains elements with adjustable extents, the
structure descriptor is not set up during compilation. Instead,
it is set up during execution from information held in the
structure descriptor descriptor. (See "Structure Descriptor" on
page 403).

Aggregate Descriptor Descriptor

When a structure cannot be mapped during compilation, more
information than is held in the structure descriptor is needed
for it to be mapped during execution. This information is held
in a control block known as an aggregate descriptor descriptor.

The information held in an aggregate descriptor descriptor is
the number of dimensions and logical level of all the structure
elements, and the number of dimensions, logical level, and
alignment requirements, of all base elements, plus the length of
those base elements that do not have their length held in
descriptors. (Strings and areas, and arrays of strings and
areas, have their lengths in descriptors.) The length held for
an array is the length of an array element. The total length of
the array can be calculated by using the information in the
array descriptor.

The aggregate descriptor descriptor is set up in static internal
storage and is set up completely during compilation. The format
is shown in "Aggregate Descriptor Descriptor" on page 328. An
example showing the method used to map a structure that contains
an element with an adjustable extent is shown in Figure 30 on
page 70.

Where possible, aggregate descriptor descriptors are commoned.

Chapter 4. Communication between Routines 69

> r--.

Declaration
DCL 1 A,

2 B FLOAT
2 C,

3 D CHAR(N),
3 E FLOAT;

DURING COMPILATION

1 Space for structure descriptor
allocated in static storage.

SD 1

Space for offset of B

Space for offsf!t of D

Space for descriptor of D

Space for offset of E

2 Aggregate descriptor descriptor
allocated, and fields filled in
from structure declaration.

ADD 2

01 All ones level 1 00 Zero

10 X'31' X'4' level 2 00 Zero

00 Zero level 2 00 Zero

10 X'7' Zero level 3 00 Zero

11 X'31' X'4' level 3 00 Zero

3 Aggregate locator allocated, and
address of structure descriptor
place in second word.
Code is generated within the
prolog of the block in which
the structure is declared to
call structure mapping routine,
IBMBAMM, to acquire a VDA, and
to complete the aggregate locato

Al 3

Space for address of structure

4

DURING EXECUTION

4 Prologue code places value
N(1 byte) in the string descriptor
for D in structure descriptor.

S IBMBAMM is called to map the
structure, using the information in
the ADD and the SD (which contains
the length of element D). D is
aligned with E, then B is aligned
with DE. (The rules for structure
mapping are given in the language
reference manual for this
compiler.) The results of the
mapping are placed in the
structure descriptor.

SD 5

Zero

X'7'

1 byte lot unused

X'8'

6 IBMBAMM returns the length of the
structure to compiled code, which
acquires a VDA for the structure and
places the address of the structure
in the aggregate locator.

ADD

Al

ADD is unchanged during
execution.

6

r-- Address of structure

r. Address of structure descriptor

VDA for structure 6

B
~ Address of structure descriptor ~>I

padding

E

THE RESULT
Every member of the structure can be addressed by
means of the address in the aggregate locator and
the offsets within the structure descriptor. When
bit offsets are involved, they are contained within
the appropriate descriptor in the structure descriptor.

D

Figure 30. Example of Handling a Structure Containing an Adjustable Extent

70 OS PL/I Optimizing Compiler: Execution Logic

Arrays of structures and structures of Arrays

Where necessary, an aggregate locator, a structure descriptor,
and an aggregate descriptor descriptor are generated for both
arrays of structures and structures of arrays.

The structure descriptor for both an array of structures and a
structure of arrays has the same format. The difference is in
the values in the fields of the array descriptors within the
structure descriptor. Take for example the array of structures
AR and the structure of arrays 51, declared below.

Array of structures

DCl 1 AR(lO),
2 B,
2 Cj

structure of Arrays

DCl 1ST,
2 B(IO),
2 C(ID)j

The structure descriptor for both AR and ST would contain an
offset field for both Band C and an array descriptor for both B
and C. (See Appendix A, "Control Blocks" on page 326).
However, the values in the descriptors would differ, because the
array of structures AR would consist of elements held in the
order B,C,B,C, etc., and the elements in the structure of arrays
ST would be held in the orders

B,B,B,B,B,B,B,B,B,B,C,C,C,C,C,C,C,C,C,C.

DATA ELEMENT DESCRIPTORS

When data is passed to the Pl/! library routines, a complete
description of the data is frequently required, and something
more than a descriptor is therefore needed. Conversion
routines, for example, need to know the complete attributes of
the data. To hold such information# data element descriptors
(DEDs) are generated. (Control blocks known as DEDs are also
used by the compiler. These are compile-time DEDs and have a
different format from those that are used during execution.
COMPile-time DEDs never appear in the executable program.) For
stream 1/0# DEDs are generated to describe the format of the
input or output. These DEDs are known as format element
descriptors (FEDs).

DEDs are produced for all types of variable or temporary that
are passed to the library for conversion or stream input/output.
The length and format of the DED depends on the data type of the
item. DEDs are shown in detail in "Data Element Descriptor
(DED)" on page 337.

DEDs are always held in static internal storage. They are used
only to pass information to library routines.

There are five types of DEDs: arithmetic DEDs, arithmetic
pictured DEDs, string DEDs, pictured string DEDs, and FEDs.

ARITHMETIC DEDS: 4 bytes long.

ARITHMETIC PICTURED DEDS: (always decimal) 8 bytes plus picture
specification, which consists of at least one byte for every
character in the pictured string. Maximum length for pictured
arithmetic DEDs is 264 bytes.

STRING DEDS: 4 bytes long.

PICTURED STRING DEDS: (always character string) 6 bytes plus
the picture specification, which consists of one byte for every
character in the picture string. The maximum length for
pictured character DEDs is 261 bytes.

Chapter 4. Communication between Routines 71

FEDS (INPUT/OUTPUT DEDS): Fall into five classes.

1. A,B, and control format FEDs have four bytes.

2. E and F format FEDs are six bytes long.

3. Pictured arithmetic FEDs consist of four bytes followed by
the pictured arithmetic OED.

4. Pictured character string FEDs consist of four bytes
followed by the pictured character string OED.

5. C format FEDs are four bytes plus the two constituent FEDs
that make up the complex item. They are used for complex
data.

The first two bytes of any DED are the look-up byte and the flag
byte. Taken together, they define the data type and permit a
receiving routine to determine if it needs to look further into
the OED for more information. The format of DEDs is shown under
"Data Element Descriptor (OED)" on page 337.

SYMBOL TABLES AND SYMBOL TABLE VECTORS

Data-directed I/O statements, and the CHECK condition, require
the names of variables to be available throughout execution.
Normally, such names are not used after compilation. When
required during execution, these names are held in control
blocks known as ~mbol tables. Symbol tables hold the name of
the variable, its address, and the address of its DED plus
certain other information (see Appendix A).

GET DATA and PUT DATA statements without a data list, and SIGNAL
CHECK statements when there is no check list, imply that the
names of all variables known at that point in the program must
be available. The necessary information is held in a further
control block known as the symbol table vector. The symbol
table vector holds the addresses of symbol tables arranged in
order of program blocks, commencing with the main procedure
block. The symbol table vector consists of a series of fullword
fields. These fields contain either the address of a symbol
table, a fullword of zeros, or a further address within the
symbol table vector. The end of entries for variables declared
in each block, is followed by a fullword of zeros, which in turn
is followed by the address in the symbol table vector where
entries for the encompassing block begin. If there is no
encompassing block, another word of zeros marks the end of the
vector.

Figure 31 on page 73 shows the relationship between variables,
symbol tables, and the symbol table vector.

Data-directed I/O modules, and the CHECK module, use symbol
tables and symbol table vectors in the following ways.

Get Data (A,B,C), Put Data (A,B,C), Signal Check (A,B,C): In
all these cases, the addresses of the symbol tables for A, B,
and C are passed to the appropriate library module.

Get Data, Put Data, Signal Check: When no data or check list is
included in the statement, the library is passed the address of
the start of the associated block entries for the symbol table
vector. By following the symbol table vector, it is possible to
access the names of all the variables known in the block.

The contents of symbol tables vary according to the storage
class of the variable. The method used for holding the address,
and other information, is given in Appendix A. For internal
variables, symbol tables are held in static internal storage.
For external variables, symbol tables are held as separate
control sections in static external storage. The name of each
control section is the name of the associated variable followed
by an X. Thus the control section for the external variable B

72 OS PL/I Optimizing Compiler: Execution Logic

Vector for
main procedure

Vector for
subroutine 1

Vector for
subroutine 2

would be BX. Such a control section would also contain the DED
of the variable (or DEDs if the variable was a structure).

PROGRAM BLOCK STRUCTURE

Main procedure

DCl A,B/C;

Subroutine I

DCl X,Y/A;

Subroutine 2

Del X,V;

Symbol table vector Symbol tables for:
->

I--

-

A

B

C

00000 0

00000•.... 0

X

Y

A

00000 0

~Pointer

X - ---
Y

00000•. 0

-Pointer

> A in nlain procedure

> B in main procedure

> C in main procedure

> X in subroutine 1

> Y in subroutine 1

> A in subroutine 1

> X in subroutine 2

> Y in subroutine 2

The symbol table vector is built up on a block by
block basis, the last entry for each block being a
word or zeros followed by a pointer to the first
entry for the encompassing block. This mechanism
allows for multiple declarations of names.

Figure 31. Symbol Tables and Symbol Table Vectors

Chapter 4. Communication between Routines 73

CHAPTER 5. OBJECT PROGRAM INITIALIZATION

LINK-EDITING

Before the output from the compiler can be executed, it must be
link-edited, and the PL/I environment must be set up. This
chapter briefly describes the effects of link-editing, the
manner in which the program is entered, and the initialization
process that sets up the PL/I environment. Initialization for
multitasking programs is explained in Chapter 14, "Multitasking"
on page 307. The chapter also gives a brief description of the
program management area; a control area set up during program
initialization.

The functions and use of the linkage editor program are
described in the operating system publications. This chapter
'describes the effects of link-editing on the PL/I program. The
linkage editor combines the various control sections generated
by the compiler and resolves addresses within these control
sections. The linkage editor also incorporates into the
executable program phase all library modules that are called
from compiled code, and a number of other library modules that
are required either because they in turn are called by the
library modules called by compiled code, or because they are
needed for program management. A major module used in program
management is the error-handling module, IBMBERR. An external
reference to this module is contained in the PL/I initialization
routine, IBMBPIR. An external reference to IBMBPIR is included
in the control section PLISTART which is generated by every
compilation and nominated as its entry point. PLISTART contains
an external reference to the control section PLIMAIN (which
holds the address of the start of the main procedure).

One of the features of the linkage editor is that it does not
accept more than one control section with the same name; the
second use of the name is ignored. As a result of this, only
one PLISTART and one PLIMAIN is generated for each executable
program phase. This allows two or more PL/I main procedures to
be link-edited together. The procedure that receives control
will be the first that is passed to the linkage editor, because
it will be the PLISTART and PLIMAIN of this procedure that are
included in the executable program. This feature is also used
to handle data declared EXTERNAL. Control sections for each
such data item as STATIC EXTERNAL are generated by all programs
in which the data is declared. Only one of these is resolved.

Note: With the exception of interlanguage communication calls,
the entry statement cannot be used to pass control to a
specified PL/! program; entry must be made through the PL!START
CSECT. The PLISTART CSECT has three entry points:

PlISTART
PLICALlA
PLICALLB.

These entry points are described in this chapter, and in the
"Communicating between PL/I and Assembler Language Modules"
chapter, of OS PL/I Optimizing Compiler: Programmer's Gui~e.
How PL/I handles entry into into another language is discussed
in Chapter 13, "Interlanguage Communication" on page 281.

The PLIMAIN control section is not generated by the compiler if
the PL/I source program does not contain the MAIN option.
However, a control section named PLIMAIN is included in the
module IBMBEMN. This control section contains the address of
code that calls the module IBMBPEP, which puts out a message
saying there is no main procedure, after which the program is
terminated.

74 OS PL/I Optimizing Compiler: Execution Logic

PROGRAM INITIALIZATION

Code is compiled by the PL/I Optimizing Compiler on the
assumption that various control blocks will have been set up and
certain registers will point to them when the program is
entered. This arrangement of control blocks and registers is
known as the PL/I environment.

The most important factors affecting the PL/! environment are
the following:

1. An area for the allocation of PL/! dynamic storage should be
available. This area is known as the initial storage area
elSA).

2. During initialization, a dynamic storage area eDSA) should
exist. This will give the address of the start of the area
available for dynamic storage allocation and will act as a
save area for the calling routine's registers.

3. A task communications area (TCA) should exist. The TCA acts
as a central communications area for the program, holding
addresses of various storage and error-handling routines,
and control blocks. The TCA also contains a number of flags
and other fields.

4. Program checks should be passed to the PL/! error-handling
module IBMBERR.

5. Preformatted DSAs should exist for certain library routines.
These preformatted DSAs are known as library workspace
(LWS).

6. A space should be available for any condition built-in
function values (ONCHAR, ONSOURCE, etc.) should a PL/I
interrupt occur. This space is known as an on
communications area (ONCA). As the condition built-in
functions have default values, an area to hold the default
values is required. This is known as the dummy ONeA.

7. Register 12 should point at the TCA, and register 13 should
point to the DSA.

The resident program initialization routine IBMBPIR, calls
IBMBP!I to acquire the ISA, and set up the various control
blocks. These control blocks are in the head of the ISA known
as the program management area. The contents of the program
management area are described later in this chapter.

The default ISA size and other options are controlled either by
the system default module IBMBOPT or by specifying an external
variable called PLIXOPT within the program.

The use of initialization routines obviates the need for special
code in main procedures, and allows two procedures with the MAIN
option to be used in the same program.

As shown in Figure 32 on page 76, the initialization routine
IBMBPIR is reentered after the execution of compiled code. This
is done by the standard action of the epilog code. The
registers of IBMllPIR are stored in the dummy DSA by the prolog
code, and restored by the epilog code. When terminating the
program, IBMBPIR calls IBMBPIT, to handle the majority of the
termination functions.

Chapter 5. Object Program Initialization 75

PlISTART

Receives control from
system

!--->

Initialization routines

Set up TCA, initialize storage
and issue SPIE/ESPIE and
STAE/ESTAE to ini tialize Pl/I t-
error-handling scheme. Pass
control to the address in
PllMAIN

v
~-----------------------------<--------------------------------~I
I
v

L>

Prologue code

Acquires DSA for main
procedure, ini tializes t-->
control blocks, etc.

Functional code

Carries out function required
in source program. This
usually involves calls to
library subroutines.

v

~-----------------------------------<------------------------------------~I
I v

L>

Epilogue code

Restores IBMBPIR's
registers

Termination routines

Closes any files still open and
----> returns control to system.

Figure 32. Flow of Control During Execution

Fast-Path Initialization/Termination

For fast-path initialization/termination lBMBPII, IBMBPIT, and
the storage management routine IBMBPGR are linked together
during compiler installation and all loaded together with
lBMBPIR.

INITIALIZATION AND TERMINATION ROUTINES

Three routines are used in initialization and termination. They
are:

IBMBPIR

IBMBPII

IBMBPIT

Initialization/termination routine.

Initialization routine.

Termination routine.

The resident routine, IBMBPIR, is a short control routine. The
major functions are carried out by the transient routines.
However, IBMBPIR contains a number of housekeeping subroutines,
including code to handle GOTO out of block in certain abnormal
situations, and the STAE/ESTAE exit subroutine. These are
described in Chapter 6, "Storage Management" on page 84, and
Chapter 7, "Error and Condition Handling" on page 105,
respectively.

76 OS Pl/I Optimizing Compilerl Execution logic

Initialization/Termination Routine IBMBPIR

IBMBPIR has three entry points. One of these is for use by the
supervisor; the other two are for use by problem programs
written in languages other than PL/I. The main difference
between the entry points is the parameters that are expected.
The entry points are:

I Bt1BPI RA

IBMBPIRB

IBMBPIRC

Used when entry is made from the system.

For use by non-PL/I callers who wish to accept PL/I
default ISA size.

For use by non-PL/I callers to nominate the ISA and
heap areas, or to override the other execution time
options.

Entry points Band C will be used by programmers specifying
PLICALLA and PLICALLB respectively. Using PLICALLA results in
control being passed to IBMBPIRB. Using PLICALLB results in
control being passed to IBMBPIRC.

IBMBPIRA and IBMBPIRC can be passed a number of parameters
related to program management. These include ISASIZE, HEAP, and
REPORT. Module IBMBPIR assumes that all parameters preceding a
slash(/) are program management parameters. All main procedure
parameters must, therefore, be preceded by a slash, otherwise
they are taken to be parameters for PL/I program management.

Entry point IBMBPIRC can be passed a parameter list that
contains the length and, optionally, the address at which the
ISA is to begin. The ISA size and address are passed to
IBMBPII. The format of the parameter list is described in
"Communicating between Pl/I and Assembler-Language Modules"
chapter, of the OS Pl/I Optimizing Compiler: Programmer's
Guide.

Entry point IBMBPIRB cannot accept any program management
parameters; the de"fault ISA size is always given. (See also,
"Acquiring the ISA" on page 78.)

The Process of Initialization

When IBMBPIR is called to initialize the program, it acquires
workspace and calls IBMBPII. IBMBPII carries out the actions
described below. An area large enough for both workspace and
the ISA is acquired when the default is used, or when these
conditions are all met:

• The ISASIZE is positive

• The ISASIZE is a reasonable size (4K to 16M bytes)

• The ISA is supplied during compilation

Handling Execution-Time options

IBMBPII, which contains the default execution time options,
analyzes the options specified. These options, which were also
known as program management parameters, can be specified in the
following ways:

1. As parameters of the EXEC statement,

2. From an external variable called PLIXOPT in the PL/I
program.

3. From the default module IBMBXOPT, which is usually set
during installation. See the OS PL/I Installation Guide for
your operating system.

Chapter 5. Object Program Initialization 77

Acquiring the ISA

All three sources may exist, and the options are merged from
them. IBMBPII first uses the default module IBMBXOPT. It then
searches for a control section called IBMBPOPT which is produced
by the compiler if an external variable called PLIXOPT is
declared in the program. Prior to release 3 of the optimizing
compiler, when IBMBPOPT did not exist, IBMBPII would search for
PLIXOPT which was left uncompiled by the compiler. Any options
specified in PLIXOPT are then merged with those in IBMBXOPT,
with the values in PLIXOPT overriding those in IBMBXOPT. The
process is then repeated with any execution time options
specified as parameters in the EXEC statement. When the
execution time options have been sorted out, IBMBPII carries out
the actions described below.

The method of acqu1r1ng storage for the ISA depends on the entry
point in IBMBPIR used.

If entry point C is used, and both the ISA size and address have
been passed, no further ac·ti on need be taken.

If the ISA size has been passed, to either entry point C or
entry point A, a GETMAIN macro is issued for the amount of
storage requested.

If no ISA size has been specified, the default action is taken.
The default action is to obtain all the available storage. The
high-address half of this storage is then freed, and the lower
half retained as the ISA. If the resulting figure is not large
enough to hold the program management area an area large enough
for the program management area is obtained.

If there is not enough space for the ISA size requested, or if
the defaults do not provide enough space for the program
management area, the action described below under "Error
Situations" on page 80 is taken.

Initialization of the Progr'am Management Area

The program management area is set up at the low address end of
the ISA. I8MBP!I initializes the various control blocks. These
are shown in Figure 33 on page 79. Their functions are
described below under "The Program Management Area" on page 81.

The storage management routine is loaded, and the addresses of
its various entry points are placed in the TCA. If a storage
report is requested, module IBMBPGD is loaded; otherwise, module
IBMBPGR is used.

Initializing PL/I Error Handling

The PL/I error handling scheme handles all program checks, and
attempts to handle ABENDs. The address of the old fake PICA is
saved in the TeA so that the previous SPIE/ESPIE may be restored
during program termination, and SPIE/ESPIE and STAE/ESTAE macro
instructions are issued to set up the Pl/I error handling
scheme.

The SPIE/ESPIE macro specifies entry into entry point A of the
error handling module IBMBERR. (This subroutine loads the ABEND
analyzing module lBMBPES.) A full description of the PL/I error
handling facilities is given in Chapter 7, "Error and Condition
Handling" on page 105.

When the program management area has been initialized, and the
SPIE/ESPIE and STAE/ESTAE macro instructions have been issued,
IEMBPlI returns control to IBMBPIR.

78 OS PL/I Optimizing Compiler: Execution Logic

R12->

R13->

Dummy
DSA
NAB->

IBMBPIR checks that the return has been normal and, if so,
points register 1 at the parameters for the main procedure, and
calls the procedure whose address is held in the control section
PLIMAIN.

TCA
Task communications area.
See text and Appendix A

TCA Appendage
See text and Appendix A

Dummy ONCA (ON communications area)
Holds default values for condition built-in functions

TRT Table
Translate-and-test table for IBMBERR, used in error
handling to test for relevant on-cells.

Diagnostic File Block
Contains information relating to the use of SYSPRINT
for the transmission of diagnostic messages

Dump Block (DUB)
Block used to access the dump file

Ordered delete list
Used to hold a list of transient modules to be deleted
during program termination

Dummy task variable
Used in tasking if no task variable is declared

Save area for IBMBPGR
Used by storage management routines when new
segment of storage is required.

Dummy DSA (Dynamic storage area) (See Appendix A)
Contains DSA for initialization routine, back-chain
to calling routine's save area (if any), pointer to
start of major free area (NAB), etc.

lWS (library workspace)
Two preformatted DSAs for use by certain library routines

ONCA
Space in which condition built-in function values
are placed after an interrupt.
Back-chain points to dummy ONCA

Pseudo Register Vector
Control block used in addressing files and controlled
variables.

Hold area for parameters passed to a main procedure.

MAJOR FREE AREA
4K to 16M Bytes

Figure 33. Program Management Area

Chapter 5. Object Program Initialization 79

Error Situations

NOSPIE AND :JOSTAE OPTIONS: If NOSPIE is specified in the
parameters passed to IBMBPIR no SPIE/ESPIE macro is issued by
the initialization routine. This allows an installation to
specify its own method of handling program check interrupts.
Similarly if NOSTAE is specified a STAE/ESTAE macro will not be
issued.

If the INTERRUPT option was in effect during the compilation of
any of the procedures in the load module, IBMBEAT is included in
the load module. If it has been, a STAX macro instruction is
issued so that attention interrupts will pass control to
compiled code. For further information on interrupts, see "The
INTERRUPT Option" on page 51.

The STAX exit, set up by the STAX macro instruction changes the
contents of the TATP field in TCA. This field contains a
pointer to an instruction that is executed by polling code in
the compiled code or library modules at various convenient
points in execution. Normally the instruction is a branch on
register 14 resulting in the continuation of the program.
However the STAX exit sets it to a branch into the error handler
(IBMBERR) which then raises the ATTENTION condition.

If there is insufficient storage available to meet the requested
ISA size, IBMBPII calls IBMBPEP, which puts out an "INSUFFICIENT
MAIN STORAGE" message. IBMBPII then returns to IBMBPIR,
requesting it to free the storage acquired, and terminate the
program.

If no PL/I main procedure is provided, and there is no
alternative PLIMAIN control section provided by the user, an
error module is called. A "NO MAIN PROCEDURE" message is
generated, and the program is terminated.

The Process of Termination.

When the main procedure is complete, epilog code for the main
procedure raturns control to IBMBPIR, passing to it the address
of the DSA. If the termination is normal, IBMBPIR restores the
value of register 13 to that passed to it in register 0, which
is the main procedure DSA. IBMBPIR then sets flags in the TCA
indicating that the program is terminating, and tests the THFN
flag. If it is set on, this means that a FINISH ON-unit was
activated and calls the error handler to raise the FINISH
condition. If there is no GOTO from the FINISH ON-unit, the
error handler returns to IBMBPIR using the GOTO-out-of-block
mechanism. The flags set in the TCA to indicate program
termination are tested and, as they are set, control is returned
from the GOTO code in the TCA to the abnormal-GOTO subroutine in
IBMBPIR.

The GOTO-out-of-block routine handles any outstanding
housekeeping problems. Exit DSAs are correctly terminated. (A
full discussion of the GOTO-out-of-block mechanism and its
implications is given in "GOTO Statements" on page 36).

When IBMBPIR is entered again, count and flow information is
printed or displayed. All files are then closed by calling
IBMBOCL. IBMBPIR then calls IBMBPIT to complete the
housekeeping.

IBMBPIT issues STAE/ESTAE and SPIE/ESPIE macro instructions to
restore the error handling situation. Fetched procedures are
then released and heap storage is freed. Diagnostic files are
closed. In addition, the storage report is made if it is
required.

IBMBPIT then checks the value in TCA field TORC to see if the
ERROR condition was raised. When the ERROR condition is found
in TORC, IBMBPIT passes control to IBMBEER. IBMBPIT passes to

80 OS PL/I Optimizing Compiler: Execution Logic

IBMBEER the error code as a positive number if there was an ON
ERROR block called, or a negative number otherwise. The code
that IBMBEER returns to IBMBPIT is, in turn, passed to IBMBPIR.

If the ERROR condition is not found in the TCA field TORC,
control returns to IBMBPIR with a zero return code.

IBMBPIR checks the return code from IBMBPIT and places it in
register 15. If the code is zero, IBMBPIR frees the ISA and
either returns to the operating system or returns to the caller.
If the code is not zero, it ABENDs with the return code from
IBMBEER.

THE PROGRAM MANAGEMENT AREA

A diagram of much of the program management area is shown in
Figure 33 on page 79. It shows the situation when the compiled
program is called.

Translate-and-Test Table

Dump File Block

The translate-and-test table contains code used in error
handling to identify relevant on-cells. (See Chapter 7, "Error
and Condition Handling" on page 105.)

This is space used during the execution of PLIDUMP to hold the
DCB and other information for the dump file.

Loaded Module or Ordered Delete List

This is a list of modules that are deleted by IBMBPIR during
program termination. Certain transient modules that are not
deleted by other methods place their name in this list to ensure
that they are deleted when the program is terminated.

Dummy Tasks and Event Variables

Dummy DSA

These are included in the program management areas to allow the
use of the STATUS and PRIORITY built-in functions in
non-multitasking programs, and to allow multitasking programs to
operate if no task or event variables are explicitly declared.

The dummy DSA acts as a save area for the registers of the
initialization routine IBMBPIR, and an end to the chain of DSAs
when a search through blocks is being made, as, for example,
when searching for a relevant established ON-unit. This process
is described under "Searching for Established ON-Units" on
page 134. The dummy DSA has a bit in its flag byte to indicate
that it is a dummy. The dummy DSA contains a NAB (next
available byte) pointer enabling the main procedure to obtain a
DSA in the LIFO stack.

Library Workspace (LWS)

This consists of two preformatted DSAs that are used by certain
of the library modules. (See Chapter 3, "The PL/I Libraries" on
page 53.)

Chapter S. Object Program Initialization 81

Pseudo-Register vector

MULTITASKING

This is used in addressing files, fetched procedures, and
controlled variables. (See Chapter 2, "Compiler Output" on
page 12.)

The program initialization process for a multitasking
environment is described in Chapter 14, "Multitasking" on
page 307.

I PROGRAM MANAGEMENT UNDER CICS

When operating under CICS, the optimizing compiler makes use of
a slightly different program management scheme.

This is achieved by using special CICS-only library modules and
the use of the CICS bootstrap module DFHPLIOI which acts as the
entry point for all PL/I programs under CICS in a similar way
that PLISTART is used under OS.

The CICS-only modules are loaded in place of the standard
modules because an INCLUDE statement for DFHPllOI is included in
the input to the linkage editor.

The major program management routines, those dealing with
initialization/termination, error handling, and storage
management are held together with a small control routine in the
load module DFHSAP which is in the CICS nucleus. The routines
differ from their equivalents in some respect and are
differentiated by having a fourth letter of F. Thus within the
load module DFHSAP there are three routines:

IBMFPIRA Initialization/termination under CICS

IBMFPGRA Storage management under CICS

IBMFERRA Error handling under CICS

Also included is IBMFPCCA, a control routine.

INITIALIZATION/TERMINATION

Initialization is caused by CICS passing control to DFHPlIOI,
which, using the address in the CSA (a CICS control block),
passes control to IBMFPCC, the control routine in DFHSAP.
IBMFPCC then passes control to IBMFPIR which sets up the Pl/I
environment including the TCA, TIA, and CICS TCA appendage.

Under CICS, it is possible to specify a number of execution time
options by using the character string PLIXOPT. If ISASIZE is
specified in a PLIXOPT string, or through the default options
IBMBXOPT, Pl/I compares its minimum storage requirements to
CICS's maximum. The minimum size required by PL/I is the sum of
the Program Management Area and the main DSA. Pl/I then issues
a eICS GETMAIN command for the validated amount, which was
rounded up to the next multiple of 8 bytes. If ISASIZE is not
specified in anyway, then only the minimum request by PL/I is
obtained.

The execution time options specified are examined by IBMFPIR and
appropriate action is taken.

82 OS PL/I Optimizing Compiler: Execution Logic

Options that can be specified area

COUNT
FLOW
HEAP
ISAINC
ISASIZE
REPORT
STAE

COUNT AND FLOW: Result in the setting up of space for COUNT and
FLOW output. They only take effect if the option was specified
during compilation. (COUNT can be specified at execution time
if FLOW was specified at compile time and vice-versa.)

HEAP: Is used to specify a separate storage area for CONTROLLED
and dynamically-allocated BASED variables. The maximum heap .
size and increment, if specified, is either 65,496 bytes for
below 16 megabytes or 1,073,741,816 bytes above 16 megabytes.
The initial heap allocation and increments to heap are rounded
to the next higher multiple of 8 bytes.

ISAINC: Is used to obtain additional storage when a request for
LIFO storage cannot be satisfied from the ISA. PL/I uses the
larger of either the value specified in the ISAINC or the
amount of storage requested. The maximum ISAINC size is 65,496
bytes and is rounded to the next higher multiple of 8 bytes.

ISASIZEI Is used to specify the initial storage area that will
be acquired for PL/I storage.

REPORT: Is used to gener~te a report of storage usage. If it
is specified, a special storage handling module, IBMFPGD is
loaded.

STAE: Results in an EXEC CICS HANDLE ABEND command being
executed which leads to errors in PL/! being trapped by the Pl/I
error handling.

When the environment is initialized, IBMFPIR passes control to
the PL/I program. After the PL/I program is completed, control
returns to IBMFPIR. A test is made to discover if any ON FINISH
statements were executed in the program and if they were, the
FINISH condition is raised. Finally, the PL/I acquired storage
is freed before control is returned to CICS.

Chapter 5. Object Program Initialization 83

CHAPTER 6. STORAGE MANAGEMENT

This chapter explains how the OS PL/I Optimizing Compiler allows
you to regulate working storage. One of the principal methods
of regulating working storage is through execution-time options.

The execution-time options, ISASIZE, ISAINC, HEAP, and TASKHEAP,
all control working storage.

THE INITIAL STORAGE AREA

The initial storage area elSA) is used for PL/I dynamic storage
allocation. The start of the ISA contains a number of
housekeeping fields known as the program management area. The
program management area is described in Chapter 5, "Object
Program Initialization" on page 74. For a diagram of the
program management area, see Figura 33 on page 79. The
remainder of the ISA is used for dynamic storage allocation
which is described in this chapter. The ISA and its increments
are always obtained below 16 megabytes.

By specifying ISASIZE, you set the amount of storage to be
reserved for the ISA. The initialization routine, IBMBPII,
issues a GETMAIN macro instruction to acquire the storage.

If you do not specify ISASIZE, the initialization routine takes
the default action, which is to issue a variable GETMAIN
instruction for the largest amount of contiguous storage
possible. Half of this storage is allocated to the ISA, and the
remainder is freed for possible future use by the program or by
the operating system.

If you specify the ISASIZE to be greater than the region size,
and you do not pass execution-time options as parameters at
execution-time, your program will terminate with an 80A ABEND.
If ISASIZE is greater than the region size, and execution-time
options are passed as parameters, the initialization routine
issues a variable GETMAIN for the largest amount of contiguous
storage available, and uses the whole amount as the ISA.

The program initialization routine allocates the ISA. However,
the allocation procedures for tasking and for CICS are slightly
different. If you are using multitasking, see "Acquiring the
ISA When Multitasking" on page 103; if you are using CICS, see
"CICS Considerations" on page 103.

The valu~ you specify in the ISAINC execution-time option is
used to obtain additional storage when a request for LIFO
storage cannot be satisfied from the ISA. For further details
on how LIFO storage is allocated, see "Allocating and Freeing
LIFO Storage" on page 89.

The values specified in the HEAP and TASKHEAP execution-time
options are used to define separate storage areas for CONTROLLED
and dynamically allocated BASED variables for the main (or only)
task and for subtasks.

TYPES OF DYNAMIC STORAGE REQUIRED

The requirement for dynamic allocation and freeing of storage is
inherent in the language. Automatic variables are allocated and
freed on a block-by-block basis. CONTROLLED and BASED variables
can be allocated and freed by appropriate PL/! statements.
Storage is also obtained dynamically for workspace and for
compiler-generated temporary values.

84 OS PL/! Optimizing Compilers Execution Logic

Dynamic storage can be conveniently divided into two classes:

1. That which is allocated and freed on a last-in/first-out
(LIFO) basis.

LIFO storage is also referred to as upper stack storage.

2. That which is not (non-LIFO storage).

Non-LIFO storage, required by library modules for control
blocks, is always allocated in the ISA. Non-LIFO storage
for CONTROLLED or BASED variables can be allocated in the
ISA or in a separate storage area called upper heap storage.

contents of LIFO (Last-in/First-outl storage

Two kinds of storage area are allocated in LIFO storage:
dynamic storage areas (DSAs) and variable data areas (VDAs). A
DSA is allocated for every procedure or block and containsl

• The system standard save area

• Certain standard housekeeping fields

• All automatic variables and compiler-generated temporaries
whose length is known dUring compilation

A diagram of the standard section of a DSA is shown in
Appendix A, "Control Blocks" on page 326.

VDAs are acquired for all other allocations of LIFO dynamic
storage. These include:

• storage for automatic variables and compiler-generated
temporaries whose length is not known until execution. For
example:

DCL X CHAR (N);

• Workspace for certain library modules, such as storage for
formatting PUT EDIT data.

• Allocations of library workspace (LWS) and on-control areas
CONCAs) after the occurrence of an interrupt.

• Storage for dynamic ON control blocks CONCBs).

contents of Non-LIFO storage

Non-LIFO storage is used for the following:

• CONTROLLED variables.

• Those BASED variables that are allocated by the ALLOCATE
statement (provided that they are not allocated in an
automatic or static AREA).

• Workspace for certain library modules, such as control
blocks for input/output and fetch.

DYNAMIC STORAGE ALLOCATION

When the HEAP execution-time option is not used, storage is
allocated by the following principles:

• LIFO storage is allocated from the low-address end of ISA,
starting at the first 8-byte boundary beyond the program
management area.

• Non-LIFO storage is allocated from the high-address end of
the ISA.

Chapter 6. Storage Management 8S

Area
Used for
Dynamic
storage

Head of ISA
free area-------->
chain
(TLFE in TIA)

Between the areas of LIFO and non-LIFO storage is an unused
section known as the major free area. This area is shown in
Figure 34.

When heap storage is used, non-LIFO library workspace is still
allocated from the high-address end of the ISA. However,
program variables are allocated from the high-address end of a
separately acquired heap storage area. How storage is used in
the ISA when heap is specified is shown in Figure 35 on page 87.

Start of !SA

Program
Management
Area

Main procedure DSA

Subroutine DSA

MAJOR FREE AREA

3rd allocation for
controlled variable C

Space used by another
controlled variable
freed after 3rd allocation
of C was made

2nd allocation for
controlled variable C

1st allocation for
controlled variable C

End of ISA

LIFO storage

Held in a contiguous
stack, starting at the
address following the
program management
area. Elements can be
freed only from the
high-address end of
the stack.

Non-LIFO storage

Held in an upper stack
starting at the
high-address end of the
ISA. Any element in the
stack can be freed;
consequently, all
elements are not
n~cessarily contiguous.
When elements are freed,
the associated storage
is placed on the
free-area chain and
used for subsequent
allocations, when
possible.

I Figure 34. Use of Storage in the ISA if Heap Storage is Not Used

86 OS PL/! Optimizing Compiler: Execution Logic

Head of Heap
free area
chain ------->
(TXLFE in
TIA)

Start of ISA

Program
Management
Area

Main procedure DSA

Subroutine DSA

MAJOR FREE AREA
~ -- - - -- - - -- - - -

library Non-LIFO

Start of Heap Initial Storage

3rd allocation for
controlled variable C

Space used by another
controlled variable
freed after 3rd allocation
of C was made

2nd allocation for
controlled variable C

1st allocation for
controlled variable C

End of ISA

<

-

LIFO storage

Non-LIFO Storage

Library non-LIFO storage
is held in a stack that
starts at the
high-address end of the
ISA. Programmer defined
CONTROLLED and ALLOCATED
BASED variables are held
in a stack starting at
the high-address end of
the separate heap
storage area. Any
element in the stack can
be freed; consequently,
all elements are not
necessarily contiguous.
When elements are freed,
the associated storage
is placed on the
free-area chain and
used for subsequent
allocations, when
possible.

I Figure 35. Use of Storage in the ISA if Heap Storage is Used

The last element in the LIFO stack is always freed first;
consequently 1 it can always merge with the major free area.
This is not always the case with non-LIFO storage. When an
item, not contiguous with the major free area in the non-LIFO
stack , is freed , it is placed on a free-area chain whose head is
anchored in the TCA appendage (TIA). Attempts are always made
to use areas on this chain when further allocations of non-LIFO
storage are made. When heap storage is used , Pl/I maintains a
separate free-area chain that is anchored in the TIA.

Before allocating LIFO storage, the major free area is tested
for sufficient space. If there is not enough space, a new
segment of the LIFO stack is obtained and the necessary

Chapter 6. Storage Management 87

housekeeping fields are placed at its head. The largest area on
the free-area chain is used as the new LIFO segment if it is
large enough to satisfy the request.

If there is not enough space in the free area chain, the larger
of either the value specified in the ISAINC or the amount of
storage requested, is rounded to the next higher multiple of 4K
bytes. A GETMAIN macro instruction is issued for this rounded
amount.

Fields Used in storage Handling

To keep track of the storage allocated and freed, a number of
pointers are used.

• The beginning-of-segment pointer (BOS)

• The end-of-segment pointer (EOS)

• The real end-of-segment pointer (TXRES)

• The next-available-byte pointer (NAB)

• The ISA non-LIFO free-area chain pointer (TLFE)

• A pointer to the byte beyond the end of the ISA (TISA)

• The heap storage initial address (TXHAD)

• The heap storage chain pointer (TXBOC)

• The heap free-area chain pointer (TXLFE)

The beginning-of-segment pointer (BOS) is initially set during
program initialization to point to the start of the ISA. It is
not altered unless a new segment of storage is acquired. BOS
always points to the start of the current storage segment. BOS
is held at offset XIS' from the head of the TCA, and is
addressed from register 12.

The end-of-segment pointer (EOS) is initiallY set during program
initialization to point to the end of the ISA. However, it is
updated, when non-LIFO storage is allocated, to point to the end
of the major free area. EOS is held at offset X'C'(12) in the
TCA, and is addressed from register 12. This field is always
zero if an additional segment of the LIFO stack is acquired, and
the EOS value is held in TXRES in the TIA. When the REPORT
option is in effect, this field is always zero.

The real end-of-segment pointer (TXRES) is used to store the
pointer to the end of the major free area if an additional
segment of LIFO storage was obtained or if the REPORT option is
in effect. TXRES is held at offset X'60'(96) in the TCA
appendage (TIA).

The next-available-byte pointer (NAB) is held in every DSA and
points to the first S-byte boundary contiguous with unused
storage. This address is the start of the major free area. The
current NAB is held in the most recent DSA. As register 13 is
altered every time a DSA is acquired, the value in a NAB pointer
need only be altered when a VDA is freed or acquired. Previous
NABs are automatically restored when register 13 is pointed to a
previous DSA.

The first byte of BOS and NAB contains segment numbers ("00" for
the ISA). The use of these numbers is explained under
"Acquiring a New Segment of LIFO Storage" on page 93.

The ISA free area chain pointer (TLFE) The ISA non-LIFO
free-area chain includes those elements of non-LIFO dynamic
storage that were freed but that could not be merged with the
major free area. The start of the chain is held at offset
X'lC'(2S) in the TCA appendage (TIA). TlFE points to the

S8 OS PL/I Optimizing Compiler: Execution Logic

element with the highest address. The ISA non-LIFO free-area
chain is held in descending address order.

~ointer to the bvt~ beyond the ISA (TISA) is used to keep
track of the end of the ISA. TisA is held at offset X'O' in the
TIA.

The he.9.E storage ini tial address CTXHAD) is a pointer to the
initial heap storage area. TXHAD is held at offset X'70'Cl12)
in the TIA.

The heap storage ch~in pointer CTXBOC) includes all storage
areas obtained by GETMAIN for use as heap storage. The start of
the chain is held at offset X'74'Cl16) in the TIA. TXBOC points
to the element with the highest storage address. The heap
storage chain is held in descending address order.

The heap storage free-area chain pointer (TXLFE) includes those
elements of heap dynamic storage that are not currently
allocated. The start of the chain is held at offset X'78'(120)
in the TIA. TXLFE points to the element with the highest
storage address. The heap storage free-area chain is held in
descending address order.

ALLOCATING AND FREEING LIFO STORAGE

Allocating and freeing LIFO storage is handled by compiled code
or by the particular library module that requires the space.
Allocation is handled the same way as the prolog code discussed
in "Prolog" on page 32 under Chapter 2, "Compiler Output" on
page 12. Freeing is done in the manner used by the epilog code,
which is described in, "Epilog" on page 35 under
Chapter 2, "Compiler Output" on page 12.

Before allocating LIFO storage, the major free area is tested
for sufficient space for the new allocation. The test begins by
adding the current value of NAB to the amount of storage that
the DSA or VDA requires. The sum of those values is compared to
the current value in EOS to determine whether there is enough
space in the major free area.

If there is enough space, the sum becomes the new value of NAB,
as shown in Figure 36 on page 90. This new value for NAB is the
address for the byte beyond the end of the new allocation.

If there is not enough space in the major free area, PL/I calls
the transient library storage management routine, IBMBPGR. The
criteria for choosing the entry point depends upon whether a VDA
or a DSA is being acquired. The process for obtaining LIFO
storage is discussed under, "Acquiring a New Segment of LIFO
storage" on page 93. IBMBPGR sets BOS and TXRES to new values
for the new segment. It also sets EOS to zero, so that all
further LIFO requests go through IBMDPGR, and returns a new
value ~f NAB to the compiled code or to the calling library
routine.

When a DSA is being acquired, PL/I loads register 13 with the
old NAB value (if space is available in the major free area) or
\~ith the address of the first byte past the storage management
section of the new segment. The new NAB value is placed at
offset X'4C' from register 13.

When a VDA is being acquired, the new NAB value replaces the old
NAB value at offset X'4C' in the current DSA. A VDA is kept
until it is explicitly freed by compiled code or until the block
terminates. Freeing LIFO storage is done by restoring register
13 to its previous value when the block associated with the DSA
terminates.

Chapter 6. Storage Management 89

To Dummy DSA
A R13-> <-

I Back-chain (stored at fixed offset from R13)

Main Procedure DSA

NAB (stored at fixed offset from R13)

J
_.

R13->
(= old NAB)

Back-chain (=old R13)

Subroutine DSA

NAB

J
MAJOR FREE AREA

EOS >

Allocating a new DSA

1. Test if major free area large
enough for new DSA. If not,
call IBHBPGRC.

2. store R13 at fixed offset from
old NAB to act as back-chain.

3. Load R13 with address of old
NAB. Within a segment of
LIFO storage, R13 for one DSA
is always equal to the NAB
of the previous DSA.

4. Store new NAB at fixed offset
from register R13.

Freeing a DSA

1. load register 13 with current
back-chain address. Because
the NAB and back-chain fields
are always addressed from
register 13, the previous
values a,'e automatically
restored.

Figure 36. Principles Involved in Allocating and Freeing LIFO Storage

90 OS PL/I Optimizing Compiler: Execution logic

ALLOCATING AND FREEING NON-LIFO STORAGE WHEN HEAP IS NOT USED

NAB->

Major
Free
Area

EOS->

2nd Alloc.

1st Alloc.

Initial situation

Two contiguous
allocations of
non-LIFO storage:

Any section of non-LIFO storage can be freed at any time;
therefore, a simple stacking mechanism cannot be used, because
it would waste storage by leaving freed storage within the
stack. A different method is therefore used. When storage that
is contiguous with the major free area is freed, it is merged
with the major free area by altering the end-of-segment (EOS)
and TXRES pointers, which indicate the end of this area. When
storage that is not contiguous with the major free area is
freed, it is placed on the free-area chain, which is anchored to
a field in the TIA. If the storage is contiguous to another
block of storage already on the chain, the two are merged.
Whenever an allocation is made, an attempt is made to place the
allocation in an area that is already on the chain, rather than
use a further section of the major free area. Allocations of
non-LIFO dynamic storage are always handled by one of the four
storage management library modules, whose address is held in the
TCA. Figure 37 illustrates the principles involved. Whenever
an allocation within the major free area is made, the
end-of-segment (EOS) pointer in the TCA, or the real
end-of-segment pointer (TXRES) in the TIA, is updated to point
to the end of the major free area.

If there is not sufficient spac:e in either the major free area
or on the ISA free area chain, a GETMAIN macro instruction is
issued for the required amount of storage. Non-LIFO storage
acquired by a GETMAIN is freed by a FREEMAIN macro instruction.

NAB->

EOS->

NAB->

Major
Free
Area

EOS->

3rd Alloc.

2nd Alloc.
TLFE->

1st Alloc.

New allocation

1. Free-area
chain? No.
(TLFE in TIA=O)

2. Allocate by
altering EOS
pointer.

NAB->

Major Major
Free Free
Area Area

5rd Alloc. 3rd Alloc.

2nd Alloc. 2nd Alloc.
TLFE->

Free 1st area

1. Is area next to
an area already
on free-area
chain? No.

2. Place area on
free-area chain
in descending
address order.

4th Alloc.

Further
allocation

1. Free-area
chain? Yes.

2. Find first
area that
holds new
allocation.
Allocate at
high-address
end, 1 eavi ng
remaining
area on the
free-area
chain.

3. Alter length
at head of
remaining
area.

Figure 37. Principles Involved in Allocating and Freeing Non-LIFO Storage in the
ISA

Chapter 6. Storage Management 91

ALLOCATING AND FREEING HEAP NON-LIFO STORAGE

When the first ALLOCATE statement in the program is encountered,
storage management issues a GETMAIN for the initial heap storage
area. The larger of either the value specified on the HEAP
execution-time option, or the amount of storage requested by the
ALLOCATE, is rounded to the next higher multiple of 4K bytes.
This rounded amount is used as the size in the GETMAIN request.

As in non-LIFO storage in the ISA, any increment of heap storage
can be freed at any time. A separate heap free-area chain is
maintained to keep track of available heap storage elements.
When an allocation is made, the free-area chain is searched for
an area large enough to hold the variable. If there is not
sufficient space, a GETMAIN is issued to obtain an additional
heap storage increment. The larger of the value specified in
the HEAP execution-time option or the amount of storage
requested by the ALLOCATE is rounded to the next higher multiple
of 4K bytes. The rounded increment is used as the size on the
GETMAIN request. Any unused space in the storage acquired is
added to the heap free-area chain and is available for further
allocations.

When heap storage is freed, it is placed on the free-area chain,
which is anchored to the field TXLFE in the TIA. If the freed
storage is contiguous with an element already on the free chain,
the two are merged. If you have specified the FREE parameter on
the HEAP option, the heap storage increment is freed by issuing
a FREEMAIN macro instruction when the last variable in the
increment is freed. The initial heap storage area is not freed
even if it becomes empty.

92 OS PL/I Optimizing Compiler: Execution Logic

TXLFE>

Free
Area

2nd Alloc.

1st Alloc.

Initial situation

Two contiguous
allocations of
non-LIFO storage

TXLFE>

Free
Area

3rd Alloc.

2nd Alloc.

1st Alloc.

New allocation

1. Free-area
Chain?
Yes.

2. Allocate by
altering
length field
at head of
remaining
area

Free
Area

3rd Alloc.

2nd Alloc.
TXLFE>

Free
Area

Free 1st area

1. Is area next
to an area
already on
free-area
chain? No.

2. Place area on
free-are~
chain in
descending
o ... ·der.

Free
Area

3rd Alloc.

2nd Alloc.
TXLFE>

4th Alloc.

Further
allocation

1. Free-area
chain? Yes.

2. Find first
area that
holds new
allocation.
Allocate at
high-address
end, leaving
remaining
area on the
free-area
chain.

3. Alter length
at head of
remaining
area.

Figure 38. Principles Involved in Allocating and Freeing Non-LIFO Storage in HEAP.

ACQUIRING A NEW SEGMENT OF LIFO STORAGE

PL/! internally tests the space between the NAB and the EOS to
see if there is enough space for the DSA or VDA. The test is
done every time a new procedure or block is entered, or when a
VDA is required. If there is not enough space, an attempt is
made to use the largest space on the ISA non-LIFO free-area
chain as a new segment for the DSA or VDA.

If the largest space on the ISA non-LIFO free-area chain is not
large enough for the DSA or VDA, a new area is obtained from the
system by a GETMAIN macro instruction. The size of the area is
the larger of either the value specified in the ISAINC
execution-time option, or the space required for the DSA or VDA.
The size is rounded up to the next multiple of 4K bytes.

The former values of BOS and TXRES are stored at the start of
the new segment. Pointers are set as foilowsl

• BOS in the TCA, is set to point to the beginning of the new
segment.

• EOS in the TCA, is set to O.

• TXRES in the TIA, is set to point to the end of the new
segment.

Chapter 6. Storage Management 93

BOS->

NAB->

The DSA or VDA is allocated storage in the low-address end of
the segment, and the NAB pointer is set to point to the first
free byte after t~e DSA or VDA.

When a new DSA or VDA is required after a second LIFO segment
was required, EOS is less than the sum of NAB and the required
length, because EOS is now zero. Consequently, it appears that
there is insufficient space for the DSA or VDA in the segment,
regardless of whether or not this is the case. The library
module, IBMBPGR, is called to allocate the new DSA or VDA.
IBMBPGR also checks for empty segments and restores BOS and
TXRES (and EOS if the first segment is now the current segment.)
If there is space for the DSA or VDA in the current segment,
IBMBPGR adds the empty segment to the free-area chain when the
segment is in the ISA. Otherwise, it frees it with a FREEMAIN
instruction if it is an ISA increment. The process is
illustrated in Figure 39.

Each segment receives a segment number, starting at hexadecimal
"00" and decreasing by 1 for each new segment. The number for
the first segment is "00", the second segment "FF", and so on.
This number is held as the first byte of the NAB and BOS
pointers.

(NAB)-> ~-------~

MAJOR FREE AREA FREE AREA

non-LIFO storage
EOS:r>

TXRES non-LIFO storage
<-

freed
non-LIFO storage

non-LIFO storage
TLFE->

freed - -
non-LIFO storage

Initial situation

1. Free area chain exists.
BOS, NAB, and EOS have
X'OO' in the
first byte, i.e.,
segment number 1.

BOS---> new segment

R13->

NAB->

TXRES->

TLFE->

old BOS and EOS

new DSA

f1AJOR FREE AREA

non-LIFO storage

freed
non-LIFO storage

Acquiring new segment

1. Compiled code or library routine
finds the major free area too small.
Calls IBMBPGR.

2. IBMBPGR finds an area on the free
area chain large enough for
allocation.

3. stores old BOS and EOS. Sets new
BOS and TXRES, zeros EOS and
returns to caller.

4. Caller gets new DSA. BOS and
NAB have X'FF' in the first
byte, i.e., segment number 2.

Figure 39 (Part 1 of 2). Principles Involved in Allocating and Freeing Segments of
PL/I Dynamic Storage

94 OS PL/! Optimizing Compiler: Execution Logic

NAB->

FREE AREA

non-LIFO storage

80S->

R13->

NAB->

EOS-.->

New DSA

MAJOR FREE AREA

B05-> TXRES....J non-LIFO storage

TXRES->

TLFE->

old BOS and EOS

empty segment

non-LIFO storage

free
non-LIFO storage

Freeing DSA in segment

1. Register 13 is restored
in the normal way. BOS, EOS
and TXRES are not restored.
The segment is not freed
until there is a further
demand for storage.

2. NAB now has X'OO' in
the first byte, BOS and
TXRES still have X'FF.',
and EOS is still O.

<.
free
non-LIFO storage

non-LIFO storage
TLFE->

f--

free
non-LIFO storage

Freeing segment

1. When storage is again required,
NAB + storage required is compared

with EOS.

2. NAB + storage is found to be
greater (because EOS=O),
so IBMBPGR is called.

3. IBMBPGR finds the segment numbers
are different. It tests to see if
new storage fits in the old segment
If not, it allocates it in the
current segment.

4. Storage fits, so restore the old
BOS, EOS, and TXRES, place the
segment on the free-area chain,
and return to the caller.

5. Caller allocates storage starting
at the current NAB.

Figure 39 (Part 2 of 2). Principles Involved in Allocating and Freeing Segments of
PL/I Dynamic Storage

STORAGE MANAGEMENT ROUTINES

Depending upon the characteristics of your programs, one of the
following six storage management library modules is selected:

• IBMBPGR, for non-tasking, NOREPORT

• IBMBPGD, for non-tasking, REPORT

• IBMFPGR, for CICS, NOREPORT

• IBMFPGD, for CICS, REPORT

• IBMTPGR, for multitasking, NOREPORT

• IBMTPGD, for multitasking, REPORT

Each of these modules performs similar functions. The following
description of IBMBPGR applies to all six modules, with the
exceptions noted under "Storage Reports" on page 98,

Chapter 6. Storage Management 9S

"Multitasking Considerations" on page 103 and "CICS
Considerations" on page 103.

The allocation and freeing of LIFO storage within the first
segment are handled by compiled code or by the library module
requiring the storage. All other dynamic storage allocation is
carried out by the transient library routine, IBMBPGR; this
module has four entry points:

IBMBPGRA Allocate non-LIFO storage.

IBMBPGRB Free non-LIFO storage.

IB~1BPGRC Obtain and free additional storage segments (for
DSAs).

IBMBPGRD Obtain and free additional storage segments (for
VDAs) .

These entry points are described below. In all cases, storage
is allocated in multiples of 8 bytes.

Allocating Non-LIFO storage (Entry A)

When entered from entry point IBMBPGRA, the module first
searches the ISA non-LIFO free-area chain, or the heap free-area.
chain (if one exists), and allocates storage in the first area
large enough to hold the request. If heap storage is not used
and there is no chain, or if no area on the chain is large
enough, IBMBPGR attempts to allocate the storage in the area
immediately preceding the EOS pointer. If there is not enough
space between the EOS pointer and the current NAB pointer, a
GETMAIN macro is issued for the required storage.

If heap storage is used and there is no chain, IBMBPGR checks
for an initial heap allocation. If none exists, it issues a
GETMAIN for the initial heap storage area. When heap initial
storage exists and there is no chain, or when no area on the
chain is large enough, IBMBPGR issues a GETMAIN for a heap
storage increment. For an overview of how PL/I allocates heap
storage, see "Allocating and Freeing Heap Non-LIFO Storage" on
page 92

If the GETMAIN cannot be satisfied, the system ends the job with
either an ABEND-code 8DA or 878. This ABEND is intercepted by
the ABEND analyzer, IBMBPES. IBMBPES issues a message
indicating which statement was being executed and when the
demand for storage was made. It then returns to the system to
complete the ABEND.

Provided that storage can be allocated, control returns to the
caller, with register 1 pointing to the address of the storage
allocated.

Freeing Non-LIFO storage (Entry BJ

When freeing non-LIFO storage, or segments of LIFO storage
IBMBPGR first tests to discover whether the element being freed
is within the ISA. This test is done by seeing if the address
is between the value held in register 12, the address of the
TCA, and the value held in the TISA field of the TIA, which
points to the end of the ISA. If the element is outside the ISA
and heap storage is not used, it was acquired. It is therefore
freed with a FREEMAIN macro instruction.

When the element to be freed is within the ISA, the module scans
the ISA non-LIFO free-area chain (if one exists) to see whether
the storage being freed can be merged with areas already on the
chain. This is done if possible. The module then determines
whether the storage being freed is adjacent to the major free
area. If so, EOS is changed to point to the end of the area
being freed, or to the end of the merged area, if this adjoins

96 OS PL/I Optimizing Compiler: Execution Logic

the major free area. If the element cannot be merged with any
other, the area is added to the ISA non-LIFO free-area chain,
which is arranged in descending order of addresses.

If heap storage is used, the heap free-area chain (if one
exists) is scanned to determine whether the storage being freed
can be merged with areas already on the chain. This is done if
possible. If the element cannot be merged with any other, the
area is added to the heap free-area chain, which is arranged in
descending order of addresses. The format of a free area chain
element is shown in Figure 40. If the HEAP FREE option is
specified, IBMBPGR tests whether the heap storage increment is
empty. If so, the increment is freed with a FREEMAIN macro
instruction. The heap initial storage area is not freed even if
it becomes empty.

Segment Handling (Entry C and Entry Dl

IBMBPGR is called when compiled code finds that the address in
the pointer NAB, plus the length of the new DSA or VDA to be
allocated, is greater than the value of the pointer EOS.
IBMBPGR is called either at entry point C or entry point D,
depending on whether the storage is required for a DSA or for a
VDA. Entry point C is used if a DSA is required; entry point D,
if a VDA is required. The difference is the method used to
store the caller's registers. IBMBPGRC stores the caller's
registers in a special save area in the TCA and TIA,
respectively, because no DSA has yet been acquired. IBMBPGRD
stores the registers in the caller's DSA, in the usual manner.

IBMnPGRC and IBMPGRD check to see if the number in the first
byte of NAB is greater than the number in the first byte of
TXRES. If the difference is greater than one, more than one
extra segment was allocated for DSAs or VDAs that are no longer
current. In this case, PL/I frees segments until only one empty
segment remains. It does this by setting BaS and TXRES to the
values held in the control words at the head of each segment and
freeing the storage in the way described for IBMBPGRB above.

When only one empty segment remains, PL/I tests whether the new
DSA fits into the segment that contains the present NAB pointer
(the segment before the empty segment). lhis test compares the
current NAB pointer with the old TXRES pointer held in the
control words of the empty segment. If there is sufficient
room, the empty segment is freed as described under IBMBPGRB
above. Control returns to the caller, with a new value for
TXRES and BaS. The DSA is allocated immediately after the old
NAB.

o
4

8

Length of element in

Pointer to area with
zero if last element

Unused storage

bytes

lower address,

Figure 40. Format of Element on Free-Area Chain

If there is not enough room in the segment containing NAB, PL/I
determines whether the empty segment is large enough to hold the
new DSA. This check is done by comparing the difference between
the current BaS and TXRES with the length of the element. If
there is enough room, the DSA is allocated in the empty segment.

Chapter 6. storage Management 97

STORAGE REPORTS

The address of the start of storage is passed to compiled code
in general register 1, and the address of the new NAB is passed
in general register O.

If there is not enough room in the empty segment, the segment is
freed. There are now no empty segments, and the situation is
treated as if there were never any empty segments.

Note: It is possible that, after freeing a number of empty
segments, an area on the ISA non-LIFO free-area chain can
immediately follow EOS. However, the possibility is remote, and
no check is made to see whether this is the case.

If the segment numbers are the same, a check is made to see
whether the new DSA or VDA fits in the current segment.
(Apparent overflow was caused by EOS=O.) This check is done by
comparing the sum of the value in the NAB and the length of the
DSA or VDA with the value in TXRES. If there is space in the
current segment, control is returned to the caller.

If there is not enough space in the current segment (true
overflow), a new segment must be allocated. A new segment is
allocated by searching the rSA non-LIFO free-area chain for the
largest available area and using this as a new segment. If
there is no area large enough to hold the new DSA, the larger of
either the value specified on the ISAINC execution-time option,
or the requested amount, is rounded to the next higher multiple
of 4K bytes. That value is then used in a GETMAIN macro
instruction. The new segment is set up in the area acquired.

When a new segment is allocated, the old values of BOS and TXRES
are placed in control words at the head of the new segment. New
values for BOS and TXRES, which point to the beginning and end
of the new segment with first byte numbers decremented by one,
are placed in the TCA. The address of the new NAB is passed in
register zero; the address for the start of the new DSA or VDA
is passed in register 1. The format of a secondary segment is
shown in Figure 41.

o
4

8

Previous BOS value

Previous TXRES value

DSA or VDA

Major Free Area

<--current
BOS

<--current
TXRES

Figure 41. Format of Second and Subsequent Segments of the LIFO
Stack

When you request a storage report, you are given a report after
the program completes that shows:

• The ISA size specified (if a size was specified).

• The ISA increment size specified (if ISAINC was specified).

• The ISA size used.

• The amount of Pl/I storage required by the program. (This
is a suggested optimum ISA size.)

98 OS PL/I Optimizing Compiler: Execution Logic

• The maximum amount of storage obtained outside the ISA at
anyone time.

• The number of stack GETMAIN macro instructions issued.

• The number of stack FREEMAIN macro instructions issued.

• The number of requests to acquire ISA non-LIFO storage.

• The number of requests to free ISA non-LIFO storage.

• The heap size specified (0 if HEAP is not specified).

• The heap increment specified. 4096 bytes appears if a heap
increment is not specified.

• The amount of heap storage required. This is the maximum
amount obtained at anyone time.

• The number of heap GETMAIN macro instructions issued.

• The number of heap FREEMAIN macro instructions issued.

• The number of requests to obtain heap non-LIFO storage.

• The number of requests to free heap non-LIFO storage.

The report is generated by the storage report routine, IBMBPGD.
This module is loaded during program initialization, instead of
the normal storage management module, IBMBPGR. IBMBPGD has the
same entry points and carries out the same functions as IBMBPGR.
(For further details on IBMBPGR, see "Storage Management
Routines" on page 95.) However, it also maintains a record of
certain storage statistics. To ensure that IBMBPGD handles sll
storage allocation both inside and outside the ISA, the EOS
field in the TCA is set with a dummy value of zero. The dummy
value is set so that the storage routine will be called whenever
LIFO storage is required, as well as for non-LIFO storage and
stack overflow requests.

The storage report is issued during program termination. The
termination routine, IBMBPIT, calls the report writing module,
IBMBPMR. The report is transmitted to the dump file.

Action during Initialization

During program initialization, if REPORT was included in the
parameters passed to IBMBPIR, the report storage management
routine, IBMBPGO, is loaded, and its entry point addresses are
placed in the TCA. The value in the end-of-segment pointer,
EOS, is set to zero. Space for a report table is acquired, and
the true value of the end of segment is placed in TXRES in the
TIA.

Action during Execution

During execution, IBMBPGD is called each time there is a request
for PL/I dynamic storage. It is called for non-LIFO storage in
the normal way, and, when LIFO storage is required, it is called
because the zero value in EOS results in the value of NAB+OSA or
VDA being greater than EOS. Consequently, the stack overflow
routine (IBMBPGO, entry point C or D) is called. When a call is
made to entry point C or D, IBMBPGD makes a test against the
true value of the end of segment held in TXRES, and, if there is
sufficient room, the storage is acquired in the current segment
of the LIFO stack. If there is not sufficient room, IBMBPGD
takes the same action as IBMBPGRA, which is described in
"Allocating Non-LIFO storage (Entry A)" on page 96.

All other s'torage acquisition by IBMBPGD is handled in exactly
the same way as for the corresponding entry point of IBMDPGR.

Chapter 6. Storage Management 99

However, IBMBPGD keeps a running total of the following in the
storage report table.

1. The highest value obtained by subtracting the current length
of the major free area from the current amount of Pl/I
storage acquired outside the ISA.

2. The largest amount of PL/I storage obtained outside the ISA
at anyone time.

3.

4.

5.

6.

7.

8.

9.

The number of stack GETMAIN macro instructions issued.

The number of stack FREEMAIN macro instructions issued.

The number of requests to acquire ISA non-LIFO storage.

The number of requests to free ISA non-LIFO storage.

The highest value obtained by adding the lengths of all
storage segments allocated at one time.

The number of heap GETM~.IN macro instructions issued.

The number of heap FREEMAIN macro instructions issued.

10. The number of requests to obtain heap non-LIFO storage.

11. The number of requests to free heap non-LIFO storage.

heap

The values are altered if necessary every time IBMBPGD is
entered. The value of 1 and 2 above is calculated on every
call, and the highest number retained in the report table. The
format of the storage report table is given in
Appendix A, "Control Blocks."

Action on Termination
On termination, the termination routine, IBMBPIT, calls the
storage report writing module, IBMBPMR, which transmits the
storage report onto the dump file.

The amount of PL/I storage required is calculated by adding the
figure described in 1 to the ISA size used. The figure will be
positive if any storage outside the ISA was acquired; it will be
negative or zero if no storage was acquired outside the ISA.

Two items should be noted about the results produced by a
storage report.

1. If storage was acquired outside the ISA, the figure given
for storage used cannot be taken as final. A further
request for a report when the program is run in the ISA size
suggested may result in a smaller figure being generated.
This smaller size should be used. This discrepancy is
caused by the differences in acquiring storage inside and
outside the ISA. To obtain a correct figure using only one
run, the program should be run in a large ISA that can be
expected to hold all PL/I storage.

2. The report can only refer to the particular run of the
program on which the report was given. Runs with different
data or parameters may have different storage requirements.

100 OS PL/I Optimizing Compiler~ Execution Logic

storage Reports for Multitasking Programs

Storage reports for multitasking programs are generated in the
same way as those for non-multitasking programs. A special
storage management module (IBMTPGD), is loaded at execution
time, and retains statistics on the amount of storage used. To
ensure this module handles all requests for storage, the value
in EOS is set to zero, and the true EOS value is retained in
TXRES in the TIA. The report is issued during program
termination by module IBMBPMR.

For a multitasking storage report the following information
applies.

FOR THE MAJOR TASKz The same as for a non-multitasking program
(see above).

FOR SUBTASKS, A COMBINED REPORT FOR ALL SUBTASKS SHOWING

The subtask ISA size specified (if a size was specified)

The subtask ISA increment size specified (if ISAINC was
specified)

The maximum ISA size used by any subtask

The minimum ISA size used by any subtask

The maximum PL/I storage required by any subtask

The minimum PL/I storage required by any subtask

The maximum amount of storage acquired outside the ISA by
any subtask

The minimum amount of storage acquired outside the ISA by
any subtask

The maximum amount of heap storage acquired by any subtask

The minimum amount of heap storage acquired by any subtask

The total number of stack GETMAIN and FREEMAIN macro
instructions issued by all subtasks

The total number of requests to acquire and free ISA
non-LIFO storage issued by all subtasks

The subtask heap size specified (0 if TASKHEAP was not
specified)

The subtask heap increment size specified (4096 bytes if
TASKHEAP increment was not specified)

The total number of heap GETMAIN and FREEMAIN macro
instructions issued for all subtasks

The total number of requests to acquire and free heap
non-lIFO storage issued by all subtasks

To enable these figures to be produced, a multitasking version
of the storage report module is used. This module, IBMTPGD, has
two more entry points than its non-multitasking counterpart.
These are:

IBMTPGDE Called when a task is initialized.

IBMTPGDF Called when a task is terminated.

IBMTPGDE is called when a task is initialized. It acquires
storage for the report table for the task, and retains a record
of the number of active PL/I tasks, increasing the maximum
number if necessary.

Chapter 6. Storage Management 101

IBMBPGDF is called when a task is terminated. If the terminated
task is a subtask, IBMBPGDF completes the relevant fields in the
subtask storage report table, from information in the report
table of the terminating task.

During initialization, space is required by the control task for
a combined subtask report table. The information in this report
table is used to generate the merged subtask report. During the
initialization of each task, space for a report table for that
task is obtained. The report table for the major task is
flagged.

Throughout the execution of each task, a separate report table
is maintained. At the end of each subtask, the information in
the terminating task is merged into the combined subtask table,
held in the storage associated with the control task.

When the jobstep is terminated, IBMBPMR produces the information
from the merged subtask report table and the report table of the
major task. (IBMBPMR is used to output the report for both
tasking and non-multitasking programs.)

STORAGE MANAGEMENT IN PROGRAMMER-ALLOCATED AREAS

By using area variables, you can obtain a continuous area of
storage for based variables. The allocation of storage for area
variables is handled in the same way as that for other types of
variable, and depends on the variable's storage class. The
allocation and freeing of storage within an area are handled by
the library module, IBMBPAM.

IBMBPAM keeps a check on the amount of storage allocated. If
there is not enough space for an allocation, or if the target
area is too small to hold the source area in an assignment
statement, the AREA condition is raised.

The method employed is that storage is allocated from the
low-address end of the area, and an offset is kept to the end of
the item with the highest address in the area. This offset is
known as OEE (offset to end of extent). When storage is freed,
either the OEE is altered or the storage is placed on a
free-storage chain, with the largest segment at the start of the
chain.

Before a space is freed, a check is made to see whether it is
contiguous with a space or spaces that are already on the free
storage chain. If it is, the contiguous spaces are merged. A
check is then made to see wtlether the amalgamated space is
contiguous with the OEE. If the space is contiguous with the
DEE, the DEE is pointed to the start of the space, and the space
removed from the free storage chain. If the merged space is not
contiguous with the DEE, the free area chain is rearranged so
that it is in the correct order.

If the space to be freed is not contiguous with another space on
the free storage chain, a check is made to see if it is
contiguous with the DEE. If it is, the DEE is updated.

If the space to be freed is contiguous neither with the DEE nor
with another space on the free storage chain, the space is
placed in its correct position in the storage chain.

When a free chain exists, IBMBPAM always attempts to allocate
storage by using a space on the chain. The low-address end of
the smallest possible space on the chain is used, and the chain
is then rearranged to maintain the correct order of decreasing
size.

102 OS PL/! Optimizing Compiler: Execution logic

MULTITASKING CONSIDERATIONS

Storage handling within each task follows the pattern described
above, except that certain storage requests are made for storage
that will be available to all tasks. This storage has to be
obtained in subpool O. To indicate such a requirement, IBMTPGR
is called with a negative value. A GETMAIN for the specified
amount is then issued to subpool 0, a negative value indicating
that the storage must be in subpool O.

The method used to acquire the ISA is slightly different for
tasking. This is described below.

Acquiring the ISA When Multitasking

CICS CONSIDERATIONS

The size of the ISA required for the major task and every minor
task can be requested in the ISASIZE execution-time option. If
the size specified in the parameter is smaller than that needed
for the program management area, only the exact size required
for the program management area is acquired and all further
allocations of dynamic storage are made by issuing GETMAIN macro
instructions. These allocations are made in exactly the same
way as they are when non-multitasking programs cannot acquire
space within the ISA. (See the discussion under nStorage
Management Routines" on page 95.)

The default action, taken if no ISA size is specified, is to use
the larger of:

• The installation default for ISASIZE

• The storage for the program management area and the DSA for
the main procedure.

The storage requirement is rounded up to the next 4K-byte
increment before the GETMAIN is issued.

The IBM-supplied installation default for ISASIZE in a tasking
environment is 8K bytes. This size is usually enough to hold
the program management area and the DSA for the main procedure.
An exceptionallY large PRV or large automatic storage
requirements might cause the ISA to be larger than 8K.

storage management under CICS is handled by a module called
IBMFPGR. It is based on the OS storage management module
IBMBPGRA. As with the system described in "Allocating and
Freeing LIFO storage" on page 89, an area of storage called the
ISA is acquired and program management blocks are placed at the
low-address end. This occurs during program initialization.
During actual execution, block dependent storage (mostly
automatic variables and housekeeping fields) is placed in a LIFO
(last-in/first-out) stack immediately following the program
management blocks. Any storage that will not be freed on a
last-in/first-out basis is put at the other end of the ISA, or
in heap storage in a separate non-LIFO stack. (Such storage is
nonblock dependent such as BASED variables.)

Thus the majority of storage requests can be met without
requests to the CICS system. There are, then, two stacks within
the ISA encroaching on a free area known as the major free area
(see Figure 42 on page 104). There is never any problem of
unused space in the LIFO stack, however, there may be in the
non-LIFO stack and accordingly a free area chain is kept of any
free areas and when non-LIFO storage is being allocated, an
attempt is made to use these spaces.

Chapter 6. Storage Management 103

STORAGE AVAILABLE TO CICS

ISA
Acquired from CICS

Program
Management
Blocks

LIFO stack

Major Free Area

Non-LIFO stack
(may contain
empty spaces)

ISAINC
Additional Segment
acquired from eICS
r------- --,

Acquired when there is
not enough room for a
section of storage in
the major free area or
in an empty space in
the non-LIFO stack. l _________ J

HEAP

Acquired when the HEAP
execution-time option
is specified for BASED
or CONTROLLED
variables.

Figure 42. Storage Management under eICS

When there is no room in the ISA for lIFO requests, additional
storage is acquired from CICS. PL/I determines the amount
needed by taking the larger amount of either, the amount
currently requested or, the amount specified on ISAINC This is
called a new segment which is freed as soon as its contents are
discarded.

Likewise, when there is no room in the ISA or ISAINC for
non-LIFO requests, additional stor~ge is acquired for the amount
requested from eICS, unless the HEAP option is specified. If
the HEAP option is specified, the acquired storage for non-LIFO
request becomes the larger of either the amount requested or the
amount of heap storage specified.

When the REPORT execution time option is used, another storage
management routine IBMFPGD is called. This keeps track of the
high and low water marks of the stacks and the amount of storage
acquired outside the ISA and allows the user to determine their
storage needs and specify them in the execution-time ISASIZE
option. Execution-time options are described in the OS PL/I
Optimizing Compiler: Programmer's Guide.

104 OS PL/! Optimizing Compiler. Execution Logic

CHAPTER 7. ERROR AND CONDITION HANDLING

Terminology

This chapter deals with the method used to implement execution
time error handling. All errors detected at execution time are
associated with PL/I conditions and can be handled either by
ON-units written by the programmer or by standard system action,
as defined by the PL/I language.

The chapter starts with a brief discussion of the terms and
concepts used in error handling. A discussion of the error
handling facilities offered by the operating system and those
specified in the PL/I language follows. The implementation
problems these facilities raise and the method used to solve
them are then described. A separate section is devoted to the
CHECK condition because this raises special problems. The
chapter is completed by a brief discussion of the error message
modules, the modules used to implement the PLIDUMP facility, and
the handling of the compiler FLOW option.

Error detection during compilation is not covered in this
chapter. Nor is any advice given on how to use PL/I error
handling facilities. Advice on debugging with dumps is given in
Chapter 12.

Note: If the NOSPIE or NOSTAE options are specified in the
parameters for the procedure, much of what is said in this
chapter does not apply. The PL/I SPIE/ESPIE or STAE/ESTAE
macros are not issued and system-detected interrupts and ABENDs
are not handled in the PL/I defined manner.

Throughout this chapter a number of special terms are used.
Some of them are terms used in the PL/I language, others are
terms that are used to describe certain implementation features
and concepts. The terms are listed below.

ESTABLISHED: This term is used to describe ON-units and,
sometimes, ON statements. The ON-unit or statement is said to
be established, if the action specified in the ON-unit or ON
statement will be taken should the specified condition arise.
Thus an ON-unit becomes established when the ON statement is
executed and ceases to be established when the ON or REVERT
statement referring to the same condition is executed, or when
the associated block is terminated.

ENABLED: This term is used to describe certain PL/I conditions
(SIZE, CONVERSION, etc.). A condition is enabled when the
occurrence of the condition will result in the execution of an
ON-unit or standard action. A condition is disabled when the
occurrence of the condition will, apparently, be ignored.

QUALIFIED AND UNQUALIFIED CONDITIONS: Qualified conditions are
those conditions, such as ENDPAGE, that need to be qualified by
a file or other name. Unqualified conditions are those that do
not need qualification. Figure 45 on page 108 shows which
conditions are qualified and which are unqualified.

PROGRAM CHECK AND SOFTWARE INTERRUPTS: Certain PL/I conditions
are detect~d ;:utoma-tically by the computing system. Others have
to be detected by special checking code either in the library
modules or in the compiled program. Interrupts detected by the
system are referred to as program chEtck. Interrupts detected by
special checking code are referred to as ~oftware detected or
software interrupts. A list of program check interrupts and
their associated PL/I conditions are given in Figure 43.

Chapter 7. Error and Condition Handling 105

Machine Interrupt PL/I condition

Operation
Privileged operation
Execute
Protection ERROR
Addressing (after issuing
Specification a message)
Data

Fixed-point overflow FIXEDOVERFOW/SIZE
Fixed-point divide ZERODIVIDE/SIZE
Decimal overflow FIXEDOVERFlOW/SIZE
Exponent overflow OVERFLOW
Exponent underflow UNDERFLOW
Floating-point divide ZERODIVIDE

Figure 43. Machine Interrupts Associated with Pl/I Conditions

These terms program check and software interrupts are used for
convenience in this publication and are not accepted terms in
the Pl/I language. Figure 45 on page 108 shows which interrupts
are system detected and which are software detected.

STATIC AND DYNAMIC DESCENDENCY: Static and dynamic descendency
are terms used to define the scope of the Pl/I features.
ON-units are dynamically descendent. That is, they are
inherited from the calling procedure in all circumstances.
Condition enablement is statically descendent. That is, it is
inherited from the containing block in the source program.
Static descendency can be determined during compilation.
Dynamic descendency cannot be know until execution. See
Figure 44 on page 107.

NORMAL RETURN: Normal return is return from a called block by
means of reaching the END or RETURN statement rather than
because of a GOTO out of the block. In an error-handling
context, normal return is taken to mean normal return from the
ON-unit. The action taken after normal return from an ON-unit
is specified in the Pl/I language. For most conditions, it is
to return to the point of interrupt.

STANDARD SYSTEM ACTION: Standard system action is the name
given to the default Pl/I-defined action taken when a condition
occurs and there is no established ON-unit for that condition.

BACKGROUND TO ERROR HANDLING

System Facilities

The operating system offers certain error-handling facilities.
These can be summarized as follows:

Various situations can cause a machine interrupt which results
in entry to the supervisor. It is possible for the programmer
to define the action that will be taken after any of these
interrupts by means of a routine specified in a SPIE/ESPIE macro
instruction. Alternatively, the programmer can accept the
default action of the system. It is also possible for the
programmer to prevent the occurrence of certain interrupts by
masking out fields in the PSW.

106 as Pl/I Optimizing Compiler: Execution logic

PL/I FACILITIES

(SIZE):B:PROC;

ON ERROR SNAP;
•
•
•

CALL C;

IC'PROC;

CALL D;

D:PROC; E,PROC;
•
•
•
CALL E;

Static descendency: the enablement prefix (SIZE): in procedure B
is inherited only by the contained procedure C, regardless of
which procedure calls which.

Dynamic descendency: the ON-unit ON ERROR SNAP; is inherited by
any procedure called by B and any subsequently called
procedures. Thus, if B calls D, which calls E, the ON-unit is
established in procedure E.

Figure 44. Static and Dynamic Descendency

The PL/! language offers similar but greatly extended
facilities. The number of situations causing interrupts is
considerably larger and some, such as ENDFILE, can be used to
control normal program flow rather than to handle errors. The
use of ON-units allows the programmer to obtain control after
most interrupts.

Alternatively the programmer can accept standard system action.
The programmer also has the choice of whether certain conditions
will cause interrupts. This is done by enabling or disabling
the conditions. If the condition is disabled, neither ON-unit
nor standard system action will be taken if the condition
occurs.

A number of PL/I conditions correspond directly to the
interrupts that are detected by the operating system (see
Figure 43 on page 105). Other conditions however belong only to
PL/I.

The majority of PL/I conditions are caused by errors in program
logic or the data supplied. Some, however, are not connected
with errors. These are conditions such as ENDFILE, which occur
at unpredictable times and consequently cannot be easily
anticipated by code in the source program.

Conditions that are most probably caused by programming errors
are know as error conditions. Figure 45 on page 108 shows which
conditions are error conditions. The standard system action for

Chapter 7. Error and Condition Handling 107

Name of
Condition

Com~utational

CONVERSION

FIXEDOVERFLOW

SIZE

OVERFLOW

UNDERFLOW

ZERODIVIDE

these conditions is to put out a message and raise the ERROR
condition.

The ERROR condition is also raised by any programming error that
is not directly covered by a Pl/! condition. A data interrupt,
for example, raises the ERROR condition, and certain software
detected conditions, such as taking the square root of a real
negative number, also raises the ERROR condition.

The ERROR condition consequently gives the programmer blanket
coverage of all program errors. The ERROR condition differs
from all other conditions in that a diagnostic message is always
generated regardless of whether an ERROR ON-unit exists. If an
ERROR ON-unit exists, the message is generated before ON-unit
action is taken.

A further facility offered by PL/I is the availability of
condition built-in functions and pseudo-variables. These allow
the programmer to inspect various fields associated with the
interrupt and, in certain cases, to alter the contents of these
fields.

The situation in PL/! is complicated by the question of the
scope of ON-units and condition enablement. Condition
enablement is statically descendent and can be decided during
compilation. ON-units, however, are dynamically descendent and
the establishment or otherwise of ON-units can only be decided
during execution. (See "Terminology" on page 105).

Pro- ERRORz
Quali- Recognized gr"alnmer Condi-
fied Description By Default Control tion

no Attempt to Code in enabled yes yes
convert relevant
invalid library
character modules
string

no Overflow of a System enabled yes yes
fixed point
value

no Attempt to Compiler- disabled yes yes
assign too generated
large a value checking

code, or
hardware

no Overflow of a System enabled yes yes
floating-point
value

no Exponent System enabled yes no
becomes
smaller than
permitted
minimum

no Attempt to System enabled ye. yes
divide by
zero

Figure 45 (Part 1 of 3). PL/I Conditions

108 OS PL/I Optimizing Compiler: Execution Logic

Fro- ERRORz
Name of Quali- Recognized grammer Condi-
Condition fied Description By Default Ct.'1ntrol tion

Jn~ut/Out.e.Y.1

ENDFIlE yes End of file Code in enabled no yes
reached relevant

library
modules

ENDPAGE yes End of a page Code in enabled no no
on a prin"c relevant
file reached library

modules

TRANSMIT yes Transmission Code in enabled no yes
error on a 1 i br'a ry
file modules

UNDEFINEDFILE yes Error in Code in enabled no yes
opening file relevant

library
modules

KEY yes Invalid key Code in enabled no yes
relevant
library
modules

NAME yes Unrecognizable Code in enabled no no
data-directed relevant
input library

modules

RECORD yes Incorrect Code in enabled no yes
size recot~d relevant

library
modules

Program
Checkout

SUBSCRIPTRANGE no Array Compiler- disabled yes yes
subscript generated
outside checking
declared code
bounds

STRINGSIZE no Attempt to Code in disabled yes no
assign a relevant
string of too library
great length modules

STRINGRANGE no Attempt to Code in disabled yes no
access beyond relevant 1

limits of library
string modules

CHECK yes/no Value Compiler- disabled yes no
(variable or assigned to generated
label) identifier or checking

control code, or
passed library
through label module

Figure 45 (Part 2 of 3). PL/I Conditions

Chapter 7. Error and Condition Handling 109

Pra- ERRORz
Name of Quali- Recognized grammer Condi-
Condition fied Description By Default Control tian

list
Processins

AREA no Attempt to Relevant enabled no yes
allocate library
beyond end of modules
area

S~stem Ac!ion

ERROR no Any error Relevant enabled no -
condition library
including modules"
those not compiled
covered by code, or
other system
conditions Z

FINISH no Program Compiled enabled no -
ending code

Programmer
Named

CONDITION no Programmer Signal enabled no -
(name) defined statement (when

condition coded)

Conversational

ATTENTION no Attention System + disabled yes no
interrupt compiled
occurs code

Figure 45 (Part 3 of 3). Pl/I Conditions

Notes to Figure 45:

When STRINGRANGE is enabled" appropriate library modules are
always called.

Z The ERROR condition is raised when an error occurs that is
not covered by Pl/I exceptional conditions. It is also
raised as standard system action when handling all types of
error conditions. Thus an ERROR ON-unit enables the
programmer to intercept all error conditions.

110 OS Pl/I Optimizing Compiler: Execution logic

IMPLEMENTATION OF ERROR HANDLING

To implement the Pl/I error handling scheme it is necessary to
be able to detect all the Pl/I conditions, to acquire various
information about how the conditions occurred for condition
built-in function values, to determine whether the condition is
enabled and whether an ON-unit is established, and then take the
necessary action.

The methods used by the PL/I optimizing compiler are summarized
below.

1. Detection of the PL/I conditions

All PL/I conditions that correspond directly to program
check interrupts are left to the detection of the operating
system.

A SPIE/ESPIE macro, issued during program initialization,
results in control being passed to the error handling module
IBMBERR.

All other interrupts are detected by special checking-code,
either generated by the compiler, or included in library
modules. The checking-code calls the error handling module
IBMBERR when a condition is detected.

2. Acquiring information about the interrupt

Information about the interrupt is obtained by analyzing the
PSW for program check interrupts and by checking-code for
software detected interrupts. Condition built-in function
values are accessed through a control block known as the ON
communications area CONCA).

For software detected conditions, the ONCA is largely set up
by the checking-code. For system detected conditions the
ONCA is set up by the error handler from the information in
the PSW.

3. Compilation and handling of ON-units

Certain simple ON-units are r~presented by a series of flags
in an ON control block CONCD), but the majority are compiled
as independent program blocks to which control is passed
from the error handling module.

4. Maintaining a record of enablement and establishment

During execution, information indicating which conditions
are enabled and which ON-units are established is placed in
the following control blocks:

Enable cells
indicating enablement or disablement of the
conditions that can be enabled and disabled by the
programmer.

ON-cells indicating which unqualified conditions have
established ON-units.

ON control blocks (ONCBs)
indicating address of ON-units or action to be
taken, and for qualified conditions, whether the
ON-unit is established, and, for CHECK only
whether the condition is enabled.

5. Determi ni n9 and di recti rUL.2Bi on when i nterruet occurs

After every interrupt, control is passed to the
error-handling module IBMBERR.

A test is first made to see whether the condition is one
that may be enabled or disabled by the programmer. If the

Chapter 7. Error and Condition Handling III

1 SYSTEM

condition is disabled, control is returned to the point of
interrupt. If the condition is enabled, a search is made in
all active blocks for an established ON-unit. This is done
by examining ON-cells or ONCBs set up by compiled code. If
an ON-unit is found, the specified action is taken. If the
dummy DSA is reached without finding an ON-unit, standard
system action is taken under the control of the error
handling module.

The scheme is shown diagrammatically in Figure 46 and each topic
is discussed in greater detail in the following sections. A
summary of the uses of the various control blocks is given in
Figure 47 on page 113.

DETECTING CONDITIONS

2 COMPILED CODE OR LIBRARY ROUTINES

Use system facilities
if possible. SPIE/ESPIE
macro, issued during
initialization, passes
control to error hand
ling module when
interrupts occur

Execute checking code
for all enabled conditions
not detected by system.
Call error handler when
condition detected.

INDICATING ACTION REQUIRED WHEN CONDITION OCCURS
I

COMPILED CODE V

Set up flags indicating which
conditions are enabled.
Set up control blocks indicating
which ON statements have been
executed and, consequently,
which ON-units are established
and the addresses of such
ON-units.

CONTROLLING ACTION AFTER CONDITION HAS OCCURRED

I
ERROR HANDLING MODULE - IBMBERR V

From information set up in control blocks and flags by compiled code,

of the following actions to take when an interrupt has occurred

If condition disabled

Ignore interrupt and
return.

If ON-unit established

Take action specified
in ON-unit. If no
GOTO out of ON-unit
take action specified
for normal return

Figure 46. The Principles of Error Handling

112 OS PL/I Optimizing Compi1erl Execution Logic

If no-unit established

Take standard system
action as defined in
the language

UNQUALIFIED CONDITIONS

1. A flag at the head of the DSA indicates that static ONCEs exist
for that block.

2. The block and current enable cells indicate which of those
conditions that are under programmer control are enabled at any
given point in the program. Each such condition is represented
by a single bit in each cell.

3. There is an ON-cell for every ON statement in the block. Each
ON-cell consists of a one-byte code identifying the condition,
e.g., X'OA' (SUBSCRIPTRANGE). If the same condition appears more
than once, previous ON-cells are set to zero.

4. Static ONCBs are held contiguously in static storage, in the
same order as the corresponding ON-cells. They contain a code byte
and flags that indicate such things as: whether SYSTEM was
specified, whether SNAP was specified, whether the ON-unit consists
of a single GOTO statement, whether it is a null ON-unit, etc.
If there is an ON-unit, its address is given in the second word.
(For GOTO-only ON-units the offset of the address of the label
variable is given.)

QUALIFIED CONDITIONS

1. A flag at the head of the DSA indicated that dynamic ONCBs exist.

2. Dynamic ONCBs are set up during execution of each block in which
qualified condition ON statements occur. The last two words of a
dynamic ONCB contain the same type of information as static
ONCBs (described above, under 'Unqualified Conditions'), but
use additional flags to indicate whether the condition is enabled
and whether it is established. The second word contains
qualifying information, such as the address of the FCB (for
conditions such as ENDFILE, RECORD, TRANSMIT, KEY, etc.), or
address of a symbol table (for ON CHECK ON-units).

3. Dynamic ONCBs are chained together, the most recent being
addressed from a fixed offset in the DSA. The last dynamic ONCB
in the chain contains zero in its back-chain field.

Figure 47 (Part 1 of 2). The Major Fields Used in Error Handling

Chapter 7. Error and Condition Handling 113

DSA

Flags

Address of lWS

Enable Block I Current
cells

Address of static ONCBs

Dynamic ONeB chain

Address of ON-cells

ON-cells 1st I 2nd I 3rd

End of chain (Zero)

Address of FCB
Dynamic

Code I ONCB Flags

Address of ON-unit
>

Back-chain

Address of symbol table

Dynamic Code I Flags
ONCB

Address of ON-unit

Back-chain

Address of FCB

Dynamic Code I Flags
ONCB

Offset of label variable
(ON-unit is GOTO only)

>
Address of label variable

r--->

p
<-

- >

<-

<-

LWS

Flags , ONCA offset

1st level

Flags I ONCA offset

2nd level

Back-chain to dummy ONCA

Condition built-in
function information

STATIC storage

Code I Flags

Address of ON-unit

Code I Flags

Address of ON-unit

Code I Flags

Not set (system action

r--

r--

<-

ONC A

1st static
ONCB

2nd static
ONCB

3rd static
ONeB

Figure 47 (Part 2 of 2). The Major Fields Used in Error Handling

Figure 48 on page 115 gives a programming example in which the
error handling actions can be followed through. Figure 47 on
page 113 summarizes the complete error handling operation. It
is intended for reference throughout the chapter and for use as
a reminder by readers who know the basic principles.

114 OS Pl/I Optimizing Com~iler: Execution logic

SOURCE PROGRAM

(SUBSCRIPTRANGE) I SORT:
PROCEDURE OPTIONS (MAIN);
ON SUBSCRIPTRANGE BEGIN;
PUT EDIT ('SUBSCRIPTRANGE OCCURRED')(A);
PUT SKIP DATA (I , J,K);
/*SUBSCRIPT VALUES FOR TEST*/
END;

ON SUBSCRIPTRANGE SYSTEM;

END SORT;

ACTION DURING COMPILATION

1. Remove the ON-unit from the position it holds in the
block and treat it as a separate begin block.

2. Generate code to set a flag in the block enable cell of the
DSA, to indicate that SUBSCRIPTRANGE is enabled
throughout the block.

3. Generate code to set up two ON-cells in the DSA. Set up
two corresponding ONCBs in the static internal control
section (one for each ON statement in the block).

4. Place instructions equivalent to the ON statements in
compiled code. The first statement causes a code byte
corresponding to SUBSCRIPTRANGE to be inserted in
the first ON-cell; the second statement causes the same
code byte to be inserted in the second ON-cell, and sets
the first ON-cell to zero.

5. Generate code to insert flags in the ONCBs. Insert the
address of the ON-unit in the first ONCB.

6. Generate code to carry out the ON-unit.

7. Generate code to check for the occurrence of SUB
SCRIPTRANGE in every statement that could potentially
cause the condition to be raised.

Figure 48 (Part 1 of 2). An Example of Error Handling

Chapter 7. Error and Condition Handling 115

ACTION DURING EXECUTION

1. The checking code generated by the compiler recognizes the
occurrence of SUBSCRIPTRANGE and passes control to the
error handler, after placing any required condition built
in function values in the ONCA. (In this case only the
error code is generated.)

2. The error handler checks to see if SUBSCRIPTRANGE is one
of those conditions that can be enabled by the programmer.
Since it is such a condition, a check is made, in the
block enable cells of the DSA, to see if it is enabled.
(If it were not enabled, control would return directly to
the point of interrupt).

3. Finding that the condition is enabled, the error handler
then goes to the ON-cells in the DSA. These are tested,
using a translate-and-test table in the TCA, to see if
SUBSCRIPTRANGE is established. After this, the action
depends on whether the code for SUBSCRIPTRANGE is
detected in the first or second ON-cell, and consequently
whether the first or second ONCB is used.

4. If the first ONCB is used, ON-unit action is indicated; if
the second ONCB is used, standard system action must be
taken. (Standard system action would also be taken if the
code for SUBSCRIPTRANGE were not found in the DSA ON-cells
of the block in which the interrupt occurred, or in the DSA
of any dynamically encompassing block.)

I
ON-unit action

1. A further allocation of library
workspace and a new ONCA are
acquired in case they should be
needed during execution of the
ON-unit.

2. The ON-unit (addressed from the
ONCB) is executed.

3. Provided there is not a GOTO out
of the ON-unit, return is made
to the error handler. The error
handler the carries out standard
sys~em action for return from an
ON-unit.

I
I

System action

1. For SUBSCRIPTRANGE, standard system
action is to produce a message and raise
ERROR. The message modules are called
to put out a message dependent on the
error code.

2. ERROR is raised, and a search is made
through all active blocks for an ERROR
ON-unit. Since there is none, standard
system action is again taken; this is to
raise FINISH. Since there is no FINISH
ON-unit, the standard system action of
returning to IBMBPIR is taken, thus
terminating the program.

Figure 48 (Part 2 of 2). An Example of Error Handling

The handling of the CHECK condition, which is a special case, is
treated in a separate section of this chapter under the heading
of nThe CHECK Condition."

116 OS Pl/I Optimizing Compiler: Execution logic

DETECTING THE OCCURRENCE OF CONDITIONS

SYSTEM DETECTED CONDITIONS

As far as possible, the detection of PL/I conditions is left in
the hands of the operating system. Those conditions that can be
detected by the operating system are left in the hands of the
operating system. The only interrupt that is masked out in the
PSW is the significance exception. Regardless of the enablement
or disablement of the PL/I conditions no other interrupts are
inhibited.

When a condition is detected by the system, a SPIE/ESPIE macro,
executed during program initialization, causes control to be
passed to entry point A of the error-handling module IBMBERR.
The address of this point is held in the TCA appendage. When
entered by this entry point the error handler equates the
interrupt with a PL/I condition and passes control to the main
error handling logic of the module. The relationship between
PL/I conditions and system interrupts is shown in Figure 43 on
page 105.

SOFTWARE DETECTED CONDITIONS

During compilation, the compiler analyzes the conditions enabled
for each block and statement. The analysis ensures that the
necessary checking code is executed. The checking code may be
specially generated by the compiler, or it may be included in
library modules that will be called when the particular
condition is enabled. The method used for checking each
condition is shown in Figure 45 on page 108.

As far as possible the checking code is not included in the
program if the condition that it checks for is not enabled.
However, every library module contains the checking code for
detecting any PL/I condition that can occur in the module. In
certain circumstances, therefore, code to check software
detected conditions will be executed and a call made to the
error handler even though the condition is disabled.

When an interrupt has been detected during execution, the
checking code sets up a parameter list for the error handling
module IBMBERR. This parameter list, known as the interrupt
control block contains a code that defines the type of interrupt
that has occurred and, if the condition is qualified, contains a
means of identifying the qualifier. The checking code also
calculates the value of relevant built-in functions and places
these values, or their addresses in a control block known as the
ON communications area (ONCA).

When these actions have been carried out a call is made to entry
point IBMBERRB, of the error handling module IBMBERR. The
address of this entry point is held at the offset X'78' in the
TCA.

Detecting I/O Conditions

The TRANSMIT and the ENDFILE conditions are normally detected by
the data management routines rather than by PL/I code. When
this occurs the error or end-of-file routine in the PL/I
transmitter modules receives control and passes it to the error
handler via a special I/O error module. This I/O error module
contains the necessary code to set up the interrupt control
block, including the error code and the qualifier. These
conditions can, therefore, be considered to be software
detected. Further detail is given in
Chapter 8, "Record-Oriented Input/Output" on page 154.

Chapter 7. Error and Condition Handling 117

EXECUTING SIGNAL STATEMENTS

SIGNAL statements take the same form as software detected
interrupts, they are executed by a call to IBMBERR with the
appropriate interrupt control block. The error code in the
interrupt control block will indicate, to the error handler, the
type of condition signalled, and the fact that the condition was
signalled. The call to the error handler is made to the entry
point B, regardless of whether the condition is normally
detected by system or software.

It is necessary for the error handler to know that the condition
was signalled, because different action may be required if the
interrupt was signalled when computing certain built-in function
values.

PASSING INFORMATION ABOUT INTERRUPTS

When the error handler is entered it must be able to access
information about the interrupt. This information must identify
the type of condition that has occurred and further identify the
interrupt so that the most useful diagnostic message can be
generated. Any relevant built-in function values must be
available, plus the default values for any built-in functions
that are not relevant to the type of interrupt.

When the interrupt is software detec·ted , some of the information
is set up in the checking code before control is passed to the
error handler. When the interrupt is system detected, the PSW
is used and the error handler interprets the information in the
PSW, setting up information in a format similar to that produced
by the checking code. This allows the main logic of the error
handler to treat program checks and software detected conditions
in the same manner.

When the error handler is entered in an MVS/Extended
Architecture environment, it will switch the addressing mode
(AMODE) to 31-bit addressing.

The parameters passed to the error handler by compiled code are
known as the interrupt block, and take the following format:

Word 1

Word 2

Words 3, 4 and 5

Error code

Qualifier if any

Extra information used in handling CHECK

The error code defines the type of error. The qualifier gives a
method of identifying the qualifier for qualified conditions.
For unqualified errors, the interrupt block may be only 1 word.
For I/O conditions, the address of the DCLCB is used as
qualifier. The address of a symbol table, control section, or
pseudo register offset is used for other qualified conditions.

The address of software detected interrupt is taken from the
register 14 value when the error handler is called with a BALR
14, 15. This value is stored in the DSA by the prolog of the
error handler. When the interrupt is system detected the
address is taken from the PSW. See Chapter 12, "Debugging Using
Dumps" on page 248, for a discussion of the register usage
during hardware and software interrupts.

118 OS Pl/I Optimizing Compiler: Execution logic

ERROR CODE

The error code is either a two or four byte code that defines
the reason for the interrupt. For all conditions except the
error condition a four byte code is passed. For the errors that
will immediatelY raise the ERROR condition only a two byte code
is passed.

The 4-byte code is as follows:

Byte I

Byte 2

Byte 3 and 4

identifies the Pl/I condition

identifies the cause of the condition

identify those ON built-in functions that are
valid for the condition.

The two byte error code is raised only for the ERROR condition.
The ERROR condition is raised for those interrupts and errors
that have no directly associated Pl/I condition. Certain of
these, such as taking the square root of a real negative number,
are software detected. Others are associated with program
checks interrupts, such as a data interrupt.

When the error condition is to be raised a two byte code only is
generated. The value in this code corresponds with a table held
in the error handler which identifies the cause of the
interrupt. Error codes are listed in Figure 105 on page 256.

CONDITION BUILT-IN FUNCTIONS

Chain of ON CAs

Certain condition built-in function values are implicit in the
information that is passed to the error handler. ONCODE, for
example, bears a direct relationship to the error code. Other
values, such as ONCHAR and ONSOURCE must be calculated when the
interrupt occurs. These values or the addresses of the values
are placed in the ONCA. The ONCA is addressed from library
workspace. The address of libr-ary workspace is held at a fixed
offset in every DSA. ONCODE, ONlOC, and ONFIlE are not
generated by the checking code as their contents are implicit in
the information passed to the error handler.

The ONCODE is deduced from the error code and, when required, a
transient library module IBMBEOC is called to translate the
error code into the ONCODE. Both an error code and an ONCODE
are used as it is possible to define the error more accurately
than can be done with the ONCODEs, which must be kept compatible
with other Pl/I compilers. Thus the error code allows a more
useful diagnostic message to be generated than would be possible
if only the ONCODE was generated.

The ONlOC value is also calculated by a separate module. ONFIlE
is accessed from the DClCB. Both ONlOC and ONFIlE are placed in
the ONCA only if an ON-unit is to be entered. Similarly if an
ON-unit is to be entered the error code is placed in the ONCODE
field of the DSA. If the ONCODE value is required in the
ON-unit the module lBMBEOC is.called to calculate the ONCODE
from the error code.

Pl/I allows access to condition built-in function values when no
conditior. hn~ occurred or when a condition has occurred in which
the built-in function is invalid. The rule is, the built-in
function value given is the most recent value in an active ONCA
or the default value. To allo~ for this, ONCAs are chained
together and at the end of the chain is the dummy ONCA that is
set up in the program management area during the program
initialization. The dummy has the same format as the other
ONCAs and contains the default values or pointers to the default
values for all built-in functions.

Chapter 7. Error and Condition Handling 119

For every interrupt that occurs, a new ONCA is acquired. This
means that, should a condition occur within an ON-unit, an ONCA
will be available in which to place any relevant built-in
function value or their addresses. A new allocation of library
workspace (LWS) is also required for use during the ON-unit.

When a built-in function is required, the ONCA before the
current ONCA is inspected. The current ONCA is unused as it is
ready for a new set of values. Each ONCA is headed by flags
that indicate which built-in functions are given in the ONeA,
When the required built-in function value is flagged as invalid,
a chain back is made to the previous ONeA, As all fields are
valid to the dummy, the default will be used if there have been
no interrupts for which the function is valid.

In the program below, an example of the chain of ONCAs is shown.
The ONCHAR reference in the NAME ON-unit would be valid if the
NAME condition was raised in the CONVERSION ON-unit. The
correct value would be accessed after chaining back to the ONCA
associated with the CONVERSION interrupt.

In other circumstances the default value would be accessed from
the dummy ONeA,

CHAIN: PROC(OPTIONS(MAIN)j

ON NAME BEGIN;
PUT DATA(ONCHAR);
•
GOTO LABELl;
END;

ON CONVERSION BEGIN; /*CONVERSION ON-UNIT*/
•
GET DATA (A,B,C);
•
•
END;

LABELl: X=Y=2
•
END CHAIN;

A situation that could occur in this program and the associated
chaining of ONCAs are shown in Figure 49 on page 121.

When an ON-unit is completed, the latest generation of LWS and
ONCA are deleted; control returns to a block before the error
handler. This is because they are held as VDAs associated with
the error handler's DSA. When control leaves the error handler,
the current ONCA will contain the interrupt information for the
original interrupt. This information remains until the ONCA is
freed or a further interrupt occurs, in which case it is
overwritten. (See Figure 49 on page 121.)

120 OSPL/I Optimizing Compiler: Execution Logic

"TI
~.

IQ
C .,
CD

~
I.Q

]>
()
()

CD
ua
ua
~.

::J
IQ

I»

= C
~.

~

t+
I

:::J

"TI
C
:::J
()

t+ ..,.
n 0
J ::J
~
"D <:
t+ I»
CD ~ ., c

CD
-fl .,
0

"' :J ., ., t+
0 J ., CD

I» n :s J
a.. I)

~.

n :s
0
::J 0
c.. -fl
~. ,... 0 ..,. z
0 n
j l=-

en
:x
I»
j

c..
~ ..,.
::J
III

....
N

___ P_R_O_G_R_A_M_F_L_O_W_ ~
MAINLINE CODE vii

CHAIN OF ONCAs

DummyONCA

Holds all default
values or their
addresses

lst.ONCA ,------1
: Ready for use I

~ ______ .J

All condition built in functions
accessed from dummy ONCA

CONVERSION
occurs ONCHAR
& ONSOURCE
addresses placed in
lstONCA
Error code placed
in ONCODE field

Continuation of mainline code

CONVERSION
on·unit entered. CONVERSION
New ONCA ON·UNIT
acquired

lst.ONCA

ONCODE,
ONCHAR, &
ONSOURCE fields
filled in

~n~O~C~ _
- -I

Ready for use I
L ______ J

ONCODE, ONCHAR, and ONSOURCE accessed from first
ONCA. All others from dummy ONCA

NAME condition
occurs.
DATAFIELD
address placed
in second ONCA.
Error code placed
in ONCODE field.

Continuation of on·unit

3rd.ONCA .------1
: Ready for use. I
L _____ 1

ONCODE and DATAFIELD accessed from second ONCA.
ONCHAR and ONSOURCE accessed from first ONCA.
All others from dummy ON CA.

Dummy ONCA

Holds all default
values or their
addresses

lst.ONCA

ONCODE,
ONCHAR, &
ONSOURCE fields
unaltered. Will be
overwritten if there
is a further
interrupt

On return from an on·unit all unnecessary
ONCAs are discarded as they are in the
LI FO stack. The current ONCA retains the
previous interrupt information until over·
written. Values are taken from the dummy .

ESTABLISHMENT AND ENABLEMENT INFORMATION

ENABLEMENT

(Executing ON Statements)

Establishment and enablement information is set up and updated
by compiled code. Enablement is indicated by a set of flags
known as the "current enable cells" which are held in every
compiled code DSA. Establishment for ungualifieg conditions is
indicated by a further series of bytes in the DSA known as the
ON-cells. Establishment for qualified condition is indicated in
flags in dynamic ONCBs. Dynamic ONCBs are held in the DSA of
the block in which the associated ON statement occurs.

To alter the enablement for the duration of a statement or to
execute an ON statement, compiled code alters the appropriate
fields mentioned above.

In an MVS/Extended Architecture environment, an additional test
is made. ON-units for programs that are running in 24-bit
addressing mode are ignored for interrupts that occur in 31-bit
addressing mode.

Enablement is indicated in the current enable cells, a two byte
field held at offset X'56' in the DSA. Each condition whose
enablement is under programmer control has a bit allocated to
it. The conditions associated with each bit are shown in
Figure 50.

Bit 0 CHECK*

Bit I ZERODIVIDE

Bit 2 FIXEDOVERFlOW

Bit 3 SIZE

Bit 4 CONVERSION

Bit 5 OVERFLOW

Bit 6 UNDERFLOW

Bit 7 STRINGSIZE

Bit 8 STRINGNAMES

Bit 9 STRINGRANGE

Bit 10 CHECK*

Bit 11 CHECK*

Bits set to 0 if condition enabled

* See section "The CHECK Condition for details"

Figure 50. Meaning of Enablement Bits

The CHECK condition has three bits associated with it. This is
because the CHECK condition can be used both as a qualified and
as an unqualified condition. Bit zero indicates that CHECK is
enabled, either qualified for one or more variables, or
unqualified for all variables. Bit 11 indicates that CHECK has
been enabled or disabled as an unqualified condition. Bit 10,
only valid if bit 11 is set, indicates whether the unqualified
CHECK is enabled or disabled. The CHECK condition is further

122 OS Pl/I Optimizing Compiler: Execution logic

Qualified Conditions

described in "Raising the CHECK Condition" on page 131 and
illustrated in Figure 53 on page 133.

A further two byte field in the DSA held at offset X'54' is
known as the block enable cells. This field is similar to the
current enable cells and holds a record of the enablement at the
start of the block.

Both current enable and block cells are set up by the prolog
code. If the enablement is altered for the duration of a
statement, the appropriate bit in the current enable is altered
at the start of the statement. At the end of the statement the
bit is reset to its previous value. If there is an interrupt
during the execution of the statement, ON-unit action may return
control to another part of the block where different conditions
are enabled. The block enablement cells are necessary to allow
for this. Whenever a GOTO out-of-block occurs in an ON-unit the
GOTO code in the TCA resets the current enable cells from the
block enable cells. This ensures enablement will be correct,
regardless of the situation when control left the block.

The only qualified condition whose enablement is under
programmer control is the CHECK condition. As CHECK is a
special case it is treated in detail elsewhere. The principle
involved however is that enablement for any particular qualifier
is given in a dynamic ONCB and, to discover whether a CHECK is
enabled for a particular item, a search must be made in the DSA
chain for a relevant dynamic ONCB.

ESTABLISHING AND EXECUTING ON AND REVERT STATEMENTS

For establishment the situation differs between qualified and
unqualified conditions. This is because at anyone point in the
program there can only be one established ON-unit for an
unqualified condition but there can be an unlimited number of
established ON-units for qualified conditions. In a program
with a number of files, for example, the programmer may wish to
take different action when the end of the data is reached in
each of the files. Consequently, there could be an established
ENDFILE ON-unit for each file.

ON-units are established by the execution of an ON statement.
Once it has been discovered that an ON-unit is established it is
then necessary to access the ON-unit. Access to the address is
made through a control block is known as the ON-control block
ONCn. For unqualified conditions, ONCBs are set up during
compilation in static internal storage and are known as static
ONeBs. For qualified conditions, ONCBs are set up (by compiled
code) in the DSA and are known as dynamic ONCBs. See Figure 51
on page 124.

Chapter 7. Error and Condition Handling 123

Sta
Hou
kee
are
DSA

ndard
se-
ping
a of

.--
L>

Key

DSA of block

Object module

A(lst. Static ONCB) > 1st. Static ONCB I--

(Offset X'5C') Contains address
of ON-uni~

AClatest Dynamic ONCB) ~ 1 (Offset X'60')
and other
information

I 2nd. Static ONCB
Contains as above

A(ON-cells) - Offset X'70' I
3rd. Static ONCB

I Contains as above

ON-cells IX\ I
End Marker I ON-unit <-

ON-cells Contain Code for
Condition if ON-unit is I
Established; Otherwise 0

< .J ON-unit <-
Dynamic ONCB - - --,

Contains Code Indicating 1-1
Condition Qualifier and I
Whether ON-units are I
Established. Also Address I
ON-unit. J < I

ON-unit <

Further Dynamic ONCB
Contents as above. Dynamic t- - 1

L - > ON-unit
ONCBs are chained.

I
L - - > ON-unit

Broken lines show method of addressing ON-units for qualified conditions.
The ONCBs are chained together and the address of the end of the chain
held at a fixed offset in the DSA. The ON-unit (if any) is addressed
from the ONCB.

Solid line shows method of addressing ON-unit for unqualified condition,
ONCBs are held contiguously in the same order as ON-cells, and the address
of the first ONCB is held at a fixed offset in the DSA. By determining the
position of the relevant ON-cell, the position of the required ONCB can
be inferred and hence its offset from the start of the static ONCBs.
The first ON-cell refers to the first ONCB etc. The ON-unit is
addressed from the ONeB.

Figure 51. Addressing ON-Units

Qualified Conditions

The establishment of qualified conditions is indicated directly
in the ONCB. All dynamic ONCBs for a block are chained together
and the address of first ONeB on the chain is held in a field at
offset X'60' in the DSA. (See Figure 49 on page 121.)

Dynamic ONCBs contain a code indicating the condition type,
flags to indicate whether the condition is enabled and whether
the associated ON-unit is established, a method of identifying
the qualifier, and, either the address of the compiled code
ON-unit, or flags indicating the action specified in the source
program ON-unit. There is an ONCB for every ON statement in the
block that refers to a qualified condition.

124 OS PL/I Optimizing Compilers Execution Logic

ON AND REVERT STATEMENTS: z When the ON statement is executed
the appropriate dynamic ONCB is set up, chained, and the
establishment bit in the ONCB is set "on" by the compiled code.
For second and subsequent ON statements or REVERT statements fOI
the same condition and qualifier, the information in the ONCB
(flags and address of ON-unit) is altered.

Unqualified Conditions

HANDLING ON-UNITS

For unqualified conditions establishment information is held in
a series of one byte fields known as ON-cells. There is one
cell for each ON statement in the block and, consequently, for
each ONCB associated with the block. ONCBs for unqualified
conditions are held contiguously in static internal storage in
program block order. (See Figure 49 on page 121.)

In each DSA containing ON statements an area is reserved for
ON-cells. Cells are one byte fields that correspond one-for-one
with the static ONCBs for that block. The first ONeB for the
block is addressed from offset X'5C' in the DSA. On cells are
initialized to zero by the prolog code. When the ON statement
associated with the ON-unit is executed, a code is set in the
ON-cell indicating the condition type. The error handling
module searches for an established ON-unit by testing the
ON-cells in the DSA of each active block until, either an active
ON-cell for the condition is found, or the major task dummy DSA
is reached. When an active ON-cell is found, the number of
ON-cells in the block preceding the active ON-cells are
calculated. The associated static ONeB will be in the same
relative position. As all ONCBs for unqualified conditions are
the same length the address of the requested ONCB can be
determined and the action to be taken decided from the ONCB.

ON AND REVERT STATEMENT: I When an ON statement is executed a
code indicating the condition type is set in the appropriate
ON-cell. If there was a previous ON statement for the condition
the former ON-cell is set to zero. For REVERT statements any
ON-cell referring to the condition is set to zero.

If there is more than one ON statement for the same condition in
a block, the flags in the previous ON-cell will be set off when
second and subsequent ON-cell fl&~s are s~t on. The REVERT
statement is executed by setting the flag in the latest ON-cell
to zero. The situation then reverts to that at the start of the
block.

ON-units, except certain single statement ON-units, are treated
as separate program blocks by the compiler. They are separated
from the ON statement and compiled with prolog and epilog code.
The address of the ON-unit is placed in an address constant.
The ON statement remains in its logical place in the program and
sets either the ON-cells or a flag in the dynamic ONCB, to
indicate that the associated ON-unit is established.

In order to save the overhead of executing prolog ~nd epilog
code, certain single-statement ON-units are not compiled.
Instead the action required is indicated by flags in the ONCB
and is carried out under the control of the error handling
module.

The types of ON-unit involved are:

1. Null ON-units

2. ON-units containing only SNAP, SNAP SYSTEM, OR SYSTEM
options.

3. ON-units containing only a GOTO statement.

Chapter 7. Error and Condition Handling 125

The presence of these ON-units is indicated by flags in the
associated ONCB. For the GOTO only ON-unit, the ONCB also
contains the offset in the DSA of the label variable or label
temporary to which the GOTO is to be made.

THE LOGIC OF THE ERROR HANDLER

A simplified flowchart of the error handling module IBMBERR is
given in Figure 52 on page 127. This flowchart shows the action
during the handling of an interrupt and includes the execution
of an ON-unit.· The logic is described below. A complete
description is given in the licensed program product document as
PL/I Resident library Program Logic. --

IBMBERR--ERROR HANDLING MODULE

The error-handling module, IBMBERR, handles three situations.
These are:

1. Program check interrupts.

2. PL/I conditions detected by the object program.

3. Errors detected by the object program that are not directly
related to the PL/I conditions and which raise the ERROR
condition.

All three situations are ultimately dealt with as PL/I
conditions. For example, the FIXEDOVERFLOW condition would be
raised when fixed point overflow occurs and causes a program
check interrupt. When there is no directly-applicable, PL/I
condition (for instance, after a data interrupt) a system
message is printed and the ERROR condition is raised.

126 OS PL/I Optimizing Compiler: Execution Logic

Restore hardware
interrupt address
and return

Call message
module to
generate message

Software interrupts

ENTRY POINT B

Alter address
entered-after
hardware
interrupts, to
entry point C

Established

<ON-unit for
condition in
.... DSA?

NO

Chainback to
previous DSA

Take standard
system action

System detected
interrupts

Hardware interrupts
during error handling

ENTRY POINT A ENTRY POINT C

Alter address
entered-after
hardware
interrupts, to
entry point C

Determine
condition type
from ~SW

Carry out
specified action

,
Call I BMBPEP
to put out
message

r

Terminate
program with
ABEND macro

Acquire LWS and
NO ONCA. Restore

:::----... ---~ hardware interrupt
address to entry
point A

GOTO
out of
ON-unit
can occur
here

Take action for
normal return
from ON-unit

ON-Unit

Execute ON-unit

Reset hardware
interrupt address
to entry point C

Standard system action and action for normal return takes one of the forms
shown below depending on the condition that caused the interrupt and
whether the interrupt was signalled. Messages are generated for some conditions.

Raise further
condition
Start ON-unit
search in DSA
of interrupt

Return to
IBMBPI R to
terminate task

Reset error
handling address
and return to
point of interrupt

* Special ON-units are not entered these are: null ON-units, or ON-units containing only a SNAP or SNAP SYSTEM instruction.

Figure 52. Simplified Flowchart for IBMBERR

Chapter 7. Error and Condition Handling 127

PROGRAM CHECKS INTERRUPT

SOFTWARE INTERRUPTS

Before a program check interrupt can be handled as a PL/I
condition, action must be taken to prevent the system
terminating the job should a further program check interrupt
occur.

This is done by altering the old program PSW and returning out
of the SPIE/ESPIE exit code so that it appears to the system
that the interrupt has already been handled. The second word of
the PSW passed to ERR in the PIE (program interrupt element) or
the EPIE (extended program interrupt element) containing the
interrupt address is stored in the register 15 field in the save
area which was current when the interrupt occurred. IBMBERR
then changes the address in the PSW in the PIE to an address in
IBMBERR. Control then passes via the supervisor to the address
in IBMBERR that has been inserted in the PSW. Handling of the
interrupt consequently appears to the supervisor to be finished.
The address, in the field of the TCA, to which control will pass
after a program check interrupt is then changed to IBMBERRC.
Should an interrupt now occur during the execution of IBMBERR,
control will pass to IBMBERRC, which terminates the job.

The first task is to generate a suitable error code that will
equate the interrupt with a Pl/I condition. The floating point
registers are saved in IBMBERR's DSA, if the interrupt is one
corresponding to a Pl/I condition, and control can then be
passed to the main PL/I condition-handling routine described in
the next section. There are, however, three special cases that
require further action. These are:

1. If the interrupt was floating point underflow, then the
doubleword in which the floating point register which
underflowed was stored is set to zero.

2. If fixed-point overflow, exponent overflow, decimal
overflow, or fixed-point divide has occurred, then it may
correspond to the PL/! condition SIZE and not to
FIXEDOVERFLOW or ZERODIVIDE. If this is possible, a flag
will have been set in the program check interrupt qualifier
in the TCA. A test of this flag is therefore made and the
necessary action taken, SIZE being raised if it is enabled.

3. If the interrupt was an operation interrupt it may have been
caused by an extended floating point instruction being used
on a machine that does not have the extended float
instruction set. If this is the case, the instruction may
require simulation. The error handler therefore passes
control to a module IBMBEEF that interfaces with the
extended float simulator IEXPSIM. IBMBEEF passes control to
the extended float simulator which returns the correct
result if the statement was valid, or a return code if the
statement was invalid. If the statement is valid, IBMBEEF
returns control to the point of interrupt. If the statement
is invalid, IBMBEEF returns control to the error handler.

When the main condition-handling logic is reached, an error code
will have been generated to indicate the type of error or
condition that has been raised. For program check interrupts,
the code is produced by the error module itself. For errors or
cpnditions detected by the object program, the object program
sets UP this code. When the object program has detected the
error, this will, in some cases, correspond to a PL/! condition.
However, there are certain errors (such as attempting to take
the square root of a real negative number) that do not have
directly related PL/I conditions. For PL/! conditions, a 4-byte
code is passed. For other errors, the code consists of only two
bytes. For the 2-byte code, the first byte indicates which
class of error has occurred. For the 4-byte code, the first
byte is the identifier of the PL/! condition being raised (the
same identifier is used in ON-cells).

128 OS PL/I Optimizing Compiler l Execution Logic

The error-handling module checks the first byte of the code to
see whether it is handling ERROR or another PL/I condition. If
the code indicates ERROR, then the message module IBMBESM is
linked. This module prints the relevant diagnostic message, a
suitable 4-byte code is then generated. The situation is then
treated as for any other PL/! condition.

The second 2 bytes of code passed when a PL/I condition has been
raised indicate which built-in functions are relevant to the
condition. If the condition is one that needs to be qualified,
the qualification is also passed.

When a PL/I condition error code is passed, action depends on
whether the condition is one of those that can be disabled by
the programmer. If it is such a condition, a test is made in
the current enable cells of the DSA. If the condition is not
disabled, then a search for a relevant established ON-unit must
be made. If the condition is disabled, a return is made to the
point of interrupt. To fina-established ON-units, a test is
first made in the action byte to discover whether the condition
is qualified. If the condition is not qualified, a search is
made through the ON-cells of all active blocks to find a match
for the number in the first byte of the code passed to IBMBERR.
This is done with a translate and test instruction using the TRT
table addressed from the offset X'lC' in the TCA. When found,
the position of the located ON-cell gives the position of the
associated ONCB. A test can then be made to determine the
action to be taken.

If the condition is qualified, a search for an active matching
ONCB is carried out through the chain of dynamic ONCBs held in
the DSA.

If the major task dummy DSA is reached without a match being
found, then standard system action is taken. This action is
defined in IBMBERR. When a matching active ONeB is found, tests
are then made, as follows, on the flags in the ONeB.

Test 1

Test 2

Test 3.

Test 4.

Test 5.

SNAP specified! If so, the message module IBMBESM is
dynamically loaded and a SNAP message is printed.

Is SYSTEM specified! (This can occur when "ON
condition SYSTEM" was specified. If system is
specified, then the action in IBMBERR is taken.

Does the ON-unit consist only of a GOTO statement! If
so, then the GOTD is executed without entering an
ON-unit. This saves the housekeeping involved in
entering an ON-unit.

Is the ON-unit a null ON-unit! If so, the action on a
normal return from the ON-unit is taken.

Is this machine running under MVS/Extended
Architecture? If so, ignore ON-unit established for
programs running in 24-bit addressing mode if the
interrupt occurs in 31-bit addressing mode.

If none of these is positive, then it is necessary to enter the
ON-unit.

Before entering the ON-unit, the following action must be taken.
A new allocation of library workspace must be initialized and
its address put into the standard offset in the DSA of IBMBERR.
This provides workspace for any further library modules that may
be called. Tests must be made to see that the ONCA is correctly
set-up for any built-in functions that may be used. The address
in the TCA, which was altered by the error handler, must also be
restored to its original setting so that program check
interrupts will cause entry to be made to the error handler by
the entry point IBMBERRA rather than IBMBERRC.

Chapter 7. Error and Condition Handling 129

This ensures that the action specified by the Pl/I program is
taken if a program check interrupt occurs during the execution
of an ON-unit.

Normal return from the ON-unit to IBMBERR is made by a branch on
register 14. Depending on the condition, a return to the
interrupted program is then made, or some special action may be
taken. Four Pl/I conditions cause action other than return to
be taken.

ERROR If the condition was the ERROR condition, then the
FINISH condition is raised.

FINISH If the FINISH condition is raised then a return code
is set in the correct field of the TCA, and GOTO
performed to the termination routine IBMBPIR. (If
finish is signalled, then return is made to the
point of interrupt.)

CONVERSION If CONVERSION was raised, then a test is made in the
ONCA, and if either ONSOURCE or ONCHAR has been
accessed, control is passed to the address contained
in the retry slot in the ONCA. The conversion is
then attempted again. If the field has not been
changed, then the ERROR cbndition is raised.

ENDPAGE If ENDPAGE was raised, then a return code is set in
register 15 to indicate that an ON-unit has been
entered.

RETURN TO THE POINT OF INTERRUPT

Software Interrupts

If the condition was one that was detected by compiled code,
then a return to the point of interrupt is made by a branch on
register 14.

Program Check Interrupts

For program check interrupts, the status of the program at the
original point of interrupt has to be restored before return to
the point of interrupt can be made. This means that the
contents of the system save area must be reset, so that they are
identical with those saved after the original interrupt. (The
PSW and the register values were saved in the DSA at initial
entry to IBMBERR.)

In a non-MVS/Extended Architecture environment, the address in
the TCA/PICA is altered so that the branch address, after a
program check interrupt, is changed from IBMBERRC to another
point in IBMBERR. An interrupt is then caused, and the
supervisor gains control. Consequently, the address in IBMBERR
is reached with the address of the system save area in register
1. The contents of the save area and the PSW are then changed
to those that were current after the original interrupt. The
point of entry for program check interrupts is then reset to
IBMBERRA. Return is made to the address in the PSW, which is
that of the original interrupt.

In an MVS/Extended Architecture environment, a separate ESPIE is
issued and used. The same steps are followed as in a
non-MVS/Extended architecture environment. Registers are copied
back to the EPIE, the PSW is reset, and control returns to the
supervisor.

130 OS Pl/I Optimizing Compiler: Execution logic

THE CHECK CONDITION

The CHECK condition has to be handled in a different manner than
other conditions. This is because it can be used as a qualified
or unqualified condition and its enablement is under programmer
control.

The CHECK condition is disabled by default and is enabled by
writing a CHECK prefix. It can be disabled for the duration of
a statement or block by the NOCHECK prefix. Prefixes can take
the form (CHECK) or (NOCHECK), or the form (CHECK(A,B» or
CNOCHECKCA,B). When no name list is appended, the CHECK
applies to all the relevant names in the program. An
ON-statement may also be written as either ON CHECK or ON
CHECKCA,B). ON-statements are independent of prefixes and may
be included in a block to which no prefix applies. A qualified
ON-unit can be used with an unqualified prefix and vice-versa.

Throughout this discussion, CHECK and NOCHECK without a name
list are referred to as unqualified. CHECK or NOCHECK with a
name list are referred to as qualified.

Raising the CHECK Condition

Check is normally raised by compiled code. This is done by
inspecting the source program and generating calls to the error
handler at appropriate points. As enablement is statically
descendent, it is possible to tell during compilation at which
points CHECK is enabled and consequently at which points the
calls to the error handler have to be made. However, for GET
DATA statements there is no means of knowing which items will be
passed in the data stream, and if the CHECK condition is enabled
for any variable that could be read in, it is necessary to check:
every variable in the input stream to see whether CHECK is
enabled for that variable. Consequently, when a GET DATA
instruction is being executed, it is necessary for the error
handler to test to see if the CHECK condition is enabled.

With the exception of the CHECK condition, all conditions whose
enablement is under programmer control are ungualified.
Consequently, their enablement or disablement can be indicated
by one bit in the enable cells. This is because there are only
two possibilities. Either the condition is enabled or it is
disabled. With qualified CHECK, however, there are many
possibilities, because CHECK may be enabled for some variables
and disabled for others. Consequently, the enable cells are
used in a different manner for the qualified CHECK condition,
and the enablement of qualified CHECK condition, and the
enablement of qualified CHECK for any particular name is given
in an ONCB.

When the CHECK condition is raised, the error handler has the
following tasks.

1. Test to see if CHECK occurred during the execution of a GET
DATA statement. If so, tests for enablement must be made.
If not, continue with step 3.

2. Test to see if CHECK is enabled. This involves a search
along the static back-chain to determine, for each block,
first, if qualified CHECK is enabled or disabled for the
particular name for which CHECK was raised, than, if
unqualified CHECK is enabled or disabled.

3. Search for a qualified established ON-unit. This involves
searching the dynamic back-chain for a relevant dynamic
ONCB.

Chapter 7. Error and Condition Handling 131

4. If there is no qualified established ON-unit search for an
unqualified established ON-unit. This involves a further
search of the dynamic back-chain looking for appropriate
on-cells.

5. If no established ON-unit is found, take standard system
action.

This process is illustrated in Figure 53 on page 133.

Testing for Enablement

There are three bits that refer to CHECK in the enable cells;
they have the following significance'

Bit 0

'O'B CHECK is enabled for certain items in this statement

11 r B CHECK is disabled for this statement

Bit 10 (only valid if bit 11 is set)

'O'B The unqualified prefix that applies is NOCHECK

'l'B The unqualified prefix that applies is CHECK

Bit 11

'O'B No unqualified prefix applies to this statement

, I • B An unqualified prefix applies to -this statement

Throughout this discussion, bit 0 is referred to as the
"any-CHECK" enablement bit, and bits 10 and 11 as the
"unqualified CHECK enablement bits". Enablement and disablement
of qualified CHECK is indicated in the flag bits of the ONCB.

132 OS PL/I Optimizing Compiler: Execution Logic

in current
enable cell
IbitOI

Return to DSA
of block in
which CHECK
was raised

Search on-cells
for unqualified
CHECK

Take action
specified
in ONCB

Ves

No

Figure 53.

No

Bit set on?

No

Dummy DSA?

Chain back to
previous DSA on
static chain

Ves

Take
standard
system

Ves

Chain back
to previous
DSA on
dynamic chain

Ves

Ves

No

ENABLEMENT SEARCH

~~~c~s ~~~:;~ant 1--4~-C Found? 

qualified CHECK 

Ves 

Unqualified 
NOCHECK 

found' 

Dummy DSA? 

Chain back to 
previous DSA 
on dynamic 
chain 

Enablement 
only 
specified 

No 

No 

No 

No 

No 

Test further 
enablement bits 
110& 111 for 
unqualified CHECK 

Unqualified 
CHECK 
found? 

Ves 

Return to DSA 
of block in 
which CHECK 
was raised 

Search dynamic 
ONCSs for 
qualified 
ON-statement 

Ves 

Any 
action 

specified? 

ESTABLISHMENT SEARCH 

Ves 

Ves 

Handling the CHECK Condition 

Chapter 7. 

Ves 

Disabled? 

No 

Take action 
specified 
in ONCS 

Error and Condition Handling 133 



The test for enablement begins by a test on the any-CHECK bit in 
the enable cell. If this is set to zero, control is immediately 
returned to the caller. If the bit is set on, a search is made 
for a relevant qualified ONCB in the DSA of the block in which 
the interrupt occurred. If no such ONCB is found, the 
unqualified CHECK enablement bits are tested for unqualified 
enablement or disablement. If bit 11 is not set, neither an 
unqualified CHECK nor an unqualified NOCHECK applies, and a 
further search must be made in the preceding DSA on the static 
backchain. If the dummy DSA is reached without any of the tests 
proving positive, CHECK is disabled. 

Searching ~or Established ON-Units 

When it is known that CHECK is enabled, a search must be made 
for established ON-units. This search is separate from the 
search for enablement. A return is first made to the DSA in 
which the interrupt occurred. 

Two searches are made, the first for a qualified ON-unit. The 
complete dynamic back-chain is searched for relevant ONCBs. If 
one is not found, a search is made through the back-chain for 
enable cells that indicate unqualified CHECK. If nothing is 
found, standard system action is taken. 

standard system Action 

ERROR MESSAGES 

Message Formats 

standard system action for CHECK is taken under the control of a 
special module IBMBERC. This module acquires the necessary 
symbol table address or addresses, places them in a VDA and 
passes control to the stream I/O initializing routine and, on 
return, to the data directed director module IBMBSDO. On 
completion of the operation IBMBERC returns control to IBMBERR. 

The library module IBMBESM is called by the error handler to 
transmit the system messages and find the on-code value by 
calling the ONCODE routine IBMBEOC; control is then passed to 
IBMBESN to finish the system message, or to go to generate the 
SNAP message if required. The text for the messages is taken 
from a series of message text modules. The particular message 
text module required and the message within the module are 
determined from the error code. 

SYSTEM MESSAGES: For non-Pl/I conditions, system messages have 
the following form: 

IBMxxxx 'ONCODE'=xxxx message text 
[qualifier] IN STATEMENT xx AT/NEAR 
OFFSET xxx IN PROCEDURE WITH ENTRY 
xxx x 

The qualifier might, for example, consist of the file name. For 
PL/I conditions, the format of the message is much the same, but 
the name of the condition is also given. For example: 

IBM4021 'ONCODE'=3100 'FIXEDOVERFlOW' 
CONDITION RAISED IN DECIMAL DIVIDE IN 
STATEMENT 31 AT OFFSET OOOA35 IN 
PROCEDURES WITH ENTRY ZERNES 

SNAP MESSAGES: If an ON-unit contains both SNAP and SYSTEM, the 
resulting message is essentially the system message followed by 
the line: 

134 OS PL/I Optimizing Compiler: Execution logic 



FROM (STATEMENT/OFFSET) xxx IN A 
(BEGIN BLOCK/PROCEDURE WITH ENTRY 
xxx/A 'xxxx' ON-UNIT) 

which is repeated as many times as necessary to trace back to 
the main procedure. If an ON-unit contains only SNAP,. the 
message begins 

'xxxxxxx' CONDITION RAISED [IN 
STATEMENTxxx] (AT NEAR) OFFSET xxx IN 
PROCEDURE xxx 

and continues as for a SNAP SYSTEM message. 

The statement number is not always present in messages as the 
generation of execution-time statement numbers by the compiler 
is a compiler option. 

When statement numbers are generated, they are held on a block 
basis. For each block or procedure, a table in static storage 
relates each statement number to the offsets of the 
corresponding instructions in compiled code. A field at a fixed 
offset from each entry point gives the address of the relevant 
table. 

The statement number is held in relation to its offset from the 
main entry point. Since the PL/I program need not have entered 
via this entry point, the offset is calculated independently 
from that given in the message. If the FLOW option is used, 
then additional information is printed out after every SNAP 
message. (See "The FLOW and COUNT Options" on page 141). 

Interrupts in Library Modules 

When an interrupt occurs in a library module, the system me$sage 
does not give the offset from the start of the library module, 
but gives the statement number of the statement in which the 
library module was called and the offset of this statement from 
the entry point of the procedure block in which it is contained. 

Identifying the Erroneous statement 

The address required to identify the erroneous statement is 
always the address held in the register 14 field in the most 
recent compiled code DSA. 

If the interrupt was a software interrupt in compiled code, the 
address will be the return address that was used by the BALR 
instruction when IBMBERR was called. 

If the interrupt was program check interrupt in compiled code, 
the address of the interrupt will have been moved from the old 
PSl~ and placed in the register 14 field by IBMBERR to simplify 
return to the point of interrupt. 

If the interrupt was in a library module, the address required 
is the point in compiled code at which the library routine was 
entered. This will have been placed in the register 14 field 
when the library module was called. 

Identifying Entry Point Name and statement Number 

The address of the entry point of the block is found by chaining 
back along the DSAs to the DSA before the last compiled code 
DSA. The address of the entry point used before the interrupt 
is held in the save area of this DSA as the branch register 
contents. The dummy DSA ensures that a back-chain can be made 
from the main procedure DSA. 

The name of the entry point is found by chaining back one DSA 
beyond the first procedure-DSA reached. This DSA holds the 

Chapter 7. Error and Condition Handling 135 



address of the procedure-DSA entry point in the register 14 slot 
cf its register save area (offset X'IO' from the head of the 
DSA). The length of the name is held in a I-byte field 
immediatelY preceding the entry point. The name immediately 
precedes the length field. 

statement numbers are generated separately for each external 
procedure, and the statement number table holds offsets from the 
first entry point in the external procedure. 

When the statement number table is link-edited, the address of 
this entry point is placed at the hpad of the table. 
Consequently, the required offset can be found by comparing the 
address of the statement causing the error with the address of 
the first entry point held in the statement number table. 

If the NUMBER option is in force, the numbers are held in 4-byte 
form preceded by a halfword statement number. Otherwise, the 
statement numbers are held in 2-byte form. Flags indicating 
which options are in use are held in the DSA. The DSA is 
further described in "Dynamic Storage Area (DSA)" on page 346. 

As the offsets may be up to 6 bytes in length, a device is used 
for statement numbering whereby the table is divided into 
sections that correspond to the offset values that are held in 
the first 2 bytes of the offsets. Thus offsets starting X'OO' 
are held in the first section of the table, offsets starting 
X'Dl' in the second, and so on. Each section of the table is 
headed by a pointer to the start of the following section, or 
set to zero if there is no following section. The complete 
table is also headed by the value of the maximum offset, so that 
offsets beyond the program can be readily detected. 

The statement number is found by searching the correct section 
of the table for the first offset that is less than or equal to 
the last 4 hexadecimal digits of the calculated offset. 

For SNAP messages, once the ON-unit has been found and the 
appropriate message generated, the rest of the trace gives 
information about procedures, begin blocks and ON-units. Thus 
all compiled code DSAs can be treated in the same way. 

Filename and Name of CONDITION Condition 

MESSAGE TEXT MODULES 

If the error was in I/O, then the address of the DClCB of the 
file is passed to IBMBERR which stores it for IBMBESN to find 
the file name. Similarly; the address of the control section 
containing the condition name is passed to IBMBERR if the 
CONDITION condition is raised, and IBMBESN puts out the required 
section of message. 

The message module IBMBESM calls on a number of message text 
modules to produce the relevant message. These modules consist 
essentiallY of the fixed message text portions of the message. 
The messages are held in groups. 

The groups are addressed from a table at the head of the module, 
and the messages in their turn are addressed by an offset from 
the start of each particular table in the message text modules. 
The message required is determined from information in the error 
code. IBMBESN puts all error messages onto SYSPRINT provided 
that SYSPRINT has not been declared with unsuitable attributes. 
If it has been declared with unsuitable attributes, then the 
system messages go to the console operator, and the SNAP 
messages are ignored. 

136 OS Pl/I Optimizing Compilerl Execution Logic 



DIAGNOSTIC FILE BLOCK 

DUMP ROUTINES 

Every attempt is made to put out error messages on the standard 
print file SYSPRINT. However, there are no reserved words in 
Pl/! and cons~quently the name "SYSPRINT" may be used for a file 
with attributes other than PRINT OUTPUT, or may be use for a 
variable of any other data type. If SYSPRINT is declared as an 
unsuitable type of file it cannot be used for error messages and 
all error messages are written on the console. 

A control block, the diagnostic file block CDFB), is set up 
during program initialization to indicate whether SYSPRINT can 
be used for error messages. If SYSPRINThas been declared as a 
file the address of the DClCB is placed in the DFB. The DFB 
(diagnostic file block) is addressed from the TCA. When an 
error message module is to be put out, IBMBESM or IBMBPEQ 
inspects the DFB to see if SYSPRINT can be used for the message. 
If the flags in the DFB indicate that SYSPRINT cannot be used, 
the module IBMBEDO is called. 

IBMBEDO tests to see if SYSPRINT is open. If it is not, IBM8EDO 
calls IBMBOCL to open it with the attributes STREAM PRINT. If 
SYSPRINT has been declared as a file the address of the DelCB is 
picked up from the DFB. Should the attributes STREAM AND PRINT 
be incompatible with the declared or default attributes this is 
diagnosed by the OPEN module and appropriate flags are sent in 
the DFB to indicate that SYSPRINT cannot be used for error 
messages. This action does NOT raise the error condition. 

If SYSPRINT has not been declared, a DClCB will be generated and 
SYSPRINT will be opened, provided that the error occurs before a 
task has been attached. if a task has already been attached, or 
if the error occurs in an attached task, then SYSPRINT cannot be 
opened and all error messages are passed to the cOflsole. 

If SYSPRINT is already open with unsuitable attributes this will 
have been flagged in the DFB and the messages will again be 
passed to the console. 

If SYSPRINT has been declared as a data type other than a file 
this is flagged in the DFB and the error messages are set to the 
console. 

If SYSPRINT has not been declared at all, a diagnostic SYSPRINT 
is opened and used, provided that there is a DD card for 
SYSPRINT. 

A series of library modules are provided to implement the 
PlIDUMP facility. Module IBMBKDM is the dump bootstrap module 
which is part of the resident library. This loads and calls the 
transient dump control module IBMBKMR, which in turn links and 
calls those modules required to carry out the dump options 
specified in the call to PLIDUMP. Several transient modules are 
used to reduce the amount of storage used at anyone time. The 
organization of these modules is shown in Figure 54 on page 138. 

In order to ensure that as much information as possible is 
provided when a call to PlIDUMP is made, a special SPIE/ESPIE 
macro instruction is issued at the start of every transient 
routine to intercept program check interrupts during the 
routine. When a program check interrupt occurs, an attempt is 
made to continue with the dump. If the interrupt occurs in a 
program called from the dump control module, that particular 
routine is abandoned and a return is made to the dump control 
module:. Any further routines needed to complete the information 
specified in the options are then called. If the interrupt 
occurs in the trace or file modules, the "H" option is assumed 
and a hexadecimal dump produced. If the interrupt occurs during 
the execution of the hexadecimal dump module, a SNAP macro 
instruction is issued by the dump control module and a SNAP dump 
is completed under the control of the supervisor. When the SNAP 

Chapter 7. Error and Condition Handling 137 



dump is completed control returns to the dump control module and 
the PLIDUMP is completed as requested in the dump options. 

As further insurance against error, the dump control module 
IBMBKMR is divided into sections, and if an interrupt occurs in 
any of these sections, control is passed to a predefined address 
at the end of the section. Processing then continues from that 
point. 

The dump modules are fully described in the pUblication OS PL/I 
Transient Library Program Logic. 

CALL PLIDUMP 

IBMBKDM 

Bootstrap module 

I . 
V L1nk 

COMPILED 
CODE 

RESIDENT 
MODULE 

----------A--
I 

IBMBPES LINK IBMBKMR 
<-> 

ABEND Analyzer Dump 
r<- Control Module 

A V 

I LINK LINK A LINK 
I 

IBMBKPT V IBMBKFA 

Dump Parameter File Attributes 
Translate Module Dump Module 

IBMBEOC IBMBKTC 

.~ ON-Code Trace check 
Calculator ! modula 

V LOAD 
A I L I B~1DKTR XCTL 

Dump trace > < 
analyze 

V XCTl 

IBMBKTB 

"--- Control 

Figure 54. Interrelationship of Dump Routines 

138 OS PL/I Optimizing Compiler: Execution Logic 

LINK 
<-> 

-
!-<--

r---"" 

r-

V 

A 

IBMBKDO 

Open Dump 
File Module 

LOAD 

IBMBKDT/B 
> ~--------f 
> Dump File 
> Transmitter 
> '-----------' 

TRANSIENT 

MODULES 



Dump File 

In order to avoid m1x1ng of Pl/I dump and other information, 
dump data is not transmitted to any PL/I file. A special dump 
file known as PLIDUMP is used for the output of the dump 
modules. This file has its own transmitter and a special 
opening module IBMBKDO. A control block, the dump block, (DUB) 
is set up during program initialization and is used to hold 
information about the status of the dump file and to simplify 
access to the file. The DUB (dump block) is addressed from 
offset X'20' in the TCA appendage. To generate a PL/I dump, it 
is necessary to have a DD card for PLIDUMP, or PLlDUMP. 

Before any output has been produced by the dump modules, the 
dump control module IBMBKMR inspects the DUB to see if the dump 
file is open. If the dump file is not open, and is not flagged 
as unopenable, the control module calls the dump file open 
routine (IBMBKDO) to open the file. IBMBKDO acquires space for 
the necessary control blocks, loads the dump transmitter and 
attempts to open the dump file. 

If the attempt to open the dump file fails, IBMBKDO flags the 
DUB and returns. The DUB flags are tested by IBMBKMR, and if 
the file has not opened, a message is put out and the dump is 
terminated. The job is either continued, terminated or an exit 
is made from the task, according to the options in the dump 
parameter. IBMBKDO uses either the declared PLITABS or loads 
the system default PlITABS module, JBMBSTAB, to determine the 
pagesize for PLIDUMP output. Provided a pagesize of two or more 
is specified, the pagesize in PLITABS will be used. 

If the dump file can be successfullY opened, IBMBKDO tests the 
attributes of the file. If it appears from the attributes that 
the dump is being transmitted directly to a printer or terminal, 
the transmitter IBMBKDT is loaded. If it appears that it is 
being transmitted to a direct-access device or tape unit, the 
transmitter IBMBKDB is loaded. 

If IBMBKDT is loaded, two buffers are acquired. The address of 
one of these buffers is placed in the DUB. During the execution 
of the dump, the dump data is generated in the buffer which is 
addressed by the DUB. When the first buffer is full, a call is 
made to the transmitter module to transmit the buffer to the 
dump file. A test is then made to see whether the second buffer 
has completed the previous I/O operation. When the previous I/O 
operation (if any) is complete the address of the second buffer 
is placed in the DUB and the operation continues. If IBMBKDB is 
loaded, only one buffer is used. 

When the dump is finished, the dump file remains open and the 
transmitter is retained. This speeds execution of further 
dumps. The storage is freed and the dump file closed by lBMBPIT 
when the program is terminated. The dump file is not placed on 
the open file chain. IBMBPIT tests the DUB to see if the file 
is open. 

MISCELLANEOUS ERROR MODULES 

A number of further library modules are used in certain 
exceptional error situations. These fall into two groups. 

1. ABEND analyzers 

IBMBPES 

IBMBPEV 

Determine action to be taken. 

Put out message if necessary, and dump if 
possible. 

2. Exceptional error message modules 

IBMBPEP Exceptional error message director 

Chapter 7. Error and Condition Handling 139 



ABEND Analyzers 

IBMBPEQ 

IBMBPER 

IBMBPET 

No main procedure or more than 1024 files and 
controlled variables. 

No main storage available 

Interrupt in error handling routines or abnormal 
task termination 

All these modules are transient library modules. They are fully 
described in the relevant program logic manual. 

The ABEND analyzer IBMBPES is entered during an ABEND because it 
was nominated in the STAE macro instruction issued during 
program initialization. 

The ABEND is analyzed by checking the major blocks to see if 
they have been overwritten. If the back-chain of DSAs has 
become overwritten, the ABEND is allowed to continue under 
supervisor control. If the DSA back-chain is correct but 
critical control blocks appear to be overwritten, IBMBPEV is 
called to put out a message and if possible to provide a 
PLIDUMP. If no overwriting is detected, the error handler is 
called with a code indicating ~he error condition. 

The message put out by IBMBPEV where possible contains the 
number of the PL/I statement being executed when a ABEND 
occurred. 

EXCEPTIONAL ERROR MESSAGE MODULES 

The exceptional error message modules consist of a director and 
three message modules. This arrangement has been adopted so 
that the minimum space will be used. It is necessary to 
conserve space as lack of space is one of the reasons for 
calling the modules. 

The director module IBMBPEP determines the nature of the 
exceptional error and calls the necessary module to put out the 
message. 

The table below shows the circumstances in which IBMBPEP is 
called and message modules then called by IBMBPEP. 

IBMBPEP 
Circumstance Calling Module Calls 

Insufficient main storage to lBMBPl! IBMBPER 
set up in the program 
management area 

No main procedure Code in dummy IBMBPEQ 
PLIMAIN 

Too many files, controlled IBMBPII IBMBPEQ 
variables, and fetched 
procedures to be held in PRY 

Interrupt in error handling IBMBERR entry IBMBPET 
routine point C 

Abnormal termination of task IBMTPIR IBMBPET 

Module IBMBPEQ puts out the message to SYSPRINT except in those 
circumstances where SYSPRINT cannot be used. IBMBPET and 
IBMBPER always put out their messages on the console as they are 
called in circumstances where SYSPRINT is likely to fail or 
where operator, rather than programmer action, is required. 

140 OS PL/! Optimizing Compiler: Execution logic 



THE FLOW AND COUNT OPTIONS 

The FLOW and COUNT options are used to provide information about 
which statements are executed in a particular run of a program. 
The FLOW option is used to maintain a trace of the most recently 
executed statements. The COUNT option is used to maintain a 
count of the number of times each statement is executed. 

Both options are implemented by calling an interpretive library 
routine, IBMBEFL, at every point in a program where the flow of 
control may not be sequential. The library routine, IBMBEFL, 
analyzes the situation and updates tables to retain a record of 
the branches made. IBMBEFL is also called during program 
initialization to set up housekeeping information. Two 
transient library modules are used to interpret the tables set 
up by IBMBEFl and to put out the information. The routines are 
IBMBESN for the FLOW option, and IBMBEFC for the COUNT option. 

The compiler generates the same executable code for both the 
COUNT and the FLOW option. Consequently, i-F either option is 
specified for compilation, either or buth can be made available 
at execution time. If neither is required during execution but 
one or other was specified for compilation, the code to call 
IBMBEFl is still executed and IBMBEFl still forms part of the 
load module. When IBMBEFl is called in this situation, it 
returns control to compiled code without recording any 
information. 

Points at which the flow of control may not be sequential are 
known as branch-in and branch-out points. For example, labeled 
statements and entry points are branch-in points, and GOTO 
statements are branch-out points. At branch-in and branch-out 
points the compiler places code that will call IBMBEFL. If the 
branches are taken, they are recorded. For COUNT they are 
recorded in a table known as the statement fr~ency count 
table. For FLOW, they are recorded in a table known as the flow 
statement table. The format of these tables are shown in detail 
in Appendix A, "Control Blocks" on page 326. 

Use of Branching Information for FLOW 

For the FLOW option, a list of the statement numbers at which 
branches were taken and a list of any changes of procedure is 
retained. 

Flow output consists simply of the list that is recorded by 
IBMBEFL and typically takes the form shown below. 

12 TO 18 
27 TO 35 IN SORTER 
76 TO 108 IN TESTER 
134 TO 77 IN SORTER 

This indicates that the program branched from statement 12 to 
statement 18, then ran sequentially from 18 to 27. After 
statement 27 it branched to, or called, statement 35 in the 
procedure called SORTER. Control then ran sequentially to 
statement number 76, at which point i·t passed to statement 
number 108 in the procedure called TESTER. Control then ran 
sequentially from 108 to 134 and finally passed to statement 77 
in SORTER. 

Use of Branching Information for COUNT 

The COUNT option calculates the number of times each statement 
is executed by recording branch-in and branch-out points as they 
occur and analyzing them at the end of the program. 

The formula used for calculating the number of times each 
statement is executed from the branch count iSI 

Cn=Cn-l+Bln-BOn-l 

Chapter 7. Error and Condition Handling 141 



Where: 

Cn The number of times the statement was executed. 

Cn-l The number of times the previous statement was 
executed. 

BIn The number of times the statement was branched to. 

BOn-1 The number of times the previous statement was 
branched from. 

To retain the information, a count field is set up for every 
statement in the program, and branches-in and branches-out are 
recorded when they occur. Every time a branch-in is made, the 
count for the statement to which the branch is made is 
incremented by one. Every time a branch-out is made, the count 
for the statement after the branch-out is decremented by one. 
When the program ends, statements that have values other than 
zero mark the beginning and end of ranges of statements that 
have been executed the same number of times. The number of 
times the ranges of statements have been executed is calculated 
by adding the value in the count field to the sum of any 
preceding values. 

This process can be followed in Figure 55 on page 143. 

~ecial cases: There are a number of special cases that require 
additional action, either by the compiler, or by IBMBEFL, or by 
both. These special cases arise for three reasons: 

1. Branches can be caused by interrupts, but the points at 
which they will occur cannot be predicted during 
compilation. Consequently the compiler cannot place calls 
to IBMBEFL at these points. 

2. Branches to labeled statements can come from either the same 
block or a different block. Consequently, the code 
generated by the compiler cannot be used to indicate whether 
a new block entry is required. 

3. The algorithm used for the COUNT option is not effective for 
CALL statements and function references because the 
branch-in and branch-out are made to and from the same 
statement. 

The first case is handled by IBMBEFL checking for the occurrence 
of an interrupt when it is called in situations where one could 
have occurred. The second case is handled by altering the GOTO 
code in the TCA so th~t it calls IBMBEFL to set appropriate 
flags when a GOTO out of block occurs. A test for the flags is 
made when the call to IBMBEFL for the branch-in at the labeled 
statement is made. The third case is predictable during 
compilation and is handled by the compiler setting up different 
code for branches-in to CALL statements and function references, 
and by IBMBEFL testing for such code. Details of the methods 
used are given later. 

IMPLEMENTATION OF FLOW AND COUNT 

Tables Used by FLOW and COUNT 

To enable it to retain FLOW and COUNT information, IBMBEFL sets 
up tables in dynamic storage. Figure 56 on page 144 shows their 
contents. Details of their formats are shown in 
Appendix A, "Control Blocks" on page 326. 

142 as PL/I Optimizing Compiler: Execution Logic 



PL/I PROCEDURE TO BE COUNTED 

1 COUNTIT:PROC OPTIONS (MAIN); 
2 DO 1=1 TO 2; 
3 PUT LIST (1); 
4 END; 
5 END COUNTIT; 

In this procedure, the DO-loop in statements 2 through 4 will be executed twice, 
and the other statements once. 

Note: In certain conditions similar code will compile so that statement 2 is 
executed three times. See section on DO-loops in Chapter 2, "Compiler Output" 
on page 12. 

HISTORY OF THE STATEMENT FREQUENCY COUNT TABLE 

After the branch-in to statement number 1, the table is set up with a value of 1 
for the first statement and 0 for all others, thus: 

Statement number 
Branch count 

1 
1 

2 
o 

3 
o 

4 
o 

5 
o 

After the branch-out at statement 4, the count of the nex! statement is 
decremented by one and the table becomes: 

Statement number 
Branch count 

1 
1 

2 
o 

3 
o 

4 
o 

5 
-1 

After the branch-in at statement 2, the branch count for statement 2 is 
incremented by one and the table becomes: 

Statement number 
Branch count 

1 
1 

2 
1 

3 
o 

4 
o 

5 
-1 

There is another branch into statement 2 followed by a branch out to statement 5 
because 1>2. The final table is therefore: 

1 
1 

2 
2 

3 
-1 

4 
o 

5 
-1 

ANALYSIS OF THE STATEMENT FREQUENCY COUNT TABLE 

A value known as the current, which is initially set to zero, is added to the 
branch count for each statement in turn. The sum is the number of times the 
statement was executed; this value also becomes the current count. 

statement number 
1 
2 
3 
4 
5 

current count 
o 

-1 
3 
2 
2 

branch count 
1 
2 

-1 
o 

-1 

times executed 
0+1= 1 
1+2= 3 
3-1= 2 
2+0= 2 
2-1= I 

Figure 55. How Branch Counts Are Used to Calculate the Number of Times Each 
Statement Is Executed 

Chapter 7. Error and Condition Handling 143 



~ 
HEADER 
SECTION 

L 
I 

STATEMENT 
NUMBER 
SECTION 

~ 
I 

PROCEDURE 
NAMES 
SECTION 

I 

FLOW STATEMENT TABLE 

One table for the Program 

Contains: 

Pointers to next entry 
in each section of the 
table. 

Other housekeeping data 

Contains: 

Statement numbers of 
branches plus flags 
indicating the type 
of entry. 

Contains: 

Names of procedures 
and types of ON-units 
that have been 
branched to. 

STATEMENT FREQUENCY COUNT TABLE 

I 
HEADER 
SECTION 

L 
I 

BRANCH 
COUNT 
SECTION 

One Table for each 
External Procedure 

Contains: 
Pointer to any 
further tables. 

. Address of static control 
section of associated 
external procedure. 
Other housekeeping data. 

Contains: 

. A field for each 
statement in the 
program containing 
a count which is 
incremented when the 
statement is branched 
to and decremented 
when the statement 
is branched from. 

Figure 56. The Contents of the Flow Statement Table and the S·tatement Frequency 
Count Table. 

FLOW OPTION: FLOW information is retained in a table called the 
flow statement table. The flow statement table has three 
sections; a header section containing housekeeping information, 
a statement number section holding the numbers of statements 
that were branched to or from plus flags to indicate the type of 
entry, and a procedure names section containing the names of 
procedures and ON-units to which branches are made. The length 
of the flow statement table is determined by the values given to 
Un" and Om" when the FLOW option is specified. 

When all the spaces in the table for statement numbers or 
procedure names have been filled, the earliest entries are 
overwritten. The fields in the header section are used to 
indicate which is the next space available in the table. 

The table is set up during program initialization and is 
addressed from the TCA. 

COUNT OPTION: COUNT information is retained in tables called 
statement fre9uen£Y. count tables. The tables have a field for 
every statement. They are set up when an external procedure is 
entered. A table is needed for every external procedure because 
two external procedures can contain the same statement numbers. 

statement frequency count tables are chained together and 
addressed from the TCA appendage (the TIAl. Two addresses are 
kept in the TIA, the address of the current statement frequency 
count table (that is the table that was last used) and the 
address of the statement frequency count table for the first 
procedure in the chain. Statement frequency count tables are 
associated with their matching external procedures by having the 
address of the static control section for the procedure placed 
at a fixed offset in the table. (A static control section is 
unique to an external procedure and its address can be easily 
accessed as it is addressed throughout compiled code by register 
three). The last statement frequency count table in the chain 
has its chaining field set to zero. 

The length of statement frequency count tables depends on 
whether the GOSTMT or GONUMBER option is in effect. For GOSTMT 
one fullword is used for each statement in the procedure. For 

144 OS PL/I Optimizing Compiler, Execution Logic 



GONUMBER, two fullwords are used. This is because for GONUMBER 
it is necessary to retain the statement number as wall as the 
count value. (For GOSTMT, the numbers will start at one and be 
incremented by one and no record need therefore be kept.) If 
neither GOSTMT nor GONUMBER is in effect, no attempt is made to 
count the st&tements executed in the procedure, and a statement 
frequency count table is not set up. 

Executable Code for FLOW and COUNT 

As described in the introduction, there are four stages in the 
implementation of the FLOW and COUNT options. These are: 

1. Action during compilation. The code to call the 
interpretive library routine IBMBEFL is placed at every 
predictable branch-in and branch-out point. 

2. Action during program initialization. The necessary 
housekeeping fields are set up. This is done by the program 
initialization module IBMBPII and the flow module IBMBEFL 
called at entry point IBMBEFLA. 

3. Action during execution. The branch-in and branch-out 
information is collected by entry point IBMBEFLB. Entry 
IBMBEFLC is also called to handle certain special cases. 
The call is made when the GOTO out-of-block code is 
executed. 

4. Action during output. The necessary information is written 
out. This is done by IBMBESN for the FLOW option and 
IDMBEFC for the COUNT option. 

These four stages are described in detail in the following 
sections. 

Action during Compilation 

During compilation, the compiler examines the program and 
generates suitable code at each predictable branch-in and 
branch-out point. Predictable branch-in points are: 

• Entry names 

• Labeled statements 

• THEN and ELSE clauses of IF statements. 

• Entries to ON-units 

• Returns from CALL statements or function references. 

• The statement following the END statement of an internal 
procedure. 

Predictable branch-out points are: 

• GOTO statements 

• Function references 

• CALL statements 

• IF statements 

• RETURN statements 

• END statements 

• The statement before the PROCEDURE statement of an internal 
procedure. 

Chapter 7. Error and Condition Handling 145 



The code for branch-out points is so placed that the call to 
IBMBEFL will not be made unless the branch is taken. 

Statements preceding and following internal procedures are 
treated as branch-out and branch-in points because the statement 
numbers of the statements executed are not sequential although 
the actual flow of control is sequential. If this were not 
done, the method used for counting stotements would not work 
because the statements in the internal procedure would be given 
the count values of the preceding statements. 

The code placed at the branch-in and branch-out points takes the 
following form: 

L 

BALR 

DC 

15, 84(0,12) 

14, 15 

X'8004' 

Pick up address of 
IBMBEFl from TCA. 

Branch to IBMBEFL. 

Constant containing 
a two-bit flag 
remainder for 
statement number. 

Register 14 is set to the constant containing the statement 
number and flags by the BALR instruction. IBMBEFL can therefore 
pick up the statement number by examining the constant. 

The constant is a halfword if the STMT option was used and a 
fullword if the NUMBER option was used. In both cases, the 
first two bits are used as flags and the remainder are used for 
the statement number. 

The flags indicate: 

• Branch-in 

• Branch-out 

• Branch-in to a new procedure or ON-unit. 

• Return to point of interrupt from end of ON-unit. 

For a branch-in to a CALL statement or a function reference, 
which takes place when the return is made, BAL 14, 0(15) is 
generated instead of BALR 14, 15. This situation requires to be 
recognized because the branch-in and branch-out both occur from 
the same statement. If it were not treated as a special case, 
the count of the next statement would be decremented by one when 
the branch-out was made and the count for the CALL statement 
would be incremented by one on return. Thus the CALL statement 
would apparently have been execut~d twice. The increment is 
therefore added to the statement after the CALL statement, 
thereby giving the correct values. 

In addition to the calls to IBMBEFl, the compiler also generates 
control sections that will result in IBMBEFL being link-edited 
and subsequently called during program initialization to set up 
the necessary housekeeping machinery to handle COUNT or FLOW. 

For the FLOW option, the compiler generates a control section 
called PlIFLOW that can be used during program initialization to 
call IBMBEFL. This control section takes the following form: 

VCON 

USING 
l 
BALR 
DC 
DC 
DC 

*,15 
15,VCON 
1,15 
H'n 
H'm 
V(IBMBEFLA) 

For the COUNT option, the compiler generates a control section 
called PLICOUNT that can be used to call IBMBEFl to initialize 

146 as PL/I Optimizing Compiler: Execution Logic 



the COUNT option. It is the same s PLIFLOW except that the 
halfwords In' and 'm' are replaced by a fullword X'80000000'. 

The calls to IBMBEFL are generated if either FLOW or COUNT is 
defined at compile-time. The control sections are generated if 
the corresponding option is specified at compile time. 

Action during Program Initialization 

During program initialization, the program initialization module 
IBMBPII determines if either FLOW or COUNT or both are required. 
If the user specified either FLOW or COUNT during compilation, 
the requested option will be in effect during execution unless 
specifically overridden by the NOFlOW or NOCOUNT execution time 
option. If he specified either option for compilation he can 
also specify the other for execution. 

To determine which options are to be used, IBMBPII inspects the 
execution time options and checks for the presence of PlIFLOH or 
PlICOUNT which will indicate that the corresponding option was 
requested at compile-time. 

If one or both of the options are requested for execution but 
neither was requested for compilation, IBMBPII generates a 
message to say that the option will not be available. 

If an option is specified for compilation and not overridden for 
execution time, the corresponding control section will be 
available and IBMBPII passes control to entry point IBMBEFLA 
through the code in the control section. If the control section 
corresponding to the required option does not exist, IBMBPII 
calls IBMBEFl directly, passing it a value in register O. This 
value is 4 if FLOH is required and 8 if COUNT is req~irad. 

If one or both of the options are requested during compilation 
but neither are required during execution, IBMBPII sets FLOW 
values of (0,0) and calls entry IBMBEFLB to initialize the FLOW 
option. In this situation, IBMBEFLA sets the address of the 
flow statement table and the addresses of the statement 
frequency count tables to zero. 

To initialize FLOW, IBMBEFLA sets up the flow statement table 
and initializes it with a dummy statement number entry and a 
dummy procedure name entry. Ttle address of the flow statement 
table is placed in the TCA. If FLOW is not required, or if 
FLOW(O,O) has been specified, the address is set to zero. 

To initialize COUNT, two addresses in the TIA are initialized. 
The first, which will contain the address of the first of the 
chain of statement frequency count tables, is set to zero. The 
second which will contain the address of the current statement 
frequency count table is set to point to the first. If COUNT is 
not required, both fields are set to zero. 

For both FLOW and COUNT, the address of IBMBEFlB is placed in 
t.1e TCA; the GOTO code, which is in the TCA, is altered so that 
it calls IBMBEFLC. (This is necessary so that changes of block 
caused by GOTO statements can be intercepted and flagged.) 

Action during Execution 

During execution, calls from compiled code at branch-in and 
branch-olJt points are made to IBMBEFLB whose address has been 
placed in the TCA. The action then taken depends on which 
options are in effect, the type of the previous entry, and the 
type of the present entry. 

Calls are also made to IBMBEFlC when the GOTO code in the TCA is 
executed. 

Chapter 7. Error and Condition Handling 147 



IBMBEFL When Called at Branch-In and Branch-Out Points 

When IBMBEFL is called at branch-in or branch-out points, the 
call goes to entry point B whose address has been placed in the 
TCA during program initialization. IBMBEFL first checks to see 
which, if either, of the options is required by testing the 
fields used to address the flow statement table and the current 
statement frequency count table. If either of these is set to 
zero, the corresponding option is not in effect. If both are 
set to zero, control is returned to compiled code. If one or 
the other of the options is in effect, there are four possible 
cases that require different action: 

1. A branch-in following a branch-out or vice versa 

2. A branch-in following another branch-in 

3. A branch-in to a new block 

4. Return from an ON-unit to the point of interrupt 

These cases are dealt with individually in the sections that 
follow. 

CASE 1. BRANCH-IN FOLLOWING A BRANCH-OUT OR VICE VERSA: This 
situation indicates nonsequential flow of control, and must 
therefore be recorded in the FLOW and COUNT tables. For FLOW, 
the new statement number together with flags indicating a 
branch-in, a branch-out, or a branch-in to a procedure or 
ON-unit, are entered in the position indicated by the pointer at 
the head of the flow statement table. The pointer is th~n 
updated to point to the next available space. If the next space 
would be outside the tabla, the pointer is reset to the head of 
the statement number section of the table. 

For COUNT, the count value in the field for the appropriate 
statement number is altered. For a branch-in, the count of the 
statement branched to is incremented by one. For a branch-out, 
the count of the statement after the statement branched from is 
decremented by one. 

If IBMBEFL is being called for a branch-in, it is possible that 
it was caused by a GOTO-out-of-block and a new procedure or 
ON-unit name may need to be recorded. In this situation, 
IBMBEFlC will have been called during the execution of the 
GOTO-out-of-block code and will have set a flag in the flow 
statement table. The flag is therefore tested and, if it is 
found on, the entry is treated as an entry to a new block. See 
"Case 3. A Branch-In to a New Block" on page 149. 

A further possibility is that the branch-in will be a returned 
to a CALL statement or a function reference. These are 
distinguishable because the call to IBMBEFL is made by a SAL 
instruction rather than a BALR instruction. If the COUNT option 
is in effect, this must be tested for, and the count value of 
the next statement' rather than the current statement be 
incremented. This is necessary because the branch-out and the 
branch-in for CALL statements and function references are both 
made at the same statement, (see the description under "Action 
during Compilation" on page 145). 

CASE 2. A BRANCH-IN FOLLOWED BY ANOTHER BRANCH-IN: No action 
need be taken as such a situation can only be caused by 
sequential flow. For example consider the statements: 

LABl: X=Yj 
LAB2: Z=X; 

Both LABI and LAB2 are potential branch-in points, but, if a 
call to IBMBEFL is made for LAB2 immediately after a call has 
been made for LABI, it is plain that the flow of control has 
been sequential. Consequently when a branch-in follows another 
branch-in, IBMBEFL returns control to compiled code without 
taking any action. 

148 OS PL/I Optimizing Compiler: Execution logic 



This situation does not arise with branch-out points, because 
the code to call IBMBEFL is only executed if the branch is 
taken. 

CASE 3. A BRANCH-IN TO A NEW BLOCK: This case requires that 
block information be entered for the FLOW option, and that, for 
the COUNT option, a check be made to see whether a new external 
procedure has been entered. If it has, a different statement 
frequency count table will have to be used because there is one 
for each external procedure. 

Special action will be required if the block entered is an 
ON-unit. This is because the branch-out will have been made at 
the point of interrupt and this will not have been automatically 
recorded by a call to IBMBEFL. When a new block is entered a 
test is therefore made on the DSA flags of the block to 
establish whether it is an ON-unit. The action taken if it is 
an ON-unit is described under "Branch-In to an ON-Unit" on 
page 150. 

After any action required to handle entry into an ON-unit, the 
following will take place. 

For FLOW, the name of the block must be discovered and placed in 
the next available space in the names section of the flow 
statement table. Also, the statement number entry must be 
flagged to show that it marks a change of block. The procedure 
name is found by following the DSA chain back until a procedure 
DSA is found and accessing the name, which is held at a standard 
offset from the entry point of the procedure. When the 
procedure name has been found, the statement number and flags, 
and the procedure name, are placed in the appropriate sections 
of the flow statement table and the pointers altered to point to 
the next available fields. 

For COUNT, a check must be made to discover whether a new 
statement frequency count table is required. This is done by 
comparing the address in the register 3 save area of the DSA of 
the procedure that called IBMBEFL with that at offset X'4' in 
the current statement frequency count table. If they are the 
same no action is required, because the new block must have the 
same static control section as the previous block and 
consequently must be in the same external procedure. If the 
addresses are not the same, a search is made down the chain of 
statement frequency count tables for a matching table. If one 
is found, the address of the curreni table is set to point to 
the table that has been found, and the required entry is made in 
that table. If no matching table is found, a new table must be 
set up. 

CREATING A NEW STATEMENT FREQUENCY COUNT TABLE: Before creating 
a new statement frequency count table, IBMBEFl checks to see if 
a statement number table exists for the new procedure. If it 
does not, counting will not take place. In this situation, the 
current statement frequency count table is flagged to indicate 
that counting is to be suspended until another procedure is 
entered, and control is returned to compiled code. 

Provided a statement number table does exist, a new statement 
frequency count table will be required. IBMBEFL first obtains 
the required amount of non-LIFO storage for the table. One 
fullword is required for every statement in the external 
procedure if it was compiled with the GOSTMT option, and two 
fullwords are required for every statement if it was compiled 
with the GONUMBER option. The count fields are set to zero, 
and, for procedures compiled with the GONUMBER option the 
numbers are inserted in the tables. The new table is then 
linked with its matching external procedure by placing the 
address of the static control section for the procedure in the 
new table. 

Chapter 7. Error and Condition Handling 149 



Action on Output 

BRANCH-IN TO AN ON-UNIT: If the code that called IBMBEFL is 
found to be in an ON-unit, special action is required. The 
statement number for the point of interr~pt must be discovered 
and appropriate entries made in the flow and count tables, 
before the data for the entry to the ON-unit can be recorded. 
This is because there will have been no call to IBMBEFL at the 
point of interrupt to register a branch-out. The statement 
number of the interrupt is found by IBMBEFL in the same way as 
that used by the error message modules, described earlier in 
this chapter. When the number has been found, it is 
incorporated in the flow and count tables as if it were a normal 
branch-out. The branch-in entry is then handled as if it were a 
normal entry to a new block. It is possible for the FLOW option 
to be in effect without there being a statement number table 
available. In this situation, a statement number of zero is 
entered in the flow statement table for the branch-out at the 
point of interrupt. 

A problem also exists for COUNT if an interrupt results in the 
termination of a program. In this situation, the interrupt 
point must be marked as a branch-out, otherwise, statements 
after the interrupt would have an incorrect count value. This 
situation is checked for when the FINISH condition is raised. 
During the handling of the FINISH condition, the GOTO code is 
executed and IBMBEFLC is called. A check is then made to see if 
FINISH was raised because of an interrupt. If it was, the point 
of interrupt is discovered and entered as a branch-out point in 
the appropriate statement frequency count table. 

CASE 4. RETURN FROM ON-UNIT TO POINT OF INTERRUPT: When return 
is made from the end of an ON-unit to the statement that caused 
the interrupt, there will be no automatic call (resulting from 
code inserted during compilation) to IBMBEFL. The necessary 
information for the flow and statement frequency count tables is 
therefore entered when IBMBEFl is called at the end of the 
ON-unit. The statement numbers passed for such calls are 
specially flagged so that IBMBEFL discovers the point of 
interrupt and takes the necessary action to update the flow 
statement table and statement frequency count tables. 

Interpreting the Flow statement Table 

Information from the flow statement table is interpreted by the 
message module IBMBESN cr the PLIDUMP routines, and transmitted 
in the form of statement number pairs which are associated with 
the names of procedures or with ON-unit condition types. 

To extract the information, the message module must know from 
which points output in the statement number and proced~re names 
section of the table output is to start. It must also be able 
to match the entries in the two sections of the table. 

The starting points in both sections of the table are found by 
checking whether the dummy entry, inserted during program 
initialization, has been overwritten. If the dummy entry has 
not been overwrittell, the starting point is the first entry in 
that section of the table. If the dummy entry has been 
overwritten, the starting point will be the entry flagged as the 
next available entry. This is because the table is used 
cyclically, with the newest entry over'writing the oldest entry. 

Statement numbers are matched with procedure names by comparing 
the number of procedure names with the number of statement 
number entries that are flagged as being associated with 
procedure name entries. If the two numbers are the same, the 
first procedure name will be associated with the first statement 
number that requires a procedul'e name. If there are more 
procedure names than statement numbers that require procedure 
names, the trace of procedures must be longer than the trace of 

150 as PL/! Optimizing Compiler: Execution Logic 



statement numbers. Accordingly, the procedure names are put out 
without statement numbers until the point is reached where the 
number of procedure names left is the same as the number of 
statement numbers that require them. From that point on 
statement numbers and procedure names are put out together. If 
there are more statement numbers that require procedure names 
than there are procedure names, the trace of statement numbers 
must be longer than the trace of procedure names. The earliest 
statement numbers are put out without names and, where a 
procedure name is required, "UNKNOWN" is used. When the number 
of names required matches the number available, the procedure 
names are put out with the statement numbers. 

Interpreting the statement Frequency Count Tables 

Module IBMBEFC is called at program termination to print count 
information. Output is tabular and printed three columns to a 
page. An entire page is built before transmission. 

Output for a procedure begins with the procedure name. This is 
followed by the column heading: "FROM TO COUNT." The current 
count is initialized to zero and the first nonzero entry in the 
table is found. The associated statement number is then placed 
in the 'FROM' part of a temporary line and the value for the 
nonzero entry is added to the current count. The entries for 
the following statements are scanned until one with a nonzero 
count value is found. The number of the preceding statement is 
then placed in the 'TO' part of the line and the current count 
in the 'COUNT' part. This line is included in the page. The 
statement number found is then placed in the 'FROM' part of the 
temporary line and its branch count (which may be negative) is 
added to the current count. The scan of entries continues until 
another nonzero count is reached, and the process is repeated. 

If the count for a range is zero, the line is not moved into the 
page but the two statement numbers are saved for separate 
printing. Whenever a line is moved into the page, checks are 
made for the end of a column and the end of the page. When the 
page is full it is transmitted. 

The process is continued until the end of the table is reached. 

The next table is then processed, until all procedures have been 
handled. 

Finally, ranges of unexecuted statements are printed for each 
procedure. 

I ERROR HANDLING UNDER CICS 

I PLIDUMP ON eIeS 

Error handling is managed by the module IBMFERRA which is 
included in DFHSAP. The STAE/NOSTAE execution time option is 
used to determine whether PL/! will handle program checks (or 
ASRA ABENDs as they are known in eICS). 

If STAE is specified, PL/! attempts to handle program checks. 
It does this by issuing an EXEC eICS HANDLE ABEND command during 
program initialization. Two transient modules are used to 
handle messages; IBMFESMA and IBMFESNA. Full details of the 
modules are given in the Resident and Transient Library PLMs. 

PLIDUMP is implemented by a set of modules based on the system 
used in as. 
The modules are: 

Resident 

IBMBKDMA Resident dump bootstrap routine in DFHPLIOI 

Chapter 7. Error and Condition Handling 151 



COMPI LATION INITIALIZATION 

Ensure program 
Issue SPIE/ESPIE and 

tests for all enabled 

==> non-system-detected Compile ON-units 

tJ Ie 
STAE/ESTAE macros to J\. - pass system detected 

interrupts and calls as separate program - blocks interrupts to correct If 

error handler when 
error handler 

they occur 

PROLOG CODE PROCEDURE CODE 

Execute ON 
Set up flags to 
indicate to error 
handler which 
conditions are 
enabled 

Mainline code statement by setting Mainline code 

PROCEDURE CODE 

I nstruction capable 
of causing condi
tion not detectable 
by system 

OBJECT PROGRAM 

IBMBERR 
Error handling module 

If no GOTO out 
of ON-unit take 
action for normal 
return. 
(See below) 

Prepare data 
including condition 
type and built in 
function values 

Return to point 
of interrupt 

Execute action 
specified in ON-unit 

" flag indicating ON- If 

unit is established 

Possibly put out message, then take one of actions shown 
below depending on condition that occurred 

Figure 57. 

Return to point 
of interrupt 

Ca II IBM BPI R to 
terminate program 
or task 

Raise further 
condition 

Outline of Error Handling 

152 OS PL/! Optimizing Compiler' Execution logic 

Error handling module 

ENTRY POINT A 

Call message 
module to put 



r 

DFHPIOI 

IBf1BKDMA 
(resident 
bootstrap) 

I 
V 

IBMFKMRA 

Transient 

IBMFKMRA DUInP control module 

IBMFKPTA Process dump options 

IBMFKTCA Check for back-chain errors 

IBr~FKTRA Handle T (Trace) option 

IBMFKTBA Handle B (Block) option 

IBMFKCSA Handle K (CICS) option 

All routines use a transmitter in IBMFKMRA to print the output 
on the queue with the ddname of CPlD. Before the printing 
starts, an ENQ macro is issued so that two or more dumps will 
not be printed at once. 

Each of the modules in the chain deletes its predecessor unless 
the predecessor is the control routine IBMFKMRA. The 
arrangement of modules is shown in Figure 58. 

The back-chain check module IBMFKTCA is used to check that the 
back-chain has not been overwritten. It it has, an indicator is 
set and the other modules avoid the errors that this might 
cause. 

The dump output is headed by the terminal identifier, 
transaction identifier, and date and time of execution. 

(transient - - - - - - - - - - - - --> 
control 

IBMFKPTA 
(options 
processing) 

module) 

A I A I 
I I 

IBMFKTRA 
L - -> IBMFKTCA f--> (handle 1--> 

.J (back-chain check) TRACE option) 

I 
, 

L ___________________ V 

V 

IBMFKCSA 

IBMFKTBA 
( handle 
BLOCK option) , 

------' 

L (handl e K, 
CICS option) 

-------> Paths always taken 
--> Paths taken depending on options 

Figure 58. The Arrangement of PLIDUMP Modules for CICS 

Chapter 7. Error and Condition Handling 153 



CHAPTER 8. RECORD-ORIENTED INPUT/OUTPUT 

INTRODUCTION 

This chapter considers the implementation of the following 
statements: 

• File declarations 

• Open and close statements 

• READ, WRITE, DELETE, LOCATE, UNLOCK, and REWRITE statements 
referred to generically as transmission statements 

Together, these statements make up record I/O. 

The OS PL/I Optimizing Compiler uses the data management 
routines of MVS to implement record I/O. These routines offer 
facilities similar but not identical to those of the PL/I 
language. The data management routines require that: 

1. A data control block (DCB) is set up to describe and 
identify the data set. 

2. OPEN and CLOSE macro instructions are issued to open and 
close the data set. 

3. GET, PUT, READ, or WRITE macro instructions are r.or~~lly 
issued to store or obtain a new record. 

The data management routines transmit the data one block at a 
time between the data management buffer and the external medium, 
bu·t each separate macro instru~tion issued by the program 
results in only a single record being passed. When a 
transmission error occurs, or when the end-of-file is reached, 
the data management routines either set flags indicating the 
error or branch to error-handling or end-of-file routines that 
can be specified by the programmer. 

The basic method used by the optimizing compiler to implement 
record I/O is to retain the source program information in a 
number of control blocks, and to pass these control blocks to 
PL/! library routines, which interpret the information and carry 
out the necessary action by calling data management routines in 
the appropriate manner. The method is summarized below, and 
shown diagrammatically in Figure 59 on page 155. Figure 73 on 
page 183 shows the overall scheme in greater detail. 

SUMMARY OF RECORD I/O IMPLEMENTATION 

File Declarations 

For a file declaration, the compiler generates two control 
blocks: the declare control block (nCLCB) and the environment 
control block (ENVB). Together, these two control blocks 
contain a complete record of the file declaration. 

154 OS PL/I Optimizing Compiler: Execution logic 



COMPILER 

COMPILER GENERATED CODE 

Set up control blocks 
from file declaration 
and I/O statements 

Call PL/I library or data 
management routines 
passing control blocks 

OPEN & CLOSE STATEMENTS T!ANSMISS ON STATEMENT 

OPEN/CLOSE BOOTSTRAP 
ROUTINE 

(Resident library) 

I 
V 

OPEN ROUTINES 

(Transient library) 

V 

OPEN J ROUTINE 
L...----

In-line I/O Library Call I/O 

v 

I 
V 

CLOSE ROUTINE 

(Transient library) 

V 

CLOSE 
ROUTINE 

V 

V 

PL/I LIBRARIES 

V 

TRANSMITTER INTERFACE 
ROUTINE 

(Resident library) 

I 
V 

PL/I TRANSMITTER 

(Transient library) 

V 

DATA MANAGEMENT 
ROUTINES 
OPERATING SYSTEMS 

DATA MANAGEMENT 
TRANSMITTER ROUTINE 

Figure 59. The Principles Used in Record I/O Implementation 

Chaoter 8. Record-Oriented Input/Output 155 



OPEN statements 

OPEN statements are compiled as a call to a resident-library 
bootstrap routine, IBMBOCL, which has passed to it an open 
control block (OCB) containing the attributes and environment 
options that have been used in the OPEN statement. 

The bootstrap routine loads and calls a number of transient 
routines that build a definitive control block, known as the 
file control block (FeB), from infor~ation in the DClCB, ENVB, 
and OCB. 1~e file is associated with the data set, and the 
appropriate PL/I transmitter module is loaded. 

The FCB is used during the execution of transmission statements 
to access all file information. It is addressed via the DClCB 
and the pseudo-register vector. 

Transmission statements 

CLOSE Statements 

Implicit Open 

For the majority of file and statement types, details of 
statement type, of record, key, and event variables are set up 
in control blocks during compilation; during execution, these 
control blocks are passed to a resident-library interface 
routine, IBMBRIO. IBMBRIO then calls a PL/! transient-library 
transmitter module, which issues the appropriate data management 
macro instruction, and checks for errors, before returning 
control to compiled code. This method is known as librarY-call 
I/O. 

If the TOTAL option is used, the majority of transmission 
statements on buffered consecutive files are compiled as short 
calls to the data management routines. This method is known as 
in-line I/O. When using in-line I/O, subroutines of the Pl/! 
transmitters are use to branch directly to the data management 
routines. When running in an MVS/XA environment, the 
subroutines set the correct addressing mode (AMODE) for data 
management. These transmitters are also used for error 
situations and end-of-file conditions. 

The TOTAL option is a method used to info,~m the compiler that no 
additional information will be supplied about the file via the 
DD statement. (That is, that the TOTAL information about the 
file has been declared.) This allows the compiler to determine 
whether or not inline I/O statements can be used. The 
conditions when they are used are described in Figure 74 on 
page 184. 

CLOSE statements are implemented by a call to the open/close 
bootstrap routine IBMBOCL, which loads and calls the transient 
close routine IBMBOCA. This routine disassociates the file from 
the data set, and handles the necessary housekeeping. 

Implicit opening is handled by manipulation of addresses in the 
file control block (FCB). Any attempt to access the file when 
it is not open results in control being passed to the open 
routines in the PL/! libraries. The FCB is mapped in "File 
Control Block (FCB)" on page 360. 

156 OS PL/! Optimizing Compiler: Execution Logic 



Implicit Close 

Implicit closing is handled by the program termination routine 
checking for open files, and if it finds any, calling the PL/I 
library routine to close them. 

As can be seen from the summary above, a large number of library 
subroutines and control blocks are used in the implementation of 
record I/O. These are summarized in two figures: Figure 60 for 
library subroutines and Figure 62 on page 160 for control 
blocks. More detailed descriptions for each statement type are 
given below. 

RESI~ENT LIBRARY 

IBMBOCL 
I Bt1BRI 0 

Open/Close bootstrap routine 
Record I/O interface routine 

TRANSIENT LIBRARY 

IRMBOPA 
IBMBOPB 
IBMBOPC 
IBMBOPD 
IBI·1BOPE 
I Bf·iBOPZ 

Open error handler 
Open routine Phase I 
Open routine Phase II 
O~en routine Phase III 
Open routine Phase II (VSAM) 
Direct output file formatter 

Close Module 

I B~1BOCA Close module 

Tral1smitter Modules 

IJH-IIBRAA 
IBr~BRAB 
I B~1BRAC 
IBMBRAD 
I Dr1nRAE 
I Bt·1BRAF 
IBMBRAG 
IBMBRAH 
IllMBRAI 
IBf1BRBA 
I ar'1BRBB 
I Bt1BRBC 
I ntvJDRBD 
IBMBRBE 
IBMBRBF 
I Bt1BRBG 
IBMBRCA 
I B~1BRCB 
IBf.1BRCC 
IBMBRCD 
IBMBRCE 
IBr>1BRDA 
IBtf6RDB 
IBMBRDC 
IBNBRDD 
I Bt1BRJA 
IBMBRJB 
IBMBRKA 
I B~lBRKB 
IBMBRKC 

Regional sequential output 
Regional sequential output 
Regional sequential output 
Regional sequential output 
Regional sequential output 
Regional sequential output 
Regional sequ~ntial output 
Regional sequential output 
Regional sequential output 
Regional sequential input/update 
Regional sequential input/update 
Regional sequential input/update 
Regional sequential input/update 
Regional sequential input/update 
Regional sequential input/update 
Regional sequential input/update 
Unbuffered consecutive 
Unbuffered consecutive 
Unbuffered consecutive 
Unbuffered consecutive OMR 
Unbuffered consecutive associated file 
Regional direct non-exclusive 
Regional direct non-exclusive 
Regional direct non-exclusive 
Regional direct non-exclusive 
Indexed sequential input/update 
Indexed sequential input/update 
Indexed direct non-exclusive 
Indexed direct non-exclusive 
Indexed direct non-exclusive 

Figure 60 (Part 1 of 2). library Subroutines Used in Record I/O 

Chapter 8. Record-Oriented Input/Output 157 



Transmitter Modules (Continued) 

IBMBRlA 
IBMBRlB 
IBMBRQA 
IBMBRQB 
I Bt'1BRQC 
IBMBRQD 
IBMBRQE 
IBMBRQF 
IBMBRQG 
IBMBRQH 
IBMBRQI 
IBf'1BRTP 
IBMBRVA 
IBlvlBRVG 
I B~1BRVM 
IBMBRVI 
IBMBRXA 
IBMBRXB 
I Br1BRXC 
IBMBRXD 
I Bt~BRYA 
IB~1BRYB 
IBNBRYC 
IBi1BRYD 
IBMBSOF 
IBMBSOU 
IBMBSOV 
IBMBSTF 
IBMBSTI 
IBMBSTU 
IB~1BSTV 
IBt1CSTI 
IBMCSTP 

Indexed sequential output 
Indexed sequential output 
Buffered consecutive (non-spanned) 
Buffered consecutive (non-spanned) 
Buffered consecutive (non-spanned) 
Buffered consecutive (non-spanned) 
Buffered consecutive input (spanned) 
Buffered consecutive output (spanned) 
Buffered consecutive update (spanned) 
Buffered consecutive OMR 
Buffered consecutive associated file 
Teleprocessing file input 
VSAM ESDS transmitter 
VSAM KSDS sequential output 
VSAM KSDS other operations and path 
RRDS 
Exclusive regional direct update update/input 
Exclusive regional direct update update/input 
Exclusive regional direct update update/input 
Exclusive regional direct update update/input 
Exclusive indexed direct update update/input 
Exclusive indexed direct update update/input 
Exclusive indexed direct update update/input 
Exclusive indexed direct update update/input 
Stream output file 
Stream output file 
Stream output file 
Stream output print file 
Stream input file 
Stream output print file 
Stream output print file 
Stream input file 
stream output file 

Record I/O Error Modules 

IBMBREA 
IBMBREB 
IBMBREC 
I Bt·1llREE 
IBMBREF 

Record I/O error module 
Record I/O error module 
Record I/O error module 
Record I/O error module 
Record endfile module 

Figure 60 (Part 2 of 2). Library Subroutines Used in Record I/O 

158 OS PL/I Optimizing Compiler: Execution Logic 



ACCESS METHOD 

The access method used for different Pl/! file types is shown in 
Figure 61. 

File Type 

Buffered consecutive 

Unbuffered consecutive 

Regional sequential (not 
spanned records) 

Regional sequential (spanned 
records only) 

Regional direct 

Indexed sequential 

Indexed direct 

TP buffered input/update 

VSAM 

Access Method 

QSAM/VSAM 

BSAM/VSAM 

BSAM 

BDAM 

BDAM 

QI SAM/VSA~' 

BISAM/VSAM 

TeAM 

VSAM 

Figure 61. Access Methods and File Types 

Consecutive or indexed files can be used to access VSAM data 
sets; the PL/I open routines will determine the data type. For 
details see section on OPEN statement. 

Chapter 8. Record-Oriented Input/Output 159 



CONTROL ELOCKS GENERATED FROM 
FILE DECLARATION 

DCLCB 

Function: Holds all file attributes 
used in file declaration 

location: Separate control section 
for external files, static internal 
for internal files 

When generated: During compilation 

Contents: 
Record of file attributes 
at declaration 
File name 
Address of ENVB 
Offset of FeB pointer in PRV 

Environment control block (ENVB) 

Function: Holds information on 
environment options 

location: In static storage 

When generated: During compilation 

Contents: Addresses of 
blocksize 
record length 
number of buffers 
KEYLOC value 
key length 
indexarea size 
addbuf 

CONTROL BLOCK GENERATED FROM 
OPEN STATEMENT 

Open control block (OCB) 

Function: To contain file attributes 
given in OPEN statement 

location: In static storage 

When generated: During compilation 

Contents: The attributes when 
specified on the OPEN statement 

Figure 62 (Part 1 of 2). The Fields Used in Implementing Record I/O 

160 as Pl/I Optimizing Compiler: Execution logic 



CONTROL BLOCKS GENERATED FROM 
INPUT/OUTPUT STATEMENTS 

Key descriptor (KD) 

Function: To describe the key 
variable 

Location: Depends on stor~ge class 
of key variable 

When generated: Depends on 
storage class of key variable 
Contents: length and address of 
key variable 

Record descriptor (RD) 

Function: To describe the record 
variable 
location: Depends on storage 
class of record variable 
When generated: Depends on 
storage class of record variable 
Contents: length and address of 
record variable 

Request control block (RCB) 

Function: Holds a definition of the 
statement for execution-time checking 
location: In static storage 
When generated: During compilation, 
for library data management calls only 
Contents: Flags defining statement 

Code for 1M instruction, 
or a branch instruction 
(if checking was done 
during execution) 

CONTROL BLOCK GENERATED DURING 
EXECUTION OF OPEN STATEMENT 

File control block (FCB) 

Function: Acts as a central source 
of information about the file 

Location: In static storage 

When Generated: During open 

Contents include: 
Flags indicating valid statements 
Transmitter name 
Transmitter address 
Error module address 

rDCB/ACB address 
Filename address 
Buffer address flags and 

V workspace for the transmitters 
DCB 

Data Management control block/ 
Access-Method Control Block 

Figure 62 (Part 2 of 2), The Fields Used in Implementing Record I/O 

FILE DECLARATION STATEMENTS 

For each file declaration, a declare control block (DelCB) and, 
optionally, an environment control block (ENVB) are set up. 
Both are held in static internal storage for internal files, or 
in a separate control section for external files. 

The DClCB is a control block that contains the filename together 
with a record of the attributes obtainable from the file 
declaration, both those given explicitly and those deducible by 
default. This information is retained until the file is opened, 
when, unless the TOTAL option has been used in the file 
declaration, the information is merged with any attributes in 
the OPEN statement. 

Chapter 8. Record-Oriented Input/Output 161 



Execution 

The ENVB contains the addresses of all environment options. The 
format of the ENVB is shown in "Environment Block (ENVB)" on 
page 351. 

From information in the DCleB and the ENVB, (and sometimes from 
the open control block (OCB) produced from the OPEN statement) a 
further control block, the file control block (FeB) is 
generated. During execution of an I/O statement, all 
information about the file is derived from the FeB. 

No executable code is produced from the file declaration. 
Figure 63 shows the code resulting from a file declaration. 

Del FI FILE UNBUFFERED RECORD INPUT ENVIRONMENT (RECSIZE (80»; 

I 
V 

DClCB 

I 
I I 
0000000002010200 
0106190000000018 V 
000000140002C6Fl I 
0000000000000000 
0000000200000040J 
0000004400000040 <-ENVB-<-----------I 
0000004000000040 
0000004000000040 

Figure 63. Information in the File Declaration Is Held in the ENVB and the DCleB 
Until the File Is Opened 

OPEN STATEMENT 

Compiler output 

Execution 

For an OPEN statement, the compiler generates a call to the 
open/close bootstrap routine, IBMBOCL, and an open control block 
(OCB). The OCB holds any attributes that are declared in the 
OPEN s"tatement. 

More than one file may be passed to the open routines. The last 
file has its last parameter flagged with its first bit set to 
, 1 ' . 

For an explicit open, a call is made to the open/close bootstrap 
routine, IBMBOCl. For each file to be opened, the following 
information is passed to IBMBOCl: 

The address of the DelCB 
The address of the OCB (or zero, if no OCB exists) 
The address of the TITLE (or zero, if none is specified) 

IBMBOCl has four entry points: 

IBMBOCLA explicit open 
IBMBOCLB explicit open for library call I/O 
IBMBOCLC explicit close 
IBMBOCLD implicit close 

162 OS Pl/! Optimizing Compiler: Execution logic 



When called by entry point A, IBMBOCL invokes the transient 
library open routines to open the file. If the environment 
option TOTAL has not been used in the file declaration, it will 
be necessary to determine the attributes of the file by merging 
the attributes in the file declaration with those used in the 
OPEN statement. Attributes in the file declaration are held in 
the ENVB and DCLCB. Attributes used in the OPEN statement are 
held in the OCB. If the TOTAL option has been used, attributes 
are taken from the declaration, and any contradictory attributes 
in the OPEN statement result in the raising of the ERROR 
condition. 

The open modules build an FCB and DCB from the information in 
the control blocks, initialize the pseudo-register vector to 
point to the FCB, load the PL/I and data management 
transmitters, and return to compiled code. File transient open 
modules are used. Their functions are summarized below and are 
described in detail in the licensed publication OS/360 PL/I 
Transient Library: Program Logic. 

Actions Carried out by Transient Open Routines 

VSAM Data sets 

The transient open routines perform the following major 
functions when opening a file: 

1. Build the file control block (FCB) and data control block 
(DCBl, or, for VSAM the access method control block CACB) 
for the file. The FCB is a PL/I control block used to 
access all file information. The DCB is a data management 
control block used to describe the data set. The ACB is the 
equivalent of the DCB for VSAM files. 

2. Issue the data management OPEN macro instruction to 
associate the file with the data set. 

3. Obtain and initialize buffers and any other blocks required 
for the file. 

4. Determine which statement types are valid for the file, and 
store this information as a set of flags held in the FCB. 

5. Select the appropriate Pl/I transmitter, and load it for use 
during transmission statements. 

6. Check for errors, and raise the UNDEFINEDFILE condition if 
any are found. 

7. Place the address of the FCB in the correct pseudo-register 
vector offset. 

The execution of an OPEN statement is summarized in Figure 64 on 
page 164. 

VSAM data sets, both KSDS and ESDS, are normally accessed by 
PL/I using VSAM macro instructions, however, in certain 
circumstances the data sets are accessed through the 
compatibility interface. If the file is declared with ENV 
(VSAM) the VSAM macro instructions will automatically be used. 
Even if it is not so declared, the Pl/! open modules will 
normally detect that a VSAM data set is being accessed. To do 
this they issue an RDJFCB macro instruction. However, this 
action is not effective if the ALLOCATE command is being used 
under TSO to provide DD information, because, in this case, the 
RDJFCB macro ins'lruction cannot determine that a VSAM data set 
is being accessed. In this situation the compatibility 
interface will be used. It is possible for the user to force 
"the use of the compatibility interface by specifying either 
"RECFM" or "OPTCD=L" in the AMP parameter of the DD statement. 

Chapter 8. Record-Oriented Input/Output 163 



CD. OCLCB identifies file @ ® Title held in static 

/ 
OPEN FILE(F2) OUTPUT TITLE ('OUTFILE'); 

~ 
Executable instructions call to Open close bootstrap module passing parameter list ® containing addresses etc 

for @ @and® 

CD 
® 

OCLCB set up during file declaration see figure 8.5 

Open control block in static. See Appendix A for Format 

000048 0020000000000800 CONSTANT 
00000000 

® Title (held in static internal) is addressed via locator (also in static internal) 

Title 

OOOOAO 06E4E3C6C903C5 

Locator 

000020 000000A000070000 

® Machine Instructions 

000088 41 10 3 064 LA 1,100(0,3) Pqint R 1 at P-lists 

gggg:g ~~ ~~ 3 OOC ~ALR ~;:~·5IBMBOCLA} Branch to open/close bootstrap 

® Parameter list 

000064 00000044 
000068 00000000 
00006C 00000048 
000070 00000020 
000074 00000000 
000078 80000000 

From To 
compiled compiled 
code code 

~ t 
IBMBOCL 

Loads transient 
open modules. -Calls IBMBOPA 

A..CONSTANT 
A .. OCLCB 
A .. CONSTANT 
A .. CONSTANT 
A..NULL ARGUMENT 
A..NULL ARGUMENT 

No. of files to be opened 

A ... OCB 
A ... LOCATOR for TITLE 

} Used for print files only 

EXECUTION 

~ 
IBMBOPA IBMBOPB 

Open Phase I f-+- Open Phase II ~ 

t ~ ~ t 
IBMBOPE IBMBOPZ 

Open Phase II Formatting 

VSAM files (direct output 
only) 

IBMBOPC 

Open Phase III 

1 
IBMBOPO 

~ 
Open Phase I V 

\~------~v~------~I \~--------------------~vr----------------------------------~I 
RESIDENT LIBRARY TRANSIENT LIBRARY 

Figure 64. OPEN Statement 

164 OS Pl/I Optimizing Compilerz Execution Logic 



The flow through the PL/I open modules is as follows. IBMBOPA 
scans the list of files to be opened and sets a flag to indicate 
that IBMBOPE is required for any files declared with ENV (VSAM). 
If one or more files are found without ENV (VSAM), IBMBOPB is 
called to open them. Then on return from IEMBOPB, IBMBOPE is 
called to open any VSAM files. If IBMBOP» detects that any 
consecutive or indexed files are being used to access VSAM data 
sets, it will set the flag indicating that IBMBOPE is required 
and ignore that file. When all the non-VSAM files have been 
opened, IBMBOPD returns to IBMBOPA. IBMBOPA tests to see 
whether there are any VSAM files to be opened, and, if there 
are, calls IBMBOPE. 

IBMBOPE opens the files starting with the first. Each file is 
completely opened before starting to process the next. The open 
process involves nine main steps, as follows: 

1. Merge attributes from OPEN statement with file declaration 
and check for validity. 

2. Get non-LIFO storage space for the FCB and ACB, and create 
the ACB using the GENCB macro instruction. The DDNAME is 
obtained from the filename or the TITLE option. The 
password is obtained from the PASSWORD environment option if 
specified. 

3. Issue an OPEN macro instruction and test the return codes in 
the ACB. 

4. Check the actual values of the RECSIZE, KEYLENGTH, and 
KEYLOC options against any values specified in the 
ENVIRONMENT option. Check that NCP/STRNO is not greater 
than one. If any errors or discrepancies are found, the ACB 
must be closed. 

5. Set up the mask of invalid statements for use by IBMBRIO. 

6. Get non-LIFO storage space for the IOCB and RPL, plus key 
space for a KSDS, and a dummy buffer for a buffered file. 
Create the RPL using a GENCB macro instruction. 

The OPTCD values are partially set as shown below. The 
transmitter merges the other options according to statement 
type. The OPTCD options set arel 

KEY/ADR 
SEQ/DIR 
KSDS or PATH 
UPD/NUP 
GEN/FKS 

KSDS/RRDS/ESDS 
SEQUENTIAL/DIRECT 
INPUT/UPDATE/DIRECT 
UPDATE/INPUT or OUTPUT 
GENKEY/not GENKEY 

KEQ, MVE, and SYN are always specified. 

7. Load the appropriate library tran~mitter as follows: 

ESDS IBMBRVAA 
KSDS SEQUENTIAL OUTPUT 

IBMBRVGA 
KSDS SEQUENTIAL INPUT/UPDATE 
DIRECT/PATH 

IBMBRVHA 
KSDS DIRECT 

IBMBRVIA 

8. Insert "E" as the seventh character of the error module 
name, so that IBMBREEA will be loaded if an error occurs. 

9. Add the FCB address to the chain of open files and set the 
address of the FCB in the pseudo-register. 

Chapter 8. Record-Oriented Input/Output 165 



The FeB and File Addressing 

TCA 
Rl2-> 

During execution of record I/O statements, all information about 
the file is obtained from the FCB. However, as the FeB is not 
created until execution, the FeB cannot be addressed directly by 
compiled code. Instead, compiled code obtains from the DCLCD 
the offset within the PRV at which the FCB address is held. 
This offset is placed in the DeleB by the linkage editor. The 
mechanism is illustrated in Figure 65. 

The use of the pseudo-register vector allows separately compiled 
programs to refer to the same FCB for an external file, even 
though the address of the FeB cannot be known until execution. 
An explanation of the use of the pseudo-register vector is given 
in Chapter 2, "Compiler Output" on page 12, under the heading 
"The Pseudo-Register Vector." 

Address of PRV •••• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

DelC B for file C • 
~----------------------~I • V 

PRV offset = 8 < • A 
...... >.-0 

~-----------------------~ • I 
• V • •••••• > 

Pl/! statement: DCl (A,B/C) FILE; 

The address of the FCB for the file is 
obtained by adding the offset in the 
DelCB to the PRV address which is held 
in the TCA 

Address 

Address 

Address 

Figure 65. Addressing Files Via DCLCB and PRV 

PRV 

of FCB for file A 

of FCB for file B 

of FCB for file C t--

FCB for file C 

L..---_J. 
< 

166 OS PL/I Optimizing Compiler: Execution logic 



TRANSMISSION STATEMENTS (LIBRARY-CALL I/O) 

Compiler Output 

For transmission statements the compiler generates a call to the 
PL/I transmitter interface module, IBMBRIO. IBMBRIO has the 
following parameter list passed to it: 

Address of DClCB 

Address of request control block (RCB) 

Address of record descriptor (RD)j Q£, 
address ignore factor; or, 
address at which to set-Pointer 

Address of key descriptor (KD)j Q£, 
zero if no key descriptor 

Address of event variable (EV), 9£, 
zero if no event variable 

Abnormal locate return address (lOCATE statements only) 

The DClCB is generated from the file declaration, as described 
earlier in the chapter. The remainder of the control blocks in 
"the parameter list are generated for the 1ransmission statement. 

The request control block (R(;Jtl defines tt- e statement type. It 
consists of two words. The first is a fullword of flags that 
define the statement type and option, indicating whether the 
statement is READ SET, READ INTO, WRITE F .OM, etc. The second 
word is a test-under-mask (lM) instructior that is executed by 
IBMBRIO to check whether the statement is valid. The flags in 
the RCB are tested against flags in the FeB or dummy FCB. If 
the statement is invalid, a branch is madE! to an address held in 
either the FCB or the dummy FCB. If the file is not open, the 
dummy FCB will be accessed, and the branch will be made to the 
open/close bootstrap to open the file. If the file is open, a 
real FCB will be accessed, and the branch will be via a 
bootstrap to the error handler. The RCB js set up in static 
internal storage. The format is shown in "Request Control Block 
(RCB)" on page 391. 

The record descri2i.or (RD) contains the address, length and type 
of tha record variable. (The record varic:,ble is the variable to 
or from whi ch the recof'd wi 11 be transmi t-l:ed. ) A record 
descriptor is generated only if a record variable is used. The 
format is shown in "Record Descriptor (RD:" on page 390. 

The KQLgescriptor (KD) contains the addross and length of the 
key val'iable. (The key variable is the vcll'iable to or from 
which the key \~ill be transmitted.) It i" generated only if a 
key variable is used. The format is shown in "Key Descriptor 
(KD)" on page 378. 

If the record variable or the key variable is STATIC INTERNAL, a 
complete RD or KD is set up and placed in static internal 
storage during compilation. In most other circumstances, a 
skeleton RD or KD will be set up, and will be completed by the 
inclusion of the address during execution. The completed 
descriptor may be moved into temporary storage. In certain 
conditions, no skeleton is produced; instead, the complete 
descriptor is built in temporary stora~e by compiled code. 

Chapter 8. Record-Oriented Input/Output 167 



The event variable (EV) (if used) contains information about the 
event that has been associated with the event I/O statement. 
(For a description of the format, see "Event Table (EVTAB)" on 
page 354). The implementation of event I/O is covered brieflY 
at the end of this chapter, and further in 
Chapter 11, "Miscellaneous Library Subroutines and System 
Interfaces" on page 230 for non-multitasking programs and 
Chapter 14, "Multitasking" on page 307 for multitasking 
programs. 

The abnormal locate return block is used only for LOCATE 
statements. It is the address of a block containing the address 
to which control will be passed if an error is detected in a 
LOCATE statement and a normal return is made after execution of 
the ON-unit. The abnormal-locate return address is usually the 
start of the next statement. 

The code and control blocks generated for a transmission 
statement using a library call to the data management routines 
are shown in Figure 66 on page 169. 

168 OS PL/I Optimizing Compiler: Execution Logic 



COMPILATION ~ Record descriptor 
holds address and length 

(j"') DCLCB of record variable 4 Key descriptor 

® 
® 

® 

~identifies file 

REQUEST CONTROL BLOCK 
---.~=:::::::::::-:.:h:.:.o:.:1 d::.s ~statement type 

\-. -~ 

holds address and length of key variable 

WRITE FILE m-liroM (FS) KEYFRO~JK); 
,:. ... :···········.~.ii.·· .. t;·· .. ·;i·;·,·~':,i;;~~~i·.·.·:·.··.i~!·ftif·%f*~··· .. ···'·· 

EXE~~~A~~'t'i'~S~~~CTIONS ® are a call to the pur library module IBMDRIO 

completing and passing PARAMETER LIST ® which holds addresses of 1, 2,3 and 4. 

DCLCB, set up from file declaration holds address of FCB via pseudo register vector. 
(See file declaration). 

REQUEST CONTROL BLOCK holds record of statement type 
000028 0880200091022001 CONSTANT 

RECORD DESCRIPTOR holds address and length of record, set up as far as possible during 
compilation, completed during execution. For statement above set up in temporary storage 
during prologue code 

KEY DESCRIPTOR holds address and length of key, set up as far as possible during 
compilation, but, for this statement, completely built by compiled code in temporary 
storage (see 5). 

Executable instruction 

* STATEMENT NUMBER 4 
000092 41 90 D OB8 
000096 50 90 3 084 
00009A 41 90 D OBO 
00009E 50 90 3 088 
0000A2 41 10 3 07C 
0000A6 58 FO 3 014 
OOOOAA 05 EF 

LA 
ST 
LA 
ST 
LA 
L 
BALR 

9,184(0,13) 
9,132(0,3) 
9,176(0,13) 
9,136(0,3) 
1,124(0,3) 
15,A .. IBMBRIOA 
14,15 

Pick up address record descriptor 
Place in parameter list 
Pick up address key descriptor 
Place in parameter list 
Point R 1 at parameter list 

Call1BMBRIO 

Note: For this statement the record and key descriptors were set up in temporary storage 
during prologue code. 

® PARAMETER LIST passed to IBMBRIO 

00007C 00000000 
000080 00000028 
000084 00000000 
000088 00000000 
00008C 00000000 
000090 80000000 

A .. DCLCB 
A. .CONSTANT 
A .. RD 
A .. KD 
A .. NULL ARGUMENT 
A .. NULL ARGUMENT 

Filled in by linkage editor 
Request control block 
(Record descriptor) 
(Key descriptor (built during execution)) 

Figure 66 (Part 1 of 2). Handling a Transmission Statement 

Chapter 8. Record-Oriented Input/Output 169 



EXECUTION OF TRANSMISSION STATEMENT 

Call from compiled code 

I 
V 
I 

IBMBRIO 

Return to compiled code 
A 

(Resident library interface module) 
loads parameters into registers. 
Calls Pl/I transient library 
transmitter whose address is placed 
in the FCB during the execution 
of the OPEN statement. 

! 
I 

PL/I TRANSMITTER 

(Transient library) 
Calls data management. 
Checks for errors and moves 
record and key if necessary 

I 1 

DATA MANAGEMENT 

Handle the transfer of data 

Figure 66 (Part 2 of 2). Handling a Transmission Statement 

Execution 

Compiled code calls the transmitter interface module, IBMBRIO, 
passing to it the parameter list shown above under "Compiler 
Output." 

The interface module, IBMBRIO~ first acquires a DSA, which is 
used by IBMBRIO and by the transmitter. It then initializes the 
registers for the transmitter, and executes the TM instruction 
in the request control block (RCB). This instruction tests a 
set of flags that are addressed by a pseudo-register offset 
contained in the DCLCB. The contents of the pseudo-register 
offset depends on whether the file is open. If the file is not 
open, it is opened, and return is made to this point to continue 
the statement. (See "Implicit Open for Librar~~Call I/O" on 
page 176, for further discussion of this topic.) 

170 OS Pl/I Optimizing Compiler: Execution Logic 



Transmitter Action 

~VENT OPTION 

When the file is open, the TM instruction tests the validity 
flags in the FCB. This establishes the validity of the 
statement. If the statement is not valid, a branch is made to 
the address held in the word in the FCB following the statement 
validity flags. This address is an entry point in IBMBRIO that 
calls the error handling module, IBMBERR, with an error code 
indicating an invalid statement. 

If the statement is valid, a branch is made to the transmitter 
whose address is held in the FCB. 

After the file is open and the statement validated, control is 
passed to the transmitter, which checks the record and key 
variables for errors, and issues the appropriate data management 
macro instruction. After the data management macro instruction 
has been executed, control returns to the transmitter. The 
transmitter moves the data between the data management buffer 
and the record variable, or sets the pointer to the record, and 
checks to see whether any errors have occurred. 

Transmitter modules do not acquire separate DSAs, but use the 
DSA acquired by IBMBRIO. 

If the statement is valid, control is returned to compiled code. 
The situation when an error has been detected is described later 
in this chapter under the heading "Error Conditions in 
Transmission Statements." 

In certain conditions, data management will require a parameter 
list known as the data event control block (DECB). The PL/! 
library routines include this block in a PL/I control block 
known as the input/output control block (lOeB). A number of 
IOCBs may be used. The number depends on the file type, and on 
the NCP subpara~leter in the DD statement or NCP option in the 
ENVIRONMENT attribute. Depending on the file type, lOCHs may be 
generated during the execution of the open statement, or by the 
transmitters when they are required. 

The format of the IOCB is shown in "Input/Output Control Block 
(IOCB)" on page 374. The format of the DECB and a further 
description of its use is given in the publications OS/VS2 MVS 
Data Management Macro Instructions, or in MVS/Extended 
Architecture Data Man2geme~1-Macro-IDstructions. IOCBs are 
further described in the section "EVENT Option," below. 

When the EVENT option is used, transmission statements are 
always handled by library call. The compiler generates a call 
to IBMBRIO in the usual manner, except that the address of an 
event variable is passed in the parameter list. 

The associated WAIT statement is compiled as a call to one of 
the library wait modules. The module called depends on whether 
or not the program is multitasking. The execution of an I/O 
statement with the EVENT option and its associated WAIT 
statement is shown in Figure 67 on page 172. 

Chapter 8. Record-Oriented Input/Output 171 



P PROC; I 
I 
V 

A 

READ .... EVENT (E);~ I 
V 

IBMBRIO 

r - -<- - - , 
V 

I 
V 

I 

I 
A 
I 

. <-------.. I 
L _)_ Pl/I TRANSMITTER 

ISSUE DATA MANAGEMENT
MACRO 

<+--RETURN I F EVENT I/O 

- , 
I 
V 
I 

I SSUE CHECK MACRO- - -<-. _.J 

I 

I 
TEST FOR ERRORS 
IF NONE RETURN TO WAIT 
f10DUl E I 

~--------------I----------~ 
V 

I 
A 

I 
A 
I 

WAIT (E)j-- - - - -)- - - - - - , 

I 
V 

L __ -----, I 

.<- -

.' 

END P; 

WAIT MODULE 

IF EVENT I/O CAll IBMBRIO ,- - --
RETURN IF NO MORE 
EVENTS TO WAIT ON 

I 
I 
I 

L-. _________ -..J 

Key 

-
- -

----)----- - -)- -
READ EVENT statement 
WAIT statement 
Further Pl/! statements 

Figure 67. Handling the EVENT Option 

Execution 

The principle used in event I/O is that the PL/I transmitter 
returns to compiled code as soon as the data management macro 
instruction has initiated the I/O. 

When I/O with the EVENT option is being executed, the event 
variable associated with the event is set active and flagged to 
indicate that the event is an I/O event. When the WAIT 
statement is reached, the library wait module is entered. When 
the event is an I/O event, the PL/I library wait routine passes 

172 OS PL/I Optimizing Compiler: Execution Logic 



Use of the IOCB 

Allocation of IOCSs 

control to IBMBRIO. From information in the event variable, 
IBMBRIO locates the I/O operation associated with the event, and 
calls the transmitter. The transmitter then issues a CHECK 
macro instruction, and waits until the operation is complete. 
When control returns after the CHECK macro instruction, the 
transmitter assigns the transmitted data, and either returns to 
the wait module, or, if any errors are detected, enters one of 
the error routines. (For further details, see "Error Conditions 
in Transmission Statements" on page 176.) 

When the transmitter assigns the data, it is necessary for the 
address and length of the record variable, and certain other 
information, to be available. This information is retained in 
the input/output control block (IOCB). 

The IOCB is chained to the event variable so that the I/O 
routines can access the statement when control is returned to 
them during execution of the WAIT statement. 

To associate the PL/! statement with the data management 
operation, the DECB for the operation is included in the IOCB. 
(The DECB is a record held by the data rn~nagement routines so 
that the operation can be posted complete.) 

For certain types of PL/I files, the IOCB also contains the data 
management buffer to or from which the transmission will be 
made. 

For direct access files, IOCBs are allocated as they are 
required by the transmitter. 

For sequential access files, the IOCBs are generated by the open 
routines. The number of IOCBs requested corresponds to the 
number specified in the NCP subparameter or option. 

IOCBs and Dummy Records 

In event I/O, the existence of a dummy record may not be 
discovered until after a read has commenced on the record 
following the dummy. When this happens, the DECB and 10CB 
pointers are reset appropriately. 

Raising Conditions in Event I/O 

Exclusive I/O 

Because the CHECK macro instruction is not issued until the WAIT 
statement is executed, PL/I conditions raised in event I/O are 
handled during execution of the WAIT statement. The 
implications of this are discussed in the section on the WAIT 
statement in Chapter II, "Miscellaneous Library Subroutines and 
System Interfaces" on page 230 for non-multitasking programs, 
and Chapter 14, "Multitasking" on page 307 for multitasking 
programs. 

In exclusive I/O, records are protected from simultaneous 
updates from different tasks by use of the ENQ and DEQ macro 
instructions. 

When a READ statement for an exclusive file is being executed, 
an ENQ macro instruction is issued. Unless NOLOCK is specified, 
the DEQ macro instruction is not issued until a REWRITE, DELETE, 
or UNLOCK statement is executed. For unblocked records, the ENQ 
and DEQ instructions are issued on one record only. For blocked 
records, they are issued on the data set. 

Chapter 8. Record-Oriented Input/Output 173 



Eight PL/I transmitter modules are used to handle exclusive 
files. They are shown in Figure 60 on page 157. The ENQ and 
DEQ macro instructions are issued by calling the resident 
library routine IBMBPDQ, which is addressed from the TCA. 

The protection of the data set depends on all files that access 
the data set having the EXCLUSIVE attribute. If the data set is 
accessed by a file that does not have the EXCLUSIVE attribute, 
the data set will not be protected. 

For VSAM files the EXCLUSIVE attribute is ignored and the NOLOCK 
option and UNLOCK statement will have no effect (except that for 
UNLOCK, the key specification is checked.) Data set protection 
is provided by VSAM itself. 

CLOSE STATEMENTS AND IMPLICIT CLOSE 

Compiler Output 

Execution 

For CLOSE statements, the compiler generates a call to the 
appropriate entry point of the open/close bootstrap module, 
passing it the addresses of the DCLCB and ENVB for the file. 

No compiler action is taken for implicit close. 

Files and data sets can be closed either by the PL/I CLOSE 
statement or by the termination of the program. In both cases, 
the close is carried out by library routines. The bootstrap 
module IBMBOCL is called either by compiled code, or, during 
program termination, by the termination routine, IBMBPIT or 
IBMTPJR for multitasking. It loads and calls the transient 
close routine, IBMBOCA. 

The bootstrap routine IBMBOCL is passed a parameter list 
containing the addresses of the DCLCBs and ENVBs for the files 
that require closing. IBMBOCA then closes these files. This 
may involve completing I/O operations, and hence calling the 
transmitter. After handling any necessary transmission, IBMBOCA 
disassociates the file from the data set. 

The ENVB is required if the LEAVE or REREAD option is in effect. 

For implicit closing, the chain of open files starting in the 
TCA is scanned to determine which files must be closed. The 
addresses of the FCBs of these files are then passed to the 
close routine. 

For an explicit close, it is necessary to set the address in the 
pseudo-register vector to point, once more, to the dummy FeB. 
This allows implicit opening to be handled should the file be 
opened again. (See "Implicit Open for Library-Call I/O" on 
page 176 for further details.) 

When IBMBOCA has finished, it returns control (via IBMBOCL) 
either to compiled code (for an explicit close statement) or to 
the termination routine (for ~he end of the program). The code 
and control blocks generated for a CLOSE statement are 
summarized in Figure 68 on page 175. 

174 OS PL/I Optimizing Compiler: Execution Logic 



G) DCLCB identifies file to be closed 

1 
CLOSE FILE (F2) 

~ 
® Executable instructions consist of a call to the open/close bootstrap module passing parameter list ® 

C!) 

® 
DCLCB set up for file declaration see figure 8.5 

Executable instructions 

* STATEMENT NUMBER 5 
OOOOAC 41 10 3 094 
OOOOBO 58 FO 3 010 
0000B4 05 EF 

LA 1,148(0,3) Place address DCLCB in p-list 

Parameter list 

000094 00000044 
000098 00000000 
00009C 80000000 

L 15,A .. IBMBOCLC ) Call open/close toolstrap 
BALR 14,15 

A. .CONSTANT 
A .. DCLCB 
A .. NULL ARGUMENT 

Address of constant showing number of files to be closed 
Address DCLCB 
Used for disposition options, flagged in first bit to indicate last argument 

CLOSE FILE (F1); 

COMPILATION 

L 
ST 
LA 
L 
BALR 

EXECUTION 

7,FO 
7,2528(0,3) 
1,2524(0,3) 
15,A. .IBMBOCLC 
14,15 

Pass address of constant with number of files to be closed 
Pass address of DCLCB of file 
Point R 1 at parameter list 
Branch to open/close bootstrap 

Call from compiled code Return to compiled code 

IBMBOCL 
Entry point C 

Resident library open/close bootstrap 
routine. Calls the close routine 

IBMBOCA 

Transient library close routine. Calls 
transmitter to complete 110 if necessary. 
Calls data management to close the data 
set. Removes FeB from Open File 
Chain. Restores PRV offset to point to 
dummy FCB. 

DATA MANAGEMENT 

Disassociates file from data set. 

PUI TRANSMITTER 

Transient library routine. Calls 
data management to complete I/O 

Figure 68. The Execution of an Explicit CLOSE Statement 

Chapter 8. Record-Oriented Input/Output 175 



IMPLICIT OPEN FOR LIBRARY-CALL I/O 

Compiler Output 

Execution 

There is no compiler output for an implicit open, because it is 
not alwayS-possible to predict which transmission statements 
will cause implicit opening of a file. 

Implicit opening is handled by manipulation of addresses (see 
Figure 69 on page 177). 

When IBMBRIO is called for a transmission statement, it executes 
a test-under-mask (1M) instruction against a set of flags held 
at an offset from the address held in the pseudo-register 
vector. The address held in the pseudo-register vector depends 
on whether the file is open. If the file is open, the 
pseudo-register offset contains the address of the FeB for the 
file. If the file is not open, the pseudo-register offset 
contains the address of a dummy FeB in the program management 
area. 

The address is set during program initialization to point to the 
dummy FCB, and is reset to the dummy FeB whenever a file is 
closed. 

The first word in the dummy FeB is a set of statement validity 
flags. These are all set to zero. Consequently any TM 
instruction executed by IBMBRIO will give a negative result. 
The second word of the dummy FeB is the address of an entry 
point in the open/close bootstrap module. If the TM instruction 
yields a negative result, IBMBRIO branches to the address held 
immediately after the statement validit~ flags. Consequently 
when an attempt is made to execute a transmission statement on a 
file that is not open, control passes automatically to the open 
routines. 

The open routines open the file, and set up an FeB and DCB for 
the file. The address of the FeB is placed in the 
pseudo-register offset, and execution of the statement is 
reattempted by branching once more to IBMBRIO. 

ERROR CONDITIONS IN TRANSMISSION STATEMENTS 

To provide PL/! error handling facilities with the mlnlmum 
possible overhead to error-free programs, transient-library 
modules are used. These are not loaded unless an error occurs. 
Two modules are available for every file type except VSAM: 

1. The ENDFILE routine, IBMBREF, which can deal only with the 
ENDFILE condition. 

2. A general error module capable of handling all conditions 
that may arise, including ENDFILE, but loaded only if the 
TRANSMIT, RECORD, KEY, or ERROR condition occurs. (See 
Figure 70 on page 178.) 

176 OS PL/I Optimizing Compilerl Execution Logic 



DCLCB 

.' .... 

PRV 

Offset within PRV •••• 
1--------------1 •• 

.' 

Initialized to dummy FCB 
Changed to real FCB when 
file is opened 

KEY 

.--~ 

••••••••• 

I 
I 

/ 

----- ----------

+ DUMMY FCB 

Address of open/close 
bootstrap routine 

Address of open/close 
bootstrap routine 

Address contained in PRV when file open 

Address contained in PRV when file closed 

Connection between DCLCB and PRV field . 
The DCLCB contains the offset filled in by 
the linkage editor. The PRV itself is 
addressed from the TCA. 

FCB 

Address of error 
handling module 

Address of data 
management routine 

Figure 69. The Addressing Mechanism Used during Implicit Open 

Chapter 8. Record-Oriented Input/Output 177 



Record I/O 
Error Module File Types 

IBMBREA Consecutive buffered 

IBMBREB Indexed 

IBMBREC Regional, consecutive 
unbuffered, and transient 

VSAM 
IBMBREE 

All 5EQUENTIAL/INPUT/ 
ENDFILE Module UPDATE file types 

(excluding VSAM) 
IBMBREF 

Figure 70. Record I/O Error Modules 

This method is used because the short FNDFILE module gives 
faster execution to those programs that use the ENDFILE 
condition to handle program flow. The transient error modules 
for all file types are identified by the six letters IBMBRE 
followed by a further single character (see Figure 70). 

If a transmission error occurs, the transmission error routine 
within the transmitter will be entered, whether an in-line or 
library-call statement is being executed. The transmission 
error routine has been nominated in the SYNAD exit address 
placed in the DCB by the OPEN routines. Similarly, if 
end-of-file occurs, the end-of-file routine within the 
transmitter will be executed. Record and key errors are 
detected either by the transmitter or by compiled code. 

When any of the errors or PL/I conditions mentioned above occurs 
during the execution of a record I/O statement, control is 
passed to the address held in the word "FERM" in the FCB. The 
address may be anyone of the following: 

• The address of IBMBREF, the ENDFILE module. 

• The address of the general error module for the file type. 

• The address of a bootstrap routine, IBMBRIOB. T~,is routine 
constructs the name of an error module by taking the 
skeleton IBMBRE*A and replacing the "x" by the letter in the 
single character field "FEFT" in the FeB. IBMBRIO then 
loads this error module, places the address of the module in 
FERM, and branches to the module. 

So, by changing the contents of the field FEFT, the transmitter 
can select a particular error module. The contents of FEFT is 
one of the following: 

• A chara6ter indicating the name of the general error module 
for the file type. This character is placed in FEFT during 
the execution of the OPEN statement. 

• The character "F," indicating the name of the ENDFILE 
module. The contents of FEFT is changed to "F" by the 
end-of-file routine in the transmitter, which is entered 
when data management detects end-of-file. 

Thus the module loaded by the bootstrap routine IBMBRIOB, and 
the address placed in FERM, depend on whether end-of-file or 
another error is the first to occur on the file. 

178 OS PL/I Optimizing Compiler: Execution Logic 



Contents FEFT 

Initialized by open routine 
with character "A", "B", "C", "E" 
indicating general error support 
module. 
Altered by end of file routines 
in transmitter to character "F" 
indicating ENDF I LE module 

Contents F EMT 
Always contains character 
indicating general error 
support module 

FCB 

FEMT 

FERM , 

IBMBRIO 
(entry point B) 
Loads and calls module 
indicated in "FEFT" and 
places its address in FERM. 

IBMBREF 
Endfile module 
If ENDFILE : 
Calls error handler 
If other error: 
Loads and calls 
error module indicated 
in "FEMT". Placing 
address in FERM 

~-----------.---l , 

Key 

•••••• 

, 

If no errors have occurred . 

, , , 

If 1st. error was ENDFILE and 
no other errors occurred. 

If non-E N 0 FILE errors have 
occurred. 

IBMBRE/A/B/C/E 
General error support modules. 

Handle all errors including 
\ ENDFILE 

Figure 71. The Fields Used in Record I/O Error Handling 

Chapter 8. Record-Oriented Input/Output 179 



The result of this arrangement is that the general error module 
can be called in an end-of-file situation. Similar-ly, the 
ENDFILE module can be called when another type of error occurs, 
if ENDFILE was the first condition to occur. To overcome this 
problem, the general error module contains code to handle 
ENDFILE, and the ENDFILE module contains code to test for other 
conditions, and load and call the general error module if 
appropriate. 

The ENDFILE module constructs the name of the general error 
module in a similar manner to that used by IBMBRIOB, described 
above. However, the sixth letter of the name is taken from a 
field in the FCB called "FEMT". FEMT always holds the character 
that identifies the general error module for the file. When the 
name has been constructed, the general module is loaded, its 
address is placed in FERM, and a branch is made to the module by 
way of the bootstrap routine in IBMBRIO. 

General Error Routines (Transient) 

ENDFIlE Routine 

TRANSMIT Condition 

The general error routines set up a parameter list and the 
relevant built-in function values in the ONCA (described in 
Chapter 7). They then call the resident error handler IBMBERR 
to handle the condition. If a normal return is made from an 
ON-unit, the general error module will raise any further 
conditions that have occurred by calling IBMBERR with the 
appropriate error code. After all conditions have been raised, 
a return is made to compiled code, or, in event I/O, to the wait 
module. 

The ENDFILE routine checks to ensure that the situation which 
has resulted in the call is really end-of-file, and, if so, 
passes control to the error handler. 

For certain file types, when a permanent transmission error 
occurs, action must be taken to prevent subsequent issuing of 
data management macro instructions. To achieve this, addresses 
are manipulated so that, instead of IBMBRIO calling the 
transmitter by its primary entry point, it calls an error 
routine within the transmitter, which in turn calls the error 
handler to raise the TRANSMIT condition. 

IN-LINE I/O STATEMENTS 

Control Blocks 

Most transmission statements on bu"ffered consecutive files are 
implemented by short in-line calls to the data management 
routines (see Figure 74 on page 184 for details). Such 
statements are referred to as "in-line I/O statements." Only 
READ, WRITE, and LOCATE statements are handled in "this way. 
OPEN and CLOSE statements are always executed by library calls. 

For in-line I/O statements, the only control blocks that are set 
up are the FCB and DCB. The request control block, record 
descriptor, and key descriptor are not required as they are 
merely parameters for full library subroutines. 

180 OS PL/I Optimizing Compiler: Execution Logic 



Executable Instructions 

Error Conditions 

For in-line I/O, a call is made to a special entry in a 
transmitter. In an MVS/XA environment, this transmitter 
provides the correct addressing mode and directly calls the data 
management routine via the address held in the FeB for output 
files, and in the DCB for input files. In addition to calling 
the data management routine, compiled code moves the data as 
necessary to or from the record variable, or sets appropriate 
pointers. Compiled code may also check for the RECORD 
condition. 

For U-format and V-format records on output files, compiled code 
does not call data management direct. Instead a call is made to 
another short call within the PL/I transmitters. These routines 
are addressed through the field in the FeB that normally 
addresses the data management routines. This field is 
initialized by the open routines when U-format or V-format 
records are used on the file. The compiler can thus produce the 
same code for all record types. 

For certain types of blocked file, deblocking is handled by 
compiled code. Fields in the DCB hold the address of the 
current record, the address of the end of the block, and the 
record length. Before a call is made to data management, a 
check is made to see whether the end of the block has been 
reached. This is done by adding the record length to the 
current record address. If the resultant address is the end of 
the block, a call is made to data management for a new block; 
otherwise, the new address can be taken as the start of the 
required record. 

If an error occurs during transmission, or if end-of-file is 
reached, the data management routines will branch to the ENDFILE 
or SYNAD routines that are held in the PL/I transmitter. (The 
Pl/I transmitter is always loaded by the open routines.) The 
ENDFIlE and SYNAD routines set an error flag in the FCB, and 
return to compiled code, normally via the data management 
routine. If the error flag is all,. or if the RECORD condi tion 
has occurred, compiled code branches to IBMBRIOD. This results 
in a call being made to the transient error module. 

Typical code produced for an in-line I/O statement is shown in 
Figure 72 on page 182. 

Implicit Open for In-Line Calls 

Implicit opening for in-line calls is handled in a similar way 
to that used for library calls. 

The field that, in a normal FCB, points to the data management 
transmitter, in the dummy FCB points to the open/close bootstrap 
routine, IBMBOCL (see Figure 69 on page 177). This results in a 
branch being made to the OPEN routines when an attempt is made 
to access a file that is not cpen. When the open routines have 
been executed, the address in the pseudo-register vector is 
altered to point to the FCB that has been created for the file. 

If the file is successfully opened, a test is made to see 
whether the entry to IBMBOCL was for an in-line call and, if it 
was, control is passed to the data management address held in 
the DCB. This causes the data management module to be entered 
and a return made to compiled cod~. 

Chapter 8. Record-Oriented Input/Output 181 



SOURCE STATEMENTS 

1 TOTAL: PROC OPTIONS(MAIN); 
2 1 DCl lINE FILE RECORD INPUT 

ENV(FB I RECSIZE(80)IBlKSIZE(400),TOTAl); 
3 1 DCl CARD CHAR(80); 
4 1 READ FIlE(lINE) INTO(CARD); 
5 1 END TOTAL; 

* STATEMENT NUMBER 
00005E 18 72 
000060 58 FO 3 024 
000064 18 BF 
000066 58 10 C 004 
00006A SA 10 B 000 

00006 E 58 20 1 000 
000072 58 10 2 014 
000076 18 81 
000078 BF 17 8 040 
00007C 4A 10 8 052 

000080 59 10 8 048 
000084 47 40 7 03A 
000088 18 18 

0OO08A 41 80 3 028 

00008E 58 FO 2 OIC 
000092 05 EF 

000094 47 FO 7 03E 
000098 

000098 BE 17 8 04D 
00009C 
00009C D2 4F D OB8 

OOOOA2 
00OOA2 91 CO 2 02C 
00OOA6 47 80 7 052 
OOOOAA 58 FO 3 01C 

OOOOAE 05 EF 
OOOOBO 
OOOOBO 18 27 

Figure 72. In-line 

4 
LR 7,2 Save program base 
L 15,36(0,3) load R15 address of DClCB 
lR 11,15 load R11 DelCB 
L 1,4(0,12) Load Rl PRV 
A 1,0(0,11) Add PRV offset in DeLCB to 

address in Rl 
l 2 , 0(0,1) Point R2 at FCB 
L 1,20(0 , 2) Point R1 at DCB 
lR 8,1 load address of DCB 
ICM 1,7,77(8) Get last record address 
AH 1,82(0,8) Add logical record length 

to access required record 
C 1 , 72(0 , 8) Compare with end of buffer 
BL CL.2 Branch around Library call 
LR 1,8 Restore DCB address if a new 

buffer is required 
lA 8 , 40(0,3) Pass abnormal retur~ ~ddress 

(Cl.3) in R8 for error 
handling 

l 15,28(0,2) Get short transmitter 
BAlR 14 , 15 Branch and link to data 

management routine 
B CL.4 Don't need next instruction 

CL.2 EQU * label branched to, if no data 
management call 

STCM 1,7,77(8) Save record address 
Cl.4 EQlJ * 1 000 MVC CARD(80),0(1) Move record into record 

variable 
Cl.3 EQU * TM 44(2),X'CO' Test for errors 

BZ Cl.5 Branch if no errors 
l 15,A .. IBMBRIOD If errors, call error 

bootstrap routine 
BALR 14,15 

Cl.5 EQU * lR 2,7 Restore Program Base 

I/O Transmission Statement 

A further problem arises over deblocking. For certain blocked 
files, before data management is called, a test is made to see 
whether the end of the block has been reached. For such files, 
values are placed in the dummy FCB that ensure that if the test 
for end-of-block is made before the file has been opened, the 
test will reveal an apparent end-of-block. A branch will 
therefore be made to the transmitter field in the dummy FCB, and 
control will pass to the open/close bootstrap routine. 

182 as PL/I Optimizing Compiler: Execution logic 



::0 
CD 
n 
o ., 
Q. 
I 

o ., .... 
CD 
:s 
t+ 
CD 
Q. 

.... 
:s 
"0 
c 
t+ 

" o 
C 
t+ 
'D 
c: 
t+ 

"11 .... 
Ul 
C ., 
CD 

-..J 
(.01 

0 
< 
(]) ., 
< .... 
CD 
~ 

0 
-t\ 

::0 
CD 
(') 

0 ., 
Q. 

.... 
" 0 

------,.----------------------,------_ .. _-- ---

SOURCE 
PROGRAM 

Key 

COMPILATION COMPILED CODE 
----- ------------+---

EXECUTION 

LIBRARY AND DATA MANAGEMENT MODULES 

EXPLICIT OPEN IMPLICIT OPEN 

1- - - - - -. - - - - - - - - --I 
I I 

I 
I 

I 
1 

& 
I 
I 
I 

COMPILED CODE 

possible~ 

....................................................................................................................... ~ ................................... :.: 
L-_~_----l r---- 4 -------- -- ---, 

YES 

Valid 

Path using library calls 

Path lor in-line 110 

YES 

Common path, in-line/library 

Path for implicit open 

In-line 

LIBRARY 

I I Associate Ii Ie 
I 1 with data set 
I IBMBRIO I Load trans 
I :. ,1 __ m~'t-te-r-._~ 

Branch to ... ~b~r~ ~I,- _ J L ____ ~ "'; ~II~ -, :.' 
ERROR 
handler 
(lBMBERRA) 
or open 
bootstrap if 
file not 0 n 

NO 

--.-- -T------------·------~-~-
I 
I 
1 

I 
I 
I 
I 
I 
I 
1 
I 

.to 
I 

TRANSMITTER 

YES 

... 
1 

I 
·· .. 1"········1 

L-_~_---1.I ...... L •• _ ... _ •• _ •• _ •• _ •• -+ • ...:..~O-=-•• _ •• _ •• _._ • .-J.~ •••• ~ ••••••••• : 

i • 

YES 

CONTINUE 

Record 1/0 
Error module 

Call 
IBMBERR 

NO 

CONTINUE 



File type: Consecutive buffered (TOTAL option used) 

statenlent 

Record type: F,FB 

READ SET 

READ INTO 

WRITE FROM 
(fixed s·tring) 

WRITE FROM 
(varying string) 

WRITE FROM 
Areal 

LOCATE A 

statentent 

Record type: U,V,VB 

READ SET 

READ INTO 

WRITE FROM 
(fixed string) 

WRITE FROM 
(varying string) 

WRITE FROM 
Areal 

Record Variable 
Requirements 

None 

Length known at compile 
time (max. length if a 
varying string or areal) 

Length known at compile 
time 

length known at compile 
time (max. length if 
varying string or areal) 

Record Variable 
Requirements 

None 

length known at compile 
time (max. length if a 
varying string or areal) 

Length known at compile 
time 

ENVIRONMENT Option 
Requirements 

None 

RECSIZE known at compile time 
SCALARVARYING option if 
varying string 

RECSIZE known at compile time 

RECSIZE known at compile time 
SCAlARVARYING option used 

RECSIlE known at compile time 

RECSIZE known at compile time 
SCAlARVARYING if varying 
string 

ENVIRONMENT Option 
Requirements 

Not BACKWARDS 

RECSIZE known at compile 
SCAlARVARYING if varying 
string 

RECSIlE known at compile 

time 

time 

RECS I lE kno~m at compile time 
SCALARVARYING option used 

RECSIlE known at compile time 

LOCATE Length known at compile 
time (max. length if 
varying string or areal) 

RECSIZE known 
SCAlARVARYING 
string 

at compile time 
if varying 

Figure 74. Conditions under Which I/O Statements Are Handled In-line 

Including structures whose last element is an unsubscripted 
area. 

Notes to Figure 74: All statements must be found to be valid 
during compilation. File parameters or file variables are never 
handled by in-line code. 

BLKSIlE may be specified instead of RECSIZE for FI VI and U 
formats (but not FBI VB). 

184 OS PL/I Optimizing Compiler: Execution Logic 



CHAPTER 9. STREAM-ORIENTED INPUT/OUTPUT 

Note on Terminology 

INTRODUCTION 

In this chapter, the terms source and target are used when 
referring to transfer of data. The source is the point from 
"Jhich the data is taken; the target Is the point to which it is 
moved, possibly in a converted format. 

PL/! stream-oriented input/output allows the programmer to move 
data between a PL/I variable and an external medium without any 
concern about internal and external data types or any attention 
to record boundaries. Both conversion and record boundary 
problems are handled automatically. 

Although it appears to the programmer that the data is moved 
directly between the external medium and the Pl/I variable, the 
move is, in fact, a two stage process, as shown in Figure 75 on 
page 186. In the first stage, the data is moved to a data 
management buffer. In the second stage, it is moved from the 
buffer to the target. When the data is moved to or from an 
external medium, a complete record is always moved. When the 
data is moved to or from a Pl/I variable, only as much data as 
is contained in the variable is moved. The amount of data moved 
in the one stage need bear no relation to the amount moved in 
the other. Thus synchronization of the two stages is the 
principal job in implementing stream I/O. 

Transmission between the buffer and the external medium is 
handled by the routines of OS data management. These routines 
are called by the Pl/I transient library transmitters in the 
same way as that used in library-called record I/O. The 
movement between the buffer and the PL/! variables is generally 
handled by the PL/I conversion routines. The transmitters and 
the conversion routines are called by director routines. These 
routines determine which modules are required, and when they are 
needed. 

Data items transmitted by stream I/O are not affected by record 
boundaries (see Figure 76 on page 1871. There may be any number 
of data items in a record, and an item may span any number of 
records. Because the data management routines make only one 
record available to the program at anyone time, a method is 
needed to build up complete items if they span the record 
boundary. Similarly, because GET and PUT statements may read or 
write less than a complete record, a method is needed of keeping 
track of the position reached in the record, so that the next 
GET or PUT can start from the correct position. 

Chapter 9. Stream-Oriented Input/Output 185 



PUI Statement: GET lIST(I); 

r----------------, 
I PUI transmitter modules I 
I call lI0CS routines to move I 
I the data between the external ~ - - - - - - - - - - - - - - --l 

medium and the data manage· I 

External medium File SVSIN 

8 
\ 

I 
\ 
\ 
\ 
\ 

f 
\ 
\ 
\ 
\ 
\ 

9 10 

I ment buffer. I 
I I 
I I 
L------ r ---------

I Data Management buffer 
I .. 

8 
Stage 1 

9 10 

Stage 2 

I 
I 
I 
I 
1 

• 

\ 
\ 
\ 
\ 

r--------- r----------------
I Conversion routines or I Director routines control the 
I compiled code convert I I process, calling necessary 
I data and move to variable. 1 1 conversion and transmitter 

H
: 1 I modules when required. 

I !4--4.J 
I I 

'--_______ ... L ______________ .-1 1 __________ ,.- ____ _ 

0000000000001000 

Variable I (Fixed Binary 15,0) 
(in main storage) 

Stream input/output is a two stage process. The data is moved between the external medium and the data management buffer, and 
between the buffer and the variable. Any necessary conversions are made between the buffer and the variable. The operation is 
controlled by director modules. The director modules call the appropriate routines to do the transmission and conversion. Transmission 
is carried out in a similar way to that used for RECORD I/O. 

Note that a further input statement will require the value 9 which is already in the data management buffer. Consequently the trans. 
mitter ntHld not be called and II pointer must be kept to the position reached in the buffer. 

Figure 75. The Principles Used in Stream I/O 

186 OS PL/I Optimizing Compiler: Execution Logic 



-rRTA ITE~ ONE
! r L L r 

ITEM FIVE-

(' 
~ 

-DAT~ ITEM THREE-

oLooooo 00000000 000 000 0 00000000000000000000000000000000000000000000000000000 
I 1 3 4 5 6 7 8 9 10 II I) 13 II '\ h; 17 ;8 19 ,,} 11 2i )] 1~ 1\ :5 17 1819 30 31 31 33 j4 35 16 37 38 39 40 41 4: 41 " 4\ 46 4; 48 4q \0 51 51 53 5,1 S5 \6 57 58 59 EO hi 61 63 6. C' 66 67 G3 Cq IC 'I ,? )' 'I )', I, ;7 11 19 ao 

111111111111111: 1; 11111111111111111111111111111111111111111111111111111111111111 

2 72 2 2 2 2 22 22 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 i2 2 2 2 2 2 2 2 2 'l 2 2 2 2 2 2 2 22 2 22 2 2 22 22 2 2 2 2 2 2 2 2 2 2 22 2 'l 2 12 12 2 

3 33333333333333'333 33333331333333333333333333333333333333333333333333333333333 

4 .. 4 l 4 4 4 4 4 4 4 4 4 4 i4 4 4 4 4 4 4 " 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

Figure 76. Record Boundaries Do Not Affect Stream I/O 

Operations in a stream I/O statement 

A stream I/O operation can involve any or all of the following 
operations: 

1. Opening the file, and raising the ERROR condition if the 
statement is invalid. 

2. Keeping track of the position in the buffer. 

3. Calling the transmitter for a new record. 

4. Building in intermediate workspace an item too large to be 
held in the current record. 

5. Determining which conversion is required, and calling the 
routine to carry out the conversion. 

6. Enqueuing and dequeuing on SYSPRINT. 

Control of operations (2) through (5) is handled by director 
routines. For list-directed and data-directed I/O,PL/I library 
director routines are used. For edit-directed I/O, the job is 
shared between library routines, compiler-generated subroutines, 
and compiled code. 

Chapter 9. Stream~Oriented Input/Output 187 



Before the director module Ol~ director code receives control, an 
initialization/termination module is called. This module 
handles item I in the list above: checking statement validity, 
and opening the file if it is not already open. The 
initialization/termination routine is also called when every PUT 
statement is completed, to dequeue on SYSPRINT and, for 
conversational files, to complete the output. The routine is 
also called on the completion of GET statements with the COPY 
option, to transmit the data to the copy file. 

Because there are three modes of stream I/O, the exact situation 
cannot be defined in a generalized discussion or diagram. 
However, the basic principles are shown in Figure 77 on 
page 189. The sequence is: 

1. A call to the initialization module, to check statement 
validity, and to open the file if necessary. 

2. A return to compiled code, to set up parameters for the 
director module. 

3. A call to the director module to handle any conversion, 
transmission, and housekeeping problems that may be 
involved. 

4. For PUT statements, a terminating call to the 
initialization/ termination routine to dequeue on SYSPRINT. 

188 OS PL/I Optimizing Compiler: Execution Logic 



Figure 77. 

Pa .. A ISIOCBI 
to Initializing module 
Indicate stmt type In 
SIOCB 

L--__ -,-__ ---' 

} "'.""0 "'''' 

NO 

File 
open"} 

NO 

COMPILED CODE 

New YES 
record >-_____ ------, 
needed' 

NO 

YES 

CONTINUE 

CONVERSION 
Movement 
between 
buffer and 
variable 

COMPILED CODE 

TRANSMISSION 
Movement 
between 
buffer and 
external medium 

INITIALIZATION 

MODULE 

Checks statement validity. 
opens file if necessary 

DIRECTOR 

MODULE 

Hlndles complete operation 
Cllling trlnsmltter Ind con 
verSion modu lei '1 requ!fed 

Simplified Flow Diagram of a Stream I/O Statement 

Chapter 9. stream-Oriented Input/Output 189 



stream I/O Control Block (SIOCB) 

FILE HANDLING 

Transmission 

To simplify communication between the large number of routines 
that may be used in a stream I/O operation, a control block is 
set up for the duration of the execution of the stream I/O 
statement. This control block is known as the stream I/O 
control block (SIOCB). The contents of the SIOCB are shown in 
Figure 78. The SIoeB contains the addresses of the source and 
target (or their locators), and of the DEDs of the source and 
the target. The SIOeB is passed directly to the conversion 
routines. The first four words contain the parameters expected 
by the conversion routines. 

Field Contents 

SSRC Address of source or source locator 

SSDD Address of source DED 

STRG Address of target or target locator 

SrDD Address of target DED 

SFlG Flag bytes 

SFCB Address of FCB for file 

SRTN Abnormal return address (next statement) 

SAVE Save word used by compiler 

SCNT Count of items transmitted (Halfword) 

SOCA Address of ONCA 

SSTR Area present only for GET or PUT STRING, to hold a 
dummy file control block. (27 fullwords) 

Figure 78. Stream I/O Control Block (SIOCB) 

In stream I/O, file organization is always sequential and the 
access method used is the queued sequential access method 
(QSAM). 

Transmitters are called by the director modules or, in certain 
cases, by the initialization module, or by the close module to 
complete transmission when the program is terminated. 

As with record I/O, transmitters call data management modules. 
The Pl/I transmitters contain the EODAD and SYNAD routines, 
which are entered when end-of-file or other errors are detected 
in the routines. Nine different transmitter modules are used in 
stream I/O; these include two for conversational files. The 
stream I/O transmitters are listed in "Transmitter Modules" on 
page 217. 

190 OS Pl/I Optimizing Compiler: Execution logic 



Opening the File 

Implicit Open 

The same basic method is used for opening the file as is used 
for record I/O. During compilation, a declare control block 
(DClCD) and an environment control block (ENVB) are set up. An 
open control block (OCB) is also set up if any environment 
options are declared in the OPEN statement. At open time, the 
information addressed from the DClCB, ENVB, and the OCB (if any) 
is merged with any information in the DD statement, and an FCB 
is set up. The Pl/I transmitter is loaded, and its address 
placed in the FCB. A DCB, addressed from the FCB, is set up. 
The DCB contains the address of the data management transmitter. 
Finally, the address of the FeB is placed in the pseudo-register 
vector. 

Implicit opening is handled by the initialization routines, 
which check to see whether the file is open and, if not, call 
the open/close bootstrap routine IaMBOCl. 

The FCB for stream I/O is similar to that used for record I/O. 
However, it contains certain additional fields which are needed 
only for stream I/O. The most important of these fields are the 
buffer control fields. The format of a stream I/O FCB is shown 
in "Stream I/O Control Block (SIOCB)" on page 400. 

Keeping Track of Buffer Position 

Two fields in the FCB are used to keep track of the position 
which has been reached in the data management buffer, and to 
indicate when a new record will be required. These fields are 
the buffer control fields: 

FCBA 

FREM 

Points at the position reached in current record. 

Number of unused bytes remaining in the record. 

FCBA points to the position reached in the record and enables 
the director routines to identify from where the next input item 
must be read, or where the next output item must be written. 
FREM contains the number of bytes left in a record. It enables 
the airector modules to determine when a new record will be 
required, and whether an item is too large to be held in the 
remainder of the record and will consequently require 
intermediate workspace. Figure 79 on page 192 illustrates the 
use of FCBA and FREM. 

Enqueuing and Dequeuing on SYSPRINT 

Because SYSPRINT is used as the standard file for error 
messages, it is necessary for output to SYSPRINT to be enqueued. 
This prevents error messages from one task in a Pl/I program 
interrupting other output to SYSPRINT from another task. 

When SYSPRINT is used it is enqueued by the initialization 
routine. When any PUT statement is completed, regardless of the 
output file, a call is made to the initialization/termination 
routine. This routine then checks to see if SYSPRINT has been 
enqueued and, if it has, dequeues it by calling the DEQ routine. 

Chapter 9. stream-Oriented Input/Output 191 



PL/I STATEMENT: 

GET FILE (SYSIN) LIST (A, B); 

80 Byte record 
In data management buffer 

000008DOOO O~ 0800 C~O G QCGOOCOOO~OCGocrQOCOGno an ~ooonoaooOa31JJ~GO~ a J8000 

l' 1· 111111111 i 11 

FCBA FCBA 

-~ ... -
FCBA 

+--- .... :---: -+ - - - +---+--:--+-
Holds addr'ess reached 

At start offirst item 

FREM 
VALUE 80 

after processing first item start of second item 

FREM 
VALUE 50 

FREM 
VALUE 41 

FREM holds number of remaining bytes 

after processing second "item 

FREM 
VALUE 3 

Figure 79. The Use of FREM and FCBA in Recording Buffer Position 

192 OS PL/I Optimizing Compiler: Execution Logic 



HANDLING THE CONVERSIONS 

Conversions in stream I/O are normally handled by the library 
conversion package. The conversion package, described in 
Chapter 10, consists of conversion routines and conversion 
director routines. Conversion director routines examine the 
DEDs of the source and the target passed in the argument list, 
and determine which entry point of which conversion module is 
required. Each possible conversion has a unique entry point in 
one of the conversion routines. For stream I/O, the argument 
list passed is contained in the first four words of the SIOCB. 

A number of conversion director modules are used exclusively by 
edit-directed stream I/O. These are called external conversion 
directors, and are listed in "External Conversation Director 
Modules" on page 218. Each module corresponds to a particular 
format of input or output. When the type of input or output has 
been determined by the director modules, the appropriate 
conversion director routine can be called to handle the 
conversion. 

In edit-directed I/O, the conversion required is normally 
predictable during compilation, because it is implied in the 
format list. Consequently, the conversion modules can be called 
from compiled code rather than from the stream I/O director 
routines; A third possibility is that compiled code will handle 
the conversion in-line. 

When a library conversion module is required by compiled code, 
the conversion director module may be called, or the conversion 
module itself may be called directly. When the conversion 
module is called, compiled code must carry out the jobs normally 
handled by conversion director modules, that is, setting up a 
number of fields that are used in handling the CONVERSION 
condition and other Pl/I exceptional conditions. 

HANDLING GET AND PUT STATEMENTS 

There are considerable differences in detail between the 
handling of GET and PUT statements for the three different modes 
of stream I/O. A generalized impression is given in Figure 77 
on page 189 and summarized above. 

This chapter first covers the implementation of list-directed 
GET and PUT statements in some detail, and then highlights the 
differences for data-directed and edit-directed I/O. 

LIST-DIRECTED GET AND PUT STATEMENTS 

PUT LIST Statement 

Implementation of a list-directed output statement is shown in 
Figure 80 on page 195. The process consists of five stepsl 

1. Compiled code calls the initialization routine, passing the 
address of the DClCD and of the SIOCB. Flags indicating the 
statement type have been set in the SIOCB by compiled code. 

2. The initialization routine, IBMBSIO, calls the open routine 
if the file is not open, and checks the validity of the 
statement. If the statement is invalid, a branch is made to 
the error handler, passing an error code indicating "invalid 
statement." This results in a message being generated, and 
the ERROR condition being raised. If the statement is 
valid, control is returned to compiled code. 

IBMBSIO also handles any format options, by calling the 
formatting module IBMBSPl. Control then returns to compiled 
code. 

Chapter 9. Stream-Oriented Input/Output 193 



3. Compiled code places the address of the source (or its 
locator, if the item is a string) and'the address of the 
source DED in the SIOCB. (See Chapter 4 for information on 
locators.) Compiled code then calls the director module. 

4. The director module completes the SIOCB with the address of 
the target locator and the address of the DED of the target. 
The target locator gives the length required for the item. 
As the target is a character string, a locator will always 
be used for it. The address ~f the target is a position in 
the buffer. For PRINT files, the position is indicated in 
the tab table, which will either havo been set up by the 
programmer by use of PLITABS, or may be the default tab 
table in the library module IBMBSTAA. For non-print files, 
each item is followed by a single blank. PLITABS is 
addressed from the TCA. 

When the starting position for the item has been found, the 
director module determines whether there is enough space in 
the output buffer for the converted item. There may not be, 
for one of two reasons: 

a. The end of the buffer has been reached. 

b. The converted item will be too large to hold in the 
buffer. 

If the end of the buffer has been reached, the transmitter 
is called to acquire a new record. If the converted item 
will be too long to fit in the buffer, intermediate 
workspace will be needed. 

If it is simply a case of acquiring a new record, the 
director calls the transmitter to acquire it. The director 
then calls the appropriate conversion routine, passing it 
the SIOCB as a parameter list. The conversion routine will 
then move the data from the PL/I variable to the new record 
in the data management buffer. 

If, however, the converted item will span the boundary 
between the current and subsequent records, intermediate 
workspace is acquired in the form of a VDA (variable data 
area--see Chapter 6). The converted item is then placed in 
the VDA. As much of the data as will fit is moved from the 
VDA into the data management buffer, and a new record is 
acquired by a call to the output transmitter. The new 
record is then filled from the VDA. This process is 
continued until the complete item has been moved into 
buffers. The buffer pointers FREM and FCBA are updated. 

If there are further data items to be handled, a return is 
made to step (2), and the address of a new source field and 
its DED are placed in the SIOCB. This process is continued 
until all items in the data list have been processed. 

5. The statement is completed by a call to the initialization/ 
termination routine. This checks to see whether SYSPRINT 
has been used and, if so, dequeues on SYSPRINT. For 
conversational files, it also calls the transmitter to 
transmit any information that is still held in the buffer. 

The object code produced for a PUT LIST statement is shown in 
Figure 81 on page 197. 

194 as PL/I Optimizing Compiler' Execution Logic 



PUT LIST A) 

FLOW DIAGRAM 

Place address 
SIOCB in 
parameter list 

Call 
initializing 
module 

'0 

Is 
File 

open 
? 

YES 

Is 
statement 

valid 
? 

~, YES 

Set FCB & 
ONCA address 
in SIOCB 

NO .. .. 

NO ... .. 

Step 1 
Compiled code 

Step 2 
Initializing routine 
IBMBSIO 

Call IBMBOCL 
to open fi Ie & 
load transm itter 

Call error 
handler 

COMPILED CODE & NOTES 

LA 
ST 
01 
LA 
ST 
MVI 
LA 
L 
BALR 

7,200(0,13) 
7,76(0,3) 
76(3),X'80' 
1,200(0,13) 
1,192(0,13) 
217(13),X'40' 
1,72(0,3) 
15,A .. IBMBSIOA 
14,15 

Load address SIOCB 
Place in parameter list 
Mark end of parameter list 
Saves SIOCB in a temporary 

pointer 
Set LIST OUTPUT flag 
Point R1 at parameter list 
Call stream output 

initializer 

The initialization routine is passed the address of the 
FCB and the address of the SIOCB. 

It opens the file if necessary and acquires the first 
record for print files. If the statement is invalid it 
calls the error handler. I f the statement is valid it 
places the addresses of the ONCA and the FCB in 
the SIOCB and returns to compiled code. 

Figure 80 (Part 1 of 2). Flow of Control through a PUT LIST Statement 

Chapter 9. Stream-Oriented Input/Output 195 



Point Rl 
at 
SIOCB 

Put address 
of OED & 
source variable 
in SIOCB 

Set target 
address in 
SIOCB 
Call conversion 
module 

Step 3 
Compiled code 

Step 4 
Director module 
IBMBSLO 

Call transistor 
for new record 

Get VDA & set 
as target for 
conversion 

Fill record 
from VDA -
call transmitter 

Update FCBA YES 
& FREM 

Continue as 
from Step 3 
until state
ment complete 
When complete 
call termination 
routine 

. Compiled code 

LA 14/A 
LA 15/DED .. A 
L 1/192(0/13) 
STM 14/15/0(1) 

L 1/192(0/13) 
L 15/A .. IBMBSIOT 
BALR 14/15 

Get the address of A 
Get the address of OED .. A 
Reloads Rl 
Put addresses of A and OED .. A 

in SIOCB 
Restore SIOCB 
Call termination 

routine 

The director module calls the transmitter and 
conversion modules when required and handles 
any housekeeping problems. 

Before calling the conversion module it completes 
the SIOCB with the address of the target locator 
and the address of the target OED. 
The target for the conversion is either the data 
management buffer or a VDA acquired for 
intermediate workspace. 

I f the statement is complete compiled code continues 
with the next statement. If the statement is not complete 
compiled code places new data in the SIOCB and once 
more calls the director module. 
When statement complete make terminating 
call to dequeue on SYSPRINT 

Figure 80 (Part 2 of 2). Flow of Control through a PUT LIST Statement 

196 as PL/I Optimizing Compiler: Execution Logic 



PL/! Source Statements: 
DCl A,B STATIC; 
PUT LIST (A,B); 

* STATEMENT NUMBER 3 
00005E 41 70 D OC8 LA 
000062 50 70 3 04C ST 

7,200(0,13) 
7,76(0,3) 
76(3),X'80' 
1,200(0,13) 
1,192(0,13) 
217(13),X'40' 
1,72(0,3) 

Pick up address of SIOCB 
Store in parameter list 
Mark end of parameter list 
SIOCB pointer 

000066 96 80 3 04C '01 
00006A (.1 10 D OC8 
00006E 50 10 D OCO 
000072 92 40 D OD9 
000076 41 10 3 048 
00007A 58 FO 3 02C 
00007E 05 EF 
000080 41 EO D OB8 
000084 41 FO 3 038 
000088 58 10 D OCO 
00008C 90 EF 1 000 
000090 . 58 FO 3 034 
000094 05 EF 
000096 41 EO 3 050 
00009A 58 10 D OCO 
00009E 50 EO 1 000 
000OA2 58 FO 3 034 
0000A6 05 EF 
0000A8 58 10 D OCO 
OOOOAC 58 FO 3 030 
OOOOBO 05 EF 

LA 
ST 
f1VI 
LA 
L 
BALR 
lA 
LA 
L 
STM 
L 
BAlR 
LA 
L 
ST 
l 
BALR 
L 
L 
BAlR 

Note: 

15,A .. !BMBSIOA 
14,15 
14,A 
15,DED .. A 
1,192(0,13) 
14,15,0(1) 
15, A .. IB~1BSlOA 
14,15 
14,B 
1,192(0,13) 
14,0(0,1) 
15,A .. IBMBSlOA 
14,15 
1,192(0,13) 
15,A .. IBMBSIOT 
14,15 

to temporary pointer 
Set LIST OUTPUT flag in SIOCB 
Point Rl at SIOCB 
Branch to initializing module 

Pick up address of A 
Pick up address of DED .. A 
Restore SIOCB address 
store addresses in SIoeB 
Call list-directed director 

routine 
Pick up address of B 
Point RI at SIOCB 
Place address B in SIOeB 
Call list-directed director 

routine 
Point RI at SIOCB 
Make terminating call to 

dequeue on SYSPRINT 

The DEDs for A and B have been 
commoned. Consequently the same 
address is kept in the SIOCB for 
both calls to the director modules. 

Figure 81. Code Generated for Typical List-Directed I/O Statement 

GET LIST Statement 

GET lIST statements follow the same sequence, but the 
transmission is in the opposite direction. The main differences 
are: 

• If record spanning is involved, the item is assembled in 
intermediate workspace before it is converted. 

• A locator is built for the source string from the input, and 
the addresses of the locator and of a character DED for the 
source are placed in the SIOCB by the director module. The 
address of the target or its locator and the address of the 
target DED are placed in the SIOCB by compiled code. 

• Unless the COPY option is being used, no final call is made 
to the initialization/termination routine. 

Chapter 9. Stream-Oriented Input/Output 197 



DATA-DIRECTED GET AND PUT STATEMENTS 

Data-directed GET and PUT statements follow a similar sequence 
to list-directed statements, in that there is first a call to 
the initialization module, followed by a call to a director 
routine. However, the data-directed director module is passed 
all the variables involved in the statement rather than one 
variable at a time, and handles the complete statement without 
returning to compiled code. 

The data-directed director module handles the reading or writing 
of the names, the equals signs, and the punctuation, and then 
calls the list-directed director module to handle the value for 
each variable. 

When the data-directed module has identified the location of the 
variable to or from which the data is to be moved, it calls the 
list-directed director module which then handles the movement of 
the value of the variable. When the value of the variable has 
been transmitted, control returns to the data-directed module, 
which handles the next name, determines the address of the 
variable associated with the name, and calls the list-directed 
director module to handle the transmission of the value. This 
process continues until the statement is complete. For output, 
the director module completes the statement with a final 
semicolon. Figure 82 on page 199 shows the complete process. 

The list-directed director module is called separately for each 
item. It is passed the SIoeB with the addresses of the source 
or target (or its locator) and the address of its DED correctly 
set up by the data-directed director module. The item is then 
handled as if it were a list-directed item. 

198 OS PL/I Optimizing Compiler: Execution Logic 



GET DATA (A,B); 

FLOW DIAGRAM 

Set up parameter 
list, call 
initializer 

Set fields 
in SIOCB 

File 
open? 

YES 

Return to 
compiled code 

Set up p. list 
for data 
director 
consisting of 
A(SIOCB) 
A(SYMTAB,I) 
A(SYMT AB,J) 

Step 1 
Compiled code 

Step 2 
Input initializing module 
IBMBSII 

NO 

... 

Call1BMBOCL 
to open file 

Step 3 
Compiled code 

CaMPI LED CODE & NOTES 

LA 
ST 
01 
LR 
MVI 
MVI 
LA 
ST 
LA 
ST 
BALR 

7,216(0,13) 
7,84(0,3) 
84(3),X'80' 
1,7 
233(13),X'84' 
234(13),X'01' 
14,104(0,3) 
14,240(0,13) 
1,80(0,3) 
15,A .. IBMBSIIA 
14,15 

Pick up address of SIOCB 
Place in parameter list 
Flag last argument in parameter list 
Get address of parameter list 
Set flag DATA INPUT in SIOCB 
Reset flag value 
Set abnormal return 
Store address in SIOCB 
Point R 1 at parameter list 
Branch to stream 

initializing module 

The input initializing module is passed the 
address of the SIOCB and the FCB for the file. 

It checks the validity of the statement, opens 
the file and places the address of the FCB in the 
SIOCB and returns to compiled code 

LA 
ST 

15,216(0,13) 
15,88(0,3) 

Pick up address of SIOCB 
Place address in parameter 
list 

The parameter list contains 
addresses of symbol tables 
and variables already set up 
in static. 

LA 1,88(0,3) Point R 1 at parameter list 
L 15,A .. IBMBSDIA Call data·directed director 
BALR 14,15 module 

eL.2 EQU * Abnormal locate return 
address 

Figure 82 (Part 1 of 2). Handling a GET DATA Statement 

Chapter 9. Stream-Oriented Input/Output 199 



From Step 6 
Step 4 

8 Data - directed director 
module IBMBSDI The data directed director module is passed the 

New 
YES 

address of the SIOCB and either a list of symbol 
record Call transmitter table addresses or an address in the symbol table 

or spanning? setting up VDA vector. 

if necessary 

NO The module reads in. the name, checks that the 
~ I name read is in the symbol tables passed and if 
.... not raises the NAME condition . 

Name 
in data NO Call IBMBERR 

When the variable is identified the module places 
strea m match the address of the target and its OED in the SIOCB 
SYMTAB? and calls the list-directed director module pauing 

it the SIOCS. 

:'r'ES 

Place address 
OED and variable 
in SIOCB 

t 
Update FREM & 
FCBA to beyond 
equal symbol 

t 
Call list-directed 
director module 

Step 5 
List directed director 
module IBMBSLI The list directed module completes the operation as 

Decide on for list directed 1/0 
conversion 
required and call 
correct modu Ie 

Update FREM & 
FCBA 
Return to 
IBMBSDI 

1, Step 6 
Return to IBMBSDI On return to the data directed module a search is 

made for the next name and the action continued 

~ 
Repeat from as from step 4 until a semicolon is reached in the 
step 4 until input stream 
final semicolon 
found 

Return to cO!Piled code 

Figure 82 (Part 2 of 2). Handling a GET DATA Statement 

200 OS Pl/I Optimizing Compilerl Execution Logic 



Identifying the Name 

If a data list is included in the statement, for example: 

PUT DATA (A,B,C); 

the source or target variables are identified from a list of 
symbol tables. If a data list is not included in the statement, 
for example: 

PUT DATA; 

the source or target variables are identified from the symbol 
table vector. 

A symbol table associates a name with the address of a variable. 
The symbol table vector is a list of the symbol tables known in 
the external procedure. The items in a symbol table vector are 
arranged in program block order. When a symbol table vector is 
used, the address passed is the start of entries for items known 
in the current block. Symbol tables and the symbol table vector 
are described further in Chapter 4. Their format is shown in 
Appendix A. 

The object code produced for a PUT DATA statement is shown in 
Figure 83 on page 202. 

EDIT-DIRECTED GET AND PUT STATEMENTS 

Edit-directed I/O differs from the other modes of stream I/O in 
that the conversions required and the positions in the record 
where an item is to be placed or will be found are indicated in 
the format list of the I/O statement. 

The format list contains two related types of information: 

1. The type and length of the item (for example, F(3), A(2S), 
etc.), known as data format information. 

2. Spacing information (for example, X(3), COl(70), etc.), 
known as control format information. 

Both types of information are compiled as format DEDs (or fEDs) 
and are passed by compiled code to the routines that require the 
information. 

Because the information is available during compilation, it is 
possible for the compiler to determine the conversions that will 
be required. It is consequently possible for compiled code to 
call the required conversion or conversion director routine, or 
to generate in-line conversion code without the assistance of a 
library director module. 

Chapter 9. Stream-Oriented Input/Output 201 



PL/I source statements & 
DCL A,B,C; 
PUT DATA (A,B,C); 

RELEVANT SECTION OF THE STATIC INTERNAL STORAGE MAP 

000048 00000000 A .. DCLCB ::::J Parameter list 
00004C 80000000 A .. TEMP for IBMBSIOA 

000050 00000000 A .. TEMP 

] 000054 00000060 A .. SYMTAB Parameter list 
000058 00000074 A .. SYMTAB for IBMBSDOA 
00005C 80000088 A .. SYMTAB 
000060 8500000100000038 SYMBOL TABLE .. A 

000000B800000000 
0001C100 

000074 8500000100000038 SYMBOL TABLE .. B 
OOOOOOBCOOOOOOOO 
0001C200 

000088 8500000100000038 SYMBOL TABLE .. C 
OOOOoocooonooooo 
OOOlC300 

00009C 

RELEVANT SECTION OF THE OBJECT PROGRAM LISTING 

* STATEMENT NUMBER 3 
OOOOSE 41 70 D OE8 LA 7,232CO,13) Pick up address of SIOeB 
000062 50 70 3 04C ST 7,76CO,3) Store in parameter list 
000066 96 80 3 04C 01 76(3),X'80' Mark end of parameter list 
00006A 18 17 LR 1,7 Place SIOCB in Rl 
00006C 50 10 D OEO ST 1,224(0,13) Save SIOCB 
000070 92 80 D OF9 MVI 249(13),X'80' Set data output 
000074 92 01 D OFA MVI 250(13),X'01' flags 
000078 41 10 3 048 LA 1,72(0,3) Point Rl at parameter list 
00007C 58 Fa 3 02C L 15,A .. IBMBSIOA Call initializing 
000080 05 EF BALR 14,15 routine 
000082 41 Fa D OE8 LA 15,232(0,13) Pick up address of SIOCB 
000086 50 Fa 3 050 ST 15,80CO,3) Place in parameter list 
00008A 96 80 D OFB 01 251(13),X'80' Mark end of parameter list 
00008E 41 10 3 050 LA 1,80(0,3) Point R1 at parameter list 
000092 58 Fa 3 028 L 15,A .. IBMBSDOA Call director routine 
000096 05 EF BALR 14,15 
000098 58 10 D OEO L 1,224(0,13) Get SIOCB 
0000ge 58 FO 3 030 L 15,A .. IBMBSIOT Make terminating call to 
OOOOAO 05 EF BAlR 14,15 dequeue on SYSPRINT 

Figure 83. Typical Data-Directed Code 

202 as PL/I Optimizing Compiler& Execution Logic 



Compiler-Generated Subroutines 

I 
COMPILER V 

To further optimize edit-directed I/O, a number of 
compiler-generated subroutines have been provided. They carry 
out the following functions: 

• Keeping track of the buffer position, freeing and acquiring 
intermediate workspace where necessary, and calling the 
library when a new record is required. 

• Handling X format control items, except where a new record 
is required. 

These compiler-generated subroutines have the advantage over 
library modules that they are not external, and consequently do 
not have to follow the external calling conventions. 

The compiler-generated subroutines are supported by two types of 
library director module: 

• Two short modules, IBMBSEO and IBMBSEI, that interface with 
the transmitter and are called by the compiler-generated 
subroutines when a new record is required. 

• A routine, IBMBSEDA, that handles the complete processing of 
an item (as the director does for list-directed I/O). This 
routine is called when the item cannot be handled by the 
compiler-generated subroutines. 

The decision on whether to use compiler-generated subroutines or 
the overall library director module is made at compile time. 
Figure 84 shows the conditions under which each method is used. 

Handle entirely by library 
routine (IBMBSED), or use 
compiler-generated sub-
routines? 

I 
LIBRARY V 

Compiler-generated subroutines 
are used except in the cases 
shown opposite. Even so, a 
library routine will be called 
if a new record is required, 
and, generally, to handle a 
conversion. 

IBMBSED handles processing completely for: 
A-format item with implied length* 
B-format item with implied length 
C-format item 

*An exception is that A-format items with 
implied length are handled in-line if: 
OPT(TIME) is in effect, and the complier 
can match the data list with the format 
list 1 and the data item is a charactet' 
string. 

Figure 84. The Use of the Library in Edit-Directed I/O 

Chapter 9. Stream-Oriented Input/Output 203 



A typical edit-directed statement takes the forml 

1. A call to the initialization module to open the file (if 
necessary), and check statement validity. 

2. A call to a compiler-generated subroutine to check whether a 
new record is required, and, if so, to call the module 
IBMBSEI or IBMBSEO to acquire a new record by making a call 
to the transmitter. The SIOeB is completed with source or 
target DEDs and the addresses of the source and the target 
or their locators. 

3. A call to a conversion module or conversion director, or a 
compiled-code conversion. 

4. A further call to a compiler-generated subroutine, to update 
the buffer control fields l and free any intermediate 
workspace if spanning was involved. 

5. A terminating call to the initialization/termination 
routine. 

This sequence is illustrated in the annotated flowchart in 
Figure 85 on page 205. Figure 86 on page 207 shows the code 
generated for a GET EDIT statement. 

204 OS PL/I Optimizing Compilerl Execution Logic 



PUT EDIT (B) (A); 

FLOW DIAGRAM NOTES 

LA 7,216(0,13) Pick up address of SIOCB 
ST 7,84(0,3) Place in parameter list 

Set up part of Step 1 01 84(3) ,X'80' Mark end of parameter list 
SIOCB. Compi led code LR 1,7 Point R1 at SIOCB 
Cal'l initialization ST 1,208(0,13) Save in temp 

routine IBMBSIO MVI 233(13),X'20' Set EDIT OUTPUT flag 
LA 1,80(0,3) Point R 1 at parameter list 
L 15,A .. IBMBSIOA Branch to initialization .., BALR 14,15 routine 

Step 2 
I nitialization routine .. , 

Test if file is open, and open if necessary, calling 

Calli BMBOCL to 
transmitter to locate record. 

YES Place address of ONCA and FCB in the SIOCB. 
File .. open file & call Check statement validity . 

closed ... transmitter to 
get 1 st record 

NO 

I 
., 

.... .... 

Check 
statement 
validity 

+ 
Place address of 

Step 3 
LA 14,B Get address of data 

variable, its DED, ~mpiled COj-:- LA 15,DED .. B Get address of OED .. B 
& DE D generated L 1,208(0,13) Get SIOCD address 
from format item , .... 

L 
STM 14,15,0(1) Place addresses of B and OED .. B in SIOCB 

in SIOCB LA 14,68(0,3) Get address of FED 

t 
L 7,A .. IELCGOG Branch to compiler-generated 
BALR 6,7 subroutine 

CaIiIELCGOA 

" Step 4 
IELCGOA 

Will YES Set 'VDA' flag in 
Item span or ... SIOCB. Get V DA 

Acquire VDA for item if necessary. 

require new r' Either if there is no room in current record, or, 

record? and set as if the converted item will span the record boundary. 
address of target. 

.... I ... 

~~ 
Figure 85 (Part 1 of 2), Edit-Directed Statement with Matching Data and Format 

Lists 

Chapter 9. Stream-Oriented Input/Output 205 



Carry out 
conversion either 
in - line or by 

FLOW DIAGRAM 

StepS 
Compiled code 
or conversion 
routine 

calling library module 

Call 
IELCGOB 

~, 

Item 
handled by 
IBMBSEDB 

? 

NO 

Was a 
VDA used? 

NO 

Update F REM, 
FCBA, and FCNT 

t 
Return to 
compi led code 

Continue from 
STEP 3 with next 
item, if any 
When complete 
make terminating 
call to I BMBSIOT 

Step 6 
IELCGOB 

YES 

YES .. .. 

.. ... 

Call1BMBSEOA 
Call transmitter 
and free VDA 

Clear 'VDA' flag 
and IBMBSED 
flag 

" 

Step 7 
Compiled code 

I--

NOTES 

L 15,A .. IBMBSAOA 
BALR 14,15 

L 7,A .. IELCGO H 
BALR 6,7 

L 1,208(0,13) 

Update buffer control fields 
Handle housekeeping 

Continue as necessary 

Call output conversion 
director (A-format) 

Call compiler-generated 
director routine 

Get SIOCB address 

When complete call termination 
routine to dequeue on SYSPRINT 

L 15,A .. IBMBSIOT 
BALR 14,15 

Figure 85 (Part 2 of 2). Edit-Directed Statement with Matching Data and Format 
Lists 

206 OS PL/I Optimizing Compiler: Execution Logic 



PL/I source statements: 
DCl A,B; 
GET EDIT (A,B) (F(3), X(8»; 

* STATEMENT NUMBER 3 
00005E 41 70 D OD8 LA 7,216(0,13) Pick UP address of SIOCB 
000062 50 70 3 05C ST 7,92(0,3) Store in parameter list 
000066 96 80 3 05C 01 92(3),X'80' Mark end of parameter list 
00006A 18 17 lR 1,7 Place SIOCB in R1 
00006C 50 10 D ODO ST 1,208(0,13) Save SIOCB 
000070 92 24 D OE9 MVI 233(13),X'24' Set EDIT INPUT flags in SIOCB 
000074 41 EO 3 060 lA 14,96(0,3) Pick up return address (CL.2) 
000078 50 EO D OFO ST 14,240(0,13) Store in SIOCB 
000D7C 41 10 3 058 LA 1,88(0 .. 3) Point Rl at parameter list 
000080 58 FO 3 038 L 15 .. A .. IBMBSIIA Call stream I/O 
000084 05 EF BALR 14,15 initialization routine 
000086 41 EO D OB8 LA 14 .. A Pick up address of data 
00008A 41 FO 3 040 LA 15 .. DED .. A Pick up address of DED .. A 
00008E 58 10 D ODO l 1,208(0,13) Get SIOCB address 
000092 90 EF 1 008 STM 14 .. 15,8(1) Puts addresses of A and DED .. A 

in SIOCB 
000096 41 EO 3 044 LA 14,68(0,3) Point R14 at FED 
00009A 58 70 3 014 L 7 .. A .. IELCGIX Call compiler-generated 
00009E 05 67 BALR 6,7 subroutine 
OOOOAO 58 FO 3 034 L 15,A .. IBMBSFIA Call conversion director routine 
0000A4 05 EF BALR 14,15 
000OA6 58 70 3 018 L 7, A .. IELCGIB Call compiler-generated 
OOOOAA 05 67 BALR 6,7 subroutine 
OOOOAC 41 EO 3 04A LA 14,74(0 .. 3) Pick up FED of X format item 
OOOOBO 58 10 D ODO L 1,208(0,13) Pick up address of SIOCB 
0000B4 58 70 3 014 L 7 , A .. I ELCGIX Call compiler-generated 
0000B8 05 67 BALR 6,7 subroutine 
OOOOBA 41 EO D OBC LA 14,B Pick up address of B 
OOOOBE 50 EO 1 008 ST 14,8(0,1) Store in SIOCB 
0000C2 41 EO 3 044 lA 14,68(0 .. 3) Point R14 at FED 
0000C6 58 70 3 014 L 7, A .. I ELCGIX Call compiler-generated 
OOOOCA 05 67 BALR 6,7 subroutine 
OOOOCC 58 FO 3 034 L IS, A .. IBMBSFIA Call conversion di~ector routine 
OOOODO 05 EF BALR 14,15 
000OD2 58 70 3 018 L 7 , A. . I E L CG I B Call compiler-generated 
0000D6 05 67 BALR 6,7 subroutine 
000008 CL.2 EQU * Abnormal return address 

Figure 86. Code Generated for an Edit-Directed Statement with Matching Data and 
Format Lists 

Chapter 9. Stream-Oriented Input/Output 207 



Handling Control Format Items 

Control format items are implemented by calling a formatting 
module, and passing it the SIOCB containing the address of an 
FED for a control format item. There are four formatting 
modules: 

IBMBSPL 

IBMBSXC 

IElCGOC 

IElCGIX 

library routine for SKIP, PAGE, and LINE formats and 
options. 

Library routine for X and COLUMN formats. 

Compiler-generated subroutine for X output items that 
do not span a record boundary. 

Compiler-generated subroutine for X input items that 
do not span a record boundary. (This module also has 
other functions; see the section "Compiler-generated 
Director Routines" near the end of this chapter.) 

Matching and Nonmatching Data and Fermat Lists 

In the majority of edit-directed statements, the data and format 
lists can be matched during compilation, since the programmer 
requires specific conversions for specific variables. However, 
it is possible to write statements which, because of iteration 
factors, cannot be matched at compile time. 

For example, in the statement 

PUT EDIT (A,B,C) (N(F(3», X(IO»; 

it is possible to know at which point the ten-character space 
indicated by "XCIO)" will be required, without knowing the value 
of N. If the statement had been 

PUT EDIT (A,B,C) CF(3), X(lO»; 

the code would be compiled in the order. handle the conversion 
of a variable, handle an X item, handle the conversion of a 
variable, etc., until the data list was exhausted. However, as 
it is not known at which point the X items will be required in 
the unmatched statement, it is impossible to compile sequential 
code to handle the statement. Consequently, the code for each 
item is compiled separately, and branches are made between the 
code for data items and the code for format items as the value 
of the repetition factor indicates. In the example above, the 
branches would be made when the F item had been executed N 
times, and when the X item had been executed once. 

The code sequence used for matching and non-matching data and 
format lists are shown in Figure 87 on page 209. 

208 as Pl/I Optimizing Compiler. Execution logic 



MATCHING LISTS 

PUT EDIT (I, NAME, ACT. NO) 

(F (3),X (3), A (15), X (3), P'ZZZ9'); 

HANDLE 
CONVERSION 
OFI 

~, 

HANDLE 
XITEM 

~, 

HANDLE 
CONVERSION 
OF NAME 

~r 

HANDLE 
XITEM 

~, 

HANDLE 
CONVERSION 
OF 
ACT-NO 

+ 

UNMATCHING LISTS 

PUT EDIT (AB, C, D) ((N) F (3), SKIP, A (4)); 

NO 

NO 

HANDLE 
CONVERSION 
F(3) 

HANDLE 
CONVERSION 
A(41 

YES 

Figure 87. Code Sequences Used for Matching and Nonmatching Data and Format lists 

Chapter 9. Stream-Oriented Input/Output 209 



FORMATTING FOR PRINT FILES 

Formatting information such as page size, line size, page length 
and tab positions for print files are accessed by list and 
data-directed director modules from a field TTAB held at offset 
X'50' in the TCA. The field holds the address of the tab table 
to be used. That is, either the PlITABS control section, if 
provided by the user, or the IBMBSTAB control section, if the 
default is to be used. 

The control section PLITABS can be provided by the user either 
as a control section which is link-edited with the object module 
or as a Pl/I structure declared in his program as PLITABS. This 
structure is then compiled as a suitable control section by the 
optimizing compiler. 

The programmer may also use the default which is provided as a 
transient library module loaded by the open routines. The 
format of PlITABS and its default values are given in the 
programmer's guide for this compiler. 

When the open routines are called, they inspect the TCA to 
determine whether PLITABS has been provided by the user. If it 
has not, they load' the transient library routine IBMBSTAB, which 
holds the default tab setting. When the routine is loaded, the 
address of entry point IBMBSTAH is placed in the TTAB field in 
the TCA. If PlITABS has been provided by the user, its address 
will have been placed in TTAB by the linkage editor. 

HANDLING FORMAT OPTIONS 

Format options (for example, GET SKIP(4), PUT PAGE, GET SKIP 
LIST) are handled by a call to the appropriate entry point of 
the initialization routine. 

The initializing module calls the formatting module IBMBSPL to 
carry out the formatting. 

INPUT AND OUTPUT OF COMPLETE ARRAYS 

When transmitting complete arrays, it is not economical for a 
return to be made to compiled code after each item has been 
handled. Accordingly, the list- and data-directed director 
modules have a facility that enables them to handle complete 
arrays. The modules access the array multipliers, and handle 
the indexing from information held in the array descriptors. 
For edit-directed I/O, each element is handled separately, the 
necessary indexing being carried out by compiled code. 

PL/I CONDITIONS IN STREAM I/O 

TRANSMIT Condition 

The following errors and PL/I conditions are particularly 
relevant to the implementation of stream I/O: TRANSMIT, 
CONVERSION, NAMECdata-directed input only), ENDFIlE, and 
unexpected end of file. Unexpected end of file occurs when the 
end of file is reached in the middle of an input item. 

The rules for ra~s~ng the TRANSMIT condition in stream I/O are 
that the condition shall be raised after the assignment or 
output of ih~ potentially incorrect data item. Thus TRANSMIT 
can be raised on input for a data item even though the 
transmitter has not been called during the processing of the 
statement invQJverl, 

When the TRANSMIT condition is detected by the data management 
routines, control is passed to the error routine in the 
transmitter, which sets a flag in the FCB indicating a 
transmission error. For input, the director module inspects 

210 OS Pl/I Optimizing Compiler: Execution Logic 



CONVERSION Condition 

NAME Condition 

this flag, and , if it is set, sets a flag in the SIOCB. 
TRANSMIT is raised for every item that is taken from a record in 
the block with which the transmission error was associated. It 
is raised after each potentiallY incorrect value has been 
assigned. For output, TRANSMIT is raised by the transmitter as 
soon as it occurs. 

A special entry point, IBMBSEIT, is used by the 
compiler-generated subroutines to raise the TRANSMIT condition. 
When called by this entry point, IBMBSEIT calls the error 
handler with the appropriate error code for the TRANSMIT 
condition. 

The CONVERSION condition is detected by the conversion modules 
in the PL/I library. (Conversions that could cause the 
CONVERSION condition are not handled in-line except where 
"NOCONVERSION" is specified.) CONVERSION is raised by calling a 
special library module, IBMBSCVA. This module analyzes the type 
of conversion error, and calls the error handler with an 
appropriate error code. For input, the module also saves the 
field that caused the conversion; it is necessary to do so, 
because the field could be lost if an ON-unit was entered and a 
further GET statement was executed on the same file which 
resulted in a new record being acquired. 

The NAME condition can occur only in data-directed input. It is 
raised by the data-directed director module when it cannot find 
a symbol table to match the name read in, or when the name is 
unobtainable (it might, for example, be out of subscript range.) 
DATAFIELD is set up, and the file positioned for the next read, 
before calling the error handler, with the appropriate error 
code. 

ENDFILE Condition and Unexpected End of File 

End of file is detected by the transmitter routines, which then 
enter the SYNAD routine in the transmitter. This routine sets a 
flag in the FCB. On return to the director modules, the flag is 
tested and, depending on the situation in which the transmitter 
was called, ENDFIlE or unexpected end of file is raised by 
calling the error handler. 

For unexpected end of file, the ERROR condition is always raised 
as soon as the end of file is detected. ENDFILE, in the case of 
list- and data-directed I/O, is not raised until a further 
attempt is made to read the input file. 

BUILT-IN FUNCTIONS IN STREAM I/O 

The built-in functions that are relevant to stream I/O are 
COUNT, DATAFIElD, ONCHAR, and ONSOURCE. 

ONCHAR and ONSOURCE are dealt with in Chapter 10, under the 
heading "Raising the CONVERSION Condition." 

The COUNT built-in function is handled by the director routines. 
A count of transmitted items for the statement is kept in the 
SIOCB, and then copied into the FCB a"fter every transmission to 
or from a Pl/I variable. 

The DATAFIElD built-in function is handled by the data-directed 
director routine, which places the address of the string 
locator/descriptor for the offending field in the ONCA. The 
field is first moved to a workspace area, as the buffer may get 
lost if further stream I/O operations take place in an ON-unit. 

Chapter 9. Stream-Oriented Input/Output 211 



THE COPY OPTION 

The COpy option allows input data to be copied onto a specified 
output file. At the start of a GET statement with the COPY 
option, a flag is set in the FCB, and the current buffer 
position is saved in the field FCPM in the FeB. 

A resident library routine, IBMBSCP, is used to handle the data, 
and to transmit it to the copy file by calling the appropriate 
transmitter. IBMBSCP is called at the end of the GET statement, 
and during the statement if a new buffer is acquired. As shown 
in Figure 88, the data transmitted to the copy file is that 
which is held between the pointers FCPM and FCBA. FCBA points 
to the next byte to be read; FCPM points to the start of the 
data to be copied. FCPM is updated to point to the start of the 
new buffer when a transmitter call is made during the execution 
of the statement. The copy flag is turned off during the 
terminating call to IBMBSII. 

If an interrupt occurs during the execution of a GET statement 
with the COpy option, it is possible that the terminating call 
to IBMBS!I will be bypassed because of a GOTO from an ON-unit, 
or because the job is terminated. For this reason, a test is 
made on the copy flag at the start of every GET statement, and 
when the file is closed. If the copy flag is on, IBMBSCP is 
called to handle the data. When the data has been transmitted, 
the flag is turned off. 

Handling the Copy File 

( 

During the initializing call, IBMBSII determines whether the 
copy file is open and, if it is not, calls IBMBOCl to open the 
file. The address of the DCleB for the copy file is than stored 
in the FCB of the input file. The data is transmitted to the 
file by calling the transmitter for the file type. 

GET LIST FILE (SYSIN) (STRING1) 
COpy FILE(A): 

GET LIST FILE (SYSIN) (STRING2) 
COPY FI LE (A); 

( 

GET LIST FILE (SYSIN) (STRING3) 
COPY FILE (B); 

FCPM )- - - - - - - - -1- -----T ----l po;"""o,,,,rtofCOPVd,,, 

{-DATA FOR COPYING ONTO' 'FILE I I NAMEDA' 'DATA FOR COPYING ONTO FILE B' 

FCBAJ _ _ _ _ _ _ _ _ __ J ___ L ___ L _ _ _ po;"t~~o':O~COPYd~"J 
Data is transmitted to the copy file at the end of each statement and at those 
times when it can no longer be held between the pointers FCBA and FCPM. 
I n the example above this will be at the end of each GET statement and at 
the end of the first record. 

Figure 88. The Current Buffer Pointer FCBA and FCPM, the Copy Pointer, Keep Track 
of the Data to be Copied 

212 OS Pl/I Optimizing Compiler: Execution logic 



THE STRING OPTION 

The STRING option allows data to be transmitted between a string 
and one or more PL/! variables by means of a stream I/O 
statement. 

The STRING option is implemented by treating the string 
specified in the statement as if it were the buffer, and the 
other Pl/I variables as if they were the sources or targets. 
The difference in housekeeping between string and file 
operations is resolved by the use of a string housekeeping 
routine, IBMBSIS. IBMBSIS is called in the place of the stream 
I/O initialization/termination routine. IBMBSIS sets up a dummy 
FeB that is initialized so that the correct action is taken 
should the director modules attempt to read or write beyond the 
end of the string. After the dummy FeB has been initialized, 
the director modules are called to convert and move the data as 
in normal stream I/O. 

To implement the string option, compiled code passes the string 
housekeeping module an extended SIOeB in which the dummy FCB is 
created. The buffer control fields FCBA and FREM in the dummy 
FCB are set up as if the string were a record. The field that, 
in a normal FCB, would hold the address of the transmitter, 
holds addresses of other sections of code. 

For a PUT STRING statement, the transmitter address field is 
initialized to point to the error handler. Register 1 will have 
been pointed to the head of the FCB by the caller. The error 
code for exceeding string size is, therefore, placed at the head 
of the FCB, and the correct error condition is automatically 
raised when the branch to the error handler is made. 

For a GET STRING statement, the address in the transmitter field 
is the address of code that sets the end-of-file flag and 
returns to the caller. This code is held within the dummy FCB. 

As far as the caller is concerned, attempting to read beyond the 
end of the string is equivalent to finding an end-of-file mark 
in a stream I/O statement. Where the ENDFILE condition or 
unexpected end of file would be raised for a stream file, a 'GET 
STRING SIZE EXCEEDED' message is generated, and the ERROR 
condition is raised. 

Completing string-Handling Operations 

One or more further calls may be made to the strin~ housekeeping 
routine IBMBSIS at entry point T, to update the string 
characteristics after a data item has been transmitted. 

PUT STATEMENTS WITH FIXED-LENGTH STRINGS: IBMBSIS is called 
after the first item has been assigned to the string, to pad the 
remainder of the string with blanks. 

PUT STATEMENTS WITH VARYING STRINGS: IBMBSIS is called to 
update the length of the string after each item is transmitted. 

GET STATEMENTS WITH VARYING STRING: IBMBSIS is always called. 

The need to make a further call to IBMBSIS is flagged in the 
SIOCB when IBMBSISA is called to initialized a statement. The 
library director routines and the compiler-generated subroutines 
test this flag, and call IBMBSIS if necessary. 

Chapter 9. stream-Oriented Input/Output 213 



THE CONVERSATIONAL SYSTEM AND CONVERSATION FILES 

When using a conversational system, the PL/! programmer can 
attach his terminal as the input or output device used by one or 
more stream files. 

Three transient library routines are used to implement this 
facility. Two are transmitters that are used to interface with 
the conversational system using the appropriate macro 
instructions, or simulations of them for eMS, to effect the 
input and output. They also poll for attention interrupts. The 
third module is a formatting module that overcomes the special 
formatting difficulties that arise when working at a terminal. 

When the file is opened, the OPEN routine tests every stream I/O 
file to see whether it is to be associated with a terminal. If 
the file is to be associated with a terminal, the appropriate 
conversational transmitter loaded: 

IBMBSIC for input 
IBMBSOC for output 

A flag is set in the FCB of the file to indicate that the file 
is a conversational file 

The two transmitter modules handle the input, output, and 
prompting. Formatting differences between conversational and 
normal I/O are handled by a transient library routine, IBMBSPC. 
This routine is called by the formatting routine, IBMBSPL, when 
a conversational file is being handled. 

If a conversational module is used, its address is placed in the 
TCA loaded-module list. 

CONVERSATIONAL TRANSMITTER MODULES 

Output Transmitter IBMBSOC 

The output module IBMBSOC is similar to other output 
transmitters except that it interfaces with TSO, and uses the 
TPUT macro instruction. For eMS it uses a simulation of TPUT. 
The macro instruction is used with the WAIT option to ensure 
proper queueing of output to the terminal. 

Input Transmitter IBMBSIC 

The input transmitter carries out a similar function to other 
PL/I input transmitters. However, it also has to handle certain 
prompting functions, and implements certain facilities required 
only for conversational output. 

INPUT: Input is achieved by issuing a TGET macro instruction to 
the TSO control program. For eMS it uses a TGET simulation. 

PROMPTING: Prompting is carried out before every input 
statement, unless the last character transmitted to the 
foreground terminal was a colon. At the start of a statement, 
the prompting sequence is: skip to a new line, print a colon, 
and skip to the start of the next line. If the GET statement is 
not completed by the data transmitted from the terminal, a 
further call to the transmitter will be made by the director 
module handling the stream I/O. A further prompt is then issued 
to the programmer. Second and subsequent prompts take the form 
of a plus character followed by a colon. 

Prompts are issued by placing the required prompt-code in a 
suitable field, and using a TPUT macro instruction with a HOLD 
option. This ensures that any terminal output from previously 
executed PUT statements will appear at the terminal before the 
user is prompted to enter his input. 

214 OS PL/I Optimizing Compiler: Execution Logic 



The prompt is issued to the foreground terminal irrespective of 
whether a PL/I output file is associated with the terminal. 

To simplify terminal usage various methods of data input are 
allowed that do not conform strictly to PL/I language 
specifications. For example list-directed input need not have a 
delimiting comma or blank and the trailing blanks need not be 
entered if a character item in edit-directed I/O does not fill 
the specified field width. 

Formatting Module IBMBSPC 

To simplify the use of a terminal, default formatting 
conventions are assumed. These apply to PAGE, SKIP, and LINE 
instructions and can be summarized as followsl 

• SKIP instructions of 3 lines or less are followed. 

• PAGE and LINE and SKIP instructions of more than 3 lines are 
interpreted as SKIP(3) instructions. 

This default formatting can be overridden by the use of a 
PLITABS structure that specifies a value of I or greater for the 
page length. (PlITABS is described above under the heading 
"Formatting for Print Files.") 

IBMBSPC checks the page-length value in the PLITABS control 
section. This control section will be either the default taken 
from the Pl/I transient library module IBMBSTAB, or, if the 
values have been specified by the programmer, will be the values 
in the structure declared with the name PLITABS, or, possibly, a 
link-edited control section called PLITABS. In the library 
module IBMBSTAB, the page-length value is zero. 

If the page-length value in the PlITABS control section is zero, 
the formatting conventions described above are used. These are 
referred to as Squashed mode. If the value is greater than 
zero, normal formatting is undertaken. 

The method of formatting used is for IBMBSPC to insert the 
required number of 'new line' characters in the output buffer, 
and to call the transmitter to transmit the buffer contents. 
(In the special case of SKIP (0), backspace characters are used. 

The normal PL/I rules for ENDPAGE apply to formatted terminal 
output. ENDPAGE is not raised for squashed mode output. 

SUMMARY OF SUBROUTINES USED 

This section gives a summary of the subroutines used in the 
implementation of stream-oriented input/output. Detailed 
descriptions of the library modules are given in the relevant 
program logic manuals. 

Ten different types of subroutine are used in stream I/O. They 
are: 

1. Initializing Modules 

2. Director modules 

3. Transmitter modules 

4. Formatting modules 

5. Conversion modules 

6. External conversion director modules 

Chapter 9. Stream-Oriented Input/Output 215 



INITIALIZING MODULES 

DIRECTOR MODULES 

7. Conversational modules 

8. The conversion fix-up module (IBMBSCV) 

9. The COpy module (IBMBSCP) 

10. The string housekeeping module (IBMBSIS) 

Conversion modules are described in Chapter 10, "Data 
Conversion" on page 220. The other types of module are dealt 
with below. 

Initializing modules initialize the stream I/O statement. There 
are two of these modules: 

IBMBSII 

IBMBSIO 

Input initializer 

Output initializer 

A further module is used for string handling, which is listed 
under "Miscellaneous Modules" on page 219. 

IBMBSI! is discussed in "The COPY Option" on page 212, while 
IBMBSIO is described under "PUT LIST Statement" on page 193. 

Library Director Routines 

IBMBSLI List-directed input 

IBMBSLO 

IBMBSDI 

IBMBSDO 

Entry point A: element item 

Entry point BI complete array 

List-directed output 

Entry point A: element item 

Entry point B: complete array 

Data-directed input 

Entry point AI with data list 

Entry point B: all known variables 

Data-directed output 

Entry point AI element variables and whole arrays 

Entry point BI single array elements 

Entry point C: all known variables and SIGNAL 
CHECK output 

Entry point D: CHECK output for a single item 

Entry point TI output a final semicolon only. 

216 as PL/I Optimizing Compiler: Execution Logic 



Modules Used with Compiler-Generated Subroutines 

IBMBSEI 

IBMBSEO 

Edit-directed input 

Entry point A: housekeeping for input item 
spanning a record boundary. 

Entry point Tt raise TRANSMIT for spanning input 
item 

Edit-directed output housekeeping for output item 
spanning a record boundary. 

Module for Complete Library Control of Edit-Directed I/O of a Single Item 

IBMBSED 

Entry point A: edit-directed input 

Entry point B: edit-directed output 

Compiler-Generated Director Routines 

TRANSMITTER MODULES 

For inputz 

IELCGIX 

IELCGIB 

Provides the address of the source of an edit-directed 
data or X-format item. 

Completes the transmission of an edit-directed data 
item, by freeing the VDA if one was used, updating the 
COUNT built-in function value, and calling IBMBSEIT if 
TRANSMIT has been raised. 

For output: 

IELCGOG 

IElCGOH 

Provides the address of the target of an edit-directed 
data item. 

Completes the transmission of an edit-directed data 
item, updating the buffer items in the DCLeB, counting 
the data item, and freeing a VDA if one was used. 

The actual movement of the data between the external medium and 
'the buffer area is carried out by a series of seven transmitter 
modules, which interface with the routines of as data 
management. These modules essentially complete the setting up 
of the DCB, and issue the data management GET and PUT macro 
instructions, thus reading or writing one record. 

One module is used for input, six for output. The output 
modules are divided into two groups: one group for PL/I print 
files, the other for all other output files. Both output module 
groups contain three modules: one for F-format records, one for 
V-format records, and one for U-format records. All modules 
interface with the queued sequential access method. 

The following transmitters are used: 

IBMBSTI 

IBMBSOF 

IBMBSOV 

IBMBSOU 

IBMBSTF 

Input transmitter 

Out~ut transmitter for F-format records 

Output transmitter for V-format records 

Output transmitter for U-format records 

Print transmitter for F-format records 

Chapter 9. Stream-Oriented Input/Output 217 



FORMATTING MODULES 

Library Subroutines 

IBMBSTV 

IBMBSTU 

Print transmitter for V-format records 

Print transmitter for U-format records 

Formatting modules control the position of the data on the 
external medium. There are three formatting modules: two 
library subroutines, and one compiler-generated subroutine. 

IBMSBPL PAGE, LINE, and SKIP format items and options 

Entry point A: PAGE option or format item 

Entry point Bz LINE option or format item 

Entry point C: SKIP option or format item 

IBMBSXC X and COLUMN format items 

Entry point A: X format input 

Entry point B: X format output 

Entry point C: COLUMN format input 

Entry point D: COLUMN format output 

Compiler-Generated Subroutine 

IELCGOCA X items, in edit-directed output, that do not span a 
record boundary. 

EXTERNAL CONVERSATION DIRECTOR MODULES 

The following external conversion director routines are used 
exclusively in edit-directed I/O: 

IBMBSAI 

IBMBSAO 

IBMBSCI 

IBMBSCO 

IBMBSFI 

IBMBSFO 

IBMBSPI 

IBMBSPO 

CONVERSATIO~AL MODULES 

input A, B, and P character formats 

output A, B, and P character formats 

input C format 

output C format 

input F and E formats 

output F and E formats 

input P format arithmetic 

output P format arithmetic 

Transmitters: 

IBMBSIC 

IBMBSOC 

input transmitter 

output transmitter 

Formatting module: 

IBMBSPC formatting module 

218 OS PL/I Optimizing Compiler: Execution Logic 



MISCELLANEOUS MODULES 

I I/O UNDER CICS 

The other subroutines used in stream I/O are: 

IBMBSCV 

IBMBSCP 

IBMBSIS 

the conversion fix-up module 

the copy module 

the string housekeeping module 

Most input/output operations on CICS are handled by CICS macro 
or command instructions; howeverl stream output is supported to 
the SYSPRINT file by means of transient data on the CPlI queue. 
Basically, the scheme is similar to normal stream I/O with the 
director routine in overall control, calling transmitter and 
conversion modules as they are required. The.complete operation 
is controlled by IBMBSIO which is called at the start and end of 
the statement. 

The major difference from the non-CICS system is that the 
standard open/close modules and transmitter are not used. 
Instead a single module IBMFSTV is used for both operations. 
The operations are logically separate but are held in one module 
to reduce the number of loads required. 

The major difference between CICS and the OS implementation is 
that for CICS an FCB is set up by IBMFSTV, whereas for OSI the 
FCB is set up by the library OPEN modules. 

Control passes to the CICS module because DFHPLIOI contains 
dummy entry points which correspond to the standard entry points 
of IBMBOCL. The dummy entry points pass control to code in 
DFHSAP that loads IBMFSTV and passes control to the relevant 
entry point in IBMFSTV. Only one test for CICS needs to be 
madel and that is before a test is made to see if the file is 
open. For CIeS the open file chain is tested instead of the 
normal control blocks. 

Chapter 9. Stream-Oriented Input/Output 219 



CHAPTER 10. DATA CONVERSION 

Note on Terminology 

INTRODUCTION 

In this chapter, the terms soyrce and target are used when 
referring to transfer of data. The source is the point from 
which the data is taken; the target is the point to which it is 
moved, possibly in a converted format. 

The PL/! language specifies situations in which conversion of 
data types will be carried out. These include the execution of 
stream I/O and assignment statements, and the evaluation of 
expressions that include different types of data. The large 
number of data types allowed in the PL/I language means that 
some 170 types of conversion are possible. How these 
conversions are handled by the PL/! Optimizing Compiler depends, 
to some extent, on the optimization specified for the program. 

If optimization has been specified, all conversions that can be 
handled by in-line code are so handled. If optimization has not 
been specified, the simpler and more commonly used conversions 
will be handled in-line, the remainder by the library conversion 
package. 

This chapter describes the library conversion package and 
explains how in-line conversions are handled. It concludes with 
a description of how the CONVERSION condition is raised. 

Before conversions can be understood, knowledge of the way in 
which data types are held is necessary. This is summarized in 
Figure 89 on page 221. 

220 OS Pl/I Optimizing Compiler: Execution logic 



Data Attributes 

BIT(n) 

BIT(n) VARYING 

CHARACTER(n) 

CHARACTERCn) VARYING 

FIXED DECIMAL(p,q) 

FIXED BINARY(p,q) 

FLOAT DECIMAL(p) 

FLOAT BINARY(p) 

PICTURE 

stored Internally As 

Aligned: one byte for each group of eight bits or part 
thereof. 
Unaligned: as many bits as are required, regardless of 
byte boundaries. 

As BIT(n), with two-byte prefix containing current length 
of string. 

One byte per character. 

As CHARACTERCn), with two-byte prefix containing current 
length of string. 

Packed decimal: 1/2-byte per digit, plus 1/2-byte for 
sign. 

p<=15: halfword 
p>15: fullword 

p<=6: short floating-point 
p>6<p=16: long floating-point 
p>16: extended floating-point 

p<=21: short floating-point 
p>21<p<=53: long floating-point 
p>53: extendedfloating-point 

One byte for each picture character (except K and V) 

Figure 89. Internal Forms of Data Types 

THE LIBRARY CONVERSION PACKAGE 

The library conversion package consists of some 26 modules and 
is capable of handling all the conversions that are allowed in 
the OS PL/I Optimizing Compiler implementation of the PL/I 
language. All but seven of the modules convert data from one 
data type to another. As there are approximately 170 possible 
conversions and only 19 conversion modules, many conversions are 
done by using a series of modules. For instance, to convert 
from fixed-decimal to bit-string involves an intermediate 
conversion to floating-point. The conversion package also 
contains five control and utility modules, and two modules used 
for stream I/O. The stream I/O modules move character and bit 
strings between the data management buffer and the PL/I variable 
when no conversion is necessary. 

A full description of the routines in the library conversion 
package is given in the publication OS PL/I Resident Library: 
Program Logic. 

The conversion paths followed for every conversion are known to 
the compiler, and ESD records are generated for all the modules 
that will be used. In certain cases, however, the data types 
involved are not known at compile time. Examples of this are 
data-directed and list-directed input, and edit-directed input 
or output when format and data lists cannot be matched. In such 
cases, the compiler generates ESD records for all conversion 
modules that could possibly be needed. 

Chapter 10. Data Conversion 221 



Conversion Module Naming Conventions 

All names begin with the letters 'IBMB'. The fifth letter is 
'C' for conversions, conversion utilities, and the 
string/arithmetic directors. It is '5' for the edit-directed 
format directors. The modules in the arithmetic conversion 
package have six letter names, the sixth letter being an 
arbitrary module identifier. The string conversion modules and 
conversion utilities have seven letter names in which the sixth 
and seventh letters are mnemonic. The mnemonic codes follow: 

X extended float 
F float 
I integer or binary constant if in C module 
I input if in 5 module 
D fixed decimal 
Z free decimal or float decimal 
P fixed pictured decimal 
E float pictured decimal 
H decimal constant 
Y float decimal constant on output 
B bit 
J bit constant 
C character 
Q pictured character 
A arithmetic 
o output in 5 module 
G "check" or utility 
T table 

SPECIFYiNG A CONVERSION PATH 

When a number of conversion modules need to be used for a 
certain conversion, some control of the path taken is necessary 
after the first module has been entered. The method used is for 
each module to have a number of entry points. Each one is 
entered for a certain type of conversion, and each one implies 
the subsequent entry points to be invoked for that particular 
conversion. For instance, the module IBMBCE handles 
fixed-decimal to fixed-binary conversions. If the module is 
entered to carry out this conversion, entry point IBMBCEDX is 
called. However, if it is only an intermediate stage in a 
conversion from fixed-decimal to bit-string, the entry point 
IBMBCEDB will be called. When the conversion to floating-point 
is completed, the conversion to bit will be carried out by the 
module IBMBCR. 

In addition to the use of various entry points to specify the 
conversion path to be taken, there are two control modules to 
handle the conversion paths between character-string and 
arithmetic data. 

HOUSEKEEPING WHEN MORE THAN ONE MODULE IS USED 

When more than one arithmetic conversion module is used in a 
conversion, a method of minimizing the housekeeping has been 
evolved. This avoids saving registers and acquiring workspace 
for each module entered. The same library workspace is used for 
all modules in a single conversion operation. The first module 
in the chain saves the registers and acquires workspace; the 
last module frees the workspace and restores the registers. 

A simple method is used to allow each module to test whether or 
not it can use the previous module's workspace. A bit at a 
fixed offset from register 13 is tested. If the module is the 
first to be called, this bit will be a bit in the calling 
procedure's DSA, which is always set to zero. If the module is 
not the first to be called, the bit will be in library workspace 
and will have been set to one by the previous module if the same 
workspace can be used. If the module is the first, library 
workspace will be acquired in the usual manner. If the module 
is not the first, a branch will be made around this code. 

222 OS PL/I Optimizing Compiler: Execution Logic 



ARGUMENTS PASSED TO THE CONVERSION ROUTINES 

Each conversion routine e*pects a standard set of arguments. 
These consist of the address of ' the source and target, and the 
addresses of the DEDs (data element descriptors) for the source 
and the target. Arguments are passed in a list addressed by 
register 1. (The source is the variable or constant that 
requires conversioni the target is the area where the converted 
result is to be placed.) 

The DEDs are used to describe the data type of the element. 
Those passed to the library conversion package are set up by 
compiled code in the constants pool. They are described in 
"Data Element Descriptors (DEDs)" on page 64, and fully mapped 
in "Data Element Descriptor (DED)" on page 337. 

COMMUNICATION BETWEEN MODULES 

FREE DECIMAL FORMAT 

IN-LINE CONVERSIONS 

When the conversion path goes through a series of modules, the 
address of the final target must be retained until the last 
module is reached. 

Temporary targets and DEDs are created for the intermediate 
results, and these are passed on as the source for the next 
module. When information is passed between two conversion 
modules using the same workspace, registers are normally used 
rather than a parameter list. 

In some arithmetic conversions to string, precision data is 
passed through certain modules that do not themselves need such 
data. 

Because all floating-point data is in binary form, there is no 
direct representation of the Pl/I floating-point decimal format. 
In order to simplify certain conversions, a simulated 
floating-point decimal format is employed by the optimizing 
compiler. This format is termed free decimal (sometimes known 
as packed intermediate decimal), The format of free decimal is 
a 17-digit packed decimal mantissa and a fullword binary 
exponent. Conversions to and from free decimal form an integral 
part of the arithmetic conversion package. 

The optimizing compiler generates in-line code for the more 
commonly used conversions. Eighteen basic types of conversion 
are handled in-line. Several of these basic types are used in 
conjunction, to enable a total of 28 conversions to be handled 
in-line. The circumstances in which in-line conversions are 
used are shown in Figure 90 on page 224. 

Chapter 10. Data Conversion 223 



Conversion 
Source 

Fixed 
binary 

Fixed 
decimal 

Conversion 
Target 

Fixed binary 

Fixed decimal 

Floating-point 

Bit string 

Character 
string or 
picture 

Fixed binary 

Fixed decimal 

Floating-point 

Bit string 

Character 
string 

Picture 

Comments and 
Conditions 

If either scale 
factor=O and the 
other factor ~ 0, 
the optimization can 
be "none." 

If source scale 
factor=O, the 
optimization can be 
"none" (whether SIZE 
is enabled or not). 

String must be 
fixed-length, 
aligned, and with 
length ~ 2048. 

Source scale factor 
must be ~ O. String 
must be fixed-length 
with length ~ 256. 
Picture type 1, 2, 
or 3. 

If source and target 
scales have the same 
sign and are 
nonzero, the 
optimization (SIZE 
disabled) must be 
"time." 

Source preC1S10n 
must be < 10. 

Source scale factor 
must be zero. 
String must be 
fixed-length, 
aligned, and with 
length ~ 2048. 

Source scale factor 
must be ~ o. String 
must be fixed-length 
and length < 256. 

Picture type 1, 2, 
or 3. For picture 
types 1 and 2 with 
no sign, 
optimization can be 
"none." 

optimization 
SIZE 
Disabled 

time 

time 

time 

time 

time 

time 

Figure 90 (Part 1 of 2). Data Cuoversions Performed In-line 

224 OS PL/I Optimizing Compilera Execution Logic 

Optimization 
SIZE 
Enabled 

time 

time 

not done 
in-line 

not done 
in-line 

time 

time 

not done 
in-line 

time 

not done 
in-line 



Conversion 
Source 

Floating
point 

Bit String 

Picture 

Picture 
type 1 
(see note 
below) 

Locator 

Label 

Conversion 
Target 

Fixed binary 

Fixed decimal 

Floating-point 

Bit string 

Fixed binary 

Fixed decimal 
and floating 
point 

Character 
string 

Picture 

Fixed binary 

Fixed decimal 

Floating-point 

Picture 

Loca-tor 

Label 

Comments and 
Conditions 

Target preC1S10n 
must be ~ 9. 

Source and target 
may be single or 
double leng"th. 

String must be 
fixed-length, 
aligned, and length 
~ 2048. 

Source string must 
be fixed-length, 
aligned, and with 
length ~ 2048. 

Source must be 
fixed-length, 
aligned, and with 
length < 32. 

String must be 
fixed-length with 
length $ 256. 

Pictures must be 
identical. 

Source precision 
must be < 10. 

If picture has a 
sign, the 
optimization must be 
'time' . 

Source precision 
must be < 10. 

Picture type I, 2, 
or 3. 

Optimization 
SIZE 
Disabled 

time 

time 

time 

time 

time 

time 

time 

Optimization 
SIZE 
Enabled 

not done 
in-line 

not done 
in-line 

not done 
in-line 

not done 
in-line 

not done 
in-line 

not done 
in-line 

not done 
in-line 

not done 
in-line 

not done 
in-line 

Figure 90 (Part 2 of 2). Data Conversions Performed In-line 

Note: The word "time" in the columns headed "Optimization" 
indicates that the conversion is done in-line only if 
optimization has been specified; "not done in-linen indicates 
that the conversion is done by library call. 

An example of the way in which a compiler conversion is used to 
convert from fixed-binary to fixed-decimal is given below. A 
list of the eighteen fundamental compiler conversions is given 
in Figure 91 on page 226. 

Chapter 10. Data Conversion 225 



Conversion 
Number Conversion 

2 

3 

4 

5 

6 

7 

8 

9 

10 

12 

14 

15 

16 

17 

18 

19 

20 

21 

Fixed-binary to floating-point 

Floating-point to fixed-bina~y 

Fixed-decimal to floating-point 

Floating-point to fixed-decimal 

Fixed-bina~y to fixed-decimal 

Fixed-decimal to fixed-binary 

Character-string to fixed-decimal 

Character-string to floating-point 

Character-string to fixed-binary 

Fixed-decimal to cha~acte~-st~ing 

Bit-string to characte~-string 

Fixed-binary to bit-string 

Floating-point to bit-string 

Bit-string to fixed-binary 

Fixed-decimal to picture type I 

Fixed-decimal to picture type 2 

Fixed-decimal to picture type 3 

Picture type 1 to fixed-decimal 

Figure 91. Fundamental In-line Conversions 

Note to Figure 91: Conversions 1, 11, and 13 are not used. 

Note about Picture Variables 

Not all the picture characters available may be used in a 
picture involved in an in-line arithmetic conversion. The only 
ones permitted are: 

V and 9 

Drifting or nondrifting characters $ S + -

Zero suppression characters Z * 
Punctuation characters , . / B 

For in-line conversions, pictures with this subset of characters 
are divided into three types: 

Picture type 1: 
Pictures of all 9s with (optionally) a V and a leading or 
trailing sign. For example: 

'99V999', '99', 'S99V9', 
'99V+', '$999' 

226 as PL/I Optimizing Compiler: Execution Logic 



Picture type 2: 
Pictures with zero suppression characters and (optionally) 
punctuation characters and a sign character. Also, type 1 
pictures with punctuation characters. For example: 

'ZZZ', QBE/3BE9'.. 'ZZ9V. 99 ' , 
'+ZZ. ZZZ', '$// /99'.. '9.9 ' 

Picture type 3: 
Pictures with drifting strings and (optionally) punctuation 
characters and a sign character. For example: 

'$$$$', '-,--9', '$/$$/$9', 
'+++9V . 9'.. '$$$9-' 

Sometimes a picture conversion is not performed in-line even 
though the picture is one of the above types, because it has 
certain characteristics that necessitate a subroutine call. 
These may be .. for instance: 

• There is no overlap between the digit positions in the 
source and target. For example: 

DECIMAL (6,8) or DECIMAL (5, -3) to 
PIC '999V99' will not be performed 
in temp. 

• Punctuation between a drifting Z or a drifting * and the 
first 9 is not preceded by a V. For example: 

'ZZ.99' 

• Drifting or zero suppression characters to the right of the 
decimal point. For example: 

'ZZV .Zl'" '++V++' 

Example: Fixed-Binary to Fixed-Decimal (Conlpiler Conversion No.6) 

Compiler label 

The conversion is performed by converting from binary to decimal 
via a CVD instruction, with a scale-matching operation (to line 
up the decimal and binary points) either before or after the CVD 
(or occasionally both). This scale-matching operation is done 
by shifts where possible but, depending on scales and precision, 
a decimal multiplier is sometimes used. 

DCl SOURCE FIXED BINARY (31,9) 
TARGET FIXED DECIMAL (15,-6); 

TARGET=SOURCE; 

L 14,SOURCE 
LTR 14,14 Determination 
BNM Compiler label Branch if >0 
A 14, Constant Add a constant to negative 

source 
EQU * 
SRA 14,9 Divide by source scale 

(2**9) 
CVD 14,WKSP+8 Convert to decimal in 

workspace 
XC TARGET(3),TARGET Set zeros in target 
MVC TARGET+3(S) .. WKSP+8 Transfer value to target 
MVN TARGET+7(l),WKSP+lS Transfer the sign 

Chapter 10. Data Conversion 227 



MULTIPLE CONVERSIONS 

The conversions listed in Figure 91 on page 226 can be regarded 
as fundamental types. A number of other conversions can be 
performed by using two fundamental conversions in series. These 
are shown in Figure 92. 

Conversion Required Nunlber Compiler Conversions Used 

Fixed-decimal to 7 Fixed-decimal to fixed-binary 
bit-string 

15 Fixed-binary to bit-string 

Floating-point to 3 Floating-point to fixed-binary 
bit-string 

15 Fixed-binary to bit-string 

Bit-string to 17 Bit-string to fixed-binary 
fixed-decimal 

6 Fixed-binary to fixed-decimal 

Bit-string to 17 Bit-string to fixed-binary 
floating-point 

2 Fixed-binary to floating-point 

Character-string to 10 Character-string to fixed-binary 
bit-string 

15 Fixed-binary to bit-string 

Fixed-binary to 6 Fixed-binary to fixed-decimal 
character-string 

12 Fixed-decimal to character-string 

Fixed-binary to 6 Fixed-binary to fixed-decimal 
decimal picture 

18, 19, or 20 Fixed-decimal to picture 

Floating-point to 5 Floating-point to fixed-decimal 
decimal picture 

18, 19, or 20 Fixed-decimal to picture 

Decimal picture to 21 Picture to fixed-decimal 
fixed-binary 

7 Fixed-decimal to fixed-binary 

Decimal picture to 21 Picture to fixed-decimal 
floating-point 

4 Fixed-decimal to floating-point 

Decimal picture to 21 Pi .'ture to fixed-decimal 
decimal picture 

18, 19, or 20 Fixed-decimal to picture 

Figure i2. Multiple Conversions 

HYBRID CONVERSION 

Finally, there is one hybrid conversion that is carried out 
partially in-line. This is floating-point to character-string, 
which requires an interpretive routine to analyze the 
floating-point data (as distinct from the attributes, which all 
the others use), in order to generate the correct scale factor. 
This is done by the library, because in-line code would use the 
same algorithm. However, partial optimization is carried out by 
setting up a character string of the correct length before 
calling the library, and then handling the subsequent string 
assignment in-line. 

228 OS PL/I Optimizing Compiler: Execution Logic 



RAISING THE CONVERSION CONDITION 

The Pl/I language specifies that when an invalid conversion is 
attempted on character-string data, the CONVERSION condition 
will be raised unless CONVERSION has been disabled. 

When the CONVERSION condition has been raised, the language 
allows the program to access the invalid field or character by 
use of the ONSOURCE or ONCHAR built-in function. The language 
also stipulates that conversion should be attel~pted again if an 
ON-unit is entered in which the ONSOURCE or ONCHAR 
pseudo-variable is used to change the invalid field or 
character. 

Raising the CONVERSION condition involves a number of 
housekeeping problems, which are handled by a special conversion 
module, IBMBSCV. IBMBSCV is never called by compiled code, 
since conversions that could raise the CONVERSION condition are 
not attempted in-line unless the CONVERSION condition is 
disabled. IBMBSCV produces the correct error code for the error 
handler, IBMBERR, and looks after the housekeeping problems. 

IBMBSCV saves considerable overheads being carried either by all 
types of errors or by all correct conversions. The reason for 
the overhead lies principally in the facility offered by the 
language of using the ONSOURCE and ONCHAR built-in functions to 
access and optionally change the field causing the error, and 
subsequently reattempting the conversion on the changed field. 

Before any conversion in which the CONVERSION condition could be 
raised is attempted, the ONSOURCE field in the ONCA must be set 
up, and the address at which a reattempted conversion should 
begin must also be placed in the ONCA. 

The code carrying out the conversion must then test the validity 
of the field to be converted and, if it is invalid, set the 
ONCHAR field in the ONCA to the first invalid character. The 
module IBMBSCV is then called to diagnose the conversion and 
produce the correct error code for the error handler. There are 
some twenty possible error codes associated with the CONVERSION 
condition. 

If the condition was raised during the execution of stream 
input, further action is necessary. This is because an ON-unit 
may specify further input, and the buffer which contains the 
ONSOURCE field may be lost. For example the ON-unit might bel 

ON CONVERSION BEGIN; 
ON CONVERSION SYSTEM; /* PREVENTS 

RECURSIVE ENTRY*/ 
GET LIST (KEYB); 
IF KEYB< 200 THEN ONCHAR ='1'; 
ELSE ONCHAR ='9'; 
END; 

If KEYB was in the next record, the source field that caused the 
conversion would be lost. To prevent this, a VDA is acquired in 
the LIFO stack, and the source field is stored in this VDA. The 
ONSOURCE and ONCHAR pointers are altered to point to the field 
in the VDA, and all further operations are carried out on this 
field. 

The NAB pointer associated with the block in which the interrupt 
occurred must then be altered so that it encompasses the VDA. 
The fact that the NAB pointer has been altered must be known in 
the block for a GOTO out of block to be handled. The reset-NAB 
bit is accordingly set to one in the relevant DSA. When these 
operations are complete, IBMBSCV calls the error-handling module 
IBMBERR. 

Chapter 10. Data Conversion 229 



CHAPTER 11. MISCELLANEOUS LIBRARY SUBROUTINES AND SYSTEM INTERFACES 

In addition to employing the Pl/I libraries for the functions 
described in previous chapters, the OS Pl/! Optimizing Compiler 
calls on a large number of computational and data-handling 
subroutines and on subroutines that provide interfaces with the 
operating system for such functions as Tlt-1E and DATE. These 
miscellaneous library calls are discussed in this chapter. The 
library subroutines themselves are fully described in the 
publications IBM System/360 Operating System: PL/I Resident 
Library Program logic and IBM System/360 Operating System: Pl/I 
Transient library Program Logic. 

This chapter is divided into two main sections: the first deals 
with the computational and data-handling subroutines, and the 
second with miscellaneous system interfaces. 

COMPUTATION AND DATA-HANDLING SUBROUTINES 

The computational and data-handling subroutines are used to 
handle all the mathematical built-in functions, majority of 
arithmetic built-in functions, and a number of array-handling 
functions. The extent to which library calls are used depends 
on the level of optimization specified by the programmer, the 
type of data involved, and, for string functions, on whether 
STRINGRANGE and STRINGSIZE are enabled. 

ARITHMETIC AND MATHEMATICAL SUBROUTINES 

Function 

Real· Arguments 

Integer 
exponentiation 

General 
exponentiation 

The compiler always uses library subroutines for mathematical 
functions. The use of compiled code in these circumstances is 
impractical. Where possible, arithmetic functions are handled 
by in-line code. The circumstances in which library subroutines 
are used for arithmetic functions are listed in Figure 93. 

Module 
Data Type Name When Used 

Short floating-point IBMBMXS When exponent is a variable 
Long floating-point IBMBMXL When exponent is a variable 
Extended floating-point IBMBMXE Always 

Short floating-point IBMBMYS Always 
Long floating-point IBMBr'1Yl Always 
Extended floating-point IBMBMYE Always 

Figure 93 (Part 1 of 2). Arithmetic Operations Performed by library Subroutines 

230 OS PL/I Optimizing Compiler: Execution logic 



Module 
Function Data Type Name When Used 

Complex 
Arguments 

Short floating-point IBMBMXW When exponent is a variable 
Integer long floating-point IBMBMXY When exponent is a variable 
exponentiation Extended floating-point IBMBMXZ Always 

Short floating-point IBMBMYX Always 
General Long floating-point IBMBMYY Always 
exponentiation Extended floating-point IBMBMYZ Always 

Figure 93 (Part 2 of 2). Arithmetic Operations Performed by Library Subroutines 

Considerable use is made of chains of library modules to carry 
out the various functions. For example, the subroutines that 
handle complex arithmetic normally calIon those that handle 
real values to process each part of a complex number; similarly, 
the square-root subroutine is used in the computation of several 
of the trigonometrical functions. 

Arguments are passed to the arithmetic and mathematical 
subroutines either in registers or in a parameter list addressed 
from register 1. The use of registers results in faster 
execution, but allows less flexibility in use of the routines. 
Compiled code always passes arguments in a parameter list. All 
built-in functions, except the STRING built-in function, have 
their arguments passed in a list comprising the addresses of the 
source and target (and sometimes also the address of DEDs). 
Computational routines are always carried out in floating-point 
unless otherwise indicated. This may involve conversion before 
calling the routine. 

ARRAY, STRING, AND STRUCTURE SUBROUTINES 

A number of array, string, and structure subroutines are 
included in the as PL/I Resident Library. These are used to 
carry out certain of the array and string built-in functions and 
a number of other operations. Where possible, in-line code is 
generated to carry out these functions. However, the enablement 
of STRINGSIZE, the use of unaligned bit strings, and the use of 
adjustable and certain varying-length strings will result in 
calls being made to the library subroutines. 

The subroutines involved in these functions are shown in 
Figure 94 on page 232. 

Chapter 11. Miscellaneous Library Subroutines and System Interfaces 231 



Subroutine 

IBMBAAH 
IBMBAIH 
IBMBAMM 
IBMBANM 
IBMBAPC 
IBMBAPE 
IBMBAPF 
IBMBAPM 
IBMBASC 
IBMFASE 
IBMBASF 
IBMBAYE 
IBMBAYF 
IBMBBBA 
IBMBBBC 
IBMBBBN 
IBMBBCI 
IBMBBCK 
IBMBBCT 
IBMBBCV 
IBMBBGB 
IBMBBGC 
IBMBBGF 
IBMBBGI 
IBMBBGK 
IBMBBGS 
IBMBBGT 
IBMBBGV 

Figure 94. 

Meaning 

ALL and ANY built-in functions 
Indexer for interleaved arrays 
Structure mapping 
STRING built-in function 
PROD built-in function (fixed-point integer) 
PROD built-in function (extended floating-point) 
PROD built-in function (short or long floating-point) 
STRING pseudo-variable 
SUM built-in function (fixed-point) 
SUM built-in function (extended floating-point) 
SUM built-in function (short or long floating-point) 
POLY built-in function (extended floating-point) 
POLY built-in function (short or long floating-point) 
AND and OR logical operations (aligned bit strings) 
Compare aligned bit strings 
Invert aligned bit string (NOT) 
INDEX built-in function (character string) 
Concatenate character strings and REPEAT built-in function 
TRANSLATE built-in function (character string) 
VERIFY built-in function (character string) 
BOOl built-in function 
Compare unaligned bit strings 
Bit-string assignment (aligned, source and target) 
INDEX built-in function Cbit string) 
Concatenate bit strings, REPEAT built-in function, and assign 
Produces SlD (SUBSTR built-in function) 
TRANSLATE built-in function (bit string) 
VERIFY built-in function (bit string) Compare aligned bit strings 

Array, Structure, and String Subroutines 

Two of them, IBMBAIH and IBMBAMM, are concerned with the 
handling of data aggregates rather than with the execution of 
specific operations. They are discussed below. 

Handling Interleaved Arrays (IBMBAIHl 

IBMBAIH is used to assist the other library array-handling 
subroutines to process interleaved arrays. It is not called by 
compiled code. 

Interleaved arrays are arrays whose elements are not held 
contiguously in storage. They occur in arrays of .structures. 
For example, the declaration: 

DCl 1 Structure (2), 
2 A(2), 
2 B ; 

would result in successive storage locations being allocated to 
elements of A and B as follows: 

A(l,l),A(1,2),B(1),A(2,1),A(2,2),B(2) 

Both A and B are interleaved arrays. A is a two-dimensional 
array, the first row of which is separated from the second by an 
element of B. As can be seen, the elements of A are not 
contiguous, nor is there a fixed interval between their 
addresses. 

The interval between the addresses of elements of an interleaved 
array referred to by varying only the final subscript is always 
fixed, and these elements can be stepped through by using the 
last multiplier from the array descriptor. However, such groups 
of contiguous elements are not themselves necessarily 
contiguous. 

232 OS Pl/I Optimizing Compilsrl Execution Logic 



Declaration 

DECLARE lX(2), 
2 C, 
2 Y (2), 

3 Z (3) 
3 Bi 

When IBMBAIH is called, it is passed the number of dimensions in 
the array, the address of the array descriptor, and the address 
of the work area in which to construct a table. Basically, 
IBMBAIH calculates the extent of each dimension and enters this 
information in the tablei it then calculates the increments that 
must be added in order to step between elements that may be 
noncontiguous (see Figure 95). 

Storage 

C 

Z (1,1,1) M[3] A A 

Z (1,1,2) 
I 
M[2] 

Z (1,1,3) I 
V 

Inc[21 B ---
Z (1,2,1) M[l] 

Z (1,2,2) 

Z (1,2,3) 

B 

Inc[l] C V 

Z (2,1,1) 

Z (2,1,2) 

Z (2,1,3) 

Inc[2] B 

Z (2,2,1) 

Z (2,2,2) 

Z (2,2,3) 

B 

Z is a three-dimensional interleaved array, for which: 

M[l], M[2], and M[31 = Multipliers held in array descriptor (See Chapter 4) 

Inc[11 and Inc[2J. = Intervals between addresses of successive elements of Z when 
subscripts for first and second dimensions, respectively, 
change I 

The increment when the subscript for the ith dimension changes is computed as 
follows: 

Inc[i] = M[iJ - E[i+ll *M[i+ll + Inc[i+ll 

Where E[i+ll is the extent of the (i+l)th dimension. 

Figure 95 (Part 1 of 2). Indexing Interleaved Arrays 

Chapter 11. Miscellaneous library Subroutines and System Interfaces 233 



Increment table for array Z (as initialized by IBMBAIHl 

I 
2nd dimen sion--> 

I 
I 

1st dimen sion--> 

I 
Nate: 

2 

2 

Inc[21 

2 

2 

Inc[I] 

subscript count 

extent of dimension 

increment 

subscript count 

extent of dimension 

increment 

IBMBAIH returns the extent of the nth dimension in register 1. (In this example, 
the extent of the 3rd dimension = 3.) 

Figure 95 (Part 2 of 2). Indexing Interleaved Arrays 

The information in the completed table is used by the module to 
address successive elements of the array using simple code. 

structure Mapping (IBMBAMMl 

Structures are normally mapped during compilation. However, 
certain structures that contain adjustable strings or arrays 
cannot be mapped until the actual lengths or bounds are known. 
Compiled code calls on the module IBMBAMM to carry out this 
mapping. There are four entry points: 

IBMBAMMA Compute length of structure. 

IBMBAMMB Map structure in PL/I manner. 

IBMBAMMC Map structure in COBOL manner (for interlanguage 
communication or for files declared with the COBOL 
option). 

IBMBAMMD Map structure declared with REFER option. 

MISCELLANEOUS SYSTEM INTERFACES 

In addition to the system interface used for input and output, 
the PL/I Optimizing Compiler makes use of a number of other 
system facilities. These are for the DELAY, DISPLAY, and WAIT 
statements, the TIME and DATE built-in functions, and sort/merge 
and checkpoint/restart built-in subroutines. 

Calls to these facilities are made through library subroutines 
held in the OS PL/! Resident Library. These subroutines act as 
an interface, issuing any SVC calls that may be necessary, and 
handling housekeeping problems. The descriptions of the 
subroutines in this chapter are kept to a minimum except where 
the housekeeping problems are large and have a major effect on 
the contents of main storage. In these cases, background 
information is given and the various control blocks are 
explained, thus enabling the situation during execution to be 
understood~ 

The OS macro instructions referred to below are described in 
OS/VS2 MVS Data Management Macro Instructions, or in 
MVS/Extended Architecture Data Management Macro Instructions. 

234 OS PL/! Optimizing Compiler: Execution logic 



TIME 

DATE 

DELAY 

DISPLAY 

The PL/I TIME built-in function is implemented by issuing a 
GETIME macro instruction. This is done by the module IBMBJTT. 

On entry from compiled code, register I points to the address of 
the character-string target. The TIME macro instruction is 
issued using the TU parameter. The time is returned in units of 
26.04 microseconds and the module converts this into PL/I 
defined format 'hhmmssttt' in character format. Under CMS, time 
is returned to the nearest second. 

The PL/! DATE built-in function is implemented by module 
IBMBJDT. 

On entry from compiled code, register I points to the address of 
the date character string. The TIME macro instruction is 
issued. On return, register I contains the date in yydddc 
packed decimal format. The year is placed in the target 
character string in character form. The day of the year is then 
compared against a table indicating the number of days in each 
month. If the year is a leap year the number of days for 
February is set to 29 in the table. The days and months are 
then set in the character string and the result returned to 
compiled code in the form yymmdd. 

The PL/I DELAY statement is implemented by calling the DELAY 
module IBMBJDY. Register I is pointed at the milliseconds delay 
required. The milliseconds are converted into units of 26 
microseconds and the result stored in a fullword addressed by 
the TUINTVL parameter in the STIMER macro instruction. The 
STIMER macro instruction is then activated and the delay 
started. After the delay, control is returned to the calling 
program. 

Under eMS, the DELAY statement has no effect. 

The PL/I DISPLAY statement is implemented by the module IBMBJDS. 
There are two entry points: 

IBMBJDSA 

IBMBJDSB 

Entry from compiled code. 

Entry from IBMBJWT or IBMTJWT when a WAIT for the 
EVENT is reached. 

If the parameter list passed to the module has one element, then 
the entry is for DISPLAY only, and a VDA is obtained. If there 
are two parameters, the entry is for DISPLAY REPLY and a VDA is 
again obtained. If there are three parameters, then the entry 
is for DISPLAY REPLY EVENT. If the event variable is active, 
ERROR is raised. If the event variable is inactive, it is set 
active, I/O display and incomplete, and non-LIFO storage is 
obtained in which to build the parameter list. 

Next the reply buffer, if present, is filled with blanks and, if 
the reply string is variable length, its current length is set 
to the maximum length. The parameter list to the WTO macro is 
now built in the storage obtained, the address of the ECB put 
into the event variable if there is one, and a WTO macro issued. 
Finally, if DISPLAY REPLY without EVENT was specified, a WAIT 
macro is issued for the ECB. Return is then made to compiled 
code. 

Chapter 11. Miscellaneous Library Subroutines and System Interfaces 235 



SORT/MERGE 

In an MVS environment, PL/I can operate with various sort 
products, such as OS/VS Sort/Merge, its follow-on, DFSORT, or a 
program with the same interface. The Pl/! programmer can make 
use of the sort facilities through a call to the built-in 
subroutine PLISORT. The method of using the facility is fully 
described in as PL/! Optimizing Compiler: Programmers' Guide. 

The OS/VS sort program includes a number of user exits that can 
be conveniently thought of as allowing the programmer to write 
sections of code that become included in the sort/merge 
routines. Two of these user exits can be used by the PL/I 
programmer: user exit 15 allows records to be set up by PL/I and 
passed to the SORT routines; user exit 35 allows records that 
have been sorted to be passed to and processed by the Pl/I 
program. 

Exits are not allowed in the PL/! language. To overcome this 
problem, code is inserted between the sort/merge modules and the 
PL/I routines. A bootstrap module, IBMDKST, is used, and this 
module acts as an interface between SORT and PL/I. The 
bootstrap module saves the PL/I environment and restores it on 
return from sort/merge so that the PL/I exit-15 or exit-35 code 
can operate in a PL/I environment. Similarly, the bootstrap 
module restores the environment for SORT on return from the 
exit. 

Saving and restoring the environment consists of replacing the 
address of the error handler in the TCA with the address of an 
error routine in IBMBKST, and vice versa. 

Housekeeping Problems 

Various housekeeping problems occur in the user exit procedures, 
since there is no DSA chain through the SORT modules. 
Particularly difficult is the handling of a GOT a out of the exit 
procedure that passes control to a procedure that was activated 
before the procedure that originally called the sort program. 
This action implicitly termina"tes SORT. However, SORT will not 
be terminated by standard PL/! action, since it does not 
function in the PL/I environment. 

The problems are overcome by setting up a back chain that omits 
the SORT DSAs and includes a DSA that is specially flagged so 
that it can be recognized by the GOT a code. The chaining of 
save areas is shown in Figure 96 on page 238. 

When IBMBKST is called, an area of workspace is acquired by the 
bootstrap routine IBMBKST. This consists of one level of 
library workspace, which is flagged and chained to look like two 
DSAs. 

If the SORT program is terminated by a GOTO out of the block 
that contains the PL/I exit program, the SORT routine has to be 
terminated before the GOTO can be completed. This is done by 
the GOTO routine looking for a specially flagged DSA in the 
chain. This is the second save area of IBMBKST. If one is 
found, a return code of 8 is set up and return made to the SORT 
routine. If there is a GOTO or an error, then error code 16 is 
set instead of 8 if the SORT program product being used is that 
which supports this return code to exits. This results in the 
termination of the SORT routine, and the GOTO can then be 
continued in the usual manner by following the DSA back-chain 
through the bootstrap routine until the target DSA is reached. 

For handling ON-units in the exit procedure, the DSA chain can 
be followed without reference to SORT. 

236 as PL/I Optimizing Compiler: Execution Logic 



Restoration of the PL/I Environment on Exit from SORT 

When an exit is made from SORT, it is necessary to restore the 
Pl/I environment. The method used is to have code that restores 
the registers at the point to which SORT makes its exit. Use is 
made of the SORT exit table shown in Figure 96 on page 238. 
Whichever exit is taken, control passes to this code. The code 
saves the registers passed by SORT and restores the registers of 
the bootstrap module IBMBKST, thus restoring the Pl/I 
environment. The save area of the SORT bootstrap routine is 
addressed by means of an offset from the code that is being 
executed. This is possible because the SORT exit table and the 
register save area are both held in the same workspace at a 
fixed offset from each other. The code is not included in the 
bootstrap module, in order to preserve reentrancy. 

If there is an error in SORT, control is also passed to code 
which restores the environment, and passes control to IBMBKST 
and then to IBMBERR. 

Summary of Work Done by the SORT Module 

Before calling the SORT program, IBMBKST does the followings 

1. Obtains a VDA for two DSAs. 

2. Creates a parameter list suitable for SORT. 

3. Sets up addressability code for exit routine, if any. 

4. Changes the interrupt handler address so that an interrupt 
results in entry being made to a section of the sort 
bootstrap. The sort bootstrap then determines the error, 
puts out a message to SYSPRINT indicating that a program 
check has occurred during the execution of SORT, and then 
terminates the program. 

When a SORT E35 or E15 exit is being taken, the addressability 
code saves the registers of SORT and reestablishes the Pl/I 
environment, and then branches to an entry point of IBMBKST, 
which: 

1. Restores the Pl/I interrupt h~ndler address, so that control 
will pass to the Pl/I error-handling routines if a program 
interrupt occurs. 

2. Sets up parameters for the Pl/I exit routine from 
information passed by SORT. 

3. Calls the PL/I exit routine. 

Setting the return code in the PL/I exit program resets the 
parameters that IBMBKST passes to the SORT routines. 

Chapter 11. Miscellaneous library Subroutines and System Interfaces 237 



> r---. 

I I 

Back-chain I 
DSA for Pl/I program 
requiring SORT facilities 

I 
<-

Back-chain I 
First save area: Sort bootstrap DSA on 
for SORT interface calling rRT module 

*Exit table 
-> 

Back-chain 

Second save area: 
for exit routine 
interface 

Work area for the 
interface routines 

Address of SORT 
save area 

~---+-Back-chain 

*Exit table 

NOP 
Entry point for E15 BC 
Entry point for EIS BC 

STM 
L 
lM 
B 
DC 

Sort boo strap DSA on 
~Xit routine 

I 
Pl/I exit procedure DSA 

I 

0 
15~12~(lS) 
15,12,(15) 
14,12,12(13) 
2,28(15) 
2,12,28(2) 
exit bootstap 
A (save area 1) 

<-

r--
not used 
branch to exit code for ElS exit 
branch to exit code for E35 exit 
save sort registers 
locate bootstrap save area 
restore bootstrap registers 
initialized address of routine 
address of first save area 

'----

Figure 96. DSA Chaining during the Execution of SORT 

storage for SORT 

storage for sort/merge workspace and the modules used is 
obtained in the LIFO stack. A VDA of the correct length is 
obtained by the bootstrap module. The length required must be 
specified in the arguments that are given in the call to 
PLISORT. These actions are summarized in Figure 97 on page 239. 

238 OS PL/I Optimizing Compiler: Execution logic 



Call SORT bootstrap 
Main procedure Return on completion of SORT 

! i Set program-check exit for SORT to 
code in SORT bootstrap. 
Arrange parameters for SORT. 
Store registers in first bootstrap DSA. 

SORT Call SORT. 
bootstrap 
IBMBKST 

Sort as instructed by parameters. 

! i Save registers in SORT save area. 
Restore registers for bootstrap. 

SORT f--- Branch to bootstrap. 

! On entry from SORT On entry from 
exit routine 

Reset program-check Reset progrnm-check 
A for PL/I. exit for return to 

Addressability Set up parameters SORT. 
code for exit routine Arrange parameters 

from information fot' SORT. 

! 
passed by SORT. Restore SORT 
Call exit routine. registers. 

I 
Return to SORT. 

SORT bootstrap 

! i Carry out processing - return to SORT 
bootstrap. 

PL/I exit 
routine 

Figure 97. Summary of Action during Use of a SORT Exit 

CHECKPOINT/RESTART 

The PL/I Optimizing Compiler allows the programmer to make use 
of the system checkpoint/restart facilities by calling the 
built-in subroutine PLICKPT. This is implemented by a call to 
the resident-library subroutine IBMBKCP, which issues the CHKPT 
macro instruction. 

In an MVS environment, before the CHKPT macro instruction is 
issued two control blocks must be set up. One of these control 
blocks contains the names of all tape files that are open; it is 
used to reposition the tapes on restart. The other control 
block contains verification information for all disk files that 
are open; it is used to verify that the disk packs are on the 
same devices on restart as they were when the check-point was 

Chapter 11. Miscellaneous Library Subroutines and System Interfaces 239 



WAIT 

Event Variables 

taken. The two control blocks are held in workspace acquired by 
the module IBMBKCP. 

When a restart is made, control is passed to the module IBMBKCP 
at a fixed entry point. After carrying out necessary checks, 
control is then returned to the calling routine in the normal 
manner. Control is thus returned to the statement after the 
call to PLICKPT, and processing continues. 

The PL/I WAIT statement allows programmers, operating under MVS, 
to halt processing until a specified number of events are 
complete. The WAIT statement has no effect under VM/CMS. 

In the OS PL/I Optimizing compiler, an event can be associated 
with either a record I/O operation or a DISPLAY statement. It 
can also be an inactive event that is not associated with any 
operation or with an attached subtask. 

All information relating to an event is kept in an event 
variable. This is a control block of five words in length; it 
is treated for storage allocation like any other PL/I variable. 
The event variable holds information on whether the event is 
associated with an operation and whether it is complete; it also 
records the status of the event (that is, whether the associated 
operation was completed successfully or otherwise). When an 
event is associated with an operation, it is said to be active; 
otherwise, it is said to be inActive. 

When the wait statement is used, the keyword WAIT is followed by 
a list of events that are to be waited on. A number can follow 
this list, indicating that only that number of events need be 
completed before processing can continue. Typical WAIT 
statements are: 

WAIT (EVENTl,EVENT2); 

WAIT (EVENTI,EVENT2) (1); 

For the first statement, both the events would have to be 
completed before processing could continue. For the second 
statement, processing would continue as soon as either of the 
events was complete. 

When storage is allocated for an event variable, the event 
variable is set inactive and incomplete. When the EVENT option 
is used to associate the event with an operation, the event 
variable is set active and incomplete. When a WAIT statement is 
executed and the operation associated with the event has been 
completed, the event variable is set inactive and incomplete. 
The status of the event is also set at this time, indicating 
whether or not the operation was successfully completed. 

The PL/I language allows the programmer to set complete or 
incomplete any event, by use of the COMPLETION pseudo-variable. 
This sets the appropriate bit in the event variable. The 
completion status may be inspected by means of the COMPLETION 
built-in function. The PL/I language also allows the programmer 
to inspect and change the status of an event, by means of the 
STATUS built-in function and pseudo-variable. 

240 OS PL/I Optimizing Compiler: Execution Logic 



WAIT statement (NonmultitaskingJ 

The wait statement in a nonmultitasking environment is 
implemented by a call to the resident library routine IBMBJWT. 
IBMBJWT is passed a set of parameters consisting of the 
addresses of the event variables and the number of events that 
have to be completed. If the number of events that have to be 
completed is not specified, all the events in the list must be 
completed. Waits in a multitasking environment are described in 
"Communication between Tasks" on page 309. 

The WAIT makes use of the OS data-management WAIT macro 
instruction. However, because of the differences between the 
facilities offered by the OS and the PL/! language, considerable 
housekeeping problems are involved for waits on more that one 
event. For waits on single events, the problems are small and 
are described at the end of this section. 

When a WAIT or associated macro instruction is issued to the as 
supervisor, the event is considered to be complete when input/ 
output transmission is finished. In PL/I, however, a WAIT 
sta'tement is not considered complete until any error-handling 
activity caused by the operation which was being waited on is 
finished. The error handling may include entry into an ON-unit, 
and further WAIT statements may be executed in the ON-unit. 
This process can continue to any number of levels of interrupt. 

PL/! also allows the programmer direct control over the 
completion of an event by use of the COMPLETION pseudo-variable. 
Consequently, the PL/I programmer need not associate an event 
variable with an input/output operation, but can use it instead 
as a flag, setting the event complete at any point in the 
program. 

WAIT or associated macro instructions issued to the supervisor 
are completed by setting a completion bit in the ECB (event 
control block) which is held in the lOB. At the PL/! level, 
completion is indicated by setting the completion bit in the 
event variable. Thus a WAIT operation is carried on at two 
levels, the PL/I level and the system level. 

Housekeeping Problems 

The problems involved in implementing the WAIT sta·tement may be 
illustrated with examples from the skeleton program in Figure 98 
on page 242. 

Chapter 11. Miscellaneous Library Subroutines and System Interfaces 241 



WAITERs PROC OPTIONS (MAIN); 

1 

2 

3 

4 

5 BOOTlE: 

ON TRANSMIT (A) CAll li 
ON TRANSMIT (C) CAll l; 
ON TRANSMIT (X) CAll li 

ON RECORD (A) CAll M; 
ON RECORD (C) CAll M; 
ON RECORD (X) CAll Mi 
K=O; 
READ FILE (A) INTO (B) 

CEI)i 
EVENT 

READ FILE CC) INTO (D) EVENT 
(E2); 
• 
• 
• 
WAIT (El,E2); 
• 
• • 
IF K=l THEN WAIT (E2); 
• 
• • 
WAIT (E3); 
• 
• 
• 

l: PROC; 
6 COMPLETION (E3)='1'B; 
7 GO TO BOOTlE; 

END li 
M: PRoe; 

8 COMPLETION CE3)='l'B; 
9 WAIT (E2); 
10 K=l; 
11 READ FIlE(X) INTO(Y) EVENT 

(E2); 
END M; 

END WAITER; 

Figure 98. Example of WAIT Implementation Problems 

PROBLEM 1: If an event being waited on in a multiple WAIT 
statement is completed in an ON-unit entered while processing 
one of the other events in the statement, this must be made 
known to the first WAIT statement. Setting the event variable 
complete is not sufficient, because the event variable may be 
used again during the ON-unit. Suppose that the RECORD 
condition is raised during the execution of the WAIT statement 
numbered 3 in Figure 98, for the operation associated with event 
EI. The following then takes place: 

1. Contro~ passes to procedure M. 

2. The statement WAITCE2) is then encountered, and the program 
waits until event E2 is completed. When this occurs, the 
event variable is set complete and inactive. 

3. Event E2 is then used in a further I/O operation (statement 
11), causing the event variable to be set active and 
incomplete. 

On return to the main program, there would be no way of 
determining from the event variable for E2 that the original 
event E2 had been completed. The problem is solved by the use 
of control blocks called event tables (EVTABs). 

242 OS Pl/I Optimizing Compiler: Execution logic 



An EVTAB is set up by the wait module each time a WAIT statement 
is encountered; it contains entries for each statement. The 
entries are termed EVTAB elements. Each element is chained to 
its corresponding event variable and contains a bit that can be 
set to indicate that the event has been completed. 

In the example in Figure 98 on page 242, EVTAB elements for EI 
and E2 are set UP when the wait module is called at statement 3. 
When the ON-unit is entered, the WAIT statement 9 causes a 
further EVTAB to be set up with an entry for E2. The event 
variable pointer is reset to address the latest EVTAB elements, 
and a field in this element is set to point to the previous 
EVTAB element for E2. When event E2 is completed (without 
causing any I/O conditions to be raised), the event variable and 
each EVTAB element for E2 is set complete and inactive, and a 
bit in the event variable is set to indicate that the chain of 
EVTAB elements is no longer associated with the event variable. 
When statement 11 is executed, the event variable is set active 
and incomplete. After the ON-unit has been executed, the wait 
module sets the EVTAB element and event variable for El complete 
and inactive. It then tests any remaining EVTAB elements to 
determine whether they were set complete during an ON-unit; in 
this case, it finds that the next EVTAB element (for E2) has 
been set complete and that there are no more events to process. 
Execution therefore continues until statement 4 is executed, at 
which time a new EVTAB element is created for E2 and chained to 
its event variable. 

PROBLEM 2: A method must be provided to signal that an event 
waited on in an ON-unit is already being waited on in the 
procedure that caused entry to the ON-unit. Suppose that the 
RECORD condition is encountered in the operation associated with 
E2 (statement number 2) during processing of the WAIT at 
statement number 3. The following then takes place: 

1. Control passes to procedure M. 

2. A further WAIT on E2 in encountered (statement number 9). 
Since E2 cannot now be completed, a mechanism must be 
available to raise the ERROR condition; otherwise, the 
program would never get out of the wait state. 

The problem is solved by setting a flag in the event variable 
whenever an ON-unit is entered during WAIT statement processing. 
If the wait module is subsequently reentered from an ON-unit, to 
process a WAIT on the same event, it finds that this bit is set 
and raises the ERROR condition. 

PROBLEM 31 If there is a GOTO out of an ON-unit, this involves 
setting an event variable complete, and terminating the WAIT 
statement. Suppose the TRANSMIT condition is raised during the 
WAIT statement numbered 3, 4, or 9. The procedure l is entered 
and the following takes placel 

1. E3, which is a dummy event, is set complete. 

2. A GOTO is executed to the label BOOTLE. 

If no other action were taken the event that caused entry to the 
ON-unit (either EI or EZ) would not be set complete; any 
subsequent HAlT on that event would thus cause the wait module 
to be invoked, with unpredictable results. The problem is 
solved by setting a flag bit in the current DSA whenever the 
wait module is called. (The method is similar to that used to 
cater for a GOTO out of a SORT exit, and uses the same flag 
bit.) If the GOTO module finds that the bit is set, it returns 
to the wait module; the wait module sets the event variable 
complete and inactive and then returns to the GOTO module to 
continue the GOTO out of the ON-unit. Only the event that 
caused entry to the ON-unit is set complete. Any other 
incomplete events specified in the HAlT statement are left 
incomplete. 

Chapter 11. Miscellaneous Library Subroutines and System Interfaces 243 



Control Blocks 

PROBLEM 4: If control reaches label BOOTlE without the TRANSMIT 
or RECORD condition having been raised, the event E3 can never 
be completed. Some method must be available of making this fact 
known, otherwise the program would go into an indefinite wait on 
an event that could never be completed. This problem is solved 
by setting an event variable active only ~hen it is associated 
with an operation. Thus, if a WAIT statement specifies an event 
that is inactive and incomplete, the wait module causes the 
program to be terminated. (If a WAIT statement specifies more 
than one event and one of the events is inactive and incomplete, 
the program is not terminated immediately because it is 
possible, although unlikely, that the incomplete event will be 
completed by the COMPLETION pseudo-variable in an ON-unit 
entered as a result of an I/O condition raised while processing 
one of the other events specified in the WAIT statement.) 

Four control blocks are involved in the implementation of the 
WAIT statement. These are shown in detail in 
Appendix A, "Control Blocks" on page 326. 

1. Event variable. Used to hold all information about the 
event at a PL/! level. Fields indicate whether it is active 
or inactive; complete or incomplete; whether it is already 
being waited on at a previous interrupt level; the type of 
operation with which it is associated. Each event variable 
contains the address of its associated ECB or CCB and, if it 
is associated with an I/O event, the address of the FCB for 
the file. 

2. ECB (event control blockL' Used to hold information about 
the event at the system level. For I/O events, ECBs are 
part of the lOB. For DISPLAY events, the equivalent control 
block is the display control block, which is set up by the 
display module. 

3. EVTAB (event table). Created for each entry to the WAIT 
module; comprises an element for every incomplete event that 
is to be waited on. The EVTAB is held in a VDA acquired by 
the WAIT module. 

4. ECB list. This is a list of ECB addresses that is created 
in circumstances that are explained below. The ECa list is 
held in the VDA described above, and acts as an argument 
list for the WAIT macro instruction. 

Wait Module (IBMBJWTl 

The actions of the wait module, IBMBJWT, are shown in the 
flowchart in Figure 99 on page 246, and are described in detail 
in the publication OS Pl/! Resident library Program logic. 

As the flowchart shows, the WAIT module sometimes issues a WAIT 
macro instruction, and sometimes relies on the CHECK macro 
instructions in the Pl/! transmitters. The reasons for this are 
as follows. 

The CHECK macro instruction in the transmitter can only be used 
for I/O events, and only one transmitter can be called at a 
time. If only a certain number of the events in an event list 
need to be completed, it is not economical to pass these events 
one at a time to the transmitter, because the first event passed 
could be the last to finish. Consequently, whenever non-I/O 
events are involved and whenever less than the total number of 
events in an event list have to be completed, an ECB list is 
generated for all incomplete events and a WAIT macro instruction 
is issued. 

The WAIT macro instruction returns control as soon as any event 
in the list is complete, thus allowing an event list to be 
handled efficiently when only a number of events have to be 

244 OS PL/I Optimizing Compilerz Execution Logic 



completed. For I/O events, it is still necessary to issue the 
CHECK macro instruction in the transmitter, even though the 
events are known to be complete. This is because the CHECK 
macro instruction carries out various checking functions as well 
as waiting until the event is complete. 

Chapter 11. Miscellaneous Library Subroutines and System Interfaces 245 



Branch to point in transmitter 
where WAIT is issued 

Issue WAIT macro instruction 

Yes 

IBMBRI08c 
TRANSMITTER 

Call error handler which 
may in turn call ON-units 

Call display module to 
clear storage Yes 

Start 

Issue WAIT macro and 
check for ON-conditions 

Decrement count by one 
for event completed in 
IBMBRIO 

Figure 99 (Part 1 of 2). Summary of the WAIT Statement 

246 OS Pl/! Optimizing Compilers Execution logic 

Yes 

CHECK 
SUBROUTINE 

Decrement count of 
events to be completed 
by correct number 
Set EVTABs as Inactive 

Return to 
PL/I program 

Call error 
handler 



Remove any completed 
events from list 

Build EVT ABs in VDA 

Call CHECK subroutine 
with one item in list 

CHECK subroutine 

Handles one event and 
returns if all events not 
complete 

Figure 99 (Part 2 of 2). 

Chapter 11. 

No 

WAIT MODULE 
IBMBJWT 

Build EVT AB and ECB 
list (from CCBs for 
DISPLAY event) in VDA 

Issue WAIT on' 
ECB list 

Call CHECK subroutine 
with first event returned 
from WAIT 

CH ECK subroutine 

Handles one event and 
returns if all required 
events not complete 

Summary of the WAIT Statement 

Yes 

Build new ECB list 
for incomplete events 

Miscellaneous Library Subroutines and System Interfaces 247 



CHAPTER 12. DEBUGGING USING DUMPS 

The OS PL/I Optimizing Compiler allows you to obtain an 
execution-time dump by calling PLIDUMP. Using SYSABEND or 
SYSUDUMP in the JCl does not normally result in a dump after a 
program interrupt or, except in certain exceptional cases, after 
an ABEND. This is because SPIE/ESPIE and STAE/ESTAE routines 
result in all interrupts, and the majority of ABENDs, being 
passed to the PL/I error handler. 

Certain types of program error can, however, result in 
overwriting of the control information used by the error 
handling routines. When this occurs, an ABEND will be issued 
that results in system action. This ABEND has a user code of 
4000. Provided that a SYSABEND or SYSUDUMP DD statement was 
included in the JCL, an ABEND dump will then be generated. 

ABEND dumps are possible under these circumstances. 

1. When an interrupt occurs during the execution of one of the 
error handling routines. 

2. When housekeeping control blocks have been overwritten after 
an ABEND in the program. 

3. If the NOSPIE or NOSTAE option has been used. 

4. An error occurred in the program and the user has coded an 
appropriate IBMBEER module. 

The first two of these situations are most probably caused by 
overwriting of control information by the Pl/I program. The 
first can be identified because a message is sent to the console 
that reads 'INTERRUPT IN ERROR HANDLING ROUTINES PROGRAM 
TERMINATED', and the ABEND code will be 4000. 

Chapter 7, "Error and Condition Handling" on page 105, describes 
the methods used to handle interrupts and ABENDs. It also 
describes the implementation of PLIDUMP. This chapter is 
concerned solely with debugging usin~ the facilities provided. 

It is always possible for the programmer to ask an operator to 
take a stand-alone dump at any point in the program. The need 
to do this should, however, occur only infrequently. 

How to Use This Chapter 

This chapter contains information on how to obtain and interpret 
dumps, and on how to identify compiled code, data, and control 
blocks within a dump. Some knowledge of the compiler's 
housekeeping scheme, described in other chapters of this book, 
is assumed. Trying to use a dump without this knowledge can 
result in a great deal of wasted time. To acquire a quick 
overall picture, chapter 1 and the introduction to chapters 6 
and 7 should be read. A summary of how to use this chapter when 
debugging is given in Figure 100 on page 249. 

This chapter is divided into four sections. 

"Section 1: How to Obtain a PL/I Dump" on page 250 

This section explains how to obtain a hexadecimal dump of a 
Pl/I program. It also gives some suggestions on the use of 
various compiler and PL/I options that may prove useful when 
debugging. 

248 OS PL/I Optimizing Compiler: Execution Logic 



Start 

Yes 

Are you 
looking for some 
particular item 

or area 
? 

Do you have 
a method of reading 

PUI Optimizing 
Compiler 

dumps 

No 

Follow the most suitable check list in 
section 2 of this chapter. Refer to 
keyed items in section 3 for details. 

No 

Yes 

Read section 1 of this chapter to discover correct 
method. (Use of SYSABEND or SYSUDUMP will 
not necessarily produce a dump) 

Do not attempt to debug without this knowledge. Read 
chapter 1 and introduction to chapters 6 and 7 of this 
book. 

Examine contents list at start of section 3 to find 
quickest method of finding item. 

Use contents list at start of section 3 to simplify finding 
various items. 

Figure 100. How to Use this Chapter When Debugging 

Chapter 12. Debugging Using Dumps 249 



"Section 2: Recommended Debugging Procedures" on page 258 

This section recommends two ways of debugging a PL/I program 
using a dump. The first shows a PL/I dump that was called 
from an ERROR ON-unit; the second shows debugging with a 
system dump that was probably generated because the 
housekeeping control blocks were overwritten. 

"Section 3: Locating Specific Information" on page 263 

This section describes how to find various data areas and 
other information. It is indexed and numbered for quick 
reference. 

"Section 4: Special Considerations for Multitasking" on 
page 280 

This section describes the special considerations that must 
be taken into account when debugging a program that uses 
multitasking. 

If you are familiar with system dump methods, read the first 
section before taking a dump. PL/I uses methods that do not 
follow OS. Use the next two sections when debugging. If you 
know what you are looking for, go directly to "Contents" on 
page 263. This section directs you to numbered sections that 
give details of how to find particular items. If you have no 
preferred scheme of your own, you can follow the recommended 
procedures in "Section 2: Recommended Debugging Procedures" on 
page 258. It cross-refers to the items in "Section 3: locating 
Specific Information," so that the details of the steps involved 
can be quickly found. 

SECTION 1: HOW TO OBTAIN A PL/I DUMP 

CALL PLIDUMP 

In order to get a formatted PL/! dump, you must include a call 
to PlIDUMP in your program. 

The statement CALL PLIDUMP may appear wherever a CALL statement 
is used. It has the following form: 

CALL PlIDUMP 
(character-string-expression 1, 
character-string-expression 2); 

Character-string-expression 1 is a "dump options" character 
string consisting of one or more of the following dump option 
characters: 

T Trace. A calling trace through all active DSAs is generated. 
When an ON-unit DSA is encountered, the values of the 
relevant condition built-in functions are given. The reason 
for the entry to the ON-unit is also given if the ERROR or 
FINISH conditions are raised as standard system action for 
another condition. 

NT No trace. A calling trace is not given. 

F File information. A complete set of attributes for all open 
files is given, plus the contents of all accessible buffers. 

NF No file information required. 

S StoP. The program will be terminated after the dump. 

C Continue. Execution of the program will be continued after 
the dump. 

250 as PL/I Optimizing Compiler: Execution logic 



Tasking options 

RECOMMENDED CODING 

H Hexadecimal. A SNAP hexadecimal dump of the region will be 
given. If trace information is requested, the TCA and DSA 
addresses will be given. 

If file information is requested, the addresses of the FCBs 
will be given and the contents of all accessible buffers will 
be printed in hexadecimal notation as well as in character. 

NH No hexadecimal dump required. 

B Blocks. The contents of the TCA, TIA, DSAs, FCBs, and file 
buffers are printed in hexadecimal notation. 

NB No block information required. 

K Produce a hexadecimal dump of the TIOAS and TWA CCICS control 
blocks) if they exist 

NK No dump of CICS blocks. 

A All, which results in a dump of all active tasks including 
the control task-see Chapter 14, "Multitasking" on 
page 307. 

a Only, which results in a dump of the current task and a dump 
of the control task. 

E Exit, which results in the termination of the task after the 
dump. 

The default options are TFCANHNB. That is, trace information, 
file information, no block informa"tion, no hexadecimal dump, all 
tasks, and continuation after the information has been put out. 

Options are read from left to right. Invalid options are 
ignored, and, if contradictory options are coded, the rightmost 
options are taken. 

Character-string-expression 2 is ~ "user identifier" character 
string of up to 90 characters chosen by the PL/I programmer. It 
is printed at the head of the dump. If the character string is 
omitted, nothing is printed. 

If PLIDUMP is called a number of times in a program, a different 
user identifier should be used on each occasion. This will 
simplify identification of the point at which the dump was 
called. 

For PLIDUMP to produce a dump, a DD card for PLIDUMP must be 
included in the JCL. PLIDUMP can be called from anywhere in a 
program, but the normal method used when debugging will be to 
call PLIDUMP from an ON-unit. As continuation after the dump is 
one of the options available, PLIDUMP can be used as a SNAP dump 
to get a series of dumps of main storage throughout the running 
of the program. 

By inclUding the statement CALL PLIDUMP ('HB','dump 
identifier'); in an ERROR ON-unit, it is possible to obtain a 
hexadecimal dump, with control blocks identified and formatted, 
should an error occur. If an ERROR ON-unit is being included in 
a program, care should be taken that there are no further ON 
ERROR statements which might override the ON-unit requesting a 
dump. 

Suggested code for use when debugging with a dump is given in 
Figure 101 on page 252. 

Chapter 12. Debugging Using Dumps 251 



® 

(SIZE, SUBSCRIPTRANGE, STRINGRANGE): 

DUMPER: PROC; 
ON ERROR CALL PUDUMP ('HB', 'ERROR ON-UNIT DUMP'); 

END; 

(':;\ These options give compiled code listing and 
~ static storage map, essential for interpreting 

any dump. MAP results in the generation 
~ble showing offsets of static and automatic 

variables from their defining bases. 

Provides trace of last n branch-out/branch-in 
points in up to m blocks if SNAP or PLIDUMP 
with trace is used. 

Two arguments can be passed to PLIDUMP. 
They are the dump options character string and 
the dump identifier. The format ot the call 
statement is: 

--L 

® 
Permits trace of statement numbers in original 
source program, and simplifies program checking. 

Prefix options. The use of these PL!I checkout 
options is strongly urged. Since, however, they 
cause an increase both in the size of object code 
and in execution time, it may be necessary to 
restrict their use to suspected blocks or statements. 

CALL PUDUMP (character-string-expression 1, character-string-expression 2); 

/ '" Dump options character string 
(Default is 'TFCANHNB') 

I 
T Trace information required 

NT No trace information required 

F File information required 

NF No file information required 

S Stop after du mp 

C Continue after dump 

H Hexadecimal information required 

NH No hexadecimal information required 

B Control block information requ ired 

NB No control block information required 

A Dump all tasks 

o Dump current task only 

E Exit from task after dump 

K Produce a hexidecimal dump of TIOAS and TWA 

NK No dump of CICS blocks 

Figure 101. Code for Debugging 

Dump identifier character string 

I 
Printed at head of dump. May be up to 90 
characters long. 

252 OS Pl/I Optimizing Compi1era Execution Logic 



AVOIDING RECOHPILATION 

If an ERROR ON-unit containing a call to PlIDUMP is to be 
included in an existing program, it is necessary to recompile 
the program. This course is advisable as it allows other 
diagnostic aids, such as SUBSCRIPTRANGE, to be included. 
However, if recompilation is not desirable, a Pl/I dump can be 
obtained by using a small bootstrap routine that contains an 
ERROR ON-unit calling PlIDUMP. This routine can be compiled and 
then link-edited with the object module of the program that 
needs to be dumped. The ON-unit will then be inherited by the 
program that requires a dump, and a dump will be generated when 
an error occurs. A suitable bootstrap program is shown in 
Figure 102. When using this method, the bootstrap must be 
link-edited as the MAIN procedure; it should therefore be passed 
to the linkage editor before the program that requires dumping, 
since that program will also have the MAIN option. If the 
program that requires dumping expects to be passed parameters, 
the bootstrap procedure should use an identical parameter list 
in its PROCEDURE statement, and should include an identical 
argument list in the CALL statement used to invoke the inner 
procedure. 

BOOTSTRAP: PROC OPTIONS (MAIN); 

Del program* ENTRY EXTERNAL; 

ON ERROR CALL PlIDUMP ('HB', 
'BOOTSTRAP'); 

CALL program*; 

END; 
*The name of the program to be dumped should be inserted at the 
points marked program* in this example. 

Figure 102. Suggested Method of Obtaining a Dump when 
Recompilation is Particularly Undesirable. (See 
text before using this method.) 

If the program that requires dumping already has an ERROR 
ON-unit, this will override the ERROR ON-unit in the bootstrap 
program. 

In certain circumstances, a dump can still be obtained. 

1. If the reason for the entry to the ON-unit is the occurrence 
of a PL/I condition, an ON-unit for this condition in the 
bootstrap program will result in a dump being taken before 
the ERROR ON-unit is executed. 

(For example, if the CONVERSION condition was occurring in 
the program to be dumped, a CONVERSION ON-unit could be 
included in the bootstrap program. Such an ON-unit would be 
entered before the ERROR condition was raised.) 

2. Provided that the ERROR ON-unit does not include a GOTO out 
of the ON-unit, a FINISH ON-unit can be used. Since the 
standard system action for the ERROR condition is to raise 
the FINISH condition, the dump will be generated after the 
ERROR ON-unit has been executed. 

There is no point in including SUBSCRIPTRANGE or other prefixes 
in the bootstrap routine, because these are not inherited by 
called programs. 

The bootstrap method is not recommended unless there are 
particularly strong reasons for avoiding recompilation. 

Chapter 12. Debugging Using Dumps 253 



CONTENTS OF A PL/I DUMP 

Headings 

Trace Information 

The appearance of a typical dump produced by the PLIDUMP modules 
with the options TFHBA is shown in Figure 103 on page 255. The 
contents of particular sections follow. 

The dump is headed by the line 

***PL/I DUMP*** 

This is followed by the user identifier, if any, given as the 
second character string in the argument list of PLIDUMP. 

A request for trace information results in the following output: 

1. A trace of every procedure, begin block, and ON-unit that is 
active at the time of the call to PLIDUMP. For procedures, 
the procedure name and statement number from which the 
procedure was called are given. The offset of the statement 
is given as well as the entry point address and DSA address. 
Also, if the entry point used is not the main entry point 
and the statement number option was specified, the main 
entry name is given. 

For multitasking programs, the name of the task variable, 
its status, and the absolute priority of the task are 
printed. If no task variable is supplied, 'NONE' is printed 
as the name of the task variable. A dummy task variable 
will have been ~upplied (see Chapter 14). 

2. For ON-units, the values of any relevant condition built-in 
functions are given. The type of ON-unit is given and, 
where the cause of entry into the ON-unit is not 
self-explanatory, the cause of entry is also given (for 
example, if an ERROR ON-unit was entered because of a 
conversion error, this fact is given in the trace 
information). The ON-unit type is specified, using a 3- or 
4-1etter abbreviation. A list of these abbreviations is 
given in Figure 104 on page 256. 

3. When a hexadecimal dump is requested, the entry point 
address of each active block is also given, together with 
the address of its associated DSA. 

4. When the compiler FLOW option is in effect, the flow 
statement table is given. 

5. If a hexadecimal dump is requested, the address of the TCA 
is printed at the head of the trace. 

6. If either a hexadecimal dump or control block information 
has been requested, and any ERROR ON-units are traced, the 
following information is also included: 

a. The address of IBMBERRs DSA 

b. The contents of the general and floating point registers 
at the time IBMBERR was called 

c. If there was an interrupt, the address of the interrupt 

d. A trace of library DSAs back to the last compiled code 
DSA 

254 as PL/I Optimizing Compiler: Execution Logic 



••• PVI DUHP ••• 
USER IDENTIFIER: EXAMPLE OF PLIDUHP 

• • • CALLING TRACE • • • 
CTCA ADDRESS 00008008 ) 

PLIDUHP HAS CALLED FROM STATEHENT NUMBER 2 AT OFFSET +00009E FROH A ERR TYPE ON-uNIT MITH ENTRY ADDRESS 01BOOSSC 
lAND DSA ADDRESS 000088E8 ) 

ERROR DIAGNOSTICS 
PL/I CONDITION DETECTED: CONY 

ONCODE 612 SEE LANGUAGE REFERENCE MANUAL 
ONCHAR =T CHARACTER CAUSING CONVERSION ERROR 

=E3 AS ABOVE IN HEXADECIMAL 
QNSOURCE ~THIS HILL RAISE CONVERSION STRING CAUSING CONVERSION ERROR 

=E3C8C9E240E6C9D3D340D9C1C9E2CS4OC3D6D5ESt5D9E2C9D6D5 

ADDRESS OF ERROR HANDLER'S SAVE AREA 00008698 
REGISTERS ON ENTRY TO ERROR HANDLER 

AS ABOVE IN HEXADECIMAL 

REGS 0-7 00008698 00008690 00008618 81802C56 00008458 D000859A 00008628 8180038A 
REGS 8-1S 00000001 00008583 00000000 01801002 00008008 00008640 81802E48 01802132 

END OF ERROR DIAGNOSTICS 
HHICH HAS CAllED FROH A LIBRARY HODULE HITH ENTRY ADDRESS 01802C50 (AND OSA ADDRESS 00008640 ) 
HHICH HAS CALLED FROH A LI8RARY HODULE MITH ENTRY ADDRESS 0180lA98 (AND DSA ADDRESS 00008348 ) 
HHICH HAS CALLED FROH A LIBRARY HODULE HITH fNTRY ADDRESS 01B00610 (AND OSA ADDRESS 00008St8 ) 
HHICH HAS CALLED FROH STATEHENT NUMBER 6 AT OFFSET +000084 FROH PROCEDURE EXAMPLE HITH ENTRY ADDRESS 01800498 

lAND DSA ADDRESS 000084C8 ) 

TRACE OF PL/I CONTROL BLOCKS 
TASK COHHUNICATIONS AREA 

• • • END OF CALLING TRACE • • • 

ADDR. OFFSET 0 4 8 C 10 14 18 lC 
00008008 00000 00000000 00008488 00008008 00000000 00000000 00008018 00005FBO 00008210 
00008028 00020 00000000 00008298 00008138 00000000 000082AO 00000000 00008268 00000000 
00008048 00040 00008230 00000000 800064FC 00000000 00006228 00000000 00000000 00000000 
00008068 00060 00000000 01801920 01BOl984 8000648C 8000648E 80006500 01802132 FOOOOB08 
00008088 00080 582E0004 58EEOOOO 19DF478C OOC21851 181F180E 58FCOOFO 05EF9500 C001410C 
000080A8 OOOAO 008A18E5 58FCOOAC 07FF07FE 01B016CO 000058FC OO~8051r 080118EO 18019834 
000080C8 OOOCO DOZ091~Q DOOI078E 9140DOOl 478COODC U203D04C 00509120 0001078E 02010056 
000080E8 OOOEO 00549180 D054071E lalr~~C 00F407FF 000080B2 00000000 00008082 00008082 
00008108 00100 00008082 00008082 00000000 00000000 00000000 00000000 00000000 00000000 
00008128 00120 000080B2 0000000t-

TCA IHPLEHENTATION APPENDAGE 
• • • PL/I DUMP • • • 

ADDR. OFFSET 0 4 8 C 10 14 18 1C 
00008138 00000 00046800 00000000 01802048 00001070 00000000 00000000 00000000 00000000 
00008158 00020 00008248 000082FO 01801876 00000000 00000000 00000000 00005EC8 00000000 
00008178 00040 018018CC 0180294C 00000000 00000000 00008008 00000000 81800250 01000030 
00008198 00060 00046220 00000000 00000000 00001000 00000000 00000000 00000000 00000000 

LI8RARY HaRK SPACE 
CONTENTS OF REGISTER SAVE AREA 

REGS 0-7 800077EO 018003EO 000088E8 81B014AE 00008458 00000000 
REGS 8-15 000089AA 000089C8 000084C8 00008138 OOCOOOOO 00008780 

ADOR. OFFSET 0 4 8 C 10 14 18 1C 

•••••••••••••••••••••••••••• 0 ••• 
••••••••••••• B ••••••••• 0 •••••••• 
••• Y ••••••••••••••••••••••••• J •• 
••• - ••••••••••• K ••••••••••• K ••• 
••••••••••••• 4 •••••••••••••••••• 

••••••• 0 •••••••••••••••••• lH •••• 

018003EO 
81B014EE 

01800420 
800077FE 

00008780 00000 08000110 000088E8 00000000 81B014EE 800077FE 800077EO 01B003EO 000088E8 ••••••• Y ••••••••••••••••••••••• Y 
000087AO 00020 818014AE 00008458 00000000 018003EO 01800420 000089AA 000089C8 000084C8 ••••••••••••••••••••••••••• H ••• H 
000087CO 00040 00008138 00000000 00008808 000089DO 00020000 000087F8 00440000 00100000 .•.•..••.•.•••••.•••.•. 8 .•..•..• 
000087EO 00060 FOFOF3F2 FIF20000 00000000 0000006C 80007AC4 FOC2F4St 40404040 40404040 003212 ••••••••••••• 0084. 
00008800 00080 40404040 40404040 

DYNAHIC SAVE AREA ION-UNIT) 
CONTENTS OF REGISTER SAVE AREA 

REGS 0-7 00008900 01B003EO 81B00582 01800340 00008458 00000000 00008580 01800420 
REGS 8-15 000089AA 000089C8 000084C8 00008138 00000000 000088E8 818005FA 018014A8 

ADDR. OFFSET 0 4 8 C 10 14 18 1C 
000088E8 00000 8C248928 00008698 050COOOO 81BOOSFA 018014A8 00008900 018003EO 81B00582 
00008908 00020 01800340 00008458 00000000 00008580 01B00420 000089AA 000089C8 000084C8 
00008928 00040 00008138 00000000 00008780 000089DO 000089DO 91E091EO 000084C8 00000000 
00008948 00060 00000000 00000000 00000000 OOOOOO~O 00000000 00000000 00000000 00000000 
00008968 00080 00000000 00000000 00008928 00000000 00000000 00000000 00000000 00000000 
00008988 OOOAO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
000089A8 OOOCO 0000C2E2 000089AA 00020000 0000CSE7 C1D4D7D3 C540D6C6 40D7D3C9 C4E4D4D7 
000089C8 OOOEO 00008986 00120000 

DYNAMIC SAVE AREA ILIBRARY) 

Figure 103. An Example of PlIDUMP 

Chapter 12. 

•••••••••••••••••••••••••• H ••• H 
••••••••••••••••••••••••••• H •••• 

.• BS ••.•••••.• EXAHPLE OF PLIDUHP 

Debugging Using Dumps 255 



File Information 

Abbreviation 

AREA 

CHCK 

COND 

CONV 

ENDF 

ENDP 

ERR 

FIN 

FOFL 

KEY 

NAME 

OFL 

REC 

SIZE 

STRG 

STRZ 

SUBG 

TMIT 

UFl 

UNDF 

ZDIV 

Figure 104. 

Condition Name 

AREA 

CHECK 

CONDITION (programmer named condition) 

CONVERSION 

ENDFIlE 

ENDPAGE 

ERROR 

FINISH 

FIXEDOVERFlOW 

KEY 

NAME 

OVERFLOW 

RECORD 

SIZE 

STRINGRANGE 

STRINGSIZE 

SUBSCRIPTRANGE 

TRANSMIT 

UNDERFLOW 

UNDEFINEDFILE 

ZERODIVIDE 

Abbreviations for Condition Names Used in PlIDUMP 
Trace Information 

A request for file information results in the following outputl 

1. The default and declared attributes of all open files are 
given. 

2. Buffer contents of all buffers are given. If a hexadecimal 
dump has been requested, the contents of the buffers are 
given in both hexadecimal and character notation. If no 
hexadecimal dump is requested, the contents are given in 
character notation only. 

3. The contents of the FCBs, DeBs, DCLCBs, IOCBs, and exclusive 
file blocks are given in formatted hexadecimal notation, if 
either the 'H' or 'B' option is also included. 

256 OS PL/I Optimizing Compiler: Execution Logic 



Hexadecimal Dump 

Byte 1 PL/I Condition, If Any Base No. 

X'02' ZERODIVIDE 320 
X'03' FIXEDOVERFlOW 310 
X'04' SIZE 340 
X'OS' CONVERSION 600 
X'06' OVERFLOW 300 
X' 07' UNDERFlO,,"I 330 
X'08' STRINGSIZE 150 
X'09' STRINGRANGE 350 
X'OA' SUBSCRIPTRANGE 520 
X'OS' AREA 360 
X'OC' ERROR 009 
X'OD' FINISH 004 
X' OE' CHECK 510 
X'OF' CONDITION 500 
X'lO' KEY 050 
X'II' RECORD 020 
X'12' UNDEFINEDFILE OBO 
X'13' ENDFILE 070 
X'14' TRANSMIT 040 
X'lS' NAME 010 
X'16' ENDPAGE 090 
X' 17 ' 
X'lB' 
X'19' PENDING 100 
X'lA' ATTENTION 400 
X'CD' 9250 
X'CF' ERROR 1000 
X'D3' 9200 
X'D5' 3500 
X'D7' 4050 
X'D9' 5050 
X'DF' 5000 
X'El' ERROR 9050 
X'E3' 1000 
X'ES' 4000 
X' E7' xxxx 
X'E9' 4050 
X'EB' ERROR 0003 
X'ED' 1000 
X'EF' ERROR 1550 
X'Fl' 1500 
X'F3' 2000 
X'F5' 3768 
X' F7' ERROR 3000 
X'F9' ERROR 3800 
X'FB' 3900 
X'FD' 9000 
X'FF' 8090 

Figure 105. Error Code Field lookup Table 

The hexadecimal dump is produced by the execution of a SNAP 
macro instruction. Thus the normal SNAP dump is produced. 

It should be noted that the PSW will contain the address of an 
instruction in IBMBKMR, one of the modules used to implement 
PLIDUMP. This will bear no relation to the error in the dumped 
progr'am. 

If the program is not multitasking, the SNAP macro specifies all 
register save areas, subpools, task control blocks, and, 
provided the 0 (Only) option is not included in the PLIDUMP 
options, the trace table. 

Chapter 12. Debugging Using Dumps 257 



Block Option 

For a dump of a multitasking program the contents are: 

In the control task 

Register save areas 
Subpools 

Trace table 
Control blocks 

In the other tasks 

Register contents 
Register save areas 

Subpools 
Jobpack Area 
linkpack Area 

When the block option is used, the contents of the TCA, the TIA 
(TCA appendage), and the DSAs in the LIFO stack (that is, all 
active DSAs) are printed in hexadecimal and character format. 
The absolute address is printed in the left hand column; the 
offsets within the block are then printed. This is followed by 
the contents of the block, first in hexadecimal and then in 
character notation. For DSAs, the type of DSA is shown; that 
is, library DSA, procedure DSA, ON-unit DSA, or dummy DSA. The 
contents of the FCBs, DCLCBs, and IOCBs for any open files are 
printed in a similar format. 

In a dump of a multitasking program, the contents of the tasking 
appendage are also printed. 

If the option A(all) is used in a multitasking program, the TCA, 
TIA, DSAs and tasking appendage of all directly ascending tasks 
will be printed. FCBs, IOCBs, DClCBs will be printed after 
files open in any task if the option A is used. 

SECTION 2: RECOMMENDED DEBUGGING PROCEDURES 

The main difficulty in reading a dump of a PL/I program is 
knowing where to start. The signposts known to assembler 
language programmers are of little help. There are, however, 
five main sources of information to be considered when using a 
dump to debug a Pl/I program. They arel 

1. The statement number and the address where the error 
occurred (if the dump was taken after an error) 

2. The type of error (if the dump was taken after an error) 

3. The values in the general registers when the dump was taken 
or when the error occurred 

4. The chain of DSAs 

5. The TCA 

The first two of these items hold equivalent information to that 
held in the PSW in a system dump. The last three items enable 
the housekeeping to be checked and the location of the control 
blocks and the program variables to be discovered. The methods 
of locating other information, given in "Section 31 Locating 
Specific Information" on page 263, refer to the key areas shown 
above. The object program listing allows you to study the 
instructions that are being carried out and to find various 
control blocks in static storage. The linkage editor map allows 
you to identify particular parts of the executable program phase 
and to identify the routine associated with each DSA. The 
object program listing is produced by the LIST compiler option; 
the linkage editor map, by MAP. 

258 OS PL/I Optimizing Compiler: Execution Logic 



Note: The PSW in the SNAP dump should not be consulted. This 
will give the address at which the SNAP macro instruction was 
issued. This is an address in one of the PLIDUMP modules and is 
not relevant to the error in the problem program. Instead, look 
at the trace information. 

DEBUGGING OVERLAID STORAGE 

Storage overlay is one of the most common errors you usually 
debug with a dump. In Pl/I applications, overlay problems can 
be divided into these categori~s: 

• Are you using a subscript outside the declared bounds 
(SUBSCRIPTRANGE)? 

• Did you attempt to assign a string to a target with a 
shorter maximum length CSTRINGSIZE)! 

• Does one of the arguments to a SUBSTR reference fail to 
comply with the rules described for the SUBSTR built-in 
function (STRINGRANGE)? 

• Were significant high-order (left-most) binary or decimal 
digits lost during an assignment to a variable, an 
intermediate result, or on an input/output operation (SIZE)? 

• Are you reading a variable-length file into a variable! 

• Are you using a pointer variable? 

By understanding these problem areas before you proceed through 
the dump, you can isolate the problem much faster. 

The first four categories are associated with the indicated Pl/I 
conditions, all of which are disabled by default. If you 
suspect one of these problems is in your program, use the 
appropriate condition prefix on the suspected statement or on 
the BEGIN or PROCEDURE statement that defines the block that 
contains the suspected statement. 

The fifth category occurs when you read a data record into a 
variable that is too small. This type of problem only happens 
with variable-length files, and can often be isolated by 
examining the data in the file information, and the data in the 
buffer. 

The last category occurs when you misuse a pointer variable. 
This type of storage overlay is particularly difficult to 
isolate. 

There are a number of ways pointer variables can be misused: 

1. When a READ statement with the SET option is executed, a 
value is placed in a pointer. If you then execute a WRITE 
statement or another READ SET option with another pointer, 
you will overlay your storage if you try to use the original 
pointer. 

2. When you attempt to use a pointer to allocated storage that 
has already been freed, you can also cause a storage 
overlay. 

3. When you attempt to use a pointer, set with the ADDR 
built-in function, as a base for data with different 
attributes, you can cause a storage overlay. 

Chapter 12. Debugging Using Dumps 259 



DEBUGGING PROCEDURES 

The best approach to a dump depends on the problem to be solved 
and must therefore be left largely in the hands of the 
programmer. However, two suggested courses of action are given 
in this section. 

These courses cover two situations: 

1. When PLIDUMP has been called from an ERROR or other ON-unit 

2. When only a system ABEND dump has been generated. 

Other possible situations are when a dump is taken at a 
specified point in the program, or when a stand-alone dump is 
taken. No attempt is made to suggest a course of action in 
these circumstances. However, in such cases, the main storage 
situation can be investigated by following the methods itemized 
in "Section 3: Locating Specific Information" on page 263. 

Throughout each of the two recommended procedures given in the 
following paragraphs, there are cross-references to the methods 
given in "Section 3: locating Specific Information." The 
cross-references consist of the keys by which the methods are 
identified; for example, H6, D5. These keys are listed in 
"Housekeeping Information in All Dumps" on page 263. 

PL/I Dump Called from ON-Unit 

If a PL/I dump is called from an ERROR ON-unit, it can be 
assumed that the housekeeping system of the program is working. 
If it were not working, the dump would probably not have been 
generated. 

A large amount of diagnostic information is available at the 
head of the dump. An error message is generated, which provides 
a useful starting point. First, examine the type of the error 
and the point where it occurs. Next, examine the ONCODE and 
other condition built-in function values, along with the trace 
inf·ormation. We suggest the follm-ling procedure: 

1. Examine the erro~ by means of the ONCODE and any other 
relevant built-in function values. These values are given 
in the trace information. (The meanings of codes are given 
in the OS and DOS PL/I Optimizing Complier language 
Reference Manual). 

2. Find the location of the error (PIon page 263) and the 
block in which the error occurred (H12 on page 264). If the 
error occurred in a library module, see H14 on page 264. 
This information is normally available from the head of the 
PLIDUMP in the trace information. 

3. Examine the trace to see if -it appears as expected. 

4. Examine the information in the file buffers, and check that 
file attributes are as expected. This information will be 
printed in the dump heading. 

s. Check the values of any variables involved in the interrupt 
(VI-V6). 

6. Check values of registers to see if dedicated registers are 
pointing to correct areas (H8 and H9). Distinguish between 
compiled code and library register usage. 

7. If SUBSCRIPTRANGE or STRINGRANGE is not enabled, check that 
the error was not caused by one of these conditions. 

8. Check housekeeping (HI-H16) starting with the area most 
directly concerned with type of statement in which the error 
occurred. 

260 OS PL/I Optimizing Compiler: Execution Logic 



System ABEND Dump 

9. Check values of all variables in the program (VI-V6). 

10. Check the logic of code being executed from object listing. 

Provided a SYSABEND or a SYSUDUMP card is included in the JCl, a 
system ABEND dump will be generated when there is a failure of 
the error-handling modules, or of the module that prints the 
Pl/! hexadecimal dump. It should be noted that the failure of 
these modules is more likely to be caused by the overwriting of 
essential information than by an error in the modules 
themselves. 

Because ABENDs caused by overrunning the specified time (SYSTEM 
322) do not enter the STAE/ESTAE exit, these will cause dumps to 
be generated in normal circumstances. 

An ABEND dump will not normally be produced for program checks, 
because a program check exit is set by the PL/! housekeeping 
routines, so that the system returns all program checks to the 
error handler. In the error handler itself, the program check 
exit is reset so that a program check interrupt results in a 
dump. 

Thus, an ABEND is produced if: 

• The program interrupt exit was reset during the program. 

This exit is normally set by the program initialization 
routines to prevent a dump. 

• The program interrupt exit was never set at all. 

This possibility is extremely unlikely. 

• The program check exit itself is not working, and the 
SPIE/ESPIE macro in the initialization routines did not 
successfully set the program check exit. 

The most probable of these suggested causes is that the program 
check exit was reset by the program. The program interrupt exit 
is always reset for the duration of error handling or PLIDUMP, 
to prevent looping should an interrupt occur. (For further 
details, see Chapter 7, "Error and Condition Handling" on 
page 105.) 

If an interrupt occurs during error handling, an ABEND with a 
code of 4000 is produced. This results in a dump if SYSABEND or 
SYSUDUMP cards were provided. An interrupt in the 
error-handling routines indicates either that the error-handling 
routines are at fault, or, more probably, that some of the 
control information of the error-handling routines was 
overwritten during the execution of the program. 

The most practical solution may be to recompile the program with 
SUBSCRIPTRANGE, STRINGSIZE, and STRINGRANGE enabled. Then rerun 
the program with the NOSPIE and NOSTAE execution-time options. 
These PL/! conditions check for possible overwriting by 
subscripts or substrings that are beyond the bounds of the 
variable referred to. 

If a 4000 ABEND must be run, execute with NOSPIE and NOSTAE. 
For more information on 4000 ABEND codes, see OS Pl/I Optimizing 
Compiler: Debug Guide. 

Chapter 12. Debugging Using Dumps 261 



However, having obtained an ABEND dump, the following debugging 
procedure may be adopted. 

1. Determine whether the dump was caused by an interrupt in the 
error-handling routines or a housekeeping error discovered 
during the analysis of an ABEND. If the cause was an 
interrupt in the error handler, a message will have been 
sent to the console before the ABEND was issued, and the 
ABEND will have a code of 4000, if the int~rrupt occurred in 
one of the error-handling routines. Note that codes 322 and 
122 may also give system dumps, and that the use of NOSPIE 
or NOSTAE can result in the generation of a dump. 

2. locate the instruction causing the interrupt. This is done 
by looking for the PSW (01). 

3. Inspect this instruction to see if it appears to have been 
overwritten, bearing in mind the cause of the interrupt; for 
example, 

a. Do the registers used in the instruction contain 
incorrect information, picked up because of overwriting! 

b. Is it a branch to a protected address! 

4. Inspect the TCA(OS) to ensure that all error-handling 
addresses are correct. 

5. Investigate the housekeeping fields, starting with the DSA 
chain (HI-H3l, than the chain of ONCAs (H5,H6). 

6. Investigate the error that caused entry into the error 
handler. This can be done by examining the contents of 
IBMBERR's DSA (H7) and the associated ONCA (H6). See 
whether incorrect information passed to the error handler 
could be causing a failure. 

7. Check for uninitialized variables (particularly pointers), 
and incorrect passing of parameters. 

8. If none of the above produces a solution, an error in the 
error-handling modules is a possibility. If you decide to 
call IBM for assistance at this point, see "Appendix Sa 
Requirements for Problem Determination and APAR Submission" 
in OS PL/I Optimizi.r.u;LComeiler: Programmer's Guid·e. The 
cause of the original entry to the error handler may already 
be known, and can perhaps be avoided by altering the source 
program so that the error does not occur. It must be 
emphasized that the cause of entry into the PL/I error 
handler was not the cause of the system dump. 

9. If the interrupt is not in the error handler, or one of the 
routines it calls, the highest probability is still that the 
program check exit was altered in the error handler and that 
an invalid branch was then made from one of the addresses in 
the TCA because of overwriting. Therefore, you should 
carefully check the TCA. (See "Task Communication Area 
(TCA)" on page 407 for a map of the TCA.) If this fails to 
produce results, return to stage 2 of the above procedure. 

262 OS PL/I Optimizing Compiler: Execution Logic 



SECTION 3: LOCATING SPECIFIC INFORMATION 

CONTENTS 

This section tells you how to find information in a dump. The 
section is organized in modular form for easy reference. You 
should look through the list below to discover the items in 
which you are interested. Suggested methods of debugging a PL/I 
program from a dump are given in "Section 2: Recommended 
Debugging Procedures" on page 258. Unless you are experienced 
in using dumps, or are looking for some particular item, use the 
procedures in "Section 2: Recommended Debugging Procedures,n 
rather than attempting to find various items through the 
information in this section. 

Key Areas of a PL/I Dump 

P1 Statement number and address where error occurred (dump 
called from ON-unit only) 

P2 Type of error (dump called from ON-unit only) 

P3 Register contents at time of error or dump invocation 

P4 The DSA chain 

PS The TCA 

P6 Timestamp 

Key Areas of an ABEND Dump 

stand-Alone Dumps 

01 Finding address of interrupt 

02 Type of interrupt 

03 Register contents at point of interrupt 

04 The DSA chain 

05 The TCA 

06 Find the program interrupt element (PIE) or extended 
program interrupt element (EPIE) 

51 Finding key areas in stand-alone dumps 

Housekeeping Information in All Dumps 

Hl Following the DSA back-chain 

H2 Associating instruction with correct module 

H3 Following calling trace 

H4 Associating DSA with block 

H5 Finding relevant ONCA 

H6 Following the chain of ONCAs 

H7 Finding information from IBMBERR's DSA 

H8 Finding and interpreting register save areas 

Chapter 12. Debugging Using Dumps 263 



Finding Variables 

H9 Register usage 

H10 Following ISA free-area chain 

Hll Finding the task variable 

H12 Block structure of program (static back-chain) 

H13 Forward chain in DSAs 

H14 Action if error is in a library module 

H15 Discovering contents of parameter lists 

H16 Finding main procedure DSA 

H17 Finding the relationships between tasks 

H18 Finding the tasking appendage 

H19 Finding the TCA from the tasking appendage 

H20 Following the heap free-area chain 

H21 Following the heap storage chain 

Vl Automatic variables 

V2 Static variables 

V3 Controlled variables 

V4 Based variables 

V5 Area variables 

V6 Variables in areas 

Control Blocks and Fields 

Cl Quick guide to identifying control fields 

KEY AREAS OF A PL/I DUMP 

Pl: Statement Number and Address Where Error Occurred (Dump Called from ON-Unit 
Only) 

Information required is the point at which the condition that 
caused entry to the ON-unit occurred. This is identified in the 
trace information. If no trace information is generated, the 
method suggested for ABEND dumps can be employed. If the 
condition occurred in compiled code, the machine instruction 
being executed can be identified on the object program listing. 
This is done by subtracting the address of the program control 
section from the address of the interrupt and looking at this 
offset in the object program listing. The instruction thus 
found will be the one ~ the instruction that was last 
executed. 

Note: If PLIDUMP is called a number of times in a program, a 
different user identifier should be used with each CALL 
statement so that the point at which the dump was taken is 
obvious. 

264 OS PL/I Optimizing Compiler: Execution Logic 



P2: Type of Error (Applies to Dump Called from ON-Unit Only) 

The type of error is identified in the trace information, in 
terms of the type of ON-unit entered and the reason for entry. 
The ONCODE is also given, thus providing further indication of 
the cause of the condition. If the dump was called from an 
ERROR ON-unit, an error message should have been generated 
before the dump. This again will give the cause of the error. 

If no trace information has been generated, the type of error 
can be discovered from the error code appearing in the ONCA 
associated with the interrupt. The method for finding the ONCA 
is described in H5. 

P3: Register contents at Time of Error or Dump Invocation 

If trace information has not been generated, the contents of the 
registers can be found from the save area in the DSA. The 
register contents required will depend on the situation. If 
PLIDUMP was called from an ON-unit, the register contents at the 
time the condition was raised will be most useful, unless the 
condition was raised in a library module. If the condition was 
raised in a library module, the contents of the registers at the 
point where the library call was made will probably prove more 
useful. 

For a dump called from an ON-unit, the method of finding the 
register contents is as follows: 

1. Find the DSA of IBMBERR. The value of register 13 will be 
found in the chainback field at offset 4 of this DSA. 

2. If the interrupt was a program check interrupt (see 
Figure 106 on page 266), the contents of registers 14 and 15 
will also be stored in the DSA, register 14 at offset 
'5C'(92) and register 15 at offset '60'(96) from the head of 
the DSA. 

3. Registers 0 through 11 will be stored in the save area of 
the previous DSA, starting at offset '14'(20). 

4. If the interrupt was a software interrupt, the registers 
will be stored at offset 'C'(12) of the DSA before IBMBERR's 
DSA in the order 14 through 11. See Figure 106 on page 266. 

DISCOVERING IF INTERRUPT WAS PROGRAM CHECK INTERRUPT: If trace 
information is available, a check can be made on whether 
IBMBERRA or IBMBERRB was called. IBMBERRA is entered after 
program check interrupts, IBMBERRB after software interrupts. 
If no trace information is available, the simplest method of 
discovering if the interrupt was a program check interrupt is to 
inspect bit 7 in byte X'S6'(86) in IBMBERR's DSA. This is set 
to 0 for program check interrupts, and to 1 for other 
interrupts. 

FINDING REGISTER VALUES IF INTERRUPT OCCURRED IN LIBRARY 
ROUTINE: If the ON-unit was entered from a library module, a 
search back through the DSA chain to the first compiled code DSA 
should be made. This can be discovered from the trace 
information or by following the back-chain from IBMBERR's DSA 
(offset 4 in each DSA) until a procedure block, begin block, or 
ON-unit DSA is found. This may be determined from flag bits 4 
and 5 of DSA, as follows: 

Bit 4 

o 
1 
1 

Bit 5 

o 
o 
1 

DSA 

Procedure block 
Begin block 
ON-unit 

Chapter 12. Debugging Using Dumps 265 



Software detected interrupt 

DSA of block in which 
interrupt occurred 

Program check interrupt 

DSA of block in which 
interrupt occurred 

>~--------------------------~ > 
o 

4 Back-chain 

o 

4 

8 

C 

Back-chain 

C 

44 

Registers 14 through 11 
at the time of interrupt 

Other DSA information 

DSA for IBMBERR 

14 

Interrupt address from 
word 2 of PSW 

Registers 0 through 11 
at time of interrupt 

88XX EEEE o 44 

4 Back-chain, register save 
area, address of lWS,NAB, 
etc. 

50 Qualifier for liD, CHECK 
condition 

54 1st 2 bytes of 
error code 
passed to 
IBMBERR 

5C 

Not used 

84 

o 
4 

8 

54 

58 

5C 

60 

68 

Other DSA information 

DSA for IBMBERR 

Address of interrupt DSA 

Register save area, 
address of LWS, NAB, etc. 

Error code 
created by 
IBMBERR 

interrupt code 

Register 14 at time of 
interrupt 

Register 15 at time of 
interrupt 

Floating point registers 
0, 2, 4, 6 

Floating point registers are 
saved only if interrupt relates 
directly to a PL/I condition, 
and return may be made to the 
point of interrupt 

Figure 106. The Contents of IBMBERR's DSA After a System Detected and a PL/ I 
Interrupt 

The value of register 12 can only be discovered in a DSA prior 
to a compiled code DSA, as it is not stored by library routines 
when they are entered. This means that the dummy DSA always 
contains the value of register 12. Register 12 should point to 

266 OS PL/I Optimizing Compiler: Execution Logic 



the TCA, whose address is also given in the head of trace 
information. 

NO TRACE INFORMATION GENERATED: If no trace information has 
been generated, the register values on taking the dump will be 
printed at its head. The address of the DSA for PLIDUMP will be 
in register 13. The back-chain can then be followed to find the 
DSA for IBMBERR. The DSA for IBMBERR can be recognized if an 
ON-unit is involved, because it will be the DSA before the 
ON-unit DSA. IBMBERR's DSA is always headed by a flag word of 
hexadecimal v'8800EEEE', meaning that it is a library DSA in 
LIFO storage. To identify IBMBERR's DSA for certain, register 
15 of the previous block's DSA must be inspected to see if it 
points to the module IBMBERR. 

P4: The DSA Chain 

> 

RI3--> 

Flags 

Back-chain 

Not used 

The addresses of the DSAs are given in a PL/I dump if trace 
information and a hexadecimal dump are requested. If trace 
information is not requested, the address of the DSA for the 
dump routine can be obtained from register 13 at the head of the 
dump. The chainback field is held in the second word of the 
DSA. When the dummy DSA is reached, this chainback field will 
be set to zero. The DSA chain passes through DSAs in LIFO 
storage and DSAs in LWS (library workspace). 

See HI and Figure 107 for details of how to follow the DSA 
chain. 

Reserved 

To previous DSA 
A 

Register save area (60 bytes) 

Address of library workspace 

Segment No. NAB 

Segment No. End of prologue NAB 

Space for automatic variables and temporaries 
Length depends on number and type of 
variables declared in the associated block 

Flags Reserved 

Back-chain 

< 

Current 

NAB points to the 
next DSA only if it 
is in LIFO storage 
and has the same 
segment number 

DSA 

Figure 107. The Chaining of DSAs 

Chapter 12. Debugging Using Dumps 267 



P5: The TCA 

P6: Timestamp 

The address of the TCA is given in a PL/I dump. If 'B' (block 
option) is specified in the dump-options character string, the 
complete TCA (including the appendage) is printed separately 
from the body of the dump. 

The TCA is addressed by register 12. The format of the TCA is 
given in "Task Communication Area (TCAl" on page 407. The use 
of the various fields is explained in Chapter 4, "Communication 
between Routines" on page 64. If NOTRACE is specified, the TCA 
is in subpool I, preceded by the characters ZTCA. 

If the TSTAMP installation option is specified in your 
installation, the date and time of compilation are in the last 
16 bytes of the static control section. The first word gives 
the offset to the information. The static control section is 
addressed by register 3. If the BLOCK option is specified, the 
timestamp is printed at the head of the static blocks. 

KEY AREAS OF AN ABEND DUMP 

01: Address of Interrupt 

If the ABEND code is 4000, the address of the interrupt can be 
found from the second word of the PSW, which gives the address 
of the instruction following the point of interrupt. The PSW is 
held in subpool 5. ABENDs are discussed further in the OS and 
DOS Optimizing Compiler: Debug Guide. 

The associated statement number in the source program can 
normally be found by finding the last compiled code DSA, and 
finding the point at which the exit was made (register 14 in the 
save area). The address of the program control section in the 
link-edit map can then be subtracted from this address; the 
offset compared to the listing gives the appropriate statement 
number. 

Finding the statement number is not likely to prove useful 
because of the circumstances in which a system dump is 
generated. The address found will usually be the address at 
which the error handler was entered before the program check 
exit was altered. The reason for entry into the error handler 
is not the cause of the dUmp. If the ABEND code is not 4000, 
see "06: Finding the Program Interrupt Element (PIE/EPIEl" on 
page 269. 

02: Type of Interrupt 

The type of interrupt can be found from the first word of the 
PSW (see Principles of Operation for details). 

03: Register contents at the Point of Interrupt 

Registers 14 through 2 appear in the PIE (program interrupt 
element). Registers 3 through 13 are those printed in the save 
area trace. See 06 for finding the PIE. 

268 OS PL/I Optimizing Compiler: Execution Logic 



04: The DSA Chain 

05: The TCA 

Register 13 should point at the most recent DSA. The back-chain 
can be followed from offset '4' of each DSA. See Figure 108 on 
page 273. 

Register 12 should point at the TCA. 

06: Finding the Program Interrupt Element (PIE/EPIEl 

STAND-ALONE DUMPS 

The program interrupt element (PIE) or extended program 
interrupt element (EPIE) is found in subpool 5. The PIE/EPIE is 
followed by registers 3 through 13 and then the STAE/ESTAE work 
area. The STAE/ESTAE work area holds the last problem program 
PSH. 

This is the value required for finding the original cause of the 
ABEND if the ABEND code is other than 4000. 

S1: Finding Key Areas in Stand-Alone Dumps 

The programmer should attempt to find the various Pl/I key areas 
CTCA, DSA chain, etc.) discussed above. See the debugging 
manual for your operating system. 

HOUSEKEEPING INFORMATION IN ALL DUMPS 

H1: Following the DSA Back-chain 

Each DSA holds a back-chain address in the second word. This 
word holds the address of the previous DSA. The end of the 
chain is marked by the dummy DSA whose first word contains the 
flag hexadecimal 'S2'. The back-chain in the dummy DSA poinis 
to the external save area or is zero if the program was called 
from the system. (See P4 or D4 for finding the DSA chain.) 

For programs using multitasking, the DSA back-chain leads to the 
dummy DSA of the major task. The DSA of the block in which the 
task was attached is not included in the chain. To find thi~ 
DSA, the 'static' back-chain held at offset X'58'C88} can be 
used provided the procedure attached as a task is internal to 
the attaching block. If the procedure is not internal, the NAB 
value X'4C'(76) in the DSA before it will normally point to the 
required DSA. 

(The method of chaining during a multitasking program is 
explained in Chapter 14, "Multitasking"). For relationship of 
NAB and DSA chaining, see Hl3.) 

H2: Associating Instruction with Correct 

statement and Program Block 

STATEMENT NUMBER AND PROGRAM BLOCK: The statement number and 
entry point associated with the interrupt will normally be given 
in a PlIDUMP. However, if they have to be found, the programmer 
should follow the method used by the error message modules. 

Chapter 12. Debugging Using Dumps 269 



STATEMENT NUMBER: It must first be established whether the 
GOSTMT option is in effect. This will be indicated in the 
listing for the compilation. If the listing is not available it 
will be flagged in the compiled code DSA. (Flag bit 13 of the 
DSA flags is set to 'l'B.) If this bit is not set, the table of 
offsets and statement numbers may be available; if this is not 
available, statement numbers and offsets must be deduced from 
the object program listing. The method of using the table of 
offsets is described under "Using the Table of Offsets" on 
page 271. If both statement numbers and the table of offsets 
are available, it will probably be faster to use the table of 
offsets rather than the statement number table. 

The statement number is found by use of the DSA chain as 
described below: 

1. Find the chain of DSAs. The most recent DSA should be 
addressed by register 13. 

2. If the DSA found is not a compiled code DSA (in a compiled 
code DSA, flag bits 4 and 5 are set to 'OO'B, 'Ol'B, or 
'll'B), the interrupt was not in compiled code. If the 
interrupt was in compiled code, the interrupt address can be 
directly associated with a statement number. 

If the interrupt was not in compiled code, the address at 
which compiled code was left must be discovered and this 
address associated with a statement number. To find the 
address at which compiled code was left: 

a. Chain back along the DSA chain until a compiled code DSA 
is reached (flag bits 4 and 5 set to '00', '01', or 
'll'B). 

b. The register 14 address saved in the DSA (offset 12 
X'C') will be the point to which the library module or 
other module would have returned if the call had been 
successfullY completed. 

The address thus found is the address to be associated with a 
statement number. 

3. Chain back one DSA to the DSA before the compiled code DSA 
that has been discovered in step 1 or step 2. The register 
15 value in this DSA (offset 16 X'10') is th~ entry point of 
the block. If this appears to give an invalid result, check 
to see whether the DSA is one of those used in interlanguage 
communication (flag bit 7 set to 'l'B and bit 0 of flags 2 
(offset X'76') set to 'l'B). If this is the case, chain 
back one more DSA and try again. 

4. At offset 8 from the entry point of the block, the address 
of the statement number table will be held. 

5. Calculate the offset between the value in the first word of 
the statement number table and the address for which a 
statement number is required. If the address for which a 
statement number is required is less than the address in the 
first word of the statement number table, then either an 
invalid branch has been made, or a compiler-generated 
subroutine is being executed. If it is possible that a 
compiler-generated subroutine is being executed, return to 
the compiled code DSA and attempt to find a statement number 
associated with the values held first in register 6; if this 
gives an invalid or improbable result, then in register 14. 
If the second word in the statement number table is less 
than the offset between the address for which a statement 
number is required and the first word of the statement 
number table, it is not within the program control section 
and an erroneous branch has been made out of the program. 

6. If the offset is more than X'7FFF', the statement number 
will be held in the second or subsequent sections of the 
table. Obtain the number given by translating the offset 

270 OS PL/I Optimizing Compiler: Execution Logic 



into binary and ignoring the last 15 bits and step down this 
number of sections of the table. (For example, if the 
offset was X'SFFF', translate to binary = 
'1000 1111 1111 1111'B, ignore last 15 binary digits = Ii 
therefore, step down one section of the table. If the 
offset was X'18FFF', the binary would be 
'0001 1000 1111 1111'B. Ignoring the 15 right-hand bits 
leaves 'll'B; therefore, step down three sections of the 
table.) 

The address of the second section of the table is held at 
offset X'S' in the table, the address of the third section 
is held at the head of the second section, the address of 
the fourth section at the head of the third section, and so 
forth. 

7. When the correct section of the table has been identified, 
search for the first offset in the table that is greater 
than or equal to the offset that is being searched for. 
Following this offset, the statement number is given in 
2-byte hexadecimal format. 

PROCEDURE NAME: To find the entry point name, a back-chain is 
made beyond the first procedun DSA found on the chain. 
Register 15 in the save area before this procedure DSA will 
point to the entry point of the procedure. (Procedure DSAs have 
flag bits 4 and 5 set to 'OO'B. The register 15 value is held 
at offset 16 X'10'.) 

The entry is preceded by a one-byte field that holds the number 
of characters in the name. This one byte field is in turn 
preceded by the entry point name. 

USING THE TABLE OF OFFSETS: Statement numbers can also be found 
by comparing them with the offsets in the offset and statement 
number table generated by the compiler when the OFFSET option is 
specified. 

Offsets are held from each primary entry point of a procedure or 
ON-unit. To use the table of offsets, find the entry point used 
by the program in the manner described above. Find the primary 
entry point for the procedure. (If the primary entry point was 
not used, look at the object program listing to see the 
relationship between the entry point used and the primary entry 
point.) Note that, the offsets given are from the point marked 
*REAL ENTRY in the object program listing. This point is one 
byte after the end of the primary entry point name. 

If the interrupt occurred in an ON-unit, it may be necessary to 
discover the type of ON-uni t el,tered before it can be 
identified. This is done by inspecting the DSA before the DSA 
of the ON-unit. This DSA is for IBMBERR. The first byte of the 
error code is held in this DSA a-t offset 84 (X'54'). Compare 
this byte with the values in Figure 105 on page 256. This error 
code is given an associated PL/I condition. It is the ON-unit 
for this condition that is entered. If there is more than one 
ON-unit for the condition, the ON-unit entered must be deduced 
by studying the dump, and source and object listings. If the 
register 15 value appears to be invalid, this may be caused by 
rechaining in interlanguage processing (see 
Chapter 13, "Interlanguage Communication" on page 281). If this 
is possible, chain back one more DSA and try again. (To check 
if this has occurred, see step 3 on page 270.) 

Chapter 12. Debugging Using Dumps 271 



H3: Following Calling Trace 

The calling trace can be followed because branches within the 
program are always made on registers 14 and 15. Hence register 
15 in each DSA points to the address that was branched to from 
that block. Register 14 points to the address to which control 
passed when the block was completed. By finding the entry point 
name (see "H2: Associating Instruction with Correct" on 
page 269), it is possible to follow the calling trace. 

H4: Associating DSA with Block 

DSAs are associated with code by finding the register values in 
the preceding DSA register save area (Ha) and using the fact 
that all branches are made via registers 14 and 15. Register 14 
in any DSA points to the instruction after the point at which 
control left that block. Register 15 points to the address at 
which the next block was entered. The block in the source 
program can be identified by statement numbers or entry point, 
described in "H2: Associating Instruction with Correct" on 
page 269. 

H5: Finding Relevant ONCA 

When an interrupt has occurred in the error handler and a system 
dump has been produced, it is possible to discover the 
information that the error handler would have used to generate 
appropriate error messages. The ONCA holds values for the 
condition built-in functions. The appropriate ONCA can be found 
in the following manner. 

1. Find the DSA before that of IBMBERR (follow back the DSA 
chain until register 15 in the save area points to IBMBERR). 
See HI, H3, H7. If this i~ a library DSA (flag bits 4 and 5 
set to '10') go to 3, below. 

2. Find the LWS addressed from this DSA. The address is held 
at offset X'48'(72). 

3. Find the offset from the lWS +'0 the ONCA. This is held at 
offset 2 in the LWS. 

4. Add the offset to the address of the library DSA in lWS. 

H6: Following the Chain of ONCAs 

ONCAs are used to hold condition built-in function values. They 
are chained together, one being provided for every level of 
interrupt. The chainback field is in the first word of the 
ONCA. The dummy ONCA is marked by a chainback field of zero. 

H7: Finding Information from IBMBERR's DSA 

The information held in IBMBERR's DSA is used by the error 
message modules for information about the error. If the 
messages have not been generated, the information can be deduced 
from the DSA. The contents of IBMBERR's DSA are shown in 
Figure 106 on page 266. See H4 for associating DSAs with 
correct code. IBMBERR's DSA can be identified by X'EEEE' in 
bytes 2 and 3. 

272 OS PL/I Optimizing Compilers Execution Logic 



H8: Finding and Interpreting Register Save Areas 

H9: Register Usage 

Register save areas are held at offset X'C'(12) in all DSAs, 
including DSAs in LWS. Offsets and registers are shown in 
Figure 108. Each DSA holds the register values as they were on 
exit from its block. 

Register usage is fully discussed in Chapter 2, nCompiler 
Outputn on page 12. A summary of register usage, showing which 
registers are always used for a particular purpose, is given in 
Figure 109 on page 275. 

H10: Fallowing the ISA Free-Area Chain 

The ISA free-area chain connects the areas of non-LIFO dynamic 
storage that have been used and freed, but have not been 
absorbed into the major free area. See Chapter 6, "Storage 
Management. n The chain starts at offset X'lC' (28) in the 
implementation-defined appendage, which is addressed from offset 
X'28'(40) in the TCA. The end of the chain is marked with a 
zero entry. 

o 
4 

8 

C 

10 

14 

18 

1C 

20 

24 

28 

2C 

30 

34 

38 

3C 

40 

44 

DSA 

Flags 

Back-chain 

Not used 

R14 00 -
R15 00 

RO 

R1 

R2 

R3 

R4 -
R5 -
R6 

R7 

R8 

R9 

RIO 

Rll _ .. 
R12 Stored _._--_ .. _. 

<----Always stored by 
<--library 

<----Stored by library 
<--if required 

by compiled code only 

(*) Not stored if hardware interrupt occurs 

Figure 108. The Register Save Area in the DSA 

Chapter 12. Debugging Using Dumps 273 



H11: Finding the Task Variable 

The task variable is held in the TCA at offset X'24'(36). 

H12: Block structure of Program (Static Back-chain) 

The block structure of the program can be followed from the 
address held at offset X'S8'(88) in each compiled code DSA. 
This address holds the address of the compiled code DSA of the 
statically encompassing block. The chain thus formed is known 
as the static back-chain. 

H13: Forward Chain in DSAs 

The forward chain in DSAs is not supported by the compiler. 
However, a forward chain through the LIFO stack can normally be 
followed by use of the NAB pointer. The NAB pointer is held at 
offset X'4C'(76) from the head of each DSA. The last pointer in 
the chain points to the major free area. If the NAB pointer 
contains anything except '00' in its fitst byte, the chain 
cannot be followed, because it is not contained in a single LIFO 
segment. The address required is held in the last three bytes 
of NAB; the first byte contains the segment number (see el). 
The forward chain includes only those DSAs in the LIFO stack and 
does not include any DSAs in LWS. 

H14: Action If Error Is in a Library Module 

The fact that the interrupt or the error was discovered during 
the execution of a library module suggests that a check must be 
made on the data that is being passed to the module. 

To discover the contents of a parameter list, see HIS. 

HIS: Discovering Contents of Parameter Lists 

Parameters are passed in a list of words pointed to by register 
I, except during stream I/O. To find the position of a 
parameter passed to a program, find the value of register I in 
the save area of the DSA (see "H4: Associating DSA with Block" 
on page 272) of the calling block. Register I will then locate 
the parameter list. If the list is in static storage, this can 
be compared with the static storage listing. The name of the 
called routine can be discovered (H3). The correct parameters 
for PL/I library routines are given in the appropriate library 
Program Logic Manual. 

H16: Finding Main Procedure DSA 

The main procedure DSA can be found by following the back-chain 
of DSAs to the dummy DSA. The address of the main procedure DSA 
will be given by the last 3 bytes of NAB in the dummy DSA. NAB 
is held at offset X'4C'(76) in the dummy DSA. The address of 
the dummy DSA is held at offset X'24'(36) in the TCA appendage, 
which is addressed from offset X'28'(40) in the TCA. The dummy 
DSA can be recognized by the presence of X'82' in the flag byte 
and the character value ZDSA before it. 

274 OS PL/I Optimizing Compiler: Execution Logic 



Register Compiled Code Usage Library Usage 

RO Work register Work register 

RI Work register Work register 

R2 Program base 1 ,2 Work register3 

R3 Static base2 Program base2 

R4 Work register Work register 

RS Work register Work register (if used) 

R6 Work register Work register (if used) 

R7 Work register Work register (if used) 

R8 Work register Work register (if used) 

R9 Work register Work register (if used) 

RIO Work register Work register (if used) 

RII Work register Work register (if used) 

RI2 TCA pointer2 TCA pointer2 

Rl3 Current DSA pointer2 Current DSA pointer2 

R14 Branch register Branch register 

R15 Link register Link register 

Figure 109. Normal Register Usage 

2 

Notes to Figure 109: 

The contents of the program base register are saved during 
in-line record I/O and TRT instructions. 

Dedicated register, that~is, the contents remain unchanged 
throughout the execution of the associated compiled code or 
library routine. 

File Control Block (FCB) pointer during record I/O. 

Library routines store at least registers 14 through 4, and up 
to registers 14 through 11; compiled code routines store 
registers 14 through 12. Thus the address of register 12 can 
always be found in the dummy DSA, although it may not be in 
other DSAs. The contents of the register save area in the DSA 
of the block that called IBMBERR are slightly different from 
normal if the interrupt was a hardware interrupt. See 
Figure 106 on page 266 for a diagram of IBMBERR's DSA. 

H17: Finding the Relationship between Tasks 

The relationship between tasks can be discovered from the chains 
in the tasking appendage. The chain held at offset X'28'(40) 
points to the tasking appendage of the most recently attached 
subtask. 

The chain at offset X'24'(36) points to the task with the same 
attaching task that was attached before the task being inspected 
Celder sibling). If there is no such task, the field is set to 
zero. 

The chain at offset X'20'(32) points to the subsequently 
attached task with the same attaching task (younger sibling). 

Chapter 12. Debugging Using Dumps 275 



If there is no younger sibling, this chain points to an offset 
within the tasking appendage of the parent task. An attempt to 
continue along the chain results in a zero field being met. 
(See Figure 126.) 

TO FIND THE PARENT TASK: Search along the chain held at offset 
X'20'(32) in each tasking appendage. When this field is zero, 
the tasking appendage of the parent task has been reached. The 
start of this tasking appendage is at an offset of X'-SIC-S) 
from the address held in the pointer of the previous tasking 
appendage. (See Figure 126.) 

TO FIND ALL SUBTASKS OF A TASK: The address of the most 
recently attached subtask is held at offset X'2S'(40) in the 
tasking appendage. Other subtasks can be found by following the 
chain held at offset X'24'(36) in the tasking appendage until a 
zero field is reached. This will be the end of the chain and is 
the first of the active subtasks to be attached by the task. 
(See Figure 126.) 

TO FIND SIBLING TASKS: Previously attached sibling tasks (elder 
sibling) can be found by following the chain held at offset 
X'24'(36) in the tasking appendage. 

Subsequently, a"ttached sibling tasks (younger siblings) can be 
found by following the chain held at offset X'20'(32) in the 
tasking appendage. When a zero field in this chain is reached, 
the parent task has been found. The most recently attached 
sibling task is the last one whose chain field does not hold a 
zero value. The word after the zero value will point to the 
tasking appendage of this task. 

The method used for chaining tasks is explained in 
Chapter 14, "Multitasking" on page 307 (See also Figure 126 on 
page 314). 

HIS: Finding the Tasking Appendage 

The address of the tasking appendage is held at offset X'2C'(44) 
in the TCA and at offset X'50'(SO) in the dummy DSA of the 
attaching task. 

H19: Finding the TCA from the Tasking Appendage 

The TCA is addressed from X'2C'(44) in the TCA tasking 
appendage. 

I H20: Following the heap free-area chain 

The heap free-area chain connects the areas of heap storage that 
are available to satisfy ALLOCATE requests. Heap allocation is 
further described in "Allocating and Freeing Heap Non-LIFO 
Storage" on page 92. 

The chain starts at offset X'7S'CI20) in the 
implementation-defined appendage, which is addressed from offset 
X'2S'(40) in the TCA. The end of the chain is marked with a 
zero. 

I H21: Following the heap storage chain 

The heap storage chain connects all areas obtained by GETMAIN 
macro instructions for use as heap storage. Heap storage is 
further described in "Allocating and Freeing Heap Non-LIFO 
Storage" on page 92. The chain starts at offset X'74'(116) in 
the implementation-defined appendage, which is addressed from 
offset X'2S I (40) in the TCA. The end of the chain is marked 
with a zero. 

276 as PL/I Optimizing Compiler: Execution Logic 



FINDING VARIABLES 

The value of the variables in the program at the point of 
interrupt can be discovered by using the compiled code listing 
as a guide to their addresses, and then finding these addresses 
in the dump. The method used depends on the type of variable. 

VI: Automatic Variables 

V2: Static Variables 

Automatic variables can be found by using an offset from the DSA 
of the block in which they were declared. This information 
appears in the variables offset map generated when the compiler 
MAP option is used. If the compiler MAP option has not been 
used, the information can be deduced from compiled code. (For 
finding tile DSA associated with a block, see "H4: Associating 
DSA with Block" on page 272.) 

Static variables are normally addressed by an offset from 
register 3. This offset is given in the variables offset map 
generated when the compiler MAP option is used. If the compiler 
MAP option has not been used, the offset can be deduced by 
studying the listing of compiled code. The value of register 3 
can be found in the save area of the DSA. (For finding the DSA 
associated with a block, see "H4: Associating DSA with Block" on 
page 272.) 

V3: Controlled Variables 

V4: Based Variables 

As described in chapter 2, controlled variables are addressed by 
an anchor word that is held in the pseudo-register vector. This 
anchor word can be identified from compiled code, while the PRV 
offset can be found in the dump. The address of the controlled 
variable must be obtained from the PRV in the dump because it is 
not filled-in until the ALLOCATE statement is executed. 

The address in the pseudo-t'egister vector is the address of the 
data or, in certain circumstances, of a descriptor or a 
locator/descriptor. These fields are described in 
Appendix A, "Control Blocks" on page 326. The data is preceded 
by a control block--the controlled variable control block. The 
address of the previous allocation is held at an offset of -S 
from the address in the PRV. If there is no previous 
allocation, the address is set to zero. 

Based variables are located by finding the value of the defining 
pointer. This value is found by using one of the methods 
described above to find static, automatic, or controlled 
variables. If the pointer is itself based, its defining pointer 
must be found and the chain followed until the correct value is 
found. 

Typical code would be the following: 

For X BASED (P), with P AUTOMATIC 

58 60 D 088 

58 EO 6 000 

L 6,P 

L 14,X 

P is held at offset X'SS' from register 13, and this address 
points at X. 

Care must be taken when exam1n1ng a based variable to ensure 
that the pointers are still valid. 

Chapter 12. Debugging Using Dumps 277 



VS: Area Variables 

Area variables are located in one of the ways described above, 
according to their storage class. 

Typical code would be: 

For area variable A declared AUTOMATIC 

41 60 D 088 lA 6,A 

The area would start at offset X'88' from register 13. 

V6: Variables in Areas 

Variables in areas are found by locating the area and then using 
the offset to find the variable. 

CONTROL BLOCKS AND FIELDS 

For simplicity, the methods of finding various control blocks 
are placed in an alphabetic table. Details of the control 
blocks can be discovered from the relevant chapter (see index) 
or from Appendix A. 

As well as control blocks, various other items are included in 
the list. Where necessary, cross-reference is made to other 
sections in this chapter. 

Cl: Quick Guide to Identifying Control Fields 

Automatic Variables See "Variables" 

Back-chain offset X'4' in DSA 
DSA back-chain offset X'O' in ONCA 
ONCA back-chain 

BOS Offset X'8' from TCA 
Beginning of segment 

Controlled variables see "Variables" 

DClCB Deduced from object program listing 
Declare control block 

1----

DCB addressed from offset X'14'(20) in FeB 

ENVB offset X'C'(12) in DelCB 
Environment block 

DED deduced from object program listing 
Data element descriptor 

Diagnostic statement table addressed from offset X'8' from entry point 
of main procedure 

DFB addressed from offset X'40'(64) in TCA 
Diagnostic file block 

DSA addressed by register 13 (see P3 and D3) 
Dynamic storage area 

EOS offset X'C'(l2) in TCA 
End of segment 

278 OS PL/! Optimizing Compiler: Execution Logic 



Event variable 

FCB 
File control block 

Flow statement table 

Filename 

ISA Free-area chain 

Heap free-area chain 

Heap storage chain 

Locator/descriptor 

LWS 
Library workspace 

NAB 
Next available byte 

ONCA 
ON-communications area 

ONCS 
ON-control block start of 
dynamic ONCB chain 

first static ONeB 

deduced from object program listing and 
knowledge of parameter lists of I/O and wait 
modules 

identified in Pl/I dumps. Addressed via PRV 
and DClCB 

addressed from offset X'4C'(76) in TCA 

addressed from offset X'10'(16) in FCB 

offset X'lC' (28) in implementation-defined 
appendage, which is addressed from offset 
X'28'(40) in TCA 

offset X'78' (120) in the 
implementation-defined appendage 

offset X'74' (116) in the 
implementation-defined appendage 

deduced from object program listing 

addressed from offset X'48'(72) in every DSA 

offset X'4C'(76) in DSA 

the offset of the associated ONCA is held in 
a halfword at offset X'2' in each section of 
LWS 

offset X'60'(96) in DSA 

offset X'5C'(92) in DSA 
r-------------.~--.------------------~~----------------------------------------------------~ 

ON-cells 

oeB 
Open control block 

Parameter lists 

Register values 

RCB 
Request control block 

SIOCB 
Stream I/O control block 

Symbol table 

Symbol table vector 

Statement number table 

Static storage 

Segment number 

Tasking appendage 

Task variable 

addressed from offset X'70'Cl12) in DSA 

deduced from object program listing and 
parameter list of open module, IBMBOCL 

object program listing and static storage map 

See P3 and 03 

object program listing and static storage map 

object program listing 

Static listing 

Static listing 

see diagnostic statement table 

addressed by register 3 in compiled code. 
See P3 and 03. 

first two bytes of BOS, or NAB. '00'=1, 
, FF' =2, etc. 1 

addressed from X'2C'(44) in the TCA. 

addressed from X'24'(36) in the TCA. 

Chapter 12. Debugging Using Dumps 279 



TCA addressed by register 12. See P3 and D3. 
Task communications area 

Variables 
automatic 

based 

controlled 

static 

al'~ea 

Variables in areas 

offset from DSA of block in which they are 
declared. As shown in variables offset map. 
See VI. 

address of the pointer must be deduced from 
the object program listing. This gives the 
address of the variable. See V2. 

PRV offset referenced in compiled code holds 
latest allocation of the variable. A 
back-chain through the previous allocation 
can be made using the header chain. See V3. 

offset from register 3 is shown in variable 
offset map. See V4. 

as for other variables depending on storage 
class. See VS. 

find address of area. Find variable from 
offset within areas shown in compiled code. 
See V6. 

Except when the first two bytes of NAB are filled with 
zeros, the first two bytes of BOS are always less than the 
first two bytes of NAB when a segment needs to be freed. 
For a full discussion of the use of these segment pointers, 
and their exceptions, see Chapter 6, "Storage Management" on 
page 84. 

SECTION 4: SPECIAL CONSIDERATIONS FOR MULTITASKING 

The major difference between a dump of a multitasking program 
and the dump of any other Pl/! program is that certain relevant 
items are held within the control task. For this reason, the 
control task is always dumped as well as the current task. 

The contents of the dump of a tasking program depend on the dump 
options specified. If A (all) is used, all the tasks will be 
dumped. If 0 (only current task) is specified, the control task 
and the current task will be dumped. 

The dump is carried out within the control task and this 
prevents access to the tasking housekeeping during the execution 
of the dump. However, this does not prevent access by other 
tasks to Pl/I variables which may be dumped. Subtasks of the 
current task can access and alter values within the ISA of the 
current task. Consequently, the values of the variables printed 
cannot be guaranteed to be those that were current at the 
invocation of the dump. 

As explained in "Multitasking Housekeeping" on page 311, the DSA 
chaining differs slightly when a program is multitasking. The 
back-chain passes through the dummy DSA of the task and ends at 
the dummy DSA of the major task. The DSA of the block in which 
the task was attached is not included in the back-chain. 

Compiled code and the static control sections generated by the 
compiler are always held in storage associated with the control 
task. 

280 as Pl/! Optimizing Compilerl Execution logic 



CHAPTER 13. INTERLANGUAGE COMMUNICATION 

The OS Pl/! Optilnizing Compiler allows subroutines conlpiled on 
IBM COBOL or FORTRAN compilers to be used in PL/I programs 
compiled on the optimizing compiler. Similarly, it compiles 
PL/! programs that can be run as subroutines of either COBOL or 
FORTRAN programs. 

Facilities are also provided to overcome the addressing problems 
when passing arguments to assembler language routines. These 
are described under "ASSEMBLER Option" on page 305. 

A full description of how to use the interlanguage communication 
facilities is given in the OS PL/! Optimizing Compiler: 
PrQ.grammer's Guide. A detailed description of the PL/! library 
routines involved is given in the OS Pl/! Resident library: 
Program logic. 

This chapter explains the basic design principles of PL/I 
interlanguage communication. It explains the inner workings of 
main storage during the execution of a program involving 
interlanguage calls. 

The interlanguage facilities are summarized below for background 
information. 

Summary of Interlanguage Facilities 

The interlanguage facilities allow any number of calls to be 
made, and calls to both COBOL and FORTRAN routines can be made 
in the same program. PL/I can call COBOL that calls PL/! that 
calls FORTRAN; FORTRAN can call PL/! that calls COBOL, and so 
on. Options allow the programmer to specify that PL/! 
interrupt-handling facilities will be available through the 
COBOL or FORTRAN routines for those program checks that are not 
handled by COBOL or FORTRAN. Options also allow the programmer 
to specify whether he/she wishes data aggregates to be 
automaticallY reformatted when passed as arguments. (The 
programmer may wish to carry out the reformatting 
himself/herself.) 

The language involved is fully described in the language 
reference manual. Briefly, it is as follows. For a PL/I 
procedure to call a COBOL or FORTRAN routine, the name of the 
routine must be declared as an external entry point with the 
option COBOL or FORTRAN in the OPTIONS attribute. If the 
programmer wishes to take advantage of the PL/I error-handling 
or interrupt-handling facilities in a tOBOl or FORTRAN routine, 
the INTER option must be included in the declaration. When a 
Pl/I procedure is to be called by COBOL or FORTRAN, the keyword 
COBOL or FORTRAN should be included in the OPTIONS option of the 
PROCEDURE or ENTRY statement. To override the creation or 
remapping of dummy arguments for aggregates, the options NOMAP, 
NOMAPIN, and NOMAPOUT can be used. 

The compiler also allows the specification of the COBOL option 
in the ENVIRONMENT attribute of a PL/I file. This is separate 
from the interlanguage facilities described above, and is a 
method of allowing data sets produced"by programs of one 
language to be used by programs of the other language. The use 
of the COBOL option in the ENVIRONMENT attribute is described in 
the last section of this chapter. 

Chapter 13. Interlanguage Communication 281 



BACKGROUND TO INTERLANGUAGE COMMUNICATION 

The major problems involved in allowing procedures written in 
PL/I to be used with programs written in COBOL or FORTRAN area 

1. The existence of different data types in the different 
languages. 

2. The different methods of holding data aggregates in the 
different languages. 

3. PL/I's use of locators when passing areas, arrays, strings, 
and structures as arguments. 

4. The different environment required for each language. This 
consists ofa 

a. Different methods of handling program checks and 
consequently a requirement for the issuing of new 
SPIE/ESPIE macro instructions when a new language is 
entered. 

b. The dependence of Pl/I and FORTRAN on initialization and 
termination routines to set up and discard their 
environments. 

The first of these problems you must solve yourself by ensuring 
that arguments passed between the routines are of suitable data 
types. Arguments and parameters are discussed in detail in the 
OS Pl/! Optimizing Compiler: Programmer's Guide. 

The other problems mentioned above are handled automatically by 
the interlanguage communication facilities of the compiler. 
They are summarized below. 

DIFFERENCES IN DATA AGGREGATES 

USE OF LOCATORS 

Structures in Pl/I and COBOL, and arrays in Pl/I and FORTRAN, 
are organized in different manners. 

COBOL structures are mapped as they are declared, with the 
structure starting on a doubleword boundary and each item 
separately aligned. Pl/I structures are mapped in a manner that 
minimizes padding. 

In FORTRAN, multidimensional arrays are held in column-major 
order. In Pl/I, they are held in row-major order. Thus the 
second element in a FORTRAN two-dimensional array has the 
subscript (2,1), whereas the second element in a Pl/I 
two-dimensional array has the subscript (1,2). 

Structures are not available in FORTRAN. COBOL data with the 
OCCURS option, which can be equivalent to Pl/! arrays, is held 
in row-major order, as are Pl/I arrays. 

When passing arguments, PL/I passes the address of locators for 
areas, arrays, strings, and structures rather than the address 
of the items themselves. This is because the routine that 
receives the arguments may require information about bounds or 
sizes of the data passed, and this is accessible through the 
locator. Other languages, however, expect the address of the 
data to be passed. The correct type of parameter list must, 
therefore, be set up when an interlanguage call is made. 

282 OS PL/I Optimizing Compiler: Execution Logic 



DIFFERENCES OF ENVIRONMENT 

PL/I, COBOL, and FORTRAN all have different methods of handling 
program checks. PL/I allows the programmer to handle all 
program checks. FORTRAN allows the programmer to handle certain 
program checks. COBOL leaves program checks almost entirely in 
the hands of the system. Because of the different requirements, 
PL/I interlanguage communication must issue a new SPIE/ESPIE 
macro instruction whenever control passes between languages. 
The INTER option demands that program checks are analyzed when 
they occur and that they are passed to the appropriate language. 
If they are to be passed to PL/I, the Pl/I environment must be 
restored. For these reasons, the INTER option demands that 
further SPIE/ESPIE macro instructions be issued. 

IBM FORTRAN and COBOL compilers and the PL/I optimizing compiler 
rely upon initialization routines to set up an environment in 
which the compiled code routines can operate. III FORTRAN, the 
main task of the initialization routine is to issue a SPIE/ESPIE 
macro instruction to initiate the FORTRAN error-handling scheme. 
In PL/I, the initialization routines prepare for the PL/I 
error-handling schemes and also prepare the way for dynamic 
storage allocation. During Pl/I initialization routines, 
register 12 is pointed at the TCA, which is used for addressing 
a number of housekeeping fields and library routines. Register 
13 is pointed at a DSA which contains a standard save area, a 
NAB pointer pointing to the next available byte of last-in, 
first-out dynamic storage, various other housekeeping fields, 
and storage for variables declared automatic. (See 
Chapter 1, "Introduction" on page I, and Chapter 5, "Object 
Program Initialization" on page 74, for a discussion of the Pl/I 
environment.) 

When Pl/I is called from either COBOL or FORTRAN the Pl/I 
environment must be set up before the program can be run. 
Similarly, when PL/I calls another language, the environment 
suitable for the program that has been called must be set up, 
and the PL/I environment saved so that it may be restored on 
return to Pl/I. 

THE PRINCIPLES OF INTERLANGUAGE COMMUNICATION 

Figure 110 on page 284 shows the method used to handle 
interlanguage communication problems. 

Interface code is inserted immediately before and immediately 
after the execution of a routine in a different language. This 
code calls the interlanguage communication routine to save the 
existing environment and to set up the required environment. 

Where necessary it creates dummy aggregate arguments of the 
correct format. The interface code is divided between compiled 
code and library routines. Compiled code handles data aggregate 
arguments and calls a library routine to handle the problems of 
environment. Three Pl/I resident library routines are used; one 
for calls to each language. These routines are known as the 
interlanguage housekeeping routines. 

The interface code is always placed in PL/I, because it is the 
PL/I compiler that manages the interlanguage facilities. 
However, the position of the code depends on whether PL/! is the 
called or calling program. 

Chapter 13. Interlanguage Communication 283 



Calling routine 

Call to routine in 
other language 

I 
V 

I 
apparent path 

real 

Called routine JPath 

~--------------------I< 

Routine of other 
language carries out 
required task and 
returns 

apparent path 

Calling routine 

Continuation of 
procedure in original 
language 

-

Intervening code 

> 
Save old environment, 
set up new environment. 
If necessary, provide 
dummy data aggregate 
arguments 

Intervening code 

> Restore former environment. 
Where necessary, assign 
values in dummy data 
aggregate arguments to 
real arguments 

Figure 110. The Principles of Interlanguage Communication 

PL/I Calls COBOL or FORTRAN 

When the calling program is Pl/I the interface code is placed 
immediately before and immediatelY after the call to the COBOL 
or FORTRAN routine. The sequence is shown in Figure Ilion 
page 285, and is summarized below. 

1. Compiled code remaps data aggregate arguments if necessary. 

2. Compiled code calls the interlanguage housekeeping routine, 
which handles environment problems. 

3. Compiled code calls the COBOL or FORTRAN routine. 

284 OS Pl/I Optimizing Compilerl Execution Logic 



4. On return from the COBOL or FORTRAN routine, compiled code 
calls the interlanguage housekeeping routine to restore the 
PL/I environment. 

5. Compiled code remaps dummy data aggregate arguments if any, 
and continues. 

PL/I COMPILED 
CODE 

I 
V 

Remap data aggregates 
as dummy arguments 

V 

Call interlanguage 
housekeeping routine 

v 
Call COBOL or FORTRAN 
routine 

V 

Call interlanguage 
housekeeping routine 

V 

Place dummy argument 
values in data 
aggregates if 
necessary 

I 
V 

CONTINUE 

> 

PL/I LIBRARY 
ROUTINE 

COBOL or FORTRAN 
COMPILED CODE 

r-----------------------> Execute 
program 

Figure 111. Calling Sequence When PL/I Calls COBOL or FORTRAN 

Chapter 13. Interlanguage Communication 285 



The code generated by the compiler is shown in Figure 112. 

SOURCE LISTING 
STMT LEV NT 

1 
2 

o 
1 0 

P13P2: PROCj 

3 
4 

1 0 
1 0 

* STATEMENT NUMBER 
000066 D2 03 D 04C 
00006C 41 00 0 008 
000070 58 10 D 04C 
000074 IE 01 
000076 55 00 C OOC 
00007A 47 DO 2 OlE 
00007E 58 FO C 048 
000082 05 EF 

D 04C 
o 000 
D OB8 

3 
D 050 

DCL FRED OPTIONSCCOBOL), 
1 STRUCTURE, 

2 C CHAR Cl), 
2 D FIXED BINARY (31,O)j 

CALL FREDCSTRUCTURE)j 
ENDj 

MVC 
LA 
L 
ALR 
CL 
BNH 

76(4,13),80(13) 
0,8(0,0) 
1,76(0,13) 
0,1 
0,12(0,12) 
Cl.4 
15,72CO,12) 
14,15 

Cl.4 * 0,76CO,13) 
1,0(1,0) 
1,184(0,13) 

Get VDA for 
dummy 
arguments 

Place new value in 
NAB 

000084 
000084 
000088 
00008C 
000090 
000092 
000098 
00009C 
OOOOAO 
OOOOA4 
OOOOA8 
OOOOAA 
OOOOAE 
0000B2 
0000B6 
OOOOBA 
OOOOBC 
OOOOCO 
0000C4 
OOOOC6 
OOOOCA 
OOOOCC 
000000 
0000D6 
OOOODA 

50 00 
41 11 
50 10 
18 71 
D2 00 
58 70 
58 90 
50 90 
58 Fa 
05 EF 
58 70 
41 40 
50 40 
96 80 
IB 55 
41 10 
58 FO 
05 EF 
58 FO 
05 EF 
58 70 
02 00 
58 90 
50 90 

7 000 D OC3 
D OB8 

L 
BALR 
EQU 
ST 
LA 
ST 
LR 
MVC 
L 

7,1 
0(1,7),STRUCTURE.C 
7,184(0,13) 
9,STRUCTURE.D 
9,4(0,7) 

Move structure 
into dummy 

D OC4 
7 004 
3 014 

D OBB 
7 000 
3 03C 
3 03C 

3 03C 
3 040 

3 018 

D OBB 

l 
ST 
L 
BALR 
L 
LA 
5T 
01 
SR 
LA 

IS, A .. I BMBI ECAA 
14,15 
7,184(0,13) 
4,0(0,7) 
4,60(0,3) 
60(3),X'80' 
5,5 
1,60(0,3) 
15,64CO,3) 
14,15 
15, A .. I BMB I ECCA 
14,15 

Branch to 
interlanguage 
housekeeping routine 

Set up argument list 

Branch to COBOL 
routine 
Branch to ILC house
keeping routine 

o OC3 7 000 
7 004 

L 
BALR 
L 
BAlR 
l 
MVC 
l 

7,184(0,13) 
STRUCTURE.C(1),OC7) 
9,{.(O,7) 
9,STRUCTURE.D 

Move values from 
dummy to real 
arguments 

D OC4 ST 

Figure 112. Code Generated When PL/I Passes a Structure to a COBOL Routine 

FORTRAN or COBOL Calls PL/I 

When the called program is PL/I, the necessary interface code is 
placed at the start and finish of the PL/I program. The 
interface code is compiled as an encompassing routine to the 
required PL/! routine. 

The method used is to compile the PL/I program in the normal 
way, except that it is compiled as internal to an interface 
procedure that contains the interface code. 

This interface, or encompassing, procedure is given the external 
name of the PL/I procedure and is thus called by the 
other-language routine. The interface procedure, when it has 
called the interlanguage housekeeping routine and handled the 

286 as PL/! Optimizing Compiler: Execution Logic 



data aggregate arguments, calls the required PL/I routine. 
Control returns to the original caller by way of the interface 
routine, which again handles the interlanguage problems before 
returning. 

The sequence of events when PL/I is the called program is shown 
in Figure 113 and is summarized below. 

1. A COBOL or FORTRAN routine calls the Pl/I routine. 

2. Control passes to the interface routine, which has been 
compiled with the ESD name of the PL/! routine or entry 
point. 

3. The interface routine calls the library interlanguage 
housekeeping routine to handle environment problems. 

4. The interface routine handles data aggregate arguments as 
necessary. 

5. The interface routine calls the compiled program's required 
routine. 

6. Control returns from the required routine to the interface 
routine. The interface routine handles data aggregate 
arguments as necessary. 

7. The interface routine calls the library interlanguage 
housekeeping routine to handle environment problems. 

8. Control returns from the interface routine to the original 
caller. 

Retaining the Environment 

The overhead of setting up PL/! and FORTRAN environments every 
time a routine is called could become considerable if the 
routine were called a large number of times. To prevent this 
overhead, the environment is retained until the routine that 
calls the other-language routine is itself terminated. The 
termination is done by a rearrangement of the save area 
chaining, so that the PL/I and other language termination 
routines are not entered until the calling routine is itself 
terminated. 

The arrangement introduces certain housekeeping problems, which 
are resolved by inserting further save areas into the chain. 
These save areas have register 14 values that result in control 
being passed to subroutines of the interlanguage housekeeping 
routines. These subroutines, known as tail code, handle 
problems such as preserving values passed from the caller to the 
caller's caller. 

Chapter 13. Interlanguage Communication 287 



COBOL or FORTRAN 
COMPILED CODE 

t 
V 

Call PL/I routine r----> 

Return to COBOL 
or FORTRAN 

V 
CONTINUE 

PL/I COMPILED 
CODE "ENCOMPASSING 
PROCEDURfW' 

Call the 
interlanguage -> 
housekeeping 
routine 

V 

Generate dummy 
data aggregate 
arguments as 
necessary 

PL/! LIBRARY 
ROUTINE 

Call required 
PL/I procedure 

~-------------------> 

v 
Remap data 
aggregates 
if necessary 

Call the 
interlanguage 
housekeeping 
routine 

Restore COBOL 
~> or FORTRAN 

environment 

Figure 113. The Sequence of Events When FORTRAN or COBOL Calls PL/! 

288 as PL/I Optimizing Compiler: Execution Logic 

PL/I COMPILED 
CODE REQUIRED 
PROCEDURE 

Execute 
required 
program 



> 

> 

> 

SAVE AREA CHAINING 

Standard save area of outer L-
procedure/calling routine 
(if any) 

COBOL or FORTRAN calling 
routine save area 

t=Short save area 

< 
Interlanguage routine save 
area (Save area 2 in lCTl) 

PL/I initialization routine 
save area 

< 
Pl/I encompassing procedure 
save area 

PL/I required procedure 
save area 

Rearrangement of save area chaining 
takes place after the first call to 
PL/!, so that the PL/! environment 
is not discarded until the calling 
routine itself is finished. 

Save areas that return control to the 
PL/I initialization routine and 
interlanguage housekeeping routine 
are placed before the calling routine. 
(The numbers I through 7 in the diagram show 
the order of back-chaining). 

0 

0 

0 

0 

0 

~ 

0 

Figure 114. Chaining of Save Areas When PL/I is Called from a COBOL or FORTRAN 
Principal Procedure 

HANDLING CHANGES OF ENVIRONMENT 

Interlanguage Housekeeping Routines and their Control Blocks 

Changes of environment are handled by three resident library 
interlanguage housekeeping modules, one for calls to each 
language. Common features are described below. A more detailed 
description follows for each routine. The routines arel 

IBMBIEF for calls to FORTRAN 
IBMBIEC for calls to COBOL 
IBMBIEP for calls to PL/! 

The job of these routines is the saving and restoring of 
environments. This involves issuing SPIE/ESPIE macro 
instructions suitable for the called routine and saving the PICA 
or fake PICA of the calling routine so that a suitable 

Chapter 13. Interlanguage Communication 289 



SPIE/ESPIE macro instruction is issued before returning. For 
PL/I, it'also involves storing information about dynamic storage 
allocation and the TCA address. 

The information required when setting up and storing 
environments is held in three chained control blocks: 

1. 

2. 

IBMBILCl: This is a control section that is link-edited from 
the resident library and included in each load module. It 
contains flags to indicate whether the PL/I, FORTRAN, or 
COBOL environment already exists and, if any do exist, 
contains a pointer to ZCTL. 

ZCTL: This holds PICA or fake PICA, TCA, and other 
error-handling addresses. It also holds flags indicating 
which languages are currently active. 

ZCTL is generated on the first of a series of interlanguage 
calls and is retained until that series of calls is 
completed. For calls to FORTRAN and PL/I, it is retained 
until the routine that made the first interlanguage call is 
itself terminated. 

Also held in ZCTL are the additional save areas used when 
the chaining is altered. These are known as save area 1, 
save area 2, and the ghost save area. The uses of these 
save areas are given in the individual module descriptions. 

3. ZVDAs (Interlanguage VDAs) 

These hold flags that indicate which languages were active 
before the latest call, the address of the caller's PICA or 
fake PICA, the address of the most recent PL/I DSA. ZVDAs 
are chained to the ZCTL, one for each interlanguage 
communication call. 

An interlanguage VDA is acquired for every interlanguage call 
and discarded when the called routine is terminated. 
Interlanguage VDAs are held in the PL/! LIFO storage stack. 

The methods of chaining used for these control blocks when PL/! 
is the called and the calling language is shown in Figure 115 on 
page 291 and Figure 116 on page 292. IBMBILCI contains a 
pointer to ZCTL and ZCTL contains a pointer to the most recent 
interlanguage VDA. Inte~language VDAs hold pointers to preV10US 
interlanguage VDAs, if any. If there are none, the pointer 
field is set to zero. 

290 OS PL/I Optimizing Compiler: Execution logic 



." ..... 
IQ 
C ., 
(I) 

J-I 
J-I 
111 

m 
X 
Q) 

3 
"0 
J-I 
(I) 

0 
-h 

("') 
::J" 
Q) ..... 
:J ..... 
:J 
IQ 

(I) 
(I) 
.0 
C 
(I) 
:'I 

("') 0 
::J" (I) 
Q) I/) 
"0 
t+ ,... 
(I) ." ., r-

"-
J-I ~ 

c.... 
." ., 
..... 

~ :J 
:J 0 
t+ ..... 
(I) "0 ., Q) 
..... ..... 
Q) 

:J ." 
IQ ., 
C 0 
Q) 0 
IQ (I) 
(I) c.. 

c 
("') ., 
0 (I) 
3 -3 
C 
j ..... 
0 
At 
t+ ..... 
0 
:J 

N 
\0 
J-I 

o Initial situation 

IBMBI LC1 is set up as a control section by the 
PL/I interlanguage routines. Its first word and 
flags are initially zero. 

@ Call FORTRAN from PL/I (lBMBIEF) 

The compiler generates a call to the interlanguage 
communications routine. This routine: 
1. Sets up ZCTL after testing for zero pointer in 

IBMBILC1. Acquires an interlanguage VDA. 
2. Sets ZCTL pointer to interlanguage VDA, and 

IBMBILC1 pointer to ZCTL. 
3. Sets FORTRAN flag in IBMBILC1. Saves R12 

in ZCTL, R 13 in interlanguage VDA. 
4. Calls FORTRAN library to initialize FORTRAN 

SPIE/ESPIE. 
5. Resets program check exit as required. 
6. Returns to compiled code, which calls 

FORTRAN procedure. 

e Call PL/I from FORTRAN (lBMBIEP) 

The PL!I program, because it is declared with the 
option FORTRAN, will have been compiled inside 
an encompassing procedure. The encompassing 
procedure is the one called by FORTRAN. The 
encompassing procedure calls the interlanguage 
communications routine IBMBIEP, which: 
1. Checks IBMBILC1 to see if either FORTRAN 

or COBOL flag is set. As one flag is set, restores 
registers. 

2. Issues PL!I SPIE/ESPI E and STAE/ESTAE and 
stores interrupt handling information of calling 
program in interlanguage VDA. 

Control then returns to the encompassing program, 
which calls the required PL!I program. 

e Call COBOL from PL/I (lBMBIEC) 

The PL!I program will contain a call to the inter· 
language routine IBMBIEC, which: 
1. Sets up another interlanguage VDA, points 

ZCTL to this VDA, and places the old value of 
ZCTL's pointer in the VDA. 

2. Stores R13 in the new VDA. 
3. Issues a SPI E/ESPIE so that error handling will 

be as requested by PL!I program. 
Control is then returned to compiled code, which 
then calls the COBOL routine. 

COBOL FORTRAN 
flag. flag 

IBMBILCl 

IBMBILCl 

I X I 

IBMBILCl 

IBMBILCl 

x 

ZCTL 

ZCTL 

FORTRAN 
interrupt handling 
information 

R12 

ZCTL 

Address of ZCTL 

VDA (First) 

VDA (First) 

R13 

FORTRAN 
interrupt handling 
information 

ZCTL VDA (Second) 

/~ /~ 

xlxl 
FORTRAN R13 
interrupt handling 
information 

R12 

VDA (First) 

R13 

FORTRAN 
interrupt handling 
information 

Final situation 0 
ZCTL is retained until program is completed . 

FORTRAN returns to PL/I (lBMBIEF) 0 
When control returns from a FORTRAN procedure, 
a call is made to the interlanguage communication 
routine IBMBIEF, which: 
1. Moves the pointer in the VDA to the first word 

of ZCTL. 
2. Issues a PL/I SPIE/ESPIE macro. 
3. Issues a PL!I STAE/ESTAE macro leaving the 

previously-stacked FORTRAN STAE/ESTAE 
for possible future use. 

4. Returns control to compiled code. 

PL/I returns to FORTRAN (lBMBIEP) 0 
When the required PL/I procedure is finished, it 
returns control to the encompassing procedure. The 
encompassing procedure calls the interlanguage 
routine IBMBIEP, which issues a SPIE/ESPIE macro 
instruction to restore the error-handling situation to 
that of the calling routine. The information for the 
SPIE/ESPIE macro instruction is retrieved from the 
interlanguage VDA. The current PL/I STAE/ESTAE 
is canceled, leaving the previously stacked FO RTRAN 
STAE/ESTAE in control. 
The interlanguage routine returns control to the 
PL/I encompassing procedure, which then returns 
control to the FORTRAN program. 

COBOL returns to PL/I " 

The COBOL program returns to the PL/I program, 
which immediately calls the interlanguage routine 
IBMBIEC. This routine rearranges the chain by 
placing the word in the most recent VDA in the first 
word of ZCTL. It then issues a SPI E/ESPIE macro 
instruction to restore the PL!I error-handling 
situation. 

PL!I compiled code then continues. 



Initial situation Situation on return Initial Situation on 
situation return 

IBMBILCI IBMBILCI 

l I I I I I 
Exist for TCA etc. 

Zero I Zero I I I 
use if 
PLISA has Dummy DSA 
been ISA 

[ ZCTL 
called First VDA J FORTRAN flag 

> I Addl"ess of ZCTL I ZCTL 

1 

FORTRAN principal procedure calls PL/! 

IBMBILCI VDA (first) TCA etc. l ~> I I 
.--> 

I I 
Dummy DSA 

X 
First VDA 

R13 ISA 
ZCTL Encompassing DSA 

J FORTRAN Required DSA 
interrupt 

FORTRAN handling 
interrupt information 
handling ZCTL 
information 

R12 

2 

IBMBILCl 

PL/I calls FORTRAN I J 

I I X I -
TCA etc. 

LZCTL VDA (Second) Dummy DSA 
> > 

First VDA 

R13 R13 Encompassing DSA 
FORTRAN I )A 
interrupt Required DSA 
handling FORTRAN 
information interrupt Second VDA 

handling 
information J R12 

ZCTL 

3 

Figure 116 (Part 1 of 2). Examples of Chaining Sequences (FORTRAN Principal 
Procedure) 

292 as PL/I Optimizing Compilerl Execution Logic 



IBMBIlCl 

FORTRAN calls Pl/I --
x TCA etc. 

[>------------~->~----------~->~----------~ 
Dummy DSA 

4 

FORTRAN 
interrupt 
handling 
information 

R12 

R13 

FORTRAN 
interrupt 
handling 
information 

R13 

FORTRAN 
interrupt 
handling 
information 

First VDA 

Encompassing DSA I 
ISA 

Required DSA 1 

Second VDA 

Encompassing DSA 2 

Required DSA 2 

~------------------~-
ZCTl 

Figure 116 (Part 2 of 2). Examples of Chaining Sequences (FORTRAN Principal 
Procedure) 

There is one interlanguage VDA for each call to another 
language. A VDA is set up when the call is made and discarded 
when the associated routine is terminated. The VDAs hold a 
record of the ZCTL flags that existed before they were called. 
These flags are placed in the VDA before the flags are altered 
and restored in ZCTl when the VDA is discarded. Thus, ZCTl 
always contains a record of the active language. This 
information is necessary when handling STOP statements. 

The flags in IBMBIlCl contain a record of the environments that 
are active. These flags are used to test whether it is 
necessary to call the FORTRAN or Pl/I initialization routines, 
or whether the environment can be restored from the information 
saved in ZCTl and the interlanguage VDAs. 

Handling FORTRAN and PL/I Initialization/Termination Routines 

FORTRAN and Pl/! environments are set up by initialization 
routines and discarded by termination routines. To save the 
overheads of executing these routines on each call to the 
language, the save area for the termination routine is placed 
above that of the calling program. On the first call, the PICA 
or fake PICA address and, for Pl/I only, the current DSA and TCA 
address are saved. For subsequent calls, this information is 
restored by the interlanguage routines and no call made to the 
initialization routine. Figure 117 on page 294 shows the 
principles involved. 

Chapter 13. Interlanguage Communication 293 



Save area for 
CALLER'S CALLER 

Save area for 
CALLER 

Save area for 
INITIALIZATION/ 

<- 1 

TERMINATION - - .I 

ROUTINE PL/I or 
FORTRAN 

l 
V 

Save area for 
PL/! or FORTRAN 

r Sa~e-a;e:s-a;e-r:-~h:i~ed 1 
so that the environment 
is not discarded until 
the caller is terminated. 

<---I Note: addi tional save 
areas are introduced. 1 

L 

See Figure 118 on page 295 
and Figure 119 o~ page 2961 
for details. 

Figure 117. The Concept of Save Area Rechaining 

The rearrangement of the save area chain results in certain 
problems, for example, returning parameters from the caller to 
the callerls caller. To overcome these problems, additional 
save areas are inserted in the chain. These save areas result 
in control passing to subroutines in the interlanguage 
housekeeping routines known as tail code. Details are given in 
Figure 118 on page 295 and Figure 119 on page 296 and in the 
individual module descriptions that follow. 

294 OS PL/I Optimizing Compiler: Execution Logic 



CALLER's caller 

A 
t 

Save area 1 
(Register 14 in this save area points to 
the tail code in IBMBIEF. For normal 
return, the tail code calls IBCOM in 
the FORTRAN library to discard the 
FORTRAN environment.) 

A 
I 

CALLER's 

A 
I 

FORTRAN routine 

Figure 118. Rechaining of Save Areas When FORTRAN Is Called 
from PL/I and the FORTRAN Environment Needs 
Initializing 

Handling the INTER Option 

When you specify the INTER option, you do not get the normal 
PL/! interrupt handling, nor the normal interrupt handling for 
the other language. Instead, you get Pl/I error handling of 
those interrupts that are left to the system by the non-PL/I 
languages. To allow for this, the type of interrupt is analyzed 
after it occurs and passed to the correct error-handling 
routines. 

Interrupts are analyzed by subroutines of the interlanguage 
housekeeping routines known as traps. 

During the normal call sequence, the interlanguage housekeeping 
routines save the PICA or ESPIE TEST data for the called 
language. The housekeeping routines then issue a SPIE/ESPIE 
with options that return control to the trap code if an 
interrupt occurs. 

When an interrupt occurs, control is passed to the trap code to 
analyze the interrupt. If the interrupt is normally handled by 
the called language, control passes to that language's interrupt 
processor. Otherwise, the interrupt is passed to the Pl/I 
error-handler for normal processing. The error-handler checks 
for, and schedules any ON-units for that condition. 

When the error-handler gains control, the trap routine saves the 
interrupt information needed to restart the called program. The 
trap routine also issues a special SPIE/ESPIE when the trap 
routine is reentered because an ON-unit terminates normally. 
This SPIE/ESPIE exit is used to restart the called program at 
its next sequential instruction by forcing another program 
check. The SPIE/ESPIE exit uses the operating system's 
error-handler to restart at the point of the original interrupt. 

Chapter 13. Interlanguage Communication 295 



r--------------, 
Caller's Caller 

(replaced in this position 
by tail code in IBMBIEP 
R14 value restored from 
ghost save area) L- ____________ .J 

I 

Save area 2 
(passes control to tail 

code in IBMBIEP) 

A 
I 

Dummy DSA 
(Save area for PL/I 

initialization 
termination routine) 

A 

J 

Save area 1 
Passes control to tail 
code in IBMBIEP Centered 
after FORTRAN STOP) 

Caller's Caller adapted 
<--- (register 14 value is 

altered to pass control 
to tail code in IBMBIEP) 

CALLER 

A 

I 
PL/I 

Encompassing Procedure 
DSA 

A 

I 
PL/I 

Required Procedure DSA 

A 

I 

Figure 119. Rechaining of Save Areas When Pl/I Is Called from 
FORTRAN or COBOL and the Environment Requires 
Initialization 

296 OS PL/I Optimizing Compilers Execution logic 



STOP and STOP RUN Statements 

PL/I and FORTRAN STOP statements and COBOL STOP RUN statement 
cause certain problems because various save areas may be 
bypassed. The methods adopted to solve these problems are 
discussed in the individual descriptions of the modules. 

HOUSEKEEPING MODULE DESCRIPTIONS 

As the differences between individual interlanguage housekeeping 
modules are considerable, a detailed description of each module 
follows. The description covers the following situations: 

1. When the associated, language routine is called 

2. When the associated language routine returns control 

3. When an interrupt occurs with the INTER option 

4. When a STOP or STOP RUN statement is executed 

5. For PL/I and FORTRAN only, when the environment is discarded 
and the termination routine entered 

COBOL WHEN CALLED FROM PL/I (IBMBIEC) 

Before Entry to COBOL Program 

IBMBIECA Entry point for COBOL error-handling 

IBMBIECB Entry point for INTER error-handling 

When IBMBIECA is called before the COBOL program, the following 
must be donel 

1. Test to see if this is the first interlanguage calli if so, 
set COBOL flag in IBMBILCl and set up ZCTl. 

2. Acquire the interlanguage VDA and store register 12 and 
register 13 in the VDA. Write null PICA or fake PICA 
information in ZCTl. 

3. If the INTER option is not specified (that is, entry point 
IBMBIECA), issue SPIE/ESPIE macro instruction so that errors 
are handled by the supervisor. Return to compiled code. 

4. If the INTER option is specified (entry point IBMBIECB), 
issue new SPIE/ESPIE macro instruction and return so that 
interrupts are passed to the trap code. 

On Return from COBOL Program (IBMBIECC) 

The following actions take place on returnl 

1. A SPIE/ESPIE macro instruction is executed, which results in 
the Pl/I error-handling scheme being restored. 

2. The first word of the interlanguage VDA and the VDA flags 
are moved into the first word of ZCTL, and the VDA is freed. 

Chapter 13. Interlanguage Communication 297 



Action on Interrupt in COBOL with INTER 

ZERODIVIDE ON-Units 

If the INTER option is not specified, all program checks will be 
handled by the supervisor in the usual manner. 

If the INTER option is specified and the program has been 
compiled with a request for the COBOL interrupt handler not to 
be called, the following takes placez 

1. During the first invocation of IBMBIECA, a SPIE/ESPIE macro 
instruction is issued, which results in interrupts being 
passed to the address in the trap code. 

2. When an interrupt occurs, registers 12 and 13 are restored, 
thus restoring the PL/I environment. 

3. A DSA is acquired for IBMBIEC in LWS. The address of the 
interrupt, in the second word of the PSW, is saved in the 
DSA and replaced by the address of another entry address in 
the trap. For underflow interrupts, the four bytes 
preceding the point of interrupt are also copied and placed 
before the trap in case the error-handler needs to examine 
them. The trap acts as the return address for the PL/I 
error-handler. 

4. Flags are set in the TCA and DSA to indicate that it is 
possible for an abnormal GOT a to occur in a PL/I ON-unit. 

S. A SPIE/ESPIE macro instruction is issued to transfer the 
program check exit to the PL/I error-handling routines whose 
address is held in the TCA appendage. 

RETURN FROM INTERRUPT: If there is a GOTO out of a PL/I 
ON-unit, control passes to the abnormal GOTO subroutine; this is 
because flags indicating an abnormal GOTO situation are set up 
by the trap code. The abnormal GOTO subroutine analyzes these 
flags and passes control to IBMBIEC, which. handles any necessary 
housekeeping problems. 

If the return is normal, the Pl/I error-handling routines return 
control to the address in the second word of the PSW. This word 
has been altered by the code in the trap, and further trap code 
in IBMBIECA is entered. 

It is necessary to return to the point of interrupt in the COBOL 
program without changing any of the register values and this can 
only be done via the supervisor. A new SPIE/ESPIE is set to 
point to further trap code and interrupt forced. The program is 
now in an interrupted state, the original INTER SPIE/ESPIE is 
reissued, and the registers and PIE are restored. The original 
interrupt address is set in the PSW. Control is returned to the 
supervisor, which passes control to the address in the PSW, with 
the correct register values restored. 

When used with certain COBOL compilers, normal return from a 
ZERODIVIDE ON-unit results in a data exception. This is because 
a zero and add decimal (ZAP) instruction is executed after the 
divide on Computational-3 data. The ZAP instruction picks up an 
invalid field. 

Handling STOP RUN statements 

ANS COBOL STOP RUN statements are handled by a COBOL routine 
that passes control to a specified address. When IBMBIEC is 
called before entry to a COBOL program, this address is set to 
the tail code in IBMBIEC. This tail code dechains all save 
areas or routines that were entered after the PL/I caller and 
then executes a PL/I STOP statement. 

298 as PL/I Optimizing Compilerz Execution Logic 



FORTRAN WHEN CALLED FROM PL/I (IBMBIEFJ 

When FORTRAN is called by Pl/I, IBMBIEFA is entered immediately 
before and immediately after the execution of the FORTRAN 
program. The processing done before entry to the FORTRAN 
program depends on whether the INTER option is specified. Entry 
point IBMBIEFA handles calls without the INTER option. Entry 
point IBMBIEFB handles calls with the INTER option. 

Before Entry to the FORTRAN Program 

IBMBIEFA Entry point for FORTRAN error-handling 

IBMBIEFB Entry point for Pl/I INTER error-handling 

Before the call to FORTRAN, IBMBIEFA does the followingl 

1. Tests the flags in IBMBIlCI to discover if this is the first 
interlanguage call. If it is the first call, it sets up 
lCTl and sets the FORTRAN flag in IBMBIlCI. If it is not 
the first call, it tests to see whether the FORTRAN flag is 
set in IBMBILCI and sets the FORTRAN flag if it is not 
already set. 

2. IBMBIEFA stores register 13 in the interlanguage VDA, thus 
saving the PL/I environment. 

3. If the FORTRAN environment has not previously been set up, 
calls the FORTRAN initialization routine. This routine sets 
up the program check exit so that program interrupts will be 
handled by the FORTRAN error-handling method. The FORTRAN 
error-handling data is stored in ZCTl. Save area one (SAl) 
is then inserted into the save area chain. The resulting 
save area chaining is shown in Figure 118 on page 295. 

4. IBMBIEFA acquires an interlanguage VDA. It points to the 
first word of lCTl to this VDA, taking the value previously 
in the first word of lCTl and placing it in the first word 
of the VDA. (This places the new VDA at the head of a chain 
starting from ZCTl.) 

5. If the INTER option is not specified, it issues a FORTRAN 
SPIE/ESPIE macro instruction from lCTl, sets program mask to 
'2', and returns to compiled code. 

6. If the INTER option is specified, a SPIE/ESPIE macro 
instruction is issued that results in control passing to the 
trap should an interrupt occur. The program mask is reset 
to IE' in case it was changed by the FORTRAN initialization 
routine. It then returns to the compiled code. 

Action on Return from FORTRAN P~ogram (IBMBIEFC and IBMBIEFDJ 

When return is made from the FORTRAN subroutine, Pl/I compiled 
code immediately makes a call to the FORTRAN interlanguage 
routine. If the FORTRAN routine may have been used as a 
function, entry point IBMBIEFD is used. Otherwise, entry point 
IBMBIEFC is used. The module IBMBIEF does the following: 

1. A SPIE/ESPIE macro instruction is issued that resets the 
program check exit to the Pl/I error-handling modules, and 
the program mask is set to 'E'. 

2. The first word of the interlanguage VDA is placed in the 
first word of ZeTL. The VDA flags are inserted in leTl and 
the VDA is freed. 

3. For entry point IBMBIEFD (the FORTRAN function entry point), 
the parameter list passed by PL/I is examined, and the 
values are moved from registers, in which they were placed 
by the FORTRAN routine, to the location expected by PL/I. 

Chapter 13. Interlanguage Communication 299 



Action on Interrupt in FORTRAN 

If the INTER option is not specified, the action on any 
interrupt that occurs in the FORTRAN program will be that 
specified in the FORTRAN error-handling scheme. However, if the 
INTER option is specified, all program checks that are not 
handled by FORTRAN error-handling are passed to the Pl/I 
error-handling modules. 

The FORTRAN error-handling scheme is used after the following 
interrupts have occurred: 

1. Specification (other than for invalid instruction address) 

2. Fixed-point divide 

3. Decimal divide 

4. Exponent overflow 

5. Exponent underflow 

6. Floating-point divide 

All other program checks are handled by the Pl/I error-handler. 

If the INTER option is specified, when an interrupt occurs, the 
following takes place: 

1. 

2. 

3. 

4. 

5. 

When control passes from the supervisor to the ILC trap 
code, the type of interrupt is stored in the PSW. If the 
interrupt is one of the types that can be handled by 
FORTRAN, the normal FORTRAN environment is established and 
the FORTRAN error-handling module invoked. 

If it is not the type of interrupt that can be handled by 
FORTRAN, register 12 is restored from ZCTl and register 13 
from the latest interlanguage VDA, thus restoring the PL/I 
environment. 

The address of the interrupt is taken from the second word 
of the PSW and stored in the nSA. The second word of the 
PSW is then replaced by an entry address in the trap in 
IDMBIEF. 

Flags are set in the TCA and DSA to indicate that it is 
possible for an abnormal GOTO to occur jn a Pl/I ON-unit. 

A SPIE/ESPIE macro instruction is iSS~ to restore the PL/I 
error-handling si tuation. A branch is'? then made to the Pl/I 
error-handler. 

RETURN FROM INTERRUPT: If there is a GOTO out of a Pl/I 
ON-unit, control passes to the abnormal GOTO subroutine; this is 
because flags indicating an abnormal GOTO situation are set up 
by the trap code. The abnormal GOTO subroutine analyzes these 
flags and passes control to IBMBIEF, which handles any necessary 
housekeeping problems. 

If the return is normal, the PL/I error-handling routines return 
control to the address in the second word of the PSW. This word 
has been altered by code in the trap, and further trap code in 
IBMBIEFA is entered. 

It is necessary to return to the point of interrupt in the 
FORTRAN program without changing any of the register values and 
this can only be done via the supervisor. A new SPIE/ESPIE is 
set to point to further trap code and an interrupt forced. The 
program is now in an interrupted state, the original INTER 
SPIE/ESPIE is reissued, and the registers and PIE are restored. 
The original interrupt address is set in the PSW. Control is 
returned to the supervisor, which passes control to the address 
in the PSW, with the correct register values restored. 

300 OS Pl/I Optimizing Compiler: Execution logic 



Termination of Caller 

STOP statements 

When the PL/! program that called FORTRAN terminates, control is 
passed to the address held in the register 14 save area, in save 
area 1. This address is the address of the tail code in 
IBMBIEF. If the return is normal, the tail code calls IBCOM in 
the FORTRAN library to discard the FORTRAN environment (only if 
a FORTRAN environment exists). It then frees ZeTL and returns 
control to the caller's caller. 

If control returns to the tail code because of a FORTRAN STOP 
statement, the tail code discards any save areas that may have 
been bypassed by the FORTRAN STOP statement, and finally, 
executes a PL/I STOP statement, which terminates the program. 

PL/I CALLED FROM COBOL OR FORTRAN (IBMBIEP) 

As with the other interlanguage communication routines, IBMBIEP 
is called immediately before and immediately after the program 
that is to be executed. However, the interlanguage housekeeping 
routine cannot be called directly from the COBOL or FORTRAN 
routine, because the existence of such a routine is unknown to 
COBOL or FORTRAN. To overcome this problem, an encompassing 
routine is generated with the same entry name as the PL/I 
routine. This encompassing routine is called by COBOL or 
FORTRAN and in turn calls the interlanguage housekeeping routine 
and the required PL/I routine. 

Although the names of both PL/I procedures are the same, the 
encompassing routine gets control when called from either COBOL 
or FORTRAN. This happens because no ESD records are generated 
for the real entry points of the required Pl/I program. Code 
for a Pl/I encompassing routine is shown in Figure 114 on 
page 289. Figure 113 on page 288 shows the calling sequence. 

Before Entry to PL/I Program (IBMBIEP) 

Before a call is made to the required PL/I program, IBMBIEP does 
the following' 

1. Tests to see if the PL/I environment has already been 
initialized, by examining whether the COBOL or FORTRAN flag 
in IBMBIlCI is set. 

Z. If the COBOL or FORTRAN flag is set, it means that a 
previous interlanguage call was made, and, because ~he call 
must have been made either to or from PL/I, the PL/I 
environment must have been set up. 

If it is established that the Pl/I environment exists, 
register 12 is restored from ZCTL. A SPIE/ESPIE macro 
instruction is issued so that program checks are handled by 
the Pl/I error-handler. The address of the old PICA or fake 
PICA is restored in the interlanguage VDA. Control returns 
to the encompassing routine. 

3. If neither the COBOL nor the FORTRAN flag is on, Pl/I is 
being called for the first time by a procedure in a program 
whose principal procedure is COBOL or FORTRAN. The 
following action is takenl 

a. IBMBIEP issues a GETMAIN macro instruction and sets up 
ZCTL in the storage acquired. 

b. The Pl/I initialization routine, IBMBPIR, is called. It 
sets up the Pl/I environment and returns control to an 
address in IBMBIEP instead of PlIMAIN. IBMBIEP then 
stores the registers of IBMBPIR in the dummy DSA. 

Chapter 13. Interlanguage Communication 301 



c. The chaining of save areas is then altered, so that the 
dummy DSA (the save area used by IBMBPIR) is above the 
calling program's standard save area. The result of 
this is that, when the encompassing routine is complete, 
return is made to the COBOL or FORTRAN calling routine 
rather than to IBMBPIR. Thus, the PL/I termination 
routine is not entered and the PL/I environment is 
retained until the COBOL or FORTRAN calling program is 
completed. 

Two further save areas are also inserted into the chain. 
These result in control passing to tail code in IBMBIEP, 
which handles housekeeping problems. 

The save area of the caller's caller is also altered so 
that the register 14 value also points at tail code in 
IBMBIEP. The true register 14 value is saved in ZCTl in 
storage known as the ghost save area. The resulting 
save area chain is shown in Figure 119 on page 296. 
Action taken when the calling routine is terminated is 
described below, under "Termination of PL/I 
Environment." 

4. A DSA for the encompassing routine is acquired. 

5. The address of the new DSA is placed in the register 0 slot 
of the dummy DSA. 

6. Control is then returned to compiled code in the 
encompassing routine. 

Action after the PL/I Program Is Completed 

Interrupt Handling 

Entry point IBMBIEPC--normal 

Entry point IBMBIEPD--return value expected 

IBMBIEP is called at the end of the PL/I routine by the 
encompassing routine generated by the compiler. If the calling 
program is FORTRAN, a returned value may be expected in register 
o or one or more of the floating-point registers. When a 
returned value may be required, the entry point IBMBIEPD is used 
and the returned value is loaded into the required position. In 
other situations, the entry point IBMBIEPC is used. The module 
resets the program mask and restores the caller's SPIE/ESPIE 
environments by issuing a SPIE/ESPIE macro 'instruction. This 
instruction restores the calling routine's program check exit, 
the PICA or fake PICA of which was stored in the interlanguage 
VDA. 

When PL/I is called by either COBOL or FORTRAN, error handling 
is carried out in the normal PL/I manner. The SPIE/ESPIE macro 
instruction is issued by IBMBPII when the Pl/I environment is 
first set up. For calls after the first, the SPIE/ESPIE macro 
instruction is issued by IBMBIEP. 

Termination of PL/I Environment 

The PL/I environment is discarded when the caller is terminated. 
In a normal situation, control is returned by the caller to the 
address held in the register 14 save area of the caller's 
caller. This address was altered during the initialization of 
the PL/I environment to point to tail code in IBMBIEP. 

This code receives control and rearranges the save area 
chaining. It then returns to IBMBPIR, whose registers are in 
the dummy DSA. The PL/I program then terminates, and control 
returns to save area 2. 

302 OS PL/I Optimizing Compiler: Execution Logic 



This again points to tail code in IBMBIEP. This tail code 
restores the correct register 14 value of the caller's caller 
from the ghost save area and returns to the caller's caller. 

STOP and STOP RUN Statements 

For a PL/I STOP statement, the action is carried out in a normal 
manner, and flags in save area 1 indicate that an abnormal GOTO 
situation exists. The situation is analyzed by the abnormal 
GOTO subroutine, and control passes to the tail code whose 
address is held in save area 1. 

For a FORTRAN STOP statement when the calling program is 
FORTRAN, the situation depends on how many levels of FORTRAN 
precede Pl/I. If the caller is the highest level of FORTRAN 
prior to PL/I, control will be passed to save area 1 and tail 
code entered to carry out the necessary housekeeping. If there 
is more than one level of FORTRAN, control will pass to the 
highest active level of FORTRAN and the job will be terminated 
without carrying out PL/! program termination. 

A COBOL STOP RUN statement is intercepted by IBMBIEC, which then 
executes a PL/I STOP statement. 

HANDLING DATA AGGREGATE ARGUMENTS 

ARRAYS 

STRUCTURES 

In order to communicate effectively between COBOL and PL/I, and 
FORTRAN and Pl/I, a method of handling data aggregate arguments 
is necessary, because the three languages hold data aggregates 
in different ways. 

Arrays as such are not used in COBOL. The use of OCCURS in 
structures does, however, have a similar effect. However, PL/! 
structures of arrays and COBOL structures using OCCURS are both 
held in row-major order. In FORTRAN, arrays are held in 
column-major order. Thus, in a two-dimensional array, the 
element known in the FORTRAN array as (2,1) will become (1,2) in 
the PL/! array. 

Structures are not used in FORTRAN. In COBOL, alignment 
requirements are met differently from PL/I. For an overview to 
data mapping between PL/I and other programming languages, see 
the OS PL/! Optimizing Compiler: Programmer's Guide. 

COBOL structures are mapped as follows. Working from the start, 
each item is aligned to its required boundary in the order in 
which it is declared, the structure starting on a doubleword 
boundary. 

Pl/I structures are mapped by a method that minimizes the unused 
bytes in the structure. Basically, the method used is first to 
align items in pairs, moving the item with the lesser alignment 
requirement as close as possible to the item with the greater 
alignment requirement. The method is described in full in the 
OS and DOS PL/I Language Reference Manual. 

Take, for example, a structure consisting of a single character 
and a fullword fixed binary item. The fullword fixed binary 
item has a fullword alignment requirement; the character has a 
byte alignment requirement. In PL/!, the structure would be 
declared: 

Chapter 13. Interlanguage Communication 303 



DCl 1 A, 
2 B CHAR (I), 
2 C FIXED EINARY (31,0) 

and would be held thus: 

B C 

In COBOL, the structure would be declared: 

01 A. 
02 B, PICTURE X, DISPLAY. 
02 C, PICTURE S9(9), COMPUTATIONAL. 

and would be held thus: 

~B _______ 3 __ u_n_u_s_e_d ___ b_y_t_e_s _________ c _______ ~ 

METHODS USED TO HANDLE DATA AGGREGATE ARGUMENTS 

The method used in handling data aggregates is to create dummy 
arguments of the correct format and let the called routine use 
the dummy. The values in the dummy are then assigned to the 
original argument when the execution of the called program is 
completed. 

If the data aggregates are not adjustable, the mapping will be 
done during compilation and both the Pl/I and the COBOL or 
FORTRAN mapping are produced. If the data aggregates are 
adjustable, the mapping is done during execution. Before the 
execution of the call to a program in another language, the data 
is transferred into the correctly mapped aggregate, which will 
be held in PL/I temporary storage. The values are reassigned to 
the original data aggregate after execution of the interlanguage 
program. 

The assignment of data between the dummy and the argument is 
done by compiled code. 

NOMAP, NOMAPIN, AND NOMAPOUT OPTIONS 

You may use the NOMAP, NOMAPIN, and NOMAPOUT options to specify 
that data aggregates are not to be remapped ~nd placed in dummy 
arguments. 

When NOMAP is specified, or when both NOMAPIN and NOMAPOUT are 
specified, the dummy is not generated at all, and the structure 
or array is passed as it stands. 

When only NOMAPIN is specified, a dummy is created, but it is 
not initialized with the values of the aggregate being passed. 
However, on return from the COBOL or FORTRAN routine, the data 
in the dummy is placed in the data aggregate that is being 
passed. 

When only NOMAPOUT is specified, a dummy is created, and the 
data from the data aggregate is moved into the dummy. When 
control is returned to the calling program, however, the data 
from the dummy is not moved into the data aggregate that was 
passed. 

304 OS PL/I Optimizing Compiler: Execution logic 



CALLING SEQUENCE 

ASSEMBLER OPTION 

When PL/I calls COBOL or FORTRAN passing data aggregates as 
arguments, the sequence of events is: 

1. Handle data reassignment to dummy by compiled code. 

2. Call interlanguage housekeeping routine. 

3. Call COBOL or FORTRAN routine. 

4. Call interlanguage housekeeping routine. 

5. Assign data in dummy to real argument, by means of compiled 
code. 

When COBOL or FORTRAN calls PL/I, the sequence of events iSI 

1. The COBOL or FORTRAN routine calls the encompassing PL/I 
routine. 

2. The encompassing PL/I routine: 

a. Calls the interlanguage housekeeping routine. 

b. Sets up the necessary dummy data aggregate argument by 
compiled code. 

c. Calls the required PL/I routine. 

d. Reassigns the data from the dummy by compiled code. 

e. Calls the interlanguage housekeeping routine. 

f. Returns to the original calling routine. 

It is necessary to make calls in this order, because the data 
mapping must be done in a PL/I environment. 

The optimizing compiler provides a facility to simplify calling 
assembler language routines from PL/I. This consists of setting 
up an argument list that contains the addresses of all items 
passed rather than the addresses of locators. 

When an entry point is declared as OPTIONS (ASSEMBLER), 
parameter lists passed to the entry point are set up to contain 
no locator addresses. The addresses of any areas, arrays, 
strings, or structures are passed directly in a parameter list. 
(For a call to a PL/I routine, the parameter list would contain 
the address of locators for these data types. This is because 
the called routine might require information on the length or 
bounds of the data and this is accessible through the locator. 
See Chapter 4, "Communication between Routines" on page 64, for 
details.) 

The ASSEMBLER option does not provide facilities for 
automatically overriding Pl/I interrupt handling, nor does it 
allow Pl/I routines to be called from assembler language. If 
you require these facilities, you must either provide the 
necessary code yourself or use the COBOL option. The COBOL 
option without the INTER option provides complete facilities for 
calling, or being called by, assembler routines. However, its 
use involves the overhead of calls to the PL/I library 
interlanguage communication routines. 

Full instructions on how to use PL/I with assembler language are 
given in as PL/I Optimizing Compilerl Programmer's Guide. 

Chapter 13. Interlanguage Communication 305 



COBOL OPTION IN THE ENVIRONMENT ATTRIBUTE 

A separate interlanguage communication facility offered by the 
compiler is the use of the COBOL option in file declarations. 
This option allows data sets created by COBOL programs to be 
read by PL/I programs and allows data sets to be created by PL/I 
programs in a format that is usable by COBOL programs. 
Interchange of data sets presents no problems, unless structures 
are used in the data set. If structures are used, their mapping 
may be different, as described in "Handling Data Aggregate 
Arguments" on page 303. When structures are involved and the 
mapping is not known to be the same, both COBOL and Pl/! 
structures are mapped, and compiled code transfers the data 
between structures immediately after reading the data for input, 
and immediately before writing the data for output. 

During compilation, the compiler examines the record variable to 
see if any structures are involved. If no structures are 
involved, no further action need be taken. If structures are 
involved, a test is then made to see if the mapping of the 
structure or structures will be the same in COBOL and PL/I. If 
the compiler can determine that the mapping will be the same, no 
action is required. If the compiler cannot determine that the 
mapping will be the same, or if the structure is adjustable, 
both structures will be mapped. Adjustable structures will be 
mapped during execution by the resident library 
structure-mapping routines. Other structures will be mapped 
during compilation. 

When reformatting of data is necessary, and when a record I/O 
statement involving a file with the COBOL option is executed, 
the following actions take place: 

INPUT 

OUTPUT 

The data is read into a structure that has been mapped 
using the COBOL mapping algorithm and assigned to a 
Pl/I mapped structure. 

Before the output takes place, the data in the Pl/I 
structure is assigned to a structure mapped for COBOL. 
The output to the data set then takes place from the 
second structure. 

The data assignment is carried out by compiled code in all 
circumstances. 

306 OS Pl/I Optimizing Compiler: Execution Logic 



CHAPTER 14. MULTITASKING 

INTRODUCTION 

Multitasking allows the PL/I programmer to make use of operating 
system multiprogramming facilities within a single jobstep. The 
PL/I main procedure and certain other PL/! procedures are 
attached as tasks, and compete for the facilities of the CPU. 

All features of the PL/I language that are implemented 
differently for multitasking and non-multitasking programs are 
handled by routines in the as PL/I Resident and Transient 
libraries. The non-multitasking resident library routines are 
held in the partitioned data set SYS1.PLIBASE; the multitasking 
resident library routines are held in the partitioned data set 
SYS1.PLITASK. When a multitasking program is link-edited, the 
automatic call library must be identified by sequential SYSLIB 
DD statements specifying first SYSl.PLITASK and then 
SYS1.PLIBASE. 

Subroutines that have the same function in both the multitasking 
and the non-multitasking libraries have the same link-edit 
name). For further details, see nNaming Conventionsn on 
page 54. Consequently, no special calls are required in 
compiled code. If the program uses multitasking, the 
multitasking version of the library module will be link edited, 
provided that SYS1.PLITASK is specified before SYS1.PLIBASE. 
Where a module is required only for multitasking programs, it is 
addressed from the TCA. The results of attempting to access 
such a module in a non-multitasking program are unpredictable. 
The concept of the multitasking library is shown in Figure 120. 

COMPILED CODE 

Relies on library modules for 
executing code that is sensitive 
to differences between multitask
ing and non-multitasking. 

v v 

BASE LIBRARY SYS1.PLIBASE MULTITASKING LIBRARY SYS1.PLITASK 

Contains modules to handle 
all library functions in a 
non-multitasking situation. 

Contains modules that handle all 
multitasking-sensitive operations. 

These modules have the same link
edit names as parallel modules in 
the base library. 

Figure 120. Multitasking Is Implemented by Use of a Multitasking Library 

The use of a special multitasking library to handle all code 
that is affected by multitasking minimizes the effect on 
compiled code. Special action is required only for a CALL 
statement with any of the multitasking options, and for the 
epilog of a block that contains a CALL statement with 
multitasking options. Otherwise, the code generated for a 

Chapter 14. Multitasking 307 



multitasking program is exactly the same as the code generated 
for a non-multitasking program. The TASK option on a procedure 
statement, necessary with some compilers, is ignored by the 
optimizing compiler. 

The Concept of the Control Task 

To implement PL/! multitasking, the facilities offered by the 
operating system control program have to be used in a manner 
that meets the specifications of the PL/I language. Certain 
facilities offered by PL/I, notably t~e ability of any task to 
change the priority of any other task, are not directly 
available in the system. Consequently, an interface is used 
between the system facilities and PL/I tasks. This interface 
takes the form of a control task. 

The control task has all PL/I tasks attached as direct subtasks 
and always has a higher priority than any PL/I task. Certain 
functions are always carried out within the control task. These 
functions are: 

1. Attaching and detaching of tasks 

2. Accessing or altering COMPLETION or PRIORITY values 

3. Modification of event variables (except for STATUS 
pseudo-variable) 

4. Generating PL/I dumps 

5. Access to IOCBs in certain conditions 

For further details, see Chapter 8, "Record-Oriented 
Input/Output" on page 154. 

The first two are carried out by the control task because of the 
demands of the system control program. The third is carried out 
by the control task because it is important that no two tasks 
try to access the event variable chain at the same time. 

The apparent and actual hierarchy of tasks is shown in 
Figure 122 on page 309. The functions executed in the control 
task are shown in Figure 121. 

CONTROL TASK 

All code that could affect other 
task's housekeeping is handled in 
the control task: 

Attaching tasks 
Detaching tasks 
PRIORITY and 
COMPLETION pseudo-variables 
All access to EVENT variables 

I 
SUBTASKS OF CONTROL TASK 

PL/ MAJOR TASK PL/I SUBTASKS 

Any operation that could affect 
another task's housekeeping is 
handled by a call to the central 
task. 

Any operation that could affect 
another task's housekeeping is 
handled by a call to the central 
task. 

Figure 121. The Functions of the Control Task 

308 OS PL/I Optimizing Compiler: Execution Logic 



PL/I PROGRAM 

X:PROC; 
• 
• 
• 
CALL Y TASK (Tl) EVENT (E2)i 

Y:PROCi 
• 
• 
CALL Z TASK (T2) EVENT (E2); 

Z:PROC; 
• 
• 
END Z; 

END Yi 
END X; 

PL/I HIERARCHY ACTUAL HIERARCHY 
(as recognized by operating system) 

CONTROL TASK 

MAJOR TASK 

Y (task Tl) 
SUBTASK OF 
MAJOR TASK 

Z(task T2) 
SUBTASK OF Y 

MAJOR TASK 
SUBTASK OF 
CONTROL TASK 

Y (task Tl) 
SUBTASK OF 
CONTROL TASK 

Z (Task T2) 
SUBTASK OF 
CONTROL TASK 

Figure 122. The Hierarchy of Tasks 

Throughout most of the execution of a PL/I multitasking program, 
the control task is in a wait state and the various PL/I tasks 
are competing for the facilities of the CPU. The control task 
waits on an ECB list that contains an ECB (event control block) 
for each PL/I task and an ECB known as the task-end ECB that is 
used when terminating a task. Whenever any of the functions 
that must be carried out in the control task are required, the 
ECB associated with the requesting task is posted with a request 
code and the task goes into a wait sate, waiting on an ECB that 
is posted complete when the requested function has been executed 
in the control task. 

communication between Tasks 

As explained above, there is no communication between Pl/I tasks 
except through the control task. Communication between the 
control task and the PL/I tasks is made through control blocks 
known as tasking appendages. Every PL/I task has a tasking 
appendage, which is addressed from and is contiguous with the 
TCA of the task. 

As shown in Figure 123 on page 310, every tasking appendage is 
headed by an ECB, followed by two fullwords for parameters, 
followed by another ECB. 

Chapter 14. Multitasking 309 



L--> 

PL/I MAJOR TASK 
TASKING APPENDAGE 

POST ECB 

PARAMETERS 
Used by code 
executed in 
control task 

WAIT ECB 

< 

CONTROL TASKS ECB LIST 

ECB list element for 
major task 

ECB list element for 
subtask 

Control tasks waits on 

~W1th a code 1nd1cat1ng the 
service the subtask requires 

these ECBs which are posted 

<-r-Parameters further define 
~the service if necessary 

Control task waits on this 
list until required to 
perform a service 

PL/I SUBTASK 
SUBTASKING APPENDAGE 

> POST ECB 

PARAMETERS 
Used by code 
executed in 
control task 

'-< 

~
Pl/I task waits on this ECB. ]-

< It is set complete in the > 
control task when the 
required service is completed 

WAIT ECB 

Figure 123. The Post and Wait ECBs 

The first fCB in the tasking appendage is known as the POST ECB, 
and is one of the ECBs in the ECB list on which the control task 
waits. The second ECB is known as the WAIT ECB and is the ECB 
on which the task waits while a function is carried out in the 
control task. 

When code within a subtask requires a service to be done in the 
control task, it posts the POST ECB with a completion code to 
identify the service required, and waits on its WAIT ECB. The 
WAIT ECB will be posted complete when the requested action has 
been completed in the control task. 

The completion codes that are used to post the POST ECB arel 

X'O' 

X'4' 

XIS' 

X'C' 

X'lO' 

X'14' 

X'IS' 

X'IC' 

X'20' 

COMPLETION PSEUDO-VARIABLE POSTCODE 

EVENT ASSIGNMENT POSTCODE 

PRIORITY PSEUDO-VARIABLE POSTCODE 

I/O EVENT COMPLETION POSTCODE 

WAIT TERMINATION POSTCODE 

EXECUTE IN CTRL TASK 

DEDICATE CONTROL TASK ROUTINE 

LIBERATE CONTROL TASK ROUTINE 

ATTACH A TASK 

310 OS PL/I Optimizing Compiler: Execution Logic 



X'24' 

X'28' 

X'2C' 

END OF TASK 

TERMINATE SUBTASK 

TERMINATE SUBTASK 

Any parameters required are passed to the control task in the 
list that follows the POST fCB. 

Holding the Priority of the Task 

The control program retains the priority of a task in an 
associated TCB (task control block). At the Pl/I level, 
however, the priority is held in a task variable. This allows 
the priority of the task to be set even when the task is 
inactive, and also allows reference to the task by the program. 
Each task has a task variable which is connected to the TCB 
through the tasking appendage. The address of the associated 
tasking appendage is placed in the task variable when the task 
is attached. 

When a change in the priority of a task is requested, the 
priority is always changed in the task variable. If the task 
variable is active, the priority is also changed in the TCB. 

Also associated with a task is an event variable. The event 
variable is set "complete" when the task is terminated. 

All tasks have associated event and task variables. If none are 
specified by the programmer, dummy variables are provided during 
task attachment. These dummies are held in the task's own 
workspace, and are discarded when the task is terminated. 

MULTITASKING HOUSEKEEPING 

Multitasking housekeeping is similar to non-multitasking 
housekeeping. Every task has its own TCA and other blocks in 
the program management area, as described in "The Program 
Management Area" on page 81. 

The major differences are that the TCA for each task has a 
control block known as the tasking appendage, and that DSA 
chaining between tasks cannot follow the rules of calling 
procedures. 

Chapter 14. Multitasking 311 



Control 
Name l 

IBMTEATA 

IBMTJWTA 

IBMTPIRA 

IBMTTOCA 

IBMTTPRA 

IBMTPJDA 

IBMTPJRA 

IBMTPIIA 

IBMTPITA 

IBMTPJIA 

IBMTPJRA 

IBMTTEPA 

Link-edit 
Namez 

IBMBEATA 

IBMBJWTA 

IBMBPIRA 

IBMBTOCA 
IBMBTOCB 

IBf1BTPRA 

IBMTPGDA 

IBMTPGRA 

IBMTPIIA 

IBMTPITA 

IBMTPJIA 

IBMTPJRA 

IBMTTEPA 

Function 

Modules in the Tasking Librarv 

Attention handling 

WAIT statement 

Program initialization and task housekeeping 

COMPLETION pseudo-variable 

PRIORITY pseudo-variable 

Multitasking Modules in the Transient Library 

Storage management with REPORT 

Storage management with NOREPORT 

Program initialization (prior to Release 3.0) 

Program termination 

Program initialization 

Program initialization and task housekeeping 

ATTACH macro instruction entry point 

Figure 124. Modules in the Multitasking library 

1 

2 

Notes to Figure 124: 

Control name is the name that uniquely defines the module. 

Link-edit name is the name by which a module is known to the 
linkage editor. Multitasking and non-multitasking modules 
that handle similar functions have the same link-edit name. 

As shown in Figure 125 on page 313, the chaining of DSAs is 
arranged so that the dummy DSA of the attached task is in the 
chain but the DSA of the attaching procedure is not. This 
protects the attached tasks from any changes in establishment of 
ON-units that may occur in the block that attached the task. In 
order that error handling and other functions using the 
back-chain may function correctly, certain items, such as 
ON-cells and dynamic ONeBs, are copied from the attaching task's 
DSA to the dummy DSA of the attached task at the time of 
attachment. 

312 OS PL/I Optimizing Compilera Execution Logic 



r 

I 

l 

MAJOR TASK TCA 

Program 
Management Area SUBTASKI TCA SUBTASK2 TCA 

MAJOR TASK Program 
DUMMY DSA Management 

< 
MAIN PROC DSA 

BEGIN BLOCK < 
[ DUMMY DSA 

-L Procedure 
DSA -- DSA 

PL/I procedures involved 

~------------Main procedure (major task) 

~---------Begin block 

~procedure for 

~procedure for 

subtaskl 

subtask2 

Program 
Area Management 

< 

[ DUMMY DSA 

-L Procedure 
- - DSA 

< 

Note: To allow for inheritance of ON-units, 
information held in the DSA of the attach
ing task is copied into the dummy DSA of 
the attached task. 

Key 

- > Static back-chain 

--------> Dynamic back-chain 

Area 

Figure 125. Back-chains in Multitasking 

If procedures executed as separate tasks are internal to one 
another, a static back-chain is established through the DSAs. 
This back-chain passes from the attached task's procedure DSA to 
the DSA of the procedure in which the task was attached, and is 
the same as for non-multitasking programs. This chaining allows 
all internal procedures to access variables declared in outer 
blocks without requiring special provision for multitasking. 
(Special action is, however, necessary when handling the CHECK 
condition.) 

To maintain the PL/I hierarchy, more information than is 
available in the DSA chain is required. In addition to the DSA 
chain, tasks with the same attaching task are chained together, 
and the most recently attached subta.sk is chained to its parent 
task. The chains between tasks with the same attaching task are 
known as sibling task chains. The sibling task chains and the 

Chapter 14. Multitasking 313 



chain to the most recently attached subtask are all held within 
the tasking appendage. The chaining arrangement, shown in 
Figure 126, allows quick access to all related tasks. 

Tasking appendage 
major task 

younger sibling (0) 
elder sibling (0) 

stopper (0) 

subtask chain 

••••••••• 
• • Tasking appendage 

'1. task 1 

younger sibling -
elder sibling 

stopper (0) 

subtask chain (0) 

• • • 

,., ,.. 

--

• • • 
• /" . / 

/ .. 
/ • 

• • • 

• • 
:Tasking appendage •• 

1 task 2 • • .... 

younger sibling -l-
• • elder sibling • 

stopper (0) 

subtask chain (0) 

• 

[ 
[ 

Major task 

Task 1 

Task 2 

Task 3 

~ Task3a 

-- - - - ...... 

• • • • 

Tasking appendage " 
task 3 \ 

younger sibling 
• elder sibling 

stopper (0) 

subtask chain 

Tasking appendage 
task 3a 

I 
I 

/, 

\ 

\ 

/ 

Subtask chain points to most 
recently attached subtask. 

/ 
/ 

----. 

...... 

Younger sibling chain 
(Le. tasks with the same 
attaching tasks that were 
attached later) 

Elder sibling chain 
(Le. tasks with the same 
attaching task that were 
attached earlier) 

Note: Because tasks are chained in both directions, all relationships be quickly found. 

/ 
1---------1/ 

younger sibling 
elder sibling (0) 

stopper (0) 

subtask chain (0) 

Following the 'younger sibling chain' leads to the attaching task. When the attaching task is reached, the offset that should be the 
offset to the younger sibling is to the stopper. Thus it is known that the attaching task has been reached. 

Figure 126. The Chaining of Tasks through Their Tasking Appendages 

314 OS PL/I Optimizing Compiler: Execution Logic 

I 
I 



The sibling task chain goes in both directions. Each task is 
chained to the task attached immediately before it (elder 
sibling) and the task attached immediately after it (younger 
sibling). The most recently attached task has no younger 
sibling. Its younger sibling chain points instead to the 
attaching task. However, instead of pointing at the head of the 
tasking appendage, it points at offset X'S' within the tasking 
appendage. The effect of this is that an attempt to continue to 
follow the younger sibling chain results, beyond the attaching 
task, in access not to the younger sibling pointer but to a 
field offset from it by X'S'. This field, which is always set 
to zero in all tasks, is known as the stopper field. Access to 
it indicates that the attaching task has been reached. 

When a task is terminated, all its subtasks must be terminated. 
To simplify finding these tasks, a flag is set in the DSA of the 
block in which a task is attached. The flag remains set while 
any active tasks are attached. 

THE MULTITASKING LIBRARY 

Module IBMTPIR loads IBMTPJR to perform most multitasking 
functions. IBMTPJR carries out the majority of functions that 
are executed in the control task. IBMTPJR issues a LOAD macro 
instruction to pass control to IBMTPJI to perform parameter 
translation, and to initialize the control task and the storage 
for the major task. IBMTPJR then attaches the major task. 
IBMTPJR also contains the instructions to handle the major 
functions which have to be carried out within the control task. 
Each of these functions is handled by a particular subroutine 
within IBMTPJR. A simplified flowchart of IBMTPJR is shown in 
Figure 127 on page 316. 

The program initialization module IBMTPJR has a register save 
area, but is unlike other PL/I library routines in not having a 
DSA. IBMTPIR acquires workspace, contiguous with the standard 
register save area, to hold: the addresses of the ECB lists; the 
address of the area where the next ECB-list element will be 
placed; the task-end ECB (used when detaching a task--for 
further details see, "Detaching a Task" on page 318) the 
diagnostic file block, and the dump block. These last two 
blocks are held in the control task workspace because they must 
serve for all PL/I tasks. 

Supporting IBMTPJR are two routines that are link-edited only 
when necessary: IBMTTOC is link-edited only if the COMPLETION 
pseudo-variable is used; IDMTPRA is link-edited only if the 
PRIORITY pseudo-variable is used. 

Also included in the multitasking library are a number of 
routines that handle action which requires different machine 
instructions for a multitasking program. Among these routines 
are storage management and error handling routines. 

All the routines in the multitasking library are shown in 
Figure 124 on page 312. The storage management routines and 
some of the tasking routines are described in, OS Pl/I Transient 
Library: Program Logi~, the remaining routines are described in 
as PL/! Resident Library: Program logic. 

Chapter 14. Multitasking 315 



"'" "T1 .... ~ . 
'" IQ 

C , 
0 (1) 
en ..... 
-0 N 
~ ..... 
" Jooot 

0 l> 
'U 
-+ en ..,. ~ . 
:I :I .... 'U 
N ..... ..,. ~ . 
:s -It 
10 ~. 

(1) 
0 Q. 
0 
:I "T1 
'U ..... ..,. 0 ..... E 
CD n , ;r 

I» , 
m r+ 
)( 
CD 0 
n -It 
c 
-+ ~ ..,. t:I' 
0 3 :s -f 

-0 
roo C-
O ,., 
10 .... 
n 

Subroutines executed 
in control task 

ATTACH n Create a subtask -1 

COMPLETION H Set completion of 
event variable 

PRIORITY 

r--- Set priority of 
task variable 

EVENT ASSIGN 

~ Set completion 
and priority of 
event variable 

COMPLETE 
EVENT 

~ Used by 
wait module 

DECHAIN EVTAB I 

H Used by wait I 
module 

H Execute in I--control task 

ENDOF BLOCK 

H Detach tasks 
if necessary 

Main Program Flow (IBMTPJR) Subroutines entered via TCA or TCA appendage from PL/I tasks 
/r-----------J~--------~~ /r------------------------------------~/'~----------------------______________ ~, 

( ENTRY '\ 
i 

Initialize major 
task 

Initialization 
common to 
all tasks 

Post wait-ECB 
complete 

i 

Wait on 
ECB list 

! 
I 
I 

--'--
WAIT STATE 

I 

Execute code 
I 

indicated until 
~ 

; 
free control call 
is reached Control resumed 

here 

f 
Search ECB list 
to determine which 

r- - --- -1 

r , 

\4-

+ 
I 

----1---

I 
I 
I 

L_ 

Call task 
End task 
Return 
Get control 

Carry out 
checking 
set up 
parameters 

Post post ECB 
with correct 
completion 
code 

Wait on 
Wait ECB 

- --' 
I 

----, -
WAIT STATE 
-.-

Return to caller 

ENTRY 
J 

Enqueue 
SYSPRINT 

" 
Check whether 
SYSPRINT 
enqueued 

t 
Enqueue 
SYSPRINT 
if necessary 

t 

Return to caller 

Dequeue 
SYSPRINT 

Yes 

Dequeue 
SYSPRINT 

Return 

Free control - executed in control task 

Restore DSA 
of Get Control 
routine 

l END OF TASK service is required 

H ~ 
and set ECB 

Terminate task task incomplete 

~ 
Yes STOP Branch to 

H Execute STOP END appropriate 

statements. subroutine 

t 



HOW THE CONTROL TASK OPERATES 

ATTACHING A TASK 

The control task is created by the system when the Pl/I program 
is initialized. The instructions first executed within the 
control task are in the program initialization routine IBMTPIR. 
This routine is entered because its address is specified in the 
control section PlISTART. PLISTART is further described in 
"Link-Editing" on page 74. 

IBMTPIR obtains a standard save area, and then loads and 
branches to IBMTPJR which performs the remainder of the 
initialization. 

IBMTPIR sets up the environment for the major task, which it 
then attaches with an ATTACH macro instruction. After further 
initialization, control is given to the address held in PlIMAIN. 

IBMTPJR then builds an ECB list which consists of the WAIT ECBs 
for the PL/I task that has been attached plus the task-end ECB. 
A wait is then issued on this ECB list, and the control task 
will remain in the wait state until the major task requires a 
service that must be handled in the control task. 

When control returns to the control task, execution recommences 
in IBMTPJR immediately after the point at which the WAIT macro 
instruction was issued. The action at this point is to search 
the ECB list, discover which ECB has been posted, and then to 
carry out the action specified in the code posted in this ECB. 
The action is carried out by calling a subroutine of IBMTPJR. 
This subroutine may perform the function required, execute a 
sequence of requested instructions, or call further library 
routines to handle the requested function. 

Whenever a new subtask is attached, a further POST ECB is added 
to the ECB list of the control task. 

Whenever Pl/I tasks require a service that is handled in the 
control task, a call is made to a library entry point. The 
majority of calls are to subroutines of IBMTPJR, which are 
addressed via the TCA or the TCA appendage. However, the 
PRIORITY and COMPLETION pseudo-variable routines are separate 
library modules. This saves space in programs where the 
pseudo-variables are not used. 

A CALL statement with one of the multitasking options is 
compiled as a call to an entry point in IBMTPJR. This entry 
point is addressed via a module list whose address is held in 
the TCA. The entry point is passed the address of the procedure 
that is to be executed as the attached task, and any parameters 
that are to be passed to that procedure. 

The routine in IBMTPJR posts the POST ECB for the attaching task 
with a completion code of X'20', indicating that a new task is 
to be attached. It then issues a WAIT macro instruction on its 
own WAIT ECB, and the attaching task goes into the wait state. 

Control passes to the control task. The first action of the 
code within the control task is to scan the ECB list to see 
which task is requesting a service, and which service is being 
requested. According to the completion code in the ECB, one of 
the subroutines in IBMTPJR is entered. For attaching a task, 
the attach-task subroutine is entered. The minimum storage the 
subroutine attempts to acquire is a new program management area. 
Depending on the options in the ISASIZE parameter, it may also 
attempt to acquire storage for DSAs and other dynamic 
requirements. 

The new program management area is set up within the storage 
acquired, and the new TCA is placed at the head of the chain of 
child tasks that is held in the attaching task's TCA. 

Chapter 14. Multitasking 317 



The new TCA is then associated with a task variable and an event 
variable. If these were specified in the CAll statement, they 
are used. Otherwise, dummy event and task variables are set up 
by IBMTPJR. These dummy variables are held in the working 
storage of the new block. The event and task variables are then 
chained to and from the TCA. A bit is set in the DSA of the 
block that was being executed when the task was attached. 

The PRV of the attaching task is then copied into the attached 
task. This ensures that addressing information for files and 
controlled variables cannot be altered by the attaching task. 
Similarly, ON-unit establishment information is copied from the 
attaching task's current DSA into the dummy DSA of the attached 
task. This ensures that the subtask acts according to the 
situation prevailing at the time when the call was made. 

The attaching routine finally sets the POST ECB of the new task 
incomplete, adds this new POST ECB to the control task's ECB 
list, completes the ECB on which the requesting task is waiting, 
and issues a WAIT macro instruction on the control task's ECB 
list. 

The newly attached task and the original requesting task are now 
both ready to receive control from the control program. The 
control task is in a wait state, ready to service any further 
requests from PL/I tasks. 

Failure of CALL ••• TASK statements 

DETACHING A TASK 

A number of situations can cause a CALl ... TASK statement to 
fail. These situations are: 

1. Too many tasks are already active 

2. There is insufficient storage for the new task 

3. The task variable is already active 

4. The event variable is already active 

In any of these situations, the calling task is posted with a 
nonzero postcode. When this postcode is detected, the task 
generates the correct error code, and calls the error handler. 

Tasks are normally detached when they reach any EXIT statement, 
or an END or RETURN statement in the procedure that was attached 
as a task. In such circumstances, control returns in the normal 
manner to IBMTPJR, whose registers have been s·tored in the dummy 
DSA of the task. IBMTPJR is then in a position to pass control 
to the control task, so that the requesting task can be 
terminated. After housekeeping operations, the control task 
sets the priority of the task to be detached as high as 
possible, completes the WAIT ECB of the task, and then waits on 
the task-end ECB. When the task to be terminated resumes 
control, it posts the task-end ECB complete, and terminates 
itself by returning to the control program. 

The process described above is used because it is simpler than 
handling the ABEND that would otherwise result when one task is 
detached from another. 

318 os PL/I Optimizing Compiler: Execution logic 



Abnormal Termination of a Task 
When a block is terminated, any tasks attached during the 
execution of the block are also terminated. For this reason, 
epilog code of blocks in which tasks may be attached contains a 
call to a subroutine of IBMTPJR. This subroutine passes control 
to the control task, from which the purge task subroutine is 
called. This routine examines the DSA of the block being freed, 
to see whether any active subtasks remain; if any do remain, 
they are terminated. 

Active subtasks are accessed via the chain of child tasks from 
the TCA of the task in which the block is being terminated. 

Abnormal termination of a task involves ensuring that any WAIT 
statements being executed by the task are properly terminated, 
event variables are completed, task va~iables are set inactive, 
and ECB elements are removed. Event I/O operations started in 
the tasks are completed. 

THE GET-CONTROL AND FREE-CONTROL ROUTINES 

In order to increase the scope of jobs that can be handled 
within the control task, the program initialization routine 
includes a facility whereby a request can be made for any 
defined sequence of instructions to be executed within the 
control task. This facility is used by a number of library 
routines when accessing event variables, or carrying out other 
actions that have to be executed within the control task. It is 
not used by compiled code. 

The instructions to be executed within the control task are 
delimited by calls to two library subroutines, whose addresses 
are held in the TCA. These routines are the get-control and 
free-control routines. Both are subroutines of IBMTPJR. 

When the get-control routine is called within a PL/I task, it 
saves the caller's registers, posts its POST ECB, and issues a 
wait on the requesting task's ECB. 

When the control task gains control, it restores the registers 
saved by the get-control routine, and branches to the address in 
register 14. The address will be the instruction after the call 
to the get-control routine, because the routine was called in 
the standard manner, that is, a BALR instruction on registers 14 
and 15. 

Execution of the instructions then continues in the control task 
until a call to the free-control routine is met. This routine 
stores the current registers in the DSA of the block that 
originally called the get-control routine. The free-control 
routine now posts the WAIT ECB of the requesting task, and 
resets the control task waiting on its ECB list. 

During execution of the free-control routine, the routine 
modifies the value in the register 14 save area in the DSA of 
the block that originally called the get-control routine. When 
control returns to the original requesting task, it returns to 
the point in the get-control routine immediately following the 
point where the WAIT was issued. The get-control routine 
restores the register values, and branches to the new address in 
register 14. 

The required instructions have now been executed within the 
control task, and execution can continue in the original task. 
The processes involved in the get-control and free-control 
routines can be followed in the flowchart of IBMTPJR in 
Figure 127 on page 316. 

Chapter 14. Multitasking 319 



ALTERING COMPLETION AND PRIORITY VALUES 

To prevent two PL/I tasks attempting to alter the completion and 
priority values of tasks or events at the same time, alteration 
of these values is always done by code in the control task. 

When such access is required, compiled code in the requesting 
task branches to a library subroutine that posts the control 
task with a completion code in the POST ECB, and issues a wait 
in the requesting task. When the control task receives control, 
it inspects the completion code, and calls a subroutine in 
IBMTPJR. For the PRIORITY pseudo-variable, the subroutine in 
IBMTPJR calls a subroutine in IBMTTPR to handle the actual 
alteration. This is to save space in programs where the 
PRIORITY pseudo-variable is not used. 

The subroutine accesses and alters the values as requested. 
Where necessary, a CHAP macro instruction is issued to alter the 
priority of a task. 

EXECUTING THE WAIT STATEMENT 

The WAIT statement can be used in both multitasking and 
non-multitasking programs. A description of WAIT in the 
non-multitasking situation is given in Chapter 11. 

At the PL/I level, each WAIT statement is associated with one or 
more events, and each event is associated with an event 
variable. When the specified number of these event variables is 
set "complete," the wait is terminated. 

PL/I event variables are not accessed by system wait macro 
instructions; they contain a pointer to the event's EeB. This 
ECB will have been nominated in the WAIT macro instruction 
issued to the system, and will be set complete when the 
associated event is complete. When the event is complete, the 
PL/I program can inspect the ECB, and complete the event 
variable. 

The PL/I event variable cannot be used to indicate to all WAIT 
statements nominating the associated event that the event is 
complete. This is because an event variable may be associated 
with a further event immediately after completion of the event 
with which it was formerly associated. If more than one task is 
waiting, this may be before all the WAIT statements nominating 
the event are satisfied. See Figure 128 on page 321. 

320 OS PL/I Optimizing Compilers Execution Logic 



TASK 1 TASK 2 

11 
WAIT (El); WAIT CEl); 

T 
READ FILE (A) 
INTO CB) 
EVENT eEl); 

V V 

Task 1 reuses the event variable El. If task 1 acquires 
control before task 2 on completion of the original event 
with which El is associated, then the event variable on 
which task 2 is waiting will be associated with an event 
other than that originally intended. A mechanism to 
supplement the event variable is therefore neededa This 
mechanism is known as the EVTAB chain. In the above 
example, the EVTAB chain would allow task 2 to determine 
that the original event was complete. 

Figure 128. Reusing Event Variables, and the Need for the EVTAB 
Chain 

To overcome this problem, a control block known as an EVTAB is 
used. An EVTAB is generated for every WAIT statement. For 
every event nominated in the statement, an EVTAB element is 
produced, containing the ECB for the event and a pointer to 
other EVTAB elements associated with the event. Thus, when an 
event is completed in one task, the chain from the event 
variable is scanned and any ECBs associated with the event are 
set complete. 

A further control block is used in the implementation of the 
HAlT statement. This is the wait information table (WIT). A 
WIT contains a record of any WAIT statements that are being 
executed in a particular task. This information is used when a 
task is being terminated, because any active events must be 
removed from the chain that associates event variables with 
EVTABs. Were this not done, the chaining of EVTABs would be 
destroyed because the EVTABs in the terminated task would be 
lost. 

Chapter 14. Multitasking 321 



The chaining of the control blocks described above is shown in 
Figure 129. 

f 
-> 

6 

> 

Chains and Pointers used during execution of 
WAIT statement 

ISA for task 1 ISA for task 2 > 
Program management area Program management area 

LIFO storage LIFO storage 

DSA for WAIT module DSA for WAIT module 

WIT 

0 
WIT 

EVTABs ~ EVTABs 

L> 
<-0 

ECB-list ECB-list 
Addresses of associated Addresses of associated 
ECBs ECBs 

Major free area 
DSA for ON-unit 

DSA for WAIT module 

~0-> 
called in ON-unit 

WIT 

EVTABs 

ECB-list 

Major free area 

IOCB EVENT VARIABLE 

~------> PRIORITY and COMPLETION flags 

Pointer to event Pointer to ECB in IOCB if I/O 
variable event 

'""-___ E_C_B ___ ---I <-0 Start of chain of EVTABs 

Address of TCA appendage of 
task requiring I/O (I/O event 
only) 

<-

5 

f--

< 

bEl-

9 

-

Figure 129. Chains and pointers used in implementing the WAIT statement 

322 OS PL/I Optimizing Compiler: Execution logic 

1 

3 



Notes to Figure 129 on page 322: 

1. EVTAB chain. Headed by the event variable. Connects all 
WAIT statements that use the same event variable, and enables 
the information that events are complete to be passed to all 
tasks. 

2. WIT chain. Headed in the TCA. Connects all WAIT statements 
being executed in one task, and enables the EVTABs of these 
waits to be removed from the EVTAB chain when a task is 
terminated during a WAIT statement. 

3. Event variable pointer. Held in EVTAB. Used to access event 
variables and search EVTAB chain. 

4. ECBlIST element pointer. Held in EVTAB. Used to find 
associated ECB if event is an I/O event. 

5. TCA appendage pointer. Held in EVTAB. Used during task 
termination. 

6. EVTAB pointers. Held in WIT. Used to indicate number of 
EVTABs when declaiming during abnormal termination caused by 
GOTO out of block. 

7. ECB pointer. Held in event variable. Used, for I/O events 
only, to identify associated event. 

8. TCA appendage pointer. Held in event variable. Used, for 
I/O events only, during building of EVTABs to test whether 
I/O is active in the task. 

9. ECB pointers. Held in ECB list. Used by supervisor to test 
whether events are complete. 

The Wait Module IBMTJWT 

The WAIT statement is executed by means of a call to the wait 
module, IBMTJWT. The module is passed a list of event variables 
and, optionally, a value indicating how many of the events must 
be completed before the wait is satisfied. If no value is 
specified, all events must be completed. 

The wait module may be passed various types of event variables: 

1. Active event variables. These are associated with: 

a. I/O or display events that were initiated in the current 
task. 

b. I/O or display events that were initiated in another 
task. 

c. Events associated with tasks. 

2. Inactive event variables. These are associated with events 
that must be completed by use of the COMPLETION 
pseudo-variable. 

3. Incompletable event variables. These are associated with 
events that have caused entry to an ON-unit because an I/O 
condition has been raised in the current task, and which 
cannot be completed because the ON-unit also specifies a 
wait on the event that is already being waited on. 

If any of the events are incompletable, IBMTJWT checks to see 
whether the WAIT statement can be satisfied by completable 
events. If the WAIT statement cannot be satisfied, an attempt 
is made to complete all I/O and display events initiated in the 
current task, as other tasks may be waiting on these events. 
When these events are completed, and the associated ECBs in 
other tasks set complete, the error handler is called to 
terminate the current task. 

Chapter 14. Multitasking 323 



If the WAIT statement can be satisfied by completable eventCs), 
the incompletable event is ignored. 

If any of the events are I/O or display events initiated in the 
current task, an ECB will already have been created for these 
events when the statement with the EVENT option was executed. 
This ECB must be accessed and waited on. Access is made through 
the event variable. 

Note that for I/O events, a CHECK macro instruction is issued by 
the I/O transmitter. If all events are I/O events initiated in 
the current task, and all of them have to be completed, it is 
possible to use the CHECK macro instruction to satisfy the WAIT 
statement. The wait module passes the events one at a time to 
IBMBRIO. Return is made when the event is complete. The wait 
module then searches the EVTAB chain, setting any associated 
ECBs complete. It then passes the next event to IBMBRIO, 
continuing the process until all events are complete. If all 
events need not be completed, this method cannot be used, 
because one of the events nominated might prove incompletable 
and, consequently, the task would be terminated. 

If the events are not I/O or display events initiated in the 
current task, the wait module builds an EVTAB element for the 
event, and associates it with the event variable. If only one 
event is involved, the wait module then issues a WAIT macro on 
the ECB; if more than one event is involved, the wait module 
places the address of the ECB in an ECB list on which a WAIT 
macro instruction will be issued. 

If the wait module issues a WAIT macro instruction on an ECB 
list, control will return to the module when one or more of the 
ECBs has been completed. 

The wait module scans the EVTAB elements and discovers which of 
the events has been completed. If the event is an I/O event in 
the current task, it will be necessary to complete the event 
variable and scan the EVTAB chain, completing ECBs in any tasks 
that are waiting on the event that has been completed. The ECBs 
are completed by calling a subroutine of IBMTPJR, which executes 
the necessary instructions in the control task. The subroutine 
completes the ECBs by means of a POST macro instruction. 

If the wait is to be made on events that can only be completed 
in other tasks, the wait module issues a WAIT macro instruction 
specifying that all the events in the ECB list must be 
completed. 

When all completed ECBs have been handled, the ECB list and the 
EVTAB elements are rebuilt for all events that are not complete. 
A further WAIT macro instruction is issued on the ECB list, and 
the process is continued until the necessary number of events 
have been completed. 

If the number of events needed to satisfy the WAIT statement are 
complete, but further events remain incomplete, it is necessary 
to dechain EVTABs from the chains associated with the incomplete 
events. This is done by a call to a subroutine in IBMTPJR, 
which executes instructions in the control task to remove 
unneeded EVTAB elements from the EVTAB chain. 

If the WAIT statement specifies only active events, no further 
action can be taken until the events are complete. Accordingly, 
the wait module issues a WAIT macro instruction specifying that 
all events have to be completed. Thus control will not return 
to the task until the wait is satisfied. 

324 OS PL/I Optimizing Compiler: Execution Logic 



ENQUEUING AND DEQUEUING ON SYSPRINT 

In order to protect error messages from interruption by other 
output to SYSPRINT, or from error messages in different tasks, 
the error message modules and all calls to SYSPRINT are enqueued 
and dequeued by means of a call to a subroutine in IBMTPJR, 
which issues the ENQ and DEQ macro instructions. A call is made 
immediately before and immediately after the output. 

Similar action is taken on EXCLUSIVE files, for which the ENQ 
and DEQ macro instructions are issued by the library module 
IBMBPQD. 

Chapter 14. Multitasking 325 



APPENDIX A. CONTROL BLOCKS 

This appendix provides information on the format of the control 
blocks that may be used during the execution of a program 
compiled by the OS PL/I Optimizing Compiler. Brief details of 
the function of each control block, together with when it is 
generated and where it can be located, are also given. 

Except where explicitly stated all offsets from the start of a 
block are byte offsets and are given in hexadecimal notation. 

AREA LOCATOR/DESCRIPTOR 

Function 

When Generated 

Where Held 

How Addressed 

AREA DESCRIPTOR 

Holds the address and length of the area variable for passing to 
other routines or for execution time reference if the area has 
an adjustable length. 

As far as possible during compilation. If necessary, completed 
during execution. 

Static internal control section or AUTOMATIC storage. 

From an offset from registers 3 or 13 known to compiled code 

o I 2 3 4 

o A(Area Variable) 

4 Length 

A(AREA VARIABLE): Is the address of the area variable control 
block. 

LENGTH: Is the total length including both the control block 
and the area variable. 

The area descriptor is the second word of the area 
locator/descriptor. It is used in structure descriptors, when 
areas appear in structures, and in the controlled variable 
"description" field when an area is controlled. 

326 OS PL/I Optimizing Compiler: Execution Logic 



AREA VARIABLE CONTROL BLOCK 

Function 

When Generated 

Where Held 

Used to control storage allocation within the area variable. 

When the area variable is initialized. This depends on the 
storage class of the area. 

At the head of the area variable. 

o 

4 

8 

C 

10 

o 1 2 3 4 

Flag I Not Used 

Offset of End Of Extent (DEE) 

Offset of Largest Free Element (LFE) 

End of Chain of Free Elements 

Area Variable 

FREE ELEMENTS: If there are free elements in the area variable, 
they are headed by two words. The first word gives the length 
of the element, the second word gives the offset to the next 
smaller free element. I'f there is no smaller free element, the 
second word is set to zero. 

Flag XII' Area variable does contain free elements. 

Appendix A. Control Blocks 327 



AGGREGATE DESCRIPTOR DESCRIPTOR 

I Function 

When Generated 

Where Held 

How Addressed 

General Format 

structure Element 

Contains information needed to map a structure or an array of 
structures during execution. Used for structures that contain 
adjustable extents or the REFER option. See 
Chapter 4, "Communication between Routines" on page 64. 

As far as possible during compilation. Adjustable values are 
filled in during execution. 

Static internal control section or AUTOMATIC storage. 

From an offset from registers 3 or 13 known to compiled code. 

An aggregate descriptor descriptor consists of a series of 
fullword fields one for each structure element and one for each 
base element in the structure. 

o 

o 0 

2 

WORD 1 

Bit 0 = 

1 

Offset to Entry for Containing 
Block 

Level IFlag bits DIM 

Always 0 

2 

Word 1 

Word 2 

Bit 1 = I Last element in the structure 

The remaining bits comprise the offset to the entry for the 
containing block. 

WORD 2: The first three bits of the DIM are flags. 

FLAG BITS 

Bit 0 = 1 Last element in structure 

Bit 1 = 1 An AREA 

Bit 2 = 1 BIT string 

Bit 3 = 1 GRAPHIC string 

328 OS PL/I Optimizing Compilerl Execution Logic 



Base Element 

o 

2 

o 

IlFlagl Alignment 

Level 

I 

Flag 

Length 

bitsl DIM 

2 

Half-word 1 

Half-word 2 

OFFSETz The offset within the aggregate descriptor descriptor 
to the entry for the containing structure. The offset is held 
in multiples of four bytes. 

LEVEL: Logical level of identifier in structure 

DIM: Real dimensionality of identifier 

ALIGNMENT: Alignment stringency 

ValueCDec.) Meaning 

Obit 

7 byte 

15 half-word 

31 word 

63 double-word 

LENGTH: Length (in bytes) of data. length=O for strings and 
AREAs, whose length is held in descriptors. 

FIRST ELEMENT MARKER: The first element in each structure has 
its offset field set to all 'I'B. 

Appendix A. Cont~ol Blocks 329 



AGGREGATE LOCATOR 

Function 

When Generated 

Where Held 

How Addressed 

Used to pass the address of an array or structure and its 
associated descriptor to a called routine. Also to associate 
the aggregate with its descriptor during execution. 

During compilation. 

Static internal control section or AUTOMATIC storage. 

From an offset from registers 3 or 13 known to compiled code. 

o 
4 

o 1 2 3 

Address of data aggregate 

Address of descriptor 

4 

Word 1 

Word 2 

330 OS PL/I Optimizing Compiler: Execution Logic 



ARRAY DESCRIPTOR 

Function 

When Generated 

Where Held 

How Addressed 

Contains information about the extent of an array. For arrays 
of area variables or strings, an area or string descriptor is 
attached to the array descriptor. 

The array descriptor is used to pass information about an array 
to called routines, or to hold information about an array with 
adjustable extents. 

As far as possible during compilation. If the array has 
adjustable extents, it is completed during execution when the 
values are known. 

Arrays of structures make use of structure descriptors to hold 
similar information. 

Static internal control section or AUTOMATIC storage. 

From an offset from registers 3 or 13 known to compiler code, or 
from an aggregate locator. 

Arrays of strings or Areas 

General Format 

For arrays of strings or areas, the descriptors are completed by 
string or area descriptors concatenated to the array descriptor. 
String and area descriptors are the second word of string and 
area descriptor/locator pairs. 

For bit string arrays, the bit offset from the byte address is 
held in the string descriptor. 

The first word in the array descriptor is the RVO (relative 
virtual origin). This is followed by two words for each 
dimension of the array, containing the multiplier and high and 
low bound for each dimension. 

o 
4 

8 

C 

10 

o 1 2 3 

RVO (AO-VO) 

Multiplier 

High bound , Low bound 

Multiplier 2 

High bound 2 I Low bound 2 

etc. 

Note: Two full words containing 
multiplier and high and low bound are 
included for each array dimension. 

4 

Appendix A. Control Blocks 331 



RVO: Relative virtual or1g1n, the distance between the virtual 
origin (VO) and the actual origin (AO). Virtual origin is the 
point at which the element in the array whose subscripts are all 
zeros is, or would be, held. Actual origin is the start of the 
first element in the array. 

RVO is held as a bit value for arrays of unaligned bit strings, 
but otherwise as a byte value. Bit offsets are given in the 
string descriptor. Actual origin and virtual origin are also 
held as byte values. 

HIGH BOUND: The highest subscript in any dimension. 

LOW BOUND. The lowest subscript in any dimension. 

MULTIPLIER: The multiplier is the offset between any two 
elements marked by the change of subscript number in any 
dimension. 

For example for the array DATA(IO,IO), the multiplier for the 
first dimension is the offset between DATACI,l) and DATAC2,l) 
etc. The multiplier for the second dimension is the offset 
between DATACl,l) and DATACl,2). The offset is measured from 
the start of the one element to the start of the next. 

Multipliers are byte values except for bit string arrays, in 
which case they are bit values. 

332 OS PL/I Optimizing Compilerl Execution Logic 



CICS APPENDAGE 

Function 

When Generated 

Where Held 

How Addressed 

Holds information needed during operation under CICS/OS/VS. 

During program initialization under CICS/OS/VS. 

In the program management area at the head of the ISA. 

From TCIC offset X'124' in TCA. 

o 

4 

8 

C 

10 

14 

18 

IC 

20 

24 

28 

2C 

30 

34 

38 

3C 

40 

44 

48 

4C 

104 

o 1 2 3 

ACCICS TCA) 

ACCICS CSA) 

ACIBMFSTVA) or 0 

ACMsg Output Bootstrap) 

ACReport/Count Bootstrap) 

Terminal ID 

Transaction 10 

Pl/I MasklCICS Mask I Command Workspace 

Templ 

Temp2 

Temp3 

ACDFHSAP, Pl/I-CICS Nucleus Interface) 

ACPl/I to CICS Macro Interface) 

ACPl/I Program Exec. Interface Block) 

ABEND Code 

Interrupt Code 

Return Address 

CPl/I Acquired Storage Chain) 

ACBuffer), Message/Count/Rep Records 

Used as Exec. Interface 
DSA 

C184 bytes) 

User's Exec. Interface Block 
Copy 

(76 bytes) 

4 

TCTCA 

TCCSA 

TCSTV 

TCTMS 

TCTCR 

TCTRM 

TCTRN 

TCTPI 

TCTP2 >TCTMP 

TCTP3 

TCSAP 

TCMAC 

TCEIB 

TCABD 

TCINT 
>TCPSW 

TCRTN 

TeSCH 

TCBUF 

TCEIS 

TCEIC 

Appendix A. Control Blocks 333 



TCTMP: This area is used as a temporary workspace by PL/I. It 
is comprised of the TCTPl, TCTP2, and TCTP3 fields. 

TCPSW, This area holds the Program Status Word (PSW) at the 
time of an interrupt. The field, TCINT, holds the interrupt 
code; TCRTN holds the return address. 

334 OS PL/I Optimizing Compiler: Execution Logic 



CONTROLLED VARIABLE BLOCK 

Function 

When Generated 

Where Held 

How Addressed 

To hold information about the controlled variable. 

When the variable is allocated. 

At the head of the controlled variable. 

From an offset in the PRV. (The PRV address is held at offset 
X'4' in the TCA.) 

o 

4 

8 

C 

10 

o 1 2 3 

PRVOFF 

Length 

Chain back to previous allocation 

Task Invocation Count 

Description 
Field used for descriptor or 
locator/descriptor 1n certa1n 
circumstances, (see below) 

Data 

4 

Word 1 

Word 2 
Address 

Word 3 Held in 
Pseudo-

Word 4 register 
< 

Word 5 

PRVOFF: Offset within pseudo-register vector associated with 
the controlled variable. 

LENGTH: Length of the total allocation including the 4 words of 
the heading. 

CHAIN BACK: Address of word 5 of previous allocation, set to 
address of dummy FeB if first allocation 

TASK INVOCATION COUNT: A method of identi fying ~"hich task the 
controlled variable is attached to. A controlled variable 
cannot be freed within a task unless the task invocation count 
of the variable is the same as that in the TCA. 

DESCRIPTION: If the item is one that requires a 
descriptor/locator or a locator, this is placed at the head of 
the data. If the item is a structure or array and the extents 
are unknown at compile time, the descriptor will also be placed 
before the data. 

Thus forI 

Strings and areas 
The controlled variable is headed by a 
locator/descriptor. 

Appendix A. Control Blocks 335 



Structures and arrays 
The controlled variable is headed by a locator. 

Structures and arrays with adjustable extents 
The controlled variable is headed by a locator 
followed by a descriptor. 

All other data 
The description field is not used and the data itself 
starts at offset X'lO'(16). 

336 as PL/I Optimizing Compilerl Execution Logic 



DATA ELEMENT DESCRIPTOR (DED) 

Function 

When Generated 

Where Held 

How Addressed 

Format of DEDs 

Used to pass description of data elements to library conversion 
and stream I/O routines. 

During compilation. 

Static internal control section. 

From an offset from register 3 known to compiled code. 

All DEDs are headed by two bytes that indicate the data type. 
These two bytes are followed by as many bytes as are required to 
complete the description of the data. 

For arithmetic items, DEDs are completed by such items as scale 
and precision. For pictured items, a representation of the 
picture is included in internal form. 

o 1 

o Flag 1 

2 

Flag 2 Further Bytes as 
Required 

FLAG 1: Also known as Code Byte and Look up Byte, define the 
data type. 

Hex 
Value Data Type 

X'OO' FIXED BINARY 

X'04' FIXED DECIMAL 

X'08' FLOAT 

X'OC' FREE DECIMAL (an internal form) 

X'lO' FIXED PICTURE BINARY 

X'14' FIXED PICTURE DECIMAL 

X'18' FLOAT PICTURE BINARY 

X'le' FLOAT PICTURE DECIMAL 

X'20' non-VARYING CHARACTER 

X'24' non-VARYING BIT 

X'28' VARYING CHARACTER 

X'2C' VARYING BIT 

Appendix A. Control Blocks 337 



X'30' 

X'40' 

X'44' 

X'48' 

X'SO' 

X'S4' 

X'S8' 

X'SC' 

X'60' 

X'64' 

X'68' 

X'6C' 

X'70' 

X'80' 

X'84' 

X'88' 

X'8C' 

X'90' 

X'94' 

X'98' 

X'9C' 

X'AO' 

X'A8' 

CHARACTER PICTURE 

BINARY constant 

DECIMAL constant 

BIT constant 

F/E Format 

P Format (arithmetic) 

A/B/P Format <character) 

C Format 

X Format 

COL Format 

SKIP Format 

LINE Format 

PAGE Format 

LABEL 

ENTRY 

AREA 

TASK 

OFFSET 

POINTER 

FILE 

EVENT 

GRAPHIC Fixed 

GRAPHIC Varying 

FLAG 2: completes the definition, if necessary. 

Bits 0&1 = 00 A-format item 
01 B-format item 
10 Character picture format item 
11 GRAPHIC 

Bit 2 = 0 Fixed constant 
1 Float constant 

Bit 3 = 0 Not extended float 
1 Extended float 

Bit 4 = 0 F-format/fixed picture 
1 E-format/float picture 

Bit S = 0 Declared binary 
1 Declared decimal 

Bits 4&S = 11 Then DED is for character 

Bit 6 = 0 Short precision 
1 Long precision 

338 OS Pl/I Optimizing Compiler: Execution logic 



DED for STRING Data 

DED for FLOAT Data 

DED for FIXED Data 

Bit 7 = o 

1 

Real ~ length specified (A or B format) 
aligned bit string. 
Complex (also set if E, F, or P in C-format) ~ 
no length specified (A or B format) 2C unaligned 
bit string. 

All bits for which neither value is defined are set to 'O'B 

012 

o Flag 1 Flag 2 

o I 2 3 

o Flag I Flag 2 'precisionl 

o I 2 3 4 

o Flag I Flag 2 'precisionlscale±1281 

DED for PICTURE STRING Data 

o 
4 

o 

Flag 

I 

I I 
L2 

FLAG 11 (X' 30 ' ) 

2 3 4 

Flag 2 Ll 

Picture in 
Internal Form 

Ll: length of field with insertion characters 

L21 length of field without insertion characters 

INTERNAL CODE, The internal code for string pictures is as 
follows: 

Code Picture(hex) 

A X'OO' 

Appendix A. Control Blocks 339 



9 X'04' 

X X'lC' 

DED for PICTURE DECIMAL Arithmetic Data 

o 1 2 3 4 

o Flag 1 Flag 2 Precision Scale 
Factor+128 

4 Length of Length of Flag 3 Flag 4 
Picture Data 

Picture in internal code 

FLAG 1: (X'l4' or X 'IC' ) 

FLAG 3: Describes the mantissa subfield. 

Bit 0 = Always set to zero 

Bit 1 = 1 Drifting S in subfield 

Bit 2 = I Drifting + in subfield 

Bit 3 = 1 Drifting in subfield 

Bit 4 = 1 Drifting $ in subfield 

Bit 5 = 1 Total suppression in subfield 

Bit 6 = 1 * in subfield 

Bit 7 = Always set to zero 

FLAG 4: Describes the exponent subfield. It has the same 
format as Flag Byte 3. 

INTERNAL CODES FOR PICTURES 

Code Picture Code Pictyre 

00 9 48 (t) 
04 Y 4C - (d) 
08 Z 50 (s) 
OC 3( 54 $ (t) 
10 E 58 $ Cd) 
14 K 5C $ (s) 
18 T 60 / Ct) 
lC I 64 / (d) 
20 R 68 / (5) 
24 CR 6C (t) 
28 DB 70 (d) 
2C B 74 (s) 
30 S (t) 78 , (t) 
34 5 Cd) 7C , Cd) 
38 S Cs) 80 , (s) 
3C + 84 V 
40 + Cd) 
44 + (5) 

(t) = terminal 
(d) = drifting 
(5) = static 

Note: After E or K, the next byte contains the number of digits 
in the exponent. 

340 05 PL/I Optimizing Compilerl Execution Logic 



SCALE FACTOR: The scale factor of a picture DED is the number 
of digit positions after the nv" (0 if there is no nv") added to 
the number in the F specification, if any. 

RULE FOR SETTING BIT 5 IN FLAG BYTES 3 AND 4: Bit 5 is set if 
no 9, Y, T, I, or R is present. This applies before any Z, S, 
etc. has been translated to a 9. 

RULES FOR TRANSLATING PICTURES INTO ENCODED PICTURES 

1. Characters 9, Y, E, K, T, I, R, CR, DB, B, and V are 
translated directly. 

2. Characters Z and * are translated directly if they do not 
follow a V. If either follows a V, it is translated into 
the code for character 9. 

3. An S, +, -, or $ is translated to a static S, +, -, or $ if 
it is the only one of its kind in the subfield. 

4. If more than one S appears in a subfield, the S's are 
translated into drifting S's. 

Except whenl 

5. 

a. It appears immediately before a Y, 9, V, T, I or R. In 
this case it is translated into the code for a terminal 
s. 

b. It appears anywhere after a V. In this case it is 
translated into the code for a 9. 

The same rule applies for the +, -, or $. 

" " , , or a "." is treated as drifting, if: 

a. It is in a subfield containing either one or more Z or 
asterisk, or more than one +, s, -, or $. 

and if 1 

b. It is not immediately preceding a V, 9, V, T, I, or R. 
In this case it is translated into terminal form. 

DED for Program Control Data 

012 

o Flag 1 Flag 2 

FLAG 11 (X'80, 84, 88, 8C, 90, 94, 98, or 9C') 

Appendix A. Control Blocks 341 



FORMAT DEDS (FEDS) 

For the meaning of the flag bytes, see "Data Element Descriptor 
(DED)" on page 337. 

DED for F and E FORMAT Items (FED) 

o 
4 

o 
Flag 1 

D 

I 

Flag 2 

x 

Flag byte I = X'SO' 

2 3 

w 

W Total length of the format field 

D Number of decimal places 

4 

X Precision + 128 for F-format number of significant figures 
for E-format 

I DED for G FORMAT Items (FED) 

o 1 2 

o Flag 1 Flag 2 

FLAGS 

Flag I = X'AO' For G-format 

Flag 2 = X'CO' 

Length is optional. 

DED for PICTURE FORMAT Arithmetic Items (FED) 

o 1 2 

o Flag 1 I Flag 2 I 

3 

Length 

3 

w 
4 COpy of DED as for arithmetic picture 

FLAG 1: (X'S4') 

W: Total length of the format field 

342 OS Pl/I Optimizing Compiler: Execution Logic 

4 

4 



DED for PICTURE FORMAT Character Items (FED) 

o 1 2 3 

o Flag 1 1 Flag 21 w 
4 Copy of DED as for arithmetic picture 

FLAG 1: (X' 58 ' ) 

Wr Total length of the format field 

DED for C FORMAT Items (FED) 

o 

4 

o 

Flag 1 

FED for 

I 

I Flag 2 

real part 

FLAG 1: (X' 5C') 

2 3 

W 

FED for imago part 

4 

4 

Note: The complex bit (bit 7) in Flag 2 is set in both the real 
part and the imaginary part FED. 

W: Total length of the format field 

DED for CONTROL FORMAT Items (FED) 

o 1 2 3 4 

o Flag 1 Flag 2 Parameter 

FLAG 1: (X'60, 64, 68, 6C or 70') 

Parameter Length of item (X format), column number (COL 
format), number of lines to skip (SKIP format), line 
number (LINE format), is omitted for PAGE format. 

DED for STRING FORMAT Items (FED) 

o 1 2 3 4 

o Flag I Flag 2 Length 

FLAG 1: (X' 58' ) 

The difference between A, B, and P (character) formats is given 
by bits 0 and I of Flag 2. The length field may be omitted for 
A and B format items. 

Appendix A. Control Blocks 343 



DECLARE CONTROL BLOCK (DCLCBJ 

Function 

When Generated 

Where Held 

How Addressed 

Addresses file via PRV, holds declared file attributes, 
filename, and address of ENVB. 

During compilation. 

In a separate static control section for external files, or in a 
static internal control section for internal files. 

The address is generated by the linkage editor for external 
files; It is addressed by an offset from register 3 for internal 
files. 

o 
4 

8 

C 

o I 2 3 

Pseudo-Register Offset 

Declared Attributes 

Invalid OPEN Attributes 

ACEnvironment Block) 

10 Offset of Graphics Offset of Filename 
Extension Length 

14 Filename Length Filename 
(to 31 characters) 

DECLARED AND INVALID OPEN ATTRIBUTES 

Byte Hex. Attributes 
Number Value 

1 01 STREAM 
02 RECORD 
04 DISPLAY 

4 

DFCB 

DCLA 

DOPA 

DENV 

10 reserved for (STRING) 

2 01 SEQUENTIAL 
02 DIRECT 
04 TRANSIENT 
10 INPUT 
20 OUTPUT 
40 UPDATE 
80 BACKWARDS 

3 01 BUFFERED 
02 UNBUFFERED 
04 KEYED 
08 EXCLUSIVE 
10 PRINT 

4 Not used 

344 OS PL/I Optimizing Compilerl Execution Logic 



DIAGNOSTIC FILE BLOCK (DFB) 

Function 

When Generated 

Where Held 

How Addressed 

Holds information used by the error message routines. 

During program initialization. 

Program management area. 

From X'40' in the TCA CTDFB). 

o 
4 

8 

C 

10 

o 

FLAGS 

AWTO 
ASNO 
ASCO 

AFPF 

Flags 

(AFLAJ 

Bit 0 
Bit I 
Bit 2 

Bit 3 

I 2 3 4 

(Not UsedlRtn. Codel Not Used 

ACTransmitter) 

ACSYSPRINT DCLCB) 

ACExplicit Open) 

AClmprovised SYSPRINT DCB) 

ABTS 

ASPD 

AOCL 

ASDC 

= I Messages going to operator's console 
= 1 SYSPRINT not open at the first attach. 
= 1 SYSPRINT cannot be opened or open with 

unsuitable attributes. 
= 1 Force page 

Appendix A. Control Blocks 345 



DYNAMIC STORAGE AREA (DSA) 

Function 

When Generated 

Where Held 

How Addressed 

Holds housekeeping information, automatic variables, and 
temporaries for each block. 

During execution. Allocated by prolog code every time a new 
block is entered. 

In the LIFO storage stack. Certain library routines have their 
DSAs in library workspace (LHS). 

From register 13. 

346 OS PL/! Optimizing Compiler: Execution Logic 



o 

4 

8 

C 

10 

14 

18 

lC 

20 

24 

28 

2C 

30 

34 

38 

3C 

40 

44 

48 

4C 

50 

54 

58 

5C 

60 

64 

68 

6C 

70 

74 

o 1 2 3 4 

Flag 0 Flag 1 Not Used 

ACChain Back) CCHB 

Save Area RI4 

Save Area R15 

Save Area RO 

Save Area Rl 

Save Area R2 

Save Area R3 

Save Area R4 >CRSA 

Save Area R5 

Save Area R6 

Save Area R7 

Save Area R8 

Save Area R9 

Save Area RIO 

Save Area Rll 

Save Area Rl2 

ACLHS) CLHS 

Segment # A(NAB) CNAB 

Segment I End of Prolog NAB CEPN or CAPP 

or 
A(TIA) or ACTTA) in Dummy DSA 

or 

To Save Number of Not Used 
TFBl DSAs 

Block-Enable Bits Current-Enable Bits 
CENA CCNA 

A(Attaching DSA) in Dummy CAAD 

A(First Static ONCB) CSON 

ACMost Recent Dynamic ONCB in Block) CDON 

Not Used 

Not Used 

Reserved for the Checkout Compiler 

A(ONCELLS) CAOC 

Reserved Imple- Flags 2 Control 
Checkout mentation Task 
Compiler Defined Flag 

Appendix A. Control Blocks 347 



FLAGS 

FLAG 0 (CFFO) 

CDSA Bit 0 = 1 
CONC Bit 1 = 1 
COCH Bit 2 = 1 
CIMP Bit 3 
CBEG Bits 4 & 5 

CDUM Bit 6 = 1 
CSUB Bit 7 = 1 

FLAG 1 (CFF1) 

CFCM Bit 0 = 1 
CRNB Bit 1 = 1 
CRCE Bit 2 = 1 
COVR Bit 3 = 1 
CGTO Bit 4 = 1 
CSNT Bit 5 = 1 
CSYE Bit 6 = 1 
CFFB Bit 7 = 1 

FLAGS 2 (CFF2) 

C2lD Bit 0 = 1 
C2ID Bit 1 = 1 
C2IN Bit 2 = 1 
C2IC Bit 3 = 1 
C2SY Bit 4 = 1 
C2FL Bit 5 = 1 

Bits 6 & 7 

CONTROL TASK FLAG 

CCFC Bit 0 = 1 
Bits 1-7 

lWS DSA 
ON-cells exist 
Dynamic ONCBs allocated 
Reserved for the Checkout Compiler 
00 Procedure DSA 
01 Begin DSA 
10 library DSA 
11 ON-unit DSA 
Dummy DSA 
Subtask dummy DSA 

Byte CFFC is meaningful 
Restore NAB on GOTO 
Restore current-enable on GOTO 
Cal lee can use this nSA 
EXIT DSA 
statement number table exists 
SYSPRINT is enqueued by this block. 
Flags in Flags 2 are valid 

Last Pl/I DSA 
Ignore DSA for SNAP 
IlC DSA after interrupt 
Invocation Count in this DSA 
Symbolic dump for this DSA 
There are TSO line numbers 
Not used 

Block has active subtasks 
Not used 

This flag byte is the only one in the DSA used by the control 
task without synchronizing with the subtask. The subtask must 
never change it. This prevents interference between CPU's on a 
multiprocessing machine. 

348 as PL/I Optimizing Compiler: Execution Logic 



DUMP BLOCK (DUB) 

Function 

When Generated 

Where Held 

How Addressed 

To hold information about the dump file. 

During program initialization. 

In the program management area. 

From offset X'20' in the TIA (TDUB). 

o 

4 

8 

C 

o 1 

Flags 1 I 
2 3 

Flags 2 I Not Used 

ACDCB) 

ACBuffer) 

ACDump Transmitter) 

10 

14 

18 

IC 

Current line Numberl Pagesize 

FLAGS 

FLAGS .1 

Not Used 

Not Used 

A(PlIDUMP SYNAD Exit) 

4 

ANDE Bit 0 = 1 
Bits 1-3 

ANDH Bit 4 = 1 
Bits 5-7 

Dump file cannot be opened 
Not used 

FLAGS 2 

ANSS Bit 0 = 1 
Bits 1-7 

PLIDUMP heading required 
Not used 

No subtasks' subpools 
Not used 

ADCB 

ABUF 

ADXT 

ASYN 

Appendix A. Control Blocks 349 



ENTRY DATA CONTROL BLOCK 

Function 

When Generated 

Where Held 

How Addressed 

Holds information that will enable an entry to be branched to 
and the correct static back-chain to be set up. Is used as an 
entry variable or when an entry is passed as a parameter. 

When the variable is allocated. 

Depends on the storage class of the data item. 

Depends on the storage class of the data 

o 
4 

o I 2 3 

Address of entry point 

Address of Statically Containing 
DSA at Time of Assignment 

Address of entry 

4 

Word 1 

Word 2 

WORD 1 

Bit 0 = 0 
Bit 0 = 1 Address of location containing 8-char. EBCDIC name 

of entry point 

WORD 2: Bit 0 is always set to zero. 

ADDRESS OF STATICALLY CONTAINING DSAz This address is set in 
register 5 when the assignment is made to the variable. It 
enables variables in other blocks to be accessed. When 
assignment is made the address of the current statically 
containing DSA is set. This will be the correct address for the 
entry. If it were not, the entry itself would not be known. 

350 OS Pl/! Optimizing Compiler: Executi.on Lo~ic 



ENVIRONMENT BLOCK (ENYBJ 

Function 

When Generated 

Where Held 

How Addressed 

Holds environment options for a file so that the file may be 
correctly opened during execution. 

During compilation 

In a static control section with the DCLeB for external files. 
In static internal storage for internal files. 

From offset X·C· in the DCLCB 

o 

4 

8 

C 

10 

14 

18 

IC 

20 

24 

28 

2C 

30 

34 

o 

NFLA 

NFLE 

1 2 3 

NFLB NFLC 

NFLF NFLG 

Not Used 

ACBlocksize) 
or 

ACPagesize 2260) 

A(Record Length) 
or 

A(Linesize 2260) 

A(Number of Buffers) 

ACKEYLOC Value) 
or 

ACAttention Variable) 

ACKEYLENGTH) 

ACBUFFOFF Value) 
or 

ACINDEXAREA Size) 

ACNCP Value) 
or 

A(Size of ADDBUF) 

ACPassword String Locator) 

ACBUFND Value) 

ACBUFNI Value) 

ACBUFSP Value) 

4 

NFLD 

NFlH 

NBLK or NPAG 

NREC or NLIN 

NBUF 

NLOC or NATN 

NKYL 

NOFF or NNDX 

NNCP or NADD 

NPAS 

NBND 

NBNI 

NBSP 

Appendix A. Control Blocks 351 



FLAGS 

NFLA 

NCON Bit 0 = 1 Consecutive 
NIND Bit 1 = 1 Indexed 
NRGI Bit 2 = 1 Regional (1) 
NRG2 Bit 3 = 1 Regional (2) 
NRG3 Bit 4 = I Regional (3) 
NT PM Bit 5 = I TP(M) 
NTPR Bit 6 = I TPCR) 
NOTH Bit 7 = 1 Other organization 

NFLB 

NFIX Bit 0 = 1 Fixed 
NVAR Bits 0 & 1 10 Variable 
NUND 11 Undefined 
NDEC Bit 2 = I Decimal 
NTRO Bit 2 = 1 TRKOFL> 
NBLO Bit 3 = 1 Blocked 
NSPA Bit 4 = I Spanned 
NASA Bit 5 = 1 CTLASA 
N360 Bit 6 = I CTL360 
NEGS Bit 7 = 1 GRAPHIC 

NFLC 

NLVE Bit 0 = 1 LEAVE 
NRRD Bit 1 = 1 REREAD 
NGKY Bit 2 = 1 GENKEY 
NCBl Bit 3 = I COBOL 
NOWR Bit 4 = 1 NOWRITE 
NXAR Bit 5 = 1 INDEXAREA 
NTOT Bit 6 = 1 TOTAL 
NXAS Bit 7 = 1 INDEXAREA with no argument 

NFLD 

NBUU Bit 0 = 1 BUFFERS 
NCPF Bit 1 = 1 NCP 
NFPS Bit 2 = 1 PASSWORD 
NKEL Bit 3 = 1 KEYlENGTH 
NKlC Bit 4 = 1 KEYlOC 
NVFY Bit 5 = 1 VERIFY 
NNOl Bit 6 = 1 NOlABEl 
NABF Bit 7 = 1 ADDBUF 

NFLE 

N226 Bit 0 = 1 2260 
NlOK Bit 1 = 1 lock (2260) 

Bits 2-3 Not used 
NSTl Bit 4 = 1 SCAlARVARYING 
NUSA Bit 5 = 1 ANSCll 
NBOF Bit 6 = 1 BUFOFF 
NBFl Bit 7 = 1 BUFOFF(l) 

NFLF 

NXMl Bit 0 = 1 Index multiple 
NXll Bit 1 = 1 High index 2311 
NX14 Bit 2 = 1 High index 2314 
NOTM Bit 3 = 1 No tape mark 
NALT Bit 4 = 1 Alternate tape 

352 OS Pl/I Optimizing Compiler l Execution logic 



NOFT Bit 5 = 1 OFl tracks 
NXTN Bit 6 = 1 Extent number 

Bit 7 Not used 

NFLG 

NFFM Bit 0 = 1 F-format 
NVFM Bit 1 = 1 V-format 
NUFM Bit 2 = 1 U-format 
NSP2 Bit 3 = 1 Spanned 
NBL2 Bit 4 = 1 Blocked 

Bits 5-7 Not used 

NFLH 

NVSM Bit 0 = 1 VSAM 
NFBD Bit 1 = 1 BUFND 
NFBI Bit 2 = 1 BUFNI 
NFBS Bit 3 = 1 BUFSP 
NFSI Bit 4 = 1 SIS 
NFSK Bit 5 = 1 SKIP 
NFBW Bit 6 = 1 BKWD 
NFRS Bit 7 = 1 REUSE 

Appendix A. Control Blocks 353 



EVENT TABLE (EVTAB) 

Function 

When Generated 

'''here Held 

How Addressed 

Used by WAIT module as workspace and to provide status 
information on associated event. 

During execution. 

In LIFO storage. 

From an offset from register 13. 

o 

4 

8 

C 

10 

o 1 2 3 

Flag 1 I A(ECB) 

ACChain Field through EVTABs) 

AC Event Variable) 

ACECBLIST element) 

ACTCA) 

4 

WECB 

WECH 

WAEV 

WAEL 

WATe 

FLAG 1: Bit 0 of the WECB field is set to 1 when an event is 
complete. 

354 OS PL/I Optimizing Compiler: Execution Logic 



EVENT VARIABLE CONTROL BLOCK 

Function 

When Generated 

Where Held 

How Addressed 

Flags 

To hold information about the operation with which the EVENT has 
been associated. 

Depends on the storage class of the event variable. 

Depends on the storage class of the event variable. 

As other variables depending on storage class. 

o 
4 

8 

C 

10 

o I 2 3 4 

Flags I I Flags 2 I Status 

Anchor for ECB chain 

ACDECB) or ACCCB) for I/O 

ACTCA appendage of task for I/O) 

ACDCLCB) or ACFCB) for I/O 
or 

ACCalled Procedure) for Tasking 

EECH 

EAEC 

ETCA 

EUSI 

Statement Number 14 ESND 

FLAGS 1 (EFLO) 

ECOM Bit 0 = 1 
EACT Bit 1 = 1 
fIOF Bit 2 = I 
EDSP Bit 3 = I 
EWIP Bit 4 = 1 
ESNF Bit 7 = 1 

FLAGS 2 (EFL1J 

ECHE Bit 0 = I 
EDUM Bit 1 = I 

Complete 
Active 
I/O EVENT 
DISPLAY EVENT 
EV has caused entry to an ON-unit 
ESNO field contains the statement number 

Chain of ECBs exists 
Dummy EVENT 

Appendix A. Control Blocks 355 



EXCLUSIVE BLOCK IOCB (XBIJ 

Function 

When Generated 

How Addressed 

Locks individual records on exclusive files. 

By transmitter when required. 

From offset X'24' in IOCB and offset X'14' in the TIA (TEXF). 

o 

4 

8 

C 

10 

14 

IC 

24 

4C 

50 

o I 

XILA 

XIQE 

RNAME 

(6 

Region No. 

2 3 

Not Used 

XILB XILC 

XIQL XIQS I XIQC 

ACQNAME) 

ACRNAME) 

QNAME = 'SYSIBMIO' 
C8 bytes) 

of Volume Serial Number 

bytes) 

RNAME of DSNAME 
(44 bytes) 

Region Number 

(cont.) 

Space for Record Key 

FLAGS 

XILA Reserved 

XILB Reserved 

XILC Reserved 

C256 bytes) 

4 

XITK 

X1QAf>XIQT 
XIRA 

XIIO 

XIVS 

XIDS 

XIRN 

XIKY 

XIQTs This area is a 12 byte field comprised ofl 

XIQE End marker for enqueue list 

XIQL Length of RNAME (XFQL) 

XIQS System flags (XFQL) These flags must be set to X'4I'. 

XIQC Return code from system 

XIQA ACQNAME) 

XIRA A(RNAME) 

XIRNI Region number (in binary right adjusted) 

356 as PL/I Optimizing Compilerl Execution Logic 



XIKY: RNAME of key 

length of XIKY is keylength of data set restricted such that: 

VOL SER1 Idsnamel Ikey /255 ISAM 
'251 regional 

Appendix A. Control Blocks 357 



EXCLUSIVE BLOCK FILE (XBF) 

Function 

When Generated 

How Addressed 

Identifies data set when locking for exclusive I/O. 

By the open routine. 

From offset X'74' in FCB. 

o 

4 

8 

C 

o 

XFQE 

1 

Flags 

I 

2 

ACTCA) 

XFQl 

ACQNAME) 

ACRNAME) 

3 

XFIl 

XFQS I 
XFIO 

XFVS 10 

14 QNAME ('SYSIBMIO') 
(8 bytes) 

XFQC 

IC RNAME of Volume Serial Number 

(6 bytes) 

20 RNAME of DSNAME 
(44 bytes) 

4C 

RNAME of Key 

First two words reserved 

FLAG (XFLAl 

XLOC Bit 0 = 1 
XNDQ Bit 1 = 1 

Bits 2-15 

Locked 
No DEQ required 
Not used 

4 

XFTK 

XFQAf>XFQT 
XFRA 

XFIO 

XFVS 

XFDS 

XFKY 

XFIL: length of exclusive block attached to IOCB 

XFQT: This area is an enqueue list comprised of the following 
fields: 

XFQE End marker for list (X'FF') 

XFQl length of RNAME 

XFQS System flags must be X'4l' 

XFQC Return code from system 

XFQA A(QNAME) 

XFRA A(RNAME) 

358 OS PL/I Optimizing Compiler: Execution Logic 



XFKY: Length of XFKY is keylength of data set restricted such 
that: 

VOL SER Ildsnamellkey /255 ISAM 
'251 regional 

Appendix A. Control Blocks 359 



FILE CONTROL BLOCK (FCB) 

Function 

When Generated 

Where Held 

How Addressed 

Common Section 

Used to access all file information. Contains addresses of the 
ENVB, DTF, filename, etc. 

By the open routines during execution. 

In subpool 1. 

From two byte PRV offset which is held at offset X'2' in DCLCB. 
The PRV address is held at offset X'4' in the TCA. 

The common section is followed by either the RECORD or STREAM 
sections. 

360 OS PL/I Optimizing Compilers Execution logic 



-8 

o 

8 

C 

10 

14 

18 

IC 

20 

24 

28 

2C 

30 

34 

38 

3C 

40 

44 

48 

o 1 2 3 

fyecatcher 

Statement Mask 

AClnvalid Statement Module) 

AClibrary Transmitter) 

ACDClCB) 

ACDCB) or ACACB) 

ACOpen File Chain) 

AC data management for in-line I/O) 

Error Bytes Not Used 

FATA FATB FATC Not used 

FFlA FFLB FFlC FFlD 

FFlE FFlF FFLG FFlH 

Blocksize Keylength 

Record length 

ACFirst Free IOCB) 
or 

ACHidden Buffer for QISAM LOCATE) 

FTYP FlEN 

Reserved for the Checkout Compiler 

FBIF Not Used 

Not Used 

4 

FFST 

FAIS 

FATM 

FADL 

FADB or FACB 

FAFO 

FAIL 

FRCL 

FAFR or FREC 

FGAS 

STATEMENT MASK (FFSTl 

Bit number statement + oetions 

0 READ SET 

1 READ SET KEYTO 

2 READ SET KEY 

3 READ INTO 

4 READ INTO KEYTO 

S READ INTO KEY 

6 READ INTO KEY NOLOCK 

7 READ IGNORE 

8 READ INTO EVENT 

9 READ INTO KEVTO EVENT 

10 READ INTO KEY EVENT 

Appendix A. Control Blocks 361 



11 READ INTO KEY NOLOCK EVENT 

12 READ IGNORE EVENT 

13 WRITE FROM 

14 WRITE FROM KEYFROM 

15 WRITE FROM EVENT 

16 WRITE FROM KEYFROM EVENT 

17 REWRITE 

18 REWRITE FROM 

19 REWRITE FROM KEY 

20 REWRITE FROM EVENT 

21 REWRITE FROM KEY EVENT 

22 LOCATE SET 

23 LOCATE SET KEYFROM 

24 DELETE 

25 DELETE DEY 

26 DELETE EVENT 

27 DELETE KEY EVENT 

28 UNLOCK KEY 

29 WRITE FROM KEYTO 

30 WRITE FROM KEYTO EVENT 

31-63 Reserved 

362 OS PL/I Optimizing Compiler: Execution Logic 



ERROR BYTES 

FERl 

FTIP 
FTOP 
FTOM 
FTIX 
FTOX 
FTIS 
FTOS 

FER2 

FFEF 
FRVZ 
FRVS 
FRVG 
FKCN 
FKDP 
FKSQ 
FKSP 
FKNF 
FKNS 
FNIO 
FEAC 
FEUP 
FENC 
FETO 
FRR2 
FEOl 
FEXX 
FEIR 
FKTP 
FEXS 
FKCB 
FKSF 
FASQ 
FESY 
FRVX 
FERH 
FEVN 
FESP 
FEVS 
FKNR 
FENP 
FEUN 
FEST 
FIEU 
FEMP 
FEIP 
FESW 

X'02' 
X'03' 
X'IA' 
X'IC' 
X'ID' 
X'IE' 
X' IF' 

X'OI' 
X'04' 
X'OS' 
X'06' 
X' 07' 
X'08' 
X'09' 
X'OA' 
X'OB' 
X'OC' 
X'OD' 
X'OE' 
X'OF' 
X'lO' 
X'II' 
X1 l2' 
X'l3' 
X'I4' 
X'IS' 
X 116' 
X'I7' 
X'I8' 
X'19' 
X'1B' 
X'20' 
X'2I' 
X'22' 
X' 23' 
X'24' 
X'2S' 
X'26 1 

X' 27' 
X'28' 
X'29' 
X'2A' 
X'2B' 
X'2C' 
X'2D' 

Input transmit (data set) 
Output transmit (data set) 
OMR read error 
Input transmit (index set) 
Output transmit (index set) 
Input transmit (sequence set) 
Output transmit (sequence set) 

End of file 
Zero length record variable 
Short record variable 
Long record variable 
Key conversion in character string 
Key duplication 
Key sequence 
Key specification (null key) 
Key not found 
No space for keyed record 
No IOCB available 
Active event 
No prior read before rewrite 
No completed read before rewrite 
Permanent output error 
Zero length record read 
Record referenced outside data set 
Unidentified I/O error 
Incomplete read for update 
TP term address specification 
Different FCB same record request 
Key conversion (negative BINARY number> 
Key specification (X'FF' etc) 
I/O sequence error 
Synad error encountered 
Record length < KEYlEN + RKP 
Record already held 
Record on non-mounted volume 
Data set cannot be extended 
No virtual storage for VSAM 
No keyrange for insertion 
No positioning for sequential read 
Attempt to reposition failed 
Statement number for data set exceeded 
Index upgrade error 
Maximum number of index PTRs 
Invalid index PTRs 
Invalid sequential write 

FTYP, 6th and 7th characters of library transmitter name 

FLENI Length of FCB (including DCB) 

FATA 

FDBG Bit 0 = 1 Open SYSPRINT for error message 
FSYS Bit 1 = 1 SYSPRINT 
FCTR Bit 2 = 1 Reserved for Checkout Compiler 
FSTR Bit 3 = 1 String operation 

Bit 4 = 1 Not used 
FDSP Bit 5 = I DISPLAY 
FRIO Bit 6 = I RECORD 
FSIO Bit 7 = I STREAM 

Appendix A. Control Blocks 363 



FATS 

FBAK Bit 0 = 1 BACKWARDS 
FUPD Bit 1 = 1 UPDATE 
FOUT Bit 2 = 1 OUTPUT 
FIPT Bit 3 = 1 INPUT 

Bit 4 = 1 Not used 
FTRA Bit 5 = 1 TRANSIENT 
FDIR Bit 6 = 1 DIRECT 
FSEQ Bit 7 = 1 SEQUENTIAL 

FATe 

Bit 0 = 1 Not used 
FEGS Bit 1 = 1 GRAPHIC option of the ENVIRONMENT attribute 
FAXS Bit 2 = 1 Axes 
FPRT Bit 3 = 1 PRINT 
FXCL Bit 4 = 1 EXCLUSIVE 
FKYD Bit 5 = 1 KEYED 
FUND Bit 6 = 1 UNBUFFERED 
FBUF Bit 7 = 1 BUFFERED 

FFLA 

FFIX Bit 0 = 1 F-format 
FVAR Bit 1 = 1 V-format 
FUND Bit 2 = 1 U-format 
FBLO Bit 3 = 1 Blocked 
FSPA Bit 4 = 1 Spanned 

Bits 5 & 6 Not used 
FKLC Bit 7 = 1 Key in record variable KEYLOC 

FFLS 

FCON Bit 0 = 1 CONSECUTIVE 
FIND Bit 1 = 1 INDEXED 
FRGl Bit 2 = 1 REGIONALCl) 
FRG2 Bit 3 = 1 REGIONAL(2) 
FRG3 Bit 4 = 1 REGIONAL(3) 
FTMP Bit 5 = 1 TPeM) 
FTPR Bit 6 = 1 TPCR) 
FOTH Bit 7 = 1 Other organization 

FFLC 

FQSM X'OO' QSAM 
FBSM X'04' BSAM 
FBSL X'08' BSAM (Load) 
FQTM X'OC' QTAM 
FQIS X'lO' QISAM 
FBIS X'14' BISAM 
FBDM X'18' BDAM 
FVSM X'lC' VSAM 

FFLD 

FPPT Bit 0 = 1 Paper tape 
FPRI Bit 1 = 1 Printer 
FURD Bit 2 = 1 Unit record device 
FTRM Bit 3 = I The foreground terminal 
FEFL Bit 4 = I ENDFILE module loaded 
FPHB Bit 5 = I Possible hidden buffer 
FEML Bit 6 = 1 Error module loaded 
FGKY Bit 7 = I Genkey 

364 OS PL/l Optimizing Compiler' Execution Logic 



FFLE 

FFER Bit 0 = 1 I/O error 
FERI Bit 1 = 1 Per'manent input error 
FERO Bit 2 = 1 Permanent output error 
FEOF Bit 3 = 1 End of file 
FHID Bit 4 = 1 Hidden buffer in use 
FEOD Bit 5 = I Move required 
FFNV Bit 6 = 1 Non-SCALARVARYING 
FSTK Bit 7 = 1 Not used 

FFLF 

FPRD Bit 0 = 1 Previous READ 
FPRS Bit 1 = 1 Previous READ SET 
FPLC Bit 2 = 1 Previous LOCATE 
FPRW Bit 3 = 1 Previous REWRITE 
FPOP Bit 4 = 1 Previous OPEN or READ IGNORE 
FCLS Bit 5 = I Close in progress 
FICl Bit 6 = 1 Implicit close 
FRSl Bit 7 = I Previous OPEN (resume load) or READ IGNORE(O) 

FFLG 

FEPG Bit 0 = 1 ENDPAGE 
FEEX Bit 1 = 1 End of extent 
FCOP Bit 2 = 1 COpy option active 

Bit 3 Not used 
Bits 4 & 5 Reserved for the Checkout Compiler 

FVPF Bit 6 = 1 Newly opened print file 
FNOC Bit 7 = 1 File not to be closed 

FFLH 

FILF Bit 0 = 1 In-line I/O 
FILL Bit I = 1 In-line LOCATE 
FHYP Bit 2 = I Hyphen at the end of the line 
FRGT Bit 3 = 1 Retry get after concatenation 
FClU Bit 4 = 1 Current line unfinished 
FSPL Bit 5 = 1 Initial call from IBMBSPL or blanks at the 

end of record 
FBER Bit 5 = 1 Blanks at the end of record 
FNBW Bit 6 = 1 New buffer wanted 
FGPI Bit 7 = 1 GET prompt issued - input 

BUILTIN FUNCTION BYTE (FBIFl 

FSKY Bit 0 = 1 Samekey flag 
Bits 1-7 Not used 

Appendix A. Control Blocks 365 



Record I/O Section 

Offsets are from start of the FCB. 

4C 

50 

54 

58 

5C 

60 

64 

68 

6C 

70 

74 

78 

7C 

80 

o 

FEMT: 

FEFTl 

FRET: 

FAFB: 

FFNC: 

FARF 
FAPF 
FAWF 
FOMR 
FRFI 
FPFI 
FPWI 
FASC 

FFLV: 

FKSD 
FESD 
FRDS 
FPTH 
FNUM 

1 2 3 4 

ACLast IOCB Used) or 
A(Dummy Buffer for LOCATE) 

ACfirst IOCB to be Checked) (BSAM) 

Static Chain of IOCBs 
(BDAM/DISAM/DSAM/VSAM) 

A(IOCB for Last Completed Read) 

FEMT FEFT FRET I FAFB 

ACerror module) When Loaded 

FOAM FFLV KEYLOC-l VSAM or 
or or Decrementing Line 

FFNC FFNF Count 

Record Count 

A(Dummy Key Area) 

Size of IOCB (BDAM/BISAM) 
or 

Current Relative Block (BSAM) 

A(Exclusive Block FILE) 

Offset Table Used in Record Checking 

Base OPTCD for RPL (VSAM) 

A(FCB) or A(FAFB) 

7th character of the error module name 

FALU or FCDA 

FACK 

FlOC 

FALR 

FERM 

FCCT 

FAKY 

FIOS or FREL 

FXBA 

FRTB 

FOPT 

FAWB 

7th character of the endfile module name 

Data management return code (regional output) 

Work byte for associated files 

Function byte 

Bit 0 = 1 READ file 
Bit 1 = 1 PUNCH file 
Bit 2 = 1 PRINT file 
Bit 3 = 1 OMR (no other lists on) 
Bit 4 = 1 R in FUNC option 
Bit 5 = I P in FUNC option 
Bit 6 = 1 W in FUNC option 
Bit 7 = I Associated file 

VSAM flags 

Bit 0 = 1 KSDS 
Bit 1 = I ESDS 
Bit 2 = 1 RRDS 
Bit 3 = 1 ALTERNATE INDEX PATH 
Bit 4 = 1 ALTERNATE INDEX PATH (non-unique) 

366 OS PL/I Optimizing Compiler: Execution Logic 



Stream I/O Section 

FSKP Bit 5 = 1 SKIP 
Bit 6 = 1 Not used 

FPLO Bit 7 = 1 Position lost 

FCNFz Conflict byte 

FPII Bit 0 = 1 Prior READ invalid 
FPPI Bit 1 = 1 Prior PUNCH invalid 
FPWI Bit 2 = 1 Prior PRINT invalid 
FPLI Bit 3 = 1 Prior PRINT last line invalid 

Bit 4-7 Not used 

Offsets are from the start of the FCB. 

4C 

50 

54 

58 

5C 

60 

64 

68 

6C 

o 1 2 3 

ACNext Available Byte in a Buffer) 

Bytes Remaining in Value of Count 
Buffer Built-in Function 

Page Size Line Size 

Current Line No. Buffer Size 

A(Copy Position in Buffer) 
or 

ACNext TPUT Position) for OUTPUT 

ACDCLCB for COPY file) 

ACCopy Module Input 
or 

ACTab M~dule Output) 

Record Count 

FCSIOCB) 

4 

FCBA 

FMAX 

FCPM or FNTP 

FCPF 

FCPA or FTAB 

FRCT 

FSCB 

Appendix A. Control Blocks 367 



FETCH CONTROL BLOCK (FECS) 

Function 

How Addressed 

Where Held 

When Generated 

The FECB is used to contain information about modules specified 
in FETCH statements. 

FECBs are chained together. The chain starts in field TFEP, 
which is held in the TIA at offset X'3C' 

FECBs are set up by IBMBPFR in non-LIFO storage. 

When a module is fetched. 

o 

4 

8 

10 

20 

24 

o 1 2 3 

Chain Field 

PRV Offset 

Name of Module C8 bytes) 

AMODE Switching Code 

ACFetched module entry point) 

ACCall R14 Save Area) 

4 

ZFCH 

ZFPO 

ZFNM 

ZTRFCDE 

ZTARGET 

ZSAVR14 

368 OS Pl/I Optimizing Compiler: Execution logic 



FLOW STATEMENT TABLE 

Function 

When Generated 

Where Held 

How Addressed 

Used to implement the compiler FLOW option. Holds the last In' 
statement number pairs and the last 'm' procedure names 
executed. (In' and 1 m' are programmer defined.) 

Storage is allocated during initialization if the FLOW option 
has been specified. The table is continually updated as the 
program is executed. 

In initial storage area. 

From offset X'4C' in the TCA. 

o 

10 

14 

18 

Ie 
20 

24 

28 

FLAG 

ANON 

AFLI 
AIlF 

AINT 
AGOT 

o 1 2 3 

Code to access IBMBEFlA to initialize 
the flow table for subtasks. Called 
when bit 6 in AFLF is set. 

Total length of the table 

ACnext free field in statement number 
section) 

ACstart of names section of table) 

ACnext free field in names section) 

ACend of table) 

A(start of number section) 

Flag By tel 

BYTE (AFL1) 

4 

ARGT 

AFLL 

ANEN 

AASB 

ANEB 

AAEB 

ASBS 

AFll 

Bit 0 = 1 No statement numbers requested in 
for example FLOW(0,20) 

Bit 1 = 1 Last entry was IN 

flow trace, 

Bit 2 = 1 Flow to be done inline if last entry was in; 
flow cannot be done if last entry was out. 

Bit 3 = 1 Interrupt not recorded 
Bit 4 = 1 GOTO-out-of-block has occurred 
Bits 5-7 Not used 

Appendix A. Control Blocks 369 



o 1 2 3 4 

AFlF FlagiAFlG Flag Statement 

Number AFlF FlaglAFlG Flag 

Statement Number 

Names of blocks truncated to ASBD 
8 characters 

INFORMATION BYTE (AFLF) 

ATBI 
ABCD 
AXTX 
ADUM 
ACHK 
AGTO 
ATKC 

Bit 0 = 1 
Bit 1 = 1 
Bit 2 = 1 
Bit "5 = 1 
Bit 4 = I 
Bit 5 = 1 
Bits 6 = 1 
Bit 7 

Branch-in entry 
BCD form for this entry 
BCD in text reference form 
Dummy entry after ON-unit exit 
Statement number in TSO line number 
Entry befora GOTO call Cold flag) 
The next in entry is in a new task 
Not used 

TASKING INFORMATION BYTE (AFLGl 

ADES 
ARES 
ATRM 

Bit 0 = 1 
Bit 1 = 1 
Bit 2 = 1 
Bits 3-7 

Task being descheduled 
Task being rescheduled 
Task being terminated 
Not used 

370 OS PL/I Optimizing Compiler: Execution logic 



INTERLANGUAGE ROOT CONTROL BLOCK (IBMBILC1) 

Function 

When Generated 

Where Held 

How Addressed 

Connects ZCTL and interlanguage VDA to interlanguage routines, 
and records state of activation of language interfaces. 

During compilation. 

In static internal storage, as a control section. 

Address generated by linkage editor. 

o 

4 

8 

o 

FLAGS 

lICF 
lIFF 

ZITF 

lICF 

Bit 0 
Bit 0 

Bit 0 

1 

I 

= 1 
= 1 

= 1 

2 3 

"Eye Catcher" 

Address of lCTL 

ZIFF I Not Usedl 

Indicates COBOL 

4 

ZITF 

lILCE 

ZICT 

is active in program 
Indicates a procedure which called FORTRAN 
active 
Indicates a task is accessing IBMBILCI 

is 

Appendix A. Control Blocks 371 



INTERLANGUAGE VDA 

Function 

When Generated 

Where Held 

How Addressed 

To hold information required for interlanguage calls. Used for 
information that alters from invocation to invocation. 

One interlanguage VDA is generated for each interlanguage call 
made from PL/I to FORTRAN or COBOL. An interlanguage VDA is 
also acquired if the PL/I environment has not yet been set up 
when PL/I is called from COBOL or FORTRAN. 

In the LIFO storage stack. 

From offset X'O' in lCTl. 

o 1 2 .3 

"Eye Catcher" o 

4 

8 

C 

ACPrevious Interlanguage VDA or Zero) 

Flag1 I Flag2 I Flag3 lpgm. Mask 

ACCurrent DSA) 

10 

14 

18 

IC 

ACCaller's PICA or ESPIE Parm list 

Saved language's Macro Type 

Saved Language's Token 

18 Word Imitiation Save Area 

FLAG! (ZPRP) 

4 

ZVDAE 

ZPVD 

ZPDR 

ZPCPL 

ZPCPM 

ZPCPT 

ZPSP 

Bit 0 = 1 
Bit 1 = 1 
Bit 2 = 1 

If there is a prev~ous call to COBOL 
If there is a preVIOUS call to FORTRAN 
If main procedure is not PL/I 

FLAG2 (ZPFN): This is a nonrecurring flag. 

FLAG3 (IEUAX): This flag when set on, indicates the type of 
language. 

372 OS PL/I Optimizing Compiler. Execution Logic 



INTERRUPT CONTROL SLOCK (IeSl 

Function 

When Generated 

Where Held 

How Addressed 

Acts as a parameter list to IBMBERR. 

After an error has been detected. 

As a VDA in the LIFO stack. 

Passed as parameter list to IBMBERR addressed by register 1. 

o 

4 

8 

o 

DSA 

1 

Error 

Condition 

Levell 

2 

code 

Qualifier 

Flags 

3 4 

HLCD 

HlQU 

C HLEA ACArray Element) 

A(SYMTAB) 10 HlSY 

A(Pointer for BASED or CONTROLLED Var. ) 14 HLPT 

Note: For unqualified errorSI only field HLCD is passed. 

HLQU 

Condition qualifier 

FLAGS (HLFGl 

HlFZ Bit 0 = 1 
HlFY Bit 1 = 1 
HlFX Bit 2 = 1 
HlFW Bit 3 = I 
HLFV Bit 4 = 1 

HLFU Bit 5 = 1 
Bits 6-7 

= ACDClCB) for I/O condition 
= ACCSECT) for CONDITION condition 
= ACSYMTAB) for CHECK condition 
= ACSYMTAB LIST) 

Use the address in HlSY for data directed I/O 
Element address in list 
CHECK enablement unknown 
Qualifier is address of SYMTAB list 
Use word 6 to address the generation of 
variable being checked 
Do not print or display data 
Not used 

Appendix A. Control Blocks 373 



INPUT/OUTPUT CONTROL BLOCK (IOCB) 

Function 

When Generated 

Where Held 

How Addressed 

I Common section 

Used as a data management parameter list during certain record 
I/O statements and to hold information about statement type 
during the time between a record I/O statement and the 
associated WAIT statement. 

Either by the PL/I transmitter module (BISAM or BDAM) or by 
OPEN. 

In-nan-LIFO storage for VSAM, in subpool 0 for BSAM (obtained by 
GETPOOL), BISAM or BDAM (obtained in subpool 1 for 
non-multitasking, in subpool 0 for tasking). 

By fields in the FCB. IOCBs are chained together and the actual 
field used to address them depends on the type of statement 
being executed. 

o 
4 

8 

C 

10 

14 

18 

lC 

20 

o 1 2 3 

Static Forward Chain 

Chain of Free or Unchecked IOCBs 
or 

Region Number, Left Adjusted (BDAM) 

IFLA I IFLB I Error Codes (IERR) 

Request Control Block 

1st Word of Record Descriptor; A(RCD) 

2nd Word of Record Descriptor; 
Flags and Record Length 

1st Word of Key Descriptor 

2nd Word of Key Descriptor 

A(EVENT Variable) 

4 

ICHN 

INXT or IRGN 

IRCB 

lORD 

IORL 

IOKD or IFNA 
r->IREF 

IOKL or IFBK 

IEVT 

FLAG BYTE (IFLA) 

IFXV Bit 0 = 1 Record locked 
IFMU Bit 1 = 1 Record to move flag 
IFSU Bit 2 = 1 Varying string with non-scalar variable 
IFUS Bit 3 = 1 IOCB in use 
IFER Bit 4 = 1 General error flag 
IFDR Bit 5 = 1 Dummy records are being printed or displayed 
IFDB Bit 6 = 1 Dummy buffer acquired 
IFCH Bit 7 = 1 IOCB checked 

374 OS PL/I Optimizing Compilerl Execution logic 



FLAG BYTE (IFLB): Code byte containing offset within 'look-up' 
table used for record checking 

ERROR CODES (IERRl 

IEOF X'OI' End of file 
ITID X'02' Input transmit 
ITOP X'03' Output transmit 
IRVZ X'04' Zero length record variable 
IRVS X'OS' Short record variable 
IRVG X'06' long record variable 
IKCN X'07' Key conversion 
IKDP X'OS' Key duplication 
IKSQ X'09' Key sequence 
IKSP X'OA' Key specification 
IKNF X'OB' Key not found 
IKNS X'OC' No space for keyed record 
INIO X'OD' No IOCB available 
IEAC X'OE' Active event 
IEUP X'OF' No prior READ before REWRITE 
IENC X'IO' No completed READ before REWRITE 
IETO X'll' Permanent output error 
IRRZ X'12' Zero length record read 
IEOl X'13' Record reference outside data set 
IEXX X'14' Unidentified 10 error 

IOKL: Flags and key length 

IREF: Relative block or record number (2 words) (BDAM) 

IFNA: Next address feedback (BDAM spanned) 

IFBKz BDAM feedback (BDAM spanned) 

Appendix A. Control Blocks 375 



Non-VSAM Section 

VSAM Section 

This section starts at offset X'24'. 

o 
24 

28 

1 2 3 

ACECB) for Regional Sequential Only 
or 

ACExclusive Block) for Direct Only 
or 

ACBinary Region No.- Regional(l) Update 

AClmplementation Appendage) 

DATA MANAGEMENT EVENT CONTROL BLOCK 

2C 

30 

34 

38 

3C 

40 

44 

48 

4C 

o 1 2 3 

BDAM Exception Codes in 2nd & 3rd Bytes 

I/O Operation Type I Record length 
Set by Data Mgmt. (ILEN) 

ACData Control Block) 

A(Buffer) or ACRecord Variable) 

ACStatus Indicators) CBSAM & BDAM) or 
ACLogical Record) 

A(Dummy Buffer) (BSAM) 
or 

ACNext Record Feedback)->IREF CBSAM) 
or 

ACKEY) CBDAM and BISAM) 

ACRelative Block or Record) that is, 
A(IREF) (BDAM) or 

BISAM Exception Codes 

ACNext Record Feedback)->IREF (BDAM) 
or 

Start of Any Appended Buffer CBSAM) 

start of Any Appended Buffer 
(BDAM-or-BISAM) 

This section also starts at offset X'24'. 

24 

28 

2C 

30 

34 

o 1 2 3 

ACDummy Buffer) 

ACFirst Key Area) 

A(Second Key Area) 

Pointer for LOCATE Requests 

A(ONKEY) 

376 OS PL/I Optimizing Compiler. Execution Logic 

4 

4 

4 

lADE or IXLV or IRlB 

ITIA 

IEeB 

IDCB 

IREC 

ISTS 
ILOG 

IADB 
or 

INLF 
or 

IKEY 

IBlK 
or 

IEXI 

INDF 
or 

ISBF 

IDBF 

IDUB 

IKSV 

IKST 

IPTR 

10NK 

or 



DATA MANAGEMENT EVENT CONTROL BLOCK 

38 

3C 

40 

44 

48 

4C 

50 

54 

58 

5C 

60 

64 

68 

6C 

70 

74 

78 

7C 

80 

84 

88 

8C 

90 

94 

98 

9C 

o 1 2 3 

AC Data Management Event Control Blocks) 

ACRequest Parameter list) 
SHOWCB Parameter list 

A(Header) 

ACElement) 

Type Codes 

ACBlock) 

A(User Area) 

length of User Area 

Element Codes 

User Area MODCB Parameter list 

ACHeader) 

A(Element) Maximum of 3 

A(Element) 

A(Element) 

MODDCB Type Codes 

ACBlock) 

Not Used 

Area 

Not Used 
-

Area Length 

Not Used 

Key length 

Not Used 

OPT Code 

Not Used 

Record Length 

4 

IEVC 

IRPL 

ISHD 

15EL 

ISTC 

ISBL 

ISAR 

ISLN 

ISEC 

ISUA 

IMHD 

IMEL 

IMTC 

IMBL 

IM2C 

lARA 

IM2D 

IARL 

IM30 

IKYL 

IM34 

10PT 

IM35 

IRCL 

Element control entries start at offset X'78' and continue to 
end of IOCB. Each entry occupies 2 words, with keyword type 
code set in 1st half-word as followsl 

IMab=X' 0 Oab' 

For VSAM files, the 10CB has an associated appendage, comprising 
the RPL, a dummy buffer if the file has the BUFFERED attribute, 
and a key save area if the data set is a VSAM KSDS. 

Appendix A. Control Blocks 377 



KEY DESCRIPTOR (KDl 

Function 

When Generated 

Where Held 

How Addressed 

Contains address and length of key for passing to library record 
I/O routines. 

As far as possible during compilation. If necessary, completed 
during execution. 

Normally in static internal control section. In static external 
control section if key is EXTERNAL. Will be copied into, or 
generated in, temporary storage if procedure is reentrant or 
recursive. 

From an offset from register 3 known to compiler code for 
internal keys. 

o 

4 

8 

o 

Flag 

Region 

1 

l 
No. 

2 3 

A(Key String) 

Not Usedl Length of Key 

in Fixed Binary, Right Adj. 

4 

VKDA 

VKDL 

VKDR 

VKDA: The address of the source key (excluding the length bytes 
if VARYING) 

FLAG (VKDVl 

VKFV Bit 0 = 1 

VKFB Bit I = 1 

Bits 2-7 

KEYTO string is VARYING. (If this bit is 
set, the I/O transmitters will set the 
current length field). 
This bit is set when the VKDR field contains 
a region number. 
Not Used 

VKDL: length of key string (excluding length bytes for 
VARYING); current length for KEY or KEYFROM, maximum length for 
KEYTO. 

378 OS PL/I Optimizing Compiler: Execution Logic 



LABEL DATA CONTROL BLOCK 

Function 

When Generated 

Where Held 

How Addressed 

Holds the address of the data item and, if a label variable, the 
address of the associated DSA. 

Label constants 

Label variables 

Label temporaries 

During compilation 

When the variable is allocated depending on 
storage class 

When required for GOTO to label constant 

Depends on the storage class of the data item. 

As a variable. 

Label Variable and Label Temporary 

o 1 2 3 4 

o A(Label Constant) Assigned to the 
label Variable 

4 ACDSA) at the Time of Assignment of 
Owning Block 

Word 11 bit 0 = o Address of label 
= 1 Text reference 

Word 2: bit 0 always = 0 

Label Constant 

0 1 2 3 4 

0 A(label) 

4 Value to be loaded into Reg. 2 on GOTO 
lot becomes the new base register. 

Appendix A. Control Blocks 379 



LIBRARY WORKSPACE (LWS) 

Function 

When Generated 

Where Held 

How Addressed 

Space reserved for two preformatted DSAs used by certain library 
modules. 

The first LWS is generated during program initialization. 
Subsequent LWSs are allocated before entry to any ON-unit. This 
is because the ON-unit may require the use of library modules 
using LWS but must not alter the environment of the interrupt. 

First allocation in the program management area. Subsequent 
allocations in the LIFO storage stack. ONCAs are generated with 
LWS. 

From offset X'48' in each DSA. 

o 

4 

50 

88 

8C 

D8 

110 

o I 2 3 

DSA Flags I Offset to the ONCA 

The same back-chain and 
register save areas that are shown 

in the DSA 
(See the DSA Control Block) 

56 Byte Workspace 

DSA Flags I Offset to the ONCA 

The same back-chain and 
register save areas that are shown 

in the DSA 
(See the DSA Control Block) 

56 Byte Workspace 

Current ONCA 
(see the ONCA Control Block) 

4 

>LLWO 

>LLWI 

DSA FLAGS: These flags are the same as Flag Byte 0 and Flag 
Byte 1 in the DSA. For further information on these flag bytes 
and their contents, see "Flags" on page 348. 

380 OS PL/! Optimizing Compilerl Execution Logic 



ON COMMUNICATIONS AREA (ONCAl 

Function 

When Generated 

Where Held 

How Addressed 

Dummy ONCA 

An area in which built-in function values or their addresses are 
placed, after the occurrence of a PL/I interrupt. 

The first ONCA is generated during program initialization. 
Subsequent ONCAs are generated with each allocation of LWS. 

Contiguous with LWS in the program management area and in the 
LIFO stack. 

By an offset from the current generation of library workspace. 
The offset is held as a halfword at offset X'2' in LWS. 

The dummy ONCA holds default values for the condition built-in 
functions. These will be supplied if they are requested either 
when no interrupt has occurred, or when no no interrupt with the 
requested condition built-in function value has occurred. There 
is a chain back through all ONCAs to the dummy ONCA. (See 
Chapter 7, "Error and Condition Handling" on page 105.) 

Appendix A. Control Blocks 381 



o 
4 

8 

10 

18 

20 

28 

30 

38 

3C 

40 

44 

48 

4C 

50 

FLAG 

LFOF 
lFOC 
lFID 
lFKY 
lFDF 
LFEV 
LFAT 
lFCT 

FLAG 

LFSC 
lFSS 

o 1 2 3 

Chain Back to Previous ONCA 

ONCODE IFlag LFGl Not Used 

String Locator for ONFILE 
(8 bytes) 

String locator for ONCHAR 
(8 bytes) 

String locator for ONSOURCE 
(8 bytes) 

String Locator for ONKEY 
(8 bytes) 

String Locator for DATAFIELD 
(8 bytes) 

String Locator for ONIDENT 
(8 bytes) 

A(Record I/O EVENT Variable) 

Pointer for ONATTN 

ONCOUNT 

Retry Environment 

Retry Address for Conversion 

X'40' X'OOOOOOOO' Flag LFG3 

LCT1 

(LFG1) 

Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit 4 
Bit 5 
Bit 6 
Bit 7 

(LFG3) 

= 1 
= 1 
= 1 
= 1 
= 1 
= 1 
= 1 
= 1. 

Retry Codes Not Used 

ONFILE valid 
ONCHAR/ONSOURCE valid 
ONIDENT valid 
ONKEY valid 
DATAFIELD valid 
Asssociate EVENT variable 
OHATTN valid 
1 ONCOUNT valid 

4 

LOCB 

LOFL 

LOCH 

LOSC 

LaKY 

LODF 

LOID 

LEVT 

LPAT 

LCNT 

LREN 

LRAD 

Bit 0 = 
Bit 1 = 

1 
1 

ONSOURCE or ONCHAR is used in an ON-unit 
ONSOURCE set in ONCA 

Bits 2-7 Not used 

LeT1: Copy of TCA fla9 byte 1 (TFBI). For further details, see 
"Task Communication Area (TCA)" on page 407. 

RETRY ADDRES (LRAD): The offset from the base of the library 
module involved to the address where a conversion is attempted 
again if ONSOURCE or ONCHAR is used. 

382 OS PL/I Optimizing Compiler: Execution Logic 



ON CONTROL BLOCK (ONCB) 

Function 

How Addressed 

When Generated 

Where Held 

Contains pointer to associated ON-unit, or indicates action to 
be taken when interrupt occurs. 

From offset X'60' in the DSA. 

Static ONCBs are generated during compilation, one for each ON 
statement. Dynamic ONCBs are generated by the prolog code of 
the procedure or block in which the ON statement occurs, or are 
allocated in a VDA when the ON statement is executed. 

Static ONCBs are generated in the Static internal control 
section. Dynamic ONCBs are stored in the DSA of the block in 
which the associated ON-unit occurs. 

static and Dynamic ONCSs 

Dynamic ONeB 

I static ONCB 

Static ONCBs are generated for unqualified conditions. Dynamic 
ONCBs are generated for qualified conditions (ENDPAGE, ENDFILE, 
etc.) 

o 

4 

8 

C 

o 
4 

o 

o 

1 2 3 4 

A(previous dynamic ONeB in block) LDBC 
or zero, if first 

Qualifier LDQU 

Condi tion I Flag I Code (LDFG) Not Used 

Target LDTR 

1 2 3 4 

conditionl Flag 
Code (LSFG) I Not Used 

Target LSTR 

Appendix A. Control Blocks 383 



QUALIFIER: ACDClCB) for I/O conditions ACSYMTAB) for CHECK 
ACCSECT) for CONDITION condition 

FLAG (LDFG AND LSFGl 

lSFO Bit 0 = 1 SYSTEM specified 
LSFI Bit 1 = 1 Null ON-unit 
LSF2 Bit 2 = 1 GOTO only ON-unit 
LSF3 Bit 3 = 1 Condition established 
LSF4 Bit 4 = 1 Not Used 
lSF5 Bit 5 = 1 Enabled at block entry 
LSF6 Bit 6 = 1 Condition enabled 
LSF7 Bit 7 = 1 SNAP specified 

TARGET: Address of ON-unit, or offset in DSA of word containing 
AClabel variable) 

384 as PL/I Optimizing Compiler: Execution Logic 



OPEN CONTROL BLOCK (OCB) 

Function 

When Gener'ated 

Wher'e Held 

How Addr'essed 

Used to indicate that a file attribute (either input or output) 
was declared in the associated OPEN statement. 

During compilation. 

Static internal control section. 

From an offset from register 3 known to compiled code. 

o 

4 

8 

o 

NPAA 

1 

I NPAB 

Open 

2 

I NPAC 

Conflict Mask 

ACENVB) 

3 

J NPAD 

4 

NDEM 

NENV 

OPEN ATTRIBUTES: This word indicates the explicit and implied 
attributes on the OPEN statement. 

NPPA 80 
10 
04 
02 
01 

NPAB 80 
40 
20 
10 
08 
02 
01 

NPAC 20 
10 
08 
04 
02 
01 

Debug open of SYSPRINT 
reserved (STRING) 
DISPLAY 
RECORD 
STREAM 

BACKWARDS 
UPDATE 
OUTPUT 
INPUT 
TRANSIENT 
DIRECT 
SEQUENTIAL 

AXES 
PRINT 
EXCLUSIVE 
KEYED 
UNBUFFERED 
BUFFERED 

OPEN CONFLICT MASK (NDEMJ: This is a mask generated by the 
compiler containing bits for all attributes which conflict with 
those on the OPEN statement. 

Appendix A. Control Blocks 385 



ORDERED DELETE LIST (ODLl 

Function 

When Generated 

Where Held 

How Addressed 

Hold list of transient modules to be deleted during program 
termination. 

During program initialization. 

This block is initialized to binary zeros; each routine places 
its address in the appropriate field as soon as it is loaded. 

Program Management area. 

From offset X'38' in the TCA. 

o 1 2 3 

ACIBMBEDWA) 

ACIBMBEDTA) 

ACIBMBKOTA) 

o 

4 

8 

C ACExtended float simulator) 

10 

14 

18 

IC 

20 

24 

28 

ACIBMBMYEA) 

ACIBMBMCTA) 

ACIBMBSPCA) 

ACIBMBPESA) 

ACIBMBCCLA) 

ACIBMBSTAB) 

ACIBMBEIIA) 

4 

386 OS PL/I Optimizing Compiler: Execution Logic 



PLIMAIN 

Function 

When Generated 

Where Held 

How Addressed 

Holds address of entry point of main procedure. 

During compilation of procedures with the MAIN option. 

A separate control section in the load module. 

Address resolved by linkage editor. 

o 1 2 3 4 

o VCON(Primary Entry Point to Program) 

4 Zero 

DUMMY PLIMAIN: A control section in IBMBPIRA and IBMTPIRA 
holding addresses of error message module. This control section 
is link-edited if no compiler generated PLIMAIN exists. 

Appendix A. Control Blocks 387 



PLISTART PARAMETER LIST 

Function 

When Generated 

Used to pass housekeeping information extracted by compiler to 
PL/I initialization routines. 

PLISTART is a CSECT generated by the compiler for every external 
compilation. The parameter list is part of the PLISTART CSECT. 

General Format of PLISTART 

PlISTART contains the three standard entry points PLISTART, 
PlICAlLA, and PlICALlB. When entry is made, addressability is 
established register 0 pointed at the parameter list and a 
branch made to entry point A,B, or C of the initialization 
routine from PLISTART, PLICAlLA, and PlICALLB respectively. 

The format of the parameter list for PlISTART is given below. 

Addressed by register 0 

COMMON SECTION 

o 

4 

8 

C 

10 

14 

18 

lC 

20 

o 1 2 3 

ACPlIMAIN) 

ACSYSPRINT DClCB) 

ACPlIFlOW) 

ACIBMBSTABA) 

LENGTH of PRV 

Always set to zero (after Release 2.0) 

ACRemote Shared Library Module list) 

A(PlICOUNT) or zero if NOCOUNT option 

ACPlIXOPT) or zero if none 

NON-EXTENDED ARCHITECTURE SECTION 

24 

28 

2C 

30 

o 1 2 3 

ZYLTR2 I ACIBMBPOPTA) if any 

ACPlIXHD) if any, or zero 

ACIBMBEATA) if INTERRUPT option 

ZYLTR3 I 

388 OS Pl/I Optimizing Compilerl Execution logic 

used 

4 

4 

ZYMA 

ZYSP 

ZYFL 

ZYTB 

ZYPR 

ZYFG 

ZYAl 

ZYCT 

ZYXO 

ZYPO 

ZYHD 

ZYEA 



MVS/EXTENDED ARCHITECTURE SECTION 

24 

28 

2C 

30 

34 

38 

3C 

40 

44 

48 

4C 

50 

54 

58 

5C 

60 

o 1 2 3 

ISA Length for Non-Multitasking 

Non-Multitasking Options Word 

Major Task ISA Length 

Minor Task ISA Length 

Version INot Used I Maximum Number 
Number of Subtasks 

Tasking Options Word 

Flow (ZOFWl) J Flow (ZOFW2) 

Heap Initial Size 

Heap Increment Size 

ISA Increment Size 

Major Task Heap Initial Size 

Major Task Heap Increment Size 

Major Task ISA Increment Size 

Minor Task Heap Initial Size 

Minor Task Heap Increment Size 

Minor Task ISA Increment Size 

4 

ZONI 

ZONW 

ZOTI 

ZOSI 

ZOTW 

ZONHI 

ZONHC 

ZONIC 

ZOTHI 

ZOTHC 

ZOTIC 

ZOSHI 

ZOSHC 

ZOSIC 

END HARKERS (ZVLTR2 AND ZVLTR3)t Bit 0 of these end markers is 
set to 1 to designate the end of the compiler for Release 2 and 
Release 3. 

Appendix A. Control Blocks 389 



RECORD DESCRIPTOR (RD) 

Function 

When Generated 

Where Held 

How Addressed 

To hold data about the record variable. 

During Compilation. 

Static control section. 

From an offset from register 3 known to compiled code. 

o 
4 

o 

Flag 

1 2 3 

A(Record Variable) 

I Length of Data to Transmit 

4 

VRDA 

VRDL 

FLAG (VRDV): These bits indicate the type of INTO or FROM 
argument as follows: 

VRFF 
VRFA 
VRFV 
VRFB 

X'OO' For fixed length strings 
X'Ol' For area variables 
X'02' For varying length character strings 
X'03' For varying length bit strings 

LENGTH (VRDL): This field is the length of data to be 
transmitted (length of variable or buffer for locate mode). The 
value is in bytes for all strings including bit strings. 

For VARYING strings, the value includes the two length bytes, 
and is the current length for output operations and the maximum 
length for input operations. 

390 OS PL/I Optimizing Compiler: Execution Logic 



REQUEST CONTROL BLOCK (RCB) 

Function 

When Generated 

Where Held 

How Addressed 

Used by the record I/O interface module (IBMBRIOA) to check the 
validity of an I/O statement. The instruction in RTMI is 
carried out by IBMBRIOA. 

During compilation. 

Static internal control section. 

From an offset from register 3 

0 1 2 

0 REQI REQ2 REQ3 

4 RTMI 

STATEMENT IDENTIFICATION (REQ1) 

RRED X'OO' READ 
RREW X'04' REWRITE 
RWRT X'OB' WRITE 
RLOC X'OC' LOCATE 
RDEl X'IO' DELETE 
RUNL X'14' UNLOCK 
RWAT X'la' WAIT 

OPTION CODES (REQ21 

RNON X'OO' None 
REVN X'OI' EVENT 
RNOL X'02' NOLOCK 
RIGN X'20' IGNORE 
RSET X'40' SET 
RIFR X'BO' INTRO/FROM 

KEY OPTION CODES (REQ3) 

RKFR 
RKTO 
RKFR 

X'20' KEYFROM 
X'40' KEYTO 
X'80' KEY 

known to compiled code. 

3 4 

INot Used 

RTMI: Either a TM or a BR instruction depending on source 
program. 

A TM instruction is used if the statement cannot be checked for 
validity during compilation, or if it has been checked and found 
to be invalid. 

TM instruction used by IBMBRIOA for testing the validity of a 
statement. 

X' 9H1M2SSS' 

Appendix A. Control Blocks 391 



where MM is byte containing current statement bit and SSS is 
offset of corresponding byte in FCB statement mask. 

A BR instruction is used if the statement has been checked 
during compilation and found to be valid. 

Unconditional branch instruction to PL/I library or LIOCS 
transmitter. 

When the TM instruction is issued, register 2 points to the File 
Control Block (FCB) and SSS becomes the appropriate offset in 
the statement mask, field FFST. 

392 OS PL/I Optimizing Compiler: Execution Logic 



STATEMENT FREQUENCY COUNT TABLE 

Function 

When Generated 

Where Held 

How Addressed 

To retain a record of the number of times a statement has been 
branched to or from, for use by the COUNT option. 

When the associated procedure is entered. 

Non-LIFO storage 

The statement frequency count table for the first external 
procedure in a program is addressed from offset X'48' in the TCA 
appendage (TIA). The tables are chained together and the chain 
field of the last table set to zero. The chain field is at 
offset 0 in the table. The most recently used table is 
addressed from X'4C' in the TIA. 

o 

4 

8 

10 

14 

18 

IC 

20 

o 1 2 3 

ACNext Table) 

ACStatic CSECT of PROCEDURE) 

Name of Procedure 

Flags 

A(First Segment) 

ACNext Segment) 

Number of Entries 

Length of Segment 

Count Entry or Number 

Count Entry 

Count Entry or Number etc. 

4 

ACTB 

ACST 

ACEP 

ACFL 

ACBS 

ACSG 

ACNG 

ACLG 

ACBS: The address held in ACBS is the address of ACGS. If 
tables are segmented, second and subsequent sections of the 
table will start at a point equivalent to ACSG. 

Appendix A. Control Blocks 393 



FLAG (ACFL) 

ACBI Bit 0 = 1 
ACGT Bit I ::; I 
ACIA Bit 2 = 1 
ACNM Bit 3 = 1 

ACUI Bit 4 = 1 
ACZl Bit 5 = 1 

Bits 6 & 7 

The last update was for a branch in 
The last update was for a GOTO out of a block 
The table is inactive 
The table is for a procedure with the 
GONUMBER option 
The table is uninitialized 
The table contains unexecuted ranges 
Not used 

394 OS PL/I Optimizing Compiler: Execution Logic 



STATEMENT NUMBER TABLE 

Function 

When Generated 

Where Held 

How Addressed 

Sections of Table 

To relate statement numbers to offsets so that statement numbers 
may be given in execution-time messages. 

During compilation, if the GOSTMT or GONUMBER option is in 
effect. 

static internal control section. 

From offset X'8' from entry point of main procedure. 

Becau!ie offsets are held in two bytes and the value may in fact 
take up to three bytes, it is necessary to hold the table in 
secticms. 

Statement Number Format 

Line Number Format 

Halfword binary right-aligned. 

o 

4 

8 

C 

o I 2 3 

A Primary Entry Point of Block 

Size of Code Generated for Block 
(in bytes) 

A(End of First Section or Start 
of Second Section) 

Offset statement Number 

Offset statement Number 

A(End of Second Section/Start 
of Third Section) 

Offset statement Number 

Etc. 

4 

ZMEP 

ZSBl 

ZANB 

When line numbers are generated they are held in 6-byte fields. 
The first 27 bits hold the line number, right adjusted in 
bina~y. The last five bits hold the number of the statement on 
the line, again right adjusted in binary. 

The presence of line numbers is indicated by bit 5 of Flags 2 in 
the DSA being set to 1. The validity of Flags 2 is indicated by 
bit 15 in the flags in the first two bytes of the DSA being set 

Appendix A. Control Blocks 395 



to 1. The presence of line numbers is indicated if both these 
flags are set to 1. 

* = End of first section 

Offset: Offset is the offset of the first byte of the 
statement relative to the address of the primary entry 
point of the block. If the offset is more than 
X'7FFF' the statement number will be held in the 
second or subsequent sections of the table. Obtain 
the number given by translating the offset into binary 
and ignoring the last 15 bits and step down this 
number of sections of the table. (For example, if the 
offset was X'8FFF', translate to binary = '1000 1111 
1111 Illl'B, ignore last 15 binary digits =1, 
therefore step down one section of the table. If the 
offset was X'18FFF' the binary would be '0001 1000 
1111 1111 lllI'B. Ignoring the 15 right hand bits 
leaves '1l'B therefore step down three sections of the 
table.) 

The address of the second section of the table is held at offset 
X'8' in the table, the address of the third section is held at 
the head of the second section, the address of the fourth 
section at the head of the second section and so forth. 

396 OS PL/I Optimizing Compiler: Execution Logic 



STORAGE REPORT TABLE 

Function 

When Generated 

Where Held 

How Addressed 

To hold the information from which a storage report will be 
generated. 

During program or task initialization. 

Program management area, or for major task in storage associated 
with the control task. 

From X'3S' in the TIA. 

Non-multitasking and PL/I Task Table 

o 
4 

S 

C 

10 

14 

IS 

lC 

20 

24 

28 

2C 

30 

34 

38 

3C 

40 

44 

o I 2 3 

End of Stack Pointer (EOS) 

Used ISASIZE 

TRFG I Specified ISASIZE 

ISA adjustment 

Extra storage required 

Number of GETMAINs 

Number of FREEMAINs 

Number of get non-lIFO requests 

Number of free non-LIFO requests 

Current extra storage owned 

Current unused ISA 

Address of tasking appendage 
(multitasking only) 

Heap GET Requests 

Heap FREE Requests 

Heap GETMAIN Count 

Heap FREEMAIN Count 

Maximum Amount of Heap GETMAINed 

Heap Current GETMAIN 

4 

TRES 

TRUS 

TRSS 

TRUN 

TREX 

TRGM 

TRFM 

TRGN 

TRFN 

TRCS 

TRUI 

TRTT 

TRHGN 

TRHFN 

TRHGM 

TRHFM 

TRHMX 

TRHCS 

Appendix A. Control Blocks 397 



Control Task Table 

Major task table 

FLAG BYTE (TRFGJ 

TRMT Bit 0 = I 
TRUC Bit I = I 

Bits 2-7 
Update complete (get LIFO) 
Not used 

o 
4 

8 

C 

10 

14 

18 

lC 

20 

24 

28 

2C 

30 

34 

38 

3C 

40 

44 

48 

4C 

50 

54 

o I 2 3 4 

Major Task - Used ISASIZE 

Major Task - Specified ISASIZE 

Major Task - ISA Adjustment 

Major Task - Extra Storage Required 

Major Task - Number of GETMAINs 

Major Task - Number of FREEMAINs 

Major Task - Number of Get Non-LIFO 
Requests 

Major Task - Number of Free Non-LIFO 
Requests 

Current Extra Storage 

Current Unused ISA 

ACTasking Appendage) 

Major Task - Heap GET Requests 

Major Task - Heap FREE Requests 

Major Task - Heap GETMAIN Count 

Major Task - Heap FREEMAIN Count 

Maximum Amount of Heap GETMAINed 

Heap Current GETMAIN 

Subtasks - Maximum ISASIZE Used By Any 
Subtask 

Subtasks - Minimum ISASIZE Used By Any 
Subtask 

Subtasks - Specified ISASIZE, All 
Subtasks 

Subtasks - Maximum storage Required, 
any Subtask 

Subtasks - Minimum storage Required, 
any Subtask 

398 OS PL/I Optimizing Compiler: Execution Logic 

CSMU 

CSMI 

CSMN 

CSMX 

CSMG 

CSMF 

CSMH 

CSMJ 

TRCS 

TRUI 

TRTT 

CMHGN 

CMHFN 

CMHGM 

CMHFM 

CMHMX 

CMHCS 

CSXU 

CSNU 

CSSI 

CSXN 

CSNN 



58 

5C 

60 

64 

68 

6C 

70 

74 

78 

7C 

80 

84 

88 

Subtasks - Maximum Extra Storage, Any 
Subtasks 

Subtasks - Minimum Extra Storage, Any 
Subtasks 

Subtasks - Total Number of GETMAINs 
for All Subtasks 

Subtasks - Total Number of FREEMAINs 
for All Subtasks 

Subtasks - Total Number of Get Non-LIFO 
Requests for All Subtasks 

Subtasks - Total Number of Free Non-
LIFO Requests All Subtasks 

Maximum Number of PL/I Tasks Attached 

Sub tasks - Heap GET Requests 

Subtasks - Heap FREE Requests 

Subtasks - Heap GETMAIN Count 

Subtasks - Heap FREEMAIN Count 

Heap Maximum Storage 

Heap Minimum Storage 

CSXX 

CSNX 

CSSG 

CSSF 

CSSH 

CSSJ 

CSNA 

CSHGN 

CSHFN 

CSHGM 

CSHFM 

CSHXX 

CSBNX 

Appendix A. Control Blocks 399 



STREAM I/O CONTROL BLOCK (SIOCS) 

Function 

When Generated 

Where Held 

How Addressed 

Holds addresses of source and target, source and target DEDs etc 
and is used as parameter list by stream I/O routines. 

During execution for the duration of the stream I/O statement. 

In temporary storage. 

Passed as parameter list by compiled code. 

o 

4 

8 

C 

10 

14 

18 

Ie 

20 

24 

28 

o 1 2 3 

A(Source or its Locator> 

ACSource DED) 

ACTarget or its Locator) 

ACTarget DED) 

SFLG I STYP I SDSA I SDFl 

A(FCB for File) 

ACNext Statement) 

Save Word Used in Compiler 
Generated Subroutines 

Value of COUNT I Not Used 
Built-In Function 

Address of ONCA 

Area Used During GET or PUT String to 
Hold Dummy FCB. 

4 

SSRC 

SSDD 

STRG 

STDn 

SFCB 

SRTN 

SAVE 

SCNT 

SOCA 

SSTR 

FLAG BYTE (SFLG) 

sxr1T Bit 0 = 
SVDA Bit 1 = 
SSED Bit 2 = 
51ST Bit 3 = 

Bits 4-7 

1 
1 
1 
1 

Transmit on input 
VDA used in edit-directed input 
IBMBSED is used 
Call to IBMSIST required after dealing with 
next item (stream I/O only) 
Not used 

COMPILED CODE'S DSA NUMBER (SDSA)a DSA level number (used only 
for data-directed I/O) 

400 OS PL/I Optimizing Compilerl Execution Logic 



TYPE CODE (STYPl 

SCHK X'SS' CHECK entry to data-directed I/O 
SDAT X'SO' Data-directed I/O 
SlST X'40' list-directed I/O 
SEDT X'20' Edit-directed I/O 
STRl X'lO' String I/O 
SGET X'04' Input 

DATA-DIRECTED FLAG (SDFLl 

SDTR Bit 0 = 1 
Bits 1-7 

Terminating call to data-directed output 
Not used 

Appendix A. Control Blocks 401 



STRING LOCATOR/DESCRIPTOR 

Function 

When Generated 

Where Held 

How Addressed 

Allocated Length 

string Descriptor 

Used to pass the address and the length of strings to other 
routines. Also for handling strings with adjustable lengths for 
example, DCl STRING CHAR (N)). 

Storage reserved during compilation. Fields completed during 
execution if string has adjustable length. 

Static internal control section. 

From an offset from register 3 known to compiled code. 

o 
4 

o 1 2 3 

Byte Address of String 

Allocated length IFINot Usedl 

4 

F2 

F = '0' B Fixed string (First bit of second byte) 

'1' B Varying string 

F2: Used for bit strings to hold offset from byte address of 
first bit in string (3 bits) 

For varying strings this is the declared length. length is held 
in bits for bit strings and in bytes for character strings. 

The string descriptor is the second word of the string 
locator/descriptor. It appears in structure descriptors and in 
the description field of controlled variables. 

I GRAPHIC Option of ENVIRONMENT 

For the GRAPHIC option of the ENVIRONMENT attribute, the 
allocated length is the length that is declared. For example, 
if: 

Del B GRAPHIC(4) 

then a value of 4 will be in the allocated length field. length 
is held in number of graphics. 

402 OS Pl/I Optimizing Compiler: Execution logic 



STRUCTURE DESCRIPTOR 

Function 

When Generated 

Where Held 

How Addressed 

General Format 

Contains information about the offset of each element within a 
structure, and the nature of each element. Used when passing a 
structure to another routine, or for accessing structure 
elements during execution, if the structure is declared with 
adjustable extents or with the REFER option. 

If the structure has no adjustable elements, during compilation. 
If the structure has adjustable elements, during execution from 
information held in the aggregate descriptor descriptor. 

static internal control section. 

From an offset from register 3 known to compiled code. 

For each base element in the structure, a fullword field 
containing the offset of the start of the element from the start 
of the structure is given. If the base element is a string, 
area, or array, this fullword is followed by a descriptor, which 
is followed by the offset field for the next base element. If 
the base element is not a string, array, or area the descriptor 
field is omitted. 

o 

4 

8 

c 

o 1 2 3 4 

Element Offset from the Start 
of the Structure 

Element Descriptor (if Required) 

Element Offset from the Start 
of the Structure 

Element Descriptor (if Required) 

. 
For every base element in the 
structure, an entry is made 
consisting of an offset field 
and, if the element requires 
a descriptor, a descriptor. 

OFFSET: The offset field is held in bytes. Any adjustments 
needed for bit-aligned addresses are held in the respective 
descriptors. 

Appendix A. Control Blocks 403 



SYMBOL TABLE (SYMTABl 

Function 

When Generated 

Where Held 

How Addressed 

Holds the name of the variable during execution and associates 
it with the address of the variable. Used only when 
data-directed I/O or the CHECK condition is specified. 

During compilation, if data-directed I/O or the CHECK condition 
is used in the program. 

static internal control section for internal names. Separate 
control section for external names. External control sections 
consist of the name followed by an *. 

From an offset from register 3 for internal data, by an address 
generated by the linkage editor for external data. 

8 

4 

8 

C 

10 

a 

FLAGS 

VSFl 
VFST 
VFPK 
VFSR 
VFDA 
VFCH 

VFXT 
VFBS 
VFCN 
VFDF 
VFAU 
VFNP 
VFPR 

VSF2 

1 2 3 

Flags I Dimension I (VSFl) (VSF2) ality 

A(DED) 

Address Field A 

Address Field B 

level 
Number 

4 

VSDD 

VSFA 

VSFB 

Length of Name I 

X'OO' 
X'OI' 
X'02' 
X'04' 
X' 08' 

X'IO' 
X'20' 
X'40' 
X'60' 
X'80' 
X'AO' 
X'EO' 

Name (Fully Qualified) 

STATIC 
Normal Syr-tTAB 
A member of a structure 
Address field A refers to data. 
The item may appear in some CHECK list. If the item 
is EXTERNAL, then VFXT must also be X'IO'. This 
field is not used if for a CONTROLLED parameter. 
EXTERNAL 
BASED 
CONTROLLED (non-parameter) 
DEFINED 
AUTOMATIC 
A non-CONTROLLED parameter 
A CONTROLLED parameter 

VFAC Bit 0 = 1 
VFTR Bit 1 = 1 

Address 
Dynamic field enabled 

404 OS Pl/I Optimizing Compiler. Execution logic 



VSF2 
VFDR Bit 2 = 1 Dictionary reference precedes symbol table 
VFIS Bit 3 = 1 ISUB defined 
VFBI Bit 4 = 1 Special cases of BASED 
VFB2 Bit 5 = 1 Special cases of BASED 

Bits 6 & 7 Not used 

DIMENSIONALITY, The number of dimensions declared for an array 
item. Dimensionality is zero for other items. 

LEVEL NUMBER, (for AUTOMATIC, DEFINED, and BASED items. Also 
for all parameters.) The level for the block in which the 
variable is declared. The level of a block is one greater than 
the level of the immediately containing block; the level of the 
external block is O. 

ADDRESS FIELDS: Addresses are held in different formats for 
different data types. As far as possible, addresses are held in 
address field A. However, more information than can be held in 
a fullword field is sometimes required. When this is the case, 
address fields Band C are used. 

ADDRESS FIELD A, If STATIC Address of data or address of 
locator for items that have locators. 

If AUTOMATIC 
Offset within the associated DSA of the data of of the 
locator for items that have locators. 

If CONTROLLED 
Offset of the data or its locator from the address in the 
anchor word. 

If BASED 
Offset of field within DSA containing address of declared 

• pointer qualifier . 

If PARAMETER or DEFINED 
Offset of one word field in associated DSA containing 
address of corresponding argument, or DEFINED data, or its 
locator. For CONTROLLED parameters, the argument is its 
anchor word. 

ADDRESS FIELD BI Used for CONTROLLED and BASED items only. 

If CONTROLLED 
Address of anchor word, either in static internal for 
internal data or in a separate CSECT for external data. 

If BASED 
See below. 

other data 
Not used for other data types. Set to a null value of all 
zeros. 

Appendix A. Control Blocks 405 



SYMBOL TABLE VECTOR 

Function 

When Generated 

Where Held 

How Addressed 

General Format 

Holds addresses of symbol tables and associates them with the 
block in which the associated names were declared. 

During compilation. 

Static internal control section. 

o 
4 

8 

c 

o I 2 3 

ACSymbol Table) 

ACSymbol Table) 

Fullword of Zeros 

ACof Entries in Symbol Table 
of Encompassing Block). All 

for Main Procedure Block 

Etc. 

Vector 
Zeros 

4 

<--marks end of 
block 

From an offset from register 3 known to compiled code. 

The format of symbol table vector is a series of fullwords. 
These contain either: 

1. The address of a symbol table 

or 

2. The address of the entry in the symbol table vector of the 
start of the entries for the encompassing block. 

or 

3. A fullword of zeros indicating the end of the current block. 

406 OS PL/I Optimizing Compiler: Execution Logic 



TASK COMMUNICATION AREA (TCA) 

Function 

When Generated 

Where Held 

How Addressed 

The TCA is the central communication area for the program. It 
is used to address the error-handling and storage-management 
routines, and to point to the current segment of dynamic 
storage. 

During program initialization by IBMBPIR. 

In the program management area at the head of the initial 
segment area (ISA). 

From Register 12 

-8 

o 

4 

8 

C 

10 

14 

18 

lC 

20 

24 

28 

2C 

30 

34 

38 

3C 

40 

44 

48 

o 1 2 3 

"Eye Catcher" 

TFBO I TFBl I TFB2 I TFB3 

ACPRV or Zero) 

Beginning of Segment Pointer (BOS) 

End of Segment Pointer (EOS) 

DSA next invocation count 

ACcurrent event variable) 

A(External Save Area) 

ACTRT Table for errors) 

Task Level 

A(Current Task Variable) 

ACTCA appendage) 

ACTasking Appendage) 

ACSave Area for Program Management) 

Open File Chain Anchor 

ACLoaded Module List) 

Unused 

ACDiagnostic File Block) 

PL/I Return Code I User Return Code 
(TORC) (TURe) 

ACOverflow Routine for Get VDA) 

4 

TFLG 

TPRV 

TBOS 

TEOS 

TINC 

TEVT 

TESA 

TTRT 

TTIC 

TTSK 

TTIA 

TTTA 

TPSA 

TPoP 

TODL 

TBUG 

TDFB 

TOVV 

Appendix A. Control Blocks 407 



4C 

50 

54 

58 

5C 

60 

64 

68 

6C 

70 

74 

78 

7C 

80 

FO 

F4 

F8 

FC 

100 

104 

108 

10C 

110 

114 

118 

IIC 

120 

124 

o 1 2 3 

A(Flow statement Number Table) 

A(Tab Table) 

A(Flow module) 

A(LPA Module - Region) 

A(LPA Module - LPA) 

A(LPA Module - LPA) 

PRV Initialization Word or Zero 

A(Module list) 

A(Get Dynamic storage Routine) 

A(Free Dynamic Storage Routine) 

A(Overflow Routine for Get DSA) 

A(ON Condition Handler) 

TXAF INot Used I TRlR I TTLR 

Normal GOTO Code 

Used When GOTO Out of a Block May Occur 

A(EFCL) / Dummy if No FLma.l or COUNT 

A(Interpretive GOTO Routine) 

A(Get Control Routine) 

A(Free Control Routine) 

ACEnqueue SYSPRINT Routine) 

A(Dequeue SYSPRINT Routine) 

ACWAIT Routine) 

A(COMPLETION Pseudo-variable Routine) 

ACEVENT Assign Routine) 

ACPriority Routine) 

ACEnqueue/Dequeue Routines) 

Reserved for Users 

A(Attention Checking Routine) 

ACSystem Dependant Appendage) 
Appendage under CICS 
(Otherwise not Used) 

408 OS PL/I Optimizing Compilerc Execution logic 

4 

T5FT 

TTAB 

TEFL 

TPSR 

TPSL 

TPSM 

TPRI 

TAML 

TGET 

TFRE 

TOVF 

TERR 

TENV 

TGTC 

TEFC 

TOTM 

TGCL 

TRCL 

TEQR 

TDQR 

TAWT 

TACP 

TAEA 

TAPR 

TEDR 

TUSR 

TATP 

TCIC 



Flags (TFLGJ 

Indicate that an abnormal GOTO out of block may take place. 
Also indicate that certain special error conditions may arise. 

FLAG BYTE 0 (TFBOJ 

TTIS Bit 0 = I Subtask TCA 
TTTT Bit 1 = 1 Program may multitask 
TTCK Bit 2 = 1 Reserved for the Checkout Compiler 
TTFT Bit 3 = I Eldest task from attaching DSA 
ITFD Bit 4 = 1 Daughter tasks exist 
TTKK Bit 5 = 1 Operating under CICS 
TTDB Bit 6 = 1 Using a data base system 

Bit 7 Not used 

Note: This flag byte is the only one in the TCA used by the 
central task without synchronizing with the subtask. The 
subtask must never change it. This prevents interference 
between CPUs on a multiprocessing machine. 

FLAG BYTE l(TFBll 

TGFD 
TGFE 

TGFS 
TGNQ 
TGTE 

Bit 0 = I 
Bit 1 = I 
Bit 2 
Bit 3 = 1 
Bit 4 = 1 
Bit 5 = 1 
Bits 6 & 7 

FLAG BYTE 2 (TFB2) 

THQS Bit 0 = 1 

THQI Bit I = I 

Bit 2 
THeC Bit 3 = 1 
THFN Bit 4 = I 
THQF Bit 5 = I 
THQR Bit 6 = I 
THQC Bit 7 = 1 

FLAG BYTE 3 (TFB3J 

TMDF Bit 0 = 1 
TPNR Bit 1 = 1 

Bit 2 
TNFP Bit 3 = 1 
TNOF Bit 4 = I 
TISN Bit 5 = 1 
TFCT Bit 6 = I 

Bit 7 

FLAG BYTE 4 (TXAFJ 

TX31 Bit 0 = I 
TXESPIBit 1 = 1 
TXESTABit 2 = 1 
TXASYSBit 3 = 1 

Bits 4-7 

At least one daughter task may exist 
At least one active EVENT I/O ON-unit 
Not used 
Exit routine active SORT 
SYSPRINT enqueue by this task 
Task ending 
Not used 

Raise SIZE for fixed-point divide, 
fixed-point overflow, exponent overflow, or 
decimal overflow exceptions 
Ignore fixed-point divide, fixed-point 
overflow or exponent overflow exceptions 
Not used 
Fast/Initialization in use 
Initialized; set to 'O'B when an ON FINISH 
statement is executed. 
File associated with SIZE 
Return to caller after normal return from 
ON-unit 
I/O conversion 

Dynamic FLOW set on 
Prompt not required 
Not used 
No floating point instructions 
No FLOW for this GOTO 
Implied SKIP next 
COUNT required 
Not used 

Entry AMODE(31) 
ESPIE in use 
ESTAE in use 
Extended architecture 
Not used. 

T80S& The pointer that points the the beginning of the current 
segment. 

Appendix A. Control Blocks 409 



TEOS: The pointer that points to the end of the current 
segment. (See Chapter 6, "Storage Management" on page 84). 

TESA: The address of the save area for the calling routine, if 
IBMBPIR was not called from the control program. 

TTRT: The translate-and-test table contains code used in error 
handling to identify relevant ON-cells. 

TPSA: This points to a preformatted DSA reserved for storage 
management. 

TFOP: Used when closing files at the end of a job. 

TORC & TURe: A Standard area to keep these codes. 

TOVV: Stack overflow routine for FDAs, (see Chapter 6, "Storage 
Management" on page 84). 

TSFT: This is used to address the flow statement table which 
holds statement numbers for use during execution. 

TTAB: The address of a table of tabulator positions used in 
list-directed output. 

TEFL.: The address of the module used to implement the compiler 
FLOW option. 

SHARED LIBRARY (TPSR, TPSL, & TPSM): Used when accessing PL/I 
library modules in the link-pack-area. 

TPRI: Used to access word set in PRV when files are closed. 

STORAGE POINTERS (TGET, TFRE, & TOVF): Entry points to IBMBPGRA 
that get non-LIFO storage, free non-LIFO storage, and acquire a 
new segment for LIFO STORAGE (see Chapter 6, "Storage 
Management" on page 84). 

TERR: Address branched to after a software-detected interrupt 
occurs, (see Chapter 7, "Error and Condition Handling" on 
page I 05) . 

TENV: Identifies release of libraries being used. See also, 
"Flag Byte 4 (TXAF)" on page 409. 

TRLR: The resident library release number. 

TTLR: The transient library release number. 

TGTC: Whenever a GOTO out of block occurs or could potentially 
occur because of the value of a label variable, compiled code 
branches to this code in the TCA. 

The function of this code is described under "Handling Flow of 
Control" on page 31. 

TGCL: Routine used in multitasking, (see 
Chapter 14, "Multitasking" on page 307). 

TEQR & TDQR: Library routines used in stream I/O (see 
Chapter 9, "Stream-Oriented Input/Output" on page 185). 

TAWT: Address of IBMBJWT, the module used to execute the WAIT 
statement. 

TACP: Address of COMPLETION pseudo-variable module. 

TAEA: Address of event assign module. 

TAPR: Address of the priority routine. 

TEDR: Used for enqueuing and dequeuing files other than 
SYSPRINT. 

410 OS PL/I Optimizing Compiler: Execution Logic 



TCA IMPLEMENTATION APPENDAGE (TIAl 

Function 

When Generated 

Where Held 

How Addressed 

To hold control and communication information. 

During program initialization. 

Program management area. Addressed from offset X'28' in the 
TCA. 

From X'28' in the TCA. 

-8 

o 

4 

8 

C 

10 

14 

lC 

20 

24 

28 

2C 

30 

38 

3C 

40 

44 

48 

4C 

50 

o 1 2 3 

"Eye Catcher" 

ACByte Beyond ISA) 

A(Old PICA)/Fake PICA 

AClnterrupt Handler) 

Interrupt Mask I Flagsl I Flags2 

WIT chain anchor 

Anchor for Chain of Exclusive Blocks 

ACLast Free Element) 

ACDump Block) 

ACDummy DSA) 

ACGet LWS Routine) 

ACExtended Float Simulator) 

Two Words for the Name of the 
Extended Float Simulator 

ACStorage Report Information) 

Chain of Fetched Entry Points 

ACSTAE Exit Routine) 

ACHousekeeping Interrupt Routine) 

ACFirst Count Table) 

ACLast Count Table Used) 

Saved A(TCA) for the Error Handler 

4 

TISA 

TAPC 

TERA 

TINM 

TWTW 

TEXF 

TLFE 

TDUB 

TDDS 

Tl~JR 

TASM 

TSNM 

TASR 

TFEP 

TAST 

TERC 

TCTF 

TCTL 

TATC 

Appendix A. Control Blocks 411 



54 

58 

5C 

60 

64 

68 

6C 

70 

74 

78 

7C 

o 1 2 3 4 

A(STAE Block) 

A(PlISTART Parameter list) 

Flags3 Not Used Caller's 
Program 
Mask 

Real EOS (lIFO Stack) 

ISA Increment Amount 

Heap Initial Allocation 

Heap Increment Amount 

Heap Initial Address 

Heap Storage Chain 

Heap Free Chain 

Error Counter 

FLAGSl (TFL1J 

TFlA 
TFlS 
TFLJ 
TFlK 

Bit 0 = 1 
Bit 1 = 1 
Bit 2 = 1 
Bit 3 = 1 
Bits 4-7 

FLAGS2 (TFL2J 

TFlD Bit 0 = 1 
TFlR Bit 1 = 1 
TFlT Bit 2 = 1 
TFlP Bit 3 = 1 

Task terminated normally 
SYSPRINT open STREAM print 
STAE exit in progress 
Dump I/O in progress 
Not used. 

Caller provided ISA 
storage report required 
STAE required 
SPIE required 

TABD 

TRPS 

TXRES 

TXIIC 

TXHIN 

TXHIC 

TXHAD 

TXBOC 

TXlFE 

TERN 

TFlX. Bit 4 = 1 Syntax error in program management options 
TFlM Bit 5 = 1 Multiple STAE required 

Bits 6 & 7 Not used 

FLAGS3 (TFL3) 

TXHFR Bit 0 = 1 Free heap segments 
TXHBl Bit I = 1 Heap below the 16M line 
TXIFR Bit 2 = 1 Free ISA segments 
TXHIT Bit 3 = 1 Heap initialized 
TXHPA Bit 4 = 1 Heap preallocated 

Bit 5 & 6 Not used 
TXNHP Bit 7 No heap processing 

TISA. This holds the address beyond the end of the partition 
and is necessary because EOS gets altered when non-LIFO dynamic 
storage is allocated. 

TAPe: Used to restore SPIE to that which existed when the PL/I 
program was called. 

TERA: This is the address to which the branch is made after a 
program check interrupt (see above) has occurred. 

412 OS Pl/! Optimizing Compiler. Execution Logic 



INTERRUPT MASK AND FLAGS (TINM): Wait information table (WIT) 
chain header (TWTW): 

Start of the chain indication which events are being 
waited-on in the task. 

TEXF: Used when handling exclusive files. 

TLFE: Address of last free area of non-LIFO storage on the free 
area chain. It is used as a starting point when searching the 
chain. 

TDUB: Used when a PlIDUMP is being executed. 

TDDS: Used, when abnormally terminating the program, to restore 
IBMBPIR's registers. This allows IBMBPIR to be reached should 
the DSA chain be overwritten. 

TLWR: This is part of the resident library module IBMBPIR and 
is used to get a new allocation of library workspace and in 
ONCA. This routine is called after interrupts and during 
program initialization, (see Chapter 3, "The PL/I Libraries" on 
page 53). 

TSAM: Used on machines that do not have the extended 
floating-point instructions to handle extended floating-point 
data. 

TSNM: Used to hold the name of the extended float simulator, so 
that it can be invoked if required. 

TCA TASKING APPENDAGE (TTA) 

Function 

When Generated 

Where Held 

How Addressed 

To hold control and communication information used in 
multitasking programs. 

During program initialization. 

Program Management area. 

From X'2C' in the TCA. 

Appendix A. Control Blocks 413 



o 

4 

8 

10 

14 

18 

IC 

20 

24 

28 

2C 

30 

o 

Post Codes to Control Task 

1 2 3 

POST Event Control Block 

Parameter list for Control Task 
(2 words) 

WAIT Event Control Block 

ACTCB) 

ACECBLIST Element) 

ACTCA) 

Not Used 

Chain of Sister Tasking Appendages 

Anchor for Subtask Sister Chain 

Anchor for I/O EVENT Chain 

ACAttaching DSA) 

ACTask Invocation Point) 

X'O' Completion pseudo-variable 

X'4' EVENT assignment 

X'S' PRIORITY pseudo-variable 

X'C' I/O EVENT completion 

X'IO' WAIT termination 

X'14' Detach this block 

X'I8' Dedicate control task 

X'lC' Liberate control task 

X'20' Attach a task 

X'24' End of task 

X'2S' Terminate a subtask 

X'2C' Terminate a sub task 

414 OS Pl/I Optimizing Compiler: Execution Logic 

4 

TPEC 

TCTP 

THEC 

TTCB 

TAEE 

TTCA 

TSIS 

TSUB 

TIDE 

TDSA 

TALR 



TASK VARIABLE (TV) 

Function 

When Generated 

Where Held 

How Addressed 

To hold information about task 

Depends on storage class 

Depends on storage class 

From offset X'24' in the TCA. 

o 
4 

8 

C 

o 

FLAGS 

KFLO 
KACT 

KFLl 
KDUM 
KSTE 

1 2 3 

KFLO I KFLI I Priority 

ACSYMTAB) 

ACTCA Tasking Appendages) 

ACCalling PROCEDURE) 

Bit 0 = 1 
Bits 1-7 

Bit 0 = 1 
Bit 1 = I 
Bits 2-7 

Active 
Not used 

Dummy 
Symbol table exists 
Not used 

4 

Appendix A. Control Blocks 415 



WAIT INFORMATION TABLE (WIT) 

Function 

Used to hold information about a WAIT statement 

When Generated 

Where Held 

How Addressed 

When the WAIT statement is initiated 

In the LIFO stack 

From X'lO' in the TIA. 

0 1 2 3 

ACChain Back) 

A( Events and Event Control Blocks) 

o 

4 

8 

C 

ACByte Beyond Table) 

Not Used 

416 OS PL/! Optimizing Compilera Execution Logic 

4 

WCHB 

WAET 

WABT 



ZYGOLINGUAL CONTROL LIST (ZCTL) 

Function 

When Generated 

Where Held 

How Addressed 

To hold information required for interlanguage calls. Holds 
information that does not change for every invocation. 

On the first interlanguage call. 

In the lIFO stack if Pl/I is main procedure. If COBOL or 
FORTRAN is principal procedure, at the head of the unused 
portion of the region immediately before the TCA. 

From offset X'4' in IBMBllCI. 

o 
4 

8 

C 

10 

14 

18 

lC 

20 

24 

34 

44 

48 

4C 

50 

98 

9C 

AO 

A4 

o 1 2 3 

"Eye Catcher" 

A( latest Interlanguage VDA) or Zero 

Flag by tel Temporary Program Mask 

ESPIE Return for PL/I 

ESPIE Return for COBOL 

ESPIE Return for FORTRAN 

Pl/I PICA / ESPIE Parameter list 

COBOL PICA / ESPIE Parameter list 

FORTRAN PICA / ESPIE Parameter List 

Work areal for Passing Interrupts 
to Entry Point IE002 in Module 

IBMBIEC. 

Work areal for Passing Interrupts 
to Entry Point IE013 in Module 

IBMBIEF. 

TCA Flags I 
Save Area 

ACTCA) 

Multitasking Work Area 

18 Word Save Area that is Used For 
FORTRAN PIR and Pl/I STOP 

ACLWS) 

ACNAB) 

JGOTO codel 

STAE 

4 

ZCTlE 

ZCVD 

ZTPGMASK 

ZCAPRET 

ZCACRET 

ZCAFRET 

ZCAP 

ZCAC 

ZCAF 

ZCCP 

ZCFP 

ZCTF 

ZCCR 

ZCTA 

ZCSI 

ZLWS 

ZNAB 

ZFXN 

ZCAE 

Appendix A. Control Blocks 417 



A8 

B8 

100 

148 

158 

168 

o 1 2 3 

Ghost Save Area (4 words) 

Save Area for PL/I PIR (18 words) 

Register Save Area for the caller 
of initial IBMBIEP 

ESPIE Test data for PLI 

ESPIE Test data for COBOL 

ESPIE Test data for FORTRAN 

4 

ZCGS 

ZCS2 

ZCS3 

ZPlI 

ZCOBOL 

ZFTN 

IThis data area is for "INTER PICA" or for an ESPIE parameter 
list, which is used if the INTER option is specified. 

FLAG BYTE (ZCRP) 

IEUVC Bit 0 = 1 If there is a previous call to COBOL 
IEUVF Bit 1 = I If there is a previous call to FORTRAN 
IEUNP Bit 2 = I If the main program is not PL/I 

Bits 3-5 Not used 
IEUlT Bit 6 = 1 STAEs will be issued 
IEULP Bit 7 = 1 SPIEs will be issued 

418 OS PL/I Optimizing Compiler: Execution Logic 



ABEND analyzer (IBMBPES) 140 
ABEND dump 261 

key areas of 268 
abnormal GOTO statement 

changing CHECK enablement during 
code in TCA 80 
from an event I/O ON-unit 39 
in a termination routine 80 
library subroutine IBMBPGO 36 
out of SORT exit routine 39 

abnormal locate return block 168 
abnormal termination (multitasking) 
access method 

record I/O 159 
stream I/O 185 

acquiring the ISA 78 
activating blocks 31 
actual origin (AO) 66 
address constants 

Q-type 28 
addressing 

automatic variables 25 
allocated storage in DSA 25 
allocated storage in VDA 25 
beyond the 4K limit 27 

based variables 26 
beyond the 4K limit 27 
controlled variables 

pseudo-register vector 26 
files via DClCB and PRV 166 
static variables 27 

beyond the 4K limit 27 
temporary variables 26 

allocated storage in 
allocated storage in 
beyond the 4K limit 

addressing beyond 4K limit 
adjustable extents, example 
aggregates (see also arrays 
structures) 

address 65 
arrays of structures 30 
CODOl 303 

DSA 
VDA 
27 

27 
of 
and 

26 
26 

70 

descriptor descriptor 69, 328 
FORTRAN 303 
how passed 65 
interlanguage arguments 303 
locator 68, 330 

aggregates (see also arrays 
structures) 29 

alignment in structures 303 
ALL built-in function 232 
allocation of dynamic storage 4, 85 
AND logical operation 232 
ANY built-in function 232 
AO (see actual origin) 66 
area 

control block 327 
descriptor 326 
locator/descriptor 

argument lists 39 
DO-lOOPS, uSP. of 
in static storage 
passed by calling 

68, 326 

42 
40 

routine 39 

39 

319 

setting up 41 
arrays 

assignments 31 
boundaries 29 

array descriptor 30, 67 
array locator 67 

descriptor 69, 331 
elements, example of 64 
FORTRAN 303 
how passed 65 
implementation of 29 
inter1anguage communication 282 
interleaved 30, 232 
multipliers 29 
of structures 30, 71 

interleaved 232 
locators and descriptors 71 

program control data 29 
virtual origin 29 

ASSEMBLER - Pl/I communication 305 
ASSEMBLER option 305 
attaching a task 317 
ATTENTION condition 51 
attention interrupt 51 
attributes, data 64 
automatic variables 

addressing beyond the 4K limit 27 
definition 25 
in dump 277 
initialization of 32 
storage in DSA 25 
storage in VDA 25, 85 

backchains 
dynamic 33 
in multitasking 313 
static 33, 134 

base element 66 
base registers 

DSA pointer 24 
program base 23 
static base 23 
TCA pointer 23 

based variables 26 
in dump 277 
storage 102 

beginning-of-segment (BOS) pointer 88 
BIT data 

string assignment subroutine 
(IBMBBGF) 232 

block enable cells 123 
blocks 

activating 31 
terminating 31 

BOOl built-in function 232 
BOS (beginning-of-segment) pointer 88 
bounds, adjustable 64 
branch-in 

followed by branch-in 148 
following a branch-out 148 
to a new block 149 
to an ON-unit 150 

branch-out 

Index 419 



following a branch-in 148 
branches, rationalization of 50 
buffer control fields (stream I/O) 
buffer pointers (stream I/O) 191 
built-in functions 

arithmetic 230 
array handling 231 
condition 119 
DATE 235 
library subroutines 230 
mathematical 230 
string handling 231 
structure handling 231 
TIME 235 

built-in subroutines 
checkpoint/restart 239 
sort/merge 236 

C format item DED 343 
CALL statements 35 
CALL ... TASK failure 318 
calling trace 

following through dump 272 
obtaining 254 

chain, free area 79 
CHECK condition 109, 131 

handling 133 
raising 131 
testing for enablement 132 

CHECK prefix 131 
checking code 117 
checkpoint/restart facility 239 
CHKPT macro instruction 239 
CICS 

appendage 333 
error handling under 151 
execution-time options 83 
initialization/termination under 
modules in resident library S4 
PLIDUMP on 151 
program management under 82 
storage management 

considerations 103 
stream I/O under 219 

CLOSE statement 
compiler output 174 
general 156 

closing files 
explicit closing 174 
implicit closing 157, 174 
library subroutines 174 

COBOL 
COBOl-Pl/I communication 297 
interrupt 298 
option in ENVIRONMENT attribute 
structure mapping 303 
ZERODIVIDE ON-unit 298 

COLUMN format item 218 
common expression, elimination of 
commoning 

aggregate descriptor descripiors 
array and structure descriptors 

69 
for optimization 50 

communication 
between languages 281-306 
between routines 64 
between tasks 309 

191 

82 

306 

44 

69 
67, 

compare-aligned-bit-strings subroutine 
(IBMBBBC) 232 

compare-unaligned-bit-strings subroutine 
(IBMBBGC) 232 

compilation, definition 1 
compile-time DED 71 
compiler options 

AGGREGATE 15 
COUNT 141 
ESD 15 
FLOW 141 
LIST 15 
MAP 15 
OFFSET 15 
SOURCE 15 
STORAGE 15 

compiler output 12-52 
control sections 12 
dummy sections 14 

pseudo-register vector 14 
ESD records 12 
relocatable object module 12 
RLD records 12 
TXT records 12 

constants 12 
machine instructions 12 

compiler-generated subroutines 203 
IELCGIX 208 
IELCGOC 208 
purpose of 43 

COMPLETION 
built-in function 240 
pseudo-variable 240 

completion values, multitasking 320 
computational subroutine 230 
concatenate-character-strings subroutine 

(IBMBBCK) 232 
CONDITION condition 136 
conditions 

default values 119 
defaults 107 
enablement 106 
general 119 
implementation in general III 
nam~ abbreviations in dump 256 

consecutive buffered files 158 
constants 21 
constants pool 21 
contents of listing information 14 
contents of load module 8 
control blocks 

array descriptor 30 
for communication between routines 

aggregate descriptor 
descriptors 69 

data element descriptors 71 
descriptors 67 
locators 67 
symbol table vectors 72 
symbol tables 72 

for optimization 
commoning 50 

formats 326-418 
in a PL/I environment 3 
locating in dump 278 
non-VSAM section 376 
structure descriptor 30 
summary of uses of 113 
VSAM section 376 

control format information 201 
DED 343 

control sections 12-52 
PlICOUNT 14 
PLIFlOW 13 

420 OS Pl/I Optimizing Compilers Execution Logic 



IBMEFL, trace module 14 
PLIMAIN 13 
PLISTART 12 
program 12, 22 
static external 14 

static storage map 15 
static internal 12, 21 

static storage map 15 
control task, general 308 
controlled variable block 335 
controlled variables 

control block 335 
header information 26 
pseudo-register vector 26, 27 

controlling the flow of execution 
after a PL/I interrupt 3, 78 
non-consecutive 31 

epilog code 35 
prolog code 32 

conversational files 214 
conversational transmitter modules 

IBMBSIC 214 
IBMBSOC 214 
IBMBSPC 215 

conversion 
hybrid 228 
in-line 223 
library subroutines 221 
module naming conventions 222 
multiple 228 
of data types 220 
stream I/O 193 

CONVERSION condition 108 
in stream I/O 211 

CONVERSION conversion 229 
COpy option 

in stream I/O 212 
COUNT function 211 
COUNT option 141 

action during compilation 145 
action during execution 147 
action during program 
initialization 147 

branch-in 
followed by branch-in 148 
following a branch-out 148 
to a new block 149 
to an ON-unit 150 

branch-out 
content of tables used by 144 
following a branch-in 148 
implementation of 142 
use of branching information 141 

current DSA 24 
current enable cell 122 

data 
internal representation 221 
interrupt IDS 

data conversion 
CONVERSION conversion 

ra1s1ng 229 
special conversion module 

IBMBSCV 229 
in-line conversions 

circumstances for use 224 
hybrid conversion 228 
list of fundamental types 226 
multiple conversions 228 

picture variables 226 
library conversion package 

arguments passed to conversion 
routines 223 

communication between modules 223 
free decimal format 223 
housekeeping 222 
specifying conversion path 222 

data element descriptors (DEDs) 
arithmetic 71 
arithmetic pictured 71 
formats 337-341 
general description 71 
input/output (FEDs) 72 
pictured string 71 
string 71 

data format item 201 
data interrupt 105 
data list matching 203 
data management event control block 

non-V SAM 376 
VSAM 376 

data set interchange between PL/I and 
COBOL 306 

data types 
conversion of 220 
internal forms of 221 

data-directed I/O 198 
data-handling subroutine 230 
DATAFIElD built-in function 211 
DATE built-in function 235 
DCLCB (declare control block) 

format 344 
general 160 

debugging procedures 
for storage overlay 259 
when PL/! dump called from 

ON-unit 260 
when system ABEND dump has been 

generated 261 
where to start 258 

decimal overflow interrupt 128 
declare control block (DCLCB) 

format 344 
general 160 

DED (see data element descriptors) 
dedicated registers 23 

DSA pointer 23 
program base 23 
static base 23 
TCA pointer 23 

DELAY statement 235 
DELETE statemnet 154 
dequeuing on SYSPRINT 325 
descriptors 67 

aggregate descriptor 69 
area 68 
array 69 
commoning 67 
data element (DED) 

compile-time 71 
format element (FED) 71 

generation of 67 
location of 67 
string 68, 69 
structure 69 

detaching a task 318 
DFB (diagnostic file block) 137, 345 
DFHSAP module 82 
diagnostic file block CDFB) 137, 345 
diagnostic statement table CDST) 395 
director routines 

definition l8S 
in stream I/O 193 

Index 421 



disabled condition 105 
DISPLAY statement 235 
DO-loops 

accessing array elements 
example of 48 
loop control variables 48 

example of 42 
nested 42 

DSA (see dynamic storage area) 
DST (diagnostic statement table) 395 
DUB (dump block) 139, 349 
dummy arguments in interlanguage 

communication 281 
dummy DSA 75, 81 
dummy FCB 29 
dummy ONCA 

chaining 119 
definition 79 
description 75 
format 381 

dummy sections 
constants 12 
machine instructions 12 
pseudo-register vector 14 

dump block (DUB) 139, 349 
dump control module (IBMBKMR) 137 
dump debugging procedures 258-262 
dump file (PLIDUMP) 139 
dump module output 139 
dump routines 

interrelationship of 138 
dumps 

contents of 254 
debugging with 248-280 
file information in 256 
hexadecimal 257 
housekeeping information 269 
implementation 137 
locating information in 

ABEND dump 268 
control blocks and fields 278 
finding variables 277 
list of contents 263 
PL/I dump 264 
stand-alone dump 269 

obtaining 250, 251 
options 251 
subroutines that generate 137 
system ABEND 261 
trace information in 254 
use of block option 258 

dynamic backchain 33 
dynamic descendency 106 
dynamic ONCB 383 
dynamic storage allocation 4, 85 
dynamic storage area (DSA) 

affecting PL/I environment 75 
associating DSA with block 272 
automatic variables 4 
chaining of 267 
chaining when multitasking 280 
contents for compiled code DSA 34 
definition 75 
dummy 75, 81 
finding main procedure DSA in 

dump 274 
following back-chain in dump 269 
format and function 346 
forward chain in dump 274 
housekeeping information 4 
IBMBERR's DSA in dump 272 
LIFO storage stack 4, 6, 85 

segment handling 97 
major free area 85 

non-LIFO storage stack 85, 91 
library routine IBMBPRG 6 

pointers used in allocation 
beginning-of-segment (BOS) 88 
byte beyond the ISA (TISA) 89 
end-of-segment (EOS) 88, 91, 96 
free area chain (TLFE) 88 
next-available-byte (NAB) 88, 96 

prolog code 4 
dummy DSA 4, 81 
initialization routine 4 

reducing storage requirements 3 
register save area in 273 
register save information 4 
transient library 53 
uses 85 
variables in 

automatic 3 
based 3 
controlled 3 

E format item DED 342 
ECB (event control block) list 309 
edit-directed I/O 201-209 

code generated 206 
compiler-generated subroutines 203 
data format items 201 
FED 201 
format DED 201 
format list 208 
format option handling 208 
GET statement 201 
handling control format items 208 
library director modules 216 
matching data and format lists 205, 

208 
nonmatching data and format 
lists 208 

PUT statement 201 
typical statement 204 
use of library in 203 

element 
base 66 
structure 66 

elimination of unreachable 
statements 47 

enabled condition 105 
enablement status 36 
end of file 180 
END statement 31 
end-of-segment (EOS) pointer 88 
ENDFILE condition 

detection of 117 
in record I/O 180 
in stream I/O 211 
summary information 109 

ENDPAGE condition 109 
enqueuing on SYSPRINT 325 
entry data control block 350 
entry points 

conversion subroutines 222 
EXTRN 62 
for initialization/termination 

IBMBPIRA 77 
IBMBPIRB 77 
IBMBPIRC 77 

for storage management 
IBMBPGRA 96 
IBMBPGRB 96 

422 OS PL/I Optimizing Compilers Execution Logic 



IBMBPGRC 96, 97 
IBMBPGRD 96, 97 

load module 12 
main procedure 12 
PLISTART 12 

IBMBPIR, address of 14 
ENTRY statement 

in interlanguage calls 281 
linkage editor 6 

entry variables 
entry data control block 350 
how passed 65 

ENVB (see environment control block) 
environment 

COBOL 283 
definition 3 
FORTRAN 283 
initialization 75-80 
interlanguage communication 289 
SORT 236 

ENVIRONMENT attribute 
COBOL option 306 
GRAPHIC option 402 

environment control block (ENVB) 161 
format 351 
record I/O 160 
stream I/O 191 

EOS (end-of-segment pointer) 88 
epilog code 

example of 35 
FINISH condition 35, 80 
freeing LIFO storage 89 

error code 
definition 119 
field lookup table 256 

error code field lookup table 257 
error codes, list of 257 
ERROR condition 108 
error conditions 

list of 107 
error handler 

with CHECK condition 131 
error handling 

ABENDS 78 
ATTENTION condition 80 
during allocation of non-LIFO 
storage 96 

example of 115 
facilities provided by system 106 
IBMBERR module 78, III 
identifying entry point name 135 
identifying erroneous statement 135 
identifying statement number 135 
implementation III 
macro instructions issued 

SPIE 78 
STAE 78 
STAX 79 

major fields used in 113 
principles of 112 
under CICS 151 

error handling during execution 105 
error code 257 
error message modules 136 
finding the block entry-point 
address 135 

error identification 
using dump in general 248-280 

error messages 
format 134 

SNAP message 134 
system messages 134 

using SYSPRINT 137 
ERROR ON-unit and dumps 251 

ESD records 
external addresses 12 
for conversion modules 221 

established ON-units 105 
EV (event variable) 168 
event control block (ECB) 309 
event I/O 171 
EVENT option 171 
event table (EVTAB) 242, 354 
event variable (EV) 168, 240 
event variables 

control block format and 
function 355 

how passed 65 
EVTAB (event table) 242, 354 
exclusive block file (XBF) 358 
exclusive block IOCB (XBI) 356 
exclusive I/O 173 
execute interrupt 106 
execution 

definition 3 
initialization routines 3 

IBMBPII 3, 76 
IBMBPIR 3, 74, 76 
IBMBPIT 76 

process of 10 
diagram of 75 

returning control 3 
to calling module 3 
to initialization routine 3 
to supervisor 3 
to termination routine 3 

storage report 99 
execution time 

error handling 105 
flow of control 10 

execution-time options 
handling 77 
specified under CICS 82 

exit table, SORT 237 
exponent overflow interrupt 128 
exponent underflow interrupt 106 
external conversion director 

modules 218 
EXTERNAL data 74 
external references, weak (WXTRN) 57 

F format item DED 342 
facilities, PL/I language 107 
fast-path initialization/termination 76 
FCB (see file control block) 
FCBA field in FeB 191 
FCPM field in FCB 212 
FECB (fetch control block) 368 
FEDs (format DEDs) 201 
FEFT field in FCB 178 
FEMT field in FCB 180 
FERM field in FCB 178 
fetch control block (FECB) 368 
FETCH statements 

control block 
FECB 51, 368 

LOAD macro instruction 51 
fields, locating in dump 278 
file control block (FeB) 156 

FCBA field 191 
FCPM field 212 
FEFT field 178 
FEMT field 180 

Index 423 



FERM field 178 
fields for buffer operation 191 
format and function 360 
FREM field 191 
general description 161 
record I/O 366 
stream I/O 367 

file declaration statement 161 
file organization 

stream I/O 190 
files 

addressing 27 
closing 174 
conversational 214 
declaration 154, 160 
declaration with COBOL option 306 
explicit opening 162 
how passed 65 
implicit opening 176 
information in dump 256 
opening 162, 191 
record variable 167 

FINISH condition 80 
fixed-point data 

binary 221 
decimal 221 
DED 339 
divide interrupt 128 
overflow interrupt 128 

FIXEDOVERFLOW condition 108 
floating-point data 

binary 221 
decimal 221 
DED 339 
divide interrupt 106 
underflow interrupt 128 

floating-point register 
saving 128 
usage 24 

flow of control 31, 39 
branch-in point 141 
branch-out point 141 
during execution 10 

FLOW option 141 
action during compilation 145 
action during execution 147 
action during program 
initialization 147 

branch-in 
followed by branch-in 148 
following a branch-out 148 
to a new block 149 
to an ON-unit 150 

branch-out 
content of tables used by 144 
following a branch-in 148 
implementation of 142 
use of branching information 141 

flow statement table 144 
format 369 
interpreting 150 

format DEDs (FEDs) 201 
format element descriptor (FED) 

description 72 
format and function 342 

format items 208 
format list matching 208 
formatting modules 208 
FORTRAN interrupt 300 
FORTRAN-Pl/I communication 299 
free decimal format 223 
free-area chain 273 
free-control routine 319 

FREEMAIN macro instruction 
allocating non-lIFO storage 91, 96 

FREM field in FCB 191 
function references 

example of 35 
functions, built-in 230 
fundamental in-line conversions, list 
of 226 

G format item DED 342 
general III 
GET DATA statement 

handling 200 
symbol tables and symbol table 
vectors 72 

GET lIST statement 197 
get-control routine 319 
GETIME macro instruction 235 
GETMAIN macro instruction 

allocating non-lIFO storage 91, 96 
storage for I/O buffers 7 
storage for transient library 

routin"es 7 
GOTO statement 

-only ON-units 39 
abnormal 39, 80 
interpretive code for 36 
interpretive routines 39 
label variable 38 
out of block 

example of 38 
in a termination routine 80 

within a block 
example of 37 

GRAPHIC option of ENVIRONMENT 402 

hardware interrupts (see program check 
interrupt) 

heap storage 
allocation of 

diagram of principles 
involved 91 .. 92 

end-of-segment pointer (EOS) 91 
error during 96 
GETMAIN macro instruction 91 
high-address end of ISA 85 
library module IBMBPGR, in TCA 91 

contents 
based variables 85 
controlled variables 85 

free-area chain 276 
freeing of 

FREEMAIN macro instruction 91, 96 
TISA field of ISA 96 

major free area 
diagram of free-area chain 

element 97 
free-area chain 87, 91 

storage chain 276 
hexadecimal dump 257 
hexadecimal dump module (IBMBKDO) 139 
hierarchy of tasks 309 
hybrid conversion 228 

424 OS Pl/! Optimizing Compilers Execution Logic 



I/O 
conditions for handling statements 
in-line 184 

event 171 
exclusive 173 
in-line 

control blocks 180 
error conditions 181 
executable instructions 181 
implicit open 181 
transmission statement 182 

library-call 167, 176 
record 154-184 
stream 185-219 

IBMBAAH 232 
IBMBAIH 232 
IBMBAMM 232, 234 
IBMBANM 232 
IBMBAPC 232 
lBMBAPE 232 
lBMBAPF 232 
IBMBAPM 232 
IBMBASC 232 
IBMBASF 232 
lBMBAYE 232 
lBMBAYF 232 
IBMBBBA 232 
IBMBBBC 232 
lBMBBBN 232 
IBMBBCI 232 
IBMBBCK 232 
lBMBBCT 232 
IBMBBCV 232 
IBMBBGB 232 
IBMBBGC 232 
IBMBBGF 232 
lBMBBGl 232 
IBMBBGK 232 
IBMBBGS 232 
IBMBBGT 232 
lBMBBGV 232 
IBMBEFL 141, 148 
IBMBERR 

DSA in dump 266 
lBMBESM message module 136 
IBMBESN 136 
IBMBIEC 297 
IBMBIEF 299 
IBMBIEP 301 
lBMBlLCl (inter1anguage root control 
block) 290, 371 

lBMBJWT (wait module> 244 
IBMBMXE 230 
IBMBMXL 230 
IBMBMXS 230 
IBMBMXW 231 
IBMBMXY 231 
IBMBMXZ 231 
IBr~BMYE 230 
IBMBMYL 230 
IBMBMYS 230 
IBMBMYX 231 
IBMBMYY 231 
IBMBMYZ 231 
IBMBOCA 157 
IBMBOCL 156, 1S7, 162 
IBMBOPA 1S7 
IBMBOPB 157 
IBMBOPC 1S7 
IBMBOPD 157 

IBMBOPE 157 
IBMBOPZ 157 
IBMBPAM 102 
IBMBPEP (exceptional error message 
director) 140 

IBMBPEQ (NO MAIN PROCEDURE message) 140 
IBMBPER (NO STORAGE message) 140 
IBMBPES (ABEND analyzer) 140 
IBMBPET (abnormal interrupt 
message) 140 

lBMBPEV (ABEND analyzer) 139 
lBMBPFR (FETCH) 51 
IBMBPGD 95 
IBMBPGO (interpretive GOTO) 36 
IBMBPGR (storage management) 94, 99 
lBMBPlI 76 
IBMBPIR 76 
IBMBPIT 76, 80 
IBMBPSL module 58 
IBMBPSM module 58 
IBMBPSR 58 
IBMBRAA (regional seq output trans) 157 
IBMBRAB (regional seq output trans) 157 
IBMBRAC (regional seq output trans) 157 
lBMBRAD (regional seq output trans) 157 
IBMBRAE (regional seq output trans) 157 
IBMBRAF (regional seq output trans) 157 
IBMBRAG (regional seq output trans) 157 
IBMBRAH (regional seq output trans) 157 
IBMBRAl (regional seq output trans) 157 
lBMBRBA (regional seq in/upd trans) 157 
lBMBRBB (regional seq in/upd trans) 157 
IBMBRBC (regional seq in/upd trans) 157 
IBMBRBD (regional seq in/upd trans) 157 
IBMBRBE (regional seq in/upd trans) 157 
lBMBRBF (regional seq in/upd trans) 157 
IBMBRBG (regional seq in/upd trans) 157 
IBMBRCA (unbuffered consec trans) 157 
IBMBRCB (unbuffered consec trans) 157 
IBMBRCC (unbuffered consec trans) 157 
IBMBRCD (unbuffered consec OMR) 157 
IBMBRCE (unbuffered consec associated 
file) 157 

lBMBRDA (regional direct non-exclusive 
trans) 157 

IBMBRDB (regional direct non-exclusive 
trans) 157 

IBMBRDC (regional direct non-exclusive 
trans) 157 

IBMBRDD (regional direct non-exclusive 
trans) 157 

IBMBREA (record I/O error module) 158 
lBMBREB (record I/O error module) 158 
IBMBREC (record I/O error module) 158 
IBMBREE (record I/O error module) 158 
lBMBREF (record endfile module) 158 
IBMBRIO (record I/O interface) 156, 167 
IBMBRJA (indexed seq in/upd trans) 157 
IBMBRJB (indexed seq in/upd trans) 157 
IBMBRKA (indexed direct non-exclusive 
trans) 157 

IBMBRKB (indexed direct non-exclusive 
trans) 157 

IBMBRKC (indexed direct non-exclusive 
trans) 157 

IBMBRLA (indexed sequential output) 158 
IBMBRLB (indexed sequential output) 158 
IBMBRQA (buffered consec non-spanned 
trans) 158 

IBMBRQB (buffered consec non-spanned 
trans) 158 

IBMBRQC (buffered consec non-spanned 
trans) 158 

Index 425 



IBMBRQD (buffered consec non-spanned 
trans) 158 

IBMBRQE (buffered consec input spanned 
trans) 158 

IBMBRQF (buffered consec output spanned 
trans) 158 

IBMBRQG (buffered consec update spanned 
trans) 158 

IBMBRQH (buffered consecutive OMR) 158 
IBMBRQI (buffered consec associated 
file) 158 

IBMBRTP (teleprocessing input 
trans) 158 

IBMBRVA eVSAM ESDS transmitter) 158 
IBMBRVG (VSAM KSDS sequential 
output) 158 

IBMBRVI (RRDS) 158 
IBMBRVM (VSAM KSDS other 
operations) 158 

IBMBRXA (exclusive 
upd/input trans) 

IBMBRXB (exclusive 
upd/input trans) 

IBMBRXC (exclusive 
upd/input trans) 

IBMBRXD (exclusive 
upd/input trans) 

IBMBRYA (exclusive 
upd/input trans) 

IBMBRYB (exclusive 
upd/input trans) 

IBMBRYC (exclusive 
upd/input trans) 

IBMBRYD (exclusive 
upd/input trans) 

IBMBSAI 218 
IBMBSAO 218 
IBMBSCI 218 
IBMBSCO 218 

regional 
158 
regional 
158 
regional 
158 
regional 
158 
indexed 
158 
indexed 
158 
indexed 
158 
indexed 
158 

direct 

direct 

direct 

direct 

direct 

direct 

direct 

direct 

IBMBSCP (copy module) 216, 219 
IBMBSCV 219, 229 
IBMBSDI 216 
IBMBSDO 216 
IBMBSED 217 
IBMBSEI 217 
IBMBSEO 217 
IBMBSFI 218 
IBMBSFO 218 
IBMBSIC 214, 218 
IBMBSII 216 
IBMBSIO 216 
IBMBSIS 213, 219 
IBMBSlI 216 
IBMBSLO 216 
IBMBSOC 214, 218 
IBMBSOF (stream output file trans) 158, 

217 
IBMBSOU (stream output file trans) 158, 

217 
IBMBSOV (stream output file trans) 158, 

217 
IBMBSPC 
IBMBSPI 
IBMBSPl 
IBMBSPO 
IBMBSTF 
trans) 

IBMBSTI 
217 

IBMBSTU 
trans) 

IBMBSTV 
trans) 

IBMBSXC 

215, 218 
218 

(formatting module) 208 
218 

(stream output print file 
158, 217 

(stream input file trans) 

(stream output print file 
158, 218 

(stream output print file 
158, 218 
208, 218 

158, 

IBMCSTI (stream input file) 158 
IBMCSTP (stream output file) 158 
IBMFASE 232 
IBMSBPL 218 
IBMTJWT wait module multitasking 323 
IBMTPIR 315 
IBMTPJR (program initialization module) 

flowchart 315 
IBMTPSL module 58 
IBMTPSR 58 
ICB (interrupt control block) 373 
IELCGBB (test for '1' bits) 44 
IELCGBO (test for '0' bits) 44 
IELCGCB (compare long bit) 44 
IELCGCY (compare long) 44 
IELCGIB (stream I/O input) 43, 217 
IELCGIX (stream I/O input) 43, 208, 217 
IELCGMY (move long) 44 
IELCGOC (stream I/O output) 44, 208 
IELCGOG (stream I/O output) 43, 217 
IElCGOH (stream I/O output) 43, 217 
IELCGON (dynamic ONCB chaining) 44 
IElCGRV (revert VDA chaining) 44 
implicit close in record I/O 157 
implicit open 

record I/O 156 
stream I/O 191 

in-line calls 
implicit open 181 

in-line data conversion 
circumstances for use 224 
hybrid conversion 228 
list of fundamental types 226 
multiple conversions 228 
picture variables 226 

in-line I/O 156 
INDEX built-in function 232 
indexing interleaved arrays 233 
initial storage area (ISA) 

acquiring 78 
definition 75 
following free-area chain in 

dump 273 
for dynamic storage allocations 7, 

75 
for program management area 7, 75, 

78 
setting up 84 

initialization 
dummy DSA 4 
fast-path 76 
FORTRAN 293 
linkage-editor 

ENTRY statement 6 
macro instructions issued 

SPIE 6 
STAE 6 

of object program 74 
of program management area 78 
of the PRY 29 
Pl/I 74-80 
Pl/I error handling 78 
preparation of PL/I environment 6, 

75 
initializing storage scheme 6 
setting up task communications 
area 6 

process of 77 
program 75-80 
routines 

IBMBPII 3, 76 
IBMBPIR 3, 74, 76 
IBMMPIT 76 

standard library routines 6 

426 as PL/I Optimizing Compiler: Execution Logic 



special case coding, reduction 
of 6 

storage report 99 
stream I/O subroutines 216 
under CICS 82 

input/output control block (IOCB) 173, 
374 

INTER option 295 
interlanguage communication 281, 306 

aggregate arguments 283, 304 
arrays 303 
ASSEMBLER option 305 
basic rules 281 
COBOL calls PL/I 286, 301 
COBOL option of ENV attribute 306 
control blocks 289 
data aggregate differences 282 
FORTRAN calls Pl/I 286, 301 
IBMBIlCl 290 
interrupt handling 298, 300 
interrupt in COBOL 298 
interrupt in FORTRAN 300 
interrupt in PL/I 295 
NOMAP option 304 
NOMAPIN option 304 
NOMAPOUT option 304 
PL/I calls COBOL 284, 297 
Pl/I calls FORTRAN 284, 299 
principles of 283 
structures 303 
tail code subroutines 287 
use of locators 282 
VDA 290 
ZCTl 290 

interlanguage housekeeping routines 283 
interlanguage root control block 

(IBMBILCl) 290, 371 
interlanguage VDA (ZVDA) 290, 372 
interleaved arrays 232 
internal form of data types 221 
interpretive GOTO routine IBMBPGO 36 
inter~rupt 

floating point underflow 128 
return to the point of 130 
software 128 

interrupt block 118 
interrupt control block (ICB) 373 
interrupt control block, definition 117 
interrupt handling 105-153 

COBOL 298 
FORTRAN 300 
IBMBERR module III 
passing information 118 
return from 130 

interrupt identification using 
dump 248-280 

INTERRUPT option 51, 80 
interrupts 

acquiring information about III 
detection of PL/I conditions III 
how detected 107 

invariant expressions 
elimination of 46 

invert-aligned-bit string subroutine 
(IBMBBBN) 232 

IOCB (input/output control block) 173, 
374 

ISA (see initial storage area) 75 

KD (key descriptor) 167, 378 
KEY condition 109 
key descriptor CKD) 167, 378 
key variable 167 

label data control block 379 
label data format 379 
label variables 

errors when using 38 
format 379 
general description 38 
how passed 65 
in GOTO statements 38 

with NOOPTIMIZE 38 
with OPTIMIZE (TIME) 38 

last free area (TlFE) 88 
last-in/first-out (lIFO) storage 

allocation of 
diagram of principles involved 89 
low-address end of ISA 85 
prolog code 89 
segment of LIFO stack 93 

contents of 85 
freeing of 

diagram of principles involved 89 
epilog code 89 

kinds of storage areas 
dynamic (DSA) 85 
variable data (VDA) 8S 

major free area 85 
segment handling 

diagram of format for 98 
entry points 97 
GETMAIN macro instruction 98 
special save area in TCA 97 
storage for DSA 97 
storage for VDA 97 
storage management routine 95 
value of EOS pointer 97 
value of NAB pointer 97 

library 
resident 53 
shared 58 
transient 53 
workspace 

allocation of 56, 75 
dia gram of 55 
format of 56 

library calls 
addressing a subroutine 41 
example of 40 
general 40 
level of optimizing used 40 
mnemonic letter usage 41 
naming conventions 40 
resident library 

bootstrap routines 40 
setting up argument lists 41 
within TCA 42 

library modules 
transient 139 

library register usage 24 
library routine 

IBMBSPL 208 
IBMBSXC 208 

Index 427 



library subroutines 
arithmetic 230 
array handling 231 
computational 230 
conversion package 221 
IBMBAIH (interleaved 
array-handling) 232 

in record I/O 157 
in stream I/O 218 
mathematical 230 
naming conventions S4 
PL/I libraries 6 

OS PL/I Resident Library 6 
OS PL/I Transient Library 6 

special-case coding, reduction of 6 
string handling 231 
workspace 55 

library workspace (LWS) 
definition 75 
format and function 380 

library-call I/O 156, 167 
implicit open 176 

LIFO storage (see last-in/first-out 
storage) 

LINE format option 208 
link-editing 

for fast-path 
initialization/termination 76 

in a load module 7 
error handler, IBMBERR 7, 74 
initialization routine, 

IBMBPIR 7, 74 
OS data management routines 7 
resident library routines 7 

link-editing, definition 3 
link-pack-area (LPA) 

communication with program region 59 
during initialization 62 
transfer vector 58 

list-directed I/O 193 
listing conventions 14, 18 
load module 

contents 7 
compiler output 7, 12 
link-edited routines 7 
of typical 7 
PLIMAIN 7 
PLISTART 7 

entry point 12 
LOCATE statement 154, 168 
locators 282 

aggregate 68 
aggregate locator format and 

function 330 
area 68 
area locator/descriptor format and 

function 326 
commoning 67 
location of 67 
string 68 
string locator/descriptor format and 

function 402 
variables, how held 64 

logical operation subroutines 230 
loops 

rationalization of program 
branches 50 

LWS (library workspace) 
definition 75 
format and function 380 

major free area 
allocation of LIFO storage 

diagram of principles involved 89 
diagram of elements on free area 

chain 97 
location in DSA 85 

modification of DO-loop control 48 
module, object 12 
movement of expressions out of loop 46 
multiple conversion 228 
multitasking 307, 325 

acquiring the ISA during 103 
back-chains in 313 
completion values 320 
following chaining in dump 275 
housekeeping 311 
library 315 
modules in multitasking library 312 
POSTCODEs 310 
priority 311 
reading dumps, general 280 
shared library considerations 62 
storage reports 101 
TCA tasking appendage (TTA) 309 
wait module IBMTJWT 323 
WAIT statement 320 

NAB (next-available-byte) pointer 88 
NAME condition 109 

in stream I/O 211 
naming conventions 

of conversion modules 222 
of library modules 54 

next-available-byte (NAB) pointer 88 
NOMAP option 304 
NOMAPIN option 304 
NOMAPOUT option 304 
non-LIFO storage 

allocation of 
diagram of principles 

involved 91, 92 
end-of-segment pointer (EOS) 91 
error during 96 
GETMAIN macro instruction 91, 96 
high-address end of ISA 85 
library module IBMBPGR, in TCA 91 

contents 
based variables 85 
controlled variables 85 

freeing of 
FREEMAIN macro instruction 91, 96 
lISA field of ISA 96 

major free area 
diagram of free-area chain 

element 97 
free-area chain 87, 91 

non-VSAM section of control blocks 
data management event control 

block 376 
normal return 106 
NOSPIE option 80 
NOSTAE option 80 
null ON-unit 125 
null value 29 

428 OS PL/I Optimizing Compiler. Execution Logic 



object module 12 
object program initialization 74 
object program listing 

contents 18 
DECLARE statements 18 
entry point 18 
example 19 
executable statements 18 
LIST option 18 

OCB (open control block) 385 
OCCURS (COBOL) 282, 303 
ODL (ordered delete list) 386 
offsets 

how passed 65 
null value 29 

ON communications area (ONCA) 
chain of 119 
definition 75 
dummy 75, 381 
finding relevant ONCA in dump 272 
following chain of ONCAs i~ dump 272 
format and function 381 
in library workspace allocation 56 

ON control block (ONCB) 
dynamic 383 
format and function 383 
static 383 
used in error handling 113 

ON statement 
established 105 
used in error handling 113 

ON-cells 
used in error handling 113 

ON-units 39 
compilation and handling of III 
established 105 
event I/O 39 
GOTO-only 39 
searching for established 134 
used in error handling 113 

ONCA (see ON communications area) 75 
ONCB (see ON control block) 113 
ONCHAR function/pseudo-variable 229 
ONSOURCE function/pseudo-variable 229 
open control block (OCB) 385 

function 160 
OPEN statement 

compiler output 162 
execution 162 

opening files 
record I/O 162 
stream I/O 191 

operating system interfaces 
miscellaneous 234-247 

operation interrupt 106 
optimization 

branching around redundant 
expressions 49 

compiler approach to 44 
compiler options 

INTERRUPT 51, 79 
NOOPTIMIZE 44 
OPTIMIZE (TIME) 44 

effect on conversions 220 
examples of 

branching around redundant 
expressions 49 

elimination of common 
expressions 44 

elimination of unreachable 
statements 47 

modification of DO-loop control 
variables 48 

movement of invariant 
expressions 46 

simplification of expressions 47 
movement of expressions out of 

loops 46 
using common constants and control 
blocks 50 

commoning, example of 50 
options 

FLOW 14 
LIST 18 
MAIN 14 

OR logical operation 232 
ordered delete list (ODl) 386 
output from compiler 13 
OVERFLOW condition 108 
overflow routine, IBMBPGR 99 

packed intermediate decimal format 223 
PAGE format option 208 
parameter lists 39 

contents in dump 274 
parameters 

handling during execution 77 
passed during initialization 

HEAP 84 
ISAINC 84 
ISASIZE 77, 84 
NOSPIE 79 
NOSTAE 79 
REPORT 77, 99 
TASKHEAP 84 

picture data 
DED 339 
FEDs 342 

picture variables 226 
PL/I conditions in stream I/O 210 
Pl/I dump 

key areas of 264 
PL/I environment 

control blocks 3 
factors affecting 75 
registers 3 

Pl/I error handling, initialization 78 
PL/I facilities 107 
PL/I interrupt 

controlling flow of execution, 
after 3, 78 

PL/I libraries 
OS PL/! Resident Library 6 
OS PL/I Transient Library 6 
resident 53 
transient 53 

PL/I--ASSEMBLER communication 305 
PL/I--COBOL communication 281-306 
PL/I--FORTRAN communication 281-306 
PLIBASE 307 
PLICALLA 77 
PLICALLB 77 
PLICKPT 239 
PLICOUNT 13 
PLIDUMP 139 

arrangement of modules for CICS 153 
how to use 250 
on CICS 151 

Index 429 



PLIDUMP facility 
implementation 137 

PLIFLOW 13, 146 
PLIMAIN 74 

format 387 
in a load module 7 

PLISHRE 58 
PLISORT 236, 238 
PLISTART 

for use in link-editing 74 
in a load module 7, 74 
parameter list 388 

PLITABS 210 
PLIXOPT 77, 82 
pointer variables 

misuse of 259 
pointers 

COpy option 212 
how held 25 
null value 29 
storage handling 88 
used in dynamic storage allocation 

beginning-af-segment (BOS) 88 
byte beyond the ISA (TISA) 89 
end-of-segment (EOS) 88, 91, 96 
free area chain (TLFE) 88 
next-available-byte (NAB) 88, 96 
real end-of-segment (TXRES) 88 

POLY built-in function 232 
POST EeB 310 
POSTCODEs, list of 310 
print files, formatting for 210 
priority of task 311 
privileged operation interrupt 106 
procedure block 

epilog code 32, 80 
prolog code 32 

PROCESS statement 
LIST option 18 

program base register 23 
program check exit 261 
program check interrupt 

definition 105 
listing 105 

program control data 
data aggregates 29 

arrays 29 
structures 29 

program control section 
general registers 23 

dedicated 23 
work 23 

program initialization 75 
program listing information 14 
program management area 

diagram of 79 
dummy DSA 7, 81 
initial storage area (ISA) 7, 75, 78 
initialization 78 
library workspace 55, 75, 81 
PRV, location of 29 
task communication area (TCA) 4, 7, 

75 
program management under CICS 82 
prolog code 

acquiring a dynamic storage area 
(DSA) 32 

allocating LIFO storage 89 
example of 32 

prompting 214 
protection interrupt 106 
pseudo-register vector (PRV) 

addressing controlled variables 27, 
82 

addressing files 27, 82 
file control blocks (FCBs) 28 

ALLOCATE statement 27 
initialization of 29 
location of 29 
Q-type address constants 28 
use of 28 

purge task subroutine 319 
PUT statement 193 

qualified condition 105 

RCB (request control block) 167, 391 
RD (record descriptor) 167, 390 
READ statement 154 
real end-of-segment pointer (TXRES) 88 
recompilation to obtain dump, 
avoiding 253 

RECORD condition 109 
record descriptor eRD) 167, 390 
record I/O 

control blocks generated 160 
definition 154 
errol" handling 

fields used in 179 
error modules 178 
FCB 166 
implement~tion 154 

access method 159 
CLOSE statement 156 
fields used for 160 
file declaration 154, 161 
implicit close 157 
implicit open 156 
OPEN statement 156, 162 
transmission statement 156 

in-line 180 
interface routine (IBMBRIO) 167 
library subroutines used 157 
overview 183 
VSAM data sets 163 

reducing storage requirements 
dynamic storage allocation 3 

redundant expressions 
branching around 49 
example of 49 

REFER option 234 
register usage 

in dumps 273 
normal 275 

registers 22-25 
relative virtual origin (RVO) 

definition of 66 
of arrays 69 

RELEASE statements 
DELETE macro instruction 52 

REPEAT built-in function 232 
REPLY option 235 
report table 100 
request control block (ReB) 167, 391 

description 161 
resident library 53 

control name 54 
link-edit name 54 

430 OS PL/I Optimizing Compilers Execution Logic 



CICS modules 54 
multitasking 54 
non-multitasking 54 

return code 81 
RETURN statement 

chainback to DSA 36 
example of 36 

REWRITE statement 154 
RLD records 

internal addresses 12 
RVO (relative virtual origin) 

definition of 66 
of arrays 69 

save areas 
IBMBPGR '79 
registers in dump 268 

SAVE field in SIOeB 190 
SCNT field in SIOCB 190 
segment handling 

data area storage 
for DSA 97 
for VDA 97 

diagram of format for 98 
GETMAIN macro instruction 98 
pointer values 

EOS 97 
NAB 97 

special save area in TeA 97 
storage management routine 95 

SFCB field in SIOCB 190 
SFLG field in SIOeB 190 
shared library 

during initialization 62 
execution-time logic diagram 61 
link-pack-area 58 

transfer vector 58 
loading resident library 58 
multitasking considerations 62 
region 59 

SIGNAL statement 
execution of 118 

SIOeB (stream I/O control block) 190, 
400 

SIZE condition 108 
SKIP format option 208 
SLD (string locator/descriptor) 
subroutine 232 

SNAP message 134 
SOCA field in SIOCB 190 
software interrupt 

definition 105 
detecting I/O conditions 117 
general 128 

SORT 236 
bootsrap module IBMBKST 236 
DSA chaining during execution of 238 
exit 237 
housekeeping problems 236 
restoring environment on exit 

from 237 
storage for 238 

sort/merge facility 236 
specification interrupt 106 
squashed mode 215 
SRTN field in SIoeB 190 
SSDD field in SIOCB 190 
SSRC field in SIOeB 190 
SSTR field in SIOCB 190 

stack storage 
allocation of 

diagram of principles involved 89 
GETMAIN macro instruction 96 
low-address end of ISA 85 
prolog code 89 
segment of LIFO stack 93 

freeing of 
epilog code 89 

kinds of storage areas 
dynamic (DSA) 85 
variable data (VDA) 85 

major free area 85 
segment handling 

diagram of format for 98 
entry points 97 
GETMAIN macro instruction 98 
special save area in TCA 97 
storage for DSA 97 
storage for VDA 97 
value of EOS pointer 97 
value of NAB pointer 97 

STAE work area, finding 269 
standard communications area 

task communications area (TCA) 
in PL/I environment 75 

standard system action 106 
statement frequency count table 144 

format and function 393 
interpreting 151 

statement number 
in messages 135 
of error, in dump 269 

statement number table 
function and format 395 
location in dump 279 

static back-chain 274 
static backchain 134 
static base register 23 
static control sections 

contents 15 
static descendency 106 
static external control section 

symbol table address vector 72 
static internal control section 

addresses 21 
entry points 21 
external procedures 21 
label contents 21 
library modules 21 

branch tables 21 
constants pool 21 

contant values 21 
data element descriptors 

(DED) 21, 71 
ONCBs 21 
symbol table address vector 21, 

72 
static variables 21 

static ONeB 383 
static storage map 

example of listing 16 
static external control sections 15 
static internal control sections 15 

static variables 27 
addressing 27 

beyond the 4K limit 27 
location in dump 280 

STATUS function/pseudo-variable 240 
STAX macro 80 
STnn field in SIOeB 190 
storage 

dynamic allocation 3 
automatic variables 3 

Index 431 



based variables 3 
controlled variables 3 

error messages 
insufficient storage for ISA 80 

GETMAIN macro instruction 8, 78 
storage for I/O buffers 7 
storage for transient library 

routines 7 
initial storage area (ISA) 7, 75, 78 

use of, diagram 86 
main discussion 84-104 
management in programmer-allocated 
areas 102 

overall use 9 
reducing storage requirements 3 

storage management routine (IBMBPGR) 
entry points 

IBMBPGRA 
IBMBPGRB 
IBMBPGRC 
IBMBPGRD 

96 
96 
96, 97 
96, 97 

storage report 
contents of 88, 98 
during execution 99 
during initialization 99 
during termination 100 
for multitasking programs 

acquiring the ISA 103 
considerations 103 
contents 101 
entry points 101 
storage report module, 

IBMTPGD 101 
generation of 

REPORT parameter 99 
storage report routine, 

IBMBPGD 99 
information given 98 
issuance of 

report writing module, 
IBMBPMR 100 

storage required, amount of 100 
storage report table 397 
stream I/O 

buffer control fields 191 
built-in functions 211 
control block (SIOCB) 190, 400 
conversation files 214 
conversational system 214 

formatting module IBMBSPC 215 
input transmitter IBMBSIC 214 
output transmitter IBMBSOC 214 

COPY option 212 
COUNT function 211 
DATAFIElD function 211 
director routines 18S 
end of file 211 
file handling 190 

conversions 193 
data-directed GET and PUT 
statements 198 
edit-~irected GET and PUT 
statements 201 

list-directed GET and PUT 
statements 193 

file opening 191 
format items 208 
format lists 208 
formatting for print files 210 
handling format options 210 
input and output of complete 
arrays 210 

ONCHAR function 211 
ONSOURCE function 211 

operations 187 
Pl/I conditions in 210 
principles used in 185 
simplified flow diagram 189 
STRING option 213 
summary of subroutines used 215 

conversational modules 218 
director modules 216 
external conversation director 
modules 218 

formatting modules 218 
initializing modules 216 
transmitter modules 217 

under CICS 219 
STRG field in SIOCB 190 
string locator/descriptor 68 
string locator/descriptor subroutine 

(SlD) 232 
STRING option 

completing string-handling 
operations 213 

housekeeping routine (IBMBSIS) 213 
implementation 213 

STRINGRANGE condition 109 
strings 

built-in functions 232 
DED 339 
descriptor 402 
FED 343 
how passed 65 
length 67 
locator/descriptor 402 
STRING function/pseudo-variable 232 
STRINGRANGE condition 109 
STRINGSIZE condition 109, 230 

STRINGSIZE condition 109 
structure element 66 
structures 

assignments 31 
boundaries 

structure descriptor 67 
structure locator 67 

COBOL 303 
descriptor 69, 403 
implementation of 29 
interlanguage communication 303 
mapping 303 
mapping module (IBMBAMM) 234 
of arrays 30, 71 

locators and descriptors 71 
subroutines 

compiler-generated 
IELCGOCA 203 
purpose of 43 

computational and data-handling 230 
SUBSCRIPTRANGE condition 109 
SUBSTR built-in function 232 
SUM built-in function 232 
symbol table (SYMTAB) 404 
symbol table vector 72, 406 
symbol tables 

contents 72 
diagram of 73 
storage for 

external variables 72 
internal variables 72 

use of 
for CHECK modules 72 
for data-directed I/O modules 72 

SYMTAB (symbol table) 404 
system ABEND dump 261 
system action, standard definition 106 
system detected interrupts 117 
system error message 134 

432 as PL/I Optimizing Compilerl Execution Logic 



tab table 210 
tail code subroutines 287 
task communications area (TCA) 23 

description 75 
flags 80, 409 
format and function 407 
implementation appendage 87, 411 
in PL/I environment 4, 75 
special save area 97 
tasking appendage (TTA) 275, 309 

task variable 
how passed 65 

task variable (TV) 
format and function 415 

task, finding relationship between in 
dumps 275 

TASKHEAP option 84 
tasking appendage (TTA) 275, 309 
TCA (see task communications area) 
temporaries (see temporary 
variables) 26 

temporary variables 
addressing beyond the 4K limit 27 
storage in DSA 26, 85 
storage in VDA 26 

terminating blocks 31 
termination 

code 81 
fast-path 76 
process of 

abnormal-GOTO-subroutine 80 
epilog code 80 
GOTO-out-of-block 80 
SPIE macro instruction 80 
STAE macro instruction 80 
TCA flags 80 

storage report 100 
under CICS 82 

termination of program 80 
TIA (TCA implementation appendage) 411 
TIME built-in function 235 
timestamp 268 
TLFE (last free area) 88 
TOTAL option 156 
trace, information in dump 
transfer vector 58 
transient library 53 
transient library modules 139 
transient open routines 163 
TRANSLATE built-in function 232 
transmission statements 

compiler output 167 
definition 154 
ENDFILE routine 180 
error conditions in 176 
execution of 170 
general error routines 180 
in record I/O 156 
TRANSMIT condition 180 
use of EVENT option 171 

TRANSMIT condition 109, 180 
detection of 117 
in stream I/O 210 

transmitter interface module 
(IBMBRIO) 167 

transmitter modules 
record I/O 157 
stream I/O 214 

TTA (TCA tasking appendage) 
function and format 413 

general 309 
TV (task variable) 

format and function 415 
TXRES (real end-of-segment) pointer 88 
TXT records 12 

unaligned bit strings 221 
UNDEFINEDFILE condition 109 
UNDERFLOW condition 108 
unexpected end of file 

in stream I/O 211 
UNLOCK statement 154 
unqualified condition 105 
unreachable statements 

elimination of 47 
use of locators 282 
use of storage 9 

variable data area (VDA) 
description 25 
interlanguage communication 290 

variables 
automatic 25 
based 26 
controlled 26 
EXTERNAL 74 
label 379 
locating in dump 277, 280 
pointer 26 
static 27 
temporaries 26 

variables, handling and addressing 25 
VDA (see variable data area) 
vector, symbol table 72 
VERIFY built-in function 232 
virtual origin (VO) 66 
VO (virtual origin) 66 
VSAM data sets 

opening 163 
VSAM section of control blocks 

data management event control 
block 376 

WAIT feB 310 
wait information table (WIT) 321, 416 
WAIT statement 240 

example of implementation 
problems 242 

label variable 
example of 38 
with NOOPTIMIZE 38 
with OPTIMIZE (TIME) 38 

multitasking 320 
nonmultitasking 241 
summary of 246 
termination of 39 
use of event tables 242 

weak external reference (WXTRN) 57 
WIT (wait information table) 321, 416 

Index 433 



work registers 24 
floating point registers 24 
library registers 24 

WRITE statement 154 
WXTRN (weak external reference) 57 

X format item 218 
XBF (exclusive block file) 358 
XBI (exclusive block IOCB) 356 

ZCTL (zygolingual control list) 290, 
417 

ZERODIVIDE condition 108 
ZERODIVIDE ON-unit 298 
ZVDA (interlanguage VDA) 290, 372 
zygolingual control list (ZCTl) 290, 

417 

434 OS PL/I Optimizing Compiler: Execution Logic 



Q) 

(5 
z 

OS PL/I Optimizing Compiler: 
Execu tion Logic 
SC33-002S-3 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of 
IBM systems. You may use this form to communicate your comments about this publication, its organization, or 
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way 
it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please dirf!ct any 
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to 
the IBM branch office serving your locality. 

List TNLs here: 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

Last TNL _________ _ 

Previous TNL _________ _ 

Previous TNL __________ _ 

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or you 
may mail directly to the address in the Edition Notice on the back of the title page.) Thank 
you for your cooperation. 



SC33-0025-3 

Reader's Comment Form 

Fold and tape 

Fold and tape 

-~-------- --------- -. ---- - - -------------, -
® 

Please do not staple 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

I BM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

Please do not staple 

III 
Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 

o 
C/) 

" r ::::; 
o 
"0 
.-+ 

3· 
E: 
:::J 
tC 

(') 
o 
3 

i 
X 
(I) 
(") 
c:: 
.-+ o· 
:::J 

r o 
tC o· 
Ci) 
w 
...... 
o 
r\.) 
~ 

C/) 
(') 
w w 
6 o 
I\,) 
c.n 
W 


	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	replyA
	replyB

