

Maintenance Manual

XD0005 Seq 1 of 2	2735739	See EC History	845958 1 Sop 79	847298 15 Aug 83			

PERSONAL

The importance of personal safety cannot be overemphasized. To ensure personal safety and the
safety of co-workers, follow established safety practices and procedures at all time.

Look for and obey the DANGER notices found in the maintenance documentation. All CEs must be familiar with the general safety practices and the procedures for artifical respiration outlined in IBM Form 229-1264.

MACHINE

To protect machines from damage, turn off power before removing or inserting circuit cards or components. Do not leave internal machines areas needlessly exposed, avoid shorting panel pins wh ddition, look for and observe the CAUTION addition, look for and observe the CAUTION notices found in maintenance documentation.

A form for reader's comments is provided at the front this publication. If the form has been removed, send your comments to the address below.
This manual was prepared by the IBM General Products Division, Department 61E, Tucson, Arizona 85744

CE SAFETY PRACTICES

All Customer Engineers are expected to take every satety precuution
tices while maintain and 1 IBM equipment:
You should not work lone under hazardous condition
or around equipment with dangerous voltage. Always or round equipment with dangerous vortage.
advise your manager it you MUST work alone.
2. Remove all pover, ac and dc, when removing or assem. power supplies, performing mechanical inspection of pow
er supolies, or installing changes in machine crrcuitry.
3. After turning off wall box power switch, lock it in the
 229.1266. Pull power supply cord whenever possible
having exposed operatitg mech hanical parts or exposed
live electrical circutry anywhere
live electrical circuitry anvwhere in the machine, observe
the following precautions:
a. Another person famuliar
b. De in immediate vicinity
b. Do nor wear rings, wrist watches, chains, bracelets, or

Use oly insuated niers and screwdrivers
d. Keep one hand in pocket.
e. When using test instruments, be certain that controls are set correctiv and
capacity are used.
Avoid contacting ground potential (metal floor strips,
machine frames, etc.). Use suitable whber machine frames, etc.). Use suitable rubber mats, pur.
Wear satety glasses when:
a. Using a hammer to drive pins, rive ting, staking, etc.
b. Power or hand drilling, reaming. grind ing, etc.
sing spring hooks, attaching springs.
Soldering, wire cutting, removing steel bands.
 Cleaning paris with solvents, sprays, cleaners, chemi.
cals, etc. -. Pertorming any other work that may be hazardous to
your eves. REMEMBER-THEY ARE YOUR EYES
6. Follow special satety instructions when performing special bigh voltages. These instructions are outlined in CEMs tigh vorages. These insturctions are eutlined in Clems
7. Do not use solvents. chemicals, greases, or oils that have
not been approved by $18 M$.
8. Avoid using tools or test equipment that have not been ap
proved by IBM.
10. Lift by worn or broken tools and test equipment. Lhis standing or pushing up with stronger leg muscles -
this sakes strain off back muscles. Do not lift anv equip. ment or parts weighing over 60 oounds
Atter maintenance, restore all sitety devices, such as guards
12. Eas. . sugns, and grounding wires

Each Customer Engineer is responsible to be certain that
no action on his sart renders products unsafe or exposes customer personnel to hazards.
13. Place removed machine covers in a sate out.of.the.wav
14. Ensure that all machi
machine to customer
15. Always Dace CEE \mathbf{c}.ool kit away from walk areas where no
one can trip over tit tor example, under desk or table.
6. Avoid touching moving mechanical parts when lubricating.
17. When using strobocscope do not touch ANYTHING
7. When using strobos
18. Avoid wearing loose clothing that may be caught in ma-
chinery. Shirst sleeves must be left buttoned or rolled above
he elbow.
9. Ties must be tucked in shirt or have a tie clasp (preferably
nonconductive) aporoximately
3 inches from end. Tie ains are not recommended.
20. Before starting equipment, make certain fellow CEs and
,
Maintain good housekeeping in area of mach ine while per
forming and a tere completing maintenance.
Knowing satety rules is not encugh.
An unsate act wiilineviatul| lead to an accident.
Use good judgment eliminate unsfe acts.

ARTIFICIAL RESPIRATION

General Considerations

1. Start Immediately - Seconds Count Po not move victim unless absolutely necessary to remove
trom danger Do not wait or look tor hels ors loosen cliothing, warm the victim, or apoly stumulant
2. Check Mouth for Obstructions
3. Loosen cloiting - Keep vivterm Warm
Take care of these items ater victim is breathing bv him
self self or when helo is availabie
4. Remain in in osition $\begin{aligned} & \text { After victim revives, be ready to resume resporation }\end{aligned}$
necessary.
5. Calre Doctor
6. Don't Give Up Continue meaical aid

Continue without interruption until victim is breathing
without help or is certainly dead.

Rescue Breathing for Aduls

1. Place victim on his back immediately.
2. Clear throat of water, food, or foreign m

Tilt head back to open ar passage.

6. Blow untill you see chest rise.

Remove your lips and allow lungs toens.
8. Listen for snoring and gurglings - signs of throat obstruc
9. Repeat mouth to mouth breathing 10.20 times a minute.

3803-2/3420

The initial selection sequence is the communication between the channel and tape control that initiates an peration.
During initial selection, the tape control obtains initial status information that indicates the selected tape unit availability. If the tape unit response indicates it is available, the tape control activates lines that teel the ape unit to perform a specific command. In respons to the command, the tape unit furnishes additional status information that indicates its ability to perform the specified command. If the tape unit is capable of performing the command, the tape control activates MOVE to the command

The communication between the tape control and tape unit is over the device interface lines.

Device Interface Lines

The device interface is composed of the following lines that perform the listed functions:
BUS OUT (nine lines): Transmits commands, amplitude sensing levels, write data, and sense byte identification

MOVE tag: Initiates tape motion
COMMAND tag: In conjunction with BUS OUT, initiates the execution of a command.
CONTROL tag: In conjunction with BUS OUT, initiates the execution of a control command.

CLOCK/METER OUT: Allows the tape unit usage meter to run.
BUS IN (nine lines): Transmits status, sense information, and read data to the tape control.
TACHOMETER IN/BUSY IN: When no tag is active this line indicates that the tape unit is busy. When any OUT tag is active, this line carries the capstan achometer pulses to the tape control.

NTERRUPT: This line signals the tape control that one of the following unusual conditions has occurred in the ape unit:

- Load check
- Loss of mechanical ready during a rewind
- Transition from Not Ready to Ready status occurred
- Transition from Ready to Not Ready status occurred while the MOVE tag was active
Beginning of tape (BOT) was sensed during a read backward operation

Device Interface Lines

BUS OUT Lines

bus out Bit	COMMAND Tag	CONTROL Tag Active
0	Backward read	Rewind Unload
1	Forward read	Not used
2	Diagnostic (LWR)	(Model 4, 6, 8 only) Diagnostic (set high sense)
3	Pulse	NRZ1 or 6250 BPI mode
4	Write	(Model 4, 6, 8 only) Diagnostic (set low sense)
5	Set Extend Stop (Model 4, 6, 8 only)	Data security erase
6	Reset error latches	(Model 4, 6, 8 only) Erase Status
7	Not used	Rewind

BUS IN Lines

BUS IN Bit	COMMAND STATUS Byte	CONTROL STATUS Byte
0	Backward	Rewind Unload
1	Gap Control	Not used
2	Diagnostic mode	(Model 4, 6, 8 only) High Sense ON
3	(Model 4, 6, 8 only) Opposite direction	NRZ1 or 6250 BPI mode
4	Write status	(Model 4, 6, 8 only) Low sense 0N
5	Extended Stop (Model 4, 6,8 only)	Erase
6	Unit Check	(Model 4, 6,8 only)
7	(Model 4, 6, 8 only) Positioning	Rewind

INITIATING TAPE MOTION

All commands that involve tape motion (except Rewind, Rewind Unload, and Data Security Erase), are

- The tape control activates the tape unit Forward/Backward latch to establish the prope direction before activating the Move tag
- The tape control activates and deactivates the MOVE tag to start and stop tape motion. The

For Rewind, Rewind Unload, and Data Security Erase commands the tape unit controls the start and stop of the tape motion.

- The tape unit moves tape backwards to the beginning-of-tape (BOT) marker for a Rewind or Rewind Unload command
- The tape unit moves tape forward to the end-of-tape (EOT) marker for a Data Security Erase command

INTERMITTENT DROP READY PROBLEMS

Listed below are several cases of dropping READY roblems, with most probable causes listed first. Examine the list and take any indicated action. If riginal failure still exists (Ready light off and tape still on ALD FT114

1. Vacuum Switches: Defective vacuum switches usually show up with dropping READY problems. If sense byte 7 is available it can be helpful in determining which vacuum column caused the problem. A good test is to load the tape unit, screwdriver. This technique may cause the tape unit to drop READY. If one switch is more sensitive than the others, replace it See ALD ZT011
2. Fiber Optics: Faulty or marginal fiber optics can cause loading problems, tape motion problems and dropping ready. Check seating of fiber optic the light source. Check lamp, and if questionable, see 08-620.
3. Capstan Squaring: If capstan squaring is out of adjustment it is indicated first by dropping READY tape pulls out of left column, or bottoms in right column) when going into or coming out of a high speed rewind. Be sure to remove the photocell from the front of the capstan and clean the face of the tach (do not do this on Model 8), using a clean, Model 3,5, or 7) berore adjusting. See 08-120 (Model 4, 6, for djut 5 ,
4. Right Reel Slipping on Hub: Slippage can easily be determined by loading a tape and turning the right reel until tape in the columns is above, then below the ports causing the right reel to drive

Caution: Circuit damage or a blown Fuse (F12) may result if the reel is held for more than five or six seconds.
Hold the reel to keep the tape and hub from turning and observe the slippage. Tape Damage Tape Reel Flange.
No slippage should occur. If slipping is observed go to 08-470 through 08-520.
5. Reel Tachs: Defective reel tachs can cause a tape unit to fail to enter high speed rewind and also cause dropping READY while in high speed rewind. Tachs with glazed surfaces will cause the tape to As. . the tach wobbles it indicates a worn bearing. With an equal amount of tape on each reel, scope the tach outputs (ALD FT231) for plus pulses of similar frequency, duration and amplitude. Make sure the foam on the vacuum column door does not come in contact with the tachs when the door is closed
6. Reel Motor Boards: Either one can cause intermittent problems. Check for cold flow solder oints, cracked land patterns, and loose or pushed joints, cracked land patterns, and loose or pushe
in pins in the connectors. If boards are suspect, interchange them with boards of the same part number to isolate the failure. (ALD RMOO1).
7. Door Interlock: Machine vibration can cause badly adjusted door interlock switch to open intermittently. Also check main machine door latch alignment.
8. Damaged Tape: Stretched or sliced tape will cause READY TO DROP. If failing tape has been retained, make one complete pass, using the field tester
9. Power Supply Check for loose terminal connections. Ask operator if power check light has been blinking. (Power check circuit is not latched.)

CHECKS/ADJUSTMENTS/REMOVALS/REPLACEMENTS (CARR)

ALPHABETIC REFERENCE LIST

A

Air Bearing (see D-Bearing, Right Rear Movable Guide and Retractor Removal/Replacement)
Air Pressure Checks (see Pneumatic Pressure/Vacuum Checks)
Altitude Vacuum Level Adjustment
Amp Sensor Adjustment - NRZI Feature (Tape Unit Models 3, 5, 7)
Amp Sensor Adjustment - PE Only (Tape Unit Models 3, 5, 7)
Autocleaner Adjustment (Tape Unit Models 4, 6, 8
Autocleaner Operational Check
Autocleaner Removal/Replacement (Tape Unit Models 4, 6, 8)

B
Belt Adjustment (see Pneumatic Supply Belts, Pneumatic Supply Pulley
Alignment)
BOT/EOT Block Removal/Replacement
BOT/EOT Voltage Checks and Adjustments

C
Capstan Assembly Removal (Non-90,000 Series Tape Units) Capstan Assembly Removal (90,000 Series Tape Units)
Capstan Assembly Replacement (Non-90,000 Series Tape Units)
Capstan Assembly Replacement (90,000 Series Tape Units)
Capstan Cleaning, Glazed
Capstan Dynamic Alignment (Non-90,000 Series Tape Units)
Capstan Dynamic Alignment (90,000 Series Tape Units)
Capstan Squaring (see Capstan Tachometer Check/Adjustment) Capstan Static Alignment

Capstan Assembly Having Round Support
Assembly Left in Tape Unit)
Capstan Assembly Having Square Support With Zero Marks
(Assembly Left in Tape Unit)
(Assembly Removed from Tape Unit)
Capstan Assembly Having Square Support Without Zero Marks
(Assembly Removed from Tape Unit)
Non-90,000 Series Tape Units
Capstan Tachometer Check/Adjustment (Tape Unit Models 3, 5, 7)
Capstan Tachometer Check/Adjustment (Tape Unit Models 4, 6, 8)
Capstan Tachometer Cleaning
Capstan Tachometer Removal/Replacement (Tape Unit Models 3, 5, 7)

08-360
08-380

8-590

08-010, 08-020
08-010, 08-030 08-010, 08-040 08-010, 08-050

08-700
08-010, 08-150 08-010, 08-160 08-130, 08-120

08-010, 08-070
08-010, 08-070
$08-010,08-068$
08-010, 08-066 08-010, 08-064

08-010, 08-062 08-010, 08-060
$08-130$
08
08-120
08-140
08-110

Capstan Tachometer Removal/Replacement (Tape Unit Models 4 and 6)
Capstan-To-Stubby Bar Clearance Adjustment
Capstan Tracking
Cartridge Motor Replacement Adjustment
Cartridge Restraint Pressure Check
Cartridge Restraint Removal/Replacement
Cleaner Blade Gauss Check and Degaussing
Column Vacuum Level Check
Cooling Fan Assembly Removal/Replacement

D

D-Bearing, Right Rear Movable Guide and Retractor Removal/Replacement

 (NRZI-Featured Tape Units)Degaussing (see Read/Write Head Degaussing or Cleaner Blade Gauss Check and Degaussing)

E

Head-Mirror Stop Adjustment (Tape Unit Models 3, 5, 7) . 08-350
Head Resistance Check (see Read/Write Head Resistance Check)
08-090
$08-080$
08-010
08-535
$08-536$
$08-540$
$08-540$
$08-390$
$08-390$
$08-400$
08-630
,

F

Feedthrough Check
08-330
Fiber Optic Bundle Removal/Replacement .
Fiber Optics Lamp (Removal, Replacement, and Cleaning)0.0.0.0 08-620
File-Protect Mechanism Che
Forward-to-Backward Ratio (see Read Forward-to-Backward Ratio Test)

G

Glazed Capstan Cleaning
Ground Check (see Tape Unit Ground Check)

H

High-Speed Rewind Solenoid (Tape Unit Models 3, 5, 7)

ALPHABETIC REFERENCE LIST (Cont.)

L
Left Movable Guide and Retractor Removal/Replacement (NRZI-Featured Tape Units) Left Reel Hub and Motor Removal/Replacement/Adjustment
Light Source (see Fiber Optics Lamp)
Logic Panel Removal/Replacement (see 3420 or 3803 Logic Panel)

M
Mechanical Skew Check/Adjustment (NRZI-Featured Tape Units)
Mechanical Skew Check/Adjustment (1600 and 6250 bpi Tape Units)
Minireel Load Test

P
hotosensor (see Fiber Optics)
neumatic Pressure Level Adjustment (All Model Tape Units)
neumatic Pressure/Vacuum Checks (Column, Regulator, Threading, Transfer Valve)
neumatic Supply Flat Belt Replacement/Adjustment
Pneumatic Supply Pulley Replacement (All Types of Pneumatic Supplies
Power Circuit Board (PCB) Removal/Replacement
Power Supply (see DC Power Supply
(3803 Model 2 Only) Power Window Adjustment
Power Window Glass Removal/Replacement
ower Window, Rack, Limit Switch Adjustments
Power Window Safety Bail Adjustment
Power Window Safety-Bail Cable Removal/Replacement
Pressure Checks (see Pneumatic Pressure/Vacuum Checks)

R
Read Amplitude Adjustment (Tape Unit Models 4, 6, 8)
08-31
Read Electrical Skew Adjustment (NRZI-Featured Tape Units)
Read Forward-to-Backward Ratio Test (Tape Unit Models 3, 5, 7)
Read Forward-to-Backward Ratio Test (Tape Unit Models 4, 6, 8) Read/Write Head Card Removal/Replacement

Read/Wrie Head Resistance Check (Tape Unit Models 4, 6, 8)
Read/Write or Erase Head Removal/Replacement
Reel-Alignment Tool Modification
Reel-Alignment Tool Preparation
Reel-Alignment Tool Zeroing
Reel Tachometer Removal/Replacemen
Reference Plate/Skew Plate Removal/Replacemen
Right Reel Hub Individual Parts Replacement
Right Reel Hub Removal
Right Reel Hub Replacement/Adjustment
Right Reel-Latch Rear Housing Pressure Tes
Right Reel-Latch Rear Housing Removal
Right Reel-Latch Rear Housing Replacement
Right Reel Motor Removal/Replacement

08-420

08-405
08-442
8-575
8-575
8-570
08-575
$08-640$
$08-670$
8-650
8-640
8-660
88-400

SAGC Checks (see 6250 SAGC Checks)
Skew Plate Removal and Replacement (see Reference Plate/Skew Plate Removal and Replacement)
Stubby Bar Adjustment (see Capstan-to-Stubby Bar Clearance Adjustment)

\top

Tachometer (see Capstan Tachometer or Reel Tachometer)
Tape Guide Check for NRZI-Featured Tape Units
ape Guide Removal/Replacement
See D-Bearing, Right Rear Movable Guide and Retractor or
Left Movable Guide and Retractor Removal/Replacement)
Tape Unit Ground Check.
Threading Vacuum Chec
Transfer Valve Leakage Test

CHECKS/ADJUSTMENTS/REMOVALS/REPLACEMENTS (CARR)

ALPHABETIC REFERENCE LIST (Cont'd)
v
Vacuum Balance
08-800
(See Pneumatic Pressure/Vacuum Checks, Vacuum Balance, Vacuum Column
Switch Check or Column Vacuum Level Check)
Vacuum Column Door Glass Removal/Replacement
Vacuum Column Switch Check
w

Window (see Power Window)
Write Electrical Skew Adjustment (NRZI-Featured Tape Units)
08-200 Write Head Driver Card Plugging (Tape Unit Models 4, 6, 8

08-270

Numeric
3420 Logic Panel Removal/Replacement 3803 Logic Panel Removal/Replacement 6250 SAGC Checks

CAPSTAN AND TRACKING CHECKS/ ADJUSTMENTS/REMOVALS/
REPLACEMENTS
This section includes the capstan drive assembly
(capstan and motor), the capstan tachometer, and all (capstan and motor), the capstan tachometer, and all
the other components that affect tape tracking. The the other components that affect tape tracking. The
read and write electrical skew adjustments (tape unit Models 3, 5, and 7) are also included because they must be rechecked after adjusting the mechanical
skew.
Each procedure in this section has the following format
Procedure title
Applicability:
tape unit serial number-90,000 Series* or
non-90,000 Seris
tape unit model
ecording format- 1600 bpi or 6250 bpi
Prerequisite procedures
The procedure itself
Subsequent procedure (if any)
*90,000 Series serial-numbered tape units are machines converted from 2420 tape units. These units have seria converted from 2420 tape units. These units have seria numbers from 43,001 to 43,084 , and 45,000 to 45,054 . All other serial numbers are non- 90,000 Series.
**NRZI-featured identifies a tape unit which is able to process data in either 7- or 9 -track NRZI mode

| XDO250 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Seq 1 t 2 |

\square

CAPSTAN ASSEMBLY REMOVAL (NON-90,000 SERIES TAPE UNITS)

To retain an approximate capstan drive assembly alignment, do not turn the hollow adjusting sleeves when removing this assembly.
Note: When removing or replacing the capstan motor on Model 8 machines, check and/or replace the reels loaded switch to avoid motor removal for switch replacement at a later date.
To remove the assembly:

1. Unload the tape unit and turn off tape unit power
2. Loosen the two upper stubby bar mounting screws and slide the bar down and to the right to increase capstan clearance. Tighten the screws temporarily. Remove the left ramp and carbide guide. (A)
3 Disconnect the air hose(s) from the capstan moto and the left reel motor.

Note: The two wires inside the motor cooling port were used in manufacturing and should be ignored. slip them back into the port so they do not interfere with your work
4 Unplug the power cable from the capstan moto control board.
5 Disconnect the tachometer cable.
6 Remove the wedge holding the capstan fiber optic bundle in the light manifold and pull out the bundle.
7 Remove the spring cluster load nut and spring luster.
8. Remove the capstan assembly from the rear, being careful not to snag any wires or damage the capstan or reference plate.

CAPSTAN ASSEMBLY REMOVAL

(90,000 SERIES TAPE UNITS)

Note: When removing or replacing the capstan motor on Model 8 machines, check and/or replace the reels loaded switch to avoid motor removal for switch replacement at a later date.

1. Unload the tape unit and turn off tape unit power.
2. Loosen the two upper stubby bar mounting screws and slide the bar down and to the right to increase capstan clearance. Tighten the screws temporarily. Remove the left ramp and carbide guide. A
3 Disconnect the air hose(s) from the capstan motor and the left reel motor.
Note: The two wires inside the motor cooling port were used in manufacturing and should be ignored. Put them back into the port so they do not interfere with your work.
4 Unplug the power cable from the capstan motor control board
Note: If the tape unit has a square capstan support remove the read/write head cards and cooling shroud to make removal of the capstan easier. See 08-260, "Read/Write Head Card Removal/Replacement.
5 Disconnect the tachometer cable.
6 Remove the wedge holding the capstan fiber optic Remove the wedge holding the capstan fiber optic
bundle in the light manifold and pull out the bundle.

7 Remove the three nuts that hold the motor to the ain casting. When removing these nuts, use a screwdriver to keep the slotted studs from turning and make sure the hollow adjusting sleeves do not turn.
Note: If a slotted stud is accidentally removed, eplace it before proceeding. The studs act as guides and help prevent capstan and tachometer damage.
8. Remove the capstan assembly from the rear, being careful not to snag any wires or damage the capstan or reference plate.

XDO300	2735813	See EC History History	$\begin{gathered} 845958 \\ \hline \text { Sop } 79 \end{gathered}$	$\begin{aligned} & 846927 \\ & 20 \\ & \hline \text { Jun } 80 \end{aligned}$	$\begin{gathered} 847298 \\ \substack{85 A v 9 \\ \hline 15 \\ \hline} \end{gathered}$		

CARR - CAPSTAN

CAPSTAN ASSEMBLY REPLACEMENT (NON-90,000 SERIES TAPE UNITS)

Notes:

1. When removing or replacing the capstan motor on Model 8 machines, check and/or replace the reels loaded switch to avoid motor removal for switch replacement at later date
2. Before installing the capstan assembly, inspect the capstan for damage.
Caution: Be careful not to damage the capstan wheel, reference plate, fiber optic bundle, or tachometer cable when installing the capstan drive assembly.
3. Slide the capstan assembly onto the threaded shaft extending from the rear of the casting.
2 Slide the spring cluster onto the threaded shaf
3 Install the spring cluster load nut and tighten until the slack is removed, then tighten 4 to $4-1 / 4$ turn more.
4 Insert the fiber optic bundle in the light manifold and install the holding wedge.
5 Connect the hose(s) to the capstan motor and the left reel motor.
6 Reconnect the tachometer cable
7 Move the capstan power wires from the old motor to the new motor (not necessary for the Model 8 as the cable is wired internally). Check that the wires are plugged as before, then attach the powe cable to the motor control board.
4. After replacing the capstan assembly, perform the following procedures
a. Capstan Static Alignment, 08-060
b. Capstan Tachometer Check/Adjustment, 08-120 or 08-130
c. Capstan Dynamic Alignment, 08-150 or 08-160
d. Capstan-To-Stubby Bar Clearance Adjustment, 08-080
e. Mechanical Skew Check/Adjustment, 08-170 o 08-180
f. On NRZI-featured tape units, Read Electrical Skew Adjustment, 08-190 and Write Electrical Skew Adjustment, 08-200

Note: When removing or replacing the capstan motor on Model 8 machines, check and/or replace the reels loaded switch to avoid motor removal for switch replacement at a later date.
Before installing the capstan assembly

1. Inspect the capstan for damage.
2. See the Capstan Static Alignment procedure on 08-062 and perform the procedures on 08-062 08-064, or 08-070.

Caution: Be careful not to damage the capstan wheel, reference plate, fiber optic bundle, or tachometer cable when installing the capstan assembly.

1. Insert the capstan assembly and partially tighten the three hex nuts.
2. While tightening the three nuts, rotate the capstan wheel to make sure it does not bind against the reference plate or stubby bar. Tighten the nuts.
3 Move the capstan power wires from the old moto to the new motor (not necessary for the Model 8 as the cable is wired internally). Check that the wires are plugged as before, then attach the cable to the motor control board
4 Connect the hose(s) to the capstan motor and the left reel motor.
5 Reconnect the tachometer cable.
6 Replace the fiber optic bundle in the light manifold. Note: If the read/write head cooling shroud was removed, replace it. See 08-260, "Read/Write Head Card Removal/Replacement.'
3. Perform the following procedures in the order
listed:
a. Capstan Tachometer Check/Adjustment, 08-120 or 08-130
b. Capstan Dynamic Alignment, 08-160
c. Capstan-To-Stubby Bar Clearance Adjustment, 08-080
d. Mechanical Skew Check/Adjustment, 08-170 or 08-180

3803-1,2,3/3420

\square

CAPSTAN STATIC ALIGNMENT

Non-90,000 Series Tape Units

1 Loosen the spring cluster load nut three turns
2 From the front, turn both adjusters
counterclockwise until they touch the bottom in threaded sleeve. Access is touch the bottom in the the faceplate.
3. Turn each adjuster two full turns clockwise.
4. Tighten the spring cluster load nut until slack is removed; then tighten 4 to 4-1/4 turns more. If no slack is present, loosen the cluster load nut 1 until the slack is just noticeable, then retighten 4 to 4-1/4 turns
5. Perform the Capstan-To-Stubby Bar Clearance Adjustment procedure on 08-080.
6. Check for $17 / 32 \pm 1 / 64$ inch ($13.5 \pm 0.4 \mathrm{~mm}$) from the reference plate to the front edge of the capstan wheel. If not in tolerance, recheck installation and/or replace capstan motor assembly.

XD0500	2735815 Part Number	See EC History	845958 1 Sep 79	847298 15 Aug 83			

CAPSTAN STATIC ALIGNMENT (Cont.)

Capstan Assembly Having Square Suppor Without Zero Marks (Assembly Removed

 From Tape Unit)1. Remove the capstan assembly. See 08-030 "'Capstan Assembly Removal.'
2 Insert the capstan alignment tool, P/N 2515376 , through the front of the motor casting.
3 If necessary, rotate each hollow adjusting sleeve until the shoulder of the alignment tool is 0.004 to 0.005 inch (0.102 to 0.127 mm) from the casting surface for each sleeve.
2. Replace the capstan drive assembly. See 08-050 "Capstan Assembly Replacement.
Caution: Be very careful not to damage the capstan wheel, reference plate, fiber optic bundle, or tachometer cable when installing the capstan assembly.

5 The front edge of the capstan should be 17/32 $\pm 1 / 64$ inch ($13.5 \pm 0.4 \mathrm{~mm}$) from the reference plate. If not, rotate the adjusting sleeves until this condition is met.

If tool is not available, perform the procedure on 08-064, step 2.

CCC

CAPSTAN STATIC ALIGNMENT (Cont'd)

Capstan Assembly Having Square
Support with Zero Marks
(Assembly Removed from Tape Unit)
If the capstan alignment tool, P / N 2515376, is available,
use the procedure on 08-062. If the tool is not
available, proceed as follows
1 Remove the capstan assembly. See 08-030 Capstan Assembly Removal
2 If necessary, rotate each sleeve until the zero marks align, and the sleeve tips are $13 / 32$ inch $(10.3 \mathrm{~mm})$ A from the end of the capstan motor casting. Use a steel scale, P/N 450158
3. Replace the capstan assembly. See 08-050 "Capstan Assembly Replacement."
Caution: Be very careful not to damage the capstan wheel, reference plate, fiber optic bundle, or tachometer cable when installing the capstan assembly
4 The front edge of the capstan should be $17 / 32$ $\pm 1 / 64$ inch ($13.5 \pm 0.4 \mathrm{~mm}$) from the reference \pm late. If not, rotate all sleeves until this condition is met.

C C C C

C
C

Capstan Assembly Having Square Support with Zero Marks
(Assembly Left in Tape Unit)

1. Check the zero mark on each sleeve for alignment with its corresponding casting mark.
2 If the zero marks are not aligned, turn the adjustable sleeves in the direction that requires the least rotation to align the sleeve and casting marks. Note: If any sleeve requires more than 135 degrees of otation, remove the capstan assembly and follow the procedure on 08-062 or 08-064.

3 When all the sleeves are aligned with their casting marks, measure from outside edge of each sleeve to the edge of the capstan casting. Each should measure $17 / 32 \pm 1 / 32$ inch $(13.5 \pm 0.8 \mathrm{~mm})$ A ; all hould be within $1 / 32$ inch $(0.8 \mathrm{~mm})$ of each make this measurement.
4. If the previous check is not within specifications, rotate each sleeve, where necessary, to meet this ondition

CARR - CAPSTAN

CAPSTAN STATIC ALIGNMENT (Cont'd)

Capstan Assembly Having Round Support (Assembly Removed from Tape Unit)

Models 3, 4, 5, 6 and 7 (See Figure 1)

1. Remove the capstan assembly. See 08-020 or 08-030, "Capstan Assembly Removal.'
2 Turn each sleeve until the zero marks align with the corresponding casting marks. When all the sleeves are aligned with their casting marks, measure from the sleeve tip to the end of the capstan motor casting. Each should measure $9 / 32 \pm 1 / 64$ inch (7.1 0.4 mm). Use a steel scale, P/N 450158 or equivalent, to marke this measurement.
2. Replace the capstan assembly. See 08-040 or 08-050, "Capstan Assembly Replacement."
4 The front edge of the capstan should be $17 / 32$ $\pm 1 / 64$ inch ($13.5 \pm 0.4 \mathrm{~mm}$) from the reference plate. If not, rotate all the sleeves until this condition is met.
3. Remove the capstan assembly. See 08-020 or 08-030, "Capstan Assembly Removal "

2 Turn each sleeve until the zero marks align with the corresponding casting marks. When all the sleeves are aligned with their casting marks, measure from the sleeve tip to the end of the capstan motor $(2.38 \pm 0.4 \mathrm{~mm})$. Use a steel scale, $\mathrm{P} / \mathrm{N} 450158$ or equivalent, to make this measurement
3. Replace the capstan assembly. See $08-040$ or 08-050, "Capstan Assembly Replacement.
4 The front edge of the capstan should be 17/32 $\pm 1 / 64$ inch $(13.5 \pm 0.4 \mathrm{~mm})$ from the reference plate. If not, rotate all the sleeves until this condition is met

3803-1,2,3/3420

Model 8 (without Zero Marks, See Note on Figure 2)

1. Remove the capstan assembly. See $08-020$ or 08-030, "Capstan Assembly Removal
2. Turn each sleeve until all sleeves measure $3 / 32$ $\pm 1 / 64$ inch ($2.38 \pm 0.4 \mathrm{~mm}$) from the sleeve tip to the end of the capstan motor casting. Use a steel scale, $\mathrm{P} / \mathrm{N} 450$.
3. Replace the capstan assembly. See $08-040$ or 08-050, "Capstan Assembly Replacement."
4 The front edge of the capstan should be 17/32 $\pm 1 / 64$ inch ($13.5 \pm 0.4 \mathrm{~mm}$) from the reference plate If not rotate all the sleeves until this condition is met.

Figure 2.

CAPSTAN STATIC ALIGNMENT (Cont'd)

Capstan Assembly Having Round Support (Assembly Left in Tape Unit)

Note: This procedure does not apply to tape unit Model 8 without the zero marks. For tape unit Model 8 without zero marks, use the procedure on 08-068.
1 Check the zero mark on each sleeve for alignmen with its corresponding casting mark (loosen and partally unscrew the sleeve locking nut if a sleeve mark is obscured).
2. If the zero marks are not aligned, loosen the locking nut and turn the sleeve in the direction that equires the least rotation to align the sleeve and casting marks. Note: If any sleeve requires more than 135 degrees of rotation, remove
follow the procedure on 08-068.
3 Check for $17 / 32 \pm 1 / 64$ inch ($13.5 \pm 0.4 \mathrm{~mm}$) from the front surface of the reference plate to the front the front surface of the reference plate to the front
edge of the capstan. If this dimension is not met or you cannot see seven exposed threads on each sleeve, remove the capstan assembly and follow the procedure on 08-068

XD0700 Seq 2 of 2	2735817	See EC History	845958 1 Sep 79					

CARR - CAPSTAN
CAPSTAN-TO-STUBBY BAR CLEARANCE ADJUSTMENT (TAPE UNIT MODELS
4, 6, 8)
Caution: Do not use a metal feeler gauge or any metal object to measure the clearance. To avoid damage to the tape path surface, use a tab card, which is approximately 0.0065 inch $(0.165 \mathrm{~mm})$ thick, to make this check.
The capstan-to-upper stubby bar clearance must be The capstan-to-upper stubby bar clearance mus
0.006 to 0.010 inch $(0.15$ to 0.25 mm$)$ at both reference points A and B on the stubby bar, as reference points A and B on the stubby bar, as
shown. To adjust, loosen the two screws C in the upper stubby bar, position the bar to correct clearance and horizontal, then tighten the screws.
Note: Moving the stubby bar can affect the autocleaner adjustments. See 08-382.

CAPSTAN-TO-STUBBY BAR CLEARANCE ADJUSTMENT (TAPE UNIT MODELS
$3,5,7)$
Caution: To avoid damaging the smooth surface o the tape path, do not use a metal feeler gauge or any other hard object to measure the clearance. One data-processing card, approximately 0.0065 inch $(0.165 \mathrm{~mm}$) thick, can be used.
Check that the outside capstan diameter clears the radius of the upper stubby bar by 0.006 to 0.010 inch $(0.15$ to 0.25 mm) at (A) and (B). The flip-down mirro must be centered between the capstan and the EOT/BOT block. Loosen the screws (C) on the stubby bar to adjust it.

845958
1 Sep 79

CAPSTAN TACHOMETER
REMOVAL/REPLACEMENT
(TAPE UNIT MODELS 4 AND 6)
1 Unplug the tachometer cable.
2 Remove the wedge and disconnect the fiber optic bundle from the light manifold.
3 Loosen the cable clamps at the front and rear of the capstan.
4 Loosen the protruding setscrew on top of the front Loosen the prot
5 Carefully pull the tachometer and fiber optic bundle out of the supporting block.
6. Reverse the procedure to install the tachometer. Note: When installing the new tachometer ensure
that it is fully inserted and against the internal stop before tightening the set screw.
Caution: Do not over tighten the set screw.
7. After installing the tachometer, perform the Capstan Tachometer Check/Adjustment procedure on 08-120.

XDO800 Seq 2 of 2	2735818 Part Number	See EC History	$\begin{aligned} & 845958 \\ & \hline 1 \text { Seo } 79 \end{aligned}$	$\begin{aligned} & 847298 \\ & \hline 15 \text { Acu } 83 \end{aligned}$			

CAPSTAN TACHOMETER
REMOVAL/REPLACEMENT
(TAPE UNIT MODELS 3,5,7)
1 Unplug the tachometer cable.
2 Remove the wedge securing the tachometer fiber optic bundle to the light manifold; then remove the fiber optic bundle.
3 Loosen the cable clamps at the front and rear of Loosen the cable clamps at the front and rear of
the capstan. Remove the cable strap on the side of the capstan.
the motor.
4 Loosen the protruding set screw above the front motor support.
5. Carefully pull the tachometer and fiber optic bundle out of the supporting block.
6. Reverse the procedure to install the tachometer Note: When installing the new tachometer ensure Note: When instaling the new tachometer ensure before tightening the set screw.
Caution: Do not over tighten the set screw.
7. After installing the tachometer, perform the Capstan Tachometer Check/Adjustment procedure on 08-130.

XDO Sog 2 of 2	2735819	See EC History	$\begin{aligned} & 845958 \\ & \begin{array}{l} 4 \\ \text { Sop } 79 \end{array} \end{aligned}$				

C

CAPSTAN TACHOMETER
 CHECK/ADJUSTMENT

(TAPE UNIT MODELS 4, 6, 8)
Follow the instructions in the sequence listed below:
Note: Model 8 - do not remove front cover.

1. Turn off tape unit power DANGER
Allow the lamp to cool before cleaning it
2. Clean the fiber optic lamp (see 08-620).
3. Plug the capstan power cable into the test socket on the bottom of the capstan motor control board and turn on power
If the fiber optic lamp has been off for more than 10 minutes, allow the fiber optic lamp to warm up for 20 to 30 minutes before continuing.
4 Display phase A and B on the oscilloscope as follows

- Display and sync plus on phase B (T-A1H2PO4 test point).
- Display phase A (T-A1H2J10 test point).
- Invert phase A and put the scope switch in the ADD position. ($2 \mathrm{usec} / \mathrm{cm}$)
- With the scope in the uncalibrated mode, adjust the four state lengths so they span 10 cm on the scope face.
5 Total state length equals state length plus period variation. Total state length should exceed 1.2 cm for each of the four states

6. If each of the four states exceed 1.2 cm , no adjustment is necessary. If not, do the following adjustments.
7 Connect the oscilloscope to phase A test point ($\mathrm{T}-\mathrm{A} 1 \mathrm{H} 2 \mathrm{~J} 10$) and sync plus (set scope at 2 $\mathrm{sec} / \mathrm{cm}$ for models 4 and 6 and 1 usec $/ \mathrm{cm}$ for model 8). With the scope in the uncalibrated mode adjust so that a full tach period spans 10 cm on the scope face.

8 Adjust potentiometer A and B on the tachometer circuit card on the front of the capstan motor so the average on-time (symmetry) is between 4.8 and 5.0 cm . Take care when adjusting potentiometers because this is an extremely sensitive adjustment. Repeat steps 7 and 8 for phase B using the phase B test point (T-A1H2PO4).
9. Display both phases on the oscilloscope. Sync plus on phase B. Invert phase A and put the scope in the ADD position.

10 Total state length equals state length plus period vilation. With symmetry set, as in steps 4 and 5 each total state length should exceed 1.2 cm for each of the four states
If this limit cannot be obtained, clean or replace the tachometer. See 08-140, "Capstan Tachometer Cleaning;" 08-090 or 08-100, '"Capstan
Tachometer Removal/Replacement;" or 08-620, "Fiber Optics Lamp Removal/Replacement."
11. Direction sensing: Sync oscilloscope auto and check that -Backward Caps Motion (T-A1H2M12) is plus. This verifies the correct direction sensing.
12. Turn off tape unit power.
13. Return the capstan power plug to its normal operating position on on the capstan motor control board.

Model 8 Capstan

Models 4 and 6 Capsta

Note: If the waterfall is greater than 10%, remove the capstan tach and clean as instructed on 08-140

CAPSTAN TACHOMETER
CHECK/ADJUSTMENT
(TAPE UNIT MODELS 3,5,7)
If readjustment is necessary, do it at the normal tape unit operating temperature.

1. Unload the tape unit and turn off power.
2. Move the capstan motor plug to the test socket at the bottom of the capstan motor control board.
3. Remove the cover from the circuit card on the front of the capstan.
4. Turn on tape unit power.
5. Scope the capstan squaring pulses. Use test point at A1G2GO2. Sync positive on the tach pulses.
6. Adjust the scope so that one full tach period is displayed on 10 cm .
If the waveform is $\pm 10 \%$ of $50 / 50$ duration, the output is satisfactory and is not the cause of the problem. (Consider the center of the waterfall as the point of transition.) (See Figure 1 and Note.) If the waveform is satisfactory, go to step 12, otherwise go to step 7.
7. Turn off tape unit power.

DANGER

Allow the lamp to cool before cleaning it
8. Clean the fiber optic lamp. (See 08-620.)
9. Check the capstan fiber optics bundle for loose or broken parts.
10. Turn on tape unit power. Allow the fiber optic lamp Turn on tape unit power. Allow the fiber optic lamp
to warm up for 20 to 30 minutes before continuing.
11 Adjust the potentiometer on the tachometer circuit card to obtain the waveform shown (+ during 40%, minus duration 60%). This setting allows for normal aging of components.
12. Turn off tape unit power and replace the capstan motor plug in the "normal" socket. Be sure to replace the circuit card cover.
If directed to this procedure by a MAP, return to that MAP.

Figure 1.

Note: If waterfall \boldsymbol{A} is excessive, 10% of a full cycle greater, remove the capstan tachometer and clean the tachometer disk and interrupter mask, following the procedure on 08-140.

XD1000	$\begin{gathered} 2735820 \\ \hline \text { Part Number } \end{gathered}$	See EC History	$\begin{aligned} & 845958 \\ & \hline \end{aligned}$	$\begin{aligned} & 846927 \\ & 20 \\ & 20 \text { Jun } 80 \end{aligned}$	$\begin{aligned} & 847298 \\ & 1544983 \\ & \hline \end{aligned}$		

C

CARR - CAPSTAN

CAPSTAN TACHOMETER CLEANING

capstan operation cannot be adjusted to specified limits, clean the lamp (see 08-620), try the adjustment again, and then clean the tachometer disk and
interrupter mask. These parts do not usually require cleaning.

Caution: If you damage the tachometer disk, you must replace the entire capstan motor assembly.
Remove the tachometer to clean

1. On Models $3,4,5,6$, and 7 , remove the tachometer by loosening the protruding setscrew (A) on the front support. Remove cable clamp (B) the sider block

Pressing lightly with a dry cotton swab, P/N
556944 , clean the disk and interrupter mask.
556944, clean the disk and interrupter mask
3. If this does not remove all the contaminants, slightly dampen the swab with tape cleaner. Making sure that the swab is touching only the disk surface, repeat step 2.
Caution: Do not use water
4. Replace the tachometer by reversing the procedure in step

Note: When reinstalling the tachometer ensure that it is fully inserted and against the internal stop before tightening the set screw
Caution: Do not over tighten the set screw.
5. Repeat the Capstan Tachometer Check/Adjustment procedure on 08-120 or 08-130.

Model $3,5,7$

Model 4.6

3803-1,2,3/3420

| XD1100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Seq 1 o 2 |

CAPSTAN DYNAMIC ALIGNMENT TRACKING (NON-90,000

SERIES TAPE UNITS)

If the capstan assembly has been removed, perform the Capstan Static Alignment procedure on 08-060 before attempting the capstan dynamic alignment.
Note: Before starting the dynamic alignment, check the vacuum column door for correct sealing

Look for tape in both stubby columns. If the tape is not in both columns, an air leak may be the problem caused by a misadjusted vacuum column door. See 08-680, "Vacuum Column Door Replacement and Adjustment." Check tachometer operation. See 08-130, "Capstan Tachometer Check/Adjustment.'
Do the following for dynamic alignment:

1. Switch the tape unit offline, using the switch on the tape unit logic gate.
2. Attach the 3420 field tester.
3. Mount an undamaged CE work tape
4. Momentarily press LOAD REWIND.
5. When the right reel starts turning, press and hold LOAD REWIND until 20 to 30 feet (7.0 to 10.0 m) of tape is on the left reel.
6. Release LOAD REWIND and quickly press RESET to stop tape motion and loading.
Note: Manual loading may be required because the left ramp and carbide guide may have been
previously removed.
7. Open the front door and the vacuum column door and bypass the door interlock switch.
DANGER
Be extremely careful when the front door is open and the reels are turning to avoid personal injury.
8. For additional clearance, loosen the two retaining screws and slide the upper stubby bar away from the capstan, then retighten screwRemove the left threading channel. Caution: Do not lose the two O-rings located behind the threading channel.

On NRZI-featured tape units, remove the small hose attached to the threading channel. Allow 3 to 5 inches (76 to 127 mm) of hose to extend beyond the reference plate. If the hose falls out of the reference plate, it may be necessary to remove the capstan motor to reinstall it.

11. Remove the left pressure plate on the vacuum column door so that you can observe the tape while making adjustments. Remove the rubber doo spacer behind the threading plate, if necessary.
Note: Pressure plate screws may contain one or more E-clip shims. Be sure screws are returned to their original position.

12 Remove the screws holding the front guide to the ramp and the large screw that holds the ramp to the reference plate. Remove the front guide. Caution: Do not lose the spring behind the rea guide. (in NRZI-featured tape units only.)
If ramp was previously removed install the ramp.

14 On NRZI-featured tape units, retract the rear movable guide, using the retracting clip on the tape unit, P/N 2522983.
Note: The guide must retract completely behind the reference plate. Shape the retracting clip if necessary.

15. With the vacuum column door open, turn the left reel counterclockwise and the right reel clockwise until small tape loops form in both vacuum columns.
16. Close the vacuum column door.
17. Press LOAD REWIND and START
13. Use the long screw to fasten the ramp to the reference plate. Press down on the right side of the ramp for correct positioning.

Caution: Do not allow the screw head to touch he tape. Fold a tab card several times and place it next to the screw head as shown A prevent screw-head-to-ramp contact and damage to the reference plate.

XD1100 Seq 2 of 2	2735821	See EC History	845958 1 Sep 79	846927 $20 \text { Jun } 80$	847298 $15 \text { Aug } 83$		

CAPSTAN DYNAMIC ALIGNMENT

TRACKING (NON-90,000

SERIES TAPE UNITS) (Cont'd)
oo align the capstan, use a hex wrench
P/N 2523723, to turn the adjusters through the holes in the front of the tape unit \boldsymbol{A}
To check dynamic tracking at the left carbide guide:
Note: A slight clearance at the reference plate, rear guide, and at the front of the ramp \mathbf{B} with no front-to-back good tracking. Verify that some capstan rubber is visible at each edge of the tape. If tracking is good go to step 28 .
18. Set the field tester to read forward
19. With tape moving forward, turn the left adjuster A until the ramp surface B is just visible. Turn
the adjuster clockwise to cause the tape to track toward the rear of the machine, or
counterclockwise to cause the tape to track

3803-1,2,3/3420

20. Set the field tester to read backward.
21. With tape moving backward, turn the uppe adjuster to obtain a slight clearance B
22. Set the field tester to read forward
23. With tape moving forward, turn the left adjuster counterclockwise until the front edge of the tape rides exactly on the front edge of the ramp (C).
24. Set the field tester to read backward.
25. With tape moving backward, turn the upper adjuster counterclockwise until the front edge of the tape rides exactly on the front edge of the ramp (C).
26. Repeat steps 22 through 25 until the tape rides evenly on the ramp edge (C) when the tape is moving in either direction.
27. Turn both adjusters clockwise until the tape has a slight clearance \mathbf{B} with the tape moving in either direction.
When the rear movable guide is released \mathbf{E}, the tape will track toward the front of machine. (Only NRZI-featured tape units have rear movable guides.) The tape may flutter slightly near the rear guide because of tape edge differences. Although significant flutter at the rear guide or any fluter signifcant tuide requirs further checking flutter further checking or
28. Replace all parts previously removed. Ensure that the O -rings are in place behind the threading channel.
29. Perform the Capstan-To-Stubby Bar Clearance Adjustment procedure on 08-080. The autocleane adjustment must then be checked. See 08-380.
30. On NRZI-featured tape units, perform the Mechanical Skew Check/Adustment procedure on 08-180 and the Read Electrical Skew Adjustment procedure on 08-190. On other tape units, perform the Mechanical Skew Check/Adjustment procedure on 08-170.
Note: If the skew change (forward to backward) is more than that specified in the procedure on 08-170 or 08-180, recheck the mechanical skew.

CAPSTAN DYNAMIC ALIGNMENT TRACKING (90,000 SERIES

TAPE UNITS

Note: If the static alignment was not done, check for $17 / 32 \pm 1 / 64$ inch ($13.5 \pm 0.4 \mathrm{~mm}$) from the front surface of the reference plate to the front edge of the capstan. Before starting the dynamic alignment, check the vacuum door for correct sealing. Look for tape in both stubby columns, and if the tape is not in both columns, an air leak may be the problem. See 08-680, "Vacuum Column Door Replacement and Adjustment." Perform the Capstan Tachometer Check/Adjustment procedure on 08-120 or 8-130.

1. Switch tape unit offline
2. Attach the 3420 field tester
3. Load an undamaged CE work tape, set the field tester to read forward, and move the tape forward until the load-point sticker is past the BOT/EOT block.
4. Turn tape unit power off.

5 Remove the left threading channel and left pressure plate on the vacuum column door so that you can observe the tape while making adjustments. Remove the rubber door spacer behind the threading plate, if necessary.
Caution: Do not lose the two O-rings located behind the threading channel.
Note: Pressure plate screws may contain one or more E-clip shims. Be sure screws are returned to their original position.

6 Remove one short and one long screw from the front of the carbide guide.
. Remove the front carbide guide and threading ramp.

8 Use the long screw to fasten the threading ramp to the reference plate. Press down on the right binder head screw is used, replace it with a flat-head screw to eliminate interference while setting the tracking, or place a folded tab card between the existing binder head screw and the ramp. A size 6 nut can also be used.

9. Loosen the two retaining screws and slide the upper stubby bar away from the capstan to obtain maximum clearance. Tighten the screws emporarily.
10. Clean the threading ramp and the left rear carbide guide. Use a brush, P/N 2513590.
11. With the vacuum column door open, turn the left reel counterclockwise and the right reel clockwise torm small tape loops in both columns.
12. Close the column door carefully, turn on tape unit power, and press LOAD REWIND and START to start a mid-tape load.
To check dynamic tracking at the left carbide guide:

Note: A slight clearance at the reference plate, rear guide, and at the front of the ramp \mathbf{B} with no front-to-back movement as tape is moved in both directions indicates good tracking. Verify that some capstan rubber is visible (D) at each edge of the tape. If tracking is good go to step 24
13. Set the field tester to read forward.
14. With tape moving forward, use a flashlight or service lamp and look for a slight gap between the rear edge of the tape and the rear carbide guide
Note: For the remainder of this procedure, do not adjust sleeve 2. It was set during static alignment. Loosen all three locking nuts before making any adjustments.
15. If no gap is visible, turn adjustable sleeve $\mathbf{3}$ clockwise $1 / 8$ turn (45 degrees). Repeat as necessary to obtain the gap.
16. If the gap is excessive, turn sleeve 3 counterclockwise until the gap is barely visible.
17. Use the field tester to move the tape in both directions. If tape tracking changes when tape motion is reversed, adjust sleeve 1 as follows:
a. If the tape rides toward the rear on a forward operation and toward the front on a backward elon, sop he tape motion and turn sleeve 1 clockwise a few degrees. Start the tape motion and recheck. Repeat this step until there is no visible variation.
b. If the tape rides toward the front on a forward operation, and toward the rear on a backward peration, stop the tape motion and turn sleeve 1 a few degrees counterclockwise. Start the tape motion and recheck. Repeat this step until there is no visible variation.
18. With tape moving forward, observe the gap between the tape edge and the rear carbide guide Turn sleeve $\mathbf{3}$ counterclockwise until the gap jus disappears.
19. Recheck the front-to-back movement (see step 17). Turning either sleeve
vement (se
1 step 17). Turning either sleev
front-to-back movement.
20. Turn sleeve 3 an additional $1 / 24$ turn (15 degrees) counterclockwise
21. Observe the capstan from the top and bottom with the tape moving in both directions. Check that wrinkling or distortion of the tape does not occur.
22. If distortion occurs in one direction only, adjust sleeve 1. See step 17.
23. If distortion occurs in both directions, adjust sleeve 3 slightly clockwise.
24. After adjustment, lightly tighten the three locking nuts and check the capstan for binds. When the capstan is free of binds, tighten all three locking nuts

25. Unload the tape
26. Replace all the parts previously removed. Ensure that the two O-rings are in position behind the threading channel.
27. Perform the Capstan-To-Stubby Bar Clearance Adjustment procedure on 08-080.
28. Perform the Mechanical Skew Check/Adjustment procedure on 08-170 or 08-180
29. If this is a Model 4,6 or 8 , perform the Autocleaner Adjustment procedure on 08-382

C C C C C

MECHANICAL SKEW

CHECK/ADJUSTMENT
(1600 AND 6250 BPI TAPE UNITS)
Note: Go to 08-180 if the tape units are Model 3, 5 or 7 with the NRZI feature.
If a tape skew problem is suspected, do the following maintenance check and/or adjustment if required.
If you have replaced or adjusted components which affect skew (such as the read/write head or capstan assembly), make the following mechanical skew adjustment.
Note: Remove the cooling hose to the read/write card shroud for access to the skew-adjusting screw.
Caution: Inspect the tracking before adjusting the skew plate. See 08-150, "Capstan Dynamic skew plate. See 08-150, "Capstan Dynamic
Alignment," step 18, for tracking information

The read card test point locations are on the label inside the front read card cover (Models 3,5, and 7), or on the rear read card cover (Models 4, 6, and 8). See the label on the logic gate for digital data test points.

1. Switch the tape unit offline
2. Attach the 3420 field teste
3. For 6250 dpi tape units attach a jumper from T-A1M2D06 to T-A1K2P02.
4. Mount and load a master-skew tape, P/N 432640 or 432641 .
5. Set the field tester to read forward continuously.
6. With tape reading forward, set the scope for 2 usec $/ \mathrm{cm}, 500 \mathrm{mV}$ amplitude, and sync EXT positiv on the track 2 read signal. (Use the left test point on the read card.)
7 Using both probes, scope the digital outputs of tracks 4 and 5 . Use the horizontal control to align the center of the waterfall for the leading track with a vertical line on the scope face.
7. The forward mechanical skew the time between centers of track 4 and 5 waterfalls when reading forward) should not exceed:
3 or 4

3 or 4
1.3 usec
7 or 8
0.5 usec

If no adjustment is required skip to step 10 otherwise continue with step 9

Caution: Do not attempt to loosen the lock nut on the adjusting screw.
9. Turn the skew-adjusting screw (headless setscrew with the lock nut on the rear of the skew plate) until the centers of both waterfalls are aligned.
10. Scope other tracks to verify that all bits are in the same byte.
11. Set the field tester to read backward continuously
12. Sync scope negative (step 6) and check the digital outputs of tracks 4 and 5 .
13. Verify that the backward mechanical skew (the time between enters of tracks 4 and 5 waterfalls when reading backward) is less than
TU Model
orward or Backward Skew
3 or 4
1.3 usec
7 or 8
0.5 usec
14. If the tape unit does not meet the specification in step 13 , recheck the capstan dynamic alignment (08-150 or 08-160) and return to step 1 of this procedure.
15. Set the field tester to Alt Dir and check that the forward-to-backward mechanical skew is less
than:
TU Model
Fwd-to-Bkwd S
3 or 4
5 or 6
3.9 usec

5 or 6
2.4 usec

7 or 8
16. Repeat steps 13 through 15 until the specification in step 15 is met.
17. If the mechanical skew is within the given limits remove the jumper (Step 3) if installed.

Caution: Attach the cooling hose to the read/write card shroud if removed.

$\begin{aligned} & \text { XDI } 1300 \\ & \text { Sea } 1 \text { of } 2 \end{aligned}$	2735823	See EC History	$\begin{gathered} 845958 \\ \hline \text { Sep } 79 \end{gathered}$	$\begin{gathered} 847298 \\ \hline 15 \text { Auo } 83 \end{gathered}$				

MECHANICAL SKEW
CHECK/ADJUSTMENT
(NRZI-FEATURED TAPE UNITS)
The read card test point locations are on the label inside the front read-amplifier cover. See the label on the logic gate for the digital data test points
Note: The skew is adjusted while scoping digital data pulses, but since two such pulses are generated for every analog sine wave verity the adjustment by scoping the analog sine wave.
Prerequisite: Perform the Capstan Dynamic Alignment procedure on 08-150.

Initial preparations:

1. Attach the 3420 field tester.
2. Mount and load a master-skew tape, P/N 432640 or 432641.
3. Set the field tester to read forward continuously.
4. Set the frequency switch to $8(800 \mathrm{bpi})$.

To set up the scope:
5. Sync scope positive on the track 2 read signal (9 -track) or track 4 read signal (7 -track). Use the left test point on the read card.
6. Scope the read card digital output for tracks 4 and 5 (9 -track), or P and 7 (7 -track). See the label to the left of the logic panel.
To adjust the skew:
Caution: Do not loosen the lock nut on the adjusting screw.
7. Adjust the head skew plate until the negative-transition waterfalls displayed in step 6 are aligned. The adjustment screw is found on the rear of the skew plate and is the headless setscrew with the lock nut.
To check the backward skew:
8. Set the tester to read backward continuously.
9. Sync scope negative and probe the points given in step 6.
10. The backward skew must not exceed:
$\begin{array}{ll}\text { TU } & \text { Backward } \\ \text { Model } & \text { Skew } \\ 3 & 0.6 \text { usec }\end{array}$
3
5
7

$$
\begin{aligned}
& 0.6 \text { usec } \\
& 0.4 \text { usece } \\
& 0.25 \text { usee }
\end{aligned}
$$

Note: If a different tape is used to check the skew from that used to set the skew, it is not necessary to adjus fore hard ske plaw it is for given: given:
$\begin{array}{lll}\text { TU } & \begin{array}{l}\text { Forward } \\ \text { Fwd-to-Bkwd }\end{array} \\ \text { Model } & \begin{array}{l}\text { Skew } \\ \text { Skew }\end{array}\end{array}$

| 3 | 1.0 usec 2.0 usec |
| :--- | :--- | :--- |
| 5 | 0.6 |
| 7 | usec |
| 7 | 0.2 usec |
| 7 | usec |

11. If the skew exceeds the limits, repeat the Capstan Dynamic Alignment procedure on 08-150
12. If the skew is within the limits, adjust the head skew plate until the outside track signal either leads skew plate until the outside track signal either leads
or lags the inside track signal by the same amount when going forward or backward. Track 4 is inside, track 5 is outside, on 9 -track tape units. Track P is inside, track 7 is outside, on 7 -track tape units.
13. At the completion of the mechanical skew adjustment in NRZI mode, ensure that the analog sine waves for all tracks coincide at the read-card test points (left side).
14. Check the capstan-to-stubby bar clearance. See 08-080, "Capstan To Stubby Bar Clearance Adjustment."
15. Check the read and write electrical skew. See 08-190, "Read Electrical Skew Adjustment" and 08-200, "Write Electrical Skew Adjustment."

Typical Scope Presentation of Skew

CARR - READ SKEW

READ ELECTRICAL SKEW ADJUSTMENT

(NRZI-FEATURED TAPE UNITS)

Prerequisites: Perform the Mechanical Skew Check/Adjustment procedure on 08-180 and the Read/Write Head Degaussing procedure on 08-280.
Adjustment is not necessary if the forward and backward read skew is less than the following limits:

TU	Read Skew Model
(Fwd and Bkwd	
3	1.0 usec
5	0.6 usec
7	0.4 usec

Initial Preparations:

1. Attach the field tester
2. Load a master-skew tape, $\mathrm{P} / \mathrm{N} 432641$ or 432640 .
3. Set the field tester to read forward continuously.
4. Set the frequency switch to $8(800 \mathrm{bpi})$

Determine the most lagging track
5. Sync scope positive on the track 2 read signal (9-track) or track 4 read signal (7 -track). Use the left test point on the read card.
6. With the channel A probe, scope the NRZ deskewed read data track P at A1M2. (See the label on the logic gate.)

7 With the channel B probe, determine which is the most lagging track. Look at the positive transition (leading edge) of each track signal. (Track 7 in the example.)
E Adjust the most lagging track's pulse width to 1.0 usec by turning its potentiometer.

Set the skew:

9. Adjust each remaining track's pulse width until the negative transition (trailing edge) lines up with the trailing edge of the pulse adjusted in step 8.
10. Set the tester to read backward continously.

11. Change the scope sync to negative.
12. Repeat steps 5 though 9 adjusting the backward potentiometer.
13. Check the write electrical skew. See 08-200, "Write Electrical Skew Adjustment.

WRITE ELECTRICAL SKEW ADJUSTMENT (NRZI-FEATURED TAPE UNITS)
Prerequisites: Perform the Mechanical Skew
Check/Adjustment procedure on 08-180 and the Read Electrical Skew Adjustment procedure on 08-190.
Adjustment is not necessary if the forward and backward skew is within the following limits:

TU	Write Skew
Model	(Fwd and Bkwd)
3	1.0 usec
5	0.6 usec
7	0.4 usec

Initial preparations:

1. Attach the field tester
2. Load a master signal-level tape, $\mathrm{P} / \mathrm{N} 461108 \mathrm{~A}$ or 432152A.
3. Set the field tester to write all ones.
4. Set the frequency switch to $8(800 \mathrm{bpi})$.

Zero delays:

5. Sync negative and scope Bus Out P (A1K2D07) with the channel A probe.
6 With the channel B probe, scope each track's write deskew output (see the label on the logic gate) and adjust each track's write deskew pot until the negative transition occurs 1.0 usec after the negative transition on channel A .

Determine the most lagging track:

7. Sync positive on the read card test point of track 2 (9 -track) or track 4 (7 -track). Use the left test (9-track)
point.
© Display track P at the NRZI read deskew test point and scope the remaining points (see the label on the logic gate). Look at the negative transition (trailing edge) to determine the most lagging track.
To adjust the skew:
9 Adjust each track's write deskew potentiometer until the negative transition (trailing edge) lines up with the negative transition of the most lagging track (step 8.)

6

AFTER

*Not present on 7 track machines

XD1400	2735824	See EC Histery History	$\begin{aligned} & 845958 \\ & 1 \text { Sep } 79 \end{aligned}$				

\square

CCCCCCle

CARR - D-BEARING

D-BEARING, RIGHT REAR MOVABLE GUIDE
AND RETRACTOR
REMOVAL/REPLACEMENT
REMOVAL/REPLACEMENT -
(NRZI-FEATURED TAPE UNITS)
To remove the guide:
1 Remove the two screws that hold the D-bearing to he front reference plate.
2 Remove the bearing
3 Remove the single screw that holds the right rear movable guide to the retractor

Caution: Do not lose any parts caused by the spring tension released by removing the screw.
To remove the retractor, continue as follows:
4. Disconnect the air-pressure hose from the tracto
5. From the rear, remove the three screws that hold the retractor to the plenum cover and take out the retractor
6. Reverse the procedure to replace the retractor and right rear movable guide.

XD1500 Seq 1 of 2	2735825	See EC History	$\begin{aligned} & 845958 \\ & 1 \text { Sep } 79 \end{aligned}$				

LEFT MOVABLE GUIDE AND RETRACTOR
REMOVAL/REPLACEMENT
(NRZI-FEATURED TAPE UNITS)
\int Remove the two screws that hold the left threading channel to the reference plate.
Note: The retractor is built into the threading channel
2 Caution: Be careful not to lose the two small 0 -rings located behind the left threading channel
Remove the left threading channel and disconnect the hose. Leave the hose protruding from the fron of the machine through the hole in the casting.
3 Remove the large screw that holds the carbide tape guide assembly.
4. Remove the solid guide, movable rear guide, and spring.
5. Reverse the procedure to reassemble.

XD1500	2735825	See EC History	$\begin{aligned} & 845958 \\ & \hline \text { Sep } 79 \end{aligned}$					

CARR - TAPE GUIDE

TAPE GUIDE CHECK FOR

NRZI-FEATURED TAPE UNITS
1 Remove the three screws that hold the right threading channel to the reference plate.
2 Clean the oxide deposits from the D-bearing, front lange, rear movable guide, and recessed area around the rear guide.
3. Inspect the flange and guide for wear and replace if the grooves are visible on their surfaces.
4 Caution: Do not lose the two O-rings located behind the threading channel.
Remove the left threading channel and disconnect he hose. Ensure that the hose does not slip back hrough the hole in the casting

5 Clean the oxide deposits from the left front guide left rear movable guide, and the recessed area round the rear guide.
6. Check that the right and left rear guides move freely
7 Reinstall the threading channels. Connect the hose and ensure that the two 0 -rings are in position behind the left threading channel.

READ FORWARD TO BACKWARD RATIO

 TEST (MODELS 4, 6, 8)Use this test to determine if a read/write head needs replacement.
Verify that the tape is tracking correctly before any head replacement because of the above criteria (08-150, 08-160). Perform Field Tester Accuracy check on 08-315 before proceeding.

1. Degauss the head $(08-280)$ and the cleaner blade (08-390).
2. Install a jumper from K2PO2-M2DO6. This forces 6250 mode.
3. Obtain a customer good quality representative tape and write it at 6250 bpi on the unit being checked. Write it from the field tester with the frequency switch set at 64
4. Read forward to the middle of the tape and remove jumper K2P02-M2D06 while tape is moving then stop tape.
5. Set the Field Tester as follows:

ALT DIR
SLOW
READ
UP/FWD DN/BKWD. potentiometers all the way to the back of tester.
(Adjust DN/BKWD. so tape has a forward creep rather than a backward creep).
6. Sync and scope the Read card test points to determine the fwd to bkwd ratio. Display 3 or 4 cycles or an envelope of read signal and use as much of the scope display as possible for measurements $(.2 \mathrm{v} / \mathrm{cm})$. For ease of recording, scope H2MO8 with another probe, this line will go negative when reading backwards.
7. If there is a read problem, and the amplitude in on direction is more than double the amplitude in the opposite direction on any one track, replace the required, peform the removal/replacement procedure on 08-250, do required adjustments and return to the Map that sent you here or 00-030. pacement is not required return to the Map tha sent you here or 00-030.
Note: If while making measurements, the tape gets back o load point, (resetting the 6250 latch) the jumper K2P02-M2D06 will have to be reinstalled while at load point and the tape read forward. This keeps the tape unit in 6250 without forcing a SAGC set up on every record. Remove the jumper and continue the test.
time the jumper is removed the SAGC may set up at a different value, but the ratio will remain the same.

READ FORWARD TO BACKWARD RATIO

TEST (MODELS 3,5,7)

Use this test to determine if a read/write head needs replacement.
Verify that the tape is tracking correctly before an head replacement because of the above criteria (08-150, 08-160). Perform Field Tester Accuracy check on 08-290 before proceeding

1. Degauss the head $(08-280)$ and the cleaner blade (08-390).
2. Obtain a customer good quality representative tape and write it at 1600 bpi on the unit being checked. Write it from the field tester with frequency switch set to 32 .
3. Read forward to the middle of the reel of tape and stop tape.
4. Set the Field tester as follows

ALT DIR
SLOW
READ
UP/FWD DN/BKWD. potentiometers all the way to the back of tester.
Adjust DN/BKWD. so tape has a forward creep rather than a backward creep).
5. Sync and scope the Read card test points to determine the fwd to bkwd ratio. Display 3 or 4 cycles of read signal and use as much of 3 cm). For ease of recording scope J2B13 with another probe this line will go positive when reading backwards.
6. If there is a read problem, and the amplitude in one direction is more than double the amplitude in the opposite drecks the any/write head should be mlaced if head replacement is required perform the removal/replacement procedure on 08-250, do equired adjustments and return to the map that sent you here or 00-030. If replacement is not required return to the map that sent you here.

CCC

READ/WRITE OR ERASE HEAD

 REMOVAL/REPLACEMENTBefore replacing the read/write head, perform the following to verify that replacement is necessary. Phase Pointer Analysis
Many temporary write errors with MTE and not ENV errors can be caused by phase-shift problems. Use the following procedure to check for excessive phase the following procedure to check for excessive ph pointers. Keep in mind that other tape-oriented
problems can cause the phase pointers to look bad. Before changing a read/write head, ensure that none of the problems listed below exist. Occasional phase pointers might occur because of envelope fallout. Check the following

1. Bad tape
2. Low vacuum
3. Dirty head
4. Incorrect voltages
5. Defective read or write cards
6. File-protect problems
7. Motion problems

Phase-shift scoping procedure (use a customer good-quality representative tape):

3803-2 Models 4, 6, 8
a. Check the SAGC setup. See 08-310. The

SAGC should set up in 14 or less steps.
b. Loop write reliability test 3420 R in 6250 bpi.
c. Scope the phase pointers

Logic	Card	Pins	
CD191	Y1M2 (A3M2)	G12, J11, J12	Zone 1
CD291	Y1L2 (A3L2)	$G 12, J 11, J 12$	Zone 2
CD391	Y1K2 (A3K2)	G12, J11, J12	Zone 3

d. Sync point

Stand-alone mode A1G2M12 + Mark 1 - ALD BW151
3803-2 Models 3, 5, 7
a. Ensure that the amp sensors are correctly set up. See 08-290.
b. Loop write reliability test 3420 L
c. Scope the phase pointers

Logic	Card	Pins	
CD191	Y1M2 (A3M2)	$G 12, J 11, J 12$	Zone 1
CD291	Y1L2 (A3L2)	$G 12, J 11, J 12$	Zone 2
CD391	Y1K2 (A3K2)	$G 12, J 11, J 12$	Zone 3

d. Sync point

Stand-alone mode Y1H2PO6 - All Ones
A sync will occur at the beginning and ending all-ones marker, but only the phase pointer between these pulses are valid.
To replace the read/write head:

1. Turn off tape unit power.
2. Remove the front read/write card cover by pulling it straight out.
3. Remove the two mounting screws, disconnect the hose, and remove the filler block (Models 4, 6 , and 8), or the rewind plunger (Models 3,5, and 7).

Note: The left two screws are hex-heads.
4. Unplug the read/write cards from the head. See 08-260, "Read/Write Head Card Removal/Replacement.'
5. Remove the nylon screw that holds the erase head to the mounting plate. Carefully pull out the erase head without damaging the wires. Care must be taken not to damage the cable while unsoldering the leads
Caution: When replacing the erase head, do not overtighten the nylon screw. It is not as strong as a metal screw. Ensure that the grey wire is connected to the top pin, and the yellow wire is connected to the bottom pin
6. Remove the two screws from the mounting plate.
7. Carefully pull the head and mounting-plate assembly straight out. (If the locating pins bind rock the assembly to loosen.)
Caution: Do not loosen or remove the eight skew-plate screws, as this causes the factory-set read/write head wrap angle to be changed.
8. Reverse the procedure to install a new head

After installing a new head, do the following
Caution: Assure that the read/write cards are in their retaining slots in the cooling shroud.
. Degauss the head. See 08-280, "Read/Write Head Degaussing.
2. Verify the tape tracking by performing the Capstan Dynamic Alignment procedure on 08-150 or 08-160.
3. Adjust the amp sensors (Models 3,5, and 7, see 08-290 or 08-300), or adjust the read amplitude (Models 4, 6, and 8, see 08-310).
4. Adjust the mechanical skew. See 08-170 (1600 and 6250 bpi tape units) or 08-180 (NRZI-featured tape units)
5. On NRZI-featured tape units, adjust the read and write electrical skew. See 08-190, "Read Electrical Skew Adjustment,", and 08-200, "Write Electrical Skew Adjustment.

203-1.23/3420

$\begin{array}{\|l\|l\|} \hline \text { XD1 } 700 \\ \text { Seq } 1 \text { of } 2 \end{array}$	${ }_{\text {Par }}^{2735827}$	See EC History	$\begin{gathered} 845958 \\ 1 \text { Sop } 79 \end{gathered}$	846927				

READ/WRITE HEAD CARD
 REMOVAL/REPLACEMENT

1 From the rear of the unit, unsnap the upper half of the read/write card cooling shroud
2 From the rear of the unit, unplug the cable(s) from the top of the card being replaced. (Models 4, 6 and 8 have two cable plugs on the read card, and Z , and one on the write card J-3.) (Models 3, 5 , and 7 have J3 and J 1 cables only.)
3. From the front of the unit, remove the decorative head cover

4 Disconnect the write card ground strap from the front of the read/write head
5 Unplug the card while holding the socket with one hand, pull the front edge of the card straight up with your other hand, rocking gently to loosen. Caution: Before removing the read card, shape the ground clip so it will clear the head plug pins.
6. From the rear of the unit, pull the card straight out until it clears the guides on the lower half of the cooling shroud.
7. To install a new card, reverse the procedure. Before changing the write head card, perform the Write Head Driver Card Plugging procedure on 8-270

Caution: Plug the cables correctly. The rear cable Y has two heavy wires in addition to the ribbon cable and is identified by a label on C 733222.
8. Before installing a new write head card on Mode 4, 6, or 8, perform the Write Head Driver Card Plugging procedure on 08-270.
9. After installing a new read head card on Model 3, 5, or 7, perform the Amp Sensor Adjustment procedure on 08-290 or 08-300
10. After installing a new read head card on Model 4 6, or 8, perform the Read Amplitude Adjustment procedure on 08-310
11. After installing a new write head card in any model, the verify amplitude or amp sensor adjustments on 08-290, 08-300, and 08-310
 strap in such a manner that the resultant forces strap in such a manner that the
are in a downward direction 4 .
13. The cooling shroud reduces overheating of the read and write head cards. Ensure that the cooling shroud is reinstalled after working in this area and the cards are in the retaining slots.

Model 4, 6, 8

3803-1,2,3/3420

XD1700	2735827

WRITE HEAD DRIVER CARD PLUGGING (TAPE UNIT MODELS 4, 6, 8)
The write head card is model-sensitive and must be plugged correctly.

When installing a new write head card, see the figure shown for correct plugging.
The write head card can be one of the four part
numbers listed below:

3420 Model	Part Number
$4,6,8$	1845815
4,6	1845792^{*}
8	1845799^{*}
$4,6,8$	1845791^{*}

Caution: If you use a write head card to troubleshoot another tape unit, ensure that the plugging is compatible with that tape unit.

* On some machines this obsolete part number may exist.

XD1800 $\text { Seq } 1 \text { of }$	${ }^{2735528}$	See EC History	$\begin{aligned} & 845958 \\ & 1 \text { Spop } \end{aligned}$	$\begin{gathered} 847298 \\ 15 \\ \hline 15 \text { Aug } 83 \end{gathered}$			

READ/WRITE HEAD DEGAUSSING

Caution: Do not use the degausser tool, P/N 451064, near any magnetic media because it erases information.

1. Unload the tape unit. Do not place the tape on top of the tape unit because the degausser will be too close
2. Open the outer door and the vacuum column door. Plug the degausser into an ac outlet
3. While the degausser is at least 1 foot $(30.5 \mathrm{~cm})$ away from the read/write head, press and hold the pushbutto
4. Hold the degausser against the front surface of the head for about 10 seconds.
5. Pull the degausser straight away from the head very slowly to a distance of at least 3 feet and release the pushbutton.
6. Check the electrical skew on NRZI-featured tape units. See 08-190 and 08-200.

Read/Write Head Resistance Check Procedure

 (Tape Unit Models 4, 6, 8)1. Turn off tape unit power.
2. Remove the read/write card shroud. Disconnect the read/write cards from the head and slide them back even with the transport casting.
3. Use a calibrated Simpson* meter, not the CE tool bag meter. Measure the total resistance across each track of the head. Ignore the center tap of the coil. The normal reading on the write coil is 1.7 ohms; the reject point on the write coil is 5 ohms or greater. The normal resistance of a read coil is 3.6 ohms; the reject point on the read coil is 10 onch side of the read and write coils. The resistance should be approximately equal
4 Measure resistance from housing of the head to each coil (both read and write) outside pin. If the resistance is less then 5 megohms., replace the head.
4. Reinstall the read and write cards onto the head and reinstall the card shroud.
5. Degauss the read/write head using the procedure on this page.
*Trademark Simpson Electric Co.

XD1800 Seq 2 of 2	2735828	See EC History	$\begin{aligned} & 845958 \\ & 1 \text { Sep } 79 \end{aligned}$				

AMP SENSOR ADJUSTMENT - PE ONLY (TAPE UNIT MODELS $3,5,7$)

Note: Ensure that the -4 Vdc supply is correctly adjusted before making this adjustment. See 08-570, "DC Power Supply Checks/Adjustments."
To adjust the amp sensors on a PE-only tape unit: Do steps 1 and 3 through 10 below if using the 3420 field tester; do steps 2 through 10 below if using the 3803 tape control.

1. Field tester only
a. Switch the tape unit offline using the switch on the logic gate.
b. Attach the field tester, P/N 1765342

Caution: Ensure that the tester's write frequency is within specifications. See Field Tester Accuracy Check on this page.
c. Load a master signal-level tape, P/N 432152A or 461108A.
d. Set the tester to write continuously, with the frequency switch set to 32 . Position 32 is the bottom position on both modified and unmodified field testers when the tester is connnected to a model 3,5 , or 7 .
e. Go to step 3.
2. 3803 tape control only.
a. Ensure that the tape control is offline.
b. Load a master signal-level tape, P/N 461108A or 432152A.
c. Put the tape control in ROS Stop mode for ALU2 with a compare register address of ' $21 \mathrm{D}^{\prime}$ (3803 Model 2) or ' $2 \mathrm{CB}^{\prime}$ (3803 Models 1 and 3) This prevents termination of the subsequent Write command.
d. Jumper T-A1N4D11 to T-A1N5D10 at the tape unit to rewind and unload the unit when Tape Indicate is sensed.
e. From the tape control, write a continuous pattern of all ones by jumpering A1R2J12 to ground.

Caution: Ensure that the data pattern is all ones and not a ripple pattern
f. Go to step 3.
3. Plug an attenuator card, $\mathrm{P} / \mathrm{N} 5861455$, into the read card test socket. Insert the card with the components to the left.
4. Sync scope minus (internal H.F. Reject) and display the read card digital data (T-A1N3) for the track you are adjusting. See the label on the tape unit logic gate for test points.
Note: If digital data does not exist, turn the read card potentiometer until a good solid signal is obtained, as shown in Figure B.
5. Using an uncalibrated (variable) horizontal sweep, adjust the scope so that one complete cycle is displayed, as shown in Figure B
6. Locate the correct potentiometer on the read card for the track you are adjusting. See the label on the card cover.
7. Turn the potentiometer counterclockwise while observing the negative pulse until a dim trace observing the negative pulse
exists, as shown in Figure A
8. Then, turn the potentiometer slightly clockwise until you have a solid digital data pulse, as shown in Figure B.
9. Repeat steps 4 through 8 for each track
10. Remove the attenuator card, field tester, and the jumpers if used.

Figure A

Figure B

FIELD TESTER ACCURACY CHECK
The amp sensors can be adjusted offline using the 3420 field tester, P / N 1765342, if the tester's write cycle width meets the specifications below:

	PE Position 32	7- or 9-Track NRZ1 Position 8
Model 3	7.7 to 8.6 usec	31.1 to 34.4 usec
Model 5	4.6 to 5.2 usec	18.6 to 20.7 usec
Model 7	2.9 to 3.3 usec	11.6 to 12.9 usec

To determine tester accuracy:

1. Switch the tape unit offline using the switch on the logic gate.
2. Attach the field tester, $\mathrm{P} / \mathrm{N} 1765342$.
3. Load a master signal-level tape, P/N 432152 A or 461108A.
4. Set the tester to write continuously with the frequency switch set to 32 . Position 32 is the bottom position on both modified and unmodified field testers when the tester is connected to a model 3,5 , or 7 .
5. Sync scope plus (internal) and display T-A 1 K 4 GOO Sync scope plus (internal) and display T-A1K4GO5
(tester Bus Out 2) and ensure that the cycle width is as shown for the tape unit model you are checking.
Note: If the frequency of the tester is not within specifications, and you wish to use it to adjust amp sensors, replace the tester card, P/N 8216712 , and repeat steps $1-5$ to ensure that the new card is within specifications.

AMP SENSOR ADJUSTMENT - NRZI FEATURE

(TAPE UNIT MODELS 3, 5, 7)
Note: Ensure that the -4 Vdc supply is correct before making this adjustment. See 08-570, "DC Power Supply Checks/Adjustments.'
To adjust the amp sensors on a NRZI-featured tape unit (7-or 9-track): Do step 1 and steps 3 through 10 below if using the 3420 field tester; do steps 2 through 10 below if using the 3803 tape control.

1. Field tester only
a. Switch the tape unit offline using the switch on the logic gate.
b. Attach the field tester, P/N 1765342.

Caution: Ensure that the tester's write frequency is within specifications. See Field Tester
Accuracy Check on this page.
c. Load a master signal-level tape, $\mathrm{P} / \mathrm{N} 432152 \mathrm{~A}$ or 461108A.
d. Set the tester to write continuously with the frequency switch set to 8 .
e. Go to step 3
2. 3803 tape control only.
a. Ensure that the tape control is offline
b. Load a master signal-level tape, P/N 461108A or 432152A.
c. Put the tape control in ROS Stop mode for ALU2 with a compare register address of '48D' (3803 Model 2) or '481' (3803 Models 1 and 3). This prevents termination of the subsequent Write command.
d. Jumper T-A1N4D11 to T-A1N5D10 at the tape unit to rewind and unload the tape unit when Tape Indicate is sensed.
e. From the tape control write (in NRZI mode, with a mode set of 'CB' for 9 -track and ' 93 ' for 7 -track) a continuous pattern of all ones by jumpering A1R2J12 to ground.

Caution: Ensure that the data pattern is all ones and not a ripple pattern.
f. Go to step 3.
3. Remove the front head cover and plug an attenuator card into the read card test socket. For 9 -track units (and 7-track units with EC 734949), use attenuator card, P/N 5861452; for 7-track units tracks 0 and 1 .
4. Sync scope minus (internal H.F. Reject) and display the read card digital data (T-A1N3) for the track you are adjusting. See the label on the tape unit logic gate for test points.

Note: If digital data does not exist, turn the appropriate read card potentiometer until a good solid signal is obtained, as shown in Figure A or B. See the
label on the card cover label on the card cover.
5. Using an uncalibrated (variable) horizontal sweep, adjust the scope for a negative pulse width of 5 cm , as shown in Figure A .
Note: If a double trace at the positive transition is apparent, as shown in Figure B, use the outermost transition to obtain the 5 cm negative pulse width.
6. Locate the correct potentiometer on the read card for the track you are adjusting. See the label on the card cover.
7. Turn the potentiometer until the leading edge of the positive-transition waterfall starts 4 cm from the midpoint of the negative transition, as shown in Figure C
Note: An occasional trace before 4 cm is acceptable when the adjustment is completed.
8. Repeat steps 4 through 7 for each track.
9. Remove the attenuator card, field tester, and the jumpers if used.

FIELD TESTER ACCURACY CHECK
The amp sensors can be adjusted offline using the 3420 field tester, P / N 1765342, if the tester's write cycle width meets the specifications below:

	PE Position 32	7- or 9-Track NRZI Position 8
Model 3	7.7 to 8.6 usec	31.1 to 34.4 usec
Model 5	4.6 to 5.2 usec	18.6 to 20.7 usec
Model 7	2.9 to 3.3 usec	11.6 to 12.9 usec

To determine tester accuracy:

1. Switch the tape unit offline using the switch on the logic gate.
2. Attach the field tester, $\mathrm{P} / \mathrm{N} 1765342$.
3. Load a master signal-level tape, $\mathrm{P} / \mathrm{N} 432152 \mathrm{~A}$ or 461108A.
4. Set the tester to write continuously, with the frequency switch set to 32 .
5. Sync scope plus (internal) and display T-A1K4G05 (tester Bus Out 2) and ensure that the cycle width is as shown for the tape unit model you are checking. Note: If the frequency of the tester is not within specifications, and you wish to use it to adjust amp sensors, 5 to tester card, P/N 8216712 , and repeat steps $1-5$ to ensure that the new card is within specifications.

CARR - READ ADJUSTMENTS

READ AMPLITUDE ADJUSTMENT

(TAPE UNIT MODELS 4, 6, 8)

1. Ensure that the -4 Vdc and +6 Vdc supplies are correctly adjusted before adjusting the read amplitudes. (See 08-570, "DC Power Supply Checks/Adjustments.")
2. Clean the read/write head and tape path before making adjustments.
3. Check the field tester accuracy. (See 08-290 "Field Testor Accuracy Check")
4. Ensure that the density switch is set to the correct setting and that the tester has been converted to 6250 bpi.

READ AMPLITUDE ADJUSTMENT (6250

 BPI ONLY)1. Load a master signal-level tape on the tape unit to be tested. The tape must be at load point for this procedure to work.
2. If the TCU is not available, use an accurate field tester for this adjustment. (See step 3 above). If a field tester is being used, go to step 4.
3. Connect a jumper between ground and pin T-A1N3B04. Grounding T-A1N3BO4 sets the threshold level and enables the adjusting pots. Set threshold level and enables the adjusting pots. Set
up the TCU in ROS Stop mode, ALU2 to Stop and up the TCU in ROS Stop mode, ALU2 to Stop and
Write Compare Register address to '6D2' (see CE panel operations on 12-010). Do a Write command with data of all ones (not ripple). Connect a jumper from T-AIN4DIT to T-AINSDIO in the tape unit. This causes the tape unit to rewind/unload after sensing the end-of-tape (EOT) marker. Go to step 5.
4. Connect a jumper from ground to T-A1N3BO4. Set up the field tester to write forward continuously with the frequency switch set to 32 (middle position on modified field tester).
5. Set up the scope to sync on a positive going signal and display the digital read signal at T-A1N3BO7 (track 1). See Note 1.
6. Turn the potentiometer counterclockwise (for track 1) until the scope trace shows no digital data. Th urn the potentiometer clockwise until the scope a bright trace and the horizontal trace should be should be
7. After making adjustments, ensure that the analog signal on each track is $2 \mathrm{~V} \pm .3 \mathrm{~V}$. Remove all the保 procedure. Remove the field tester (if it was used).

READ AMPLITUDE ADJUSTMENT (1600/6250 BPI)

. Load a master signal-level tape on the tape unit to be tested. The tape must be at load point for this procedure to work.
2. If the TCU is not available, use an accurate field tester for this adjustment. (See step 3, read amplitude adjustment models 4, 6, 8). If a field tester is being used, go to step 4
3. Connect a jumper from ground to A1R2J12 in the TCU to write continuously with all ones (not ripple). Perform the following sequence offline
CMND 1 C3X Mode Set
CMND 2 01X Write
4. Connect a jumper from T-A1N4D11 to T-A1J2BO2 to rewind and unload the tape after an EOT is sensed. Connect a jumper from ground to T-A1N3B04. Grounding T-A1N3B04 sets the threshold level and enables the adjusting pots. Set up the field tester to write forward continuously with the frequency switch set to 32 (middle position on modified field tester).
Note: Do not install jumper from T-A1M2D06 to T-A1K2PO2 listed on the 3420 tape tester for this adjustment.
5. For the read track under adjustment sync positive and display the analog test point and adjust digita read signal (step 6). See Note 2 .
6. Turn the potentiometer clockwise until the scope trace shows solid digital data. Then turn the potentiometer counterclockwise until the scope picture looks like Figure 1. The square wave should be a bright trace and the horizontal trace should be dim. At this time the analog signal is $2 \mathrm{~V} \pm .3 \mathrm{~V}$.
7. Repeat steps 5 and 6 for all tracks.
8. Remove all the jumpers installed as per instructions in this procedure. Remove the field ester (if it was used) and verify that the adjustmen is correct by running the OLT section 3420L using the same master output tape used during the adjustment of the amplitudes.

Figure 1. Read Amplitude Signal

Notes: Only the track 1 potentiometer (test point
-A1N3B07) is present on a 6250 bpi card
2. Digital read signals for 1600 and 6250 bpi are:

Track	Test Point	Track	Test Point
P	T-A1N3B05	4	T-A1N3B10
0	T-A1N3B06	5	T-A1N3B11
1	T-A1N3B07	6	T-A1N3B12
2	T-A1N3B08	7	T-A1N3B13
3	T-A1N3B09		

Read Card Test Points

6250 SAGC CHECKS

Load a master signal-level tape P/N 432152A
461108A, set the 3420 field tester to write start/stop and the frequency switch to 64 . Install a jumper between T-A1M2DO6 and T-A1K2P02. Sync scope ime to observe a full SAGC setup A (set Dn/Bkwd all the way to rear of the tester). he tester)

With another probe scope SAGC signal on all tracks a read card test points. Acceptable step range is 0 to 14 If setup range is exceeded check

1. Read head card
2. Vacuum level for low vacuum
3. Write head card
4. Read/write head
5. Capstan tracking

Note: If the SAGC sets up in step 0 and the analog signal is greater then $2 v \pm .3 v$, replace read/write head.

FIELD TESTER ACCURACY CHECK (FOR MODELS 4, 6, or 8)

The amp sensors can be adjusted offline using the 3420 field tester, $\mathrm{P} / \mathrm{N} 1765342$, if the tester's write cycle width meets the specifications below:

PE Position 32		6250 Position 64	
Model 4	7.7 to 8.6 usec	Model 4	3.8 to 4.3 usec
Model 6	4.6 to 5.2 usec	Model 6	2.3 to 2.6 usec
Model 8	2.9 to 3.3 usec	Model 8	1.4 to 1.7 usec

To determine tester accuracy

1. Switch the tape unit offline using the switch on the ogic gate.
2. Attach the field tester, $\mathrm{P} / \mathrm{N} 1765342$
3. Load a master signal-level tape, P/N 432152A or 61108A.
4. Set the tester to write continuously, with the requency switch set to 32 for 1600 bpi or 64 for 6250 bpi
5. Sync scope plus (internal) and display T-A1K6G05 (tester Bus Out 2) and ensure that the cycle width is as shown for the tape unit model you are checking
Note: If the frequency of the tester is not within specifications, and you wish to use it to adjust amp specifications, and you wish to use it to adjust amp
sensors, replace the tester card, P/N 8216712 , and repeat steps $1-5$ to ensure that the new card is within specifications.

XD2000 Seq 2 of 2	2735830 Part Number	See EC History History	$\begin{aligned} & 845958 \\ & 1 \end{aligned}$	$\begin{gathered} 846927 \\ 20 \text { Jun } 80 \end{gathered}$	$\begin{aligned} & 847298 \\ & \begin{array}{c} 85 \text { Aug } \end{array} \end{aligned}$		

C

NOTES:
08-316

3803-1,2,3/3420

XD2050							
Seq 1 of 2	$\begin{array}{l}84202597 \\ \text { Part Number }\end{array}$	$\begin{array}{l}\text { See EC } \\ \text { History }\end{array}$	$\begin{array}{l}845958 \\ \text { Hep } 79\end{array}$				

Polarity Check (All Models)

1. The top pin of the erase head must read plus with respect to the bottom pin when writing.
2 If the erase head polarity is wrong, correct it by reversing the leads at the erase head.

Erasure Check (Tape Unit Models 4, 6,8)

Obtain an 800-bpi (NRZI) tape. If not available, use a 1600 -bpi (PE) written tape, or you may use a CE work $1600-$ bpi (PE) written tape, or you may use a CE work
tape that has been written with a pattern of all ones.

1. Switch the tape unit offline and load the CE tape.
2. Install a jumper from T-A1K2PO2 to T-A1M2D06, placing the tape unit in 6250 bpi.
3. Use the field tester to write all ones continuously Set the frequency switch to 64 . Set the tester switches to Write, Fwd, and Go, then to Reset and Start.
4. Immediately remove the jumper installed in step 2 (to prevent any further SAGC setups.) Scope the read card test points for tracks 4 and 5 (see the back of the read/write card cooling shroud for test point locations). Record the amplitude of the envelopes observed for both tracks.
5. Stop the tape unit. Change the field tester switch from Write to Read. Do not rewind.
6. Install a jumper from T-A1K2M10 to ground, which enables you to erase in read mode.
7. Reset the tape unit. Set the switches to Fwd and Go, then to Start.
8. Scope tracks 4 and 5 again and record the amplitude of the envelopes of these tracks
9. If the amplitudes in step 8 are more than 4% of the amplitudes recorded in step 4, replace the erase head.
10. Remove the jumper installed in step 6 and unload the tape unit. Power the tape unit off, and power on again to reset the erase unit check latch.
11. Return the tape unit to the customer if the problem has been corrected.

XD2050 Seq 2 of	8492597 Part Number	See EC History	845958			:		

FEEDTHROUGH CHECK

1. Switch the tape unit offline.
2. Attach the 3420 field tester, $\mathrm{P} / \mathrm{N} 1765342$.
3. Mount an undamaged CE work tape.
4. a. Models 3,5, and 7-Set the tester to write in Start/Stop mode. Set the frequency switch to 16. If the unit is NRZI-featured, set the frequency switch to 8 .
b. Models 4, 6, and 8 - Install a jumper from T-A1M2D06 to T-A1K2PO2. Set the frequency switch to 64. Set the tester switches to Write, Fwd, and Go, then to Reset and Start. Change the switch to St/Stp.
5. Sync the scope negative on -Move tag at T-A1K4B12 (Models 3, 5, and 7) or T-A1K6B12 (Models 4, 6, and 8).
6. See the label on the inside of the front head card cover for Models 3, 5, and 7, or on the back of the read/write card cooling shroud for Models 4, 6 and 8 , and scope the analog outputs for each track Note: The feedthrough signal precedes the record by 2.0 ms on Models 3 and 4; 1.2 ms on Models 5 and 6; and 750 usec on Models 7 and 8.
7. Replace the read/write head on a Model 3,5 or 7 if the feedthrough (A) exceeds 10% (B) of the read signal. For a Model 4, 6 or 8 tape unit, set the amplitude of the first SAGC step to 4 cm . Replace he read/write head if he $0.4 \mathrm{~cm}(10 \%$ (C) amplitude is greater than $0.4 \mathrm{~cm}(10 \%$ of the first
8. Remove jumper T-A1M2DO6 to T-A1K2PO2 installed in step 4b

less than 0.4 cm .

FILE PROTECT MECHANISM CHECK

Do not lubricate any part of the file-protect mechanism. If the assembly does not operate correctly because the plunger is binding, replace as follows
1 Remove the two file-protect mechanism mounting screws on the front of the unit.
2. Slide the assembly out the front

3 Detach the two hoses from the rear of the assembly (see Note 1).
4. Reverse this procedure to install a new assembly (see Note 2).

After replacing the mechanism:

1. Check that the plunger extends $5 / 32 \pm 1 / 32$ inch ($3.96 \pm 0.8 \mathrm{~mm}$) in front of the right-hub flange
2. Check that the plunger retracts freely behind the hub flange.
a. Open the front door and pull out the doo terlock
b. Press RESET, then press and hold LOAD REWIND.
c. Push the file-protect plunger to the rear until the end of the plunger is approximately flush with the right reel hub flange. The plunger should then retract fully under control of the vacuum.
Note 1: Identify the hoses (mark) before removing them. Replace the hoses in the same location.

Note 2: It may be necessary to trim the end of the hoses to ensure that they have a good seal when reinstailing them.

3803-1,2,3/3420

 CARR - HEAD MIRROR

HEAD-MIRROR STOP ADJUSTMENT (TAPE UNIT MODELS 3,5, 7)
Adjust the head-mirror stop: (1) if the tape catches on the reference plate when threading or (2) if the rewind
plunger hits the mirror assembly during a high-speed
rewind.
To adjust the head-mirror stop:

1. Turn off tape unit power.
2. Pivot mirror assembly downward to expose the stop screw
3 Using a steel rule as a reference, adjust the stop screw behind the head mirror until the front edges f the mirror assembly, the cleaner block, and the ft carbide tape guide are flush or within 0.010 inch $(0.25 \mathrm{~mm})$ of each other.

Note: Flex the steel rule without twisting to touch all urfaces.

Caution: Be careful not to let the mirror snap back into position until the screw is correctly adjusted

0	2735832 Part Numbe	See EC History	845958					

AUTOCLEANER OPERATION

(TAPE UNIT MODELS 4, 6, 8)
The autocleaner protects the read/write head and cleans the tape by means of a cleaning ribbon positioned crosswise to the tape between the tape and the head. Tape is cleaned during:

1. High-speed rewind
2. Low-speed rewind
3. A thread/load operation
4. An unload operation

During tape cleaning operation, the autocleaner motor is energized and the cleaning ribbon moves across the tape at approximately 0.1 inch $(2.5 \mathrm{~mm})$ per minute
During other operations, the cleaning ribbon is positioned to the right of the write gap.
In use, the autocleaner is self-adjusting. Initial adjustment is necessary only after replacement.
There is a cutout on the plastic cover over the erase head which enables you to see the white ribbon when

3803-1,2,3/3420

XD2200	2735832							
Seq 2 of 2	Part Number	See EC History	845958 1 Sep 79					

 CARR - AUTOCLEANER
AUTOCLEANER

REMOVAL/REPLACEMENT
(TAPE UNIT MODELS 4, 6, 8)

1. Unload the tape unit and turn off power.

From the front of tape unit:
Caution: It is recommended that the head be removed or protected with a piece of card stock secured with tape during this procedure to prevent possible damage.
2 Remove the two screws holding the autocleaner to the upp er stubby bar. Gently lift the front of the autocleaner until the locators clear the countersunk holes.

rom the rear of the tape unit:

3 Disconnect the autocleaner power connector
4 Remove the two screws holding the adjustmen plate to th e autocleaner mounting bracket.
5. Gently slide the autocleaner to the rear of the machine. Do not disturb the fiber optic bundles or wires.
6. Reverse the above procedure to replace the autocleaner.
7. After replacing the autocleaner, perform the Autocleaner Adjustment procedure on 08-382.

XD2300	2735833	See EC Histor Histor	845958	${ }_{88 \text { Aug } 80} 8420$	847298			

aUtocleaner operational check

1. With the door interlock pulled out, no tape mounted, and the column door open, press LOAD REWIND and hold it down.
2 Place a piece of masking tape over the reels loaded port.
3 Use a tab card to block the light from the photosensor on the EOT/BOT
2. This should cause the autocleaner to snap under the head and then return to its home position when the card is removed. See 08-360.
3. If the autocleaner fails to operate or is sluggish proceed as follows:
6 Insert a tee between the output of the rewind solenoid valve and the hose to the autocleaner Disconnect the rewind solenoid power plug. Note: A temporary tee can be made by using a vacuum switch tee from one of the dual switch positions, and two small pieces of cleaner blade hose (P / N 1766567)
4. With a jumper between A1D4J09 and ground, hook the pressure/vacuum gauge to the tee. No less than 65 inches (1650 mm) pressure should autocleaner for the cause of the sluggish operation or replace the autocleaner.
5. If the pressure reading is bad, temporarily hook the tee to a new autocleaner. If a good reading the tee to a new autocleaner. If a good reading the screws on the front of the ribbon carrier. Replace the autocleaner if necessary. If a good reading is not obtained, check the pneumatic system. Remove the jumper A1D4J09 to ground.
9 Disconnect the rewind solenoid power plug. Then check that the autocleaner ribbon moves from the bottom to the top approximately 0.10 inch (2.54 mm) per minute by marking the tape and observing the direction while holding LOAD REWIND down

3903-1,2,3/3420

Komen	20,	Sos			${ }_{\substack{872928}}^{815098}$				

C C

CARR - AUTOCLEANER (Cont'd)

AUTOCLEANER ADJUSTMENT

(TAPE UNIT MODELS 4, 6, 8)
See 08-080, "Capstan-To-Stubby Bar Clearance Adjustment before starting this procedure

1. If required, take up the loose ribbon by turning counterclockwise the screw located at the rear of the autocleaner on the side opposite the motor
2. Loosen the two adjustment screws at A. Position the screws to the center of their slots and tighten
them.
3. Loosen the two adjustment screws at B.
4. Observe the autocleaner ribbon position relative to the read/write head surface. The left edge of the the read/write head surface. The left edge of
ribbon may just touch the head at point D. ribbon may just touch the head at point (D).
(Maximum clearance 0.015 inches (0.38 mm). Th ribbon should not touch any part of the head between point (D and point H. (If the edge of the ribbon is folded, the ribbon position is too high). If the ribbon is too high, adjust bracket (C) toward the rear of the machine. If the ribbon is too low, adjust bracket (C) toward the front of the machine. To ease the adjustment:
a. Loosen screw B on one side, adjust bracket the desired amount, then tighten the screw
b. Repeat for the other side, moving the bracket an equal amount.
c. Observe the autocleaner ribbon position. Repea
5. After the autocleaner ribbon has been correctly positioned, check that:
a. The left end of the autocleaner thread channel bed (glass bead) is 0.030 to 0.060 inch (0.76 to 1.52 mm) above the tape guide ramp edge. Se the figure, point E
b. The right end of the autocleaner thread channel bed (glass bead) is positioned below the top of the EOT/BOT block F, so that the autocleaner the EOT/BOT block F, so that the autocleane upper stubby bar, point G.
6. If either step 5 a or 5 b is incorrect, loosen the screws at A and reposition the aucleaner Loosen and tighten the screws for each trial position.
7. Check to see that:
a. The autocleaner ribbon is correctly positioned.
b. The autocleaner arm retracts and extends freely.
c. The autocleaner ribbon actuates back and forth across the head freely. Verify by performing the Autocleaner Operational Check procedure o 08-380
d. The magnetic tape leader threads through the channel freely by loading and unloading a reel of tape several times.

$\begin{aligned} & \text { XD2350 } \\ & \text { Seq } 1 \text { of } \end{aligned}$	2736042	See EC History	$\begin{aligned} & 845958 \\ & \hline \text { Sop } 79 \end{aligned}$	${ }^{847298}$			

CLEANER BLADE GAUSS CHECK AND DEGAUSSING

To check for a gaussed (magnetized) cleaner blade, proceed as follows:

1. Switch the tape unit offline
2. Attach the field tester, $\mathrm{P} / \mathrm{N} 1765342$
3. Load and make ready the tape unit with a good CE work tape.
4. Set the tester to write continuously, with the frequency switch set to 32 for PE, 8 for NRZI, or 64 for GCR.
5. Probe the track analog signals at the read card test points and record the individual track amplitudes.
6. Set the tester to read tape backward to load point, and then to read tape forward.
7. With the tape reading forward, again probe and record the individual track analog amplitudes at the read card test points.
8. Compare both the write and read amplitudes recorded earlier.
a. If the read amplitude is at least 90% of the write amplitude, the cleaner blade is normal. Remove the field tester and place the tape unit online.
b. If the read amplitude is less than 90% of the write amplitude, the cleaner blade should be degaussed or replaced.

Note: If the cleaner blade is replaced, verify Note:
9. Remove the cleaner blade from the machine.

Caution: Do not use the degausser near customer tapes, disk packs, and so on, because data on these media may be destroyed.
10. Using the degausser, $\mathrm{P} / \mathrm{N} 451064$:
a. Hold the center of the degausser surface against the cleaner blade (surface of blade that touches the tape)
b. Turn on the degausser and hold it against the cleaner blade for a few seconds.
c. With the degausser still on, slowly withdraw the degausser straight away from the cleaner blade to a distance of approximately 1 foot.

1. Reinstall the cleaner blade on the tape unit.
2. Do the gauss check again before returning the tape unit to the customer
Note: If the degaussing was unsuccessful, replace the cleaner blade and ensure that the new blade is not gaussed.

XD2400	${ }_{2}^{2735834}$	See EC History	$\begin{gathered} 845958 \\ \hline \text { Sep } 79 \end{gathered}$	$\begin{aligned} & 849927 \\ & 20 \\ & 20 \text { Jun } 80 \end{aligned}$	$\begin{aligned} & 8472020 \\ & 6 \text { Avg } 80 \end{aligned}$	$\begin{gathered} 847298 \\ \hline 15 \mathrm{Avg} 83 \end{gathered}$	

PNEUMATIC PRESSURE/VACUUM

CHECKS

General Instructions

Observe the following:

- All pneumatic measurements and adjustments should be made only after allowing the unit to warm up for 15 minutes.
- To check pneumatic levels, consult the labels located on the transfer valve and its distribution manifold.
- Use a water manometer or a pressure/vacuum gauge, P/N 5495384, to make the following
measurements. Use a pressure divider when needed to make this measurement
Note: Go to 80-010 for instructions.
Caution: Pressure in tape unit may exceed 80 inches (2032 mm of water)
- Use a hose adapter, P/N 2512745, to connect the manometer hose to the smaller test point fittings.

Column Vacuum Level Check 1

With tape loaded in all columns, measure the column vacuum at the fitting on the tapered column plenum. See the label on the transfer valve for correct vacuum evel. If the vacuum level is not within specification

Threading Vacuum Check 2

With the tape unit unloaded, ground pin T-A1N5B12 and measure the vacuum at the port indicated on the transfer valve label. The chart on page 08-405 shows the correct vacuum. If threading vacuum is not within specifications, see 08-410, "Altitude Vacuum Leve Adjustment."

Transfer Valve Leakage Test

1. Cover the stubby column ports with masking tape. See Figure 1. Do not let the tape overlap the stubby bars.
2. Place an 8 -inch piece of magnetic tape in the bottom of the right vacuum column to prevent vacuum from entering the column.
3. Cut a 12 -inch piece of magnetic tape and lay it over the left reel tach just below the read/write head. Ensure that the tape loop is approximately in line with the bottom of the capstan. See Figure 1. Bypass the door interlock.
4. With no tape on the right reel, press LOAD REWIND. If the tape strip is pulled into the left column before load check occurs, there is sufficient leakage to cause intermittent problems and the transfer valve must be replaced. Repeat the te
5. Remove the masking tape from the stubby colum ports and clean the area thoroughly with a cloth dampened with tape cleaner. Remove the magnetic tape from the right and left vacuum columns.

Figure 1.

XD2400 Soo 2 of 2	2735834	See EC History	${ }^{845958}$	$\begin{aligned} & 84692727 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 8472020 \\ & \hline \text { Aug } 80 \end{aligned}$	847298 15	

REGULATOR AIR PRESSURE CHECK

1. Tape Loaded Regulator Pressure

Install a write-enable ring on a tape reel. Mount and load this tape reel.

On earlier-level machines: Measure the regulator pressure at the port indicated on the distribution manifold. The chart on this page shows the correct pressure (see Note below).
On later-level machines: Remove the hose leading to the file-protect assembly and measure the regulator pressure at the output of the distribution manifold.
2. Thread Operation Regulator Pressure

To check the regulator pressure, ground pin
T-A1N5B12 and measure the pressure at the port indicated on the distribution manifold. The chart on this page shows the correct pressure.

Note: If either regulator air pressure check is not within specifications, see 08-420, "Pneumatic Pressure Level Adjustment.

Vacuum Chart for All Models (in inches of water)

Model	Column Vacuum Level	Threading Vacuum	Regulator Pressure
$3,4,5,6,7$	+3 302	8 ± 2	85 ± 2
8	36 ± 1	6.0 to 11.5	85 ± 2

High-Speed Rewind Solenoid Check
(Tape Unit Models 3, 5, 7)
Caution: Stay clear of the left reel as it will attempt to go into a high-speed rewind during this test

1. Remove the tape from the tape unit.
2. Open the front door and bypass the door interlock
3. Open the vacuum column door
4. Manually move the high-speed rewind plunger to ensure that it is not sluggish. Replace the plunger if it does not move freely.
5. Jumper T-A1C2MO2 (-Hi Speed Field ALD FT262) to ground.
6. Press LOAD REWIND
7. After vacuum comes up and the left reel starts turning, the high-speed rewind plunger should fall sharply. This will occur just before load check. When vacuum falls, the plunger should go back to its normal position.
8. If the operation of the plunger is in question, compare the operation with that of a good tape unit.
9. Replace solenoid $\mathbf{3}$ if the plunger operates sluggishly.
10. Remove the jumper.
11. Trip door interlock switch
12. Jumper T-A1N5B12 to ground
13. Check for solenoid leakage by ensuring no air pressure at the rewind solenoid output port.
14. Replace as required.
15. Remove the jumper.

OCopvright International Ausiness Machines Corporation 1976, 1979. 1980. 1983

C C C C C C

CARR - ALTITUDE VACUUM

ALTITUDE VACUUM LEVEL ADJUSTMENT

*The Model 8 has a restrictor 3. P/N 1765760, in the line between the pump and transfer valve (see Figure s adjusted for 36.0 inches (914 mm adjust to the 36.0 inches $(914 \mathrm{~mm})$ is unobtainable, adjust to the highest vacuum level between 34.0 and
36.0 inches (864 and 914 mm). If 34.0 inches (864 mm) is unobtainable, check for leaks, pinched hoses, wrong pulley size, or dirty air intake screens on the back of the capstan motor.

- Measure the column vacuum (see 08-400)
- Loosen retaining screws 4.
- Rotate the handle of the restrictor for adjustment 3
- Tighten retaining screws 4.

Measure the vacuum as shown on the transfer valve label 1. (See Figure 1.) If incorrect, check the settings

Altitude	Transfer Valve Plug	Pneumatic Supply
	Models 3, 4, 5, 6 and	All Models
	Remove the cooling hose leading to the capstan motor at the transfer valve. Determine which hole should be plugged.	
$\begin{array}{\|l\|} \hline 0-2000 \mathrm{ft} \\ (0-610 \mathrm{mt}) \\ \text { See Note } 2 \\ \hline \end{array}$	Small	Note 2
$\begin{aligned} & 2001-4000 \mathrm{ft} \\ & (610-1219 \mathrm{~m}) \end{aligned}$	Large	
$\begin{array}{\|l\|} \hline 4001-6000 \mathrm{ft} \\ (1219-1829 \mathrm{~m}) \\ \hline \end{array}$	Small	Note 2
$\text { above } 6000 \mathrm{ft}$ $(1829 \mathrm{~m})$	Large	

3803-1,2,3/3420

XD2500	2735

Coovight Intemationa Iusmess Machiness Corporation 1976, 1979, 1980, 1983
\square

1. Under extreme altitude (high barometric pressure at ea level), environmental (low ambient temperature), sea level), environmental (low-ambient temperature),
and powerline conditions (10% line voltage variation), and powerline conditions (10% line voltage variation) vacuum on the Model 4 and Model 6 tape units may This is a temporary condition and will not impair machine operation.
2. The following B / M are required when changing altitude on flat belt pneumatic supplies:

3420 Models	60 Hz Altitude		50 Hz Altitude	
	$0-4000$	Above 4000	$0-4000$	Above 4000
	8493017	8493015	8493022	8493019

PNEUMATIC PRESSURE LEVEL

ADJUSTMENT

(ALL MODEL TAPE UNITS)

The pressure regulator is adjusted before shipment and should not require further adjustment in the field. If you suspect a pressure variation, check the pressure at the regulator test point on the distribution manifold 1 .
the level is not within the specifications listed in the chart on 08-405, check thoroughly for a kinked or leaking hose, a loose clamp or belt, or another faulty component in the pneumatic area.
Caution: If the regulator pressure is low, check for a dirty input filter to the pressure pump or leaking hose connections.
To adjust the regulator:

1. Pry the small plastic plug from the top center of the regulator 2
2. Insert a hex wrench in the adjustment port. Engage the adjustment screw inside the port.
3. To decrease the pressure, turn the wrench clockwise; to increase the pressure, turn the wrench counterclockwise.
4. Thread and load the tape unit and measure pressure again at the regulator test point. Se 08-405, "Regulator Air Pressure Check.
5. If correct, replace the plastic plug. If not, repeat steps 2, 3, and 4.

Note: The replacement regulator for all model is P / N 2522959. Any new pressure regulator may require adjustment for the tape unit in which it is installed Check the chart on 08-405 for the right setting.

$\begin{aligned} & \text { XD2500 } \\ & \text { Sog } 2 \text { of } \end{aligned}$	2735835	See EC History	845958 1	$\begin{aligned} & 849927 \\ & 20 \text { Jun } 80 \end{aligned}$	$\begin{aligned} & 8472020 \\ & 6 \text { Aug } 80 \end{aligned}$		

PNEUMATIC SUPPLY PULLEY

REPLACEMENT

To replace the motor stepped pulley:

1. Loosen the mounting bolts and move the pressure and vacuum pumps to loosen the pneumatic belts Relieve the idler tension on the belt by moving the idler off the belt, before removing the belt.
Note: Never roll the belts off the pulley as this will cause premature belt failure.
2. Remove the three screws that hold the pulley to the motor flange.
3. Replace the pulley
4. Replace the screws and tighten to 75 ± 5 inch-pounds ($86.4 \pm 5.8 \mathrm{~cm}-\mathrm{kgf}$). See 08-460.
5. Adjust the belt tension. See 08-442 for "Pneumatic Supply Belts Replacement/Adjustment.'

PNEUMATIC SUPPLY FLAT BELT

 REPLACEMENT/ADJUSTMENTCaution: Do not roil the belts onto the pulleys under tension. Loosen the vacuum pump or pressure pump before installing the belts to avoid premature belt breakage.
Note: Adjusting one belt may affect tension of the other belt.
Before measuring the tension, rotate the pulleys by hand to seat the belts.

1. Loosen the three vacuum pump screws and move the vacuum pump up and down in its mounting slots to adjust the belt tension.
The belt tension is adjusted when the belt deflection in the area of the contact point of the idler is .100 $\pm .030$ with the idler contacting the belt.
2. Adjust the compressor belt tension by moving the compressor in its slots.
The belt tension is adjusted when the belt deflection is $100+030$ with the idler contacting the belt.

Theory/Aids

Theory
Leaking switches will cause a variety of problems which are sometimes difficult to diagnose. When a switch begins to leak it's transfer point will change The transfer point of the switch will continue to change as the leakage increases. This gradual change in the transfer point of the switch will, at some point, begin to cause intermittent machine switch becomes totally inoperative.

New vacuum and pressure switches have a specified leakage rate at rated operating vacuum o pressure. Because of this allowable leakage the gauge or manometer reading may rise to the switch HOWEVER the sped with whiplied to reading increases will be low on a good switch. This leakage rate also determines an unacceptable leak condition when using the syringe method of switch test.
MLM page 08-450 describes two checks that identify defective vacuum column switches. The first check is performed to identify switches that may have contact resistance problems. The second check is performed to indentify switches that may inside thage problems due to ruptured diaphragms inside the switch body.

Aids

When using the syringe method of testing the vacuum/pressure switches for leaks, do not apply vacuum to the pressure side of a switch or
diaphragm, even though ruptured, will work like a flapper valve and seal the switch. This will cause a defective switch to appear good.

On the model 8 machine the Reels Loaded switch is covered by the capstan motor, and is therefore difficult to get to. The Reels Loaded switch on the Model 8 machine can be checked for leakage without removing the capstan motor if a short piece of tubing is first attached to the switch so that the squeeze bulb can be used. Obtain a piece of $1 / 4$ some off of the piece included with the some off of the piece included with the
5495384 if necessary). This piece of tubing must be cut square and clean on each end. The capstan motor casting has a hole in it which is located just behind the Reels Loaded switch. Pass the piece of tubing through this hole in the capstan motor and direct the tubing down slightly to meet the nipple on the switch. Push the tubing onto the switch enough to make a good seal. The tubing is now protruding through the hole in the capstan and the squeeze bulb can be used to check the switch by applying vacuum to the hose

7 Hole

5 Hole

Note: This drawing is for all tape models. Mode/s 4,6 and 8 include 7 are marked with an asterisk (\%).

The above vacuum switch configurations will exist in all tape
drives after the left and right vacuum switch PM kits have been
installed. installed

$3803-1,2,3 / 3420$
XD2850 Soc 2 of 2

VACUUM/PRESSURE SWITCH CHECK'S

1. Unload the tape unit and turn off power.
2. Remove the vacuum switch cover panels. Note: The physical location of R1 and R2 vacuum switches could be reversed on units that have NOT completed the Right and Left Column Vacuum switch .M. Kit instalation. Check the hoses to verify the correct witch position. Labe errors.
3 Insert a loop of tape long enough to reach the bottom in each vacuum column. Attach the two upper ends of the tape loop to the column, as that the masking or transparent tape does not interfere with the vacuum column door seal
3. Close the vacuum door
4. Install a jumper between A1D4J09 Models 4, 6, 8 (A1E2J09 Models 3,5,7) to ground. This will activate the pneumatic supply.
5. Turn on tape unit power. The vacuum pump should run, and vacuum should be present in the columns.

Switch Contact Test

7. Connect a voltmeter across the switch terminals to be tested. Attach the plus lead to the switch common. An oscilloscope should be used if a noisy
or bouncing switch is suspected.
8. Pull the tape until the loop is above the switch port being tested. The switch should close as the loop moves above its sensing port applying vacuum to the switch causing a zero meter/scope reading.
9. If the meter/scope does not read 0 check the tubing/fittings between the switch and column for leaks. If none found turn power off and replace the switch. Repeat the test.
10. If the meter still does not read zero, check the vacuum level. See 08-400, "Pneumatic Pressure/Vacuum Checks.'

Note: Vacuum and pressure switches may have a bad diaphram causing them to leak. This type of failure may not be indicated by the contact test and contact failures may not be indicated by the leak test. Perform the following steps to check for leaky switches.

Switch Leak Test I

11. Position the tape loop's above the L1, R1 ports. Place the vacuum gauge or manometer tube over the bleed hole of the switch being tested. This hole vacuum hose is connected 4
12. If the gauge or manometer quickly (less then 3 sec.) indicates a reading approximately equal to the cuptured and the switch should be replaced eplaced.
If no indication is observed or a slow indication of column vacuum is observed (greater then 3 sec .)
the switch under test is acceptable.
13. Remove the tape loop and clean away any remaining tape adhesive
14. Be sure to remove the jumper installed in step 5. Air Bearing Pressure, File Protect, and Reel Hub Pressure switches may be checked in a similiar manner by exposing the bleed hole and activating the switch.

Switch Leak Test II

The following method requires the use of an inexpensive squeeze bulb type ear syringe (1 oz size) which can be obtained locally.

Column Vacuum Switch Check

1. Open vacuum column door.
2. Squeeze the syringe bulb and carefully position the end of the syringe over one of the vacuum switch ports on the rear wall of the vacuum
column.
3. Maintaining a good air seal with the column port under test release the bulb (which applies vacuum to the port) and observe the rate at which the bulb fills with air

Less then 3 sec. is an unacceptable leak condition at the port. Check for and/or replace faulty switch, and split/loose tubing connections. Note: In column positions which have parallel switches either switch, or assorted tubing fittings can be the cause.

Pressure Switch Check

The File Protect, Reel Hub pressure and the Model 4, 6 8 Auto Cleaner Motor Switches located on the rear of the transport casting can be checked using the following procedure

1. Remove the tubing form the switch under test and attach the syringe to the nipple.
2. Apply "moderate" pressure to the syringe bulb and observe the rate at which the bulb empties through the switch.

Less then 3 sec . is an unacceptable leak condition. Replace switch.
The reels loaded switch is a vacuum switch used to sense pressure through the bleed hole.

1. Squeeze the syringe bulb and attach to the nipple of the switch.
2. Release the bulb and observe the rate at which the bulb fills with air.
Less then 3 sec . is an unacceptable leak condition. Replace switch.
The Air Bearing Pressure switch can be checked after it is made accessible by first removing the reel hub pressure switch.
3. Squeeze the syringe bulb and carefully position the end of the syringe over the bleed hole which is exposed after the reel hub pressure switch is removed.
4. Release the bulb and observe the rate at which the bulb fills with air.
Less then 3 sec is an unacceptable leak condition. Replace switch.
Caution: On all Test II checks do not apply vacuum to the pressure side of a switch or pressure to the vacuum. The diaphragm may even ruptured and seal the switch
a defective switch to appear good.

REEL-ALIGNMENT TOOL PREPARATION
The reel-alignment tool kit, $\mathrm{P} / \mathrm{N} 2515401$, is used for reel area adjustments. Three parts - Allen wrench P/N 1766508, adapter P/N 1766510 , and screw P/N 186925 - must be added to update the basic IBM 2420 tape unit tool kit for 3420 use. (See 08-465.)

3420 Additional Tools

.030 inch $(0,76 \mathrm{~mm})$ Shim
$\mathrm{P} / \mathrm{N} 184625$ (account item).

Hex wrench for reel hub P/N 1

Iffset Allen wrench P/N 176650 DANGER: The wrench must be
stamped with EC734455. Otherwis, discard it because of a safety problem.

3803-1, 23/3420

$\begin{aligned} & \text { XD2900 } \\ & \text { Sog } 2 \text { ot } 2 \end{aligned}$	2735839	See EC History	$\begin{aligned} & 845958 \\ & \hline 1 \\ & \hline 1 \text { Sep } 79 \end{aligned}$	80	4

CARR - REEL-ALIGNMENT TOOL

REEL-ALIGNMENT TOOL MODIFICATION

To modify the reel-alignment tool, P / N 2515226, for 3420 use:

1. Press the roll pin far enough to allow removal of
the lower-left tool mounting screw \boldsymbol{E}. the lower-left tool mounting screw (E)
2. Replace the lower-left screw with screw, P / N 186925. This screw should only extend approximately 0.5 inch $(12.7 \mathrm{~mm})$ out of the tool.
3. Press the roll pin back to its normal position.

REEL-ALIGNMENT TOOL ZEROING

To ensure accurate reel alignment, the tool must be zeroed before use. The following procedure verifies the correct initial positioning of the dial indicator and its pointers.
Caution: The dial indicator is a delicate instrument and should be treated gently.

To zero the reel-alignment tool

1. Before positioning gauge in adjusting tool (P / N 2515226) loosen screw B and rotate outer dial to position the zero markings 90° apart (C), then tighten screw (B. Rotate screw A to obtain a negative (-) reading greater than -.050 on both dials.
2. Loosely position gauge in adjusting tool $(\mathrm{P} / \mathrm{N}$ 2515226) and extend the set-up spacers as shown by pulling out and rotating a $1 / 4$ turn (D)
3. Carefully place tool on flat surface and slide the guage in the holder until the dial pointer reads $-.025 \pm .005$.
4. Tighten screw \mathcal{F}

Caution: Tighten screw F only enough to hold the gauge in position. Overtightening may damage the indicator
5. Carefully place tool against either vacuum column as shown, (the vacuum column is used as a reference surface), rotate screw A to obtain reading of zero on both pointers.
6. Remove the tool from the vacuum column. The large pointer should move only about 90 degrees and both pointers should come to rest positioned approximately as shown (C)

Note: Be very careful when handling and mounting the tool. The gauge's zero adjustment will be lost with rough handling.
7. Retract setup spacers.

XD3000 Sea 1 of 2	2735840	See EC History	$\begin{gathered} 845958 \\ \hline \text { Sop } 79 \end{gathered}$	$\begin{aligned} & 846927 \\ & 20 \text { Jun } 80 \end{aligned}$			

RIGHT REEL-LATCH REAR HOUSING

REMOVAL

Note: This procedure is a prerequisite for removing the right reel hub and the right reel motor.
To remove the rear housing:

1. Remove the front decorative cover from the latch hub.
2 Slip the adjustment shim, P/N 1846251, into the latch hub as shown.
Caution: This shim must be installed to prevent the camshaft from flying out of the Disconnect the two air hoses from the rear housing.
4 Remove the six cover mounting screws and the rear-housing cover. If necessary, carefully pry the bead of the diaphragm from the channel in the rear cover.
5 To remove the piston assembly (including the diaphragm), loosen the setscrew on the clamping collar and slide the assembly off the shaft.

Caution: The piston assembly is under spring tension.
only the piston assembly is being replaced, go to 08-510, "Right Reel-Latch Rear Housing Replacement, step 9. If only the diaphragm is being replaced, remove the four flat-head screws that fasten it to the piston assembly. Install the new diaphragm in the same position as the old one and insert and tighten the screws. Install the piston assembly. See 08-510, "Right Reel-Latch other than the piston assembly or the diaphra are being replaced, continue with the next step.Slide the rear housing and spring off the reel shaft bushing.
Slide the bushing off the end of the motor shaft.
9. Remove the shim from the reel hub.

11. Go to one of the following:

08-480"Right Reel Hub Removal"
08-510"Right Reel-Latch Rear Housing
Replacement'
08-530"Right Reel Motor Removal/Replacement"

Caution: The camshaft is under spring tension - the shim is all that retains it.
10. Slide the camshaft and spring out of the reel hub.

2003123/3420

$\begin{aligned} & \text { XD30000 } \\ & \text { Seq } 2 \text { of } 2 \end{aligned}$	2735840	See EC History	$\begin{gathered} 845958 \\ \hline \text { Sep } 79 \end{gathered}$	$\begin{aligned} & 846927 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 847298 \\ & 15 \text { avg } 83 \end{aligned}$			

right reel hub removal

Note: The prerequisite for this procedure is 08-470, "Right Reel-Latch Rear Housing Removal.'
To remove the hub:
1 Remove the two mounting screws from the file-protect plunger assembly and slide the assembly out of the front casting. Do not disconnect hoses (Δ. Move the assembly out of the way.
2. Rotate the hub to allow access to the hub clamp screw through the file-protect assembly casting opening.
3 Loosen the clamp screw with a hex wrench, P / N 1846252, and slide the hub off the shaft.
4. Go to 08-500, "Right Reel Hub Replacement/Adjustment

Note: Hub shown removed for illustration only

XD3100 Seq 1 of 2	2735841	See EC History	$\begin{aligned} & 845958 \\ & 1 \text { Sep } 79 \end{aligned}$				

RIGHT REEL HUB INDIVIDUAL PARTS REPLACEMENT
To replace the latch segments, friction pads, triple roller assemblies, or single roller assemblies (and their springs), proceed as follows:
\int Remove the hub decorative cover
[2. Remove the three hub cover mounting screws and the hub cover.
3 The friction pads and rollers can be replaced without removing the remaining screws. Carefully without removing the remaining screws. Carefully latch segments. Replace them carefully.
4 To replace the rollers and spring, the screws must be removed.
Caution: Take care not to lose the small compression springs located behind the single roller assemblies.
5 After replacing the parts, assemble the hub in the reverse order. The shorter screws must be reverse order. The shorter screws must be single roller assemblies. As these screws are tightened, ensure that the springs under the single roller assemblies seat in their recesses in the hub.
6. Replace the hub cover and tighten the three mounting screws.
7 Check the operation of the hub by manually operating the cam assembly. Take care not to anseat tirotation screw on the back of the right motor.
8. Install the hub decorative cover, P/N 2523727

XD3100							
Seq 2 of 2	273584 Part Number	See EC History	845958 1 Sep 79				

RIGHT REEL HUB

REPLACEMENT/ADJUSTMENT

1. Zero the reel-alignment tool. See 08-465, "Reel-Alignment Tool Zeroing.
2. Remove the three right threading channel mounting screws and the threading channel.
3. Remove the decorative cover from the right air bearing.
4. Remove the two right air bearing mounting screws and bearing
5 Remove the hub decorative cover, then the three hub cover mounting screws and the hub cover. If adjustment only, go to step 9 .
6 Position the clamping keys in the hub assembly so that their bevels are aligned with the shaft hole. Caution: Inspect the clamping screw to ensure that the screw threads are free of contamination or corrosive material. Replace
5. Carefully slide the hub onto the reel shaft.

8 Tighten the clamp screw with a hex wrench, P/N 1846252, until the hub will just slide on the reel shaft. Position the hub so that the rubber-coated flange is approximately 0.125 inch (3.2 mm) ehind the reference plate. Access to the clamp位ew is through the casting opening of the file-protect assembly.
9. If not done before, remove the file-protect plunger assembly to gain access to the clamp screw. spacers on the reel-alignment tool, P/N 2515226 , by rotating the spacers a $1 / 4$ turn and allowing them to return to their recesses
10. Fasten the reel-alignment tool to the reference plate with the screws located on the tool. Inser upper mounting screw into the farthest right tapped hole used for mounting the right threading channel A. Insert the lower right mounting screw into the farthest right tapped hole used for mounting the air bearing B. This will position the dial indicator plunger above the rubber-coated flange of the hub.

11 Slide the hub on the shaft to obtain a zero indication, ± 0.002 inch ($\pm 0.05 \mathrm{~mm}$), on the dia indicator. This positions the hub 0.110 inch $(2.79 \mathrm{~mm})$ behind the reference plate
12. Tighten the hub clamp screw with a hex wrench, P/N 1846252.
Caution: Care must be taken when tightening the screw to ensure that the wrench does no touch the machine casting. Torque until a slight twist is observed or felt in the small leg of the tool.
13. Maximum runout around the entire circumference of the hub should not exceed 0.002 inch 0.05 mm). If excessive runout is suspected, tak a number of places around the hub Do this by loosening the alignment tool, rotating the hub to another position, tightening tool and taking another reading without disturbing the original gauge setting. All readings should be Runout 0.002 inch (0.05 mm) of each other. replaced if runout is excessive
14. Remove the reel-alignment tool
15. Replace the right threading channel. Tighten the screws evenly.
16. Replace the right air bearing making sure holes are facing vacuum column. Install a new decorative cover, P/N 2501719
17. Replace the file-protect plunger assembly. Check that the plunger operates without binding. If it does not, see 08-340, "File-Protect Mechanism Check.
18. Replace the hub cover and its three screws.
19. Install the new right reel hub decorative cover

RIGHT REEL-LATCH REAR

HOUSING REPLACEMENT

1. Slide the 1.19 inch $(30.2 \mathrm{~mm})$ diameter spring onto the camshaft
2. Insert the camshaft assembly through the hub into the motor shaft. Ensure that the spring seats correctly in the hub recess.
3 Install the adjustment shim 0.030 inch $(0.8 \mathrm{~mm})$, P/N 1846251, as shown.
Note: This shim must be installed to retain the camshaft until the rear housing is installed. It also supplies the correct clearance adjustment for the cam.

Ensure that the antirotation screw on the rear of the right reel motor is adjusted flush to 0.25 inch $(6.4 \mathrm{~mm})$ below the end of the reel motor shaft, as shown.

55 Install the bushing on the end of the reel motor shaft, as shown.
66 Install the rear housing over the bushing. Ensure that the antirotation screw enters the slot in the rear of the housing.
7 Insert the 1.75 inch (44.4 mm) diameter spring into the recess inside the rear housing, as shown.
8 Insert the clamping collar into the bearing of the piston assembly from the side with the guide extension
9 Slide the clamping collar and piston assembly over the shaft.
10 Push against the spring pressure until the clamping collar touches the bushing installed in step 5. Hold collar touches the bushing installed in step 5 . Hold
the collar in this position and tighten the collar socket screw. The piston will return to a neutral position when pressure is removed from the collar
11 Rotate the piston assembly to position the guide extension between the air connections on the rear extensio
12 Position the cover so that its slot is over the guide extension

13 Ensure that the bead of the diaphragm fits into the cover channel.

14. Insert and tighten the six cover mounting screws.
15. Place the two hoses onto the housing fittings.
16. Remove the shim from the hub.
17. Check for correct operation of the hub by manually operating the cam. Ensure you do not push the rear housing off the antirotation screw.
18. Install a new decorative cover, P/N 2523727, on the hub.

3803-1,2,3/3420

$\begin{aligned} & \text { XD3200 } \\ & \text { Sog } 2 \text { of } 2 \end{aligned}$	2735842	See EC History	$\begin{gathered} 845958 \\ 1 \text { Sep } 79 \end{gathered}$	$\begin{aligned} & 846927 \\ & 20 \text { Jun } 80 \end{aligned}$				

C C C C C
 CARR - REEL LATCH

To check the rear housing for leakage

1. Load the tape unit with a CE work tape
2. Jumper T-A1-A5B13 to ground to bypass the pressure switch so that the vacuum and pressure stay up.
3 At the rear housing, disconnect the hose to the pressure sensing switch
3. Attach a pressure/vacuum gauge, P/N 5495384 or a water manometer with a pressure divider to the same rear housing air connection.
4. With the tape loaded in the columns, minimum

TU Model	Pressure-Inches (mm) of Water	
	W/O EC 847202	With EC 847202
	$\begin{aligned} & 64(1626) \\ & 64(1626) \end{aligned}$	80 (2032)
4	64 (1626)	80 (2032)
5 5 PE Only 5	$\begin{aligned} & 64(1626) \\ & 64(1626) \end{aligned}$	$\begin{aligned} & 80(2032) \\ & 80(2032) \end{aligned}$
6	80 (2032)	80 (2032)
$\begin{array}{\|l\|} \hline 7 \text { PE Only } \\ 7 \text { NRZZI-Featured } \\ \hline \end{array}$	$\begin{array}{r} 64(1626) \\ 80(2032) \\ \hline \end{array}$	$\begin{aligned} & \hline 80(2032) \\ & 80(2032) \\ & \hline \end{aligned}$
8	80 (2032)	80 (2032)

6. If the pressure is not correct, first check the pneumatic adjustment. See 08-420, "Pneumatic Pressure Level Adjustment." If the problem remain, replace $08-470$ " "Right Reel dophragm). See 08-470, "Right Reel-Latch Rear
Housing Removal." If the problem still remains, Housing Removal. If the problem still remains, Reel-Latch Rear Housing Removal" and 08-510, 'Right Reel-Latch Rear Housing Replac
7. If the pressure is below 40 inches (1016 mm) of water on any model tape unit, and the monitoring circuits did not indicate a failure, replace the pressure sensing switch. If the failure is still no corrected, check the monitoring circuits.
8. Remove the jumper installed in step 2 and replace the hose removed in step 3 .

3803-1,2,3/3420

$\begin{aligned} & \text { XD3300 } \\ & \text { Soal of } 2 \end{aligned}$	2735843	See EC History	$\begin{gathered} 845958 \\ 1 \text { Sop } 79 \end{gathered}$	$\begin{aligned} & 846927 \\ & 20 \text { sun } 80 \end{aligned}$	$\begin{gathered} 847202 \\ 6 \text { Aug go } \end{gathered}$	

Right reel motor

REMOVAL/REPLACEMENT

1. Turn off tape unit power.
2. Remove the rear housing. See 08-470, "Right Reel-Latch Rear Housing Removal.
3. Disconnect the reel-motor power plug 2 from the motor control board. Next, unplug the paddle card 1 from the control board. Then, disconnect the input power plug 3 to the motor control board
4. Remove the reel motor control board
5. Disconnect the cooling hose from the motor.
6. Remove the hub assembly. See 08-480, "Right Reel Hub Removal.'
7. Remove the two top motor mounting bolts and install two guide studs, P/N 5356446 in their place. (Part of Reel Alignment Tool Kit P/N 2515401).
8. Remove the two lower motor mounting bolts. Caution: The weight of the motor will not be supported when the motor clears the guide studs.
9. Slide the motor out to the rear
10. Reverse the procedure to install a new motor.
11. Replace the hub assembly. See 08-500, "Right Reel Hub Replacement/Adjustment
12. Replace the rear-housing assembly. See 08-510 "Right Reel-Latch Rear Housing Replacement.'
13. Test the housing pressure. See 08-520, "Right Reel-Latch Rear Housing Pressure Test.

3803-1,2,3/3420

C C C C C

CARTRIDGE MOTOR REPLACEMENT/ADJUSTMENT

Note: Adjustment only start at step 12

1. Power off Tape Unit.
2. Open front door and remove screw holding cartridge opener cover, remove cover.
3. From rear of machine, remove the SMS card above cartridge motor assembly to gain better access.
4. Loosen the top 2 screws of cartridge motor, lift off SMS socket assembly. Remove the four cartridge motor leads noting their location (see Figure 1) Move assembly out of the way.
5. Remove the three screws from the motor assembly and rest the assembly on the transfer valve. Be careful not to put tension on the wires going to the micro-switch.
6. Mark the yellow and black wires so they can be easily replaced (see Figure 2). Unsolder yellow and black wires.
7. Remove the defective motor
8. Rest the new motor on the transfer valve and resolder wries removed in step 6. See Figure 2.
9. Install new motor and loosely install screws.
10. Replace colored motor leads on the back of the SMS card connector (see Figure 1).
11. Install SMS socket assembly on top 2 screws.
12. Remove the right threading channel and cartridge opener cover if not removed.
13. Construct a template from a punch card (see Figure 3)
14. Tape the cartridge present plunger flush to the base plate (see Figure 4).
15. Move the locating pin on the cartridge motor counter-clockwise against the stop. This puts the motor in the fully closed position.
16. Position the template on the tape unit as shown in Figure 5
17. Tape the template to the right threading channel on the bottom and to the base plate on the top.
18. Adjust the motor so the edge of the cartridge opening pin contacts the point made on the template with the other template point aligned as in Figure 5.
19. Tighten the motor assembly screws securely and recheck position.
20. Remove the template and all tape. Clean the tape unit throughly to insure no adhesive is left on the tape unit.
21. Install SMS card (if removed).
22. Replace cartridge opener cover
23. Power up machine and check that the cartridge opener assembly properly opens and closes cartridges of the type used by the custome

Figure 2.

3803-2/3420

XD33350 Sea 1 of 2	${ }_{\text {Par Number }}^{8492599}$	See EC History	$\begin{gathered} 845958 \\ \hline \text { Sep } 79 \end{gathered}$					

All pneumatic measurements and adjustments should he made after allowing the tape unit a fifteen minute warm up period with tape loaded.
Use a water manometer or a pressure/vacuum gauge,
$\mathrm{P} / \mathrm{N} 5495384$, to make the following measurement (see $80-010$ for $3803-2$ or $20-001$ for $3803-1$ subsystem (se
80-010 for 3803-2 or 20-001 for 3803-1 subsystem)
Open power window door and bypass the door
interlock.
2. Attach the manometer or pressure gauge hose to the upper restraint cartridge leakage tool.
3. Install the upper restraint cartridge leakage tool \boldsymbol{A}
Tool will be held in place when cartridge motor Tool will be held in place when cartridge motor
Pus Reser ald oad REW
4. Push RESET and LOAD REWIND. Pneumatics will come up and cartridge motor will open tool.
5. Pressure should be between 18-32 inches of wate
if not check the list of probable causes below.
a. Regulator pressure incorrect (see 08-400).
b. Tool not properly seated against upper restraint port.
c. Loose or leaking hoses
d. Upper restraint mounting screws loose or tightened in wrong sequence.
e. Defective transfer valve (see 04-400).
f. Defective upper restraint (see 08-540)
g. Upper restraint set screw loose or missing. This set screw does not exist on all models of upper restraint.
6. Push RESET and UNLOAD REWIND.
7. Remove tool and gauge or manometer

$\begin{aligned} & \hline \text { XD3350 } \end{aligned}$	$\begin{aligned} & 8492599 \\ & \text { Part Number } \end{aligned}$	See EC History	$\begin{aligned} & 845958 \\ & \hline \text { Sep } 79 \end{aligned}$					

CARR - CARTRIDGE RESTRAINT

CARTRIDGE RESTRAINT REMOVAL/REPLACEMENT (NON-90,000 SERIES TAPE UNITS)

The cartridge restraints are mounted on straight dowel pins through the casting to avoid alignment problems when removal or replacement is necessary.

Caution: When removing a restraint, note the order in which each screw is shimmed. The restraints are shimmed at the factory for the correct distance to the reel latch hub.

1. Remove the three retaining screws installed from the rear
the third screw used to mount the upper estraint is hidden behind the light manifold mounting bracket
2. Install the restraint and place the shims in the same order in which they were removed. Initially do not tighten screws completely, tighten sequentially.
Shim thickness is color-coded as follows:
Red $\quad 0.002$ inch (0.05 mm), P/N 2513186 Green 0.003 inch (0.07 mm), P/N 2513187 Tan 0.004 inch (0.10 mm), P/N 2513188 Brown 0.010 inch (2.5 mm), P/N 2513189 Replace any broken shim with a new one of the same thickness.

CARTRIDGE RESTRAINT

REMOVAL/REPLACEMEN

Note: Reel-alignment tool kit P/N 2515401 , is required

1. Remove the right reel latch. See 08-470, "Righ Reel-Latch Rear Housing Removal.
2. Remove the right reel hub. See 08-480, "Right Reel Hub Removal.
3. Remove the three screws holding the restraint to be replaced.
Note: For access to the three screws holding the upper restraint, remove the top cover by loosening the
4. Install the new restraint using the screws removed in step 3. Do not tighten the screws
5. Fasten the restraint-adjusting tool, P/N 2515225 on the motor shaft C. Tool must not bind on surfaces (D) and \mathbf{E}.
Caution: Press the rubber air seal when rotating the adjusting tool or the seal may be damaged. Do not allow the tool to rotate by its own weight until the clearance to both restraints is ensured.
6. Adjust upper and lower restraints so tool will turn 360° and clear by $0.000-0.010$ inch ($0-0.25 \mathrm{~mm}$) surfaces \boldsymbol{A} and B.
7. Initially do not tighten screws completely, tighten sequentially
8. Replace the top cover
9. Install the right reel hub. See 08-500, "Right Reel Hub Replacement/Adjustment.'
10. Install the right reel latch. See 08-510," "Right Reel-Latch Rear Housing Replacement
11. Do the right reel-latch pressure check. See 08-520, "Right Reel-Latch Rear Housing Pressure Test.

REEL TACHOMETER

REMOVAL/REPLACEMENT

1. Turn off the tape unit power

2 Carefully remove the tachometer decorative cover.
3. Turn the tachometer until the access holes line up with the two holding screws. Remove both screws.
4. Carefully pull the tachometer assembly straight out so that it clears the vacuum column.
Caution: Do not pinch, kink, or stretch the fiber optic bundle.
5. Remove the fiber optic bundle by loosening the large nylon retaining screw.
6. Loosen the bracket that fastens the
phototransistor wires.
7. Remove the small nylon screw and take out the phototransistor
8. Reverse the procedure to replace a reel tachometer.
9. Install a new decorative cover, $\mathrm{P} / \mathrm{N} 2501719$.

3803-1,2,3/3420

$\begin{array}{\|l\|l\|} \hline \mathbf{X D O 4 4 0 0} \\ \text { Sog } 2 \text { of } 2 \end{array}$	2735844	Soe EC History	$\begin{aligned} & 845958 \\ & 1 \text { Seo } 79 \end{aligned}$	$\begin{aligned} & 846927 \\ & 20 \text { Jun } 80 \end{aligned}$				

COCCCCC1

LEFT REEL HUB AND MOTOR

REMOVAL/REPLACEMENT / ADJUSTMENT

Note: Reel-alignment tool kit, P/N 2515401, is required See 08-460.
To remove the left reel:

1. Turn off tape unit power.
2. Carefully remove the decorative disk from the fron of the reel hub.
3. Remove the three screws that hold the reel to the hub and take off the reel.
Note: If the motor is replaced, the hub can remain mounted on the motor shaft during removal. The hub will be fastened to the shaft by either one or two
screws. Torque the screws to the specifications shown in step 11 f .
To remove the left reel motor, continue as follows:
4. Unplug the motor cable

5 Disconnect the air duct from the bottom of the motor.
6 Unplug all the top paddle cards and connectors from the power boards on the side from which the motor is being removed

7 Remove the two top motor mounting bolts and install two guide studs, $\mathrm{P} / \mathrm{N} 5356446$.
8 Remove the two lower motor mounting bolts. Caution: The weight of the motor is no supported when the guide studs clear the main casting.
9. Slide the motor out to the rea
10. To replace the left reel motor, reverse steps 4 through 9.

To adjust the hub:
11. If the hub is loose, adjust it as follows
a. Remove the left reel tach (see 08-550) for reel-hub adjustment tool clearance.
b. Place the reel-hub adjusting tool, P/N 2515226 on a flat surface and set it to 0.100 inch (2.54 mm).
c. Place the tool on the reference plate so that the indicator tip touches the hub face.
d. Slide the hub in or out until the indicator reads 0.390 inch $(9.91 \mathrm{~mm})$. The desired $0.290-$ inch $(7.37 \mathrm{~mm})$ dimension is now set.
e. Install the hex tool and socket, P/N 1766508, on the torque wrench with the handle positioned exactly as shown in Figure B.
f. If the hub is fastened to the motor shaft by two screws, alternately tighten the screws, in 10 screws, alternately tighten the screws, in 10 inch-pounds (124.4 cm -kgf) torque. When the hub is fastened by only one screw, tighten it to 75 to 85 inch-pounds (86.4 to $97.9 \mathrm{~cm}-\mathrm{kgf}$).
g. Recheck the dimension and runout on the hub face. Adjust if necessary.
Note: .002 inch maximum, runout must be within dimensional tolerances.
12. Install the reel, tightening the screws to 50 ± 5 inch-pounds ($57.6 \pm 5.7 \mathrm{~cm}-\mathrm{kgf}$).
13. Rotate the reel and check that it does not rub on the casting or on the radius-sense assembly.
14. Install a new decorative disk, P/N 2524134
15. Replace the left reel tach (see 08-550)

Figure A. Left Reel Setup

Figure B. Torque Meter

XD3500 $\text { Sea } 1 \text { of } 2$	2735845	See EC History	$\begin{aligned} & 845958 \\ & 1 \text { Sep 79 } \end{aligned}$	$\begin{gathered} 846927 \\ 20 \text { Jun } 80 \end{gathered}$	$\begin{aligned} & 847298 \\ & 15 \text { Aug } \\ & \hline \end{aligned}$		

DC POWER SUPPLY

CHECKS/ADJUSTMENTS

Check all dc power supplies for voltage tolerances listed. Adjust the associated regulator cards when necessary. (See 1A-002 or 1B-002 for terminal board locations.)
Caution: There are two types of fuse holders in the field. The first type of fuse holder has the spring in the cap and the second type has the is placed on the body of the first type no spring tension will be on the fuse causing intermittant contact. Use a digital voltmeter, P/Ns 453046, 453585, or equivalent, when making adjustments. IF THE CAP OF THE FIRST TYPE IS PLACED ON THE BODY OF THE SECOND TYPE A SAFETY THE BODY OF THE SECOND TYPE A SAFETY WHICH WILL HAVE A POTENTIAL ON IT.

Notes:

1. Ensure that the tape unit is loaded, ready, and in write status before checking or adjusting the +6 V power supply. After a check or adjustment, measure the voltage at T-A1G2B11. If the voltage exceeds +6.24 V check the file-protect circuits for resistance.
2. The maximum allowable ripple voltage is 24 mV peak-to-peak measured at the power supply.
3. The maximum allowable ripple for -4 V is 80 mV peak-to-peak and for +6 V it is 10 mV peak-to-peak.
4. If the $-4 v$ or $+6 v$ regulators are adjusted or replaced, check EOT/BOT, capstan squaring, and amp sensor, or read amplitude adjustments to ensure the adjustments are still in spec.
5. The voltage range is for ALL load and line variations. The $-48 V$ should be a minimum of $-47 V$ with the machine loaded and ready with no tape motion. If the voltage is low, suspect the SCR's in the 48 V supply. Check the SCR's by removing the SCR control card. There should be a 4 V loss with the card removed

3803 Model 1 Power Supply

Power Supply Voltage	Test Point	Ground
$-4 \mathrm{~V}(\pm 0.01 \mathrm{~V})$ See Note 3	AA2T4B06	AA2T4D08
$+6 \mathrm{~V}(\pm 0.01 \mathrm{~V})$ See Note 3	AB2R4B11	AB2R4D08

3803 Model 2 Power Supply

Power Supply Voltage	Test Point	Ground
$-4 \mathrm{~V}(\pm 0.01 \mathrm{~V})$ See Note 3	A2T4B06	A2T4D08
$+6 \mathrm{~V}(\pm 0.01 \mathrm{~V})$ See Note 3	B2S4B11	B2S4D08

3803 Model 3 Power Supply

Power Supply Voltage	Test Point	Ground
$-4 \mathrm{~V}(\pm 0.01 \mathrm{~V})$ See Note 3	AA2T4B06	AA2T4D08
$+6 \mathrm{~V}(\pm 0.01 \mathrm{~V})$ See Note 3	AB 2 T 4 B 11	AB 2 T 4 D 08

Models 3, 5, and 7:
a. If you have an unmodified power supply, check the voltages at the following test points:

Power Supply Voltage	Test Point	Ground
$+6 \mathrm{~V}(\pm 0.05 \mathrm{~V})$ See Notes 1 and 2	T-A1G1E09	T-A 1G2D08
$-4.05 \mathrm{~V}(\pm 0.05 \mathrm{~V})$	T-A 1N3D02	T-A1N3D08
See Notes 1 and 2	TB1-9	TB1-8
$-48 \mathrm{~V}(+7 \mathrm{~V},-9 \mathrm{~V})$ See Note 5	TB2-1	TB1-8
$+12 \mathrm{~V}(\pm 1 \mathrm{~V})$	TB2-5	TB1-8
$-12 \mathrm{~V}(\pm 1 \mathrm{~V})$	TB3-12	TB2-4
$+11 \mathrm{~V}(+2 \mathrm{~V},-1.2 \mathrm{~V})$		

b. If you have a modified power supply, check the voltages at the following test points:

Basic Power Supply

Modified Power Supply

Power Supply Voltage	Test Point	Ground
$+6 \mathrm{~V}(\pm 0.05 \mathrm{~V})$ See Notes 1 and 2	T-A1G1E09	T-A1G2D08
$+11 \mathrm{~V}(+2 \mathrm{~V},-1.2 \mathrm{~V})$	TB2-1	TB2-4
$-4.05 \mathrm{~V}(\pm 0.05 \mathrm{~V})$	T-A1N3D02	T-A 1 N3D08
See Notes 1 and 2	TB1-9	TB $1-8$
$-48 \mathrm{~V}(+7 \mathrm{~V},-9 \mathrm{~V})$ See Note 5	TB3-1	TB1-8
$\pm 12 \mathrm{~V}(+1 \mathrm{~V})$	TB3-5	TB1-8
$-12 \mathrm{~V}(\pm 1 \mathrm{~V})$	TB2-3	TB1-8
$+30 \mathrm{~V}(\pm 0.5 \mathrm{~V})^{*}$	TB2-2	TB1-8
$-12 \mathrm{~V}(\pm 1 \mathrm{~V})^{*}$	Tt Fuse 7	TB1-8
$+12 \mathrm{~V}(\pm 1 \mathrm{~V})^{*}$		

*Used only for OV/UV sense.
Models 4, 6, and 8:
a. If you have an unmodified power supply, check the voltages at the following test points

Power Supply Voltage	Test Point	Ground
$+6 \vee(\pm 0.1 \mathrm{~V})$ See Notes 1 and 2	T-A1G2B11	T-A1G2D08
$-4.05 \mathrm{~V}(\pm 0.05 \mathrm{~V})$ See Note 2	T-A1H1C09	T-A1G2D08
$-48 \mathrm{~V}(+9 \mathrm{~V},-9.6 \mathrm{~V})$ See Note 5	TB1-9	TB1-8
$+12 \mathrm{~V}(+1.4 \mathrm{~V},-0.9 \mathrm{~V})$	TB2-1	TB2-4
$-12 \mathrm{~V}(\pm 1.4 \mathrm{~V})$	TB2-5	TB2-7
$+11 \mathrm{~V}(+1.7 \mathrm{~V},-1.1 \mathrm{~V})$	TB3-12	TB2-4

b. If you have a modified power supply, check the voltages at the following test points:

Power Supply Voltage	Test Point	Ground
$+6 \mathrm{~V}(\pm 0.1 \mathrm{~V})$ See Note 1	T-A1G2B11	T-A1G2D08
$+11 \mathrm{~V}(+1.7 \mathrm{~V},-1.1 \mathrm{~V})$	TB2-1	TB2-4
$-4.05 \mathrm{~V}(\pm 0.05 \mathrm{~V})$	T-A1H1C09	T-A 1G2D08
See Notes 1 and 2	TB1-9	TB1-8
$-48 \mathrm{~V}(+9 \mathrm{~V},-9.6 \mathrm{~V})$ See Note 5		
$+12 \mathrm{~V}(+1.4 \mathrm{~V},-0.9 \mathrm{~V})$	TB3-1	TB3-4
$-12 \mathrm{~V}(\pm 1.1 \mathrm{~V})$	TB3-5	TB3-7

3003.123/3420

CARR - TAPE CONTROL UNIT POWER CIRCUIT BOARD

POWER SUPPLY PRINTED CIRCUIT

REMOVAL/REPLACEMENT
(3803 MODEL 2 ONLY)

1. Remove all power from the tape control unit (TCU) by tripping main line CB1, and remove the power
plug. plug.
2. Remove the plastic cover from the power supplies
3. Remove the regulator cards to prevent damage Note their location for later replacement.
4. Remove all external cables and laminar bus connections from the power supply board to be removed (A1, A2, A3). Note their locations for later reassembly.
5. Remove the ground strap at the top of the power supply
6. Remove the six screws (4) that fasten the printed circuit board to the three large capacitors behind the board. Note the location of each of the screws as some are slightly longer than the others. Also, note the cable dress position of the jumper wires on the A1 and A2 PCB. See Figure 1
DANGER
Do not handle leaking capacitors with bare hands
7. Inspect the capacitor screws for stripped threads and signs of heating. If any of the parts are questionable, replace them. See ALD YFO37 for part numbers and locations.

DANGER

If jumpers ($\mathrm{P} / \mathrm{N} 1766180$) are omitted in the reassembly, the capacitors may explode.
8. To reassemble, perform steps 7 through 1 above. When installing the six screws in the capacitors, use a torque screwdriver ($\mathrm{P} / \mathrm{N} 453570$) to torque the screws to 18 ± 5 inch-pounds ($20.74 \pm 5.76 \mathrm{~cm}$-kgf).
9. Perform the voltage checks on 08-570.

Figure 1. 3803 MODEL 2 -4V SUPPLY


```
1OOOOOOOOOOOO
```

FIBER OPTICS BOT/EOT
VOLTAGE CHECKS AND

ADJUSTMENTS

DANGER

Allow the lamp to cool before cleaning or inspecting t.

1 Turn off tape unit power. Clean the dust off the ends of the fiber optic bundle at the BOT/EOT block, the phototransistor lens, and the reflective mirror. Wipe with a lint-free cloth if necessary. (See 85-002.)
2. Clean the fiber optic lamp. Use a cloth lightly moistened with water. (See 08-620, "Fiber Optics the fiber optic lamp for any sign of discoloration. Replace if necessary (see 08-620)
3. Turn on the tape unit power and allow the lamp to warm up for 20 to 30 minutes before continuing.
4. Before marking BOT/EOT adjustments, check the test points T-A1D2D11 (BOT) and T-A1D2B09 (EOT) for:

- 2.0 volts or less with the tape unit unloaded.
. 4.2 volts or greater with the tape unit loaded, and tape away from load point.
If voltages are not correct, continue with the steps below. Load a customer good-quality representative tape to ensure an average ligh reflectivity of the tape backing.
Note: If unable to load a tape because the BOT/EOT is out of adjustment, manually thread a tape and perform a mid-tape load. Press RESET before the load point.

5. Move the tape forward so that the BOT/EOT light spot falls on the tape surface and not the BOT marker.
6. Measure the BOT voltage at T-A1D2D11.
7. Adjust the BOT pot on the lower portion of card T-A1D2 for $4.7+0.1,-0$ volts.
8. Measure the EOT voltage at T-A1D2B09

Note: If a capacitor is mounted between T-A1D2B09 and ground, the capacitor may be removed during adjustment. This capacitor is polarized with the plus (+) lead on D2B09.
9. Adjust the EOT pot on the upper portion of card T-A1D2 for $4.7+0.1,-0$ volts.
10. Remove the tape from the BOT/EOT area so that the light falls on the reflective mirror.
11. Measure the BOT and EOT voltages again. The voltages should be 2.0 volts or less
12. Perform the Capstan Tachometer

Check/Adjustment procedure on 08-120 or 08-130.

LED BOT/EOT VOLTAGE CHECKS AND ADJUSTMENTS

1 Turn off tape unit power. Clean the dust off the clear plastic window and reflective mirror. Wipe with a lint-free cloth if necessary. (See 85-002.)
2. Turn on the tape unit power and go to step 4 under Fiber Optics Voltage Checks and Adjustments and continue.
Note: If unable to attain required adjustments, remove LED block assembly (see 08-590) and replace the window it is damaged or mispositioned on the block assembly and recheck adjustments.

3003-1,2,3/3420

$\begin{aligned} & \begin{array}{l} \text { XD } 36000 \\ \text { Sea } 107 \end{array} \end{aligned}$	2735846 Part Number	See EC History	$\begin{aligned} & 845958 \\ & \hline \text { Sep } 79 \end{aligned}$	$\begin{aligned} & 80 \text { Sun } 80 \\ & 20 \end{aligned}$	847298 15 Avg 83			

FIBER OPTICS BOT/EOT BLOCK

REMOVAL/REPLACEMENT

Removal:

1. Turn off tape unit power.
2. Pry the retaining wedge from the BOT/EOT fiber optic bundles at the manifold.
3. Push the bundles toward the BOT/EOT assembly to obtain sufficient slack
4 Remove the two screws holding the assembly in place.
4. Pull the assembly out carefully.
5. If the fiber optic bundles are not being replaced, remove the screws which fasten the metal clips in place on the BOT/EOT assembly and remove the metal clips.
7 Turn the BOT/EOT assembly over. Unsolder the three wires (noting their position carefully to allow and fiber optic bundles if step 6 was omitted

Replacement:

1. If the old fiber optic bundles are being used, blow dust off both ends (wipe with lint-free cloth if necessary) and install the clips which hold them to the BOT/EOT assembly.
2. Solder the wires to the assembly. Ensure that they are positioned as before
3. Push the fiber optic bundles carefully back into the tape unit
4. Attach the assembly with the two mounting screws.
5. Route the fiber optic bundles back to the manifold. Be careful to route them away from the autocleaner on Models 4, 6, and 8.
6. Insert the bundles into the light manifold and replace the retaining wedge.
7. Adjust the BOT/EOT voltages. See 08-580

LED BOT/EOT WINDOW
 REMOVAL/REPLACEMEN

1. Turn off tape unit power
2. Remove the two screws holding the BOT/EOT assembly in place and pull assembly from tape path for full access to window surface
3. Pry plastic window from block and remove excess adhesive from the block

Note: Insure that the LED and phototransistor cavities are free of debris.

Replacement:

1. Peel paper backing from replacement window (P/N 4449899).
2. Register one edge of the window agains the block instep and press into place
3. Recheck BOT/EOT adjustment. See 08-580

LED BOT/EOT BLOCK

REMOVAL/REPLACEMEN

Removal:

1. Turn off tape unit power
2. Disconnect the plug on the single ended BOT/EOT block cable at the rear of the machine
3. Disconnect the plug on the double ended BOT/EOT block cable at the rear of the machine, keeping the wo machine cables together for replacement purposes
4 Remove the two screws holding the assembly in place.
4. Pull the assembly out carefully.

Replacement:

1. Feed the BOT/EOT block cables carefully through the opening at the front of the machine.
2. Hold the block down and to the right while attaching with the two mounting screws.
3. Connect the single machine cable to the single ended BOT/EOT block cable at the rear of the machine, being careful to align the plug keys.
4. Connect the paired machine cables to the double ended BOT/EOT block cable at the rear of the machine, being careful to align the mating plug keys
5. Adjust the BOT/EOT voltages. See 08-580.

XD3600 Sea 20 of 2	2735846	See EC History	${ }_{1}^{845958} 1$	$\begin{aligned} & 846927 \\ & 20 \\ & 20 \end{aligned}$

C

CARR - TAPE UNIT GROUNDING

TAPE UNIT GROUND CHECK

1. Unload the tape unit and switch it offline and turn ac power off.
2. Disconnect the tape unit Power and Signal cables.
3. Unplug the cables at T-A1N2 and T-A1N4.
4. Check that the minimum resistance between the dc common and the frame ground is 10 megohms.

Caution: if you are using a meggar (megohm meter) which applies more than 250 volts to the circuit being tested, also disconnect the capstan tachometer signal cable and the capstan motor tachomet On Models 4, 6, and 8, also disconnect read
plug. On cables T-A1N3 and T-A1T4 and write cable T-A1T3

FIBER OPTIC BUNDLE
REMOVAL/REPLACEMENT
\int Pry the retaining wedge from the light manifold.
2. Pull the defective bundle out of the manifold.
3. Disconnect the other ends of the bundle by removing or loosening each retainer
A The radius sense assembly uses the same type of wedge as the manifold.
(3) The reel tachometers use a nylon setscrew.
© The BOT/EOT assemblies use metal clips that are held in place by screws.
(0) The capstan tachometer uses a plastic taper pin on earlier parts. On later models the fiber optic bundle is not removable.
4. Reverse the procedure to install a new bundle.

XD3700 Seq 2 of 2	2735847 Part Number	See EC History	$\begin{aligned} & 845958 \\ & \hline \text { Sep } 79 \end{aligned}$				

CARR - FIBER OPTICS

FIBER OPTICS LAMP

REMOVAL/REPLACEMENT

1. Turn off tape unit power and allow the lamp to cool.
2 Remove the two screws that hold the ligh manifold to the front panel and carefully lower the manifold out of the way.
Caution: Do not pinch, kink, or stretch the fiber optic bundle.
3 Loosen the three flat-head screws that fasten the lamp base.
4 Rotate the lamp counterclockwise to remove it
2. Reverse the procedure to install a new lamp. The lamp filament should be vertical to ensure correct operation
3. Replace the light mainfold

Note: Power on the unit and allow at least 20 to 30 minutes warm-up time before doing step 7.
7. Perform the Capstan Tachometer

Check/Adjustment procedure on 08-120 or 08-130 and the BOT/EOT Voltage and Adjustments procedure on 08-580.

FIBER OPTICS LAMP CLEANING

 PROCEDURE1. Turn off tape unit power.

DANGER
Allow the lamp to cool before inspecting or cleaning it.
2. Inspect the lamp. If any sign of discoloration is visible inside the lamp, replace it. (Most discoloration can only be seen with the lamp turned off.)
3. If replacement is not necessary, clean the lamp, using the following procedure:
Polish the lamp gently with a cloth lightly moistened with water
DANGER
Do not twist the glass lamp out of its base.
4. Turn on power and inspect the lamp to verify that it is clear and free of smudges.
5. Perform the Capstan Tachometer

Check/Adjustment procedure on 08-120 or 08-130 and the BOT/EOT Voltage Checks and Adjustments procedure on 08-580

COOLING FAN ASSEMBLY
 REMOVAL/REPLACEMENT

1. Turn off tape unit power.

2 Disconnect the blower motor plug from the power supply
3 Remove the air filter
4. From the extreme rear of the blower assembly, unplug the cable that leads to the resistor frame
5 Unlatch the two fasteners that hold the resistor frame and move the entire resistor assembly out of the way.
6 Unlatch the two fasteners on the rear vertical surface of the blower assembly.
7. Reach under the blower assembly and pull on the motor housing with one hand, while guiding the assembly out with the other hand
8. After partially inserting a new assembly into its holder, push up from beneath the motor and lift the front end
9. Push the assembly completely into place. Ensure that the front mounting lip slides over the front-edge frame.
10. Reverse steps 2 through 6 to complete the installation.

3420 LOGIC PANEL

REMOVAL/REPLACEMENT

1. Ensure that the tape unit is offline and the power is turned off.
2. Remove the card side panel cover and unplug all the cables on the card side of the logic panel. Ensure all cables are legibly marked.
3. Unplug all of the voltage jumpers on the pin side of the panel. (Mark these locations for assembly later.) Also, remove the resistor and capacitor if they are present. (Mark these locations also.)
4. Remove the screws fastening the panel and carefully remove the panel from the gate.

5. Place the old and the new panels side by side on table with the A2 card location in the top left position. Transfer the cards from the old board to the new board one at a time.
6. Reverse steps 4 through 2 to install the new panel in the tape unit.
7. Check the machine history and ALD A6106 (2 of 2 for correct machine model jumper wires (Models 4 , 6 , and 8 only).
8. Test the tape unit and return it to the customer when it is checked out.

3803 LOGIC PANEL

REMOVAL/REPLACEMENT

1. Ensure that the subsystem is offline and the ac and dc power is turned off.
2. Remove the card cover and the cards from the panel (Mark the cards for correct assembly in the new board later.)
3. Unplug all interpanel cables.
4. On the pin side of the panel, remove all the voltage jumper cables and mark their locations.
5. Remove the screws holding the panel to the gate. Carefully remove the panel.
6. Reverse steps 5 through 2 to install the new panel
7. Check the machine history and ALD AAOO5 for correct machine feature jumper installation.
8. Test the subsystem and return it to the customer when it is checked out.

XD3800 $\text { Seq } 2 \text { of } 2$	2735848 Part Number	See EC History	$\begin{aligned} & \hline 845958 \\ & \hline \text { Ssoo } 79 \end{aligned}$	847298			

POWER WINDOW ALIGNMENT

To align or adjust the power window
1 Turn off tape unit power. Loosen the two screws arn off tape unit power. Loosen the two screws
at the bottom of the door (hinge side). Remove the cover.

2 Loosen the motor/gear box mounting screws and disengage the box from the gear rack. You can then manually move the glass up or dow Remember to engage gears before turning power back on.
3. Check that the top edge of the window is parallel to the frame surface
4. If the window needs to be adjusted, lower the window and remove the two screws that hold the black plastic accent panel in place. On some tape units, the glass panel in the door must be removed to get to the accent panel screws. If glass removal is not required, go to step otherwise do steps a through d below.
a. Remove the left roller tension spring noting the position of the rollers.
b. Remove the screws and washers that hold the strips which fasten the top side and door latch side of the glass to the door
c. Loosen the retaining strip on the door hinge side of the glass
d. Slide the glass out.
5. To adjust the window, loosen the three screws and the two hex-head nuts on the window support.
6. Perform the Power Window, Rack, Limit Switch Adjustments procedure (08-650, step 3)
7. Perform steps 1 and 2 of the Power Window Safety-Bail Adjustment procedure on this page.

POWER WINDOW SAFETY BAIL

ADJUSTMENT

This safety bail adjustment procedure is a continuation of the Power Window Alignment procedure on this page; the safety bail procedure explains how to replace many parts that were
procedure. Adjust as follows:

1. Move the safety bail switch and the actuator assembly as far right as possible without th assembly as fa
switch closing. far righ
2. On all models, apply upward pressure (at the top-right side of the window) to the soft plastic strip through which the cable runs. (On models to the soft plastic strip at the top center of the to the soft plastic strip at the top center of the
bottom window.) The safety bail switch should close with a force of 5 pounds (2268 grams) or less, or a displacement of 0.44 inch (11.28 mm) or less. B
3. Replace the black accent panel

Note: If removed, replace the door glass panel Ensure that the beveled bottom edge of the glass is aligned with the beveled lower door frame member. the lower roller is in the down position and the upper roller is in the up position. (C
Install the top and side retaining strips and tighten the screws.
4. Reinstall the inner cover

POWER WINDOW, RACK, LIMIT SWITCH ADJUSTMENTS (Without EC 443925)

1. Open the front door and remove the left cover to expose the window motor and gear rack.

DANGER

Power must be off.
2. Loosen the motor mounting screws and move the motor to disengage it from the gear rack. Move the window up and down by hand to verify that it has no heavy binds.

Caution: Do not lower the window below the top of the center horizontal frame member of the door.
3. Loosen the screws holding the gear rack, then retighten them when the rack is moved completely to the right and the limit switch actuator is centered
4. Verify that both limit switches operate in each direction of window travel by manually lifting and lowering the window. Then remesh and adjust the motor gear to gear rack clearance. Carefully move window down the gear just bottoms. Whe the gear mesh at the up position.
5. Under power, position or shape the upper limit switch so that the glass stops just short of its full upper travel. Adjust the lower limit switch so that he window stops just level with the center horizontal frame member.
6. While maintaining the step 5 adjustments, vary the position of the switch to ensure that the switch actuating arms have some over-travel remaining. Caution: If the switch actuating arm is touching the switch body or some other object, shape the witch actuator arm and repeat the step 5 adjustment
7. Perform the Power Window Safety Bail Adjustment procedure on 08-640.

POWER WINDOW RACK LIMIT SWITCH ADJUSTMENTS (With EC 443925)

1. Open the front door and remove the left cover to expose the window motor and gear rack

DANGER

Power must be off

2. Loosen the motor mounting screws and move the motor to disengage it from the gear rack. Move the window up and down by hand to verify that it has no heavy binds
Caution: Do not lower the window below the top of the center horizontal frame member of the door. Before starting the window adjustment, adjust the upper and lower trip plates. Move the upper trip plate to its uppermost position and the ower trip plate to its lowermost position.
3. Loosen the screws holding the gear rack. Move the gear rack completely to the right and retighten the screws.
4. Move the window up by hand until the upper limit switch makes contact. Measure the distance to the top of the frame. If the distance is less than 0.25 inch $(6.35 \mathrm{~mm})$, shape the limit switch actuator arm until the distance is greater than 0.25 inch (6.35 mm). Move the flat trip plate down an amount equal to the difference between 0.25 inch and the distance between the window top and the top of the frame. The end result is to have the window 0.25 inch (6.35 mm) from the top frame when the window to coast to a stop before hitting the upper door frame.
5. Carefully move the motor until the gear jus bottoms. Hold the motor in position with one hand and try to move the window. If the window does or tove, hore gounting screws. the two motor mounting screws.
6. Turn power on and lower the window. Measure the distance from the top of the window to the center horizontal member of the door. If the window is below the center horizontal frame member, move the window up and shape the lower limit switch up Lowt ine shiow and check he whdow position. Cuntil the window top stops above the center horizontal frame member. Then move the trip until the window top is just slightly above the center horizontal frame member.
Caution: If the lower switch actuating arm is touching the switch body or any other object, shape the lower switch actuating arm up. Move the window down and check the window position, adjusting the trip plate as necessary with power off.
7. Move the window up. The window should close without hitting hard. If the window hits hard, move the flat trip plate down until the window lightly touches.
Caution: If the lower switch actuating arm is touching the switch body or any other object, shape the lower switch actuating arm up. Mov the window down and check the window with power off.
8. Perform the Power Window Safety Bail Adjustment procedure on 08-640

 CARR - POWER WINDOW

POWER WINDOW SAFETY-BAIL CABLE

REMOVAL/REPLACEMENT

To replace a power window safety-bail cable:
1 Remove the left and right door trim by loosening the setscrews beneath the outer edge of the rubber door seal. Hold back the rubber seal to expose the setscrews.
2 Remove the access cover to expose the window motor and gear rack by removing the two screws at the bottom.
If the cable is broken at its terminator:

1. Position or remove the bail actuator mounting bracket to provide cable slack.
2. Pull outward on the extruded rubber safety bail to expose the cable on the outside edge of the door.
3 Push the cable through the safety bail until enough cable is exposed on the other end to install the terminator
4 Install the terminator and mount the actuator bracket.
3. Perform the Power Window Safety Bail Adjustment procedure on 08-640
4. Replace the covers and trim.

If the break is not at the terminator:

1. Remove the left door access cover.
2. Disconnect the terminators and remove the broken cable.
3. Thread the new cable. Be careful not to fray the end.
4. Connect the terminators.
5. Perform the Power Window Safety Bail Adjustment procedure on 08-640
6. Replace the covers and trim

XD4000	2735850	$\begin{aligned} & \text { See EC } \\ & \hline \text { Hextor } \end{aligned}$	845958	846927			

POWER WINDOW GLASS REMOVAL/

REPLACEMENT

DANGER

Before replacing the power window glass, tape both sides of the glass tightly to prevent pieces of glass from falling from the window. Protect hands willy if you have to touch the brokeng. you have to touch the broken edges of glass.
To replace the power window glass:

1. Remove the felt strip from both sides of the lower window channel.
2. Pry the decorative cover from the window assembly.
3. Lower the window enough to let you remove the black accent panel from the rear

Note: On some tape units you must remove the bottom window to reach the accent-panel screws.
If so: Do steps a through d.
a. Remove the left roller tension spring noting the position of the rollers.
b. Remove the screws and washers that hold the strips which fasten the top side and door latch side of the glass to the door
c. Loosen the retaining strip on the door hinge side of the glass.
d. Slide the glass out.

4 Support the glass with tape as shown. Remove three screws and two hex-head nuts from the window support.
5. Lower the window to where you earlier removed the felt strip and lift the glass out.
6. Replace the glass and reverse steps 1 through 5

7 If removed, replace the door glass panel. Ensure that the beveled bottom edge of the glass is aligned with the beveled lower door frame member. When replacing the left roller tension springs, be sure the lower roller is in the down position and the upper roller is in the up position.

3803-1,2,3/3420

$\begin{aligned} & \text { XD4000 } \\ & \text { Sog } 2 \text { of } 2 \end{aligned}$	${ }_{\text {Part Number }}^{2735850}$	See EC History	$\begin{gathered} 845958 \\ \hline 1 \text { Sop } 79 \end{gathered}$					

VACUUM COLUMN DOOR REPLACEMENT

AND ADJUSTMENT

DANGER

If the door is not a one-piece molded door, ensure that all door rails are tight at all four corners before proceeding.
To replace and adjust the vacuum column door:
Caution: If the vacuum door frame is raised, ensure that the glass does not contact the capstan assembly or " D " bearing. This contact could cause damage when closing the door. If this occurs emove the glass, continue with procedure and then go to 08-690

1 Fasten the Z-bracket hinge to the vacuum column with five screws and washers.
2. Close the door and hold it tightly against the vacuum columns.
3. Adjust the door left or right by removing or adding shims (C) between the Z bracket and the column When correctly adjusted, the notches (A) in the right threading channel and the float plate on the door overlap equally. Ensure that the Z bracket rests on the five screws 1 .
4. Adjust the door up or down so that the top of the notch float plate is flush to .010 inch below the top (horizontal area) of the right threading channel. seven hinge mounting screws (B) on the Z bracket, and slide the door up or down within the slots.
5. With the five screws in the Z bracket loose and with the door latches loose, move the entire door in or out to obtain a tight glass-to-column fit under vacuum-up conditions.
6. Check that the latches pull the door toward the columns when the door is closed.
7. Tighten all the screws and recheck the adjustments
8. Perform the checks on 08-690.

XD4100 Seq 1 of 2	2735851	See EC	845958

${ }_{20}^{846927}$ Jun 80

年1976. 1999. 1980. 1983

VACUUM COLUMN DOOR GLASS REMOVAL/REPLACEMENT

DANGER

One CE should not attempt to replace the glass by himself. Before replacing the vacuum column door glass, tape both sides of the glass tightly to prevent pieces of glass from falling from the window: Protect your hands with gloves or other suitable edges of glass.

1. Open the door

Note: Inspect vacuum column door foam strips. If the foam is damaged or aged (lost its resiliency) it should be eplaced. Push glass away from retainers 3 and release, Foam should be replaced if it does not hold glass against (side) 1773162 (bottom) and 1846178 (top) or B/M 469244 for all. 4469244 for all.
2. Loosen the screws and remove the clamps $\mathbf{3}$ on the hinge side only. This will maintain the adjustment.
3. Slide the glass horizontally toward the hinge side until it clears the nonhinge side clamps.
4. After lifting out the glass, remove the shim package 4 from its bottom edge
5 Examine the new glass for a frosted section at a bottom corner. The frosted side is the flat side of the glass.
6. Install the shim package 4 on the bottom edge of the door glass in the cente
7. Install the glass so that the flat side will touch the vacuum columns.

Caution: Do not close door until after adjustment.

VACUUM COLUMN DOOR GLASS

 ADJUSTMENT1. Loosen the non-hinge side clamps. 1
2. Insert a 0.005 inch $(0.002 \mathrm{~mm})$ feeler gauge between the edge of the door glass 2 and the non-hinge side clamps 1
3. Make sure the edge of the door glass 2 is in contact with the hinge side clamps 3 . Position the non-hinge side clamps 1 against the feeler gauge and tighten the non-hinge side clamp screws.
4. Remove the feeler gauge.

Note: Check to insure free vertical movement of the door glass.

In the following steps, access to the shim package 4 should be obtained by removing the hinge side clamps 3. These clamps must be reinstalled after each shim package modification. This insures prior door glass adjustments are maintained.
5. Install the capstan protective cleaning cover on the capstan motor.
6. While viewing from the left of the machine, slowly start to close the vacuum column door and observe start to close the vacuum column door and observe
the relationship between the top of the door glass and the right side of the capstan cover.
7. The top of the door glass must interfere with the right side of the capstan cover in order to continue this procedure. If the top of the door glass is below the right side of the capstan cover, shims P/N 1765649 (0.010 inches thick (0.25 mm)) or be installed to create an interference condition.
Note: Be sure to install the shim package 4 in the center or the glass will bind and not seal properly.
8. Remove 0.010 inches $(0.25 \mathrm{~mm})$ of shims by modifying the number of shims in the shim package. Recheck the relationship of the top of the door glass to the right side of the capstan cover relationship. Repeat this procedure until he doo glaps clenser and contacts the round portion of the capstan cover. When this condition is met, th adjustment is complete.

Note: Contact of the door glass on the capstan cover may cause the cover to shift. Care must be taken to
 time the above check is made.
9. Remove the capstan cover.

XD4100	2735851	See EC History History	845958	846927	$\begin{gathered} 847298 \\ \hline 15 \text { Aua } 83 \end{gathered}$		

CCCCCCC

CARR - CAPSTAN CLEANING/REFERENCE PLATE/SKEW PLATE REMOVAL AND REPLACEMENT

GLAZED CAPSTAN CLEANING

This procedure is performed only if the glaze cannot be removed by normal cleaning (85-004),

Caution: This procedure, if not done correctly an with extreme care, can shorten the life of (or damage) the capstan. If the capstan edges are rounded or flat spots are created, tracking adjustments will not be possible.

Verify that this procedure is necessary

1. Perform the Capstan Cleaning-Normal Procedure (see 85-004 if necessary).
2. Run the IBG and Creep measurement test. OLT T3420W determines the size of the interblock gap 0.301 inch (7.68) is nom for Models 4, Models 3, 5, and 7.) Models 3,5 , and 7.)
3. Check the diagnostic printout for signs of slippage (gap sizes exceed the limits specified in the OLT). If the tape is slipping, the Glazed Capstan Cleaning procedure is necessary. Proceed as follows:
4. Assemble an abrasive tool using 600 -grit paper IBM P/N 460107 attached to a six-inch steel rule with double-back adhesive tape such as 3 M Y-9122 or 4282*. You can also use rubber cement or printer carriage tape glue.
5. Remove the left threading channel. Place the steel rule with 600 -grit paper squarely on the capstan and then just break the glaze on the capstan with the abrasive tool while rotating the capstan by hand.
The intent is not to remove the glaze with the tool but to break through the coating to allow the tape
6. Moisten cotton swabs with tape cleaner and scrub the capstan rubber thoroughly, until the capstan attains a dull rubber finish.
7. Follow up with a lint-free cloth moistened with tape cleaner to remove all traces of the cotton
8. Verify the effectiveness of your cleaning by repeating the IBG and Creep measurement test (OLT T3420W)
9. The Capstan Dynamic Alignment procedure must now be performed. (see 08-150 or 08-160).
*Trademark of 3 M Company.

REFERENCE PLATE/SKEW PLATE

REMOVAL AND REPLACEMENT

This requires the use of the reference plate tool kit P / N 4298806 (region tool). This kit contains the tools and instructions to remove and replace both the reference plate and the skew plate.

MINIREEL LOAD TEST

This procedure should be followed if minireels are used The ability to load 2400 -foot (731.52 m) reels and minireels interchangeably is directly affected by:

1. The vacuum column door seal.
2. The float plate-to-upper column seal.
3. The size of the orifice in the left lower manifold. (Remove the left side of the vacuum hose between the two columns to see the orifice.)
4. The adjustable plastic vacuum column vents located a few inches below the reel tachs.
5. The friction of the tape on the capstan as tape is lowered into both columns.
Any of these items affects the behavior of tape being pulled down into one column or the other. The force of the vacuum on the tape must be equalized between the two columns.
6. If the column door and float plate adjustments are correct, both seat flat against the 0.5 inch $(12.7 \mathrm{~mm})$
rails of the vacuum columns.
7. Three orifice sizes are available for the vacuum column manifold:

P/N 1766573 has a 0.750 inch (19.1 mm) orifice P/N 1848222 has a 0.625 inch (15.9 mm) orifice P/N 4416302 has a 0.870 inch $(22.1 \mathrm{~mm})$ orifice

The smaller the orifice, the smaller the vacuum force in the right-hand column.
3. Both left and right column vents, when opened, leak vacuum from their respective columns.
Perform the following steps:

1. Inspect the hose between the column manifolds and ensure that the manifold is tight.
2. Load a full 2400 -foot $(731.52 \mathrm{~m})$ reel and watch for any tendency for it to pull into only one column.
3. Try loading each size of minireel available. Vary the column vent for the best possible loading characteristic.
4. If reliable loading of both full and minireel tapes cannot be achieved, measure the orifice size with the 6 -inch (152.4 mm) rule. Dumping in the left column indicates a need for a larger orifice.
5. Replace the orifice and repeat steps 2 through 4.
6. If the adjustment cannot be made, ensure that both reels are attempting to lower the tape into the
columns at the correct speed by comparison win adjacent tape unit. Also check for a warped or cracked manifold.
7. You can connect the dial vacuum gauge to an unused column port to compare vacuum levels during loading. Remove an unused port cap to connect the
gauge. gauge.

VACUUM BALANCE

The vacuum balance between the two columns is usually affected by the following three items:

1. A leak in the vacuum column door or the float plate area. Check the door and glass alignment (see $08-680$ and 08-690). Also, check for broken or missing parts in the float plate area.
2. The size of the vent hole in the vacuum column. The vent is located on the upper outside edge of each vacuum column. If EC 847857 (ECA-124) is not installed, this hole will be approximately 0.5 inch $(12.7 \mathrm{~mm})$ in diameter or may not exist at all. If the EC is installed, the hole will contain an adjustable plastic vent (P / N 1846701) for varying the amount of air flow through the hole.
(The smaller the hole, the higher the initial vacuum will be in the columns.) Initial vacuum is the vacuum felt in the column when vacuum is first applied. After the tape has been loaded into both columns, the vacuum in both columns should be equalized.
3. The size of the orifice in the left vacuum column manifold assembly ($\mathrm{P} / \mathrm{N} 2511687$) may vary. The manifold may contain the small, medium, or large orifice mentioned above, or there may not be an orifice at all. (The larger the opening, the more initial vacuum is applied to the right column.) Knowing what affects the vacuum balance between the two columns should help resolve the load problem. For it indicates that the left column has too much initial
vacuum when compared with the right column. Firs, heck that item 1 is not the problem. Second, adjus the vacuum column vents (item 2) by decreasing the vacuum in the left column and increasing the vacuum in the right column. Third, if neither items 1 nor 2 3) until a correct load occurs When finished, check he loading of the minireels and the 2400 -foot 731.52 m reels. Ensure that both types of reel load correctly.

TAPE CONTROL POWER SUPPLY

From 00-010, Start 1, 13-000		
Before beginning, verify that the EPO cable is plugged into position J11 or J09, and that the Power On lamp is good.		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Is the power sequencing ok?	Go to Seq 25.
2	Move the AC switch to the UP (ON) position. Operate the Lamp Test switch on the CE panel. Do the lamps light?	If the power is on for all tape units, go to Seq 37; otherwise, go to Seq 4
3	Are the power supply blowers operating?	Go to Seq 25.
4	Is CP17, CP1 tripped, or the customer main circuit protector tripped?	Reset the circuit protector and go to 00-030.
5	Is the power off on any tape unit powered from sockets J1 through J4?	Check CB1 on each tape unit. If it is tripped, reset it and go to 00-030. If not, go to Seq 14.
6	Is the power off on any tape unit powered from sockets J5 through J8?	Check CB1 on each tape unit. If it is tripped; reset it and go to 00-030. If not, go to Seq 8
7	If not:	Go to Seq 37 on page 11-001.
8	The test points referred to in the following instructions are on the back of the ac printed circuit board. (See drawing.) Remove the cover below the four toggle switches. Measure from the test point specified below to test point 16 .	
9	Is -24 Vdc present at test point 10?	Repair K8 (YF030) and go to 00-030.
10	Is -24 Vdc present at K3-16?	If -24 Vdc is present at $\mathrm{K} 3-1$, repair K 3 (YF030) and go to 00-030; otherwise, go to Seq 14
11	Is -24 Vdc present at test point 1 .	Check CP19 on the ac board then terminals 1, 2, 3, and 4 (YF030) and go to 00-030.
12	Is -24 Vdc present at test point 4?	Repair or replace K2 (YF030) and go to 00-030.
13	If not:	Repair or replace J11-1 and J11-2 EPO contacts in the channel (YF030) and go to 00-030.
14	The test points referred to in the following instructions are on the back of the ac printed circuit board. (See drawing.) Remove the cover below the four toggle switches. Measure from the test point specified to test point 16 .	
15	Is -24 Vdc present at test point 13?	Repair or replace K7 (YF030).
16	Is -24 Vdc missing at K1-10?	Go to Seq 11.
17	Is -24 Vdc present at $\mathrm{K} 1-4$?	Repair or replace K1 (YFO30) and go to 00-030.

Seq	Condition/Instruction	Action
18	Is -24 Vdc present at AC ON/OFF switch pin 2?	Replace the ac switch (YFO3O) and go to 00-030.
19	Is -24 Vdc present at test point 3?	Check power supply connectors and terminals for loose or bad connections and go to 00-030.
20	Is the REMOTE/LOCAL switch set to REMOTE?	Go to Seq 23.
21	Is -24 Vdc present at pin 2 of the LOCAL/REMOTE switch?	Repair the LOCAL/REMOTE switch (YFO30) and go to 00-030.
22	If not:	Check EPO jumpers J11-2 to J11-1 or EPO control system and go to $00-030$
23	Is -24 Vdc missing at test point 2?	Repair EPO connector J11-5 which leads to the SYSTEM POWER ON contacts (YF030) and go to 00-030
24	If not:	Repair EPO connector J11-6 which leads to the STEP CONTROL switch in the system (YFO3O) and go to 00-030.
25	Verify that the +6 Vdc and -4 Vdc power supply outputs are within the tolerances the tolerances given on pow To adjust, hold the DC RESET switch active, and use one of the digital voltmeters listed in 80-000. Check the voltages at the following points: +6 Vdc from A-B2R2M11 to Gnd A-B2R2D08, and the -4 Vdc from $\mathrm{A}-\mathrm{A} 2 \mathrm{~T} 4 \mathrm{~B} 06$ to Gnd A-A2T4D08. Note: Make sure all terminal and capacitor screws are tight. Also check for improper solder connections on the power supply boards. The ripple specification for -4 V is 80 mV peak-to-peak and for +6 - 4 V is 80 mV peak-to-peak and for +6 power supply.	
26	Can the +6 and -4 voltages be adjusted within their tolerance?	Change J1 (YFO31) on the +6 power supply. If this fixes the problem, return the tape unit to the customer. If it does not fix the problem, replace K4 (YFO30) and go to 00-030
27	If not:	Change and adjust the regulator that is out of tolerance. Go to Seq 28
28	Is the voltage now in tolerance?	Go to 00-030.

Seq	Condition/Instruction	Action
29	If not:	Remove the output leads from the bad power supply. For the +6 V supply, remove leads TB2-3 and TB2-4. For the -4 V supply, remove leads 6 and 7 from both - V supply and one end of the bypass resistor Note: The bypass resistor ($\mathrm{R}-8$) is the big resistor mounted on the A 1 regulator assembly. Go to Seq 30 .
30	Are the voltages within their tolerance?	You have an overload condition. Refer to ALD YA106 and go to 00-030.
31	Are the voltages within tolerance when the OV/UV card is removed?	Change the OV/UV card (YFO31) and go to $00-030$. This card is not field adjustable.

Seq	Condition/Instruction	Action
32	Check the input voltages. For the +6 V supply, you should have 11.4 Vac between leads TB1-5 and TB1-1 and between TB1-5 and TB1-3. For the -4 V supply, you should have 9.3 Vac between leads 3 and 2 and leads 3 and 1 (YFO31).	
33	Is the measured input voltage for the +6 V supply 0 V or approximately 23 V ?	Check for open connection between the secondary of T1 and the input to regulator assembly A3. See YF031.
34	Is the measured input voltage for the +4 V supply 0 V or approximately 18.6 V ?	Check for open connection between the secondary of T1 and the inputs to regulator assemblies A1 and A2. See YF031.
35	Do both power supplies have incorrect input voltages?	Check the input capacitors for both power supplies (YFO31) and go to 00-030.
36	If not:	1.There is a poor connection between the heat sink and pin A of the 4 V regulator card. Add a jumper between the heat sink and pin A if you are unable to locate the cause of high resistance. 2. Change or repair the faulty power supply (YFO31) and go to $00-030$. If -4 V supply is defective, change both the A1 and A2 regulator assemblies.
37	Do the blowers operate while the DC RESET switch is held pressed?	If K4 is picked, go to Seq 39; otherwise, go to Seq 25
38	If not:	Go to Seq 42.
39	Do the blowers stop operating when the DC RESET switch is released?	Repair or replace K4 (YF030) and go to 00-030.
40	Turn the ac switch off and then on. Do the blowers still fail to operate?	Repair or replace K3 (YF030) and go to 00-030.
41	If not:	Go to 00-030.
42	The test points referred to in the following instructions are on the back of the ac printed circuit board. Measure from the test point specified to test point 16 . Is -24 Vdc present at test point 7 ?	Repair or replace K6 (YF030) and go to 00-030.
43	Is -24 Vdc present at $\mathrm{K} 1-7$?	Repair K 1 (YF030) and go to 00-030.
44	Is -24 Vdc present at DC OFF switch pin 5 ?	Repair the DC OFF switch and go to 00-030.

Seq	Condition/Instruction	Action
45	Is -24 Vdc present at the DC RESET switch pin 5?	Repair the DC RESET switch and go to 00-030.
46	Is -24 Vdc present at K2-6?	Repair or replace K2 (YFO30) and go to $00-030$.
47	If not:	Go to Seq 11.

3803-2/3420

XEO100 Seq 2 of 2	2735852 Par Number	See EC History	845958 1 Sep 79				

C C C C C 1

From: 13-000, 13-050		
You have probably reached this MAP because: 1. The CPU is unavailable for running OLTs. (If the problem is intermittent Read/Write, OLTs are required. See 00-010.) 2. You were sent here by another MAP 3. The CE panel appears to be malfunctioning. (The CE panel description and switch operation is described on $75-001$.) Note: If you have a 1×8 with address $8-F$, change the address plugging to $0-7$ before continuing. (See 90-130.) Return the address to $8-\mathrm{F}$ before returning the unit to the customer		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Do you need help operating the CE panel?	Go to 12-010.
2	Is the CE panel failing?	Go to 12-020.
3	Try to duplicate the online failure from the CE panel. Perform ALU checkout. A. Take the tape control offline: Turn the Meter Enable switch(es) Off. (When all interrupts have been cleared the Interface Disabled indicator should turn on.) If the indicator doesn't light, operate the Reset switch. Caution: Operating the RESET switch when the Interface Disable indicator is Off may cause a channe failure. B. Enable the CE panel: Turn on (raise) the Panel Enable switch. Set the ROS Mode switch to Norm Operate the Set ROS Mode switch. The Panel Enable indicator should light. C. Set ROS Mode: Set the ROS Mode switch to Stop. Operate the Set ROS Mode switch. D. Select ALU1 and display ALU1 indicators: Turn on the Stop On Control Check and Stop On Data Flow Check switches. Set ALU1/ALU2 switch to ALU1. Set Display Select switch to IC. E. Operate the Reset switch to reset the tape control. Record any Control Check or Data Flow Check red lights and the IC address being displayed in the ROS address lights for ALU1. They should indicate hex '7FF'.	

Seq	Condition/Instruction	Action
	F. Set the ALU1/ALU2 switch to ALU2. Record ALU2's IC address. G. Set ALU1/ALU2 switch to ALU2. H. Operate the Reset switch to reset the tape control. Record red lights and IC address for ALU2. I. Set the ALU1/ALU2 switch to ALU1. Record ALU1's IC address. Note: A Control Check stops only the selected ALU.	
4	Did you get either a Control Check red light error or an IC address other than hex ' 7 FF' in either ALU?	Go to 13-000.
5	Power on Reset and ALU Checkout routines work normally. Test the tape unit operation. A. Set the following switches: ALU1/ALU2 switch to ALU1. Ripple/Wr Data switch to Ripple. Mple/Single switch to Mple Stop On Control Check and Stop On Data Flow Check switches On. Note: ROS should still be in STOP Mode. B. Set the Compare Register to 20A: Set the Display Select switch to Cmpr Reg. Set the Data Entry Select switch to Cmpr Reg. Set the three Data Entry rotary switches to 20A, reading left to right. Operate the Set CE Cmpr switch. Verify that 20A is displayed in the indicators. C. Set the Command Chain, Data, and Byte Count into the CE Register Set the Display Select switch to CE REG. Select the register to be loaded with the Data Entry Select switches. Dial the data to be entered into the three Data Entry switches. Load the register by operating the Set CE/Cmpr switch.	

Seq	Condition/Instruction	Action
5	(continued) Cmnd $1=07 X$ Cmnd 2 $=17 \mathrm{X}$ Cmnd $3=$ Cmnd $4=$ $=$$\quad 8 \mathrm{BX}$ Byte Cnt $=\quad 4 \mathrm{DO}$ Write Data/ FFO Install the LWR with gaps jumper from A1S2G08 to ground. (Allows LWR to terminate) $X=$ the tape unit address 0 through F . Mount and load a CE work tape- Tape must be rewound to load point. Operate the Start switch.	
6	Did any CE or Compare register fail to load?	Go to 12-020.
7	Set Display Select switch to IC. Did ALU1 stop at address of '301'? (IC address of '303' may appear in the ROS address indicators due to the lookahead circuit.	A unit check condition has occurred and sense data is being saved. Go to Seq 14 and obtain the sense information.
8	Using the ALU1 / ALU2 switch, select each ALU alternately. Reset the tape control and restart the command chain at least once with each ALU selected. Do you get any Control Check red lights? (A Control Check stops only the selected ALU.)	Go to 13-000 for interpretation of the error lights.
9	Did ALU1 display an IC address other than '7FF'?	Go to 13-000.
10	Is ALU1 idling at '7FF' but failing to start the command chain when the Command Controls Start switch is operated?	Go to 13-050.
11	If the previous command chain will not fail, try the following: A. If the original failure was a P Compare or CRC problem, set the Ripple/Wr Data switch to Ripple and vary the byte count. These two errors are extremely data sensitive. B. Replace commands 1 through 4 with the following or try a combination based on the original failure:	Go to Seq 6.

XEO200	2735853	See EC History	845958					

Seq	Condition/Instruction	Action
12	The failure is either extremely intermittent or cannot be created offline. Return to 00-010 and run OLTs if you have not found the problem. Is any sense data available from the OLT failure?	Go to 14-000.
13	If not:	Go to 18-020, 19-000, and 00-010 for ideas.
14	Obtain Sense Data You should be stopped at ALU1 address '301' with a Data Flow Check Indicator On; however, the '301' failure may not light an indicator. Do not reset the tape control or the sense data will be lost. A. Set the Display Select switch to Cmpr Reg and verify that the Compare Register is still set to ' $20 A^{\prime}$ ' B. Enter a Sense command into all four Command Registers. Set the Data Entry Select rotary switches to $04 X$ Reg. Set the Data Entry Select switch to Cmnd 1, Cmnd 2, Cmnd 3, and Cmnd 4. Operate the Set CE/Cmpr switch for each position. C. Set the CE Panel switches: ALU1/ALU2 switch to ALU1. Display Select switch to IC. Stop On Control Check switch Off. Stop On Data Flow Check switch Off. Mple/Single switch to Single. D. Operate the Command Control Start switch. E. The indicators should be displaying an IC address of '20A'. Move the Display Select switch to Bus In. The indicators will now display Sense Byte 0 . F. Move the Display Select switch back to IC and operate the Start or Step switch one time. Sense Byte 1 can now be displayed by setting the G. Obtain all 24 bytes of sense data by selecting IC, operating Start or Step once, then displaying Bus In. Do not operate Start or Step unless IC is selected.	

Seq	Condition/Instruction	Action
	H. With the Mple/Single switch on Mple, ALU1 will go back to Idlescans (7FF) after the 24th sense byte is obtained. Contact bounce in the Start or Step switch may cause this routine to skip over several sense bytes. If this occurs, complete the routine to obtain remaining sense bytes, then go back to step D to get the sense bytes you skipped.	
15	Have all 24 sense bytes been obtained?	Go to 14-000 and do a manual sense analysis.
16	If not:	Go to 00-030.

3803-2/3420

XE0200	273585

CE PANEL OPERATION

CE PANEL OPERATION CONTENTS

For a description of each switch see 75-001.

1. CE Panel Notes
2. Online Stop on ALU Hardware Error (Control

Check)

ALU "Babysitter" Using Cmpr Equal Lamp
5. Take the Tape Control Offline (Disable the
6. Reset the Tape Control Unit
7. Single Step Through a Microprogram (Loop on Routine)
Set IC to a ROS Address
8. Set IC to a ROS Address
9. Stop On Data Flow or Control Check Error
10. ROS Address compare, Stop or Sync
11. Restart On ALU Error or Address Compare
12. Cycle a Single ALU Instruction
13. Execute a Command Sequence to a Tape Unit
14. Ripple Data Pattern and Byte Count
15. Obtain 24 Sense Bytes
16. Display Local Storage Register (LSR) Contents
17. Display ROS Bits (ALU Instructions)
19. Display Data Security Erase Procedure Offline

B. Less than 24 bytes of Sense Data with the LWR jumper installed: If the sense operation ends before issuing all 24 bytes of sense, remove the LWR
jumper from A1S2GO8 to ground, which was installed in order to perform an LWR operation with gaps. The value set in the byte count register affects the number of bytes indirectly.
c. Control Check errors on a Power-Up operation: If the CE panel has been left
enabled and the Control Check Stop switch left on, you may encounter an error enabled and the Control Check Stop switch left on, you may
stop with Control Check red lights, due to uninitialized LSRs.
D. Control Check Stop On switch without ROS Mode being set to STOP mode: The Control Check Stop On switch, by itself, will prevent the ALU running.
Control Check Stop On switch being left On prevents.
The Address Compare Stop function.
The Set IC function.
2. The Set IC function.
4. The Restart /Compare function

Loop-Write-Read (LWR): An LWR operation with a 3420 Model 4, 6, or 8 bpi, perform a write operation to move the tape off Load Point. All subsequent LWR operations will be performed in 6250 bpi mode
G. Data Flow Errors are Command Code sensitive Any change in the CE panel setup within a procedure can alter the error. Then the procedure does not apply.

Enable the CE Panel

The CE Panel can be enabled at any time. Caution should be taken when the
customer is running with the panel enabled-Control Check and Compare Stop customer is running with the pane
functions are active in this status.
A. Raise the Panel Enable toggle switch.
A. Vaise the Panel Enable toggle switch.

If Panel Enable lamp fails to come om, set the ROS Mode switch to the NORM position; then operate the Set ROS Mode toggle switch. (The latter switch is a
spring-loaded, three-position switch. Operating it momentarily upward performs sper
the Set ROS Mode function, operating it downward performs the Set CE/CMPR
function.)

Seq	Condition/Instruction
3	Online Stop On ALU Hardware Error (Control Check)

An ALU error (for example, D Bus Parity) can be caught online with the Control Check error light showing. Boon ALUs are stopped, but only when the ALU selected
by the ALU1/ALU2 switch turns on a red light Therefore if ALU1 is selected, and by the ALU1/ALU2 switch turns on a red light. Therefore, if ALU1 is selected, and
ALU2 has the error, a red light does not occur unless ALU1 later turns on its Microprogram Detected Error light or has a parity error due to a bad transfer from ALU2
A. Enable the CE Panel as in Seq 2 .
B. Turn the Control Check Stop On switch On.
C. Set the ROS Mode switch to Stop
D. Operate the Set ROS Mode switch
E. Select either ALU with the ALU1/ALU2 switch.
F. After a failure occurs it the selected ALU, select the opposite ALU and wait for failure. (ALU1 monitors ALU2, so try ALU1 first.)
Caution: Trapping ALU errors online with the Control Check switch on can impatt customer operations. Make use of the channel retry feature on
System 370 CPUS. Place the CPU in hard-stoo mode before activating the System $/ 370$ CPUs. Place the CPU in hard-stop mode before activating the
Control Check switc. Use the hard-stop Control Check switch. Use the hard-stop mode that ignores recoverable
storage errors. When the ALU stops: (1) obtain the required information storage errors. Whe the ALU stops: (1) obtain the required information
from the CE panel, (2) turn off the Control Check switch, (3) switch the
CPU to Process. and (4) start the CPU This allows the channel retry CPU to Process, and (4) start the CPU. This allows the channel retry hardware and software to recover. Recovery is only possible on
intermittent ALU errors. Raise the Control Check Stop On switch first. intor
before setting ROS Mode to Stop in order to prevent stopping on a
Comer Compare address.
4 ALU "Babysitter" Using the CMPR Equal Light
To prove if a microprogram instruction is executed, either online or offline, use the
following operation. If the exact sequence below is used, the setup can be done while the customer is running.
A. Enable the CE Panel (Seq 2).
B. Leave the ROS in Normal mode
C. Enter the hex address of the instruction in the three data entry switches
D. Turn the Data Entry Select switch to Cmpr Reg.
E. Turn the Display Select switth to Cmpr Reg.
F.
F. Operate the Set CE/Cmpr Switch.
G. Select the proper ALU with the ALU1/ALU2 switch.
G. Select the proper ALU with the ALC
H. Set the Display Select switch to IC.

The Cmpr Equal lamp lights each time the instruction is executed. To reset the light,
Take the Tape Control Offline (Disable the Interface)
A. Drop both Meter Enable switches (one switch if no TCS feature is installed.
A. Observe the green INTFs Disabled lamp.

When all interrupts have been cleared by the channel, the interface will become
disabled and turn on the lamp. If the channel or All is not free to disabled and tur on the lamp. If the chand
Reset switch. Rel sw,
Caution: Reset without interface Disabled may hand or cause channel errors.
Not disabling the interface when attached to a polling channel (such as a 2860) Not disabing the interface when attached
causes microprogram errors on the 3803 .

Seq	ondition/Instruction
10	ROS Address Compare, Stop or Sync These functions are active either online or offline. A. Enable the CE Panel (Seq 2). B. Set the desired hex address into the Data Entry switches. C. Set the Display Select and Data Entry Select switches to Compr Reg. D. Operate the Set CE/Cmpr switch. E. Turn the Display Select switch to IC. F. Ensure that the Control Check Stop On switch is off (down). G. Select the proper ALU with the ALU1/ALU2 switch. The CE Panel setup is the same, at this point, for either stopping or syncing a scope on the address. The setting of the ROS Mode will determine the function. Stop On ROS Compare Set the ROS Mode switch to Stop and operate the Set ROS Mode switch. The selected ALU will stop when the IC address matches the Compare Register. The other ALU continues running. (The instruction at the compare address is not executed.) Sync On ROS Compare If the ROS Mode is left in Norm (ROS Mode switch to Norm, and Set ROS Mode switch operated), a Compare Equal line at A-A1U2U07 in the tape control will provide a 50 ns sync pulse when the selected ALU reaches the compare address. The pulse will occur prior to execution of the instruction. (The Cmpr Equal lamp will light.) (the Cmpr Equal lamp can be turned off at any time by operating the Start or Stop switch.)
11	Restart on ALU Error or Address Compare These functions are active either online or offline. If you are offline and desire to restart a command chain to a tape unit on an ALU error or compare address, add a jumper from General Reset to the CE Start latch (B2Q2S10 to A1T2G05). Restart on ALU Hardware Error: The restart (Trap to address '000' for General Reset) on error occurs after the failing instruction is executed. A. Enable the CE Panel. B. Turn the Control Check Stop On switch off C. Select the ALU causing the error. D. Set the ROS Mode switch to Rst/Err. E. Operate the Set ROS Mode switch. F. Reset and start the failing operation. Restart on ALU Address Compare: The restart (Trap to address ' 000 ' for General Reset) on compare occurs before the instruction is executed. A. Enable the CE Panel. B. Turn the Control Check Stop On switch off. C. Select the desired ALU. D. Set the Display Select and Data Entry Select switches to Cmpr Reg. E. Set the desired hex address into the Data Entry switches. F. Operate the Set CE/Cmpr switch. G. Set the ROS Mode switch to Rst/Cmpr. H. Operate the Set ROS Mode switch. I. Start the operation.

Seq	Condition/Instruction
12	

12 Cycle a Single ALU Instruction

Not all functions are active on the cycle operation, but this can be a very useful Not all functions are active on the cycle operation, but this
operation when the failure occurs on a single instruction.
A. Enable the CE Panel (Seq 2).
B. Stop on ALU hardware error

Stop on ALU hardware error (Sea 9) or stop on the address one position past
the instruction you wish to cycle (Seq 10). (You must have just executed the the instruction you wish to cyc
instruction you wish to cycle.)
Ensure that the Control Check Stop On switch is off Set the ROS Mode switch to Cycle. Operate the Sot ROS Mode switc
Press the Start or Step switch

3 E
Execute a Command Sequence to a Tape Unit
The Channel Interface must be Disabled to activate the command controls.
A. Enable the CE Panel (Seq 2).

Disable the Channel Interface (Seq 5).
The function of the Data Entry rotary switches are:
Colen
*OP Code for example, 07=Rewind
D. Select the command, byte count, or write data to be entered with the Data Entry Switches. E.Set the desired value into the Data Entry Switches corresponding to
the position selected in Step D. F.Operate the Set CE/Cmpr switch for each the position selected in Step D. F.Operate the Set CE/Cmpr switch for each
position selected, and the value in the Data Entry Switches. G.When all positions have been loaded, set the ROS Mode switch to Norm, operate the Set
ROS Mode switch, then operate the Reset switch.
When the Command control Start switch is operated, the tape unit selected will
execute Command 1 .
H. Mple/Single Switch

If set to Single, one command the next sequentiall will be executed, then
the AlU will return to idle scans the ALU will return to idle scans.
2. If set to Mple, the four commands will be repeated until Stop is operated Reset is operated, or until stopped by a data flow error (Data Flow Check
Stop On switch up). Ripple/ Wr Data Switch:

If set to Wr Data, the character entered into the write data position will be
repeated as many times as was specified by the byte count. repeated as many times as was specified by the byte count.
2. If set to Riple, a ripple pattern will be generated for all write operations
rather than using the write data character (see Sea 14).

$\begin{aligned} & \begin{array}{l} \text { Xe0.3000 } \\ \text { Seq } 2 \text { of } 2 \end{array} \end{aligned}$	2735854 Part Number	See EC History	$\begin{aligned} & 845958 \\ & 1 \text { Sep } 79 \end{aligned}$					

$\mathrm{C} C \mathrm{C} C \mathrm{C} \mathrm{C}$

CE PANEL OPERATION (Cont'd)

[^0]
sea

Condition/Instruction

Display Local Storage Register (LSR) Contents (See LSR
A. Enable the CE Panel (Seq 2).

Turn the Control Check Stop On switch off
Set Data Entry Select switch and Display Select switch to Cmpr Reg
Press the Set CE/ Cmpr momentary switch down to enter address ' 500 ' into the
compare register. The indicator lamps should now display ' 500 '
compare register. The indicator lamps should now display ' 500
Move the ALU1/ALU2 switch to the desired ALU.
Set the Display Select switch to IC:
Set the Display Mode rotary switch to
Set the ROS Mode momentary switch to Set ROS Mode. (Address '500' is
displayed in indicator lights.) displayed in indicator lights.)
Operate the Set ROS Mode momentary switch.
Operate the Start/ Step switch. When addresss ' 502 ' is displayed, the functions
of address ' 501 'have been performed and LSR 0 can now be displayed. If the of address ' 501 ' have been performed and LSR 0 can now be displayed. If the
ALU1/ALU2 switch was at ALU1, move the Display Select switch to ALU1/ALU switch was at ALU1, move to Display Select switch to Bus in.
the ALU1/ALU2 switch was at ALU2, move the Display Select switch to Bus Out.
Moving the Display Select switch back to IC allows the address positions to be
monitored. To display any LSR, advance the address to the proper point and disp monitored. To display any LSR, advance the address to the proper point and display
the bus lines for that ALU.
Note: The lower order LSRs ($0-15$) are displayed at addresses ' $502-511$ '. Two
program steps are then taken to set the high order LSRs (16-31), and branch back progam seps are then reaneats weth addresses '502-511'. When the routine is
'502'. The routine then repeats completed, operate the Start/Step
continuously through LSRs $16-31$.
M. To restart the operation with LSR 0 , set IC to ' 500 ' again by

Setting ROS Mode to Set IC
Raising the Set ROS Mode momentary switch
Note: For any LSR not used, parity is not assured. To allow further displaying
of LSRs with B-Bus parity errors, turn on the Control Check Stop switch.

1. B-Bus parity errors can occur when displaying LSRs because LSRs are not
initialized on power up. Always put Control Check Stop on.
initialized on power up. Always put Control Check Stop on.
2. Disregard the P -bit indicator when displaying LSR

On some error-stop conditions, it is impossible to alter the CE commands or the ontents of the Compare Registe
Display ALU1 LSR 1 for the current command
Display ALU1 LSR 3 for the current tape unit address.
Display ROS Bits (ALU Instructions)
Normally this function will be performed in Step Mode, or while reading out a failing
instruction. The ROS bits displayed in the indicators are the actual bits out of the MAL card for the displayed IC address. The IC display, ROS bit display, and the microlisting for the selected ALU (ALU1/ALU2 switch) should all agree. Be aware that the IC address and ROS bits being displayed are for the next
instruction to be displayed The contents of the ROS Register will still contain instruction to be displayed
previous instruction previous instruction.
Turn the Display Select switch to IC to display the instruction address (IC) Turn the Display Select switch to Hi ROS. (Indicators 0-7 display the first byte bits $0-7$ of the microprogram instruction.)
Turn the Display Select switch to Low ROS (indicators $0-7$ display the second byte, bits $8-15$ of the microprogram instruction.)

Condition/Instruction

Display the Channel and Device Bus and Tag

Display the Device Bus and Tags:
A. Select ALU2 with the ALU1/ALU2 switch.
B. Select either Bus In or Bus Out with the \qquad
Indicators 0 through 7 display the bus, and indicators 8 through 11 display
the device address if Bus In is selected, or device tags if Bus Out is selected. Indicators a hhrough display the bus, and indicators 8 through it isplay
the device eaddress if Bus is is selected or device tags if Bus Out is selected.
The associated positions are labeled on the CE panel.
Display the Channel Bus and Tags
A. Select ALU1 with the ALU1/ALU2 switch.
B. Select either Bus In. Bus Out or the

Low ROS, Channel B, with the Display Select switest Tags (Hi ROS, Channel A Indicators 0 through 7 display the bus, and indicators 8 through 11 display the tags. The associated positions are labeled on the CE pane
Tape unit address 0 must be used for this procedure.
To execute a DSE command from the CE panel:
A. Set commands as follows:

$$
\begin{aligned}
& \text { Cmnd } 1=17 \text { (Erase Gap) } \\
& \text { CTnd } 2=97 \text { (DSE) } \\
& \text { Cmnd } 3=04 \text { Sense) } \\
& \text { Cmnd } 4=04 \text { (Sense) }
\end{aligned}
$$

B. Set Mple/Single switch to Mple.
C. Set Cmpr Reg to ${ }^{\prime 2} 123^{\prime}$.

1. Set the Display Select and the Data Entry Select switches to Cmpr Reg 2. Set the Data Entry switches to ' 12
2. Press the Set CE/Cmpr swith.
D. Set the ALU1/ALU2 switch to ALU1
E. Set the ROS Mode switch to Stop
E. Set the RUS Mode switch to Stop.
F. Set the Display Select switch to IC
G. Press the Command Control Start switch once. Note: If IC $={ }^{\prime} 122$ ', press Start or Step switch once.
H. Set ROS Mode switch to Step.
J.
Press Start or Step switch once. IC should display ' 124

Press Reset switch once.
Set Cmpr Reg to ' 125 '.
Set the Display Select and the Data Entry switches to Cmpr Res

1. Ser the Data Entry switches to
2. Press the Set $\mathrm{C} / \mathrm{Cmpr}$ swith
Set
M. Set Display Select switch to IC. IC
N. Set ROS Mode switch to Set IC. IC should equal ' 125 '
O. Set ROS Mode switch to Stop. Note: If normal DSE is desired, set ROS Mod switch to Norm and press Start or Step switch once. If statically analyzing
Control Status Reject. proceed to next step. Control Status Reject, proceed to next step
P. Set ALU1/ALU2 switch
Q. Set Cmpr Reg to 168^{\prime}.
3. Set the Display Select and the Data Entry switches to Cmpr Re
4. Set the Data Entry switithes to ' 1688^{\prime}.
5. Press the CE/Cry swith
R. 3. Press the CE/Cmpr switch.
S. Press Start or Step switch once

Tape unit should start DSE. Reset the tape unit to statically analyze.
Go to $16-210$ for Control Status Reject analysis.

Display Local Storage Register (LSR) Contents

Each Microprocessor contains 32 LSRs. (This Chart indicates the LSR for each address step.) The contents of the LSRs are displayed only in indicators 0-7 on the CE Panel (ignore the P -bit).			
MP1	Address Displayed	LSR	MP2
Current Command	502	0	Work 1
CTI Image	503	1	Work 2
XOUTA	504	2	Work 3
Current Address	505	3	Work 4
Scratch Reg	506	4	Stat Image
Pending Status	507	5	Flags
Pending Address	508	6	Sense 1
Sense Byte 0	509	7	Sense 2
Stat Reg Image	50A	8	Tracer (Read or Write Op)
Flags	50B	9	FRU Identifier
Flags 1 and REOTAGS	50 C	10	DTachk2
Flags 2	50D	11	TU Address
Set DIAG 1	50E	12	DTachk1
Set DIAG2	50 F	13	XOUTA Image
Set CT1 DMR	510	14	LODEPA
Set CT2 DMR	511	15	LODEPB
	512		Xfer-Set High LSRs
	513		BU 502 (recycle)
Link 1	502	16	Work 1 (high)
Link 2	503	17	Work 2 (high)
Link 3	504	18	Work 3 (high)
Link 4	505	19	Work 4 (high)
XоUTB Image	506	20	Stat Image (high)
ALU1 Error	507	21	Work 5
ALU2 Error	508	22	Sense 1 (high)
Work 2	509	23	Sense 2 (high)
Link 5	50A	24	MPGMERR
Link 6	50B	25	Link 2
7-Trk Mode Reg A Intf	50 C	26	Link 3
7-Trk Mode Reg B Intf	50D	27	TU Address
Work 4 (7-Trk)	50E	28	Link 1
FRU Reg	50 E	29	Equipment Check
FRUSAV	510	30	LODEPA (high)
Format	511	31	LODEPB (high)

$\begin{aligned} & \hline \text { XEO40 } \\ & \hline \end{aligned}$	2735855	See EC History	$\begin{aligned} & 845958 \\ & \hline 1 \text { Sep } 79 \end{aligned}$					

From Start 1: Diagnosing CE Panel Failures		
Use the best guess to determine the most logical FRUS, or use the index to locate the timing chart and second level diagram section applicable to the failing function. For description of each switch see 75-001.		
Most Probable Cause: A. A1S2, A1T2 B. A1U2 C. B2G2, A2J2 D. -4 V (See decal on back of TCU)		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise. Remember to END all problems or maintenance calls by going to MAP 00-030.		
Soq	Condition/Instruction	Action
1	Is this a Data Entry Select switch problem?	Change: 1. A1S2 2. A1T2 3. A1U2
2	Is this a Display Select switch problem?	
	A. If CE Reg or Cmpr Reg fails:	Change: 1. A1S2 3. A1U2
	B. If Bus In or Bus Out or Hi ROS or Low ROS fails:	Change: 1. A1T2 2. ALU1, B2G2 ALU2, A2J2 3. A1U2
3	Is this a ROS Mode switch problem and Stop On Control Check or Stop On Data Flow Check problem?	Change: 1. A1T2 2. A1U2
4	Is this a Command Execution problem?	Go to 13-050.
5	Is +CE Mode (A1T2B12) plus?	Go to Seq 7.
6	Go to ALD PK011 and resolve problem.	
7	Determine the section of the CE panel that is not working. Use the second level index on this page to locate the proper second level to isolate the problem.	

SECOND Level index	
Title	Page
1. Set and Display CE Registers A. Display Bits 0-11 B. 4 Bit Bus 0, 4 or 8 4 Bit Bus 1, 5 or 9 4 Bit Bus 2, 6 or 10 4 Bit Bus 3, 7, or 11	12-02
2. Set and Display Compare Register A. Display Bits 0-11 B. Compare Bits 0-11	12-02
3. Display Select Switch and Compare A. CE Select Reg Indicators 0-11 B. Bits 0-11 are Equal	12-02
4. ROS Mode Switch and Gates A. CE Mode B. Panel Enable C. Set IC D. CE ROS Stop Mode E. Single Step or Start ALU F. ROS Step Mode G. ROS Cycle Mode H. Stop on Hdw Err (to ALU) J. Stop on Hdw Err K. Compare Stop or Step ALU1 L. Compare Stop or Step ALU2 N. Cmpr Equal Indicator	12-02
5. Command Select Sequencer and Decoder A. Set Compare Register B. Address Cmnd 1 C. Address Cmnd 2 D. Address Cmnd 3 E. Address Cmnd 4 F. Address Byte Count G. Address WR Data or Go Down	12-02
6. CE Entry A. CE Entry Bits 0-7 B. CE Entry Bit P	12-02
7. Byte Count or Go Down A. Counter Compare Equal	12-02

XEO500 Seq 1 of 2	2735856	See EC History History	$\begin{aligned} & 845958 \end{aligned}$	$\begin{gathered} 847298 \\ \hline 15 \text { Aug } 83 \end{gathered}$			

Important: Verify that the TCU dc voltages are
within tolerance. (See decal on back of TCU.)

Note:
During -Step 3, Bits 2,3 and Xlate Bits 0 and 1 are gated
During Not Step 3, Bits 4.7 are gated.

Timing Chart

I/O Pins
A. Bits 0.11

NAME	PIN
-Data Entry Bit 0	A1s2B02
-Data Entry Bit 1	A152D02
-Data Entry Bit 2	A152803
-Data Entry Bit 3	Als2do3
-Data Entry Bit 4	A152B04
-Data Entry Bit 5	A152D04
-Data Entry Bit 6	A152805
-Data Entry Bit 7	A152D05
-Data Entry Bit 8	A152206
-Data Entry Bit 9	A152807
-Data Entry Bit 10	A152007
-Data Entry Bit 11	A152B09
B. 3 Bit Code	
NAmE	PIN
-Data Entry Select	Bit 1 A 1 S2D09
-Data Entry Select	Bit 2 AlS2B10
-Data Entry Select	Bit 4 AlS2D10

c. LS or DE 0,1,8-11 or 2.7

NAME PIN
-LS or DE 0 or 2 A1T2MO2
$\begin{array}{ll}\text {-LS or DE } 1 \text { or } 3 & \text { A1T2PO2 } \\ \text {-LS or DE } 4 \text { or } 8 & \text { A1T2M03 }\end{array}$
$\begin{array}{ll}\text {-LS or DE } 4 \text { or } 8 & \text { A1T2MO3 } \\ \text {-LS or DE } 5 \text { or } 9 & \text { A1T2POO }\end{array}$ LS or DE 6 or 10 A1TTMMO4
-LS or DE 7 or 11 A1T2PO4

D. 4 Bit Bus

NAME PIN
-4 Bit Bus 0,4 ,or 8 A1 U2PO2 $\begin{array}{lll}-4 & \text { Bit Bus } 1,5 . \text { or } 9 & \text { A1U2MO2 } \\ -4 \text { Bit Bus } 2,6, \text { or } & 10 \text { A1 } & \text { U2P03 }\end{array}$ -4 Bit Bus 2,6, or 10 A1U2PO
-4 Bit Bus 3,7, or 11 AlU2G13

Note: Verify that TCU dc voltages are within
the tolerance. (See the decal on back of the TCU.)

3803-2/3420

XE0600 Seq 1 of 2	2735857 Part Number	See EC History	845958 1 Sep 79				

\square

3803-2/3420

 COMMAND SELECT SEQUENCER AND DECODER

Timing Chart

3803-2/3420
\square

Timing Chart

Timing Chart

From: Start 1, 00-010, 13-050, 13-070, 13-080		
Follow this procedure if the subsystem is having ALU hardware errors, tape "runaway", ALU "hangs" or "loops", channel busy, or "timeout" indications.		
1. For intermittent clock stopping, the basic cause is electrostatic discharge (ESD) problems. If clock stop problems persist, run an ESD test on the subsystem. 2. If you have a recorded ALU "loop" or "hang" address from an online failure, retain this information for later use. Try using the offline procedure in this MAP first (Return cards to original position.) 3. One service technique is to interchange cards between ALU1 and ALU2 (see list on 16-001). If the symptoms change after an interchange, the failing FRU has been identified. An interchange of these cards should be tried before leaving this procedure. See 16-000 for additional information.z		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	The dc voltages are extremely critical check/adjust the dc gate voltages to the tolerances specified on the decal. Do any voltages fail to meet specs?	Go to 11-000.
2	Enable the CE panel. Set Compare register to 'FFF'. A. Set the Display Select and Data Entry Select switches to Cmpr Reg. B. Set the Data Entry switches 'FFF C. Press the Set CE/Cmpr switch. Turn ROS Mode switch to Stop. Raise Set ROS Mode switch momentarily. Turn Control Check switch On. Do you have Control Check error lights from running in Stop Mode, or Sense Byte 4, bit 0 from LOGREC?	ALU hardware error See Note 3, go to Seq 31
3	Is ALU1 hung at address '301'? Note: Address may appear as '303' due to IC lookahead. Go to Step mode and verify that IC is at ' 301 '	See Note 3, go to 13-240.
4	Is ALU1 hung at address ' 302 '?	See Note 3, go to 13-220.
5	If ALU1 or ALU2 is hung at a single address: A. Turn the ROS Mode switch to Norm. B. Raise the Set ROS Mode switch. C. Operate Start or Step switch. Scope ALU2 -0 ns tap (A2K2G12) and ALU1 -0 ns tap (B2F2G12) to verify that the clocks are stopped (see Notes 1 and 3).	

Seq	Condition/Instruction	Action
6	Prepare to duplicate the failure offline using a 6250 bpi tape unit first, if possible. A. Enable the CE panel: Turn the Panel Enable switch On. Turn the ROS Mode switch to Norm Raise the Set ROS Mode switch. B. Turn the Meter switch to Disabled then wait for the Intf's Disabled lamp C. Turn both the Control Check and Data Flow Check Stop On switches On. D. Set the Display Select switch to IC E. Set the ALU1/ALU2 switch to ALU1. F. Turn the ROS Mode to Stop G. Raise the Set ROS Mode switch	
7	A. Select the ALU1 lamp display with the ALU1/ALU2 switch. B. Reset the tape control with the Reset/Start or Step switch. C. Alternately select the lamp display for ALU1, then ALU2 with the ALU1/ALU2 switch. Repeat these three steps several times, recording any error lights and IC addresses for both ALUs.	
8	A. Select the ALU2 lamp display before resetting the tape control. B. Reset the tape control and display ALU1 and ALU2 as before Repeat this sequence several times, noting any change in the address.	
9	Were there any control check red lights?	See Note 3, go to Seq 31.
10	Did both ALU1 and ALU2 idle at '7FF' without error?	Go to Seq 17.
11	Note: If ALU1 and ALU2 do not equal 7FF', but all offline functions work normally, change A-B2G2. Were the indicated IC addresses the same each time sequence 7 failed? If failures are intermittent, does each failure stop at the same address?!	See Note 3, go to Seq 13.
12	Were the indicated IC addresses different?	See Note 3, go to 13-090.
13	Did ALU1 IC address $={ }^{\prime} 000$?	Go to 13-010.
14	To reach this Seq, you have an ALU loop or "hang" A. Turn the ROS Mode switch to Step and raise the Set ROS Mode switch B. Display ALU1 IC address C. Using ALU1 microprogram listing, look up the hex address under the column labeled "LOC' D. Under the "SOURCE STATEMENT" column, on the line immediately above the failing address, you should find a statement "* Go to MAP $13-x \times x$ " $13-x x x$ is the number of the MAP addressing your particular loop. *Did you find a "Go to MAP 13-xxx" statement?	Go to the MAP specified.

Seq	Condition/Instruction	Action
15	Press the Start or Step switch and check a few more addresses. Did You find a a 'Go to MAP 13 -xxx"	Go to the MAP specified.
statement?		

Seq	Condition/Instruction	Action
25	Address '301' indicates a Unit Check A. Set Mple/Single switch to Single; Reset; then press Start repetively untilyou determine the failing command. B. Using the procedure "Obtain Sense Data," set Compare register to 20A, turn Control Check Stop switch Off, and try to obtain offline sense information. Is offline sense information available? See Note 3, go to 14-000 and perform the manual sense analysis. Obtain Sense Data ALU1 should be stopped at address ' 301 ' with a Data Flow Check Indicator On; however, the ' 301 ' failure may not light an indicator. 1. Do not reset the tape control or the sense data will be lost. 2. Set the Display Select swith to Cmpr REG and verify that the Compare Register is still set to ' $20 A^{\prime}$. 3. Enter a Sense command into all four Command Registers. Set the Data Entry rotary switches to '04X'. Set the Display Select switch to CE Reg. Set the Data Entry Select switch to Cmnd 1, Cmnd 2, Cmnd 3, Cmnd 4, and operate the SET CE/Cmpr switch for each position. 4.Set the CE Panel switches: ALU1/ALU2 switch to ALU1. Display Select switch to IC. Stop On Control Check switch Off Stop On Data Flow Check switch Off. Mple/Single switch to Single. 5.Operate the Command Control Start switch. 6. The indicators should be displaying an IC address of '20A'. Move the Display Select switch to Bus In. The indicators will now display Sense Byte 0 . 7. Move the Display Select switch back to IC and operate the Start or Step switch one time. Sense Byte 1 can now be displayed by setting the Display Select switch to Bus In. 8. Obtain all 24 bytes of sense data by selecting IC, operating Start or Step once, then displaying Bus In. Do not operate Start or Step unless IC is selected. 9. With the Mple/Single switch on Mple, ALU1 will go back to idlescans ('7FF') after the 24th sense byte is obtained. To repeat the sense routine, operate the Command Control Start switch again. 10. Contact bounce in the Start or Step switch may cause this routine to skip over several sense bytes. If this occurs, complete the routine to obtain remaining sense bytes, then go back to Seq 5 to get the sense bytes skipped.	
26	Does ALU1 hang at IC '301' without executing Sense?	See Note 3 on 13-000; Go to $13-240$.
27	Initial setup did not fail. Try varying the command chain: Command 1 - '07x' Command 2 - 'C3x' Command 3 - '01x' Command 4 - ' 0 Cx' Then try using a 'CB' Mode Set for Command 2, or use the failing command from original failure, if known. Does failure occur now?	Go to Seq 18.
28	Failure is either intermittent or cannot be duplicated offline. Is a set of loop addresses available from the original online failure, or can you recreate the loop or hangs with OLTs?	Go to Seq 13.

Seq	Condition/Instruction	Action
29	Is the failure from only one side of the two-channel switch in the channel interface, or a single-channel interface problem?	Channel failure. See Note 3 on 13-000 Go to 18-040.
30	Try running the failing job online with Stop On Control Check On and ROS Mode set to Stop. Try to get at least one failure with the ALU1/ALU2 switch in each position. If failure cannot be re-created, and you have insufficient information to proceed, go to 00-010, Seq 15.	
31	ALU Hardware Error it is imperative to know the status of both ALU1 and ALU2 when the failure occurs. Is there any sense information? Note: If tape control power is turned on while the CE panel is enabled and Stop get normal control check errors.	Go to Seq 34.
32	Is there error information recorded for ALU1 and/or ALU2 while running in Check Stop mode?	Go to Seq 34.
33	If not:	Go to Seq 6.
34	Refer to ALU listing. Does the Error Stop occur at an invalid address? See Note 3 on 13-000.	Go to 13-090 if problem is in ALU1 Go to 13 -191, Seq 59 , if problem is in ALU2.
35	Is Sense Byte 11, Bit 2 on or is Lo IC/Lo ROS parity indicator on for ALU1	See Note 3 on 13-000. Go to 16-010.
36	Is Sense Byte 11, Bit 3 on or is $\mathrm{Hi} \mathrm{IC} / \mathrm{Hi}$ ROS parity indicator on for ALU1	See Note 3 on 13-000. Go to 16-020.
37	Is Sense Byte 12, Bit 2 on or is Lo IC/Lo ROS parity indicator on for ALU2	See Note 3 on 13-000 Go to 16-080.
38	Is Sense Byte 12, Bit 3 on or is $\mathrm{Hi} \mathrm{IC} / \mathrm{Hi}$ ROS parity indicator on for ALU2	See Note 3 on 13-000 Go to 16-090
39	Is Sense Byte 11 , Bit 0 on or is B-Bus parity indicator on for ALU1	See Note 3 on 13-000 Go to 16-030.
40	Is Sense Byte 12, Bit 0 on or is B-Bus parity indicator on for ALU2	See Note 3 on 13-000 Go to 16-100
41	Is Sense Byte 11, Bit 5 on or is D-Bus parity indicator for ALU1	See Note 3 on 13-000 Go to 16-040

Seq	Condition/Instruction	Action
42	Is Sense Byte 12, Bit 5 on or is D-Bus parity indicator on for ALU2	See Note 3 on 13-000. Go to 16-110.
43	Is Sense Byte 11, Bit 7 on or is BOC parity indicator on for ALU1	See Note 3 on 13-000 Go to 16-050.
44	Is Sense Byte 12, Bit 7 on or is BOC parity indicator on for ALU2	See Note 3 on 13-000. Go to 16-120.
45	Is Sense Byte 12, Bit 4 on or is Microprogram Detected error indicator on for ALU2?	See Note 3 on 13-000 Go to 16-130.
46	Is Sense Byte 11, Bit 4 on or is Microprogram Detected error indicator on for ALU1?	See Note 3 on 13-000 Go to $16-060$.
47	Consult the microcode listing and use the comments to identify the failure mode of the loop. See Chart 1 to find the MAP to fix the failure. Is a MAP available?	Go to MAP for the failure. (If the MAP does not fix the failure, return to Seq 48 on this MAP.)
48	Is this a channel interface problem?	Go to 18-040.
49	Is this a device interface problem?	Go to $18-000$ without the device switch or to $18-010$ with the device switch.
50	If not:	Go to 00-030.

© Copyright International Business Machines Corporation 1976, 19

Chart 1

Condition/Instruction	MAP Page
ADDRESS OUT Inactive	13-360
ALU Hung in "ADD" Loop	13-370
ALU1 Cannot Reset CUE Latch on Interface A	13-200
ALU1 Cannot Reset CUE Latch on Interface B	13-500
ALU1 Cannot Xfr LINK1 to IC	13-130
ALU1 Found "Hot" COMMAND OUT During Power On Reset	13-290
ALU1 Found "Hot" SERVICE OUT During Power On Reset	13-280
ALU1 Hardware Error Trap Failure	13-400
ALU1 Hung During Channel Bus Check in Power On Reset	13-380
ALU1 or ALU2 Hangs	13-000
ALU1 steps improperly through Power On Reset	13-090
ALU2 steps improperly through Power On Reset	13-190
ALU1 Trapped at Address 000	13-010
ALU1 Trapped at Address 301	13-240
ALU1 Trapped at Address 302	13-220
ALU1 Waiting for ADDRESS OUT to Fall	13-300
ALU1 Waiting for ALU2, Caused by Tach Failure	13-510
ALU1 Waiting for ALU2, Stat B to Fall	3-460
ALU1 Waiting for ALU2, Stat B to Fall After a Write	13-470
ALU1 Waiting for ALU2, Stat B to Rise	13-450
ALU1 Waiting for ALU2, Stat D	$13-440$
ALU1 Waiting for ALU2, to Complete a Read or Readback Check	13-410
ALU1 Waiting for ALU2, to Complete a Sequence	13-420
ALU1 Waiting for ALU2, to Complete a 6250 Write	13-480
ALU1 Waiting for COMMAND OUT	13-140
ALU1 Waiting for COMMAND OUT, SERVICE IN/OUT or DATA IN/OUT to Fall	13-100
ALU1 Waiting for EOD on 7- or 9-Track NRZI Write	13-520
ALU1 Waiting for OP IN to Fall	13-250
ALU1 Waiting for OP IN to Fall After CTI Reset	13-210
ALU1 Waiting for Response to STATUS IN	13-110
ALU1 Waiting for SERVICE OUT to Fall	13-170
ALU1 Waiting for SUPPRESS OUT to Fall	13-310

Condition/Instruction	MAP Page
COMMAND OUT Inactive Reset or Power On Reset	$13-330$
SERVICE OUT Inactive During Reset or Power On Reset	$13-350$
SIO Trap Failure	$13-320$
SUPPRESS OUT Inactive During Reset or Power On Reset	$13-340$
Unable to Perform Commands from the CE Panel	$13-050$
Wrong Interface Responding	$13-080$
XOUTA Register Problems	$13-430$

203.2/3420

$\begin{aligned} & \text { XE1050 } \\ & \text { Seq } 1 \text { of } \end{aligned}$	8492591	See EC History	845958

© Copyright International Business Machines Corporation 1976, 1979

C C

ALU1 HANGS AT 000

From:t 13-000		
ALU1 is either being held to address 000 with a solid reset, or after being trapped to 000, was not allowed to restart.		
$\begin{array}{\|l\|} \hline \text { Mos } \\ \text { A. } \\ \text { B. } \\ \text { C. } \\ \text { D. } \\ \text { Add } \\ \text { A. } \\ \hline \end{array}$	Probable Cause: A1C2 B2M2—without EC733814 B2L2-with EC733814 A2P4 A2P3 and A2D2 (both) ional cards referenced: B2F2	
Aliways start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Have cards been interchanged between ALU1 and ALU2 (see chart on 16-001)?	Go to Seq 3.
2	Interchange the cards between ALU1 and ALU2 (see chart on 16-001). If the symptoms change, the failing FRU has been identified. Did the symptoms change?	Change bad card and go to 00-030.
3	Is -System Reset (B2F2D10) minus?	Go to Seq 10.
4	Is -20.48 MHz OSC TP (A1C2U04) pulsing?	Go to Seq 6.
5	If not:	Change A1C2.
6	Is -20.48 MHz (A1C2J06) pulsing?	Go to Seq 8 .
7	If not:	Change A1C2.
8	Is -20.48 MHz (B2F2809) pulsing?	Recheck the symptoms.
9	Check for broken land in net BS011GL6.	
10	Is + Reset ALU1 IC plus? With EC733814-B2L2P12 Without EC733814-B2M2P12	Go to Seq 18.
11	Is + Mach Reset plus? With EC733814-B2L2B07 Without EC733814-B2M2B07	Go to Seq 13.
12	If not:	Change B2F2.
13	Is +CE Reset Switch (A1T2M08) plus?	This is the failing line. Go to ALD, PS011, and follow line back to the failing point.
14	Is + Power On Reset plus? With EC733814-B2L2G05 Without EC733814—B2M2G05	Go to Seq 16.
15	If not:	With EC733814, change B2L2. Without EC733814, change B2M2
16	Is -Power Reset minus? With EC733814-B2L2J03 Without EC733814-B2M2J03	This is the failing line. Go to ALD FC141, and follow line back to failing point.

Seq	Condition/Instruction	Action
17	If not:	With EC733814, change B2L2 Without EC733814, change B2M2
18	Is -Gate Trap Pulse pulsing? With EC733814-B2L2G11 Without EC733814-B2M2G11	Go to Seq 20.
19	Is -Gate Trap Pulse (B2F2G07) pulsing?	Check this net for open lands (ALD, AB031.)
20	Is +5.12 MHz (B2F2J10) pulsing?	Change B2F2.
21	is +5.12 MHz (A1C2B03) pulsing?	Check this net for open lands.
22	If not:	Change A1C2.
23	Is -Hardware Error ALU1 minus? With EC733814-B2L2M08 Without EC733814—B2M2M08	Go to Seq 25.
24	If not:	With EC733814, change B2L2. Without EC733814, change B2M2
25	Is -Hardware Error ALU1 (A2P4J03) minus?	Go to Seq 27.
26	Check net AA451GA6 for open lands and cable.	
27	Is +System Reset (A2P4G02) plus?	Change A2P4.
28	Is +System Reset (B2F2D12) plus?	Check this net for open lands or cables
29	If not:	Change B2F2.

Seq	Condition/Instruction	Action
9	Set Display Select switch to IC. Select ALU1. Does ALU1 hang or loop at any address other than '7FF'?	Go to 13-000.
10	Change CE panel setup: A. Turn ROS MODE to Norm B. Raise Set ROS Mode switch C. Turn both Stop On switches Off D. Raise Reset momentarily. Operate Start momentarily to start the command sequence.	
11	Is +CE Command Out (A1R2G13) pulsing continuously (500 ns pulses)?	Go to Seq 49
12	Raise Reset momentarily. Is +General Reset Chan A-B (B2O2S10) plus?	Go to Seq 24.
13	Is -25 NS Tap ALU1 (B2F2S10) failing to pulse?	Change B2F2.
14	Is + Block ALU1 IC (A2P4G03) plus?	Change A2P4.
15	Is +CE Address Out (A1R2P02) a solid plus?	Go to Seq 22.
16	Operate Start momentarily. Does +CE Address Out (A1R2P02) pulse or go plus?	Go to Seq 32.
17	Does -Any Command Test Brk (A1R2D05) go minus when Start is operated momentarily?	Go to Seq 27.
18	Is -Not Run Clock (A1S2J13) always plus?	Go to Seq 56.
19	Does +Start NB Latch (A1T2G05) go plus when Start is operated momentarily?	Change A1R2.
20	Go to Action column.	Change A1T2 and go to Seq 21.
21	If problem is fixed, go to $00-030$; otherwise, go to Action column.	Go to ALD PK035DN2 to resolve.
22	Raise and hold Reset. Is -Any Command Test Brk (A1R2D05) plus?	Change A1R2.
23	If not:	Change A1R2.
24	Is +General Reset Chan B (B2P2S10) plus?	With EC733814, change B2L2. Without EC733814, change B2M2
25	Does + Reset CUE Chan A (B2E2G07) pulse (50 ns) when Reset is raised momentarily?	See Caution, then change B202.
26	If not:	Change B2E2.
27	Is -CE Op in (A1R2D12) minus?	Go to Seq 30 .
28	Is +CE Mode (A1R2M12) plus?	Change A1R2.
29	Go to Action column	Go to ALD PK011FH2 to resolve.
30	Is -Operational In (A1R2J03) minus?	Change B2L2.
31	If not:	Change A1R2.

Seq	Condition/Instruction	Action
32	Set scope time base to $5 \mathrm{~ms} / \mathrm{cm}$. Does +CE Strobe Test Brk (A1R2D06) pulse?	Go to Seq 34.
33	If not:	Change A1R2.
34	Does -Counter Compare EO Test Brk (A1R2G12) pulse minus?	Go to Seq 36.
35	If not:	Go to Seq 54.
36	Raise Reset momentarily. Operate Start momentarily. Does -Gate Tags (A1S2J06) pulse minus?	Go to Seq 40.
37	Raise Reset momentarily Does +1.25 MHz (A1S2M07) pulse?	Change A1S2.
38	Is +Any CE Out Tag (A1R2M03) plus?	Change A1R2.
39	If not:	Change A1S2.
40	Does -Operational In (A1R2JO3) go minus when Start is operated momentarily?	Go to Seq 42.
41	If not:	Change B2L2.
42	Raise Reset momentarily. Operate Start momentarily Does +CTI Bit 6 To CE (A1R2M02) pulse plus?	Go to Seq 44.
43	If not:	Change A2R2.
44	Raise Reset momentarily. Operate Start momentarily Does + CE Command Out (A1R2G13) pulse plus?	Go to Seq 46.
45	If not:	Change A1R2.
46	Raise Reset momentarily. Operate Start momentarily Does - CE Status In (A1R2D13) pulse minus?	Go to Seq 49.
47	Raise Reset momentarily. Operate Start momentarily Does + CTI Bit 5 To CE (A1R2M13) pulse plus?	Change A1R2.
48	If not:	Change A2R2.
49	Raise Reset momentarily. Operate Start momentarily. Does -CE Status Advance Cmnd (A1T2S09) pulse minus for 10-12 usec?	Change A1S2.
50	Raise Reset momentarily. Is -Interrupt (A2D2G12) minus?	Change A2D2.
51	Is -50 NS Tap Powered (B2F2B02) a solid leve!?	Change B2F2.

$\overline{X E 1100}$ $\text { Seq } 2 \text { of } 2$	2735862 Part Number	See EC History	$\begin{aligned} & 845958 \\ & 1 \text { Sed } 79 \end{aligned}$					

Seq	Condition/Instruction	Action
52	Raise Reset momentarily. Operate Start momentarily several times. Does - TUTAG Bit 7 Move (A2R2D03) pulse minus?	Go to 18-010 and determine why MOVE tag is not reaching the tape unit.
53	If not:	Change in order: 1. A2R2 2. A2E2
54	Raise Reset momentarily. Is +Write Cmnd (A1S2G08) plus?	Change A1R2.
55	If not	Change A1S2.
56	Raise Reset momentarily. Is +CE Master Reset (A1R2J04) plus?	Change A1R2.
57	Is -Panel Enable Sw (A1T2D03) plus?	Go to ALD PS041AA4 and resolve.
58	Is +CE Mode (A1R2M12) minus?	Change A1T2.
59	Raise Reset momentarily. Operate Start momentarily. Does +Start Or Status In (A1R2J06) pulse or go plus?	Change A1S2.
60	Raise Reset momentarily. Does +1.25 MHz (A1S2M07) pulse?	Change A1R2.
61	If not:	Change A1S2.

CAUTION: Removing this card may cause channel errors even with power off. Put CPU in the Single Cycle mode before removing card.

XE1150	2735741 Seq 1 of 2	See EC Part Number	845958 History					

3803-2/3420

 TCS: ALU1 LOOP

From: 13-000		
This failure occurs only on two channel switch (TCS) machines as a result of the wrong interface responding on a polled interrupt or ALU1 branching incorrectly. It may also occur as a result of electrostatic discharge (ESD) problems		
Most Probable Cause: A. B2L2 with EC733814 B2M2 without EC733814 B. B2N2 Additional Cards Referenced: A. B2P2		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise. Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Does ALU1 loop at label WRONGCHN? (See ALU1 microcode cross-reference listing.)	Change in order: 1. B2L2 with EC733814 B2M2 without EC733814 2. B2N2 3. B2P2 Go to 00-030.
2	If not:	Go to 13-000.

From 13-000, 13-190, 13-400		
ERROR DESCRIPTION: You have reached this page because ALU1 is stepping improperly through the Power-on Reset routine, ALU is looping in a routine that is not defined by an EQUATE statement, or the hang address is not constant.		
Most Probable Cause: A. B 2 H 2 B. B2L2-with EC733814 B2M2-without EC733814 C. $\quad \mathrm{A} 2 \mathrm{Q} 2$ D. A1T2 F. A1U2 G. SMS card, location J1 in 6 V power supply Additional Cards Referenced: A. B2F2 B. B2E2		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Have the cards been interchanged between ALU1 and ALU2 (see chart on 16-001)?	Go to Seq 3.
2	Interchange the cards between ALU1 and ALU2 see chart on 16-001). If the symptoms change after an interchange, you have identified the bad FRU. Did the symptoms change? Return the cards to the original position.	Change defective card and go to 00-030.
3	Go to the microcode listing cross-reference section located behind the ALU1 and ALU2 sections. Look up "Step" under the "Symbol' column. STEP0001 through STEPOOXX determine the proper path through the Power-On Reset routine. Single-step the machine and compare the hex addresses listed under the "Value" column against the IC address displayed on the CE panel.	
4	CE PANEL SETUP: A. Turn the ROS Mode switch to Step; raise Set ROS Mode B. Set Compare Register to ' 000 ' C. Turn the Stop On Control Check and Stop On Data Flow Check switches Off. D. Set the Display Select switch to IC E. Select ALU1. F. Operate the Reset switch momentarily. G. Step through the ALU1 POR routine.	
5	Does ALU1 IC reset to '000', then step to STEPOOO2 when the Reset switch is released? See ALU1 microprogram cross-reference listing for the address of STEPOOO2	Go to Seq 11.

Seq	Condition/Instruction	Action
6	Turn ROS Mode switch to Norm. Raise Set ROS Mode switch. Operate Reset momentarily. Is +Clk1 L3 ALU1 (B2F2G05) at a solid level?	Change B2F2.
7	Does -BOC Oper ALU1 (B2D2M09) remain plus when the Reset switch is operated?	Change B2D2. If still failing, go to Seq 9.
8	Scope + BOC Met (B2L2M11) with EC733814. Scope +BOC Met (B2M2M11) without EC733814. Does line remain minus when the Reset switch is operated?	With EC733814, change B2L2. Without EC733814, change B2M2 Then change B2D2. If still failing, go to Seq 9
9	While holding the Reset switch up, operate the Display Select switch to display Hi and Lo ROS Does ROS instruction readout agree with the microcode listing for address '000'? Each half of	Change B2E2.
10	If not:	Change B2H2.
11	Turn the ROS Mode switch to Norm and operate the Set ROS Mode switch. Operate Start or Step. Is -Compare Stop Or Step ALU1 (A1U2U10) always minus?	Change in order 1. A1U2 2. A1T2
12	At this point, ALU1 should be capable of cycling. The following CE panel operation allows ALU1 to ripple addresses sequentially in Page 0 , without executing commands. A. Turn the Stop On Control Check switch Off. B. Select ALU1. C. Operate the Reset switch. D. Turn the ROS Mode switch to Set IC. E. Operate the Set ROS Mode switch. F. Turn the Stop On Control Check switch On and operate Set ROS Mode again. G. Set the Display Select switch to IC IC should display hex 'OFF' as the addresses are being cycled. Does the ALU fail to cycle?	Change in order: 1. B2F2 2. B2E2
13		Change B2F2. If line still fails, go to ALD AB021 through AB041 and follow line back to failing point
14	Scope the IC triggers, ROS Data Bits, and ROS Register Positions 8-15 (Charts 1, 2, and 4). Does any line fail to switch or have incorrect levels or bad rise or fall times?	Change the associated card.
15	Does ALU1 step properly to STEP0085 of the POR routine when in Step mode? See ALU1 microprogram cross-reference listing Note: STEPOO75 is bypassed in Step mode.	Problem may be slow bits from the MAL. Change B2H2. If still failing, go to Seq 17.

Seq	Condition/Instruction Action	
16	Set the Compare Register to the address of the first bad branch in the Power-On Reset routine. Change the CE panel setup: A. Turn the Stop On Control Check switch Off. B. Select ALU1 and display IC 3. Turn the ROS Mode switch to Rst/Cmpr 4. Reset the tape control and let ALU1 cycle between address ' 000 ' and the "compare" address. The last instruction executed is probably causing the failure. Refer to the charts and compare the ROS Register, LSR Decode, Command, and Branch conditions with respect to the instruction listed in the microcode. Does any condition fail to match the instruction being performed?	Change the associated card.
17	If not, you must determine the reason for the bad branch, using the microcode listing. Display the failing sequence of instructions on the scope. The charts on 13-091 should provide	Refer to the interchangeable card listing for ALU1 and ALU2 (see 16-001).

3803-2/3420

C C C C C C 1

ALU1 CHARTS 1 TO 7
Chart 1

ALU1		
ROS ADDRESS LAMP POSITION	IC TRIG POSITION	Test Point B2E2E2 +Active
4	8	P11
5	9	613
6	10	612
7	11	J 13
8	12	M 02
9	13	M 03
10	14	P03
11	15	P02

Chart 3

ALU1	
CLOCK	Test Point B2F2 PIN
75 ns tap	U07
CLK6	M08
CLK8	M13
CLK11	S09
CLK1 L1	J05
CLK2 L2	G03

Alu1				
B2D2 LSR DECODES				
Without EC733838			$\begin{gathered} \text { With } \\ \text { EC733838 } \end{gathered}$	
0	U02	$\cup 07$	8	U02
1	P13	U05	4	P13
2	M13	S05	2	M13
3	U03	S07	1	U03
4	D13	412		
5	B11	S09		
6	B12	U10		
7	G02	U06		
	AB071	AB191		

Chart 7

ALU1	
INSTRUCTION	Test Point B2D2-Active
ADD	J12
STORE	J13
BOC	M09
XFR	G12
BU	G04
BU or BOC	J04
LOGIC OP	P02

Chart 2
ALU1 ROS DATA BIT Test Point B2H2 + Active 0 U13 1 U12 2 U11 3 U10 4 U05 5 $U 04$ 6 U03 7 U02 8 P11 9 P10 10 P09 11 P07 12 P06 13 P05 14 P04 15 M03 P1 M02 P2 P02

Chart 4

ALU1	
ROS REG POSITION	PiN \& ACtive level
0	B2D2B10(-)
0 and 1	B2D2P09 (-)
0 and 2	B2D2P12 (-)
3	B2D2D10 (-)
4	B2D2B13 (-)
5	B2D2D05 (-)
6	B2D2D09 (-)
7	B2D2D07 (-)
8	B2E2M05 (+)
9	B2E2G04 (t)
10	B2E2G03 (t)
11	B2E2J04 (t)
12	B2E2B07 (+)
13	B2E2B10 (+)
14	B2E2802 (+)
15	B2E2B03 (+)

Chart 6

ALU1		
ROS ADDRESS LLMMP POSITION	PAGE BIT	Test Point B2D2 (-Active)
0	4	B 04
1	5	B05
2	6	B02
3	7	P06

3803-2/3420
\square

$\begin{array}{l}\text { XE1 } \\ \text { Seq 1 of 2 } 2\end{array}$	$\begin{array}{l}2735864 \\ \text { Part Number }\end{array}$	$\begin{array}{l}\text { See EC } \\ \text { History }\end{array}$	$\begin{array}{l}845958 \\ 1 \text { Sep 79 }\end{array}$

From: 13-000		
ALU1 is waiting for Command Out and/or Service Out (only on Write Ops), Service In or Service Out (on Read Ops) to fall.		
Most Probable Cause: A. A1C2 B. A2R2 C. With EC733814-B2M2 (see 00-000) D. Without EC733814-B2L2 D. With EC733814-B2L2 E. Without EC733814-B2M2 E. A1R2, A202		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise. Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Turn ROS Mode switch to Norm. Operate Set ROS Mode switch momentarily. Operate Start or Step switch momentarily	
2	Is + Service Out Chan A B CE a solid plus? With EC733814-B2L2G03 Without EC733814-B2M2G03	Go to Seq 24.
3	Is + Data Service Active plus? With EC733814-B2L2D13 Without EC733814-B2M2D13	Go to Seq 14.
4	Is -Command Out A B CE minus? With EC733814-B2L2U02. Without EC733814-B2M2U02	Go to Seq 6.
5	If not:	With EC733814, change B2L2. Without EC733814, change B2M2
6	Is +CE Command Out Tag plus? With EC733814-B2L2D10 Without EC733814-B2M2D10	Go to Seq 10.
7	Is +Command Out Chan A Gated (B2O2D12) plus?	See Caution, then change B202.
8	$\begin{array}{\|l} \text { Is +Command Out Chan B Gated } \\ \text { (B2P2D12) plus? } \\ \hline \end{array}$	See Caution, then change B2P2.
9	If not:	With EC733814, change B2L2. Without EC733814, change B2M2
10	Is +CE Command Out Tag (A1R2S05) plus?	Go to ALD PK081FJ6 and resolve.
11	Is +Command Out Chan A Gated (B2O2D12) plus?	See Caution, then change B202.
12	Is +Command Out Chan B Gated (B2P2D12) plus?	See Caution, then change B2P2.
13	If not:	With EC733814, change B2L2. Without EC733814, change B2M2.

Seq	Condition/Instruction	Action
14	Is -Stat Bit 0 Tape Op To ALU1 minus? With EC733814-B2M2S07 Without EC733814-B2L2S07	Change A2O2 and go to Seq 22.
15	Is +Service In For Data (A1C2P06) plus?	Change A 1 C 2 and go to Seq 20.
16	Is + Data In (A1C2G13) plus?	Change A 1 C 2 and go to Seq 18.
17	If not:	With EC733814, change B2M2. Without EC733814, change B2L2
18	Is problem resolved?	Go to 00-030.
19	If not:	Go to ALD BS041GJ6 and resolve.
20	Is problem resolved?	Go to 00-030.
21	If not:	Go to ALD BS041GG4 and resolve.
22	Is problem resolved?	Go to 00-030.
23	If not:	Go to ALD AA141GD6 and resolve.
24	Is +CE Service Out Tag (A1R2S11) plus?	Change in order 1. $A 1 R 2$ 2. $A 2 R 2$ Go to Seq 28
25	Is +Service Out Chan A Gated (B2O2D11) plus?	See Caution. Change B2O2, and go to Seq 30.
26	Is +Service Out Chan B Gated (B2P2D11) plus?	See Caution. Change B2P2 and go to Seq 32.
27	If not:	With EC733814, change B2L2. Without EC733814, change B2M2
28	Is problem resolved?	Go to 00-030.
29	If not:	Go to ALD PK081FL6 and resolve.
30	Is problem resolved?	Go to 00-030.
31	If not:	Go to ALD FC021GF2 and resolve.
32	Is problem resolved?	Go to 00-030.
33	If not:	Go to ALD XM021GF2 and resolve.

Caution: Removing this card may cause channel errors even with
power off. Put CPU in the Single Cycle mode before removing card.

$\begin{aligned} & \text { XE1300 } \\ & \text { Seq } 2 \text { of } 2 \end{aligned}$	2735864 Part Number	See EC History	845958 1 Sep 79				

 ALU1 WAIting

From: 13-000		
ALU1 is waiting for Service Out or Command Out to become active in response to Status In.		
Most Probable Cause: A. A2R2 B. A1R2 C. With EC733814-B2L2 Without EC733814-B2M2 Additional Cards Referenced: A. B2O2		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise. Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Were you able to get a failure in 13-000?	Go to Seq 6.
2	Does machine have the two-channel switch (TCS) feature?	Go to Seq 4.
3	Go to Action column.	Change in order: 1. B2L2, with EC733814 B2M2, without EC733814 2. See Caution, then change B2O2
${ }^{4}$	Interchange TCS ALU1 and ALU2 cards (see chart on 16-001) (4 cards). If symptoms change, the bad FRU has been identified. Did the symptoms change?	Change defective card and go to 00-030.
5	If not:	With EC733814, change B2L2 Without EC733814, change B2M2 Go to 00-030.
6	ALU1 should be looping at WATESUM (See ALU1 microcode cross-reference listing for address.)	
7	Is +CE Service Out Tag plus? With EC733814-B2L2D09. Without EC733814-B2M2D09	With EC733814, change B2L2 Without EC733814, change B2M2
8	Is -CE Status in (A1R2D13) minus?	Change A1R2.
9	Is +CTI Bit 5 To CE (A1R2M13) plus?	Change A1R2.
10	If not:	Go to ALD FC161GJ2 and follow line to point of failure.

Caution: Removing this card may cause channel errors even with
power off. Put CPU in the Single Cycle mode before removing card

3803-2/3420

XE1400 Seq 1 of 2	27art Pumber	See EC History	845958 1 Sep 79					

 ALU1 WAITING

From: 13-000		
ALU1 is waiting for Command Out to become active.		
$\begin{array}{\|l\|} \hline \text { Mo } \\ \text { A. } \\ \text { B. } \\ \text { C. } \\ \text { Add } \\ \text { A. } \\ \text { B. } \end{array}$	Probable Cause: A2R2 A1R2 With EC733814-B2L2 Without EC733814-B2M2 tional Cards Referenced: B2O2 B2P2	
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise. Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Does failure occur online only?	Go to Seq 14.
2	Turn ROS Mode switch to Norm. Operate Set ROS Mode switch momentarily. Operate Start or Step switch momentarily.	
3	Operate Reset switch momentarily. Does ALU1 IC indicate '7FF'?	Go to Seq 10.
4	Turn ROS Mode switch to Step. Operate Set ROS Mode switch momentarily.	
5	While holding Reset switch in operated position, do ALU1 IC indicators show '080'?	Go to Seq 8.
6	Is + Inst Count 10 ALU1 (B2E2G12) plus? ALD AB195-CH4	Recheck symptoms.
7	If not:	Change B2E2.
8	Is +Inst Count 8 ALU1 (B2E2P11) plus when Reset switch is held in reset position? ALD AB195-CB4	Change B2E2.
9	If not:	Recheck the symptoms.
10	Is +CTI Bit 6 To CE (A2R2D10) plus?	Go to Seq 12.
11	If not:	Change A2R2.
12	Is +CE Command Out (A1R2G13) plus?	With EC733814, change B2L2 Without EC733814, change B2M2
13	If not:	Change A1R2.
14	Does the machine have two channe switch (TCS) feature installed?	Channel A, change B2O2, A2R2 (see Caution). Channel B, change B2P2, A2R2 (see Caution).
15	If not:	Change 8202. (See Caution.)

Caution: Removing this card may cause channel errors even with
power off. Put CPU in the Single Cycle mode before removing card

$\begin{aligned} & \hline \text { XE1500 } \\ & \hline \text { Sep } \end{aligned}$	2735866	See EC History	$\begin{aligned} & 845958 \\ & 1 \text { Sep } 79 \end{aligned}$					

From: 13-000		
ALU1 is waiting for SERVICE OUT to become inactive.		
Mos A. B. D. E.	t Probable Cause: A2R2 A1 R2 With EC733814-B2M2 Without EC733814-B2L2 Channel A-B2O2 (See CAUTION.) Channel B-B2P2 (See CAUTION.) With EC733814-B2L2 Without EC733814-B2M2	
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Does failure occur only online?	Go to Seq 10.
2	Turn ROS Mode switch to Norm. Operate Set ROS Mode switch momentarily. Operate Start or Step switch momentarily.	
3	+CTI Bit 4 Service In (A2R2B11) plus?	Go to Seq 5.
4	If not:	Change A2R2.
5	Is + Service In plus? With EC733814-B2M2U06 Without EC733814-B2L2U06	Go to Seq 7.
6	If not:	With EC733814, change B 2 M 2 . Without EC733814, change B2L2.
7	Is -CE Op In (A1R2D12) minus? ALD PK081.	Go to Seq 9 .
8	If not:	Change A1R2.
9	Is -CE Service In (A1R2J13) minus? ALD PK081.	Recheck the symptoms Change A1R2
10	Does machine have two channel switch (TCS) feature installed?	Go to Seq 12.
11	If not:	Change in order 1. B2O2 (See Caution.) 2. B2L2, with EC733814 B2M2, without EC733814
12	Interchange the TCS card (see chart on 16-001). If symptoms change, the bad FRU has been found Did symptoms change?	Change defective card and go to 00-030.
13	Go to Action column.	Change in order: 1. B2L2, with EC733814 B2M2, without EC733814 2. B2O2, Channel A (see Caution) B2P2, Channel B (see Caution) 3. B 2 M 2 Go to 00-030.

Caution: Removing this card may cause channel errors even with
ower off. Put CPU in the Single Cycle mode before removing card

XE1500 $\text { Seq } 2 \text { of }$	2735866	See EC History	$\begin{aligned} & 845958 \\ & 1 \text { Sen } 79 \end{aligned}$				

C C C

ALU2 POWER-ON RESET

Seq	Condition/Instruction	Action
4	If not:	Go to 13-090.
5	Set ALU1/ALU2 switch to ALU2.	
6	Does ALU2 IC reset to '000' when the Reset switch is held up?	Go to Seq 13.
7	Is + Reset Or Trap ALU2 (A2K2D10) minus when the Reset switch is operated?	Change A2K2.
8	Does IC display 'hot' bits in positions 4 through 7 while the Reset switch is held in the operated position?	Change A2L2 and go to Seq 10.
9	Is +CIk 8 (A2K2M13) solid minus when the Reset switch is held in the Reset position?	Change A2K2 and go to Seq 10.
10	Does IC display 'hot' bits in positions 0 through 3 while the Reset swith is held in the reset position?	Change A2M2 and go to Sea 11.
11	Is the problem fixed?	Go to 00-030.
12	If not:	Go to 13-191, Charts 1 and 4 and follow failing line.
13	Does ALU2 IC remain locked at '000 when the Reset switch is released?	Go to Seq 20.
14	Go to the microcode listing cross-reference section located behind the ALU2 sections. Look up the step under the "Symbol" column. STEPOOO1 throug STEPOOxx determine the proper path through the ALU2 Power-on-Reset routine. Single-step your machine and compare the hex addresses listed under the "Value" column against the IC address displayed on the CE panel. Note: If Step Mode works properly, suspect MAL card at A2H2 of having slow bits.	
15	Does ALU2 step to STEP0063 in the proper sequence? Note: If a loop is encountered, refer to the ALU listing to ensure it an error condition.	Go to Seq 51.
16	Was an error loop encountered in ALU2 during the POR routine?	Go to Seq 18.
17	If not:	Change A202 and go to Seq 35.
18	Is ALU2 looping at label HUP1?	Change A202.
19	If not:	Go to Seq 23.
20	Turn ROS Mode switch to Norm and operate Set ROS Mode. Does - Trap ALU2 (A2P4JO5) pulse once each time the Reset switch is operated? Note: Approximately 50 ns pulse.	Go to Seq 23.

Seq	Condition/Instruction	Action
21	Does + Xfr XOUTB To Trap ALU2 (B2E2D11) pulse once each time the Reset switch is operated?	Change A2P4.
22	If not:	Change B2E2.
23	Is +Stat D ALU2 To ALU1 (A202D02) always plus?	Change A202.
24	Does +5.12 MHz (A1 K2GO2) or +20.48 MHz (A2K2B09) fail to pulse?	Change A1C2.
25	Does + Reset ALU2 IC (A2D2G04) remain minus when the Reset switch is operated and released?	Change A2P4.
26	Is -Gate Trap Pulse (A2D2D03) pulsing?	Go to Seq 28.
27	If not:	Change A2K2.
28	Does - 25 NS TAP (A2D2DO5) pulse each time the Reset switch is operated?	Go to Sea 30.
29	Does + Reset ALU2 IC (A2D2G04) remain plus when the Reset switch is operated and released?	Go to Seq 32.
30	Is + System Reset (A2K2D12) minus with Reset released?	Change A2K2.
31	Does + Trap ALU2 Latch2 (A2P4D06) remain minus when Reset is operated?	Change A2D2.
32	Is +Lock ALU2 IC (A2P4GO9) a solid plus?	Change A2P4.
33	Is -ALU2 Lock Status (A2P4D13) a solid	Change A2P4.
34	If not:	Change in order: 1. A 2 P 2 2. A 2 D 2
35	If Seq 35 is reached, ALU2 should be free to run, although it may be branching incorrectly. The CE panel setup in Seq 36 should ripple through Page 0 of ALU2 reading out consecutive addresses and ROS bits without performing any commands.	
36	Set up the CE panel: A. Turn Stop On Control Check switch Off. B. Select ALU2. C. Operate Reset. D. Turn ROS Mode switch to Set IC, and operate Set ROS Mode. E. Turn the Stop On Control Check switch On and operate Set ROS Mode to set IC again. Lamps should display 'OFF' with the Display Select switch set to IC.	

3803-2/3420

Seq	Condition/Instruction Action	
37	Using Charts 1, 2, 3, and 6 on 13-191, scope: A. ALU2 Clock controls. B. Instruction Counter positions 4 through 11 (8 through 15 in ALDs). C. ROS bits P1 through P15, and ROS Register 8 through 15.	
38	Ensure that all lines are switching and that the rise and fall times are within specifications. Are any lines bad?	Change the card shown in the chart Go to Seq 42.
39	Change CE panel setup: 1. Turn the Stop On Control Check switch Off. 2. Set the ROS Mode switch to Rst/Cmpr. 3. Set Compare Register to the first incorrect address. (If '000', entire loop will be executed.) 4. Operate Set ROS Mode. 5. Operate Reset to allow ALU2 to cycle the POR routine between ' 000 ' and the Compare Register address.	
40	Scope the following points: Does any line fail to switch?	Change card associated with the failing line
41	If not:	Change in order 1. A 2 K 2 2. A 2 H 2 Go to Seq 42.
42	Is problem fixed?	Go to 00-030.
43	Does first bad step occur after STEP0062?	Go to Seq 48.

Seq	Condition/Instruction	Action
44	ALU2 should be stepping properly past STEPOO13. Is ALU2 stepping to the wrong page or staying in wrong page?	Change A2M2. See Chart 4.
45	ALU2 is probably failing to overflow out of an adder routine. Use the CE panel setup in Seq 39. Set Compare register to highest numerical address of loop.	
46	Go to Charts 3 through 7. Scope high order ROS registers, clocks, LSR, and command decodes, registers, and buses	
47	Do any lines fail to switch?	Change card according to the chart Go to Seq 51 .
48	Set up the CE panel: A. Turn ROS Mode switch to Norm B. Press Set ROS Mode. While operating the Reset switch, scope the following points:	Change card associated with failing line. Go to Seq 57.
50	If not:	Go to Seq 62.
51	Does ALU2 complete the first pass of POR and then lock at ' 000 ' ?	Go to Seq 53.
52	If not:	Change A2H2 and then go to Seq 32 if the problem is not fixed.
53	Set up the CE panel: A. Turn Stop On Control Check switch Off. B. Set contents of Compare register to the hex address of STEP0063. C. Turn the ROS Mode switch to Stop. D. Operate Set ROS Mode switch. E. Set Display switch to IC. F. Select ALU2. Operate the Reset switch and ensure that ALU2 stops at STEP0063.	
54	A. Turn ROS Mode switch to Step B. Operate Set ROS Mode switch. C. Operate Start or Step switch one time	
55	Is - Stat D ALU2 To ALU1 (A202M09) minus?	Go to Seq 32.
56	If not:	Change A202.
57	Did the new card correct the problem?	Go to 00-030.
58	If changing the card did not resolve the problem, return to the failing sequence which sent you here. Following the failing line to the source of the failure	

Seq	Condition/Instruction	Action
59	You have entered this page from 13-001 because ALU2 branches to an illegal address causing Hi and Lo ROS parity errors. Set up the CE panel A. Turn the Stop On Control Check switch Off. B. Turn the ROS Mode switch to Rst/Err. C. Select ALU2 D. Operate Set ROS Mode, and then Reset. Does ALU2 begin looping?	Go to Seq 61.
60	If not:	Go to Seq 59 and repeat Steps A through D.
61		Change card associated with failing line.
62	The MAPs cannot resolve the problem. Use the microcode listing and logics to resolve the problem. Refer to $16-000$ for microprocessor troubleshooting information.	

$3803-2 / 3420$

ALU2 POWER-ON RESET (Cont.)

Chart $\mathbf{1}$

ALU2		
ROS Address Lamp Position	IC Trigger Positior	Instruction Count Test Point
4	8	A2L2P11+
5	9	A2L2G13 +
6	10	A2L2G12 +
7	11	A2L2J13 +
8	12	A2L2MO2 +
9	13	A2L2M03 +
10	14	A2L2P03 +
11	15	A2L2P02 +

Chart $\mathbf{2}$
ALU2 ROS Data Bit A2H2 +Active 0 U13 1 U12 2 U11 3 $U 10$ 4 U05 5 $U 04$ 6 U03 7 U02 8 P11 9 P10 10 P09 11 P07 12 P06 13 P05 14 P04 15 M03 P1 M02 P2 P02

AlU2	
Clock	Pin
75 ns Tap	A2K2U07
Clk 6	M08
Clk 8	M13
Clk 11	S09
Clk1 L2	G03
Cl\|1 11	J05

Chart 4

ALU2	
ROS Reg Bit	Page Bit A2M2 -Active
0	B04
1	B05
2	B02
3	P06

Chart 5

ALU2	
Instruction	A2M2 -Active
ADD	$J 12$
STORE	$J 13$
BOC	M09
XFR	G12
BU	G04
BU or BOC	$J 04$
LOGIC OP	PO2

The following cards are interchangeable between the ALUs.	
B2 Panel	A2 Panel
F	K
D* *	M *
E	L
C	N
* contains feature jumpers	

\square

ALU1 RESET FAILURE

From: 13-000		
ALU1 has attempted to reset the CUE latch for interface A. The reset was not effective and ALU1 keeps attempting the reset.		
Most Probable Cause: A. B2O2 (see Caution) B. B2E2 C. B2D2		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Set ROS Mode switch to Norm Operate Set ROS Mode switch. Operate Start or Step switch.	
2	Sync the scope plus on and display +Reset Cue Chan A (B2E2J11). A 50 ns pulse should appear at approximately 850 ns intervals. Is this line good?	Go to Seq 4.
3	If not:	Change B2E2.
4	Sync the scope as in Seq 1. Scope +Cue Pending Chan A (B2O2U13). This line should go minus and stay there after the resets checked in Seq 2 Is this line good?	Change B2D2.
4	If not:	See Caution, then change B202.

Caution: Removing this card may cause channel errors even with
power off. Put CPU in the Single Cycle mode before removing card.

3803-2/3420

XE1700	273586
Sea 1 of 2	Part Numb

Siee Ec|
Corporation 1976, 1979

From: 13-000		
ALU1 attempted to reset all channel tag in (CTI) lines. A check is made to ensure that OP IN is inactive. ALU1 hangs at this address until OP IN is inactive.		
Most Probable Cause: A. B2O2 Chan A (See Caution) B. B2P2 Chan B (See Caution) Additional Cards Referenced: D. $\quad \mathrm{B} 2 \mathrm{M} 2$		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Turn ROS Mode switch to Norm. Operate Set ROS Mode switch momentarily. Operate Start or Step switch momentarily	
2	Is -Operation In minus? With EC733814-B2L2GO4 Without EC733814-B2M2G04	Go to Seq 4.
3	If not:	With EC733814, change B2L2. Without EC733814, change B2M2
4	Is -Select Signal Chan A (B2O2G03) minus?	Go to Seq 7 .
5	Does the tape control have two channel switch (TCS) feature installed?	Go to Seq 11.
6	If not:	Go to Seq 17.
7	Is + Select Out To Line Receiver plus? With EC733814-B2S2SO8 (Gnd to $+4 v$) Without EC733814—B2R2S08	Go to Seq 9 .
8	If not:	See Caution, then change B202.
9	Is +Select To Receivers Or Bypass plus? With EC733814-B2S2P09 (Gnd to +4v) Without EC733814-B2R2P09	Go to ALD FC281EC4 and resolve.
10	If not:	With EC733814, change B2S2. Without EC733814, change B2R2
11	Is -Select Signal Chan B (B2P2G03) minus?	Go to Seq 13.
12	If not:	Go to Seq 17.
13	Is + If Select Sig Chan B plus? With EC733814-B2R2S08 (Gnd to $+4 v$) Without EC733814-B2S2S08	Go to Seq 15.
14	If not:	See Caution, then change B2P2.

Seq	Condition/Instruction	Action
15	Is + Select To Receivers Or Bypass plus? With ECT33814-82R2P99 (Gnd to $+4 \mathrm{v})$	Go to ALD XM181EC4 and resolve.
Without EC733814-B2S2PO9		

s even with power off.
Put CPU in the Single Cycle mode before removing card.
\square

13-220

From: 13-000		
ERROR DESCRIPTION: 302 is a trap address that indicates that Pending Status is held by the 3803. Request In A or B should be active at the CE panel if command chaining. If status is suppressible (Device End alone or previously stacked status), as indicated by SUP Req A or B indicators, the 3803 is under control of Suppress Out.		
Mos A. C. D. E. F.	Probable Cause: A2R2 Chan A, B2O2 (See Caution.) Chan B, B2P2 (See Caution.) Without EC733814, B2L2 Chan A, B2R2. (See Caution.) Chan B, B2S2. (See Caution.) With EC733814, B2M2 Chan A, B2S2. (See Caution.) Chan B, B2R2. (See Caution.) Chan B, B2N2 A2H2	Additional Cards Referenced: A. B2E2 B. A 2 M 2 C. B 2 C 2 D. B2D2 E. B2B2 F. A2N2 G. B2F2
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Is Req In A or B indicator On at CE panel?	Go to Seq 5.
2	Are Sup O and Sup Req A or B indicator On at CE panel?	Go to Seq 14.
3	Is Sup Req A or B indicator On at CE panel?	Go to Seq 15.
4	If not:	Go to Seq 26.
5	Was Req in B indicator On at CE panel?	Go to Seq 10 .
6	Is -Request In Chan A (B2O2G02) minus?	Go to Seq 8.
7	If not:	See Caution, then change B 202
8	Is + Intf Request In Chan plus? (This line is an interface level-ground to +4 V .) With EC733814-B2S2B03 Without EC733814-B2R2B03	Check interface cable or suspect channel.
9	If not:	With EC733814, change B2S2 (see Caution) Without EC733814, change B2R2 (see Caution)
10	Is -Request In Chan B (B2P2G02) minus?	Go to Seq 12.
11	If not:	Change B2P2 (See Caution.)
12	Is +Intf Request In Chan plus? (This line is an interface level-ground to +4 V). With EC733814-B2R2B03 Without EC733814-B2S2B03	Check interface cable or suspect channel.

Seq	Condition/Instruction	Action
13	If not:	With EC733814, change B2R2 (see Caution). Without EC733814, change B2S2 (see Caution).
14	3803 must wait for SUPPRESS OUT from channel to drop. The 3803 is under control of SUPPRESS OUT at this point.	
15	Was Sup Req B indicator On at CE panel?	Go to Seq 20.
16	Is -Request In Chan A (B2O2G02) minus?	Go to Seq 18.
17	Is +If Sup Out Chan A (B2O2D04) plus? (This line is an interface level-ground to +4 V).	Go to ALD FC011 GE2 and follow net to line driver to determine why the indicator isn't being turned on. Then go to Seq 14
18	Is +Intf Request In Chan plus? (This line is an interface level-ground to +4 V .) With EC733814-B2S2B03 Without EC733814-B2R2B03	Go to Seq 14.
19	If not:	With EC733814, change B2S2 (see Caution). Without EC733814, change B2R2 (see Caution).
20	Is -Request In Chan B (B2P2G02) minus?	Go to Seq 22.
21	Is +If Sup Out Chan B (B2P2D04) plus? (This line is an interface level-ground to +4 V .)	Go to ALD XM011 GE2 and follow net to line driver to find out why indicator isn't being turned on. Then go to Seq 14
22	Is + Intf Request In Chan plus? This line is an interface level-ground to +4 V With EC733814-B2R2B03 Without EC733814-B2S2B03	Go to Seq 24.
23	If not:	With EC733814, change B2R2 (see Caution). Without EC733814, change B2S2 (see Caution)
24	Determine whether problem is in tape control or channel. A. Take tape control offline See 12-010. B. Set ROS Mode switch to Norm and press Set ROS Mode. C. Turn Panel Enable switch ON. D. Operate Reset switch. E. Make sure both Panel Enabled and Intf's Disabled indicators are On. F. Operate Data Entry Select switch: 1. Cmnd 1' $07 x^{\prime}$ Rewind (operate Set CE/Cmpr) 2. Cmnd 2 '01x' Write (operate Set CE/Cmpr) 3. Cmnd $3^{\prime} 0 \mathrm{Cx}$ ' Read Bkwd (operate Set CE/Cmpr) 4. Cmnd 4 '02x' Read Fwd (operate Set CE/Cmpr)	

Seq	Condition/Instruction	Action
24	(continued) G. Set ALU1/ALU2 switch to ALU1. H. Set Mple/Single switch to Mple. I. Operate Start. J. Does ALU1 IC indicate ' 302 ' or '303'?	Go to Seq 26.
25	Interrupt should have been honored by channel.	
26	1. Set scope to 5 us $/ \mathrm{cm}$. 2. Set Compare Register to ' 302^{\prime} (operate Set CE Cmpr), then set Display Select switch to IC. 3. Set ROS Mode switch to Step (operate Set ROS Mode). Make sure the Stop on Control Check and Stop on Data Flow Check switches are OFF	
27	Set ALU1/ALU2 switch to ALU2. Set Display Select switch to IC and operate Reset. Does the IC stop at '001'?	Go to Seq 30.
28	Set the ALU1/ALU2 switch to ALU1. Set the ROS Mode switch to Rst/Cmpr. operate Set ROS Mode, then operate Reset. Is +Inst Count B ALU1 (B2E2M03) pulsing?	Recheck the symptoms.
29	If not:	Change B2E2.
30	Set the ALU1/ALU2 switch to ALU1. Set the ROS Mode switch to Rst/Cmpr, operate Set ROS Mode, then operate Reset. Does -LSR Decode 3 ALU2 (A2M2U03) pulse?	Go to Seq 32.
31	If not:	Change A2M2.
32	Does - ALU Output All Zero ALU1 (B2C2B09) pulse?	Go to Seq 34.
33	If not:	Change B 2 C 2.
34	Does - ROS Reg 3 L3 ALU1 (B2D2D10) pulse?	Go to Seq 36.
35	If not:	Change B2D2.
36	Does +CIk4 ALU1 (B2F2B04) pulse?	Change in order: 1. A 2 R 2 2. A 2 N 2 3. B2E2
37	If not:	Change B2F2.

Caution: Removing this card may cause channel errors even with
power off. Put CPU in the Single Cycle mode before removing card

From: 13-000		
ERROR DESCRIPTION: Two Channel Switch (TCS) A ' 301 ' Trap Address indicates a unit-check condition has occurred and a contingent connection has been set. A contingent connection is necessary to prevent destruction of sense information from the other channel. To clear a contingent connection, another successful start input/output (SIO) (one that does not result in a unit check) must be issued to the same device from the channel that issued the failing SIO. If device switching is installed, the DEVICE COMMITTED latch remains On until a successful SIO has been completed. This ensures that the other tape control does not destroy sense data pertaining to that device. The Hold Interface indicator is On at the CE panel if the tape control has a two channel switch installed.		
Most Probable Cause For 301 Hangs Offline: A. With EC733814-B2M2 Without EC733814-B2L2 B. $\quad \mathrm{B} 2 \mathrm{~N} 2$ Additional Cards Referenced: A. A2R2 B. $\quad \mathrm{A} 2 \mathrm{~L} 2$ D. A1S2		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Is the tape control offline?	Go to Seq 4.
2	When the local storage registers (LSRs) were read out in 00-010, did ALU1 LSRs 3 and 6 compare bit-for-bit?	Recheck symptoms.
3	There must be a channel problem because LSR 3 (which contains the address of the tape unit for which the last SIO was issued) and LSR 6 (which contains the address of the tape unit for which a Contingent Connection was made) do not compare. For further information, see Two Channel Switch in the heading of this MAP.	
4	Does the tape unit continue to move tape when ALU1 is at '301'?	Change A2R2.
5	Is +CE Stop Conditions (A1T2J06) plus?	Change A1T2.
6	Is -C3 And Step 3 (A1S2M09) a solid minus?	Change A1S2.

Seq	Condition/Instruction	Action
7	Turn ROS Mode switch to Norm. Operate Set ROS Mode switch momentarily Operate Reset momentarily.	
8	Set scope to 5 asec/cm. Is +Xfr LSR2 To TU Tags (A2L2G02) pulsing?	Go to Seq 10.
9	If not:	Change A2L2.
10	Is -LSR Decode 3 ALU1 (B2D2U03)	Go to Seq 12.
11	If not:	Change B2D2.
12	Is -Service In always minus? With EC733814-B2M2S08 Without EC733814-B2L2S08	With EC733814, change B2M2. Without EC733814, change B2L2
13	If not:	Change Y1P2. Recheck the symptoms

ALU1 OP IN WAIT

From: 13-000		
ALU1 is waiting for OP IN to become inactive.		
Most Probable Cause A. A2R2 B. With EC733814-B2L2 Without EC733814-B2M2 C. Chan A, B2O2 (See Caution.) D. With EC733814 Chan A, B2S2 (See Caution.) Chan B, B2R2 (See Caution.) Without EC733814 Chan A, B2R2 (See Caution.) Chan B, B2S2 (See Caution.)		
Always start with Sea 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Have the cards been interchanged between ALU1 and ALU2 (see chart on 16-001)?	Go to Seq 3.
2	Interchange cards between ALU1 and ALU2 (see chart on $16-001$). If the symptoms change, the failing FRU has been identified Did the symptoms change?	Change defective card and go to 00-030.
3	Turn ROS Mode switch to Norm. Operate Set ROS Mode switch momentarily Operate Start or Step switch momentarily.	
4	Is -Operational In minus? With EC733814-B2L2G04 Without EC733814-B2M2G04	Go to Seq 6 .
5	If not:	With EC733814, change B2L2 Without EC733814, change B2M2
6	Is -Select Signal Chan A (B2O2G03) minus?	Go to Seq 9 .
7	Does the tape control have a TCS (two channel switch) feature installed?	Go to Seq 13.
8	If not:	Go to Seq 19.
9	Is + Select Out To Line Receivers plus? With EC733814-B2S2S08 Without EC733814-B2R2S08	Go to Seq 11.
10	If not:	See Caution, then change B202.
11	Is +Select To Receivers Or Bypass plus? With EC733814-B2S2P09 (Gnd to +4 V) Without EC733814-B2R2P09	Go to ALD FC281EC4 and resolve.

Seq	Condition/Instruction	Action
12	If not:	With EC733814, change B2S2 (see Caution). Without EC733814, change B2R2 (see Caution) Caution).
13	Is -Select Signal Chan B (B2P2G03) minus?	Go to Seq 15.
14	If not:	Go to Seq 19.
15	Is +If Select Sig Chan B plus? With EC733814-B2R2S08 (Gnd to +4 V) Without EC733814-B2S2S08	Go to Seq 17.
16	If not:	See Caution, then change B2P2.
17	Is + Select To Receivers Or Bypass plus? With EC733814-B2R2P09 (Gnd to +4 v) Without EC733814-B2S2P09	Go to ALD XM181EC4 and resolve.
18	If not:	With EC733814, change B2R2 (see Caution). Without EC733814, change B2S2 (see Caution).
19	Is -CTI Bit 7 Op In (A2R2B04) minus?	Change A2R2.
20	If not:	With EC733814, change B2L2. Without EC733814, change B2M2

Caution. Removing this card may cause channel errors even with power off.
Put CPU in the Single Cycle mode before removing card.
\square

From: 13-000		
This failure occurs because of a failure in the ALU2 trap circuitry. ALU2 traps on STAT 0 but will not trap back to zero on a TRANSFER XOUTB from ALU1. If at zero, a TRANSFER XOUTB from ALU1 starts ALU2 running.		
Most Probable Cause		
A. B.	A2D2	
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	
1	Turn ROS Mode switch to Norm Operate Set ROS Mode switch. Operate Start or Step switch.	
2	Scope -25 NS TAP (A2D2D05). You should see a negative 50 ns pulse occurring every 150-200 ns. Is this line pulsing?	Change A2D2.
3	If not:	Change A2K2.

3803-2/3420
\square

[^1]
$C \mathrm{C}$

SERVICE OUT TAG ACTIVE

From: 13-000		
ALU1, while doing a Power-On Reset routine, found the Service Out tag is alwayT s active.		
Most Probable Cause: A. A2R2 $\begin{array}{ll}\text { B. } & \mathrm{B} 2 \mathrm{M} 2 \\ \text { C. } & \mathrm{B} 2 \mathrm{~L} 2\end{array}$ D. A1R2 Additional Cards Referenced: A. B2D2 $\begin{array}{ll}\text { B. } & \mathrm{B} 2 \mathrm{P} 2 \\ \text { C. } & \mathrm{B} 2 \mathrm{Q} 2\end{array}$		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030		
Seq	Condition/Instruction	Action
1	Turn ROS Mode switch to Norm Operate Set ROS Mode switch. Operate Start or Step switch.	
2	Is EC733814 installed?	Go to Seq 20.
3	Is + Service Out Chan A B CE (B2M2G03) plus?	Go to Seq 9 .
4	Is + Data Service Active (B2L2S02) plus?	Change B2L2.
5	Is + Branch Cond Met ALU1 (B2M2M11) plus?	Go to Seq 7 .
6	If not:	Change B2D2.
7	Is -ROS Reg 6 ALU1 (B2D2D09) minus?	Change B2D2.
8	If not:	Change B2M2.
9	Is + Service Out Chan A Gated (B2O2D11) plus?	See Caution, then change B202.
10	Is Two-Channel switch feature installed?	Go to Seq 18.
11	is +CE Service Out Tag (A1R2S11) plus?	Go to Seq 13.
12	If not:	With EC733814, change B2L2 Without EC733814, change B2M2
13	Is + Register Test (A1R2U11) plus?	Go to Seq 16.
14	Is +CTI Bit 5 To CE (A1R2J02) plus?	Change A2R2
15	If not:	Change A1R2.
16	Is -Register Test (A2R2S09) minus?	Change A2R2.
17	If not:	Change A1R2.
18	Is +Service Out Chan B Gated (B2P2D11) plus?	See Caution, then change B2P2.
19	If not:	Go to Seq 11.
20	Is + Service Out Chan A B CE (B2L2G03) plus?	Go to Seq 9 .

Seq	Condition/Instruction	Action
21	Is + Data Service Active (B2M2SO2) plus?	Change B2M2.
22	Is +Branch Cond Met ALU1 (B2L2M11) plus?	Go to Seq 24.
23	If not:	Change B2D2.
24	Is -ROS Reg 6 ALU1 (B2D2D09) minus?	Change B2D2.
25	If not:	Change B2L2.

Caution: Removing this card may cause channel errors even with power off Put CPU in the Single Cycle mode before removing card
\square

| XE2000 |
| :--- | :--- | :--- | :--- |
| Seq of 2 | \(\begin{array}{lll}27358711

Part Number\end{array} $$
\begin{aligned} & \text { See EC } \\
& \text { History }\end{aligned}
$$ \quad $$
\begin{aligned} & 845958 \\
& \text { Sep 79 }\end{aligned}
$$\)

Sed 1 in	Part Number	History	1 Sep 79	

Caution: Removing this card may cause channel errors even with power off.
Put CPU in the Single Cycle mode before removing card.

XE2000	2735871 Part Number	See EC History	845958 $\begin{aligned} & 040700 \\ & 1 \text { Sep } 79 \end{aligned}$				

[^2]

 ADDRESS OUT ACTIVE

From: 13-000 ALU1 is waiting for Address Out to become inactive.		
Most Probable Cause: A. With EC733814-B2L2 Without EC733814-B2M2. B. Chan A, B2O2 (See Caution). C. Chan B, B2P2 (See Caution). C. A1R2		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Turn ROS Mode switch to Norm Operate Set ROS Mode switch momentarily Operate Start or Step switch momentarily.	
2	Is -Address Out A B CE minus? With EC733814-B2L2SO5 Without EC733814-B2M2SO5	Go to Seq 4.
3	If not:	With EC733814, change B2L2 Without EC733814, change B2M2.
4	Is +Addr Out Chan A Gated (B2O2D13) plus?	See Caution, then change B202.
5	Is -Any Command Test Branch (A1R2D05) minus?	Change A1R2.
6	Is Two-Channel switch (TCS) feature installed?	Go to Seq 8.
7	If not:	With EC733814, change B2L2 Without EC733814, change B2M2.
8	Is +Addr Out Chan B Gated (B2P2D13) plus?	See Caution, then Change B2P2.
9	Is +CE Addr Out Tag (A1R2U05) plus?	Change A1R2.
10	If not:	With EC733814, change B2L2 Without EC733814, change B2M2

Caution: Removing this card may cause channel errors even with power off
Caution: Removing this card may cause channel errors eve
Put CPU in the Single Cycle mode before removing card.

From: 13-000		
ALU1 is waiting for Suppress Out to become inactive.		
Most Probable Cause: A. With EC733814-B2L2 Without EC733814—B2M2 B. A1R2, A2R2 C. A2P4 Additional Cards Referenced: A. B2P2		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Turn ROS Mode switch to Norm Operate Set ROS Mode switch momentarily. Operate Start or Step switch momentarily.	
2	Is -Suppress Out A B minus? With EC733814-B2L2SO2 Without EC733814—B2M2S02	Go to Seq 4.
3	If not:	With EC733814, change B2L2. Without EC733814, change B2M2.
4	Is +Suppress Out Chan A Gated (B2O2D03) plus?	See Caution, then change B202.
5	Is + Register Test (A1R2U11) plus?	Change in order: 1. A1R2 2. A2R2
6	Is Two-Channel switch (TCS) feature installed?	Go to Seq 8 .
7	If not:	With EC733814, change B2L2. Without EC733814, change B2M2
8	Is + Suppress Out Chan B Gated (B2P2D03) plus?	See Caution, then change B2P2.
9	If not:	With EC733814, change B2L2 Without EC733814, change B2M2

Caution: Removing this card may cause channel errors even with power off.
Put CPU in the Single Cycle mode before removing card

Seq	Condition/Instruction	Action
16	If not:	Change B2D2.
17	Is + CE Initial Sel Tag (A1R2U04) plus?	Change B2D2.
18	If not:	Change A1R2.
19	Is + Mach Reset minus? With EC733814-B2L2B09 Without EC733814-B2M2B09	Go to Seq 21.
20	If not:	With EC733814-change B2L2 Without EC733814-change B2M2.
21	While operating Reset switch, sync minus and display -LSR Decode 5 ALU1 (B2D2B11). Is line pulsing?	Go to Seq 23.
22	If not:	Change B2D2.
23	While operating Reset switch, sync minus and display -Sto Oper ALU1 (B2D2J13). Is line pulsing?	Go to Seq 25.
24	If not:	Change B2D2.
25	Is -ROS Reg 0 and 1 ALU1 (B2D2P09) minus?	Change B2D2.
26	While operating Reset switch, sync minus and display -LSR Decode 1 ALU 1 (B2D2P13). Is line pulsing?	Go to Seq 28.
27	If not:	Change B2D2.
28	Is -Xfr XINB To LSR1 (B2E2M10) minus?	Change B2E2.
29	Is -Xfr XINA To LSR1 (B2E2P12) minus?	Change B2E2.
30	Is + Bus Out Bit 7 to ALU1 plus? With EC733814-B2M2B13 Without EC733814-B2L2B13	With EC733814—change B2M2. Without EC733814-change B2L2
31	While operating Reset switch, sync minus and display -D Bus 1 ALU1 (B2C2U04). Is line pulsing?	Go to Seq 33.
32	If not:	Change B2C2.
33	Is -D Bus 2 ALU1 (B2C2P13) plus?	Change B2C2.
34	Is -D Bus 3 ALU1 (B2C2P12) plus?	Change B2C2.
35	While operating Reset switch, sync minus and display -D Bus 4 ALU1 (B Is line pulsing?	Go to Seq 37.
36	If not:	Change B2C2.
37	While operating Reset switch, sync minus and display -D Bus 5 ALU1 (B2C2M02). Is line pulsing?	Go to Seq 39.

Seq	Condition/Instruction	Action
38	If not:	Change B2C2.
39	While operating Reset switch, sync minus and display - D Bus 6 ALU1 (B2C2G11). Is line pulsing?	Go to Seq 41.
40	If not:	Change B2C2.
41	While operating Reset switch, sync minus and display - D Bus 7 ALU1 (B2C2 Iso9).	Go to Seq 43.
Is line pulsing?		

From: 13-000		
Most Probable Cause:A. With EC733814-B2L2 (see 00-000)		
B. Without EC733814-B2M2		
$\underset{\text { A }}{\text { Additional }}$ Cards Referenced:		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030		
Seq	Condition/Instruction	Action
1	Turn ROS Mode switch to Norm Operate Set ROS Mode switch Operate Start or Step switch.	
2	Is -Command Out A B CE plus? With EC733814-B2L2U02. Without EC733814-B2M2U02.	With EC733814, change B2L2. Without EC733814, change B2M2
3	Is + CE Command Out TAG (A1R2S05) minus?	With EC733814, change B2L2. Without EC733814, change B2M2
4	Is -Gate Tags (A1S2J06) minus?	Go to Seq 6.
5	If not:	Change A1S2.
6	Is +CE Command Out (A1R2G13) plus?	Change A1R2.
7	If not:	$\begin{aligned} & \text { Change in order: } \\ & \text { 1. A2R2 } \\ & \text { 2. A1R2 } \end{aligned}$

XE2200 $\text { Seq } 2 \text { of } 2$	2735873	See EC History	$\begin{aligned} & 845958 \\ & 1 \text { Sep } 79 \end{aligned}$					

SUPPRESS OUT INACTIVE DURING RESET OR POWER-ON RESET

From: 13-000		
Most Probable Cause:		
A. Without EC733814-B2M2		
Always start with Seq 1 and follow the procedure in sequence unless directed o therwise Remember to END all problem or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Turn ROS Mode switch to Norm Operate Set ROS Mode switch. Operate Start or Step switch.	
2	Is -Suppress Out A B minus? With EC733814-B2L2S02 Without EC733814-B2M2SO2	With EC733814, change B2L2 Without EC733814, change B2M2
3	Is + Register Test (A1R2U11) plus?	With EC733814, change B2L2. Without EC733814, change B2M2
4	Is -Register Test (A2R2S11) minus?	Change A1R2.
5	If not:	Change A2R2.

From: 13-000		
Most Probable Cause: A. With EC733814-B2L2 B. Without EC733814-B2M2 B. A1R2, A2R2		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise. Remember to END all problem or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Turn ROS Mode switch to Norm Operate Set ROS Mode switch momentarily. Operate Start or Step switch momentarily.	
2	Is +Service Out Chan A B CE plus? With EC733814-B2L2G03. Without EC733814-B2M2G03	With EC733814, change B2L2. Without EC733814, change B2M2
3	Is + Service Out TAG (A1R2S11) plus?	With EC733814, change B2L2 Without EC733814, change B2M2
4	If not:	Change in order: 1. A1R2 2. A2R2

XE2300	2735874	See EC History	845958 $1 \text { Sep } 79$					

AdDress out inactive

From: 13-000		
Most Probable Cause: A. Check interface cable connections for bent pins. B. With EC733814-B2L2 C. Without EC733814-B2M2 C. A1R2		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise. Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Turn ROS Mode switch to Norm Operate Set ROS Mode switch. Operate Start or Step switch.	
2	Is +CE Addr Out Tag (A1R2U05) minus?	Change A1R2.
3	Is -Address Out A B CE plus? With EC733814-B2L2SO5. Without EC733814-B2M2SO5	With EC733814-change B2L2. Without EC733814—change B2M2.

3803-2/3420

ceicle							

From: 13-000		
Most Probable Cause: A. B2D2.		
	${ }_{\text {B2F2. }}$.	
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Turn ROS Mode switch to Norm Operate Set ROS Mode switch. Operate Start or Step switch.	
2	Operate Reset switch. Set scope to 5 us/cm. Is + ROS Reg 3 L3 ALU1 (B2D2B09) plus all the time?	Change B2D2.
3	Sync minus and display -Add Oper ALU1 (B2D2J12). Does line go minus?	Go to Seq 5.
4	If not:	Recheck the symptoms.
5	Sync plus and display +CIk 19 ALU1 (B2F2M03). Does line go plus?	Go to Seq 7 .
6	If not:	Change B2F2.
7	Is -150 ns Tap ALU1 (B2F2P04) pulsing?	Recheck the symptoms.
8	If not:	Change B2F2.

$\begin{array}{ll} \hline \text { XE2 } 200 \end{array}$	2735875	See EC History	845958					

CHANNEL BUS IN/OUT CHECKING

13-380

From: 13-000			
ERROR DESCRIPTION: This error occurs during the channel Bus In/Bus Out check of the Power-On Reset routine The Channel Bus Ins are wrapped around through the CE section to the Channel Bus Outs. A comparison is then made by exclusive ORing the Channel Bus Outs with what was expected on the Channel Bus Ins. If there is no Compare, ALU1 is trapped at the PICKDROP address.			
Most Probable Cause: A. With EC733814-B2L2 (see Caution) B. $\quad \mathrm{A} 1 \mathrm{~K} 2$ C. A 2 Q 2 $\begin{array}{ll}\text { D. } & \text { A2T2 } \\ \text { E. } & \text { B3Q2 }\end{array}$ F. A1R2 G. A1C2 H. B2H2		Interchangeable cards between ALUs	
		A2	B2
		N	c
		M*	D*
		L	E
		K	F
		Feature Jumpers	
Caution: Removing this card may cause channel errors even with the power off. Put the CPU in Single Cycle mode before removing this card.			
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.			
Seq	Condition/Instruction	Action	
1	If this procedure is exhausted without fixing the problem, go to 13-381, which lists the lines that could be bad by sequence number.		
2	CE panel setup: A. Put STEP0029 address in the Cmpr Reg. See ALU1 microprogram cross-reference listing B. Turn both Stop On switches Off. C. Set ROS Mode switch to Stop and operate Set ROS Mode switch D. Set ALU1/ALU2 switch to ALU1. E. Turn Display Select switch to IC F. Operate the Reset switch.		
3	Turn Display Select switch to Bus In. Are any indicators 0-7 On?	Go to Seq	
4	CE panel setup: A. Put the STEP0029 address in the Cmpr Reg. See ALU1 microprogram cross-reference listing B. Operate Reset switch.		
5	Did ALU1 stop at the STEP0029?	Go to Seq	
6	CE panel setup: A. Put 500 Address in the Cmpr Reg. B. Turn Display Select switch to IC. Turn ROS Mode switch to Set IC and operate Set ROS Mode switch D. Turn ROS Mode switch to Step and operate Set ROS Mode switch. E. Keep operating Start or Step switch until IC indicators $={ }^{\prime} 503^{\prime}$. Set Display Select switch to Bus In to read out LSR1. Record indicators 0-7. F. Turn Display Select switch to IC. Keep operating Start or Step switch until IC indicators $=$ '506'. Turn Display Select switch to Bus in to read out LSR4. Do LSR1 and LSR4 compare bit-for-bit?	Go to Seq	

Seq	Condition/Instruction	Action
7	Turn ROS Mode switch to Norm and operate Set ROS Mode switch. Interchange B2C2 and A2N2. Operate Reset switch. Does ALU1 stop at PICKDROP?	Go to Seq 9 .
8	If not:	Return the cards to their origina locations and change B2C2.
9	Interchange B2D2 and A2M2 and operate Rese switch. Does ALU1 stop at PICKDROP?	Return the cards to their origina locations and go to Seq 11.
10	If not:	Return the cards to their origina locations and change B2D2.
11	Interchange B2F2 and A2K2 and operate Reset switch. Does ALU1 stop at PICKDROP?	Change B2F2.
12	If not:	Return the cards to their origina locations and change B 2 H 2 .
13	Set ROS Mode switch to Norm and operate Set ROS Mode switch. Interchange B2E2 and A2L2 and operate Reset switch. Does ALU1 stop at PICKDROP?	Go to Seq 15.
14	If not:	Return the cards to their origina locations and change B2E2.
15	Interchange B2C2 and B2N2. Operate Reset switch. Does ALU1 stop at PICKDROP?	Go to Seq 17.
16	If not:	Return the cards to their origina locations and change B2C2.
17	Interchange B2D2 and A2M2. Operate Reset switch. Does ALU1 stop at PICKDROP?	Return the cards to their origina locations and change: With EC733814—B2L2 (see Caution) Without EC733814-B2M2 (see Caution)
18	If not:	Return the cards to their origina locations and change B2D2.
19	Is -Stat Bit 0 Tape Op to DF (A202J07) minus?	Change A202.
20	Is -Stat Blt 0 Tape Op to DF (A2O2D04) minus?	Change A202.
21	Is +Stat Bit 1 Sense (A2T2D05) plus?	Change A2T2.
22	Is -Wrt and Tape Op Not Control (A1K2P09) minus?	Change A1K2.
23	Is -Tape Op A (A1 K2B10) minus?	Change A1K2.
24	Turn ROS Mode switch to Norm and operate Set ROS Mode switch. Interchange B2D2 and A2M2 and operate Reset switch. Does ALU1 stop at PICKDROP?	Return the cards to their origina locations and go to Seq 26.
25	If not:	Return the cards to their origina locations and change B2D2.
26	Interchange B2E2 and A2L2 and operate Reset switch. Does ALU1 stop at PICKDROP?	Go to Seq 28.

Seq	Condition/Instruction	Action
27	If not:	Return the cards to their original locations and change B2E2
28	Interchange B2F2 and A2K2 and operate Reset switch. Does ALU1 stop at PICKDROP?	Go to Seq 30.
29	If not:	Return the cards to their original locations and change B2F2.
30	Interchange B2C2 and A2N2 and operate Reset switch. Does ALU1 stop at PICKDROP?	Go to Seq 45.
31	If not:	Return the cards to their original locations and change B2C2.
32	Is + Inhibit Ripple Bus Chan A (B2E2M13) plus?	Change $\mathrm{B2O2}$. See Caution.
33	Is + Inhibit Ripple Bus Chan B (B2E2P13) plus?	Change B2P2. See Caution.
34	If not:	Change in order: 1. A2R2 2. A 1 C 2
35	Is -Gate CBI to CE Entry (A1R2S07) minus?	Go to Seq 37.
36	If not:	Change A1R2.
37	Is + Inhibit Ripple Bus Chan A (B2E2M13) plus?	Change B202. See Caution.
38	Is + Inhibit Ripple Bus Chan B (B2E2P13) plus?	Change B2P2. See Caution.
39	Turn ROS Mode switch to Norm and operate Set ROS Mode switch. Interchange B2E2 and A2L2 and operate Reset switch Does ALU1 stop at PICKDROP?	Go to Seq 41.
40	If not:	Return the cards to their original positions and change B2E2.
41	Interchange B2C2 and A2N2 and operate Reset switch. Does ALU1 stop at PICKDROP?	Go to Seq 43.
42	If not:	Return the cards to their origina locations and change B2C2.
43	Interchange B2D2 and A2M2 and operate Reset switch. Does ALU1 stop at PICKDROP?	Return the cards to their origina locations and change: With EC733814-B2L2 (see Caution) Without EC733814—B2M2 (see Caution)
44	If not:	Return the cards to their origina locations and change B2D2.
45	Remove A1C2. Set Display Select switch to Bus In Are any of indicators 0-7 On?	Reinstall A1C2 and go to Seq 32.
46	If not:	Change A1C2.

3803-2/3420

$\begin{aligned} & \text { XE2500 } \end{aligned}$		See EC History	845958 $1 \text { Sep } 79$					

From: 13-380, Seq 1		
Seq	Card	Checking
These are the items that are being checked. The procedure was broken out into four different trouble areas and so is the following:		
LSR 1 AND 4 DO NOT COMPARE (FIRST TIME THROUGH LOOP)		
7	B2C2	LSRs
9	B2D2	LSR DECODE BITS
11	B2F2G08	+CLK 16 AlU1
	B2F2G02	+CLK 21 AlU1
LSR 1 and 4 Do Compare (First Time Through Loop)		
13	B2E2M07	-XFR LSR to A Register
15	В2С2809	-AlUo ALU1
17	B2D2	LSR Decode Bits
	See Note.	+ Reset ALU1 IC and -Reset ALU1 IC
Hot Bus In Bits		
19	A202J07	-Stat Bit 0 Tape Op to DF
20	A202D04	-Stat Bit 0 Tape Op to DF
21	A2T2D05	+Stat Bit 1 Sense
22	A1K2P09	-Wrt and Tape Op Not Control
24	B2D2P09	-ROS Reg 0 and 1 ALU1
	B2D2P12	-ROS Reg 0 and 2 ALU1
	B2D2	LSR Decode Bits
26	B2E2B11	+XFR LSR1 to Chan Bus In
	В2е2M07	-XFR to A Register
28	B2F2P02	+CIk 22 ALU1
30	B2C2	LSRs
32	A1C2	Data Bus In (Bits 0-7)
34	B2E2M13	+Inhibit Ripple Bus Chan A
35	B2E2P13	+ Inhibit Ripple Bus Chan B
36	A2R2	CBI Bit (Bits 0-7)
First Time Through Loop OK, Second Time Through Loop Failed		
37	A1R2S07	-Gate CB1 to CE Entry
39	B2E2M13	+Inhibit Ripple Bus Chan A
40	B2E2P13	+ Inhibit Ripple Bus Chan B
41	B2E2B11	+XFR LSR1 to Chan Bus in
43	B2C2	LSRs
45	B2D2	LSR Decode Bits

Note:	WITH EC733814	W/O EC733814
+Reset ALU1 IC	B2L2P12	B2M2P12
-Reset ALU1 IC	B2L2P09	B2M2P09

XE2500	2735876 Part Numbe	See EC History	8845958					

ALU1 FAILS TO TRAP TO 000

From: 13-000		
This one-step loop is an unconditional branch to itself if ALU1 hardware error fails to trap ALU1 to 000.		
Most Probable Cause: B2E2.		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise. Remember to END all problems or maintenance calls by going to MAP 00-030		
Seq	Condition/Instruction	Action
1	Scope - Hardware Error ALU1 (A2P4J03), enable panel, disable interface, and operate the Reset switch several times	
2	Did A2P4J03 go minus?	Go to 16-060.
3	Problem may be an incorrect branch into the loop.	Go to 13-990.

From: 13-000

ERROR DESCRIPTION:
The ALUl hang is caused by the failure of ALU2 to finish the readback after a write or a
read. ALU2 is waiting for one of three conditions to occur; the fall of data ready
(DATARD) the end of data (ENDATA), or the fall of positioning (WAITSOME), or the ris
of IBG (WAITEND).
If ALU2 is at WRITIN
If ALU2 is at WRITING (refer to ALU2 microprogram listing for location), DATARDY is active and is not going inactive. If ALU2 is at WAITSOME, positioning is active and not
going inactive. If ALU
most probable cause:
Tape Control (NRZI operation)

A.
A.
B.
Y1D2

B. Control (1600/6250 operation)
A.
A.

| A. $\begin{array}{ll}\text { Y1R2, Y1S2, } \\ \text { B. } \\ \text { B1P2, Y102 }\end{array}$ |
| :--- | :--- |

$\begin{array}{ll}\text { B. Y1P2, Y } \\ \text { B. } & \text { A2D2 } \\ \text { C. } \\ \text { Tape Unit }\end{array}$

Additional Cards Required:
A. 1 H 2
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise.
Remember to END all prober
Remember to END all problems or maintenance calls by going to MAP $00-030$

Seq	Condition/Instruction

1	Is the failure in 1600 or 6250 bpi mode?	Go to Seq 8.

2 | 2 | $\begin{array}{l}\text { Turn ROS Mode switch to Norm. } \\ \text { Operate Set ROS Mode switch. }\end{array}$ |
| :--- | :--- |

Operate Set ROS Mode swith
Operate Start or Step switch.
3 Is ALU2 at WRITING? See ALU2

| microprogram cross-reference listing. | $\begin{array}{l}\text { Change Y1C2. } \\ \text { This failure is caused by +NRZI CHAR }\end{array}$ |
| :--- | :--- | GATE (Y1C2J12) becoming plus and the not being reset. If replacing this card

does not correct the problem. check the does no correct the problem, check the
above line and the two lines which follow
to find the above line and the
to find the eroblem +RESET FIRST BIT (Y1C2G13) and
+BLOCK NRZI ONES (Y1C2U09)
4 Is +EOD NRZI (Y1C2P10) plus?

5	$\begin{array}{l}\text { Is - SET NRZI FIRST BIT (Y1D2P11) plus } \\ \text { or pulsing? }\end{array}$	C
6	Is ALI	

Failure is caused by positioning bit active
too long. For Models 4,6 , or 8 change T-A1E2 and T-A1H2. For Models 3, 5, or

7 If not:

Seq	Condition/Instruction	Action
8	Is IBG (Y1P2M07) pulsing during runaway?	Change A2D2.
9	Is one of the TIME SENSE lines always active? (See Logic CC001)	Change: A. Y1R2, Y1S2, Y1T2 B. Y1P2, Y1Q2
10	If not:	Change Y1P2.

3803-2/3420

$\begin{array}{l}\text { XE2620 } \\ \text { Seq } 2 \text { of } 2\end{array}$	$\begin{array}{l}\text { Part Number }\end{array}$	$\begin{array}{l}\text { See EC } \\ \text { Pistory }\end{array}$	$\begin{array}{c}845958 \\ \text { Hep } \\ 1\end{array}$				

1 C

AlU1 WAITING FOR ALU2 TO COMPLETE A SEQUENCE

Seq	Condition/Instruction	Action
16	Is +SET PAGE REG CLK (A2K2M13) plus?	Change A2K2.
17	Is +XFR LSR2 TO STAT (A2L2B13) plus?	Change A2L2.
18	Is -STAT D ALU2 TO ALU1 (A2O2M09) minus?	Change A202.
19	If not:	Recheck the symptoms.

From: 13-000		
Most Probable Cause:A2L2		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Set ROS Mode switch to Norm Operate Set ROS Mode switch Operate Start Or Step switch.	
2	Is +XFR LSR2 TO XOUTA (A2L2B12) plus?	Change A2L2.
3	Is +XFR LSR2 TO XOUTB (A2L2D11) plus?	Change A2L2.
4	If not:	Recheck the symptoms.

\square
,
Copright International Business Machines Corporation 1976, 19

ALU1 IS WAITING FOR ALU2 STATD INDICATION

From: 13-000		
Most Probable Cause: A2T2		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Turn ROS Mode switch to Norm Operate Set ROS Mode switch. Operate Start Or Step switch.	
2	is +Stat bit o alui unused (A2T2B04) minus?	Change A2T2.
3	is -Stat bit o alu1 to alu2 (A2T2D04) plus?	Change A2T2.
4	If not:	Recheck the symptoms.

\square

From: 13-000, 13-530		
ERROR DESCRIPTION:		
This error occurs while ALU1 is waiting for ALU2 STATB indication. Waiting for tape motion to start when tape is at load point.		
Most Probable Cause:		
A. A1K2		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Turn ROS Mode switch to Norm Operate Set ROS Mode switch. Operate Start Or Step switch.	
2	Is -10.85 mHz (A1K2D04) at a solid level?	Change A1K2.
3	Is -6.78 mHz (A1K2J04) at a solid level?	Change A1K2.
4	Is -5.12 mHz (A1C2JO3) at a solid level?	Change A1C2.
5	Is -3.2 mHz (A1K2U04) at a solid level?	Change A1K2.
6	Is 1.92 mHz (A1K2P12) at a solid level?	Change A1K2.
7	Is -READ TIME (A1K2M12) at a solid level?	Change A1 K2.
8	If not:	Recheck the symptoms.

$\begin{aligned} & \text { XE2800 } \end{aligned}$	2735879 Part Numbe	See EC History	845958					

ALU1 IS WAITING FOR ALU2 TO DROP STATB

From 13-000		
ERROR DESCRIPTION: ALU1 is waiting for ALU2 to drop STATB after writing ID burst		
Most Probable Cause: A2D2		
Always start with Sea 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Turn ROS Mode switch to Norm Operate Set ROS Mode switch Operate Start Or Step switch.	
2	Set scope to $2 \mathrm{~ms} / \mathrm{cm}$ and scope -TACH VELOCITY (A2D2B02). Does the line pulse?	Recheck the symptoms.
3	If not:	Change A2D2.

From: 13-000		
ERROR DESCRIPTION: ALU1 is waiting for ALU2 to drop STATB after completing a write operation.		
Most Probable Cause: A. Y1R2 B. A1G2 C. $\quad \mathrm{A} 1 \mathrm{H} 2$ E. With EC733814-B2M2 (see Caution). Without EC733814-B2L2 (see Caution). Caution: Removing this card may cause channel errors even with power off. Put CPU in single cycle mode before removing card.		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise. Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Turn ROS Mode switch to Norm. Operate Set ROS Mode switch. Operate Start Or Step switch.	
2	Is the U Pgm check lamp on?	Go to Seq 7.
3	Operate Reset switch.	
4	Is -TIME SENSE TK4 (Y1R2D10) minus?	Change Y1R2.
5	Is -TIME SENSE 1 (Y2R2M03) minus?	Change Y1R2.
6	Is -TIME SENSE 3 (Y1R2U05) minus?	Change Y1R2.
7	Is -WC11 (A2G2D09) pulsing?	Go to Seq 9 .
8	If not:	Change A1G2.
9	Is -WRITE CNTR 4 (A1H2S07) pulsing?	Go to Seq 11.
10	If not:	Change A1H2.
11	Is +STAT BIT 0 ALU1 STOP SERV (A2T2G10) minus?	Change A2T2.
12	Is -STOP STAT TO DF minus? With EC733814-B2M2U09 Without EC733814-B2L2U09	Recheck the symptoms.
13	If not:	With EC733814-change B2M2. See Caution. Without EC733814—change B2L2. See Caution.

XE2900	2735880 Part Number	See EC History	$\begin{aligned} & 845958 \\ & 1 \text { Seo } 79 \end{aligned}$					

Seq	Condition/Instruction	Action
2	Perform an offline Write operation from load point on a Model 4, 6, or 8 tape unit. This will set the tape unit to 6250 bpi mode. Load an LWR (8B) command into all 4 command registers. Use a byte count greater than 32 if it causes failures. Install a jumper from A1S2G08 to A1S2J08 to allow LWR operation with IBGs. Caution: If using the Reset and Restart jumper, verify that the ROS2 'hang" loop addresses have not changed from the online failure.	
3	Does the failure only occur offline?	Go to Seq 96.
4	Does the failure only occur online?	Go to Seq 106.
5	Operate the Stop/Start switch to start the command sequence. Is -GROUP OR DFLER BRANCH (B2D2P11) pulsing?	Go to Seq 23.
6	Is it always minus?	Go to Seq 8.
7	Is - STAT BIT O TAPE OP TO DF (A1K2UO6) plus?	$\begin{aligned} & \text { Change in order: } \\ & \text { 1. A2O2 } \\ & \text { 2. A2L2 } \\ & \hline \end{aligned}$
8	Is -TAPE OP A (A1G2D13) plus?	Change A1K2.
9	Is -WRITE CNTR 0 (A1G2G09) pulsing?	Change in order: 1. A1G2 2. A1K2
10	Is -xOUTA BIT 4 ALU2 TO DF (A1H2S12) plus? (Ensure you are using a Model 4, 6, or 8 tape unit away from load point.)	Change A202.
11	Are both -WC9 (A1H2U10) and -WC11 (A1H2U09) pulsing?	Change A1H2.
12	Is -WRITE CONDITION (A1G2G07) plus?	Go to Seq 16.
13	Is -6250 bpi MODE (A1G2M07) plus?	Change A1K2.
14	Is USECFREO (A1G2M13) pulsing?	Change A1G2.
15	If not:	Change A1K2.
16		
	Is -STAT BIT 1 START WR RD (A1G2G05) plus?	$\begin{aligned} & \text { Change in order: } \\ & \text { 1. A2O2 } \\ & \text { 2. A2L2 } \end{aligned}$
17	Is -WRITE AND TAPE OP (A1G2D03) plus?	Go to Seq 21.
18	Is -STOP STAT TO DF (A1G2G13) plus?	Change A 1 G 2.
19	Is +STAT BIT 0 ALU 1 STOP SERV plus? With EC733814-B2M2M08 Without EC733814-B2L2M08.	With EC733814-change B2M2. See Caution. Without EC733814—change B2L2. See Caution.

Seq	Condition/Instruction	Action
20	If not:	$\begin{aligned} & \text { Change in order: } \\ & \text { 1. A2T2 } \\ & \text { 2. B2E2 } \end{aligned}$
21	Is -XOUTA BIT 5 ALU1 TO DF (A1K2U07) plus?	$\begin{aligned} & \text { Change in order: } \\ & \text { 1. A2T2 } \\ & \text { 2. B2E2 } \\ & \hline \end{aligned}$
22	If not:	Change A1K2.
23	Is -WRITE AND TAPE OP (A1H2D03) plus?	Go to Seq 21.
24	Does - XOUTA BIT 1 ALU1 TO DF (A1G2G10) stay plus?	$\begin{aligned} & \text { Change in order: } \\ & \text { 1. A2T2 } \\ & \text { 2. B2E2 } \\ & \hline \end{aligned}$
25	Reset and restart the command sequence. Does -READ CYCLE (A1F2B05) ever go minus? This pulse may be hard to see.	Go to Seq 82.
26	Is either the -0-50 CLOCK BUS A1 DELAYED (A1F2S04) or - $25-75$ CLOCK bUS A1 DELAYED (A1F2SO3) at a solid level?	Change A1C2.
27	Reset and restart the command sequence. Does - WRT BUFFER EMPTY DOT (A1F2P09) ever go minus?	Go to Seq 44.
28	Reset and restart the command sequence. Does -WRITE GROUP BUFFER EMPTY (A1E2J07) ever go minus?	Go to Seq 37.
29	Is + SET 2ND BUFFER (A1G2G11) always plus?	Change A1G2.
30	Is -6250 bpi MODE (A1G2M07) plus?	Go to Seq 10.
31	Is +SET BYTE 4 (A1G2J11) plus?	Go to Seq 34.
32	Reset the command sequence. Is WRITE AND TAPE OP (A1G2D03) minus?	Go to Seq 42.
33	If not:	Change A1G2.
34	Is +SET WRITE DATA (A1F2P03) plus?	Change A1F2.
35	Is + SET WRITE DATA B (A1F2 J02) plus?	Change A1E2.
36	If not:	Change A1F2.
37	Is -DATA CONVERTER ON (A1E2M12) plus?	Go to Seq 40.
38	Is -STAT BIT 3 -TRACK (A1L2D12) minus?	$\begin{aligned} & \text { Change in order: } \\ & \text { 1. A2O22 } \\ & \text { 2. A2L2 } \\ & \hline \end{aligned}$
39	If not:	Change A1L2.
40	Is -STAT BIT 3 7-TRACK (A1E2P09) minus?	$\begin{aligned} & \text { Change in order: } \\ & \text { 1. A2O2 } \\ & \text { 2. A2L2 } \end{aligned}$
41	If not:	Change A1E2.

Seq	Condition/Instruction	
42	Reset the tape control. Is -STA SBIT OTAPE OP TO DF (A1K2U06) minus?	Action Change in order: 1. A222
43	If A2L2	

Caution: Removing this card may cause channel errors even with power off. Put CPU in the single cycle mode before removing card.

Seq	Condition/Instruction	Action
61	Is -50-100 CLOCK BUS DEL (A1F2G04) pulsing?	Go to Seq 63.
62	If not:	Change A1C2.
63	Reset and restart the command sequence Does - WRITE DATA READY (A1F2P10) ever go minus?	Change A1F2.
64	Is -WR AND TAPE OP NOT CTL (A1C2P12) plus?	Go to Seq 72.
65	Reset and restart the command sequence while looking at + RESET SENSE DATA (A1C2P05) Does it pulse? There will be only one 50 ns pulse.	Go to Seq 67.
66	If not:	Change B2E2.
67	Reset and restart the command sequence while scoping -SERVICE RESPONSE (A1C2M07). Does this line pulse once for each byte to be written? CE Panel Byte Count: 00-writes 3 bytes. 01-FE-writes 3 bytes more than hex value.	Go to Seq 70.
68	Reset and restart the command sequence. Does -SERVICE IN FOR DATA ever pulse? With EC733814-B2M2U12 Without EC733814-B2L2U12.	With EC733814-change B2M2. See Caution. Without EC733814-change B2L2. See Caution.
69	If not:	Change A1C2.
70	Reset and restart the command sequence while looking at -WRITE DATA READ (A1F2P10). Does this line pulse once for each byte to be written? CE Panel Byte Count: 00-writes 3 bytes 01-FE-writes 3 bytes more than hex value.	Change A1F2.
71	If not:	Change A1C2.
72	Is -STAT BIT 2 TO DF (A1K2U09) minus?	Change in order: 1. A2T2 2. B2E2
73	If not:	Change A1K2.
74	Is -xouta bit o alu1 to df (A1G2S05) minus?	$\begin{aligned} & \text { Change in order: } \\ & \text { 1. A2T2 } \\ & \text { 2. B2E2 } \end{aligned}$
75	If not:	Change A1G2.
76	Is -6250 bpi MODE (A1G2M07) plus?	Go to Seq 10.

Seq	Condition/Instruction	Action
77	Is +SET BYTE 4 (A1G2J11) always plus?	Change A1F2.
78	Reset and restart the command sequence. Sync the scope plus on +SET WRITE DATA (A1F2P03) and compare it to SET WRITE DATA B (A1F2JO2). Are they the same?	Go to Seq 80.
79	If not:	Change A1E2.
80	Reset and restart the command sequence. Sync the scope minus on -STEP BYTE COUNTER (A1F2B02). Does it pulse minus at least 4 times?	Go to Seq 74.
81	If not:	Change A1F2.
82	Reset and restart the command sequence. Sync the scope minus on -ORC GATE (A1F2M05). Does it ever go minus?	Go to Seq 84.
83	If not:	Go to Seq 76.
84	Scope -ORC GATE (A1F2M05) while in loop. Does it stay minus?	Go to Seq 76.
85	$\begin{aligned} & \text { Is + STOP TO DATA FLOW (A1F2G11) } \\ & \text { minus? } \end{aligned}$	Go to Seq 58.
86	Reset and restart the command sequence. Does -PARTIAL OR LAST FRAME (A1G2J10) ever go minus?	Go to Seq 92.
87	Reset and restart the command sequence. Does -PARTIAL OR LAST FRAME (A1E2J10) ever go minus?	Go to Seq 89.
88	If not:	Change A1F2.
89	Is -DATA CONVERTER ON (A1E2M12) plus?	Change A1E2.
90	Is -STAT BIT 3 7-TRACK (A1L2D12) minus?	$\begin{aligned} & \text { Change in order: } \\ & \text { 1. A2 } \mathrm{O2} 2 \\ & \text { 2. A2L2 } \end{aligned}$
91	If not:	Change A1L2.
92	Does -xouta bit 1 ALU1 to dF (A1G2G10) stay plus?	$\begin{aligned} & \text { Change in order: } \\ & \text { 1. A2T2 } \\ & \text { 2. B2E2 } \end{aligned}$
93	Reset and restart the command sequence Does -OVRUN OR ONES OR RD BFR BRCH ever go plus? With EC733814-B2L2U06 Without EC733814-B2M2U06.	With EC733814-change B2L2. See Caution. Without EC733814-change B2M2. See Caution.
94	Does -WCO (A1G2M05) pulse?	Change in order: 1. A1G2 2. A1F2 3. With EC733814, change B2L2. See Caution. Without EC733814, change B2M2. See Caution.
95	If not	Go to Seq 12.

C C

6250 WRITE OPERATIONS (Cont’d)

Seq	Condition/Instruction	Action
96	Reset and restart the command sequence Is -STAT BIT 1 SENSE (A1S2U09) ever minus?	$\begin{aligned} & \text { Change in order: } \\ & \text { 1. A2T2 } \\ & \text { 2. B2E2 } \end{aligned}$
97	Is -GATE TIE (A1C2B12) minus?	Change A1S2.
98	Is +CE MODE (A1C2J09) minus?	Go to ALD PK011 FH2 and trace line back to failing point.
99	Is -WR AND TAPE OP NOT CTL (A1C2P12) plus?	Go to Seq 72.
100	Are any of the following lines plus? +6250 bpi 1 Or 2 TRK CORR (A1S2SO2) +CRC A NOT EQUAL B (A1S2S03) +NEW CRC ERR (A1S2U03)	Change A1D2.
101	Reset and restart the command sequence. Does -COMPARE EQUAL SERV (A1R2J12) ever go minus?	Go to Seq 104.
102	Is -SERVICE RESPONSE (A1D2D10) ever minus?	Change in order: 1. A1C2 2. A1T2 3. A1S2
103	If not:	Go to Seq 53.
104	Reset and restart the command sequence Sync the scope minus on -CE STATUS IN (A1R2D13) Is + CBI BITS 3-6 ORED (A1R2B13) plus the second time the sync is minus?	Change A1R2.
105	If not:	Change in order 1. A1T2 2. A2R2 3. B2E2
106	Using ONLINE Friend program (OLT Section 0200), loop on the failure. See OLT User's Guide for instructions.	
107	Is + RESET SENSE DATA (A1C2P05) ever plus?	Go to Seq 109.
108	If not:	$\begin{aligned} & \text { Change in order: } \\ & \text { 1. A2T2 } \\ & \text { 2. B2E2 } \end{aligned}$
109	Sync the scope plus on +CTI BIT 4 SERVICE IN With EC733814-B2M2S09. Without EC733814-B2L2S09 Does -SERVICE RESPONSE (A1C2M07) become minus while the sync is plus?	Go to Seq 114.
110	Is +DATA IN plus while the sync is plus? With EC733814-B2M2U07. Without EC733814-B2L2U07.	Go to Seq 112.
111	If not:	With EC733814-change B2M2. See Caution. Without EC733814—change B2L2. See Caution.

Seq	Condition/Instruction	Action
112	Is the failure occurring on Interface A?	Change B202. See Caution.
113	If not:	Change B2P2. See Caution.
114	Are you operating on a System/370 channel or on a System/360 channel with DATA IN/DATA OUT feature?	Go to Seq 120.
115	Is + SERVICE IN FOR DATA (A1C2P06) always minus?	Go to Seq 117.
116	If not:	Change A1C2.
117	Is -SERVICE IN always minus? With EC733814-B2M2S08 Without EC733814-B2L2S08.	With EC733814-change B2M2. See Caution. Without EC733814—change B2L2. See Caution.
118	Are you operating on Interface A?	With EC733814-change B2S2. See Caution. Without EC733814—change B2R2. See Caution.
119	If not:	With EC733814-change B2R2. See Caution. Without EC733814-change B2S2. See Caution.
120	Does -DATA IN TO DRIVERS (A1C2J13) ever become minus?	Go to Seq 122.
121	If not:	Change A1C2.
122	Does + DATA OUT (A1C2U05) ever become plus?	With EC733814-change B2M2. See Caution. Without EC733814-change B2L2. See Caution.
123	If not:	Go to Seq 112.

$\begin{aligned} & \begin{array}{l} \text { XE } 3000 \\ \text { Sea } 1 \text { of } 2 \end{array} \end{aligned}$	${ }^{8492587}$	See EC History	845958 1 Sep 79				

3803-2/3420

r
CCCC
cue reset on interface b

From: 13-001		
ERROR DESCRIPTION: In this loop, ALU1 is attempting to reset a CUE on Interface B. if, after the RESET is issued, a CUE still exists, additional attempts are made until the CUE is reset. A loop occurs if the RESET is not effective.		
Most Probable Cause: A. B2P2, see Caution. B. B2E2 C. With EC733814-B2L2. Without EC733814-B2M2. Caution: Removing this card may cause channel errors even with power off. Put CPU in single cycle mode before removing card.		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise. Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Turn ROS Mode switch to Norm. Operate Set ROS Mode switch. Operate Start or Step switch.	
2	Sync the scope plus on +RESET CUE CHAN B (B2E2J11). A 50 ns pulse should appear at approximately 850 ns intervals. Is the line pulsing?	Go to Seq 4.
3	If not:	Change B2E2.
4	Scope +CUE PENDING CHAN B (B2P2U13). This line should go and stay minus after the resets in Seq 2. Is this line minus?	With EC733814-change B2L2 Without EC733814-change B2M2.
5	If not:	Change B2P2. See Caution.

From: 13-000		
ALU1 is waiting for ALU2 to complete a Write operation away from load point which it cannot complete because of a tach velocity failure.		
FRU List: 1. A2D2 2. A2M2		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Perform multiple Write operations away from load point. Tape will probably run away.	
2	Does TACH VELOCITY (A2D2B02) pulse?	Change A2M2.
3	If not:	Change A2D2.

- Coprright International Eusinoses Mechines Capporation 1976, 1979

 ALU1 IS WAITING FOR END OF DATA (EOD) ON WRITE

From: 13-000		
ALU1 is in a 7- or 9-track Write operation waiting for EOD to be written.		
Most Probable Cause:Y1C2		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise. Remember to END all problems or maintenance calls by going to MAP $00-030$		
Seq	Condition/Instruction	Action
1	Turn ROS Mode switch to Norm. Operate Set ROS Mode switch momentarily. Operate Start or Step switch momentarily	
2	Is ALU1 at 000?	Recheck symptoms. Return to the MAP that initiated this entry.
3	If not:	Change Y1C2.

3803-2/3420

- Copyrigh International Business Machines Corporatoo 1976, 1979

From ALU1 Listing
ERROR DESCRIPTION: Waiting for STATB to rise. Go to Map 13-450. \mathbf{l}

ALU1 LOOP

From ALU1 Listing	
ERROR DESCRIPTION:	
This loop is used in 1000 bpi write operations to look for ending ALL ONES character	
which is the normal exit.	It also monitors for HALT I/O and ALU2 error conditions.
Most Probable Cause:	
A.	
A1C2	
B.	A1F2
C.	A1G2

3803-2/3420

| XE3160 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Sea 1 of 2 | $\begin{array}{l}\text { 4169696 } \\ \text { Part Number }\end{array}$ | $\begin{array}{l}\text { See EC } \\ \text { History }\end{array}$ | $\begin{array}{c}845958 \\ 1\end{array}$ Sep 79 |

C C C

SENSE ANALYSIS

From: 12-000, Customer Errors, Start 1, 00-010, 13-000			
Note: Refer to sense chart 00-005 and examine sense data to determine its validity. Look for bits that should always be on or off, such as EC number, and features. Next, look for bits that are not logical such as EOT and Load Point both on, and 7 -track and dual density both on. If sense data is not valid, replace TU cards L2, K2, K6, and M2.			
Caution: Removing this card may cause channel errors even with power off. Put the CPU in Single Cycle mode before removing this card.			
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.			
Seq	Sense Information	Error	Action
1	$\begin{array}{\|l\|l\|} \text { Byte } 0 \\ \text { Rit } \end{array}$ $\text { Bit } 1$	Intervention Required	If Byte 1, Bit 1 (Tape Unit Ready) is off, go to 15-010, otherwise go to 14-011, Seq 47.
2	$\begin{array}{\|l} \hline \text { Byte } 0 \\ \text { Bit } 0 \end{array}$	Command Reject	Change: 1. B2L2 Go to 15 See Caution Go to 15-020
3	$\text { Byte } 0$ $\text { Bit } 3$	Equipment Check	Go to Seq 26.
4	$\begin{aligned} & \text { Byte } 0 \\ & \text { Bit } 2 \end{aligned}$	Bus Out Check	Change: 1. With EC733814, B2L2. See Caution. Without EC733814, B2M2. See Caution 2. B2N2 If Byte 4, Bit 0 (ALU Check) is on, go to Seq 100, otherwise go to $15-030$.
5	$\begin{aligned} & \begin{array}{l} \text { Byte } 0 \\ \text { Bit } 5 \end{array} \end{aligned}$	Overrun	Go to 14-010, Seq 1.
6	$\begin{array}{\|l} \hline \text { Byte } 0 \\ \text { Bit } 6 . \end{array}$	Word Count Zero	Change: 1. B2O2. See Caution. Go to $15-050$
7	$\begin{array}{\|l\|l\|l\|} \hline \text { Byte } 0 \\ \text { Bit } \end{array}$ $\text { Bit } 7$	Data Convert Check	Change: 1. A1L2 2. Y1P2 Go to 15-070
8	Byte 4 Bit 6	TU Check	Go to 14-011, Seq 49.
9	$\begin{aligned} & \text { Byte } 0 \\ & \text { Bit } 4 \end{aligned}$	Data Check	Make sure the read/write head, tape path, and the capstan are clean. See 85-005 then retry. Proceed to Seq 11A
10		If not:	Go to Seq 17.
11A		Does the problem still exist?	Go to Seq 11c.

Seq	$\begin{gathered} \text { Sense } \\ \text { Information } \end{gathered}$	Error	Action
118		If not:	Inform the customer of the importance of cleaning. Return the subsystem to the customer.
11C	Byte 1 Bit 5	Write Status	Go to Sea 14.
12	$\begin{array}{\|l\|l} \text { Byte } \\ \text { Bit } 5 \end{array}$	LWR	Go to Seq 43.
13		Read Data Check	Go to Seq 73.
14		Write errors only at beginning of tape?	Strip some tape from the beginning of the reel or try another reel and proceed to Seq 15.
15		Same error?	Go to Seq 43.
16		If not:	Tape damage is likely. Try to find which tape unit caused the damage and check tracking and reel positioning on that unit
17		Sense printout missing or all zeros?	Change: 1. A1C2 2. Y 102 Go to 15-080.
18	Byte 7 Any bit	Sets TU Check	Change: 1. A 1 H 2 2. A2R2 3. Y1Q2 Go to 15-090
19	$\begin{array}{\|l\|} \hline \text { Byte } 4 \\ \text { Bit } 0 \end{array}$	ALU Hardware Error	Go to Sea 100.
20	Byte 1 Bit 7	Not Capable	Go to 14-010, Seq 10.
21	$\begin{array}{\|l\|} \hline \text { Byte } 8 \\ \text { Bit } 4 \\ \hline \end{array}$	SAGC Check	Go to 14-010, Seq 13.
22	$\begin{array}{\|l\|} \text { Byte } 5 \\ \text { Bit } 3 \end{array}$	ID Burst Check	Change: 1. A 1 K 2 2. A2O2 3. Y 1 Q 2 Go to 17-050.
23		Was the failing $O P$ code a Rewind (07) command?	The expected sense data was not received after the completion of a Rewind command. Change: 1. A2D2 Go to 15-140.
24	$\begin{array}{\|l\|} \hline \text { Byte } 9 \\ \text { Bit } 0 \end{array}$	$\begin{array}{\|l} \hline 1 \text { or } 2 \text { Trk } 6250 \\ \text { correction. } \end{array}$	Go to 14-012, Seq 79.

Seq	Sense Information	Error	Action

Seq	$\begin{gathered} \text { Sense } \\ \text { Information } \end{gathered}$	Error	Action
40	$\begin{aligned} & \text { Byte } \\ & \text { Dit } \end{aligned} 10$ $\text { Bit } 3$	Write TU or Record Not Detected. Block Read Back Check.	Change: 1. Y 1 P 2 2. A2T2 Go to 16-190
41	$\text { Byte } 10$ $\text { Bit } 4$	Dynamic Reversal/Load point time out.	Change: 1. A2D2 2. $A 2 E 2$ Go to 16-200
42	Byte 4, bit 1 or byte 21, bit 4 or byte 7, bit byte 4, bit 6.	Reject TU or REW or DSE without TU Check.	Go to 14-014, Seq 179.
43		$\begin{aligned} & \text { Is this entry because } \\ & \text { of a failure on Section } \\ & \text { A Routre on } \\ & \text { Message 47. } \\ & \text { (AAO147)? } \\ & \hline \end{aligned}$	Go to Seq 46.
44	Note	Sequences 45-53 are Write Data Checks.	
45	$\begin{array}{\|l\|l\|} \hline \text { Byte } 3 \\ \text { Bit } 7 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{P} \text { Compare or } \mathrm{C} \\ \text { Compare } \\ \hline \end{array}$	Go to 14-011, Seq 73.
46	$\begin{array}{\|l\|l} \text { Byte } 4 \\ \text { Bit } 3 \\ \hline \end{array}$	Write Trigger VRC	Go to 14-010, Seq 18.
47	$\begin{array}{\|l\|} \hline \text { Byte } 99 \\ \text { Bit } 1 \end{array}$	Velocity change during Write	Go to Seq 115.
48	$\begin{array}{\|l\|l\|} \hline \text { Byte } 5 \\ \text { Bit } 2 \end{array}$	Write Tape Mark	Go to 14-010, Seq 38.
49	$\begin{aligned} & \text { Byte } 8 \\ & \text { Bit } 0 \end{aligned}$	$\begin{aligned} & \text { IBG Detected While } \\ & \text { Writing } \end{aligned}$	Change: 1. A1C2 A1K2 Go to 17-080.
50	$\begin{aligned} & \text { Byte } 8 \\ & \text { Bit } 3 \end{aligned}$	Early Begin Read Back Check	Change: $\begin{aligned} & \text { 1. Y1R2/S2/T2 } \\ & \text { 2. Y1P2 } \\ & \text { Go to } 17-100 . \\ & \hline \end{aligned}$
51	$\begin{array}{\|l\|} \hline \text { Byte } 6 \\ \text { Bit } 0 \\ \hline \end{array}$	Seven-track tape unit	Go to Seq 65-NRZI Write Data Checks
52	Byte 6	6250 bpi tape unit	Go to Seq 54.
53	$\begin{array}{\|l\|l\|} \hline \text { Byte } 6 \\ \text { Bit } 3 \end{array}$	$\begin{aligned} & 3420 \text { not set to } \\ & 1600 \text { bpi. } \\ & \hline \end{aligned}$	Go to Seq 65-NRZI Write Data Checks
54	Note	Sequences 55-64 are 6250/PE Write Data Checks.	
55	Byte 3 Bit 2	Skew Error	Go to 14-020, Seq 194.

Seq	Sense	Error	Action
56	$\begin{aligned} & \text { Byte } 5 \\ & \text { Bit } 4 \end{aligned}$	Start Read Check	Go to 14-012, Seq 102.
57	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \text { Byte } \\ \text { Bit } \end{array}$	Read/Write VRC	Change: 1. Y1N2 2. Y1S2 3. A1F2 Go to 17-170.
58	$\begin{array}{l\|l\|l\|l\|l\|} \text { Byte } 8 \\ \text { Bit } \end{array}$	Slow End Read Back Check	Go to 14-010, Seq 30.
59	$\begin{aligned} & \text { Byte } 3 \\ & \text { Bit } 4 \end{aligned}$	VRC Envelope Check	Go to 14-010. Seq 35.
60	$\left.\right\|_{\text {Byte }} ^{\text {Byit }}{ }^{3}$	MTE/LRC	Go to 14-010, Seq 26.
61	$\begin{aligned} & \text { Byte } 5 \\ & \text { Bit } 6 \end{aligned}$	Postamble Error	Change: 1. Y1H2 2. A1D2 3. Y 1 Q 2 Go to 17-190
62	$\left\lvert\, \begin{aligned} & \text { Byte } 3 \\ & \text { Bit } 3 \end{aligned}\right.$	End Data Check/CRC	Go to 14-012, Seq 87.
63	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \text { Byte } \\ \text { Bit } \end{array}$	Noise	Go to 14-010, Seq 28.
64		If not:	To reach this point, there is a Data Check Error without a sense bit to support it. Go to 14-014, Seq 179.
65	Note	Sequences 66-72 are NRZI Write Data Checks. If the failure occurs on 9-track NRZI operation only, change: 1. Y1C2 2. Y1D2 7 the failure occurs on 7-track NRZI operation , 1. A1E2 2. A1L2 If the failure occurs on both 9-track and operations, change: 1. Y 1 C 2 2. Y1D2	
66	$\left\lvert\, \begin{aligned} & \text { Byte } \\ & \text { Bit } 4 \end{aligned}\right.$	NRZ1 Hi Clip VRC	See note in Seq 65 for changes. Go to 17-310.
67	$\begin{aligned} & \text { Byte 3 } \\ & \text { Bit 2 } \end{aligned}$	Skew Error	See note in Seq 65 for changes. Go to 17-160.
68	$\begin{aligned} & \text { Byte 3 } \\ & \text { Bit } 1 \end{aligned}$	LRC Error	See note in Seq 65 for changes. Go to 17-310.

Seq	Sense Information	Error	Action
69	$\begin{aligned} & \text { Byte } 3 \\ & \text { Bit } 3 \end{aligned}$	End Data Check (PE)/CRC	Change: 1. Y1C2 2. Y1D2 Go to 17-590.
70	$\begin{array}{\|l\|l\|} \hline \text { Byte } \\ \text { Bit } & 1 \\ \hline \end{array}$	Noise	See note in Seq 65 for changes. Go to 17-370.
71	$\begin{aligned} & \text { Byte } 3 \\ & \text { Bit O } \end{aligned}$	R/W VRC	See note in Seq 65 for changes Go to 17-170.
72		If not:	To be here there is a NRZI Data Check without supporting sense information. Go to 14-014, Seq 179.
73	Note	Sequences 74-91 are 6250/PE Read Data Checks.	
74		Does the tape unit read other tapes okay?	Check the OBR/SDR for the tape unit that wrote this tape. If the OBR/SDR doesn't show a higher number of errors than other tape units in the account, recheck symptoms. If it shows a higher number of arrors than other tape units in the account, go to 00-011 and develop the tape to determine the cause of the errors.
75	$\begin{array}{\|l\|l\|l\|} \hline \text { Byte } 6 \\ \text { Bit } 0 \end{array}$	Seven-track tape unit	Go to Seq 92-NRZ1 Read Data Checks.
76	$\begin{aligned} & \text { Byte } 6 \\ & \text { Bit 4 } \end{aligned}$	6250 bpi TU	Go to Seq 78.
77	$\begin{array}{\|l\|l\|} \hline \text { Byte } 6 \\ \text { Bit } 3 \\ \hline \end{array}$	$\begin{array}{\|l} 3420 \text { Not Set to } \\ 1600 \mathrm{bpi} \end{array}$	Go to Seq 92-NRZI Read Data Checks.
78	$\begin{array}{\|l\|l\|} \hline \text { Byte } 8 \\ \text { Bit } 4 \\ \hline \end{array}$	SAGC Check	Go to 14-010, Seq 13.
79	$\begin{array}{\|l\|l\|l\|l\|} \hline \text { Byte } 5 \\ \text { Bit } 4 \\ \hline \end{array}$	Start Read Check	Go to 14-012, Seq 102.
80	$\begin{aligned} & \text { Byte } 5 \\ & \text { Bit } 5 \end{aligned}$	Partial Record	Go to 14-011, Seq 42.

3803-2/3420

| XE3200 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Seo 2 ot 2 | 2 \(\begin{aligned} \& 2735883

\& Par Number\end{aligned}\)

Seq	Sense Information	Error	Action
81	$\begin{aligned} & \text { Byte } 3 \\ & \text { Bit O } 0 \\ & \hline \end{aligned}$	Read/Write VRC.	Go to 14-013, Seq 143.
82	$\begin{aligned} & \text { Byte } 3 \\ & \text { Bit } 2 \end{aligned}$	Skew Error	Go to 14-013, Seq 124.
83	Byte 3 Bit 1	MTE/LRC	Go to 14-010, Seq 26.
84	$\begin{array}{\|l} \hline \text { Byte } 3 \\ \text { Bit } 7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{P} \text { Compare or } \mathrm{C} \\ \text { Compare } \\ \hline \end{array}$	Go to 14-011, Seq 61.
85	$\begin{array}{\|l\|} \hline \text { Byte } 6 \\ \text { Bit } 3 \\ \hline \end{array}$	3420 Not Set To 1600 bpi	Go to Seq 87.
86	$\begin{array}{\|l\|l\|l\|} \hline \text { Byte } 3 \\ \text { Dit ? } \end{array}$ $\text { Bit } 3$	End Data Check/CRC (PE)	Change: 1. A1D2 2. Y 1 H 2 Go to 17-530
87	$\begin{array}{\|l} \begin{array}{l} \text { Byte } \\ \text { Bit } 3 \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { End Data Check/CRC } \\ & (6250 \text { bpi) } \end{aligned}$	Go to 14-012, Seq 87.
88	$\text { Byte } 5$ $\text { Bit } 6$	Postamble Error	Change: 1. Y 1 H 2 2. A1D2 3. Y1O2 Go to 17-190
89	$\begin{array}{\|l\|} \hline \text { Byte } 8 \\ \text { Bit } 6 \end{array}$	Slow End	Go to 14-010, Seq 30.
90	$\begin{array}{\|l\|} \hline \text { Byte } 1 \\ \text { Bit } 0 \end{array}$	Noise	Change A 1 K 2. Go to 17-370.
91		If not:	To get to this point there is a Read Data Check without supporting sense information. Go to 14-014, Seq 179.
92	Note	Sequences 93-99 are NRZI Read Data Checks.	
93		Read error in only one direction?	Check NRZI tracking and skew. See 08-000.
94	$\begin{array}{\|l\|l\|l\|l\|} \hline \begin{array}{l} \text { Byte } \\ \text { Bit 7 } \end{array} \end{array}$	$\begin{aligned} & \text { P Compare or C } \\ & \text { Compare } \end{aligned}$	Change: 1. A1E2 2. A1L2 Go to 17-010.
95	$\begin{aligned} & \text { Byte } 1 \\ & \text { Bit } 0 \end{aligned}$	Noise	See note in Seq 65 for changes. Go to 17-370.
96	$\begin{aligned} & \text { Byte } 3 \\ & \text { Bit } 0 \end{aligned}$	Read/Write VRC	See note in Seq 65 for changes. Go to 17-168.

Seq	Sense Information	Error	Action
97	$\text { Byte } 3$ $\text { Bit } 3$	End Data Check/CRC Error	Change: 1. Y 1 C 2 2. Y1D2 Go to 17-590.
98	$\begin{array}{\|l\|} \hline \text { Byte } 3 \\ \text { Bit } 1 \\ \hline \end{array}$	MTE/LRC Error	See note in Seq 65 for changes. Go to 17-310.
99		If not:	There is a Data Check without supporting sense information. Go to 14-014, Seq 179.
100		-alu hardware ERROR you know the that of both ALU1 and ALU2, when the failure occurs. If you do not have sense bytes 11 and 12 , or have not had a failure in Check Stop mode with the ALU1/ALU2 switch in each position, try the offline procedure beginning at Sequence 3 of 13-000.	Go to Seq 101.
101		Referring to ALU listing, do the lamps indicate an invalid address? address?	Change: 1. B2F2 2. B2E2 Go to 13-090.
102	Byte 11 Bit 2	Lo IC/Lo ROS parity? (ALU1)	Change: 1. B 2 H 2 2. B2E2 Go to 16-010.
103	Byte 11 Bit 3	Hi IC/Hi ROS parity? (ALU1)	Change: 1. B 2 H 2 2. B2D2 Go to $16-020$.
104	$\begin{array}{\|l\|l\|} \hline \text { Byte } 12 \\ \text { Bit? } \end{array}$ $\text { Bit } 2$	Lo IC/Lo ROS parity? (ALU2)	Change: 1. A2L2 2. A 2 H 2 Go to 16-080
105	$\left\lvert\, \begin{array}{\|l\|l\|} \text { Byte } 12 \\ \text { Bit 3 } \end{array}\right.$	Hi IC/Hi ROS parity? (ALU2)	Change: 1. A2K2 2. A2D2 Go to 16-090
106	$\begin{array}{\|l\|} \hline \text { Byte } 11 \\ \text { Bit } 0 \end{array}$	B-Bus parity? (ALU1)	Change: 1. B2C2 2. A2P4 Go to 16-030

Seq	$\begin{array}{\|c} \text { Sense } \\ \text { Information } \end{array}$	Error	Action
107	$\left\lvert\, \begin{aligned} & \text { Byte } 12 \\ & \text { Bit 0 } \end{aligned}\right.$	B-Bus parity? (ALU2)	Change: 1. A 2 M 2 2. A2K2 Go to 16-100.
108	$\left\lvert\, \begin{array}{\|l\|l\|} \text { Byte } \\ \text { Bit 5 } 5 \end{array}\right.$	D-Bus parity? (ALU1)	Change: 1. B 2 C 2 2. A 2 O 2 Go to $16-040$.
109	$\left\lvert\, \begin{array}{\|l\|l\|} \text { Byte } \\ \text { Bit 5 } \end{array}\right.$	D-Bus parity? (ALU2)	Change: 1. A 2 N 2 2. A2T2 Go to 16-110
110	Byte Bit 7 Bit 7	BOC parity? (ALU1)	Change: 1. With EC733814, B2L2. See Caution. Without EC733814, B2M2. See Caution. 2. A2P4 Go to 16-050.
111	$\begin{array}{\|l\|l\|} \hline \text { Byte } \\ \text { Bit } 7 \end{array}$	BOC parity? (ALU2)	Change: 1. A2D2 2. A2M2 Go to 16-120
112	$\begin{aligned} & \text { Byte } 12 \\ & \text { Bit 4 } \end{aligned}$	Microprogram detected? (ALU2)	Change: 1. A 2 M 2 2. A2N2 Go to 16-130
113	Byte 11 Bit 4	Microprogram detected? (ALU1)	Change: 1. B2D2 2. B 2 C 2 Go to $16-060$
114		If not:	There is an ALU error without supporting sense information. Go to 14-014, Seq 179.
115		6250 Operation?	Go to Seq 117.
116	:	If not:	Change: 1. A2D2 2. A2E2 Go to 16-180
117	$\begin{array}{\|l\|l\|} \text { Byte } \\ \text { Bit } 1 \end{array}$ $\text { Bit } 1$	MTE?	Go to Sea 119.
118		If not:	Change: 1. A2D2 2. A2E2 Go to 16-180
119	$\begin{aligned} & \text { Byte 3 } \\ & \text { Bit 4 } \end{aligned}$	ENV CHK?	Go to 14-010, Seq 35.
120		If not:	Go to 14-010, Seq 26.

Caution: Removing this card may cause channel errors even with power off.
Put CPU in the Single Cycle mode before removing card.

Sense Byte to Bit Conversion

		∇				ex 00			
					2nd			its	
digit	0	1	2	3	digit	4	5	6	7
0					0				
1				\times	1				x
2			x		2			\times	
3			\times	\times	3			\times	\times
4		x			4		x		
5		x		x	5		x		x
6		x	x		6		x	\times	
7		x	x	\times	7		x	x	\times
8	x				8	x			
9	x			\times	9	x			\times
A	x		x		A	x		x	
B	x		x	\times	B	x		x	x
c	x	x			c	x	x		
D	x	x		\times	D	x	x		\times
E	x	x	x		E	x	x	x	
F	x	x	x	\times	F	x	x	x	\times
$\begin{aligned} & \text { 1st } \\ & \text { hex } \\ & \text { digit } \end{aligned}$	0	1	2	3	$\begin{array}{\|c\|} \hline \text { 2nd } \\ \text { hex } \\ \text { digit } \end{array}$	4	5	6	7
	Bits					Bits			

[^3]14-005
 NOTES:

From: 14-000			
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.			
Seq	Sense Information	Error	Action
1	$\begin{aligned} & \text { Byte } 1 \\ & \text { Bit } 5 \end{aligned}$	Write Status	Go to Seq 4.
2	$\begin{aligned} & \text { Byte } 0 \\ & \text { Bit 4 } \end{aligned}$	Data Check	Change: 1. A 1 C 2 2. A1E2 Go to 15-040.
3		If not:	Change: 1. A1F2 2. A 1 C 2 Go to 15-040
4	$\begin{array}{\|l\|l\|} \hline \text { Byte } 9 \\ \text { Bit } 3 \\ \hline \end{array}$	CRC III	Go to Seq 7 .
5	$\begin{aligned} & \text { Byte } 3 \\ & \text { Bit } 3 \end{aligned}$	End Data Check/CRC	Change: 1. A2T2 2 A1C2 Go to 15-040
6		If not:	Change: 1. A 1 C 2 2. A1F2 Go to 15-040.
7	$\text { Byte } 9$ $\text { Bit } 2$	Channel Buffer Check	Change: 1. A1C2 2. A1F2 Go to 15-040.
8	$\begin{aligned} & \text { Byte } 9 \\ & \text { Bit } 0 \end{aligned}$	6250 Correction	Change: 1. A1F2 2. A 1 C 2 Go to 15-040.
9		If not:	Change: 1. A 2 Q 2 2. B2L2 Go to 15-040.
10	$\text { Byte } 8$ $\text { Bit } 4$	SAGC Check	Change: 1. A 1 K 2 2. A 1 L 2 Go to 15-060.
11	$\begin{array}{\|l} \hline \begin{array}{l} \text { Byte 3 } \\ \text { Bit 4 } \end{array} \\ \hline \end{array}$	VRC/ENV Check	Change Y1P2. Go to $15-060$
12		If not:	Change: 1. A1K2 2. Y 1 Q 2 3. A 2 Q 2 Go to 15-060.

Seq	$\begin{array}{\|c\|} \hline \text { Sense } \\ \text { Information } \\ \hline \end{array}$	Error	Action
13	Byte 1 Bit 5	Write Status	Go to Seq 15.
14		If not:	Change: 1. A2O2 2. A1K2 Go to 16-220
15	$\begin{aligned} & \text { Byte } 5 \\ & \text { Bit } 3 \end{aligned}$	ID Burst Check	Change: 1. A 1 H 2 2. A1K2 Go to 16-220
16	$\begin{aligned} & \text { Byte } 4 \\ & \text { Bit } 3 \end{aligned}$	Write TRG VRC	Change A1G2 Go to 16-220
17		If not:	Change: 1. A1K2 2. A2O2 Go to $16-220$
18	$\begin{aligned} & \text { Byte } 9 \\ & \text { Bit } 0 \end{aligned}$	6250 Correction	Change: 1. A1G2 2. A2T2 Go to 17-020
19	$\begin{array}{\|l\|l} \text { Byte } 9 \\ \text { Bit } 3 \end{array}$	CRC III	Go to Seq 22.
20	$\begin{aligned} & \text { Byte } 3 \\ & \text { Bit } 4 \end{aligned}$	VRC/ENV Check	Change: 1. A1G2 2. A2T2 Go to 17-020
21		If not:	Change: 1. A1G2 2. A 1 H 2 Go to 17-020
22	$\begin{array}{\|l\|l\|} \hline \text { Byte } 3 \\ \text { Bit } \end{array}$	VRC/ENV Check	Go to Seq 24.
23		If not:	Change: 1. A1G2 2. A2T2 Go to 17-020
24	$\begin{aligned} & \text { Byte } 3 \\ & \text { Bit } 0 \end{aligned}$	R/W VRC	Change: 1. Y2K2/L2/M2 2. Y1J2 Go to 17-020
25		If not:	Change: 1. Y 1 H 2 2. Y 1 J 2 Go to 17-020

Seq	Sense nformation	Error	Action
26	$\begin{aligned} & \text { Byte } 1 \\ & \text { Bit } 5 \end{aligned}$	Write Status	Change: 1. Y1F2 2. Y1G2 3. Y1N2 Go to 17-110
27		If not:	Change: 1. A 1 K 2 2. Y1D2 Go to 17-110
28	$\begin{aligned} & \text { Byte } 3 \\ & \text { Bit } 4 \end{aligned}$	VRC/ENV Check	Change A1K2 Go to 17-370
29		If not:	Change: 1. A1D2 2. A 2 O 2 Go to 17-370.
30	$\begin{aligned} & \text { Byte } 1 \\ & \text { Bit } 5 \end{aligned}$	Write Status	Go to Seq 32.
31		If not:	Change Y1O2.
32	$\begin{aligned} & \text { Byte } 3 \\ & \text { Bit } 1 \end{aligned}$	Multi-Trk Error	Change Y102 Go to 17-150
33	$\begin{aligned} & \text { Byte 3 } \\ & \text { Bit 4 } \end{aligned}$	VRC/ENV Check	Change: 1. Y 1 H 2 2. Y1C2 3. Y 1 N 2 Go to 17-150
34		If not:	Change A1H2 Go to 17-150.
35	Byte 2 No Bits	Track In Error	Change: 1. $\mathrm{Y} 1 \mathrm{R} 2 / \mathrm{S} 2 / \mathrm{T} 2$ 2. Y1K2/L2/M2 3. Y1G2 Go to 17-220.
36	$\begin{aligned} & \text { Byte } 9 \\ & \text { Bit } 0 \end{aligned}$	6250 Correction	Change A1K2. Go to 17-220.
37		If not:	Change 11 H 2 . Go to 17-220
38	$\begin{array}{\|l} \hline \text { Byte } 8 \\ \text { Bit } 6 \\ \hline \end{array}$	Slow End Read Back Check	Go to Seq 40 .

3803-2/3420

$\begin{array}{l}\text { XE3350 } \\ \text { Seq } 2 \text { of } 2\end{array}$	$\begin{array}{c}8492589 \\ \text { Part Number }\end{array}$	$\begin{array}{c}\text { See EC } \\ \text { History }\end{array}$	$\begin{array}{c}845958 \\ 1 \text { Sep 79 }\end{array}$				

Seq	Sense Information	Error	Action
39		If not:	Change: 1. $\mathrm{Y} 1 \mathrm{R} 2 / \mathrm{S} 2 / \mathrm{T} 2$ 2. A 1 G 2 3. A 1 H 2 Go to 17-180.
40	$\begin{aligned} & \text { Byte } 8 \\ & \text { Bit 0 } \\ & \hline \end{aligned}$	IBG Detect	$\begin{array}{\|l} \hline \text { Change A1K2. } \\ \text { Go to } 17-180 . \\ \hline \end{array}$
41		If not:	Change A202 Go to 17-180.
42	$\begin{aligned} & \text { Byte } 9 \\ & \text { Bit } 0 \end{aligned}$	6250 Correction	Go to Seq 45.
43	$\begin{aligned} & \text { Byte } 3 \\ & \text { Bit } 2 \end{aligned}$	Skew	Change: 1. Y1D2 2. Y 1 Q 2 Go to 17-410.
44		If not:	Change Y1G2 Go to 17-410.
45	Byte 2 All Bits	Track In Error	Change A1G2 Go to 17-410
46		If not:	Change Y1N2 Go to 17-410.
47	$\begin{aligned} & \text { Byte } 0 \\ & \text { Bit } 3 \end{aligned}$	Equipment Check	Change: 1. A 2 Q 2 2. $A 2 R 2$ Go to 15-090.
48		If not:	Change: 1. A2T2 2. A1K2 3. A2R2 4. A2D2 Go to 15-090
49	$\left\lvert\, \begin{aligned} & \text { Byte } 1 \\ & \text { Bit } 5 \end{aligned}\right.$	Write Status	Go to Seq 53.
50	$\begin{aligned} & \text { Byte } 3 \\ & \text { Bit } 3 \end{aligned}$	End Data Check/CRC	Change A2T2. Go to 15-090.
51	$\begin{array}{\|l\|l\|} \hline \text { Byte } 3 \\ \text { Bit 0 } \\ \hline \end{array}$	R/W VRC	Change A2T2. Go to 15-090.
52		If not:	Change: 1. A 1 H 2 2. A2R2 3. Y1D2 4. Y 1 Q 2 Go to 15-090.
53	$\begin{aligned} & \text { Byte } 0 \\ & \text { Bit } 4 \\ & \hline \end{aligned}$	Data Check	Change A2T2. Go to $15-090$.

Seq	Sense Information	Error	Action
54	$\text { Byte } 6$ $\text { Bit } 1$	Wrt Curr Fail	Change A1K2 Go to $15-090$.
55		If not:	Change: 1. A 1 H 2 2. A2R2 3. Y1D2 4. Y102 Go to 15-090
56	$\begin{array}{\|l\|l} \text { Byte } 1 \\ \text { Bit } 5 \end{array}$	Write Status	Change: 1. A 1 H 2 2. A2R2 3. Y 1 Q 2 Go to 15-090
57		If not:	Change: 1. A 1 H 2 2. A2R2 3. Y1D2 4. Y 1 O 2 Go to 15-090
58	$\begin{array}{\|l} \text { Byte } 4 \\ \text { Bit } 3 \\ \hline \end{array}$	Wrt trg vrc	Change A1G2. Go to 16-170.
59	$\text { Byte } 3$ $\text { Bit } 4$	VRC/ENV Check	Change A202. Go to 16-170.
60		If not:	Change: 1. A1K2 2. A1G2 3. A2Q2 4. A2T2 Go to $16-170$.
61	$\begin{array}{\|l\|l\|l\|} \hline \text { Byte } \\ \text { Bit } 0 \end{array}$	6250 Correction	Go to Seq 66.
62	$\begin{aligned} & \text { Byte } 9 \\ & \text { Bit 2 } \\ & \hline \end{aligned}$	Channel Buffer Check	Go to Seq 68.
63	$\begin{aligned} & \text { Byte } 9 \\ & \text { Bit 3 } \end{aligned}$	CRC III	Change: 1. A1E2 2. $\mathrm{Y} 1 \mathrm{~K} 2 / \mathrm{L} 2 / \mathrm{M} 2$ 3. Y1G2 4. Y1D2 Go to 17-010
64	$\left\lvert\, \begin{aligned} & \text { Byte } 1 \\ & \text { Bit } 0 \end{aligned}\right.$	Noise	Change: 1. A1F2 2. A1D2 Go to 17-010

Seq	$\begin{array}{\|c} \text { Sense } \\ \text { Information } \end{array}$	Error	Action
65		If not:	Change: 1. A 1 C 2 2. A1D2 3. A1F2 4. A1G2 5. A1L2 Go to 17-010.
66	$\text { Byte } 9$ $\text { Bit } 2$	Channel Buffer Check	Change: 1. Y1F2 2. $\mathrm{Y} 1 \mathrm{R} 2 / \mathrm{S} 2 / \mathrm{T} 2$ Go to 17-010.
67		If not:	Change: 1. Y1F2 2. Y1J2 Go to 17-010
68	$\begin{aligned} & \text { Byte } 9 \\ & \text { Bit } 3 \\ & \hline \end{aligned}$	CRC III	Go to Seq 71.
69	$\begin{array}{\|l\|l\|} \hline \text { Byte } 3 \\ \text { Dite } \end{array}$ $\text { \|Bit } 3$	End Data Check/CRC	Change: 1. A1F2 2. $A 1 K 2$ Go to 17-010
70		If not:	Change A1C2 Go to 17-010
71	$\begin{array}{\|l\|l} \text { Byte } \\ \text { Bit 4 } \\ \hline \end{array}$	VRC/ENV Check	Change Y1J2. Go to 17-010.
72		If not:	Change: 1. A1F2 2. A1G2 Go to 17-010
73	$\begin{aligned} & \text { Byte } 9 \\ & \text { Bit } 0 \end{aligned}$	6250 Correction	Go to Seq 77.
74	$\begin{aligned} & \hline \text { Byte 9 } \\ & \text { Bit 2 } \end{aligned}$	Channel Buffer Check	Change: 1. A1F2 2. A 1 C 2 Go to 17-010.
75	$\begin{aligned} & \text { Byte } 9 \\ & \text { Bit 3 } \end{aligned}$	CRC III	Change: 1. A1E2 2. A1G2 3. A1F2 4. A1K2 Go to 17-010

Seq	Sense Information	Error	Action

Seq	Sense Information	Error	Action
88	$\begin{aligned} & \text { Byte } 9 \\ & \text { Bit } 0 \end{aligned}$ $\text { \| Bit } 0$	6250 Correction	Change: 1. Y 1 J 2 2. Y1N2 Go to 17-540
89	Byte 2 No Bits	Track In Error	Change: 1. A1F2 2. Y 1 H 2 3. Y1J2 4. A1C2 Go to 17-540.
90		If not:	Change Y 1 J 2 . Go to 17-540
91	$\begin{aligned} & \text { Byte } 9 \\ & \text { Bit } 0 \end{aligned}$	6250 Correction	Go to Seq 95.
92	$\begin{aligned} & \text { Byte } 3 \\ & \text { Bit } 1 \end{aligned}$	Multi-Trk Error	Go to Seq 98.
93	$\begin{aligned} & \text { Byte } 9 \\ & \text { Bit } 3 \end{aligned}$	CRC III	Go to Seq 189.
94		If not:	Change: 1. Y 1 H 2 2. A1D2 3. $\mathrm{Y} 1 \mathrm{~K} 2 / \mathrm{L} 2 / \mathrm{M} 2$ 4. Y1D2 Go to 17-540.
95	Byte 2 No Bits	Track In Error	Change A1G2 Go to 17-540.
96	$\begin{array}{\|l} \hline \text { Byte } 9 \\ \text { Bit } 3 \end{array}$	CRC III	Change: 1. A1G2 2. Y 1 J 2 Go to 17-540
97		If not:	Change Y1F2. Go to 17-540.
98	$\text { Byte } 2$ No Bits	Track In Error	Change Y1F2 Go to 17-540.
99		If not:	Change: 1. Y1N2 2. Y1J2 Go to 17-540.
100	Byte 2 No Bits	Track In Error	Change: 1. A1D2 2. A1E2 3. Y1G2 4. $\mathrm{Y} 1 \mathrm{~K} 2 / \mathrm{L} 2 / \mathrm{M} 2$ Go to 17-540.

Seq	Sense Information	Error	Action
101		If not:	Change Y1F2. Go to 17-540.
102	Byte 1 Bit 5	Write Status	Go to Seq 108.
103	$\begin{array}{\|l} \text { Byte } 3 \\ \text { Bit } 2 \end{array}$	Skew	Go to Seq 113.
104	$\begin{aligned} & \text { Byte } 9 \\ & \text { Bit } 0 \end{aligned}$	6250 Correction	Change: 1. Y 1 N 2 2. A 2 O 2 Go to 17-070
105	$\begin{aligned} & \text { Byte } 2 \\ & \text { No Bits } \end{aligned}$	Track In Error	Change: 1. Y1N2 2. A1C2 3. A 1 K 2 Go to 17-070
106	Byte 2 All Bits	Track In Error	Change Y102 Go to 17-070.
107		If not:	$\begin{array}{\|l} \hline \text { Change Y1P2. } \\ \text { Go to 17-070. } \end{array}$
108	$\begin{array}{\|l} \text { Byte } 9 \\ \text { Bit } 0 \end{array}$	6250 Correction	Change $\mathrm{Y} 1 \mathrm{~K} 2 / \mathrm{L} 2 / \mathrm{M} 2$. Go to 17-070.
109	$\begin{aligned} & \text { Byte } 3 \\ & \text { Bit } 4 \end{aligned}$	VRC/ENV Check	Go to Seq 111.
110		If not:	Change 1. A 1 K 2 2. A2L2 Go to 17-070
111	$\begin{aligned} & \text { Byte } 8 \\ & \text { Bit } 4 \end{aligned}$	SAGC Check	Change: 1. A1C2 2. A1K2 3. A2O2 Go to 17-070
112		If not:	Change: 1. Y1D2 2. Y1N2 Go to 17-070
113	$\begin{aligned} & \text { Byte } 9 \\ & \text { Bit } 0 \end{aligned}$	6250 Correction	Go to Seq 118.
114	$\begin{array}{l\|l\|l\|} \hline \text { Byte 3 } \\ \text { Bit 4 } \end{array}$	VRC/ENV Check	Go to Seq 121.

3803-2/3420

14-012
OCopright International Business Machines Corporation 1976,

SENSE ANALYSIS (Cont'd)

Seq	Sense Information	Error	Action
115	Byte 2 No Bits	Track In Error	Change: 1. Y 1 N 2 2. A1C2 3. Y1D2 Go to 17-070.
116	Byte 2 All Bits	Track In Error	Change: 1. Y1K2/L2/M2 2. Y102 Go to 17-070.
117		If not:	Change: 1. Y 1 Q 2 2. A1C2 Go to 17-070
118	Byte 2 No Bits	Track In Error	Change Y 1 N 2 . Go to 17-070.
119	Byte 2 All Bits	Track In Error	Change Y1N2. Go to 17-070.
120		If not:	Change Y 1 J 2 . Go to 17-070.
121	$\begin{array}{\|l} \hline \text { Byte } 2 \\ \text { No Bits } \end{array}$	Track In Error	Change: 1. Y1N2 2. Y 1 P 2 Go to 17-070.
122	Byte 2 All Bits	Track In Error	$\begin{array}{\|l\|} \hline \text { Change Y1P2. } \\ \text { Go to 17-070. } \\ \hline \end{array}$
123		If not:	Change: 1. Y1K2/L2/M2 2. $Y 1 P 2$ Go to 17-070.
124	$\begin{array}{\|l\|} \hline \text { Byte } 1 \\ \text { Bit } 5 \\ \hline \end{array}$	Write Status	Go to Seq 127.
125	Byte 1 Bit 0	Noise	Change: 1. Y1K2/L2/M2 2. Y1C2 Go to 17-160.
126		If not:	Change: 1. A1K2 2. Y1P2 Go to 17-160.
127	$\begin{array}{\|l} \text { Byte } 8 \\ \text { Bit } 6 \end{array}$	Slow End Read Back Check	Go to Sea 139.
128	$\begin{aligned} & \text { Byte } \\ & \text { Bit 0 } \end{aligned}$	6250 Correction	Go to Seq 132.

Seq	Snfonse Infation	Error	Action

Seq	Sense Information	Error	Action

Seq	$\begin{gathered} \text { Sense } \\ \text { Information } \end{gathered}$	Error	Action
153		If not:	Change: 1. $\mathrm{Y} 1 \mathrm{~K} 2 / \mathrm{L} 2 / \mathrm{M} 2$ 2. Y 1 H 2 Go to 17-168.
154	$\begin{array}{\|l\|} \text { Byte } 9 \\ \text { Bit 3 } \\ \hline \end{array}$	CRC III	$\begin{array}{\|l} \hline \text { Change } \mathrm{Y} 1 \mathrm{~N} 2 . \\ \text { Go to } 17-168 . \\ \hline \end{array}$
155		If not:	Change: 1. Y 1 J 2 2. Y1N2 Go to 17-168.
156	$\begin{array}{\|l} \text { Byte } 9 \\ \text { Bit 3 } \\ \hline \end{array}$	CRC III	Go to Sea 159.
157	$\begin{array}{\|l\|} \hline \text { Byte 3 } \\ \text { Bit 3 } \\ \hline \end{array}$	End Data Check/CRC	Change Y1F2. Go to 17-168.
158		If not:	Change: 1. Y1F2 2. Y1J2 Go to 17-168
159	$\begin{array}{\|l\|} \text { Byte 3 } \\ \text { Bit } 7 \end{array}$ $\text { Bit } 7$	C or P Compare	Change: 1. Y1F2 2. Y1G2 Go to 17-168.
160	Byte 2 Bits 3 \& 7	TIE	Change Y1F2. Go to 17-168.
161	Byte 2 Bits 3, 6 \& 7	TIE	Change: 1. Y1R2/S2/T2 2. $\mathrm{Y} 1 \mathrm{~K} 2 / \mathrm{L} 2 / \mathrm{M} 2$ Go to 17-168.
162	Byte 2 Bits 3,5 $\& 7$ \& 7	TIE	Change Y112. Go to 17-168.
163	Byte 2 Bits 3, 5 , $6, \& 7$	TIE	Change: 1. Y1L2 2. Y1M2 Go to 17-168.
164	Byte 2 Bits 3, 4 \& 7	TIE	Change: 1. $\mathrm{Y} 1 \mathrm{R} 2 / \mathrm{S} 2 / \mathrm{T} 2$ 2. Y 1 P 2 Go to 17-168.
165	Byte 2 Bits 3, 4,	TIE	Change: 1. Y 1 T 2 2. A1G2 Go to 17-168.

Seq	Sense Information	Error	Action
166	Byte 2 Bits 3, 4, 6, \& 7	TIE	Change: 1. $A 1 K 2$ 2 Y1K2 Go to 17-168.
167	Byte 2 Bits 3, 4 \& 5	TIE	Change Y1C2. Go to 17-168.
168	Byte 2 Bits 2, 3 \& 7	TIE	Change Y1R2/S2/T2. Go to 17-168.
169	Byte 2 Bits 2, 3, 6, \& 7	TIE	Change: 1. $Y 1 L 2$ 2. Y 1 M 2 Go to 17-168.
170	Byte 2 Bits 2, 3, 5, 6, \& 7	TIE	Change Y1M2. Go to 17-168.
171	Byte 2 Bits 1 \& 7	TIE	Change Y1S2. Go to 17-168.
172	Byte 2 Bits 1, 3 $6, \& 7$	TIE	Change Y 1 K 2 . Go to 17-168.
173	Byte 2 Bits 1, 3 \& 4	TIE	Change $\mathrm{Y} 1 \mathrm{R} 2 / \mathrm{S} 2 / \mathrm{T} 2$. Go to 17-168.
174	Byte 2 Bits 1, 2 $3, \& 7$	TIE	Change Y1S2. Go to 17-168.
175	Byte 2 Bits 0, 3, \& 7	TIE	Change Y 1 K 2. Go to 17-168.
176	Byte 2 Bits 0, 3 $6, \& 7$	TIE	Change: 1. Y1M2 2. Y1F2 Go to 17-168.
177	Byte 2 Bits 0, 3 \& 4	tie	Change Y1J2. Go to 17-168.
178		If not:	$\begin{aligned} & \text { Change Y1K2/L2/M2. } \\ & \text { Go to } 17-168 \text {. } \end{aligned}$
179	$\begin{array}{\|l\|l\|} \hline \text { Byte } 1 \\ \text { Bit } 5 \\ \hline \end{array}$	Write Status	Go to Sea 186.
180	$\begin{aligned} & \text { Byte } 0 \\ & \text { Bit } 4 \end{aligned}$	Data Check	$\begin{aligned} & \text { Change: } \\ & \text { 1. A1K2 } \\ & \text { 2. A1G2 } \\ & \text { Go to } 15-100 \text {. } \end{aligned}$

Seq	$\begin{array}{\|c} \text { Sense } \\ \text { Information } \end{array}$	Error	Action
181	Byte 2 No Bits	TIE	Change: 1. $A 1 C 2$ 2. A2R2 3. Y 1 P 2 4. A2O2 Go to 15-100
182	Byte 2 Bit 0 or 5	TIE	Change: 1. Y 1 J 2 2. Y1P2 3. Y1G2 Go to 15-100.
183	$\begin{aligned} & \text { Byte 2 } \\ & \text { Bit 1, 3, or } \\ & 4 \end{aligned}$	TIE	Change Y1G2. Go to 15-100.
184	$\begin{aligned} & \text { Byte 2 } \\ & \text { Bit 2, } 6 \text {, or } \end{aligned}$	TIE	Change: 1. Y 1 P 2 2. Y1D2 3. Y1G2 Go to 15-100.
185		If not:	Change: 1. Y 1 N 2 2. Y1P2 Go to 15-100
186	$\begin{aligned} & \text { Byte } 0 \\ & \text { Bit } 4 \end{aligned}$	Data Check	Change: 1. Y 1 N 2 2. A 1 C 2 3. A2T2 4. $A 1 K 2$ Go to 15-100.
187	Byte 2 No Bits	TIE	Change: 1. A 1 H 2 2. A2R2 3. A 1 G 2 Go to 15-100
188		If not:	Change Y 1 Q 2 . Go to 15-100.
189		Is this entry because of a failure on Section A, Routine 1, Message 47 (AA0147)?	Go to Sea 191.
190		If not:	Go to Sea 100.
191		Are Bits 2 and 3 of Byte 9 both ON?	Change: 1. A1F2 2. A1C2 3. A1E2 4. Y 1 H 2 Go to 17-010

3803-2/3420
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { XE } 3500 \\ \text { Soq } 2 \text { of } 2\end{array} \begin{array}{c}\text { Part } \\ \text { Part Number }\end{array}\right)$

3803-2/3420

From: 14.000		
ERROR DESCRIPTION: Sense Byte 0 , Bit 1 is set whenever TU status A is inactive (for example, the selected tape unit is not ready or nonexistent). See Sense Byte 1, Bit 1. In addition to Sense Byte 0, Bit 1, channel end, device end, and unit check are set in the unit status byte if TU status A becomes inactive because the tape unit drops Ready while performing a command. (Sets Unit Check).		
Most Probable Causes: The cards are listed with the highest probability first. Lines with multiple cards have the same probability.		
Tape Control		
A. A202 B. A1K2, A2T2, A2R2 C. A2D2		
Tape Unit (Model 4, 6, or 8)		
T-A1K2, T-A1L2, T-A1M2, T-A1L6T-A1C2, T-A1B2		
(Model 3, 5, or 7)		
T-A1H2, T-A1L2, T-A1L6, T-A1C2, T-A1B2		
Additional Cards Referenced: A. T-A1K6 B. T-A1K4		
Notes: 1. Plus level $=+6 \mathrm{Vdc}$, minus level $=+0 \mathrm{Vdc}$. 2. Plus level $=0 \mathrm{Vdc}$, minus level $=-4 \mathrm{Vdc}$.		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Does more than one tape unit fail?	Go to $18-000$ if this is a 1×8 selection. otherwise go to 18-010.
2	Is the online/Offline switch (on the tape unit) in the Offline position?	Put the switch in the Online position, then go to 00-030.
3	Is the tape unit being addressed Ready?	Go to Sea 5.
4	If not:	If you cannot make it Ready, or if it drops Ready, go to 2A/2B-000. Otherwise, make it Ready and go to 00-030.
5	Is - Pick On Line Relay (T-A1L6B10) plus? (See Note 1.)	Go to ALD WBO21ABH and follow the line to the failing point.
6	Is -Interface Disable (T-A1L6D04) minus? (See Note 1.)	Change T-A1L6, then go to 00-030.
7	Is + Int Dis Or Offline (T-A1L6BO3) plus? (See Note 2.)	Change T-A1L6, then go to 00-030.

Seq	Condition/Instruction	Action
8	With the tape unit Unloaded, install the field tester. Load tape and make Ready. Set up the field tester for Write, St/Stp. Sync the scope minus on + Sum of Tags (T-A1M2P07—Model 4, 6, or 8) (T-A1H2P07-Model 3, 5, or 7) Is -Gated Ready (T-A1M2M12)—Model 4, 6, or 8) (T-A1H2M12-Model 3,5, or 7) plus?	Change T-A1C2. If further analysis is needed, go to ALD FT261CN6. Otherwise, go to 00-030.
9	With the same set-up as in Seq 8, is T-A1M2M13 (Model 4,6, or 8) or T-A1H2M13 (Model 3,5, or 7) plus?	Change T-A1M2 for Model 4, 6, or 8 or T-A1H2 for Model 3, 5 , or 7 . If further analysis is needed, go to ALD FT116. Otherwise, go to 00-030
10	While running the field tester, is + Status Bus 5 (T-A1M2P06 - Model 4, 6, or 8) T-A1H2P06 - Model 3, 5, or 7) minus?	Change T-A1M2 for Model 4, 6, or 8, or T-A1H2 for Model 3, 5 , or 7. If further analysis is needed, go to ALD FT115. Otherwise, go to 00-030
11	While running the field tester, is + Status Bus 7A (T-A1K2G13 - Model 4, 6, or 8) minus? While running the field tester, is 5 , or 7) minus?	Change T-A1K2 for Model 4, 6, or 8. If further analysis is needed, go to ALD FT181. Change T-A1H2 for Model 3, 5, or 7. If further analysis is needed, go to ALD FT115.
12	While running the field tester, is -Bus In 5 (T-A1L2D09) pulsing?	Go to Seq 14.
13	If not:	Change T-A1L2. If further analysis is needed, go to ALD FT146. Otherwise, go to 00-030.
14	Is - Bus Out 7 (T-A1 M2M02 - Model 4 6. or 8 (T-A1H2M02 - Model 3, 5, or 7) plus? While running the field tester, sync minus on T-A1L2D09.)	Change T-A1K6 for Model 4. 6, or 8, or T-A1K4 for Model 3, 5, or 7. For further analysis, go to ALD FT112. Otherwise, go to $00-030$
15	Are any bits On in Byte 7?	Go to 15-090.
16	Does the TCU have a device switch feature?	Go to Seq 18.
17	If not:	Ensure the tape unit has the correct address. Check the cables. Go to 00-030.
18	Is the Enable/Disable switch on the TCU in the Enable position?	Go to 18-015.
19	If not:	Put the switch in the Enable position. Go to $00-030$.

$\begin{aligned} & \text { XE } \mathrm{XE} 600 \\ & \text { Seg } 1 \text { of } 2 \end{aligned}$	2735887	See EC History	845958 1 Sop 79	847298 15 Aug 83				

From: 14-000		
Command Reject Sense Byte 0, Bit $\mathbf{0}$ is set: 1. When a Write, Loop Write-to-Read (LWR), Write Tape Mark (WTM), or Erase Record Gap (ERG) command is issued to a file-protected tape unit. See Sense Byte 1, Bit 6. 2. When a Sense Reserve command or a Sense Release command is issued to a tape 3. control that does not have the two channel switch feature. 3. When a Sense Reserve command or a Sense Release command issued to tape 4. control that has the two channel switch feature is not the first command in a chain. 4. When a Data Security Erase (DSE) command is not chained to a previous ERG 5. When the command format of any Channel Command Word (CCW) is decoded as invalid by the tape control.		
Most Probable Cause: The following is a list of cards that can cause the problems covered in this procedure. The cards are listed with the highest probability first. Lines with multiple cards have the same probability. Cards separated by a slash are interchangeable. A. B2L2/B2P2 (Failing command is a Reserve/Release). See Caution. B. A2T2/A2D2 (Failing command is a Write type) C. $\quad \mathrm{A} 1 \mathrm{~K} 2$ Additional Cards Referenced: B2C2 Caution: Removing this card may cause channel errors, even with power off. Put the CPU in Single Cycle mode before removing this card.		
Look up ROS stop or compare value in microlist cross-reference for specified ALU.		
Always start with Sea 1 and follow the procedure in sequence unless directed otherwise. Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Determine failing CCW strings.	Run OLTs or try all commands offline. Go to Seq 2.
2	Is the failing CCW hex 'D4' or 'F4'?	Go to Seq 14.
3	Is the failing CCW hex '97'?	Go to Seq 17.
4	Do hex '01, '17', '1F', '8B' all fail?	Go to Seq 18.
5	Stop on error; then using procedures in Section 12, display ALU1 LSR 0 for urrent command stored. Note: In offline mode, command reject causes 301 "hang". Let TCU execute failing command and enter loop. Reset and display LSR. Reset does not affect LSR.	
6	Are bits 5, 6, and 7 all off? (XXxxx000)	Only hex '00' is valid (TIO). Go to Seq 23.
7	Is bit 7 off? ($\times \times \times \times \times \times \times \times 0$)	Only hex '00', '02', $04{ }^{\prime}$, '0C', 'D4', 'F4' are valid. Go to Seq 23.
8	Is bit 6 off? (XXXXXX01)	Only hex ${ }^{0} 01$ is valid. Go to Seq 23.
9	Is bit 5 off? (XXXXX011)	Recheck data. Mode Set should set Not Capable, not Command Reject.
10	Is bit 0 off? (0xxxx111)	Go to Seq 14.

Seq	Condition/Instruction	Action
11	Is bit 0 on? (1XX××111)	Only hex ' 97 ' is valid. Go to Seq 23.
12	Is bit 1 off? (00XXX111)	All combinations are valid. Command Reject error is false. Change B2C2.
13	Is bit 1 on? (01XXX111)	This combination is invalid. Go to Seq 23.
14	Does this unit have a two channel switch feature?	Go to Seq 16.
15	If not:	Reserve/Release Commands are invalid to TCU without TCS. Verify tape control plugging and Sense Byte 17, Bit 0.
16	Recheck CCW string. Reserve/Release commands must be first in chain	Change A-B2L2, B2P2. See Caution.
17	Ensure that DSE command is chained to a previous ERG. Chaining is not possible from CE panel. Set up failing ERG/DSE chain, check set of chain, and allow DSE flags at ALU1 routines located at SETCHAIN and ENABLDSE.	
18	Perform any command to TU, and address stop ALU2 after executing instruction at FCHSNS. (See MPL book for address.) Display Bus In, ALU2.	
19	Is Bus In Bit 1 on? (NFP bit)	Change A2T2 and verify that NFP Flag stores properly into LSR 4 when ALU instruction at GETSNSO is executed Display LSR 4, Bit 1 .
20	Does this tape unit fail?	Go to Seq 26.
21	With TUBI selected, as in Seq 18, scope A2D2J02 (-Device Bus In To DF). Are either A2D2J09 or A2D2D10 at GND level when A1D2J02 is plus?	Change A2D2.
22	If not:	In offline mode, command reject causes 301 hang. Let TCU execute failing command and enter loop. Reset \& display LSR. Reset will not affect LSR. Replace switch card in tape control for selected tape unit. See 18-010.
23	Is command being issued from channel invalid?	Review channel program to isolate program or channel failure.
24	Does command match byte stored in ALU1 LSR 0?	Address stop on addresses listed in table in MPL to determine microprogram branch failing.

Seq	Condition/Instruction	Action
25	With ROS Mode switch on Normal, operate the ROS mode switch, sync on address compare value of CMSPAREX (ALU1). See MPL book for address. Scope logic from channel to input of LSR.	
26	Is the Write Enable ring on the tape reel?	Change T-A1Ms for Model 4, 6, or 8 Change T-A1H2 for Model 3,5 , or 7 . If problem still exists, go to ALD FT111.
27	If not:	Install write enable ring, then go to 00-030.

XE3600 Sea 2 of 2	2735887 Par Number	See EC History	845958	847298 15 Avg 83				

From: 14-000		
Bus Out Check Sense Byte 0, Bit 2 is set: Whenever Bus Out has incorrect (even) parity during command or data byte transfer When a ROS hardware error has occurred (any bit on in Sense Byte 11 or 12) and there are no other bits on in Sense Byte 0 .		
Most Probable Cause: A. With EC733814 - B2M2 B. Without EC733814 - B2L2 B. \quad B2N2 C. \quad B2D2		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise. Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Run OLTs. Loop on error. Is TCU without EC733814?	Go to Seq 25.
2	Sync scope negative on -Command Out A B CE (B2L2U02). Is B2D2M02 minus at any time during sync?	Go to Seq 5.
3	Sync scope negative on -Service Response (B2M2U05). Does B2D2M02 go minus during sync pulses?	Go to Seq 16.
4	If not:	Change B2D2.
5	Does + Bus Out Parity Odd (B2M2M10) go minus during sync?	Go to Seq 7.
6	If not:	Change B2M2.
7	Is tape control operating on interface B?	Go to Seq 12.
8	Is + Bus Out Parity Odd Chan A (B2L2G12) minus during sync?	Go to Seq 10.
9	If not:	Change B2L2.
10	Do the following pins have even parity during sync?	Check interface cables, channel to tape control and I/O connector to B2 Board for proper seating. If this does not correct error, compare bits to command issued to locate failing bit or bits. These are plus active interface levels. Trace bits to tape control interface by using ALD FC061.
11	If not:	Change B2M2.
12	Is +Bus Out Parity Odd Chan B (B2L2J12) minus during sync?	Go to Seq 14.
13	If not:	Change B2L2.

Seq	Condition/Instruction	Action
14	Do the following pins have even parity during sync?	Check interface cables, channel to tape control and I/O connector to B2 Board for proper seating. If this does not correct error, compare bits to command issued to locate failing bit or bits. These are plus active interface levels. Trace bits to tape control interface by using ALD XM055.
15	If not:	Change B2N2.
16	Check the following two pairs of pins. B2M2U06 + Service In B2M2B12 + Service Out and B2M2U07 + Data In B2M2U13 -Data Out. Does the scope sync occur only during the time that both pins in either pair are active?	Go to Seq 18.
17	If not:	Change B2M2.
18	Are -Stat Bit 0 Tape Op To ALU1 (B2M2S07) and -CTI Bit 7 Op In (B2M2U11) both minus during the entire time that + Bus Parity OK (B2M2M12) is minus?	Go to Seq 20.
19	If not:	Change B2M2.
20	Is tape control operating on channel B?	Go to Seq 23.
21	Do the pins listed in Seq 10 have even parity during sync?	Check interface cables, channel to tape control and I/O connector to B2 Board for proper seating. If this does not correct error, use ALD FC061 to trace bits to tape control interface
22	If not:	Change B2M2.
23	Do the pins listed in Seq 14 have even parity during sync?	
24	If not:	Change B2N2.
25	Sync scope negative on -Command Out A B CE (B2M2U02). Is B2D2M02 minus at anytime during sync?	Go to Seq 28.
26	Sync scope negative on -Service Responce (B2L2U05). Does B2D2M02 go minus during sync pulses?	Go to Seq 37.
27	If not:	Change B2D2.

Seq	Condition/Instruction	Action
28	Does + Bus Out Parity Odd (B2L2M10) go minus during sync?	Go to Seq 30.
29	If not:	Change B2L2.
30	Is tape control operating on interface B?	Go to Seq 35.
31	Is +Bus Out Parity Odd Chan A (B2M2G12) minus during sync?	Go to Seq 33.
32	If not:	Change B2M2.
33	Do the following pins have even parity during sync?	Check interface cables, channel to tape control and I/O connector to B2 Board for proper seating. If this does not correct error, compare bits to command issued to locate failing bit or bits. These are plus active interface levels. Trace bits to tape control interface by using ALD FC061.
34	If not:	Change B2L2.
35	Is + Bus Out Parity Odd Chan B (B2M2J12) minus during sync?	Go to Seq 14.
36	If not:	Change B 2 M 2.
37	Check the following two pairs of pins. B2L2U06 + Service In B2L2B12 + Service Out and B2L2U07 + Data In B2L2U13 - Data Out. Does the scope sync occur only during the time that either pair of pins are active?	Go to Seq 39.
38	If not:	Change B2L2.
39	Are -Stat Bit 0 Tape Op To ALU1 (B2L2S07) and -CTI Bit 7 Op in (B2L2U11) active the entire time that + Bus Parity OK (B2L2M12) is minus?	Go to Seq 41.
40	If not:	Change B2L2.
41	Is tape control operating on interface B?	Go to Seq 23.
42	Do the pins listed in Seq 33 have even parity during sync?	Check interface cables, channel to tape control and I/O connector to B2 Board for proper seating. If this does not correct error, use ALD FC061 to trace bits to tape control interface.
43	If not:	Change B2L2.

3803-2/3420

From: 14-000

Overrun (Sense Byte 0, Bit 5)
Overrun is set when the tape control requests Service and finds either Service In or Service
Out line active. If data check is on overru is supersed Overrun is set during a

Write operation if Stop has not occurred, and at a media group boundary sample there are insufficient bytes in the Charne bur at the time the Read operation if Stop has not occurred, and at the time the error-correcting circuits
are ready to output a GCR group and there is not room in the channel buffer to are read
accept it
Overrun can occur only during a read, read backward, or write operation. Setting the overrun indicator stops data transfer.

Most Probable Cause: The following is a list of

The following is a list of cards that can cause the problems covered in this procedure. The
cards are listed with the highes probability.
$\begin{array}{ll}\text { A. } & \text { A1C2 } \\ \text { B. } & \text { A1F2 } \\ \text { A1E2 } \\ \text { D. } & \text { A1E2 }\end{array}$

Additional Card Referenced
Y1C2
Always start with Seq 1 and follow the procedure in sequence unles
directed otherwise.
Remember to END all problems or maintenance calls by going to MAP 00-030

Seq	Condition/Instruction	Action
1	Do an LWR or write operation in the failing density from the CE panel or channel Use a byte count greater than 64 . Does it still fail only from the channel?	Go to 18-040.
2	Sync minus on -Stat Bit 0 Tape Op To DF (A1 K2U06). If no failure occurs in the WRT OP, then write a tape of 64 bytes or more and read it back.	
3	Is -Overrun (A1K2P06) always plus?	Change A1K2.
4	Is the failure a read-only failure?	Go to Seq 41.
5	Does -Write Data Ready (A1C2S04) line have 32 pulses, then pause? (See timing chart on 15-041.)	Go to Seq 11.
6	Is -Write Data Ready (A1C2S04) always plus?	Go to Seq 17.
7	Does -Write Data Ready (A1C2SO4) have more than 32 pulses?	Change A1F2.
8	Is -Write Data Ready (A1C2S04) minus at beginning of record and does it stay minus?	Go to Seq 26.
9	Is +Stop To Dataflow (A1F2G11) plus when - Write Data Ready (A1C2S04) stops pulsing?	Go to Seq 31.
10	If not:	Go to Seq 35.

Seq	Condition/Instruction	Action
11	Is +Stop To DF (A1F2G11) plus before the error is flagged Overrun (A1F2D04)?	Change A1F2.
12	Is +Command Out or HIO (refer to timing chart on 15-041 for test points) plus before -Overrun (A1F2D04) is flagged?	With EC733814, change B2M2. Without EC733814, change B2L2.
13	Is +CE Command Out Tag (see timing chart on 15-041 for test points) plus before -Overrun (A1F2D04) is flagged if running from CE panel? Or, is +Command Out Channel A Gated (see timing chart on $15-041$ for test points) or + Command Out Channel B Gated (see timing chart on 15-041 for test point) plus before -Overrun if running from Channel A or B?	With EC733814, change B2L2. Without EC733814, change B2M2
14	Write 31 bytes.	
15	Is +Stop To Dataflow (A1F2G11) plus when -Write Data Ready (A1C2S04) has 31 pulses?	Change A1F2.
16	If not:	Follow Command Out line back to failing point. For CE operation go to PK081FJ6. For Channel A operation, go to FC021FE2. For Channel B operation, go to XM071FE2
17	Is -Wrt And Tape Op Not CtI (A1C2P12) always plus?	Go to Seq 24.
18	Is -Read And Tape Op (A1C2J10) always minus?	Go to BW231 and follow back to failing point.
19	Is + Buffer Wrt Cycle (A1F2G02) always plus?	Change A1F2.
20	Is -Service Response (A1C2M07) always plus?	Go to Seq 22.
21	If not:	Change A1C2.
22	Are - Service In For Data (refer to timing chart on 15-041 for test points) and +Service Out and +Service Out Channel A, B, CE (refer to timing chart on 15-041 for test points) ever active at the same time?	With EC733814, change B2M2 Without EC733814, change B2L2
23	If not:	Follow + Service Out Channel A, B, CE (FC151CF6) and +Service In For Data (BS041FF6) to determine which is bad
24	Is -Stat Bit 2 To DF (A1K2U09) always plus?	Go to ALD AB141EF6 and follow back to failing point.
25	If not:	Change A1K2.
26	Does + Buffer Write Cycle Or Req (A1C2P07) ever become plus?	Change A1C2.

3803-2/3420

$3803-2 / 3420$							
XE3700 Seq 2 of 2	Part Number	See EC History	845958 1 Pep 79				

\square

Overrun can occur with three possible conditions.

1. Channel buffer full on a Read operation. Data is not removed from the channel buffer fast enough
2. Write buffer is empty. There are six or fewer bytes left in the channel buffer. Data is removed from the channel buffer too fast.
3. On a Read operation, if there is a P Compare or a CRC Error.

3803-2/3420

WORD COUNT ZERO

From: 14-000		
ERROR DESCRIPTION: Sense Byte 0 , Bit 6 is set when: The channel responds to first Service In with Command Out on a write operation. The channel issues a HIO (Address Out active with Select Out inactive) immediately following initial Status In on either a read or write operation.		
Most Probable Cause: This is a channel-forced failure. A. B2Q2. See Caution. B. B2P2. See Caution. Caution: Removing this card may cause channel errors, even with power off. Put the CPU in Single Cycle mode before removing this card.		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise. Remember to END all problems or maintenance calls by going to MAP 00-030. Look up ROS STOP or COMPARE VALUE in the MPL listing for the specified ALU		
Seq	Condition/Instruction	Action
1	Look up ROS STOP or COMPARE VALUE in the MPL listing for the specified ALU Set the address value for HIOPERG in Compare register with CE panel enabled Select ALU1, and set ROS Mode switch to Norm with the Interface switch enabled. See 12-010, Seq 4.	
2	Does Compare Equal indicator lamp come on when failing job is run?	Channel is issuing an HIO command-interrogate channel program.
3	Sync on first Service In (A2R2B11) and look for Command Out tag at time of sync.	
	Is Command Out active at Sync time? For channel A, scope B2O2D09	
	For channel B, scope B2P2JO3.	The channel is doing a write operation with CCW word count $=0$, or the channel is issuing a false Command Out (Suspect the channel.)
4	Is Command Out Tag "hot" all the time?	Channel A, change B2O2. See Caution. Channel B, change B2P2. See Caution.
5	If not:	Determine failing operation and go to CPU channel MAPs if available.

3803-2/3420

From: 14-000 and 00-040		
ERROR DESCRIPTION: Sense Byte 1 , Bit 7 is set: 1. When a $3803 / 3420$ subsystem without NRZI capability attempts to read a NRZI tape (one that was written without a PE or 6250 bpi identification burst at load point). 2. When an attempt is made to read or write on a 7 -track tape unit, and the tape control does not have the 7 -track NRZI feature. 3. When an attempt is made to read or write NRZI on a 9-track tape unit, and the tape 4. control does not have the 9 -track NRZI feature. 4. When an attempt is made to read or write PE on a tape unit that does not have the 5. PE capability. 5. When an attempt is made to read or write 6250 bpi on a tape unit that does not have the 6250 bpi capability.		
Most Probable Cause: The following is a list of cards that can cause the problems covered in this procedure. The cards are listed with the highest probability first. Cards on the same line have the same probability.		
A. Models 3,5, and 7: Check high-speed rewind plunger for free movement. B. Models 4, 6, and 8: Check Autocleaner. See 08-380. B. A1K2 C. T-A1L2, A2O2 D. Dirty or defective read/write head.		
Additional Cards Referenced:		
$\begin{aligned} & \text { A. } \\ & \text { B. } \\ & \text { C. } \\ & \text { D. } \\ & \text { Note } \\ & \text { burst } \\ & \text { mach } \\ & \text { Strip) } \\ & \hline \end{aligned}$	A2T2 E. Y1R2 I. A2Y2 A2K2 F. Y1P2 J. Y1Q2 A212 G. A2D2 K. A1L2 YYT2 H. A2M2 Tape mispositioning at L.P. following a high on subsequent read type commands will ca ine reel Radius Sense for correct operation. (speed rewind and failure to detect ID se 'Not Capable' to be set. Check (Clean Light Pipe, Photocell, Reflective
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Soq	Condition/Instruction	Action
1	Make sure that the tape control, the tape unit, and the tape to be read are compatible (features and density). Also be sure that another path has not set the tape unit to a density which requires a tape control feature that is not present on the failing tape control. See chart on 15-064 for Not Capable Conditions.	
2	Make sure the tape control is offline before performing the steps in this procedure. (See 12-000 for instructions.)	
3	Does failure occur while attempting a read-type operation on a 6250 bpi tape?	Go to Seq 137.
4	Does failure occur while attempting a read-type operation on a 7- or 9-track NRZI tape?	Go to Seq 116.
5	Does failure occur while attempting a read-type operation on a 1600 bpi PE tape?	Go to Seq 89.

Soq	Condition/Instruction	Action
6	Does failure occur while attempting a 6250 bpi write-type operation? (No Mode Set is required to write 6250 bpi.)	Go to Seq 77.
7	Does failure occur while attempting a write-type operation in 7- or 9-track NRZI mode?	Go to Seq 20.
8	Failure must occur while attempting a write-type operation in 1600 bpi (PE) mode. Make sure the failing tape unit is aModel 4, 6, or 8 with dual density feature or a 9-track Model 3, 5, or 7.	
9	1. Enter the failing command sequence in the CE panel. 2. Look up the label "STEPOO33" in the ROS2 cross-reference (in back of microprogram listing) and enter ROS address that appears under the VALUE heading in the Compare Register. 3. Set the Mple/Single switch to Single Reset the tape control, then operate command preceding the failing writeor read-type operation. 5. Set ALU1/ALU2 switch to ALU2. 7. Set Display Select switch to IC. Make sure Stop On Control Check switch is down (Off). 8. Set ROS Mode switch to Stop. 10. Operate the Set ROS Mode switch. Operate the Start switch to start the 11. The tape control should stop at the ROS address that was in the Compare Register. If so, set the Display Select switch to Bus In. The bits displayed are Device Bus In positions 0-7.	
10	Is Device Bus In Indicator 3 On?	Go to Seq 12.
11	If not:	Change in order: 1. A 2 T 2 2. A 2 K 2 3. A 2 L 2 Cards A2K2 and A2L2 are can be exchanged with cards B2F2 and B2E2 in ALU1.
12	Bit 3 On indicates the tape unit is set to a density other than 1600 bpi (PE). A check will be made to determine if the bit was generated in the device switch logic.	

Seq	Condition/Instruction	Action
13	Is -Bus In 3 (T-A1L2DO6) minus at this time in the tape unit?	At this time, the tape control is requesting TU Sense Byte 1. All tags (Move, Command, and Control) should be inactive and Bus Out 6 should be the only active Bus Out bit. Bus In 3 active tells the tape control the tape unit is not set to 1600 bpi. Go to ALD WK001 GK5 and follow line back to failing point.
14	Is the failing tape control a 1×8 ?	Change A2D2.
15	Is the tape unit you are using attached directly to the failing tape control?	Go to Seq 18.
16	Is -Device Bus In 3 Primary (A2D2G13) minus? (Voltage level is +4.5 V to ground.)	Go to 18-010. Device Bus $\ln 3$ Primary should not be minus. Go to $18-010$.
17	If not:	Change A2D2.
18	Is -Device Bus In 3 Secondary (A2D2M12) minus? (Voltage level is +4.5 V to ground.)	Device Bus In 3 Secondary should not be minus. Go to 18-010.
19	If not:	Change A2D2.
20	Does the failure occur while attempting a write-type operation in 7-track NRZI Mode?	Go to Seq 63.
21	Failure must occur while attempting a write-type operation in 9-track NRZI Mode. Make sure that the failing tape unit is a Model 3,5 , or 7 with dual density feature and the tape control has the 9-Track NRZI feature.	
22	Perform Seq 9, then return to Seq 23.	
23	Is Device Bus In Indicator Bit 0 On?	Go to Seq 53.
24	Is Device Bus In Indicator Bit 4 On?	Go to Seq 45.
25	Is Device Bus In Indicator Bit 2 On?	Go to Seq 35.
26	Bit 2 Off indicates the tape unit does not have NRZI feature. A check will be made to determine if the bit was lost in the device switch logic.	
27	Is -Bus $\ln 2$ (T-A1L2DO5) minus in the tape unit? (Voltage level is +4.5 V to ground.)	Go to Seq 29.
28	If not:	At this time, the tape control is requesting TU Sense Byte 1. All tags (Move, Command, and Control) should be inactive and BUS OUT 6 should be the only active Bus Out bit. Bus In 2 tells the tape control the tape unit has the dual density feature. Go to ALD WK001 GK4 and follow line back to failing point.
29	Is the failing tape control a 1×8 ?	Change A2D2.

C

NOT CAPABLE (Cont'd)

Seq	Condition/Instruction	Action
30	Is the tape unit you are using attached directly to the failing tape control?	Go to Seq 33.
31	Is -Device Bus In 2 Primary (A2D2J06) minus? (Voltage level is +4.5 V to ground.)	Change A2D2.
32	If not:	Device Bus In 2 Primary should be minus. Go to 18-010
33	Is -Device Bus In 2 Secondary (A2D2P10) minus? (Voltage level is +4.5 V to ground.)	Change A2D2.
34	If not:	Device Bus In 2 Secondary should be minus. Go to 18-010.
35	Does the failure (Not Capable) occur at load point?	Go to Seq 38.
36	Failure must be occurring only if tape unit is set to NRZI before command is started. Check feature jumper on tape control A2M2. See 90-120. Was jumper plugged correctly?	Change A2M2.
37	If not:	Correct jumper plugging.
38	Is -Bus $\ln 3$ (T-A1L2D06) minus in the tape unit? (Voltage level is +4.5 V to ground.)	At this time, the tape control is requesting TU Sense Byte 1. All tags (Move, Command, and Control) should be inactive and Bus Out 6 should be the only active Bus Out bit. Bus In 3 tells the tape control the tape unit is set to other than 1600 bpi. Go to ALD WK001 GK5 and follow line back to failing point.
39	Is the failing tape control a 1×8 ?	Change A2D2.
40	Is the tape unit you are using attached directly to the failing tape control?	Go to Seq 43.
41	Is -Device Bus In 3 Primary (A2D2G13) minus? (Voltage level is +4.5 V to ground.)	Bus In 3 Primary should not be active at load point. Go to 18-010.
42	If not:	Change A2D2.
43	Is -Device Bus in 3 Secondary (A2D2M12) minus? (Voltage level is +4.5 V to ground.)	Device Bus in 3 Secondary should not be active at load point. Go to 18-010.
44	If not:	Change A2D2.
45	Bit 4 On indicates the tape unit is a 6250 bpi unit. A check will be made to determine if the bit was generated in the device switch logic.	

Seq	Condition/Instruction	Action
46	Is -Bus $\ln 4$ (T-A1L2D07) minus in the tape unit? (Voltage level is +4.5 V to ground.)	At this time, the tape control is requesting TU Sense Bit 1. All tags (Move, Command, and Control) should be inactive and Bus Out 6 should be the only active Bus Out bit. Bus $\ln 4$ tells the tape control the tape unit is a 6250 bpi unit, which cannot have a NRZI feature Go to ALD WK001 GK6 and follow line back to failing point.
47	Is the failing tape control a 1×8 ?	Change A2D2.
48	Is the tape unit you are using attached directly to the failing tape control?	Go to Seq 51.
49	Is -Device Bus $\ln 4$ Primary (A2D2G08) minus? (Voltage level is +4.5 V to ground.)	Device Bus in 4 Primary should not be active. Go to 18-010.
50	If not:	Change A2D2.
51	Is -Device Bus In 4 Secondary (A2D2D04) minus? (Voltage level is +4.5 V to ground.)	Device Bus in 4 Secondary should not be active. Go to 18-010.
52	If not:	Change A2D2.
53	This condition sets Not Capable if the feature. Bit 0 should not be On when operating a 9 -track tape unit.	
54	Is A2M2PO3 a minus level (-3.5 V to -4.0 V ?	If this tape control has the 7 -track feature, check jumper list on ALD AA 131 for proper jumpering. Then go to Seq 56 .
55	If not:	Change A2M2.
56	Is -Bus in 0 (T-A1L2D02) minus in the tape unit? (Voltage level is +4.5 V to ground.)	At this time the tape control is requesting TU Sense Byte 1. All tags (Move, Command, and Control) should be inactive and Bus Out 6 should be the only active Bus Out bit. Bus in 0 tells the tape control the tape unit is a 7-track model. Go to WK001 GK2 and follow line back to failing point.
57	Is the failing tape control a 1×8 ?	Change A2D2.
58	Is the tape unit you are using attached directly to the failing tape control?	Go to Seq 61.
59	Is -Device Bus In 0 Primary (A2D2M05) minus? (Voltage level is +4.5 V to ground.)	Device Bus In 0 Primary should not be active. Go to 18-010.
60	If not:	Change A2D2.
61	Is -Device Bus in 0 Secondary (A2D2P05) minus? (Voltage level is +4.5 V to ground.)	Device Bus In 0 Secondary should not be active. Go to 18-010.

Seq	Condition/Instruction	Action
62	If not:	Change A2D2.
63	To perform a 7 -track operation, you must be using a Model 3,5 , or 7 , seven track tape unit and have both 9 -track NRZI and 7-track NRZI features on the tape control.	
64	Perform Seq 9 , then return to Seq 65.	
65	Is Device Bus In Indicator Bit 40 O ?	Go to Seq 45.
66	Is Device Bus In Indicator Bit 0 Off?	Go to Seq 69.
67	Is A2M2P03 a plus level (ground)?	Change A2M2.
68	If not:	Check jumper list on ALD AA005 for proper jumpering.
69	Is -Bus in 0 (T-A1L2D02) minus in the tape unit? (Voltage level is +4.5 V to ground.)	Go to Seq 71.
70	If not:	At this time the tape control is requesting TU Sense Byte 1. All tags (Move, Command, and Control) should be inactive and Bus Out 6 should be the only active Bus Out Bit. Bus in 0 tells the tape control the tape unit is a 7-track model. Go to ALD WK001 GK2 and follow line back to failing point.
71	Is the failing tape control a 1×8 ?	Change A2D2.
72	Is the tape unit you are using attached directly to the failing tape control?	Go to Seq 75.
73	Is -Device Bus in 0 Primary (A2D2M05) minus? (Voltage level is +4.5 V to ground.)	Change A2D2.
74	If not:	Device Bus In 0 Primary should be active. Go to 18-010.
75	Is -Device Bus In 0 Secondary (A2D2PO5) minus? (Voltage level is +4.5 V to ground.)	Change A2D2.
76	If not:	Device Bus In 0 Secondary should be minus. Go to 18-010.
77	6250 bpi is the basic frequency for the 3803 Model 2 tape control. A Model 4, 6, or 8 tape unit is required.	
78	Perform Seq 9, then return to Seq 79.	
79	Is Device Bus In Indicator 4 On ?	Change in order: 1. A 2 Y 2 2. A 2 K 2 3. A2L2 Cards A2K2 and A2L2 are interchangeable with cards B2F2 and B2E2 in ALU1.

3803-2/3420

XE4000 2735891

Seq	Condition/Instruction	Action
80	Bit 4 Off indicates tape unit is not a Model 4, 6 or 8 . A check will be made to determine if the bit was lost in the device switch logic.	
81	Is -Bus In 4 (T-A1L2D07) minus in the tape unit? (Voltage level is +4.5 V to ground.)	Go to Seq 83.
82	If not:	At this time the tape control is requesting TU Sense Byte 1. All tags (Move, Command, and Control) should be inactive and Bus Out 6 should be the only active Bus Out bit. Bus in 4 tells the tape control the tape unit is a Model 4, 6 or 8. Go to ALD WK001 GK6 and follow line back to failing point.
83	Is the failing tape control a 1×8 ?	Change A2D2.
84	Is the tape unit you are using attached directly to the failing tape control?	Go to Seq 87.
85	Is -Device Bus In 4 Primary (A2D2G08) minus? (Voltage level is +4.5 V to ground.)	Change A2D2.
86	If not:	Device Bus in 4 Primary should be minus. Go to 18 -010.
87	Is -Device Bus $\ln 4$ Secondary (A2D2D04) minus? (Voltage level is +4.5 V to ground.)	Change A2D2.
88	If not:	Device Bus In 4 Secondary should be active. Go to 18-010.
89	A PE (1600 bpi) tape can be read on a Model 4, 6 or 8 tape unit with the dual density feature and all Model 3, 5, and 7 tape units with 9 -track read/write heads.	
90	1. Check the alignment of the auto cleaner or the high-speed rewind plunger. 2. Check for contamination on the head and tape path.	
91	Perform Seq 9 , then return to Seq 92.	
92	Is Device Bus In Indicator Bit 0 On?	Go to Seq 56.
93	Is Device Bus In Indicator Bit 4 On?	Go to Seq 109.
94	Set up the CE panel to perform the following command sequence: READ $\begin{array}{ll}\text { REWIND } & -07 \\ & \text { FORWARD }\end{array}$ REWIND - 07 READ FORWARD - 02 Start the command sequence and sync negative on -Stat Bit 0 Tape Op To DF (A1K2U06).	

Seq	Condition/Instruction	Action
95	Is -XOUTA Bit 4 ALU2 To DF (A1K2D09) ever minus during the sync?	Go to Seq 112.
96	Does +P Track Env Branch (A1K2U02) become plus during the sync?	Change A2D2.
97	$\begin{array}{\|l} \text { Does - Time Sense P (A1K2S11) become } \\ \text { minus during the sync? } \\ \hline \end{array}$	Go to Seq 107.
98	Does -Device Bus In P To DF (Y1T2S04) pulse while the sync is minus?	Change in order: 1. Y 1 T 2 2. Y1Q2
99	Does - Bus $\ln \mathrm{P}$ (T-A1L2D12) pulse at the tape unit while the sync is minus? If you cannot scope the tape unit while syncing at the tape control, sync on -Move Tag 1/O (T-A1K6D13 for Model 4, 6, or 8 and T-A1K2D13 for Model 3, 5, or 7) at the tape unit. (Voltage levels are +4.5 V to ground.)	Go to Seq 101.
100	If not:	Tape unit should be reading P Burst on tape. Follow ALD WK001 GK1 back to failing point.
101	Is the failing tape control a 1×8 ?	Change A2D2.
102	Is the tape unit you are using attached directly to the failing tape control?	Go to Seq 105.
103	Does - Device Bus In P Primary (A2D2S07) pulse while the sync is minus? (Voltage level is +4.5 V to ground.)	Change A2D2.
104	If not:	Go to 18-010.
105	Does - Device Bus In P Secondary (A2D2M03) pulse while the sync is min (Voltage level is +4.5 V to ground.)	Change A2D2.
106	If not:	Go to 18-010.
107	Does + Block Or Env Loss Branch (A1K2U10) stay plus while the sync is minus?	Change Y 1 P2.
108	If not:	Change A1K2.
109	Is this a Model 3, 5, or 7 tape unit?	Go to Seq 45.
110	Is Device Bus in Indicator Bit 2 On?	Go to Seq 94.
111	If not:	Go to Seq 27.
112	Is +1 Track Env Branch (A2K2P13) plus before -XOUTA Bit 4 ALU2 To DF (A1K2D09) becomes minus during sync time?	Go to Seq 114.

Seq	Condition/Instruction	Action
113	If not:	Change A2D2.
114	Is -Time Sense 1 (A1K2U13) minus before -XOUTA Bit 4 ALU2 To DF (A1 K2D09) becomes minus during sync time?	Change Y1R2.
115	If not:	Change in order: 1. A1K2 2. A1L2 (tape units with 7-Track feature).
116	Does the failure occur while attempting a read-type operation on a 7-Track NRZI tape?	Go to Seq 131.
117	A 9-Track NRZI tape can only be read on a Model 3, 5, or 7 tape unit with the dual density feature. The tape control must have either the 9 -Track NRZI feature or the 7 -and 9 -Track NRZI feature.	
118	Perform Seq 9, then return to Seq 119.	
119	Is Device Bus In Indicator Bit 0 On?	Go to Seq 56.
120	Is Device Bus In Indicator Bit 4 On?	Go to Seq 45.
121	Is Device Bus in Indicator Bit 2 On?	Go to Seq 123.
122	If not:	Go to Seq 26.
123	Set up the CE panel to perform the following command sequence: READ FERWDARD - 07 REWIND - 02 READ FORWARD - 02 Start the command sequence and sync negative on -Stat Bit 0 Tape Op To DF (A2K2U06).	
124	Does + 7 Track Env Branch (A1K2P13) become plus during the sync?	Go to Seq 129.
125	Does +P Track Env Branch (A1K2U02) become plus during the sync?	Go to Seq 127.
126	If not:	Change in order: 1. A2D2 2. A 2 M 2
127	Does - Time Sense P(A1K2S11) become minus during the sync?	Change Y1T2.
128	If not:	Change A1K2.
129	Does - Time Sense 1 (A1K2U13) become minus during the sync?	Change Y1R2.

C

NOT CAPABLE (Cont'd)

Seq	Condition/Instruction	Action
130	If not:	Change A1K2.
131	A 7-Track NRZI tape can only be read on a 7 -Track Model 3, 5, or 7 tape unit with the 7 -Track feature. The tape control must have the 7 - and 9 -Track NRZI feature.	
132	Perform Seq 9, then return to Seq 133.	
133	Is Device Bus In Indicator Bit 0 On?	Go to Seq 135.
134	If not:	Go to Seq 69.
135	Is Device Bus In Indicator Bit 4 On?	Go to Seq 45.
136	If not:	Change A2M2.
137	A 6250 bpi tape can only be read on a Model 4, 6 or 8 tape unit.	
138	Is SAGC Check (Sense Byte 8, bit 4) On?	Go to 16-220.
139	1. Check the alignment of the autocleaner. 2. Check for contamination on the read/write head and tape path	
140	Perform Seq 9, then return to Seq 141.	
141	Is Device Bus In Indicator Bit 0 On?	Go to Seq 56.
142	Is Device Bus In Indicator Bit 4 On?	Go to Seq 144.
143	If not:	Go to Seq 80.
144	Set up the CE panel to perform the following command sequence: $\begin{array}{lll} & \text { REWIND } & -07 \\ \text { READ } & \text { FORWARD } & -02\end{array}$ REWIND - 07 READ FORWARD - 02 Start the command sequence and sync negative on - Stat Bit 0 Tape Op To DF (A1K2U06).	-
145	Does +1 Track Env Branch (A1K2P13) become plus during the sync?	Go to Seq 156.
146	Does - Time Sense 1 (A1K2U13) become minus during the sync?	Go to Seq 107.
147	Does -Device Bus In 1 To DF (Y1R2M04) pulse while the sync is minus?	$\begin{aligned} & \text { Change in order: } \\ & \text { 1. Y1R2 } \\ & \text { 2. Y1Q2 } \\ & \hline \end{aligned}$
148	Does -Bus $\ln 1$ (T-A1L2D04) pulse while the sync is minus? If you cannot scope the tape unit while syncing at the tape control, sync on -Move Tag 1/O (T-A1K6D13) in the tape unit. (Voltage levels are +4.5 V to ground.)	Go to Seq 150.

Seq	Condition/Instruction	Action
149	If not:	A tape unit should be reading Track 1 burst on tape. Follow ALD WK001 GK3 back to failing point.
150	Is the failing tape control a 1×87	Change A2D2.
151	Is the tape unit you are using attached directly to the failing tape control?	Go to Seq 154.
152	Does -Device Bus In 1 Primary (A2D2J09) pulse while the sync is minus? (Voltage level is +4.5 V to ground.)	Change A2D2.
153	If not:	Go to 18-010.
154	Does -Device Bus In 1 Secondary (A2D2D10) pulse while the sync is minus? (Voltage level is +4.5 V to ground.)	Change A2D2.
155	If not:	Go to 18-010.
156	Does +SAGC 6 Combinations (Y1P2S11) become plus during the sync?	Change A2D2.
157		Change Y1P2.
158	Are there any Time Sensors in Zone 1 minus?	Go to Seq 162.
159	Scope the following Device Bus In To DF lines using the same time reference as in Seq 157:	Change Y1R2.
160	Is the problem a single tape unit problem? It may be necessary to exchange tape units to determine a single tape unit failure from a single path failure.	Go to 5A-000 for Model 3, 5, or 7. Go to 5B-000 for Model 4, 6, or 8.

Seq	Condition/Instruction		Action
161	If not:		Go to 18-010.
162	Scope the following lines using the same time reference as in Seq 157:		Go to ALD CB131 and follow the active line back to its failing point.
	+0 Pct Ampl Ctrl Trk P +0 Pct Ampl Ctrl Trk 0 +0 Pct Ampl Ctrl Trk 5 Are any plus?	Y 102 P 13 Y 102 OPO Y Y102G08	
163	Scope the following lines using the same time reference as in Seq 157:		Go to Seq 160.
	- Device Bus In P To DF - Device Bus $\ln 0$ To DF Are any pulsing?	Y1T2SO4 Y1T2M04 Y1T2D13 Y1T2D1	
164	If not:		Go to 00-030.

Not Capable Conditions

$X=$ Not Capable set on read from load point. * $=$ Not Capable set if one of the following error conditions exist. 1. SAGCID was not seen on read. 2. No BOR with a TU Interrupt reading SAGC. $\Delta=$ Not Capable set if tape unit is this density (read or write)												
Tape Unit Model and Feature Attempting to Read or Write This Type of Tape	Models 4, 6, and 8 No Feature				Models 4, 6, and 8 with Features				x			
	6250	$\begin{gathered} \text { PE } \\ (1600) \end{gathered}$	9-Trk NRZI (800)	7-Trk NRZI	6250	$\begin{gathered} \text { PE } \\ (1600) \end{gathered}$	9-Trk $\underset{\sim}{\text { NRZI }}$ (800)	7-Trk NRZ1				
3803-2 (Basic)	*	x	x	x	*		x	x				
3803-2 (9-Track NRZI)	*	x	x	x	*		x	x				
3803-2 (7 and 9-Track	*	\times	x	x	*		\times	x				
	Models 3, 5, and 7 No Feature				Models 3, 5, and 7 with Features				Models 3, 5, and 7 with 7-Track			
	6250	$\begin{gathered} \text { PE } \\ (1600) \end{gathered}$	9-Trk NRZI (800)	$\begin{aligned} & \text { 7-Trk } \\ & \text { NRZI } \end{aligned}$	6250	$\begin{gathered} \text { PE } \\ (1600) \end{gathered}$	9-Trk (800)	7-Trk NRZI	6250	$\begin{gathered} \text { PE } \\ \text { (1600) } \end{gathered}$	9-Trk NRZI (800)	7-Trk NRZI
3803-2 (Basic)	x		x	x	x		$\begin{aligned} & \times \\ & \Delta \\ & \hline \end{aligned}$	x	x	x	x	Δ
3803-2 (9-Track NRZI)	x		x	x	x							Δ
3803-2 (7- and 9-track NRZI)	x		\times	\times	x							

$\begin{gathered} \text { XE4100 } \\ \text { Sea } 2 \text { of } \end{gathered}$	2735892	See EC History	$\begin{aligned} & 845958 \\ & 1 \text { 1seo } 79 \end{aligned}$	$\begin{aligned} & 847298 \\ & { }_{15} 54998 \end{aligned}$			

From: 14-000		
ERROR DESCRIPTION (Sense Byte 0, Bit 7): Data conversion is part of the 7 -track NRZI feature and is used only during 7 -track write and read-forward operations. The data converter is disabled during read-backward operations. A Read Backward command overrides (but does not reset) a previous Mode Set command which turned on the data converter.		
1. One 8 -bit byte is converted to two 6 -bit tape characters; bits $8,4,2$, and 1 of the 2. second character are written as zeros. 2. Two 8 -bit bytes are converted to three 6 -bit tape characters; bits 2 and 1 of the third character are written as zeros.		
If the byte count is not a multiple of three, any remaining bits of the last 6 -bit character are set to zero.		
Read Operation: The first four 6 -bit tape characters of the block are converted to 8 -bit data bytes in storage. When reading tape written in the data conversion mode, the number of characters read back is the same as the number of characters written. Data Converter Check is not set.		
Data Converter Check and Unit Check are set only during a 7 -track NRZI read operation. When the number of bytes on tape is not an even multiple of four bytes and: * The remainder is one byte * The remainder is two bytes, and bits $1,2,4$, and 8 of the second byte are not zeros * The remainder is three bytes, and bits 1 and 2 are not zeros.		
Most Probable Cause: The following is a list of cards that can cause the problems covered in this procedure. The cards are listed with the highest probability first. Lines with multiple cards have the same probability.		
$\begin{array}{ll} \text { A. } & \text { A1L2 } \\ \text { B. } & \mathrm{Y} 1 \mathrm{P} 2 \end{array}$		
Additional Cards Referenced: A. Y1C2		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Actio
1	Run diagnostic OLT Section P. Does diagnostic fail?	Go to Seq 6.
2	Can the failing record be read using another tape control?	Go to Seq 6.
3	Was record written with data converter On?	Go to Seq 5.
4	If not:	This record sho converter Off.
5	Tape damage is likely. If not, try to locate tape control and tape unit on which tape was generated and check for possible write problems.	

Seq	Condition/Instruction	Action
6	Set up CE panel to cycle over a failing record. Use a command sequence of appropriate mode set, with data converter on 02, OC, 04. Sync scope negative on Data Converter On (A1L2B13) and display full record. Does -EOD NRZI (A1E2J13) go negative 2-3 byte periods after last -First Bit Latch pulse?	Go to Seq 8.
7	If not:	Change Y1C2.
8	Scope -Wr Or Rd Forward (A1L2B12). Is sync negative only during the period that this line is negative?	Change A1E2.
9	If not:	Change A1L2.

If the byte count is not a multiple of three, any remaining bits of the last 6 -bit character are
Read Operation: The first four 6 -bit tape characters of the block are converted to 8 -bit an

Data Converter Check and Unit Check are set only during a 7 -track NRZI read operation

ter

Most Probable Cause:
The following is a list of cards that can cause the problems covered in this procedure. The cards are listed with the highest probability first. Lines with multiple cards have the same A. 11

Additional Cards Referenced
B. A1E2

Always start win Seq 1 and follow the procedure in sequence unless directed otherwise. | Seq | Condition/Instruction |
| :---: | :---: |

Ac

$\begin{array}{l}\text { Run diagnostic OLT Section P. Does } \\ \text { diagnostic fail? }\end{array}$	Go to Seq 6.

$2 \begin{aligned} & \text { Can the failing record be read using } \\ & \text { another tape control? }\end{aligned}$
Was record written with data converter

Tape damage is likely. If not, try to locat
was generated and check for possible
\square

3803-2/3420

3803-2/3420
$\begin{array}{l}\text { XE45150 } \\ \text { Seq } 2 \text { 2 } 2\end{array}$ $\begin{array}{l}8492596 \\ \text { Part Number }\end{array}$ $\begin{array}{l}\text { Soe EC } \\ \text { History }\end{array}$ $\begin{array}{c}845958 \\ \text { 1 Sep 79 }\end{array}$ OC Coyvight

```
000000000000000000000000000000000
```


SENSE ALL ZEROS

From: 14-000 or OLT Section AA		
The OLT diagnostics print sense data equal to all zeros for one of two reasons: 1. The Sense command was not issued before printing a standard error message format (broken chain). 2. The sense command was not executed correctly. All OLT routines use command chains which include a Sense command. If the command chain is broken before executing the Sense command, the operation is turned over to $1 / 0$ supervisor. If unit check is on in the ending status, the I/O supervisor will issue a Sense command; otherwise, the error message will print with a blank sense field. A few of the errors causing a blank sense field are: 1. Unit exception due to reading an unexpected tape mark 2. Incorrect record length (byte count error). 3. Channel check		
MosThe card car prob A. B. C. D. E. E. G. Got Not.	Probable Cause: following is a list of cards that can cause the are listed with highest probability first. Lin ability. A1C2 A2D2 A2R2 Y1P2, Y1C2 A2O2 Y1S2 A1H2 : The dc voltages are very critical. Ensure fications. If the voltages will not adjust with	problems covered in this procedure. The with multiple cards have the same hat the TCU voltages are within in specifications, go to $11-000$.
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Examine the channel status word (CSW) status bytes received by the OLT. CSW bits 32 through 39 are for device status CSW bits 40 through 47 are for channel status. Are CSW bits 'RCVD' the same as CSW bits 'XPTD' in the error message?	Go to Seq 9.
2	Is bit 39 (unit exception) on in the CSW?	Go to Seq 12
3	Are any bits on in CSW bit positions 40 through 47?	This is a channel error. Go to 18-020
4	Probe + Bus In Bit 0 through 6. See Chart A on this page. Is the line for the CSW bit position a solid plus level with the tape control reset?	Change A1C2 and go to Seq 15.
5	Probe -CBI Bit 0 through 6. See Chart A on this page. Is the line for the failing CSW bit position minus?	Change A2R2 and go to Seq 15.
6	While looping the failing command, sync negative on -CTI Bit 5 Status In (A2R2U11), and probe-CBI Bits 0 through 7. See Chart A on this page. Do the CBI bits agree with the expected CSW bits at the time of the sync?	Change card shown in Chart B on this page. See Caution.

Seq	Condition/Instruction	Action
7	Using the procedure in Seq 6, probe +Bus in Bits 0 through 7 Do these lines agree with the expected CSW bits at the time of the sync?	Change A2R2 and go to Seq 15.
8	If not:	Change A1C2 and go to Seq 15.
9	Probe + Bus In Bit for the CSW bit positions being received. See Chart A on this page. Are any lines a solid plus level?	Change A1C2 and go to Seq 15.
10	Probe -CBI Bits for the CSW bit positions being received. Are any lines a solid minus level?	Change A2R2 and go to Seq 15.
11	If not:	Change card shown in Chart B .
12	Probe +TM Configuration (Y1P2M02) while looping the failing command. Does this line go plus without reading a valid tape mark?	Change Y1P2, then Y1C2 and go to Seq 15.
13	Probe -CBI Bit 7 (A2R2J10) with the tape control reset. Is this line a solid plus level?	Change A2R2 and go to Seq 15.
14	If not:	Change A2D2.
15	Did changing the card correct the problem?	Return subsystem to customer.
16	If not:	Go to ALDs and follow back on the failing line.

Chart A

+Bus In Bits (A1C2)			-CBI Bits (A2R2)		
Csw Bit	Bus In Bit	Pin Location	Csw Bit	Bus In Bit	Pin Location
32	0	A1C2G09	32	0	A2R2S09
33	1	A1C2G12	33	1	A2R2S07
34	2	A1C2D04	34	2	A2R2G09
35	3	A1C2D06	35	3	A2R2S05
36	4	A1C2J04	36	4	A2R2S04
37	5	A1C2G07	37	5	A2R2G11
38	6	A1C2D13	38	6	A2R2G10
39	7	A1C2G02	39	7	A2R2J10

Chart B

	Channel \mathbf{A}	Channel \mathbf{B}	Without TCS
With EC733814	B2S2	B2R2	B2S2 (See Caution)
Without EC733814	B2R2	B2S2	B2R2 (See Caution)

Caution: Removing this card may cause channel errors
even with power off. Put CPU in the Single Cycle mode even with power off.
before removing card.

From: 14-000, 17-410

Write Current Failure (Sense Byte 6, Bit 1) is set when one or more write drivers are turned on while the tape unit is in read
inactive on Models 4,6 , and 8 .
A write head monitoring circuit checks the Write Current On line during a read operation
when Go Internal is activated. If Write Current On is active, the Write Current unit check
latch is turned on, and unit check is set.
Sense Byte 7 bits $0,1,2,5$, and 6 are only valid if Sense Byte 4 , bit 6 is on.
Bit 0 On: The fiber optic lamp failed and Ready is inactive.
Bit 10 n : Tape reached
Bit 1 n: Tape reached bottom in the left hacuum column and Ready is inactive,
Bit 2 On: Tape reached bottom in the right vacuum column and Ready is inactive.
Bit 3 On: The Reset switch or the Door Interlock switch deactivated Ready.
Bit 4 On: When
In: A Data Security Erase command is in progress
of Tape (EOT) is reached, bit 4 is turned off.
Bit 5 On : The erase head is open with the tape unit in write status, or current is flowing in
Bit 6 On: Pressure hat the air bearing thand/or machine reel hub has dropped to a critical
Bit 7 On: level. Ready is not active. The tape unit failed to load correctly. Ready is not active.
Most Probable Cause:
The following is a list of cards that can cause the problems covered in this procedure. The cards are listed with the highest probability first. Lines with multiple cards have the same
probability.
$\begin{array}{ll}\text { A. A2R2, Y102 } \\ \text { B. } & \text { A1H2 }\end{array}$

Single Tape Unit FRUs
Models 3, 5,7
T-A1E2, $T-A 1 H$
T-A1C2, T-A1G2
T-AT
Models 4. 6.8
T-A1L2, T-A1J2
Note: A reference with the format "Go to $5 x-000$ ". means go to $5 A-000$ for tape unit
Models 3 , 5 , or 7 and go to $58-000$ for tape unit Models 4 . 6 or 8 .
Always start with Sea 1 and follow the procedure in sequence unless directed otherwise
Remember to END all probers or maintenance call by going to MAP $00-030$.

Seq	Condition/Instruction	Action

1	Does the failure occur on more than one tape unit?	If Byte 10, any bit is on, go to 14-000, Seq 36; otherwise, go to Seq 27.
2	Is the TU loading incorrectly?	Go to MAP 2x-000 (See Note).
3	Is Sense Byte 7, Bit 0 (Lamp Failure) On?	Go to Seq 11.
4	Is Sense Byte 7, Bit 1 on (Tape Bottomed in Left Column.)	Go to Seq 33.
4A	Is	Got

Seq	Condition/Instruction	Action
11	Sync negative on -Bus Out 5 (T-A1M2P 12 for Models 4, 6, and 8 and T-A1H2P12 for Models 3, 5, and 7). Execute a Sense command. Is +Lamp Off minus and + Status Bus 0 plus? -Bus Out 5: Models 4, 6, and 8: T-A 1M2P 12 Models 3,5, and 7: T-A 1H2P 12 +Lamp Off: Models 4, 6, and 8: T-A 1M2SO7 Models 3, 5, and 7: T-AlH2SO7 + Status Bus 0 : Models 4, 6, and 8: T-A 1M2B05 Models 3,5, and 7: T-A 1 H2BO5	Change: T-A1H2 for Models 3, 5, 7. T-A1M2 for Models 4, 6, 8.
12	If not:	Check for a defective or dirty fiber opics lamp. Go to 08-620 for cleaning instructions. Change T-A1D2.
12A	Is Sense Byte 1, Bit 5 (Write Status) On?	Go to Seq 13.
12B	Set up the CE panel to do a Read command offline using a tape previously written on a good TU. Sync negative on: T-A 1K4B12 for Models 3, 5, or 7; T-A1K6B12 for Models 4, 6, or 8 . Probe +Erase UK Latch T-A 1H2SO5 for Models 3, 5, or 7; T-A1M2SO5 for Models 4, 6, or 8 . Is +Erase UK plus?	Go to Seq 12D.
12 C	If not:	Change T-A1H2 and T-A1C2 (one at a time) on Model 3,5, or 7. Change T-A 1M2 and T-A1L2 (one at a time) on Model 4, 6, or 8 .
12D	For Models 3, 5, and 7, probe -Erase Head On (T-A1H2P13) For Models 4, 6, and 8, probe -Erase Current On (T-A1M2P13) Is the line minus?	Change the write head card on Model 3,5, or 7. Change T-A1G2 on Model 4, 6, or 8 . Then change the write head card.
12E	If not:	Perform erase head checks as instructed on 08-320.

$\begin{aligned} & \text { XEA4200 } \\ & \text { Seat } 2 \text { ot } \end{aligned}$	2735893 Part Number	See EC His History	$\begin{aligned} & 845958 \\ & 1 \text { Seop } 79 \end{aligned}$	$\begin{aligned} & 846927 \\ & 20 \\ & 20 \text { sun } 80 \end{aligned}$	$\begin{aligned} & 847298 \\ & { }_{15}^{84} \text { A4g } 83 \end{aligned}$		

$C C C C C$

WRITE CURRENT FAILURE OR TAPE UNIT CHECK (Cont'd)
15-091

Seq	Condition/Instruction	Action
13	Set up the CE panel to do a Write ommand offline. Sync negative on - Move Tag. Models 4, 6, and 8: T-A1K6B12 Models 3, 5, and 7: T-A1K4B12	
14	Is -Erase Head On minus? Models 4, 6, and 8: T-A1G2D11 Models 3, 5, and 7: T-A1H2P13	For Models 4, 6, and 8, go to Seq 18. For Models 3, 5, and 7, change T-A1H2.
15	For Models 4, 6, and 8 only: Is +Erase Status (T-A1K2UO4) plus? For Models 3, 5, and 7 only: Is -Write Status (T-A1H2MO9) minus?	Interchange write card from the failing tape unit with a write card from a good tape unit. If the problem still exists, change the erase head.
16	For Models 4, 6, and 8 only: Is +Bkwd Status (T-A1K2P11) plus? For Models 3, 5, and 7 only: Is -Write Status (T-A1H2M09) plus?	For Models 4, 6, 8: Change T-A1J2. For Models 3, 5, 7: Go to 00-030. Write Status should be On at this time. Recheck symptoms.
17	If not: For Models 4,6, and 8 only:	Change T-A1K2.
18	\qquad minus?	Models 4, 6, 8: Change T-A1G2. Change T-A1G2.
19	If not: For Models 4, 6, and 8 only:	Change T-A1F2.
20	Is +Load Check minus? +Load Check: For Models 4, 6, and 8: T-A1M2U06 For Models 3, 5, and 7: T-A1H2U06	$\begin{aligned} & \text { Models 4, 6, 8: } \\ & \text { Change T-A1M2. } \\ & \text { Models S , 5, 7: } \\ & \text { Change T-A1H2. } \end{aligned}$
21	If not:	For Models 4, 6, 8: Change T-A1D4. For Models 3, 5, 7: Change T-A1E2.
22	Write a portion of tape on a working drive and then do a read operation on the failing drive Is -Write Current On minus during the read operation? -Write Current On: For Models 3, 5, and 7: T-A1H2G05 For Models 4, 6, and 8: T-A1M2G05	Change the write head card.

Seq	Condition/Instruction	Action
23	Is +Write Current UK plus? For Models 4, 6, and 8: T-A1M2P10 For Models 3, 5, and 7: T-A1H2P 10	Models 4, 6, 8 Change T-A1M2 Models 3, 5, 7 Change T-A 1 H 2
24	If not:	Go to 5x-000 (See Note).
25	Is -Operator Intervention (T-A 1C2M 13) for all models minus?	Change T-A1C2. If problem still exists, go to ALD FT263.
26	If not:	$\begin{aligned} & \hline \text { For Models 4. 6, and 8: } \\ & \text { Change T-A 1M2. } \\ & \text { For Models 3, 5, and 7: } \\ & \text { Change T-A 1H2. } \end{aligned}$
27	Do a rewind, write operation. Does the tape unit do a Rewind Unload, go backward from load point off the end of tape, or drop Ready?	Change in order: 1. A2 22 2. $Y 102$
28	Using the failing command, sync minus on -TU Tag Bit 6 Command (A2R2JO6). This line comes up twice per command; once for tape unit reset and once for the rest of the command. Check -Bus Out 6: 1. For TCU with switching: a. A2E2MO9; -Bus Out 6 Primary b. A2E2M08; -Bus Out 6 Secondary 2. For TCU without switching: a. A2E2M08; -Bus Out 6. Are any of these points minus? (It may be necessary to operate the Start-Stop switch.)	Go to 16-160.
29	Is -Bus Out 3 minus? 1. For TCU with switching: a. -Bus Out 3 Primary A2E2B09. b. -Bus Out 3 Secondary A2E2B12. 2. For TCU without switching: a. -Bus Out 3 A2E2B 12.	Go to 16-160.

Seq	Condition/Instruction	Action
30	Is -Bus Out 7 minus? 1. For TCU with switching: a. -Bus Out 7 Primary A2E2PO2 b. -Bus Out 7 Secondary A2E2U11 2. For TCU without switching: a. -Bus Out 7 A2E2U11	Go to 16-160.
31	Is -Bus Out 0 minus? 1. For TCU with switching: a. -Bus Out 0 Primary A2E2G09 b. -Bus Out 0 Secondary A2E2GO8 2. For TCU without switching: a. -Bus Out 0 A2E2G08 Go to 16-160.	
32	Is -Bus Out 4 minus? 1. For TCU with switching: a. -Bus Out 4 Primary A2E2D09 b. -Bus Out 4 Secondary A2E2D13 2. For TCU without switching: a. -Bus Out 4 A2E2D 13	Go to 16-160.
33	Is Byte 18, bit $0(\mathrm{OV} / \mathrm{Uv})$ On? (This will cause reel board emergency power off (EPO) to drop, resulting in loss of motor control, causing the tape to reach bottom).	- Check TU voltages. - Check for dirty air flow filter. - Check for defective cooling blower - Check mercury switch located on the air vane below the capstan board. - Go to 1A/1B-000.
34	If not: Probable FRUs:	- L4 Vacuum switch. glazed, or need adjustment. (See 08-000.) - For Models 4,6, and 8 change: T-A1M2, T-A1C2, T-A1D4 For Models 3,5, and 7 change: T-A1H2, T-A1C2 If the problem still exists. go to $3 A / 3 B-110$.
35	Is Byte 18, bit $0(\mathrm{OV} / \mathrm{UV})$ On? (This will cause the reel board EPO to drop, resulting in loss of motor control, causing tape to reach bottom.	- Check TU voltages with Digitec* voltmeter. - Check for dirty filter. - Check for defective cooling blower. - Check the mercury switch located on the air vane below the capstan board.
36	If not:	Possible FRUs: - R4 Vacuum switch. - Transfer valve is leaking. - Capstan tachometer is dirty. glazed, or needs adjustment See 08-000. - For Models 4, 6, and 8 change: T-A1M2, T-A1C2, T-A1B2; - For Models 3,5, and 7 change: T-A1H2, T-A1C2, T-A1G2. If the problem still exists, go to 3A/3B-110.

From: 14-000				
ERROR DESCRIPTION:				
	Unexpected sense: The sense data received from the tape unit did not match the expected sense byte mask. (For example: a hot track-in-error (TIE) byte.)			
	Unit Check without supporting sense: A data check or equipment check has been set without any other indications; or a unit check has occurred without data check, equipment check, or ID burst check being set.			
	Reject tape unit without supporting sense: This error is set if the microprogram reaches Endup on a DSE or Rewind command and busy drops without EOT or BOT coming on.			
	Unexpected ending status: The ending status did not match the expected status mask.			
5.	Unexpected Data: The data received did not match the data expected.			
Most Probable Cause: The following is a list of cards that can cause the problems covered in this procedure. The cards are listed with the highest probability first. Lines with multiple cards have the same probability.				
	Y1G2			
	${ }_{\text {A1C2R2 }}^{\text {A2R2 }}$ Y1P2			
	A1K2			
	A2D2, Y1D2, Y1J2, Y1M			
	A1H2, Y1N2, Y1Q2A1D2 A1E2, Y1H2, Y1K2			
${ }_{\text {A }}^{\text {Additional Cards Referenced: }}$				
B.	A2H2A1G2A2T2			
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise Remember to END all problems or maintenance calls by going to MAP $00-030$.				
Seq	Condition/Instruction	Action		
1	Was the failure in section F, G, or H of OLT?	Go to 21-000.		
2	Did failure occur during a rewind sense operation?	Go to 15-140.		

Seq	Condition/Instruction	Action
3	Set up the CE panel as follows: (If CE panel fails to load correctly, go to 12-000.) 1. Raise the Panel Enable switch. Turn the ROS Mode switch to Norm and operate the Set ROS Mode switch. 2. Turn the meter switch to Disable, then wait for the Intf's Disabled light to come On. 3. Lower the Stop On Control Check and Stop On Data Flow Check switches to off position. 4. Use the Data Entry Select switch to enter the following commands (operate the CE/Cmpr switch to load each command): CMND1 $=8 \mathrm{BX}($ LWR $)$ CMND2 $=8 \mathrm{BX}($ LWR $)$ CMND4 $=8 \mathrm{BX}($ LWR $)$ Byte Count = FEO Write Data/Go Down = FFO (=TU address) 5. Add jumper between A1S2G08 to A1S2J08 6. Set: ALU1/ALU2 switch to ALU2; Mple/Single switch to Mple: Display Select switch to IC. 7. Rewind and ready the tape unit. 8. Operate the Start switch.	
4	Is the error equipment check or reject TU without Sense Byte 6, Bit 1, or Byte 7 or 10, any bit?	Go to Seq 12.
5	Does the error occur in LWR mode?	Go to Seq 22.
6	Was unexpected data received in a read forward operation?	Go to Seq 43.
7	Does the sense data indicate a Data Check without supporting sense data?	Go to Seq 59.
8	Is the error a backspace block that did not detect a tape mark?	Go to Seq 64.
9	Operate the Start switch. Does -End Data Check (A1K2M11) ever go minus?	Change A1K2.
10	Does -End Data Check (A1S2U07) ever go minus?	Go to ALD PR161 and follow line back to the failing point
11	If not:	Recheck the symptoms.

Seq	Condition/Instruction	Action
12	Set up the CE panel as follows 1. Turn Display Select switch to Compare Reg. 2. Turn Data Entry Switches to the equivalent hex address of ALU2 statement HUP1 (2E8). 3. Operate Set CE/Cmpr switch. 4. Operte the Reset switch. 5. Set ALU1/ALU2 switch to ALU2. 6. Turn ROS Mode switch to Stop and operate the ROS Mode switch. 7. Turn Display Select switch to IC. 8. Operate the Start switch.	
13	Do IC indicators 0 through 11 display HUP1 (2E8)?	Go to Seq 15.
14	If not:	Go back to Seq 12 and recheck setup.
15	Turn Display Select switch to Bus In. Are indicators 0,3,5 and 7 on and Bit 6 off? (This is TU Sense Byte 0 .)	Go to Seq 17.
16	If not:	Change A2D2.
17	Set up CE Panel as follows: 1. Operate the Reset switch. 2. Load Compare Register with SKIPMOD (16F). 3. Turn Display Select switch to IC 4. Operate the Start switch 5. IC should indicate SKIPMOD (16F).	
18	Turn Display Select switch to Bus In Are only indicators 0 and 2 on in the command byte? (This is the command byte coming back from the TU.)	Go to Seq 20.
19	If not:	Change A2D2.
20	Interchange A 2 N 2 and B 2 C 2 . 1. Turn ROS Mode switch to Norm 2. Operate the Set ROS Mode switch. Does program fail in the same manner?	Change A2H2.
21	If not:	Change cards back and replace A2N2.
22	Operate the Start switch Is -ROC Cycled (Y1P2U04) pulsing?	Go to Seq 24.
23	If not:	Change Y1P2.
24	Does -2 Ptrs On Pwr (Y1J2G09) ever go minus?	Change Y $\mathrm{Y}^{\text {J2 }}$.
25	Does -2 Ptrs On Pwr, (Y1F2U07) ever go minus?	There is a broken line between Y1J2G09 and Y1F2U07. Go to ALD CHO21 and follow line back to the failing point.
26	Is + Degate Serialize S1 (Y1J2SO2) pulsing?	Go to Seq 28.

3803-2/3420

$\begin{aligned} & \text { XEEA300 } \\ & \text { Seq } 2 \text { of } 2 \end{aligned}$	2735894 Part Number	See EC History	$\begin{aligned} & 845958 \\ & \hline 1 \text { Sep } 79 \end{aligned}$	$\begin{aligned} & 246927 \text { Jun } 80 \\ & 20 \end{aligned}$	847298 15 Aug 83			

CCCCCCC

UNIT CHECK WITHOUT SUPPORTING SENSE OR UNEXPECTED SENSE

Seq	Condition/Instruction	Action
27	If not:	Change Y1 ${ }^{\text {J }}$.
28	Is -Pointer Bus in 0 (Y1G2B12) pulsing?	Go to Seq 30.
29	If not:	Change Y1G2.
30	Is -Pointer Bus Bit 1 (Y1G2M02) pulsing?	Go to Seq 32.
31	If not:	Change Y1G2.
32	Is -Pointer Bus Bit 2 (Y1G2D13) pulsing?	Go to Seq 34.
33	If not:	Change Y1G2.
34	Is -Pointer Bus Bit 3 (Y1G2P02) pulsing?	Go to Seq 36.
35	If not:	Change Y1G2.
36	Is -Pointer Bus Bit 4 (Y1G2P05) pulsing?	Go to Seq 38.
37	If not:	Change Y1G2.
38	Is -Pointer Bus Bit 5 (Y1G2M08) pulsing?	Go to Seq 40 .
39	If not:	Change Y1G2.
40	Is -Pointer Bus Bit 6 (Y1G2M05) pulsing?	Go to Seq 42.
41	If not:	Change Y1G2
42	Is -Pointer Bus Bit 7 (Y1G2M07) pulsing?	Recheck the symptoms.
43	Operate the Start switch. Does + Bus In Bit 0 (A1C2G09) pulse?	Go to Seq 45.
44	If not:	Change in order 1. A 1 C 2 2. $A 1 S 2$
45	Does + Bus in Bit 1 (A1C2G12) pulse?	Go to Seq 47.
46	If not:	Change in order: 1. A1C2 2. A1S2
47	Does + Bus in Bit 2 (A1C2D04) pulse?	Go to Seq 49.
48	If not:	$\begin{aligned} & \hline \text { Change in order: } \\ & \text { 1. A1C2 } \\ & \text { 2. A1S2 } \\ & \hline \end{aligned}$
49	Does + Bus in Bit 3 (A1C2D06) pulse?	Go to Seq 51.
50	If not:	Change in order 1. A1C2 2. A1S2
51	Does + Bus in Bit 4 (A1C2S04) pulse?	Go to Seq 53.

Seq	Condition/Instruction	Action
52	If not:	$\begin{aligned} & \text { Change in order: } \\ & \text { 1. A1C2 } \\ & \text { 2. A1S2 } \end{aligned}$
53	Does + Bus in Bit 5 (A1C2G07) pulse?	Go to Seq 55.
54	If not:	$\begin{aligned} & \text { Change in order: } \\ & \text { 1. A1C2 } \\ & \text { 2. A1S2 } \\ & \hline \end{aligned}$
55	Does + Bus in Bit 6 (A1C2D13) pulse?	Go to Seq 57.
56	If not:	$\begin{aligned} & \text { Change in order: } \\ & \text { 1. A1C2 } \\ & \text { 2. A1S2 } \end{aligned}$
57	Does + Bus in Bit 7 (A1C2G02) pulse?	Change A1C2.
58	If not:	$\begin{aligned} & \text { Change in order: } \\ & \text { 1. A1C2 } \\ & \text { 2. A1S2 } \end{aligned}$
59	Operate the Start switch Does + Tape Op Delayed (Y1N2M05) pulse?	Go to Seq 61.
60	If not:	Change Y1N2.
61	Set up the CE panel as follows 1. Use the Data Entry Select switch to enter the following commands (operate Set CE/Cmpr switch to load each command): CMND1 $=04 \times$ (Sense) CMND2 $=04 \times$ (Sense) CMND3 $=04 X$ (Sense) CMND4 $=04 \times$ (Sense) $=T U$ ADDRESS 2. Remove jumper between A1S2G08 and A1S2J08 3. Set ALU1/ALU2 switch to ALU1. 4. Operate the Start switch.	
62	Does -Stat Bit 1 Sense (A2T2B03) pulse?	Change A1K2
63	If not:	Change A2T2. If problem is not resolved, suspect noise on the TU Interrupt Line.

Seq	Condition/Instruction	Action
64	Set up the CE panel as follows: 1. Use the Data Entry Select switch to enter the following commands (operate the Set CE/Cmpr switch to load each command): CMND1 $=1 \mathrm{~F}$ (WTM) CMND2 $=1 \mathrm{~F}$ (WTM) CMND3 $=1 \mathrm{~F}$ (WTM) CMND4 $=1 \mathrm{~F}$ (WTM) = TU ADDRESS 2. Remove LWR jumper between A1S2G08 and ground. 3. Operate the start switch.	
65	Does - BOR 27 Comb or DT BR Cond (Y1P2J13) ever go minus?	Change Y1P2.
66	If not:	Recheck symptoms.

Seq	Condition/Instruction	Action
9	Do a rewind followed by a sense command from the CE panel and step to the failing sense byte. See Chart A for correct sense data.	
10	Does Sense Byte 2 equal something other than 00?	Change Y1P2.
11	Is an extra bit $O n$ in the failing sense byte? (See Chart A for correct sense data.)	Go to Seq 18.
12	Determine which bit is missing in the failing sense byte.	
13	Is that bit minus on -CBI Bit? (See Chart C.)	Change B2S2. See Caution.
14	Is the failure in bytes 13 and 14?	Go to Seq 16.
15	If not:	Change A2R2.
16	Is + Stat Bit 1 Sense (A2T2D05) plus?	Change A2R2.
17	If not:	Change A2T2.
18	Determine which bit is extra in failing sense byte.	
19	Is that bit inactive on -CBI Bit?	Change B2S2. See Caution.
20	Is that bit inactive on + Data Bus In? See Chart B.	Go to Seq 27.
21	Is -R/W VRC (A1S2U05) minus?	Change A1K2.
22	Is -MTE (A1S2U06) minus?	Change A1K2.
23	Is -End Data Check (A1S2U07) minus?	Change A1K2.
24	Is -Skew Error (A1S2S09) minus?	Change A1K2.
25	Is -P Or C Comp (A1S2M13) minus?	Change A1K2.
26	If not:	Go to Seq 32.
27	Are + Stat Bit 1 Sense (A2T2D05) and -Stat Bit 1 Sense (A2T2B03) at the same level?	Change A2T2.
28	If not:	Change A2R2.
29	Does tape control fail on both channels?	Go to Seq 8.
30	Does tape control fail on channel A?	Change B2S2. See Caution.
31	If not:	Change B2R2. See Caution.
32	```Is +62501 Or 2 Trk Corr TP (A1S2S02) minus?```	Change A1S2.
33	Is +1 Or 2 Trk Corr TP (A1D2P06) minus?	Change in order 1. A 1 D 2 2. A 1 C 2
34	Is -Set I Cnt Cmpr (Y1N2P09) plus?	Change Y1N2.
35	If not:	Change Y1J2.

Chart A

Sense Byte Mask For Sense Data After Rewind									
		Bit or Indicator Display							
Sense Byte Number	Hex	0	1	2	3	4	5	6	7
Sense Byte 1	48		\times			x			
Sense Byte 2	00								
Sense Byte 3	06						\times	\times	
Sense Byte 4	00								
Sense Byte 5	40		\times						
Sense Byte 6	not=00		ts co pe co	$\begin{aligned} & \text { taine } \\ & \text { the } \\ & \text { trool. } \end{aligned}$	in th	$\begin{aligned} & \text { sen } \\ & \text { mo } \end{aligned}$	$\begin{aligned} & \text { byte } \\ & 10 \text { ata } \end{aligned}$		
Sense Byte 7	00								
Sense Byte 8	00								
Sense Byte 9	08					\times			
Sense Byte 10	00								
Sense Byte 11	00								
Sense Byte 12	00								
Sense Bytes 13 and 14	not=00 00		$\begin{aligned} & \text { its co } \\ & \text { ding } \\ & \text { pe co } \end{aligned}$	taine trol.	$\begin{aligned} & \text { in th } \\ & \text { azature } \end{aligned}$	and	byte		
Sense Bytes 15 and 16	not $=0000$		$\begin{aligned} & \text { its co } \\ & \text { ding } \\ & \text { unis. } \end{aligned}$	taine	in th th	$\begin{array}{ll} \text { se tw } \\ \text { mber } \end{array}$	byte	var	
Sense Byte 21	1 A				x	x		x	

Chart B

\mathbf{x}	+ DATA Bus In
0	Aata Bus In Location
1	A2R2P07
2	A2R2P03 04
3	A2R2J12
4	A2R2P06
5	A2R2PO2
6	A2R2P04
7	A2R2J11

Chart C

-CBI X	
x	CBI Location
0	A2R2SO9
1	A2R2SO7
2	A2R2G09
3	A2R2S05
4	A2R2SO4
5	A2R2G11
6	A2R2G10
7	A2R2J10

3803-2/3420

PICKING/DROPPING RECORDS

From: 00-010		
ERROR DESCRIPTION: This failure is usually the result of a tape positioning problem while executing an error recovery procedure.		
Most Probable Cause: 1. T-A1H2, Models 4, 6, and 8 only. 2. 1600 and 6250 bpi-a crease longer than 0.15 inch (3.8 mm) can cause positioning 3. Nroblems if tape stops with the read/write head positioned within the crease. 3. NRZI-a crease that is longer than 0.025 inch $(0.64 \mathrm{~mm})$ can cause positioning problems if tape stops with the read/write head positioned within the crease. 4. On 3420 Models 4, 6, or 8, the only time the write head does not erase is after a read operation. In rewriting a bad record, tape is positioned with the erase head in the IBG area. This means the write head is situated over the previous record. If the write head is energized at the wrong time, it can erase part or all of the previous record. 5. 1600 bpi Only-an area at least 2.7 inches (68.6 mm) behind load point must be free of blocks. If the tape was written on a 2400 or 2415 tape unit, blocks within 2.7 inches $(68.6 \mathrm{~mm})$ of load point can cause this failure. 6. Tape slippage on the capstan.		
Notes:		
1. Several ECs are available on an "as required" basis for Model 3, 5, and 7 tape units. a. EC734030 This EC prevents splashes on tape resulting from a write operation after a read operation. These splashes can be recognized on read operations and result in positioning problems. b. EC734391 This EC prevents electrostatic discharge (ESD) from inadvertently dropping the rewind plunger solenoid and possibly activating the rewind plunger.		
2. EC 734866 is available on an "as required" basis for 3803-1. This eliminates dropping a record when a backward error recovery initiates a cleaner blade action over a crease or contamination that disappears during the cleaner action. a. EC 734866 This EC eliminates dropping a record when the backward error recovery initiates a cleaner blade action over a crease or contamination that disappears during the cleaner action. b. EC 443935 Install if problem is causing records to be dropped.		
Always start with Seq 1 and follow the procedure in sequence unless directed otherwise. Remember to END all problems or maintenance calls by going to MAP 00-030.		
Seq	Condition/Instruction	Action
1	Develop tape. (See 00-011) If problem is not corrected, return here.	
2	this a single tape unit failure?	See Note 1. Perform the Pneumatic Pressure/Vacuum Level Checks. See 08-400. Also check for drag. See 6A-010 or 6B-150. Go to Seq 3 . Go to Seq 3
3	If	Read Note 2 and go
4	Is the problem resolved?	Go to 00-030.
5	ot:	Change T-A1H2 and go to Seq 6
6	is the problem resolved?	0-030.
7	If not:	Go to 00-040, Seq 14.

$\begin{aligned} & \text { XEA500 } \\ & \text { Sea } 1 \text { of } 2 \end{aligned}$	2735896	See EC History	$\begin{aligned} & 845958 \\ & \hline \text { Sep } 79 \end{aligned}$	$\begin{aligned} & 847298 \\ & 15 \\ & \hline 1549883 \end{aligned}$			

Cr CrCCl

A
Abends-Theory $00-035$ Register 53-055 A Register $52-025$
AC Power Supply (see Power Supplies) AC Power Supply (see Power Supplies)
Acceptable Waveforms (Read Card Test Points) Acceptable
$58-004$
Access Times, Read/Write (Subsystem
Charateristics) $40-002$
Characteristics) $40-002$
Acronyms and Abbreviations PLAN 22
Active/Inactive/Pulsing/Switched Line
Leveis $00-003$
Adapter Hose (CE Tool) $80-000$
Adapter Hose (CE Tool) $80-000$
ADD/ADDM, Arithmetic (ALU Operation) $52-065$
Additional Stopping Distance After Go
Extend
$6 \mathrm{~A}-140,6 \mathrm{~B}-205$
Extend $6 \mathrm{~A}-140,6 \mathrm{~B}-205$
Address Out Active (MAP)
$\begin{array}{lll}\text { Address Out Active (MAP) } & 13-300 \\ \text { Address Out Inactive (MAP) } & 13-360\end{array}$

(Installation) 90-110
Address Decoders, Control Unit 58-010
Addressing
$\begin{aligned} & \text { Concepts } \\ & \text { Tape Control and Tape Unit }\end{aligned}$ 54-005
 Altitude Vacuum Level 08-410, 90-190
AMP Sensor (NRZI-Model 3, 5, 1 I $08-300$
Amp Sensor (PE Only-Model 3, 5,7) $08-290$ Amp Sensor Model 4, 6 , 8) 08 -
Amplitude (Mod
Autocleaner $08-382,58-10$
Autocleaner 08-382, 5B-110
BOT/EOT, Fiber Optic $08-580$
BOT/EOT Voltage $08-575$
BOT/EOT' Voltage $08-575$
Capstan To Stuby
(All Models)
Bar Clearan
Capstan To Stubby Bar
(All Models) $08-080$
$\begin{array}{ll}\text { Capstan Trachometer (Model 3, 5, 7) } & 08-130 \\ \text { Capstan Tachometer (Model 4, 6, 8) } & 08-120\end{array}$
$\begin{array}{ll}\text { Cartridge Motor O8-535 } \\ \text { Data Fow Clock Asymmetry } & 90-190\end{array}$
DC Power Suopply 08-570
Dual Density Threshold Adjustment Card $80-000$
Dual Density Threshold Adjustment Card
Electrical Skew (NRZI Feeature) 08.200 ESD Grounding ($3420 / 8203$) $908-190$
Head Mirror Stop (Model 3, 5, 7) $08-350$ Left Reel Hub and Motor 80-560 ${ }^{\text {Ben }}$ Mechanical Skew (NRZI Feature) 08-180
Mechanical Skew (1600 and 6250 BPI) $08-170$ Mowe Window Satety Bail $08-640$
Read Amplitude (Model 4, 8) $08-310$ Read Amplitudue (Model 4, 6, 8) 08-310
Read Electrical Skew (NRZI Feature) $08-190$ Type 2272 MST Card $17-800$
Vacuum Column Door $08-680$
Vacuum Column Door Glass 08-690 $08-200$
Write Electrical Skew (NRZ1 Feature)
Write Electric
Pneumatics
Pressure Level (All Models) 08-420
Supply Flat Belt (Type 4) 08-442
Power Window Motor, Rack and Switch 08-640
Power Window Motor, Rack and Switch
Rack and Limit Switch $08-650$
Rack and Limit Switch
Read Amplitude (Models 4.6.6) 08-310
Read Electrical Skew (NRII) 08-190
Read Electrical Skew (NRZI)
Right Reel Hub $08-500$
Safety Bail
Right Reel Hub 08 -
Safery Bail
Tape
Tape Unit Stubby Bar 08-080
Write Electrical Skew (NRZI) $08-200$
Write Electrical Skew (NRZII) 08-200
7-Track NRZI Threshold Adjustment Card $08-000$
Air Bearings, MAP $4 \mathrm{~A}-160,4 \mathrm{~B}-160$

Air Pressure Check Regulator 08-405, 90-190
Airflow and Voltage Monitoring
System $1 \mathrm{~A}-000,1 \mathrm{~B}-000$
Alignments
Dynamic (Non-90,000 series) 08-150 Dynamic ($90,000 \mathrm{O}$ series) $08-160$.
Marks 08-064
Static (Non 90.000 Series) 08-060
Static (Won-90,000 Series) 08-060
Static With Round Supports) 08 O-068
Static (With Square Support Without Static (With Square Support Without
Zero Marks)
$08-062$
Power Window 08-640
Alternate Flip Flop $53-040$
ALU (Arithmetic Logical Unit) Microprocessor)
Operations
Arithmetic Add: ADD/ADDM (Hex Code A or B)
Arithmetic Add: ADD/ADO (Hex Code 2 or 3)
Branch On Condition: BOC (Hex Code 2 or 3
Branch to Read from Load Point $55-040$ Branch to Write fiom Load Point 55-02
Branch Unconditional: BU (Hex Code 6) $52-090$
Common Start 1/O Routine $55-020$ Common Start I/O Routine $55-020$
Logical AND: AND/ANDM (Hex Code C or D)
$52-070$) ${ }^{52-070}$ Logical Exclusive OR: XO/XOM (Hex Code E or F) Logical Exclusive OR: XO/XOM (Hex Cod
$52-005$
Logical OR: OR/ORM (Hex Code 8 or 9)
52-075 STO (H) Code 0 or 1)
52-095 Logic: STO (Hex Code 0 or 1)
Transfer Logic: XFR (Hex Code 4 or 5) 52-100
Charts 1 to 7 13-091
$\begin{array}{lll}\text { Fails to Trap to } 000 \text { (MAP) } & 13-400 \\ \text { Failure to Reset CTI (MAP) } & 13-210\end{array}$
Failure to Reset CT1 (MAP)
Hangs at 000 (MAP) $13-010$
Hangs on ALU2 Failure (MAP)
Hon (MAP) 13-530 13
13-410
Loop (MAP) $13-530,13-540$
Loop. TCS (MAP) $13-080$
Microprogram Detected Error (Sense Byte 11,
Bit 4) (MAP) 16 -060
Bit 4) MAP) $16-060$
Op in Wait (MAP) 13-250
Power-On Reset (MAP) $13-090$
Power-On Reset (MAP) 13-090
Reset Failure IMAP) $13-200$
Waiting for ALU2 to Complete a
Waiting for ALU2 to Complete a
Sequence (MAP)
13-420
Waiting for ALUZ to Drop STATB (MAP)
$13-460,13-470$
Waiting for ALU2 STATB Indication (MAP)
$13-450$
13-450
Waiting for ALU2 STATD Indication (MAP)
$13-440$
ALU Cannot Exit or Loop (MAP) 13-370
ALU Cannot Exit or Loop (MAP) $13-370$
ALU1 or ALU2 Hangs (Chart) $13-005$
ALU1 or ALU2 Hangs (MAP) 13-000
ALU1/ALU2 (Two Position Switch) $75-002$
ALU2
Analyzing Microprogram Errors 16-131
Microprogram Detected Error (Sense Byte 12,
Microprogram Detected Error (Sense Byte
Bit 4) $16-130$
Microp
Microprogram Error (Table) 16-130
Power-On Reset Charts 1 1 1o 7 13-194

Trap Failure (MAP) ${ }^{13-260}$ B Bus Parity Error ALLU1 16030
B Bus Parity Error ALU2 $16-100$
Branch On Condition (BOC) Errcr $\begin{array}{ll}\text { ALU1 } & 16-050 \\ \text { ALU2 } & 16-120\end{array}$
Bus In Register, Channel $52-040$
Bus Out Register, Tape Unit $52-045$ Cas Out Register, Tape Unit 52-045
$\begin{array}{ll}\text { Channel Bus } \ln (\text { (CBI) Register } & 52-040 \\ \text { Channel Tags } \ln (C T 1) \text { Register } & 52-040\end{array}$
Communication Between Microprocessor
(Description) 52030
(Description) 52-030
Crossover (XOUTA/ XOUTB) Registers 52-025
Crossover
D Bus Parity Error ALU2
Registers
52-060
D Registers 52 -060
Diagnose, Loop, and Scoping Procedures Diagnose,
$16-000$
General Reference Information 16-000
High ROS/IC Parity Error On a Branch Instruction $\begin{array}{ll}\text { ALU1 } & 16-020 \\ \text { ALU2 } & 16-090\end{array}$
How to Determine the Failing Address $16-000$ How to Determine the Failing Address $16-000$
How to Make the ALU Loop on an Error $16-000$ Linking Microprogram Routines (Description)
Listings, Microprocessor (Description) 52-030 Local Storage Register (LSescription) 52 -015
Low-Order ROS Registers
$52-035$ Low-Order ROS Registers 52 -035
Low ROS/IC Parity Error On a Branch Instruction $\begin{array}{ll}\text { ALU1 } & 16-010 \\ \text { ALU2 } & 16-080\end{array}$
Microprocessor
Clocks
52-005
Instructions (see ALU Operation)
$\begin{array}{lll}\text { Listings (Description) } & 52-030 \\ \text { (MP1/MP2) Schematic } & 50-003\end{array}$
Microprogram Transfer Decodes 52-10
MIST or TCS Register (MP1) 52-060
MP1 Special Register (Hardware Errors) $52-060$
MP2 Special Register (TU Bus In) $52-060$ Parity Errar ALU1 ALT $16-040$
ROS 1 Trap Conditions $50-011$
Second Level Diagram, ROS 1 Trap
Conditions $50-010$
Conditions $50-010$.
Short Cycle XFR Example (Timing Chart) $16-00$
Shor Cyciser 5 52-015
Stat Registers
$\begin{array}{ll}\text { Stop Address-FRU List ALU1 } & 16-060 \\ \text { Stop Address-FRU List ALU2 } & 16-130\end{array}$

TCS O M MST Register (MP) $52-060-045$
XOUTA/XOUTB (Crossover) Registers 52-025
Amplitude-Setting Sequence $5 \mathrm{~B}-120$
Serser
Analysis of Damaged Tape Errors $00-012$
Analysis of $I B G$ in Developed Tape $00-013$
Analysis of IBG in Developed Tape $00-01$
Analyzing Microprogram Errors $16-131$
$\begin{array}{lll}\text { Analyzing Microprogram errors } & & \\ \text { AND Logical (ALU Operation) } & 52-130 \\ \text { Arithmetic Add (ALU Operation) } & 52-065\end{array}$
Arithmetic Add (ALU Operation) 52-065
Array Patching, Patch Card $52-103$
Array Patching, Patch
Asymmetry Adjustment, Clock
Attachment, $17-800$
Channel (Chart)
Attachment, Channel (Chart) $90-010$
Adjustment
08-382

Erase Head
Operation
OB-110
Operation O8-360
Removal/Replacement 08-380 $08-370$
Semoval/ 48 -160
Write Card Circuits
Write Card Circuits $5 \mathrm{~EB}-110$
Automated Logic Diagram (ALDs) $00-002$
$\begin{array}{ll}\text { Automated Logic Diagram (ALDs) } & \text { 00-002 } \\ \text { Automatic Threading (Concept) }\end{array}$
B
B Bus
B Bus 0-7 ALU1 Test Points (Table)
16-030
$\begin{array}{lll}\text { Parity Error ALU1 (MAP) } & 16-030 \\ \text { Parity Error ALU2 (MAP) } & 16-100\end{array}$
Parity Indicator 75-003
Backhitch 6B-230
Backspace Block Command 40-007
Backspace Fiole Command $40-00$
Backspace $\begin{aligned} & \text { File Command } \\ & \text { Backward }\end{aligned}$ Operation $6 \mathrm{~B}-230$
No Response or Tape Moves Backward 3A-100
Tape Fails to Go Backward $3 \mathrm{~A}-130,3 \mathrm{~B}-130$
Bad Sense Data After a Rewind from OLTs (MAP)
15-140
B250) Descring Techniques (PE, NRZI,
Basic Subsystem (Concepts) 40-001
Operation) 57-020
it Cell PE Waveron
Bit Cell and NRZI Waveform 55-007
Sit Usage Chart, MPI XOUTA Register 5 A-115, 5B-025
Block Diagram, Device Switching
(2×8 Switch) 18 -012
Block Diagram, Device Switching
(3×8 or 4×8 Switch) $18-013$
BOC indicator Switch) $75-003$
18-0
BOT/EOT
Phototransistor 2A-010
oad Check Prior to BOT Sense 2A-150, 2B-150
tape Does Not Go Backward
at BOT 2A-190 Backward or Does Not Stop
Tape Moves Backward Off Left Reel 2 2B-190
Tape Unwinds Off Right Reel or Tl Light Stays Tape Unwinds
On $3 A-150$
Tape Won't Thread, Load, and Return to BOT
Voltage Checks and Adjustments 08-580
BOT/EOT, Fiber Optics
LED BOT/EOT Window Removal/Replacement
08-590 Branc
Condition Error ALU1 (MAP) 16-050
$\begin{array}{lll}\text { MP1 Condition (Table) } & 52-086 \\ \text { MP2 Conditions (Table) } & 52-087\end{array}$
MP2 Conditions (Table) 52-087
On Condition (ALU Operation)
On Condition Error ALU2 (MAP)
$3803-2 / 3420$

Unconditional (ALU Operation) 52-090
$\begin{array}{ll}\text { To Write From Load Point } & 55-024 \\ \text { To Read From Load Point } & 55-040\end{array}$ Bufter Write Cycle $533-040$ Buffer Write Cycle 58, 53-040
Buffers, LSR $52-015$
Burst Commands 40-005
Bus In Register, Channel $52-040$ Bus in Register, Channel 52-040
Bus in/Bus Out Interface Lines $07-000,54-000$
Bus Out Checks (MAP) $15-030$ Bus Out Checks (MAP) 15P
Bus Out Register, Tape Unit
B2-045
Bus Out Register, Tape Unit $52-045$
Buss (TCS Feature) $58-012$
Busy/Tach Lines Test Points (Table) $16-1$
 c
C Compare or P Compare Circuit Logic 17-017
C Compare or P Compare Errors $17-010^{17-17}$
C Compare or P Compare Errors (Timing Chart)
$17-014$
Cable and Teminator Pluger
$\begin{array}{ll}\text { Cable and Terminator Plugging } & 90-080 \\ \text { Cable Retaining Bar } & 90-060\end{array}$
$\begin{array}{ll}\text { Cable Retaining Bar } & \text { 90-060 } \\ \text { Cables } 90-060 \\ \text { Cabing Suspem } & 90-060\end{array}$
Cabling, Subsystem 1000
Capstan
Adjusters
08-060
Adjustment Wrench (CE Tool)
B0x Wrench (CE Tooll $80-000$
Capstan To Stubby Bar Clearance $\quad 08-080$
Drive System 6 6-120, $68-200$
Dynamic Alignment Tracking (900,00 Series) 08-160
Dynamic Alignment Tracking (Non-90,00
Series) $08-150$
Glazed Cleaning Procedure $08-700$
Major Elements of Capstan Control
$\begin{array}{lll}\text { Major Elements of Capstan Control logic } & \text { 6B-205 } \\ \text { Motion Checks (Motion Appears Normal) } & 6 \mathrm{BB-020}\end{array}$
Motion Control $6 \mathrm{~A}-000$
Motion Failure Symptoms $6 \mathrm{~B}-000$ 6B-140
Motion Failure Symptoms 6B-000, 6B-14
Motor and Controls $6 \mathrm{~A}-120,6 \mathrm{~B}-200$
$\begin{array}{ll}\text { Motor Proportional Drive Control } & 6 \mathrm{~B}-215\end{array}$
Motor Status $3 \mathrm{~A}-030,3 \mathrm{~B}-030$
Motor Waveforms $6 \mathrm{~A}-002$
Normal Cleaning Procedure 85-004
Norme Generator $6 \mathrm{~A}-120,6 \mathrm{~B}-200$
Puls
Start Capstan Motion (Write Operation
200 IPS)
$6 \mathrm{~B}-220$
Capstan Assembly
Field Repair. Dented Capstans (Non-90,000
Series
Field Repair, Dented Capstans (90,000 Series
Removal (Non-90,000 Series Tape Units) 08-020
$\begin{array}{ll}\text { Removal (Non-90,000 Series Tape Units) } & \text { 08-020 } \\ \text { Removal (} 90,000 \text { Series Tape Units) } & 08-030\end{array}$
Replacement (Non-90,000 Series Tape Units)
$08-040$
Replacement (90.00 Series Tape Units) 08-050
Repacement
Starts Turning When Power is Turned On
(Second Level) $6 \mathrm{~B}-140$
Static Alignment (Square Support With Zero
Marks) $08-064$
Static Alignment (Square Support
Without Zero Marks)
Static Alignment (With Round Supports) 08-068
Capstan Tachometer (Molels 3,5, and 7) 08-130
Check/Adustment (Moder

Check/Adjustment (Models 4, 6, and 8) 08-120 Cleaning 08-140
Cleaning Procedure, Special Glazed 08-700
Control Circuits, Capstan $6 \mathrm{~A}-120,6 \mathrm{~B}-200$
Cap
Drive System 6A-120, 6B-200
Dynamic Alignment (Non-90,000 Series Tape Units
O8-150
Dynamic Alignment (90,000 Series Tape Units)
Dynamic Alignment
$08-160$
(90,000
Series Tape Unit
Extended Go \quad 6A-140, $6 \mathrm{EB-205}$
Gray Code Counter (GCC)
6B-205
Extended Counter (GCC) 6B-205
Gray Code Coun
IBG Counter Circuits 6A-130, 6B-205
18G Counter Circuits 6A-130, 6B-205
Major Elements of Capstan Control Logic 6B-205
Major Elements of Capstan Control Logic $6 \mathrm{~B}-205$
Motion Checks (Capstan Motion Appears Normal)
6B-020
Motion C
Motion Control Problems 6A-000
Motion Failure Pren
Motion Failure Problems $6 \mathrm{~B}-000$
Motor and Controls $6 \mathrm{~A}-120,6 \mathrm{~B}-200$
$\begin{array}{ll}\text { Motor Proportional Drive Control Circuit } & 68-215\end{array}$
olarity Waveforms 6A-002, 6B-002
$\begin{array}{ll}\text { Proportional Drive Counter (PDC) } & 6 \mathrm{~B}-205\end{array}$
Pulse Generation $6 \mathrm{~A}-120,6 \mathrm{BD}$-200
Quarter Tach Pulse
Quarter Tach Pulses 6B-205
Read Only Storage (ROS) 6B-205
Start Capstan Motion 6B-220
Starts Turning When Power is Turned On 6B-140
Starts Turning
Static Alignment
(With Round Supports) 08-068
(90,000 Series, With Zero Marks) 08-062

Tach Period Counter (TPC) 68 -205
6B-110
TU Stubby Bar Clearance Adjustment 08-080
TU Won't Thread, Load and Return to BOT Correctly
6B-100
Won't Start Rewind to LP After Tape Load 2B-175

apstan Prealignment Gauge (CE Tools) $\quad 80-000$
ard/Board Function Layout

$\begin{array}{ll}(3420) & 19-010 \\ (3803-2) & 19-000\end{array}$
Card Isolation Technique PLAN 1
Card Plugging (lnstallation) 90-110
Card Plugging, Tape Control Logic Panel 19-000
ard Plugging, Tape Control Logic Pan
Does Not Open 2A-100, 2B-100
Opener Does Not Close $4 \mathrm{~A}-150,4 \mathrm{~B}-150$
Opener Does Not Close $4 \mathrm{~A}-150,4 \mathrm{~B}-150$
Optional (Concept)
$40-001$
Motor Replacement/Adjustment $08-535$
Restraint Pressure Check $08-536$
Restraint Pressure Check 08-536-535
Restraint Removal/Replacement $08-540$

CE Panel
Description
Failures
75-001
$\begin{array}{ll}\text { Failures } \\ \text { Operation Contents (MAP) } & 12-010\end{array}$
Switches
Channel 75-001
$\begin{array}{ll}\text { Artachment (Chart) } & \text { 90-010 } \\ \text { Buffer Controls } & 53-030\end{array}$
Buffer Controls $53-030$
Buffer Logic $50-000$
Buffer Logic $50-000$
Bus In $53-055$
Bus In Register 52-040

Bus In/Out Checking (MAP) 13-380
nitial Selection 54-000
interface Problems. Tape Control 18-040
Priority Circuits $54-020$
Status Word Bits (Table) 150
Tags in Register ($52-040$
Tags \ln Register
Test Points (Table)
S2-040
Write
17

| $\begin{array}{c}\text { Test Points (Table } \\ \text { Write } \\ \text { Wrte Register } \\ \text { 17-021 } \\ 53-045\end{array}$ |
| :---: | :---: |

ALU1 1 to 7 13-091
ALU2 Power On Reset
Alanch Conditions $16-050$
Branch Conditions 16-050
Cards and Cables, Device Switching
Troubleshooting Procedure
Dropping Ready and Thread and Load Failure
Features Chart (Sense Byte 6) $17-220$
Mode Chart (Sense Byte 6)
17-110, 17-2
Mode Chart (Sense Byte 6) 17-110, 17-220
Read/Write Vertical Redundancy Check 17-170
Read/Write Vertical Redundancy
Reference $18-29$
Skew Error Test Points 17-162
Skew Error Test Points 17 162
Tape Control To/From Device 18 -005
Tape Control To/From Device 18 18-0
Tape Unit Control Lines $16-213$
1×8 Selection 18-001, 18-005
1ape Unit Control Lines $16-213$
Checks Section 18-001, 18-005
Autocleaner Operational 08-380
BOT/EOT Voltage $08-580$ Capstan Tachomete
$\begin{array}{ll}\text { Cosstan achometer } \\ \text { Model 4. 6, 8, } & 08-120 \\ \text { Model 3, 57) } & 08-130\end{array}$
Model 3, 5, 7) 08-130
Capstan and Tracking 08 08-010
Cartridge Restraint Pressure 08
Castridge Restraint Pressure 08-536
Cleaner Blade Gauss $08-390$ Coaner Blade Gauss $08-390$
Column Vacuum Level $08-400$ DC Power Supply 08-570
Erase Head Polarity and Erasure $08-320$
ESD Grounding (3420 Erase Head Polarity and Erasure $08-320$
ESD Grounding $(3420 / 3803) \quad 90-190$ $\begin{array}{ll}\text { Feedthrough } 08-330 \\ \text { File Protect Mechanism } & 08-340\end{array}$ Mechanical Skew
1600 and 6250
NRZI Feetren
NRZI Feature 08-180
Pneumatic Pressure Vacuum 08-400
Power Suply $90-180$ 08-570
Pneumatic Pressure Vacuum $08-400$
Power Supply $90-180,08-50$ (Model 4,6 ,
Read/Write Head Resistance (Moder
Read/Write Head Resistance (Model 4, 6, 81
$08-280$
O8-280 Air Pressure 08-405, 90-190
Regulator Air Pressure (NRZ1 Feature) 08-05-230
Tape Guide (Nose
Tape Unit Grounding 08-600
Tape Unit Grounding $08-600$
Threading Vacuum $08-400$

Threading Vacuum $08-400$
Transfer Valve Plug
$08-410$

ranster Valve Plug $08-410$
Vacuum Column Switch $08-450$
Vacuum Pump Belt $08-410$
$\begin{array}{lll}\text { Vacuum Pump Belt } & \text { 08-410 } \\ \text { Check Register, Write } & 53-045\end{array}$
Check Register, Write (53-045
Checking. Read Back (Concept) $40-001$
Cleaner Blade Gauss Check 08-390
Cleaning Procedures (see Preventive Maintenance)
Clock
Asymmetry Adjustment
17-800
Asymmetry Adjustment
Chart $53-015$
Check (MAP) 17-800
Control Logic, Microprocessor
Write (Table)
$52-005$

Clocks/Oscillators/Counters
Bres Counter $53-025$
BRIC-CROC Address Counters 53-035
Data Flow Clock $53-015$
Group Buffer Counter 53 -090
Master Clock $53-005$
53-0.0.
Microsecond Frequency $53-005$
Oscillator Gating 53-005
Read Clock Stepping Pulses 53-005 Read Clock Stepping Pulses 53-005
Read/ Write Clocks and Counters (Table) 53-010 Write Clock and Write Counter
Column Vacuum Check $08-400$
Command Controls Switches (CE Panel) 75-002
Command or Control Status Reject
16-160
6A-160
Command Out Inactive During Reset or
Power On Reset (MAP) 13-330
Command Out Ta Active (MAP) 13-290
Command Reject (MAP) 15-020,
Command Select Sequencer and Decoder 12-026
Command Sequence (MAP) 13-050
$\begin{array}{lll}\text { Command Status Reject (MAP) } & 16-160\end{array}$
ommands and Instructions
Burst Commands $40-005$
Burst Commands $40-005$
1/O Instructions $40-009$
Motion Control Commands $40-007$
Non-Motion Control Commands $40-$
Non-Motion Control Commands $40-008$
Common Start $1 / 0$ (SIO) Routine $55-020$
Communication Between
(Description)
$52-030$
Communicator Feature, Device Switch 18-010
Communicator (2X8 Switching) 58-080
Compare Equal Indicator (CE Panel) 75-003
Compare Errors, P Compare or C Compare 17-010
Compare Errors, P Compare or C Compare
Compare Errors, P Compare or C Compare
(Timing Chart) 1 17-014 $\quad 40-003$
Concepts, $3803-2 / 3420 \quad 4$
Configuration Worksheet Instructions 90-030
Configurations, Subsystem (Concepts)
$40-003,90-100$
Contingent Connection (TCS Feature)
Control Burst 40-002 (58-012
Control Check Indicators (CE Panel) 75-003
Control Unit (see Tape Control)
Common Start 1/O (SIO) 55-020
Sense and Status Byte Table
Sense and Status Byte Table 000-005
Control Unit End (TCS Feature)
Conversion, Field Tell
Conversion, Field Tester $90-170$
Conversion Table, Sense Byte to Bit 14-005
onversion Table, Sense Byte to Bit 14-005
Cooling Fan Assembly Removal/Replacement
Cooling System (see Voltage and Airflow
Monitoring System)
Monitoring System)
Monter (C), MMicropmocessor 1 Flow Logic 52-010
Counters (see Clocks/Oscillators/Counters)

3803-2/3420

INDEX 2

${ }_{2}^{2 \times 8}$ Switching Functional Units 58-080 $\begin{array}{ll}2 \times 1 \text { Switch Logic } & 58-055 \\ 2 \times 16 \text { Switch Logic } & 58-060\end{array}$
 Initial Selection
Map Formats $00-001$
Preumatic System, Thread Status
(Active and Inactive) 4A-161, 4B-16
Reel and Capstan Operation During
Rewind $3 \mathrm{~A}-030,3 \mathrm{~B}-030$
Rewind DAS-030,
Set and Display Register 12-021
Set and Display Compare Register 12-022
$\begin{array}{ll}\text { Set and Display Compare Register } & 12-022 \\ \text { System Diagnostics } 90-210 \\ \text { Troubleshooting Procedure (MAP) } & 18-020\end{array}$
$\begin{array}{ll}\text { Sysubleshooting Procedure (MAP) } & 18-020\end{array}$ Write Heat Driver Card $08-270$
Digital to Analog Converter (DAC) W
Digital to Analog Converter (DAC) Waveforms
iModel 4,6 and 8) $6 \mathrm{~B}-0010,6 \mathrm{~B}-011,6 \mathrm{~B}-012$
Digitec 251 Meter (CE Tool) $80-000$
Display LSR Contents (How To) $12-013$
$\begin{array}{ll}\text { Display LSR Contents (How To) } & \text { 12-013 } \\ \text { Display Select Switch (CE Panel) } & 75-002\end{array}$
Dispiay Select Switch
Drive (see Tape Unit)
D
Drop Ready Problems, Intermittent 00-005
Dropping or Picking Records 15-200
Dropping or Picking Records $15-200$
Droping Ready and Thread and Load

E
Early Begin Readback Check (MAP) 17-100
Easy Load Cartridge (Concept) 40-001
EBCDIC/BCDIC Conversion Chart $57-020$
ECC / CRC Scope points (Table) 17-075
ECC/ENV Indicato
$\begin{array}{ll}\text { ECC/ } \\ \text { Edge Damage, Tape } & 5 B-030\end{array}$
Edge Damage, Tape $90-200$
Emulator Jumper
Enable Switch $75-001$
Enable/Disable Switch (Concepts) 40-003
Encoded Data Group (GCR) $55-010$
Encoded Data Check
MAP $17-530$
End Of Call ${ }^{17-531} 000030$
End Of Call $00-030$
Engineering Changes Which Affect MAPs $00-000$
Engineering Changes Which Affect
Entry Select Switch, Data $75-003$
ENV/ECC Indicator $75-004$
Envelope
Check

Circuits $5 \mathrm{~A}-100,5 \mathrm{~B}-100$
Failure,
Runaway, or Read/Write Problems
Failure, Runaway, or Read/Write Problems
EOTAOT (ssee BOT/EOT)
Equase
Erase Width Erasure (Concept) 40-001
Full
Gap Command $40-007$
Gap Command
Head $5 B-110$

Head Current 40-007
Head Current and Erasure Checks 08-320
Head Pority an
Head Removal and Replacement Head Removal and Replacement $08-2$
Error Analysis (see MAPs, Tape Control) Error Analysis Fow Chart, Permanent
Read/Write $00-011$
Read/Write $00-011$
$\begin{array}{ll}\text { Error Correction Sense Analysis (MAP) } & 21-000 \\ \text { Example of Typical Flow Through MAPs } & 00-003\end{array}$ Xxample of Typical Flow Through MAPs 00-003
Excursions (Wide) in Left Column During HS Rewind
3A-160, 3B-160
Extended Go $6 B-205$

F
Failure Follows Tape Unit $\begin{aligned} & \text { O0-040 } \\ & \text { Failure Modes, Device Switch Feature }\end{aligned}$ 18-010
Failure
Feature

$\begin{array}{lll}\text { Char for Sense Byte } 6 & 17-220 \\ \text { Density Feature Combinations (Table) } & 40-00\end{array}$
evice Switching
Cabling Instructions 90-060
Line Definitions $58-060$
Node Logic $58-090$
Node Schematic $58-080$
Operation 58 Theoce
$58-050$
2 28 Switch Lunctions (Concepts) $58-080$
2×16 Switch Logic $58-005$
4×16 Swhen

Seven-Track NRZI
EBCDIC-BCDIC Conversion Chart $57-020$
Read Data Convert Data Flow Schematic 57
Read Taranclato
57-026

57-025
Write Translator Data Flow Schematic
57-020
Switching Configurations (Figure) 58 (wo
Twhannel Switch (TCS)
$58-010$
Busy 58-0
Contingent Connection $58-012$
Conto Unit End 58 -012
Device End $58-012$
Implicit Connection 58-011
Interface Switch Control $58-011$
Partitioning 58 -011
Reserve/Release Operation
58-011

$\begin{array}{lll}\text { Senction } & \\ \text { Sense Rease Command } & 58-011 \\ \text { Sense Resereve Command } & 58-011\end{array}$
Stack Interrupt
Theor
$58-010$
Tie Breaker $58-012$
2 Control Switch (Concepts)
3 C
$\begin{array}{cc}3 \text { Control Switch (Concepts) } & 58 \text { So50 } \\ 4 \text { Control Swith (Concepts) } & 58-050 \\ \text { Feedthrough Check (} 08-330\end{array}$

3803-2/3420

XK0200 $\text { Seq } 1 \text { of } 2$	$\begin{aligned} & 276032 \\ & \text { Par Number } \end{aligned}$	See EC History	$\begin{aligned} & 845958 \\ & \hline \begin{array}{l} \text { seo } 79 \end{array} \end{aligned}$	846927 20 Jun 80	$\underset{15 \text { Aug 83 }}{847298}$			


```
Gray Code Counter (GCC) 6B-205
Grond Check, Tape Unit 08-600
lol
lol
Gray Code Counter (GCC) 6B-205
Group Coded Recording (GCR) \(6250 \mathrm{BPI} \quad 55-00\)
GCR, 5260 BPI (Concepts) \(40-002\) \(\begin{array}{ll}\text { GCR, } 5260 \text { BPI (Concepts) } & \text { 40-002 } \\ \text { GCR Biock } & 55-008\end{array}\)
```

H

H


```
lol
Hardware Errors (MP1 Special Register) 52-060
Mead Mirror Stop Adjustment (Models 3, 5, and 7)
M Hex Wrench, Right Reel Hub (CE Tool) 80-000
Hi IC Pty/Hi ROS Reg Pty Indicator (CE Panel)
High-Order ROS Registers 52-035, 16-020
    High ROS/IC Parity Error on A Branch Condition
    ALU1 (MAP) 16-020
High-Speed Rewind (see Rewind Operation)
High-Speed Rewind Solenoid Check 08-
```



```
    Develop Tape 00-011
    lol
    Operate CEE Panel 12-000
    Use MAPs 00-000, PLAN 1
|
IBG Counter 2A-010
ligG Detected on Write (MAP) 17-080
lom
lol
lol
O0-003 Crosspoint Switch Schematic (Device Switch
l
M
lal
Initial Selection
    AB CE 50-011 Lines }54-00
```



```
Ma,
Initiating Tape
    l
    Address/Feature/Priority Plugging (see Ca
    Cable Retaining Bar (90-060 90-070
```

 Go Extensions in Quarter Tach Puises 6B-205
 3803.2/3420

Address, Tape Control $90-110$
Data In Handling $90-130$
Device Selection Priority A.ssignments
(Chart)
$90-150$
Device Selection Priority A.ssignments
(Chart) $90-150$
Device
Device Switching Feature $90-110$
Device Switching Feature, Address Control (Chart)
$90-140$

Disconnect I

In Handling
ture $90-12$
NRZI Feature $90-1$ Ing 90-110
Primary/Secondary TU Interface Control (With
Device Switch) $90-130$
Device $/$ Sitch) $90-130$
Primary Scondary TU Interface Control
Priority Assignments, Device Selection (Chart)
$90-150$
$90-150$
Select Out Priority $90-120$
Select Out Priority $90-120$
Serial No/EC Level/Feature Code (Tape Control)
gO-210
$90-210$
Serial No /Model No /EC Level/Feature Code
Serial No/Model No/EC Level/Fe
(Tape Unit) $90-212$
Tape Control Address $\quad 90-110$
Tape Control Address $90-110$
Tape Switching Feature, Address Control (Chart)
Tape Switching Feature, Address Contral $90-140$
Two Channel Switch Feature $90-120$ Two Channel Switch Fea
3803 Address $90-110$
Checklist Adors
Checks and Adjustments (Installation)
Air Bearing Pressure, $3420 \quad 90-190$ Air Bearing Pressure, 3420 90-190
Altitude Vacuum Level Setting, $3420 \quad 90-190$ Altitude Vacuum Level Setting, 3420
Autocleaner $90-190$ AOT/EOT Check 90-190
Capstan Check
Data Flow Clock Asymmetry Adjustment,
Data Flow Clock Asymmetr
3803 ($90-190 \quad 90-190$
ESD Grounding $90-190$
Mechanical Skew, $3420 \quad 90-190$
Configuration Worksheet (Instructions)
90 - $030,90-040$
$90-030,90-040$
Device Switch Cab
Device S'witch Cabling 90-050
Emulator Jumper 90-200
Emulator Jumper ${ }^{\text {Field Tester Conversion } 90-170}$
Installation Checklist 90-020
Instructions, Subsystem Installation 90-000
Instructions, Subsystem Installa
1/ Unterface $40-003$
Kickplates $90-090-100$
Kickplates $90-090,90-100$
Operator Panel Labels, Tape Control $90-160$
Operator Panel Labels, Tape Control $90-160$
Plugging, Cables and Terminators $90-060$
Power Requirements, Special- 3420 Model 8 Plugging,
Power Req
$90-180$
Power Supply Checks
Procedures $90-020$
ower Supply Checks
Procedures $90-020$
Special Power Requirements- 3420 Model 8
90-180
Subsystem Cabling (Chart) ${ }^{\text {Sy }}$ 90-070
System Diagnostics
$90-200$
System Diagnostics $90-200$
Terminator and Cabbe Plugging 90-060
$\begin{array}{lll}\text { instructions (see Commands and Instructions) } \\ \text { instruction Counter, Microprocessor 1 } & 52-010\end{array}$ Interblock Gap (IBG)
Counter Logic 6A-130, 6B-205

Counter Logic 6A-130, 6B-205
Detected on Write $17-080$
Generation $6 A-150,6 B-210$
Generation $6 A-150,6 B-210$
Go Extend IBG Counts (Model 3, 5, 7) 6A-140

Passing Times (3420 Subsystem Characteristics)
Subsystem Characteristics
Timing Chart (Model 5) Timing Chart (Model 5) 6A-150
Interface Disabled Indicator (SE Panel) 75-003 $\begin{array}{ll}\text { Interface Disabled Indicator (CE Patel) } & 75-003 \\ \text { Interface Switch Control (CS Feature) } & 58-011\end{array}$ Intermittent Drop Ready Problems $2 \mathrm{~A}-005$,
$2 \mathrm{~B}-005$, $07-010$ 2B-005, 07-010
Interrupt $\quad 54-000$
Interrupts, Extra or Missing (A2 Panel) 18-050 Intervention Required (MAP) 15-010 PLAN 1
Introduction to Maintenance Philosophy PLAN
Introduction Subsystem Installation $90-000$ Introduction to Maintenance Philosophy
Introduction, Sussystem Installation $90-000$
$1 / 0$ Instructions (see Commands and Instructions) 1/0 Instructions (see Commands and Instructio
$40-009$ $40-009$
$1 / 0 ~ P i n s ~(3 ~ B i t ~ C o d e) ~$ 12-023, 12-024

K
Kickplates, Installation 90-090, 90-100
L
Lamp, Skw Check (53-085
Lamp Test Switch (CE Panel)
75-002
Lamp Test Swich
Latch, Reel (see Right Reel Latch) Removal
Left Movable Guide and Retrator Remor
and Replacement (NRII Feature) $08-220$
Lend Replacement (NRZ1 Feature) $08-220$
Left or Right Vacuum Column Problems 2A-170, Left or Right Vacuum Colum
2B-170,3A-110, $3 B-110$
Left Reel
Left Reel
Does Not Turn Clockwise at Threading
Speed Speed $2 \mathrm{~A}-110,2 \mathrm{~B}-110$
Hub and Motor Removal/Replacemer:/Adjustment
$80-560$
Logic $3 \mathrm{~A}-030,3 \mathrm{~B}-030$
Motor Speed
Motor Speed, Voltages, 3A-020, 3B-020
Right or Left Reel Won't Load Tape Into Column
Tape Rewinds Off Left Reel 3B-180
Theory, Rewind and Timing Chart 3A-010, 3B-010 Theory, Rewind and Timing Char
Left Threading Channel $08-230$
Left Threading Channel O8-2
Legend and Symbols PLAN 4
Light Source Removal/Replacement 08-620
Lights/Indicators (see Maintenance Procedures)
CE Panel 75-001
File Protect Indicator Off $1 \mathrm{~A}-000,1 \mathrm{~B}-000$
Load Check Prior to BOT Sense $2 \mathrm{~A}-150,2 \mathrm{~B}-150$
Power Check Indicator On $1 \mathrm{~A}-000$, 1B-000
Power Check Indicator On 1A-000, 1B-000
Ready Lamp Does Not Turn Off $4 \mathrm{~A}-100,4 \mathrm{~B}-100$
Ready Lamp Does Not Turn On Ready Lamp Does Not Turn Off
Ready Lamp Does Not Turn On
TA
TI Lamp Stays On 3A-150, 3B-150
Line Definitions, Device Switching Feature $58-060$
Line LLevels - Active/Inactive/Pulsing/Switched
$00-003$
$00-003$
Line Names for Reference to ALD XC70x
(Table) 18-020
Linking Microprogram Routines (Description)
Listings. Microprocessor
$52-030$
Lict
Lo IC Pty Low Ros Reg Py Indicator 75-003
Load Check $2 \mathrm{~A}-000$, 2B-000

$\times \times 0200$ $\text { Seg } 2 \text { of } 2$	2736032	See EC History	$\begin{aligned} & 845958 \\ & 185079 \end{aligned}$	$\begin{aligned} & 846927 \\ & 20 \text { Jun } 80 \end{aligned}$				

C C C C C C C C C C C

Forward or Backward 3A-140, 3B-140 Tape Does Not Wind Completely Onto Right
Reel or Reels Do Not Stop $4 \mathrm{~A}-130.48-130$.
Tape Fails To Go Backward $3 A-130,3 B-130$ Tape Fails To Go Backward 3A-130,
Tape Goes Forward Atter Loading Into
Vacuum Columns 2A-200 2B-200 Vacuum Columns 2A-200, 2B-200 Tape Moves Backward Off Left Reel, or
Tape Unit Performs a Normal Unload Rewind During Load Operation 28 -190
Tape Pulls Out, Dumps, or Has Wide ape Pulls Out, Dumps, or Has Wide
Excursions in Left Column During Hig Excursion Rewind $3 A-160$ 3B-160 Tape Threads Into Threading Channel and
Stops $2 A-140,2 B-140$ Tops Threads Into Right Column 2B-130
Tape Unit Bus Out (TUBO) Register $52-045$ Tape Unit Bus Out (TUBO) Register $52-045$
Tape Unit Selection Priority $54-010$
Tape Unwinds Off Right Reel 3 A-150, 3B-150 $\begin{array}{ll}\text { Tape Unit Selection Right Reel } & 3 A-150,3 B-150 \\ \text { Tape Unwinds Off Rell } \\ \text { TCS Selection and Tie Breaker } \\ 58-030\end{array}$ TCS Selection and Tie Breaker
Transfer $52-100$
Transfer Valve Does Not Pick or
Transfer Valie Does Not Pick or
Pneumatic Motor Not Running
Two-Channel Switch 58-010 2A-130
Two-Channel Switch and Tie Breaker 58-030
Unload Rewind Pushbutton (No Response)
$4 \mathrm{~A}-110,4 \mathrm{~B}-110$
$\mathrm{Write} \quad 53-070$
$\begin{array}{ll}\text { Write } 53-070 \\ \text { Clock and Write Counter } \\ \text { Data } & 53-020\end{array}$
Dack Converter Counter $57-025$
Data Flow $50-001$
Data Fiow 50-001
Group Buffer Control
Write Head Eras
Write Head, Erase Head, and Write Card
Service Controls $53-040$
Service Controls
Translator $57-020$
Triggers
Trigger VRC
53-070
17-026
2×8 Switching Functional Units $58-080$
ogic Panel Removal/Replacement (3803/3420) Logic Panel
$08-630$
Logic Pins
Logic, Pins, Cross Reference List $20-000$
$\begin{array}{lll}\text { Logic Section (2X8 Switching) } & 58-080 \\ \text { Logical AND (ALU Operation) } & 52-070\end{array}$
Logical Exclusive OR (ALU Operation)
$52-080$ Logical OR (ALU Operation) 52-075
Long Cycle BOC or BU Example (Timing Chart) Loop, ALU1 (MAP) 13-530, 13-540
Loop, ALU1 (MAP) $13-530,13-540$
Loop Write-to-Read (LWR) Command
40-006, 55-005
$\begin{array}{lll}\text { Tape Unit Operation } & \text { 55-005 } \\ \text { Low-Order ROS Registers } & \text { 52-035, 16-010 }\end{array}$ Low-Order R Parity Errors on a Branch Condition
Low ROS (MA C
(ALU) (MAP) $16-080$ (ALU2) (MAP) 16-080
Low ROS/IC Parity Error on a Branch Instruction Low ROS/IC Parity Error on a Branch Instruction
(ALU1) (MAP) $16-010$ Low Speed Rewind 3A-010, 3B-010
LWR Tape Unit Operation $55-005$

M
Magnetic Tape and Reels (Concepts) 40-002
General Cleaning Instructions $85-000$

Schedule 85-005
Tape Unit Cleaning Procedure 85-001 Maintenance Philosophy, Introduction PLAN 1
Maior Elements of Capstan Control Logic 6B-205 Make the ALU Loop on an Error (Procedure) $\quad 16-000$ MAPs
Addre
$\begin{array}{ll}\text { Address Out Tag Active } & 13-300 \\ \text { ALU Cannot Exit or Loop } & 13-370\end{array}$
Cannot Transfer 13-130
$\begin{array}{ll}\text { Cainot Transfer } & \\ \text { Fails to } r \text { tap to } & 13-400 \\ \text { Failure to Reset CTI } & 13-210\end{array}$
Hangs at 000 13-0 13 Failure 13-410
Hangs on ALU2 Failur
Loop $13-530,13-540$
$\begin{array}{ll}\text { Miop, TCS } & 13 \text {-080 } \\ \text { Microprogram Detected Error (Sense }\end{array}$
Microprogram Detected Er
Byte 11 , Bit 46) 1660
Op In Wait $13-250$
Op In Wait 13-250
Power On Reset $13-090$
Reset Failure 13-200
Waiting $13-110,13-140,13-170$
Waiting 13-110, 13-140, 13-170
Waiting for ALU2 to Complete a
Saiting for ALU2 to $13-40$
Sequence a
Waiting for ALU2 to Drop STATB $13-460$
$13-470$
Waiting for ALU2 STATB Indication $13-450$
Waiting for ALU2 STATB Indication $13-450$
Waiting for ALU2 STATD Indication $13-440$
Waiting for End of Data (EOD) on Write $13-520$
Waiting for End of Data (EED) on Write 13-520
U1 On ALU2 Hangs 13-000
ALU1 or ALU2 Hangs 13-00
Power On Reset 13-190
Trap Failure $13-260$
$\begin{array}{ll}\text { B Bus Paritite Error (ALU1) } & 16-030 \\ \text { B Bus Parity Error (ALU2) } & 16-100\end{array}$
Bad Sense After a Rewind from OLTs 15-140
Branch Condition Error ALL1 16 16-050
Branch On Condition Error (ALU2) 16-120
Bus Out Checks 15-030
Capstan Motion Control 6A-000, 6B-000
CE Panel Operation $12-010$
Channel Bus In/Out Checking 13-380
Clock Check $17-800$
Clock Check $17-800$
Command or Control Status Reject 6A-160
Command or Control Status Reject 6A-
Power On Reset $13-330$
Command Out Reject $15-020$
Command Out Reject
Command Uut Tag Active $13-050$
Command Sequence $13-16-160$
Command Status Reject ${ }^{16-160}$
Control Status Reject $16-200$
$\begin{array}{ll}\text { CUE Reset on Interface B } & 13-500 \\ \text { CyClic Redundancy Checks } & 17-540\end{array}$
$\begin{array}{ll}\text { Bus Parity Error } \\ \text { ALU1 } & 16-004 \\ \text { ALU2 } & 16-110\end{array}$

3803-2/3420

See EC	845958	
History	$\begin{array}{c}847298 \\ 1 \text { Sep 79 }\end{array}$	$\begin{array}{l}15 \text { Aug } 83\end{array}$

NDEX 5
-1976 1979

Device Switching Feature Most Probable Cause Analysis 18-015 Troubleshooting Procedure 18-020	
Dropping Ready and Thread and LoadFailure SymptomsA	
	Dynamic Reversal 16-200
	Early Begin Readback Check 17-100
End Of Call $00-030$Envelope Check Without Skew Error 17-220	
Envelope Failure, Runaway, or Read/Write	
ction Sense Analysis 21-000	
Formats 000001	
High ROS/IC Register Parity Branch Condition ALU1 16-020	
ALU2 16-090	
IBG Detected on WriteID Burst Check17-050	
Intervention Required $15-010$LRCR Errors Serse Byte 3 Bits	
Low ROS/IC Parity Error on a Branch Condition (ALU2) 16-080	
Low ROS/IC Parity Error on a Branch Instruction	
MTE Without Envelope Check 17-110 No Block Detected on Write/Write Tape Mark (WTM) 16-190	
Noise Detection 17-370Not	
NRZI Cyclic Redundancy Check (CRC) 17-590 Offline Duplication of Online Failures $12-000$	
Overrun 15-040	
P Compare or C Compare Errors 17-010 Partial Record (Sense Byte 5, Bit 5) 17-410 PE or NRZI and GCR Velocity Checks/Changes 16-180	
Permanent Data Checks 5A-105, 5B-002	
Picking/Dropping Records	
Postamble Error 17-190 Read/Write Vertical Redundancy Check (VRC)	
Sense Analysis ${ }^{\text {S }}$ S ${ }^{\text {S }}$ S-000	
Serrice Out Tag Active 13Single TapeSiO	
SIO Trap Failures ${ }^{\text {1/ }}$ 13-320Slow End Readback Check	
Start Read Check 17-070	
Suppress Out Active ${ }^{13-310}$Suppress Out Inactive During Res	
TACH Start Failure (Sense Byte 10, Bit 5) 16-170	
TACH Velocity Error 13-510	
Tape Control Metering Problems ${ }_{\text {Tape }}$ Control Power Supoly $11-000$	
Tape Motion and Rewind Symptoms 3 3 3 -000,	

```
Mple/Single Switch (CE Panel) 75-002
MP1 (see ALU)
    Branch Conditions (Table) 52-086
    Clock Control Logic 52-005
    Clock Timing Charts 52-005
    High-Order ROS Registers 52-035
    lol
    Schematic 50-003 (Hardware Errors) 52-060
    Stat Registers 52-015
    Transfer Decodes (Table) 
MP2 (see ALU)
    *)
    Functional Description 52-030
    lol
    Low-Order ROS Registers 52-035
    Special Register (TU Bus In) 52-040
    Stat Registers 52-15
    XOUTA Register Bit Usage 52-02
    Multi- rack Error (MT
    MTE/LRC Indicator 75-004
    Without Envelope Check (MAP) 17-110
N
M-Track NRZI (Concepts) 40-002 (Taperal) 40-004
No Block Detected on Write/Write Tape 
(WIM 16-190
No Response or Tape Moves Backward 3A-100
3B-100
No Response When Rewind/Unload Button is
Presed 4A-110, 4B-110
NNoise Detection (MAP) 17-370
Noise or Bits in the Interblock Gap 4A-115,5B-02
Non-Motion Control Commmands (Table) 40-005
Not Capable (MAP) 15-060
        Cyclic Redundancy Check (CRC) (MAP) 17-590
        i
        Hi-Clip VRC (Write Only) 17-310 17-590
        Read Data Flow 57-006 5% Emror 17-314
        lol
O
Offline Duplication of Online Failures (MAP) 12-001 OLT Error Messages Analysis \(21-000\) 21-000
\(\begin{array}{ll}\text { One and Two Track } 6250 \text { Error Correction } & 21-000 \\ \text { 17-600 }\end{array}\) Online and Offline Status (Concepts) 40-003
Transfer Logic: XFR (Hex Code 4 or 5) 52-100
Mperator Panel Switches (2X8 Switch
```

Operation, Autocleaner 08-360
Operational Check, Autocleaner 08-380
Operations, ALU, A
Arithmetic Add: ADD/ADDM (Hex Code A or
$52-065$
Branch On Condition: BOC (Hex Code 2 or 3)
$52-085$
Branch to Read
$\begin{array}{lll}\text { Branch to Read from Load Point } & 55-040 \\ \text { Branch to Write from Load Point } & 55-024\end{array}$
Branch to Write from Load Point 55-02
Branch Unconditional: BU (Hex Code 6)
52-090

Logical Exclusive OR: XO/XOM (Hex Code E or F)
Logical OR: OR/ORM (Hex Code 8 or 9
Store Logic: STO (Hex Code 0 or 1)
Transfer Logic: XFR (Hex Code 4 or 5) 52-100
Optional Tape Cartridge (Concept) 40-001
ORC Byte ${ }^{53-045}$
Organization of Publication PLAN 6
Oscillator Gating $53-005$
Oscillators (see Clocks/Oscillators/Counters)
Oscillators (see Clocks/Oscillators/Counters)
Other (Related) Subsystem Documents PLAN 1
Overrun
$\begin{array}{ll}\text { Error } & 53-040 \\ \text { MAP } & 15-040\end{array}$
PE and 6250 BPI (Timing Chart) 15-041
P
P Compare Error Test Points (Table) 17-013
P Comp Indicator (CE Panel) $75-004$-017
Compare or C Compare (Logic) $17-017$
Compare or C Compare Errors (MAP) 17-010 Panel, CE $75-001$
Panel Enable Switch
Parity Error, B Bus
$\begin{array}{lll} & & \\ \text { Parity Error, B Bus, ALUU } & 16-030 \\ \text { Parity Indicator } & 15-100\end{array}$
Parity Indicator $75-003$
Partial Record (MAP)
$\begin{array}{ll}\text { Partitioning (TCS Feature) } & 58-011\end{array}$
Passing TTimes per Byte (3420 Subsystem
Characteristics) $40-002$
Passing Times, IBG (Subsystem Characteristics)
Patch Card
ALU1/ALU2 Card Location
General Description $52-103$
$\begin{array}{ll}\text { General Description } & 52-103 \\ \text { Card Plugging Layout } \\ \text { 52-104 }\end{array}$
PE or NRZI and GCR Velocity Checks/Changes (MAP)
$16-180$
16-180

PE//6250 BPI CRC $17-500-002$
Permanent Data Checks (MAP) 5A-105, $5 \mathrm{~B}-002$
Permanent Data Checks (MAP) 5A-105, 5B-002
Permanent Read Error Scoping Offline $00-013$ $\begin{array}{lll}\text { Permanent Read Error Scoping Offline } & 00-013 \\ \text { Permanent Read Error Scoping Online } & 00-014 \\ \text { Permanent Read/Write Error Analysis }\end{array}$

Flow Chart 00-011

C

INDEX (Cont'd)

7-Track NRZI (Concepts) 40-002 7-Track
6250 BPI (Concepts) $40-002$
6250 BPI Error Currection (Concepts) 40-002

Alignment Tool Preparation Kit $08-460$ Alignment Tool Modifacation/Zeroing $08-465$
And Capstan Operations During Rewind
3A-030 And capstan Operations
Left Reel Does Not Turn Clockwise at Threading Speed 2A-110, 2B-110
Motors and Drivers 3A-020, 3B-020 Motors and Drivers $3 \mathrm{BA}-020,3 \mathrm{~B}-020$
Reel and Capstan Operations During Rewind 3A-0 Does Not Stop $4 \mathrm{~A}-130,4 \mathrm{~B}-130$
Reel Reel Does Not Stop $4 \mathrm{~A}-130,4 \mathrm{~B}-130$
Reel Motor and Hub Adjustment ((EE Tools) 80-000
Reel Tachometers $3 \mathrm{~A}-030$, 3 B - 030 Reel Tachometers $3 \mathrm{~A}-030,3 \mathrm{~B}-030$
Rewind Operation and Timing Chart 3A-010, Rewind Operation and Timing Chart 3A-010,
$3 B-010$
, Right or Left Reel Won't Load Tape into Column
$2 \mathrm{~B}-180$ Right Reel Does Not Stop 4A-130, 4B-130 Right Reel Does Not Stop $\begin{aligned} & 4 \mathrm{~A}-130,4 \mathrm{~B}-130 \\ & \text { Right Reel Does Not Turn } \\ & \text { Speed } \\ & \text { 2A-120, 2B-120 }\end{aligned}$ 2Bwise at Correct Speed $2 \mathrm{~A}-120,2 \mathrm{~B}-120$
Right Reel Latch Rear Housing Pressure
Check $08-520$
Stabilization $3 \mathrm{~A}-020,3 \mathrm{~B}-020$
Tachometer Removal/Replacemen
Tachometer Removal/'Replacement 08-550
Tachometers, During Rewind $3 A-030$,
$3 \mathrm{~B}-020,3 \mathrm{~B}$ - -030
Tape Does Not Wind Completely Onto Right Ree
Tape Does Not Wind Completely Onto Right Re
$4 \mathrm{~A}-130,4 \mathrm{~B}-130$
Tape Fails to Go Backward 3A-130, 3B-130
Tape Unwinds Off Right Reel or TI Light Stays On
Reference Charts, Device Switching Feature 18-029
Registers
A/B
53-055

A/B 53-055 Channel Tags and Bus in 52-040 Channel Write Byte 53-045 Crossovers 52-025 D 52-060 Dead Track 53-075 High and Low-Order ROS 52-ก35 Local Storage 52-015 MIST and TCS 52-060 MP1 and MP2 $52-060$ MP1/MP2 STAT Pointer $53-045$ ROS/LSR 52-015 Tape Unit Bus Out 52-045 Write Check 53-045 gulator Air Pressure Checks/Adjustments -190, 08-405

203.2/342

$\begin{aligned} & \text { XKO4000 } \\ & \text { Seq } 100 \end{aligned}$	2736034 Part Number	See EC History	$\begin{gathered} 845958 \\ \hline \text { Sop } 79 \end{gathered}$	847298 15				

Removals and Replacements
Air Bearings (D) $08-210$
Capstan Assembly (Non-90,000 Series) 08-020,
$08-040$

Capstan Assembly (90,000 series) $08-030$,

Cartridge Restraint $08-540$
Cooling Fan $08-630$
D-Bearing
ORase Head
$08-210$
080
Erase Head 08-250
Fiber Optics
BOT/EOT Block

Bundle $08-610$ | Bundle | |
| :--- | :--- |
| Lamp | $08-610$ |
| 820 | |

LED BOT/EOT Block 08-590
LED BOT/EOT Window
Left Movable Guide and Retractor (NRZI
Feature) 08-220
Left
$\begin{array}{lr}\text { Left Reel Hub and Motor } & 08-560 \\ \text { Logic Panel (3420/3803) } & 08-630\end{array}$
$\begin{array}{ccc}\text { Logic Panel (} 3420 / 3803 \text {) } & 08-630 \\ \text { Pneumatic Supply Flat Belt } & 08-442 \\ \text { Power Circuit Board }\end{array}$

Power Window Glass 08-670
Power Window Safety Bail Cable 0-660
Printed Circuit Board (3803 Model 2 Only) 08-575
Read/Write Head Card $08-200$ Read/Write Head Card 08-260
Read/Write or Erase Head 08-250
Reel Tachometer $08-550$
Right Rear Movable Guide and Retractor 08-210
Right Rear Movable Guide and Retractor
Right Reel-Latch Rear Housing $08-470$
Right Reel-L Motor $08-530$
Right Reel Hub $08-480$
Right Reel Hub $08-480$
Right Reel Hub Individual Parts $08-490$
Vacuum Column Door Glass $08-690$
Replacement
Cartridge
Cartridge Motor 08-535
Pneumatic Supply Flat Belt (Type 4) 08-442
Pneumatic Supply Pulley (All Types of
Pneumatic Supply Pulley (All Types of
Pneumatic Supplies) $08-430$
Right Reel Hup Hies) 08-500-4
Right Reel liul
$\begin{array}{ll}\text { Right Reel Hub Individual Parts } & \text { 08-490 } \\ \text { Right Reel-Latch Rear Housing } \\ \text { O8-510 }\end{array}$
Vacuum Column Doar $08-6$
Request In Interrupt
$54-001$
Request in interrupt 54-001
Request Track-In-Error Command 40-006
Reserve/Release Operation (TCS Feature)
Reserv/ Rerease Operation (TCS Feature) $58-011$
Reset/Start or Step Switch CE panel) $75-001$
Reset Start or Step Switch (CE Pa
Resets (TCS Feature) $58-011$
Resources PLAN 1
Resources PLAN 1
Response Chart $40-008$
Response Chart
Rewind (REW)
$\begin{array}{ll}\text { Command } \\ \text { Concept } & 40-007 \\ 40-001\end{array}$
Operation and Timing Chart $3 \mathrm{~A}-010,3 \mathrm{~B}-010$
Problems $3 \mathrm{~A}-000$ 3B-000 Camstan Won't Rewind to LP After Loading Tape 2B-175
No Response or Tape Moves Backward 3A-100,
$3 B-100$ $3 \mathrm{~B}-100$
Tape Does Not Enter or Stay in Hi Speed
Rewind $3 \mathrm{~A}-170$ 3B-170 Tape Does Not Stop or Tape Runaway (Forward
That
or Backward) 3 3-140, 3B-140
Tape Fails to Go Backward $3 \mathrm{~A}-130,3 \mathrm{~B}-130$ Tape Pulls Out Of or Dumps During High
Speed Rew 38-160
Tape Rewinds Off Left Reel 3B-180
Tape Rewinds to Begining of Tape at
Tape Rewinds to Beginning of Tape at Hig
Speed $3 A-170$
Tape Stays in High Speed Rewind Status
to Load Point $38-180$
Tape Unwinds off Right Reel 3A-150, 3B-150
Tape Unwinds off Right Reel 3A-150, 3B-
Unload/Rewind Pushbutton (No Response)
$4 \mathrm{~A}-110,4 \mathrm{~B}-110$
Wide Execursions in Left Column During
High Speed Rewind $3 A-160,3 B-160$
Rewind Times (Subsystem Characteristics) 40-002
Rewind/Unload (RUN) ewind/Unload (RUN)
Command $40-007$
Concepts $40-001$
Unload Operation With Cartridge $4 \mathrm{~A}-000,4 \mathrm{~B}-000$
Unload Operation Without Cartridge $4 \mathrm{~A}-000$, 4B-000
Problems
PA-000,
4B-000
Problems
Cartridge Opener Does Not Close
CiA 4A-150,
No Response When Rewind/Unload Button is Pressed 4A-110, 4B-110
Powe Window Does Not Go Down 4A-140, 4B-140
Reels Do Not Stop $4 \mathrm{~A}-130,4 \mathrm{~B}-130$ Reels Do Not Stop 4A-130, 4B-130
Tape Does Not Pull Out of Columns Properly Tape Does Not Pull Out of Columns Properly
During Unload Rewind $4 \mathrm{~A}-120,4 \mathrm{~B}-120$
Tape Does Not Wind Completely onto Right Tape Does Not Wind Completely onto Right
Reel or Reels Does Not Stop $4 \mathrm{~A}-130,4 \mathrm{~B}-130$
Tape Moves Backward Off Left Reel $2 \mathrm{ZB-10}$
Tape Moves Backward Off Left Reel 2B-190
During a Load Operation $2 \mathrm{~B}-10 \mathrm{C}$
Unload Rewind Pushbutton (No Response)
Unload Rewind Pushbutton (No Response)
$4 \mathrm{~A}-111,4 \mathrm{~B}-110$
ind Unload Times (Subsystem Characteristics)

$$
\begin{aligned}
& \text { ewind } \\
& 40-02 \\
& \hline
\end{aligned}
$$

$\begin{array}{ll}\text { RIC/ROC } \\ \text { Right Reel } & 53-080\end{array}$
Right Reel
Does Not Turn Clockwise at Correct
Speed $2 \mathrm{~A}-120,2 \mathrm{~B}-120$
Hub Individual Parts Replacement 08-4
Hub Removal $08-480$
Hub Replacement/Adjustment $08-500$
Hub Replacement/Adjustment 08-500
Latch
Rear Housing Pressure Test 08-520
Rear Housing Removal $08-470$
Rear Housing Removal 08-470
Rear Housing Remlacement 08-510

Motor Removal/ $/$ Replacment $08-530$
Motor Speed. Voltages $3 \mathrm{~A}-020$, 3B-020
Reels Do Not Stop $4 \mathrm{AA}-130,4 \mathrm{~B}-130$
Reels Do Not Stop $4 \mathrm{~A}-130,4 \mathrm{~B}-130$
Right or Left Reel Won't Load Tape into Column
$2 \mathrm{~B}-180$
2B-180
rape Does Not Wind Completely onto Right Reel
$4 \mathrm{~A}-130,4 \mathrm{~B}-130$
4A-1 $0,4 B-130$
Tape Unwinds Off Right Reel or TI Light Stays On
$3 A-150,3 B-150$
Theor, Rewind and Timing Chart 3A-010, 3B-010
Won't' Load Tape into Columnn 2B-180
Right Threading Channel 08 -230
Riple $/$ Wr Data Switch (CE Panel)
Ris
$\begin{array}{ll}\text { Ripple } / \text { Wr Data Switch (CE Panel) } & 75-002 \\ \text { ROS Bit P1, } 0-7 \text { Test Points (Table) } & 16-020\end{array}$

```
ROS Bit P2, 8-15 Test Points (Table) 16-010
ROS
ROS 1 Trap Conditions, Logic 50-03-010
Rules and Definitions, Device Switching 18-011
```

 Runaway
 Envelope Failure, Runaway, or R/W Problems
Tape Does Not Stop or Tape Runaway (FWD/BKWD)
$3 A-140,3 B-140$
Tape $140,3 B-140$
s
Safety Section
SAGC (Self-Adjusting Gain Control
Check $16-220$
$\begin{array}{cc}\text { Check } & 16-220 \\ \text { Theory } & 5 \mathrm{~B}-120\end{array}$
Scale (CE Tool)
5B-120
20-000
IBG Counter (Model 3, 5, 7) 6A-130

Scoping Permanent Errors
Offline $00-013$
Online
$\begin{array}{ll}\text { Onine } & 00-013 \\ \text { Select in/Select Out } & 54-020 \\ \text { Select Out Priority (Table) } & 90-120\end{array}$
Select Out Priority (Table) 90-120
Selection, Tape Control and Tape Unit
54-005
Selection ' (TCS Feature) 58 Tape
58-011
$\begin{array}{ll}\text { Selection and Priority } & 54-010\end{array}$
Selective Reset $50-011$ -
Self-Aduusting Gain Control and Zero Threshold
5 F-120
Legic $1 \times 8 \quad 18-000$
Priority
Priority Circuits $54-020$
Tape Control and Tape Unit Addressing 54-005
Tape Control and Tape Unit Addressing $\left.\begin{array}{l}\text { 54-005 } \\ \text { Tape Control and Tape Unit Selection } \\ \text { T4-005 }\end{array}\right)$
Tape Control and Tape Unit Se
Tape Unit Selection $54-010$
Sense
Analysis (MAP)
14-000
Analysis, Error Correction (MAP) 21-000
Bytes 0-23
Bytes 0 - 23
Bits not Defined in MAPs $00-006$
Tables $00-005$
ed in MAPs 00-006
Data After Rewind
ables fors Sense Data After Rewind 15-140
Subsystem Quick Fix Index, Sense Byte
Analysis $00-009$
Tape Unit Sense Bytes (Table) 00-005
Sense Byte to Bit Conversion (Table) 14-005
$\begin{array}{ll}\text { Sense Brte to } \\ \text { Sense Byte } 3 \text { Bit Conversion } \\ \text { Sit } 4 & 17-315 \\ \text { Sense Byte } 5 \text {, Bit } 5 & 17-410\end{array}$
$\begin{array}{ll}\text { Sense Byte 5, Bit } 5 & 17-41 \\ \text { Sense Command } & 40-005\end{array}$
Sense Data Equals All Zeros $15-080$
Sense Release Command (TCS Feature)
$40-006.58-011$
$4 \begin{aligned} & 40-006,58-011 \\ & \text { Sense Reserve Command (TCS Feature) }\end{aligned}$
$40-005$, $58-011$
Sensor Adjustment, AMP
Sensor Adjustment, AMP
(NRZI-Model 3, 5 , 7)
Sensor Adjustment, AMP

```
(PE Only-Model 3, 5, 7) 08-290
Rewrite 6B-230
Sequencing, Power On/Off (Concepts) 40-003
Service In/Service Out 58-005
Sevice Out Inactive During Reset or
Power-On-Reset (MAP) 13-350
Service Out Tag Active (MAP) 13-280
625 Read 50-030
et Diagnose Command 40-006
Set ROSS Mode/Set CE Compr Switch (CE Panel)
*)
Shim (CE Tool) 80-000
Short Cycle XFR Example (Timing Chart) 16-00
lol
lol
Skew
Error 17-166
l
Error Timing Chart 17-163
Indicator (CE Panel) 75-004
l
Mlipage, Tape, 5B-020
Slippage, Tape 5B-O20
lol
Space Block Commands (Description) 40-00
Special Power Requirements-3420)
S(T)
Special Register, MP1 (Hardware Errors) 52-060
Sel
SNack Interrupt (TCS Feature) 58-012 
Staral
Sart 1/O (SIO) Routine, Common 55-020
Start Problem Analysis) START 1
Start Times, Forward (Subsystem Characteristics)
40-002
Stat Registers 52-015
Satal
Staplol
S
```

$3803-2 / 3420$
\square

Subsystem

Address/Feature/Priority Card Plugging 90-110 Cabling
Changel Cable Maximum Length for
6250 BPI (Table) $90-070$
Channel Attachment (Table) 90-010
Concepts 40-002
Configuration 90-100
Configuration Worksheet Instructions 90-030
Device Switching 90-050
Error Correcting Detecting Code 40-002
External Cables (Table) 90-070
Field Tester Conversion 90-1
Installation Checklist (3803-2/3420) 90-020
Installation (Introduction/Instructions) 90-000
Kickplates 90-100
Power Cable 90-060
Power Supply Checks 90-180
Quick Fix Index, 3803-2
Recording Method 40-002
Unpacking Instructions 90-000
3803/3420 Configurations 40-003
Suppress Out Active (MAP) 13-310
Suppress Out Inactive During Reset or
Power-On-Reset (MAP) 13-340
Switches
Cartridge Open and Closed 2A-100, 2B-100
CE Panel 75-001
Vacuum Column 08-450
Switching Configuration, Device 58-050
Symbols and Legend PLAN 4
Symptoms
Capstan Motion Failure 6B-000
Dropping Ready and Thread and Load Failure
Failure Foillows Tape Unit 00-040
Index, 3420/3803 00-010
Unload 4A-000, 4B-000
Tape Motion and Rewind Chart 3A-000, 3B-000
3803/3420 Index 00-010
System Diagnostics (Installation) 90-200
System/360/370 Switching 58-005
T
TACH Period Counter (TPC)
TACH Start Failure (Sense Byte 10, Bit 5)
(MAP) 16-170
TACH Velocity Error (MAP) 13-510
Tachometer, Capstan (Model 3, 5, 7) 08-130
Tachometer, Capstan (Model 4, 6, 8) 08-120
Tachometer, Reel 3B-020, 38-030
Tags In Register, Channel $52-040$
Tape Cleaning Kit (CE Tool) 80-000
Tape Cleaner (see Autocleaner)
Tape Control (TC
Addressing 40-00
Address Decoders 58-010
Address/Feature/Priority Card 90
Branch To Read From Load Point 55-
Branch To Write From Load Point 55-02
Channel Interface Problems (Table) 18-040
Common Start $1 / 0$ (SIO) 55-020
Configurations

Contingent Connection (TCS Feature) 58-012
$\begin{array}{lll}\text { Density Feature Configurations } & 58-012 \\ 40-004\end{array}$
Device End (TCS Feature) 58-012

Enable Coded Recording (GCR) 55-008
Group Cole
Interface Switch Control
58-011

Interface Switch Control	
Logic Panel Card Plugging	58-011
19000	

Logic Pane Removal/ Replacement 08-630
Loop-Write-To-Read (LWR) $55-005$
MAPs (see MAPs) MAPs (see MAPs)
Metering
$40-003$
Metering
Metring Problems (MAP)
nline and Offline Status
40-060
Online and Offline Status $40-003$
Power On/Off Sequencing (Concepts) 40-003
Registers
Channel Tags and Bus in

Ch2-040
Channel Tags
Crossovers
52-060
High and Low-Order ROS 52-035
$\begin{array}{lll} & \\ M P 1 & \text { and MP2 } & 52-015 \\ 52-060\end{array}$
MP1/MP2 STAT $52-060$
R2-015
Tape Unit Bus Out 52-045
$\begin{array}{ll}\text { Rape (Tnit Bus Out } & 52-045 \\ \text { Resets (TCS Feature } & 58-011\end{array}$
SDI Logic! (Tabie) 18-030, 18-032
Selection and Addressing $54-005$
Sence Byte Bits Not Defined in MAPs 00-007
Sense Byte Chart 00-005
$\begin{array}{ll}\text { Sequencing, Power On/Off } & \text { 40-003 } \\ \text { Stack Interrupt (TCS Feature) } & 58-012\end{array}$
$\begin{array}{ll}\text { Status Byte Chart } & 00-005 \\ \text { Tie Breaker Logic }\end{array}$
Tie Breaker Logic 58-010
Timing, Read Cycle Controls
53-095
Tape Control To/From Device (Chart) 18-005
Tape Crimper Procedure 2A-015, 2B-006
Tape Damage
Anamisis of IBG in Developed Tape $00-013$
At End of Block (Block Appears Short) $00-012$
At End of Block (Block Appears Short) $00-012$
Consists of Small Spot or Oxide Void (1 or Consists of Small Spot
More Tracks)
$00-012$
$\begin{array}{ll}\text { More Dracks } & 00-012 \\ \text { Edge Damage } & 5 B-030\end{array}$
In Beginning Zeros Burst (PE Only) 00-012
In Ending Zeros Burst (PE Only) O0-012
In Erased Gap Area $00-012$
In Middle of Data $00-012$
Scope
Offline
O0-013
$\begin{array}{cc}\text { Offline } & 00-013 \\ \text { Online } & 00-014 \\ \text { Onort } & 00-012\end{array}$
Short Gap 00-012 00 -011
Tape Developing Procedure 00 .
Tape Guide Check (NRZI-Featured Units) 08-230
ape Slippage $5 \mathrm{~B}-020$
Tape Speed (3420 Characteristics)
Tape Subsystem Cabling, Device Switch
Fape Subsystem Cabling, Device Switch
Feature $18-011$
Tape Transport Cleaner (CE Tool) $\quad 80-000$
Tape Unit
Autocleaner Operation $40-001,58-110$
Autocleaner Operation
08
460
$\begin{array}{ll}\text { Bus In Test Points (Table) } & \text { 17-312 } \\ \text { Bus Out Test Points (Table) } & 17-312\end{array}$
Bus Out Test Points (Table) ${ }^{17-3}$
Characteristics Table
$40-002$
Characteristics Table
Commands $40-006$

Commands and Command Status Byte (Table)
$\begin{array}{ll}\text { Control Lines Charts } & \text { 16-213 } \\ \text { Doubbe Track Errors } & 40-002\end{array}$
EC Level 90-210
$\begin{array}{ll}\text { Erase Head } & 5 \mathrm{~B}-110 \\ \text { Feature Code } \\ 90-210\end{array}$
Full Width Erasure 40-001
General and Daily Cleaning $85-000$
Ground Check 08-60
Head-Mirror Stop Adjustment (Model 3, 5, 7)
${ }_{1}^{08 G}$ Counter (Model 3.5.7) 6A-130
Initial Selection 54-000
Initiating Tape Motion 07-010
Initiating Tape Motion 07-010
Interchangeability Problems 40-001
interchangeability Probiens
Logic Panel Card Plugging (Models 3, 5,
ignd 7
19-010
Logic Panel Card Plugging (Models 4, 6, and 8) $19-011$
10ic Panel Removal/Replacement $08-630$ Logic Panel Removal/Replacement
Loop-Write-To-Read
$55-005$ Loop-Write-To-Read
Model Number
$90-212$ Online/Offline Switches (2X8 Switching) Power
Power Supplies $1 \mathrm{~A}-000,1 \mathrm{~B}-000$
Problems, Single Unit $00-040$ Selection and Addressing 54-005 $\begin{array}{ll}\text { Selection Priority } & 54-010 \\ \text { Sense Byte Chart } & 000005\end{array}$ Serial Nute Chart $90-210$
Senter Single Direct-Drive Capstan
Single Track Errors $40-002$ Sper Track Errors Characteristics), 40-002 Tape Developing Analysis 00-011
Tape Guide Check (NRZ1 Feature) 08-230 Track Pointers $40-002$
Two-Gap Read/Write Head 40-00
ape Unit Problems
Tape Unit Problems
Bit Packing 5 A-115, 5B-025
Capstan Starts Turning When Power is Turned
On Second Levell $6 \mathrm{~B}-140$ On (Second Level) 6 B-140
Dropping Ready and
Symptoms $2 \mathrm{~A}-000,2 \mathrm{~B}-000$
Symptoms $2 \mathrm{~A}-000,2 \mathrm{~B}-000$
Capstan Fails to Start a Rewind to Load Point After Loading Tape into Columns 2B-175
Cartridge Does Not Open 2A-100, 2B-100 Intermittent Drop Ready
2A-005, 2B-005
Let or Right Vacuum Column Probins Left or Right Vacuu
$2 \mathrm{~A}-170,2 \mathrm{~B}-170$
Left Reei Does Not Turn Clockwise at
Threading Speed 2A-110, 2B-110 Threading Speed 2A-110, 2B-110
Load Check Prior to BOT Sense 2A-150, Load Check
$28-150$
Ready Lamp Does Not Turn On/Window Dight or Left Reel Fails to Load Tape into Columns $2 \mathrm{ZS-180}$
Right Reel Does Not Turn
Right Reel Does Not Turn Clockwise at
Threading Speed 2A-120, $2 \mathrm{~B}, 120$
Tape Does Not Go Backward or Does
Nop Stop at BOT $2 \mathrm{~A}-190$
Tape Does Not Load into Either Column
Tape Does Not Load into Either Column
$2 \mathrm{~A}-160,2 \mathrm{~B}-160$

Tape Goes Forward After Loading into
Vacuum Columns $2 \mathrm{~A}-200,2 \mathrm{~B}-200$
Tape Motion Problems (Stubby Column
Loops Moves Backward Off Left Reel, or Tape
Tape Mor Performs a Normal Unload Rewind During Unit Performs a Normal Unload Rewind
a Load Operation $28-190$
Tape Starts into Threading Channel and
Stops $2 A-140,2 B-140$
Tape Threads into Right Column 2A-130, $2 \mathrm{~B}-130$
orward to Backward Ratio 5A-110,5B-020 Intermittent Drop Ready $07-010$
Noise or Bit in IBG 5A-115 5B-02
Noise or Bit in $1 \mathrm{BG} 5 \mathrm{FA}-115,5 \mathrm{EB-025}$
Permanent Data Checks (MAP) 5A-105, 5B-002 Signal Dropout $5 \mathrm{~A}-110,5 \mathrm{~B}-020$
Tape Drag Check $6 \mathrm{~A}-010,6 \mathrm{~B}-150$
Tape Edge Damage $5 \mathrm{~A}-110,5 \mathrm{~B}-030$
Tape Edge Damage $5 \mathrm{~A}-110,5 \mathrm{~B}-030$
Tape Motion Symptoms $3 \mathrm{~A}-000,3 \mathrm{~B}-000$
Left or Right Vacuum Column-Tape Pulls Out,
Bobbles, Bottoms $3 \mathrm{~A}-110,3 \mathrm{~B}-110$
No Response or Tape Moves Backward
3A Response or ape Moves Back
Tape Does Not Enter or Stay in High Speed
Tape Does Not Enter or Stay in High Speed
Rewind or Rewinds to BOT at High Speed
$3 \mathrm{~A}-170,38-170$
Tape Does Not Stop or Tape Runaway (Forward/
Backward) $3 \mathrm{~A}-140,3 \mathrm{~B}-140$ Tape Fails to go Backward 3A-130, 3B-130 Tape Has Wide Excursions in Left Column
Turing High Speed Rewind $3 A-160,3 B-160$ During High Speed Rewind $3 \mathrm{~A}-160,3$
Tape Pulls Out or Dumps in Left Column Tape Pulls Out or Dumps in Left Column
During 1 SS Rew $3 \mathrm{~A}-160,3 \mathrm{~B}-160$
Tape Rewinds to Beginning Tape Rewinds to Beginning--Of-Tape (BOT) at
High Speed 3A-170 3B-170 High Speed 3A-170, 3B-170
Tape Unwinds Off Right Reel 3A-150, 3B-150 Tape Slipping $5 \mathrm{FB}-020$
Tape Stretch
$5 A-115,5 B-020$
$\begin{array}{ll}\text { Tape Stretch } & 5 A-115, \\ \text { Tape UBit Check (MAP) } & 15-090\end{array}$
Tape Unit Loads but Capstan Motion is Faulty
(MAP) $6 \mathrm{~B}-110$ (MAP) 6B-110
Tape Wont Thread, Load, and Return to BOT Properly (MAP) 6B-100
Unload FiMe
Unload Failu
Cartridge
$4 \mathrm{~B}-150$
$4 \mathrm{~B}-160 \mathrm{C}$ Motor Does Not Turn Off 4A-160,
Power Window Does Not Go Down 4A-140,
$4 \mathrm{~B}-140$
Ready Lamp Does Not Turn On 4A-100, 4B-100
Tape Does Not Pull Out of Columns Properly
During Unload Rewind $4 \mathrm{~A}-120,4 \mathrm{~B}-120$
Tape Does Not Wind Completely Onto Right
Reel or Reels Do Not Stop 4 A-130, $4 \mathrm{~B}-130$
Unioad Rewwind Pushbutton (No Response)
Unload Rewind Pus
$4 \mathrm{~A}-110,4 \mathrm{~B}-110$
TB-1, TB2, and TB3 Diagram 1A-002
TCS
(see Two Channel Switch)
TCS
TCU (see Two Channel Switch)
(see Tape Control)
TCU (see Tape Control) PLAN 1
Technique. Card Isolation Pen
Tee and Hose Assembly (CE Tool) $80-000$ Tee and Hose Assembly (CE Tool) 80-000
Terminator and Cable Pluggin $90-060$

203 2/3420

Test 1/O Instruction 40-009	3420 Power Supplies
Test Points, Channel Buffer/Write Bus (Table) 17-021	Thread and Load Operations $2 \mathrm{~A}-010,2 \mathrm{~B}-020$
Test Points (Read Card) 5B-004	Thread, Load
Tester, CE (see Field Tester)	Check Points 2A-020, 2B
Theory (see Tape Unit or Tape Control Unit)	Checking with Cartridge
Theory (TCS Feature) 58-010	Chart) 2A-010, 2B-020
Theory of Operation	Checking without Cartridge (Differences)
Additional Stopping Distances After Go	2A-020, 2B-030
Extend 6A-140	Failure Symptoms 2A-000, 2B-000
Air Bearings 4A-160, 4B-160	Left Reel Turns Too Fast 2A-110, 2B-110
Airflow and Voltage Monitoring System	Operations Cartridge Does Not Not Open 2A-100, 2B-100
1A-000, 1B-000	Cartridge Does Not Not Open 2A-100, 2B-100
Backspace 6B-230	Left or Right Vacuum Column Problems 2A-170,
Capstan Control Circuits 6A-120, 6B-020	2B-170, 3A-110, 3B-110
Capstan Drive System 6A-120, 6B-200	Left Reel Does Not Turn Clockwise at
Capstan Motion Checks 6A-000, 6B-000	Threading Speed 2A-110, 2B-110
Capstan Motor and Controls 6A-120, 6B-020	Load Check Prior to BOT Sense 2A-150,
Capstan Pulse Generation 6A-120, 6B-200	$2 \mathrm{~B}-150$
Cartridge Opener Does Not Close $4 \mathrm{~A}-150,4 \mathrm{~B}-10$ Data Exchange on DEVI During Write	Motor Not Running or Transfer Valve Not Picked
Data Exchange on DEV1 During Write Operation $5 \mathrm{~A}-130,5 \mathrm{~B}-130$	2A-130, $2 \mathrm{LB-130}$ Roady Light Does Not Turn On 2A-210, 2B-210
Erase Head (Schematic) 5B-110	Right Reel Does Not Turn Clockwise at Correct
Extended Go 6B-205	Speed 2A-120, 2B-120
Go Extend IBG Counts 6A-140	Tape Does Not Go Backward or Does Not Stop at
Go Extensions in Quarter TACH Pulses 6B-205	BOT 2A-190
IBG Counter Circuits 6A-130, 6B-205	Tape Does Not Load into Either Column 2A-160, 2B-160
Left or Right Vacuum Column Problems 3A-110,	Tape Enters Threading Channel and Stops 2A-140,
3B-110	
Left Reel Does Not Turn Clockwise at Threading	Tape Goes Forward after Loading into Vacuu
Speed 2A-110, 2B-110	Columns 2A-200, 2B-200
Load Check Prior to BOT Sense 28-150	Tape Unit Won't Thread, Load, and Retur
Major Elements of Capstan Control Logic 6B-205	to BOT Correctly 6B-100
Plugging (Model 7 Only) 6A-140	Time Required in Execute (Subsystem
Pneumatic System (flow diagram) 4A-	Characteristics) 40-002
Pneumatic Switches $4 \mathrm{~A}-160,4 \mathrm{~B}-160$	Regulator Air Pressure Check 08-400
Polarity Hold Drive (PHD) Register 6B-205	Threading Vacuum Check 08-400
Power Check Power Supplies 1 A a	Thread Load Checking With Cartridge $2 \mathrm{~A}-020,2 \mathrm{Cb}$-030
Proportional Drive Counter (PDC) 6B-205	Thread Load Without Cartridge (Differences) 2 A-020
Read Backward Operation 5A-140,5B-140	Thread Status Active and Inactive 4A-161, 4B-161
Read Card and Read Card Circuits 5B-120	Threading Failure Symptoms Chart $2 \mathrm{~A}-000,2 \mathrm{LB-000}$
Read Card Reference Generator $5 \mathrm{~B}-120$	Three Control Switch Feature (Concepts) 58-050
Read Forward Operation 5A-140, 5B-140	Three-Way Valve 4A-160, 4B-160
Read Only Storage (ROS) 6B-205	TIE Breaker (with TCS Feature) 58-012, 50-030
Reel and Capstan Operations During Rewind	TIE (Request Track-in-Error Command) 40-006
3A-030, 3B-030	Timing Chart
Reel Drive System Schematic 3A-020, 3B-020	Bit Cell and PE and NRZI Write
Reel Motors and Drivers 3A-020, 3B-020	Waveform 55-007
Reel Stabilization 3A-020, 3B-020	Branch Unconditional 52-090
Reel Tachometers 3B-020, 3B-030	Byte Count or Go Down 12-028
Reel Tachometers, During Rewind 3A-030, 3B-030	CE Entry 12-027
Reset/Start or Stop Switch 75-001	Clock 17-800
Rewind Operation 3A-010, 3B-010	Command Select Sequencer and Decoder 12-026
Self Adjusting Gain Control (SAGC) 5B-120 TACH Period Counter (TPC) 6B-205	
Three-Way Valve 4A-160, 4B-160	17-545, 17-546
Transfer Valve $4 \mathrm{~A}-160,4 \mathrm{~B}-160$	Data Convert Write Timing 57-025
Unload Operation with Cartridge 4A-000,	Go Extend IBG 6A-140
4B-000	IBG Generation 68-210
Unload Operation without Cartridge 4A-000,	Long Cycle (BOC or BU) 16-001
$4 \mathrm{~B}-000$ - ${ }^{\text {a }}$	Microprocessor Clocks Control 52-005
Write Head, Erase head, and Write Card (Schematic) 5B-110	NRZI R/W VRC, Hi Clip VRC, LRC Errors 17-314
Zero Threshold 5B-120	
6 MHz Oscillator and GCC 6 6-205	PE Mode 17-016, 17-025, 17-111

PE Write 17-165
Plugging Reverse High Power Current
(Model 7 Only) 6 A-140
Pointer System, PE 17-705
Pointer System, 6250 17-702
Read Cycle Contros
Read Electrical
$\begin{array}{ll}\text { Read Cycle Controls } & 53-095 \\ \text { Read Electrical Sow } & 08-190 \\ \text { Rewind } & 3 A-010\end{array}$
Rewind $3 \mathrm{~A}-010,3 \mathrm{BB}-010$
Ret and Display CE Register 12-021
Set and Display CE Register 12-021
Set and Display Compare Register 12-022
Set and Display Compare Register 12
Short Cycle (XFR) Example 16-001
Stan
Start Capstan Motion (Write Operation
200 IPS) $68-220$

Thread and Load 2B-020
Thread Load Checking With Cartridge $2 \mathrm{~A}-020$,
Thead Load With Cartridge 2A-010
Transfer $52-100$
Transfer Sti-100 (NRZ1 Feature) $\quad 08-200$
Write Electrical Skew
Write Electrical skew (NA, 17-015,
6250 BPI Mode $17-014$,
6250 Multi-Track Error (MTE) $17-111$
$\begin{array}{ll}6250, \mathrm{PE}, \text { and NRZI Waveform } & 53-070 \\ 6250 \\ \text { Read Service Requirements } \\ 50-030\end{array}$
250 Write $17-72$ Requirements $50-030$
6250 Write (RIC/ROC) 17-163
6250 Write Service Requirements
6250 Write Service Requirements
$60-020$
$7-$ Track
17-3ite Triser VRC
7-Track $17-313$
Timing Charts, Used in MAPs (Description) 00-003 Timing Charts, Used in MAPs (Description
Tools and Test Equipment $80-000$ Transfer (ALU Operation) 52-100
Transfer Decodes, Microprogram (MP1 and MP2) 52-101
Not Picked or Pneumatic Motor Not Running
$2 \mathrm{~A}-130,2 \mathrm{~B}-130$
Leakage Test 08-400
Lranslation
Write
nsiation
Write Translator 7-Track 57-020 Translator, Write $57-020$
Transport Cle Translator, Write $57-020$
Transport Cleaning Procedure 85-001
Transport Concepts 40-001 Transport Concepts $40-001$
Transport, Tape (Concept)
$\begin{array}{lll}\text { Transport, Tape (Concept) } & 40-001 \\ \text { Trap Channel A/B (TCS Feature) } & 58-011 \\ \text { Trap Condition Schematic, ROS } & 50-010\end{array}$ Trap Condition Schematic, ROS 1
Troubleshooting Procedure, Device
Switching (MAP) $18-020$ Troubleshooting Procedure,
SWith (sing (MAP)
TU (see Tape Unit)
TU (see Tape Unit)
TU Bus In (MP2 Special Register) $52-060$
TU Control Lines and Control Status Byte Resonnse (Tanes and Control Status By $16-213$
TUBI Test Points (Table) $17-312$ $\begin{array}{ll}\text { TUBI Test Points (Table) } & 17-312 \\ \text { TUBO Test Points (Table) } & 17-312\end{array}$ $\begin{array}{ll}\text { Two Channel Switch TCS) Feeture } & 58-010 \\ \text { TCS or MIST Register (MP1) } & 52-060\end{array}$
Two Control Switch Feature (Concepts) 58 -050
Type 2272 MST Card Adjustment 17-800
Type 2272 MST Card Adjustment 17-800
Typical Flow Through MAPs (Example) $00-002$
u
U Pgm Indicators 75-004
Unit Check Without Supporting Sense
or Unexpected Sense (MAP) $15-100$
Unload Operation With/Without Cartridge
$4 \mathrm{~A}-000,4 \mathrm{~B}-000$
Un-oad Operations (see Rewind/Unload Operation)
Unmodified Power Supply, $3420 \quad 1 \mathrm{~A}-000,1 \mathrm{~B}-002$
Unmacking Instructions. Subsystem Installation 90 -000
v
Vacuum Column
Balance 08-800
Door Glass Removal/Replacement/Adjustment
O8-690
Door Replacement/Adjustment
08-680
Door Replacement/Adjustment 08-680
Left or Right Vacuum Column Problems 2A-170,
Left or Right Vacuum Colum
$2 \mathrm{~S}-170,3 \mathrm{~A}-110,3 \mathrm{~B}-110$
Switch Check $08-450$
Switch Check $08-450$
Tape Bobbles Vacuum Columns 3A-110, 3B-110
Tape Bobbles Vacuum Columns 3A-110, 3B-110
Tape Bottoms in Vacuum Columns 3A-110,
3B-110
Tape Does Not Load into Either Column
$2 B-160$ 2A-160,
$2 B-160$
Tape Exhibits Abnormal Motion Symptoms 3 3-110,
$3 \mathrm{~B}-110$
Tape Goes Forward After Loading into Vacuum
Tape Goes Forward After Loading into Vacuum
Columns $2 A-200,2 B-200$
Tape Pulls Out of Vacuum Columns 3A-110,
Tape Pulls Out of Vacuum Columns 3A-110,
3B-110
Wid
Wide Excursions in Left Column During
High Speed Rewind $3 A-160.3 B-160$
uum Chart (Inches of Water) All Models)
Vacuum Chart (IInches of Water) All' Models) 08-405 $\begin{array}{ll}\text { Vacuum Level Adjustment, Altitude } & 08-410 \\ \text { Vacuum/Pressure Gaage (Setup) } \\ 80-010\end{array}$
Valid Pointers 17-602
Variable Go-Down Time 40-006
Variable Go-Down Time $40-006$
Velocity Check, Velocity Change During Write $16-180$
Voltage and Airflow Monitoring System $1 \mathrm{~A}-000,1 \mathrm{~B}-000$
Voltage and Airflow Monitoring Sustem Write 1 14-000, 18-000
Voltage Levels (Limits) $00-003$
Voltages, Standard (Definition Of) 00-003
Voltages, Standard (Definition Of) 00-003
VRC EError, Write Trigger 17-020
VRC, Write Trigger Circuit Description 17-026

w

Water Manometer (Procedures) 80-010
Waveforms (Read Forward and Backward Ratio Test) 5A-110, 5B-020
Wide Excursions in Left Column During High Speed
Rewind $3 A-160,3 B-160$
Window (see Powe Window)
Word Count Zero (MAP) 15-0.

INDEX 10

C

Write
Access Times (Subsystem Characteristics)
40-00
Byte Counter 53-025
Byte Register, Channel 53-045
Clock and Write Counter 53-020
Command 40-005
Command 40-005
Data Converter Logic
57-025
Data Exchange on Device Interface During Write
Operation 5A-130, 5B-130
Data Flow Logic $50-000$ 50-001
ata Flow Logic $50-000,50-001$
Electrical Skew Adjustment ((RZI Feature) $08-200$
Enable Ring (see File Protection-Concepts)
Forward Creep During Write $68-230$
Forward Creep During Write
Group Buffer Control
$53-025$${ }^{6 B-230}$
Head Card Plugging (Models 4, 6, and 8) 08-270
Sevice Controls $53-040$
Tape Mark (WTM) Check (MAP) 17-180
Tape Mark Command 40-007
$\begin{array}{ll}\text { Translator, } 7 \text {-Track Logic } & \text { 57-020 } \\ \text { Trigger Operation, 6250, NRII, and PE } & \text { 53-070 }\end{array}$
Trigger Operation, 6250, NRZI, and PE
5rite
Trigger Indicator
$75-004$
Write Trigger Vertical Redundancy Check (VRC)
Error (MAP) 17-020
Error, 6250 BPI (Timing Chart) 17-022
Write Current Failure or Tape Unit Check (MAP)
Write Head, Erase Head, and Write Card
Circuits
$5 B-110$
Circuits 5 S-10
6250 Write Operation (MAP)
13-480
6250 Sevice Requirements $\quad 50-020$
X
$\begin{array}{ll}\text { XOUTA Register Not Functioning (MAP) } & 13-430 \\ \text { XLOUTA (XOUTB (Crossover) Registers } & 52-025\end{array}$
\mathbf{Y}
Y1 Panel Location 90-080
2
Zero Threshold 5B-120
NUMERIC
1 and 2 Track 6250 Error Correction 17-600
301 Trap Address. TCS or Device Switching
Without TCS (MAP) $13-240$ Without TCS (MAP) 13-240
$360 / 370$ Switching Logic $58-005$
600 BPI (Conching Logic 58-005
36000 B
16420
Airfl
Aifflow and Voltage Monitoring System
$1 \mathrm{~A}-000,1 \mathrm{~B}-000$
Altitude Vacuum Level Adjustment $08-410$
Daily and General Cleaning Instructions $85-000$ Daily and General Cleaning Instructions 85-000 Symptoms $2 A-000,2 \mathrm{AB}-000$
Symptoms Field Tester Accuracy Check 08-290
$08-300,08-315$
Field Tester Procedure 80-020

```
Installation Checklist 90-020 (%-8, 85-001
    90-180
    Modified Power Interface Board (B1)
    Modified Power Supply 1A-002 (1)
    Preventative Maintenance Schedule 85-005
    Read Amplituce Adjustment 08-310
    Tape Speed (3420 Subsystem Characteristics)
    M-002
    CE Panel Description 75-001
    3nstalla20 Magnetic Tape Subsystem 40-001
    Basic Sense Data 40-001
    Cross-Reference, Pins To Logic 17-166
    Ceatures (Concepts) 40-004 17-166
    lor
    Status Pending 13-220
    Sym
    Taplol
PE Mode Timing Chart 17-016 13-4
l}1\times8\mathrm{ Selection Logic (MAP) 18-000
2\timesontrol Switch (Concepts)58-050
< 2\times8 Switching Functional Units 58-080
2\times16 Switch Logic 58-060 
6 MHz Oscillor and Gray Code Counter 6B-205
6250 BPI
    Erropts) 40-002 (Concepts) 40-002
    Mode
6250 Error Correction
lol
$}6250\mathrm{ Stress Tape (CE Tool) 80-000
6250 Write Service Requirements 50-020 80-000
7-Track Timing Chart 17-313
7 or 9 Track LRC 17-310
9-Track CRC Generation During Read and Write 53-067
```

$\overline{x 0600}$ $\text { Seq } 1 \text { of } 2$	$\begin{aligned} & \substack{6851777 \\ \text { Pora Number }} \end{aligned}$	$\begin{aligned} & 8472988 \\ & 15 \text { Aug } 83 \end{aligned}$						

[^0]: Seq Condition/Instruction
 15 Obtain 24 Sense Bytes
 This function can only be performed offline, after an offline failure. Taking the tape
 control offline following an online failure causes a General Reset.
 A. Disable the Channel Interface (Seq 5)
 B. Enable the CE Panel (Seq 2)
 D. Set the Data Entry switches to ' 20 A ' and Solect switches to Cmpr Reg.
 E. Set up the CE Panel to execute a command sequence (Seq. 13).

 Turn on both the Control Check and Data Flow Check Stop On switches.
 This will prevent the compare stop and allow a data flow error stop This will prevent the compare stop and allow a data flow error stop.
 Set the ROS Mode switch to Stop and operate the Set ROS Mode G. Run the command chain until a Data Flow Check stops the tape control. ALU1 will be at '301' or '303'
 Without Resetting the Error
 A. Enter Sense commands '04X' ($\mathrm{X}=$ drive address) into command positions Cmnd
 through Cmnd 4. B. Turn off both the Control Check and Data Flow Check Stop through Cmnd 4. B. Turn off both the Control Check and Data Flow Check Stop
 On switches. C. Set the Mple/Single switch to Single. After the last sense byte is read out, ALU1 will loop at '7FF' until the next sense command is executed Set the Display Select switch to IC.
 Sperate the
 execution, stopping ALU1 at address switch. The sense command should begin by selecting Bus in with the Display Select switch. H.Atter recording Byte 0 .
 return the Display Select switch to the IC position.
 The Compare Stop can only occur with the Display Select switch in the IC position.
 Operate the Start or Step switch one time. Turn the Display Select switch to Bus
 In. One sense byte is now displayed. n. One sense byte is now displayed. J. Return the Display Select switch osition, Repeat steps I and J until all 24 sense bytes have been obtaine
 time ALU1 runs to '20A', the next sequential byte is read out.
 When the last byte has read out, ALU1 will again begin looping at '7FF'. L.If you start the next sense command
 Only a few errors, such as ALU hardware error, are reset on a Sense command. ost sense can be extracted repeated

[^1]: Copyright International

[^2]: © Copyright International Business Machines Corporation 1976, 19

[^3]: 3803-2/3420

 | $\mathbf{X E 2 3 3 0 0}$ |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | Seq 2 of 2 |

 © Coopright International Businoss Mactines Corporation 1996, 1979, 1980, 1983

