

$3803-2 /$ 3420 S / N	$3803-2 /$ 3420 S / N	$3803-2 /$ 3420 S / N
M M	$M \leq M$	MLDM
PLAN START	INTF	MAP 16-000
SENSE	CARR 08-000	21-XXX
MAP	$\text { MAP }{ }^{08-000}$	
$\begin{aligned} & 00-000 \\ & 1 A-000 \end{aligned}$	MAP $11-000$	
6A-XXX	15-XXX	
$\begin{aligned} & \text { 1B-000 } \\ & \text { 6B-XXX } \end{aligned}$		
VOL. 1	VOL. 2	VOL. 3

Magnetic Tape Subsystem
Maintenance Manual

| XG0005 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Sea 1 of 2 | | 2736038 |
| :---: |

SAFETY

PERSONAL

The importance of personal safety cannot be overemphasized. To ensure personal safety and the
safety of co-workers, follow established safety practices and procedures at all times
Look for and obey the DANGER notices found in the maintenance documentation. All CEs must be familiar with the general safety practices and the procedures or artiticial respiration outlines in IBM Form $229-1264$. For convenience, this form is duplicated to the right.

MACHINE

To protect machines from damage, turn off powe before removing or inserting circuit cards of components. Do not leave internal machine areas needlessly exposed, avoid shoring panel pins wh coping, and handle mache parts sautil, in e CAUTION notices found in maintenance documentation

CE SAFETY PRACTICES

All Customer Engineers are expected to take every safery
precaution possible and observe the following safety prac. precaution possibie and observe the follo
tices while maintaining IBM equipment:
1.

1. You should not work alone under hazardous conditions
or around equioment with dangerous voltage. Always or around equipment with dangestous voltage.
advise your manager if you MUT work alone.
2. Remove all power, ac and dc, when removing or assem
bling maior components, working in inmediate areas of power supplies, performing mechanical inspection of pow er supplies, or installing changes in machine circuitry.
3. After turning off wall box power switch, lock it in the
Off position or tag it with a "Do Not Operate" tag, Form 229. 1266 . Pull power supoly cord whenever possible.
4. When it is absolutely necessary to work on equipment
having exposed operating mechanical parts or exposed live electrical circuirry anywhere in the machine, observe
he following precautions:
a. Another person familiar with power off controls must
be in immediate vicinity.
b. Do not wear rings,
c. Use only insulated pliers and screverivers.
d. Keep one hand in pocket.
e. When using test instruments, be certain capacity are used. Avoid contacting ground potential Imetal floor strips. chased locally if neecessary
5. Wear safety glasses when:
a. Using a hammer to drive pins, riveting staking, etc.
b. Power or hand drilling, reaming, grinding, etc.

Using spring hooks, attaching springs.
Soldering, wire cütring, removing steel 'bands e. cleanis. etc.

Follow special satem ener - THEY ARE YOUR EYES
ized tasks, such as as handinting cathonode ray putbes and extrememel

. Do not use solvents, chemicals, greases, or oils that have
not been approved by 1 BM
. Avoid using tools or test equipment that have not been ap
9. Replace worn or broken tools and test equipment.
10. Lift by standing or pushing up with stronger leg muscles Lift by standing or pushing up with stronger leg muscles -
this takes strain off back muscles. Do onot lift any equip. this takes strain off back muscles. D
ment or parts weighing over 60 pound
After maintenance, restore all safety devices, such as guard
Each Customer Engineer is re no action on his part renders pro
customer personnel to hazards.
13. Place removed machine covers in a safe out-of-the.wav
place where no one can trip over them.
14. Ensure that all machine covers are in place before returning
5. Always place CE Eool kit awav from walk areas where no
one can trip over it for example, under desk or table.
16. Avoid touching moving mechanical parts when Iubricating.

When using strobosccope, do not touch ANYTHING -
When using strob
18. Avoid wearing loose clothing that may be caught in ma-
chinerv. Shirt sieeves must be left buttoned or rolled abo
the elbow.
the elbow.
9. Ties must be tucked in shirt or have a tie clasp (preferably
nonconductive) approximately 3 inches from end. Tie chains are not recommended.
2. Before starting equipment, make certain fellow CEE and

1. Maintain good housekeeping in area of machine while frming and after completing maintenance.

ARTIFICIAL RESPIRATION

General Considerations

1. Start Immediately - Seconds Count
Do not move victim unless absold

Do not move victim noless absolutely neesescary to remove trom danger. Do not wait arsoort tor heelossory too ree to
toosen clothing, warm the victim, or apply stimulants.
2. Check Mouth for Obstructions
3. Loosen Clothing - Ke
3. Loosen Cloth ing - Keep Victim Warm
Take care of these items stret victim is breathing bv him.
self or when help is
self or when help is available.
4. Remain in Position
Aftrvictim revives, be ready to resume respiration it
5. Call a Doctor
5. Have someone summon medical aid.
6. Don't Give Up

Continue without interruption until victim is breathing
without help or is certainly dead

Rescue Breathing for Adults

1. Place victim on his back immediatelv.
2. Clear throat of water, food, or foreign
3. Tilt head back to open air passage.
4. Lift iaw uo to keep tongue out of
5. Lift iaw up to keep tongue out of a air passage.
6. Pinch nostrils to prevent air leakage when you
7. Blow until you see chest rise.
8. Remove vour lips and allow lungs to emptr.
9. Listen for snoring and gurglings - signs of throat obstruc.
10. Repeet mouth to mouth breathing 10.20 times a minute.
$\underset{\substack{T h u m b ~ a n d ~ \\ \text { finger positions }}}{\substack{\text { n }}}$ T

For subject details or subjects not found in this table of contents, refer to the general INDEX section in this volume.
SECTION 40
Subsystem ConceptSubsystem Recording Methods

$$
\begin{aligned}
& \text { 3803-2 Controls } \\
& 3803-2 \text { Features }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3803-2 Features. } \\
& \text { Tape Commands }
\end{aligned}
$$

SECTION 50
Channel Buffer Circuits 50-000
Write Circuits
50-001
50-002
0-003 0-010
MP1/MP2 Circuits
O50

SECTION 52

MP1 Instruction Counte
52-005
ocal Storage Register
XOUTA/XOUTB Registers
High/Low Order ROS Registers
D and Special MP1/2 Registers
Channel Tag In/Bus In Register
TUBO Registers
Microprocessor Information
Microprocessor Instructions
SECTION 53
Oscillator
53-005
53-010
53-015

Data Flow Clock
Write Clock/Counter
Channel Buffer Contro
CRIC/CROC
Write Service Controls
Miscellaneous Write Registers
Read Sequencing and A/B Registers
CRC Generators
Read Track Register
RIC/ROC
Skew Detection
Group Buffer Counter

SECTION 54

Interface
Selection and Priority

SECTION 55
LWR (Loop Write Read)
Basic Recording Technique
Common Microprogram Routines
SECTION 57
NRZI
Translate
Read Data Convert
SECTION 58
S/360, S/370 Switching \ldots.
Two Chal Switchin
58-010
wo Channel Switch
Device Switching

ECTION 75

CE Panel Information 75-00
SECTION 80 Equipment 80-000

Tools and Test Equipment
80-000
SECTION 85
PM Procedures and Schedules 85-000
SECTION 90
Installation . 90-000

INDEX

Detailed Index (Volumes 1 through 4)

XG0090 Seq 1 of 2	4169702	See EC History	845958					

BASIC SUBSYSTEM

The IBM 3803-2/3420 Magnetic Tape Subsystem consists of an IBM 3803 Model 2 Tape Control and one or more IBM 3420 Magnetic Tape Units. The 3420 tape units are available in six models with tape speeds of (1905/317,5/508 ches per for M (ips) and 4, 5 and 6, and 7 and 8 , respectively.

The 3803 Model 2 operates in 6250 bpi and 1600 bp modes.
A 3803 tape control without any switching features controls up to eight 3420 tape units (1×8 configuration also called selection logic).
The 3803 command set, status responses, and basic sense data are compatible with those used by IBM 2400 -series tape subsystems. However, there are some minor programming differences. For example:

1. The number of sense bytes and contents of those bytes differ from those used by 2400 -series subsystems.
2. All commands not shown on 40-005 and 40-008 set COMMAND REJECT in the sense information which, in turn, sets Unit Check in the status byte, indicating to the system that something is wrong.
3. A sense command must be issued after an error condition sets Unit Check in the unit status byte. In most instances, non-time dependent programs that operate successfully on an IBM 2400-series tape subsystem will operate correctly on an IBM 3803-2/3420 subsystem.

3420 TAPE UNIT

Information presented in this section applies to all models of the tape unit
With compatible features, 3420 Models 3, 5, and 7 can be attached to the 3803-2 without modification.

3803/3420 Subsystem Schematic

AUTOMATIC THREADING

A write reel latch secures the file reel to the reel hub automatically. When the operator places a file reel or cartridge on the reel hub and presses LOAD/REWIND, the power window closes, the write reel latch secures the file reel to the hub, and tape is automatically positioned at load point without further operator action.

BM Easy load cartridge

When used with a solid-flange tape reel (standard IBM 10.5 inch), the optional, IBM Easy Load Cartridge reduces tape handling and helps prevent tape contamination or physical damage
During a load operation, if the first threading sequence is unsuccessful, tape is rewound into the cartridge and another attempt is made.

TAPE TRANSPORT

A single direct-drive capstan moves tape forward or backward. Air bearings reduce friction and tape wear since the oxide (recording) surface of the tape contacts only the read/write head and the tape cleaner. Short, apered vacuum columns greatly reduce tape inertia when starting and stopping tape. The tapered column nd single, direct-drive capstan start and stop tape quickly and smoothly.

REWINDING

Tape remains in the vacuum columns during rewind operations. Rewind ends when a photocell senses a reflective marker on
binning-of-tape (load point) reflective marker on tape.

During a rewind unload operation, tape is rewound completely onto the file reel. The tape unit is left in unloaded status, with the tape reel latch unlocked and the window open, allowing the operator to remove the file reel.

READ BACK CHECKING

A two-gap read/write head with 0.150 inch ($3,81 \mathrm{~mm}$) between read and write gaps allows read back checking during a write operation. Moving forward ape passes first the write gap, then the read gap

FULL-WIDTH ERASURE

An erase head applies a strong magnetic field that erases the entire width of tape during write operations Full-width erasure prevents interchangeability problem when tape is written on one tape unit and read on another; it also reduces the chances of leaving extraneous bits in interblock gaps or skip areas.
During a write, write tape mark, or erase operation, the ape unit monitors the erase head operation. On a 3420 Model 4, 6, or 8, an erase head failure drops tape unit ready status and halts tape motion. On a 3420 Mode 3 5, or 7, an erase head failure sets Unit Check, but does not drop ready status.

FILE PROTECTION

A write enable ring must be present in the file reel when writing. To avoid destroying information on tape, he write enable ring is removed. A reel without the ing is "file-protected". FILE PROTECT turns on when the reel is mounted and no writing can occur

3420 MODELS 4, 6, AND 8

Models 4, 6, and 8 tape units can write and read 6250 bpi tapes with 0.3 -inch interblock gaps. Nominal data rates are 470, 780, and 1250 kilobytes per second at 6250 bpi.

A tape cleaning mechanism is added
3420 Models 3, 5 , and 7 can be converted in the field to Models 4, 6, and 8 .

OPER-SUBSYSTEM CONCEPTS (Cont'd)

RECORDING METHODS

6250 BP

In 6250 bpi mode, 6250 data bytes per inch (246 data bytes per mm) are recorded in nine parallel tracks on tape. 6250 bpi tapes are written with an identification burst (ID burst) in track 1 at load point. The ID burst is ollowed by a control burst and a 0.3 -inch ($7,62 \mathrm{~mm}$) IBG before a data block is written.
6250 bpi is a basic density on 3803 Model 2 and on 3420 Models 4, 6, and 8

6250 BPI ERROR CORRECTION

The 6250 bpi format employs an
error-correcting/detecting code capable of correcting all single-track errors on the strength of the code alone and correcting all double-track errors with the aid of track pointers. Pointers such as phase error and incorrect pattern are indications of questionable data. If the errors fall outside the code capability, Data Check and Unit Check are set and Error Recovery Procedures (ERPs) are invoked

1600 BPI

In 1600 bpi mode, 1600 bytes per inch (63 bytes per mm) are recorded in nine parallel tracks on tape. The data format uses eight of the nine bits for data, the ninth is a parity bit. Data is recorded in odd parity. The eight bits of one byte can represent an alphabetic character, zoned decimal digit, two decimal digits (packed), a special character, or eight binary bits.
1600 bpi is a basic density on the 3803 Model 2 and on 3420 Models 3, 5 , and 7, and a feature on 3420 Models 4,6 , and 8.

NINE-TRACK NRZI

In nine-track NRZI, data is recorded at 800 bpi (31,5 bytes per mm) in nine parallel tracks on tape. Data representation is the same as for 1600 bpi PE. For nine-track NRZI operation, the dual density feature is required on a Model 3,5, or 7 tape unit and the nine-track NRZI feature is required on a 3803 Model 2

SEVEN-TRACK NRZI

In seven-track NRZI mode, data is recorded at 200 , 556 , or 800 bpi ($7,6 / 21,9 / 31,5$ bytes per mm). The data format uses six of the seven bits for data and the either odd or paven parity. The. Data is recorded in can represent a BCD character or six binary bits. For seven-track NRZI operation a sen brack bits. For required on both a 3420 Model 3, 5, 7 and on 803-2

INTERBLOCK GAP

An interblock gap (IBG) is the erased section of tape used to indicate the end of a block or record. Interblock gaps are
6250 bpi:
0.3 inch ($7,6 \mathrm{~mm}$) nominal.

Nine-track
PE/NRZI:
0.6 inch ($15,2 \mathrm{~mm}$) nominal; 0.5 inch ($12,7 \mathrm{~mm}$) minimum.

Seven-track:
0.75 inch ($19,05 \mathrm{~mm}$) nominal; 0.68 inch ($17,27 \mathrm{~mm}$) minimum.

MAGNETIC TAPE AND REELS

Most tape volumes that operate satisfactorily on 3420 Models 3, 5, and 7 will operate with equal or better read/write reliability for an equivalent number of bytes transferred on 3420 Models 4, 6, or 8. Tape must conform to IBM Half-Inch Tape Specifications, GA32-0006

3420 SUBSYSTEM CHARACTERISTICS

	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8
Tape Speed (Read or Write) (ips) (cm/sec)	$\begin{gathered} 75 \\ 190,5 \\ \hline \end{gathered}$	$\begin{gathered} 75 \\ 190,5 \\ \hline \end{gathered}$	$\begin{gathered} 125 \\ 317,5 \\ \hline \end{gathered}$	$\begin{gathered} 125 \\ 317,5 \end{gathered}$	$\begin{aligned} & 200 \\ & 508 \end{aligned}$	$\begin{aligned} & 200 \\ & 508 \end{aligned}$
6250 Read Access Time, nominal*(ms) 1600 Read Access Time, nominal*(ms) 6250 Write Access Time, nominal*(ms) 1600 Write Access Time, nominal*(ms)	4.0 4.0	$\begin{aligned} & 2.3 \\ & 4.0 \\ & 2.1 \\ & 3.0 \\ & \hline \end{aligned}$	2.9 2.9	$\begin{aligned} & 1.6 \\ & 2.6 \\ & 1.5 \\ & 2.0 \\ & \hline \end{aligned}$	2.0 2.0	$\begin{gathered} 1.1 \\ 1.65 \\ 0.95 \\ 1.28 \\ \hline \end{gathered}$
Forward Start Time, nominal**(ms)	1.8	1.4	1.4	1.1	1.3	08
Data Rates ($\mathrm{Kb} / \mathrm{sec}$; $\mathrm{Kd} / \mathrm{sec}$) 6250 BPI 1600 BPI PE 800 BPI NRZI (9-Track) 800 BPI NRZI (7-Track) 556 BPI NRZI (7-Track) 200 BPI NRZI (7-Track)	$\begin{gathered} 120 / 240 \\ 60 / 120 \\ 60 \\ 41.7 \end{gathered}$	470/940 120/240 15.0	$\begin{gathered} 200 / 400 \\ 100 / 200 \\ 100 \\ 69.5 \\ 25.0 \\ \hline \end{gathered}$	$\begin{gathered} 780 / 1560 \\ 200 / 400 \end{gathered}$	$\begin{gathered} 320 / 640 \\ 160 / 320 \\ 160 \\ 111.2 \\ 40.0 \\ \hline \end{gathered}$	$\begin{gathered} 1250 / 2500 \\ 320 / 640 \end{gathered}$
Passing Times per Byte ($\mu \mathrm{sec}$) 6250 BPI 1600 BPI PE 800 BPI NRZI 556 BPI NRZI 200 BPI NRZI	$\begin{gathered} 8.3 \\ 16.7 \\ 24.0 \\ 66.7 \end{gathered}$	$\begin{gathered} 2.133 \\ 8.3 \end{gathered}$	$\begin{gathered} 5.0 \\ 10.0 \\ 14.4 \\ 40.0 \end{gathered}$	$\begin{aligned} & 1.28 \\ & 5.0 \end{aligned}$	$\begin{array}{r} 3.1 \\ 6.2 \\ 9.0 \\ 25.0 \\ \hline \end{array}$	$\begin{gathered} 0.80 \\ 3.1 \end{gathered}$
Passing Times, IBG (ms): 6250 BPI 9-track (PE and NRZI) 7-track (NRZI)	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$
Rewind Time (2400-foot reel)	60	60	60	60	45	45
Rewind/Unload Time: (2400-foot reel) (sec)	66	66	66	66	51	51
Load Operation, approximate time (in sec.) to 'tape unit ready' (after reel/cartridge is mounted and LOAD/REWIND is pressed)	10	10	10	10	7	7
* Read access time is the interval from initiation of a Forward Read command given to the tape control when tape is not at load point, until the first data byte is read when tape is brought up to speed from stopped status. Write access time is the interval from the issuance of a Move command given to the tape unit when tape is not at load point, until the first data byte is written on tape when tape is brought up to speed from stopped status. ** Start time is the interval from the issuance of a Move command to the tape unit, until tape attains 90% of specified velocity.						

3803 MODEL 2 TAPE CONTROL

The 3803 Model 2 Tape Control connects to the I/O interface of an IBM System/360 Model 50 and above (by RPQ only) or an IBM System/370, Model 135 and above. The tape control has a CE panel, two microprogram control sections, a read section, a write section, and a channel buffer section.
Note: "I/O Interface" refers to a set of lines over which the tape control and system channel exchange control and data signals. Interface lines and operation are described in IBM System/360 and System/370 I/O interface, Channel to Control Unit, Original Equipment Manufacturers' Information, Order Number GA22-6974. The 3803 may exceed an interface signal sequence of 32 microseconds, and may produce a worst case interface signal sequence of up to 50 microseconds on some instructions when in seven-track mode with the two-channel switch feature installed.
i he 3803 Model 2 operates at 6250 or 1600 bpi. The 3803 Model 2 with appropriate features can process bpi NRZI tape when used with 3420 Model 3, 5, and 7 tape units having the companion NRZI features
All data transfers are in burst mode. The tape control executes one command on one tape unit at a time. The tape control parity checks each data byte transferred bperations, bus out parity is ched. Ond parity perations, bus out parity is checked and parity is tape unit. On read operations, tape control parity is ape und. Ond ope if ns, tape cont paris placed on the I/O interface On sense operations, correct parity is supplied for each byte. Parity is a checked on command bytes
1/O commands issued by the channel are executed with microprograms resident in two independent read-only storage (ROS) units. One ROS unit controls
communication lines to the channel, while the other
ROS unit controls communication lines to the tape unit

ADDRESSING

Every tape unit has a unique device address, which consists of a channel address, a tape control address, and a tape unit address. Pluggable jumpers assign the tape control address when the system is installed. The tape control has separate device interface connectors for each tape unit address. A tape unit's address is determined by the tape control connector to which it is attached. There is no address decoding at the tape unit or device interface level.

METERING

A usage meter is installed in the tape control and in each tape unit. The tape control's usage meter records elapsed time whenever the METERING OUT line is active and the tape control is in online status (Enabled) A tape unit's usage meter records elapsed time when the tape control METERING OUT line is active, tape unit is loaded, and the tape is not at load point. METERING IN is used by the central processing unit (CPU) metering circuits; this line is active from the time a command is accepted by the tape control until Device End is generated for that command. See IBM System/360 and System/370 I/O Interface: Channel to Control Unit OEMI, Order Number GA22-6974.

ENABLE/DISABLE SWITCH

This switch allows the tape control and all attached tape units to be put online or taken offline so a customer engineer can use the CE panel switches and indicators to diagnose errors. Whenever the tape control is placed in offline status (Disabled), the usage meters in the tape control and all attached tape units are prevented from running. When the two-channel switch feature is installed, a second Enable/Disable switch is provided on the 3803.

POWER ON/OFF SEQUENCING

Normal power on/power off sequencing for the $3803-2 / 3420$ tape subsystem is controlled by system power interlock circuits. Maintenance activities may necessitate dropping power in the tape control and attached tape units while power remains on in the
system. To take the subsystem offline, see 12-010.

3803-2/3420 CONFIGURATIONS

Operation with Model $4 / 6 / 8$ Tape Units (6250 or 1600 bpi Mode and Models $3 / 5 / 71600$ bpi Tape Units

Operation with Model 4/6/8 Tape Units (6250 or 1600 bpi NRZI Modes)

Operation with 3420 Model $4 / 6 / 8$ Tape Units (6250 or $6250 / 1600$ bpi Moces) and Nine and Seven Track Tape Units
(Nine Track 1600 bpi PE and Nine Track $1600 / 800$ bpi and Seven Track 200/556/800 bpi NRZI Modes)

XG0100 Seq 2 of 2	2735971	See EC History	845958 1 Sep 79					

3803 MODEL 2 FEATURES

Features available on a 3803 Model 2 are nine-track NRZI, seven-track (NRZI), two-channel switch, and device switch. For switch feature descriptions, see Section 58-005 through 58-111.

NINE-TRACK NRZI

The nine-track NRZI feature, available on the 3803 Model 2, permits operation in nine-track NRZI mode. Nodel 2, permits operation in nine-track NRZI mode. or 7 Tape Unit with the dual density feature.

SEVEN-TRACK NRZI

The seven-track feature permits operation in seven-track NRZI mode. Seven-track operation with a 3803 Model 2 is at $800 / 556 / 200$ bpi. The seven-track feature contains both the data translator and data converter for seven-track operations. The operation is similar to that of the 3803-1 with the seven-track feature. For seven-track operation, the seven-track feature on a 3420 Model 3, 5, or 7 and on the 3803 Model 2 is required. The nine-track NRZI feature is a prerequisite for the seven-track feature on the 3803 Model 2.
Writing a tape with the translator on causes eight-bit bytes from the I/O interface to be written on tape as six-bit BCD characters; reading such a tape causes six-bit BCD characters to be translated into their EBCDIC equivalents. When using the translator, data rates are not changed and there are no changes in the tape unit's operation.
Writing a tape with the data converter on causes four tape characters (24 data bits) to be written for every three storage bytes (24 data bits); reading such a tape reverses the process by converting four tape characters into three storage bytes. When operating with the data converter on, the data transfer rate is 75 percent of the rate with data converter off.

DENSITY FEATURE COMBINATIONS

Density (bpi) (Note 1)	3803-1	3803-2	3420-3/5/7 (Note 2)	$\begin{gathered} \text { 3420-4/6/8 } \\ \text { (Note 3) } \\ \hline \end{gathered}$
6250, 9-Track	Not Applicable	Standard	Not Applicable	6250 Feature
1600, 9-Track	Standard	Standard	1600 Feature	6250/1600 Feature
800, 9-Track	Dual Density Feature	9-Track NRZI Feature	Dual Density Feature	Not Applicable
800, 7-Track	7-Track Feature	7-Track Feature (Note 4)	7-Track Feature	Not Applicable
556, 7-Track	7-Track Feature	7-Track Feature (Note 4)	7-Track Feature	Not Applicable
200, 7-Track	RPQ only	7-Track Feature (Note 4)	7-Track Feature	Not Applicable
Notes: 1. Density must be specified for each 9 -track 3420 tape unit. 2. 3420-3/5/7 can be operated by a 3803-1 or 3803-2. 3. 3420-4/6/8 can be operated by a 3803-2 only. 4. 9-track NRZI feature is a prerequisite for 7-track feature on 3803-2.				

COMMANDS AND INSTRUCTIONS

COMMANDS

Commands executed by this subsystem fall into one of the following three categories

1. Burst Commands
2. Motion Control Commands
3. Non-Motion Control Commands

The table on this page and the one on 40-008 list the subsystem commands and command codes. Commands not listed will set COMMAND REJECT

Programming Note: The 3803/3420 subsystem has no interlocking to prevent improper sequencing of writeand read-type operations that may result in writing extraneous bits or leaving partial blocks on tape. Avoiding these improper sequences is a program responsibility.
Avoid the following two basic sequences

1. A write-type operation after a forward read-type operation except:
a. When the block or Tape Mark (TM) read is known to be followed by a TM. A tape mark is a special block used to separate files.
b. When the block or TM read is known to have been followed by erase record gap (ERG) or is known to have been the last block written before a backward operation

For example: R R W* avoid.

W B R W* allowed
2. A read forward-type operation following write-type perations.
For example: R B W R* avoid.

W B R R* avoid.

W indicates a write-type operation: write, write TM, or (ERG).
\mathbf{R} indicates a forward read-type operation: read forward, forward space block, or forward space file.

B indicates a backward read-type operation: read backward, backspace block, or backspace file.
indicates the logical record on which problem may occur.
Because it may be difficult or impossible to ensure the above safe situations, a write after read forward sequence should be used only in applications where strict control of format and command sequence exists. Write is allowable following a backspace. Assume the following tape format with labels where * is used to denote a TM:

VOL HDR * DATA SET * EOF * HDR * DATA SET * EOF **
A rewrite of the last data set involves the following safe and proper sequence. After processing the next to header (HDR) label of the last data set backspace write a new HDR, and rewrite the data set If a new data set is being added the read forward verifies the second consecutive TM, and thus, the true end of a data set on this tape. A backspace, write new HDR etc., completes the sequence.

Motion Control Commands		${ }_{1}$	2 m	44	${ }_{5}$			Hex
Rewind		0	00	0	1	1	1	07
Rewind Unload		0	00	1	1	1	1	OF
Erase Gap		0	01	0	1	1	1	17
Write Tape Mark	0	0	01	1	1	1	1	1 F
Backspace Block		0	10	0	1	1	1	27
Backspace File		0	10	1	1	1	1	2 F
Forward Space Block	0	0	11	0	1	1	1	37
Forward Space File	0	0	11	1	1	1	1	3 F
Data Security Erase	1	0	0	0	1	1	1	97

BURST COMMANDS

Burst commands transfer data across the channel/tape control interface. Channel End and Device End are signaled when the operation is complete (ending status).
the burst commands are.
Write
Read Forward
Read
Sense Reserve
Sense Release
Request Track-In-Erro
Loop Write-To-Read (maintenance aid*)
Set Diagnose (maintenance aid*)

* Diagnostic programs issue maintenance aid commands via start I/Os (SIOs) that are op-codes in the Channel Command Word (CCW)

WRITE

Write records data on tape as it moves forward and creates an interblock gap (IBG) at the end of each block. The tape control checks the parity of each data byte received from the I/O interface

READ FORWARD

Read Forward sets the tape unit to forward read status As the tape moves, data is read until the read head detects the next IBG. The tape control checks and, if necessary and possible, corrects the bits of each byte ransferred to the I/O interface. Sensing a tape mark ets Unit Exception with Channel End and Device End in the Unit Status byte.

READ BACKWARD
Read Backward sets the tape unit to backward read tatus. The operation of the command is similar to Read Forward, except that the 7-track NRZI data converter mode cannot be used. Data flow and controls are the same as in Read Forward. A Read Backward, given at load point or into load point, sets Unit Check. The tape unit remains in backward status at the end of a Read Backward command.

SENSE

Sense transfers the sense bytes to channel. There are 24 bytes of sense data available. The CCW specifies the number of sense bytes to be transferred and the tarting storage address. The information transferred ncludes unusual conditions associated with the last peration and provides details about the current conditions present in the tape control and tape unit. A sense command addressed to a tape unit that is not ready will be executed.

SENSE RESERVE

Sense Reserve reserves the addressed tape control for the channel issuing this command. The tape control will remain reserved for the channel until either

- A Sense Release command is issued from the reserving channel, or
A system reset occurs
Attempting to select a tape control that is reserved to another channel results in a Control Unit Busy indication. The Sense Reserve command should only be issued by the Control Program.

OPER-TAPE COMMANDS (Cont'd)

SENSE RELEASE

Sense Release releases the reserved tape control so it is available to either channel. The Sense Release command should only be issued by the control program.
Programming Note: Sense Reserve and Sense Release commands can only be used on subsystems having the two-channel switch feature. If these commands are issued to a tape control without this feature, COMMAND REJECT results. When using these commands, they must be the first command in a chain or COMMAND REJECT results
The Sense Reserve and Sense Release commands are not supported by IBM Operating Systems.

REQUEST TRACK-IN-ERROR (REQUEST TIE)

Request TIE returns to the tape control a data byte containing track-in-error information for 9-track and sensing level information for 7 -track tape units. This information is transmitted to the channel in sense byte 2 on a Sense command following a Read, Read Backward, Write, or Loop Write to Read command When issued following a 6250 bpi or PE operation, Request TIE is treated as a No Operation (NOP Reset Sense
When issued following a 9-track NRZI read operation, Request TIE either:

- Enables the tape control to perform a correction read operation if the data byte contains a single bit, or
- Does not enable the tape control to perform a bits 6 and read operation if the data byte contains bits 6 and 7, which indicate an uncorrectable error When issued following a 7 -track read operation, the Request TIE byte controls the read clipping level in the following sequence:

Second attempt-Middle Leve
Third attempt-Low Level
Fourth attempt-High Level
Clipping levels are cyclically altered in this way as long as read attempts result in Vertical Redundancy Check (VRC) errors

LOOP WRITE-TO-READ (LWR)

Loop Write-to-Read checks the tape control and tape unit data and control paths without moving tape. in 6250 or 1600 bpi mode, LWR writes and error checks the record. In NRZI mode, LWR writes the record but checks only for Write Trigger VRC errors. Read errors will occur during the NRZI operation but will be reset by ALU2 when the LWR operation is completed.
On 9-track 3420 tape units, a LWR command issued at beginning-of-tape (BOT) is executed in 1600 bpi mode Elsewhere on tape, LWR is executed in the current operating mode of the tape unit.
LWR does not require the tape unit to be in write status, but the tape unit must be ready. Execution of an LWR does not change the status of the tape unit. An LWR performed from the processing unit uses the same data path as a Write command

SET DIAGNOSE '4B'

Set Diagnose is used to call microdiagnostic routines Bytes are transferred from channel to the tape contro to modify the operation of succeeding commands in the chain.

FLAG BYTE 1

Bit	Write	Read
0	Diagnostic Write	N/A
1	N/A	IBG Measure
2	Inhibit Postamble	Read Access
3	Var Go-down Time	Var Go-down Time
4	Inhibit Preamble	N/A
5	LWR	DMR
6	TUBO Mask	N/A
7	Change Direction	Change Direction

Diagnostic Write

Performs the same function as the 'OB' command.
PE - causes writing to be inhibited in any track when the write data contains successive one bits.
NRZI - 9 track - Inhibits writing P bits 7 track - Inhibits writing C bits.

Inhibit Postamble

Prevents writing the last 39 zeros of the postamble. The ending all-ones marker and the first zero is written

Variable Go-down Time

Two bytes (flag bytes 3 and 4) are sent to the tape control unit. These bytes are used to control the wait time before starting the next operation in the chain following the Set Diagnostic (48) command.

Count values are:

103.15 Microseconds to decrement one count.

27 Milliseconds to decrement the low order counter 256 (' FF ') counts and cause one decrement of the high order count

Inhibit Preamble

Prevents writing the first 39 zeros of the preamble. The last (40th) zero and the beginning all-ones marker is written.
Loop Write-To-Read
Write data is sent to the tape unit. In the MST board is gated to the read circuits and then returned to the tape control unit for read checking.

Set TUBO Mask

Flag byte 3 is used as a mask to control the tape unit Bus Out. Any bit on in flag byte 3 causes that tape unit Bus Out bit to be held active, and thus prevents the tape unit from writing data for that specific bit.

Change Direction

Change Direction allows the following word (CCW) chain to progress through turnaround, if necessary, and up to the point of activating the Move line to the tape unit. At this point, the operation is terminated. The tape unit is lef in forward or bat on status, depending on Direction instruction.

FLAG BYTE 2

Bit	Description
0	Block Data Check
1	N/A
2	Block Interrupts
3	Force Control Unit Busy
$4-7$	N/A

FLAG BYTE 3 (OPTIONS

DMR
Go-Up Time in tack pulses
GDT Hi order byte of go-down count

TUBO Mask Byte used to mask TU Bus Out

FLAG BYTE 4 (OPTIONS

DMR Go-down time measure count equivalent to tach pulses. No tach pulse when tape is not moving

GDT Lo order byte of go-down count.

MOTION CONTROL COMMANDS

Motion control commands move tape but do not transfer information across the channel/tape control interface.
All motion control commands operate as follows

1. Channel End is signaled when the command is accepted (initial status)
2. For commands other than Rewind/Unload, device end is signaled when the operation is completed (ending status).
3. The tape control responds with BUSY if the tape As antrol is addressed while executing the command. As a result, the 3803 is obligated to prese BUSY as soon as the current operation is complete.
Note: For Rewind/Unload, Channel End is signaled in initial status, and Device End, Control Unit End, and Unit Check are signaled in an interrupt status cycle after the command becomes effective at the tape unit Device End is signaled again when the operator reloads tape, presses START, and the tape unit goes from not-ready to ready providing the tape control has not been offline in the interim.
Motion control commands are
Rewind
Rewind/Unload
Erase Gap
Write Tape Mark
Backspace Block
Backspace File
Forward Space Block
Forward Space File
Data Security Erase

REWIND (REW)

Rewind causes the selected tape unit to rewind tape to load point.

REWIND UNLOAD (RUN)
Rewind Unload causes the selected tape unit to rewind tape to load point, removes tape from the columns, finishes winding tape onto the right reel, closes the cartridge (if used), and opens the window.

ERASE RECORD GAP (ERG)

Erase Record Gap causes the selected tape unit to move tape forward and erase tape as follows:

	Single ERG	Successive ERGs
6250 bpi	3.75 in. $(95,3 \mathrm{~mm})$	$3.45 \mathrm{in} .(87,6 \mathrm{~mm})$
1800 bpi and 800 bpi 9 -track	4.2 in. $(106,7 \mathrm{~mm})$	$3.6 \mathrm{in} .(91.4 \mathrm{~mm})$
7 -track	4.5 in. $(114,3 \mathrm{~mm})$	3.75 in. $(95,3 \mathrm{~mm})$

WRITE TAPE MARK (WTM)

Write Tape Mark causes the selected tape unit to move tape forward and write a tape mark block

At 6250 and 1600 bpi, a WTM causes the subsystem to write a tape mark preceded by an Erase record gap.
Data Check, Equipment Check, and Unit Check can be set during a Write Tape Mark (WTM) operation. Attempting to write a tape mark on a file-protected tape unit sets COMMAND REJECT.

BACKSPACE BLOCK (BSB)

Backspace Block causes tape to move backward to the next interblock gap or to load point, whichever comes first. No data bytes are transferred. Channel End is signaled when the command is accepted. Device End is signaled at the next interblock gap or load point. Sensing a tape mark sets Unit Exception, with Device End in the status byte. Backspacing into or at load point sets Unit Check with Device End in the status byte. The tape unit remains in backward status.

BACKSPACE FILE (BSF)

Backspace File causes the selected tape unit to move tape backward to the interblock gap on the load point side of a tape mark, or to load point, whichever comes first. No data bytes are transferred. Unit Exception is not set when tape mark is sensed.
Backspacing into or at load point sets Unit Check with Device End in the status byte. Device End is signaled at the completion of the operation. The tape unit remains in backward status.

FORWARD SPACE BLOCK (FSB)

Forward Space Block causes the selected tape unit to move tape forward to the next interblock gap. Initial status contains Channel End. Sensing a tape mark sets Unit Exception, with Device End in the status byte.

FORWARD SPACE FILE (FSF

Forward Space File causes the selected tape unit to move tape forward to the interblock gap beyond the status contains Channel End Device End is signaled the completion of the operation Sensing the tape mark does not set the Unit Exception bit.
Programming Note: The tape control responds with Control Unit Busy sequence while performing an ERG, WTM, BSB, BSF, FSB, or FSF operation.

DATA SECURITY ERASE (DSE)

Data Security Erase causes the selected tape unit to erase tape from the point at which the operation is initiated until the end-of-tape marker is sensed.
The DSE command is accepted by the tape control only when chained immediately following an Erase Gap command. Receipt of this command under any other condition results in COMMAND REJECT. If the command is accepted, initial status contains Channel End, and Device End is signaled when the operation is omple. An atempt to erase a fle-protected tape sets COMAND REJECT. Uni Exceplion never occurs end of tape (EOT) causes an imma liate ending equence. The tape control does not remain bus initial selection. An attempt to select the tape while executing a DSE results in busy status.

During DSE execution, the tape unit monitors erase head current to ensure that tape is erased. If erase head failure is detected, the operation is terminated by dropping TAPE UNIT READY. Device End and Unit Check are issued as a result of dropping READY. At he completion of a DSE, the tape control presents Device End to channel.

Programming Note: If the tape unit drops ready or ails logically during DSE, the ending status containing Device End and sense byte 7, bit 4 (Erase Head Failure) is also set.

Device End is signaled when the EOT marker is sensed during a normal DSE completion. However, a sense command should be performed to assure EOT was reached. Upon completion of the DSE, the operating program must issue sufficient erase gap commands to ensure erasure of any data written beyond the EOT marker. Issuing 14 erase gap commands, which erase about 4 feet $(1,22 m)$ of tape, is generally sufficient. The channel must be enabled for interrupts to detect a Unit Check condition due to manual intervention. When Device End is signaled, a sense command should be performed to ensure the tape unit reached EOT.
The Data Security Erase command is not currently supported by IBM Operating Systems. DOS supports DSE via a Magnetic Tape Command (MTC).

NON-MOTION CONTROL COMMANDS

Non-motion control commands do not move tape and do not transfer data across the channel/tape control interface.
Channel End and Device End are signaled when
non-motion control commands are accepted (initial status).

Non-motion control commands are:
No-Operation
Mode Set 1
Mode Set 2
Diagnostic Mode Set (maintenance aid)

NO-OPERATION (NOP)

NOP performs no function in the tape control or tape unit, and does not transmit data or move tape. NOP does not reset tape control sense data.
Programming Note: Placing a NOP command at the end of a series of chained commands delays channel disconnect from the tape control until the NOP is executed. Indiscriminate use of this command delays the channel program, and may contribute to a channel overload condition.

MODE SET 1 (MS 1)

Mode Set 1 commands sent to tape controls with the 7 -track NRZI feature establish an operating mode for succeeding 7 -track NRZI operations. Bits 0 and 1 control density (200/556/800 bpi) and bits 2, 3, and 4 and translator (on or off) circuits in the ter (on or of and translator (on or off) circuits in the tape control. See chart on this page.

A Mode Set 1 command affects operation of all 7-track tape units attached to the tape control. Unless reset, the tape control retains its mode setting until it receives another Mode Set command.

MODE SET 2 (MS 2)

Mode Set 2 commands sent to a 3803 Model 2, set the operating mode for succeeding write-type operations. Modes are: 6250 bpi, 1600 bpi PE, or 800 bpi nine-track NRZI. Unless reset, the tape control retains its mode setting until it receives another Mode Set command.

DIAGNOSTIC MODE SET (DMS)

DMS causes an artificial signal-loss condition that checks read and write error detection circuits.

- At 6250 bpi, track P is made all zeros and the
program supplies the error correcting code as part of the data.
- At 6250 bpi Diagnostic Read inhibits single- and double-track error corr check characters to channel with data.
- At 1600 bpi, whenever write data contains successive one bits in any track, writing in that track is inhibited until the last one bit is reached.
- In 9-track NRZI mode, no bits are written in track P
- In 7-track NRZI mode, no bits are written in track C

A Diagnostic Mode Set command affects only operations for the command chain in which it is issued.

Mode Set Commands

Set Density			Parity		Data Converter		Translator		Command Byte								Hex
200	556	800	Odd	Even	On	Off	On	Off	0	1	2	3	4	5	6		
Mode Set 1 (7-Track) (See Note)																	
x			\times		x			x	0	0	0	1	0	0	1	1	13
x				\times		x		x	0	0	1	0	0	0	1	1	23
x				x		x	x		0	0	1	0	1	0	1	1	2 B
x			x			x		\times	0	0	1	1	0	0	1	1	33
x			\times			x	x		0	0	1	1	1	0	1	1	38
	x		x		x			\times	0	1	0	1	0	0	1	1	53
	x			x		x		x	0	1	1	0	0	0	1	1	63
	x			x		x	x		0	1	1	0	1	0	1	1	6B
	x		x			x		\times	0	1	1	1	0	0	1	1	73
	x		x			\times	\times		0	1	1	1	1	0	1	1	78
		x	x		x			\times	1	0	0	1	0	0	1	1	93
		x		x		x		\times	1	0	1	0	0	0	1	1	A3
		x		x		x	x		1	0	1	0	1	0	1	1	AB
		x	x			x		\times	1	0	1	1	0	0	1	1	B3
		x	x			x	x		1	0	1	1	1	0	1	1	BB
Mode Set 2 (9-Track)																	
800	1600	6250															
		x							1	1	0	1	0	0	1	1	D3
	x								1	1	0	0	0	0	1	1	C3
x									1	1	0	0	1	0	1	1	Св
Note: Seven-track Mode Set 1 commands are treated as 'NOP reset sense' when issued to a tape control without the seven-track NRZI compatibility feature.																	

I/O INSTRUCTIONS

In addition to initiating one of the I/O operations by means of the Start I/O (SIO) instruction, the program can cause certain actions at the tape control by using the Test I/O and Halt I/O instructions.

TEST I/O

A Test I/O instruction performed by the Central Processing Unit (CPU), causes the status byte for the selected tape unit to be sent to the channel for analysis. No actual operation is performed.
Note: A Test I/O command issued to a not ready tape unit results in a contingent connection on tape control units with the two-channel switch.

HALT I/O

A Halt I/O instruction causes data transfer to stop. The ape control disconnects from the channel and
proceeds independently to the completion of the
operation. When the operation is completed, the tape control tries to re-establish connection with the channe to transfer ending status. If addressed while
completing the operation, the tape control returns a BUSY signal.
If a Halt I/O instruction is executed after STATUS IN and before tape motion is started during a Write or Read operation, the operation is canceled, and Channel End, Device End, Unit Check, and Data Check are generated.

3803-2/3420
\square

READ/WRITE FLOW LOGIC

MICROPROCESSORS (MP1/MP2) SCHEMATIC

ROS 1 TRAP CONDITIONS

$30032 / 3420$

XG0700	2735977

Seq 1 of 2	Part Number	$\begin{array}{c}\text { See EC } \\ \text { History }\end{array}$	$\begin{array}{c}845958 \\ 1 \text { Sep } 79\end{array}$

© Copyright International Business Machines Corporation 1976, 1979

ROS 1 TRAP CONDITIONS (Cont'd)

Both hardware and microprograms generate resets.
Types of resets are General, Selective, and Machine.
[1] GENERAL RESET resets all flags, stats, and reserve bits that apply to the selecting interface.
[2] SELECTIVE RESET performs the same functions except the Control Unit Reserve and Hold Interface bits are not reset
[3] POWER ON RESET and CE panel resets generate MACHINE RESET. Turning power on and pressing RESET both generate POWER ON RESET. POWER ON RESET clears some LSRs and initiates INTERFACE CHECKOUT. Channel outbound tags are checked to ensure all are inactive and all inbound tags except OP IN are activated. Contents of the CHANNEL BUS IN register are sent to CHANNEL BUS OUT.
[4] INITIAL SELECTION AB CE traps ROS 1 to 000 at each selection of the tape control.
[5] LOCK ROS 1 IC traps ROS 1 to 000 when an ALU
1 hardware error occurs.
MP2 is activated for the proper reset after Stat B
has been set on or off to reset only the selecting interface. CONTROL UNIT BUSY is activated for the duration of the reset and is deactivated at completion of MP2 reset.
If MP2 has hardware errors, the tape control "hangs up" with BUSY active and loops on a trap address.
fill steps are completed correctly, the reset is finished. Any failure "hangs up" the tape control at a trap address and BUSY remains active.

XGO700	2735977	See EC History	$\begin{aligned} & \begin{array}{l} 845958 \\ 1 \text { Sep } 79 \end{array} \end{aligned}$					

6250 WRITE SERVICE REQUIREMENTS
The write buffers fill automatically at the maximum rate permitted by the control unit, cable, and channel delays. This diagram shows when byte requirements occur. The channel must respond only to the average need during the period of overrun, checking such that at least one ECC (error correction code) group remain in control unit buffers at all times until stop occurs. Note that no individual channel byte transfer is overrun checked.
36 bytes are pre-buffered and one ECC group or more must remain in the buffer at all times prior to Stop. This time could permit some data chaining or be considered a safety factor.

Notes:
1] Proportionately more on lower speed tape units.
[2] The Resync Burst consists of a mark 1 group, 2 sync groups, and a mark 2 group. It is interleaved in a block of data after
every 158 data groups, and is used to re-synchronize the rea circuits during a 6250 read operation

3803-2/3420

XG0800 Seq 1 of 2	2735978	See EC History	$\begin{aligned} & \begin{array}{l} 845958 \\ 1 \text { Sep } 79 \end{array} \end{aligned}$					

6250 READ SERVICE REQUIREMENTS

The channel buffer and both read byte buffers are empty at the start. Overrun is called only if there is
insufficient room in the buffer for a waiting ECC group. The ECC rate varies according to corrections required but follows the tape rate average over periods of 50 bytes or more. The channel has until the postamble end to accept all data from the buffer. Note that no individual data transfer is checked for overrun. To overrun, the buffer fills during a channel lag
There is excess read buffer capacity equivalent to 10 usec* available for "slip" or possible data chaining. The time may be distributed or lumped. Overrun check effectively starts at the 34th byte since that is the tota buffer capacity.

$3803-2 / 3420$

$\begin{aligned} & \text { XGO800 } \\ & \text { Seq } 2 \text { of } 2 \end{aligned}$	$\begin{aligned} & 2735978 \\ & \text { Part Number } \end{aligned}$	See EC History	845958 1 Sep 79					

C OPER-cLOck CIRcUITs

MICROPROCESSOR CLOCKS CONTROL LOGIC

Hardware clocks control both microprocessors (MP1 and MP2). The clocks are stepped by $20.48-\mathrm{MHz}$ pulses.
The MP2 clock is similar to the MP1 clock shown.
The clocks run on either 150- or 200-nanosecond cycles. The length of the cycle depends on the instruction.
The numbers on the clock outputs (CLK1-CLK22) bear no relationship to the times these lines become active within the clock cycle.

Clock Timing Chart

2-2/3420 \square

MICROPROCESSOR 1 INSTRUCTION COUNTER (IC)
MP2 IC is similar on:
$\begin{array}{ll}\text { ALD } & \text { AA071, 081, } 091 \\ \text { Cards } & \text { A2L2, A2M2 }\end{array}$

3803-2/3420

XGO9000			
Seq 2 of 2 2	$\begin{array}{c}\text { 2735979 } \\ \text { Part Number }\end{array}$	$\begin{array}{c}\text { See EC } \\ \text { History }\end{array}$	$\begin{array}{c}845958 \\ 1 \\ \text { Sep 79 }\end{array}$

OPER-LSR BUFFERS

LOCAL STORAGE REGISTERS

The Local Storage Registers (LSRs) serve as buffers to hold command codes, addresses, error conditions, and any other data the microprocessors use. Each
microprocessor has 32 Local Storage Registers. Each register holds one byte (8 bits) of data and a parity bit The registers are numbered LSR 0 through LSR 31 .
Data from the D Register is stored in the LSRs, and the output from the LSRs goes to the A Register and the B Bus.
Microprogram instructions gate the contents of the LSRs to other registers.

When the LSRs are used, Field 1 of the microprogram instruction addresses a specific register.
The procedure on page 12-012 displays contents of local storage registers

ROS/LSR Logic

STAT REGISTERS

STAT registers are used for microprocessor to microprocessor communication and for microprocessor to data flow communication.

MP1 Stat Register Usage

MP1 Stat	
0	Stop
1	Sense
2	Sense II
3	Diag. Mode
4	Stat A
5	Stat B
6	Stat C
7	Stat D

MP2 Stat Register Usage

MP2 Stat	
0	Tape Op
1	Start R/W
2	Wr ID
3	7 Trk
4	Stat A
5	Stat B
6	Stat C
7	Stat D

MP1/MP2 Stat Registers

CROSSOVER (XOUTA/XOUTB)

REGISTERS

The MP1 XOUTA Crossover Register is both a buffer for MP1 control information and a transfer register when sending a byte of information to MP2.

The individual bits from XOUTA (XOUTA BIT x) are used for the following
Bit Location Function
0 FC211 Gates unit serial number to Channel.
1 FC211 Gates EC level and features data to channel BW151 Gates 7-track Mode Sets Generates WRITE END GATE TO DF
2 BN311 Gates 7-track Mode Sets
3 BN311 Gates 7-rrack Mode Sets

- BW51 Gates Write Tape Mark
$\begin{array}{ll}\text { BN311 } & \text { Gates 7-track Mode Sets } \\ \text { CN031 } & \text { Gates NRZ1 Track-in-Error }\end{array}$
BW151 Gates WRITE MARK 1
5 CNO31 Gates NRZI Track-in-Error
BN231 Gates WRITE MARK 2
6 PR161 Gates the Sense Bytes to Channe BW151 Gates WRITE A2
7 PR161 Gates Sense Bytes to Channel CNO31 Gates NRZ1 Track-in-Error BW151 Gates WRITE A

The contents of XOUTA are gated to MP2 by XFR XINA TO LSR 2 on AA431. Output of XOUTA in MP1 is called XINA in MP2.
MP1 XOUTB crossover register is a transfer egister sending a byte of information to MP2 When MP1 XOUTB is used, MP2 traps to address 000. The contents of XOUTA becomes an index to a specific routine in MP2.
The MP2 XOUTA crossover register is both a buffer for MP2 control information and a transfer register when sending a byte of information to MP1

Bits from XOUTA (XOUTA BIT x) are used as follows:
Bit ALD
$0 \quad$ BW231
AA141 Gates PE Mode
AA141 Altes forward operation
CCO21 Gates Sync Mode for Detection
$\quad \begin{array}{ll}\text { BW231 } & \text { Gates } 6250 \text { Mode } \\ \text { CB111 }\end{array}$
AA141 Gates low gain to read log
The contents of XOUTA are gated to MP1 by XFR XINA TO LSR 1 on AB441. Output of XOUTA in MP2 is known as XINA in MP1.
The MP2 XOUTB Crossover Register is a transfer egister sending a byte of information to MP1. This register is primarily used to send sense byte from MP2 to MP1 for transfer to channel

$\begin{gathered} \text { MP1 } \\ \text { XOUTA } \end{gathered}$	Sense Stat On	Dataflow Control	6250 BPI Write	1600 BPI Write	NRZI Write	XfR TIE							
P													
0			Format	Format	Format	Any binary combination over 8 will Dead Track only track 0.							
1		7-track Mode Set*	End Gate	End Gate	End Gate								
2		$\begin{array}{\|l} \hline \text { 7-track Mode } \\ \text { Set }^{*} \\ \hline \end{array}$											
3		$\begin{aligned} & \text { 7-track Mode } \\ & \text { Set }^{*} \end{aligned}$	Tape Mark	Tape Mark		P	0	1	23	4	5	6	7
4		$\begin{aligned} & \text { 7-track Mode } \\ & \text { Set* }^{*} \\ & \hline \end{aligned}$	00111	00111			1						
5		Write\#	11100	11100				1	1	1			
6	Bin 2	PE	01010					1	1		1	1	
7	Bin 1	NRZI	10101					1	1		1		1
	Real Time gating of Sense Bytes	* Bits 1-4 of 7-track Mode Set.											
		\# Bits are phase locked in dataflow hardware by rise of TAPE OP to allow use of register for write format.	Strobed into write controls at each group boundary except bit 3 which is real time.			Microprogram encoded.							

Crossover Register

3803-2/3420

XG1000	2735
Sea 2 of 2	Part

MICROPROCESSOR LISTINGS

Microprocessors 1 and 2 have different listings that can be identified by ALU1 or ALU2 printed in the upper left corner of each page
Listings are in four parts

1. General reference information, sense byte descriptions, Local Storage Register layout, branch condition codes, transfer codes, etc
2. Equate statements which specify a symbolic name for a value. Equate statements are generally followed by a description of the use of the constant.
3. Listing of the executable instructions.
4. Cross reference table containing all symbolic names used in the listing. This table includes the length of the referenced field, its value, the statement number in which it is defined, and the statement number of all instructions using the symbolic name.

COMMUNICATION BETWEEN
 MICROPROCESSORS

Either microprocessor can move a byte of information from an LSR to either the XOUTA or XOUTB registers. The other microprocessor can then move the byte of information from the XOUTA or XOUTB register to an LSR.
Each microprocessor can test, with Branch On Condition instructions, STAT BITS B, C, and D from the other microprocessor.

LINKING MICROPROGRAM ROUTINES

LINK registers store microprogram addresses for return to a major routine from subroutines. Before branching to a subroutine, the address of a Branch Unconditional instruction is stored in a LINK register. The Branch Unconditional instruction must be in the same page as When the subroutine has completed its function, the contents of the LINK register are transferred to the Instruction Counter. The microprogram then branches oo the Branch Unconditional instruction, which, in turn, branches to the return point in the calling routine.

MP1 has six link registers named LINK 1 through LINK6 and MP2 has three LINK registers named LINK 1 through LINK3. The LINK registers are loca storage registers used for linkage purposes. The specific local storage registers used for linkage are

LINK	MP1	MP2
LINK1	LSR16	LSR28
LINK2	LSR17	LSR25
LINK3	LS18	LSR26
LINK4	LSR19	
LINK5	LSR24	
LINK6	LSR25	

Multiple link registers are available because there may be several possible branches out of a subroutine

MICROPROCESSOR (MP1 AND MP2) FUNCTIONS

Two microprocessors (50-003) control logic operations of the tape control

Operation of MP2 is dependent on the operation of MP1. MP2 remains idie until MP1 supplies it with an address at which to begin. MP1 operates constantly, either executing a routine required by the operation being performed or polling the possible conditions that can require the execution of a routine.
Microprocessors consist of
Read Only Storage (ROS) in which the microprogram is stored for use by the microprocessor. The contents of ROS cannot be modified by the microprogram

An Arithmetic Logic Unit (ALU) which performs all arithmetic and logic operations: ADD, AND, OR, and XOR.
Registers and Buses to hold or transfer data for subsequent use.

Read Only Storage is addressed by three-dig hexidecimal numbers 000 through 7FF. Each addressable unit in the Read Only Storage is 16 bits long. The first digit of the address specifies a page (block of 256 addresses) of Read Only Storage. Each microprocessor has 8 pages of storage, 0 through 7 256 addresses in a page. 256 addresses in a page

In general, MP1 handles all logic operations dealing with the channel and MP2 handles the operations dealing with the tape units.

The microprocessors can transfer bytes of informatio between them and test single bits stored in the othe microprocessor

MICROPROCESSOR INSTRUCTIONS

The microprocessors use 12 instructions. See following pages.

MICROPROCESSOR INSTRUCTION

FORMA

Microprocessor instructions have the following format [label]OPCODE field 1 ,field2[comments]
where label is a one- to eight-character name by which the instruction can be referenced. Branch instructions point to locations in the microprogram by label.
OPCODE is the operation to be performed on the data or addresses in Field 1 or Field 2.
Field 1 is generally the address of a Local Storage Register. In some instructions this field may be a ranch condition or ROS page number.

Field 2 is generally a constant, referred to as a decimal number or by a symbolic name. The value of symbolic constants for each microprocessor is listed in the beginning of the listings as EQU statements. In some instructions this field may be a branch address or transfer code
Field 2 can contain several symbolic constants combined arithmetically, that is, the sum or difference of two or more constants.
For example, the constant in the instruction:
ADD WORK 1,ONES-174
results in the constant hexidecimal FF (ONES) minus the decimal value 174 or a decimal value of 81

MICROPROGRAM EC's

Microprogram EC's are applied with two Array Patch Cards, type DEO1, which provide auxiliary ROS arrays The arrays contain four sets of microcode patches ALU1 and 2 for 3803-1 and 2). Plug each card as shown in Figure 1 in order to select the proper patches for it's location. The following patches ar active when these two cards are installed (refer to page 52-102 for the patch listings):

1. Alternate Path Device Busy
2. Velocity Retry Extension
3. Turnaround Delay

Allocated Busy
5. Truncated Postamble
6. Extra Device End
7. Sense Reset

Verify factory plugging:

Note: If RPQ S10231 is installed see plugging instructions on pages 52-103/104.

HIGH-ORDER ROS REGISTER

The High-Order ROS Register in each microprocessor holds the 8 high-order bits of a microprogram
instruction. The registers in MP1 and MP2 are identical Bits 0 though 3 contans Bits 4 through 7 and the $\mathrm{Hi} / \mathrm{Lo}$ latch can also contain the LSR address.
Bit 3 will be zero for OR, AND, ADD, XO, and STO instructions. In these instructions, bit $3=0$ allows the addressed LSR to be updated.
Bit 3 in this register serves different purposes,
depending on the instruction being executed. Bit 3 is part of the operation code for the modified instructions ORM, ADDM, ANDM, and XOM. This use prevents updating the LSR by blocking the gate to the LSR, CLK upda
15.

Bit 3 is part of the branch condition code for the BOC instruction. There are 32 branch condition codes used.

LOW-ORDER ROS REGISTER

The Low-Order ROS register in each microprocesso holds the 8 low-order bits of a microprogram
instruction. The registers in MP1 and MP2 are identical The output from these registers goes to the A Bus, ransfer decode cir
depending on the instruction

A REGISTER

The A Register serves as a buffer for information from an LSR that is used as input to the ALU. The contents of the selected LSR are gated to the A Register by XFR LSR TO A REGISTER. The next logic operation (ADD, with the contents of the instruction's Field 2 and places with the contents of the instruction's Field 2 and places
the result on the A Bus.

During logic operations, the A Register is reset by the CLK 4 line.

CHANNEL TAGS IN REGISTER

The Channel Tags in register holds the channel tags bits until they are transferred to the Channel Bus In. Individual register bits are used as follows:

Bit
Function
Chain Hold A
Chain Hold B
Hold Interface or Bus
Cu Busy
Service in
Status in
Status in
CTI Bit 5 to
C
Address In
CTI Bit 6 to CE
Op In

CHANNEL BUS IN REGISTER

The Channel Bus In register serves as a buffer to
transfer bytes from LSRs in MP1 to channel.

TAPE UNIT BUS OUT (TUBO) REGISTER

The TUBO register is a buffer to hold control
information. High speed output is ORed with data bus
bits.
The TUBO register stores MP2 control information for the 3420. The output information is multiplexed with tag lines (MOVE, CONTROL, COMMAND) to control tape unit functions

1 C

OPER-MP REGISTERS

D REGISTERS

The D Register serves as a buffer between the ALUs and LSRs.
A CLK 22 pulse loads the data into the D Register and resets individual positions when no data is available to load them.
Transfer (XFR) microinstructions gate input from BUS OUT
CLK 21 degates D Register input from the ALU during store and transfer operations. During logic operations, his input remains active because CLK 21 does not occur. ERRORS)

The Special Register in MP1 (AB461) is not used as a conventional register, because the input gate is always active and the latchback is always inactive. MP1 hardware errors merely pass through the register becoming SPEC REG BITS 0-7. When needed, parity bit is generated to maintain odd parity.
Special Register bits are activated as follows:

Spec Reg Bit

${ }_{-1}^{\mathrm{Reg}}$ Bit Error Lin
0 ALU Parity Error ALU1 ROS Parity Error ALU1 C or XFR Parity Error ALU Microprogram Error ALU1
Instruction Care Error ALU Instruction Care Error Unused Branch Error Interface ALU1

MP2 SPECIAL REGISTER (TU BUS IN)

The Special Register in MP2 (FD011) is used as the Tape Unit Bus In Register. The Device Bus In bits are called DEVICE BITS LATCHED. The register gate is CLK 8 SET TUBI ALU2. When needed, parity bit is
generated to maintain odd parity.

MIST OR TCS REGISTER (MP1)

The MIST (Multi-Interface Tags) Register (FC181) is used as a Request In Register when the Two-Channel Switch (TCS) feature is installed. This register has four bits assigned as suppressable and non-suppressable REQUEST INS for Channel A and B.
Bit functions are:
Bit Function
4 Suppressable REQUEST IN Channel A Non-suppressable REQUEST IN
Channel A
6 Suppressable REQUEST IN Channel B Non-suppressable REQUEST IN

ADD/ADDM (HEX CODE A OR B)

1. The LSR byte selected by Field 1 (ROS reg bits
$4-7$) is placed on the B Bus.
2. The A register is ORed with the constant in Field 2 (ROS reg bits 8-15).
3. The result is placed on the A bus.
4. The \mathbf{A} bus and the B bus are added together
5. The result is placed on the D bus.

If the operation is an ADD, the D bus is stored into the LSR byte addressed by Field 1 and the $\mathrm{Hi} /$ Lo latch. The result of an ADDM operation is not stored in an LSR. The result of either operation remains on the D bus until the next ALU operation. While on the D bus the result of the operation is available for branch control. The A Register is reset at the end of the operation.

Step IC
Load ROS Reg
${ }^{H}$ R ROS Party Check Sample
Lo ROS Parity Check Sample
Set Lookahead to Incremented IC Address
Sample D Reg
Gate D Bus to LSR lif ROS reg bit 3 not active)
Reset A Reg

Fex value of ADD OP code
ROS address at which this instruction is located

3803-2/3420

XG1300	2735983
Sec 2 of	Part

C OPER-LOGICAL AND

AND/ANDM (HEX CODE C OR D)

1. The LSR byte selected by Field 1 is placed on the B bus.
2. The A Register is ORed with the constant in Field 2.
3. The result is placed on the A bus.
4. The A bus and the B bus are ANDed
5. The result is placed on the D bus.

If the operation is an AND, the D bus is stored back into the LSR byte addressed by Field 1 and the $\mathrm{HI} / \mathrm{LO}$ latch. The result of an ANDM is not stored in an LSR The result of either operation remains on the D bus until the next ALU operation. While on the D bus, the result of the ANDM operation is available for branch control. The A Register is reset at the end of the operation.

${ }_{52} \mathrm{C}_{2}^{\mathrm{CO}}$

Sample of a Logical AND Instruction

ORI/ORM (HEX CODE 8 OR 9)

1. The LSR byte selected by Field 1 is placed on the B bus.
2. The A register is ORed with the constant in Field 2.
3. The result is placed on the A bus.
4. The A bus and the B bus are ORed.
5. The result is placed on the D bus.

If the operation is an ORI, the D bus is stored back into the LSR byte addressed by Field 1 and the $\mathrm{Hi} /$ Lo latch. The result of an ORM is not stored in the LSR. The result of either operation remains on the D bus until the next ALU operation. While on the D bus, the result of the operation is available for branch control. The A Register is reset at the end of the operation.

3803-2/3420
$\left.\left.\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline \text { XG1400 } \\ \text { Seq 2 of } 2\end{array} \begin{array}{l}2735984 \\ \text { Part Number }\end{array} \right\rvert\, \begin{array}{l}\text { See EC } \\ \text { History }\end{array} \begin{array}{c}845958 \\ 1 \text { Sep 79 }\end{array}\right]$

XO/XOM (HEX CODE E OR F)

1. The LSR byte selected by Field 1 is placed on the B bus.
2. The A register is ORed with the constant in Field 2.
3. The result is placed on the A bus.
4. The A bus and the B bus are exclusive ORed.
5. The result is placed on the D bus

If the operation is an XO the D bus is stored in the LSR byte addressed by Field 1 and the $\mathrm{Hi} / \mathrm{Lo}$ latch. The result of an XOM operation is not stored in an LSR The result of either operation remains on the D bus th of ALU open is Wella for bran, A The A Register is reset at the end of the operation.

Sample Logical Exclusive OR Instruction

3803-2/3420
\square

| XG1500 | |
| :--- | :--- | :--- |
| Sea 1 of 2 | Part Number |

| |
| :--- | :--- | :--- | :--- | | History | 1 Sep 79 |
| :--- | :--- | cu

Short Cycle
Step IC
Load ROS Reg
Hi ROS Parity Check Sample
Lo RoS Parity Check Sample
Set Lookahead Latches
to incremented IC address
Set D Reg
Gate D Bus to LSR (Not ROS Reg 3)
Reset A Reg
 ss Machines Corroration 1976. 1979

BOC (HEX CODE 2 OR 3)

ROS reg Field 1, together with bit 3, is decoded to test one of 32 conditions. If the BOC is met, ROS reg Field 2 is set into the Lo IC. See 52-086 for a complete
listing of MP1 and MP2 branch conditions.
The contents of the A reg are not altered
Special Condition-If the two-channel switch or NRZI features are installed, a BOC on these features (BOC on 'MIFTR' or 'NRZFEAT') results in a successful BOC with the Hi IC forced to ROS page 4. See logic diagram.

Step IC

Load ROS Reg
Hi ROS Parity Check Sample
Set lookahead latches to incremented IC Address BOC Met Latch
Branch Set ic
IC Reset
(Note: On a BoC met or on is gated to ROS Address whil the IC is being updated.)

CRS ouput valid in 105 n

 Gate Field 2 instead of IC if BOC is met or on a BU Page Reg Parity Sample on BULo IC Parity Sample if BOC is met or on a BU

Sample of a Branch On Condition Instruction

C OPER-MP1 BRANCHES

MP1 BRANCH CONDITIONS

$\begin{aligned} & \text { BOC } \\ & \text { Instr } \\ & \text { Field } 1 \\ & \hline \end{aligned}$	$\begin{gathered} \text { ROS Reg } \\ \text { Bits } \end{gathered}$					Microprogram Name of Line Sensed	Logic Line Name of Condition Sensed	Branch Cond Logic Page	Source Logic
	3	4	5	6	7				
20	0	0	0	0	0	DBUS D Reg equal 0	ALU output all zero ALU1	AB121	AB371
21					1	NALCO not ALU carry out	Not ALU carry ALU1	AB121	AB371
22				1	0	ALUR ALU2/ALU1 Error	Any hardware error ALU2	AB121	AA461
23				1	1	$\begin{array}{\|l} \begin{array}{l} \text { MIFTR** MIS or 7-Trk } \\ \text { Feature } \end{array} \\ \hline \end{array}$	Feature present ALU1	AB121	AB131
24			1	0	0	BOPE Bus Out parity error	Not Bus Out parity odd	AB131	FC151
25			1	0	1	NCUEA Not CU End Chan A	Not CUE pending Chan A	AB131	FC031
26			1	1	0	SELO Select Out	Gated Select Out	AB131	FC141
27			1	1	1	DFLER	Data Check (Not Tape Op)	AB131	BW241
27			1	1	1	Clock "B"	Write Grp "B" (Tape Op)	AB131	BW151
28		1	0	0	0	ADrout Addr Out A or B	Address Out A B CE	AB171	AB171
29		1	0	0	1	cmdout Cmd Out A or B	Command Out A B CE	AB171	FC151
2A		1	0	1	0	Stata Stat A AlU1	Stat A ALU1	AB151	AB141
2 B		1	0	1	1	STAT B Stat B ALU2	Stat B ALU2 to ALU1	AB151	AA141
2 C		1	1	0	0	SELRST Selective Reset	Selective Reset	AB171	FC151
2D		1	1	0	1	SVCOUT Service Out	Service Out only on write ops. Service in or Service Out on read ops.	AB171	FC151
2 E		1	1	1	0	SCB Switched to Chan "B"	Switched to Chan "B"	AB161	XM101
2 F		1	1	1	1	PWRRST Power On Reset	Mach or Gen Reset Chan A B	AB161	AB161
30	1	0	0	0	0	DREG0* D Reg Bit 0 On	D Bus 0 AlU1	AB121	AB341
31	1	0	0	0	1	DREG1 D Reg Bit 1 On	D Bus 1 Alu1	AB121	AB341
32	1	0	0	1	0	DREG2* D Reg Bit 2 On	D Bus 2 AlU1	AB121	AB341
33	1	0	0	1	1	DREG3* D Reg Bit 3 On	D Bus 3 AlU1	AB121	AB341
34	1	0	1	0	0	DREG4* D Reg Bit 4 On	D Bus 4 AlU1	AB131	AB351
35	1	0	1	0	1	DREG5* D Reg Bit 5 On	D Bus 5 AlU1	AB131	AB351
36	1	0	1	1	0	DREG6* D Reg Bit 6 On	D Bus 6 AlU1	AB131	AB351
37	1	0	1	1	1	DREG7* D Reg Bit 7 On	D Bus 7 AlU1	AB131	AB351
38	1	1	0	0	0	OPRIN Operation In	Channel Operation In	AB171	FC141
39	1	1	0	0	1	SUPO Suppress Out	Suppress A B	AB171	FC151

$\underset{\text { Bnctr }}{\text { BnOC }}$$\text { Field } 1$	$\begin{gathered} \text { Ros Reg } \\ \text { Bits } \end{gathered}$					Microprogram Name ofLine Sensed	Logic Line Name of Condition Sensed	Branch Cond Logic Page	$\begin{gathered} \text { Source } \\ \text { Logic } \end{gathered}$
	3	4	5	6	7				
3A	1	1	0	1	0	STATC Stat C Aluz	Stat C ALU2 to ALU1	AB151	AA141
3в	1	1	0	1	1	StATD Stat D ALU2	AlU2 Locked Status	AB151	AA451
3 C	1	1	1	0	0	NGENR Not Gen Reset	Not General Reset Chan A B	AB171	FC041
3 D	1	1	1	0	1	ISEL Initial Selection	Initial Selection A B CE	AB171	AB171
3 E	1	1	1	1	0	NCUEB Not CUE for Chan	Not CUE PENDING Chan B	AB161	хM031
3 E	1	1	1	1	0	Buffer Branch	RD Channel Buffer (Stop to DF)	AB161	BR011
3 F	1	1	1	1	1	Overrun	Data Flow Detected Overrun (Not Tape Op)	AB161	BW241
3 F	1	1	1	1	1	All Ones	End of Data being written (Tape Op)	AB161	BW151

** If this feature is installea, force Hi IC to ROS Page 4.

MP2 BRANCH CONDITIONS

$\begin{array}{\|c\|} \text { BOC } \\ \text { Instr+ } \\ \text { Field } 1 \end{array}$$\text { Field } 1$	$\underset{\text { Bits }}{\text { ROS Reg }}$					Microprogram Name of Line Sensed	Logic Line Name of Condition Sensed	Branch Cond Logic Page	Source Logic
	3	4	5	6	7				
20	0	0	0	0	0	DBUS D Reg equal 0	Aluo	AA121	AA361
21					1	Nalco	Not ALU carry	AA121	AA361
22				1	0	Rocrot	ROS rotation (Tape Op)	AA121	CB411
22				1	0	CRC NEPR	CRC not equal EPR (Not Tape Op)	AA121	CN011
23				1	1	NRZFEAT** Installed	Feature present	AA121	AA131
24			1	0	0	RD Time	Read Time	AA131	BW221
25			1	0	1	N Seven	Not Seven Track	AA131	AA131
26			1	1	0	TACHFF	Tach Velocity (Write CKT)	AA131	XC031
27			1	1	1	STOP Stop Command	Stat Bit 0 ALU1 to ALU2	AA131	AB141
28		1	0	0	0	ENDATA Ending Zeros	End of Data (Tape Op)	XC041	BW241
28		1	0	0	0	CRCMAT	CRC OK (Not Tape Op)	XC041	CH111
29		1	0	0	1	NCONVCK	Data CC Check (Not Tape Op)	XC041	BN071
29		1	0	0	1	NSAGC ID	Inverse TM (Tape Op)	Xc041	CC001
2A		1	0	1	0	STATA Stat A ALU2	Stat A ALU2	XC041	AA141
2 B		1	0	1	1	STATB Stat B ALU1	Stat B ALU1	XC041	AB141
2 C		1	1	0	0	NPTE	Data P Track Only (Tape Op)	xC051	BW231
2 C		1	1	0	0	DEN 556	556 bpi (7-Track)	XC051	BN311
2D		1	1	0	1	data rdy	Data Rdy from DF (Tape Op)	xc051	CH131
2D		1	1	0	1	RPQ	RPO Installed (Not Tape Op)	XC051	RPO
2 E		1	1	1	0	BOR	Beginning of Record (Tape Op)	xC051	CC001
2 F		1	1	1	1	IBG	IBG Detected (Tape Op)	XC051	CC001
30	1	0	0	0	0	DREG0* D Reg Bit 0 On	D Bus 0 ALU2	AA121	AA331
31	1	0	0	0	1	DREG1* D Reg Bit 1 On	D Bus 1 AlU2	AA121	AA331
32	1	0	0	1	0	DREG2* D Reg Bit 2 On	D Bus 2 AlU2	AA121	AA331
33	1	0	0	1	1	DREG3* D Reg Bit 3 On	D Bus 3 AlU2	AA121	AA331
34	1	0	1	0	0	DreG4* D Reg Bit 4 On	D Bus 4 AlU2	AA131	AA341
35	1	0	1	0	1	DREG5* D Reg Bit 5 On	D Bus 5 ALU2	AA131	AA341
36	1	0	1	1	0	DREG6* D Reg Bit 6 On	D Bus 6 ALU2	AA131	AA341
37	1	0	1	1	1	DREG7* D Reg Bit 7 On	D Bus 7 AlU2	AA131	AA341
38	1	1	0	0	0	6400	RLC Branch	XC041	BW231
39	1	1	0	0	1	N1TE	Not One Track Envelope	Xc041	BW231
39	1	1	0	0	1	DEN 200	Density 200 (Seven Track)	XC041	BN311

BOC Field 1	$\underset{\text { Bits }}{\substack{\text { ROS Reg }}}$					Microprogram Name of Line Sensed	Logic Line Name of Condition Sensed	Branch Cond Logic	Source Logic
	3	4	5	6	7				
3A	1	1	0	1	0	STATC Stat C ALU1	Stat C Alul Mark on Wall	Xc041	AB141
38	1	1	0	1	1	Statd Stat D ALU1	Stat D ALU1	XC041	AB141
3 C	1	1	1	0	0	nenvlos	No Envelope Loss (Not Tape Op)	xC051	CC011
3 C	1	1	1	0	0	NBLOCK	No Zone Up (Tape Op)	Xc051	CC011
3D	1	1	1	0	1	NTM	Tape Mark	Xco51	CC001
3 E	1	1	1	1	0	BSYTACH	Busy or Tach	XC051	XC031
3 F	1	1	1	1	1	devattn	Interrupt	Xc051	xc031

** May be called other names as well. If this feature is installed, force Hi IC to ROS Page 4.

3803-2/3420

$\begin{array}{l}\text { XG1600 } \\ \text { Seq 2 of } 2\end{array}$	$\begin{array}{l}2735986 \\ \text { Part Number }\end{array}$	$\begin{array}{c}\text { See EC } \\ \text { History }\end{array}$	$\begin{array}{c}845958 \\ 1 \text { Sep 79 }\end{array}$					

$C C$ oper-branch unconditional logic

BRANCH UNCONDITIONAL - BU (HEX

CODE 6)

1. The contents of ROS reg Fields 1 and 2 are set into the Hi IC and Lo IC
2. The contents of the A reg are not altered.

Sample of a Branch Unconditional Instruction

bRANCH UNCONDITIONAL

C C C C oper-store logic

STORE - STO (HEX CODE 0 OR 1)

1. The contents of Field 2 are stored in an LSR selected by Field 1.
2. LSR selection is modified by the condition of the HI/LO latch and ROS register bit 3 (see logic diagram).

3. The A register is reset.

\square
38032/3420

| XG1700 | 2735987 |
| :--- | :--- | :--- |

| | $\begin{array}{l}\text { See EC }\end{array}$ | $\begin{array}{l}\mathbf{8 4 5 9 5 8} \\ 1 \\ \text { Hep } 79\end{array}$ |
| :--- | :--- | :--- | :--- |

TRANSFER - XFR (HEX CODE 4 OR 5)

The hex value (transfer decode) in Field 2 controls all transfer operations. All XFR decodes for both ROS1 and ROS2 are on 52-101.
Some transfer decodes cause data to be transferred between an LSR selected by Field 1 and a hardware register selected by Field 2. LSR selection is modified by the condition of the $\mathrm{HI} / \mathrm{LO}$ latch and ROS reg bit 3 (see logic diagram).
Some transfer decodes do not select LSRs (that is, Field 1 is ignored). These operations create miscellaneous Set, Reset, and Gating pulses to hardware.
One transfer decode (ROS1 XFR decode of 14) transfers data from one hardware register to another (ROS1 XOUTA TO DEAD TRK REG).
Contents of the A register are not altered except as described under special condition 1 below.

Special Conditions:

1. Whenever a XFR from LSR to A reg (Field 2 hex 21) is decoded, the XFR is really a logical OR (for example, A register bits that were ON remain ON)

Sample Transfer Instruction

$$
\frac{\text { Set current adr on channel bus in }}{\text { Programmers comment }}
$$

Field 2 mnemonic of hardware register selected
Field 11 memonic of $L S R$ selected Mnemonic of transfer op code
Mnemonic of the location of the instruction (label)
Field 2 hex value which will select desired hardwar - Field 2 hex value which will select desired hardw
Field 1 hex value which will select desired LSR
Hex value of XFR op code
ROS address at which this XFR instruction is locted
2. Whenever a XFR 'HDWERR' (Field 2 ALU1 $=11$ or $\mathrm{ALU2}=44$) is decoded, the following actions occur:
a. Bit 4 in sense byte 11 or 12 (ALU1 or ALU2 respectively) is set.
b. The UPGM Control Check indicator* on the CE panel is turned on.
c. IC is reset to 000 (ROS1 starts executing at 000 -ROS2 holds at 000).

* For additional information on microprogram control check, see 75-003: "'CE Panel Indicators.

Short cycle Step IC
Load ROS Reg Hi ROS Parity Check Sample Lo ROS Parity Check Sample
Set Look Ahead Latches Set Look Ahead Latches
to Incremented IC Address
D Bus Parity Check (Note 1) B Bus Parity Check (Note 2) Gate D Bus to LSR Select Hardware Reg Degate Adder input to DREG

Notes:
Only Only when data is being taken from
external registers and is being stored
in an LSR.

CCCCC
 OPER-TRANSFER LOGIC

MICROPROGRAM TRANSFER DECODES
 TRANSFER DECODE-MP1

decode		MP1	
Field 2	Micro program Name	Use	Logic Line Names XFR Decode AB181
05	RStoomtd	Reset device committed latch	Reset committed latch AlU1*
06	LSR	Set local store sel latch hi or low	Set LSR hi or lo**
09	CUREA	Reset CUE or general reset latch Intf A	Reset CUE Chan A^{*}
OA	Cureb	Reset CUE or general reset latch Intf B	Reset CUE Chan ${ }^{*}$
11	HDWERR	Set Sense Byte 11 Bit 4 (force ROS 1 ALU hardware error)***	XFR Set Checkout error*
12	CLEAR	Reset all hardware error latches for ROS1, ROS2 and data flow	Reset Sense Data*
14	TIP	MP1 XOUTA to Dead Track register	Xfr Xouta to DT Reg
18	Spare		Spare Xfr 18
21	AR	LSR to A Reg	Xfr LSR to A Reg
22	IC	LSR to Instr. Ctr (Lo IC)	Xfr B Bus to IC
24	TUADR	LSR to TU Address Reg	Xfr TU Address
28	STAT	LSR to ROS1 Stat Reg	Xfr LSR1 to Stat
41	XOUTB	LSR to ROS1 XOUTB Reg	Xfr XOUTB TO Trap AlU2
42	XOUTA	LSR to ROS1 XOUTA Reg	Xfr LSR1 to XOUTA
43**		-...	- - - -
44	PING	Hardware Error Reset	Reset PING Pulse*
48	MIST	LSR to set or reset Req in Tags	Xfr LSR1 to Request Tags
50	CTI	LSR to Channel Tags in Reg	Xfr LSR1 to Channel Tags
60	CBI	LSR to Channel Bus In Tags Reg	Xfr LSR1 to Channel Bus In
81	EXT	ROS2 ALU hardware error reg to LSR	Xfr Ext inputs to LSR1
82	INHP	Not used	- - - -
84	HDWR	ROS1 ALU hardware error to LSR	Xfr Hardware Reg
88	XINB	ROS2 XOUTB Reg to ROS1 LSR	Xfr XINB to LSR1
90	XINA	ROS2 XOUTA Reg to ROS1 LSR	Xfr XINA to LSR1
A0	сво	Channel Bus Out Reg to LSR	Gate Chan Bus Out to ALU

TRANSFER DECODE—MP2

decode		MP2	
Field 2	Microprogram Name	Use	Logic Lime Names XFR Decodes AA171
05	Spare sense byte 11 bit 4 (force	- -	Spare
06	LSR	Set local store sel latch hi or to	Set LSR hi or to*
09	Reset ERR	Reset errors single byte noise	File Operation Pulse
0A	CRC	Shift CRC Pulse	Spare Xfr OA
11	Indf	Set Diagnostic Channel Buffer Read	Pulse Reset CRC
12	POINTERS	Sample pulse to set TIE	Step Format Count
14	Red Light	Set CE Panel Uprog det DF error	SKB and Det Ctrr
18	Buff CRC	Sample Buffer CRC error latch	Spare Xfr 18
21	AR	LSR to A Reg	Xfr LSR to A Reg
22	IC	LSR to Instr. Ctr (Lo IC)	Xfr B Bus to IC
24	tutag	LSR to TU Tags Reg	Xfr LSR2 to TU Tags 24
28	STAT	LSR to ROS2 Stat Reg	Xfr LSR2 to Stat
41	хоитв	LSR to ROS2 XOUTB Reg	Xfr LSR2 2 to XOUTB
42	xouta	LSR to ROS2 XOUTA Reg	Xfr LSR2 to XOUTA
43**	XANXB	- - -	--.
44	HDWERR	Set sense byte 12, bit 4 (force ROS2 ALU hardware error)***	Xfr Set Checkout Error
48	Spare		- - -
50	соміtD	Reset Device Committed latch	Reset Committed latch pulse*
60	tubo	LSR to TU Bus Out Reg	Xfr LSR2 to TU Bus Out
81	TUBI	TU Bus In Reg to LSR	Gate Device Bus In to LSR2
82	INHP	Inhibit Parity on D Bus	Inhibit Parity on D Bus
84	XADDR	TU Bit Address Reg to LSR	Gate TU Addr to ALU2
88	XINB	ROS1 XOUTB Reg to ROS2 LSR	Xfr XINB to LSR
90	xina	ROS1 XOUTA Reg to ROS2 LSR	Xfr XINA to LSR2

** Withe transfer operations cause no actual information transfer

* With transfer decode of 43 , transfer decodes 41 and 42 are executed simultaneously
... Also sets CE Panel UPGM Error light (Control Check Indicators).

ALU1

Instr Addr	$\begin{aligned} & \text { - Patch } \\ & \text { Store } \\ & \text { Control } \end{aligned}$	Object Code	Source Statement			Patch Name
2DC	ENTER	C400		AND	WORK 1, ZERO	Allocated busy
2DD	RETURN	62DE		BU	2DE	
328	ENTER	4828	DEPRIM4	XFR	Statimg, stat	alternate path device BUSY
329		3B8C		BOC	STATD, DEPRIM70	
32A		6380		BU	380, FREEAREA	
380		3 A82	FREEAREA	BоС	STATC, CKCONCHA	
381	RETURN	632 B	BU		32B	
382		D981	CKCONCHA	ANDM	FLAGS, CONCON+CHAIN	
383		2085		BOC	DBus, TAGO	
384	RETURN	6338	PCHKONA	BU	338	
385		0202	tago	STO	XOUTAIM, SETSTATC	
386		4228		XFR	XOUTAIM, STAT	
387		A202	PA1DLY	ADD	XOUTAIM, X'O2'	
388		2187		BOC	NALCO, PA1DLY	
389		0200		STO	XOUTAIM, 0	
38A		4828		XFR	StATIMG, STAT	
38B		6384		BU	PCHKONA	
38C	RETURN	633A	DEPRIM 70	BU	33A	
335	ENTER	4828	DEPRIM6	XFR	STATDMG, STAT	
336		2882		BOC	STATB, CKCONCHA	
337	RETURN	6337		BU	337	
OA3	ENTER	8520	ORI		PNDSTS, CUE	extra device end
OA4		D50C		ANDM	PNDSTS, CEND+DEND	
OA5		34AA		BOC	DREG4, RTN 1	
OA6		20AA		BOC	DBUS, RTN1	
OA7		4642		XFR	PNDADDR, XOUTA	
OA8		14EB		STO	XOUTBIM, NDXSTS	
OA9		5441		XFR	XOUTBIM, XOUTB	
OAA	RETURN	6296	RTN1	BU	TERMSTA2	
OFO	ENTER	1348		Sto	LINK4, TERMATE	SENSE RESET
OF 1	RETURN	5322		XFR	LINK4, IC	

ALU 2

Instr Addr	- Patch Store Control	Object Code		Sour	Statement	Patch Name
213	ENTER	1600	WRTSTR1	STOH	SENSE 1, 0	velocity retry extension
214	RETURN	1300	VELSTR	STOH	WORK 4, ZERO	
788	Enter	0200		sto	WORK 3, 0	
789	return	1500		Stoh	WORK 5, zero	
15A	ENTER	D708	dodelay	ANDM	SENSE 2, HIDEN	TURNAROUND DELAY
158	return	6150		BU	15 C	
53 F	Enter	6744	CTLRET6	BU	ERASE6	TRUNCATED POSTAMBLE
744	return	0083	ERASE6	sto	WORK 1, $\mathbf{x}^{\prime} 8{ }^{\prime}$	
36 E	Enter	8402	DRVUNTCK	ORI	STATIMG, SETSTATC	alternate path device BUSY
36 F		6300		BU	3C0, freearea	
3 CO		4428	freearea	XfR	Statimg, stat	
3 C 1		3AC4	PPOLMTIX	вос	STATC, TAGOO	
3 C 2		3BCE		Boc	STATD, EXITPTCH	
3 C 3		63 C 1		Bu	PPOLMTIX	
3 C 4		0002	TAGOO	Sto	WORK 1, RESET	
3 C 5		4060		XFR	WORK 1, TUBO	
$3 \mathrm{C6}$		000A		Sto	WORK 1, DEVSEL+COMMD	
$3 \mathrm{C7}$		4024		XFR	WORK 1, TUTAG	
$3 \mathrm{C8}$		0000		Sto	WORK 1, 0	
3C9		A000		ADD	WORK 1, 0	
3CA		4024		XfR	WORK 1, TUTAG	
3CB		A024	TAG002	ADD	WORK 1, 36	
3 CC		21 CB		Boc	NALCO, TAGOO2	
3 CD		4050		XFR	СомITD	
3CE	return	6370	EXITPTCH	BU	POLLMTIX	

Note 1: ENTER Enables the patch store for succeeding instructions, and RETURN Disables the patch store for succeeding instructions.

3803-2/3420

OSCILLATOR GATING

Crystal oscillators supply the basic timing pulses that drive the clocks and counters throughout the 3803. The Microsecond Frequency used at any specific tim depends on the speed of the tape unit addressed. The depends on the speed of the tape unit addressed
Detection Register gates the correct frequency.

The master clock controls the read clock stepping pulses.

READ/WRITE CLOCKS AND COUNTERS

clock/ COUNTER	ALD	CONTROL (Reset)	INPUT	OUTPUT	$\begin{aligned} & \text { MLM } \\ & \text { PAGE } \end{aligned}$	USE
Data Flow Clock	BS021	Tape Op	10.24 MHz	8 pulses *25-75 *50-100	53-015	Controls all data flow. *Plus 4 delayed pulses.
Write Clock	BW101	Wr Cond	usec Freq	WCO-11. WCO- 15 (PE/NRZI)	53-020	Flip write triggers at WC7. Sample VRC at WC3 and 11 Step Write Counter at WC9 and 11.
Write Counter	BW091 BW101	xouta 4(6250)	WC9, WC11. WC5(PE)	Cntr 0-4	53-020	Gate Write Encoders BW011 - 051.
Byte Counter	BR041	Tape Op Repowered	75-25 Del	Set Byte 1-4	53-025	Gates CRC and Residual bytes.
Group Buffer Counter	CB441	Tape Op	$\begin{aligned} & \text { ROC } 25-75 \\ & \text { or } 0-25 \end{aligned}$	$\begin{aligned} & \text { Binary Counter } \\ & 1,2,4 \\ & \hline \end{aligned}$	53-090	Group Buffer and 6250 Xlator Address Control.
CRIC	BR011	Wr Cyc Latch	75-25	CRIC 1-5	53-035	Channel Buffer Read In.
CROC	BR011	Rd Cyc Latch	75-25	CROC 1-5	53-035	Channel Buffer Read Out.
Frame Counters	CJ021	Counter Resets	$\begin{aligned} & \text { PE Decode } \\ & \text { A6, C7, } 25 \text { - } \\ & 75 \end{aligned}$	Count $=8$	--	Reset Valid Pointer and Hardware Pointer Latches.
Frame Buffer Counter	CH041	Tape Op	25-75	$\begin{aligned} & \text { FB1, 2, } 4 \text { and } \\ & \text { Decode } 0-7 \end{aligned}$	53-095	Controls ECC Group Buffer Address, Error Matrix Switching, Data Correction, and Data Xfer to Channel Buffer.
Frame Buffer Format Counter	CH051	$\begin{aligned} & \text { Tape Op Step Cntr } \\ & \text { Latch } 75-25 \\ & \hline \end{aligned}$	75-25	$\begin{aligned} & \text { Decode A, B, C, } \\ & A B, A B C \end{aligned}$	53-095	Controls Format Clocks and Error Correction.
RIC (9)	CD×11	$\begin{aligned} & \text { Tape Op or Dead } \\ & \text { Track } \end{aligned}$	$\begin{aligned} & 6250 \text { Ones or } \\ & \text { Step RIC } \end{aligned}$	Count 10 Ones or SKB Addr 0 31	53-080	Gates address to write bytes into Skew Buffer, and counts 10 ones (6250) or 10 zeros (PE) during preamble.
ROC (1)	CB411	Tape Op	$\begin{array}{\|l} \hline \begin{array}{l} \text { Step ROC } \\ \text { (RD3) } \end{array} \\ \hline \end{array}$	ROC 1-5	53-080	Gates address to read bytes out of Skew Buffer.
Microprocessor Clocks	$\begin{aligned} & \text { AB011 } \\ & \text { AAO11 } \end{aligned}$	Reset ALU IC	20.48 MHz	$\begin{aligned} & 8 \text { pulses at } 0, \\ & 25,50,75,100, \\ & 125,150,175, \\ & \text { Nsec } \end{aligned}$	52-005	Control microprocessor operations.

3803-2/3420

DATA FLOW CLOCK

Clock Output	ALD	Use
-0-50 Clock Bus YA	$\begin{aligned} & \text { CD151 } \\ & \text { CD25 } \\ & \text { CD351 } \\ & \text { CH061 } \\ & \text { CH081 } \\ & \hline \end{aligned}$	Skew and Master Clock Zone 1 Skew and Master Clock Zone 2 Skew and Master Clock Zone 3 Format Character Clocks Residual Frame Controls
-0-50 Clock Bus YB	$\begin{aligned} & \text { CB4111 } \\ & \text { CE101 } \\ & \text { CN281 } \end{aligned}$	ROC Counter S1 Register NRZI Hi Clip and Read VRC
-0-50 Delayed	BS051	Read Buffer Controls
-0-50 Clock Bus A1 Delayed	BNO51 BR071	DC and Xlate Controls Cycle Request Latches
-25-75 Clock Bus YA	$\begin{aligned} & \text { CD151 } \\ & \text { CD251 } \\ & \text { CH061 } \\ & \text { CH141 } \end{aligned}$	Skew and Master Clock Zone 1 Skew and Master Clock Zone 2 Format Character Clocks Modular 7 Residue Compare Equa
-25-75 Clock Bus YB	$\begin{aligned} & \text { CB411 } \\ & \text { CD351 } \\ & \text { CN281 } \end{aligned}$	ROC Counter Skew and Master Clock Zone 3 NRZI Hi Clip and Read VRC
-25-75 Clock Bus A1 Delayed	BNO71 BR071	Read DC and Xlate Control (7-trk Mode) Cycle Request Latches
-75-25 Delayed	BS051	Read Buffer Controls

WRITE CLOCK AND WRITE COUNTER

Write Counter: Gates bytes to the
write triggers.

WRITE CLOCK

WC Pulse	ALD	Use
0	BW151	Reset Error Sample. With CNTR=0, Gate Write Controls A1, A2, Mark1, Mark2, Format, Initiate Sample, All Ones Branch Condition.
1	BW161 BW151	Reset WRITE TIME GATE. With WRITE CNTR=0, flip CNTR B FF. (Write Group B Branch)
2	BW151	Gate SET 2ND BUFFER.
3	BW161	Sample WR TGR VRC.
5	BW091	PE Diagnostic Mode.
6	BW151 BW161	Set SAMPLE FL if CNTR 4 is On. Flip ODD/EVEN CHAR FF.
7	BW161	Generate WR TGR GATE if not NRzI.
9	BW091	Step WRITE COUNTER 1.
11	BW091 BW101 BW151 BW161 BW16	Step WRITE COUNTER 4 if 1 and 2 are off Restart Clock (6250). Set Write Controls. Sample WR TGR VRC
13	BW161	Set WRITE TIME GATE (PE and NRZI).
15	BW151 BW161 BW101	Gate SAMPLE SET trigger. Generate WRITE TRIGGER GATE Restart Clock (PE and NRZI).

WRITE COUNTER

Wr Cntr	ALD	Use
0	BW151 BW151	With WCO, See WC0 Pulse. Gate END MARK FL. Gate CNTR B FL at WC1.
$1,2,4 A$	BW011-051	Gate Write Encoder.
4	BW151	With WC6 and Not NRZI, Sample BUFFER EMPTY. With WC15 and NRZI, Sample BUFFER EMPTY.

CHANNEL BUFFER CONTROLS

3803-2/3420

XG2100	2735991		
Seq 2 of 2	$\begin{array}{l}\text { Pert Number }\end{array}$	$\begin{array}{l}\text { See EC } \\ \text { History }\end{array}$	$\begin{array}{l}845958 \\ 1 \text { Sep 79 }\end{array}$

©. Copyright International Business Machines Corporation 1976, 1979

OPER-LOGIC CIRCUITS (Cont'd)

3803-2/3420
$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline \text { XG2200 } \\ \text { Seq } 1 \text { of } 2\end{array} \begin{array}{c}\text { 27359992 } \\ \text { Part Number }\end{array} \begin{array}{c}\text { See EC } \\ \text { History }\end{array} \begin{array}{c}845958 \\ \text { 1 Sep 79 }\end{array}\right]$
Copyright International Business Machines Corporation 1976, 1979

WRITE SERVICE CONTROLS

1. The ALTERNATE flip flop controls alternate Service In and Data In cycles.
2. The PERMIT flip latch ensures that multiple tag lines will not be active at the same time
3. Buffer Write Cycle or Req controls Service Different and Buffer.

3803-2/3420

$\begin{array}{l}\text { XG2200 } \\ \text { Seq } 2 \text { of } 2\end{array}$	$\begin{array}{l}\text { 2735 } \\ \text { Part Number }\end{array}$	$\begin{array}{l}\text { See EC } \\ \text { History }\end{array}$	$\begin{array}{l}845958 \\ 1 \text { Sep 79 }\end{array}$

53-040

OPER-LOGIC CIRCUITS (Cont'd)
 WRITE CHECK REGISTER

 POINTER REGISTERS

 POINTER REGISTERS}

Objective:
This register is a temporary buffer for the channel buffer write byte from either interface bus out or read data track.

Objective:
An ORC byte character is generated for each ECC group.

Objective:
The POINTER register accumulates the pointers for one group of 6250 data. These pointers are used for correction as required.

 crc generators

3803-2/3420

| XG2400 |
| :--- | :--- | :--- | :--- |
| Seq 1 of 2 | \(\begin{gathered}2735994

Part Number\end{gathered} $$
\begin{aligned} & \text { See EC } \\
& \text { History }\end{aligned}
$$ $$
\begin{gathered}845958 \\
\text { 1 Sep 79 }\end{gathered}
$$\)

Seq 1 of 2	Parar Number	History	1 Sep 79
© Copyright			

30

CYCLIC REDUNDANCY CHECK (CRC)

 GENERATIONTwo cyclic redundancy check (CRC) errors set sense bits. A CRC error sets sense byte 3 , bit 3 and a CRC III error sets sense byte 9 , bit 3 . See $50-000,50-001$, and 50-002 for relationships to data flow.

CRC GENERATION DURING 9-TRACK WRITE

 OPERATIONSWrite data from the channel is shifted into the CRC A register ($50-000$), byte by byte, as the channel buffer is loaded. As the data is being read out of the channe buffer, the output is shifted into the CRC B register Accumulas demanded by the write section. Accumulated contents of CRC A and CRC B registers (53-066) Dropping or picking up a bit empties tranfering data through the chan buftr in mismatch and sets P COMPARE ERROR (byte 3 bit 7) mismatch a dit 9 and sense byte 9 , bit 2
a. 6250 bpi Mode

The content of the CRC A register is written on tape as the CRC III byte. The CRC III byte is also shifted into the Write CRC generator (50-001) with data and other bytes. Content of the WRITE CRC
b. PE Mode

CRC III is generated during PE operations for write checking, but is not written on tape.
c. 9-Track NRZI Mode

Only the accumulated data bytes generate the CRC byte.

CRC USE DURING READ BACK CHECK OF

 WRITE OPERATIONSa. 6250 bpi Mode

Data previously written is read back through the normal read data path and the Check CRC Byte is sompared with CRC B ; a mismatch sets CRC III error and sense byte 9 , bit 3 During tead back check,
During the read back check, all data bytes and other bytes are shifted in the READ CRC register. The result should be a match pattern in the READ CRC register. Any other pattern sets CRC error only.
b. PE/9-Track NRZI Modes

Only data bytes are read back and stored in CRC C register ($50-000$). Contents of CRC C register are compared with CRC B (53-066). A mismatch sets CRC III error and sense byte 9 , bit 3 .
c. 9-Track NRZI Mode

All data bytes are read back and combined with the CRC byte in the READ CRC register (53-065). The accumulated bits should result in a match pattern. Any other pattern sets CRC Error.

CRC GENERATION DURING 9-TRACK READ FORWARD OPERATIONS

CRC generation during a read forward operation is similar to CRC generation during the read back check of a write operation. Data bytes read from tape go to the channel buffer ($50-000$) and also into CRC A the channel buffer ($50-000$) and also into CRC A register. CHANNEL BUFFER FULL initiates data transfer register. Accumulated contents of CRC A and CRC B registers are compared when the channel buffer empties ($53-066$). Dropping or picking up a bit or bits in transferring data through the channel buffer results in a mismatch and sets P COMPARE ERROR (byte 3 bit 7) and sense byte 9, bit 2.

6250 bpi Mode:
CRC generation and use during 6250 read
operations is identical to CRC use during read back checking.

CRC GENERATION DURING 9-TRACK READ BACKWARD OPERATIONS

CRC generation detects the loss or gain of bits transferred through the channel buffer during both read backward and read forward operations.

6250 bpi Mode
Read CRC error determinations are identical in 6250 read backward and read back checking operations except that bytes are shifted into registers in a reverse order.
The CRC C register accumulates combined data bytes and the check CRC bytes. With no read errors, the result should be a match pattern in the CRC C register Any other pattern sets CRC III error and sense byte 9 , bit 3.

7-Track NRZI operations do not use a CRC checking procedure.

WRITE TRIGGERS

WRITE TRIGGER OPERATION

Data bytes from the CHANNEL BUS OUT consist of binary ones and binary zeros. The tape control and tape unit convert these binary bits to flux changes ape. The 6250 bpi and NRZI methods of writing istinguish ones from zeros by a flux change for a one and no flux change for a zero.
hase encoding (PE) distinguishes ones from zeros by direction of flux change. A flux change in one direction indicates a one bit and in the opposite direction indicates a zero bit.
Write triggers produce magnetic flux changes on tape in one direction when they are flipped on and in the opposite direction when they are flipped off.

6250 BPI WRITE TRIGGER OPERATION

250 bpi method of writing on tape flips the WRITE TRIGGERS at Write Clock 7 to write one bits on tape. The Write Clock runs to Write Clock 11 and then starts over.

PE WRITE TRIGGER OPERATION

In PE operation, the write clock runs from 0 through 15 for each cycle

Each byte is set into the write encoder. For each bit of the byte that is a one, the corresponding write trigge is "set up" at WC7. All write triggers are flipped at WC15 to write a byte on tape with flux reversals in one direction for one bits and in the opposite direction for zero bits.

NRZI WRITE TRIGGER OPERATION

For a NRZI write operation, each byte is set into the write encoder. For each one-bit of the byte, the corresponding write trigger is flipped to write a flux reversal on tape. For zero-bits of each byte, the write trigger is not flipped, and thus, no flux reversal is written.

6250 bpi Write Waveform
6250 Write Clock
Bit Pattern On Tape
6250 Write Waveform

NRZI Write Waveform
NRZI Write Clock
NRZI Write Waveform

3803-2/3420

XG252500 Seq 2 of 2 2	2735995 Part Number	See EC History	845958 1 Sep 79				

 OPER-DEAD TRACK REGISTER

DEAD TRACK REGISTER

| XG2600 | |
| :--- | :--- | :--- | :--- |
| Seq 1 of 2 | 2735996 |
| Part Number | | \(\begin{aligned} \& See EC

\& History\end{aligned}\)

RIC-ROC

The read section contains nine 32 -position Read In
Counters (RICs), one for each track, and one
32-position Read Out Counter (ROC).
A RIC specifies which skew buffer position receives the next one or zero bit for a data byte read from tape. When a bit is detected, it is placed in the skew buffer, and the RIC for that track is stepped to the next position.
The ROC selects the skew buffer position from which a byte is transferred to the group buffer.
Initially, all RICs and ROC are reset. As each bit of the first data byte enters skew buffer position 0 , the corresponding RIC is stepped from 0 to 1 . When none of the RICs are equal to ROC, RIC-ROC NO-COMPARE activated, indicating that all bits of the byte have entered the skew buffer. RIC-ROC NO-COMPARE gates outputs of the ROC counter to the ROC image register and steps the Read Ready Counter, which times the read out of the skew buffer.
The operation continues in this manner until GROUP BUFFER FULL or IBG becomes active to stop the read out.

803-2/3420

\square

RIC-ROC

[^0]53-081

SKEW DETECTION

3803-2/3420

GROUP BUFFER COUNTER

Objectives

1. Limits skew buffer read out to one 6250 group of data (5 bytes per group).
2. Controls skew buffer read out in PE Mode after the first five bytes are read out to give one-byte-in and one-byte-out control.
3. Controls translator operation during a group buffer read out to convert five parallel 6250 bytes into four serial data bytes.
4. Controls translator operation to detect 6250 characters and to decode format marks.
5. Group buffer counter counts to five and conditions translator for read out to ECC group buffer. If ECC group buffer is full, counter stepping is inhibited.

3803-2/3420

READ CYCLE CONTROLS

Clock is initialized with 00-07 only when TAPE OP becomes active.
Format Groups and PE mode use " A " cycles only

3803-2/3420

Seq 2 of 2	Part Number	History	1 Sep 79	

Copyright Internamonal Business Machines Corporation 1976,

initial selection of tape unit

DESCRIPTION

The initial selection sequence is the communication between the channel and tape control that initiates an operation.
During initial selection, the tape control obtains initial status information that indicates the availability of the status information that indicates the availability of the
selected tape unit. If the tape unit response indicates it is available, the tape control activates lines that tell the tape unit to perform a specific command. In response to the command, the tape unit furnishes additional status information that indicates its ability to perform the specified command. If the tape unit is capable of performing the command, the tape control activates MOVE to the tape unit.
The communication between the tape control and tape unit is over the device interface lines.

DEVICE INTERFACE LINES

The device interface is composed of the following lines that perform the listed functions:
BUS OUT (9 lines): Transmits commands, amplitude sensing levels, write data, and sense byte identification to the tape unit.
MOVE tag: Initiates tape motion
COMMAND tag: In conjunction with BUS OUT, initiates the execution of a command.
CONTROL tag: In conjunction with BUS OUT, initiates the execution of a control command.
CLOCK/METER OUT: Causes the tape unit usage meter to run.
BUS IN (9 lines): Transmits status, sense information, and read data to the tape control.
TACHOMETER IN/BUSY IN: When no tag is active,
this line indicates that the tape unit is busy. When any OUT tag is active, this line carries the capstan tachometer pulses to the tape control.

INTERRUPT: This line signals the tape control that one of the following unusual conditions has occurred in the tape unit.

- Load Check
- Loss of mechanical ready during a rewind
- Transition from not ready to ready status occurred
- Transition from ready to not ready status occurred while the MOVE tag was active
- BOT was sensed during a read backward operation

BUS OUT Lines

BUS OUT Bit	COMMAND Tag Active	CoNTROL Tag Active
0	Backward read	Rewind Unload
1	Forward read	Not used
2	Diagnostic (LWR)	(Mod 4. 6, 8 only) Diagnostic (set high sense)
3	Pulse	NRZ1 or 6250 bpi mode
4	Write	(Mod 4. 6. 8 only) Diagnostic (set low sense)
5	Set Extend Stop (Mod $4,6,8$ only)	Data security erase
6	Reset error latches	(Mod 4, 6, 8 only) Erase Status
7	Not used	Rewind

BUS IN Lines

BUS IN Bit	COMMAND STATUS Byte	CONTROL STATUS Byte
0	Backward	Rewind Unload
1	Gap control	Not used
2	Diagnostic mode	(Mod 4, 6, 8 only) High Sense ON
3	(Mod 4, 6, 8 only) Opposite direction	NRZ1 or 6250 bpi mode
4	write status	(Mode 4, 6, 8 only) Low sense ON
5	Extendel Ston (Mod 4, 6 6.8 only)	Erase
6	Unit Check	(Mod 4, 6, 8 only) Erase status ON
7	(Mod 4, 6, 8 only) Positioning	Rewind

C $\underset{\text { OPER-SELECTION AND PRIORITY }}{C}$ C

TAPE CONTROL AND TAPE UNIT

 SELECTIONA tape control and tape unit are selected by placing the combined tape control and tape unit address on CHANNEL BUS OUT. The address on CHANNEL BUS OUT is compared with the address assigned to the tape control. (To assign a tape control address, see 90-110.)
If the address on CHANNEL BUS OUT matches the internally generated tape control address, ADDRESS internally generated tape control address, ADDRESS gated to the TU SELECT register.
The tape unit addresses are determined by the tailgate position to which the tape unit is cabled.

TAPE CONTROL AND TAPE UNIT

 ADDRESSINGThe combined tape control and tape unit address is The combined tape control and tape unit address is 16 address feature, bits 0 through 4 are used for the tape control address, and bits 5 through 7 are used for the tape unit address. In subsystems with the 16 address feature, bits 0 through 3 are used for the tape control address, bits 4 through 7 are used for the tape unit address

TAPE UNIT SELECTION PRIORITY

On subsystems with a Device Switching feature, more than one tape control may try to access the same tape unit at the same time. To handle this situation, the switching logic has card jumpers that establish priorities for each tape control in the subsystem. Tape controls with device switching features are shipped with device selection priorities already plugged. It should not be necessary to change these priorities. See Section 90.

Tape Unit Selection

1 A four bit address on the B Bus is set in the TAPE UNIT ADDRESS SELECT register.
2. The inbound and outbound address decoders then decode ROS2's TUTAG BIT 4 and the Address Select lines.
33 One of eight select lines is active to the crosspoint switches to determine which tape unit will be used.
(D) On machines with the Two-Channel Switch feature installed, the TUADR BIT 2 SELECT B line and the BUSY/TACH line generate METERING IN to channel B. The NOT TUADR BIT 2 SELECT B line and the BUSY/TACH line generate METERING IN to channel A .
(E) This circuit interrogates a tape unit's status without selecting the tape unit.

CHANNEL PRIORITY CIRCUITS

- 'Select out' priority determines the order in which tape controls are selected if more than one tape control requires service at the same time.
- A tape control's 'select out' priority is determined by jumpers in the tape control and by the tape control's location on the I/O interface.
- The select signal leaves channel on the SELECT OUT line and returns to channel on the SELECT IN line if it is not 'trapped by a tape control requiring service.
- A tape control not requiring service propagates the select signal to the next lower priority tape control.
- Jumpers in each tape control determine whether the tape control will respond to the SELECT OUT line ('select out priority high') or the SELECT IN line ('select out priority low').
- All units shipped from the factory are jumpered for high 'select out' priority. If it is necessary to change the priority, see 90-120
- Device Selection priority circuits are present in tape subsystems where a tape unit is accessed by more than one tape control. See 54-010. These circuits act as 'tie breakers' when two or more tape controls are trying to select a tape unit at the same time.
- Additional jumpers in the switching logic of each 'host' tape control establish device selection priorities (1, 2, 3, or 4) for each tape control in a tape switching configuration.

XG3000 Seq 1 of 2	2736000	See EC History	$\begin{aligned} & 845958 \\ & \hline 1 \text { Sep } 79 \end{aligned}$				

3803-2/3420

1 COCC
 OPER-LWR LOGIC

LOOP WRITE TO READ (LWR)

Loop write to read allows checking tape control and tape unit data and control paths without moving tape The LWR (8B) command can be initiated from the processing unit or the CE panel. An LWR performed from the processing unit uses the same data path normal write operation. The following sense byte
errors cannot be detected
Data Checks:
Early Begin Read Back check Early Ending Read Back check Slow Begin Read Back check Slow End Read Back check Velocity During Write check
Equipment Checks:
No Block on Record Read Back check No Block Detected on WTM
Velocity check
Tach Start failure
A loop write to read operation is initiated from the CE panel by entering the command code (8B), and it receives its data from one of two locations. A count of service responses generates a ripple pattern, which is selected by putting the Command Control switch at the Ripple position. The fixed data comes from the Write Data switches when the Command Control switch is in the Write Data position. A CE panel LWR writes continuously until it is stopped by operating the Reset switch, except when the LWR with gaps jumper is installed (A1S2G08 to ground).

LWR TAPE UNIT OPERATION

The tape control activates SET DIAGNOSTIC and the COMMAND tag. The DIAGNOSTIC MODE latch is set in the tape unit (FT104). READ/WRITE GATE (FT104) ANDs with DIAGNOSTIC MODE to activate LOOP SELECT (FT147). The tape control activates the MOVE tag and drops the COMMAND tag, then the diagnostic OOP SELECT octive mates BUS OUT data back to tap OOOP SELECT active gates BUS lin back to tap control via the tape unit response lines.

3803-2/3420

COCOCOC

BASIC RECORDING TECHNIQUE

DESCRIPTION

Three types of recording techniques are used in the IBM 3803-2/3420.

- Phase encoded (PE)
- Non-return to zero IBM (NRZI)
- 6250 bpi group coded recording (GCR)

Data bytes contain a combination of one and zero bits to represent binary ones and zeros. The PE tape system uses a flux change from minus to plus to system uses a flux change from minus to plus to
represent a one bit, and a flux change from plus to minus to represent a zero bit. (The NRZI system uses a flux change in either direction to represent a one bit and lack of a flux change to represent a zero bit.) Flux changes on tape are created by changing the direction of current through the write heads by the write triggers.

PHASE ENCODED (PE)

(See Figure 1)

- At write clock (WC) 15, flip all write triggers to write ones or zeros on tape.
- To write a PE one bit, the write register is reset. Set up write trigger by setting it at WC 7 if not already on from previous byte so that write trigger can be reset at WC 15 (complemented).
- To write a PE zero bit, reset the write trigger a WC 7 so that WC 15 turns it on.

NRZI

(See Figure 2)

Flip write trigger at WC 15 to write one bits only. Do not flip write trigger to indicate a zero bit.

6250 BPI

(See 55-008)

MIODE SET 1(SEVEN-TRACK NRZI

 OPERATION)Mode set 1 commands sent to seven-track tape controls establish tape unit operating mode for succeeding seven-track NRZI operation. Bits 0 and 1 control density ($556 / 800$ bpi); and bits 2,3 , and 4
control parity (odd or even), data converter (on or off) and translator (on or off) circuits in the 3803.
A mode set 1 command affects operation of all seven-track tape units attached to the 3803 . Unless reset, the 3803 retains its mode setting until it receives another mode set 1 command.
Mode set 1 commands sent to a 3803 without the seven-track features are treated as no-op commands, except that sense data bytes are reset (no-op reset initial selection 200 bri mode set 1 commands (hex codes $13,23,2 B$, and 33) default to 555 bpi.

MODE SET 2 (NINE-TRACK PE/NRZI OPERATION)

Mode set 2 commands sent to PE/NRZI dual density tape controls set operating mode (1600 bpi PE or 800 bpi NRZI) for succeeding write or write tape mark 3803 without the dual density feature are treated as 3803 without the dual density feature are treated as reset (no-op reset sense). Channel end and device end are set during initial selection.

diAgnostic mode set

A diagnostic mode set command causes an artifical signal loss condition that checks read and write error detection circuits.

- In PE mode, whenever write data contains successive one bits in any track, writing in that track is inhibited until the last one-bit is reached.
- In nine-track NRZI mode, no bits are written in track P.
- In seven-track NRZI mode, no bits are written in track C.
A diagnostic mode set command affects only write operations for the command in which it is issued Channel end and device end are set during initial selection.
Note: For additional information, see 53-070

Figure 1. Bit Cell and PE Write Waveform

Figure 2. Bit Cell and NRZI Write Waveform

Bit pattern on tape
Flux reversal only
for bit 1 at WC 15
for bi
time.

3803-2/3420

$\begin{array}{\|c\|c\|c\|} \hline X G 3107 \end{array}$	4169678	See EC History	$\begin{aligned} & 845958 \\ & 1 \text { Sep } 79 \end{aligned}$					

GROUP CODED RECORDING (6250 BPI)

Group coded recording (GCR) offers many advantages over previously used recording methods. This recording offers higher reliability even with existing tape libraries. Greatly expanded error correction rates and lower access times give higher throughput reduced channel time resulting in higher systemput, performance. Data is compacted on tape, reduci rewind times, shortening the length of tape required for rewa data, shacing the number of reels, reducing a daunts and dismounts, and improving overall tape handling.
The data is recorded in blocks, or groups of characters A block of data may be a single character or byte, or number of bytes as determined by the programming system used. The significant improvements in the GCR mode are

1. The information data is recorded at an effective density of 6250 bytes per inch (bpi) of tape.
2. The separation between blocks (IBG) is 0.3 inches $(7,6 \mathrm{~mm})$.
3. Simultaneous errors in any two of the nine tracks are corrected automatically.

GCR BLOCK

A GCR block consists of a preamble, data, and a postamble (see 55-009). The preamble and postamble are each 80 bytes long and serve to synchronize the read detection circuits in a manner similar to previous 1600 bpi subsystems. The data portion of the block consists of the following

1. Data to be written by the 6250 bpi feature is continuously collected in seven character groups (9 bits in each character) and is held in the control unit 6250 bpi feature circuitry. (see 50-000 through 50-002 for second level logic details.) An error correction character is generated and then added o the seven characters to make an eight character data group. This data group is then divided into two each of the 9 tracks are encoded into five bits. (see Figure 1a through 1e.) This matrix of bits, 9×10, is recorded on the tape (see Figure 3a on 55-010).

Reading of the tape reverses the process, with error correction occuring where needed. There are as many of these 10 bit storage groups as there are multiples of seven channel data bytes in the record block.
2. The remainder, or last group of the channel data bytes (zero to six bytes) is encoded with whatever pad bytes are necessary, an auxilliary check pad bytes are necessary, an auxilliary check
character, and the error correction code (ECC generated from these into a 10 -byte residual group. This residual data group is created for every block recorded even though no residual bytes are found in the record. The auxiliary check character verifies read and write operations.
3. End of data (EOD) is signaled by a unique subgroup of five bytes immediately preceding the residual group.
4. Following the residual group, a 8 -byte cyclic redundancy check (CRC) is encoded into a ten bit group. This group, with the auxiliary check character, ensures the integrity of the read and write operation, including verifying any error corrections that may have taken place.
5. Interleaved into the recorded block, every 158 storage groups, is a resync burst. This burst allows the tape control to put into full operation any track(s) that have lost synchronization or were dead tracking for greater throughput.

Figure 1a.

Figure 1b.

Note: There are 1106 bytes of channel input data in each 1580 (6250 bpi) group recorded data block written on tape.

COCCCCCl basic recording technioue (Cont'd)

GROUP CODED RECORDING 6250 BPI

GROUP CODED RECORDING 6250 BPI

(Cont'd)
6250 bpi does not relate to actual writing density on tape, but to effective data density. Actual density (9042 bpi) is greater due to the formatting and encoding. bpi) is greater due to the formatting and encoding.
This formatting and encoding is transparent to the user The formatting and encoding method allows reliable error correction for any two tracks simultaneously in error. Also, tracks are not immediately dequeued or dead tracks assigned when an error occurs as they were in the past. It is conceivable that a block could have errors in all nine tracks and appear to the user to be read error free as long as only two tracks have errors at any given instant.
Figure 3a. Encoded Data Group

Physical Tracks	DATA GROUP		STORAGE GROUP		
	A	B	A	B	
	DDDD	DDDD	GGGGG	GGGGG	
2	DDDD	DDDD	GGGGG	GGGGG	
3	DDDD	DDDD	GGGGG	GGGGG	
4	DDDD	DDDD	GGGGG	GGGGG	
5	DDDD	DDDD	GGGGG	GGGGG	
6	DDDD	DDDD	GGGGG	GGGGG	
7	DDDD	DDDD	GGGGG	GGGGG	
8	DDDD	DDDD	GGGGG	GGGGG	
9	DDDD	DDDD	GGGGG	GGGGG	
	1234	5678	12345	678910	
Group Positions					

Figure 3b. How 4 Bit (Address) Becomes 5 Data

Legend 2. Data Symbols

Symbol	Data Represented
B	CRC or Pad Characters
C	Cyclic Redundancy Check Characters
D	Channel Data Characters
E	ECC Characters
G	Encoded Group Recorded Bits
L	Last Character
N	Auxiliary CRC
X	Residual Character

[^1]
COMMON START I/O (SIO) ROUTINE

This section introduces the microprogram controls used to read and write a record from load point. Addresses noted within the charts are key checkpoint addresses which perform a major function.
These charts provide major syncronization points within a routine, and lay out a path to check the path through the microcode. The common Start 1/O routine is followed by the write operation, then the read operation from load point. The paths shown are for single, unchained operations with no exceptional conditions.
Using the compare ROS stop sync on ROS address of the CE panel (see sequence 10 on page 12-011), synchronization can be developed at various points within the operation being performed.

Remember that many routines are commonly used many times and will provide unstable synchronization points.
Some knowledge of basic microprogram concepts is assumed. XOUTA and XOUTB registers as well as the status registers A, B, C, and D provide response back and forth between the ALUs. ALU1 basically controls the processing unit channel, while ALU2 controls the device interface. Both ALUs control various portions of the data flow.
ALU2 is a slave to ALU1, and is controlled by a transfer command and XOUTB branch index byte being passed from ALU1 to ALU2. Response from ALU2 is by way of ALU2 status registers.

3803-2/3420

$3803-2 / 3420$	
XG3120	4169

1 C C C C C 1

BRANCH TO WRITE FROM LOAD POINT

Write from load point is performed by controlling drive motion and controls with ALU2. ALU2 also sets the data flow control to write the single 1 or P track identification (ID) at load point.
ALU1 initiates the first data Service-In cycle, then relinquishes data transfer to the hardware. ALU1 also controls the write triggers for all control characters within the preamble, postamble, and resync burst

Once the data portion of the write command is entered ALU2 monitors velocity during the tach period transitions to test for velocity change during write.
The write operation is divided into the following steps

1. Trigger ALU2 to issue a sense reset to the drive ALU1 will monitor ALU2 Status D, which indicates that ALU2 is finished with sense reset
2. Fetch TU sense bytes 0 and 1 and test for drive status
3. Raise Service In for one byte of data before turning control of the channel over to the data flow section.
4. ALU1 again allows ALU2 to perform the write operation.
5. Set Erase in the drive (not Write Status yet) and erase backward, then forward. (Backward 150 tachs, forward 140 tachs.)
6. Test for Tach Start fail or Velocity Error, then write 1-track ID burst.
7. Write self-adjusting gain control (SAGC) burst with the inverse Tape Mark (no zone 1) attached to the end.
8. Set SAGC circuits in the drive to perform read back check.
9. Write record preamble consisting of the following characters: 10101, 01111, seventy 1s, 00111
10. The hardware data flow section now takes over the writing of data while ALU2 monitors the capstan tach velocity in the drive
11. Every 1106 channel bytes (158 storage groups on tape), ALU1 intersperses a resync burst consisting of: 00111, 11111, 11111, 11100
12. When data is complete, the hardware writes an all ones character.
13. ALU1 checks for an all ones character indicating the end of data. This allows for writing of the residual and CRC frames.
14. ALU1 then writes the postamble consisting of the following characters: 11100, seventy $1 \mathrm{~s}, 11110$, 10101
15. ALU2 waits for IBG, then tests for errors. ALU2 finishes by setting Status D and trapping to 000 .

WRITE FROM LOAD POINT

803-2/3420

XG33124	
Sea 1 of 2	4169680
Part Number	

845958
1

Copyright International Business Machines Corporation 1976, 1979

WRITE FROM LOAD POINT

3803-2/3420

 BRANCH TO WRITE FROM LOAD POINT (Cont'd)

WRITE FROM LOAD POINT
alui

ALU2

ALU1
ALU1 still looning - until ALU2 sets
I until ALU
_

ALU

3803-2/3420

3803-2/3420

bRANCH TO WRITE FROM LOAD POINT (Cont'd)

WRITE FROM LOAD POINT

3803-2/3420

XG3132	
Sea 1 of 2	$\begin{array}{l}\text { Part Number }\end{array}$

| See ECC |
| :--- | :--- |
| History |${ }^{845958}$

WRITE FROM LOAD POINT

[^2]C O O branch to write from load point (Contd)

WRITE FROM LOAD POINT


```
{
```


3803-2/3420

$\left.$| XG3136 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Sea 1 of 2 | \(\begin{aligned} \& 4169683

\& Part Number\end{aligned}\left|$$
\begin{array}{c}\text { See EC } \\
\text { History }\end{array}
$$\right| $$
\begin{aligned} & 845958 \\
& 1 \text { Sep } 79\end{aligned}
$$ \right\rvert\,\)

WRITE FROM LOAD POINT

3803-2/3420

C C C C O C

BRANCH TO READ FROM LOAD POINT

Read from load point is basically performed by ALU2 and the hardware data flow controls.
Once ALU1 has triggered ALU2 to perform sense rese to the drive, and again to initiate the read from load oint, ALU1 is basically finished. ALU1 tests to be sure oop until ALU2 finishes and sets Status D.

The read forward operation from load point steps follow:

1. ALU1 triggers ALU2 to issue a sense reset to the drive.
2. ALU1 triggers ALU2 to begin the read operation. If Status D from ALU2 is sensed before the first service cycle, an error is signalled.
3. ALU2 tests the status of the drive and checks for correct velocity.
4. Move 3 in . $(76,2 \mathrm{~mm})$ of tape, then test for a 1 -track envelope indicating a 6250 bpi tape
5. Count through part of SAGC, then initiate read SAGC circuits in the drive.
6. Clock through 550 tachs, then check the Inverse Tape Mark.
7. When IBG is reached, fetch two bytes of drive sense and test status to this point.
8. Set read condition after gap control comes up again, and wait for the Mark 1 character preceding the data.
9. The hardware data flow now takes over until the end of data is sensed
10. Test for errors. ALU2 sets Status D when finished altering ALU1.
11. ALU1 compares the modulo count then branches to the status handler.

READ FROM LOAD POINT

READ FROM LOAD POINT

3803-2/3420
$\left.\left.\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline \text { XG3140 } \\ \text { Seq 2 of 2 } 2\end{array} \begin{array}{c}\text { 4169684 } \\ \text { Part Number }\end{array} \right\rvert\, \begin{array}{c}\text { See EC } \\ \text { History }\end{array} \begin{array}{c}845958 \\ 1 \text { Sep 79 }\end{array}\right]$

READ FROM LOAD POINT

\square

READ FROM LOAD POINT

3803-2/3420

| XG3200 |
| :--- | :--- | :--- | :--- |
| Sea 1 of 2 | \(\begin{array}{ll}2736002

Part Number\end{array} $$
\begin{aligned} & \text { See EC } \\
& \text { History }\end{aligned}
$$ $$
\begin{gathered}845958 \\
1 \text { Sep 79 }\end{gathered}
$$\)

WRITE TRANSLATOR (CARD A1E2)

TRANSLATOR

Some tape subsystems use a six-bit BCD code. Each character of the six-bit code can be translated to an equivalent eight-bit character for processing by 9-track tape subsystems. A translator in the tape control and translates six-bit code to eight-bit code while
dinglas six-bit code to eight-bit code while XOUTA bits 2 and 4 are on at the rise of TAPE OP and Microprocessor 2 Stat bits 0 and 3 are

On 7-track write operations with the translator off, the tape control discards the two high-order bit positions (BUS OUT bits 0 and 1) of each byte from channel. Only the six low order data bits (plus a parity bit) are ransferred to the tape unit.
On 7-track read operations with the translator off, the ape control inserts zeros in the two high order bit positions (BUS \mathbb{N} bits 0 and 1) of each byte when transferring it to channel.

ECBDIC AND BCD CODES

ebcolc - 8 Bit Code

$\uparrow_{\text {Note }} 2$

BCD - 6 Bit Code

Notes
[1] The graphics in these charts may not be identical to those printed by the printer or printer-keyboar The graphics are intended as references for translating bit codes on a read or write operation
[2] The write translator accepts the complete EBCDIC code and translates the bits to the BCD code. However, the read translator translates the BCD code only to the bits outlined.
[3] When operating in the even-parity mode, the EBCDIC blank (bl) is translated to a BCD substitute blank (bl), and the BCD substitute blank is translated to an EBCDIC blank (01000000). The odd parity blank's bit code is 000000 .

READ TRANSLATOR (CARD A1E1)

Read Translator Data Flow
ANDs and ORs translate bits 0-7 to determine EBCDIC
code.

WRITE DATA CONVERTER (CARD A1E2)

The data converter is used for 7-track write and read forward operations only.
The data converter is disabled during read backward operations, but is left on for the next write or read forward operation.
The data converter is turned on and off by a mode set command. When Microprocessor 1 XOUTA BIT 2 is on command. When Microprocessor 1 XOUTA BIT 2 is at the rise of TAPE OP (MP2, Status 0), the data converter is off. When Microprocessor 1 XOUTA BIT 2
is off at the rise of TAPE OP (MP2 Status 0) the data is off at the rise of TAPE OP (MP2, Status 0), the data converter is on.
During a write operation, three 8-bit EBCDIC bytes from channel are converted to four 6-bit BCD characters for writing on tape. If the byte count is not a multiple of three, any remaining bits of the last 6-bit character are set to zero.

DATA CONVERT WRITE TIMING

3803-2/3420

C C C C C

OPER-LOGIC CIRCUITS (Cont'd)
READ DATA CONVERTER
During a read operation, four 6 -bit characters (plus
parity) from tape are converted to three 8 -bit bytes
(plus parity) for transfer to channel. If the character
count of the block is not a multiple of four, any
remaining positions in the last byte having bits are
padded with zeros, and a data convert check is
indicated.

303-2/3420

XG3400	
Sea 1 of 2	2736004
Part Number	

Copright International Business Machines Corporation 1976. 1979

3803-2/3420

OPER-S/360-S/370 SWITCHING (DATA IN HANDLING)

OBJECTIVES

1. The switching circuit enables a 3803-2 to be attached to either a System/360 or a System/370.
2. Selection is accomplished by plugging cards to reflect system type on which the tape subsystem is installed. See installation, Page $90-130$ or AA010 Sheet 2.
3. When plugged for $\mathrm{S} / 360$, a Service $\mathrm{In} /$ Service Out sequence is used.
4. When plugged for $S / 370$, a Service $\ln /$ Servic Out/Data In/Data Out sequence is used.

A 3803-2 tape control with a two-channel switch (TCS) 1] operates with two channel interfaces. All 3803-2 operations can be performed on either channe interface. Channels attached to the TCS interfaces can interface. Channels attached to the TCS interfac systems, allowing tape units on the tape control with the TCS feature to be shared by two channels on a single system, or by two systems. In addition to all normal operations, a tape control with this feature can execute Reserve and Release commands for program control of interface switching. The large block in the center of the diagram and the unshaded blocks represent control circuits for a standard tape control. The shaded blocks represent additional logical functions installed on the tape control for the Two-Channel switch.

Two Systems Sharing a Tape Control
Through the Use of a Two Channel
Switch

Channel interface lines going into or out of the tape control pass through interface switch circuits. The crcuits consist of gated drivers that connect the tape (Aonnect the tape

Tie-breaker logic (XM101) controls the interface switch lines so only one channel operates the subsystem, preventing one channel from interfering with the operation of the other. When neither interface is reserved or operating, the in in a neutral state, and either interface can initiate an Initial Selection sequence

Address decoders monitor the bus out lines of each interface. If the tape control address appears on the bus out lines along with an ADDRESS OUT on the decoders send a signal to the interface switch controls. When no interfering conditions exist the controls connect that interface to the tape control. If the tap control is reserved or operating with the other interface, a 'short busy' sequence is sent to the interface attempting to break in.
When the tape control becomes available, a Control Unit End status byte is sent to the channel that previously received the BUSY signal.

3803-2/3420 | XG3500 | |
| :--- | :--- |
| Sea 2 of 2 | 2736005 |
| Part Number | |

OPER-TWO-CHANNEL SWITCH (TCS) (Cont'd)

The Sense/Reserve command (F4) locks the wo-channel switching circuits to one interface, so the other interface does not have access to the tape ontrol. The Sense/Release command (D4) resets the reserved condition and allows commands from e

When a tape unit completes an operation, a Device End ignal is sent to the channel. A tape control with the Two-Channel switch uses the second Device End LSR to ensure that the Device End is returned to the channel that initiated the operation. See Device End on 58-012.

RESETS

The Reset circuits of the two-channel switch are interlocked so a Reset from one channel cannot disrupt operations on the other channel. A Reset can be accepted only from the operating channel. Resets are urther conditioned to prevent a channel from destroying information needed by the other channel.

INTERFACE SWITCH CONTROL

A tape control with a Two-Channel switch monitors addresses on two channel interfaces. When the tape control receives its own address, it tries to start an operation with the interface attempting selection. If the tape control is neither busy nor reserved, the
OPERATIONAL IN latch for that interface is activated. If the tape control is busy or reserved to interface A, interface B ADDRESS OUT will be answered with a Hhic BUS SHORT BUSY will rece. The CU END when the tape control is available If the channel stack tatus containing UNIT CHECK or UNIT EXCEPTION, the tape control will remain connected to that interface until status is accepted. If both interfaces attempt election simultaneously, a tie-breaker circuit resolves the selection. See 58-030.
The purpose of interface switching circuits is to connect he tape control 'common' circuits to whichever interface is operating. To operate with an interface output from the OPERATIONAL IN latch (FC141) gates OPERATIONAL IN is gated by -SWITCHED TO CHANNEL A (or B) ($58-030$).

The two-channel switch microprogram is entered by branching from Initial Selection (or Ending Sequence) to ensure that data is sent to or from the proper interface.

RESERVE/RELEASE OPERATION

- A Sense/Reserve command locks the tape control to an interface until a Sense/Release command or a Reset is received from that interface.
- A Sense/Release command resets the RESERVE flag to allow operation on either interface.
A Sense/Reserve or Sense/Release command, while chained, results in Command Reject.
After Initial Selection, operation of Sense/Reserve and Sense/Release commands are identical to a Sense command.
The Sense/Reserve and Sense/Release commands enable the tape control to remain locked to one interface. Executing a Sense/Reserve command places a tape control under exclusive control of one channel until that channel issues a Sense/Release command. A Sense/Reserve command from channel A or B activate e RESERVE flag for A or B. A Sense/Release command deactivates the RESERVE flag
Modifier bits, in positions $0,1,2$, and 3 of a Sense command byte identify the reserve and release perations. After Initial Selection, modifier bit 2 determines whether the command is a Reserve or a Release. If bit 2 is on, (command code F4) Reserve is indicated. If bit 2 is off, (command code D4) Release is indicated.

SENSE/RESERVE COMMAND [F4]

A Sense/Reserve command locks the tape control to the interface of whichever channel initiated the command.
During Command Out of a Sense/Reserve command the current command is masked for the F4 configuration. If an (F4) command is recognized, the microprogram checks for chaining (SETRESV). LAGS1 (SR 10) to red CURFLAG (20) is set haining is indicated Command Reject is set.

In a valid Sense/Reserve command, bit 2 from the CHANNEL TAGS IN (CTI) register (FC161) prevents resetting the SWITCHED TO CHANNEL A or SWITCHED TO CHANNEL B latch (58-030) and the tape control remains reserved to the operating interface. Output of the SWITCHED TO A (or B) latch blocks interface switch circuits for the opposite interface

58-030) until a reset or Sense/Release command is received from the operating interface.

SENSE/RELEASE COMMAND [D4]

A Sense/Release command resets the RESERVE flag to allow the tape control to operate with either interface. As in the sense/reserve operation, the Sense/Release command checks for chaining. A valid Sense/Release command leaves position 2 of the CHANNEL TAGS IN register reset so the SWITCHED TO CHANNEL A and SWITCHED TO CHANNEL B latches are reset at the end of each chain of commands

SELECTION

Address decoders in the tape control continuously monitor both interfaces. If the correct address bits arrive on the bus out lines along with an ADDRESS OUT tag, the SELECT OUT latch is reset. CONTROL UNIT END latch OFF ANDs with a minus output from the SELECT OUT latch to generate TRAP CHANNEL A or TRAP CHANNEL B.
Assume that the tape control is idle and is addressed by channel A. The TRAP CHANNEL A line ANDs with by channel A. TigNAL CHAN A to set the SWITCHED TO CHANNEL A (tie breaker) latch. SWITCHED TO CHANNEL A ANDs with DELAY SELECT SIGNAL CHAN A to generate INITIAL SELECTION CHAN A
Once interface A is addressed and selected, it arms the ONTROL UNIT BUSY AND circuit in interface B. If terface B tries to use the tape conch, du CONTROL UNIT END latch for interface B is set.

When interface A is finished operating, MP1 determines hat the Two-Channel switch is installed, and MP2 hecks status of the CONTROL UNIT END latches. either CUE latch is on, MP1 presents CUE status to the interface associated with that latch. The CUE will have a random tape unit address unless presented along with Device End.

PARTITIONING

Partitioning, achieved by operating the Enable/Disable switches, restricts the accessability of the tape control to either channel. Partitioning bypasses SELECT OUT and degates all interface functions. When both
interfaces are partitioned (both switches set to DISABLE), the tape control is offline and the CE pane controls can be used.

IMPLICIT CONNECTION

An implicit connection is one that does not depend o program intervention for release. The duration of the connection is determined by the time required for the ape control to perform a command or a chain of ommans. The switch reverts to neutal on completion (at the tape control level) of the last command in a chain

An implicit connection is extended if the channel stacks primary status. The stacked status must then be accepted by the channel to terminate the connection. If the status byte contains Unit Check, a contingent connection is made and acceptance of the status by the channel does not terminate the connection
If the channel stacks secondary status containing Unit Exception or Unit Check, connection to that channel will be maintained until the status is accepted by the hannel. If the status byte contains Unit Check, a contingent connection is made and acceptance of status by the channel does not terminate the connection.
If the channel stacks secondary status other than Unit Check or Unit Exception, the switch returns to neutral and is available to either channel. Any further attempts by the tape control to present this status to the channel that indicated STACK STATUS are controlled by SUPPRESS OUT from that channel.

CONTINGENT CONNECTION

A contirgent connection is initiated when the last status byte contains Unit Check. The connection is maintained until a command other than Test I/O or NOP is received from the channel to which status was to that tape unit clears the contingent connection if the tape unit is READY.
The purpose of the contingent connection is to ensure an available path to the tape unit and the transmission of sense data from the tape unit to the proper chann If a Test I/O or NOP is issued by the addressed channel to a tape unit other than the one contingently BUSY and retains the connection.

BUSY

While the tape control is operating with one interface, a SELECT from the other interface will be answered with a SHORT BUSY signal (Bits P, 1, 3). Assume tha the B interface is operating when the A interface attempts to address the tape control (58-030). The SWITCHED TO CHANNEL B latch blocks the setting of the SWITCHED TO CHANNEL A latch. However, - SELECT SIGNAL CHANNEL A is ANDed with -ADDR COMPARE CHAN A and NOT PROPAGATE SEL OUT CHAN A to reset the CHANNEL A SEL OUT latch. With the latch reset, the minus output of the off side of the latch is ANDed with -ENABLE CHAN A and OPERATIONAL IN to condition one input to the channel A CUE latch. A second conditioning input is OPERATIONAL IN, and the third is the minus outpu from the CU BUSY AND circuit. Thus, the CUE latch for channel A, is turned on to send CU BUSY STATUS CHAN A to the A interface
The BUSY signal sent to channel A is a Unit Status byte with bits 1 and 3 on. Bit 3 indicates BUSY, while bit 1 (status modifier) indicates that the BUSY condition applies to the tape control. Bits P, 1, and 3 are forced onto the BUS IN lines at the same time the STATUS IN tag line is forced up. The STATUS \mathbb{N} latch is not turned on during this SHORT BUSY sequence.

CONTROL UNIT END

The CONTROL UNIT END latch (58-030) remains on, remembering that channel B tried to break into channel A operations. This latch also sends +CUE PENDING CHAN B to the microprogram branch-on-condition logic (AB161) to notify the B interface that a Channel End is pending. When the tape control is no longer operating with, or reserved by, interface A, the SW TO CHAN A latch turns off, -TRAP CHAN B is active, and the SELECT CHAN B line is still active to turn on the SW TO CHAN B latch.
The SW TO CHAN B latch gates the output from OPERATIONAL IN to channel B to send a Unit Status byte to channel B. The status byte will contain a CUE other operations the tape control is NOW avalaber used to transmit the CUE status byte.

At the end of an operation, the SW TO CHAN A (or B latch is reset unless a chain, STACK, INTERRUPT, or UNIT CHECK condition exists. OPERATIONAL IN is reset in the Burst Ending Sequence when CHANNEL TAGS IN register bit 7 is reset.
With OP IN reset, no REQUEST IN, no ADDRESS OUT, and no SELECT OUT for the tape control, the SELECT OUT latch is active. (Note that the SELECT OUT latch is turned on when the tape control is inactive.) With the SELECT OUT latch active, the plus output degates -RESPONDING TO CHAN A (or B). -RESPONDING TO CHAN A (or B) inactive resets the SW TO CHAN A (or B) latch, and the tape control is available for another selection sequence.

STACK

In some cases the channel may refuse the end status byte, this turns on a 'stack' condition. If the status byte contains Unit Check or Unit Exception, the tape control remains connected to that interface until the channel accepts the status. If the status byte contains Unit Check, the connection is maintained until a command other than NOP or Test I/O is received from the channel to which the status was presented. This procedure makes certain the channel has an opportunity to interrogate a unit check condition before the other channel disturbs the tape control. When the interface connection is maintained because of a unit check, the connection is defined as "contingent" (not part of the normal routine).

Stacking of status other than Unit Check or Unit Exception does not maintain the interface connection. The TCS will be reset to neutral, and the tape control will become available to either channel.

STACK INTERRUPT

A Halt 1/O command received by the tape control before the channel accepts the ending status causes two-channel operation and contingent check for contingent connection is needed to prevent loss of error information the microprogram branches to a 'Hold Interface' routine
With no contingent connection, an interrupt cycle is initiated to present the stacked status. CONTROL UNI BUSY will be reset (if applicable) and HOLD NTERFACE will be set if the STACK or STATUS PENDING flag is on

DEVICE END

The purpose of Device End circuits is to signal the dat channel when a tape unit has completed a task and is ready to accept a new one. On a tape control with the two-channel switch feature, separate LSRs in MP2 are used to store the Device End signal for each channel. The second Device End LSR ensures that the Device End is returned to the channel that initiated the operation.
A Device End received while the two-channel switch is in a neutral state causes the tape control to enter an interrupt status. The tape control then presents the Device End to the channel that initiated the Device End operation, if that interface has not been partitioned Partitioning resets pending Device Ends for that interface.
An interrupt due to a Control Unit End sends Device End, including the address of that device, and Control Unit End, to the channel.

TIE BREAKER

Tie-breaker logic (XM101) on 58-010) controls the interface switch lines so only one channel operates the subsystem, preventing one channel from interfering with the operation of the other. When neither interface is reserved or operating, the interface switch circuits are in a neutral state, and Initial Selection sequence

Address decoders monitor the bus out lines of each interface. If the tape control address appears on the bus out lines along with an ADDRESS OUT tag, the decoders send a signal to the interface switch controls When no interfering conditions exist, the controls connect that interface to the tape control. If the tape control is reserved or operating with the other interface, a 'short busy' sequence is sent to the interface attempting to break in.

When the tape control becomes available, a Contro Unit End status byte is sent to the channel that previously received the BUSY signal.
See 58-030 for schematic details.

OPER-TIE BREAKER (TCS)

 (PART 2)

OPER-DEVICE SWITCHING CONFIGURATIONS

DESCRIPTION

Device switching allows access to a maximum of sixteen tape units by two, three, or four tape controls, and permits simultaneous operation of as many tape units as there are tape controls.

3803 Models 1 and 2 can be mixed in a switching configuration; however, attempting to access a 3420 Model 4, 6, or 8 through a 3803 Model 1 produces unpredictable results.
Device switching is performed via the Communicator and Device Switch features. Three Device Switch features (58-051) available with the tape subsystem are:

2 Control Switch used with 2×8 and 2×16 configurations

3 Control Switch used with 3×8 and 3×16 configurations
4 Control Switch used with 4×8 and 4×16 configurations
The minimum switching subsystem configuration allows two tape controls to access up to 8 tape units and is called a 2×8 configuration. The maximum configuration is 4 tape controls and 16 tape units (4×16). A on-switching configuration $(\times 8)$ is referred to as Selection Logic.

Device Switching logic is installed only in those tape ontrols that have attached tape units.
The location of the Device Switches depends on the configuration desired. For example: In a $2 \times 8,3 \times 8$, or 4×8 configuration, the switching feature is required only on the first tape control while in the $2 \times 16,3 \times 16$, and 4×16 configurations, the switching feature is required on Tape Controls 1 and 2 (58-051). The 2×16
configuration consists of two tape controls, each with a Communicator 1, a 2 Control Switch, and eight tape units. The tape controls may be connected to either different channels of the same system or on different systems
Device switching logic is logically invisible (except for BUSY responses during Initial Selection and Device End interrupts, which result when tape units become interrupts, which result when tape units become flexibility for a variety of system configurations. Subsystem priority and device addressing are assigned by pluggable jumpers within the switch. Any tape unit may be partitioned (made unavailable) to any tape control via toggle switches on the tape control operator's panel (58-060).

2 Control Switch

The 2 Control Switch is a 2×8 configuration of hardware switching logic (58-051, 58-055). Tape Units 0-7 (attached to Tape Control 1) can be accessed by the Communicator in Tape Control 2 as well as the Communicator of Tape Control 1. A 2×16 configuration is obtained by installing a 2 Control Switch in both Tape Controls 1 and 2, allowing the Communicator in each tape control to access its own eight 3420 s, as well as 3420 s of the other tape control.

3 Control Switch

A 3×8 configuration is obtained by installing a 3 Control Switch in Tape Control 1 only and a Communicator 1 in Tape Controls 1, 2, and 3 ($58-051$). Tape units attach to Tape Control 1.
A 3×16 configuration is obtained by installing a 3 Control Switch in both Tape Controls 1 and 2. A third tape control must be added to the configuration. Tape Control 3 does not contain any switching hardware or attach any tape units, but does contain a Communicator.

4 Control Switch

A 4×8 configuration is obtained by installing a 4 Control Switch in Tape Control 1 and a Communicator 1 in Tape Controls 2, 3, and 4 (58-051). Tape units attach to Tape Control 1.
A 4×16 configuration is obtained by installing a 4 Control Switch in both Tape Controls 1 and 2. Two more tape controls must be added to the configuration Tape Controls 3 and 4 do not contain any switching hardware or attach any tape units, but each contains communicator
The 3 Control Switch and the 4 Control Switch are expansions of the 2 Control Switch. They allow acces to eight attached tape units by the additional Communicators.
1×8 Configuration

Notes:

[1] Maximum of 16 tape units and 4 tape controls
[2] Tape units attach only to tape controls with switching features.
[3] Any or all control units may have two channel switch features.
[4] For 3420 Model 8 power requirements, see 90-180.

3803-2/3420

XG3800	
Seq 2 of 2736008	
Part Numbe	

See EC	845958
History	Sep 79

© Copyright International Business Machines Corporation 1976, 1979

OPERATOR PANEL SWITCHES (16)
Switch Section A on Tape Control 1 directs Tape
Control 1's access path to Tape Units 0-7. Switch
Section B on Tape Control 1 directs Tape Control 2's
access to Tape Units 0-7.

3803-2/3420
$\left.\left.\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline \text { XG3900 } \\ \text { Sea } 1 \text { of } 2\end{array} \begin{array}{c}2736009 \\ \text { Part Number }\end{array} \right\rvert\, \begin{array}{c}\text { See EC } \\ \text { History }\end{array} \begin{array}{c}845958 \\ 1 \text { Sep 79 }\end{array}\right]$

Switch section A on tape control 1 directs tape control 1 's access path to tape units 0.7 . Switch section B on tape control 1 directs tape control 2 's access to tape units $0-7$.

Tape control 2 switches are similar to
tape control 1 , except section A direc tape control 1, except section A directs
tape control 2 , sacesss to tape units $8-F$
Section B. Section 8 controls the access of tape
control 1 to tape units $8-F$
control 1 to tape units 8-F

OPERATION

The Device Switch is controlled by lines from the tape ontrol. Although there are necessary switching delays, data transfers, control requests, and responses, tape unit status is sent to the tape control as if the switch were not present.
Selection: When DEVICE SELECT (58-090) is activated, with the device address on the DEVICE SWITCH bus and the node is enabled, the switch tries to set the COMMITTED latch for the node. Note: A "node" is the logic circuitry required to select and assign one tape unit to a requesting tape control. If the device has already been selected by another tape control, a BUSY indication is returned to the tape control attempting selection. If the device is not busy, the COMMITTED latch is set. The latch output is then sent to the other tape control nodes for that device to prevent selection by them. At the same time the committed latch is set he SELECT Crosspoint line to that node will become active and GATE BUS OUT will be the response to the selecting tape control. The BUS OUT and BUS IN connection has now been established between the tape control and tape unit. SWITCH SELECT is not required to select a tape unit, although it is always active in 803 subsystems.

Committed: Once the COMMITTED latch is set for a given node, it remains set until reset by the selecting tape control. Reset is accomplished by addressing and sending a 50 ns pulse on the SET/RESET line.
Priority: When two or more tape controls attempt to select a tape unit at the same time, priority of access is determined by jumpers plugged on Tape Controls 1 and 2 (58-100). See Section 90 for plugging details.

LINE DEFINITIONS (58-100)

Busy/Tach: The BUSY/TACH line indicates the state of the device (busy or not busy) to the tape control. Device Operating Interface A and B (2 lines): A device perating line is active when a committed tape unit it BUSY/TACH line active Thatch has been set) has號 the tape control is used for METERING N line for its chat DEVICE OP INTF B line serves the位 by the seond but is wo-Channel Switch feature is installed

Run Meter: When the node is enabled, the RUN METER line is sent to the device for meter operation. Set/Reset: The SET/RESET line is tied active so the ENABLE/DISABLE latch can be set to the corresponding state of the Enable/Disable switch on he operator's panel.

Notes:

[1] The maximum switch configuration consists of 16 tape units and 4 tape controls.
[2] Tape units attach only to the tape controls with device switching features.
[3] Any or all tape controls may have a Two-Channel Switch feature.

Functional Units of the Device Switch are:

(A) Logic Section: The logic section communicates with the tape control to provide status, device address, and accessing interlocks. The information exchanged establishes tape unit attachment to tape control and presents switch status to the operating tape control or controls in the subsystem configuration.
(e) Crosspoint Section: The crosspoint section is a switch matrix capable of switching twelve inbound and twelve outbound lines. Each node (tape control/tape unit path) is controlled by the logic section.
(c) Communicator: The communicator replaces the selection logic circuits and associated device interface cabling in the basic tape control with interface cabling in the basic tape contro device switches. The communicator divides the device interface into primary and secondary and controls the gating of each according to the address of the device being selected. The communicator consists of interface drivers and receivers.
The Communicator 1 feature has only one external (primary) interface. The Communicator 2 feature has two external interfaces (primary and secondary). The secondary interface connects attached tape units primary interface connects a 3803 that does not have tape units attached to another tape control through Switch Section B.
(D) Tape Unit Online/Offline Switches: Tape unit toggle switches (58-060, 58-100) are located on the operator's panel of each tape control having a device switch feature. These switches enable the operator to detron in a 4×16 ape control in the configuration. In a 4×16 tape units so there are 64 toggle switches, 32 each on Tape Controls 1 and 2. There are no switches in Tape Controls 3 and 4.
Note: ©, ©, ©, ©, ©, ©, © refer to charts located in ALD XC-700 pages.

C C C C C C OPER-DEVICE SWITCH NODE

Gating a control unit to device path node on or off effects switching at the device interface level
Each node consists of parts of three logic cards. The crosspoint cards (B) contain the electronic switches needed to switch the bus in or bus out lines for a node. The switc lient re cons. the tape controls.
1 The crosspoint (XPT) switches are gated by the set to the COMMITTED latch
2 COMMITTED lines prevent simultaneous selection of the same device by more than one tape control.
3 INTERFACE COMMITTED, COMMITTED, and DEVICE BUSY are ANDed to generate DEVICE OPERATIONAL, which is sent to the tape control to
develop METER IN for the channel interface.

4 DEVICE END INTERRUPT lines are scanned by the tape control to determine which tape unit has a DEVICE END INTERRUPT pending.
5 BUSY/TACH is available to the tape control when the node is selected and enabled and the DEVICE BUSY or SWITCH BUSY line is inactive.

303-2/3420
\square

XG4100	
Seq 1 of 2	2736011
Part Number	

| | |
| :--- | :--- | :--- | :--- |

3803-2/3420

○ C

Note: See ALD pages XCnnn.

03-2/3420

| XG4200 |
| :--- | :--- | :--- | :--- |
Seq 1 of 2		2736012
Part Number	\(\begin{aligned} \& See EC 	

\& History\end{aligned} $$
\begin{gathered}845958 \\
1 \text { Sep 79 }\end{gathered}
$$\)
Machines Corporation 1976, 1979

C

REF-CE PANEL

3803 CE PANEL DESCRIPTION

CE PANEL SWITCHES

PANEL ENABLE (TWO-POSITION TOGGLE) (b)

Active only if ROS is in normal mode. It may be necessary to raise the Set ROS Mode momentary switch to establish this mode. The Panol Enabied light is ON when the switch is ON

Note: If the Panel Enabled light does not light, set the ROS Mode rotary switch to Norm and operate the Set ROS Mode switch (momentary).

On
Allows the CE panel functions identified by yellow lettering to be performed with the Interface Disabled light either on or off

Allows all CE panel functions to be performed with the Interface Disabled light On.

Off
Degates the following functions:

1. Stop On-Control Check
2. Stop On-Data Flow Check
3. Reset/Start or Step
4. ROS Mode
5. Command Control switches (3)

STOP ON-CONTROL CHECK (TWO-POSITION TOGGLE)

Active only while ROS is in Stop mode.
On
Stops both ALUs when any control check is recognized in the ALU selected by the ALU1/ALU2 switch. The exact stopping location depends on the type of error: is usually two less than the stop address except for a BOC. Generally, microprogram-detected errors will not be recognized until a transfer hardware error (XFR HDWERR) microinstruction is executed. Most other errors will stop the ALUs when the failure occurs.
Disables the compare register equal features of the ROS Mode switch Stop position.

Off
Allows normal tape control operation

RESET/START OR STEP (TWO-POSITION MOMENTARY TOGGLE)
(2)

Active only while the Panel Enabled light is On

Reset (UP)

Sets both ALUs to Instruction Counter (IC) address 000 and causes a Power-on Reset Branch Condition.

Start or Step (Down)

Starts both ALUs after a stop condition, with
subsequent running of the ALUs controlled by the ROS Mode switch. Also resets the Compare Equal light at any time without interlocks.

STOP ON-DATA FLOW CHECK

 (TWO-POSITION TOGGLE)Active only while Interface Disabled light is On (CE Mode).

On
Stops both ALUs at the completion of a command in which a failure occurs on Unit Check condition

Off
Normal tape control operation.
Note: When in CE Mode, the tape control stops on Unit Exception, regardless of switch position. To inhibit Unit Exception, regardless of switch position. To inhib Mode, jumper AA1T2J12 to ground.

LAMP TEST (TWO-POSITION TOGGLE)
(D)

Allows you to test the CE panel indicator lights. ROS MODE (SEVEN-POSITION ROTARY)

Active only while the Panel Enabled light is On. After selecting any of the seven positions of the ROS Mod switch, activate the Set ROS Mode momentary toggle switch to set the mode.

Rst/Cmpr

When the IC address of the selected ALU equals the data in the compare register, both ALUs are reset to Display Select switch must be in IC position.)

Rst/Err
When a control check occurs, both ALUs are reset to location 000 and allowed to continue running

Set IC
Allows the contents of the compare register to set IC of the ALU selected by the ALU1/ALU2 switch.

Norm

Normal running condition of both ALUs

Stop

When the data in the compare register equals the IC address of the ALU selected by the ALU1/ALU2 switch, and the Display Select switch is in IC position both ALUs are stopped. The instructions at the stopped addresses will not have been executed.
When the Stop On-Control Check switch is active, both ALUs are stopped only when an error occurs in the ALU selected by the ALU1/ALU2 switch.
Note: If compare equal stop function does not work make sure the Control Check Stop switch is off.

Step

Operating the Start or Step momentary switch allows stepping the ALU selected by the ALU1/ALU2 switch while the ALU not selected runs normally.

Cycle

Allows the repetitive execution of an instruction at a selected address. Step or stop at the instruction address on which you want to cycle. Set ROS Mode to Cycle and press Start or Stop.

ALU1/ALU2 (TWO-POSITION TOGGLE)

Selects the ALU to be controlled by the ROS Mod switch.

Selects the ALU when the Display Select switch is se to the ic, Bus In, Bus Out, Hi ROS, or Low ROS position.

SET ROS MODE/SET CE COMPR (TWO-POSITION MOMENTARY TOGGLE)

Set ROS Mode

Sets the selected ROS mode.

Set CE/Compr

Sets the data, selected by the three hex rotary switches into the register selected by the Data Entry Select switch. The Set CE/Compr switch operates without the panel enabled or the interface disabled.

COMMAND CONTROLS

(b) (b)

Active only while the Intf's Disabled light is on.

Ripple/Wr Data

Establishes the data pattern mode for offline write commands

Mple/Single

MPLE allows continuous cycling of the four commands entered with the Data Entry Select switch.
SINGLE allows single stepping of the four commands with each activation of the momentary Start switch.

Stop/Start

STOP halts the continuous cycling of the four commands when the Mple/Single switch is in the MPLE position.

START initiates the commands stored in the CE command registers

DISPLAY SELECT (SEVEN-POSITION ROTARY)

CE Reg

1. Displays command/device in conjunction with Data Entry Select
2. Displays Write Data/Go Down or Byte Ct/Multiplie in conjunction with Data Entry Select.
Note: Some stop-on-error conditions stop the CE clock, which prevents displaying the contents of the CE registers.

Cmpr Reg

Displays data currently in the compare register in indicators 0 through 11.

IC
Displays the IC address of the selected ALU in indicators 0 through 11.

Bus In

With ALU1 selected, displays Channel Bus In data in indicators 0 through 7 and In Tags in indicators 8 through 11
With ALU2 selected, displays TU Bus In data in indicators 0 through 7 and the device address in indicators 8 through 11.

Bus Out

With ALU1 selected, displays Channel Bus Out data in 0 through 7, and outbound control or tags in 8 through 11. Parity is only assured when the microprogram activates CHANNEL BUS OUT
With ALU2 selected, displays TU Bus Out data in 0 through 7 and outbound controls or tags in 8 through 11.

Hi ROS

With ALU1 selected, displays ROS1 data bits 0-7 P1 in 0 through 7 and control lines in 9 through 11.

With ALU2 selected, displays ROS2 data bits 0-7 P1 in 0 through 7 only

Low ROS

With ALU1 selected, displays ROS1 data bits 8-15 P2 in 0 through 7 and control lines in 9 through 11. With ALU2 selected, displays ROS2 data bits 8-15 P2 in 0 through 7 only.

DATA ENTRY SELECT (SEVEN-POSITION

 ROTARY)

Cmpr Reg

Allows data in the three Data Entry switches to be entered in the compare register

mnd 1, 2, 3, and 4

With the Data Entry Select switch in one of the four positions (Cmnd 1, 2, 3, or 4), a command and its associated device address ($0-F$) may be entered into one of the four command positions.

Byte Cnt

The three Data Entry switch positions determine the total byte count. The left and center switches count to a maximum of 256. The right, or Multiplier switch counts in multiples of 1024. Position zero of the Multiplier switch adds zero to the total of the other two witches. Position 1 would add 1024, 2 would add 2048, etc. To provide a byte count of 3140 , set the left and center switches each to 4 , and set the right switch to 3 .
Note: Check to ensure you get the correct byte count

Byte Count Dialed	Byte Count Written
00 to FE	Byte Count dialed +

FF 2

Write Data Go Down

Write Data and Go Down determine those bits to be written and establishes the go-down time. The left and enter data entry switches determine the bits to be written. For example, the Ripple/Wr Data switch in Wr Data, 8 in the left switch, and 3 in the center switch writes the following:
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1\end{array}$
Note: The P bit is automatically generated when required

The right switch determines the go-down time. Position zero gives a go-down of 6.0 milliseconds. The otal range is from 6.0 milliseconds to approximately 0.5 second. Each position, 0 to F, represents approximately 26 milliseconds. A setting of 3 results in go-down time of 6 milliseconds $+(3 \times 26)$, or pproximately 84 milliseconds.

- To write continuously, jumper from AA1R2J12 to ground.
- To do an LWR with go-down time, jumper from AA1S2G08 to ground.

Data Entry

The three rotary switches are used to enter data into various registers. Set a command into the left switch and the TU address into the right switch. For example 01A entered into the Command register indicates a write command to device A.

CE PANEL INDICATORS

INTF'S DISABLED
 nitis

ndicates when the tape control is offine. The manual Enable/Disable switch(es) on the CU operator's panel must be in Disabled position before the lamp comes on.

CMPR EQUAL
 $\overbrace{0}^{\text {comat }}$

Indicates that the data entered in the CE/Compare register equals that contained in any register selected for comparison.

CONTROL CHECK INDICATORS

BOC

Checks the 16 branch conditions not checked by the HI IC PARITY/HI ROS register circuits. (A total of 32 BOCs are checked.) If an even number of BOC groups are active, a BOC error is indicated.

B-Bus Parity

Checks the output of an LSR for odd parity on the B Bus on instructions which transfer data from ALU to an Bus on instructions which transfer data from ALU to an the hardware error latches and CE panel indicator.

Note: When displaying the LSRs, B-Bus parity errors can occur because LSRs are not set to odd parity with power-on reset.

Hi IC Pty/Hi ROS Reg Pt

The circuits that set this indicator are

1. Hi IC parity check
2. Hi ROS register parity check
3. Instruction Decode error. (ROS instruction check to be sure only one ROS operation was decoded.)
4. BOC Error. (Check of 16 branch conditions.)

Lo IC Pty/Low ROS Reg Pty

Checks parity of the IC (low order) and ROS register (low order). An even parity error sets the HARDWARE ERROR latch and CE panel indicator. Lo IC Parity is checked only on a BU or a successful BOC. Low ROS Parity is checked on every instruction cycle.

D Bus Pty

Checks the parity of information to be stored in an LSR at 100 ns time. Bits 0-8 from the D Bus are
exclusive-ORed with the P bit from Bus Out. Even parity sets the D BUS PARITY ERROR latch and HARDWARE ERROR 5 latch, and lights the CE panel indicator. This error condition is only checked on a transfer of data into the ALU from an external source.

U Pgm

Monitors the selected ALU and signals an error when the ALU detects any hardware error, including checkout errors for both ALUs.

Data Flow Check Indicators

Stop ON MTE Env Skew Read Wr Tgr upgm	
()	(b) $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
P Comp	ew Read CRC Wr Tgr uPgm VRC

P Comp

The P Comp indicator (also C Compare) is set by the following conditions

1. When parity of the byte sent to the channel buffer on read operations is wrong.
2. Buffer Overrun.
3. Write Address error
4. If CHANNEL BUFFER READ IN counter gets out of step.
5. Write buffers are empty when a write tape cycle occurs.
6. Parity does not match between the channel buffer and the write buffer outputs on write operations.
7. When operating in 7-track data convert mode and a count of bits before and after conversion does not match.
8. When operating in 7-track mode with the Data Converter off and the count of bits for each byte as it enters and leaves the register fails to compare.

MTE/LRC

1. Set during a 6250 bpi write operation when there are two or more error pointers:
2. Set during a PE operation when there are two or more error pointers
3. Set during a NRZI operation when a block has an odd number of bits in any track (LRC).

ENV/ECC

1. Set when any track signal falls below threshold on read or write. Does not set Data Check.
2. Set during a PE operation when any error pointer is set or when any track falls below threshold. Sets Data Check on write only
3. Set during a NRZI write operation if NRZI Register 2 has incorrect parity.

Skew

Set when vertical misalignment of bits exceeds acceptable limits. (If all bits in a byte are not received by the read circuits within a specified period, the bit has excessive "skew" and Skew Error is set.

Skew Error is set.

1. During a 6250 bpi/PE read operation if RIC leads ROC by 30 bits.
2. During a 6250 bpi write operation if RIC leads ROC by 14 bits.
3. During a PE write operation if RIC leads ROC by 4 bits.
4. During a NRZI write operation by skew gate

Read VRC

1. 6250 bpi Mod
a. Set during single-track error correction if a match is not found:
b. Set during a write operation if hardware pointer and correction code indicate different tracks.
2. Set during a PE operation if a parity error occurs and no track pointers are on.

CRC

Set during 6250 bpi and 9 -track NRZI operations when the CRC byte calculated for a read operation does not match the CRC byte written on tape.

Wr Tgr

Set when the output of the write triggers has incorrect parity.

U Pgm

Set when ALU2 detects any microprogram error, including End Data Check on PE operations, and any error indicated in sense byte 8, bits $0-6$; sense byte 9 bit 1 ; and sense byte 10 , bits $0-7$

NOTES ON CE PANEL OPERATION

- A Start I/O command to a tape unit that has Unit Check or Busy in its initial status byte will prevent stepping to the next command. This condition can be caused by a Not Ready tape unit

CE command sequence hang up: when an error occurs on a 3803 with the Two-Channel Switch (TCS) feature installed, a contingent connection is established without Stop On Error ON. This is caused by dedicated sense data from the failing tape unit. There are three ways to proceed:

1. Issue a Sense command to the same tape unit after any other type of command.
2. Issue all four internal program commands, except a Test I/O or NOP, to the same tape unit A Mode Set command can also cause a hang condition, so it may be necessary to replace this command following initial setup.
3. In order to allow command cycling to multiple tape units without changing the command setup, set ROS Mode to Rst/Cmpr using IC address 302 on ALU1. This restarts both microcodes at 000 on contingent-connection conditions and performs a general reset. To eliminate the need
 Ret FCO41) to AA1T2G05 (Sart Key Lal PK035).

C C C C C C C C C C C C CCC C C C C C C C C

TOOLS AND TEST EQUIPMENT

The tools and test equipment listed in this section are equired to properly service 3420 Magnetic Tape Units and 3803 Tape Controls.

KEPT AT THE BRANCH OFFICE	
Part	Name
1848621	Stress Tape (order from Mechanicsburg)
432152	Master Signal-Level Tape (order through IRD Sales) (See Note 1.)
451064	Degausser (See Note 1.)
453522	Developing Solution
453585	*Digitec 251 Meter (Digitec 201 Meter, P/N 453046, may be used if available)
460874	Scale, O to 6 pounds (belt adjustment)
2515376	Capstan Prealignment Gauge
2515390	Capstan Adjustment Wrench (rear adjustments)
2515401	Reel Motor and Hub Adjustment Tools: (see 08-460)
2523723	Capstan Adjustment Wrench (front adjustments)
5861448	7-Track NRZI Threshold Adjustment Card
5861455	PE Threshold Adjustment Card
5861452	Dual Density Threshold Adjustment Card
* Trademark of United Systems Corporation	

KEPT AT THE CustomER's ACCOUNT	
Part	Name
453511	Tape Transport Cleaner Scratch tape Oscilloscope (Model 453, 454, 561, 545, 766H or equivalent)
352465	Tape Cleaning Kit
432641	Master Skew Tape (See Note 1.)
453500	Manometer, 30 inch (two needed for series Connection) (See Notes 1 and 2.)
453504	Tee and Hose Assembly (See Note 2.)
453522	Tape Developing Solution
1765342	Tape Unit Tester
1846251	Shim, Right Reel Hub Alignment
1846252	Hex Wrench, Right Reel Hub
2512745	Adapter Hose (See Note 2.)
2513154	Pressure Divider (See Note 2.)
2501611	Tape Unit Cleaning Brush
2512063	Crimper (supplied by marketing representative)
2515390	Capstan Box Wrench (read adjustment capstan only)
1848621	6250 bpi Stress Tape
Notes:	
1. Discussed in more detail in this section.	
2.	
Not needed if pressure/vacuum gauge P/N 5495384 is	
available.	

MASTER TAPES

Master skew tapes and master signal-level tapes are manufactured to rigid specifications. They are the standards that are used by CEs to obtain optimum tape nit performance
Because tape unit performance is directly affected by the accuracy of these master tapes, the following precautions should be taken:

1. Use master tapes only for their intended purpose . Handle tapes with care
2. Make only full-reel passes in order to have even wear throughout the length of the tape
3. Identify master tapes as such and mark the reels with the letter " m, as a reminder to make full passes only.

MASTER SKEW TAPES

Master skew tapes have a density of 800 FCl and are written with one solid bit across the width of the tape These tapes are written on a specially adapted tape unit at the Tape Test Center with accuracy held to within 0.375 usec total skew between the leading and agging bits of a 112 ips tape unit.
The master skew tape will run off the reel when eading forward because it is written with no interblock (IBGs). In order to create an IBG and save time during skew adjustments, make the following alterations to the master skew tape:

1. Read the master skew tape forward to the end of tape EOT reflective marker
2. Install a write enable ring
3. Write one record of any size beyond the EOT marker
4. Remove the write enable ring.
5. Rewind the tape.

After the preceding one-time preparatory steps, set the tape control CE panel as follows when you use the skew tape

1. Command 1-Read Forward ('02')
2. Command 2-Read Backward ('OC')
3. Command 3-Read Forward ('O2')
4. Command 4-Read Backward ('OC')

The master skew tape will read forward to the end of he reel, read backward, and repeat the cycle. This permits checking skew from the rear of the tape unit without manipulating the controls.

MASTER SIGNAL-LEVEL TAPES

Master signal-level tapes have the ability to produce a signal to within $\pm 2 \%$ of the primary master. (A primary master, which is established as an IBM standard, is the base for instrument alignment.)
All new master signal-level tapes are checked at 3200 FCl and 800 FCl . The suffix letter " A " is added to the art number to allow field identification of
$3200 / 800 / 556 \mathrm{FCl}$ tapes as opposed to the forme $300 / 556$ FCI tapes. Thus, for example, a master ignal-level tape checked out at both 3200 FCl and 800 ign would have P/N 432152A.

DEGAUSSER

Caution: The degausser will demagnitize any material such as tape, disks, etc. Power off the tape unit.

To degauss the read/write head:

1. Remove magnetic tape from the tape unit. Do not place the tape on top of the tape unit.
2. Plug degausser into 110 Vac receptacle.
3. Press the pushbutton on the degausser while it is at least 1 foot $(30,5 \mathrm{~cm})$ away from the read
head and move it slowly toward the head.
4. Hold the degausser against the front surface of the head for about 10 seconds.
5. Pull the degausser straight away from the head very slowly to a distance of at least 1 foot (30,5 cm) and release the pushbutton.

WATER MANOMETER

Note: The use of a 30 inch ($76,20 \mathrm{~cm}$) manometer or the 80 inch $(203,20 \mathrm{~cm})$ pressure/vacuum gauge is not dependent on the English (metric) system of measurement.
Use the requested tool by part number and name, and measure to the specified units (whether metric or English) to obtain the desired adjustment or reading Shown are several setups for using the water manometer, part number 453500. Part A shows a single manometer measuring a pressure of less than 30 inches ($76,20 \mathrm{~cm}$). Part B shows two manometers in series measuring a pressure between 30 and 60 inches $(76,20 \mathrm{~cm}$ and $152,90 \mathrm{~cm})$. Part C shows using the pressure divider and a single manometer measuring a pressure greater than 30 inches ($76,20 \mathrm{~cm}$)

General instructions for using the manometer are

1. Remove the tee from the tee and hose assembly, and connect the hose on the line to be checked.
2. Set up the water manometer by opening both top valves one full turn from closed position. (Incorrect readings will occur if valves are opened too far.)

Connect the pressure-sensing hose to one port leaving the other port open.
3. Fill the water manometer with tap water maintaining the water level near the 0 position on the scale. Zero the manometer by sliding the scal up or down until the 0 mark lines up within 0.2 inch $(5,7 \mathrm{~mm})$ of the bottom of the meniscus in both columns.
4. Set conditions for the specific item to be checked according to the pneumatic-adjustment decal located on the transfer valve and manifold.
5. Read the vacuum level. (The vacuum level is the sum of the displacement of the water level in each column.)

PROCEDURES

Note: Take readings at bottom of meniscus.
1 Using a single manometer to measure a pressure of less than 30 inches $(76,20 \mathrm{~cm})$. Read at bottom of each meniscus and add the two readings解 $=3.7$.

12 Using two manometers in series to measure a pressure between 30 and 60 inches (76,30 and $152,40 \mathrm{~cm}$). Read at bottom of each meniscus and add the four readings together to get total pressure the sum of $X+Y) . X+Y=2.0+1.7+2.0+$ $1.7=7.4$ inches.
3 Using a pressure divider with a single manometer to measure a pressure of greater than 30 inches (76,30). First, measure a known pressure of less than 30 inches. Second, insert the divider and adjust the divider's adjusting screw until the manometer reading is 40% of its original reading Third, measure the pressure of greater than 30 nches by reading at he bottom of each meniscus multiplying Z by 2.5 to $+17)=25(3.7)=9.25$ inches The maximum + 1.7) $2.5($ ing with this combina is 75 in $190,50 \mathrm{~cm}$)

4 Using a pressure/vacuum gauge to measure a pressure greater than 80 inches ($203,20 \mathrm{~cm}$).
a. Measure a known pressure less than 80 inches ($203,20 \mathrm{~cm}$).
b. Insert the pressure divider between the measurement part and the gauge and adjust the divider's adjusting screw until the gauge reads 40% of its original reading
c. Measure the pressure greater than 80 inches $(203,20 \mathrm{~cm})$ and record the reading (Z).
d. Multiply Z by 2.5 to get the total pressure

Example: If Z reading is $33.2,33.2 \times 2.5=83.0$ inches

PRESSURE/VACUUM GAUGE

Shown below is pressure/vacuum gauge, part 5495384 To use the gauge

1. Attach the gauge hose to the fitting to be tested
2. Read the dial directly in pressure or vacuum. (For measurements above 80 inches ($203,20 \mathrm{~cm}$) , add 1 inch $(2,54 \mathrm{~cm})$ to the reading for each $1 / 16$ inch $(1,59$ mm) of pointer travel beyond the end of the scale.)
Caution: Disconnect from test point before loading or unloading tape unit to prevent damage or miscalibration of gauge.

4 Pressure/Vacuum Gauge Part 5495384

21320

$\begin{aligned} & \text { XHO } \mathrm{COO} \\ & \text { Seq } 2 \end{aligned}$	2736015	See EC History	845958	$\begin{aligned} & 846627 A \\ & 3 \text { Dec } 80 \end{aligned}$	$\begin{gathered} 847298 \\ \substack{85 \mathrm{Avg} \\ 83 \\ \hline} \end{gathered}$			

C

tOOLS AND TEST EQUIPMENT (Cont'd)

3420 FIELD TESTER

Caution: Use extreme care when attaching the field tester because an error can damage the tape unit, the tester, or both. Be sure to use only the 3420 field tester, part 1765342, when doing offline maintenance on 3420 tape units. Do not use the 2420 Field Tester. When testing Models 4, 6, and 8, a field tester at EC level 734316 must be used. A temporary jumper must be installed from K2P02 to M2D06 for 6250 operation.
When operated with the field tester, the tape unit loads and unloads tape, reads, writes, and moves tape forward or backward.

To test several tape units simultaneously, use the manual controls on the tape control CE panel.

To use the field tester:

1. Unload the tape unit.
2. Switch the unit off line at the logic gate. To ensure that the on-off line switch circuitry is operating correctly, monitor the - interface disable and +int
dis or - off lines. Refer to page FT910 of the 3420 dis or - off lines. Refer to page F 910 of the 3420 operation of the on-off line switch circuits.

Position of On-Offline SW	A1L6D04	A1L6B03
Online	+6 v	-4 v
Offline	Gnd	Gnd

3. With the arrow on the cable pointing up, plug the tester into the wiring side of the logic gate at location A1N5. Another way to be sure the cable is plugged correctly is to make sure the notches on the cable connector are toward the center of the logic gate. Select, on the tape unit operator's panel, comes on when the Read/Write switch is in the MOVE switches to lad heady the tape unit switches to load and Ready the tape unit.

Caution: The field tester can cause tape dump and damage under the following conditions

1. When moving tape with field tester, the direction switch position is changed before activating "Stop".
2. When attached to a tape unit and set to "Fwd" and either " $\mathrm{St} / \mathrm{Stop}^{\prime}$ or "Go", the tape unit is loaded and goes to Load Point and becomes Ready. If RESET on the tape unit console is activated and the tape unit does not dump tape and then Reset is followed by activating
UNLOAD, the tape will run off the end of the reel
3. When using "Alt Dir", RESET is activated on the tape unit.
Conditions 1,2 , and 3 above can be eliminated by always putting the tester in "Stop" before doing any other operation.
The switches on the tester operate the tape unit by remote control as follows:

Start/Reset

Operates the same as the control on the tape unit operator's panel. Start makes the unit ready. Reset resets the unit.

Ld Rew/Rew Unld

Ld Rew loads tape if none is loaded, and rewinds tape to load point if tape was loaded but is not at load point. Rew Unld rewinds tape from any position, unloads the unit, closes the cartridge if one is used, and lowers the power window.

Up/Fwd

Up/Fwd controls either the time the MOVE line is active during a start/stop operation, or the duration of forward motion in an alternate-direction operation.

Dn/Bkwd

Dn/Bkwd controls either the time the MOVE line is inactive during a start/stop operation, or the duration of backward motion in an alternate-direction operation.

St/Stp/Go/Stop

St/Stp causes interruptions in tape motion. Use the Up/Fwd control and Slow/Fast switch to adjust go-up
time. Use the Dn/Bkwd control and Slow/Fast switch to adjust go-down time. Go ensures continuous tape movement. Use the Alt Dir/Fwd/Bkwd switch to control direction. Stp halts tape motion.

Alt Dir/Fwd/Bkwd

St/Stp/Go/Stop switch must be at Go to enable this switch. Alt Dir is active in read status only; it moves tape alternately forward and backward. Use Up/Fwd control and Slow/Fast switch to adjust duration of orward movement. Use Dn/Bkwd control and movement. Fwd causes forward tape motion. Bkwd causes backward tape motion

Slow/Fast

This is a range switch for the Up/Fwd and Dn/Bkwd controls. Slow extends the go-up/down timing range o approximately 3.0 seconds. Fast decreases the go-up/down timing range to approximately 7.0 ms .

Write/Read

Write causes the tape unit to write with gaps. Each time the tape unit writes, as in a start/stop operation, it generates a PE gap of 0.528 inch ($13,4 \mathrm{~mm}$) and a GCR gap of 0.275 inch ($7,0 \mathrm{~mm}$). Read causes continuous reading.

8/16/32 (Models 3, 5, 7) See Note

This switch controls the frequency of the tester's write oscillator. The three positions result in write frequencies of 800 fci (NRZI), and 1600 and 3200 fci (PE), respectively.

16/32/64 (Model 4, 6, 8) See Note

When a field tester at EC level 734316 is used on 3420 Models 4, 6, and 8 with the provided jumper installed, these switch positions represent 1600, 3200 , and 6400 fi as the label shows. Frequencies generated by the these tester frequencies with normal online recording ensities. densities.

Note: The back panel wiring on cable position A1N5 on Models 4, 6, and 8 is such that the frequency of the tester is doubled.

○ C

 SUBSYSTEM PREVENTIVE MAINTENANCEgeneral cleaning instructions
This procedure makes all previous 3420 tape unit cleaning procedures obsolete.
Items used by this procedure are contained in the IBM Tape Cleaning Kit, part number 352465 (see Figure 1).

Use IBM tape transport cleaner, part 8493001.
Performance results cannot be guaranteed when other chemical formulations are used. Other chemical formulations have not been tested by IBM, and their use may impair performance or cause damage to the tape unit or tape.

DANGER

When using tape cleaner, do not get it on skin or clothing. Follow the instructions on the container. Do not use metal instruments to clean any part of the tape unit

Figure 1. IBM Tape Cleaning Kit

$\begin{aligned} & \text { XHO500} \\ & \text { Sog } 1 \text { of } 2 \end{aligned}$	2736017	See EC History	$\begin{aligned} & 845958 \\ & \hline \end{aligned} \text { Sep 79 }$	$\begin{aligned} & 886927 \\ & 20 \text { Sun } \\ & 80 \end{aligned}$	$\begin{gathered} 842929 \\ \begin{array}{c} 85 \mathrm{Aug} \\ 83 \end{array} \end{gathered}$		

TAPE UNIT CLEANING PROCEDURE FOR

 3420 MODELS 3 THROUGH 81. R/W AND ERASE HEADS
1.1 Unload tape and remove from tape unit
1.2 Open outer \boldsymbol{A} and inner (doors.

1.7 Use inspection mirror for Models 3,5, and 7 or dental mirror for Models 4, 6, and 8, to carefully inspect heads. (Clean mirror with dry cloth, if dirty.) If heads do not look clean, perform step 1.8 , otherwise wipe heads with dry clean cloth and go to step 2.
To remove stubborn residue from heads-
1.8 Use either style head cleaning brush dampened with tape cleaner to remove residue © and then return to step 1.3

1.3 Dampen clean area of lint-free cloth with tape cleaner
1.4 When cleaning Models 3,5, and 7, hold the inspection mirror down, use dampened cloth to clean the R/W and erase heads (C) using a circular motion
1.5 When cleaning Models 4, 6, and 8, hold autocleaner in and clean the R/W and erase heads C with a dampened cloth using a circular motion o reach the inside tracks, wrap the dampened cloth around a cotton swab.
1.6 Repeat steps 1.3 and 1.4 or 1.5 until cloth remains clean.

3803-1,2,3/3420

TAPE UNIT CLEANING PROCEDURE FOR
3420 MODELS 3 THROUGH 8
2. CLEANER BLADE, BOT/EOT BLOCK, REWIND PLUNGER, AND THREADING CHANNEL REFLECTOR
2.1 Hold the inspection mirror down, or the autocleaner in, when cleaning. Use a cotton swab dampened with tape cleaner to clean the following items.
2.1.1 BOT/EOT block ©

2.2 Use the head cleaning brush (P / N 6851781) dampened with tape cleaner to clean the cleaner block Θ. Wipe with cloth

2.1.2 Rewind plunger/filler block ©
2.1.3 Threading channel reflector (c)

3803-1,2,3/3420

$\begin{aligned} & \text { XHOBOO } \\ & \text { Seq } 10 \text { 2 } \end{aligned}$	2738018	See EC History	845958 1 Soe 79	847298 15 15			

TAPE UNIT CLEANING PROCEDURE FOR 3240 MODELS 3 THROUGH 8
3. TAPE TRANSPORT
3.1 Install capstan cover (C)

3.2 Dampen cotton swab with tape cleaner and clean the following:
3.2.1 Front and back guides (0).

3.2.2 D-bearing (1)

3803-1,2,3/3420

XH0600	2736018	See EC	845958	847298

3.3 Use a lint-free cloth dampened with tape cleaner to clean the following:
3.3.1 Threading plates $(\mathbb{\omega}$.
3.3.2 Back of inner door ©

3.3.3 Back wall \boldsymbol{P} and sides $\boldsymbol{0}$ of vacuum columns

3.3.4 Air bearings (©. Note: If residue remains in vacuum column corners, perform steps 3.3.5 and 3.3.6, otherwise go to step 3.4.
To remove stubborn residue in corners of vacuum columns-
3.3.5 Put clean felt pad on handle making sure the handle does not go through the end of pad.
3.3.6 Dampen felt pad with tape cleaner and clean vacuum column corners as shown (5. Make sure no contact is made with capstan cover and/or capstan.
Caution: You may need to use water to remove Caution. You may need to use water to remove residue left in the vacuum columns by some tapes. Water will damage the capstan.
3.3.7 Use a lint-free cloth dampened with tape cleaner to remove any residue left by the felt pad.
3.4 Check bottom of vacuum columns (1) for bits of tape and remove if present.
3.5 Remove capstan cover and replace in storage area.

85-003

C subsystem preventive maintenance (Cont'd)

TAPE UNIT CLEANING PROCEDURE FOR

 3420 MODELS 3 THROUGH 84. CAPSTAN CLEANING-NORMAL PROCEDURE

This procedure must be done at regular intervals by the customer. Tape will slip on a dirty capstan while accelerating.
Caution: Any capstans not kept free of glaze will eventually build a deposit that cannot be removed by a reasonable amount of scrubbing
4.1 Wrap a clean, dry cloth around one index finger and a lint-free cloth dampened with tape cleaner around the other index finger.
4.2 Vigorously wipe the capstan rubber with the dampened cloth (without bending the capstan) while rotating the capstan with the
Collotcovered finger (U)
4.3 Continue this procedure until the capstan has definite dull rubber finish. Any glaze must be removed in order to operate reliably.
4.4 If the glaze cannot be removed, follow the specia Glazed Capstan Cleaning procedure on page 08-700

5. FILE REEL HUB
5.1 With a lint-free cloth dampened with tape cleaner use a light pressure to clean the following
5.1.1 Back rubber flange V .
5.1.2 Rubber ring \mathbf{W} or rubber pads on some models.
6. CARTRIDGE RESTRAINT
6.1 Use a lint free cloth to clean lower restraint This metal is porous and the air flow can be estricted by using fluids or abrasive materia during cleaning.

3803/3420 PREVENTIVE MAINTENANCE SCHEDULE
3420 Tape Unit

Code		Location Operation	Frequency	Action
U	R			
0		Door Slide and Stop Pin	4 months	Lubricate the door slide and the stop pin with IBM \#17.
		General Cleaning	4 months	1. Clean front deck and base. 2. Remove tape cleaner block and clean with tape cleaner. 3. Remove air bearing (D bearing) next to EOT/BOT block and clean. Inspect guide behind bearing and replace if grooved. 4. Clean NRZI guides. 5. Clean EOT/BOT channel mirror. 6. Clean the fiber optic lamp. Use a tissue lightly moistened with water. Caution: Allow lamp to cool before cleaning. Remove the manifold and fiber bundles to provide access to the lamp. Replace the lamp (08-620) if it is not clear. Note: Cleaning or optic lamp may require the readjustment of the EOT/BOT and capstan squaring.
		Capstan Tach Squaring Circuit	4 months	Check and adjust Capstan Squaring. See 08-120 or 08-130. Ensure capstan is free from dents and does not bind.
		Capstan Tracking	4 months	Check and adjust Capstan Tracking. See 08-000.
		EOT/BOT	4 months	Check and adjust EOT/BOT. See 08-580.

Code		Location Operation	Frequency	Action
0	R			
		еот/bот	12 months	Remove EOT/BOT by emoving the two screws and gently move block forward being careful not to damage the fiber bundles if present. Clean EOT/BOT with a cotton swab dampened with tape cleaner. Replace EOT/BOT block.
		Capstan Motor Mod-8	12 months	Clean screens on back of motor with vacuum cleaner.
		Radius Sense	12 months	Clean the ends of the fiber optic bundle if present with a damp cloth, see 08-610 for removal. Apply a felt pad to the handle and lightly dampen with tape cleaning fluid. Hold pad to the inside front of left reel flange and spin by hand. This will clean the reflective strips located inside the left reel.
		Reel Tach	12 months	Check reel tachs for glaze. Replace reel tachs if glazed.
		$\begin{aligned} & \text { Glass Bead } \\ & \text { Tape } \end{aligned}$	12 months	Inspect glass bead tape on stubby bar and in vacuum columns. See note. Ensure that stubby bars are not loose and have proper clearance. See 08-000.
		High Speed Rewind Plunger	12 months	Check operation of the High Speed Rewind Plunger. (08-000) Models 3, 5 , and 7 only.
		Autocleaner Check	12 months	1. Check operation of autocleaner by marking the ribbon and observing tibbon should m. The bottom to top. 2. Check the supply of autocleaner ribbon. Order a new autocleaner cartridge when approximately $3 / 4$ inches of ribbon is visible through the cartridge window. Models 4, 6, and 8 only.
		Preamps	12 months	Check and adjust preamps (08-290 or 08-300).

| Code | | Location
 Operation | Frequency |
| :--- | :--- | :--- | :--- | Inspect the

columns.
Replace if the glass bead is nicked, scratched, burred or has an eea obviously won to the touch. (Iff not obviously worn, do no eplace).
Run finger on the glass bead surface at the bottom of the vacuum eference.

A worn glass bead surface will cause tape motion problems.

3803 Control Unit

Code		Location	Action	
U	R	Operation	Frequency	
0		Air Filter	2 months	Check cooling air filter for restriction of ar ar flow. Clean or replace as required.
2		dc Voitage	6 months	Check dc voltages. Adjust as required to the levels specified on decals.

INTRODUCTION

This section contains installation instructions for the IBM 3803 Model $2 / 3420$ Magnetic Tape Subsystem. IBM 3803 Model $2 / 3420$ Magnetic Tape Subsystem.
Companion publications pertaining to this product are:

1. 3803 Model $2 / 3420$ Subsystem Description GA32-002 1
2. 3420 Model 4, 6 and 8 Parts Catalog, S132-0007
3. 3803 Models 1 and 2 Parts Catalog, S132-0004
4. 3420 Operator's Guide Card, S232-0003
5. 3803/3420 OLT Users Guide

Safety Note: Ensure your own safety by using caution at all times and by being aware of potentially dangerous areas of the machine. Read and follow the safety suggestions in Form 229-1264, a pocket-sized card issued to all customer engineers and reprinted at the front of
this manual. this manual.
Caution: No portion of this procedure is to be omitted. Perform all steps including checks and adjustments.

INSTRUCTIONS

Perform the following basic steps for each 3803 Model $2 / 3420$ installation, regardless of the subsystem configuration:

1. Refer to the checklist on 90-020 and initial each box when an installation procedure is completed.
2. Complete the configuration worksheet on 90-040. Refer to the instructions on 90-030.
3. Unpack units. (See Unpacking Instructions on this page.
Note: Before moving 3420 tape units into place, be sure to remove packing tape from the air flow mercury switch and install the front kickplate. Check ESD grounding. See 90-190, F7 and F8 before moving machines into place.
4. Remove the wire seal from the 3803 and 3420 's, 90-180, only at this time.
5. Install four caster locks.
6. Install front and both side kickplates. See 90-090.
7. Install rear kickplate. See 90-090.
8. Install and plug cables. See $90-050$ through 90-080.
Note: The tag and bus cable pairs must be of equal length. Paired cables of unequal length cause timing errors resulting in hard-to-diagnose subsystem problems.
9. Plug address/feature/priority card jumpers to match configuration requirements, see 90-110.

Note: Check the factory-installed items such as card jumpering, and all card and cable seating. Particularly check the write head and read head card seating 10. Rework the 3420 Field Tester, see 90-170.

Note: Make sure customer's power matches subsystem requirements. Check for correct blower and motor rotation.
11. Perform power supply checks and note special tape unit power supply requirements, see 90-180
12. Perform all checks and adjustments on 90-190.
13. Run system diagnostics on 90-200. (Refer to User's Guide.)
14. If any Emulator is run on a $S / 360$, install jumper, see 90-200.
15. Generate a read only tape, on 90-200.

Note: It is possible to combine 3803 Models 1 and 2 in one subsystem. Be sure your customer 2 in one subsystem. Be sure your customer cannot address any 3420 Models 4, 6, or 8 tape units.

UNPACKING INSTRUCTIONS

Unpack tape control and tape units.
Refer to Unpacking Instructions, which are in a plastic envelope attached to each unit. Move discarded packing material away from work area. File Unpacking instructions for future reference if tape subsystem is to be moved.

CHANNEL ATTACHMENT

The 3803 Model 2 at 6250 bpi will attach to these ystems via the indicated channels:

System	$3420-8$	$3420-6$	$3420-4$
$370 / 195$	$2860 / 2880$	$2860 / 2880$	$2860 / 2880$
$370 / 168$	$2860 / 2880$	$2860 / 2880$	$2860 / 2880$
$370 / 165-2$	$2860 / 2880$	$2860 / 2880$	$2860 / 2880$
$370 / 165$	$2860 / 2880$	$2860 / 2880$	$2860 / 2880$
$370 / 158$	BKMPX	BKMPX	BKMPX
$370 / 155-2$	BKMPX	BKMPX	BKMPX
$370 / 155$	BKMPX	BKMPX	BKMPX
$370 / 145$	SEL	SEL	SEL
$370 / 135$	SEL	SEL	SEL
$360 / 195$	$2860 / 2880$	$2860 / 2880$	$2860 / 2880$
$360 / 91$	2860	2860	2860
$360 / 85$	$2860 / 2880$	$2860 / 2880$	$2860 / 2880$
$360 / 75$	2860	2860	2860
$360 / 65-67$	2860	2860	2860
$360 / 50$	N/A	N/A	SEL

3803-2/3420

| XJO100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Seq 2 of 2 2 | | 2736020 |
| :---: |
| Pear Number |

C C C C C SUBSYSTEM INSTALLATION (Cont'd)

INSTALLATION CHECKLIST

3803-2 TAPE CONTROL

Installation Procedure	Reference Page	Initial Box When Completed
Configuration Worksheet	$90-030$	
Unpacking	$90-000$	
Cables	$90-060$ $90-070$ $90-080$	
Cable Retaining Bar	$90-060$	
Kickplates	$90-090$	
Address/Priority/Feature Pugging	$90-110$	
Card and Cable Seating	$90-000$	
Operator's Panel Labels	$90-160$	
Wire Seal Removal	$90-180$	
Check Capacitor Mounting Screws	$90-180$	
Power Supply Checks	$90-180$	
ESD Check and Adjustment	$90-190$	
System Diagnostics	$90-200$	
Emulator (If applicable)	$90-200$	
Generate READ oNLY Tape	$90-200$	

Installation Procedure	Reference Page	Initial Each Box When Completed							
		0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F
Unpacking	90-000								
Cables	$\begin{aligned} & 90-060 \\ & 90-070 \end{aligned}$								
Caster Locks	90-000								
Kickplates	$\begin{aligned} & 90-090 \\ & 90-100 \end{aligned}$								
Field Tester Conversion	90-170								
Wire Seal Removal	90-180								
Power Supply Checks	90-180								
Checks and Adjustments	90-190								
System Diagnostics	90-200								

CONFIGURATION WORKSHEET

INSTRUCTIONS

Complete the configuration worksheet on Page 90-040 for your installation. Check customer requirements before configuring each system. When installation is completed, place worksheet in the front of subsystem ALDs and keep as a subsystem cabling history.
Complete all applicable blocks in the worksheet for each 3803 tape control:
1 Indicate each 3803 serial number in decimal
$[2$ Indicate processing unit/Channel identity and cable numbers.

3 Assign an address to each 3803 tape control in hex (bits 0-4, Example: 18X/3BX).
4 Assign "Select Out" priority ("high"/"low") for each interface by checking applicable box.
5 Indicate features installed on each 3803 tape control.
6 Assign 3420 addresses to each 3803 . Check the 0-7 (low order) block on one "host" 3803, and the 8-F (high order) block on the other "host" 3803.
7 Draw in cabling for your configuration and insert cable key numbers.

3803-2/3420

XJO200 Seq 2 of 2	2736021 Part Number	See EC History	845958 1 Sep 79				

C C C C C C sUBSYSTEM InStallation (Cont'd)

3803-2/3420

XJO30300	2736022
seal	

Soa 1 of 2	Part Number	$\begin{array}{l}\text { Soe EC } \\ \text { History }\end{array}$

845958
1 Sep 79

$1590 p$	
79	15 Aug 83

$90-040$

SECTION A: DEVICE SWITCHING

feature

A-1 Tape subsystem configuration flexibility is provided by field-installable switching features that allow up to 16 tape units to be switched between four tape controls. The three device switching features available with the tape subsystem are:
2 Control Switch (2×8 or 2×16 configuration, see Figures 1 and 4 on page 90-051)
3 Control Switch (3×8 or 3×16 configuration, see Figures 2 and 3 on page $90-051$)

4 Control Switch (4×8 or 4×16 configuration, see Figures 5 and 6 on page 90-052)
A 3803 must have a Communicator installed in order to be switched. The Communicator sends tape unit selection and device interface signals to tape units 0 through 7 or 8 through F are being addressed. The location of the device switches depends on the configuration desired. For example: In a 2,3 , or 4×8 configuration, the switching feature is required only on the first 3803.

The Communicator is installed by removing the selection logic circuits and the associated device selection logic circuis and the associated device circuitry and cables to the device switches are then installed.
Using a combination of the Communicator and the 2, 3, or 4 Control Switch, two, three, or four interconnected tape controls can address a maximum of 16 tape units. Figures 1 through 6 rations and cabling.

Note:
[1] The dark gray end of the signal cable is indicated by the arrow tip. (See Figure 1 90-060.)

Figure 7. Cable Connectors

D Bus	TU7(F)
0 Tag	TU6(E)
c Bus	Tu5(0)
c Tag	TU4(C)
B Bus	TU3(B)
B Tag	TU2(A)
Pri Bus	TU1(9)
Pri Tag	Tu0(8)

Host 3803 with 4 -Control Switch feature.
(It also has the Communicator 1 feature.)

XJO300	$\begin{aligned} & 2736022 \\ & \text { Part Number } \end{aligned}$	See EC History	845958	${ }^{847298}$				

Figure 1. 2×8 Switch Option

Figure 2. 3×8 Switch Option

Figure 3. $\mathbf{3 \times 1 6}$ Switch Option

Figure 4. 2×16 Switch Option

Figure 5. 4×8 Switch Option

Figure 6. $\mathbf{4 \times 1 6}$ Switch Option

3803-2/3420

C C C C C C

SUBSYSTEM INSTALLATION (Cont'd)

SECTION B. SUBSYSTEM CABLING

B-1 Unpack the interface and power cables and lay in place.
Refer to the "Key Number" or "Connector ID" Refer "Xo the "Key Number or "Length" shown on each interface cable label when placing cables (see Figure 3).

Refer to power cable connector (see Figure 2) to ensure that power cables will be located correctly.
Caution: Ensure that the color scheme on the connectors is followed.
B-2 Plug Cables and Terminators
a. Plug cables at tape control and tape units. Each tape unit's address is determined by the position on the tape control interface panel to which its signal cable is connected.
Caution: Do not connect 3803 power cable to customer's receptacle at this time.
b. Insert terminators in "outgoing" cable positions in subsystems where "outgoing" cables 132 and 133 are not used
c. Install cable retaining bars when cabling is complete.
B-3 Observe 'from' and 'to' designations given in Figure 1, Page 90-070. Red or red-striped labels indicate 'from' end of cables; white labels indicate 'to' ends of cables.

Figure 3. Dimension Explanation " x " Dimension $=$ Distance Between Cable $Y " \& " Z " ~$
Dimension
Dimension = Distance Above the Floor from the Entry Hole to
the Connection within the the Connection within the

Total length $=$ sum of X, Y, and Z dimensions.

Figure 2. Power Cable

Note: On chrome plated tape unit signal cable
connectors, observe the color at the center screw hole

3803-2/3420

XJ0400	2736023

845958
1 Sen 79

C Copyright mimmational

SECTION B. SUBSYSTEM CABLING (Cont'd)

Figure 1. External Cables
Note: Cables are identified by either key number or connector ID.

$\begin{gathered} \text { Group } \\ \text { No. } \\ \hline \end{gathered}$	Conn. ID	$\begin{aligned} & \text { Plug } \\ & \text { Location } \end{aligned}$	Cable Group	Key No.	Cable P/N	From	To	Notes
-	-	-	129	$\begin{aligned} & 129 A \\ & 129 B \end{aligned}$	$\begin{aligned} & 2281630 \\ & 2523073 \end{aligned}$	$\begin{gathered} 3420 \text { Signal } \\ 60 \mathrm{~Hz} \\ 3420 \text { Power } \\ 60 \mathrm{~Hz} \\ \hline \end{gathered}$	3803	4, 5, 7
3920	18 (Chan A) 3B (Chan B) $1 T$ 3T (Chan A) (Chan B)		130	$\begin{aligned} & 130 \mathrm{~B} \\ & 130 \mathrm{~T} \end{aligned}$	5353920 5353920	3803	Multiplexor Channel	1,9
3920	18 (Chan A) 3B (Chan B) $1 T$ OT (Chan A) OT		131	$\begin{aligned} & 131 \mathrm{~B} \\ & 131 \mathrm{~T} \end{aligned}$	5353920 5353920	3803	Selector Channel	1,9
-	$2 B$ (Chan $A)$ $4 B$ (Chan $B)$ $2 T$ $4 T$ (Chan $A)$ (Chan $)$	$\begin{aligned} & 015-A 1 B 1 \\ & 015=-A 1155 \\ & 015-A 1133 \\ & 01 S-A 1 B 7 \\ & \hline 015 \end{aligned}$	132	$\begin{aligned} & 132 \mathrm{~B} \\ & 132 \mathrm{~T} \end{aligned}$	5353920 5353920	3803	Control Unit	1.9
-	$\begin{aligned} & 28 \text { (Chan A) } \\ & 4 B \text { (Chan B) } \\ & 2 T(\text { Chan A) } \\ & 4 T \text { (Chan B) } \\ & \hline \end{aligned}$	01S-A1B1 $01 S-A 1 B 5$ $01 S-A 1 B 3$ $01 S-A 187$ $01 S-A 1 B 3$ $01 S-A 1 B 7$	133	$\begin{aligned} & 1338 \\ & 1337 \end{aligned}$	5353920 5353920	3803	Channel-Channel Adapter	1,3,9
1178	5A (Chan A) $7 A(C h a n ~ B)$	$\begin{aligned} & \mathrm{J} 11 \\ & \mathrm{~N} 13 \end{aligned}$	134	134A	5351178	3803	Channel EPO	2
1178	9A	01U-A1	135	135A	5351178	3803	2065/2167	8
6456	$\begin{aligned} & 118 \\ & 1119 \\ & \hline \end{aligned}$	01T-A1A5 01T-A1A6	136	$\begin{array}{r} 136 \mathrm{~B} \\ 136 \mathrm{~T} \\ \hline \end{array}$	5466456 5466456	3803 No. 2	3803 No. 1	4
6456	$\begin{aligned} & 118 \\ & 1119 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O1T-A1A5 } \\ & 01 T-A 1 A 6 \\ & \hline \end{aligned}$	137	$\begin{array}{r} 1378 \\ 137 \mathrm{~T} \\ \hline \end{array}$	5466456 5466456	3803 No. 1	3803 No. 2	4
6456	$\begin{aligned} & 138 \\ & 13 T \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O1T-A1A3 } \\ & 01 T-A 1 A 4 \\ & \hline \end{aligned}$	138	$\begin{array}{r} 1388 \\ 138 T \\ \hline \end{array}$	5466456 5466456	3803 No. 1	3803 No. 3	4
6556	$\begin{array}{r} 138 \\ 13 T \\ \hline \end{array}$	$\begin{aligned} & \text { O1T-A1A3 } \\ & 01 T-A 1 A 4 \\ & \hline \end{aligned}$	139	$\begin{array}{r} 1398 \\ 139 \mathrm{~T} \\ \hline \end{array}$	5466456 5466456	3803 No. 2	3803 No. 3	4
6556	$\begin{array}{r} 15 B \\ 15 T \\ \hline \end{array}$	O1T-A1A1 01T-A1A2	140	$\begin{aligned} & \begin{array}{l} 140 B \\ 1407 \end{array} \end{aligned}$	5466456 5466456	3803 No. 1	3803 No. 4	4
6556	$\begin{aligned} & 158 \\ & 15 T \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O1T-A1A1 } \\ & 01 T-A 1 A 2 \\ & \hline \end{aligned}$	141	$\begin{array}{r} 141 \mathrm{~B} \\ 141 \mathrm{~T} \\ \hline \end{array}$	$\begin{aligned} & 5466456 \\ & 5466456 \\ & \hline \end{aligned}$	3803 No. 2	3803 No. 4	4
-	-	-	142 or 129	$\begin{aligned} & 142 \mathrm{~A} \\ & 142 \mathrm{~B} \end{aligned}$	2281630 2521595	$\begin{gathered} 3420 \text { Signal } \\ 50 \mathrm{~Hz} \\ 3420 \text { Power } \\ 50 \mathrm{~Hz} \\ \hline \end{gathered}$	3803	4, 5, 6, 7
143	1 A	Signal	143 or (143)	143A	2281630	$\begin{gathered} 3420 \text { Signal } \\ 60 \mathrm{~Hz} \\ \hline \end{gathered}$	3803	4, 6, 7
144	3 A	Power	144 or (144)	144A	2523073	$\begin{gathered} 3420 \text { Power } \\ 60 \mathrm{~Hz} \\ \hline \end{gathered}$	3803	6,7
145	3 A	Power	-	-	2521595	$\begin{gathered} 3420 \text { Power } \\ 50 \mathrm{~Hz} \end{gathered}$	3803	6.7

Figure 2. Channel Cable Maximum Length for 6250 bpi.

Systom	$\begin{aligned} & \text { From }{ }^{3803-2} \\ & \text { With } \end{aligned}$	To Channel	Length - Feet (Meters)
s/360	3420-8	$\begin{array}{r} 2860 \\ 2880 \\ \hline \end{array}$	$\begin{aligned} & 72(22,0) \\ & 119(36,3) \end{aligned}$
S/370	3420-8	$\begin{aligned} & 2860 \\ & \text { Mod } 135 \end{aligned}$	72 (22,0)
		Mod 155 Mod 158	103 (31,4)
		$\begin{array}{\|c} \text { Mod } 145 \\ 2880 \end{array}$	119 (36,3)
4331	3420-6/8	None	N/A
	3420-4	BYTEMPX*	$103(31,4)$
All Other Systems	3420-8	BKMPX*	119 (36,3)
* Tape operations allowed only when all other byte channel devices are quiesent.			

Notes:

[1] To attach eight or less tape controls to one channel, the last tape control must be attached to the channel with a sum of no more than 200 feet $(61,0 \mathrm{~m})$ of cable. If the tape control is attached to a $3420-6$, subtract 15 feet $(4,5 \mathrm{~m})$ for each intervening control unit between the channel and the last tape control. If the tape control is attached to a $3420-8$, subtract 20 feet $(6,1 \mathrm{~m})$ for each intervening control unit between the channel and the last tape control (see Note 10). For cabl length limitations when attaching a 3803-2 at 6250 BPI , see Figure 2.
[2] Sequence and Control (EPO).
[3] Channel to channel adapter (Sales Feature 1850).
[4] Total cable length from a 3420 tape unit to the most remote 3803 tape control must not exceed 120 feet $(36,6 \mathrm{~m})$. (Group 129 or 142 , or 143 , plus group 136-141.)
[5] Includes both signal and power cable. A maximum of eight 3420 tape units can be connected to each 3803 Tape Control 1 and 2. Tape units cannot be connected to tape control 3 and 4 for power requirements unless they are used with cable group 144.
[6] Parenthesis indicates cables to be used in World Trade countries for 60 Hz machines.
[7] When the number of 3420 s to be connected to a 3803 Model 2 exceeds the limitations of power (60 Hz), each extra 3420 tape unit may be supplied power by another 3803 tape control using cable group 144. Cable group 143 is available to signal attach tape units using cable group 144 With SF9001 installed, the 3803 Model 2 may power a total of eight 3420s (any model).
[8] For use with remote channel switch special feature.
[9] Part number 5466456 (24 Signal) may be substituted for 5353920 (20 Signal) for cable group numbers 130, 131, 132 and 133.
[10] Terminators are required when the 3803 is the last control unit in a chain or the only control position) or 2282675 (24 position) bus posininators and either 5808324 (20 pus terminators and either 5808324 (20 position) or 2282676 (24 position) tag terminators as determined by the number of signal lines per
cable.

Example:

200 feet $(61,0 \mathrm{~m})$ (Maximum 200 feet $(61,0 \mathrm{~m})$ per Figure 2)
-30 feet $(9,0 \mathrm{~m})(T w o$ intervening $\mathrm{CU}=2 \times-15 \mathrm{ft})$
170 fer
170 feet ($52,0 \mathrm{~m}$) Maximum cable length that can be used

C SUBSYSTEM INSTALLATION (Cont'd)

SECTION B. SUBSYSTEM CABLING (Cont'd)

Caution: Refer to ALD AA005 Feature Plug List before installing a replacement logic board. Notes:
Two-channel switch diagnostics AD through AG can only be run when both channel interfaces are cabled to the same central processing unit. If it is necessary to run diagnostics $A D$ through $A G$ during initial checkout, plan temporary cabling to meet this requirement.
[1] Both EPO cables must be plugged if the two channel switch feature is installed, and the two channels are not on the same processing unit or not on the same channel frame. Remove any temporary jumper plugs.
[2] For cable, part 5466456 (48 pin), use terminator, part 2282675 (bus) and 2282676 (tag)
For cable, part 5353920 (40 pin), use terminator, part 5440649 (bus) and 5440650 (tag).
[3] Panel Y 1 is located in position 01A-A3 unless the 3803-2 has optional features installed. On feature machines, panel Y 1 is located in positon $01 \mathrm{X}-\mathrm{Y}$
[4] For cable group number, key number, part number to and from relationship, see Figure 1 on 90-070.

* Cables plugged when the two-channel switch feature is present.

SECTION C. KICKPLATES

C-1 Install 3803 front and rear kickplates and 3420
rear kickplates as shown in Figure 1.

1. Attach pins, nuts, and retaining clips to front and rear frame members of the 3803 and rear frame member of each 3420 as shown in Figure 1.
2. Mount kickplates by pushing brackets onto pins. Clips must be positioned below lower flange of brackets.
Note: Leave 3420 rear kickplates off until cabling is complete.
3. Turn nuts on pins to level kickplates.
4. If necessary, realign 3803 covers after kickplate installation.

C-2 Install 3420 front kickplates as shown in Figure 2.

1. Install front kickplates before moving tape units into place.
2. Elongated holes in the bracket allow kickplate to be leveled and adjusted to clear the front cover

Figure 1. 3803 (Front and Rear Kickplates) 3420 (Rear Kickplates)

3803 (Front and Rear)

Figure 2. 3420 (Front Kickplates)

XJ0500 Seq 2 of	2736024	See EC History	845958 1 Sep 79	$\begin{gathered} 846927 \\ 20 \text { Jun } 80 \end{gathered}$	847298 $15 \text { Aug } 83$		

sUBSYSTEM INSTALLATION (Cont'd)

SECTION C. KICKPLATES (Cont'd)

C-3 Install 3803 and 3420 side kickplates as shown in Figure 3.

1. Install side kickplates only on the machines at each end of a group. Use screw P/N 731629.
2. Open or remove covers to attach kickplates. Use 12 -inch (305 mm) kickplate, part 2501286 (notched corner), on cover adjacent o tape unit power door hinge. Use 13 $1 / 8$-inch (333 mm) kickplate, part 5356406 , on remaining side covers for 3420 tape units and 3803 tape controls.

C-4 Typical Subsystem Configuration
Sufficient side kickplates, parts 2501286 and 5356406 , are shipped for the configuration shown in Figure 4. Kickplates are not provided for installation between adjacent tape units. Order additional side kickplates by MES, if needed for other configurations
C-5 Install caster locks (4each), P/N 280336.

Figure 3. 3803, 3420 Side Kickplates

Figure 4. Subsystem Configuration

SUBSYSTEM INSTALLATION (Cont'd)

SECTION D. TAPE CONTROL

 ADDRESS/FEATURE/PRIORITY CARDPLUGGING
D-1 3803 Address (Channel "A"): Verify factory plugging.

D-2 Disconnect-In Handling: $\mathrm{S} / 360$ or $\mathrm{S} / 370$.

Plugging Data

$360 \begin{aligned} & \text { Plug } 360 \text { if either Chan A (or B with } 2 \text { CSS is connected to any } \\ & \text { channel thet does not have disconnect in handling capability. }\end{aligned}$
370 Plug 320 if Chan A (and B with $2 C S$) is concoted to any

3803-2/3420

$\begin{array}{l}\text { XJO600 } \\ \text { Seq } 2 \text { o } 2\end{array}$	$\begin{array}{l}2736025 \\ \text { Par Number }\end{array}$	$\begin{array}{l}\text { Seie EC } \\ \text { History }\end{array}$	$\begin{array}{l}845958 \\ 1 \text { Sep } 79\end{array}$	$\begin{array}{l}846927 \\ 240 \text { Jun 80 }\end{array}$	$\begin{array}{c}847298 \\ 15 \text { Aug 83 }\end{array}$			

C C C C C C

 subsystem installation (Contd)
SECTION D. TAPE CONTROL ADDRESS/

 FEATURE/PRIORITY CARD PLUGGING
(Cont'd)

D-3 Select Out Priority:
Tape controls are factory-wired to respond to a select out signal (high priority). If ("low
priority") is desired, change the B2 panel
wiring to convert a 3803 tape control to respond to a select in signal. Refer to wiring charts
below for rework.

High' Priority (3803 Responds to 'Select Out')		$\begin{gathered} \text { 'Low' Priority } \\ \text { (3803 Responds to 'Solect } \\ \text { In') } \end{gathered}$	
Channel A (FC281)			
From	To	From	To
V4D09 T4B08 S2P 11	$\begin{aligned} & \text { S2P09 } \\ & \text { V4B08 } \\ & \text { T4D09 } \end{aligned}$	V4009 T4B08 S2P11	$\begin{aligned} & \text { T4D09 } \\ & \text { S2PO9 } \\ & \text { V4B808 } \end{aligned}$
Channel B (XM181)			
From	To	From	To
U6C02 U4808 R2P11	R2PO9 U6B04 U4D09	U6CO2 U4808 R2P11	$\begin{aligned} & \text { U4DO9 } \\ & \text { R2PO9 } \\ & \text { U6B04 } \end{aligned}$

D-4 Features (when applicable to your machine):
a. Two Channel Switch Feature: Verify factory plugging.

b. Two-channel switch feature (3803 Address Channel "B"): Verify factory plugging.

c. NRZI Feature: Verify factory plugging

3803-2/3420

SECTION D. TAPE CONTROL
 ADDRESS/FEATURE/PRIORITY CARD
 PLUGGING (Cont'd)

D-5 Primary/Secondary Tape Unit Interface Control:
a. With device switching capability.

b. With selection logic (1×8)

D-6 a. Data In Handling: S/360 or S/370

Card row

Note: Data Flow Check asymmetry. Do not change jumpers unless card is replaced. This is a factory adjustment only.
b. If you have Selection Logic (2×8), go to step $\mathrm{D}-9$ on page $90-160$, if device entry, else go to 90-180.
If you have $2 \mathrm{x}, 3 \mathrm{x}$ or 4 x switch, proceed to step D-7 on page 90-140.
.
*360 Plug 360 if the attached channel does not have data in/data out capability.
**370 Plug 370 if the attached channel has data in/data out capability.
If attached to a 2880 channel, bus out checks may occur if channel timings are not optimized. The 2880 must be at EC718040 level or higher.
*W/O 2CS—Channel B may be plugged to 360 or 370 since it is not used.

SECTION D. TAPE CONTROL
ADDRESS/FEATURE/PRIORITY CARD
PLUGGING (Cont'd)
D-7 Tape Switching Feature Address Control: Change or verify jumper plugging of host 3803 tape controls only

1. For installations with less than a full
complement of 3420 tape units (for example, 2×12), plug all cards present as if the non-existent tape units had addresses assigned to them.
Jumper cable locations for switch cards:
2. As each switch card is pulled, refer to the chart on Page 90-150 and verify that device selection priority assignments are correct.

3803-2/3420

XJ0800	2736027	See EC History	845958					

SECTION D. TAPE CONTROL

ADDRESS/FEATURE/PRIORITY CARD

PLUGGING (Cont'd)

D-8 Device Selection Priority Assignments: Verify that factory plugging of priority jumpers on the switch cards is correct.

Plugging Rules:

. A priority must be assigned to each set of cards.
2. No duplication of priority should exist between sets of cards in one 3803 tape control.
3. All cards must have T23-U23 connected by a jumper wire.
4. Factory plugging for these cards should be as shown, and should not have to be changed for any installation.
5. This plugging establishes priority; if two 3803s try to access the same 3420 tape unit simultaneously the 3803 with the least number of jumpers will take control.

3803 Switch Path "C

803-2/3420

$\begin{aligned} & \text { XJ0 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2736027 \\ & \text { Part Number } \end{aligned}$	See EC History	${ }^{845958}$				

C Cubsystem installation (Conted)

SECTION D. TAPE CONTROL ADDRESS/FEATURE/PRIORITY CARD PLUGGING (Cont'd)

D-9 Apply labels to tape control operator's panel as shown.
a. Operator's Panel Labels

For the 3803 that "hosts" tape units 0-7:

1. Use labels furnished to indicate addresses of tape control associated with each group of operator panel switches
2. Apply 3420 address labels $0-7$ above each group of switches as shown

b. Operator's Panel Labels For the 3803 that "hosts" tape units 8-F:
3. Use labels furnished to indicate tape control addresses associated with each group of perator panel switches.
4. Apply 3420 address labels $8-\mathrm{F}$ above each group of switches as shown.

FIELD TESTER CONVERSION

Do the following rework to make the field tester compatible with 3420 Models 4, 6, and 8. The new EC Level is 734316 . (The field tester remains compatible to 3420 Models 3, 5, and 7.)

1. Remove the four screws from the bottom of the tester. Then remove the cover. Check the probe side of the card/connector socket block
a. If connections are made by means of a printed circuit card, replace the cover and four retaining screws, then skip to step 7.
b. If connections are made by means of wire wrapping, proceed to step 2.
2. Remove the logic card, unplug the signal cables, and slide the connector block out.
. Delete yellow wire from B1G02 to A2B13.
3. Add \#30 gauge SLT wire from B1J05 to A2B13.
4. Reassemble the tester: slide the connector block into the tester, plug the cables, and install the logic card.
5. Replace the cover and the four retaining screws.

7 Install label, part 1845758, to the right of the data rate switch $(8,16,32)$ as shown
© Install label, part 1845760, over the existing instructions (1-3) on top of the tester.
9. Before converting a Model 3,5, or 7 tape unit to a Model 4, 6 , or 8 , take the tape unit offline. Then connect the field tester.
Note: Simulate a Model 4, 6, or 8 by grounding N5B02 on the tape unit.
10. Mount and load a CE work tape. Then set the field tester to WRITE CONTINUOUS. See 80-020.
11. Scope test point A1H1B11 (-WRITE DATA TRACK P), at the tape unit. Observe a full write cycle period and compare to the chart below. Make sure the data rate switch is set correctly for the tape unit model being used.
Note: Times are nominal and are given in microseconds. Tolerance is $\pm 5 \%$

Model	Data Rate Switch Position			
	$\mathbf{8}$	$\mathbf{1 6}$	$\mathbf{3 2}$	$\mathbf{6 4}$
3	32.8	16.4	8.2	-
4	-	16.4	8.2	4.1
5	20.0	10.0	5.0	-
6	-	10.0	5.0	2.5
7	12.4	6.2	3.1	-
8	-	6.2	3.1	1.6

Note: Take any 3420 tape unit Incident Report (IR) and code your time, using Service Code 33, ECA \#991.


```
1. Unload drive before plugging or unplugging tester.
2. Place tape unit in off-line status.
```

4. Jumper K2P02-M2D06 for 6250 operation.

SECTION E. POWER SUPPLY CHECKS

E-1 Remove the wire seal from the 3420 tape unit $J 1$ power connector, and the wire seal from around the 3803 Model 2 power plug.
E-2 With power off, check the 18 filter capacitor mounting screws on the 3803 Model 2 tape ontrol's $+6 v$ and $-4 v$ power supplies. If loose ger-torque and damage the power board ver-torque and damage the power board. Also connections. (See 08-575.)

E-3 With power off, check that the customer's supply voltage matches that shown on the voltage rating label

Note: To connect a 3803 tape control for operation at a different input voltage, refer to

3803 logic page YFO10 (60 Hz) or YFO15 $(50$ Hz).

See Page 08-570 to determine if each tape unit has a modified power supply. Then, refer to logic pages listed for the connections to be changed:

Frequency Logic Pages Affected

(Model 3, 5,
60 Hz
YBO
$50 \mathrm{~Hz} \quad \begin{gathered}\text { YB010*, } \\ \text { YBO15*, } \\ \text { YBO2O\#, } \\ \text { YBO25\#, YBO30\# }\end{gathered}$
(Model 4. 6, 8)

- For tape units with "Modified"
\# For all tape units.
E-4 Customer Power Phasing
Check three-phase ac power receptacles to ensure proper motor rotation in each unit. Any improper phasing must be corrected before power is applied to the subsystem
E-5 With power on, check that all blowers and motors operate correctly.
a. Incorrect phasing of input voltage causes the tape unit pneumatic supply motor to turn backward, preventing the tape unit from ading.
b. The cooling fan assembly blower motor in the tape unit will run backwards. Remove filter from machine and observe the direction of the fan as power is dropped. Fan should turn clockwise when viewed from below. (See arrow.)
Note: All blowers in the tape control are single phase.
E-6 Mount and load a tape. Using a Digital Voltmeter, part 453585, 453046, or equivalent velies are within the tolerances listed supplies are within the tolerances listed:

Tape	Unit Models 3, 5, and 7: Test Point	Tolerance (Note 1)
${ }_{4.05 v}^{6 v}$	A1G1E09-A1G2D08 A1N3D02-A1N3D08	$\begin{aligned} & \pm 0.1 v \\ & \pm 0.05 v \end{aligned}$
3420 Tape	Unit models 4, 6, and 8: Test Point	Tolerance (Note
-6v	A1G2B11-A1G2DO	± 0.1

+6v A1G2B11-A1G2D08
$\stackrel{ \pm 0.1 \mathrm{v}}{ \pm 0.05 \mathrm{v}}$
Note 1: Ripple specifications for -4 v and +6 v are 24 mv peak-to-peak. Measure at power supply. Refer to DC Logic page
for your machine for TB locations. (YBO2O, YBO25 or YFO2O YFO25)
3803 Tape Control
Test Point
6v B2S2M11-B2S2DO8
Tolerance (Note 2)
$4.0 \mathrm{v} \quad$ A2T4BO6-A2T4DO8 $\quad \pm 0.01 \mathrm{v}$
Note 2: Ripple specification for -4 v is 80 mv peak-to-peak and for
-6 v is 10 mv peak-to-peak. Measure at power supply
Caution: A ground loop has been purposely installed in the 3803 tape control for electro-static discharge (ESD) control. The installed ground loop is in the tape signal tail ock for
位
ed at the factory for ground loops.

$\begin{aligned} & \text { XJ1000 } \\ & \text { Seq } 1 \text { of } 2 \end{aligned}$	2736029 Part Number	See EC History	$\begin{gathered} 845958 \\ 1 \text { Sop } 79 \end{gathered}$	846927 20 Jun 80			

SECTION F. CHECKS AND

ADJUSTMENTS

Note: Make sure the write head card is seated properly before continuing.
This section outlines checks, adjustments, and tests to ensure that the tape units and tape controls operate normally when the subsystem is turned over to the customer. See "Checks, Adjustments, Removals, and Replacements" sections of this manual for details.
F-1 Altitude Vacuum Level Setting-3420
Using a water manometer with a pressure divider: or a pressure/vacuum gauge, part 5495384 , measure the vacuum according to the decal on
the transfer valve. If incorrect:
a. 3420 Models 3 through 7 :

Check that the vacuum pump belt and transfer valve plug are set as shown in 08-4 10 .
b. 3420 Model 8 only:

Adjust vacuum line restrictor to obtain vacuum
shown in 08-410.
F-2 Regulator Air Pressure- 3420
Check/adjust pressure as shown in 08-405.

F-3 Capstan-3420

Caution: Allow fiber optics lamp to warm up 20 to $\mathbf{3 0}$ minutes before making adjustments
Do capstan tach adjustment. See 08-130 for Do capstan tach adjustment. See $08-130$ for
models $3,5,7$ or $08-120$ for models $4,6,8$
F-4 Mechanical Skew-3420
a. Visually check tracking before adjusting the skew plate. Perform procedure on page $08-150$ or 08-160.
b. Check that mechanical skew meets the specifications given in 08-170 (1600 and 6250 bpi) or 08-180 (NRZI).
F-5 BOT/EOT-3420
Caution: Allow fiber optics lamp to warm up

20 to 30 minutes before making the

adjustments.

Verify BOT/EOT adjustment. See 08-580.

F-6 Autocleaner Tape Direction-3420
Caution: Do not check autocleaner until tape unit has been positioned online, and just prior to returning machine to customer

Check that autocleaner tape moves from bottom to top by marking tape and observing direction. See 08-380, "Autocleaner Operational Check'

F-7 ESD Grounding - 3420 and 3803
Check that each door strike and roller assembly is adjusted correctly to ensure sufficient
electro-static discharge (ESD) grounding.
3420 lower rear door (1).
3803 upper and lower on the front and rear doors (4).
This adjustment is accomplished as follows:
a. With the screws loose, adjust the roller assembly so the door roller will latch on the strike plate.
b. If necessary, adjust the plate mounted between the strike and frame to ensure proper grounding between the plate and finger stock assembly.
Note: Check that the door latching adjustment is Note: Check
still correct.
F-8 ESD Grounding-3803
a. Check the adjustment of the ESD plates on both the left and right sides. Be sure the plates are installed with the hem toward the inside of the machine.
Caution: Be sure that the plates are not adjusted to bow too much because the plates will reverse bow when the door is closed and lose proper grounding.
b. If necessary, adjust the plates so that each one bows out sufficiently to make contact with the hat section of the side cover
c. Check the side door latch for a firm latching and adjust, if necessary.
F-9 Data Flow Clock Asymmetry
Adjustment-3803
If the A1C2 card is replaced in the 3803, see
ALD AAO10 sheet 2 of 3 , for adjustment procedure. (Originally factory adjusted.)

3803-2/3420

subsystem installation (Conted)

SECTION G. SYSTEM DIAGNOSTICS

Note: Make sure the write head card is seated properly before continuing.
G-1 Run 3420 OLTs $A-K, M-X$ and $A B$ through AG. (AB) through AG must be run under OLTSEP. AB is diagnostic for 3803s with a device switching feature. AD through AG are optional for 3803 s with the two-channel switch feature. (You must through AG.)
Note: OLT section 3420L will run only under sense switch setting (3420L/EXT=9). Verify PE clipping levels on machines with PE feature.

G-2 Verify serial numbers, EC levels, and features from the diagnostic printout.
a. If the tape control information is incorrect, see plugging chart on $90-210$, or AA010 in the 3803 ALDs.
b. If the tape unit information is incorrect, see plugging chart on 90-210, and 90-212 or A6106 in the 3420 ALDs.

G-3 When the diagnostics have run error free, generate and save for future use a read only tape in 6250 bpi mode.
a. Enter the following as shown
r 01,'DEVICE/3420A-G/fe,ext=z/'
b. To ensure that a good tape has been generated, the program must run without error. When a good tape has been generated, remove the write enable ring.
c. Mark this reel 6250 bpi READ ONLY and save for diagnostic use with Section 00-010 of the MLMs

Note: The CE should retain the output from Sections " V " and " W "' of the OLTs which will give printed table listing of all tape unit performance measurements.

EMULATOR: (If applicable to your machine)
If the 3803 is attached to a System / 360 on which any emulator is run, install a jumper on each tape unit to disable LOAD FAIL IRPT

420-3, 5, and 7, between A1H2U12 and
A1H2U08
3420-4, 6, and 8, between A1M2U12 and A1M2U08

SECTION G. SYSTEM DIAGNOSTICS
 (Cont'd)

G-4 Tape Control Serial Number/EC Level/Feature
Code: Verify from diagnostic printout that factory
Code: Verify from diagnostic printout that fact

Plugging example: tape control serial number is
10430, with 9-track feature.

C C C C C C C C C C
 SUBSYSTEM INSTALLATION (Cont'd)

SECTION G. SYSTEM DIAGNOSTICS

 (Cont'd)G-5 Tape Unit Serial Number/Model Number/EC Level/ Feature Code: Verify from diagnostic printout that factory plugging is correct on all tape units when diagnostics are run (3420) ALD A6106

Tape Model	Alpha
Model 3	A, B, P
Model 5	C, D, Q
Model 7	E, F, R
Model 4	G, H, S
Model 6	J, K, T
Model 8	M, N, U

Plugging example: Wired for model 4.

3-2/3420

	${ }^{4169688}$	See EC History	$\begin{gathered} 845958 \\ 1 \text { Sop } 79 \end{gathered}$	846927				

A

```
Abends-Theory 00-035
A/BRead and Sequencing Register 53-055
A Register 5uploys (see Power Supplies)
AC Power Supply (see Power Supplies)
5B-004
5B-004 Times,Read/Write (Subsystem
Acronyms and Abbreviations PLAN 2
Acronyms and Abbreviations PLAN 2 
Levels 00-003
*)
l
Additional Stopping Distance After Go
Address Out Active (MAP) 13-300
Address/Feature/Priority Card Plugging
M
(Installation) 90-110
    Addressing
    lon
Adjustment
    l
    AMP Sensor (NRZI-Model 3, 5, 7) 08-300
    Amp Sensor (PE Only-N,odel 3, 5, \)
    Amplitude (Model 4,6, 8/ 08-110
    BOT/EOT, Fiber Optic 08-580
    MOT/EOT Voltage 08-575
lall
    lol
    lol
    l
    ESD Grounding (3420/3803) 90-190
    Mead Mirror Stop (Model 3, 5, 7) 08-350
    Mechanical Skew (NRZ1 Feature) O8-180
    Mechanical Skew (1600 and 6250 BPI)
    Mowe. Wincow Safety Bail 08-640
    l
    Vocum Column Door 08-680
    Vacuum Column Door Glass 08-690 08-200
    Pneumatics
            lol
        Supply Flat Belt (Type 4) 08-442,
    Power Window Motor, Rack and Switch 08
    Rack and Limit Switch 08-650 
    Right Reel Hub 08-500
    M,
    M,
#
```

```
Air Pressure Check, Regulator 08-405, 90-190
```

M,

```
M,
Airfow and Voltage Monitoring
Airfow and Voltage Monitoring
    Alignments
    Alignments
        \astan (Non-90,000 series) 08-150
        \astan (Non-90,000 series) 08-150
        lol
        lol
        Mynamic M0,0064
        Mynamic M0,0064
        Marks 08-064 (Non Series) 08-060
        Marks 08-064 (Non Series) 08-060
        Static (Non-90,000 Series) 08-060
        Static (Non-90,000 Series) 08-060
        Static(With Square Sup
        Static(With Square Sup
    Mower Window 08-640
    Mower Window 08-640
Alternate Flip Fop 53-040
Alternate Flip Fop 53-040
    Corations
    Corations
        Branch On Condition: BOC (Hex Code 2 or 3)
        Branch On Condition: BOC (Hex Code 2 or 3)
        S2-885 Read from Load Point,
        S2-885 Read from Load Point,
        Branch to Read from Load Point 55-040
        Branch to Read from Load Point 55-040
        Branch Unconditional: BU (Hex Code 6)
        Branch Unconditional: BU (Hex Code 6)
        Common Start 1/O Routine 55-020
        Common Start 1/O Routine 55-020
        Logical AND: AND/ANDDM (Hex Code C or D)
        Logical AND: AND/ANDDM (Hex Code C or D)
        \ 52-070
        \ 52-070
        Logical OR: OR/ORM (Hex Code 8 or-9)
        Logical OR: OR/ORM (Hex Code 8 or-9)
        52-075
        52-075
    \
    \
    ALU1
    ALU1
    Charts 1 to 7 13-091 
    Charts 1 to 7 13-091 
    larer
    larer
        Hangs at 000 (MAP) 13-010
        Hangs at 000 (MAP) 13-010
    Hangs at O00 (MAP) 13-010 (2)
    Hangs at O00 (MAP) 13-010 (2)
    Langs on ALU2 Falure (MAP)
    Langs on ALU2 Falure (MAP)
    l
    l
    Mit 4) (MAP) 16-060
    Mit 4) (MAP) 16-060
        M, 13-250
        M, 13-250
    l
    l
    Wateren
    Wateren
    Waiting for ALU2 to Complete a 
    Waiting for ALU2 to Complete a 
    13-460,13-470
    13-460,13-470
    Waiting for ALU2 STATB Indication (MAP)
    Waiting for ALU2 STATB Indication (MAP)
    Waiting for ALU2 STATB Indication (MAP)
    Waiting for ALU2 STATB Indication (MAP)
ALU Cannot Exit or Loop (MAP) 13-370
*)
*)
    ALU2
    ALU2
        LU2 (1)
        LU2 (1)
        LU2
        LU2
    Bit 4) 16-130
    Bit 4) 16-130
    lol
    lol
    lol
    lol
                                13-410
                                13-410
                                Sense Byte
                                Sense Byte
                                13-090
                                13-090
                                180
    Supply Flat Belt (Type 4) 08-442 
    Power Window Motor, Rack and Switch 08-640
                    8-190
```

```
                        800
```



```
    Operations
```

 Operations
 Arithmetic Add: ADD/ADDM (Hex Code A or B)
 Arithmetic Add: ADD/ADDM (Hex Code A or B)
 Loo, TCS (MAP) 13-080
    ```
    Loo, TCS (MAP) 13-080
```

3803-2/3420

| XK0100 | 2736031 |
| :--- | :--- |
| Soa 1 Ot 2 | Psit Number |

| See EC |
| :---: |
| History |

845958
15909
79
Trap Failure (MAP) $13-260$
B
$\begin{array}{lll}\text { B Bus Parity Error ALU1 } & 16-030 \\ \text { B Bus Parity Error ALU2 } & 16-100\end{array}$
B Bas arity Error ALU2
Branch On Condition (BOC) Error
$\begin{array}{ll}\text { ALU1 } & 16-050 \\ \text { ALU2 } & 16-120\end{array}$
Bus In Register, Channel 52-040
Bus Out Register, Tape Unit $52-045$
$\begin{array}{ll}\text { Bus In Register, Channel } & \text { 52-040 } \\ \text { Bus Out Register, Tape } & \text { Unit } \\ \text { Card Interchanging List } & \text { I6-0015 }\end{array}$
Card Interchanging List $16-001$
Channel Bus In (CBIIRRegister $52-040$
Channel Tags In (CTI) Register $52-040$
C.ommunication Between Microprocessors
ommunication Between Microprocessors
(Description) $52-030$
Crossover (XOUTA/XOUTB) Registers 52-025
Crossover (XOUTA/XOUTB) Registers
D Bus Parity Error ALU2 16-110
D Registers 52-060
Diagnose, Loop, and Scoping Procedures
Diagnose, Loop, and Scoping Procedures
$16-0000$ Referce Information $16-000$
General Refen
16-000
General Reference Information $16-000$
High-Order ROS Registers $52-035$
High-Order ROS Registers 52 -035
High ROS/IC Parity Error On a Branch Instruction
ALu1/16-020
h ROS/IC Parity
ALU1 $16-020$
ALU2 $16-090$
How to Determine the Failing Address $16-000$
How to Make the ALU Loop on an Error $16-000$
How to Make the ALU Loop on an Error $16-000$
Linking Microprogram Routines (Description)
-030 52-030
Listings. Microprocessor (Description) 52-030
Listings. Microprocessor (Description)
Local Storage Register (LSR) $52-015$
Low-Order ROS Registers $52-035$
Local Storage Register (LSR) ${ }^{\text {52-015 }}$
Low-Order ROS Registers $52-035$
Low ROS/IC Parity Error On a Branch Instruction
ALU1 $16-010$
ALU2 $16-080$
Microprocessor
$\begin{array}{cc}\text { ALU2 } & 16-080 \\ \text { Micropocecssor } \\ \text { Clocks } & 52-005\end{array}$
Clocks $52-005$
Instructions (see ALU Operation)
Listings (Description)
$52-030$
Instructions (see ALU Operation)
Listings (Description) $52-030$
(MP1/MP2) Schematic $50-003$
Microprogram Transfer Decodes 52-101
MIST or TCS Register (MP1) $52-060$
MP1 Special Register (Hardware Errors)
MIST or TCS Register (MP1) 52-060
MP1 Special Register (Hardware Errors) $52-060$
MP2 Special Register (TU Bus In) 52-060
MP2 Special Register (TU Bus In)
Strors)
$52-060$

Parity Error ALU1 16-040
ROS 1 Trap Conditions 50-011
Second Level Diagram, ROS 1 Trap

Conditions $50-010$
Short Cycle XFR Example (Timing Chart) 16-00
Short Cycle XFR Example (Timing Chart) 16-001
Stat Registers $52-015$
$\begin{array}{lll}\text { Stat Registers } & 52-015 \\ \text { Stop Address-FRU List ALU1 } & 16-060 \\ \text { Stop Address-FRU List ALU2 } & 16-130\end{array}$
$\begin{array}{ll}\text { Stop Address-FRU List ALU1 } & 16-060 \\ \text { Stop Address-FRU List ALU } & 16-130 \\ \text { Tags In Register, Channel } 52-040 \\ \text { Tape Unit Bust }\end{array}$
Tags In Register, Channel $52-040$
Tape Unit EBus Out (TUBO) Register $52-045$
TCS or MIST Register (MP1) 52-060
$\begin{array}{lll}\text { Tape Unit Bus Out (TUBO) Register } & \text { 52-045 } \\ \text { TCS or MIST Register (MP1) } & 52-060 \\ \text { XOUTA/XOUTB (Crossover) Registers } & 52-025 \\ \text { Amplitude-Setting Sequence } & 5 B-120\end{array}$
XOUTA/XOUTB (Crossover) Registers
Ampitude-Setting Sequence $58-120$
Analysis of Damaged Tape Errors $00-012$
Analysis of IBG in
Analysis of Damaged Tape Errors $00-012$
Analysis of IBG in Developed Tape $00-013$
Analysis of IBG in Developed Tape o0-013
Analyzing Microprogram Errors $16-131$
$\begin{array}{ll}\text { Analyzing Microprogram Errors } & 16-131 \\ \text { AND, Logical (ALU Operation) } & 52-070\end{array}$
Analyzing Microprogram Errors
AND Logical (ALU Operation)
Ant
Arithmetic Add (ALU Operation)
Array Patching, Patch Card
52-103
Array Patching, Patch Card $52-103$
Asymmetry Adjustment, Clock $17-800$
Attachment, Channel (Chart) $90-010$
Attachment, Channel (Ch
Autocleaner
Adjustment
08-382

Trap Failure (MAP) 13-260
$\begin{array}{ll}\text { B Bus Parity Error ALU1 } & 16-030 \\ \text { B Bus Parity Error ALU2 } & 16-100\end{array}$
Branch On Condition (BOC) Error
Channel Bus in (CBI) Register
Channel Tags In (CTI)) Register
$52-040$
How to Determine the Failing Address $16-000$
How to Make the ALU Loop on an Error 16-000
-060^{52-060}

Adjustment 08-382

```
    Crase Head 5B-110
    lol
lol
\
Write Card Circuits 5B-110 
B
    B Bus
    B Bus (a-7 ALU1 Test Points (Table) 16-030
    Marity Error ALU1 (MAP) 
    l
Backhitch 6B-230
Mackhitch 6B-230
Backspace Brock Command 40-07 
    lol
    NM
Bad Sense Data After a Rewind from OL 
Bad Sen
Masiccecording Techniques (PE, NRZI,
6250) Duscrittion 55-007) (Concepts) 40-001 
BCDIC-EBCDIC Conversion Chart (7-Tr
Operation) 57-020
Bit Cell and NRZI Waveform 55-007 5A-115,5B-025
lol
```



```
l
Block Diagram, Device Switching
M3\times8 or 4x8
    BOT/EOT
    M,
    lol
    lol
    at BOT 2A-190 Backward or Does Not Stop
    lol
    Tape Moves Backward Off Left Reel 2B-190
    Tape Unwinds Off Right Reel or TI Light Stays
    Tape Won't Thread, Load, and Return to BOT
Correctly 6B-100
M,
MOT/EOT, Fiber Optics 
M
O8-590 LED BOT/EOT Voltage Checks/Adjustments
```

Unconditional (ALU Operation) 52-090 $\begin{array}{lll}\text { Unconditional (ALU Operation) } & 52- \\ \text { To Write From Load Point } & 55-024 \\ \text { To Read From Load Point } & 55-040\end{array}$ To Read From Load Point
Buffer Write Cycle $53-040$
Buffers, LSR $52-015$ Buffers, LSR $52-015$
Burst Commands $40-005$

c

 C Compare or P Compare Circuit Logic 17-017C Compare or P Compare Errors $17-010^{17}$
C Compare or P Compare Errors (Timing Chart)
Cable and Terminator Plugging $90-080$
$\begin{array}{ll}\text { Cable and Terminator Plugging } \\ \text { Cable Retaining Bar } & 90-060 \\ \text { Cables } 99-060\end{array}$
Cabling, Subsystem 90-060
Capstan
Adjust
Adjusters $08-060$
Adjustment Wrench (CE Tool) $\quad 80-000$
Box Wrench (CE Tooll $80-000$
Capstan To Stubby Bar Clearance $08-080$
Driv System $6 A-120,68-200$
Dynamic Alignment Tracking ${ }^{2} 90,00$ Series)
Dynamic Alignment Tracking (90,00 Series) $08-160$
Dynamic Alignment Tracking (Non-90,00)
Series) 08 -150
Glazed Cleaning Procedure 08-700
$\begin{array}{lll}\text { Major Elements of Ceastan Control logic } & 68-205 \\ \text { Motion Checks (Motion Appears Normal) } & 6 \mathrm{~B}-020\end{array}$ Motion Control $6 \mathrm{~A}-000$, Motion Failure Symptoms $68-000,6 B-140$ Motor and Controls CA-120, 6B-200
Motor Proportional Drive Control $6 \mathrm{~B}-215$
Motor Proportional Drive Control
Motor Status $3 A-030,3 B-030$
Motor Waveforms $6 A-002$
Motor Waveforms 6A-002
Normal Cleaning Procedure $85-00$
Pulse Generator $6 A-1206 B-200$
Normal Cleaning Procedure $85-004$
Pulise Generator $6 A-120.68-200$
Start Capstan Motion (Write Operation Start Capstan Motion
200 IPS)
$6 B-220$
Capstan Assembly
Field Repair, Dented Capstans (Non-90,000
Series TUU) $08-020$
Series TU , $08-020$
Field Repair, Dented Capstans (90,000 Series
TU)
Removal (Non-90,000 Series Tape Units) $08-020$
Removal (90,000 Series Tape Units) $08-030$
Removal (90,000 Series Tape Units) $08-030$
Replacement (Non-90,000 Series Tape Units)
Replacem
$08-040$
Replacement (90,00 Series Tape Units) 08-050
Starts Turning When Power is Turned On
Starts Turning When Power is Turned On
(Second Level) $68-140$
Static Alignment (Square Support With Zero
Marks)
$08-064$
Marks) $08-064$
Static Alignment (Square Support
Without Zero Marks) $08-062$
Static Alignment (With Round Supports) 08-068
Capstan Tachometer (Models 3, 5, and 7) 08-130
Check/Adustment (M)

Check/Adjustment (Models 4, 6, and 8) 08-120 Cleaning $08-140$
$85-000$
Cleaning Procedure, Special Glazed 08-700
Cleaning Procedure, Special Glazed 08-700
Control Circuits, Capstan $6 \mathrm{~A}-120,6 \mathrm{~B}-200$ Drive System 6A-120, 68-200
Dynamic Alignment (Non-90,000 Series Tape Units)
Dynamic Alignment (Non-90,000 Series Tape Units $08-150$
00,000 Series Tape Units)
Dynamic
$08-160$
O8-160
Extended Go 6A-140, 6B-205
Extended Go 6A-140, 6B-205
Gray Code Counter (GCC) 6B-205
IBG Counter Circuits $6 A-130,6 B-20$
GG Counter Circuits $6 \mathrm{~A}-130,6 \mathrm{~B}-205$
Major Elements of Casstan Control
Major Elements of Capstan Control Logic 6B-205
Motion Checks (Capstan Motion Appears Normal) Motion Checks (Capstan Motion Appears Normal)
$6 \mathrm{~B}-020$ Motion Co
Motion Failure Problems $\quad 6 \mathrm{~A}-000$
Motor and Controls 6A-120, 6B-200
Motor Proportional Drive Control Circuit $6 \mathrm{~B}-215$
Motor Waveforms 6A-002, 68 -002
Polarity Hold Drive (PHD) Register $6 \mathrm{~B}-2$
Polarity Hold Drive (PHD) Register
Proportional Drive Counter (PDC)
6B-205
Pulse Generativn $6 \mathrm{~A}-120,6 \mathrm{~B}-200$
Quarter Tach Pulses $6 \mathrm{~B}-205$
Quarter Tach Pulses 6B-205-205
Read Only Storage (ROS) 6B-205
Rear Only Storage (ROS) 6B-205
Start Capstan Motion 6B-220
Starts Turning When Power is Turned On 6B-140
Static Alignment
tatic Alignment
(With Round

$\begin{array}{lll}\text { (90,000 Series, Without Zero Marks) } & \text { 08-064 }\end{array}$
Tach Period Counter (TPC) 6B-205
Tape Unit Loads But Capstan Motion is Faulty
Tape Unit
$6 B-110$
TU
TU Stubby Bar Clearance Adjustment 08-080
TU Won't Thread, Load and Return to BOT Correctly
Won't Start Rewind to LP After Tape Load $\quad 2 \mathrm{~B}-175$
6 MHz Oscillator and $\mathrm{GCC} \quad 6 \mathrm{~B}-205$
Capstan Prealignment Gauge (CE Tools) 80-000
Capstan Poard Function Layout
(3420) 19-010
$\begin{array}{ll}(3420) & 19-010 \\ (3803-2) & 19-000\end{array}$
Card Isolation Technique PLAN 1
Card Plugging (Installation) $90-11$
Card Plagging (echnique PLAN 1 (instlation) $90-110$
Card Plugging, Tape Control Logic Pa
Card Plugging, Tape Control Logic Panel 19-000
Does Not Open 2A-100, 2B-100
Opener Does Not Close 4A-150,
Does Not Open 2A-100, 2B-100
Opener Does Not Close $4 \mathrm{~A}-150,4 \mathrm{~B}-150$
Optional (Concept) $40-001$
Optional (Concept) $40-001$
Motor Replacement/Adjustment $08-535$
Restraint Pressure Check $08-536$
Restrant Pressure Check 08-536
Restraint Removal/Replacement 08-540
CE Initial
Description 75-00
Failures $12-020$
Operation Contents (MAP) 12-010
Operation Contents (MA
Switches 75-001
Channel
Channel
Attachment (Chart) 90-010
Buffer Controls 53-030
Buffer Logic 50-000
Bus in $53-055$
Bus In Register 52-040

Bus In/Out Checking (MAP) 13-380
Initial Selection 54-000
Interface Problems, Tape Control 18-040
Interface Problems, Tape Control
Priority Circuits $54-020$
Status Word Bits (Table)
(15-080
$\begin{array}{ll}\text { Status } \text { Word } \\ \text { Tags } \operatorname{lith} \text { Register } & 52-040 \\ \text { Test Points (Table) } & 17-021\end{array}$
$\begin{array}{ll}\text { Write Byte Register } & \text { 17-021 } \\ \text { 53-045 }\end{array}$
Characteristics, 3420 Subsystem 40-002
Chart
ALU1 1 to 7 O 13 -091
ALU2 Power On Reset $13-194$ Branch Conditions 16 -050 Cards and Cables, Device Switching
Troubleshooting Procedure $18-028$ Dropping Ready and Thread and Load Failure
$2 \mathrm{~A}-000$
Features Chart (Sense Byte 6) 17-220
Mode Chart (Sense Byt 6) 17-110 17-220 Mode Chart (Sense Byte 6) 17-110, 17-220
Read/Write Vertical Redundancy Check 17-170 Reference 18-029
$\begin{array}{ll}\text { Tape Control To/From Device } & \text { 18-005 }\end{array}$
Tape Control To/From Device
Tape Unit Control Lines $16-213-00$
1×8 Selection 18-001, 18-005
Autocleaner Operational 08-380
BOTEOT Voltage 08-580
Capstan Tachometer
(Model 4, 6, 8) $08-120$
$\begin{array}{lll}\text { Mode 4, 6, 8) } & 08-120 \\ \text { (Model 3, 5, 7) } & 08-130\end{array}$
Capstan and Tracking 08-010
Cartridge Restraint Pressure O8-536
Cartridge Restraint Pressure 08 O-
Cleaner Blade Gauss $08-390$
Cleaner Vade Gauss 08 Vaum Level $880-400$
DC Power Supply $08-570$
DC Power Supply 08-570
Erase Head Polarity and Erasure 08-320
Erase Head Polarity and Erasure $08-320$
ESD Grounding (3420/3803) $90-190$
Feedthrough 08-330
File Protect Mechanism 08-340
Mechanical Skew
1600 and 6250 08-170
NRZI Feature
NRZI Feature 08-180
Pneumatic Pressure Vacuum 08-400
Pneumatic Pressure Vacuum 08-400
Power Supply $90-180,08-570$
Read/Write Head Resistance (Model 4, 6, 8)
08-280
Regulator Air Pressure 08-405, 90-190
Tape Guide (NRZI Feature)
Tape Guide (NRZI Feature) 08
Tape Unit Grounding $08-600$
Threading Vacuum 08-400
Transfer Valve Plug 08-410
Vacuum Column Switch $08-450$
Vacuum Pump Belt $08-410$
Check Register Write
$53-045$
Check Register, Write
Checking, Read Back (Concept) 40-001
Cleaner Blade Gauss Check
Cleaner Blace Gauss Check 08-390
Cleaning Procedures (see Preventive Maintenance)
Clock
Asy
Asymmetry Adjustment 17-800
Check (MAP)

Clocks/Oscillators/Counters

CRIC-CROC Address Counters
Data Flow Clock $53-015$
Dara Flow Clock 53-015
Group Buffer Counter 53-090
Master Clock 53-005
Microsecond Frequency
Microsecond Frequency 53-005
Oscillator Gating 53-005
Read Clock Stepping Pulses 53-005
Read/Write Clocks and Counters (Table) 53-010
Write Clock and Write Counter 53-020
Column Vacuum Check 08-400
$\begin{array}{ll}\text { Command Controls Switches (CE Panel) } & \text { 75-002 } \\ \text { Command or Control Status Reject } \\ 16-160,0\end{array}$
Command or Control Status Reject 16-160,
Command Out Inactive During Reset or
Power On Reset (MAP) 13-330
Power On Reset (MAP) 13-330
Command Out Tag Active (MAP) 13-290
Command Out Tag Active (MAP) 13-290
Command Reject (MAP) 15-020,
Command Select Sequencer and Decoder 12-026
$\begin{array}{ll}\text { Command Select Sequencer and Decoder } & \text { 12-026 }\end{array}$
Command Status Reject (MAP) 16-160
Commands and Instructions
Burst Commands
$40-005$
$1 / 0$ Instructions $40-009$
Motion Control Commands $40-007$
Non-Motion Control Commands 40-008
Common Start 1/0 (S10) Routine $\quad 55-020$
Communication Between Microprocessors
Coscription) $52-030$
Communicator Feature, Device Switch 18-010
$\begin{array}{ll}\text { Communicator (2X8 Switching) } & 58-080 \\ \text { Compare Equal Indicator (CE Panei) } \\ 75-003\end{array}$ Compare Equal Indicator (CE Panei) 75-003
Compare Errors, P Compare or C Compare 17-010 Compare Errors, P Compare or C Compare (Timing Chart) $177-014$
Concepts, $3803-2 / 3420 \quad 40-003$
Configuration Worksheet Instructions 90-030 Configurations, Subsystem (Concepts) $40-003,90-100$
Contingent Connection (TCS Feature) 58-012
Control Burst
$40-002$
Control Curst ${ }^{40}$ Indicators (CE Panel) $75-003$.
Control Status Reject (MAP)
16-210
Control Status Reject (MAP) 16-210
Common Start t/O (SIO) 55-020
Sense and Status Byte Table-020-005
Ontrol Unit End (CS Feature)
58-012
Control Unit End (TCS Feature) 58-012
Conversion Table, Sense Byte to Bit 14-005
Cooling Fan Assembly Removal/ Replacement 08-630
Monitoring System)
Counter (IC), Microprocessor 1 Flow Logic
Counters (see Clocks/Oscillators/Counters)

3803-2/3420

Write Data Flow Logic $50-001$
Write Translator 7-Track $57-02$
7-Track Read Schematic 57-006
Security Erase Command 40-00
Data Flow Check Indicators (CE Panel) ${ }^{12-013} 75-004$
Data In $53-040$
Dat
Data Rates (3420 Subsystem Characteristics)
$40-002$
40-002
DC71 Parch Card General Description
52-103 $\begin{array}{ll}\text { Dead Track Register } & 53-075 \\ \text { Degausser (CE Tool) } & 80-000\end{array}$
Degaussing. Cleaner Blade 08-390
Degaussing, Cleaner Blade 08-390
Degaussing, Read/Write Head o8-280
Density Feature Combinations (Table) $40-004$
Density Feature Combinations (Table)
Description
Group Coded Recording
Phase Encoded (PE) 55-008
55-007
Phase Encoded (PE)
NRZI $55-007$
NRZI
6250 BPI
55-007
$55-007$
Detection Register 53-005
Determine the Failing Instruction Address
Procedure Micror
$\begin{array}{ll}\text { Procedure, Microprocessor } & 16-000 \\ \text { Developing Solution (CE Tool) } & 80-000\end{array}$ Develop Tape 00-011
Device
Develop
Device
Bus
Bus in x to DF Test Points (Table) 17-312
Selection Priority
Selection Priority $54-020$
Switching Feature (Description) 58-050, 90-050
Block Diagram For 2×8 Switch 18-012
Block Diagram For 3×8 or 4×8 Switch 18-013
Failure Modes $18-010$
Feature (Logic) $18-010$
Feature (Logic) 18-010
Inbound Crosspoint Switch
58-110
Inbound Crosspoint Switch
Line Definitions $58-060$
Line Definitions 58 Speration 58
Rules and Definitions
Switch Node 18-011
Switch Node 58 -090,
Tape Subsystem Cabling $18-011$
Interface
Data Exchange on Device Interface During Write
Operation $5 A-130,5 B-130$
Device End (TCS Feature) 58-012
Device to SDI Legic Lines 18-030, 18-032
Diagnostic Mode Set Command 40-008, 55-007
$\begin{array}{ll}\text { Diagnostic Mode Set Command } & 40-008,5 \\ \text { Diagnostics, System (Installation) } & 90-200\end{array}$
Diagram
Autoclea
$\begin{array}{ll}\text { Autocleaner Operation } & \text { 08-360 } \\ \text { Byte Count or Go Down } & 12-028\end{array}$
Byte Count or Go Down
CE Entry $12-027$
Channel Priority
54-020
Channel Priority 54-020
Configuration Worksheet, Subsystem Installation 90-040
Device interface 07-000
Device Interface 07-000
Device Interface During a Write
Device Interface During a Write
Operation $5 \mathrm{~A}-130,5 \mathrm{~B}-130$
Device Interface During Read Forward
Operation $5 A-140,5 B-140$
Operation 5A-140, 5B-140
Device Switching
Device Switching
Configuration
Feature $18-010$
Most Probable
Most Probable Cause Analysis
1×8 Selection
$18-015$ 1×8 Selection Logic $\begin{aligned} & 18-000 \\ & \text { 2X8 Switch Logic } \\ & 58-055,18-012\end{aligned}, ~$
$303-2 / 3420$

| $\times \times 0200$ | 2736032 |
| :--- | :--- |
| XKa 10 ot 2 | Par Numbe |

```
    2X8 Switching Functional Units 58-080
    2\times16 Switch Logic 
    lol
    4\times16 Switch Logic 58-070
\ispiay Select Switch and Compare 
Group Coded Recording (6250 BPI)
linital Selection 54-000
Mneumatic System, Thread Status 
    (Active and Inactive) 4A-161, 4B-16
    Reel and Capstan Operation During
    R
    Set and Display Compare Register 12-022
    System Diagnostics 90-2 (MAP) 18-020
Writ Head Driver Card 08-270
Digital to Ane og Converter (DAC) Waveforms 
Digitec 251 Meter (CE Tool) 80-000
Display LSR Contents (How To) 12-013
l
Dropping or Picking Records 15-200
lol
lal
E
Early Begin Readback Check (MAP) 17-100
Easy Load Carrridge (Concept) 40-001
EBCDC/BCDIC Conversion Chart 57-020
ECC/ENV Indicator 75-004
Mdge Damage, Tape 5B-030
Enable Switch 75-001
lol
End Data Check
End Of Call 17-531
Engineering Changes Which Affect MAPs 00-000
*)
ENV/ECC Indicator 75-004
    Check Circuit Logic 17-315 
    5A-000,58-000 %r
EOT/BOT (see BOT/EOT)
Erase
Full Width Erasure (Concept) 40-001
    Gap Command
```

Head Current 40-007 Head Polarity and Erasure Checks 08-320 Error Analysis (see MAPs, Tape Control) Error Analysis Flow Chart, Permanent rror Analysis Flow Chat
Read Write $00-011$
$\begin{array}{ll}\text { Error Correction Sense Analysis (MAP) } & 21-000 \\ \text { Example of Typical Flow Through MAPs }\end{array}$ Example of Typical Flow Through MAPs $00-003$
Excursions (Wide) in Left Column During HS Rewind Excursions (Wide) in
$3 \mathrm{~A}-160,3 \mathrm{~B}-160$
Extended Go 6B-205
Extra or Missing Interrupts (A2 Panel) 18-050 F
Failure Follows Tape Unit 00-040
18-010
Card Plugging 90-110
Chart for Sense Byte 6
Chart for Sense Byte 6 17-220
Density Feature Combinations (Table) 40-004
evice SWitching
Cabling Instructions 90-060
Nine Le Logic $58-090-080$
Node Schematic $58-080$
Operation 58 -060
Theory
$58-050$
Theory $58-050$
2×8 Switch Functions (Concepts)
2×8-080
2×16 Swith Logic $58-005$
2×16 Switch Logic $58-060$
$\begin{array}{ccc}2 \times 16 \text { Switch Logic } & 58-060 \\ 4 \times 16 \text { Switch } & \text { Logic } & 58-070\end{array}$

Nine-Track NRZI Seven-Track NRZ

EBCDIC-BCDIC Conversion Chart 57-020
Read Data Convert Data Flow Schematic 57-026
$\begin{array}{ll}\text { Read Data Convert Data Flow Schematic } & 57-026 \\ \text { Read Translator Data Flow Schematic } & 57-022 \\ \text { Seven-Track Read Data Fiow Schematic } & 57-006\end{array}$

Write Data Convert Data Flow Schematic
$57-025$
Write Translator Data Flow Schematic 57-020
Write Translator Data Flow Schematic $57-020$
Switching Configurations (Figure) $58-051$
Switching Contigurations
Two Channel Switch (TCS) 58-010
Busy $58-012$
Busy 58-012
Contingent Connection $58-012$
Control Unit End $58-012$
Device End 58-012
Contro Enit End $58-012$
Devie End $58-012$
Implicit Connection $58-011$
Interface Switch Control $58-011$
$\begin{array}{ll}\text { Interface Switch Control } & \text { 58-011 } \\ \text { Parritioning } 58-011 \\ \text { Reserve/Release Operation } & 58-011\end{array}$
Reserve/Release Operation
Resets
R8-011
Resets $58-011$
Selection
$58-011$
$\begin{array}{lll}\text { Sense Release Command } & 58-011 \\ \text { Sense Reserve Command } & 58-011\end{array}$
$\begin{array}{lll}\text { Stack } & 58-012 \\ \text { Stack } & \text { Interrupt } & \text { 58-012 }\end{array}$

Coopright International Business Machines Corporation 1976. 1979. 1980, 1983

Fiber Optics
BOT/EOT Voltage Checks/Adjustments
Bundle Removal/Replacement/Cleaning 08-620
Lamp Removal/Repacement/
ED BOT/EOT Block Removal/Replacement $08-590$
LED BOT/EOT Voltage Checks/Adjustments 08-580

LED BOT/EOT Window Removal/Replacement | LED BOT/EOT Window Removal/Replacement |
| :--- |
| 08 |

$\begin{array}{ll}\text { Field Feedback Problem Fixes } \\ \text { Field Replaceable Units (FRUs) } & 00-050 \\ \text { PLAN }\end{array}$
Field Replaceable Units (FRUs) PLAN
Fiester
Accuracy Check 08-290, 08-300
$08-315$
Conversion $90-170$
$3420 \quad 80-020$
File Protect Indicator Off (MAP) 1A-000,
$18-000$
File Protect Mechanism Check 08-340
File Protection (Concept) $40-001$
Flag Bytes 1 and 2 (Tables) $40-006$
Flat Byelt Replacement, Pneumatic Supply 08-442 $\begin{array}{ll}\text { Flow Charts } \\ \text { Branch To Read From Load Point } & 55-040 \\ \text { Branch To Write From Load Point } & 55-024\end{array}$ Branch To Write From Load Point $55-$
Common Start $1 / O$ Routine $55-020$ Common Start I/O Routine 555
Read From Load Point $55-040$
Sen $\begin{array}{ll}\text { Read From Load Point } \\ \text { Selection and Priority } & 54-005 \\ \text { Write From Load Point } & 5-024\end{array}$ Write From Load Point 55-024
Flow Through MAPs, Typical (Example) 00-003 Format, Data (see Recording Methods/Formats) Format of MAPs 00-001
Format, Microprocessor Instruction 52 , 30
Forward Creep During Rewrite (Model 4, 6, 8)
$68-230$
Forward Space Block (FSB) Command 40-007
Forward Space File (FSF) Command 40-007 orward Space File (FSF) Command $40-007$ $40-002$
Four Control Switch (Concepts) 58-050
Full-Width Erasure (Concepts)
Function Layout, Card/ $30 a r d$
$3420 \quad 19-010$
$3803-19-000$
Functions, MP1 and MP2 52-030
G
Gating, Oscillator 53-005
General Cleaning Instructions 85-000
General Information $07-000$
General Reference Information
Microprocessor
General Reset
$50-011$
Generators, CRC 53-065
$\begin{array}{ll}\text { Generators, CRC } & 53-065 \\ \text { Generation, CRC } & 53-067 \\ \text { Generation, IBG } & 6 A-150\end{array}$
Generation, IBG ${ }^{6 A-150}$
Glazed Capstan Cleaning Procedure $08-700$
Glazed Capstan Cleaning Proce
Gossary of Terms PLAN 5
Gxtend
Go Extend
Additional Stopping Distances After 6A-140
6B-205 Go Extensions in Quarter Tach Pulses 6B-205
$\begin{array}{ll}\text { Gray Code Counter (GCC) } & \text { 6B-205 } \\ \text { Ground Check, Tape Unit } & 08-600\end{array}$
Ground Check, Tape Unit 08-60
Group Coded Recording (GCR) 6250 BPI $55-008$
GCR, 5260 BPI (Concepts) $40-002$

H

Halt 1/O Instruction 40-009
Hardware Errors (MP1 Special Register) $\quad 52-060$
Hardware Pointers 17-60 Hardware Pointers 10
Head, Erase $58-110$
Head Mirror Stop Adjustment (Models 3, 5, and 7) 08-350
Hex Wrench, Right Reel Hub (CE Tool) 80-000 Hill P Pty
$75-003$
High-Order ROS Registers 52-035, 16-020
High ROS/IC Parity Error on A Branch Conditio
ALU1 (MAP) 16- Error on A Branch Conditio $\begin{array}{cc}\text { ALU1 (MAP) } & \text { 16-020 } \\ \text { ALU2 (MAP) } & 16-090\end{array}$
High-Speed Rewind (see Rewind Operation)
High-Speed Rewind Solenoid Check
How To
CE Initial Entry Flow Chart Start 1
Determine the Failing Instruction Address $16-000$
Develop Tape 00 olon
Locate Information PLAN 1
Make the ALU Loop on an Error 16-000
Operate CE Panel $12-000$
Use MAPs $00-000$, PLAN 1
$\begin{array}{ll} \\ \text { Use Section } & \\ 18-x \times x & 18-010\end{array}$
I

```
IBG Counter 2A-010 (MAP) 17-080
IBM Easy Laad Cartridge 40-001
ID Burst 40-002 (10) 17-050
Implicit Connection (TCS Feature) 58-011
Inactive/Active/Pulsing/Switched Line Level
inbound Crosspoint Switch Schematic (Device Switch
Feature) 58-110 10, 75-003
Indicators, CE Panel 75-003 40-005
ll
lnitial Selection Description 54-000
    initial Selection 
    MBus In/Bus Out Lines 
    Mevice Interface Lines 07-000
Initating a Rewind 3A-010, 3B-010
linitiating a
Installation}\begin{array}{l}{\mathrm{ Address/Feature/Priority Plugging (see Card Plugging)}}
    Address/Feature/Priority Plugging (see Ca
Cl
Card Plugging
```

Address, Tape Control 90-110
Data In Handling
Device Selection Priority Assignments
(Chart) $90-150$
Device Switching Feature 90-110
Device Switching Feature, Address Control (Chart)
$90-140$
Disconnec
Disconnect in Handling
NRZI Feature $90-120$
90-110
Primary/Secondary TU Interface Control (With
Device SWith Secondary TU Interface Control
Primary 1×8) $90-130$
(With 1×8) $90-130$
Priority Assignments, Device Selection (Chart)
Priority Assignments, Device Selection (Chart)
$90-150$
Select Out Priority 90-120
Serial No/EC Level/Feature Code (Tape Control)
Serial No/Model No/EC Level/Feature Code
(Tape Unit) 90-212
Tape Control Address 90-110
ape Switching Feature, Address Control (Chart)
Two Channel Switch Feature 90-120
3803 Address ${ }^{3} 90-110$
Checklist
$90-020$
Checks and Adjustments (Installation)
Air Bearing Pressure, $3420 \quad 90-190$
Altitude Vacuum Level Setting, 3420 90-190
Autocleaner $90-19$
BOT/EOT Check

Data Flow Clock Asymmetry Adjustment,
ESD Grounding

| g ew, $90-190$ |
| :--- |
| 420 |

Mechanical Skew, 3420 90-190
Configuration Worksheet (Instructi
$99-030,90-040$
Device Switch Cabling 90-050
Device Switch Cabling $90-050$
Emulator Jumper $90-200$
Emulator Jumper 90 Tester Conversion $90-170$
Field Testation Checklist $90-020$
Instructions, Subsystem Installation 90-000
Kickplates 90-090, 90-100
Operator Panel Labels, Tape Control $90-160$
Plugging, Cables and Terminators 90-060
90-180
Power Supply Checks
Procedures $90-020$
Special Power Requirements-3420 Model 8
Special Power Requirements- 3420 Mode
90-180
Subsystem Cabling (Chart) $\quad 90-070$
Subsystem Cabling (Chart) ${ }^{\text {90-070 }}$
System Diagnostics
$90-200$
System Diagnostics $90-200$
Terminator and Cable Plugging 90-060
Instructions (see Comrands and Instructions)
Instruction Counter, Microprocessor 1
$52-010$ Instruction Counter,
Interblock Gap (IBG)

Counter Logic 6A-130, 6B-205
Detected on Write 17-080
Generation $6 \mathrm{~A}-150,6 \mathrm{~B}-210$
Go Extend
Go Extend IBG Counts (Model 3, 5, 7) 6A-140
Noise or Bit In $5 \mathrm{~A}-115,5 \mathrm{~B}-025$

Passing Times (3420 Subsystem Characteristics)
$40-002$
Subsystem Characteristics 40-002 Interface Disabled Indicator (CEE Panel) 75-003
nterface Switch Control (TCS Feature) Interface Switch Control (TCS Feature) $58-011$
Intermittent Drop Ready Problems 2A-005, 2B-005, 07-010
Interrupt 54-000
Interrupt
nterrupts, Extra or Missing (A2 Panel)
ntervention Required (MAP) 18-050 ntroduction to Maintenance Philosophy PLAN 1 Introduction, Subsystem Installiation $90-000$
$1 / 0$ Instructions (see Commands and Instructions) /O Instructions (see Commands and Instructions
1/O Pins (3 Bit Code) 12-023, 12-024
K
Kickplates, Installation 90-090, 90-100 L

Lamp, Skew Check 53-085
amp Test Switch (CE Panel) 75-002 atch, Reel (see Right Reel Latch) Left Movable Guide and Retractor Removal
and Replacement (NRZI Feature)
$08-220$ Left or Right Vacuum Column Problems 2A-170 Left Reel
Does Not Turn Clockwise at Threading Speed $2 \mathrm{~A}-110,2 \mathrm{~B}-110$
Hub and Motor Removal/Replacement/Adjustment ${ }^{80-560}$ Logic $3 A-030,3 B-030$
Logic $3 \mathrm{~A}-030,3 \mathrm{~B}-0303 \mathrm{C}$-020, 3B-020
Right or Left' Reel Won't Load Tape into Column $2 \mathrm{~B}-180$
Tape Rewin
Tape Rewinds Off Left Reel $\begin{aligned} & 3 B-180 \\ & \text { Theory, Rewind and Timing Chart } \\ & \text { 3A-010, }\end{aligned}$ 3B-010 Left Threading Channel $08-230$
Legend and Symbols PLAN 4
Light Source Removal/Replaceme
Light Source Removal/Replacement 08-620
Lights/Indicators (see Maintenance Procedure
CE Panel 75 (see Maintenance Procedures)
CE Patict
File Protect Indicator Off $1 \mathrm{~A}-000,1 \mathrm{~B}-00 \mathrm{~J}$
Load Check Prior to BOT Sense
2A-150, $2 \mathrm{~B}-150$
Load Check Prior to BOT Sense $2 \mathrm{~A}-150,2 \mathrm{~B}-150$
Power Check Indicator On $1 \mathrm{~A}-000,1 \mathrm{~B}-000$
Ready Lamp Does Not Turn Off 4A-100, 4B-100 Ready Lamp Does Not Stays On 3A-150, 3B-150 210, 2B-210
Line Definitions, Device Switching Feature 58-060
Line Levels - Active/Inactive/Pulsing/Switched
Line Names for Reference to ALD XC70x
ine Names for
(Table) $18-020$
Linking Microprogram Routines (Description) 52-030
istings., Microprocessor
$52-030$

- 1 IC Pty/Low ROS Reg Pty Indicator 75-003

Load Check 2A-000, 2B-000

Load Failure Symptoms (MAP) $\quad 2 \mathrm{~A}-000,2 \mathrm{CB}, 000$
Load Check Prior to BOT Sense Load Check Prior to BOT Sense $2 \mathrm{AA}-150,2 \mathrm{~B}-150$
Loading Tape in Columns $2 \mathrm{~B}-175$
Load Operation, Approximate Time (3420 Subsystem
Characteristics
Load Test, Minireel
40-002
08-800
Load Test, Minireel
Displaying Conitents (LSR)
O2-013
Operation $52-015$
Locating information PLAN 1
Locating
Locations
Control Unit
Control Unit
Tape Unit

| pe Unit
 Air Bearing Switch 2B-160
 BOT/EOT Block 3A-150, 3B-150
 Cartridge Motor 4B-150
 Cartridge Open Switch 4B-150
 Cartridge Opener Control Card 4B-150
 CP3 2A-130, 2B-130
 Fiber Ontic 2B-150
 Fuses 1A-000, 1B-000
 Manual Status Control (MSC) Card 4B-110
 Pneumatic Contactor 2A-130, 2B-130
 Pneumatic Supply 2A-210, 2B-210
 Power Interface Board B1 1A-003, 1B-001
 Power Window PCB 2A-210, 2B-210
 Power Window Switches 4B-140
 Reel Motor Power Board 2A-140, 2B-140
 Reel Tachometers 3A-170, 3B-170
 Reels Loaded Switch 4A-140, 4B-140
 Regulator Cards 1A-002, 1B-002
 SCRA $2 \mathrm{2B-160}$ TB-1, 2, and 3 1A-002, 1B-002
 Transfer Valve Solenoid 2A-130, 2B-130
 Y1 Panel Location 90-080 |
| :---: |

Lock
Ock
A.
AR
Are
$\begin{array}{ll}\text { A Register } & \text { 52-035 } \\ \text { Arithmetic Add } & 52-065\end{array}$
Arithmetic Add 52-065
Branch On Condition 52-08
Branch Unconditional 52-090
Byte Count or Go Down 12-028
Capstan Control, Pulse Generator, and
Motor Controls 6A-120, 6B-2 To Load
Capstan Fails To Start a Rewind To
Point Operation After Loading Tape into
Columns $28-175$
Cartridge Does Not Open 2A-100, 2B-100
Cartridge Opener Does Not Close $4 \mathrm{AB-150}, 4 \mathrm{~B}-150$
CE Entry $12-027$ CE Entry $12-027$
Channel Buffer Con
Channel Buffer Controls
Channel Tags in and Chan
Out Register in and CChan
52-0
Channel Write Byte, Write Check, and
Pointer Registers $53-045$ and Decoder 12-026
Command Select Seauencer and
CRC Generators $53-065$
CRC Generators 5 53-065
D Register $52-060$
Data Flow Clock 53-015
Dead Track 53-075
Device Switch Node 58-090
Device Switching $58-050$
$\begin{array}{ll}\text { Device Switching } \\ \text { End Data Check } & 58-051 \\ 17-531\end{array}$
Envelope and Read/Write
$\begin{array}{lll}\text { velope and } & \\ \text { Model } 3,5,7 & 5 A-100 \\ \text { Model 4.6.8 } & 5 B-100\end{array}$

| Envelope Check 17-315 |
| :---: |
| Group Buffer Counter 53-090 |
| Inbound Crosspoint Switch 58-110 |
| High-Order ROS Register 52-035 |
| Left Reel Does Not Turn Clockwis |
| Threading Speed 2A-111, 2B, 111 |
| Left or Right Vacuum Column Problem |
| 2A-170, 2B-170, 3A-110, 3B-110 |
| Load Check Prior To BOT Sense 2A-150, 2B-150 |
| Logical AND 52-070 |
| Logical Exclusive OR 52-080 |
| Logical OR 52-075 |
| Loop-Write-To-Read (LWR) 55-C05 |
| Low-Order ROS Register 52-035 |
| Microprocessor Clocks Control 52-005 |
| MP1 IC (Instruction Counter) 52-010 |
| MP1/MP2 Circuits 50-003 |
| MP1/MP2 Special registers 52-060 |
| MP1/MP2 STAT Registers 52-015 |
| MIST or TCS Register 52-0 |
| Multi-Track Error (ogic) 17-112 |
| No Response or Tape Moves Backward 3A-100, |
| |
| NRZI Read Data Flow 57-006 |
| Oscillator Gating 53-005 |
| Overrun 15-042 |
| P or C Compare 17-017 |
| Power Window Does Not Go Down 4A-140, |
| 4B-140 |
| Proportional Drive Control 68-215 |
| Read Cycle Controls 53-095 |
| Read Data Converter 57-026 |
| Read Data Flow 50-002 |
| Read Head and Read Card 5B-120 |
| Read Sequencing and A / B Registers 53-055 |
| Read Translator 57-021 |
| Read/Write Flow 50-000 |
| Read/Write VRC Circuit 17-179 |
| Ready Lamp Does Not Turn Off 4A-100, 4B-100 |
| Ready Lamp Does Not Turn On/Window Does |
| Not Close 2A-210, 2B-210 |
| Reel and Capstan Operation during Rewind |
| 3A-030, 38-030 |
| Reel Drive System 3b-020 |
| RIC/ROC 53-081 |
| Right or Left Reel Fails To Load Tape |
| Into Column 2B-180 |
| Right Reel Does Not Turn Clockwise at |
| Threading Speed 2A-120, 2B-120 |
| ROS/LSR 52-015 |
| ROS Mode Switch and Gates 12-024 |
| ROS 1 Trap Conditions 50-010 |
| Skew Detection 53-085 |
| System 360/370 Switching (Data In |
| Handling) 58-005 |
| Tape Does Not Enter or Stay in High Speed |
| Rewind or Rewinds To BOT at High Speed |
| 3A-170, 3B-170 |
| Store 52-095 |
| Tape Does Not Go Backward or Does Not |
| Stop at BOT 2A-190 |
| Tape Does Not Load Into Either |
| Column 2A-160 2B-160 |
| pe Does Not Pull Out of Col |
| roperly During Unload Rew |
| pe Does Not Stop or Tape R |

Properly During Unload Rewind $4 \mathrm{~A}-120,4 \mathrm{~B}-120$
Tape Does Not Stop or Tape Runaway
(Forward or Backward 3A-140, 3B-140
ape Does Not Wind Completely Onto Right
Reel or Reels Do Not Stop 4A-130, 4B-130
$\begin{array}{lll}\text { Tape Fails To Go Backward } & 4 A-130,130, & 3 B-130 \\ \text { Tape }\end{array}$
Tape Goes Forward After Loading Into
vacuum Columns $2 \mathrm{~A}-200$ 2B-200
Tacuum Columns $2 \mathrm{MA}-200,2 \mathrm{LB}-200$
Tape Backward Off Left Reel, or
Tape Unit Performs a Normal Unload
Rewind During Load Operation 2B-190
Rewind During Load Operation $28-190$
Tape Pulls Out, Dumps, or Has Wide
Tape Pulls Out, Dumps, or Has Wide
Excursions in Left Column During Hig
Speed Rewind $3 A-160,3 B-160$
Tape Threads Into Threading Channel and
ape Threads Into Threading Channel and
Stops $2 A-140,28-140$
Sops 2A-10, 2 Threads Into Right Column $2 B-130$
Tape Unit Bus Out (TUBO) Register $52-045$

ape Unwinds Off Right Reel $3 \mathrm{AB-150,3}$ 3B-1
CS Selection and Tie Breaker
$58-030$
CSansfer $52-100$ Tie Breaker
Pneumatic Motor Not Running 2A-130

| Pwo-Channel Switch $58-010$ |
| :--- |

Two-Channel Swith and Tie Breaker 58-030
Unload Rewind Pushbutton (No Resronse)
Unload Rewind P
$4 \mathrm{~A}-110$
$4 \mathrm{~B}-110$
Write 53-070
Clock and Write Counter
Data Converter $57-020$
Data Flowverter $50-001$

Drat
Group Buffer Control 53-C25
Write Head, Erase Head, ano Write Card 5B-110
Srite Head, Erase Head, an
Service Controls $53-040$
Trarvice Controls
Translator $57-020$
Triggers
$53-070$
Triggers
Trigger VRC
53-070
17-026
2x8 Switching Functional Units $58-080$
ogic Panel Removal/Replacement $(3803 / 3420$
ogic, Pins, Cross Reference List 20-000
Logic, Pins, Cross Reference List $20-0.0$
Logic Section (2X8 Switching) $58-080$
Logical AND (ALU Operation) 52-070
Logical Exclusive OR (ALU Operation) $52-080$
Logical Exclusive OR (ALU Operation) $52-080$
Logical OR (ALU Operation) 52-075
5nt
Long Cycie BOC or BU Example (Timing Chart)
16 -001
Loop. ALU1 (MAP) 13-530, 13-540
Ooop. Write-to-Read (LWR) Command
$40-006,55-005$
Tape Unit Operation 55-005
Low-Order ROS Registers 52-035, 16-010
ALU2) (MAP) $16-080$ an aranch Condition
Low ROS/LC Parity Error on a Branch Instruction
Low Speed Rewind 3A-010, 3B-010
LWR Tape Unit Operation $55-005$
M
Magnetic Tape and Reels (Concepts) 40-002 Preventive Maintenance
General Cleaning Instructions $\quad 85-000$

INDEX 5

3803-2/3420

| XK0300 $\text { Seq } 2 \text { of } 2$ | 2736033 | See EC History | $\begin{aligned} & 845958 \\ & 1 \text { Sep } 79 \end{aligned}$ | $\begin{aligned} & 847298 \\ & 15 \text { Aug } 83 \end{aligned}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

```
Mple/Single Switch (CE Panel) 75-002
MP1 (see ALU) 52-035
    A-Register 52-035
    lock Control Logic 52-005
    Clock Timing Charts 52-055
    Munctional Description 52-030
    Migh-Order ROS Registers 52-03
    Low-Order ROS Registers 52-035
```



```
    lol
MP2
    A-Register 52-035
        *)
    High-Order ROS Registers 52-035
    listructional Counter Logic 
        ch-Ordic R 50-003
    Special Register (TU Bus In) 52-040
    Transfer Decodes (Table) 52-101
    lor
    Multi-Track Error (MTE)
    MTE/LRC Indicator 75-004
    Without Envelope Check (MAP) 17-110
N
9-Track NRZI (Concepts) 40-002 
No Block Detected on Write/Write Tape Mark
No-Operation (NOP) Command 40-008
No Response or Tape Moves Backward 3A-100,
No Response When Rewind/Unload Button is
N (resed 4A-110, 4B-10
Noise Detection (MAP) 17-370
Noise or Bits in the Interblock Gap 5A-115,5B-02
Non-Motton Control Commands (40-008 40-005
Not Capable (MAP) 15-060
Not
Cyclic Redundancy Check (CRC) (MAP) 17-590
    Read Data Bit x Test Points (Table) 17-590
    Read Data Flow 57-006
    R/W VRC, Hi Clip VRC, LRC Error 17-314
    9-Track (Concepts) 40-002
O
Offline Duplication of Online Failures (MAP) 12-001
OLT-3420 F, G. H, Error Sense Analysis 21-000
lol
```

```
Operation, Autocleaner 08-360 08-380
```

Operation, Autocleaner 08-360 08-380
Operations,
Operations,
Arithmetic Add: ADD/ADDM (Hex Code A or B
Arithmetic Add: ADD/ADDM (Hex Code A or B
*)
*)
52-085
52-085
Branch to Read from Load Point 55-040
Branch to Read from Load Point 55-040
Branch to Write from Load Point 55-02
Branch to Write from Load Point 55-02
Branch Unconditional: BU (Hex Code 6

```
    Branch Unconditional: BU (Hex Code 6
```



```
    Logical Exclusive OR: XO/XOM (Hex Code E or F)
```

 Logical Exclusive OR: XO/XOM (Hex Code E or F)
 Logical OR: OR/ORM (Hex Code 8 or 9)
 Logical OR: OR/ORM (Hex Code 8 or 9)
 Store Logic: STO (Hex Code O or 1)
 Store Logic: STO (Hex Code O or 1)
 Transfer Logic: XFR (Hex Code 4 or 5) 52-100
 Transfer Logic: XFR (Hex Code 4 or 5) 52-100
 Operator Panel Switches (2X8 Switch
Operator Panel Switches (2X8 Switch
ptional Tape Cartridge (Concept) 40-00
ptional Tape Cartridge (Concept) 40-00
rganization of Publication PLAN }
rganization of Publication PLAN }
\mathrm{ scillator Gating 53-005 PLAN 6}
\mathrm{ scillator Gating 53-005 PLAN 6}
scillators (see Clocks/Oscillators/Counters)
scillators (see Clocks/Oscillators/Counters)
Errun
Errun
PE and 6250 BPI (Timing Chart) 15-041
PE and 6250 BPI (Timing Chart) 15-041
P
P
P Compare Error Test Points (Table) 17-013
P Compare Error Test Points (Table) 17-013
Compare or C Compare (Logic) 17-017
Compare or C Compare (Logic) 17-017
Compare or C Compare Errors (MAP) 17-010
Compare or C Compare Errors (MAP) 17-010
Panel Enable Switch 75-001
Panel Enable Switch 75-001
ll
ll
*arity Indicator (M5-003
*arity Indicator (M5-003
*artial Record (MAP) 17-410
*artial Record (MAP) 17-410
Passing Times per Byte (3420-Subsystem
Passing Times per Byte (3420-Subsystem
Passing Times, IBG (Subsystem Characteristics)
Passing Times, IBG (Subsystem Characteristics)
40-002
40-002
ALU1/ALU2 Card Location 52-104
ALU1/ALU2 Card Location 52-104
General Description 52-103
General Description 52-103
Card Plugging Layout 52-104
Card Plugging Layout 52-104
PE or NRZI and GCR Velocity Checks/Changes (MAP)
PE or NRZI and GCR Velocity Checks/Changes (MAP)
16-180
16-180
PE Threshold Adjustment Card 80-000
PE Threshold Adjustment Card 80-000
Permanent Data Checks (MAP) 5A-105, 5B-002
Permanent Data Checks (MAP) 5A-105, 5B-002
*)
*)
ll

```
ll
```



```
Flow Chart 00-011
```

```
Flow Chart 00-011
```

INDEX 6

C $\operatorname{Cindex}\left(\mathrm{Con}^{\mathrm{C}} \mathrm{d}\right)$

Permit Flip Latch 53-040
$\begin{array}{ll}\text { Persistent Pointers } & \text { 17-602 } \\ \text { Phase Encoded (PE) } \\ \text { P5-007 }\end{array}$
Phase Pointers (Table) 08-250
Phasing Check (installation) $90-180$
Phasing, Power $90-180$
Photo Cell, Radius Sensor 08-610
Picking/Dropping Records (MAP) 15-200
Picking/Dropping Records (MAP)
Pins to Logic, Cross Reference List
$\begin{aligned} & (3803-2) \\ & 20-000\end{aligned}$
Plugging, Cabies and Terminators $90-060$
Plugging, Reverse High Power
Plugging, Reverse High Power Drive Current
To Capstan (Model 7 Only) $6 A-140$
Plugging, Write Head Card (Model 4, 6, 8) 08-270
Pneumatic System
matic System
Imbalance or
$\begin{array}{ll}\text { Imbalance or Leaks Check } & \text { 6A-010, 6B-150 } \\ \text { Motor Does Not Turn Off } & 4 \mathrm{~A}-160,4 \mathrm{~B}-160\end{array}$
Motor Not Running or Transfer Valve Not Picked
2A-130, 2B-130
Motor Stepped Pulley Alignment (Type 3 Supply)
Motor Stepped Pulley Alignment (Type 3 Supply
Pressure Level Adjustment (All Models) 08-420
Pressure/Vacuum Checks $08-400$
Procedure to Check for Imbalance or Leaks 6A-010
Regulator Air Pressure Check O8-405
Supply Flat Belt Replacement/Adjustment
Supply Pulley Removal/Replacement $08-430$
System, Description
Air Bearing 4A-160, 4B-160
Flow Diagrat 4A-16 fow Diagram $4 \mathrm{~A}-161,-\mathrm{B}-161$
Pnematic Switches $4 \mathrm{~A}-160,4 \mathrm{~B}-160$ Three-Way Valve $4 \mathrm{~A}-160,4 \mathrm{~B}-160$ Transfer Valve $4 \mathrm{~A}-160,4 \mathrm{~B},-160$
Transfer Valve Leakage Test Transfer Valve Leakage Test ${ }^{\text {O8-400 }}$
Transfer Valve Not Picked
$2 A-130$
Fointer System 17-602
Pointer Register (Second Level) 53-045
Pointer Register (Second
Probe List (Table) 17-701
Timing Chart 17-702
Polarity Hold Drive (PHD) Register 6B-205
Possible 3420 / 3803 Problem Fix $00-050$
Possible 3420 /3803 Problem Fix
Postamble Error (MAP) 17-190
Powtar
Power
C
Cable $90-060$
Check Indicator On 1A-000, 1B-000
Check Indicator On 1A-000, $18-000$
Supply Checks (Installition) $90-180$
Power-On Checks (Installation) $90-180$
Power-On Checks (Installation) 90-180
Power-On/Off Sequencing (Concepts) 40-003
Power On Reset 50-011
Reel Motor Voltages, Speed 3A-020, 3B-020
Requirements, special-3420 Model
Power Supplies
DC Checks/Adjustments $08-570$
DC Test Points $3803 / 3420$ Tables)
C Test Points (3803/3420 Tables) 08-570
Printed Circuit Board Removal/Replacement
(3803 Model 2 Only) 08-575
TCU Power Supply Failure Analysis $11-000$
TCU Power Supply Failure Analysis 11-000
Unmodified $1 \mathrm{~A}-000,1 \mathrm{~B}-002$
$34201 \mathrm{~A}-0001 \mathrm{~B}-000$
3420 Power Interface Bo
3420 Power Interface Board, B1 1A-003, 18-001
Alignment 08-640
Does Not Go Down 4A-140, 4B-140

Glass Removal/Replacement 08-670
Rack, Switch A juiustment 08-650
Safety Bail Adjustment 08-640
Safey Bail
08-660
reamps (see Ajustment
Preamps (see Ajustment)
Pressure, Air Air see Preumatic System
Pressure Divider (CE Tool
Pressure, Air see (neumatic System)
Pressure Divider (CE Tool) 80 -000
Pressure Test, Right Reel La
Rear Housing $08-520$
Pressure/Vacuum Gauge 80-010
Feventive Maintenance
Fiber Optic Lamp Cleaning Procedure 08-260
General $85-000$
Schedule $85-005$
Tape Unit Cleaning Procedure 85-00
Priority, Select
Priority (2X16 Switch Logic)
Pres
Crocedures
Capstan Motion Checks (Motion Appears Normal)
Check for Tape Drag 6A-010
Diagnosing CE Panel Failure 12-020
Displaying Sense Information from CE Panel
$\begin{array}{ll}\text { Locating a Failing Command } & 12-010 \\ \text { Offline Duplication of Failures } \\ 12-000\end{array}$ Priority Circuits $54-020$
Priority (see Selection and Priority)
Priority (see Selection and Priority)
Problems, Intermittent Drop Ready 2A-005 Proportional Drive Control, Capstan Motor Proportional Drive Counter (PDC) 6B-205 $\begin{array}{ll}\text { Protection, File (Concept) } & \text { 40-001 } \\ \text { Pulse Generator, Capstan } & 6 \mathrm{~A}-120\end{array}$ Pulse Generator, Capstan 6A-120
Pushbuttons (see CE Panel Switches)

0
Quick Fix Index, 3803-2 Subsystem 00-009 R

Radiu
Read
ead
Sensor Photo Cell 08-610
Acceptable Waveforms (Read Card Test Access Times (3420 Subsystem
Amplitude Adjustment (Model 4, 6, and 8) 08-310
Ampk Checking (Concept) $40-001$
Backspare Operation 6B-230
$\begin{array}{ll}\text { Backward Command } & 40-005 \\ \text { Backward Operation } & 5 A-140,5 B-140\end{array}$
Backward Operation $5 \mathrm{SA}-140,5 \mathrm{~B}-140$
Card Reference Generator
SB-120
Cycle Controls $53-095$
Card
Data Converter Data Flow Logic 57-026 Data Fow Logic 50-002
Data Flow Logic, NRZ1 57-006
Errors, Permanent (see Permanent Read
Forward to Backward Ratio Test (All Models)
O8-240, $5 \mathrm{~B}-020$
Forward to Backward Ratio Test (Models 3, 5,
Forward to Backward Ratio Test (Models 3, 5, 7)
5)

```
Forvard Command 40-005
    Forward Operation 5A-140,5B-140
    M Nead and Read Card Circuits 5B-120
    Noise or Bits in the In
    Registar,or Data Flow Logic 57-02
    Translator Data Flow Logic 57-021
    6250 Seviver Requirements 50-030
*)
Read Electrical Skew Adjustment (NRZ1 Feature) 08-190
*)
Mead Only Storage (ROS) 68-205
Read Only Tape Generation 90-200
Read Sequencing Circuits 53-05
Read/Write
    Clocks and Counters (Table) 53-010
    Clocks/Oscillators 53-05
    CRC Generators 53-065 (eneration and Use
    Cyclic Redundancy Check Generation and Use
    Data Flow Clock 53-015
    Envelope Failure, Runaway, or Read/Write Problems
    Envelope Failure,Runaway, or Read/Write Problem
    Head Degaussing and Resistance Check (Models
    Head Resistance Check Procedure 58-001
    Intermittent Permanent Data Checks
        Forward to Backward Ratio 5A-110,5B-020
        lol
        Nignal Dropout 5A-110,5B-020
        Tape Edge Damage 5A-110,5B-
        lol
    LOgic Circuits 5A-10,5B-100
    Self Adjusting Gain Control (SAGC) 5B-120
    Skew Detection 53-085
    Vertical Redundancy Check (VRC) (Logic) 17-179
    V Vertical Redundancy Check (VRC) (MAP)
    Vertical Redundancy Check (VRC) (Timing
    Charts) 17-172
```



```
    Write Head Card Plugging (Models 4, 6, and 8)
    Write Service Controls 53-040
    Zero Threshold 5B-120
Ready Lamp Does Not Turn Off 4A-100, 4B-100
lol
Ready Symptoms Failure Chart 2A-000
Recording Methods/Formats
    Concepts 40-002
    Description 5ap (IBG) 40-002
    Magnetic Tape amd Reels (Concepts) 40-002
    PE (1600 BPI) Concepts 40-002
```

7-Track NRZI (Concepts) 40-002
Reel
250 BPI Error Correction (Concepts) 40-002
Alignment Tool Preparation Kit 08-460
 nd Cap
$3 \mathrm{~B}-030$
Sft Reel Does Not Turn Clockwise at Threading
Speed 2A-110, 2B-110
Motors and Drivers 3A-020, 3B-020
Reel and Capstan Operations During Rewind
$\begin{array}{ll}\text { 3A-030, 3B-030 } \\ \text { Reel Does Not Stop } & \text { 4A-130, 4B-130 }\end{array}$
$\begin{array}{ll} \\ \text { Reel Motor and Hub Adjustment (CE Tools) } & 80-000\end{array}$
Reel Tachometers $3 \mathrm{~A}-030,3 \mathrm{~B}-030$
Rewind Operation and Timing Chart 3A-010,
Rewind Operation and Timing Chart $3 A-010$,
$3 B-010$
Right or Left Reel Won't Load Tape into Column
Right or Left Reel Won't Load Tape into Column
$2 \mathrm{~B}-180$
Right Reel Does Not Stop 4A-130, 4B-130

Right Reel Latch Rear Housing Press
Check $08-520$
Stabilization 3A-020, 3B-020
Tachometer Removal/Replacement 08-550
Tachometers, During
$3 \mathrm{~B}-020,3 \mathrm{~B}-030$
Tape Does Not Wind Completely Onto Right Ree
$4 \mathrm{~A}-130,4 \mathrm{~B}-130$
$4 \mathrm{~A}-130,4 \mathrm{~B}-130$
Tape Fails to Go Backward $3 \mathrm{~A}-130,3 \mathrm{~B}-130$
Tape Unwinds Off Right Reel or TI Light Stays On
$3 A-150,3 B-150$
Reference Charts, Device Switching Feature 18-029
Registers
$A / B \quad 53-055$
Channel Tags and Bus in 52-040
Channel Write Byte
Crossovers $52-025$
Crossovers
D $52-060$
Dead Track
$\begin{array}{lll}\text { Dead Track } & 53-075 \\ \text { High and Low-Order ROS } & \text { 52-035 }\end{array}$
High and Low-Order ROS
Local Storage $52-015$
MIST and TCS $52-060$
$\begin{array}{ll}\text { MIST and TCS } & 52-060 \\ \text { MP1 and MP2 } & 52-060\end{array}$
$\begin{array}{ll}\text { MP1/MP2 STAT } & 52-015 \\ \text { pointer } & 53-045\end{array}$
Pointer ${ }^{53}{ }^{53-C 45} 5$
ROS 015
Tape Unit Bus Out 52-045
Write Check 53-045
Regulator Air Pressure Checks/Adjustments
$90-190,08-405$

3803-2/3420

Removals and Replacements
Air Bearings (D)
$08-210$
Autocleaner $08-370$
Capstan Assembly (Non-90,000 Series) 08-020,
08-040
O8-040
Castan
$08-050$ Assembly (90,000 series) $\quad 08-030$,

Capstan Tachometer (Model 3, 5,
Capstan Tachometer (Model 4, 6)
08-090
Cartridge Restraint $08-540$
Cooling Fan $08-630$
Cooling Fan 08-630
$\begin{array}{ll}\text { Drasering } & \\ \text { Elead } \\ \text { Fiber Optics } & \text { 08-210 }\end{array}$
Fiber Optics
BOTEOT Block
08-59
BOT/EOT Block
Bundle 08-610
Lamp O8-620
LED BOT/EOT Block 08-590
LED BOT/EOT Window $08-590$
Left Movable Guide and Retractor (NRZI
Feature) $08-220$
Feature) $08-220$
Left Reel Hub
$\begin{array}{ll}\text { Left Reel Hub and Motor } & 08-560 \\ \text { Logic Panel (} 3420 / 3803 \text {) } & 08-630\end{array}$
$\begin{array}{lll}\text { Logic Panel (3420/3803) } & 08-630 \\ \text { Pneumatic Supply Flat Belt } & 08-442\end{array}$
Power Circuit Board (PCB) 08-575
Power Circuit Board (3803 Model 2 only) 08-575
Power Window Glass 08-670
Powe Window Safery Bail Cable 08-660
Printed Circuit Board (3803 Model 2 Only) 08-57
Printed Circuit Board (3803 Model 20
Read/Write Head Card $08-260$
Read/Write Head Card O8-260
Read/Write or Erase Head 08-250
Reel Tachometer $08-550$
Reel Tachometer $08-550$
Right
Right Rear Movable Guide and Retractor 08-210
Right Reel-Latch Rear Housing
Right Reel Motor 08 - 530
Right Reel Hub
Right Reel Hub Individual Parts 08-490
Vacum Com
$\underset{\substack{\text { Vacuum } \\ \text { Replacement } \\ \text { Cartridg }}}{\text { Con }}$
Cartridge Motor 08-535
Pneumatic Supply Flat Belt (Type 4) 08-442
Pneumatic Supply Flat Belt (Type 4) 08-442
Pneumatic Supply Pulley (All Types of
Pneumatic Supply Pull $\begin{aligned} & \text { Pnoumatic Supplies } \\ & \text { Right Reel Hub } 08-500\end{aligned}$ (430
Right Reel Hub $08-500$
Right Reel Hub Individual Parts
$\begin{array}{ll}\text { Right Reel Hub Individual Parts } & 08-490 \\ \text { Right Reel-Latch Rear Housing } \\ \text { Vacuum Column Dear }\end{array}$
Vacuum Column Door 08 Dousing
Request In Interrupt $54-001$
Request In Interrupt 54-001
Request
Reservel Reiease-ln-Error Command Operation (TCS 40-006
Reset/Start or Step Switch (TCE Feature) $58-011$
Resets (TCS Feature) $58-001$
Resets (TCS Feature)
Resources PLAN 1
Response Chart 40-008
Rewind (REW)
Rewind (REW)
Command
Command $40-001$
Concept
$40-001$
Operation and Timing Chart $3 A-010,3 B-010$
Problems $3 A-000,3 B-000$ Capstan WOn't Rewind to LP After Loading Tape
$2 \mathrm{~B}-175$ No Response or Tape Moves Backward $3 \mathrm{~A}-100$,
$3 \mathrm{~B}-100$ Tape Does Not Enter or Stay in Hi Speed
Rewind $3 A-170,3 B-170$
Tape Does Not Stop or Tape Runaway (Forward
or Backward)
Tape Fails
3A-140,
3B-140
Tape Fails to Go Backward $3 \mathrm{~A}-130$, 3B-130
Tape Pulls Out Of or Dumps During High Tape Pulls Out Of or Dumps During High
Speed Rew 3B-160
Tape Rewinds Off Left Reel 38-180
Tape Rewinds to Beginning of Tape at High
Speed $3 A-170$
Tape Stays in High
Tape Stays in High Speed Rewind Status
to Load Point $3 \mathrm{~B}-180$
Tape Unwinds off Right Reel 3A-150, 3B-150 Unload/Rewind Pu
$4 A-110,4 B-110$
Wide Execursions in Left Column During
High Speed Rewind 3A-160, 3B-160
Rewind Times (Subsystem Characteristics) 40-002
Rewind Unload (RUN) Command 40-007
Uncead Operation With Cartridge 4A-000, 4B-000
Unload Operation Without Cartridge $4 \mathrm{~A}-000$, 4 B ,
$\stackrel{4 \mathrm{~B}-000}{ }$
Croblems $4 \mathrm{~A}-000,4 \mathrm{~B}-000$
Cartridge Opener Does Not Close $4 \mathrm{~A}-150$,
Cartridge Opener Does Not Close
$4 \mathrm{~B}-150$
4-150
No Response When Rewind/Unload Button
is Pressed $4 \mathrm{~A}-110,4 \mathrm{~B}-110$
is Pressed $4 A-110,4 B-110$
Power Window Does Not Go Down 4A-140,
$4 \mathrm{~B}-140$
Reels Do Not Stop 4A-130, 4B-130
During Unload Rewind $4 \mathrm{~A}-120,4 \mathrm{~B}-120$
Tape Does Not Wind Completely onto Right
Reel or Reels Does Not Stoo $4 \mathrm{~A}-130,4 \mathrm{~B}$ -
Reel or Reels Does Not Stop 4A-130, 4B-130
Tape Moves Backward Off Left Reel $28-190$
Tape Moves Backward Off Left Reel 2B-190
Tape Unit Performs a Normal Unioad Rewind
During a Load Operation $2 \mathrm{~B}-190$
Unload Rewind Pushbutton (No Response)
Unload Rewind Pushbutton (No Response)
$4 \mathrm{~A}-110,4 \mathrm{~B}-110$
ind / Unload Times (Subsystem Characteristics) Rewind/
$40-002$
RIC/ROC 53-080
Right Reel $53-080$
Doos Not Turn Clockwise at Correct
Speed $2 \mathrm{~A}-120,2 \mathrm{~B}-120$
Hub Individual Parts Replacement 08-490
Hub Redividual Parts Replacement 08-490
Hub Removal 08-480
Hub Replacement/Adjustment 08-500
Hub Removal $\begin{aligned} & \text { Hub Replacement/Adjustment } \\ & \text { Latch }\end{aligned}$ 08-500
Rear Housing Pressure Test 08-520
Rear Housing Removal $08-470$
Rear Housing Replacement 08-510
Logic 3A-030, 3B-030

Reels Do Not Stop $4 \mathrm{~A}-1 \mathrm{AO}, 4 \mathrm{~B}-180$
Right or Left Reel Won't Load Tape into Column
$2 \mathrm{~B}-180$
Right or Left Reel Won't Load Tape into Column
28-180
Tape Does Not Wind Completely onto Right Reel
Tape Does Not Wind Completely onto Right Reel
$4 \mathrm{~A}-1304 \mathrm{~B}-130$
Tape Unwinds Off Right Reel or TI Light Stays On
$3 A-150,3 B-150$
Theory, Rewind and Timing Chart $3 \mathrm{BA}-010,3 \mathrm{~B}-010$
Won't Load Tape into Columnn $2 \mathrm{~B}-180$
Won't Load Tape into Columnn
Right Threading Channel $08-230$
Right Threading Channel 08-230
Ripple/ Wr Data Switch (CE Panell $75-002$
ROS Bit P1, $0-7$ Test Points (Table

ROS Bit P2, 8-15 Test Points (Table) 16-010
ROS Mode Switch (CE Panel) $75-002$
ROS Mode Switch (CE Panel) $\quad 75-002$
ROS Path Card (luuging)
ROS 1 Trap Conditions Logic
R0000
$\begin{array}{ll}\text { Routines, Linking Microprogram } & 50-010 \\ \text { R2-030 }\end{array}$
Rules and Definitions, Device Switching 18-011
Envelope Failure, Runaway, or R/W Problems
$5 \mathrm{~A}-000$, $5 \mathrm{~B}-000$
Tape Does Not Stop or Tape Runaway (FWD/BKWD)
$3 \mathrm{~A}-140,3 \mathrm{~B}-140$
s
Safety Section
SAGC SSelf-Adjusting Gain Control)
Check $16-220$
Theory $58-120$

Scale (CE Tool) 80-000
Schematics
1BG Counter (Model 3, 5, 7) 6A-130
Microprocessor (MP1, MP2) Flow
Microprocessor (MP1, MP2) Flow 50-003
Read Write Flow 50-000, 50-001, 50-002
Read/Write Flow 50-000, 50-001, 50-002
ROS 1 Trap Conditions $50-010$
Scoping Permanent Errors
Offline $00-013$
$\begin{array}{ll}\text { Offline } & 00-013 \\ \text { Online } & 00-014\end{array}$
Select in/Select Out $54-020$
Select Out Priority \& Ta
Select in/Select out 54-020
Select Out Priority (Table) $990-120$
Selection, Tape Control and Tape Unit
54-005
Selection, Tape Control and Tape Un
Selection (TCS Feature) $58-011$
$\begin{array}{ll}\text { Selection } \\ \text { Selection and Priority } \\ \text { Sele } & 54-010\end{array}$
Selective Reset $50-011$
Self-Adjusting Gain Control and Zero Threshold
Self-Adjusting Gain Con
$58-120 \quad 18-000$
Logic $1 \times 8 \quad 18-000$
Priority Circuits
54-020
Tape Control and Tape Unit Addressing 54-005
Tape Control and Tape Unit Selection
Tape Unit Selection
$54-010$
Sense
Analysis
Tape
Analysis (MAP) $14-000$
Analysis, Error Correction (MAP) 21-000
Analysis, Err
Bytes 0-23
Bits not Defined in MAPs 00-006
Mask for Sense Data After Rewind 15-140
Mubsystem Quick Fix Index, Sense Byte
Tape Unit Sense Bytes (Table) 00-005
Sape Unit Sense Bytes (Table) 00-005
Sense All Zeros (MAP) $15-080$
Sense Byte to Bit Conversion (Table) 14-005
$\begin{array}{ll}\text { Sense Byte to Bit Conversion (Tab } \\ \text { Sense Byte 3, Bit } 4 & 17-315\end{array}$

Sense Command 40-005
Sense Data Equals All Zeros 15-080
Sense Data Equals All Zeros $15-080$
Sense Release Command (TCS Feature)
$40-006,58-011$
Sense Reserve Command (TCS Feature)
$40-005,58-011$
Sensor Adjustment, AMP
(NRZI-Model 3, 5, ${ }^{\text {I }}$) 08 -300
(PE Only-Model 3, 5, 7) 08-290
Sequence Chart, Forward Creep During
Sequence Chart, Forvard Creep During
Rewrite $6 \mathrm{~B}-230$
Sequencing, Power On/Off (Concepts) 40-003
$\begin{array}{lll}\text { Service Controls, Write } & 53-040 \\ \text { Service In/Service Out } & 58-005\end{array}$
Service Out Inactive During Rese
Service Out Inactive During Reset or
Power-On-Reset (MAP) $133-350$
Service Out Tag Active (MAP) 13-280
$\begin{array}{ll}\text { Service Out Tag Active (MAP) } & 13-280\end{array}$
$\begin{array}{cc}\text { Service } & \text { Requirements } \\ 6250 & \text { Read } \\ 6250 \text { Write } & 50-030 \\ 50-020\end{array}$
Set Diagnose Command 40-006
Set ROS Mode/Set CE Compr Switch (CE Panel)
Seven-Track NRZI Recording (Concepts) 40-002
Shim (CE Tool) $80-000$ (Timing Chart) 16-001
Short Cycle XFR Example (T) Short Gap (with Tape Damage) $00-012$ $\begin{array}{ll}\text { Signal Dropout } & 5 \mathrm{~A}-110,5 \mathrm{~B}-020 \\ \text { SIO Trap Failures (MAP) } & 13-320\end{array}$
Single Tape Unit Problems Chart 00-040
$\begin{array}{ll}\text { Skew } \\ \text { Buffers } \\ \text { Detection } & 53-075 \\ 53-085\end{array}$
Detection ${ }^{53-085}$
Error $17-166$
Error Circuit Description 17-166
Errors, Test Point Chart (Table) 17-162
Errors, Test Point Chart (Table)
Error Timing Chart 17-163
Gror Buffer Counter 53-090
Indicator (CE Panel) $75-004$
RIC Equals ROC (MAP) 17-160
Test Points, Skew Errors (Chart) 17-162
Slippage, Tape 5 B -020
Slow End Readback Check (MAP) 17-150 $\begin{array}{ll}\text { Solenoid Check, High-Speed Rewind } & \text { O8-405 }\end{array}$ Space File Commands (Description) 40-007 Special Power Requirements-3420 Model 8
(Table) $90-180$ Special Register, MP1 (Hardware Errors) 52-060
Special Register, MP2 (TU Bus In) 52-060 Special Register, MP2 (TU Bus In) 52 -060
Stack Interrupt (TCS Feature) $58-012$ Stack/Stack Interrupt (TCS Feature) $58-012$ Standard Voltages, Definition of
Start Capstan Motion $6 \mathrm{~B}-220$
Standard Voitages, Definition of $60-003$
Start Capstan Motion $68-220$
Start 1/O (SIO) Routine, Common 55-020
Start I/O (SIO) Routine, Common
Start Problem Analysis,
START 1
Start Read Check (MAP)
17-070

Start Tim
$40-002$
$\begin{array}{ll}\text { Stat Registers } & 52-015 \\ \text { Status Byte Chart } \\ 00-00\end{array}$
Status Reject, Command or Control 6A-160 Stop Address-FRU List (Table) (16-060
Stop On Control Check Switch (CE Panell) 75-001
Stop On Data Flow Check Swwitch (CE Panel) 75 75-001
Stop/Start Switch (CE Panell)
75-002 $\begin{array}{ll}\text { Stop/Start Switch (CE Panel) } 75 \text { (} \\ \text { Store (ALU Operation) } & 52-095\end{array}$

INDEX (Cont'd)

Commands and Command Status Byte (Table)
$\begin{array}{ll}\text { Control Lines Charts } & 16-213 \\ \text { Double Track Errors } & 40-002\end{array}$
Double Track Errors 40-002
Erase Head 5B-110
Featuread Code $98-110$
Full Width Erasure
Full Width Erasure 40-001
General and Daily Cleaning 85-000
Ground Check 08 -6jo
O8-350
IBG Counter (Model 3, 5, 7) 6A-130
Initial Selection 54-000
Initiating Tape Motion 07-010
interchangeability Problems (M0-001
Logic Panel Card Plugging (Models 3, 5, and 7)
Logic pana
Logic Panel Card Plugging (Models 4, 6, and 8)
Logic Panel Removal/Replacement 08-630
Loop-Write-To-Read 55-005
Model Number $90-212$
Modiel Number
Online/Offline Switches (2×8 Switching) 58-080
Power Supplies $1 \mathrm{~A}-000,1 \mathrm{~B}-000$ Selection and Addressing 54-005
Selection Priority $54-010$
Sense Byte Chart $00-00$
Serial Number $90-210$
Single Direct-Drive Capstan 40-001
Single Track Errors $40-002$
Speed (Subsystem Characteristics) 40-002
Tape Developing Analysis 00-011
Tape Guide Check (NRZI Feature) 08-230
Track Pointers $40-002$
Two-Gap Read/Write Head 40-001
Tape Unit Problems
Bit Packing 5A-115, 5B-025
Capstan Starts Turning Wen Power is Turned
Dropping Ready and Thread and Load Failure
Symptoms 2A-000, 2B-000
Capstan Fails to Start a Rewind to Load
Capstan Fails to Start a Rewind to Load
Point After Loading Tape into Columns 2B-175
Point After Loading Tape into Columns $2 \mathrm{~B}-1$
Cartridge Does Not Open $2 \mathrm{~A}-100,2 \mathrm{~B}-100$
Cartridge
Intermittent Drop Ready
2A-005,
Left or Right Vacuu
$2 A-170,2 B-170$
Left Reei Does Not Turn Clockwise at
Threading Speed 2A-110, 2B-110
Load Check Prior to BOT Sense 2A-150,
Load Check Prior to BOT Sense 2A-15
$28-150$
Ready Lamp Does Not Turn On/Wind
Does Not Close $2 \mathrm{~A}-210,2 \mathrm{~B}-210$
Does Not Close 2A-210, 2B-210
Right or Left Reel Fails to Load Tape
Right or Left Reel Fails to
into Columns $2 \mathrm{~B}-180$
into Columns
Right Reel Does Not Turn Clockwise at
Threadin Speed $2 \mathrm{~A}-120,28,120$
Threading Speed 2A-120, 2B,120
Tape Does Not Go Backward or Does
Tape Does Not Go Backward or Does
Not Stop at BOT $2 \mathrm{~A}-190$
Tape Does Not Load into Either Column
Tape Does Not Load into Either Column
$2 A-160,2 B-160$

Tape Goes Forward After Loading into
Tape Goes Forward After Loading into
vacuum Columns $2 \mathrm{~A}-200,2 \mathrm{~B}-230$
Tape Motion Problems (Stubby Column
Loops) 6 A-010
Tape Moves Backward Off Left Reel, or Tape
Unit Moverms E Normal Unload Rewind During
a Load Operation 28-190
Tape Stans into Threading Channel and

Tape Thrads into Right Column 2A-130,
$2 B-130$
\qquad Forward to Backward Ratio 5A-110,5B-020 Intermitent Drop Ready 07-010
Noise or Bit in IBG 5A-115, 5B-025
Permanent Data Checks (MAP) 5A-105, 5B-002 Permanent Data Checks (MAP) 5A-
Signa! Dropout $5 A-110,5 B-020$
Tape Drap Check $5 \mathrm{~A}-\mathrm{O10}, 6 \mathrm{~B}-150$
Tape Edge Damage $5 \mathrm{~A}-110,58-030$
Tape Edge Damage $5 \mathrm{~A}-110,5 \mathrm{~B}-030$
Tape Motion Symptoms $3 \mathrm{~A}-000,3 \mathrm{~B}-000$
Left or Right Vacuum Column-Tape Pulls Out,
Bobt or Right Battoms $3 \mathrm{~A}-110,3 \mathrm{~B}-110$
Bo Response or Tape Moves Backward
No Response or Tap
$3 \mathrm{~A}-100,3 \mathrm{~B}-100$
Tape Does Not Enter or Stay in High Speed
Rewind or Rewinds to BOT at High Speed
Rewind or Rewinds to BOT at High Speed
Tape Does Not Stop or Tape Runaway (Forward)
Backward) $3 \mathrm{AA-140} 3 \mathrm{BB}-$,140
$\begin{array}{ll}\text { Tape Fails to } \\ \text { go Backward } & 3 A-130,3 B-130\end{array}$

Tape Has Wide Excursions in Left Column
During High Speed Rewind $3 A-160,3 B-160$
Tape Pulls Out or Dumps in Left Column
During HS Rew $3 A-160$, $3 B-160$
During HS Rew $3 \mathrm{~A}-160$, BB-160
Tape Rewinds to Beginning-O-Tape (BOT) at
Tape Rewinds to Beginning-0f-Tape (BOT) at
High Speed $3 A-170,3 B-170$
Tape Unwinds Off Right Reel $3 A-150,3 B-150$ Tape Unwinds Off Right Reel
Tape Slipping $5 \mathrm{~B}-020$
Tape Stretch $5 \mathrm{SA} 115,5 \mathrm{~B}-020$
Tape Stretch 5A-115, ${ }^{\text {5B-020 }}$
Tape (MAP)
15-090
Tape Unit Loads but Capstan Motion is Faulty
Tape Wont Thread, Load, a
Properly (MAP) $68-100$
Unload Failure Symptoms
Cartridge Opener Does Not Close 4A-150,

$4 B-160$
Power Window Does Not Go Down 4A-140,
$4 \mathrm{BB}-140$,
Ready Lamp Does Not Turn On 4A-100, 4B-
Tape Does Not Pull Out of Columns Properly
Tape Does Not Pull Out of Columns Properly
During Unload Rewind $4 \mathrm{~A}-120,4 \mathrm{~B}-120$
During Unioad Rwind Completely Onto Right
Tape Does Not Wind Cor Reels Do Not Stop $4 \mathrm{~A}-130,4 \mathrm{~B}-130$
Reel or Reels Do Not Stop (NA-130, 4B-1
Unload Rewind Pushbutton (No Response)
TB-1, 4A-110, 4B-110
TB-1, TB2, and TB3 Diagram 1A-002
TCU (see Tape Control)
Technique, Card Isolation PLAN 1 1 $80-000$
Tee and Hose Assembly (CE Tool)
Terminator and Cable Plugging $90-060$
Terminology Notes PLAN 1

Test $1 / 0$ Instruction $40-009$
Test Points, Channel Buffer $/ \mathrm{W}$
Test Points, Channel Buffer/Write Bus (Table) 17-021
Test Points (Read Card) 5 5-004
Test Points (Read Card) 5 B -
Tester, CE (see Field Tester)
Theory see Tape Unitor Tape Control Unit)
Theory (TCS Feature) $58-010$
Theory of Operation
Additional Stopping Distances After Go
Extend $6 \mathrm{~A}-140$
and
Extend $6 \mathrm{~A}-140$
Air Bearings $4 \mathrm{~A}-160,4 \mathrm{~B}-160$
Air Bearings 4A-160, 4B-160
Arirflow and Voltage Monitoring System
$1 \mathrm{~A}-000,1 \mathrm{~B}-000$
Backspace $6 \mathrm{~B}-230$

3420 Power Supplies $1 \mathrm{~A}-000$
$2 \mathrm{~A}-010,2 \mathrm{~B}-020$ Thread, Load
Check Points $2 A-020,2 B-030$

Checking with Cartridge (Timing
Checking without Cartridge (Differences)
$2 \mathrm{~A}-020,2 \mathrm{~B}-030$
Failure
$\begin{array}{ll}\text { Failure Symptoms } & 2 \mathrm{~A}-000,2 \mathrm{~B}-000 \\ \text { Left Reel Turns Too Fast } & 2 \mathrm{~A}-110,2 \mathrm{~B}-110\end{array}$
Operations
Cartridge Does Not Not Open 2A-100, 2B-100
Left or Right Vacuum Column Problems 2A-170, Left or Right Vacuum colum
Left Reel Does Not Turn Clockwise a
Threading Speed $2 A-110,2 B-110$
Load Chec
$2 \mathrm{~B}-150$
Motor Not Running or Transfer Valve Not Picked
$2 \mathrm{~A}-130,2 \mathrm{~B}-130$
Ready Light Does Not Turn On 2A-210, 2B-210
Right Reel Does Not Turn Clockwise at Correct Speed $2 \mathrm{~A}-120$, $2 \mathrm{~B}-120$
Tape Does Not Go Backward or Does Not Stop at
BOT $2 \mathrm{~A}-190$
Tape Does Not Load into Either Column $2 \mathrm{~A}-160$,
$2 \mathrm{~B}-160$
Tape Enters Threading Channel and Stops 2A-140,
Tape Goes Forward after Loading into Vacuum
Tape Unit Won't Thread, Load, and Return
Tape Unit Won't Thread, Load, and Re
to BOT Correctly $6 \mathrm{~B}-100$ (Subsystem
$\begin{array}{ll}\text { Time Required in Execute (Subsysten } \\ \text { Characteristics) } & 40-002\end{array}$
Regulator Air Pressure Check 08-400
Regulator Ar Cressureck Check $08-400$
Traneading Vacum
Transfer Valve Leakage Test $08-400$
Thread Load Checking With Cartridge 2A-020, 2B-030
Thread Load Checking With Cartridge 2A-020, 2B-030
Thread Load Without Cartridge (Differences) 2A-020
Thread Status Active and Inactive $4 \mathrm{~A}-161,4 \mathrm{~B}-161$
Threading Failure Symptoms Chart $2 \mathrm{AA}-000,2 \mathrm{~B}-000$
Three Control Switch Feature (Concepts) $58-050$
Three Control Switch Feature (Concepts)
Three-Way Valve 4A-160, 4B-160
TIE Breaker (with TCS Feature) 58 5-012, 50-030
IE (Request Track-in-Error Command) 40-006
Iming Chart
Bit Cell and PE and NRZI Write
Waveform $55-007$
Waveform 55-007
Branch Unconditional 52-090
Branch Conconditional
Byte Count or Go Down 12-028
CE Entry $17-020$
Clock
Clock 17-800
Command Select Sequencer and Decoder 12-026
Command Select Sequencer and Decoder 12-02
Command Sequence (Tag Lines/Status)
54-001
Command Sequance (Tag Lines/ Status)
Cyclic Redundancy Check (CRC) 17-544,
Data Cónvert Write Timing 57-025
$\begin{array}{ll}\text { Go Extend IBG } & 6 A-140 \\ \text { IBG Generation } & 6 B-210\end{array}$
IBG Generation 6B-210
Long Cycle (BOC or BU) 16-001
Long Cycle (BOC or BU) 16-001
Microrocessor Clocks Control $52-005$

Overrun
$P E \quad 17-176-041$
PE Mode 17-016, 17-025, 17-111

PE Write 17-165
Plugging Reverse High Power Current
Pointer System, PE 17-705
$\begin{array}{ll}\text { Pointer System, } 6250 & 17-70 \\ \text { Read Cycle Controls } & 53-095\end{array}$
$\begin{array}{lr}\text { Read Cycle Controls } & \text { 53-095 } \\ \text { Read Electrical Skew } & 08-190\end{array}$
Rewind $3 A-010,3 B-010$
Set and Display CE Register 12-021
Set and Display Compare Register 12-022
Set and Display Compare Register 12
Short Cycle (XR) Example $16-001$
Start Capstan Motion (Write Operation
200 IPS) 6 -
200 IPS) 6 SB-220
Thread and Load 2B-020
Thread Load Checking With Cartridge 2A-020
$2 \mathrm{~B}-030$ Len
Thread Load With Cartridge 2A-010
Transfer $52-100$
Write Electrical Skew (NRZI Feature) 08-200
Write Electrical Skew (NRZI Feature) 08-2
6250 BPI Mode 17-014, 17-015,
6250 Multi-Track Error (MTE)
6250 , PE, and NRZI Waveform $53-070$
6250 Read Service Requirements $\begin{array}{ll}53-070 \\ 50-030\end{array}$
6250 Write (RIC/ROC) 17-163
$\begin{array}{lll}6250 \text { Write Service Requirements } & \text { 50-020 }\end{array}$
7-Track 17-313
Timing Charts, Used in MAPs (Description) 00-003
$\begin{array}{ll}\text { Tools and Test Equipment } & 80-000 \\ \text { Transfer (ALU Operation) } & 52-100\end{array}$
Transfer Decodes, Microprogram (MP1 and MP2) 52-10
Transfer Valve
Not Picked or Pneumatic Motor Not Running
Not Picked or Pneumatic Motor Not Running
$2 \mathrm{~A}-130,2 \mathrm{~B}-130$
Leakage Test 08-400
Translation
Write Translator 7-Track 57-020
$\begin{array}{ll}\text { Read Translater 7-Track } & \text { 57-021 }\end{array}$
Transport Cleaning Procedure
85-001
Transport Concepts $40-001$
Transport, Tape (Concept)
$\begin{array}{ll}\text { Trap Channel A/B (TCS Feature) } & 58-011 \\ \text { Trap Condition Schematic, ROS } 1 & 50-010\end{array}$ Troubleshooting Procedure, Devi
Switching (MAP)
18-020
TU (see Tape Unit)
U Bus in (MP2 Special Register) 52-060
Control Lines and Control Status Byte
Response (Table)
$16-213$
$\begin{array}{ll}\text { TUBI Test Points (Table) } & 17-312 \\ \text { TUBO Test Points (Table) } & 17-312\end{array}$
Two Channel Switch (TCS) Feature 58-010
TCS or MIST Register (MP1) 52-000
Two Control Switch Feature (Concepts) 58 -050
ype 2272 MST Card Adjustment $17-800$
Typical Flow Through MAPs (Example) $00-002$

U Pgm Indicators 75-004
Unit Check Without Supporting Sense
Unload Operation With/Without Cartridge
Unload Operations (see Rewind/Unload Operation)
Unmodified Power. Supply, $342011 \mathrm{~A}-000,1 \mathrm{~B}-002$
Unater
v

Vacuum Column
Balance $08-800$
Door Glass Removal/Replacement/Adjustmen
Door Replacement/Adjustment 08-680
Left or Right Vacuum Column Problems 2A-170,
2B-170, $3 A-110,38-11$
Switch Check $08-450$
Tape Bobbles Vacuum Columns $3 A-110$, 3B-110
Tape Bottoms in Vacuum Columns $3 A-110$,
ape Bottoms in Vacuum Columns 3A-110,
$3 B-110$
Tape Does Not Load into Either Column 2A-160,
Tape Exhibits Abnormal Motion Symptoms 3A-110,
Tape Goes Forward After Loading into Vacuum

Tape Pull
$3 \mathrm{~B}-110$
Wide Excursions in Left Column During
High Speed Rewind $3 A-160,3 B-160$
Vacuum Chart (Inches of Water) All Models) 08-405 Vacuum Chart (Inches of Water) All Models)
Vacuum Level Adustment, Altitude 0 o-410
Vacuum/Pressure Gauge (Setup) $80-010$
Vacuum Level Adjustment, Altitude 80
Vacuum/Pressure Gauge (Setup)
Valid Pointers 17-602
Variable Go-Down Time 40-006
Velocity Check, Velocity Change During Write $16-180$
Voltage and Airflow Monitoring System $1 \mathrm{~A}-000$ 1B-000
Voltage and Airflow Monitoring System $1 \mathrm{~A}-000,1 \mathrm{~B}-000$
Voltage Levels (Limits) $00-003$
Voltages, Standard (Definition Of) 00-003
VRC Error, Write Trigger 17-020
VRC, Write Trigger Circuit Description 17-026
w
Water Manometer (Procedures) 80-010
Waveforms (Read Forward and Backward Ratio Test)
$5 \mathrm{~A}-110.5 \mathrm{~B}-020$ 5A-110, 5B-020
Wide Excursions in Left Column During High Speed
Window (3A-160, 3B-160
Window (see Power Window)
Word Count Zero (MAP) 15-050

03.2/3420

```
Write
    Access Times (Subsystem Characteristics) 40-002
    Myte Counter 53-025 53-045
    Check Register 53-045 53-020
    Clock and Write Counter 53-020
    Command 40-005
    Data Converter Logic 57-025
    Data Exchange on Device Interface During Writ
    Operation 5A-130, 5B-130
    *)
    *)
    Enable Ring (see File Protection-Concepts)
    Forward Creep During Write 6B-230
    Group Buffer Control 53-025 (Models 4, 6, and 8) 08-270
    Tape Mark (WTM) Check (MAP) 17-180
    Tape Mark Command 40-007
    Translator, 7-Track Logic 57-020
Trigger Operation, 6250. NRZI, and PE 53-070
Write Trigger Indicator 75-004
    Logic 17-026 17-020
    Error, 6250 BPI (Timing Chart) 17-022
Write Current Failure or Tape Unit Check (MAP)
Write Head, Erase Head, and Write Card
6250 Write O-110 (MAP) 
6250 Sevice Requirements) 
x
XOUTA Register Not Functioning (MAP) 13-430
Y
Y1 Panel Location 90-08
z
Zero Threshold 5B-120
NUMERIC
1 and 2 Track 6250 Error Correction 17-600
Without TCS (M.s. TCS or Device Switching
Without TCS (MAP) 13-240
l600
Airflow and Voltage Monitoring System
    1A-000,1 18-000
    Altitude Vacuum Level Adjustment 08-410
    Dropping Ready, Thread, and Load Failure
    Symptoms 2A-000, 2B-000
    Field Tester Accuracy Check 08-290.
    Field Tester Procedure 80-020
```

3803-2/3420

Installation Checklist 90-020
Models 3-8 Cleaning Procedure 85-001
oder 8-Special Power Requirements 90-180
Modified Power Interface Board (B1) 1A-003
Modified Power Supply 1A-002
Preventative Maintenance Schedule 85-005
Preventative Maintenance Schedule
Read Amplitude Adjustment
08-310
AGC Checks $08-315$
Tape Speed (3420 Subsystem Characteristics)
Unmodified Power Supply 1A-000

3803/3420 Magnetic Tape Subsystem 40-001 Basic Sense Data $40-00$
Cross-Reference, Pins To Logic 17-166
Festures (Concepts) $40-004$
$\begin{array}{ll}\text { Logic Panel Removal/Replacement } & \text { 08-630 } \\ \text { Preventative Maintenance Schedule } & 85-005\end{array}$
Status Pending $13-220$
Status Response $\quad 40-001$
Status Response
Symptom Index
$000-010$
Tape Control (Concepts) 40-003
PE Mode Timing Chart (MAP) 13-016
PE Mode Timing Chart ${ }^{1 \times 8}$ Selection Logic (MAP) ${ }^{17-016}$ 18-000
2 Control Switch (Concepts)58-050
2×8 Switch Logic $58-055$
2×8 Switching Functional Units
2×16 Switch Logic $58-060$ Uns 58 -08
$\begin{array}{lll}3 \text { Control Switch (Concepts) } & 58-050 \\ 4 \text { Control Switch (Concepts) } & 58-050\end{array}$
$\begin{array}{ll}4 \times 16 \text { Switch Logic } & 58-070 \\ 6 \mathrm{MHz} \text { Oscillor and Gray Code Counter } & 6 \mathrm{~B}-205\end{array}$ 6250 BPI
(Concepts) 40-00
$\begin{array}{ll}\text { Error Correction (Concepts) } & \text { 40-002 } \\ \text { Mode Timing Chart } & 17-014,17-015\end{array}$
Mode Timing Cha
PE CRC $17-540$
250 Error Correction (MAP)
6250 Error Correction (MAir) 17-600
6250 Read Service Requirements $50-030$
6250 Read Service Requirements $50-030$
6250 Stress Tape (CE Tool) $80-000$
6250 Write Service Requirements $50-020$
$7-$ Track NRZI Threshold Adjustment Card $80-000$
7-Track Timing Chart 17-313
7 or 9 Track LRC $17-310$
7 and 9 Track NRZI $4 C-004$
$9-$ Track CRC Generation During Read and Write $53-067$
\square

[^0]: 3803-2/3420
 $\left.\begin{array}{|l|l|l|l|}\hline \text { XG2700 } \\ \text { Seq } 1 \text { of } 2\end{array} \begin{array}{l}2735997 \\ \text { Part Number }\end{array}\right) \begin{gathered}\text { See EC } \\ \text { History }\end{gathered}$

 | 6 Copyright International Business Machines Corporation 1976, 1979 | | | | |
 | :---: | :---: | :--- | :--- | :--- | :--- |

[^1]: Note: This illustration is only one of nine such circuits. See 50-001 for further details.)

[^2]: 3803-2/3420

 | XG3132 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | Seq 2 of 2 | \(\begin{gathered}4169682

 Part Number\end{gathered}\)

