U. S AIR FORCE

PROJECT RAND

SO0ME THOUGHTS ON THZ IDM MILITARY \
COMPUTZR A> A DATA PROCESSOR

C. L. Baker
J. P. Haverty

B-100

Assigned to ___

The D-ﬂ n Deomwab«

1700 MAIN ST. « SANTA MONICA « CALIFORNIA



B-100
2-6-59
-1-

SOME THOUGHTS ON THE IBM MILITARY COMPUTER
AS A DATA PROCESSOR

I. INTRODUCTION

The IBM Military Products Computer 1s described 1in the
Kingston Military Products Division Document SAC-11, dated
17 November 1958, entitled, "Program Instructions Specifica-
tions for the SAC Data Processing System.” A somewhat
revised description has appeared as Lincoln Laboratory
"Advanced Sage Computer Memo #23," dated 18 November 1958.

The general characteristics of the machine are as follows:

It 1s'a solid state machine, utilizing 10 megapulse circultry,
with a high-speed core storage capability of up to one-quarter
million (in units of 16,000) words. A 48-bit complement word
form 1s used; memory access time 1s to be 2.4 microseconds,
with instruction overlap permitting a maximum instruction

rate of approximately 400,000 per second.

The computing power of such é machine 1s limited by two
factors: first, the hardware design, and second, the order
code or internal organization of the machine. The hardware
i1s given and 1s presumably a state-of -the-art development.

The order code and the machine structure should also represent
an advanced development. The following is a discussion of
some of the current thought on machine structure. 1In this

discussion, cost constraints were not considered.



B-100
2-6-59
-p-

II. SUBSYSTEMS OF THE MACHINE STRUCTURE

In an operational environment, a data processing machine
such as the IBM Military ProduCSS'thputer, has four general
subsystems: (1) central processor, (2) auxiliary input-output
equipment, (3) data input-output equipment including displays,
(4) operating equipment, such as control and maintenance
consoles. Each of these subsystems must be properly designed
for use in the system as a whole. Considerations here include
high-speed data processing capability, ease of program
updating and program correction, coding convenience, and ease
of operating the machine. In the design process, 1t 1s easy
to fall into a trap of the following nature: Any machine which
has been 1in use for some time leads to techniques for handling

data and.performing computations which are a result of the

T e

over-all data processing problem. These methods are soon
presumed to be an inherent part of the problem environment,
and a new machine 1s designed to pérform these techniques
rapidly and cleverly. Clearly, we should be searching for
more appropriate methods of data processing rather than better

ways of implementing outmoded methods.

IITI. CENTRAL PROCESSOR

The followlng remarks are primarily directed towards
the central data processor. The core memory 1s the heart of

the processor, since data and instructions are stored here

-



B-100
2-6-59
_3_
and the limiting speed of the machine is usually dependent on
the core cycle time. This implies that the memory addressing
scheme employed to refer to data and instructions 1is of the
utmost importance. Although the data stored within the
memory 1is variable in length, a fixed word size is necessary
so that the storage may be interrogated in parallel to gain
an obvious speed advantage. Much expensive memory space 1s
wasted if information is not packed into these fixed length
words. Input-output considerations also lead to the desira-
bility of packing data within a word. Hence, some means must
be supplied in order to obtain variable length data from the

storage.

A. Addressing (Bit vs. Byte)

There are two ways to obtain data which is packed within
the core storage: (1) unpack using logical operations or,
(2) the hardware itself does the unpacking, via some addressing
scheme. The first way confuses the operations necessary to
operate on the data with those operations necessary to obtaln
the data itself. The programmer must continually be aware
of the fixed word length of the machine, and these unpacking
operations may actually consume a significant portion of the
avallable computation time. To date, most machines have been
constructed using this method for obtaining data which 1is
packed in storage.

In considering how the hardware may be made to do the



B-100
2-6-59
4~

packing and unpacking, an obvious way seems to be to specify
the location of the first bit of the information in memory

and the number of bits to be“read'f;Om storage. Both of

these parameters must be variable, preferably without re-
programming as the nature of the data changes. This specifi-
cation should therefore change with the data and not be fixed
in the instructions. Indexing and indirect addressing
features will accomplish this, as suggested below. The length
of data obtainable should be variable up to many bits, the
maximum number being set by the word length of the machine

and cost considerations. If two consecutive words are fetched
at once, from two storage boxes (by inter-weaving core
addresses between the two boxes) word boundaries need not be
significant.

Individual bit addressing impllies an address field equal
in length to the power of 2 required to address the number of
bits iIn the store plus the power of 2 required to address the
number of bits 1in the word length. Each word should be
a-power-of -2 bits long, capable of retaining adequate
arithmetic significance and all necessary operation, address,
and modifier bits. A 64-bit word machine with a quarter

8 24
million words store therefore requires_;#’plus 6, or }a'bits

for each address. Indexing is essentlal only for the starting
bit of a fleld; the length of the field, however, should be
at least specifiable indirectly, if not indexed. Combined

with indexing and indirect specification, this scheme of



B-100
2-6-59
-5~

addressing permits complete flexibility in data, location and
format without changlng any instructlon addresses.

Because of cost or hardware Eéhsiderations, the above
scheme may be impractical or undesirable. As a possible
compromise, we need not refer directly to each bit in memory,
but rather refer to individual "bytes'" of memory, each byte,
for example, being a 6-bit length of storage. Although
complete flexlibility of bit addressing has been discarded, a
large capability still remains, since the greater portion of
the data may well consist of either 6-bit characters or of
units of information which can be stored in 6 bits or less.

It is sufficlent to address the first byte of a string of

bytes plus the number of bytes. We must also have a capability
for referring to bits within a single byte. For a 48-bit word
machine (23 bytes per word) with a quarter million words, an
address fileld of 18 plus 3 plus plus 3, or 2% bits would be
necessary. To refer to bits within a byte, a mask 6 bits in
length could be used. This mask should be obtained from a
specified register, and not be placed in the instruction.

The least degirable way of addressing memory is to refer
to a word only and to specify the flield within a word by
using a mask. Here many masks are needed for flexibility, and
it is usually more economical to unpack and repack by means of
serial operations.

The Mllitary Products Computer 1s really of the third

type. Only words are addressable, and special modifiers are



B-100
2-6-59
_6-

specified in each instruction dealing directly with data.
These modifiers are not part of the address, since there are
no modifiers or indirect specification ability of these.
Actually, the modifiers are really instructions to perform a
highly specialized set of serial operations. Also, word
boundaries become significant barriers in the addressing
scheme.

In order to be most useful in an instruction, an
address must be modifiable so that, at a minimum, the same
instruction can operate on related data from varlous sections
of the core storage. Indexing provides the fastest way to do
this and has the advantage of being dynamic, i.e., not
interpreted until the actual instruction execution time.
Indexing also leads to nonchanging instructions within a
program, which 1s extremely valuable for debugging and for
permitting recursive routines.* No exact recommendations can
be made for the number of index registers required. If there
are too few, many instructions musf be executed in order to
load and store the data in the index registers. If there are
too many, the problem of keeping track of and storing the
information in the registers during an interrupt is of
signifilcance. The number should be one less than a power of
2, however, and either 7 or 15 index reglsters would seem to

be adequate.

¥A routine which in the process of execution can call upon
itself to be executed.



B-100
2-6-59

There should be a bit external to the address to
indicate 0O-level addressing, 1i.e., the quantity in the address
field is the data, not its address.

To further increase the power of the addressing of the
machine, indirect addressiﬁg should be supplied. This permits
changing data references of a large number of instructions by
a single operation. There are two cases of indirect address-
ing: (1) the address plus the contents of a specified index
register "points" to the cell containing the real address;

(2) the address "points" to the cell whose contents are then
modified by the contents of the index registers to become the
effective address. A single bit within the instruction 1is
needed to indicate indirect addressiﬁg and a single bit to
indicate which type of indirect addressing is to be used.

It 1s also desirable to have the word "pointed to" interpreted
in the same fashion. It is highiy desirable to have the
ability to relocate routines within core storage, without
modification. An indicator bit to modify the final address

by the contents of the location counter 1is therefore extremely
useful. Thils again permits recursive routines and permits
some assembly features to be delayed until actual execution
time of the program.

If indexing 1s not effective on the field size portion
of the address, it should be possible to specify the fleld
size indirectly. 1In a single address machine, a full address

field is not available for this, so a speclal register might



B-100
2-6-59

be referred to (by means of a single bit) to obtain this
information.

The addressing scheme,wonce:détermined, sets the general
flavor of the machine as it appears to the programmer. The
context of this paper from now on will be that of the second
type of addressing; i1.e., byte addressing, as this seems to
be a good compromise. Most remarks, however, apply equally

well to bit addressing.

B. Processing the Data

Once able to get at the data stored in memory, 1t must
be processed. There are several required types of processing
ability: (1) arithmetic computation, (2) arithmetic and
logical comparison of data, setting and testing of logical
conditions, (3) control operations, including looping, sub-
routine execution, etc., (4) transfer of information.

With complete addressing capability available, only a
relatively few operations are needed for each type. Within
the arithmetic class, add, multiply and divide will suffice,
with modifiers to take absolute and complement forms of each
operand if desired. With a fixed arithmetic register length,
complement machine, a bit is needed to indicate sign extension.

Split word arithmetic capability is not necessary if
serlal processing is adequate. However, parallel processing,
by means of split words, might significantly increase

operating speed depending upon the nature of the Job; the



B-100
2-6-59
-9-

ability to process vectors directly, for instance, may be a
large enough percentage of the over-all job to justify the
extra cost. Nevertheless, this’tybéiof specialized pro-
cessing should appear as special cases of the machine
structure rather than the riormal form of the machlne.

Specifically, we believe that the Military Products
Computer should be structured as a full-word machine with a
small class of special instructions to handle split-word
processing. The proposed configuration is "natural"” for only
a small percentage of the SAGE routines and may not be
"natural" for any of theSACCS routlnes. Moreover, how sure
are you that the future data processing tasks for this machine
will Justify this specialized structure?

Floating point operations should be considered if a
significant amount of scientific computation 1s contemplated.

Among the various conditional test operations required,
comparison is the most important. _The ability for testing
equality or inequality, relative magnitude, and testing for
data lying within a given range is necessary. It 1s not clear
whether it is-more useful to set an indicator to lndlcate
successful or unsuccessful comparison, or to actually transfer
control to a different sequence of instructlons. Elther 1is
probably sufficlent. Within the logical operations, varlous
types of shifts and masking ability are not so lmportant, given
the addressing flexibility proposed, but sufficient power

should be provided to handle unusual cases.



B-100
2-6-59
-10-

Various other operations are necessary for controlling
the sequence of instructions withiprthe data processor. Some
of these functions overlap with.thé éomparing instructions,
and the two sets should be made compatible. These operations
are of two types: alteratién of the instruction flow, and
break-out-of -flow of instructions with subsequent resumption
of this flow. Indexing instructions are most important in
altering flow of instructions, since a high frequency of
execution 1s indicated. For general indexing, three para-
meters generally are needed: an increment, a test value and an
alternate instruction address. In a single address machine,
compromises are usually made to get speed. For example, the
decrement and the test value are set equal and specified
directly within an instruction, while the transfer address 1s
given the full addressing capability. Much more desirable for
working on varying amounts of data (and to make instructions
independent of data format), 1s the ability to refer to the
increment and thé test value as we do data; i.e., indirectly.
Skip or no-skip can provide alternate flow paths. For very
"tight" loops, where the extra instruction time required here
becomes important, a "repeat the next n orders™ instruction,
where n 1s small, 1s desirable; the address would "point" to
the increment number of cycles. The usual conditional
transfers may be employed for making two-valued decisions.
Here, testing the condition of data is conventionally implied,

and the alternate instruction address is spelled out; however,



B-100
2-6-59
-11-

the reverse case 1is equally important. For example, "point"
to a bit or byte to test and skip‘ggpditionally with, perhaps,
setting or resetting abilityﬂat.tﬁe‘Same time.

Special hardware features should be built into the
machine to permlt a breakoﬂt from a sequence of instructions,
as 1s necessary for execution of a subroutine. There are
several ways of accompllishing thils, all of which save the
current location and transfer control to another location.
This should be accomplished so as to permit many levels of
subroutine being used automatically (and recursively) by a
routine. Each instruction should have the ability to return
to the previously executed sequence. (It would be effective
only when a conditional transfer, if called for, is un-
successful). A similar scheme is necessary to handle
interrupts due to machine errors or to external signals to
the computer.

Finally, the usual instructions should be available for
transferring data between memory and high-speed registers,
indicators, etc., and between registers.

It should be noted that the possibilities above re-
present a minimal set of instructions and are all concerned
with the basic operations desirable on data, not operations
necessary to get at the data. Special purpose instructions
are desirable only if they fulfill the need for performing
often repeated operations--binary-decimal conversions, for

example, In any event, the final instruction list should be



B-100
2-6-59
-12-

constructed on a general need basis, augmented when necessary
for speed. 1In particular, the instruection list should not be
comprised of instructions which"Wéfé'found useful on another
machine with different design philosophy. A total of less
than 64 distinct orders, with a resultant 6-bit operation
field, seems sufficient.

The Military Products Computer apparently will have on
the order of 256 instructions since an 8-bit operation 1s
specified. We question whether any programmer can efficiently

use an instruction list of this length.

IV. Auxiliary Input-OQutput Equipment

Auxiliary backup storage for the main memory 1is re-
quired, since the core store is undoubtedly not big enough
for all data, and flles to be processed may become very large.
Programming state-of -the-art is not yet far enough along to
make detailled recomméndations in this area, and only a few
remarks are possible. Operation of the auxiliary store should
not slow down the central processor, but must be capable of
obtaining control information and signalling the main computing
element when the input-output has been completed. The entire
memory must also appear homogenous to the programmer; 1i.e.,
there should be no special addresses associated with input-
output functions. The bit rate should be very high and parallel
word transfer 1s thus desirable rather than a bit or byte mode

of transfer. Several types should be considered; tapes for



B-100
2-6-59
-13-

long permanent files, drums for backup when memory overflows,
and disc storage for large random files, and these auxiliary
storages must be capable of simq;téneous operation. The

card input-output equipment, including card readers, punches
and printers, should also be included in this category because
of the possibility of tape'buffering. The input or output
unit should not look different to the main processor in the
two modes of operation.

What little we have heard about this portion of the
Military Products Computer has not been encouraging. One
impression we have 1s that under certain type of input-output
operations, such as tape-to-tape, the instruction rate of the

central processor may be drastically reduced.

V. Data Input-Output Equipment

In communicating with the outer world, data is sent to
and received from the computer in forms other than that suited
for internal representation in the‘computer. For example,
formatted messages and keyboard inputs are available as inputs,
and tabular displays are required as outputs. It is necessary
not only to buffer the information being inputted and outputted,
in order to achieve speed, but it is also necessary to process
this data for translation. 1In display, for instance, this
processing must be done either by the central processor or by
a computer on the display end of the link. The processing is

apt to slow down the main computer unnecessarily if it is done



B-100
2-6-59
~14-

there, and special editing instructions should be supplied if
this is the case. These cannot be specified without detailed
knowledge of the particular input or output link under
consideration, but it should be done or the central computer
will end up doing a Job 1tfwasn't designed to do.
Alternatively, one might consider an input-output
computer which could perform the editing tasks and control
the buffering. There appear to be many advantages to
partitiening off the data input-output functions. One
immediate advantage is that the development of the two-
computer routines are much more independent of each other than
if both routines must share the same computer. A possible
significant advantage is the employment of the input-output
computer to select or screen the input-output data as it is
buffered. This "selective" control of input-output data can
be a powerful tool in a large-scale data processing system.
We have no comments on this portion of the Military
Products Computer since we have no]information on its input-

output configuration.

VI. Operating Equipment

Operating features include the console and any other
direct communication with the machine by the programmer or
operator and the maintenance engineers. The functions of
operating the machine and maintaining it should be considered
as separate functions. The design of the operating equipment

should emphasize that the programmer-operator portion be as



B-100
2-6-59
-15-

simple as possible and display only the direct information
necessary in the operating scheme that is used, while the
maintenance portion should be ofgéﬁIZed to the needs of the
maintenance engineer. |

The FSQ-7 is an example of merging into one console the
two functions mentioned above. On the basis of our experience
and feedback from users of the FSQ-7, we feel this merger

should be avoided if possible.

VII. Summary
The above discussion has admittedly glossed over what

1s the most important part of the data processing system--the
input-output system--although this is the area in which proper
design can have enormous payoffs in speed, convenience and
flexibility.

There are three reasons why we touched only briefly on
this area: first, no description of proposed input-output
equipment had been available for cémment; second, the pro-
gramming state-of -the-art 1s not too far advanced in this
area; third, input-output is highly interrelated with the
system context. Nevertheless, as much analysis as 1s possible
should be attempted before the final specification of this area.

The central computer was stressed because this is the
area where we had the most information and where the state-of-
the-art is more highly developed--not because this is the most

profitable area to examine.



B-100
2-6-59
~16-

It should be emphasized that 1n the interest of
presenting a spectrum of ideas on machine structure, cost

constraints were not considered.



