
--- ------ - ---- ---- - ---- - - ----------_ .-

o ,...
IBM 5110
Basic Reference ,Manual

,...
It)

This manual contains specific information about the IBM
5110 Computer and its BASIC programming capability.

Related Publications

IBM 5110 BASIC User's Guide, SA21-9307

Preface

Prerequisite Publication

IBM 5110 BASIC Reference Handbook, GX21-9309
IBM 5110 Customer Support Functions Reference
Manual, SA21-9311

IBM 5110 BASIC Introduction, SA21-9306

First Edition (January 1978)

Changes are continually made to the specifications herein; any such changes will
be reported in subsequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or the IBM branch office serving your locality.

A Reader's Comment Form is at the back of this publication. If the form has
been removed, address your comments to I BM Corporation, Publications,
Department 245, Rochester, Minnesota 55901. Comments become the property
of IBM.

© Copyright International Business Machines Corporation 1978

o

o

o
I

01
o

-------_ .. _------------------

Contents

l)
CHAPTER 1. OPERATION Arrays . 61
IBM 5110 Overview Declaring Arrays 62

C~_) Display Screen 2 Redimensioning Arrays 63
Keyboard 3 Arithmetic Arrays . 63

Special Keys . 7 Character Arrays 64
Switches. 9 Summary of Naming Conventions 64
Indicators 9 System Functions . 65
Editing Input Lines 10 Expressions 67
Storage Capacity 11 Arithmetic Expressions and Operators. 67

C) Character Expressions 70
CHAPTER 2. SYSTEM COMMANDS 13 Substring Function 71
Device Address Parameter 14 Concatenation 72
File Reference Parameter 14 Relational Expressions 72
ALERT Command 16 Array Expressions 73
AUTO Command 17 Data Files and Access Methods. 74
CSKIP Command 19 Stream I/O Data Files 74
GO Command 20 Record I/O Files 74
LINK Command. 22 Record I/O File Buffer Requirements 78
LIST Command 23 File FLS 79
LOAD Command 25 National Character Sets 83

Keyboard Generated Data Files 28 Procedure File 84
Function Keys 28

MARK Command' . 31 CHAPTER 4. BASIC STATEMENTS 87
MERGE Command 33 Statement Lines 87
PROC Command 35 Desk Calculator Operations 88

l/' RD= Command 36 BASIC Statement Listing 88
RENUM Command 37 CHAIN. 90
REWIND Command 38 CLOSE. 92
RUN Command . 39 DATA 93
SAVE Command 41 DEF, RETURN, FNEND 95
SKI P Command . 43 Single Line Function 95
UTI L Command . 44 Multiline Function 96

Listing a File Directory 45 DELETE FILE 99
File Types. 47 DIM. 100
Renaming a File on Diskette 48 END. 102
Changing A Diskette Volume ID 49 EXIT 103
Eliminating or Discontinuing a File 50 FNEND 105
Assigning or Removing File Write Protection for Diskette FOR and NEXT 106

Files. 51 FORM 108
Selecting the Diskette Sort Feature . 52 Print Formatting with the FORM Statement 108
Changing the System Default Device Address 52 Record Formatting with the FORM Statement 114

(~, [MAT] GET. 122 ,,---,) CHAPTER 3. DATA CONSTANTS, VARIABLES, AND GOSUB and RETURN 124
CONCEPTS. 53 GOTO 126

BASIC Character Set 53 IF . 127
Alphabetic Characters. 53 Image 129
Numeric Characters. 53 [MAT] INPUT. 130
Special Characters 54 LET 132

Cr .. , Use of Blanks 54 NEXT 134
" Arithmetic Data 55 ONERROR 135 I

,---j Arithmetic Data Formats 56 OPEN/OPEN FILE. 137
Arithmetic Constants 58 PAUSE 142
Internal Constants 58 [MAT] PRINT. 143
Internal Variables. 59 Print Zones 144
Arithmetic Variables 59 Spacing of Printed or Displayed Values 144

C) Character Data 59 Standard Output Formats for Printing or Displaying . 145
Character Constants 60 Display Line Operation 146
Character Variables . 60 Print Line Buffer Operation 150

iii

[MAT] PRINT USING and Image/FORM
Conversion of Data Reference Values with Image
Format Specifications

[MAT] PUT .. .
[MAT] READ
[MAT] READ FILE. .
[MAT] REREAD FILE
REM
RESET [FILE]
RESTORE .
RETURN ..
[MAT] REWRITE FILE
STOP
USE
[MAT] WRITE FILE
Matrix Operations.
MAT Assignment Statements
MAT Assignment (Scalar Value)
MAT Assignment (Simple) ...
MAT Assignment (Addition and Subtraction)
MAT Assignment (Matrix Multiplication)
MAT Assignment (Scalar Multiplication)
MAT Assignment (Identity Function). .
MAT Assignment (Inverse Function) ..
MAT Assignment (Transpose Function)
MAT Assignment (Ascending Index) .
MAT Assignment (Descending Index) .

CHAPTER 5. MORE INFORMATION ABOUT YOUR
SYSTEM .-

5110 BASIC Compatibility with IBM 370/VS BASIC.
BASIC Compatibility with IBM 5100 BASIC
Tape Cartridge Handling and Care .
Storage Considerations
Diskette Handling and Care

Operation "
Handling Defective Cylinders.
Handling Precautions .
Storage
Shipping and Receiving

APPENDIX A. 5110 BASIC CHARACTERS AND

153
154
155
160
162
164
166
167
168
170
171
172
174
175
177
178
178
179
181
183
185
187
189
191
193
195
196

197
197
198
199
200
201
201
201
202
206
207

HEXADECIMAL REPRESENTATION 209

APPENDIX B. 5103 PRINTER
How to Insert Forms

Continuous Forms
Forms Path for Singlepart Forms
Forms Path for Multipart Forms
Cut Forms

How to Adjust the Copy Control Dial for
Forms Thickness

How to Replace a Ribbon (Part Number 1136653)
Installing the 5103 Printer Stacker.

APPENDIX C. 5100 HEXADECIMAL
REPRESENTATIONS

APPENDIX D. BASIC ERROR MESSAGES AND

213
214
214
214
214
216

217
217
220

. .. 221

OPERATOR RECOVERY 223
I/O Errors . . . 224
Execution Errors 227

APPENDIX E. ATTACHING A TV MONITOR 241

iv

"'"

",,--,

" _

o

C)

C)

o

Chapter 1. Operation

IBM 5110 OVERVIEW

... _.'--_. ,-----

The IBM 5110 Model 1 (Figure 1) is a computer designed for direct l;Ise by the
user for solving problems. The 5110 Model 1 has a display screen, a
combined alphameric and numeric keyboard, a tape unit, switches, and
indicator lights. The 5110 Model 2 is identical to Model 1 except that it has
no built-in tape unit. The display screen and indicator lights communicate
information to the user, and the keyboard and switches allow the user to
control the operations the system will perform. Figure 1 shows a combined
BASIC/ APL 5110.

PROCESS

IN PROCESS
Indicator

REVERSE
DISPLAY
Switch

BASIC/APL

Switch

Switch DISPLAY
REGISTERS/NORMAL

Switch

Display
Screen

CMD Key

Shift Keys

Figure 1. The IBM 5110 Computer

L ~~:::1.1 JU J.--I-H-.f---- Ar ith metic

EXECUTE Key

Operator
Keys

_. __ ._.".,--._."_ ",,,,----------

Operation

2

DISPLAY SCREEN

The display screen (Figure 2) can display 16 lines of data at a time, with up to
64 characters in each line. Input data (information supplied by the user) as well
as output data (processed information) is displayed. The bottom line contains
status information. The number in the lower right (NNNNN) indicates the
number of character positions (bytes) in storage available to the user.

Line 1 (input line) contains information entered from the keyboard. The cursor
(flashing horizontal line) indicates where the next input from the keyboard will
be displayed. If the cursor is moved to a position that already contains a
character, that character flashes, As BASIC processes the input, all lines of the
display (except the bottom line) are moved up so information can be entered
on line 1 again. The number following NNNNN in the lower right (001)
identifies the current cursor position relative to the start of the input. This
number can be up to 896 (14 lines of 64 each).

Line I ~'-------64 Character Positions -------~, I
Numbers __ --~

15

14

13

12

11

10
9
8
7

6
5

4

3
2

o READY

Figure 2. The 5110 Display Screen Format

NNNNN

Cursor (flashing)

Status Line

'- .

\ ,

o

C)

C
-\
)

o

o

o

-----_ .. --_. __ ._. __ .-_ _ ...

KEYBOARD

The APL/BASIC system keyboard (Figure 3) combines alphameric and numeric
characters. The keyboard provides two modes of character keying selection:
standard BASIC character mode and lowercase character mode. When you
turn the system power on, you are in standard BASIC character mode. In
standard BASIC character mode, you can enter uppercase alphameric
characters (without using the shift key), the uppercase symbols (using the shift
key), the BASIC statement keywords (on the front of the alphameric keys), and
BASIC commands (above the top row of numeric keys) using the CMD key.

In lowercase character mode, you can enter lowercase (without using the shift
key) and uppercase (using the shift key) alphameric characters, along with the
uppercase symbols (selected using the CMD key). In lowercase character
mode, you cannot select the BASIC statement keywords because the CMD key
is used to select uppercase symbols.

To select lowercase character mode, press the HOLD key, then hold down the
shift key while you press the scroll down'" key. To return to standard BASIC
character mode, press the HOLD key, then hold down the shift key while you
press the scroll up t key.

Operation 3

._------_._-_._--_.--_._-_._------._-----

4

The following examples show the use of standard BASIC character mode and
lowercase character mode.

In standard BASIC mode, press:

to enter the character K.

to enter the charaacter ' (single quotation mark).

to enter the keyword PAUSE.

In lowercase character mode, press:

to enter the character k.

to enter the character K.

to enter the character' (single quotation mark).

Note: All the examples in this manual are in standard BASIC character mode.

\.

/"- ,

(
\ ,._ ...

,,,--

(,
\,.

r
\

"--'-'

.,-----.....
I

\, .. .-'

o

o

o

You can enter numeric data conveniently by using the calculator arrangement of numeric
keys to the right of the alphameric keys. You can also enter this data by using the
numeric keys above the alphameric keys. The arithmetic operator keys, located on the
right of the keyboard, are also on the alphameric keys.

Note that on a BASIC-only keyboard (Figure 4) upper shift APL symbols above the
alphameric characters can be entered as data, even though they do not appear on the
BASIC keyboard.

When any of the keys are pressed, the characters entered appear in the input line on
the display screen.

BASIC statement keywords are printed on the front of the alphameric keys. These
words are entered starting at the current cursor position when the CMD key is held
down and the corresponding key is pressed (in standard BASIC character mode).

Operation 5

CD CD CD CD OJ CD CD OJ CD OJ CJ CD •• ••• D"
QJCDCDCDCDCO(I)OJCDCD~O CJGJ80
CO CO CD GJ CD CD CJ [J (I) CD OJ CD [J GJ GJ [?-

_ GJCDCIJwCDCDITJ[]CJCDCIJ _ OCJD 0
(0)0 []

Figure 3. Combined BASI,C/ APL Keyboard

[] [J CD CD OJ CD CD OJ GJ [J CJ 0 •• ••• .:---~:
CD GJGJGJ GJCOGJCJGJCDOO CJGJ8 CJ

~ -

Q GJ [J GJ GJ GJ [J [J [J CD OJ CD [J GJ GJ 0
- GJGJGJGJGJGJITJ[]CJQCIJ _ OCJD 0

((0)0 []

Figure 4. BASIC-Only Keyboard

'-

6

o

c:)

o

o

Special Keys

The following keys have special functions relating to system operations:

•

-

(Attention)-You can press the ATTN Key to stop system
operations. While you are entering data at the keyboard, you can
press the ATTN key to blank everything from, and including, the
cursor position to the right on the input line of the display
screen. If the display is in use as an input device, the ATTN key
will blank everything to the right and below the cursor position.
You can then continue entering information. In addition, the
ATTN key and the HOLD key are the only keys that are active
when the display screen flashes to indicate detection of an error.
After you press the ATTN key to stop the flashing display
screen, all keys are active and you can proceed. The ATTN key
must also be used (after the audible alarm has sounded) to
resume procedure file operations.

(Command)-When you hold down the CMD key, you activate the
top row of alphameric keys, which cause the command keyword
to be inserted on the input line when the number below the
word is also pressed. The command operation is executed when
you press the EXECUTE key. The CMD key is also used with
the numeric keys (on the right side of the keyboard) to initiate
keys functions. Avoid holding down the CMD key and pressing
the HOLD key; this activates a function restricted to use by
service personnel. Holding down the CM 0 key (in standard
BASIC character mode) and pressing a key with a BASIC
statement keyword on the front will enter the keyword beginning
at the current position of the cursor. In lowercase character
mode, the CM 0 key· allows you to type in the uppercase
symbols.

When you press the EXECUTE key, the system processes the
line of data that you just entered on the input line. In addition,
you can press the EXECUTE key to resume interrupted
processing. Pressing the EXECUTE key when the input line is
blank causes the same action as a GO command (see GO
Command in Chapter 2).

When you press the HOLD key, all processing stops. Processing
resumes when you press the HOLD key a second time. Thus,
the HOLD key allows you to read displayed data during an
output operation. While processing is stopped, the CMD key
and the arithmetic operator keys on the right of the keyboard are
restricted to use by service personnel. The HOLD key also
allows you to change from standard BASIC character mode to
lowercase character mode and vice versa. See National Character

Sets in Chapter 3.

(Shift)-While you hold down a shift key, you can select an
uppercase symbol (in standard BASIC character mode) or an
uppercase alphameric (in lowercase character mode) for input.

Operation 7

---_ .. _-------_._--------

8

o (Copy Display-when the CMD key is held down)-When you hold
down the CM D key and press the key below Copy Display, all
data displayed on the screen is printed by the attached printer.
You can use the copy display function when the system is in a
hold state, or anytime the system is waiting for input from the
keyboard. On a combined BASIC/ APL machine, the CD key is used

to activate the copy display function. The L32 64 R32 switch
has no affect on printed data.

The following keys have a repeat capability, which means that they will
continue to function for as long as they are pressed:

•

•
•

(Backspace)-When you press this key, the cursor moves one
position to the left. When backspaced from position 1 of the
input area, the cursor moves to the rightmost position of the
input area. When you hold dm"m the CMD key and press this
key, you immediately delete the character at the current cursor
position. All characters to the right of the cursor are shifted one
po'sition to the left each time you press this key. The cursor
does not move.

(Forward Space)-When you press this key, the cursor moves one
position to the right. When spaced beyond the end of the input
area, the cursor returns to the first position of the input area.
When you hold down the CMD key and press this key, you
immediately insert a blank character at the current cursor
position, and all data following the cursor position is shifted one
position to the right. The cursor does not move; thus you can
enter another character into this position. If the input area
contains a character in the last position, the insert function is
ignored.

(Scroll Up)-When you press this key, each displayed line moves
up one line position (except the status line). This key also allows
you to change from lowercase character mode to standard
BASIC character mode (when used with the' HOLD and shift
keys). When the keyboard is open and the cursor is displayed
on one of the top 14 lines, the scroll up key moves the cUrsor up
one line.

(Scroll Down)-When you press this key, each displayed line
moves down one line position (except the status line). This key
also allows you to change from standard BASIC character mode
to lowercase character mode (when used with HOLD and shift).
When the keyboard is open and the cursor is displayed on one
of the top 14 lines, the scroll down key moves the cursor down
one line.

Note: The spacebar also has repeat capability. Blanks are inserted if you hold
down the spacebar.

\"'"

/' '

(~'

C)

C)

o

o

o

SWITCHES

The following swtiches are located above the keyboard on the console:

POWER ON/OFF - The power switch turns the system on and off. When
power is turned on, the system ~ecomes operable in approximately 10-15
seconds.

RESTART - This is a spring-returned switch that reinitializes the system to
its power on state. In the dual language system, the setting of the
BASIC/ APL switch determines which language is initialized.

BASIC / APL - This switch appears only on the dual language system and
determines which language is initialized at power on and restart.

REVERSE DISPLAY - This two-position switch sets the display screen to
white characters on a black background or to black characters on a white
background. You may want to adjust the BRIGHTNESS switch after setting
the REVERSE DISPLAY switch.

BRIGHTNESS - This control varies the intensity of the characters or the
screen background.

DISPLAY REGISTERS/NORMAL - This switch is for use by service
personnel. This switch should remain in the NORMAL position during
system operation.

L32 64 R32 - The three positions of this switch are:

L32 The leftmost 32 characters on the display screen are displayed with
a blank between characters.

64 Up to 64 characters per line are displayed in adjacent positions.

R32 The rightmost 32 characters on the display screen are displayed
with a blank between characters.

INDICATORS

The console has two indicators:

PROCESS CH ECK - When this indicator lights, a system malfunction has
been detected, and further operations are not normally possible. Press the
RESTART key. If the condition recurs, call for service.

IN PROCESS - This indicator lights only to inform you that the system is
operating even though the display screen is turned off. Because some
programs require several minutes of processing that turns off the display,
the IN PROCESS indicator is your assurance that the system is operating.
When this indicator light is on, the HOLD key does not stop processing.

._----- -------_. __ . -_ .. _-... __ ._---------_.

Operation 9

10

EDITING INPUT LINES

If you detect an error in a line before you press the EXECUTE key to enter the
line into the system, you can use the forward space or backspace key to
position the cursor at the error, then:

• You can use the insert or delete functions to correct the error.

• You can press the ATTN key to blank all data to the right of the cursor.

• You can enter the correct character. Note that the APL symbols (upper shift
on several keys) in Figure 3 can be entered into an input line. On a
BASIC-only keyboard (Figure 4), however, these symbols do not appear
even though they can be entered into an input line. Because many of these
symbols can be overstruck by other characters (such as ' and . to create !)

you can take the following steps to replace an APL symbol:

1. Position the cursor at the symbol.

2. Press the spacebar to erase the symbol.

3. Backspace the cursor to the blank position.

4. Enter the correct character.

If you detect an error in a line after you press the EXECUTE key to enter the
line, you can use the scroll up or scroll down key to position the line to be
corrected, then use the procedures above to correct the error.

If you want to change an entire line, you can simply enter the statement
number of the line, then reenter the line and press the EXECUTE key. The new
line will replace the old line.

If you want to delete one or more program lines, enter the statment number of
the line you want to delete, then enter DEL and press the EXECUTE key. To
delete several succE~ssive lines, enter the number of the first line, enter DEL,
enter the number of the last line, then press the EXECUTE key. For example,
to delete lines 20 through 90 in a program, enter:·

20 DEL 90

then press the EXECUTE key. Note the DEL is invalid while you are entering a
key group (see Function Keys).

o

C)

c .. ··
.. /

o

STORAGE CAPACITY

The base system (Model 811 or 821) has a storage capacity of 16K (K=1,024
bytes). Figure 5 shows how this storage is allocated to various requirements.
Note that the work area available to the user is approximately 1'1,500 bytes,
while 4,500 bytes are required for internal purposes. The storage capacity is
increased in the following models of the system (the first digit represents
model number 1 or 2, and the second digit represents storage size):

Model 812 and 822 - 32K
Model 813 and 823 - 48K
Model 814 and 824 - 64K

In these models, all additional storage is allocated to the user work area. For
example, on the Model 814, the user work area is approximately 59,500 bytes,

. with the remaining 4,500 bytes used for internal purposes.

11,500 8ytes
User Work Area

(data and programs)

I- -- -

4,5008ytes
(internal system requirements)

Figure 5. Storage Allocation for a 16K System

Operation 11

--------------_._----_.-

\.

(~

(~
\

......... " .'

12

o

C)

c

C)

Chapter 2. System Commands

Some of the system commands are listed above the top row of numeric keys
on the typewriter-like alphameric keyboard (Figure 4). These commands allow
you to control diskette, tape, and printer operations, such as storing a program,
loading a program into the system, and executing a loaded program. System
commands can either be entered character-by-character from the keyboard, or
the entire keyword can be entered by holding down the CM D key and pressing
the appropriate number key below the command (except for those, such as
LINK and MERGE, that are not listed). The latter operation inserts the keyword
with a single keystroke, thus preventing possible keying errors and providing
faster operation. The commands are used to direct the system to perform the
following types of operations:

• Program Execution-Start or resume execution of a BASIC program or
command.

• File Operation-Load or save programs or data on tape, or diskette, or mark
tapes/ diskettes.

• Program Operation-List and number program statements or merge several
programs into one program.

Parameters required for a command can be entered after the command
keyword is entered. The command operation then starts after you press the
EXECUTE key. The command keywords and major functions of the BASIC
system commands are:

ALERT
AUTO
CSKIP
GO
LINK
LIST
LOAD
MARK
MERGE
PROC
RD=
RENUM
REWIND
RUN
SAVE
SKIP
UTIL

Alert the operator from a procedure file
Automatic line numbering
Skip within a procedure file on a specified condition
Resume interrupted processing
Load customer support functions, features, or IMFs

Display or print a BASIC program
Load a BASIC program
Mark tape/ diskette files
Merge a BASIC program
Initiate input from a procedure file
Specify rounding position of printed numeric values
Renumber statements
Rewind tape
Run a BASIC program
Save a BASIC program
Unconditionally skip records within a procedure file

Perform system support functions

System Commands 13

------- ----.- ". __ " ... "._-._. __ .. _

14

DEVICE ADDRESS PARAMETER

Many BASIC commands and statements require entry of a device address
parameter.

This address identifies the input/output device containing the file being
processed. Valid device addresses for the 5110 are:

E80 - for the built-in tape unit (Model 1 only)
E40 - for the auxiliary tape unit (Model 1 only)
080 - for diskette drive 1
040 - for diskette drive 2
020 - for diskette drive 3
010 - for diskette drive 4
500 - for the printer
000 - for directing output to line 1 of the display

screen (output only)
001 - for allowing GET statements to access data entered

from the keyboard (in the same manner that INPUT
statements receive data)

002 - for allowing up to 14 lines of the display
screen to be used as keyboard input, output, or
update as a record file

Note: The normal system default address on the 5110 Model 1 is device E80.
The normal system default address on the 5110 Model 2 is device 080. These
defaults can be changed with the UTI L SYS command, which allows you to
select the default address you want to use (see UTI L Command). If you do not
enter a device address with commands, the default address will be used. You
can also enter 'SYS' for the device address parameter in the OPEN [FILE] and
CHAI N statements to specify the system default device address.

FILE REFERENCE PARAMETER

The file reference parameter in many BASIC commands and statements can
consist of either the file number or the file name, or both the file number and
name. File names can be of the following types:

• For any files on tape, the file name can be any combination of up to 17
characters.

For files on diskette, the file name can be either simple or complex. Simple
file names can be from 1 to 8 characters in length. The first character must
be an uppercase alphabetic character (A-Z). The remaining characters can
be alphanumeric (A-Z or 0-9). Blanks are not permitted. A simple file name
must be used when creating basic exchange diskette files (see Customer
Support Functions Reference Manual for information on basic exchange files).

• Complex file names can be two or more simple names separated by a
period. Total length of a complex file name is 17 characters including the
period separator(s). As with simple file names, blanks are not permitted
within complex file names.

/

"r--"
(

I
I

"

o

C)

c;

L""""""l ,J

o

When you enter a file name, be sure to enclose it in single quotation marks. If
you enter both the nonzero file number and file name for a diskette file, the
system accesses the file by name, but also compares the number you specify
with the number of the file accessed. If the file number and name do not
match, an error message is displayed.

Note: When a file is being accessed for output, an error will occur unless the
file is unused (type 0)' or unless the file name you specified matches the
existing file name. See UTiL for information on making a file unused or
changing a file name.

The syntax and description of each command is detailed in this section. Note
that the syntax used in BASIC commands is also used for the BASIC
statements (Chapter 4). In this syntax, parameters that must be specified as
shown are in uppercase letters. Parameters you must supply are in lowercase
letters. Optional parameters are enclosed in brackets ([]). Parameters
enclosed in braces ({}) indicate that you must enter only one of the
enclosed parameters. Ellipses (...) indicate that the preceding parameters
can be repeated. Single quotation marks and parentheses must be entered
where shown. Commas must be entered to separate parameters, except
between the keyword and the first parameter.

Each command or statement entered from the keyboard is checked for
syntax errors. If a syntax error is detected, an up arrow (t) is displayed
below the position in the line where the error was detected, the optional
audible alarm sounds, the display screen flashes, and the keyboard is locked.
The ATTN key and HOLD key are the only active keys when the display screen
flashes. Press ATTN to stop the flashing screen, then correct the indicated
error.

Some general rules that apply to system commands are:

• No preceding statement number is needed.

• Each command must begin a new line.

• Maximum command length is 64 characters.

• Blanks are ignored except in character strings enclosed in single quotation
marks.

• Parameters must be separated by a comma.

System Commands 15

16

ALERT E:ommentJ

ALERT COMMAND

The ALERT command allows you to provide an indication to the operator that
intervention is needed during the execution of a procedure file (see Procedure
File). When executed, the ALERT command halts system operation, sounds an
audible alarm, and causes the display screen to flash the word ALERT and the
optional comment. The operator must press the ATTN key tostop the flashing
screen. The optional comment can be an instruction to change tapes or
diskettes or perform other necessary operations. Comment length is limited
only by line length. To resume normal operation, the operator can enter GO.
To terminate operation, the operator can enter GO END.

The ALERT command can only be entered in a procedure file.

Examl?ie

The following is a typical ALERT command.

ALERT REPLACE RECEIVABLES DISKETTE WITH PAYABLES DISKETTE

When this command is executed in a procedure file, the associated message
will be flashed on the screen to instruct the operator to change diskettes.

(
-_.""",

.
..... -......

'-

o

C)

C)

o

o

o

AUTO ~ine.num Lineremeni]]

AUTO COMMAND

The AUTO command allows you to initiate automatic line numbering for BASIC
statements. Automatic numbering simplifies the task of entering statements in
a BASIC program. You can specify both the beginning statement number and
the increment between numbers. After you enter a statement and press the
EXECUTE key, the next stateme"nt number is generated and displayed. The
syntax of the AUTO command is as shown above, where:

line-num is a positive integer specifying the first statement number to be
generated. The range of this number is 1 to 9999. If a beginning number is
not specified, a beginning number of 0010 and an increment of 10 are

generated.

increment is a positive integer used to increment succeeding statement
numbers. If a beginning line number is not specified, the increment cannot
be specified. The default is 10 for this optional entry.

Each statement number generated by the AUTO command is followed by a
blank, then the cursor, as shown:

0010

System Commands 17

18

Note About AUTO

Automatic numbering continues until any other valid data, a command word,
for example, or a statement number other than the displayed number is
entered in the input line. In this case, another AUTO command must be'
entered in order to resume automatic numbering. Other ways to terminate
AUTO numbering. are: press the scroll up key, which will display a new
unnumbered line, or simply press the EXECUTE key when the input line
contains only the line number.

Example

The following examples show AUTO commands:

AUTO (then press the EXECUTE key)

In this example, the display screen will show statement number 0010. After
you press the EXECUTE key at the end of an entered statement, the statement
number automatically increases by 10, producing statement numbers 0020,
0030, 0040, and so on.

In the following example, the beginning statement is 0320. After each
succeeding statement is entered, the statement number is automatically
increased by 20, producing statement numbers 0340, 0360, 0380, and so on.

AUTO 320,20 (then press the EXECUTE key)

\ -.

C)

C)

o

CSKIP integer [comment]

CSKIP COMMAND

The CSKIP command allows you to conditionally skip records within a
procedure file (see Procedure File). This command is valid only when used with
an active procedure file. The syntax of the CSKIP command is as shown
above, where:

integer indicates the number of procedure file records to be skipped when
the condition is satisfied.

comment is an optional comment.

Upon execution of the CSKIP command, the value of the return code'(the RC=
parameter) set by the last END or STOP statement is checked. If the value is
zero or less, no action is taken. If the value is greater than zero, the specified
number of records in the procedure file are skipped. If the number of records
specified exceeds the number of records remaining in the file, the procedure
file is closed. The specified number must be a whole number. For example,
an entry of 3.5 causes three records to be skipped, with the .5 assumed to be
the beginning of the optional comment.

Example

The following example shows the execution of a SKI P command within a
procedure file.

LOAD 4
RUN
CSKIP 3
LOAD 9
RUNS
SKIP 3
ALERT INSERT TRANSACTION DISKETTE
LOAD 11
RUN

Upon execution of this procedure file, the program in file 4 runs. If the
program in file 4 sets the return code to nonzero (see STOP statement), the
CSKIP 3 causes the next three records in the procedure file to be bypassed
and ALERT to be processed. The program in file 11 is then run. If the return
code was. zero, the program in file 9 is loaded and run instead. The SKI P then
causes the remainder of the procedure to be bypassed.

System Commands 19

GO

20

[{Iine-num}] ['{~ENp }] GRD=~
END TRACE GPRIN"f]

GO COMMAND

You can use the GO command to do the following:

1. Resume or end processing of a BASIC program that was halted by one
of the following:
a. A PAUSE statement
b. Executing statements in step mode (see RUN Command)
c. Some error conditions
d. Your pressing the ATTN key

2. End a IV1ARK command operation before it reaches its normal termination
point or resume an interrupted MARK operation to re-mark a file.

3. Resume or terminate PROC file operations interrupted by an ALERT
command.

You can resume processing by pressing the EXECUTE key on a blank line
(implied GO). The GO command, however, allows you to resume processing in
any of three modes of operation (normal, step, or trace). Thus, you can change
the operating mode with the GO command. Program execution can be
continued with the next sequential statement or at a statement number
specified in the GO command. You can change the decimal position that
activates rou,nding (see RD = Command).

To terminate the execution of a system command or a BASIC program, the GO
command has this syntax:

GO END

END closes input and output files, thus maintaining the integrity of the files.
After the files are closed, no program statements are executed.

To continue execution of an interrupted operation, the GO command has this
syntax:

GO Oine-num]
[{

RUN }]
, STEP [,RD=n]

TRACE [,PRINT]

where:

line-num is the number of the statement at which processing is to be
resumed. If this number is omitted, processing begins with the next
sequential statement.

/"

\,

~""""~'."" '

(~)

/""-_. "',

~~!

o

C)

c

RUN specifies that processing is to continue in normal mode.

STEP specifies that processing is to continue in step mode (see RUN
Command).

TRACE specifies that processing is to continue in trace mode (see RUN
Command).

Note: If neither RUN, STEP, nor TRACE is specified, processing will
continue in the mode that was in operation when processing was
interrupted.

PRINT specifies that trace messages are to be displayed and printed. If
PRINT is omitted, the messages are only displayed. This entry should only
be specified with TRACE.

RD = n indicates the number of digits to the right of the decimal point that
will initiate rounding. n can be 1 to 15 and is initialized to 6. If not
specified, n retains its last value.

Notes About GO

• The statement number entry is valid only during execution of a BASIC
program.

• When the input line is blank, pressing the EXECUTE key causes the same
operation as a GO command.

• In response to an error indicating an attempt to mark a file already marked,
GO must be entered only in positions 1 and 2 of the input line.

Example

The following examples show a variety of GO commands.

1. To change to or resume normal operation of a BASIC program:

GO RUN (then press the EXECUTE key)

. 2. To change from step or normal mode to trace mode:

GO TRACE (then press the EXECUTE key)

3. To change to step mode and begin execution at statement number 620:

GO 620, STEP (then press the EXECUTE key)

System Commands 21

22

LI N K file-ref [,dev-address] ,

LINK COMMAND

The LI N K command allows you to access the customer support function
features, and IMFs. To access these programs, enter the LINK command with
the syntax shown above, where:

file-ref can be either the file name (enclosed in single quotation marks), the
file number, or both the file number and name (see File Reference
Parameter).

dev-address is the address of the device containing the tape or diskette (see
Device Address Parameter).

Upon successful execution of the LINK command, the system transfers control
to the support function you specified. If an error occurs during the LINK
operation, the system returns to load a status. Reenter the LINK command; if
the error continues to occur, call your service representative. For a complete
description of the customer support functions see the IBM 5110 Customer
Support Functions Reference Manual, SA21-9311.

Example

A sample LINK command is shown below:

LINK 2, 'ABC', 080

Upon execution of this command, the system will link to the program in file 2
(called ABC) on the diskette in drive 1.

/'

~,
,I ,

o

"

U

r"
U

C)

o

LlST[PRINT] [{~EYX }]
, Ime-num

LIST COMMAND

The LIST command allows you to display or optionally print the program or
data lines from the work area. The contents of the work area are unchanged.
The syntax of the LIST command is as shown above, where:

PRINT specifies that the list of lines in the work area is to be printed rather
than displayed. If PRI NT is not specified, the list will be displayed.

KEYx specifies that the indicated key group should be displayed or printed
(x = 0 to 9).

line-num specifies that a group of 14 lines, ending with the indicated line
number, is to be displayed. If PRINT is also specified, the entire work area,
starting with the indicated line number, will be printed. If no line number is
entered, the lowest line number in the work area is assumed to be the
starting line number. This entry is not valid for a KEYx group.

When the listing is specified to the display, the line number specified in the
LIST command appears on line 2 of the display screen. Up to 13 preceding
,lines (fewer, if less than 14 are defined) are displayed on the lines above line
2. You can use the scroll up and scroll down keys (t and) to arrive at a
particular line.

When the listing is specified to the printer, the entire work area, starting with
the specified line number in the LIST command, is printed. Printing begins at
the lowest line number if a line number is not specified in the LIST command.

Notes About LIST

• If the line number specified in the LIST command is not in the work area,
the system will seek the next lower line number for the LIST operation. If a
lower line number is not found, an error message is displayed.

• If the line length exceeds 64 characters, the succeeding line will contain the
excess over 64 characters when the line is displayed. When printed, the full
line will be printed up to 128 characters. The line length will not affect the
execution of the statement.

• If the system is listing data lines longer than 118 characters on the display,
the excess over 118 characters is not displayed.

• You can use the ATTN key to termina~e a LIST operation to the printer.

System Commands 23

----_.-.... __ ._--_ _ _----------

Example

The following examples show several LIST commands:

• To display the first group of work area lines:

LIST (then press the EXECUTE key)

• To display line number 250 and the preceding 13 lines:

LIST 250 (then press the EXECUTE key)

• To print line number 250 and all lines following in the work area:

LIST PRINT, 250 (then press the EXECUTE key)
,',/' -.......,

• To display the first 14 lines in the group associated with function key 5:

LIST KEY5 (then press the EXECUTE key)

24

o

o

o

LOAD file-ref

LOAD COMMAND

KEYx
KEYS
DATA
BASIC
SOURCE

[,dev-address]

The LOAD command causes a previously saved file to be loaded into the work
area (from tape or diskette) for modification and/ or execution. LOAD can also
be used to prepare the work area for the entry from the keyboard of a new
BASIC program, data, or key group. The syntax of the LOAD command is as
shown above, where:

file ref can be either the file name (enclosed in single quotation marks), the
file number, or both file number and name. (See File Reference Parameter.)
An entry of 0 indicates that a new file will be entered from the keyboard,
regardless of device address specified.

KEYx, KEYS, DATA, BASIC, or SOURCE specifies the type of data to be
loaded into the work area. BASIC is the default when you are loading from
the keyboard. BASIC or SOURCE is the default when you are loading from
tape or diskette.

dev-address is the address code of the device containing a saved file to be
loaded. (see Device Address Parameter.)

Entering a LOAD command of LOADO clears the entire workarea, including all
key groups. A LOADO command specifying BASIC or DATA as the second
parameter will only clear the specified program from the work area, without
altering existing key groups. If the new file type is a KEYx file, the new key
file is added to the work area without altering the existing work area. If the
KEYx file already exists in storage, the loaded KEYx file will replace the old
one.

Line 0 will display READY when the system is in standard BASIC character mode,
DATA when in lowercase character mode, and KEYx for key definition mode.
You can begin entering the specified type of lines into the work area. The line
type entered (BASIC, DATA, or KEYx) must be the same type as the work area,
or the line will not be accepted and an error message will appear on line O. KEYS
and SOU RCE are not valid options when you are loading from the keyboard
(KEYx is valid).

System Commands 25

-------_ .. _. __ _ .. ,,_._------_.

26

A LOAD nonzero entry specifies that a saved file is to be loaded from tape or
diskette into the work area. Any previous contents of the work area (except
the keys files) are destroyed when the file type is specified as BASIC, DATA,
or SOURCE. If the new file type is a KEYx file, the new key file is added to
the work area without altering existing work area. If the KEYS/KEYx files
already exist in storage, the loaded KEYS/KEYx files will replace the old ones.
For example, if a new KEY6 function is loaded from tape or diskette, it will
replace the existing KEY6 function. A copy of the saved file is loaded into the
work area, and the following information is displayed:

• User specified file identification (if any)

• Number of contiguous 1,024-byte areas of storage in the file

• Number of contiguous 1,024-byte areas of unused storage in the file

• First line number (for BASIC)

• Last line n'umber (for BASIC)

• KEYx numbers (for KEYx file types)

• Amount of unassigned work area remaining (in bytes)-(not for KEYx file
types)

Notes About LOAD

• File type KEYS (load all keys functions within the specified file) is invalid
when the file number is zero (LOADO).

• File type SOU RCE (load a program in user source format from the specified
saved file) is invalid when you are loading from the keyboard (LOADO).

• When you are loading a record file (type 9) or a stream file (type 1, 2, or 3),
SOURCE is assumed unless DATA is specified.

• If file type is omitted, BASIC is assumed if you are loading from the
keyboard, and BASIC or SOURCE is assumed if you are loading from a
saved file (depending on the type of file). In the latter instance, if the type
of file is not BASIC or SOURCE, an error message is displayed.

• LOADO, DATA provides automatic line numbering and the colon for each
line. The display shows:

0010:

• If execution of a LOAD command is interrupted (when you press the A TIN
key, or due to an I/O error) while you are loading a saved file, operation is
terminated .. If you are loading a program, the program may be incomplete
and may not function as intended.

Calculator statements are invalid if DATA is specified (LOADx, DATA).

'--

C)

o

(~

o

Notes About LOAD SOURCE

• When a syntax error occurs during a LOAD SOURCE command, you must
choose one of the following options:
- Correct the line and press the EXECUTE key to continue.
- Scroll up to ignore the line and continue loading.

• If you load a SOURCE file containing a line longer than 64 characters, you
will get an error. The error must be corrected or the line must be scrolled
up (which ignores the line) before loading can continue.

• The LOAD SOURCE command is terminated by an error (other than a syntax
error) or by any use of a command key whether or not the key has a
defined function (see Function Keys).

Example

The following examples show a variety of LOAD commands:

• To prepare for keyboard entry of a data file:

LOA DO, DATA

• To prepare for entry of a function from the keyboard for function key 6:

LOA DO, KEY6

• To load a saved program (file 3) from tape unit E40 (auxiliary tape unit):

LOAD3, E40

• To load a program saved in user source format from file 6 on tape unit E80:

LOAD6, SOURCE, E80

or

LOAD6, E80

System Commands 27

-----_.---_.- _------------ ---------_ .. -...... _-----------

28

Keyboard Generated Data Files

You can create a data file directly from the keyboard using the LOAD
command. First, enter LOADO, DATA, then press EXECUTE. The system
responds with automatic line numbering (starting with 0010) followed by a
colon. You can then enter numeric and character data. The end of a data file
line is indicated when you press the EXECUTE key. Data file lines are not
checked for proper syntax. A typical data file line is:

0010: APRIL, 312.41, 'JONES', 419.21, 'BALANCE'

After all data file lines are entered into the work area, they can be saved. with
the SAVE command. Data file lines are saved without line numbers or the
colon. When data file lines are listed, the colon is displayed. Data in a
keyboard-generated data file can be accessed by input/output statements
during program execution or by a procedure file to control program execution.
With line numbers and the colon removed, the data file is a continuous string
of data items or records.

You can edit a saved data file by first loading it back into the work area with a
LOAD command. When saved, the line numbers and colon are again removed.
When loaded, data lines are preceded by line numbers, starting with 0001 and
incrementing by 1, and the colon.

Function Keys

Ten function keys are available for your use in invoking programs or commands
of your choosing. The function keys are the numeric keys 0-9 to the right of
the typewriter-like keyboard. The functions invoked by these keys are defined
in a LOAD command. First, enter a LOAD command specifying the key to
which a function is to be assigned. For example, to assign a function to the 6
key, enter:

LOADO, KEY6 (then press the EXECUTE key)

~-
,/ ,

\

C)

C~)

o

C\
" /

o

Now, you must define a key group, which is the statements associated with
the function key. When you press the CM D key and the 6 key, these are the
statements that will be executed. One of five valid key group header
statements must be preceded by a line number of 999x, where x = 0 to 9 to
represent the function key. In the preceding example, the line number is 9996.
The header statements are:

• NULL, which specifies that you are not defining a function for a particular
key or that you are deleting an existing definition.

• CMD, which specifies that the remainder of the line is a system command
or a calculator statement. This key group can contain only one system
command or calculator statement. The specified operation is performed
immediately (without pressing the EXECUTE key).

REM, which specifies that the key group is a series of BASIC statements.
These statements will be executed when the CMD key and the specified key
is pressed or when the specific key group is referenced in GOSUB. When
referenced in GOSUB (GOSUB 999x), the program seeks the REM key
group and branches to it. If the REM key group is not found, the program
seeks statement 999x in the program and branches to it. The DATA, END,
and STOP statements are not permitted in a function key. Thus READ,
MAT READ should not be entered. A RETURN or CHAIN statement will
end definition of a KEYx function. The RETURN statement must not contain
an expression.

• TXT, which specifies that the character string (enclosed in single quotation
marks) is to be inserted in the input line beginning at the current cursor
position. For example, assuming a character string' RATE' is assigned to
function key 5, each time function key 5 is pressed while CMD is pressed,
the constant RATE is inserted into the line being entered from the keyboard.

• KEYn, which indicates that the function assigned to the n key is to be
reassigned to the x key specified in line number 999x. The n function key is
set to NULL.

In the following examples, the function keys will be assigned a number of
functions. First, the LOADO, KEY6 command prepares the work area for
assignment of the keys function.

• 9996 NULL indicates that the 6 key will have no defined function.

• 9996 CMD REWIND E80 indicates that the 6 key will cause the tape in the
5110 Model 1 built-in tape unit to be rewound each time the CMD key and
the 6 key are pressed.

System Commands 29

--------_............ .._---------_ .. _ .. __

30

Another use for the function key is shown below:

9996 CMD A=&PI*Rt2

In this example, you can compute the area of a circle by assigning a value to R
(the radius) and pressing the numeric 6 key while the CM D key is pressed.

• 9996 REM KEY6 FUNCTION
0001 FOR X = 100 to 360 STEP 10
0002 A = X/12
0003 I = 2*A
0004 PRI NT FLP, I,X
0005 NEXTX
0006 RETURN

These BASIC statements will be executed each time the numeric 6 key is
pressed while the CMD key is pressed, or if a GOSUB 9996 is executed.

• 9996 TXT 'SPINDLES AND SPANGLES' indicates that the character string
will be inserted into the current input line beginning at the current cursor
position each time the 6 key is pressed while the CM D key is pressed.

• 9996 KEY4 indicates that the function assigned to the 4 key be reassigned
to the 6 key. The 4 key is then set to NULL, meaning that it has no' defined
function.

Note that statements in an REM key group can be deleted by reference to the
key group and use of the DEL editing function. For example:

KEY6, 10DEL

deletes line 10 from key group 6.

KEY6, 10DEL90

deletes lines 10 through 90 from key group 6.

Statements can be added or edited in the same manner:

KEY6, 10 PRINT A

adds line 10 or replaces the previous line 10 in R EM key group 6.

Note that KEYx cannot be used to edit a key group header statement.

'.

',-.

\
'-.

C)

o
\ , 0

",

o

o

o

o

MAR K K-characters, files,starting file [,dev-address]

MARK COMMAND

You can use the MARK command to initialize one or more tape or diskette
files to a specified number of contiguous 1,024-byte areas of storage. If end
of tape is reached before the mark operation is complete, the last file number
and the number of 1,024-byte areas successfully marked in the file are
displayed. If end of diskette is reached, the number of files successfully
marked is displayed. The A TIN key is not active during mark operations. If
you try to re-mark a file on tape or re-mark a file that contains data on
diskette, an error message is displayed (Appendix D). To continue, enter GO.
Note that you must use the scroll up key or blank the input line before entering
GO only in the first two positions of the line. If you end the operation by
entering anything other than GO in positions 1 and 2, the file already marked is
unchanged.

Note: If an existing file on tape is re-marked, the original information in the
re-marked file and the existing information in the files following the re-marked
file cannot be used again. Files on diskette can be re-marked without losing
information in files that follow.

The syntax of the MARK command is as shown above, where:

K-characters is the number of 1,024-byte areas of storage to be used on
the tape or diskette.

files is the number of consecutive files to be marked.

starting file is the first (lowest numbered) file number to be marked.

dev-address is the address of the tape or diskette drive in which the file
resides. Default is the system default device address (see Device Address
Parameter).

System Commands 31

32

Notes About MARK

• If an existing tape file is re-marked, the original information on the re-marked
file cannot be used again. In addition, the information on files following a
re-marked tape file cannot be used again. This does not apply to diskette
files.

• The MARK command can be issued any time the specified tape unit or
diskette drive is not otherwise active.

• Tapes with eRe errors must be re-marked (reinitialized) starting with a file
preceding the eRe error. A REWIND command is generally required before
this MARK.

• You can determine the size required for a file by comparing the amount of
work area available before and after you have entered data or programs into
the work area. See Storage considerations for information on storage
requirements for data in the work area.

Example

A sample MARK command is as shown:

MARK 3,6,1

In this sample, six files will be marked, starting with file 1, with each file using
3,072 (3K) bytes on the tape or diskette residing in the tape or diskette drive
that is the system default device.

---- -.---~~

~,

~---_/

o

o

()

o

C)

MERGE file-ref [, [KEYx] ,[from line-num] , [through line.num] , [new line-num] [,dev-addres~J

MERGE COMMAND

The MERGE command allows you to merge all or part of a saved file ~ith data
or a program (saved in BASIC format) in the work area. In this way, you can
add the same routine to several different programs, or add the same data
items to several different data files. Only BASIC statements (in a BASIC file)
and stream DATA files can be merged. The work area and saved file must be
of the same type. If these files are different, the MERGE command is not
executed, and an error message is displayed. Lines from the file are added to
the work area lines in line number sequence. If a line from the file and a line
in the work area have the same statement number, however, the line from the
file replaces the work area line. The merged file could exceed the size of the
work area, which causes an error message to be displayed (see Appendix D).

As the lines are merged, you can specify that lines merged from the file be
renumbered, starting with a statement number of your choice and increasing by
the original file increment. After the merge is completed, the display shows the
READY message or DATA, along with the number of unused bytes in the work
area. The syntax of the MERGE command is as shown above, where:

file-ref can be the file name (enclosed in single quotation marks), the file
number, or both file number and name (see File Reference. Parameter).

KEYx is an active function key group into which the file is to be merged.

from line-num is the first line to be merged in the saved file. If no number
is entered, the first line in the file is the default.

through line-num is the last line to be merged in the saved file. If no
number is entered, the last line in the file is the default.

new line-num is the first line number to be used in renumbering the lines
from the saved file. If no number is entered, the merged file will not be
renumbered.

dev-address is the address of the device in which the saved file resides.
The default is the system default device address (see Device Address
Parameter).

System Commands 33

... _---_ _ " __ .. _---- ----.. _-.. _ _-----_ .. - __ ._-_ .. _._--------

34

Notes About MERGE

• This command must be entered character-by-character from the keyboard.

Example

Omitted parameters must be indicated by consecutive commas. For
example:

MERGE 6,,2,200, ,E80

/ 'Omitted new line-num

Omitted KEYx parameter

A sample MERGE command is as shown:

MERGE. 6,,4,200, 10,E40

In this example, data from file number 6 in the auxiliary tape unit will be
merged with data in the work area. Lines 4-200 from the file will be merged.
As the MERGE command is executed, lines from the saved file are
renumbered, starting with line number 0010.

Another sample MERGE command is:

MERGE 5,KEY4,2,500,,080

In this example, lines 2 through 500 from file 5 will be merged with the.
function key group currently assigned to the 4 key. File number 5 resides on
diskette drive 1 (address 080).

With a file name, the command above could be:

MERGE 5, 'SYSIN',KEY4,2,500,,080

,/ "

,~

,r--', (,

\.. .

,~

(
\

(~
\ '_._J'.

o

(J

o

o

PROC file-ref [,dev.address]

PROC COMMAND

The PROC command allows you to initiate the use of a procedure file (see
Procedure File). A procedure file is a record I/O file on tape or diskette that
contains BASIC commands, statements, and/or input data. Data in a
procedure file can be used to replace data that is normally entered from the
keyboard (in response to an INPUT statement, for example), or to control
loading and execution of BASIC programs. The syntax of the PROC command
is as shown above, where:

file-ref can be the file name (enclosed in single quotation marks), the file
number, or both file number and name (see File Reference Parameter).

dev-address is the address of the tape unit or diskette drive in which the
procedure file resides. The default address is the system default device
address (see Device Address Parameter).

Upon execution of a PROC command, the file with the specified number or 10
(for diskette) on the specified device is accessed for procedure file data. You
can create a procedure file just as you create record I/O data files with a
program or by using the LOADO, DATA command. The PROC command
implicitly opens the procedure file.

Notes About PROC

• The procedure file will remain open while the procedure is active.

• A procedure file is closed by any error, bya GO END command (in response
to an ALERT command) or by a PROC command embedded within the
procedure that calls another procedure.

• A procedure file can supply data for an INPUT statement only if the RUN
command at the beginning of the program contains the IN=P parameter (see
RUN Command).

Example

The following is a sample PROC command.

PROC 3,'DAILY',D80

Upon execution of this command, the procedure file (named DAILY) in file 3 of
the diskette in drive 1 will be initiated.

System Commands 35

36

RD= COMMAND

You can use the RD= command to specify the number of digits to the right of
a decimal point that will be printed or displayed. If more digits are to be
printed or displayed, they will be rounded to the number specified. At power
on, rounding is initially set to six digits. Rounding can then be modified with
the RD= command or in the RUN or GO commands. The range of rounding (n)
is 1 to 15 digits. Data printed with a PRINT USING statement is not affected
by the RD= command.

I
\
'-- ,,-

o

o

o

o

o

o

RENUM [KEYX] [,first line-num Gincrement]]

RENUM COMMAND

You can use the RENUM (renumber) command to generate new statement
numbers for all the BASIC statements or data in the work area. Like the AUTO
command, renumbering begins with 0010 and the increment is 10, unless
specified otherwise. In addition, all references to statement numbers such as
in GOTO, IF, PRINT USING, GOSUB, and GET are changed to the new
numbers. In function key groups (see LOAD Command), each key group is
renumbered as if it is a separate work area, and is only renumbered if it is a
BASIC program function. (RENUM does not alter the key group header record.)

The syntax of the RENUM command is as shown above, where:

KEYx specifies a key group (x = 0 to 9) to be renumbered.

first line-num is an integer (1-9989) identifying the number at which
renumbering will begin. If this number is not specified, a beginning number
of 0010 and an increment of 10 are the default values.

increment is an integer specifying the increment for succeeding statement
numbers. Default is 10.

Notes About RENUM

• Statement numbers 9990-9999 are not altered by a RENUM command.

• An error will occur if you try to renumber where a line number greater than
9989 will be generated.

Example

The following examples shows the execution of a RENUM command:

RENUM 20,10 (then press the EXECUTE key)

Before

0010 INPUT A, B
0011 Q = INT (A/B)
0020 IFQ>O THEN 30
0025 GOTO 10
0030 PRINT Q
0035 GOTO 10
0040 STOP

After

0020 INPUT A, B
0030 Q = INT (A/B)
0040 IFQ>O GOTO 0060
0050 GOTO 0020
0060 PRINT Q
0070 GOTO 0020
0080 STOP

System Commands 37

38

R EWI N D [dev-addressJ

REWIND COMMAND

The REWIND command allows you to rewind the specified tape unit. The
syntax of the REWIND command is as shown above, where:

Example

dev-address is the address of the tape unit to be rewound (E8D for the
built-in tape unit or E4D for the auxiliary tape unit). The default is the
system default device address (see Device Address Parameter).

A sample REWIND command is as shown:

REWIND E4D

C)

c

o

o

o

(J

o

o

o

RUN COMMAND

The RUN command starts execution of a BASIC program at the lowest
numbered executable statement. The program must already reside in the work
area, and the work area must be defined as containing a BASIC program (see
LOAD command for loading programs and defining the work area type).
Programs can be executed using long (15 digits) or short (7 digits) precision
(see Precision, in Chapter 3). BASIC programs can be run (executed) in three
modes:

Normal Mode - All program steps are executed without interruption.

Step Mode - The system stops immediately before executing each program
step (statement). The word STEP and the statement number of the next
statement to be executed are displayed. To execute the next program
statement, or to change execution mode, you must execute a GO command
(see GO Command). Step mode allows you to display or alter variable values
between steps for debug purposes.

Trace Mode - The statement number of each statement executed is
displayed and/or printed while the statement is executed.

Both step and trace modes are useful in locating programming errors. Trace
provides a more rapid view of the program steps as they are executed. Step,
on the other hand, allows you to examine the contents of variables between
program steps and to modify program steps or data.

The syntax of the RUN command is as shown above, where:

RUN specifies 15-digit (long) precision, requiring 8 characters in storage for
each numeric value. RUNS specifies 7 -digit (short) precision, requiring 4
characters in storage for each numeric value.

STE~ specifies step-by-step execution.

TRACE specifies continuous statement execution, but the line number of the
statement just executed is displayed and / or printed. Note that for normal
mode you do not specify STEP or TRACE.

PRINT specifies that trace messages are printed and displayed (only valid
with TRACE). Also see File FLS in Chapter 3 for a discussion of dynamic
trace to the printer.

System Commands 39

40

P = D specifies that output from programs specifying the printer is directed
instead to the display screen.

RD = n allows you to specify the number of digits (n) to the right of the
decimal point that will cause rounding on printed output. The value n can
be 1 to 15 and is initially set to 6 at power on.

IN = P is valid only on a RUN command within a procedure file (see
Procedure File). This parameter allows you to specify that data for INPUT
statements be supplied from the procedure file, rather than from the
keyboard.

Notes About RUN

• The RUN command will be rejected by the system if the work area file type
is DATA.

• The RUN command initializes all arithmetic variables and arrays to zeros,
and character variables and arrays to blanks.

• When P=D is specified, all PRINT FLP, PRINT USING FLP, MAT PRINT
FLP, and MAT PRINT USING FLP statements are interpreted as PRINT,
PRINT USING, MAT PRINT, and MAT PRINT USING statements,
respectively, during this run.

• The IN=P option is valid only when a procedure file is active.

Example

Some sample RUN commands are as shown:

1. To begin normal execution of a program:

RUN (then press the EXECUTE key)

2. To begin a trace operation of a program and print the traced steps
executed:

RUN TRACE, PRINT (then press the EXECUTE key)

\' --",/

C)

c:)

c

CJ

C")
j

o

KEYS

SAVE file-ref
KEYx [SOURCE [,RECL=M [,NOBLOCK] J]
SOURCE [,RECL=M [,NOBLOCK] J
LOCK

SAVE COMMAND

The SAVE command allows you to save the contents of the work area in a
specified file. After a SAVE command is completed, the display will show the
READY or DATA message and the following information about the file:

• The number of contiguous 1,024-byte areas of storage allocated in the file.

• The number of contiguous 1,024-byte areas of storage unused in the file.

If the file comes to end of file before all of the work area is saved, an error
message is displayed (see Appendix D) and only part of the work area is
saved. To save the entire work area, enter another SAVE command specifying
another file with the correct amount of available space.

The syntax of the SAVE command is as shown above, where:

file-ref can be the file name (enclosed in single quotation marks), the file
number, or both the file number and file name (see File Reference
Parameter). File name is required for saving diskette files.

KEYS specifies that the contents of all defined function keys are to be
saved.

KEYx specifies that a function key (x = 0-9) is to be saved (see Function
Keys).

KEYx,SOURCE specifies that the function key (x = 0-9) is to be saved as a
BASIC program (without the function key header) in the same format in
which the user entered it.

SOURCE specifies that the contents of the work area are to be saved in the
same character format in which the user entered it.

LOCK specifies that the BASIC program being saved is to be locked. You
cannot list, renumber, or edit a locked program. You can, however, perform
the following with a locked program:

• Load for execution

• Save on tape or diskette (BASIC format only)

• Merge with lines in storage (the merged program is then considered to
be locked)

• Run the program in normal mode (not in step or trace mode)

Gdev.addres~

System Commands 41

42

RECL = m specifies that the file to be saved is a record I/O sequential file,
and indicates the size (m) of the logical records in the file. Logical record
size (m) must be a positive, nonzero integer.

NOBLOCK specifies that the file is to be saved on diskette in the unblocked
format of one logical record per sector.

dev-address is the address of the tape unit or diskette drive in which the
specified file resides. The default is the system dafault device address (see
Device Address Parameter).

Notes About SAVE

• If KEYx, KEYS, or SOURCE is not entered in the SAVE command, data in
the work area will be stored for either a BASIC program or a DATA file,
depending on the definition of the work area.

• If you interrupt execution of a SAVE command by pressing the ATTN key,
the operation is terminated. If the interruption occurs before the file has
been changed, the file remains unchanged. The interrupt at any other time
will result in only part of the program or data being saved.

• Only specified programs, data, and key functions are saved with the SAVE
command. Data values, buffers, and IMFs are not saved. You must apply
IMFs with the LINK command before you load the work area with any
saved program requiring 1M Fs.

• A SAVE command to a used file must contain the same file name as the
name of the used file.

Example

A sample SAVE command is as shown:

SAVE 4,'KEY S',KEY S,ESD

In this example, the contents of function key S are saved in file 4, which
resides on the cartridge in the tape unit built into the 511 D Model 1.

I.

o

c)

o

o

SKIP integer [commen~

SKIP COMMAND

The SKIP command allows you to unconditionally skip a specified number of
records within a procedure file (see Procedure File). The SKIP command is
valid only when used within an active procedure file. The syntax of the SKIP
command is as shown above, where:

integer indicates the number of procedure file records to be skipped.

Upon execution of the SKIP command, the specified number of records is
unconditionally skipped within the procedure file. If the number of records to
be skipped exceeds the number of records remaining in the file, the procedure
file is closed. The specified number must be a whole number. For example, an
entry of 3.5 causes three records to be skipped, with the .5 assumed to be the
beginning of the optional comment.

comment is an optional comment.

Example

The following 'example shows the execution of a SKIP command within a
procedure file.

LOAD 4
RUN
CSKIP 3
LOAD 9
RUNS
SKIP 3
ALERT INSERT TRANSACTION DISKETTE
LOAD 11
RUN

Upon execution of this procedure file, the program in file 4 runs. If the
program in file 4 sets the return code to nonzero (see STOP statement), the
CSKI P 3 causes the next three records in the procedure file to be bypassed
and ALERT to be processed .. The program in file 11 is then run. If the return
code was zero, the program in file 9 is loaded and run instead. The SKIP then
causes the remainder of the procedure file to be bypassed.

System Commands 43

---- ... ,' , .. _._------

44

[PRINT] GDI R [integer]] [,dev-address]

{

'old file name' }
FILEID file-num ,'new file name' [,dev-address]

file-num, 'old file name'

va LI D [[new va 1-1 D] , [new owner-ID] , { ~~ F } , [dev-address]]

UTIL

{~~~:} {file-ref} [,dev-address]

PROTECT [OFF,] file-ref [,dev-address]

SORT

SYS new dev-address default

UTIL COMMAND

You can use the UTIL command to do the following:

• Display or print a directory of file information currently on tape or diskette.

• Rename a file on diskette.

• Change or display a diskette volume ID and/or owner ID.

• Eliminate a file from diskette and make that file space available for
allocation for other files, or discontinue the contents of a file on diskette or
tape while leaving the file space allocated.

• Write protect a file or remove write protection from a file (diskette only).

• Transfer system control to the optional diskette sort feature.

• Change the system default device address.

' '

' ",

.' _

o

o

C)

o

o

o

Listing a File Directory

You need approximately 550 bytes of space in the work area to list a directory
of file information. If sufficient work area is not available during execution of a
UTIL command, an error message (Appendix D) is displayed. You should save,
then clear, the work area (with a LOADO command, for example) and continue
with another UTIL command. Information about each file is printed or
displayed on one line per file.

If you specify the PRINT parameter; all file information is printed. You can
interrupt the listing to either the display or printer by pressing the ATTN key,
which will terminate the command, or by pressing the HOLD key once, then
pressing the HOLD key again to continue.

The following information is printed or displayed about each file:

• The file number.

• The identification you assigned to the file, if any (see SAVE Command).

• File type (see File Types).

• The number of contiguous 1,024-byte areas of storage allocated to the file.

• The number of contiguous 1,024-byte areas of storage unused in the file.

• A number (0-9) indicating the number of defective physical record areas in
the file, or an asterisk indicating that the number is greater than 9. This
value can indicate when you should relocate a file into another file (tape
only) to avoid loss of data due to defective areas on the tape.

• File protection indicator (diskette only).

• Data set starting location (diskette only).

• Key numbers saved in the file for KEYS or KEY (0-9) files.

The UTIL command to print or display a directory of file information has the
following syntax:

UTIL [PRINT] [;DIR [integer]] [,dev-address]

where:

PRINT specifies that the listing be printed. If the printer is not specified,
output is displayed.

DIR integer specifies that a directory be listed. The integer, which identifies
the starting file number for the listing, is optional. If the integer is not
entered, the listing will begin at the current physical location of the tape or
the beginning of the diskette.

dev-address speciffes the address of the tape or diskette drive from which
the listing is to be made. The default is the system default device address
(see Device Address Parameter).

System Commands 45

46

Example

The following example shows a UTIL command, which specifies that a
directory be printed, starting with file number 1 on the 5110 Model 1 built-in

tape unit.

The resulting printed output for tape is shown in the following example:

Iser Identification A~torage (in KJ

001 INTEF~N(.ll".
o O:~ ~3()U I~CE

00:'5 1< EY~:)
00 1+ I(EYX
o () ~5 1...0CI(ED

1:1. 0:1,0 .. 0090
o 2 0 1 () .. 0 0 (I 0
12 010,009 0:1. 5 9

11 010,009 0 -
12 010 .. 009 0 7 OOb<EYY

File Number

:I,:~ 010,.009 0 ~:~

/ I I Defined Function Keys
File Type

Defective Areas on Tape
Unused Storage (in K) (* . d' th

In Icates more an
nine defective areas)

For a diskette file directory, a UTIL statement is:

UTIL DIR1 ,D80

The resulting output for diskette is shown in the following example:

/user Identification

o () 0:1. I N 'r E F< N til...
0002· ~)OUF~CE

~d Storage (in KJ

:1.:1. 0010 / 0009

rta Set Starting Location'

01001
0201:1.

'". - "

c·

0003 ~:EYB
OOOL!· I{EYX
O()()~j LDCKED
() 0 06 I{ EYY

\

2 0 0 :1. 0 J 0 0 () (? P
:L2 001.0 / 000<i
:l.200:l.0 .. 000(?
:1.1 0010,000<;'

P 0310t:>
p O~:;OOl

P ObOll

File TYP! 2 0:1. () 0 , /10 ()
9

\ 07106
J~l/?(~

Defined Function Keys '-./
File Number

Unused Storage (in K) File Protection Indicator

*Data set starting location is five digits (cchrr), where cc=cylinder, h=head, and
rr=record number (see IBM 5110 BASIC User's Guide).

._-_._--- -_ ... _-_._. __ .•. - ._ .. - ... _-_.- .. _---------_ _ _--_ -

o

o

o

o

File Types

Valid file types listed with the UTIL command are:
Type File

0 Marked, unused tape file or diskette file

1 ** Data exchange file

2 General exchange file

3** BASIC source file

4* BASIC work area file

5* BASIC KEYS file

6* APL continue file

7 APL save file

8 APL internal data
9 Record I/O file
B9 Basic exchange, record I/O file

10 APL internal data (diskette only)

11 BASIC work area file
12 BASIC KEYS file
15 APL mixed record file (diskette only)

16* Patch, tape recovery, and tape copy file

17* Diagnostic file

18* Communication file

19* IMF file
21 Utility file
22 Feature file
23 IMF file
24 Diagnostic file
26 APL continue file (IBM 5110)

*These file types can be created on an IBM 5100, but cannot be created or
loaded by an 5110 (see BASIC Compatibility with IBM 5100 BASIC).

**These file types can be created on a IBM 5100 and can be read or loaded by
a 5110, but they cannot be created by a 5110.

System Commands 47

48

Renaming a File on Diskette

You can rename a file on diskette using the UTIL command with the following
syntax:

{

'old file name' }
UTI L F I LEI D file-num ;new file name' ['devaddress]

file-num,'old file name'

where:

FILEID specifies that a diskette file name be changed.

'old file name' indicates the current name assigned to the file.

file-num indicates the number of the file to be renamed. Note that either or
both the old file name and file number may be specified. If both are
specified, they must be separated by a comma with file number first. File
name must always be enclosed in single quotation marks (up to 17
characters).

'new file name' specifies the new name to be assigned to the file.

dev address is the address of the diskette drive containing the file to be
renamed. Default device address is the system default device address (see
Device Address Parameter).

A sample UTIL command to rename a file is shown below.

UTIL FILEID 7,'YTD.GROSS.SALES','YR76.GROSS.SALES',D80

File number 7 on diskette drive 1 will be renamed from YTD.GROSS.SALES to
YR76.GROSS.SALES in this example.

(~,
I

"

o

C)

C)

o

Changmg a Diskette Volume 10

You can change a diskette volume ID or owner ID with the UTIL command
having the following syntax:

UTI L va LI a rew vol-I a ,new owner -10 {, ~~ F } [;dev-address]]

where:

VaLID specifies that a diskette volume ID be changed or displayed. If this is
the only parameter entered for the UTIL command, the volume ID, owner
ID, 'and sector size fields for the diskette are displayed only, and are
unchanged.

new vol-/D specifies the new volume ID for the diskette. This entry can be
from 1 to 6 alphameric characters. If you do not enter a new vol-ID, the
volume ID remains unchanged.

new owner-/D specifies the new owner ID for the diskette. This entry can be
up to 14 alphameric characters. If this parameter is not entered, the current
owner ID is unchanged.

ON specifies that the volume be protected from unauthorized access. This
parameter does not allow access to the diskette.

OFF specifies that the protection indicator for the volume be turned off,
making the volume accessible. If this parameter is entered, both the current
volume ID and owner ID must also be specified and must match those on
the diskette.

dev-address specifies the address of the diskette drive on which the file
resides. Default is the system device address (see Device Address
Parameter). This address must not be enclosed in single quotation marks.

When the UTIL VOLID command is executed, the current volume ID, owner ID,
and sector size fields are displayed, and the new volume ID and owner ID
entries are then assigned. Note that omitted parameters. must be indicated by
consecutive commas.

A sample UTIL VOLID command is shown below:

UTIL VOLID DEBTS,ROWE,ON,D80

In this example, the diskette volume 10 on the diskette in drive 1 (D80) will be
changed to DEBTS, and the owner ID will be changed to ROWE. In addition,
the volume protection indicator will be set on. With the indicator on, the
diskette cannot be used (including the UTIL VOLID command) until the
indicator is set off. Thus, before setting protection on, be sure you remember
the volume and owner 10, which you must enter before protection can be set
off.

System Commands 49

50

Eliminating or Discontinuing a File

You can use the UTIL command to remove a file and make its physical file
space available for reallocation, or simply reinitialize a file to unused status
while leaving its file space allocated. The syntax of this UTIL command is:

{
DROP} {file-num }

UTI L FREE 'file name' [,dev-address]
file-num;file name'

where:

DROP specifies that the file be reinitialized to unused status, although the
file space allocated for the file remains allocated. This parameter can be
used to reinitialize both tape and diskette files.

FREE specifies that the file space allocated for the file is to be freed and
can be used for allocation to another file. This parameter applies only to
diskette files.

file-num specifies the number of the file to be deleted. This parameter is
required for tape files; it is optional for diskette files.

'file name' specifies the name of the file to be deleted. This parameter can
be up to 17 characters enclosed in single quotation marks; For diskette
files, this parameter must be specified if a file number is not specified.

file-num,'file name' indicate that both the file number and file name can be
specified, but must be separated by a comma.

dev-address specifies the address of the tape unit or diskette drive on which
the file to be deleted currently resides. Default is the system device address
(see Device Address Parameter).

A sample UTIL command to delete a diskette file is:

UTIL DROP 'YR76.TAXES',D80

In this example, the data in the YR76,.TAXES file will be deleted from diskette
drive 1. The file space will still be allocated, allowing another file
(YR77.TAXES, for example) to be assigned to that space_

(~,

I,
\...~. -"

o

o

o

o

Assigning or Removing File Write Protection for Diskette Files

You can use the UTIL command to ensure the integrity of data in a diskette
file by write-protecting the file. This type of UTIL command has the following
syntax:

UTIL PROTECT [OFF] file-ref [,dev-address]

where:

PROTECT specifies that a file be selected for assignment or removal of write
protection.

OFF specifies that write protection be removed from a file that is currently
write-protected. If this parameter is omitted, ON is assumed.

file-ref can be the file name (enclosed in single quotation marks), the file
number, or both file number and name (see File Reference Parameter).

dev-address specifies the address of .the diskette drive on which the file to
be protected currently resides. Default is the system device address (see
Device Address Parameter).

Note: Write protection prevents rewriting of a file. The file can, however, be
updated (see REWRITE FILE statement).

A sample UTIL command to assign write protection is shown below:

UTIL PROTECT 'LOSSES', D80

In this example, the LOSSES file on diskette drive 1 will receive write
protection, which ensures that other data cannot be written into the file.

System Commands 51

52

Selecting the Diskette Sort Feature

You can gain access to the diskette sort feature using the UTIL command with
the following syntax:

UTIL SORT

If the UTIL SORT command is specified in a procedure file, the next record is
passed to the sort feature as if it were entered from the keyboard. After the
sort is completed, the procedure file is still active, default device address
remains the same, decimal rounding is reset to six positions, and all
programs/ data are cleared from the work area.

For details concerning the diskette sort feature, see the IBM 5110 Customer
Support Functions Reference Manual, SA21-9311.

Changing the System Default Device Address

Normal system default device address for the 5110 Model 1 is the built-in
tape unit (address E80). For the 5110 Model 2, normal default device address
is diskette drive 1 (address 080). You can change the default device address
using the UTIL command with the following syntax:

UTIL SYS new dev-address default

where:

SYS specifies that the system device address default be changed.

new dev-address default specifies the new default device address. Valid
addresses are:

E80 - Primary tape unit (built into the 5110 Model 1)
E40 - Auxiliary tape unit (model 1 only)
080 - Diskette drive 1
D40 - Diskette drive 2
020 - Diskette drive 3
010 - Diskette drive 4

c

o

o

C)

o

o

o

Chapter 3. Data Constants, Variables, And Concepts

BASIC CHARACTER SET

The BASIC character set is used to represent arithmetic and character data
entered from the keyboard as data constants and variables.

The characters that have syntactical meaning in the BASIC language fall into
three categories: alphabetic, numeric, and special characters.

Alphabetic Characters

The alphabetic characters in BASIC are the upper/lowercase letters of the
English alphabet (A-Z) and the following three characters called alphabet

extenders:

@ (the commercial at sign)
(the number or pound sign)
$ (the currency symbol)

Numeric Characters

The numeric characters in BASIC are the digits 0 through 9.

Data Constants, Variables, And Concepts 53

54

Special Characters

There are 22 special characters in BASIC:

Character

+

*
/
+
(

)

&
?
>
<

Use of Blanks

Name

Blank
Equal sign or assignment symbol
Plus sign
Minus sign
Asterisk or multiplication symbol
Slash or division symbol
Up arrow or e~ponentiation symbol
Left parenthesis
Right parenthesis
Comma
Period or decimal point
Single quotation mark
Semicolon
Colon
Ampersand
Question mark
Greater than symbol
Less than symbol
Not equal symbol
Less than or equal symbol
Greater than or equal symbol
OR sign or vertical bar

Blanks may be used freely throughout a program to improve readability. They
have no syntactical meaning except within character constants and in the
image statement (see [MAT] PRINT USING and Image/FORM in Chapter 4),
which specifies the format of printed or displayed data.

c'

C)

I I

~-,J

o

Underscore

The underscore character (uppercase F) is a valid overstrike character in the
system.

Additional underscore capability is provided through a special keyboard
operation. When you hold down the CMD key and press the spacebar, a
symbol (.) will be displayed on the screen. This character can also be created
if you use the hexadecimal constant FF.

Note: Do not use the • character in a data statement or in a comment. The
• character can only be displayed; it cannot be printed. When entered in a
line of data to be printed, this character causes all characters to its right to be
underscored until another • character is encountered. When the data is
printed, a blank will appear in place of the • characters. Spaces between
characters are not underscored. An example of this function is shown below.

If you enter THE MANUAL IS THE • BASIC INTRODUCTION.,
SA21-9306'; this is printed:

THE j"/j (~Ij""·.! 1...1 (·11... I ~:) THE f~ C·! i.:.~ .I ! .. ~.~ .1. t:~ J r:~ !J I! !.) r.:~ :r .J. L! t1

ARITHMETIC DATA

Arithmetic data is data with a numeric value. All numbers in BASIC are
expressed to the base 10; that is, they are treated as decimal numbers.

Magnitude

The magnitude of a number is its absolute value. The range of numbers
permitted in BASIC programs is greater than or equal to 1 E-78 and less than
1 E+74.

Precision

In BASIC, the precision of a number is the maximum number of digits it can
contain. You can use the RUN command to select long or short precision.
When you enter RUN (long precision)' each numeric data item will have
15-digit precision, occupying 8 character positions of storage. When you enter
RUNS (short precision)' each numeric data item will have 7-digit precision,
occupying 4 character positions of storage. All numbers in BASIC are
converted to internal binary floating point format for processing. Because a
decimal fraction may not have an exact binary equivalent, some truncation
errors may occur after the conversion.

Data Constants, Variables, And Concepts 55

56

Arithmetic Data Formats

Arithmetic data can be entered, displayed, or printed in any of three formats:
integer, fixed point, or floating point. The appropriate format for a given
number depends on its magnitude and the level of arithmetic precision you
require.

Numbers in any format can be positive or negative. Negative numbers must be
preceded by a minus sign. When no sign is specified, a number is treated as a
positive number, so plus signs are optional.

Integer Format

Numbers expressed in integer format (I-format) are written as a number of
digits optionally preceded by a sign. Examples of numbers in integer format
are:

o
+2
-23
2683

Fixed-Point Format

Numbers expressed in fixed-point format (F-format) are written as a number
of optional digits preceded by an optional sign and followed by a decimal
point. The decimal point can also be followed by a number of digits. These
digits are required if a number does not precede the decimal point. Examples
of numbers in fixed-point format are:

33.
33.00
-.3

+3.56

"'-

o

o

o

o

o

Floating-Point Format

Numbers expressed in floating-point format (E-format) are written with an
optional sign, followed by an integer or fixed-point number, followed by the
letter E. An optionally signed one- or two-digit characteristic (exponent) must

follow the E.

The value of a floating-point number is equal to the number to the left of the
E, multiplied by 10 to the power represented by the number to the right of the
E. This notation corresponds to standard scientific notation in which numbers
are expressed as a power of 10. Note, however, that while the number 107 is
permissible in scientific notation, the number E7 is not a valid floating-point
number. The value 107 must be expressed as 1 E7 in BASIC floating-point
format. Thus, BASIC floating-point format requires a number to the left of the

E.

Examples of numbers in floating-point format are:

Floating Point
Number

.25E-4

+1.0E+5

5E-7

-15.33E6

Selecting An Arithmetic Format

Equivalent Decimal
Value

.000025

100000

.0000005

-15330000

You can enter arithmetic values at the keyboard in the most convenient format
for your application. The number one million, for example, can be entered in
any of the following ways:

1000000
1000000.00
1 E+6

Data Constants, Variables, And Concepts 57

58

The numeric size of arithmetic values is limited only by the magnitude (~1 E-78
and <1 E+74). Note, however, that the physical length of values you enter is
not limited, although entries exceeding 15 digits will be truncated on the right
to the long system precision of 15 digits, or 7 digits for short precision. Thus,
very small and very large numbers can be entered in E-format. For example,
you can enter:

1.4E12

or the equivalent 1- or F-format value (14 followed by 11 zeros).

You can use the BASIC statements to control the format of arithmetic values
displayed or printed (see PRINT USING and Image/FORM in Chapter 4). Thus,
the form of the values originally entered does not affect the output format.

Arithmetic Constants

An arithmetic constant is either an integer, a fixed-point, or a floating-point
number whose value is never altered during execution of the program. Thus,
the integer 1 is a constant in the following statement:

X=X+1

Internal Constants

An internal constant is an arithmetic constant with a predefined value. Unlike
normal arithmetic constants, the internal constants are referred to by names,
though like normal arithmetic constants, their values are never altered during
program execution. The internal constants are:

Constant Name Value

pi 'TT &PI 3.141592653589793

Natural log &E 2.718281828459045

Square root of 2 &SQR2 1 .414213562373095

Centimeters per inch &INCM 2.540000000000000

Kilograms per pound &LBKG 0.453592370000000

Liters per gallon &GALI 3.785411784000000

The internal constant names can only be used as parts of arithmetic expression
for example:

2*&PI (then press the EXECUTE key)

The result is 6.283185.

(~~
..... ••••• ~.J •• '

/---',

(,,,.,/

C)
Internal Variables

The 5110 provides three internal variables to aid in error recovery:

&LlNE Contains the line number of the BASIC statement being executed
when an error occurred

&ERR Contains the number of the error for which an ON ERROR statement
has caused a branch of program control

&REC Contains the relative record number of the last record referenced in a
file

To access the contents of these internal variables, simply enter the variable as
shown above and press the EXECUTE key or assign it to another variable.

Arithmetic Variables

A variable is a named data item whose value is subject to change during
execution of the program. Arithmetic variables are named by a single letter of
the extended alphabet (A-Z, @, #, and $), or by a single, letter of the extended
alphabet followed by a single digit (0-9). Examples of arithmetic variable
names are A, A5, #1, and #7.

When a program is executed, the initial value of arithmetic variables is set to
zero. The only exception is that variables assigned in a USE statement are not
initialized (see USE in Chapter 4) for a program that is chained to (see CHAIN
in Chapter 4).

CHARACTER DATA

Character data in BASIC is data without a numeric value. Like arithmetic data,
character data can be in the form of constants or variables.

Data Constants, Variables, And Concepts 59

60

Character Constants

A character constant is a string of characters enclosed in a pair of single
quotation marks. Any letter, digit, or special character can be included in a
character constant. An apostrophe, however, must be indicated by two single
quotation marks. For example, 'IT'S' represents ITS. The following are all
valid character constants:

'YES'
'THE SQUARE OF X IS'
'12345'
'AB'

The length of a character constant, when displayed or printed, is the number of
characters it contains, including blanks, but excluding the delimiting quotation
marks. Each pair of single quotation marks used to represent an apostrophe is
counted as one character. The maximum number of characters in a character
constant is limited only by the maximum number of characters on an input line,
which is 64.

Character Variables

A character variable is a named item of character data whose value is subject
to change during execution of the program. Character variables are named by
a single letter of the extended alphabet (A-Z, @, #, and $), followed by the
currency symbol ($). Examples of character variables are A$, #$, and $$.
Character variables can be dimensioned (see DIM Statement) to a length of 1
to 255 characters.

When the program is executed, the initial value of character variables is set to
blank characters. The only exception is that variables assigned to the common
storage area are not initialized (see USE in Chapter 4) for a prdgram that is
chained to (see CHAIN in Chapter 4). These variables are initialized to blanks
by a LOAD or RUN command (see Chapter 2).

Character constants assigned to character variables are adjusted to the length
of the character variable. Longer constants are truncated; shorter constants are
left-justified and padded with blanks on the right.

/~

(

\,

o

o

ARRAYS

An array is a collection of data items (elements) that is referred to by a single
name. Only data items of the same type (numeric or character) can be grouped
together to form an array.

Arrays can be either one- or two-dimensional. A one-dimensional array can
be thought of as a row of successive data items. A two-dimensional array can
be thought of as a matrix of rows and columns. Figure 6 shows a schematic
representation of both types of arrays.

One-Dimensional Array Named A

A(l) A(2) A(3) A(4)

Two-Dimensional Array Named B

B(l,1) B(1,2) B(1,3)

B(2,1) B(2,2) B(2,3)

B(3,1) B(3,2) B(3,3)

B(4,1) B(4,2) B(4,3)

Figure 6. Schematic Representation of One- and Two-Dimensional Arrays

Each element in an array is referred to by the name of the array followed by a
subscript in parentheses, which indicates the position of the element within the
array. The general form for referring to an array element is:

array name (rows, columns)

where array name is the name of the entire array, and rows, columns are any
positive arithmetic expressions whose truncated integer values are greater than
zero and less than or equal to the corresponding dimension of the array.

Data Constants, Variables, And Concepts 61

62

The expression in a subscript referring to an element of a one-dimensional
array gives the position of the element in the row, counting from left to right.
Thus, the third element of a one-dimensional array named A can be referred to
by the symbol A(3}' as in this example:

A(3) = 25

The first expression in a subscript referring to an element of a
two-dimensional array gives the number of the row containing the referenced
element. Rows are numbered from top to bottom. The second expression in
the subscript gives the number of the column. Columns are numbered from
left to right. Thus, the second element in the fourth row of a two-dimensional
array named 8 can be referred to by the symbol 8(4,2), as in this example:

8(4,2) = 1.53E6

The dimensions of an array and the number of elements in each dimension are
established when the array is declared.

Declaring Arrays

Arrays can be declared either explicitly by use of the USE or DIM statement or
implicitly by a reference to an element of an array that has not been explicitly
declared.

When an array is declared explicitly, the dimensions and the maximum number
of data items that can be contained in each dimension are specified in the USE
or DIM statement.

When an array is declared implicitly, by a reference to one of its elements
when its name has not appeared in a prior USE or DIM statement, it will have
the number of dimensions specified in the reference, and each dimension will
contain 10 elements. For example, when no prior USE or DIM statement exists
for an array named A, the statement:

A(3) = 50

will establish a one-dimensional array containing 10 elements, the third of
which will have the integer value 50. The remaining elements will be initialized
to zero.

Likewise, when no prior USE or 01 M statement exists for an array named 8,
the statement:

8(5,6) = 6.913

will establish a two-dimensional array containing 10 rows and 10 columns (100
elements), with the sixth element in the fifth row equal to 6.913.

'

C)

(- -',

,,---)

o

C)

o

Arrays with dimensions that contain more than 10 elements cannot be
implicitly declared. Thus, without the appropriate prior USE or DIM statement,
the following statements would both cause error conditions:

A(15) = 22.4
B(3,20) = 66.6

After an array has been declared, either explicitly or implicitly, it cannot be
explicitly dimensioned by a 01 M statement anywhere in the program.

Redimensioning Arrays

Numeric and character arrays can be redimensioned according to the following
rules:

• Both one- and two-dimensional arrays can be redimensioned.

• The total number of elements in an array after redimensioning must not
exceed the number originally specified when the array was declared.

• The number of dimensions can be changed.

• The maximum value for a dimension is 9999.

• An array can be redimensioned in a MAT assignment statement or MAT
input statement.

• The new dimensions for the array can be specified with either a constant or
by an expression.

Arithmetic Arrays

An arithmetic array contains only numeric data and can have one or two
dimensions.

Arithmetic arrays are named by a single letter of the extended alphabet (A-Z,
@, #, and $). Thus, the letter A can be used to name an arithmetic variable or
an arithmetic array, or both, while the symbol A2 can only be used to name an
arithmetic variable. For example:

A=6
A(1) = 9

where the variable A = 6 (scalar) and A(1) = 9 (arithmetic array element). All
elements of an arithmetic array are initially set to zero when the program is
executed (except those assigned to the common storage area for use in a
program that is chained to; see USE and CHAIN in Chapter 4).

Before being used in any of the matrix-handling statements, an arithmetic
array must have been previously dimensioned, either explicitly or implicitly.
Arithmetic arrays can be redimensioned as described previously.

Data Constants, Variables, And Concepts 63

"------_._._---,,_._._-,,_._-_._------_.

64

Character Arrays

A character array contains only character data and can have one or two
dimensions.

Character arrays, like simple character variables, are named by a single letter of
the extended alphabet followed by the currency symbol ($). Thus, the name
0$ can refer to either a simple character variable or a character array. The
name 0$(2,4) refers to the fourth element of the second row of a
two-dimension character array. For example:

0$ = 'JONES'
0$(2,4) = 'SMITH'

Character arrays can be used in input, output, and simple matrix assignment
statements (when no arithmetic operation is performed) and can be
redimensioned as described previously.

Summary of Naming Conventions

Figure 7 shows a summary of the naming conventions previously described for
variables and arrays. The symbol ext in Figure 7 denotes a letter of the BASIC
extended alphabet (A-Z, @, #, and $). Information in brackets is optional.

Data Type Name Examples

Arithmetic variables ext [digit] A,$5

Arithmetic arrays ext A,$,#

Character variables ext $ A$, $$, @$

Character arrays ext $ A$, $$, @$

Figure 7. Naming Conventions for Variables and Arrays

"r------. (.

'--- --

~-

\

o

Ci

C)

SYSTEM FUNCTIONS

The IBM 5110 BASIC language includes system functions that perform a
number of commonly used operations. In addition, you can define and name
your own functions by using the DEF statement (see DfF, RETURN, FNEND in
Chapter 4).

The system functions shown in Figure 8 can be used anywhere in a BASIC
expression where constants, variables, or arithmetic array element references
can be used, as shown in these examples:

A = SIN(&PI) + 1
B = SQR(X + 3)
R1 = RND

Most of the system functions have a single argument (optional with RNp),
which can be a valid expression (explained later in this chapter) and produce a
single result. An invalid argument produces an error. The argument for the
DET function must be a reference to a square arithmetic array. Minimum
precision for these system functions is 10 digits. The system functions are
listed in Figure 8.

Function Name

ABS(x)
ACS(x)
ASN(x)
ATN(x)
CEN(x)

CHR(x)

COS(x)
COT(x)
CSC(x)
DEG(x)
DET(x)
EXP(x)
HCS(x)
HSN(x)
HTN(x)
I DX(X$,Y$)

INT(x)
KLN(X$)

KPS(X$)

Description

Absolute value of x
Arc cosine (in radians) of x
Arc sine (in radians) of x
Arc tangent (in radians) of x
Degrees Centigrade (celsius)
corresponding to X degrees Fahrenheit
Character string value of arithmetic
expression X
Cosine of x radians
Cotangent of x radians
Cosecant of x radians
Number of degrees in x radians
Determinant of an arithmetic array1
Natural exponent of x
Hyperbolic cosine of x
Hyperbolic sine of x
Hyperbolic tangent of x
Position of Y$ character string
within the X$ character string
(relative to position 1) or zero
if Y$ is not in X$
Integral part of x
Length in characters of the
embedded key for file X$
Beginning character position of
the embedded key for file X$

1 Maximum matrix size is 50x50. Result of less than 1 E-20 is the same as zero.

Data Constants, Variables, And Concepts 65

66

Function Name

LEN(X$)

LGT(x)
LOG(x)
LTW(x)
MAX(X,V ...)

MIN(X,V ...)

NUM(X$)

PRD(x)
RAD(x)
RLN(X$)

RND[(x)]

SEC(x)
SGN(x)
SIN(x)
SQR(x)
STR(X$, y [,z])

SUM(x)
TAN(x)

Figure 8. System Fuctions

Description

Length of character string X$
(less trailing blanks)
Logarithm of x to the base 10
Logarithm of x to the base e
Logarithm of x to the base 2
Maximum value of arithmetic scalars
(X, V ...) or character arguments
(X$,Y$...)
Minimum value of arithmetic scalars
(X, V ...) or character arguments
(X$,Y$...)
Converted numeric value of
character string X$
Product of the elements of array x
Number of radians in x degrees
Length of the last record referenced
for file X$
Random number between 0 and 12

Secant of x radians
Sign of x (-1, 0, or +1)
Sine of x radians
Square root of x
Substring of character variable
X$, starting with the yth character
and extending to the end of X$ or
for z characters
Sum of the elements of array X
Tangent of x radians

2A nonzero argument to RN D starts a series of random: numbers determined by the
argument value. A zero argument to RND starts a new series of random numbers
with an undetermined value. If no argument is specified to RND, the next number in
the current series is returned.

o

C~)

(\

.... /

(
-..

j

o

o

EXPRESSIONS

An expression in BASIC is any representation of an arithmetic or character
value. Constants, variables, arrays, array element references, and function
references are all considered expressions. You can also form expressions by
combining any of these value representations with symbols called operators.

An operator specifies either the relationship between data items, an arithmetic
operation to be performed on them, or whether they are positive or negative.
For example, the symbols >, *, and + are operators specifying greater than,
multiplication, and addition (or positive value), respectively.

A special class of expressions, called relational expressions, is used with the IF
statement to test the truth of specified relationships between two values .

Expressions referring to entire arrays, rather than individual array elements, are
called array expressions. An expression that does not contain a reference to an
entire array is called a scalar expression.

Arithmetic Expressions and Operators

An arithmetic expression can be an arithmetic variable, array element, constant,
or function reference; or it can be a series of the preceding items separated by
operators and parentheses. Some examples of arithmetic expressions are:

A1
X3/ (-6)
X+Y+Z
SIN{R)
-6.4
- (X - Y t 2/2+ X)

You obtain the value of an arithmetic expression by performing the implied
operations on the specified data items.

The five arithmetic operators are:

Symbol Meaning

t or ** Exponentiation

* Multiplication

/ Division

+ Addition

Subtraction

Note that the system stores ** as t.

Data Constants, Variables, And Concepts 67

----... _._ .. _ _._ .. .

68

The positive/negative operators are:

+ Positive (used only for clarity)
- Negative (changes the sign of the operand following it)

Special rules for the arithmetic operators and the resulting actions are as
follows:

Exponentiation: The expression At 8 is defined as the variable A raised to the
8 power.

1. If A=8=0, an error will occur.

2. If A=O and 8<0, an error will occur.

3. If A<O and 8 is not an integer, an error of a negative number to a
fractional power will occur.

4. If AotO and 8=0, At 8 is evaluated as 1.

5. If A=O and 8>0, At 8 is evaluated as O.

Multiplication and Addition: A*8 and A+8, multiplication and addition
respectively, are both commutative; in other words, A*8=8*A and A+8=8+A.
However, multiplication and addition are not always associative because of
low-order rounding errors; for example, A*(8*C) does not necessarily give the
same results as (A*8)*C.

Division: A/8 is defined as A divided by 8. If 8=0, an error (overflow) will
occur.

Subtraction: A- 8 is defined as A minus 8. No special conditions exist.

Positive/Negative Operators: The + and - signs can also be used as
positive/negative operators, which can be used in only two situations:

• Following a left parenthesis and preceding an arithmetic expression

• As the leftmost character in an entire arithmetic expression that is not
preceded by an operator

For example:

-A+(-8) and 8-(-2) are valid.
A+-8 or 8--2 are invalid.

,/ ,

~
I
\
\........ ,-

o

C)

". 0

" 0
,

o

Arithmetic Hierarchy

Arithmetic expressions are evaluated according to the hierarchy of the
operators involved. Operations enclosed in parentheses are performed first.
Operations with a higher priority level are performed before those with a lower
priority level. Operations at the same priority level are performed from left to
right. The hierarchy of the operators are:

Operator Hierarchy

1. Enclosed in parentheses Highest

2. t or **

3. Positive + and Negative -

4. * and /

5. Addition + and Subraction - Lowest

You evaluate an expresion by reducing it to its component subexpressions. A
subexpression is defined as a group that can be read
operand-opera tor-operand, where an operand is one of the following:

• A simple reference to data (constant or variable)

• A subscripted array reference

• A function reference

• A parenthesized subexpression

Starting with the first operator to be executed according to the hierarchy, the
operands of its subexpression are reduced to simple references to data in a
left-to-right order. This process is repeated as many times as required in a
left-to-right order or in a decreasing order of priority, or both, of the remaining
operators until the entire expression is reduced to a simple reference to the
evaluated result.

Data Constants, Variables, And Concepts 69

70

The following examples illustrate the successive steps in the evaluation of four
arithmetic expressions according to the rules just described. In each
expression, the variables A, B, and C have been assigned the integer values 4,
6, and 2, respectively.

Expression

-A t2+B/C*2.5

(-At2)+B/C*2.5

-A t (2+B/C) *2.5

-At((2+B)/C)*2.5

Character Expressions

Evaluation and Result

-4t2+6/2*2.5
- 16 +6/2*2.5
-16+6/2*2.5
- 16 +3 *2.5
- 16 + 7.5

-8.5

(-4t2)+6/2*2.5
- 16 +6/2*2.5
- 16 +3 *2.5
- 16 + 7.5

-8.5

-4t(2+6/2) *2.5
-4t(2+3) *2.5
-4t5 *2.5
- 1024 *2.5
- 1024 *2.5

-2560

-4t((2+6)/2) *2.5
-4t (8/2) *2.5
-4t4 *2.5
- 256 *2.5
- 256 *2.5

-640

A character expression is a character constant, a character variable, a character
valued function reference, a single element of a character array, or a substring
(STR) function. The only operators ever associated with character expressions
are the concatenations symbol and relational operators described next. The
following are examples of valid character expressions:

D$(4)='DFR'
A$='SER'
STR(A$,1,3)=8$
A$=8$1 I C$
CHR(A-B)
MIN('A','C','E') or MIN (A$,B$,C$)
MAX('D','F,'R') or MAX(D$,F$,R$)

/

\ .. ' _

o

o

o

c

Substring Function

A character string is a sequence of characters in a character expression. The
string (STR) function allows you to extract, combine, or replace specific
characters in the expression. The STR function is used with LET statements to
do the following:

• Extract characters-For example, in the following statements:

10 A$ = 'PRODUCTION CONTROL'
20 STR(B$, 1, 1 0) = STR(A$,1, 1 0)

statement 20 extracts the first 10 characters from A$ and assigns them to the
first 10 characters of B$. In statement 20, A$ is the expression from which
characters are to be extracted, 1 is the position of the first character to be
extracted, and 10 is the number of characters to be extracted.

• Combine characters-For example, in these statements:

10 A$ = 'PRODUCTION'
20 B$ = 'CONTROL'
30 LET STR(A$, 12,7) = B$

statement 30 places the content of B$ (CONTROL) with the content of A$
(PRODUCTION) after the 11 th character, which is a blank. In statement 30, A$
is the expression to which characters will be included, 12 is the first position to
be filled by the additional characters, and 7 is the number of characters to be
included. The 7 is optional. If it is omitted, the remainder of the string (A$) is
used starting at the specified position (12).

• Replace characters-For example, in these statements:

10 LET A$ = 'PART 789'
20 LET B$ = 'PART 1234'
30 LET STR(A$,6,4) = STR(B$,6,4)

statement 30 replaces the 789 in A$ with the 1234 from B$. Again, the
numbers 6 and 4 in statement 30 specify the first character to be replaced and
the number of characters to be replaced, respectively. These numbers do not
have to be the same on both sides of the equal sign.

Data Constants, Variables, And Concepts 71

--------------- -----,,-- -- _-_ .. _---- ._---

72

Concatenation

Concatenation is joining two character expressions using the concatenation
symbol I I. The following is an example of concatenation:

o 0 :L 0 :0 I)"'1 (:1 ~I; !.::i

o 0 ;.:.:: 0 :0 I !'ii 1-:.: ':1:· ,+
o 0 ::::) 0 (:'1 ':1:· :::: I i··· .. i I i····! i\! E I

o 0 q. 0 :0 ':i; :;:: I ~::; (j 'r (:', I

I] 0 !.:;i 0 C ':i; :::: i::', ':j:. ~~ ~:~ E·: ';!:'

In this example, the character string A$ is concatenated with the character
string B$ to form string C$ (MINNESOTA). When two or more character
strings are concatenated, the length of the resulting string is the sum of the
individual strings.

Relational Expressions

A relational expression compares the value of two arithmetic expressions or
two character expressions. The expressions to be compared are evaluated and
then compared according to the definition of the relational operator specified.
According to the result, the relational expression is either satisfied (true) or not
satisfied (false). Relational expressions can appear in a BASIC program only as
part of an IF statement.

The relational operators and their definitions are:

Operator Meaning

Equal
;t or < > Not equal
~ or > = Greater than or equal
$ or < = Less than or equal
> Greater than
< Less than

Note: The system stores < > as ;t, <= as $, and >= as ~. Comparison uses all
15 digits. Thus, if you compare the relationship of two numbers, they must
compare in all 15 digits for the relationship to be true. The general format of a
relational expression is:

e1 relational-operator e2

where e1 and e2 are any expressions other than array or relational expressions,
and relational-operator is any of the operators just described. Both e1 and e2

must be of the same data type (character or arithmetic), and only two
expressions can be compared in a single relational expression.

(--'"
., _---.,,'

C)

c.)

o

o

When character data appears in a relational expression, it is evaluated
according to EBCDIC value (see Appendix A) character by character, from left
to right. Thus, the following relational expressions would all be satisfied:

, ABC'=' ABC'
, ABLE' <' BALL'
'123'>'BALL'
'$12'<'7'

When character operands of different lengths are compared, the shorter
operand is considered to be extended on the right with blanks to the length of
the longer operand. Thus, in the preceding third example, values compared are
123lJ and BALL, where lJ is a blank character.

Relational expressions can also contain the logical AND/OR expressions. In
BASIC, the ampersand (&) is used to specify that two sets of arithmetic or
character expressions be compared. For example:

e1 relational-operator e2 & e3 relational-operator e4

where e1 through e4 are expressions. In this example, the relational expression
is true only if the relation between e1 and e2 and the relation between e3 and
e4 is satisfied.

The vertical bar (I) is used to specify that either of two sets of expressions
can compare in order for the relational expression to be true. For example:

e1 relational~operator e2 I e3 relational-operator e4

where e1 through e4 are expressions. In this example, the relational expression
is true if either the relation between e1 and e2, or between e3 and e4 is
satisfied.

For more information on these logical operators (& and I), see the I F statement.

Array Expressions

In mathematics, a matrix is a group of arithmetic values arranged in a system
of rows and columns, and a vector is a series of arithmetic values arranged in
a single row. In the BASIC language, however, a matrix is a one- or
two-dimensional array. Array expressions are used to perform operations on
the entire collection of numeric or character array elements rather than on each
element individually (scalar operations). (see MAT assignment Statements in
Chapter 4.)

Data Constants, Variables, And Concepts 73

._------_ .. _._ ••..... _---_

74

DATA FILES AND ACCESS METHODS

The IBM 5110 is capable of processing two distinct types of data files: stream
I/O and record I/O. Each of these files is described below.

Stream I/O Data Files

Stream I/O data files are useful for collecting streams of variable-length data
items and storing them in sequential order as records in a tape or diskette file.
Stream I/O files must be opened (see OPEN statement) before they can be
accessed, using the PUT statement to store data items in the file and using the
GET statement to retrieve data items from the file. These files are organized
for sequential access (one record after another in the order the records were
entered). These files must also be closed after being used (see CLOSE
statement).

The data items within each logical record of a stream I/O file must be
separated by a comma. When numeric data items are read from the file, the
system retrieves them in succession and converts them into internal numeric
format. When character data items are read from the file, the system locates
the next non blank character, ignoring the comma separators. If the retrieved
character is a single quotation mark, the data item following must be a valid
character constant. The end of the character constant is indicated by its
closing single quotation mark. If the first character retrieved by the system is
not a single quotation mark, the end of the character data item is indicated by
the next comma. Thus, to have a comma in the character string, the entire
character string must be enclosed in single quotation marks.

Record I/O Files

Record I/O files are useful for collecting related numeric and character data
items and storing them as a unit in a fixed-length logical record. These files
must be opened before you can access them using the WRITE FI LE statement
to store data items in the file and the READ FILE statement to retrieve data
items from the file. Record I/O files can be accessed sequentially, directly, or
key indexed.

Sequential Access

A record I/O file can be accessed in the order in which the records were
placed in the file. This is called sequential access. Sequentially accessed files
allow you to:

• Read records using READFILE

• Read and update records using READFILE followed by REWRITEFILE

• Add records to the end of a data file using WRITEFILE

,/-~.-"

/~.-"-.

\ "-_ .. '

/' '

(

c)

o

c· .. ··
\

I

Direct Access

In a directly accessed file, each record is assigned a specific record number
based on the position of that record in relation to the beginning of the file.
This is called the relative record number (also called logical record number). In
directly accessed files records can be accessed in any order if the REC=n
parameter is specified on the READFILE or REWRITEFILE statement. This
access method is called direct access by relative record number. A directly
accessed file can also be accessed sequentially if the REC=n parameter is not
specified. Directly accessed files allow you to:

• Read records in any order using READFILE REC=n

• Update records in any order using REWRITEFILE ... REC=n

• Add records to the end of a file using WRITEFILE

• Read records using READFI LE

• Read and update records using READFILE followed by REWRITEFILE

Key Indexed Access

An indexed file allows you to select a particular field (up to 28 bytes of
character data) within each record to be used to identify that record. The field
you select is called the key for the record. Each record must have a unique
key, with the key field in the same position for every record. For example,
assume a record length of 60 characters for each record in a file. Also assume
that positions 1 through 10 in every record are selected as the key field.

IwlEIlislEI I II I II

IWIIINI Tl E I R I

10 ILlslo' NI I , I , , , I , I I , I , I I I , I I I I I I I I I I
\. I

1 Key Field 10 32

Each record can then be accessed according to its unique key in the key field.
When you access a record, you specify the record key (KEY=parameter), which
is called a search argument.

For key indexed files, the system also maintains an index file containing the
key and location (relative record number) on tape or diskette of each record in
the file.

Data Constants, Variables, And Concepts 75

........ _._ .. _. __ -............. _ .. _---- ----------_._.-.-..... _---.-

76

When you access a record by specifying its key, the system searches the index
file for the key that is greater than or equal to the search argument and goes
directly to the corresponding tape or diskette location to retrieve the record.
This is called direct access by key index. Because the index file contains only
the record key and location, it can be searched more quickly than all records in
the file; therefore, record retrieval time is substantially reduced. Retrieval time
can be reduced even further if you sort the keys in the index file and/or use
the KW parameter.

When an indexed file is created, you must open both the data file that contains
your records and the index file created by the system .

. If you omit the KEY= parameter, the system accesses the record with the next
higher key than the last record accessed. This is called sequential access by
key index.

You can also combine the direct access by key and sequential access by key
by specifying a KEY= parameter on the first access only. This gives you the
records in ascending sequence beginning with the key specified in the KEY=
parameter.

If you specify a key in a KEY= or KEY~ parameter that is longer than the key
in the key index file, the specified key is truncated to the length of the key in
the index file. If you specify a key that is shorter than the key in the index file,
only the characters you specified will be used in the search. If the key field is
made up of several parts, for example, then you could access the first record
on part of the key as shown:

Division Department
~ __ -A _____ , r~----A---__

0010 DIM K$3,A$3
0080 K$= '003'

Key Field

Employee Number

0090 READ FILE FL 1, KEY=K$,A$, ...
0100 IF A$=K$ THEN 1000

0200 READ FILE FL1,A$, ...
0210 GOTO 100

1000

The program would access the first record with division equal to 003 and then
access all records with division 003 in sequence by key, assuming the master
file is in ascending sequence by key.

\.

",---..
I

("--- ~.

o

o

Index File Format: The index file contains records whose only contents are the
key value and the location of the record in the master file containing that key.
Records in the index file may be 8, 16, or 32 characters long as shown in the
following table:

Key Length in Master File Index File Record Length

1 to 4 characters
5 to 12 characters
13 to 28 characters

8 characters
16 characters
32 characters

There are two types of records in the index file: key records and marker
records. The key records contain the key (from the master record), which
begins in position 1 of the index file record, and the master record number in
the last four positions of the index file record. The format of the master record
number is binary fixed point (see FORM, B Parameter). If the key length is less
than the key record length minus 4, the character positions between the key
and the record number are not used.

There are two marker records in each index file. The first marker record
contains the hex 00 character in all record positions except the last four. The
last four positions contain two 2-character fields. The first 2-characterfield
contains the length of the key field in binary fixed point format. The second
2-character field contains the starting position of the key field in the master
record in binary fixed point format. The second marker record contains the hex
FF character in all positions except the last four. The last four positions are
not used.

The first marker record must be the first record in the index file. The second
marker record is used to locate the end of the sorted portion of the index file.
The second marker record is the second record of the file until the file has
been sorted. In this position it indicates that there is no sorted portion in the
index file. The records between marker records are assumed to be in
ascending sequence by key.

When you specify a KEY=parameter, the index file is searched for a key that
satisfies the search condition (=, ~, or next sequential key). The keys between
marker records can be searched rapidly because they are in sequence and
because a work table can be used to shorten the portion of the file to be
searched (see KW= parameter under OPEN/OPEN FILE in Chapter 4).

After the sorted portion of the index file has been searched, keys beyond the
second marker record (if any) must be searched in order, which is much
slower.

When you use the DELETE FILE statement, the record number field of the
specified key record is set to zero and is not considered in the search.
However, if a DELETE FILE specifies that the record with KEY=XYZ is to be
deleted, and a later WRITE FILE statement creates a new record in the master
file with KEY=XYZ; the entry in the index file for key XYZ is reused and will
point to the new record. The old record, though still in the master file, is not
accessible using the index file.

Data Constants, Variables, And Concepts 77

--------- --------_._-----------------

78

Record I/O File Buffer Requirements

The work area buffer required for a record I/O file depends on the physical
record length of the media (tape or diskette) and the logical record length
(data) in the file. Buffer space is allocated in multiples of physical record
length. If logical record length is less than physical record length and can be
divided evenly into physical record length, one buffer is allocated. If logical
record length is less than physical record length and cannot be divided evenly
into physical record length, two buffers are allocated. If logical record length is
greater than physical record length in an even multiple (two, three, four times
physical length, for example), an equal number of buffers are allocated. If
logical record length is greater than physical record length, but is not an even
multiple, buffers are allocated on the basis of the first multiple of physical
record length that exceeds logical record length plus one physical record
length. Following are allocation examples; assume that the physical record
length is 512 characters for each example.

When the logical record length is 32 characters, the buffer allocation is 512
characters as shown:

Logical Record 512
• I I I •

Physical Record

Buffer Allocation

When the logical record length is 30 characters, the buffer allocation is 1,024
characters as shown:

Logical Record
512 1,024

Physical Record Physical Record

,.
Buffer Allocation

When the logical record length is 1,024 characters, the buffer allocation is
1,024 cha racters as shown:

Logical Record .
r Physical Record

512
Physical Record

..
Buffer Allocation

1,024
I

,f"
\

........ - .. ./

o

C)

c.)

o

o

When the logical record length is 515, the buffer allocation is 1,536 characters
as shown:

Logical Record

Physical Record
512 1,024

Physical Record Physical Record

Buffer allocation

Note that, due to limitations of buffer space, a buffer allocation greater than
768 when you attempt to load or save record I/O files will cause an error
message indicating insufficient storage space.

FILE FLS

1,536

File FLS is a 35-byte, system-oriented file that allows you to indicate (with the
WRITE FILE FLS statement) such information as console control, national
character set selection, and rounding of numeric data. Also, you can use the
READ FILE FLS statement to access such data as total user work area in the
system, total work area available for variables and buffers, and total number of
lines printed.

You can use the WRITE FILE statement referencing file FLS to indicate the
following information."

Column 1 of file FLS indicates:

Character
'N'
'F'

'S'

'A'

'Q'

, l'

'2'
'3'
'4'
'5'
'6'
'7'
'8'
'9'
'0'

'I'
,*'

'+'

Meaning
Turn on the display screen.
Turn off the display screen
(this increases processing speed).
Sound audible alarm (if
installed) and leave it on.
Sound the audible alarm for
approximately one quarter second.
Turn off the audible alarm.
Select EBCDIC character set.
Select Austria/Germany character set.
Select Belgium character set.
Select Brazil character set.
Select Denmark/ Norway character set.
Select Finland/Sweden character set.
Select France character se~.
Select Italy character set.
Select Japan character set.
Select Portugal character set.
Select International character set.
Select Spain character set.
Select Spanish Speaking character set.
Select United Kingdom character set.
Select French Canadian character set.

Also see National Character Sets.

Any other character entered in column 1 will be ignored.

Data Constants, Variables, And Concepts 79

.. _---_._ - ... _---_.

80

Column 2 of file FLS indicates keyboard operation as follows:

Character

'U'

'L'

Meaning

Select standard BASIC character
mode on the keyboard (this is
the normal default).
Select lowercase character
mode on the keyboard.

Any other character entered in column 2 of the buffer will be ignored.

Column 3 changes statement trace operations asfollows:

Character

'N'

'F'

Meaning

Turn on statement trace
(see RUN Command).
Turn off statement trace.

Any other character entered in column 3 will be ignored.

Column 4 changes statement trace to the printer (see RUN Command as
follows:

Character

'N'

'F'

Meaning

Turn on trace to the printer
(trace must already be on).
Turn off trace to the printer.

Columns 5 and 6 allow you to specify a 2-character numeric value (a leading
blank is valid) for rounding of numeric data (see RD = Command).

If columns 7 through 9 contain FLx (where x is 0-9) of a stream I/O input file,
subsequent input to character variables includes leading blanks and all commas
and quotation marks. Thus, entire logical records can be read into character
variables. If the file referenced (FLx) was open on device '001', both GET and
INPUT statements will be effected.

Columns 10 and 11 allow you to set spacing control for printed lines. The
printer spacing increment is 1/96 inch. Thus, 16 increments provide printing at
the normal 6 lines per inch, 12 increments provide 8-line-per-inch spacing
(96/12), 32 increments provide 3-line-per-inch spacing (96/32), and so on.

/

I
II. ~ .

o

C)

G

C)

o

You can enter a value of DO, or a value of 08 through 99. An entry of 00
suppresses spacing, and an entry of 08 through 99 indicates the number of
spacing increments for each line printed. If you enter 01 through 07, normal
6-line-per-inch printing will occur (the entry 01 through 07 is ignored). If you
enter 08, 09, or 10, the printer prints over the last line printed. For example, if
you enter 08, the printed output is as shown in the following example:

0010 PRINT FLP, 'VAVAVAVAVAVAVAVAV4V4VAV4V6VAVAVAVAVAVAV4VAV4V'
0020 WRITEFILE FLS,'
0030 PRINT FLP, 'V4V4VAVAVAVAVAVAV4V4V4VAVAVAVAVAVAVAVAV4V4VAV'
OO~O PRINT FLP, 'VAV4VAV4VAV4VAVAV4V4VAV4VAVAVAVAVAVAVAVAV4VAV'

VAV
~~~~~~~~~~~~~~~~ij~~~~~~A~A~A~A~A~A~~~~~A~A~A~ 

You can use columns 21 through 35 to hold any data using the WRITE FILE 
statement. 

Data Constants, Variables, And Concepts 81 

------_ ... _-_._.---------.. _-------_ .. _ .. 



82 

You can access the following information using the READ FILE statement 
referencing file FLS: 

Bytes 

1-5 

6-10 

11-15 

16-18 
19-21 

Meaning 

Indicates the total area 
available in the system 
Indicates the available user 
work area for variables and 
buffer usage 
Indicates the line number of 
the last line printed on file 
reference FLP 
Reserved 
Indicates the return code (0-255) 
last set by the RC= parameter in 
the latest STOP or END statement 

/-

\ '. 

" 

'-



National Character Sets 

0 As shown in the description of file FLS, you can select from several national 
character sets for processing on your 5110. These national character sets can 
also be selected from the keyboard whenever the keyboard is open for input. 
The following chart shows each national character set, the corresponding key 
that you must press to select the character set, and the resulting characters 
that change according to the character set selected. 

(/"'-" 

",-_J Press the HOLD key, To select 
then hold down the this national 
SH I FT key and press: character set: These characters change: 

Hex Position 

C~·I L~A ~5A ~;B ~,:;F 6A 79 7B 7C Ai CO DO EO 

Austria/Germany P- O $ 1\ 0 » § f:\ a u (:) 

2 Belgium [ ] ~~ 1\ U tt c'fi e e' g 

3 Brazil ~:: $ ~~ 1\ g a C) A tJ 0 'e \ 

4 Denmark/Norway tt :0: A 1\ ¢ fE ~ u ~ <'3 \ 

5 Finland/Sweden § :0: 1-. 1\ 0 'e A 0 u a it E 

6 France () § $ A U t a 'e e g 

l/ 7 Italy () 'e ~; 1\ ri \; f.. § \' ii e ~. 

8 Japan i ¥ tt @ -( )- $ 

9 Portugal 1, 1\ 0 A 6 g a ~~ 

0 International [ ~~ A n @ tJ -( )- \ 

/ Spain f~ n ,,'I @ -( )- \ 

* Spanish Speaking $ i1 N @ -( )- \ 

United Kingdom $ i: » @ -( )- \ 

C~) 
+ French Canadian <l ~~ A t; U @ 'e e 

EBCDIC <!: ~; " @ tJ -( )- \ 

) C 

Data Constants, Variables, And Concepts 83 

... _-_. __ ._-_ ..... __ .. -._----- . __ .. _-" ... " .. _._---_. -------------_._-----_ .... "'""""""'" ...... 



84 

PROCEDURE FILE 

The procedure file is a user-generated, record I/O tape or diskette file. You 
can create a procedure file just as you create a record I/O data file using the 
LOADO,DATA command. A procedure file can contain commands, BASIC 
statements, and data to be used by the program for input. Record length in 
the procedure file is up to 64 characters. 

Use of a procedure file is initiated by a PROC command, which causes the file 
to be opened implicitly. Records from the file are then loaded into a buffer 
area and sequentially executed as if they had been entered from the keyboard. 
When a record in the buffer has been executed, another record is loaded from 
the procedure file and used. 

The SKIP and CSKIP commands allow selective use of records in a procedure 
file. The unconditional SKIP instructs the system to pass over a specified 
number of records. The conditional CSKIP instructs the system to test a 
condition (return code) from the STOP or END statement in the last program 
executed, then to pass over a specified number of records depending on the 
condition. 

The ALERT command allows you to provide an indication to the operator that 
intervention is needed during execution of the procedure file. 

Data in a procedure file can also be used as input supplied in response to an 
INPUT statement if the RUN command for the program included the IN=P 
parameter. Like all records in a procedure file, data records have a maximum 
length of 64 characters. Also, each value assigned from a procedure file must 
be of the same type (character or numeric) as the variable to which it is 
assigned in the I N PUT statement. 

" " 



C) 

C) 

C) 

C
--·, 

'I 
j 

o 

o 

In the following example, the procedure file contains a series of records that 
will cause several BASIC programs to be loaded and executed. 

UTIL SYS 080 
Load 'BUILD' 
Run IN=P 

D40,0,'NEWFILE' 

CSKIP 5 

Load 'READY.SORT' 

RUN 
UTIL SORT 

Set the default device. 
Load the BUILD program. 
Start BUILD; data for input is 
taken from the procedure file. 
This is data for an input 
statement. 
If BUILD sets a nonzero return 
code, skip five records in the 
procedure file, otherwise get 
the next record. 
If the CSKIP did not bypass 
records, load program READY.SORT. 
Execute READY.SORT. 
Transfer control to the sort 
feature. 

FILE NEWSORT,I,SORT.CTL,1 This record is passed to the 
sort program (see IBM 5110 
Customer Support Functions 
Reference Manual). 

SKIP 2 
Load 'NOSORT' 

RUN 
Alert change diskette 
in drive 2 

PROC 'PROC2' 

Bypass the next two records. 
If the CSKIP bypassed records, 
load program NOSORT. 
Execute NOSORT. 

Pause to let the operator 
change the diskette. 
Start another procedure. 

Data Constants, Variables, And Concepts 85, 



.... , ,,~' 

\ ... --

c 
86 



o 

C) 

o 

( 
,-" 

\ /" 

o 

o 

Chapter 4. BASIC Statements 

BASIC statements allow you to enter data and specify how that data is to be 
manipulated and what the outcome is to be. BASIC statements are either 
executable or nonexecutable. Executable statements cause a program action, 
such as value assignment or printing. Nonexecutable statements describe 
information needed by the program and the user, but cause no visible action. 

Executable and nonexeutable statements can be intermixed when a BASIC 
program is entered from the keyboard. The maximum number of statements 
permitted in a single BASIC program is limited only by the user work area size 
of the system and by the statement types. 

Each statement in a BASIC program must begin with a statement number. The 
number determines the order of execution of the statements in the program. 
All statements are executed in numeric order, regardless of the order in which 
they were entered, unless the sequence of execution is altered by branches, 
loops, or subroutines. 

The allowable range of statement numbers for a BASIC program is from 1 
through 9999. You do not have to enter preceding zeros (0020, for example) 
because the system maintains statement numbers as four-position integers 
and inserts preceding zeros for statement numbers of less than four digits. 

Statement Lines 

A BASIC statement preceded by a statement number is called a statement line. 
Statement lines are entered from the keyboard (one per display line) with a 
maximum of 64 characters. Statements cannot be split between two display 
lines, nor can there be more than one statement on each display line. A typical 
statement line is as shown. 

10 LET A = 2+2 

Statement ~ ~ASI~ I 

Number Statement 

In this chapter, all the BASIC statements are presented alphabetically in the 
syntax used for BASIC commands, except the statements dealing with matrix 
operations. These statements are discussed at the end of the chapter under 
Matrix Operations. 

BASIC Statements 87 



88 

Desk Calculator Operations 

You can perform several desk calculator operations using BASIC statements 
without preceding statement numbers. These operations are executed 
immediately after you press the EXECUTE key. Desk calculator operations 
include: 

• Assignment of values to variables (both character and numeric) without the 
keyword LET 

• PRINT (to display) and PRINT FLP (to print) statements 

• MAT PRINT and MAT PRINT FLP statements 

• DIM statements to dimension arrays and variables 

• Character and numeric expressions 

• MAT assignment statements 

BASIC STATEMENT LISTING 

The statements used in the BASIC language for the system are listed below. A 
brief description of each statement is included. 

CHAIN-Ends a program, then loads and begins executing another program. 

CLOSE [FILE ]-Deactivates open files. 

DATA-Creates an internal data table of values you supply. 

DEF-Defines a function to be used in the program. 

DELETE FILE-Removes a specific record from a key-indexed file. 

DIM-Specifies the size (dimensions) of an array or character variable length. 

END-Ends a program. 

EXIT-Specifies error exits for corresponding I/O error conditions. 

FNEND-Ends a function defined in a DEF statement. 

FOR-Begins a loop. 

FORM-Specifies format for displayed/printed output and records in files. 

[ MAT] GET-Assigns values from a stream I/O file to variables or array 
elements. 

GOSUB-Branches the program to the beginning of a subroutine. 

GOTO-Branches the program to a specific statement. 



C
"· 

) 

(_ ...... \ 

U 

IF-Branches the program depending on specific conditions. 

:Image-Specifies formatting of data to be displayed or printed. 

[MAT] INPUT-Assigns values from the keyboard to variables or array 
elements during program execution. 

LET-Assigns values to variables. 

MAT Assignment-Assigns values to all elements of an array. 

NEXT-Ends a loop (see FOR and NEXT). 

ONERROR-Specifies error recovery routine for debugging. 

OPEN-Activates stream files for input or output. 

OPEN FILE-Activates record files for input/output and access method. 

PAUSE-Interrupts program execution. 

[MAT] PRINT (FLP}-Displays or prints the values of specified variables, 
expressions, array elements, or constants. 

[MAT] PRINT USING (FLP}-Displays or prints the values of specified 
variables, array elements, expressions, or constants in a format defined in an 
image or FORM statement. 

[ MAT] PUT-Writes the values of specified variables, expressions, or array 
elements into a stream I/O file. 

[MAT] READ-Assigns values from the internal table (see DATA) to variables 
or array elements. 

[MAT] READ FILE [USING ]-Assigns values from record I/O files to 
variables. 

REM-Inserts comments or remarks into a program. 

[MAT] REREAD FILE [USING]-Allows reaccess to the last record read from 
a file. 

RESET-Repositions a file to its beginning, to its end, or to a specific record. 

RESTORE-Causes values in the internal data table (see DATA) to be assigned 
starting with the first table value. 

RETURN-Ends a current subroutine or user function. 

[MAT] REWRITE FILE [USING]-Allows change/update to record I/O files. 

STOP-Ends a program. 

USE-Saves variables to be used by successive programs. 

[MAT] WRITE FILE [USING ]-Adds records at the end of a record I/O file. 

BASIC Statements 89 

-------_ ........ _ ... -.----••..... __ . 



90 

{
'dev-address'} ex CHAIN p 
char-var ' 

CHAIN 

The CHAI N statement performs the following sequence: 

1. Ends the program currently being executed 

2. Loads a new program 

3. Begins executing the new program 

The syntax of the CHAI N statement is as shown above, where: 

'dev-address' is the address of the device containing the next program to be 
loaded· and executed. See Device Address Parameter. 

char-var is a character variable to which you have assigned a device 
address. 

expression can be an arithmetic or character expression. An arithmetic 
expression specifies the number of the file to be loaded: A character 
expression specifies the name of the file to be loaded. Upon execution, all 
open files in the current program are closed. The program in the file 
(determined by the expression or constant) on the device specified is then 
loaded and executed starting with the lowest statement number. 

For example: 

0110 CHAIN 'EBO',14 

In this statement, the program in file number 14 on device' EBO' is loaded and 
executed when this statement is executed. 

Notes About CHAIN 

• When used in conjunction with the USE statement, the CHAI N statement 
allows variable values to be maintained from one program to the next (see 
USE statement). 

• The CHAIN statement can also be used to chain to a procedure file (see 
Procedure File, Chapter 3). When the expression value is character and 
begins with .PROC, the CHAIN statement closes all files and places the 
expression value (except for the leading .), a comma, and the device code 
enclosed in quotes on line 1 of the display screen. The system then 
processes the result as a PROC command. 



o 

, ) 
\~ 

Following is an example of a CHAIN statement: 

60 A$='DBO' 
70 B$='.PROC4' 
BO CHAIN A$, B$ 

In this example, the system will chain to the fourth file (the procedure file) on 
diskette drive 1. Note that the period preceding PROC4 in statement 70 is 
necessary to distinguish PROC4 from another valid file name when the CHAIN 

statement is executed. 

BASIC Statements 91 

------ ------_. __ ._ .... 



CLOSE [F I LE] file-ref [, file-ref] ... 
[{

[,EXIT line-num] )] 

[,EOF line-num] [,IOERR line-num] 

92 

CLOSE 

The CLOSE statement specifies files to be deactivated. An implicit CLOSE 
statement is automatically executed for each active file at the end of program 
execution. The syntax of the CLOSE statement is as shown above, where: 

FILE is specified when files to be closed are record I/O files only. Record 
I/O files are those with fixed-length records. 

file-ref is from FLO to FL9 and represents the same file specified in the 
OPEN statement. Only one file reference is required. 

EOF, IOERR, and EXIT are error recovery exits, which direct the program to 
branch to the specified line number upon the occurrence of the indicated 
error (see EXIT statement). 

Notes About CLOSE 

• If a stream I/O file is used for both input and output operations during 
execution of a single program, the file must be closed and reopened 
between input and output references. 

• If you do not close a file (CLOSE or end 'of program), the file may become 
unusable. 

• If a file specified in a CLOSE statement is not active when the CLOSE 
statement is executed, the statement is ignored. 

• The file references must be the same as those specified for the files in the 
OPEN statement. 

Examples 

.A sample CLOSE statement is as shown: 

. 0020 CLOSE FL2, FL9 

A sample CLOSE statement with error exits is as shown: 

0030 CLOSE FL5, FL8, EOF 0090, 10ERR 0200 



o 

C) 

C) 

o 

o 

DATA {arith-con } [ {arith-COn}] ... 
char-con 'char-con 

DATA 

The DATA statement is a nonexecutable statement that causes an internal data 
table to be created. The data table constants are supplied to variables and 
array elements specified in corresponding READ or MAT READ statements. 

The syntax of the DATA statement is as shown above, where: 

con is an arithmetic or character constant. Only one constant is required. 

At the beginning of program execution (before any executable statements are 
executed), a table containing all the constants from all the DATA statements (in 
their order of appearance by statement number) is built. At the same time, a 
pointer is set to the first constant in the table. The pointer is advanced through 
the table, constant by constant, as the data is supplied to READ or MAT READ 
statement variables. (The pointer can be changed to point to the first constant 
again by the RESTORE statement.) 

The length of character constants to be assigned to character variables is 
limited only by line length (64 characters). 

Notes About OAT A 

• Each constant in a DATA statement must be of the same type as that 
specified for the variable to which the constant is to be assigned in the 
corresponding READ statement. Thus, if the third constant in a DATA 
statement is a character constant, then the READ statement variable to 
which it is assigned must also be a character variable. 

• DATA statements can be placed anywhere in a program, either before or 
after the READ statement to which they supply data. 

• An error will occur if DATA statements do not contain enough constants for 
the READ statements issued. 

• DATA statements cannot be used in a program assigned to one of the 
function keys. 

• Character data need not be enclosed in single quotation marks unless 
leading blanks and/or embedded commas are significant. 

• DATA statements are not checked for correct syntax. 

BASIC Statements 93 

. __ ._ ... __ ... _ .. _ ........................ _ .. _ ............... _------------- ----_._ ...... __ ... _-------------------------



94 

Example 

A sample DATA statement is as shown: 

110 DATA'BILL',21.60,'CHARGE',15.40 

In this example, the character constants (BILL and CHARGE) and the arithmetic 
constants (21.60 and 15.40) are inserted into the internal data table. 

(' 
\....,' 



C) 

c) 

c) 

o 

o 

o 

~ {arith-Var} [{ arith-Var}] ... )] [=Char-exp] 

DEF FNfunction name [$] 
~ { :~~~_:::} [. { :~:~_::: }] _ .. ) ] [ =arith-exp ] 

RETURN {(arith-eXp)} 
(char-exp) 

FNEND[ comment] 

DEF,RETURN, FNEND 

L.: char-var 'char-var 

The DEF statement is not executable, but informational. This statement allows 
the user to define an arithmetic or character valued function for reference 
elsewhere in the program. The FN EN 0 statement indicates the end of the 
function, and the RETURN statement specifies the value of the function. The 
syntax of the DEF statement can be either a single line or multiline function. 
(The syntax of the FNEND and RETURN statements are shown after the DEF 
statement syntax.) 

Single Line Function 

DEF FNfunction name r$] ~ {arith-var} 
l: L char-var [ {

arith-var} ] ... ;l [= {arith-eXp}] 
'char-var J char-exp 

where: 

function-name is any character of the extended BASIC alphabet. This 
character with FN is the name of the defined function. For character valued 
functions, this character must be followed by a dollar sign ($). 

(arith-var) is a simple arithmetic variable to which a value will be assigned 
when the function is called (these must be enclosed in parentheses). 

(char-var) is a character variable to which a value will be assigned when the 
function is called. Assigned values cannot exceed 18 characters. Longer 
'values will be truncated, and shorter values will be padded with blanks. 

arith-exp, char-exp is an arithmetic or character scalar expression that 
specifies the value to be returned for the function. 

A character expression must be specified if the function name is a character 
variable. Likewise, the expression must be arithmetic for an arithmetic 
function name (FNA). 

BASIC Statements 95 



96 

Sample single-line DEF statements are shown below: 

120 DEF FNA(R)=2*R+100 

120 DEF FNA$ (R)=CHR(R+5) 

Multiline Function 

DEF FNfunction name [$J ~ {arith-Var} [{arith-Var}] ... ~ L char-var 'char-var J 
where: 

function-name is any character of the extended BASIC alphabet. This 
character with FN is the name of the function. For character valued 
functions, this character must be followed by a dollar sign ($). 

(arith-var) is a simple arithmetic variable that receives a value when the 
function is referenced. These optional variables must be enclosed in 
parentheses. 

(char-var) is a character variable to which a value will be assigned wrren the 
function is called. Assigned values cannot exceed 18 characters. Longer 
values will be truncated, and shorter values will be padded with blanks. 

RETURN {(arith-eXp)} 
(char-exp) 

where: 

arith-exp, char-exp is an arithmetic or character scalar expression that 
specifies the value of the user-defined function to the referencing function. 
This expression must be of the same type (arithmetic or character) as the 
function'defined. 

FNEND[ comment] 

The FN EN 0 statement is nonexecutable and simply indicates the end of a 
multiline function. The value of the function is specified in an expression in a 
RETURN statement. The comment is optional. 

When a reference to a user-defined function is encountered during program 
execution, the value of each parameter in the expression is used to initialize the 
corresponding variable. The optional variables must match the number and 
type specified in the function reference. If 'the expression is present, the 
function is defined on the one line and its value is the value of that expression. 
This is a single line function. If the expression is not specified, the DEF 
statement is the start of a multiline function. In this case, the FNEND 
statement indicates the end of the function and the value of the function is 
specified in an expression in a RETURN statement. 

\.'''' 

/...----" 



C) 

C) 

(I 
........ -_/ 

o 

o 

Notes About DEF 

• A function can be defined anywhere in a BASIC program, either before or 
after it is referenced. 

• A function of a given name can be defined only once in a given program. 

• A function cannot contain references to itself or to other functions that refer 
to it in their definitions. 

• The expression in the RETURN statement is required for multiline functions 
(see GOSUB and RETURN). 

• A function reference to a user-defined function can appear anywhere in a 
BASIC expression that a constant, variable, sUbscripted array element 
reference, or system function reference can appear (except desk calculator 
operations). 

• The variables have a special meaning in the DEF statement. Consequently, 
it is possible to have a variable with the same name as a simple variable 
used elsewhere in the program. Each is recognized as being unique, and no 
conflict of names or values results from this duplicate usage. 

• The maximum number of user-defined functions in a program is 29, and the 
maximum number of nested function references varies according to the 
complexity of the referencing statement. 

User-defined functions that are referred to during an input or output 
operation cannot themselves perform any input or output . 

• After control is passed to a DEF statement without reference to the 
function, control goes to the first executable statement following the 
function definition-following the DEF statement for single-line functions, 
and following the FNEND statement for multiline functions. 

• The last executable statement preceding the FNEND statement should be a 
RETURN, STOP, CHAIN, or unconditional GOTO to prevent control from 
passing to the FN EN D statement. 

• If a function definition alters the value of a variable that is referenced in the 
same statement that calls the function, unpredictable results may occur. 

• A function may be defined in and referenced from a function key group. 
When a function is referenced from a key group, the system searches the 
current chain of statements, then the mainline program and definitions for 
keys 0-9 in order to find the function referenced. 

----_ ........ --.. 

BASIC Statements 97 



98 

Example 

The following examples illustrate the execution of DEF statements: 

10 DEF FNA (X) = Xt3/2 
20 Y = 10 
30 Z = FNA(Y) 

After execution of statement 30, the variable Z will have the integer value 500. 

In the next example, the variable R will have the integer value 72 after 
execution of statement 80. When statement 80 is executed, the current value 
of Y, which is 2, is substituted for each occurrence of the dummy variable X in 
the arithmetic expression of statement 100. Since the function FNC, defined in 
statement 100, uses the function FN B in its definition, the value 2 is 
substituted for each occurrence of X in the arithmetic expression of statement 
90. The resulting value, 47, is then substituted for the function reference 
FNB(X) in statement 100. The current value of Y, which is 2, is then added to 
47, and the resulting value of 49 is substituted for the function reference 
FNC(Y) in statement 80. This value is added to 23, and the resulting value of 
72 is assigned to the variable R. 

70 LET Y = 2 
80 LET R = FNC(Y) + 23 
90 DEF FNB(X) = 5*X**2+27 
100 DEF FNC(X) = FNB(X) + X 

The following example shows a multiline function definition. When these 
statements are executed, both C and D will have a value of 7. 

10 A = 5 
20 B = 2 

30 DEF FNA (X,Y) 
40 IF X>O GOTO 60 
50 RETURN X-V 
60 RETURN X+Y 
70 FNEND 
80,C = FNA (A,B) 
90 D = FNA (A,B) 

In the following example, the function returns the character string 'X 
SQUARED=4' when X=Z: 

010 DEF FNA$(X) = 'X SQUARED='11 CHR (Xt2) 

' ..... ,._-

'I., ........ ,. 



C] 

C) 

o 

DE LETE FILE file-ref ,KEY=char-var 
[{ 

[, EXIT line-num] , }] 

[,IOERR line-num] [,NOKEY line-num] 

DELETE FILE 

You can use the DELETE FI LE statement to logically delete a record from the 
index table according to the key field you specify. See Key Indexed Access 
under Data Files and Access Methods. After the record is deleted, the file is 
positioned to a location immediately following the deleted record. The syntax 
of the DELETE FILE statement is as shown above, where: 

file ref is FLO to FL9 to identify the file containing the record to be deleted. 

KEY=char-var specifies the key field in the record to be deleted. The file is 
searched for a matching key field, and the corresponding record in the index 
file is then deleted (see Key Indexed Access in Chapter 3). 

EXIT, NO KEY, and IOERR are error conditions and associated line numbers to 
which program control will transfer if the error occurs. EXIT is the line 
number of an EXIT statement, NOKEY indicates that a record with the 
specified key. field cannot be found, and IOERR indicates that a hardware 
error prevents completion of this DELETE FILE statement. 

Notes About DELETE FILE 

• The NOKEY and IOERR error conditions can be entered in any order. 

• The file referenced in a· DELETE FI LE statement must have been opened 
with the ALL parameter in the OPEN FILE statement (see OPEN FILE 
statement). Otherwise, the DELETE FILE statement will cause an error. 

Example 

A sample DELETE FILE statement is shown below: 

80 A$=' ROWE' 
90 DELETE FILE FL8,KEY=A$,NOKEY 999 

In this example, the record with a key field equal to ROWE in file FL8 will be 
deleted. If the specified record cannot be found, program control will transfer 
to statement 999. 

BASIC Statements 99 



[{

arith-arr-name (rows [,col] ) }] 
DIM char-arr-name [len] (rows [,col] ) ... 

, char-scalar name [len] 

100 

DIM 

The 01 M statement allows you to explicitly specify the size of arrays and 
character variables. The syntax of the DIM statement is as shown above, 
where: 

arr-name is an arithmetic or character array to be dimensioned. 

char-scalar is a character variable to which a length will be assigned. 

rows,col are nonzero, unsigned integer constants specifying the dimensions 
of the arrays. One-dimensional arrays require only the rows entry. 
Two-dimensional arrays require both rows and columns entries separated by 
a comma. 

len is the length of a character scalar, or the length of each element of a 
character array. This value can be from 1 to 255. 

A one-dimensional array whose name is specified in a DIM statement is 
defined as having the number of elements represented by the rows entry. A 
two-dimensional array whose name is specified in a DIM statement is defined 
as having the number of rows and the number of columns entered in the 
statement. 

The initial value of each arithmetic array element is zero; each character array 
element is initialized to blanks. If len is not specified, the default length of 
each character array element and character variable is 18 characters. 

Notes About DIM 

• An array name cannot appear in a DIM statement if it has been previously 
defined, either implicitly or explicitly, in a USE statement or a prior 01 M 
statement. 

• An arithmetic or character array of one or two dimensions can be defined in 
a DIM statement. 

• The maximum permissible size of each dimension in an array is 9999. 

• Len can be specified as less than or equal to 2.55 characters. 

/' - , 

".. .. 



Example 

() 

c) 

(:.-) 

""\ 0
--

o 

--------_ .. __ ... _ ............ _ •. _-----

A sample DIM statement is as shown: 

20 DIM Z$18(5), A(4,2), P$50 

The result of the preceding statement is: 

Z$ = five strings (array elements) of 18 blank characters each. 

Array A has four rows of two columns each: 

o 

o 

o 
o 

o 0 

o 0 

Character variable P$ has a length of 50 blank characters. 

\ 

BASIC Statements 101 



END [{comment }] 
RC=arith-exp 

102 

END 

The END statement allows you to specify the logical end of a BASIC program 
and to terminate program execution. The syntax of the EN D statement is as 
shown above, where: 

comment is optional. 

RC = arith-exp is the return code used by the CSKIP command (see 
Procedure Files). This code can be accessed from file FLS (see File FLS in 
Chapter 3). 

The EN D statement signifies that the program should be ended. It can be 
entered anywhere in a BASIC program. When an END statement is 
encountered during execution of a program, it causes all open files to be 
closed and it terminates processing. The actions of the END statement are 
identical to those of the STOP statement. 

Notes About END 

• The END statement is optional. If omitted, END is assumed by the system 
to follow the highest-numbered statement in the program. 

• When you list the program (see LIST Command), the'system displays or 
prints a STOP statement to replace any END statement. 

• If the value of the RC= parameter is less than zero or greater than 255, a 
value of zero is assumed. 

• If RC= is not specified, the return code is set to zero. 

Example 

A sample END statement is as shown: 

0910 END PG4 

./< 

\ ..... -' 



0 

(~~) 

(J 

C) 

o 

EXIT 

EOF EOF 
IOERR IOERR 

EXIT 
DUPKEY 

line-num 
DUPKEY 

NOKEY , NOKEY 

CONY CONY 
NOREC NOREC 

The EXIT statement allows you to group in a single statement those error 
conditions (and their subsequent recovery line numbers) that can occur during 
the execution of input/output operations to files. The EXIT statement is 
nonexecutable and merely serves as a guide to the program, indicating the line 
number to which program control should transfer if an associated error should 
occur. If the EXIT parameter is entered for input/ output statements, program 
control is transferred to the line number of the EXIT statement when an error 
occurs. The program then selects the appropriate error condition and transfers 
control to the corresponding line number as entered for the EXIT statement. 
The syntax of the EXIT statement is as shown above, where: 

EOF, IOERR, DUPKEY, NOKEY, CONV, and NOREC are the error conditions 
that will transfer program control to their associated line number if the EXIT 
parameter in the input/output statement specifies a branch to this EXIT state
ment. For the various input/output statements, these error conditions have the 
following meanings: 

EOF 

IOERR 

DUPKEY 

NOKEY 

For a GET statement, this error indicates that insufficient data 
remains in the file. 

For a READ FILE statement, this error indicates that there are 
no more records in the file. 

For a PUT, WRITE FILE, PRINT, or CLOSE[FILE] statement, 
this error indicates that there is insufficient file space to accom
modate the data specified. 

For all input/output statements, this error indicates that a hard
ware error has prevented completion of the statement. 

For WRITE FILE statements specifying a key-accessed file, 
this error indicates that a record with the same key already 
exists in the referenced file. 

For READ FILE, REWRITE FILE, DELETE FILE, and RESET 
FI LE statements, this error indicates that no record matching 
the specified key can be found in the referenced file. 

line-num 

BASIC Statements 103 

•... -... __ ._ .. _ .. _-'''------------



104 

CONV 

NOREC 

Notes About EXIT 

For input/output statements referencing stream I/O files, this 
error indicates that a field cannot be converted to the type of 
variable specified. 

For input/output statements referencing record I/O files, this 
error indicates one of the following: 

A value in a list of data cannot be converted to the format 
defined in the specified FO RM statement. 
There are insufficient value inthe record for the data items 
listed in the statement. 
There is insufficient space in the record to output the data 
items listed in the statement. 
A FO RM specification specifies a position outside the defined 
record. 
A FORM statement referenced by a PR INT statement contains 
a format other than PIC or C. 

This error indicates that the specified relative record number 
(in statements referencing record I/O files) is zero, negative, 
or greater than the relative record number of the last record in 
the file. 

• Each error condition can be entered only once in an EXIT statement. 

• Error conditions can be entered in any order. 

Example 

A sample EXIT statement is shown below: 

80 EXIT EOF 200,IOERR 220,NOKEY 240,NOREC 260 

I n this example, an input/output statement referencing line number 80 for the 
EXIT parameter will cause program control to transfer to line number 200 if an 
EOF condition caused the error, to line number 220 if an 10ERR caused the 
error, to line number 240 if the specified key could not be found, or to line 
number 260 if the error was caused by an improper relative record number. 

" .. 

I.~' ,. 

;/- " 

i\ .. 



FNEND [comment] 

o 
FNEND 

For a complete description of the FNEND statement, see DEF, RETURN, FNEND. 

G 

o 
BASIC Statements 105 

---_ ........ _ ......... - ...... __ ... _---- -------_ ..... _ ..... ".'-'-" .. _' ......... ---



FOR control-var=arith-exp TO arith-exp [STEP arith-expJ 

NEXT control-var I 

106 

FOR AND NEXT 

Together, a FOR statement and its paired NEXT statement delimit a FOR 
loop-a set of BASIC statements that can be executed a number of times. The 
FOR statement marks the beginning of the loop and specifies the conditions of 
its execution and termination. The NEXT statement marks the end of the loop. 

The syntax of the FOR and NEXT statements is as shown above, where: 

control-var is a simple arithmetic variable. 

arith-exp are expressions that specify an initial value for the control variable, 
the final value of the control value (at which execution of the loop will end), 
and the amount that the control variable will increase after each execution 
of the loop. If STEP and the last arithmetic expression are omitted, an 
increment of 1 is assumed. 

Upon execution of these statements, all expressions are evaluated. The initial 
value of the control variable is tested against the final value of the control 
variable. If the initial value is greater than (less than for negative increments) 
the final value, the loop is not executed. Instead, the value of the control 
variable is left unchanged, and control goes to the statement following the 
N EXT statement. 

If the loop is executed, the control variable is set equal to the initial value, and 
the statements in the loop are executed. When the NEXT statement is 
executed, the specified increment is added to the control variable, which is 
then compared with the specified final value. If the control variable is still less 
than (greater than, for negative increments) or equal to the final value, the loop 
is executed again and the cycle continues until an increment is made that 
renders the control variable greater than (less than for negative increments) the 
specified final value. At that time, the control variable is set back to its last 
value, and control falls through to the first executable statement following the 
N EXT statement. 

Notes About FOR and NEXT 

• If the optional STEP arithmetic expression is omitted in the FOR statement, 
the increment value is automatically set to +1. 

• The value of the control variable can be modified by statements within the 
FOR loop, but its initial value, final value, and increment are established 
during the initial execution of ~he FOR statement and are not affected by 
any statement within the FOR loop. 

.... , .. 



o 

C) 

( , ,----

\ 
I C

-~·· 

I 
./ 

• If the initial value to be assigned to the control variable is greater than (less 
than for negative increments) the final value when the FOR statement is 
evaluated, the loop is not executed, no value is assigned to the control 
variable, and execution proceeds with the first executable statement 
following the associated N EXT statement. 

• If the value of the STEP arithmetic expression is zero, the FOR loop is 
executed an infinite number of times, or until the value of the control 
variable is purposely set beyond the specified final value. 

• Transfer of control into or out of a FOR loop is permitted; however, a NEXT 
statement cannot be executed unless its corresponding FOR statement has 

been executed previously. 

• FOR loops can be nested within one another as long as the internal FOR 
loop falls entirely within the external FOR loop (see the following example). 
Nested FOR loops should not use the same control variable. 

• The maximum number of nested FOR loops is 15. 

Example 

The following example shows a simple FOR loop that increases the control 
variable by 2 until the value of 25 is exceeded. 

20 FOR I = 1 TO 25 STEP 2 

90 NEXT I 

The next example shows the correct technique for nesting FOR loops. The 
inner loop is executed 100 times for each execution of the outer loop. 

10 FOR J = A TO B STEP C 

150 Fa R K = 1 TO 100 

250 NEXT K 

300 NEXT J 

BASIC Statements 107 

._---- ." ........ ''''----" ------- .-.----..... _-



108 

FORM 

The FORM statement allows you to specify a format for both printed/displayed 
output and records in record I/O files. For the purpose of explanation, the 
FORM statement will be described as two separate statements: print 
formatting with the FORM statement, and record formatting with the FORM 
statement. 

Print Formatting with the FORM Statement 

When used to format printed output, the FORM statement has the following 
syntax: 

pas r{i n~eger }] L anth-var 

x r{integer }] L arith-var 

FORM 
SKIP [{in~eger}l 

anth-var J 

'char-con' 

PIC {~pecifier} 
( Insert-char 

... [i IIIJ )} 
rfi nteger } ] { L\ arith-var * , 

C QntegerJ 

where: 

POS indicates the position in the line for the next value to be printed or 
displayed. This entry can be from 1 to the extent of line length. You can 
specify an integer constant or arithmetic variable for line position. If the 
truncated value of your entry is less than 1, this control specification is not 
used. If your entry exceeds total line length, the current line is displayed or 
printed, and line position is reset to the first position of the next line. 
Default value for this parameter is 1. 

X indicates the number of blanks to be displayed or printed. This parameter 
allows you to insert blank fields into displayed or printed data. Default value 
for this parameter is 1. 

SKIP indicates the number of lines to be skipped when you are displaying or 
printing data. After the current line is printed or displayed, the next line 
begins at the SKI P value you entered, minus 1 (for the current line). Thus, if 
you enter 10 for SKI P, the system displays/ prints the current line, then 
skips 9 lines, positioning the next line at line number 11. After the SKI P 
operation, the next output begins at the first position in the line. Default 
value for this parameter is 1. 

, 
'-.. 

(-.. 

\, 



o 

C
"\ 

) 

o 

'char-con' are character constants (enclosed in single quotation marks) that 
will be written exactly as entered when the FORM statement is used. If the 
character constant is used in a FORM statement for input, it will cause the 
corresponding positions in the record to be skipped over; for example, Xn, 
where n is the. length of the character constant. 

integer jarith-var* indicates the replication factor for the data format that 
follows. This value indicates the number of times that the data format 
should be used. Thus you can use the same format repeatedly. This 
parameter must be greater than O. 

C indicates the length of a displayed or printed field into which a 
corresponding character expression (in the PRINT statement) is to be output. 
The character expression is truncated or filled with blanks on the right to the 
length you enter for C. Default value for this parameter is the length of the 
character expression in the PRINT statement. 

PIC indicates the length and conversion for a displayed or printed field into 
which a corresponding numeric expression (in the PRINT statement) is to be 
output. The PIC parameter can be up to 32 characters containing three 
specifications: the digit specifier, the insertion character, and the exponent 

specifier. 

BASIC Statements 109 



110 

Digit Specifier 

The digit specifiers are: 

Specifier 

# 

z 

* 

$ 

+ 

CR 

Meaning 

A digit must always appear in this 
position. 

Replace a leading zero with a blank. 

Replace a leading zero with an asterisk. 

Floating dollar sign. A dollar sign 
is to be printed immediately before the 
first significant digit. 

Floating sign. A plus sign for a positive 
number, or a minus sign for a negative 
number, is to be printed immediately 
before the first significant digit. 

Floating minus sign. A plus sign for 
a positive number, or a minus sign for 
a negative number, is to be printed 
immediately before the first significant 
digit. 
These positions can be used at the end 
of the PIC string to indicate a credit 
amount. If the value is negative, the 
characters CR will be printed after it. 
If the value is positive, the characters 
CR are replaced with two blanks. 

DB These positions can be used at the end of 
the PIC string to indicate a debit amount. 
If the value is negative, the characters 
DB will be printed after it. If the value 
is positive, the characters DB are replaced 
with two blanks. 

........... 



() 

c 

o 

o 

c 

The following are examples of digit specifiers. Assume a data item value of 
112233 is to be printed. 

PIC Specification 

PIC(#########) 
PI C(ZZZZZZZZZ) 
PIC(ZZZZZZ###) 
PIC(******###) 
PIC($$$$$$###) 
PIC(++++++###) 
PIC( - - -######) 

Printed Output 

000112233 
112233 
112233 

***112233 
$112233 
+112233 

112233 

If a floating dollar sign, plus sign, or minus sign is specified only once in a PIC 
specification, it does not float through the field but instead is printed in the 
indicated position. For example: 

PIC Specification Printed Output 

PIC($ZZZZZ###) 
PIC(+ZZZZ###) 

Insertion characters 

$ 112233 
+ 112233 

Insertion characters insert additional characters into a field, generally to 
improve readability. The following insertion characters can be specified: 

Character 

B 

/ 

+ 

Meaning 

Print a blank unconditionally. 

Print a comma conditionally (only 
if a digit precedes the comma). 

Print a slash conditionally (only 
if a digit precedes the slash). 

Print a decimal point conditionally 
(if the value to be printed is nonzero 
and zero suppression is not in effect) 

Trailing sign. When the + appears 
in the rightmost position of a PIC 
specification, it is treated as a 
trailing sign. A plus sign is printed 
for a positive number, a minus sign for 
a negative. 

Trailing minus sign. When the -
appears in the rightmost position, 
it is treated as a trailing sign. 
A minus sign is printed for a negative 
number, a blank for a positive number. 

BASIC Statements 111· 



112 

The following are examples of insertion characters. Assume a data item value 
of 112233 is to be printed: 

PIC Specification 

PI C(###B##B####) 
PIC(ZZZBZZBZ###) 
PIC(ZZZ,ZZZ,###) 
PIC(ZZZZZ/Z#/##) 
PIC(******#.##) 
PIC($$$$$$###+) 
PIC($$$,$$$,$$$.##) 

Exponent Specifier 

Printed Output 

000 11 2233 
11 2233 
112,233 

11/22/33 
*112233.00 

$112233+ 
$112,233.00 

The exponent specifier appears in the four low-order positions of a data 
format as I I I I. The corresponding display-print positions are then: the 
letter E, the exponent sign (+ or -), and the two-digit exponent value. Use of 
an exponent specifier eliminates zero suppression. Thus, a previously defined 
decimal point will always appear in a field defined by a format specification 
containing the exponent specifier. 

Notes About Printing/Displaying with FORM 

• The line number of a FORM statement can be specified in a PRINT USING 
statement. 

• A FORM statement can appear anywhere in a program. 

• Array items are formatted in row order. 

• If values in the PRINT statement exceed format specifications in the FORM 
statement, the format specifications are reused from the beginning of the 
FORM statement until PRINT values are exhausted. 

• If a value in a PRINT statement exceeds the line width of the display or 
printer, the excess is displayed or printed beginning in the first position of 
the next line. 

• Control specifications (POS,X, and SKIP) can be intermixed with data 
formats (C and PIC). 

• Any data format can be preceded by a replication factor for repeated use of 
the format. 

• If SKIP is not specified after the last data item, the line is not printed. 

• Any control specificaitons (X, POS, or SKI P) after the last used conversion 
specification will be processed. 



C) 

o 

Example 

A sample FORM statement is shown below: 

30 FORM C18,PIC($$####.##) 

When used with this PRINT statement (where B=999.09): 

190 PRINT USING 30 FLP, 'BALANCE DUE=',B 

the resulting output is: 

BALANCE DU E= (7 blanks)$0999.09 

--_ ........ _ ...... '--- .. ---

BASIC Statements 113 



114 

Record Formatting with the FORM Statement 

When used to format record data in record I/O files, the FORM statement has 
the following syntax: 

FORM 

where: 

POS 

x 

rJ{integer }l 
LJ arith-var J 

rfinteger }l 
Llarith-var J 

'char-con' 

[{
integer} *J 
arith-var 

C DntegerJ 

NC integer [integer] 

PD integer [integer] 

S 
, L 

PIC ({~pecifier } ... 0 I I 0 ) 
Insert-char 

POS indicates the position in the record that you want to access (with 
READ FILE or REREAD FILE statements) or write to (with WRITE FILE or 
REWRITE FILE statements). This parameter allows you to select a specific 
area of the record for input or output. The value of this parameter can be 
from 1 to the length of the record. If the value is greater than the record 
length, it will cause an error. If the value is an arithmetic variable, the 
truncated integer portion of the value is used to determine the record 
position. 

X indicates the number of positions to space forward in the record. This 
parameter allows you to space over unwanted portions of the record. If X 
causes a space beyond the end of the r.ecord, it will cause an error. If the 
value is an arithmetic variable, the truncated integer portion of the value is 
used to determine the number of forward spaces. The default value is 1. 

char-con are character constants (enclosed in single quotation marks) that 
will be written exactly as entered when the FORM statement is used. If the 
character constant is used in a FORM statement for input, it will cause the 
corresponding positons in the record to be skipped. For example, Xn, where 
n is the length of the character constant. 

1,..-···· 

""-, 

/' " ( 

("
I 
\ ,-..... . 



o 

C) 

C) 

C) 

integer jarith-var* indicates the replication factor for the format specification 
that follows. This value indicates the number of times that the format 
specification should be reused, which allows you to use the same 
specification repeatedly. This parameter must be greater than 0 and defaults 
to 1. If the replication factor is an arithmetic variable, the truncated integer 
portion is used to determine the number of times the specificaiton should be 
reused. 

C indicates the field length for character data. For input (with a READ FILE 
or REREAD FILE statement), the specified number of characters are 
assigned from the record to the corresponding character variables listed in 
the READ FILE or REREAD FILE statement. If the character variable length 
is less than the number of characters to be assigned, the number of 
characters specified is assigned and the excess characters are spaced over. 
If the variable length is more than the number of record characters to be 
assigned, the variable is padded on the right with blanks. 

For output, the specified number of characters are assigned into the record 
from the data variables listed in the WRITE FILE or REWRITE FILE 
statement. If the number of characters to be assigned is less than the 
number you specify, the characters are padded on the right with blanks to 
the number you specified before being assigned. If the number of 
characters to be assigned exceeds the number you specify, only the 
specified number of leftmost characters are written into the record. 

The C parameter is valid only for character data and will cause an error if 
used with numeric data. If a width is not entered, the number of characters 
equal to the length of the specified variable is written. 

NC indicates the conversion of numeric data, NC integer [.integer]. For 
input, the next number of record positions you specify (integer) contain a 
numeric value that will be converted to BASIC internal numeric 
representation and assigned to a variable specified in the READ FILE or 
REREAD FILE statement. In the record, the numeric value is a string 
consisting of digits in combination with any of the characters $, +, -, *, I, b, 
comma, decimal point, or exponential notation (E ± numeric constant). 
Zoned decimal fields can also be read. The optional parameter (.integer) 
indicates the number of decimal positions in the field, and will override an 
explicit decimal point in the input field. If this causes the position of the 
decimal point to change, the value is also changed. 

For output, an arithmetic value from an expression in the WRITE FILE or 
REWRITE FILE statement is converted to a signed, zoned decimal field of 
the length specif~ed and placed in the record. The value is rounded if 
necessary. The optional integer (.integer) indicates the decimal positions 
that will be present in the record field; otherwise, all specified positions will 
represent the integer portion of the arithmetic value. 

BASIC Statements 115 

----------_. _._ .. _----_._-------- .... _-----_.-. __ .... -



116 

PO indicates the packed decimal format for numeric values, PD integer 
[.integer] . 

where: 

integer is the width of the field in characters and .integer is the number of 
digits to the right of the decimal point . .integer must be $ 2*;nteger-1. 

For input, the number you enter (integer) indentifies the positions in a record 
containing a numeric value in packed decimal form (two digits per position, 
with one digit and a sign in the low-order position). This value will be 
converted into BASIC internal representation and moved to a corresponding 
numeric variable in the READ FILE or REREAD FILE statement. The optional 
specification (.integer) identifies the number of decimal positions in the 
number. If the .integer specification is not entered, the fractional number is 
assumed to be zero. 

For output, the number you enter (integer) indicates the record positons into 
which the corresponding numeric expression from the WRITE FILE or 
REWRITE FILE statement will be placed. The expression is first converted 
to packed decimal format (rounded if necessary) with the optional number 
(.integer) of fractional digits you specify. 

B indicates the length (2, 4, or 8 bytes) of numeric data items in fixed-point 
signed binary integer format that are to be converted to BASIC internal data 
format. For record I/O file input, the next 2, 4, or 8 bytes in the record 
contain a signed binary value to be converted by the system into internal 
data format and assigned to the variable(s) specified in the READ FILE or 
REREAD FILE statement using a FORM statement. 

For record I/O file output, the value of an expression in a WRITE FILE or 
REWRITE FILE statement using a FORM statement is converted by the 
system to fixed-point signed binary integer format, according to the length 
you specified (2, 4, or 8 bytes), and placed into the record. 

S indicates short precision (4 characters) for numeric values. For input, this 
entry indicates that a four-position, short-precision value in the record is to 
be assigned to a corresponding numeric variable specified in the READ FILE 
or REREAD FILE statement. If program execution is using long precision, 
the value is extended on the right with zeros before being assigned to the 
variable. 

For output, this entry indicates that a numeric expression in the WRITE FILE 
or REWRITE FILE statement will be written in the record without conversion 
and in short-precision format. 

L indicates long-precision (8 characters) for numeric values. 

For input, this entry indicates that an eight-position, long-precision value in 
the record is to be assigned without conversion to a corresponding numeric 
variable specified in the READ FILE or REREAD FILE statement. If program 
execution is using short precision, the value is truncated on the right before 
being assigned to the variable. 

\' ..... _ .. ' 

",,- -, 
( 



o 

o 

c) 

For output, this entry indicates that a numeric expression in the WRITE FILE 
or REWRITE FILE statement will be written in the record without conversion 
and in long-precision format. 

PIC indicates the format for numeric expressions in output statements only. 
The string of data (up to 32 characters) enclosed in parentheses consists of 
one of the following characters for each record position occupied by an 
edited numeric field. These characters can be digit specifiers, insertion 
characters, and the exponent specifier. 

Digit Specifiers 

Digit specifiers can be conditional or unconditional. They are: 

Specifier 

# 

z 

* 

$ 

+ 

CR 

DB 

Meaning 

This position must always contain 
a numeric digit. 

A leading zero in this position is 
replaced by a blank. 

A leading zero in this position is 
replaced by an asterisk. 

This character is placed in each 
position that can potentially contain. 
a floating dollar sign; that is, a 
dollar sign to the immediate left 
of the first significant digit. 
Nonsignificant zeros are suppressed. 

This character is placed in each 
position that can potentially contain a 
floating high-order sign. Nonsignificant 
zeros are suppressed. 

This character is placed in each position 
that can potentially contain a floating 
high-order minus sign if the value in the 
record is negative. Nonsignificant 
zeros are suppressed. 

These positions can be used at the end 
of the PIC string to indicate a credit 
amount. If the value is negative, the 
characters CR will be printed after it. 
If the value is positive, the characters 
CR are replaced with two blanks. 

These positions can be used at the end 
of the PIC string to indicate a debit 
amount. If the value is negative, the 
characters DB will be printed after it. 
If the value is positive, the characters 
DB are replaced with two blanks. 

BASIC Statements 117 

._---_._------------- ._-_. __ ._._----_._ ........ _--------------------- ---.-._-_._-_.- _._-------



118 

Insertion Characters 

Insertion characters are conditional or unconditional. They are: 

Character 

B 

Trailing + 

Meaning 

This unconditional character always 
causes a blank to be inserted in the 
corresponding position of the record. 

This character is inserted in the 
corresponding position of the record 
unless zero suppression is in effect 
and no significant digits appear to the 
left of the comma in the record. In 
this case, the comma will be replaced 
by a floating or zero suppression 
character. 

This character is inserted in the 
corresponding position of the record 
unless zero suppression is in effect 
and no significant digits appear to the 
left of the slash in the record. In this 
case, the slash will be replaced by a 
floating or zero suppression character. 

This character is inserted in the 
corresponding position of the record 
unless zero suppression has been 
specified for every digit position 
and the value is zero. In this case, 
the decimal point will be replaced by a 
floating or zero suppression character. 

This character causes a plus sign 
or a minus sign to be inserted in the 
corresponding position of the record 
unless zero suppression is in effect 
and no significant digits appear to the 
left of the sign in the record. In 
this case, the sign will be replaced 
by an asterisk or a blank 

C.
'" 
/ 



o 

c) 

(~) 

Character 

Trailing -

Trailing $ 

Exponent Specifier 

Meaning 

This character is inserted in the 
corresponding position of the record 
if the value to be displayed is negative, 
unless zero suppression is in effect and 
no significant digits appear to the left 
of the minus sign in the record. In 
this case, the minus sign will be replaced 
by an asterisk or a blank. 

This character is inserted in the 
corresponding position of the record 
unless zero suppression is in effect 
and no significant digits appear to 
the left of the dollar sign in the 
record. In this case, the dollar sign 
will be replaced by an asterisk or a 
blank. 

The exponent specifier I I I I causes the following sequence of characters to 
be placed in the corresponding positions of the record: 

1. The letter E 

2. The exponent sign (plus or minus) 

3. Two digits representing the value of the exponent 

These characters do not appear in the record when zero suppression is in 
effect and the value to be placed in the record equals zero. 

BASIC Statements 119 

_. __ .. _-----_._ ............ _--------



120 

Notes About Record Formatting with the FORM Statement 

• The maximum number of FORM statements permitted in a single BASIC 
program is dependent on the number of image statements also present. 
Together they may not exceed 50. 

• FORM statements are nonexecutable and may be placed anywhere in a 
BASIC program, either before or after the I/O statements that refer to 
them. However, they may not appear within a multiline function definition 
(between a DEF statement and its associated FNEND statement). 

• A PIC specification in a FORM statement may not contain both the Z and 
the * digit specifiers. 

• A PIC string must be from 1 to 32 characters long. 

• A single $, +, or - as the leftmost character in a PIC string is treated as a 
static character. Two or more $, +, or - signs at the leftmost end of a PIC 
string are treated as floating characters. The same character cannot appear 
as both a static character and part of a floating character string in a single 
PIC string. 

• A string of floating characters must contain at least one more floating 
character than the maximum number of expected digits in the output field. 

• A PIC string cannot end with a B, slash (f), or comma (,) insertion 
character. 

• A PIC string cannot begin with a slash (f) or comma (,) insertion character. 

• There cannot be more than one decimal point (.) insertion character in a PIC 
string. 

• A PIC string must include at least one #, Z, *, or floating string. 

• No # digit specifiers may appear to the left of a zero suppression character 
or a floating character. 

• A # digit specifier may not appear in a PIC string that contains a decimal 
point followed by zero suppression or floating characters. 

• The symbols + and - cannot appear in the same PIC string . 

•. A trailing character may not appear in a PIC string in which that trailing 
character is used as either a static character or as part of a floating 
character string. 

.' .......... ' 

" ' ... -. 



o 

() 

Examples 

The following are examples of record formatting with the FORM statement: 

25 READ FILE USING 30 'FILEA',KEY=N$, A$, G 

30 FORM X25, C, X10, NC7 

In the first example, the record that satisfies the key value in the variable N$ is 
read. Two values from the record are put into the input list variables described 
in the READ FILE statement. One is a character value placed into A$; the 
other is a numeric value placed into G. The FORM statement causes the first 
25 positions of the record to be skipped and the number of characters equal in 
length to the variable A$ (18 by default in this example) to be read into A$. 
Ten more positions are skipped, and the next seven positions in the record are 
converted and read into the numeric variable G. 

110 REWRITE FILE USING 100 'FILEA', A$, M 

100 FORM X25, C, POS150, PIC(Z##.##) 

In the second example, two values from the input list in the REWRITE FILE 
statement are entered into a record in FI LEA. The first 25 positions in the 
record are skipped, a character value equal in length to the variable A$ is 
inserted into the record, and, in position 150 of the record, the numeric value 
in M is inserted according to the PIC specification. 

BASIC Statements 121 

._----- - ---_ .. _.- .. _ ... 



[MAT] GET file-ref, 

char-arr-var 
arith-var 
arith-arr-var 
char-var 

char-arr-var 
arith-var 
arith-arr-var 
char-var 

122 

str-func [ ] 
MAT array-name (rows [,columns] ) 

str-func [ 
MAT array-name (rows [,columns]) ] 

[{ 
[,EXIT line-num] 

[, IDERR line-numJ }] [,EOF line-num] [,CONV line-num] 

[MAT] GET 

The GET statement allows you to assign values from a specified stream I/O 
file to referenced variables. The file containing the assigned values must 
already have been opened for input by an OPEN statement. The format of the 
GET statement is as shown above, where: 

file-ref is from FLO to FL9 to identify the file containing the values to be 
assigned. This entry must be the same as that specified in an OPEN 
statement. 

var is a simple variable, a subscripted array reference, a whole array 
(preceded by MAT), or a substring reference. Only one variable is required. 
If more than one is entered, they must be separated by commas. If only 
arrays are referenced, the keyword MAT can precede GET. 

EXIT is the line number of an EXIT statement for error recovery. 

EOF, CONV, and IOERR are error recovery exits (see EXIT statement). 

When the GET statement is executed, the values from the specified file 
(FLO-FL9) are assigned to the referenced variables. Subsequent GET 
statements for the same file cause the values in the file to be assigned 
beginning at the current file position. 

Subscripts in variable references are evaluated as they occur, from left to right. 
Thus, an assigned variable in a GET statement may be used as the subscript of 
another variable in the same statement. 

When a MAT GET statement is executed, or a MAT array name is used in a 
GET statement, the file values are assigned to the specified arrays row by row. 
The referenced file must have been previously opened for input by an OPEN 
statement. The file is positioned at its beginning for the first [MAT] GET 
statement, unless one or more GET operations were already executed. 
Subsequent [MAT] GET statements for the same file cause values to be 
assigned from the current file position. 

If the optional rows, columns entries follow the array names in the [MAT] GET 
statement, the truncated integer portions of the expression values are used to 
redimension the arrays before data values are assigned from the file. 

//.--- . ." 

1,\ 
..... .... __ .". 



o 

G 

) c···· 

Notes About [MAT] GET 

• A file currently activated as an output file cannot be specified in a [MAT] 
GET statement. It must first be closed, then reopened (in an OPEN 
statement as an input file). 

• Each value assigned in a [MAT] GET statement must be of the same data 
type (arithmetic or character) as the corresponding variable. 

• Referenced arrays can be redimensioned (see Redimensioning Arrays in 
Chapter 3). 

• A [MAT] GET statement referencing a currently closed file causes program 
execution to be terminated. 

• The keyword MAT must precede referenced. arrays unless all references in 
the data list are arrays. In this case, use the keywords MAT GET. 

Examples 

A sample GET statement is as shown: 

0090 GET FL4, X, Y, Z, MAT A(4), D$, EOF 620 

In this example, the values in file FL4 are assigned, respectively, to variables X, 
Y, Z, the four elements of array A, and the character variable D$. On end of 
file, the program branches to statement number 620. 

The following statements have the same meaning: 

0090 GET FL1, MAT A, MAT 8, MAT C 
0090 MAT GET FL 1, A, 8, C 

Note: Arrays cannot be intermixed with other variables unless they are 
preceded by MAT. 

0090 GET FL1, A$, MAT 8, D$ 

The following example shows a MAT GET statement: 

0090 MAT GET FL2; A, 8,(5, 10), Z(4,5), EOF 210 

In this example, array A, array 8 (redimensioned to 5 rows, 10 columns) and 
array Z (redimensioned to 4 rows, 5 columns) will receive values from file FL2. 
When end of file is reached, control will transfer to statement 210. 

BASIC Statements 123 

._---- ... _-_ ......... _ ........... _-_ .. . ..... __ •.... -........ _ .............. -------



GOSUB line-num [[,Iine-num J ... ON arith-exp] 

RETURN 

124 

GOSUB AND RETURN 

The GOSUB and RETURN statements are used together to create subroutines. 
The GOSUB statement transfers control conditionally or unconditionally to a 
specified statement. The RETURN statement transfers control to the first 
executable statement following the last active GOSUB statement that was 
executed. 

The syntax of the GOSUB statement is either simple or computed. The simple 
syntax is: 

GOSUB line-num 

where: 

line-num is the number of the statement to which control is to be 
transferred. 

The computed GOSUB syntax is: 

GOSUB line [,Iine-num] ... ON arith-exp 

where: 

line-num is a statement number. At least one statement number is required. 

arith-exp determines the statement to which control is passed. 

The format of the RETURN statement is simply RETURN. 

Execution of a simple GOSUB statement causes an unconditional transfer of 
control to the statement whose number is specified. 

Execution of a computed GOSUB statement causes the arithmetic expression 
to be evaluated and control transferred to the statement whose numeric 
position in the list of statement numbers (reading left to right) is equal to the 
truncated integer value of the expression. Thus, an expression with a value of 
2.75 would cause control to be tansferred to the second statement in the list. 
If the expression has a truncated integer value less than 1 or greater than the 
total number of statements listed, control falls through to the first executable 
statement following the computed GOSUB statement. 

When a GOSUB statement transfers control to a nonexecutable statement, 
control is transferred to the first executable statement following the specified 
nonexecutable statement. 

............... ,.' 

I" .. 



C) 

C: 

If the line number in a GOSUB statement is 999x, the system will call the 
corresponding defined function key group. If the function key group at 999x is 
undefined, the system transfers control to the indicated line number (999x). 
The called function key group must be defined as a REM key group. 

Execution of a RETURN statement causes an unconditional transfer of control 
to the first executable statement following the last active GOSUB statement 
that was executed. 

The maximum number of nested subroutines is 20, minus 1 for each keys 
function called (see Function Keys). 

Example 

The following examples show the execution of GOSUB and RETURN 
statements: 

50 GOSUB 100 
60 -

100 -

140 RETURN 

80 GOSUB 150 
90 - -+--------, 

150 -

190 GOSUB 250 
200 - ~---+---r 

240 RETURN -
250 -

300 RETU RN -----I 

The following examples shows a GOSUB to a keys function: 

100 GOSUB 9994_-_____ ~ LOADO,KEY4 
-9994 REM 

9994 PRINT 'IN MAIN PROGRAM' 
9995 RETURN 

0010 PRINT'IN KEYGROUP 9994' 
0020 RETURN 

In this example, statement 100 causes the program to branch to the REM 
function defined for key 4. If key 4 is not defined or is defined as something 
other than REM, the program seeks statement 9994 within the main program. 

BASIC Statements 125 

. . .... _----_._ .. ,.",._-----_ .. _-_., ... ",,_._------- --- ------_._----------_ .. 



GOTO line-num [[,Iine-num J ... ON arith-expJ 

126 

GOTO 

The GOTO statement transfers control either conditionally or unconditionally to 
a specified statement. 

The syntax of the GOTO statement can be simple or computed. The simple 
syntax is: 

GOTO line-num 

where: 

line-num is the number of the statement to which control is to be 
transferred. 

The computed GOTO syntax is: 

GOTO line-num [,line-num] ... ON arith-exp 

where: 

line-num is a statement number. At least one statement number is 
required. 

arith-exp determines the statement to which control is passed. 

Execution of a simple GOTO statement causes an unconditional transfer of 
control to the statement number specified. 

Execution of a computed GOTO statement causes the arithmetic expression to 
be evaluated and control transferred to the statement whose numeric position 
in the list of statement numbers (reading left to right) is equal to the truncated 
integer value of the expression. Thus, an expression with a value of 2.75 
would cause control to be transferred to the second statement in the list. If 
the expression has a truncated integer value less than 1 or greater than the 
total number of statements listed, control falls through to the first executable 
statement following the computed GOTO statement. 

When a simple or computed GOTO statement transfers control to a 
nonexecutable statement, control is then passed to the first executable 
statement following the specified nonexecutable statement. 

The following statement will unconditionally pass control to statement number 
20: 

100 GOTO 20 

If X = 4, the following statement will pass control to statement number 60: 

50 GOTO 40,60, 15, 100 ON (X+4)/4 
(" , .... / 



o 

c 

Cj 

o 

IF 

IF {arith-exp rel-opr arith-exp} [{&} {arith-exp rel-opr arith-exp} ] {THEN} line-num 
char-exp rel-opr char-exp I char-exp rel-opr char-exp GOTO 

The I F statement allows you to transfer program control according to the result 
of an evaluated expression. The syntax of the IF statement is as shown above, 

where: 

arith-exp and char-exp are arithmetic or character expressions. Only one 
pair of expressions is required. 

re/-opr is a relational operator. Only one operator is required. 

& is the symbol entered for logical AND. I is the symbol entered for logical 

OR. 

THEN and GOTO specify that control should be transferred. If you enter 
THEN, each time the program is listed on the display screen or printer, the 
system substitutes GOTO for THEN. 

line-num is the number of the statement to which control is transferred if 
the relational expression(s) is true. 

When an IF statement is executed, the expressions are compared as specified 
by the relational operator. If the relationship is true, control is transferred to 
the specified statement number. If the relationship is not true, control is 
passed to the first executable statement following the I F statement. 

If & is specified, both relational expressions must be true before control passes 
to the statement number. If I is specified, control passes to the specified line 
number if either relational expression is true. 

If the specified relationship is true and the specified statement is 
nonexecutable, control is passed to the first executable statement following the 
specified nonexecutable statement. 

Notes About IF 

• The expressions being compared within the relational expressions must 
contain data of the same type (character or arithmetic). 

• THEN and GOTO are interchangeable in the IF statement. Either can be 
used, but not both. GOTO is stored by the system. 

• Comparison for equal must compare exactly. 

._-----------... _ .. _-----

BASIC Statements 127 



128 

Examples 

The following examples show a variety of IF statements: 

30 IF A(3)~ X+2/Z GOTO 85 

40 IF R$ = 'CAT GOTO 70 

50 IF 52 = 37.222 GOTO 120 

60 IF X>Y GOTO 90 

70 IF A>B I C>O GOTO 110 

80 IF A$ = 'JOB' & B$ = 'OATE'GOTO 100 

In statement 40, for example, if character variable R$ contains the word CAT, 
program control is passed to statement 70. In statement 70, if either A>B or 
C>O, control passes to statement 110. 

\ .... , . 



u 

C) 

[{Ch~r-s.tring }] 
print-Image 

... print-image [ { Ch~r-s:ring }] ... 
print-Image 

IMAGE 

The image statement is used to control formatting of printed or displayed data. 
For a complete description of the image statement, see [MAT] PRINT USING 
and Image/FORM. 

The image statement formatting specifications can also be assigned to a 
character variable, as shown below: 

90 A$='TOTAL COST IS $###.##' 
100 PRINT USING FLP, A$, T1 

In this example, variable A$ must have been previously dimensioned to the 
length of its assigned image specifications. 

BASIC Statements 129 

----_ ...... _-_ ..... _ ......... _ ........ . ----_._. __ . __ .... _ .. 



[MAT] INPUT 

arith-var 
arith-arr-var 
char-var 
char-arr-var 

str-func [ 
MAT array name (rows 

[.{ ~~~T~i~~~~~~m} ] 

[,COlumnsJ ] 

arith-var 
arith-arr-var 
char-var 
char-arr-var 

MAT array name (rows [,columns]) 
str-func [ ] 

[MAT] INPUT 

, 

130 

The INPUT statement allows you to assign values to variables from the 
keyboard or procedure file while your program is being executed. The syntax 
of the INPUT statement is as shown above, where: 

var are simple arithmetic or character variables, subscripted references to an 
array element, whole arrays (preceeded by MAT), or sUbstring'references. 
The rows and columns references to an array element must be enclosed in 
parentheses. Only one variable is required in a [MAT] INPUT statement, 
although many variables can be specified. If only arrays are referenced, the 
keyword MAT can precede INPUT. 

CONV line-num allows you to specify a line number to which program 
control will be transferred if you enter improper data for an INPUT 
statement (such as character data missing a quotation mark or an 
out-of-range numeric). 

EXIT line-num is the line number of an EXIT statement for error recovery 
(see EXIT statement). 

When an INPUT statement is executed, it displays a question mark on the 
display screen, and program execution halts. You must then enter a list of 
values that will be assigned, in the order they are entered, to the variables 
listed in the [MAT] INPUT statement or row-by-row to elements of specified 
arrays. When the complete list has been entered, press the EXECUTE key to 
resume program execution. If you entered the IN=P option in the RUN 
command, values are supplied from the active procedure file (see Procedure 
File). Each [MAT] INPUT statement will get at least one record from the 
procedure file. If one record does not supply enough values for the data list, 
additional records will be read. If extra values are present in a record, they are 
ignored. 

Subscripts of array variables in the INPUT statement are evaluated as they 
occur. Thus, an assigned variable in an INPUT statement can be used 
subsequently as the subscript of another variable in the same statement. 

A character constant shorter than the defined length of the character variable 
to which it is assigned is padded on the right with blanks to the defined length 
before being assigned. Character constants longer than the defined length are 
truncated on the right before being assigned. The maximum length is 255 
characters. Character constants containing no characters (null) are assigned as 
the defined length of blanks. 

I 

\ 



o 

\1 C
---' 

Notes About INPUT 

• Each value entered must be of the same data type (character or arithmetic) 
as the corresponding vari~ble reference in the [MAT] INPUT statement. 
Data types can be mixed in the same statement. 

• Blanks within numeric data items are ignored. 

• Each value entered must be separated from the next value by a comma. 
Two consecutive commas are ignored. To end the series, press the 
EXECUTE key. 

• Character data must be enclosed in single quotation marks only if it contains 
commas, or if leading blanks are significant. 

• The number of values entered at execution time must be equal to the 
number of variable references specified in the [MAT] INPUT statement. If 
you do not enter enough values, the program will request more input. If you 
enter too many values, the extra entries will be ignored by the program. 

• Referenced arrays can be redimensioned (see Redimensioning Arrays in 
Chapter 3). 

• The keyword MAT must precede referenced arrays unless all references in 
the data list are arrays. In this case, use the keywords MAT INPUT. 

Examples 

A sample INPUT statement is as shown: 

60 INPUT A$, B, X, Y(X), CONV300 

'YES', 18.6,8, 1.3597E-6 

When line 60 is executed, you can enter the list of values shown. -The program 
will branch to statement 300 if, for example, you entered 'YES' for the first 

value. 

The following example shows a MAT INPUT statement: 

0100 MAT I N PUT A, A$, B(3,6) 

Upon execution of this statement, you must enter values for arrays A, A$, and 
B (redimensioned to 3 rows, 6 columns). 

BASIC Statements 131 

---- --- -------------



[LET] 

132 

{:;:~~:~;;-var} [, { :;::~:~;;-var } ] ---=arith-exp 

{ 
~~:~~~;;-var } [, {~~:~~~;;-var) ] ... = {Char-eXp} 
str-func str-func char-con 

LET 

The LET statement allows you to assign the value of an expression to one or 
more variables. The syntax of. the LET statement is as shown above, where: 

var are scalar variable names, subscripted to references to array elements, 
or substring references. Only one varible is required, although many can be 
specified. The row and column references to an array element must be 
enclosed in parentheses. 

exp is an arithmetic or character expression, a string function,. or a character 
constant. 

When the LET statement is executed, the expression is evaluated, and the 
resulting value is assigned to the specified variables from left to right. 

Character constants are limited only by line length (64 characters). Character 
expressions can be 1 to 255 characters in length. Character variables can be 
dimensioned to a specific length by using the DIM statement. The initial value 
of undimensioned character variables is set to 18 blank characters. When 
assigned to a character variable, a character constant is adjusted to the length 
of the variable. Longer constants are truncated, while shorter constants are 
left-justified and padded with blanks on the right. 

Notes About LET 

• Data values to the right of the equal sign must be of the same type 
(arithmetic or character) as the variables to which they are assigned. 

• The keyword LET is optional. 

• Hexadecimal constants can also be assigned to character variables in LET 
statements. The constant must begin with X' followed by an even number 
of characters 0 to 9 and A to F. The end of the constant must be indicated 
by a single quotation mark n. Each pair of characters indicates a character 
to be assigned. 

• Subscripted references to array elements are permitted in the assignment 
statement. 

• The maximum number of variables to the left of the equal sign in a multiple 
assignment statement is limited only by the line size (64 characters). 

"-.. ... 

( ~ 
......... -~. ' 

( 



Examples 

(') 
......... ./ 

o 

o 

._._------._ .. _-_ .. __ .................... _ .. _ .. _------

Some sample LET statement are as shown: 

10 LET Z$ = 'CAT' 

20 LET X = 9 

30 LET V(X) = 2 

40 V(X),X = X/Y(X) 

After execution of statement 10, the character variable Z$ will contain the word 
CAT followed by 15 blank characters (if Z$ is 18 characters in length). In 
statement 20, variable X receives a value of 9. 

After execution of statement 30, the ninth member of the one-dimensional 
arithmetic array (V) will have the integer value 2. 

After execution of statement 40, the arithmetic variable X will have the decimal 
value 4.5. The ninth member of the one-dimensional arithmetic array V will 
have the decimal value 4.5. The action of statement 40 is to first evaluate the 
expression on the right according to the current values of the variables Y(X) 
and X, 2, and 9, respectively. The resulting value, 4.5, is first assigned to V(9), 
then to the variable X. 

BASIC Statements 133 



NEXT control-var 

NEXT 

For a complete description of the NEXT statement, see FOR and NEXT. 

134 

('" - --"-

1\., ... 

("\ 

\. ...... _/ 

('"-- -', 

( 
\..-- .. ' 



o 

( -', 
_/ 

C) 

o 

o 

{
SYSTEM } 

ONERROR GOTO line-num 

ONERROR 

The ONERROR statement provides you with comprehensive error-trapping 
capability. When an error is detected during execution, two internal constants 
in the system (&LlNE and &ERR) will contain the line number of the statement 
being interpreted and the number of the error. This enables you to recover 
from the error and continue from the point of interruption. The syntax of the 
ONERROR statement is as shown above, where: 

SYSTEM specifies that normal error processing be used for all subsequent 

errors. 

GOTO specifies the line number of the statement to receive program control 

when an error is detected. 

Notes About ONERROR 

• I/O statements containing error exit parameters override the ONERROR 
statement. 

• If an error occurs after execution of an ON ERROR statement, &LlNE and 
&ERR are set, but all other error indicators (internal pointers) are reset. 
Therefore, the data in &LlNE and &ERR is the only information available 
about the error. 

• To prevent repeated entry into your error routine, you should begin your 
error routine with an ONERROR SYSTEM statement. 

• If the recovery for a detected error does not normally recommend a restart 
(&ERR>700), certain system information is lost (such as DEF and GOSUB 
statement return points). Continued execution after such an error is not 

recommended. 

• If ONERROR is active when control is passed to a key group (GOSUB 
999X), ONERROR is suspended until control returns from the key group. 
ONERROR may be specified in a key group but is active only within that key 
group and must refer to a statement in that key group. 

BASIC Statements 135 

----.. _---_._.-._._._-------



136 

A sample ON ERROR statement is shown below: 

010 ONERROR GOTO 50 
020 A=100/0 
030 PRINT 'A= 'A 
040 STOP 
050 ON ERROR SYSTEM 
060 PRINT 'ERROR' &ERR 'HAS OCCURRED, at LINE' &LlNE 
RUN 
ERROR 681 HAS OCCURRED AT LINE 20 

In this example, the ON ERROR statement at statement number 010 causes the 
program to go to statement number 050 if any errors occur. The ON ERROR 
statement causes the 5100 to return to normal error processing, then 
statement 060 causes the error message, ERROR 681 HAS OCCURRED AT 
LI N E 020, to be printed. 

(" 
"- .. / 



o OPEN file ref {deV-addreSS} 
, char-var [ { 

file-num}] [{'filename'}] {IN } [{ IOERR line-num}] 
'arith-var 'char-var 'OUT 'EXIT line-num 

IN 

OUT [RECl= {in~eger }] [ NOBLOCK] [ SEQ] 
, anth-var' , 

All 

IN KEY [ KW= {in~eger }] 
, , anth-var 

OUT KEY KP= {integer } Kl= {integer } 
, , arith-var' arith-var 

All,KEY [ KW] = {in~eger } 
, anth-var 

OPEN/OPEN FILE 

The OPEN statement allows you to: 

• Identify an attached device with a file reference code. 

• Allocate work space for the file. 

• Specify the file number. 

• Specify the identification to be used with the file. 

• Specify the file usage (input, output, or both). 

The syntax of the OPEN statement is as shown above, where: 

{ 
IOERR line-num} 

, EXIT line-num 

file ref is FLO to FL9 to specify the logical file to be associated with the 
physical file identified by the remaining entries in the OPEN statement. This 
file specification can also be referenced in input/output statements for 
stream I/O files. 

BASIC Statements 137 

---- .. _-_._---_ .... _._-



138 

dev-address is the address of the device referenced by the file reference 
code. You can enter the address directly, or enter a character variable 
containing the device address. Valid addresses are: 

'SYS' for the current system default device address. This address cannot be 
assigned to a character variable. (see UTIL SYS Command.) 

'E80' for the built-in tape unit (Model 1 only) 
'E40' for the auxiliary tape unit (Model 1 only) 
, 080' for diskette drive 1 
, 040' for diskette drive 2 
'020' for diskette drive 3 
'010' for diskette drive 4 
'500' for the printer 
'000' for directing output to line 1 of the display screen (output only) 
'001' for allowing GET statements to access data entered from the keyboard 

(in the same manner that INPUT statements receive data) . 

file-num is a constant or numeric variable ranging from 1 to 9999. This 
value is used to access the corresponding file on the device specified. 
Decimal values for variables are truncated to an integer. 

char-var is a character variable or character constant enclosed in single 
quotation marks. The first 17 characters provide the identification field in 
the header record of a file being opened for output. 

IN or OUT indicates whether the file is to be used for input (IN) or output 
(OUT). 

IOERR line-num allows you to specify the line number of a statement to 
which program control will be transferred if this OPEN statement cannot be 
completed because of a hardware error. 

EXIT line-num allows you to specify the line number of an EXIT statement 
to which program control will be transferred if this OPEN statement cannot 
be completed because of an error condition defined in the EXIT statement. 

A sample OPEN statement is as shown: 

OPEN FL1, 'E80',3,IN,IOERR 999 

In this example, file reference code FL 1 will be assigned to reference file 3 on 
the tape unit built into the 5110 Model 1 for input, and program control will 
transfer to statement 999 in case of a hardware error. 

,/ - ...... 



o 

o 

o 

The OPEN FI lE statement provides the same capabilities for record I/O files 
as the OPEN statement does for stream I/O files. plus the following additional 
capabilities: 

• Use of a file for both input and output at the same time 

• Selection of where output is to begin 

• Selection of logical record length 

• Selection of file access method 

The syntax of the OPEN FilE statement is as shown previously where: 

file ref, file-num, 'user ID', char-var, IN, and OUT have the same meaning as 
described for the OPEN statement. The remaining parameters have the 
following meanings: 

'dev address' has the same meaning as that for the OPEN statement with 
the additional option of addresses '000' and '001', which are invalid, and 
address '002', which opens the top 14 lines of the display as a record file 
with a record length of 896 characters. 

RECL = is a nonzero, positive integer or a numeric variable with a value less 
than 9999, which indicates logical record length. This entry can only follow 
the OUT parameter to indicate that output is to start at the beginning of 
extent (BOE) of the file on diskette. If this parameter is not entered, output 
will be added to the end of the file. 

NOBLOCK indicates that the file is to be written with only one logical record 
to a physical record. This parameter can only be entered following OUT and 
RECl=. 

SEQ indicates that the file can only be accessed consecutively and that 
records can be relocated sequentially for I/O error recovery. This parameter 
can only be entered following OUT and RECl=. If SEQ is specified, any 
attempt to access the file randomly with REC= or KEY will cause an error. 

ALL indicates that the file can be used for both input and output, including 
extending and updating of the file. This parameter can only be entered for 
an OPEN FilE statement. 

IN,KEY identifies the file as a key index file to be used for input only. 

OUT,KEY identifies the file as a key index file to be used for output only. 

KP = is a nonzero, positive integer or a numeric variable with a value less 
than 9999, which identifies the first position of the key field in the data 
record. This parameter must be entered following OUT, KEY. 

BASIC Statements 139 



140 

KL = is a nonzero, positive integer or a numeric variable with a value less 
than or equal to 28, which identifies the length of the key field in a data 
record in a key index file. This parameter must be entered following KP=. 

KW = is a nonzero, positive integer or a numeric variable with a value less 
than 9999, which identifies the amount of system work area that can be 
used for key indexed file accessing (see Opening a Key Accessed File). This 
parameter is optional when IN,KEY or ALL, KEY is specified. 

ALL,KEY indicates that the file is a key index file to be used for both input 
and output. 

IOERR line-num and EXIT line-num have the same meaning as described for 
the OPEN statement. 

Notes About OPEN 

• An OPEN or OPEN FILE statement must be issued for a file before an 
input/ output statement references the file. 

• If a file is already open, the OPEN [FILE] statement causes an error 
message. 

• Once a file is open, do not remove the tape cartridge or diskette until the 
file is closed. 

• A quote cannot be embedded in a character constant used for a file name. 

• The file name is required for diskette file output (see File Reference 
Parameter in Chapter 3). 



o 

C, 

o 

Opening a Key-indexed File 

When opening a key-indexed file, follow these general rules: 

1. Open the master file using the OPEN FILE statement with the appropriate 
parameters. 

2. Open the index file with the OPEN FILE statement. For the index file, 
enter the same file reference and access type (such as IN,OUT, or ALL) 
as entered for the master file. In addition, enter the KEY parameter and 
the KW parameter, which indicate key-indexed access and the amount of 
storage to be used for the index file. The key index file is built by the 
system. The index file contains only the key field for each record in the 
master file, along with the location of the record on tape or diskette. The 
KW parameter allows you to allocate space for a table that is used to 
improve access time when IN or ALL is specified and the index file is 
sorted. The size of this space is normally a multiple of the sum of the 
key length plus two. 

3. When accessing records in the file with subsequent READ FILE, WRITE 
FILE, and other record I/O statements, be sure to specify the record key. 
The system locates the record key in the index file, then proceeds to the 
corresponding tape/diskette locatioil for record access. 

Examples 

10 OPEN FILE FLI, '080', 'EMPL.MAST, ALL 
20 OPEN FILE FLI, '080', 'EMPL.INOX', ALL, KEY, KW=80 

The OPEN statements shown above enable the program to access the file 
'EMPL.MAST using the indexed access method. The files are both accessed 
by name only, and both files are opened for update operations (ALL). (The file 
'EMPL.MAST is opened first.) The keyword KEY in statement 20 indicates 
that this file is the index file for 'EMPL.MAST. The KW=80 parameter assigns 
up to 80 characters in the work area for a table. The table improves access 
time when a search is made for a particular key value. 

BASIC Statements 141 

._-_. __ ........... _ .............. -.. _----
.. _ .................. _ ... -._._------



PAUSE [[oJ comment] 

PAUSE 

142 

The PAUSE statement allows you to interrupt program execution to perform 
calculator operations. The syntax of the PAUSE statement is as shown above, 
where: 

comment is optional. If the comment begins with a single quotaiton mark, it 
will be displayed on line zero when the PAUSE' is executed. 

When a PAUSE statement is encountered during program execution, execution 
is interrupted and the message 

PAUSE s 

is shown on line 0 of the display screen, where s is the line number of the 
PAUSE statement. To resume program operation, you must issue a GO 
command. Note that you should not renumber statements (see RENUM in 
Chapter 2) or alter a calling statement (see DEF, RETURN, FNEND) while a 
program is interrupted. A comment beginning with a single quotation mark is 
displayed after the statement number. The following statement would cause 
the message PAUSE 0080 to be displayed and processing to be suspended 
until a GO command is issued: 

80 PAUSE 

,r----- , 



o 

" C
'· 

o 

o 

~I
MAT array-name}] 

[ MAT] PR I NT [file ref] arith-exp 
, char-exp 

TAB (exp) 

char-con 
{ 

MAT array-name} 

[{
'}] arith-exp 
; char-exp 

. TAB (exp) 

E:har-con] {
'} [{ arith-exp }] . char-exp 
, TAB (exp) 

{

[,EXIT line-numJ } 

[,IOERR line-numJ [,EOF line-num ] 

[MAT] PRINT 

The [MAT] PRINT statement causes the values of specified scalar expressions 
or arrays to be di,splayed on the display screen, printed by the printer, or 
written to a file. When using the [MAT] PRINT statement, the format of all 
displayed values is standardized, but the spacing between values on the same 
line can be controlled. 

The syntax of the [MAT] PRINT statement is as shown above, where: 

file ref is FLP (printer) or FLO to FL9 (logical file). This entry is optional. 
FLO to FL9 must have been previously opened in an OPEN statement. 

exp are arithmetic or character expressions to be displayed or printed. 
Expressions can be separated by a comma or semicolon. You can control 
spacing of the displayed or printed expressions by inserting commas or 
semicolons between the expressions (see TAB Function). Expressions can 
be arithmetic or character (character constants must be enclosed in single 
quotation marks). With no expressions specified, the PRINT statement can 
be used to complete the displaying or printing of a pending line or insert a 
blank line. Whole arrays (preceded by MAT) can also be specified. If only 
arrays are referenced, the keyword MAT can precede PRI NT. 

EXIT, IOERR, and EOF indicate that program control be transferred to the 
specified line number if the corresponding error should occur (see EXIT 
statement). 

When a PRI NT statement is executed, the value of each specified expression is 
converted to the appropriate output format as described under Print Zones, and 
displayed or printed in a left-to-right sequence in the order in which it appears 
in the PRINT statement. 

When a MAT PRINT statement is executed, each array element is converted to -
a specified output format and displayed. 

BASIC Statements 143 

--_._---------,--------' ... _ ....... _-----_ .. _ .. _-----



144 

Each array is displayed by rows; the first row of each array begins at the start 
of a new line and is separated form the preceding line by two blank lines. The 
remaining rows of each array begin at the start of a new line and are separated 
from the preceding line by one blank line. After each array element is 
displayed or printed, the starting position of the next element is determined by 
the delimiting character, as described under Spacing of Displayed Values. 

Print Zones 

In general, each PRINT statement causes a new display or print line to be 
started, and each line is divided into print zones-either full print zones or 
packed print zones, or combinations of both. 

Full Print Zones have 18 character positions and are specified by the comma 
delimiter. For example, the statement 

200 PRINT A,B,C 

would cause the value of variable A to be displayed beginning in the first 
position of the line, the value of B beginning in position 19, and the value of C 
beginning in position 37. 

Packed Print Zones are variable in length and usually produce a more dense line 
of output than full print zones. The semicolon and null delimiters are used to 
specify packed print zones. The length of packed print zones for various types 
of data is explained under Spacing of Printed or Displayed Values. 

Spacing of Printed or Displayed Values 

The converted value of each expression or array element is printed or displayed 
in its own print zone. A print zone can be either full (18 positions) or packed 
(variable lengths) as specified by the delimiter following the array reference or 
expression. 

Full Print Zones (Comma Delimiter): 

For arithmetic expressions, the converted data items require one full print zone 
of 18 character positions. For character data, the print or display area is the 
smallest number of full print zones (smallest multiple of 18) large enough to 
accomodate .the data. 

Since most printed or displayed values are shorter than 18 characters, a line of 
full print zones usually produces columns of widely spaced output. 

\ ......... ' 

/" 
I 
\, .. _ ... 

l ' .... -. ,.". 

c 



(:) 

C) 

Packed Print Zones (Null [PRINT only] or Semicolon Delimiter): 

For arithmetic expressions or numeric arrays, the length of the packed zone is 
determined by the length of the converted value, including the sign, digits, 
decimal point, and the exponent, as shown in Figure 9. 

For character constants, the length of the packed print zone is equal to the 
length of the characters enclosed in single quotation marks, including blanks, 
but excluding the single quotation marks preceding an apostrophe. 

For character variables, the length of the packed print zone is equal to the 
length of the character string, minus any trailing blanks. 

Packed print zones usually produce a denser line of output than full print 
zones. 

Length of Converted Length of Packed Example (0 
Data Item Print Zone represents a 
(characters) (characters) (blank) 

2-4 6 07.300 
5-7 9017.35700 
8-10 12 -45.639270DO 
11-13 15 01.73579E-23DDO 
14-16 18 -8.922704931150DOO 
17-19 21 -1.234567890123E-22 

The number of digits displayed or printed is controlled by the current value 
assigned to RD= (see RD= Command in Chapter 2). 

Figure 9. Packed Print Zone Lengths for Arithmetic Expressions and Array 

Elements 

Standard Output Formats for Printing or Displaying 

Character Constants 

The actual characters enclosed in single quotation marks (including trailing 
blanks but excluding the single quotation marks preceding an apostrophe) are 
printed or displayed. 

BASIC Statements 145 

,.', .. ' ., ."--,------.,-_._.,-,.",' ,._-------



146 

Character Variables 

The actual characters (excluding trailing blanks) are printed or displayed. 

Arithmetic Expressions 

I-Format: 

The integer, consisting of a sign (blank or minus) and up to 15 significant 
decimal digits for integers whose absolute value is less than 1 E+14, is printed 
or displayed. 

E-Format: 

The floating-point number, consisting of a sign (blank or minus), up to 15 
significant decimal digits, a decimal point following the first digit, the letter E, 
and a signed exponent consisting of one or two digits is printed or displayed. 
The E-format is used to print or display numbers whose absolute value is less 
than 1 E-2 or greater than or equal to 1 E+14. Printed or displayed values are 
rounded off, not truncated. 

F-Format: 

The fixed-point number, consisting of a sign (blank or minus) up to 15 
significant digits, and a decimal point in the appropriate position is printed or 
displayed. The E-format is used to print or display values not included in the 
preceding 1- or E-format descriptions. 

Display Line Operation 

As the values of expressions or array elements are transferred to the display 
screen, an internal line position pointer is maintained to keep track of the next 
available position where a character (or digit) can be placed. The mov~ment of 
this line-position pointer before, during, and after displaying an expression 
depends on the type of expression and the delimiter following it in the [MAT] 
PRI NT statement. Figure 10 shows the pointer actions that are possible. 

The position of the display line-position pointer can be moved forward (to a 
higher-numbered character position) by the TAB function. 

If an array delimiter is a comma, the line-position pointer is moved past any 
remaining positions in the full print zone after the system transfers the element 
value to the display screen. If the final delimiter is a semicolor, the line-position 
pointer is moved past any remaining positions inthe packed print zone after the 
system transfers the element values to the display screen. See Print Line Buffer 
Operation. 

/ 

,- .' 



---------------------------------------------.-------------

Data Pointer Position Before Pointer Position After 

o Type Delimiter Displaying or Printing Displaying or Printing 

Arithmetic Comma If the record contains suf- The pointer is moved 
Expression ficient space for the expres- past any remaining 

sion, data will be written positions of the full 
beginning at the current print zone. If the end 
position of the pointer. of the record is reached, 
If there is not sufficient the record is printed or 
space, the contents of displayed and the pointer 
the first record are wr.it- is set to the start of the 
ten and the expression next record. 
will start at the beginning 
of the next record. 

Semicolon The pointer is moved 
G 

past any remaining posi-
tions of the packed 
print zone. If the end 
of the record is 
reached, the record is 
printed or displayed and 
the pointer is set to the 
start of the next record. 

Null (not end 
of statement) 

Null (end The record is printed or 
of statement) displayed and the pointer 

is set to the start of the 
next record. 

Figure 10 (Part 1 of 3). Positions of Display or Print Line·Position Pointer 

C
OO, 

I 

C
-_·· 

'''! 
) 

BAS I C Statements 147 

" -----------_._----------------,.---



Data Pointer Position Before Pointer Position After 
Type Delimiter Displaying or Printing Displaying or Printing / 

Character Comma If at least 18 character The pointer is moved 
Variable positions remain in the past any remaining 

record, data will be writ- characters of the full 
ten beginning at the cur- print zone. If the end 
rent position of the of the record is reached, 
pointer. If less than 18 the record is printed 
positions remain, the or displayed and the 
record is printed or dis- pointer is set to the 
played and the constant start of the next record. 
will be written starting 
at the beginning of the 
next record. If the end 
of the record is encoun-

\ ....... 

tered before the char-
acters are written, the 
record is printed or dis-
played and the remaining 
characters will be written 
starting at the beginning 
of the next record. 

Semicolon The variable is written The pointer is left at the 
starting at the current posi- position immediately 
tion of the pointer. If the following the last 
end of the first record is character. 
reached before all data is 
written, the record is dis-
played or printed and the 
remaining data will start 
at the beginning of the 
next record. 

Null (not end 
of statement) 

Null (end The record is written and 
of statement) the pointer is set to the 

start of the next record. 

\ •. 

Figure 10 (Part 2 of 3). Positions of Display or Print Line-Position Pointer 

\ ... 

148 



Data Pointer Position Before Pointer Position After 

o Type Delimiter Displaying or Printing Displaying or Printing 

Null Comma No data is displayed. The pointer is moved 
forward 18 character 
positions. If the end of 
the record is reached, the 
record is printed or dis-
played and the pointer 
is set to the start of the 
next record. 

Semicolon The pointer is moved 
forward 3 character 
positions. I f the end of 
the record is reached, o 
the record is printed or 
displayed and the pointer 
is set to the start of the 
next record. 

Null (not end 
of statement) 

Null (end 
of statement) 

Character Comma No data is displayed. The pointer is moved past 
Constant any remaining spaces in the 

Semicolon full print zone. If the end 

( , 

~) 
of the record isreached,the 
record is printed or displayed 
and the pointer is set to the 
start of the next record. 

Null (not end The variable is written The pointer is left at the 

of statement) starting at the current position immediately 
position of the pointer. fol.lowing the last character. 
If the end of the first 

Null (end record is reached before The record is written and 
of statement) all data is written, the the pointer is set to the 

record is displayed or start of the next record. 
printed and the C) 
remaining data will 
start at the beginning 
of the next record. 

Figure 10 (Part 3 of 3). Positions of Display or Print Line-Position Pointer 

C) 
BASIC Statements 149 

------_ .... -.. _ ....... -.......... ------- ._------_._------_ ... __ .... _-_ .. _ ....... --------



150 

TAB Function 

The TAB (expression) function allows you to align columns of data. When 
(expression) is a non-integer, it is truncated. Thus, TAB(n) starts the next 
output in column n of the line. If the current position in the line is greater than 
n, data is put on the next line in position n. TAB(n) can be followed by a 
comma or semicolon with the same result. If n is greater than the line length, 
data is put at position X after computation of the following, where n = the TAB 
expression and L = line length: 

X =n-L*INT((n-1 /L) 

For example, if line length = 64 and the TAB(n) = 70, the integer value 
((70-1) /64) = 1 is multiplied by 64 and is subtracted from n, which is 
70-64=6. Thus, output begins in position 6 of the next line. This formula only 
applies where L = 1 to 9999. 

Print Line Buffer Operation 

The print line buffer is a temporary storage location where the characters for 
each print line are placed. After all data for a print line has been placed in the 
buffer, the data line is printed. 

A buffer-position pointer is used to keep track of the next available position 
where a character (or digit) can be placed in the buffer. The movement of the 
buffer-position pointer before, during, and after moving an expression into the 
buffer depends on the type of expression to be printed and the delimiter 
following it in the PRINT statement. 

The position of the buffer-position pointer can be moved forward by the TAB 
function. See the PRINT statement examples that follow. 

The following examples show how various arithmetic values would be printed 
or displayed. The symbol 0 represents a blank character, which always 
appears in the sign position of a positive number. 

Value Given 

0123 
00123 
-1234.5 
135999999999 

Value Printed 

0123 
0123 
-1234.5 
0135999999999 

(' 
\ 

" 



C) 

C' "I 

) 

o 

o 

Notes About [MAT] PRINT 

• If there is no printer attached to the system, executing the PR I NT F LP 

statement stops the program unless the P = D (printer = display) option was 
specified in the RUN command. 

• Null delimiters are not permitted in a MAT PRINT statement except as the 
final delimiter. 

Examples 

The following examples show the output resulting from several PRINT 
statements: 

Statement 

10 PRINT FLP,'A','B' 

20 PRINT 'A';'B' 

30 LET A$ = 'B' 

40 PRINT FLP,' A' A$ 

50 PRINT FLP,A$'A' ,A$;A$ 

60 PRINT A$;'A' 

70 LET A$=' , 

80 PRINT FLP,'A';A$;'A' 

90 PRINT 'A';' ';'A' 

100 PRINT FLP 

110 PRINT 'NAME' TAB 
(30) 'ADDRESS' 

120 END 

Output 

A-17 blanks-B 

AB 

AB 

BA-17 blanks-BB 

BA 

AA 

AnA 

Blank line 

NAME-25 blanks-ADDRESS 

BASIC Statements 151 

-----------_ ... _._ .. _-_ ..... _----- --------_ .. -.----.----.-



The following example shows the execution of a MAT PRINT statement: 

10 DIM A(3,4), A$(12), C(2,2) 

20 MAT READ A,A$ 

30 DATA 1,2,3,4,5,6,7,8,9,10,11,12, 

40 DATA 'A','8','C','D','E','F,'G','H','I','J','K','L' 

50 MAT C = (1) 

60 MAT PRINT A 

70 MAT PRINT A$; 

80 MAT PRINT C 

Displayed output will be: 

:I. "'j 
~: .. 

... , \:, '+ 
I::' 
' •• J 6 '7 

:I. 0 :I. :1. :1. ~.:.~ 

(:',BC:OEF[iH I .. ..11< I... 

:I. :1. 

:1. :I. 

r .......... ' 

C~ 
152 



(; 

c) 

( '/ 

(~) 

C) 

o 

[MAT] PRINT USING 'file refJ {Iine-num} 
L.' , char-var 

[ 
{

MAT array-name} [{' { M~ T arr. ay-name }] ] , 
, ch.ar-exp ;} anth-exp . .. [{; }] 

anth-exp char-exp 

[I[' EXIT line-num] )J 
[,IOERR line-numJ [,EOF line-num] [,CONV line-numJ 

[{Ch~r-S~ring }] 
pnnt-Image 

... print image [ {ch.ar-s~ring}] '" 
prlnt'lmage 

[MAT] PRINT USING AND IMAGE/FORM 

The [MAT] PRINT USING statement and its associated image or form allow 
you to display specified scalar values or array elements in a format of your 
own choosing. The [MAT] PRINT USING statement specifies the values to be 
displayed and the image or FORM to be used. These statements specify the 
format of the line to be displayed. The syntax of the PRINT USING and image 
statements is as shown above, where: 

file ref is an optional specification of FLO to FL9 to identify the logical file 
into which the formatted data is to be placed or FLP to specify printing. If 
not specified otherwise, the formatted data is displayed. FLO to FL9 must 
have been previously referenced in an OPEN statement. 

line-num is the stat~ment number of the image statement or FORM 
statement that defines how data is to be formatted when printed or 
displayed. 

char-var is a character variable containing format information identical to 
that in an image or FORM. statement. For an image statement, the contents 
of the character variable can be the same as the contents following the 
colon in a standard image statement. For a FORM statement, the first four 
positions in the character variable must be the characters FORM, followed 
by normal format specifications of a standard FORM statement. 

exp is an arithmetic or character value separated by semicolons or commas. 
These values are incorporated (edited) into the format of the image or 
FORM statement specified. A comma or semicolon can also follow the last 
expression. Whole arrays (preceded by MAT) can also be specified. If only 
arrays are referenced, the keyword MAT can precede PRINT USING. 

print-image is the format specification (see Format Specifications). 

BASIC Statements 153 

., .... , ..... ,. __ ._---- , ......... _ ..•. " ... __ .•. _-----



154 

When a [MAT] PRINT USING statement is executed, the specified 
expressions or array references are evaluated, and their values are edited in 
order of appearance in the [MAT] PRINT USING statement into the 
corresponding format specifications in the specified image or form. A string of 
character constants will be printed exactly as entered in the image statement 
described in the following text. Array elements are displayed by row .. For a 
description of FORM statement format, see FORM statement. 

Conversion of Data Reference Values with Image 

When the data referred to is a character value, the characters contained in it 
are edited into the line, replacing characters in the format specification 
including sign (+,-), pound sign, decimal point, and I I II. 

If an edited character value is shorter than its format specification, blank 
padding occurs on the right. If an edited character value is longer than its 
format specification, it is truncated on the right. A character constant 
containing no characters (null) causes blank padding on the entire format 
specification. 

An arithmetic expression is converted according to its format specification as 
follows: 

• If the format specification contains a plus sign and the expression value is 
positive, a plus sign is edited into the line. 

• If the format specification contains a plus sign and the expression value is 
negative, a minus sign is edited into the line. 

• If the format specification contains a minus sign and the expression value is 
positive, a blank is edited into the line. 

• If the format specification contains a minus sign and the expression value is 
negative, a minus sign is edited into the line. 

• If the format specification does not contain a sign and the expression value 
is negtive, a minus sign and the negative number will be printed, provided 
that the format specification is long enough to contain both the number and 
the sign. If the format specification is not long enough, asterisks are edited 
into the line instead of the negative number. Asterisks are also edited into 
the line for positive values that are too large. 

• The expression value is converted according to the type of its format 
specification as follows: 

I-Format: The value of the expression is converted to an integer, rounding 
any fraction. 

F-Format: The value of the expression is converted to ·a fixed-point 
number, either rounding the value or extending it with zeros according to the 
format specificaiton. 

E-Format: The value of the expression is converted to a floating-point 
number, rounding the value or extending it with zeros and adjusting the 
exponent according to the format specification. 



C) 

(
_ .. 

J 

(~) 

c) 

o 

For I or F format, the length of the integer portion of the arithmetic expression 
value is less than or equal to the length of the integer portion of the format 
specification, the expression value is edited, right-justified, and padded with 
blanks into the line. If the length of the integer portion of the format 
specification is less than the length of the integer portion of the expression 
value, asterisks are edited into the line instead of the expression value. 

Format Specifications 

For each occurrence of the pound sign (#) in an image statement or character 
variable, a single space is reserved in the display or print line for a character in 
the corresponding expression of the associated PRINT USING or MAT PRINT 
USING statement. The pound sign represents either character or arithmetic 
data. For arithmetic data, decimal points and the plus and minus signs, like the 
characters in the general format description, are printed as entered, provided 
the values are appropriate to the specified signs. (See Conversion of Data 
Reference Values for a discussion of the displaying / printing of signs in the 
image statement.) For character data, the character string will override any 
format descriptors. 

The various format specifications are: 

• Character- Format-One or more # characters, as shown: 

#### 

• I-Format (integer forrnat)-An optional sign followed by one or more # 
characters, as shown: 

[+-] # [#] ... 

• F-Format (fixed-decimal format)-An optional sign followed by either: 

1. No # characters, a decimal point, and one or more # characters, as 
shown: 

.#[###] 

2. One or more # characters, a decimal point followed by no # 
characters, as shown: 

3. 

#[###]. 

One or more # characters, a decimal point, and one or more # 
characters, as shown: 

[+-] [#] .... #[#] .... [#] ... 

• E-Format (exponential format)-Either the 1- or F-format (described 
previously) followed by four I characters (I I I I). 

---_ .. _ .... _-_ ....... _------ --_ .. _._ ............ __ .... _-----

BASIC Statements 155 



156 

The following rules define the start of a format specification: 

1. A #, character is encountered and the preceding character is not a # 
character, decimal point, plus sign, or minus sign. 

2, A plus or minus sign is encountered, followed by: 
a. A # character, or 
b. A decimal point that precedes a # character. 

3. . A decimal point is encountered, followed by a # character and: 
a. The preceding character is not a # character, plus sign, or minus 

sign, or 
b. The preceding character string isan F-format specification. 

The following rules define the end of a format specification that has been 
started: 

1. A # character is encountered and: 

2. 

a. The following character is not a # character, or 
b. The following character is not a decimal point, or 
c. The following character is a decimal point and a decimal point has 

already been encountered, or 
d. The following four consecutive characters are not I characters (I I I I). 

A decimal point is encountered and: 
a. The following character is not a # character, or 
b. The following character is another decimal point, or 
c. The following four characters are not I characters (I I I I). /"'~-""""., 

I 
\._ .. , 



o 

C) 

o 

C) 

o 

Some examples of expressions and the way they are displayed or printed 
under various format specifications are as follows: 

Format Expression Displayed or 
Specification Value Printed Format 

##### 'APPLES' APPLE 

#### -123 -123 

### 123 123 

### 12 1)12 

### 1.23 1)1)1 

##.## 123 ***** 

##.## 1.23 1)1.23 

##.## 1.23456 1)1.23 

##.##. .123 1)1).12 

##.## 12.345 12.35 

###1111 123 123E+OO 

###1111 12.3 123E-01 

###1111 .1234 123E-03 

##.##1111 123 12.30E+01 

##.##1111 1.23 12.30E-01 

##.##1111 .1234 12.34E-02 

##.##1111 1234 12.34E+02 

During output, specified expressions are displayed or printed beginning where 
the previous PRINT or PRINT USING statement ended in a line. If this is the 
first PRINT or PRINT USING statement, output begins on a new line. If the 
PRINT USING statement contains expressions or array elements that exceed 
format specifications in the specified image statement, output is controlled by 
the delimiter following the expressions. If the delimiter is a comma, the current 
line is displayed or printed, and the remaining expressions are formatted 
according to the beginning of the image statement, and output begins on a 
new line. If the delimiter is a semicolon, expressions remaining after the end 
of the image statement are formatted according to the beginning of the image 
statement, and output continues on the same line. 

BASIC Statements 157 

._------ --_._--._ ..... _-------



158 

When the image statement is being used, the delimiter following the last 
expression value controls printing at the end of expressions. If the delimiter is 
a comma or blank, the current line is displayed or printed and the next output 
will start on a new line. If the delimiter is a semicolon, the current line is not 
displayed or printed and the next output will be added to the current line. 

When a FORM statement is used, (see FORM), the current line is not displayed 
or printed unless a SKI P specification follows' the last data format specification 
used. 

If the end of the image or FORM statement is reached after the last expression 
value or the first unused format specification is found, formatting is stopped. 

Notes About PRINT USING 

• The number of image or FORM statements permitted in a BASIC program is 
only limited by available storage. 

• If the [MAT] PRINT USING statement output list contains at least one 
item, there must be at least one format specification in the corresponding 
image statement. 

• If there is no printer attached to the system, executing the [MAT] PRINT 
USING FLP statement stops the program, unless the P = D (printer = 
display) option was specified in the RUN command. 

• Image and FORM statements are nonexecutable and can be placed 
anywhere in a BASIC program, either before or after the PRINT USING 
statements that refer to them. 

• If the number of elements in an array row exceeds the number of 
conversion specifications in the associated image statement, the image 
statement is reused for the remaining elements of that row, and if the 
delimiter following the array is a comma, a new line is started. 

• The line for each row is terminated at the first unused conversion 
specification after the last element in the row is printed or displayed. 



o 

C') 
./ 

C) 

Examples 

The following example shows execution of a PRINT USING statement where: 

A = 342 and B = 42.02 

100 :RATE OF LOSS####EQUALS####.##POUNDS 
110 PRINT USING 100,A,B 

The output is: 

RATE OF LOSS 342 EQUALS 42.02 POUNDS 

The same output would result from: 

100 A$='RATE OF LOSS #### EQUALS ####.## POUNDS' 
110 PRINT USING A$,A,B 

Note that A$ must have been previously dimensioned to the appropriate 
length: 

90 DIM A$39 

The following example shows execution of a MAT PRINT USING statement: 

0010 DIM A(4,3) 

0020 :### ##.## ##.## IIII 

0030 MAT A=(1) 

0040 MAT PRINT USING FLP,0020,A 

The output would appear as: 

:I. :I. I 00 :1.0 I (10[····0 :I. 

l :I. 00 :I. 0 00[····0:1. 

:I. :I. I 00 10 I 00[····0:1. 

1 :l I 00 1- 0 I 00E····01 

BASIC Statements 159 

------_._-_ ... -_._ .. _-_ ........... _._-------- ._------_. _. __ ... _---_._ ... _-_._ .. _------



[MAT] PUT file ref, {~~i~~_::: } [, { ~~~~ .. ::: 1] 
MAT array-name MAT array-name 

160 

[{ 

[, EXIT line-numJ 1] 
[, EOF line-num] [, IOER R line-numJ 

[MAT] PUT 

The [MAT] PUT statement allows you to write the values of specified 
variables or array elements into a particular stream I/O file. The file must have 
already been opened with an OPEN statement. The syntax of the [MAT] PUT 
statement is as shown above, where: 

file ref is FLO to FL9 to identify the file into which variable values will be 
written. 

exp are function references, subscripted array references or whole arrays 
(preceded by MAT) representing the values to be written. Only one value is 
required. If more than one is specified, the values must be separated by 
commas. If only arrays are referenced, the keyword MAT can precede PUT. 

EOF, IOERR, and EXIT are error recovery exits (see EXIT statement). 

When a [MAT] PUT statement is executed, the specified scalar reference or 
array element value is entered from left to right into a buffer for the specified 
file, beginning at the current file position. The file is written sequentially so 
that the first value entered by the [MAT] PUT statement will be the first value 
assigned from the file when the file is referenced in a [MAT] GET statement. 
When the buffer becomes full, the contents are written out. Tape buffers are 
512 bytes in length. Diskette buffers are 128, 256, 512, or 1,024 bytes in 
length depending on diskette format. As many bytes as possible are used in 
each buffer. 

Character data is written with enclosing quotation marks. Comma separators 
are written between data items. A new line character (hexadecimal 15) 
replaces the comma at the end of an array row or is written at the end of the 
data items listed in the [MAT] PUT statement. 

A file can be activated only by an OPEN statement and is deactivated by a 
CLOSE statement or at the end of program execution. 

\~ ." 

''- •.... ~' 

/~ 

( 
'-" 

~ 
\ . ..... _ ... ;' 



C) 

lj 

Notes About [MAT] PUT 

• A file currently activated as an input file cannot be specified in a [MAT] 
PUT statement. It must be closed, then reopened for output, or a RESET 

EN D statement must be issued. 

• If space in the output file is exhausted before all values in the output list are 
placed in the file, program execution is terminated. 

• A [MAT] PUT statement referring to a currently closed file causes a 

program error. 

• A stream I/O file accessed with a [MAT] PUT statement must have been 
opened with an OPEN statement. 

Numeric values are written as numeric constants with only insignificant zeros 
dropped. All other digits are kept regardless of the RD=value. 

Examples 

A sample PUT statement is as shown: 

20 PUT FL1, Z3, 5*X-7,A,D$,9.005 

In this example, the specified values will be written into file FL 1. 

The following example shows a MAT PUT statement: 

0100 MAT PUT FL4, 8, C$ 

In this example, the values of the elements in array 8 and array C$ are put into 

file FL4. 

BASIC Statements 161 

... _-------- .... _ .......... __ ._-_. __ ._---_. _ .. _ .............. _._ ... _ .. _----_ ..... _ ...... _ ... _--- ._---



162 

[MAT] READ 

arith-var 
arith-arr-var 
char-var 
char-arr-var 
str-func 

MAT array-name [(rows [,columns] ~ 

arith-var 
arith-arr-var 

, char-var 
char-arr-var 
str-func 

[MAT] READ 

The [MAT] READ statement allows you to assign values to variables, array 
elements, or entire arrays from the internal data table created by DATA 
statements. The syntax of the [ MAT] READ statement is as shown above, 
where: 

var are simple arithmetic or character variables, substrings, subscripted 
references to a single array element or whole arrays (preceded by MAT). 
Only one variable is required. If only arrays are referenced, the keyword 
MAT can precede READ. 

At the beginning of program execution, a pointer is set to the first value in the 
data table. When a READ or MAT READ statement is encountered, successive 
values from the data table are assigned to the variables or array elements in a 
READ statement, or to entire arrays in the MAT READ statement. The values 
are assigned to the array by rows, beginning at the current position of the data 
table pointer. The data table pointer can be reset by use of the RESTORE 
statement. 

If a redimension specification follows the array name, the truncated integer 
portion of each value in rows and columns is used to redimension the array 
before values are assigned to it. 

Subscripts of array variables in the [MAT] READ statement are evaluated as 
they occur; thus, an assigned variable in a [MAT] READ statement can be 
used subsequently as the subscript of another variable in the same statement. 

"'" 

( 
I 

( .. " 



o 

c) 

c 

Notes About [MAT] READ 

• 8efore being used in a [MAT] READ statement, arrays must have been 
defined, either implicitly, or expli'citly in a USE or DIM statement. 

• If the data table is exhausted and unassigned variables, arrays or array 
elements remain in the [MAT] READ statement, an error occurs. 

• If there are no DATA statements in the program, the [MAT] READ 
statement will cause an error. 

• The [MAT] READ statement cannot be used in a program assigned to one 
of the function keys. This will cause an error when the function is executed. 

• If redimension specifications are entered, the rules under Redimensioning 
Arrays in Chapter 3 must be followed. 

• Each value read from the data table must be of the same type (character or 
arithmetic) as the variable to which it is assigned. 

Examples 

The following shows the execution of READ statements: 

10 DATA'JONES', 15.00, 'SMITH',20.50 

20 READ A$,A1,8$,81 

30 DATA 1,2,3,4,5,6 

40 READ A,8,C,X(A)'X(8),X(C) 

After execution of these statements, the character variables A$ and 8$ will 
contain the character strings JONES and SMITH, respectively, each padded on 
the right with blanks to a length of 18. The arithmetic variables A 1 and 81 will 
contain the decimal values 15.00 and 20.50, respectively. The arithmetic 
variables A, S, and C will contain the integer values 1, 2, and 3, respectively, 
and the first three elements of the one-dimensional array X will contain the 
integer values 4, 5, and 6, respectively. 

The following example shows a MAT READ statement: 

0100 MAT READ A$ (2), A, 8(12) 

In this example, array A$ is redimensioned to two elements, array 8 is 
redimensioned to 12 rows, and then values from the data table are assigned to 
arrays A$, A, and 8. 

BASIC Statements 163 

--------_._--_ ... _ .... " .. _-



164 

[ {

KEY rei-operator Char-var}] 
line-num . 

READ FI LE [USING { h .. } ~ file-ref , .. ' {. , 
c ar-var ' REC= mteger} 

arith-var 

arith-var 
arith-arr-var 
char-var 
char-arr-var 

str-func [ 
MAT array·name (rows [,cOIS] J 

[{ 

[,EXIT line-num] 

[,EOF line-num] [,IOERR line-num] 

[MAT] READ FILE 

[ 
. ,I [ {NO KEY line-num}] }] 

,CONV Ime-num..J ' NOREC line-num 

The [MAT] READ FILE statement allows you to assign values from a record in 
a file (record I/O) to specified variables or arrays. By entering the optional 
USING parameter, you can also specify a FORM statement that permits 
conversion of data from the format defined in the FORM statement. Note that 
each value to be assigned must be of the same type as the variable to which it 
is assigned (numeric or character). The syntax of the READ FILE statement is 
as shown above, where: 

USING line-num/char-var indicates that data to be assigned will be in the 
format defined in the FORM statement at the line number specified or 
assigned to the character variable specified. If this parameter is not entered, 
the system assumes that numeric data is in internal format, and that 
precision is identical to that currently in operation. 

file-ref is FLO to FL9 to identify the file from which variable values will be 
assigned, or FLS (see File FLS). 

KEY rei-operator char-var allows you to specify the key field used to access 
the record in the file. KEY indicates key indexed access of the file, 
rei-operator indicates equal (=) or greater than or equal (~), and char-var 
contains the actual record key to be compared to those of records in the file 
until the matching record is found. The character variable can be less than 
or equal to the length of the actual key field. If the character variable is 
shorter than the key field, the search of the index will consider only that 
part of the key field equal to the length of the specified search argument. If 
this parameter is not entered, the next sequential record in the file is 
accessed. For a key indexed file, the record with the next sequential key is 
accessed. 

.......... ,. 

(----' 
'-'''''' " 



o 

C) 

1",---,. 

/ J 

\.--"" 

o 

C) 

o 

REC = can be a positive,· nonzero integer or numeric variable indicating the 
logical record number of the record to be accessed. If this parameter is not 
entered, the next (or first) logical record will be accessed. 

var are simple arithmetic or character variables, substrings, subscripted 
references to a single array element or whole arrays (preceded by MAT) to 
which values are to be assigned. Only one variable is required. If only 
arrays are referenced, the keyword MAT can precede READ FILE.· 

EXIT, EOF, IOERR, NOKEY, CONV, and NOREC indicate that program control 
should be transferred to the appropriate statement number if the indicated 
error condition occurs. See EXIT statement in this chapter. 

Notes About [MATl READ FILE 

• The REC parameter cannot be used to access a key indexed file. 

• The KEY parameter can be specified only if a key indexed file has already 
been opened (using OPEN FILE). 

• If redimension specifications are entered, the rules under Redimensioning 
Arrays in Chapter 3 must be followed. 

• The keyword MAT must precede referenced arrays unless all references in 
the data list are arrays. In this case, use the keywords MAT READ FILE. 

• EOF, IOERR, NOKEY, CONV, and NOREC error recovery exits can be 
entered in any sequence. 

• Each value to be assigned from the record must be of the same type as the 
variable to which it is assigned (character or numeric). 

• The length of the KEY parameter must be less than or equal to the actual 
record key field. 

• If OUT was specified in the OPEN FILE statement for the referenced file, a 
program error will occur. 

• A READ FI LE issued to a type 2 file containing hex 1 E or hex 15 causes 
unpredictable results. These characters are record delimiters. 

• A READ FILE to device '002' will open the keyboard for input. Data entered 
on the keyboard is displayed on the top 14 lines of the screen. 

A sample READ FILE statement is shown below: 

20 I$='INVENTORY' 

30 READ FILE FL8, KEY=I$,A$,D$,F$,R$,NOKEY 999 

In this example, the record in file FL8 with a key field matching INVENTORY 
will be accessed. Next, values for A$,D$,F$,R$ will be assigned from the 
record. If no record in the file has a key of 'INVENTORY', program control will 

transfer to statement 999. 

BASIC Statements 165 



166 

rMAT] REREAD FILE [USING {Iine-num} J file-ref 
~ char-var' , 

[ { 
CONV line-num}] 

, EXIT line-num 

[MAT] REREAD FILE 

arith-var 
arith-arr-var 
char-var 
char-arr-var 

str-func J 
MAT array-name [(rows [,columns] ) 

The[ MAT] REREAD FILE statement allows you to access the last record that 
was read. After the record is accessed, the execution of a [MAT] REREAD 
FILE statement is identical to execution of a [MAT] READ FILE statement. 
The last access to the file being referenced must have been with a [MAT] 
READ FILE or another [MAT] REREAD FILE statement. The CONV and EXIT 
error recovery exits are the same as those described for the [MAT] READ 
FI LE statement. 

Note: A REREAD FILE statement referencing device '002' will reread whatever 
is on the top 14 lines of the screen without opening the keyboard for input. 

A sample REREAD FILE statement is shown below: 

010 MAT REREAD FILE USING 100, FL1,A,A$ 

In this example, the FORM statement at 100 is used to reread the file 
referenced by FL 1, and the data in the record is assigned to array A and A$. 

/....---, , 

·r" 
\ ' .. _/ 



C) 

c 

c 

REM 

REM [commen~ 

The REM (remark) statement allows you to insert remarks or comments in a 
BASIC program listing. The syntax of the REM statement is as shown above, 
where: 

comment is one or more characters. This is an optional entry. 

The REM statement is nonexecutable. It appears in program listing, but has no 
effect on program execution. 

Notes About REM 

• A REM statement can be used anywhere in a BASIC program. 

• Also see Function Keys in Chapter 2. 

Example 

A sample REM statement is as shown: 

10 REM THIS PROGRAM DETERMINES THE COST PER UNIT 

BASIC Statements 167 

---_._._---_.- ... _-------- -----------_._ .... __ .... _--_._-._. __ .- ._-



168 

END END 

RESET [FI LE ] file-ref 
REC= {in~eger } 

anth-var , file-ref 
REC= {in~eger } 

anth-var 

KEY=or> char-var KEY= or> char-var 

[{

[,EXIT line-numJ }] 

[, IOERR line-numJ [,NOREC line-num] [,NOKEY line-number] 

RESET [FILE] 

The RESET [FILE] statement allows you to reposition an input file to its 
beginning or an output file to its beginning or end. The syntax of the RESET 
statement is as shown above, where: 

file ref is FLO to FL9 to identify the file to be repositioned. The file must 
have been previously opened with an OPEN statement. Only one file is 
required in each RESET statement. The END entry is optional and is only 
valid for stream I/O files. 

REC = allows you to specify the number of the logical record to which you 
want the file reset. This record will then be the next record in the file to be 
accessed. This parameter is valid only for record I/O files. 

KEY = or ;:::'allows you to specify the key field in the record to which you 
want the file reset. This parameter is valid only for key-indexed record I/O 
files. 

When a RESET statement is executed, the specified stream I/O file is 
repositioned so that subsequent GET or PUT file references to the file will refer 
to the first item in the file. When a file is opened by an OPEN statement, the 
first item in the file is automatically accessible. 

When RESET END is specified to a stream I/O file opened for input, the file is 
closed and reopened for output. The file is reset so that writing of new data 
begins at the end of any existing data in the file. 

If a file is to be used for input while open for output during execution of the 
same program, it must be closed and reopened with CLOSE [FILE] and OPEN 
statements. 

\ ', ... _._",,-



o 

c) 

When a RESET FILE statement is executed, the specified record I/O file is 
repositioned so that subsequent READ FILE and WRITE FILE references to the 
file will refer to the first item in the file. When a file is opened by an OPEN 
FILE statement, the first item in the file is automatically accessible. The REC= 
parameter allows you to specify the number of the record to which you want 
the file reset. The KEY= or KEY~ parameter allows you to specify the key field 
within the record to which you want the key-indexed file reset. If you specify 
a particular key, and the system is unable to locate that key, the record with 
the next higher sequential key is accessed if KEY~ is specified. Otherwise an 
error will occur. 

Notes About RESET 

• If a file specified in a RESET statement is not currently active, the file 
reference in the RESET statement is ignored. 

Example 

• NOREC, IOERR, NOKEY, and EXIT are error recovery exits. See EXIT 
statement. 

In the following example, the RESET statement (number 100) repositions file 
FL6 to its beginning. The GET statement (number 110) then reads the first 
three values of file FL6 into A, 8, and C, respectively. 

90 GET FL6, X,Y,Z 

100 RESET FL6 

110 GET FL6,A,8,C 

BASIC Statements 169 

-----_. __ ._-._----_._---_ ... ----- - - - _ .... __ .-._ .... __ .. , ._----------_._--- ---------"-,,. ,_._""-,,--- ... _._,----,,-,,- . ,--------------. __ .-._ .. _._----_._ •.. _,. __ .. -



RESTO R E [ comment] 

·170 

RESTORE 

The RESTORE statement allows you to begin assigning values beginning with 
the first item in the first DATA statement (see DATA) of the program according 
to the next READ statement executed. The syntax of the RESTORE statement 
is as shown above, where: 

comment is one or more characters. 

The RESTORE statement returns the internal data table pointer from its current 
position to the beginning of the table. The optional comment is a character 
string that does not affect the execution of the statement. 

Notes About RESTORE 

• A RESTORE statement in a program that contains no DATA statements is 
ignored. 

• A RESTORE statement for an already restored data table pointer is ignored. 

Example 

After the following statements are executed, the variables A and C will each 
have a value of 1, and Band D will each have a value of 2: 

10 DATA 1,2 

20 READ A,B 

30 RESTORE 

40 READ C,D 

\ 



o 

C)· 

(
~ --) 

-----/ 

c) 

RETURN 

RETURN [{arith.eXp}] 
char·exp 

For the use of the RETURN statement in the creation of subroutines, see the 
GOSUB and RETURN statements. Also see Function Keys. 

For the use of the RETURN statement with a multiline function definition, see 
the DEF, RETURN, FNEND. 

BASIC Statements 171 

......... __ ... _--



[ 1 
KEY rel-exp Char-var}] 

[MAT] REWRITE FI LE [USING {Iihne-num} ~ file-ref, {. } 
c ar-var J REC= Integer 

arith-var 

172 

arith-var 
arith-arr-var 
char-var 
char-arr-var 
str-func 
MAT array-name [(rows [ ,columns] )] 

[{

[,EXIT line-num] 

[,EOF line-num] [,IOERR line-num] 

[MAT] REWRITE FILE 

[ . ] [ { NOREC line-num }J}] 
,CONV Ilne-num 'NO KEY line-num 

The [MAT] REWRITE FILE statement allows you to change or update an 
existing record in a file (record I/O). The file, however, must satisfy the 
following requirements: 

• The parameter ALL must have been specified in the OPEN FILE statement 
for the file. 

• If the KEY or REC= parameter is not included in the [MAT] REWRITE FILE 
statement, the last access to the file must have been a READ FILE or 
REREAD FI LE statement for the record to be changed. 

Upon execution, the variables or arrays in the [MAT] REWRITE FILE 
statement are transferred to a buffer for the file reference specified. That 
buffer will contain the last record read from the file. If the record contains a 
key field (for key-indexed access), the field may not be altered. Variable values 
are converted for record output just as they are for the [MAT] WRITE 
statement, except that the X control specification in the FORM statement 
causes data to be bypassed rather than blanked. 

The syntax of the [MAT] REWRITE FILE statement is as shown above, where 
all of the parameters have the same meaning as those described for the 
[MAT] READ FILE statement. 

\ '-. 

' ... / 



Example 

o 

C') 

C) 

C) 

') C
· 

--- ...... " ..................... _ .. _.----

A sample REWRITE FILE statement is shown below: 

20 REWRITE FILE USING 100, FL9, REC=8,D$,F$,R$,NOREC 999 

In this example, record number 8 on the file referenced by FL9 will be 
rewritten with variables 0$, F$ and R$ using the format specifications in the 
FORM statement at line number 100. If record number 8 cannot be found in 
the file, program control will be transferred to statement 999. 

BASIC Statements 113 

--------_ ........•. _-------



o [ {comment }] 
ST P RC=arith-exp 

174 

STOP 

The STOP statement allows you to terminate program execution. The syntax of 
the STOP statement is as shown above, where: 

comment is one or more characters. 

RC = is the return code used by the CSKIP command (see Procedure Files). 

When a STOP statement IS encountered during execution of a program, it 
causes all open files to be closed and it terminates processing. The actions of 
the STOP statement are identical to those of the END statement. If the RC= 
parameter is not specified, it defaults to zero. If RC= is less than zero, or 
greater than 255, a value of zero is assumed. 

Note About STOP 

A STOP statement can appear anywhere in a BASIC program. 

Example 

A sample STOP statement is as shown: 

110 STOP 

/ 



o 

C) 

o 

o 

USE char-var [ len] char-var [len] 

{

arith-var } [ {arith-var }] 

arith-arr (rows [,columns] ) , arith-arr (rows [,columns]) .... 

USE 

char-arr [len] (rows [,columns] ) char-arr [len] (rows [ ,columns] ) 

The USE statement allows you to specify variables to be assigned to the 
common area of storage. This common area of storage holds these specified 
variables and passes them from one BASIC program to the next. The values of 
these variables are not changed when one program CHAINs to another 
program (see CHAIN statement). The syntax of the USE statement is as shown 
above, where: 

var or arr is a numeric or character variable or array that is to be assigned 
to the common area of storage. 

rows, columns are required only for arrays. These nonzero, unsigned integer 
constants specify the number of rows and columns to provide the 
dimensions of the array assigned to the common area of storage. 

[len1 allows you to specify the number of characters to be assigned to the 
char-var or each element of a character array. 

Notes About." USE 

• If a variable is defined as an array in a USE statement, it must not be 
included in a DIM statement (see DIM). 

• USE must be specified in both the program chained from and chained to. 

• If one or two dimensions are specified for a variable, the variable is 
assigned to the common storage area as an array with those dimensions. 

• You can enter multiple USE statements in a program, but they must be the 
first statements containing variable references, and there must be no other 
statements between them. Thus, for example, the DEF, unconditional 
GOSUB, and GOTO statements can be executed before the USE statement. 

Variable data is assigned in the common area of storage in the same 
sequence in which it was entered in the USE statement. Thus, data values 
are unpredictable if data types differ from one chained program to the next. 

BASIC Statements 175 



176 

Example 

For instance, in this example: 

0290 USE A(9,4),. T, C 

an array (A) with nine rows of four columns each is assigned to the common 
storage area. In addition, the scalar variables T and C are also assigned to the 
common storage area. 

,/'" .-........." 

\ ........ 



_CMATJWRITE FILE rUSING {line-num} ,]file-ref, , \ L char-var 

'--) 

f 
"'--. 
"'-.----' 

C) 

c) 

arith-var 
arith-arr-var 
char-var 
char-arr-var 
str-func 
MAT array-name 

{

[,EXIT line-num] } 

[, EOF line-num] [, IOER R line-num] [, DUPKEY line-numJ [,CONV line-numJ 

[MAT] WRITE FILE 

The [MAT] WRITE FILE statement allows you to add a record at the end of a 
record I/O file. The record is written with a length equal to the length 
specified in the OPEN FilE statement. The USING parameter can be used to 
specify a character variable (which must contain valid FORM statement format 
specifications) or a FORM statement. 

FORM statement specifications may cause truncation or padding of character 
variables and converison of numeric variables to various formats. Control 
specifications in the FORM statement also provide for changing the order of 
variables in the [MAT] WRITE FilE statement when written (through the POS 
specification). FORM statement control specifications also allow you to write 
null fields into the record. If the number of variables in the [MAT] WRITE 
FilE statement exceeds the control specifications in the FORM statement, the 
control specifications will be reused from the beginning of the FORM 
statement until all variables are formatted. Record fields not receiving a value 
are filled with blanks. Any control specifications beyond the last format 
specified will be honored. This is helpful in positioning the cursor in device 
'002'. 

All of the parameters in the [MAT] WRITE FilE statement have the same 
meaning as those described for the [MAT] READ FilE statement. 

Notes About WRITE FILE 

• The KEY and REC parameters are not valid in the [MAT] WRITE FilE 
statement. 

• If IN was specified in the OPEN FilE statement for the file referenced in a 
WRITE FilE statement, an error will occur. 

• The EOF, IOERR, DUPKEY, and CONV error exits can be entered in any 
order. 

• If RECl was specified in the OPEN for this file, the file will be written from 
the start. Otherwise, records will be added at the end of existing records 
with record lengths equal to those in the file. 

BASIC Statements 177 

. _---- _ ... _ .. -_._-..... ..... _---_ .... _ ........ _--_ .. _-----_. __ ..... _-----... _ .. 



178 

Example 

A sample WRITE FILE statement is shown below: 

020 WRITE FILE USING 090, FL6,A$,B$,C$,EOF 888 

In this example, values for A$, B$, and C$ are written at the end of file FL6, 
according to the control specifications in the FORM statement (line number 
090). 

MATRIX OPERATIONS 

In your system, an array can contain either numeric or character data, while a 
matrix can contain only numeric data. Before being used in MAT statements, 
arrays and matrices must have been defined; either implicitly or explicitly in a 
DIM or USE statement. 

MAT ASSIGNMENT STATEMENTS 

MAT assignment statements allow you to assign values to elements of an 
array. The value assigned can be derived from any of the following array 
expressions. Each array expression is discussed in detail later. 

Array Expression Meaning 

(e) Scalar value 

A Simple array 

A+B Matrix addition 

A-B Matrix subtraction 

A*B Matrix multiplication 

(e) * A Scalar multiplication 

IDN Identity function 

INV (A) Inverse function 

TRN (A) Transpose function 

AIDX (A) Index function (ascending order) 

DIDX (A) Index function (descending order) 

' ......... 

\ '-_ .. ,-



o 

c) 

c' 

o 

MAT array-name [(rows [ ,columns] ) ] = (scalar-exp) 

MAT ASSIGNMENT (SCALAR VALUE) 

This statement allows you to assign a specified scalar value to each element of 
an array. The syntax of this statement is as shown above, where: 

array name is the name of the array that receives the values. 

rows, columns are the redimension specifications of the array (see 
Redimensioning Arrays). 

sca/ar-exp is the value to be assigned. 

When this statement is executed, the parenthesized scalar expression is 
evaluated and each element in the named array is set to that value. 

If redimension specifications are included, the truncated integer portion of each 
expression in rows, columns is used to redimension the array before the scalar 
value is evaluated and assigned to each of the array elements. 

For character arrays, if the expression value is shorter than the array element, it 
is padded on the right with blanks to the specified length before being 
assigned. If there are more characters in the expression value than the array 
element length, only the leftmost characters are assigned to the array 
elements, and the remainder is truncated. 

Notes About MAT (Scalar) 

• The scalar expression to the right of the equal sign must be of the same 
type (arithmetic or character) as the array to which it is assigned_ 

• If redimension specifications follow the array name, the rules as stated 
under Redimensioning Arrays in Chapter 3 must be followed. 

.. _------_._-_._._. __ .. ------_. ... __ ._._------------_ .. _ ...... _----------. 

BASIC Statements 179 



180 

Example 

The following example shows the execution of a MAT assignment (scalar) 
statement: 

40 DIM Y (3,3) 

50 MAT Y(2,2) = (1) 

The resulting values are: 

Y is 

Columns 
~ 

Rows 

....... ".,/ 



o 

o 

o 

c 

MAT array-name [(rows, [columns] ) ] = array-name 

MAT ASSIGNMENT (SIMPLE) 

The simple MAT assignment statement allows you to assign the elements of 
one array to another array. The syntax of this statement is as shown above, 
where: 

array-name is the name of the array. 

rows, columns are the redimension specifications for the first array (see 
Redimensioning Arrays in Chapter 3). 

Each element of the array specified to the right of the equal sign is assigned to 
the corresponding element of the array specified to the left of the equal sign. 

If redimension specifications follow the name to the left of the equal sign, the 
truncated integer portion of each expression value in rows, columns is used to 
redimension the array before values are assigned to it. 

Notes About MAT (Simple) 

• Both arrays specified must be the same type (arithmetic or character). 

• Both arrays specified in the array assignment statement must have identical 
dimensions (after redimensioning, if any). 

• If redimension specifications are included, the rules described under 
Redimensioning Arrays must be followed. 

BASIC Statements 181 

------- .-... __ ._.-._ .................. - ---------- ._-_._ ..... _. __ ... ---



182 

Example 

The following example shows the execution of a MAT assignment (simple) 
statement: 

20 DIM A(2,2),B(2,2) 

100 MAT A = 8 

The resulting values are represented below: 

a b e f 

If B = and A = 

c d 9 h 

then, after statement 100: 

a b a b 

B A 

c d c d 

,/'~ 

\.,," " 



L
~""" 

/ 

o 

MAT matrix-name [(rows [,columns] I] = matrix name {~} matrix-name 

MAT ASSIGNMENT (ADDITION AND SUBTRACTION) 

The MAT assignment statement allows you to add or subtract the contents of 
two matrices and assign the result to a third matrix. The syntax of the 
statement is as shown above, where: 

All parameters of the statement are the same as those for other MAT 
assignment statements. 

The corresponding elements of the matrices specified to the right of the equal 
sig~ are added or subtracted, as indicated, and the result of the operation is 
assigned to the corresponding elements in the matrix specified to the left of 
the equal sign. 

If redimension specifications follow the matrix name to the left of the equal 
sign, the truncated integer portion of each expression value in rows, columns is 
used to redimension the matrix before values are assigned to it. 

Notes About MAT (Addition and Subtraction) 

• All three matrices must be numeric. 

• All three matrices specified in the statement must have identical dimensions (after 
redimensioning, if any). 

• If redimension specifications are included, the rules described under 
Redimensioning Arrays in Chapter 3 must be followed. 

---_ ..................... ,._ .. _ ...•.... _. ----------_ ....... ' ... __ .. 

BASIC Statements 183 



Examp'~ 

The following example shows execution of this statement: ".--"----/ ' 

10 DIM X(3,3), Y(2,2), Z(2,2) 

100 MAT X (2,2) ;: Y + Z /""'-

The resulting values are: 

a b e a+e b+f 

If Y::; and Z = , then X ::::; /""-

\ ....... - '" 

c d 9 h c+g d+h 

c 

1~4 



C) 

C
--·\ 

) 

C: 

MAT matrix-name [(rows ,columns) ] = matrix-name * matrix-name 

MAT ASSIGNMENT (MATRIX MULTIPLICATION) 

This statement allows you to perform the mathematical matrix multiplication of 
two numeric matrices and assign the product to a third matrix. The syntax ot 
this statement is as shown above, where: 

all parameters in the statement are the same as those for other MAT 
assignment statements. 

In matrix multiplication, a matrix (A) of dimensions (p,m) and a matrix (B) of 
dimensions (m,n) yield a product matrix (C) of dimensions (p,n) such as that for 
i = 1,2 ... ,p and for j = 1,2 ... ,n: 

m 
C(i,j) = ~ 

k = 1 
A(i,k)* B(k,j) 

If redimension specifications follow the matrix name to the left of the equal 
sign, the truncated integer portion of each expression value in rows, columns is 
used to redimension the matrix before values are assigned to it. 

Notes About MAT (Matrix Multiplication) 

• All three matrices specified must be numeric. 

• If the matrix specified to the left of the equal sign is the same as either 
matrix to the right of the equal sign, you will get incorrect results. 

• All of the following relationships must be true (after redimensioning, if any) 
where: 

A = B*C 

1. All three matrices must be two-dimensional 

2. The number of columns in the second matrix (B) must be equal to the 
number of rows in the third matrix (C). 

3. The number of rows in the first matrix (product matrix A) must equal 
the number of rows in the second matrix (B). 

4. The number of columns in the first (product matrix A) must equal the 
number of columns in the third matrix (C). 

• If redimension specifications are included, the rules described under 
Redimensioning Arrays in Chapter 3 must be followed. 

BASIC Statements 185 

._--- ---_._ ...... _ ......... _ ..... _._- .. -.. __ ._-. __ ... _ ... _-----



186 

Example 

The following example shows the execution of this MAT assignment 
stat~mtmt: 

10 DIM X(2,2), Y(2,2), Z(2,2) 

100 MAT Z ::; X * Y 

The resulting values are: 

a b e f 

If X;::; and Y:;:; ,then Z;::; 

c d 9 h 

/ 

'I 

',,-



• 

CI 

1''--··' ~ 

o 

MAT matrix-name [(rows [,columns] I] ~ (arith-expl*matrix-name 

MAT ASSIGNMENT (SCALAR MULTIPLICATION) 

This statement allows you to multiply the elements of a numeric matrix by the 
value of an arithmetic expression, and assign the resulting products to the 
elements of another numeric matrix. The syntax of this statement is as shown 
above, where: ' 

matrix-name is the name of a numeric matrix. 

rows, columns are redimension specifications (optional). 

(arith-exp) is a scalar arithmetic expression, which must be enclosed in 
parentheses. 

The scalar expression is evaluated, and each element in the matrix to the right 
of the equal sign is multiplied by the value of the expression. The result is 
assigned to the corresponding elements of the matrix to the left of the equal 
sign. 

If redimension specifications follow the matrix name to the left of the equal 
sign, the truncated integer portion of each expression value in rows, columns is 
used to redimension the matrix before the multiplication. 

Notes About MAT (Scalar Multiplication) 

• Both matrices specified must be numeric. 

• Both matrices specified must have identical dimensions (after 
redimensioning, if any). 

• If redimension specifications are included, the rules under Redimensioning 
Arrays in Chapter 3 must be followed. 

BASIC Statements 187 

--------_.-----.---_._---------



Example 

The following example shows execution of a MAT assignment statement: 

20 DIM X(2,2), Y(2,2) 

100 MAT Y = (4) * X ~-'-

The resulting values are: 

a b 4*a 4*b 

If X = , then Y = /-----

\ 
'-- -

c d 4*c 4*d 

'- .. _" 

(
-" 

...... , ,.'.'/ 

188 



o 
MAT matrix-name [(rows,columns)] = ION 

MAT ASSIGNMENT (IDENTITY FUNCTION) 

This statement allows you to make a numeric matrix assume the form of an 
identity matrix. The syntax of the statement is as shown above, where: 

all the parameters are the same as those for other MAT assignment 
statements, and ION specifies identity matrix. 

Each element of the specified matrix for which the values of both subscripts 
are equal, for example, A(2,2) or A(3,3), is assigned the integer value 1. All 
other elements, for example A(2,3) or A(3,1), are assigned the value O. 

If redimension specifications follow the matrix name, the truncated integer 
portion of each expression value in rows, columns is used to redimension the 
matrix before the assignment of 1 or 0 to each of its elements. 

Notes About MAT (Identity Function) 

• The matrix specified must be numeric. 

• The specified numeric matrix must be a square matrix; that is, the number 
of rows must equal the number of columns (after redimensioning, if any). 

• If redimension specifications are included, the rules under Redimensioning 
Arrays, in Chapter 3 must be followed. 

BASIC Statements 189 

-------_ ... _ .. _ .......... ",' ... _---_. ---------_ ...... ,._ .. , ... _.,,, .. ,. __ .. . 



190 

Example 

The following example shows the execution of a MAT (identity function) 
statement: 

50 DIM X(16) 

60 MAT X(4,4) = ION 

The resulting values are: 

0 0 0 

0 0 0 
X is 

0 0 0 

0 0 0 



o 

o 

MAT matrix-name [(rows, columns) ] = I NV (matrix-name) 

MAT ASSIGNMENT (INVERSE FUNCTION) 

This statement allows you to assign the mathematical matrix inverse of one 
matrix to another matrix. The syntax of the statement is as shown above, 

where: 

all parameters are the same as those for other MAT assign~ent statements, 
and INV specifies the inverse function. 

The matrix inverse of the matrix specified to the right of the equal sign is 
assigned to the matrix specified to the left of the equal sign. For the square 
matrix A of dimensions (m,m), the inverse matrix B, if it exists, is a ma.trix of 
identical dimensions such that: 

A*8 = B*A = I 

where I is an identity matrix. 

Not every matrix has an inverse. The system function DET (see System 
Functions) can be used to determine whether a given matrix has an inverse. 
The inverse of matrix A exists if DET(A),c O. 

If redimension specifications follow the matrix name to the left of the equal 
sign, the truncated integer portion of each expression value in rows, columns is 
used to redimension the matrix before values are assigned to it. 

Notes About MAT (Inverse Function) 

• Both matrices specified must be numeric. 

• 80th matrices specified must be square, and both must have identical 
dimensions (after redimensioning, if any). 

• The determinant is considered zero and the matrix singular (inverse 
undefined) if the result is 1 E-20 or less. 

• If redimension specifications are included, the rules under Redimensioning 

Arrays in Chapter 3 must be followed. 

BASIC Statements 191 

---_ .. __ ..... _ .. __ ." ..... _-----



192 

Example 

The following example shows execution of a MAT (inverse) statement: 

20 DIM X(2,2), Y(2,2) 

80 IF DET (Y) = 0 GOTO 300 
90 MAT X = INV (Y) 

295 GOTO 310 
300 PRINT 'SINGULAR MATRIX' 
310 STOP 

The resulting values are: 

If Y is , then X is 

2 

2 -1 

-1 

( 
I 

/ ' 

c 



o 

C) 

C" 
I 

c 

o 

MAT array-name [(rows, columns) ] = TRN (array-name) 

MAT ASSIGNMENT (TRANSPOSE FUNCTION) 

This statement allows you to replace the elements of one array with the matrix 
'transpose of another array. The syntax of the statement is as shown above, 
where: 

all parameters in the statement are the same as those for other MAT 
assignment statements, and TRN specifies the transpose function. 

The transpose matrix of the array specified to the right of the equal sign is 
assigned to the array specified to the left of the equal sign. The values in 
column y of one array become the values in row y of the other array. 

If redimension specifications follow the ~rray name to the left of the equal 
sign, the truncated integer portion of each expression value in rows, columns is 
used to redimension the array before values are assigned to it. 

Notes About MAT (Transpose Function) 

• Both arrays specified must be two-dimensional, and the number of rows in 
each array must be equal to the number of columns in the other (after 
redimensioning, if any), and they must be the same type (character or 
numeric). 

• The same array cannot be used on both sides of the equal sign. This will 
cause incorrect results. 

• If the redimension specifications are included, the rules under 
Redimensioning Arrays in Chapter 3 must be followed. 

------._-_ .. __ ._-_ .......... _--------

BASIC Statements 193 



194 

Example 

The following example shows the execution of a MAT (transpose function) 
statement: 

40 DIM A(3,2), 8(2,3) 

80 MAT 8 = TRN(A) 

The resulting values are: 

a d 

D If A is b e , then B is 
d e f 

c f 

' ... " ... 



o 

C
------' 
) 

Co) 

o 

o 

MAT matrix-name [(rows) ] = AIDX (array-name) 

MAT ASSIGNMENT (ASCENDING INDEX) 

This statement allows you to index the elements of an array and assign the 
index values to another array. Character arrays are indexed alphabetically, and 
numeric arrays are indexed numerically. The syntax of the statement is as 

shown above, where: 

matrix-name, array name are one-dimensional character or numeric arrays. 

, rows is the dimension of the array named. 

AIDX indicates the ascending index function. 

When a MAT AI DX statement is executed, index values are assigned to the 
matrix on the left of the equal sign, according to the order of the values 
entered into the array on the right of the equal sign. In other words, the 
system determines the sequence of the values, then indicates the positions in 
the array of the values in ascending order. 

Notes About Ascending Index 

80th arrays specified must be one-dimensional with the same number of 

elements. 

• The array on the left of the equal sign must be numeric. 

Example 

The following example shows the execution of a MAT AIDX statement: 

30 DIM A(10),8(10) 
40 MAT 8 = AIDX(A) 

If array A = 9 
5 
6 
o 
2 
7 

8 
4 
1 
3 

then array 8 will contain 4 
9 
5 
10 
8 
2 
3 
6 
7 

Note that the numbers in array 8 show the position of the numbers in 
ascending order as they appear in array A (0 is in the fourth position, 1 is in 

the ninth position, and so on). 

BASIC Statements 195 

-------------------------------- ------- ---------------- ----------



MAT matrix-name [(rows)] = DIDX (array-name) 

196 

MAT ASSIGNMENT (DESCENDING INDEX) 

This statement allows you to index the elements of an array and assign the 
index values to another array. Character arrays are indexed alphabetically and 
numeric arrays are indexed numerically. The syntax of the statement is as 
shown above; where, all of the parameters have the same meaning as those 
for the ascending index statement (AIDX). 

The execution of the descending index statement is the same as execution of 
the ascending index statement (AIDX) except that arr~y elements are indexed 
in descending order. 

Notes About Descending Index 

• 80th arrays specified must be one-dimensional with the same number of 
elements. 

• The array on the left of the equal sign must be numeric. 

Example 

The following example shows the execution of a MAT DIDX statement: 

30 DIM A(10) ,8(10) 
40 MAT 8= DIDX(A) 

If array A = 9 
5 
6 
o 
2 
7 
8 
4 

3 

then array 8 will contain 1 

7 
6 
3 
2 
8 
10 
5 
9 
4 

Note that the numbers in array 8 show the position of the numbers in 
descending order as they appear in array A (9 is in the first position, 8 is in the 
seventh position, and so on). 



o 

c' 

c' 

o 

o 

Chapter 5. More I nformation About Your System 

5110 BASIC COMPATIBILITY WITH IBM 370/VS BASIC 

The BASIC language used in the 5110 differs from IBM 370/VS BASIC in the 
following areas: 

I 

• System file reference codes are limited to FLS,FLP, and FLO-FL9, which 
appear in I/O statements as unquoted strings. 

• Double quotation marks are not available. 

• System OPEN statements contain more information than VS BASIC. 

• The system provides hexadecimal constants, which are enclosed in single 
quotation marks and preceded by X. 

• The system provides ascending/descending index on MAT assignment 
statements (AIDX/DIDX). 

• The system allows you to direct formatted output to either the printer, or 
the display screen, or a tape/diskette file. This capability is provided 
through an additional parameter (FLP) in PRINT, MAT PRINT, PRINT 
USING, and MAT PRINT USING statements. An entry of FLO-FL9 in this 
position directs output to the file referred to in a corresponding OPEN 
statement. VS BASIC uses PRINT TO statements for this purpose. 

• The system allows you to specify file description information that is 
provided by the operating system (in 370/VS BASIC) via the OPEN [FILE] 
statement. 

• The system allows you to CHAI N to a specified program without initializing 
the data area reserved by variables specified in a USE statement. 

• The system allows you to list data in the USE statement, including 
dimensions for arrays. In conjunction with a CHAIN statement, the USE 
statement allows you to pass data from one program to another. 

• The system does not provide the following VS BASIC functions: 
CLK,CNT,CPU,DAT(x), DOT(X,Y), JDY(x), and TIM. 

More In·formation About Your System 197 

----- .. _ ......... _._ .. _ .... _------ -----_. _._._._----_ ... __ ... _------



198 

• The system provides error exit clauses on INPUT and PRINT statements. 

The system requires statement numbers with values up to 9999, and 
permits special functions to be assigned by the user to numbers 
9990-9999. 

• The system does not support ascending/descending sort (ASORT /DSORT) 
on MAT assignment statements. 

• The system does not support the ELSE clause on the I F statement. 

• The system does not support the overflow/underflow and INERR clauses on 
the ONERROR statement. 

The system does not recognize the exclamation (!) symbol in an image 
statement, although the symbol can be entered by overstriking the single 
quotation mark and decimal point. 

BASIC COMPATIBILITY WITH IBM 5100 BASIC 

Any syntactically valid 5100 BASIC SOURCE program will run on the 5110 
except when opening a file with negative file numbers. Negative file numbers 
will cause an error. 

The internal data format of the 5100 is packed decimal; the internal format of 
the 5110 is binary. Therefore, the results of calculations that use decimal 
fractions may not be the same in the 5110 as they were in the 5100. For more 
information on how decimal fractions are used in calculations, see the IBM 
5110 BASIC Introduction. Also, any 5100 programs that use a hexadecimal 
constant to generate characters will generate different graphics with the 5110. 

When the user is opening a file for input and specifying a character variable for 
identification, the user I D from the file is not placed in the character variable as 
it is in the 5100. 

The range of valid numbers for the 5110 differs from the 5100. Constants 
greater than 7.237E75 and less than 9.9999999999999E99 are not accepted by 
the 5110. In addition, constants with magnitude less than 5.3976E-79 and 
greater than 1 E-99 are not accepted by the 5110. 

c:~ 



o 

TAPE CARTRIDGE HANDLING AND CARE 

• Protect the tape data cartridge from dust and dirt. Cartridges that are not 
needed for immediate use should be stored in their protective plastic 
envelopes. 

• Keep data cartridges away from magnetic fields and from ferromagnetic 
materials which might be magnetized. Any cartridge exposed to a magnetic 
field may lose information. 

• Do not expose data cartridges to excessive heat (more than 1300 F or 540 

C) or sunlight. 

• Do not touch or clean the tape surface. 

• If a data cartridge has been exposed to a temperature drop exceeding 30
0 

F 
or _1 0 C since the last usage, move the tape to its limits before using the 
tape. The procedure for moving the tape to its limits is: 

1. Use the UTIL command to move the tape to the last marked file. 

2. Use the MARK command to mark from~he last marked file to the end 
of the tape. For example: 

3. 

MARK 200,1,n 

where n is the number of the last marked file, plus one. This will 
cause an error (end of tape). Press the A TIN key to continue. 

Use the REWIND command to rewind the tape. 

More Information About Your System 199 

-------- ................ _ ...... __ .-----_ .. _ .... _ .............. . 



200 

STORAGE CONSIDERATIONS 

The following list shows how many bytes of storage are required for each data 
type that can be stored in the work area: 

Data Type 

Character variable 
18-byte format 

Character variable 
not 18-byte format 

Character array 
18-byte format 

Character array 
not 18-byte format 

Numeric variable, 
long precision 

Numeric variable, 
short precision 

Numeric array, 
long precision 

Numeric array, 
short precision 

Number of Bytes Required 

22 

Length of the variable plus 5 

18 times the number of 
elements plus 10 

Element length times the· 
number of elements plus 11 

12 

8 

8 times the number of 
elements plus 10 

4 times the number of 
elements plus 10 

Because the 5110 work area contains a fixed amount of storage, it is a good 
practice to conserve as much storage as possible. 

/ 

\ ..•. -_/ 

( " 
\, . ' 



C) 

c) 

C.) 

C) 

C) 

,.,--', 
U 

DISKETTE HANDLING AND CARE 

Operation 

Diskette Insertion 

CAUTION 
If a diskette has been exposed to temperatures outside the recommended 
range (50 0 F to 125 0 F or 10 0 C to 51 0 C), keep it at room temperature for 
about five minutes before inserting it in the drive. 

1. 

2. 

3. 

4. 

Open the diskette drive cover. 

Remove the diskette from its envelope by grasping its upper edge and 

lifting. 

Insert the diskette into the drive by grasping the diskette by its upper 
edge and carefully placing it in the drive. 

Close the cover only after the diskette has been fully inserted. 

Diskette Removal 

1. 

2. 

3. 

Open the diskette drive cover. 

Remove the diskette by grasping its upper edge and pulling it straight 

out. 

Slide the diskette into its envelope and return it to a clean storage area. 

Handling Defective Cylinders 

With use, areas can develop on the disk surface on which readable records 
cannot be written. A diskette with a defective area should normally be 
removed from service. The 5110 is capable of reinitializing diskettes and 
assigning up to two alternate cylinders. In this case, do not use a diskette with 
a defective area before reinitializing it to bypass the cylinder containing the 
defective area. Then record the number of the defective cylinder on the 
permanent label. . 

More Information About Your System 201 

--_._------- . -""'-_.'-"'" .. _--........ ""--_._ ... _. ----.------..... _ .. __ ._". --------- ................ _-_ ... _._._----------



202 

If diskette errors occur,' you must make a decision regarding replacement of 
indiviual diskettes. The following procedures can help with this decision: 

• When using a new diskette, assign a serial number to it and record that 
number on the diskette permanent label and in the space provided in the 
diskette internal label (volume ID field). 

• Keep a log of diskette serial numbers and the initial date used so you can 
estimate wear by the diskette age. 

• Whenever a diskette error occurs on the same cylinder repeatedly, reinitialize 
the diskette as soon as possible. To reinitialize, first copy any useful data 
from the diskette. As part of the initialization routine, the device assigns 
cylinder and sector numbers to the diskette, bypasses the defective cylinder, 
and assigns the cylinder r.umber of the defective cylinder to the next good 
cylinder. For two-sided diskettes, both tracks of a cylinder must be 
relocated if either is defective. Two defective cylinders per diskette can be 
replaced in this manner. 

• Periodically examine the log of diskette serial numbers and the permanent 
labels on the diskettes. If a diskette is too old for further use, or if there are 
more than two defective cylinders, replace the diskette. 

Handling Precautions 

Replace the diskette if it is physically damaged (torn, folded, creased), or if the 
recording surface becomes contaminated. It is particularly important that you 
do not use diskettes which are contaminated with sticky fluids (soft drinks, 
coffee) or abrasive substances (metal filings) on the recording surface. Placing 
a contaminated diskette in a device can contaminate the read/write head, 
causing operation errors. In addition, contaminants can be passed to clean 
diskettes. A substance spilled on the diskette jacket can be removed and the 
data recovered only if the contaminant does not reach the recording surface. 
After recovering the data, discard the diskette. 

,r'-- , 

",---( , 

'-.•.. / 



o 

c 

C) 

c) 

u 

To remove a diskette from its envelope, grasp the diskette by its upper edge 
and pull. 

Return the diskette to its protective envelope whenever it is removed from the 
diskette drive and whenever you are writing on a label on the diskette. 

Do not bend or fold the diskette. Do not use rubber bands or paper clips on 
the diskette. 

Do not touch or clean the exposed diskette surface 

More Information About Your System 203 

----------_ .. _---- ..... ._-----_._-_._--_._._._ ..... _-_ ... _------



204 

Do not smoke, eat, or drink while handling the diskette. 

Do not expose the diskette to excessive heat or sunlight. 

/ 
/ /' 

Do not use magnets or magnetized objects near the diskette: Data can be lost 
from a diskette that is exposed to a magnetic field. , 

(,-- -" 



o 

C) 

C) 

C
'" 
) 

o 

Do not place heavy objects on the diskette. 

Do not erase labels attached to the diskette, or make any erasures on or near 
the diskette. Erasure residue could get in the diskette, and this should be 
avoided. To discourage erasures, IBM recommends that you use a fiber-tip or 
ball-point pen when marking on the diskette labels. Mark temporary labels 
before attaching them to the diskette. Alter temporary labels with the diskette 

in the envelope. 

D 

More Information About Your System 205 

... _. __ ._ .... _._ .. _._ ... _----------



206 

Storage 

Environment 

Temperature: 50 0 F to 1250 F (10 0 C to 51 0 C) 
Relative humidity: 8% to 80% 
Maximum wet bulb temperature: 85 0 F (29 0 C) 

Short-Term Storage 

Store diskettes needed for immediate use flat in their envelopes, in stacks of 
ten or less. If storing vertically, support the diskettes so they do not lean or 
sag. 

Long -Term Storage 

Store diskettes not needed for immediate use in their original shipping cartons, 
with each diskette in its protective envelope. Shipping cartons can be stored 
either vertically or horizontally. 

CAUTION 
Do not apply pressure to diskette envelopes or cartons, because pressure can 
warp the diskettes. 

r--. 
/ 

~- " 
( 

... ......... ' 



Shipping and Receiving 

o 

c) 

o 

..... _----_._---------

When shipping a diskette, always label the package DO NOT EXPOSE TO 
HEAT OR SUNLIGHT. When receiving a diskette, check the carton and the 

diskette for damage. 

To pack one diskette: 

• Place the diskette in its protective envelope. 

• Put the envelope in a single-diskette carton. 

To pack muliples of 10 diskettes: 

• Place each diskette in its protective envelope. 

• Put 10 diskettes in a 10 diskette box. 

• Put each 10-diskette box between spacers to prevent damage during 
shipping. 

• Insert top and bottom pads in the carton. 

• Place the 10-diskette boxes and their spacers in the appropriate size carton. 

• Fill the open space in partially filled cartons and 10-diskette boxes with a 
filler that cannot contaminate the diskette or enter the diskette jacket. 

CAUTION 
Do not use so much filler that diskettes are tightly compressed; compression 

can warp the diskettes. 

More Information About Your System 207 

._----- --_._---_ .. ---.-.... _-----_.-



208 



o 

c.~) 

Appendix A. 5110 BASIC Characters and Hexadecimal Representation 

The following chart lists all the EBCDIC characters and their hexadecimal 
representation. 

Bits 4 through 7 ( I I I ) 

Bits 0 through 3 

0 1 2 3 4 5 6 7 8 9 A B C D 

0 

1 

2 

3 

4 A B C D E F r J H I <:: , .:: ( 
•• M .... .. ~ .... ... . .. .- M_ .... 

5 & ..J K I... M N () P ~~ I~ ! $ "* ) 
•• M . - .... .... .. - .... 

MM I S T U V kl X Y Z 
, 

% 6 , 
I .... . ... .oM .... .. .. .... .. .. .... .... 

& 
.. 

b. lTJ v \ , tt (~ 
, 

7 1\ . 
8 N a b r- ei (-~ f <.~ h i t oJ, ::; r 
9 n j I< l m n 0 p q ro ::> c· 0 

A .- tI S t u V hI X Y z n u .I. r 

B (X +? \ (J (,) )( \ \7 t.\ T ::I 

C -{ A B C II E F r H I N N (' (~ :J A v ,. 

D )- J K I... tvl N () P (~ R :It: I 't' ~ 

E \ ( ... 
,:) T U V W X Y Z f \..c. 1"1 8 

F 0 1 r) 3 4· 5 6 ""1 B 9 I .¥ (f) A:. .,., 

t 
For example, the character 0 has value of X' FO·. 

E 

+ 

, 
I 

::. 

•• M 

I.. 

;:: 

"I 

ITI 

rl 

13 

.t . 

Note: Graphics are assigned to all blank positions, except hex 40, for 
maintenance use only. They are incompatible with other systems and cannot 
be used for exchange purposes. These graphics may be removed or changed 
as a result of maintenance or new versions of this product. 

F 

I 

-, 

!> 

" 

~ 

~-

0 

I 

~~ 

A 

.+. 

5110 BASIC Characters and Hexadecimal Representation 209 



210 

In the following illustrations (Figures 11 and 12), the characters on the keys 
correspond to the following diagram. 

KEYBOARD CHARACTERS FOR XXX X 

T----------§f~Nfi~Rfi-~~§jE-----------i 

I ER~~~Ef~R-R5fi~ I 
I , , , , ,--;----;----;---;---, ---~--;- , , , , , I 

I NO SHIFT I 
I I 
I UPPER SHIFT I 
1 I 
I COMMAND SHIFT I 
I I 
1-----------------------------------1 
I LOWERCASE I 
I CHA~~Ef~~-R5DE I 
I , , , , ,---;-'--;---;----:--, --~---: , , , , , 1 
1 NO SHIFT I 
I I 
I UPPER SHIFT I 
1 I 
I COMMAND SHIFT I 
I 1 

........ " 



~ 
o 
Il:J 

» en 
n 
(") 
::r 
~ 
Dl 

~ 
~ 
en 
Dl 
::J 
Q. 

::r: 
CD 
X 
Dl 
Q. 
CD 
n 
3' 
~ 
:lJ 
CD 

~ 
~ 
CD 

~ 
~ 
0' 
::J 

I\.) 
-" 

o 

"T1 
cE' 
I: ... 
CD 
...& .... 
~ 
...& 

o 
~ 
CD 
< 
C
O 
Ql a. 
o 
:r 
Ql ... 
Ql 
(") 
r+ 
CD 

Cil 

o r\ 
''-.- ' 

(\ 
\ ; 
'- --

n 
\ /

"----' 

r,,; 
',~, o 

I---i-----l---~-----T---j-----I---ij-----I---~-----I--- -----1---7-----1---8-----1---9-----1---0-----1---+-----1---;-----1 
I I I.:: I 1 1 1::- 1 ¢ I v I All ~ 1 
1 LOAD 1 SAVE 1 RUN 1 GO 1 LIST 1 UTIL 1 AUTO 1 RENUM 1 result 1 MARK 1 m 1 cpy 1 
1 1-----1----1 1 1 1 1----1----1 1----1----1 
1 1 1 2 1:3 1 ll_ 1 5 f 6 17 18 19 10 1 + 1 x 1 
1 I I.:: I::; 1 1 ;:: 1::- 1 ¢ 1 v 1 All ~ 1 
1 LOAD 1 SAVE 1 RUN 1 GO 1 LIST 1 UTIL 1 AUTO 1 RENUM 1 result 1 MARK 1 m 1 cpy 1 

I---~-----I---C-----I---E-----I---k-----T---f-----y---y-----y---O-----T---j-----Y---5-----I---~-----y---~-----y---;-----I 

I? I (J I.;: I p lit I! 1 \ 10 1 * I -t 1 1 
1 CHAIN I CLOSE I DATA 1 DEF I DIM I EXIT 1 FILE 1 FNEND I FOR I FORM I I II I 
1----1----1 1 1----1----1----1 1----1----1 1 1 
1 q 1 w 1 e 1 ... - 1 t 1 y 1 u 1 i 1 0 1 p 1 ~- 1 1 
1 Q 1 W 1 E I R I T I Y 1 lJ I I 1 DIP 1 -t 1 1 
I? 1 (J I.;: 1 p lit I! I 1 a 1 * 1 1 tJ 1 
--------------------------------------------------------------------------------------------------------------------------

I---~-----I---§-----I---fi-----I---f-----f---~-----I---R-----I---]-----I---R-----T---C-----T---E-----T---j-----T---ij-----i 

1 air 1 L. 1 1 V 1 fl 1 1 10 1 ( I) I@ 1 
1 GET 1 GOSLIB 1 GOTO 1 INPUT 1 MAT 1 NEXT 1 OPEN 1 PAllSE 1 PRINT 1 { I)- 1 1 
1 1----1----1 1-----1 1 1 1----1 1 1----1 
1 a 1 sid 1 fig 1 h 1 j 1 k 1 I 1 [ I] I .. I 
I A 1 SID 1 FIG 1 H 1 J 1 K I L ,I ( I) I@ I 
1 a I r I L. I I V I fl I I 10 I { I)- 1 1 

T---~-----I---~-----I---E-----I---Q-----I---~-----I---~-----i---R-----i---------i---------i---7-----i---i-----I 

I c I::> 1 n 1 u 1 liT 1 1 1 1 1 \ 1.& 1 
1 PUT 1 READ 1 RESET IRESTORE 1 RETURN I USING 1 WRITE 1 lie 1 1 
1 1----1 1----1----1 1 1----1----1 I... 1 
1 z 1 x 1 c 1 v 1 bin 1 mil 1/ 1 $ 1 
1 Z 1 X 1 C 1 V 1 BIN 1 Mil 1 \ 1 & 1 
1 c l:l 1 n 1 tJ 1 1 1 1 I 1 \ 1 ell 



212 

i .... -c MM MM .... MM .... I 
I 1 
I 
I 
I 

k 
I 
I 

I, 

I 1 
J ............ --- .... I 
I 1 
I 1 
I 1 
I 0- I 0- 1 
I I II 
10- "t: "0 I o-"t: "C 1 
! EEl 
I U WI 
! 1 
IMM -c .... _ ........ ,... 1 

I 1 
I 
I ! 
I 00 I CO 1 
I I II 
100 j- "C 0:; j- "C 1 
I E EI 
I U WI 
I 1 
IMoM MoM _ .... MoM _ .... I 

I 1 
I I 
I I 
I I'- 1'-1 
I I II 
Ii"- 0:.,. "C I'- 0:.,."0 1 
I E EI 
I U U 1 
I 1 
1- ............. _ ........ 1 

1- ............ -c _ .... I 

1 1 
.! I 

1 1 
I 
1 
1* - I lie 
I 
1 
! I 
1-- ..... -"'" .... -1 
I I 

I 
I 1 
1 -0 I -0 1 
I I II 
1-0 "C 1 -0 "C 1 
1 EEl 
I U I U! 
! 1 
, ........ -- ........ "'"1 
I 1 
1 1 
! 1 
! I;") Ii") 1 
I I I I 
!i./") "C I ~'") "C 1 
lEE! 
I U I U! 
1 1 
1 .... -- ........ --1 
I 1 
I 
I 1 
1 .:T 1 .:T 1 
1 II! 
I:::i" "C!.:T "C I 
1 EEl 
I U lUI 
1 I 
1- MoM .......... - -"'" 1 

Figure 12. 5110 Keyboard Characters 

I"'" - __ """ .... _1 

1 1 
1 
! 
I 
! 
II ! : 
I 
I 
i i 

I ......... -"'" ............ 1 
1 1 
I 
I 1 

: 7 ~1: 
It<') "C I i"') "C! 
I E EI 
i U U I 
I I 
1 .................. _ ..... _1 
I ! 

! 
I 
! . (,.J I (".J; 
I! 1 ! 
I(,·J I "C I (,,·jl 'T.:! I 
1 E E! 
lUI U I 
1 I 
1- ............. _ .... - I 

1 I 
1 
I 
1 .,...; 1 .,...; I 
1 1 I I 
:~ - "'C i - "0 j 

lEE I 
1 U I U I 
1 I 

!_ - - - - -_I 

1- ........ - .... _ .... 1 

I 1 
I 

: 
! 
1+ 1 + 
I 
! 
! I !:.M ___ ............ , 

! I 
! 
1 
! 
1 1 
1 • ~ _. 1 • ~ -' 1 

: : 
1 1 , ................ ---I 
1 I 
1 1 
i 1 
I 0 01 
1 I i I 
10 'T.:!! 0 "CI 
lEE 1 
1 U 1 U 1 
I 1 
1- .................... MoM I 

/ 

c_~ 



o 

C~) 

r···· 
U 

o 

Appendix B. 5103 Printer 

The 5103 Printer has the following characteristics: 

• Bidirectional printing (left t9 right and right to left). The print head moves 
from the left margin and prints a line. Succeeding lines will be printed in 
either direction depending on which end of the new line is closest to the 
current position of the print head. The print head will be returned to the left 
margin periodically when printing is not imminent. 

• A maximum print line of 132 characters. 

Note: If 132 characters are formatted for forms less than 132 characters 
wide, loss of data will occur as the print head leaves the form. 

• Capability of using individual or continuous forms. Maximum number of 
copies is six, but for optimum feeding and stacking, IBM recommends a 
maximum of four parts per form. 

• Adjustable forms tractor that allows the use of various width forms. The 
forms can be from 3 to 14.5 inches (76.2 to 368.3 mm) wide for individual 
forms, and from 3 to 15 inches (76.2 to 381 mm) wide for continuous 
forms. 

• Print position spacing of 10 characters per inch (2.54 em) and line spacing 
of six lines per inch (2.54 em). 

• Stapled forms or continuous card stock cannot be used. 

• The character printing rate is 80 or 120 characters per second. The 
throughput in lines per minute is program-dependent. 

• A vernier knob (located on the right side of the printer) that allows for fine 
adjustment of the printing position. This knob should only be used when 
the print head is in its leftmost position. 

5103 Printer 213 

... _- .................. _ ... __ ._-------... _ ................... -_. ._-----_ ... __ ._-_._-_ .. _-----



214 

HOW TO INSERT FORMS 

Continuous Forms 

Form Guide Rack 

1 ~f.;.: Release Lever 

j-;.per.ldvance Knob 

Vernier Knob 

Forms Path for Singlepart Forms 

/Forms Guide Rack 
~========~=: \(in lower position) 

1. Slide the printer cover forward. 

2. 

3. 

4. 

5. 

6. 

7. 

Push the print head to the extreme left position. 

For singlepart forms pivot the form guide rack 
up and forward to a vertical position. For 
multipart forms, leave the forms guide rack in 
the horizontal position. 

The diagrams below show the proper forms path 
for singlepart and multipart forms. 

Push the paper release lever to the rear to 
activate the friction feed rolls. 

Place the forms on the table behind the printer. 

Note: The forms must be positioned behind the 
printer so that the forms feed squarely into the 
printer. 

Thread the paper down, over the rollers, behind 
the tractors, and behind the platen. 

Turn the paper-advance knob to move the 
paper around the platen until you can grasp it 
with your fingers. 

Forms Path for Multipart Forms 

~~~~!!.;;:~~iiIt· Forms Guide Rack 

Position these guides (----'

at the edge of the pape~> .

Tractor Cover and Pins

o

C"',
)

Right Tractor Knobs

o

--_._ •.•... -._._--_ _ .. _--------_ .. _ _.-._._._-------

8.

9.

Open both tractor covers.

Pull the paper release lever forward to
disengage the friction feed rolls.

10. Pull the paper up and place the left margin
holes over the tractor pins. Be sure the left
tractor is in its leftmost position.

11. Close the left tractor cover.

12. Squeeze the two knobs on the right tractor and
slide the tractor to align the pins with the right
margin holes.

13. Place the right margin holes over the tractor
pins.

14. Close the right tractor cover.

15. For singlepart forms, pivot the form guide rack
to a horizontal position.

16. Turn the paper-advance knob to position the
form for the first line to be printed. The paper
should exit over the forms guide rack.

17.

18.

Note: To move the form backward, turn either
paper-advance knob backward and pull the
form from behind the printer to keep the form
from buckling at the print head.

Slide the printer cover closed.

The plastic guides on the rear of the wire rack
should be positioned (one on each side of the
forms) so as to aid in guiding the forms for
proper feeding. These guides are positioned by
slidin{:J them back and forth.

CAUTION
The switch that senses end of forms is deactived
when the friction feed rolls are engaged. Thus, the
print wires could hit the base platen if no forms are
in the printer.

5103 Printer 215

216

Cut Forms

1. Remove the forms tractor by tilting it back and lifting it off.

2. Move the cut forms guide forward.

3. Slide the printer cover forward.

4. Push the print head to the extreme left position.

5. Push the paper release lever to the rear to activate the friction feed rolls.

6. Place the form in position behind the platen and against the cut forms
guide.

7. Turn the paper-advance knob to position the form for the first line to be
printed. Improve the paper alignment if necessary by using the paper
release lever.

8. SI ide the printer cover closed.

CAUTION
The switch that senses end of forms is deactivated when the friction feed rolls
are engaged. Thus, the print wires could hit the base platen if no forms are in
the printer.

Cut Forms Guide

Paper Advance Knob

0

C)

C)

o

HOW TO ADJUST THE COPY CONTROL DIAL FOR FORMS THICKNESS

1.

2.

3.

If you are using singlepart forms, set the copy
control dial on O.

If you are using multipart forms and the last
sheet is not legible, rotate the copy control dial
toward 0 one click at a time to obtain the
legibility you desire.

If you are using multipart forms and the ribbon
is smudging the first sheet, rotate the copy
control dial toward 8 one click at a time until
smudging stops.

HOW TO REPLACE A RIBBON (PART NUMBER 1136653)

Printer Cover

Forms Tractor

~~

POWER ON Switch

1. Turn off power to the printer.

2. Tilt the forms tractor back by lifting both sides
at the front.

3. Slide the top cover forward, then lift the front
edge of the top cover and remove it.

5103 Printer 217

._-----_ _ ... __ _-------- •..... _ .. __ .. __ ._--_ _-----

Ribbon Box Cover

~

Loop

218

4. Be sure that the print head is to the extreme
left.

5. Turn the feed roll· release knob
counterclockwise until it points to the right.

6. Open the ribbon box cover.

7. Put on the gloves supplied with the new ribbon.

8. Remove the old ribbon from the guides being
careful to disengage it from the clip on the print
head.

9. Lay the ribbon loop on the top of the ribbon in
the ribbon box. Pick up the entire ribbon and
discard it.

Disk

Ribbon Holder

1 O. Eject the new ribbon from its holder into the
ribbon box by pressing on the disk.

11. Remove the disk from the ribbon and discard
the disk and the holder.

12. Hold the coil lightly with one hand and pull
about 10 inches (254 mm) of ribbon from the
coil.

13. Form a loop from the ribbon across the print
head.

/ '

'''-..... ',,,.

(''
I

\

Left
Guide Post

C)

o

Upper
Guide Post Platen

Guide Shoe Slot

Feed Rolls

Ribbon Box

14. Thread the part of the loop nearest the platen
between the feed rolls and on the inside of the
upper guide post.

15. Turn the feed roll release knob clockwise to
close the feed rolls.

16. Thread the ribbon between the print head and
the platen. Be sure the ribbon is under the clip
on the print head.

17. Thread the other part of the loop through the
slot in the bottom of the ribbon box.

18. Thread the ribbon through the guide shoe and
around the left guide post.

19. Insert the horizontal part of the ribbon twist
(bottom edge first) between the two horizontal
guides.

20. Move the print head back and forth across the
platen to remove the slack from the ribbon.
Continue moving the print head until you are
sure that the ribbon feeds properly. Leave the
print head at the extreme left.

21. Close the ribbon box cover.

22. Close the printer cover and turn the power on.

23. Reposition the forms tractor.

5103 Printer 219

220

INSTALLING THE 5103 PRINTER STACKER

A folded-form paper stacker is supplied with 5103 printers. The wire stacker
hooks onto the back of the printer cover as shown in the drawing. The lower
wires on the stacker should contact the metal clips on the cover.

The stacker can be bent if too much weight is applied. Under normal
conditions, printed forms should not be allowed to accumulate higher than 1
inch in the stacker.

Note that, because of the relatively small free-fall distance of the paper as it
. leaves the printer, you may have to manually fold the first two or three sheets

to get the folding operation started.

,,-r-',
(
\' /

"-.. ..

{ I
~/

o

X' 00' -
X' 0:1.' _ .. A
X'02' - B
X'03' _. C
X'(}I.j·' .. - D
X'05' ._. E
X'06' -- F
X'O'l' _ .. G
X'OB' _. H
X'O<j>' = I
X' OA' -- ,.J
X'OB' = I(
X' OC' _ .. L

X'OD' - M
X'OE' .- N
X'OF' = 0
X'10' _. P
X'l:L' - Q
X':L2' _. I~

X':L:'5' - S
X' :1,'+' T
X'15' _. U
X '1.6' _. V
X':l7' .. - W
X'l.B' _ .. X
X' t (?' M •• Y
X'lA' -- Z
X' lB' ._. 0
X'lC' _. 1
X'l.D' ····2
}('lE' -. ~~

X' :I.F' _ .. '+
X' 20' ~:.=j

X' 21' .- 6
X ":)':>'

A_ 7
- 8

X'24' -" 9
X'25' _. /
X' 26' .- +
X' 27' _. x
X' 28' _. ~ ..
X' 29' [
X ' 2A' --]

-------_ .. _ _ .. _--... _------

Appendix C, 5100 Hexadecimal Representations

These are the characters that the 5100 can display along with their
hexadecimal res presentations. The second 128 characters are the same as the
first 128 with the addition of underscores.

X'2B' -

X' 2D' .- or
X' 2E' - .I.

X' 2F' .- n
X ' :3 0' _.. L.
X' :31' +.-:

X'32' -
X':3~5' -" 'V
X'~~L~' ._. IJ.
X':3!7j' :: \
X ' :~6' 0

X' 37' .-
X ' 38' -- []
X' :39' _ .. 1
X ' 3A' :-.: T

X' :'5B' Q

X ' :'5C' *
X ' :3D' ?
X' :'5E' _. p

X' 3F' .. - r
X' 4·0' N

X "+1' .. - -!
X "+2' :::: u
X ' Q.;3' ::: (.)

X' 1+'+' ::)
X ' Lf.~5' _.. t
X ' L~6' :: c::

X"+7' :: A

X' 4·8'
X' 1.1·9' _.
X 'I.I·A' -::
X' '+B' ~;

X' I.I·e' --

X' Lf.D' -- ;::
X '!.J·E' .- ::
X ' L~F' _. ~

X' 50' :::: V

X' ~:.:il' \
X' 52' .
X'~j:3' --
X' 5'+' .. - -}o

X'55' - (

X' ~.=jb'
X' ~::j7'
X'~:jB' .. -
X'~)Cj>' .. -~)

X ' ~5~I' E)

X' 5B' ~

X ' ~5C' _. Q)

X ' ~.)D' .- f
X ' ~:jE' \
X ' ~'=;F' .- I~

X ' bO'
X' 61' ~

X'62' - X
X' 63' _. 0

X'6L~' IB
X ' 65' - :I:
X'66' - fl

X' b7' A
X' t.)B' .- ~

X'6(;>' .- ~

X' 6A' ~

X' 6B' :::: ·t·

X' 6C' :: !

X' bD'
X' 6E' _.
>(, 6F' &
x '''..,0 , (~

X' '(':1.' .. - U
X' 72' $
X' 73' _ .. %
X' 7 LI·' A
X ' 7~:.:;' lU
X' 76' - ()
X' 77' 0
X' 70' A
X' 79' ff.
X' 7A' t1
X' 'lEt' F.i
X ' 7C' .- i.
X ' 7D' ~~

X' 71::' 5
X'7F' :a:: A
X' DO'

X' 8:1.' A
X ' 82' ii
X' B3' .- (~
X ' BL~' _. i1
X ' B~=j' -' i~
>(, 86' f:
X' 87' G
X'BB' = H
X' 89' .. - I
X' 8A' -- J
X ' BB' ~ .. K
X' 8e' .. - [
X ' BD' .. - M
X' BE' N
X' BF' 0
X' 90' _. P
X'91' .. - (~
X'92' = R
X ' 93' ~~i
X' 9'+' T
X ' 9~5' 0
X' (.~6' V
X' 97' W
X' (yO' X
X' 99' ._. Y
X' 9(.:1' Z
X ' 9B' i)'
X'9C' - I
x' 9[1' _ .. 2
X'9E' - 3
x' 9F' fj:
X'AO' -- ~7j

x' Al' ._. 6
x' A2' ::1
X' A3' _. 8
x' A'+' .. - 9
X'A~7j' .. -? _ ..
x.' A6' .. - +
x' A7' x _.
X' A8' ~ ..
x' A<j>' e'
X'AA' -]'
x' AD' }

X' AC' .. - ,
X • AD' 01

X ' AE' .- .l

X' AF' n
X' BO' [
X'B:I.' .. - +~

X' £<2' -
X'B3' - V
X' B4' ~ _ ..
X' B5' ,
X' B6' _. 0

X' B7' '
X' BEl' iJ
X' B9' _ .. T
X' BA' .- T

X' BB' .. - 0
X' Be' ~.

x ' HI)' = ';>

X 'BE' .- p
X' BF' _. [
X'CO' - N

X 'C:I.' ~ .. -
X' C2' u
X' C3' (,)
X' CLf.' ::>

X ' C~j' t' .. -
X'C,1)' .. - Co

X' C7' :::: A

X' CH'
X' C9' .- -.-
X' CA' -::
X' CEt' - ::;
X' CC' --
X ' CD.' ~:

X' CE' _. ::
X' CF' ... ¢

~-

X'DO' .. - v

X'D:!.' -- \
X' [12' _.
X' [13'
X' DL~' - ·t
X '[15' ... '(
X' [16' ')

X'[l7' - I

X' DB' .. -
X ' [19' -- (j) --X . DA' -- B

X' DB' .- ~
X' DC' _ .. (B

X'[lD' - f
X' DE' -. ,
X' [IF' _. ~
X' EO' T
X'El' - ~

N
.- A X'E2'

X'E:3' - ill

X' E4·' .- Ei
_.

X' E6' = fl

X' E7' .•. ~

X'E8' ~
X 'E9' !
X'EA' - ~
X' EB' .- 'f

X' EC' .- .t.
X' ED' ::-.: ... ,
X' EE'
X' EF' _ .. '&
X'FO' = @
X' Fl' n
X' F2' _. ;i
X' F3' %
X' FLI·' R
X'F~7j' fij
X'F6' .- 0
X' F7' l.j

X'F8' - X
X ' F(,' _. if:
X'FA' •.. ~
X ' FB' _. '"
X'FC' - f.
X ' FD' .. - ~~
X' FE' .- (5
X' FF' _ .. i~

5100 Hexadecimal Representations 221

222

\
'----

/"
(

\ ..

\

o

()

C)

r'"

~)

o

._-_ .. _- _-------

Appendix D. BASIC Error Messages And Operator Recovery

The following list contains all the system error codes. Any detected error will
deactivate keys 011 the keyboard and cause the display screen to flash. To stop
the flashing display, press the A TIN key. Error codes below 100 are I/O
errors and are displayed as a three-digit message, followed by a device
identifying character (E for tape, D for diskette, or 5 for the printer).

The device identifying character is followed by 80 (built-in tape or diskette
drive 1), 40 (auxiliary tape or diskette drive 2), 20 (diskette drive 3), or 10
diskette drive 4).

You can recover from each execution error with one of the following
procedures labeled 0, G, G or G):

OEnter GO or GO END to end the program or enter GO x to continue,
where x is the statement number of any statement in your program. Use
this recovery for errors that occur during program execution.

GEnter GO END to end the program or GO to continue.

G Enter GO or GO END to end the program.

G)Correct the statement or command in the input line, then press the
EXECUTE key. Use this recovery for errors that occur during command
or source input.

Note that if errors are detected during execution of a program involving tape or
diskette operations, you should enter GO END to ensure that files are prop~rly
closed.

If I/O errors (01 -99) occur on a tape file, the file is automatically marked not
open and cannot be accessed by GET or PUT statements. An output file has
not been properly closed and may not be accessible. GO END closes all other
files.

BASIC Error Messages And Operator Recovery 223

.. _-_._•. _------_ .. _--_._ -

I/O ERRORS
/----,

Error Meaning Recovery

001 Diskette drive timing Retry the operation. If the error
error. recurs, call your service

personnel.

002 Invalid command for An attempt to access tape file
device, or invalid number 0 can cause error 002.
command sequence for An unmarked tape cartridge can
device. cause error 004. Otherwise, if the

error continues, call service

003 Tape hardware error. personnel.

004 Tape timeout.
'-..

005 Tape cartridge not Insert a cartridge and retry the
inserted. operation.

006 Tape is file-protected. If you want to write on the tape,
turn the SAFE switch on the tape
cartridge off the SAFE position.

007 Tape read error. Use the LI N K command to load
the Tape Recovery program and
recover as much data as possible.

008 The next expected Try the operation again. If the
physical record cannot be error occurs again, copy the files

c.~ found. A system following the file that caused the
malfunction might have errors onto another tape, then
occurred, or the tape use the MARK command and
cartridge might have re- mark the tape from the file
been removed from the that caused the error.
tape unit when data or a
workspace was being
written. The data in the
file cannot be used.

009 An attempt was made to
read a record after the
end of data address.

010 End of file has occurred Use the MARK command to mark (~"

during a read or a write a larger file and retry the \ ,-
beyond the last record in operation.
the file.

C-----

224

Error Meaning Recovery

0
011 A tape file was specified Specify the correct file or use the

that does not exist. MARK command to mark the
tape.

012 End of physical tape has Use another cartridge.
been encountered.

C_') 013 Specified device is not
attached.

014 Device error. Try the operation again. If the
error continues to occur, call
service personnel.

("" 015 System error Use the initialization Support

.l occurred-volume or Function to reinitialize the
.,... .. ~

header label cannot be diskette.
read or written.

016-019 Faulty diskette. Copy all available data to another
diskette, then reinitialize the
diskette.

020-023 Hardware error. Retry the operation. If the error
recurs, call your service
personnel.

024 No VOL1 label on the Reinitialize the diskette.
diskette.

~ .. -' 025 Invalid diskette. Reinitialize the diskette.

026-028 Hardware error. Retry the operation. If the error
recurs, call your service
personnel.

030 Diskette drive cover was Insert the correct diskette, close
opened and a different the diskette drive cover, and retry
diskette was inserted. the operation.

031 Faulty diskette. Copy all available data to another
diskette, then reinitialize the
diskette.

C;I 032-037 System error. Retry the operation. If the error
recurs, call your service
personnel.

038 Invalid file header. Copy all available data to another
diskette, then reinitialize the
diskette.

0 039 Attempt to write to a If you want to write to the file,
write protected file. turn off the write protect indicator

and then write to the file.

C')
/'

BASIC Error Messages And Operator Recovery 225

-----_. __ .. _---_ .. _--------_ .. __ .. _._._---_._ _--_ .. -----.... _--_._.

Error Meaning Recovery

040 An I/O operation was Issue the command using the
specified with only the appropriate file number.
file ID, and more than
one file on the diskette
have the same file ID.

041 An I/O operation was Insert the correct diskette and
specified with only the reissue the command, or reissue
file I D, and no matching the command using the correct ,

file ID was found. file ID.

The file name already Issue the command or statement
exists on the diskette. using a new file ID.

/

042 A MARK command was Use the compress Support
issued, but there is not Function to position all
enough unallocated unallocated storage as continuous
continuous storage bytes. Then try the MARK
available on the diskette command again. If the error
to format the file(s). .occurs again, use another

diskette.

043 . Attempting to access a Use the UTIL VOLID command to
volume protected turn off the volume protection
diskette. indicator.

045 The diskette is inserted Make sure the diskette is inserted
incorrectly. correctly and try the operation

/---

again.

050 Printer has detected end Insert new forms.
, .. /

If the error
of forms. occurs on a command operation,

reenter the command. If the error
occurs during program execution:

Enter GO x to continue, where x
is the statement number
displayed. This may cause the
last line to be printed twice.

051 Printer is not ready. Turn on the printer. If the error
occurs on a command operation,
reenter the command. If the error
occurs during program execution:

(~-.

Enter GO x, where x is the
statement number displayed.

052-053 Printer errors. Check that the forms tractor pins
and the platen are not engaged (/----..
simultaneously. I,

"
elf error recurs, call service
personnel.

(
"-

226

()

(
'-.-'

c)

Error

054

055-059

070-072

Meaning

The printer was turned
off within two seconds
after a system command
was entered. The error
continues to occur when
the printer is turned on
again.

Printer errors.

System errors.

EXECUTION ERRORS

Recovery

Save any data in the workspace,
then enter the LOADO command
to get the printer into
synchronism with the 5110.

See error 052-053

If error recurs, call service
personnel.

Normal execution errors are simply displayed as three-digit messages, as
shown in the following list.

Error Meaning Recovery

500 Syntax error in OorG)
statement, in key group
header, or in FORM
specification from a
character variable during
program execution.

502 Unbalanced parentheses e
in expression.

503 Missing delimiter G)
between character
constants.

505 First statement following G)
a LOADO, KEYX was not
a header statement.

506 Invalid line number for G)
KEY specified.

507 Statement type not G)
allowed in BASIC KEY
group.

508 Size of dimensions is not G)
in the range of 1 to
9999, or character
variable is not in the
range of 1 to 255.

BASIC Error Messages And Operator Recovery 227

.. ------_ .. __ " _-_._--_ _----_ _ _ ... _ - "-------

Error Meaning Recovery

0
520 FORM statement PIC Oore

string contains a zero
suppression character
after floating sign
specified.

521 FORM statement PIC Oore r-",
,() string contains the same

'-.... / leading and trailing signs.

522 FORM statement PIC Oore
string contains a trailing
sign that is not the last

('" item in the string.

",--,) 523 FORM statement PIC Oore
string contains invalid
use of sign character.

524 FORM statement PIC OorG)
string not in range of 1
to 32 characters between
parentheses.

525 FORM statement PIC o orG)
string contains no digit
specifiers or floating sign
specification.

(526 FORM statement Oore
contains character other
than B or trailing sign
after the exponent
specifier.

527 Insufficient storage to e
syntax-check the
statement.

528 Available storage e
exceeded.

550 Invalid command syntax e

C\
or syntax error in a DEL
(delete) statement.

0
_--,

"
'I

o
BASIC Error Messages And Operator Recovery 229

.. _. __ ._._-_ , .. , ... ----------------"'--_ _------------

Error Meaning Recovery

551 Invalid use of a e / "
command:

1. No place to go to on
GO.

2. No statements to
renumber.

/'--.

3. No program to RUN.
...... . ~,.,

4. No statements to
LIST.

5. Program is locked. /'

552 Unable to locate line e
number or next lower
line number for a LIST

.command.

553 Function key not loaded e
or not defined for
request.

554 Next line generated by Auto numbering is terminated,
AUTO command would enter line numbers via the
exceed 9999 or attempt keyboard.
to load a data file with (r-"-'''-

more than 9999 data \,,.,.
lines.

555 RENUM will cause a line e
number greater than
9999.

556 Statement number e
referenced in a BASIC
statement not found
during RENUM. The
statement number of the
referring statement is
displayed after the error (--,

number.
\.... ..

230

Error Meaning Recovery

0
557 One of the following has e

occurred:

· UTI L was specified to
tape with an open file.

C) · Device code 0, 1, 2,
3, or 4 was specified
on a LOAD, SAVE, or
OPEN [FILE]
command.

C) · Input has been
requested for an
output only device, or
output has been
requested for an input
only device.

558 End of file occurred Specify a larger file and reenter
before completion of a the SAVE command.
SAVE command, SAVE
is terminated.

559 Input line on LOAD e or scroll up the line and ignore
SOURCE command it.

/,'
exceeds 64 bytes.

~-) 560 One of the following has CD
occurred:

· The file type is
incorrect for a LOAD.

· The file type for a
MERGE is not 11
when the work area is
BASIC, or the file type
is not 2 when the
work area is DATA.

C'" ! · The file type is
.. / incorrect for a LINK .

561 Data file with line longer System limit, no recovery.
than 330 bytes cannot
be loaded.

('\ 562 PROC command issued " ~) for a file that is not
record I/O.

c
BASIC Error Messages And Operator Recovery 231

.. __ _._ _._-------'- --_ ... _--------------

Error Meaning Recovery

563 Procedure file record 0 ~-"

length exceeds 64 bytes.

564 Invalid command 0
becaus,e procedure file is
not active.

565 Invalid value to skip on Correct the value in the procedure
/'

SKIP or CSKIP, the file.
procedure is terminated; "'".

566 MARK command issued Enter GO in positions 1 and 2 to
for a file already marked. continue or enter any other

character to end the MARK
operation.

",,-"'~

("

567 MARK command error: Information only, no recovery. ~

. For tape, reached the
end of the reel before
MARK completed.

. For diskette, reached
end of the diskette
before MARK
completed.

For tape, the last marked
file and K-bytes

C---" allocated to the file are
displayed. For diskette, "--.--'

the number of files
a lIocated to the specified
size are displayed.

568 File number already exits e
on another file.

569 On a SAVE command, e
the source line is greater
than the RECl specified.

600 Attempt to OPEN an e
open file. (_.---

601 OPEN [FI lE] specifies a 0 I
'"

file reference (FLO
through Fl9) for a file
that is already open.

602 OPEN FilE with a KEY 0 r~'
specified when a master I

file is not currently open. \.,

c
232

Error Meaning Recovery

0 603 Attempting to open more 0
than one file at a time! on
tape or other single file
device.

604 Insufficient storage for OorG)

(~:)
file OPEN request. See
Record I/O File Buffer
Requirements.

605 Invalid diskette label OorG)
found.

C) 606 Unsupported diskette OorG)
label entries found.

607 Attempting to open a OorG)
password protected tape
file for output.

608 File type on the file IS OorG)
not valid for input.

609 One of the following has 0
occurred:

· OPEN FILE specified
'to device 000 or 001 .

. ~.
I'

~j' · OPEN specified to
device 002.

· OPEN [FILE]
specified to device
'003' through 'OOF

610 Invalid file ID or a OorG)
complex name was
specified for a BASIC
exchange file.

611 OPEN for output to OorG)

C) write- protected file or a
file with a nonblank
expiration date.

613 Invalid device code OorG)
specified (other than 0-9
or A-F).

c-' -)

BASIC Error Messages And Operator Recovery 233

----_. __ .. __ _. __ ._ __ ._--------

Error Meaning Recovery

614 File name found but not OorG) r-"

at file number specified,
or file found by number,
but the header 10 and
user I 0 do not match.

615 Maximum logical records OorG) ".-' '.

on a file is greater than
2**24-1.

616 NOBLOCK specified and OorG)
logical record size
exceeds physical record
size.

617 RECl= specifies a zero OorG) \"

value.

618 Record length on record OorG)
I/O file is O.

619 OPEN specified output to o orG)
a file that is not empty
and the file 10 does not
match the lOin the
header specified.

621 I nsufficient storage to G)
verify that correct media /'-",
is inserted. 1\

'--- -, .. -""
622 Device not valid for KEY G)

file.

623 Invalid KEY parameter: e
KP exceeds 64K, Kl
exceeds 28, or KW
exceeds 64K.

'624 File specified for KEY is G)
not direct.

625 Key length plus key G)
position exceeds master
record length.

626 Master file not same G)
\

access method as index
file.

627 Storage exceeded G)
allocating key information (~ "-

block.

234

Error Meaning Recovery

0 628 Key length exceeds 28 CD
positions.

629 Invalid index file CD
specified.

630 System error. If error continues to occur, call

(')
your service representative.

'-_/ 631 Invalid key specified (first CD
byte is X'OO' or X'FF).

632 Record in master file CD
(indicated by index file)

(;1

does not have matching

....... _---'
key .

633 REWRITE to indexed file CD
has modified the key
field (record not written).

634 Conversion error CD
detected.

635 DUPKEY error detected. CD
636 NOKEY error detected. CD
637 NOREC condition found. CD
638 KEY specified on CD

(unindexed file, or REC
................... specified on indexed file .

639 DELETE FILE specifies CD
file that is not indexed,
record, or ALL

640 RESET specifies KEY to G)
nonindexed file.

641 RESET with KEY CD
specifies output-only file.

642 RESET FILE references CD
stream I/O file, or

CI RESET references record
file.

643 ALL or REC= specified CD or enter GO line number to
on a file created for continue. REC= will be accepted
sequential access. on further references to the file;

r-'\ however, incorrect results can

1 occur if the file contains a bad
..../ sector.

645 I/O access to unopened CD
file, or DELETE FILE
specifies unopen file.

e
BASIC Error Messages And Operator Recovery 235

Error Meaning Recovery

646 One of the following has e
,/""-- ~"".

occurred:

· The file referenced is
not open.

A GET or PUT
referred to a record

............
file.

· A READ or a WRITE
FI LE referred to a
stream file. r /

~"" ' · A GET or READ FILE
referred to an output
file.

· A PUT or WRITE FILE
referred to an input
file.

· PRI NT referred to an
input, record, or
stream input file.

647 An I/O operation was e ,.---~ (,

attempted during
evaluation of a function
referenced in an input or
output statement.

648 REWRITE does not CD
follow a READ or
REREAD to a specified
file.

649 REREAD does not follow e
a READ or REREAD
statement.

650 Statement 'specified in CD (
USING parameter is not

\'"
a FORM or image
statement.

651 PRINT USING specifies a e
data item and there is no

("--~"

conversion specification
in the image statement. "'--

/"--"
(

_.",

236

Error Meaning Recovery

C\ 652 Statement specified in e
EXIT parameter is not an
exit statement.

653 Too few DATA e
statements for the READ
statements issued. C) 660 USE statement located e
after the first data
reference.

661 DIM statement contains e
C"\

previously defined data.

.j 662 Invalid redimension e
specified (zero or
exceeds 9999).

663 New array dimensions e
exceed original allocation.

664 MAT statement specifies e
an array not previously
defined.

665 I NV argument is singular. e
666 ION function specified e

(
for a nonsquare matrix.

~./ 667 Operand dimensions are e
invalid for the function
used and the specified
result array.

668 A referenced statement e
number cannot be found.

669 No FNEND statement e
found for a DEF
statement.

670 No matching NEXT e
statement found for a

C FO R, or the control
variable did not match.

671 NEXT statement e
executed before the
matching FOR statement.

0 672 A RETURN without a e
value has been
encountered while no
GOSUB is active.

C:
BASIC Err?r Messages And Operator Recovery 237

-------_._.--_.- ._ .. _--------------_ _--._ .. __ __ .-

Error Meaning Recovery

673 A RETURN with a value e /'"""'"

has been encountered
while no user function is
active.

674 CHAIN to procedure file: e
command is too long.

680 Data underflow has Enter GO or GO statement number to
"

occurred (zero is continue or GO END to terminate
assumed).

681 Data overflow has Enter GO or GO statement number to
occurred (plus or minus continue Qr GO END to terminate ,,'
7.237E75 is assumed). (

\

"-
700 Too many subscripts e

used for an array
reference.

701 Subscript not in range of e
specified dimensions (too
large or negative).

702 Reference found to a e
user-defined function
that is undefined for this
program.

703 Incorrect data type e ("
returned for this

'\.,-""

user-defined function.

704 Incorrect number of e
parameters specified in a
user-defined function
reference.

705 System error. Retry the operation. If the error
recurs, call your service
representative.

706 Nonsquare matrix ,for e
DET function.

707 Argument for LOG is e ('
negative.

708 Invalid argument to EXP e
function (too large).

709 Argument for square root e
(:-~ is negative.

238

Error Meaning Recovery

C~'\ 710 Argument for arcsine or e
1\ arccosine is greater than

<.// 1.

711 Power function attempt e
to raise 0 to 0 power, or

C.,)
attempt to raise 0 to a
negative power.

712 Power function attempt e
to raise a negative
number to a noninteger
power.

C·_) 713 Invalid character string e
found in NUM intrinsic
function or error in LEN
function.

714 File reference in KLN, e
KPa orRLN ~notFL~
FLS, or FLO- FL9.

715 Parameters for STR are e
zero or exceed the first
argument length.

716 Storage· exceeded trying e
(_/1

to allocate space for a
variable.

717 Insufficient work area to e
calculate determinant.

718 Error during e
concatenation (too long).

719 Operator stack, operand e
stack, or temp stack has
overflowed. Statement is
too long, or there are too
many nested function
calls.

e'l ,.

BASIC Error Messages And Operator Recovery 239

._--------_ _•........ _--------_ .. _-_ _ _-_ .• _ _------

24b

c-)
~.-'

C
-~)

•. /

Appendix E. Attaching a TV Monitor

Generally, modifying a standard TV set and using it as a video monitor yields
less satisfactory results than a regular video monitor. This is because the same
level of quality is not built into TV receivers as is found in monitor class units.
For example, the contrast and resolution are not as good on a modified TV
receiver; thus the image is not as sharp and usually more difficult to read.

However, if you choose to modify a TV receiver and use it as a video monitor
you must observe the following or you may damage the ?11 0 and expose
yourself to a severe electric shock when you attempt to hook up the TV set to
the IBM 5110.

A modified TV set must have isolation between the primary line voltage and
the set's chassis and circuitry. You can usually accomplish this by using an
isolation transformer between your outlet line voltage and the input voltage to
the TV set. This transformer should be permanently wired into the circuit. The
new input power plug must be a three-prong grounded plug with the ground
connected to the chassis of the TV set. This grounding circuit must be
electrically connected to the 5110 grounding circuit.

Before the video input is connected to anything, it should be tested to verify
that the connector's external shell is at ground potential and that no line
voltage is present on either the external shell or the center conductor.

It .is the responsibility of the TV modifier to ensure that the input circuit meets
the requirements of the 5110 output and will not damage the 5110.

Three -prong
Grounded Plug

Isolation
Transformer

Output
Connector

Note: If you do elect to modify a TV receiver for use as a video monitor, IBM
accepts no responsibility for safety precautions during conversion and hookup,
for damages incurred to the TV receiver or 5110, or for the quality of the TV
receiver as a video monitor.

Attaching a TV Monitor 241

------- ._-_ .. _._ _._ .. -_

242

'"-

,
\.

........

,r- -

(
\

'

()

(, "-.,,/

C"·)

C:.)

I (blob) character
I 73, 155

& 73
&ERR
&LINE
&REC
155

access

59,135
59, 135

59

direct 75
key indexed 75
sequential 74

access methods 74

55

access the last record read 166
add records to a record I/O file 177
add two matrices 183
addition 68
adjust copy control dial 217
AIDX 195
ALERT command 16
alphabetic characters.. 53
AND 127
arithmetic arrays 63
arithmetic constants 58
arithmetic data 55
arithmetic expressions 67
arithmetic hierarachy 69
arithmetic operators 67
arithmetic values 57
arithmetic variables 59
array 178
array expressions 67, 73, 178
array size, specifying 100
arrays 61
ascending index 195
assign a scalar value 179
assign an array 181
assign values from stream I/O file 122
assign values to variables 132
assigning file write protection on diskette 51
ATTN 7
audible alarm control 79
AUTO command 17
automatic line numbering 17

backspace key 8
BASIC characters 209
BASI C error messages 223
BASI C statements 87
blanks 54
buffer requirements 78
buffer space 78
buffers

diskette 160
print 150
tape 160

CHAIN statement 90
changing a diskette volume 10
changing default address 52
character arrays 64
character constants 60
character data 59
character expressions 70
character mode

lowercase 80
standard 80

character set, select 79
character variables 60
characteristics, printer 213
clear work space 25
CLOSE statement 92
CMD key 7
combine characters 71
comma 157
comma separators 74
command keywords 13
commands 13
comments 167
commonly used operations 65
communative 68
complex file names 14
concatenation 72
console indicators 9
console switches 9

49

conversion of data reference values 154
copy control dial 217
copy display 8
CRC errors 32
creating an internal data table 93
CSKIP command 19
cursor, positioning 177
customer support functions, LI N K 22

data constants 53
data files 74
data files, keyboard generated 28
DATA statement 93
data table pointer 162, 170
declaring arrays 62
DE F statement 96
default address 14
default address, changing 52
defective cylinders 201
defining a function 95
DEL function 10
DELETE FI LE statement 99
delete key group statements 30
delete key groups 30

Index

Index 243

delete program lines 10
descending index 196
desk calculator operations 88
device address parameter 14
DIDX 196
digit specifier 110, 117
DIM statement 100
direct access 75
directory, file information 44
diskette

defective cylinders
handling and care
insertion 201
removal 201

201
201

sort feature 52
storage 206

display a program 23
display screen 2
display screen control
display values on screen
division 68
DROP a file 50

E-format 154

79
143

EBCDIC characters 209
EBCDIC vajue 73
edit a saved data file 28
edit program lines 10
editing input lines 10
end processing 20
END statement 102
entry of a function 27
error messages 223
error trapping 135
errors, grouping in one statement 103
executable statements 87
EXECUTE key 7
EXIT statement 103
exponent specifier 112, 119
exponentiation 68
expressions 67

arrays 67, 73
character 70
relational 67, 72
scalar 67

extract characters 71

F-format 154
file directory 44
file FLS 79
file reference parameter 14
file size 32
file type 2 165
file types 47
fixed-length data 74
fixed-point format 56
floating-point format 57

244

FLS 79
FNEND statement 95,105
FOR statement 106
FORM statement 108,153
format 153
format for output, specifying 108
format specification 154, 155
formats for printing or displaying 145
forward space key 8
FREE file space 50
full print zones 144
function definition 95
function keys 28
function, string 71
function, substring 71

GET statement 122
GO command 20
GO END command 20
GO RUN 21
GO STEP 21
GO TRACE 21
GOSUB statement 124
GOTO statement 126
grouping errors 103

hexadecimal representation 209,221
hierarachy 69
HOLD key 7

I-format 154
identity matrix 189
IDN 189
I F statement 127
image statement 129, 153
IMFS 42
implied operations 67
index an array 195,196
index file format 77
indexed file 75
indicators, console 9
initialize files 31
input line 2
INPUT statement 130
Insert forms 214
insertion characters 111, 118
integer 56
internal constants 58
internal data table 162
internal data table, creating 93
internal variables 59
INV 191
inverse 191
invoking commands 28
invoking programs 28

(--~'

'",

c\

C'\
./

CJ

jOin character strings 72

key 75
key group 29
key group headers 29
key indexed access 75
key indexed file 164
key length 77
key records 77
keyboard 3
keyboard and console locations 1
keyboard generated data files 28
keyboard layout 6
keywords 5
keywords, commands 13

LET statement 132
line numbering, automatic
line-position pointer, display
LINK command 22
LIST command 23
listing a file directory 45
load a saved program 27
LOAD command 25

17
146

LOADO command 25
locations, keyboard and console
lock a saved program 41
logical AND 127
logical AND/OR 73
logical 0 R 127
logical record number 75
long precision 200
loop 106
low-order rounding 68
lowercase character mode 3, 80

magnitude 55
MARK command 31
marker records 77
MAT assignment

addition and subtraction 183
ascending index 195
descending index 196
identity function 189
inverse function 191
matrix multiplication 185
scalar multiplication 187
scalar value 179
simple 181
statements 178
transpose function 193

MAT PRINT USING statement 153
MAT PUT statement 160
MAT READ FILE statement 164
MAT READ statement 162
MAT REREAD FILE statement 166
MAT REWRITE FILE statement 172
MAT WRITE FILE statement 177
matrix 73, 178
matrix inverse 191
matrix multiplication 185
matrix operations 178
matrix transpose 193
maximum number of statements 87
MERG E command 33
multiline function 96
multiplication 68
multiply a matrix by a scalar 187

naming conventions 64
national character sets 83
national graphics control 79,83
negative operators 68
NEXT statement 106,134
nonexecutable statements 87

ONERROR statement 135
OPEN FILE statement 137
OPEN statement 137
opening a key-indexed file 141
operand 69
operations, implied 67
operator recovery 223
operators 67

arithmetic 67
positive/negative 68

OR 127
overview 1
owner 10 49

P= 0 40
packed print zones 145
pass data between programs 175
PAUSE statement 142
pointer 162,170
position the cursor 177
positive operators 68
precision 55

long 200
short 200

prepare for keyboard entry of data 27
print a program 23
print buffer 150
PRINT statement 143
PRINT USING statement 153
print zones 144
printer characteristics 213
printer spacing control 80

Index 245

... __ ... _ .. "'--" ... __ _._---------_._---_ .. _ " .. _ .. " .. _._ ... _---------- ._----------------" .. _ _"

printer stacker 220
printing/displaying with FORM 112
priority level 69
PROe command 35,84,90
procedure file 35,84
procedure file example 84
PROTECT a file 51
protection indicator 49
PUT statement 160

RD = 21
R D = command 36
RD = N, with RUN command 40
RD = value 161
re-mark a file 31
READ FILE statement 164
read from a record I/O file 164
READ statement 162
record formatting with FORM 114,120
record I/O 74
record I/O file 164
record number 75
redimensioning arrays 63
relational expressions 67, 72
relational operator 72
relative record number 75
REM statement 167
remarks 167
removing file write protection 51
renaming a file on diskette 48
RENUM command 37
replace a ribbon 217
replace characters 71
reposition the input file 168
REREAD FI LE statement 166
RESET FILE statement . 168
RESET statement 168
RESTORE statement 170
resume processing 20
RETURN statement 95,124,171
REWIND command 38
REWRITE FILE statement 172
rounding 36
rounding control 80
rules, format specification 155
RUN command 39

SAV E command 41
scalar expressions 67
scroll down key 8
scroll up key 8
search argument 76
selecting diskette sort 52
semicolon 157
semicolon delimiter 145
sequential access 74

246

shift key 7
short precision 200
simple ,file names 14
single line function 95
size required for file 32
SKIP command 43
skip records, conditionally 19
spacing of displayed values 144
spacing of printed values 144
special characters 54
special keys 7
specifying array size 100
standard BASIC character mode 3,80
start execution of a program 39
statement

CHAIN 90
CLOSE 92
DATA 93
DEF 95
DELETE FILE 99
DIM 100
END 102
EXIT 103
FN END 95, 105
FOR 106
FORM 108,153'
GET 122
GOSUB 124
GOTO 126
IF 127
image 129, 153
INPUT 130
LET 132
MAT PRINT USING 153
MAT PUT 160
MAT READ 162
MAT READ FILE 164
MAT REREAD FILE 166
MAT REWRITE FILE 172
MAT WRITE FILE 177
NEXT 106,134
OPEN 137
OPEN FILE 137
PAUSE 142
PRINT 143
PR INT USING 153
PUT 160
READ 162
READ FILE 164
REM 167
REREAD FILE 166
RESET 168
RESET FILE 168
RESTORE 170
RETURN 95,124,171
REWRITE FILE 172,172
STOP 174
USE 90,175
WRITE FILE 177

statement lines 87
statement number 87
statement number range 87
statements, MAT assignment 178
step 20,39

\.

o

CJ

o

'stop program execution
STOP statement 174'
storage capacity 11
storage considerations
STR function 71
stream I/O 74,92
stream I/O file 160
string function 71
subexpression 69
subroutines 171
substring function 71
subtract two matrices
subtraction 68
switches, console 9
syntax 15
system commands 13
system functions 65

TAB function 150

174

200

183

tape cartridge handling and care 199
terminate program execution 174
trace 20,39
trace operation control 80
transfer program control 126
transfer program control on results 127
transpose 193
TRN 193
TV monitor 241
type 2 file 165

._----------_ .. ".- ,,_ .. "-,,. "--... ,,

underscore character 55
update a record I/O file
USE statement 90,175
UTIL command 44
UTI L command, example

variable-length data 74
variables, internal 59
vector 73
volume ID 49

work area, saving 41
workarea buffer 78
WRITE FILE statement
write to a stream I/O file

172

46

177
160

write-protecting a file on diskette 51

5100 hexadecimal representations 221
5103 printer 213
5103 printer stacker 220
5110 BASIC characters 209
5110 BASIC compatibility 197
5110 hexadecimal representations 209
5110 overview 1

Index 247

248

r""
I \

I

\"----'/

('
, -.-/

(~: .(~) ('1
I I
\ ,
'---/ c

READER'S COMMENT FORM

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in IBM programming
support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply.

Page Number Error

Note: All comments and suggestions become the property of IBM.

o No postaga necessary if mailed in the U.S.A.

Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

Name __ _

Address

C\
)

J

to
»to
~s:
nUl
:D~
(I) 0

W
(I)

::::I
n
(I)

s:
Q)

::::I
c:
~

C/J »
t-l
-'

cD
w o
co
6

SA21-9308-0

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY •••

IBM Corporation
General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

Fold

FIRST CLASS
PERMIT NO. 40
ARMONK, N. Y.

Fold Fold

--- ------ --------- ----- - - ----------_.-
®

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
(International)

I
I
I
I
I
I

I-I ~(.. "
U'I,

I ~ '",.'
ttl

I~
I~
~
(1)

I ~
Q
s:
III
:l
C
~

~.'"

'\ .. ~ . ..

