w' 5280

——_—== SC21-7790-1

1 $5280-21

IBM 5280
Distributed Data
System

Assembler Language Reference Manual

Program Number 5708-AS1

Second Edition (April 1981)
This is a major revision of, and obsoletes, SC21-7790-0 and incorporates TNL SN20-9582.

Because the changes and additions are extensive, this publication should be reviewed in
its entirety.

Changes are periodically made to the information herein; these changes will be reported
in technical newsletters or in new editions of this publication,

Use this publication only for the purposes stated in the Preface.

This material may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such
references or information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the address below. Requests for copies of 1BM
publications and for technical information about the system should be made to your
IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use the
Reader’s Comment Form at the back of this publication to make comments about this’
publication. If the form has been removed, address your comments to I1BM Corporation,
Information Design and Development, Department 997, 11400 Burnet Road, Austin,
Texas 78758. 1BM may use and distribute any of the information you supply in any way
it believes appropriate without incurring any obligation whatever. You may, of course,
continue to use the information you supply.

© Copyright international Business Machines Corporation 1980, 1981

This reference manual is intended for programmers who
want to write programs for the IBM 5280 using the
assembler language. The programmer is expected to
either have previous experience using an assembler lan-
guage or be familiar with the 3741 Application Control
Language (ACL).

Using this publication, the programmer should be able to:
® Understand the general organization of main storage.

® Understand the purpose of each control statement and
the proper order for using each control statement in
an assembler program.

® Understand the purpose of each instruction and the
proper order for using each instruction in an assembler
program.

® Write a source program.

@ Load the assembler program product into the IBM 5280
system, respond to the assembler prompts, assemble the
source program, and write the object program to a
diskette.

® Understand the assembly listing and cross reference
listing.

® Debug the assembler source program to get an error-free
listing.

Chapter 1 contains a general overview of how (1) a source
program is written, (2) an object program is executed, and
(3) main storage is organized. It also explains the coding
conventions used in the assembler language and in this
publication.

Chapter 2 discusses such programming concepts as tables,
subroutines, formats, external status, and self-check compu-
tations. It describes data management for input and output
operations.

Chapter 3 describes each control statement.

Preface

Chapter 4 describes each instruction.
Chapter 5 explains how to load the assembler program
product and how to assemble a source program. It describes

an assembly listing and cross-reference listing.

Chapter 6 describes control areas and functions. The func-
tions include optional common functions.

Chapter 7 explains how to use the ACL to assembler lan-
guage conversion program to convert ACL programs.

Appendix A lists the instruction mnemonics in alphabetic
order and gives the op code and format for each mnemonic.

Appendix B describes SCS control codes.

Appendix C describes the computations generated by the
SELFCHK control statement parameters.

Appendix D consists of codes and charts, including
EBCDIC charts and scan codes.

Appendix E lists all error codes for the assembler program
and conversion program.

Related Publications

® /BM 5280 General Information, GA21-9350

® /BM 5280 System Concepts, GA21-9352

® /BM 5280 Functions Reference Manual, GA21-9353

® /BM 5280 Message Manual, GA21-9354

® [BM 3270 Information Display System Component
Description, GA27-2749

CHAPTER1.INTRODUCTIONt 1
Overview of the Assembler Language 1
The Control Statements vt vttt i v o e v 1
The lnstructions« . v i i it vt e e e e, 2
The Source Program Format 2
The Assembler Program 3
Loadingthe ObjectCode 3
Overview of Program Execution 3
Overlapped 1/0 i it i it e et e e e 4
External Status i i it it e e e 4
Datalnput i 4
DataManipulationt 4
DataOutput v ittt e e et e e e e e e e e 5
Overviewof MainStorage ¢t i i v, 5
Logical Device Identifiers 6
Common Functionsot ienennn. 6
Partitions o i e e e e e, 6
Modes of Operation e e e e e e e e 6
Partition Control Areao eunnnn. 8
Indicatorsand Registers 8
Storage e e 1
AddressingMethods 1
PartitionWork Area 12
Main Storage Boundary Alignment 13
Blanks, Constants, and CodingSymbols 14
Symbols Used in ThisManual 15
CHAPTER 2. PROGRAMMING CONCEPTS 17
Tables.............. 17
SystemTables, 17
DataTables e e e e e e e e e e e 18
Label Tables 18
DataTypest 19
Subroutines e 19
The Partition SubroutineStack 20
SubroutineReturns 20
TheStatusLine iunenenen. 22
Nondisplay of the Status Line 23
External Status and Error Conditions 24
Keyboard Data ENtry v v o v v e et e 25
Keystroke Buffering 26
Modesof Entry i 26
Automatic Functions 28
AutoEnter e e 29
AutoDuplicate/Skip e 29
Alternate Record Advance 29
Screen Formats it i e 29
Prompts e e 30
ConstantlnsertData 31
Field Definitions 31
FieldControl ¢, 32
Returning (RG)Exitso enn.. 34
EditFormatsttt 34
Data Directed Formatting 35
Field Modification Indicators 35
Diskette DataManagementc..... 36
LabelUpdatet rmunnnn. 36
Physical and Logical Buffers 36
Automatic Logical Buffering 36

Contents

Pointer 1/O . v . i i e e e e e e e e e e 37
KeyedDataSetso uenurenenennnn 38
SharedDataSetso it i ittt in oo 40
SCSConversionDataSets ., . . .« v v v v v v v v v v vt e e 40
ExtendingDataSets 0.t 40
Self-Check . . v i vttt e e e e e 41
Choosing Your Algorithm e e e e e 44
Using the GSCK Instruction 47
Using the IF .. . CHK Instruction 47

CHAPTER 3. ASSEMBLER LANGUAGE CONTROL

STATEMENTSttt sttt nnnnneaens 49
Format e e e e e 51
Blanks e e e 51
COMMENTS v . v it it e e e e e e e e e e e e e e 51
Initialize the PartitionControl Area 52
START Control Statement 52
.KBCRT Control Statement 53
.EDITC Control Statement c v 56
Declare and Label Data Areas v ... 57
.DCControl Statement, 57
.DCLBR Control Statement 65
.DCLDR Control Statementc..... .. 65
.DCLIND Control Statementc.... 65
.EQUATE Control Statement 66
Set Up and Initialize Device Control Blocks 69
.COMM Control Statementt 69
.DATASET Control Statement 72
SetUpand Label Tables 79
.TABLE Control Statement 79
.LABTAB Control Statement 81
SYSTAB Control Statement 82
SetUpEditFormats:t ennnnnn.. 84
FMTST Control Statemento 85
.FMTFLD Control Statement 85
.FMTEND Control Statement 92
Set Up Screen Control Formats 92
SFMTST Control Statement 97
.SFMTCTL Control Statement 98
.SFMTPMT Control Statement %. . 100
.SFMTCNS Control Statement 102
SFMTFLD Control Statemento .. 103
.SFMTEND Control Statement 106
Field Type Keywordsc.cueeunennn 107
Field Definition Keywords ovvunnnn. 109
Control the Assembly Listingovvvueenn 113
.TITLE Control Statementc.uvou... 113
LEJECT Control Statement ouveonnnn 114
SPACE Control Statement v« v v v v v v o v e o 114
_PRINTON Control Statement ouo.. - 115
PRINTOFF Control Statement 115
Miscellaneous Control v v v v v vttt 115
.INCLUDE Control Statement 116
SELFCHK Control Statement oo v v v v v v 116
XTRN Control Statement v v v vt v e oo 120
LEND Control Statement v v v v o v v m v e ae e 121
CHAPTER 4. IBM 5280 ASSEMBLER LANGUAGE
INSTRUCTIONSo ccnesonaossonsasan 123
Instructions Format i it it e 123

Contents v

Blanks et e . 123

Symbolic Labels . :.,...........00.. e 123
The Instruction Fields 000 . 124
Comments e e e s 124
Storage Specifications0 e R 1)
l.abeled Addressing e aeeaa 126
Base Displacement Addressing e 126

Constant Specifications . . ., vv e, 126
Register and Indicator Specifications 126
Operation TYPES .+ v v v e v v v v v e s nnnserraas s 128
Assembly Time Arithmetic o0 132
Arithmetic Expressions . , oo v v raoa. 132
The ADDR Function, v uv s o eraeaass 133
The LENG Funetion v vhe s enaaas 134
Changing a Declared Length 134
ChangingaDataType s L e . 134
Arithmetic/l.ogical Instructionsc0.....,. 138
Binary Register Arithmetic/Logical 1386
Binary Register Shift/Rotate v 139
Decimal Register Arithmetic . ., v v v s v v v n s 141
Decimal Register Shift ch e e 14B
Decimal Register Zone Modlflcation e .. 148

Branch and Skip Instructions . , . . . e e e .. 149
Unconditional Branch , e 149
Subroutine Call and Return e 151
Full Conditional Branchon Test . ., 164
Short Conditional Branch on Relational Compare 158
Skip on Constant Compare e e e 162
SkiponBitMask ., e 164
Skip on AND/Exclusive-OR Mask 166
LOOP CONtrol . . v v v vt e e et e e 166

Communications Instructionso v v v i 168

Diskette Instructions ., v v i vt e e e 174
Control Operations v« v v v v v v un e e n e 174
Search Operationsot v v v et noaan 188

Printer Instructions it ittt e 192
Error Recovery Procedureso v v 197

Keyboard and Display Instructions 199
Key Entry Instructions v vt v v v v o 199
Keyboard Operations v v vv i v nnsn 204

Data Movement Instructions 229
Load Binary Register00 229
Load Decimal Registerc.0o0.. 231
Store ata Labeled Address 233
Store at Base Displacement Address 235
ExchangeDatauuuuueuunenenenn 236
Convert Register Contentso v e v wvn oo 237
Move Bytes Between Decimal Registers 240
Move Bytes inStorage v v v v v v vt e e 241
Move Bytes Between Storage and Screen 243
Move Formatted Data0ouvunn.. 246

Partition Load and Exit Instructions 248
LoadaPartitioncuivinennunnnn 249
EXitaPartition . o v v v vttt e e 250
The Load Parameterso vv e ennnnnn 250
Partial Overlay v i i i inennnnnn 252
Error RECOVEIY . & v v v v v vt e ettt e e et it e s 252

Table INStructions v v vttt i e 253
Table Read Operations oo evvunnnn 254
Table Write Operationsvoveeennnnnn 255
Table Search Operationso v v v v m v mnnn. 258
Global Tableso enn.. 261

Miscellaneous INStruCtions v v v v v v e n v v v n e 262
Compare Logical Character Strings 262
Generate a Self-Check Digit 263

vi

Modification for Indirect Instruction Execution 263
DuplicateaByteinStorage+ . . . +v v v e v v v v s+ 265

Search Resource Allocation Table e e 265
SetBitswithMaskvvvin v N 266
Setindicatorsc0 0. 266
Exclusive-OR Write, Sklp on AND Mask . Ve e 287

SystemLockandUnlock....................268
Translation vt e e .., 268

CHAPTER 6. HOW TO ASSEMBLE YOUR PROGRAM 271
The IBMB280 Assembler v 21
Loading the Assembler intoaPartition 272
The Assembler Prompts v v v v v v v s vnn. . 272
The Assembler Listing v v v v v v v v v it .. 279
A Printed Assembly Listing oo h b n i aa ..., 279
The Cross-Reference Listing, v vvrvsr,... 280
ErrorMessageso v v v nus e inenonr e a. . 281

CHAPTER 6. CONTROL AREAS :s04..., 283
System Indicators within a Partition,........ 283
System Registers within a Partition 284
ProgramChackErron.............,..........285

Keystroke Counters P -]
Data Entry Keystroke Counter et .. 286
Verify Correction Keystroke Counter e e 286

Common Function Routines ., Ve, . 288

Common Function Error Routines , 288

Keyboard/Display External Status« oo v v v v w v v 302
Restricted External Status Indicator ., s 304
External Status Subroutines e r e e 304
External Status Conditions 305

CHAPTER 7. THE ACL TO ASSEMBLER LANGUAGE

CONVERSIONPROGRAM:cnvv s nnnss . 317
Operationttt 317
Notes About the Converted Program 320

The Format of the Converted Program 320
Labels and Sequence Numbers 320
The Format of the Display Screen ., e 321
Buffers . . . i e e 323
The .FORMAT Control Statement 325
Indexed Branch Instructions 325
The OPEN Instructions v v v v e v v e e 325
The ENTR Instructionsov ... 325
The EXEC lInstructionc..u ... 326
Keyed DataSets. ennnn 326
The ACL Deleted Record Subroutme 326
Physical Buffers., 326
Print Instructions, 327
LeadingBlanks00, 327
FunctionKeys.ottt i i 327
TheMinusKey o v i it i ittt i it 327
ACL Toggle Switchest euanon 329
ConversionChart¢.utvvueeueenua. 329
Control Statementso vvvuunnnnn 330
INStructions v v vttt i e e e e e 331
Indicator Conversioncoteuuenn.. 334

APPENDIX A. MNEMONIC TO OPERATION CODE
CONVERSION CHART AND INSTRUCTIONS FORMAT . . 337

APPENDI!X B. SCS CONTROL CHARACTERS 343
Function Types Available for Use with the Format (Fmt)

Printer Control Character. v v ans 345

Valid Values for the SHF and SVF Set Types. 347

APPENDIX C. SELF-CHECK COMPUTATIONS

APPENDIX D. KEYBOARD CODES AND EBCDIC

CHARTS0t0vtnenns
EBCDIC Charts for Printable Characters

Keyboard Functions: EBCDIC Codes and Bit Numbers

|BM 5280 Mode Keyboard Functions . .
IBM 3270 Mode Keyboard Functions . .

APPENDIX E. ERROR MESSAGES . .
Assembler Errors and Messages

Conversion Program Errors

APPENDIX F.SAMPLE PROGRAM . .
GLOSSARY. . . .+ v v v cvnnnns

INDEXvurnennnnnnnns

Contents

vii

Chapter 1. Introduction

The IBM 5280 is a diskette-based data entry system with partitioned main storage.

It consists of keyboard/display data stations with optional diskette drives, a com-
munications line, and printers. The IBM 5280 operates with multiple tasks, each run-
ning in a main storage partition. It can be used in data entry, remote batch, remote
inquiry, or preprocessing environments. Input source records can be edited, veri-
fied, and placed into main storage registers, tables, or other data areas. In main
storage, the records can be manipulated with arithmetic and logical operations.

The records can then be reformatted and written to a data set. (A datasetisa

group of records stored on a diskette.) The data sets on the diskettes can then be
used as input to a data processing system.

The data stations and 1/0 (input/output) devices are described in the General
Information manual. You should be familiar with these units before you begin pro-
gramming in the IBM 5280 assembler language. You must also be familiar with the
organization of main storage, which is described in this chapter. Preceding the
overview of main storage, this chapter gives overviews of the assembler language and
of program execution. These overviews briefly describe the format of the source
statements, the generation of the object code, how the iBM 5280 executes the object
code instructions, and the major functions the object code can perform.
OVERVIEW OF THE ASSEMBLER LANGUAGE
The IBM 5280 assembler language consists of control statements and instructions.
The control statements define the main storage control and data areas. The instruc-
tions specify the operations and operands. No job control language is necessary for
the IBM 5280.
The Control Statements
In your source program, a control statement is always preceded by a period (.).
Control statement parameters are written with uppercase letters. The control
statements are described in Chapter 3, where they are organized by function:
® [Initialize control areas and /O control blocks (IOBs)
® Declare and label data areas
® QOrganize tables
® Set up screen formats

® Set up edit formats

® Control the assembly listing

Intreduction 1

The Instructions

In your source program, the instructions specify the operations and the operands.
Operations are specified by arithmetic symbols or by uppercase mnemonics. Oper-
ands are specified as immediate data or as the contents of a data area. Data areas
are referred to by a label or by a base displacement address. The instructions are
described in Chapter 4, where they are organized by the types of operation they
perform. The operations include:

Arithmetlc/logicm

® Branch and subroutine

® Communications input and output

® Input and output to diskette or printer
® Input and output to keyboard/display
® Data movement

@ Partition load and exit

@ Table read, write, and search

9

Miscellaneous

The Source Program Format

Source statements are written with a length of 72 positions per line. Parameters

are separated with spaces. You may space freely between parameters, but spaces
are not allowed between a parameter and a parameter value. A control statement
may be written on one or more lines. An instruction, however, must be complete
within the first 72 positions of a line. Comments may be written on a control state-
ment or instruction line, or an entire line may be written as a comment line.

Certain control statements must be written in a prescribed order. This order is
explained in Figure 3-1, Control Statement Summary in Chapter 3.

The control statements and instructions of a source program must be written to a
diskette data set before the source program can be processed by the assembler pro-
gram. Enter each line of the source program as an 80-position record. The
assembler program ignores the data in positions 73-80.

The Assembler Program

The IBM 5280 assembler program reads the source program from the diskette and
uses it to generate the object code. It detects syntax errors in the source control
statements and instructions. It converts each label and base displacement address to
an address relative to the beginning of the partition. It converts each series of
screen format control statements to a string of object code, which is referred to as

a screen format control string. From each source instruction, it generates a 4-byte ,
object code instruction; the first byte always contains the operation code that
determines the operation, and the other 3 bytes contain the operands. An operand
may be immediate data, a format number, a table index, or the address of data to
be operated upon. When the assembler program has converted the source program
to object code, it then writes the object code to a diskette data set. It also gener-
ates an assembly listing that can include:

® Source code and object code

® Syntax error messages

® Storage allocation messages

® Alphabetic cross-reference of symbols used in the source program

The assembly listing can be written to a printer or to a diskette data set. Chapter 5
describes how to load and execute the assembler program.

Loading the Object Code

The object code data set that is written by the assembler program must be loaded
into a main storage partition for execution. The object code for a program can be
loaded into any partition that is of sufficient size. An operator may load the object
code by responding to a load prompt. Or a program being executed in a partition
can have instructions to load another object program into another partition or into
the same partition. See Partition Load and Exit Instructions in Chapter 4 for more
information about loading the object code.

OVERVIEW OF PROGRAM EXECUTION

When the object data set is loaded into main storage partition, control informa-
tion and address pointers are stored in a partition control area. This control infor-
mation is used by the IBM 5280 and the I/O devices during program execution. The
control information is followed (1) by the data areas specified in the source pro-
gram control statements and (2) by the 4-byte object code instructions.

The IBM 5280 executes the object code instructions sequentially until a specified
time limit is expired or until an 1/0 instruction is encountered. When the time limit
expires, the |IBM 5280 suspends processing in that partition. The IBM 5280 then
enters the next partition that has been loaded with an object data set and begins
executing instructions in that partition.

Introduction

If an 1/0 instruction is encountered, the IBM 5280 determines which 1/0 device is to
process the operation. It places control information into the partition control area
and issues the 1/0 instruction to the device. The 1/O device processes the 1/0
operation, using the control information in the partition control area and in the

10B that describes that 1/0 operation. ‘)

Overlappéd 1/0

Certain instructions may specify overlapped 1/0. (The instruction descriptions in
Chapter 4 indicate when overlapped.1/O may be specified.) When the IBM 5280
encounters an 1/0 instruction that requests overlapped 1/0, it issues the instruction
to the appropriate 1/0O device. The IBM 5280 then either: (1) remains in the current
partition and executes the instruction following the 1/0 instruction, or (2) if the
time limit has expired for the current partition, exits the current partition and
executes instructions in the next partition that contains an object data set. The

1/0 device processes the 1/0 operation concurrently with the sequential instruction
execution,

If overlapped 1/0 is not specified, the IBM 5280 issues the 1/0 instruction to the 1/O
device and exits the partition. The instruction following the |1/O instruction is not
executed until the 1/0 instruction is completed by the device.

External Status

While an 1/O device is processing an 1/O operation, it may encounter an external
status condition that requires operator intervention or processing by the I1BM 5280
controller. A four-digit condition code is placed into the 10B; it may also be dis-
played on the status line. These condition codes are described in Chapter 2 under
External Status and Error Conditions.

Data Input

For input via the keyboard/display, the screen format (which you specify with
control statements) determines the prompts that are displayed on the screen and
the display attributes for the screen, such as blink or underscore. The screen format
can specify which characters are valid for each individual field of the input record.
Valid fields of the input record are stored in an 1/O buffer.

For input from a diskette data set, a program instruction can direct the IBM 5280 to
read a data set record. The records in a data set can be accessed sequentially,
directly by relative record number, or directly by key. The input record is stored

in the 1/0 buffer. ‘

Data Manipulation

““Your instructions direct the IBM 5280 to move the record from the 1/0 buffer. You
can move a complete record or individual fields of a record to registers for arithmetic/
logical operations. You can place the data into a table and can search the table
entries for logical comparisons. You cah keep running totals or perform self-check
validation. You can test the contents of a register or a storage byte. You can
perform simple or complex data movement and data comparison operations.

Data Output

Your program instructions and formats also control record output. Records can be
moved from main storage data areas to an 1/0 buffer. An edit format can reformat
the record and insert punctuation. The records can then be written to a display, a
diskette data set, a printer, or the communications line.

OVERVIEW OF MAIN STORAGE

Main storage is organized into areas for system control, tables, common functions,
partitions, and a system work buffer, as illustrated in Figure 1-1.

(X'0000' |
System Control Block
(256 bytes)
X‘00FF’
Absolute | N N Global Tables J-
Addresses ~T (variable length) ~r
. Common Functions Ja
~
- (variable length) -
¢ X000’
4 First Partition J
- (variable length) T
X‘0000'
L Next Partitions
~r (each of variable length) «~r~
Relative) .
Addresses | X"0000
J- Last Partition g
~ (variable length) -
System Work Buffer
(256 bytes)

Figure 1-1. The Organization of Main Storage
The system control block is located in the first. 256 bytes of main storage.

The fields of the system control block have fixed locations. However, all partitions,
and all storage locations within a partition, are accessed by pointers. The pointers,
which are set up and maintained by the IBM 5280, are located in the fixed locations of
the system control block. These pointers make it possible for each of your assembler
source programs to address locations as they relate to the partition, rather than as
they relate to main storage as a whole. These relative addresses remain valid for

any partition into which your program is loaded.

Introduction 5

Logical Device ldentifiers

Logical device identifiers are two-character IDs that allow you to symbolically ad-
dress a resource independently of machine or partition configuration. The logical
device IDs are stored in a resource allocation table, which is created and loaded into
the global tables area by the system configuration portion of the SCP (system

Control Program). The resource allocation table specifies the logical devices that can
be accessed by each partition. Each resource allocation table entry contains both the
logical device ID and the physical address of that device. Whenever a program
instruction requires a device address, you can specify the two-character ID. The IBM
5280 searches the resource allocation table for the physical address of the device with
the matching ID. The IBM 5280 uses the device at that physical address to access the
data set that is available to that device.

The logical device IDs are used only in program instructions. Do not enter a
logical device ID via the keyboard in response to a prompt that requests a physical
address.

Common Functions

The common functions area contains IBM-supplied global subroutines. They can be
accessed by a subroutine call from any partition. The labels and functions of these
subroutines are listed in Chapter 6 under Common Function Routines.

PARTITIONS

There may be up to eight partitions numbered sequentially from zero. There must
be at least one partition for each keyboard. A partition is of variable length, but it
cannot cross a 64 K byte boundary. The number, size, and location of the parti-
tions is. defined at system configuration time. The first 266 bytes of each partition
contains control information in fixed locations from the beginning of the partition.
The next 3840 bytes may be used as needed for indicators, decimal registers, binary
registers, or storage areas. This area is followed by a variable-length storage area.
The last 256 bytes of each partition is used for a work area. Each byte of a parti-
tion is addressable relative to the first byte of the partition. Figure 1-2 shows the
different areas of a main storage partition.

Modes of Operation
Each partition operates in either IBM 5280 mode or IBM 3270 mode (emulation).

See the /IBM 5280 Distributed Data System, IBM 5280-3270 Emulation Reference
Manual, SC34-0384 for specific information concerning this mode of operation.

uo11oNPOo.IIU|

L

*do3 ay3 3e s1 uBIP Y14n0j 8yl pue ‘348| oyl aé aJe sassaippe eAlejea

|ewidapexay ey} Jo sHBIp seayl 3sily 8yl "uoililied abeiolg uieyy e jo uoneziuebiQ sy) °Z-1 2:nbiy

Relative

Addresses
X
; ILO 1 2 3 4 5 6 7 8 9 A B c D E F
000- |]
: Partition Control Area
OOF-
o010- |BRO BR1 BR2 BR3 | BR4 BR5 BR6 BR7
1000-1015 1016-1031 1032-1047 1048-1063 1064-1079 1080-1095 1096-1111 1112-1127 RO
o011- |BR8 BR9 BR10 | BR11 BR12 BR13 BR14 | BR15 |
1128-1143 1144-1159 1160-i1175 1176-1191 1192-1207 1208-1223 1224-1239 1240-1254 R1
012- |BR16 BR17 BR18 BR19 BR20 BR21 BR22 BR23
R2
N N2
- o™ et
01F-IgRr120 BR121 BR122 BR123 BR124 BR125 BR126 BR127 R15
020-
R16
021-
. R17
. R
T =
OFE- :
R238
OFF-
R239
100-
. ™ ad —
L = ad
i StorageI Area
Work Bluffer
|

1

Indicators

Binary
Registers

| Decimal
Registers

Partition Control Area

The partition control area contains control information that describes the program
that is loaded into the partition and defines the 1/0 devices used in the program.
The IBM 5280 loads this information into fixed locations within the control area,
using information from the common area and from the source program control state-
ments. During program execution, the |BM 5280 uses this control information each
time it enters the partition to determine the partition status, the 1/O status of the
program, and the address of the next executable instruction.

indicators and Registers

Immediately following the partition control area is an area that may be used for
indicators, binary registers, and decimal registers. These bytes may be used in any
desired combination of indicators and registers as described in the following para-
graphs: if some of these bytes are not used for their binary register/decimal
register capabilities, the unused bytes may be used as storage. Figure 1-2 shows
the bytes that may be used for indicators and registers.

Indicators

The first 32 bytes of this area contain 255 one-bit indicators. In your source pro-
gram, the indicators can be represented by the letter | and the indicator number.
They are numbered sequentially from 10 to 1254. The first 100 indicators (10-199)
may be labeled, set, tested, and reset as your source program dictates. These indi-
cators are referred to as program indicators. The remaining indicators (1100-1254)
are set and maintained by the IBM 5280, and are referred to as system indicators.
System indicators have specific meanings assigned to them, as described in Chapter
6 under System Indicators Within a Partition.

You can label program indicators with a .DCLIND control statement. When the
assembler processes the .DCLIND control statement, it assigns each specified label
to an available program indicator.

You can label system indicators with an .EQUATE control statement. The
.EQUATE control statement allows you to specify the number of the indicator you
want assigned to each label. You could use the .EQUATE statement to label pro-
gram indicators also; however, you usually don‘t care which program indicator is
assigned to each label.

Two instructions are available to test indicators. The IFI instruction can test the
indicator and perform a conditional branch. The IFIR instruction tests the indicator
and performs a conditional branch, but it also resets the indicator to 0. Your pro-
gram can use these instructions to test program or system indicators.

You can use the instruction SON to set an indicator (1), or the instruction SOFF
to reset an indicator (0). See Set Indicators under Miscellaneous Instructions in
Chapter 4 for a description of these instructions.

As Figure 1-2 illustrates, the bytes that are used for the indicators are also used for
the first 16 binary registers or for the first two decimal registers. The last bit of the
sixteenth binary register, or the second decimal register, is not used as an indicator.

Binary Registers

The first 256 bytes of this area may be used for up to 128 two-byte binary registers.
Binary registers can be represented by the letters ‘BR’ or ‘B’ followed by the register
number. The registers are numbered sequentially from BRO to BR127. BR0O-BR15
are used as indicators (as described in the preceding paragraphs), and BR16-BR31
are used as system registers. The system registers are used and maintained by the
IBM 5280 during program execution and hold information as described in Chapter 6
under System Registers Within a Partition. You should not assign these registers

to any other purpose. The system registers should always be reserved (see the
RGLT parameter of the START control statement). In your source program you
can access the reserved registers by register number, or you can use the . EQUATE
control statement to assign them labels.

The binary registers that are not reserved by the RGLT parameter of the START
control statement can be labeled and initialized by declare control statements in
your source program. Use the .DC control statement to label and initialize one
binary register, or the .DCLBR control statement to-tabel several uninitialized
binary registers.

Although binary registers are 2 bytes in length, you can access either 1 or 4 bytes
by defining the byte length, in parentheses, following the register number or label.
If you specify a length of 1 byte (BR40(1)), only the rightmost byte of BR40 is
accessed. If you specify a length of 4 bytes (BR40(4)), the 2 bytes of BR40 and »
the 2 bytes of BR41 are accessed. A binary register specification with a length of
4 bytes is referred to as a binary double register.

Binary registers are often used to hold addresses. The instructions to load a binary
register are described in Load Binary Register under Data Movement Instructions in
Chapter 4. In your source program, you can load a 2-byte binary register with:

® An unsigned decimal mteger (0-65535)

® Two EBCDIC characters

Figure 1-3 shows the hex representation of binary data in two binary registers.

High- Low-
Order Order
Byte Byte

s W
BR75 FOE1A

BR76 {C D i O F

Figure 1-3. Binary Registers

Introduction 9

10

The fol‘lowing examples illustrate the different ways you can refer to BR75 if you

assign it the label BREG1.

BR75 .
BR75(2) specifies the full 2-byte binary register, which contains
BREG1 hexadecimal FO1A.
BREG1(2)
BREG1(1) specifies the low-order byte of BR75, which contains
BR75(1) hexadecimal 1A. ‘ '
BR75(4) specifies the 4 bytes of BR75 and BR76, which contain
BREG1(4) hexadecimal FO1ACDOF.

Decimal Registers

The 3840 bytes of this area may be used for up to 240 sixteen-byte decimal
registers. Decimal registers can be represented by the letter R and the register
number. The registers are numbered sequentially from RO to R239. The bytes
within RO and R1 are used for indicators; the bytes within R2 and R3 are used for
system registers. You should not assign RO-R3 for any other purpose. In your
source program, the decimal registers reserved by the RGLT parameter of the
START control statement can be accessed by register number. Or you can use
the .EQUATE control statement to assign them labels,

Decimal registers not reserved by the RGLT parameter of the .START control
statement can be labeled and initialized by the declare control statements in your
source program. Use the .DC control statement to label and initialize one decimal
register, or the .DCLDR control statement to label several uninitialized decimal
registers.

Although a decimal register is 16 bytes in length, a double decimal register of 32
bytes may be specified by defining the byte length in parentheses, following the
register number or label. Decimal registers and double decimal registers are valid

in decimal arithmetic and shift operations, branch operations, and table operations.
All data in decimal registers-is stored in EBCDIC notation. The instructions to
load a decimal register are in Load Decimal Register under Data Movement Instruc-
tions in Chapter 4. In your source program, you can load a 16-byte decimal
register with:

® A positive or negative decimal number (+0 to 10'¢-1)
® Up to 16 EBCDIC characters

The following examples illustrate the different ways that you can refer to R120 if
you assign it the label REGX,

R120 ‘ "
REGX } specifies the 16 bytes of R120.

R120(32)

REGX(32) specifies the 32 bytes of R120 and R121.

The contents of a decimal register may be positive or negative; the sign is deter-
mined by the zone half of the byte in the units position (byte 15) of the decimal
register. |f the register contains a positive number, hex F is in the zone half; if it
contains a negative number, hex D is in the zone half. Figure 1-4 illustrates the sign
control position in a decimal register.

Sign Control Position

<
Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
zone ------------------------------ LI ERCEE Y P eoeePpooscefens o
Digit

Figure 1-4. The Sign Control Position in a Decimal Register

The zone halves of the bytes are used for sign control; however, no checking is done
by the IBM 5280 to determine whether the register contents are numeric or alpha-
betic.

Storage .

Following the registers is a variable-length area of storage. The size of this area is the
size of the partition, less the 256 bytes of the partition control area and the bytes
used for indicators and registers. The instruction object code is stored in this area,
with the buffers, tables, formats, messages, device 10Bs, control tables, data, and
data structures necessary for the program.

Addressing Methods
In your source program, each byte of storage within a partition can be addressed
directly, using an assigned label, or indirectly, using a displacement and a base
address.
Direct labeled addressing of a storage location is accomplished by using a declare

control statement to assign a label to a storage area of any length. To access this
labeled area in a source program instruction, the following format is used.

label [(length)]
where:

label is the assigned label from the declare control statement. The label
addresses the leftmost byte of the storage area.

length is the length, in bytes, of the storage area. If length is not specified in

the instruction, the length defaults to the length assigned to that area by the
declare statement.

Introduction

11

12

Indirect base displacement addressing of a storage location is accomplished by
specifying in the instruction (1) the location of the base addres and (2) the dis-
placement from that base address at which the storage area is located. The length
may be specified for many, but not all, instructions. To access a storage location
by indirect addressing, one of the following formats is used.

[displacement] ([length], BRn)
[displacement] (BRn)

where:

displacement is the number of bytes (0-255) from the base address at which the
storage area is located. If the displacement is not specified, it defaults to 0.

length is the length, in bytes, of the storage area. The instruction descriptions
indicate whether or not length is allowed in the address. If a length specification
is allowed, it must be followed by a comma. If length is omitted from an instruc-
tion that allows a length specification, the comma must be retained. If the
instruction does not allow a length specification, the comma must not be
included in the address.

BRn is a binary register that contains the base address. The base address is rela-
tive to the start of the partition.

When a source program instruction that has an indirect storage address is
assembled, the displacement is added to the base address in the binary register.
The result is the relative address of the leftmost byte of the data area. This address
is placed in the object code.

Examples:

Direct: BIN1 = STOR1(2)
The contents of the byte at STOR1 and the next byte (length is 2)
are loaded into the binary register labeled BIN1.

Indirect: BIN2 = 1(2, BREG)
The displacement of 1 is added to the address stored in the binary
register labeled BREG. The contents of the byte at the resulting
address and the contents of the next byte (length is 2) are loaded
into the binary register labeled BIN2.

Partition Work Area

Following the variable-length storage area is a 256-byte work area. This area is set
up by the assembler, and it is used by the IBM 5280 during program load and
program execution. Your assembler program should not access or change the bytes
of this work area.

MAIN STORAGE BOUNDARY ALIGNMENT

Main storage is divided by several types of boundaries. Each type of boundary
encloses an area of a specific number of bytes. Many data areas must begin on a
certain type of boundary. Figure 1-5 represents a main storage partition and

points out the different types of boundaries. The system configuration portion of

the SCP begins each partition on a 256-byte boundary and measures the length
of each partition in multiples of 256 bytes.

The address of a
The address of a

0 1 2 3 4 5 6 7 8 9 A B c D E F
000- ‘
Partition Control Area
00F:
010. |BRO BR1 BR2 BR3 | BR4 BRS BR6 BR7
1000-1015 1016-1031 1032-1047 1048-1063 1064-1079 1080-1095 1096-1111 1112:1127
011. |BR8 BR9 BR10 | BR11 | BR12 BR13 BR14 BR15
1128-1143 1144-1159 11601175 1176-1191 1192-1207 1208-1223 1224-1239 1240-1254
012- |BR16 BR17 BR18 BR19 BR20 BR21 BR22 BR23
(-

X‘0126’ is on a 2-byte boundary -

X'0124' is on a 2-byte and 4-byte boundary.
L——— X’0120' is on a 2-byte, 4-byte, and 16-byte boundary .

X'0100’ is on a 2-byte, 4-byte, 16-byte, 128-byte, and 256-byte boundary.
X'0000’ is always on a 256-byte boundary.

2-byte boundary ends in 0, 2, 4,6, 8, A, or C.

4-byte boundary ends in 0,4, 8, or C.

The address of a 16-byte boundary ends in 0.

The address of a 128-byte boundary ends in 00 or 80.

The address of a 256-byte boundary ends in 00.

Figure 1-5. Main Storage Boundaries

When you declare a register in your source program, the assembler places it on the
next sequential boundary appropriate for the type; it places a binary register on a
2-byte boundary and a decimal register on a 16-byte boundary. It places all other
data types on 1-byte boundaries unless you specify a boundary. When you are build-
ing a storage structure, you may want to specify a boundary. When the IBM 5280
assembler processes your source control statements and sets up these data areas, it
skips over any storage bytes between the current location and the next appropriate
boundary in order to observe the boundary restrictions. These bytes cannot be
used by your program. Your assembly listing indicates how many storage bytes are
lost due to boundary alignment. See the examples following the description of the
.DC control statement in Chapter 3 for an illustration of boundary alignment.

Introduction

RO

R1

R2

13

14

BLANKS, CONSTANTS, AND CODING SYMBOLS

In your source program, you may specify optional blanks before or after an equal
sign, arithmetic operator, or parenthesis. Blanks may follow a comma but must not
precede a comma. Blanks are not allowed within a field; however, one or more
blanks must separate fields if no other delimiter is used.

A constant may be specified as a decimal value, a hexadecimal value, a binary value,
or a character. A constant may also be equated to a label; the label can be specified
in an instruction that accepts a constant. Decimal digits are simply written as digits.
Binary, hexadecimal, and character data are prefixed by a capital letter (B, X, and

C respectively) and enclosed in single quotes. For character data the capital C is
optional. Do not leave a blank between the capital letter and the first quote.

n Decimal digits

XV Hexadecimal digits; | = O-F

Bl Binary digits; | =10r 0

c'r EBCDIC characters; | = any valid EBCDIC character

To specify the single quote character, use two quotes (C‘IT"'S’).

Symbols Used in This Manual

The symbols used in this manual are of two types, syntax symbols and statement
symbols. The syntax symbols are used to illustrate syntax and are not to be used in
writing your source programs. The statement symbols are a part of the language
and must be coded as shown.

Syntax Symbols

Syntax symbols are not to be coded in the source program.

Symbol

[1]

9

BRn

Rn

BRa
Rb

constant

Definition

Brackets enclose optional item(s) to be used or not, at your
discretion.

Braces enclose two or more items from which you must select one.
Three dots indicate that the preceding can be repeated.

Lowercase letters represent information you must supply. (You
must substitute your own values for the lowercase terms.)

Represents an unsigned decimal number.
Represents a signed decimal number.

Represents a range of numbers from which one number can be
selected. (The dash is not coded.)

Represents an indicator, which can be referred to by label or
number.

Represents a binary register, which can be referred to by label or
number.

Represents a decimal register, which can be referred to by label or
number.

When more than one register may be used in a statement, the letters
a, b, and ¢ may replace the n to more clearly demonstrate the posi-

tions in the statement that the different registers may occupy.

Represents any form of constant as described in this chapter.

Introduction

15

16

Statement Symbols

Statement symbols must be used in an assembler source program as shown in the
syntax illustrations:

Symbol

LABEL

Definition

Colon is used after symbolic labels.

Semicolon delimits statements.

Point, or period, begins control statements.

Equal sign causes the value of the data area on the left of the equal
sign to be changed according to the value of the data area on the
right of the equal sign.

Parentheses enclose certain parameter values.

Single quotes enclose literals and are used to specify numeric data
other than decimal. The use of single quotes is interchangeable with
the use of capital C and single quotes. For example, C'abc’ and ‘abc’
produce the same results.

Comma separates parameter values.

Uppercase letters are assembler language and must be coded as
shown.

Chapter 2. Programming Concepts

This chapter discusses various data areas that are set up according to your control
statements and are used by the IBM 5280 during program execution. The discus-
sions often refer to the control statements that generate the areas and the instruc-
tions that use the areas during program execution. Each control statement is
described in Chapter 3; each instruction is described in Chapter 4.

TABLES

Tables play an important part in IBM 5280 assembler programming. Two kinds of
tables may be set up and used by your program: data tables, which are set up by
.TABLE control statements, and label tables, which are set up by .LABTAB
control statements. Also, the assembler builds system tables, which are used by the
1BM 5280 during program execution. These system tables allow you to refer to a
data area with a label; the IBM 5280 converts the label to an index that points into
a system table and locates the address and parameters of the area.

System Tables

When the assembler processes control statements that set up as tables, formats, or
prompts, it places the address of each table, format, or prompt in a table. This table
of addresses is a system table, and is used by the IBM 5280 during program execu-
tion. System tables are stored in the partition storage area. You can specify the ad-
dress of the system tables by using the .SYSTAB control statement in your source pro-
gram. Otherwise, when the assembler encounters the .END control statement, it
stores the system tables at the addresses immediately following the last address that
contains program object code. The address of each system table is stored in the
partition control area. The control statements that generate a system table argu-
ment are listed below, with the system table into which the argument is entered.

System Table Control Statements

Table control .TABLE

Edit format control .FMT series (each series = 1 argument)
Screen format control .SFMT series (each series = 1 argument)
Prompt control .DC TYPE=PRMT

Duplicate and store control .DC TYPE=MDUP

Programming Concepts 17

When a source instruction refers to a prompt, table, duplicate field, store field, or
format, the instruction specifies only the label. The IBM 5280 uses this label to find
the system table entry; the system table entry provides the address and other control
parameters. The system table entries are stored sequentially, in the order they
occur in the source program. Except for the prompt system table, the first entry

in a system table is at index O; for the prompt system table, the first entry is at
index 1. The assembler places the table index into the object code instruction.

This method requires only 8 to 10 bits of the 4-byte object code to provide the
address and parameters of the requested data area. The .SYSTAB control state-
ment description in Chapter 3 describes how to specify the labels and addresses of
the system tables.

Data Tables

Contiguous fields of related data can be referred to as a data table. In your source
program, you can allocate and initialize the fields of a data table by using .DC
control statements. After you have allocated the fields, you must use the .TABLE
control statement to structure the fields into a table. The first argument in a data
table is at index 1. You may have up to 128 tables within a partition. You must
include one .TABLE control statement for each table in your source program.

You can use instructions in your source program to request that the IBM 5280
search, read, or write the entries in a data table. See Table /nstructions in Chapter 4
for a description of these instructions.

Data tables can be fixed length or variable length, according to your .TABLE control
statement. See the .TABLE control statement definition in Chapter 3 for an
example of .DC and .TABLE control statements that build a variable length table.

Label Tables

Label tables are tables that contain addresses; they are used by your program to
make indexed branches and indexed subroutine calls. In your source program you
use a .LABTAB control statement to set up a label table.

The parameters of the .LABTARB control statement specify the labels of the sub-
routines or instructions you wish to enter into the label table. The address of the:
first label specified in the .LABTAB statement is entered at index 0 in the label
table, the address of the second label is entered at index 1, and so on. When you
code a GOTAB or CALLTB instruction, you specify (1) the label of the label table
and (2) the label table index of the subroutine or instruction you wish to execute.

The IBM 5280 makes similar indexed branches through the label table you use for
your external status condition subroutines, if you code a separate subroutine to
handle each condition. (See Keyboard/Display External Status in Chapter 6.) You
specify this label table in the ETAB parameter of the .KBCRT control statement.

DATA TYPES
Each source instruction and control statement requires specific types of data to be
used as operands. For some operands only one type of data is accepted. For
example, the format operand of the ENTR instruction requires a screen format
specification; no other type of data is accepted. For other operands more than one
type of data may be specified. For example, the operand of the ZONE instruction
may be specified as a decimal register or as a constant.

The following data types can be used in the instruction and control statement
operands.

® Label or number of an indicator

® Label or number of a binary register

® Label or number of a decimal register

® Label of an instruction

® Label of a data storage area (from a STOR type .DC)
® Label of a prompt (from a PRMT type .DC)

® Label of a duplicate area (from a MDUP type .DC)
® Label of an edit format

® Label of a screen format

® Number of a data set

® Index of a table

® Constant

SUBROUTINES

A program can call any subroutine that is stored within the partition. Calls to
routines in the common function area are discussed under Common Function
Routines in Chapter 6.

Two source instructions can be used to call a subroutine: the CALL and CALLTB
instructions. These instructions are described in Chapter 4 under the Subroutine
Call and Return instructions. A CALL instruction must include a label or a binary
register, or both. If the CALL instruction includes a label, a normal call is made to
the statement at the specified label. If the CALL instruction specifies a binary
register and no label, a call is made to the address contained in the register. If the
CALL instruction specifies a binary register and a label, the contents of the binary
register are added to the address of the specified label, and a branch is made to the
resulting address.

Programming Concepts

The CALLTB instruction is used to make an indexed branch through a label table.
The label table must be set up and labeled by a .LABTAB control statement. You
include this label table and a binary register when you write the CALLTB instruc-
tion. The binary register contains the index of the subroutine you wish to call. The
first entry in the label table is at index 0. When the CALLTB instruction is
executed, the call is made to the subroutine at the specified index into the label
table. If you use a separate subroutine for each external status condition, the IBM
5280 uses this method to call the appropriate external status subroutine. The IBM
5280 uses BR23 to hold the index into the external status subroutine label table.

The Partition Subroutine Stack

Whenever a subroutine call instruction is executed, the address of the next sequen-
tial instruction is assumed to be the return address and is stored into the partition .
stack. When an external status condition is detected during an 1/O operation, and
the 1BM 5280 branches to the external status routine, it checks byte 13 bit 5 of the
DATASET IOB. If the bit is set; the address of the I/O operation will be used as the
subroutine return address and is stored into the partition stack. Otherwise the ad-
dress of the next sequential instruction following the 1/0O operation will be used as
the return address. The partition stack is a system table with 2-byte entries, located in
partition storage. You may use the .SYSTAB control statement in your source
program to specify the address and size of the partition stack. Otherwise, when the
assembler encounters the .END statement it locates the beginning of the partition
stack in the address following the last address that contains program object code or
system tables. In either case, it stores the address of the beginning of the partition
stack in BR18, which is referred to as the stack pointer. When the first subroutine
call is executed, the 2-byte return address is placed in storage at the address indi-
cated by BR18. Then the address in BR18 is incremented by two, so that it points
to the next available stack entry. If another call is executed before a return is
made to the first call, the return address for the second call is placed in the address
indicated by BR18, and BR18 is incremented by two. In this way, you can have
nested subroutine calls. You must remember, however, that each nested call adds
another 2-byte entry to the partition stack. If the partition stack extends beyond
the end of the partition, a program check error results.

Subroutine Returns

External status subroutine returns depend upon the particular external status
condition and are described under External Status and Error Conditions in this
chapter.

Other subroutines end with a RETURN instruction. When this instruction is exe-
cuted, the content of BR18 is decremented by two so it points to the last address
entered into the partition subroutine stack. If the RETURN instruction includes a
binary register, an indexed return is made. The content of the binary register is
added to the address pointed to by BR18, and control returns to the resulting
address.

Figure 2-1 illustrates how the partition stack and stack pointer are used during sub-
routine calls and during returns.

Yes

Go to the subrou-
tine stack address
specified by BR18

Write the return
address (of the
next sequential
instruction) in the
subroutine stack

Increment BR18
by 2

L

Branch to the
subroutine

©

Get an
instruction
No
Is
his a
Yes t N
RETURN g
Decrement Execute the
BR18 by 2 instruction

|
Go to the subrou-
tine stack address
specified by BR18
|
Return to the
address stored in
this subroutine
stack position

Figure 2-1. Overview of Subroutine Calls and Returns

Programming Concepts 21

THE STATUS LINE
The top line of the data station screen normally displays the status line. The IBM

5280 maintains status line fields, which communicate status information to the
operator. Figure 2-2 illustrates the status line fields.

Position

123456789 1011121314 1516 17 18 19 20 21 22 23 24 25 26 ... 32

Mode

P cccc S R R H H Normal Entry

P cccc S R R>HH Normal Entry,
Insert Mode

P CCCC-EEE E — S R R H H Keystroke
Error

P CCCC-EEE E - L L N NNNNNNN DD ...D 1/0 Error

Key

P is the partition number.

C is the current position counter.

E is the error or condition code.

S is the field shift.

> is the insert mode symbol.

R is the positions remaining in the field.

H is the hex value of the current position.

L is the logical device ID.

N is the program name (first 8 characters).

D is the data set name.

Figure 2-2, The Status Line Fislds

The Partition Number

The partition number is maintained only during an attach or detach operation.
Upon completion of a successful attach operation, this status line field contains
the partition number of the attached partition. Upon completion of a successful
detach operation, this field contains the partition number of the foreground parti-
tion that is permanently associated with the keyboard.

The Current Position Counter

The current position counter is maintained only during the processing of an

ENTR command. This status line field contains the value of the position counter.’

The value is automatically updated with each keystroke. The value reflects the
current position, relative to: (1) the beginning of the 1/0 buffer, (2) the first posi-
tion on the screen, (3) the first position of the record, or (4) the first position of
the field. The CNTR parameter of the .KBCRT control statement determines
which value is maintained in the counter.

The Error Code

- The error code field of the status line contains the error code of the current error.
It is maintained by the I1BM 5280 to reflect all errors. |f your program issues a key-
board operation to send an error code to the status line, you may place the code in
positions 1-65 of the status line; however, the code is normally placed in positions
3-11.

The Field Shift

The field shift position of the status line is maintained only while an ENTR com-
mand is being processed. It contains the symbol that reflects the keyboard shift
for the current field or subfield.

The Insert Mode Symbol

The insert mode symbol is maintained only during the processing of an ENTR
command in insert mode, after the operator has pressed the Ins (Insert) key.

The Positions Remaining in the Field

This status line field is maintained only while an ENTR command is being processed.
It reflects the number of field positions remaining to be entered in the current input
field. If the value is greater than 99, two asterisks (**) are contained in the status
line field. .

The Hex Value of the Current Position

The hex value is maintained on the status line only while an ENTR command is
being processed. It is the hex value contained in the I/O buffer position that corre-.
sponds to the current position of the cursor.

Nondisplay of the Status Line

Certain applications may require the use of every line on the screen. For these
applications, the DISPEX instruction can remove the status line from the screen so
the top line can be used to display data or prompts, or both, The IBM 5280 main-
tains the status line whether or not it is displayed on the screen. 1f an error occurs
when the status line is not being displayed, the DISPST instruction can temporarily
replace the current top line with the status line in order to communicate error
information to the operator, Or the FUNC parameter of the .KBCRT control state-
ment can specify that the IBM 5280 determines whether the status line is being dis-
played whenever an error occurs; if it is not, the IBM 5280 displays it, then returns
the top line when the error'is reset. The data from the top line is not lost and may
be returned to the screen after appropriate error recovery has been accomplished.

The DISPEX and DISPST instructions are discussed under Keyboard Operations in
Chapter 4. The .KBCRT control statement is discussed under .KBCRT Contro/
Statement in Chapter 3.

Programming Concepts

24

EXTERNAL STATUS AND ERROR CONDITIONS

When an |/O error condition or a condition that requires"operator intervention
occurs, the |BM 5280 generates an appropriate condition code and places it into the
10B of the data set that was being processed when the condition occurred. The
condition code is made up of four digits that describe the condition:

@ Device reporting the condition (first digit)

® (Category of the condition (second digit) -

® Condition number (third and fourth digits)
The device digits are:

Digit Device

{BM 5280 controller
Keyboard/display

Printer

Diskette

SNA communications access method
BSC communications access method
Program

QO HWN=0

The category digits are:
Digit Device

Communications completion codes
Operator intervention required
Hard error (has not been retried)
Error has been unsuccessfully retried
10B error
Soft error (has been retried)
Exception condition
' Warning message, program execution may continue
Reserved
Software termination

OO NI HLWN-=Q

The last two digits of the condition code are the condition number. The condition
number specifies the condition and varies depending upon the device and category.
All condition codes and messages will be described in the Message Manual.

The following information concerning the condition is placed into system binary
registers within the partition when the condition occurs.

Register Information

BR19 Used only with keyboard/display external status, this register con-
tains the relative address of the field in the 1/0O buffer that holds the
current record. The address is relative to the beginning of the parti-
tion and is valid only when BR21 contains a field specification.

BR20 Used only with keyboard/display external status, this register con-
tains the absolute address of the current field in the screen refresh
buffer and is valid only when BR21 contains a field specification.
The screen refresh buffer is located within the keyboard/display unit
and holds the data that appears on the screen.

BR21 Used only with keyboard/display external status, this register con-
tains a control specification or a field specification. If it contains a
field specification, it also contains the length minus one of the
current field in the 1/O buffer. See Keyboard/Display External
Status in Chapter 6 for the format of the contents of this register.

BR22 Used with all external status except keyboard/display, this register
contains the relative address of the last IOB to report external status.

BR23 Used with all external status, this register contains the index of the
current external status condition. This index can be used by your
program as the index into your external status subroutine label table.
Except for keyboard/display external status, this index is the cate-
gory digit from the condition code. See Keyboard/Display External
Status in Chapter 6 for information about this index for keyboard/
display external status.

If you write subroutines to handle certain external status conditions, such as the
keyboard/display external status conditions, your program may use the data in
these registers. Do not change the data in the system registers.

KEYBOARD DATA ENTRY

Keyboard entry of each input record is initiated with an ENTR command. The
input record is formatted according to the screen format. The operator enters
characters into the fields of the input record, and the IBM 5280 makes character and
edit checks to make sure the characters are valid for the field, according to the speci-
fications in the screen format. Data keys and many function keys sound a response
click from the keyboard. The characters, as they are entered, are stored into the

1/0 buffer and are displayed on the screen. For enter, update, and verify modes a
keystroke counter is incremented when each character is entered. (See Keystroke
Counters in Chapter 6 for more information.) The cursor is moved to the screen
position where the next character is to be entered. The operator can move the
cursor forward and backward within the current record.

Programming Concepts

25

“The status line displays data entry information such as the current keying position,
the number of positions remaining to be filled in the current field, and the key-
board shift for the field.

The operator can select functions, such as duplicate or skip, by pressing the appro-
priate function keys. You can let the IBM 5280 process keyboard functions, or you
can include your own routines to handle these functions. See the Functions Refer-
ence Manual for more information about the keyboard functions.

Keystroke Buffering

Keystroke buffering gives the application program the ability to protect the operator
from 1110 message codes during interrecord and return-to-program processing by
postponing the processing of keys“pressed during those time periods. Across record
boundaries, the KB/CRT MPU can at a user option buffer keystrokes in a main
storage buffer until processing on a new ENTR command begins. During return-to- '
program, the KB/CRT MPU can at a user option buffer keystrokes in a main storage
buffer until processing on a RESUME operation begins.

For a further description of keystroke buffering, see the /BM 5280 Functions Refer-
ence Manual, GA21-9353.

Modes of Entry
The IBM 5280 supports three basic modes for data entry:
® Enter mode, for initial data entr\/
® Update mode, for inspection and modification of previously entered data

® Verify mode, for having data checked for accuracy and making necessary
corrections

In addition to these basic modes, rerun mode or display mode can be selected by
your program to perform special functions. You can select one of these five modes
with the MODE parameter of the .KBCRT control statement. (See .KXBCRT Con-
trol Statement in Chapter 3.) Insert mode or field correct mode is automatically
selected by the IBM 5280 when the appropriate keystroke is entered.

Enter Mode

When the IBM 5280 executes an ENTR command in enter mode, each data character
is displayed on the screen and placed into the 1/0 buffer as it is entered. Prompts,
constant inserts, duplicate fields, skip fields, and display attributes are displayed
when the cursor moves to the first position of the field or to the attribute position;
these positions are specified in the screen format. Constant inserts are also placed
into the 1/0 buffer as they are displayed. When the complete screen format has
been processed, the 1/0 buffer holds the constant inserts and the newly entered
data.

Update Mode

When the IBM 5280 executes an ENTR command in update mode, prior instructions
in your program must have placed a previously-entered record into the /0 buffer,

The IBM 5280 displays prompts, display attributes, and the contents of the 1/0
buffer. The display attributes and prompts are determined by the screen format,
The operator can enter a new data character into any record position to replace the:

- data character currently in the record. The new data character is displayed on the
screen and placed into the 1/O buffer as it is entered. When the operator has
completed all necessary modifications, the 1/O buffer contains the original data in
all positions that were not modified and the new data in the positions that were
modified.

Verify Mode

When the IBM 5280 executes an ENTR command in verify mode, prior instructions in
your program must have placed a previously-entered record into the |/O buffer. The
I1BM 5280 displays the prompts and display attributes as for enter mode, according to
the screen format. It does not display the contents of the I/O buffer. As the operator
enters a data character into a record field position, it is verified against the contents
of the corresponding field position in the 1/0O buffer. If the newly entered

character matches the original character, which is in the 1/0 buffer, it is displayed
on the screen and the cursor moves to the next position. If the newly entered
character does not match the original character, the cursor remains at the character
position, the original character and the remainder of the field in the 1/0 buffer are
displayed, and a verify mismatch error is reported. The operator must press the
Reset key, then enter either the character displayed above the cursor or reenter

the character that caused the mismatch. If the character that is displayed above the
cursor is entered, the remainder of the field is removed from the screen and the
cursor moves to the next position. If the character that caused the mismatch is
reentered, that character is displayed above the cursor and replaces the original
character in the 1/0 buffer. A verify-correction keystroke counter is incremented
(see Keystroke Counters in Chapter 6) and the cursor moves to the next position.

If the character entered is neither the original character nor the character that
caused the mismatch, another verify mismatch error is reported. |If the operator
backspaces over a data position on the screen, the position is blanked and must be
reentered and reverified.

Rerun Mode

When the IBM 5280 executes an ENTR command in rerun mode, no data or prompts
are displayed on the screen. The status line counters, keyboard shift, and hex
display information is not maintained. The entire screen format is processed,
except that a clear-screen function that is specified at the start or end of the format
is ignored. Character and field edit checks are bypassed. Auto duplicate, auto skip,
and main storage duplicate and store functions are performed if the auto-dup/Akip
switch is turned on or if the field has the AA (absolutely automatic) attribute speci-
fied in the screen format. Constant inserts are placed into the 1/O buffer. When

~an RG (return to program) exit specification is encountered in the format, the
appropriate external status condition occurs.

Rerun/Display Mode

When the 1BM 5280 processes an'ENTR command in rerun/display mode, the prompts,
display attributes and the contents of the 1/O buffer are displayed as for update

Programming Concepts

mode. The status line information is maintained. Character and field edit checks
are bypassed. Auto duplicate, auto skip, main storage duplicate and store, and RG
functions are performed as for rerun mode.

Rerun mode requires less execution time than rerun/display mode, and is the mode
usually selected for the rerun function. Rerun/display mode can be used when an
error occurs when a record is being processed in rerun mode, and the operator
must inspect the record data order to recover from the error.

Display Mode

When the IBM 5280 executes an ENTR command in display mode, prior instruc-
tions in your program must have placed a previously-entered record into the /O
buffer. The |BM 5280 displays prompts, display attributes and the contents of the
1/O buffer. The display attributes and prompts are determined by the screen format.
The cursor is not displayed, and no data can be entered. |f a buzz or clear-screen
function is specified at the end of the screen format, it is ignored. When the IBM
5280 has processed the complete screen format, the external status condition for
record advance (condition 6) occurs.

You can use display mode to inspect the prompts and display attributes of a screen
format. Do not confuse display mode with rerun/display mode.

Insert Mode

Insert mode is initiated when the operator presses the Ins key. Insert mode is valid
only when an ENTR command is being processed. When the Ins key is pressed, the
insert mode symbol is displayed on the status line. When the operator presses a
data key, the data character is inserted into the field at the current cursor position.
All field positions to the right of the cursor, and the cursor and character above the
cursor, are shifted one position to the right. Insert mode is canceled when the
operator presses the Reset key.

Field Correct Mode

Field correct mode is selected by the IBM 5280 when it is processing an ENTR in
verify mode and the operator presses the unshifted Corr key. The cursor moves to the
first position of the field, and the field is filled with blanks in the 1/O buffer and

on the screen. The operator can then enter data into the entire field as for enter
mode. The character and field edit checks are performed. When the cursor exits

the field in the forward direction, the IBM 5280 returns to verify mode. The field
can now be verified.

AUTOMATIC FUNCTIONS

While the IBM 5280 is processing formatted data entry, certain functions may be
initiated automatically as specified in your application program. These functions
include auto enter, auto duplicate/skip, and alternate record advance. You can
activate these automatic functions by including the FUNC parameter of the
.KBCRT control statement. You can activate automatic functions by providing
support in your program for the Auto Enter and Dup Skip keys. See the
Functions Reference Manual for a detailed description of all keyboard functions.

Auto Enter

If you specify auto enter in your .KBCRT control statement, the IBM 5280 automati-
cally performs a record advance function when the operator enters the last input position
of arecord.

If you do not specify auto enter, the IBM 5280 sets the system in the awaiting record
advance state when the operator enters the last position of a record. The operator
must then press the Enter key or Rec Adv key to initiate a record advance function.

Auto Duplicate/Skip

If you specify auto duplicate/skip in your .KBCRT control statement, the IBM 5280
automatically processes any field that is defined in your program as an auto dupli-
cate or auto skip field. When the cursor moves to the first position of an auto dupli-
cate field, the IBM 5280 duplicates data into the field from the area specified by
your program. (See Field Definitions later in this chapter for more information
about duplicate fields.) When the cursor moves to the first position of a skip field,
the IBM 5280 fills the field with blanks and then moves the cursor to the first
position of the next field.

If you do not specify auto duplicate/skip in the .KBCRT control statement, a dupli-
cate field or skip field is processed as for a manual field. In order to initiate the
duplicate or skip function, the field must have also been specified as absolutely
automatic in the program, or the operator must press the Dup Skip key. (Software
must provide support for this key.)

Alternate Record Advance

If you specify alternate record advance in your .KBCRT contro! statement, when
the operator presses the Enter key or Rec Adv (Record Advance) key the processing
of the current record stops. Any specifications for fields or screen control that is
defined in your program for positions between the cursor position and the end of
the record are ignored.

If you do not specify alternate record advance, any specifications for fields or
screen control defined for positions between the cursor position and the end of
the record are processed. Input fields are processed as though a > (Field Advance)
key were pressed for each field.

SCREEN FORMATS

A screen format is a series of source program control statements that define each
field of a record to be entered via the keyboard. The control statements also define
the prompts and display attributes that appear on the screen while the record is
being entered. The series of control statements must begin with a SFMTST state-
ment and must end with a . SFMTEND statement. You can write up to 256 screen
formats for each partition.

Programming Concepts

30

When the assembler processes each series of control statements, it generates a string
of object code referred to as a screen format control string. The assembler stores
each screen format control string in the partition storage area, and places the address
of each string in a system table.

During program execution, formatted key entry is initiated by a key entry com-
mand, the ENTR command. Each ENTR command specifies the format to be used
to enter the record. The IBM 5280 searches the system table for the address of the
screen format controlstring generated from the specified format. The IBM 5280 then
processes the screen format control string in the same order that the source program
control statements were written,

Besides the .SFMTST and .SFMTEND control statements, the screen format control
series includes the following control statements:

Control
Statement Purpose

SFMTPMT To specify prompts

SFMTCNS To specify constant insert data
SFMTFLD To define each field and subfield of the record
SFMTCTL To specify keyboard, screen, and format control

The sequence of a screen format for a typical key entry job could begin with a
statement to display a prompt requesting the operator to enter a field of data.

The next format statement could define the valid characters that the operator may
enter into the field. As the operator enters the field, the IBM 5280 checks each input
character to make sure it is valid according to the screen format statement that
defines the field. Each valid input character is placed into an 1/0 buffer. The next
screen format statement could move the cursor or the pointer in the 1/0 buffer

that contains the current record. Then another prompt could request the operator
to enter the next field.

When all the specifications of a screen format are processed, the complete input
record is in the current record buffer. The I1BM 5280 must then execute object code
instructions to move the data from the current record buffer to registers or other
storage areas. When the IBM 5280 has moved the data from the buffer, another
ENTR may be issued, with the same'or a different screen format specification.

Prompts

In your source program, you label and initialize each prompt by using a .DC
(declare) control statement. You must specify PRMT for the TYPE parameter and
define the prompt message with the INIT parameter. Then, when you write a
screen format using the .SFMT control statements, you specify the label of the
prompt with a .SFMTPMT statement.

When the assembler processes your source statements, it stores the prompt labels
in a system table. It stores the system table index for the prompt in the screen
format control string.

During program execution, when the IBM 5280 encounters a prompt index while
processing a screen format control string, it finds the address of the appropriate
prompt at that index into the system table. It takes the prompt message from the
storage address and displays it on the screen. The prompt message is not inserted
into the current record buffer,

You can specify the screen position where each of your prompts are displayed. A
prompt can be displayed in the standard fixed prompt location, which begins in
column one of line two. You can specify a different line for the fixed prompt posi-
tion by including the FPLC parameter of the .KBCRT statement. Each current
fixed prompt replaces the previous fixed prompt on the prompt line. You can also
have the prompt displayed at the current cursor position, or at a specified number
of positions to the right or left of the current cursor position, or on the beginning
of the next line. All of these options for the placement of your prompt are
described under .SFMTPMT Control Statement in Chapter 3.

Constant Insert Data

In your source program, you can specify constant data to be inserted into the
current record buffer and displayed upon the screen during program execution. The
constant data is labeled and initialized with a .DC control statement, with PRMT
specified for the TYPE parameter. It is specified in a source screen format with a
.SFMTCNS statement. The IBM 5280 finds the appropriate constant insert data by
using the prompt system table. The insert is processed as if it were a prompt, except
that the constant is displayed on the screen and inserted into the current record
buffer,

Field Definitions

You can define the individual fields of the record by including a SFMTFLD state-
ment for every field. The parameters of the .SFMTFLD statement specify the field
length and the character set that is valid for the field. Other parameters can break
a field down into a number of subfields, or indicate that the field is a data required,
automatic duplicate, or right adjust field. Parameters can also specify display attri-
butes that effect the individual field, such as blink, highlight, or underscore.

Main Storage Duplicate and Store

You can specify a main storage duplicate field, or a main storage store field, by
including an MD or MS parameter in the SFMTFLD statement that defines the field.
The MD or MS parameter specifies the label of the main storage data area. This
main storage data area must be allocated and labeled with a .DC statement that
specifies MDUP for the TYPE parameter.

When a main storage duplicate field (MD) is entered, the contents of the specified
main storage area are automatically copied into the field in the current record buffer
if one of the following is true:

® The field is also specified as auto duplicate and absolutely automatic (AD, AA
in the third FLDF position).

® The field is also specified as auto duplicate (AD in the third FLDF position) and
the auto dup/skip mode is active.

Programming Concepts 31

32

If the field is defined only as MD, duplication can be initiated by pressing the Dup
key. When the Dup key is pressed, the duplication starts at the current field posi-
tion and continues to the end of the field.

When a main storage store field (MS) is exited, the contents of the field are auto-
matically copied into the specified main storage location if one of the following is
true:

® The field is also defined as absolutely automatic (AA in the third FLDF position).

® The auto dup/skip mode is active.

Example: The following declare control statements allocate and initialize a prompt
and a constant insert and allocate a data area in main storage. The screen format
control statements use the prompt, constant insert, and data area to illustrate a
main storage store and main storage duplicate.

.DC LABEL=PTNAME TYPE=PRMT INIT="Name: *;
.DC LABEL=CONST1 TYPE=PRMT INIT="Hello *;
.DC LABEL=DUPNAME TYPE=MDUP LEN=20;

SFMTST LABEL=PFT04 CNTL=MV;

SFMTPMT PRMT=SP,PTNAME ; display a standard position prompt
SFMTFLD FLDF=A,20,AA MS=DUPNAME;

*The operator enters a name into the 20-byte alphabetic field, which is
*specified as absolutely automatic. The characters are displayed and placed
*into the 1/0O buffer as they are entered. When the field is exited, the
*contents of the field are stored into the main storage data area labeled
*DUPNAME because the AA is specified.

SFMTCNS = CNST=CONST1 BFPS=1 CSPS=NL;

*The constant is displayed on a new line, the 1/O buffer pointer is incremented
*1 to skip 1 position in the buffer, and the constant is placed into the 1/O
*buffer.

SFMTFLD FLDF=A,20,AD,AA MD=DUPNAME ;

*When the cursor moves to the first position of this field, the name is
*automatically copied from the data area labeled DUPNAME into the 1/0
*buffer and is displayed on the screen.

Field Control

You can specify control of the screen, of the keyboard, and of the format with a
SFMTCTL control statement. The parameters of this control statement can specify
display attributes for the screen, such as blink, reverse image, and nondisplay. Other
parameters can enable or disable the Dup key or specify whether a field exit key is
required to exit the current field. Other parameters can cause a field to be duplicated
or stored, cause a conditional bypass of a portion of the format, or cause a secondary
format to be processed.

Secondary Screen Format

You can specify a secondary screen format series by including a .SFMTCTL control
statement at the position where you want the secondary screen format to begin.
The SFMTCTL statement must have an ES parameter that indicates the label
(LABEL parameter of the .SFMTST statement) of the secondary screen format.

The secondary screen format specification acts in a way similar to a subroutine

call. When an ES parameter is encountered while the primary screen format series
specifications are being processed, control goes to the first specification of the
secondary screen format. All specifications of the secondary screen format series
are processed. Then control returns to the primary screen format, to the statement
following the ES parameter.

Only one level of secondary formats is allowed.

Example: In the following example, three screen formats are used 10 enter a
record: the primary format FMTO04, the secondary screen format FMT 16, and the
secondary screen format FMT17.

SFMTST LABEL = FMTO04; begin primary screen format.
SFMTPMT LABEL = PROMPT6; primary format displays a prompt.
SFMTCTL ES= FMT16; process complete screen format FMT16.
SFMTPMT LABEL =PROMPT7; primary format displays a prompt.
SFMTCTL ES=FMT17; process complete screen format FMT17.
SFMTPMT LABEL =PMTEOR;

.SFMTEND; primary screen format ends.

Conditional Bypass

You can specify a conditional bypass for any section of a screen format. Include a
SFMTCTL control statement with a Cl parameter at the position in the screen
format series where the bypass begins. Then include a SFMTCTL statement with
a CNTL = CE parameter at the position where the bypass section ends.

For the Cl parameter, you must specify an indicator label followed by either ON

or OFF. Use the label assigned by a .DCLIND control statement. When the IBM 5280
encounters the bypass specification, it checks the specified indicator. If the indica-
tor is 1 and the CI parameter specified ON, or if the indicator is 0 and the Ci para-

meter specified OFF, the IBM 5280 bypasses all field, display attribute, and prompt
specifications between the Cl and the CE specifications. However, the cursor and

current record buffer pointer are moved past the space on the screen and in the
current record buffer where the bypassed fields, display attributes, or prompts
would have appeared. If the bypass specifications are encountered in a forward
direction, the current field counter is incremented by the number of fields by-
passed. If it is encountered in a backward direction, the current field counter is
decremented. If an RG (return to program), BFPS {change buffer position pointer),
CSPS (change screen position pointer), or a control specification to change status

is encountered during bypass, it is processed as normal. If an ES (execute second-
ary format) specification is encountered, the fields and control specifications of the
secondary format are processed as described above for a bypass.

Programming Concepts

Example: The secondary format FMTOG is not executed if the indicator CHECK10
is 1:

SFMTST LABEL = FMTO5 CNTL = MV;

SFMTCTL CI =CHECK10, ON; the indicator is labeled CHECK10.
SFMTCTL ES = FMTOB; a secondary format specification.
SFMTCTL CNTL = CE; end bypass section.

Only one level of conditional bypass is allowed. Do not follow a Cl parameter with a
second C| parameter before a CE specification is included. However, you can have
more than one bypass within a screen format series if each C| parameter is followed
with a CE specification. Do not follow a C| parameter with a SFMTST or a
SFMTEND control statement before a CE specification is included.

Returning (RG) Exits

When you write a screen format in your source program, you may wish to
temporarily interrupt key entry in order to have program operations performed.
You can do this by including a CNTL=RG parameter in any .SFMT control state-
ment except the SFMTEND statement. The assembler sets a bit in the screen
format control string whenever it encounters an RG specification in the source
screen format. Then, when the IBM 5280 executes the screen format control string
and encounters this bit in a forward or backward diréction, it interrupts key entry
and reports external status condition 4 or 5, respectively.

You could include an RG exit immediately following an input field you want to
self-check, or immediately following an input field you want to add to a running
total.

EDIT FORMATS

Edit formats are used to reformat the fields of a record as the record is moved
between main storage and the current record buffer. Each edit format is set up by
one .FMTST control statement followed by one .FMTFLD for every field in the
record. The .FMTFLD statement specifies the length of the field and the registers
to or from which the field is moved. It can also specify editing for the field, such
as the placement of a currency sign, decimal point, or minus sign. Each edit format
must end with a .FMTEND control statement.

The edit formats are used for several data movement instructions to move the fields
of the record to or from the current record buffer after the record has been read,
or before it is written.

Edit formats may be used for read and write instructions for the diskette drive,
communications line, and printer. When an edit format is specified in a read
instruction, the record is reformatted as it is read into the current record buffer,
The format edits the record, removing currency symbols and punctuation. The
edit format then specifies the registers or storage locations into which each field is
moved. For a write instruction, the format moves the fields from the specified
registers or storage locations to the current record buffer and replaces the currency
symbols and punctuation. The reformatted record is then written from the current
record buffer to the diskette, printer or communications line.

Data Directed Formatting

For input records, you can specify that the formatting is data directed. The

FMTST statement allows you to specify a control character and where the control
character is located in the record. When you write a data directed read instruction,
you specify an asterisk (*) rather than a format label. Then, during execution of a
read operation, the |BM 5280 selects the appropriate format by matching the control
character of the input record to the first format that has the same control character
specification.

FIELD MODIFICATION INDICATORS

There are 32 field modification indicators: 1160-1191. Each indicator represents a
field in the screen format, up to 32 fields. |f there are more than 32 fields in the
format, each indicator represents every 32nd field. 1160 represents field 0, field 32,
field 64 and so on. A format level zero specification is represented by one indicator
for the entire group of 1-byte fields,

When the I1BM 5280 encounters an ENTR command, it sets each field modification
indicator to zero. Each time the cursor is advanced or backspaced into a field, the
IBM 5280 sets a bit in the partition control area to zero. If data is entered into the
field, the IBM 5280 sets the bit to 1. When the cursor exits the field, the IBM 5280
ORs the bit with the field modification indicator that represents the field.

Constant inserts are assigned field modification indicators. Whenever the insert is
moved into the 1/0 buffer and onto the screen, the corresponding field modifica-
tion indicator is turned on.

If an external status condition occurs while the cursor is within a field, the corre-
sponding field modification indicator has not yet been ORed with the bit in the
partition control area; therefore, it may not indicate that the field has been modi-
fied in the current record.

If your program makes a change to a field in the current record in the 1/0O buffer, it
is your responsibility to update the corresponding field modification indicator.

Programming Concepts

DISKETTE DATA MANAGEMENT

Diskette operations for the IBM 5280 include operations to read, write, search, insert,
and delete records that are stored in diskette data sets. The data sets may be sequen-
tial or key indexed data sets. In a sequential or key data set, the IBM 5280 can
access records sequentially, in the order they were entered. In a sequential data set,
the 1BM 5280 can access records directly, by relative record number. In a key
indexed data set, the IBM 5280 can access records directly by key. When a key
indexed data set is opened, an index table of the keys is built automatically, or you
can choose to build your own key index table.

Label Update

By specifying a label update type data set, you can update the HDR1 labels and
sectors 1 through 7 of track 0 on the diskette index as though it were a sequential
update data set. For label update, the IBM 5280 treats each 128-byte diskette data
set label as a record. The record number of the last label is both the EOD (end of
data) and the EOE (end of extent) record number. By specifying a label update,
erase-type data set, you can create labels without reading the existent label values.
Only the index cylinders are accessed for the label update access method.

A device opened for label update may not have any open data sets. Similarly, a
data set may not be opened on a device already open for label update.

Physical and Logical Buffers

You must set up at least one physical buffer in main storage for any program that
has 1/0 instructions. The physical buffer length must be a multiple of 128 bytes
and must begin on a 128-byte boundary. You can use double buffering for
minimal delays in interactive programs; set up a second physical buffer so the

IBM 5280 can process data in one while an input or output operation is being
performed with the other. For keybaord/display 1/0, double buffers are required
to duplicate fields of a previous record into the same field of a current record. The
IBM 5280 keeps track of the buffers and the records that are in the buffers.

You can block your data sets for faster execution; set up a logical buffer, and the
blocking and deblocking functions are performed automatically by the IBM 5280.
Or you can omit the logical buffer and use pointer 1/0 to block and deblock logical
records directly to and from the pyhsical buffer.

Automatic Logical Buffering

When the IBM 5280 opens a data set, it finds the address of the physical buffer and
the logical buffer in the data set IOB. During |/O operations to or from a diskette
data set, the IBM 5280 maintains a record counter to keep track of the record
number of the logical record currently being processed, relative to the first record
of the data set.

When the IBM 5280 is processing a sequential data set and encounters the first READ
instruction, it reads the logical records from the diskette into the physical buffer
until the physical buffer is filled. It then moves the first logical record from the
physical buffer to the logical buffer. If the READ instruction specified an edit
format, the fields of the record are edited and moved from the logical buffer
according to the format. When the IBM 5280 encounters the second READ instruction,

it moves the second logical record from the physical buffer to the logical buffer.
No more data is read from the diskette until all the logical records currently in the
physical buffer have been processed.

Output of sequential logical records is managed in the same way. When the IBM
5280 encounters the first write instruction, it writes the contents of the logical
buffer to the physical buffer at the record position specified by the current record
counter. Subsequent write operations place logical records into the physical buffer.
The IBM 5280 automatically writes the contents of the physical buffer to the
diskette.

Pointer 1/O

When you use pointer 1/Q, your program can access logical records directly from

the physical buffer. This saves storage that is required for a logical buffer, and saves
the time involved in moving the logical record from the physical buffer. Omit the
logical buffer specification in the .DATASET control statement, and specify pointer
(PTR) for the data set attribute. When you process your source program with the
1BM 5280 assembler, the assembler places the address of the physical buffer into the
10B location reserved for the logical buffer address.

When the IBM 5280 is processing a sequential data set that specifies pointer 1/0,

and encounters the first READ instruction, it reads the logical records from the diskette
into the physical buffer until the physical buffer is filled. The logical buffer

address in the data set |OB points to the first logical record in the physical buffer.

The logical record is not moved to another storage location but is processed directly
from the physical buffer.

When the IBM 5280 encounters subsequent READ instructions, it updates the logical

buffer address in the data set 0B so the address always points to the current logical
record in the physical buffer. For sequential write operations, the logical buffer
address is the address of the next-logical record to be written.

You cannot use an edit format to edit and move the record fields when you use
pointer 1/0O for diskette operations. However, you can place the address of the
logical record into a binary register and use it to access the individual fields of the
record using base displacement addressing. The address of the logical record is in
the 10B at displacement hex 0C-0D. The IBM 5280 does not update this base ad-
dress in the binary register; you must replace the address before each 1/0 operation.

Programming Concepts

37

38

Keyed Data Sets

Keyed data sets can be read according to a specified key, When a keyed data set is
opened, an index table is built from the record keys. The index table can be built
.either by the application program or automatically by the IBM 5280, depending on
the TYPE parameter of the .DATASET control statement. If a KR (key indexed
read) or KU (key indexed update) data set is specified, the IBM 5280 automatically
builds the index table. If a KRN (key indexed read, no table build) or a KUN (key
indexed update, no table build) data set is specified, the application program must
build the index ‘table. The .TABLE control statement is used to define the table.
The parameters of the .DATASET control statement and the .TABLE control state-
ment that are used for keyed data sets are as follows:

.DATASET Control Statement

TYPE=

KPOS=

KLEN=

TLOC=

DLTA=

Specifies one of the following keywords: KR, KU, KRN, or KUN.
In addition, may also specify ORD (records in ascending key
sequence).

Specifies the position of the key in the record.

Specifies the length of the key.

Specifies the location of the index table.

Specifies the density of the index table; optional for KR and KU
data sets but mandatory for KRN and KUN data sets.

.TABLE Control Statement

LABEL=
MAXM=
ENTRIES=

ARGL=

BYPAS=

Specifies the location of the index table (also specified for the TLOC
parameter of the . DATASET control statement).

Specifies the maximum number of entries that can be placed into
the index table.

Specifies the actual number of entries used in the table.

Specifies the length of the index entry. This length can be less than or
equal to the length of the key, but it cannot be greater than the length
of the key.

Specifies the number of bytes to be associated with each index entry
that are not part of the index itself. Valid entries are 0, 1, 2, or 3.

If a nonzero entry is specified, the byte or bytes are used to hold the
relative record number of the record that corresonds to the index
entry. If Ois specified, the index table entry contains only the index
entry, and the relative record number is calculated from the DLTA
specification and the relative position of the index within the index
table.

Note: These parameters are in addition to the parameters required or normally
used for a data set, as specified in Chapter 3.

Density of the Index Table

The density of the index table is specified with the DLTA parameter of the
.DATASET control statement. The density specifies the number of logical records
between index entries. Density may be 1 entry per record, 1 entry per track, 1
entry per 10 records, and so on. For KR and KU data sets, DLTA may be

omitted; the density is calculated by the IBM 5280, using the length of the data set
and the length of the index table. The first entry in the index table is always for the
first record; the last entry is always for the last record. The following examples
show how the IBM 5280 sets up index tables for various density and bypass specifi-
cations, using the sample data set in Figure 2-3.

KeyA/Data KeyB/Data KeyC/Data KeyD/Data KeyE/Data KeyF/Data KeyG/Data KeyH/Data Keyl/Data KeyJ/Data

Relative
Record
Number: 1 2 3 4 5 6 7 8 9 A

Figure 2-3. Sample Keyed Data Set Records

Examples:
Density = 1/record Density = 1/2 records Density = 1/3 records
Bypass = 2 Bypass = 3 Bypass =0
Key A00O1 Key A0O00001 KeyA
KeyB0002 KeyC000003 KeyD
KeyC0003 Key EO00005 KeyG
. KeyD0004, KeyG000007 Keyd
L____] KeyJOOOOOA
Index Index Index
Table Table Table
Reading a Keyed Data Set

When the 1BM 5280 encounters a READ instruction for a keyed data set, the instruc-
tion specifies a decimal register that contains the key of the record to read. The IBM
5280 determines which entry in the index table is the highest entry that is lower than
the specified key, and which entry is the lowest that is not higher than the specified
key. The IBM 5280 determines the relative record number for the record that corres-
ponds to each of these index entries, either by finding them in the index table (if a
nonzero BYPAS is specified) or by calculating them (if BYPAS=0). The IBM 5280
searches the key positions of the records between these two relative record numbers
until a matching key is found, and reads the record with the matching key. If the
.DATASET control statement specifies the ORD parameter, the |BM 5280 uses a
binary search; otherwise the |BM 5280 uses a sequential search. if the .DATASET
control statement specifies a nonzero BYPAS and omits the ORD parameter, and if
the index has one entry per record, the |BM 5280 searches the index for the first
entry that matches the key, then reads the data set record that corresponds to that
index entry.

Programming Concepts 39

Updating a Keyed Data Set

A keyed data set can be updated by using a READ instruction with a key specified
to find the desired relative record number, then using a WRT instruction to update
the record at that record position. The IBM 5280 does not update the index

table.

Adding to a Keyed Data Set

A record can be: (1) inserted or (2) added to the end of a keyed data set. The IBM
5280 does not update the index table. Therefore, records must not be added or
inserted unless the application program provides instructions to update or rebuild
the index before reading the data set again.

Shared Data Sets

Data sets that have share attributes specified in the .DATASET control statement
can be used simultaneously by more than one program. Corresponding share
attributes must be specified in every program that shares the data set. Improperly
specified share attributes result in an access error external status.

If a record is added to a shared data set, the EOD of all |OBs for that data set are
updated to the new increased value. Record inserts are not allowed for a shared
data set. Any operation that reduces the EOD or EOE value of a shared data set is
not allowed.

To make logical records more quickly available to be shared, you can use the quick
release {QR) and early write (EW) parameters in the .DATASET control statement.
These functions make direct access to update data sets more efficient because the
logical record to be read or written will be released so that other programs can use
it as soon as the operation is complete.

SCS Conversion Data Sets

When you store a data set on a diskette, you can save diskette space by using an
SCS conversion data set. An SCS conversion data set is defined by specifying

SCS in the TYPE parameter of the .DATASET control statement. When an SCS
conversion data set is processed, SCS (standard character string) control characters
are inserted by the IBM 5280 to replace blank characters creating an SCS data set.
When you write the SCS data set created by SCS conversion to a diskette, the
record length on the HDR1 label must equal the block length. See SCS Conversion,
under Printer Instructions in Chapter 4 for information about using SCS conver-
sion.

Extending Data Sets

When the data set type specified in the TYPE parameter of the DATASET state-
ment is sequential update (SU), sequential write (SW), or key indexed update (KU
or KUN), records may be added at EOD to extend the data set. This requires that
there be unused space between EOD and EOE.

In order to extend the data set’s |0B, the current record pointer must first be
pointed to EOD. This can be done by using the position (POSN) instruction, or
reading sequentially until EOD is exceeded and a 3701 external status results. It
is done automatically by the OPEN if either the sequential write (SW) or erase
(ERS) parameters are included in the .DATASET statement. For binary searches,
it is also automatically done if a 3703 (record not found) external status occurs.

Once positioned at EOD, write (WRT) instructions with the current record speci-
fication are used to actually add the records. After each such write the |OB current
record pointer will be incremented to the new EOD so that it will not need to be
repositioned prior to the next write. The EOD field of the IOB is also incremented
and will be used to update the data set label by the CLOZ.

SELF-CHECK

The IBM 5280 self-check facilities allow you to verify an input field at the time it is
entered. The self-check function can detect incorrect keystrokes and character
transpositions. It can also detect fraudulent entries.

The self-check facilities include the:

® SELFCHK control statement, to define the self-check field, register, modulus
and algorithm.

® GSCK instruction, to generate a unique self-check number for each self-check
field.

® |IF ... CHK instruction, to verify the self-check field each time it is entered.

The Seif-Check Field

A self-check field consists of the self-check number, which may be one or two digits
long, and the foundation. The foundation may consist of any characters available

to your |BM 5280 keyboard. The self-check number may be assigned to any position
in the field. If the self-check number is two digits long, the two digits must be
adjacent.

The maximum length of a seif-check field is 32 bytes.

The Self-Check Register
The self-check field must be placed into a decimal register, or if the self-check field

is larger than 16 bytes, a decimal double register, The IBM 5280 right-adjusts the
field in the register. All unused register bytes are bypassed.

Programming Concepts

Figure 2-4 illustrates a self-check field with a self-check number one digit in length.
The position assigned for the self-check number is the rightmost position of the
decimal double register that acts as the self-check register.

Self-Check Register

Self-Check Field

Register p N
Positon1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

06 / 09/ 19 80 * ARddUdAdSs # 4 7

/ \ —

\V v

Bypass positions are ignored. Foundation Number Self-Check
Digit Position

Figure 2-4. A Self-Check Field in a Decimal Double Register

The Modulus

The self-check function uses a modular arithmetic. Modular arithmetic replaces a
number with its remainder after it is divided by a fixed number. This fixed number
is the modulus.

For example, clocks follow a modular arithmetic with modulus12. If you add 5 to
10 o’clock, the sum is 15 modulus12. Replace 15 with the remainder after it is
divided by 12:

1
15 modulus 12 = 12'15
12
3 Remainder
|

v

10 o’clock + 5 3 Replaces 15.

Stated another way, modular arithmetic replaces a number with the value in the
units position when the number is expressed in the base of the modulus. You can
convert a number to the base of the modulus by dividing it by the modulus and
using the remainder for the value of the units position:

\e°°¢°°
& ' '
T ! A
1 550 15 modulus 12 =12 [15 N
12 1 312
3 Remainder t
L

42

The value in the units position can be any number up to the modulus minus one.
For example, if the modulus is 125, the units position can contain any number up

to 124:
S
Ca o"\
| l 4 O
31 BN
4978 modulus 125 = 125 [4978 31 10355
375
228
125
103 Remainder
L
The Self-Check Algorithm

The basic steps of a self-check algorithm can be illustrated as follows, using 15 for
the foundation and 12 for the modulus:

Self-Check Field

—~—
15 _
Al
1. Convert a number to the Foundation ———J t-— Position for 1-Digit
base of the modulus. Self-Check Number

2. The value in the units
position is the self-check
number.

15 modulus 12 = 13,

153
(=7
Self-Check Field

Usually, however, the number converted to the base of the modulus is not the
foundation, but a number derived from the individual characters of the foundation.
The most common way to derive a number from the characters of the foundation

is to:
Self-Check Field
1. Multiply the contents of s,
?aCh;’o?itiog in the- ht *1 *5 - Position for 1-Digit
oundation by a weight. Weights: 8 "6 & ___ Self-Check Number
Products: 8 30
2. Add the resulting products. 8 +30 = 38 sum

3. Convert this sum of the

products to the base of 3
the modulus. 38 modulus 12 = 12[38 = 32,
36
4. The value in the units posi- 2
tion is the self-check 152
number. =

Self-Check Field

Programming Concepts 43

Numerous variations can be added to these basic steps to design a unique algorithm.
These variations include: ’

1. Input translation. You can translate each character in the foundation to a
specified numeric value by using an input translate table. Input translation is
useful to assign a specific value to each alphabetic or special character in the
foundation.

2. Product table. You can find the product for the numeric value of each

foundation position by looking it up in a table rather than multiplying it by
a weight.

3. Output translation. You can translate the generated self-check number to

" any specified output characters by using an output translate table. This is
useful if the self-check number can be up to two digits long (for modulus
11-100) and only one self-check number position is used in the self-check

field, or if the self-check number can be up to three digits long (for modulus
101-127).

Choosing Your Algorithm

Appendix C shows how the IBM 5280 manipulates the self-check field according to
various parameters of the .SELFCHK control statement. Use this appendix to
select the variations you want for your unique algorithm.

If you do not want to design your own algorithm, you may use one of the IBM-
supplied algorithms available with the IBM 5280. These algorithms are referred to
as Standard Modulus 10 and Standard Modulus 11. If you use Standard Modulus
10 or 11, the IBM 5280 assumes that your self-check field is as follows:

® The self-check number is one digit long.
® The self-check number is in the rightmost position of the self-check field.

® The foundation may be from 2 to 31 characters long.

For Standard Modulus 10 or 11, any IBM 5280 keyboard character may be included
in the foundation. The numeric value of each foundation position is determined by
the low-order 4 bits of the EBCDIC representation of the contents of that position.
If the low-order 4 bits are 0-9, the numeric value is 0-9. If the low-order 4 bits are
A-F, the numeric value is 0.

Example:
Foundation: 6 9 7 * X Y
A T
EBCDIC: F6 F9 F7 56C E7 E8
I T
Value: 6 9 7 C 7 8

a4

Standard Modulus 10

Standard Modulus 10 is designed to detect single incorrect keystrokes and single
transpositions. If you use Standard Modulus 10, the I1BM 5280 performs the!fol-
lowing operations to generate a self-check number for this sample self-check field:

Foundation

~ - F Self-Check Position
712 - W

J/

Self-Check Field

7 1 2 - W —Foundation
. . 4 M \ t Al

1. Find the numeric value for F7 F1 F 60 E6 —EBCDIC

each foundation position. !, : M (') é Value
2. Multiply each value by the 7 1 2 0 6

corresponding weight. The * *1 * % * —Weights

weights alternate between 2 - - - - -

and 1, with 2 always in the 14 1 4 0 12 —Products

rightmost position of the S

foundation. 144 +1 +4 +0+1+42 = 13 Sum SO

Q°
S

3. Add each digit of the result- R

ing products. 13 modulus 10 =1 3,
4, Convert the sum to the 10J

base of the modulus. -3

7 Complement

5. Subtract the value in the units

position from the modulus to

find the complement.

Note: If the remainder is O, 712 -wW2Z7

the complement is 0. If the e

remainder is 1, the character Self-Check Field

combination in the foundation
does not have a valid self-check
number. You must eliminate
these character combinations
when you generate self-check
numbers.

6. The complement is the self-
check number.

Programming Concepts 45

46

Standard Modulus 11

Standard Modulus 11 is designed to detect single incorrect keystrokes, single
transpositions, and double transpositions. |f you use Standard Modulus 11, the
IBM 5280 performs the following operations to generate a self-check number for this

sample self-check field:

Foundation

Self-Check Field

1. Find the numeric value for 6 1 ? ; \‘v
i iti t
each foundation position, F? F 1' F% 6? ‘ E?
2. Multiply each value by the 6 1 2 0 6
corresponding weight. Weights
are the numbers from 2 to 7, *3 1‘1 *2 '0 *6
starting in the rightmost posi- .8 "5 "4 "3 "2

tion of the foundation and 36 5 8 12
going leftward. Repeat the '
numbers if necessary,

3. Add the whole number 36 +5 +8 +0 +12

products,

4, Convert the sum to the base
of the modulus,

5. Subtract the value in the units
position from the modulus
to find the complement,

Note: If the remainder is O,
the complement is 0. If the
remainder is 10, the character

—~Foundation
—~EBCDIC
-Value
~Value
~Weights
~Products
o
= 61 Sum R
Fred
ROt
S

61 modulus 11 = 5 6y,

1M
-6
5 -Complement

combination in the foundation 612-wW5
does not have a valid self-check e
number. You must eliminate Self-Check Field

these character combinations
when you generate self-check
numbers.

6. The complement is the self-check
number.

Using the GSCK Instruction

The GSCK instruction is used to create a new file of fixed numbers, such as
account numbers that require self-checking each time an operator enters them,
Your program must move the foundation into the self-check register before it
issues the GSCK instruction. You must include a .SELFCHK control statement
in your program if you use this instruction, or unpredictable results may occur.

During the execution of a GSCK operation, the |BM 5280 (using the algorithm you
defined with the .SELFCHK control statement) performs manipulations upon the
foundation to generate a self-check number. When the self-check number is
generated from the foundation, the IBM 5280 can place the self-check number into
the self-check register. The foundation and its self-check number made up the
complete self-check field,

Using the IF ... CHK Instruction

The IF . .. CHK instruction is used to verify a self-check field. When an operator
enters a self-check field, your program must move the field into the self-check
register before it issues the IF ... CHK instruction. You must include a .SELFCHK
control statement in your program if you use this instruction, or unpredictable
results may occur.

During the execution of an IF ., . CHK operation, the IBM 5280 again uses your
algorithm to generate a self-check number from the foundation currently in the self-
check register. The IBM 5280 then compares this self-check number with the current
contents of the self-check number position in the self-check register. The compari-
son fails when the characters now in the self-check register do not match the
characters that were in the same register positions when the GSCK operation was
performed.

Programming Concepts 47

48

Chapter 3. Assembler Language Control Statements

The 1BM 5280 assembler language control statements provide control information
to the system and allocate registers and data areas in main storage. Certain control
statements must occur in a specific order. Others may occur anywhere throughout
the program, interspersed with instruction statements. The prescribed order is indi-
cated in Figure 3-1.

To Initialize the Partition Control Area

START One is required as the first statement of a program, except for optional
listing control statements, to.indicate the start of the program.

.KBCRT One is required as the second statement, to specify keyboard/display
control parameters.

EDITC One is allowed as the third statement, to specify the edit control
characters.

To Declare and Label Data Areas

.DC One or more are allowed to allocate, label, and initialize any kind of
data area.

.DCLBR One or more are allowed following the .KBCRT statement, to allocate
and label binary registers.

.DCLDR One or more are aliowed to allocate and label decimal registers, and
should follow any .DCLBR statements.

.DCLIND One or more are allowed anywhere to label user indicators.

.EQUATE One or more are allowed anywhere to label registers, constants,

expressions, and system registers.
To Set Up and Initialize Device Control Areas
.COMM One is allowed to specify the characteristics of the communications line.

DATASET One or more are allowed to specify the characteristics of a data set.

To Set Up and Label Tables

.TABLE One or more are allowed anywhere to define the parameters of a data
table. A//.TABLE statements must be contiguous.

.LABTAB One or more are allowed anywhere to set up a label table of specified
subroutine addresses.

SYSTAB One or more are allowed anywhere to specify the label and location of

system tables or the subroutine stack.

Figure 3-1 (Part 1 of 2). Control Statement Summary

Assembler Language Control Statements 49

50

To Set Up Edit Formats

FMTST
FMTFLD

FMTEND

One or more allowed to begin each edit format specification.

One or more allowed following a .FMTST or another .FMTFLD
statement, to define an edit format field.

One is required as the last statement of an edit format specification,

To Set Up Screen Formats

SFMTST

SFMTCTL

SFMTPMT

SFMTCNS

SFMTFLD

SFMTEND

One is required for each screen format, to indicate the start of a screen
format control specification.

One or more are allowed within a screen format series, to specify control
operations,

One or more are allowed within a screen format series, to specify a
prompt to display.

One or more are allowed within a screen format series, to specify a
constant to display and to place into the /O buffer for the current
record,

One or more are allowed within a screen format series, to define a key
entry field.

One is required as the last statement of each screen format series, to
end the screen format,

To Control the Assembly Listing

TITLE

EJECT

.SPACE
.PRINTOFF

.PRINTON

One is allowed to specify a heading to be printed on each page of the
listing.

One or more are allowed to begin printing on the next page.

One or more are allowed to skip one or more lines.

One or more are allowed to suppress assembly listing,

One or more are allowed to continue assembly listing after PRINTOFF.

Miscellaneous Control

.INCLUDE
SELFCHK

.XTRN

.END

One or more are allowed to insert another data set into the program.
One is allowed to set up the self-check control area and define the self-
check algorithm,

One is required if the program uses any common functions, to specify
the labels of the common functions.

One is required following all control statements and instructions, to
indicate the end of the program.

Figure 3-1 (Part 2 of 2). Control Statement Summary

The .TABLE control statements are the only ones that must be consecutive in your
source program. However, for best performance from the assembler, place state-
ments of the same kind together. For example, place all .FMT statements together,
all .LABTAB statements together, and all .DC statements together. Place the
XTRN statement toward the beginning of the source program.

Control statements are listed in this chapter by the type of function the control
statement performs. The control statements are divided as indicated in Figure 3-1.
The syntax, parameters, and parameter keywords are described for each control
statement,

FORMAT

Each control statement is written for a length of 72 positions per line. Each control
statement must begin with a period (.) in the first position, followed by an upper-
case statement name and its associated parameters. The parameters may be in any
order and are separated by one or more blanks. Each parameter consists of an
uppercase parameter name, an equal sign, and a parameter value. The parameter
value may be one or more fields, with each field identified by the order of its
appearance on the line. The parameter fields are separated by commas or paren-
theses. Each control statement must end with a semicolon (;). The general format
of a control statement is as follows:

.NAME PARAM1=XX PARAM2=XX XX PARAM3=(XX,XX),(XX,XX) ;
Control statements may be continued from one line to the next by stopping
between two parameters. The statement is continued on the next line, Each
parameter should be complete on one line unless the parameter contains a sublist of
keywords, In this case, the sublist may be interrupted after a comma between key-
words as in the following example.

Example:

NAME PARAM1=XX PARAM2=XX,XX PARAM3=XX,

XX PARAMA4=XX ;

The end of the statement is always determined by the semicolon.

Blanks
Optional blanks may be placed before or after an equal sign or parentheses.
Blanks may follow a comma but must not precede a comma. Blanks are not

allowed within a control statement field; however, one or more blanks must separ-
ate fields if no other delimiter is used.

Comments
A comment may be included on any line, following the semicolon. An entire line
may be designated as a comment line by placing an asterisk (*) in the first position
of the line. A comment line may be included before the .START statement and
before print control statements.
Examples:

.NAME PARAM1=XX ; This is a comment on a statement line.

*This is a comment line.

Assembler Language Control Statements

51

INITIALIZE THE PARTITION CONTROL AREA

The IBM 5280 provides, uses, and:updates much .of the partition control information
during program execution. However, the assembler initializes certain control areas
during assembly, using the following control statements. This control information
is used by the IBM 5280, but it is not changed during program execution.

The .START control statement is mandatory for every program, and the KBCRT
statement is mandatory for every program that uses keyboard/display 1/0. The
.EDITC statement is optional.

.START Control Statement

START [ENTRY= PNAM= OPTION= ORG=
MCHK= TMSL= RGLT=] ;

The mandatory .START control statement must be the first control statement of
every program. It specifies program name, origin, error routines, register usage
limits, and time slice factor.

Parameter
Name Description

ENTRY Entry point; the label of the instruction to be executed first.
if omitted, it defaults to the first executable instruction
encountered.

PNAM Program name; 8-character field of alphabetic or numeric
characters, enclosed in single quotes. The first character must
be alphabetic. It defaults to PROGRAM.

This name is printed in the listing header and included in the
object code. Do not specify any unprintable code for this
parameter.

OPTION Option; informs the assembler whether the code being
assembled is a main program (MAIN) or a separately assembled
subroutine (SUB). It defaults to MAIN.

ORG Origin; mandatory with parameter OPTION=SUB, to assemble
a transient overlay. It specifies the actual location (relative to
start of partition) to place the first instruction of executable
code. Control statements preceding it are used to define shared
labels but do not produce object code. Given in decimal or hex,
ORG does not have to be a 256-byte boundary unless you are
writing a partial overlay.

MCHK Main program check errors; the label of the routine that has
been coded to handle program errors. If omitted, the program
is terminated if a program check error occurs. If you use the
common function from the common area, specify the name
CFPGMCHK, and include this name in an .XTRN control state-
ment. See Program Check Errors in Chapter 6 for more informa-
tion about main program check errors.

52

TMSL Time slice factor; a 1-byte field that specifies the maximum
length of time the controller executes instructions within the
current partition. Acceptable time limits are 4-60 milliseconds.
Default is 12 milliseconds.

RGLT Register limit; the number of 16-byte blocks you want to
reserve to use as undeclared decimal or binary registers. The
assembler skips over these 16-byte blocks during allocation of
space. The default of four reserves the first four decimal
registers, which includes all indicators, or the first 32 binary
registers.

Note: You do not have to reserve registers that you declare and label with a .DC,
.DCLBR, or .DCLDR control statement. Reserve only the registers you use in
.EQUATE control statements or the registers that you refer to by register number
rather than by label in instructions.

Examples:

START PNAM="PAYROL’
ENTRY=BEGIN MCHK=MCHKER RGLT=8;
START;

.KBCRT Control Statement

{ETAB=}

.KBCRT CRBA= |ELAB=
[PRBA= TRAP= MODE= AFIL= NFIL= BLCK=
FPLC= NMIN= HLIN= CNTR= FUNC= SCREEN=

RGBUFF=1] ;
The .KBCRT statement specifies the location of the keyboard/display record
buffer, the handling of keyboard/display error conditions, and the initialization of

keyboard/display parameters.

This control statement is mandatory in each main program.

Parameter

Name Description

CRBA Current record buffer; the label assigned by a .DC statement for
the 1/0 buffer that holds the current record. This parameter is
mandatory.

ELAB Exception label (either ELAB or ETAB must be specified); the
label of a subroutine that handles all external status conditions.

ETAB Exception table (either ELAB or ETAB must be specified); the

label of a label table set up by a .LABTAB statement. Each
entry in the label table is the address of a subroutine that -
handles one specific external status condition.

Assembler Language Control Statements

53

Parameter
Name

PRBA

TRAP

MODE

AFIL

NFIL

BLCK

FPLC

Description

Previous record buffer; the label assigned by a .DC statement for
the 1/0 buffer that holds the previous record. This parameter

is optional; if omitted, the IBM 5280 sets the address for the
PRBA to the CRBA address.

Trap; one or more numbers that represent certain functions
normally handled by the IBM 5280 that you want to process
with your own subroutine. The number assignments are descri-
bed in Appendix D under Keyboard Functions: EBCDIC Codes
and Bit Numbers. '

The format of the input is TRAP=BITn, ... as follows:
TRAP=BIT1,BITS

This code causes an external status condition to occur whenever
a shifted Cmd key (BIT1) or an Ins key (BIT5) is pressed.

Mode of entry; one of the following keywords to specify the
mode of entry.

Keyword Mode

Enter

Update

Verify
Display

Rerun
Rerun/display

<xTOK<Cm

See Modes of Entry in Chapter 2 for a description of the modes.
Default is enter (E) mode.

Alphabetic fill character; used for padding the left end of the
right-adjust alphabetic fill fields. It defaults to blank (hex 40).

Numeric fill character; used for filling the left end of right-adjust
numeric fill fields. It defaults to zero (hex FO).

Blank check character; the character that is not permitted in a
blank checked field. It defaults to blank (hex 40).

Fixed prompt location; indicates the row at which the fixed
prompts occur on the screen. It defaults to row 2.

Parameter
Name

NMIN

HLIN

CNTR

Description

Normal display attribute; specified as a 1-byte constant, this
entry determines the display attributes of fields not currently
being processed; the attribute is in effect after the cursor exits
the field. This parameter is normally omitted if you specify
display attributes with the DSPLY parameter in your screen
format control statements. Each bit specifies an attribute as
follows:

Bit Meaning If 1

-2 Not assigned (Bit 2 always on)
Column separators displayed
Blink screen
Underline
High intensity
Reverse image

NOoO oD Wwo

The value for NMIN defaults to no high intensity. If NMIN is
specified, HLIN should also be specified.

Display attributes; specified as a 1-byte hex constant, this entry
determines the display attributes of the input fieid being
processed; the attribute is in effect when the cursor moves to
the first position of the field. This parameter is normally
omitted if you specify display attributes with the DSPLY param-
eter in your screen format control statements. Each bit
specifies an attribute, as described for NMIN. The value for

HLIN defaults to no highlighting. If HLIN is specified, NMIN
should also be specified.

Current-position counter; the value of the internal register
maintained by the system during formatted data entry. This
value is displayed in columns 3-6 of the status line while an
ENTR is being processed. The counter refiects one of the four
values listed below. It defaults to K.

K

|

current keying position of next keystroke to enter, relative
to first position of the record.

B — current position in the current record buffer, relative to the
beginning of the buffer, where the next data character
entered will be stored.

C — current relative position of the cursor on the screen.

F — current position within the current field, relative to the

beginning of the field, where the next data character
entered will be stored.

Assembler Language Control Statements

55

FUNC Functions; one to three functions may be specified. If more than
one is specified, separate them with a comma:

A auto duplicate/skip (see Auto Duplicate/Skip in Chapter 2).

C — click software function keys.
D — do not display fixed prompts on the screen.
R — auto enter {see Auto Enter in Chapter 2).

S — on keystroke error, determine if status line is currently dis-
played. If not, display it and on error reset remove it from
screen. (See Nondisplay of the Status Line in Chapter 2.)

X — alternate record advance (see Alternate Record Advance in
Chapter 2).

SCREEN Screen positions; the number of valid screen positions you wish to
use in the current program. Valid entries are 480, 960, or 1920.
Default is 480.

RGBUFF Keystroke buffering during RG exit; determines if keystrokes will
be buffered when RG exit code is active. This is an optional para-
meter. Specify either YES (buffering will occur) or NO (buffering
will not occur). The default is NO.

Examples of input:
.KBCRT CRBA=BUFR0O1 PRBA=BUFR02 ELAB=ERRTN AFIL=/ NFiL=X'40";
.KBCRT CRBA=BUFFX PRBA=BUFFY ETAB=RTN1 TRAP=BIT4,BIT8
FPLC=4 CNTR=B FUNC=C, S, D;
.EDITC Control Statement
{EDITC [EDCUR= EDDEC= EDCOM= EDCNT=] ;

The .EDITC control statement specifies the edit control characters. These characters
are stored in the partition /O control block and are used by other control

statements.

Parameter

Name Description

EDCUR Edit currency sign; a two-character field that specifies the cur-
rency symbol. ItdefaultstoC’'$"’.

EDDEC Edit decimal character; a one-character field that separates the

decimal portion of a number from the fraction. (It may be
specified by X’ ’, but numerics or hex codes of_ hex FO or
greater must not be used.) It defaults to C'.". /M

EDCOM Edit separator character; a one-character field that specifies the
symbol used to separate groups of digits in an edited field. (It
may also be specified as X’ ’, but numerics or hex codes of hex
FO or greater must not be used.) It defaults to C’,’.

EDCNT Edit control count; a one-character field that specifies the number
of digits between the occurrence of the edit separator character.
It defaults to 3.

Note: All characters must be enclosed in single quotes; they may also be specified
as hex values.

Example:

.EDITC EDCUR=C’FR’ EDDEC=’,” EDCOM=X"40" ;

DECLARE AND LABEL DATA AREAS
Several different control statements assign labels to data areas, but each statement
has a specific purpose. Use the following to help decide which control statement
to use.
® Use .DC to label and initialize one data area or register.
® Use .DCLIND to label up to 30 program indicators.
® Use .DCLBR to label up to 30 uninitialized binary registers.

® Use .DCLDR to label up to 30 uninitialized decimal registers.

® Use .EQUATE to label initialized decimal or binary registers reserved by the
RGLT parameter of the START statement. You must specify register numbers.

® Use .EQUATE to label system indicators. You must specify the indicator
number.

® Use .EQUATE to label a constant or expression.

.DC Control Statement

.DC [LABEL= TYPE= LEN= LEVL= LOC=
BDY= PREFIX= DISP= INIT=] ;

The .DC control statement specifies the allocation of data areas and storage

structures, and assigns labels to decimal and binary registers. It also allows you to
initialize the data set.

Assembler Language Control Statements

When declaring registers, it is important to declare all binary registers first, If you
declare decimal registers or storage areas before you declare all binary registers, you

" can fill the 256 bytes of the partition that contains the 128 two-byte binary
registers. An attempt to declare a binary register beyond the binary register limit
causes an error message to be written on the assembly listing.

When using boundary alignment, remember that storage is assigned sequentially
and any bytes which are unused between boundaries cannot be recovered. Declar-
ing two 1-byte field, both on 256-byte boundaries, results in the loss of 255 bytes
between the fields. These bytes cannot be recovered. Statistics are maintained to
indicate how many bytes are lost due to boundary alignment. These statistics are

© written to the assembly listing.

Note: Any unassigned storage byte is initialized to hex 00.

Parameter
Name Description

LABEL Label; the name that refers to the storage area or register. This is
an optional parameter, unless TYPE is PRMT or MDUP.

TYPE Type; specified as DEC (decimal register), BIN (binary register),
STOR (storage area), PRMT (prompt) or MDUP (duplication).
It defaults to STOR.

The PRMT type allocates and initializes space for character
strings that are used as either prompts or constant insert data
during data entry.

The MDUP parameter allocates space in. main storage for duplica-
tion during data entry.

A table containing the addresses for these PRMT and MDUP areas
is created and the address of the table is stored in the keyboard/
display 1/0 control block. A source statement refers to these
areas by using the label, and the system finds the address for the
area in this table.

LEN Length; the length of the area being declared, specified in bytes.
This is an optional parameter. If TYPE=DEC, it defaults to 16.
If TYPE=BIN, it defaults to 2. For other types, the length
defaults.to the length of the INIT field, or to 1 byte if no INIT
field is specified. :

A length of zero is valid for a declare that uses no space. For
example, a .DC that specifies 0 length, and specifies LOC (loca-
tion) acts in the same way as the origin (ORG) parameters in the
START control statement.

Note: The LEN specification overrides the actual length of an
INIT entry. If LEN is less than the number of bytes necessary
for the INIT data, some of the INIT data is lost.

Parameter
Name

LEVL

LOC

BDY

PREFIX

DisP

Description

Level; the structure level of the area being declared. Variable
leveling builds a storage structure if a level-1 declare is followed
by one or more level-2 declares; the level-2 areas are overlaid into
the level-1 area. The level-2 declare does not affect the current
location counter. If the level-2 area extends beyond the level-1
area an overflow condition message results. However, the over-
flow message is suppressed if the preceding level-1 declare had the
length specified as zero; this allows you to assign labels without
advancing the current location counter. If omitted, it defaults to
level-1.

Location; a number that specifies the relative location for the
area being declared, or the label of a previously defined location.
When LOC is specified, the assembler will reset its internal loca-
tion counter. After processing a .DC statement with LOC speci-
fied, the location counter will equal LOC + LEN. Subsequent
storage will be assigned starting at this location. |f this parameter
is omitted, the area is declared at the next sequential location.

Note: LOC cannot be specified with a LEVL=2 declare.

Boundary alignment; the type of boundary on which to locate
the first byte of the data area. Specify a numeric value that is
valid for the particular type of data area. See Main Storage
Boundary Alignment in Chapter 1 for more information. An
easy way to remember boundary alignment requirements is:

an n-byte boundary is evenly divisible by n. For example, a
binary register can begin on any boundary that is evenly divisible
by 2, a decimal register can begin on any bohndary that is
evenly divisible by 16, and a buffer can begin on any boundary
that is evenly divisible by 128.

If BDY is omitted, the boundary defaults to the next sequential
boundary that is appropriate for the specified TYPE.

Note: BDY cannot be specified if LEVL=2 has been specified.

Prefix; a 1 or 2 character prefix that may be added to a level-1
declare. All level-2 declares may then be copied from a single
statement to define an identical structure several times. The
character or characters specified for the level-1 area attaches to
the level-2 labels as a prefix to prevent duplicate labels. This is
an optional parameter valid only for LEVL=1 declares.

Displacement; used only with LEVL=2 declares. Displacement

is the number of bytes into the last level-1 area where this level-2
area is defined. |f omitted, the subfields are contiguous.

Assembler Language Control Statements 59

60

Parameter
Name

INIT

Description

Initialization; numeric or character data may be used to initialize
the data area. The INIT parameter must be complete on a single
line.

Decimal data is specified as decimal numbers with no quotes.

Character data must be enclosed in single quotes. |t may be
preceded by an uppercase C, or the C may be omitted.

Note: If you are sending data to a printer, do not use character
data with an EBCDIC representation of lower than hex 40. if
you must send data with an EBCDIC lower than hex 40 to the
printer, specify it as hex data.

Binary data must be enclosed in single quotes and must be pre-
ceded by an uppercase B. Binary data must be at least 8 digits

in length, and the total number of binary digits must be a multiple
of 8.

Hex data must be enclosed in single quotes and must be preceded
by an uppercase X. Hex data must be at least two hex digits in

length, and the total number of hex digits must be a multiple of
2.

If a constant has been equated with a label, the label may be used
for the INIT parameter, and the equated constant is placed into

the data area.

The address of a data area may be initialized into storage by
coding:

INIT=ADDR (label [+ constant]);
where label is the label of the data area.
Initialization occurs as illustrated in Figure 3-2.

Note: Initialization of a decimal register with an equated constant
fills the register with binary data.

The LENG function cannot be used.

Decimal Binary Stor, MDUP, and
Registers Registers PRMT Areas
Characters Right adjust, Left adjust, Left adjust,
pad with blanks. pad with blanks. pad with blanks.
Hex Right adjust, Right adjust, Right adjust,
pad with zeros. pad with zeros. pad with zeros.
Binary Right adjust, Right adjust, Right adjust,
pad with zeros. pad with zeros. pad with zeros.
+Integer Right adjust, Right adjust, Right adjust,
pad with zeros. pad with zeros, pad with zeros,
Zone on low- convert to convert to
order byte is binary. binary.
X'F’; leave as
EBCDIC.
-Integer Right adjust, Error. Error.

pad with zeros.
Zone on low-
order byte is
X’'D’; leave as
EBCDIC.

Figure 3-2. Initialization of Data Areas

The following examples illustrate how the assembler allocates data areas as it
assembles the .DC control statements.

Figure 3-3 represents an area of storage in a partition. The assembler has assigned the
2 bytes of BR120 and the high-order byte of BR121 to a previously allocated data
area. The next sequential byte that is available to the assembler is the low-order byte
of BR121. The bytes of BR127 are the last bytes that can be allocated as a binary
register.

Previously Next Available ___Binary
Assigned Bytes Byte Boundaries
e e,
0 1+ 2 3 4 5 6 7 8 9 A B C D E F
1F |BR120| BR121|{ BR122| BR123| BR124| BR125| BR126 | BR127 R15
/ 20~ R16
Decimal /21 R17
Boundaries — 22 _ R18
Figure 3-3. Storage Bytes
Assembler Language Control Statements 61

Figure 3-4 illustrates how the assembler allocates data areas to the bytes represented
in Figure 3-3, according to the .DC statements in Example 1.

Example 1: Boundary Alignment and Initialization; TYPE, BDY, INIT

.DC LABEL=EMP# TYPE=BIN INIT=1;

* Assembler skips to next binary

* boundary. Integer init for

* BIN type right-adjusts.

.DC LABEL=KEY1 TYPE=BIN LEN=4 INIT='ABC’;

* Character init left-adjusts.

.DC LABEL=DEPT# LEN=3 INIT=2;

* Type defaults to STOR, integer

* init right-adjusts.

.DC LABEL=EMPNAM TYPE=DEC INIT="A’; uses R16.

* Character init for DEC type right-adjusts.

.DC LABEL=YRTODATS TYPE=DEC INIT=6; uses R17.

* Integer init for DEC type right-adjusts.

.DC LABEL=PRMT1 TYPE=PRMT LEN=13
INIT="PRESS RESET’;

* Init for PRMT type left-adjusts.

.DC LABEL=TAGS TYPE=BIN; error example

*** Error message, cannot declare a

* binary register beyond relative

*** address X“1FE’,

.DC LABEL=BUFFR LEN=128 BDY=128;

* Buffers must be on a 128-byte boundary.

.DC LABEL=HOURS TYPE=STOR LEN=3;

* Al uninitialized bytes are filled

* with X'00' rather than zero (X‘FO’)

* or blank (X‘40")

EMP# KEY1 DEPT#

1F0 X|00j01jA|B |C 00}00]02] X| X { X R15
200 A R16
210 0Jj0j0j0j0]0{0|O]|OfO|O|O|DO]|O]|O]|6 R17
220 PIRIEIS]|S RIEIS|E|T XXX R18
230 XX [X[X XL XIX XXX XX R19
e e b PP LI S —_ra P2
XXX XXX XX XXX PXTRTXTX
280 - R24
.] \1\ —l_
300 00)00}00 R32
HRS \Next Available Byte

= byte lost due to boundary alignment

Figure 3-4. Storage Initialization for Example 1

Figure 3-6 represents an area of overlapped storage in a partition. The assembler

has assigned the 2 bytes of BR96, the 2 bytes of BR97, and the high-order byte of
BR98 to a previously allocated data area. The next sequential byte that is available

to the assembler is the low-order byte of BR98.

Previously

/ Next Available Byte

Assigned Bytes

BR

100

BR

102

1E

1F

Figure 3-5. Storage Bytes

Assembler Language Control Statements

R12
R13
R14
R15

63

64

Example 2 shows .DC statements that use the LEVL and PREFIX parameters and
illustrates how the assembler allocates the bytes in Figure 3-5.

Example 2: Storage Structures; LEVL, PREFIX

Double Binary Register

[e
.DC LABEL=AREAB LEVL=1 TYPE=BIN - [x]01020304]x [x | x| x|X[Xx]R12
BDY=2 LEN=4 PREFIX=B; f
.DC LABEL=A1 LEVL=2 INIT=1; BA1 J

BA2 l
BA3
BA4 ,

.DC LABEL=A2 LEVL=2 INIT=2;
.DC LABEL=A3 LEVL=2 INIT=3;
.DC LABEL=A4 LEVL=2 INIT=4;
* DISP may be omitted for contiguous fields.
* The level 1 area is referred to as AREAB;
* the level 2 areas as BA1, BA2, BA3, BA4.

The following shows how to use PREFIX

to define two decimal registers and

overlay them with eight binary registers

* each. The coding for the AREADX registers
can be copied for the AREADY registers.

3

I
.DC LABEL=AREADX LEVL=1 TYPE=DEC - ,
BDY=16 LEN=16 PREFIX=DX: 0008|0016{0021]002¢|0000]0037{E7404040|R 13

.DC LABEL=A1 LEVL=2 TYPE=BIN INIT=11; —pXA1} I] 1

.DC LABEL=A2 LEVL=2 TYPE=BIN INIT=22; ————DXA2

.DC LABEL=A3 LEVL=2 TYPE=BIN INIT=33; —————DXA3

.DC LABEL=A4 LEVL=2 TYPE=BIN INIT=44; DXA4

.DC LABEL=A5 LEVL=2 TYPE=BIN LEN=4

INIT=b5; Double Binary Register. DXAS5
.DC LABEL=A6 LEVL=2 TYPE=BIN LEN=4

INIT="X"; Double Binary Register. DXAG -
* The level 1 decimal register is referred to as AREADX,

* the level 2 binary registers as DXA1, DXA2, and so on.

r — N
-DC LABEL=AREADY TYPE=DEC PREFIX=DY; [5008]0016[0021]002C]0000{0037]E8404040]R 14
.DC LABEL=A1 LEVL=2 TYPE=BIN INIT=11; _pya73

.DC LABEL=A2 LEVL=2 TYPE=BIN INIT=22; DYAZ‘?

.DC LABEL=A3 LEVL=2 TYPE=BIN INIT=33; ——————DYAS3

.DC LABEL=A4 LEVL=2 TYPE=BIN INIT=44; DYA4

.DC LABEL=A5 LEVL=2 TYPE=BIN INIT=55 LEN=4; DYAbL

* Change INIT for DYAS.

.DC LABEL=A6 LEVL=2 TYPE=BIN INIT="Y' LEN=4; DYAG6

.DCLBR Control Statement
.DCLBR LABEL= [,...] ;

The .DCLBR control statement declares and labels one or more binary registers with
a single statement. It may be used only for declaring registers which are not initial-
ized. The registers will contain hex 00s. You do not specify a register number. The
system assigns the labels to the next available binary registers. You can declare up
to a maximum of 30 binary registers with each .DCLBR control statement.

Parameter

Name Description

LABEL Label; lists the names of the binary registers, each name separated
by a comma.

Example:

.DCLBR LABEL=PATRN,REGB1,REGB2,CHK4;

.DCLDR Control Statement

.DCLDR LABEL= {[,...] ;

The .DCLDR statement declares and labels one or more decimal registers with a
single statement. It may be used only for declaring registers which are not initial-
ized. The decimal registers will contain hex 00s. You do not specify a register
number. The system assigns the labels to the next available decimal registers. You
can declare up to a maximum of 30 decimal registers with each .DCLDR control

statement.

Parameter

Name Description

LABEL Label; lists the names of the decimal registers; each name separ-
ated by a comma.

Example:

.DCLDR LABEL=PAYMT BAL1,RATE EXCH, TOTAL,SEND;

.DCLIND Control Statement
.DCLIND LABEL= |[,...] ;
The DCLIND statement is used to declare and label one or more user indicators
(10-199) with a single statement. You do not specify indicator numbers. The

system assigns the labels to available user indicators. You can declare up to a
maximum of 30 indicators with each .DCLIND control statement.

Assembler Language Control Statements

66

Parameter
Name Description

LABEL Label; lists the names you assign to the indicators, each name
separated by a comma.

Example:

.DCLIND LABEL=LABL1,LABL2,LABL3,LABL4,LABLS;

.EQUATE Control Statement

.EQUATE [REG= NUMB= IND=
LABEL= EXPR=] ;

This control statement equates labels to registers, constants, indicators (10-199), or
the value of an expression. You must specify the register, constant, or indicator
number along with the label you wish to use. You may equate up to 30 register,
constant, or indicator labels with each .EQUATE control statement, or one arith-
metic expression. This statement is useful to label system registers and indicators.
It is the only means to specify an arithmetic expression in the control statements.

A labeled expression may be used in subsequent instructions as a constant or a stor-
age specification. If it is used as a storage label, the result of the expression must be
a valid storage address or an error results. Otherwise, it may be used in any
instruction that requires immediate data, such as a length or displacement
specification.

Note: Only reserved registers, previously equated terms, and self-defining terms
may be used in the equate statement. EQUATE does not check to see if the speci-
fied register already has a label. The current EQUATE label does not override any
previously assigned labels.

Parameter
Name Description

REG Registers; ordered pairs of a register (binary or decimal) followed
by a label. Separate the register and label with a comma, enclose
each pair in parentheses, and separate the pairs with a comma.,

NUMB Numbers; ordered pairs of a constant and a label, Separate the
constant and label with a comma, enclose each pair in parentheses,
and separate the pairs with a comma. |f used as the length para-
meter of a .DC TYPE = PRMT or .DC TYPE = MDUP, the .DC
statement must follow the .EQUATE statement,

IND Ordered pairs of an indicator and a label. Separate the indicator
and label with a comma, enclose each pair in parentheses, and
separate pairs with a comma.

LABEL Expression label; used only with the EXPR parameter, it speci-
fies the name you want to assign to the result of the expression.
You may specify this label as a parameter in a subsequent
instruction.

Note: This label should not be used:

® Prior to its declaration.

® Within a screen format control string.

® With an 1/O format control string.

® As the LENGTH parameter of .DC TYPE = PRMT or .DC
TYPE = MDUP,

Assembler Language Control Statements 67

Parameter
Name Description

EXPR Expression; an expression of up to eight terms, separated by
arithmetic symbols. The following symbols may be used:

Symbol Meaning

+ Add

- Subtract
* Multiply
/ Divide

The arithmetic operations are performed with 2-byte integers;
fractions and overflows are ignored. The arithmetic operations
are performed from left to right, although the multiply and
divide operations are performed before the add and subtract
operations. Do not include parentheses in the expression.

The terms may be any type of previously defined labels. The
length attribute of the first term of the expression will be assigned
to the expression label.

Examples:
.EQUATE REG=(BR5,XREG),(BR6,YREG) NUMB=(22,INDEX) IND=(17, SWITCH);
.EQUATE REG=(R4,BUF7),(R5,BUF8),(R8,BUF9);

.EQUATE LABEL=AREA2 EXPR=BUF7+INDEX/34;

Expression operands can be relocatable terms or self-defining terms. Relocatable
terms are labels used for addressing storage locations relative to the beginning of the
partition. These include labels of instructions and data areas. Relocatable terms can
only be used as operands of the add and subtract operators. Self-defining terms are
absolute values or labels that have been equated to such values. Self-defining terms
can be used as operands of the add, subtract, multiply, and divide operators.

There are only two valid forms of expressions. Self-defining terms have no effect on
the validity of an expression. The validity of an expression can thus be determined
by comparing the number of add operators immediately followed by a relocatable
term (quantity A) with the number of subtract operators immediately followed by a
relocatable term (quantity S). The first term in an expression is assumed to imme-
diately follow an implied add operator. If A is equal to S then the expression is
valid and defines a self-defining term; the pairs of relocatable terms of opposite
operator type producing a result of type self-defining term. |f A exceeds S by
exactly one then the expression is valid and defines a relocatable term because of
the single unpaired relocatable term immediately preceded by an add operator. All
other comparative values of A and S define invalid expression forms.

Examples:

Where R represents a relocatable term and Q represents a self-defining term.

.EQUATE LABEL=EXPR1 EXPR=Q+Q+R—-Q*Q/0-R;
A=1 S=1
Therefore EXPR1 is a valid expression of type self-defining term.

.EQUATE LABEL=EXPR2 EXPR=R+Q+R+R—R+Q/Q—R;
A=3 S=2
Therefore EXPR2 is a valid expression of type relocatable term,

.EQUATE LABEL=EXPR3 EXPR=R+Q+R-Q;

A=2 S=0
Therefore EXPR3 is an invalid expression.

SET UP AND INITIALIZE DEVICE CONTROL BLOCKS

One device 1/0 control block (I0OB) must be set up and initialized for each data set

your program uses. Use the .COMM statement for a data set that uses the com-
munications line. Use a .DATASET control statement for a data set that uses a
printer or diskette.

.COMM Control Statement

{ELAB=}

.COMM [CAM=] DSN= ETAB= TYPE=
[RECL= BSIZ= LBUF= LABEL=
HTAB= VTAB=] ;

Parameters unique to BSC:
[SIDL= SIDH= RECFM=]
Parameter unique to SNA:

PLUNAME=

The .COMM statement specifies the characteristics of the communications line for
the current communications session. It also sets up the device 1/0 control block

in the current partition. The /BM 5280 Communications Utilities Reference
Manual, SC34-0247, describes the functions of the SNA and the BSC versions of the

communications access method, how to determine which version to use, and how
to load the access method.

Assembler Language Control Statements

69

70

Although most .COMM parameters apply to both the BSC and SNA versions of the
communication access method, some parameters are unique to one of the versions. ’

Parameter

Name

CAM

DSN

ETAB

ELAB

TYPE

Description

Communications access‘method; defines the CAM as either BSC
or SNA. |If omitted, it defaults to BSC.

Data-set number; a decimal number from 1 to 15 that identifies
the communications device 1/O control block. This is a manda-
tory parameter.

Error table label (either ETAB or ELAB must be specified); the
label of the label table set up by a .LABTAB statement. Each
entry in the label table is the address of a subroutine that handles
one specific external status condition.

Error subroutine label (either ETAB or ELAB must be specified);
the label of the subroutine that handles all external status
conditions.

Type; specifies attributes of the data to be processed. One entry,
file type, is mandatory. For BSC, one optional attribute key-
word may follow the type. Separate the type and attribute with
acomma.

File Type, First Position

SR Sequential read, records can be received only.

SW Sequential write; records can be transmitted but not
received.

COM General communications; sequential read, sequential write,
or sequential read and write. (BSC only)

CN Conversational; transmit one message, receive n messages.

Optional Attributes, Second Position (for BSC only)

CB Compressed blanks, to expand blank-compressed data that -
is received. (The IBM 5280 does not transmit compressed
data.)

BT Blank Truncation, to truncate trailing blanks in data to be

transmitted and to insert trailing blanks in data that is
received,

Parameter
Name

RECL

BSIZ

LBUF

LABEL

HTAB

VTAB

Description

Record length; length of the logical records. Although this is an

optional parameter in the .COMM statement, the RECL field of

the 1/0 control block must contain a valid RECL value when the
TINIT instruction is issued.

If RECL is not coded on the .COMM statement, you must
initialize the record size field of the communications 1/0 control
block as appropriate. '

Block size; maximum block size of the data to be transmitted.
Include this parameter if you specify FB (fixed length and
blocked) or VB (variable length and blocked) for the RECFM
(record format) parameter. It defaults to 256.

Logical buffer; the label assigned to the buffer by a .DC control
statement.

Label; a name to identify the 1/O control block for communica-
tions. |f omitted, the 1/O control block is assumed to be not
labeled.

Horizontal tab table; the label of a horizontal tab table that
specifies the printer tab settings.

Vertical tab table; the label of a vertical tab table that specifies
printer tab settings.

Parameters that are unique to BSC

SIDL

SIDH

Security 1D local; character string to be sent to the host from a
local terminal on switched lines. if specified, this ID will override
the value in the communications control block, which is specified
during execution of the communications configuration utility.

If neither security 1D is specified, no loca!l ID will be sent to this
host.

Security 1D host; a character string |D sent to local terminals
from the host on switched lines. If specified, this ID will over-
ride the value in the communications control block, which is
specified during execution of the communications configuration
utility. If neither security 1D is specified, no ID will be checked.

Assembler Language Control Statements

7"

Parameter

Name Description
RECFM Record format; describes the record to be processed, using one
of the following keywords. If omitted, it defaults to fixed length
(F).
Keyword Meaning
F Fixed length
\Y Variable length
FB Fixed length and blocked
VB Variable length and blocked

Parameters that are unique to SNA/SDLC

PLUNAME Primary logical unit name; a character string enclosed in single
quotes. This is an optional parameter. If specified, it wiil be
checked by the communications access method during
initialization.

Examples:

.COMM CAM=BSC DSN=2 TYPE=COM, BT LABEL=COMIOB ETAB=TABLO1;

.COMM CAM=SNA DSN=3 TYPE=SW, LABEL=SNAIOB ELAB=ERRTN

PLUNAME=LOGO1;

DATASET Control Statement

{ETAB=}
.DATASET NAME= DSN= TYPE= | ELAB=

{DEVID=}

DEV= PB1= [PB2= RECL=

BSIZ= LBUF= LABEL= TRANS= DFLG=] ;

Parameters unique to SCS conversion data sets:

PGSIZ= LINSZ= LSTLN= [SGEA=]

Parameters unique to -keyed data sets:

KPOS= KLEN= TLOC= DLTA=

The .DATASET control statement specifies the characteristics of a data set to be

referred to by the program. It generates the device 1/0 control block which
describes the characteristics of the data set to the 1/0 device.

Parameter
Name

NAME

DSN

ETAB

ELAB

DEV

DEVID

TYPE

Description

Data set name; mandatory for diskette, optional for printer.
Enter the label, which was assigned by a .DC control statement,
of the area where the data set name is stored. The data set name
is described in Chapter 4 under Partition Load and Exit Instruc-
tions. Do not enter the data set name here. For label update data
sets (type = |}, the data set name must be blank, and the period
that follows the volume identifier is optional.

Data set number; a decimal number from 1 to 15 which identifies
the data set being described. This is a mandatory parameter.

Error table label (either ETAB or ELAB must be specified); the
label of the table set up by a .LABTAB statement. Each entry
in the label table is the address of a subroutine that handles one
specific external status condition.

Error subroutine label (either ETAB or ELAB must be specified);
the label of the subroutine that handles all external status
conditions.

Device address (either DEV or DEVID must be specified); the
physical address of the device to which this data set information
is directed. A physical address is expressed as four hexadecimal
digits.

Device identifier (either DEV or DEVID must be specified); the
2-character logical device identifier that identifies the logical
device to which this data set information is directed. (See Logical
Device Identifiers in Chapter 1.)

Type; specifies the data set type, and may specify other attributes.
The first positional entry of this parameter (type) is mandatory.

It may be followed by as many optional second position entries as
needed. See Diskette Data Management in Chapter 2 for more
information about the data set types and attributes.

If an optional attribute is included after the type specification,
separate the type and the optional attribute with a comma.

Data Set Type, Mandatory, First Position

SR Sequential read; records can be read sequentially, or
directly by relative record number. Records cannot
be written.

sSw Sequential write; records can be written but not read.

The records are accessed starting at the next available
record space, which is determined by the EOD and
offset to the next record values on the HDR1 label on
-the diskettes.

This is the only valid type for printer data sets.

Assembler Language Control Statements

73

74

Parameter
Name

TYPE
(continued)

Description

SuU

KR

KRN

KU

KUN

INI

Sequential update; records can be read and written
sequentially, or directly by relative record number.
Records can be added at EOD.

Key indexed read; key indexed records can be read
only, sequentially or directly by key. An index table is
automatically built on OPEN.

Key indexed read, no table build, records can be read
only, sequentially or directly by key, and you must
build or supply your own index table.

Key indexed update; key indexed records can be read
sequentially or directly by key, and written or added

sequentially. An index table is automatically built on
OPEN.

Key indexed update, no table build, records can be read
sequentially or directly by key, and written or added

sequentially. You must build or supply your own index
table.

Label update; data set labels can be read and updated.
The diskette index cylinder is accessed at track 0,
sector 1. Otherwise, the operation is as for sequential
update (SU).

Initialize diskette.

Optional Attributes, Second Position

SHR

SHW

SHRW

Shared read; shares the data set with other jobs that
specify shared read.

Shared write; for diskette, shares the data set with other
jobs that specify shared write. For printer, shares the
same printer with other data sets that specify shared
write.

Shared read/write; shares the data set with any other
jobs that specify shared attributes. The data set can be
read and written to if the other job specifies SHRW; the
data set is write-only if the other job specifies SHW, or
is read-only if the other job specifies SHR,

Parameter
Name

TYPE
(continued)

Description

EW

QR

SCS

ERS

PTR

EXTC

TLBL

ORD

Early write; for diskette, this option allows logical
records to be updated; then the entire physical buffer

is written to the diskette immediately, without waiting
until a full physical buffer has been updated. The entire
physical buffer is freed upon completion of the write
operation. This releases the logical records in the buffer
so they can be used by other jobs.

For printer, the data in one logical record is sent to the
printer and printed immediately, without blocking.

Quick release; like EW, but affects only read operations.
The entire physical buffer is freed upon completion of
the read operation. This releases the logical records in
the buffer to be used by other jobs. Do not use QR
when writing with pointer 1/0.

Standard character string; indicates SCS conversion.

Erase; existing data is erased at open. You may not
specify ERS for a shared file. You may specify ERS
for a label update data set to erase the label area.

Pointer 1/0; indicates pointer |/O is being done. (See
Pointer 1/0 in Chapter 2.)

Overlapped extent check; during an open or allocate
operation, checks all extents of all other data sets to
ensure that they do not overlap this data set.

Translate label; translation applies to diskette HDR1
label as well as to the data.

Ordered; may be specified only with a keyed data set to
indicate that key indexed records are in ascending key
sequence.

Assembler Language Control Statements

75

76

‘Parameter

Name

Description

Note: If you specify a keyed data set and include attributes for another file type,
the system assumes a keyed data set.

PB1

PB2

RECL

Physical buffer 1; the label assigned to the buffer by a .DC
control statement. This parameter is mandatory.

Note: Physical buffer lengths must begin on a 128-byte
boundary, and must be a multiple of 128, regardless of block

size or record format. This is because buffer size is specified

in the 1/0 control block as a multiple of 128. For data sets
requesting conversion to SCS (standard character string) data sets,
the maximum size is 256 bytes.

Physical buffer 2; the label assigned by the .DC statement that set
up the buffer. This buffer is used for double buffering. This
parameter is optional.

Record length; the length of the logical record to be handled. This
parameter is required for printer output and for SCS conversion
data sets; it is optional for diskette 1/0. If this parameter is
omitted for diskette, the value from the data set label is used. If
this parameter is specified for diskette, it must match the value
in-the HDR1 label.

Parameter
Name

BSI1Z

LBUF

LABEL

TRANS

DFLG

Description

Block size; the length of the block to be handled. This parameter
is required for SCS conversion data sets; it is optional for printer
and diskette 1/0. If this parameter is omitted for diskette, the
value from the data set label is used. If this parameter is speci-
fied for diskette, it must match the value in the HDR1 label.

Logical buffer; the label assigned to the buffer by a .DC control
statement. This parameter should be omitted when using pointer
1/0 (locate mode). If omitted, the logical buffer address is
assumed to be the same as the physical buffer (PB1) address, and
the pointer 1/O flag in the data set 10B is set on.

Label; the name you wish to assign to the device 1/0O control
block for this data set. This is an optional parameter. [f this
parameter is omitted, the 1/O control block is assumed to be not
labeled.

Translate tables label; the label specified in a .TABLE control
statement that describes a pair of 256-byte tables used for code
translation (substitution). The first table is used for input trans-
lation, and the second for output. The content of each table is
identical to tables used with the equivalent instruction TRANS.
This optional parameter is used only when translation is desired.

Delete flag; the character that is placed in the HDR1 label during
an allocate, which will be used to indicate a deleted record. This
character is placed in the last byte of a record that is operated
upon by a WRTS (write delete) instruction. A deleted record is
skipped on a READ (sequential read) and overwritten on a WRTI
(write insert) or WRT (write current) instruction. During an
OPEN, if the delete character on the HDR1 label is not blank or
X '00’, then the delete character in the 10B is overridden.

This parameter may be used only for an | or E exchange data set.

Assembler Language Control Statements

77

Parameter
Name Description

These parameters are only for standard character string conversion of printer output
{when the second TYPE entry is SCS). These parameters are not allowed for keyed
data sets. '

PGSIZ Page size; the number of lines per page. This parameter is manda-
tory with SCS conversion.

LINSZ Line width; number of characters per line. This parameter is
mandatory with SCS conversion.

LSTLN Last line; line number of the last line to print. This parameter is
mandatory with SCS conversion,

SGEA Set graphics error action; the symbol to represent unprintable
values, in the form (character, code). The default is (—,1), which
prints one dash and continues printing. The only other valid
entry is (—,3), which prints one dash and stops printing at the
end of the line.

The folkwi}ing parameters are only for keyed files,

KPOS Key position; the position of the key in the record (first column
. = 1). This parameter is required for keyed data sets.

KLEN ’ Key length; the number of positions in the key. This parameter
is mandatory for keyed data sets.

TLOC Table location; the label of the table you have set up for the file
index parameters. Use the label assigned by the .TABLE state-
ment. This parameter is mandatory for keyed data sets, whether
you build your own index table or let the IBM 5280 automatically
build the table.

DLTA Delta of index table; the number of logical records between each
index entry. This parameter is required for KRN and KUN data
sets. If this parameter is omitted, the delta is calculated from
data set length and table length.

Examples:
.DATASET NAME=TXDATA DSN=3 RECL=80 BSIZ=3120 LBUF=MYAREA

PB1=WKBUF TYPE=KR,SHR ELAB=ERORTN2 DEVID=D1
KPOS=12 KLEN=8 TLOC=KEYTBL;

SET UP AND LABEL TABLES

The table control statements organize and assign labels to tables, but do not
initialize storage. The .LABTAB control statement organizes the labels of sub-
routines, which are used in indexed subroutine calls. The .TABLE statement organ-
izes data areas initialized by .DC control statements. These data areas are used by

the TABLE instructions. The .SYSTAB statement assigns labels and determines
locations of the system tables, which are set up and used by the IBM 5280,

.TABLE Control Statement

.TABLE LABEL= DCLBL= ARGL= | MAXM= [BYPASS]
ENTRIES=
MAXM= ENTRIES=

A table consists of a group of contiguous fields of the same length. The content
of each field is the table argument, and the position of the field within the table
is the index of the field. The index of the first table field is one.

Table arguments may be in an ordered or unordered sequence. An ordered table
has arguments arranged in ascending or descending order according to the standard
EBCDIC collating sequence.

The .TABLE control statements build a system table that will be referred to each
time a table instruction is encountered during program execution. The system
table contains all the parameters of each table you use in your program. You must
include one . TABLE statement for each of your tables, These .TABLE statements
must be consecutive. The address of the system table is stored in the partition 1/0
control block. When a table instruction refers to the label of a table, the address
and all the parameters of that table are provided by the system table.

Space for the tables you use in your program must be allocated by .DC statements.

Parameter

Name Description

LABEL Label; the label of the table this statement defines.

DCLBL DC label; the LABEL parameter from the declare .DC statement
that assigned space for this table.

ARGL Argument length; the number of bytes in the table argument.

MAXM Maximum; the maximum number of entries allowed in this table.

Either the MAXM or ENTRIES parameter must be included for
fixed-length tables. For variable-length tables both MAXM and
ENTRIES are used.

Assembler Language Control Statements

80

NUMBERS‘J
11111111

Parameter
Name Description

ENTRIES Entries; the number of entries in the table that have been
initialized. In variable length tables this may not be the same as
the maximum number of entries. If MAXM is not included, the
maximum number of entries is equal to the number specified by
ENTRIES, and a fully initialized table is assumed. If MAXM is
included and ENTRIES is omitted, the table is a fixed-length table
that is not initialized.

BYPAS Bypass; the number of bytes per table entry that are not part of
the table argument. This may be used in conjunction with LEVL
and DISP on the .DC statement to define a two-dimensional
table.

Examples: In Figure 3-6, the following .DC statements allocate space for two tables.
Then the .TABLE statements define the parameters for the two tables. The param-
eters are stored in the system table, which the IBM 5280 builds in another area

of storage, and refers to during program execution.

.DC LABEL=TAB2NUMS LEN=400 LEVL=1 ; start of table of numbers
.DC LABEL=DAT21 LEN=8 LEVL=2 INIT="11111111" ;

.DC LABEL=DAT21END LEN=0 LEVL=2 ;

.DC LABEL=TAB2LETS LEN=400 LEVL=1 LOC=DAT21END ;start of table of letters
.DC LABEL=DAT22 LEN=2 LEVL=2 INIT="AA’ :

.DC LABEL=DAT23 LEN=8 LEVL=2 INIT="22222222" ;

.DC LABEL=DAT24 LEN=2 LEVL=2 INIT="BB’ ;

*TABLE statement defining a table with 8-byte arguments.
.TABLE LABEL=NUMBERS DCLBL=TAB2NUMS ARGL=8 BYPAS=2 ENTRIES=2 MAXM=40;

*TABLE statement defining a table with 2-byte arguments.
.TABLE LABEL=LETTERS DCLBL=TAB2LETS ARGL=2 BYPAS=8 ENTRIES=2 MAXM=40;

TAB2

r \

11111111AA22222222BB_

LETTERS

22222222

Figure 3-6. Data Tables

.LABTAB Control Statement
.LABTAB LABEL= ENTRY=

The .LABTAB control statement specifies a group of subroutine or statement labels
and creates a label table of the addresses of these subroutines or statements. This
table of addresses is used to make indexed branches through a table as with the
GOTAB and CALLTB instructions. You can specify up to a total of 30 ENTRY
labels for each .LABTAB control statement.

Note: The .LABTAB tables are not used with the TABLE instructions that are
described in Chapter 4.

Parameter
Name Description

LABEL Label; the name you wish to assign to the table of addresses being
created. This parameter is mandatory unless you are building a
label table of more than 30 entries. in that case, include the
LABEL parameter with the .LABTAB statement that specifies the
first 30 entries, and follow it with one or more .LABTAB state-
ments with the LABEL omitted.

ENTRY Label of a subroutine or statement whose address is to be stored
in the label table. At least one but no more than 30 labels must
be entered. If two or more labels are entered, separate them with
acomma. The first entry is at index 0 in the label table, the
second entry is at index 1, and so on.

Examples:

.LABTAB LABEL=MYTABLE ENTRY=EOF,EQJ,EOT;

Index Entry

................

0 EOF address
MYTABLE 1 EOJ address

2 EOT address

Figure 3-7. Label Table

Assembler L.anguage Control Statements - 81

82

SYSTAB Control Statement

SYSTAB [PRMT=FMT= MDUP= SFMT=STACK=] ;

The .SYSTAB control statement allows you to assign labels and determine the loca-
tion of the system control tables and the subroutine stack, When the assembler
encounters a .SYSTAB statement, the indicated control tables and subroutine
stack are assigned locations at the address in the current location counter. You
may reserve space for the entries into the area by specifying the number of entries
to be placed into the control table or subroutine stack. If you specify the number
of entries you may omit the label; the space for the specified number of entries will
be reserved in the table, and the table will be assigned the location in the current
location counter, If you omit the number of entries, you must specify the label;
the assembler will make the appropriate number of entries in the table but will
reserve no extra space for additional entries. See Chapter 2 for more information
about these control areas, under System Tables and The Partition Subroutine
Stack.

If the .SYSTAB statement is not included, any necessary control tables are created
and placed into the partition storage when the .END statement is encountered,
and the address of each table is stored into an assigned location in the partition
1/0 control block. The control tables are assigned no labels; if you wish to refer to
an entry in a control table, you must read the address from the appropriate area in
the partition control area.

On the assembly listing, all system tables and the subroutine stack are written
immediately following the .END statement. This is true regardless of their actual
addresses, No system tables or subroutine stack is written on the listing with the
SYSTAB control statement. ‘

If the .SYSTAB statement is used for a separately assembled subroutine
(OPTION=SUB in the .START statement), you must initialize the control table
addresses in the partition control area at execution time. The location of each table
address is included in the following parameters.

Parameter
Name Description
PRMT Prompt control table label; specifies the name you wish to assign

to the prompt control table. You may optionally follow the label
with a comma and the number of entries to be placed into the table.

The number specified must include one extra entry to be used for
the first table entry, which the assembler always creates and fills
with zeros; specify the number of your prompts plus one.

Each entry in the table is 2 bytes long and, except for the first
entry, contains the address of a prompt created by a .DC
TYPE=PRMT control statement. You must specify the label,
or the number of entries, or both. The address of the prompt
table is placed into hex 8D-8E of the partition control area.

Parameter
Name

FMT

MDUP

SFMT

STACK

Description

Format control table label; specifies the name you wish to assign
to the format control table. You may optionally follow the
label with a comma and the number of entries to be placed into
the table.

The number specified must include one extra entry to be used
for the last entry, which the assembler creates and fills with hex
Fs; specify the number of your edit formats plus one. The
assembler always creates this system table and the entry filled
with Fs whether or not you write any edit formats.

Each table entry is 2 bytes long (3 bytes long for global formats),
and contains the address of a format created by a .FMTST con-
trol statement and its associated ,FMTFLD statements. The ad-
dress of the table is placed into hex 24-25 of the partition control
area. You must specify the label, or the number of entries, or
both.

Main storage duplication control table; specifies the name you

wish to assign to the MDUP control table. You may optionally
follow the label with a comma and the number of entries to be
placed in the table.

Each table entry is 2 bytes long, and contains the address of a
MDUP area created by a .DC TYPE=MDUP control statement.
The address of the table is.placed into hex B6-B7 of the partition
control area. You must specify the label, or the number of
entries, or both.

Screen format control table label; assigns a name to the SFMT
control table. You may optionally follow the label with a comma
and the number of entries to be placed in the table.

Each table entry is 2 bytes long and contains the address of a
screen format. Each screen format is created by a SFMTST state-
ment and its associated .SFMT statements up to and including

the .SFMTEND statement. The address of the table is placed into
hex F9-FA of the partition control area. You must specify the
label, or the number of entries, or both.

Stack label; assigns a name to the subroutine stack. For the
STACK parameter, you must specify the number of entries to be
placed in the table whether or not you specify the label. The
number required for the partition stack entries is the number of
levels your program uses for nested subroutine calls. Include
calls to common function routines, calls to external status
routines, and a call to the program check routine. It is your
responsibility to control overflow of the partition stack; the
system does not check for such overflow to prevent the stack
from extending beyond the end of the partition.

Assembler Language Control Statements

83

Parameter

Name Description
STACK Each stack entry is 2 bytes long and contains the return address
(continued) of the most recent subroutine call. The address of the next

available space in the subroutine stack is placed into BR18.
Note: When the number of table entries is included in a .SYSTAB parameter, it
overrides the actual number of entries generated from your control statements.

Therefore, you may reserve extra space for future entries by specifying a number
greater than the present number of entries.

Examples:
If the following two statements are the only .SYSTAB control statements in
the program, the edit format system table is automatically built when the .END
statement is processed.
.SYSTAB PRMT=PTABLE MDUP=MTABLE,4 STACK=SUBSTACK,20;
.SYSTAB SFMT = ,22;

SET UP EDIT FORMATS
Certain 1/0 instructions and data movement instructions may include an edit
format. Edit formats describe punctuation, data types, and other editing require-
ments for the individual fields of a record. The instructions that may include an
edit format are:
® READ
® WRT
® WFMCRT
® REBF
® WRTI
® WRBF
For the READ or REBF instruction, the edit format specifies the data area to
which each input field is moved. For the READ instruction, the fields are moved
from the 1/0 buffer after the read operation occurs. For the REBF instruction, the
fields are moved from the storage area specified in the instruction.

Data directed formatting may be used with the READ or REBF instruction.

As the field moves to the data area, specified punctuation and edit characters are
removed or specified conversion occurs.

For the write instructions, the edit format specifies the data area from which each
field is moved. For the WRT and WRTI instructions, the fields are moved to the
1/0 buffer before the write operation occurs. For the WRBF instruction, the fields
are moved to the storage area specified in the instruction. For the WFMCRT
instruction, the fields are moved to the screen, at the screen position specified in
the instruction.

As the field moves from the data area, specified punctuation and edit characters
are inserted into the field or specified conversion occurs.

In your source program, each edit format must begin with a .FMTST statement and
end with a .FMTEND statement. Any number of .FMTFLD statements necessary
may be placed between the .FMTST and .FMTEND statements. The parameters for
the .FMTFLD and .FMTEND statements are identical.

.FMTST Control Statement
.FMTST LABEL= [CCHAR= CCOL=] ;
The .FMTST control statement identifies the start of an edit format specification.

This statement must be followed by one or more .FMTFLD statements and a
.FMTEND statement, or by a .FMTEND statement alone.

Parameter

Name Description

LABEL Format label; the name you want to assign to this format descrip-
tion. This label is used as the format parameter in instructions
that allow edit specifications format. This is a mandatory
parameter.

CCHAR Condition character; the character used in data directed format-
ting. Any single character is acceptable. This is an optional
parameter used only for data directed formatting.

CCOL Character column; the column in which the condition character is

located. Valid entries range from 1 to the maximum size of the
1/0 buffer. This is an optional parameter used only for data
directed formatting.

.FMTFLD Control Statement
.FMTFLD DCLBL= [LEN=TYPE=COL= {E:ZE:I:E} 1

Each .FMTFLD control statement defines a data field.

Assembler Language Control Statements

86

Parameter

Name
(Read)

(Write)

(to) DCLBL (from)

(to) TYPE - (from)

(from) LEN

(from)COL

EDIT

(to)

(to)

Description

Declared label; the label from the control statement that declared
the register or labeled storage area into which (for READ or REBF
instructions), or from which (for WRT, WRTI, WRBF, or
WFMCRT instructions) the field is moved. The label may be
followed by an optional comma and a length specification of 1

to 256 bytes. If the length of the storage area is omitted, it
defaults to the length specified in the declare statement. The
label is mandatory.

Type; the type of the declared area specified by DCLBL. Valid
entries are DEC for decimal, and BIN for binary; defaults to BIN.

Length; the number of bytes {1-256) to access for this field. This
is an optional parameter that defaults to 1.

Column; the position of the first byte of this field, relative to the
leftmost byte of the I/0 buffer. The valid range begins at 1, which
indicates the first byte of the buffer. This is an optional param-
eter that defaults to the next available column to the right.

Edit specification; indicates how to edit the contents of the

field during the move. This is an optional parameter that may be
included if PIC is omitted. You may specify HX, C, W, or an edit
string.

HX Converts EBCDIC to binary or binary to EBCDIC. For
example, B‘1001’ converts to or from hex F9, and
B‘1010’ to or from hex C1. Do not use HX for a stor-
age area declared with TYPE = DEC.

C Specifies date edit. Slashes are inserted between each
two positions as illustrated:
XX /XX /XX

The length of the DCLBL parameter should be 6.
w Specifies alternate date edit. Periods are inserted
between each two positions as illustrated:

XX XX. XX

The length of the DCLBL parameter should be 6.

Edit string characters may be specified only when the field is
being moved to (for READ and REBF) or from (for write
instructions) a decimal area, or a binary area with the CV
parameter specified.

You may specify more than one of the following, separated by
commas. : ’

Parameter
Name

EDIT
(continued)

Description
Character

cv

FX

ZS

cP

DP

Meaning

Converts decimal to binary or binary to decimal.
For example, B“1001’ converts to or from 9 and
B‘1010’ to or from 10. If you convert to binary,
you cannot specify any other edit string
characters. Not more than 2 bytes of binary data
can be converted to decimal.

Inserts the currency sign in the field, according to
the .EDITC parameter EDCUR. It is a fixed sign
and appears on the left side of the field. Itis
mutually exclusive with FL. It uses two character
positions; the default is a blank to the left of a
dollar sign ($).

Indicates zero suppress. When coded, all numerics
and any accompanying punctuation will be suppres-
sed for a data value of zero. Currency sign (FX or
FL) and sign edit chars (NS, S, CR or DB), if speci-
fied, will not be suppressed. When ZS is not coded,
the data value zero will appear as a single zero to
the left of the decimal point and as many zeros

as specified to the right of the decimal point if
decimal point punctuation is specified.

Indicates comma punctuation as specified by the
.EDITC parameter EDCOM. It defaults to a
comma.

Indicates decimal point punctuation as specified
by the .EDITC parameter EDDEC. It defaults to
a period.

Specifies the number of digits that appear to the
right of the decimal point. Valid range is 1-15.

One of the following edit string characters may be specified.
Default is blank fill (BF).

Character

BF

AF

ZF

FL

Meaning

Indicates blank fill,

Indicates asterisk (*) fill.

Indicates zero fill.

Indicates a floating currency sign. It is mutually

exclusive with FX and uses two character positions.
It defaults to a blank to the left of a dollar sign ($).

- Assembler Language Control Statements

87

Parameter

Name Description
EDIT One of the following edit string characters may be specified. The
(continued) term zone refers to the zone portion of the rightmost byte of the

decimal register. The term field refers to the field that is moved to
or from the decimal register. Default is decimal sign (DS).

Character Meaning

DS Indicates decimal sign. The zone is hex F for
positive data, and hex D for negative data.

SS Indicates stripped sign. The zone is always
replaced with hex F.

NS Indicates negative sign. !f the data is negative, the
zone has a hex D and the rightmost position of
the field has a minus sign (-). If the data is posi-
tive, the zone has a hex F and the rightmost posi-
tion of the field is blank.

S Indicates signs. Same as NS except the rightmost
position of the field has a plus sign (+) for positive
data.

CR Indicates credit. If the data is negative, the zone

is hex D and the rightmost two positions of the
field have C'CR’. If the data is positive, the zone
has hex F and the rightmost two positions of the
field are blank.

DB indicates debit. If the data is negative, the zone
is hex D and the rightmost two positions of the
field have C'DB’. If the data is positive, the zone
is hex F and the rightmost two positions of the
field are blank.

PIC Picture definition; a string of symbols that defines the format of
the field. This is an optional parameter that may be specified
only for a WFMCRT, WRT, or WRBF instruction that moves the
field to a decimal buffer; it is mutually exclusive with the EDIT
parameter. The number of digits represented by the PIC string
(not including punctuation) must exactly equal the number of
digits in the input field in the decimal buffer. Specify one or more
of the following, enclosed in single quotes.

Symbol Represents

9 A decimal digit. A decimal digit is accepted for
output to the corresponding position of the buffer.

Z Suppress leading zeros. The corresponding posi-
tion in the buffer is blanked if the character is a
leading zero.

Parameter
Name

PIC
(continued)

Description
Symbol

\

Represents

Stop zero suppress. Zero suppression is stopped in
the corresponding position of the buffer. V must
be followed by a comma, slash, or period.

Note: The picture definition must not end with V.

Insert a blank if the value is 0. A blank is inserted
into the corresponding position of the buffer if the
position contains a zero.

Insert an asterisk. An asterisk is inserted into the
corresponding position of the buffer if the position
contains a leading zero.

Insert a comma. A comma is inserted into the
corresponding position of the buffer unless zero
suppression has occurred.

Insert a slash. A slash is inserted into the corre-
sponding position of the buffer unless zero
suppression has occurred.

Insert a period. A period is inserted into the
corresponding position of the buffer unless zero
suppression has occurred.

Insert a blank. A blank is inserted into the corres-
ponding position of the buffer.

Insert a currency symbol. The currency symbol
can be at a fixed position or placed to the left of
the most significant digit. To insert a currency
symbol at a fixed position, place one M at the
desired position. To insert a floating currency -
symbol, place an M in all leading digit positions
of the associated field.

Insert a minus sign. A minus sign is inserted into
the corresponding position of the buffer if the
field is negative.

Insert a plus sign. A plus sign is inserted into the

corresponding position of the buffer if the field is
positive.

Assembler Language Control Statements

89

Parameter
Name Description

PIC Symbol Represents
(continued)
S Insert the appropriate sign. The appropriate sign
(+ or -) is inserted into the corresponding position
of the buffer.

C Insert CR. The characters CR are inserted into the
corresponding positions of the buffer if the field is
negative; otherwise the corresponding positions are
blank.

D Insert DB. The characters DB are inserted into the
corresponding positions of the buffer if the field is
negative; otherwise the positions are blank.

Example:

To read the following data from data set 4 and move it from the 1/0 buffer to
three decimal registers labeled NAME, SS#, and RATE, the following statements
may be used:

3White ElmerJ. 404772310 3.36

FMTST LABEL=F2;

.FMTFLD DCLBL=NAME,16 LEN=16 COL=2; skip condition
character position '

.FMTFLD DCLBL=SS# TYPE=DEC LEN=9 COL=20;
.FMTEND DCLBL=RATE LEN=6 COL=31 EDIT=DP, ZF;
READ (4,F2);

After the execution of the above statements, the decimal registers contain the
following data.

NAME = WHITE ELMERJ
SS# = 404772310
RATE = 0000000000000336

A write instruction that specifies F2 as the format parameter would move the
data from these registers back into the 1/0 buffer; all punctuation and edit charac-

ters would be replaced before the record is written to the 1/0 device.

The following tables show examples of PIC edit strings.

Examples of Zero Suppression

Input Field Edit Word Output Field
12345 222799 12345
00100 272299 B$100
00000 22299 BB®BOOo
00100 22222 B®B100
00000 22222 BBBBY
00100 wrwex **100
00000 * % * * % % * X
00100 YYYYY BB1BY
10203 9Y9Y9 182163
Examples of Character Insertion
Input Field Edit Word Output Field
1234 9,999 1,234
123456 9,999.99 1,234.56
1234 2z2.2Z 12.34
1234 Z2ZV.99 12.34
0003 22.22 BBBB3
0003 22ZV.99 B.03
0000 22.22 bibBLY
0000 Z2ZV .99 ¥®.00
123456789 9,999,999.99 1,234,567.89
1234567 **,000.99 12,345.67
0012345 **,999.99 *¥*%*123.45
123456789 9.999.999,99 1.234.567,89
123456 99/99/99 12/34/56
123456 99.9/99.9 12.3/45.6
001234 22/2Z/22 Bb612/34
000012 22/22/2Z BBBLY12
000000 22/22/22 BBBYBBBLY
000000 **/**/** IR E R E R E X
123456 99B99B99 123456
123 9BB9BB9 1862683
12 9BB/988B 188B/286

Assembler Language Control Statements 91

.FMTEND Control Statement

.FMTEND DCLBL= [TYPE= LEN= COL= {E:)(:I::} 1

The .FMTEND control statement indicates the last field of an edit format. The
parameters are identical to the .FMTFLD control statement.

SET UP SCREEN CONTROL FORMATS

A screen control format describes a record that is entered via the keyboard/display.
One screen control format must be specified with each ENTR instruction. When
the IBM 5280 encounters an ENTR instruction during program execution, it directs
the keyboard/display to allow the fields of one record to be entered from the key-
board. The screen control format specifies the length of each field and the type of data
that may be entered. The IBM 5280 checks the characters entered into each field to
make sure it meets the specifications of the screen control format. Valid data for
each field is placed into the 1/O buffer as it is entered, according to the current
mode of entry. (See Modes of Entry in Chapter 2.) The screen control format

can also specify prompts and display attributes to be displayed as the record is
entered. The prompts and display attributes are moved to specified positions on
the screen.

During an ENTR operation, the keyboard/display maintains two pointers. The
buffer position pointer always contains the position, relative to the first byte of the
1/0 buffer, of the next available buffer position. The screen position pointer
always contains the next available screen position.

In your source program, each screen control format must begin with a .SFMTST
statement and end with a . SFMTEND statement. Between these two statements,
you may include as many of the following statements as necessary:

Statement Purpose

SFMTCTL Specify control of screen attributes, data movement, keyboard
functions, or format execution.

SFMTPMT Specify prompts to move to the screen.

SFMTFLD Describe the display attributes, field type, and keyboard functions
of an input fieid.

SFMTCNS Specify constant insert data to place in the 1/0O buffer and to also
move to the screen.

Certain parameters or parameter keywords are common to more than one .SFMT
control statement. These are as follows:

Parameter

CNTL

Description

Control; one or more keywords that specify control of the
screen attributes, keyboard functions or format execution.
The CNTL parameter may be specified in any of the .SFMT
control statements. One or more of the following keywords
may be specified for the CNTL parameter, depending on the
particular control statement.

Keyword

RG

DE

mcC

Meaning

Return to program; the keyboard/display suspends
processing key entry under the current ENTR
command and sets on an external status indicator
in the KB/CRT 1/0 control block.

If the key entry is processing in a forward direc-
tion when this parameter specification is encount-
ered, the resulting external status condition is
condition 4. The current .SFMT statement, which
contains this RG parameter, is processed before
key entry is suspended.

If key entry is processing in a backward direction
such as during a backspace when this parameter is
encountered, the resulting external status condition
is condition 5. The current .SFMT statement,
which contains this RG parameter, is not

processed before key entry is suspended.

Dup key status; changes the status that determines
whether pressing the Dup key is allowed within a
field. The Dup key is initially enabled at the start
of each screen format control series. If itis
enabled when this statement is encountered, it
becomes disabled. If itis disabled when this state-
ment is encountered, it becomes enabled.

Monocase conversion status; changes the status
that determines whether all lowercase alphabetic
characters (and any other characters in the ex-
tended international character set for which an
uppercase-lowercase relationship is defined) are
converted to their uppercase equivalents as they
are keyed, before they are inserted into the
record and displayed upon the screen. The mono-
case conversion feature is initially disabled at the
start of each screen format control series. If itis
disabled when this statement is encountered, it
becomes enabled. If it is enabled when this state-
ment is encountered, it becomes disabled.

Assembler Language Control Statements

93

Parameter
Name

CNTL
(continued)

DSPLY

Description

Keyword Meaning

FX Field- status; changes the status that determines
whether the Field- (Fleld Exit Minus) key is per-
mitted in a field defined as a numeric shift field.
The Field- key function is initially enabled at the
start of each screen format control series. If it is
enabled when this statement is encountered, it
becomes disabled. If it is disabled when this state-
ment s encountered, it becomes enabled.

sV Specify verify status; changes the status that
determines whether the mode is changed from
verify mode to special verify mode for this field.
If special verify mode is enabled when the cursor
enters the field, the mode is changed to special
verify mode. Special verify mode allows the oper-
ator to enter data into the field without the
normal verify checking against the contents of
the field in the 1/0 buffer. When the field is
exited in the forward or backward direction, the
mode is restored to verify mode. The special
verify mode status is disabled at the start of each
screen control format. If it is disabled when this
statement is encountered, it becomes enabled.
If it is enabled when this statement is encountered,
it becomes disabled.

Ccs Clear screen; the screen is cleared, except for the
status line, prior to processing any other CNTL
specifications within this statement.

Display attributes; specifies display attributes to affect this field
only. The IBM 5280 replaces the display attributes currently in
effect by moving the attributes you specify in this DSPLY para-
meter to the screen as immediate data. The IBM 5280 uses the
cursor position immediately preceding the field to move the
attributes to the screen. It also uses the cursor position imme-
diately following the field to return to the screen the attributes
in effect before the change. Remember to include these two
cursors if you are counting positions for the CSPS parameter.
For example, if you change display attributes for a field that is
8 positions long, the IBM 5280 uses 10 cursor positions.

This parameter is optional and should not be used if you specified
the display attributes with the HLIN and NMIN parameters of the
.KBCRT control statement. You may specify one or more of the
following attributes, separated by commas.

Parameter

Name Description

DSPLY Symbol Meaning

{continued)
ND Nondisplay of the field
NM Normal display of the field
BL Blink the field
(01 Display column separators for the field
HI High intensity for the fleld
RI Reverse image for the field
UL Underline the field
Notes:

1. The ND (nondisplay) and the NM (normal display) attributes

are incompatible with any other specification,
2. If you specify UL (underline), RI (reverse image), and HI

(high intensity) for the same field, display of the field is inhibited.
3. The DSPLY parameter has a different effect when specified

in a SFMTCTL control statement than when specified in one

of the other statements, Check the DSPLY description for

the SFMTCTL. control statement.

BFPS Buffer position pointer changed; specifies a signed number (n)
that specifies the direction and number to change the current
record buffer pointer position. This pointer determines where the
next keystroke is to be placed within the current record buffer.
This is an optional parameter.

CSPS Screen position pointer changed; changes the pointer before any
prompts, constant inserts, or input data is displayed on the screen.
This is an optional parameter. You may enter one of the
following:

Entry Meaning

+n A signed number; indicates the direction and number of
the change.

NL Next line; places the pointer in the first column of the
next line.

Notes to CSPS:

1. You must be careful not to move any data to the screen at a position that will
allow the data to extend beyond the available screen positions. If this happens, -
the data may overwrite the data on another screen.

2. NL is incompatible with ES (execute secondary format), Cl (conditional bypass),
and CP (continue at current cursor position) specifications.

The 1BM 5280 assembler generates a string of object code for each screen control
format in your source program. Each series of control statements, which begins with
a .SFMTST statement and ends with a . SFMTEND statement, is used to generate one
string of object code. This string of object code is referred to as a screen format
control string.

Assembler Language Control Statements

95

The assembler converts the control statements to object code sequentially, so you
must code your .SFMT statements in the order you wish them to be executed.
Within each source control statement, you may specify parameters in any order.
However, there is a prescribed order in which certain parameter keyword specifica-
tions are placed in the object code string. This affects the order in which the param-
eter specifications are processed during program execution. The control statement
descriptions specify the order in which the parameter specifications are processed.

The RG (return to program) specification is always placed in the object code string
in association with another parameter specification. Therefore, if you specify
CNTL=RG in a control statement, you must specify at least one other parameter.

The RG specification is usually associated with the parameter that is first processed
in each control statement. When the object code string is being processed in a
forward direction and an RG specification is encountered, an external status 4
condition results. The RG specification is encountered after the parameter with
which it is associated is processed. However, if the object code string is being
processed in a backward direction when an RG specification is encountered, an
external status 5 condition results. The RG specification is encountered before the
parameter with which it is associated is processed.

Therefore, if you include a .SFMTCTL control statement that contains only an

RG specification and an ES (execute secondary screen format) parameter, or a Cl
(conditional bypass) parameter, the RG specification is encountered after the ES

or Cl parameter has been processed. If you want the return (external status 4
condition) to be made before the secondary screen format or the conditional bypass
is processed, you must include another parameter in the control statement. The
other parameter must be higher in the processing order than the ES or Cl parameter.
Then the RG return is made, after the other parameter is processed and before the
ES or Cl parameter is processed.

An exception is made when an RG specification is included in a SFMTFLD or a
SFMTCNS control statement. For these control statements, the RG specification
is always associated with the FLDF parameter or the CNST parameter. This is true
even if another parameter (such as BFPS) is included that is higher in the processing
order. The return (external status 4 condition) is made after the FLDF input field
or CNST constant has been entered into the 1/0O buffer. If the object code string is
being processed in a backward direction, the return (external status 5 condition) is
made before the cursor enters the FLDF or CNST field.

SFMTST Control Statement
SFMTST LABEL= [CNTL=] ;

The .SFMTST control statement identifies the start of a screen format control
series. Each screen format control series specifies one format for data input via
the keyboard/display unit. Each series must start with a SFMTST statement and
must end with a . SFMTEND statement. No other .SFMTST statements are valid
before a .SFMTEND statement is encountered.

Parameter

Name Description

LABEL Label; identifies this screen format series, which includes all
.SFMT statements before a . SFMTEND statement is
encountered. This parameter is mandatory. This label is
specified as the format operand in an ENTR command.

CNTL Control keywords; up to four keywords are acceptable;

separate them with commas. This is an optional parameter.
Keyword Meaning
RG Return to program.

Mv Move data; before data entry keystrokes are
accepted, the contents of the current record buffer
are moved into the appropriate data input and
constant insert fields. Prompts and display attri-
butes specified within the screen format series are
moved to the screen as specified.

In update, rerun/display, or display mode, this
function is automatically invoked.

In verify mode, this function is automatically
invoked except that data fields on the screen are
blanked.

In enter mode, you must include the MV parameter
in the SFMTST statement if you want the move
data function to be invoked. Otherwise, the
prompts and display attributes appear on the
screen when they are passed over by the cursor for
the first time. The content of the current record
buffer does not appear on the screen unless it is
rekeyed by the operator.

CS Clear screen.

CP Continue at current cursor position; begins this
screen format at the current cursor position. If
this keyword is omitted, the cursor position is
reset to line two, column one at the beginning of
data entry under the enter statement.

Assembler Language Control Statements

97

Example:

SFMTST LABEL=FORMAT1 CNTL=CPMV;

SFMTCTL Control Statement

SFMTCTL [Cl= CNTL= DSPLY= CSPS= BFPS= ES=] ;

The .SFMTCTL control statement specifies screen or ksyboard control operations.
Although all parameters are optional, at least one parameter must be specified each
time you include the SFMTCTL statement.

Parameter
Name

Cl

CNTL

Description

Conditional bypass indicator; the label of an indicator, followed
by OFF or ON, for a conditional bypass of a portion of this
SFMT series. This must be followed by an end of bypass control
parameter (CNTL=CE) in a SFMTCTL statement within this
SFMT series. All statements between this statement and the
SFMTCTL statement with the CE parameter are bypassed if the
specified indicator is on and ON is indicated, or if it is off and
OFF is coded, This is an optional parameter. Only one level of
bypass is allowed. See Conditional Bypass under Screen Formats
in Chapter 2 for more information.

Control keywords; up to five keywords are allowed. |f more than
one keyword is entered, separate them with a comma.

Keyword Meaning

RG Return to program. Whenever the RG keyword is
included for the CNTL parameter of a SFMTCTL
statement, at least one more keyword must also be
included.

CE End of bypass; concludes the bypass portion with-
in the format control series. A CE specification
must have been preceded by a start of bypass (Cl)
parameter in a previous control statement within
this .SFMT series.

DE Dup key status change.
MC Monocase conversion status.
FX Field exit status change.

sv Special verify mode status change.

Parameter
Name

DSPLY

CSPS

BFPS

ES

Description

Display attribute; specifies a display screen attribute, which is
moved to the screen at the current cursor position. The fields
preceding the cursor position are not changed. The fields follow-
ing the cursor position are displayed with the display attributes
specified in the .SFMTCTL statement DSPLY parameter until
another DSPLY parameter is encountered. Remember to include
this cursor position If you are counting positions for the CSPS
parameter. This is an optional parameter and should not be used
if you specified the display attributes with the HLIN and NMIN
parameters of the .KBCRT control statement. One or more of
the following keywords, separated by commas, may be entered,

Keyword Meaning

BL Blink

CS Column separators are displayed
HI High intensity

ND Nondisplay

Ri Reverse image

UL Underline

NM Normal display

Note: The ND (nondisplay) and the NM (normal display) attri-
butes are incompatible with any other specification. If you

specify UL (underline), RI (reverse image) and HI (high intensity) for
the same field, display of the field is inhibited.

Screen position pointer changed.,
Buffer positions pointer changed.

Execute secondary screen format; specify the label (LABEL
parameter from the .SFMTST statement) of the secondary screen
format. When the IBM 5280 encounters this specification, it ex-
ecutes the entire secondary screen format, then returns to the
primary screen format at the specification following the ES
specification. See Secondary Screen Format under Screen
Formats in Chapter 2 for more information. This is an optional
parameter.

Only one level of secondary format is permitted. The secondary
format specified by this pérameter must not have a secondary
format specification within its statements.

Assembler Language Control Statements

29

100

Although the parameters may be specified in any order, the order in which they
are processed is:

1. BFPS, CSPS
2. DSPLY

3. FX,MC,DE

4. ES
5. ClI
6. CE

If RG is included, it is associated with the parameter that is first in processing order.
The return (external status 4 or 5 condition) is made after that parameter is
processed in the forward or backward direction (respectively).

Example:

SFMTCTL CNTL=DE,FX CSPS=20 BFPS=+15 ES=FMT6 CI=CHK,OFF;

SFMTPMT Control Statement

.SFMTPMT PRMT= [CSPS= BFPS= DSPLY= CNTL=];

The .SFMTPMT control statement specifies a prompt to display on the screen.
You set up and initialize the prompts with .DC control statements.

When you specify prompts for a screen format, be careful that the prompt length
is not greater than the available screen positions. If such a prompt is moved to
the screen, the prompt may extend beyond the screen into the screen area used by
another keyboard. This may overwrite and destroy the original contents of
another screen or destroy control information for your screen.

Parameter
Name Description
PRMT Prompt; you must specify one of the following for this mandatory

parameter.

SP, label Standard position prompt; specifies the LABEL
parameter of the .DC statement that set up and
initialized the prompt. The indicated prompt is
displayed at the current location of the screen posi-
tion pointer. A standard position prompt is not
redisplayed if it is encountered during backspace
operations.

Parameter

Name Description
PRMT FP,label Fixed position prompt; specifies the LABEL param-
(continued) eter of the .DC statement that set up and initialized

the prompt. The indicated prompt is displayed in
column 1 of the fixed prompt line. You can
specify the fixed prompt line by including the
FPLC parameter in the .KBCRT control statement.
If you omit the FPLC parameter, the fixed prompt
line defaults to line two. The line is cleared before
the prompt is displayed. A fixed prompt is redis-
played if it is encountered during backspace
operations,

CP,nn Clear fixed prompt line. No label may be specified
with CP, although an optional length may be speci-
fied. If alength {nn) is specified, only the indicated
number of positions are cleared on the fixed prompt
line. If no length is specified, the entire line is
cleared from the screen.

CSPS Change screen position pointer.
BFPS Change buffer position pointer.
DSPLY Display attribute specification,
CNTL Control; only RG may be specified.

Although the parameters may be specified in any order; the order in which they are
processed is:

1. BFPS, CSPS

2. DSPLY (turn on an attribute)

3. PRMT

4. DSPLY (turn off the attribute)

If RG is included, it is associated with the parameter that is first in processing
order. The return (external status 4 or 5 condition) is made after the parameter

with which it is associated is processed in the forward or backward direction
(respectively).

Examples:
SFMTPMT PRMT=SP PMESGE3 DSPLY=BL,HI CSPS=+7 CNTL=RG;
SFMTPMT PRMT=CP; this clears the fixed prompt line.

SFMTPMT PRMT=CP,20; this clears the first 20 positions of the fixed prompt
line.

Assembler Language Control Statements

101

SFMTCNS Control Statement
SFMTCNS CNST= [CSPS= BFPS= DSPLY= CNTL=] ;
The .SFMTCNS control statement specifies a constant insert field.

In enter, update, and rerun modes, a constant insert is placed into the 1/0 buffer

and displayed on the screen in the current field position. The cursor does not

appear within the constant insert field and the operator cannot enter data into the
- field. TRRRIY :

In verify mode, verification of a constant insert field is done automatically. The
contents of the field are compared to the contents of the main storage area
declared with a .DC control statement and specified with the CNST parameter
described below. If the verification is successful, a field advance is performed. If
the verification is not successful, the cursor is positioned in the leftmost positjon
of the constant insert field and the contents of the field in the 1/O buffer are dis-
played on the screen. A constant insert verify mismatch error is reported. The
operator must press the Reset key, then press either the —>|(Field Advance) key, or
a field correct key. If the —>lkey is pressed, the contents of the field in the 1/0
buffer remain unchanged and a field advance is performed. If a field correct key

is pressed, the contents of the field in the 1/0 buffer and on the screen are replaced
with the contents of the main storage area, then a field advance is performed. Any

data key or any function key handled by the IBM 5280 (except a shift key) is invalid
after the Reset key is pressed.

Parameter

Name Description

CNST Constant name; the label assigned to the character string by a
.DC statement, which includes the TYPE=PRMT parameter.

CSPS Change screen position pointer.

BFPS Change buffer position pointer.

DSPLY Display attributes.

CNTL Control; only RG may be specified.

Although the parameters may be specified in any order, the order in which they are
processed is as follows:

1. BFPS, CSPS

2. DSPLY (turn on attribute)
3. CNST

4. DSPLY (turn off attribute)

If RG is specified, it is associated with the CNST parameter. The return (external
status 4 condition) is made after the constant is entered into the 1/0 buffer.

102

Example:

SFMTCNS CNST=PAYRATE CSPS=NL BFPS=+2 DSPLY=CS,HI,UL CNTL=RG;

SFMTFLD Control Statement

SFMTFLD FLDF= [CNTL= CSPS= BFPS= PIC= DSPLY=] ;

The .SFMTFLD control statement defines a data field for data entry. Field type
and field definition keywords for the FLDF parameter are defined following the
SFMT control statement descriptions.

Parameter
Name

FLDF

Description

Field Definition; three positional keywords that specify field
type, field length, and field definition. Field type is omitted
if the PIC parameter is used.

Field type and field definition keywords are described following
the .SFMTEND control statement under Field Type Keywords
and Field Definition Keywords. Following the keyword descrip-
tions is a chart (Figure 3-8) that shows which keywords are
mutually exclusive and which require other keywords.

Note: Characters considered valid in any field type may be rede-
fined at system configuration.

Field type, mandatory first position: Mandatory unless you use
the PIC parameter. If you use PIC, omit the field type entry in
this position and retain the comma before the length entry. If
you do not use PIC, enter one or more of the following, separ-
ated by commas.

Symbol Meaning

Alphabetic shift
Numeric shift

Special characters shift
Alphabetic only
Numeric only

Special characters only
Digits only

Hex field

Signed numeric
Format level zero

MOITUOK<LKXX=SZD>

Field Length, mandatory second position: Enter a number from
1 to the maximum number of valid positions remaining on the
screen.

Assembler Language Control Statements

103

104

Parameter
Name

CNTL

MD

Description

Field definition, optional third position: Enter one or more of
the following, separated by commas.

Symbol Meaning

FE Field exit required

RB Right adjust, blank fill (not allowed if PIC is coded)
RZ Right adjust, zero fill (not allowed if PIC is coded)
AD Auto dup

AS Auto skip

ME Mandatory enter

DR Data required

MF Mandatory fill

BC Blank check

RL Right-to-left (not allowed if PIC is coded)

BV Verify bypass

AA Absolutely automatic

BY Bypass

Control keywords; up to four optional keywords are acceptable;
separate them with commas.

Keyword Meaning

RG Return to program.

DE Dup key status change.

MC Monocase conversion status change.
FX Field- key status change.

SV Special verify mode status change.

Main storage duplication; the label of a storage location defined
for duplication by a .DC control statement, using the TYPE =
MDUP parameter. In enter, update, or field correct mode, the
data from the storage location is duplicated into the field when the
Dup key is pressed. Duplication starts at the current position
within the field and continues to the end of the field.

In verify mode, the contents of the field are verified against the
contents of the storage location. If a mismatch error occurs
during verification, the cursor stops at that position, the entire
field is displayed, and a verify mismatch error is reported. If the
operator presses the Reset key, then again presses the Dup key,
the character in the storage location replaces the character in the
1/0 buffer. Verification then continues to the end of the field.

If the field is also defined as auto dup (AD), the duplication

from storage is done automatically (except in field correct mode)
for the entire field if the auto dup/skip mode is active or if the
absolutely automatic (AA) attribute is also specified for the field.

Parameter
-Name

MS

CSPS

BFPS

PIC

DSPLY

Description

Main storage store; the iabel of a storage location defined by a
.DC using the TYPE = MDUP parameter. In enter, update,
verify, or rerun mode, the content of the field is moved into this
storage location when the field is exited and if the auto dup
switch is on, or if the absolutely automatic (AA) attribute is
also specified for the field.

Change screen position pointer.
Change buffer position pointer.

Subfield picture definition; defines subfields within the original
field.

PIC consists of one or more ordered pairs of 2-positional entries;
the first position is field length and the second position is field
type. The positional entries are separated by commas; each pair
of entries is enclosed by parentheses; and the pairs are separated
by commas.

Note: If this parameter is specified, place a blank in the field
type (first) position of the FLDF parameter for this SFMTFLD
control statement. The PIC parameter cannot be specified if
RB (right adjust, blank fill) or RZ (right adjust, zero fill) is
specified for the field definition keyword (third) position of the
FLDF parameter for this . SFMTFLD control statement.

Subfield Length, First Position

A number from 1 to 8 that specifies the length of the subfield.
Subfield Type; Second Position

Symbol Meaning

Alphabetic shift

Digits only
Hexadecimal

Numeric shift

Special characters shift
Alphabetic only
Numeric only

Special characters only

N<LX<ZTITOP»

Display attributes.

Assembler Language Control Statements

105

106

Although the parameters may be specified in any order, the order in which they are
processed is as follows:

1. BFPS, CSPS

2. DSPLY f(turn on attribute)

3. DE,MC, FX

4. FLDF

5. DSPLY (turn off attribute)

If RG is included, it is always associated with the FLDF parameter. The return
(external status 4 condition) is made after the FLDF input field is entered into the

1/0 buffer.

Examples:

.SFMTFLD FLDF=A,10,FE,ME CNTL=RG,DE MS=STORS CSPS=+10 BFPS=+10
- DSPLY=HI;

SFMTFLD FLDF= ,20 PIC=(8,A), (6,N), (6,A);

SFMTEND Control Statement

SFMTEND [CNTL=] ;
The .SFMTEND control statement identifies the end of a screen format series.

This must be the last statement of each screen format control series.

Parameter
Name Description
CNTL Control keywords; up to three keywords are acceptable, separated

by acomma. This is an optional parameter.
Keyword Meaning
BZ Sound buzzer; when this statement is encountered

at the end of a screen format control series, a
buzzer is sounded in the keyboard/display unit.

CS Clear screen; the screen is cleared except for the
status line.
BU Keystroke buffering; keystrokes entered after

the termination of the ENTR used with screen
format control series will be buffered.

Examples:

.SFMTEND CNTL=BZ,CS;
.SFMTEND;

Example of Screen Format Control Series:

SFMTST LABEL=EXAMP1 CNTL=CS,MV;

SFMTPMT PRMPT=SP,MSG CSPS=10 DSPLY=HI;

SFMTFLD FLDF=,12, DR,BC CNTL=RG CSPS=NL BFPS=5 PIC=(5,A), (7,D);
.SFMTCNS CNST=KONST CSPS=+5 DSPLY=UL;

SFMTFLD FLD=N, 20,AD CNTL=DE MD=DUPDATE CSPS=+5 BFPS=1;
SFMTEND CNTL=BZ;

Field Type Keywords
Keyword Meaning

A Alphabetic shift. All characters are accepted under this character set
definition. The keyboard shift is positioned to the lower symbol of
each data key for non-Katakana data entry, proof, and typewriter key-
boards. For Katakana keyboards, the shift is positioned to the lower
left symbol if the keytop has more than 2 symbols.

D Digits only. Only the digits 0-9 are accepted under this character set
definition. If any other character is keyed, an error results. The key-
board shift is positioned as for a numeric shift field (N).

F Format level zero. In enter, update, or verify mode, format level zero
specifies a series of 1-byte alphabetic fields. The length of the field
specified determines the number of 1-byte fields.

Note: The field definition keywords of the FLDF parameter must
not be used if type F is specified.

H Hexadecimal. Only hexadecimal characters (0-9, A-F) are accepted
under this character set definition. If any other character is keyed, an
error results. The keyboard shift is positioned to the upper symbol of
each data key for data entry and proof keyboards, or on the lower
symbol for typewriter keyboards.

Each pair of hex digits entered is combined to form one position in the
field. For example, if hex 3 and hex F are keyed, 3F is inserted into
one record position. The Alpha shift key must be used to select A
through F on the data entry or proof keyboards.

N Numeric shift. All characters are accepted under this character set
definition. The keyboard shift is positioned to the upper symbol on
each data key for non-Katakana data entry and proof keyboards, or to
the lower symbol for typewriter keyboards. For Katakana data entry
and proof keyboards, the shift is positioned to the upper symbol if the
keytop has more than 2 symbols.

Assembler Language Control Statements

107

108

Keyword

Meaning

Signed numeric. The rightmost position of the field on the screen is
reserved for a sign; no data can be entered directly into this position.
The .SFMTFLD statement that defines the field must not specify digits
only (D) for the field type, and must not specify right adjust (RA) and
field exit required (FE) for the field definition keywords. These speci-
fications are already implied for a signed numeric field. To exit the

field in enter, update, or field correct mode, the Field+, Field Exit,

or Field- key must be used. If one of the first two keys is pressed, the
data is right-adjusted, the sign position is set to blank on the screen;

and the data in the record does not change. If the Field- key is

pressed, the data is right-adjusted, the sign position is set to minus on the
screen, and the zone portion of the low-order digit of the field is changed
to hex D.

This field type cannot be specified for a one-byte field or for a PIC
field specification.

Special characters shift. All characters are accepted under this character
set definition. On some native language keyboards certain keytops are
divided into quadrants. The two rightside quadrants represent special
characters; the two leftside quadrants represent standard alphameric
characters. The following illustrates the quadrants.

Upper
Shift

Lower
Shift
Alphameric 1 Special
Characters Characters

For a special characters shift field, the keyboard is initially positioned
in lower shift. If a key is pressed that has both special and alphameric
symbols, the lower rightside special symbol is selected unless a shift key
is pressed.

This field type is valid only for the appropriate native language symbols.
If it is specified for any other keyboard, a format-control-series-error
external status condition (13) occurs.

Alphabetic only. Only the following characters are accepted under this
character set definition: A-Z, comma, period, dash, and blank. If any
other character is keyed, an error results. The keyboard shift is posi-
tioned to the lower symbol on each data key for data entry, proof, and
typewriter keyboards.

Numeric only. Only the following characters are accepted under this
character set definition: 0-9, comma, period, dash, plus, and blank. If
any other character is keyed, an error results. The keyboard shift is
positioned to the upper symbol on each data key for data entry and
proof keyboards, or on the lower symbol for typewriter keyboards.

Keyword

Meaning

Special characters only. Only characters defined via the character
validity table as special characters are accepted under this character set
definition. If any other character is keyed, an error results. The key-
board shift is positioned as in a special character shift field. This field
type is valid only for the appropriate native language keyboards.

Field Definition Keywords

Keyword

AA

AD

AS

Meaning

Absolutely automatic. In enter, verify, field correct, update, or rerun
mode, this keyword is used in conjunction with auto dup (AD), auto
skip (AS), or main storage (MS). Automatic processing of the dup,
skip, or store is done whether or not the auto dup/skip mode is active.
If the field is defined as auto dup (AD), main storage dup (MD), and
absolutely automatic (AA), automatic duplication from main storage
occurs.

Auto duplicate. AD may be specified alone or in conjunction with
main storage duplicate (MD). In an enter or update mode, if a field is
defined only as auto dup, the system automatically duplicates data
from corresponding positions in the previous record if the auto dup/
skip mode is active, or if the absolutely automatic (AA) attribute is
also specified for the field. The duplication starts at the current posi-
tion within the field and continues to the end of the field.

If a field is defined as auto dup (AD) and main storage dup (MD), the
duplication occurs as described under the main storage dup (MD)
function.

In verify mode, if a field is defined as auto dup (AD), the system auto-
matically verifies that the data in the current record buffer matches the
data in corresponding positions in the previous record buffer. Verify
mismatch error recovery from an AD field is identical to the error

"recovery from manual dup.

If the auto dup function is invoked, all character and field edit checks
are released for the field; the verify checks are not released.

Auto skip. When an auto skip field is entered, the system automatically
fills it with blanks and skips to the next field if the auto dup/skip mode
is active or if the absolutely automatic (AA) attribute is specified in the
field definition.

In verify mode, the positions of the field are verified for blanks. If a non-
blank character is encountered, the cursor stops at the position, the
remainder of the field is displayed, and a verify mismatch error is
reported. If the operator presses the Reset key, then presses the Skip
key, a blank is inserted into the 1/0 buffer at that position and the
verification continues.

Assembler Language Control Statements

109

110

Keyword Meaning

BC

BV

BY

DR

FE

Blank check. In enter, update, or field correct mode, the system
checks each character as it is entered to ensure that it is not a blank
character. When a field is exited, the system checks the entire field to
ensure that if one character is entered into the field, no blanks are
entered into the field. Therefore, should an operator move the cursor
over a number of blank positions in the field before keying in the first
character, the blank positions are detected before the field is exited.

The Skip, Field Exit, or Field+ key is valid in the first position of the
field; the entire field is filled with blanks,

In verify mode, the BC is ignored except during a field correct.

The code for the blank may be defined on the .KBCRT statement or
defaulted to hex 40.

Bypass in verify mode. In verify mode, the system bypasses this field.
No verification is required, and the data in the record is left unchanged.
BV overrides the auto dup (AD) and auto skip (AS) functions.

In enter or update mode the field is processed normally.

Bypass. In enter, update, verify, or rerun mode, the system passes over
this field and allows no data to be entered into it. Data already in the
field is left unchanged. (The auto dup/skip switch does not affect
processing of bypass fields.)

Data required. In enter, update, or field correct mode, the system
ensures that at least one nonblank character is present in the field. The
checking is done as the advance to the next field is being processed.

In verify mode, DR is ignored except during a field correct.

Field exit required. In enter, update, verify, or field correct mode, a
nondata key (for example Field Exit or Skip) must be pressed to leave
the field. When a data character has been keyed into the last position
of the field, the cursor remains beneath that character and blinks to
signal the operator that a field exit key is needed. If the field is signed
numeric (S), the cursor remains to the left of the sign position. A data
key or Dup key entered at this time results in an error. The counter for
positions remaining in the field, which is maintained on the status line,
is at 01. If the operator wishes to make a correction in the field,
pressing the <« key will turn off the blinking cursor and allow corrections
to be made.

FE must not be specified if RB or RZ is specified.

Keyword Meaning

ME

MF

Mandatory enter. In enter, update, or field correct mode, at least one
data character must be entered into the field before the field is exited.
Blanks are acceptable in a mandatory enter (ME) field; use the blank
check (BC) specification if you do not want blanks to be entered into
the field. The check is done as the advance to the next field is being
processed.

The ME is ignored in verify mode, except during a field correct.

A field exit or Skip key pressed in the first position of an ME field

does not satisfy the mandatory enter requirement; it results in an error.

If a field exit or Skip key is pressed in any position other than the first
position and no valid character has yet been entered, it results in an error.

Mandatory fill. In enter, update, or field correct mode, the system
ensures that if one character is entered into the field, all positions in the
field must be filled. Blanks are acceptable.

MF cannot be specified with a right-adjust (RA) specification.

In a left-to-right field, any data entry must begin in the leftmost posi-
tion of the field. After one data character is entered, the operator can
proceed through the field only by keying each position. Any attempt
to move forward in the field with a key other than a data key or space
key results in an error. Any attempt to key the first character into a
position other than the leftmost position results in an error. The Ins
(Insert) and Del (Delete) keys are invalid.

In a right-to-right field (RL), any data entry must begin in the rightmost
position of the field. After one data character is entered, the operator
can proceed through the field only by keying each position. Any
attempt to move backward in the field with a key other than a data

key or space key results in an error. An attempt to key the first charac-
ter into a position other than the rightmost position results in an error.

If the field is not filled with blanks when the cursor moves into the field,
no mandatory fill (MF) checking is performed.

Note: Because in verify mode the Field Correct key initially fills the
field with blanks, the mandatory fill function becomes enabled (if
specified) during the field correct.

The Skip, Field+, or Field- key is valid in the first position of a manda-
tory fill (MF) field. The entire field is filled with blanks, except in the
following two conditions:

1. When the Field- key is pressed in the first position of a field that
is not specified as signed numeric (S), the rightmost position is set
to minus zero.

2. When the Field- key is pressed in the first position of a signed
numeric field, the rightmost field position on the screen is set to
zero, and the sign position is set to minus. In the record buffer,
the rightmost position is set to minus zero.

Assembler Language Control Statements

1M1

112

Keyword

RB

RZ

RL

Meaning

Right adjust, blank fill. A right adjust field must be two or more bytes
in length. When the Field Exit, Field+, or Field- key is pressed in enter,
update, or field correct mode, the system automatically right adjusts the
data within the field, and the nondata positions on the left are filled
with the alphabetic fill character, which is normally blank. When a

right adjust is performed in a signed numeric field, the data is justified to
the next rightmost position of the field on the screen before the appro-
priate sign is inserted. If the field is processed as an auto field, or if any
other key is used to exit the field, the field is processed but no right
adjust is performed.

RB is not allowed for one-byte fields or if subfields are defined with
the PIC parameter. Do not specify FE; field exit required is implied
for a right adjust field.

Right adjust, zero fill. RZ is as for RB, except the numeric fill character,
which is normally a zero, is used.

Right-to-left. The first position of the field is the rightmost position;
the last position of the field is the leftmost position. In enter, update,
field correct, or verify mode, the cursor is initially positioned in the
rightmost position of the field, which is the first manual position of the
field. The system accepts or verifies data in the field moving from the
rightmost position to the leftmost position. (For example, the keys A,
B, C entered into an RL field would appear as:

__CBA
with the cursor positioned to the left of the C.)

RL is not allowed if subfields are defined with the PIC parameter, or if
the field is a signed numeric, numeric, numeric-only, or digits-only field.

Py (M}

Field Types ADHFNSVWXY AA AD AD AS BC BV BY DR FE ME MF RB RL RZ MD MS PIC
A - Alphashift X X X X X X X X K X
0 Digits only X XX XXX XXX X X
H Hex field X X XX X X XX XI! X
F o Format0 XXX XXXXXX[{X X X X X X X X X X X X X X X X X
N - Numeric shift X X X X X X X X X! X X
S - Sagned numeric XX XXX XXXX||X X X X x X X
V -- Special characters only X X X X X X X X X X
w Special characters shift XX X X X X X X X X
X -+ Alphabetic only XXX XXX X X X X
Y Numeric only XX XX XXX X X X
Field Definitions T —
AA - Absolutely autcmatic X X X X X X X X X X X X
AD(P) - Auto dup, previous record X 1 & X X
ADIN) - Ao i oan Stoiage Y. : * b4 X
AS Auto sk X b X N X
BC Blark chedk b4 X ¥
BV Venty bypess X i X
BY Bypas: X X X > v X X % X X X X X X X PoX X
DR vatsrequned ¥ st X !
FE Freld s requn g X A C X x X X
ME Mandatory ener X x X
MF Mandatory il X X X X X X
RB - Rugirt adjust, blank fill X X X X X X X
RL - Rightto-lett X X X X X X X
RZ Right adyust, zero fill X X X X X X X
Parameters o —— —— T T T e e e
MD Mar storage dup X X & X
MS Main storage stote X
PIC P:cture subhelds XXX XXX X XXX X X X X X
ADHFNSVWXY AA AD AD AS BC B8Y BY DR FE ME MF RB RL RZ MD MS PIC
Py
Key
X Mutually exclusive
& = It attribute at top s speaified, attribute at night must aiso be specified.
I attaibute at 1ap s specitied, one of the attributes at tight must also be specified
Figure 3-8. Field Attribute Chart
CONTROL THE ASSEMBLY LISTING
The assembly listing control statements specify headings and spacing for the
assembly listing. These control statements may be placed before or after any other
control statement or any instruction in your source program. They have no effect
on the object code. Use as many of these control statements as you wish to control
the spacing and headings of your assembly listing.
.TITLE Control Statement
TITLE INIT=
The .TITLE control statement specifies the heading to print on each page of the
assembly listing. The specified title is printed immediately following the program
name specified by the PNAM parameter of the .START control statement. If the
TITLE statement is omitted, only the program name is printed on the listing. You
can specify more than one title. The first .TITLE statement usually precedes the
START statement. The assembler causes the heading specified by the first . TITLE
statement to be printed on each page. When the assembler encounters another
TITLE control statement, it causes the printer to eject to the next page. Then the
heading specified by the most recent .TITLE statement is printed on the subsequent
pages.
Assembler Language Control Statements 113

< XEL<OVZTMIOD>P

AD(P)
AD{M)

114

Parameter
Name Description

INIT Initialization; a character string of 1 to 32 characters enclosed in
single quotes.

Example:

.TITLE INIT="ASSEMBLER DRIVER’;

.EJECT Control Statement

EJECT ;

The .EJECT control statement stops the printing of the assembly listing on the
current page and continues the printing on the next page. Use this statement when-
ever you wish to skip to a new page.

Example:

.EJECT;

.SPACE Control Statement

SPACE [NUMB=] ;

When the assembler encounters a .SPACE control statement it inserts one or more
blank lines in the assembly listing. This control statement should be included in the
source program in each position where you want the assembly listing to leave blank
lines.

Parameter

Name Description

NUMB Number; the number of blank lines to insert. If the parameter is
omitted, it defaults to one line., The maximum is 255.

Example:

SPACE NUMB=4;

".PRINTON Control Statement
LPRINTON ,

The .PRINTON control statement allows you to print an assembly listing after the
listing has been disabled by a .PRINTOFF.

Example:

.PRINTON;

.PRINTOFF Control Statement
PRINTOFF ;
The .PRINTOFF control statement disables the printing of an assembly listing. |f
an assembler listing line is flagged as having an error in it, that line will be printed
even if .PRINTOFF is in effect.

Example:

.PRINTOFF;

MISCELLANEOUS CONTROL
The miscellaneous control statements specify a data set to insert into your object

program, specify the labels of the common function subroutines your program uses,
and indicate the end of your source program,

Assembler Language Control Statements 115

INCLUDE Control Statement
.INCLUDE NAME= ;

The .INCLUDE control statement allows you to insert source code from another
data set into your current work file. When the assembler encounters an .INCLUDE
statement, it stops reading your source data set, goes to the specified data set and
reads it from beginning to end, then returns to your source data set. The source
data set that contains the code to insert is not changed. The source file that con-
tains your source program is not changed.

Parameter

Name Description

NAME Data set name; the name of data set you wish to insert into the
current data set. Use the complete data set name, enclosed in
single quotes.

Example:

.NCLUDE NAME="PROG7" ;

SELFCHK Control Statement

SELFCHK MOD= [LABEL= FLDLEN= WGTS= CNTL=
DISP= ALTREG= INTAB= OUTTAB= PROD=] ;

The .SELFCHK control statement defines the self-check field, the self-check
register, the modulus, and the algorithm for the self-check function. The assembler
uses the parameters of the .SELFCHK control statement to set up the self-check

control area. During program execution, the IBM 5280 uses this control area to'
generate the self-check number during a GSCK or IF ., . . CK operation.

If you use Standard Modulus 10 or 11, see Choosing Your Algorithm under Self-
Check in Chapter 2 for a description of the algorithm. If you design your own
algorithm, see Appendix C for a description of how the .SELFCHK parameters
define your algorithm.

Parameter

Name Description

MOD Modulus; specifies the modulus for the self-check algorithm.
If you design your own algorithm, you may specify a number
from 2 to 127 and use the other parameters to define the
algorithm. Or you may specify S10 or S11 to use Standard
Modulus 10 or 11 and omit the remaining parameters.

LABEL Label; specifies the alphameric name you wish to assign to the

self-check control area.

FLDLEN Field length; the number of bytes in the self-check field.

Parameter
Name

WGTS

CNTL

Description

Weighting factors; specifies up to 32 bytes of hex digits that act
as the weights for the algorithm. The value of each byte must
be less than the value of the modulus. Enter hex 00 in the posi-
tions of the self-check number, and in all other positions that are
bypassed. When you use a product table, enter hex 01 in all
positions except the pbsitions of the self-check number and the
positions to be bypassed.

Begin the WGTS parameter in column 1 of a new line, and code
the complete parameter on the single line. If you use a decimal
register pair for the self-check register, all 72 positions of the line
are used, as in the example following the parameter descriptions.

Control; six positional fields specify how to find the products
and how to determine the NR (rightmost number) and NL (left-
most number). The positional fields are separated by commas.
Any of the six fields may be omitted, but the comma for the
omitted field must be retained.

Field 1; if the field 1 entry is omitted and PROD is not specified
for a product table, each position of the foundation is
multiplied by the corresonding weight, and the whole
number products are summed. The sum becomes the
NR, and NL is O.

If the field 1 entry is omitted and PROD is specified for
a product table, the product table repeats every three
characters. The NR is found by translating each position
of the foundation through the upper half of the product
table to find the products, and adding each digit of the
products. The NL is found by translating each position
of the foundation through the lower half of the product
table to find the products, and adding each digit of the
products.

D Each position of the foundation is multiplied by the
corresponding weight, and the unit digits of the products
are summed. The modulus is usually 10 if this option is

used.

U Each position of the foundation is multiplied by the
corresponding weight, and the unit digits of the products
are summed. ’

F Each position of the foundation is translated through the

upper half of the product table to a product, and the
digits of the products are summed to find the NR. To
find the NL, each position of the foundation is translated
through the lower half of the product table to a product,
and each digit of the products are summed. The product
table repeats every fourth digit.

Assembler Language Control Statemer_ns'

117

118

Parameter

Name

"CNTL
{continued)

Description

Field 2;

Field 3;

Field 4;

Field 5;

Field 6;

If the field 2 entry is omitted, the NL (leftmost self-
check .number) is forced to zero, and NR (rightmost
self-check number) is divided by the modulus.

The NL is forced to zero, the digits of the NR are
summed, and the sum is divided by the modulus.

The NL and NR are added, and the digits of the sum
are cross added. The hundreds digit of this sum is
added to the units digit to equal the NR, and the tens
digit is added to the carry from NR to equal the NL.

For special modulus 8 and 3; the units position of the
self-check number is converted to modulus 8, and the
tens position is converted to modulus 3. Field 1 must
not be omitted, and C cannot be specified in field 3
for a modulus less than 8.

If the field 3 entry is omitted, the NL and NR remain
unchanged.

C The NL and NR are complemented to the
modulus.

If the Field 4 entry is omitted, it defaults to 1.

1 One digit is generated or checked. If K is entered
in Field 2 and an output translate table is used,
the NL and NR are summed and the sum is trans-
lated through an output translate table.

2 Two digits are generated or checked. If E is
entered in Field 2, the NL is multiplied by 8, the
product is added to the NR, and the sum is trans-
lated through an output translate table.

If the Field 5 entry is omitted, the zone portion of NL
and NR is forced to X‘F’ to produce the DL (display-
able leftmost self-check digit) and DR (displayable
rightmost self-check digit).

The NR is used to produce a 2-digit decimal number.
The units digit is converted to the DR, and the tens
digit is converted to the DL.

If the result of this operation exceeds 99, the units
digit output is correct, and the second digit has a zone
portion of hex F and a digit portion of hex A-C.

If the Field 6 entry is omitted, all eight bits of each
byte in the input translate field are used for the input
translate number.

Parameter
Name

CNTL
(continued)

DISP

ALTREG

INTAB

OUTTAB

Description

F Each byte in the input translate field is interpreted as
two hex digits. The rightmost hex digit becomes the
input translate character, and the leftmost hex digit
becomes a shift left count. The positions being trans-
lated and all higher positions in the register are shifted
left, with zero fill, the number of positions in the shift
count when the shifted register contains 16 bytes. All
unused high-order bytes of the original register are
bypassed.

Displacement; specifies the displacement (0-32) of the rightmost
self-check digit from the leftmost position of the register. It
defaults to zero.

If the displacement is zero, the result of a GSCK operation must
also be zero to pass the IF . .. CK operation. If the displacement
is 1, and two self-check digits are specified, the leftmost digit

of the self-check computation must be zero to pass the IF ... CK
operation. (The leftmost result of the GSCK operation is not
stored.)

Alternate register; specify a decimal register or register pair that
contains the weighting factors for the self-check algorithm. If
ALTREG is specified, the weights specified by the WGTS param-
eter are ignored.

Input translate table label; specify the LABEL entry from the
.DC control statement that defined the table. The input trans-
late table can translate all foundation characters to specific hex
characters. If this parameter is omitted, the lower 4 bits of the
EBCDIC of each foundation position translates to the numerals
0-9, with A-F translating to 0.

Output translate table label; specify the LABEL from the .DC
control statement that defined the table. The value of the self-
check digit determines the buffer position of the character to be
inserted into the self-check register. |If omitted, the output self-
check register is not translated.

If one digit is to be generated and Field 2 specifies K, the NL
and NR are added and the sum is translated.

If Field 2 specifies E, the NL is muitiplied by 8 and added to NR,
and the sum is translated.

Assembler Language Control Statements

119

120

Parameter
Name

PROD

Examples:

Description

Product table label; specify the LABEL from the .DC control
statement that defined the product table. The product table trans-
lates the rightmost four digits of each byte in the self-check
register to the product at the corresponding position in the
product table. If two self-check digits are to be generated, the
second product is displaced 64 positions from the first product.

If this parameter is omitted, the products are found by using the
weights.

If the Field 2 entry is omitted, or if the Field 1 entry is U, the
NL is forced to zero.

SELFCHK MOD=S511; no more parameters needed for Standard Modules

SFLFCHK MOD=7 LABEL.=SKAREA INTAB=SKINTAB OUTTAB=SKOUTAB
WGTS=X'0605040503020105060103010401020304050604010106060403020101020300"
FLDLEN=16 CNTL=D, , ,1,D;

XTRN Control Statement

XTRN LABEL= ;

The . XTRN control statement specifies the labels of the routines or global tables in
the common function area that your program uses. This control statement reserves all
specified labels as common function labels. This is a required control statement if any
calls to the common function area are initiated. See Common Function Routines in
Chapter 6 for the labels to specify.

Parameter
Name

LABEL

Example:

Description

Label; label of one or more common function routines or data
areas. You may specify up to 30 labels on each .XTRN statement.
Labels are separated by a comma. This parameter is mandatory.

The following statement specifies that the program is using the standard load
processor, program check error handler, and general 1/0 error handler.

XTRN LABEL=CFLOADO1,CFPGMCHK,CFGIOERR;

.END Control Statement

.END ;

The .END control statement is mandatory and must be the last control statement of
every program to specify the end of the source code. There are no parameters for
the .END statement. All system tables are built when the .END statement is
processed. If a . SYSTAB control has not caused the system tables to be built in
another location, the system tables are built at the address in the current location
counter when the .END control statement is encountered. If a .SYSTAB statement
has caused the system tables to be located at other addresses, they are built at those
addresses when the .END statement is encountered.

Example:

.END; End of PAYROLS

Assembler Language Control Statements 121

122

Chapter 4. 1BM 5280 Assembler Language Instructions

Source instructions specify program operations. The IBM 5280 assembler generates
4 bytes of object code from each source instruction.

Instructions may be interspersed with certain control statements, according to the
conventions detailed in Chapter 3.

INSTRUCTIONS FORMAT

Each source instruction contains one or more fields; each field is identified by
the order of its position within the instruction. Blanks, commas, and paren-
theses separate the fields. Each instruction must be written on a single line,
between column one and column 72. The format of a source instruction consists
of an optional symbolic label, the instruction, and an optional comment.

[Label:] Instruction [;Comment]

Blanks

Optional blanks may be placed before and after an equal sign, parenthesis, or
arithmetic operator. Blanks are not allowed within a field or within a binary
arithmetic/logical operator. One or more blanks must be used to separate fields if
no other delimiter is used.

Symbolic Labels

A symbolic label is a character string of one to eight characters. The first character
must be an uppercase alphabetic character (A-Z, $, @, #). The other characters
may include any uppercase or lowercase character available to your keyboard.

The label must begin in column 1 and must be followed by a colon (:).

IBM 5280 Assembler Language Instructions 123

124

The Instruction Fields

Blanks, commas, and parentheses are used to separate fields, depending upon the
particular type of instruction. If commas are used to separate optional fields, the
commas must be retained when fields are omitted that are to the left of fields
that are specified. The general format of an instruction is:

Data Movement
Result Operator Operands
where:

Result specifies the address that contains the resulting data at the completion
of the operation.

Operator may be an arithmetic symbol or a mnemonic to specify the operation.
Mnemonics may be to the left or to the right of the result, depending upon the
particular operation.

Operand may include one or more storage, register, or constant specifications,
depending upon the particular operation.

Comments

A comment may be included on any line following an instruction statement. The
comment is preceded by a semicolon. An entire line may be specified as a
comment line by placing an asterisk (*) in the first column of the line.

Examples:

LABEL: INSTRUCTION:; this is a comment on an instruction line.

*This whole line is a comment line.

STORAGE SPECIFICATIONS

An instruction may refer to a location in storage by specifying one of the following
addressing methods:

® | abeled addressing.
® Base displacement addressing.

The length of the data area may optionally be specified with either method.
These addressing methods are described in detail in Chapter 1 under Storage.

Whenever an instruction description includes the word storage either addressing
method may be used. If the instruction allows only one of the methods, the
format of that addressing method is indicated in the instruction description.

Labeled Addressing

A storage area may be declared and labeled by a .DC control statement. An
instruction may refer to that labeled storage area by specifying the following
format:

label [(length)]
The label is the name assigned to the area by the .DC control statement. |f the
optional length is omitted, it defaults to the length declared in the .DC statement.
If you want to access a number of bytes that is different from the declared length,
include the number in parentheses to the right of the label.

Base Displacement Addressing

An instruction may refer to a location in storage by using a base displacement
specification. The format of a base displacement specification is as follows:

[displacement] ([length] ,BRn)
The binary register holds the base address. The optional displacement, which may
be from 0 to 255 and defaults to 0, is added to the base address. The result is
the address of the first byte of the storage area. The optional length of the area
defaults to one byte. Except for the IFB instruction and store-a-constant
instruction (under Store at Base Displacement Address in this chapter), the comma
is retained if no length is specified.

CONSTANT SPECIFICATIONS

Certain instruction operands may be specified as a constant. Constants may be
specified in the forms described under Blanks, Constants, and Coding Symbols in
Chapter 1. A 1-byte constant may be specified in any of the following forms:
® A decimal number, 0-255
® Two hexadecimal digits, X‘I1’, where | = 0-9, A-F.
® Eight binary digits, B‘UI1III’, where | =0 or 1.

® One EBCDIC character, C'l’, where | = any printable graphic.

The following example demonstrates the way the four forms of constants
represent the same value:

Form Representation
Decimal 193
Hexadecimal X'C1’

Binary B’11000001"
EBCDIC C'A’or ‘A’

Whenever constant is specified in an instruction description, any form of constant
may be specified in the source instruction.

1BM 5280 Assembler Language Instructions * 125

126

REGISTER AND INDICATOR SPECIFICATIONS

An instruction may refer to an indicator or a reserved register by specifying the
indicator or register number (In, BRn, or Rn). Registers may be reserved with the
RGLT parameter of the .START statement.

Labels can be assigned to indicators and registers. The control statements that
assign these labels are discussed in Chapter 1 under /ndicators and Registers. |f
an indicator or register has been assigned a label, an instruction may refer to it by
specifying the label.

In the instruction descriptions in this chapter, indicators and registers are
indicated by number specifications. Any time such a number specification is
indicated either the number or label may be used.

In certain instructions an optional length may be indicated in a register specifica-
tion. By indicating the length, in parentheses, to the right of the register
specification, you can access a binary half register (BRn(1)), a binary double
register (BRn(4)), or a decimal double register (Rn(32)).

OPERATION TYPES

Source instructions are listed in this chapter by the type of operation the
instruction performs. The instructions are divided into the following operation

types:

A Arithmetic/Logical
B Branch and Skip
Cc Communications
D Diskette

E Printer

Keyboard/Display

Data Movement
Partition Load and Exit
Table

Miscellaneous

X"A79=2R

In Figure 4-1, all mnemonics are listed in alphabetic order. The operation type and
a brief description of the operation performed are included for each instruction
mnemonic.

Figure 4-2 shows the operation types and lists the mnemonics for each type.

Mnemonic Type Operation

+ A1l Decimal add

- A2 Decimal subtract
" A2 Decimal multiply
/ A2 Decimal divide
+= Al Binary add

-= A1l Binary subtract
*= Al Binary multiply

= Al Binary divide
= Al Binary AND
= A1l Binary OR

= A1l Binary exclusive-OR
<=> M1 Exchange register data
ALLOC D1 Allocate diskette
BINDEC M2 Convert binary storage to EBCDIC
BINHEX M2 Convert binary to EBCDIC storage
BRa= M1 Load binary register
BRn= M2 Convert decimal register to binary
(,BRn)= M1 Store at base displacement address
BUZZ K2 Sound huzzer
CALL B2 Call subroutine
CALLTB B2 Call subroutine through table
CLC X Compare logical characters
CLICK K2 Click keyboard
CLOZ D1, E Close data set
CNENTR K2 Cancel current ENTR
CRTMM M3 Move bytes to screen
DECBIN M2 Convert EBCDIC to binary storage
DECR B6 Decrement, branch if 0
DISPEX K2 Display extra line
DISPST K2 Display status line
DUP X Duplicate a byte
ENABLE K1 Enable external status
ENTR K1 Enter data viz keyboard
EXIT P Exit partition
GOTAB B1 Branch through table
GOTO B1 . Unconditional branch
GSCK X Generate self-check digit
HEXBIN M2 Convert EBCDIC storage to binary
IF BRn B4 Branch on relational compare, binary
IFBRnO B3 Branch if 0, binary
IF Rn B4 Branch on relational compare, decimal
IF Rn - B3 Branch if negative
IFRn O B3 Branch if 0, decimal
IF Rn AN B3 Branch if positive number
IF Rn CK B3 Branch if self check
IF Rn SN B3 Branch if signed numeric
IF fmt B3 Branch on format test
IFB : B5<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>