
--- ------ ----- ---- - - - -- - - ----------_ . -

8L23-0032·1

File No. 85280-24

Licensed

Program

IBM 5280
Distributed Data
System
COBOL
Programmer's Guide

Program Numbers: 5708-CB1(OSIVS)
5708-CB2(DOSIVSE}

--..- ------ - ---- ---- -. ---- - - ----------_.-
SL23-0032-1

File No. S52BO-24
Licensed
Program

IBM 5280
Distributed Data
System
COBOL
Programmer's Guide

Program Numbers: 570B-CB1(OS/VS)
570B-CB2(DOS/VSE)

Second Edition (February 1981)

This is a major revision of, and obsoletes, SL23-0032-0.

Changes are periodically made to the information herein; before using this publication in
connection with the operation of IBM systems, be sure you have the latest edition and any
technical newsletters.

This edition applies to version 01, modification 00 of the IBM 5280 COBOL OSjVS Host
Compiler and Library (program number 5708-CB1), and the IBM 5280 COBOL DOSjVSE
Host Compiler and Library (program number 5708-CB2), and to all subsequent versions and
modifications until otherwise indicated in new editions or technical newsletters.

Use this publication only for the purposes stated in the section "To The COBOL Programmer".

It is possible that this material may contain reference to, or information about, programming, or
services that are not announced in your country. Such·references or information must not be
construed to mean that IBM intends to announce such IBM products, programming, or services
in your country.

Publications are not stocked at the address below. Requests for copies of IBM publications and
for technical information about the system should be made to your IBM representative or to the
branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use the Readers
Comment Form at the back of this publication to make comments about this publication. If the
form has been removed, address your comments to IBM Corporation, Information Systems
Division, Dept 26Xj037, 2800 Sand Hill Road, Menlo Park, CA 94025. IBM may use and
distribute any of the information you supply in any way it believes appropriate without incurring
any obligation whatever. You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1980

To the COBOL Programmer

Before Using This Guide

Scope of the Guide

Before using this guide, you should be a ware of the topics covered, the
experience and knowledge you should have to use it, and the other IBM 5280
and host system manuals you will need. It is the purpose of this section to give
you this information; reading the text that follows may save you time.

To use this guide, you should be either experienced or trained in the COBOL
language. The guide is not intended as a tutorial for a beginner wishing to
learn the COBOL language. (The objectives of the guide are given in a later
section.)

The IBM 5280 host compilers for OS/VS and DOS/VSE convert source
programs written in COBOL into load modules executable on an IBM 5280
system.

The information in this guide, together wIth that in the IBM 5280 COBOL
Language Reference, GL23-0031, should provide you with most of the
information you need to write COBOL programs and compile them on the
host system.

The guide also provides information on executing a COBOL program on the
IBM 5280. You will need additional information that is to be found in IBM
5280 publications (in, for example, the Message Manual). A list of these
manuals and their order numbers is at the end of this chapter.

Organization of the Guide

Objectives of the Guide

The information in this guide is presented in the order a 5280 COBOL
program might be coded, compiled, executed, and debugged:

• Chapters 1 through 6 provide rules, guidelines, and examples for writing
transaction I/O, data communications, and printer and other I/O.

• Chapter 7 provides information on the procedures in the host system for
compiling your source module. This chapter also describes the compiler
options and how to specify them when you compile a program

• Chapter 8 contains 5280 system information relating to the execution of
a COBOL program; for example: allocating data sets, loading a
COBOL program, error messages issued during execution, factors
affecting performance, etc.

• Chapter 9 describes compiler and language facilities you can use to
debug a program.

Refer to the "Contents" or "Index" for a more detailed listing of topics.

The objectives of the guide and how to use it are given in the sections that
follow.

iii

Writing A Work Station Application

Data Communications

Diskette I/O

Printer and Other I/O

iv

Three chapters provide information on writing interactive applications using
the 5280 keyboard and other system functions:

• Chapter 1 introduces transaction I/O, the Data Definition Statements
(DDS), and the 5280 keyboard. Transaction I/O together with the
formatting and editing capabilities of DDS, provide flexibility and ease
in writing applications that interact with a work station.

• Chapter 2 describes how to implement your screen designs with DDS
and gives the detailed rules for coding DDS.

• Chapter 3 describes how to code the COBOL statements for transaction
I/O.

Data can also be written to a work station using a DISPLAY statement or
with SEQUENTIAL I/O; these two methods are discussed in Chapter 6.

The exchange of data between two systems over a communications link using
IBM 5280 COBOL programs is called data communications. Chapter 4
covers data communications and has the following information:

• A summary of COBOL data communications capabilities

• The IBM 5280 facilities needed to execute a COBOL program

• The coding information necessary to write a data communications
program.

• An example of a COBOL program using the data communications
facilities

Chapter 5 describes how to write a program using the I/O facilities that allow
the interchange of data between a program and IBM 5280 diskettes. Subjects
covered in this chapter include:

• Sequential, relative, and indexed file organizations, their differences and
uses

• The random and sequential access methods

• Step-by-step guidelines for writing the statements required to process
sequential, relative, and indexed file organizations. The use of
sequential and random access, where applicable, is discussed in relation
to each of the file organizations.

• I/O error processing options

Chapter 6 provides information on:

• Writing data to a printer using SEQUENTIAL I/O

• Using the DISPLAY and ACCEPT verbs in exchanging data between
an operator at a work station screen and a COBOL program

• Using SEQUENTIAL I/O in the exchange of data between an operator
at a work station and a COBOL program.

Compiling a COBOL Program on the Host System
Chapter 7 describes the procedures available for compiling a source program;
it also provides information that can be used for modifying the procedures at
your installation if necessary. Information is given on the data sets required,
the related job control language, and the options available for compilation.

Executing a COBOL Program on an IBM 5280 System
Chapter 8 provides a guide to loading and executing a COBOL program on
the IBM 5280 system. Subjects covered include:

• Manuals and other documentation required by the operator

• Rules for creating COBOL data sets

• The COBOL-initiated prompts and how to respond to them

• Improving performance

• How to interpret the status line in regards to keyboard, device, and
CORaL execution errors

Executing Jobs in Sequence on an IBM 5280 System
The COBOL job-to-job facility allows you to pass control from your program
to another COBOL program or any other program (for example, a DE/RPG
program, an assembler program, a system utility program, etc.). You achieve
this linkage with a CALL to a COBOL library routine as described in Chapter
10.

Together with the PROMPT /NOPROMPT option described in Chapter 7,
this facility permits you to control linkage among several programs with little
or no operator action.

Debugging COBOL Programs

Related Publications

Chapter 9 discusses procedures and the facilities provided by the compiler and
the COBOL languages for debugging COBOL programs. Coded examples of
some of the debugging facilities provided by COBOL are included.

You should have the following publications available for reference when
preparing and running COBOL applications:

References for Coding and Debugging COBOL Programs

• IBM 5280 COBOL Language Reference, GL23-0031

• IBM 5280 COBOL Host Compilers Problem Determination Manual,
SL23-0043

Coding A ids for Transaction I/O

• Data Description Specifications, GX21-9362 (a pad of coding forms)

• IBM Printer/Display Layout, GX21-9174 (a pad of layout forms)

y

References for Executing a COBOL Program

• IBM 5280 Operator's Guide, GA21-9364

• IBM 5280 Utilities Reference/Operations Manual, SC21-7788

• IBM 5280 System Concepts, GA21-9352

• IBM 5280 Message Manual, GA21-9354

• IBM 5280 Printer Operator's Guide, GA21-9260

• IBM 5280 Communications Reference Manual, SC34-0247

General References for IBM 5280 System Information

• IBM 5280 General Information, GA21-9350

• IBM 5280 Planning and Site Preparation Guide, GA21-9351

• IBM 5280 Master Index, GA21-9356

• IBM 5280 User's Setup Procedures, GA21-9365

• IBM 5280 Machine Verification Manual, GA21-9357

• IBM 5280 System Control Programming Reference/Operations
Manual, GC21-7824

Compilation Under OS/VSl

• OS/VS 1 JCL Reference, GC24-5099

• OS/VSl JCL Services, GC24-5100

Compilation Under OS/VS2

• OS/VS2 JCL, GC28-0692

Compilation Under DOS/VSE

• DOS/VSE System Control Statements, GC33-5376

vi

Contents

To the COBOL Programmer iii
Before Using This Guide iii
Scope of the Guide iii
Organiza tion of the Guide iii
Objectives of the Guide iii

Writing A Work Station Application iv
Data Communications iv
Diskette I/O iv
Printer and Other I/O iv
Compiling a COBOL Program on the Host System v
Executing a COBOL Program on an IBM 5280 System v
Debugging COBOL Programs v

Related Publications v
References for Coding and Debugging COBOL Programs v
Coding Aids for Transaction I/O v
References for Executing a COBOL Program v
General References for IBM 5280 System Information v
Compilation Under OS/VSl vi
Compilation Under OS/VS2 vi
Compilation Under DOS/VSE vi

Chapter 1. Transaction I/O - Introduction 1-1
Defining Display Screens 1-1

Uses of Data Definition Statements 1-1
The Copy Library and Data Definition Statements 1-1
Copying Members 1-2
General Rules for Data Definition Statements 1-2
The COBOL Program and Data Definition Statements 1-2

Steps in Writing an Interactive Program 1-2
The Keyboard 1-5
Command and Function Key Codes 1-5
Function Keys 1-7

Attention 1-7
Auto Dup/Skip 1-8
Auto Enter 1-8
Character Advance 1-8
Character Backspace 1-8
Character Delete 1-9
Character Insert 1-9
Cursor Left 1-9
Cursor Right 1-9
Duplicate 1-10
End-of-Job 1-10
Enter/Record Advance 1-10
Field Advance 1-10
Field Backspace 1-10
Field Exit 1-11
Field Exit Minus 1-11
Hexadecimal 1-12
Record Advance 1-12
Record Backspace 1-12
Reset 1-12
Skip 1-12
System Request 1-13

Chapter 2. Transaction I/O - Screen Definition 2-1
Example of Coding Data Definition Statements 2-1
Coding Conventions 2-9

Primary, Continuation, and Secondary Lines 2-9
Continuation Characters 2-9
Keywords 2-9
Constants 2-10
Comment Statements 2-10

Record Description Statements 2-11

Sequence Number Field (Columns 1 through 5) 2-11
Form Type Field (Column 6) 2-11
Name Type Field (Column 17) 2-11
Record Name Field (Columns 19 through 26) 2-11
Usage Field (Column 38) 2-11
Editing Field (Columns 45 through 80) 2-12
CHECK(DD) 2-12
DSPATR(attributes) 2-13

Field Description Statements 2-15
Sequence Number Field (Columns 1 through 5) 2-15
Form Type Field (Column 6) 2-15
Indicator Field (Columns 9 and 10) 2-15
Field Name Field (Columns 19 through 24) 2-15
Length Field (Columns 30 through 34) 2-16
Data Type Field (Column 35) 2-16
Decimal Positions Field (Column 37) 2-18
Usage Field (Column 38) 2-18
Location Field (Columns 39 through 44) 2-20
Editing Field (Columns 45 through 80) 2-21
CHECK (parameters) 2-21
DSPATR (attributes) 2-22
PMT(message) 2-24
SHIFT(codes) 2-24
Keyword Conflicts and Compatibilities 2-25

Chapter 3. Transaction I/O - Writing the COBOL Program 3-1
Summary of COBOL Transaction I/O Statements 3-1

FILE-CONTROL Paragraph 3-1
OPEN 3-2
WRITE 3-2
READ 3-3
Sequence of Transaction I/O Statements 3-4
Clearing the Screen with WRITE 3-4
CLOSE 3-4

I/O Error Processing 3-4
Status Key 3-4
Coding the Status Key 3-5
Exception/Error Procedures 3-5
Example Using Status Key and ERROR Procedures 3-5

Return Information 3-5
Attribute Data 3-6
Work Station Control Area 3-7

Transaction I/O Examples 3-7
Example - Interactive Entry and Processing 3-7
INDICATOR Example 3-13

Chapter 4. Data Communications Programming With COBOL 4-1
Uses of Data Communications Programs 4-1
Eligible Systems 4-1
COBOL Programs and the Communications Access Method 4-1
COBOL Program Responsibilities 4-2
System Requirements for Communication Programs 4-2
Before Running a Data Communication Program 4-2
Writing COBOL Communication Statements 4-2

Communication Routine Parameters 4-3
Communication Program Example - Explanation 4-3
Open Routine 4-3
Close Routine 4-4
Read Routine 4-5
Write Routine 4-6

Communication Program Example - Listing 4-6

Chapter 5. Diskette Input/Output 5-1
Input-Output Summary 5-1

Contents vii

File Organization and Access Method 5-1
Sequential Organization 5-2
Relative Organization 5-3
Indexed Organization 5-3

Record Formatting 5-3
FILE-CONTROL Paragraph 5-4
FD Entry - VALUE OF OWNER-ID Clause 5-5
Sharing Files 5-5

Unshared Files 5-5
Shared Files 5-5
When Files Can Be Shared 5-6
No Sharing with OUTPUT and EXTEND Modes 5-6

I/O Error Processing 5-6
Status Key 5-7
EXCEPTION/ERROR Procedures 5-7
The INVALID KEY Clause 5-8
The AT END Clause 5-9
Error Handling Considerations 5-9
Permanent I/O Errors 5-10

Processing Files with Sequential File Organization 5-11
ASCII File Processing 5-11
Creating a Sequential File 5-11
Reading from a Sequential File 5-11
Updating a Sequential File 5-12
Multivolume Record Processing 5-12
Example 5-13

Processing Files with a Relative Organization 5-15
Creating a Relative File 5-15
Contents of Relative Key 5-16
Example - Creating a Relative File 5-16
Reading from a Relative File 5-18
Updating a Relative File 5-18
Example - Reading and Updating a Relative File 5-18

Processing Files with an Indexed Organization 5-21

I
Two Types of Indexed Files 5-21
FILE-CONTROL Paragraph for Indexed Organization 5-22
Rules and Considerations for Index Data Sets 5-23
Adding Records To Indexed Files 5-24
Creating an Indexed File 5-25
Example 5-25
Reading an Indexed File 5-27
Updating an Indexed File 5-28

Chapter 6. Other I/O. 6-1
Printer I/O 6-1

Example of Printer I/O Statements 6-1
DISPLAY and ACCEPT 6-2

Example of DISPLAY 6-3
SEQUENTIAL Work Station I/O 6-4

Work Station I/O with Sequential I/O - Example 6-5
STOP Statement 6-6

Chapter 7. Compiler Job Procedures and Options 7-1
inter-Program Communications and Multiple-Compilations 7-1
A Note on Compiler Options 7-1
OS/VS Compilation 7-3
DOS/VSE Compilation 7-5

Compiler Storage Requirements 7-6
Multiple Compilations - The *PROCESS Statement 7-7

When Using Subprogram Linkage 7-7
With Segmented Programs 7-7
Maximum Number of Programs 7-7
Format and Rules - *PROCESS 7-7

Host Compiler Options 7-9
Defaults and Overrides 7-9
CMPAT(SIGNC or SIGNF) 7-10
DECK or NODECK - D or NOD 7-10
FIPS or NOFIPS 7-11

viii IBM 5280 COBOL Programmer's Guide

FLAG or NOFLAG 7-11
FI tISHFR R 7-11

GONUMBER or NOGONUMBER - GN or NOGN 7-12
LINECOUNT (n) - LC(n) 7-12
LIST or NOLIST 7-12
MAP or NO MAP 7-12
NUMBER or NONUMBER - NUM or NONUM 7-13
OBJECT or NOOBJECT - OBJ or NOOBJ 7-13
OFFSET or NOOFFSET - OFF or NOOF 7-14
OPTIONS or NOOPTIONS - OPTN or NOOPTN 7-14
PRINT or NOPRINT 7-14
PROMPT or NOPROMPT 7-14
QUOTE or APOST 7-15
RUNMSG (n) 7-15
SEQUENCE or NOSEQUENCE - SEQ or NOSEQ 7-15
SOURCE or NOSOURCE - S or NOS 7-16
STMT or NOSTMT 7-17
XREF or NOXREF - X or NOX 7-17

Chapter 8. Guide for COBOL Program Execution 8-1
Manuals and Documentation Needed by the Operator 8-1
Transferring the Load Module from the Host to IBM 5280 8-1 I Remote Job Entry Subsystems 8-3
Storage Required for Object Programs 8-3

Storage Required on Diskette 8-3
Main Storage Required for Execution 8-3
If A Program Is Too Large 8-4

Allocating Data Sets for Object Programs 8-4
When Programs Are Segmented 8-4

Allocating Data Sets for Program Files 8-4
Initializing Diskettes 8-4
Allocating Data Sets 8-5
Specifying a Multivolume Indicator 8-5
Determining Exchange Type 8-5
Record Size 8-6
Number of Records for Indexed Files 8-6
Delete Character 8-6

Improving Performance 8-7
System Considerations 8-7
Improved Performance with Sequential Access Method 8-7
Improved Performance when Creating Indexed Files 8-7
Improved Performance with SIZE Clause 8-7

Loading the COBOL Program and Responding to Prompts 8-7
Prompts for Loading a COBOL Program 8-8
Prompts for Run-Time Options 8-8
Prompts for Diskette Files 8-9
Prompts for Printer Files 8-9

The Status Line and Error Messages 8-11
Device Errors 8-12
COBOL Execution Errors 8-12

Chapter 9. Debugging 9-1
Compiier Messages 9- i

Types of Messages 9-1
Acting Upon Compiler Messages 9-2

Compiler Abends 9-2
Abnormal Termination and SYSDOVL 9-3

Messages at Execution 9-3
Possible Causes of Execution Errors 9-3

Debugging Language 9-4
Debugging Lines·· WITH DEBUGGING MODE 9-4
Declarative Procedures - USE FOR DEBUGGING 9-4
Example - COBOL Debugging Language 9-4

Chapter 10. Job-to-Job Facility
COBOL Statements Required 10-1
When Using the Job-to-Job Facility 10-2

Appendix A. Direct Communications Support A-I
Before Running a Data Communication Program A-I
Functions Supported A-I
TIN IT Routine A-2
TTERM Routine A-3
TOPEN Routine A-3
TCLOZ Routine A-3
TREAD Routine A-4
TWRT Routine A-4
TCTL Routine A-5

Appendix B. Status Key Return Codes B-1

Appendix C. Compiler Limitations C-I

Appendix D. Compiler Return Codes D-I

Appendix E. Storage Estimates for OSjVS E-I

Appendix F. Storage Estimates for DOSjVSE F-I

Index X-I

Contents ix

x IBM 5280 COBOL Programmer's Guide

Figures
Figure 1.1. Steps in preparing and compiling display screen formats 1-3
Figure 1.2 The data entry keyboard 1-5
Figure 1.3. COBOL command keys and codes for data entry keyboards 1-6
Figure 1.4. COBOL command keys and codes for typewriter keyboards 1-6
Figure 2.1. Sample form used by data entry operator 2-1
Figure 2.2. Printer/Display Layout form 2-2
Figure 2.3 Data Definition Statements Coding Example 2-4
Figure 2.4 Data Definition Statements as compiled by the COBOL compiler 2-4
Figure 2.5. Data Definition Statements Coding Example 2-6
Figure 2.6. Attributes that can be specified with the DSPATR keyword 2-23
Figure 2.7 Keyboard conflicts and compatibilities 2-7
Figure 3.1. Explanation of values returned in the ATTRIBUTE-DATA area 3-6
Figure 3.2. Example of transaction I/O statements 3-8
Figure 3.3. Example of indicators and conditional bypass 3-14
Figure 4.1. The COBOL library routines that perform data Communications 4-3
Figure 4.2. Return codes from the COBOL communication library routines 4- 4
Figure 4.3. Options available with the Close routine 4-5
Figure 4.4. Coding example: data communications 4-7
Figure 5.1. Valid combinations of SHARE/SHARER and OPEN modes 5-6
Figure 5.2. COBOL statements for Status Key and EXCEPTION/ERROR routine 5
Figure 5.3. COBOL statement execution with AT END and INVALID KEY 5-9
Figure 5.4. Statements used with sequential file organizations 5-11
Figure 5.5. Example of processing files with a sequential organization 5-13
Figure 5.6. Statements used with relative file organizations 5-15
Figure 5.7. Creating a relative file 5-17
Figure 5.8. Example of processing files with a relative organization 5-19
Figure 5.9. Statements used with indexed file organizations 5-21
Figure 5.10. Creating an indexed file - without index data set 5-23
Figure 5.11. Creating an indexed file - with index data set 5-23
Figure 5.12. Updating an indexed file 5-24
Figure 6.1. Example of COBOL statements used for printer I/O 6-2
Figure 6.2. Example of statements used for DISPLAY 6-3
Figure 6.3. Example of statements used for sequential I/O to a work station 6-6
Figure 7.1 Job Control Procedure for the 5280 COBOL OS/VS compiler 7-3
Figure 7.2. Required parameter for allocating COBOL data sets 7-4
Figure 7.3 Example of using a COBOL compile procedure 7-4
Figure 7.4. Sample job control statements for a DOS/VSE compilation 7-5
Figure 7.5 List of options available at compilation 7-10
Figure 7.6. Sample listing with MAP option 7-12
Figure 7.7. Sample listing with OPTIONS specified 7-13
Figure 7.8. Sample listing - source program 7-15
Figure 7.9. Sample listing with - Data Definition Statements 7-16
Figure 7.10. Sample listing with XREF specified 7-17
Figure 8.1. Possible methods of host-5280 data exchange 8-2
Figure 8.2. Layout of 5280 screen information 8-10
Figure 9.1. Coding example with COBOL debugging language 9-6

Figures xi

xii IBM 5280 COBOL Programmer's Guide

Chapter 1. Transaction I/O - Introduction

Transaction I/O is an IBM extension to COBOL that gives flexibility in
writing data to and reading data from a display screen. The purpose of this
chapter is to introduce transaction I/O and provide some rules that must be
followed in writing transaction I/O applications. Subjects covered include:

• Statements used to define display screens and what they can do in
formatting the screen and editing data entered by an operator

• How the statements are compiled with the COBOL source program

• Steps to follow in writing an interactive application

• A summary of the 5280 keyboard and how some of the keys interact
with your COBOL program

Defining Display Screens
The statements which you code to define display screens are called Data
Definition Statements (DDS). The Data Definition Statements for a screen
consist of one record description statement followed by one or more field
description statements.

Uses of Data Definition Statements

Here are some examples of what you can do with the Data Definition
Statements:

• Define the layout of the screen: the position of the fields that are to
appear on the screen, the data, if any, that is to appear in the fields, and
how the characters appear on the screen (highlight, blink, reverse image,
underline, nondisplay, and column separators).

• Cause the data to be edited as the operator enters it. For example, you
can define a field so that only alphabetic characters can be entered. If
the operator tries to enter a numeric, the keyboard will lock and an error
code will be displayed.

• Set the shift key on a character-by-character basis, so that it shifts
either to the lower symbol or to the upper symbol automatically as the
cursor enters each position in the field

The Copy Library and Data Definition Statements

The coded Data Definition Statements must be library text in a COBOL
library. At compilation, the COBOL compiler brings them into your program
and converts them into COBOL source statements.

The COBOL library is allocated by the facilities of the host system. The rules
for defining the library for each of the host compilers are given in Chapter 7.

Chapter 1. Transaction I/O - Introduction 1- 1

Copying Members

You must code a COpy verb, specifying the name of the library text, at an
appropriate point in the Data Division of your COBOL program. At
compilation, the compiler creates a record definition for each set of Data
Definition Statements: for each record description statement, the compiler
creates an 01 level group item; and, with certain exceptions, for each field
description statement, it creates a 02 level data-item, as shown in figure 2.4 in
Chapter 2.

In writing and reading information from the work station screen, you
refer to the record definitions created from the Data Definition Statements in
associated READ and WRITE statements. This is shown in Chapter 3 in
figure 3.2.

General Rules for Data Definition Statements

Here are some guidelines and rules for preparing Data Definition Statements
and entering them in a COBOL library:

1. You must prepare a record description statement, followed by at least one
field description statement, for each screen image.

2. Some of the specifications you make in the record description statement
can be taken as defaults by the field description statements that follow it.
That is, if you write these items in a record description statement, you
needn't write them in a field description statement.

3. Keep the record description statement and subsequent field description
statement(s) for each screen image entirely within one library text.

4. If desirable, enter sets of data definition statements for multiple screen
images within the same library text.

The COBOL Program and Data Definition Statements
The COBOL program treats all the information passed to it from one
DDS-defined screen format as a single record. You can specify two kinds of
fields:

• An output field (O-field) contains information that cannot be changed
by the operator. For a normal output operation, the data in the field is
supplied in the field description statement as a constant

• An input/output field (B-field) is both displayed (output) on the display
screen and read (input) back into the program. The operator can enter
new data over the data that is displayed by the program. This data can
then be read back into the program.

Both types of fields can be used in the same display screen formats.

By your entry in the field definition statement, you can also control how the
data-items are defined in your program: either aiphanumeric or numeric,
signed or unsigned.

Steps in Writing an Interactive Program
The recommended steps in writing an interactive program, shown in figure
1.1, are:

1. Design the screen layouts which the operator is to interact with. Display
screen layout sheets and coding forms are available to aid you in this task.
Their order numbers are given in the first section of this book; their use is
illustrated in the examples in Chapter 2.

1- 2 IBM 5280 COBOL Programmer's Guide

Layout
Sheet

DDS Coding
Form

Compiler

COBOL

Source

Program

COBOL Librarv

Source listing. Contents determined
by the options specified at
compilation (see Chapter 7). Can
include:

• Source statements, with DDS
generated code and COpy
code, if present

• DDS

• Diagnostic messages

• Maps and cross-reference list

Object
Module

1.

2.

Arrange fields on the layout sheet (order number
GX21-9174) just as they will appear on the display
screen.

Use the completed layout sheet as a guide for filling
out the DDS coding sheet (order number
GX21-9362).

3. Enter the DDS in a COBOL library.

4.

5.

Code source program; write COpy DDS statements
as appropriate. Enter the COBOL source program.

Compile the source program.

Figure 1.1. Steps in preparing and compiling display screen formats

Chapter 1. Transaction I/O - Introduction 1- 3

2. Define the screens with Data Definition Statements, placing them in a
COBOL library. The rules for coding data definition statements are given
in detail in Chapter 2.

3. Code the COBOL source program that is to read and write the screens.
Information on the COBOL statements that perform transaction I/O is
given in Chapter 3.

4. Compile the program. Information on compiler options and host job
procedures is given in Chapter 7.

1- 4 IBM 5280 COBOL Programmer's Guide

The Keyboard

I I
I

The Keyboard

This section describes the function and command keys, and their interaction
with COBOL programs and the IBM 5280 system. The chapter is intended
primarily for the COBOL programmer. For a tutorial, with a detailed
explanation of the use of each key, the operator should look at the Operator's
Guide.

Figure 1.2 shows a data entry keyboard.

The relative positions of most of the keys on the other keyboards available
with IBM 5280, are the same as on the data entry keyboard. For a detailed
description of all keyboards, see the Operator's Guide.

For descriptive purposes, the keys can be classified as data keys,junction
keys, and command keys.

• Data keys, when pressed, cause entered data to be processed by your
COBOL program or the system.

• Function keys, when pressed, cause the IBM 5280 system to take some
action.

• Command keys, when pressed, give control to your COBOL program. A
code showing which key was pressed is passed to a control area, if
specified, in the program.

Figure 1.2 The data entry keyboard

In general, the function keys shown in figure 1.1 are colored dark, and the
data keys are white. The operator presses a function key to enter the desired
data or execute a desired function. Additionally, the top row of data keys can
also be used as function keys or command keys. The next two sections
describe the use of these keys and how they affect your COBOL programs.

Command and Function Key Codes
The following codes are returned in the work station control area (described
under "Work Station Control Area" in Chapter 3) to your program when it
receives control from the work station:

• 0 when either the Enter or Record Advance key is pressed.

• 99 when any other function key is pressed.

Chapter I. Transaction I/0 - Introduction 1- 5

• One of the codes shown in figures 1.3 and 1.4 when the indicated
command key is pressed. (Twenty-one (21) command keys are available
for use with your COBOL programs.)

Command keys can make interaction between an operator and the program
easier and more efficient. For example, in response to a program prompt, the
operator can simply press one of the command keys instead of having to enter
data. You can then determine the next logical action of your program based
on the command key code returned to the program.

The operator selects a COBOL command key by (1) adjusting the shift to
either lower case (alpha) or upper case (numeric), (2) pressing the CMD key,
and (3) then pressing the desired command key.

The command keys as they appear on the data entry keyboard and the
typewriter keyboard are shown in figures 1.3 and 1.4. The code passed to the
program when each key is pressed is shown in the figure. The code is inserted
in a data-item you define in your program. You relate the data-item to the
CONTROL-AREA clause as described under "Work Station Control Area"
in Chapter 3.

ALPHA SHIFT NUMERIC SHIFT

KEY CODE KEY CODE

@ 1 # 13
% 2 $ 15

* 3 16
< 4 CORR 17

CORR 5 DUP 18
,

7 19 -
/ 8 0 20
~ 9 RELADV 22

RECADV 10 ~ 22
~I 11 SEL FMT 24

SEL FMT 12

Figure 1.3. COBOL command keys and codes for data entry keyboards

LOWERCASE. UPPERCASE.

I

I
KEY CODE KEY co~

I

2 1 @
13 I

3 2 $ 15
4 3 % 16 I

5 4 17
6 5 & 18
8 7 * 19
9 8 20
0 9 22

10 + 23
11 f-- 24

f-- 12

Figure 1.4. COBOL command keys and codes for typewriter keyboards

1- 6 IBM 5280 COBOL Programmer's Guide

Function Keys

Attention

The Keyboard

This section explains the use of the following function keys, and their
interaction with the IBM 5280 system and your COBOL program:

Attention
Auto Dup/Skip
Auto Enter
Character Advance
Character Backspace
Character Delete
Character Insert
Cursor Left
Cursor Right
Duplicate
End-of-Job
Enter /Record Advance
Field Advance
Field Backspace
Field Exit
Field Exit Minus
Hexadecimal
Record Advance
Record Backspace
Res{(t
System Request

Two conditions are referred to frequently in the sections that follow: the
awaiting-field-exit condition and the awaiting-record-advance condition. The
following paragraphs explains what these terms mean.

In fields that require field exiting (for example, you have coded CHECK(FE)
in the related field description statement), an awaiting-field-exit condition
starts after the operator enters a character in the last position of the field.
This condition is indicated on the screen by the cursor blinking in the last line
of the field, and positions 15 and 16 of the Status Line contain 01.

An awaiting-record-advance condition exists after the operator enters a
character into the last position of a record when the automatic enter function
is disabled. The awaiting-record-advance condition is indicated on the screen
by the blinking cursor beneath the last position of the record. The status line
contains 00 in positions 15 and 16.

Pressing the Attention key permits the change of control between programs
operating in background and foreground partitions. For example, while
operating in the foreground, pressing the Attention key permits a program
operating in a background partition to attach to the keyboard/display if
operator action is required by that program. If action is required, the entire
display is replaced by that program.

After operator action, the original program resumes control if the background
program terminates. Otherwise, the operator can return control to the
foreground program by pressing the Attention key.

For more information, see the 5280 System Concepts manual under
"Partition Interface".

Chapter 1. Transaction I/O - Introduction 1- 7

Auto Dup/ Skip

Auto Enter

Character Advance

Character Backspace

Pressing the Auto DupjSkip key has the following effect:

• When the cursor enters a field, data is automatically duplicated in that
field from the corresponding field in the previous record. You must have
coded the CHECK(AD) keyword in the field description statement that
describes the field.

• When the cursor enters a field, it automatically skips to the next field.
You must have coded the CHECK(AS) keyword in the field description
statement that describes the field.

See Chapter 2 for information on CHECK(AD) and CHECK(AS).

When automatic duplication or skip is in effect, a D in reverse image appears
in position 21 in the status line at the top of the screen.

The operator can stop automatic duplication and skip by again pressing the
Auto DupjSkip key. Data can now be entered manually in all fields.

When automatic enter (caused by pressing the Auto Enter key) is in effect,
the operator doesn't have to press the Enter key after entering a character into
the last position of the last field of a record. After the Auto Enter key is
pressed, entering a character into the last position of a record has the same
effect as pressing the Enter key. Control is then passed to the COBOL
program for processing.

When automatic enter is in effect, an R appears (in reverse image) in position
23 in the status line at the top of the screen. To stop automatic enter, the
operator again presses the Auto Enter key; a blank will now appear in position
23 of the status line.

Pressing the Character Advance key moves the cursor ahead one position in a
field. The data in the position isn't changed. When the cursor is moved out of
one field into the next, a field advance function is performed.

If automatic enter (described above) is in effect, advancing the cursor into the
last position of the record has the same effect as pressing the Enter key.

If automatic enter isn't in effect, and the operator presses the Character
Advance key when the cursor is in the last position of the record, an error will
occur.

When awaiting-field-exit is indicated, pressing the Character Advance key
has the same effect as pressing the Field Exit key.

Pressing the Character Backspace key moves the cursor back one position.
The data isn't changed. The key can be used to move the cursor from the first
position of one field to the last position of the preceding field, unless automatic
duplicate or automatic skip (as described under "Auto DupjSkip" earlier in
this chapter) is in effect. Then, the field is either automatically duplicated or
skipped.

When awaiting-field-exit is indicated, pressing the Character Backspace key
resets the condition. the cursor stays in the last position of the field; the
operator can now enter a character.

1- 8 IBM 5280 COBOL Programmer's Guide

Character Delete

Character Insert

Cursor Left

Cursor Right

The Keyboard

When awaiting-record-advance is indicated, pressing the Character
Backspace resets the awaiting-record-advance condition and puts the cursor in
the last position of the last preceding field in which the operator can enter
data.

Pressing the Character Delete key deletes the character at the cursor position.
The characters within the field and to the right of the cursor shift to the left
one position, and a blank is inserted in the rightmost position of the field. The
cursor position doesn't change.

In a character check type field (when you code a C in the Data Type field of
the field description statement that defines the field) the character delete
function acts within subfields only. Subfields are adjacent character positions
for which the same character type is specified in the parameter for the
keyword SHIFT.

The operator cannot use the Character Delete key when you code a blank
check - CHECK(BC) - or a mandatory fill- CHECK(MF) - in the
related Data Definition Statements.

After pressing the Character Insert key, the operator can insert characters
into a field at the current position of the cursor. (When the key is pressed a>
appears in position 14 of the status line.)

After each character is entered, all data between the cursor and the right end
of the field moves to the right one position. The operator can move the cursor
within the field by using the Character Advance and Character Backspace
keys.

After insertion, the operator must press the Reset key before exiting the field.

When a nonblank data character occupies the rightmost position of the field,
an attempt to insert a character causes an error.

If you specify character check data in the field description statement that
defines the field (a C in the Data Type field) any characters shifted to new
positions must conform to the specifications for those positions that you code
in the SHIFT keyword. Data can be shifted only within a range of positions
for which the same character type is specified in the parameter for the SHIFT
keyword. Data isn't shifted into a position for which a different data type is
specified.

You can insert characters in a hexadecimal field when an H is specified in the
Data Type field of the related field description statement. A hex entry
character requires two keystrokes. The Insert key must be pressed before the
first character is entered.

The operator cannot insert characters in fields for which you specify
mandatory fill- CHECKC,MF) - in the related field description statement.

Pressing the Cursor Left key has the same effect as pressing the Character
Backspace key.

Pressing the Cursor Right key has the same effect as pressing the Character
Advance key.

Chapter 1. Transaction I/0 - Introduction 1- 9

Duplicate

End-oj-Job

Enter / Record Advance

Field Advance

Field Backspace

Pressing the Duplicate key copies characters into the field from the
corresponding field in the previous record, unless the keyword CHECK(DD)
(for duplicate disable) has been specified for the corresponding field
description statement.

Pressing the CMD key followed by the End-of-Job key closes all files and ends
program execution. The operator is then prompted to load a program.

Pressing the Enter Key has the following effect:

• All edits you specify in the Data Definition Statements for all the fields
on the screen are completed.

• If an error is found, a four-digit blinking error code appears in positions
8-11 in the status line at the top of the screen. See the section "Status
Line" in Chapter 8. for a description of the different types of error
codes that can appear and other related information in the status line.

• If no edit error is found, your COBOL program is given control.

When the operator presses the Field Advance key, the following takes place:

• Any edit function you specify in the Data Definition Statements for the
field are started.

• If the edit is completed without error, the cursor moves to the next field
where the operator can enter data.

• If the edit finds an error, a blinking error code will appear in positions
8-11 of the status line. The cursor remains in the right-most position of
the field.

Pressing the field advance key before the cursor reaches the last position in the
field doesn't affect any characters between the cursor and the end of the field.

If automatic enter (as described under "Auto Enter" earlier in this chapter) is
in effect, pressing the Field Advance key when the cursor is in the last position
of the record has the same effect as pressing the Enter key. That is, control is
given to the COBOL program for processing.

Pressing the Field Backspace key has the following effect:

• When the cursor is in the first position of the field, the cursor moves to
the first position of the first previous field where automatic skip or
automatic duplication isn't in effect. (Automatic skip and duplication
are explained under "Auto Dup/Skip" earlier in this chapter.)

• When the cursor is in a position other than the first position, the cursor
moves to the first position of the same field.

If awaiting-field-exit or awaiting-record-advance is indicated in the status
line, pressing the Field Backspace key resets the status line and returns the
cursor to the first position of the field.

1- 10 IBM 5280 COBOL Programmer's Guide

Field Exit

Field Exit Minus

The Keyboard

When awaiting-record-advance is indicated, the field backspace function
resets the condition and returns the cursor to the first position of the last
preceding field in which the operator can enter data.

Pressing the Field Exit key has the following effect:

• For fields that contain signed numeric data (you coded an S in the Data
Type field in the related Data Definition Statements), all data is shifted
to the right, and unused positions are filled with zeros. The position
immediately to the right of the field is set to blank to indicate a positive
number.

• For fields in which data is to be right-adjusted (you specified
CHECK(RZ), CHECK(RB) or CHECK(RL) in the related field
description Statement), data to the left of the cursor is shifted to the
right. Unused positions are filled with zeros or blanks, depending on
your specification.

• If neither of the above is true, all positions to the right of the cursor are
filled with blanks.

In all of the above cases, any other edits you specify in the Data Definition
Statements are done. If no error is found, the cursor advances to the next field
in which the operator can enter data.

If an error is found, a four-digit blinking error code appears in positions 8-11
in the status line at the tops of the screen. See the section "Status Line" in
Chapter 8 for a description of the different types of error codes and other
related information that can appear in the status line.

Pressing the Field Exit Minus key affects only those fields in whose Data
Definition Statements you have coded one of the following in the Data Type
field:

D (digits only)
N (numeric shift)
S (signed numeric)
Y (numeric only)

Pressing the Field Exit Minus key has the same effect as pressing the Field
Exit key, except the sign of the data in the field indicates a negative quantity.

In signed numeric fields, a minus sign is displayed in the position to the right
of the field.

In fields for digits only, numeric only, or numeric data types when right-adjust
is specified or awaiting-field-exit is indicated, the zone of the rightmost
character (which must be a number) is changed to hexadecimal D.

Chapter 1. Transaction I/0 - Introduction 1- 11

Hexadecimal

Record Advance

Record Backspace

Reset

Skip

The rightmost character in the field, signifying the negative sign, is displayed
as follows:

Numeric

{ for 0
J for 1
K for 2
L for 3
M for 4
N for 5
o for 6
P for 7
Q for 8
R for 9

Digits Only /
Numeric Only

0* for 0
1 * for 1
2* for 2
3* for 3
4* for 4
5* for 5
6* for 6
7* for 7
8* for 8
9* for 9

* Each digit will appear on the screen smaller than the standard size digit
usually displayed and will have a bar just above it.

In fields for digits only, numeric only, or numeric data types without
right-adjust specified and without awaiting-field-exit indicated, all positions
from the cursor through the next-to-Iast position of the field are blanked, and
the rightmost position is set to hexadecimal DO.

Pressing the Hexadecimal key allows the operator to enter a hexadecimal
value. Two data keys in succession must be pressed for each hexadecimal
character. The numbers 0 through 9 and the letters A through F are the only
valid entries.

The character displayed above the cursor is the single character that results
from the translation of the hexadecimal value entered. If the translation
doesn't yield a displayable character, the value is displayed as •. The
hexadecimal representation of the characters entered by the operator is
displayed in positions 18 and 19 in the status line at the top of the screen.

See "Enter/Record Advance".

Pressing the Record Backspace key returns the cursor to the first position in
the first field of the record where the operator can enter data manually.

By pressing the Reset Key, the operator can:

Reset the status line and unlock the keyboard after an error is found.

• Cancel the effect of pressing the Command (CMD), Hexadecimal, and
Insert keys.

Pressing the Skip key cause the remainder of the field to be filled with blanks.
Any edits specified for the field are then done. If no errors are found, the
cursor advances to the next field where the operator can manually enter data.

When awaiting-field-exit is indicated, either the Skip key or the Field Exit
key can be pressed.

1- 12 IBM 5280 COBOL Programmer's Guide

System Request

The Keyboard

By pressing the System Request key, the operator temporarily stops the
execution of the current program to load a program into another partition.
Then, execution of the current program resumes.

If the new program is loaded into the same partition as the first program,
execution of the first program stops.

Chapter 1. Transaction I/O - Introduction 1- 13

1- 14 IBM 5280 COBOL Programmer's Guide

Chapter 2. Transaction I/O - Screen Definition

This chapter provides the information necessary to define the screens used by
a COBOL program in interactive processing between the program and the
operator at the work station. The following topics are covered:

• An example of coded Data Definition Statements

• Coding Conventions

• Rules for coding the Data Definition Statements.

Example of Coding Data Definition Statements
The example in this section shows the steps followed in planning a screen
format and coding the necessary Data Definition Statements. The same Data
Definition Statements are used in the COBOL coding example shown figure
3.3 in Chapter 3.

For the purpose of the example, it's assumed that data entry operators entered
information from a form like the following to update an employee master file:

EMPLOYEE MASTER FILE RECORD
(for entering or adding records)

Social security number

Figure 2.1. Sample form used by data entry operator

Employee na.

Street addres~

City, State

In the example, the screen is designed to resemble the sample form shown in
the figure. The following editing characteristics will be defined for the fields
(and explained in detail later):

Chapter 2. Transaction I/0 - Screen Definition 2- 1

IBM

• Data must be entered in all fields

• Certain fields (zip code, beginning date, and social security number)
must be completely filled before the operator can move the cursor to the
next field or enter the record.

• The beginning date in the previous record can be automatically entered
in the beginning date field of the current record at the option of the
operator.

Using the above information, the layout of the screen is planned on an IBM
Printer/Display Layout form (order number GX21-9174) as shown below:

International Bus,""s MachlnM Corporation Printer IDisplay Layout

POSITION

Figure 2.2. Printer jDisplay Layout form

Using the layout form makes it easier to see how the data will appear on the
screen and to code the field description statements, in which you usually write
the position on the screen where each field is to appear.

Keep in mind the size or sizes of the work station screens available at your
location when designing the screens. They come in three sizes: 1920, 960, and
480. The dimensions for each size are as follows:

2- 2 IBM 5280 COBOL Programmer's Guide

Size in Characters Number of horizontal rows Number of l'ertical columns

1920 24 80

960 12 80

480 6 80

Once the format of the screen has been planned, the next step is to write the
Data Definition Statements. The IBM 5280 Data Description Specifications
form, order number GX21-9362 can be used as an aid in coding the
specifications. The data definition statements in figure 2.3 were written so
that the screen format would look like the data entry form shown in figure 2.2.

Chapter 2. Transaction I/0 - Screen Definition 2- 3

IB~ Internationel BUlineu Mechlne-s Corporation IBM 5280 DATA DESCRIPTION SPECIFICATIONS
G>

PTlnte4

Job No

Operator

Sequence

;h £

1 2 3 4 5 6 17 9 1~

olllA

13 A

1016 A

1017 jA

10 ,8 A

115 A

lit A

l~ A

IA

Data~~t I Sowce Document of

Date

II D III ~ Location

iii Oleck,=CHECK (code ,,)

II Edit~ng

Reserved

~
~

Datasetl R ecordl
FieldfTable Name

.~ ~ "

~i ~

Length

1 t2131415~ 1920 21 22 23 :1425 26272829 pO 3132 33

I~ ~F,1I
2

"ID
t~ 0

Itlll~ I

i.1.1 I\; U

I

ZIIA

2tl~

51D

IX

u

o
.0

v

'0

Auto Oup ~AO ~~Ofy Entfv ~ME

Auto Skip AS Mend_tory Fill 2MF

Blank OWek -BC RtAdI-Bt."" FlU -RS
ByPiftl "'BY R'rt 10 lJof1 '"Rl
8yp'\~ 0:.1" IIt"f" 8V '11 Adl-l~o F,II 'RI

Line Pos
~ta ReQlmed .. OR Self Owek ""u
Oup Dlsa~e -DO O"M/G i~k(G!-"J

Field EXII Requlf!d -FE ~Jt .. ModuluI

Lo_fease -lC

Functions

AUXOUPINlmel
AUXSTI".mel
COMP(lteltfldl l • fldn

'hter~' !,,,d'Ulor))
OSPATR (lam I

EOTCOE6cock'tIOllt')
ERROR (code ('mftU9!'}I
EXSR (subroutine)
INSERT Ifld1 l •... fldn 'II!!!"'I')

LOOKltabie (index! I

itestcEo.GE,GT.LE.lT,NE
lanr-eL.CA.CS.HI.NO.RI.UL
)".,-.-,/
4,hitt-A,O,H.N,V,W.X. Y

PMT (promptl

RANGEUowh.
RANGEl Itabte I,
RESET(I"TOTnl
SEQI'tal1l
SETOFCindl
SETOI\I.,ndl

SHIFT r"uftJ
SUB ("""1
SUeST Itabl .. , ut
TADOWTOTn)

TSU8 WTOTn! I
XCHKftabhindl:
'11,.,,1'

44 46 47 48 495051 52535455565758 5960 61 6263 64 65 66 67 68 69 70 7172 73 74 75 76

ie 1 1111

,

\/'

1'5 1
\

\

'fHI i
:\

/\ I~ ~ ItA)

8Y)

PI In E

R R ~
oilll'l t:. ~ ~II

R
It: iJ:: 1\

Ie R
i'l'l" I ~ c

Ie Q

F)
1::1

I'

FIE~

II 1

I~

IU Hllt<l

IV I~

I ..,

1 2 3 4 5 6 7 8 9 1011121314151617181920 21 22 23 2425 26 27 28 2930 31 32 33l<' 35 36 37 38 3940 41424344 45 46 4748 49505152535455565758 5960 616263646566 67 68 69707172 73 747571
"Number of sheets per pad may vary slightly,

Figure 2.3 Data Definition Statements Coding Example

The statements in figure 2.4 show what the Data Definition Statements in
figure 2.3 look like after they are copied and compiled.

COPY-ID STMT.* SEQ.* A ... B COBOL SOURCE STATEMENTS ...

"" COpy DDS-EMPRECD. ~~

EMPRECD 22 000001 01 EMPRECD.

EMPRECD 23 000002 02 ACREC PIC X(00002).

EMPRECD 24 000004 02 EMPNO PIC X(00005) .

EMPRECD 25 000006 02 ENAME PIC X(00020) .

EMPRECD 26 000008 02 STRAD PIC X(00020).

EMPRECD 27 000010 02 CTYST PIC X(00020) .

EMPRECD 28 000012 02 ZIPCD PIC X(00005).

EMPRECD 29 000014 02 BEGDT PIC X(00006).

EMPRECD 30 000016 02 SOSNO PIC X(00009) .

EMPRECD 31 000018 02 MARST PIC X(OOool).

Figure 2.4 Data Definition Statements as compiled by the COBOL compiler

2- 4 IBM 5280 COBOL Programmer's Guide

The following text explains some of the statements in figure 2.3; later sections
in this chapter give detailed rules for coding each field.

II The Sequence Number field (columns 1-5). The number in this field appears
in the source listing under the SEQ.# column, as shown in figure 2.4.

fJ The Name Type field (column 17). For record description statements, this
field contains an R. For field description statements, this field contains a
blank.

II The Record Name field (columns 19-26 for record description statements) or
the Field Name field (columns 19-24 for field description statements). These
names (EMPRECD, ACREC, EMPNO, etc.) will appear as the 01 and 02
level data items in the COBOL program, as shown in figure 2.4.

II The Length field (columns 30-34 for field description statements only.) This
field specifies the length of the field on the screen, and the size of the 02 level
data-item in the COBOL program, as also shown in figure 2.4.

II The Data Type field (column 35 for field description statements only). This
field defines the data type and keyboard positioning, in this example A for
alphabetic shift, D for digits only, and X for alphabetic only.

m The Decimal Positions field (column 37 for field description statements only).
This field determines whether the corresponding data-item in the COBOL
program will be compiled as alphanumeric or numeric. If blank, the data-item
will be alphanumeric; if any number between 0 and 9 (indicating a decimal
position), the data-item will be numeric.

In the example, the Decimal Positions fields all contained blanks. As shown in
figure 2.4, this created alphanumeric (X) data-items for all the fields.

D The Usage field (column 38). This field defines whether or not the operator
can enter data in the field. If it is B (for both input and output) the operator
can enter data into the field, and the program can write data from the field to
the screen. If it is 0 (for output only), the program can only write data to the
screen using literal statements as will be shown later.

aNotel: You can access in your COBOL program only those fields defined
with usage B. As shown in figures 2.3 and 2.4, only B fields are compiled as
data-items.

aNote 2: Wand I fields (shown on the coding form) aren't valid fields for
COBOL programs.

iii The Location field (columns 39-44 for field description statements only). This
field specifies the line and column number where the field is to appear on the
screen.

The physical line number on the screen where the field will appear depends on
(1) the value you code in columns 39-41 and (2) the value you code in the
STARTING AT LINE clause in the associated WRITE statement in your
program. See the section "Location Field" for the rules on how these two
values affect the placement of fields on the screen.

The value you code in columns 42-44 determine the horizontal placement of
the field.

II The Editing field (columns 45-80). You write the keywords that control the
editing, field attributes, and keyboard conditioning in this field. Some of these
keywords used in this example will be explained in the following text. Refer to
figure 2.5 while reading the text.

Chapter 2. Transaction I/O - Screen Definition 2- 5

I::
U

Reserved
~-

Sequence

~
g ~ ~,h ~]

IBM 5280 DATA DESCRIPTION SPECIFICATIONS

Dataset/ Record/
Fieldrrable Name

Keving
Instruction

Length

"i

j

I:~ic I I I III I I I Source Documenl

Location

Olec ks=CHECK (code ...)

....... Ou. -AD ~OfyE"Hy -ME
AutoSlup -AS ""'toryf,1! ·MF Chod< ·ae fh Adt-B'-"k FlU -RB 'BV R,thttouft ·RL
B._ onVIf,fy -av RtAd,-Z""oF,ll 'RZ

Line Pos
0 ... R.quued 'DR S.tf·o.ck "'" ..
Dup DIWbIe '00 O-M/GIQ,ect/Gl'n)
F,.ldE •• t Required -FE JII:.·lIIodulus
,-,-, en. =LC

ii
jl ~

Editing

Functions

ADO ,,,.,.,.,

AUXOVP INrNl
AUXSTI"....I

CO..., i'tHtfkt1 1 • I","

htff~' i.!OdtgtOfjl
DSPATR ,!.nr I
[OleOE lc:odI"toIt'l
ERROR (cock 1'''''"'''11'11
EXSR (wbroutmel
INSERT (tldt) •.. fldn 'hter .. ')

lOOK ItabW!,ndt.!1

'tft1-Eo.GE.GT.LE.l T,NE
Ilttf-8L.CA.CS,HI.NO,RI,UL
)".,-,-,1
4sh1tt-A.,D,H,N,Y,W.X. Y

GX21-9362I
Printed in U.S.~

of

PMTlpromptl

""~Ef'o.h""l
"ANGET Uable f IndeX J I
RESETI("TOTnJ [n.mt\i
seal'.,,)
SETOFhndl
seTO~ Itndl
SHIFT t"1httI1

SUI I"....'
SUIST (table1 ~21'nded)
TADOff-TOTn] (""""II
TSU8 II-TOTnl I".,..,.) I
XCHK (table ,,...1 inded)
'ht.'"

• 2 3 4 5 87 .,0 11 121314151 • .. ,. 20 21 22 23 2425 32 46 4746 4950 5152 53 54 56 66 57585950 6162 6364 S556 67 68 697071727374757677 78796(

o l'A ~ B I~ C; III)
12A ~IC Rl I' F;r.< !"l III A ~)
13 A Yl

0!4 A . ill ~D 1,11 1 ~~
015 A .'. 1Il 0 ~ U If Ii II K (IC IAI)
016 A r-~~ I~.X glz 4 RS
o 171A ~';'~ :' "'D

,.,
~A E' u IrAl1 IAll

ols jA I~I' "I" l'e rz~A IGI~ t I~B
o 191A '\ I K I: , II

II " '10 iA II 1 PI rz~x ~~ f ,1 f R8
'1' iA 11111\ " 111:. I)
'121A ililH: 115 111 ,e ~IF F f)
'131A 10 i\ .llp ,. I' IrRl1 ICI~ll

'141A ~D fI' 411 ~f ft)
'lslA In IU IT t I)

IA ~1)~ "'7 111 ~IF
IA .. In I' TI't

,
IA II 111X ~18 MiF
IA ~

\

" 11' '1
IA

1234567 8 910111213141.51617181920212223'2425262728293031323334353637383940414243444546474849505152535455565758595061626364655667686970 717273747576777879S(
'Number of sheets per pad may vary 'lightly.

Figure 2.5. Data Definition Statements Coding Example

II EMPRECD is a record description statement.

1. The B in the Usage field is the the default for the usage field for all
subsequent field statements. The B lets all fields in the record be used for
both input and output. That is, the program can write data to the screen
from them, and the operator can enter data into them on the screen. The B
can be overridden in a subsequent field description statement, as will be
shown.

2. DSPATR (for display attribute) assigns two default attributes to the field
description statements: all fields will have column separators (CS) and will
be underlined (UL) unless specifically overridden, as will be shown.

B ACREC is a two-byte field that will not appear on the screen.

The statements in the Editing field are an example of how to suppress a field
not intended for viewing by the operator. (In this example, ACREC is used by
the program to determine whether the record is current or inactive.) Here's
how this is achieved in the example:

1. In the DSP A TR keyword, CA (for cancel) cancels the underline (UL) and
column separators (CS) specified in the preceding record description

2- 6 IBM 5280 COBOL Programmer's Guide

statement (EMPRECD). ND (for nondisplay) prevents any data in the
field from appearing on the screen.

2. CHECK(BY) - BY stands for bypass - causes the cursor to skip the
ACREC field and be positioned at the start of the next field (EMPNO)
immediately after the record is written to the screen.

Note that CHECK(BY) must be specified in a secondary line as explained
later in this chapter under "Coding Conventions" and shown in figure 3.3.

3. Because the field is nondisplay, it wasn't necessary to specify a location.

II EMPNO is a five-digit field for the employee number. Here is a summary of
the specifications:

1. The D in the Data Type field allows the operator to enter only digits. If the
operator tries to enter nondigits, the keyboard will lock and an error code
will appear in the status line at the top of the screen. The operator can then
refer to the 5280 Messages Manual for an explanation of the message and
the recommended action to correct the error.

2. The 01 in the Location field indicates the relative line number the field is to
appear on the screen in relation to the STARTING AT LINE clause as
discussed earlier. The number J J causes the field to start in column lIon
the screen.

3. The DR (for data required) following the CHECK keyword means that the
operator must enter at least one character (in this example, a digit) before
exiting the field. Otherwise, the keyboard will lock and an error code will
appear in the status line.

The RZ (for right adjust with zeros) creates two conditions: (l) the
operator must press the Field Exit key to go to the next field and (2) when
the exit key is pressed, all digits are shifted to the rightmost positions; any
unused positions to the left are filled with zeros.

II The logic of the specifications for ENAME, STRAD, and CTYST is the same
as for EMPNO with the following exceptions:

- The RB following CHECK causes a right adjust with blanks instead of
zeros.

- The X in the Data Type field for ENAME and CTYST allows the operator
to enter only alphabetic characters.

- The A in the Data Type field for STRAD allows the operator to enter both
digits and alphabetic characters.

The fields with an 0 specified in the Usage field (column 36) are fields that
can be used for output only. That is, the program can write the data enclosed
in single quotes (,) in the Editing field to the screen, but the operator cannot
write data into the fields on the screen.

G'Note the following:

1. The Field Name field for output fields must be blank.

2. The fields needn't have a field location specified; they will appear on the
screen after the preceding field.

3. The CA (for cancel) parameter following the DSPATR keyword cancels
the underline and column separator attributes for these fields.

4. As shown in figure 2.4, output fields do not appear as data-items in the
source listing.

B Note the effect of CHECK parameters on the ZIPCD, BEGDT, SOSNO, and
MARST fields:

1. FE forces the operator to press the Field Exit key to exit the ZIPCD and
BEG DT fields.

2. Together, DR (for data required) and MF (for mandatory fill) force the
operator to fill all available positions in each field before an exit can take
place as follows:

Chapter 2. Transaction I/0 - Screen Definition 2- 7

- DR specifies that at least one non blank character must be entered in the
field.

- MF specifies that if a character is entered into one position of the field,
all positions must be filled.

If the operator attempts to exit the field without filling the positions with the
characters specified in the Data Type field, the keyboard will lock and an
error code will appear in the status line at the top of the screen.

2- 8 IBM 5280 COBOL Programmer's Guide

Coding Conventions

Primary, Continuation, and Secondary Lines

Continuation Characters

Keywords

You can code two different types of lines for field and record statements:

• A primary line, which contains the fields, both required and optional, in
columns 1-44 and, starting in column 45, the editing field, which
contains keywords, keyword parameters, and literals.

• One or more continuation lines, which extend the editing field (begun on
a preceding primary or continuation line).

The primary line, or continuation line that comes before another
continuation line, must have a + character or a - character as the last
nonblank character. The next section explains the differences between
these characters.

Field description statements can contain, in addition to primary and
continuation lines just described above, one or more secondary lines. A
CHECK keyword (whose functions are explained later in this chapter)
containing a BY parameter, must always begin on a secondary line. The rules
for coding a secondary line are:

• A secondary line must always follow a primary line or a continuation
line.

• The primary or continuation line that comes before a secondary line
must not have a + character or a - character specified as the last
character.

• A secondary line must begin with a keyword.

• A secondary line can have continuation lines under the same rules
specified for primary lines.

Comment statements, which contain an asterisk (*) in column 7, can be
placed where desired between primary, secondary, and continuation lines.

If a literal, keyword, or keyword parameter doesn't fit on one line, you can
continue it on the next line by coding a plus character (+) or a minus
character (-) as the last non blank character in the line.

A plus (+) character indicates that the compiler is to ignore any blanks before
the first nonblank character in the continuation line that follows.

A minus (-) character causes the compiler to include any blanks before the
first non blank character in the continuation line that follows. The compiler
always includes any blanks preceding the + or - continuation character.

Keywords represent attributes and functions. Most keywords must be
accompanied by a string of one or more parameters that further define the
attributes or function. The string of parameters must follow the keyword and
must be enclosed within a pair of parentheses.

The general syntax for a keyword and its parameter string is:

KEYWORD (parameter string)

When the parameter string contains two or more parameters, each consecutive
parameter must be separated from the preceding parameter by at least one
blank.

Chapter 2. Transaction I/0 - Screen Definition 2- 9

Constants

Comment Statements

Two or more keywords can be specified on a single line. Any keyword that is
specified without a parameter string must be separated from the following
keyword by at least one blank.

Within these guidelines, the following three lines convey identical meanings to
the compiler.

CHECK(DR FE RB)DSPATR(CS)

CHECK (DR FE RB) DSPATR(CS)

CHECK (DR FE RB) DSPATR (CS)

In the above three lines, the only required blanks are between the parameters
following the CHECK keyword. Whenever a keyword and its parameters
aren't started and completed on the same line, the use of a continuation
character is required. See Continuation Characters, earlier in this chapter.

Character constants consist of any combination of characters, including
blanks. Character constants must be enclosed in apostrophes. An apostrophe
required as data within the constant must be represented by two apostrophes.
If necessary, you can continue a constant on one or more continuation lines.

Comment statements allow you to insert comments among the Data
Definition Statements, providing a means to document their logic if necessary.

Comment statements can be placed anywhere in the source statement
sequence. They are ignored by the compiler. You write a comment by
entering an asterisk (*) in column 7. The remaining positions of the line
(columns 8 through 80) are then ignored by the compiler and are available for
comments.

2- 10 IBM 5280 COBOL Programmer's Guide

Record Description Statement

Record Description Statements
Record description statements name the record and describe characteristics
that apply to the entire record.

SelJllence Number Field (Columns 1 tllrougll5)
Enter the statement sequence number, if desired. The sequence number, if
entered, will appear next to the 01 level data-name in the source listing put
out by the compiler. This name is defined in the Record Name field (columns
19-26) described below.

Sequence numbers in source statements are optional. They can be useful
when you want to change, add, delete, or relocate a source statement. The
only restriction is that the first two columns of the Sequence field cannot
contain **.

Form Type Field (Column 6)
Enter an A in the Form Type field.

Name Type Field (Column 17)
The letter R is required in the Name Type field for record description
statements.

Record Name Field (Columns 19 through 26)

Usage Field (Column 38)

Output (0) Fields

A name is required on a record description statement. The name must not be
more than eight (8) characters long. In the source listing put out by the
compiler, the name specified will appear as a 01 level record-name and group
item.

The rules for defining names are the same as for COBOL record-names
(except for the limit of eight characters): valid characters in the Record name
field are A through Z, 0 through 9, and - (the hyphen); the name must begin
with an alphabetic character. See the COBOL Language Reference if you
need more details on these rules.

The entry you make in the Usage field supplies a default value for subordinate
field statements which contain a blank in column 38.

Valid entries in the Usage field are:

o establishes a default of output only for subordinate field description
statements.

B establishes a default that is for both input and output in subordinate
field description statements.

blank indicates no default; an entry must be made in the Usage field in each
subsequent field description statement.

For those fields defined for output (you enter an 0 in the Usage field):

1. The operator cannot enter data into the field.

2. You must specify a nonnumeric literal in the Editing field starting in
column 45. The literal can have any character in the EBCDIC set and
must be enclosed within single quotes (, 1 it era 1 '). Any single quote
used as part of the character string must be coded twice (' ').

Chapter 2. Transaction I/0 - Screen Definition 2- 11

Both Input and Output (B) Fields

The literal appears on the screen when your COBOL program issues an
associated WRITE statement. The use of literals is shown at II through D
in Figure 2.5 earlier in this chapter.

3. You must leave the Field Name field (columns 19-24 of the field
description statement) blank.

For those fields defined for both input and output (you enter a B in the Usage
field):

1. The operator can enter data on the screen in fields defined by the
statements.

2. The operator can duplicate data from the corresponding positions in the
preceding record by pressing the Duplicate key, unless you specify
CHECK(DD) as explained later in this section.

3. Data can be automatically duplicated in the field when the the operator has
pressed the Auto Dup/Skip key, and you have coded the CHECK(AD)
keyword and parameter in the editing field of the associated field
description statement. The data is automatically duplicated from the
corresponding positions in the previous record when the cursor enters the
field.

When using a field for both input and output, consider the following when
writing your COBOL program:

1. The field description statements with a B specified in the Usage field define
02 level elementary items in the COBOL program.

2. When a WRITE is executed, any data in the associated record will be
written to the screen. You should therefore ensure that such fields are
either initialized with blanks or the data you want before the WRITE is
executed.

3. The operator can write over any data appearing in the field.

To Prevent Entry of Data in a B-Field

To prevent the entry of data in a B- Field, use the CHECK(BY) keyword
described later in this chapter. With this keyword, you can cause the cursor to
bypass a field on the screen either conditionally or unconditionally.

Editing Field (Columns 45 through 80)

CHECK(DD)

The entry you make in the editing field applies to subordinate field statements
which don't contain overriding keywords in columns 45-80.

You can specify the fonowing keywords in a record description statement:

Keyword

CHECK
DSPATR

Description

Keyboard level edits
Display attributes

The CHECK(DD) keyword prevents the operator from using the DUP key for
fields defined by subordinate field description statements. If CHECK(DD) is
specified in the record description statement, you cannot override it in a
subordinate field description statement.

CHECK allows a wider range of edits when specified in the field description
statement, as described under "Field Description Statement" below.

2- 12 IBM 5280 COBOL Programmer's Guide

DSPATR (attributes)

Record Description Statement

With the DSPATR (for display attributes) keyword, you can control the
display attributes on the screen. The attributes specified by this keyword are
combined with those specified in the field description statement (if any) to
establish the display attributes to be used for a field.

See the explanation of DSPATR in the section "Field Description Statement"
for a description of the attributes and the rules for specifying them.

Chapter 2. Transaction I/0 - Screen Definition 2- 13

(This page is intentionally left blank.)

2- 14 IBM 5280 COBOL Programmer's Guide

Field Description Statement

Field Description Statements
A field description statement can be made up of primary, continuation, and
secondary lines as described under "Coding Conventions" earlier in this
chapter.

Sequence Number Field (Columns 1 through 5)
Enter the statement sequence number, if desired. The sequence number, if
entered, will appear next to the 02 level elementary item in the source listing
put out by the compiler. You define this name in the field name field
(columns 19-24) described below.

Sequence numbers in source statements are optional. They can be useful
when you want to change, add, delete, or relocate a source statement. The
only restriction is that the first two columns of the Sequence field cannot
contain **.

Form Type Field (Column 6)
Enter an A in the Form Type field.

Indicator Field (Columns 9 and 10)
Leave this field blank except when you want to cause the cursor to
conditionally bypass a field and specify the CHECK(BY) keyword for this
purpose. You specify CHECK(BY) in the Editing field as described later in
this chapter.

Code any number from 1 through 99. Single digit numbers (1 through 9)
must be right-adjusted with a leading blank.

The indicator you specify is associated with a boolean data-item you code
in your program.

For the rules to follow in coding the INDICATOR clause with a data-item,
see the 5280 COBOL Language Reference manual under "OCCURS Clause"
and "INDICATOR Clause".

For the format of the INDICATOR clause in the WRITE statement, see
Chapter 3 of this manual or the 5280 COBOL Language Reference manual
under "WRITE".

For an example of the COBOL statements and the Data Definition
Statements using conditional bypass with indicators, see Chapter 3 under
"INDICATOR Example".

Field Name Field (Columns 19 through 24)
Leave this field blank when you are defining a field that is to be used for
output only (column 38 the Usage field, has an 0 in it).

The Field Name field must be a valid COBOL data-name not more than eight
(8) characters long. The name will appear as a 02 level elementary item in
your COBOL program.

If you leave this field blank when the statement defines a field that is to be
used for both input and output (column 38, the Usage field, has a B in it), the
resulting 02 level data-item will appear as FILLER in your COBOL program.

The rules for defining names are the same as for COBOL record-names: valid
characters in the Field name field are A through Z, 0 through 9, and - (the
hyphen); the name must begin with an alphabetic character. See the COBOL
Language Reference if you need more details on these rules.

Chapter 2. Transaction I/O - Screen Definition 2- 15

Length Field (Columns 30 through 34)
Leave this field blank when you are defining a field that is to be used for
output only (column 38 the Usage field, has an 0 in it).

You must specify a length when a data field is used for both input and output
(the Usage field, column 38, has a B in it). The following rules apply:

The maximum length of the field depends on the type of field you specify:

1. Character fields can contain up to 256 positions; field description
statements, as noted earlier, are compiled as 02 level data-items in your
COBOL program.

2. Numeric fields can contain up to 18 positions.

Only the digits 0 through 9 are allowed in the Length field; either leading
zeros or leading blanks are acceptable. The entry in the Length field must be
right adjusted.

Data Type Field (Column 35)
Leave this field blank when:

• You code CHECK(BY) in the Editing field.

• This statement defines a field that is to be used for output only (the
Usage field, column 38, has an 0 in it).

You must specify a data type when the field is used for both input and output
(the Usage field, column 38, has a B in it) unless you specify CHECK(BY) in
the Editing field. (The CHECK keyword is explained later in this chapter.)

Data-Item Class in COBOL Program

The class (numeric or alphanumeric) of the data-item compiled in the
COBOL program depends on you entry in both the Data Type field and the
Decimal Positions field, as shown in the following table:

Data Type Decimal Position Data class of field in COBOL
field contents: field contents: program after compilation:

A,C,D,H,N, blank alphanumeric (X)
S, V, W, X, or Y

A,C,H, V, W, 0-9 unsigned numeric
X,orY (9V9)

D, N, or S 0-9 signed numeric
ICOUO\
tJ71'7

2- 16 IBM 5280 COBOL Programmer's Guide

Data Type Field Entries

Field Description Statement

You can make the following entries in the Data Type field:

Entry

A

C

D

Condition

Alphabetic shift - Any character can be entered. The shift is
positioned to the lower symbol on each key on all keyboards.
The operator can use the shift key to enter the upper symbol on
the keys.

Character check - The characteristics of the keyboard are
determined by the parameter for the SHIFT keyword in the
field description statement. The SHIFT keyword is required
when this data type is specified. See the SHIFT keyword later
in this section.

Digits only - Only the numbers 0 through 9 can be entered.
The shift is positioned to the lower symbols on typewriter
keyboards and is positioned to the upper symbols on both data
entry keyboards and proof keyboards. The operator cannot
override the shift. Negative numbers are displayed with the
sign over the units position of the number.

A negative value is entered in the field when the operator,
having entered one or more digits, presses the Field Exit Minus
key.

H Hexadecimal- Each character position requires two keystrokes
and only the numbers 0 through 9 and the letters A through F
can be entered. No shift key operation is required on
data-entry keyboards.

N Numeric shift - Any character can be entered. The shift is
positioned to the lower symbols on typewriter keyboards and is
positioned to the upper symbols on both the data entry
keyboards and the proof keyboards. The operator can change
the shift by using the Shift key.

A negative value is entered in the field when the operator,
having entered one or more digits, presses the Field Exit Minus
key.

S Signed numeric - Only the numbers 0 through 9 can be entered.
The signed numeric data type implies right adjust with zero-fill,
digits only, and field exit required. To exit the field, the
operator must press the Field Exit key (for positive values) or
the Field Exit Minus key (for negative values). The keyboard
shift is positioned to the lower symbols on typewriter keyboards
and to the upper symbols on data entry and proof keyboards.

When signed numeric data is entered, the system designates an
additional display position, which is adjacent to and to the right
of the data field. This additional display position is the sign
position. It is blank for positive values and is set to - (minus
sign) for negative values.

The corresponding field of the record in the COBOL program is
not lengthened. The zone portion of the lower-order digit
contains hexadecimal D instead of a hexadecimal F, indicating a
negative value.

Chapter 2. Transaction I/O - Screen Definition 2- 17

A negative value is entered in the field when the operator,
having entered one or more digits, presses the Field Exit Minus
key.

V Right half only - Only the characters that are defined at system
generation can be entered. The shift is positioned to the lower
right symbols on appropriate keyboards. The shift key allows
entry of the upper right symbols. (See the note below after the
explanation for W.)

W Right half shift - Any character can be entered. The shift is
positioned to the lower right symbols on appropriate keyboards.
The opera tor can change the shift by using the shift keys.

aNote: V and W should be used only for those keyboards with
more than two shift positions (such as the Katanana keyboard).
Don't use these data types in programs that are to be executed
on other keyboards or an unrecoverable error will occur at
execution.

X Alphabetic only - Only the letters A through Z, comma, period,
hyphen, and space can be entered. The shift is positioned to the
lower symbols on all keyboards. The shift cannot be changed by
the opera tor.

Y Numeric only - Only the numbers 0 through 9, comma, period,
plus, minus, and space can be entered. The shift is positioned
to the lower symbols on typewriter keyboards and to the upper
symbols on both the data entry keyboards and the proof
keyboards. The shift cannot be changed by the operator.

A negative value is entered in the field when the operator,
having entered one or more digits, presses the Field Exit Minus
key.

Decimal Positions Field (Column 37)

TT~noo FiolJ frnl",.," ~R) """'.., .. 6a. '''''''","'/

Leave this field blank if the data is alphabetic. (In the COBOL program, the
data-item created by the field description statement will be defined as
alphanumeric, regardless of what you specify in the Data Type field.)

Enter any value from 0 through 9 to indicate a numeric value. (In the
COBOL program, the data-item created by the field description statement
will be defined as numeric, regardless of what you specify in the Data Type
field.) The 0 through 9 value defines the number of positions to the right of
the decimal point for the data-item. You must also specify a length in the
Length field (columns 30-34).

You needn't make an entry in the Usage field if you already have an entry in
the Usage field of the record statement. However, if you make an entry, it will
override the corresponding entry in the record description statement.

ONote: If the Usage field of the record description statement is blank, you must
make one of the following valid entries:

o the field can be used for output only.

B the field can be used for both input and output.

blank the field is to use the default specified in the preceding record
description statement.

2- 18 IBM 5280 COBOL Programmer's Guide

Output (0) Fields

Input and Output (B) Fields

Field Description Statement

For those fields defined for output (you enter an 0 in the Usage field):

1. The operator cannot enter data into the field.

2. You must specify a nonnumeric literal in the Editing field starting in
column 45. The literal can have any character in the EBCDIC set and
must be enclosed within single quotes (, 1 iter al'). Any single quote
used as part of the character string must be coded twice (, ').

The literal appears on the screen when your COBOL program issues an
associated WRITE statement. The use of literals is shown in figure 2.2.

3. You must leave the Field Name field (columns 19-24 of the field
description statement) blank.

Here's an example of a field description statement defining a field for output
only:

----+----1----+----2----+----3----+----4----+----5----+----6----+
A 0 'ENTER USER IO'

For those fields defined for both input and output (you enter a B in the Usage
field):

1. A literal is not allowed in the statement.

2. The operator can enter data on the screen in fields defined by the
statements unless you specify CHECK(BY) in the editing field. (The
CHECK keyword is explained later in this chapter.)

3. The operator can duplicate data from the corresponding positions in the
preceding record by pressing the Duplicate key, unless you specify
CHECK(DD).

4. Data can be automatically duplicated in the field when the operator has
pressed the Auto Dup/Skip key, and you have coded the CHECK(AD)
keyword and parameter in the editing field of the associated field
description statement. The data is automatically duplicated from the
correspondingpositions-in the previous record when flie cursor enters the
field.

aNote: The field as it appears on the screen will not contain the same digits if
the COBOL program changes its contents before writing the record to the
screen.

Here's an example of a field description statement that defines a field for both
input and and output; the field, EMPNO, will accept only digit data up to five
characters in length; each time a record appears on the screen, EMPNO will
contain the same digits as were in the corresponding field in the preceding
record:

----+----1----+----2----+----3----+----4----+----5----+----6----+
A EMPNO 50 B CHECK(AO)

When using a field for both input and output, consider the following when
writing your COBOL program:

1. The field description statements define 02 level elementary items in the
COBOL program.

Chapter 2. Transaction I/0 - Screen Definition 2-.19

2. When a WRITE is executed, any data in the associated record will be
written to the screen. You should therefore ensure that such fields are
either initialized with blanks or the data you want before the WRITE is
executed.

3. The operator can write over any data appearing in the field unless
CHECK(BY) is in effect.

To Prel'ent Entry of Data in a B-Field

To prevent the entry of data in a B- Field, use the CHECK(BY) keyword
described later in this chapter. With this keyword, you can cause the cursor to
bypass a field on the screen either conditionally or unconditionally.

Location Field (Columns 39 through 44)
In the location field, you code the location where the field will appear on the
screen as follows: you specify the line number (vertical position) in columns
39-41 and the horizontal position in columns 42-44. The actual line where the
data appears on the screen depends on whether or not you specify the
STARTING AT LINE n clause in the corresponding WRITE statement in
your COBOL program. Here are the rules that determine which line a field
will appear on:

1. To determine the physical line on the screen, add the STARTING AT
LINE value with the value you write in columns 39-41. Then subtract 1.

2. If you don't specify a STARTING AT LINE clause, the default value will
be 3.

3. The minimum value that be specified in the STARTING AT LINE clause
is 2. Note that prompts specified with the PMT (for prompt) keyword
always appear on line 2. The PMT keyword is explained later in this
chapter.

4. If you don't specify a STARTING AT LINE clause, or Line and Position
fields, the starting position for the first field will be the first position in line
3. Each field that follows will be in the next available display position
following the previous field.

The defaults for line and position entries ensure that the Status Line and the
prompt line at the top of the screen aren't overlayed, whether STARTING
AT LINE is specified or not. The following table shows the relationship
between STARTING AT LINE values, line entries in columns 39-41, and the
physical line on the screen where the field will appear.

STARTING Value Cols. 39-41 Screen Line

Blank (default 3) Blank Next available position
Blank (default 3) 3
Blank (default 3) 2 4
Blank (default 3) 3 5
3 Blank Next available position
3 1 3
3 2 4
3 3 5
4 Blank Next available position
4 1 4
4 2 5
4 3 6

2- 20 IBM 5280 COBOL Programmer's Guide

Field Description Statement

Entries in the Line and Position fields must be right adjusted. Either leading
zeros or leading blanks are allowed. The following table gives the dimensions
for the three screen sizes available with a 5280 system:

Size in Characlers Number of horizontal rows ~umber of vertical columns
-
~ . - -- - , . • CT-'

1920 24 80

960 12 80

480 6 80

Editing Field (Columns 45 through 80)

CHECK (parameters)

Entries in the Editing field are optional. An entry in this field can be a single
keyword with a parameter string or multiple keywords, each with its
parameter string. You can extend the Editing field with continuation lines.

The CHECK keyword allows you to cause data to be edited automatically by
the system. If the data isn't entered as you specify, the keyboard will lock and
an error message will appear on the screen.

CHECK requires at least one of the following parameters.

Parameter Meaning

AD Automatic duplication - when the cursor moves into the field
for which CHECK(AD) is specified, data from the
corresponding positions in the previous record is automatically
copied into the field. The operator controls whether or not
duplication will occur with the Auto Dup/Skip key as described
in Chapter 1. During automatic duplication, data type and
CHECK keyword edits are ignored.

AS Automatic skip - when the cursor moves into a field for which
CHECK(AS) is specified, blanks are inserted into the field, and
the cursor moves to the next field where the operator can
manually enter data. The operator controls whether or not a
skip will occur with the Auto Dup/Skip key as described in
Chapter 1.

BC Blank check - The operator cannot enter blanks into a field for
which CHECK(BC) is specified. However, the operator can
bypass the field, leaving it blank, by using the Field Exit key
when the cursor moves to the first position of the field.

BY Bypass - The cursor bypasses the field, either conditionally or
unconditionally. When the field is bypassed, the operator
cannot enter data and the contents of the field remain
unchanged.

A field can be conditionally bypassed if you code the condition
(and indicator) and CHECK(BY) in a secondary line of the
field description statement. The only entries you can make in
the secondary line are an entry in the Sequence field, an
indicator number in the Indicator field, the required A in the
Form Type field, and CHECK(BY) in the Editing field.

Chapter 2. Transaction I/O - Screen Definition 2- 21

DSPATR (attributes)

DD Duplication disable - The operator cannot use the Duplication
Key in fields for which CHECK(DD) is specified.

DR Data required - The operator must enter at least one nonblank
character in fields for which CHECK(DR) is specified.

FE Field exit required - The operator must press one of the Field
Exit keys to exit the field. See Chapter 1 for an explanation of
the Field Exit keys.

Normally, when the last character in a field is entered, the field
is exited automatically.

LC Lowercase - The operator can enter both uppercase and
lowercase characters if the typewriter keyboard is used.
Without LC specified, all characters are treated as uppercase
characters. LC is ignored if the typewriter keyboard is not
being used.

ME Mandatory entry - The operator must enter at least one
character, either blank or nonblank.

MF Mandatory fill- If one character is entered, the operator must
enter characters into all the positions of the field.

RB Right adjust with blank fill- when the operator presses the
Field Exit key, all data is shifted from the position of the cursor
to the rightmost positions of the field, if no data has been
entered in these positions. The unused positions to the left of
the data are filled with blanks. The operator must press the
Field Exit key to exit the field.

RZ Right adjust with zero fill- when the operator presses the Field
Exit key, all data is shifted from the position of the cursor to the
rightmost positions of the field, if no data has been entered in
these positions. The unused positions to the left of the data are
filled with zeros. The operator must press the Field Exit key to
exit.

RL Right to left - As the operator enters characters, the rightmost
position is filled first; each additional character is added in the
next free position to the left. The operator must press the Field
Exit key to exit. A Vor W must be specified in the Data Type
field.

With the DSPATR keyword, you can control how characters appear on the
screen with the parameters shown in figure 2.6. The following two sections
give special rules when coding a DSPATR keyword.

2- 22 IBM 5280 COBOL Programmer's Guide

Attribute

BL

CA

CS

HI

ND

RI

UL

Field Description Statement

Meaning

Blink. The displayed field(s) blinks (flashes on and off).

Cancel. When specified in a field description statement,CA cancels
display attributes made in the record description statement. Use CA
when an attribute or characteristic specified in the record description
statement isn't desirable for the field being defined. Other parameters
can then be specified to control the display for the record. The
parameter CA affects only the field description statement for which it is
coded.

Column Separators. Column separators are displayed in the field(s).
Column separators are thin vertical lines between character positions;
they do not reduce display capacity.

Highlight. The displayed characters are highlighted (displayed with
increased intensity).

Nondisplay. The field(s) in the record aren't displayed.

Reverse image. The field(s) in the record is displayed with images
reversed (dark characters are displayed on a light background).

Underline. Each character in the field(s) is underlined.

Figure 2.6. Attributes that can be specified with the DSPATR keyword

Placement of Attribute Control Characters

A DSPATR causes control characters to be placed in the first position before
and the first position after a field. (the control characters do not appear on
the screen). Keep the following in mind when you code the Location field
(columns 39-44):

1. The position immediately before, and immediately after the field must be
blank. You control whether a position is blank or not by what you specify
in the Position field (columns 42-44) and the Length field (columns 30-34).

2. If two or more fields with display attributes follow in succession:

- A blank position must precede the first field. If the field begins in
column 1, column 80 of the previous line must be blank.

- At least one blank position must be between each two fields.

- One blank position must follow the last field.

3. Rules (1) and (2) are valid regardless of the number of attributes (RI, UL,
BL, etc.) you specify.

uNote: Make sure the positions in which display attributes are assigned are
cleared before a new screen format is written to the screen. If these positions
are not cleared, the display attributes will apply to the new format. (You can
clear the positions desired by writing a blank record to the screen.)

Assume, using the following Data Definition Statements, that EMPFILE has
been written to the screen with a STARTING AT LINE value of 5, causing
the field to appear on line 5, column 1. A control character for column
separators (CS) will be placed in line 4, column 80:

----+----1----+----2----+----3----+----4----+----5----+----6----+
A R EMPFILE
A EMPNO 5D B 01 01DSPATR(CS)

Chapter 2. Transaction I/0 - Screen Definition 2- 23

Assume, using the following Data Definition Statements, that INVFILE is
subsequently written to the screen with a STARTING AT LINE value of 5 or
greater, and line 4, column 80 has not been cleared. Although not specified,
the PRTNO field will have column separators.

----+----1----+----2----+----)----+----4----+----5----+----6----+

A

A

R INVFILE

PRTNO 5D B 01 01

Valid Combinations Of HI, RI, and UL

PMT (message)

SHIFT (codes)

You cannot specify the HI, RI, and UL attributes for the same field, either
explicitly in the same field description statement or in a field description
statement in combination with a record description statement. You can,
however, specify any combination of two of these attributes.

If you wish to cancel the defaults specified in a record description statement,
code the CA (for cancel) attribute in the desired field description statement,
and then code the desired HI, RI, and/or UL attributes.

The PMT (for prompt) keyword allows you to display a prompting message on
line 2 of the screen. The prompt appears when the cursor enters the field.
The prompt is cleared when the cursor leaves the field.

The prompting message is displayed on the second physical display line
starting in position 1 and continues on the following lines depending on length
of the message.

The required parameter, message, can be any message, with a maximum
length of 200 character positions. Any displayable character and spaces are
valid in the message.

The message must be within single quotes ('message'). Any single quotes
within the message must be coded twice (' ').

rINote: The prompt message is cleared when the cursor exits the field.

The SHIFT keyword is required in field description statements in which the
letter C is specified for Data Type. This keyword allows you to program the
keyboard conditioning for each position in the field.

The required parameter, codes, is a string of characters, one for each
character position in the field. The following characters are valid:

2- 24 IBM 5280 COBOL Programmer's Guide

Field Description Statement

Character Meaning

A Alphabetic shift - Any character can be entered. The shift is
positioned to the lower symbol on each key on all keyboards. The
operator can use the Shift key to enter the upper symbol on the
keys.

D Digits only - Only the digits 0 through 9 can be entered. The shift
is positioned to the lower symbols on typewriter keyboards and is
positioned to the upper symbols on both data entry keyboards and
proof keyboards. Negative numbers are displayed with the sign
over the last digit of the number. The operator cannot override the
shift.

H Hexadecimal- Each character position requires two keystrokes
and only the numbers 0 through 9 and the letters A through F can
be entered. No shift key operation is required on data-entry
keyboards.

N Numeric shift - Any character can be entered. The shift is
positioned to the lower symbols on typewriter keyboards and is
positioned to the upper symbols on both the data entry keyboards
and the proof keyboards. The operator can change the shift by
using the Alphabetic Shift key.

V Right half only - Only the characters that are defined at system
generation can be entered. The shift is positioned to the lower right
symbols on World Trade keyboards. The shift key allows entry of
the upper right symbols.

W Right half shift - Any character can be entered. The shift
positioned to the lower right symbols on the World Trade
keyboards. The operator can change the shift by using the shift
keys.

tINote: V and W should be used only for those keyboards with more
than two shift positions (such as the Katakana keyboard). Don't
use these data types in programs that are to be executed on other
keyboards or an unrecoverable error will occur at execution.

X Alphabetic only - Only the letters A through Z, comma, period,
hyphen, and space can be entered. The shift is positioned to the
lower symbols on all keyboards. The shift cannot be changed by
the operator.

Y Numeric only - Only the numbers 0 through 9, comma, period,
plus, minus, and space can be entered. The shift is positioned to
the lower symbols on typewriter keyboards and to the upper
symbols on both the data entry keyboards and the proof keyboards.
The shift cannot be changed by the operator.

Keyword Conflicts and Compatibilities
Some keywords for field description statements cannot be used in combination
with certain entries in the Usage field, certain entries in the Data Type field,
or certain other keywords and parameters. The valid and invalid
combinations are indicated in the following charts.

The Xs represent invalid combinations. For example, in figure 2.7 (Part 2),
CHECK(DR) cannot be used for output fields (coded with 0 in the Usage
field). Also notice that combining DR (data required) and BY (bypass) as
parameters for CHECK is invalid. Also, DR cannot be specified twice for the
same field.

Chapter 2. Transaction I/O - Screen Definition 2- 25

Usg. Data Type
Keyword Fld. Field Entry Check Parameters Keywords

I I I S

I I I H

I I B I P I

I I L A A B B Y F M F M R R R I M F

I 0 I A C D H N S W X Y V C D S C Y 1*R E E F B Z L I T T
PMT I X I X . I X
SHIFT I X I X . X X X X X X X X X I X

*BYI refers to CHECK(BY) used as the exclusive entry in Editing field on a secondary line with
an indicator specified.

Figure 2.7 (Part 1 of 2). Keyboard conflicts and compatibilities

Check Usg. Data Type
Parameter Fld. Field Entry Check Parameters Keywords

I I S

I I H

I B Ip I
L A A B B Y D F M M R R R 1M F

0 A C D H N S W X Y V C D S C y 1*R E E F B Z L IT T
LC X X X I·
AD X X X X I·
AS X X X X I·
BC X X X I·
BY X Ix X
BY1* X X X I.
DR X X X I·
FE X X X I·
ME X X X I.
MF X X X X X X I.
RB X X X X X X X I·
RZ X X X X X X X I·
RL X X X X X X X X X X X X X I.

*BY 1 refers to CHECK(BY) used as the exclusive entry in Editing field on a secondary line with
an indicator specified.

Figure 2.7 (Part 2 of 2). Keyboard conflicts and compatibilities

2- 26 IBM 5280 COBOL Programmer's Guide

Chapter 3. Transaction I/O - Writing the COBOL Program

This chapter provides information on transaction I/O - the data set
organization in the IBM 5280 COBOL language that permits the exchange of
data between an operator at a work station and a COBOL program.

Subjects covered include:

• A description and coding examples of the I/O statements needed for
transaction I/O: the FILE-CONTROL paragraph, and the OPEN,
CLOSE, READ, and WRITE statements.

• I/O error processing, with an example of an exception/error procedure
and use of the Status Key.

• How to code the statements needed to obtain return information (for
example, codes returned when the operator presses a command key).

• A coding example of a program using transaction I/O.

• A coding example showing the use of indicators and CHECK(BY) (for
Bypass).

To use the information given in this chapter, you'll also have to refer to the
following chapters:

• Chapter 1, introduces transaction I/O and summarizes the keyboard
and how it affects the operations of your program.

• Chapter 2, which describes how to code the Data Definition Statements
(DDS) that design the screen and edits the operator entries.

Summary of COBOL Transaction I/O Statements
This chapter will explain transaction I/O using the example of the COBOL
program in figure 3.2. (The Data Definition Statements used by this program
are from the example in figure 2.3 in Chapter 2.) Here is a brief summary of
the program:

1. The program writes a screen in which an operator will enter data on new
employees.

2. The program checks the data entered for errors; if no errors are found, it
updates the employee master file with the data. If an error is found, it
writes an error message and allows the operator to correct the data.

The following sections provide a guide to writing a COBOL program with
transaction I/O and some of the COBOL statements used. Statements
discussed in the text are referenced in figure 3.2 with keyed numbers (11,6,
etc.). For detailed information on the syntax and rules of the COBOL
statements used, see the IBM 5280 COBOL Language Reference.

FILE-CONTROL Paragraph
The entries in the FILE-CONTROL paragraph for transaction I/O are:

SELECT file-name ASSIGN TO WORKSTATION [n]
ORGANIZATION IS TRANSACTION
[FILE STATUS IS data-name-3]
[ACCESS MODE IS SEQUENTIAL]
[CONTROL-AREA IS data-name-4]

Chapter 3. Transaction I/O - Writing the COBOL Program 3- 1

OPEN

WRITE

FORMAT Clause

WORKSTATION indicates the device is a 5280 data station.

n is an integer that specifies one of the three sizes of work station screens as
follows:

480 for the 480-character screen.
960 for the 960-character screen.
1920 for the 1920-character screen.

CTNotel: If you don't specify n, a screen size of 1920 characters is assumed.

CTNote 2: The screen size of the work station on which a program is to execute
must be at least the same size specified by n. Otherwise, the program will not
execute. For example, if you specify 1920, the program will execute on
systems that support 480-, 960- and 1920-character data stations; if you
specify 480, the program will execute only on stations that support
480-character data stations.

An example of the FILE-CONTROL paragraph is shown in EJ in figure 3.2.
Note that for transaction I/O, ORGANIZATION is always
TRANSACTION, and ACCESS is always SEQUENTIAL.

The FILE STATUS clause is explained under "I/O Error Processing" later in
this chapter. The CONTROL-AREA clause is explained under the section
"Return Information".

The OPEN statement determines the availability of the file, and, if successful,
results in the file being in an OPEN mode. You must always open the file
with the 1-0 phrase, as shown in figure 3.2 at m.

The WRITE statement places onto the work station screen a set of data-items
in your program generated by Data Definition Statements. The statements
are copied into the program at compilation, as shown in the example in figure
3.2 at II.
The format of the WRITE statement is as follows:

WRITE record-name
[FROM identifier-1]
[FORMAT IS literal-2]
[STARTING AT LINE literal-3]
[INDIC [IS I ARE]
I [INDICATOR [IS]]
I [INDICATORS [ARE]]
identifier-4]

CTNote: Always specify the above clauses in the order shown. The ruies and
syntax fOf the \VRITE statement are given in detail in the 5280 COBOL
Language Reference.

The FORMAT, STARTING AT LINE, and INDICATOR clauses are
explained in the next three sections.

The FORMAT clause designates the screen format, as defined by a set of
Data Definition Statements, that is to be written to the screen. If FORMAT
is not specified, the last specified format is written to the screen. If a series of
WRITE statements is writing the same format to the screen, you need to
specify the FORMAT clause only on the first WRITE in the series.

3- 2 IBM 5280 COBOL Programmer's Guide

STARTING AT LINE Clause

INDICATOR Clause

READ

In the example, FORMAT was specified in each WRITE to allow the writing
of different screen images, as explained below.

At EI and II in figure 3.2, six sets of Data Definition Statements were copied
into the program: EMPRECD, ERRMSGl, ERRMSG2, ERRMSG3, and
PROMPT.

The Data Definition Statements that define each of the formats are shown at
m through m. They cause the records at EI and II to be generated into the
COBOL program at compilation.

The WRITE statements at m, m, IB, lEI, and lEI each reference one of
these formats as follows:

• The WRITE with FORMAT IS "PROMPT" at lEI writes a message
prompting the operator to enter employee data. This is followed by the
the WRITE with FORMAT IS "EMPRECD" at lEI. This statement writes
the fields in which the operator is to enter employee data.

• The WRITEs with FORMAT IS "ERRMSG1", "ERRMSG2" and
"ERRMSG3" at m, m, and IB, write error messages to the screen
when the program finds an incorrect entry by the operator.

Lff'Note: A READ statement must be executed after a WRITE before a
subsequent WRITE is issued. In the example shown in figure 3.2, READs are
therefore coded at m, III, 1m, II, and m·

The STARTING AT LINE clause is optional. Together with the location
field you specify in the Data Definition Statements, it determines the starting
line on the screen of the data being written. See Chapter 2 under "Location
Field" for information on how the starting line is determined.

In the INDICATOR clause, identifier-4 specifies a data-item which is a
boolean table of one or more elements. For a coding example using the
INDICATOR clause, see the section "INDICATOR Example" later in this
chapter.

For the rules to follow in coding the INDICATOR clause with a data-item,
see the 5280 Language Reference manual under "OCCURS Clause" and
"INDICATOR Clause".

The READ statement is normally issued when data is expected from the
operator. When the operator has completed entry and pressed the appropriate
exit key, control resumes at the next COBOL statement following the READ.

The format of the READ statement is:

READ file-name RECORD [INTO identifier-I]

The syntax and rules for writing a READ statement for transaction I/O are
the same as for SEQUENTIAL I/O. See the 5280 COBOL Language
Reference for details.

Chapter 3. Transaction I/0 - Writing the COBOL Program 3- 3

Sequence of Transaction I/O Statements
Don't issue two WRITEs in your program without executing a READ in
between. A READ must always be issued after a WRITE has been issued and
before a subsequent WRITE can be issued.

The READ must be issued whether or not a response is expected from the
operator.

You normally expect a response when one of the fields written to the screen
has been defined for both input and output. That is, a B has been specified in
the Usage field of the associated Data Definition Statements. After the
READ is executed, your program can process any command key codes or data
entered by the operator.

You normally don't expect a response when all of the fields have been defined
for output only. That is, an 0 has been specified in the Usage field(s) of the
associated Data Definition Statements. Nevertheless, the WRITE must be
followed by a READ before another WRITE can be issued.

Clearing the Screen with WRITE

CLOSE

I/O Error Processing

Status Key

A WRITE clears all data on the screen in lines following the starting line of
the data being written, and then writes the data defined (either explicitly or
by default) by the FORMAT clause.

In the example shown in figure 3.2, when an error message is written at m,
m, or IB, all information on the lines that follow the message line are erased.
Therefore, the screen with the original format is rewritten at BJ.

The CLOSE statement detaches the work station associated with the
program. Once a transaction file is closed, it cannot be opened again
by your program before again loading the program.

This section discusses the use of the Status Key and Exception/Error
procedures in handling possible transaction I/O errors.

The Status Key is a 2-character data-item you define in the Data Division of
your program and name in the FILE STATUS clause, as shown for
TUBE-STAT in B in figure 3.3 later in this chapter.

It is recommended that you define a Status Key for all files and that your
COBOL program check the contents after each I/O request. Otherwise,
errors may go undiscovered by the program, producing results that are both
destructive and difficult to diagnose.

If neither a Status Key nor an EXCEPTION /ERROR procedure (described
later in this section) is present and an error occurs, the program will display a
message in the status line at the top of the screen. A message identifier in the
format 92nn will appear in the status line; nn is the code that would have been
placed in the Status Key had it been present.

See Appendix B for a complete list of the values that can be placed in the
Sta tus Key and their meanings.

3- 4 IBM 5280 COBOL Programmer's Guide

Coding the Status Key
To code the status key:

1. Relate FILE STATUS and a data-item in the SELECT clause as shown
below and in fJ in figure 3.2:

FILE STATUS IS TUBE-STAT

2. Code a data-item in Working Storage Section or the Linkage Section as
shown below and at D in figure 3.2:

77 TUBE-STAT PIC XX.

After each READ, WRITE, OPEN, and CLOSE operation, a return code
posted in the status key shows the outcome of the operation. Your program
can look at the status key, and then take the appropriate action.

The return codes for transaction I/O are the same as those for
SEQUENTIAL I/O. The return codes and their meaning are given in
Appendix B.

Exception / Error Procedures
You can also code a procedure to handle errors using the
EXCEPTION /ERROR declarative, as shown at I!I and and II in figure 2.3.
The procedure, WORK-STATION, takes control each time an error or
exception occurs on SCREEN-FILE-PR3. You can include code in the
procedures to diagnose the error, and take subsequent action in consideration
of the error. The EXCEPTION/ERROR procedure is used only when a file
is in open status. Therefore, if any operation is attempted against a file which
has already been closed, or was never opened, then the
EXCEPTION/ERROR procedure is not executed. COBOL will return a
Status Key value of 92.

The USE FOR DEBUGGING declarative (coded before the
EXCEPTION/ERROR procedures) and other debugging aids are described
in Chapter 9.

Example Using Status Key and ERROR Procedures

Return Information

In the example in figure 3.3, the procedure WORK-STATION at I!I receives
control each time a nonzero return code is placed in the status key. The
procedure displays a message and the value in the status key, and then stops
the run.

Two different types of information can be returned to a COBOL program
after a transaction I/O operation in the following areas:

• Attribute Data Area, which provides information on the status of the
terminal which loaded your program. You will probably need this
information only when (1) your installation has different size (1920-,
960-, and/or 480-character) screens and (2) your program needs to
know the size of the screen at the data station to which it is writing
screen images.

• Work Station Control Area, which contains a special code when control
is returned to the COBOL program from the work station. The code
indicates which function or command key the operator pressed. The
command keys and their corresponding codes are given in figure 1.3 and
1.4 in Chapter 1.

Chapter 3. Transaction I/0 - Writing the COBOL Program 3- 5

Attribute Data

The work station control area and the attribute data area are optional. If
used, you code them as data-items in your program according to the guidelines
given in the following sections.

You can get information on a terminal status after each transaction I/O
operations as follows:

1. Code an entry under SPECIAL-NAMES equating ATTRIBUTE-DATA
to a mnemonic name as shown below and at II in figure 3.2:

ATTRIBUTE-DATA IS TERMINAL-INFO.

2. Code data description entries in the WORKING-STORAGE SECTION
with the characteristics shown in the example below and in figure 3.2 at g.

01 WSTATION-INFO.
02 TTYPE PIC x.
02 SSIZE PIC x.
02 LOCATION PIC x.
02 ON-OFF-LINE PIC X.
02 ALLOC-STATUS PIC X.
02 INPUT-STATUS PIC X.
02 DATA-STATUS PIC X.
02 INQ-STATUS PIC x.

Data-item Value returned Meaning

TTYPE D Display

SSIZE 1 1920 Characters (24 x 80)

2 960 Characters (12 x 80)

3 480 Characters (6 x 80)

LOCATION L Local

ON-OFF-LINE 0 Online

ALLOC- A Allocated to this program.
STATIIS

INPUT- N Input is not allowed.
STATUS

DATA-
STATUS

N No data is pending.

INQ-STATUS N Terminal is not in inquiry mode.

Figure 3.1. Explanation of values returned in the ATTRIBUTE-DATA area

3. At the appropriate point in the COBOL program, code an ACCEPT
statement to access the data. In the example at 1m, the following statement
was coded:

ACCEPT WSTATION-INFO FROM TERMINAL-INFO.

The logic in the statements that follow the ACCEPT statement in the
example causes a message to be issued and the run to be stopped if the work
station that loaded the COBOL program does not have a 1920-character
display screen. (See the section "FILE-CONTROL Paragraph" earlier in
this chapter for the rules on specifying screen size.)

3- 6 IBM 5280 COBOL Programmer's Guide

Work Station Control Area
The work station control area tells the COBOL program which command key
the operator pressed; this information is provided after a READ operation.

To build a work station control area:

1. Relate a data-item and CONTROL-AREA in the SELECT clause as
shown below and at II in figure 3.2:

CONTROL-AREA IS WSTATION-CONTROL-AREA

2. Code an area in the Data Division using the data-item as a 01 level group
item as shown below and at II in figure 2.3:

01 WSTATION-CONTROL-AREA.
03 COMMAND-KEY PIC X(2).
03 FILLER PIC X(10).

The value returned in COMMAND-KEY is either 00 (a normal return) when
the record is exited after the operator presses the appropriate system function
key, or a number indicating one of the COBOL command keys. See figures
1.3 and 1.4 in Chapter 1 for a description of these keys.

The program in the example shown in figure 3.2 checks the command key
code at m after each READ.

Transaction I/O Examples
The examples in this section show:

• Interactive entry and processing between an operator and a COBOL
program. The example shows how transaction I/O statements are
coded; explanatory text is in the earlier section of this chapter.

• The use of the INDICATOR clauses, complete with explanatory text.

Example: Interactive Entry and Processing
The example in figure 3.2 writes a record to the screen, checks the response
when the subsequent read is executed, and if no error is found, updates the
employee master file.

The Data Definition Statements for EMPRECD at m are explained in
Chapter 2 under "Example of Coding Data Definition Statements."

Chapter 3. Transaction I/O - Writing the COBOL Program 3- 7

IDENTIFICATION DIVISION.
PROGRAM-ID. ADD-NEW-EMPLOYEES.
AUTHOR. A NAME.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-J70.
OBJECT-COMPUTER. IBM-S280.
SPECIAL-NAMES.

EI ATTRIBUTE-DATA IS TERMINAL-INFO.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

II SELECT SCREEN-FILE-PRJ ASSIGN TO WORKSTATION 1920
ORGANIZATION IS TRANSACTION

II
001
002
004
006
008
010
012
014
016
018

II
001

II
001

II
001

II
001

B

ACCESS MODE IS SEQUENTIAL
FILE STATUS IS TUBE-STAT
CONTROL-AREA IS WSTATION-CONTROL-AREA.

SELECT EMPMAS-FILE ASSIGN TO DISK
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS RKEY
FILE STATUS IS DISK-STAT.

DATA DIVISION.
FILE SECTION.
FD SCREEN-FILE-PRJ LABEL RECORDS ARE OMITTED.
01 SCREEN-RECORD PIC X(88).
FD

01

EMPMAS-FILE
VALUE OF OWNER-ID IS "BELL"
LABEL RECORDS ARE STANDARD.
COPY DDS-EMPRECD.

EMPRECD.
02 ACREC PIC X(00002).
02 EMPNO PIC X(OOOOS).
02 ENAME PIC X(00020).
02 STRAD PIC X(00020).
02 CTYST PIC X(00020).
02 ZIPCD PIC X(00005) .
02 BEGDT PIC X(00006).
02 SOSNO PIC X(00009).
02 MARST PIC X(00001).

WORKING-STORAGE SECTION.
COpy DDS-ERRMSG1.

01 ERRMSG1 PIC X.
COpy DDS-ERRMSG2.

01 ERRMSG2 PIC X.
COpy DDS-ERRMSGJ.

01 ERRMSGJ PIC X.
COPY DDS-PROMPT.

01 PROMPT PIC X.
01 LAST-RECORD-SAVE PIC X(88)

0' WSTATION-INFO.
02 TTYPE PIC X.
02 SSIZE PIC X.
02 LOCATION PIC X.
02 ON-OFF-LINE PIC X.
02 ALLOC-STATUS PIC X.
02 INPUT-STATUS PIC X.
02 DATA-STATUS PIC X.
02 INQ-STATUS PIC X.

VALUE SPACES.

Figure 3.2. Example of transaction I/O statements (Part 1 of 5)

3- 8 IBM 5280 COBOL Programmer's Guide

m

B

01 WSTATION-CONTROL-AREA.
03 COMMAND-KEY PIC xC 2).
03 FILLER PIC xC 10) .

01 SWITCHES.
02 STOP-RUN PIC 9 VALUE
02 CONTINUE PIC 9 VALUE
02 INVALID-EMPNO PIC 9 VALUE
02 ACTIVE-RECORD PIC 9 VALUE
02 ERROR-FOUND PIC 9 VALUE
02 WRONG-FUNC-KEY PIC 9 VALUE

77 TUBE-STAT PIC XX.
77 DISK-STAT PIC XX.
77 RKEY PIC 99999.
PROCEDURE DIVISION.
DECLARATIVES.
DEBUG-SECTION SECTION.

USE FOR DEBUGGING ON READ-MASTER.
DISPLAY "READ-MASTER ENTERED".
DISPLAY "REKEY- " RKEY.
DISPLAY "EMPNO- " EMPNO.

O.
1.

O.

O.
O.
O.

II IO-ERROR SECTION.
USE AFTER ERROR PROCEDURE ON SCREEN-FILE-PR3.

WORK-STATION.
DISPLAY "ERROR ON WORK STATION I/o".
DISPLAY "FILE STATUS IS " TUBE-STAT.
DISPLAY "RUN STOPPED.".
STOP RUN.

a DISKETTE-IO-ERROR SECTION.
USE AFTER ERROR PROCEDURE ON EMPMAS-FILE.

DISKETTE.
DISPLAY "ERROR ON DISKETTE I/o".
DISPLAY "FILE STATUS IS " DISK-STAT.
DISPLAY "RUN STOPPED." .
STOP RUN.

END DECLARATIVES.
EXECUTE SECTION.
CHECK-TERMINAL-ROUTINE.

PERFORM OPENS.
III ACCEPT WSTATION-INFO FROM TERMINAL-INFO.

IF SSIZE NOT EQUAL TO "1"
DISPLAY "YOUR SCREEN IS TOO SMALL."
DISPLAY "THIS PROGRAM REQUIRES 1920-CHARACTERS SCREEN"
DISPLAY "CLOSING DOWN"
MOVE 1 TO STOP-RUN.

MAIN-ROUTINE.
PERFORM WORK-STATION-READS UNTIL STOP-RUN 1.
PERFORM CLOSES.
STOP RUN.

Figure 3.2. Example of transaction I/O statements (Part 2 of 5)

Chapter 3. Transaction I/O - Writing the COBOL Program 3- 9

m

m
m

m
m

1m

m

m

WORK-STATION-READS .

••
• THIS PARAGRAPH WRITES A RECORD TO THE SCREEN, CHECKS THE •
• RESPONSE WHEN THE SUBSEQUENT READ IS EXECUTED, AND, IF NO •
• ERROR IS FOUND, UPDATES THE EMPLOYEE MASTER FILE. •

• •
• THE LOGIC FOLLOWED UPON ENTRY IS AS FOLLOWS: •

• •
• 1. ON THE FIRST ENTRY, WRITES THE FIRST SCREEN, AND ISSUES •
• A READ TO CHECK THE ENTRY BY THE OPERATOR. •

• •
• IF AN ERROR ISN'T FOUND, THE EMPLOYEE MASTER RECORD IS •
• UPDATED. IF AN ERROR IS FOUND, THE APPROPRIATE SWITCH IS •
• SET, AND WORK-STATION-READS IS AGAIN EXECUTED AS DESCRIBEn.
• IN (2) BELOW. •

• •
• 2. ON THE SECOND OR SUBSEQUENT ENTRY, DETERMINES IF AN •
• ERROR WAS FOUND ON THE PREVIOUS ENTRY. •

•
•
•
•
•
•
•

IF AN ERROR WAS FOUND, A MESSAGE IS WRITTEN AND THE
PREVIOUS SCREEN REWRITTEN.

OTHERWISE, WRITES A SCREEN IN WHICH THE OPERATOR CAN
ENTER FRESH DATA.

•
•
•
•
•
•
•

••
IF INVALID-EMPNO = 1

WRITE SCREEN-RECORD FROM ERRMSG1
FORMAT IS "ERRMSG1"
STARTING AT LINE 3

READ SCREEN-FILE-PR3
ELSE IF ACTIVE-RECORD = 1

WRITE SCREEN-RECORD FROM ERRMSG2
FORMAT IS "ERRMSG2"
STARTING AT LINE 3

READ SCREEN-FILE-PR3
ELSE IF WRONG-FUNC-KEY =

WRITE SCREEN-RECORD FROM ERRMSG3
FORMAT IS "ERRMSG3"
STARTING AT LINE 3

READ SCREEN-FILE-PR3.
IF ERROR-FOUND = 0

MOVE SPACES TO SCREEN-RECORD
WRITE SCREEN-RECORD

FORMAT IS "PROMPT"
STARTING AT LINE 3

READ SCREEN-FILE-PR3
ELSE IF ERROR-FOUND = 1

MOVE LAST-RECORD-SAVE TO SCREEN-RECORD .
•••••••••••••••• **.******************************
•
•
•
•

IF/ELSE ENDS HERE
•
•
•
•

.**

Figure 3.2. Example of transaction I/O statements (Part 3 of 5)

3~ 10 IBM 5280 C()80L Programmer's Guide

WRITE SCREEN-RECORD
FORMAT IS "EMPRECD"
STARTING AT LINE 6.
READ SCREEN-FILE-PR3 RECORD INTO EMPRECD.

MOVE EMPRECD TO LAST-RECORD-SAVE.
PERFORM SET-SWITCHES.
PERFORM COMMAND-KEY-CHECK.
IF CONTINUE = 1

PERFORM READ-MASTER.
IF CONTINUE = 1
PERFORM UPDATE-MASTER.

READ-MASTER.
MOVE EMPNO TO RKEY.
SUBTRACT 1000 FROM RKEY GIVING RKEY.
READ EMPMAS-FILE

INVALID KEY
MOVE 0 TO CONTINUE
MOVE 1 TO ERROR-FOUND, INVALID-EMPNO.

IF CONTINUE = 1
IF ACREC NOT EQUAL TO "F"

MOVE 1 TO ACTIVE-RECORD, ERROR-FOUND
MOVE 0 TO CONTINUE

ELSE MOVE "A" TO ACREC.
UPDATE-MASTER.

MOVE SCREEN-RECORD TO EMPRECD.
REWRITE EMPRECD

INVALID KEY

HI OPENS.

MOVE 1 TO INVALID-EMPNO
MOVE 0 TO CONTINUE.

OPEN 1-0 SCREEN-FILE-PR3
EMPMAS-FILE.

CLOSES.
CLOSE EMPMAS-FILE

SCREEN-FILE-PR3.
fa COMMAND-KEY-CHECK.

IF COMMAND-KEY = "00"
MOVE 1 TO CONTINUE

ELSE IF COMMAND-KEY = "02"
MOVE 1 TO STOP-RUN
MOVE 0 TO CONTINUE

ELSE MOVE 1 TO WRONG-FUNC-KEY
MOVE 1 TO ERROR-FOUND
MOVE 0 TO CONTINUE.

SET-SWITCHES.
MOVE 0 TO ACTIVE-RECORD, INVALID-EMPNO,

WRONG-FUNC-KEY, STOP-RUN, ERROR-FOUND.
MOVE TO CONTINUE.

Figure 3.2. Example of transaction I/O statements (Part 4 of 5)

Chapter 3. Transaction I/O - Writing the COBOL Program 3- 11

o
01A
02A
03A
04A
05A
06A
07A
08A
09A
10A
11A
12A
13A
16A
17A
18A
19A
20A
21A

o 1A
02A
02A

o 1A
02A
02A

o 1A
02A
02A

o 1A
02A
02A

R EMPRECD
ACREC

EMPNO

ENAME

STRAD

CTYST

ZIPCD

BEGDT

SOSNO

MARST

R ERRMSG1

R ERRMSG2

R ERRMSG3

R PROMPT

2

5D

B

DDS SOURCE LISTING

DSPATR(CS UL) Ell
DSPATR(CA ND)
CHECK(BY)

01 11CHECK(DR RZ)
o 'EMPLOYEE NUMBER' DSPATR(CA)

20X 02 11CHECK(DR RB)
o 'EMPLOYEE NAME' DSPATR(CA)

20A 03 11CHECK(DR RB)
o 'STREET ADDRESS' DSPATR(CA)

20X 04 11CHECK(DR RB)
o 'CITY, STATE' DSPATR(CA)

5D 05 11CHECK(DR MF FE)
o 'ZIP CODE' DSPATR(CA)

6D 06 11CHECK(DR MF FE)
o 'BEGINNING DATE' DSPATR(CA)

9D 07 11CHECK(DR MF)
o 'SOCIAL SECURITY NUMBER' DSPATR(CA)

1X 08 11CHECK(DR MF)
o 'MARITAL STATUS - M OR s' DSPATR(CA)

B DSPATR(RI HI BL) Ell
o 01 02'EMPLOYEE NUMBER INCORRECT. MUST BE

MORE THAN 1000 OR LESS THAN 2000.'

DSPATR(RI HI BL) Ell
o 01 02'EMPLOYEE NUMBER WRONG. ALREADY ASS-

IGNED TO ANOTHER EMPLOYEE.'

DSPATR(RI HI BL) Ell
o 01 02'yOU HIT WRONG COMMAND KEY. ONLY EN-

TER, 02, AND 03 ALLOWED.'

B DSPATR(RI HI) Ell
o 01 02'ENTER INFORMATION ON NEW EMLOYEE.-

Figure 3.2. Example of transaction I/O statements (Part 5 of 5)

3- 12 IBM 5280 COBOL Programmer's Guide

Indicator Example
An example of the use of transaction I/O and indicators is shown in figure
3.3. (See the 5280 COBOL Language Reference manual under "OCCURS
Clause" and "INDICATOR Clause" for detailed rules on coding the
INDICATOR clause with a data-item.)

The logic of the program shown in figure 3.3 is as follows:

• The program writes four fields to the screen on succeeding lines in the
following order: ENAME, STRAD, CTYST, and EMPNO. The cursor
appears in the first position of the first field, ENAME.

• The operator enters the employee name, street address, city and state,
and employment number in the designated fields and presses the Enter
key.

• The program checks whether or not the employee number entered by the
operator is valid.

• If the employee number is valid, the program updates EMPMAS-FILE
and writes a fresh screen format.

• If the employee number is not valid, (1) the program writes an error
message to the screen indicating that the number entered isn't valid and
(2) writes a screen format with the information previously entered. The
cursor bypasses the ENAME, STRAD, and CTYST fields and appears
in the first position of the EMPNO field.

The use of indicators allows the program to control whether or not ENAME,
STRAD, and CTYST are bypassed by the cursor. The following text explains
how this is achieved:

1. The indicators 51, 52, and 53 are coded on secondary lines of the
statements at II, II, and II with the CHECK(BY) keyword. The
secondary lines follow immediately after the lines that define the fields
to be bypassed.

2. The indicator numbers 51, 52, and 53 are associated with a boolean
data-item defined at II.

3. Before an error message is written, the indicators are set to on at D.
4. The WRITE statement at II contains the related INDICATOR clause

which writes the new screen format and causes the cursor the bypass the
ENAME, STRAD, and CTYST fields.

Chapter 3. Transaction I/O - Writing the COBOL Program 3- 13

0001
0002
0005
0008
0011

IDENTIFICATION DIVISION.
PROGRAM-ID. INDICATORS.
AUTHOR. A NAME.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370 WITH DEBUGGING MODE.
OBJECT-COMPUTER. IBM-5280.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT SCREEN-FILE-PR3 ASSIGN TO WORKSTATION 1920
ORGANIZATION IS TRANSACTION
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS TUBE-STAT
CONTROL-AREA IS WSTATION-CONTROL-AREA.

SELECT EMPMAS-FILE ASSIGN TO DISK
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS RKEY
FILE STATUS IS DISK-STAT.

DATA DIVISION.
FILE SECTION.
FD
01
01
FD

01

SCREEN-FILE-PR3 LABEL RECORDS ARE OMITTED.
SCREEN-RECORD PIC X(65).
SCREEN-RECORD-CLEAR PIC X(65).
EMPMAS-FILE
LABEL RECORDS ARE STANDARD.
COpy DDS-INDIC.

EMPRECD.
02 ENAME
02 STRAD
02 CTYST
02 EMPNO

PIC X(00020).
PIC X(00020).
PIC X(00020).
PIC X(00005).

WORKING-STORAGE SECTION.
II 01 IFIELDS.

02 INDCATOR-FIELD PIC 1 OCCURS 3 TIMES INDIC 51.
01 INDCATOR-ON PIC XXX VALUE' 111'.

COpy DDS-ERRMSG1.
0001 01 ERRMSG1 PIC X.

01 WSTATION-CONTROL-AREA.
03 COMMAND-KEY PIC X(2) VALUE '00'.
03 FILLER PIC X(10).

01 SWITCHES.
02 STOP-RUN
02 CONTINUE

PIC 9 VALUE O.

02 INVALID-EMPNO
02 ERROR-FOUND

77 TUBE-STAT
77 DISK-STAT
77 RKEY
PROCEDURE DIVISION.
DECLARATIVES.
DEBUG-SECTION SECTION.

PIC
PIC
PIC
PIC
PIC
PIC

9 VALUE
9 VALUE
9 VALUE
XX.
XX.
9999.

USE FOR DEBUGGING ON READ-MASTER.
DISPLAY 'READ-MASTER ENTERED'.
DISPLAY 'REKEY= ' RKEY.
DISPLAY 'EMPNO= ' EMPNO.

1.

O.
O.

Figure 3.3. Example of indicators and conditional bypass (Part 1 of 3)

3- 14 IBM 5280 COBOL Programmer's Guide

fJ

II

IO-ERROR SECTION.
USE AFTER ERROR PROCEDURE ON SCREEN-FILE-PR3.

WORK-STATION.
DISPLAY 'ERROR ON WORK STATION I/o'.
DISPLAY 'FILE STATUS IS ' TUBE-STAT.
DISPLAY 'RUN STOPPED.'.
STOP RUN.

DISKETTE-IO-ERROR SECTION.
USE AFTER ERROR PROCEDURE ON EMPMAS-FILE.

DISKETTE.
DISPLAY 'ERROR ON DISKETTE I/o'.
DISPLAY 'FILE STATUS IS ' DISK-STAT.
DISPLAY 'RUN STOPPED.' .
STOP RUN.

END DECLARATIVES.
EXECUTE SECTION.
MAIN-ROUTINE.

PERFORM OPENS.
PERFORM WORK-STATION-READS UNTIL STOP-RUN 1.
PERFORM CLOSES.
STOP RUN.

WORK-STATION-READS.
IF INVALID-EMPNO = 1

WRITE SCREEN-RECORD FROM ERRMSG1
FORMAT IS 'ERRMSG1'
STARTING AT LINE 4
READ SCREEN-FILE-PR3 RECORD

MOVE INDCATOR-ON TO IFIELDS
MOVE EMPRECD TO SCREEN-RECORD

WRITE SCREEN-RECORD
FORMAT IS 'EMPRECD'
STARTING AT LINE 6
INDICATORS ARE INDCATOR-FIELD

ELSE IF ERROR-FOUND = 0
MOVE SPACES TO SCREEN-RECORD-CLEAR
MOVE ZEROS TO IFIELDS
WRITE SCREEN-RECORD

FORMAT IS 'EMPRECD'
STARTING AT LINE 4.

READ SCREEN-FILE-PR3 RECORD INTO EMPRECD.
PERFORM SET-SWITCHES.
IF CONTINUE = 1

PERFORM READ-MASTER.
IF CONTINUE = 1
PERFORM UPDATE-MASTER.

Figure 3.3. Example of indicators and conditional bypass (Part 2 of 3)

Chapter 3. Transaction I/0 -- Writing the COBOL Program 3- 15

01A
02A
03A 51

04A
05A
OGA 52
07A
OSA

9A 53
10A
11A
12A

o 1A
02A
02A

READ-MASTER.
MOVE EMPNO TO RKEY.
SUBTRACT 1000 FROM RKEY GIVING RKEY.
READ EMPMAS-FILE

INVALID KEY
MOVE 0 TO CONTINUE
MOVE 1 TO ERROR-FOUND, INVALID-EMPNO.

UPDATE-MASTER.
MOVE SCREEN-RECORD TO EMPRECD.
REWRITE EMPRECD

INVALID KEY
MOVE 1 TO INVALID-EMPNO
MOVE 0 TO CONTINUE.

OPENS.
OPEN I-O SCREEN-FILE-PR3

EMPMAS-FILE.
CLOSES.

CLOSE EMPMAS-FILE
SCREEN-FILE-PR3.

SET-SWITCHES.

R EMPRECD
ENAME

STRAD

CTYST

EMPNO

R ERRMSG1

MOVE 0 TO INVALID-EMPNO,
STOP-RUN, ERROR-FOUND.

MOVE TO CONTINUE.

DDS SOURCE LISTING

B DSPATR(CS UL)
20X 01 11CHECK(DR RB)

CHECK(BY) II
0 'EMPLOYEE NAME' DSPATR(CA)

20A 02 11CHECK(DR RB)
CHECK(BY) m

0 'STREET ADDRESS' DSPATR(CA)
20X 03 11CHECK(DR RB)

CHECK(BY) iii
0 'CITY, STATE' DSPATR(CA)

5D 04 11CHECK(DR RZ)
0 'EMPLOYEE NUMBER' DSPATR(CA)

B DSPATR(RI HI BL)
0 01 02 'EMPLOYEE NUMBER INCORRECT. MUST BE-

MORE THAN 1000 OR LESS THAN 2000. ,

Figure 3.3. Example of indicators and conditional bypass (Part 3 of 3)

3- 16 IBM 5280 COBOL Programmer's Guide

Chapter 4. Data Communications Programming with COBOL

This chapter provides the information necessary to code the COBOL
statements that allow data exchange between two systems over a
communications link; throughout this chapter and book, this exchange of data
is called data communications.

Also, the chapter has the following information:

• A summary of COBOL data communications capabilities

• The IBM 5280 facilities needed to execute a COBOL program

COBOL also provides suppor·t of data communications giving more direct
control over all communication facilities than as described in this chapter.
See Appendix A for a description of direct data communications support.

To execute a COBOL program using data communications, the proper
communications environment must be established using the preparation
utilities. Information on this subject can be found in the Communications
Reference Manual.

Uses of Data Communications Programs

Eligible Systems

You might want to write a COBOL data communications program:

• When you want to interact with an operator within one system and need
to access data in a remote system.

When you want to process data online as it is received from the host.

• When you want to match your 5280 communications program with a
host application program.

• When the IBM 5280 Data Communications Utilities don't meet your
needs. The functions provided by these utilities are sending batch data,
receiving batch data, and sending inquiries and receiving replies.
Complete information on the functions of the utilities and how to use
them is given in the Communications Reference Manual.

The systems with which a COBOL program can communicate are the same as
those for an assembler language program. See the chapter "Data
Communications with Assembler Language" in the Communications
Reference Manual under "BSC Programming with Assembler Language"
and "SNA Programming with Assembler Language" for a list of the eligible
systems.

COBOL Programs and the Communications Access Method
A COBOL program works with the communications access method (CAM) to
transfer data. Part of the tasks in communicating is done by CAM; you
must code the others in your COBOL program.

Chapter 4. Data Communications Programming with COBOL 4- I

COBOL Program Responsibilities
A COBOL program interfaces to CAM with a series of library routines. The
COBOL compiler places these library routines in your object module at
compilation. You initiate a desired communications task (reading records, for
example) by initiating the appropriate library routine from your program, in
which you code the following information:

• CALL verbs, which initiate the COBOL library routines that open and
close data sets, and read and write records.

• Data items, which designate input and output areas in your COBOL
program and other information needed by the library routines.

• Data items, in which the library routines put status information after
they complete execution. Your program can look at this return
information to decide upon subsequent action.

Details on how to code the above information follows after the next section.

System Requirements for Communication Programs
To write and execute a COBOL data communications program, you need:

• The IBM 5280 Communications Utilities licensed program, which
contains the communications access method (CAM) and the utilities
that prepare the communications environment

• A communications adapter

• When using SNA, the elapsed time counter feature

• A partition with sufficient storage to run the COBOL program. (The
amount of storage required by the program is printed on the compiler
output listing if either the LOAD or the LIST option is in effect during
compilation. See Chapter 7 for information on specifying compiler
options.)

For the minimum size of the partition required by CAM, see Chapter 1 of the
5280 Communications Reference Manual.

Before Running a Data Communication Program
Before running a data communication program, you must ensure that the
proper communications environment exists for your program. The
communications environment is established with two of the IBM 5280 Data
Communication Preparation Utilities:

• The Communications Configuration Utility, to which the
communications environment is described; the utility places this
information in a communications configuration record.

• The Communications Load Utility, which loads the communications
access method (CAM) into main storage.

See the IBM 5280 Communications Reference Manual, for detailed
information on these two utilities.

Writing COBOL Communication Statements
COBOL provides four routines which handle communications; their names
and functions are shown in the following table:

4- 2 IBM 5280 COBOL Programmer's Guide

Routine Function

AVCHOPEN Open routine. Prepares for read and write operations between two
systems.

AVCHCLOZ Close routine. Provides three options: (1) ends communications
operations or (2) signals an end-of-file to the receiver and the beginning
of a new file or (3) turns around the direction of transmission from send
to receive.

AVCHREAD Read routine. Reads a record into a buffer in the COBOL program from
the sending station.

AVCHWRT Write routine. Writes a record from a buffer in the COBOL program to
the receiving station.

Figure 4.1. The COBOL library routines that perform data communications

These routines are invoked in the COBOL program with CALL statements.
The following sections explains how to code the CALL statements, the
parameters you must supply, and the information returned to your program
after the routines have executed.

Communication Routine Parameters
In each CALL to a communications routine, you point to a parameter list in
either the Working Storage Section or the Linkage Section of your program
(the detailed layouts of these areas are given in the routine descriptions that
follow).

Communication Program Example - Explanation

Open Routine

Figure 4.4 at the end of the chapter gives an example of a COBOL program
using data communications, both sending and receiving data; the program in
the example:

1. Reads records from a diskette file containing information for updating an
employee master file on line at another system.

2. Transmits the records to the remote system.

3. After sending all the update records, reads records sent by the remote
system confirming receipt and giving diagnostics, if any.

The text in the following section will refer to this example by numbered keys
in explaining the pertinent COBOL statements.

The following is the format of the CALL statement used to initiate the Open
routine:

CALL"AVCHOPEN"USINGparameter-1buffer-2

parameter-l points to a status area you code in either the Working Storage
Section or the Linkage Section in the Data Division of your program in the
following format:

01 parameter-1
02 return-code
02 FILLER
02 buffer-size

PIC 99.
PIC 9999.
PIC 9999.

Chapter 4. Data Communications Programming with COBOL 4- 3

Close Routine

return-code is a two-digit completion code returned by the Open routine after
execution; the codes that can be returned and their meanings are given in
figure 4.2.

buffer-size is the length in bytes of the records to be read or the maximum
length of records to be written.

buffer-2 is a 01 level data-item which you define in the Data Division of your
program for the area from which data is to be sent or in which data is to be
received.

An example of the statements used to call the Open routine is shown at m in
figure 4.4. Note that the CALL statement points to the parameter list
OPEN-READ-WRITE-PARAMS at fJ and the buffer EMPRECD at II,
defined in the Data Division.

[J' For SNA users: If the host requires logon data, the first 80 bytes of buffer-2
must contain the data when the Open routine is invoked in the program.

[J' For switched line users: A timeout may occur which causes a line drop if data
transfer doesn't take place within a specified amount of time. You might
want to prompt the operator with a STOP statement, as is shown at II in
figure 4.4, to ensure the stations are connected.

For BSC, a line connection with the remote station should be made
immediately before the first READ or WRITE; for SNA, before the OPEN.

Code Meaning

00 Execution was successful.

04 For the Read routine only. End of data. Successful completion.

08 Exception condition. Conditions on the line or at the remote station
caused an unsuccessful completion of the last message, but there is no
error in the COBOL program.

12 Application error. An error in the logic of the COBOL communication
statements. For example: the program attempted to call the Read
routine without having previously called the Open routine.

16 Permanent error. An unrecoverable error in, for example, the hardware,
CAM, the line, etc., has been found.

Figure 4.2. Return codes from the COBOL communication library routines.

The format of a call to the Close routine is:

CALL" AVCHCLOZ" USING parameter-1

parameter-l points to a status area you code in either the Working Storage
Section or the Linkage Section in the Data Division of your program in the
foliowing format:

01 parameter-1
02 return code
02 FILLER

PIC 99.
PIC 9999.

02 close-option PIC A.

4- 4 IBM 5280 COBOL Programmer's Guide

Terminating Without Close

Read Routine

return-code is a two-digit completion code returned by the Close routine after
execution; the codes that can be returned and their meanings are shown in
figure 4.2.

close-option is a one-character code that can cause one of three conditions by
the Communications access method (CAM). The actions and the subsequent
action taken by the user program are shown in the following figure:

close-option CAM/User Action

F Terminates communications operations. To resume
communications, the Open routine must again be called.

E Sends end-of-file indication to receiver. (A return code of 04 is
posted if the receiver is using IBM 5280 COBOL data
communications.) The sender can then begin transmission of
another file to the receiver. Don't call the Open routine after a
close with the E option.

R Turns around the line direction from transmit (through the Write
routine) to receive (through the Read routine). An error in the
return-code field after execution of a close with the R option means
the turn-around was not successful. Don't call the Open routine
alter a close with the R option.

Use of the R option between transmit and receIve uperations is
optional.

Any character F option assumed.
other than the above

Figure 4.3. Options available with the Close routine

An example of the statements used to call the Close routine is shown at II and
1m. At II, the R close option is used, because the line direction is changed
from transmit to receive. At 1m, the F close option is used to end the
communica tions link.

Note that the CALL statement points to the parameter list CLOSE-PARAMS
at II.

aNote: don't call the Close routine if, after receiving data using the Read
routine, you want to indicate an error condition found by your program. If the
Close routine is not executed before stopping the COBOL program with a
STOP RUN verb, a negative response will be sent to the sending station.

At II in the example shown in figure 4.4, the run is stopped if either a disk
error or printer error occurs without calling the Close routine, thus informing
the sending program that the run was not successful.

The format of a call to the Read routine is:

CALL "AVCHREAD" USINGpararneter-1

parameter-l points to a status area you code in either the Working Storage
Section or the Linkage Section in the Data Division of your program in the
following format:

01 pararneter-1
02 return-code PIC 99.
02 FILLER ~IC 9999.

Chapter 4. Data Communications Programming with COBOL 4-' 5

return-code is a two-digit completion code returned by the Read routine after
execution; the codes that can be returned and their meanings are shown in
figure 4.2.

An example of the statements used to call the Read routine is shown at 0 in
Figure 4.4. The statement points to the parameter list fJ
OPEN-READ-WRITE-PARAMS in the Data Division.

Padding Unused Bytes in Read Buffer

Write Routine

If the record read in is smaller than the buffer-size (defined in the Open
routine), the remaining bytes will be padded with blanks.

The format of a Write statement is:

CALL "AVCHWRT" USINGparameter-1

parameter-l points to a status area you code in either the Working Storage
Section or the Linkage Section in the Data Division of your program in the
following format:

01 parameter-1
02 return-code PIC 99.
02 FILLER PIC 9999.
02 record-size PIC 9999.

return-code is a two-digit completion code returned by the Write routine after
execution; the codes that can be returned and their meanings are shown in
figure 4.2.

record-size is the length in bytes that of the records you want to send. It
cannot be more than the buffer-size value you specify in the Open routine.

An example of the statements used to call the Write routine is shown in II in
Figure 4.4.

Communication Program Example - Listing
The following is a listing of the COBOL communications program described
earlier in this chapter under "Example of COBOL Communications
Program". Note that all information that normally appears to the left of the
statement numbers (the COpy ID column) has been truncated for this
example.

4- 6 IBM 5280 COBOL Programmer's Guide

..
0001
0002
0004
0006
0008
0010
0012
0016
0018
0020

B

IDENTIFICATION DIVISION.
PROGRAM-ID. SEND-RECEIVE.
AUTHOR. A NAME.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-S280.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PRINT-FILE ASSIGN TO PRINTER
ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL
FILE STATUS IS PRINT-FILE-STAT.

SELECT UPDATE-FILE ASSIGN TO DISK
ORGANIZATION IS RELATIVE
ACCESS IS SEQUENTIAL
RELATIVE KEY IS RKEY
FILE STATUS IS UPDATE-FILE-STAT.

DATA DIVISION.
FILE SECTION.
FD UPDATE-FILE

LABEL RECORDS ARE STANDARD.
COpy DDS-EMPRECD.

01 EMPRECD.
02 ACREC PIC X(00002) .
02 EMPNO PIC X(OOOOS).
02 ENAME PIC X(00020) .
02 STRAD PIC X(00020).
02 CTYST PIC X(00020) .
02 ZIPCD PIC X(OOOOS).
02 BEGDT PIC X(00006).
02 SOSNO PIC X(00009).
02 MARST PIC X(00001).

FD PRINT-FILE
LABEL RECORDS ARE STANDARD.

01 PRINT-RECORD.
OS RCDCD PIC X(88).

WORKING-STORAGE SECTION.
01 SWITCHES.

02 COMM-ERROR PIC 9
02 OPEN-ERROR PIC 9
02 CLOSE1-ERROR PIC 9
02 CLOSE2-ERROR PIC 9
02 WRITE-SEND-ERROR PIC 9
02 READ-RECEIVE-ERROR PIC 9
02 STOP-READS PIC 9
02 STOP-WRITES PIC 9

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

77 UPDATE-FILE-STAT PIC XX.
77 PRINT-FILE-STAT PIC XX.
77 RKEY PIC 99999.

O.
O.
O.
O.
O.
O.
O.
O.

77 RCOUNTER PIC 99999 VALUE
77 CAUSE PIC X(8) VALUE
01 OPEN-READ-WRITE-PARAMS.

02 RETURN-CODE PIC 9(2) VALUE
02 FILLER PIC 9 (4) .
02 RECORD-SIZE PIC 9 (4) VALUE

O.
SPACES.

O.

88.

Figure 4.4. Coding example: data communications (Part 1 of 3)

Chapter 4. Data Communications Programming with COBOL 4- 7

II 01 CLOSE-PARAMS.
02 CRETURN-CODE
02 FILLER
02 CLOSE-OPTION

PROCEDURE DIVISION.
DECLARATIVES.

PIC 9(2) VALUE O.
PIC 9 (4) .
PIC A VALUE SPACES.

II DISK-ERROR SECTION.
USE AFTER ERROR PROCEDURE ON UPDATE-FILE.

DISKX.
DISPLAY "ERROR ON UPDATE-FILE I/O DURING SEND".
DISPLAY "FILE STATUS IS " UPDATE-FILE-STAT.
DISPLAY "TRANSMISSION STOPPED. RUN STOPPED.".
STOP RUN.

PRINT-ERROR SECTION.
USE AFTER ERROR PROCEDURE ON PRINT-FILE.

II PRINTERX.
DISPLAY "ERROR ON PRINTER-FILE I/O DURING WRITE".
DISPLAY "FILE STATUS IS " PRINT-FILE-STAT.
DISPLAY "TRANSMISSION STOPPED. RUN STOPPED.".
STOP RUN.

END DECLARATIVES.
EXECUTE SECTION.
MAIN-ROUTINE.

PERFORM OPEN1.
B STOP

"ENSURE LINE CONNECTED TO REMOTE STATION & HIT ENTER.".
IF COMM-ERROR IS EQUAL TO 0

PERFORM REMOTE-STATION-WRITES
UNTIL STOP-WRITES IS EQUAL TO 1.

IF COMM-ERROR IS EQUAL TO 0
PERFORM CLOSE1.

IF COMM-ERROR IS EQUAL TO 0
DISPLAY RCOUNTER

" RECORDS SENT SUCCESSFULLY: NOW AWAITING RESPONSE"
PERFORM OPEN2.

IF COMM-ERROR IS EQUAL TO 0
PERFORM REMOTE-STATION-READS

UNTIL STOP-READS IS EQUAL TO 1.
IF COMM-ERROR IS EQUAL TO 1

PERFORM ERROR-ROUTINE
ELSE DISPLAY

"SESSION COMPLETED SUCCESSFULLY.".
PERFORM CLOSE2.
STOP RUN.

REMOTE-STATION-WRITES.
READ UPDATE-FILE RECORD

AT END
MOVE 1 TO STOP-WRITES.

IF STOP-WRITES IS EQUAL TO 0
IF ACREC IS EQUAL TO "A"

ADD 1 TO RCOUNTER
III CALL "AVCHWRT" USING OPEN-READ-WRITE-PARAMS.

IF RETURN-CODE GREATER THAN 0
MOVE 1 TO WRITE-SEND-ERROR, COMM-ERROR, STOP-WRITES.

Figure 4.4. Coding example: data communications (Part 2 of 3)

4- 8 IBM 5280 COBOL Programmer's Guide

REMOTE-STATION-READS.
CALL "AVCHREAD" USING OPEN-READ-WRITE-PARAMS.

IF RETURN-CODE IS EQUAL TO 4
MOVE 1 TO STOP-READS

ELSE IF RETURN-CODE GREATER THAN 4
MOVE 1 TO COMM-ERROR,

READ-RECEIVE-ERROR,
STOP-READS.

IF STOP-READS IS EQUAL TO 0
WRITE PRINT-RECORD FROM EMPRECD.

D OPEN1.
OPEN INPUT UPDATE-FILE.
CALL "AVCHOPEN" USING OPEN-READ-WRITE-PARAMS EMPRECD.

IF RETURN-CODE GREATER THAN 0
MOVE 1 TO COMM-ERROR,

OPEN-ERROR.
STOP "PRESS ENTER TO CONTINUE".

II CLOSE1.
CLOSE UPDATE-FILE.
MOVE "R" TO CLOSE-OPTION.
CALL "AVCHCLOZ" USING CLOSE-PARAMS.

OPEN2.

IF CRETURN-CODE GREATER THAN 0
MOVE 1 TO COMM-ERROR
MOVE 1 TO CLOSE1-ERROR.

OPEN INPUT UPDATE-FILE
OUTPUT PRINT-FILE.

Il!I CLOSE2.
CLOSE UPDATE-FILE.
MOVE "F" TO CLOSE-OPTION.
CALL "AVCHCLOZ" USING CLOSE-PARAMS.

IF CRETURN-CODE GREATER THAN 0
MOVE 1 TO COMM-ERROR
MOVE 1 TO CLOSE2-ERROR.

ERROR-ROUTINE.
IF OPEN-ERROR IS EQUAL TO 1

MOVE "OPEN" TO CAUSE
ELSE IF CLOSE1-ERROR IS EQUAL TO

MOVE "CLOSE1" TO CAUSE
ELSE IF CLOSE2-ERROR IS EQUAL TO

MOVE "CLOSE2" TO CAUSE
ELSE IF WRITE-SEND-ERROR IS EQUAL TO

MOVE "WRITE" TO CAUSE
ELSE IF READ-RECEIVE-ERROR IS EQUAL TO

MOVE "READ" TO CAUSE.
DISPLAY "TRANSMISSION INTERRUPTED"
DISPLAY "ERROR FOUND DURING" CAUSE "RUN STOPPED."
DISPLAY "RETURN CODE- " RETURN-CODE.

Figure 4.4. Coding example: data communications (Part 3 of 3)

Chapter 4. Data Communications Programming with COBOL 4- 9

4- 10 IBM 5280 COBOL Programmer's Guide

Input-Output Summary

Chapter 5. Diskette Input/Output

Diskette Input/Output (I/O) is the transfer of data between a program and
IBM 5280 diskette devices. The chapter provides examples of the statements
you write to perform diskette I/O, and some considerations you must make in
writing I/O routines, namely:

• Choosing a file organization (sequential, relative, or indexed)

• Choosing the access method (sequential or random)

• Assigning data sets and devices to file statements in the program

• Sharing files among more than one program

• Guidelines and examples in coding routines to create, read, and update
the three types of file organizations

A COBOL I/O operation that transmits data to or from main storage involves
three elements:

• The COBOL statements that define and request the operation

• An access method that performs the operation

• A file on an actual device on which the operation is performed

To perform a diskette I/O operation, you must code several statements in your
program to make the operation possible. Some of these statements are:

• The FILE-CONTROL paragraph, which relates your file to the diskette
device, and describes the access mode, file organization, and other
factors relating to the file.

• The OPEN and CLOSE verbs in the Procedure Division. OPEN builds
the environment necessary to transmit data to and from a device;
CLOSE completes all unfinished I/O operations.

Before attempting to transmit data, you must always issue an OPEN;
you should always issue a CLOSE to ensure that any data remaining in
an intermediate buffer is transferred.

• READ, WRITE, REWRITE, and DELETE verbs in the Procedure
Division that cause records to be transmitted either to or from the files
you specify in the ASSIGN clause.

The remainder of the chapter provides more detailed information on the items
just summarized.

File Organization and Access Method
You define a file organization and an access method in the FILE-CONTROL
paragraph of your program. The types of file organizations and access
methods you can define are:

• Sequential, for which one access method is possible: sequential. For
this organization, you specify ORGANIZATION IS SEQUENTIAL in
the FILE-CONTROL paragraph of your program.

Chapter 5. Diskette Input/Output 5- 1

Random Access Method

Sequential Access Method

Sequential Organization

• Relative, for which two access methods are possible: sequential and
random. For this organization, you specify ORGANIZATION IS
RELA TIVE in the FILE-CONTROL paragraph of your program.

• Indexed, for which two access methods are possible: sequential and
random. For this organization, you specify ORGANIZATION IS
INDEXED in the FILE-CONTROL paragraph of your program.

As stated, you can specify one of two access methods, depending on the file
organization: sequential (ACCESS IS SEQUENTIAL) or random (ACCESS
IS RANDOM).

For random access, the order of reference to a record is determined by a value
you specify in your program. For records with a relative organization, this
value is called a relative key; for records with an indexed organization, this
value is known as a record key.

For sequential access, the order of reference to a record is determined by the
position of the record in the file. That is, records are read or written serially
as follows:

• For files with a sequential organization, according to their physical
location.

• For files with a relative organization, according to their relative key.

• For files with an indexed organization, according to their record key.

In the example that follows, the term current record pointer (CRP) is used to
explain the relative position of a record in a file after an OPEN or READ verb
is executed. The concept of the CRP applies when the sequential access
method is used for files with sequential, random, or indexed organizations.

OPEN INPUT
READ Read record
READ Read record 2

•
•
•

Read record X
Rewrite record X
End-of-file occurs

CRP=record
CRP=record 2
CRP=record 3

CRP=X+1
CRP=X+1

READ
REWRITE
READ
READ Fails (status Key 94) No CRP

In order for a READ to be successful, the previous OrEN or READ for that
file must have been successful. You can determine whether or not a READ or
OPEN is successful by examining the Status Key. (The Status Key is a
data-item coded in your program as described under "Status Key" under
"Error Processing Options" later in this chapter.)

When all the records in a file are to be processed, using the sequential access
method will be faster than using the random access method.

In files with a sequential organization, records are placed into the data set one
after the other: the first record entered occupies the first position in the file,

5- 2 IBM 5280 COBOL Programmer's Guide

Relative Organization

Indexed Organization

Record Formatting

the second occupies the second position, and so on. Records are retrieved in
the same order. The first record is read, then the second, and so on.

In files with a relative organization, a relationship exists between records and
their positions in the file. The relative position of a record might be equal to a
program counter or a field value. The relative position might also be derived
by a formula or conversion technique.

The following is an example of a file with relative organization:

Employee
1000

Employee
1001

2

Employee
1002

3

Employee
1003

4 5

Employee

1005

6

In this example, a company has a maximum of 1000 employees, and they are
assigned employee numbers of 1000 through 1999. Record 1 contains data on
employee 1000, record 2 contains data on employee 1001, and so forth. The
conversion technique is simply to take the employee number and to subtract
999 to obtain the relative record number.

The file does not need to be created sequentially or read sequentially, although
either is quite possible. Notice that record 5 is a null record. This is because
either no employee was ever assigned that number, or the employee has left
the company. In either case the storage space is unused.

In indexed files, a relationship exists between a record and a key you designate
in the record. The key for each record must be unique. This allows a program
to refer to each record by its key.

COBOL supports two types of indexed files. They are described later in this
chapter in the section "Processing Files with an Indexed Organization".

The format of the record in an IBM 5280 system data set is determined when
you allocate the data set as described in Chapter 8. The RECORD
CONTAINS and BLOCK CONTAINS clauses don't affect this format.

The size of the record as defined in the COBOL program and the size of the
record as allocated must always be the same.

Chapter 5. Diskette Input/Output 5- 3

FILE-CONTROI~ Paragraph
You describe your file and assign a diskette device in the FILE-CONTROL
paragraph. Here are some of the entries you make in this paragraph:

SELECT file-name
ASSIGN TO DISK
["device-address1"["[*volid1.]dsname1"]]
[INDEX ["device-address2"["[*volid2.]dsname2"]]]
[SIZE nnnn]
[SHARE I SHARER]

•
•
•

aNote: Other clauses in the FILE-CONTROL section include the
ORGANIZATION, ACCESS MODE, RECORD KEY, RELATIVE KEY,
and FILE STATUS clauses. They are described in the Language Reference
Manual; some are shown in the examples given later in this chapter.

The INDEX and SIZE clauses are discussed later in this chapter under
"Processing Files with an Indexed Organization". SHARE and SHARER are
discussed under "Sharing Files".

The following text describes the entries SELECT clause and the
assignment-name entries of the ASSIGN clause.

file-name is the name of the file you specify in the associated File Description
(FD) Entry.

DISK tells COBOL that the device is a diskette.

You can optionally specify the following parameters:

device-address 1 is the physical address (4000 or 4400, for example) or logical
address of the device on which the diskette must be mounted.

volidl is the identification given when the volume was initialized with the
diskette initialization utility.

dsnamel is the name given to the data set when it was allocated, usually
assigned with the diskette label maintenance utility.

If you specify only the required (file-name) parameter, the operator must
respond to the following prompt that appears on the screen when the program
is loaded.

Enter the following information for file file-name
Dataset name:
Device address:
Owner id:

Press ENTER

No prompt will be displayed under the following conditions:

• You specify device address 1, volidl and dsnamel.

• You specify a VALUE OF owner-id clause (described below) in your
program when the volume is protected.

Otherwise, the operator can respond to this prompt as described under
"Prompts for Diskette Files" in Chapter 8.

5- 4 IBM 5280 COBOL Programmer's Guide

FD Entry - VALUE OF OWNER-ID Clause

Sharing Files

Unshared Files

Shared Files

You can write a VALUE OF OWNER-ID clause in the field description (FD)
entry. This clause allows you to control the use of protected diskette volumes
by the operator.

The operator must fill in the Owner-id field (1) if the volume is protected and
(2) if you don't code a VALUE OF owner-id clause under the FD entry in
your program.

Whether or not a volume is protected is determined by the setting of the
accessibility byte. This byte is set under the "modify volume label" option of
the diskette label maintenance utility. See Utilities Reference/Operations
Manual for detailed information on how to protect a volume.

The VALUE OF owner-id clause is coded as follows:

FD file-name
VALUE OF OWNER-ID IS "BELL"
LABEL RECORDS ARE STANDARD.

In the above example the owner-id BELL was specified when the data set was
initialized with the diskette initialization utility (also described in the Utilities
Reference/Operations Manual).

Sharing files refers to the use of a file by more than one program executing at
the same time. The ability of another program to use a file at the same time
as your program depends on how the following COBOL language statements
are coded in the two programs:

• The SHARE option in the SELECT clause.

• The OPEN verb, in which the modes OUTPUT, 1-0 (for update),
INPUT, or EXTEND mode can be coded.

In general, you can code your program so that diskette files are:

• Unshared

• Shared read

• Shared read/write

When a file is unshared, only the program that opens the file has access to it,
both for reading and for writing. If another program attempts to access the
file, the requesting program will receive Status Key value of 93. This
indicates the file is already opened. Files are always unshared unless you
specifically specify otherwise, as will be shown later in this chapter.

When you specify SHARER (for shared read) in the FILE-CONTROL
paragraph, another program can access the file for reading data, but cannot
update it.

When you specify SHARE (for shared read and shared read/write) files can
be accessed by more than one program at a time. All programs can both read
and write to the file.

Chapter 5. Diskette Input/Output 5- 5

When Files Can Be Shared
Whether or not a second program can access a file that has already been
opened depends on:

The mode (INPUT, OUTPUT, 1-0, or EXTEN D) coded with OPE'" in
the first program.

• The share option (blank, SHARER, or SHARE) coded in the SELECT
clause of the first program.

• The mode coded with OPEN in the second program.

• The share option (blank, SHARER, or SHARE) coded in the SELECT
clause of the second program.

LI'Note: You cannot add records to files with indexed organizations if those files
are being shared with other programs.

Figure 5.1 shows the combinations of the SHARE/SHARER options and the
OPEN modes when files are to be shared among programs.

IF A PROGRAM USES ... THEN OTHER PROGRAMS CAN USE ...

As the Share O~ion: ~s the OPEN Mode: As the Share Option: As the OPEN Mode:

SHARE 1-0 SHARE 1-0 or INPUT

SHARE INPUT SHARE or SHARER 1-0 or INPUT

SHARER 1-0 SHARE INPUT

SHARER INPUT SHARE or SHARER INPUT

Figure 5.1. Valid combinations of SHARE/SHARER and OPEN modes

When a file is opened in the INPUT mode, then only READ operations can
take place. When a file is opened in the 1-0 mode, then, depending on the file
organization, READ, WRITE, REWRITE, and DELETE operations can
take place.

No Sharing with OUTPUT and EXTEND Modes

I/O Error Processing

The share options are ignored when the OPEN verb specifies a mode of
OUTPUT or EXTEND. Files opened in these modes are always opened for
exclusive use and cannot be shared while they are so opened. If the file is then
subsequently opened in another mode such as INPUT or 1-0, the share
options on the SELECT clause are then used to determine how the file will be
shared.

Four options are available determining the outcome of an I/O request, and for
detecting and handling I/O errors:

• The Status Key

• The EXCEPTION /ERROR Procedure

• The Invalid KEY clause

• The AT END Clause

This section explains the use of these options; the syntax and rules for coding
these options is given in detail in the 5280 COBOL Language Reference.

5- 6 IBM 5280 COBOL Programmer's Guide

Status Key

The Status Key is a 2-character data-item you define in the Data Division of
your program and name in the FILE STATUS clause. In the example in
figure 5.2, PRINT-FILE-STAT at II and UPDATE-FILE-STAT at Bare
defined in the WORKING-STORAGE SECTION at II.
Upon return to the COBOL program, the Status Key contains a value that
defines the status of the last request on the file.

It is recommended that you define a Status Key for all files and that your
COBOL program check the contents after each I/O request. Otherwise,
errors may go undiscovered by the program, producing results that may be
both destructive and difficult to diagnose.

If neither a Status Key nor an EXCEPTION/ERROR procedure (described
in the next section) is present and an error occurs, the program will display a
message in the Status Line at the top of the screen. A message identifier in
the format 92nn will precede the message; nn is the code that would have been
placed in the Status Key had it been present.

See Appendix B for a complete list of the values that can be placed in the
Status Key, their meanings, and a cross-reference between Status Key values
and the message identifiers as displayed in the Status Line.

EXCEPTION / ERROR Procedures

You can also code a procedure to handle errors using the
EXCEPTION /ERROR declarative. In the example in figure 5.2, each time
an error occurs on UPDATE-FILE or PRINT-FILE, an
ERROR/EXCEPTION routine at II or EJ receives control, displays some
messages, and stops the run.

The EXCEPTION /ERROR procedure is used only when a file is in open
status. Therefore, if any operation is attempted against a file which has
already been closed, or was never opened, then the EXCEPTION /ERROR
procedure is not executed. COBOL will return a Status Key value of 92.

Chapter 5. Diskette Input/Output 5- 7

The INVALID KEY Clause

II

EJ

IDENTIFICATION DIVISION.
PROGRAM-ID. SEND-RECEIVE.

•
•
•

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PRINT-FILE ASSIGN TO PRINTER
ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL
FILE STATUS IS PRINT-FILE-STAT.

SELECT UPDATE-FILE ASSIGN TO DISK
ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL
FILE STATUS IS UPDATE-FILE-STAT.

•
•
•

II WORKING-STORAGE SECTION.
77 UPDATE-FILE-STAT PIC XX.
77 PRINT-FILE-STAT

•
•
•

PROCEDURE DIVISION.
DECLARATIVES.
DISK-ERROR SECTION.

PIC XX.

USE AFTER ERROR PROCEDURE ON UPDATE-FILE.
DISKX.

DISPLAY "ERROR ON UPDATE-FILE I/O DURING SEND".
DISPLAY "FILE STATUS IS " UPDATE-FILE-STAT.
DISPLAY "TRANSMISSION STOPPED. RUN STOPPED.".
STOP RUN.

PRINT-ERROR SECTION.
USE AFTER ERROR PROCEDURE ON PRINT-FILE.

PRINTERX.
DISPLAY "ERROR ON PRINTER-FILE I/O DURING WRITE".
DISPLAY "FILE STATUS IS " PRINT-FILE-STAT.
DISPLAY "TRANSMISSION STOPPED. RUN STOPPED.".
STOP RUN.

END DECLARATIVES.
EXECUTE SECTION.
MAIN-ROUTINE.

PERFORM OPEN 1 .

•
•
•

Figure 5.2. COBOL statements for Status Key and EXCEPTION /ERROR
routine

When using the random access method, you can specify an INVALID KEY
clause with READ, WRITE, REWRITE, and DELETE verbs for files having
an indexed or relative organization. The clause consists of a set of COBOL
statements you want executed each time an invalid key is found.

An EXCEPTION jERROR procedure, if specified, will not be executed.

If the FILE STATUS clause is specified, a value is placed in the Status Key
to indicate the condition.

5- 8 IBM 5280 COBOL Programmer's Guide

TheAT END Clause

You can specify an AT END clause with a READ in sequential access mode.
When the end-of-file is detected, control is passed to the imperative statement
that follows AT END. An EXCEPTION jERROR procedure, if specified,
will not be executed.

If the FILE STATUS clause is specified, a value is placed in the Status Key
to indicate the condition.

Error Handling Considerations

Figure 5.3 shows the actions taken for all the combinations of AT END,
INY ALID KEY, and EXCEPTION jERROR procedure based on the first
digit of the Status Key.

tffNote the following:

• The return is always to the next verb unless the request that caused the
error contained an AT END or INY ALID KEY clause.

• The EXCEPTION jERROR procedure is executed only if the file is in
the open status.

• If an AT END or INY ALID KEY clause is present, an
EXCEPTION jERROR procedure will not be executed when either of
these two conditions occur.

Chapter 5. Diskette Input/Output 5- 9

First Digit No EXCEPTION/ERROR Procedure With EXCEPTION/ERROR Procedure
of

Status Key AT END/INVALID No AT END /INV ALID AT END /INV ALID No AT END /INV ALID
KEY KEY KEY KEY

0 The verb after the AT See Note 1 and Note 2. The verb after the AT The verb after the I/O
END or INVALID KEY END or INVALID KEY request executes.
clauses executes. clause executes.

1 The AT END clause See Note 1. The AT END clause The EXCEPTION /
(A T END condition) executes. executes. ERROR procedure

executes, followed by the
verb after the I/O request.

2 The INVALID KEY See Note 2. The INVALID KEY The EXCEPTION /
(lNV ALID KEY clause executes. clause executes. ERROR procedure

condition) executes, followed by the
verb after the I/O request.

3 The verb after the I/O The verb after the I/O The verb after the The EXCEPTION /
(Permanent error) request executes. request executes. INV ALID KEY or AT ERROR procedure

END clause executes. executes, followed by the
verb after the I/O request.

9 The verb after the I/O The verb after the I/O The verb after the The EXCEPTION /
(Other errors) request executes. request executes. INV ALID KEY or AT ERROR procedure

END clause executes. executes, followed by the
verb after the I/O request.

Note 1. The AT END phrase must be specified when ACCESS is sequential, when no EXCEPTION/ERROR routine is specified;
otherwise, the compiler issues a severe error message and makes the object module unexecutable.

Note 2. The INVALID KEY phrase must be specified when ORGANIZATION IS INDEXED or ORGANIZATION IS RELATIVE,
and ACCESS IS RANDOM are specified; otherwise, the compiler issues a severe error message and makes the object module
unexecutable.

Permanent I/O Errors

Figure 5.3. COBOL statement execution with AT END and INVALID KEY

If an I/O error occurs while accessing a file, COBOL will set the Status Key
to 30. COBOL will not accept additional READ or WRITE requests
following an I/O error. Therefore, if an I/O error occurs, you should CLOSE
the file. It may be necessary to create the file again.

5- 10 IBM 5280 COBOL Programmer's Guide

SEQUENTIAL Organization

Processing Files with Sequential File Organization

ASCII File Processing

Creating a Sequential File

The table in figure 5.4 summarizes the COBOL statements used for reading,
writing and updating a sequential file.

Division Reading Writing Updating

SELECT SELECT SELECT
ASSIGN ASSIGN ASSIGN

Environment FILE STATUS FILE STATUS FILE STATUS
Division ACCESS IS ACCESS IS ACCESS IS

SEQUENTIAL SEQUENTIAL SEQUENTIAL

OPEN INPUT OPEN OUTPUT OPEN 1-0
Procedure OPEN 1-0 OPEN EXTEND READ
Division READ WRITE REWRITE

CLOSE CLOSE CLOSE

Figure 5.4. Statements used with sequential file organizations

You can process ASCII-encoded files with a sequential organization by
specifying the CODE-SET clause in the file description entry (FD entry).
The rules for coding the CODE-SET clause are given in in the 5280 COBOL
Language Reference.

If ASCII files are to be processed, your 5280 system must have included
ASCII support when it was installed.

The following guidelines apply in creating a file with a sequential
organiza tion:

1. Use WRITEs to create a sequential file.

2. Specify OUTPUT mode in the corresponding OPEN. Otherwise, a logic
error will occur, setting the Status Key to 92.

After the OPEN OUTPUT, any data formerly present in the file is no
longer accessible.

3. If the end of the extent is reached on a diskette file, a boundary error
occurs, setting the Status Key to 34.

See "COBOL Requirements for Data Sets" in Chapter 8 for the rules that
apply when allocating data sets for your program.

Reading from a Sequential File
The following guidelines apply in reading records from a file with a sequential
organiza tion:

1. Use the READ verb to access the records.

2. INPUT or 1-0 mode must be specified in the corresponding OPEN.
Otherwise, a logic error will occur, setting the Status Key to 92.

3. The records are read in the order in which they appear on the file. When
the end of file is reached, the Status Key is set to 10. If the file does not

Chapter 5. Diskette Input/Output 5- II

Updating a Sequential File

contain any records, the Status Key is also set to 10 on the first READ
request.

The following guidelines apply in updating records from a file with a
sequential organization:

1. Use a REWRITE to replace an existing record in a file.

2. The record to be rewritten must have been the last record read.

3. If there was no preceding READ, or if the preceding READ was
unsuccessful, the Status Key is set to 92.

4. The 1-0 mode must be specified in the corresponding OPEN. Otherwise, a
logic error will occur on a subsequent REWRITE, setting the Status Key to
92.

Multivolume Record Processing
The following rules and guidelines apply to multivolume files:

1. Only files with SEQUENTIAL organization can reside on multiple
volumes.

2. A file is a multivolume file if the Header 1 label contains a 'C' or 'L' in the
multivolume indicator field.

3. To create a multivolume file, you must allocate the data set on all volumes
you will use and the first volume you mount must contain a 'C' or 'L' for
the multivolume indicator.

(The multivolume indicator can be set when the data set is allocated
with the data set maintenance utility as described in the Utilities
Reference/Operations Manual.)

For multivolume diskette OUTPUT files, when end-of-volume is found,
the next volume is requested; after the volume is mounted, the WRITE
is done.

COBOL will mark each volume with a 'C' in the HDRI multivolume
indicator field and set the appropriate sequence number for that volume.
When a CLOSE verb is issued, COBOL will mark that volume as the
last volume ('L').

4. To EXTEND a multivolume file, you must allocate the data set on all
volumes you will be using. The first volume you mount must be the last
volume of the original data set which is being extended, ('L') in the
multivolume HDRI indicator field. If you created the file using COBOL,
this field will have been set by COBOL.

When end-of-voiume is found, the next voiume is requested; after it is
mounted, the Write is done,

• COBOL will mark each volume with a 'C' in the HDRI
multivolume indicator field.

• If the starting volume had a sequence number assigned to it,
COBOL will assign the appropriate sequence number to all
subsequent volumes.

• When a CLOSE verb is issued, COBOL will mark that volume as
the last volume.

5. For reading or updating a multivolume file, the first volume of the file must
be mounted. If the HDRI sequence number is blank, then COBOL
assumes that the first volume is mounted. If it is not blank, COBOL will

5- 12 IBM 5280 COBOL Programmer's Guide

Example

SeQUENTIAL Organization

ensure that the first volume is mounted and will prompt the operator to
mount the first volume if it is not.

If end-of-volume is recognized during execution of a READ statement,
and logical end-of-file has not been reached, the following actions are
taken:

1. The next volume is requested.

2. After the volume is mounted, the first data record on it is made
available.

If sequence checking is being performed, as indicated by a nonblank
sequence number field in the first volume, then COBOL will ensure that
all subsequent volumes are mounted in their proper order. The operator
will be prompted to mount the correct volume if one is mounted out of
order.

The program example in figure 5.5 updates I-O-FILE. It reads
INPUT-FILE and the I-O-FILE until a match is found between
INPUT-EMPLOYEE-NUMBER and I-O-EMPLOYEE-NUMBER. It then
replaces the original record in I-O-FILE with INPUT-RECORD.

IDENTIFICATION DIVISION.
PROGRAM-ID. UPDATE-SEQUENTIAL.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-5280.
SPECIAL-NAMES. CONSOLE IS SCREEN.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE
ASSIGN TO DISK.

SELECT I-O-FILE
ASSIGN TO DISK
FILE STATUS IS SK.

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE LABEL RECORD STANDARD.
01 INPUT-RECORD.

FD
01

05 INPUT-EMPLOYEE-NUMBER
05 INPUT-EMPLOYEE-NAME
05 INPUT-EMPLOYEE-CODE
05 INPUT-EMPLOYEE-SALARY
05 FILLER
I-O-FILE LABEL RECORDS
I-O-RECORD.

PICTURE
PICTURE
PICTURE
PICTURE

PICTURE
STANDARD.

9 (6) .
X(28) .
9.
9(6)V99.

X.

05 I-O-EMPLOYEE-NUMBER
05 I-O-EMPLOYEE-NAME
05 I-O-EMPLOYEE-CODE
05 I-O-EMPLOYEE-SALARY
05 FILLER

PICTURE 9(6).
PICTURE X(28).

WORKING-STORAGE SECTION.
01 DISP-RECORD.

05 OP-NAME PICTURE
05 FILLER PICTURE
05 SK PICTURE

PICTURE 9.
PICTURE 9(6)V99.
PICTURE X.

X(5).
XX VALUE SPACE.
XX VALUE "zz".

Figure 5.5. Example of processing files with a sequential organization (Part 1 of 2)

Chapter 5. Diskette Input/Output 5~ 13

PROCEDURE DIVISION.
OPEN-FILES.

OPEN INPUT INPUT-FILE 1-0 I-O-FILE.
IF SK NOT = "00"

MOVE "OPEN" TO OP-NAME
PERFORM ERROR-OUT-1
GO TO STOP-RUN.

PERFORM READ-INPUT.
PERFORM READ-UPDATE.

UPDATE-TEST-LOOP.
IF INPUT-EMPLOYEE-NUMBER = I-O-EMPLOYEE-NUMBER

PERFORM I-0-REWRITE-1
GO TO UPDATE-TEST-LOOP.

I~' INPUT-EMPLOYEE-NUMBER GREATER THAN I-O-EMPLOYEE-NUMBE
PERFORM READ-UPDATE
GO TO UPDATE-TEST-LOOP.

* I-O-EMPLOYEE-NUMBER IS GREATER THAN INPUT-EMPLOYEE-NUMBER
* NO MATCH HAS BEEN FOUND SO PUT OUT ERROR MESSAGE

PERFORM ERROR-OUT-1.
DISPLAY INPUT-RECORD UPON SCREEN.
MOVE SPACES TO DISP-RECORD.
PERFORM READ-INPUT.
GO TO UPDATE-TEST-LOOP.

CLOSE-FILES.
CLOSE INPUT-FILE I-O-FILE.

STOP-RUN.
STOP RUN.

ERROR-OUT-1.
DISPLAY DISP-RECORD UPON SCREEN.

I-0-REWRITE-1.
REWRITE I-O-RECORD FROM INPUT-RECORD.
IF SK NOT = "00"

MOVE "RWRTE" TO OP-NAME
PERFORM ERROR-OUT-1.

PERFORM READ-INPUT.
PERFORM READ-UPDATE.

READ-INPUT.
READ INPUT-FILE AT END GO TO CLOSE-FILES.

READ-UPDATE.
READ I-O-FILE AT END MOVE "NOT FOUND" TO DISP-RECORD
PERFORM ERROR-OUT-1 GO TO CLOSE-FILES.

Figure 5.5. Example of processing files with a sequential organization (Part 2 of 2)

5- 14 IBM 5280 COBOL Programmer's Guide

RELA TIVE Organization

Processing Files with a Relative Organization

Creating a Relative File

The table in figure 5.6 shows the COBOL Statements available for relative
file processing.

Division Reading Writing Updating

SELECT SELECT SELECT
ASSIGN ASSIGN ASSIGN
ORGANIZA TION ORGANIZA TION ORGANIZA TION

IS RELATIVE IS RELATIVE IS RELATIVE
RELA TIVE KEY RELA TIVE KEY RELA TIVE KEY

Environment FILE STATUS FILE STATUS FILE STATUS
Division ACCESS IS ACCESS IS ACCESS IS

SEQUENTIAL SEQUENTIAL SEQUENTIAL
ACCESS IS ACCESS IS ACCESS IS

RANDOM RANDOM RANDOM

OPEN INPUT OPEN OUTPUT For ACCESS IS
OPEN 1-0 WRITE SEQUENTIAL
READ CLOSE OPEN 1-0
CLOSE READ

REWRITE
DELETE
CLOSE

Procedure
Division For ACCESS IS

RANDOM
OPEN 1-0
READ
WRITE
REWRITE
DELETE
CLOSE

Figure 5.6. Statements used with relative file organizations

The following guidelines apply in creating a file with a relative organization:

1. Use WRITE statements to create a relative file.

2. Specify the OUTPUT mode in the corresponding OPEN. When a file is
opened in OUTPUT mode, data formerly present in the file is no longer
accessible.

3. If you specify ACCESS IS SEQUENTIAL, you can first write the
desired number of records. A subsequent CLOSE causes null records to
be inserted from the last record written, to the end-of-extent.

Null records are .empty records represented by the characters x'FF',
which is inserted in the first byte of each record. Null records also
contain the 5280 delete character specified when the data set was
allocated.

4. If you specify ACCESS IS RANDOM, the OPEN causes null records to
be inserted in the entire file.

5. Your program will never receive a null record. When you use the
sequential access mode, only non-null records are returned; when you

Chapter 5. Diskette Input/Output 5- 15

Contents of Relative Key

use the random access mode, the Status Key is set to 23, indicating the
record cannot be found.

6. Relative files must be on single volumes.

See "Allocating Data Sets for Program Files" in Chapter 8 for the rules that
apply when allocating data sets for your program using IBM 5280 facilities.

When issuing a WRITE with the sequential access mode, the first record
written will have relative record number one, the second two, the third three,
and so on. If a relative record key was specified, it will be updated to contain
the number of the record just written. If the end of extent is reached when a
WRITE request is executed, an invalid key condition will occur, setting the
Status Key to 24 (boundary error).

When issuing a WRITE with the random access mode, place the desired
record number in the relative key data-item before issuing the WRITE.
Invalid Key conditions after a WRITE occur when:

• A non-null record already exists. The Status Key is set to 22 (for
duplicate record).

• The record number is outside the extent of the file. The Status Key is
set to 24 (for boundary condition).

Example - Creating a Relative File
The program example in figure 5.7 creates a master file of employee records.
Employee numbers from 1001 through 2001 are entered in the employee
number field (EMPNO).

5- 16 IBM 5280 COBOL Programmer's Guide

2
4
5
6
8

10
11
12
13
14
14
14
14
14
15
16
17

17
18
18 000001
19 000002
20 000004
21 000006
22 000008
23 000010
24 000012
25 000016
26 000018
27 000020
28
29
30
31
32
33
34
35
36
37
37
37
38
39
39
39
40
41
42
43
44
45
46
47
48
49
50
51

RELA riVE Organization

IDENTIFICATION DIVISION.
PROGRAM-ID. LOADIT.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-5280.
SPECIAL-NAMES.

CONSOLE IS SCREEN.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT EMPMAS-FILE ASSIGN TO DISK
ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL
RELATIVE KEY IS RKEY
FILE STATUS IS STATUS-KEY.

DATA DIVISION.
FILE SECTION.
FD EMPMAS-FILE

LABEL RECORDS ARE STANDARD.
COPY DDS-EMPRECD.

01 EMPRECD.
02 ACREC PIC X(00002).
02 EMPNO PIC S9(05)V.

02 ENAME PIC X(00020) .
02 STRAD PIC X(00020) .
02 CTYST PIC X(00020) .
02 ZIPCD PIC X(00005) .
02 BEGDT PIC X(00006) .
02 SOSNO PIC X(00009).
02 MARST PIC X(00001).

WORKING-STORAGE SECTION.
77 STATUS-KEY PIC X(2).
77 RKEY PIC 9(5) VALUE 1.
77 DEMPNO PIC 9(5) VALUE O.
PROCEDURE DIVISION.
BEGIN.

OPEN OUTPUT EMPMAS-FILE.
MOVE SPACES TO EMPRECD.
MOVE "F" TO ACREC.

DISPLAY
"EMPLOYEE MASTER FILE BEING CREATED."

FIN.

UPON SCREEN.
PERFORM LOAD 1000 TIMES.
DISPLAY

"MASTER FILE CREATED. READY FOR UPDATE RECORDS"
UPON SCREEN.

CLOSE EMPMAS-FILE.
STOP RUN.

LOAD.
ADD RKEY 1000 GIVING DEMPNO.
MOVE DEMPNO TO EMPNO.
WRITE EMPRECD INVALID KEY

DISPLAY "
DISPLAY "
DISPLAY "
DISPLAY "
GO TO FIN.

EMPLOYMENT NUMBER IS " EMPNO.
INVALID KEY IS " RKEY.
DEMPNO IS " DEMPNO.
STATUS KEY IS " STATUS-KEY.

Figure 5.7. Creating a relative file

Chapter 5. Diskette Input/Output 5- 17

Reading from a Relative File

Updating a Relative File

The following guidelines apply in reading records from a file with a relative
organization:

1. Use the READ verb to access the records.

2. Specify INPUT or 1-0 mode in the corresponding OPEN. Otherwise, a
logic error will occur, setting the Status Key to 92.

3. Records in a file with a relative organization can be read sequentially
(ACCESS IS SEQUENTIAL is specified in the SELECT clause) or
randomly (ACCESS IS RANDOM).

For sequential access, reading a relative file is like reading a sequential file,
except only successive, non-null records are returned. Moreover, if you
specify RELATIVE KEY IS in the SELECT clause, the relative record
number will be returned in the relative key data-item.

For random access, you must place a relative record number in the key
data-item before reading the record. An invalid key condition occurs if
either a null record is found (the Status Key is set to 23), or the record is
past the end-of-file or the relative key is 0, (the Status Key is set to 24).

The following guidelines apply in updating records in a file with a relative
organization:

1. The file that is to be updated must have previously been created.

2. Specify 1-0 mode in the corresponding OPEN. Otherwise, a logic error
will occur on a subsequent READ, WRITE, or REWRITE, setting the
Status Key to 92.

3. Records in a file with a relative organization can be read sequentially
(ACCESS IS SEQUENTIAL is specified in the SELECT clause) or
randomly (ACCESS IS RANDOM).

For sequential access, updating is done with a REWRITE or DELETE,
always preceded by a READ. If there is no preceding READ, or the
preceding READ statement was unsuccessful, the REWRITE or DELETE
will fail, setting the Status Key to 92.

For random access, updating is done only with a WRITE to a null record,
or with a REWRITE or DELETE to an existing record; no preceding
READ is necessary. The following invalid key conditions can occur for
random access:

• No record is found (the Status Key is set to 23).

• Duplicate relative record Key (the Status Key is set to 22). This occurs
when a non-null record is found in a file at the location indicated by the
Key in a WRITE.

• Boundary violation (the Status Key is set to 24).

Example - Reading and Updating a Relative File
Figure 5.8 shows the required input/output statements needed to read and
update a relative file.

5- 18 IBM 5280 COBOL Programmer's Guide

RELA TIVE Organization

•
•
•

SELECT EMPMAS-FILE ASSIGN TO DISK
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS RKEY
FILE STATUS IS DISK-STAT.

DATA DIVISION.
FILE SECTION.
FD EMPMAS-FILE

LABEL RECORDS ARE STANDARD.
COPY DDS-EMPRECD.

01 EMPRECD.
02 ACREC
02 EMPNO

•
•
•

PIC X(00002).
PIC S9(OS)V.

WORKING-STORAGE SECTION.
77 DISK-STAT PIC XX VALUE SPACES.
77 RKEY PIC 9999 VALUE ZERO.
DATA DIVISION.

•
•
•

OPEN I-O EMPMAS-FILE-PR3.

•
•
•

READ-MASTER.
SUBTRACT 1000 FROM EMPNO GIVING RKEY.
READ EMPMAS-FILE

INVALID KEY
MOVE 0 TO CONTINUE
MOVE 1 TO ERROR-FOUND, INVALID-EMPNO.

MOVE SCREEN-RECORD TO EMPRECD.
REWRITE EMPRECD

INVALID KEY
MOVE 1 TO INVALID-EMPNO
MOVE 0 TO CONTINUE.

•
•
•

CLOSE EMPMAS-FILE.

Figure 5.8. Example of processing files with a relative organization

Chapter 5. Diskette Input/Output 5- 19

(This page is intentionally left blank.)

5- 20 IBM 5280 COBOL Programmer's Guide

INDEXED Organization

Processing Files with an Indexed Organization

Two Types of Indexed Files

Figure 5.9 shows the COBOL statements which can be used for indexed file
processing.

Division Reading Writing Updating

SELECT SELECT SELECT
ASSIGN ASSIGN ASSIGN
ORGANIZA TION ORGANIZA TION ORGANIZA TION
IS INDEXED IS INDEXED IS INDEXED

RECORD KEY RECORD KEY RECORD KEY
Environment FILE STATUS FILE STATUS FILE STATUS

Division ACCESS IS ACCESS IS ACCESS IS
SEQUENTIAL SEQUENTIAL SEQUENTIAL

ACCESS IS ACCESS IS ACCESS IS
RANDOM RANDOM RANDOM

OPEN INPUT OPEN OUTPUT ACCESS IS
OPEN 1-0 WRITE SEQUENTIAL
READ CLOSE OPEN 1-0
CLOSE READ

REWRITE
DELETE
CLOSE

Procedure
Division For ACCESS IS

RANDOM
OPEN 1-0
READ
WRITE
REWRITE
DELETE
CLOSE

Figure 5.9. Statements used with indexed file organizations

COBOL supports two types of indexed files. In one type, an entry for each
record is stored in a separate data set called an index data set. The entry
consists of the record's key and the record's location. Accessing this data set
is similar to the key indexed access method described in the 5280 System
Concepts manual.

In the other type of indexed organization supported by COBOL, the records
are kept in sequence in the file by the system each time you add or delete one.
Accessing this type of organization with the random access method is the
equivalent of using the direct by key access method described in the 5280
System Concepts manual.

Chapter 5. Diskette Input/Output 5- 21

Effects of Sequential and Random Access

You can access the record in an indexed file either sequentially (ACCESS IS
SEQUENTIAL) or randomly (ACCESS IS RANDOM).

With sequential access, the records are accessed in ascending sequence
according to the value of the record keys.

You can expect better performance with the sequential access method when:

• The file is being crea ted.

• The entire file is being updated, rather than just a few random records,
and a separate index data set hasn't been specified.

FILE-CONTROL Paragraph/or Indexed Organization
The following is a partial format of the FILE-CONTROL Paragraph:

SELECT file-name
ASSIGN TO DISK
["device-address1" ["[*volid1.]dsname1"]]
[INDEX "device-address2" ["[*volid2.]dsname2"]]]
[SIZE nnnn]
[SHARE I SHARER]

•
•
•

uNote: Other clauses in the FILE-CONTROL section include the
ORGANIZATION, ACCESS MODE, RECORD KEY, RELATIVE KEY,
and FILE STATUS clauses. They are described in the Language Reference
Manual; some are shown in the examples given later in this chapter.

Device-addressl, Volidl, and Dsnamel

The data set specified by this parameter contains the application records.

device-address 1 is the physical address (4000 or 4400, for example) or logical
address of the device on which the diskette must be mounted.

volidl is the identification given when the volume was initialized with the
diskette initialization utility.

dsnamel is the name given to the data set when it was allocated, usually
assigned with the diskette label maintenance utility.

The effect of the above specification on the prompt given when the program is
loaded, and the operator response to the prompt, is explained in the section
"FILE-CONTROL Paragraph" eailier in this chapter.

5- 22 IBM 5280 COBOL Programmer's Guide

INDEX Clause

SIZE Clause

SHARE Clause

INDEXED Organization

Specify the INDEX clause when you want two data sets: one for the
application records and another for the index; device-address2, volid2, and
dsname2 provide the same information for the index data set as the
device-addressl, volidl, and dsnamel provide for the data set containing the
application records.

The data set specified by device-address2, volid2, and dsname2 will contain
the record keys and location, depending on how the data set was created as
will be explained later.

The SIZE clause is optional. With the clause, you control the number of keys
in main storage and the performance of your program. In nnnn, specify up to
four digits to indicate the number of keys from the index data set that are to
be kept in main storage during execution. Consider the following when
specifying the SIZE clause:

1. The value nnnn must be greater than or equal to 2.

2. A default value of 5 is used when ACCESS IS RANDOM is coded. The
in-storage index isn't used when ACCESS IS SEQUENTIAL is in
effect.

3. By increasing the value nnnn, performance may be improved because of
less search time to find the desired record. However, you must also
consider the additional storage required when increasing the size of the
in-storage index.

4. The SIZE clause can be specified with either type of indexed file.

5. The amount of storage needed for the in-storage index is (keysize + 3) x
nnnn.

This clause is described earlier in this chapter under "Sharing Files".

Rules and Considerations for Index Data Sets

1. If you code a password in the FD statement of the application record
data set, the system will assume that the password is also valid for the
index data set.

2. Any SHARE options you specify for the application record data set will
also apply to the index data set.

3. Both the index and application record data sets must be on single
volumes.

4. Byte 0 of the four-byte location is ignored when the data set is being
accessed. It is set to X'OO' when COBOL creates the data set.

5 Bytes 1 through 3 contain the relative record number of a record in the
application rlata set.

Chapter 5. Diskette Input/Output 5- 23

5. You can create an index data set in two formats:

1. From a COBOL program by specifying OUTPUT mode in the
corresponding OPEN. Each record in the index data set will
contain both the record key and the corresponding four-byte
location of a corresponding application record in the application
record da ta set.

Note: A COBOL program can access a data set created in this
format by a DEjRPG program.

2. With the ADDROUT function of the sort program or some other
user-written program. Each record in the index data set will
contain the location of a corresponding application record in the
application record data set.

Other rules and considerations for index data sets depend on which of the
above two formats were used to create them.

Index Data Sets Created by COBOL Programs

When an index data set is created by a COBOL program, the following
applies:

When Created by Other Programs

1. When allocating the index data set, specify a record size equal to the
length of the key plus 4. Otherwise, at execution, an error will occur,
setting the file status key to 95.

2. The application records are placed in their associated data set in the
order they are written.

Note: When random access is used, the records may be written in any
order. When sequential access is used, they must be written in
ascending order by record key.

3. The index records are inserted into the index data set in the proper
ascending sequence.

4. The keys in the index data set must be unique.

When an index data set contains only the four-byte locations of application
data set records, consider the following:

1. The index data set contains only the four-byte locations of the
application record; no key fields are within the index data set.

2. Specify only ACCESS IS SEQUENTIAL and the INPUT mode or the
1-0 mode in the corresponding OPEN.

3. COBOL assumes that the length of the records in the index data set is
four (4) bytes; if the iength isn~t four bytes, the file status key win be set
to 95 indicating an invalid file.

Adding Records to Indexed Files
You cannot add records to files with indexed organizations if those files are
being shared with other programs. An attempt to add a record to a shared
indexed file causes a error condition and the Status Key to be set to 92. (See
"Sharing Files" earlier in this chapter for more information.)

5- 24 IBM 5280 COBOL Programmer's Guide

Creating an Indexed File

Example

INDEXED Organization

The rules and recommendations for creating a file with an indexed
organization are:

1. Use the sequential access method (rather than the random) for better
performance.

2. Specify OUTPUT mode in the corresponding OPEN.

3. When creating an indexed file with sequential access the records must
be written in ascending key sequence. If a record is not in ascending key
sequence, an invalid key condition will occur, setting the Status Key to
21 (for sequence error).

4. You must place a value in the record key data-item before issuing a
WRITE.

5. If the end-of-extent is reached on a WRITE request, an invalid key
condition occurs setting the Status Key to 24 (for boundary error).

See "Allocating Data Sets for Program Files" in Chapter 8 for the rules that
apply when allocating data sets for your program using IBM 5280 facilities.

The examples in figure 5.10 and figure 5.11 create files of employee master
records. Employee numbers from 5000 to 5999 are entered in the employee
number field (EMPNO). An index organization with one data set is shown in
figure 5.10; the example in figure 5.11 shows an index organization with one
data set for application records and another for record keys. The only coding
difference is the addition of an INDEX clause in the File Control Paragraph
of the example shown in figure 5.11.

Chapter 5. Diskette Input/Output 5- 25

IDENTIFICATION DIVISION.

PROGRAM-ID. LOAD-EMPMAS.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-370.

OBJECT-COMPUTER. IBM-5280.

SPECIAL-NAMES.

CONSOLE IS SCREEN.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT EMPMAS-FILE ASSIGN TO DISK

ORGANIZATION INDEXED

RECORD KEY IS EMPNO

ACCESS SEQUENTIAL

FILE STATUS IS STATUS-KEY.

DATA DIVISION.

FILE SECTION.

FD EMPMAS-FILE

LABEL RECORDS ARE STANDARD.

COpy DDS-EMPRECD.

WORKING-STORAGE SECTION.

77 STATUS-KEY PIC X(2).

77 XEMPNO PIC 9(5).

PROCEDURE DIVISION.

BEGIN.

OPEN OUTPUT EMPMAS-FILE.

MOVE SPACES TO EMPRECD.

MOVE "F" TO ACREC.

DISPLAY

"EMPLOYEE MASTER FILE WITH 1000 MASTER RECORDS BEING CREATED"

FIN.

UPON SCREEN.

PERFORM LOAD VARYING XEMPNO

FROM 5000 BY 1 UNTIL XEMPNO IS EQUAL TO 6000.

DISPLAY

"MASTER FILE CREATED. READY FOR UPDATE RECORDS"

UPON SCREEN.

CLOSE EMPMAS-FILE.

STOP RUN.

LOAD.

MOVE XEMPNO TO EMPNO.

WRITE EMPRECD INVALID KEY

DISPLAY" INVALID KEY IS " EMPNO

DISPLAY" STATUS KEY IS " STATUS-KEY

GO TO FIN.

Figure 5.10. Creating an indexed file - without index data set

5- 26 IBM 5280 COBOL Programmer's Guide

IDENTIFICATION DIVISION.
PROGRAM-ID. LOAD-EMPMAS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-S280.
SPECIAL-NAMES.

CONSOLE IS SCREEN.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT EMPMAS-FILE
ASSIGN TO DISK
INDEX
ORGANIZATION IS INDEXED
ACCESS MODE IS SEQUENTIAL
RECORD KEY IS EMPNO
FILE STATUS IS STATUS-KEY.

DATA DIVISION.
FILE SECTION.
FD EMPMAS-FILE

01

LABEL RECORDS ARE STANDARD.
COPY DDS-EMPRECD.

EMPRECD.
02 ACREC PIC XCOOO02).
02 EMPNO PIC xCOOOOS).
02 ENAME PIC XCOO020).
02 STRAD PIC XCOO020).
02 CTYST PIC XCOO020).
02 ZIPCD PIC xCOOOOS) .
02 BEGDT PIC XCOOO06).
02 SOSNO PIC XCOOO09).
02 MARST PIC xC 0000 1) •

WORKING-STORAGE SECTION.
77 STATUS-KEY PIC X(2).
77 XEMPNO PIC 9CS).
PROCEDURE DIVISION.
BEGIN.

OPEN OUTPUT EMPMAS-FILE.
MOVE SPACES TO EMPRECD.
MOVE 'F' TO ACREC.

DISPLAY
'EMPLOYEE MASTER FILE WITH 1000 MASTER RECORDS BEING

FIN.

UPON SCREEN.
PERFORM LOAD VARYING XEMPNO
FROM 5000 BY 1 UNTIL XEMPNO IS EQUAL TO 6000.
DISPLAY

'MASTER FILE CREATED. READY FOR UPDATE RECORDS'
UPON SCREEN.

CLOSE EMPMAS-FILE.
STOP RUN.

LOAD.
MOVE XEMPNO TO EMPNO.
WRITE EMPRECD INVALID KEY

DISPLAY ,
DISPLAY ,
GO TO FIN.

INVALID KEY IS ' EMPNO
STATUS KEY IS ' STATUS-KEY

Figure 5.11. Creating an indexed file - with index data set

Chapter 5. Diskette Input/Output 5- 27

Reading an Indexed File

Updating an Indexed File

The following guidelines apply in reading records from a file with an indexed
organiza tion:

1. Use the READ verb to access the records.

2. Specify INPUT or 1-0 mode in the corresponding OPEN. Otherwise, a
logic error will occur, setting the Status Key to 92.

3. Records in a file with an indexed organization can be read sequentially
(ACCESS IS SEQUENTIAL is specified in the SELECT clause) or
randomly (ACCESS IS RANDOM).

For sequential access, reading an indexed file is like reading a sequential
file: the records are read in ascending order by the sequence of the keys.

For random access, you must place a value in the record key data-item
before reading the record. An invalid key condition occurs if no record
with the specified key is found (the Status Key is set to 23).

The rules and recommendations for updating a file with an indexed
organiza tion are:

1. You can use either the sequential access method or the random access
method. When updating the entire file, or most of the file, use the
sequential access method for the best performance. When updating only
a few records in the entire file, use the random access method.

2. For sequential access, updating is done by a REWRITE or DELETE,
always preceded by a READ.

3. For random access, updating is done with a WRITE to a null record, or
with a REWRITE or DELETE to an existing record; no preceding
READ is necessary.

4. Errors which may be received include: no space for insert (Status Key
90) or two invalid key conditions: duplicate record (the Status Key is set
to 22) or no record found (the Status Key is set to 23).

The example in figure 5.12 shows the updating of selected records in an
indexed file. The input records contain the key for the record, the depositor
name, and the amount of the transaction. Random access is used to update
the transaction records.

IDENTIFICATION DIVISION.
PROGRAM-ID. UPDATE-INDEXED.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-5280.
SPECIAL-NAMES. CONSOLE IS TYPEWRITER.
INPUT-OUTPUT SECTION.
FILE-COt~TROL •

SELECT INDEXED-FILE
ASSIGN TO DISK
ORGANIZATION INDEXED
ACCESS RANDOM
RECORD KEY IS REC-ID FILE STATUS IS SK.

SELECT IN-FILE
ASSIGN TO DISK.

SELECT PRINT-FILE
ASSIGN TO PRINTER.

Figure 5.12. Updating an indexed file (Part 1 of 3)

5- 28 IBM 5280 COBOL Programmer's Guide

INDEXED Organization

DATA DIVISION.
FILE SECTION.
FD INDEXED-FILE LABEL RECORDS STANDARD.
01 DISK-RECORD.

05 REC-ID.
10 REC-GEN-FLD PICTURE Xes).
10 REC-DET-FLD PICTURE xes).

05 DISK-FLDl PICTURE X(10).
05 DISK-NAME
05 DISK-BAL

PICTURE
PICTURE

X(20).
S9(6)V99.

FD IN-FILE LABEL RECORD STANDARD.
01 IN-REC.

05 IN-ID.
10 IN-GEN-FLD PICTURE xes).
10 IN-DET-FLD PICTURE xes).

05 IN-NAME PICTURE X(20).
05 IN-AMT PICTURE S9(6)V99.

FD PRINT-FILE LABEL RECORD OMITTED.
01 PRINT-RECORD-l.

05 PRINT-ID PICTURE X(10) .
05 FILLER PICTURE X(5).
05 PRINT-NAME PICTURE X(20) .
05 FILLER PICTURE X(5) .
05 PRINT-BAL PICTURE $$$$,$$$.99-.
05 FILLER PICTURE X(5).
05 PRINT-AMT PICTURE $$$$,$$$.99-.
05 FILLER PICTURE X(5).
05 PRINT-NEW-BAL PICTURE $$$$,$$$.99-.

01 PRINT-RECORD-2 PICTURE X(86).
WORKING-STORAGE SECTION.
77 GO-TO-SWITCH PICTURE 9 VALUE 1.
77 LINE-COUNT PICTURE 99 COMPUTATIONAL.
01 PAGE-HEAD.

05 FILLER PICTURE X(36) VALUE SPACES.
05 FILLER PICTURE X(14) VALUE "UPDATE
05 FILLER PICTURE'X(36) VALUE SPACES.

01 PAGE-FOOT.
05 FILLER PICTURE X(78) VALUE SPACES.
05 FILLER PICTURE A(6) VALUE "PAGE".

01 ERROR-MESSAGE.
05 OP-NAME PICTURE X(7).
05 FILLER PICTURE XX VALUE SPACES.
05 SK PICTURE XX VALUE "zz".
05 PG-NUMBER PICTURE 99 VALUE 00.

Figure 5.12. Updating~an indexed file (Part 2 of 3)

REPORT" .

Chapter 5. Diskette Input/Output 5- 29

PROCEDURE DIVISION.
BEGIN-PROCESSING.

OPEN INPUT IN-FILE
1-0 INDEXED-FILE
OUTPUT PRINT-FILE.

IF SK NOT = "00" MOVE "OPEN" TO OP-NAME
PERFORM ERROR-ROUTINE-1 THRU ERROR-ROUTINE-2
GO TO END-JOB-2.

PERFORM PAGE-START.
READ-INPUT.

READ IN-FILE AT END GO TO END-JOB-1.
RANDOM-PROCESS-1.

MOVE IN-ID TO REC-ID. MOVE SPACES TO PRINT-RECORD-1.
READ INDEXED-FILE INVALID KEY GO TO END-JOB-1.
IF SK NOT = "00" MOVE "READ-D" TO OP-NAME

PERFORM ERROR-ROUTINE-1 THRU ERROR-ROUTINE-2
GO TO READ-INPUT.

MOVE DISK-NAME TO PRINT-NAME.
MOVE DISK-BAL TO PRINT-BAL.
MOVE IN-AMT TO PRINT-AMT.
ADD IN-AMT TO DISK-BAL.
MOVE DISK-BAL TO PRINT-NEW-BAL.
PERFORM WRITE-PARA-1 THRU WRITE-PARA-2.

RANDOM-PROCESS-2.
GO TO READ-INPUT.

WRITE-PARA-1.
IF LINE-COUNT = 60

PERFORM PAGE-END THROUGH PAGE-START.
WRITE PRINT-RECORD-1.
ADD 1 TO LINE-COUNT.
REWRITE DISK-RECORD INVALID KEY GO TO CHK-ERR.

CHK-ERR.
IF SK NOT = "00" MOVE "REWRITE" TO OP-NAME

PERFORM ERROR-ROUTINE-1 THRU ERROR-ROUTINE-2.
WRITE-PARA-2.

EXIT.
PAGE-END.

ADD 1 TO PG-NUMBER.
WRITE PRINT-RECORD-2 FROM PAGE-FOOT

AFTER ADVANCING 3.
PAGE-START.

WRITE PRINT-RECORD-2 FROM PAGE-HEAD
AFTER ADVANCING PAGE.

MOVE 1 TO LINE-COUNT.
ERROR-ROUTINE-1.

DISPLAY ERROR-MESSAGE UPON TYPEWRITER.
ERROR-ROUTINE-2.

EXIT.
END-JOB-1.

IF SK NOT "00" MOVE "READ" TO OP-NAME
PERFORM ERROR-ROUTINE-1 THRU ERROR-ROUTINE-2.

CLOSE INDEXED-FILE.
IF SK NOT = "00" MOVE "CLOSE" TO OP-NAME

PERFORM ERROR-ROUTINE-1 THRU ERROR-ROUTINE-2.
END-JOB-2.

CLOSE IN-FILE PRINT-FILE.
STOP RUN.

Figure 5.12. Updating an indexed file (Part 3 of 3)

5- 30 IBM 5280 COBOL Programmer's Guide

Printer I/O

Chapter 6. Other I/O

This information supplements that in the 5280 COBOL Language Reference
for the following types of I/O:

• Printer I/O

• Writing data to a work station screen using SEQUENTIAL I/O

• STOP 'literal'. The STOP statement makes it possible to write data to
the status line (line 1) of the work station screen.

• DISPLAY and ACCEPT. These two COBOL verbs make possible the
interchange of low volume data between a program and the printer or
work station screen.

Here are guidelines and rules for specifying I/O statements that are to
transmit data to 5280 printers:

1. The format of the FILE-CONTROL paragraph is as follows:

SELECT file-name ASSIGN TO PRINTER ["device address")
[ORGANIZATION IS SEQUENTIAL)
[ACCESS MODE IS SEQUENTIAL)
[FILE STATUS IS data-name)

2. The WRITE ADVANCING facility is supported.

3. The maximum number of characters that can be written on one line is 198.

4. The printer cannot be shared with another program. It will be available to
other programs after a CLOSE has been executed.

Example of Printer I/O Statements
Figure 6.1 gives an example of the input/output statements required to write
data to a printer.

Chapter 6. Other I/O 6- 1

IDENTIFICATION DIVISION.
PROGRAM-ID. SEND-RECEIVE.

•
•
•

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PRINT-FILE ASSIGN TO PRINTER
ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL
FILE STATUS IS PRINT-FILE-STAT.

•
•
•

FD PRINT-FILE
LABEL RECORDS ARE STANDARD.

01 PRINT-RECORD.
OS RCDCD PIC X(87).

WORKING-STORAGE SECTION.
77 PRINT-FILE-STAT PIC XX VALUE SPACES.
01 EMPRECD.

02 ACREC PIC X(00002).
02 EMPNO
02 ENAME

•
•
•

PIC S9(OS)V.
PIC X(00020).

PROCEDURE DIVISION.
DECLARATIVES.
PRINT-ERROR SECTION.

USE AFTER ERROR PROCEDURE ON PRINT-FILE.
PRINTERX.

END

DISPLAY "ERROR ON PRINTER-FILE Ilo DURING WRITE".
DISPLAY "FILE STATUS IS " PRINT-FILE-STAT.
DISPLAY "TRANSMISSION STOPPED. RUN STOPPED.".
STOP RUN.

DECLARATIVES.

•
•
•

OPEN OUTPUT PRINT-FILE.

•
•
•

WRITE PRINT-RECORD FROM EMPRECD.

•
•
•

CLOSE PRINT-FILE.

Figure 6.1. Example of COBOL statements used for printer I/O

DISPLA Y and ACCEPT
Here are some rules and guidelines when using DISPLAY and ACCEPT
statements:

1. If the screen is clear, the first character string transmitted by a D ISPLA Y
statement appears in line 3. If data is already displayed on the screen, the
character string will appear after the last line displayed.

6~ 2 IBM 5280 COBOL Programmer's Guide

Example of DISPLAY

When the last line on the screen is filled, the next character string will be
displayed in line 3; succeeding character strings will follow until the last line
is filled, and wrap around again.

2. When you use DISPLAY, the maximum number of characters that will
appear on one line of the work station display is 78. If a character string is
greater than 78 characters, the remaining characters will be sent to
succeeding lines in 78-character increments until the entire string is
displayed.

3. You can use DISPLAY and ACCEPT for the printer and the work station
screen. DISPLAY transmits character strings to the printer by default
unless you specifically specify the screen.

4. If you specify the printer as the I/O device in your program either implicitly
or explicitly, the operator can re-direct the DISPLAY transmission to the
work station screen when the COBOL program is loaded.

5. If you specify the work station screen, the operator cannot re-direct
transmission to the printer.

6. ACCEPT can process only 78 characters of data. Any data over 78
characters will be truncated.

7. The printer cannot be shared with another program while a DISPLAY to
the printer is being executed.

Figure 6.2 gives an example of the statements needed to display data on a
work station screen.

IDENTIFICATION DIVISION.
PROGRAM-ID. SEND-RECEIVE.
AUTHOR. J BELL.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370 WITH DEBUGGING MODE.
OBJECT-COMPUTER. IBM-5280.
SPECIAL-NAMES.

CONSOLE IS SCREEN.

•
•
•

PROCEDURE DIVISION.

•
•
•

IF COMM-ERROR 0
DISPLAY

"RECORDS SENT SUCCESSFULLY; NOW AWAITING RESPONSE"
UPON SCREEN.

•
•
•

Figure 6.2. Example of statements used for DISPLAY

Chapter 6. Other I/O 6- 3

SEQUENTIAL Work Station I/O
Here are the rules for input/output between a work station and a COBOL
program:

1. The entries in the FILE-CONTROL paragraph are:

SELECT file-name ASSIGN TO WORKSTATION [n]
ORGANIZATION IS SEQUENTIAL

[FILE STATUS IS data-name-3]
[ACCESS MODE IS SEQUENTIAL]

WORKSTATION indicates this is a work station for a sequential file.

n is an integer that specifies one of the three sizes of work station screens
as follows:

480 for the 480-character screen.
960 for the 960-character screen.
1920 for 1920-character screen.

If you don't specify n, a screen size of 1920 characters is assumed.

2. The maximum record size that can be written is 78 bytes. If the record
defined in your program is greater than 78 bytes, the excess characters will
be truncated. If the record is less than 78 bytes, the right-most bytes will be
padded with blanks.

3. Specify OUTPUT mode in the OPEN statement for the file defined for the
work station.

4. If a sequential file and a transaction file are both assigned to the work
station, only one of them can be open at a time. However, multiple
sequential files assigned to the work station can be open simultaneously.

5. ACCEPT and DISPLAY statements can be issued while a SEQUENTIAL
I/O file for the work station is opened.

6. The ADVANCING mnemonic-name phrase is not supported for the
WRITE statement.

7. The AT END imperative phrase will be ignored. It will not be executed
because an AT END condition cannot occur on a work station.

8. If the screen is clear, the first record written to the screen will appear in
line 3. Otherwise, the first record will appear after the last line already on
the screen.

9. When the last line of the screen has been used, the next record will be
wri tten to line 3.

6- 4 IBM 5280 COBOL Programmer's Guide

Work Station I/O with Sequential I/O - Example
Figure 6.3 shows an example of work station I/O using the sequential access
method and data set organization. The interaction between the program and
the operator is as follows:

1. The program issues a prompt for the operator to enter data.

2. The operator enters data and presses the Enter key.

3. The program writes the data back to the display screen.

4. The above steps are repeated until the operator enters EOF to indicate
end of data.

IDENTIFICATION DIVISION.
PROGRAM-ID. ECHO.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-5280.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT IN-FILE
ASSIGN TO WORKSTATION 1920.

SELECT PRINT-FILE
ASSIGN TO WORKSTATION 1920.

SELECT CLEAR-FILE
ASSIGN WORKSTATION 1920.

DATA DIVISION.
FILE SECTION.
FD CLEAR-FILE LABEL RECORDS STANDARD

BLOCK CONTAINS 80.
01 CLEAR-REC.

05 CLEAR-1 PICTURE X(10).
05 CLEAR-2 PICTURE x(70) .

FD IN-FILE LABEL RECORDS STANDARD
BLOCK CONTAINS 80.

01 IN-REC.
05 FIRST-REC PICTURE X(10).
05 SECOND-REC PICTURE x(70) .

FD PRINT-FILE LABEL RECORDS STANDARD
BLOCK CONTAINS 80.

01 OUT-REC.
05 REC-ONE PICTURE X(10).

PICTURE X(70). 05 REC-TWO
PROCEDURE DIVISION.
DECLARATIVES.
ERROR-HANDLING SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON IN-FILE.
ERROR-ROUTINE.

DISPLAY "I/o ERROR ON IN-FILE".
CLOSE IN-FILE.
STOP RUN.

END DECLARATIVES.

Figure 6.3. Example of statements used for sequential I/O to a work station
(Part 1 of 2)

Chapter 6. Other I/0 6- 5

STOP Statement

PGM1 SECTION.
BEGIN-PROGRAM.

DISPLAY "START PROGRAM ECHO".
FILE-OPENING.

OPEN INPUT IN-FILE.
FILE-OPEN-2.

OPEN OUTPUT CLEAR-FILE PRINT-FILE.
CLEAR-SCREEN.

PERFORM CLEAR-WRITE.
GO TO PROCESS-ECHO.

CLEAR-WRITE.
MOVE SPACES TO CLEAR-REC.
WRITE CLEAR-REC.

PROCESS-ECHO.
MOVE SPACE TO REC-ONE.
MOVE "TO ENTER, HIT ENTER; TO END, TYPE 'EOF'." TO
REC-TWO.
WRITE OUT-REC.

ECHO-1.
READ IN-FILE INTO REC-ONE.
IF FIRST-REC = "EOF" GO TO WRAP-IT-UP.
MOVE SECOND-REC TO REC-TWO.
WRITE OUT-REC.
GO TO ECHO- 1 .

WRAP-IT-UP.
CLOSE IN-FILE.
PERFORM CLEAR-WRITE.
CLOSE PRINT-FILE.

END-IT.
DISPLAY "END PROGRAM ECHO".
STOP RUN.

Figure 6.3. Example of statements used for sequential I/O to a work station
(Part 2 of 2)

5280 COBOL supports the STOP "literal" statement. When issued, the
character string will appear in line 1 (the status line) of the work station
screen. The operator can respond by either pressing the Enter key, or the
CMD key followed by the End-of-Job key.

If the Enter key is pressed, the COBOL program resumes execution. If the
End-of-Job key is pressed, all files opened by the COBOL program are closed
and the job ends.

6- 6 IBM 5280 COBOL Programmer's Guide

Chapter 7. Compiler Job Procedures and Options

This chapter provides the following information:

• A description of the job statements and the data sets required on the host
system for compilation. Separate sections are included for each host
compiler.

• How to compile more than one COBOL source module in the same job,
described in the section "Multiple Compilations - The *PROCESS
Statement".

• A description of the compiler options you can select for each compilation
in the section "Host Compiler Options".

Inter-Program Communications and Multiple-Compilations
The inter-program communications facility provides a facility by which one
program can communicate with one or more other programs using CALL
statements. It is described in detail in the 5280 COBOL Language Reference
Manual.

ONote: IBM 5280 COBOL requires that you compile all called and calling
programs using inter-program communications in the same job step using the
*PROCESS statement.

A linkage editor is not used for IBM 5280 COBOL. The host compiler
produces object modules ready for execution on the 5280. A linkage editing
step between compilation and execution is neither necessary nor possible;
therefore, compilation of all called and calling modules in the same job step is
required.

A Note on Compiler Options
The COBOL compiler provides a number of options that control compilation.
For example, the options determine the content of your output listing, the
types of messages that will be issued, how your statements are numbered in
the output listing, etc. You can accept the options provided by default with
the compiler. Or you can change the options to suit your needs when you
compile a program.

If you are compiling a program for the first time, you may want to review the
default options provided by IBM and the other available options. The options
are described in the last section of this chapter.

You may want to change the IBM-supplied options. You can do this as
follows:

• For OSjVS, in the PARM field of the EXEC statement or in the
*PROCESS statement.

• For DOSjVSE, in the *PROCESS statement.

Chapter 7. Compiler Job Procedures and Options 7- I

(This page is intentionally left blank.)

7- 2 IBM 5280 COBOL Programmer's Guide

os jVS Compilation
Figure 7.1 shows an in-stream OSjVS job control procedure that can be used
to compile COBOL source programs; an explanation of each statement follows
the figure.

Ilprocname PROC
II IlcOB EXEC PGM=AVCO
BIlsTEPLIB DD DSN=dsname,DISP=SHR
BIISYSLIB DD DSN=dsname,DISP=SHR COpy LIBRARY
allSYSLDOUT DD DUMMY LOAD OUTPUT
allSYSLDOVL DD DUMMY OVERLAY OUTP
mllSYSPRINT DD SYSOUT=A,DCB=BLKSIZE=1210 LISTING OUTP

IISYSUDUMP DD SYSOUT=A
DIISYSUT1 DD UNIT=SYSDA,SPACE=(S12,(400,400»
DIISYSUT2 DD UNIT=(SYSDA,SEP=SYSUT1),

II SPACE=(S12,(400,400»
DIISYSUT3 DD UNIT=SYSDA,SPACE=(S12,(400,400»
DIISYSUT4 DD UNIT=SYSDA,SPACE=(S12,(400,400»
DIISYSUTS DD UNIT=SYSDA,SPACE=(S12,(400,400»

II PEND

Figure 7.1 Job Control Procedure for the 5280 COBOL OS/VS Compiler

You must also specify a j jSYSIN DD statement defining the data set that
contains the COBOL source program to be compiled. (You can have the
source statements instream following a / jSYSIN DD * statement if desired.)

The following text describes the statements in figure 7.1.

II COB is the step name of the compilation job step.

B STEPLIB defines a step library where the compiler can be located. The use of
a step library and the dsname are determined by your installation. STEPLIB
must be allocated as a partitioned data set.

B SYSLIB defines the COpy library, which contains source statements and
data definitions statements (DDS) you can insert into a source program using
COpy. This statement isn't required when compiling programs that don't use
COpy. See figure 7.2 for the required parameters if you allocate this data set.

a SYSLDOUT defines the data set where the compiler places the executable
object module for transfer to the IBM 5280. If you specify the compiler
options NODECK and NOOBJ (no object module to be built), this statement
isn't needed. See figure 7.2 for the required parameters you must use to
allocate this data set.

a SYSLDOVL defines the data set where the compiler places the overlay
modules when the program segmentation facility is used. Otherwise, this
statement isn't required. See figure 7.2 for the required parameters you must
use to allocate this data set.

uNote: If segmentation is used, don't define the primary program (defined by
SYSLDOUT) and the overlay modules (defined by SYSLDOVL) as members
of the same partitioned data set. Otherwise, the compiler will stop
processing.

m SYSPRINT defines where the source statements, maps, and the other
information you request through the various compiler options is to be printed.
See figure 7.2 for the required parameters you must use to allocate this data
set.

D SYSUTI, SYSUT2, SYSUT3, SYSUT4, and SYSUT5 are utility data sets
used by the compiler during execution.

Chapter 7. Compiler Job Procedures and Options 7- 3

r

ddname RECFM LRECL*

SYSLIB For FB 80

SYSLDOUT For FB 80 or 128

SYSLDOVL For FB 80 or 128

SYSPRINT FA or FBA 121

SYSIN For FB 80

* Records can be blocked. The size (BLKSIZE) can be any multiple of the
fixed-length records as determined by the amount of main storage available
for buffers. The record length of SYSLDOUT and SYSLDOVL is determined
by th_e DECK option.

Figure 7.2. Required parameter for allocating COBOL data sets

a See Appendix E for estimates on the main and secondary storage required for
the compiler and the various data sets.

Figure 7.3 shows an example of some of the statements that can be used when
using the COBOL compile procedure. It doesn't show the required JOB
statement, which you would code according to the rules set by your
installa tion.

II I I CBJOB EXEC AVCOBOL,
II PARM.COB='MAP,XREF'

BllcOB.SYSLIB DD DSN=COPY,DISP=SHR
BllcOB.SYSLDOUT DD DSN=LOADLIB(PROGA),DISP=OLD
allcOB.SYSIN DD DSN=SORCELIB(PROGA),DISP=SHR

II.

Figure 7.3 Example of using a COBOL compile procedure

II CBJOB causes the compile procedure (named A VCOBOL in this example) to
be executed. The PARM statement causes the MAP and XREF options of the
compiler to be executed. MAP produces a map of data areas and XREF a
cross-reference of statements in the source program. Both of these options are
explained later in this chapter.

B COB.SYSLIB defines a partitioned data set for the COpy library, where the
programmer has placed the data definition statements and other COBOL
source statements as library members.

B COB.SYSLDOUT defines a member of a partitioned data set -
LINKLIB(PROGA) - for the object module. After execution, the object
module can be found in the member PROGA of the partitioned data set
LINKLIB.

a COB.SYSIN defines a member of partitioned data set SORCELIB(PROGA)
where the programmer has placed the COBOL source program that is to be
compiled.

7- 4 IBM 5280 COBOL Programmer's Guide

DOS/VSE

DOS jVSE Compilation
Figure 7.4 shows an example of the DOS/VSE job statements needed to
compile a COBOL source program; an explanation of each statement follows
the figure.

II JOB COBOL TEST
II ASSGN SYS001,150
II ASSGN SYS002,150
II ASSGN SYS003,150
II ASSGN SYS004,150
II ASSGN SYS005,150
II ASSGN SYS006,150
II ASSGN SYS007,150

II I I DLBL WORK 1 D, 'CBL. WORK 1 ' , 0
II EXTENT SYS001,DOSR35,1,O,9063,19

II I I DLBL WORK2D, 'CBL. WORK2 ' , 0
II EXTENT SYS002,DOSR35,1,O,9082,19

II I I DLBL WORK3D, 'CBL. WORK3 ' , 0
II EXTENT SYS003,DOSR35,1,O,9101,19

II I I DLBL WORK4D, 'CBL. WORK4 ' , 0
II EXTENT SYS004,DOSR35,1,O,9120,19

II I I DLBL WORK5D, 'CBL. WORK5 ' ,0
II EXTENT SYS005,DOSR35,1,O,9139,19

fJ I I DLBL LDOUT, 'CBL. LDOUT '
II EXTENT SYS006,DOSR35,1,O,9747,19

II I I DLBL LDOVLY, 'CBL. LDOVL Y ,
II EXTENT SYS007,DOSR35,1,O,9766,19
II EXEC AYCDO
*PROCESS

COBOL SOURCE STATEMENTS
1*
1&

Figure 7.4. Sample job control statements for a DOS/VSE compilation

The following text describes the statements in figure 7.4.

II SYS001 through SYS005 are utility data sets used by the compiler during
execution. All work files must be on the same device type. The device type can
be a 2314, 3330, 3340, 3350, or an FBA device.

fJ SYS006 defines the data set where the compiler places the executable load
module for transfer to the IBM 5280. If you specify the compiler options
NODECK and NOOBJ (no object module to be built), this statement isn't
needed. The device type can be a 2314, 3330, 3340, 3350, 3540 (diskette), or
an FBA device.

II SYS007 defines the data set where the compiler places the overlay modules
when the program segmentation facility is used. Otherwise, this statement
isn't required. The device type can be a 2314, 3330, 3340, 3350, 3540
(diskette), or an FBA device.

iJ Note that DOS does not permit two files to be written to a diskette at the
same time. For segmented programs only one of LDOUT and LDOVL Y can
be written directly to diskette; the other must be written to DASD and then
copied to the diskette.

Chapter 7. Compiler Job Procedures and Options 7- 5

If COPY statements are used in the source program, a COpy library must be
defined. THe COPY library will contain the source statements or data
definition statements (DDS) to be copied into the program. The COpy
library can be the system source statement library, or a private source
statement library. The sublibrary is assumed to be C.

SYSLIST is assumed to have been assigned to a printer. where source
statements, maps, and the other information you request through the various
compiler options are to be printed.

Compiler Storage Requirements
The compiler requires a 144K partition with an additional24K bytes of
G ETVIS space.

See Appendix F for estimates on the main and secondary storage required for
the compiler and the various data sets.

LINote: With VSE/ Advanced Functions release 2, the default value assigned for
GET VIS space is 48K bytes. Because the operating system uses most of this
space, you should specify the SIZE parameter on the EXEC statement so that
at least 72K bytes of GETVIS space is allocated. For example:

EXEC AVCDO,SIZE=144K

The above example assumes that the partition size is 216K bytes. 144K bytes
are allocated for compiler space; the remaining 72K bytes are available for
G ETVIS space.

7- 6 IBM 5280 COBOL Programmer's Guide

*PROCESS Statement

Multiple Compilations - The *PROCESS Statement
The *PROCESS statement allows you to compile more than one COBOL
source program in the same job; *PROCESS statements are required when
you use CALL statements in your source program to call other COBOL
programs; the called programs must be compiled with the calling program, as
shown in the following example:

*PROCESS LIST,XREF.

•
•

(first COBOL source module)

•
•

*PROCESS.

•
•

(second COBOL source module)

•
•

*PROCESS LIST,XREF.

•
•

(third COBOL source module)

•

You can specify a compiler option as a parameter in the *PROCESS
statement. Thus, you can vary thc options for each of the compilations started
by a *PROCESS statement. An option specified in a *PROCESS statement
will override the defaults set by IBM and the options, if any, you specify in the
job control statements of the host system.

When Using Subprogram Linkage

With Segmented Programs

When using subprogram linkage, place the program which is to receive control
initially as the first program of the programs to be compiled.

Only one program (the first program) can be segmented when compiling
multiple programs using the *PROCESS statement.

Maximum Number of Programs
A maximum of 10 programs can be compiled in the same job using
*PROCESS statements.

Format and Rules - * PROCESS
The format of the *PROCESS statement is:

*PROCESS options-list.

options-list is one or more of the keywords listed in the compiler options,
abbreviations and defaults table in figure 7.5.

Chapter 7. Compiler Job Procedures and Options 7- 7

7- 8 IBM 5280 COBOL Programmer's Guide

The format rules and restrictions for the *PROCESS statement are:

1. The asterisk (*) must appear in column 1 of the input record.

2. The keyword PROCESS follows the asterisk, with no intervening
blanks.

3. The options-list follows the keyword *PROCESS, with one or more
intervening blanks.

4. The option keywords in the list are separated from each other by a
comma, or one or more blanks, or both. The option keywords can
appear in any order.

5. The statement should be followed by a period.

6. The *PROCESS statement, with or without options, causes a
separate compilation for the source module following the
statement. If no options are specified, the IBM defaults or the
options specified in the PARM field of the EXEC statement apply
for the compilation.

7. Multiple *PROCESS statements are permitted for any
compilation, that is, each option keyword could be on its own
*PROCESS statement.

8. If contradictory options are submitted (such as LIST and
NOLIST) the last one specified is effective.

Host Compiler Options

Defaults and Overrides

Compiler Options

This section describes the compiler options which you specify before a
compilation and which deal with input to the compiler, the compilation
activity, and the listings and object modules produced by the compiler.

These options apply to all the host IBM 5280 COBOL compilers.

You can indicate which options you want in effect during a compilation in
three ways:

1. By accepting the default options and making no specifications at all. A list
of the compiler options and their defaults is shown in figure 7.5; a detailed
explanation of each option is given in the sections that follow.

2. For OSjVS, by specifying the option in the PARM statement of the
EXEC statement (as described earlier in this chapter); the PARM
specifications override the default options provided by IBM.

3. By specifying the option in the *PROCESS statement (described earlier in
this Chapter under "Multiple Compilation - the *PROCESS
Statement"); the *PROCESS specifications override both the defaults
provided by IBM and, for OS jVS, options coded in the PARM field. By
specifying options in the *PROCESS statements, you can vary the options
for a series of source modules being compiled in the same job.

Chapter 7. Compiler Job Procedures and Options 7- 9

List of Options
Figure 7.5 shows the COBOL compiler options, their abbreviations, and their
defaults.

Compiler Option Abbreviation Compiler Default

CMPAT(SIGNC I SIGNF) CM(SIGNC I SIGNF) CMPAT(SIGNC)

DECKINODECK DINOD NODECK

FIPS(L I LI) I NOFIPS NOFIPS

FLAG (I I WI E I S I U) I NOFLAG F(li WI EI SI U)I NOF FLAG(I)

FLUSH ERR (oot performed)

GONUMBERI NOGONUMBER GNINOGN NOGONUMBER

LINECOUNT(o) LC(o) LINECOUNT(56)

LIST I NOLIST NOLIST

MAPI NOMAP NOMAP

NUMBER I NONUMBER NUMINONUM NONUMBER

OBJECT I NOOBJECT OBJI NOOBJ OBJECT

OFFSET I NOOFFSET OFFI NOOF NOOFFSET

OPTIONS I NOOPTIONS OPTN I NOOPTN OPTIONS

QUOTE I APOST QUOTE

PRINT I NOPRINT PRINT

PROMPT I NOPROMPT PROMPT

RUNMSG(o) RUNMSG(l)

SEQUENCE I NOSEQUENCE SEQI NOSEQ NOSEQUENCE

SOURCE I NOSOURCE SI NOS SOURCE

STMT I NOSTMT STMT

XREF I NOXREF XINOX NOXREF

Figure 7.5 List of options available at compilation

CMPAT(SIGNC) or CMPAT(SIGNF) - CM(SIGNC) or CM(SIGNF)
The CMPAT option determines whether a C or an F will be generated as the
positive sign for signed numeric data: signed numeric computational, numeric
display sign leading attached, and numeric display sign trailing attached"

If you specify CMPAT(S!GNC), the positive sign will be represented as a C;
if you specify CMPAT(SIGNF), the positive sign will be represented as an F.

The default option is CMPAT(SIGNC).

DECK or NODECK - D or NOD
By default, the compiler puts out objcct modules with 128-byte records. This
option is designed for those users who require 80-byte records, either because
they are required by their host remote job entry subsystem, or for any other
reason.

The DECK option, together with the OBJECT option, determines the size of
the records of the object module put out by the compiler as follows:

7- 10 IBM 5280 COBOL Programmer's Guide

FIPS or NOFIPS

FLAG or NOFLAG

Compiler Options

OBJECT Option DECK Option Object Module Record Size

NOOBJECT NODECK No module produced

NOOBJECT* DECK 80 bytes

OBJECT NODECK 128 bytes

OBJECT DECK 80 bytes

The default option is NODECK.

LI*Notel: When NOOBJECT and DECK are specified for the compilation, the
compiler changes NOOBJECT to OBJECT, and produces an object module.

LINote 2: When compiling more than one source program in the same job, either
DECK or NODECK must apply to all the programs being compiled; likewise,
OBJECT or NOOBJECT must apply to all the programs. Specify the desired
option in a *PROCESS statement before the first program, or, for OS/VS, in
the PARM field of the EXEC statement.

LINote 3: If an overlay program is created with the DECK option, it can only be
executed when the data set(s) containing the program has a record length of
80. That is, the program cannot later be copied or reformatted to a different
record length. Also, a program created with NODECK can only reside in
data sets having a record length of 128.

When you specify this option, the compiler will issue a warning message when
it finds COBOL statements that don't conform to certain levels of the Federal
Information Processing Standard (FIPS); you specify the level of FIPS, as
documented in FIPS PUB 21-1, dated 1975 December 1, the compiler is to
use as follows:

FIPS(L) causes the compiler to issue a warning message when it finds
language extensions above Low Level COBOL.

FIPS(LI) causes the compiler to issue a warning message when it finds
language extensions above Low Intermediate Level COBOL.

The default option is NOFIPS.

With the flag option, you specify the types of diagnostic messages the
compiler is to issue after finding an error condition. The default is FLAG(I)
(all messages will be issued if you don't specify one of the other FLAG options
described below).

Chapter 7. Compiler Job Procedures and Options 7- 11

FLUSHERR

FLAG(I) - List all messages.

FLAG(W) - List all messages except informatory messages.

FLAG(E) - List all messages except informatory and warning messages.

FLAG(S) - List only severe and unrecoverable error messages.

FLAG(U) - List only unrecoverable error messages.

NOFLAG - Do not list any messages.

The severity levels of the diagnostic messages are discussed under "Compiler
Messages" in Chapter 9.

If you want a listing of all the possible diagnostic messages that the compiler
can issue, specify the FLUSHERR option. When FLUSHERR is in effect,
the source program will not be compiled.

GONUMBER or NOGONUMBER - GN or NOGN

If an error is found during execution, an error code appears in the Status Line
on the work station screen. If you specify GONUMBER, the line number in
the program where the error was found will appear in position 15-20. The line
number will be either the numbers in the sequence field of the input record or
the statement numbers assigned by the compiler as determined by the STMT
or NUMBER option (described later in this chapter).

NOGONUMBER is the default.

LINECOUNT (n) - LC(n)

LIST or NOLIST

MAP or NOMAP

With LINECOUNT(n), you specify the maximum number of lines to be
printed on each page of the compiler listing, including heading lines and blank
lines; n can be from 10 to 999; the default is 56 lines per page.

If you specify LIST, the compiler will produce a listing with generated
machine code and assembler or pseudo-assembler language statements. By
default the compiler produces no listing (NOLIST).

The LIST option \'1ill override OFFSET if you specify both for the same
com pila tion.

Use the LIST option when you suspect an error caused by the host compiler
and before reporting a problem to IBM. An explanation of the contents of the
listings produced can be found in the 5280 COBOL Host Compilers Problem
Determination Manual.

If you specify MAP, the compiler will print on the compiler output listing a
map of the data division data items as shown in 7.5. The default is NOMAP.

7- 12 IBM 5280 COBOL Programmer's Guide

VEICSION 1 LEVEL 0

STMT. L V~~GURCE "AME

017 ~FO MPMAS-fILE
18 01 E~PRecD
19 02 ACREC
20 02 EMPNO
21 02 E"AME
22 02 STRAO
23 02 CTYSI
2. 02 ZIPCD
2S 02 BEGOT
26 02 SCSNC
27 02 MARSl
29 77 STAll.S-I<EY
30 71 RKEY
31 77 DEMP"G

Compiler Options

Figure 7.6 shows a portion of the listing when MAP is specified:

le..- 52€0 coeOL 5708-C81 PROGfCAN-IC: LOAOIT 03 SEP. 1980
OAIA DIVISION NAP

LNTtI AREA OISP fjTYPE RFMT OICT.

088 0F 00 FD ENTRY ~F 01.
se CiO GROUP 15 U

2 U 90 ALPHANUM
5 U 92 ALPHANUM

20 U 97 ALPHANUM
20 U 117 ALPHANUM
20 U 137 ALPHANUM

c: U 157 ALPHANUM
6 U 162 ALPHANUM
9 U 166 ALPHANUM
1 U 117 ALPHANUM
2 U 178 ALPHANUM
5 I ~ NUMERIC
5 I 91 NUMERIC

Figure 7 .6. Sample listing with MAP option

The following text explains each of the columns in the figure.

II STMT#. These digits give the statement number in the listing of the COBOL
program. If STMT is specified as an option, the compiler generates a
number. If NUMBER is specified as an option, the number generated is the
sequence number specified in columns 1-6 of the source program.

S LVL. Level (01,02,03 etc.) of the data-item.

II SOURCE NAME. Name of data-item.

II LNTH. Storage length in bytes of the data-item.

EI AREA. Defines the area in which the data has been allocated as follows:

F - File Control Block (FCB)
U - Uninitialized data area
I - Initialized data area
L - Linkage area

II DISP. The displacement of the data-item in the area indicated at EI above.

II TYPE. Type of data-item: FD entry, group, numeric, alphanumeric, etc.

III RFMT. The format of the record, F for fixed or V for variable.

II DICT#. Entry number in the compiler symbol table.

16
17
18
19
20
21
22
23
24
25
26
27

NUMBER or NONUMBER - NUM or NONUM
If you specify NUMBER, it indicates to the compiler that line numbers are
written in the sequence field of the source program; the compiler will use these
numbers, instead of compiler-generated numbers, in any error messages issued
during compilation and execution. The option NOSTMT will be in effect.
NONUMBER is the default.

OBJECT or NOOBJECT - OBJ or NOOBJ
If you specify OBJECT, the default, the compiler produces an object module.
If you specify NOOBJECT, the compiler doesn't produce an object module.

This option together with the DECK option, determines the size of the records

13:15

Chapter 7. Compiler Job Procedures and Options 7- 13

in the object module put out by the compiler. See "DECK or NODECK"
earlier in this chapter.

U'Note: When compiling more than one source program in the same job, either
OBJECT or NOOBJECT must apply to all the programs being compiled.
Specify the desired option in a *PROCESS statement before the first
program, or, for OSjVS, in the PARM field of the EXEC statement.

OFFSET or NOOFFSET- OFF or NOOF
If you specify OFFSET, the compiler will print a list of relative offsets in
main storage for each procedure division verb in the source program; the
default is NOOFFSET.

A listing of offsets is useful in identifying the statement being executed when
an error occurs and a listing of the object module (obtained by specifying
LIST) is not available.

LIST overrides OFFSET.

OPTIONS or NOOPTIONS - OPTN or NOOPTN

PRINT or NOPRINT

PROMPT or NOPROMPT

When OPTIONS, the default, is in effect, the assembler will print a list of all
the options in effect for the compilation, both the options you explicitly
express in a PARMS or *PROCESS statement and the default options.

Figure 7.7 shows a listing when OPTIONS was specified.

OOPTIONS IN EFFECT FOR THIS COMPILATION:

FLAG(I)
LINECOUNT(56)
OBJECT
OPTIONS
PRINT
QUOTE
RUNMSG (1)
SOURCE
STMT

NOFIPS
NOGONUMBER
NOLIST
NOMAP
NONUMBER
NOOFFSET
NO SEQUENCE
NOXREF

Figure 7.7. Sampie iisting with OPTIONS specified

When PRINT, the default, is in effect, a listing will be produced according to
the other options in effect. NOPRINT suppresses all printing regardless of
what other options you specify.

This option determines whether or not prompts will appear when a COBOL
program is loaded. If you specify prompt, the prompts described under
"Prompts for Run-Time Options" in Chapter 8 will appear. If you specify

7- 14 IBM 5280 COBOL Programmer's Guide

QUOTE or APOST

RUNMSG(n)

Compiler Options

NOPROMPT, the prompt will not appear; the default options, shown in
Chapter 8, will be assumed.

Regardless of whether PROMPT or NOPROMPT is specified, prompts for
data set information will appear if required; also, all error messages,
ACCEPT, DISPLAY, and STOP verbs will be executed.

LffNote: When compiling more than one source program in the same job, either
PROMPT or NOPROMPT must apply to all the programs being compiled.
Specify the desired option in a *PROCESS statement before the first
program, or, for OS/VS, in the PARM field of the EXEC statement.

The NOPROMPT option is designed for use with the job-to-job facility
described in Chapter 10. NOPROMPT can reduce or eliminate operator
action when running a series of jobs in sequence.

QUOTE, the default option, specifies that quotes (") instead of the
apostrophe (,), be used as the delimiter for literals and for the generation of
the figurative constant QUOTE.

The RUNMSG option determines the language of the prompts generated by
the COBOL object program to the operator at the 5280 data station. (These
prompts appear on the screen when the program is loaded and are described in
Chapter 8). If you don't specify a RUNMSG option, the prompts will be
issued in English by default. Specify for n one of the following:

Option Language Type

I English Upper fLower case

2 English Upper case only

3 French National

4 French M ultina tional

5 German National

6 German M ul tina tional

7 Italian National

8 Italian Multinational

9 Spanish National

10 Spanish Multinational

II Japanese Katakana

LffNote: The language specified by the RUNMSG option applies to all
source programs compiled in the same job. If you want object
modules to produce prompts in different languages, each related
source module must be compiled in a separate job with the
appropriate RUNMSG option specified.

SEQUENCEorNOSEQUENCE--SEQorNOSEQ
If you have written line numbers in the sequence field of the source program,
and specify the option SEQUENCE, the compiler will check the sequence of
the numbers. The compiler places an asterisk immediately to the left of each
Line number that is not in ascending order.

The default is NOSEQUENCE.

Chapter 7. Compiler Job Procedures and Options 7-- 15

- SOURCE or NOSOURCE - S or NOS

SOURCE, the default option, cause the compiler to print the following:

The COBOL source statements you write

The COBOL source statements (if any) brought in by COPY statements

The Data Definition Statements (if any) brought in by COpy
statements

The COBOL source statements generated by the Data Definition
Statements (if any)

Compiler messages (as described in Chapter 9), if any

Figure 7.8 shows a portion of the source code listed when SOURCE is
specified:

VERSION 1 LEVEL 0 IBM 5280 COBOL 5708-C81 PROGRAM-IO: 03 SEP, 1980 1.1:15
C~PY-ID STMT.. SEa.. A ••• e ••••••••• CoeOL S~URCE STAIEMENTS •••••••••••••••••••••••••••• IDE~TFCN

EMPREeo
E~PRECD
EMPRECD
EMPRECO
EJCPRECC
EMPR£CD
EMPREec
EMPRECD
EIICPRECO
EMPREec

1
2
4
5
CI
8

10
11
12
13
14
14
14
14
14
15
16
17
17
18
18
lq
20
21
22
23
24
25
26
2.7
2.8
2q
30
31
32
33
34
35
36
37
37
37
38
39
39
39
40
41
42
43
44
45
46

IDENTIFICATION OI~ISIC~.
PROG~AM-IC. LOAOIT.
E~~IRCNME~T DIVISICN.
CChFIGURATICh SECTIO~.
SO~RCE-COMPUTER. 18M-370 aITH OEB~GGI~G MCOE.
OE~ECT-COMPUTER. IEM-5280.
SPECIAL-"AIICES.

CONSOLE IS SCREE".
INPUT-OUTPUT SECTION.
F ILE-CCltH ROL.

SELECT ENPMAS-FILE ASSIGh TO DISK
DRGANIZATIO" IS HELATI~E
ACCESS NODE IS SEGUENTIAL
RELATIVE KEY IS RKEY
FILE STAT~S IS STATUS-KEY.

DATA 01 V IS ION.
FILE SECTICh.
FO EMPMAS-FILE

OOOCOI 01
000002
00000"
C00006
000008
000010
000012
000016
000018
000020

LABEL RECORDS ARE STANDA~D.
COpy DCS-E~PRECD.

EMPRECO.
02 ACREC PIC ~(00002).
02 EMPNO Fie X(00005).
02 ENAME PIC)(00020).
02 STRAD PIC ~(00020).
02 CTYST PIC X(00020).
02 ZIPCO PIC)(00005).
02 EEGDT PIC X(00006).
02 SCSNO FIC X(00009).
02 NARST FIe)(00001).

~ORKING-STORAGE SECTICN.
77 STATUS-KEY PIC X(2).
71 RKEY Fie 9(5) vAL~E 1.
77 OEMPNO PIC 9(5) ~ALUE o.
PROCEDURE OIVISIC~.
eEGI/I..

OPEN O~TP~T c~P~AS-FILE.
MCVE SPACES Te EMPRECD.
~C~E "F" TC AC~E(.

CISPLAY
"E~PLCYEE MASTER FILE ~ITH 100 ~ASTER ~ECORCS BEING CREATED."

\oPO" SCREE~.

Flh.

PERFOH~ LOAD lCO TIMES.
CISPLAY

"MASTER FILE CREATED. READY FOR UPDATE ~ECORDS"
l.;PON SCREE".

CLOSE e_PMAS-FILE.
STOP Rli".

LOAD.
ACC RKEY 1000 GI~I"'~ DEMPNO.
~e~E OEWP~C TC EWP/l.O.
_RITE EMPRECO J"'~ALID KEY

00000010
00000020
00000030
00000040
00000050
00000060

00000010
00000080
00000090
00000100
00000120
00000110
00000130
00000140
00000150
00000160
00000170

00000770
00000180
00000790
00000790
00000800
00000810
00000820
00000850
00000e40

00000960

00001000
00001010
00001020
00001030
00001040

00001060

Figure 7.8. Sample listing with SOURCE specified (source program)

7- 16 IBM 5280 COBOL PrCllgrammer's Guide

YERSIOfll 1 U:YEL 0

Compiler Options

Figure 7.9 shows how the Data Definition Statements appear in the source
listing.

ISM 5280 COBOL 5708-C81 PROGRAM-IO: LOAOIT 03 SEP. 1980 13:15
~DS SO~RCE LISTING

COPY-IO COS II 0 ••• + •••• 1 •••• + •••• 2 ••••••••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••• + •••• 8

EMPRECO COOOOI OIA
000002 02A
000003 03A
COOO04 04A
OOOOO~ 05A
000006 OEA
COOO01 07A
000008 08A
000009 09A
000010 lOA
000011 111l
000012 12A
000013 13A
00001. 16A
000015 17A
000016 ISA
000017 19A
DOOO16 20A
000019 21A

STMT or NOSTMT

H EMPRECO S CSFATR (CS UL)
ACREC 2 OSPATR(ND CAl

CHECK (BY)
EJotPf\.C 50 01 llCHECK(DR AZJ

0 'E~PLOYEE NUJotBEA' OSPATR(CA)
Eh""E 20)(02 llCHECK(OH RS)

0 ·E .. PLOYEE NAME' CSPATfHCA)
STRAt 20A 03 llCHECK(OR f;lB)

0 'S"IREET ADDRESS' OSPATRCCA)
CTYST 20X 04 llCHECK(OR AS)

C 'CITY, STATE' DSPATlHCA)
llPCC 5[; 05 llCHECKCOR MF FE)

C 'ZIP CODE' OSPATRCCA)
SEGel t:o 06 lICHECK(AO DR MF FE)

C 'EEGINNING DATE' OSPATR(CA)
SOSNC 90 01 lICHECK(OR MF FE)

C 'SCCIAL SECURITY NUMBEf;l' OSPATf;l(CA)
ICAf;lsr 1)(08 11CHECK(QR JotF FE)

0 'MAf;lITAL STATUS - lot OR S' OSPATR(CA)

Figure 7.9. Sample listing with SOURCE specified (Data Definition
Statements)

STMT, the default option, causes the compiler to place a sequence number by
all the statements in the COBOL source program. This number will be used
in error messages and source listings. If GONUMBER is specified, this
number will appear in the status line on the screen display when error
messages are issued.

XREF or NOXREF-X or NOX

If you specify XREF, the compiler will print an alphabetic listing of the
procedure division names and data names, and the line numbers of where they
appear in the source listing.

Chapter 7. Compiler Job Procedures and Options 7- 17

VEASION 1 LEVEL 0

OSOURCE NAME

ACREe
BEGOT
BEGIN
C1YSl
OEMPND
EMPMA5-FILE
EMPPo.O
EMPRECO
Et.AME
FI ...
LeAD
MARST
RKEY
SCREE"
SOSNO
STAT"5-KEY
SlRAD
ZIPCO

Figure 7.10 shows a portion of a listing when XREF was specified:

IS .. 52dO CaSaL E70e-<:SI PROGRAM-IO: LOADIT 03 SEP.
CRess f<EFE~E"'CE LISTI"'G

DieT, E)TYPE CEFN REFERENCES

61t .aLFHAtcUM 019 03E
22 .aLFHA"UfoI 25
2«i PAJlANAIo1E 33
20 ,aLFHANUM 23
21 f\.1.."ERIC 31 44 45 4«;
1. FO ENTRY 17 .. 34 41
11 ALPHANUM 20 4E 47
15 GRCUP 18 3~ 46
1€ ALFHANUM 21
30 PARANAME 40 51
31 P,af<A,..AfIIE 43 :!E
24 Al.PHA,..UM 27
2t N"MERIC 30 14 44 48
13 ."EMPo.AME 11
23 ALFHANUM 26
2!: ALPt1A"UM 29 14 50
lCi ,lLPt1ANUM 22
21 ALFt1A"UM 24

Figure 7 .10. Sample listing with XREF specified

The following text explains each of the columns in the example.

II SOURCE NAME. Data-items and PROCEDURE names in alphabetic
order.

B DICT#. Entry number in the compiler symbol table.

D TYPE. Type of data-item: FD entry, group, numeric, alphanumeric, etc.

II DEFN. The statement number where item or name was defined.

II REFERENCES: Statement numbers in the source listing where the item or
name is used.

7- 18 IBM 5280 COBOL Programmer's Guide

1980 13:

Chapter 8. Guide for COBOL Program Execution

This chapter contains information to be used in preparing for and executing a
program written in the IBM 5280 COBOL language.

Manuals and Documentation Needed by the Operator
Manuals and other documentation needed by the operator responsible for
loading and executing a COBOL program include the following:

• IBM 5280 Distributed Data System Operator's Guide, GA21-0364.
This manual contains information on starting and stopping the system,
running background programs and sort/merge, and a detailed
explanation of the keyboard. (The functions of some keys on the
keyboard are different for a COBOL program than as explained in the
Operator's Guide; these differences are explained in Chapter 1 of this
publica tion.)

• IBM 5280 Utilities Reference/Operations Manual, GA21-7788. This
manual contains information on the utility programs you will use to
allocate and and maintain the data sets you need to run a COBOL
program.

• IBM 5280 Message Manual, GA21-9354. This manual contains an
explanation of the error codes and messages that can appear in the status
line (the format of the status line is explained in this chapter) as the
program executes.

The individuals responsible for writing the program and for systems
operations must provide certain information to the operator who runs the
program. This information will vary with each program, but typically, the
operator will have to to know the following:

• The volume names and the names of the data sets to be used by the
program. If the data sets do not already exist, the operator must know
how much space to allocate, and the appropriate volume and owner
identifications, if any, required by the program.

• Instructions on the use of the COBOL command keys, if the program
makes use of these keys.

• Explanations of error codes or messages put out by the program, error
recovery procedures, and any other special instructions on the operations
of the program. (The format of the error messages is discussed under
"The Status Line and Error Messages" later in this chapter.)

• How to respond to the COBOL prompts, which is discussed in this
chapter.

Transferring the Load Module from the Host to IBM 5280
The information in this section is included for planning purposes only.

A COBOL load module can be transferred from the host system to the IBM
5280 system either by diskette or over a communications link. The
implementation of each method will vary among IBM customers and is a
customer responsibility.

Chapter 8. Guide for COBOL Program Execution 8- 1

Figure 8.1. Possible methods of host-5280 data exchange

3540
Diskette
I/O Unit

Figure 8.1 gives a conceptual view of three methods of transferring a COBOL
load module; they are:

• Over a telecommunications link directly from the host to the 5280. The
programming support to do this varies; for example remote job entry (on
the host) and the communications utilities (on the 5280) could be used,
or user-written routines on the host and 5280. See Chapter 4 for the
system requirements for data communications.

• From the host to a diskette device such as the 3540 I/O unit. The
diskette could then be hand-carried to the 5280 system. (For
information on the diskette formats supported by 5280, see the System
Concepts Manual.)

8- 2 IBM 5280 COBOL Programmer's Guide

• From the host to a tape, and then through a data converter (for example,
the IBM 3747 Data Converter) to a diskette. The load modules on the
diskette could either be hand-carried to the 5280 system or sent over a
telecommunication link.

LTNotel: Ensure that the transparent text mode is specified on both the host
and the 5280 when sending object modules over a telecommunications link.

LTNote 2: 5280 RJE provides a name for the data set to which the object module
is sent. Therefore, you may want to change the name of the data set using the
facilities of the 5280 diskette label maintenance (SYSLABEL) utility. You
must change the name when the object modules are segmented. See the
section "When Programs Are Segmented" later in this chapter.

Information on the 5280 communications facilities, including RJE, is
described in the 5280 Communications Reference Manual.

Remote Job Entry Subsystems
If you use a remote job entry subsystem to transfer load modules from the host
to your 5280 system, you may have to use the DECK/NODECK option to
ensure that the size of the object records conforms with the size required by
your subsystem. Some remote job entry subsystems, such as RES, JES2,
DOS/VSE POWER, etc., require that the data to be transferred be made up
of 80-byte records.

Unless you specify otherwise, the compiler puts out load modules made up of
128-byte records. With the DECK/NODECK option, described in Chapter
7, you can cause the compiler to create load modules with 80-byte records.
Use this option if you require 80-byte records for your host subsystem or for
any other reason.

Storage Required for Object Programs
The information in this section will help you estimate (1) the storage required
for your COBOL object module on the diskette device and (2) the storage
required during execution in the partition. These requirements differ, as will
be shown.

Storage Required on Diskette
The number of bytes of diskette space needed by your COBOL program is
printed on the last page of the compiler listing. Either the OBJECT or LIST
option must be in effect during compilation. (These options are described in
Chapter 7. Unless you specify otherwise, the OBJECT option by default will
always be in effect.)

Main Storage Required for Execution
The main storage required by your program during execution will be at least
the amount printed on the compiler listing. In addition, you must add space
for I/O buffers, which are allocated dynamically during execution.

The amount of storage required for I/O buffers varies with the number of files
concurrently opened by your program and the sizes of the records in each file.
In allocating I/O buffers for your program, COBOL considers these variables
and the optimum performance that can be achieved. Because the variables
can differ greatly among users, no simple formula exists for determining the
I/O buffer size.

Chapter 8. Guide for COBOL Program Execution 8- 3

If A Program Is Too Large
If a program is too large for a partition, you should first determine whether or
not a larger partition exists in your system. This can be done with the system
status utility (SYSST A T) described in the Utilities Reference/Operations
Manual.

If a program is too large for any of the partitions available on your system,
you can do one of the following:

• Divide the program into segments as described under "Segmentation" in
the 5280 COBOL Language Reference, or

• Increase the partition size using the system configuration program as
described in the System Control Programming Reference/Operation
Manual.

Allocating Data Sets for Object Programs
The data set to hold the object module must be in either the I-exchange or
basic exchange format. The size of the I-exchange data set can be either 80 or
128 bytes, depending on the size of the object module as determined by the
DECK option at compile time. The size of the basic exchange data set must
always be 128 bytes.

Follow the procedures described in the Utility Reference/Operations Manual
and the Systems Concepts manual. Special rules apply when allocating data
sets to hold segmented programs, as described below.

When Programs Are Segmented
When programs are segmented, the data set name you specify at allocation is
determined by the PROGRAM-ID name of the segmented program. Specify
the data set name as follows:

1. If the PROGRAM-ID name is less than or equal to six characters, place
the letter 0 after the PROGRAM-ID name. For example, if the
PROGRAM-ID is SEND, the data set name for the overlay segments
would be SENDO.

2. If the PROGRAM-ID is more than six characters, truncate all
characters above six and add an O. For example, CONCATENATE
would become CONCA TO.

U'Note: If the 5280 RJE was used to receive the object data set from the host,
you will have to change the name of the data set to conform with the above
naming conventions using the diskette label maintenance (SYSLABEL)
utility.

Allocating Data Sets for Program Files

Initializing Diskettes

Before running the program, the opemtor must ensure the diskette data sets
used by your program, if any, are allocated and available. If not, the diskettes
must be initialized and the data sets allocated as explained in the Utilities
Reference/Operations Manual.

(When initializing and allocating diskettes, consider the factors discussed
under "Improving Performance" later in this chapter.)

To ini tialize the diskette(s) that is to hold the data sets, use the diskette
initialization utility (SYSINIT). You will be prompted for information by
the utility.

8- 4 IBM 5280 COBOL Programmer's Guide

Allocating Data Sets

To allocate the data set(s), use the diskette label maintenance utility
(SYSLABEL), which prompts you for the information needed for allocation.
Your response to the exchange type, the record size, the number o/records,
and the delete character prompts will depend on how you code your program
and other considerations. This is discussed in the sections that follow.

Specifying a Multivolume Indicator

If your data set is located on more than one diskette volume, you must specify
a multivolume indicator during allocation. See "Multivolume Record
Processing" in Chapter 5 for the conventions to follow in specifying
multivolumes.

Determining Exchange Type

You should be aware of the data set exchange types you can allocate for the
most efficient operation of your program.

SYSLABEL will prompt you to enter one of the following exchange types:
basic, H, or I. The data exchange you select determines the structure of your
data set as discussed below.

Unblocked and unspanned (basic and H) means that records are not blocked
together and that the records must each start on sector boundaries. Each
record is one block of data. On the 5280, unblocked and unspanned records
cannot be longer than sectors.

l28-Byte Sectors

A B c o E

2 3 4 5

100-Byte Records

In the preceding example, each 100-byte record starts at the beginning of a
128-byte sector boundary. The remaining 28 bytes in each sector are not
available for data storage. Some of the potential storage space is thus wasted.

The basic and H exchange types use the unblocked and unspanned data
structure.

Blocked and spanned (I) means that records are blocked together, and that
sector boundaries are not necessarily related to record positions.

Chapter 8. Guide for COBOL Program Execution 8- 5

Record Size

128-Byte Sectors

A B c D

, f , .J, -{' "_-..-_'

2 3 4 5

1 DO-Byte Records

In the preceding example, 100-byte records are placed next to each other with
no regard for sector boundaries. No diskette storage space is unused.

The I exchange type uses the blocked and spanned data structure. Unless you
need to exchange data with another system that accepts only unblocked and
unspanned data, the blocked and spanned data structure is recommended.

For detailed information on IBM 5280 data set concepts, the different formats
for diskettes, and the requirements for data exchange with other IBM systems
using diskettes, see the System Concepts manual.

The size of the record as defined in the COBOL program and the size of the
record allocated must be the same. If you are allocating the index file to be
used for key indexed data sets, the record size must be the length of the key
plus four.

Number 0/ Records/or Indexed Files

Delete Character

This section describes how to determine the number of records to enter when
the speCify number of records to be allocated prompt appears. This
information applies only when (1) you allocate a data set for a file with an
indexed organization and (2) you are going to create that file with the
sequential access method.

In creating the file, COBOL writes every tenth record as a null record, to
make future updates more efficient. Therefore, in determining the number of
records to allocate, estimate the number of records to be created from your
program, and then increase this number by 10%. If a separate data set exists
for the index, this applies only to the index data set.

(ffNotel: If the COBOL file organization is indexed or relative, and the data
exchange type is I, you must specify a 5280 delete character in response to the
prompt (except as noted in Note 2). Ensure that the character is one that will
never appear as the last character of a COBOL record. Otherwise, the record
will be deleted by the system.

(ffNote 2: Do not specify a delete character for the index data set, when, for an
indexed file, you've specified separate data sets for the index and for the
application records.

You don't have to specify a delete character for the data set containing the
application records unless you intend to delete records from that data set.

8- 6 IBM 5280 COBOL Programmer's Guide

Improving Performance

System Considerations

Reducing the amount of processing time and other improvements in the
performance of a COBOL program depend generally on two factors: (1)
coding techniques and considerations and (2) IBM 5280 system
considera tions.

System considerations include how many partitions are allocated, in which
partition the COBOL program is to execute in relation to other programs, and
the location of diskette data sets.

Performance could improve if you do the following:

• If only one diskette device is available, place the data sets to be used
concurrently as close together as possible on the diskette.

• Preferably, if more than one diskette device is available, place such data
sets on separate devices.

For additional guidelines on improving performance in this area, see Chapter
7 in the System Concepts manual.

Improved Performance with Sequential Access Method
When updating files with a large number of records, a program will execute
faster when using the sequential rather than the random access method.
However, if only a few records are to be updated, the random access method
will be more efficient.

Improved Performance when Creating Indexed Files
When creating files with an indexed organization, a program will execute
faster when using the sequential rather than the random access method.

Improved Performance with SIZE Clause
In processing files with an indexed organization, you can affect performance
with the SIZE clause in the File-Control Paragraph. With the SIZE clause,
you determine the size of the in-storage index. This clause can be used only
when random access is specified.

By increasing the index size, performance may be improved because of less
search time to find the desired record. However, you must also consider the
additional storage required when increasing the size of the in-storage index.

See "Processing Files with an Indexed Organization" in Chapter 5 for
information on how to code the SIZE clause.

Loading the COBOL Program and Responding to Prompts
In loading and executing a COBOL program, the operator performs the
following:

1. Loads (lPLs) the system.

2. Loads the COBOL program.

3. Responds to prompts in specifying the COBOL run-time options. These
prompts will appear only when the PROMPT option (described in
Chapter 7) has been specified during compilation.

4. Responds to prompts, if any, in specifying diskette files required by the
program.

Chapter 8. Guide for COBOL Program Execution 8- 7

5. Responds to prompts, if any, in specifying printer files required by the
program.

The following sections show the layout of each prompt and explains the
various responses that are possible.

Prompts for Loading a COBOL Program
To load the COBOL program, respond to the following prompt:

a 0001 A 16 40

Program name:
Device address:
Partition number:

Press ENTER

1. Insert the diskette containing the COBOL program.

2. Enter the name of the data set that holds the COBOL program after
Program name.

3. After Device address, enter the address of the device where the diskette
containing the COBOL program is inserted.

4. Enter the number of the partition where the program will execute after
Partition number. (If a partition number is not entered, the number
defaults to the number of the partition associated with the keyboard.)

5. Press the Enter key.

Prompts for Run-Time Options

User Parameter

If the PROMPT option (described in Chapter 7) is in effect, the following
prompts will appear. Either press the Enter key to accept the default options
as displayed, or change the options as desired and press the Enter key.

User parameters: parm
Debug option (1=Debug, 2=Nodebug):
UPSI switch values: 00000000
SYSOUT Device (1=Display, 2=Printer): 2 Device address: 8000

Press Enter

parm represents parameters the operator can enter. The maximum number of
characters for parm is 50.

The contents of the user parameter are determined when the COBOL
program is written. The data to be passed is described in the Linkage Section
of the Data Division of the first routine in the COBOL program to receive
control after invocation. The following statements show the entries required
to describe a ten-byte parameter:

LINKAGE SECTION.
01 PARMI.

02 PARMI-STRING PIC X(lO).

8- 8 IBM 5280 COBOL Programmer's Guide

Debug Option

UPSI Switch

SYSOUT Device

Device Address

Prompts for Diskette Files

PROCEDURE DIVISION USING PARM 1.

To pass a ten-character parameter string ABCDEFGHIJ to the PARMI
data-item linkage section described earlier, the operator would enter
ABCDEFGHIJ. PARM-STRING would be ABCDEFGHIJ when the routine
is invoked.

If 1 (for Debug) is entered after Debug option, the USE FOR DEBUGGING
procedures will be executed in your COBOL program. If 2 (for NODEBUG)
is entered, these same procedures will not be executed. An example and an
explanation of a USE FOR DEBUGGING procedure is given in Chapter 9
under "Debugging Language".

The value the operator enters (a combination of Os and/or Is) is assigned the
eight switches UPSI-I, UPSI-2 ... UPSI-7 defined in your COBOL program.
A 0 indicates the off condition; a 1 indicates the on condition.

You determine the use of the UPSI switch by the logic in your program. See
the 5280 COBOL Language Reference under the "SPECIAL NAMES
PARAGRAPH" for information on how these switches are defined.

The SYSOUT device receives messages generated by DISPLA Y statements
within the COBOL program, depending on how the COBOL program is coded
(see the special rules that apply under "DISPLAY and ACCEPT" in Chapter
6).

Enter a 1 to display all messages on the printer or a 2 to display all messages
on the work station screen.

Enter the address of the device to which printer files are to be written. This is
the device used by files which are specified with ASSIGN TO PRINTER in
the associated SELECT clause as described under "Printer I/O" in Chapter
6.

Respond to the following prompt:

Enter the following information for file fik-name
Dataset name:
Device address:
Owner id:

Press ENTER

file-name is the first eight characters of the file name you code in the
SELECT statement in your COBOL program.

Chapter 8. Guide for COBOL Program Execution 8- 9

Dataset N arne

Device Address

This prompt mayor may not appear, depending on how you code the entries in
the File-Control paragraph. See the section "File-Control Paragraph" in
Chapter 5 for details.

file-name is the first eight (8) characters of the FD name you code for the FD
name in your COBOL program except, in some cases, for indexed files.

For indexed files with two data sets (an application record data set and an
index data set),file-name is the first seven (7) characters of the FD name of
the application data set; the eighth character is an asterisk (*). If the FD
name for the application data set is less than seven (7) characters, asterisks
(*) will pad out file-name to a full eight (8) bytes.

aNote: Make sure that the operator responsible for running a program which
uses indexed files with two data sets is aware of the file-name conventions just
described, and the appropriate responses.

Depending on the way the program is coded, the operator might enter one of
the following:

dsname, which is the name of the data set specified when it was
allocated with the diskette label maintenance utility or

volid.dsname, where volid is the name of the volume specified when the
diskette was initialized with the diskette initialization utility.

The maximum number of characters that can be specified with either entry is
26.

For device address, the operator can enter either the 4-digit physical address
(4000,4400, etc.) or the logical device ID specified when the system was
configured. If the logical ID is entered:

• It must be left justified.

• The Alpha (shift) key must be pressed during entry.

owner-ID is from 1 to 14 characters as specified when the diskette was
initialized with the diskette initialization utility (SYSINIT).

The operator must fill in owner-ID when the volume-protect (accessibility)
field has been set. This is done with option 3 (modify volume label) of the
diskette label maintenance utility (SYSLABEL).

The operator needn't enter owner-ID when the volume is protected and a
VALUE OF OWNER-ID clause is specified in the FD entry for the diskette
file.

8- 10 IBM 5280 COBOL Programmer's Guide

Prompts for Printer Files

Device Address

The prompts for information on printer files appear in the following format:

Enter the following information for file file-name
Printer device address:

Press ENTER

file-name is the first eight characters of the file name you code in the
SELECT statement in your COBOL program.

For device address, the operator can enter either the 4-digit physical address
(4000, 4400, etc.) or the logical device ID specified when the system was
configured. If the logical ID is entered:

• It must be left-justified.

• The Alpha (shift) key must be pressed during entry.

Chapter 8. Guide for COBOL Program Execution 8- 11

The Status Line and Error Messages
Figure 8.2 shows the layout of information as it appears on a 5280 screen.

Figure 8.2. Layout of 5280 screen information

Row 1 of the display is reserved for the status line, which provides information
about the operation of the system; row 2 is reserved for fixed position prompts.
These prompts are defined with the PMT keyword in a field description
statement as described in Chapter 2.

The remainder of the screen can be used as prompt lines by the COBOL
applications you write. The number of lines available depends on the size of
the screens available in your 5280 system.

Four status line formats are used depending upon the conditions being
displayed:

• Normal operations

• Keyboard error

• Device error

• COBOL Execution Error

The format of the status line for normal operations and for keyboard errors is
the same regardless of whether the program is written in COBOL, RPG, or
assembler.

(See either the Operator's Guide or the Messages Manual for a description of
the status line for normal operations and for keyboard errors.)

The format of the status line for device errors and execution errors differs
when generated by a COBOL program. These formats are discussed in the
sections that follow.

8- 12 IBM 5280 COBOL Programmer's Guide

Device Errors

COBOL Execution Errors

I/O device errors that occur during program execution are also indicated on
the status line. After a device error, the status line is in the following format:

----+----1----+----2----+----3----+----4
P AAAA CCCC-LL PPPPPPPP DDDDDDDDDDDDDDDD

P (in position 1) is the partition number.

AAAA (in positions 3-6) is the address of the device in the form of a four-digit
code (for example 4000, 4400, etc.)

ecce (in positions 8-11) is the error message code. This code corresponds to
a recovery procedure in the Message Manual. The operator should write the
error code on a piece of paper, or already know the correct error procedure
before pressing the Reset key.

LL (in positions 13-14) is the logical device ID.

PPPPPPPP (in positions 16-23) is the name assigned to the COBOL program
in the IDENTIFICATION DIVISION of the source program. If multiple
COBOL programs are called, it is the name of the main program.

DDDDDDDDDDDDDDDD (in positions 25-40) corresponds to the last 16
positions of the data set name given at allocation.

COBOL execution errors usually occur because of faulty logic in the program.
Some possible causes of these errors are discussed in Chapter 9 under
"Possible Causes of Execution Error Messages".

After a COBOL execution error, the status line is in the following format:

----+----1----+----2----+----3----+----4
P CCCC NNNNNN IIIIIIII

P (in position 1) is the partition number.

ecce (in positions 8-11) is the error message code. This code corresponds to
a recovery procedure in the Message Manual. The operator should write the
error code on a piece of paper, or already know the correct error procedure
before pressing the Reset key.

NNNNNN (in positions 25-30) corresponds to the number in the compiler
listing of the COBOL program where the error occurred. The number is
determined by the STMT or NUMBER options as described in Chapter 7.
The number is displayed only if the GONUMBER option (also described in
Chapter 7) is specified at compilation.

11111111 (in positions 32-39). The characters in these positions, when present,
are explained for the related message in the Messages Manual.

Chapter 8. Guide for COBOL Program Execution 8- 13

8- 14 IBM 5280 COBOL Programmer's Guide

Compiler Messages

Types of Messages

Chapter 9. Debugging

This chapter contains information to aid you in debugging a COBOL
program. Topics covered include:

• Compiler messages, which indicate syntax and other errors found in your
program during compilation

• Compiler Abends and their causes

• Program error messages, which are caused by logic error in your
program and which are issued during execution of the program on the
5280

• COBOL debugging language, which you can write in your source
program as an aid in isolating and correcting program errors

The primary means for locating errors in the source program is through the
diagnostic messages produced by the compiler. (If you need a list of all the
possible messages the compiler can generate, use the FLUSHERR option as
described in Chapter 7.)

Compiler messages are generally the result of violating the rules of the
COBOL language as defined in the 5280 COBOL Language Reference. The
compiler issues several types of messages in varying degrees of severity.

The compiler can issue five types of messages:

• Information Messages

• Warning Messages

• Error Messages

• Severe Error Messages

• Unrecoverable Error Messages

Information (I) messages call attention to possible inefficiencies in the object
module or give other information generated by the compiler that may be of
interest.

Warning (W) messages call attention to possible errors, although the
statements to which they refer are syntactically valid.

Error (E) messages indicate an error that the compiler can correct with a high
degree of confidence that program execution will be correct.

Severe (S) error messages indicate errors that cannot be corrected with any
degree of confidence by the compiler. Execution will almost certainly fail or
produce incorrect results.

Unrecoverable (U) error messages indicate errors that caused the compiler to
terminate compilation of the program, or that the compiler detected errors
that would make the resulting load module unexecutable.

You determine the types of error messages the compiler can issue by the
specification you make with the FLAG option at compilation. See Chapter 7

Chapter 9. Debugging 9- I

for details. If you don't specify the FLAG option. the compiler wjJJ issue 311
five types of messages described above: the compiler always lists
unrecoverable errors regardless of the FLAG specification.)

Acting Upon Compiler Messages

Compiler Abends

All messages except information messages should be acted upon, even if the
compiler has been able to 'fix' the error. The compiler, in making an
assumption as to the intended meaning of the erroneous source statement, can
introduce a further error which in turn can produce another error, and so on.
When this occurs, the compiler issues a number of diagnostic messages that
may all be caused either directly or indirectly by one error.

It is recommended that you use the the flag option lor Was described under
FLAG or NOFLAG in Chapter 7. Using another FLAG option may suppress
an error message needed to debug your program.

There are four types of errors that cause the compiler to cease normal
processing and end abnormally.

• Source Program Content - A source program may be too large for the
compiler to process in its current configuration.

• User Errors - Defining compiler data sets with improper attributes or
insufficient space are examples of user errors. Almost all of these
conditions are recognized by the compiler and an appropriate diagnostic
message is issued. A few user errors may cause further errors that mask
the true problem.

• Compiler Logic Errors - An unexpected condition can cause a compiler
phase to stop processing or a further type of error to occur such as a
program check. Compiler logic errors are sometimes recognized by the
compiler and an appropriate diagnostic message issued, but more often the
result is an abnormally terminated compilation thought to be caused by a
user programming error.

• System Errors - Hardware errors and programming logic errors within
the operating system are examples of system errors. Because these types of
errors are not recognized by the compiler, the true cause of the error will
not be clear. Most hardware errors, however, are processed by special
system routines that can produce diagnostic messages to the console and
listing file that may enable the operator to correct the error and rerun the
job. These messages can be found in the appropriate Messages manual for
the host system on which your compiler runs.

The compiler sets a return code after compilation to reflect any error
conditions. See Appendix D for the return codes and their possible causes.
The code set and the action taken for each error is as follows:

• If the error occurs in the compiler initialization phase, an immediate return
is made to the operating system and no further output is produced. The
return code is 1000 and is added to the internal compiler error code. The
compiler return codes are given in Appendix D.

• If the error occurs in the compiler termination phase, return is made to the
operating system but additional formatted debugging information is
produced. The return code is 2000 and is added to the internal compiler
error code.

9- 2 IBM 5280 COBOL Programmer's Guide

The compiler return codes can help personnel responsible for isolating
problems in the compiler. More information on this subject can be found in
the 5280 COBOL Host Compilers Problem Determination Manual.

Abnormal Termination and SYSDOVL
cJNote: An abnormal termination will occur with segmented programs if the

primary program (defined by SYSLDOUT) and the overlay modules (defined
by SYSLDOVL) are members of the same partitioned data set. If this occurs,
make sure two different data sets are defined for SYSLDOVL and
SYSLDOUT before recompiling.

Messages at Execution
A number of messages associated with a COBOL program can be issued as
the COBOL program executes on an IBM 5280 system. These messages
appear in the status line at the top of the screen. They contain a
four-character code which refers to an explanation in the Messages Manual.
The format of the different types of messages that can appear in the status
line are described under The Status Line in Chapter 8.

Possible Causes of Execution Errors
Some areas where a program logic error will not be found by the compiler, but
may cause problems at execution are listed below with a possible remedy.

• INDEX or subscript is out of range. Use the debugging line facility or the
USE FOR DEBUGGING declaratives to check values periodically
throughout the program.

• REDEFINEs is used with different USAGE clauses. Verify that the
USAGE clauses are compatible.

• Logic errors after a group MOVE. Your program may have executed a
group MOVE, and the data-items in the group did not have matching
PICTURE and USAGE clauses. Verify that the corresponding
data-items are compatible. There are no execution-time checks made as
to data validity. You can code COBOL language elements, such as
ALPHABETIC and NUMERIC class tests, to verify the data before
executing the MOVE.

• PICTURE clause arithmetic values exceed the precision of the
PICTURE clause, which causes significant digits to be lost. Use ON
SIZE ERROR clause to determine when this occurs.

The following conditions can cause unpredictable results:

• A READ which references data-items defined within a variable length
record when a shorter length record is read

• Referencing a data-item within a record before the file has been opened

• Using data within a record description after a WRITE or REWRITE
verb

Chapter 9. Debugging 9- 3

Debugging Language
COBOL provides two switches which ease the writing of error-free programs:

• The WITH DEBUGGING MODE switch, which serves as a compile-time
switch for debugging statements written into the source program

• The DEBUG jNODEBUG switch, which serves as an object-time switch
that activates debugging procedures written into your program

Information on how to use these two switches is covered in the sections that
follow. For detailed information, see the section "Debugging" in Part V of the
COBOL Language Reference.

Debugging Lines - WITH DEBUGGING MODE
A debugging line is any COBOL statement you write in your program with a
D in column 7. You can use debugging lines to assist in locating logical errors
in your program. When you write a WITH DEBUGGING MODE clause in
the SOURCE-COMPUTER paragraph of the Configuration Section, the
debugging lines are made a part of the object code and will be executed with
the object program.

If the WITH DEBUGGING MODE clause is removed, the debugging lines
will be treated as comments and will not be executed.

The execution-time options DEBUG or NODEBUG (discussed in Chapter 8)
do not affect debugging lines; they affect only the USE FOR DEBUGGING
declarative, as described in the next section.

Declarative Procedures - USE FOR DEBUGGING
The USE FOR DEBUGGING declarative allows you to create procedures
within your program to examine its internal status during execution. With the
USE FOR DEBUGGING dec1arative, you identify program elements you
wish to monitor. COBOL then gives control to your debugging procedure
when these elements are referenced during execution. Your procedure also
has access to the DEBUG-ITEM special register, which contains information
about the conditions causing the activation of the debugging procedure.

You can control the USE FOR DEBUGGING procedures with two switches:
the WITH DEBUGGING MODE source clause at compile-time, and the
DEBUG jNODEBUG option at execution-time. If you specify WITH
DEBUGGING MODE, COBOL compiles the procedures as executable code;
otherwise COBOL treats them as comments.

If you specify WITH DEBUGGING MODE at compile time, and the
DEBUG option at execution-time, the debugging procedures will be executed;
if you specify WITH DEBUGGING MODE at compile time, and the
NODEBUG option at executi?fi time, the procedures will be bypassed.

Example - COBOL Debugging Language
The example in figure 9.1 shows the use of debugging lines and a debugging
dec1arative procedure. Here is an explanation of some of the statements
(keyed to the example) used:

The WITH DEBUGGING MODE clause of the SOURCE-COMPUTER
paragraph at II causes the debugging statements in the program to be
compiled.

Each time the paragraph READ-MASTER at EJ is entered, control is passed
to the statements following USE FOR DEBUGGING ON READ-MASTER
at fJ. After the statement executes, control is returned to READ- MASTER,

9- 4 IBM 5280 COBOL Programmer's Guide

where the statements, beginning with SUBTRACT, execute.

You can control whether or not this procedure executes through the debug
option when you load the program. See "Prompts for Run-Time Options" in
Chapter 8 for more information.

The debugging lines (a D in column 7) at II are compiled and execute as any
other source statement. The use of debugging lines is another method of
tracing program flow during execution. Debugging lines will execute
regardless of what you specify as the debug option when the program is
loaded.

IDENTIFICATION DIVISION.
PROGRAM-ID. UPEMPMAS.
AUTHOR. A NAME.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

II SOURCE-COMPUTER. IBM-370 WITH DEBUGGING MODE.
OBJECT-COMPUTER. IBM-5280.
SPECIAL-NAMES.

ATTRIBUTE-DATA IS TERMINAL-INFO.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT SCREEN-FILE-PR3 ASSIGN TO WORKSTATION 1920
ORGANIZATION IS TRANSACTION
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS TUBE-STAT
CONTROL-AREA IS WSTATION-CONTROL-AREA.

SELECT EMPMAS-FILE ASSIGN TO DISK
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS RKEY
FILE STATUS IS DISK-STAT.

DATA DIVISION.

•
•
•

PROCEDURE DIVISION.
DECLARATIVES.

EI DEBUG-SECTION SECTION.
USE FOR DEBUGGING ON READ-MASTER.

DISPLAY "READ-MASTER ENTERED".
DISPLAY "REKEY- " RKEY.
DISPLAY "EMPNO- " EMPNO.

IO-ERROR SECTION.
USE AFTER ERROR PROCEDURE ON SCREEN-FILE-PR3.

WORK-STATION.
DISPLAY "ERROR ON WORK STATION 1/0".
DISPLAY "FILE STATUS IS " TUBE-STAT.
DISPLAY "RUN STOPPED.".
STOP RUN.

DISKETTE-IO-ERROR SECTION.
USE AFTER ERROR PROCEDURE ON EMPMAS-FILE.

DISKETTE.
DISPLAY "ERROR ON DISKETTE 1/0".
DISPLAY "FILE STATUS IS " DISK-STAT.
DISPLAY "RUN STOPPED." .
STOP RUN.

END DECLARATIVES.

Figure 9.1. Coding example with COBOL debugging language (Part 1 of 2)

Chapter 9. Debugging 9- 5

EXECUTE SECTION.

•
•
•

PERFORM UPDATE-MASTER.
II READ-MASTER.

SUBTRACT 1000 FROM EMPNO GIVING RKEY.
II D DISPLAY "EMPNO - 1000 = RKEY IS " RKEY.

READ EMPMAS-FILE
INVALID KEY

MOVE 0 TO CONTINUE
MOVE 1 TO ERROR-FOUND, INVALID-EMPNO.

IF CONTINUE = 1
IF ACREC NOT EQUAL TO "F"

MOVE 1 TO ACTIVE-RECORD, ERROR-FOUND
MOVE 0 TO CONTINUE

ELSE MOVE "A" TO ACREC.
UPDATE-lo'ASTER.

II D DISPLAY "UPDATE-MASTER ENTERED".
MOVE SCREEN-RECORD TO EMPRECD.

•
•
•

Figure 9.1. Coding example with COBOL debugging language (Part 2 of 2)

9- 6 IBM 5280 COBOL Programmer's Guide

Chapter 10. Job-to-Job Facility

The COBOL job-to-job facility allows you to pass control from your program
to another COBOL program or any other program (for example, a DE/RPG
program, an assembler program, a system utility program, etc.) . You achieve
this linkage with a CALL to a COBOL library routine as will be described in
this chapter.

Together with the PROMPT /NOPROMPT option described in Chapter 7,
this facility permits you to control linkage among several programs with little
or no operator action.

COBOL Statements Required
The following is the format of the CALL statement used within a COBOL
program to load and execute the next program:

CALL "AVCSETXO"USINGparameter-1

parameter-l refers to an area you code in the Data Division of your program
in the following format:

01 parameter-1
02 device-id
02 dataset-name

PIC XXXX.
PIC X(25).

device-id specifies the diskette device where the next program to be executed
resides. You can code either a two-byte logical ID followed by two blanks, or a
four-byte physical address in this field.

dataset-name specifies the name of the data set that contains the next
program. You can code this field in the following format:

*volume.dsname

volume can be any volume ID up to six (6) bytes long; code an asterisk (*)
before the volume ID name. The volume ID is optional.

dsname is the name of the data set. The number of characters you can specify
depends on the exchange type of the data set as follows:

1. For H, I, or basic exchange data sets, the data set name can be up to 8
bytes in length. .

2. For E exchange data sets, the data set name can be up to 17 bytes in
length. The data set name can be made up of one or more qualifiers of up
to 8 alphanumeric characters each; each qualifier must be separated by
a period (.) with no intervening blanks. For example:
ONE. TWO. THREE

In determining the length, each period counts as 1 byte.

tINote: If parameter-l contains blanks, the effect is to reset the job-to-job
facility to not load another programat termination.

Chapter 10. Job-to-Job Facility 10- 1

When Using The Job-to-Job Facility
When using the job-to-job facility, you must consider the following:

1. Control is passed to the specified program when your program ends,
either normally or abnormally.

2. The next program is always loaded into the same partition as the current
program.

3. You can code more than one CALL to thejob-to-job facility. This
allows the logic of your program to determine which program will be
loaded and executed next after, for example, a STOP RUN statement in
the current program is executed.

4. In programs with more than one CALL to the job-to-job facility, the last
CALL processed determines which succeeding program will be loaded.

5. Be sure to specify the NOPROMPT option described in Chapter 7 when
compiling the next job to be run. This ensures that this job can be
loaded and executed with little or no operator intervention.

10- 2 IBM 5280 COBOL Programmer's Guide

Appendix A. Direct Data Communications Support

This appendix describes how to code data communication programs using
direct support provided by IBM 5280 COBOL.

Direct communications support gives more direct control over all
communications facilities than the data communications support described in
Chapter 4. Direct support is more complicated to use, but provides more
flexibility in writing a communication program.

cJNotel: this level of COBOL communications support may be used to produce
specialized interface code when necessary. The user is encouraged to use a
higher level communications interface for application program development.
The level of interface described in this section may not be supported by IBM
on other products and thus could cause difficulties in converting to other
systems.

cJNote 2: Don't intermix CALLs between routines for direct support described
in this appendix with the communication routines described in Chapter 4. If
the Open routine for direct support is invoked, all subsequent CALLs for
COBOL communication support must be made to the other direct support
routines.

Before Running a Data Communication Program

Functions Supported

Before running a data communication program, you must ensure that the
proper communications environment exists for your program. The
communications environment is established with two of the IBM 5280 Data
Comm unica tion Preparation Utilities:

• The Communications Configuration Utility, to which the characteristics
of your software and hardware are described; the utility places this
information in a communications configuration record.

• The Communications Load Utility, which loads the communications
access method (CAM) into a background partition.

See the IBM 5280 Communications Reference Manual, SC34-0247 for
detailed information on these two utilities.

The following table lists the direct support library routines and the functions
they perform.

Routine Function

TINIT Defines the environment and initializes line.

TTERM Terminates connection between transmitting and receiving stations.

TOPEN Prepares for transmit and receive operations.

TCLOZ Ends communication operations.

TREAD Reads a record into a buffer at the receiving station.

TWRT Writes a record from the sending station to the receiving station.

TCTL Permits use of BSC line control.

Appendix A. Direct Data Communications Support A- 1

TINIT Routine

After execution, each routine returns a completion code in a data item you
code in your COBOL program as described later in this appendix.

Horizontal and Vertical TAB translations and Data Formatting (specified by
HTAB and VTAB in assembler language programs) are not supported.
However, you can use any feature which the communication access method
supports, even though you cannot specify them in the parameter lists
described later in this chapter. Instead, you specify the feature when you run
the communication preparation utilities. See the Communications
Configuration Utility described in the Communications Reference Manual for
a list of the features available and information on preparing your
communications environment for your program.

This routine is called to define a communications environment and initialize
the line. This must be the first routine called before any Communications
I/O. Any options specified in the parameter list will override the same
options you specify in the communications control record created by the IBM
5280 Communications Configuration Utility.

The format of the statement to call the TINIT routine is:

CALL "AVCLINIT" USING parameter-l buffer-2

parameter-l and buffer-2 are data-items you code as follows:

01 parameter-1
02 return-code PIC 9999.
02 record-length PIC 9999.
02 blocksize PIC 9999.
02 protocol PIC AAA.
02 record-format PIC AA.
02 type-1 PIC AA.
02 type-2 PIC AA.

01 buffer-2 PIC X(n).

buffer-2 is where you place the record to be sent, or where you want a record
to be received. When sending data under SNA, you should, if required, place
the log-on data in the first 80 bytes of this record.

The contents of the parameter-l record is as follows:

return-code - contains a code posted by the TINIT routine upon
completion. The return-codes and their meanings are explained in
Appendix H of the IBM 5280 Communications Reference Manual,
SC34-0247.

record length - Specify the length of the record to be read.

blocksiZe - Specify the maximum length of the block to be transmiiied.
Specify 0, if you want to use the blocksize specified in the
communications control record (CCR).

protocol- if system network architecture is used, specify SNA.
Otherwise, BSC is assumed.

record-format - for BSC only (this field is ignored for SNA). Specify
one of the following:

• FU, for fixed length unblocked

• VU, for variable length unblocked

FB, for fixed length blocked

A- 2 IBM 5280 COBOL Programmer's Guide

TTERM Routine

TOPEN Routine

TCLOZ Routine

• VB, for variable length blocked. If VB is specified, Either IRS or
ITB must be specified as delimiters in the communications control
record.

If you don't specify any of the above, fixed unblocked (FU) format is
assumed.

type-l - specifies the data set attribute as follows for BSC (for SNA,
CM is assumed):

• CM, for READ/WRITE in any order

• SR, for sequential read

• SW, for sequential write

• CN, for conversational: Write 1 message and read many

If you don't specify any of the above for BSC, CM is assumed.

type-2 - Data set attribute 2. For BSC only.

• CB - Expand any blank characters that, when received, are
com pressed.

• BT - Truncate trailing blanks in data to be sent.

If neither of the above is specified, this option is ignored.

This routine is called to terminate the logical connection between the COBOL
application program and the host communication program.

The format of the statement to call the TTERM routine is:

CALL "AVCLTERM" USING return-code

return-code is a data-item you code as follows:

01 return-code PIC 9999.

return-code - contains a code posted by the TTERM routine upon
completion. The return-codes and their meanings are explained in Appendix
H of the IBM 5280 Communications Reference Manual, SC34-0247.

This routine is called to establish the beginning of communications transmit
and receive operations. It must be called before any read, write or device
control.

The format of the statement to call the TOPEN routine is:

CALL "AVCLOPEN" USING return-code

return-code is a data-item you code as follows:

01 return-code PIC 9999.

return-code - contains a code posted by the TOPEN routine upon
completion. The return-codes and their meanings are explained in the IBM
5280 Communications Reference Manual, SC34-0247.

This routine is called to end communications operations.

Appendix A. Direct Data Communications Support A- 3

TREAD Routine

TWRT Routine

The format of the statement to call the TCLOZ routine is:

CALL "AVCLCLOZ" USING return-code

return-code is a data-item you code as follows:

01 return-code PIC 9999.

return-code - contains a code posted by the TCLOZ routine upon
completion. The return-codes and their meanings are explained in the IBM
5280 Communications Reference Manual, SC34-0247.

The TREAD routine is called to instruct CAM to read a record from the host
into buffer-2 defined when TIN IT is called. TREAD must be repeatedly
called until an end-of-data or other appropriate return-code is returned.

The format of the statement to call the TREAD routine is:

CALL "AVCLREAD If USING parameter-l

parameter-l is a data-item you code as follows:

01 parameter-1
02 return-code PIC 9999.
02 record-length PIC 9999.
02 read-type PIC X.
02 read-status PIC X.

The contents of the parameter-l record is as follows:

return-code - contains a code posted by the TREAD routine upon
completion. The return-codes and their meanings are explained in the IBM
5280 Communications Reference Manual, SC34-0247.

record-length - the length of the data read as posted by CAM.

read-type - for BSC only. Minus sign (-) indicates to read the entire block.
Otherwise, a record will be read.

read-status - for BSC only. Specifies whether the read is conditional or not.
Minus sign (-) indicates to return control immediately with status if data is
not available for the read. Otherwise, the read will wait until data becomes
available.

This routine is called to write a record from buffer-2.

The format of the statement to call the TWRT routine is:

CALL IfAVCLWRT If USING parameter-i

pararneter-l is a data-item you code as follows:

01 parameter-1
02 return-code
02 record-length
02 write-final

PIC 9999.
PIC 9999.
PIC X.

The contents of the parameter-l record is as follows:

return-code - contains a code posted by the TWRT routine upon completion.
The return-codes and their meanings are explained in the IBM 5280
Communications Reference Manual, SC34-0247.

record-length -- Specify the length of record to be written.

A- 4 IBM 5280 COBOL Programmer's Guide

TCTL Routine

write-final- An F indicates the write final option. This is the last WRITE in
a series. A write final causes the CAM to request positive response from the
host that the entire series of WRITEs has been successful.

This routine permits the use of BSC line control, giving you more control over
the data communications exchange.

The format of the statement to call the TCTL routine is:

CALL "AVCLCTL" USING parameter-l

parameter-l is a data-item you code as follows:

01 parameter-1
02 return-code
02 control

PIC 9999.
PIC XXXX.

return-code - contains a code posted by the TCTL routine upon completion.
The return-codes and their meanings are explained in the IBM 5280
Communications Reference Manual, SC34-0247.

control- the device control command. For SNA, the value 0007 is valid,
indicating that a signal should be sent to the host. For BSC, the values in the
following table are valid.

Value Meaning

0100 Write Status

0300 End of Transmission

0400 Transmit RVI

0500 Transmit header (SOH-heading-STX)

0600 Transmit header (SOH-heading-ETB)

0700 Transmit header (SOH-heading-ITB)

0800 Transmit header (SOH-heading-STX-ETX)

0001 Set compression

0002 Reset compression

0003 Set transparent mode

0004 Reset transparent mode

0005 Set trace

0006 Reset trace

Appendix A. Direct Data Communications Support A- 5

A- 6 IBM 5280 COBOL Programmer's Guide

Appendix B. Status Key Return Codes

Table 1 summarizes the possible codes that can appear in the Status Key. The
exact meanings differ according to the file organization (sequential,
transaction, relative, or indexed) and the type of I/0 verb executed (OPEN,
READ, WRITE, etc.). See Tables 1 through 7 for the meanings according to
file organization and I/O verb issued.

Table 1: Summary of Status Key Information

First Character Second Character
of Status Key Meaning of Status Key Meaning

0 Successful Completion 0 No further information

I At End (no next logical 0 No further information
record)

2 Invalid Key 0 No further information
I Sequence error
2 Duplicate key; duplicate

keys not allowed
3 No record found
4 Boundary violation (indexed

or relative file)

3 Permanent error (data 0 No further information
check, parity check, 4 Boundary violation
transmission error) (sequential file)

9 Other Errors 0 No further space (indexed
file)

2 Logic error
3 Resource not available
4 No current record pointer

for sequential request
5 Invalid or incomplete file

information
7 Data set shutdown (indexed

file)

Appendix B. Status Key Return Codes B- I

Relative, Sequential, and Transaction Data Set Organization

Table 2: OPEN Status Codes

Status Key COBOL Detected Error

00 No error detected

30 See table 7 for detailed explanations.

92 The file is already open

Attempt to open a file after previous open failed for non-resource reasons

File is locked

Second attempt to open a TRANSACTION I/O file.

93 Insufficient main storage for buffers

See table 7 for additional causes.

95 COBOL detected invalid file characteristics:

ASCII not configured in system; file is declared as ASCII.

COBOL record size not equal to record size allocated on diskette by
SYSLABEL.

For relative files, a delete character was not specified when the data set
was allocated.

See Table 7 for additional causes.

B- 2 IBM 5280 COBOL Programmer's Guide

Status Key Return Codes

Relative, Sequential, and Transaction Data Set Organization

Table 3: READ, WRITE, and REWRITE Status Codes

Status Key COBOL Detected Error

00 No error detected

10 End of file sequential access

22 Duplicate key random access

23 No record found random access

24 Boundary error (relative file) possibly caused by an empty data set.

30 I/0 Error See table 7 for additional causes.

34 Boundary error (sequential file)

92 Invalid request. For example: a WRITE or READ attempted on an
unopened data set; a WRITE attempted on a file opened for input only.

File is not open

Second attempt to open a TRANSACTION I/0 file

Transaction I/O - 2 WRITES in SEQ

Invalid sequence of READ/WRITE requests in TRANSACTION I/O.

REWRITE, DELETE during sequential access not preceded by
successful READ

93 See Table 7 for detailed explanations.

94 Current record pointer is undefined for the READ request (for
sequential access mode only).

95 For relative files, a delete character was not specified when the data set
was allocated.

Appendix B. Status Key Return Codes B- 3

Relative, Sequential, and Transaction Data Set Organization

Table 4: CLOSE Status Codes

Status Key COBOL Detected Error

00 No error detected

30 I/O Error See Table 7 for additional causes.

92 File already closed.

CLOSE UNIT issued to a multivolume data set.

CLOSE UNIT issued to last volume of multivolume data set.

95 The sequence number of a volume in a multivolume data set is 99. See
Table 7 for additional causes.

B- 4 IBM 5280 COBOL Programmer's Guide

Status Key Return Codes

Indexed Data Set Organization

Table 5: OPEN Status Codes

Status Key COBOL Detected Error

00 No error detected

30 I/O error. See table 7 for additional causes.

92 The file is already opened.

Attempt to open a file after a previous open failed for reasons other than
those given under code 93 below.

File is locked.

ACCESS IS RANDOM, OPEN mode is INPUT or 1-0, and file is
empty.

93 No space available for buffers.

See Table 7 for additional causes.

95 COBOL detected invalid file characteristics:

ASCII not configured in system; file is declared as ASCII.

COBOL record size not equal to record size allocated on diskette by
SYSLABEL.

A delete character was not specified when the data set was allocated.

Data set is multivolume.

Length of index data set records is 4 bytes and ACCESS IS RANDOM;
not allowed. See Chapter 5.

Record length specified for the index data set is not valid. Must be equal
to the length of the record key plus four(4).

See Table 7 for additional causes.

Appendix B. Status Key Return Codes B- 5

Indexed Data Set Organization

Table 6: READ, WRITE, REWRITE, and DELETE Status Codes

Status Key COBOL Detected Error

00 No error detected

10 End-of-file (for SEQUENTIAL ACCESS only).

21 Key out of sequence

22 Duplicate key

23 No record found

24 Boundary error

End-uf-extent

30 I/O Error

See Table 7 for additional causes.

90 No space for insert

92 Key changed between READ, and a REWRITE or DELETE request
(SEQUENTIAL ACCESS only).

Invalid request such as READ when opened for OUTPUT

REWRITE,DELETE during sequential processing not preceded by
successful READ

A WRITE request was made to a shared file when the OPEN mode was
I/O (update).

A delete character was not specified when the data set was allocated.

94 Current record pointer undefined for this READ request (for sequential
access mode only).

97 Data set shut down

B- 6 IBM 5280 COBOL Programmer's Guide

Status Key Return Codes

All File Organizations

Table 7: Detailed Explanations of Status Codes

Status Key Cause Reference in Message Manual·

30 Device not ready after OPEN 3151

Hardware failure 3201

Memory overrun 3203

Deleted sector 3204

Bad track 3205

Control address mark 3206

Media check 3207

Adaptor machine check 3208

Defective sector 3209

Erase mismatch off 3212

Lost ready when busy 3251

CRC error 3301

Byte miscompare 3302

ID mismatch 3303

Head not positioned 3304,3305

Missing address marker 3306

Initialization of track failed 3307

Unexpected CTL address 3308

Data set may contain defective 3705
sectors

93 Data set marked NO SHARE 0115

Data set marked NO SHARE 0116

Data set in use (NO SHARE) 0727

Device marked no share 0733

Invalid open of unexpired data set 3234,3410

Write to protected data set 3422

Appendix B. Status Key Return Codes B- 7

Status Key Cause Reference in Message Manual-

95 Missing label on first volume 3210

Invalid diskette type 3213

Write protect character error 3216

Invalid record/block format 3217

Invalid exchange type 3218

Invalid offset to next space 3219

Invalid physical record length 3220

Invalid record attribute 3221

Invalid record length 3222

Invalid block length 3223

Invalid blocking 3224

Invalid extent 3225

Invalid volume label format 3226

Overlapped extents 3227

Two data sets with same name 3228

Invalid label-standard version 3231

Invalid data set name 3232

Invalid delete character 3233

DSN must be simple name 3235

Secure 'data set' 3242

Invalid data header and/or 3243
parameter

Incorrect header label (not on 3244
Cylinder 0)

Invalid physical record sequence 3247

Diskette requires ASCII translation 3432
table

No delete character 3433

- See the IBM 5280 Message Manual, GA21-9354 under the message identifier in this column for
a detailed explanation of the error and possible error procedures.

B- 8 IBM 5280 COBOL Programmer's Guide

Appendix C. Compiler I jmjtatjon~

Alphabetic, alphanumeric items

Alphanumeric edited, numeric edited
items

Batch compilations

CALL USING

Data sets

GO TO DEPENDING

IF statements

Message length for SEQUENTIAL
I/O to Work Station

Non-numeric literals

Numeric, numeric edited items

PERFORM N TIMES

Printer line length

PROCEDURE DIVISION USING

Structures

Table size

Tables

length.:5 32767 bytes

length.:5 127 bytes

Max=10 COBOL programs

number of data-items:::::; 15

number of procedure names:::::; 15

nesting depth .:5 12

78 characters

:::::; 120 characters

:::::; 18 digits

1 .:5 N :::::; 32767

198 characters per line

number of data-items .:5 15

depth:::::; 20
level number:::::; 49

.:5 32767 bytes

dimensions .:5 3

Appendix C. Compiler Limitations C- 1

c- 2 IBM 5280 COBOL Programmer's Guide

Appendix D. Compiler Return Codes

The following table shows the return-codes given by the compiler after
execution, and their meanings:

Code Meaning

0 No compiler error messages; only informational messages. A normal
termination occurred.

4 Warning level messages only or an error was found in an option
specification.

8 The compiler issued a conditional error message; execution of the
compiled program may succeed.

12 A severe error was encountered; execution of the compiled program is
doubtful.

16 A terminal error was encountered; no recovery is possible so the
compilation was terminated.

20 An error occurred during the abnormal termination process so recovery
is impossible.

There are times when the compiler is not in control of the circumstances under
which it terminates, such as:

• When the system detects an error condition.

• When a compiler-issued instruction receives an unacceptable
return-code from the system.

In the above two cases the return-code is formulated as follows:

• If the error is detected during compiler initialization, the return-code is
1000 added to the internal compiler error code (see the following list).

• If the error is detected during compiler termination, the return-code is
2000 added to the internal compiler error code.

Thus, the return-code not only indicates the particular error but also the
location in the compiling process where the error was detected. For example, a
return-code of 1010 means the failure, during compiler initialization, of an
OPEN for the source data set.

Appendix D. Compiler Return Codes D- 1

The following table contains ABEND codes caused by an error in the data sets
defined for your compile procedure. Any ABEND code received other than
those listed is an internal compiler error and should be reported to your IBM
representative.

ABEND Code

8

9

10

12

18

20

21

40

Meaning

Unsuccessful SYSLIB open (OS/VS only)

Printer open failed (OS /VS only) *

Source file open failed (OS/VS only)*

Work file open failed (OS/VS only)*

Buffer space not available (OS/VS only)*
Increase available main storage.

Unsuccessful open for SYSLDOUT (OS*) or
LDOUT (DOS). Possible reasons for DOS
include:

1. Logical unit not assigned or assigned IGNORE

2. Device not ready, not operational or not DASD

For OS, this ABEND can also occur if the record
length of the data set does not agree with the
record length determined by the DECK/NODECK
option.

Unsuccessful open for SYSLDOVL (OS*) or
LDOVL Y (DOS). Possible reasons for DOS
include:

1. Logical unit not assigned or assigned IGNORE

2. Device not ready, not operational or not DASD

For OS, this ABEND can also occur if the record
length of the data set does not agree with the
record length determined by the DECK/NODECK
option.

Insufficient GETVIS space for dictionary access
table. At least 24K bytes required (DOS only).
Increase size of partition.

* For OS/VS, the ddname is probably missing or misspelled. Correct the
statement and resubmit the job.

D- 2 IBM 5280 COBOL Programmer's Guide

Appendix E. Storage Estimates for OSjVS

Operating System Requirements

Storage Estimates

The OS/VS compiler operates under the control of the VS1 or MVS
configurations of the Operating System.

The compiler requires 192K (196,608) bytes of main storage. This assumes
minimal block sizes for those data sets where the block size is variable:
SYSIN, SYSLIB, SYSPRINT, SYSLDOUT, and SYSLDOVL. Larger
main storage may be required with larger blocks, and may result in improved
performance.

The storage estimates given in this section are intended to supplement the
system figures given in the individual Storage Estimates manuals for your
specific operating system. Use these manuals to determine the amount of
storage needed for the operating system. Then use the figures given here to
determine the additional amounts needed for the IBM 5280 COBOL
Compiler.

Estimates are given for the amount of auxiliary storage required for compiler
data sets, and the amount of additional work space needed for compilation.

Auxiliary Storage Requirements for Compiler and Library Residence

The auxiliary storage required by the 5280 COBOL compiler and its
permanent data set is as follows:

Data Set Name Block Size Number of Blocks

SYSl.AVCLOAD 6144 100

Work Space and Load Module Output Requirements

The COBOL compiler requires additional work space beyond the dynamic
storage needed for execution. The work space needed varies with the number
of source records. The figures below estimate the work space the compiler
might require to process typical source programs. According to the type and
combination of statements involved, however, the storage requirements may
vary widely.

DDNAME Block Size N umber of Blocks *
SYSUT1 512 86 - 360

SYSUT2 512 230 - 772

SYSUT3 512 145 - 572

SYSUT4 512 64 - 293

SYSUT5 512 174 - 578

SYSLDOUT 128 214 - 340

* The numbers given are for two specific programs. The smaller number is
for a program with 1,186 source records (753 statements) and a load
module size of 27K. The larger number is for a program with 2,773 records
(2,600 statements) and a load module size of 43K.

Appendix E. Storage Estimates for OSjVS E- 1

Sample Program Requirements

If your program is segmented, you will have additional requirements for
SYSLDOVL, which could even exceed those of SYSLDOUT, depending on
the size and number of overlay segments.

If you run the installation verification procedure you will need space for the
following data sets until the procedure is finished:

Data Set Name Block Size Number of Blocks
SYS 1.A VCSAMP 1600 20
SYS 1.A VCLDOUT 128 200

Execution- Time Considerations
The amount of 5280 storage must be sufficient to accommodate the load
modules to be executed.

The input/output device requirements for execution of the problem program
are determined from specifications made in the source program. See Chapter
8 for more information on 5280 storage requirements.

E- 2 IBM 5280 COBOL Programmer's Guide

Appendix F. Storage Estimates for DOSjVSE

Operating System Requirements

Storage Estimates

The DOS/VSE compiler operates under the control of the DOS/VSE
Operating System. The compiler requires 192K (196,608) bytes of main
storage.

The storage estimates given in this section supplement the system figures
given in the individual Storage Estimates manuals for your specific operating
system. Use these manuals to determine the amount of storage needed for the
operating system. Then use the figures given here to determine the additional
amounts needed for the IBM 5280 COBOL Compiler.

Estimates are given for the amount of auxiliary storage required for compiler
data sets, and the amount of additional work space needed for compilation.

Auxiliary Storage Requirements for Compiler and Library Residence

The auxiliary storage required by the 5280 COBOL compiler in the Core
Image Library is: 660 blocks.

Work Space and Load Module Output Requirements

The COBOL compiler requires additional work space beyond the dynamic
storage needed for execution. The work space needed varies with the number
of source records. The figures below estimate the work space the compiler
might require to process typical source programs. According to the type and
combination of statements involved, however, the storage requirements may
vary widely.

Filename Block Size Number of Blocks *
IJSYSOI 512 86 - 360
IJSYS02 512 230 - 772

IJSYS03 512 145 - 572
IJSYS04 512 64 - 293

IJSYS05 512 174 - 578
LDOUT ILDOVL Y 128 214 - 340

* The numbers given are for two specific programs. The smaller number is
the number of blocks for a program with 1,186 source records (753
statements) and a load module size of 27K. The larger number is for a
program with 2,773 records (2,600 statements) and a load module size of
43K.

If your program is segmented, you will have additional requirements for
LDOVLY, which could even exceed those of LDOUT, depending on the size
and number of overlay segments.

Appendix F. Storage Estimates for DOS/VSE F- 1

Execution- Time Considerations
The amount of 5280 storage must be sufficient to accommodate the load
modules to be executed. The load module created is a complete 5280
partition, and its size is printed by the compiler.

The input/output device requirements for execution of the problem program
are determined from specifications made in the source program. See Chapter
8 for more information on 5280 storage requirements.

F- 2 IBM 5280 COBOL Programmer's Guide

A
A -specifica tions

see data definition statemerit
abend codes, OS/VS compiler D-l,9-2
abnormal termination

caused by SYSDOVL 9-3
see also errors

ACCEPT verb 6-2
adding records to indexed files 5-24
alphanumeric items

as defined by DDS 2-16
allocating data sets

delete character 8-6
determining exchange types 8-4
for object module 8-5
for user programs 8-4
record size 8-6
leaving space for null records 8-6

ASCII file processing 5-11
ASSIGN clause

for diskette I/O
indexed 5-22
relative 5-4
sequential 5-4

for printer I/O 6-1
for transaction I/O 3-1

assignment name
see ASSIGN clause

AT END clause 5-9,6-4
Attention key 1-7
attribute data

for TRANSCTION I/O 3-6
obtaining, example 3-6

Auto Dup/Skip key
description 1-7
with CHECK(AS), CHECK(AD) 2-21

Auto Enter key 1-7
awaiting-field-exit 1-7
awaiting-record-advance 1-7

B
both input/output field

c

in field description statement 2-19
in record description statement 2-12

Character Advance key 1-8
Character Backspace key 1-8
Character Delete key 1-9
Character Insert key 1-9
CHECK keyword

example 2-1 - 2-8
in field description statement 2-21
in record description statement 2-12

clearing the screen with WRITE 3-4
CLOSE, in transaction I/O 3-4
Close routine 4-4
CMPAT option 7-10
codes, compiler return C-2 .

coding aids for transaction I/O v
coding conventions, DDS

constants 2-10
continuation character 2-9
keywords 2-9
primary line 2-9
secondary line 2-9

command key, COBOL 1-5
on 5280 keyboard 1-5
codes returned after pressing 1-6
interaction with program, example 3-7
on 5280 keyboard 1-5

comment statements, DDS 2-10
communications, data 4-1 - 4-6
compilation, DOS/VSE

required data sets 7-5
job control statements 7-5
limitations C-l .

compilation,OS/VS
abend codes D-l
required data sets 7-3
job procedure, description 7-3
limitations C-l .

compiler messages
getting a listing of 7-11
types 9-1

compiler options
changing 7-1
defaults 7-9
summary 7-10

compiler options, descriptions
CMPAT 7-10
DECK 7-10,8-3
FLUSH ERR 7-12
GONUMBER 7-12
LINECOUNT 7-12
LIST 7-12
MAP 7-12
NUMBER 7-13
OBJECT 7-13
OFFSET 7-14
OPTIONS 7-14
PRINT 7-14
PROMPT 7-14,8-?,10-2
QUOTE 7-15
RUNMSG 7-15
SEQUENCE 7-15
SOURCE 7-16
STMT 7-17
SREF 7-17

compiler return codes D-I
constants, coding in DDS 2-10
control area, work station 3-7
continuation characters, DDS 2-9
COPY library 7-2,7-5
copying DDS into program 1-1,1-2
Cursor Left key 1-9
Cursor Right key 1-9

Index

Index X-I

D
data communications, COBOL

Close routine 4-4
communication routine parameters 4-3

eligible systems 4-1

Open routine 4-3
padding Unused Bytes in read buffer 4-4

program example 4-3,4-6

return codes 4-2
system requirements 4-2

terminating without close 4-5

writing COBOL communication statements 4-2 - 4-6
coding requirements 4-2

Read routine 4-5

Write routine 4-6
DDS (data definition statement)

see Data Definition Statement

data definition statement

example 2-1 - 2-8
coding conventions 2-9

field descri ption statement 2-15 - 2-28

general rules 1-1

record description statement 2-11 - 2-13

uses 1-1

data communications 4-1 - 4-6

data sets

see allocating data sets

Data Type field

description 2-16

determining data class with 2-16

specifying with SHIFT 2-17,2-24

debug option 8-8,9-4

debugging COBOL programs

debugging lines 9-4

example 9-4

USE FOR DEBUGGING clause 9-4

debugging lines 9-4

WITH DEBUGGING MODE clause 9-4

Decimal Positions field

determining data class with 2-16

description 2-18

DECK option
description 7-10

specifying for RJE 8-3

delete character, requirements 8-6

diskette files, prompts for

daiasei name 8-9
device address 8-9

diskette I/O 5-1 - 5-28
DISPLAY verb

examples 6-2

guidelines for using 6-2

DOS/YSE compilation 7-5

DSPATR (display attributes) keyword
clearing before new screen format 3-4

in field description statement 2-22 - 2-24
in record description statements 2-13

Duplicate key 1-10

X-2 IBM 5280 COBOL Programmer's Guide

E
Editing Field

example 2-4 - 2-8
in field description statement 2-21
in record description statements 2-12
see also CHECK, DSPATR. ERROR
PMT,SHIFT

End-of-Job key 1-10
Enter / Record Advance key 1-10
errors, compiler

abends, causes 9-1 - 9-3
list of return codes D-l

errors during 5280 execution
execution errors 8 ·12
device errors 8-12
message in status line 8-11
program errors, causes of 9-3

error messages
compiler 9-1
at execution 9-3,8-11
printing compiler messages 7-11

error processing, I/O
EXCEPTION /ERROR procedures 5-7 ,3-5
status key 3-4,5-7
with AT END clause 5-9
with INY ALID KEY clause 5-8

examples
creating a relative file 5-16
Data Definition Statements 2-1 - 2-8
EXCEPTION /ERROR procedures 3-5,5-7
indexed diskette 5-27,5-25
INDICATORS 3-13
sequential diskette 5-13
transaction I/O 3-7
USE FOR DEBUGGING 9-4
using status key and error procedures 3-4 - 3-5
WITH DEBUGGING MODE 9-4

EXTEND mode, sharing restrictions 5-6

F
Field Advance key 1-10
Field Backspace key 1-10
field description statements 2-15 - 2-28
Field Exit key

description 1-11
with CHECK(RL), CHECK(RB), CHECK(RZ) 2-21 - 2-22

Field Exit Minus key 1-11
Field Name field 2-15
FILE-CONTROL paragraph

for diskette I/0 5-4
for transaction I/O 3-1

file organization
see INDEXED, RELA TIYE,
SEQUENTIAL, ORGANIZATIONs
see also transaction I/0

FIPS option 7-11
FLAG option 7-11
FLUSH ERR option 7-11
Form Type field

in field description statement 2-15
in record description statement 2-11

FORMAT clause
description 3-3

example 3-7
function keys 1-7

G
GONUMBER option

description 7-12

effect on error messages 8-12

H
Hexadecimal key 1-12

I
I/O error processing

EXCEPTION /ERROR procedures 3-4,5-6

status key 3-4,5-6

with AT END clause 5-9

with INVALID KEY clause 5-8

IND EX data set

advantages 5-21

creating 5-24,5-27
determining size of in-storage index 5-23

how to specify 5-22

purpose 5-21

rules and considerations 5-23

SIZE clause 5-23

INDEXED ORGANIZATION

allocating a data set for 8-6

creating an indexed file 5-25

example 5-25

reading an indexed file 5-27

sharing indexed files 5-24

Status Key codes B-5 - B-6

updating an indexed file 5-28

with and without INDEX data set 5-21 - 5-24

INDICA TOR clause

example 3-13

in WRITE 3-2

indicator field

example 3-13

in field description statement 2-15

with CHECK(BY) keyword 2-21

initializing diskettes 8-4

input/output field

in field description statement 2-19

in record description statement 2-11

inter-program communications modules

compilation requirements 7-1

INV ALID KEY clause 5-8

J
job-to-jobfacility 10-1, 10-2

K
keyboard, 5280 1-5

L
language option, RUN MSG 7-15

length field 2-16

LINECOUNT option 7-12

linkage between COBOL programs

job-to-job facility 10-1 - 10-2

LIST option 7-12

load module, COBOL

see object module
loading the COBOL program, prompts

debug option 8-8

eliminating with PROMPT option 7-14

SYSOUT device 8-8

UPSI switch 8-8

user parameter 8-8

Location field

description 2-20

example 2-4 - 2-5

with STARTING AT LINE 3-2

M
MAP option 7-12

maximum

batch compilations C-l

data setsC-l

GO TO statments C-l

IF statements C-I

Message length, sequential display I/O C-l

non-numeric literals C-l
printer line length C-l

USING C-l

structures C-l

tables C-l

table size C-I

maximum length

alphabetic items C-I

alphanumeric items C-l

messages

compiler 9-1

execution 8-11,9-3

possible causes at execution 9-3

multivolume record processing 5-12

N
Name Type field

in field description statement 2-15

in record description statement 2-11

null records

consideration when allocating 8-6

in relative files 5-15

NUMBER option 7-13

numeric items
as defined by DDS 2-16

Index X-3

o
object module. COBOL

allocating data sets for 8-4
determining size with DECK option 7-10
determining storage requirements 8-4
data set requirements, 52808-4
OBJECT /NOOBJECT option 7-13
RJE size requirements 8-4

OBJ ECT option 7-13
OFFSET option 7-14
OPEN inTRANSACION I/O 3-2
Open routine 4-3
OPTIONS option 7-14
options, run-time 8-8

see also compiler options
OS/YS compilation 7-3
OUTPUT mode, with sharing 5-6

p
performance, improving

system considerations 8-7
when creating indexed files 8-7
when using index data set 8-7
with sequential access method 8-7

PICTURE clause
as determined by DDS 2-16

PMT (Prompt) 2-24
primary, continuation, and secondary lines 2-9
PRINT option 7-14
printer I/O

example 6-2
maximum characters per line 6-1
prompts for printer files 8-10
rules for coding 6-1

*PROCESS statement 7-7
prompts, execution time

description 8-8 - 8-10
eliminating with PROMPT option 7-14
language option 7-14

PROMPT option
description 7-14
using with job-to-job facility 10-2

Q
QUOTE option 7-15

R
random access method 5-2
Read routine 4-5
Record Advance key 1-12
Record Backspace key 1-12
record description statements

definition 1-1
detailed description 2-11 - 2-13
example 2-1

record key 5-2
Record Name field 2-11,2-4 - 2-5
record size, allocating 8-6
RELA TIYE ORGANIZATION

creating a relative file 5-15
example 5-16

X-4 IBM 5280 COBOL Programmer's Guide

reading from a relative file 5-18
Status Key cvdc~ B-!
updating a relative file 5-18

relative key 5-16,5-2
Reset key I-I 2
return codes

compiler D-l
data communications 4-3
status key B-1

RUNMSG option 7-\5

s
S PICTURE clause symbol

as defined by DDS 2-16
screens

example of formatting 2-\ - 2-8
size limitations 2-20

secondary line 2-9
segmented programs

allocating COBOL data sets 8-4
compilation 7-7

SELECT clause
for diskette I/O 5-4
for printer I/O 6-\
for transaction I/O 3-1

SEQUENCE option 7-15
Sequence Number field

in field description statement 2-15
in record description statement 2-11

SEQUENTIAL ACCESS method 5-2
SEQUENTIAL ORGANIZATION

ASCII file processing 5-11
creating a sequential file 5-11
for display I/O 6-4
for printer files 6-1
multivolume record processing 5-12
reading from a sequential file 5-11
Sta tus Key codes B-1 - B-4
updating a sequential file 5-12
SHARE/SHARER see sharing files

sharing files
adding records to shared files 5-6,5-24
SHARE/SHARER in SELECT (diskette) 5-4
unshared files 5-5
when files can be shared 5-6
with output and extend modes 5-6

SHIFT keyword
description 2-24
Data Type field requirement 2-17

sign, positive
as determined by C!\1PAT option 7-10

signed numeric items
as defined by DDS 2-16

size, changing object module 7-10
sizes, screen 2-21
Skip key 1-12
SOURCE option 7-16
STARTING AT LINE clause

as influenced by Location field 2-20
description 3-2
example 3-7

Status Key
examples 3-4,5-7
codes, explanation B-1
purpose 5-7

summary of codes B-1
status line

format with device errors 8-11
format with program errors 8-11

storage requirements, host compiler
DOS/VSE F-l - F-2
OS/VS E-l - E-2

storage requirements, 5280
diskette requirements 8-4
how to determine size needed 8-3
main storage requirements 8-3

STMT option 7-17
STOP statement 6-6
subprogram linkage

compilation requirements 7-7
SYSOUT device, in load prompts 8-8
System Request key 1-13

T
transaction I/O

u

COBOL statements used with 3-1 - 3-4
description and uses 1-1 - 1-3
DDS statements 2-1 - 2-25
Status Key codes B-1 - B-3

unshared files 5-5
updating

indexed files 5-28
relative files 5-18
sequential files 5-12

UPSI switch 8-8
Usage field

in field description statement 2-18 - 2-20

in record description statement 2-11
USE FOR DEBUGGING procedure 9-4
user parameter 8-8

v
V PICTURE clause symbol

as defined by DDS 2-16

VALUE OF owner-id clause
effect on load-time prompts 5-5
coding example 5-5
description 5-5

w
WITH DEBUGGING MODE 9-4
work station control area 3-7

WRITE statement, transaction I/O
clearing screen with 3-4
format 3-4
required sequence of execution 3-4

Write routine 4-6

x
X PICTURE clause symbol

as defined by DDS 2-16
XREF option 7-17

9
9 PICTURE clause symbol

as defined by DDS 2-16

Index X-5

X-6 IBM 5280 COBOL Programmer's Guide

IBM 5280

COBOL

Programmer's Guide

READER'S COMMENT FORM

Sl23-0032-1

This form may be used to comment on the usefulness and readability of this publication, suggest additions

and deletions, and list specific errors and omissions (give page numbers).

IBM may use and distribute any of the information you supply in any way it believes appropriate without

incurring any obligation whatever. You may, of course, continue to use the information you supply.

If you wish a reply, be sure to include your name and address.

COMMENTS

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

FOLD ON TWO LINES, SEAL AND MAIL

Fold and tape

Fold and tape

Please do not staple

BUSINESS R.EPL Y MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International. Business Machines Corporation

Information Systems Division

Dept 26X/037

2800 Sand Hill Road

Menlo Park, CA 94025

Please do not staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

--- ------ ----- ---- - ---- - - ----------_.-
International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
(I nternational)

SL23-0032-1

Printed in U.S.A.

OJ
s:
U'1
N
(Xl
.0
(')
o
OJ
o
r
"0

o
~
!!!

~
~
.,;

~
N
W

6 o
eN
N
I

