NAVORD REPORT 44n

AUTOMATIC DIGITAL ENCODING SYSTEM Il (ADES II)

29 NOVEMBER 1956

WHITE OAK, MAR¥LA]

NAVORD Report Li4ll

Aeroballistic Research Report 359

AUTOMATIC DIGITAL ENCODTNG SYSTEM II (ADES II)
Part 2: The Encoder
‘Prepared by:

f. K. Blum v

ABSTRACT: Automatic Digital Encoding System II (ADES II) is a gsystem for the
automatic translation of mathematical formulas into programs of coded instruc-
tions for an electronic digital computer. The system has been described in
NAVORD Report 4209 as consisting of a formulation language, an Encoder and a
digital computer. NAVORD Report 4209 was concerned primarily with the
language. The present report is devoted to a description of the Encoder,

the device which actually translates the formulas into computer programs.

U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND

NAVORD Report ulll 29 November 1956

This report is the second half of a two-part report on the results of
research in the field of automatic programming. The two parts taken to-

- gether describe a system designed to automatize the process of preparing
mathematical problems for computation on electronic digital computers.

The system relieves the mathematician of a major portion of the programming
task. In effect, it replaces the human by an automatic device which carries
out the programming procedures. The present report gives the design for

such & device. An experimental model has already been constructed and is
now operative.

This work was performed under NOL Task No. FR-30-1-57.
W. W. WILBOURNE

Captain, USN
Commander

H. H. KURZWEG
By direction

i1

NAVORD Report 4411

PREFACE

In the following pages, we present the design of a device, the Encoder,
for translating mathematical formulations into computer programs. The
formulations are written in the language of ADES as described in NAVORD
Report 4209 issued earlier this year.

Whereas Report 4209 was directed primarily at the problem formulator,
the present report is intended for those who wish to set up ADES for a
particular computer. It is assumed that the reader is wise in the ways of
digital computers. Therefore, specific machine techniques are not suggested
since these will vary with the machine. It is hoped that a general descrip-
tion of what steps have to be taken in the translation process and the
ordering of these steps as specified in schematic flow charts will suffice.

An experimental model of the Encoder has been constructed for the 650
Magnetic Drum Calculator at NOL. Several problems have been programmed
successfully. A description of this particular Encoder will be found in
NAVORD Report 4412. That report contains a complete listing of the actual
650 machine instructions used to carry out the operations outlined in the
flow charts of this report. Although the storage limitations of the 650
forced modifications on the model, it was possible to prove the correctness
of the main logical design. From the experience gained with this model, it
can be said that ADES II is a practical system of automatic programming.
However, it requires a machine with magnetic tapes. It is felt that tapes
are essential for the efficient handling of the translating subroutines of
the Encoder and for the assembly of the library subroutines of the computer.‘

In connection with library subroutines, we call attention to the
Appendix of this report in which an entirely new idea for handling library
programs is put forth. One of the demands frequently made of an automatic
coding system is that it be possible to write library programs in the
language of the system. In the Appendix, we explain how this is pOSSlble
in ADES. This is particularly significant since the ADES language is
mathematical and requires no knowledge of the computer.

We wish to acknowledge the fine work of Mrs. Rose Strompf who assisted
in the preparation of the manuscript and flow charts.

i1i

I.
II.

IIT.

Iv.

NAVORD Repnrt

CONTENTS

Preface . ¢« ¢« ¢« ¢ v v ¢« o ¢ ¢ ¢ o o« &
Introduction « ¢ ¢« s ¢« o &
General Remarks . . . + o &+ & o o o &
Summary Description of Logical Design
Initial Add:essor * e e e e s
The b-Schema
The g-Schema ¢« « « &
The Addressor . « « « ¢« « « &
The r-Schema
The Interpreter
Branching Subschema
Minimization Subschema . . .
FlowCharts .« « ¢« ¢ ¢ ¢ ¢ o o « o« &

Appendix

iv

Li11

Page
. 111

.
& W W

NAVORD Report 4k411

AUTOMATIC DIGITAL ENCODING SYSTEM II (ADES II)

Part 2: The Encoder

I - Introduction

This is the second part of a two-part report on ADES, a system of auto-
matic translation of mathematical formulas into computer programs. The first
part, contained in NAVORD Report 4209, was devoted primarily to a description
of the ADES language. The language is the central component of ADES. The
other components are (1) a Digital Computer and (2) an Encoder. This report
is devoted to the Encoder. :

The Encoder is a device which receives a mathematical formulation as
input and produces a complete Computer program as output. In the following
pages, the logical design of an Encoder is described. A general account is
given first and this is followed by schematic flow charts. Explanatory
notes accompany the flow charts. Since the logical design of the Encoder:
becomes rather intricate in places, minute details are often omitted. It is
felt that the mathematician versed in machine techniques will be able to
supply these details in a satisfactory form once he has comprehended the
basic pattern.

Although the Encoder is for the most part independent of the Computer,
the design presented here was constructed with a particular computer in
mind. It was unavoidable, therefore, that certain aspects of the design
should be influenced by the Computer. For example, the Computer was assumed
to be a single-address floating-point machine. It was also supposed to .
contain one or more index registers. However, these features are believed
to be not entirely essential and can, in any case, be achieved by means of
interpretive routines.

As was pointed out in NAVORD Report 4209, attention is limited to ADES II,
where the Roman numeral, II, indicates a type of incompleteness. Mathemati-
cally, the incompleteness rests in the exclusion of general recursions of "
order greater than 2 and in the restriction of recursion to the definition -
of variables. This latter restriction is a significant one since most data
processing problems require recursions on indexes. However, the design of -
the Encoder in ADES II is such that it can be appended or modified to
eliminate both of these restrictions.

From the machine viewpoint, the incompleteness of ADES II consists in the
exclusion of the logistics for handling external storage; e.g., reading tape.
This is a more complex problem and to obtain the most efficient solution
seems to require a rather deep analysis. If one is willing to settle for a
workable solution, however, it is felt that this can be accomplished within
the framework of the logical design presented here.

NAVORD Report LLill

II - General Remarks

Physically, the Encoder consists of a digital computer with certain
subroutines loaded into its storage. After a problem has been stated in
ADES language, the formulation is punched on cards or tape exactly as written.
The cards are then read into the Encoder and the subroutines translate the
ADES formulation into a program for the Computer. This program is punched
out on cards or tape. At some later time, it can be loaded into the Computer
together with data and the actual computation can take place.

In order to distinguish between the Encoder, which does the translating,
and the Computer, which does the computing, we shall set up certain conven-
tions.

A storage register in the Computer will be referred to simply as a
"storage”, and the number specifying its location will be called a "storage
address”. An address will be denoted by & small Greek letter (ax »B eee)e
On the other hand, a storage register in the Encoder will be referred to as
a "memory cell" and the number specifying its location will be called a "cell
number"”. The cell number of a cell which contains some mathematical symbol
in a formulation will be denoted by writing the sign,"#", followed by the
particular symbol; e.g., the cell number of the cell which contains the
symbol, bgy, is denoted by "#bo1". (The reader should check Report 4209 for
a list of the symbols in the ADES language.) This is to be distinguished
from "q bo1", which will denote the address assigned to b,y in the Computer.
For simplicity, certain standard cells in the Encoder will be denoted by
capital Roman letters (A, B, C ...). The contents of cell A will be de-
noted by "(A)".

The translating subroutines in the Encoder will be referred to as
"schemata". This will distinguish them from the library subroutines used in
the Computer; e.g., interpretive routines, routines for computing special
functions, etc.

One of the most frequent operations in the Encoder is that of trans-
ferring the contents of one cell to another cell. We shall abbreviate and
designate this operation by using an arrow in several ways. Thus, "A—®B"
means“transfer the contents of cell A to cell B';'» " q =» Q" means"place the
address,a , into cell Q; i.e.,a is actually the contents of some cell.
Although we shall use the arrow in different ways, what is intended will be
clear from the context.

Another basic operation in the Encoder is that of "scanning". The scan-
ning operation involves two standard cells, S and SC. Standard cell SC
contains the cell number of some cell, and S contains the symbol in that cell.
The operation, "scan right", causes the cell number in SC to increase by one
and copies the symbol in this new cell into S. The operation, "scan left",
decreases the cell number in SC by one and copies the new symbol into S. 1In
short, one may think of the Encoder memory as a continuous tape, subdivided

NAVORD Report Lill

into cells and visualize a reading head which scan the tape. The operation,
"scan right™, causes the head to move one cell to the right. 'The operation,
"scan left", causes the head to move one cell to the left. The location of
the head is recorded in SC and the symbol being read is recorded in S. The
following exception should be noted. A "Spacer” cell is one which contains
zero. In scanning operatiéns, spacer cells are automatically ignored. For
example, each equal sign is loaded into the Encoder memory with two spacer
cells to its left. These spacer cells are reserved to record information
during the translation process. Until then, they are skipped over by the
scanning operation.

IIT - Summary Description of Logical Design

The Encoder can be subdivided into 7 main schemata which we shall name
as follows: The Initial Addressor, the b-schema, the Addressor, the r-schema,
the g-schema, the Recursion-schema and the Interpreter.

Iet us assume that an entire formulation has been read into the Encoder
memory. (Consult Report 4209 for the structure of an ADES formulation.)

Initial Addressor - The translation begins with the Initial Addressor.
This schema carries out some preliminary conversions which simplify the
final translating process. It will be recalled that in each ADES formulation
there is a section called the Computer Table which gives information about
the number of data to be supplied for each independent variable as well as
the structure of the data if it should happen to be a matrix. The Initial
Addressor scans the Computer Table and calculates an initial address for each
independent variable listed in the table. It does this on the assumption
that the data is to be read into the Computer in the order in which the
variables appear in the Computer Table. In fact, the Initial Addressor
composes a reading program to load the data in precisely this way. At the
same time, it also determines the degree of each independent variable.

The Initial Addressor then scans the equations in the formulation four
times. On the first scan, it compiles three tables. The first table con-
tains a list of the cell numbers of the equal signs of the f-equations. The
second table contains the cell numbers of the equal signs of the b-equations.
The third table contains the cell numbers of the equal signs of the r-equa-
tions.

On the second scan, each independent variable is replaced by its
initial address and a tag which indicates the degree of the variable. BEach
dependent variable (denoted by a subscripted b) on the right side of an
equation is replaced by the cell number of the equal sign of the b-equation
which defines this variable. Each dependent index (denoted by a subscripted
r) on the right side of an equation is replaced by the cell number of the
r-equation which defines this symbol. Each function (denoted by a subscripted
f) on the right side of the equation is replaced either by the cell number .of
the equal sign of the auxiliary f-equation which defines the function, or if
this happens to be a library function (see NAVORD 4209), the symbol is

NAVORD Report Lh1l

replaced by the cell number of a translating subschema which will be called
upon later to compose the Computer operation code associated with this library
function. Finally, on the second scan;all numerical symbols, denoting con-
stants in the formulation, are assigned addresses and are punched out as data
to be read into the Computer storages specified by these addresses. In re-
placing each b, r, and f symbol, an indentifying tag is also attached so that
in later scans the different types of symbols can be distinguished.

On the third scan, the Initial Addressor replaces each independent index
(denoted by subscripted g) by an address and an identifying tag. This
address designates the Computer storage which will be used as an index register
for modifying the initial address of the variables associated with this index.

On the fourth scan, any r symbols in the Computer Table are replaced as
above. (Recall that these r's specify matrix structures.)

The Initial Addressor also performs a few odd jobs to prepare the way
for the main translation. Thus, for example, it records the location of the
Master Phase Equation, that is, the equation which defines bgoo and signals
the start of the formulation. It also records the location of the comma
following the last equation of theformulation, and the location of the comma
after the Computer Table.

The b-Schema - The heart of the Encoder is the b-schema. This schema
controls the order in which the eguations in the formulation will be trans-
lated. Beginning with the master phase equation, it processes each b-
equation as follows.

Starting at the equal sign, it tests the subscript of the equal sign to
determine whether this is a recursion equation, a vector equation, or what
might be called an ordinary b-equation. If it is an ordinary equation, the
b-schema will first translate the left member of the eguation, that is,
those symbols contained between the equal sign and the first comma to the
left of the equal sign. These symbols contain information about quantifica-
tion, storing, and output. If a quantification is indicated, the b-schema
will transfer control to the g-schema. If storing is indicated by the
presence of an r, the b-schema will transfer control to the r-schema.

After the left side of the equation has been processed, the b-schema
will begin scanning right from the equal sign to process the right member of
the equation. It does this by scanning for b's until it reaches the comma
which sets off the end of the equation. If no b is found, the cell number
of the comma is recorded and the b-schema scans left testing for r's until
it reaches the equal sign. If an r is found, this indicates the presence of
an index defined by minimization. Control is sent to the Addressor, as will
be explained further below. If no r is encountered, then when the equal
sign is reached, control is transferred to the Interpreter. The Interpreter
will do the actual translating and produce the machine program.

If, in scanning right, the b-schema finds a b symbol, say by, it first
tests to see whether byp has been referred to previously. Let us assume for

l

NAVORD Report 4411

the moment that this is the first reference to byn. In that case, it records
#bmn (the cell number of the cell containing bpy) in standard cell By. By is
the first of a sequence of standard cells which we shall denote by Bj. At
any particular instant, the B; cells contain a list of those b's which have
been referred to up to that point without being programmed. When byn is
encountered for the first time, the operation Bij=®Bj ;1 is performed and the
cell number of by, is recorded in B,. When this has been done, the cell
number of the equal sign of the by, equation is recorded in standard cell E
and control is returned to the first point in the b-schema, that is, the
point at which the b-schema starts scanning left from the equal sign. Thus,
it begins to process the by, equation. In this way, the b-schema traces a
path through the b-equations until it finds one which contains no b's on the
right side. Such an equation is ready for translation to a computer program
since all symbols have been replaced by addresses and all functions by suit-
able information for obtaining the corresponding operation codes. In this
case, as mentioned before, control will automatically go to the Interpreter.

When the Interpreter has completed the program for bym» it assigns a
storage address, @ bpyn, to byn and records @by, in the second cell to the
left of the equal sign of the by, equation. (In reading in the formulation,
the two cells to the left of each equal sign are left blank.) Any sub-
sequent reference to by, will be treated differently than the first reference,
for now, in testing to see whether by, has previously been referred to, the
b-schema will detect the address recorded to the left of the equal sign and
unless branching has taken place, it will replace by, by this address. If
branching has taken place, the b-schema will make appropriate tests to
determine whether the computer will have the result for by, available at
this juncture. If not, then by, will be reprogrammed by suitable branching
instructions. For details, see the flow chart and brief explanation of '
branching below. '

If the branching situation is such that the address for byn can be used
to replace by, directly, the b-schema continues to scan right from by, for
the correct number of indexes. It records these indexes in standard cells
and transfers control to the Addressor. The Addressor will process the
address and the indexes and return control to the b-schema which will resume
its scan to the right for other b symbols.

The preceding explanation holds except when by, is defined by a recursion
equation and the b-schema detects that it is in the midst of this very
recursion. In this case, although byn has not yet been programmed, an initial
address has already been assigned by the Recursion-Schema. byn 1s then given
special treatment. Its associated indexes are obtained and processed some-
what differently by the Addressor, (see Recursion-Schema and Flow Charts).

The g-schema - As explained above, when a quantification symbol has been
discovered on the left side of a b-equation, control is transferred to the
q-schema. The g-schema will scan right from the quantification symbol to
obtain three pleces of information: the index being quantified, the lower
bound of this index and the upper bound. It uses this information to "set up"

>

NAVORD Report 4h1l

an index register in the Computer. This index register will be used to
modify the addresses of all variables associated with the index in question.
If the upper and lower bounds are independent variables, this can be carried
out in a straightforward manner. The address of the lower bound is easily
obtained and is used to compose an instruction which initializes the index
register. The address of the upper bound is used to compose a branching
instruction which will close the loop corresponding to this quantification.
The precise details of setting up the iterative loop which carries out a
quantification will vary from computer to computer. Hence, these details
will be omitted.

If a bound in a quantification is an r symbol, then the address is not
obtainable directly but will generally cause control to be transferred to
the r-schema. The r-schema will program the equation which defines the
bound and return control to the g-schema which will then complete the instruc-
tions for the loop.

The Addressor - When the q-schema has completed its Jjob of setting up
the index register, it transfers control to the Addressor. The main function
of the Addressor is to provide one or more addresses for each variable in the
equations. The Interpreter will compose instructions by combining these
addresses with appropriate operation codes.

After each quantification, the Addressor scans all the equations for
independent variables. An independent variable of degree zero is replaced
directly by a single address, together with an address-identifying tag. An
independent variable of degree one has one index associated with it. The
Addressor scans right one and obtains the index. If the index is a q, it
tests to see whether the loop for this q has been set up. If not, an error
alarm is given,indicating impquer order of the quantifications in the form-
ulation. If the loop has been set up, the address of the associated index
register replaces q in the formulation. The independent variable itself is
replaced by its imitial address together with a tag indicating that an index
register is to be associated with it. If the index associated with dndepend-
ent variable of degree one is an r, then the Addressor checks the equation
which defines this r. If the equation has already been programmed, the
address assigned to r will have been recorded next to the equal sign. This
address is then substituted for r in the formulation and plays the role of an
index register as explained above. If the r equation has not been programmed,
control is transferred from the Addressor to the r-schema. The r-schema will

program the r equation and return control to the Addressor which will proceed
as before.

For variables of degree two, there are two associated indexes, called
the row and column index respectively. There is also, in the Computer Table,
an r which specifies the matrix structure. The two indexes and the equation
which defines the structural r are used to set up an index register for this
independent variable. This may require a transfer of control to the r-schema.

Again, it is impossible to give all the details and the flow charts should be
- referred to.

NAVORD Report Lill

It should be noted that if the index associated with an independent
variable is an r, and if the equation which defines this r involves other
independent variables which also have r's as indexes, then a complicated
interaction between the Addressor and the r-schema results. However, this
interaction can be kept track of by using two sets of standard cells, the
Ai cells and the Rj cells. The A; cells operate in a manner similar to the
Bj cells and the same is true for the Rj.

A part of the Addressor is also used by the b-schema to supply addresses
for the dependent variables. (See b-schema.) : ,

When the Addressof has completed its scan for independent variables
after a quantification, it returns control to the b-schema. The b-schema
then continues to scan the left side of the b-eqna?ion.

The r-Schema - As explained previously, the r-schema can be entered in
one of several ways. If an r symbol occurs as an index of an independent
or depernident variable, then control is sent to the r-schema from the Addressor.
If an r symbol occurs as a bound in a quantification, control is sent to the
r-schema from the g-schema. If an r symbol occurs on the left side of a »
equation to indicate storing, then the r-schema is entered from the b-schema.

The different entries are recorded by placing certain key information
in the standard cells T, Tq, and Tg. Briefly, if (T) is not zero, this in-
dicates that the Addressor is working on a dependent variable. If (Tg) is
not zero, this indicates that the r-schema has been entered for a minimiza-
tion involving a quantifier bound. If (Tg) is zero, this means that the
r-schema has been entered from the Addressor to obtain an index address for
an independent or dependent variable. If (Tg) is not zero, then, depending
on the contents, it means that the r-schema has been entered from the g-
schema to obtain a bound of a quantification or it has been entered from the
b-schema for storing purposes or finally, it has been entered from the
Addressor, but this time to obtain a structural r for a variable of degree 2.

The operation of the r-schema is very much like that of the b-schema
with obvious modifications. First, there is no need to process the left side
of an r equation. Second, in scanning the right side of the equation, the
r-schema scans for other r symbols rather than b symbols, and when such r's
are found, they are listed in order in the Ry cells. Further, since the
r-schema can be entered in the middle of the operation of the Addressor, the
right side of an equation may contain independent variables. In that case,
before the r equation can be programmed, the independent variable must be
replaced by an address. This requires a return to the Addressor and can set
up the complicated interaction between the Addressor and the r-schemsa
mentioned before. This interaction is controlled by the Aj cells in con-
junction with the Ry cells. '

Another difference is that the r-schema must take into account the pos-
sible occurrence of the minimization operator. It does this by a special

test which sends control to the minimization subschema (see below) if called
for.

T

NAVORD Report 4411l

Owing to the special nature of equations vhich define those r's which
specify storing, the r-schema operates somewhat differently on these equations.

The Recursion-Schema - It will be recalled that when the b-schema dis-
covers a recursion equation, it sends control the Recursion-schema. This
schema will test subscripts of the equal sign to determine what type of re-
cursion is called for. For a simple scalar recursion, it will count the
number of initial values and allot sufficient storage for these values., If
the recursion is of the course-of-values type, it will consult the Computer
Table and obtain the total number of values of the recursion index and allot
this many storages. It will then record an initial address to the left of
the equal sign and will list in the By cells the cell numbers of the commas
which set off the formulas for the initial values together with certain tags
which identify the beginning and end of the recursion. Thus, when the b-
schema resumes operation, it will, by consulting the By registers, cause the
initial values to be programmed in the ‘correct order. For a vector recursion,
the number of equations is determined as well and the above process is
duplicated for each equation. When all this information has been recorded,
control is returned to the b-schema.

For a double recursion, more bookkeeping is required. The parentheses
which set off those equations which involve the two recursion indexes must
be located as well as the brackets which set off the entire recursion (see
NAVORD 4209). The order in which the equations are to be programmed is the
order in which they are written and the Bj registers must be set up accord-.
ingly. The type of recursion (i.e., preceding-line, course-of-values, etc.)
must be determined for each equation and the correct amount of storage
allotted. As in simple recursions, initial addresses must be assigned for
each of the dependent variables. Again, control is then returned to the
b-schema.

The Interpreter - After all operands in an equation have been replaced
by addresses, the Interpreter is entered either from the r-schema or the
b-schema. The Interpreter has the function of scanning each formula and
translating it into a Computer program. It does this by scanning left for
functions, starting at the comma. As it scans, it counts the number of
operands, (i.e., the number of addresses and addresses with degree-one tags.)
between successive functions. It compares this number with the degree of the
function. The degree of the function is simply the number of arguments of
the function and is obtained either from the library subschema associated
with each library function, or in the case of auxiliary functions, the degree
is simply the number of free variables in the formula which defines the
auxiliary function. On the basis of this comparison, the Interpreter de-
termines whether a "store" instruction is required.

For a library function, control is transferred to a library subschema
which composes the proper Computer instructions by combining the addresses
with the pertinent operation codes. For auxiliary functions, the free
variables are replaced by the addresses and the resulting formula is pro-
grammed by the Interpreter. For library functions which are to be computed

8

NAVORD Report 441l

by a subroutine, the Interpreter will compile the subroutine and insert it
into the program with the correct addresses.

In assigning addresses for storing intermediate results, the Interpreter
works with a standard cell called the Intermediate Storage Counter. A block
of storages in the Computer is reserved for intermediate results and the
counter merely keeps track of which storages are available. Since these
storages are erased as soon as the result is used, the block need not be very
large. In allotting storages for instructions, the Interpreter uses a
standard cell called the Imstruction Counter (IC). IC is initially set -with
the first available Computer -storage, starting with the lowest possible
address. When the Encoder begins to program an equation, it records the
contents of IC in the blank cell to the left of the equal sign. Thus, a
record is kept of the address of the first instruction in the program for
each equation. This address will be used in setting up any branching in-
structions which may be required.

When -the last function in a.formula has been translated, the Encoder

assumes that the final result will be in a standard storage called the
 Result Register in the Computer. To complete the program, the Interpreter
must determine whether to store this result, and whether to punch it out or
print it. The "end-procedure” is governed by the information contained on
the left side of the equation. The Interpreter will scan the left side of
the equation for an r which indicates storing and for a d which indicates
output of some kind. It will then compose the necessary instructions. The
Interpreter must also test for a quantification since if one is present, the
end-procedure must compose instructions to close the loop corresponding to
this quantification. When all these contingencies have been accounted for,
the Interpreter will compose a "No Operation" instruction as a final instruc-
tion and record the address of this instruction in the cell which contains
the equal sign. This address will be ‘used in certain cases where branching
is necessary.)

In composing storing instructions for each b and r, the Interpreter
allots storage addresses by consulting a standard cell called the g ~Counter.
The B -Counter is initially set with the highest available storage address
and is decreased as storage is allocated. Since the Instruction Counter is
increased as addresses are assigned to instructions, if there should be an
overlap, an error alarm is given.

In reading the flow charts, it will be noted that there are many special
cases to consider. These arise mainly in recursion and minimization. 1In
recursions, the storing end-procedure must be slightly modified. Also,
initial values receive special treatment. The same is true of minimizations
since these interrupt the natural order of the b-schema. Likewise, branching
calls for special procedures since, here again, the order is interrupted (see
remarks on branching and minimization below).

Finally, when the end-procedure is completed, the Interpreter will trans-
fer control back to either the r-schema or the b-schema.

NAVORD Report LkLll

Branching Subschema - A branch equation has the following form,

y= 4 x% V¥,

where ¥ y and V¥ o denote formulas and ¢ denotes one of the branching functions,
<,&% or=. Thus, y is equal to V3 if the branch condition ¢ holds between
the operands x; and X5, and otherwise y is equal to Voo (Note that this is

a slight modification of the format described in NAVORD k209.)

The branch equation is treated like any other b (or r) equation to
begin with. The operands x; and X2 are processed and replaced by addresses
and the b-schema scans right from the equal sign to the comma. This causes
control to go to the Interpreter. The Interpreter, on finding the function,#,
sends control to the appropriate library subschema, which, in turn, transfers
control to the Branch Subschema. The Branch Subschema scans right for the
comma after x, and replaces this by an equal sign with the subscript 18. Tt
then obtains a storage address, T, from the PB-Counter. It replaces the
function, ¢, by T and produces the program which sets up the branch condition.
The "transfer" instruction in this program will have T as its address.

At this point, the fact that a branch has been set up is recorded in
standard cell BI. This can be done in several ways. One method is to re-
cord a string of O's, 1's and 2's in BI, the 1l's indicating the left part of
a branch and the 2's, the right part of a branch. Thus, whenever a branch
condition is set up,a digit one will be added to the string. When the corres-
ponding right branch is started; this 1 is changed to a 2. When both parts
of the branch have been completed, the 2 is replaced by a zero and the ¢los-
ing of the branch is tallied in another standard cell. The string in BI
together with the tally is a sufficient record of the branching structure of
the flow chart.

After programming the branch condition, the Branch Subschema returns

control to the b-schema (or r-schema) which resumes by scanning the formula,
V1, and sending control to the Interpreter which then programs *1° The
end-procedure, on finding " =38", scans left to the main equal sign. It then
composes the storing, output and loop-closing instructions as indicated on the
left side of this equal sign. The address,y , of thefirst instruction com-
posed by the end-procedure is then recorded in place of the symbol, = 18- A
final instruction which transfers control to a storage, 171,15 then composed.
This will have the effect of causing the Computer to jump over the instruc-
tions for the right part of the branch in the event that it has taken the left
part of the branch, since the instructions for the right part will immediately
follow. At this point, another "transfer” instruction” is composed and placed
in storage T . This will be acted upon by the Computer when it takes the
right branch and will cause it to Jump over the instructions in the left
branch, except those belonging to the end-procedure.

The formula V¥, is programmed and a suitable "transfer" instruction is

added to cause control to jump to 7 - Finally, another "transfer" instruction
is composed and placed in storage ’rl' This completes the branch program.

10

NAVORD Report 4hll

Arranging the "jumps" in the manner described, has the advantage that it
permits the instructions of each branch to be composed and punched out
directly with a minimum of bookkeeping.

Minimization Subschema - The minimization operation can occur in two
contexts: as a definition of an upper bound in a quantification and in a
"table look+up" operation. When an upper bound is defined by a minimization,
the independent index involved is the same as the indeperident index in the
quantification. Recalling that the format of a minimization equation is as
follows,

= f ab
pd ’

the b is seen to be one of the quantities in the scope of the quantification
of gq. The minimization subschemsa replaces the upper bound by b. When the
end-procedure of the Interpreter encounters this b on the left side of the
equation, it will program it, assign a storage address to it and use this
address to compose the required instructions for closing the loop. Note that
this programming will interrupt the normal operation of the b-schema. Appro-
priate records have to be kept of the fact that a minimization is in progress.

If a minimization involves a table look-up operation, then the b in the
minimization formula is treated simply as if it were on the right side of a
b-equation. For more details, see pages Min 1, Min 2 after the flow charts.

IV - Flow Charts for ADES II Encoder

The following pages contain flow charts of the six principal schema
described in section III above. These charts are intended to show in some
detail how the designs sketched briefly in section III can be carried out in
terms of simple operations. However, the main object is to show how the
various schemata interlock. Hence, the degree of detail varies. It is
believed that too much detail would obscure the main design.

The b-schema is charted on pages bl to bl7; the g-schema on pages gl to
q8; the Addressor on pages 1A to 6A; the r-schema on pages rl to r5; the
Recursion-schema on pages rec.l to rec.9; the Interpreter on pages Il to I20.
The Minimization Schema is described briefly on pages Min 1 and Min 2, and
the Vector schema on pages V.S.l and V.S.2.

In all charts, the direction of flow is downward unless otherwise in-
dicated by arrows. To continue from page to page, the familiar device of
tagging various points by decimal numbers enclosed in a circle is used. For
example, on page bl one of the exits is labeled as "(29, b2". Turning to
page b2, one locates CZD at the top of the page. The letter,‘e: is used to
denote "Encoder" and precedes all numbers used as flow chart locations.

In some cases, it seemed desirable to add explanatory notes. These are
collected after the flow charts for each schema. A list of the automatic
error checks is given at the end of the flow charts.

11

NAVORD Report 44ll

b1

b-Schema
E->Sc
‘ Scan Rt.
Test subscript, ninp,
of equal sign
nyng =09 v nln2=00 # 00 or 09
Vector Scan left Enter
Schema ' Recursion
Schema
. V.S,
pe VS, | A at ek0, P.REC.|
Test S for comma 1
no comma
e5
7
l Scan Rt. ,
A Test S for r, d, b
and quantifier, Po3‘
d
r P03 b other
\lz
e5 >T, e39) P.r P.ql P.b2 [Error]

12

NAVORD Report L4411l

Scan Rt. to equal sign

Scan Rt. I

| Test S for special library f]

yes

no

\

Special Library
Subschema

(see wote 2)

=

[Scan Left \

Test (S)=r

|

'[Test subscript of T |

00

#Voo.

Phase mark—bBo l Y

!

Z

Scan Rt.

gy

Test (S)=b l

(e3>P.b3

r no N
P.bq no b
e 2.1
Test for
Equal Sign Test (S)= comma
no = comma, no
e 60) P.I1 @ P.b2

13

NAVORD Report L4ll

v-»B

Sc --)Scl

#Bo-1->5Sc

b3

N

Scan Rt. I

Test for last By

Yes No

Non-zero -» Sc*

Test f

or Start Vec\tor Recursion

or End Vector Recursion marks

e

of equal sign of]
b-equation =¥ Sc

Scan Rt.

e 3.4
P.b1

no

yes >

Sc = Sc*

(s)=(B) |

Test

= |

1k

gLELSE

no
l Sc*— Sc ,l

NAVORD Report 441l

| Test fora |

o no

Put degree 1
tag onC .
o tag—»Q,

Test (Sc*)=0

no

Scan Rt. Twice '

r-ﬁ;}orzl

b L

B;—»3Bj4 |
Test S for equal sign
#o>38; |
= no

of equal

e 2.k Scan Rt. Twice l sign of b-eq.

\ > §
P.b 10
Record Branch Number,
cell to left of
equal sign
Set exit of boxes 3 and 3.1
to be e 3.2
Test (Min.)=0
e 3.1 no
P.b5
Minimization
tag ¥ B, P.bl
0 —>Min —&
Erase

Ry, A

P.Al

15

b 5.
NAVORD Report Llll

Scan left J

Test (S)= comma

comma no
[o5t Test (S)=r
Tr no
Y
e 3.1
r> 5t
:_I:]. P.b5

Compare (B.I.)s J,27.:.dy vith
branch number, 0 5d1...9 g

Test for first disparate
digit,d 1, if any.

1 no e 3.6

Box 3
@ Bxit
P.b6 :
W P.o4 | r3f

16

b 6

NAVORD Report ki1l

G

with @ n

Compare Branch Tally, J7

£

o) no

S

-

Record (B.I.)as new
branch number in b
equation

P.b6

Box 3.1

Test& ;=0
all 1< j<n

Y

Test J:=0
all i< j<n

0 no

-
Vd

Setd ;= 0.
Record new branch
number in b equation

e 3.3
P.b6

17

Obtain addresses T, X from
rt. side of b equation;
(77, A\ are addresses of
first and last imstructions
in program for b). Obtain
(1.C.). Use 17,2, (I.C.)
to construct "transfer"
instructions to compute b
using progrem for b.

b7
NAVORD Repert 441}

Test B, for phase mark

yes no 7
Qo =»(5¢c7) Test (St)=0
1.e. —>#b),\
0 no
Scl-—>Sc
Determine if
equation for r

in St has 1 or 2
@ indexes

P.bl

0 ->I. Non-zero =% I,

[

Scl-—>Sc

i Scan Rt.

e —

Test S for q, r, address

other q,r,&

Error 3 e3.7

18

NAVORD Report 441l

S>1Ip I

Test (I,)=0

0o |s#o0

-

Scan Rt.

Test S for q, r, or address

other

S=>I Error 4

Sc, =»>A
1.8, B4,

Record e2 in T

elb

P.A2

19

b 8

NAVORD Report L4ll b3

Scan left J

Test S for a X

Scan left

[Test S for a I

_ Error § l

Record e 2 in T

e 9.17

P.Al

20

b 10
NAVORD Report L41l

Test for subscript, njnp, on equal sign l

09 F 09

Vector Record n, I
Subschema

(see V.S.‘l)

Test n2= 1l l

1l v n271
Test InléQ | P.b |4
>2 |2
P.b (e 2.7
12
Scl-QSc

Scan Rt. from b]

Test S for addressJ

address no

> O0-—>»1I
with degree 1 tag -

P.bl Cez> P.bll

21

b 11
NAVORD Report L4411

G

Test n,= 5

5 |#5

Test n,=2 or 4

> #o 1

Q
with deg. O tag |

2or bk lor3

0—>((sc))

i.e. erase index Ce 3.4)) Put cell number

of equal sign
P.b7 of b equation

into Sc

P.b2

Scan left

Test S for N
quantification
symbol

yes no

Scan Rt.

oo
i.e. q-=Qind

P.bT7

22

NAVORD Report Ll1l b 12

Initialize Sc with cell number of b on left
side of eq. (If all b's are same, this is
first equation.)

Scan left

Scan Rt. ‘

Record bmn ‘

e

Scan rt.

Test for b

Compare b and bpy,

same not same
Record #b (e 2.1) P.blO
Scl—?Sc

e 2.81) P.bl3

23

NAVORD Report Lill

Scan Rt.

Scan Rt.

Test S

for address

no

yes

[Error |

LRecord address and erase cell |

b 13

Obtain numerical constant, N, from

Compare count
with N

Table of Constants vs. Addresses Jee ‘dl'“f
#o on left side of first
vector equation=»»Sc
Scan Rt.
N

Test (S) for equal sign

no

Y

< Count+l

N

#

'
P.bl0O

2k

b 14
NAVORD Report L4Lll

Gy

Test n,= 2
=3 =2
Triple Recursion Scan to locate brackets.
Subschema Determine whether this equation
see T.R.| is inside or outside brackets.,
outside insyide
Test ng= 0 Test nlﬂo
0 no 0 no
Scl -»Sc Test n= s} 0 -)];c /,Jh-.
9 9 P.bl5
Replace b Sc, -» Sc
by & A
[scan Rt. |
Scan Rt.
0—>Ic
0-?((sc))
i.e. erase
0-» ((sc)) index
i.e. erase index @
P.b7
e2)P.b2
P.bk

25

b 15
NAVORD Report 4hll

Test n, =9
- no
N
Scan left ny+1->St
for r
Scan left
r >S5t for left
bracket
(e 2,911)
Scan left
P.bl6 for
quantification
Scan rt.
for q
Obtain N(q)
from Computer Table
in formulation

e 2.91

P.bl6

NAVORD Report Llll

Search Table of
Addressed Constants
for N

|

X (N)-» st

Non-zero -?Ic

Obtain address, <,
from -Counter.

Arrange to load
N into X in the

computer,

Record N vs. X
in Table of
Addressed
Constants

e 2,91) P.bl6

b 16

NAVORD Report 41l b 17

a8

Compose program to compute r,
using (Ig) modulo (n+1), (Ic),
and &€ (N). Store result in .

Record & (N), IR, I., « in TAI (No‘i‘c 5)

e 17

P.5A

28

NAVORD Report 4hll ’ b 18

Explanatory Notes for b-Schema

1) The following standard registers are used:
Register Contents
E ... cell number of b symbol on left side of equation,
C ... cell number of comma which marks right end of each term,

Tg... control information; (Ts) = 0 if the r-schema is entered to
obtain an index for a variable. When the r-equation has been
programmed, the Interpreter returns control to (P.I.10).
(Ts) = el7 if the r-schema is entered to obtain an index
specifying the storage structure of a variable of degree 2.
In this case, the Interpreter returns control to el’.

(Ts) = e5 If the r-schema is entered for an index ‘specifying
that a result is to be stored. The Interpreter will return
control to e5.

(Tg) = e6.1 if the r-schema is entered to obtain the bound in
a quantification. The Interpreter will exit to e6.1.

T ... If (T)9ye O, the Addressor will send control back to e2. Other-
wise, it will resume scanning for a's,

Tgeee (T);ﬁ()ii‘the r-schema is entered for a table look-up opera-

tion.

Sc... cell number of cell being scanned,
se*.. temporary record of contents of Sc; also other information.
Scy.. temporary record of contents of Sec,

Bi...(i==0,l,...,50.) Cell numbers of b-symbols; also control informa-
tion,

2) On page b2, if a special library function is found, control is sent to the
Special Library Subschema. This subschema is not included in ADES II, since
it depends to some extent on how library subroutines are treated. Its pur-
pose is to handle special library subroutines of the type mentioned in
Appendix I of NAVORD L4209. For example, in a numerical integration subroutine,
it is necessary to compute values of a function at points determined by the
subroutine. The formula for thefunction must therefore refer to the sub-
routine. The Special Library Subschema must compile this subroutine into the
program and assign addresses to those b-symbols computed by the subroutine.

The formula for the function is then programmed by using these addresses.

This technique is workable but a better and entirely new method of
handling subroutines is presented in the Appendix of this report.

29

NAVORD REPORT L4411 b 19

3) As explained in section III, a record of the branching structure is kept
~in cell B.I. After each equation is programmed, the contents of B.I. are
recorded in the two cells to the right of the equal sign. This number is
called the "branch number” of the equation and is denoted by & , 5j... 89.

L) The Initial Addressor compiles a table of all numerical constants in the
formulation vs. the addresses assigned to these constants. It replaces éach
constant in the formulation by its address. On page bl3, the actual value
of the constant, N, must be used in a computation by the Encoder. N is ob-
tained from the Table of Constants.

5) On page bl7, information about a structural r is stored in TAI. "TAI"
stands for "table of addressed indices". TAI is a table which contains a
record of the address assigned to an r which specifies matrix structure or
storing.

30

NAVORD Report LLill q 1.
g-Schema
Initialize boxes 6.1-6.5
by setting Qp and Q. Set
exit of box 7.0 to e T.1
0—=>7
0 —= 'QU
I Scan Rt.
Test S for address
. address no @
Box
6.5
N _
S >Q [Quj Test S for a of deg. 1 |
Box 7.0 ___.@ ~ a no
0->»(sc) X a> Test S for q
i.e. erase QL E‘U
lower bound
] qQ no
Scan Rt.

31

=

P, q2

P. a3

l Test S for Address

address

no

NAVORD Report 4k1l

q2.

G

Box 6.3

-

Box 6.2 '

5 %15 |

0 ->»(Sc)

i.e. erase index

Scan left

GD

P. ql

Test S for r

r no

Error'7

Scan left

. Sc=»8c

q

Non-zero~> Tq

(e 2.11)

P. b9

32

aCq>Q [ouj

Test setup
of q

no yes

. Error gl

, Scl ->8c

D

P. ql

NAVORD Report U441l

Test S for r

Sc-»Sc Test S for a of deg. 2
1

Test rt. side of
r-equation forel

@ | Error l0|
oC no

P. q2

!ar-;QL [‘QU:” Test rt. side of
— ' r-eq. for minimization

Sey - Sc l

P. ql

min, £ no
Obtain upper
bound of
minimization
Scl - Sc q
(e 7 .h)
Enter r-schema
P. qk4 at e 33, p.rl

33

q 3.

NAVORD Report Lill

@

Test u.b.m=constant

const. no
: Test u.b. = a of degree 1
const. <3 Qy
a no
[e 6.8
[xe—>q, Test u.b.=a of
Obtain b in ¢ degree 2
minimization ,
equation
Scan rt. a no
from a

Replace r, the u.b.
in quantification,

@ : Error

by b. Test S 2%4
for address
Scl-,Sc address no
P.q 7 e 8.2 S>> Test S for r
> no
e 6.8
P. g Scan left Error
11
Scy _,ch
e 6.9 P.q2

34

q 5.

NAVORD Report Llll -

Scan Rt.

S->Qy

Test setup of q

yes

no

‘ Error\ﬂ

Record setup
of q by storing
Xq in a table
of q vs.ar q.

Change Q@ to Qy
and Q to Ty in
boxes 6.1-6.5.
Change exit of
vox 7.0 to e 8.2

(eb.k)

P. ql

35

ey

Obtain next available
storage address for
instructions , 1Y, from
I. C.

Compose instructions

to initialize index
register for quantified
index. Use (Qg), (Qy),
(Y1) as addresses.

Arrange program to go

into storages TY, TI+1,...

Compose program
for upper bound. Use

(QU)) ('QU): (QM) as

addresses.

l Test (Sub)= O

NAYORD Report 441l

| Test no =1'
P. qa
Test nj odd
even odd
<
o->»M Search TAI
for q
e 8.2 no q
P. q7
Error|3 | Scan Rt.
R /ﬂ\
Test (S)= Py
Pol no
Scan Rt. Resume
Scan of TAI

Obtain number, m,

of initial values.
Compose program to compute
(q+1)(mod m) and store in< q.

36

NAVORD Report Llill

Record: gq Poaiq in TAI

0->Sub

Test (M)=0

0 no

2

0 Compo'se program to

compute q mod (m+2)
P. A1l and store in .

in TAT. o3

=
I Record : gqP ccl

37

Q7.

NAVORD Report Llll

\

double recursion

Test for row or
column index of

row

q col. q

q 8.

Test n178 Store zero in W™
>8|<8 e 8.2
. P.q7
— Cowpose Proixam
to Cmrtd‘e ? wod (Yt‘i-l)
@ amd store im X |,
P. q7 Re.Co-rJ N q Poa ®
m TAL

D

38

NAVORD Report 4hll

Explanatory Notes; g-Schema
1. The following standard cells are used:

Cell Contents

Qr ... Initial address of lower bound of quantifier.
R, -+ Address of Index for the lower bound of quantifier.
Qy +- Initial address of upper bound of quantifier.
Qy -.. Address of index for the upper bound of quantifier.

QM ++. Address of independent index being‘quantified.

39

Q9

NAVORD Report kL4ll

ADDRESSOR

Store Zero

in Ts
y
P, 8c
: Scaﬂ Right
S
Test S for a
no a
Compare: [Test degree
(sc) =(Ps) of a
;é = deg.Z 4| a=gq
Tesi:, Bo f?r Sc-> A, l Sc aScl
Minimization i '
’ Test Setup
no min. | of g
P.2A
yes no

Sc>Sc| |By>E

Replace a Scl-é Sc
e @ ».Kq

L1/
P.1b P.lb

P.]A

Lo

AO-—> Sc

|

Scan Right

|
s =>1Ig

1

Scan left

|

d a-rQ

Test degree
of a

NAVORD Report L4411l

Initialize Boxes
11.1, 11.2, 11.3 by
setting I, as cell
and setting exit as
e 13.

deg. 1

deg. 2

Zero —» Ic

Scan Right

|

§>1I,

P.2A

Scan Computer Table
for r which defines

structure of a

r - St

P.2A

P.3A

NAVORD Report Lhll

Box 11.2

Test I.(I)

for q,nr,cor

address
other q r

Box 11.2
error
alarm |4 la q"{gﬁc)] Test r equation
SRR £ for X or =
Test Setup x | =
of q 4

]Boxl.ld‘

L2

D B

’a r>1(1) | [Scan rignt |
- Enter
e 13 (e 17) r-schema
at e 30.1

e 13

, Test (I,)=0 |

Z 0

P LA UIRI by 'Ic'
and change

exit to e 17

in boxes 11.1, 11.2, 1.3

@

NAVORD Report 4lll -

Test (Qind)= 0

o

P.6A

() -=(a)

i.e. OCaspfa
with deg. 1 tag

o

A" -Sc

Scan right

I.—>(sc)

Test (Ic):=0

=0 |#o

Scan right

0 —>(sc)
i.e. erase
col. index

P.lkA

43

LA

e

A 2> A

i+l i

Test Ao

blank not blank

Test (T)=0 l

e 14

0T

P.1A

Test (Td)=0

=0 [#o0

&
0-9"1'q

P.1b

e 10

P.1A

Sc, —» Sc

, Scan left

e 6.2

P.1Q

NAVORD Report L4hll

#TATI P Sc

5A

Scan Rt. I

Test (S) = (St)

= | #

Scan Rt.

Test (S)=(Ig)

| .

-

Scan Rt.

Test (s)=(1g)

=

Test end of TAI

end no

Test (St)& O

<0

>0

Test (T;) = e5

=

e 17-% T,

["Scan Rt.)
Box
17 S-»I

e 15 [e 39.2

P.kA {r 5)

Ly

Enter r-Schema
at e 37 (P.br)

(e 2.92)

p.b 17

NAVORD Report Lill

Test Qjnq < O

>0

£0

.4

N

Scan TAI for (Q,q)

no q

Error
|o Alarm | | Scan Rt.

Test (S) = Poy

6A

Scan TAI for (I

)

index

no

| Scan Rt.

Test (S)= Pc>3

P no
ol
= | #
Scan Rt.
I ‘ Scan Rt. I
t P.6A
s> Qind
b ->IR
P.6A 0> Q5na
e 15
P.3A

45

Compose program
to compute an
index congruent
to (I,) modulo
(Qind§° Store
in_«¢. Record:

(IR) P°3/£(in
TAI.

NAVORD REPORT 4411 TA

Explanatory Notes; Addressor

1. The following standard cells are used:

Cell Contents

Py ... Cell number of comma after the Computer Table.

Pg ... Cell number of comma after last equation.

A; ... (1 ®0,1,...50) Cell numbers of a-symbols being scanned.
Q@ ... Initial address of an a-symbol.

IR ... Address of row index of an a-symbol.

In ... Address of column index of an a-symbol.

5¢ ... Cell number of upper bound in quantification.

Qind... Index in a recursion.

St ... Index which specifies structure of matrix.

#TAI ... Cell number of first cell before the Table of Addressed
Indexes.

2. The symbol Po3 denotes punctuation.

L6

Comd—

NAVORD Report kLull

r-Schema

Test S for Special Library f

yes no
Special Test for Minimization function |
Library
Subschema
see note 20 p, b1q Ein. = @
| Test (T)=o0 | [Scan Rt. |
0 no
' Test (S)=q
Minimization
Subschema e 32.1) q no
Test setup Test
of q (S) = comma
V no yes yes no
Tl e
e 31
Test (T5)=0 P.r2
< ¢) [e) P.rl P.I1l
NL.
Clear Ry Error (7

(el >P.3A

47

NAVORD Report Lhll

e 31

| Test (S)= integer-valued a |

yes no

]
[Test (S)ma of deg. 1 |

P.rl
yes

no

| Scan Rt. l

| Test (S)maddress |

no

—

Yes

| Test (S)ma of deg. 2 |

no

a8

|)
[Test (5)=r | [Test (T)mo0 |

[Test I('r)-_-o |

P.rl

r

no

0]

no

0 no (e 3}; >
1
| Test (S)mq | P.r3 .rl
\ | Test (S)=address|
S Rt.
/ - yos | Scan
] no .
Test (S
5 e
e 33 Error
| Test (Tg)=0 q no
P.rl
| Do 0] [Test Setup of q|
[Test (Tg)=eb.1 [l Scan leftl
no
1
no l Sc-)Scl I Error |g |
) I Errorli A; > Ajeq P,
I Non-zero-»TqJ E“—L‘J ™3
hi Erase R; 1~ #a— A t)(el0

P.b9 Pe2A

48

Scan Rt.

Do
[oom]

Test (S)=q
q no
Test setup
of q
no yes
Error
i Scan left
P.r2
Scl—>Sc
Ce33)
P.rl

NAVORD Report L4il

o

Compare ((R;)) with (s)
i.e. if same, implicit r equation

#

I Error '

Test rt. side of
r eq. for address,ur

Set exit of
box 3 on p.b5

and box 3.1 on
P.b7 to be e 36

address no
X =2 4| Ry »Riy
Sc¢y->R
1l (]
i.e. #r>R,

e 3.1

P.b5

ko

Record (I.C.)
to left of =

[ﬁscnn rt. to f l

P.rl

NAVORD Report Llll

Set 1=0 in box 37.1 l

S—> ¥y Test 5 for q or Cy|
I\
no Cc
| Add 1to 1 | qorle
Test T 5 I.->W
LTest S for comna] s=° I c 2
e 17 e5
no comma,
Err S left
o ' orzll can left |
[Scan Rt. | > <
[Scan rt.

LTest S for q or ¢;]

no q or ¢3
Ervor
P.rk

50

Test S for qor’dll

q no

Y Test S for

Compare
(S)=(Rq) ¢y comms,

. no = comma no
éﬂu g -7 S¢

s

o~
y

J:]>((s) P.rl

NAVORD Report

Lh1]

r-> S5t Test S for q |
no q
#r—>R, —
Put - dummy
address in Test setup
#(equal sign of r eq.)=»Sc Ie of q
: yes no
Scan rt.
Error2
X q—=>I,
Test S for ¢ l
no f
Set exit of box 17
(p.5A) to ve e 39.2
[Error | Scan rt. |
122] '
e 17 | P.5A
Test S for q
Error][Test setup of q
24 Reset exit of box
no yes 17 to be e 15
Errorzd o a-=>Ig
Ro->6c
Scan rt.

P.r5

Erase p.,a@

P.bl

NAVORD Report Llll r6

Explanatory Notes; r-Schema

1. The following standard cells are used:
Cell Contents
R; ... Cell numbers of r-symbols, (i= 0,1,...,50).
Wy ... These are cells into which the formula for each storage
r-symbol is placed before being programmed. This pre-

serves the original formula for possible later use,
(i= 0,1,...,50).

52

NAVORD Report Lill rec. 1

GO D
Recursion Schema
[o>r | ? [Scen tert |

I n) = Sub | [Test S for quantifier
' Test np=1 | no
el
= l [[Test (<o |
e U5 Test ny= 5 [
no

rec. 2

no 1
| Co
Scan Rt.

AN T Test 5 for=]

| o

no

| 157]| [o>F] no

[Test ny72] o

can Rt.
1o [Bean RE. 7]
Test S for comma
L Scan Rt. L I
no
A [Test S for "=")
[Test 5 for =| Mrm>w |
no | =
= no
Scan lit__-_] > &
@ rec.2
A l Test S for comnma ,
no

Sc-->Pv e 41

23

NAVORD Report u4kll

rec., 2

‘IIHIIII'F—* e hé ' e 42.1
[scan Rt. | [Scan lert | [scan Rt. |
[Test 5 for a | | Test § for = | ['BestSfor-.—.-\
no no % < no
Test degree e 42 @
of a
[Scan lert |
deg. 2 deg, 1 -
Scan Rt.
Scan Rt. \/ (I
| Test s for = |

I Scan Rt. l
] Scan Rt. |

Sc ~»8cl

Obtain q from S
Search Computer Table
for q.

no

l Errorzi l Scan Rt. l

| Na)—>H

no

e h2.3

rec. 3

Test S for
rt. parenthesis

no

Test
(8c)=(p)

rec. 3

no

]

rec. 3

NAVORD Report L4ll

I Bi %Bi

+1 |

"

Record

mark in BO

End Vector Recursion"

-—4

| Scan left |
[Test 5 for = |
= no
B> Bi+1 | | Test s for cjuantifiei,
no
#(=)—=>3, |

rec. 3

Subtract M from
-counter

Obtaind g from

@ -counter. Recorddg
in second cell left
of =. Obtaind,from
I. C. Recorddyrin
first cell left of=.

@ Bi—>3Bj +1

@ rec. 2

Record "Start Vector
Recursion” mark in B

“Scan Rte

(e k2.6)

>
rec. 4

55

NAVORD Report L4411 rec. L

L Test S for a I [Scan left l

no

| Test s for comma |

| Test deg. a |

no

deg. 1 | deg. 2 '
> |

Scan Rt. .
e [Scon fert |

|
] Scan Rt. |
[Test s for, comma I
I Scan Rt. l

no

] Record: q Py;(mf2) in TAI | Test s for=| [By >Bi4 1]

[Sean -] [Fleoma) %, |

e 43.1
[Test S for rt. parenthesis |
1L as
no

| Scan left |
@ Test (sc)= (P) _
| Test s for quantifier |

no
no
D s
e 43.1 - Bo~> Sc|| Test S for
comma

P. b 1.<:E{?§§E)@IHEiE’

rec. 5
NAVORD Report 4411

Test np=2 b
D5 = 3 np =2
Triple Scan left |
recursion)
see TR.| \
Test S for left /
parenthesis
ql —
, Scan left]

1 Test S for quantifier

no

[Scan rt. |

| Test s for a—l

Obtain degree of a | s“nE
deg, 1 deg. 2 S>D
, . i.e. q>D
Scan Rt. Sean Rt. +
' (e b¥5.4)
Scan Rt.
, rec. 6

7

Scan Rt.

NAVORD Report Lil1l

Test S for rt.
parenthesis

e b5.4

By=>Bj+1

Mark in Bg

Record "End Double Recursion”

@ [Scan left

| =

| Test S for = l

no

Test S for Rt. Bracket

rec. 6

Test S for left
parenthesis

no

By 7B

P. bl

(=)>sc;

]—ii" Bj+w1
l

left bracket

l Test S for ‘ [Non-zero—» L | r(

Bi"*Bi-\.l I

no

G2 [o2t]

Scy)-7 B,

Record mark
in B, to indicate
rt. bracket

58

rec. 7

NAVORD Report 4ull

Obtain oc g from -Counter.
Record « g in second cell to
left of equal sign. Obtain
K 4r from I. C. and record in
cell to left of equal sign

| Test (L)=0 |

rec. 7

e 47 Record tag in B,

to indicate (L)=0

rec. 8 i.e. equation is

‘outside square
. brackets

Test m)=9 |

no

Subtract nj +3
from (3-Counter

Obtain q from D
and N (q) from
Computer Table

Subtract N(q) from
(@ -Counter.

29

NAVORD Report LkLll

rec., 8
Record tag in By to
indicate (L)#0
i.e. equation inside
square brackets
Test n1=9
no
Scan left ‘Scan left
Test S for r | Test S for left N
bracket
no
no
, |
] Error Zﬂ i 1
Obtain N(r) from] Scan left
Computer Table
| Test S for quantifier |
Syptract N(r) from
-Counter
no

rec. T

e 48

rec. 9

_ . rec. 9
NAVORD Report 4ull

[scan Rt. |
Test S fora |
a
Test deg. a
deg. 1| deg. 2
Scan Rt.] | Scan Rt. l

rScan Rt.]

l

| Scan Rt.l

l Obtain q and then

N(q) from Computer Table

Subtract N(nl_‘,t) from
B -Counter

e 45.9

rec. 7

61

NAVORD Report L4411 ‘ rec. 10

Explanatory Notes; Recursion Schema

1. The following standard cells are used:
| Cell Contents
P ... Cell number of last comma in a scalar recursion.
Sub ... Subscript of equal sign in recursion equation.
M ... Number of initial values plus one s, or N (q) where q is

recursion index in course-of-values recursion and N(q)
is number of values which q will take on.

62

NAVORD Report h4u411

- Interpreter

Set exit of box “70.1 (I.10)
to be e TO.2. Also set exit
of Branch Schema.

I1l

G

Set exit of box TO.1l to be
e T0.31. Also set exit of
Branch Schema

1

| c->sc

Scan left

Test S for £

I Se=> G]
EE

| Scan left |

1+ (L)->L |

Test S for address

yes no

N !Sl

Scan left \

Test S for a of deg. 1

no

63

| Test s for £ |

£ 1 no

Test S for

P. I 2 = or comma

no

LError 20| 0 =L

P. I2

I2
NAVORD Report LLl1

>

Test S for auxiliary f

no

Obtain degree of f from 1i(f)

deg £->»D |

\/ Compare: (D) and (L)

> (Lr (D)@ , (L)<(p)

Add 1 to
Intermediate Stora;gre Counter IP—’ v |

Int. St. Ctr.—»V |

L Test S for auxiliary f

no

| deg. £>D | P. I3

| O —>Su Aux |

~4

<e66)P. I3
64

NAVORD Report 4k411

I3

0-?D, 0=

pl, 1>N

Obvtain # (=
nynp-» Su

nkna) for f equation and ->Sc.
ux

@

Test (8)=,

c

F‘

1+(pl)>p

Test (S)=comma

P. I3

no

l Max { (D), (DT)}:%D‘]

P. I3

’ Test (Su Aux):O

o Q.

| Scan rt

Test (S)

for rt. parenthesis

s lo]

|
[Test (8) for equal sign | P.I N

no

0>

DL 14+-(N) >~ P. I3

65

NAVORD Report 4ill

IL

/)[Scan Rt.

66

1
Test S for q
|_c->sc |
A yes no
Set K=1 in boxes
66.1, 66.2, 66.3 Test setup l Errorii]
of q
Test (Su Aux)=0
no
0] no
l Errorlg Use index
@ register &g
to set up sequence
Scan rt. of "transfer"
instructions for
Box 66.1 programs for each
_ component of
ro S ?Ok vector.
Test S for a of deg. 1 @
P. Ih
a
Scan rt. | | Test S for address
[Box €6.2 |
~ yes no
S —>
O -(Mk
0— M Errorlq
- J
» |] { Box 66-3
(p) - 1->D
Test (D)=0 |
=0 |#0
Add 1 to k in boxes
66.1’ 66.2,‘ 6603 e %.1
P. I5 P.Ik

NAVORD Report Lhll

>

| G—>sc

[Test 5 for auxiliary f

no aux.

Transfer control

to subschema Li(f)
which composes program-
for f. (See p.I7for
example.)

==

v-> (6)
i.e. replace f by F
or& from Intermediate
Storage Counter

Test (L)=0
#0 0 .,
G -» Sc
P. I9
e 60.1 :
P. 1,1

L-> 1l

of equal sign of
f equation-—»5c

Put equal sign
(= n]_ng) in Wo

e 67

Po Il6

67

I5

16
NAVORD Report Lull

>

| Initialize boxes 67.1,67.2,67.3 by setting K==1

D

[Scan rt. |

LTestSforC 1

no cm
5§—>T; Obtain subscript mn of Cpy, |
| o>T, Omn =T
Mo =Ty
| 67.1 | — _
T —>Wg A Add 1 to K in
boxes 67.1,67.2,67.3
| Test (Tg)=0]
Test S for comma.1
no 9] \
/ Q)
| ‘
To> Wk +1 @ saﬁkl
AN
Add 1 to K in 153
boxes 67.1,67.2,67.3 ﬁ"’&

P.I1
68

e 60.1

NAVORD Report U441l

7

Li(f) for Arithmetic Operations

o>

l Test (05)= [

no

Test (04)=)a l

no

Test (M)=0

0

no

Use (M) as index
register for next
instruction

g

Compose instruction
to insert (0;) into
result register of computer

Test (M‘)uo J

0 no

Use (Ma) as index
register for next
instruction

69

NAVORD Report Lhll

I8

operation code.

Compose instruction using (0y) as
address of operand and proper

Test (V)=0

no

Test (V)=

no

Compose
"gtore"
instruction
using (V) as
address.

\ 4

N

T0

e 65.1 (P.5I)
or e 50 (P. Br2)

NAVORD Report 4411

Test (G)=#W1

ﬁl no

)

Auxiliary Function
Subschema

Test (G)= #W,
no
y
e T0.7T | Scan _]f_f_t_J
P. I12

Test for equal
sign or comma

comma

=nmnp

P. I 15

l

Test njn,=0

no

P. I16

Scan left

e

Test S for d |

d

P. IO

Set exit of box T2
(p. I 13) to be e 70.1

Tl

- P. I10
NAVORD Report 4411

| Test S for r |
r no
Set exit of | Test 5 for v |
box T73.1 to
be e T0.1
b no
@ Sc —>»5¢;] ' Test S for
quantification
P. I 14 symbol
By »By+1
no
#o = By with Special e Th
Minimization Tag Test S for
[comma, P. I 13

CD o
P. bl ‘
Ce T0.1 D Test B, for

phase tag
P. I9
no
Ce T0.b > Test (Tg)=bbr
e 6.1
P. I 12

e 1Tore 5|0 or e6.1

> G

P. I11 Po I 11

P.I L

NAVORD Report ukLll

Compose instruction to sign

Scan rt. to equal

store result in 2,
where /~ is obtained from

ﬁ-counter - Test contents of
second cell to left

: of =for address
) e 70.31

[Test R, for blank address no
no @ 15§
L set exit
| Test (T5)=0 | P. I12 | of box 73.1
Test (Tg)=0 to be :
[99 0 e 70.4
no -
h Test (Ts)=e 6.1 Sc-» Sey
a8 1 e 61
P. 3A e 73.1
Test (Tg)=e 6.1 ' Ry—> Scy ,
0Ty P. I1%#
e 6,1] e17 , Rie1—7Ry
_—1'ﬂ —
Record: (St) (IR) (Ic)(BI) (B etr.)

Seq-> Se
[Decrement,@ Counter by 1 |
Scan left to
fr -1
e 17
P.ql

73

0—>Tg in TAT ~ (e 31

NAVORD Report 4b1l

Cemd—

P. T 12.

Compose "No Operation” St “»sc
instruction to go into #(r equation)-> Sc
storage A
. [Scan left |
Replace equal sign by)
~ Box T0.1 | [Test S for a |
Record (BI) in cells '
to rt. of equal sign
l no
I P. I 12 to be Test for
P. 1 11 e T0.3 comma,
Test B for
‘Stop' sign
no
(eT2)]
yes no
T =
Stop and By — 8¢y P. I 11
indicate
completion
of program

Test B, for Minimization 'l‘ugl

no

Subschema ’
See Miw.i
Scl > Sc

P, bl

Th

NAVORD Report 4hll P. I13

#
Sc —>Se; Obtain subscript of
d symbol
Scan rt. to
Box
equal sign T2 Compose output
instructions called
for by subscript
Test second cell ‘
to left of =sign
for address
no ' e 74-.
Test for

Phase Equation

no ~——
~

[[Erroryd Sc; —> 8¢

| Test s rorocq]

Compose instructions l !rrora
to close loop

controlled by index q |

| Scan left to quantification symbol

75

<i>e]

'NAVORD Report Lbll

‘Se —»8cl

Search TAI for r
with correct dbranch
indication. Obtain

correspondingar

Use X r as address

to set up index register
for the next 'store'
instruction

Search Computer Table
for r and N(r)

N(r)->F

Go—

Ik

E Test (3)=1 }

Subtract
(3)-1 from
Counter

Obtain a4 from

/3 Counter and
compose instruction
to "store in Ag"

Decrement ﬁ-counter
' by 1

scl» sc

Scan Rt.

Test (S) for equal sign

Scl—ysc

é-“d

I. 13

Record &, in second
cell left of equal sign

I. 19

NAVORD Report Lkll 115

oW

4

Scan left]

[_ Test S for comma

no

Test S for
equal sign

| 1+ (W) >R

Obtain o g from second cell left of =

xs+(W)->N

Compose instruction to "store in (W)"

Bi-+1->By

Test B, for mark indicating first equation

no

By 41->B1 [Bo-78¢c
This puts # (Snynp) in Bo

= nyjn,=» Sudb
172 P.bl

P. bl 7

I16

NAVORD Report ulll

Test subscript njno=18

no 18

Record njnp , Branch
y Subschema

J@ee section 3)

Obtaing from second cell
to left of equal sign. Record.

Test no=1

np>1

Double Recursion

Subschema Test ny =5

Gee DRJ)

no

Compose instruction
to "store ingg"

P. I 17

78

Scan left 1

)r Test S for quantification symbol

no

Scan Rt.

Record o(g

AED

P. I 17

I17
NAVORD Report LL1l

Scan TAT fora(q

(equal sign)-= Sc

no
[Scan left |
| Errorsd | Scan Rt. | A
Test S for b
Test (S)=P,,
b
no
, Scan Rt. |
Te 76.11
Scan Rt. |
[Test S for d l
Record &g l no a
Use & q as index e 77.1 Set exit
register for instruction of box T2
"store in(g" P. I18 p. I 13 to
be e T7.1
e 77
P. I 17
P. I 13

79

NAVORD Report L4ll

Bi+1->3B;

I18

Test By for "End Recursion” Mark [

no
B, ->sc # (=) =>sc
ninp -» Sub *] Scan left

e l.1

P. o1l

\

[Test for quantification symbol]

no

[#v>E |

#o > B,

with Special

Minimization
Tag

ED

P. bl

l Scan Rt'

|

Obtain ve(q, to be used as address
part of instruction to close loop
controlled by index, q.

Scan Rt.

LTest S for minimization b

Bi—>Bj+1 Compose instruction

to close g-loop

.

eT78)I 19

LAibst S for = |

no =

NAVORD Report 4ill

Test S for
rt. parenthesis

Ce 190 (e 18

P.

I20

Record njns,

Obtaing g from second cell

left of equal sign.
Obtain X g-

Compose instruetion
to place (&Xg) in result
register using as

index register, o q.

| Scan left |

[Test § for r]

xr no

D

I19

Non-zero—=> X Test S for 4
da no
Set exit of P. I 1k
to be e 78.1
Set exit of box 72
(P. I 13) to be
e 78.1
e 73
Pl
I1k 81
e T2

P. I 20

P. I13

Test S for comma l

no

P. I

|
| Test (Xx)=0 |

19 no

<

| 18 |

NAVORD Report 4k411

(Tex

tn= 1.3
'J'«] o

I20

Compose "No Op"
instruction and
place it in N

[o=>x |

-
Set exit of box UR

Scan left

Test S for _—:J

——
—

|

(P. I 14) to be
e 78.2
LTest nj= 2 Replace “=" I
by XN
Sc —»Scl
= 2
Place (BI)
Bi+1—>Bi Scan Rt. @ in two cells
to rt. of =
P. I 1k
@ Test S for = e
[j e 79.1
P. T 10
= | no
Test S for quantification
™ symbol
P. I 19
no
Bi+1->By @
——
e 70.2
P. I10

1. The following

Cell
G ® e 8 e o0

L LI SR B)

D ...
Li(f) ...
V eeecees
Su Aux ..

- A

Ok eveeee

NAVORD Report 441l I21

Explanatory Notes; Interpreter

standard cells are used:
Contents
Cell number of function being programmed.

Number of operands between function being programmed and
next function to the left.

Degree of function.
Directions for library subroutine for f.
Address in which result is to be stored.

Subscript of equal sign of f-equation.

Formula for auxiliary function is placed in these cells
for translation. This preserves the original formula.

Address of operand to replace cy in formula for auxiliary
function, (k=0,1,...,99)

Address of index associated with operand in Ok,
(k=0,1,...,99)-

83

Error Number

1

~ o o\

10
11
12
13
14

16
17

18

19
20

21

NAVORD Report 4ull Er. 1

List of Error Indications Given by Encoder

Nbaning

Improper symbol on left side of a b-equation.

A non-recursive implicit definition of a b-symbol.
Improper index used with a b-symbol.

Improper column index used with a b-symbol.
Improper operand in a b-equation.

Improper indexing of b-symbol defined by vector recursion.
Improper index used with lower bound of quantifier.
Order of quantifications incorrect.

Improper upper bound in minimization.

Improper bound in a quantification.

Improper index for upper bound in minimization.
Independent index quantified more than once.
Improper quantification in a recursion.

Improper indexing of some variable.

Order of quantifications is incorrect (i.e. an index, q,
is called for before it has been quantified).

Improper quantification in & recursion.

An r used as a quantifier bound involves some q which has
not yet been quantified.

An independent variable in some r-equation has as index a
g-symbol which has not yet been quantified.

Improper operand in r-equation defining a storage r-symbol.
Improper operand in some r-equation.

Incorrect format of storage r-equation.

84

NAVORD Report 441l - Er. 2

Error Number Meaning
22 Right side of storage r-equation does not begin with an
f-symbol.
23 Independent index in storage r-equation is not properly
quantified.
24 Recursion index for course-of-values recursion is not listed

in Computer Table.

25 No storage r in course-of-values double recursion.

26 Right side of equation is not well-formed formula. (i.e.
incorrect number of operands for some function.)

27 Auxiliary vector function not indexed.

28 Index of auxiliary vector function improperly quantified.

29 Improper operand used with auxiliary vector function.

30 Error in operation of Encoder.

85

NAVORD Report Llll Min 1

Minimization Subschema

We recall that the minimization function can occur in two contexts: (1)
to define an index of a variable in a "table look-up” type of operation; (2)
to define an index as the bound in a quantification.

let us consider the first instance. Suppose that the indexed variable,
a;r1, appears in the formulation and that ry is defined by the equation,

This means that ry is the minimum value of o less than or equal to 25 and
such that b3 £ 0, where b3 is defined by a b-equation.

The indexed variable, ajry, is not processed in the normal operation of
the Addressor. When rj is discovered by the b-schema (see p. b9, e 2.1), the
initial address for the variable a; is obtained and placed in Q, and a non-
zero quantity is placed in T. The Addressor then attempts to operate on
ajry; and is led into the r-Schema at e€30. The r-Schema proceeds as usual
except that now when it encounters the Minimization equation, it transfers
control to the Minimization Subschema.

The Minimization Subschema obtains the independent index, do, and its
upper bound, 25, from the minimization equation. It sets up an index
register for with zero as the lower bound. It then stores a non-zero
quantity in thé register, Min. It records #b, in Sc, places b3 in S, and
transfers control to e3 of the b-Schema. Sinde (Min)# 0, the b-Schema
records #b3 in By together with a special minimization tag. After resetting
all A; and R; registers and putting zero in T, control passes to the begin-
ning of the Addressor as after a quantification.

The Addressor processes all a's which have do as an index. However, the
Addressor does not transfer back to e5 as after a quantification. Instead,
it tests By for a minimization tag, finds one, and transfers control to el of
the b-Schema. This causes b3 to be programmed.

After b, is programmed and assigned a storage address, ab,, the Inter-
preter tests Bp for a minimization tag. The presence of the tag causes
control to go to "Minimization End-Procedure", which is a subschema which
completes the program for r] by composing instructions to test by € O and to
close the loop corresponding to dp. The final value of gp which will be
computed in this loop is the value for r;. It will be stored in a dp. The
right side of the ry equation is erased and ado is recorded in its place.
The Interpreter then transfers (Bj +1) to Bj, puts the cell number of the

equal sign of the equation containing a)ry into Sc and control passes to e2
of the b-Schema.

If r1 occurs as the bound of an independent index, q; say, in a quanti-
fication, this is detected in the g-Schema (p. q3). The g-Schema replaces
r; by b3 in the quantification. Later, the Interpreter encounters b3 (p.I 18)

86

NAVORD Report 4hll Min 2

and causes it to be programmed. Then the End-Procedure composes the instruc-
tions for closing the g;-loop, using (b3 and the upper bound. Finally,
putting (Bf +31) into By, control passes to e78 (p. I 19).

The final value of q; is the- value for r;. Since it is stored in aaqy,
the right side of the r, equation is erased and @q; is recorded in its place.
Thus, to call for the final value of bpq; say, the formulator would write
bpry. The Addressor would replace by by its initial address, ab,, and rj
by aaqy to be used as an index register by the Computer.

87

NAVORD Report 441l V.s. 1

Vector Schema

On page bl, if the subscript of an equal sign is found, to be 09, control:
is sent to the Vector Schema. 1In lieu of flow charts, the following verbal
description of the Vector Schema is given.

It will be recalled from NAVORD 4209 (p. 17), that a vector equation is
a set of consecutive b-equations of the form, :

(}"=09 ¢o ’

= 09 ¢1 P)

=09dn:)

where y denotes the dependent variable which represents the vector and ¢1
denotes the b-term which defines the component y(i), i= 0,1,...,n. The first
reference to y, causes all components to be programmed by the Vector Schema
(v.s.).

V.S. scans to to the left parenthesis. It then scans right for equal
signs and records a storage address,(xs, (obtained from the 5-counter) in
the second cell to the left of each equal sign. This insures that the com-
ponents will be stored in consecutive storages. When the right parenthesis
is reached, V.S. scans left for equal signs. This time, as each equal sign
is encountered, the operation "Bj —#B; ; 1" takes place and the cell number
of the equal sign is recorded in Bo. The eell number of the last equation is
recorded with an "End Vector" mark.

Control is returned to el.l of the b-Schema, which then causes the com-
ponents y(0),..., y(n) to be programmed in that order. The Interpreter
(p. I 16) will detect the subscript 09 and send control to an end-procedure
which causes By + 1=?B; after each component is programmed and stored.

Since the formula for a component can refer to prior components, this is
tested for on page blO. The index indicates which component is required and
the address is obtained from the corresponding equation.

The above procedure should not be confused with the treatment of vector
auxiliary equations (see NAVORD 4209, p. 17). These equations are processed
by the Interpreter (see ebh, p. I3) which composes the necessary transfer
instructions which will direct the computer to the programs for each compon-
ent of the vector. On p. I9, after each component is programmed, control
goes to the Auxiliary Function Subschema. This subschema tests for a vector
auxiliary function by examining the subseript of the egual sign as recorded in
Wo (page I5). If the subscript is 09, this indicates a vector auxiliary

88

NAVORD Report 4kll V.s. 2

function is being programmed. By testing register N (p. I3), the subschema
determines which component of the vector is being programmed. An appropriate
"transfer" instruction is composed to permit the Computer to jump to the
program for this component when called for. (N) is then reduced by 1 and

the equation for the next component is located. Control is returned to eb7
(16) and the next component is programmed.

NAVORD Report 4sll D.R. 1

Double Recursion Subschema

On page I 16, there is an exit to the Double Recursion Subschema. This
subschems is not charted and will be explained briefly in the following para-
graphs.

The subschema performs what might be called the end-procedure of the
programming of an equation in a double recursion. As in the end-procedure
for a vector recursion, this involves the composition of storing instructions,
output instructions and instructions for closing loops corresponding to the
row index and column index.

The information which controls this end-procedure is obtained from the
equation itself and from the B; registers. On pages rec. 5 through rec. 9,
certain control information is placed in the Bi registers in preparation for
the end-procedure. Thus, for example, the Interpreter can tell from the
contents of Bp whether this particular equation is within the square brackets
(see NAVORD 4209 for double recursion format). By moving(Bi*.l)to B;, it
controls the sequence of programming. By testing for the 'End Recursion'
mark in By, it can tell when to close the outside loop and complete the re-
cursion program.

90

NAVORD Report 4hll T.R. 1

Triple Recursion Subschema

The format of a triple recursion is given in NAVORD 4209. The subschema
for translating a triple recursion will not be charted since the main ideas
are the same as those in vector recursion and double recursion. Thus, on
page blk, when control is sent to this subschema, there is a scanning for the
brackets and parentheses which set off the equations controlled by the three
quantifiers. The B; registers must be loaded with the necessary control in-
formation and storage addresses must be allotted for the results.

91

NAVORD Report Lk4ll

APPENDIX

One of the demands frequently made of an automatic programming system is
that it be possible to write library programs in the language of the system.
In a system like ADES, in which the formulator need know almost nothing about
the machine operations, this would mean that anyone familiar with the ADES
language could write library programs quite independently of the Computer.

A rather novel technique has been invented to make this possible in the
ADES system. It introduces an entirely new idea in the handling of library
subroutines, and we shall outline it briefly in this appendix.

It will be recalled that those functions in an ADES formulation which are
not defined by f-equations are assumed to be in the "library™; i.e. it is
assumed that the Encoder "understands" which machine instructions should be
composed to carry out the function evaluation.

For the simple library functions like "add", "multiply", etc., the En-
coder merely uses the basic machine instructions. For a function like "cosine"
or "logarithm", it is assumed that a subroutine has previously been prepared
and stored on a library tape. The Encoder searches the library tape, iden-
tifies the subroutine and compiles it into the program as a closed subroutine.
We shall continue to assume the existence of a tape of library subroutines
for the elementary functions (trigonometric, hyperbolic, square root, etc.).
These subroutines are programs in machine language. Therefore, they should
be coded by a programmer who is an expert with the particular computer being
used. This is as it should be since these subroutines are used most fre-
quently and should be extremely efficient.

Now, for other mathematical functions which are more complicated and less
frequently used (e.g. numerical procedures for solving differential equations),
we propose another method. These functions should be regarded not as library
subroutines in machine language, but as "library formulations" in ADES language.
Thus, the Encoder should have access to a second library tape on which are
stored those formulations which are expected to recur occasionally. Such a
system could operate as follows:

First, the ADES alphabet must be extended to include the "library in-
dependent variables" x3, Xp, ... , the "library dependent variables"
Y15 Y25 -+ , the "library independent indexes" iy, ip, ... , the "library
dependent indexes" Jl’ Jos +++ , and the "arbitrary function symbols"
81> Bps cor o

A library formulation must be written in ADES language as explained in
NAVORD Report 4209 except that the variables are x's and y's, the indexes are
i's and j's and the arbitrary functions are g's. A library formulation is
identified simply by a subseripted f, that is, it is just another function.

Assume that a library formulation has been stored on the formulation tape
together with its identifying function symbol; e.g. f86’ To use this library

NAVORD Report Lill

formulation in a problem, the formulator would write the identifying function,
f86’ followed by the parameters on which the function depends. These param-
eters can be independent or dependent variables, indexes,and other functions;
i.e. a's, b's, gq's, r's and f's. The parameters must be written in some
conventional order. For example, we might agree to write first those a's and
b's to be used as input, then the f's which are to be substituted for the
arbitrary functions, and finally the b's which are to be assigned to the
computed results. Thus, if fgr is a formulation which operates on two in-
dependent variables and one dependent variable and if there is one arbitrary
function involved, the formulator might write

bs = f86 8.3 37 b2 fsl,

as one of the equations in his formulation. The Encoder would operate on
fgg as follows:

Before any part of the formulation is translated, a new schema called the
Assembly Schema would scan the equations for library functions. On finding
fgg, the tape containing the library formulations would be scanned for "f 6
The formulation which follows "fgg" on the tape should contain three independ-
ent variables denoted by x;, X5, and x,, and one arbitrary function denoted

by g1- The final result in the library formulation should be denoted by y;.

The Assembly Schema would copy the library formulation from the tape and
gppend it to the main formulation, substituting az, ag and b2 for the argu-
ments x;, Xp, and X3 respectively and substituting f51 for g;- The dependent
variable, y;, would be replaced by‘bs. Any other y's would be replaced by
b's with subscripts which did not conflict with others in the main formula-
tion. This permits the formulator to call for the result as b5 in other
parts of his formulation.

If a library formulation computes more than one final result, the follow-
ing equation might be written:

This would call for library formulation f93, in which there are four input
variables, x;, xp, X3, and x) to be replaced by aj, a), ag and bg respectively;
there are two arbitrary functions, g1 and gp, to be replaced by 61 and fog
respectively; and there are three final results, Y1, Y2, &nd ¥3 to be repiaced
by bS’ bg, and b, respectively. (of course, the significance of Y1, Yo and

y3 must be indicated in a catalog of library formulations so that any formu-
lator will know how to distinguish them.)

It should be understood that an arbitrary function in a library formula-
tion is always to be replaced by an auxiliary function, that is, by an f
which is defined by an f-equation in the main formulation. All other functions
in a library formulation are denoted by f'se 1In particular, one library
formulation may contain an f which refers to another library formulation. 1In
that event, the Assembly Schema would have to scan the copy of the library
formulation. It would then operate as before to copy the second library

2

NAVORD Report ulll

formulation. This has the effect that each library formulation becomes an
open subroutine when finally translated by the Encoder into a computer pro-
gram.

The use of arbitrary functions in a library formulation allows the form-
ulation to be completely general. In fact, this is the usual way of describ-
ing a general mathematical procedure. It will be found that library formu-
lations for most of the standard numerical methods can be written merely by
copying the formulas from some textbook (subject always to the rules and
syntax of ADES of course). The syntax of the f-equations in the ADES lan-
guage should be broadened somewhat to allow for branching and referrals to
other f-equations. ‘

Output specifications for printing, punching, etc. of results computed
by library formulations would have to be given in separate equations. This
leads to the suggestion that the ADES language be modified somewhat so that
a general output table can be given for all results, rather than have the
output specified for each equation.

Besides making it possible for "anybody" to write library subroutines,
the ideas outlined above have other advantages. (1) The problem of cross-
referencing subroutines is eliminated. (2) Since the information in formu-
lation form is exceedingly compact, the amount of tape needed for library
formulations will be much less than would be required by the machine
program. (3) The assembly process is quite simple.

No. of

Aeroballistic Research Department
External Distribution List for Applied Mathematics (X3)

Copies

[P -

Chief, Bureau of Ordnance
Department of the Navy
Washington 25, D. C.

Attn: Ad3
Attn: Ad6
Attn: Ree
Attn: Re9a

Chi.ef, BuAer
Washington 25, D, C.
Attn: TD-414

Commander, U, S. NOTS

Inyokern, China Lake, Calif.
Attn: Technical Library
Attn: Code 503

Commander, NAMTC
Point Mugu, California
Attn: Technical Library

Superintendent
U. S. Naval Postgraduate School
Monterey, California

Attn: Tech Rpts Section

Director, NRL
Washington 25, D. C.
Attn: Code 2021

Officer in Charge, NPG
Dahlgren, Virginia
Attn: Technical Library

Office, Chief of Ordnance
Washington 25, D, C.
Attn: ORDTU

Chiet, AFSWP
Washington 25, D, C.
Attn: Document Library Br.

Commander, WADC
Wright-Patterson AF Base
Ohio

Attn: WCORC

No. of
Copies

Pt

i

Commanding General
Aberdeen Proving Ground, Md.
Attn: Tech Info Br.
Attn: Director, BRL

Commanding General
Redstone Arsenal
Huntsville, Alabama

Attn: Aero. Lab, GMDD

ASTIA

Document Service Center
Knott Building

Dayton 2, Ohio

NACA

High Speed Flight Station

Box 273

Edwards AF Base, Calif.
Attn: Mr, W. C, Williams

NACA
Ames Aeronautical Laboratory
Moffett Field, California

Attn: Librarian

NACA
Langley Aeronautical Laboratory
Langley Field, Virginia

Attn: Librarian

Attn: Adolf Busemann

Attn: John Stack

NACA
Lewis Flight Propulsion Lab.
21000 Brookpark Rd.
Cleveland 11, Ohio

Attn: Librarian

NACA
1512 H Street, N. W.
Washington 25, D. C.

Commanding Officer, DOF L
Washington 25, D, C.
Attn: Lib., Rm 211, Bldg. 92

No. of

Copies

Office of Naval Research
Room 2709, T -3 Building
Washington 25, D. C,

Attn: Head, Mechanics Br,

Director of Intelligence

Headquarters, USAF

Washington 25, D, C.
Attn: AOIN-3B

Director, DTMB
Aerodynamics Laboratory
Washington 7, D. C,

Attn: Library

University of California

Berkeley 4, California
Attn: Dr. S, A. Schaaf
Via: ONR

The University of Texas

P. O. Box 8029

Austin 12, Texas
Attn: Defense Research Lab.
Via: ONR

Applied Math and Statistics Lab.
Stanford University
Stanford, California

Via: InsMat

University of Michigan
Willow Run Research Center
Willow Run Airport
Ypsilanti, Michigan

Attn: Librarian

Via: ONR

APL/JHU

8621 Georgia Ave.

Silver Spring, Maryland
Attn: Technical Rpts Group
Via: InsOrd

The Ohio State University
Research Foundation
Nineteenth Avenue
Columbus 10, Ohio
Attn: Security Officer
Via: ONR

No. of

Copies

CIT

Pasadena 4, California
Attn: Aeronautics Dept.
Attn: Jet Propulsion Lab,
Via: ONR

University of Minnesota
Minneapolis 14, Minn,
Attn: Mechanical Eng. Dept.
Via: ONR

RAND Corp.

1700 Main St,

Santa Monica, California
Attn: Lib., USAF Project RAND
Via: InsMat

Douglas Aircraft Co., Inc.

Santa Monica Division

3000 Ocean Park Blvd.

Santa Monica, California
Attn: Chief Engineer
Via: InsMat

CONVAIR Corp.
A Div, of Gen, Dynamics Corp.
Daingerfield, Texas

Via: InsMat

United Aircraft Corporatiaon

400 Main Street

East Hartford 8, Connecticut
Attn: Chief Librarian
Via: InsMat

Guggenheim Aeronautical Lab,
California Inst. of Technology
Pasadena 4, California
Attn: Aeronautics Library
Via: ONR

Cornell Aeronautical Lab., Inc.
P. O. Box 235, 4455 Genessee St.
Buffalo 21, New York

Attn: Librarian

Via: InsMat

No. of
Copies

Lewis Flight Propulsion Lab,
21000 Brookpark Road
Cleveland 11, Ohio
1 Attn: Chief, Supersonic
Propulsion Div,
Via: InsMat

Hughes Aircraft Corp.
Culver City, California
1 Attn: Assistant Director
GMRD Division
Via: InsMat

1 McDonnell Aircraft Corp.
P, O. Box 516
St. Louis 3, Missouri
Via: InsMat

General Electric Company
2900 Campbell Avenue
Schenectady 5, New York
1 Attn: Library
Guided Missiles Dept.
Via: InsMat

Eastman Kodak Company
Navy Ordnance Division
50 West Main Street
Rochester 14, New York
2 Attn: Mr, W, B, Forman
Via: InsOrd

1 The Avco Manufacturing Corporation
Research Labs.,
2385 Revere Beach Parkway
Everett 49, Massachusetts
Via: InsMat

No. of
Copies

1

Aeroballistic Research Department
External Distribution List for Applied Mathematics (X3a)

No. of

Chief, Fluid Mechanics Section
National Bureau of Standards
Washington 25, D. C,

National Bureal of Standards
Washington 25, D. C.
Attn: Applied Math Div,

Commanding Officer

Office of Naval Research Br, Off,
Box 39, Navy 100

Fleet Post Office

New York, New York

Langley Aeronautical Laboratory
Langley Field, Virginia
Attn: Theoretical Aerodynam,
Division

Naval Research Laboratory
Washington 25, D. C,
Attn: Dr., H., M, Trent
Code 6230

Case Institute of Technology
Cleveland 6, Ohio
Attn: G. Kuerti

Massachusetts Institute of Tech.
Cambridge 39, Mass,
Attn: Prof, Joseph Kaye
Room 1-212

The Johns Hopkins University
Charles and 34th Streets
Baltimore 18, Maryland

Attn: Dr. Francis H. Clauser

Director

Inst. for Fluid Dynamics and
Applied Mathematics

University of Maryland

College Park, Maryland

Cornell University
Graduate School of Aero. Eng.
Ithaca, New York

Attn: Prof. W, R, Sears

Copies

1 AERCON, INC,
560 Punahou St.
Altadena, California

University of Michigan
Randall Laboratory
Ann Arbor, Michigan

1 Attn: Prof., Otto Laporte

Brown University
Providence 12, Rhode Island
1 Attn: Prof., William Prager

University of Michigan
Engineering Research Institute
Ann Arbor, Michigan
1 Attn: Mr, H. E. Stubbs
Research Associate

No. of
Cogies

1 Oak Ridge National Laboratory

Oak Ridge, Tennessee
Attn: Dr. A. S. Householder

1 University of Michigan
Engineering Research Institute
Willow Run Airport
Ypsilanti, Michigan

Attn: Mr. C. €. Elgot

1 los Alamos Scientific Laboratory

Los Alamos, New Mexico
Attn: Dr. S. M. Ulam

1 University of Wisconsin
Madison 6, Wisconsin
Attn: Dr. S. C. Kleene

1 National Bureau of Standards
Washington 25, D. C.
Attn: Dr. H. Antosiewicz

1l National Bureau of Standards
Washington 25, D. C.
Attn: Dr. F. L. Alt

1 Pennsylvania State College
State College, Pa.
Attn: Dr. H. B. Curry

1 Electronic Computer Project
Institute for Advanced Study
Princeton, N. J.

Attn: Dr. H. H. Goldstine

1 Applied Mathematics Laboratory

David Taylor Model Basin
Washington 7, D. C.
Attn: Dr. H. Polachek

1 University of California
Berkeley 4, California
Attn: Dr. D. H. Lehmer

1 Raytheon Company
Waltham 54, Mass.
Attn: Dr. R. F. Clippinger

No. of
COEies

1

Division of Computing Services
Institute of Math. Sciences
New York University
New York 3, New York

Attn: Dr. E, Bromberg

Westinghouse Electric Corp.
Pittsburgh 30, Pa.
Attn: Dr. C. W. Adams

Digital Computer Lsboratory
Massachusetts Institute of
Technology
Cambridge 39, Mass.
Attn: Dr. Jay Forrester

Sperry Rand Corporation
Philadelphia, Pa.
Attn: Dr. Grace Hopper

University of Pennsylvania
Philadelphia, Pa.
Attn: Dr. S. Gorn

Data Processing Department
Computing Devices of Canada
P. 0. Box 508
Ottawa 4, Ontario

Attn: Mrs. M. Larmour

Applied Mathematics
University of Illinois
Graduate College
168 Engineering Research Laboratory
Urbana, Illinois
Attn: Mr. J. P. Nash

University of Michigan
Engineering Research Institute
Willow Run Airport
Ypsilanti, Michigan

Attn: Mr. John W. Carr III

University of Michigan
Engineering Research Institute
Willow Run Airport
Ypsilanti, Michigan

Attn: Mr. J. B. Wright

No.

Copies

1

Logistics Branch
Office of Naval Research

Washington, D. C.

Attn: Dr. M. E. Rose

Melpar, Inc.
3000 Arlington Boulevard
Falls Church, Va.

Mr. Aaron Halperin

United Merchants & Manufacturers
1407 Broadway
New York 18, New York

Attn: Mr. S. Greshin

Computer Services
Lockheed Aircraft Corp.
Missile Systems Division
Van Nuys, California

Mr. W. W. Leutert

Remington-Rand
Eckert-Mauchly Division
1900 West Allegheny Ave.,
Philadelphia 29, Pennsylvania
Attn: Mr. Charles Kats
Box 5616, Room 7Ol

Naval Research Laboratory

Code 6232

Washington 25, D. C.
Attn: Dr. Ben Lepson

I.B.M.

590 Madison Avenue

New York 22, New York
Attn: Mr. Harlan Herrick

Bell Telephone Laboratories
Murray Hill, New Jersey
Attn: Dr. R. W. Hamming

Mathematical Analysis Department
Lockheed Aircraft Corp.
Burbank, California

Attn: Mr. Harvey Bratman

No.

of

Copies

1

Vallecitos Atomic Laboratory
General Electric Co.
1763 Seuth First St.,
San Jose, California
Attn: Mr. R. H. Stark

Northrop Aircraft
2417 N. 165th St.,
Gardena, California
Attn: Mr. Seymour Ginsburg

Computing Operation
Bldg. 305 FPLD
General Electric AGT
Cincinnati 15, Ohio
Attn: Mr. Donald J. Hahn

Plant II
Physical Research Staff
Boeing Airplane Co.,
Seattle, Washington

Attn: Miss Mandalay Grems

Department of Mathematics

Darmouth College

Hanover, New Hampshire
Attn: Prof. John McCarthy

The Rand Corporation

1452 Fourth St.,

Santa Monica, California
Attn: Mr. Harry A. Pappo

Computing Center

Ramo-Wooldridge Corp.

5730 Arbor Vitae St.,

Los Angeles 45, Calif.
Attn: Dr. Walter F. Bauer

Mathematics Division

Stanford Research Institute

Menlo Park, California
Attn: Dr. George Evans

No. of

Coples

1

Methods Division
The Prudential Insurance Co. of
America
Newark 1, New Jersey
Attn: Mr. J. E. Coachman

Director

National Security Agency

3801 Nebraska Ave., N. W.

Washington 16, D. C.
Attn: LIB Acquisitions

Electronic Data Processing Dev.
General Electric Company
One River Road
Schenectady 5, New York
Attn: Mr. J. W. Pontius

Air Force Cambridge Research
Center

L. G. Hanscom Field

Bedford, Massachusetts

Attn: Mr. Bert F. Krauss, CRRI

Computer Control Co.,

10966 LeConte St..,

W. Los Angeles, California
Attn: Mr. Frank Stockmal

The Equitable Life Assurance
Society
393 Seventh Avenue
New York 1, New York
Attn: Mr. Walter L. DeVries
Metropoliten Life Insurance Co.
One Madison Avenue
New York 10, New York
Attn: Mr. Robert D. Acker

Digital Computer Laboratory

Convair

San Diego 12, California
Attn: Mr. Ben Ferber

No. of
Cogies

1

Computer Techniques Development
Investigations Section
AGT Development Department
Building 300
General Electric Co.,
Cincinnati, 15, Ohio

Attn: Mr. D. L. Shell

New York University

College of Engineering

University Heights

New York 53, NewYork
Attn: Mr. Emanuel Mehr

Burroughs Corp. Research Center
Paoli, Pennsylvania
Attn: Mr. Jos. Deutsch

Programming and Operation Research
Hughes Aircraft Co.,
Culver City, California

Attn: Mr. Leon Gainen

Systems Analysis Dept.,
Remington Rand
Engineering Research Associates
Division
1902 West Minnehasha Avenue
St. Paul Wk, Minnesota
Attn: Mr. B. F. Cheydleur

American-Standard Atomic Energy
Division
1682 Broadway
Redwood City, California
Attn: Mr. Edward J. Leshan

General Kinetices Inc.

555 - 23rd St., South

Arlington 2, Virginia
Attn: Mr. A. E. Roberts

Carnegie Institute of Technology

Schenley Park

Pittsburgh 13, Pennsylvania
Attn: Prof. A. J. Perlis

No.

of

Copies

1

Computational Services Section

Babcock & Wilcox

1201 Kemper St.,

Lynchburg, Virginia
-Attn: Mr. R. F. Reiss

Computing Center

Ramo-Wooldridge Corp.

5730 Arbor Vitae St.,

Los Angeles 45, Calif.
Attn: Mr. Robert Perkins

1.B.M.
590 Madison Avenue
New York 22, New York
Attn: Mr. J. C. McPherson

I.B.M.
1111 Connecticut Ave. N. W.
Washington 6, D. C.

Attn: Mr. T. Horton

Servomechanisms Inc.

23821 Madison St.,

Torrance, California
Attn: Mr. Neil Block

Computing Center

Ramo-Wooldridge Corp.

5730 Arbvor Vitae 5t.,

Los Angeles 45, Califdrnia
Attn: Dr. E. K. Blum

Computing Center

Ramo-Wooldridge Corp.

5730 Arbor Vitae St.,

Los Angeles 45, California
Attn: Dr. David Young

National Bureau of Standards
Room 108A
West Building
Washington 25, D. C.
Attn: Mr. Max Klein

of
Cogies

Michelson Laboratory

Code 507

China Lake, California
Attng Mr. H. Hauer

Mechanical Engineering Dept.
Columbia University
Broadway & 16th St.,
New York, New York

Attn: Prof. J. H. Weiner

Mathematics Dept.

Pennsylvania State College

State College, Pennsylvania
Attn: Prof. George Raney

	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	A-01
	A-02
	A-03
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08

