
Systems Reference Library 

IBM 7040/7044 OUIKTRAN 

User's Guide 

This publication provides the information necessary to use the 
IBM 7040/7044 QUIKTRAN System. It contains a description of the 
system, which provides concurrent access to a computer for users 
at up to 40 remotely located terminals. Also included are the ele
ments of the QUIKTRAN language, a programming language that is 
similar to the FORTRAN language. 

There are two methods of using the QUIKTRAN System: "conver
sational processing" and "batch processing," both of which are 
described in detail. 

File No. 7040-25 
Form C28-6800-2 



Preface 

This publication has been written for those users who 
have a basic knowledge of FORTRAN programming. It 
is assumed that the reader is familiar with the publica
tion General Information Manual; FORTRAN, Form 
F28-8074. 

MAJOR REVISION (August 1965) 
This edition, C28-6800-2, makes obsolete the previous edition 
C28-6800-l, which was titled IBM 704017044 QUIKTRAN 
Users Guide. 

For detailed information about terminal equipment 
the user can refer to the publication Sysiem Operation 
Reference Manual, IBM 1050 Data Communication 
System, Form A24-3020. 

Copies of this and other IBM publications can be obtained through IBM Branch Offices: 
Address comments concerning the contents of this publication to: IBM Corporation, Programming Systems Publications, Dept. 039, 
1271 Avenue of the Americas, New York, N. Y. 10020 

© 1965 by International Business Machines Corporation 



General Information 
Introduction to the QUIKTRAN System 
The Approach .................................... . 
System Concepts ........................... . 
Computer and Terminals ....... . 
Conversational Processing .......... . 

Program Mode ............................... . 
Command Mode . . . . . . . . . . ........ . 

Batch Processing ....................... . 
Source Language Debugging . . . . ........ . 
Diagnostic Structures ........................ . 

Syntactic Errors . . . . . . . . . . . . . . . . . . . . 
Semantic Errors 

Value Manipulation 
Debugging Statements 

Equipment ........ . 
Computing Center Equipment 
Terminal Equipment . . . . . . . ........ . 
Description of the IBM 1052 Printer-Keyboard ...... . 
Initial Setup of the Terminal .. 
Terminal-Computer Connection 
Terminal Operating Procedures ........... . 
Procedures for Keyboard Input 

Keyboard Time-Out 
Procedures for Card Input 
Inserting More Printer Paper. 
Auxiliary Output Devices 
End of Terminal Operation .... 

Basic Information for QUIKTRAN Programming .. 
Statement Entry Format ........................... . 

Print Positions 1 Through 5 ............ . 
Print Position 6 .... 
Print Positions 7 Through 11 
Print Position 12 
Columns 1 Through 120 

Statement Continuation ...... . 
Keyboard or Card Input ... . 
Keyboard Input only 

Input Cancellation . . . . . . ....... . 
Single-Line Cancellation ............ . 
Continuation-Line Statement Cancellation 
Comment Codes 

Comment Code Cb 
Comment Code CV 
Comment Code CF 

Execution . . . . . . ....... . 
Command Mode Execution .......... . 
Program Mode Execution 

Process Codes . . . . . . . . . . 
Interrupting Execution 
System Replies 
Status Indicators 
Status Words 

Status Word READY 
Status Word RJECT 
Status Word ERROR ........... . 
Status Word CANCL 
Status Word OVFLO 
Status Word NOTE 

Language . . . . . . 
Elements of the Language 
Constants ........ . 

Integer Constants 

5 
5 
5 
6 
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 
8 

9 
9 
9 
9 

10 
11 
11 
12 
12 
12 
13 
13 
13 

14 
14 
14 
14 
14 
14 
14 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
16 
16 
16 
16 
17 
17 
17 
17 
17 
17 
17 
18 
18 
18 

19 
19 
19 
19 

Contents 

Real Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Variables ........................................ . 

Integer Variables ............................... . 
Real Variables .................................. . 

Subscripts ....................................... . 
Form of Subscripts .............................. . 
Subscripted Variables . . . . . ........ . 

Arithmetic Expressions ............................ . 
C~?ceJ?,t of '.'Set,, and "Used" Variables . . . . . . . . . . . . . . . 

Set Variables . . . ........................... . 
"Used" Variables . . . . . . . . . . . . . . . . . . . . . . . . . .. 

Program Statements ............................... . 
Program Defining Statements . . . . . . . . . ......... . 

Main Programs ........................ . 
PROGRAM Statement ........ . 
END Statement .............................. . 

Subprograms ................................... . 
FUNCTION Statement ........................ . 

Rules for Calling Function Subprograms ......... . 
SUBROUTINE Statement 

Rules for Calling Subrouti~·e· S~b~~~i;~~~ : : : : : : : : 
Return from a Function or Subroutine Subprogram .. 

Reserved Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Library Functions . . . .......... . 
Built-in Functions . . . .................... . 

Declarative Statements ..................... . 
Storage-Allocating Declarative Statements .......... . 

DIMENSION Statement ....................... . 
COMMON Statement .......................... . 
EQUIV ALEN CE Statement .................... . 

Type-Defining Declarative Statements .. . 
INTEGER Statement 
REAL Statement . . . . . . . ............... . 
EXTERNAL Statement .......... . 

Executable Statements ......................... . 
Arithmetic Assignment Statement. . . . . . . ...... . 

Control Statements .. . 
Unconditional GO TO Statement ................. . 
Computed GO TO Statement .................... . 
IF Statement . . . . . ................ . 
DO Statement . . . . . . . ..................... . 
CONTINUE Statement ...................... . 
PAUSE Statement . . . . . ...... . 
STOP Statement . . . . . . ............ . 

Input/Output . . . . . . . . . . . . . . . . ........... . 
Introductory Information ................... . 

Size of Input/Output Records .......... . 
List Specifications ..... . 
Input/Output of Entire Arrays 
Format Specifications .................. . 

Numerical Fields 
Alphameric Fields . . . . . . . . . . . . . . . . . .. 
Blank Fields -X-Conversion .............. . 
Repetition of Field Format. 
Repetition of Groups .. 
Multiple-Record Formats 

Blank Records .................. . 
Data Input to the Object Program ... . 

Execution of Input/Output Statements ....... . 
Input Execution 
Output Execution ....... . 

Input/Output Statements 
PRINT Statement 
PUNCH Statement .... 
READ ( k, n) Statement . 

19 
19 
19 
19 
19 
20 
20 
20 
21 
21 
21 
21 
21 
21 
21 
21 
22 
22 
22 
22 
23 
23 
23 
23 
23 
24 
24 
24 
24 
24 
25 
25 
25 
25 
25 
26 
26 
26 
26 
26 
26 
27 
27 
27 
27 
27 
27 
28 
28 
28 
29 
30 
30 
30 
30 
30 
31 
31 
31 
'} 1 
V.L 

32 
32 
32 
32 
32 



READ n Statement . . 32 
Nonformatted Input . . . . . . . . . . 32 

\\TRITE ( k, n) Statement. 33 
BACKSPACE, END FILE, and REWIND Statements 33 

Operating Statements . . . . . . . . . . . . . . 33 
Control Statements 33 

Program Control Statements 33 
COMMAND Statement 33 
LOAD Statement 34 
SA VE Statement 34 
PURGE Statement 34 

Execution Control Statements 34 
ST ART Statement . . . . . . . . . . . . . 34 

Status Word PAUSE.. 35 
Status Word STOP... . . 35 
Status Word HALT. . . . . . . . . . . . . 35 
Status Word BREAK . . . . 35 
Status Word XEQER. . 35 

RESET Statement . . 35 
CLEAR Statement . . . . . . . . . . . . 35 
XEQER Statement . . 35 

Form Control Statements 35 
AUXOP Statement . . . . . . . . 35 
DELTA Statement . . . . . . . . . . . 36 
ED IT Statement 36 

Modification Statements . . . . . . . . . . . . 36 
ALTER Statement . . 36 

Status Word ALTER . . 37 
AL TERX Statement 37 

"Altering" the Type of a Variable . . . . . . . . . . . . . . . . 37 
NUMBER Statement . . . . . . . . . . . 37 

Test Statements ..................................... 38 
SNAP Statement 38 

Status Word SNAP. . 38 
TRAP Statement . . . . . . . . . . . . . . . . . . 38 

Status Word TRAP . . . . . . . . . . . . . . . . . . 39 
GU ARD Statement . . 39 

Status Word GUARD.... . . . . . . . . 39 
STEP Statement . . . . . . . . . . . . . . . . . . . 39 
TRAIL Statement . . . . . . . . . . 39 

Display Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 39 
LIST Statement . . 40 
COPY Statement . . . . . . . . . . . . . 40 
PDUMP Statement . . . 40 

Status Word PDUMP.... 40 
QDUMP Statement . . 40 

Status Word QDUMP. . . . 41 
INDEX Statement . . . . . . . . 41 

Status Word INDEX. 41 
CHECK Statement . . 41 

Status Word CHECK.. 41 
AUDIT Statement . . . 41 

Status Word AUDIT. 41 
Program Called Services . . . . . . . . 41 

Terminal Commands 
Introductory Information ................... . 
Initialization and Termination Commands 

; USER Command 
;CONSOLE Command . 
;EXIT Command 
;FINISH Command .... 

Miscellaneous "Housekeeping" Commands 
;ECHO Command 
;EJECT Command 
;SEND Command . 

Basic Information for Batch Processing ......... . 
Preparing to Enter the Batch Input Mode 
IBSYS Control Cards Used in Batch Input Jobs 
Leaving Batch Input Mode ........ . 
Batch Output 
Batch Output Sent to Terminal . . . ....... . 
Automatic Batch Output ............ . 
Batch Output Printed at Computing Center 

Reassigning Batch Output . . . . . . . . . . ...... . 
Reassigning Batch Output Before Processing 
Reassigning Batch Output After Processing .. 

Canceling Batch Jobs ..................... . 
Canceling Batch Input ........... . 
Canceling Batch Output . . . . . . ............... . 
Interrupting and Resuming Batch Input and Output .... . 
Interrupting Batch Input ......... . 
Interrupting Batch Output ......................... . 
Messages Sent from the Computing Center . . . ..... . 
Batch Mode Commands ............................ . 
Commands for Entering and Leaving the Batch Mode 

;INPUT Command .............................. . 
;OUTPUT Command . . . . . . . . . . . . ........ . 
;RESUME Command ............................ . 
;FINISH Command . . . . . . .................... . 

Commands for Changing Batch Operations 
;CANCEL Command ........................... . 
;PURGE Command . . . . . . . . . . . ........... . 
;ROUTE Command . . . ....... . 

Batch Mode Control Card .. 
$RECOM Control Card .. 

Examples of Actual Use . 
The QUIKTRAN Vocabulary 

Appendix A: Comparison with 
7040/7044 FORTRAN IV ........ . 

Appendix B: Reserved Names .... . 

Appendix C: Special Characters 

Appendix D: 1050 Terminal Input Error Messages 

Index . . · · · · · · · · 

42 
42 
12 
42 
43 
43 
43 
43 
43 
44 
44 

45 
45 
45 
46 
46 
46 
47 
47 
47 
47 
47 
47 
47 
48 
48 
48 
48 
49 
49 
49 
49 
49 
49 
50 
50 
50 
50 
50 
50 
50 

51 
77 

78 

79 

79 

80 

81 



Introduction to the QUIKTRAN System 
The IBM 7040/7044 QUIKTRAN System is a programming 
system designed to provide concurrent computer access 
to a maximum of 40 remotely located terminals. The 
programming language employed by the terminal user 
is upward compatible with most FORTRAN 1v processors 
and is augmented by a set of operating statements and 
a set of terminal commands. The user communicates 
with the system either in a "conversational" (on-line) 
manner in which the basic unit of input is a single 
statement, or in a "batch" (off-line) manner in which 
the basic unit of input is an entire program. (Batch 
operation is described later in this publication in "Basic 
Information for Batch Processing.") 

The design of the QUIKTRAN System satisfies the fol
lowing requirements of the user: 

1. The user rarely has access to experts for program
ming assistance and advice. If he uses a problem
oriented language to express his problem, his request 
for and display of debugging data needs to be con
sistent with the programming language. 

2. Because the user operates the machine himself 
when his jobs are being processed, he has to have the 
ability to regulate the system, using statements that 
are similar to the programming language of the system. 
He also needs the ability to stop his machine at any 
time without loss of data so that he can perform such 
simple functions as changing printer paper, placing 
more input cards in a reader, discontinuing a job, etc. 

3. When dealing with large or small input/ output 
volumes, the user must be able to modify decks without 
their complete retransmission, and he should have the 
option to list and inspect data selectively, rather than 
be forced to transmit entire output files. He also desires 
to keep his various decks in random storage where they 
are quickly and conveniently available for modification, 
processing, or review. 

4. The user should be able to operate as though he 
were the only user and in complete control of the situa
tion. More specifically, in a time-sharing environment, 
the user should be fully protected from unwanted, pos
sibly <lestrnctive, interaction with others. Finally, he 
must be able to begin his jobs at any time without wait
ing for other users and to continue using the system as 
long as is necessary. 

General Information 

These requirements are met in the following ways: 
I. Output data is as problem-oriented as the source 

language. The source language is quite similar to the 
FORTRAN language. 

2. Diagnostic messages and logical analysis are 
definite enough to allow program debugging to take 
place at the same level as program construction. 

3. The user has immediate and continued access to 
the computer. 

4. The user has the ability to execute and alter pro
grams; to change values, variables, and formulas, and 
to request information selectively. 

5. Each user is assigned an identification code that 
must be communicated to the system as the first step 
in a terminal operation. The system, in turn, uses this 
code to determine which programs in its library belong 
to which user. Each time a user begins operating from 
a terminal, he first enters his identification code to gain 
access to his previously entered programs and to iden
tify new programs about to be entered. The identifica
tion code also prevents a user from executing, changing, 
or destroying another user's program ( s ) . 

6. The print volume may be reduced, without loss of 
quality, at the request of the user. 

The Approach 
The approach to satisfying these requirements fuses 
the old technique of interpretive execution with the 
relatively new one of time-sharing. Interpretive execu
tion retains all the information contained in the user's 
source program and, thereby, makes symbolic debug
ging possible. Time-sharing allows immediate and con
tinued access to a computer for a large number of users. 
Together, these two techniques make the conversa~ 
tional manner of operation by remotely located users a 
practical reality. 

Nevertheless, the service this system performs is not 
a matter of cleverly getting something for nothing; it is 
a justifiable trade-off. Execution time is greater, but 
elapsed solution-time, i.e., the time it takes to apply the 
computer to a problem and obtain usable results, is 
significantly smaller. In short, this system converts some 
of the innate power of the computer into condensed 
solution-time and greater creative power for the users. 

General Information 5 



System Concepts 
The language of the QUIKTRAN System comprises pro
gram statements, operating statements, and terminal 
commands. Program statements are upward compatible 
with FORTRAN iv and are used to construct the program. 
Operating statements allow the user to regulate the 
sy-stem. Terminal commands allow the user to regulate 
operations at the terminal. 

When a program is being constructed, tested, ex
ecuted, or modified, it is said to be "active" for the ter
minal being used. When a program is "active," it is 
located in temporary storage, where it is known as the 
"active image" of the program. 

Computer and Terminals 
The QUIKTRAN System requires a computing center 
equipped with a data processing system having tape, 
drum, and disk storage, an exchange device, and a net
work of up to 40 remotely located terminals. 

The "Equipment" section of this publication gives a 
full description of the required equipment. 

The exchange device controls the flow of information 
between the computer and the terminals. Characters 
typed at the terminals are sent to the computer one 
line at a time via the exchange device. The computer 
returns an answer to the exchange device, which, in 
turn, sends it to the proper terminal. The exchange 
device allows each terminal to send or receive data 
independent of all other terminals. 

Programs can be permanently retained in disk stor
age. When the user indicates that a program he has 
constructed is to be saved, the system places it on disk 
storage. Thereafter, the program will be available to the 
user whenever needed. The maximum number of pro
grams that can be stored depends upon the sizes of the 
programs. Assuming that the average program occupies 
2,000 words of storage, then approximately 1,300 pro
grams can be retained on disk storage at any one time. 

Conversational Processing 
The user is said to be communicating with the system 
in a "conversational" manner when each statement he 
enters through the terminal is processed (translated, 
verified, and, if desired, executed) immediately. The 
system then sends a reply to the terminal. The informa
tion contained in the reply varies. For example, it might 
be a message indicating that the previous statement 
contained an error ( see "System Replies" for further 
information). 

6 

Operations in the conversational manner must be in 
either of two modes: the program mode or the com
mand mode. 

Program Mode 

The program mode is that mode of operation which 
allows the user to construct his program on line, state
ment by statement. A terminal is said to be in the pro
gram mode when a program is active at that terminal 
(see "Program Defining Statements"). In this mode, 
the user enters program statements lf:hat make up the 
substance of his program, and he operates (i.e., mod
ifies, tests, executes, and debugs) on the program by 
using operating statements (see "Language"). 

When the terminal is in the program mode, the user 
can also enter single statements that are executed im
mediately but are not retained as part of the active pro
gram ( see "Process Codes"). 

Command Mode 

When no program is active at a given terminal, that 
terminal is in the command mode; and, conversely, 
when a user enters a COMMAND statement (see "coM

MAND Statement"), he destroys the active image of 
his program. Since, in this mode, no program can be 
active at the terminal and statements cannot be re
tained, each statement must be processed immediately. 
Consequently, the user may employ only those state
ments in the language which do not depend on any 
other statements. These are the general operating state
ments, the program defining statements, and a limited 
form of the arithmetic assignment statement. This last 
provision allows the terminal to be used as a fast, ver
satile symbolic calculator. In this mode, the user can 
enter a statement in the form X = e, where e is any ex
pression consisting of constants and reserved functions, 
(see "Reserved Functions") and the system immediately 
evaluates the expression and prints the result at the 
user's terminal. 

Batch Processing 
Batch processing provides a means of sending entire 
FORTRAN, COBOL, MAP, etc., programs to the computing 
center for off-line execution. In addition, batch process
ing allows the user to request that one or more of the 
FORTRAN programs he has debugged and saved during 
conversational operation be compiled or compiled and 
executed off line. By allowing debugged programs to 
be executed off line, batch processing frees the ter
minal for the construction, debugging, execution, and 
saving of new FORTRAN programs. For further details 
on the batch processor, see "Basic Information for 
Batch Processing." 



Source Language Debugging 
Debugging information is requested by the user and 
displayed by the system in a form consistent with the 
source programming language. 

Diagnostic Structure 
Errors committed by the user may be classified in two 
broad categories: syntactic and semantic. 

Syntactic Errors 

Syntactic errors are considered the responsibility of 
the system and are further categorized as follows: 

Composition: Typographical errors, violations of 
specified forms of statements and misuse of variable 
names (e.g., incorrect punctuation, mixed-mode ex
pressions, undeclared arrays, etc.). 

Errors of composition are detected as soon as the 
user enters the offending statement. The system rejects 
the offending statement, and the user can immedi
ately substitute a correct statement (see "Status Word 
RJECT"). 

Consistency: Statements that are correctly composed 
but conflict with other statements (e.g., conflicting de
claratives, illegal statement ending a DO range, failure 
to follow each transfer statement with a numbered 
statement, etc.). 

Most errors of consistency are detected as soon as 
the user enters the offending statement. The system 
rejects the offending statement and the user can im
mediately substitute a correct statement (see "Status 
Word RJEcr"). However some errors of consistency 
(e.g., illegal branch into the range of a DO) are not 
immediately detected. These errors are handled in the 
same manner as errors of completeness (see below), 
and should be considered as such. 

Completeness: Programs that are incomplete (e.g., 
transfers to nonexistent statement numbers, improper 
DO nesting, illegal transfer into the range of a DO loop, 
etc.) 

Errors of completeness are detected after the user 
has indicated that his program is complete (see "END 

Statement" and "ALTERX Statement"). All such errors 
are then extracted and immediately displayed at the 
terminal in a sequential list. When all the errors have 
been listed, the user can then individually correct or 
disregard them before initiating the execution of his 
completed program. Any disregarded errors, when re
detected during execution, are considered as execution 
errors (see below) . 

Execution: Those errors detected during the execu
tion of the user's program. These include errors that are 

detectable only during program execution (e.g., invalid 
subscript value, reference to an undefined variable, 
arithmetic spills, etc. ) along with those errors of com
pleteness detected because either ( 1) they were dis
regarded by the user when previously detected or ( 2) 
they were not detected in the first place because the 
user did not indicate that his program was complete. 

An execution error causes an immediate execution 
interruption at the point at which the error is encoun
tered. The error is extracted and displayed at the ter
minal. The user may then correct the error and resume 
the execution of his program. If the user chooses to 
ignore the error and continue the execution, he may 
do so. 

For all syntactic errors, the diagnostic message is 
specific (in that the variable in error is named or the 
column where the error occurred is specified) and often 
tutorial in suggesting the procedure for obtaining cor
rect results. 

Semantic Errors 

Semantic errors are concerned with the meaning or 
intent of the programmer and are his responsibility. 
However, he is provided with an extensive set of de
bugging aids that allow him to manipulate portions of 
a program when in search of errors in logic and 
analysis. 

Value Manipulation 
Some types of program statements are also useful for 
manipulating the values of a user's program. When 
the terminal is in the program mode, the user may 
insert special characters, called "process codes," into 
the first two columns so that these statements can be 
used as commands. For example, cc preceding a state
ment has the following effect: the statement is immedi
ately executed with all the effects of normal execution, 
but no new variable names are created; the statement 
is then discarded and does not become a part of the 
program. Thus, the user may insert values into param
eters at any time, thereby creating completely new 
testing situations without having to build their pres
ence into the logic of the program or attempting to 
anticipate the debugging operations required. 

Debugging Statements 
The operating statements (see "Language") provide a 
wide and flexible variety of methods for manipulat
ing the program itself. The user may: 

1. Insert or delete statements. 

General Information 7 



2. Execute selected portions of a program. 
3. Print changes of values as a change occurs and 

print transfers of control as a transfer occurs. 

8 

4. Obtain a static printout of all cross-reference re
lationships among names and labels, and dynamic 
exposure of partial or imperfect execution. 



The equipment required for use of the QUIKTRAN Sys
tem is divided into two groups. The bulk of the equip
ment is located at a computing center; the remainder 
is located at each terminal. The equipment at the ter
minal is described in detail because the QUIKTRAN user 
works through a terminal. 

Computing Center Equipment 
The computing center requires the following equip
ment: 

1. An IBM 7040/7044 Data Processing System with 
32K words of core storage. 

2. An IBM 1301 Disk Storage Unit to be used for the 
permanent retention of users' programs. 

3. An IBM 7320 Drum Storage Unit to be used for 
the temporary storage of users' programs. 

4. Six magnetic tape units to be used for maintaining 
normal capability and for logging system transactions. 

5. An IBM 77 40 Communication Control System to 
be used for sending and receiving data. 

6. Two IBM 1311 Disk Storage Drives, one Model 5 
and one Model 2, connected to the IBM 77 40 for use 
during batch processing. 

The computing center also requires communications 
devices for connecting terminals to the computer. 

Terminal Equipment 
A user's terminal consists of an IBM 1050 Data Com
munications System and a communications device for 
connecting the terminal to the computer on which the 
QUIKTRAN System is operating. 

An IBM 1050 Communications System can consist of 
various components. For use with QUIKTRAN, a 1050 
System must include an IBM 1051 Control Unit and an 
IBM 1052 Printer-Keyboard. Input to the QUIKTRAN 

System is entered by the user via the keyboard. The 
printer records both input and output. 

Equipment 

For greater flexibility and efficiency, other compo
nents can be included in the 1050 System. The addition 
of an IBM 1056 Card Reader makes it possible to enter 
QUIKTRAN input from cards. If the card reader has a 
pack feed, an. entire deck can be read without manual 
intervention. A card reader with a single card feed re
quires that cards be entered manually, one at a time. 
The Card Reader Program feature makes it possible to 
control card reading with a punched paper tape. Spec
ifically, this program tape can be used to prevent the 
reading of any identification information that may exist 
beyond column 72 of the input cards. 

All output always appears on the printer portion of 
the 1052 Printer-Keyboard. However, a second copy of 
output can be obtained in card or listing form by in
cluding an IBM 1057 Card Punch or an IBM 1053 Printer 
as part of the terminal equipment. Only one of these 
extra output devices can be in use at one time. 

Description of the IBM 1052 Printer-Keyboard 
The IBM 1052 Printer-Keyboard consists of a printer, 
switch panel, and a keyboard. 

Printing is done on continuous-form paper by a ball
shaped print element that moves horizontally to the 
desired position of the line. 

The switch panel consists of lights, switches, and an 
indicator that shows the position of the print element. 

The keyboard (see Figure 1) consists of character 
keys and control keys. Control keys are located at both 
sides of the keyboard. The character keys, located be
tween the groups of control keys, are arranged like 
those on a typewriter. In addition to the normal func
tion of the keys, some of the keys in the top row have 
other functions (marked directly above the key) . When 
one of these functions is required, the key marked 
ALTN CODING must be held down while the key for 
the desired function is pressed. 

Equipment 9 



~ 
READER D START D E HOME RDR 

BYPASS RESTORE EOA EOB EOT PREFIX CANCEL STOP 

~ M'N [JITJ [I]ITJITJITJ[I] GJ GJ[[][]] IT] CJ •AC• [gfil D D D 

CODONG 'AO ~~00~~~~~~~ bJ D 

I CORRKT I D EIJ00~~G000~ITJ~ RETURN 

@] READER I ISHIFTI 100~000000[}]1 I RESEND I START I SHIFT I I D E LINE 

I SPACE BAR I 

Figure 1. IBM 1052 Keyboard 

Initial Setup of the Terminal 
To use the QUIKTRAN System, it is necessary to set up 
the terminal and then connect it to the computer at the 
computing center. The setup procedures are given in 
detail below and are summarized in the upper half of 
Figure 2. 

1. Set the Line Control switch on the CE panel to 
the ON position. The CE panel is located inside the 
rear of the IBM 1051 Control Unit. 

2. Set the Main-Line switch to the POWER ON posi
tion. This turns on the POWER light on the 1052 switch 
panel. 

3. Set the switches on the 1052 switch panel as 
shown below. The positions of the switches are con
sidered to be numbered from left to right. The switches 
marked with an asterisk ( *) are optional and may not 
appear on the switch panel. 

SWITCH 

POSITION SWITCH NAME 

1 SYSTEM (ATTEND-UNATTEND) 
2 *MASTER 
3 PRINTER 1 
4 *PRINTER 2 
5 KEYBOARD 
6 * RDR 1 
7 * RDR 2 
8 *PUNCH 1 
9 *PUNCH 2 

10 STOP CODE 
11 *AUTO FILL 
12 *PUNCH 
13 SYSTEM ( PROG-DUP) 
14 No switch is assigned to this position. 
1.5 SYSTEM (DIAL DISC) 
16 TEST 
17 SGL CYCLE 
18 RDR STP 

SWITCH 

SETTING 

ATTEND 
OFF 
SEND RCV 
HOME/SEND 
SEND 
OFF 
OFF 
OFF 
OFF 
OFF 
OFF 
NORM 
DUP 

In up position 
OFF 
OFF 
OFF 

4. Set the margin stops to provide a maximum line 
length. The first twelve print positions of each line are 
reserved for use by the QUIKTRAN System. The informa
tion printed in these positions is explained in the sec
tion "Basic Information for QUIKTRAN Programming." 

10 

Print position 13 is the first one available to the user 
and may be regarded as though it were the first column 
of the FORTRAN coding form, Form X28-7327. Through
out this publication, all entries to be made by the user 
will be described using the column numbers of the 
FORTRAN coding form. Whenever the system pauses for 
a response from the user, the carrier is positioned at 
column 1. The user may find it convenient to set a tab 
stop at print position 19 so that, when a QUIKTRAN state
ment is to be entered, he can press the TAB key to 
move the carrier to column 7. 

To set the margin stops: Use the space bar to position 
the print element at the approximate center of the line. 
Set the Main-Line switch to POWER OFF. Lift the top 
cover and tilt the hinged switch panel toward the key
board. Position each margin stop individually by press
ing a blue margin indicator away from the keyboard 
and sliding it to the desired position. Lower the top 
cover and set the Main-Line switch to POWER ON. 

To set the tab stop: Set both the PRINTER 1 switch 
and the KEYBOARD switch (on the 1052 S\vitch panel 
in positions 3 and 5) to the HOME position. (Clear 
any tab stops that are set in the first 18 positions before 
proceeding. The method of clearing a tab stop is given 
below.) Press RETURN and then press the space bar 
18 times to move the carrier to column 7. Press down 
the CLR-SET lever at the left side of the 1052 switch 
panel. The tab stop is now set for column 7. Set the 
PRINTER 1 switch to SEND RCV and the KEY
BOARD switch to SEND. 

To clear a tab stop: Press RETURN and then press 
TAB to position the carrier at the tab stop to be cleared. 
Lift up the CLR-SET lever on the 1052 control panel. 
In order to clear tab stops, the user must set the 
switches on the 1052 control panel as explained above 
for setting tab stops. 



5. Press DA TA CHECK. 
6. Press RESET LINE (RESET on some models). 

Terminal Operating Procedures 

The PROCEED light should now be off and the key
board should be locked (i.e., no typing can be done). 
If the PROCEED light is on, check the settings of the 
switches, especially the Line Control switch. 

7. Check that the printer paper has been inserted in 
the paper sensing device (i.e., the paper should be 
under the metal bar located above and behind the 
platen). Set the printer carriage for single spacing. 

If the 1052 is equipped with a pin-feed platen, the 
paper release lever must be set in the release position. 

When the connection has been made, QUIKTRAN sends 
a message to the terminal. After the message is printed, 
the· PROCEED light is turned on and the keyboard is 
unlocked. The system is now ready to accept the first 
entry from either the keyboard or the card reader. Note 
that the first entry in any application must be the com
munication of the user's identification code (see "Ter
minal Commands" for further information). 

Terminal-Computer Connection 
The final step in the initial setup of the terminal is its 
connection to the computer by the use of a communi
cations device. Instructions for using the device are pro
vided by the communications company that installs it. 

During terminal operation, input may be entered 
from the keyboard, from the card reader, or from both. 
The user may alternate between the input units, as re
quired, by following the operating instructions given 
under "Procedures for Keyboard Input" and ''Proce
dures for Card Input." These instructions are also 
summarized in the lower half of Figure 2. 

SYSTEM MASTER PRINTER l PRINTER 2 KEYBOARD RDR l RDR 2 PUNCH l 

Norm RCV RCV Send x Send Send RCV 
~ttend x 

Off x Send x Send Off Off x Off x Off 
RCV RCV 

x 
Un-

~ L / attend Master x Home Home Home 
Send Send 

STOP CODE AUTO FILL PUNCH SYSTEM SYSTEM TEST SGL CYCLE 

Line 
Sense On Norm x Prog x On 

Off 

I I x 
Dial 

Off x Off Bksp Dup x Off x 
Disc Home 

l l 
Setup Procedure 

l • Set the Line Control switch on the CE panel to ON. 
2. Set the Main-Line switch to POWER ON. 
3. Set the switches on the 1052 switch panel as shown above. 
4, Set the margin stops for maximum line length and set a tab stop at printing position 19. 
5. Press DATA CHECK. 
6. Press RESET LI NE. 
7. Connect the terminal to the computer. 

Operating Instructions 

Step Keyboard Operation 

l. Wait for the system to type a Ii ne 
number and a status word . 

2. Wait for the PROCEED I ight to go 
on. 

I 3. Type one statement. 
4. Hold down ALTN CODING and 

press EOB; this will cause the 
PROCEED light to be turned off. 

5. Repeat steps l through 4 for each 
statement to be entered. 

Step 

l. 

2. 

3. I 
4. 
5. 
6. 
7. 
8. 

9. 

10. 

Card Reader Operation 

Place the card deck in the card 
reader. Press the FEED button. 
Wait for the system to type a I ine 
number and a status word . 
Wait for the PROCEED light to go on. 
Set the KEYBOARD switch to OFF. 
Set the RDR l switch to SEND. 
Press READER START LINE. 
One card is read and ejected. 
The system types a line number and 
a status word . 
Steps 7 and 8 are repeated auto-
matically until the required number 
of cards have been read. 
To return to kevboard ooeration. set 
the RDR l switch to OFF and the 
KEYBOARD switch to SEND. 

Figure 2. QUIKTRAN Terminal Operating Procedure 

x 

PUNCH 2 

RCV 

Off x 

Home 

RDR STP 

Line 

Off x 

Home 

General Information 11 



If the user wishes to have his output also appear on 
punched cards, he may follow the instruction given in 
the section "Auxiliary Output Devices." 

Procedures for Keyboard Input 
The character keys are used to type the letters, num
bers, and special characters that make up the keyboard 
input. The line feed and carrier return functions are 
provided by the system; therefore, the user should not 
press LINE FEED or RETURN. The functions of the 
other keys are: 

KEY NAME FUNCTION 

SHIFT This key must be held down while pressing the 
keys needed to type any of the following special 
characters: . ) ( ; 
No other keys should be pressed while SHIFT is 
held down. The characters shown, and all those 
special characters that do not require the SHIFT 
function, are valid for the QUIKTRAN System. 
(See Appendix C for a list of valid special char
acters.) The shift LOCK key should never be 
used. (See "Keyboard Time-Out" for an addi
tional use of SHIFT.) 

TAB This key moves the carrier to the next tab stop. 
Normally, for the QUIKTRAN System, tab stops 
are set for columns 7 and 120 only. 

BACK This key hackspaces the carrier. The user can 
SP ACE correct errors by typing the correct characters 

over the wrong ones. As each character is back
spaced over, it is deleted; therefore, if correct 
characters are backspaced over to reach an in
correct one, they have to be retyped after the 
correction has been made. For example, to 
change FOE MAT to FORMAT after typing the 
T, backspace four times and type RMAT. 

Some of the keyboard functions require that the user 
press two keys at the same time. 

KEY NAME FUNCTION 

AL TN This key must be held down while a key that 
CODING has an alternate coding function is pressed. (For 

example, EOB is obtained by holding down 
AL TN CODING and pressing 5.) 

EOB This key indicates the end of a line of input in
formation. It must be pressed (while AL TN 
CODING is held down) at the end of every line 
to return control to the system. 

CANCEL This key deletes the entife line currently being 
entered. The ALTN CODING key must be held 
down when CANCEL is pressed; immediately 
after pressing CANCEL, transmit EOB. 

EQT Pressing this key while the PROCEED light is 
on indicates to the system that the user desires 
to interrupt the execution of his program. The 
AL TN CODING key must be held down when 
EOT is pressed. 

The ALTN CODING key can be used only to trans
mit EOB, EOT and CANCEL. QUIKTRAN does not 
use the alternate coding function of any other keys. 
Note, however, that the BYPASS function locks the key
board; the RESTORE function unlocks the keyboard. 

The procedure for entering information from the 
keyboard is: 

12 

1. The system prints a line number and a status 
word (e.g., READY); printing stops with the carrier at 
column 1. 

2. Wait for the PROCEED light to be turned on. 
This indicates that the system is ready to accept input 
information. 

3. Type one line of input. 
4. Transmit EOB to indicate the end of a line and to 

return control to the system. The PROCEED light is 
turned off after the EOB has been transmitted. 

5. Return to step 1 to continue operating. To switch 
to card input, follow the procedure given under "Pro
cedures for Card Input." 

Keyboard Time-Out 

Keyboards are equipped with a "time-out" feature, 
which causes the keyboard to lock if more than 15 
seconds elapse between the sending of characters. If a 
time-out occurs during the typing of a line, any in
formation typed on that line up to that point will be 
discarded. To avoid this loss of information, the user 
may press and release SHIFT before the 15-second 
limit has been reached; this action may be repeated as 
necessary to prevent a time-out. By pressing SHIFT, 
the user can prevent a time-out without affecting the 
input information. 

Procedures for Card Input 
All cards to be read by the IBM 1056 Card Reader must 
have an upper left-hand corner cut and must be fed 
into the 1056 face down with the column 1 edge first. 
If a card is fed incorrectly, EJECT can be pressed to 
cause the card to pass through the 1056 without being 
read. 

The procedure for entering information from the 
card reader is: 

1. Place the card deck (face down with the column 
1 edge first) into the hopper of the card reader and 
then press the FEED button. 

2. A line number and a status word are printed by 
the system and the carrier stops at column 1. 

3. Wait for the PROCEED light to be turned on. 
This indicates that the system is ready to accept input 
information. 

4. Set the KEYBOARD switch to OFF. (This step 
is optional; the KEYBOARD switch may be left in the 
SEND position, if so desired. ) 

5. Set the RDRl switch to SEND. 
6. Press READER ST ART LINE. 
7. A card is then read and ejected by the system. 
8. The system then prints a line number and a status 

word. If there is an error in the card just read, the key-



board must be used to correct the error (skip to step 10 
to return to keyboard operation) before the next card 
is read. 

9. Steps 7 and 8 are repeated until the required num
ber of cards have been read. 

10. To interrupt the card reader and/or to return to 
keyboard operation, set the RDRl switch to OFF and 
the KEYBOARD switch to SEND, then follow the 
instructions given under "Procedures for Keyboard 
Input." 

When the card reader is used, the transmission of an 
EOB is required to indicate the end of each card, just 
as it is required to indicate the end of each line for key
board input. There can be up to three different methods 
by which an EOB may be transmitted when the card 
reader is used: 

1. The user may punch the EOB ( 0-6-9 punch) at 
the desired position in his input cards. Any information 
appearing in a card after an EOB punch is ignored. 

2. The user can set the AUTO EOB switch on the 
card reader to ON and an EOB will automatically be 
transmitted after column 80 of each input card. 

3. If the 1056 is equipped with the Card Reader 
Program feature, an EOB can be transmitted by a paper 
program tape that has been inserted in the carriage 
tape control device. To transmit an EOB after column 
72 of each input card (so that any identification in
formation will be ignored), this tape must be punched 
as follows: 

a. Column 73 must have punches in channels 2, 3, 
4, 5, and 6. 

b. Column 7 4 must have a punch in channel 12. 

The program tape is inserted into the carriage tape 
control device (located within the card reader and 
reached from the right-hand panel) by placing column 
73 over the top right pin in the wheel of the device. If 
this is done correctly, column 1 will be directly under 
the reading brushes of the device. This description is a 
specific case of a general procedure. For further infor
mation about this, see the publication System Opera
tion Reference Manual, IBM 1050 Data Communication 
System, Form A24-3020. 

If this procedure is used, the PROGRAM TAPE 
switch should be set to ON. 

Inserting More Printer Paper 
If the 1052 Printer runs out of paper during operations, 
printing will stop and the RECEIVE ALARM light 
will tum on. The procedure for inserting new paper 
is as follows: 

1. Set PRINTER 1 switch to HOME. 
2. Insert paper in the paper sensing device at the 

back of the platen and around the platen. 
3. Set PRINTER 1 switch to SEND/REC. 

Auxiliary Output Devices 
The IBM 1057 (or 1058) Card Punch and the IBM 1053 
Printer are optional output devices that the user may 
have installed at his terminal. Although terminal output 
is always registered on Printer 1 (i.e., the printer por
tion of the 1052), it can also be directed (under pro
gram control) to either the card punch or Printer 2 
(i.e., the 1053) but not both at the same time. Only one 
auxiliary output device may be in operation at any one 
time. (See "AuxoP Statement" for program-controlled 
auxiliary output procedures. ) 

If the card punch is to be used, it should first be 
prepared for operation as follows: 

1. Mount a program card containing the letter A in 
all columns on the program drum and lower the star 
wheels to read the card. 

2. Place a quantity of blank cards into the feed 
hopper. 

3. Set the Main-Line switch to POWER ON. 
4. Set the AUTO FEED switch to ON. 
.5. Set AUTO SKIP, AUTO DUP to the off position. 
6. Set AUTO PUNCH, KEY PUNCH to AUTO 

PUNCH. 
7. Press the FEED key twice. 
8. Press the REL key once. 

End of Terminal Operation 
The user should disconnect the terminal from the com
puter after he has finished using the terminal, or after 
the computing center has indicated that the system has 
been discontinued for the session. The user may dis
connect the terminal in either of the following ways: 

1. Press the SYSTEM (DIAL DISC) switch. 
2. Set the Main-Line switch to POWER OFF. 

General Information 13 



Basic Information for QUIKTRAN Programming 

This part describes the basic information with which 
the QUIKTRAN user should be familiar in order to utilize 
fully the capabilities of the system. Included are de
scriptions of the necessary actions of both the user and 
the system when a program is being constructed, ex
ecuted, modified, etc. 

NOTE: The word "program" does not necessarily 
imply operations in the program mode. A "program" 
can consist of a single statement. Hence, operations in 
the command mode are by no means excluded from 
this discussion. 

Statement Entry Format 
The user enters statements by typing them on the IBM 

1052 Printer-Keyboard. Unless specifically stated other
wise, all references to "typing at the keyboard" also 
apply to punched cards for the card reader. A FORTRAN 
coding form, Form X28-7327, may be used for planning 
entries. Information printed by the system will be dis
cussed according to the print position ( s) in which it 
appears. Data entered by the user will be discussed 
according to the columns of the FORTRAN coding form. 
Print positions 1 through 12 are reserved by the system 
for the assignment of line numbers, status indicators, 
and status words. Print positions 13 through 132 (i.e., 
columns 1 through 120) are available to the user. De
tails of the print positions are described below. 

Print Positions 1 Through S 

The QUIKTRAN System assigns a line number to each 
statement entered; these numbers are printed (by the 
system) in print positions 1 through 5. Numbers are 
assigned starting with 101.0 and increased according 
to the user's specification (see "DELTA Statement") up 
to a maximum of 999.0. With line numbers, the user 
can refer to a point in the program at which he may 
add or delete statements, begin execution, start or end 
a testing operation, etc. 

The system prints line numbers to identify data for 
the user. For example, when a program is being ex
ecuted, output data is accompanied by the line num
ber of the statement that produced the data. The results 
of some test statements are the line numbers of the 
statements that are involved with the test being made. 

14 

For exampie, when checking branch statements, the 
system prints the line number of the statement that 
caused a branch and the line number of the statement 
to which it transferred. 

The system keeps track of the line numbers assigned 
and deleted, and prints the next available line number 
when it is ready to accept another statement. There
fore, whenever the user executes a statement, a pro
gram or part of a program, he need not remember the 
line number of the last entry, because the system re
turns to the proper point after the user-requested 
action has been completed. 

Print Position 6 

The system prints a status indicator (see "Status Indi
cators") in print position 6. 

Print Positions 7 Through 11 

The system prints a status word in these positions (see 
"Status Words"). Various status words inform the user 
of the action taken by the system, the kind of output 
produced, etc. 

Print Position 12 

This print position is always left blank. It is the last 
position reserved for system use. 

Columns 1 Through 120 

Column 1, which corresponds to print position 13, is 
the first position available to the user for entering state
ments. Although any valid nonalphameric character 
(except a semicolon) in column 1 will cause the line 
to be treated as a comment, the user should observe 
the conventions explained under "Comment Codes." 

Columns 1 through 5 may be used for statement 
numbers, which must be within the range of 1 and 199. 
The user need number only those statements to which 
reference will be made in his program. 

Column 6 must either be blank or contain a digit 
from 0 through 4 (see "Statement Continuation"). 

Columns 7 through 120 ( 7 through 80 for card reader 
input) may be used for any of the statements described 
in the section "Language." As explained in the section 
"Equipment," it is convenient to have a tab stop set for 
column 7. 



Statement Continuation 
If the user requires more than one line to complete a 
single statement, he can use one of the following 
techniques: 

Keyboard or Card Input 

The first line of the statement must have the integer 0 
in column 6. All continuation lines (except the last) 
must contain any integer from 1 through 3 in column 
6. The last continuation line must contain a 4 in column 
6. Each line is sent to the system in the normal fashion 
(i.e., transmit EOB after the last character in each line 
has been typed). This method is useful when entries 
are made from the card reader. 

Keyboard Input Only 

For each line (except the last), the tab key is depressed 
after the last character has been typed. After the tab 
key has been depressed, transmit EOB. The last line is 
sent to the system in the normal fashion. This method 
is recommended when entries are made from the key
board. ( Column 6 of each line should be left blank. ) 

The above techniques are not mutually exclusive. 
Continuation can be initiated by either a 0 in column 6 
or the pressing of the tab key followed by an EOB. All 
continuation lines (except the last) can be indicated by 
either an integer from 1 through 3 in column 6 or the 
pressing of the tab key followed by an EOB. Continua
tion can be ended by either a 4 in column 6 or a normal 
EOB. 

NoTEs: The total number of characters in a continua
tion-line statement must not exceed 335. Statements 
may not be continued in the command mode nor may 
the continuation techniques be applied to comments. 

Input Cancellation 
Input, be it a single line or a continuation-line state
ment, may be cancelled by the user at any time during 
its construction but not after it has been sent to the 
system. Once a line has been accepted by the system, it 
can only be "altered" (see "ALTER Statement"). 

Single-Line Cancellation 
In order to cancel a single line at any time before it 
has been sent to the system, the user must transmit the 
CA NCF.T, code (see the "Equipment" section of this 
publication) and then immediately follow with an 
EOB. The system effects the cancellation and the user 
may then resume on the next line. 

Continuation-Line Statement Cancellation 
The user may cancel an entire statement of more than 
one line in length at any time before the last line of the 
statement has been sent to the system. The procedure 
is to transmit two CANCEL codes in succession and 
immediately follow with an EOB. The system effects 
the cancellation and the user may resume on the next 
line. 

NoTE: Any one line of a continuation-line statement 
is considered a single line and, thus, the procedure for 
its cancellation is the same as that described in "Single
Line Cancellation." 

Comment Codes 
When constructing a program, the user can enter vari
ous types of comments. Each type of comment is iden
tified by a different comment code. The user types the 
desired comment code in columns 1 and 2, and then 
types the comment in the remaining positions of the 
line. The three comment codes are Cb, CV, and CF. 

Comment Code Cb 

Comment Code Cb (the b indicates a blank) indicates 
to the system that the remainder of the line is a com
ment. If a program is active for the terminal when this 
comment code is entered, the comment is retained as 
part of the active program. 

NOTE: Any valid nonalphameric character in column 
1, except the semicolon, performs the same function as 
comment code Cb. 

Comment Code CV 

Comment code CV indicates to the system that the 
remainder of the line is a comment. The system does 
not retain comments identified with this comment code. 
This code can be used to print comments that are use
ful during program construction, but that are not to be 
part of the user's program. 

Comment Code CF 

Comment code CF is used to keep QUIKTRAN programs 
compatible with source programs for other FORTRAN 

processsors. The QUIKTRAN System processes statements 
beginning with comment code CF as though CF were 
not there; other FORTRAN processors regard these state
ments as comments. 

When recomposing (i.e., listing, punching, or in any 
other way recording) a user's program, QUTKTRAN sup
plies comment code CF for all program statements that 
are not valid FORTRAN IV statements. If a QUIKTRAN 

statement is also a valid FORTRAN IV statement but has 

Basic Information for QUIKTRAN Programming 15 



been given a CF code by the user, then this statement 
will be rejected by the system at the time of entry. 

Thus, if a QUIKTRAN statement is not a valid FORTRAN 

iv statement, whether or not the user has given it a CF 
code is unimportant because the system automatically 
supplies the code when the statement is recomposed. 

QUIKTRAN statements that are not valid FORTRAN IV 

statements must not have statement numbers associated 
with them. 

Execution 

Command Mode Execution 
When the terminal is in the command mode, each state
ment entered by the user is executed immediately upon 
entry and the result is printed at the terminal. State
ments are not retained by the system so there can be no 
actual construction of a program. 

Program Mode Execution 
When the terminal is in the program mode, each state
ment or series of statements is executed only at the re
quest of the user (see "Process Codes" and "sTART 

Statement"). Ordinarily, the user might wait until he 
has completed his coding; however, he does not have 
to wait since he can initiate execution at any time dur
ing the construction of his program. This allows the 
user to selectively test areas of his program before he 
actually completes his coding. 

Process Codes 

Process Codes provide the user with a semiautomatic 
execution facility. They can be used only when the 
terminal is in the program mode. Further, they can be 
used only in conjunction with arithmetic assignment 
statements and input/ output statements. Process codes 
are not retained as part of the user's program. 

Among other things, process codes allow the user to 
assign values to variables within a program and test the 
execution of an input/output statement in relation to 
its FORMAT. 

Most process codes require that a statement not be 
typed on the same line as the code; they refer either to 
statements previously typed or to statements yet to be 
typed. If a process code refers to a statement previously 
typed (i.e., process code ex or cs)' that statement is 
executed immediately upon entry of the process code. 
If requested, the result of the execution is then printed 
at the terminal. 

If a process code refers to statements yet to be en
tered (i.e., process code CXX or CSS), these statements 

16 

are executed immediately as they are entered. If re
q ueste<l, the result of the execution is printed at the 
terminal. This type of process code remains in effect 
until the user discontinues it (by entering CXX* or 
CSS*). Thus, one process code of this type can effect 
the execution of many statements. 

Only one process code (namely, process code CC) 
requires that a statement be typed on the same line as 
the code. This statement is executed immediately, and 
the result is printed at the terminal. Neither the code 
nor the statement is retained as part of the user's 
program. 

Process codes are typed starting in column 1. If an 
accompanying statement is required, the statement 
must be typed starting in column 7. The following table 
lists each process code with its associated meaning. 

CODE 

cc 

ex 

cs 

cxx 

css 

CXX* 
CSS* 

MEANING 

Execute and print the result of the arithmetic 
assignment or output statement which appears 
starting in column 7. The statement is executed 
by the system and then discarded. (The state
ment must not have a statement number. ) 
Execute the last arithmetic assignment or input/ 
output statement that was entered. 
Execute the last arithmetic assignment or input/ 
output statement that was entered. If an arith
metic assignment statement is executed, the 
result is printed at the terminal. 
Execute all subsequent arithmetic assignment 
and input/ output statements as they are entered. 
Execute all subsequent arithmetic assignment 
and input/ output statements as they are entered. 
If any arithmetic assignment statements are 
executed, the result of each is printed at the 
terminal. 
Discontinue the effect of CXX. 
Discontinue the effect of CSS. 

As was previously mentioned, process codes are use
ful when testing and debugging programs. All values 
necessary to test a program can be assigned by using 
process codes in conjunction with arithmetic assign
ment or input statements. The "expression" of an arith
metic assignment statement may include constants, re
served functions (e.g., cos, ATAN), and variables (see 
"Arithmetic Assignment Statement"). However, when 
an arithmetic assignment statement is used in conjunc
tion with a process code, each variable included in the 
expression must have previously been assigned a 
definite value (which is another way of saying that 
these variables must have been assigned values via the 
previous execution of arithmetic assignment or input 
statements). Similarly, process codes can be used to 
display the current value of a variable. The user can 
display selected variables by listing their names in an 
output statement following process code CC. For 
example: 

CC PRINT 0, TEMP, VOL PRES 



Interrupting Execution 
When the system is performing a continuing service 
such as execution of the user's program or a program 
listing, the user may be periodically given the oppor
tunity to interrupt the operation. These opportunities 
arise during those intervals when the PROCEED light 
is set on by the system. (Whether or not the PRO
CEED light comes on periodically is determined by 
the setting of the KEYBOARD switch. If the switch is 
set OFF, the PROCEED light will not go on and there 
will be no opportunity to interrupt the current opera
tion; if the switch is set to SEND, the PROCEED light 
will go on periodically for at least 15 seconds.) 

When the PROCEED light goes on, the current 
operation halts, the keyboard unlocks, and the system 
waits for some action by the user. The user can now 
interrupt the current operation by transmitting EOT 
(see "Procedures for Keyboard Input"). (Note that 
since the keyboard is unlocked, the user may precede 
the EOT with a comment; however, if 15 seconds 
elapse between the typing of successive characters, 
the PROCEED light will go off, the keyboard will 
lock, the current operation will resume, and the user 
will, for the time being, have lost his opportunity to 
interrupt. ) 

If no action is taken by the user while the PROCEED 
light is on, then after 15 seconds have passed, the 
PROCEED light will go off and the current operation 
will resume. The user can avoid this 15-second wait 
and have the current operation resume immediately 
by transmitting EOB as soon as the PROCEED light 
light goes on. (As with EOT, the EOB may be pre
ceded by a comment. ) 

System Replies 
When a program is being constructed, executed, modi
fied, etc., the system maintains communication with the 
user by typing certain symbols and words in print posi
tions 6 through 11. 

Status Indicators 
Status indicators, which are printed in print position 6, 
provide the user with information regarding the gen
eral status of the system. The three status indicators 
are: 

+ 

= 
The plus ( + ) sign indicates that the system is in 

the program mode. The minus ( - ) sign indicates that 
the system is in the command mode. The equals ( = ) 

sign indicates that the system is in automatic status 
(i.e., it has been executing a program or performing a 
continuing service such as a program listing) and one 
of many conditions has occurred. Some of these con
ditions are illustrated below: 

I. An error was encountered during program execu
tion and an error message has been typed. For example: 

126. = XEQER VARIABLE X MAY NOT BE USED 
UNTIL SET 

2. A response to an operating statement has occurred 
and has been typed. For example: 

293. = TRAP TRANSFER TO 55 ( 213.) 

3. A request for data by an input statement has oc
curred and the system is waiting for the data to be 
typed or read in. For example: 

456. =I 23 

4. A response to an output statement has occurred 
and the output data has been typed. For example: 

322. = 0122 x y 

5. A programmed pause, stop, or end of execution 
has occurred. For example, if the statement STOP 77 was 
executed and its line number was 592.0, the following 
would be printed: 

592. = STOP 77 

Status Words 
Status words, which are printed by the system in print 
positions 7 through 11, are more definitive than status 
indicators (i.e., they provide more detailed informa
tion about the status of the system). 

The majority of the status words are responses to 
program debugging statements and are described under 
the corresponding debugging statement. The remain
ing status words, described below, are READY, RJECT, 

ERROR, CANCL, OVFLO, and NOTE. 

Status Word READY 

This status word indicates that the system is waiting 
for a statement entry from the terminal. 

Status Word RJECT 

This status word is accompanied by a message from 
the system indicating that an error has been detected 
during the translation of the statement entered by the 
user. In all cases, the statement is rejected (i.e., it is 
not saved as part of the user's program). The line 
number is not increased and the user may continue on 
the next line after an invitation by the status word 
READY or ALTER (see "ALTER Statement"). 

The RJECT status word appears when one of the fol
lowing conditions has occurred: 

I. The user has allowed too much time to elapse be
tween the typing of characters. 

Basic Information for QUIKTRAN Programming 17 



2. The user has typed an illegal character as part of 
his input. 

3. The length of the user's input line is in excess of 
the maximum allowed. 

4. The input record contains a redundancy error. 
5. An error of composition or consistency was de

tected in translating the user's input statement. 

Status Word ERROR 

This status word ordinarily indicates that the system 
has encountered an error while ( 1) checking the com
pleteness and flow of the user's program (i.e., a com
pleteness error) or ( 2) checking the allocation of stor
age for the variables in the user's program. It is ac
companied by a message indicating the nature and 
location of the error. The statement (or statements) 
that caused the error is not discarded from the program. 

For completeness errors: ERROR can appear only after 
the END statement has been entered by the user. The 
reason for this is that the system cannot make this 
check until the user has indicated, by entering an END 

statement, that his program is complete. A check for 
completeness errors is also made after the entry of an 
ALTERX statement, if and only if an END statement had 
been entered at some point prior to the "alter sequence" 
or in the "alter sequence" itself (see "ALTER Statement" 
and "ALTERX Statement"). 

For storage allocation errors: ERROR can appear at 
any time after the user has entered the first executable 
statement in his program. The entry of the first execut
able statement indicates to the system that all storage-

18 

allocating declarations have been entered by the user. 
A check for storage allocation errors is also made after 
the entry of an ALTERX statement, if and only if the first 
executable statement in the program had been entered 
at some point prior to the "alter sequence" or in the 
"alter sequence" itself (see "ALTER Statement" and 
"ALTERX Statement"). 

Status Word CANCL 

This status word indicates that the system has deleted 
the preceding line (or lines, in the case of a continua
tion-line statement) in response to a cancel request 
from the user ( see "Input Cancellation") . The line 
number is not incremented and the user may continue 
on the next line after an invitation by the status word 
READY or ALTER ( see "ALTER Statement"). 

Status Word OVFLO 

This status word indicates that the execution of an out
put statement has generated an output record that ex
ceeds the maximum allowable line length of 120 
characters. The excess characters accompany this status 
word. 

Status Word NOTE 

This status word and its accompanying message pro
vide information about the way the system is compiling 
or executing the user's program. The message accom
panying this status word is usually self-explanatory. 
The statement that caused NOTE is not discarded from 
the user's program. 



The language of the QUIKTRAN System comprises pro
gram statements, operating statements, and terminal 
commands. Program statements, which are upward 
compatible with 7040/7044 FORTRAN 1v (see Appendix 
A ) , are used to form the user's program. These 
statements are discussed in the section "Program 
Statements." 

Operating statements allow the user to communicate 
with the CPU conversational processor of the QUIKTRAN 

System. Operating statements include modification, 
test, and display statements. These statements are dis
cussed in the section "Operating Statements." 

Terminal commands allow the user to communicate 
with the exchange device and, in some cases, with the 
CPU conversational processor. They include procedures 
for initializing and terminating a terminal operation. 
These commands are discussed in the section "Terminal 
Commands." 

Elements of the Language 

Constants 
When used in computations, a constant is any number 
that does not change from one execution of the program 
to the next. It appears in its actual numerical form in 
the statement. For example, in the following statement, 
3 is a constant since it appears in actual numerical form: 

J = 3*K 

Two types of constants may be written: integer con
stants and real constants. The rules for writing each of 
these types are given below. 

Integer Constants 

An integer constant is written without a decimal point, 
using the decimal digits 0, 1, ... , 9. A preceding + or -
is optional. An unsigned integer constant is assumed to 
be positive. An integer constant may consist of no more 
than ten digits. 

Real Constants 

A real constant is written with a decimal point, using 
the decimal digits 0, 1, ... , 9. A preceding + or - is 
optional. An unsigned real constant is assumed to be 
positive. 

An integer exponent preceded by an E may follow a 
real constant. The exponent may have a preceding + 
or - . An unsigned exponent is assumed to be positive. 

A real constant may consist of no more than eight 

Language 

digits and its magnitude must lie within the range of 
IQ-38 to 1038. 

Variables 
A variable is a symbolic representation (name) that 
will assume a value. This value may change either for 
different executions of the program or at different 
stages within the program. For example, in the follow
ing statement, both I and K are variables: 

K = 3*I 

The value of I will be assigned by a preceding state
ment and may change from time to time, and the value 
of K will vary whenever this computation is performed 
with a new value of I. 

As with constants, variables may be integer or real 
values. In order to distinguish between variables that 
derive their values from integers as opposed to those 
that derive their values from real numbers, the rules for 
naming each type of variable are different. 

Integer Variables 

An integer variable consists of a series of not more than 
six alphameric characters ( except special characters ) , 
of which the first is I, J, K, L, M, or N. This rule de
scribes an inplicit method of defining an integer var
iable; an explicit method is described in the section 
"1NTEGER Statement." 

Real Variables 

A real variable consists of a series of not more than six 
alphameric characters (except special characters ) , of 
which the first is alphabetic but not one of the integer 
indicators, i.e., any alphabetic character except I, J, K, 
L, M, or N. This rule describes an implicit method of 
defining a real variable. An explicit method is described 
in the section "REAL Statement." 

Subscripts 
An array is a group of quantities. It is often advan
tageous to be able to refer to this group by one name 
and to refer to each individual quantity in this group 
in terms of its place in the group. 

For example, assume the following is an array named 
NEXT: 

15 
12 
18 
42 
19 

Language 19 



Suppose it is desired to refer to the second quantity 
in the group; in ordinary mathematical notation this 
would be NEXT2 • In FORTRAN this would be: 

NEXT (2) 

The quantity "2" is called a subscript. Thus: 
NEXT ( 2) has the value 12 
NEXT ( 4) has the vaiue 42 

Similarly, ordinary mathematical notation might use 
NEXTi to represent any element of the set NEXT. In a 
program statement, this is written as NEXT ( 1) where 1 

equals 1, 2, 3, 4, or 5. 
The array could be two dimensional; for example, 

the array named MAX: 

COLUMN 1 COLUMN 2 COLUMN 3 
Row 1 82 4 7 
Row 2 12 13 14 
Row 3 91 1 31 
Row4 24 16 10 
Row5 2 8 2 

Suppose it is desired to refer to the number in row 
2, column 3; this would be: 

MAX(2, 3) 

"2" and "3" are the subscripts. Thus: 

MAX( 2, 3) has the value 14 
MAX ( 4, 1 ) has the value 24 

Similarly, ordinary mathematical notations might 
use MAXi,j to represent any element of the set MAX. 

In a program statement, this is written as MAX ( 1, J) 
where 1 equals 1, 2, 3, 4, or 5 and J equals 1, 2, or 3. 
In this system, the above notation may be extended to 
three-dimensional arrays, e.g., MAX( 1, J, K). An array 
may not have a dimension greater than three. 

Form of Subscripts 

A subscript must be in one of the following forms only, 
where v represents any unsigned, nonsubscripted inte
ger variable, and c (or c') any unsigned integer con
stant: 

v 
c 
v + c or v - c 
c*v 
c*v + c' or c*v - c' 

Subscripted Variables 

A subscripted variable is either an integer or real 
variable followed by parentheses enclosing one, two, 
or three subscripts separated by commas. 

Arithmetic Expressions 
An arithmetic expression consists of certain sequences 
of constants, subscripted and nonsubscripted variables, 
and arithmetic function references separated by arith
metic operation symbols, commas, and parentheses. 

The arithmetic operation symbols+,-,*,/, and** 

20 

denote addition, subtraction, multiplication, division, 
and exponentiation, respectively. The rules for forming 
arithmetic expressions are: 

l. Figures 3 and 4 indicate which constants, vari
ables, and functions may be combined by the arith
metic operators to form arithmetic expressions. Figure 
3 gives the valid combinations for the following arith
metic operators: +, - , *, and /. Figure 4 gives the 
valid combinations for the arithmetic operator **. In 
these figures, Y indicates a valid combination and N 
indicates an invalid combination. 

2. The simplest expression consists of a single con
stant, a single variable, or a subscripted variable. If 
the quantity is integer, the expression is said to be 
of the integer type. If the quantity is real, the expres
sion is said to be of the real type. 

3. Quantities can be preceded by a + or a - , which 
does not affect the type of the expression. Also, ex
pressions can be connected by any of the arithmetic 
operators ( +, - , *, I, **) to form other expressions 
provided: 

a. No two operators appear consecutively. 
b. All operators are explicitly expressed. 

4. Any expression may be enclosed in parentheses. 
Parentheses can be used to specify the order in which 
the operations in the expression are to be computed. 
Where parentheses are omitted, the hierarchy of opera
tion is: 

a. Function Reference 
b. Exponentiation ** 
c. Multiplication and Division * and I 
d. Addition and Subtraction + and -

+-*/ Real Integer 

Real y N 

Integer N y 

Figure 3. 

Exponent 

** Real Integer 

Real y y 

Base 

Integer N y 

Figure 4. 



For example, the expression A+ B/C + D**E*F- G 
will be taken to mean A+ ( B/C) + ( DE*F) -G. 

(The expression A **B**C is not permitted; it must 
be written as either A** ( B**C) or (A **B) **C, 
whichever is intended. ) 

Concept of 11Set11 and 11Used11 Variables 
11Set11 Variables 

The QUIKTRAN System considers a variable "set" if a 
value has been assigned to it. In other words, when
ever a variable appears in the list specification of an 
input statement or to the left of the equals sign in 
an assignment statement, and that statement is ex
ecuted successfully, then that variable is said to be 
"set." 

An array is considered "set" if any of its elements is 
"set." 

For further information on the effect of "set" vari
ables with regard to the execution of input statements, 
see the sections "List Specifications" and "Execution 
of Input/Output Statements." 

11Used" Variables 

\Vith two exceptions, the QUIKTRAN System considers 
a variable "used' when it appears in a program state
ment that has been executed, whether successfully or 
not. The exceptions are: ( 1) a "not used" variable 
appearing in an executed input statement remains "not 
used," and ( 2) a "not used" variable appearing to the 
left of the equals sign in an executed assignment state
ment remains "not used." 

A program statement is considered "used" only if 
it has been executed successfully. 

An array is considered "used" if any of its elements 
is "used." 

In general, a variable may not be "used" until it has 
been "set." However, if a variable has been assigned to 
a common storage area (see "coMMON Statement"), 
it need not be "set" in order to be "used." 

Program Statements 
The user's program is made up of program statements. 
When the terminal is in the program mode, these 
statements are always retained in storage as part of the 
active program. 

If the user has a statement in his program that refers 
to an executable program statement within the pro
gram, he should assign a statement number to the latter 
statement. Numbers 1 through 199 may be used as 
statement numbers, but no two statements may have 
the same number. The statements acceptable to the 

QUIKTRAN System are described below. The description 
gives the general form of each statement, its purpose, 
and usually one or more examples of its use. 

The following table gives the meanings of the sym
bols used to identify the variables in the general forms 
of the program statements: 

SYMBOL TYPE OF VARIABLE 

c Constant 
e Arithmetic expression 
i Simple integer variable (unsigned) 
k Simple integer constant (unsigned) 
m Simple integer variable (unsigned) or a simple integer 

constant ( unsigned ) 
n Statement number 
p Nonsubscripted variable name - must not be the name 

of an array 
u Name of a program or subprogram 
v Simple or subscripted variable 
x Real expression 
y Subscripted variable 
z Name of an array, a function, or a simple variable 

Program Defining Statements 
Program defining statements identify the type of pro
gram or subprogram that is to be constructed. Every 
program or subprogram must start with a PROGRAM, 
FUNCTION, or SUBROUTINE statement and should end 
with an END statement. 

NoTE: A PROGRAM, FUNCTION, or SUBROUTINE state
ment can be entered only when the terminal is in the 
command mode - see "coMMAND Statement." Entry of 
a PROGRAM, FUNCTION, or SUBROUTINE statement then 
puts the terminal into the program mode. 

Main Programs 
Every main program must begin with a PROGRAM state
ment. 

PROGRAM Statement 

General Form 

PROGRAM name 
name should be no more than six characters long ( no spe 
cial characters allowed ) ; the first character must be alpha 
betic. It may not be a reserved name (see Appendix B). 

This statement identifies the first statement in a main 
program and assigns a name to the program. Some ex
amples are: 

PROGRAM STRESS 
PROGRAM FARADS 

END Statement 

General Form 

END 

The END statement serves two purposes: 
1. It indicates to the system that the user's main 

program or subprogram has been completed. The sys
tem then extracts and lists errors that were not apparent 
during program construction (see "Syntactic Errors" 

Language 21 



and "Status Word ERROR"). Note, however, that any 
variables or statement labels that have not been defined 
or had reference made to them are not extracted at this 
time. If the user desires to have these elements extracted 
he must use the system service CHECK (see "CHECK 

Statement") . 

2. If the user's program or subprogram is to be 
compatible with other FORTRAN processors, the END 
statement must be present. 

If the END statement is used, it must be the last pro
gram statement of a program or subprogram. 

Subprograms 

A subprogram is a function or a subroutine that can be 
called by a main program ( or another subprogram) 
in order to perform a specific operation. The basic rules 
for constructing functions and subroutines are described 
below. Additional information is contained in the pub
lication General Information Manual: FORTRAN, 
Form C28-8074. 

FUNCTION Statement 

General Form 

FUNCTION name ( p1, p2, ... , Pn) 

where: 

1. name is the symbolic name of a single-valued function. 
It may not be a reserved name (see Appendix B.). 

2. The arguments p1, p2, ... , Pn (of which there must be 
at least one but not more than eight), are nonsubscripted 
variable names, none of which may be an array name or 
a reserved name (see Appendix B). 

The FUNCTION statement is used to signify the begin
ning of a single-valued function subprogram. It defines 
the name of the function and the arguments to be used 
within the function. The name of the function must re
ceive a value within the function subprogram. The 
values of the arguments are not returned to the calling 
program. 

Normally, the initial letter of a function name deter
mines the type of the function. If desired, the user may 
explicitly specify the type of the function by beginning 
the FUNCTION statement with the appropriate word, 
i.e., REAL FUNCTION or INTEGER FUNCTION. However, 
the name of a function may not appear in a REAL or 
INTEGER statement within the body of a function (see 
"Type-Defining Declarative Statements"). 

22 

The following is an example of a function subpro
gram: 

FUNCTION ZMULT(A, B, C) 

ZMULT=A*B*C 

RETURN 
END 

Rules for Calling Function Subprograms: Functions 
are called in a program by their appearance within 
an arithmetic expression, for example: 

X=ZMULT(U, V, W)-D 

All names of function subprograms are used in this 
manner. Their appearance in an arithmetic expression 
serves to call the function; the value of the function is 
then computed, using the arguments supplied in the 
parentheses following the function name. These argu
ments are arithmetic expressions which may consist of 
one or more subscripted or nonsubscripted variables, 
constants, user-defined subprogram names, or library 
function names ( see "Library Functions"), but never 
an array name. The type, order, and number of the 
arguments must be the same as that of the function 
definition. 

NOTE: If an argument in a call to a function sub
program is the name of a user-defined subprogram or 
the name of a library function, an EXTERNAL statement 
must be included with the declarative information in 
the calling program (see "EXTERNAL Statement" for 
details). 

SUBROUTINE Statement 

General Form 

SUBROUTINE name (p1, p2, ... , Pn) 

where: 

1. name is the symbolic name of a subroutine subprogram. 
It may not be a reserved name (see Appendix B). 

2. The arguments p1, p2, ... , Pn (of which there need not 
be any, but not more than eight), may not be an array 
name or a reserved name (see Appendix B). 

The SUBROUTINE statement is used as the first state
ment of a subroutine subprogram to define its name 
and arguments. 

Unlike a function subprogram, which returns only 
a single value, a subroutine subprogram may use one 
or more of its arguments to return results to the calling 
program. The arguments may be considered dummy 
variable names that are replaced at the time of exe
cution by the actual arguments supplied in the CALL 
statement that refers to the subroutine subprogram 
(see "Rules for Calling Subroutine Subprograms"). 



The actual arguments must agree with the dummy 
arguments in number, order, and type. 

Two examples of the use of the SUBROUTINE state
ment follow: 

SUBROUTINE MATMPY (A, N, B, L, K, M) 
SUBROUTINE NOPAR 

Rules for Calling Subroutine Subprograms: The CALL 

statement is used to transfer control from the program 
in which it appears to the subroutine to which it refers. 

General Form 

CALL name ( ei, e2, ... , en) 
where: 

1. name is the symbolic name of a subroutine subprogram. 
It may not be a reserved name (see Appendix B). 

2. The arguments e1, e2, ... , en (of which there need not 
be any, but not more than eight) are arithmetic expres
sions that may consist of one or more subscripted or non
subscripted variables, constants, user-defined subprogram 
names, or library function names (see "Library Func
tions"), but never an array name. 

Some examples of the use of the CALL statement are: 
CALL MATMPY (X, 5, 10, Y, 7, 2) 
CALL QDRTIC (P*9.732, Q/4.536, R-S**2, Xl, X2) 

NOTES: 

1. If an argument in a call to a subroutine subpro
gram is the name of another user-defined subprogram, 
or the name of a library function, an EXTERNAL state
ment must be included with the declarative informa
tion in the calling program (see "EXTERNAL Statement" 
for details ) . 

2. Certain operating statements provide services that 
can be called by the user's program ( see "Program 
Called Services" for additional information). 

Return from a Function or Subroutine Subprogram 

General Form 

RETURN 

This statement must appear at least once in a sub
program and is used to return control to the calling 
program. A RETURN statement must be the last executed 
statement of a subprogram, but not necessarily the 
physical last. The next executable statement following 
a RETURN statement must be numbered. 

NoTE: Failure to include a RETURN statement within 
a subprogram will cause an execution error when that 
subprogram is executed. 

Reserved Functions 

A reserved function name should never be used either 
as the name of a variable or as the name of a subpro
gram. Because the first letter of the name of a reserved 
function determines its type, a reserved function name 
must never appear in REAL or INTEGER statements. 

There are two types of reserved functions: library 
functions and built-in functions. 

Library Functions 

Library function names may appear in EXTERNAL state
ments and as the actual arguments of a function or 
subroutine called by the main program. The following 
table lists each of the library functions and its 
definition: 

NAME DEFINITION 

EXP ( x ) Computes ex for a real argument x with an 
accuracy up to eight significant digits. 

ALOG( x) Computes the natural logarithm for a real 
argument x with an accuracy up to eight sig
nificant digits. 

ALOG 10 ( x) Computes the common logarithm for a real 
argument x with an accuracy up to eight sig
nificant digits. 

AT AN ( x) Computes the arc tangent of a real argument 
x. The result, in radians, is accurate up to 
eight significant digits. 

ATAN2(x1, x2) Computes the arc tangent of the real value 
x1/x2. The result, in radians, is accurate up 
to eight significant digits. 

SIN ( x) Computes the sine of a real argument x, 
where x is expressed in radians. The result 
is accurate up to eight significant digits. 

COS ( x) Computes the cosine of a real argument x, 
where x is expressed in radians. The result is 
accurate up to eight significant digits. 

TANH ( x) Computes the hyperbolic tangent of a real 
argument x, where x is expressed in radians. 
The result is accurate up to eight significant 
digits. 

SQRT( x) Computes the square root of a real argument 
x, where x is greater than or equal to zero. 
The result is accurate up to eight significant 
digits. 

ARSIN ( x) Computes the arc sine of a real argument x. 
The result, in radians, is accurate up to eight 
significant digits. 

ARCOS ( x) Computes the arc cosine of a real argument 
x. The result, in radians, is accurate up to 
eight significant digits. 

Built-in Functions 

The name of a built-in function may not appear in an 
EXTERNAL statement, nor may it appear as the actual 
argument of a function or subroutine called by the 
main program. The following table lists the name and 
definition of each built-in function. In the table, a j 
denotes an integer expression and an x denotes a real 
expression. 

NAME 

ABS(x) 

IABS(j) 

AINT(x) 

INT(x) 
AMOD(x1, x2) 

DEFINITION 

Finds the absolute value of the real argument 
x. 
Finds the absolute value of the integer argu
ment f. 
Performs the following computation: 

result= sign of x [largest integer ~ 
ABS( x)] 

Performs the same function as AINT. 
Performs the following computation: 

result=x1 -AINT( x1/x2) *x2 
Performs the following computation: 

result= h - ( ji/j2) *j2 

Language 23 



NAME DEFINITION 

AMAXO ( ji, h) Chooses the largest value in the given set of 
integer arguments ( ji, j2). 

AMAX I ( x1, X2) Same as AMAXO except that the arguments 
must be real. 

MAXO(h, j2) Same as AMAXO except that MAXO is an 
integer function. 

MAXI ( x1, X2) Same as AMAXO except that the arguments 
must be real and MAXI is an integer 
function. 

AMINO( ii, h) Chooses the smallest value in the given set 
of integer arguments ( h, j2) . 

AMINI ( x1, x2) Same as AMINO except that the arguments 
must be real. 

MINO( j1, j2) Same as AMINO except that MINO is an inte
ger function. 

MINI ( x1, X2) Same as AMINO except that the arguments 
must be real and MIN I is an integer function. 

FLOAT ( j) Converts the value expressed by ; to a real 
value. 

IFIX( x) Same as INT. 

SIGN ( x1, x2) Performs the following computation: 
result= sign of x2 [ABS ( x1)] 

ISIGN ( ji, i2) Same as SIGN except that arguments are 
integer values. 

DIM(x1, x2} Performs the following computation: 

IDIM(ji, j2) 
result=x1-AMINI(x1, x2) 

Performs the following computation: 
result=ji-MINO(j1, h) 

Declarative Statements 

Declarative statements provide the system compiler 
with information regarding certain properties of names 
appearing in other statements, such as the dimension 
of an array, or the type assumed by a variable. 

Declarative statements are not executable and must 
precede the first executable statement in the user's pro
gram. They must not have statement numbers. 

The two types of declarative statements are storage
allocating declarative statements and type-defining de
clarative statements. 

Storage-Allocating Declarative Statements 

There are three storage-allocating declarative state
ments: DIMENSION, COMMON, and EQUIVALENCE. These 
declarative statements provide for the allocation of 
storage for arrays and for the sharing of storage loca
tions between programs or within a program. Constants, 
program names, function names, and subroutine names 
must not appear in a storage-allocating declarative 
statement. Except when used in EQUIVALENCE state
ments, a variable name must not appear in more than 
one declarative statement of the same type. 

24 

DIMENSION Statement 

General Form 

DIMENSION Yi, y2, ... , Yn 

where: 

each subscripted variable can have one, two, or three sub
scripts (each subscript being an unsigned integer constant).f 

The DIMENSION statement provides the information 
necessary to allocate storage for arrays in the object 
program. It defines the maximum size of arrays; refer
ences to these arrays must never exceed the specified 
dimension. 

If the DIMENSION statement is used, it must be the 
first declarative statement in the user's program. 

Two examples of the use of the DIMENSION statement 
are: 

DIMENSION ALPHA ( 10), BETA ( 5, 5, I5) 
DIMENSION GAMMA (20, 30), X(5), NEXT ( 10, 10, 10) 

COMMON Statement 

General Form 

COMMON V1, V2, ... , Vn 

The COMMON statement causes the declared variables 
to be assigned to consecutive storage locations within 
a common storage area. Main programs and subpro
grams can share this common storage area. 

Subscripted variables are not allowed in a COMMON 

statement. Each variable v1, v2, ... , Vn must be the 
name of an array or a simple variable. 

If a variable appearing in a COMMON statement is 
the name of an array, then this array must previously 
have been defined in a DIMENSION statement. 

Two examples of the use of the COMMON statement 
are: 

COMMON A, B, C, D, E 
COMMON X, ANGLE, MATA, MATB 

EQUIVALENCE Statement 

General Form 

EQUIV ALEN CE ( V1, V2, ... , Vn) 

where: 

1. n must be greater than or equal to 2. 
2. Variables V2 through Vn (sometimes called the "tenants") 

may not be subscripted. Each must be wholly contained 
within v1 and each must not be described in a COM
MON statement. 

3. Variables v1 through Vn may be array names. 
4. Variable v1 (sometimes called the "host") may have a 

single subscript if and only if V1 is the name of an array. 
This subscript should specify the element of the array 
that is to be made equivalent to V2 through Vn. 

5. All variables must be enclosed within one set of paren
theses. 



The EQUIVALENCE statement causes all specified vari
ables to be assigned to the same location in storage. 
An actual storage area is reserved only for the first 
variable, v1 ; variable V2 through Vn overlay the area 
reserved for v1 • Of all the variables specified, only v1 

may appear in other EQUIVALENCE statements (if so, it 
must appear only as V1 ). 

Two examples of the use of the EQUIVALENCE state
ment are: 

EQUIVALENCE (F(3), E) 
EQUIVALENCE (J( 10), I, A, D) 

NoTE: If the variable "E" in the first example had 
been defined as a single-dimensioned array of five ele
ments, the given EQUIVALENCE statement would result 
in the following: E(l) is equivalent to F(3), E(2) is 
equivalent to F ( 4), E ( 3) is equivalent to F ( 5), etc. 

Type-Defining Declarative Statements 
There are three type-defining declarative statements: 
INTEGER, REAL, and EXTERNAL. The INTEGER and REAL 

statements provide the means to define explicitly the 
type of a variable or user-defined function, normally 
defined by the first letter of the name. (However, in a 
function subprogram, the name of the function may not 
appear in a type-defining statement. ) The same name 
may not appear in both a REAL and INTEGER statement. 

The EXTERNAL statement is used to declare that the 
name of a user-defined function or subroutine, or a 
library function (see "Library Functions") is being 
used as an argument in a subprogram call. 

Constants and dimension information may not ap
pear in any type-defining declarative statements. 

INTEGER Statement 

General Form 

INTEGER Z1, Z2, , •• , Zn 

where: 
each z1 (i=l, 2, ... , n) may be the name of a variable, an 
array, or a user-defined function subprogram to be called. 
It cannot be the name of a reserved function ( see "Reserved 
Functions") or the name of the program or subprogram in 
which the INTEGER statement appears. 

The INTEGER statement specifies that the listed names 
are integer variables. An example of an INTEGER state
ment is: 

INTEGER ALPHA, BETA, RESULT 

REAL Statement 

General Form 

REAL Z1, Z2, • , • , Zn 

where: 
each z1 ( i= 1, 2, ... , n) may be the name of a variable, an 
array, or a user-defined function subprogram to be called. 
It cannot be the name of a reserved function ( see "Reserved 
Functions") or the name of the program or subprogram in 
which the REAL statement appears. 

The REAL statement specifies that the listed names 
are real variables. An example of a REAL statement is: 

REAL IND, MA TRIX, LAST 

EXTERNAL Statement 

General Form 

EXTERNAL U1, U2, •• , , Un 

where: 
each u1 ( i= 1, 2, ... , n) may be the name of a user-defined 
subprogram or the name of a library function ( see "Library 
Functions" ) . 

The EXTERNAL statement specifies that each listed 
user-defined subprogram or library function is to be 
used as an argument in a call to a subprogram. Vari
able names must not appear in an EXTERNAL statement. 

Example: In the following illustration, the main pro
gram, EXAMP, calls upon a function named UFN three 
times. In each call, the first argument is the name of 
another function because UFN has been constructed to 
call upon functions passed to it by the calling program. 
Hence, an EXTERNAL statement must be included in the 
main program to indicate that user-defined subpro
grams (i.e., ASSIGN and ASORT) and a library function 
(i.e., cos) are being used as arguments in subprogram 
calls. 

CALLING PROGRAM 

PROGRAM EXAMP 

EXTERNAL COS, ASSIGN, 
ASORT 

SUBPROGRAM 

FUNCTION UFN (FUNC, X) 

first executable statement first executable statement 

Y=.2736519 

A=UFN (COS, Y) 

B=UFN (ASSIGN, Y) 

UFN=FUNC(X) 

C=UFN (ASORT, Y) 

RETURN 

END 

END SAVE 

NOTE: The mnemonic FUNC is a dummy name that 
assumes a new name (i.e., first cos, then ASSIGN, and 
finally ASORT) each time UFN is called. The mnemonic 
X is a dummy variable that assumes the value of the 
variable Y each time UFN is called. 

Executable Statements 
Executable statements form the essential part of the 
user's program. The arithmetic assignment statement, 

Language 25 



all of the control statements and all of the input/output 
statements are considered as executable statements. 
(However, the input/output statements are described 
in a separate section called "Input/Output") 

Arithmetic Assignment Statement 

I General Fonn 

v=e 

This statement assigns a value to a specific variable; 
i.e., the value of an arithmetic expression, e, is deter
mined and assigned to a variable, v. 

The equals symbol in an arithmetic assignment 
statement signifies the replacement or assignment of 
a value to a variable, rather than mathematical equal
ity. Therefore, such statements as V = V + 1 are ac
ceptable arithmetic assignment statements. 

When the variable to the left of the equals sign dif
fers in type from the expression to the right of the 
equals sign, the following conventions apply: 

1. If v is an integer variable and e is a real expres
sion, then the result of e is truncated (not rounded) 
to the largest integer it contains and then converted 
to an integer variable, which, in turn, becomes the 
value of v. 

2. If v is a real variable and e is an integer expres
sion, then the result of e is converted to a real variable, 
which, in turn, becomes the value of v. 

Some examples of arithmetic assignment statements 
are: 

X=K 
A(I) = B(I) - SIN(C(I)) 
I= 5*MU + 2 
I= A**(B/C) + 10. 

Control Statements 

Statements are executed in the order in which they ap
pear in the program. Control statements may be used 
to cause a conditional or unconditional change in the 
sequence of execution. 

A control statement must not refer to itself. The next 
executable statement following a GO TO or IF statement 
must be numbered. 

Unconditional GO TO Statement 

General Form 

GO TO n 

The unconditional GO TO statement causes the pro
gram to transfer control to the statement numbered 
n. An example is: 

GO TO 3 

26 

Computed GO TO Statement 

Control is transferred to the statement numbered 
ni, n2, ••• , np, depending on whether the value of i at 
the time of execution is 1, 2, ... , p, respectively. The 
value of i must be greater than 0, but less than or 
equal top. 

In the following example, if J is 3 at the time of 
execution, a transfer to the third statement of the list, 
namely statement 50, occurs: 

GO TO (30, 42, 50, 9), J 

IF Statement 

General Form 

The IF statement results in one of the following: 
1. If the value of e is less than zero, control is trans

ferred to the statement numbered n 1• 

2. If the value of e is equal to zero, control is trans
ferred to the statement numbered n2 • 

3. If the value of e is greater than zero, control is 
transferred to the statement numbered ns. 

In the following example, if (X-Y) is equal to zero 
when this statement is executed, control is transferred 
to the statement numbered 7: 

IF (X-Y) 2, 7, 4 

DO Statement 

General Form 

DO n i=m1, m2, ma 

where: 

each m1 must be greater than or equal to l; m1 must be 
Jess than or equal to m2; and if ma is not stated, it is as
sumed to be equal to 1. 

The Do statement results in the repeated execution of 
the statements that follow the DO, and up to and includ
ing the statement numbered n. Statement n must not 
be a DO, IF, GO TO, STOP, or RETURN statement; a CON

TINUE statement can be used to satisfy this limitation. 
The "range of a no" comprises all statements following 
the DO up to and including statement n. 

The first time the statements are executed, i = m1 • 

(Execution does not occur if mi equals zero or is 
greater than m:.?.) For each succeeding execution, i is 
increased by ma; i.e., the second time, i = m 1 + m3, the 
third time, i =mi+ 2ma, etc. This pattern of execution 
takes place for all values of i that do not exceed m:.?. 
Control then passes to the statement following state
ment n. 



The values of i, mi, m2, and ma must not be set by 
any statement, other than the DO, within the range of 
the DO. 

Among the statements in the range of a DO may be 
other DO statements; such a configuration is called 
"nesting." If the range of a DO includes another DO, the 
range of the inner DO must be completely contained 
within the range of the outer DO. The nesting of DO 

statements must not exceed a depth of eight levels. 
Transfers into the range of a DO from a point outside 

its range are not permitted. Thus, in the following 
configuration, 1, 2, and 3 are permitted transfers, but 
4, 5, and 6 are not. 

DO 

Some examples of the use of the DO statement are: 

DO 25 J=l, M, 2 
DO 35 J=l, 10 

CONTINUE Statement 

I General Form 

CONTINUE 

This statement is a dummy statement that causes no 
action. It is most frequently used as the last statement 
in the range of a DO. 

PAUSE Statement 

General Form 

PAUSE c 

where: 

c is an optional one-digit through five-digit octal number 
that is to be printed at the terminal when the statement 
is executed. 

Execution of a PAUSE statement causes a halt in the 
execution of the user's program. Execution can be re
sumed with the next executable statement by use of 

a START statement (see "sTART Statement"). An ex
ample of a PAUSE statement is: 

PAUSE 3 

STOP Statement 

General Form 

STOPc 

where: 

c is an optional one-digit through five-digit octal number 
that is to be printed at the terminal when the statement 
is executed. 

Execution of a STOP statement causes a halt in the 
execution of the user's program. Execution can be re
sumed only by a START statement (see "sTART State
ment") that indicates the point at which execution is 
to be resumed. Hence, the first executable statement 
after a STOP statement must be numbered. An example 
of a STOP statement is: 

STOP 77777 

Input/Output 
This section provides the information necessary for 
transmitting data between the system and the terminal. 

Introductory Information 

Most of the input/ output statements include a param
eter k that, in conventional FORTRAN systems, indicates 
the specific input or output unit to be used. However, 
because the QUIKTRAN System operates on the theory 
that all input/ output statements refer to input/ output 
devices at a terminal (i.e., keyboard, printer, card 
reader, and card punch), the k has no meaning for the 
QUIKTRAN System. It is included for compatibility with 
conventional FORTRAN processors. 

When QUIKTRAN executes a user's input statement, 
the system expects that the input records are to be 
entered from either the terminal keyboard or the termi
nal card reader. The actual input device used is deter
mined by the way the user has set the terminal switches 
(see the section "Equipment" of this publication). 
Regardless of the input device chosen, all input data 
also appears on the terminal printer. 

When QUIKTRAN executes a user's output statement, 
the system always transmits the output data to the 
terminal printer. However, the user can have his out
put also directed to other devices at the terminal by 
using the method discussed in the section "AUXOP 

Statement." 

Size of Input/Output Records 

The size of an input or output record varies with the 
device chosen. Keyboard input records and printer out-

Language 27 



put records are printed lines; each line contains a max
imum of 120 characters. Card reader input records and 
card punch output records are punched cards; each 
card contains a maximum of 80 characters (see "Pro
cedures for Card Input" for further information on the 
size of a card input record). Note, however, that if the 
user requests that the system recompose his program 
on punched cards, a maximum of 72 characters per 
card will be punched. 

For the remainder of this section, references to rec
ords as printed lines also apply to punched cards unless 
specifically stated otherwise. 

List Specifications 
The statements that cause transmission of information 
require a list of quantities to be transmitted. This list 
must be in the same order as that of the words of in
formation (for input). For output, the list determines 
the order on the output medium. 

The following example illustrates the formation and 
meaning of an input/ output list: 

A, B(3), (C(I), D(I, K), l=l, 10), ( (E(I, J), I=l, 
10, 2), F(J, 3), J=l, K) 

If this list is used with an output statement, the in
formation will be transmitted to the terminal in the 
following order: 

A, B(3), C(l), D(l, K), C(2), D(2, K), ... , C(lO), 
D( 10, K), 

E(l, 1 ), E(3, 1 ),. .. , E(9, 1 ), F(l, 3), 
E ( 1, 2), E ( 3, 2), ... , E ( 9, 2), F ( 2, 3), ... , F ( K, 3). 

Similarly, if this list is used with an input statement, 
the successive words, as they are read from the termi
nal, are placed into storage in the above sequence. 

The list reads from left to right, with repetition for 
variables enclosed within parentheses. The list items 
are separated by commas. Only subscripted or non
subscripted variables or an implied DO may appear in 
an input/ output list. The execution is exactly that of a 
Do loop, as though each left parenthesis (except sub
scripting parentheses) were a DO, with indexing given 
immediately before the matching right parenthesis and 
with the DO range extending up to that indexing infor
mation. 

An implied DO is best defined by an example. In the 
preceding input/ output list, the list item ( C (I), 
D( I, K,), I= 1, 10) is an implied DO. The range of the 
implied DO must be clearly defined by parentheses. A 
constant may appear in an input/output list only as a 
subscript or an indexing parameter. Indexing informa
tion, as in a oo, consists of three constants or integer 
variables, and the last of these may be omitted, in 
which case it is assumed to be 1. 

For an input list of the form K, (A(I), I=l, K), 
where an indexing parameter (i.e., K) appears in the 
list earlier than its actual use as an indexing parameter, 

28 

the indexing is carried out with the newly read-in 
value. However, this element must previously have 
been "set" (see "Concept of 'Set' and 'Used' Variables"). 

Any number of quantities may appear in a single 
list. During a read operation, the list controls the 
quantity of data read. If a record contains more quan
tities than there are in the list, only the number of 
quantities specified in the list are transmitted, and any 
remaining quantities are ignored. Conversely, if the 
list contains more quantities than are given on one 
BCD input record (as defined by the FORMAT state
ment), additional records are read. 

Input/Output of Entire Arrays 

When input/ output of an entire matrix is desired, an 
abbreviated notation can be used in the list of the 
input/ output statement. Only the name of the array 
need be given; the indexing information can be omitted. 
Thus, if A has previously been listed in a DIMENSION 

statement, the statement: 

READ (5, lO)A 

is sufficient to read in all of the elements of the array A. 
The elements read in by this notation are stored in 

accordance with the description of the arrangement of 
arrays in storage. Arrays are read or written in columnar 
format, with the first of their subscripts varying most 
rapidly and the last varying least rapidly. 

Carrying the illustration one step further, assume 
that A had been previously defined by the following 
DIMENSION statement: 

DIMENSION A(3, 2) 

Then, the following READ statement would be equiva
lent to the READ <5, lO)A statement shown above: 

READ (5, 10) ((A(I,J), 1=1,3),J=l,2) 

and each one would cause data to be transmitted in the 
following order: 

A( 1, 1 ), A(2, 1 ), A(3, 1 ), A(l, 2), A(2, 2), A(3, 2) 

Format Specifications 

Most of the BCD input/output statements required, in 
addition to a list of quantities to be transmitted, refer
ence to a FORMAT statement that describes the type of 
conversion to be performed between the internal 
machine language and the external notion for each 
quantity in the list. 

General Form 

FOR~1AT (s1, S2, ... 'Sn/s'1, S1

2, ••• 's'n/ ... ) 

where: 

each field, s1, is a format specification. 

The FORMAT statement specifies the types of data 
conversion to be performed. 



I. FORMAT statements can be placed anywhere in 
the source program. Each FORMAT statement must be 
given a statement number. 

2. The FORMAT statement indicates, among other 
things, the maximum size of each record to be trans
mitted. In this connection, it must be remembered that 
the FORMAT statement is used with the list of some 
particular input/output statement, except when a 
FORMAT statement consists entirely of H and/or X 
fields. In all other cases, control in the object program 
switches back and forth between the list (which 
specifies whether data remains to be transmitted) and 
the FORMAT statement (which contains the specifica
tions for the transmission of that data). 

3. Slashes are used to terminate records. In each 
case, the record length specified must be no longer 
than 120 characters. For example, FORMAT <3F9.2, 

2Fl0.4/SE14.5) specifies that the first, third, fifth, etc., 
records have the format (3F9.2, 2F10.4) and that the 
second, fourth, sixth, etc., records have the format 
(8El4.5). 

4. During the input/ output of data, the object pro
gram interprets the FORMAT statement to which the 
relevant input/output statement refers. When a speci
fication for an A-, E-, F-, 1-, or 0-type field is found, 
and list items remain to be transmitted, input/ output 
takes place according to the specification, and inter
pretation of the FORMAT statement resumes. If no items 
remain, transmission ceases and execution of that par
ticular input/ output statement is terminated. Thus, a 
BCD input/output operation ends when there are no 
items remaining in the list. 

Another example of a FORMAT statement is: 

FORMAT (12/(El2.4, Fl0.2)) 

Numerical Fields 

Four forms of conversion for numerical data are 
available: 

INTERNAL 

Real 
Real 
Integer 
Octal Integer 

TYPE 

E 
F 
I 
0 

EXTERNAL 

Real, with exponent 
Real, without exponent 
Integer 
Octal Integer 

These types of conversion are specified in the forms: 

Ew.d, Fw.d, lw, and Ow 

where: 

E, F, I and 0 

represent the type of conversion 

w 

is an unsigned integer constant that represents the field width 
for converted data; this field width may be greater than required 
to provide spacing between numbers. 

d 
is an unsigned integer or a zero that represents the number of 

positions of the field that appears to the right of the decimal 
point, not including the E exponent field, if present. 

The format of a numerical field is specified by giving, 
from left to right (beginning with the first character of 
the field): 

I. The control character ( E, F, I, or 0) for the field. 
2. The width ( w) of the field. Leading zeros in the 

integer part of an output number are suppressed, and 
a blank or a minus sign is placed in front of the first 
integer digit. If the entire integer part of the number 
is zero, the digit is zero. The specified width can be 
greater than required to provide spacing between 
numbers. 

3. The number of positions ( d) of the decimal frac
tion that appears to the right of the decimal point for 
E- and F-type conversion. If d is greater than the maxi
mum number of digits permitted by the machine (i.e., 
9 for E- and F-type conversion), the maximum number 
of digits are carried and unused digits are truncated. 

For example, the statement FORMAT n2,E12.4, oS,Fl0.4> 

might cause the following to be printed: 

12 El2.4 08 Fl0.4 
27b-0.9321Eb0257734276bbb-0.0076 

where: 

b indicates a blank space 

Specification for successive fields are separated by 
commas. A format specification that provides for more 
characters than the maximum input or output unit 
record size should not be given. Thus, a format for 
printed output should not provide for more characters 
per line (including blanks) than may be printed on 
one line by the terminal printer. 

E-, F-, I-, and 0-Conversion: E-conversion results in 
the transmission of w characters containing a real num
ber and its exponent field, e.g., 5.02E2. The exponent, 
which must be used with E-conversion, is the power of 
10 to which the number must be raised to obtain its 
true value. The exponent is written with an E, followed 
by a minus sign if the exponent is negative, or a plus 
sign or a blank, if the exponent is positive, and then 
followed by the two numbers that are exponent. For 
example, the number .002 is equivalent to the number 
.2E-02. 

F -conversion results in the transmission of w char
acters containing a real number only. 

I-conversion results in the transmission of w charac
ters containing an integer number of up to ten decimal 
digits. 

When an output number converte<l hy E-, F-> or T
conversion requires more spaces than are allowed by 
the field width w, the excess on the high-order side is 
lost and no rounding occurs. When the number requires 

Language 29 



fewer than w spaces, the leftmost spaces are filled with 
blanks. vVhen the number is negative, the space pre
ceding the leftmost digit contains a minus sign if suffi
cient spaces have been reserved. 

0-conversion results in the transmission of w charac
ters of octal information. If w > 12, only the twelve 
rightmost characters are transmitted and w-12 blanks 
precede the field (output) or w-12 preceding charac
ters are skipped (input). If w< 12, the rightmost w 
characters of the word are transmitted (output) or the 
next w characters are right-adjusted in the word and 
the word is filled out on the left with zeros (input). 

The field width w for E- and F-conversion of output 
must include a space for the decimal point and a space 
for the sign. Thus, for E-conversion, w>d +7, and for 
F-conversion, w>d +3. 

Information to be transmitted with 0-conversion may 
be given either a real name or an integer variable name; 
information to be transmitted with E- and F-conversion 
must have real names; information to be transmitted 
with I-conversion must have an integer name. The 
names must be used as specified above; any other prac
tice is invalid. 

Alphameric Fields 

QUIKTRAN provides two specifications to transmit alpha
meric information: Aw and nH. Both result in storing 
the alphameric information internally in BCD form. 

1. The specification Aw causes w characters to be 
read into, or written from, a variable or array name, 
without conversion. 

2. The specification nH introduces alphameric in
formation into a FORMAT statement. 

The basic difference between A- and H-conversion is 
that information handled ·by A-conversion is given a 
variable name or an array name and, hence, can be re
ferred to by this name for processing and modification, 
whereas information handled by H-conversion is not 
given a name and, therefore, cannot be referred to or 
manipulated in storage in any way. 

A-Conversion: The variable name to be converted by 
A-conversion must conform to the normal mies for 
naming QUIKTRAN variables; the name may be any type. 

1. Input: nA w means that the next n successive fields 
of w characters each are to be stored as BCD informa
tion. If w>6, only the six rightmost characters are sig
nificant. If w<6, the characters are left-adjusted, and 
the word is filled out on the right with blanks. 

2. Output: nAw means that the next n successive 
fields of w characters each are to be the result of trans
mission from storage without conversion. If w > 6, only 
six characters of output are transmitted, preceded by 
w-6 blanks. If w < 6, the w leftmost characters of the 
word are transmitted. 

30 

H-C onversion: The specification nH is followed in 
the FORMAT statement by n alphameric characters, as 
seen in the following: 

31HbTHISbISbALPHAMERICbINFORMATION 

Blanks are considered alphameric characters and 
must he included as part of the count n. The effect of 
nH depends on whether it is used with input or with 
output. 

1. Input: The n characters are extracted from the 
input record and replace the n characters immediately 
following the character H in the FORMAT specification. 

2. Output: The n characters following the character 
H in the specification, or the characters that replaced 
them, are written as part of the output record. 

For example, the statement, FORMAT (4HbxY=, 
F8.3,A8i, might produce the following lines: 

XY = b-93.210bbbbbbbb 
XY = 9999.999bbOVFLOW 
XY = bb28.768bbbbbbbb 

This example assumes that there are steps in the 
source program that read the data (i.e., ovFLow), store 
this data in the word to be printed (as six BCD charac
ters) in the format AB when overflow occurs, and store 
six blanks in the word when overflow does not occur. 

Blank Fields-X-Conversion 

The specification nX affects an input or an output 
record, as follows: 

1. Input: nX causes n characters in the input record 
to be skipped. 

2. Output: nX causes n blanks to be introduced into 
the output record. 

Repetition of Field Format 

It may be desired to transmit n successive fields within 
one record in the same format. This may be done by 
specifying n, an unsigned integer constant, before A, 
E, F, I, or 0. The following format field will then be 
repeated n times. Thus, the field specification 3E12.4 
has the same effect as the specification E12.4, E12.4, E12.4. 

Repetition of Groups 

A limited parenthetical expression is permitted to en
able repetition of data fields according to certain for
mat specifications within a longer FORMAT statement 
specification. The first character in the expression 
specifies the number of repetitions and is known as 
the group count. Thus, FORMAT <2CF10.6,El0.2l,Hl is 
equivalent to FORMAT (Fl0.6,El0.2,Fl0.6,El0.2,14). 

Multiple-Record Formats 

To deal with a block of more than one record, a 
FORMAT specification may have several different one
record formats, each separated by a slash (I) to in
dicate the beginning of a new record. 



Thus, the statement FORMAT c3F9.2,2F10.418El4.5) 
would specify a multirecord block in which records 
1, 3, 5, ... , have the format C3F9.2,2F10.4>, and records 
2, 4, 6, ... , have the format c8E14.5). 

If a multirecord format is desired in which the first 
n records are to have particular formats and all re
maining records are to have another format, the speci
fication for the latter should be enclosed in a second 
pair of parentheses; for example: 

FORMAT ( 12, 3El2.4/2FI0.3, 3F9.4/ ( IOF12.4)) 

Thus, in the above example, the first record has the 
format n2,3E12.4>; the second record has the format 
C2F10.3,3F9.4>; all remaining records needed to satisfy 
the list of the input/output statement have the format 
OOF12.4). 

NoTE: The list of an input/output statement always 
controls the number of items (and, hence, the number 
of records) that will be transmitted. If the FORMAT 
statement specifies more items than the list, data trans
mission is terminated when the list is exhausted. If 
the list specifies more items than the FORMAT state
ment, the FORMAT statement is recycled; i.e., a new 
record is read and the format is interpreted from the 
last left parenthesis of the FORMAT statement. How
ever, assuming that the list specifies more than one 
record, it is the FORMAT statement that indicates at 
what point a new record is to be transmitted. Those 
sequences in a FORMAT statement that lie between a 
left parenthesis and a slash, a slash and a slash, an 
initial left parenthesis and a final left parenthesis, or 
a slash and a final left parenthesis are said to deter
mine the format for one complete record. 

Blank Records: Blank records may be introduced 
into a multirecord FORMAT statement by listing con
secutive slashes. When n consecutive slashes are en
countered at the end of a FORMAT statement, they 
have the following effect: for input, n records are 
skipped; for output, n blank records are written. When 
n consecutive slashes are encountered in the middle of 
a FORMAT statement, then for input, no further items 
are taken from the current record and n-1 additional 
records are skipped; for output, after the current 
record item has been written, n-1 blank records are 
written. 

Data Input to the Object Program 

Data input to the object program is prepared accord
ing to the following specifications: 

I. The data must correspond in order, type, and 
field, to the field specifications in the FORMAT statement. 

2. Plus signs can be omitted, or they can be indi
cated by a blank. 

3. Blanks in numerical fields are regarded as zeros. 

4. Numbers for E- and F-conversion can contain 
any number of digits, but only the high-order digits 
are retained. For E- and F-conversion, the number is 
rounded to the eight high-order digits of accuracy. 

To permit economy in typing and punching, certain 
relaxations in input data format are permitted: 

I. Numbers for E-conversion need not have four 
columns occupied by the exponent field. The start of 
the exponent field must be marked by the E or, if 
that is omitted, by a + (plus) or a - (minus), not 
a blank. Thus, E2, E+2, +2, +02, and E+02 are 
all permissible exponent fields. 

2. Numbers for E- and F-conversion need not have 
the decimal point punched. If it is not punched, 
the FORMAT specification supplies the number of deci
mal places expected. For example, the number 
- 09321+2 with the specification E12.4 is treated as 
though the decimal point had been punched between 
the 0 and the 9. If the decimal point is punched on 
the card, its position overrides the position indicated 
in the FORMAT statement. 

Execution of Input/Output Statements 

Input Execution 

\Vhen an input statement is executed, the system asks 
for entry of the input data (by typing Innn, where nnn 
is the statement number of the associated FORMAT 
statement). The user enters the record and signals that 
the end of the record has been entered by transmitting 
EOB (if the card reader is used for input, an EOB can 
be transmitted in any one of three different ways; 
see ,.Procedures for Card Input" for additional infor
mation). The system then resumes control, accepting 
the record according to the input specifications. If 
more than one input record is required to satisfy the 
list, the system requests another input record. This 
process continues until the user's input specifications 
have been satisfied, at which point the system resumes 
with the execution of the rest of the program. 
NOTES: 

I. If an EOB is transmitted before an input record 
has fully satisfied the requirements of the FORMAT 
statement, an error message is printed at the terminal. 
Conversely, if an input record is longer than that re
quired by the FORMAT statement, the excess characters 
are ignored by the system. 

2. If, for some reason, the execution of an input 
statement is only partially completed, it might be ex
pected that all the variables in the list of the input 
statement would remain unchanged. However, this 
is not the case; all variables appearing in the input 
list prior to the point of termination, will have new 
values assigned to them. Of these variables, only those 

Language 31 



which were previously "set" may now be "used" (see 
"Concept of 'Set' and 'Used' Variables"); those that 
were "not set" remain "not set." 

011tput Execution 

When an output statement is executed, the system 
transmits the output data to the terminal in accordance 
with the user's specifications. If more than one line of 
output is required, the transmission is continuous (one 
record per line ) . The first line of output is identified 
by Onnn (where nnn is the statement number of the 
associated FORMAT statement). Subsequent lines of out
put are sequentially numbered (beginning with the 
number 2) in print positions 7 through 12. The out
put operation continues until all of the data specified 
by the output list has been transmitted. Execution of 
the user's program then resumes with the next exe
cutable statement. 

Periodically, during the flow of output data to the 
terminal, the PROCEED light will be set on by the 
system (this occurs only if the KEYBOARD switch 
at the terminal is set to the SEND position). During 
these periods, the user can interrupt the flow of output 
data if he desires (see "Interrupting Execution"). 

NOTE: In the QUIKTRAN System, the terminal printer 
carriage cannot be controlled by the user's program. 
Terminal printer output is always single spaced or 
double spaced depending on the manner in which the 
carriage has been set up. 

Input/Output Statements 
The QUIKTRAN input/ output statements do not provide 
for the reading and writing of data in binary form. 
All input and output is considered to be BCD infor
mation. 

PRINT Statement 

General Form 

PRINT n, list 
where: 

n is the statement number of a FORMAT statement. If n 
is 0, QUIKTRAN assumes that there is no FORMAT state
ment. 
list specifies the quantities to be transmitted. 

This statement can be used with or without a FORMAT 
statement. If n is a statement number, then the values 
of the items on the list are written on the terminal 
printer in accordance with FORMAT statement n. 

If n is 0, then the values of the items in the list will 
be written on the terminal printer either in accordance 
with the specifications set by the system (i.e., E15.8 for 
real values and 112 for integer values) or in accordance 
with the specifications set by the user in an EDIT state
ment (see "EDIT Statement"). Only numerical values 
can be transmitted for this use of the PRINT statement. 

32 

Some examples of the use of the PRINT statement are: 
PRINT 2, (AC(I), I=l, 10, 2) 
PRINT 0, TEMP, LAST, X(J) 

PUNCH Statement 

General Form 

PUNCH n, list 

where: 
n is the statement number of a FORMAT statement. 
list specifies the quantities to be transmitted. 

This statement causes the items in the list to be 
written on the terminal printer ( and the punch unit, 
only if selected by an AUXOP statement; see "AUXOP 
Statement") in the format specified by statement n. If 
this statement is used, its associated FORMAT statement 
must not specify more than 80 characters per record, 
regardless of which output unit is selected. 

Some examples of the use of the PUNCH statement 
are: 

PUNCH 10, A, I, J(3) 
PUNCH 12,(A(I), I=l, 10, 3) 

READ(lc, n) Statement 

General Form 

READ ( k, n) list 

where: 
k is the number of an input unit. 
n is the statement number of a FORMAT statement. 
list specifies the quantities to be transmitted. 

This statement causes data to be read from the cur
rently selected input unit (keyboard or card reader) 
and to be assigned as the values of the variables in the 
list. Some examples of the use of this statement are: 

READ (7, 3) M, A(J) 
READ(5, 8) JOBNO, X, Y 

READ n Statement 

General Form 

READ n, list 

where: 
n may be the statement number of a FORMAT statement. 
If n is 0, QUIKTRAN assumes that there is no FORMAT 
statement. 
list specifies the quantities to be transmitted. 

This statement can be used either with or without 
an appropriate FORMAT statement. When used with a 
FORMAT statement, data is read in from the currently 
selected input unit (keyboard or card reader) and is 
assigned as the values of the variables in the list. If 
this statement is used, the list and its associated FORMAT 
statement (if any) must not specify more than 80 
characters per record. 

N onf ormatted Input: If n is 0, this statement causes 
only numerical fields to be read from the currently 



selected input device and their values to be assigned 
according to the list specification. 

For the purposes of this discussion, a numerical field 
is one that consists of a string of numerical characters 
preceded by a "separator" character (i.e., + - I = ) 
and followed by either another separator character 
or a nonnumerical character. 

A string of numerical characters can consist of one 
or more decimal digits 0 through 9 and ( if necessary) 
either a decimal point or a decimal point and an E 
(in proper combination for E-conversion). 

QUIKTRAN always assumes that column 1 of each in
put record is preceded by a ''separator" character. Thus, 
a string of numerical characters beginning in column 1 
would be a valid numerical field. 

The "separator" characters + and - also serve to 
indicate the sign of a numerical field. An unsigned nu
merical field is assumed to be positive. 

The foregoing discussion is illustrated by the follow
ing examples: 

1. Statement: READ O,I,J,K,W 
Input: TAB/5,ENT/3,HRS=lO,WT= -15.6 
Result: variable 'I'= +5 

variable T = + 3 
variable 'K' = + 10 
variable 'W' = -15.6 

2. Statement: READ O,I,J,C 
Input: IN A5/IN B/6IN C=7 IN D-54 
Result: variable 'I'= +6 

variable T = + 7 
variable 'C' = -54 

3. Statement: READ O,A,I,X( J) 
Input: ////// //l.2/2/-567.5E-10 
Result: variable 'A'= + 1.2 

variable 'I'= +2 
variable 'X(J )'= - .0000005675 

WRITE (le, n) Statement 

General Form 

WRITE ( k, n ) list 

where: 

k is the number of an output unit. 
n is the number of a FORMAT statement. 
list specifies the quantities to be transmitted. 

This statement causes the values of the items in the 
list to be written on the terminal printer, Some examples 
of the use of this statement are: 

WRITE (7, 5) K, A(L) 
WRITE ( 5, 3) JOBNO, ANS, X 

BACKSPACE, END FILE, and REWIND Statements 

These statements have no meaning in the QUIKTRAN 

language. However, they are not rejected by the sys
tem. They are retained as part of the user's program 
but they produce no effect. 

Operating Statements 
The operating statements enable the user to control, 
modify, test, and display programs. Because of their 
nature, operating statements are not retained as part of 
the user's program. However, some operating state
ments also function as system subroutines (see "Pro
gram Called Services"), and when so used they are 
retained as part of the user's program. 

The acceptable forms and purpose of each statement 
are discussed later in this section. The following table 
gives the meaning of the symbols used to identify the 
arguments in the operating statements: 

SYMBOL TYPE OF ARGUMENT 

d real constant set by the user; its value must lie 
between 0.1 and 10.0 inclusive 

g line number 
h line number or statement number; if a statement 

number is substituted for h, it can be adjusted 
in the form n + c (where c is an integer con
stant whose value lies between 1 and 10 in
clusive). For example, if the user wished to 
refer to the third statement after the statement 
identified by number 25, then the expression 
25 + 3 could be substituted for h. 

n statement number 
u name of a program 
v nonsubscripted variable name 

Any argument( s) associated with an operating state
ment must be enclosed within one set of parentheses. 
If more than one argument is used with a statement, 
the arguments must be separated by a comma. The 
argument(s) may specify a particular program name, 
variable, statement, or region of a program. If a region 
is to be specified, two arguments indicating the bound
ary points of the region must be used. All boundary 
points are considered as part of a region. 

Control Statements 

Program Control Statements 

There are four program control operating statements: 
COMMAND, LOAD, SA VE, and PURGE. If a SA VE, LOAD, 

or PURGE statement is used, the user's identification 
code must be active or else the statement will not 
take effect (see "Terminal Commands"). 

COMMAND Statement 

General Form 

COMMAND 

Language 33 



The COMMAND statement places the terminal into the 
command mode. \Vhen the COMMAND statement is 
used, the active program image is destroyed. If an 
active program is to be recalled later, the COMMAND 
statement must be preceded by a SA VE statement (see 
"sA VE Statement"). 

LOAD Statement 

I General Form 

LOAD(u) 

The LOAD statement can be used only when the ter
minal is in the command mode; an error is indicated 
if it is used when the terminal is in the program mode. 
The LOAD statement causes the terminal to enter the 
program mode while specifying that a program or 
subprogram is to be placed in active status. Thus, the 
argument u must be the name of any program, sub
routine, or function in the user's library. An example 
of the use of the LOAD statement is: 

LOAD ( ZMUL T) 

As a result, the program that had been "saved" (see 
"sAVE Statement") under the name of ZMULT would 
be made active at the terminal. 

SAVE Statement 

General Forms 

SAVE 
SAVE (u) 

The SAVE statement places the currently active pro
gram or subprogram into the user's library. If no 
argument is specified, the current program name is 
used. If an argument is specified, then the currently 
active program is assigned to the user's library under 
the name given by the argument (i.e., u). However, 
the name in the program defining statement of the 
"saved" program remains unchanged. 

After a SA VE statement has been executed, the pro
gram or subprogram that was "saved" remains active 
at the terminal under its original name. For example, 
assume that the currently active program is named 
ALPHA; then the statement: 

SAVE (BETA) 

would cause the active program to be added to the 
user's library under the name of BET A. Any existing 
program in the library that had been occupying the 
space reserved for the name BETA is thus replaced. If 
there had not been space reserved for the name BETA, 
then space is created when the SAVE <BETA) statement 
is executed. However, the active image of the program 
is still called ALPHA, so that if a subsequent SA VE 
without an argument is given, the currently active 
program is "saved" under the name of ALPHA. 

34 

The name under which a program is "saved" may 
be the argument of a future CALL or LOAD statement. 

PURGE Statement 

I General Form 

PURGE (u) 

The PURGE statement removes the named program 
or subprogram (i.e., u) from the user's library. After 
this statement is used, the specified program or sub
program is no longer available to the user and, thus, 
must not be the argument of a future CALL or LOAD 
statement. An example of the use of the PURGE state
ment is: 

PURGE ( PROGNM) 

Execution Control Statements 

The four execution control operating statements are: 
START, RESET, CLEAR, and XEQER. 

ST ART Statement 

General Forms 

START(O) 
START(h) 
START 

The START statement initiates execution of the cur
rently active program or subprogram. There are three 
forms in which this statement may be used: 

I. The START@ statement initiates execution of a 
program or subprogram from its beginning (i.e., from 
the first executable statement). 

2. The START(h) statement initiates execution at the 
particular statement specified by h (where h is a line 
or statement number). 

3. The START statement with no argument resumes 
execution of a program after a termination of execu
tion has occurred. (This statement must not be used 
to initiate execution; in other words, it can be used 
only to resume execution after an interruption has 
occurred. ) Execution resumes at the next executable 
statement following the point of termination. This 
statement can be used in all cases of termination ex
cept when termination was caused by a STOP or END 
statement, in which case a START(h) statement must 
be used to resume execution. 

An example of the use of a START statement is: 

START(l43.) 

where the argument, 143., is the line number of the 
first statement to be executed. 

One of the following status words is printed at the 
terminal to indicate the cause of a termination of 
execution: 



Status Word PAUSE: Indicates that execution was 
terminated because a PAUSE statement was encountered 
in the program (see "PAUSE Statement"). 

Status Word STOP: Indicates that execution was 
terminated because a STOP statement was encountered 
in the program (see "sTOP Statement"). 

Status Word HALT: Indicates that execution was 
terminated because the last physical statement of the 
program was encountered. 

Status Word BREAK: Indicates that execution was 
interrupted by the user (see "Interrupting Execution"). 
This status word is accompanied by a message specify
ing the line number of the last statement executed. 

Status Word XEQER: Indicates that termination oc
curred because an error was encountered while the 
program was being executed. This status word is ac
companied by a message specifying the line number 
of the statement that caused the error along with the 
nature of the error. 

RESET Statement 

I General Form 

RESET 

The RESET statement cancels the effects produced 
by the execution of the active program or any of its 
parts. The RESET statement causes the s}'stem to regard 
all statements as "not used" and all variables as "not 
set" and "not used" (see "Concept of 'Set' and 'Used' 
Variables"). 

The service provided by the RESET statement can be 
made a permanent part of the user's program because 
this service also functions as a system subroutine ( see 
"Program Called Services" for details). 

CLEAR Statement 

I General Form 

CLEAR 

The CLEAR statement cancels the effect of all previous 
test statements (except a TRAIL statement - see "Test 
Statements"), and also causes the system to regard all 
statements as "not used" and all variables as "not set" 
and "not used." In other words, specifying the CLEAR 
statement is equivalent to specifying SNAPX, TRAPX, 
GUARDX, STEPX, and RESET. Note that the CLEAR state
ment also cancels the effect of test services that have 
been in use as system subroutines. 

The service provided by the CLEAR statement can be 
made a permanent part of the user's program because 
this service also functions as a system subroutine (see 
"Program Called Services"). 

XEQER Statement 

General Forms 

XEQER (FINISH) 
XEQER 

The XEQER statement specifies possible options for 
the system when an error is encountered in program 
execution. There are two forms in which this statement 
may be used: 

1. The XEQER <FINism statement specifies that, if an 
error is encountered during execution, execution is 
terminated, the terminal reverts to the command mode, 
and the user's identification code is deactivated. 

2. The XEQER statement with no argument specifies 
that each error encountered during execution is to be 
treated according to the standard procedure; i.e., each 
error returns control to the user with an appropriate 
message accompanying the XEQER status word (see 
"sTART Statement" for a discussion of this status word). 

Form Control Statements 

The three form control operating statements are: 
AUXOP, DELTA, and EDIT. 

AUXOP Statement 

General Forms 

AUXOP(PUNCH) 
AUXOP(PR2) 
AUXOP 

The AUXOP statement can be used to specify that an 
additional terminal device is to be used for registering 
output (output is also always registered on Printer 1). 
There are three forms in which this statement may be 
used: 

1. The AUXOP<PUNCm statement specifies that the 
card punch is to be used for registering output. 

2. The AUXOP<PR2> statement specifies that the auxil
iary printer (i.e., Printer 2) is to be used for registering 
output. 

3. The AUXOP statement with no parameters specifies 
that output transmission is to revert to the standard; 
i.e., output is to be sent only to Printer I. 

Note that for the first two forms to take effect, the 
terminal switches for PRINTER 2 or PUNCH 1 must 
be set to RCV. This setting should be made immedi
ately after the corresponding AUXOP statement has been 
entered. At the time that the third form of the AUXOP 
statement is given, the switch for the auxiliary device 
that was in use should be in the OFF position. 

Only one auxiliary device can be in use at one time. 
The publication System Operation Reference Manual; 
IBM 1050 Data Communication System, Form A24-
3020, contains detailed information about these auxil
iary devices. 

Language 35 



DELTA Statement 

General Forms 

DELTA(d) 
DELTA(d1, d2) 
DELTA 

The DEL TA statement specifies an increment for the 
system to use in generating line numbers. Initially, 
the system uses a standard increment of 1.0 for gen
erating line numbers in the READY status and .1 for 
generating line numbers in the ALTER status. There are 
three forms in which this statement may be used: 

1. The DELTA( d) statement specifies an increment 
(i.e., d) to be used by the system for generating line 
numbers in the READY status. 

2. The DELTA( di, d 2 ) statement specifies the follow
ing: 

d 1 is an increment to be used by the system for 
generating line numbers in the READY status. 
If the standard increment is desired, d1 must 
be specified as 0 or 1. 

d 2 is an increment to be used by the system for 
generating line numbers in the ALTER status. 

For example, if the user wants the standard increment 
in the READY status but an increment of .5 in the ALTER 

status, the statement, DELTA co, .5), would be used. 
3. The DELTA statement with no arguments specifies 

that the system is to revert to the standard increments. 

EDIT Statement 

General Forms 

EDIT(f) 
EDIT ( f1, f 2) 
EDIT 

where: 

f, f1, and f2 are format specifications f.or numerical fields. 

The EDIT statement is used to specify an output for
mat for all real and integer variables that are not under 
control of a FORMAT statement. 

Initially, each terminal is set to the standard formats 
of E15.8 for real variables and 112 for integer variables. 
These formats are used for the output of all variables 
not under control of a FORMAT statement. The formats 
specified in the EDIT statement replace the standard for
mats for the terminal (or those specified in a previous 
EDIT statement). 

If one argument appears after the EDIT (i.e., if the 
EDIT ( f) form of the statement is used), then the argu
ment, f, may be either a real or integer format speci
fication. 

If two arguments appear after the EDIT (i.e., if the 
EDIT(fi, f2,) form of the statement is used), then one 
argument must be a real format specification and the 

36 

other an integer format specification. In other words, 
if f1 is a real format specification, f2 must be an integer 
format specification; if f1 is an integer format specifi
cation, f2 must be a real format specification. 

If no arguments appear in an EDIT statement, then 
the system reverts to the standard format specifications. 

The service provided by the EDIT statement can be 
made a permanent part of the user's program because 
this service also functions as a system subroutine (see 
"Program Called Services" for details ) . 

The EDIT statement may be used in both the com
mand and program modes. However, a particular EDIT 

statement is effective only for the mode in which it has 
has been specified. 

An example of an EDIT( f d:.!) statement is: 

EDIT (15, F8.2) 

Modification Statements 

These operating statements provide a means for modi
fying the program. The user employs these statements 
to add, change, delete, and renumber program state
ments. The three modification statements are ALTER, 

ALTERX, and NUMBER. 

ALTER Statement 

General Forms 

ALTER(h) 
ALTER(O, h) 
ALTER(h1, h2) 

The ALTER statement permits the user to insert, re
place, or delete a program statement or a series of 
program statements. 

A particular ALTER statement, and any subsequent 
program statements associated with it, is known as an 
"alter sequence." Each program statement in an "alter 
sequence" is assigned a line number. These line num
bers are incremented either by the standard increment 
of .1 or by the increment specified in a previous DELTA 

statement (see "DELTA Statement"). A particular "alter 
sequence" is terminated by another ALTER statement 
(in which case another "alter sequence" would be in
itiated) or by an ALTERX statement (see "ALTERX State
ment"). 

An ALTER statement places the terminal into the 
ALTER status. The terminal remains in this status until 
an AL TERX statement is used, at which point the ter
minal reverts to the READY status. 

NoTE: The following is an exception to this rule: 
when the last statement in a program is deleted, state
ments may be inserted in the ALTER status up to the 
highest line number that was reached previously. If and 



when this point is reached in the ALTER status, the ter
minal will automatically revert to the READY status. 

There are three forms in which the ALTER statement 
can be used: 

I. The ALTER( h) form of the statement specifies that 
the subsequent statements in the "alter sequence" are 
to be inserted into the program beginning at line or 
statement number h (where h must not be associated 
with another statement in the program). For example, 
if a statement were to be inserted between the state
ments identified by line numbers 149. and 150., an 
ALTER<H9.u statement would enable this to be done, 
provided that 149.l was not already associated with a 
statement. 

2. The ALTER ( 0, h) form of the statement specifies 
that the region of the program, beginning with the first 
statement after the program-defining statement and 
ending with the statement identified by h, is to be de
leted. Any subsequent program statements in the "alter 
sequence" will replace the deleted region with the first 
inserted statement assigned the line number of the first 
deleted statement. 

3. The ALTER(hb h:!) form of the statement specifies 
that the region of the program, beginning with the 
statement identified by h 1 and ending with the state
ment identified by h 2 , is to be deleted. 

NoTE: If h:! is equal to hi, then only one statement 
will be deleted. 

Any subsequent statements in the "alter sequence" 
will replace the deleted region beginning at h 1• 

Program defining statements cannot be "altered." 
Status Word ALTER: After an ALTER statement has 

been entered, the system prints the status word ALTER 
at the terminal. The user may then begin typing any 
subsequent statements of the "alter sequence." 

ALTERX Statement 

General Form 

ALTERX 

The ALTERX statement terminates an "alter se
quence." Immediately after the entry of an ALTERX 
statement, one or both of the following may occur: 

1. If the first executable statement in the user's pro
gram had been entered at some point prior to the 
entry of the ALTERX statement, then any storage re
quired by the "alter sequence" would be allocated at 
this time. Any errors encountered during this process 
are listed at the terminal accompanied by the status 
word ERROR. 

2. If an END statement had been entered at some 
point prior to the entry of the ALTERX statement, a 
check for completeness errors is made at this time. 

If any completeness errors are found, they are listed 
at the terminal accompanied by the status word ERROR. 

After all required storage allocation and error check
ing has been done, the terminal reverts to the READY 
status. (For a detailed discussion of the above pro
cedures, see the section "Status Word ERROR.") 

"Altering" the Type of a Variable: If reference to a 
variable has not been made, the type of that variable 
can always be changed by an appropriate INTEGER or 
REAL statement. However, if it is necessary to change 
the type of a variable after reference to it has been 
made, the following method may be used: 

1. Delete all references to the variable by way of 
an "alter sequence." 

2. Terminate the "alter sequence" by an ALTERX. 
3. Through another "alter sequence," insert the ap

propriate type-defining statement at the desired point 
in the program. 

4. As part of that same "alter sequence," or of an
other, if necessary, replace the previously deleted ref
erences to the variable. 

An analogous procedure can be used if it is neces
sary to change a variable to an array or an array to 
a variable. 

NUMBER Statement 

General Forms 

NUMBER 
NUMBER(g) 
NUMBER( g. d) 

The NUMBER statement causes the system to renum
ber sequentially (by line numbers) all statements in 
the active program. There are three forms in which 
this statement can be used: 

1. The NUMBER statement with no arguments speci
fies that the line number of the first statement is to 
remain unchanged, but all subsequent statements are 
to be assigned new line numbers. The new line num
bers will be determined either by the standard incre
ment of 1.0 or by an increment specified in a DELTA 
statement. 

2. The NUMBER(g) statement specifies that the first 
statement in the program is to be assigned line num
ber g and all subsequent statements are to be renum
bered according to either the standard increment of 
1.0 or the increment specified in a DELTA statement. 
If g is specified as 0, this statement will produce the 
same results as those described in item 1 above. 

3. The NUMBER(g, d) statement specifies that the 
first statement in the program is to be assigned the 
line number g and all subsequent statements are to 
be renumbered according to the increment specified 
by d. If g is specified as 0, then the line number of 
the first statement remains unchanged and all sub-

Language 37 



sequent line numbers will be changed according to 
the increment d. 

When a NUMBER statement is executed, the system 
automatically produces a new program listing which 
shows the effect of the renumbering. The user can 
interrupt this listing process if he desires (see "Inter
rupting Execution"). Partiai program iistings can be 
obtained by using a LIST statement (see "usT State
ment"). 

Test Statements 
The test operating statements provide a means by 
which the user can selectively control the execution 
of his program. He can closely follow the flow of the 
program, and be kept informed of all changes in the 
values of variables. 

There are five test statements: SNAP, TRAP. GUARD, 

STEP, and TRAIL. The service provided by each of these 
statements remains in effect only as long as the user 
wants it to. An X appended to a test statement will 
cancel its effect. That is, a SNAPX statement cancels the 
effect of the corresponding SNAP statement; a TRAPX 

statement cancels the effect of the corresponding TRAP 

statement, etc. These X-type statements are constructed 
in the same way that the parent statements are con
structed (i.e., an X-type statement must have the same 
number of arguments as its parent statement). The 
same conventions apply to the arguments in an X-type 
statement as they do to those in the parent statement. 

The service provided by each of the test statements 
( X-type included) can be made a permanent part of 
the user's program because each can also be used as a 
system subroutine (see "Program Calleo Services"). 

SNAP Statement 

General Forms 

SNAP 
SNAP(h) 
SNAP(h1, h2) 
SNAP(v) 

Each form of the SNAP statement essentially performs 
the same service; i.e., each causes the printing of the 
value of the leftmost variable of an arithmetic assign
ment statement whenever that value changes during 
execution. The forms differ only in the range over 
which they remain in effect. This difference allows the 
user to determine what regions of his program are to 
be serviced by the SNAP statement. 

The table below gives each form of the SNAP state
ment and its corresponding range. Note that a SNAPX 

statement always nullifies the effect of a corresponding 
SNAP statement over the region specified by the argu
ments of the SNAPX statement. 

38 

FORM 

SNAP 
SNAP(h) 

SNAP(v) 

RANGE 

In effect for the entire program. 
This statement services the region bounded 
by statement h and the end of the program. 
If h is specified as 0, the region serviced is 
the entire program. 
In effect for the region bounded by h1 and 
h2. If h1 is specified as 0, the region extends 
from the beginning of the program up to and 
including statement hz. If hi is equal to h2, 
the region consists of only one statement. 
The region serviced by this statement consists 
of every arithmetic assignment statement in 
which the variable specified by v appears at 
the left of the equal sign. 

An example of each form is given below: 

SNAP 
SNAP(6+2) 
SNAP( 201. , 210. 5) 
SNAP(VARIB) 

Note that the second example contains an adjusted 
statement reference. In this case, the SNAP takes effect 
with the second statement following statement 6. Only 
references by statement numbers may be adjusted in 
this way. 

Status Word SNAP: During execution, when a mes
sage is printed at the terminal as a result of a SNAP 

service, the message is always preceded by the status 
word SNAP. 

TR.AP Statement 

General Forms 

TRAP 
TRAP(h) 
TRAP( hi, hz) 

Each form of the TRAP statement essentially performs 
the same service; i.e., each causes the printing of the 
origin (line number only) and destination (line and 
statement number) of every transfer that takes place 
during program execution. The forms differ only in the 
range over which they remain in effect. This difference 
allows the user to determine what regions of his pro
gram are to be serviced by the TRAP. 

The table below gives each form of the TRAP state
ment and its corresponding range. Note that a TRAPX 

statement always nullifies the effect of a corresponding 
TRAP over the region specified by the arguments of the 
TRAPX statement. 

FORM 

TRAP 
TRAP(h) 

RANGE 

In effect for the entire program. 
This statement services . the region bounded 
by statement h and the end of the program. 
If h is specified as 0, the region serviced is 
the entire program. 
This statement services the region bounded 
by hi and h2. If h1 is specified as 0, the region 
extends from the beginning of the program 
up to and including h2. If hi is equal to h2, 

the region consists of only one statement. 



An example of each form follows: 
TRAP 
TRAP(26+5) 
TRAP(O, 117.) 

Note that the second example contains an adjusted 
statement reference. In this case, the TRAP ~ervice 

would take effect with the fifth statement following 
statement 26. Only references by statement numbers 
may be adjusted in this manner. 

Status Word TRAP: During execution, when a mes
sage is printed at the terminal as a result of a TRAP 

service, the message is always preceded by the status 
word TRAP. 

GUARD Statement 

General Forms 

GUARD 
GUARD(h) 
GUARD(hi, h2) 

Each form of the GUARD statement essentially per
forms the same service; i.e., each causes the system to 
treat certain regions or statements in the program as 
"guarded." When a "guarded" region or statement is 
encountered during execution, the system does not exe
cute it. Rather, it prints a message at the terminal in
dicating that a "guarded" region has been reached and 
then returns control to the user (indicated by the 
printing of the status word READY) . If the user then 
types START, the first statement in the "guarded" region 
is executed, after which control is again returned to the 
user. Another START would then cause the next 
"guarded" statement to be executed and so on. When 
the end of the "guarded" region has been reached, 
execution continues in the normal fashion. 

NoTE: The system always treats a called subprogram 
as "not guarded," regardless of what was specified. 

The table below gives each form of the GUARD state
ment and its corresponding range (i.e., the region it 
"guards"). Note that a GUARDX statement always nulli
fies the effect of a corresponding GUARD over the region 
specified by the arguments of the GUARDX statement. 

FORM 

GUARD 
GUARD(h) 

RANGE 

The region "guarded" is the entire program. 
The region "guarded" is bounded by state
ment h and the end of the program. If h is 
specified as 0, the entire program is "guarded." 

GUARD(hi,h2) The region "guarded" is bounded by hi and 
h2. If hi is specified as 0, the region extends 
from the beginning of the program up to 
and including h2. If hi equals h2 the region 
"guarded" is only one statement. 

An example of each form follows: 
GUARD 
GUARD(l79.) 
GUARD(22+3, 56) 

Note that the third example contains an adjusted state
ment reference. In this case the "guarded" region 

would begin with the third statement after statement 2 
and end with statement 56. Only references by state
ment numbers may be adjusted in this manner. 

Status Word GUARD: Before a statement within a 
region specified by a GUARD statement is executed, a 
message is printed at the terminal. The message is 
always preceded by the status word GUARD. 

STEP Statement 

, -General Form 

STEP 

The STEP statement permits the user to interrupt the 
flow of output caused by a SNAP, TRAP, or a program 
output statement, whenever he chooses to do so. Use 
of the STEP statement causes the PROCEED light to 
be turned on after each line of output has been printed, 
provided that the KEYBOARD switch is in the SEND 
position. While this light is on, the user can interrupt 
the current operation (see "Interrupting Execution" 
for the exact procedure). 

A STEPX statement nullifies the effect of a STEP 

statement. 

TRAIL Statement I General Form 

TRAIL 

The TRAIL statement causes a message to be printed 
at the terminal whenever the active program transfers 
control to a function, a subroutine, or a program in 
the user's library. 

A TRAILX statement nullifies the effect of a TRAIL 

statement. 

Display Statements 
The display operating statements permit the user to 
obtain information about a program at any stage of 
its composition or execution. The information printed 
through the use of display statements enables the user 
to analyze the progress of his program. This informa
tion includes, for example, listings of statements, de
fined variables, unused variables, and unexecuted 
statements. When constructing a program, the infor
mation produced by display statements enables the 
user to detect errors and omissions. When executing 
a program, the user can employ display statements to 
observe the effect of the execution on one or more 
variables and/ or statements. 

A display statement can produce a vast amount of 
information. At times, the user does not need all the 
information; for example, an error may be apparent 
after only a few lines have been printed. Therefore, 

Language 39 



the display statements are designed to permit the user 
to interrupt their execution (sec "Interrupting Exe
cution"). 

The service provided by each of the display state
ments can be made a permanent part of the user's 
program because each service is also available in the 
form of a system subroutine (see "Program Calied 
Services") . 

UST Statement 

General Forms 

LIST 
LIST(h) 
LIST ( h1, h2 ) 

The LIST statement causes a listing of the statements 
in the user's program. The number of statements listed 
is determined by the arguments specified by the user. 
The listing is printed at the terminal with each state
ment prefaced by a line number. 

The table below gives each form of the LIST state
ment and its corresponding range (i.e., the region of 
the program it services). 

FORM 

LIST 
LIST(h) 

RANGE 

Causes a listing of the entire user's program. 

The region listed extends from the statement 
identified by h up to and including the end 
of the user's program. If h is specified as 0, 
the entire program is listed. 

The region listed is bounded by statements 
hi and ~. If hi is specified as 0, the region 
extends from the beginning of the program 
up to and including statement h2. If h1 is 
equal to h2, only one statement is listed. 

An example of each statement follows: 
LIST 
LIST(99+3) 
LIST(l07., 107.) 

Note that the second example contains an adjusted 
statement number. In this case, the listing begins with 
the third statement following statement 99. Only ref
erences by statement numbers may be adjusted in 
this manner. The third example would cause statement 
107. alone to be listed. 

COPY Statement 

General Forms 

COPY 
COPY(h) 
COPY(h1, h2) 

The COPY statement causes a listing of program 
statements to be printed at the terminal. It produces 
the same type of listing as does the LIST statement, 
except that line numbers are not included as part of 
the listing. The COPY statement is specified in the same 
manner as the LIST statement ( see "LIST Statement") . 

40 

PDUMP Statement 

General Forms 

PD UMP 
PDUMP(h) 

The PDUMP statement produces an alphabetical list
ing of all variables in the specified region of the user's 
program. Each variable is accompanied by its current 
value or an indication that it has not yet been "set" 
(see "Concept of 'Set' and 'Used' Variables"). Array 
variables are alphabetically listed following the listing 
of simple variables. However, in the case of an array, 
only those variables whose values are not zero are 
printed, with the exception of the first and last variable 
in the array (these two variables are always printed 
regardless of their value). 

When variables that belong to a common storage 
area ( see "coMMON Statement") come under the eHect 
of a PDUMP statement, the following should be re
membered: 

1. Simple variables belonging to a common storage 
area always behave as "set." 

2. Array variables belonging to a common storage 
area behave as follows: 

a. An array variable that has not been "set" by the 
program in which the PDUMP appears will have 
only its first and last elements printed. 

b. An array variable that has been "set" by the 
program in which the PDUMP appears will have 
all of its elements printed. 

The PDUMP statement has two forms: 

1. The PDUMP statement with no arguments specifies 
that all the variables in the entire program are to be 
listed. 

2. The PDUMP(h) statement specifies that all the 
variables appearing in statement h are to be listed. 
If an array variable is contained in statement h, only 
the last "set" element of that array is listed. Thus, a 
PDUMP in such a case would be meaningful only when 
used directly after the execution of statement h. If h 
is specified as 0, the statement is equivalent to PDUMP 
with no arguments. 

Some examples of the PDUMP statement are: 

PD UMP 
PDUMP(25) 
PD UMP( 30+5) 
PD UMP( 121.) 

Note that the third example causes the PDUMP to 
service the fifth statement following the statement 
numbered 30. 

Status Word PDUMP: The first line of output re
sulting from the execution of a PDUMP statement is 
prefaced by the status word PDUMP. 



QDUMP Statement 

General Forms 

QDUMP 
QDUMP(h) 

The QDUMP statement produces an alphabetical list
ing of all variables in the specified region of the user's 
program that have changed in value since the begin
ning of the program or since the last execution of a 
PDUMP or QDUMP statement. Each listed variable is 
accompanied by its current value. Any array variables 
are alphabetically listed after all simple variables have 
been listed. However, in the case of an array only 
the last "set" element (see "Concept of ·set' and 
·used' Variables") in the array is listed. If more ele
ments are needed, either a PDUMP or a PRINT o should 
be used. 

Note that changes made by a subprogram to array 
variables belonging to a common storage area are not 
detected by a QDUMP in the calling program. 

The QDUMP statement is specified in the same man
ner as the PDUMP statement (see "PDUMP Statement"). 

Status Word QDUMP: The first line of output re
sulting from the execution of a QDUMP statement is 
prefaced by the status word QDUMP. 

INDEX Statement 

General Forms 

INDEX 
INDEX(n) 
INDEX(v) 

The INDEX statement produces a listing of statement 
numbers and variables used in a program. Each state
ment number and variable is accompanied by the line 
number(s) of the statement(s) in which each appears. 

There are three forms of the INDEX statement: 
1. The INDEX statement with no arguments produces 

a listing with the following information: 
a. All statement numbers in the user's program 

are listed in numerical sequence. Accompanying 
each statement number is the line number of the 
statement which that particular statement number 
identifies and the line numbers of all other state
ments that refer to that particular statement num
ber. A minus sign preceding a line number 
signifies that the statement number is referred to 
by the statement corresponding to that line num
ber; a plus sign preceding a line number signifies 
that the statement number identifies the statement 
corresponding to that line number. If a statement 
number has not been used as an identifier and has 
not been referred to elsewhere in the program, it 
is preceded by an asterisk. 

b. All variables in the user's program are listed 
alphabetically. Each variable is accompanied by 
at ieast one line number indicating the state
ment( s) in which that particular variable has ap
peared. A minus sign preceding a line number 
signifies that the variable has been referred to by 
the statement corresponding to the line number; 
a plus sign preceding a line number signifies that 
the variable has been defined by the statement 
corresponding to the line number; when no sign 
precedes a line number, it signifies that the var
iable has been declared in the statement corres
ponding to the line number. If a variable has not 
been defined and has not been referred to, then 
that variable is preceded by an asterisk. Note that 
in the case of a statement such as X = X +I, where 
X is both defined and referred to in the same 
statement, an INDEX statement would signify X 
only as being defined. 

2. The INDEX( n) statement (where n is a statement 
number) produces a listing like the one described in 
item I, part a above, but only for statement number n. 
If n is specified as 0, this statement is equivalent to an 
INDEX statement with no arguments. 

3. The INDEX( v) statement (where v is any variable 
appearing in the program) produces a listing like the 
one described in item I, part b above, but only for the 
particular variable specified (i.e., v). 

Some examples of the INDEX statement are: 
INDEX 
INDEX(17) 
INDEX(VARIB) 

Status Word INDEX: The first line of output result
ing from an INDEX statement is prefaced by the status 
word INDEX. 

CHECK Statement I General Form 

CHECK 

The CHECK statement produces a listing (in the same 
format as that produced by an INDEX statement) of all 
those variables and statement numbers that would have 
been listed with an accompanying asterisk if an INDEX 

statement had been used (see "INDEX Statement"). 
Status Word CHECK: The first line of output re

sulting from a CHECK statement is prefaced by the 
status word CHECK. 

AUDIT Statement 

I General Form 

AUDIT 

The AUDIT statement produces a listing of all the 
regions in the user's program that have not been exe-

Language 41 



cuted. Each region is indicated by the line numbers 
of the statements which bound it on either side. Also 
included is an alphabetical listing of all the variables 
that have both not been "set" and not been "used .. in 
the program. 

Status Word AUDIT: The first line of output result
ing from an AUDIT statement is prefaced by the status 
word AUDIT. 

Program Called Services 
The services provided by each of the operating state
ments listed below can be made a permanent part of 
the user's program. This is made possible by the fact 
that these services also function as system subroutines. 
Thus, by using the name of an operating statement as 
the operand of a CALL statement (see "Rules for Call
ing Subroutine Subprograms"), a particular service can 
be retained as part of the active program. Any accept
able form of the following statements can be used: 

AUDIT INDEX STEP 
CHECK LIST STEPX 
CLEAR PD UMP TRAIL 
COPY QDUMP TRAILX 
EDIT RESET TRAP 
GUARD SNAP TRAPX 
GUARDX SNAPX 

The following example illustrates the difference 
between using a service as an operating statement 
CPROGRAM A) and using it as a system subroutine 
<PROGRAM m. 

PROGRAM A 

10 first executable statement 

20 IF ( X-Y)40, 30, 40 
30CONTINUE 

SNAP( 10, 50) 

40CONTINUE 

50END 
START(O) 

PROGRAM B 

I 0 first executable statement 

20 IF (X-Y)40, 30, 40 
30CONTINUE 

CALL SNAP( 10, 50) 

40CONTINUE 

50END 
START(O) 

In PROGRAM A, the "snapping" service is in effect from 
the moment statement IO is executed and it remains in 
effect for the entire program. However, in PROGRAM B, 

the "snapping" service takes effect only when the as
sociated CALL statement is executed. Since statements 
IO through 30 have been executed by the time the 
service takes effect, they will come under the effect of 
the "snapping" service only if there is a subsequent 
transfer of control back to the beginning of the pro-

42 

gram. Otherwise, only statements 30 + 2 through 50 
are serviced by the SNAP. 

Terminal Commands 

Introductory Information 

The terminal commands are considered to be part of 
the QUIKTRAN language although their functions are 
radically different from the other parts of the language 
(i.e., program and operating statements ) . 'Whereas 
the other parts of the QUIKTRAN language aid the user 
in constructing a working program, the terminal com
mands provide the user with an assortment of "house
keeping" services. 

Through terminal commands, the user can communi
cate with the operator of the exchange device, detect 
certain machine malfunctions, request a new page for 
printer output, initialize and terminate conversational 
operations, etc. 

The terminal commands in this section are discussed 
only with regard to their use in conversational opera
tions. Since some of these commands can also be used 
in batch operations, such use is described in "Basic 
Information for Batch Processing." 

Terminal commands are also unique with respect to 
their construction and the way they are entered by the 
user: 

1. Each terminal command must be prefaced by a 
semicolon in order to be recognized by the system. 
Thus, the semicolon can be considered to be the first 
character of a terminal command. 

2. Terminal commands must be typed by the user 
beginning in column 1. 

The seven terminal commands discussed herein are: 

;USER 
;CONSOLE 
;EXIT 
;FINISH 

;ECHO 
;EJECT 
;SEND 

Initialization and Termination 

l Miscellaneous "Housekeeping" 

Initialization and Termination Commands 

;USER Command I General Form 

The ;USER command communicates the user's identi
fication code to the system. This command must be 
entered as the very first act in a terminal operation. 

Each user is assigned an identification code by the 
computing center. Each identification code must con
sist of six characters. The first two characters are called 



the "user group code" and the last four characters, 
the "user code." 

The "user group code" must be two alphabetic 
characters. The first character may range from A 
through Z, and the second from A through E. Com
binations ZD and ZE are not allowed. Thus, there are 
128 valid "user group codes." This code must always 
be present. 

The "user code" must be four characters, each of 
which may be any alphameric character. Since this 
code is used along with the "user group code" to con
trol the retrieval of programs in the user's library, it 
too must always be present. 

If the ;usER command is not entered, or if it is 
entered but not accompanied by an identification code, 
all enteries by the user are rejected by the system. 

An example of the use of this command is: 

; USER (ZAN AME) 

NoTE: An identification code may be shared by two 
or more terminals. If two users are simultaneously 
sharing the same identification code, the possibility 
exists that: 

I. They may concurrently try to execute a call to 
the same subprogram, or 

2. One user may try to execute a call to a sub
program that is currently being executed by the other 
user. 

The type of situation described above is categorized 
as a "recursive" call to a subprogram. A solution is 
to wait then try again within a few moments. 

;CONSOLE Command I General Form 

;CONSOLE 

The ;CONSOLE command sets up the terminal for 
conversational operations. If the terminal has been 
operating in the conversational manner, the command 
is rejected (since it is superfluous ) and conversa
tional operations continue; otherwise, the system sends 
back a message indicating that conversational oper
ations can begin. 

;EXIT Command 

I General Form 

;EXIT 

The ;EXIT command causes the user's identification 
code to be deactivated. Once the user's identification 
code has been deactivated, any subsequent CALL, 
SA VE, LOAD, or PURGE statements are rejected because 
they no longer have meaning. The user may continue 
working on his active program but if he desires to 

use one of the above-mentioned operating statements, 
he must issue another ;USER command. 

The following example shows how a user could 
transfer a program from his library (identification code 
AB1234) to another user's library (identification code 
SE5678 ). 

;USER (AB1234) 
;CONSOLE 

;EXIT 

COMMAND 
LOAD (EXAMP) 

; USER ( SE5678) 
SAVE 

·EXIT 
~USER ( AB1234) 

END 

;FINISH Command 

General Form 

;FINISH 

The ;FINISH command indicates to the system that 
the user wishes to terminate operations for a partic
ular session. Use of this command can be considered as 
the normal procedure for terminating conversational 
operations. 

Miscellaneous "Housekeeping" Commands 

;ECHO Command 

General Form 

;ECHO (test pattern) 

The function of the ;ECHO command can perhaps 
be best explained by an example. Assume that a user 
has been trying to enter a program statement and the 
system continually rejects it although no error is appar
ent. The question arises that perhaps the system is 
not reading the statement correctly. To answer this 
question, the user enters an ;ECHO command with an 
appropriate "test pattern." (A "test pattern" can con
sist of anything the user desires to type. ) The system 
reads the command and "echoes" (i.e., prints out ex
actly that which it has read) the "test pattern" on 
the very next line in alignment with the original "test 
pattern." If the original and the "echo" do not match, 
a machine malfunction is quite probable; if they do 
match, then either the system is functioning properly 
and the user is in error, or the original "test pattern" 
was not very significant and a new "test pattern" 
should be tried. 

Language 43 



To carry the example a step further, assume that 
the user has been trying to enter the statement, 
FORMAT <Et2.41Fl0.4), without success. Suspecting a 
malfunction, he enters the following command: 

;ECHO (FORMAT(E12.4/FI0.4) IS IT 0. K.) 

The system returns the following on the next line: 
ECHO (FORMAS(E12.4/FI0.4) 

Evidently the letter "T" is being read by the system 
as an "S", thus causing the statement to be rejected. 

NOTES: 

1. The first right parenthesis terminates a "test pat
tern" and, consequently, an ;ECHO command. 

2. Some nonalphameric characters are not "echoed" 
exactly as they are read ( see Figure 5 and Ap
pendix C). 

;EJECT Command I General Fonn ] 

. ;EJECT . 

The ;EJECT command causes the terminal printer t~. 
skip to a new page. However, before using this com-

44 

mand, the user should make certain that the pages 
are properly aligned. In other words, when the user 
begins operating at the terminal, the printer should 
be adjusted so that typing begins at the top of the 
page. 

;SEND Command 

General Form 

;SEND (message) 

The ;SEND command allows the user to transmit a 
message to the operator of the exchange device at 
the computing center. The message may consist of 
any information that the user wants to transmit. This 
command may be used at any time after terminal op
erations have been initiated. If a ;SEND command is 
rejected by the system, it is suggested that the user 
make another attempt to transmit his message within 
the next few minutes. (A rejection indicates that the 
system cannot accept this message until messages pre
viously sent by other users have been received by the 
operator.) 



Batch processing is a feature of the QUIKTRAN System 
that allows the user to send entire FORTRAN, COBOL, 
MAP, etc., programs to the computing center at any 
time for off-line processing. In addition, batch process
ing permits the user to request that one or more of 
the FORTRAN programs he has debugged and saved in 
the QUIKTRAN disk library be compiled or compiled and 
executed off line. By allowing debugged programs to 
be executed off line, batch processing frees the terminal 
for the construction, testing, debugging, execution, and 
saving of new FORTRAN programs. 

When batch input is received at the computer cen
ter, it is temporarily stored until it can be compiled 
and/or processed. (Each installation will decide for it
self as to how often it will process the batch input it 
has received, e.g., once a day, etc.) Batch output, i.e., 
processed batch input, is temporarily stored at the 
computing center until the user requests the output 
at his terminal. 

Batch processing, then, extends the capabilities of 
the QUIKTRAN System by allowing the user to send jobs 
to the computing center for processing by the 7040/ 
7044 operating system. The features of batch process
ing are: 

1. The user can send FORTRAN programs for compila
tion or compilation and execution. 

2. If a user has previously saved a FORTRAN program 
while in the conversational mode, he can request that 
it be compiled or compiled and executed, via batch 
processing, without having to retransmit it through his 
terminal. 

3. The user can send non-FORTRAN programs, i.e., 
COBOL, MAP, etc., for compilation and/or processing. 

4. The user can request that his batch output be sent 
to any user group in the system or that it be printed 
out at the computing center and sent back to him by 
mail. 

Preparing to Enter the Batch Input Mode 
When a user begins operations at his terminal by enter
ing a ;usER command, he receives a message from the 
system as to what type of QUIKTRAN is available. The 
QUIKTRAN System has two levels of operation: full 
QUIKTRAN operation (conversational and batch) and 
batch only operation. The message "FULL QUIKTRAN 
SERVICE AVAILABLE" means that he can immediately 
begin conversational or batch operation. The message 
"QUIKTRAN SERVICE FOR BATCH ONLY" means that he 

Basic Information For Batch Processing 

can start batch operation only, not conversational. If 
the system status changes while the user is operating 
his terminal, he will be notified by additional messages. 

Before the user begins batch operations, he must se
lect the program that is to be processed off line. He 
must either ( 1) have previously saved the FORTRAN 
program at the computing center while in the con
versational mode or ( 2) be ready to send the program 
via his terminal. (Note that the maximum length of 
batch input cannot exceed eighty characters and that 
binary cards cannot be transmitted from a terminal.) 

In addition, the user must decide whether he wants 
the results of his program typed out at a terminal or 
printed at the computing center and returned to him 
by mail. The user can have an output listing of his pro
gram printed either at a terminal or at the computing 
center. If he requests punched output, however, this 
can only be done at the computing center. 

Entering the Batch Input Mode 
The batch input mode is initiated when the user enters 
the ;INPUT command. This command gives an estimate 
of how many cards are in his program and indicates to 
which user group the output of this batch is to be sent. 

Actual entry of the ;INPUT command depends on how 
the terminal has been used prior to putting it in the 
batch mode. For example: 

1. If the user has identified himself with a ;USER 
command but has not yet entered a command such as 
;CONSOLE, he can simply enter the ;INPUT command and 
begin batch operation. For example: 

; USER ( ttuuuu) user identifying himself 
;INPUT ( xxx, yy) directly entering batch mode 

2. If the terminal has been used for conversational 
operations since it was signed on, the user must first 
finish the current operation with a ;FINISH command 
before entering the ;INPUT command and beginning 
batch operations. For example: 

;USER ( ttumm) user identifying himself 
;CONSOLE enters conversational mode 
(operates terminal in conversational mode) 
;FINISH terminates conversational mode 
;INPUT ( xxx, yy) enters batch mode 

IBSYS Control Cards Used in 
Batch Input Jobs 
The batch input control cards must be included with 
the user's program. These control cards must be used 

Basic Information For Batch Processing 45 



whether the user's program is being entered directly 
from the terminal or is retrieved from the user's 
library. Even though the system will accept the user's 
program without these control cards, the program will 
not be compiled and/or processed without the control 
cards. 

The batch mode control cards should be placed in 
the card reader along with the cards of the program 
to be processed. Enter the ;INPlIT command either at 
the keyboard or at the card reader, as shown in the 
examples below. The following examples show the re
quired control cards and commands for several batch 
operations. 

1. When a FORTRAN program, entered at the terminal 
is to be compiled but not executed, and the output is 
assigned to user group AA. 

1 16 

;INPUT ( 120, AA) 

$JOB 
$1BJOB 

$IBFTC 

(estimated card input is 120, out
put is assigned to user group AA) 
(user puts name of program here) 
NOCO,NODECK 
( compile program only and do 
not put compiled program on 
punched cards because punched 
card output cannot be received 
at a terminal) 

(FORTRAN program on punched cards or $RECOM card 
inserted here ) 

$IBSYS 
;FINISH 

2. When a FORTRAN program, entered at the terminal, 
is to be compiled and executed, and the output is to 
be printed at the computing center and returned to the 
user by mail. 

1 

;INPUT ( 120, 00) 

$JOB 
$IBJOB 

$IBFTC 

16 

(estimated card input is 120, out
put is printed at the computing 
center and mailed back to user ) 
(user puts name of program here) 
NO DECK 
(do not put compiled program 
on punched cards) 

(FORTRAN program on punched cards or $RECOM card 
inserted here ) 

$ENTRY (causes execution of compiled 
program) 

$IBSYS 
;FINISH 

3. When the user wishes to select a program pre
viously saved and debugged in the conversational 
mode, he inserts a SRECOM card in place of the FORTRAN 
program on punched cards, using the same control 
cards as shown in either of the two previous illus
trations. 

4. When the user wishes to compile and/ or process 
non-FORTRAN programs, entered at his terminal, he 
should refer to the publication IBM 704017044 Oper
ating System (16/32K): Programmers Guide, Form 

46 

C28-6318, for information regarding control card for
mats and options. Any such control cards used in batch 
operations must be preceded by a ;INPUT command 
and followed by a ;FINISH command. 

5. If the user wishes to make use of other control 
card options when compiling or compiling and execut
ing his FORTRAN programs, he should again refer to 
the publication IBM 7040/7044 Operating System 
(16/32K): Programmer's Guide, Form C28-6318. 

Leaving Batch Input Mode 
The batch mode is normally terminated by placing a 
;FINISH command card at the end of the punched card 
deck. Examples of this are shown in the section "Batch 
Mode Control Cards." If the user wishes to enter the 
conversational mode after leaving the batch mode, he 
enters the ;CONSOLE command. 

Batch Output 
The user has the option of having batch output printed 
either at his terminal or at the computing center and 
mailed to him. This selection is made by means of the 
;INPUT command, as described in "Entering the Batch 
Input Mode." 

Batch Output Sent to Terminal 
Whenever a user identifies himself via the ;USER com
mand, the system will notify him when and if it has 
batch output for his user group. The user then has 
the following options: 

1. He can request that the batch output of one pro
gram be typed out. To do this, he immediately types 
in the ;OUTPUT command specifying the batch number 
that the system assigned to the batch input upon entry 
and user group to which this batch output is assigned. 
For example, when a user in user group AA has been 
notified that there is batch output for his user group, 
he can request that a specific batch output, e.g., 
AA1234, be printed by typing the command 

;OUTPUT ( AA1234, AA) 

2. He can request that all the batch output assigned 
to his user group be typed out (multiple batch output). 
To do this, he immediately types in the ;OUTPUT com
mand replacing the batch number with six zeros and 
specifying the user group to which this batch output is 
assigned. For example, when a user in user group AA 
has been notified that there is batch output for his user 
group, he can request that all the output be printed 
by typing the command 

;OUTPUT ( 000000, AA) 



3. He can immediately type in a ;INPUT command or 
a ;CONSOLE command, in order to enter new batch input 
or put his terminal in the conversational mode. When 
he .finishes either operation with a ;FINISH command, 
he can immediately begin a new conversational or 
batch operation. However, if he waits more than three 
PROCEED lights before entering a new command, he 
will then start to receive all batch output assigned to 
his user group (multiple batch output). Note that if 
the conversational processor is not in operation, the 
;CONSOLE command will be rejected. 

4. He can automatically receive all the batch output 
assigned to his user group (multiple batch output) by 
allowing his terminal to remain idle for three PRO
CEED lights. 

Automatic Batch Output 
When a user has been notified by the QUIKTRAN System 
that batch output is ready for his user group, and if 
he does not start some operation, e.g., enter a ;CONSOLE 

command, before the PROCEED light has turned off 
for the third time, the user will start to receive all the 
batch output assigned to his user group (multiple 
batch output). This action will occur at the end of any 
operation begun after the user has been notified that 
batch output is waiting. 

Batch Output Printed at Computing Center 
The user can request that his batch output be printed 
at the computing center and returned to him by mail. 
This request is made in the ;INPUT command and is 
described in "Entering Batch Input Mode." The types 
of batch output that can be printed at the computing 
center are described in "Control Cards Used in Batch 
Input Jobs." 

Reassigning Batch Output 

The user has the option, after a batch input has been 
entered (but not processed), of changing the user 
group to which it was assigned. He also has the option, 
when batch output is ready (but not yet printed at 
the terminal), of reassigning the output to another 
user group. 

Reassigning Batch Output Before Processing 

The user can reassign batch output after the batch in
put has been entered but is not yet processed. The re
assignment can be from one terminal to another, from 
a terminal to the computer center, or from the com
puting center to a terminal. To do this, the user types 
the ;ROUTE command specifying the batch number that 

the System assigned when the input was entered and 
the old and new destination codes. 

When the reassigned batch output is ready and one 
of the users in the newly specified group identifies 
himself with a ;USER command, he will be notified that 
his group has batch output. 

If the user tries to reassign batch output during the 
time the input is being processed, he will receive a 
reject message. 

Reassigning Batch Output After Processing 

If the user has been notified that batch output assigned 
to his user group is ready but he wishes to reassign 
the output to another user group, he must type the 
;ROUTE command specifying the batch number assigned 
when the QUIKTRAN System received the input, and the 
old and new user group assignments. 

When one of the users in the newly specified group 
identifies himself with a ;USER command, he will be 
notified that his group has batch output. 

Canceling Batch Jobs 
The user has the ability, when entering batch input, 
to cancel the batch input he has just sent. He also has 
the ability, when receiving batch output, to stop the 
current batch output operation and to cancel the re
mainder of the current output that would otherwise 
be sent to him when the user is receiving multiple 
batch output, he can cancel the remainder of the cur
rent batch output but those batches that follow are not 
automatically cancelled. 

Canceling Batch Input 
If the user wishes to discontinue his batch input to can
cel the part of this batch input that has just been sent, 
he should set the RDRl switch to OFF if the card reader 
is being used. The KEYBOARD switch must be set to 
SEND. When the PROCEED light goes on, he should 
then type the ;CANCEL command. If the system has any 
batch output for the user's group at this time, it will 
be automatically sent if the user permits more than 
three PROCEED lights before starting a new batch or 
conversational operation. 

If the user wishes to cancel a complete batch input 
that was previously sent (but one that has not yet been 
processed), he must first finish his present operation 
with a ;FINISH command and then type the ;PURGE com
mand, specifying the 9atch number assigned when the 
system received the input and the destination code. If 
the System cannot accept the ;PURGE command because 
the specified batch input has been sent to the 7040/ 
7044 for processing, it will send back a reject message 
to the user. 

Basic Information For Batch Processing 47 



Canceling Batch Output 
If the user is receiving batch output and does not want 
to receive the rest of this particular output, he should 
set the KEYBOARD switch to SEND. The PROCEED 
light will go on when the printer reaches the top of 
the next page. An EOT is transmitted by the user and, 
when the system responds with a READY message and 
another PROCEED light, he enters the ;CANCEL com
mand. The ;CANCEL command cancels only the remain
der of the current batch output. It does not cancel 
succeeding batch output if the user is receiving multi
ple batch output. 

If there is no further batch output, the user can 
select any conversational or batch command for the 
next operation. However, if there is more batch output 
and this is a multiple batch output operation, the next 
batch output will begin immediately. After one page 
has been printed, i.e., when the PROCEED light goes 
on, the user can cancel it. The multiple batch output 
will continue until all the batch output assigned to 
this user group has been printed or canceled. 

The user also has the option of canceling a specific 
batch output before it is printed (after it has been 
processed and is ready to be transmitted to the user). 
The ;PURGE command is used, specifying the batch 
number assigned when the system received the input 
and the user's group code. If the user has just received 
notification of batch output, he can enter the ;PURGE 

command immediately to cancel a specific batch. If he 
is in the middle of performing some operation, how
ever, when he decides to use the ;PURGE command, he 
must first finish his present operation with a ;FINISH 

command before entering the ;PURGE command. If, 
after being notified of batch output, the user waits 
more than three PROCEED lights before starting a 
new hatch or conversational operation, the system will 
automatically start to send him all the batch output 
assigned to his user group. 

Note that the user can interrupt a multiple batch 
output to start a conversational operation but not a 
new batch operation. For example, a ;PURGE command 
cannot be used during a multiple batch output but it 
can be used before a multiple batch output to purge 
a specific batch. During a multiple batch output, then, 
the user can interrupt it to cancel the current batch 
output (but not the remainder of the batches in the 
output) or he can interrupt it to enter conversational 
operation. He cannot interrupt a multiple batch output 
to begin such operations as ;PURGE or ;INPlJT. 

Interrupting and Resuming Batch Input 
and Output 
The user has the option of interrupting batch input and 
output operations so that he can enter the conversa-

48 

tional mode ( ;coNSOLE command). The system will 
automatically interrupt the user's operation if the user 
accidentally disconnects his terminal from the comput
ing center while he is sending batch input or receiving 
batch output. The batch operation is suspended until 
the terminal is again connected and a ;RESUME com
mand is given. 

Interrupting Batch Input 
If the user wishes to interrupt batch input, he should 
set the RDRl switch to OFF if the card reader is being 
used. The KEYBOARD switch must be set to SEND. 
He can now type a ;CONSOLE command in order to 
start conversational operation. ( Note that the ;CONSOLE 

command can be used only when the full QUIKTRAN 

System is in operation. Also note that the user cannot 
begin a second batch operation after interrupting a 
previous batch operation.) At the end of the conversa
tional operation, the user enters a ;FINISH command 
and then types the ;RESUME command specifying the 
batch number assigned when the system received the 
input. The user then restarts the card reader operation 
to continue his batch input. 

Note that while a ;CANCEL command can be entered 
after interrupting batch input to delete the interrupted 
job, a ;PURGE command cannot. A ;PURGE command can 
only be used after the current batch operation has been 
finished by a ;FINISH command. 

Interrupting Batch Output 
If the user wishes to interrupt batch output during the 
time it is being received at his terminal, he sets the 
KEYBOARD switch to SEND. When the printer 
reaches the beginning of the next page, the PROCEED 
light will go on. The user should then transmit an 
EOT. After the system prints a READY message, the 
user can then type a command in order to start an
other operation, e.g., ;CONSOLE. ( ~ote that the ;CONSOLE 

command can be used only when the full QUIKTRAN 

System is operating. Also note that the user cannot 
begin a second batch operation after interrupting a 
previous batch operation.) At the end of the conver
sational operation, the user enters a ;FINISH command 
and then types the ;RESUME command specifying the 
batch number of the interrupted output. The system 
then resumes typing batch output where it left off when 
interrupted. 

If the batch number in the ;RESUME command is in
correct, the entire batch output will be returned to the 
st~ck of available output and must be requested again 
with a ;OUTPUT command, using the correct batch num
ber. The batch output received by this new ;OUTPUT 

command will start from the beginning of the batch. 



Therefore, if the user has interrupted batch output 
and now wants to receive all of this particular batch 
output from the beginning, he should enter the com
mand ;RESUME (xxxxxx), followed by the command 
;OUTPUT ( ttnnnn, yy) where ttnnnn is the correct batch 
number. 

Note that while a ;CANCEL command can be used 
after interrupting batch output, a ;PURGE command 
cannot. A ;PURGE command can be used only before 
the current batch output operation has been started. 

Messages Sent from the Computing Center 
Under certain conditions, the computing center will 
send a message to the terminal instead of the expected 
batch output. These conditions are: 

1. When the number of lines of output exceeds the 
maximum number of lines that can be sent back to the 
remotely located terminal. The batch output can be 
printed only at the computing center. 

2. When the number of lines of output exceeds the 
maximum number of lines that have been allocated 
for batch output storage at the computing center. The 
first part of the output will be replaced by the excess 
lines and is thereby destroyed. The latter part of the 
batch output can be printed at the computing center. 

3. When the batch output is printed at the com
puting center because it could not be made available 
to the terminal at the time it was processed. 

4. When a saved program, selected by a $RECOM 

card for batch processing, cannot be recomposed and 
processed. 

5. When a saved program, selected by a $RECOM 

card for batch processing, is not found in the user's 
library. 

6. When the program name was missing on the 
SRECOM card. 

Batch Mode Commands 
The following commands are used before, during, and 
after batch operations. 

Commands for Entering and Leaving 
the Batch Mode 

;INPUT Command 

General Form 

;INPUT ( xxx, yy) 
where: xxx is the three digit maximum estimate by the 

user of the number of cards in this batch input 
(001-999) 

yy is the user group to which the output of this 
batch is assigned 

a user group code of 00 indicates that the output 
of this batch is to be printed at the central com
puter. 

The ;INPUT command is used when the user wishes 
to send batch input to the central computer for com
piling or compiling and/ or processing. If the user has 
been operating in the ;CONSOLE mode, he must end this 
operating with a ;FINISH command before he can enter 
the ;INPUT command. When the ;INPUT command is 
entered (via keyboard or punched card), the system 
assigns a batch number to this particular batch input 
and prints it at the terminal. The batch number con
sists of six characters ttnnnn, tt being the user's group 
code and nnnn being four digits. If the system cannot 
accept batch input at this time, it sends a reject mes
sage to the user. 

If the user wishes to have the output of his program 
printed at the computing center and mailed back to 
him, yy should be 00. If the user's estimated card 
count is too large for the system to accept at this time, 
it will send back a reject message. If the actual card 
input exceeds the estimated card count, the system will 
continue to accept input for as long as it has space. If 
it runs out of space, the entire batch is rejected and 
discarded. 

;OUTPUT Command 

General Form 

; 0 UTPUT ( ttnnnn, yy) 
where: ttnnnn is the batch number which the system as

signed when the user entered the batch input. 
A batch number equal to zeros indicates that 
all batch output for this user group is to be 
printed at the terminal. 

yy is the user group code to which the batch out
put has been assigned. 

The ;OUTPUT command is used when the user, after 
being notified that batch output is waiting, requests 
that some or all of it be printed at his terminal. If 
the user ignores the batch output notification or only 
requests a specific batch output and, after receiving it, 
begins another operation (e.g., ;CONSOLE) as soon as 
he ends the new operation with a ;FINISH command, he 
can immediately begin a new conversational or batch 
operation. However, if he waits more than three PRO
CEED lights before entering a new command, the 
system will automatically begin to print the remainder 
of the batch output assigned to his user group whether 
he wants it or not. The canceling procedure may be 
followed at this time. 

;RESUME Command 

General Form 

;RESUME ( ttnnnn) 
where: ttnnnn is the batch number that the system as

signed when the user entered the batch input. 

The ;RESUME command is used to resume batch input 
or output operations after the user previously inter-

Basic Information For Batch Processing 49 



rupted the batch operations to enter the conversational 
mode. A ;FINISH command must be used at the end of 
the conversational operation before the ;RESUME com
mand can be entered. Details on how to interrupt 
batch operatiOns are given in "Interrupting and Re
suming Batch Input and Output." 

If the user has interrupted batch output and if he 
wishes to receive all of this particular batch output 
from the beginning, he should, at the proper time, enter 
the command ;RESUME (XXXXXX), followed by the com
mand ;OUTPUT ( ttnnnn,yy), where ttnnnn is the correct 
batch number. 

;FINISH Command I General Form 

;FINISH 

The ;FINISH command is used to end an operation 
begun by a ;INPUT or ;CONSOLE command. 

Commands for Changing Batch Operations 

;CANCEL Command I General Form 

;CANCEL 

The ;CANCEL command is used to cancel the current 
batch input or output operation being performed. All 
of the current batch input that has just been entered 
by the user will be canceled by the ;CANCEL command. 
Note that the ;CANCEL command can cancel only those 
batch inputs that are currently in the process of being 
entered, not those that have been fully entered and 
followed by a ;FINISH command (see ";PURGE Com
mand"). If the user is receiving batch output and does 
not wish to receive more of the current batch, he sets 
the KEYBOARD switch to SEND, and waits for the 
PROCEED light to go on (when the printer reaches 
the beginning of the next page), transmits an EOT, and 
then types a ;CANCEL command. The remainder of the 
current batch output will be canceled. 

;PURGE Command 

General Form 

;PURGE ( ttnnnn, yy) 
where: ttnnnn is the batch number that the system as

signed when the user entered the batch input 
( tt being the user's group code and nnnn be
ing four digits ) 

yy is the user group code to which the batch 
output has been assigned 

The PURGE command is used to cancel a previously 
submitted (but unprocessed) batch input or a waiting 
batch output. 

50 

;ROUTE Command 

General Form 

;ROUTE ( ttnnnn, yy, rr) 
where: ttnnnn is the batch number which the system as

signed when the user entered the batch input 
( tt being the user's group code and nnnn being 
four digits) 

yy is the user group to which the output was pre
viously assigned 

rr is the user group to which the output is now 
assigned. 

The ;ROUTE command is used to specify a new user 
group destination in place of the one previously 
assigned. This command can be used after batch input 
has been entered (but not yet processed). It can also 
be used when batch output is ready but has not yet 
been printed at the terminal. 

Before processing, batch output can be reassigned 
from one remote terminal to another, from a remote 
terminal to the computing center, or from the com
puting center to a remote terminal. 

After processing, batch output can only be reassigned 
from one remote terminal to another, provided that the 
output has not yet been printed at a remote terminal. 
Batch output, at this time, cannot be reassigned from 
the computing center to a remote terminal or from a 
remote terminal to the computing center. 

Batch Mode Control Card 

$RECOM Control Card 

The format of this card is: 
1 16 22 29 

$RECOM prog name ,user ident 
prog name must be the same as the one under which the 

program was saved 
user ident is the user's six character identification 

The SRECOM control card is used when the user 
wishes to compile or compile and execute a program 
via batch processing that he has previously saved dur
ing conversational operation (see "sA VE Statement"). 
The SRECOM control card is used during batch ;INPUT 

operations (see "Control Cards Used in Batch Input 
Jobs"). It is not necessary to use the user identification 
code assigned to this program unless it is different 
from the one used in the current ;USER command. Note 
that if the user identification is used, a comma in col
umn 22 must precede it. 

All FORTRAN input/ output statements in the user's 
program should have. valid FORTRAN input and output 
unit numbers (see the publication IBM 7040/7044 
Operating System (16/32K): FORTRAN IV Language, 
Form C28-6329). All input must be supplied to the 
computing center before execution as part of the batch 
input job. 



This section consists principally of a listing produced 
at a terminal during a QUIKTRAN session. Its purpose 
is to demonstrate the response of the system to all the 
statements and commands available to a user, in a 
setting as near as possible to a natural one for QUIKTRAN. 

Owing to the listing's didactic purpose, the ration of 
messages and comments to QUIKTRAN statements is rela
tively high, as is the ratio of operating to program 
statements. 

How to Read the Listings 

The output listing from a QUIKTRAN terminal is a record 
of all communications between the user and the sys
tem. The user transmits his input to the system from 
the keyboard (or card reader), and at the same time 

000 READY ; USER[MEJDOEJ 

FULL QUIKTRAN SERVICE AVAILABLE 
000 READY ;CONSOLE ANO THIS LINE WILL NOT HAVE AN EOB ... 
000 RJECT KB TIMEOUT 
000 READY ; C Or<SO LE 
000 RJECT REQUEST 
000 READY ; CONSOLE 
101. -READY CV 
101. -READY CV************************************************************* 1 
101. -READY CV STATUS WORD "RJECT" - MEANS USER'S ENTRY ON PRECEDING LINE 
101. -READY CV WAS NOT ACCEPTED BY THE SYSTEM 
101. -READY CV STATUS WORD "READY" - MEANS SYSTEM IS INVITING INPUT FROM 
101, -READY CV THE TERMINAL. 
101. -READY CV 
101. -READY CV•••••******************************************************** 2 
101. -READY CV "CV" IN COLS. l AND 2, PRINTS THIS LINE, IN llHS LISTING, AT 
101. -READY CV IBIS TIME. (THE SYSTEM NEVER RECEIVES IT AS INPUT> 
101. -READY CV THIS DECK USES "CV" TO POINT OUT QUIKTRAN STATEMENTS AND 
101. -READY CV RESPONSES. 
101. -READY CV 
101. -READY CV ";USER( )" IDENTIFIES ALL INPUT FROM IBIS TERMINAL AS 
101. -READY CV YOURS; IDENTIFICATION EFFECTIVE UNTIL ";EXIT". 
101, -READY CV 
101. -READY CV ";CONSOLE" STARTS CONVERSATIONAL OPERATIONS BElWEEN USER 
101. -READY CV AND IBE SYSTEM. 
101. -READY CV 
101. -READY CV************************************************************* 3 
101. -READY CV NOW, THE SYSTEM IMMEDIATELY PRINTS BACK THE PARENIBESIZED 
101. -READY CV CHARACTERS, EXACTLY AS IT READ THEM. 
101. -READY CV 
101. -READY ; ECHOCIBEQUI CKBROWNFOXJUMPSOVERLAZYDOG0123456789, •'!-$+ •• >;Ii(:"•[?!<) 

ECHOCIBEQUI CKBROWNFOXJUMPSOVERLAZYDOG0123456789, = 1 /-$+, ,•;: (: "•(? ! +) 
101. -READY ;ECHOC:>CO 

ECHOC:•(+) 
101. -READY ;ECHO([>) 
101. -RJECT I LLEG CHAR 
101. -READY ;ECHO(•) 

101. -RJECT I LLEG CHAR 
101, -READY ;ECHO(\) 
101. -RJECT I LLEG CHAR 
101. -READY CV 

Examples of Actual Use 

the corresponding characters are typed by the printer. 
The system, in turn, transmits all its output to the 
printer. Consequently, the origin of a particular seg
ment of the listing is not always obvious. Distinguish
ing between the two sources presents no difficulty, 
however, to anyone who can follow the process by 
which user and system together produced the output 
shown. 

The beginning of the listing is shown in Figure 5. 
The first thing a user must do is set up the terminal 
in accordance with instructions given in "Equipment." 
Then, as soon as the user has established a connection 
between the computing center and his terminal, the 
system responds with: 

000 READY 

101. -READY CV************************************************************* 4 ** 
101. -READY CV TRANSMIT THE ENCLOSED MESSAGE TO IBE OPERATOR AT TI-1E CENTER 
101, -READY CV 
101. -READY ;SEND (WE ARE GIVING A DOONSTRATION HERE) 
101. -READY CV 
101. -READY CV•••********************************************************** 5 •• 
101. -READY CV SKIP THE PRINTER CARRIAGE TO IBE TOP OF THE NEXT PAGE, 
101. -READY CV 
101. -READY ;EJECT 

Figure 5. 

Examples of Actual Use 51 



The print element is now positioned to the right of 
READY. When the PROCEED light comes on, the key
board unlocks. It is now the user's turn. (Whenever 
it is the user's turn to type, the print element is at the 
point where it is now.) 

The PROCEED light stays on all during the time 
that the user can communicate with the system. The 
light will go off when ( 1) the user transmits an "end-of
line" ( EOB) signal (not shown in the listing because it 
is not a character that prints), or ( 2) approximately 15 
seconds have elapsed without any activity at the key
board. Anything the user has entered meanwhile will 
have been typed on the rest of the line, beginning 
where the system left oH. When the PROCEED light 
goes off, the keyboard locks, and the print element 
moves to the beginning of a new line. The system now 
examines what the user transmitted. 'Vhen the system 
has concluded its examination, it again starts the printer. 

(On the second line of Figure 5, the computing 
center has interspersed a message between the user's 
EOB and the system's response. It is always possible for 
an operator to send such a message; at sign-on time 
it is customary.) 

The message ooo READY is an example of the way the 
system always begins its turn, i.e., with a line number 
and a status message. The status message is not always 
the word READY. Figure 5 shows some messages begin
ning with another status word, RJECT. When the status 
word is READY, it is the entire message. When the status 
word is RJECT, the balance of the message tells why 
the user's statement was rejected. The system uses as 
much of the line beyond the status word as it may 
need. It may take up more than one line. But no matter 
how many lines may be used, for no matter how many 
messages, the system will always end up returning to 
the beginning of a new line, and then typing a number 
followed by READY. The PROCEED light comes on 
again; it is again the user's turn. 

Note that if the user makes his entries by way of the 
card reader, the sequence described remains the same 
with one exception. If the KEYBOARD switch is OFF, 
the keyboard will remain locked and the PROCEED 
light will stay off even though the system is reading a 
card. There is, of course, no possibility of exceeding 
the 1.5 seconds' time out; with the reader, it is always 
EOB which ends the user's turn. 

What has been described is the essence of the con
versational process. It partitions every listing into two 
fields: system and user. Always, the first part of the 
line is reserved to the system, which prints line num
bers and status information. This is the "control field" 
and takes up the first twelve print positions. What fol
lows the control field on a given line will have orig
inated with either the system or the user, depending 

52 

strictly on what is printed in that field. If READY, ALTER, 

or I (see belmv) is there, all that follows was entered 
by the user. In all other cases, it was printed by the 
system. 

Housekeeping 

In any programming environment, certain steps are 
necessary that are ancillary to the main business of 
computing. The terminal commands perform such 
duties in QUIKTRAN. In Figure 5, the user's first entry 
establishes the identification MEJDOE as pertaining to all 
information coming from his terminal. (This identifica
tion remains in force until ;EXIT is given. See Figure 
11.) The statement ;CONSOLE requests conversational 
interaction between the user and QUIKTRAN. (The state
ment ;FINISH ends the conversational operations. ) 

It is necessary that the semicolon symbol ( ; ) of 
these statements occupy the very first position made 
available for the user. This position is "column l,'' 
matching the FORTRAN statement coding form and the 
IBM punched card. ( The characters are printed from a 
read-in card into the corresponding "columns" of the 
listing.) 

For the terminal commands to work, the characters 
must be entered closed up, one in each column, without 
the "embedded blanks" that are tolerated in all other 
QUIKTRAN statements. 

The rest of the commands are also shown in Figure 
5. Observe that the user can employ ;ECHO c ) to 
verify the accuracy of transmission from the terminal, 
by character and column. The statement ;EJECT will 
move the paper a length of one page. Note that to the 
system, the top of the first page is wherever the user 
positions the paper for printing, before he begins. At 
any time, the user can turn the roller by hand, chang
ing the relation of the actual top to the "top" the system 
is counting from. (The user cannot control spacing 
from the keyboard or reader, because RETURN and LINE 

FEED are illegal characters in QUIKTRAN.) 

Like the terminal commands, the comment code cv 
also must start in column 1. When the user puts an EOB 

at the end of a cv line, the system does not examine the 
line in the way it would others. Indeed, it behaves as 
though the line had never existed (except for keeping 
track of the number of lines on a page). In other words, 
after a cv line, the system invariably responds with the 
same status word that invited the preceding entry (i.e., 
the cv). The cv code•has been used unsparingly in the 
illustrations, in order to flag statements for the atten
tion of the student. (It may, in fact, help to imagine 
the listing's appearance with none of the cv's. The list
ing without these would be somewhat more typical.) 



Immediate Execution 

QUIKTRAN is responsive on a statement-by-statement 
basis. This means that the system can execute any 
valid arithmetic statement, if the user so desires. Un
less the user is building a program (as in Figures 7 
through 11), the system during conversational opera
tions does just that, automatically. 

After the user has entered ;CONSOLE ( see Figure 5) , 
the system changes the line number from ooo to 101, 

and puts a minus sign ( - ) before the status word. 
This tells the user that he has established a con
versational relationship between his terminal and 
computing center. (The conditions under which the 
system will increment the line numbers are illustrated 
in Figure 7. In Figures 5 and 6, the line number does 
not change. ) 

The user now has two capabilities: 
I. He can execute arithmetic assignment statements 

consisting of known constants and reserved functions; 
or 

2. He can activate a program. 
Figure 6 shows the user exercising the first of these 
capabilities. 

101. -READY X = 2. + 2. 
101. • X• 0.40000000E 01 
101, -READY CV 
101. -READY ANSW • SQRT[ SQRT[ 625.0IJ 
101. = ANSW= O.SOOOOOOOE 01 
101. -READY CV 
101. -READY ROOT • SQRTC4720, J 
101. • ROOT• 0.68702256E 02 
101. -READY CV 
101. -READY ROOT2 • 4720.**0.5 
101. • ROOT2• 0. 68702256E 02 
101. -READY CV 
101. -READY ROOT3 ENOS BY HI TII NG CANCEL KEY-
101. -CANCL PREY LI NE 
101. -READY CV 
101. -READY CV************************************************************* 6 ** 
101. -READY CV STATUS WORD "CANCL" - PRECEDING LINE TREATED LIKE A 
101. -READY CV "CV" LINE PER REQUEST FI04 KEYBOARD. 
101. -READY CV 
101. -READY X • UlBICl00.000] 
101. • X= O.lOOOOOOOE 02 
101. -READY CV 

In Figure 6, the user is not building a program. 
Therefore, every time the system receives a valid arith
metic statement, it: ( 1) evaluates the expression; ( 2) 
goes to the line below the user's entry and types an 
equals sign ( =) after the line number (instead· of a 
minus ) , signifying output as the result of execution by 
the system; ( 3) omits the status word for that line; 
( 4) prints out the value of the expression; and ( 5) 
discards the statement and related variables. The value 
is printed out in decimal notation, the exact form of 
which can be changed at the option of the user (see 
below). The system then returns to the READY condi
tion, inviting more input. The FORTRAN arithmetic 
statement, employed by itself in this fashion, can thus 
make of the user's terminal a powerful symbolic cal
culator. 

Several features assist the user in these pursuits. 
Note first that the statements entered for execution 
follow the placement rules for FORTRAN coding: col
umn 6 is blank and the statement may begin in any 
column thereafter (if it ends before the end of the 
line). Most users set a tab stop for column 7. (If the 
user tabs to the beginning of his entry, wherever he 

101. -READY ; ECHOLUDSTHlNEITBllCASfl61 11116BAISl!EAN>RllBEI JUST TYPED, AND STRIKE OVER WI TH NEW WORDS] 
ECHOCAND THEN I BACKSPACE OVER THE WORDS I JUST TYPED, AND STRIKE OVER WITH NEW WORDS) 

101. -READY CV 
101. -READY ;ECHOCONE CAN STRIKE OVER WITH BLANKS 

ECHOCONE CAN STRI 
101. -READY ; CV 
101. -RJECT REQUEST 
101. -READY CV 
101, -READY Z • 57289, - 29, 756.00 
101. -RJECT STATEMENT NOT Ill LANGUAGE 
101. -READY CV 
101. -READY X = 3 + 9. 
101. -RJECT MIXED I-ODE 
101. -RF.ADY CV 
101, -READY ROOT • SQRTCSQRTC625.) 
101. -RJECT PARENTHESES NOT IN BALANCE 
101. -READY CV 
101. -RF.ADY Z = 2.••3 
101. = Z= O.SOOOOOOOE 01 
101. -READY CV 
101. -READY E = 20. • ATAN ( 20 ./4)) - 4./2. • ALOGC4.••2+20.••2) 
101. -RJECT PARENTHESES NOT IN BALANCE 
101. -READY E • 20. * ATAN ( 20./4.) - 4,/2. * ALOGC4.••2+20.••2) 
101. = E= 0.15406645E 02 
101. -READY CV 
101. -READY VAL = l./COS(50. )+ALOG(ABSCS INC50./2. )/COSC50./2,))) 
101. • VAL=-0. 97715002E 00 
101. -READY ; EJECT 

Figure 6. 

Examples of Actual Use 53 



tabs to is regarded as column 7 by the system. ) Al
though the terminal prints each character as it is en
tered by the user, the user is free to change his mind 
until with EOB he signals that his message is complete. 
If the user omits EOB, control will pass after about 15 
empty seconds back to the system, which will soon 
present him with a fresh line. He can defer that event 
by working the SHIFT key, or hasten it by pressing the 
CANCEL key, then pressing EOB. In either case, 
nothing is left of the line, except the impression made 
on the paper at the time it was being entered. 

Another way for the user to avoid entering a defec
tive statement is to backspace and correct characters 
(before EOB). He must remember that backspacing 
over characters deletes them and that spacing over 
them again, accordingly, leaves blanks. In any event, 
the user need never enter a line he knows to be in error. 

As for lines that are entered by the user in spite of 
errors they may contain, the examination performed 
by the system rejects any defectively composed state-

ment. Figure 6 shows several incorrect statements and 
the system's diagnostic messages rejecting them. In 
practice, this is nearly equivalent to debugging the 
statement. Note that the READY condition permits but 
does not oblige the user to do something about his 
defective statement. As far as the system is concerned, 
the statement it just rejected has never existed (like 
the cv line ) . 

Command Mode, Program Mode, and Automatic Mode 

QUIKTRAN, of course, does not confine execution to the 
single statement. The user can enter any number of 
FORTRAN statements one-by-one, for serial execution 
later. The system, in that case, keeps track of the state
ments. Any such sequence of statements is, in QUIK

TRAN, a program. 
Figure 7 A shows a user entering a short program (the 

program itself is of no consequence). The user begins 
by entering a statement that contains the word PROGRAM 

and the name xxt. The system, in its tum, ( 1) adds one 

101. -RF.ADY C'V************************•************************************ 7 ** 
101. -READY CV TO GET INTO PROGRAM tO>E, EITHER {l) LOAD A ROUTINE FR().1 
101. -READY CV YOUR LIBRARY OR (2) BEGIN A NEW PROGRAM; FOR EXAMPLE, ..... 
101. -READY CV 
101. -READY PROGRAM XXl 
102. +READY CV 
102. +READY C'/***************!I?****'!'*****<!>•**'**••••••••••••••••••••••••••••• 8 •• 
102. +READY CV PLACE AN IMAGE OF THE ACTIVE PROGRAM IN THIS USER'S LIBRARY. 
102. +RF.ADY CV 
102. +RF.ADY SAVE 
10 2 • +RF.ADY CV 
102. +READY CV******'******************************************************* 9 •• 
102. +READY CV INITIATE EXECUTION FROM ( ). (A "O" SPECIFIES THE BEGINNING 
102. +RF.ADY CV OF THE PROGRAM.) 
102. +READY CV 
102. +READY START (0) 
101. -HALT END OF PROGRAM ENCOUNTERED OURING EXECUTION 
102. +READY CV 
102. +READY CV••**************************************************•******** 10 
102. +READY CV STATUS WORD ''HALT" - - LACK OF ANY FURIBER STATEMENTS IN 
102, +READY CV YOUR PROGRAM STOPPED EXECUTION OF IT. 
102. +READY CV 
102. +READY CV•************************************************************ 11 
102, +READY CV NOW DESTROY IBE ACTIVE IMAGE OF THE PROGRAM, IN ORDER TO 
102. +READY CV EITHER (1) ENTER STATEMENTS FOR 1""4EOIATE EXECUTION, OR 
102. +READY CV (2) ACTIVATE ANOTHER PROGRAM. 
102. +READY CV 
102. +RF.ADY CCMIANO 
101. -READY CV 
101. -READY CV••*********************************************************** 12 ** 
101. -READY CV USER AGAIN CIWlGES FR().1 cn+IAND TO PROGRAM l«>DE, IBIS TIME BY 
101. -READY CV ACTIVATING A PROGRAM ALREADY IN HIS LIBRARY, 
101. -READY CV 
101. -READY LOAD (XXl) 
102, +READY CV 
102. +READY CV************************************************************* 13 ** 
102. +READY CV PRODUCE A LISTING OF THE ACTIVE PROGRAM 
102. +READY CV 
102. +READY LIST 
101. = CF PROGRAM XXl 
102. +READY CV 

102. +READY CV•••********************************************************** 14 
102. +READY CV A "C" IN COL. 1 AND A BLANK IN COL, 2 INCLOOE IBE LINE IN 
102. +READY CV EVERY LISTING OF THE PROGRAM WITHOUT AFFECTING EXECUTION. 
102, +READY CV 
102. +READY C ................. GENERATOR NO. 1 
103, +READY X=O. 
104. +READY 2 X = X + 1 
104. +RJECT Ml XED !«>OE 
104. +READY 2 X•X+l. 
105. +READY A • X 
106. +READY Y•X 
107. +READY 2 A • A - 1. 
107. +RJECT STATEMENT 2 HAS BEEN PREVIOUSLY DEFINED 
107, +RF.ADY 3 A = A-1. 
108. +READY IF CA-0.) 4,4,5 
109. +READY 5 Y•Y+A 
110. +READY GO TO 4 
111. +READY 4 PRINT 101,X,Y 

Figure7A. 

54 



112. +READY 101 FORMAT C2El5.2) 
113. +READY 
114. +READY 

IF CS. - Xl 6,6,2 
6 STOP 333 

115. +READY 
116. +READY 
111. -0101 
111. -0101 
111. -0101 
111. -0101 
111. -0101 
114. =STOP 333 
116. +READY CV 

ENO 
START (0) 

O.lOE 01 
0.20E 01 
O. 30E 01 
0.40E 01 
O.SOE 01 

O.lOE 01 
O. 30E 01 
O.SOE 01 
O. 70E 01 
0.90E 01 

116. +READY CV************************************************************* 15 ** 
116. +READY CV 11010111 IN STATUS-WORD POSITION. AN OUTPUT LINE IS ABOUT TO BE 
116. +READY CV PRINTED ~DER CONTROL OF FORMAT STATEMENT NO. 101. 
116. +READY CV 
116. +READY CV 
116. +READY CV 
116. +READY CV 
116. +READY CV 
116. +READY CV 

STATUS WORD "STOP" - THAT STATEMENT, ARRIVED AT IN THE COURSE 
OF EXECUTING USER'S PROGRAM, STOPPED EXECUTION. LINE Nlf.IBER TO 
LEFT OF "STOP'' IS LI NE Nl.MlER OF STOP STATEMENT IN PROGRAM. 
Nl..MBER FOLLOW I NG, IF flJ('(, IS USER-SUPPLIED STOP CODE. 

116. +READY CV************************************************************* 16 ** 
116. +READY CV PRINT OUT DESTINATION WHENEVER BRANCH IS TAKEN. 
116. +READY CV 
116. +READY TRAP 
116. +READY START (0) 
108. =TRAP TRANSFER TO 4 (lll.) 
111. -0101 O.lOE 01 
113. =TRAP TRANSFER TO 2 (104.) 
108. =TRAP TRANSFER TO 5 (109.) 
110. •TRAP TRANSFER TO 4 C 111.) 
111. •0101 0.20E 01 
113. •TRAP TRANSFER TO 2 (104.) 
108. •TRAP TRANSFER TO 5 (109.) 

O.lOE 01 

0.30E 01 

109. •BREAK EXECUTION INTERRUPTED BY TERMINAL USER-LAST EXECUTED 108. 
116. +READY CV 
116. +READY CV************************************************************* 17 ** 
116. +READY CV STATUS WORDS- "TRAP" IDENTIFIES USER-ORDERED BRANCH TRACE. 
116. +READY CV "BREAK" ALWAYS MEANS SIGNAL FROM USER STOPPED 
116. +READY CV EXE CUTI ON. 
116. +READY CV 
116. +READY CV 
116. +READY CV 

(USER DISCOVERS THAT THERE IS tlO LOOP BACK TO 3) 

116. +READY CV************************************************************* 18 
116. +READY CV DELETE THE SPECIFIED REGION (IN THIS CASE, A SINGLE LINE). 
116. +READY CV 
116. +READY 
110. +ALTER CV 

ALTER(llO., 110.) 

110. +ALTER CV************************************************************* 19 
110. +ALTER CV STATUS WORD "ALTER" MEANS THAT SYSTEM IS OFFERING A LINE, 
110. +ALTER CV ON WHICH USER MAY ENTER STATEMENT FOR INCORPORATION INTO 
110. +ALTER CV ACTIVE PROGRAM. LI NE NlMIER I ND I CA TES PLACE IN PROGRAM. 
110. +ALTER CV 
110. +ALTER 
110.l+ALTER CV 

GO TO 3 

110 .1 +Al TER CV************************************************************* 20 ** 
110.l+ALTER CV ENO ALTER SEQUENCE. 
110.l+ALTER CV 
110.l+ALTER 

Figure 7B. 

ALTERX 

to the line number (which becomes 102. ) , and ( 2) 
prints a plus sign ( + ) after the line number instead 
of a minus. As the + signifies, a program is now active 
at the terminal. 

The system will, from now on, keep track of the 
statement on line 101. and any subsequent program 
statements entered by the user, regarding them as a 
single program. Assigning 101. to the first statement, 
the system supplies a line number to every statement 
in the user's program. Note that (I) the system always 
supplies this number automatically in the control field; 
( 2) the user does have discretionary powers over the 
interval of increment and can renumber if he wants 
(see below); and ( 3) the line number is not a label by 
which his program can refer to the statement: for that 
the user puts his own statement number in columns I 
through 5. 

Note in the example, that the statement which made 
the program active becomes the program's first state
ment. Note also that one statement is all it takes to 
make up a program. In Figur~ 7, when the system is 

offering line 102. to the user, the active program consists 
solely of the statement PROGRAM xxi. 

For the period that a program is "active" the system 
considers that all entries (except housekeeping entries ) 
refer to that program. For example, if the user enters 
SA VE (see Figure 7), the system copies an image of the 
active program into the user's library, where it stays 
under the name XXI. The system then repeats 102. 

in the control field. Program XXI is still active. 

Or if the user enters START<O>, the system will attempt 
to execute the program. With the only statement in the 
program not an executable one, the system will not get 
very far this time. It is important, however, that the 
reader realize that the attempt will be made. The sys
tem will then repeat 102. +READY in the control field. 
Program XXI is still active. 

Or if the user enters another program statement, the 
system (after inspecting for composition) examines the 
statement for consistency with the rest of the program. 
If the system accepts the statement, the system will 
consider it to be the next statement in order in the pro-

Examples of Actual Use 55 



1116. +READY CV 

I 
116. +READY CV**•••••••••••••••••••••••••••••••••••••••••••**************** 21 
116. +READY CV LIST THE REGION OF ACTIVE PROGRAM WITHIN THE GIVEN BOUNDS. 
116. +READY CV 
116. +READY LIST (5,4) 

I 
109. ; 5 Y=Y+A 
110. = GO TO 3 
111. • 4 PRINT 101,X, Y 
116. +READY CV 

I 
116. +READY CV******************************••••******************•******** 22 ** 
116. +READY CV TERMINATE "TRAP'' SERVICE ON THIS PROGRAM. 
116. +READY CV 
116. +READY 
116. +READY 
111. -0101 
111. =0101 
111. -0101 
111. a0101 
111. -0101 
114. •STOP 333 
116. +READY CV 

TRAPX 
START (0) 

O.lOE 01 
0.20E 01 
0.30E 01 
0.40E 01 
O.SOE 01 

O.lOE 01 
o. 30E 01 
0.60E 01 
O.lOE 02 
O.lSE 02 

116. +READY CV••*********************************************************** 23 ** 
116. +READY CV EXECUTE THIS SINGLE ARITH-IETIC STATEMENT. (THE STATEMENT 
116. +READY CV ITSELF WILL NOT BE RETAINED IN THE PROGRAM; IF THE LEFT 
116. +READY CV VARIABLE EXISTS IN THE PROGRAM, ITS VALUE WI LL REMAIN SET) 
116 • +READY CV 
116. +READY CC X • 3.**2 • 6.0 
116. • x· o.si.ooooooE 02 
116. +READY CV 
116. +READY CV•••********************************************************** 24 ** 
116. +READY CV BEGIN EXECUTION WITH STATEMENT FOLLCMING NO. 2 
116. +READY CV 
116. +READY 
111. -0101 
1111. =STOP 333 
116. +READY CV 

START (2+1) 
O.S4E 02 O.lSE 04 

116. +READY CV•••***********************************************'********** 25 ** 
116.· +READY CV WITH THE FORMAT SPECIFIED, OVERRIDE THE STANDARD FOR OUTPUTS 
116. +READY CV NOT UNDER CONTROL OF FORMAT STATEMENTS. 
116. +READY CV 
116. +READY 
116. +READY CV 

EDITCFl0.0) 

116. +READY CV•••********************************************************** 26 ** 
116. +READY CV PRINT OUT CURRENT VALUE OF EVERY PROGRAM VARIABLE. 
116. +READY CV 
116. +READY 

•POlMP 

116. +READY CV 

POLMP 
A• 
X• 
Y• 

o. 
si.. 

llJ85. 

116. +READY CV************************************************************* 27 •• 
116. +READY CV RESTORE ALL VARIABLES TO THEIR PRE-EXECUTION VALUES. 
116. +READY CV 
116. +READY RESET 
116. +READY POLMP 

sf'IU4' A•CNOT SET) 
Xs(NOT SET) 
Y•CNOT SET) 

116. +READY CV 

Figure7C. 

gram. When this happens it is obvious to the user, for 
(besides not rejecting the statement) the system offers 
line 103. for the next entry, leaving behind number 102. 
which is now assigned to the newly accepted statement. 

When no program is active at the terminal, the 
terminal is in "command mode." When a program 
is active ("program mode"), it is a particular pro
gram, and no statement entered can implicitly refer 
to any other program. To change from one active pro
gram to another, it is always necessary to return first 
to command mode (using the COMMAND statement). 
The statement COMMAND wipes out the "active image" 
of the active program. Therefore, the user should first 
copy it into his library (with SA VE) if he would ever 
make it active again (otherwise he must re-enter it, 
statement by statement) . Only the most recent SA VE 

has abiding effect, replacing that program (if any) 
which has the same name as the active program. Ac
cordingly, judicious use of SA VE from time to time in 
constructing a long program will protect the user from 

56 

the loss that would otherwise result from an inadvert
ant COMMAND. 

The statement for making active a program previ
ously placed in the user's library is LOAD < >, naming 
the program. Note that LOAD < ) does not remove the 
program from the user's library any more than SA VE 

obliterates the active image. Both statements merely 
copy from one place to another. The LOAD c ) com
mand is effective only in the command mode, but has 
the same effect as PROGRAM __ in changing from 
command to program mode. The statement PROGRAM 

__ becomes the program's first statement; LOAD < ), 

does not. There is no difference between an active pro
gram image made so by loading and one which has 
been brought to the same point by building on a PRO

GRAM statement. 

The salient differe11ce, as should now be clear, be
tween program mode ( + ) and command mode ( - ) 
is that in program mode statements are kept as part of 
a savable and executable program whereas in command 
mode statements are discarded (after immediate ex-



116~ +READY CV************************************************************* 28 ** 
116. +READY CV LIST lHE SPECIFIED REGION, <»41TIING LINE NOS. AND STATUS SIGNS 
116. +READY CV 
116. +READY COPY (0,104. l 

CF PROGRAM XXl 
C •••••••••••••••• GENERATOR NO. 1 

X•O. 
2 X•X+l. 

116. +READY CV 
116. +READY CV************************************************************* 29 ** 
116. +READY CV (NOTE lHAT lHE SYSTEM PROVIDED lHE COOE "CF" FOR LINE 101. 
116. +READY CV lHAT MAKES QUIKTRAN PROGRAM STATEMENTS INTO cotJMENTS lfiEN 
116. +READY CV lHEY ARE IN CONVENTIONAL FORTRAN ENVIORN-IENTS.) 
116. +READY CV 
116. +READY SAVE 
116. +READY CCM4ANO 
101. -P.EADY ; EJECT 

Figure 7D. 

ecution, of course). None of the capability of command 
mode is denied the user in program mode, however. 

The third QUIKTRAN mode is "automatic," meaning 
that the system is in execution ( = ) . After execution, 
the user is returned to whichever mode he was in 
before. The user may, therefore, find it convenient to 
think of the automatic mode as a special way of operat
ing while in either of the other two modes. For instance 
when a program has just been executed, that program 
is just as active as it was before - it is still possible to 
add statements to it, to execute all over again, etc. 

Building a Program 

Figures 7 through 11 show programs being entered, 
executed, and otherwise operated upon. It is not the 
purpose of this part of the Guide to describe in detail 
all QUIKTRAN statements. These statements are listed 
alphabetically at the end of this section, and their 
locations in the illustrations are indexed. It is desirable) 
however, to orient the prospective user in program
mode operations. 

The basic sequence of events in the program mode 
is the same as that in command mode. The inspection 
procedure now takes more steps. A statement may now 
suffer rejection even if free of defects in construction, 
for it must also avoid being inconsistent with the pro
gram already active (see, e.g., Figure 7 A, line 107). 
Also, the system now incorporates every acceptable 
program statement into the active program. This in
corporation replaces the immediate execution that took 
place in command mode. 

The user may, thus, enter statement after statement 
of the FORTRAN type, building toward the completion 
of the program he has in mind. To the system, how
ever, there is always a "program," consisting of what
ever statements have thus far been accepted into it. 
Because the system responds on a statement-by
statement basis, ther~ are some differences from the 
way FORTRAN statements are conventionally treated. 
Declaratives (like INTEGER, REAL, DIMENSION) must 
precede executable statements. Also, there is no need 
to mark the completion of a program with END. How-

Examples of Actual Use 57 



ever, QUIKTRAN accepts END (for compatibility with 
FORTRAN compilers), and will permit no program 
statements to come after an END statement. The system 
will also print out a message when the user enters END 

if it detects no-loop errors (see Figure BA, line 117.). 
Everything the user enters into the system will 

be interpreted by the system as in some way relating 
to the active program. (The only exceptions are of 
a housekeeping nature, like the terminal commands. ) 
There are principally four kinds of actions the user 
can initiate: (I) acceptance of a statement as part of 
the active program; ( 2) copying of the active program 
into the user's library; ( 3) execution of the program 
itself (or any part of it), or of various service routines, 
in either case temporarily interrupting the building of 
a program; and ( 4) attaching to the active program 
some qualification that will condition future perform
ance. Some examples of item ( 3) are: START, LIST, 

PDUMP, cs and CHECK. Note that after any kind of 
execution, the system returns the user to that point at 
which he departed the active program. Examples of 

101. -READY PROGRAM XX2 
..-.r-••t""nATnn tin ., 

• • •••••"11:.IH:."""'IVI"\ l'fV• L 

EQJIVALENCE M,N 
102. +READY C 
103, +READY 
103. +RJECT 
103. +READY 

ELEMENT IN FIELD 1M,N' IS NOT AN OPERATOR 
EQJIVALENCE (M,N) 

104. +READY 
105. +READY 
106. +READY 
107. +READY 
108. +READY 

INTEGER A 
J=O 

1 ""'J 
J~J+l 

K=J 
109. +READY IF (J-ll 4,4,2 
110. +READY 2 DO 6 A • l,N 
111. +READY 3 K • K + (J - Al 
112. +READY CV 
112. +READY CV••*********************************************************** 30 ** 
112. +RF.ADY CV (NOTE lHAT THE FOLLOWING STATEMENT WILL MERELY PRINT 
112. +READY CV WHEN EXECUTED BY QJIKTRAN.) 
112. +READY CV 
112. +READY 4 PUNOl 101,J,K 
113. +READY 101 FOIM\T (2110) 
114. +READY GO TO Cl,1,1,1,l,l,l,l,l,!:>),J 
115. +READY 5 PAUSE 555 
116. +READY STOP 666 
117. +READY ENO 
117. +EIR>R DO 110. REFERENCES UNDEFINED LABEL 6 
117. +EIR>R STATEMENT 4 Cll2.) REFERENCED FRC»-1 OUTSlDE RANGE OF DO BY 109, 
118. +READY CV 
118. +READY CV************************************************************* 31 
118. +READY CV STATUS l«lRO "ERROR" - THE SYSTEM HAS DETECTED EITHER THAT 
118, +READY CV PARTS OF YOUR PROGRAM ARE INCONSISTENT OR lHAT YOUR 
118. +READY CV PROGRAM IS I N<DIPLETE. 
118. +READY CV 
118 • +Rf.ADY 
110. +ALTER 
110.l+ALTER 
118. +READY 
112. -0101 
112. -0101 
112. -0101 
112. -0101 
112. -0101 

ALTER (110.,110.) 
2 DO 3 A • l,N 

ALTERX 

112. -0101 
112. -0101 
112. -0101 
112. -0101 
112. -0101 
115. •PAUSE 555 
118. +READY CV 

START (0) 
1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

1 
3 
6 

10 
15 

21 
28 
36 
45 
55 

118. +READY f:'i**************************************************'*********** 32 •• 
118. +READY CV STATUS l«lRD "PAUSE" - EXECUTION INTERRUPTED BY YOUR 
118. +READY CV INSTRUCTION IN PROGRAM STEP AT LINE l'f.M!ER smwN. 
118. +READY CV 
118. +READY START 
116. -STOP 666 
111. +READY RESET 
118. +READY SAYE 
118. +READY (XMW«J 
101. -READY LIW> CXX2) 
118. +READY LIST ClOl.,104.) 

Figure SA. 

58 

item ( 4) are SNAP and DELTA c ). Note that the system 
registers its acceptance of the task thus imposed on it 
by returning to the + READY condition. 

In building a program, the serial entry of sequential 
program statements has already been discussed. The 
nonconsecutive entry of sequential statements is made 
possible by use of the ALTER ( ) statement (Figure 
7B). The system responds to an ALTER c ) state-
ment by deleting the region of the program speci
fied and offering the first of the specified line 
numbers to the user, who may use that line as though 
it were offered in the normal sequence. The system 
will continue to offer lines sequentially until either the 
system or the user terminates the alter sequence. In
stead of specifying a region of the program for de
letion, the user may specify a new position lying 
between existing statements, in which case it is that 
line number which begins the alter sequence (Figure 
IO). If at the end of an alter sequence statements have 
been entered which make the program logically un
workable, the system will so inform the user. 



101 •• 
102 •• 
103 •• 
104 •• 

CF 
c 

118. +READY CV 

PROGRAM XX2 

EQUIVALENCE CM,N) 
INTEGER A 

• •••••• GENERATOR NO. 2 

118. +READY CV************************************************************ 32. 5 ** 
118. +READY CV COPY THE ACTIVE PROGRAM IMAGE INTO THIS USER'S LIBRARY -
118. +READY CV UNDER THE NAME SPECIFIED. 
118. +READY CV 
118. +READY 
118. +READY CV 
118. +READY CV 
118. +READY 
101. -READY CV 

SAVECFACTL 2) 
(THE SAME PROGRAM I S Na<I I N THE LI BRARY 1W I CE ••• UNDER TWO 
DIFFERENT NAMES.) 

CDMAND 

101. -READY CV•••********************************************************** 33 ** 
101. -READY CV REMJVE THE NAMED PROGRAM FROM THIS USER'S LIBRARY. 
101. -RF.ADY CV 
101. -READY PURGE (XX2l 
101. -READY LOADCXX2l 
101. -ERROR LOAD REQUEST l«>T FULFILLED (PROGRAM NOT IN LIBRARY) 
101. -READY CV 
101. -READY CV 
101. -READY CV 

(PROGRAM XX2 Na.I UNLOADABLE BY THAT NAME.) 

101. -READY LOADCFACTL2l 
118. +READY LIST ClOl.,104.) 
101. • CF PROGRAM XX2 
102. • c 
103 •• 
104 •• 

EQUIVALENCE (M,Nl 
INTEGER A 

••••••• GENERATOR NO. 2 

118. +READY CV 
118. +READY CV 
118. +READY 

(NOTE THAT THE PROGRAM STATEMENT DEFINING THE BEGINNING OF 
"FACTL2" RE.MAI NS "PROGRAM XX2".) 

CDMAND 
101. -READY PROGRAM FACTL3 
102. +READY C ••••••••••• GENERATOR NO. 3 
103. +READY A•lO. 
104. +READY X•l. 
105. +READY Y•l. 
106. +RF.ADY 10 PRINT 101,X, Y 
107. +READY X•X+l. 
108. +READY Y•Y+X 
109. +READY IFCA-Xl 20,10,10 
110. +READY 20 STOP 
111. +READY ENO 
112. +READY START (0) 
106. •XEQER STATEMENT IU4BER USED DOES l«>T EXIST IN PROGRAM 
112. +READY CV 
112. +READY CV•••********************************************************** 34 ** 
112. +READY CV STATUS WORD "XEQER" - ATTEMPT TO ACCOMPLISH THE IMPOSSIBLE 
112. +READY CV ENDED EXECUTION OF YOUR PROGRAM. 
112 • +READY CV 
112. +READY CV 
112. +READY CV************************************************************* 35 ** 
112. +READY CV LIST UNEXECUTED STATEMENTS, UNSET VARIABLES. 
112 • +READY CV 
112. +READY 

Figure BB. 

AUDIT 
AUDIT 
AUDIT 
AUDIT 

AUDIT 
106. /111. NOT EXECUTED 

A NOT USED 
X NOT USED 
Y NOT USED 

The SAVE statement copies the program into the 
user's library under the name used in the program
defining statement. The form SAVE < >, giving an alias, 
puts it in under the alias ( see Figure 8). The only 
limit to the number of different times the program 
image is saved (each time under a different name) is 
the capacity of the library. Should the user wish, for 
any reason, to remove a program already in the library, 
he may do so with a PURGE < > statement. This is the 
only operating statement which, entered in the pro
gram mode, does not necessarily refer to the active pro
gram. It must always explicitly name the program to be 
removed. 

The user can interrupt the building of a program by 
calling for any of several kinds of execution. The 
START < > statement executes the program itself (in 
the specified range). The cs code executes the last 
arithmetic or input/ output statement entered by the 
user. 

Other statements cause the execution of special rou
tines that print out information. The statements INDEX 

and CHECK compile cross-reference information about 
the program variables and labels. The AUDIT statement 
searches the program for unset variables and unexe
cuted statements. The statements PDUMP and QDUMP 

display values; LIST, COPY, and NUMBER cause the active 
image to be displayed at the terminal. Note that 
NUMBER does this in conjunction with the service of 
renumbering the program. 

But always after interruption for any kind of execu
tion, whether of the program itself or of a service, the 
user is returned to program mode where he had left 
off. Note that if any portion of the program has been 
executed, in response to START < > or the process 
codes (like cs), any variables that have been set 
thereby will continue to have the values they acquired. 
The user must think of his program as having the form 
and content imparled to it by whatever has affected 
it during its periods of activity at the terminal. If he 
wants his variables to behave as "unset" after they have 
been affected by execution, he uses RESET. 

Examples of Actual Use 59 



112. +READY CV************************************************************* 36 ** 
112. +READY CV STATUS WORD "AUDIT'' - PRECEDES EVERY LI NE OF OUTPUT CAUSED 
112. +READY CV BY YOUR RE~EST FOR "AUD IT''. 
li2. +READY CV (AUDIT SHOO<S LINES 106. THROUGH 111. NDT EXECUTED.) 
112. +READY CV 
112. +READY CV 
112. +READY CV************************************************************* 37 •• 
112. +READY CV LIST REFERENCES TO UNLOCATASLE STATEMENT NDS. Alll UNDEFINED 
112. +READY CV VARIABLES ••• ALSO TO TERMS DEFINED BUT NEVER REFERENCED. 
112 • +READY CV 
112. +READY OiECK 

OiECK * 101 -106. 
OiECK •FACT~3 + 101. 

112. +READY CV 
112. +READY CV************************************************************* 38 ** 
112. +READY CV THE OUTPUT ABOVE SAYS THAT LINE ND. 106 CONTAINS A l\EFEHEHCE 
112. +READY CV TO A NONEXISTENT STATEMENT NLMBERED 101. 
112. +READY CV STATUS WJl\D "OiECK" PHECEDES EVERY LINE Of OUTPUT CAUSED BY 
112. +READY CV YOl.Jt{ RE<JJEST FOR A "CHECK" 
112. +READY CV 
112. +READY CV 
112. +READY CV 
112. +READY CV************************************************************* 39 ** 
112. +READY CV USER WANTS TO INSERT A LINE 10C4. 
112. +READY CV 
112. +READY ALTER <106.4) 
106.4+ALTER 101 FORMAT (2Fl0.0) 
106. 5+ALTER ALTERX 
112. +READY START (0) 
106. -0101 1. 1. 
106. -0101 2. 3. 
106. -0101 3. 6. 
106. =0101 4. 10. 
106. -0101 5. 15. 
106. -0101 6. 21. 
106. •0101 7. 28. 
106. -0101 8. 36. 
106. -0101 9. 45. 
106. -0101 10. 55. 
110. •STOP 
112. +READY COl+IANO 
101. -READY ; EJECT 

Figure BC. 

The css code offers a capability to the user that 
resembles the immediate execution of command mode. 
The css code results in all subsequent arithmetic and 
input/ output statements receiving immediate execution 
as well as being accepted into the program. (The ex 
and cxx codes perform analogous functions, but 
without the printout.) In all cases, of course, variables 
remain set to the values they have acquired. 

The cc code makes possible an operation almost ex
actly like command-mode execution. It signals the sys
tem not to retain the statement that follows it on the 
same line, but to execute it nonetheless. Note that if 
the statement sets a variable that appears in the active 
program, that variable retains the acquired value even 
though the statement containing it is discarded. In all 
cases, a subsequently given RESET will revoke the effect 
execution may have had on any program variable. 

The statements that cause the system to take note of 
a change it must keep track of (rather than execution 
it must perform immediately) are of two kinds: those 

60 

controlling the form of certain system activities and 
those invoking certain testing services. 

In the first class are DELTA c >, EDIT c >, and 
AUXOP c >. The first two perform editorial services 
on the line increments and on the format of pro
grammed system output, respectively. The AUXOP c ) 
statement names a second device, in addition to the 
printer, to receive all output. In all three cases, these 
services stay with the program when it is copied into 
the library and for as many times as the program may 
again be made active. Only the statements revoking 
them can terminate their effect. 

In this connection, note that there are two different 
ways that EDIT c > may work, depending on whether 
it is entered in the command mode or in the program 
mode. The EDIT c ) statement in command mode does 
not affect formats in program mode, but will continue 
to govern output at the terminal whenever operations 
revert to command mode. The EDIT c ) statement in 
program mode governs all unprogrammed formats for 
executions relating to the active program, during the 
current and any future periods of activity. 



The five test statements (GUARD, SNAP, STEP, TRAIL, 

and TRAP) as well as XEQER (FINISH) cause the system 
to remember to watch for certain conditions during 
any future executions of the active program (again, 
during this or future periods of being active at the 
terminal), and to report the occurrence of these con
ditions to the user should they be detected. Corre
sponding to each such statement is one that will re
voke the service it provides. The CLEAR statement 
revokes all test services in effect on a program, and 
resets variables as well. 

Input and Output 

In the routines shown in Figures 7 and 8, the variables 
were all set by arithmetic assignment statements in 
the program. Figure 9 illustrates a program containing 
a READ statement. By following what happens in execu
tion as a result of the READ statement, the user should 
begin to get a clear picture of QUIKTRAN input and 
output. 

Refer to line 119. There the user enters a SAVE state-

101. -READY 
102 • +READY C 

PROGRAM SORT 

103. +READY C READS "I" Nl.MBERS INTO AN ARRAY "A" AND SORTS THE ARRAY. 
104. +READY DIMENSION A [501 
105. +READY I = 0 
106. +READY READ 101, I, (A(J), J=l, I) 
107. +READY 101 FORMAT( 15/ Cl2F6 .1)) 
108. +READY K = I - 1 
109. +READY 00 15 M = 1, K 
no. +READY L = M + 1 
llL +READY 00 15 N = L, ! 
112. +READY TEMP = (A(M) 
112. +RJECT PARENTHESES NOT IN BALANCE 
112. +READY TEMP = CACM)) 
113. +READY A(M) = AMfNl(A(M),fl(N)) 
114. +READY 15 A(N) = AMAX! CTEMP,A(N)) 
115. +READY PRINT 102,A 
116. +READY 102 FORMAT (///24H THE ARRAY ORDER NOW IS-/(11Fl2.l)) 
117. +READY STOP 77 
118. +READY END 
119. +READY SAVE 
ll9. +READY START(O) 
106. = 1101 48 
106. = 2 -032 .10034. 5-067 .8-090. 0-087 .60054. 3-021. 00078.10001. 20030. 5-040.60020. 9 
106. = 3 -36 .2-000.4-001.2-000. 9000000-099. 90099. 90088. 8-077. 70066 .6-014. 70095. 2 
106. = 4 0054.3 -21.00056.70089.0-012.3 -46.7 089.1 -23.4 -56.80089.20098.70065.4 
106. = 5 -030.2-060.70059.40027.2-036.50088.l-OY4.20026.70018.8-016.90071.2 47.0 
115. =0102 
115. = 2 
115. = 3 
115. = 4 THE ARRAY ORDER NOW IS-
115. = 5 
115. =OVFLO 
115. = 6 
115. =OVFLO 
115 •. = 7 
115. =OVFLO 
115. = 8 
115. E{)VFLO 
115. = 9 
117. =STOP 77 

-99. 9 -94.2 
-36.5 
-36.2 
-0.9 
-0.4 
54.3 
54.3 
89.l 
89.2 

-32.l 

o. 

56.7 

95.2 

-90.0 -87 .6 -77. 7 

-30.2 -23.4 -21.0 

1.2 18.8 20.9 

59.4 65.4 66.6 

98. 7 99.9 o. 

119. +READY CV************************************************************* 40 
119. +READY CV STATUS WORD "I---" - SYSTEM REQUESTS INPUT SO THAT IT r.\AY 
ll9. +READY CV EXEOJTE A READ STATEMENT UNDER FORMAT STATEMENT "---" 

STATUS l\URD "OVFLO" - THIS LINE IS THE REMAINDER OF THE 

-67 .8 

-21.0 

26. 7 

71. 2 

o. 

119. +READY CV 
119. +READY CV 
119. +READY CV 
119. +READY CV 
119. +READY CV 

LI NE CALLED FUR IN YOUR FOllMAT SPECIF I CATION, AND STARTED 
ABOVE. 

119. +READY cu+IAND 
101. -READY ; EJECT 

Figure 9. 

ment and then starts execution of his program. The 
first thing the system types in the control field on the 
next line is neither 119. nor 120., but the number of line 
106.; which is the READ statement's line. The sys
tem follows the line number with an = sign. The = 
sign shows (as it has in all preceding examples) that 
the system is delivering output as Lhe result of execu
tion. The significance of the line number is that the 
output is being caused by the execution of that line, 
viz., of the READ statement. (Note that not all system 
output is program output.) 

The output, however, consists solely of the characters 
in the status-word position, viz., nol. When the sys
tem output consists of a message in the status-word 
position beginning with "I," it means that the system 
is requesting input from the terminal. This is only 
logical, because the system is in process of executing a 
statement (the READ) which requires input, and this is 
the way the system gets it. The procedure takes two 
steps: first, inviting the user to enter input; and second, 
reading the input the user enters. After an "I" status 

-60. 7 

-16.9 -14. 7 

27 .2 30.5 

78.l 88.1 

-46. 7 

-12.3 

34.5 

88.8 

-40.6 

-1.2 

47.0 

89.0 

Examples of Actual Use 61 



message, then, although the system is still in control 
(being in automatic mode), the rest of the line origi
nates with the user. (To recapitulate, the three status 
messages that are interfaces between system and user 
are: READY, ALTER, and 1---.) 

The reader will, therefore, interpret the "48" in the 
first execution line in Figure 9 as having been typed 
by the user. The "101" part of 1101 tells the user that 
the system will interpret the input record he enters in 
accordance with the field specification contained in 
statement 101 (which is, of course, a FORMAT state
ment). 

The requirements for the first line of input have been 
satisfied ( "15" in statement 101). But the FORMAT 

statement specifying the input-field layout for the READ 

statement shows that there should be more to read 
on the next line. Accordingly, execution of line 106. is 
incomplete and the system again invites input. This 
time, it does not repeat the not. Instead, it prints only 
"2,'' signifying the second line of input required in 
order to execute line 106. The user then proceeds, in 
accordance with the 101 FORMAT statement, to complete 
the input fields called for. When the user has done this, 
the print element rests at the beginning of a new line, 
just under the "1" in 106. = • 

The system does not type anything at this time. The 
program being executed has now to perform the com
putations that do the sorting. While these computa
tions are being carried out, the system is silent; the 
print element does not move. If the KEYBOARD 
switch has been left ON, the PROCEED light will 
come on at intervals. This is not an invitation to trans
mit input. ( Note that the print element is not in the 
appropriate position for input.) But the user is being 
offered an opportunity to interrupt execution with an 
EOT from the keyboard. He can interrupt only when 
the PROCEED light is on. If he does interrupt (with an 
EOT), the system will not resume execution; it will, 
instead, print the status work BREAK, and a message in
forming the user what statement was being executed 
(see Figure 7B ) . It will then return the user to pro
gram mode, offering the line number it was offering 
when the user started execution. The statement START 

is sufficient to resume execution of a program thus in
terrupted (at the point where it had left off). If, during 
the pause in execution when the PROCEED light is on, 
the user wishes not to interrupt, he can speed the re
turn to execution by sending EOB. If he does not want 
even the opportunity to interrupt, he should tum the 
KEYBOARD switch OFF until he does. 

( Note that execution sets "1" to zero before it is set 
to 48 by the READ statement. This fulfills a technical 
requirement of the system, viz., that when a variable 
is used in the same input statement that sets it, that 
variable must have been set before the input statement 

62 

is executed. The value to which it is pre-set is of no 
consequence.) 

Output in Figure 9 produces a control field that is 
analagous in structure to that produced by the request 
for input. Observe that the statement controlling out
put format calls for longer lines than the system can 
print. The system does not suppress the line or its 
superfluous portion, but prints the line as far as it can 
before printing the remainder on the next line, which 
is labeled OVFLO. 

Figure 9 also completes the examples of the way the 
system uses line numbers. An inspection of all figures 
will show that line numbers always refer to the status 
message. [Even the following are not exceptions to this: 
( 1) command-mode execution (Figure 6), which is a 
special case of the line number indicating which state
ment is being executed; ( 2) the status word READY, 

which, in either mode, shows what line number is 
ready for the next program statement; and ( 3) the 
status word RJECT, which, of course, gives the number 
of the line on which the user attempted to enter the 
rejected statement.] 

Command-Type Operations in Program Mode 

In Figure 10, the user begins by finding the value H 
of an expression he enters in command mode. In this 
case, what the user has done is to copy a formula -
a well-known one in electronics - at the keyboard, 
substituting his selected quantities for the variables 
of the formula. In the process of finding H, nothing, of 
·course, is saved. Should the user want to find H for 
other quantities of the variables, he would have to key 
in the statement once again with the new values - a 
requirement he can avoid by using program mode. 

The user therefore enters PROGRAM HENRY and on 
line 102. enters the formula itself as a statement in the 
now active program. As long as the program is active, 
he need only set its two variables to the chosen quan
tities (with cc) and then execute. The START <O> state
ment would do, but here cs is more efficient. He may 
repeat this procedure as many times as he cares to. 

In the example, the user then saves the program, 
reloads it, lists it, and decides to add to it. His additions 
create a program which: (I) reads the values into the 
formula, ( 2) does the computation, ( 3) prints H and 
the variables, and ( 4) repeats these steps indefinitely. 
When this version is active, the user's terminal can be 
made to function as though it were a desk calculator 
with memory, programmed to compute H for every 
pair of values X and D fed in. 

(Note that at line 101.5 the user requests an alter 
sequence after line 102. The system, instead of present
ing him with line 102.1 in an alter sequence, gives 
him 103., in the normal sequence. The NOTE informs 
the user that because there are no statements in the 



program following line 102., the alter sequence is not 
necessary.) 

A Sample Problem 

In Figure 11, a QUIKTRAN user builds a program for 
solving an equation. As the listing shows, the user 
first enters, on lines 104. through 111., the statements 
that should execute his basic algorithm, without any 
input or output as yet. He adds an END (line 112.) to 
make the program FORTRAN-compatible. Then he re
quests the SNAP service. 

There is one variable in this program which has to 
be set by input, and that variable is DELX. The user 
now sets it to 0.5. After a false START, the user initiates 
execution. Although there are no output statements in 
the program, the user can see execution proceeding 
because the SNAP service supplies a line of output 
every time a variable is newly set (identifying the 
statement being executed in the line-number column). 
After executing 109., the system tries to execute 110. 

But the function used there has not been defined, so 
the system returns the user to line 113. of the program 
with an appropriate message. 

101. -READY CV 
101. -READY CV 
101. -READY CV 
101. -READY 
101. = 

CTHE FOLLCMING LINES SKlW ID/ A QUIKTRAN USER PERFORMS A 
C(M.IAND - TYPE OPERATION REPEATEDLY ON VARYING DATA, BY USING 
THE PROGRAM t-f)DE. ) 

101. -READY 
102. +READY 
103. +READY CC 
103 •• 
10 3. +READY CC 
103 ... 
103. +READY CV 

H " 2.E-9 •50. * CALOG(2.•50./10. )-1. + 10./50,) 
H• 0.15025851E-06 
PROGRAM HENRY 

H • 2.E - 9 * X * CALOG (2. * X/D ) - 1.0 + D/X) 
x • so. 
X= 0. SOOOOOOOE 02 
D • 10. 
D• O. lOOOOOOOE 02 

103. +READY CV************************************************************* 
103. +READY CV EXECUTE THE PRECEDING ARITIMETIC OR 1/0 STATEMENT. 
103. +READY CV 
103. +READY CS 
102 •• 
103. +READY 
103. +READY 
101. -READY 
103. +READY 
101. • CF 
102. = 

H• 0.15025851E-06 
SAVE 
CCM1AND 
LOAD (HENRY) 
LIST 
PROGRAM HENRY 
H=2.E-9•X•CALOG(2. •X/D)-1,0+D/X) 
ALTERClOl.l) 

l+l ** 

103. +READY 
101.l+ALTER C 
101.2+ALTER C 
l01.3+ALTER CV 

THE INDUCTANCE (HENRY) OVER A DISTANCE (0) BElWEEN 2 WIRES 
OF EQUAL LENGTH. 

101. 3+AL TER CV************************************************************* 42 
101.3+ALTER CV (FOLLOWING INSTRUCTION WILL HAVE SAME EFFECT AS 1 CONTINUE) 
101.3+ALTER CV 
101.3+ALTER 1 BACKSPACE 3 
101.l++ALTER CV 
101. 4+ALTER CV•************************************************************ 43 ** 
101.l++ALTER CV READ ACCORDING TO THE STANDARD FOR NON-FORMATIED INPUT. 
101.l++AL TER CV 
101.l++ALTER READ O,X,D 
101.S+ALTER ALTERC102.l) 
101.S+NOTE t-f)DE RESET - ALTER LINE NLMBER 102.1 HAS REACHED UPPER BOUND 
103. +READY CV 
103. +READY CV••*********************************************************** 44 
103, +READY CV PRINT ACCORDING TO THE STANDARD FOR NON-FORMATIED OUTPUT. 
103. +READY CV 
103. +READY PRINT O,X,D,H 
101+. +READY GO TO 1 
105. +READY SAVE 
105. +READY START (0) 
101.1+=1 00 50./10. 
103. -0 00 O.SOOOOOOOE 02 O.lOOOOOOOE 02 0.15025851E-06 
101.4•1 00 60./20. 
103, -0 00 0.60000000E 02 0.20000000E 02 0.1350llll+E-06 
101,l+al 00 70,/30. 
103, -0 00 0.70000000E 02 0,30000000E 02 0.13566231E-06 
101.1+•1 00 90./60. 
103, =O 00 0, 90000000E 02 O. 60000000E 02 0 .13775021E-06 
101.4=1 00 
101,l+•BREAK EXECUTION INTERRUPTED BY TERMINAL USER-LAST EXECUTED 101.1+ 
105. +READY CCH1AND 
101. -READY ;EJECT 

Figure 10. 

Examples of Actual Use 63 



In the second group of lines numbered 113., the 
user guards execution of the statement that uses the 
function. This time, the system does not try to execute 
the guarded region but instead prints out a message 
saying that it has encountered a guard condition at line 
110. The first time this happens, the user makes the 
error of entering START, which forces the system to try 
to execute the statement at 110. This proves impossible 
because the function is not yet available, so on sub
sequent occasions, the user supplies (with a cc} a 
value for the variable Y which 110. sets, and then 
starts execution one line past 110. The user has effec
tively substituted his own action for execution of the 
missing subprogram. 

The SNAP outputs show values for X that satisfy the 
user. He therefore requests an alter sequence begin
ning with 106.5, and puts statements in his program 
that will print out the values of both X and Y every 
time they are newly computed. He closes the alter 
sequence, and removes the GUARD and SNAP services. 

101. -READY CV 
101. -READY CV 
101. -READY 
102. +RF.ADY C 
103. +READY C 

(IN THE FOLLCMING LINES, A QUI KTRAN USER BUI LOS A PROGRN-1. HE 
(WRITES A MAIN ROUTINE AND 1WO SUB-PROGRNo1S. l 

PROGRAM SAMPLE 
••••••• SOLUTION ANO PLOT OF A DIFFERENTIAL E(lJATION 

104. +READY X • 0 
105. +READY Y • 1.0 
106. +READY DO 4 I • 1,500,2 
107. +READY IF (X - 1.) 3,2 
107. +RJECT IF(EXPRESSION)Nl,N2,N3 IS THE ONLY VALID FO!fol 
107. +READY IF (X - 1.) 3,2,2 
108. +READY 2 STOP 77 
109. +READY 3 X • X + DELX 
110. +READY Y = CCJ.IPYCX, Y ,DELXl 
110. +NOTE THE FOLL<MING ARE Fll'ICTIONS COMPY 
111. +READY CV 
111. +READY CV*******•**********'***********•******************************* ~5 ** 
111. +READY CV STAnJS l«lRD "l«>TE" BRINGS TO YOUR ATIENTION INFORMATION YOU 
111. +READY CV MIGHT RE<lJIRE TO AVOID ERROR. 
111. +READY CV 
111. +READY 
112. +READY 
113. +READY CV 

4 CONTINUE 
El«> 

113. +READY CV***********************************************************•* 46 
113. +READY CV EVERY TIME A VARIABLE IS SET, PRINT IT OUT WITH ITS VAWE. 
113. +READY CV 
113. +READY SNAP 
113. +READY CC DELX • 00.5000 
113. • DELX• O. 50000000E 00 
113. +READY START 

Now the user changes from program SAMPLE to 
FUNCTION COMPY ( Figure llB ) , first making sure to 
SAVE program SAMPLE. The function COMPY is the func
tion called for in line 110. of the main program and 
the user needs to enter the subprogram defining it. 
(He starts out using integer symbols for the arguments 
in the FUNCTION statement. Since the values to be 
passed to the main program are real, he arranges, using 
the REAL statement, to have the COMPY variables so 
regarded.) 

After defining the function, making sure to include a 
RETURN statement, the user inserts values for the vari
ables (with cc lines) in order to test this subprogram. 
Here, cs would not do for finding COMPY (line 105.), 

for L must first be computed ( 104. ) . So the user gives 
START co>. He gets an error message when the system 
tries to execute the RETURN at 107. to the active pro
gram, for it is the function that is the active program. 
To find out what value the function has, the user takes 
a QDUMP. 

113. +ERROR START USED TO RESLME Al.fm.lATIC l«lDE - NOT AFTER EXECUTING STOP, END, OR LAST STATEMENT IN PROGRAM 
113. +READY START (0) 
104. •SNAP X• O. 
105. •SNAP Y• 0. lOOOOOOOE 01 
109. =SNAP X= 0.50000000E 00 
113. +ERROR SUBPROGRAM C!M'Y IS l«lT IN YOUR LIBRARY 
113. +ERROR RETURNING TO MAIN PROGRAM 
113. +READY CV 
113. +READY CV••••••••••••••••••••***************************************** 47 
113. +READY CV STATUS l«lRD "SNAP'' PRECEDES EVERY LINE OF OUTPUT CAUSED BY 
113. +READY CV THE "SNAP'' SERVICE YOU REQUESTED. 
113. +READY CV 
113. +READY CV••*********************************************************** 48 
113. +READY CV RETURN TO USER CONTROL OF EXECUTION OF SPECIFIED REGION (BY 
113. +READY CV PREVENTING AUTCMATIC EXECUTION THEREOF). 
113. +READY GUARD (110.,110. l 
113. +READY START (0) 
104. •SNAP X• O. 
105. •SNAP Y• O.lOOOOOOOE 01 
109. •SNAP X• O. 50000000E 00 
110. -GUARD WARDED STATEMENT ENCOUNTERED DURING EXECUTION 
113. +READY CV 
113. +READY CV************************************************************* 49 ** 
113. +READY CV THE STATUS V.ORD "GUARD" -- EXECUTION IN THIS REGION IS 
113. +READY CV "SINGLE-CYCLE". IF YOU WANT EXECUTION OF THIS STATEMENT, USE 
113. +READY START 
113. +ERROR SUBPROGRAM CD4PY IS l«lT IN YOUR LIBRARY 
113. +ERROR RETURNING TO MAIN PROGRAM 
113. +READY START (0) 

Figure l lA. 

64 



104. •SNAP X• 0 • 
. 105. •SNAP Y• O.lOOOOOOOE 01 
109. •SNAP X• 0.50000000E 00 
110. -GUARD GUARDED STATEMENT ENCOUNTERED DURING EXECUTION 
113. +READY CC Y • X•Y•DELX 
113. • Y• O. 25000000E-OO 
113. +READY START (4) 
109. •SNAP X• O. lOOOOOOOE 01 
110, -GUARD WARDED STATEMENT ENCOUNTERED DURING EXECUTION 
113. +READY CC Y • X•Y•DELX 
113. • Y• 0.12500000E-OO 
113, +READY START (4) 
108. •STOP 77 
113. +READY ALTER (106.5) 
106.5+ALTER PRINT 101,X, Y 
106.6+ALTER 101 FORMAT C2X,F7.4,F8.5) 
106. 7+ALTER AL TERX 
113. +READY CV 
113. +READY CV************************************************************* 50 ** 
113. +READY CV ROOVE EFFECT OF "GUARD". 
113. +READY CV 
113. +READY 
113. +READY CV 

GUARDX 

113. +READY CV••*********************************************************** 51 ** 
113. +READY CV DISCONTINUE SNAP SERVICE. 
113. +READY CV 
113. +READY 
113. +READY 
113. +READY 
101. -READY CV 

SNAPX 
SAVE 
C<M1AND 

101. -READY CV••*********************************************************** 52 ** 
101. -READY CV GO INTO PROGRAM 1-fJDE, MAKING THE NAMED ROUTINE ACTIVE. 
101. -READY CV (THE FIRST TWO WAYS TO 00 THIS WERE "PROGRAM" AND "LOAD( )") 
101. -READY CV 
101. -READY FUNCTION CGIPY( I ,J,K) 
102. +READY C 
103. +READY C 
104. +READY REAL l,J,K,L 
105. +READY L • I •J•K 
106. +READY COMPY • L + J 
10 7. +READY RElURN 
108. +READY END 
109. +READY CC I • .1 
109. • I• O.lOOOOOOOE-00 
109. +READY CC J • • 2 
109. = J= 0.20000000E-OO 
109. +READY CC K = • 3 
109. = K• 0.30000000E-OO 
109. +READY EDIT(F8.2) 
109. +READY START CO) 

A SUBPROGRAM WHICH COMPUTES THE NEW 
Y IN PROGRAM 1 SAMPLE 1 

, 

107. =XEQER RElURN CANNOT BE EXECUTED IF NOT A SUBPROGRAM 
109. +READY CV 
109. +READY CV************************************************************* 53 ** 
109. +READY CV PRINT OUT CURRENT VALUES OF WHATEVER VARIABLES HAVE CHANGED 
109. +READY CV SINCE LAST Dlf.IP. 
109. +READY CV 
109. +READY 

-QDlf.IP 

Figure llB. 

QDlJ-IP 
COMPY= 0.21 
I• 0.10 

The dump shows values for L and COMPY that satisfy 
the user. He saves his subprogram, and reloads the 
main routine. Note that the system re-enters program 
mode with the line number ( 113. ) it had arrived at 
when SAMPLE was last active. There has been no logical 
break in the activity of program SAMPLE. 

The user changes the value of DELX from 0.5 to 0.25 
( DELX has been set to 0.5 since the execution of the 
previous cc). Execution shows that the PRINT state
ment on line 106.5 is delivering output in accordance 
with FORMAT statement 101. The second iteration of 
0101 demonstrates that the function is being set. 

Now the user constructs the subprogram (Figure 
UC) that will plot a graph of the changing value of 
Y in SAMPLE. After doing so in lines 101. through 112., 

the user supplies values for the two variables which 
the subroutine must receive from the main program. 
He also requests a printout of K whenever line 108. is 
executed. Execution discloses that X is ahvays equal 
to 0.0 and K is equal to 1, because the array ARRAY 

in the subroutine is empty. 

Execution stops when the system runs out of pro
gram to execute (see HALT). The system, of course, 
again offers 113. to the user, who this time enters a 
READ o statement. The READ o statement immediately 
becomes the last (i.e., line 113. ) statement in the pro
gram. Accordingly, when on his next tum the user 
enter cs, the system executes the READ o statement. 
Execution takes two steps, externally. In the first step, 
the system, with 113. =I oo, requests input. The "1 oo" 
means that the input record is to be interpreted as 
nonformatted (i.e., "self formatting,'' using separator 
characters). In the second step, the system reads what
ever the user enters in response to 1 oo, setting the array. 
Now, with START CO>, the user shows that his plot rou
tine is working. (The letter A represents the character 
placed in ZPLOT to be printed out in the graph. The 
user may observe that this character is a + sign in the 

• output, but a LO in the statement that sets A. The 
reason for this is that the 101 FORMAT statement calls 
for whatever is in the Kth position of ZPLOT to be 
printed under "A" conversion. The 1.0 is stored in an 
internal form that is always + under that conversion.) 

Examples of Actual Use 65 



109. +READY 
109, +READY 
101. -READY 
113. +READY CC 
113 •• 

J• 
K= 
L• 

0.20 
0.30 
0.01 

SAVE 
CCM4ANO 
LOAD (SN-IPL[) 
DELX = .25 
OELX• 0.25000000E-OO 
START (0) 113. +RF.ADY 

106.5-0101 
106.SzOlCH 
106.5-0101 
106.5-0101 
106.5-0101 
108. •STOP 77 
113. +RF.ADY 

o. 1.00000 
0.2500 1.06250 
0.5000 1.19531 
o. 7500 1.41943 
1.0000 1. 77"29 

101. -READY CV 
101. -READY CV********************~**************************************** 54 ** 
101. -READY CV 00 INTO PROGRAM '4>DE, MAKING THE NAMED ROUTINE ACTIVE. 
101. -READY CV (THE OTHER THREE WAYS TO DO THIS ARE WITH (1) PROGRAM, 
101. -READY CV (2) LOAD (NAME), (3) FUNCTION .) 
101. -RF.ADY CV 
101. -RF.ADY SUBROUTINE PLOT CA,J) 
102. +READY C •••• A SUBPROGRAM FOR PLOTIING " J" VALUES FRCJ.I A C(M.()N ARRAY 
103. +READY C 
104. +READY DIMENSION ARRAYC500) ,ZPLOTC100) 
105. +READY CGMlN ARRAY 
106. +READY DO 2 l•l,J,2 
107. +READY X•ARRAY( I) 
108. +READY OK=l.+(ARRAY(l+l>-ARRAY(2))/(ARRAY(J+l) 
108. +RF.ADY 4-ARRAY(2))•50. 
109. +READY DO 1 L•l,K 
110. +READY 1 ZPLOTCK)•A 
111. +READY 2 PRINT 101,X,CZPLOT(K),L•l,K) 
112. +READY 101 FORMATCF7.4,100Al) 
113. +READY CC A=l. 
113. • A• O.lOOOOOOOE 01 
113. +READY CC J•5 
113. " J= 
113. +READY CV 
113. +READY CV************************************************************* 55 ** 
113. +READY CV PRINT OUT VALUE OF ( ) EVERY TIME IT IS SET DURING EXECUTION. 
113. +READY CV 
113. +READY 
113. +READY 
108. •SNAP 
111. "'°101 o. 
108. =SNAP 
111. "'°101 o. 
108. •SNAP 
.......... aOlOl O. 

SNAPCK) 
START (0) 
K• 

K= 

112. -HALT END OF PROGRAM ENCOUNTERED DURING EXECUTION 
113. +RF.ADY CV 
113. +READY CV•••********************************************************** 56 ** 
113. +READY CV STATUS WORD ''HALT'' - EXECUTION ENDED BECAUSE YOUR PROGRAM DID. 
113. +READY CV 
113. +READY READ O,CARRAYCl),l=l,10) 
114. +READY CS 
113 ... , 00 .1/.2/.3/.4/.5/.6/.7/.8/,9/l.0 

Figure llC. 

66 



114. +READY START (0) 
108. =SNAP K• 
111. "°101 0.1000+ 
108, =SNAP K• 26 
111. "°101 o. 3000++++++++++++++++++++++++++ 
108. =SNAP K= 51 
111. "°101 o. 5000+++++++++++++++++++++++++++++++++++++++++++++++++++ 
113. • I 00 99999 999999 999 999999 9999999999999999999999999999999 999999 999999 99 999999 
113. =XEQER ILLEGAL CONSTANT IN FI ELD START! NG '999999' 
114. +READY ALTER (113.,113.) 
113. +ALTER RETURN 
113. +NOTE MOOE RESET - ALTER LI NE IU18ER 113.1 HAS REACHED UPPER BOUND 
114. +READY END 
115. +READY CV 
115. +READY CV************************************************************* 5 7 ** 
115. +READY CV RESET ALL VARIABLES ANO DISCONTINUE ALL SERVICES. 

CLEAR 
SAVE 
LOAD (SAMPLE) 

ILLEGAL STATEMENT IN PROGRAM 1-'00E 
CCMIAND 

115. +READY CV 
115. +READY 
115. +READY 
115. +READY 
115. +ERROR 
115. +READY 
101. -READY 
113. +READY 
103.l+ALTER 
103. 2+ALTER 
103. 3+ALTER 
106. 3+AL TER 
106.4+ALTER 
106.4+NOTE 
113. +READY 
107 .1 +ALTER 
107.l+NOTE 
107 .1 +RJECT 
107.l+ALTER 
108. +ALTER 
108. +NOTE 

LOAD (SAMPLE) 
ALTER Cl03.l) 
DIMENSION TABLE (500) 
CGM>N TABLE 
ALTER Cl06. 3) 
TABLE (I) = X 
TABLE (I + 1) • Y 

MOOE RESET - ALTER LINE Nl.MBER 106.5 HAS REACHED UPPER BOUND 
ALTER Cl07 .1) 

2 CALL PLOT (CHAR, I) 
PLOT IS A SUBROUTINE NAME 
STATEMENT 2 HAS BEEN PREVIOUSLY DEFINED 

ALTER (108.,108.) 
2 CALL PLOT (CHAR, I) 

PLOT IS A SUBROUTINE NAME 
108 .1 +ALTER 
108.2+ALTER 
113. +READY CV 

STOP 77 
ALTERX 

113. +READY CV************************************************************* 58 *'* 
113. +READY CV LIST A "CROSS-REFERENCE SYMBOL TABLE" FOR THE PROGRAM. 
113. +READY CV 
113. +READY INDEX 

INDEX 2 +108. -107. 
INDEX 3 +109. -107. 
INDEX 4 +111. -106. 
INDEX 101 +106.6 -106,5 
INDEX •CHAR -108. 
INDEX •CX»4PY -110. 
INDEX •DELX -109. -110. 
INDEX I +106. -106.3 -106.4 -108. 
INDEX •PLOT +108. 
INDEX •SAMPLE +101. 
INDEX TABLE 103.1 103.2 +106.3 +106.4 
INDEX X +104. -106. 3 -106.5 -107. +109. -110. 
INDEX Y +105. -106.4 -106.5 +110. 

113. +READY CV 
113. +READY CV•************************************************************ 59 ** 

Figure llD. 

Examples of Actual Use 67 



The second time execution arrives at the READ state
ment, and the system requests input, the user feeds 
in an illegally high number, causing an XEQER and a 
return to program mode, this time offering line 114. 

The user, with ALTER ( 113., 113.), deletes the READ o 
statement with which he filled up the subroutine's 
array ARRAY. In its place, he inserts RETURN, which 
makes the subroutine usable by a calling program. 
(Observe the system reminding the user that he has 
overstepped the alter sequence. ) The user puts END 

after RETURN, and before saving the subroutine, CLEARS 

it of whatever it has acquired by way of services and 
assignment values. 

With three programs in his library, the user now 
makes the main routine SAMPLE active again (see 
Figure llD, at 103.1 + ALTER). In order to make sub
routine PLOT usable, the user provides declaratives 
setting up an array TABLE and putting it in COMMON 

with ARRAY. The statement COMMON TABLE makes it 
possible to pass values between TABLE (in SAMPLE) 

and ARRAY (in PLOT). He programs ( at 106.3 ) the 
placement of successive values of X and Y in TABLE, 

from which ARRAY in PLOT will be filled. Then he pro
vides for bra11ching to PLOT when SAMPLE has com
pleted execution (i.e., just before the STOP in SAMPLE). 

( He makes a mistake, calling for 101 .1 to be supplied 
him. The system informs the user that, in that case, he 
would have two statements numbered 2. The user fol
lows with entires that, in effect, enter the CALL PLOT 

statement and move the "2" from the STOP 77 to CALL 

PLOT. ) After terminating the alter sequence, the user 
calls for a complete cross-reference symbol table of his 
program (INDEX). 

Now (on the line following the INDEX), the user 
enters a value for the character, CHAR, which SAMPLE 

passes to PLOT. The other variable in this program that 
requires setting from input quantities is already set 
( DELX = .5). This is the first time the user has tried 
execution when all three of his routines should be 
working, so he institutes a TRAIL. The TRAIL service 
shows transfers to COMPY before each computation of 

68 

X and Y. The interspersed program output shows the 
results of that computation. The user may, therefore, 
infer that the return to the main routine was also made. 
The last TRAIL message shows a transfer to the PLOT 

subroutine after the last pair of values has been printed 
out. 

Having found that all parts of his program are work
ing, the user then calls for the renumbering (Figure 
llE ) of his program, after first calling for a new in
crement, with DELTA ( 10., 1.0 ), of 10 between line 
numbers and 1 between lines in the alter sequences. 
At the end of the resulting printout, the user then 
enters an alter sequence in which he adds some input 
and output statements to his program. The added 
statements (beginning with 262.) will result in: a 
message to the user reading "ENTER DELX<F4.7> AND PLOT 

CHARACTER"; a request from the system for input to 
DELX and CHAR; the printout of a title <"SOLUTION OF A 

DIFFERENTIAL EQUATION") and headings for the columns 
message to the user reading "ENTER DELX<F4.7> AND PLOT 

CHARACTERS"; a request from the system for input to 
of x and Y. He next executes the now completed pro
gram. The results of his latest additions can be seen in 
the first four lines of execution in Figure llF. 

At the completion of execution, he positions the 
paper at the top of a new page and enters the state
ment AUXOP <PUNCH> followed by COPY. The effect of 
AUXOP <PUNCH> is that for every line of printed output, 
a card is punched. Thus, as COPY is executed, the user 
acquires a punched deck of program SAMPLE. 

When the system has completed listing and punch
ing his program, the user signs off with ;EXIT. Now, no 
user code fdentifies the information How to and from 
his terminal. Observe the ERROR message that follows 
the user's attempt to LOAD <SAMPLE>. 

Last, the. user sends a ;FINISH statement, which ends 
this conversational QUIKTRAN session, since the system 
will no longer either invite or scan conversational input 
from the terminal. There is still a data connection, but, 
to begin conversational operations again, the user 
would have to re-establish a ;CONSOLE connection. 



113. +READY CV 
113. +READY CV 
113. +READY CV 
113. +READY CV 
113. +READY CV 
113. +RF.ADY CV 
113. +READY CV 
113. +READY CV 
113. +READY CV 
113. +READY CV 
113. +READY CC 
113. 

STATUS l'«JRO "INDEX" PRECEDES EVERY LINE OF OUTPUT CAUSED 
BY YOUR REQUEST FOR AN INDEX. 
AN "INDEX" IS A LI ST OF EVERY NAME OR LABEL IN TiiE ACTIVE 
PROGRAM, GIVING THE FOLLOWING INFORMATION FOR EACH NAME OR 

~m ni<H/t~i~[8~P(1~~E~~~E~-~~ ~N;A~~~~ wrn-
THE LEFT-KlST ELEMENT; (3) AND THE LINES, Ut-.MARKED, 1>.ttERE 
DECLARATIVES MAKE REFERENCE TO IT. IF THE ITEM IS STARRED 
WITH AN ASTERISK C•l IT HAS BEEN REFERENCED BUT NOT DEFINED 

CHAR • 1. 
OiAR= 0. lOOOOOOOE 01 

113. +READY CV 
113. +READY CV************************************************************* 
113. +READY CV APPLY ''TRAP"SERVICE TO SUBPROGRAM LINKS 
113. +READY CV 
113. +READY TRAIL 
113. +READY Sl"ART (0) 
106.5-0101 o. 1.00000 
110. •TRAIL CONTROL TRANSFERED FR0>1 SAMPLE TO COMPY 
106.5-0101 0.5000 1.25000 
110. sTRAI L CONTROL TRANSFERED FR<l-1 SAMPLE TO COMPY 
106.5-0101 1.0000 1.87500 
108. •TRAIL CONTROL TRANSFERED FR<l-1 SAMPLE TO PLOT 
111. -0101 o. + 
111. -0101 0.5000+++++++++++++++ 
111. =0101 1. 0000+++++++++++++++++++++++++++++++++++++++++++++++++++ 
108.l•STOP 77 
113. +READY CV 
113. +READY CV••*********************************************************** 
113. +READY CV STATUS l'«JRO "TRAIL" PRECEDES EVERY MESSAGE PUT OUT IN 
113. +READY CV RESPONSE TO REQUEST FOR TRAIL. 
113. +RF.ADY CV 
113. +READY CV••*********************************************************** 
113. +READY CV STOP TiiE "TRAIL" SERVICE. 
113. +READY CV 
113. +READY 
113. +READY 
113. +READY 
201. • CF 
211. • c 
221. • c 
231 ... 
21il. .. 
251 •• 
261. = 
271 •• 
281, .. 
291 •• 
301 •• 
311 •• 
321 •• 
331 ... 
31il •• 
351. • 
361 •• 
371 •• 
381 •• 
391. +READY 

Figure llE. 

TRAILX 
DELTA Cl0.,1.0l 
NLMBER C 201. l 
PROGRAM SAMPLE 
••••••• SOLUTION ANO PLOT OF A DIFFERENTIAL EQUATION 

DIMENSION TABLEC500) 
CC»ff>N TABLE 
X•O 
Y•l.O 
00 Ii 1•1,500,2 
TABLE Cl l•X 
TABLE( l+ll•Y 
PRINT 101,X, Y 

101 F0"4AT(2X,F7.li,F8.5) 
IFCX-1. l3,2,2 

2 CALL PLOT<OiAR, I l 
STOP 77 

3 X,.X+DELX 
Y•CC»4PY(X, Y ,DELX) 

Ii CONTINUE 
END 
ALTERC262.) 

60 ** 

61 ** 

62 ** 

Examples of Actual Use 69 



262. +ALTER 102 F0"4AT (43H ENTER DEU(F7.4) AND PLOT CHARACTER 
263. +ALTER PRINT 102 
264. +ALTER READ 103, DELX, CHAR 
265. +ALTER 103 FO!f.\AT <1X,F7.4,Al) 
266. +ALTER 104 FORMAT (43H SOLUTION OF A DIFFERENTIAL EQUATION 
267. +ALTER PRINT 104 
268. +ALTER 105 FO!fo1AT (5X, lHX, 7X, lHY) 
269. +ALTER PRINT 105 
270. +ALTER ALTERX 
391. +READY SAVE 
391. +READY START (0) 
263. -0102 ENTER DELXCF7.4) ANO PLOT CHARACTER 
264. •1103 00.1000• 
267. -01011 SOWTION OF A DIFFERENTIAL EQUATION 
269. -0105 x y 
301. -0101 o. 1.00000 
301. -0101 0.1000 1.01000 
301. -0101 0.2000 1.03020 
301. -0101 0.3000 1.06111 
301. -0101 0.11000 1.10355 
301. -0101 0.5000 1.15873 
301. -0101 0.6000 1.22825 
301. -0101 o. 7000 1.31423 
301. -0101 0.8000 l.lil937 
301. -0101 0.9000 1.54711 
301. -0101 1.0000 1.70182 
301. -0101 1.1000 1.88902 
111. -0101 o. 
111. -0101 0.1000• 
111. -0101 0.2000-
111. -0101 0.3000-•• 
111. -0101 0.4000··--
111. -0101 o.5000--·-·· 
111. -0101 0.6000•··-···"···· 
111. -0101 o. 7000··-······-=······ 
111. -0101 0.8000-·····-··············· 
111. -0101 o. 9000•••····-······················ 
111. -0101 1.0000••-••"••as••"•••••••••••••-••••••••••• 
111. -0101 1.1000-·······-·············-····-·-················ 
341. •STOP 77 
391. +READY ;EJECT 

Figure llF. 

70 



391. +READY CV 
391. +READY CV•************************************************************ 63 ** 
391. +READY CV FDR EVERY LINE OF PRINTED OUTPUT, PUNCH ONE CARD. 
391. +READY CV 
391. +READY AUXOP(PUNCH) 
391. +READY COPY 

CF PROGRAM SAMPLE 
C ••••••• SOLUTION AND PLOT OF A DIFFERENTIAL EQUATION 
c 

DIMENSION TABLE(500) 
CCM-ON TABLE 
X•O 
Y•l.O 

102 FOJWIT(i.3H ENTER DELXCF7.i.) AND PLOT CHARACTER 
PRINT 102 
READ 103,DELX,CHAR 

103 FOJWIT(lX,F7 .i.,Al) 
lOi. FOIWIT(i.3H SOLUTION OF A DIFFERENTIAL EQUATION 

PRINT lOi. 
105 FOIWI T( SX, lHX, 7X, lHY) 

PRINT 105 
()() .. 1•1,500,2 
TABLE( l)•X 
TABLE(l+l>•Y 
PRINT 101,X, Y 

101 FOIWIT(2X,F7.i.,F8.5) 
IF(X-1. )3,2,2 

2 CALL PLOT<CHAR, I) 
STOP 77 

3 XsX+DELX 
Y•CCJ.IPY(X, Y ,OELX) 

i. CONTINUE 
END 

391. +READY AUXOP 
391. +READY CV 
391. +READY CV 
391. +READY CV************************************************************* 64 
391. +READY CV SIGN THIS USER OFF (WITHOUT AFFECTING TERMINAL OPERATION). 
391. +READY CV 
391. +READY ;EXIT 
391. +READY CCJ+IAND 
101. -READY LOAD (SAMPLE) 
101. -ERROR USER IDENTIFICATION REQUIRED TO LOCATE USER LIBRARY FOR LOAD, SAVE, AND SUBROUTINE AND FUNCTION CALLS 
101. -READY CV 
101. -READY CV************************************************************* 65 ** 
101. -READY CV TERMINATE CONVERSATIONAL RESPONSES FROM QUIKTRAN. <TERMINAL 
101. -READY CV WILL REMAIN USABLE UNTIL DISCONNECT.) 
101. -READY CV 
101. -READY ;FINISH 

000 READY 

Figure llG. 

Examples of Actual Use 71 



Batch Processing 
Figure 5 showed the user entering ;CONSOLE and 
thereby getting into conversational operation with 
the system. This was directly after the system had 
accepted his ;USER < ) command. At that time he had 
two other options besides ;CONSOLE. These options 
were ;INPUT< ) and ;OUTPUT< ), either of which would 
have placed him in batch mode. Figure 12 shows him 
choosing the former. 

When, as in Figure 12, the system is in batch mode, 
it is capable of receiving statements in batches, saving 
them up, and operating on them as a unit, i.e., not con
versationally, but in the more conventional way. This 
means that the user will not control the execution of 
his program directly, as he does in conversational oper
ation. Such control as is necessary will be exercised 
by the system, and the program will be executed at 
another time. 

Interaction between the user and the system in batch 
mode is still "conversational," but the user can elicit 
activity from the system only with the terminal com
mands. In other words, operations are conversational 
for housekeeping only. (All terminal commands illus
trated in Figure 6, for example, still work in batch 
mode.) Otherwise the system does not respond to each 
statement entered, except to detect the end of its trans
mission, put it away, and signal (with the usual READY) 

that it is ready for the next line. 
At the beginning of Figure 12, conditions at the 

terminal are the same as those at the end of Figure 11, 
after the user transmitted ;FINISH. These are also the 
conditions after the system receives ;usER < >, when 
the user first signs on. The system will be idle until it 
receives one of the following three commands: 

;CONSOLE 

;INPUT< ) 

;OUTPUT< > 
The system will be in one of two states at this time: 

either it will be capable of responding to the ;CONSOLE 

request for interaction or it will be capable only of 
batch processing; a message at sign-on time will show 
which. If the message indicates that "full QUIKTRAN 

service" is available, the ;CONSOLE request will be hon
ored. Batch requests will also be honored but, batches 
received will not be processed during the period of 
full service. If the message indicates 'oatch only" a 
;CONSOLE command will be rejected. 

In Figure 12, the user signifies his intention to trans-
mit a job to the computing center by entering ;INPUT < ). 

The parenthesized data is the estimated number of 
cards to be read for transmission and the destination 
of output from job. The latter is either the user's two
character code or, as in the figure, the number oo sig
nifying that the output will be printed at the comput
ing center and not a terminal. The system responds 

72 

with 001 READY and the next card read is considered to 
be the first of a series that the command ;FINISH will 
terminate (ending) with the card preceding ;FINISH). 

The system responds ( 1) \Vi th a message giving the 
job an identifying designation containing the user's 
code and ( 2) with 001 READY. Note that, in batch mode, 
the lines are numbered sequentially beginning with 
001 instead of 101, and there is no status sign ( + or - ), 
as in the conversational modes. 

The job, transmitted to the computing center as 
shown at the beginning of Figure 12, consists of a 
program written in FORTRAN and control cards which 
make it recognizable to the System Monitor ( IBSYS) of 
the Operating System. See the section "Control Cards 
Used in Batch Input Jobs" for instructions for setting 
up a FORTRAN job for batch processing. Any job 
that is executable under the System Monitor, i.e., 
FORTRAN, COBOL, assembly language, etc., can be trans
mitted to the system in this manner. For the program 
shown, the control cards request compilation into 
machine code without execution. (They also specify 
that no deck be punched.) The terminal command 
;FINISH signals the system that the preceding line of 
input was the last of the batch input. Accordingly the 
system ( 1) tells the user if there is any output waiting 
for him and ( 2) informs him that it is again idle and 
READY. In Figure 12, there is no output available yet, 
so there is no message. Again the user has three options 
and again he chooses ;INPUT. The control cards for the 
program shown specify compilation and execution 
without a listing. When the requested execution has 
been completed, the terminal user wi11 be notified by a 
message that output is available for him (see Fig
ure 13 ). 

During the transmission of this batch, the user avails 
himself of the full QUIKTRAN service to build a program 
segment conversationally. At the end of the conversa
tional session, the user tries to cause the output of the 
batch first transmitted to be diverted from the com
puting center to his terminal. His ;ROUTE command is, 
however, rejected because the command immediately 
preceding it (his ;FINISH command) returned him to 
the batch mode, which he had been in before he 
entered the conversational session. Whenever a user 
has interrupted a batch input or output transmission 
to enter a conversational operation, completion of the 
conversational operation causes the system to revert 
to the batch mode in readiness to carry on the batch 
transmission. However, the transmission will not con
tinue unless specifically directed to by the command 
;RESUME< ), which gives the identification of the trans
mission to he resumed, as shown in Figure 12. The 
figure also shows a successful transmission of the 
;ROUTE < > command ( after ;FINISH of the last input 
batch). 



000 READY ; INPUT(Ol5,D0) 
BATCH JOB ME0001 

001 READY $JOB GENERATOR NO, } 
002 READY $1 BJOB MEJDOE NOGO, NOMAP 
00} READY $IBFTC MEJOOE LIST,NOOECK 
004 READY A•20, 
005 READY X•l, 
006 READY Y•l. 
007 READY lD PRINT 101,X,Y 
008 READY X•X+l. 
009 READY Y•Y+X 
010 READY I F(A-Xl20, 10, 10 
011 READY 101 FORMAT<2Fl0,0) 
012 READY 2D STOP 
01} READY ENO 
014 READY $18SYS 
015 READY ;FINISH 

000 READY ; INPUT(Ol5,ME) 
BATCH JOR MEDD02 

DOl READY $JOB GENERATOR NO, 2 
D02 READY $IBJOB MEJOOE GO,NOMAP 
DDJ READY SIBFTC MEJOOE NOLIST,NOOECK 
004 READY J•D 
D05 READY 1 M•J 
006 READY J•J+ 1 
OD7 READY K•J 
DOB READY IF(J-1)4,4,2 
009 READY 2 DO } L•l,M 
010 READY ;CONSOLE 

I NJERRUPT MEDD02 
lDl. -READY PROGRAM INTEGER 
lDl. -RJECT NAME I NTEGE IS LONGER THAN 6 CHARACTERS 
lDl, -READY PROGRAM I NTGR 
102. +READY J • 0 
10}, +READY l PRINT 101,J 
104, +READY 1 FORMAT (I}) 
104. +RJECT STATEMENT l HAS BEEN PREVIOUSLY DEFINED 
104, +READY 101 FORMAT (I}) 
105, +READY J • J+l 
106, +RfADY GO TO l 
107, +READY END 
108. +READY ;FINISH 

010 READY ;ROUTE(MEOOOl,00,ME> 
010 RJECT I LLEG REQ 
010 READY ; RESUME<ME0002) 

010 READY l K•K+(J-Ll 
011 READY 4 PRINT 101,J,K 
012 READY 101 FORMAT (2110) 
on READY GO TO 0,1,1,1,1,1,1,1,1,5),J 
014 READY 5 STOP 666 
015 READY ENO 
016 READY SENTRY 
017 READY SIBSYS 
Dl8 READY ;FINISH 

000 READY ;ROUTE(MEOOOl,00,ME) 

Figure 12A 

DOD READY ; I NPUT(Ol5,ME) 
BATCH JOB ME000} 

0 01 READY $JOB SORT 
D02 REAOY $1BJOB MEJOOE GO,NOMAP 
DOJ READY SIBFTC MEJDOE NOLIST,NOOECK 
004 READY $RECOM SORT 
005 READY $ENTRY 
006 READY 10 
007 READY -0 32, 100 }4, 5-D6 7. 8-09D. D-08 7, 6DD54. J-D21, DOD 78, lDOO 1. 2 DD JD 
008 READY SI BSYS 

QlJHTRAN SERVICE FOR BATCH ONLY 
009 READY ;FINISH 

000 READY ;OUTPUTCME0002,MEJ 
000 RJECT JOB UNAVAL 
000 READY ; OUTPUTCMEOOOl, MEJ 
000 RJECT JOB UNAVAL 
000 READY ;OUTPUTCMEOOOl,MEI 
000 RJECT JOA UNAVAL 
000 READY 

Figure 12B 
Examples of Actual Use 73 



QUIKTRAN also affords the batch-mode capability of 
directing the compilation or compilation and execu
tion of a program contained in the user's own library. 
Thus, a user can write and debug a program, put it in 
his library (with SA VE), and then, in batch mode, direct 
that it be compiled and executed. This has the advan
tage of not taking up terminal time, as execution in 
the program mode does; it is the natural way to execute 
a long program or one with more than a small amount 
of data to work on. As the figure shows, the user trans
mits the same control statements he would use in send
ing any job for the Operating System; where the 
program deck would come, the user substitutes one 
card, the SRECOM card. This is the only Operating Sys
tem control card the user needs to know that is not 
in the general Operating System vocabulary. It tells 
the system that the input batch is to be found at a 
given location in the user's library, instead of at the 
terminal. 

At any time that a ;ROUTE c ) command is valid, so 
is a ;PURGE < ) command. As Figure 13 shows, 
;PURGE < ) names a job, the results of which are not to 
be put out at the terminal. If the computer has not yet 

74 

processed the job, nothing will be saved. Otherwise, 
results will be on file, although inaccessible to a ter
minal command. 

When output is ready, the user is signalled by a 
message to that effect after his next ;FINISH or ;usER < ) 

command, and at no other time. If the user ( 1) does 
not transmit ;INPUT c ) or ;CONSOLE, or some other ter
minal command, like ;PURGE c ) or ( 2) does not request 
a specific output, the system will, after the lapse of 
about a minute, commence to transmit to the user all 
the output, job after job, that has been produced for 
that user group identification. Once this process is 
underway, the user is not helpless to alter it. He may 
interrupt it by transmitting EOT whenever the system 
reaches the top of a page in the output listing. The 
interruption may be temporary, as an interruption to 
do conversational operation (;CONSOLE), or it may be 
permanent. To make it permanent, the user enters the 
statement ;CANCEL, which terminates the current trans
mission of output and causes the system to immedi
ately begin transmission of output of the next job, if 
there is one. 



$•••• BATCH MEOOOl CME) USER MEJDOE 0008 0027 0106 0107 

$JOB GENERATOR NO. 3 

$I BJOB MEJDOE NOGO, NOMAP 

11555 UNITS UOO U02 U03 000 000 000 

$1BFTC MEJDOE LIST,NODECK 

GENERATOR NO. 3 FORTRAN SOURCE LIST 07/19/65 PAGE 1 
I SN SOURCE STATEMENT 

0 $1BFTC MEJDOE LIST,NODECK 
1 A•20. 
2 X•l. 
3 Y•l. 
- 10 PRINT 101,X,Y 
5 X•X+l. 
6 Y•Y+X 
7 IF(A-Xl20,10,10 

10 101 FORMAT(2Fl0.0l 
11 20 STOP 
12 END 

INTERRUPT MEOOOl 

000 READY ; CANCEL 

$•••• BATCH ME0002 (ME) USER MEJDOE 0010 0027 0107 0111 

$JOB GENERA TOR NO. 2 

$I BJOB MEJDOE GO, NOMAP 

11555 UN I TS UDO U02 U03 000 UO- 000 

$1 BFTC MEJDOE NOLI ST, NO DECK 

GENERATOR NO. 2 FORTRAN SOURCE LI ST 07/19/65 PAGE 1 
ISN SOURCE STATEMENT 

0 $1BFTC MEJDOE NOLIST,NODECK 
1 J•O 
2 1 M•J 
3 J•J+l 
4 K•J 
5 IFCJ-ll4,4,2 
6 2 DO 3 L•l,M 
7 3 K•K+(J-Ll 

11 4 PRINT 101,J,K 
12 101 FORMAT (2110) 
13 GO TO Cl,l,l,l,l,l,1,1,1,5),J 
H 5 STOP 666 
15 END 

GENERATOR NO. 2 IBMAP ASSEMBLY MEJDOE 07/19/65 PAGE 2 

NO MESSAGES FOR ABOVE ASSEMBLY 

GENERATOR NO. 2 IBLDR -- JOB MEJDOE 07/19/65 PAGE 3 

OBJECT PROGRAM IS BE I NG ENTERED. INTO STORAGE. 
1 l 
2 3 
3 6 
4 10 
5 15 
6 21 
7 28 
8 36 
9 45 

10 55 

GENERATOR NO. 2 PAGE 4 

$I ASYS 

END BATCH ME0002 

Figure 13A 

Examples of Actual Use 7.5 



$**** BATCH ME0003 (ME) USER MEJDOE 0016 0027 0109 0117 

SJOB SORT 

$I BJOB MEJDOE GO, NOMAP 

11555 UNITS UOO U02 U03 000 U04 000 

SIBFTC MEJDOE NOLIST,NOOECK 

SORT FORTRAN SOURCE LI ST 07/19/65 PAGE l 
I SN SOURCE STATEMENT 

0 SI BFTC MEJOOE NOLI ST, NO DECK 
CF PROGRAM SORT 
C READS 'I' NUMBERS INTO AN ARRAY 'A' AND SORTS THE ARRAY 
c 

l DIMENSION A(50) 
2 l•O 
3 READ 101,1,(A(J),J•l,ll 

11 101 FORMAT(l 5/ ll2F6. l)) 
12 K•l-1 
13 DO 15 M•l,K 
l' L•M+l 
15 DO 15 N•L,1 
16 TEMP•A(M) 
17 A(M)•AMINl<A(M),A(N)) 

20 15 A(N)•AMAXl<TEMP,A(N)) 
23 PRINT 102,A 
2' 102 FORMATl//2,H THE ARRAY ORDER NOW IS:/(11Fl2.lll 
25 STOP 71 
26 END 

SORT I BMAP ASSEMBLY MEJDOE 07/19/65 PAGE 2 

NO MESSAGES FOR ABOVE ASSEMBLY 

SORT 1 BLDR -- JOB MEJDOE 07/19/65 PAGE 3 

OBJECT PROGRAM IS BEING ENTERED INTO STORAGE. 

THE ARRAY ORDER NOW IS: 
-90.0 -87 .6 -67. 8 -32.1 -21. 0 1. 2 34. 5 54. 3 78 .1 300.0 

o.o o. 0 o.o o. 0 o. 0 o. 0 0 .o o. 0 0. 0 o. 0 
o.o o.o o.o o.o o. 0 D. 0 o. 0 o.o o.o o.o 
o.o o.o 0. 0 0. 0 0. 0 0 .o o. 0 o.o 0. 0 o. 0 
o. 0 o. 0 o. 0 0. 0 o. 0 0. 0 

SORT PAGE 4 

$1 BSYS 

END BATCH ME0003 

000 READY 

Figure 13B 

76 



The QUIKTRAN Vocabulary SYSTEM COMMENT USER COMMENT 

OUTPUT NO. INPUT NO, 

The numbers following entries refer to locations in the GUARDX 50 
sample listing (Figures 5 through 11). =HALT 10,56 

=I--- 40 INDEX 58 
INDEX 59 

SYSTEM COMMENT USER COMMENT LIST 13,21 
OUTPUT NO. INPUT NO. LOAD ( 12 

+ALTER 19 ALTER ( 18,39 NUMBER 62 
AUDIT 36 ALTERX 20 +NOTE 45 

AUDIT 35 =0--- 15 
AUXOP ( 63 =OVFLO 40 
AUX OP =PAUSE 32 PD UMP 26 

=BREAK 17 PRINT 0 44 
-CAN CL 6 c 14 =PD UMP 27 PROGRAM 7 
+CAN CL CALL 58 PUNCH 30 

cc 23 PURGE ( 33 
CF 29 =QDUMP 53 QDUMP 53 

CHECK 37 -READY 1 READ 0 43 
CHECK 38 CLEAR 57 +READY 10 RESET 27 

COMMAND 11 -RJECT 1 
;CONSOLE 2 +RJECT 45 
COPY 28 =SNAP 47 SAVE 8 
cs 41 SAVE ( ) 32.5 
css ;SEND ( ) 4 
css• =STOP 15 SNAP 46,55 
CV 2 SNAPX 51 
ex START 32 
cxx START ( 9,24 
DELTA ( 62 STEP 
DELTA STEPX 

+ERROR 31 ;ECHO ( ) 3 SUBROUTINE _ ( 54 
EDIT ( ) 25 =TRAIL 61 TRAIL 60 
EDIT =TRAP 17 TRAILX 62 
;EJECT 5 TRAP 16 
END 31 TRAPX 22 
;EXIT ( 64 ;USER ( 2 
;FINISH 65 WRITE 
FUNCTION 52 =XEQER 34 XEQER (FINISH) 

=GUARD 49 GUARD 48 XEQER 

Examples of Actual Use 77 



Appendix A: Comparison With Fortran IV 

Serious attention has been paid to maintaining com
patibility between the QUIKTRAN System and the IBM 
7040/7044 FORTRAN IV processors. Programs written in 
the language described in this publication are accepta
ble without change to the 7040/7044 FORTRAN IV proc
essor. Conversely, FORTRAN IV programs are acceptable 
to the QUIKTRAN System with the limitations given 
below. 

The following limitations apply to FORTRAN 1v pro
grams to make them acceptable to the QUIKTRAN 
System: 

1. The user's program must be written with state
ments from the subset defined for the system. 

2. As is the case for all one-pass translators, all de
clarative statements must precede the executable state
ments. Of course, FORMAT statements and comments 
may appear anywhere in the program. 

3. As happens in most compilers, the sequence of 
machine instructions produced for arithmetic expres
sions may differ from those produced by other com
pilers; therefore, slight discrepancies caused by varia
tions in truncations may occur. 

4. Similarly, some minor differences in the internal 
representation of program constants, caused by dif
ferent conversion routines, may also create slight dif
ferences in numerical results. 

5. Individual source programs are limited to about 
400 statements. However, the user can overcome this 
limitation by dividing oversized programs into smaller 
subprograms. 

78 

6. Limitations regarding program statements are: 
a. No arithmetic function statements. 
b. No logical, complex, or double-precision vari

ables. 
c. Logical statements and relational operators are 

not permitted. 
d. Restrictions on the use of continuation cards. 
e. No magnetic tape input or output. However, 

the 1052 is used for statements that require 
tape units. 

f. Real constants up to eight digits, with magni
tude within the range of 10-38 to 1038 or zero. 

g. Integer constants up to ten digits. 
h. The maximum size of an input/ output record 

is 120 characters, except card records, which 
are limited to 80 characters. 

i. Arrays cannot be arguments of functions and 
subroutines, but must be passed through 
COMMON. 

j. A statement number must not exceed 199. 
k. The number of constants, variables, arrays, or 

functions must be less than 190 and the number 
of operators in a statement is limited to 55. 

I. Restrictions on the form of the EQUIVALENCE 
statement. 

m. Library function names and built-in function 
names are reserved. 

n. Declarative statements must precede the first 
executable statement. If a DIMENSION statement 
is used, it must appear as the first declarative 
statement. 

o. No dimension information may appear in type
defining statements. 

p. No DATA statements are allowed. 
q. The REAn(m) and WRITE(m) statements may 

not be used. 
r. Built-in functions will not accept more than 

two arguments. 
s. In a function subprogram, the name of that 

function may not appear in a type-defining 
statement. 

t. No assigned GO To statements are allowed. 
u. No ASSIGN statements are allowed. 
v. Alphameric data is not allowed as an argument 

in a function or subroutine call. 
w. The BACKSPACE, REWIND, and END FILE state

ments do not cause any operation to take place. 
x. Machine indicator tests are not available. 
y. Input/ output scale factors are not permitted. 



The user may not use a reserved name as the name 
of a variable, array, subprogram, etc. He may use it 
only for the purpose for which it is intended. 

All names of library functions, built-in functions, 
and those operating statements that function as system 
subroutines (i.e., program-called services) are reserved 
names. The following lists contain all of the reserved 
names in alphabetical order under their proper cate
gories: 

BUILT-IN FUNCTIONS 

ABS DIM MAXO 
AINT FLOAT MAXI 
AMAXO IABS MINO 
AMAX I IDIM MINI 
AMINO IFIX MOD 
AMINI INT SIGN 
AMOD ISIGN 

The following chart gives the special characters that 
appear on a 1052 keyboard having the H character 
set. 

CHARACTER CARD CODE REMARKS 

8-5 valid 
8-4 valid 

> 8-6 valid, but stored as = 
8-3 valid 

< I2-8-6 valid, but stored as + 
+ I2 valid 
[ I2-8-5 valid, but stored as ( 
( 0-8-4 valid 
] Il-8-5 valid, but stored as 
) 12-8-4 valid 

Appendix B: Reserved Names 

LIBRARY FUNCTIONS 

ALOG 
ALOGlO 
ARCOS 
ARSIN 
ATAN 
ATAN2 

cos 
EXP 
SIN 
SQRT 
TANH 

PROGRAM CALLED SERVICES 

AUDIT INDEX STEP 
CHECK LIST STE PX 
CLEAR PD UMP TRAIL 
COPY QDUMP TRAILX 
EDIT RESET TRAP 
GUARD SNAP TRAPX 
GUARDX SNAPX 

Appendix C: Special Characters 

CHARACTER CARD CODE REMARKS 

' 0-8-I valid 
I 0-I valid 

11 valid 
$ 11-8-3 valid 

I2-8-3 valid 

' 
11-8-6 valid 

b 8-2 valid, but is stored as 
8-1 valid 

* 11-8-4 valid 
? 12-8-2 valid 

lI-8-2 valid 
Ill 0-8-7 invalid 
tJ. 11-8-7 invalid 

" 0-8-6 invalid 
EOB U-t>-9 valid, but not stored 

Appendix B: Reserved Names; Appendix C: Special Characters 79 



Appendix D: 1050 Terminal Input Error Messages 

The following error n1essages can be sent to a 1050 
terminal because the 7740 finds an error in input. In 
all cases, the input message is discarded by the 7740. 
Error messages generated by the 7040/7044 are self
explanatory and are therefore not listed. 

MESSAGE EXPLANATION 

RJECT ILLEG CHAR The input contained an invalid 
character. 

RJECT MSG LENGTH The input exceeded the maximum 
number of characters - 120 for 
conversational, 80 for batch. 

CANCL PREV LINE The input was cancelled by the 
terminal user. 

RJECT KB TIMEOUT The user at the terminal keyboard 
allowed too much time to elapse 
between the entering of two 
characters. 

RJECT X.MT ERROR A transmission error occurred so 
that the input message was not 
received correctly at the 77 40. 

RJECT ENDMSG EOT The input message was invalid 
because the end of message was 
an EOT instead of an EOB. 

RJECT ILLEGAL REQ The request made in a terminal 
commands is invalid because: 
a. the command name is invalid 
b. a parameter is invalid 
c. the punctuation is incorrect 

80 

RJECT ANY ;INPUT 

RJECT NO DISK SP 

RJECT ANY ;OUTPUT 

RJECT JOB UNAV AL 

RJECT JOB NUMBER 

RJECT DISK ERROR 

NOTE NOT A JOB 

d. the terminal is not in the 
operating mode to accept 
this command 

e. this command requires a 
; USER command which has 
not been previously entered 

A batch input command cannot 
be accepted at this time because 
the disk is unavailable ( re
covery, end of run, or disk 
error). 

No disk space is available for this 
batch input. 

A batch output command cannot 
be accepted at this time be
cause the disk is unavailable 
( end of run or disk error) . 

No batch job with the number 
specified in the command is 
presently in the 77 40. 

The batch job number specified 
in the ;RESUME command 
does not correspond to the job 
number of the current batch 
job. 

The command cannot be accepted 
at this time because of disk 
error. 

A ;FINISH command has been 
given following a batch input 
request, but no batch input has 
been received at the 77 40. The 
batch input operation is ended 
by the ;FINISH command. 



Index 

1050 Data Communications System . . . . . . . . . . . . . . . . . . . . 9 
1051 Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
1052 Printer-Keyboard ........................ 9, 51, 52 
1053 Printer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 9, 13 
1056 Card Reader ................................ 9, 12 
1057 Card Punch ................................ 9, 13 

A-Conversion ....................................... 30 
Active Image of Program . . . . . ............ 6, 56 
Active Program . . . . . . . . . . . . . . . . ........... 6, 54-56, 59 
Alphameric Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
Alter Sequence ................................... 36, 58 
ALTER Statement ................................ 36, 77 
ALTER Status Word .............................. 37, 77 
AL TERX Statement ............................... 37, 77 
AL TN CODING Key ............................... 9, 12 
Arithmetic Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
Array ........................................... 19, 24 
Assignment Statement, Arithmetic ................... 26, 47 
AUDIT Statement . . . . . . . . . 41, 77 
AUDIT Status Word .............................. 41, 77 
AUTO EOB Switch . . . . . . 13 
Auxiliary Output Devices ............................ 13 

Specification of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
AUXOP Statement .... 35, 77 
BACKSPACE Key . . . ........ 12, 53-54 
BACKSPACE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
Batch Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 6, 45 
Batch Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

Canceling ....................................... 47 
Control Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
Interrupting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 
Resuming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

Batch Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
Entering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
Leaving ......................................... 46 
messages ........................................ 49 

Batch Mode Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
;CANCEL ....................................... 50 
;FINISH ........................................ 50 
;INPUT ......................................... 49 
;OUTPUT ....................................... 49 
;PURGE ........................................ 50 
;RESUME ................................... 49 
;ROUTE ........................................ 50 

Batch Mode Control Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 
$RECOM ....................................... 50 

Batch Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
sent to terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
sent to computing center . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 
Automatic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 
Reassigning ...................................... 47 
Canceling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 7, 48 
Interrupting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 
Resuming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

Blank Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
Blank Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
BREAK Status Word .............................. 35, 77 
Built-In Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
CALL Statement ................................. 23, 77 
Called Services .............................. 41 
;CANCEL Command ......... 47, 48, 50 
CANCEL Key . . . . . . . ... 12, 15, 54 
Cancellation of Input . . . . . . . . . . . .................. 15, 54 
CANCL Status Word .............................. 18, 77 
Card Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
Card Punch ........................................ 13 

Card Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
Card Reader Program Feature ........................ 13 
CE Panel .......................................... 10 
CHECK Statement ............................... 41, 77 
CHECK Status Word .............................. 41, 77 
CLEAR Statement ................................ 35, 77 
Command Mode ....................... 6,.16, 21, 34, 53-57 
COMMAND Statement ............................ 33, 56 
Comment Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

Cb ............................... 15, 77 
CF ........................................... 15, 77 
CV ........................................... 15, 52 

COMMON Statement . . . . . . . . . . . . ........... 24, 68 
Comparison with FORTRAN IV . . . . . . . . . . . . . . . . . . . . . . . 78 
Completeness, Errors of . . . . 7, 18, 37, 58 
Composition, Errors of . . . . . . . . . . . . ............ 7, 54, 57 
Composition, Errors of ........................... 7, 48, 51 
Computed GO TO Statement . . . . . . . . . . . . . . . . . . . . . . . . . 26 
Computer and Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
Computing Center Equipment . . . . . . . . . . . . . . . . . . . . . . . . 9 
Connection, Terminal-Computer . . . . 11 
Consistency, Errors of . . . . . . . . . . . . . ............. 7, 57 
;CONSOLE Command . . . . . . ......... 43, 77 
Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
Continuation Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
Continuation Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
Continuation of Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
CONTINUE Statement .............................. 27 
Control Statements (Operating) . . . . . . . . . . . . . . . . . . . . . . . 33 
Control Cards, Batch Mode . . . . . . . . . . . . . . . . . . . . 45 
Control Statements (Program) . . . . . . . . . . . . . . . . . . . . . . . . 26 
Conversational Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
Conversion of Numeric Data .......................... 29 
COPY Statement .................................. 40, 77 

Debugging, Source Language ........................ 7, 54 
Debugging Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
Declarative Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
DELTA Statement ............................... 36, 77 
Design Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Diagnostic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
DIMENSION Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Display Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 
DO Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

;ECHO Command ................................ 43, 77 
E-Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
EDIT Statement ................................. 36, 77 
EJECT Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
;EJECT Command ................................ 44, 77 
END Statement .................................. 21, 77 
END FILE Statement . . . . . . . . . . . . . . . . . 33 
End of a Terminal Operation .................... 13, 43, 68 
Entry Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
EOB Key ....................................... 12, 52 
EOB Punch ........................................ 13 
EOT Key ........................................ 12, 17 
Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
EQUIV ALEN CE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
ERROR Status Word . . . .... 17, 77 
Exchange Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Executable Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

in Command Mode ............................. 16, 53 
in Program Mode ......................... 16, 57, 61-62 
Interruption of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 62 

Index 81 



Errors of ....... . 
Execution Control Statements 
;EXIT Command 
Expression . . . . . . . . . . . 
EXTERN AL Statement ..... . 

. ....... 7, 35 
34 

..... 43, 77 
. . . . . .. . 20 

25 
F -Conversion . . . . . . . . . 29 
FEED Button . . . . . . . . . . . . . . . . . . . 12 
;FINISH . . . . . . . . . . . . . . . . . . . . 43, 49, 77 
FORMAT Statement . . . . 28 
Format . . . . . . . . . . . . . . . . . . . . . . . . . . . ............. 28 
Form of Subscripts .................................. 20 
Form Control Operating Statements . . . .. 35, 60 
FORTRAN IV Compatibility . . . . . . . . . . . . . . . . . . . 67 
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
Function Call . . . . . . . . . . . . . . . . . . . . . . ........ 22 
FUNCTION Statement .. 22, 77 
GO TO Statements . . . . . . . . . . . . . . . . . . . . . . . . 26 
Group Count . . . . . . . 30 
GUARD Statement . . . . . . .39, 77 
GUARD Status Word . . . . . . .39, 77 
HALT Status Word . . . . 35, 77 
H-Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
Host Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
$1BSYS Control Cards Used in Batch Input . . . 45 
I-Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
Identification Code 42 

Communication of .11, 42, 52 
Sharing of . . . . . . . . . . . . . . . . . . . 42 

IF Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
Image of Program, Active ........... 6, 56 
INDEX Statement . . . . . . . . . . . . . . . . . . ...... 41, 77 
INDEX Status Word . . . .. 41, 77 
Input, Conversational . . . . . 27, 51 

Cancellation of . . . . . 15, 54 
Card Reader . . . . . . . . . . . . . 12 
Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . .12, 51 
Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

Execution of . 31, 61-62 
;INPUT Command ............ 45, 49 
Integer Constants . . . . . . . . ..................... 19 
INTEGER Statement . . . . . . . . . . . . . . . . . . . . . . . . 25 
Integer Variables . . . . . . . . 19 
Interrupting Execution . . . . . . . . . . .... 17, 62 
Keyboard Input . . . . . . . . . . . . . . . . . . . . ... 12, 51 
KEYBOARD Switch . . . . . . . . . . . . . . . . 10, 62 
Keyboard Time-Out .............................. 12, 52 
Library Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
Line Control Switch . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
Line Number . . . . . . . . . . . . . . . . .. 14, 52, 55, 61-62 

Increment . . . . . . . . . . . . . . . . . ........ 36, 68 
List Specifications for Input/Output 28 
LIST Statement ............ 40, 77 
LOAD Statement . . . . . . . . . . . . . ........... 34, 56 
Main-Line Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
Main Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
Margin Stops, Setting of . . . . . . . . . . . . . . . . . . . . . . . . 10 
Mode, Command and Program . . . . .... 6, 54-57 
Modification Statements . . . . . . . . . . . . . . . . . . . . . . . 36 
Multirecord Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
Nesting of DO statements . . . . . . . . . . . . . . . . . . . . . 26 
Nonformatted Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
NOTE Status Word .............................. 18, 77 
NUMBER Statement .............................. 37, 77 
Number, Line ........................ 14, 36, 52, 55, 61-62 
Numerical Field .................................... 29 
0-Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
Operating Procedures, Terminal ................... 9, 51-52 
Operating Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
Output ................................. 27, 51-52, 61-62 

Card Punch .................................... 13, 35 
Interrupting Flow of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

82 

Printer 
Statements 

Execution of 
;OUTPUT Command 
OVFLO Status Word 

... 10, 13, 35 
.............. 32 

........ 32 
.46,49 

18 
Pack Feed Feature . . . . . . . . . . . . . . . . 9 
PA USE Statement . . . . . . . . . . 27 
PAUSE Status Word . . . . . . . . 35 
PDUMPS~~me~ ~ 

PDUMP Status Word .................... 40 
POWER Light . . . . . . . . . . 10 
Print Positions 14 
PRINT Statement . . . . . . . . . . . . . . . . . . . . . . 32 
Printer-Keyboard . . . . . . . . . . . . . . . . . . . . 9 
PROCEED Light .. 11, 12, 17, 39, 51-52 
Process Codes . . . . . . . . . . . . . . . . . . . . . . 16 
PROGRAM Statement . . . . . . . . 21 
Program Statements . . . . . . . . . . . 21 
Program Called Services . . 41 
Program Control Operating Statements . 33 
Program Defining Statements 21 
Program Mode ... 6, 53-63 
PROGRAM TAPE Switch . . . . . . . . . 13 
PUNCH Statement . . . . . . . . . . 32, 77 
PURGE Statement . . . . . . . . . . 34, 59, 77 
QDUMP Statement . 40, 77 
QDUMP Status Word .............. 41, 77 
Range of a DO . . . . . . . . . . . . . 26 
READ Statements .... 32, 77 
READY Status Word .... 17, 51, 52 
Real Constants . . . . . . . . . . . . . . . . . . . . ....... 19 
REAL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
Real Variables . . . . . . . . . . . . . . . . . . . . . . . . . 19 
$RECOM Control Card . . . . . . .... 46, 50 
Records . . . . . . . . . . . . . . . . . . ............ 27 

Size of ............. 27 
"Recursive" Call . . . . . . . . 43 
RJECT Status Word . . . .. 17, 51-52 
Reserved Functions . . . . . ............. 23 

Built-In Functions . . . . . . . . . . . . . . 23 
Library Functions 23 

Reserved Names . . . . . . . . ........... 68 
RESET Statement ... 35, 77 
;RESUME Command . 48, 49 
RETURN Statement .... 23, 77 
REWIND Statement . . . . . . . . . . . . . . . . . . . . 33 
;ROUTE Command ... 47, 50 
Sample Problem . . . . . . ............... 63-77 
SA VE Statement . . . . . . .. 34, 55, 59, 77 
Semantic Errors . . . . . . . . 7 
Semicolon ( See Terminal Commands) 
;SEND ......................................... 44, 77 
::sel!~rato~" Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
Set Variables ................................... 21, 40 

SHIFT Key .............. 12, 54 
SNAP Statement ...................... 38, 77 
SNAP Status Word ................................ 38, 77 
Source Language Debugging ................ 7, 54 
Special Characters . . . . . . . . . . . . 79 
START Statement . . . . ............... 34, 55-77 
Statement Number 14, 21 
Status Indicator . . . 17, 54-57 
Status Words . . . . . . . . . . . .... 17, 77 

ALTER ............. 37, 58 
AUDIT ......................................... 41 
BREAK ................. 35, 62 
CANCL . . . . . . . . . . . . . ..... 18, 54 
CHECK ................................... 41 
ERROR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
GUARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 
HllT... . ..................... ~ 
INDEX . . . ........................... 41, 67 



NOTE 
OVFLO 
PAUSE 
PD UMP 
QDUMP 
READY 
RJECT 
SNAP 
STOP 
TRAP 
XEQER .. 

STEP Statement 
STOP Statement 
STOP Status Word 

.......................... 18 
.......... 18, 61 

............. 35 
....... 40 
...... 41 
.17, 51-52 

.. 17, 51-52 
38 
35 
39 
35 
39 

.. 27, 77 

.. 35, 77 
Storage Allocation Errors 
Storage-Allocating Declarative Statements. 
SUBROUTINE Statement .. 

.17,37 
24 

........ 22, 77 
............ 22 

.23 
. . . . . . . . . . 20 

19 

Subroutines .... 
Subroutine Call 
Subscripted Variables 
Subscripts, Form of 
Switch Panel 
Syntactic Errors 
System Concepts 

TAB Key 
Tab Stops .. 

Setting of 
Clearing of 

. . . . . . . . . . . . . . . . . . 10 
..................... 7 

............. 6 

... 10, 12, 52-53 
.......... 10 

.10, 52-53 
........... 10 

Tenant Variable . . . . . . . . . . . . . . ................ 24 
Terminal Commands ....... 42, 51-52 

;CONSOLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 
;ECHO .................................. 43 
;EJECT . . . . .............................. 44 
;EXIT .......................................... 43 
;FINISH ................................... 43 
;SEND . . . . ............................ 44 
;USER . . . ........................... 42 

Test Statements . . . . . . . . . . .................. 38 
TRAIL Statement . . . . . . . . . .... 39, 77 
TRAP Statement . . . ........ 38, 77 
TRAP Status Word . . . 39, 77 
Type, Altering of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 
Type-Defining Declarative Statements ............. 25 
Unconditional GO TO Statement . . . . . ............... 26 
"Used" Variables . . . . . . . . . . . . . . . . . . . ........ 21, 40 
User Code . . . . . . . . . . . . . . . . . . . . . . . 42, 52 
; USER Command . . . . . . 42, 52 
User Group Code . . . . . . . . . . . . . . . . 42 
Value Manipulation . . . . . . . . . . . . 7 
Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
Vocabulary, QUIKTRAN ............................ 77 
WRITE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
X-Conversion ..... . 
XEQER Statement .. . 
XEQER Status Word 

.. ...................... 30 
35 

.35, 77 

Index 83 





I 
Ill 
z -· .JI 

~· zl 
o• 
.JI 

~· I ... 
:>I 
u 

-I 
I 

I 
I 
1 • t • I 
I 
t 
1 

FOLD 

FROM 

NAME 

COMMENT SHEET 

IBM 7040/7044 QUIKTRAN 
USER 's GUIDE 
FORM CZB-6800-Z 

OFFICE/DEPT NO•-------

CITY/STATE -----------------------DATE ____________ _ 

To make this manual more useful to you, we want your comments: what 

additional information should be included in the manual; what description 

or figure could be clarified; what subject requires more explanation; what 

presentation is particularly helpful to you; and so forth. 

How do you rate this manual: Excellent ___ Good ___ Fair ___ Poor __ _ 

Suggestion from IBM Employees giving specific solutions intended for award 

considerations should be submitted through the IBM Suggestion Plan. 

NO POSTAGE NECESSARY IF MAILED IN U.S. A. 

FOLD ON TWO LINES; STAPLE; ANO IV!AIL 

FOLD 

FOLD 



STAPLE STAPLE 

FOLD FOLD 

--- - - -- -- - ---- - - -------------..---------------

FOLD 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN u. S. A. 

POSTAGE WILL BE PAID BY 

IBM CORPORATION 

1271 AVENUE OF THE AMERICAS 

NEW YORK, N. Y. 10020 

ATTN: PROGRAMMING SYSTEMS PUBLICATIONS 

DEPARTMENT 039 

STAPLE 

FIRST CLASS 

PERM IT NO. 33504 

NEW VORKt Nev. 

FOLD 

STAPLE 

l&I 
z 
.J 

CJ 
z 
0 
.J 
( 

1-
:J 
u 





C28-6800-2 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N. Y. 10601 




