AUTOMATIC

CODING SYSTEM

THE IBM 705

Contents

Purpose, 3

General characteristics, 3

705 components, 5

System components, 5
Overall mode of operation, 6
General coding instructions, 8
Regional notation, 9

Coding PRINT instructions, 10
Coding 705 instructions, 12
Special operations, 13
Indexing, 16

Diagnostic routines, 17

Arithmetic operations, 18

Summary of mnemonic codes, 21

Summary of indexable operations, 22

Input-output operations, 38
Printing operations, 38
Tape data storage operations, 40

Card operations, 41

Pre-edit and system entry, 44
Pre-edit conversion, 47

Summary—System operation, 49

Appendix I—Sub-routines,

memory layout, translation, 50
Appendix II—-Examples, 53

Appendix ITI—Tinkertoy

Summary of non-indexable operations, 23

Indexable computing operations, 24

Arithmetic operations, 24
Mathematical function operations, 24
Data transmission operations, 24
Comparison transfer operations, 25

Table search operations, 26

Non-indexable computing operations, 29

Transfer operations, 29
Replace operation, 29

Extract operation, 30

Set index register operations, 31
Non-test transfer operations, 31
Test transfer operations, 32
Repeat operations, 32

Switching operation, 34

Generating PRINT instructions, 35

Fixed symbolic locations, 37

This intermediate manual is issued to accompany the distribution of limited
versions of the PRINT 1 system. The structure of the system and the operation
list is final at this time. Not included in this manual are descriptions of
certain of the mathematical sub-routines in various mantissa lengths, which
will be further revised with respect to memory occupancy and internal
structure. The tinkertoy appendix is also not available at this time.

Existing pre-edit and executive routines will be furnished in card form
upon written request, automatically placing those installations on the mailing
list for subsequent revisions, particularly to include all mantissa lengths. The
symbolic listing of the pre-edit routine will not normally be furnished, except
upon special request. Coding sheets may also be obtained upon request. Assist-
ance in programming and operating the PRINT I system may be obtained from
Applied Science representatives.

Working committee Programming Research Department

Bemer, R.W. International Business Machines Corporation
Glans, T. B. 590 Madison Avenue

Krasnow, E. New York 22, N. Y.

Hira, G.R.

Michels, L.

Hoggatt, A.

Levitan, R.

©1956 by International Business Machines Corporation

PRINT 1

Purpose

The prINT 1 (PRe-edited IN Terpretive) system has been primarily designed to
meet the engineering and scientific computing needs of those 705 installations
where such work is a secondary computing requirement.

General characteristics

PRINT 1 is an automatic coding system of the interpretive type, designed to
make the 705 itself do the major portion of the coding and clerical work.
It is designed for ease of learning and operation by personnel with little or
no previous programming experience. It has the following desirable features:

Floating point arithmetic. The programmer need not concern himself with
the position of decimal points throughout calculation. Entry of fixed point
numbers and production of fixed point printed output may be made without
the operator concerning himself with the fact that internal calculation was

in the floating point mode.

Matching mathematical functions. All functions operate near optimum speed
and are computed to an accuracy which is consistent with the arithmetic used.
Facility is made for the user to insert his own sub-routines, by using the
“tinkertoy”’ appendix (Appendix III). The library of functions is greatly
extended by the floating sub-routine feature, which allows non-standard func-
tions in tape storage to be used as though they were standard functions in
core memory.

Variable address and instruction format. The instructions in this system are
of varying length and contain a variable number of specified addresses,
depending on the amount of information each instruction must carry. This is
consistent with the variable length features which enhance the 705. Coding is
done in a variable field, with the multiple addresses and other information

separated by commas.

Advanced instruction set. Many useful combinatorial instructions are incor-
porated to give greater flexibility to calculations. Among these are vector
multiply-adds, polynomial multiply-adds, special operations for convergence
testing, indirect address features, counting switches, counting printing instruc-
tions and a completely automatic table search operation with an adjustable
block feature. All of these are performed by the use of a single instruction.

Index registers. An incremental type of indexing is used for address modifica-
tion, substantially reducing the number of program steps to be written, by
factors of from 2-1 up to 50-1. Each address may be indexed by the sum of
the contents of up to three registers, greatly facilitating internal loops. Index
registers may also be used as counters for control purposes, without actually

being used for address modification.

Repeat instruction. This instruction controls automatic repetition of a
following instruction, allowing grouped data to be handled with very few
instructions. This is advantageous in converting input and output data from
fixed decimal to floating and vice versa, in table searching, in matrix calcu-
lations, etc. It also permits a secondary form of indexing.

Facility. PRINT 1 may be thought of as a means of using the 705 as a giant but
convenient desk calculator. Elapsed time between problem statement and
production of answers can now be a matter of hours, rather than days or
weeks. The instruction set is straightforward and restrictions are minor;
many logical errors in the written program are automatically detected and
typed out to the operator in the form of an error message.

Interpretive system. PRINT 1 is operated by an executive routine which is
always in memory during the running of a problem. This routine fabricates
the requisite 705 instructions as it computes, finding the various components
in the pattern of the converted PRINT instruction. There is no necessity for
developing expert machine language programmers; the intricate coding is
already built in. The executive routine, under various options, occupies

from 4000 to 6000 characters in memory (equivalent to 800 to 1200 705
instructions), but experience with the system has shown that for mathematical
work one PRINT instruction is the equivalent of about 40 705 instructions.
The break-even point is therefore at around 30 PRINT instructions, which is
a relatively small program. Interpretation is not generally time-consuming
in PRINT, because the repeat instruction enables the following instruction to
be performed n times in succession with only a single interpretation. For
the remaining n—1 times, the instruction operates, in general, even faster
than the most expert coder or compiler could generate the program. This
statement may appear contradictory unless it is understood that, due to the
possibility of selecting the most advantageous fixed locations in memory,
certain machine characteristics may be utilized to decrease the operating
times. These same routines, if compiled in random memory locations, would

be incapable of operating correctly.

705 components

The only memory components required to operate the PRINT system are the
magnetic core memory and sufficent tape units (> 3) to handle expected
problem size. An on-line printer and on-line card reader are assumed to be
available, although they may be dispensed with by certain modifications to

the system.

System components

When operating in the PRINT system, the 705 is for all practical purposes
changed to a different machine, that is in a non-physical sense. Certain simu-

lated hardware exists in the system, as:

Index registers. There are three of these registers. They are addressable by
certain instructions for setting and augmenting their contents. They are
effectively addressable in the body of other instructions to enable their
contents-to be used to modify addresses.

Limit registers. There are three of these, one for each index register. They
are for maintaining limits to the contents of the index registers, which are

used for automatic termination of loops of indexed instructions.

Line image. This is an image in memory of the printer type wheels, such that
each of the type wheels is effectively addressable. All printing and ervor
correcting routines associated with printing are automatically associated

with this line image.

Heading image. This is also an image in memory of the printer type wheels,
but is used exclusively for heading printed pages of reports in any format
the programmer desires. The programmer merely uses two cards in his

program to specify this heading format.

Card image. This is an image in memory of the card columns. All columns
are effectively addressable. All card reading, whether from the card reader
or tape, enters this area; all card writing, whether on tape or to the card

punch, is done from this area.

Fixed symbolic locations. There are six fixed locations in memory. Although
addressed symbolically, they are automatically interpreted as actual addresses:

For numbers (data word length) For addresses
PACI1 (Pseudo-ACcumulator 1) LARI (Location of ARG1)
PAC2 (Pseudo-ACcumulator 2) LAR2 (Location of ARG?2)

ARGI1 (ARGument 1)
ARG2 (ARGument 2)

PACI is the basic component for the multi-address instructions, for which
it is the understood address. All arithmetic operations send the result to
PACI as a secondary result storage or temporary working area. The other
locations are mainly pertinent to the table search operations.

Overall mode of operation

The use of PRINT to solve a problem falls into four basic steps. They are
described very generally here; the actual details of each of these steps are
contained in the full description of each which follows later in the manual.

The programmer writes, on the symbolic coding form for this system, a

sequence of PRINT and/or 705 instructions designed to bring in data, do
arithmetic and logical operations, and finally prepare and produce output
data. He does this knowing the function of each of the PRINT instructions, as
described in detail under individual sections.

Cards are punched from this coding form, each line of coding representing
a single card. Punching is done in consecutive columns and may be done
without a drum card, as the format is variable. The only column skipped
before the end of punching is that defining the end of the variable field and
the beginning of the comments.

These cards are read into the 705 along with the PRINT 1 system, which
consists of two independent parts. The first of these is the pre-edit routine,
which will process the program cards and convert them to pseudo-instructions
in card or tape form for actual running of the problem. The second part is
the executive routine, which is always in core memory during the operation
of a program prepared for this system. The pre-edit routine is not maintained
in memory after performing its function and is destroyed by entry of the
executive routine and the program. It is possible to pre-edit at one time and
save the execution of the problem until a later time, as these are entirely
separate functions. Pre-editing is a triple function of assembling, compiling
and conversion to a form more convenient to the executive routine. For each
card with its mnemonic instruction and variable field, pre-edit produces a
corresponding pseudo-instruction especially tailored for the fabrication of
705 instructions from its components. These are of varying length of
characters according to the operation specified. Matched sets of mnemonic
and pseudo-instructions may be printed at pre-edit time, at the option of
the operator, together with the comments punched in the right hand part
of the variable field. This should be his permanent coding record.

The actual running of the problem is under the control of the executive
routine, which may be called from tape immediately after pre-editing. The
executive routine fills from 4000 to 6000 characters in memory, including the
floating sub-routine position and input-output images. Overflow or sign
check indicators are not used in PRINT as decision elements. They are reserved
for stops while operating with 705 instructions and the switches may therefore
be set to automatic stop during the operation of PRINT. Any entry to PRINT
sets up the ASU’s as required for its operation. All ASU’s are therefore avail-
able for use in 705 language. Their settings should be noted from the ENTer
sub-routine (see Page 12) to avoid redundant resetting for 705 usage.

General coding instructions

Addressing in the PRINT I system is entirely symbolic; that is, the address
nomenclature can be descriptive of the contents. The symbolic address of a
location must be a sequence of one alphabetic character followed by three
or four alphanumeric characters. If these following characters are all numeric
the address is said to be “regional”, which is a sub-class of symbolic notation
with certain useful properties (see the next section). A “region” is indenti-
fiable by the first or first two characters (i.e., the “G” region, the “F3" region).
If the sequence begins with a numeric character, the following characters
must be all numeric and this signifies an actual 705 address. The symbolic
locations may be coded in any sequence desired. The format of the PRINT

coding card is:

/-

SERIAL

LOCATION OPER.

VARIABLE FIELD COMMENTS

0
1
1

- D
el —]

0
4
1

22222
33333
44444
558355
66666
11111
88888

[

00000
87
1

i

|
22222
333;3
44444
555ﬂs
66666
771%7

000
1112 13
1
222
333
444
555
666
111

000
1415161718 19 2021 22 23 24 25 26 27 28 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 45 47 48 49 50 51 52 53 54 55 56 57 56 59 60 61 62 63 64 65 €6 67 68 69 70 71 72 73 7475 76 77 18 78 80
'EEEEERRRRRERRRRRRR R R R R AR R R RN R R R R AR R R R R R RN R R R R AR RRRRRRRIIRRRER/
222
333
B444044444444844440484 0048804404444 0444044000444440444444400440044444
555%
6665666666666666666666666666666666666C66666666666666666666666(666666
7771177171717111717171717117117717117171111717111711717171177117717171171117711111717971111

3885888888888866068888658888688886888888888888888886888888888888/8888838

SERtAL

LOCATION

OPER-
ATION

VARIABLE FIELD

COMMENTS HDENTIFICATION!

12345

6 7 8 9410

11213

14151617 18 19202I2223142$282120293!3!3233363533733940‘!410“45“41“”50515253545556575!59605182&‘!“6566576!69701! 7273 4[15 76 77 18 79 80

MMAAT

34

Columns
1-5

Columns
6-10

Serial number. This provides for sequence control and the collation of
change cards. Serial numbers must be in ascending sequence. A convenient
convention is the use of the first two columns for coding page number, the

second two for line number and the last for inserts.

Symbolic location. This field provides a referral name for the entry; that
is, if the entry is not referred to by any other instruction in the program, the

Columns
11-13

Columns
14-74

Columns
75-80

field can and should be left unpunched. This will reduce the size of the table
of symbolic and actual address correspondence, thus decreasing the running
time of pre-editing by minimizing search time. If the field is punched it must
follow the rules for a symbolic address, with the alphabetic character in

column 6. Punching is optional in column 10.

Operation code. This field must be punched with a 3 character (including
blanks as characters) mnemonic code which describes the function of the
entry. This may be a PRINT operation, a 705 operation or one of the several
special operations for constants, memory reservations, origins or headings.

Variable field. This field is punched as the requirements of the particular
instruction dictate. The first blank column indicates the beginning of the
comments field, which may actually extend through to column 80 if no iden-

tification is required.

Identification. Any 6 character alphanumeric desighation may be punched
(ganged) here to identify the program. An identification obtained from the
first card of the symbolic program deck will be punched in the first 6 columns
of the 705 load cards produced by pre-edit for reloading, and will also
appear in the heading of the pre-edit listing.

Regional notation

An alternate method of using symbolic addressing is available if the pro-
grammer desires to code with “‘unitized” components. If the symbolic address
is regional, the serial number in columns 1 to 5 may be omitted, in which
case the numbering sequence within the regional address controls instruction
sequence in the program. Columns 6 to 10 will always be filled with a regional
address, regardless of referral status, and referral will now be indicated by
punching an 11-punch in column 1. The drum card of the keypunch should
be arranged to skip to column 6 for the next punching. If the programmer
fears becoming careless in noting referral addresses, he may gang the 11-punch
in column 1 of every card, but this could retard the pre-edit process by
carrying a complete table of referrals.

Regional addressing is convenient for quick replacement of identifiable
components with a specific function in the program. To illustrate, consider
that in a program to compute airplane performance the calculation of engine

thrust is assigned to region T1. This region receives as input data certain
information produced by other regions, computes thrust with this data and
certain equations, finally putting this resultant thrust value in a location
usable to other regions. For several different engines, or several different
ways of computing thrust, different T1 regions would be coded. All of these
receive and store data in addresses not common to the computing regions,
but accessible to all. If the programmer wishes to compute performance for
a certain configuration he selects one form for each region involved and
processes this combination through the pre-edit routine. He is thus
guaranteed that housekeeping is perfect and that no pattern of computation
will have been erroneously disrupted.

Coding PRINT instructions

The variable field of PrINT instructions is coded according to the context of
the instructions. Each operation is described as having a certain number
of positions in the variable field. Each of these positions are separated by
commas. An exception occurs for indexable instructions, where a position is
defined to contain both the address and its index register tag, although
separated by a comma. The tag is therefore in a sub-position immediately
following the address it modifies. An address is a field of four or five char-
acters. It is symbolic if it begins with an alphabetic character; if the first
character is numeric, all must be numeric and the address is actual. An index
tag is a field composed of the digits 1, 2 and 3 not repeated which designate
the index register or registers which are to affect the address in context. If an
address is not to be indexed, no tag field is written. In the first example the
address in the second position is the only one indexed; in the second example
the address in the third position is also indexed.

LOCATION OP%':)ADTEION VARIABLE FIELD COMMENTS
l-lO 11 -13 14 - -80
| | ADD P 202, R 532, 12, QYR5 A blank column terminates
: ADD P 202, R 532, 12, QYR5, 2 the instruction and starts
| | MPY | RATE, 2, TIME, 23, DIST, 3 the comments

Both numeric and alphabetic characters are used in coding for this system.

10

As a standard precautionary practice, always write the letters @, I and Z as
shown, with slashes and cross-bars to safely distinguish them from the
numerals 0, 1 and 2.

Every program will begin with either a 705 instruction or an ENT
(ENTer) instruction. Every transfer of control from 705 to PRINT instructions
and back will be called for by the programmer. Consequently, every block of
PRINT instructions must be preceded by an ENT, which is compiled by the

pre-edit into three 705 instructions:

LOCATION OP‘CIE)ADTEION VARIABLE FIELD COMMENTS
6- 101 11 -13 -80
BADD- 11| SET
BADD- 6 |L@D | BADD-6, 1
BADD- :l TR (to the address of the first instruction in the ENT Sub-routine in

| the PRINT Executive Routine)

The basic address of the first PRINT instruction is at BADD. This is computed
by the ENT sub-routine from BADD-6 in ASUOl. ASUs are set to length
and control is transferred to the fetch sub-routine, which brings in the first
PRINT instruction in the interpretation cycle.

Following an ENT, all entries are considered by pre-edit as PRINT instruc-
tions until the instruction LVE (LeaVE) is encountered. LVE is a PRINT
instruction whose address is normally pre-edited as the location of the next
705 instruction. When executed, it will cause the executive routine to
transfer control to that instruction. All succeeding entries will then be
considered as 705 operations or special operations until another ENT is
encountered. Thus ENT and LVE are normally coded without addresses in
the variable field. When LVE is coded with the address of a 705 instruction,
pre-edit gives that address in conversion rather than that of the next 705
instruction in sequence.

An asterisk in the variable field of an ENT indicates that this is the point
at which the operation of the program will be commenced, rather than the
first ENT or 705 instruction encountered by the pre-edit. If more than one
ENT contains an asterisk in the variable field, the first encountered takes
precedence. An ENT must not precede a 705 or special instruction, else a
compiling error will occur in memory assignment. When successive entries
change from PRINT to 705 instructions or vice versa, without intervening
ENT or LVE entries, pre-edit will type out a mode change error message.

11

Upon executing a LVE instruction, advantage may be taken in 705 opera-
tions of the fact that the ASUs are left with known length settings, as follows:

ASU Length ASU Length ASU Length

or 4 06 4 11 2

02 1 07 4 12 3

03 2 08 Word Length 13 Indeterminate
04 4 09 1 14 5

05 4 10 1 15 18

Two successive commas imply that the intervening address is that of the
main pseudo-accumulator PACI, which is a field in memory reserved for this
function. PAC1 is incapable of being indexed, even if tagged; a zero indicator
is automatically inserted for it by the pre-edit routine. PAC1 may also be
addressed by the symbol PACI. If fewer addresses are coded than required by
a particular instruction, the remaining addresses will be interpreted to be
PACI by the pre-edit. For example, the following instructions are equivalent,
incidentally doubling the contents of PACI.

ADD PACI, PACI, PACI ADD,,b ADD

An exception to this rule occurs in the SAC operation. If the result addresses
are not specified in the second and third positions of the variable field, the
second position is interpreted as PACI1 and the third as PAC2.

Coding 705 instructions

705 instructions are coded either before the first ENT or between LVE and
the next ENT. Standard 705 mnemonic codes are used. The first field after
the operation code is interpreted as the address. An actual address can be
any combination of 4 or 5 numeric digits, as the leading zero does not have

<10 11. <13] 14- -80
| | TR | cYcLE

. | RAD | F@L3-52, 2 FPL3-52 zoned for ASU 02

| seT | 9,13 Set ASU 13 to length of 0009

12

to be punched. A symbolic address must satisfy the same criteria as the
addresses of PRINT instructions do. If the address is terminated in a sign,
the next field is interpreted as an increment. The following field is the ASU
designation. The instruction refers to the 00 accumulator if no ASU coding
is present.

Special operations

PRINT 1 uses various mnemonic special operation codes for initial organi-
zation of a program. These are illustrated at the end of this section. These
operations are static and do not create working PRINT or 705 instructions.

ADC (ADdress Constant) produces a 4 character constant which is the 705
address determined by the symbolic address, increment and ASU coding in
the variable field.

ORG (ORiGin) controls the actual memory assignment of subsequent
instructions or areas. These are four types of ORG entries, and pre-edit will
handle up to 100 ORGs with addresses in the variable field.

When the address in the variable field is actual (i.e. numeric), the first
character of the next entry will be at that specified address.

When the variable field is blank, all following entries will be assigned in
order following the highest location assigned previously.

When the address in the variable field is identical to the symbolic address
of the ORG itself, the location of the previous entry will be stored in the
table of origins for later reference. ‘

When the address in the variable field is a symbolic address stored under
the conditions of type 3, the succeeding entries will be assigned following
the location stored by type 3. This is a device for remembering and con-
tinuing an interrupted series.

CON (CONstant) and BLK (BLocK) reserve filled or unfilled memory
space. For either entry, the first position in the variable field is a number of
from 1 to 3 digits specifying the length of the entry, which in the case of
CON is limited to 50 characters. If an asterisk precedes the length speci-
fication the entry starts with a memory position ending in 0 or 5. If a
constant is signed, the plus or minus sign follows just after the length; plus

13

signs may not be omitted. A blank column and the actual constant follow.
A record or group mark may appear only in the first character of a constant.
The address assigned by pre-edit is that of the highest memory position (or
right-hand character) in the field.

FLC (FLoating Constant) is a PRINT entry corresponding to CON for
the 705. Coded in the variable field is the sign and the 1 or 2 character
exponent, followed by the mantissa sign and as many digits of the mantissa
as the coder cares to write. These are not separated by commas. The initial
number of characters in the mantissa is not limited; pre-edit automatically
converts to internal format, without rounding if the number of characters
exceeds mantissa length for the system. A blank variable field is considered
an error by pre-edit.

DEL (DELete) is a special operation for program correction and is
explained in the operation of pre-edit and system entry.

REG (REGister reservation) is a PRINT entry corresponding to BLK for
705 entries. It is used to reserve memory space for floating point PRINT
numbers (words). For reservation of a single word or number space the
variable field is normally left blank, as the length is already specified by
the system. The word length area is addressed in other instructions by the
symbolic address of the REG entry. If the address is regional, a lower address
in that same region may be written in the variable field, signifying reserva-
tion for all addresses within those limits. For indexing purposes, all randomly
symbolic addresses in an operational sequence must be reserved sequentially
and individually. It is therefore preferable to reserve addresses for indexable
instructions in the regional mode. Pre-edit will accommodate up to 60 of these
multiple reservations.

SAY (SAY it) will enter a line of comment into the pre-edit listing.

HDG (HeadDinG) is a PRINT entry for inserting a page heading for
printed reports. Coded in the variable field are a blank (column 14) and
up to 60 characters in columns 15 to 74. One or two cards may be used, the
second corresponding to type wheels 61 to 120.

FIN (FINish) is an entry which signifies termination, in the card reader,
of the program to be pre-edited. It has the same effect as an end-of-file signal.
This permits data cards to be loaded into the reader simultaneously with the
program, without being considered as entries to be pre-edited. The entire
program may thus be run in a continuous fashion.

14

IBM PRINT I SYMBOLIC CODING FORM

PROBLEM

ILLUSTRATING THE VARIOUS USAGES FOR SPECIAL OPERATIONS

CODER DATE PAGE OF

MANTi ADC | POWER - 2,9 (, 09 also correct)
DRG | 5040 (05040 also correct)
Al123 RAD | C@L08, 2 (instruction located at 5044)
| @RG | 35040
CON45 CON| 2+b45b ..., (the number 43, located at address 3504)
XNYC| | BLK | 56 (reserves 56 characters in memory)
.| CON| = 28bFOURbSCORED
ZERG . | FLC | +0+0 0x 10° = ZERO
LBC1| | FLC | +1+1 dx 10" = @NE
L FLC | -12+528 .528 x 1072
_FLC | +3-2 -.2x 10° = -200
FLC | +3-200 v
10000 . DEL | 10006
F121 | | REG | F119 e —
F119 | | REG | FI21 —~— _
F119 ; REG] B ldentical effects
F120 | | REG <
Fi21 | | REG J
F121 | | REG } Will cause normal indexing
F120 ; REG 5 to occur in
FI19 | | REG J reverse order
| | SAY | THE F@LL@WING 3 ADDRESSES ARE DESIGNED F@R INDEXING
J¢NEiS REG ‘] Pre-edit assigns memory positions
SMIT |H REG 3 in the order in which
BRGW!N REG) they are encountered
A001/A| REG | AI00A] Wseful technique for greatly
A001B| REG | Al00B } expanding the number
BOO1 |A| REG | BIOOA J of available regions
I | SAY | THE FOLLGWING LINES SHZW ILLEGAL USAGE
10006 | | DEL | 10001 Will delete 10006 only
20684]| DEL | A106,13,,F+/4 (Dangerous to maintain old variable field)
F120 ll REG (Will not be included in F119 = F121 sequence)
| | REG | SMITH
SMIT H| REG | JONES
TEMP [2| REG | TEMP1

15

Indexing

A system of indexing is simulated within the PRINT framework. Most 705
programmers are already familiar with one means of specifying the location
of a number without using the actual address. This is symbolic addressing,
where the actual address is determined by searching a table of symbolic
addresses, each of which has a corresponding actual address. Indexable
addressing is one further step up conceptually. If either a symbolic or actual
address, not only is the corresponding actual address determined from the
symbolic, but the address which the instruction really refers to is that actual
address plus the number contained in the index register specified. If that
index register has a different number in it every time that the same instruc-
tion refers to it, then the same instruction obviously uses a different address
every time, although the instruction itself never changes. The examples in
Appendix II show how the same instruction may be used repetitively to
advantage. The justification for indexing is the resultant economy in the
number of instructions that the programmer must write.

In the out-of-context example shown, the angle whose sine is placed in
PAC], and whose cosine is placed in PAC?2, is not the angle in the address
P220. Since R2 (register 2) and R3 have been set to 3 and 8 word lengths
respectively, it is rather the angle in address P231, which is P220 plus 3 plus 8.

LOCATION OPECROAJEION VARIABLE FIELD COMMENTS
6- -10] 11- -13] 14- -80
P240 i REG P220 Reserve sequential addresses

| L ENT

| |sR2 |3 Set R2 to 3 word lengths

| |sR3 |8 Set R3 to 8 word lengths

| | sac_| p220, 23 Sine o PAC [, cosine to PAC 2

The 23 tag after the address in the first position indicated that the address
was to be incremented by the sum of the contents of R2 and R3. In PRINT I,
the contents are added to the address and indexing is said to be incremental.
By contrast, 704 indexing is decremental. There are 3 index registers, referred
to as R1, R2 and R3. Any address in an indexable instruction may be incre-
mented by the contents of any of these registers or the arithmetic sum of

16

the contents of any two or all three. This alteration takes place in a work
area before fabricating the necessary machine language instructions from the
address portions of the PRINT instruction involved. The original PRINT instruc-
tion in operating sequence is never altered. Loops formed by transfer on index
instructions will therefore be re-indexed from the original instructions. Such
transfer is dependent upon the contents of the index register not having
exceeded a specified limit.

The contents of index registers are used only for address modification with
705 add-to-memory instructions. The contents are unsigned and 4 digits in
length. Increments are carried in memory as true numbers, decrements as
the complements of 40,000. To increase operating speeds, all possible sums
of contents of index registers are carried along in memory. When any register
is altered, the contents of each combination in which that register participates
are altered by the same amount. This permits indexing any address by a
single add-to-memory instruction.

Direct access to the contents and limits of index registers may be had (in
705 machine language) by using the actual addresses of 4-character unsigned
numeric fields as follows:

R1 0718 R1 limit 0728
R2 0728 R2 limit 0733
R14-R2 0738
R3S 0748 R3 limit 0753
R1+R$ 0758
R2+R3 0768
R14R24+R3 0778

Diagnostic routines

Two types of diagnostic methods for error finding are used with PRINT instruc-
tions. The first of these is a memory print associated with the system control,
the operation of which is described under the section on pre-editing (page
44). This method is used primarily to determine cause of machine stops
during computation.

The second type of diagnostic is that commonly called “snapshot”, and is
entirely under the selective control of the programmer. This is accomplished
by inserting extra instructions in the program to be pre-edited. These instruc-
tions are designed by the programmer to view selected intermediate results

17

or logical path indications. When the program is ascertained to be correct,
these snapshot instructions have their operation codes changed to DEL and
are re-collated in with the previously assembled program, thus removing
them from the operating program. This feature is possible only because
of the fast re-assembly time in the PRINT system. Most programs will take
from 30 seconds to 1 minute for tape re-assembly.

For detail work, a 705 machine language tracing routine is furnished. This
routine (primarily developed by Mrs. Helen Meek of the Hughes Aircraft
Company, Culver City, California) may be used as a separate diagnostic tool
for all work encountered by the installation, including commercial problems.
The basic principle of this routine is the temporary displacement (and
storage for later replacement) of certain operating instructions in the working
program by transfers to the tracing routine. This permits high speed opera-
tion to various points of interest, at which time detailed tracing occurs. High
speed operation of the program may be resumed at specified points. Deter-
mination of the local regions to be traced is under card control.

Arithmetic operations

All prINT 1 arithmetic operations use numbers in floating decimal form as
the operands. All 705 operations are in fixed decimal form. A floating decimal
number is essentially a piece of data and is referred to as a “word”. This
floating point word is comprised of two parts, a proper decimal fraction (called
the “mantissa”’) with a non-zero leading digit and a power of 10 multiplying
that fractional number (called the “power”, although ‘“‘characteristic” is an
alternate term). Floating point words are

stored in memory as: although written for input as FL.Cs:

+ =+
XXX. ... XXXPP *+PPxXXX. ...

The X’s represent the digits of the mantissa and the P’s represent the two
digits of the power, which may range from —99 to +99. The dots signify
that PRINT 1 is furnished in separate forms for 8, 10 and 12 digit mantissas.
The 12 digit system (word length = 14 characters) will be furnished origi-
nally with 12 digit arithmetic but having the mathematical functions
normally provided with the 10 digit system. A 12 digit system to consistent
accuracy and a 20 digit system will be available about January 1957.

Each of these systems will then be complete in itself for all operations,

18

having all sub-routines designed to an accuracy equivalent to the length of
the mantissa. Sample words in input format, floating point format and their

equivalent fixed decimal form are:

Input format Internal format Actual number
+ +
+04-12345678 1234567800 12345678
-+
+5—1234567899 1234567805 12345.678—
+ —
—5-4-1234567899 1234567805 .0000012345678
+ +
+146 6000000001 6
+ +
+8+46 6000000008 60,000,000
+ -
—104-6 6000000010 .00000000006
+ +
+641 1000000006 100,000 (=105)
-+
+2—3579 3579000002 35.79—
++
+0+0 0000000000 0

The second example is —.12345678 times 105. It can be seen from the exam-
ples that when the power is positive, it represents the number of whole
number digits; when the power is negative, it represents the number of zeros
to be placed after the decimal point before the actual number begins. A
power of zero means that the number is a decimal number just as it is without
using the power. A true zero is always signed positively.

Whereas as 705 instructions refer to the contents of a single address, PRINT
instructions are in a multi-address form. All PRINT operations except FPR
are performed without rounding, to save operation time. If this should ever
cause inconvenience, use a system with a longer mantissa. Arithmetic instruc-
tions which are found to refer to zero operands will operate in accelerated
fashion, since all operands are first tested for zero in the arithmetic sub-
routines.

If an error occurs during execution because of the impossibility of fore-
seeing certain illegal conditions, an error message will be written on the
typewriter. The “tinkertoy” appendix provides options for this type-out.

19

If the programmer wishes to conserve memory space he may select the option
which types out the letter E followed by a 2 digit code number; referral to
the manual will tell him the type of error which has occurred. If economy
of memory is not vital, he may select the option of typing out an expository
message. Under either option, the actual address of the failing instruction
is also typed out. Error messages are:

EO1: Division by zero

E02: Logarithm of zero or a negative number

E03: Sine and cosine of an angle greater than +318~

E04: Square root of a negative number

E05: Power overflow (>99)

FE06: Power underflow (<—99) (only if desired by user)

E07: Line image overflow

E08: Too many whole numbers

E09: Echo check, 0901 error, channel 12 in tape

E10: Line or HDG won’t write correctly 0902

E11: Read card error or card punch error

E12: Card won’t punch correctly 0902

E13: 0901 error on write tape

E14: Tape won't read/write correctly

E15: End-of-file before read /write tape completed

E16: Exponential to the base 10 of |]ARG| 299
Exponential to the base e of |ARG|2225.65334

20

Non-
indexable
operations

Special

operations

Indexable
operations

Summary of mnemonic codes

21

ATR Alternating TRansfer TNZ Transfer on Non-Zero
BSi BackSpace tape “i” TRM TRansfer on Minus
LVE LeaVE PRINT TRP TRansfer on Plus
RCD Read a CarD TRU TRansfer Unconditionally
RPL~ RePlLace TRZ TRansferon Zero
RPT RePeaT
RWi ReWind tape “i" TXi Transfer tes.ting‘ .i,r’ldeX limit,
RWR Repeat With Reset (PACI) augmenting 1
SRi Set index Register “i" WCD Write a CarD
TMi write Tape Mark on tape “i” ~WHi Write a Heading, space “i"
TNi Transfer Not testing limit, WLi Write a Line, space “i"
augmenting “1”’ XTP eXTract Power

ADC ADdress Constant FLC FLoating Constant
BLK BLock HDG HeaDinG
CON CONstant ORG ORIiGin
DEL DELete REG REGister reservation
FIN FINish SAY SAYit
ADD ADD MPM Minus Polynomial Mult.—add
ART ARcTangent MPY MultiPlY
DIV DIVide PMA Polynomial Multiply—Add
EXD EXponential, Decimal base RTi Read Tape “i”
EXE EXponential, base E (e) SAC Sine And Cosine

- FLO FLOat SQR SQuare Root
FPR Fix for Printing Rounded SUB SUBtract
FXP FiX for Printing TAB Transmit ABsolute
LGD LoGarithm to Decimal base TMT TransMiT
LGE LoGarithm to base E (e) TNA Transmit Negative Absolute
MAD Multiply — ADd TRC TRansfer on Comparison
MDV Minus DiVide TRE TRansfer on Equality
MMA Minus Multiply — Add TSC Table Search on Comparison
MMY Minus MultiplY WTi Write Tape “i”

Summary of indexable operations

OPERATION
CODE

- -13

VARIABLE FIELD COMMENTS

14.- -80

ADD | @PER1, PPER2, SUMM (@PER 1) + (PPER2) = SUMM

SUB | @PER1, PPER 2, DIFF (@PER 1) - (PPER2) DIFF

MPY | MLPLR, MCAND , PRDCT (MLPLR) (MCAND) » PRDCT

MMY| MLPLR, MCAND , NGPRD - (MLPLR) (MCAND) ~ NGPRD

DIV | DVDND, DVS@R, QUAT (DVDND) + (DVS@R) QUAT

MDV| DVDND, DVS@R, NGQU@ -(DVDND) + (DVS@R) - NGQUP

MAD| MLPLR, MCAND , CRSFT (MLPLR) (MCAND) + (PAC1) — > CRSFT

MMA| MLPLR , MCAND , CRSFT - (MLPLR) (MCAND) + (PAC1) CRSFT

PMA | ADDND, MCAND,RSULT (ADDND) + (PAC1) (MCAND) ——> RSULT

MPM| ADDND, MCAND ,RSULT (ADDND) - (PAC1) (MCAND) — RSULT

SQR | SXTY 4, EIGHT Y (SXTY 4) > EIGHT

SAC | ANGLE, SINE , C@SIN sin (ANGLE) —= SINE, cos (ANGLE) —— C@SIN

ART | TNGNT, ANGLE tan ' (TNGNT) ~ ANGLE

LGD| NUMBR, DECLG log 1, (NUMBR) - DECLG

LGE | NUMBR, NATLG logg (NUMBR) ~ NATLG

EXD | EXP@N, TEN2X antilog (EXP@N) > TEN2X

EXE | EXPPN , E2THX antilog (EXP@N) ~ EZTHX

(FSR) | ARGUM , RSULT function (ARGUM) > RSULT

TMT | HERE, THERE (HERE) —— THERE

TAB | MINUS, PLUS [(miNUs) -~ PLUS

TNA| PL/MN, MINUS [(PL/MNY| ~ MINUS

TRC | TRADD, THIS, THAT Transfer fo TRADD if (THIS) = (THAT)

TRE TRADD , TH8S , THAT Transfer fo TRADD if (THIS) = (THAT)

TSC | +A,TABLE, ARGUM Search argument table for first number > (ARGUM), be-
ginning at TABLE. f(TABLE) is + A word lengths away.

WTi | BEGIN, ENDD, TRADD, TM Write all successive words from BEGIN to ENDD, inclus-
ive, as 1 record on tape i. Transfer to TRADD if end-of-
file is reached, write tape mark if TM is written.

RTi START , TRADD Read record from tape i, filling as many successive locat-
jons as on record, beginning with START. Transfer to
TRADD if a tape mark is encountered.

FXP | FLNUM,t,wW,dD,s Fix (FLNUM) x 10° for print in line image, decimal point
in type wheel t, with w whole numbers and d decimals.

FPR | FLNUM,t,wW,dD,s Same as FXP, except round the number when fixing.

FL® | CPLXX, n,R/Ls,FLNUM Take the n digit number with units position in column XX.

Move the decimal point R(ight) or L(eft) s positions. Put

in floating point format in FLNUM.

22

Summary of non-indexable operations

TRZ TRADD, TEST Transfer to TRADD if (TEST) are zero

TNZ | TRADD, TEST Transfer to TRADD if (TEST) are non-zero

TRP TRADD , TEST Transfer to TRADD if (TEST) are plus

TRM | TRADD, TEST Transfer to TRADD if (TEST) are minus

TRU TRADD Transfer to TRADD unconditionally

RPL ADDRI , INSTR Replace the Ist address in INSTR by ADDRI

XTP | FIRST, SECND Give (SECND) the same power as (FIRST)

SRI | +n,% lim Set contents of R, to xn, limit to % lim

TNi | TRADD, £+ A Augment R; by + A, transfer to TRADD

TXi TRADD, + A Augment Ry by + A, transfer to TRADD only if
new (R;) < limi . Otherwise proceed,

RPT n,+i,2[,k Repeat (perform) the next instruction n times, index-
ing its Ist, 2nd, and 3rd addresses, as they exist,
by i, j, and k words lengths respectively.

RWR | n, %1, %], 2k Reset PACI to zero, then operate same as RPT. +1,
| and £k may all be prefaced in RPT and RWR
by an * to indicate indexing by number of char-
acters, not word lengths.

LVE TRADD Leave PRINT. Next instruction Is next 705 instruct-
fon If TRADD is not written, TRADD if written.

BSi n Backspace tape | for n records.

RWI Rewind tape 1i.

T™Mi Write a tape mark on tape i.

WLi | UNIT, n, TRADD Write a line. UNIT is tape t or printer. i is the
space control ofter writing. n, TRADD is optional
Write n lines, transfer to TRADD rather than
write the (n+1)th line.

WHi UNIT, n, TRADD Write a heading. (Equivalent to WLi).

WCD| UNIT Write a card. UNIT is either tape t or punch,

RCD UNIT, TRADD Read a card. UNIT is either tape t or printer,
Transfer o TRADD on end-of-file condition.
(Optional specification of TRADD).

23

Indexable computing operations

Arithmetic operations

These operations are largely self-explanatory from the operation summary
preceding this section. It should be noted that MAD, MMA, PMA and
MPM are compound, or double, arithmetic operations, although they are
still written with only three positions in the variable field. The understood
operand is always the contents of PACI, the primary pseudq-accumulator.
Although these accumulative operations may be used singly, their design
purpose is for repetitive arithmetic. As such, the result of each operation may
be found in PACI as well as in the normal result address. The Multiply-
ADds are designed for vector products. The Polynomial-Multiply-Adds are
designed for evaluation of polynomials with the argument addressed in the
second position. Although no index register modification is shown in the
summary, all of these operations may have a sub-position for each address,
indicating this.

Mathematical function operations

These operations are also self-explanatory. SAC (Sine And Cosine) is the only
operation with three positions in the variable field, all others having two
positions. Each position may have a sub-position for index register indication.
The first position address for all of these operations is that of the argument.

Data transmission operations

TMT (TransMiT), TAB (Transmit ABsolute), and TNA (Transmit Nega-
tive Absolute) are operations for moving blocks of data from one group of
locations to another. The address in the first position of the variable field
is that of the original location; the address in the second position is that of
the location to which the data is moved. Both positions may have sub-positions
for index register modification. Unless PACI is specified in either position

24

it will be unaffected by the transmittal. Unless destroyed by a later operation,
the original contents will be unaffected. TAB guarantees that the contents
will be positively signed in the new location, TNA that they will be negatively
signed. The first example shows the 40 numbers in locations M001 through
M040 being transmitted in a reverse fashion, with a blank location between
each number, to the locations PO80 down to P002. The second example shows
that ANY word-length block of characters may be transmitted by use of

this instruction.

BLNK § | CON | (word length)
POSO | | REG
g ENT
| IRPT |40, 1, -2
|| TMT__|M001, PO8O
| | TMT |BLNKS, AREA

Comparison transfer operations

TRC (TRansfer on Comparison) and TRE (TRansfer on Equality) are
conditional transfer instructions which make an algebraic comparison of
two operands. They are written with three positions in the variable field,
the first of which is the address to be transferred to if the condition is met.
TRC takes place when the number addressed in the second position is equal
to or algebraically greater than the number addressed in the third position.
TRE takes place only when these two numbers are equal. All three addresses
may be modified by index registers.

These operations have special characteristics when preceded by a RPT or
RWR operation. The number of repetitions may be set at a maximum by a
positive number or to an indefinite repeat by a negative number in the first
position of the RPT instruction. In either case, transfer may occur before
the repeat tally is reduced to zero in normal fashion. The tally is therefore
automatically reset to zero on a transfer. Considering for purposes of iden-
tification that the general instruction is:

TRC/TRE TRADD, THIS, THAT

25

transfer to TRADD will occur when the contents of THIS, as indexed by the
RPT, are greater than or equal to the contents of THAT, as also indexed.
When the transfer occurs, the following quantities are left in specialized

symbolic locations:

Location Contents

ARG (working position) Last THIS used
ARG2 “ - Last THAT used

LARI1 (Location of ARG1) Address of last THIS used
LAR2 (Location of ARG2) Address of last THAT used

LARI1 and LAR? are usable only by the RPL operation. Using LARI or
LAR2 as an address in any other instruction will cause an error message in
pre-edit. None of these special addresses is indexable by either index registers
or RPT or RWR instruction increments. Their index indicators are automat-
ically set to zero by pre-edit. RPT or RWR increments, if used, must be coded
as zero by the programmer or a machine stop will occur. When TRC or TRE
is used with RPT or RWR the second position in RPT or RWR, which would
normally be considered to modify the transfer address, must be coded as
zero by the programmer or a machine stop will occur. Although TRC and
TRE are indexable instructions, transfer addresses are obviously not index-

able in a system using variable length instructions.

Table search operations

TSC (Table Search on Comparison) is a special variation of TRGC which is
especially designed for fast and flexible table search. Rather than a transfer
address, the first position in the variable field contains the differential number
of word lengths between the arguments of the table and the corresponding
functions of these arguments. No transfer is made after TSC; the next
instruction in sequence is executed.

A special RPT or RWR instruction must precede TSC. The first position
contains a negative number for indefinte repetition. The second and fourth
positions must contain zeros. The third position contains the interval of
gross search. Table Search automatically consists of two parts. Letting N
symbolize the gross search interval, the first part compares the first argument
and successive arguments in intervals of N against the test argument. When
one of these is found to equal or exceed the test argument, the search auto-

26

matically backs up to the previous grouped argument. The second part of
the search consists of a comparison of successive arguments in this localized
area against the test argument in intervals of one. N may be the integer 1 or
any other integer, PROVIDED that the number of arguments in the table
equals (some multiple of this integer plus one). For example, consider the
case of a table with 65 arguments. Valid values of N would be 16, 8, 4 and 2.
The first, 17th, 33rd, etc. arguments would be compared against the test
arguments if N were assigned as 16. In practice, the most effective interval of
gross search is that which most closely approximates the square root of the
number of arguments in the table, in this case, 8.

Further suppose that the 33rd argument was found to exceed the test
argument. Comparison is now made to the 18th, 19th, 20th, etc., until some
argument between the 17th and 33rd is found to exceed the test argument,
or equal it. When this is found, the Table Search is discontinued and the
following items are to be found:

If for any argument X, ., X is defined as the first argument greater than
or equal to X, and the previous argument X is less than X,

Location Contents

ARGI1 (ARGument 1) X,

LARI1 (L.ocation of ARgument 1) Address of X argument

PACI (Pseudo-ACcumulator 1) Corresponding function f(X)
ARG?2 (ARGument 2) X,

LAR?2 (Location of ARgument 2) Address of X _ | argument

PAC2 (Pseudo-ACcumulator 2) Corresponding function f (X _))

All of these are useful as addresses, although LARI1 and LAR2 may be used
only with the RPL operation, and none of the addresses is indexable.
Caution! Arithmetic operations use PACI as a result address, so the contents
of PACI after a TSC will have to be used before any arithmetic operation or
else transmitted to a temporary location.

It should be standard practice to make the last argument in any table
equal to the highest number in the PRINT system (4994999999). This
dummy number ensures against overrunning the table with an unexpectedly
high argument. In a table of 398 entries, for example, it would also be very
practical to make the last 3 entries to be this dummy number, thus increasing

27

the number of arguments to 401 and allowing a gross search interval of 20,
which is the most efficient.

Let A symbolize the number of words lengths between the table of
arguments and the corresponding functions. If A were set to zero, PACi
would not contain the functions of the argument; the contents would be
identical to the contents of ARGI, which are the arguments again. Sliding
sets of tables might be constructed with this feature, using a variable A.
Furthermore, using + A in one case and —A in another permits interchange
of the dependent and independent variables.

A standard method of coding is shown in the example, illustrating Table
Search and linear interpolation, according to the formula:

E(X,) —£(X,_)

fXe) = EX)+ —5—x) (Kiest = Xoo)
LOCATION OP%ROAJEION VARIABLE FIELD COMMENTS
} RPT | = 1,0, (interval), 0
" | 1sc | A, XSUB 1, XTEST
| |suB |, PAC 2, TEMP 1 f(Xq) = f(Xyo1)
| | sUB | XTEST, ARG 2, TEMP 2 Xtest - X1
' | suB | ARG 1, ARG 2 Xo = X
| | DIV | TEMP 2 (PAC | implied as divisor)
| | PMA | PAC 2, TEMP 1, RSULT = F (Xtest)

28

Non-indexable computing operations

Transfer operations

There are four conditional and one unconditional operations in this group.
Conditional transfer commands are written with mnemonic symbol and two
positions in the variable field. The address in the first position is always that
of the instruction to which the transfer is to be made if the condition is met.
The address in the second position is that of the number whose condition is
to be tested. The mnemonic symbols TRZ, TNZ, TRP and TRM signify
respectively that this condition is to be zero, non-zero, plus or minus. TRU
signifies that transfer is to be made unconditionally to the instruction whose
address is in the single position in the variable field. In the example shown,
the program will operate in normal sequence if the contents of JONES is
a positive non-zero number; otherwise control transfers to the instruction in

B006 and proceeds sequentially from there.

SERIAL

1.

LOCATION

OPERATION VARIABLE FIELD COMMENTS
CODE

1- <131 14.- -80

7
03041 } TRZ | B006, JONES
03042 . | TRM | B0O06, JBNES
03043 | |SQR | JBNES, SMITH

Replace operation

The instruction for this operation is written with the mnemonic RPL
(RePLace) and two positions in the variable field. This operation causes the
instruction in the address specified by the second position to have its first
position address replaced by the first position address of the RPL instruction.
If the first position address is written “LAR1” or “LAR2” the replacement
address is not LARI but the address in LARi. This indirect address feature
is used in conjunction with the TRC, TRE and TSC operations. This
operation has three other usages. It may be used as a “flip-flop” or sequencing

29

switch, for direct exiting from sub-routines and for command modification
by replacement rather than by indexing.

RPL will operate only on the arithmetic, mathematical function and data
transmission operations, all transfer operations, ATR, FXP and FPR. In
addition, it will operate on the transfer addresses of the WLi, WHi, RCD,
WTi and RTi operations, although these addresses are not in the first position
of the variable field. The example shown depicts the condition of the instruc-
tion in TEXAS before and after a RPL. Further examples of usage may be

found in Appendix II.
LOCATION OPERATION VARIABLE FIELD COMMENTS
CODE

6- 101 1 -13] 14. -80
T

TEXAS | | MAD | COMIC, 1, SMITH, 2, RSLT3
| | RPL | CAPS, TEXAS

TEXAS! MAD | CAPS, 1, SMITH, 2, RSLT3 (new form of TEXAS)

Extract operation

The instruction for this operation is written with the mnemonic XTP
(eXTract Power) and two positions in the variable field. The first position
contains the address of the floating point number whose power is to be
extracted. The second position contains the address of another floating point
number whose power is to be replaced by the power extracted from the first
number. This operation is designed for convergence testing, since in floating
point the size of a number during the course of calculation may not be pre-
dicted. The example shown illustrates the programming of a convergence
test on (JANES), where it is desired that the valid value of (JANES) shall
not differ from the previous value of (JANES) by more than 3 in the 7th digit
of the mantissa. The power of (JANES) is assigned to mantissa of .3 in TEST
and scaled by 10-¢. After step CONV2 the number in TEST is the proper
value for testing for convergence. When the difference between the present
and previous value becomes less than this increment, the iterative loop is
abridged by the TRC command. Without such an instruction, an oscillatory
condition in the last digit of an iterated number might make it impossible
to exit from the loop. It also provides for a less exacting matching than all of
the digits in the mantissa. An appreciable speed-up of computing time may

30

also be realized in slowly converging operations, if less stringent accuracies

are made acceptable.

LOCATION OPECI:,ADTEION VARIABLE FIELD COMMENTS
6- 10| t1- 13| 14. -80
TEST i FLC -04+3 Power h significance
SCAL [E|FLC | =541 10-9
RSTR _!T|TMT | JANES, SMITH Send old JANES to SMITH

| ‘ Compute new value for JANES
; : with proper expression
CONV]I | XTP | JANES, TEST
CONV!2 | MPY | TEST, SCALE, TEST
CONVI3 | SUB | JANES, SMITH Differential in PAC |
C¢‘NV:4 TAB Absolute value of differential
CONVI5| TRC | RSTRT,, TEST To RSTRT if not converged

Set index register operations

The instruction for this operation is written with the mnemonic SRi (Set
Register) and two positions in the variable field. The third character in
the mnemonic symbol is written 1, 2 or 3, thus specifying the number of the
index register to be set. It is set to the number of plus or minus word lengths
in the first position.

The limit tally of that register is set to the number of word lengths written
in the second position. If the second position is blank, the limit tally will
automatically be set to zero. The limit tally is always a positive quantity and
when converted (by multiplying by data word length, which is 2 plus the
mantissa length) must be less than or equal to the memory capacity of the
705 minus 10,000.

Non-test transfer operations

The instructions for these operations are written with the mnemonic TNi

31

(Transfer No test) and two positions in the variable field. The third
character in the mnemonic symbol is written 1, 2 or 3, thus specifying the
index register to be operated upon. The first position contains the address
of the instruction to which unconditional transfer is made after augmenting
the contents of the index register with the number of word lengths written
in the second position. This transfer address will, in many cases, merely be
the next instruction. The increment for the index register may be either plus
or minus; the minus sign is written before the number and no sign is written

for plus numbers.

Test transfer operations

The instructions for these operations are written with the mnemonic TXi
(Transfer testing indeX) and two positions in the variable field. The third
character in the mnemonic symbol is written 1, 2 or 3, thus specifying the
index register to be operated upon. This operation functions in the same
manner as TNi except that the transfer (to the instruction whose address is
specified in the first position) is nullified if the contents of the index register,
as now incremented, are equal to or greater than the limit tally previously
specified. If this is so, the program does not transfer but rather proceeds to

the next instruction in sequence.

Repeat operations

The instructions for these operations are written with the mnemonic RPT
(RePeaT) or RWR (Repeat With Reset) and four positions in the variable
field. RWR is equivalent to RPT except that PAC1 (the primary pseudo-
accumulator) is reset to zero. A RPT signifies that the next instruction in
sequence is to be repeated (i.e. performed) the number of times specified
in the first position of the RPT. This instruction is to be performed as
written the first time, but for each repetition the numbers or addresses in the
first, second and third positions of that next instruction are to be additionally
augmented by the numbers respectively in the second, third and fourth
positions of the RPT. If the next instruction does not have a third address,
it is not necessary to specify a fourth position for RPT.

RPT and RWR apply only to the next instruction, not to any sequence

32

of instructions. Their purpose is to both minimize the number of instructions
written by the programmer and reduce operating time on repetitive instruc-
tions. This is accomplished by letting the executive routine know in advance
that the next instruction is repetitive so that interpretation and command
fabrication is performed only once.

Indexing by RPT is secondary and subordinate to indexing by the
contents of index registers and the simultaneous use of both is possible. All
four positions of the variable field may be written as 1 or 2 digit numbers
and all may be signed both plus and minus. The first position, however, is
normally plus, for when it is signed minus it indicates indefinite repeat and
as such must be used with caution. Indefinite RPT is designed to be used
with the TRC, TRE and TSC operations. When an exit is made for any of
these, the repeat tally is automatically reset to zero so as not to influence the
next instruction in sequence. A leading asterisk in any of the second through
fourth positions indicates that incrementation will be by that integer number
rather than by that number of word lengths. This is mainly used for indexing
the card column on FLO and the decimal position in the type wheels for FXP

All indexable instructions and only indexable instructions are repeatable.
Each of these interrogates the number in the first position (serving as a count)
before storing the result. If this is non-zero, the count is reduced by 1 and
the operation is automatically repeated with further indexing by the RPT
increments. If is it zero, it signifies either that the instruction was not intended
to be repeated or that it has been performed for the last time. In either case,
the program proceeds to the next instruction in sequence. For the MAD,
MMA, PMA and MPA instructions, a special condition exists under RPT
control. If the address to which the result is sent is not indexed by the RPT,
the result is stored intermediately in PACLI only, and not sent to the result
storage until the repeat tally is zero.

Advantage may be taken of the fact that RPT and RWR do not alter the
contents of PACI. The following example illustrates the calculation of

(é)n n being an integer, which result is then available in PACI.
B/

33

LOCATION OPECILADTEION VARIABLE FIELD COMMENTS
6-]-IO 11- 13 14 - -80
IEMP_| |REG

L LENT

1 DIV | LOCA, LOCB, TEMP
]‘ RPT (n=1)

| | MPY | TEMP

Switching operation

The instruction for this operation is written with the mnemonic ATR
(Alternating TRansfer) and two positions in the variable field, each of which
is tagged. In operation, an unconditional transfer is made to the address in
the first position each time the instruction is executed, up to the number of
times designated by the tag for that position. After this limit is reached,
succeeding executions of this instruction cause unconditional transfer to the
address in the second position, up to the number of times designated by its
tag. The instruction then reverts to the original condition for further alter-
nation as required. Execution is dynamic and it is impossible to return to
the initial condition without performing the entire cycle; thus a conditional
transfer exit from the cycle destroys the utility of the ATR unless the program
is read in again to restore the initial conditions.

Tags for both positions are unsigned positive numbers, from 1 to 400.
A zero is an illegal tag for which pre-edit will substitute a 1. For purposes of
counting only, this operation is generally more efficient than using index
registers with their transfer instructions.

The first example shows the preferable, but not the only, method for
executing n times the routine commencing with the operation in the address
“START”. The second example illustrates a method for simulating the
general extended case when the desired tags for both addresses exceed the
limit 400 and are not prime.

34

LOCATION

VARIABLE FIELD COMMENTS

-80

6- -10 14-
STAR |T| !
' i
’ '
! 1
| | ATR | START, (n-=1), NXTCM, 1
NXTC M
|
!
T
STAR IT FIRST, a, SECOND, ¢ | SIMULATES
FIRS (T
| ATR FIRST, ab, SECND, cd
! FIRST, (b=1), START, 1 ¢
1
SECN D WHERE:
! ab> 400, NOT PRIME
! SECND, (d-1), START, 1, cd> 400, NOT PRIME

Generating print instructions

As programmers become more experienced in using the PRINT system, the
translation charts on pages 51 and 52 will become increasingly useful. PRINT
instructions, due to their variable length and specialized format for maximum
operating speeds, may not be modified directly except by indexing. Very often
specific coding for a problem will depend upon parameter values. An
excellent example of this is the martix inversion kernel in Appendix II.
Rather than recode the problem each time for a different order of matrix
and a different number of column vectors, it would be advantageous to have
705 instructions preceding the general coding which would generate the
necessary variable portions of the PRINT instructions, given only the values
of n and b. To do this, the structure of the translated PRINT instructions
must be known.

As an example, consider the tape instructions RTi and WTi, which are
specifically designed to operate with PRINT data words in fixed lengths. The
coding kernel below shows how to make use of these same instructions to

35

Theoretical PRINT data word?

write and read irregular blocks of memory on tape, taking advantage of the

error-correction routines contained in these prINT instructions. The record

as formed is illustrated below:

/ B+ 1 posiﬁonl

x|x|x]x|x|[x|[x|x|P|P x|x|x[x|[x]x|[x|x|P|P] i
--d
s 0 o /] =
s Z s
O v
24
LOCATION OPERATION VARIABLE FIELD COMMENTS
CODE
6- .10 n1- 13| 14. .80
JONE;S| BLK | 3
i
SMIT !H BLK 5
BROW N| ADC | JONES - 2 a-9 portion
BLAC }K ADC | SMITH + 1,9 B+ 1 portion
|| LoD | BROWN, 4
| | UNL | PUTT + 12,4
| | UNL | TAKE + 12,4
| | LoD | BLACK, 4
[TUNL] PUTT + 16, 4
| | ENT
PUTT | WT8 0000 , 0000 Zeros are dummy addresses, later replaced
| »
| .
TAKE ! RTS8 0000 Zeros are dummy addresses, later replaced

36

Fixed symbolic locations

Actual location for the fixed symbolic data words defined on page 4 are:

Address of right-hand digit

Mantissa: 8-digit 10-digit 12-digit
PACI, 0254 0256 0258
PAC2 0244 0244 0244
ARGIo o 2439 2441 2443
ARG2 o 2449 2453 2457
LARI o 00 2044 2044 2044
LAR2 2019 2019 2019

In addition, all line, heading and card image positions are considered fixed

symbolic locations if addressed as:

TWxxx TW stands for type wheel, xxx for 001 to 120
HDxxx HD stands for heading, xxx for 001 to 120
COLxx COL stands for column, xx for 01 t6 80

Locations of these images are:

LINE 3265-3385 Address=TW+3265

£ 3386

HDG 3387-3507 Address=HD--3387
* 3508

CARD 38509-3588 Address=C@L-+3508
¥ 3589

The position referenced in the coding is considered as:

1. BADD for prINT data words as called for in PRINT instructions.

+ *
xxX. . . .xxx PP Pre-edit must make conversions of BADD
as required for the several types of PRINT instructions.

9. The addressed character for 705 commands.

Examples: UNL CQL06=UNL (3271)
ST TWO086+4, 15

Image addresses must contain all five characters. In the above examples,
COL6 or TW86 would not be allowable.

37

Input—output operations

Printing operations

Much empbhasis has been placed, within the PRINT system, upon ease of
entering data and recording results. Both on-line and off-line operations are
equally feasible. There are several operations especially designed for sim-
plified control of printed output.

FXP (FiX for Printing) and FPR (Fix for Printing Rounded) are index-
able operations which will convert the floating point number in a specified
address to a fixed decimal condition and store it in the specified position in
the line image in memory just as it should be printed.

The variable field of these instructions consists of the address of the
number to be converted, index tag (if any), a 1 to 3 digit type wheel position
for the decimal point, a 1 or 2 digit maximum number of expected whole
numbers and a W, the number of decimal positions and a D, and a 1 or 2
digit power of 10 by which the number is to be scaled. The last position
should be left blank if there is no scaling. (The heading should note this
scaling if it exists). Typical commands and results are:

+
FXP JONES, 28, 2W, 10D, —2. . . . 123456787§03 bl. 2345678780b
— +
FPR G116, 13,9,4W,2D 438692617804 4386.93—
— 4
FPR G116, 3,4W,2D 438692617804 86.93— (ERROR)

In the first example, 2, 20, and 420 would have been acceptable as scale
factors. The error shown is due to calling for 4 whole numbers to the left
of type wheel 3. Similar errors can occur by exceeding type wheel 120. Only
the address in the first position is modifiable by index registers. Both the
address and the type wheel position are modifiable by RPT or RWR. An
example is shown where more than one number is converted to the same
specifications; this will occur quite often in matrix output. In the example,
(ROWOL) are fixed with the decimal point in type wheel image 8,
(ROWO01+1) with the decimal point in type wheel image 19, etc., thus using
only three instructions to convert the entire line and print it. OW and 0D
must be used to indicate absence of either whole numbers or decimals.

38

LOCATYION OPE:ROADT[ION VARIABLE FIELD COMMENTS
-0 11 -13] 14- -80
; RPT |8, 1,*11
| LExp_|R@WOI, 1,8, IW, 6D
|| WLS | PRINTER

There are many combinatorial instructions for output control, as illustrated.
All are non-indexable. Either the printer or a tape unit may be specified
in the variable field. Either the full word description or the initials P or T
may be used. An asterisk as the preceding character signifies a fast skip
under carriage tape control.

Both on-line and off-line printers must be set to program control to use
the PrINT 1 system. Except for special skip instructions, there should be a
punch in only channel 1 of the carriage tape; a channel 12 punch is illegal
and will cause an error message. All carriage control should be built into the
program to eliminate most tape-changing.

Headings are put into the heading image with the HDG entries; for
multiple usage of heading in a single run, reserve extra positions for heading
components in memory with CON operations, and transmit these to the
heading image as required. When a line is written successfully, without echo
checks or other errors, the line image is erased to blanks. This allows a
flexible line format, as the programmer makes provision for positioning only
those numbers which he wishes to print, regardless of the make-up of the
previous line. Card and heading images are NOT erased after writing.

WLN | PRINTER Write a Line - No spacing

WLS | PRINTER Write a Line - Single spacing

WLD | TAPE 4 Write a Line ~ Double spacing

WHD | T 7 Write Heading - Double spacing

WHT | P Write Heading - Triple spacing

WL 2| TAPE7 Write a Line = Skip to channel 2 punch
WH 4| * TAPE 8 Write Heading - Fast skip to channel 4

These operations may have counting transfers added by using two more
positions in the variable field. The second position is a 1 or 2 digit number
specifying the number of times the write line or heading operation is to be

39

executed, up to a limit of 98. The third position contains the address of the
instruction to which control is to be transferred when writing is attempted
after the limit is reached. This transfer restores the initial condition of the
instruction so that the same process may be repeated. The following example
shows the control operations for writing 20 pages, each with a heading and

50 lines of answers, grouped in 5 groups of 10.

LOCATION OPECROADTEION VARIABLE FIELD COMMENTS
6. a0l as) ra. 80
HEAD | | WHT| T6, 20, PAGES PAGES. LINES and LASTL are used
C¢MP}U i R as convenient mnemonic names for

| WLS | T6, 9, LINES the associated instructions. The first
i | TRU | compu line therefore reads:
LINE |S| WLD| Té, 4, LASTL
| } TRU | COMPU "Write a Heading, Triple space,
LAST IL| WLI | T6 on Tape 6 - write 20 PAGES. "
| | ™u | HEAD
PAGE !S (continues computation after 20 pages are written)

Tape data storage operations

WTi (Write Tape) and RTi (Read Tape) are indexable operations
provided for storage and retrieval of data words on tape, which is essentially
a function of increasing memory capacity. The third character of the
mnemonic symbol is the dial setting of the tape unit addressed. WTi is
written with two positions in the variable field, each of which may have an
index register tag. These positions contain the first and last addresses of a
consecutive series of words in memory which are to now constitute a record
on tape. RTi is written with one position in the variable field, which is the
starting address in memory for reading one record from tape. As many words
will be replaced in memory as the record itself contains, so the programmer
is cautioned to know the pattern of his tape operations very thoroughly, to
avoid destruction of wanted data. Discretion should also be maintained in
using these instructions with the 4 tape units normally associated with
pre-edit and library.

It is possible to add other positions in the variable field of WTi and RTi.

40

The third position may be a transfer address or the two letters TM. The
fourth position must be TM, and exist only if there is an address in the third
position. The transfer address of WTi is that of a sequence of instructions
defining procedure in case the physical end of tape is reached before com-
pleting the write instruction. TM puts a tape mark as the next record after
completion of writing. The transfer address of RTi is that of a sequence
of instructions defining procedure in case where the record consists of a tape
mark written by a WTi.

LOCATION OPEc':)ADTEION VARIABLE FIELD COMMENTS
-10] 11 -13] 14. -80
Ill WT6_| BOOI1, BO20
L | WT6 | B001, 1, BO20, 12, PATCH
L | WI5 | G136, 1, G136, 12, TM
]' RT5 | RAND _

__ | | RT? FIRST, TROUT

;I BS8 | 20 (backspace tape 8 by 20 records)
: RWS (rewind tape 8) '
| | TM8 (write a tape mark on tape 8)

BSi (BackSpace tape) and RWi (ReWind tape) are non-indexable
operations for positioning records to be read or written. In the variable field
of BSi is written the number of records to be backspaced. This is a 1 to 3
digit number; the programmer may not specify more records than exist on
the tape from that point back. RWi has no information in the variable field,
nor does 'TMi, which is a separate instruction for writing a tape mark
unconnected with other operations.

Card operations

‘The card image in memory is used for both reading and punching. Special
facilities are provided for reading both floating point and fixed point data,
but punching is restricted to floating point form unless special handling is
made in 705 language. This is based on the assumption that actual punched
cards will be produced for local re-loading only, in which case there is no

41

purpose in refloating data which may be had already in floating form.
Suggested floating point loader cards are as follow:

8 digit mantissa 8 words per card addressed at 10(10)80
10 digit mantissa 6 words per card addressed at 20(12)80
12 digit mantissa 5 words per card addressed at 24(14)80

The card for the 8 digit mantissa may be reduced at option to 7 words, thus
allowing the first 8 columns in any system to be indicative information. For
fixed data, there is no specified format and commands are so designed that it
is not necessary. Typical movement of data and production of a punched card

might be:
LOCATION OPECROADTEION VARIABLE FIELD COMMENTS
10} 11 .13] 14. -80
| | reT_| 7,1, %10
| TmT | AG01, cpL
| wep| T4

WCD (Write CarD) and RCD (Read CarD) are operations for reading and
writing 80 character records. Reading may be from either the card reader
or a numbered tape unit, and this is written in the variable field. Writing
is onto either the punch or a numbered tape unit, and this is specified
in the variable field. The use of tape for these operations is designed
for peripheral equipment, although it is another method of temporary data
storage in fixed decimal format. The unit in the variable field may be written
with the full name or the initials T, P or R as required. The transinission
to or from the card image in memory is implicit in all of these instructions.
The second position of RCD is a transfer address for an end-of-file condition.

42

LOCATION OPE:ILADYEION VAR!ABLE.FIELD COMMENTS
| | wep | TAPE 8
! | wep| PUNCH
| wep| P
| | reD | T6
| | RCD | READER, TRADD

FLO (FLOat) is an operation for converting a fixed point number of any
specified length to floating point form, thus making it suitable as an operand
in the PRINT system. It is written with these four positions in the variable field:

L. The symbolic address of the units position of the number to be converted.
This will most often be COLxx. A sign for this number must exist over
the units position for negative numbers only.

2. The number of digits comprising the number. Must be <2 mantissa lengths.

3. The direction (L or R) for shifting the decimal point to put it in the true
position and the number of places to shift, considering the number to be
originally comprised of whole numbers. (See examples). For no shift, either
L0 or RO must be coded.

4. The symbolic location where the number is to be stored after conversion,

with an index register tag if required.

Only the address in the fourth position is indexable by the contents of index
registers, but both it and the address in the first position may be indexed by
a RPT instruction. The first position address will most commonly be COLxx,
and the RPT increment will most commonly be asterisked to indicate num-
ber of character positions rather than word lengths. The indications in the
comments field of the examples show the true decimalization of the numbers.
The third example is a program for reading in 200 pieces of 4 digit data for
processing, condensed for loading purposes on 10 cards. When converted to
floating point form, the data words occupy PRINT memory addresses A001

to A200 inclusive.

43

SERIAL LOCATION OP%';AJEION VARIABLE FI1ELD COMMENTS
1- 6 -10] 11- 13} 14- -80
I T ReT | 4,1,
" | FL® | FXWRD, 6,R2, INPUT, 3 XXXXXX00.,
I IRPT | 6,%5,1
i FLO | coL48,5,L2, TAX4 XXX . XX
|
01010 |A200! | REG | AOOI
01020 | | sR1 | 0,200
01030 [RDATIA| RCD | READER
01040 LI RPT | 20, %4,
01050 | FL§ | C@LO04,4,13,A001, 1 X. XXX
01060 | [TX1 | RDATA, 0

Pre-edit and system entry

If a system tape does not exist by virtue of previous usage of the PRINT 1
system, operations are commenced by placing the PRINT 1 program deck in the
card reader, followed by symbolic cards for the program to be pre-edited.
The system is then initiated from the console by:

1. Clear memory Address selector Typewriter hey
2. Place in manual instruct status

3. Select the card reader. 0100 2

4. Read into lowest memory position 0000

5. Depress the start key

After loading these cards, the PRINT 1 system will be on tape 0200, in 9 sections:

1. System control 1 6. Last pass of pre-edit

2. Memory print (13 records) 7. System control 2

3. Tape print 8. PRINT I executive routine
4. First pass of pre-edit 9. Non-standard library

5. Intermediate pass of pre-edit

44

If a system tape does exist, it is loaded on tape 0200, and the system initiated

from the console by:

1. Clear bmemory Address selector Typewriter key
2. Place in manual instruct status

3. Select the system tape unit 0200 2

4. Rewind the system tape 0002 3

5, Turnoff IOF 0000 3

6. Read into lowest memory position " Y

7. Depress the start key

Programs may be pre-edited from card, tape or combined card and tape input.
Tape input will be on 0202 if Alteration Switch 0915 is OFF, on 0203 if it is
ON. The combined card and tape input feature exists for purposes of repair-
ing programs. Steps may be inserted or deleted by change cards. A complete
reorganization of the program within memory takes place every time this
is done.

Pre-editing starts with system control 1 and proceeds to the first pass.
Card and tape input are checked for sequence and merged on serial number
(col. 1-5 of the card). When the serial of a card matches that of a card image
on tape, the card record replaces that tape record unless the card carries the
mnemonic operation code DEL (DELete). In this case, that record is deleted
and so are all subsequent records up to and including the record whose
serial is punched in the variable field of the DEL card. Tape records having
DEL for operation and DEL cards without matching tape records are both
deleted. Non-DEL cards whose serials do not match with any card images
on tape are collated with them.

The output of the first pass is on 0202 or 0203. Records contain the actual
locations of the instructions. Other conversion is deferred until the last pass.
In the event that the assignment table overflows available memory, the over-
flow blocks will be on 0201. The intermediate pass is executed only when
3 or more overflow blocks occur; this pass finds actual addresses for the
symbolic addresses referring to the overflow blocks. When there are 3 or
less blocks of the assignment table yet to be searched, the last pass is called
into memory for operation. This last pass completes conversion of the
mnemonic intructions, writing:

A program tape on 0201, consisting of actual 705 instructions and converted

pseudo-instructions. If Alteration Switch 0913 is ON, standard 705 load cards
will be punched for reloading by card rather than the 0201 tape. This is

45

suitable for short programs, or where a permanent record of the program is
desired for storage in a more flexible medium. This should be done only

when the program is known to be correct and working.

A master symbolic tape on 0203 (or 0202 for referrals > 1000) which contains
the corrected and updated program in symbolic form, just as the original
punched cards were. This is suitable as input for re-editing and further cor-
rection. The selection of either 0203 or 0202 as the proper input tape for
re-editing is automatic. A concluding typewriter message will indicate the

correct location of tapes.

A listing tape on 0202 (or 0203 for referrals > 1000) which is the permanent
record of coding, pre-editing and assembly of the program. If Alteration
Switch 0914 is ON, the listing will be written on the line printer during the
pre-edit process, in which case this tape need not be saved unless more copies
are desired. If the switch is OFF, the availability of an auxiliary printer is
normally assumed. For both printing methods, time will be lost if the com-
ments exceed 25 characters, since an extra line will be printed just to accom-
modate the overflow. Comment characters above 50 will not be printed on

this listing.

If the program is to be executed without pre-editing, Alteration Switches
0911 and 0912 are both OFF, thus diverting to system control 2. Alteration
Switch 0913 is then interrogated. If it is ON, the edited program will be
read from punched cards; if it is OFF, the program will be read from tape
0201. The combination of both card and tape input is not possible here.
System control 2 reads the edited program and the executive routine into
memory, activating a typewriter message calling for setting Alteration Switches
for the program to be executed and stopping on HLT 1111. Depressing the
start key will cause execution of the program starting at the first instruction,
which is either a 705 instruction or the compiled ENTer instruction in
pRINT. If the 0902 indicator is turned on, loading is in error. Press the
start key to reload from tape. Cards must be reloaded; reset, start and read
again. Pre-edit will blank unused memory before reading in the program.

Memory print and tape print routines are incorporated in the system tape.
They are called into use by setting Alteration Switch 0916 ON and depressing
the reset and start keys. A typewriter message will give instructions for next
setting of 0916 (OFF to bypass memory print). The tape to be printed is
selected by setting Alteration Switches 0911 thru 0914 in a binary represen-

tation of the units position of the tape unit desired, as:

46

Alteration switch Value if ON Value if OFF

0911 8 0
0912 4 0
0913 2 0
0914 1 0

For example, if 0912 and 0914 were the only switches ON, it would signify
that tape 0205 would be printed, as 4 4+ 1 = 5. Configurations which sum
more than 9 are in error. Printing of the tape selected continues until a tape
mark is sensed or operation is changed to manual. Tapes may be selected and
printed successively but in any order, by changing the Alteration Switch
configuration and depressing the start key each time. The return to system
control 1 is effected by turning 0916 OFF, reset and start.

Pre-edit conversion

Two types of addresses are recognized by pre-edit. The basic address of a
floating point data word is that of its highest (or right-hand) memory position.
Pre-edit allocates memory in (m + 2) modules, where m is the mantissa
length. FLC and REG are the two operations which cause memory to be
reserved this way.

The basic address of a PRINT pseudo-instruction, which is of variable
length, is that of its lowest (or left-hand) memory position. BADD = (the
basic address of the previous instruction) 4 (the length of the previous
instruction), since they are normally obeyed in order of ascending memory
position.

When either REG or FLC is encountered by pre-edit, a test is made to
see if the previous instruction was either REG or FLC. If not, (and a previous
ORG falls in this category), the location counter leaves a blank preceding
the entry to insure definition of a numeric field. If an initial origin is supplied
in the program it will take precedence over the standard origin supplied by
pre-edit, which follows immediately after the executive and loading routines.

The typewriter may operate during pre-edit to send error messages about
system restrictions which have been ignored in coding. Each message is iden-
tified with the serial and symbolic location of the erroneous instruction. Some
of these are for: '

RPT or RWR tally > 99.

47

10.

11.

Non-repeatable instruction following a RPT or RWR.

Actual address for 705 instructions TR and 00 TMT not ending in 4 or 9.
Infraction of rules for symbolic or actual location addresses.

Minus index limit for any register, or a converted limit > (memory—10,000).
More than 2 HDG cards.

Problem overflows memory.

Non-pPRINT or non-705 operation codes.

Attempting to increment non-indexable address (i.e. PAC1, PACZ2, etc.)

ATR tally greater than 400.

Non-indexable entry tagged (i.e. PACI, decimal location in FLO, etc.)

There may be instances when the programmer has a definite and legitimate
purpose in ignoring these restrictions. Error messages do not necessarily
indicate that revision must be made; they exist to warn the programmer
to be certain that this was his true intent.

When a floating sub-routine symbol is coded, the pre-edit knows that the
symbol has no assigned operation code number in the table of correspondence.
The operation code for all floating sub-routines is assigned to it (this code
comes from the last two digits of the address of the first instruction in the
FSR area). Pre-edit automatically compiles the 705 instructions necessary to
bring the proper sub-routine (if it exists on the library tape 0200) into the
floating position in PRINT during the course of computation. Such a linkage
is compiled only the first time that function is needed, or if another function
has superseded it before it was to be used again. The criterion for compiling
the linkage is thus change of requirement only. If only one non-standard sub-
routine is used for a particular problem, the net effect is as though it were
a permanent component of the executive routine in memory.

No floating sub-routines will be furnished with this manual. They are
primarily the responsibility of the user, although IBM will distribute any
routine contributed. The “tinkertoy” appendix in the supplement will show
various means of extending this feature so that the programmer may specify
the amount of memory he is willing to expend for floating sub-routines.
Replacement would then be set up only if the desired sub-routine exceeded

in size the amount of available specified memory left.

48

Summary —System operation

Tape Assignments 0200—System Tape 0202—Listing
0201—Actual Program 0203—Symbolic (updated)

Alteration Switches

Function Operation 0911 0912 0913 0914 0915 09161
INPUT. Card and tape 0202 ON ON OFF OFF
Card and tape 0203 ON ON ON OFF
Card ON OFF OFF
Tape 0202 OFF ON OFF OFF
Tape 0203 OFF ON ON OFF
OUTPUT . . . On-line printer listing® - — ON
On-line punched program?* - — ON
Memory and tape print® 8 4 2 1 ON-(ON)
Memory print only* ON-ON
"Tape print only® 8 4 2 1 ON-OFF
PROGRAM . . Start key®
Start key (As required for subject program)
PROGRAM . . Card-loaded program OFF OFF ON OFF
(Without Tape-loaded program OFF OFF OFF OFF

pre-edit)

1 Alteration Switch 0916 must be OFF if re-entry to system is by reset and start, except as noted -
under memory and tape print instructions.

zThese will be on tapes 0202 and 0201 respectively, regardless of settings.

3Reset-start. Start again after typed message. Memory print will occur first, then a tape print for
each start until 0916 is turned OFF. Select tape units by binary representation, in 0911 thru 0914,
of units digit of desired unit.

‘Reset-start. Start again after typed message. Turn 0916 OFF, reset and start to return to system
control 1.

sReset-start. Turn 0916 OFF after typed message. Select tape unit by Alteration Switch combina-
tion. Selected tapes will print for each start until reset.

sBrings executive routine and subject program into memory to operate. After typed message and
HLT 1111, set switches as required and depress start key.

49

Appendix I—Operation execution times

The execution times for certain operations are given here to indicate the
general speed range for the PRINT I system, in running time. It should be
noted that these times cannot reflect elapsed problem time, and that in general
they bear the burden of flexibility and convenience. As the system is still
in process, final times for other mantissa lengths than those shown here may
be expected to vary. The final manual will contain a complete list of guaran-
teed execution times for all operations not associated with input-output

equipment.

The times given here are for complete multi-address operation and include
all interpretation and miscellaneous times. All times are given, in milli-

seconds, for a 10 digit mantissa system, except as noted for 8 digit.

TRU .. .o .
TRZ, TNZ, TRP, TRM .
TRC L
ATR ..o
RPT, RWR

50

Non-zero operands Zero operands
Single 10 time Single 10 time
execution average execution average
4.9 4.2 3.1 24
7.1 6.3 4.0 3.2
18.6 17.5 3.1 2.0
8.6 7.4
8.8 7.6
16.4 (8 digit)
26.9 (8 digit)
20.1 (8 digit)
18.0 (8 digit)
25.7 (8 digit)
13.9
16.8
2.2 T™T 1.9
.8 TAB, TNA........ 2.1
.8 XTP 1.1
1.4 RPL............ 1.7
2.3 SRi 1.3
1.5 TXi, TNi. 1.0
1.3

Translation chart for non-indexable

(non-repeatable) operations

@ wloln]e |o —lalolstlo]loln]o
&
JHEHEHEHEEBEEREINEEEAE COMMENTS
¥
0 4 | This operation sacrificed for system control.
+
0o 9
+
1 4
) TRM | . ; a B-2 M] Tens position of -2 is signed + for TRP and TRZ,
I TNZ « t % xlx x % x[N signed - for TRM and TNZ
+
TRU 2 4
RPT 2 '5 n-i i i K n-1 is either ‘£ or o] for indefinite RPT,
. T 1. x[x x x x|x x x x|x x x x ${i,] and k follow the rules for SRi except =
3 4 actual number only when asterisked.
+
%—‘ 3 9 a ; Increment a = basic address (BADD) of the command to which transfer is
NT —x % ¥ x S1x x x x made. Increment follows the rules for SRi.
Tx§ 4 4 T
TN3 T 1]
™14’ (7]
RPL 5 X a-9/1]/]i B+2 B = command basic address. If RPL is indirect for LAR1 or LAR2, the
x % x %Xlx x x x| aposition is replaced by 2044 or 2013, respectively.
XTP 5 $ a= 1 + p-1 a and P are basic addresses of data words.
X x x x|x x x x
+ a i i tally | i and | are zoned in the 10s position for count
ATR 6 41 ;Eor; x| x x|x xﬁ; x{x x|0 0] upto 399, in ADM collating sequence.

WLi + LC+1 | tally unit 2 6 N s is the spacing control character. wu is
WHi 6 9 8f n§tsJ;6ecif‘?e x Ylo Blx o % 3 8 |7 |° |4 for tape, 5 for printer. UNIT is 20i or
; n 51T o T 400, with units pos. zoned - for triple

7 41; 3 0 0 O 0 0 A space, + for none, single or double. Line
- ;u - —% - A = count (LC+1) is g5 if not specified.
-l nc + 0 o R
Dreader] / I x % % x]1 0 0 Y 4
SR1 8 Z - limit set to set = f(first position), - limit = f(second position). Both are
—1x x x x|¥|x x x x unsigne: tr(ue (:;rl 40,(:‘0)0 complements) products of (number)
SR2 8 9 times the (word length).
+
SR3 9 4
LVE 9 ; N . a « <1 ¢ is first following 705 command location if not specified.

51

Translation chart for indexable

(repeatable) operations

(vl Bl B2l NVofiNjoo] o [=X Bag NIOITIODDIVINTIO]O
SRR HEHARH RN HRBEAE COMMENTS
olololo]lojo|o|o]o|lo|o]o]le|lo|lolofle]o
- H
82— 0 i| a-9/1/13 e By | B-9/1/13 | v -9/11)13}
_MpPY | 5| > X x x{x x x]x X x x|x x x x]|]H
MMy 10 Q
Div - H
mov_ ' 4 Q]
MAD 15 H
MMA Q
PMA - H
MPM 2 4 Q
SAC 2 9 1 X X x X \
SQR 3 4 x x 0 0
tGdb_ | . = 0
LGE 3 9 1
EXD - 0
EXE 4 4 1
ART 49 0
(FSR) |5 4 0
IMT | 5 5 Y 1 Y
\B_TNA 3 s I'S a + sign for T£B, a - sign for TNA
i_wepr] , = Y a-9/n1/3 x % [3] t=0 for (TM)(WCD + WTi), = for
i_RCDt i x % ¥ x L x__ X /x/x 0 0 Q§0 H RTi + RCD + (wcb ""WTi)
6 o B+1 y is the BADD of the next command
if not specified.
7 3 a address is xxxx for WTi and RTi,
3509 for RCD and WCD.
; A(word length) + 19/21 /23 B+1 is x&Sx for WTi, 3NYS for WCD.
7 / ;=0 for RCD+WCD, x for RTi+WTi.
-1z 37 :=0 for RCD+ +RTi i
TSC s 11X « x 0 3_9/“/‘3 v _9/”/]3 A B or RCD+WCD +RTi, x for WTi.
TRC . o x
TRE P R x| x x x x]x x x /x 1 M=L or M+R
- a g-9/n1izgl N I ittens FLO, a units, N, RorL n, §, £ index
FLO 9 4 X x X x 0 ’_‘ 0 x x x x|x %Xlx % or R| <80 N £ 2 mantissa Iengfhs
FXP 9 5| @ -_9/11/]3 R 0do| F 4 [TW+265 + Pty ID"'W-M‘H command is written:
FPR X X X X [+ x x|x x x|x x|x FXP a, aindex, TW, wW,dD, F

52

PRINT 1 8 DI1GTIT MANTI1SSA
1401091 1 10404/10434/1026910359109091093910974%
12679/10494/12854/1306413974/1294410784/1081910849/10289
11314/1132411379/113691133910534/105291052910529(10529
10529(10529(12574|1 1 1 11974119641 1124[(122464
1]
ooo7loooq|oo1o|0110011.[0017]0018.00A(12)2(10)= PAC2 PACI
™ Tegal zero i
pact Juoia2)i#[c[178]2 0/0°6% 00 0b 0 b 08082 o"H[a| STANDARD COMMAND POSITION
‘I+ 3 o P r—
§logxalc’booolooO030000k0011ﬂ“BT&U02839(BADD)00KH4MO¢BA10LED
+
100 v 0 2499026900309 9028980T/0{807TJ480TABB02S52{10324
[T, W e -
762918 0B8R 3[MO 44 9{70DKS5H 0464U0331(902Y5103297T0DNS5
“m- XTP
H 0&34802/4103200m01R]DO9999999919I9II0peU0516902Y5
= F CENL SR
Vo 511/902Y 9y 9 12564/862/80U0561|902Y5U0581[90222
TONFOluULl 9 20[9 130 U1924/90269U 91R20{00LS6NOLBS
- i
60306l60ovwaleovoarlossoleeBoiNoGoO9BoKYINOBVI|TOPUBBOX 8
60s8880oKZONOPY4TOPBX380X Beos9s580KZINOPEITOPZBBOX 8
60S5S99/70P A4l101 R, $| R limit§| R, 4| Rylimit}| R, +Ry}jooo0oo0}| R; %
— ¥ = SRY
Rg limit 3 R1+R3#o#39§§2+x3iooos R;+R,*RA|U0739/90729U0759907459
T sea
80 7TWB8UO71910879U0739/90719/80X48807V8UO0T2910874U0TS5H9
90719/80x28/807T8UO07T4970x68707xXx8/90744/9028940LG4LO93YI
TN, TR(TN, VKL
Koo 7als z3l6eo7/8607vel607S380Ps010964[8022360758{607Ws8
TN3 TX3
607 T3 80P TO0607T8/11004/80223/607U8607VB8607WB8607V380PVO
[EnT
607X8/602069LO&34KOG6440@PVEKOS64/1063411064703T4807X3
¥ = T == = = -
60314300A8303058000380001Bootleoo10801343010430114
FLo
potosBood2lHo202{10329/U'1156[902Y5HOKWO[BOKTI 7/71JEAPOKHLI
BOO 8 71954/61229/Xx1294[71KC4M1IT&POKY2N1209(6GOKTIY
11214/80KS1/FOKE4BO2257T12V4F1KTD 00 70252 T1IRVA4[60KV2
+ -
v 90K4500LOG6NOLIS60306l61/VSo60SRS51113&4POKH211170D

52a

PRINT 1 8 bIreit1rv MANTISSA

1300 |[AAABBBODDH|T1450]{11369T1540{6166011364T1460112359T0o01
1350 |6 1460/61540[(61450/61440{11384T1440Ul1421/90222U1721]9022
1400 |ultez6lso02vs(soLgolursezdles s 1927H1J0HAL1809G1RE
1450 |11s541fu192811474/91R30/90Kk45(N1544/419KO0k1534Vvigs2aTcooo
1500 [X1519/CO00A{11524POKH2|(GLRB9[11544/H1927/81RBB[1166S9N1T7T8
1550 A19L0K1669P1RC940L33K177971¢B971¢E«M1¢A430530F192
1600 |H1937{11624U1920/91R30[B0CO0O0SY|DO G1927/N16796GO0KCO(X176
1650 |co C0001/61RCOX1614Ms0ESUO24990269/11704FO0252/FOKE
1700 JlaovL Se|N1pPB4je0sSFBlLLT 44U 90K 45(N3KB&S61XB4al61US961UK
1750 |6 03061 1419D0001|POKH2/11649/M1PISUO0245/91R30(11704G1LRC
1800 |1 166 9|N4039/6419L0K167T79F1927C0003/F1954HO0G83W1l954F195
1850 |Q@1954(Vv1927/Co0003/60272/V1937E0009V1I954/x1894E0O004X191
1900 |E00O01{GOKH2/P1RB911660D TEMPORARY STORAGE

1950 | TEMP. STORAGE |80 N2 5/11979/80LUO[7T20X0/U214590L00/80595/72%4
2000 |[U2016[(9022z6lul9osely H1945(60352[71935{ulez2s3e H19 32
2050 |6o3s2(71922H1930/P1943| 2139{824eluzsesolsirR23aoLb6|NIKE
2100 |M2unr4l60306/62tMmalaoTABN2ECco62FA912014U2430[91R23{1222%4
2150 |4 1TMolL217981TM9[72244/12039/60s588/72F19/80588/72504/B0020O
2200 |8 7025460306/1322491R3680KGB8/7T0L Selrossa|i’2286(502Y
2250 |HoBo9e6|72B94lcoBO98[43812]Kao0r9|72D04luls20ls ~ U3 90KS
2300 |u2392/9046x0/60SR6/HOKI3G61RBYM2LC962LI4/GOKIBIGOMG2{T2L
2350 |M2LG9|TokzZol6oKkzole23RS5@Q0202POLOO(M4OHS9HLISY 27[BO 0

2400 |5 3 QoLb6/N3KB460306/s25Y9|12250D ARGI1 ' ARG2
2450m_lif;"i‘fé‘“’l'"is»zxsx1/.204?1{0283»42499124943 702
2500 |8 022z2[725Vv4/72589/816V09625s9|T M2544/12554/807W3/6002
2550 |u 902v5802/110324[81Kka3|To289/8oLtof72b6V4l72PYSU2T

52b

PRINT 1 8 DIGIT MANTTISSA

505 22 T20/5T2PUSM262962PUS5T2654M26409620/580MLB8 72 °
2020 |30000/80S59972W8472W89T2Xx19|8 v 90PW&BOOO
oL b6t 275097 N2PD962X3460SR9I60306(126864/3000

13226/62804/20902{$2779/14139x2789141492020 |3000412704
3oo0oolN20As1426930001[10434[80KZ6NONYATI92761RS7/1058%4
T oKi1oleoxialL287412904BO0bF6/80B26U0291/908BY5T0BZOSO0KFEL
BOKAO[60KIBU2921(903T1U 90BH310434 5b1mksﬁ(°’ﬁ"€”§m9osas
u299990kz3H1AELB|20 3509|12989106646043420902(¢300
141192030033505x2rxa141291656‘591353“941%«17E’§‘%~15T69
1 % 128 209[80K10/602R2(U33081[903T1U s0KI12K3109(81J808
7 OK 1290BH3|LO&34HO0295/73159(732669U325490KZ9H1ALBEHOBIE
73A64[20 R 3 13234U338790Lt0U3265/90LF0M3B14[BOO02E
521 L5/x3204M3224R265880256/1032420902/¢3249/14099/20
3000 |X3AWA4[141009

LINE IMAGE

|
HEADING IMAGE
LI

CARD IMAGE Eﬁ“lsaav 5
F1930cooo1F19z9o19z7No514M4049H1R10N36x4n3¢v1»1 6
619K981J/1/80009/13679D0001|F19397T1RTOCO0O0S5/F1953C00
BOLHOU3723|910CT|63PBA&|439 k3719u3s74s8lo3PB3U194093R
G1943Vv1953/co002(61946/F3898/01939C0001/Ww3898T30R8639
F1945H1583/v1945/CcC0001|/F3906/V3906/C0001/6193980006DO0O
Wis4s|TarR$elP3910/E00COL(x3884/10584/7192761RS710580D

52¢

PRINT I 8 DIeGIT MANTTISSA

3900 |0 00 o‘3{3miﬂa‘4_A 06 3}0 2 3.807HO7 2.8118/17 1017 Djz 9 1.0.2
3950 [6[s9 on3zoo[ss oFso1foFrUTsu[sokvslsoBaslHoszsjzozo |3

4000 |PoBY2NODWS[13999[270200/30002{Y0000{10004|6802AO0[12464800A
4050 |14 164(801E2[(126464/809FO0/1246480203/12464/803HO1246480S2
4100 |12464/801€1|1246481201/14179(8120214179(80102(12464|812
4150 |1 246 4(81802[Ub241{92V66[144204/U4241(92281/16204/Ub2b41[96W
4200 |724€7lu2450[90T31[T2451/T2452{20500/R2450{J00GO01[1 8040
4250 |1 4164/80602[141096/821B3/12464/20100[64314J0100A43342020
4300 {3000 4|1 4339(J0101/56989B002%2(B0004/20100|Y4390(142759844%
4350 [N 6 4% 97463 x4/Uus3T76/943RS9Bo0%o0O0|U 94UO05/143309

4400

4450 & 0 GtolB006/0@192 7 Mbz4s9F1927C000
4500 |v 484 5/P4ss58[74534/7453983169|64E34[6 H Viesz27E0O00
4550 |x 4494/B00O0B/F1927F1I1T9Q2858{v19s27E00065/64740Vis27E0ooO
4600 |6 4747vis27E000764755VvV1o27E0C007P1939F1939H1929D000O
4650 |6 193 9]E00O01|80KZ6/N4dYA4/lVvaesesE0O0O09BOOLLNODS574/800C2{Xx472
4700 |E0O0O03|[F1927/F1RB910584DO00CO0OLPOLHBILLESYS |1 432P217098J
4750 [4 293 9 M[5 E|7 4036269 313 F|5 5630250A[26/43136376 D]Z B3 4242268
4800 |1 H]z 5527250E1 E]l 760912511 c}l 1394335 e]l Blo7918124 F]z Ao 4
4850 |9 268 E|4 74 F'z 302585009¢| [Wi927Do0002(80K26/NsRESVSS32x52
4900 [E0008/H1159P5CZ9MsAVIGaHUSM4TITOS15289P0oBW2|(7T41US9|Coo0
4950 |Boo1o|lF1929Booo08|T1IRsS 961 RsS1[61Rs9HLIIS143825/kal159M50
5000 |6 5408(B0008[F1929H5DVO961Is1[81RS2(750U4(75J24/@539 (V54
5050 |G 1929(B00O0CGE|VS5424/C000780008/FL1929/C000T7(Vés8s5/6G5463[751
5100 |6 033 8[7511 4/ G1o29F1929/vsasolcooor/es4ss/viszsicao
5150 |G 5386V1929C00086/G5447V1929C0008G5408/F1930H1I3O0 |V

52d

5200
5250
5300
5350
5400
5450
5500
5550
5600
5650
5700
5750

5850
5900
5950
6000
6050
6100
6150
6200
6250
6300
6350
6400
6450

PRINT I 8 DIGIT MANTISSA
V"7 3 0]c 00 02|BO0OOLO|HSCZG6/Xx525461151F1159c0002F192710050854
P5C23D0001[15224E0007/Q5C23/61159/149009/Ul920/95M48|10580D
10E|0 87901F[11F[1434200A]12H2468600H|145!35065636|155J451
0756 17c‘5481214A‘193[6523251xlalealsoooooooIBS3AAABBBC
1000 oooqao1oaooo]zaoz585A4342944H’16568Ho99999991]10
0000 OOAIOJSBOBI H'1927/NO584M5489Q1927/F6908HL1S9BS9 40303
K5894/402A0|KS5B864M55E9B000S9755C¢ulcoo BOOOSBHOEZ3|[F1IUG®4
15724/755Fu4|Doo CO0006{B00O03/US5596/96246/80S2265V99ls
K5594/85Vv99/6323975W2098B0014es 719644/H1 934/Veoso08/Coo00a2
F1953756F9HS40G8[Co0O0 61953/F1953/Q1934|D0006|75619|Coo0
G6908/B0009DOO0OO0SBWL953[F1953/V1g5s53C000B8|/F69508HE020VeESs0Ss
C0005/66027/Ve908/C0006(G6037V1osscooo06(Glos4NOS5E8EHSDY 7T
X5 8 4 COO002|/F 6 908(F11S9T1I1sSTIM5HTU9(Q6 9 08S8|{F1927{L058U4{P0OoBY2
D000 1[{15804M5874/15524/B0O0/4ULS931(96024/15639M5904(1058¢4
H5DV7HG6O045/15814J027 01c10129275000|osa 04A,038909723Al
00 o G|065617871H|173 136]091510070A|373 24Alll7747926c
999 63'143996893;«]1956[333296M|09999999za|1570796c59oo
729| 8P z27760T0[H19209/66805K6719P1306{M&259/61300/761024
H1l 92 Mé6119Q@Ql1l927|00003iC0oO0 BOO11llv 6 87 7/E 0 00 8|/B0O0OO0OG9IF19 38
H6886{P1938M66224/G689S5M619S9HI1ISI38/P6835/B00O0GSI[Loe244H68S8SE
P1938/86PU4T68TO162544|/P6895/M623916199H193B8(V1I3oeBoOoLlo
F19309U6BB82|96650/H6H9B8/[Co0008|6688a44s Ke6279[Le627Tsuscila
96882(B001S986 71959/H1939M63 491 Is7[FLIs7la19309P1951
E0001/B000B8/F1939Vv1939EO0O00B8F1L1951HL1309Vv1os1E000S56G685$9
V1951/E0005/66868/vV1939E00O0S8F19309H687V1I9s1ilE0O0OG|GSEES 4
V1951/E0006/G5408F1L951/H1954V1951E0002F6908/H1957/viosas

52e

6500
6550
6600
6650
6700
6750
6800
6850

6900

PRINT 1 8 DIGIT MANTISSA
£ 000266908 N66B9H2BV2X6659F1159C0002H1IT1STM6EVOIF690SE
Q6908 F1927H1954/vio3sleoo02F6908H1957Vviosileooo02Pe90s8
N6704H2BV2X6674lco002/F1937F11T9 1664416914193 7/F1937
16639D0001PScz3(16524D0001/P5c23/16614/U1920{90K65|1656%
ui93solsokres/liees9|Mazs9Boooo|1e129 Ioooooooooﬂoothoé’[oﬂ
018066894A02H109F|03I |oao9665535|063]083[05[1059033441A08
3’063'07‘ l081933105l|09F|02H[09llloooooo003]103]003'91'253512
3369@|6A599151079easl15915494clsooooooo$lz5oooooo$|01r

WORK AREA To2s2/ue926/90226fu J[o1r30[662809/10584]

52f

Y-10
Y=-05

1039
1044
1049
1054
1059
1064
1069
1074
1079
1084
1089
1094
1099
1104
1109
1114
1119

324
329
334
339
344
349
354

624
629

634
639
644
649
654

659
664
669
674
679

684
689
694
699
T04

709
114

SET
LOD
TR

TRA
UNL
LOD
ADM
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
RAD
TR

ADM
RCV
T™T
RSU
TRP
UNL
TR

LOD
TRZ

LoD
TRZ
UNL
LoD
ADM

LoD
TRZ
UNL
LoD
ADM

LoD
TRZ
UNL
LOD
ADM

UNL
TR

0004 01
Y=-05 01
1039

1044

0334 01
0773 01
0334 01
0018 15
0005 14
0003 12
0001 10
0001 09

ENTER ROUTINE

001“08 *— 0/2/4

0004 07
0004 06
0004 05
0004 04
0002 03
0282 02
0329

0334 01
0283

BADD 15
0284 11
0624 11
0354 11
ooYy

0291 12
0709 12

0289 09
0659 09
0648 09
0708 o4
0288 04

0290 09
0684 09
0673 09
o078 04
0295 04

0291 09
0709 09
0698 09
0708 04
0299 04

0714 11
olYYy

52g

THESE 3 COMMANDS

COMPILED BY THE

PRE~EDIT ROUTINE

BADD=6 ZONED FOR

ASU 01

BADD ZONED FOR ASU 15

DIFFERENT FOR 20 DIGITS

TO FIRST COMMAND

FETCH AND SUB~ROUTINE SWITCH

INDEXING

Yy
YYy

XXX

LY
LwuwgyoooonN AN O

12414416
6

NwPrOOO

NEW BADD EQUAL OLD PLUS LENGTH 6
MOVE VARIABLE LENGTH

COMMAND TO STDe
40 CODES 04 BY 5
ADDRe IS OPTIONALL

ACTUAL PLUS OP» NON=INDEXABLE

YY VARIES 04 TO 99

POSITION

TO 99
Y 0634

TEST FOR ANY INDEXING

ALPHA INDICATOR

CONTENTS OF INDEX
INDEX FUNCTION OF
BETA INDICATOR
CONTENTS OF INDEX
INDEX FUNCTION OF
GAMMA INDICATOR

CONTENTS OF INDEX
INDEX FUNCTION OF

YY VARIES 04 TO 99

0 10 7
REGISTER

ALPHA

REGISTER
BETA

REGISTER
GAMMA

2

20
4
2
4
2

[NV

[N 3 CcCOWNhNW ocoowNhw cocwhw

404
409
414

419
424

SGN
LOD
TRP

UNL
RAD

CONDITIONAL TRANSFER COMMANDS TRZsTNZsTRPsTRM

0291 00
0293 14
0449 00

0425 14
—00 —~BETA=2

429 M/N] 0464 00

434
439
444

449
454
459

464
469

494
449
504
509
514
519
524

529

539
544
549
554

559
564
569

574
579
584
589

594
599

604
609
614
619

RCV
T™MT
TR

UNL
RAD

UNCONDITIONAL TRANSFER

0331
0285 01
0329

0455 14
~—00 —~BETA-2

™M/N 0434 00

LOD
TR

RCV
T™MT
RCV
T™MT
RCV
T™T
TR

LOD
RCV
T™MT
RCV
T™MT
UNL

RCV
T™T
TR

RCV
TMT
RCV
TM™MT

RSV
TRZ

ADM
ADM
ADM
TR

0214
0324

01l

EXTRACT POWER COMMAND

XXXXX

0011

STRIP INDICATOR SIGN
BETA ADDRESS AND OP CODE
TRANSFER TO TRP/TRZ TEST

INSERT OP CODE AND BETA-2

MANTISSA OF BETA

TO NEXT COMMAND IF PLUS OR 0
COMMAND TRU

FIRST STEP OF TRUe REPLACE

BADD BY ALPHA
NEXT COMMANDs BYPASS LENGTH

INSERT OP CODE AND BETA=2
MANTISSA OF BETA
TO ALPHA IF PLUS OR O

LENGTH FOR TRZsTNZ+TRPsTRM
TO NEXT COMMAND IN SEQUENCE

XTP

SET UP TMT FOR
POWER OF ALPHA
SET UP RCV FOR
POWER OF ALPHA
DUPLICATE POWER OF
ALPHA IN BETA
TO NEXT COMMAND VIA RPL

GENERAL SUB-ROUTINE HOUSEKEEPING

0218 01 0014
0561

0285 01

0581
0292

0569

01l
11

1920
~—068 —~ALPHA-9/11/13
30YY

1924
0269 00

~— ~BETA-9/11/13
1920 o8
0306 XX
0324

11
11

0306
0564
0584
0559

02
05
06

52h

29 - 64

LENGTH FOR SUB-ROUT. COMMANDS

SET UP TMT TO FETCH
CONTENTS OF ALPHA

SET UP RCV TO STORE
RESULT IN BETA

SET SECONDARY OP SWITCH

MOVE CONTENTS OF ALPHA TO
FIXED WORKING POSITION
TO SPECIFIC ROUTINE

INSERT ZERO
FOR RESULT

STORE RESULT
IN BETA

REPEAT TALLY
TO NEXT COMMAND IN SEQUENCE

DIMINISH RPT TALLY BY 1
AUGMENT ALPHA ADDRESS BY [
AUGMENT BETA ADDRESS B8Y J
TO REPEAT THIS COMMAND

NS

7
10912414
2

2
6
-4

7

10912414
2

6
2

NN N

SNV

2
12914416
4

2

3

2
12114916

LAV - O [V

784
789
794
799
804
809
8l4

819
824
829
834
839
844

849
854
859
864
869

874
879
884
889
894
899
904

909
914
919
924
929
934

939
944
949
954
959
964
969

974
979
984
989
994
999

1004
1009
1014
1019
1024
1029
1034

RCV
TMT
RCV
TMT
LOD
RCV
TR

RCv
TMT
LOD
LoD
RCV
TR

RCV
TMT
LOD
LOD
RCV

UNL
UNL
TMT
TMT
cMpP
TRE
TRH

LOD
ADM
ADM
ADM
LOD
TR

LOD
ADM
ADM
ADM
LOD
ADM
TR

LOD
ADM
ADM
ADM
ADM
LOD

ADM
CMP
TRE
TRH
CMP
TRH
TR

0739
0729
0759
0749
0768
0719
0879

0739
0719
0748
0758
0729
0874

0759
0719
0728
0738
0749

0768
0778
0744
0289
0374
0939
0974

0293
0718
0758
0723
0720
0964

0293
0728
0768
0733
0730
0738
1004

0293
0748
0758
0768
0753
0750

0778
0289
0434
0464
0658
0464
0434

00

00
01

00
0l

00
0ol

04
o1
00
00
11

0l
01
01

09

01
0l
0i
0l
09
o1

0l
0l
0l
0l

09
01
02

09

52i

SET INDEX REGISTER COMMANDS

SR1

SR2

SR3

TRANSFER ON INDEX COMMANDS

TN1
TX1

TN2
TX2

TN3
TX3

XXXX

XXXX

XXXX

SRI

CONTENTS OF R2
R1 PLUS R2

CONTENTS OF R3
R1 PLUS R3

R2 PLUS R3

MAC II TO R1

CONTENTS OF R1
Rl PLUS R2
CONTENTS OF R3
CONTENTS OF R1
MAC II TO R2

CONTENTS OF R1
R1 PLUS R3
CONTENTS OF R2
CONTENTS OF R1
MAC I1 7O R3

TO R2 PLUS R3

T0

TO

T0

PLUS R3

T0

PLUS R2

TO R1 PLUS R2 PLUS R3

SET

REGISTER TO 0

PLACE LIMIT IN REGISTER
COMPARE OP CODE TO 89
TO TN2 ON OP CODE 89
TO TN3 ON OP CODE 94

R1 INCREMENT
AUGMENT R1

TXIs TNI

AUGMENT R1 PLUS R3
AUGMENT R1 LIMIT TALLY

1000 POSe.

R2 INCREMENT
AUGMENT R2

OF LIMIT TALLY

AUGMENT RZ2 PLUS R3
AUGMENT R2 LIMIT TALLY
1000 POSe OF LIMIT TALLY
AUGMENT R1 PLUS R2

R3 INCREMENT
AUGMENT R3

AUGMENT R1 PLUS R3
AUGMENT R2 PLUS R3
AUGMENT R3 LIMIT TALLY
1000 POSe OF LIMIT TALLY

- AUGMENT R1 PLUS R2 PLUS R3

1 FOR TNIs 2 FOR TXI

TNI EQUIVALENT

TO TRU

TO NEXT COMMAND ON SRI

1000 POS.

WITH Z IN MEMORY

HIs 0-9 IN 1000Ss TO NEXT COMM

TRU TO ALPHA

NV SVLWO O NOOCWN NNV WN [LS VN ST VI VA N

NN VLNNWO woeocoooo vNOWOOOO rpwooCoOoO

1124
1129
1134
1139
1144
1149
1154
1159
1164
1169
1174
1179
1184
1189
1194
1199
1204
1209
1214
1219
1224
1229
1234
1239
1244
1249
1254
1259
1264
1269
1274
1279
1284
1289
1294
1299

2479
2484
2489
2494
2499
2504
2509
2514
2519
2524
2529
2534
2539
2544
2549
2554
2559
2564
2569

RCV
T™MT
RAD
LOD
UNL
sSUB
SET
LOD
UNL
ADD
NTR
UNL
TRP
suUB
TRZ
ADD
TR
LOD
ST
LOD
UNL
ST
c/d
UNL
SGN
ADM
RCV
T™MT
RSU
TRZ
ADM
ADM
ADM
TR
sus
TR

RAD
TRP
UNL
LOD
UNL
LOD
UNL
UNL
LOD
ADM
SGN
TRP
TR

LOD
ADM
RCV
T™MT
LOD
TR

FLOAT COMMAND

1156
0285 01
0260 09 3
0297 11 : XX
1154 11
0281 11
ooNK 00

~—00 T~ ALPHA
1954 00
1229 00
1294 00
1234 11
1194 11
0282 09
1209 00
0299 11
1214
0201 11 00
0254 11
0295 01
1254 01
1230 09
00 — 00 ~N=M=S
0252 00
1954 09
0252 09

~ T~ BETA-9/11/13
0245 08
0306 11
0394 11
0306 02
1159 05
0295 06
1134
0282 11 XX
1174

XXXX

3 0R 4

REPLACE COMMAND

0288 00
2499 00
2494 00
20 —00 19744
0288 00
0292 01
2554 01
2529 01
1659 01
2529 01
~ 00 —~ BETA PLUS 3
2544 00
2554
0763 01
0288 01
~—— ~ BETA PLUS 2
0285 01
0211 01
0324

XX OR 2044~

XXXX

0001

Q 0+ Q +
0089/0011/0013

oolo

52j

FLO

INSERT ALPHA
ADORESS
NUMERICAL PART OF SHR OP CODE
N
INSERT N IN SET INSTRUCTION
N-M
SET 00 FOR LOADING A
LOAD A
UNLOAD A TO TEMPORARY
UNSIGN A BY ADDING =0

N-M=S EN SHIFT ADDRESS

TR IF N> (M PLUS §)

CONVERT TO NUMERe PART OF LNG
TRANSFER IF A EQUAL 0

N=M-5 PLUS P-N PLUS M

EQUALS P-5 EQUALS POWER OF A

SET AP TO ZERO
STORE AP IN PAC1
ASU SIGN IS PLUS

INSERT BETA-9/11/13 AS ADDRESS

C OR D STORED IN SHIFT INSTRe
SHIFT A TO MANTISSA LENGTH

UNLOAD UNSIGNED A INTO PACL 10412514

STRIP SIGN FROM MANTISSA OF A
PLACE SIGN OVER MANTISSA OF A
SEND PAC1 TO

RESULT POSITION
REPEAT TALLY
TO LOAD LENGTH AND TO NEXT
REDUCE REPEAT TALLY BY 1
AUGMENT ALPHA ADDRESS
AUGMENT BETA ADDRESS
TO REPEAT FLO COMMAND
N=-M = (S5=1) =1
RETURN TO NORMALIZE

RPL

PLUS ALPHA ADDRESS INDICATES
FIRST ORDER TYPE

REPLACE 285-288 BY CONTENTS
OF LARls LAR2 OR UNZONED
UNITS OF ALPHA=9/11/13

BETA PLUS 2

INSERT AS RCV ADDRESS

INSERT AS SGN ADDRESS

CONVERT SGN TO BETA PLUS 3
TEST IF ALPHA OF COMMAND IN
BETA IS ZONED FOR ASU 15

TR IF BETA CONTAINS ALPHA=9/11/1

CONSTANT

CONVERT ALPHA TO ASU 15 ZONING

REPLACE ALPHA ADDRESS OF BETA
BY ALPHA OR ALPHA=-9/11/13
LENGTH FOR RPL COMMAND
TO NEXT COMMAND IN SEQUENCE

/XTP/

SO N

4
2
3
2
4
2
4
4
6
[}
3

4
3
2

12914916

NSNS

NOONOOMN&\»OO&O‘OOONO

2829
2834
2839
2844
2849

2854
2859
2864
2869
2874
2879
2884
2889
2894
2899
2904
2909
2914
2919
2924
2929
2934

2944
2949
2954
2959
2964
2969
2974
2979
2984
2989
2994
2999
3004
3009
3014
3019
3024

LOD
TRZ
SGN
ADM
TR

LOD
CMP
TRE
TR

SET
LOD
RCV
T™MT
UNL
T™T
LOD
ADM
RCV
TMT
RCV
T™MT
TR

RCV
TMT
RCV
T™MT
RAD
SEL
fv/R
TRA
TR

TRS
SEL
TRS
TR

SEL
SuUpP
NTR
TR

0296
0584

09
09

TRANSMIT COMMANDS

PLUSy - OR O

19 ~ 00 ~~ 27/29/31
19 ~09 ~ 27/29/31

0584

0290
0298
2874
2904
0006
0296
0291
0285
0290
0264
0210
0298
2921
0331
BADD
0283
0434

2967
0289
2999
0293
1108
of 1
3509
2989
0464
0434
0902
30011
4119
0300
0005
2974
4129

11
11

04

09

13

52k

SWITCHING COMMAND

XX

00
0ol

CARD COMMANDS

000

E1l1

E12

TMT 9 TABsTNA

TMT IS Os TAB IS PLUSy TNA IS =

TO TMT ONLY ON O
REMOVE MANTISSA SIGN

APPLY DESIRED SIGN TO MANTISSA

RETURN TO GENERAL ROUTINE

ATR

ALPHA LIMIT
COMPARE LIMIT TO TALLY
TO SWAP ADDRESSES IF EQUAL
TO AUGMENT TALLY IF NOT EQUAL
LOAD BETA AND ITS
LIMIT INTO ASU 13
MOVE ALPHA AND ITS LIMIT
TO BETA POSITION
SWAP BETA AND ITS LIMIT
SET TALLY TO ZERO
AUGMENT TALLY BY 1

INSERT LOCATION OF THIS
COMMAND IN RCV

SEND MODIFIED COMMAND TO
ORIGINAL LOCATION

TO TRU EITHER ALPHA OR BETA

RCDy WCD

INSERT UNIT DESIGNATION

AND READ/WRITE OP CODE
INSERT UNIT DESIGNATION

FOR ERROR ROUTINE
MONITOR FOR ALLOWABLE ERRORS

READER OR PUNCH

TO LENGTH AND NEXT COMMAND
TRU ON END OF FILE
TEST FOR
ERROR TYPE
READ OR PUNCH ERROR
MEMORY TO PUNCH BUFFER
ERRORsTRY TO CORRECT
3 TIMES
JUST CANT GET IT RIGHT

n
NONONPFPPLPOCONOONDN BB

NN NNNNDON LN

n

1314
1319
1324
1329
1334
1339
1344
1349
1354
1359
1364
1369
1374
1379
1384
1389
1394
1399
1404
1409
1414

1419
1424
1429
1434
1439
1444
1449
1454
1459
1464
1669
1474
1479
1484
1489
1494
1499
1504
1509
1514
1519
1524
1529
1534
1539
1544
1549
1554
1559
1564
1569
1574
1579
1584
1589
1594
1599
1604
1609
1614
1619

@/l
B/

T™T
TMT
TRZ
CMP
TRH
MPY
SHR
NTR
SHR

suB
ADD
TR

RAD
LOD

TRZ
CMP
TRH
SuB
CcMP
TRH
UNL
UNL
TRP
SET

RAD
TR

RCV
T™MT

ARITHMETIC COMMANDS

1450 00 ADD/sUB
1369
1540 00
1460 00
1364
1460 00
1359

00 ~_00
1460 D0——
1540 00
1450 00
1440 00
1384

1440 00
1421

0292 01
1721

0296 01
1426

0285 01
0300 09

MPY/MMY

PMA/MPM

MAD/MMA
10/12/14

D1IV/MDV

1920
~—08__ —BETA=-9/11/13

i::gi:::::ALPHA-9/11/13
19 7700 27/29/31
1108 11

1809 + o+ o+
19 711 29/31/33

1549
192d

193708 So0/2/4

000

oxx +

00 ~7 00
1519 00
0001 00
1524
0282 11
19 —I1 ——29/31/33
1544

19 7700 S27/29/31
1922 11

1669

1784 0

193702 0/2/4
1669

11~
19 11 39/43/47

0303 11
1779

1629 11

1654 11

1614 11

0000 11

19 —00___ —~27/29/31
19 0 37/41/45
1624

1920

193 —08 —~0/2/4

07/09/11

521

SET sw 1 TO TR 4
2
SET Sw 3 TO TR 4
SET SW 2 TO NOP 3
2
SET SW 2 TO TR 4
2
SET SW 2 TO NOP 4
WORD LENGTH 3
SET SW 3 TO NOP 3
SET SW 1 TO NoP 3
SET SW 4 TO NOP 3
2
SET SW 4 TO TR 4
INSERT BETA 2
ADDRESS]
INSERT GAMMA 2
ADDRESS 6
INSERT ALPHA 2
ADDRESS é
INSERT PLUS OR - CODE TYPE 3
SEND TO TEMPORARY STORAGE THE 2
WORD IN BETA AND THE 12914416
WORD IN ALPHA 12914916
BETA MANTISSAy PROPER SIGN 10912914
SET ASU 11 TO OVERFLOW LENGTH 5
SWITCH 49 TR TO DIVIDE 2
POWER OF BETA 5
SWITCH 1+ TR TO ADD/SUB X+B 2
SET MAC 11 TO RECEIVE 2z 2
SWe 29 TR TO SEND PAC1 TO Z 2
SEND A EQUAL Z TO 1920 ON 12/14/16
SEND PAC1 TO Z OR Y AREA 12/14/16
TO SWITCH 3 IF B EQUAL ©
IF Z EQUAL 0y TR 3
TO SET X EQUAL TO 0 2
BeZ EQUAL X9 Z IS A OR PACL 98914249194
X MANTISSA AT M PLUS 1 10012914
NORMALIZE OR SHORTEN
MANTISSA OF X 4
TO M DIGITS 2
X POWER = 1 IF NORMALIZED 4
ADD Z POWER TO GET X POWER]
2
SET MANTISSA AND POWER OF X 10/12/14
TO 0 IF Z EQUALS O 5
SW 3, TR IF C EQUALS X IN 00 2
TR TO SET C EQUAL Y IF X IS O 2
TR TO SET C EQUAL X 3
IF Y IS O 2
X POWER = Y POWER 4
TR IF ABSe DIFFe OF POWERS 4
EXCEEDS MANTISSA LENGTH 2
INSERT ADDRESSES OF 5
SHIFT INSTRUCTIONS 5
TR IF ABSe X > ABSs Y 2
AND SET ON NEGATION 2

STORE X MANTISSA AS SMALLER 10+12+14

Y MANTISSA AS LARGER IN 00 10912414
2
Y MANTISSA As SMALLERs X IS 2
ALREADY IN 00 AS LARGER 10412414

1624
1629
1634
1639
1644
1649
1654
1659
1664
1669
1674
1679
1684
1689
1694
1699
1704
1709
1714
1719
1724
1729
1734
1739
1744
1749
1754
1759

1764
1769
1774

1779
1784
1789
1794

1799
1804

1809
1814
1819
1824
1829
1834
1839
1844
1849
1854
1859
1864
1869
1874
1879
1884
1889
1894
1899
1904
1909
1914
1919

SET
LNG
ADD
TRZ
ADD
NTR
SHR
SHR
ADD

TRP
RCV
TMT
TR

ST

ST

RSU
TRZ
<MP
TRE
RCV
TMT
TRZ
ADM
ADM
ADM
ADM
TR

LNG
suB
TR

TRP
RCV
T™MT
TR

ADD

TRZ
cMe
TRH

SHR
sT

RAD
DIV

RSU
MPY
SHR
ADD
MPY
RND
MPY
NTR
RND
NTR
RND
ADD
suB
TR

00 <0~
0]
ST

1679
0230
1764
0
0001
19
1694
4059
0249
0269
1704

025-00__
025‘/T%_“\

0306
1724
0268
1744

P

0245
3224
1724
1429
1424
0306
1419

0001
0282
1649

1799
0245

193 -8

1704

19 ~11

1669

4039

193 02

1679

19 ~00_ -
000 /6%_‘\\

1954
048

1954
1954
1954

19 ~00_
000/’6%—“\

027-00_

00
11
00
00
00

1
11
11

00

11
11
07

11

00

00
00
00
00
00

52m

09/11/13
DIFFe POWER
27/29/31

DIFFe POWER
39/43/47

EO5

2/4/6
4/6/8

GAMMA=-9/11/13

0/2/4

39743747

E0l

0/2/4

27/29/31
3/4/5

3/5/1

27/29/31
3/4/5
2/4/6
37/41/45
09/11/13

4/5/76

29/31/33

LEADING 0 BEFORE LARGER
EXTEND TO ADD SMALLER
ADD SMALLER MANTISSA
TR TO SET PAC1 TO 0 IF C IS
001 OR DIFFe POWER PLUS 1
NORMALIZE
SHORTEN C MANTISSA TO M PLUS
SHORTEN C MANTISSA TO M
PLUS Y POWER EQUAL C POWER
NORMAL IZE LEGAL POWER AND TR
TEST ILLEGAL POWER FOR OFLO
SET PAC1 TO 0 ON O RESULT

OR POWER UNDERFLOW
TO INTERROGATE RPT TALLY
STORE C MANTISSA IN PAC1
STORE C POWER IN PACl
REPEAT TALLY
TR TO SEND PACL TO GAMMA IF
IF K IS 0 AND RPT TALLY ISNT
DO NOT SEND PACl TO GAMMA
SEND C TO GAMMA IF RPT TALLY

IS 0 OR K IS NOT O
TO LENGTH AND NEXT COMMAND
AUGMENT GAMMA ADDRESS BY K
AUGMENT ALPHA ADDRESS BY 1
AUGMENT BETA ADDRESS BY J
DIMINISH REPEAT TALLY
TO REPEAT THIS COMMAND

RESTORE TO DETERMINED LENGTH
DECREASE C POWER BY 1
FOR RE=NORMALIZATION

TR IF ABSe X = ABSe Y

SEND C EQUAL Y TO PAC1 IF
ABSe Y > ABS. X

TR TO INTERROGATE RPT TALLY

RESTORE X POWER TO ASU 11
TR TO NORMALIZE LEGAL POWER

DIVISION BY 0 ERROR

IF NUMERATOR IS 0y TR TO
SET PAC1 TO O

STORE B MANTISSA IN TEMP

SHORTEN B TO 81

STORE B1

0s (M PLUS 1) NINES

N1 EQUAL RECIPROCAL OF B1

STORE N1

~ N1

- N1B

TO M PLUS 2

2 - N1B

A TIMES 2

TO M PLUS

N1A TIMES

N1B

[od

- N1B

MANTISSA AT 145 M

POSSIBLE SECOND

ROUNDING AND

ADJUST C POWER

- B POWER OR =~ B POWER PLUS
TO COMPLETE AND TEST C POWER

11913915

0

w N

1

10912914

0
’

NN SRR PN WS

12914416

[AVER s S« <

NS

2

2
129141416

2

2

2
3
2
10912914
69748
T899
12914916
383
798199
T899
186
69748
12914916
2170
14916918
2112
920
9/10/11

é
5
1 5
2

1964
1969
1974
1979
1984
1989
1994
1999
2004
2009

2014
2019
2024
2029
2034
2039
2044
2049
2054
2059

2064
2069
2074
2079
2084
2089
2094
2099

2104
2109
2114
2119
2124
2129
2134

2139
2144
2149
2154
2159
2164
2169
2174

2179
2184
2189
2194
2199
2204
2209
2214
2219

2224
2229
2234
2239

LoD
TR

LOD
UNL
RCvV
TMT
LOD
UNL
RCV
TMT

RCV
T™MT
RAD
ADD
UNL

T™MT
RAD
ADD
UNL

RAD
SUB
/M)
LOD
RCV
T™MT
RSU
TRZ

TRP
ADM
ADM
LOD
TRZ
ADM
TR

RCV
T™MT
@sy
CMP
TRE
LOD
UNL

ADM
UNL
LOD
UNL
SET
LOD
UNL
ADM

T™MT
LOD
UNL
TR

0595
1979
0340
2070
2145
0300
0295
2044
2016
0296

1936

COMPARISON AND SEARCH COMMANDS TRCHTRESTSC

09

09
09

10
04
04

01

~08 S GAMMA-9/11/13

1945
0352
1935
1923

1932
0352
1922

1930
1943
2139
2044

00
00
00

08 BETA-9/11/13
00
00
00

244 — ~ 0/2/4 ARG2

1923
0306
3224

2114
0306
2044
0318
2039
2019
2014

08
11
11

11
0z
06
07
07
07

2430 — ARGl

1923
2224
1349
2179
1349
2044
2039

0288
2019
0288
2204

08
06

06
04

04
04
04
0

4
002—T0 —0/4/8

0254
0306
3224

1936
0278
0306
0434

08
11
11

52n

OP CODE FOR TRE

OP CODE FOR TRC OR TSC
INSERT OP CODE FOR TRZ/TRP
SET SWITCH FOR TABLE
SEARCH OR TRANSFER
INSERT BETA-9
ADDRESS
INSERT GAMMA~9
ADDRESS

SEND GAMMAs TeEe TESTNUMBER)
TO TEMPORARY STORAGE
POWER OF GAMMA
POWER PLUS 100
POWER PLUS 100 IN FRONT
SEND BETA
TO TEMPORARY STORAGE
POWER OF BETA
POWER PLUS 100
POWER PLUS 100 IN FRONT

PSEUDO~BETA
PSEUDO-BETA - PSEUDO~GAMMA
TEST
LAR2 ADDRESS
N=1 TH BETA
TO ARG2
REPEAT TALLY
LENGTH AND TO NEXT COMMAND

TEST FOR INDEFINITE REPEAT

DIMINISH REPEAT TALLY IF PLUS

AUGMENT TO NTH BETA
LOAD K INDEXING REGISTER

AUGMENT TO NTH GAMMA

MOVE NTH BETA

TO ARGl
TR OUT IF NOT TABLE SEARCH
TR IF TABLE SEARCH IS IN

ONE WORD LENGTH JUMP STATUS
REPLACE INCR BY 1 WORD LENGTH

N=1 TH BETA ADDRESS TO LAR1
RETURN FOR REFINED SEARCH

(N-1TH BETA = 9)IN LAR2
INSERT LOCATION OF FUNCTION
IN LOD ADDRESS

TO DOUBLE WORD LENGTH

LOAD FUNCTIONS OF X AND X-1
FUNCTIONS TO PAC1 AND PAC2
DIMINISH REPEAT TALLY BY 1
TO LENGTH AND NEXT COMMANDE

CN IN ARG2

RESET REPEAT TALLY TO ©
IF TR BEFORE EXHAUSTED

TO TRU TO ALPHA

CNCOCVLRNLWL DY

2
12914916

4

5

5

2
12914416

4

5

5

13915917
139154917

2

)

2
12414916

4
2

NN N

2
12414916
2

vNoov O

NN
VIS N W

22
4

2

12914916
4
4
2

359
364

369
374
379
384
389
394
399

2244
2249
2254
2259
2264
2269
2274
2279
2284
2289
2294
2299
2304
2309
2314
2319
2324
2329
2334
2339
2344
2349
2354
2359
2364
2369
2374
2379
2384
2389
2394

2399 [ChE]

2404

2409
2414

2419
2424
2429

RQV
TMT

RCV
T™MT
LOD
LOD
LOD
LOD
TR

RCV
T™MT
RAD
UNL
ADD
CMP
TRH
UNL
RCV
T™MT
RCV
T™MT
RCV
™T
ADM
RAD
ADD
TRP
ADM
ADD
ADD
UNL
TRP
SGN
ADM
ADM
RSV
sus
TRP
RAD
SET.

SPR

RSV
TRZ

ADM
ADM
TR

REPEAT COMMANDS

0249
0269 00

0309

0289 00
0310 05
0314 06
0318 07
0222 01
0324

CONVERSION COMMANDS

2286
0285 01
0296 12
2294 12
0298 12
3012 12
4079
2404 12
1920
~08 N ALPHA-9/11/13
3 7w
0227 09
2392
0470 01
0296 06
0293 11
19 11
2339 11
2394 11
0298 11
0472 11
2399 11
2379 11
0290 09
0290 09
2395 02
0282 02
0300 11
4089 11 E08
19 ~00 ~~ 27/29/31
0XXX 00
0 0 P PLUS D = M
3 ~00 ~ TW PLUS D PLUS 1

0306 11
3224 11

EO07

29/31/33

0306 02
2289 05
2254

520

0017

XXX

oxXX

RPTs RWR

SET PAC1
TO ZERO

SEND REPEAT INFORMATION
TO STANDARD POSITION
ALPHA INDEX INCREMENT
BETA INDEX INCREMENT
GAMMA INDEX INCREMENT
LENGTH FOR RPT AND RWR

TO NEXT COMMANDs WHICH REPEATS

FXPs FPR

SET UP TMT TO FETCH
CONTENTS OF ALPHA
INSERT TYPE-
WHEEL ADDRESS
TW PLUS D PLUS 1
TEST FOR LINE OVERFLOW BY
COMPARING TO 385
INSERT SPR ADDRESS
MOVE FLOATING POINT NUMBER
TO WORKING POSITION
INSERT DECIMAL POINT
IN LINE IMAGE
INSERT ADDRESS FOR SET
AND SHIFT CODE
AUGMENT Tw COMMAND ADDRESS
SCALE FACTOR
SCALED POWER
TEST FOR P = 0
M PLUS 1 PLUS ABS.
P PLUS D PLUS 1
P PLUS D - M
INSERT SHIFT ADDRESS
TEST IF P PLUS D> M
SIGN OF TAG FOR FXP/FPR
RESTORE TAG
CONVERT D OP TO C OR E
RESTORE ASU SIGN TO -
P =wW.-=-1
ERROR IF P =2 W PLUS 1
MANTISSA OF NUMBER
SET M PLUS 14 PLUS ABSe P
SHIFT D PLUS 1y PLUS P
STORE IN LINE IMAGE

P IN SET

REPEAT TALLY
LENGTH AND TO NEXT COMMAND

DIMINISH REPEAT TALLY BY 1
AUGMENT ALPHA ADDRESS BY I
TO REPEAT THIS COMMAND

s N

NoocooOrEN

LVEU R SRRV VN NI S N

12914916
2

NVVLLWLWERNWVWOBUVLNVLDOLOOSO VW

10912914

noe

2574
2579
2584
2589
2594
2599
2604
2609
2614
2619
2624
2629
2634
2639
2644
2649
2654
2659
2664
2669
2674
2679
2684
2689
2694
2699

LOD
SGN
LoD
UNL
UNL
RCV
TMT
SGN
SGN
TRP
ADM
SGN
TRP
ADM
LoD
UNL
SEL
10F
LOD
UNL
UNL
UNL
LOD
RCV
T™MT
SET

2704 [Y/Rl

2709
2714
2719
2724
2729
2734
2739
2744

R
2749 374

2754
2759
2764
2769
2774
2779
2784
2789
2794
2799

2804
2809
2814
2819
2824

RSU
TRA
UNL
TRZ
ADM
ADM
ADM
T

TR
TRS
SEL
TRS
TR
NTR
TR
SEL
BSP
TR

10F
TRZ
TR
3/C
TR

READ AND WRITE TAPE COMMANDS WTls RTI

READ AND WRITE CARD ON TAPES RCDy WCD
1283 10 R LOAD OP CODE FOR WRITE
0289 00 WTM/SHR TAG FOR SWITCH 2
0300 09 I LOAD TAPE UNIT IDENT.
2654 09
2789 09
2701 SET UP FIRST ADDRESS
0292 01 FOR READ OR WRITE COMMAND
2815 09 SET SWe 1 TO WTM FOR WRITE
2745 09 SET SWe 2 TO WTM
2629 00
2745 09 SET SWe 2 TO SHR IF TAG IS =
2654 00 READ/WRITE TAG FOR SWe 1
2649 00
2815 09 SET SWe 1 TO SHR FOR READ
0438 10 Y CHANGE OP IN ASU 10 TO READ
2700 10 Y/R INSERT PROPER OP CODE
o20l] SELECT ITH TAPE UNIT
0000 TURN OFF 1/0 INDICATOR
0299 04 BETA PLUS 1 ADDRESSES
2684 04
2689 04
2719 04
~09 ™~ BETA PLUS 1 CHARACTER FROM BETA PLUS 1
~09 ™~ BETA PLUS 1 REPLACE END CHARACTER
0764 09 BY GROUP MARK
0003 00 SET MONITOR
ALPHA=9/11/13 READ/WRITE
0306 11 REPEAT TALLY
2759
09 BETA PLUS 1 RESTORE LAST CHARACTER
2749 11 TEST FOR NON=-REPEAT
2704 05 AUGMENT ALPHA ADDRESS
0299 06 AUGMENT LAST CHARACTER
0306 02 DIMINISH REPEAT TALLY
2664
0001 WTM OR SHR 00
3224 LENGTH AND TO NEXT COMMAND
2804 TEST 1/0 INDICATOR
0902
2779 1IF 0902 IS ON
4139 E13 ERROR - CHECK INDICATOR 0901
2789 00
4349 E 14 READ/WRITE ERROR MESSAGE
020 SELECT ITH TAPE UNIT
0004 BACKSPACE ONE RECORD
2704 TRANSFER TO TRY AGAIN
0000 TURN OFF INDICATOR
2819 11 TEST REPEAT TALLY
4269 E15 EOF BEFORE RPT EXHAUSTED
0001 WTM OR SHR
0434 TR TO TRU TO ALPHA

52p

NSOV S VOWONWOCOOCONNLVLLLNPVLUNSPIPONLLWHW

NN V] NNW NN

n

3064
3069
3074
3079
3084
3089
3094
3099
3104
3109
3114
3119
3124
3129
3134
3139
3144
3149
3154
3159
3164
3169
3174
3179
3184
3189
3194
3199
3204
3209
3214
3219
3224
3229

3234
3239
3244
3249
3254
3259
3264

3974
3979
3984
3989
3994
3999
4004
4009
4014

WRITE COMMANDS

WL~y WH-

LOD 0290 11 00 OR XX LINE COUNT 4
ADM 0292 02 AUGMENT LINE TALLY 4
RCV 3081 INSERT BADD 2
TMT 0331 01 AS AN ADDRESS 6
RCv BADD) SET TO RECEIVE MODIFIED COMMe 2
CMP 0292 11 COMPARE LINE COUNT WITH TALLY 4
TRH 3109 + WRITE LINE IF HIGH 2
LOD 1108 11 00 RESET TALLY IF EQUAL LINE COUNT 4
UNL 0292 11 4
TMT 0283 15 RESTORE MODIFIED COMMAND 20
TRE 0434 TRU TO ALPHA ON NO LINE 2
RAD 0295 00 UNIT DESIGNATION 5
UNL 3159 00 5
UNL 3249 00 5
RCV 3254 INSERT BSP OR SUP CONTROL 2
TMT 0299 09 ADDRESS CHARACTER 3
RAD 1108 13 000 SET MONITOR FOR ERROR 5
RAD 0298 12 XXX+ LINE OR HDG ADDRESS INSERT 5
UNL 3164 12 INSERTED IN WRITE COMMAND 5
SEL 1§xﬂ WRITE A LINE OR HDG 2
wR 3xxx} 00 ON TAPE OR PRINTER
TRA 3234 2
RCV 3387 INSERT CARRIAGE CONTROL 2
TMT 0300 09 CHARACTER IN 3
RCV 3265 LINE AND 2
TMT 0300 09 HEADING IMAGES 3
TRP 3214 12 TEST IF LINE OR HDG 2
SET 0026 00 SET LINE IMAGE 28
TMT 2935 14 TO BLANK IF A 7
NTR 3204 00 LINE WAS WRITTEN
TRP 3224 00 TEST FOR TRIPLE SPACING 2
WR 2458 00 EXTRA SPACE FOR TRIPLE
LOD 0226 01 0018 COMMAND LENGTH 6
TR 0324 TO NEXT COMMAND IN SEQUENCE 2
SEL 0902 TEST FOR WRITING ERROR 2
TRS 3249 FROM MEMORY TO BUFFER 2
TR 4099 E09 ERROR MESSAGE FOR 1/099019903 2
SEL OXXX SELECT TAPE OR PRINTER 2
{]000~ N 4O0RS BSP OR SUP
NTR 3164 13 TEST ERROR .ONITOR
TR 4109 £10 E MESSAGE ON EXHAUSTED MONITOR 2
CONTROL COMMANDS BSIs RWIy TMI
RCV 3994 INSERT SELECT 2
TMT 0285 09 ADDRESS AND 3
TMT 0286 14 CONTROL INSTRUCTION 7
RAD 0293 13 COUNT FOR BACKSPACING 5
SEL 020 2
3 000
SUB 0282 13 REDUCE COUNT BY 1 5
TRZ 0464 13 LENGTH AND TO NEXT COMMAND 2
TR 3999 TO BACKSPACE AGAIN 2

52q

3594
3599
3604
3609
3614
3619
3624
3629
3634
3639
3644
3649
3654
3659
3664
3669
3674
3679
3684
3689
3694
3699
3704
3709
3714
3719
3724
3729
3734
3739
3744
3749
3754
3759
3764
3769
3774
3779
3784
3789
3794
3799
3804
3809
3814
3819
3824
3829
3834
3839
3844
3849
3854
3859
3864
3869
3874
3879
3884
3889
3894

RAD

MPY
SHR
ADD
ST

RSU
SHR
DIv
SGN
ADD
ST

RAD
MPY
SHR
sT

MPY
SHR
ADD
SET
LNG
DIV
SGN
suB
RND
NTR

UNL
ADM
TR

52r

8-DIGIT SQUARE ROOT ROUTINE

5
PPeX

PP

¢ XXXXXXXX F

EO4

5 0R 0%

¢ OXXXXXXXX=

e XXXXXXXX0=

e XXXX=

o XX~
08

XoX=
0 e XXXXX
Qe XXX
XeXXX

0 e XXXXXXXXX
08 XXXXXXXX
e XXXXX

X o XXXXX

o5
X o XXXXXX
X e XXXXX

OX e XXXXXXXXXX
OX e XXXXXXXXX
00+40000XXXXX

OXXXXX
OXXXXX00000
XXXXX

O e XXXXXXXXX~
XoXXXXXXXX=
e XXXXXXXX=

SQR

X IS 0 OR 5 PLUS OR =
POWER DIVIDED BY 2

UNITS AND DECIMAL BOTH SIGNED
MINUS MANTISSA

SQUARE ROOT EQUAL 0

ERROR MESSAGE FOR SQR OF =
PLUS OR =~

TR ON EVEN POWER

INCREASE ON ODD AND PLUS ONLY

-

SADMs CORRECTED POWER
ASU 09 IS O IN BOTH CASES

AVERAGE 13

[

Oe

~ ARG FOR LINEAR APPROXs
ARGUMENT FOR TLU
INCREMENT FOR TLU
INITIALIZE CMP COMMAND
TO ADDRESS OF 3904
START SEARCH AT 3912

[
NERNEN P VOOWHENEEWVERNNMNWLWNNO P P U W

h

AVERAGE 45
INSERT ADDRESS OF SEGMENT
INTO TMT COMMAND
MOVE SEGMENT COEFFICIENTS TO

WORKING POSITION (W eLe) 1
ax)
1ST APPROXes EQUALS AX PLUS B
géGUMENT 1
Ql 24

LNG Al 0002 IN MEMORY
Al PLUS Q1 APPROXe 2A2

—

A2 WITHIN 0005 OF SQR N
A2

A2 SQUARED

- o

A2 SQUARED = N

w
N
FHOOVIFNOPFPFNLVOOD L VEPENCOCOCUVORENN PN

-e5 DELTA
LNG A2 0004 IN MEMORY

—A2 ~+5 DELTA IS APPROXe SQR N 12
6
11
SQR 099999999 WITH EVEN POWER
UNSIGNED MANTISSA 10
PLUS SIGN 3
RETURN TO GENERAL ROUTINE 2

8-DIGIT LOGARITHMS LGDs LGE

4019 SET 0000 13 2
4024 SET 0010 13 0000000000 INITIALIZE MPLR LOG ACCUMe 12
4029 RSU 1927_99___\\ o XXXXXXXX = MANTISSA OF ARGUMENT 10
4034 TRP 00 E02 ERROR FOR LOG OF 0 OR = NUMe 2
4039 ST 1927 00 START OF MPLR LOOP i0
4044 SHR 0007 00 X LEADING DIGIT 10
4049 MPY 4390 00 BY TABLE INCREMENT OF 11 8
4054 SUB 4403 00 MAKE TABLE ADDRESS

4059 UNL 4079 00 INSERT ADDRESS FOR 5
4064 UNL 4084 00 MPLR AND LOG OF MPLR 5
4069 LOD 3969 12 ADDRESS CONVERSION INCREMENT 5
4074 ADM 4079 12 BOTH ADDRESSES COMPLETE 5
4079 ADDL 2 13 AQCUMULATE LOGS OF MPLRS 12
4084 RAD[1 00 Xe X MULTIPLIER 4
4089 MPY 1927 00 CONVERT ARGUMENT 26
4094 RND 0001 00 TO MANTISSA LENGTH 6
4099 NTR 4039 00 RETURN IF LESS THAN 1.0 11
4104 SET 0008 00 e OXXXXXXX ARGUMENT FOR 10
4109 ST 1927 00 POLYNOMIAL APPROXIMATION 10
4114 ST 1939 13 STORE LOG SUM 12
4119 RSU 2858 00 «09 4TH ORDER COEFFICIENT 3
4124 MPY 1927 00 14
4129 RND 0005 00 10
4134 ADD 4285 00 3RD ORDER COEFFICIENT 7
4139 MPY 1927 00 62
4144 RND 0006 00 11
4149 ADD 4292 00 2ND ORDER COEFFICIENT 9
4154 MPY 1927 00 86
4159 RND 0007 0O 12
4164 ADD 4300 00 15T ORDER COEFFICIENT 10
4169 MPY 1927 00 98
4174 RND 0007 00 11
4179 SUB 1939 00 X o XXXXXXXXX LOGARITHM OF 11
4184 ST 1939 e XXXXXXXXX DECIMAL NUMBER 11
4189 RAD 1929 00 POWER 4
4194 LNG 0009 00 XX 000000000 12
4199 ADD 1939 XX e XXXXXXXXX 13
4204 RND 0001 00 XX o XXXXXXXX 6
4209 LOD 0296 09 TAG TO DETERMINE BASE 3
4214 TRZ 4229 09 BYPASS CONVERSION IF BASE 10 2
4219 MPY 4413 00 142
4224 RND 0009 00 BACK TO 8 DECIMALS 14
4229 SET 0011 00 XXX o XXXXXXXX 13
4234 TRZ 0574 00 IF LOG IS ZERO 2
4239 LOD 0032 11 03 BASE POWER 4
4244 NTR 4269 00 14
4249 RND 0003 o XXXXXXXX TO MANTISSA LENGTH 8
4254 ST 1927 00 STORE MANTISSA 10
4259 ST 1929 11 XX STORE ADJUSTED POWER 4
4264 TR 0584 EXIT TO GENERAL SUB=ROUTINE 2
4269 LNG 0001 00 RESTORE TO 11 CHARe AFTER NTR 4
4274 SUB 0388 11 REDUCE BASE POWER 4
4279 TR 4244 TO TRY NTR AGAIN 2

52s

4874
4879
4884
4889
4894
4899
4904
4909
4914
4919
4924
4929
4934
4939
4544
4949
4954
4959
4964
4969
4974
4979
4984
4989
4994
4999
5004
5009
5014
5019
5024
5029
5034
5039
5044
5049
5054
5059
5064
5069
5074
5079
5084
5089
5094
5099
5104
5109
5114
5119
5124
5129
5134
5139
5144
5149
5154
5159
5164
5169

RAD
LNG
LOD
TRZ
MPY
NTR
RND
RAD
suB
TRP
ADD
TRP
TR

sus
UNL
SHR
SET

SET
SGN
ADM
ADM
RAD
cMpP
TRH
TRP
ADD
SET
ST

RAD
ADM
LOD
UNL
UNL
RSU
MPY
ADD
SET
MPY
SHR
SET
ST

SHR
MPY
ADD
UNL
ADD
UNL

1927
0002
0296 09
4909 09
5432
5269
0008
1929 13
5399 13
4159 13
4845 13
4939 13
5289
0262 13
4949 13
ool]}
0010
1929
0008
1929 09
1921 09
1929 09
1921 13
3095 13
4159
5029
5408
0008
1929
5459 13
1921 13
1922 09
5044 09
5194 09
539[)
5416
1929
0008
5424
0007
0008
1929
0007
4845
5463
5199
0338
5114

RsU §

ADD
ST

MPY
SHR
ADD
MPY
SHR
ADD
MPY
SHR
ADD

1929
1929
5380
0007
5438
1929
0006
5388
1929
0008
5447

52t

8=DIGIT EXPONENTIAL

Elé

El6

MANTISSA

0 OR 1 TAG FOR BASE
0 FOR DECIMAL
BASE E MPY BY
LOG E BASE 10

TEST EXPONENT
MINUS 3
ERROR MESSAGE
EXP=3+11

BY PASS CALC ANs=1
USE EXP-2

TO CONVERT TO
FIXED POINT

PLACE SIGN ON
EXOPNENT
MANTISSA

MAX ARG =98¢ XXXX

ERROR MESSAGE
MANTISSA SIGN

NEG ADD ONE
1=X

DECREASE EXP
8Y 1

LEADING DIGIT LOOK=-UP

091929 OR 3 TIMES

LOG 2 BASE 10 SUBTRACT

FROM ARGUMENT
LOG 10 BASE E
FOR

BASE E

TLU 09192e00196

TIMES TABLE INCREMENT

PLUS TABLE ORIGIN
FOR ADDRESSES TO
EXTRACT

TABLE ENTRIES

TABLE VALUE suBT
FROM ARGUMENT
POLYNOMIAL ARGUMENT
5TH ORDER COEFF

4TH ORDER COEFF

3RD ORDER COEFF

2ND ORDER COEFF

10
4
122

21
13

s

10

5174
5179
5184
5189
5194
5199
5204
5209
5214
5219
5224
5229
5234
5239
5244
5249
5254
5259
5264
5269
5274
5279
5284
5289
5294
5299

5469
5474
5479
5484
5489
5494
5499
5504
5509
5514
5519
5524
5529
5534
5539
5544
5549
5554
5559
5564
5569
5574
5579
5584
5589
5594
5599
5604
5609
5614
5619
5624

MPY
SHR
ADD
ST

RAD

MPY [

MPY
SHR
SET
RAD
NTR
ADD
sT

RND
ST

TR

sus
LNG
TR

RND
RSU
ADM
TR

RCV
T™MT
TR

RAD
TRZ
TRP
RSU
ST

RAD
CMP
TRH
CMP
TRH
TRP
SET
UNL
SHR
SET
RAD
ST

TR

UNL
LNG
SHR
SET
RCV
T™MT
LOD
ADM

1929
0008
5408
1930
130(]

]
1930
0002
0010
5396
5254
1921
1929
0002
1927
0584
5393
0001
5224
0007
5393
1929
4909
1920
5448
0584

1927
0584
5489
1927
6908
1929
0303
5894
0210
5864
5559
0009
5534
oof]
0008
0593
1944
5724
5564
oof]
0006
0003
5596
6047
0222
5599

cmp

TRH
LOD
ADD
UNL
SET

5594
5599
3939
5629
0014

13

13
13

13

13
13

08

03
03

03
03
03
13
13

03

52u

8=DIGIT ARC TANGENT

110

11

1ST ORDER COEFF 11

11

192949 OR 8 3

TIMES TABLE VALUE 9

TIMES POLYNOMIAL VALUE 54

5

12

FLOATING PT CONVERSION 3

13

4

EXPONENT 4

7

MANTISSA 10

EXIT 2

NORMALIZING 3

4

2

ARGUMENT SHIFTED 12

EXPONENT DECREASED 3

BY 3

2

SET ANSWER TO ONE 2

12

2

10

EXIT ON ZERO 2

2

10

10

TEST RANGE OF EXP 4
8
1

[

USE EXPONENT OT
CONVERT TO FXD PT
LET G=X

ZERO FOR

ARCTAN X SuUB N
BY=PASS TLU

USE EXP TO
CONVERT TO FXD PT
PREPARE ARGUMENT
FOR TLU
INITIALIZE

TLU ADDRESS

TABLE INCREMENT (17)
TLY

-

EXTRACT AND
INCREASE
TABLE ADDRESS
EXTRACT ENTRY

CUUVUVLNUVUUVVNUOYELSEPEPNVLIECLEFRNNDEND

=

5629
5634
5639
5644
5649
5654
5659
5664
5669
5674
5679
5684
5689
5694
5699
5704
5709
5714
5719
5724
5729
5734
5739
5744
5749
5754
5759
5764
5769
5774
5779
5784
5789
5794
5799
5804
5809
5814
5819
5824
5829
5834
5839
5844
5849
5854
5859
5864
5869
5874
5879
5884
5889
5894
5899
5904
5909
5914

LOD
UNL
RAD

TR

L 3
1944
1934
6908
0002
1953
5669
5408
oof)
1953
1953
1934
0006
5699
ool]
6908
0009
0008
1953
1953
1953
0008
6908
6020
6908
0005
6027
6908
0006
6037
1953
0008
1944
0584
5457
5849
0002
6908
1929
1927
5839
6908
1927
0584
0282
0001
5804
5874
5524
0014
1931
6004
5639
5904
0584
5457
6045
5814

03

03

13

13

13

13

13
13
03
13

52v

TABLE ARGUMENT
TIMES MANTISSA

EXPONENT TO ADJUST
POWER OF TEN

IN SCALING

PLUS PRODUCT

MINUS TABLE VALUE
SHIFTED LEFT
EXPONENT TO

SCALE TABLE VALUE
PLUS ARGUMENT
PREPARE

NUMERATOR TO DIVIDE
QUOTIENT IS G

STORE G

G SQUARED

POLYNOMIAL

A2

TIMES G SQUARE
SHIFTED

Al

TIMES G SQUARE
SHIFTED

AO

TIMES G

SHIFTED

PLUS TABLE ARCTAN
ARCTAN X=X

CONVERT TO

FLOATING PT

RETAIN 8 DIGIT MANT
STORE MANTISSA
EXPONENT

TEST INPUR ARG SIGN
NEG INPUT

NEG ANSWER

MANTISSA STORED
EXIT

DECREASE EXPONENT
SHIFT MANTISSA
RETURN TO NORMALIZE
TEST SIGN OF EXP
NEG G=X

EXTRACT LAST

TABLE ENTRY

FOR G CALCULATION
BYPASS TLU

TEST SIGN OF EXP
EXIT Fi{X)=X

ANSWER IS

Pl/2

GO TO OUTPUT ROUTINE

688

009
110

- e
NOFNNNUVLNVNNNS

[

6059
6064
6069
6074
6079
6084
6089
6094
6099
6104
6109
6114
6119
6124
6129
6134
6139
6144
6149
6154
6159
6164
6169
6174
6179
6184
6189
6194
6199
6204
6209
6214
6219
6224
6229
6234
6239
6244
6249
6254
6259
6264
6269
6274
6279
6284
6289
6294
6299
6304
6309
6314
6319
6324
6329
6334
6339
6344
6349

LOD
UNL
RAD
CMP
TRH
sus
TRP
ADD
UNL
RAD
TRP
RSU
LNG
SHR
SET
MPY
RND
SET
ST

RAD
suB
TRP
ADD
TRP
RAD
suB
SET

RAD
suB
LOD
UNL

suB
TRP

RAD
MPY
SET
sT

RCvV
TMT
RAD
SHR
ADM
CMP
TRH
TRE
RCQV
T™MT
SET
LOD
UNL
RAD
TRP
RSU
ST

RSU
sus

6797
6630
1929
6805
6719
1306
4259
1300
6124
1927
6119
1927
0003
00

0011
6877
0008
0009
1938
6886
1938
6224
6895
6199
1938
6835
0009
6244
6886
1938
6744
6630
6244
6895
6239
6199
1938
1306
0010
1939
6282
6050
6898
0008
6284

6

6279
6279
6312
6282
0019
6

1959
1939
6349
1927
1927
1939
1951

52w

SINE AND COSINE COMMAND

09
09

09

12
12
12

12

12
12

13
13

E03

SAC

COSINE SWITCH IS 3
INITIALIZED TO NOP 3
TEST EXPONENT 4
FOR 7 OR LESS 4
2
X=46 4
ERROR 2
4
4
MANT ISSA 10
2
USE POSITIVE ARGUMENT 10
PREPARE TO 6
CONVERT TO FIXED PT 11
13
2 PI INVERSE 123
12
DISCARD INTEGRAL PT 11
FRACTION OF 2PI 11
QUADRANT REDUCTION 11
05=X 11
2
11
2
4TH QUAD 11
X=1 12
11
2
2ND OR 3RD QUAD 11
o5=X 11
COSINE SWITCH TO TR 3
FOR NEG ANSWER 3
2
il
2
2
15T QUAD USE X 11
4X FOR 47
FRACTION OF PI/2 12
12
INITIALIZE TLU 2
CMP ADDRESS 5
TABLE INCREMENT 5
TABLE LOOK UP DIGITS 10
TLU ON 5
0¢190e390659067900999¢9 5
2
2
USE COMP ADDRESS 2
TO EXTRACT 5
TABLE 21
5
5
FRACTION OF PI OVER 2 12
2
FOR QUAD 394 10
SINE WILL BE MINUS 10
ARGUMENT 12
MINUS TABLE VALUE 12

6354
6359
6364
6369
6374
6379
6384
6389
6394
6399
6404
6409
6414
6419
6424
6429
6434
6439
6444
6449
6454
6459
6464
6469
6474
6479
6484
6489
6494
6499
6504
6509
6514
6519
6524
6529
6534
6539
6544
6549
6554
6559
6564
6569
6574
6579
6584
6589
6594
6599
6604
6609
6614
6619
6624
6629
6634
6639
6644

RND
SET
ST

MPY
RND

RAD
MPY
RND
ADD
MPY
RND
ADD
MPY
RND

RAD
MPY
RND
ADD
MPY
RND
ADD
sT

RAD
MPY
RND

RAD
MPY
RND
ADD
TRZ
RAD
NTR
ST

SHR
RAD
TRP
ST

RSU
ST

RAD
MPY
RND
ST

RAD
MPY
RND
sus
TRZ
RAD
NTR
SHR
ST

ST

A/l

RSV

0001
0008
1939
1939
0008
1951
1309
1951
0005
6859
1951
0005
6868
1939
0008
1939
6847
1951
0006
6854
1951
0006
5408
1951
1954
1951
0002
6908
1957
1939
0002
6908
6689
2252
6659
1929
0002
1927
6559
6908
6908
1927
1954
1939
0002
6908
1957
1951
0002
6908
6704
2252
6674
0002
1937
1939
6644
6914
1937

52x

13
13

13
13

13

13

EQUALS

POLY NOMIAL
ARGUMENT 2
SQUARE OF
POLYNOMIAL
ARGUMENT Z

SINE POLYNOMIAL

COSINE POLYNOMIAL

SINE Y
TIMES COS Z

Cos Y

TIMES SINE Z
SINE X
PREPARE TO

NORMALIZE
STORE EXPONENT

TRUNCATE TO 8 DIGITS

TEST INPUT

FOR SIGN
CHANGE

SIGN

STORE MANTISSA
SINE Y

TIMES SIGN Z

Cos Y
TIMES COS Z

Cos X

PREPARE TO
NORMALIZE

TRUNCATE TO 8 DIGITS

STORE MANTISSA
EXPONENT

SWITCH FOR COS IN 293Q

EXIT
CHANGE COS SIGN

10
10
98
10
10

14

62
11
110
10
11

50

79

11
11

41
12
41

12

13

10
10

10

10
10

41

12
41

6649
6654
6659
6664
6669
6674
6679
6684
6689
6694
6699
6704
6709
6714
6719
6724
6729
v

6914
6919
6924
6929
6934
6939
6944

ST
TR
LNG
suB
TR
LNG
sus
TR
RCV
T™MT
TR
RQV
TM™MT

TRP
SET
TR

LOD
RCV
TMT
RCV
TMT
ADM
TR

1937
6639
0001
5393
6524
0001
5393
6614
1920
0265
6564
1930
0265
6639
4259
0000
6129

0282
6926
0296

1930
6929
0584

13

13

o8

08

01
ol

o8
07

52y

E03

GAMMA=9/11/13

FOR QUAD 243

NORMALIZE
FOR SINE X

NORMALIZE
FOR COS X

SET
SIN X=0

SET
CO0s X=0

ERROR MSG ON PLUS
SET X=0
ON MINUS

COMMAND LENGTH
SET UP RCV TO STORE
COSINE IN GAMMA

LS S O)

12914916
AUGTs GAMMA ADDSs BY K 6
TO EXIT 2

Appendix II—Example 1

Generalized The coding symbolized here is a basic method to effect the multiplication
matrix of a (k by m) matrix and an (m by n) matrix to produce the product matrix
multiplication (k by n). It is valid when sufficient memory locations can be reserved for
the elements of all three matrices. Many of the features of PRINT 1 as applied

to repetitive operations are illustrated in this general method.

The common practice in assigning memory to the elements of a matrix
is to store them row-by-row in sequential addresses. In this case these sequen-
tial addresses are regional for convenience. The general elements of these
matrices are to be in locations defined as:

Matrix Location
(k by m) A001 + (row—I) (m) + (col—1)
(m by n) B00I + (row—1) (n) + (col—1)
(k by n) C001 + (row—1) (n) + (col—1)
The program is generally written as below, with the proper numbers replac-
ing k, m and n. All operations are shown with referrals in the location column,
but steps 3, 4 and 8 are the only ones which need it.
LOCATION OP%%ADTEIQN VARIABLE FIELD COMMENTS
6- -10] 1- -13] 14- -80
STEP 1] SR 1|0
STEP |2/ SR2 |0, km
STEP |3/ SR3 [0, n
STEP [4| RWR |m, 1, n
STEP :5 MAD | A0O1, 2, BOO1, 3, CO01, 123
STEP |6| TX 3 |STEP 4, 1
STEP |7/ TN 1 |STEP 8, (n - m)
STEP 18] TX 2 | STEP 3, m

If either of the two matrices to be multiplied are square, it should be used
as the multiplicand. Under these conditions the 1lst and 7th steps may be
eliminated because m = n. Elements are computed row-wise in the example,
for efficient storage, but the problem could be re-coded to develop them

53

column-wise. Printing of a row at a time during calculation is possible by
inserting the necessary operations between steps 6 and 7, or 7 and 8.

A coding kernel is given here for matrix multiplication using tapes for input
of elements. This is again for the multiplication of a (k by m) matrix by a
(m by n) matrix. The (k by m) matrix is assumed to be stored on tape 0207
in k records, each record consisting of the m elements of a row. The (m by n)
matrix is assumed to be stored on tape 0208 in n records, each record con-
sisting of the m elements of a column. The first row and column are the
first records of the respective tapes, etc. The product matrix is to be stored
in row records on tape 0209.

LOCATION OPE:':)ADTEK,N VARIABLE FIELD COMMENTS
R¢WS} RT7 AO001 m elements in each of k rows
' | sR2 | 0,n
C@LS | | RTS8 BOO1 m elements in each of n columns
| [RWR | m, 1,1
. | mAD | A001, BOO1, CO01, 2
'] X2 | coLs, 1
1| wro | coo1, coon
| | RWS
| ATR | ROWS, (k-1), NXTCM, 1
NXTC IM

Appendix II—Example 11

Three examples of efficient coding for polynomial evaluation are illustrated
below. As a general rule, requiring more instructions than are shown here
will indicate inefficient assignment of memory for arguments and coefficients.
The programmer who has occasion to use this type of coding may profit by
extension of these examples.

54

Evaluating a Single Polynomial at N Arguments (N = 14)

6 Arguments X located in K203 (2) K229
PX) = Z a, X! P (X)s to be sent to K204 (2) K230
0 Coefficients a, in (D006 + 1)
2. Evaluating N Polynomials at a Single Argument (N = 5)
6 Argument X located in K203
P(X) = Z (a), X' P, (X)s tobesentto (D013 + 8j)
0 Coefflicients (a), in (D006 + 1 + 8j)
3. Evaluating the Bi-variate Surface
i—4 j=3
Z= a Y where a, = b, X!
iZO jZO
a, are in (C005 4 5i), b, are in (CO01 4 5i + j), X is in G026,
Y is in C027 and the answer Z is to be placed in C028.

LOCATION OPEC'Z)ADTEION VARIABLE FIELD COMMENTS
-10] 11 131 14- -80
T
I SR1 0,28
| NXTAR| RWR 7, -1
[PMA D012, K203, 1, K204, 1
| X1 NXTAR, 2
| SR1 0,40
| NXTP N RWR 7,-1
| PMA DO012,1, K203, D013, 1
| TX1 NXTPN, 8
} SR2 0,25
| NXTC @& RWR 4, -1
! PMA C004,2,C026,C005, 2
| TX2 NXTC@,5
| RWR 5,-5
‘1 PMA €025, C027, CO28

55

Appendix II—Example 111

Matrix The coding kernel below gives a simple method for the inversion of a matrix
inversion and solution of simultaneous equations. It is adopted from R. DeSio’s 650
program, using Jordan’s method. The nth order matrix with b column vectors
furnishes the array:
A1 A12 A13 A4 i e am Vi Vi Voo, Vb
A21 22 A3 Azq.............n am Var Voo Vapo ool Vo
But st Bon Var Vazooooiiiiiiii.l Vi
This array is stored row-wise in memory from A001 to A000 + n(n -+ b), each
row starting at AOO1 + (row—1) (n+ b). A001 + n (n 4 b) thru A000 + (n+1)
(n — b) are reserved as working storage, for a total of (n + 1) (n 4 b) words.
LOCATION | OPERATION| vARIABLE FiELD COMMENTS
6 doln. 3] e -80
RE DU}C DIV | LWC 1, A0O1, AD0O + (n+1)(n+b) (Reciprocal of first element)
| RPT | (n+b-1),1,0,1
I | MPY | A002, AOOO+(n+1)(n+b), A0O1 + n(n+b)
| | SR1 | 0,(n-1)(n+b)
UPRGW RPT | (n+b),0,1,1

MMY| A0O1+(n+b), 1,A001 +n(n+b), A001, 1

[

|

1] RPT | (n+b-1),1,1,1

| | ADD | A002+ (n+b),1,A001,1,A001, I

L] 11 | UPR@W, (n+b)

"] RPT | (n+b), 1,1

I | TMT | AOO1 + n(n+b), AOO! + (n-1)(n+b)

| | ATR | REDUC, (n-1), NXTCM, 1 (Counting control)

NXTC |M

n reductions are required, giving a new array in the identical block of memory

positions, according to the following schematic:

A —Column
Original / Vectors
Matrix Y, Inverse
Solutions Y/

56

Orders of matrices which may conveniently be inverted in memory are:

Memory size 8-digit mantissa 10-digit
20,000 38 35
40,000 58 53

A 10th order matrix may be inverted in

12-digit
33
49

10 seconds, 20th in 1 min., 20 sec.,

and 25th in 2 min., 36 sec. The 50th order in memory takes 20 min., 40 sec.,

and approximately 25 min. on tape. The program kernel for inversion of a

matrix stored on tape is shown below. Each record on tape 0208 is a row of the

combined array. As shown, the coding is limited to 99th order because of the

RPTs; insertion of multiple RPTs will increase the order capability.

LOCATION

OPERATION

CODE

VARIABLE FIELD

COMMENTS

RTAP8| RT8 | A0OI
" ATR | ROWI1,1,REWN, (n-1)
RGWI1 | DIV | LPC1, ADOT, AOO + 3(n+b)
L | RPT | (n+b-1),1,0,1
T MPY | A002, A000 + 3(n+b), AOOT+2(n+b)
' | ATR | RTAP8, 1,RTAP?, 1
ROWN | RPT | (n+b),0,1,]1
i | Mmy| A001,A001 + 2(n +b), AOOT + (n +b)
TTRPT [(n+b=1),1,1,1
| | ADD | A002, A0O1+ (n+b), A00T + (n+b)
| | ATR | WTAP9, (n=1), WIAP8, (n - 1)
WTAP|9| WT9 | A0O1 + (n+b), AO00 + 2(n + b)
' | ATR | RTAP8,(n-2), NR@WI,]
NRGW 1| WT9 | A001 + 2(n +b), A000 + 3(n + b)
RWTP S| RWS
| | RW9
' | ATR | RTAP9,1,RTAPS, 1
RTAP |9| RT9 | A0OI
| | ATR | ROW1,1,RPWN, (n-1)
WTAPI8| WT8 | A001+(n+b), A00O + 2(n + b)
' | ATR | RTAP?,(n-2), NROW2, 1
NR@W2| WT8 | A00I + 2(n +b), AD0O + 3(n + b) 1
| | ATR | RWTPS, n, NXTCM, 1 ;

57

Appendix I1—Example IV

This program is to prepare a table of (X + cos Y)(X — sin Z), Y and Z being
radian arguments. Each line is for 1 value of X, each page for 1 value of Z.
Columns are for Y.

SERIAL LOCATION OPlcloknf‘IOll VARIABLE FIELD COMMENTS
.. slle .10] 1- 3 e =80
01010 HDG Housekeeping. The line descriptions and head-
01020 HDG ings are not coded for purposes of this example.
01030 | ROOS REG | R001) Reserve

01040 || SINE |Z| REG working

01050 y TEMP | REG L storage

01060 || x020 REG | X001 Reserve storage

01070 | Y008 REG | Y001 for loading

01080 | zo10 REG | 2001 J input data

01090 ENT

01100 RCD | READER A Read 2 data cards. The first conf
01110 RPT | 20, *4, 1 tains 20 values of X as (xx.xx),
01120 FLP | CPLO4, 4, L2, X001 stored in X001 to X020. The sec-
01130 RCD | READER { ond contains 8 values of Y as
01140 RPT | 8,%5,1 f (xx. xxx), stored in Y00l to Y008,
01150 FL® | C@LO5, 5, L3, Y00l and 10 values of Z as (x.xxx),
01160 RPT | 10, *4, 1 stored in Z001 to Z010.

01170 FL@ | CpL44, 4, L3, 2001

01180 SR3 | 0,10 Control for number of pages (Z)
01190 || PAG WHT | TAPE4 Heading, 2 spaces before lines
01200 SR 1 0, 20 Control for number of lines (X)
01210 SAC 2001, 3, SINEZ Compute sinZ for each page
01220 TRU | RSETY

01230 | LINE WLS | TAPE4 Write single-spaced result line
01240 | RSET|Y| SR2 | 0, 8 Control for number of columns (Y)
01250 SUB | X001, 1, SINEZ, TEMP X - sinZ in TEMP (for each line)
01260 | COLMN| SAC | Y001, 2 cosY in PAC2

01270 ADD | X001, 1, PAC2 X +cosY in PAC1

01280 MPY | ,TEMP, R001, 2 R001 through R008

01290 TX2 C¢LMN, 1 Re-cycle inner loop

01300 RPT | 8,1, *11 Fix for print rounded the line of 8
01310 FPR | ROO1, 8, 4W, 2D values, RO01 to RO08 (xoex. xxt)
01320 TX1l | LINE, 1 To write present line, % 20th
01330 WL1| TAPE4 Write 20th line, skip over fold
01340 TX3 | PAGE, 1 to new page on channel 1 control
01350 LVE To 705 HLT on completion of 10th page.

58

INTERNATIONAL BUSINESS MACHINES CORPORATION, 590 MADISON AVE., NEW YORK 22, NEW YORK

32-7334 5 Litho in US.A.

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	52a
	52b
	52c
	52d
	52e
	52f
	52g
	52h
	52i
	52j
	52k
	52l
	52m
	52n
	52o
	52p
	52q
	52r
	52s
	52t
	52u
	52v
	52w
	52x
	52y
	53
	54
	55
	56
	57
	58
	xBack

