File No. 7090-24
Form J28-6260-1

Systems Reference Library

IBM 7080/7094 Programming Systems

COBOL Language: Preliminary Specifications

The COBOL language is an English-like program-
ming language that can be used to solve a wide vari-
ety of business and commercial problems. This
publication describes the version of COBOL used
with the 7090/7094 Data Processing Systems. This
version of COBOL is compiled by the COBOL Com-
piler (IBCBC), which is a component of the 7090/
7094 IBJOB Processor.

The reader is assumed to be Iamlhar with the fol-
lowing publications: COBOL, Form F28-8053-2;
IBM 709/7090 Input/Output Control System, Form
C28-6100-2; IBM 7090/7094 Operating Systems:
Basic Monitor (IBSYS) Form C28-6248-0; IBM
7090/7094 Programming Systems: IBJOB Proc-
essor, Form C28-6275-0.

© 1962 by International Business Machines Corporation

This publication is a reprint of Form J28-6260-0 incorporating
changes released in Technical Newsletters N28-0040 and N28-0052.
A sentence has been added at the end of the section on Basic
Operators. While the format has been changed to conform to that
of the Systems Reference Library, the original publication and
applicable newsletters are not obsoleted.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the content of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D91, PO Box 390, Poughkeepsie, N.Y.

Table of Contentg

Page
Introduction A 1
Notation 3
Part.I: Basic Facts 4
Character Set 4
Complete IBM COBOL Character Set 4
Characters Used for Words 4
Characters Used for Punctuation 4
Characters Used in Formulas 5
Character Used in Relations 5
Additional Characters Used in Editing 5
Words and Governing Rules 5
Definition of Words 5
Use of Punctuation Characters with Words 6
Types of Words 6
Nouns 6
Verbs 9
Reserved Words 9
Qualifiers 10
Subscripts 11
Series Separators 13
Part II: Identification Division 14
Organization 14
Additional Information 14
PROGRAM-ID 14
Optional Entries 15
Part II: Environment Division 16
General Description ' 16
Organization 16
Structure 16
Configuration Section 17
SOURCE-COMPUTER ‘ 17
OBJECT-COMPUTER 17
SPECIAL-NAMES 19
Input-Output Section 20
FILE-CONTROL 20
File Assignment Table 25

I-O-CONTROL 26

Table of Contents

Part IV: Data Division
General Description
Overall Approach
Organization
Structure
File Description Entry
General Description
Entry Formats
General Notes
Specific Formats
COMPLETE ENTRY
BLOCK SIZE
Table of Permissible Forms of Block Clause
DATA RECORDS
LABEL RECORDS
RECORD SIZE
RECORDING MODE
VALUE
Record Description
General Description
Elements of a Detailed Data Description
Concept of Levels
Complete Entry Skeleton
Entry Format
General
Conventions Used in the Following Data Entry Formats
Specific Formats
Group Items
Elementary Items
CLASS
DATA-NAME FILLER
EDITING CLAUSES
LEVEL-NUMBER
OCCURS
PICTURE
POINT LOCATION
REDEFINES
SIGNED
SIZE
SYNCHRONIZED
USAGE
VALUE

27
27
27
27
28
28
28
29
29
29
29
30
32
33
34
35
36
37
40
40
40
41
43
43
43
43
44
44
44
47
48
48
49
50
52
56
57
58
58
59
60
61

Table of Contents

Page
Specific Entry for a Condition-Name 62
Summary 62
File-Section 62
Organization 62
Working-Storage Section - 63
Concept of Working Storage 63
Organization 63
Independent Working Storage : 63
Working-Storage Records 63
Initial Values 64
Condition-Names ' 64
Constant Section 64
Concept of Constant Storage - 64
Organization 65
Independent Constant Storage 65
Constant Records . 65
Value of Constants 66
Condition-Names 66
Tables of Constants 66
Part V: Procedure Division 67
General Description 67
Rules of Procedure Formation 67
General 67
Statements 67
Imperative Statements 67
Conditional Statements 67
Compiler Directing Statements 68
Sentence Punctuation 68
Verb Formats 68
Sentence Formats 68
Paragraphs 68
Sections 69
Conditionals 69
General Description 69
Conditions 69
Simple Conditions 69
Collating Sequence 70
Compound Conditions 72

Table of Legal Symbol Pairs Involving Conditions
and Logical Connectives 74

Table of Contents

Formulas

General

Basic Operators

Formation of Symbol Pairs

Verbs

Listed by Categories

Specific Verb Formats
ADD
ALTER
CLOSE
COMPUTE
DISPLAY
DIVIDE
ENTER
EXIT
GO TO
MOVE
MULTIPLY
NOTE
OPEN
PERFORM
READ
STOP
SUBTRACT
WRITE

Part VI: Reference Format
General Description
Program Identification Code
Sequence Numbers
Continuation Indicator
Continuation of Non-Numeric literals
Continuation of Other Words
Writing the Program
Division-Names
Section-Names
Other Rules
Paragraph-Names
Data Description
Organization of Source Program

Part VII: Complete List of IBM 7090/7094 COBOL Words

74
74
75
76
76
76
77
77
79
79
82
83
84
85
86
86
87
91
92
93
94
100
102
102
103

105
105
105
105
105
105
106
106
106
106
106
106
106
107

109

INTRODUCTION

The material in this builetin has been prepared by altering the official
COBOL-61 manual of the Department of Defense. Many of the elective
features and most paragraphs of general commentary have been eliminated,
while descriptions of certain adaptations of COBOL to the IBM 7090 and
7094 have been added. In accordance with the requirements of that manual
the following is reproduced for the information of the reader:

""This publication is based on the COBOL System developed in 1959 by a
committee composed of government users and computer manufacturers.
The organizations participating in the original development were:

Air Materiel Command, United States Air Force

Bureau of Standards, Department of Commerce

David Taylor Model Basin, Bureau of Ships, U. S. Navy

Electronic Data Processing Division, Minneapolis-Honeywell
Regulator Company

Burroughs Corporation

International Business Machines Corporation

Radio Corporation of America

Sylvania Electric Products, Inc.

Univac Division of Sperry-Rand Corporation

In addition to the organizations listed above, the following other organi-
zations participated in the work of the Maintenance Group:

Allstate Insurance Company
Bendix Corporation, Computer Division
Control Data Corporation
DuPont Corporation

General Electric Company
General Motors Corporation
Lockheed Aircraft Corporation
National Cash Register Company
Philco Corporation

Standard Oil Company (N.J.)
United States Steel Corporation

"This COBOL-61 manual is the result of contributions made by all of the
above-mentioned organizations. No warranty, expressed or implied, is
made by any contributor or by the committee as to the accuracy and
functioning of the programming system and language. Moreover, no
responsibility is assumed by any contributor, or by the committee, in
connection therewith,

"It is reasonable to assume that a number of improvements and additions
will be made to COBOL. Every effort will be made to insure that the
improvements and corrections will be made in an orderly fashion, with
due recognition of existing users' investments in programming. However,
this protection can be positively assured only by individual implementors.

nProcedures have been established for the maintenance of COBOL.
Inquiries concerning the procedures and the methods for proposing
changes should be directed to the Executive Committee of the Conference
on Data Systems Languages.

"The authors and copyright holders of the copyrighted material used
herein: FLOW-MATIC (Trade-mark of Sperry-Rand Corporation),
Programming for the UNI VAC®IandII,Data Automation Systems © 1958,
1959, Sperry-Rand Corporation; IBM Commercial Translator, Form No.
F28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copy-
righted 1960 by Minneapolis-Honeywell, have specifically authorized the
use of this material, in whole or in part, in the COBOL specifications.
Such authorization extends to the reproduction and use of COBOL
specifications in programming manuals or similar publications.

""Any organization interested in reproducing the COBOL report and
initial specifications in whole or in part, using ideas taken from this
report or utilizing this report as the basis for an instruction manual or
any other purpose is free to do so. However, all such organizations are
requested to reproduce this section as part of the introduction to the
document. Those using a short passage, as in a book review, are
requested to mention COBOL in acknowledgement of the source, but
need not quote this entire section.”

NOTATION

This section details the notatioh conventions used in describing required
and elective COBOL syntax.

1.

All upper case words which are underlined are required when the
functions of which they are a part are used. An error will occur at
compilation time if the underlined words are absent or incorrectly
spelled.

All upper case words which are not underlined are used for read-
ability only. They may be present or absent in the source program.

All lower case words represent generic terms which must be
supplied by the user.

Material enclosed in braces { } indicates that a choice from the
contents must be made.

Material enclosed in square brackets [] represents an option,
and may be included or omitted by the user.

Notes will elaborate on the formats and specify any restrictions.

In cases where many choices are available, some separations into
numbered options have been made.

When two or more nouns may be written in a series, commas are
shown as connectives., Where a comma is shown in the formats,
it may be omitted or replaced by either AND or , AND.

Part I: BASIC FACTS

This section defines the IBM COBOL character set and describes the
types and formation of COBOL names. It also includes special topics
such as punctuation, subscripting, and name qualification.

CHARACTER SET

Complete IBM COBOL Character Set

The complete IBM COBOL character set consists of the following 48

characters:
0-9
A-17Z
Blank or space
+ Plus sign
- Minus sign or hyphen
* Asterisk
/ Stroke (virgule or slash)
= Equal sign
$ Dollar sign
, Comma
. Period or decimal point
! Quotation mark
Left parenthesis
) Right parenthesis

Characters Used For Words

The character set for words consists of the following 37 characters:

0 -9
A-72Z
- (hyphen or minus)

Note that blank or space is not an allowable character for a word, but is
used to separate words. Where a blank or space is employed, more than
one may be used, except where restricted by the Reference Format (see

Part VI).

Characters Used For Punctuation

The punctuation characters consist of the following:

! Quotation mark

(Left parenthesis

) Right parenthesis
Blank or space

Period
, Comma

Characters Used In Formulas

+ Addition
- Subtraction (hyphen)
* Multiplication
xok Exponentiation
/ Division
= Equality

Character Used In Relations

= Equal to

Additional Characters Used In Editing

$ Dollar sign
* Check protection symbol
, Comma

Actual decimal point

WORDS AND GOVERNING RULES

Definition of Words

A word is composed of a combination of not more than 30 characters
chosen from the following set of 37 characters:

0-9
A-727
- (hyphen)

The following rules govern the definition of a word:

1. A word is ended by a space or by either a period, right parenthesis,
or comma, followed by a space.

2. A word may not begin or end with a hyphen.

3. A literal constitutes an exception to the preceding rules
(see page 7).

Use of Punctuation Characters with Words

The following rules govern the use of punctuation characters:

1.

Types of Words

Nouns

A period or comma, when used, must immediately follow a word,
but a period or comma in turn, must be followed by a space.

A left parenthesis must not be followed immediately by a space,
and a right parenthesis must not be immediately preceded by a
space.

A beginning quotation mark must not be followed by a space, or an
ending quotation mark preceded by a space, unless the spaces are
desired in the literal.

A noun is a single word which is one of the following types:

Data-name
Condition-name

" Procedure-name
Literal
Figurative constant
Special register name
Special name

A noun may contain hyphens for readability purposes. For example,
QUANITY-ON-HAND, and STOCK-NUMBER are legitimate nouns,
whereas, STOCKNUMBER- is not, since a word must not end with a
hyphen. (Labels, tags, field-names, operation numbers, and other such
terms used in other languages, are considered nouns in the COBOL

language.)

The rules which define the types of nouns are as follows:

1.

Data-names. A data-name is a word with at least one alphabetic
character, which designates any data specified in the data description,
or the area which contains the data referred to,

Condition-names. A condition-name is the name assigned to a
specific value, within the complete set of values that a data-name.
may assume, The data~-name itself is called a conditional variable,
and those values it may assume are referred to by condition-names.
The condition-name must contain at least one alphabetic character.

Each condition-name must be unique, or be made unique through
qualification. A conditional variable may be used as a qualifier
for any of its condition-names.

If a condition-name is to be equated to the status of a hardware
device, it is defined in the SPECIAL-NAMES paragraph of the
Environment Division.

The difference between this kind of condition-name and a Data
Division condition-name is automatically handled by the compiler.

3. Procedure-names. A procedure-name is either a paragraph-name
or a section-name. Procedure-names permit one procedure to
refer to others. A procedure-name may be composed solely of
numeric characters. However, two numeric procedure-names are
-equivalent only if they are composed of the same number of
numeric digits and have the same numeric value, Thus, 0023 is
not equivalent to 23,

4. Literals. A literal is an item of data, integral to the text, which
is completely defined by its own identity rather than by Data
Division clauses. A literal may belong to one of two classes: non-
numeric (alphabetic or alphanumeric) or numeric. Non-numeric
literals must be bounded by quotation marks; numeric literals
must not.

A non-numeric literal is defined as a literal which is composed of
up to 120 of any allowable characters except the quotation mark.,
All spaces which are enclosed in the quotation marks are included
as spaces in the literal,

A numeric literal is defined as one which is composed only of

characters chosen from the numerals 0 through 9, the plus or

minus sign, and the decimal point. The rules for formation of
numeric literals are:

a. A numeric literal may contain only one sign
character and/or one decimal point.

b. The literal must contain at least one and not
more than 18 digits.

c. The sign in the literal must appear as the left-
most character. If the literal is unsigned, it
is considered to be positive.

d. The decimal point may appear anywhere within
the literal except as the right-most character,
and is treated as an implied decimal point. If
the literal contains no decimal point, it is
considered to be an integer.

(See page 62 for discussion of floating point literals.)

If a literal conforms to the rules for formation of numeric literals, but
it is enclosed in quotation marks, it is considered as a non-numeric
literal and will be treated as such by the compiler. For example,
-125.65 is not the same as '-125.65'.

Examples of non-numeric literals are:

'"EXAMINE CLOCK NUMBER'
'"PAGE 144 MISSING'
'-125.65'

Examples of numeric literals are:

1506798
-12572.6
+256.75
1435.89

5. Figurative Constants.

Certain values have been assigned fixed

data-names. These items with the fixed data-names are called
"figurative constants.'" These names, when used as figurative
constants, must not be bounded by quotation marks. The singular
and plural forms of figurative constants are equivalent, and may be
used interchangeably. If the names are bounded by quotation marks
they will be considered as non-numeric literals. The fixed data-
names and their meanings are as follows:

ZERO
ZEROS
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

Represents the value 0.

Represents one or more blanks or spaces.

Normally represents one or more left
parentheses, but may represent one or
more 9s if the COLLATE-COMMERCIAL
option has been specified.

Normally represents one or more zeros,
but represents one or more spaces if the
COLLATE-COMMERCIAL option is used.

Represents the character '. Note that the
use of the word QUOTE to represent the
character ' at object time is not equivalent
to the use of the symbol ' to bound a literal.

Verbs

Reserved Words

ALL 'literal' Represents one or more occurences of the
single character (bounded by quotation
marks) comprising the literal, An altern-
ative form for '"literal' is any figurative
constant {not bounded by quotation marks)
other than the ALL ‘literal' type, e.g.,
ALL SPACES.

Figurative constants generate a string of homogeneous information
whose length is determined by the compiler, based upon context.
When the length is not deducible from context, a single character

is generated. The figurative constants may be used in the Procedure
and Data Divisions.

Examples of the above are:

a. MOVE ALL '4' TO COUNT-FIELD, where COUNT-FIELD
has been described as having six characters, results in 444444,

b. From the statement MOVE SPACES TO TITLE-BOUNDARY,
the compiler will create coding which puts as many space
characters into the item TITLE-BOUNDARY as are necessary
to fill the item.

Cc. DISPLAY QUOTE, 'NAME', QUOTE results in ' NAME °'.

d. MOVE QUOTE TO AREA-A, where AREA~A has been
described as having five characters, results in '*''7,

Special Register. TALLY is the name of a special register (USAGE
COMPUTATIONAL, SYNCHRONIZED RIGHT) whose length is
equivalent to a five decimal digit integer. It may be used to hold
intermediate results during the execution of a program.

Special Names. Special names provide a means of relating hardware
with problem-oriented names, and the status of hardware switches
with condition-names.

A verb is a single word which appears in the Procedure Division, and
designates an action: ADD, MOVE, GOTO, etc,

Reserved words are used for syntactical purposes and may not be used

as nouns or verbs., There are three types:

Qualifiers

1. Connectives, Connectives are words used to:
a. Denote the presence of a qualifier: OF, IN.

b. Form compound conditionals: AND, OR, AND NOT, OR NOT;
these are called logical connectives.

2. Optional Words. Optional words have been defined and used to
improve the readability of the language. Within each format, upper
case words which are not underlined are designated as optional.
The presence or absence of each optional word within the format
for which it is shown does not alter the compiler's translation.
However, misspelling of an optional word or its replacement by
another word of any kind is not permitted.

3. Key Words. Key words are of three types:
a. Verbs: ADD, READ, ENTER, etc.

b. Required words, which appear in formats in various divisions
of the language and which are needed to complete the meaning
of certain verbs or entries: TO, OMITTED, MEMORY, etc.

c. Words not shown in any format, but which have a specific
functional meaning: NEGATIVE, SECTION, TALLY, etc.

Every name used in a COBOL source program must be unique, either
because no other name has the identical spelling, or because the name
exists within a hierarchy of names (so that the name can be made unique
by mentioning one or more of the higher levels of the hierarchy). The
higher levels are called qualifiers when used in this way, and the process
is called qualification. Enough qualification must be mentioned to make
the name unique, but it is not necessary to mention all levels of the
hierarchy unless they are needed to make the name unique. A file-name
is the highest level qualifier available for a data-name. A section-name
is the highest and the only qualifier available for a paragraph-name.
Thus, file-names and section-names must be unique in themselves and
cannot be qualified.

Qualification in COBOL is performed by appending one or more prepo-
sitional phrases, using IN or OF. The choice between IN or OF is based
on readability, since they are logically equivalent. Nouns must appear
in ascending order of hierarchy with either of the words IN or OF
separating them., The qualifiers are considered part of the name. Thus,
whenever a data item or procedure paragraph is referred to, any
necessary qualifiers must be written as part of the name.

10

Subscripts

The following additional rules must be observed in using qualification:

1. A qualifier must be of a higher level and within the same hierarchy
as the name it is qualifying. .

2, The same name may not appear at two levels in a hierarchy so that
it would appear to qualify itself.

3. If a data-name or condition-name is assigned to more than one data
item in a program, it must be qualified in all réferences to it in the
Procedure Division and the Environment Division, and in all
references to it in the defining clauses in the Data Division.

4, A paragraph-name must not be duplicated within the same section
and can be qualified by only a section-name. When it is, the word
SECTION must not appear. A paragraph-name need not be quali-
fied when referred to from within the same section. Subscripts
and conditional variables, as well as procedure- and data-names
may be made unique by qualification where necessary or desirable.

5. A data-name cannot be subscripted when it is being used as a
qualifier.
6. The highest level qualifier must be unique. Furthermore, each qualifying

name must be unique at its own level within the hierarchy of the
immediately higher qualifier.

7. A name can be qualified even though it does not need qualification.
The use of more names for qualification than are actually required
for uniqueness is permitted. If there is more than one combination
of qualifiers which will ensure uniqueness, then any set can be used.

8. The name of a conditional variable can be used as a qualifier for
any of its condition-names.

The technique of subscripting is most commonly used for table-handling
functions. The ability to refer to individual elements (of a table or list)
which have not been assigned individual data-names is provided by using
subscripts; the ability to refer to the entire table or list is provided by
using the name of the table or list.

A subscript is an integer whose value determines which element is being
referred to within a table (or list) of like elements. The subscript may

be represented either by a literal which is an integer or by a data-name

which has an integral value.

11

When the subscript is represented by a data-name, the data-name must
be described by a Record Description entry in the Data Division. In both
cases, i.e., whether the subscript is represented by a literal or a data-
name, the subscript is enclosed in parentheses, and appears immediately
after the terminal space of the name of the element. Tables are often
defined so that more than one level of subscripting is required to locate
an element within them. A maximum of three levels of subscripting is

- permitted by COBOL., Multilevel subscripts are always written from
left to right in the order: major, intermediate, minor. In this case, the
subscripts are shown in a single pair of parentheses, and separated by
commas. For example:

RATE (REGION, STATE, CITY)
RATE (3, STATE, CITY)
RATE (3, 5, 6)

All of the above would refer to a particular rate in a three-dimensional
table of rates.

A subscript value of 1 denotes the first element of a list, a value of 2,

the second element, etc. A subscript of (1,2) denotes the second element
within the first repeated element of the table. A table with its main
element appearing ten times, its intermediate element appearing five
times within each of the major elements, and the minor element appearing
three times within each of the intermediate elements, is considered a
three-dimensional table. The last element of such a table is referred to
by the use of the subscript (10, 5, 3).

If a data item is repeated,i.e.,involves the OCCURS clause at its own or
higher level, then the name of this item must be subscripted whenever it
is used. Furthermore, a data-name can be subscripted only if the data
item is repeated (see the OCCURS clause in the Data Division for details).

The same data-name used as a subscript may be associated with items
of different sizes. Within a given program, the same data-name may
appear as one of several subscripts with one item, and as the only sub-

script with another item.

Regardless of the above rules, a data-name must not be subscripted
under any of the following conditions:

1. where the data-name is being used as a subscript.
2. where the data-name is being used as a qualifier.

3. when the data-name appears in the defining clauses in the Data
Division.

12

There are several correct ways of expressing subscripted data-names.
For example, if a data item named A occurs five times and contains a
data item named B which occurs four times in each A, and each B, in
turn, contains a data item C which occurs twice in each B, then the
following expressions are all correct references to the last C, i.e., to
the second C in the fourth B in the fifth A:

CINBINA (5, 4, 2)
CINB (5, 4, 2)
CINA (5, 4, 2)

C (5, 4, 2)

The following forms of expression are incorrect:
C 5,4,2) INBINA

C (2) INB (4) INA (5)

C

C

(4, 2) INA (5)
(2) INB (5, 4)

Series Separators

When two or more nouns are written in a series, words or characters
may be used as separators between the nouns. The use of such
separators in a series of nouns is optional. The separators which may
be used are:

, AND

H
AND

13

PART II. IDENTIFICATION DIVISION

The Identification Division of a source program is used to identify the
program and the output of a compilation. In addition, it may include the
date that the program was written and any other information which may
be considered desirable.

ORGANIZATION

The format of the Identification Division is relatively brief and straight-
forward, as shown below:

IDENTIFICATION DIVISION.
ID DIVISION.

PROGRAM-ID, program-name.

[AUTHOR. author-name j'

INSTALLATION. any sentence or group of sentences.]

DATE-WRITTEN. any sentence or group of sentences.]

DATE-COMPILED. any sentence or group of sentences.]

SECURITY. any sentence or group of sentences.]

REMARKS. any sentence or group of sentences.]

Note: Unless one of the other division names appears in the A-margin
of the program sheet, the compiler will treat what follows the
Identification Division as part of the Identification Division until
it reaches the end of the source program. '

ADDITIONAL INFORMATION

PROGRAM-ID
Function

To give the name by which a program is identified.

PROGRAM-ID. program-name,

Notes:

1. The program-name is a word (conforming to the rules for a word)
that is used to identify compiler output.

2. The PROGRAM-ID will appear at the beginning of the COBOL
assembly output listing as a comments card.

14

Optional Entries

- 1. The remaining six entries may or may not be included at the user's
option. Any entries that are included will be produced with the
assembied output listing, as comments.

2. The date supplied by the monitor program with the assembled
output listing will not be affected by the DATE-COMPILED entry.

15

Part III: ENVIRONMENT DIVISION

The Environment Division is used to specify those aspects of the total
data processing problem which are dependent upon the physical charac~
teristics of the specific computer. If provides a linkage between the
logical concepts of data and records, and the physical aspects of the
files on which they are stored.

GENERAL DESCRIPTION

Organization

Structure

The Environment Division has been divided into two sections:
Configuration and Input-Output.

The Configuration Section, which deals with the overall specifications of
computers, is divided into three paragraphs: the SOURCE-COMPUTER,
which identifies the computer on which the COBOL Compiler is to be run;
the OBJECT-COMPUTER, which identifies the computer on which the
program produced by the COBOL Compiler is to be run; and SPECIAL~
NAMES, which relate the actual names of the hardware used by the COBOL
Compiler to the names used in the program.

The Input-Output Section deals with the definition of the external media
and information needed to create the most efficient transmission and
handling of data between the media and the object program. This section
is divided into two paragraphs: the I-O-CONTROL, which defines re-run
procedures; the FILE-CONTROL, which names and associates the files
with the external media.

The following is a general outline of the sections and paragraphs under
the Environment Division.

ENVIRONMENT DIVISION,
CONFIGURATION SECTION,
SOURCE-COMPUTER. computer name...
OBJECT-COMPUTER. computer name,..
SPECIAL-NAMES. hardware-name IS ...
INPUT-OUTPUT SECTION.
FILE-CONTROL, SELECT...
I-O-CONTROL.

16

CONFIGURATION SECTION

SOURCE-COMPUTER

Function

To identify the computer upon which the program is to be compiled.

IBM709
SOURCE-COMPUTER { U790 }

IBM7094

Notes:

1. Whether the IBM 7090 or the IBM 7094 is used as the source
computer, the foliowing list designates the hardware used
by the compiler:

a. Main Frame
(1) 32,768 words of core storage.
(2) Data Channel trap.
(3) Three index registers - 1,2, and 4.

b. Auxiliary (devices referred to are IB Basic Monitor units)
1) System tape - SYSLBI.
(2) Input and Output units - SYSIN1, SYSOU1, [SYSPPI].
(3) Utility units ~ Four System Utility units.

2. The compiler always operates under control of a supervisor,
which is a subsystem fuctioning under control of IBSYS.

OBJECT-COMPUTER

Function

To describe the characteristics of the computer upon which the program
is to be run.

17

IBM7090
OBJECT-COMPUTER. { ——— }

IBM7094

{ MEMORY SIZE = 32768 WORDS}

ADDRESS 0 THRU 32767

[COLLATE— COMMERCIA L]

Notes:

1. The following list designates the hardware used either by the object
deck loader or the object program:

a. Main Frame

(1) 32,768 words of core storage.

(2) Data Channel trap.

(3) Three index registers (1,2, and 4) if IBM 7090;

seven index registers (1,2,3,4,5,6, and 7) if IBM 7094,

b. Auxiliary (devices referred to are IBSYS units)

(1) System Tape - SYSLB1

(2) Input and Output units - SYSIN1, SYSOUI.

(3) Utility units

2. COLLATE-COMMERICAL specifies that the commercial collating
sequence is to be used in all procedural alphanumeric comparisons
in the object program. In the absence of COLLATE-COMMERCIAL,
the object program will use the standard 7090/7094 collating se-
quence for alphanumeric comparisons.

3. The object deck loader and the object program always operate under
control of a supervisor which is a subsystem functioning under con-

trol of IBSYS.

4. The optional MEMORY and ADDRESS clauses are treated by the
compiler as non-functional remarks.

18

SPECIAL-NAMES

bFunction

To provide a means of relating hardware with mnemonic-names, and the
status of hardware switches with condition-names.

SPECIAL-NAMES. KEY-2 [I_S mnemonic—name—lJ

, ON STATUS IS condition-name-1

, OFF STATUS IS condition-name-2

@}

F

AT QM AMTTQ TQ - ition-nati Q
(, N OLALUD -J:_D_LUH.U L1~ ld llie=9,)

r=j
w2
=
b
—
c
»m
la !
0
Q.C’
2
o
[«
:3
.':S
&
=
('D
q;

entire set of clauses may repeat
with the preceding format

Notes:

19

This paragraph is not required if mnemonic-names and condition-
names are not used in the Procedure Division.

This paragraph is used to assign condition-names to the ON and/or
OFF status of console switches. The console switches which may
be tested are the 36 console entry keys S, 1-35. By definition, a
switch is ON if it is down and OFF if it is up.

In this paragraph the IS mnemonic-name-1 clause is used for read-
ability purposes only, as this mnemonic-name cannot be referred
to by a legitimate conditional expression.

Setting of all console switches is performed by the machine operator
at object-time. An installation may have its own restrictions as to
which (if any) console switches may be used by object-programs.

INPUT-OUTPUT SECTION

FILE-CONTROL

Function

To name each file referred to in the Procedure Division and to specify
hardware assignments,

Option 1.

FILE-CONTROL. SELECT I:OPTIONAL:I file-name-1

[RENAMING file—name—z:|

1 TAPE-UNIT
1 TAPE-UNIT FOR MULTIPLE REEL
ASSIGN TO 2 TAPE-UNITS FOR MULTIPLE REEL
— CARD-READER
PRINTER
CARD-PUNCH

[SELECT.]

Option 2.

FILE-CONTROL. SELECT [OPTIONAL] file-name-1

[RENAMING file-name-Z2]

symbolic-tape-unit-name-1
symbolic-tape-unit-name-2
FOR MULTIPLE REEL
symbolic-tape-unit-name-3
symbolic-tape-unit-name-4
FOR MULTIPLE REEL
ASSIGN TO symbolic-card-unit-name-1
system-unit-name-1
system-unit-name-2
FOR MULTIPLE REEL
system-unit-name-3, system-unit-name-4
FOR MULTIPLE REEL
NONE

[SELECT.. .]

20

Notes:

21

The beginning of the information for each file-name-1 is identified
by the key word SELECT.

The key word OPTIONAL is required for input files which will not
necessarily be present each time the object program is to be run.
The file-name-1 names a file. It is this SELECT file-name which
is referred to in the Procedure Division OPEN, CLOSE, and
READ clauses; and it is also this file=name which is referred to

in the Environment Division I-O-CONTROL paragraph. There must
be a SELECT entry for every file name which is referred to in the
program. Each SELECT file entry must specify the Data Division
Tile Description entry which gives the structure of the file. This

is accomplished in one of two ways:

a. When the RENAMING clause is not used, file-name-1 must be
the name of a Data Division File Description entry, and that
name must be unique within the program.

When the RENAMING clause is used, file-name-1 mustbea
unique name which does not appear as the name of a Data
Division File Description entry. The Data Division File
Description which is used for file-name-1 is the same
description that is used for file-name-2. The file-name-2
SELECT entry must specify which Data Division File
Description is to be used.

cr

RENAMING a file implies the sharing of a single File Description
entry and the storage allocated for that entry, but does not allow
the file names to be referred to interchangeably; that is, the file
names are not synonyms. Two files (SELECT entries) which share
the same FD entry must not be in OPEN status at the same time.

If a file is to be processed both as an input file and as an output
file, there must be two SELECT entries for that file.

The only difference between Option 1 and Option 2 is in the form
of the ASSIGN clause, Option 1 is used to assign files to one of
four general hardware categories: TAPE-UNIT [S7], CARD-
READER, CARD-PUNCH or PRINTER. When this form is used
the programmer has no control over which specific physical unit
within a given hardware category is to be assigned to the file, i.e.,
when the hardware category is TAPE-UNITS, any one of the tape
units on any one of the channels may be assigned to the file. The
actual physical unit assigned to a file is printed on the on-line
printer just prior to the execution of the object program. Option 2
is used to make a more specific assignment of units to files based
upon knowledge of the relationships between files in the source
program, and a knowledge of more sophisticated unit assignment
techniques. The definition of the Option 2 forms of the ASSIGN
clause is given below.

22

A given file may be assigned to one or two but not more than two
physical tape units. When a file uses two physical tape units,
the units are used alternately for successive reels.

The MULTIPLE REEL option must be used when the file being
described may exist on two or more different reels of magnetic
tape. This option must be specified when two tape units are used
for the file. It must also be specified when a single tape unit is to
be used for a file but the file is contained on two or more reels of
tape.

Unit Assignment. The assignment of physical input/output units to
each file is performed by IBLDR prior to execution of the object
program. This assignment is accomplished in IBLDR by inter-
preting the Unit 1 and Unit 2 fields on the $FILE cards which
precede the binary deck. The ASSIGN clause in COBOL provides a
means at compilation time to specify the contents of the Unit 1 and
Unit 2 fields on all $FILE cards. When Option 2 is used, the unit
names which may be assigned to a file are as follows:

a. Symbolic tape units. The programmer may assign files to
symbolic tape unit names, and these symbolic tape units
are in turn equated to actual available physical tape units by
IBLDR. The notation used in explaining the options which
can be used in choosing symbolic tape unit names to be
assigned to a file is as follows:

Symbol Shown Significance of Symbol Shown

X Denotes one of the real channels A,B,...,H.

p Denotes a symbolic (unspecified physical)
channel S, T, ..., Z.

k Denotes one of the unit numbers 1, ..., 9,0.

M Denotes an IBM 729 II or IV Magnetic Tape
Unit.

I Denotes an inter-system (unspecified physical)

channel J,K,...,Q.

Symbolic inter-system units may be specified as follows:

Symbolic Name | Interpretation Given to the Name by IBLDR

I " | Inter-system channel.

IM Inter-system channel and model.

I(k) Inter-system channel and relative unit.

Ik)M Inter-system channel, relative unit, and
model. :

[\

0

The symbolic names (other than inter-system units) may be
chosen from any of the following set of names:

Symbolic Name

Interpretation Given to the Name by IBLDR

M
X

P

X(k)

PM

P(k)M

Any available tape unit of this model type is to be
assigned to the file.

Any available tape unit on this physical channel is
to be assigned to the file,

All files in the program having this sy mbolic
channel designation are to be assigned to the same
channel. ' ,

The (k)th available tape unit on the specified
channel is to be assigned to the file. Note that the
parentheses are required.

Any available tape unit of this model type on the
specified symbolic channel is to be assigned to the
file.

An available tape unit on the symbolic channel
having this model number is to be assigned to the
file. The (k) in this usage indicates the order of
preference for the channel sc that if the number
of available tape units on the channel is less than
the total requested for the channel, those with
lower numbers are to be assigned to the same
channel. Note that the parentheses are required.

Symbolic Unit Record Equipment Names.

The following symbolic unit record equipment names may be
assigned to a file: X has the same meaning as in symbolic tape

units:

Symbolic Name

Interpretation Given to the Name by IBLDR

RDX

PRX

PUX

The card reader on channel X is to be assigned to
the file,

The printer on channel X is to be assigned to the
file,

The card punch on channel X is to be assigned to
the file.

System Units. IBSYS units may be assigned to files by using

the following names:

System Name Interpretation Given to the Name by IBLDR

SYSIN1 The current system input unit is to be assigned
to the file. Note: The physical unit which is
attached to this file is controlled by the machine
operator and may be a card reader or a tape
unit.

SYsSoU1 The current system print output unit is to be
assigned to the file. Note: The physical unit
which is attached to this file may be a printer or
a tape unit.

SYSPPi1 The current system peripheral punch unit is to
be assigned to this file, Note: The physical
unit which is attached to this file may be a card
punch or a tape unit.

SYSUTk System utility tape k (k=1, 2, 3,0r 4) is to be
assigned to the file,

SYSLBk System library tape k (k=1, 2, 3,0r 4) is to be
assigned to the file.

SYSCRD The system card reader is to be assigned to the
file.

SYSPRT The system printer is to be assigned to the file.

SYSPCH The system card punch is to be assigned to the
file.

d. NONE. Files which are designated as OPTIONAL files may have
the unit NONE assigned to the file. When NONE is placed in the
Unit 1 field of a $FILE card, that file is said to be absent for
that particular run and no input activity will be applied to it.

Within certain limitations, it is permissible to change the contents of the
Unit 1 and Unit 2 fields of the $FILE cards after the program has been
compiled. One restriction on changing unit assignments after compilation
is that files which are assigned to tape media only in the source program
(this includes files assigned to NONE in the source program) can not be
changed to card media; files which are assigned to card media only

in the source program (this includes the printer) can not be changed to
tape media. Files which are assigned to either card or tape media in the
source program (SYSIN1, SYSOU1, and SYSPP1) may be changed to any
other tape or card assignment for a given run of the object program.

A file which is assigned to a system unit must conform to the physical and
logical characteristics inherent in the system unit. The table on the
following pages summarizes the relationships between the permissible
forms of the ASSIGN TO clause and the contents of associated fields in

the $FILE cards which are produced by the compiler.

24

File Assignment Table

Form of ASSIGN TO clause

Contents of Associated $FILE Card Fields

Unit 1 Field

Unit 2 Field

Multireel Field

1 TAPE-UNIT blank blank blank
1 TAPE-UNIT MULTIPLE REEL "blank blank MULTIREEL
2 TAPE-UNITS MULTIPLE REEL blank blank MULTIREEL
CARD-READER CRD blank blank
CARD-PUNCH PCH blank blank
PRINTER PRT blank blank
symbolic-tape-unit-name-1 symbolic-tape- blank blank
unit-name-1
Example: A A 77 Thdlank " blank |
symbolic-tape-unit-name-2 symbolic-tape- blank MULTIREEL
MULTIPLE REEL unit-name-2
Example: TIV MULTIPLE REEL TIV blank MULTIREEL
symbolic-tape-unit-name-3 symbolic-tape- symbolic-tape- MULTIREEL
symbolic-tape-unit-name-4 unit-name-3 unit-name-4
FOR MULTIPLE REEL = | e e e e e — =
Example: C(3), C(4) MULTIPLE REEL C(3) C(4) MULTIREEL
symbolic-card-unit-name-1 symbolic-card- blank blank
unit-name-1
Example: RDA RDA blank blank
system-unit-name-1 abbreviated blank or may be auto-
system-unit- matically filled in
name-1
*Example: SYSIN1 ™ IN2 MULTIREEL
.| system-unit-name-2 MULTIPLE REEL4 abbreviated blank or may MULTIREEL
system-unit- be filled in
name-2 automatically
Example: SYSUT1 MULTIPLE REEL |UT1 blank MULTIREEL
system-unit-name-3, abbreviated abbreviated MULTIREEL
system-unit-name-4 system-unit- system-unit-
name-3 name-4
Example: SYSUT2, SYSUT3 FOR _—_——— e ——_———— ——— —— ——
MULTIPLE REEL UT2 UT3 MULTIREEL
NONE NONE blank blank

*Note: In the example, this particular file automatically takes on the

MULTIREEL characteristic of the system unit.

This is also true for

25 SYSOU1 and SYSPP1 which are system MULTIREEL files.

I-O-CONTROL

Function

To specify rerun procedures.

I-O-CONTROL.

ON CHECKPOINT-UNIT
EVERY END OF REEL
RERUN OF file-name-1
EVERY END OF REEL OF
I:RERUN. .] .

output-file-name-2

Notes:
1. This paragraph is required only when rerun is desired.

2. RERUN may be used to specify that memory dumps are
to be written under one of the following conditions:

a. At each reel switch of the specified file (whether input or
output), a memory dump is to be written on the unit which
is provided by the compiler as the standard checkpoint-
unit.

b. At each reel switch of a labeled output file, a memory dump
is to be written following the header label on the new reel
of that output file.

3. Within the INPUT-OUTPUT section,the I-O~-CONTROL paragraph
must not precede the FILE-CONTROL paragraph.

26

Part IV: DATA DIVISION

The Data Division of a source program is used to specify the format and
organization of the data to be processed by the compiled program,

GENERAL DESCRIPTION

Overall Approach

Organization

Data to be processed falls into three categories, (a) that which is
contained in files and enters or leaves the internal memory of the
computer from a specified area or areas, (b) that which is developed
internally and placed into intermediate or working storage, and (c)
constants which are defined by the user. (Figurative constants and
literals used in procedure statements are not listed in the Data Division.)
Tables may fall into any of the above categories.

The approach taken in defining file information is to distinguish between
the physical aspects of the file (the File Description) and the conceptual
characteristics of the data contained therein (the Record Description).
Physical aspects refer to the mode in which the file is recorded, the
grouping of logical records within the physical limitations of the file~-
medium, the means by which the file can be identified, etc. Conceptual
characteristics refer to the explicit definition of each logical entity
within the file itself.

For purposes of processing, the contents of a file are divided into logical
records. By definition, a logical record is the set of information defined
by a Record Description in the Data Division. It is important to note that
several logical records may occupy one block (a physical tape record).
However, logical records may not extend across physical records.

The concept of a logical record is not restricted to file data, but is
carried over into the definition of working storages and constants. Thus,
working storages and constants may be grouped into logical entities and
defined by a series of Record Description entries.

The Data Division, which constitutes one of the divisions involved in a
problem definition, is subdivided according to types of data. It consists
of a File Section, a Working-Storage Section, and a Constant Section,
written in that order.

27

Structure

The File Section contains two elements, descriptions of files and descrip-
tions of records. The File Description entry represents the highest level
of organization in the File Section.

The Working-Storage and Constant Sections consist solely of Record
Descriptions and unrelated Record Description entries.

The Data Division of the source program begins with the header:

DATA DIVISION.

Each of the three sections begins with the appropriate section-name,
followed by the word SECTION and a period, e.g., FILE SECTION., or
WORKING-STORAGE SECTION. , When a section is not required in the
definition of the problem, its name need not appear in the source
program.

The sections themselves consist of a series of related and unrelated
entries. This is different from the paragraph, sentence, statement
structure which characterizes the Procedure, Environment, and
Identification Divisions.

An entry consists of a level indicator, a data-name, and a series of
independent clauses which may be separated by commas. The

clauses may be written in any sequence, except when the entry format
specifies otherwise. The entry itself is terminated by a period. A File
Description consists of a single entry, whereas a Record Description
consists of one or more entries.

The data-name (or the key word FILLER) which appears immediately
after the level indicator is called the '"subject' of the entry. A data-name
(or FILLER) may appear as the subject of more than one entry. When a
duplicated data-name is referred to in one of the defining clauses of an
entry, it must be qualified whenever used.

FILE DESCRIPTION ENTRY

General Description

A File Description entry contains information pertaining to the physical
aspects of a file, In general, it may include the following: the manner
in which the data is recorded on the file, the size of the logical and
physical records, the values of specific label items contained in the file,
and the names of the data records which comprise the file.

The listing of data record names in a File Description entry serves as a
cross-reference between the file and the records in the file.

28

Entry Formats

General Notes

A File Description entry consists of a level indicator, a file-name, and
a series of independent clauses which define the physical and logical
characteristics of the file, The mnemonic level indicator FD is used to
identify the start of a File Description entry, and distinguishes this entry
from those associated with a Record Description.

Specific Formats
The individual clause formats are arranged in an alphabetic order in this

bulletin, but the clauses are shown in the recommended order in the
""Complete Entry,"

COMPLETE ENTRY

Function

To furnish information concerning the physical structure, identification
and record descriptions pertaining to a given file.

ED file-name [, RECORDING MODE IS mode]

[, BLOCK CONTAINS [integer—l m:} integer-2 jRECORD [s] }]
CHARACTER [S]

-
, RECORD CONTAINS [integer-3 m] integer-4 CHARACTER [S]-I

RECORD 18 STANDARD
, LABEL
RECORDS ARE OMITTED

[, VALUE OF label-data-name-1 IS literal-1

17
E label-data-name-2 IS ... J

RECORD IS
, DATA data-name-1 [, data-name-2 . :I
RECORDS ARE

1. The level indicator FD identifies the beginning of the File
Description and precedes the file-name.

29

2. The clauses which follow the name of the file are optional in many
cases. For further details, see the individual explanations for each
clause.

3. The File Description entry is terminated by a period.

4. All commas are optional in the File Description.

5. Those entries which require more than a single line are continued
on subsequent lines with the same left margin for each line, i.e.,
with each subsequent line starting under the first character in the
file-name (see the Reference Format for the Data Division).

BLOCK SIZE

Function

To specify the size of a physical record (block).

&BLOCK CONTAINS [integer-l _'1_‘_(_)_] integer-2 3

RECORD [8]
CHARACTER [S]ﬂ

Notes:

30

Blocking of logical records is permitted only when one of the
following conditions is true:

a. There is only one record-name in the DATA RECORD clause
for the file. In this case the record may be fixed or variable

length.

b. There are several record-names in the DATA RECORD clause
for the file, but all of the records have the same fixed length.

Blocking of files which are assigned to card equipment is not
permitted.

This clause is not required when the file is composed of physical
records each of which contains only one complete logical record.
The form BLOCK CONTAINS 1 RECORD is implied in this case,

Logical records are not allowed to extend across physical records,
i.e., inno casecan a physical record contain a fractional part of
a logical record.

Integer-1 and integer-2 must be numeric literals with positive
integral values.

31

The RECORDS form of the clause is used when it is desired to
specify the size of the block in terms of the number of logical
records in the block. The CHARACTERS form of the clause is
used when it is desired to specify the size of the block by describing
the number of physical computer characters (six times the number
of computer words) in the block. When specifying the number of
computer characters, careful consideration must be given to data
items which are either SYNCHRONIZED or COMPUTATIONAL.

The word CHARACTERS within the BLOCK clause is an optional
word. Whenever the key word RECORDS is not specifically written
in the BLOCK clause, integer-1 and integer-2 represent
CHARACTERS.

The table below specifies the interpretations given to the four
permissible forms of the BLOCK clause. The abbreviation FIX in
the table is used to specify a file which contains logical records of
a given fixed length. VAR in the table is used to specify a file
which contains logical records of varying length. This is the case
where there is only one record name in the DATA RECORD clause
in the FD entry, but that record name is designated to be of
variable length through the use of an OCCURS... DEPENDING ON...
clause in the data description of one or more data-items within
that record. Buffer-size in the table is the size of core storage
areas reserved by the compiler for either receiving physical
records from input files or for forming physical records to be
written upon output files.

RECLTH in the table is an abbreviation for the length of a logical
record. The units used in expressing RECLTH are computer
words, i.e., one sixth the number of characters in the logical
record, RECLTH is preceded by the abbreviation MAX or MIN to
denote the maximum length and the minimum length of a logical
record, respectively. Note that the last block of a file may be
shorter and may not necessarily comply with a specification which
calls for an exact number of logical records per physical block.
The physical blocks are never padded by the compiler to conform
with a specification which calls for an exact number of logical
records per physical block.

If a file containing logical records of varying length is assigned

to a binary mode tape, an extra word in front of each logical
record is assumed when reading or is automatically supplied
when writing. MAXRECLTH, therefore, equals logical record
length plus one. This extra word convention provides compati-
bility with 7090 Sort and with one type of 7090 Commercial Trans-
lator file.

Table of Permissible Forms of BLOCK Clause

Form of BLOCK Clause

File
Type

Buffer-size
Assigned by
Compiler

Interpretation Given to Clause

a. integer-2 RECORDS

b. integer-1 TO
integer-2
RECORDS

c. integer-2
CHARACTERS

(1)FIX

(integer-2) *
(RECLTH)

If the file is input, each block
must contain exacily integer-2
logical records. If output

the compiler will write exactly
integer-2 logical records in
each block.

(2)VAR

(integer-2)*
(MAXRECLTH)

Same as a(1)

(HFIX

(integer-2)*
(RECLTH)

If input, each block may contain
integer-1 to integer-2 logical
records. If output, the compiler
will write up to integer-2 logical
records into each block.

(2)VAR

(integer-2)*
(MAXRECLTH)

If input, each block may contain
integer-1 to integer-2 logical
records. If output, the compiler
will fill each block until integer-2
logical records have been

placed in the block.

(1)FIX

(integer-2)/6

The number of logical records
in the physical block for both
input and output files is calcu-
lated as (integer-2)/6/ (RECLTH).
If the result is not an integer, an
error is indicated. Processing
at object time is the same as in
a(l) using this calculated
blocking factor as the exact
number of logical records per
physical record.

(2)VAR

(integer-2)/6

This is given an interpretation as
if the clause read BLOCK
CONTAINS 6 TO integer-2
CHARACTERS. Interpretation,
therefore, is the same as in d(2)
when 6 is substituted for integer-1.,

32

Table of Permissible Forms of BLOCK Clause ~ (Contd.)

Form of BLOCK Clause | File Buffer-size Interpretation Given to Clause
Type Assigned by

Compiler
d. integer-i TO (1)FIX |(integer-2)/6 ; The number of logical records
integer-2 in each physical block may
CHARACTERS range from (integer-1)/6 /

(RECLTH) to (integer-2y6 /

(RECLTH). Both integer-1

and integer-2 must be exactly
~divisible by 6.

(2)VAR | (integer-2)/6 | (integer-1)/6 and (integer-2)/6
represent the minimum and
maximum blocksize respectively.
In reading an input file, it is
assumed that the block containsan
integer number of records (an
error will result at object time
if this is not true) and the
integer must be within the range
of (integer-1)/6/ (MAXRECLTH)
to (integer-2)/6/ (MINRECLTH).
If the file is an oufput file, the
compiler will ensure that logical
records do not extend across -
blocks. Each block is truncated
in processing when the next
logical record to be written out
might not fit into the current
block being formed.

DATA RECORDS

Function

To cross-reference the description of data records with their associated
file,

RECORDS ARE
,DATA data-name-1 [.data—name—Z ..]
RECORD IS

33

Notes:
1. This clause is required in every File Description entry.

2. The presence of more than one data-name indicates that the file
contains more than one type of data record. These records may be
of differing sizes, different formats, etc. The order in which they
are listed is not significant.

3. Conceptually, all data records within a file share the same area.
This is in no way altered by the presence of more than one type of
data record within the file,

4. Both data-name-1 and data-name-2 must have 01 level numbers.
Subscripting of these data-names is not permitted, and qualification
is not necessary since they are implicitly qualified by the file-name
of this entry.

LABEL RECORDS

Function

To indicate the presence or absence of standard labels.

RECORDS ARE STANDARD
» LABEL RECORD IS OMITTED
Notes:
1. The Input/Output Control System contains the mechanism to process

files which contain labels with a standard format. If a file contains
labels which have a non-standard format or if the file contains no
labels at all, the OMITTED form must be used, and processing of
any non-standard labels must then be accomplished by the READ
and WRITE verbs.

2, There is only one storage area reserved for all standard labels,
whether input or output, and all labels are processed in that area.

This area and all names within the area are defined by the compiler,
i.e., the data description of the area is contained within the compiler
and must not be repeated in the source programs.

3. Standard labels are of two types, header labels and trailer labels.

The various items within a label are processed in different ways
depending upon which type label is being read.

34

4. Since there is only one label area shared by all files, any references
to items within that area must not be qualified by a file name, i.e.,
each name in the label area is unique.

5. The standard label area is processed by the IOCS for any of one of
the following purposes:

a.

To check an input file header label. A header label occurs at
the beginning of the file and at the beginning of every reel of
the file. At the time this type of label is processed by I0CS,
the items FILE-SERIAL~NUMBER, REEL-SEQUENCE-
NUMBER, and FILE-IDENTIFICATION are checked for the
values designated in the respective VALUE OF clauses under
the FD entry for the file.

To check an input file trailer label. A trailer label occurs at
the end of the file and at the end of every reel of the file, If
the value of the item LABEL-IDENTIFIER is 'LEORDb’, the
label is an END-OF-REEL label; if the value is '1EOFb!, the
label is an END~OF-FILE label. At this time the BLOCK-
COUNT item (this item applies to trailer labels only) is
checked against the number of blocks actually read by the
JOCS.

To check the header label on a tape to be used in order to
insure that the tape may be written upon. This is accom-
plished by determining if the RETENTION-PERIOD in the
header label of that tape has expired,

To prepare an cutput file header label. At the time this label
is formed by the IOCS the items RE TENTION-PERIOD, REEL-
SEQUENCE-NUMBER, FILE-IDENTIFICATION and FILE-
SERIAL-NUMBER are formed from the information supplied

in the respective VALUE OF clauses under the FD entry for
the file.

To prepare an output file trailer label. At this time the
LABEL-IDENTIFIER item is filled with the proper END-QOF-
REEL or END-OF-FILE indication, and the BLOCK-CQOUNT
item is also filled in with the actual number of physical blocks
that have been written on the reel.

RECORD SIZE

Function

To specify the size of data records.

[, RECORD CONTAINS [integer-3 ’I;O_] integer-4 CHARACTERS]

35

Notes:

1. Integer-3 and integer-4 must be numeric literals with positive
integral values.

2., The size of each data record is completely defined within the Record
Description entries; therefore this clause is never required. When
present, however, the following notes apply:

a. In this clause, CHARACTERS refers to the number of computer
characters which the record will occupy. Therefore, when
specifying the number of computer characters, careful consider-
ation must be given to items which are either synchronized or
computational.

b. Integer-4 may not be used by itself unless all the data records
in the file have the same size. In this case integer-4 represents
the exact number of characters in the data record. If integer-3
and integer-4 are both shown, they refer to the minimum number
of characters in the smallest size of data record and the maximum
number of characters in the largest size of data record, respectively.

RECORDING MODE

Function

To specify the external format of a file.

. RECORDING MODE IS {BCD } [{LOW} DENSITY]
BINARY HIGH

Notes:

1. The BCD mode should be specified for any file assigned exclusively
to card equipment. If the unit assigned to the file may be either a
tape or card unit, as is the case with some system units, the re-
cording mode must agree with the system unit recording mode.

2. If information is recorded on the magnetic tape just as it is found
in core storage (except for check bits), the tape is said to be a
binary tape or to have been written in the binary recording mode.
Through the use of auxiliary units, alphanumeric information may
be recorded on or read from a magnetic tape independently of the
computer. Magnetic tapes prepared or used by this auxiliary
equipment employ a special coding system known as binary-coded-
decimal. Tapes which are prepared using the binary-coded-
decimal system are said to be BCD tapes, i.e., the RECORDING
MODE IS BCD. Tapes recorded in the BCD mode cannot contain

36

data items whose USAGE IS COMPUTATIONAL. Therefore, all
data items recorded in the BCD mode must be described as USAGE

IS DISPLAY.

Each tape unit is capable of writing characters on magnetic tapes

at two densities, LOW or HIGH. The density of a tape refers to the
number of characters that can be written on a given area of tape.

The more characters that can be written, the higher the character
density. Some auxiliary equipment requires information to be
recorded in LOW DENSITY. However, if the tape is to be completely
processed on the 7090/94, the HIGH DENSITY option should be used
to minimize the tape area required to contain a given number of
characters.

If the clause is not used, RECORDING MODE will be BCD, HIGH
DENSITY.

VALUE

Function

To specify the contents of particular items in the standard labels
associated with a file.

[, VALUE OF label-data-name-1 IS literal-1 [label—data—name—z IS]]

Notes:

37

Each label-data-name is a data-name item and must be an item in
the standard label area (see LABEL RECORDS).

When label-data-name is alphanumeric, literal-1 must be a non-
numeric literal (enclosed within quotation marks). When label-
data-name is numeric, literal-1 must not be enclosed in quotation
marks, and must consist only of numerals.

Files may have label-data-names conforming to the following lists:

:i. Input files.

Label-data-name Contents of literal

FILE-IDENTIFICATION Ten or less alphanumeric
characters which identify
the file.

Label-data-name

FILE-SERIAL-NUMBER

REEL-SEQUENCE-NUMBER

Contents of Literal

Five or less alphanumeric
characters. This is the
REEL-SERIAL-NUMBER
of the file, The REEL-
SERIAL-NUMBER of a
reel of tape is the number
on the external casing of
that reel.

Four or less numerals.
This is the number of the
reel within a given file,
i.e., the first reel of a
file is reel 1, the second
is reel 2. The value
specified in the VALUE OF
clause is checked against
the value in the label of

the first reel of the file
which is processed. Every
time a reel switch occurs
the value is increased by
one, and the new value is
checked against the value
in the label of the new reel.

Each of the above items may or may not be specified for a standard
label input file. If the item is not specified, it is not checked when

the file is processed.

b. Output files.
Label-data-name

FILE~-IDENTIFICATION

RETENTION-PERIOD

FILE-SERIAL-NUMBER

38

Contents of literal

Ten or less alphanumeric
characters which identify
the file.

Four or less numerals.
This is the number of days
that the file is to be saved
after its date of creation.
The creation date for

the file is supplied by the
input/output system at the
time the file is created.

Five or less alphanumeric
characters. This item has
the same definition as in
input (see above).

Label-data-name Contents of literal

REEL-SEQUENCE-NUMBER Four or less numerals,
This item has the same
definition as above.

Each of the preceding items may or may not be specified for a standard
label output file. The IOCS applies the following procedures to these
items:

1.

39

10 101 0WLllg P2 Y

¥ FILE-~-IDENTIFICATION is specified, the non-numeric literal is
placed in the labels created. If itis not specified, the first ten
characters of the file name are placed in the labels created.

If RETENTION-PERIOD is specified, that value is placed in the
labels created. If it is not specified, the value placed in the labels
created will be zero.

The value of FILE-SERIAL-NUMBER is placed in the label only if
the REEL-SEQUENCE-NUMBER value specified is greater than
one. If the REEL-SEQUENCE-NUMBER is not specified as greater
than one, the value used for FILE-SERIAL-NUMBER in creating a
new label will come from the label of the reel chosen to be the next

one used.

If REEL-SEQUENCE-NUMBER is specified, that value will be
placed in the label of the first reel of the file. Each reel after the
first reel will get a REEL-SEQUENCE-NUMBER one greater than
the previous reel. If REEL-SEQUENCE-NUMBER is not specified,
the value used for the first reel will be one.

RECORD DESCRIPTION

General Description

Elements of a Detailed Data Description

A Detailed Data Description consists of a set of entries. Each entry
defines the characteristics of a particular unit of data. With minor
exceptions, each entry is capable of completely defining a unit of data.
Because the COBOL Detailed Data Descriptions involve a hierarchical
structure, the contents of an entry may vary considérably, depending
upon whether or not it is followed by subordinate entries.

In defining the lowest level or subdivision of data, the following
information may be required:

a. A level-number which shows the relationship between this and other
units of data.

b. A data-name.
c. The size in terms of the number of digits or characters.
d. The usage of the data.

e. The number of consecutive occurrences (OCCURS) of elements in a
table or list.

f. The class or type of data, (ALPHABETIC, NUMERIC, or
ALPHANUMERIC).

g. The type of sign.

h. Location of an actual or an assumed decimal point.

i. Location of editing symbols such as dollar signs and commas.
j. Synchronization of the data (SYNCHRONIZED).

k. Special editing requirements such as zero suppression and check
protection.

1. Initial value (VALUE) of a working-storage item or the fixed value
(VALUE) of a constant.

An entry which defines a unit of data must not be contradicted by a sub-
ordinate entry. Thus, once the class is defined, it applies to all sub-
ordinate entries and need not be re-specified. However, when the class
is defined as alphanumeric, subordinate entries may particularize the
class by specifying alphabetic or numeric. If the class has been defined
as either alphabetic or numeric, subordinate entries may not change
the class.

40

Concept of Levels

A level concept is inherent in the structure of a logical record. It arises
in a natural way from the need to specify subdivisions of a record for the
purpose of data reference. Once a subdivision has been specified, it
may be further subdivided to permit more detailed data references. For
example, a weekly TIME-CARD record might be divided into four major
items: NAME, EMPLOYEE-NUMBER, DATE, and HOURS, with more
specific information on DATE and NAME as follows:

/ NAME LAST-NAME
FIRST-INITIAL
MIDDLE-INITIAL

EMPLOYEE-NUMBER {EMPLOYEE—NUMBER
TIME-CARD
MONTH
DATE DAY
YEAR
\ HOURS { HOURS

The most basic subdivisions of a record (those not further subdivided),
are called "elementary items'. Consequently, a record is said to
consist of a sequence of elementary items.

Often it is desirable to refer to a set of elementary items, particularly
with the MOVE verb. For this reason, elementary items may be
combined into ""groups',each group consisting of a sequence of one or
more elementary items. Groups, in turn, may be combined into aggrega=
tions of two or more groups, etc. The term "item", in this bulletin,
denotes either an elementary item or a group.

A system of level-numbers is employed in COBOL to show the organi-
zation of elementary items and groups. Level-numbers start at 01 for
records, since records are the most inclusive groups possible. Less
inclusive groups are assigned higher (not necessarily successive)
level-numbers not greater in value than 49. (Note: There are "special"
level-numbers, 77 and 88, discussed below, which are exceptions to
this rule.) Separate entries are written in the source program for each
level,

Using the Time-Card example above, a skeleton source program
listing, showing the use of level-numbers to indicate the hierarchical
structure of the data, might appear as follows:

41

01 TIME-CARD

04 NAME
06 LAST-NAME
06 FIRST-INITIAL
06 MIDDLE-INITIAL

04 EMPLOYEE-NUMBER

04 DATE

05 MONTH

05 DAY

05 YEAR

04 HOURS

For the sake of simplicity, only the level-number and data-name of each
entry have been given in the above example. A complete description
would have included information on size, class, usage, etc.

A group includes all groups and elementary items described under it
until a level-number less than or equal to the level-number of that group
is encountered. Thus, in the above example, HOURS is not a part of the
group called DATE. MONTH, DAY, and YEAR are a part of the group
called DATE, because they are described immediately under it and have
a higher level-number.

It should be noted that an elementary item may belong to more than one
group. In the previous example, the elementary item called YEAR
belongs to the group called DATE, and also to the group called
TIME-CARD.

The level-number of an entry (elementary item or group) immediately
following the last elementary item of a previous group, must be that of
one of the groups to which that elementary item belongs. Application of
this rule to the previous example restricts the level-number of HOURS
to either1 or 4, since these are the level-numbers of the groups con-
taining YEAR. Only the level of 04 permits HOURS to be a sub-organi-
zation of TIME-CARD.

Two types of data exist for which there is no true concept of level:

1. Constants and working-storage items which are not members of any
hierarchy. They are called independent constants and independent
working-storage items, and have been assigned the special
level-number 77,

2. Entries which specify condition-names to be associated with a parti-

cular value of an item, which do not themselves introduce data, and
which have been assigned the special level-number 88.

42

COMPLETE ENTRY SKELETON

Function

To specify the characteristics of a particular item of data.

{ data-namel)
level-nu

umber
l FILLER j

_,
K
o
=)
£
rd

7
td
wm

| SU—

La

, OCCURS...] [, SIGNED] [, SYNCH:RONIZED...] [, POINT\...:I

, CLASS] I' PICTURE...]
L. -4 -

, editing clauses] [, VALUE :l

Notes:

1. For a detailed explanation of the Reference Format used in the
Data Division, see Part VI of this manual.

2. Those clauses which begin with SIGNED, SYNCHRONIZED, POINT,
and PICTURE, as well as the editing clauses, must not be specified

except at the elementary item level.

3. The clauses may be written in any order with one exception:
REDEFINES, when used, must immediately follow the data~-name.

4, All commas are optional in the Record Description entry.

5., The Record Description entry is terminated by a period.

ENTRY FORMAT

General

When the format shown in the Complete Entry Skeleton is applied to
specific items of data it will be limited by the nature of the data being
described. This section describes the allowable format for the
description of each possible type of data-item (except those with level
88).

Conventions Used In The Following Data Entry Formats

1, Any clauses which are not shown in a format are specifically
forbidden in that format.

43

2. When a clause which has more than one possible form is shown in
its skeletal form, all options are legal. When such a clause is
written out any option not shown is forbidden. For example,
[CLASS...] allows all options while [CLASS IS NUMERIC] for-
bids the use of the AN and ALPHABETIC options.

3. Clauses (and options withinvclauses) which are enclosed in boxes
are legal, but undesirable,

4. Inthe déscription of some types of data the appearance of certain
clauses is mandatory. Such clauses are written in the formats
with no brackets.

5. Parenthesized numbers refer to notes which follow.

6. In the PICTURE clause,
a, form-a is a combination of As, Xs and 9s but not all 9s
b. form-b is a legal combination of 9 V P and S
¢. form-c is a legal combinationof 9 VP, . +-Z$ B
CR DB 0 or * with at least one character not 9 Vor P
d. form-d is {i} 9(m) [{V}] 9n) E { “-“}99

Specific Formats

Group Items

data-name

level-number [REDEFINES. .] [OCCURS, .]
FILLER

] [rer] [owass.].

Elementary Ifems

Alphanumeric (non-report) Items and Alphabetic Items

data-name
level-number [REDEFINES. .] [OCCURS. .]
FILLER

[SIZE. .. (1)] [SYNCHRONIZED. .] [PICTURE IS form-a]

[USAGE IS DISPLAY] [VALUE IS non—numeric—literal]

ALPHANUMERIC

CLASS IS
ALPHABETIC (2)

44

Report Items

data-name
level-number

[REDEFINES. :] [OCCURS. .]
| FILLER

[SYNCHRONIZED. .] [POINT. .. (1)] [editing clauses (1)]

SIZE. .. (1) CLASS IS ALPHANUMERIC USAGE IS DISPLAY
BIZE] , DISPLAY]

form-b (3)
PICTURE IS VALUE IS numeric-literal
form-c

External-Decimal Ifems

data-name
level-number [-REDEFINES. .] [OCCURS. .]
FILLER

[POINT. . . (1)

SIZE. . . (1)]

| S Ry —
I""'_—\"_—l

]
[USAGE IS DISPLAY PICTURE IS form—b]

[ALPHANUMERIC (4)|

VALUE IS numeric—literal] CLASS IS
NUMERIC
Internal-Decimal Items
data-name
level-number [REDEFINES. .] [OCCURS. . :‘
FILLER
{POINT. .. (1)] [(1)] USAGE IS COMPUTATIONAL

[SIGNED. .. (6)] [PICTURE IS form-b] [VALUE IS numeric-literal]

\ LEFT (5)
CLASS IS NUMERIC SYNCHRONIZED
| RIGHT

45

Floating-Point Items

data-name

level-number [REDEFINES. .] [OCCURS. . :|
FILLER

COMPUTATIONAL-1
USAGE IS [SYNCHRONIZED. .. (7)]
COMPUTATIONAL-2

numeric-literal
VALUE IS CLASS IS NUMERIC
~ floating-point-literal

Scientific-Decimal Ifems

data-name
level-number [REDEFINES. .] [OCCURS. . :|
FILLER

PICTURE IS form-d [SYNCHRONIZED. .]

[ALPHANUMERIC (4)|
CLASS IS USAGE IS DISPLAY
NUMERIC

Notes:
1. Certain clauses are regarded as mutually exclusive., These are:

PICTURE and POINT

PICTURE and SIGNED

PICTURE and SIZE

. PICTURE and all editing clauses (except BLANK WHEN ZERO).

[T e I

In case of such a contradictory occurrence, PICTURE dominates.

2. This stipulates that this field is alphabetic. Therefore, if the
PICTURE clause is used, it must contain all As.

3. This form of the PICTURE clause requires, in addition, an editing
clause to define a report field.

4. Since this is 2 numeric item at an elementary level, it is more
accurate to describe it as CLASS IS NUMERIC, although it is not

incorrect to describe it as AN.

5. The most efficient form for a NUMERIC COMPUTATIONAL item is
SYNCHRONIZED RIGHT.

6. It is redundant to specify a sign for an internal-decimal item.

46

7.

A SYNCHRONIZED clause has no effect when used to describe a
floating-point item, since such an item always occupies one or two
full words (depending on precision).

CLASS

Function

To indicate the type of data being described.

ALPHABETIC

r NUMERIC
[, CLASS IS

| S——

ALPHANUMERIC

AN

Notes:

47

AN is an acceptable abbreviation for ALPHANUMERIC.
If AN is specified, it implies that USAGE is DISPLAY.

The CLASS clause can be written at any level. If the CLASS clause
is written at a group level, it applies to each elementary item in
the group. The class of an item cannot contradict the class of a
group to which the item belongs. If a group item is specified as
AN, all items subordinate to that group are, by implication,
DISPLAY items. ALPHABETIC or NUMERIC items within an
ALPHANUMERIC group are not considered contradictory.

A data item can be called NUMERIC only if it is composed solely
of characters chosen from the numerals 0-9, and an operational
sign. If there is no sign associated with the data, the data ig
considered positive. If the data is numeric and no assumed
decimal point is indicated, the data is considered to be an integer.

ALPHABETIC describes data which contains any combination of
the twenty-six letters of the English alphabet and the space. No
other characters, and no numerals can be used.

ALPHANUMERIC describes data which may contain any character
in the valid character set, Thus, data which is ALPHABETIC or
NUMERIC is also ALPHANUMERIC.

If 2 PICTURE is given, the CLASS clause is unnecessary. If both
are used, however, the class shown by the PICTURE must not
contradict the CLASS clause of an elementary item, or of a group
to which the item belongs.

DATA-NAME FILLER

Function

To specify the name of the data being described, or to specify a portion
of the logical record to which no reference is made.

data-name

FILLER

Notes:

1. A data-name or the key word FILLER must be the first word
following the level-number in each Record Description entry and
must not be qualified or subscripted.

2. Qualification of a data-name is automatically provided through
higher level data-names and file-names. Thus a data-name need
not be unique within or between Record Descriptions provided a

higher level data-name or a file-name can be used for qualification.

3. Under no circumstances may a FILLER item be referred to directly.

EDITING CLAUSES

Function

To specify suppression of non-significant zeros and commas, or to
specify floating dollar signs or check protection.

ZERO SUPPRESS

[, CHECK PROTECT [LEAVING integer PLACE [S]]jl :

FLOAT DOLLAR SIGN
[BLANK WHEN ZERO]

Notes:

1. The editing clauses can be specified only at the elementary item
level.

2. The rules for editing, as shown in the MOVE verb, specify that

data items are moved in conformity with the Record Description of
the receiving item.

48

The three options, ZERO SUPPRESS, CHECK PROTECT, and
FLOAT DOLLAR SIGN, all provide suppression of leading zeros
and commas. If the LEAVING option is not employed, suppression
will stop as scon as either a non-zero digit or the decimal point
(actual or assumed) is encountered. Other pertinent factors are
given below:

a. When ZERO SUPPRESS is specified, leading zeros and
commas will be replaced by spaces.

.CJ‘

When CHECK PROTECT is specified, leading zeros and
commas will be replaced by asterisks.

C. When FLOAT DOLLAR SIGN is specified, the rightmost
character suppressed will be replaced by a dollar sign.
All other characters which are suppressed will be replaced
by spaces.

If the LEAVING option is used, the suppression or replacement
will stop so as to leave the specified number of places to the left
of the decimal point, unless it has stopped sooner by the above rule,

Theinteger must be a numeric literal with a positive integral value,

When the BLANK WHEN ZERO clause is used, the item will be
replaced by spaces if the value of the item is zero. Thus, all
other editing requirements, such as ZERO SUPPRESS, CHECK
PROTECT, ete., will be overridden.

When the PICTURE clauses and editing clauses appear in the same
data description and contradict each other, the editing clauses are
overridden.

More comprehensive editing features are available in the PICTURE
clause. When any of the above clauses is used, the format of the
item is assumed to contain editing symbols. Thus, the class of
the item is alphanumeric.

LEVEL-NUMBER

Function

To show the hierarchy of data within a logical record. To identify
entries for condition-names, independent constants, and independent
working-storage items.

level-number

49

Notes:

1. A level-number is required as the first element in each Record
Description entry.

2. A level-number may have values of 1-49, 77, or 88.

3. The level-number 1 signifies a logical record. This corresponds
to the logical record on which the READ and WRITE verbs operate.

4. Special level-numbers have been assigned to certain entries where
there is no real concept of level:

a. Level-number 77 is assigned to identify independent constants,
and independent working-storage items. Independent, in this
case, means not part of any hierarchy.

b. Level-number 88 is assigned to entries which define condition-

names associated with a conditional variable. The conditional
variable must be an elementary item.

OCCURS

Function

To describe a sequence of data items with the same format and to supply
information required in the application of subscripts.

Option 1.
[, OCCURS integer-2 TIMES]

Option 2.

[, OCCURS [integer-1 TO] integer-2 TIMES DEPENDING ON
data-name]

Notes:

1. Integer-1 and integer-2 must be numeric literals with positive
integral values.

2. The OCCURS clause cannot be specified within the File-Section
for an entry which has a level number of 01.

3. The OCCURS clause is used in defining tables and other homogene-
ous sets of repeated data. When the OCCURS clause is used, the
data-name which is the subject of this entry must be subscripted
whenever used as an operand in the Procedure Division. If this
data-name is the name of a group item, then all data-names
belonging to the group must be subscripted whenever used as operands.

50

[Sn}

jay

The Record Description clauses associated with an item whose
description includes an OCCURS clause apply to each repetition
of the item being described.

This clause is required when either the data might not exist, or
when it might occur more than once, If the clause is not used, the
number of occurrences is assumed fo be one.

In option 1, integer-2 represents the exact number of occurrences.
It is illegal to have integer-2 equal to zero.

n option 2, integer-1 and integer-2 refer to the minimum and
maximum number of occurrences, respectively. Integer-2 must
always be greater than integer-1. If integer-1 is zero, the data
may not be present; if it is 1, the data will be present, but need
appear only once. Note that integer-1 does not imply that the item
length is variable, but that the number of occurrences of the item
may vary.

The use of option 2 means that the count of the occurrences of the
data is equal to the value of the elementary item called data-name.
This value must be a positive integer. If the data-name used in the
DEPENDING option appears within the record in which the current
Record Description entry also appears, then data-name must
precede the variable portion of the record. In this case, integer-2
is considered as the maximum number of occurrences and is used
for storage reservation.

Data-name in option 2 should be qualified when necessary, but
subscripting is not permitted.

PICTURE

Function

To show a detailed picture of an elementary item, the general character-
istics of the item, and special report editing.

any allowable combination of characters and>:|

[’P—ICI@- IS <symbols as described below

Notes:
Because the choice of characters in any given PICTURE depends on the
type of data item being described, the characters will be grouped accord-

ing to the type of data item they describe.

1. Numeric Items

The PICTURE of any numeric data item may contain a combination of
only the following characters:

9VPS
The significance of these four characters is as follows:

a. The character 9 indicates that the character position will al-
ways contain a numeric character.

b. The symbol V indicates the position of an assumed decimal
point. Since a numeric item cannot contain an actual decimal
point, an assumed decimal point is used to provide the com-
piler with the information concerning the alignment of items
involved in computation.

c. The character P indicates an assumed decimal scaling posi-
tion. It is used to specify the location of an assumed decimal
point when the point is not within the data item. The charac-
ter V may be used or omitted as desired. If it is used,
however, it must be placed in the position of the assumed
decimal point.

d. The character S is equivalent to the SIGNED clause and indi-
cates the presence of an operational sign. If used, it must al-
ways be written as the leftrnost character of the PICTURE. If
the USAGE of the item is COMPUTATIONAL, the character S
in a PICTURE is a redundant specification, If the USAGE of
the item is DISPLAY, it specifies a sign overpunch in the units
position.

52

53

Alphabetic Items

The PICTURE of an alphabeticitem can contain only the character A.

An A indicates that the character position will always contain an
alphabetic character, i.e., aletter or a space.

Alphanumeric Items

An alphanumeric item has been defined as an item which may con-
tain any character in the character set of the computer. Alpha-
numeric items can be divided into two types: non-report items for
which editing is not specified, and report items for which editing
has been specified.

a. Non-report Items.

The PICTURE of a non-report item may contain only the
characters 9, A, and X and must contain at least one A or X.
The characters 9 and A have been discussed above. A
mixture is treated as if all the characters were Xs.

An X indicates that the character position may contain any

a
X ngicates that the char
set.

=

character in the computer's characte

b. Report Items.

Editing of numeric data is accomplished by moving the data to
a report item which specifies the insertion, replacement,
and/or suppression of certain characters. The PICTURE of a
report item may contain a combination of the following charac-
ters:

9 VP, .+-Z*CRDBBOS

The uses of 9, V, and P have been discussed above. The re-
maining characters will be explained in three groups: zero
suppression, insertion, and replacement characters.

Zero suppression or character replacement is accomplished

by placing a character designated for the desired editing in

each leading numeric character position that is to be suppressed
or replaced. Two general rules apply:

(1) Suppression and/or replacement terminates with the
character immediately preceding the first digit other
than zero, or the decimal point (assumed or actual)
whichever is encountered first.

(2) I all numeric character positions in a PICTURE
reserved for source data (as opposed to those additional
positions used for insertion characters) contain suppres-
sion characters (asterisk is excluded), then all characters

will be replaced by spaces if the value of the source data
is zero,

Zero Suppression Character. The character Z specifies that the character

position is to be suppressed by a space if a non-significant zero appears in
the position. Z must never be preceded by 9,

Insertion Characters. The single dollar sign character specifies that a $

is to be placed in the indicated position. The single dollar sign can be
preceded only by the single plus or minus sign.

The single minus sign, written either as the first or the last character of
a PICTURE, specifies that a display minus sign is to be placed in the indi-
cated position when the value of the source item is negative. If the value
is not negative, a space will be inserted.

The single plus sign, written either as the first or the last character of a
PICTURE, specifies that a display minus sign is to be placed in the indi-
cated position if the value of the source item is negative. If the value of
the item is not negative, a display plus sign will be inserted.

The comma character specifies that a comma is to be inserted in the indi-
cated position unless the following condition occurs: If the suppression or
replacement has caused the elimination of all digits to the left of the comma,
the comma itself will be suppressed.

The decimal point character specifies that an actual decimal point is to be
inserted in the indicated position and the source item is to be aligned
accordingly. Numeric character positions to the right of an actual decimal
point in a PICTURE must consist of characters of one type.

CR and DB are called the ""credit'" and "debit" symbols and may appear
only at the right end of a PICTURE. These symbols occupy two character
positions and indicate that the specified symbol is to appear in the indi-
cated positions if the value of a source item is negative. If the value is
positive or zero, spaces will appear instead.

The zero specifies that the character 0 is to be inserted in the indicated
position.

The character B specifies that a space is to be inserted in the indicated
position.

Replacement Characters. The asterisk indicates check protection, i.e.,
the replacement of non-significant zeros by asterisks.

The Floating Dollar Sign. Zero suppression with a floating dollar sign is
specified by placing a dollar sign in each numeric¢ character position to
be suppressed. A dollar sign will be placed in the rightmost position in
which suppression is to occur.

The Floating Minus Sign. Zero suppression with a floating minus sign is
specified by placing a minus sign in each numeric character position to be
suppressed. If the value of the item is negative, a minus sign will be
placed in the rightmost position in which suppression is to occur. If the
value is positive or zero, a space will be inserted instead of a minus sign.
All floating minus signs must be the leftmost characters in a PICTURE
with the exception that commas may be imbedded. Suppression of leading
commas is also provided.

54

The Floating Plus Sign. Zero suppression by means of a floating plus sign
is specified by placing a plus sign in each leading numeric character po-
sition to be suppressed. If the value of the item is negative, a minus sign
will be placed in the rightmost position in which suppression is to occur.

If the value of the item is not negative, a plus sign will be inserted in-
stead. All floating plus signs must be the leftmost characters ina
PICTURE except that commas may be imbedded. Suppression of leading
commas is also provided.

¢. Scientific Decimal Items.

A scientific decimal item is a special type of report item which specifies
editing of a floating point number. The PICTURE of a scientific decimal
item may contain only the following characters:

+-9.VE

Specifically the PICTURE must conform to the form:

- - [IVI.] I'd Y
{rjomll/lo@E (*} 9

mantissa exponent

where m and n are positive integers and (m-+n) must be less than 17. The
symbol E is used to give visual separation of the exponent from the man-
tissa.

4. Record Mark.

The PICTURE character J specifies that the single character calied
record mark (of special importance to some peripheral equipment)
is to appear in the indicated position as a constant. If J is used, the
PICTURE must contain only one J, and no other character may
appear with it.

The data item being specified is one alphanumeric character
whose value is a record mark (%) and all the rules for a data
item with such specifications apply.

5. General, Notes.

a. A PICTURE clause can be used only at the elementary item
level.

b. An integer which is enclosed in parentheses following any sym-
bol listed below indicates the number of consecutive occurrences
of that symbol:

AX9PZ*8BO- +

¢. The maximum number of characters allowed in a PICTURE is
30.

55

d. All characters, other than the operational symbols (V, P, and S),
are counted in the size of the item. Note that the CR and DB symbols
occupy two character positions.
e. An item can possess only one sign, operational or display, and one
decimal point, assumed or actual.
f. The maximum number of numeric character positions allowed in an
item is 18, except in case of a scientific decimal item.
6. Summary
The chart below defines the allowable types of elementary items and gives
the interrelationship of PICTURE, CLASS, and USAGE.
Type of Item Class USAGE Characteristic Clause |Legitimate
or Symbol in PICTURE | Symbols in
PICTURE
Alphanumeric AN or DISPLAY A or X AXD9
(non-report) ALPHABETIC
Report AN DISPLAY , - +-Z*CRDBBO |9VP, .+
or $ in PICTURE, - ZCRDBB
BLANK WHEN ZERO, 03 *
CHECK PROTECT,
ZERO SUPPRESS, or
FLOAT DOLLAR SIGN
External Decimal NUMERIC DISPLAY 9VPS
Internal Decimal NUMERIC COMPUTATIONAL 9 VPS
Floating Point NUMERIC COMPUTATIONAL-1 }
COMPUTATIONAL-2
Scientific Decimal | NUMERIC |DISPLAY {i} 9(m) [v] 9(n) E{t}gg t-9.VE

POINT LOCATION

Function.

To define an assumed decimal point.

[, POINT LOCATION IS

LEFT

RIGHT

integer

prace s] |

56

Notes:

L. When the PICTURE clause is not given, the definition of numeric
items having non-integral values requires the POINT LOCATION
clause.

2. An actual decimal point may not be defined through the use of this
clause. Actual decimal points must be shown in a PICTURE clause.

3. Integer must be a numeric literal with a positive value. The deci-
mal point is located "integer" positions to the left or right of the
least significant position of the field.

4. This clause can be used only at the elementary item level.

REDEFINES

Function.

To allow the same computer storage area to contain different data items,
or to provide an alternative grouping or description of the same data.

level-number

r
data-name-1 L REDEFINES data-name-2]

Notes:

ol

=3

The REDEFINES clause, when used, must immediately follow
data-name-1.

The level-numbers of data-name-1 and data-name-2 must be
identical.

Redefinition starts at data-name-2 and ends when a level-number
less than or equal to that of data-name-2 is encountered.

The storage area for data-name-1 must not be larger than that for
data-name-2.

The entries giving the new description of the storage must immedi-
ately follow the entries describing the area being redefined.

This clause must not be used for logical records associated with the
same file. The DATA RECORDS clause in the File Description im-
plies automatic redefinition.

Data-name-2 should be qualified when necessary, but subscripting
is not permitted.

The entries giving the new description of the storage area must not
contain any VALUE clauses, except in condition-name entries.

SIGNED

Function.

To specify an operational sign for an elementary item.

[, SIGNED]
Notes:
1. An item which contains an operational sign must be numeric; there-

fore, its class need not be specified.

2. SIGNED indicates the use of a standard operational sign. (This may
also be indicated by the use of an S in the PICTURE.) The standard
operational sign is a sign overpunch in the low order position of a
DISPLAY item and in the leftmost bit for a COMPUTATIONAL item.
A COMPUTATIONAL item always has a sign; therefore, it is re-
dundant to specify an operational sign. A standard operational sign
is not considered in determining the size of an item.

3. When a SIGNED DISPLAY item is used as a source in a MOVE clause
it may or may not actually have a sign overpunch. Sign overpunch is

developed for a receiving item for negative values only.

4. An item which contains any editing symbols cannot have an opera-
tional sign.

5. This clause can be used only at the elementary item level.

SIZE

Function.

To specify the size of an item in terms of the number of characters or digits.

CHARACTER [S:]
, SIZE IS integer

DIGIT [S]

Notes:

1. The size of an item must be specified at the elementary item level
by means of a SIZE clause or a PICTURE. A PICTURE and a SIZE
clause need not both be given. If both are given, they must agree.
Use of the SIZE clause at any level other than the elementary item
level is optional. The actual size of a group is the sum of the sizes
of the elementary items comprising the group.

58

2., Any of the key words of the USAGE and/or CLASS clauses can be in-
serted between "integer" and the word CHARACTERS (or DIGITS) in
the SIZE clause. If this is done, separate USAGE and/or CLASS
clauses must not be written. An example of this is:

02 PAGE SIZE IS 7 NUMERIC COMPUTATIONAL DIGITS
VALUE IS 0000342.

SYNCHRONIZED

Function.

To specify positioning of an elementary item within a computer word or
words.

g LEFT
, SYNCHRONIZED
(RIGHT

Notes:

1. When the SYNCHRONIZED clause is used the data item so described
will appear in the immediately subsequent computer word(s).

2. For DISPLAY data items, SYNCHRONIZED LEFT specifies that the
leftmost character of the item is to occupy the leftmost character
position of a computer word. SYNCHRONIZED RIGHT specifies that
the rightmost character of the item is to occupy the rightmost charac-
ter position of a word.

3. A NUMERIC COMPUTATIONAL item specified as SYNCHRONIZED
RIGHT will appear in the least significant position of a word (two
words if more than ten digits) with its sign bit in the sign bit of the
word. This is the most efficient form for use in computation.

4. If SYNCHRONIZED LEFT is specified, the leftmost character of the
described item occupies the left-hand position of the next available
machine word. This may mean that the right-hand portion of the
preceding word is unoccupied. If the next described item is not
SYNCHRONIZED (LEFT or RIGHT), the leftmost character of this
item follows the rightmost character of the previous SYNCHRONIZED
LEFT item.

(3]

A NUMERIC COMPUTATIONAL item specified as SYNCHRONIZED
LEFT will occupy the least multiple of six bits capable of holding
the item including its sign. The item will have its high order
character (with its sign in the leftmost bit) in the leftmost portion of
a computer word.

59

A NUMERIC COMPUTATIONAL item without a SYNCHRONIZED clause
will also occupy the minimum number of six bit blocks capable of
holding it and its sign (again in the leftmost bit). The item itself,
however, may appear anywhere within a computer word, depending

on where the previous item ended.

In both of the cases above, although the items are computational

and therefore specified as being in binary form, they will occupy
storage in six bit bytes.

USAGE

Function

To specify representation of a data item.

COMPUTATIONAL
COMPUTATIONAL-1

[, USAGE IS COMPUTATIONAL-2]
DISPLAY

Notes:

1. The USAGE clause can be written at any level. If the USAGE clause
is written at a group level, it applies to each elementary item in the
group. The usage of an elementary item cannot contradict the usage
of a group to which the item belongs.

2. The USAGE clause provides a description of the representation of
data in storage. It will not convert data from one representation to
another except in conjunction with Procedure Division clauses.

3. DISPLAY specifies storing of the item in BCD (character) form.

4. COMPUTATIONAL specifies storing of the item in binary form. A
COMPUTATIONAL item is capable of representing a value to be used
in computations and must be numeric. Therefore, the class need not
be given for an item described as COMPUTATIONAL. If a group
item is described as COMPUTATIONAL, the elementary items in the
group are COMPUTATIONAL. The group item is not COMPUTATIONAL
and cannot be used in computations. If the usage specified at the group
level is suffixed, (-1 or -2), the elementary items are considered to
be the same, and may not have a contradicting form of COMPUTATIONAL
usage specified.

5. The three variations of COMPUTATIONAL indicate the following
types of USAGE:

COMPUTATIONAL internal decimal

COMPUTATIONAL-1 single precision floating point
COMPUTATIONAL-2 double precision floating point

60

6.

The only clause required for a floating point item is USAGE.

If USAGE is not specified for an elementary item, or for any group
to which the item belongs, the USAGE is assumed to be DISPLAY.

VALUE

Function.

To define the value of constants, the initial value of working-storage items
or the values associated with a condition-name.

r -
L, VALUE IS literalJ

Notes:

10.

61

The constant, initial, or conditional value produced by the use of a
VALUE clause is the same as that which would result if the specified
literal were placed in the item by means of the MOVE verb.

When the VALUE clause is used in a condition-name entry, no
further information is required.

In the File Section, the VALUE clause can be used only in a condition-
name entry.

In the Working-Storage Section, the VALUE clause is used to speci-
fy the initial value of an item and to specify the value associated with
a condition-name.

In the Constant Section, the VALUE clause can be used only to
specify a constant.

A figurative constant may be substituted for a literal in the format
above.

The VALUE clause must not be stated in a Record Description entry
which contains an OCCURS clause, or in an entry which is sub-
ordinate to an entry containing an OCCURS clause.

The VALUE clause cannot be used to specify the initial value of an
item following a variable portion of a record defined by the
DEPENDING option of an OCCURS clause.

When VALUE is not specified, no assumption should be made
regarding the initial contents of the working-storage area.

All literals other than floating point literals have been discussed
previously.

11. An initial value may be specified for a floating point or scientific
Decimal item by means of a floating point literal. This genus of
literal may appear only in a VALUE clause and must conform to the
following rules:

a.

The plus or minus sign appears in the high order position (if
a sign is given) and is the mantissa's sign. Absence of a
sign implies a positive mantissa.

The mantissa consists of from 1 to 16 digits and an optional
real point. If a decimal point is specified, it may not appear
to the right of the mantissa.

Immediately to the right of the mantissa the exponent (if any
is given) is represented by the symbol E, followed by the plus
or minus sign (if a sign is given), and one or two digits. The
magnitude of the exponent should not exceed 38. The value of
the literal is the value of the mantissa multiplied by 10 raised
to the power given by the exponent.

Examples:

The value 1 may be represented as
1
1000E-03

+. 01E2
010. 000E-1

12. If an external decimal item does not have a mathematical sign
provision indicated (either by an S in its PICTURE clause or by
a SIGNED clause). the sign of a negative value is lost.

Specific Entry for a Condition-Name

SUMMARY

File-Section

Organization

Each condition-name requires a separate entry with the level number 88.
This entry contains the name of the condition and the value associated
with the condition-name. The condition-name entries for a particular
conditional variable must follow the entry describing the item with which -
the condition-name is associated.

The File Section contains a section-header, File Description entries, and
Record Description entries.

62

Working-Storage Section

Concept of Working Storage

Organization

Working Storage is that part of storage set aside for intermediate pro-
cessing of data. The difference between Working Storage and File Sto-
rage is that the former deals with the requirements for the storage of
intermediate data results,whereas the latter deals with the charactistics
of the entire file, as well as the requirements for the storage of each re-
cord of the file.

Whereas the File Section is composed of File Description entries and Re-
cord Description entries, the Working-Storage Section is composed only
of Record Description entries. The Working-Storage Section begins with
a section-header and a period, followed by Record Description entries for
independent Working-Storage items, and then by Record Description
entries for Working-Storage records, in that order.

Independent Working Storage

Items in Working Storage which bear no relationship to each other need
not be grouped into records, provided they do not need to be further sub-
divided. Instead they are classified and defined as independent items.
Each of these items is defined in a separate Record Description entry
which begins with the special level number 77.

The foliowing Record Description clauses are required in each entry:

a level-number

b. data-name

c CLASS or PICTURE

d SIZE (when PICTURE is not specified)

The OCCURS clause is not meaningful and will cause an error at compila-
tion time if used. Other Record Description clauses are optional and can
be used to complete the description of the item, if necessary.

Working-Storage Records

Data elements in Working Storage which bear a definite relationship to
each other must be grouped into records according to the rules for forma-
tion of Record Descriptions. All clauses which are used in normal input
or output Record Descriptions can be used in a Working-Storage Record
Description, including REDEFINES, and OCCURS. Each Working-
Storage record-name (01 level) must be unique since it cannot be quali-
fied by a file-name or section-name. Subordinate data-names need not be
unique if they can be made unique by qualification.

63

Initial Values
The initial value of any elementary item in the Working-Storage Section

may be specified by using the VALUE clause of the Record Description,
All the rules for the expression of literals and figurative constants apply.

Rules for a moving of the literal to the Working-Storage item also apply.

For example:

1. 77 PAGE SIZE IS 7 NUMERIC COMPUTATIONAL CHARACTERS

VALUE IS 0000342, (Legal)
2. 04 PAGE-NBR SIZE 4 CLASS NUMERIC VALUE IS 5. (Legal)
3. 02 ADDRESS SIZE 5 CLASS AN VALUE IS XT1245Z. (Illegal)

4. 03 GROUPING SIZE 9 CLASS NUMERIC VALUE IS ZEROS. (Legal)

In example 2, the class is numeric. Therefore, the value of the item
will be right justified with zeros in the high order positions and will be
stored as 0005.

Condition-Names

Any Working-Storage item may constitute a conditional variable with which
one or more condition-names may be associated. Entries defining
condition-names must immediately follow the item to which they relate,
Both the conditional variable entry and the associated condition-name
entries may contain VALUE clauses. The conditional variable must be

an elementary item.

Constant Section

Concept of Constant Storage

The concept of literals and figuratives enables the user to specify the
value of a constant by writing its actual value (or a figurative repre-
sentation of that value). It is often desirable to name this value and then
refer to it by its name. For example, 6% (.06) may be named as
INTEREST-RATE and then referred to by its name (INTEREST-RATE)
instead of its value (.06).

Constant Storage is, therefore, that part of storage which is set aside to
save named constants for use in a given program.

64

Organization

The Constant Section is organized in exactly the same way as the Working-
Storage Section, It begins with a section-header, which is followed by
Data Description entries for the independent constants, followed by the
Record Description entries for the hierarchic constant records and their
subordinate entries. This sequence should be followed.

Independent Constant Storage

Constants which bear no relationship to each other need not be grouped
into records provided they need not be further subdivided. Instead they
are classified and defined as independent constants. Each of these
constants is defined in a separate Record Description entry which begins
with the special level number 77,

The following Record Description clauses are required in each entry:
a. level-number
b. data-name
c. CLASS or PICTURE
d. SIZE (when PICTURE is not given)

e. VALUE

The OCCURS and REDEFINES clauses are not meaningful for independent
constants and will cause an error at compilation time if used. Other
Record Description clauses are optional and can be used to complete the
description of the constant when necessary.

Constant Records

Named constants in the Constant Section which bear a definite relation-
ship to one another must be grouped into records according to the rules
for formation of Record Descriptions. All Record Description clauses
can be used in a Constant Section Record Description. Each Constant
Section record-name (01 level) must be unique since it cannot be
qualified by a file-name or section-name. Subordinate data-names need
not be unique if they can be made unique by qualification.

65

Value of Constants

In the definition of constants, the VALUE of every item must be specified
individually. All the rules for the expression and movements of literals
and figurative constants apply throughout this section.

Condition-Names

Since a constant can, by definition, have only one value, there can be no
associated condition-names. The use of a condition-name entry (fevel 88)
in the Constant Section is therefore illegal and will constitute an error in
the source program.

Tables of Constants

Tables of constants, to be referred to by means of subscripting, are
defined in the following way:

The table is defined as a record by a set of Record Description
entries each of which specifies the VALUE of an element, or part
of an element, of the table. In defining the record and its elements,
the Record Description clauses(SIZE, USAGE, PICTURE, editing
information, etc.) may be used to complete the definition where
required. This form is required when the elements of the table
require separate handling due to synchronization,

The hierarchical structure of the table is then shown by use of the
REDEFINES entry and its associated subordinate entries. The
subordinate entries, following the REDEFINES entry, must not
contain VALUE clauses.

66

Part V: PROCEDURE DIVISION

The Procedure Division of a source program is used to specify the
logical decisions and the actions which are to become the major portion
of the compiled program.

GENERAL DESCRIPTION

The Procedure Division contains those procedures needed to solve a
given problem. These procedures are written as sentences, combined
to form paragraphs, which in turn may be combined to form sections.

RULES OF PROCEDURE FORMATION

General

Statements

COBOL procedures are expressed in a mamner similar (but not identical)
to common English prose. The basic unit of procedure formation is a
sentence or a group of successive statements. A procedure is a para-
graph, or a group of successive paragraphs, or a section, or a group

of successive sections within the Procedure Division,

There are three types of statements: imperative statements, conditional
statements, and compiler directing statements.

Imperative Statements

An imperative statement consists of a COBOL verb (excluding compiler
directing verbs) and its operands.

Conditional Statements

A conditional statement is defined to be of one of the two following forms:

OTHERWISE

NEXT SENTENCE ELSE NEXT SENTENCE

1. IF condition { statement-1 E % statement-2

2. Imperative statement followed by a related conditional statement.

In the second form, the imperative statement must not end with a GO TO
or a STOP RUN statement. The ON SIZE ERROR option used with the
arithmetic verbs, and AT END as used with the READ verb are the two
allowable conditional statements of the second form.

67

Statement-1 or statement-2 can be either imperative or conditional and
if conditional, can contain conditional statements in arbitrary depth. If
statement-1 or statement-2 is conditional, then the conditions within the
conditional statement are considered to be "nested." The phrase,
OTHERWISE NEXT SENTENCE, may be omitted if it immediately pre-
cedes the period for the sentence. The same rule may be applied to the
resulting sentence.

Compiler Directing Statements

A compiler directing statement consists of a compiler directing verb
and its operands.

Sentence Punctuation

Verb Formats

See individual verbs for details.

Sentence Formats

Par

aphs

The following rules apply to the punctuation of sentences:

1. A sentence is terminated by a period.
2. A separator is a word or character used for the purpose of
enhancing readability. Use of a separator is optional.
3. The allowable separators are:
THEN ‘
4., These separators must not be followed immediately by another such
separator.
5. Separators may be used in the following places:
a. Between statements.
b. In a conditional statement as defined under "Conditional
Statements' (first form):
(1) Between the condition and statement-1.
(2) Between statement-1 and OTHERWISE.

So that the source programmer may group several sentences to convey
one idea (procedure), paragraphs have been included in COBOL. In
writing procedures in accordance with the rules of the Procedure
Division and the requirements of the Reference Format, the source
programmer begins a paragraph with a name. A paragraph is termi-
nated by the next paragraph or section name or by end of the Procedure
Division.

68

Sections

A section consists of one or more successive paragraphs and when
designated must be named. The section-name is followed by the word
SECTION and a period. The section-name applies to all paragraphs
following it until another section-name is found. It is not required that
a program be broken into sections. For further details see Reference
Format.

CONDITIONALS

General Description

Conditional procedures are extremely valuable in describing data
processing problems. COBOL makes available to the programmer
several means of expressing conditional situations.

COBOL conditionals generally involve the key word IF followed by the
conditions to be examined followed by the operations to be performed.
Depending upon the truth or falsity of the conditions different sets of
operations are to be performed.

Conditions
Simple Conditions

A simple condition is one of four types of tests. These tests and the
acceptable formats for stating them are described below.

i. Relation Tests. A relation test involves a comparison of two oper-
ands. Either of these two operands can be a data-name, a literal,
or a formula., The comparison of two literals is not permitted.
(Throughout the remainder of the discussion, the word "item"
means either a data item or a literal.,) Comparison of other numeric
items is always permitted.

a. Comparison of Numeric Items. For numeric items, a compari-
son results in the determination that the value of one of the
items is less than, equal to, or greater than the other.

The comparison of numeric items is based on the respective
values of the items considered purely as algebraic values. The
item length in terms of the number of digits is not itself signifi-
cant. Zero is considered to represent a unique value regard-
less of the length, sign or implied decimal point location of an
item.

69

b. Comparison of Non-numeric lems. For two non-numeric items,

a comparison results in the determination that one of the items
is less than, equal to, or greater than the other with respect to
a collating sequence. The standard collating sequence is the
7090/94 collating sequence, but an alternate sequence may be
specified by designating that the commercial collating sequence
is to be used for non-numeric comparisons. This is specified
in the Environment Division OBJECT-COMPUTER paragraph.

The figurative constant HIGH-VALUE [S] assumes the value of
left parenthesis in the 7090/94 collating sequence and 9 in the
commercial collating sequence. The figurative constant LOW-
VALUES [S] assumes the value of zero in the 7090/94 collating
sequence and blank in the commercial collating sequence.

COLLATING SEQUENCE

The two permissible collating sequences, in order, with the lowest
values at the top of the columns, are as follows:

70

7090/94 commercial
0 through 9 blank or space
!) orm
+ + or &
A through I $
6 *
) /
- s
J through R (or %
0 =or #
$ 'or @
*)
blank or space A through I
/ 0
S through Z J through R
* ¥
, S through Z
(0 through 9

2. Full Relation Test Format. There are two cases to consider: equal
length items, and unequal length items.

a. Items of Equal Length. If the items are of equal length, compari-
son proceeds by comparing characters in corresponding character
positions starting from the high order end and continuing until
either a pair of unequal characters is encountered or the low order
end of the item is reached, whichever comes first. The items are
determined to be equal when the low order end is reached.

The first encountered pair of unequal characters is compared for
relative location in the ordered character set. The item which
containg that character which is positioned higher in the ordered
sequence is determined to be the greater item.

b. Items of Unequal Length. If the items are of unequal length,
comparison proceeds as described above. X this process exhausts
the characters of the shorter item, then the shorter item is less
than the longer item unless the remainder of the longer item con-
sists solely of spaces, in which case the two items are equal.

The format for full relation tests is:

IS [NOT] GREATER THAN
data-name-1 IS [NOT] LESS THAN data-name-2
(IS [NOT] EQUAL TO
literal-1 IS [NOT] = literal-2
IS UNEQUAL TO
EQUALS
EXCEEDS

The word EXCEEDS is equivalent to IS GREATER THAN. The phrase
IS UNEQUAL TO is equivalent to IS NOT EQUAL TO.

, formula-1 formula-2

In the above format, the actual choice from data-name-1, literal-1,

or formula-1is called the subject. The cheoice from data-name-2,
literal-2, or formula-2 is called the object. The subject and the object
cannot both be literals.

71

An alternative way of stating a comparison of the value zero with a
formula, or with an item whose class is numeric, is provided by the
following form:

data-name POSITIVE
IF IS [NOT] NEGATIVE
formula ZERO

The specific interpretations of these terms are as follows: an item or
formula is positive only if its value is greater than zero; an item or
formula whose value is zero is not positive; an item or formula is
negative only if its value is less than zero; an item or formula whose
value is zero is not negative. In brief, the value zero is considered
neither positive nor negative.

3. Conditional Variable Test. An item whose specific values can be
named is called a conditional variable. A name given to a set of
one or more of these values is called a condition-name.

A conditional variable test is one in which an item is tested to
determine whether or not one of the values associated with a
condition-name is present.
The format for a conditional variable test is:

IF condition-name

4, Switch Status Test. The format for a switch status test is:

IF condition-name
In the switch status test the condition-name is associated with the
ON or OFF status of a switch., The switch must be named in the
SPECIAL-NAMES paragraph of the Environment Division.

Compound Conditions

Simple conditions can be combined with logical operators according to

specified rules to form compound conditions. The logical operators

are AND, OR, and NOT, and are defined by the following table, where
A and B represent simple conditions:

72

A B NOTA | AANDB AOR B -
True True False True True
False | True True False True
True False | False False True
False | False | True False False

Thus, if A is true and B is false, then the expression A AND B is false,
whil e the expression A OR B is true.

The rules for determining the truth value of a compound condition are
as follows:

1. If AND is the only logical connective used, then the compound
condition is true only if each of the simple conditions is true,

2. If OR is the only logical connective used, then the compound con-
dition is true only if one or more of the simple conditions is true.

3. If both logical connectives are used (if both AND and OR appear),
then there are two cases to consider, depending on whether or not
parentheses are used.

a. Parentheses can be used to indicate grouping. They must always
be paired, as in algebra, and the expressions within the pa-
rentheses will be evaluated first. The precedence of nested
parenthetical expressions is the same as normal algebra. That
is, the innermost parenthetical expressions are evaluated first.

b. If parentheses are not used, then the conditions are grouped
first according to AND, proceeding from left to right, and then
by OR, proceeding from left to right.

Examples:

(1) To evaluate C1 AND (C2 OR NOT (C3 OR C4)), use the
first part of rule 3 and successively reduce this by sub-
stituting as follows:
Let C5 equal C3 OR C4 resulting in C1 AND (C2 OR NOT C5)
Let C6 equal C2 OR NOT C5 resulting in C1 AND C6
This can be evaluated by the table shown above.

(2) To evaluate C1 OR C2 AND C3, use the second part of rule

3 and reduce this to C1 OR (C2 AND C3), which can now be
reduced as in example (1).

73

(3) To evaluate C1AND C2 OR NOT C3 AND C4, group first by AND
from left to right, resulting in:

(C1AND C2) OR (NOT C3 AND C4)
which can now be reduced as in example (1).

(4) To evaluate C1 AND C2 AND C3 OR C4 OR C5 AND C6 AND C7
OR C8, group from the left by AND to produce:

((C1 AND C2) AND C3) OR C4 OR ((C5 AND C6) AND C7) OR C8
which can now be reduced as in example (1).

Table of Legal Symbol Pairs Involving Conditions and Logical

Connectives
SECOND SYMBOL
C OR AND NOT ()
C - P P - - P
FIRST OR P - - P P -
SYMBOL
AND P - - P P -
NOT P* - - - P -
(P - - P P -
) - P P - - P

Where P indicates that the pair is permissible, and the dash indicates
a symbol pair that is not permissible, the pair OR NOT is permissible,
while the pair NOT OR is not permissible.

* Permissible only if the condition itself does not contain a NOT.

FORMULAS
General
A formula is an algebraic expression consisting of a combination of

arithmetic operators and data-names and/or literals, representing
items on which arithmetic may be performed.

74

Basic Operators

There are five arithmetic operators which may be used in formulas.
They are expressed by characters.

Operation Character
(Addition) N
(Subtraction) -
{Multiplication) *
(Division) /
(Exponentiation) *%

The rules for forming algebraic expressions assume the existence of a
precedence table for the arithmetic operators which determines the
sequence in which the arithmetic operations in a formula will be exe-
cuted unless parenthesizing is used to modify the hierarchy.

Normal precedence, from high to low, is:

Exponentiation
Multiplication and Division
Addition and Subtraction

Parentheses may be said to have a precedence higher than any of the
operators, and are used to eliminate ambiguities in logic where con-
secutive operations of the same hierarchical level appear, or to modify
the normal hierarchical sequence of execution in formulas where it is
necessary to have some deviation from the normal precedence. When
the sequence of execution is not specified by parentheses, the order of
execution of consecutive operations of the same hierarchical level is
from left to right. Thus, expressions ordinarily considered to be
ambiguous, e.g., A/B*C and A/B/C are permitted in COBOL. They
are interpreted as if they were written (A/B) * C, and (A/B) / C,
respectively. Without parenthesizing, the following example illustrates
normal precedence:

A+B/C+D**E*F -G
would be interpreted as if written:

A+(B/C)+((D**E)*F)-G
with the sequence of operations working from the inner-most pa-
rentheses toward the outside. Exponentiation will be performed first,
then multiplication and division and finally addition and subtraction.

Exponentiation of a negative variable or literal is allowed only if
the exponent is a literal equal to zero, one, or two.

75

Formation Of Symbol Pairs

The ways in which symbol pairs may be formed are summarized in the
table below, where P indicates a permissible pair.

SECOND SYMBOL

VARIABLE | */** | -+ ()

VARIABLE - P P - P

FIRST * [** P - P P -
SYMBOL

+ - P - - P -

VERBS

Listed By Categories

ADD
SUBTRACT
Arithmetic MULTIPLY
DIVIDE
COMPUTE

READ
WRITE
Input-Output OPEN
CLOSE
DISPLAY

. GO TO
Procedure Control ALTER
PERFORM
Data Movement MOVE
Ending STOP
ENTER

Compiler Directing Verbs \ EXIT
: | NOTE

76

Note: Although the word IF is not a verb in the strictest sense, it

possesses one of the most important characteristics of one,
namely the generation of coding in the object program. Its
occurrence is a vital feature in the Procedure Division.

Specific Verb Formats

The specific verb formats, together with a detailed discussion of the
restrictions and limitations associated with each, appear on the
following pages, in alphabetic sequence.

ADD

Function

To add two or more numeric data items and set the value of an item
equal to the result.

ADD

[ROUNDED] [, ON SIZE ERROR

literal-1 “» SIitera1-2 f -] [s@
(

(data-name-1)L | data-name-2)

data—name—n.l
GIVING)

imperative-statement-1

NEXT SENTENCE

{ ELSE imperative-statement-2
OTHERWISE NEXT SENTENCE }

Notes:

1. The data-names used must refer only to the special register,

77

TALLY, or to numeric elementary items whose descriptions appear
in the Data Division of the program.

. The maximum size of any operand (literal or data-name) is 18

decimal digits. An error will be indicated at compilation time if
the format for any operand specifies a number of digits in excess
of 18. Intermediate results are carried to a maximum of 20 digits
with no loss of least significant digits except when the maximum is
reached.

. If the GIVING option is used, the value of data-name-n will be made

equal to the sum of the values of the preceding data-names and/or
literals. Data-name-n is not used as an addend in this option;
hence its format may contain editing symbols.

78

If the TO option is used, the sum of the values of data-name-n and
the preceding data-names and/or literals will be calculated; the
value of data-name-n will then be made equal to the sum.

If neither the GIVING nor the TO options are used, the last named
(the rightmost or last written) addend must not be a literal.

The sum of the values of all the data-names and/or literals will be
calculated. The value of the rightmost data-name will then be made
equal to the sum. Since it is used as an addend in this case the
format of the rightmost data-name may not contain any editing
symbols.

Examples:
Statement Sum Stored In
ADD A, B, C A+B+C C
ADD A, B, TOC A+B+C C
ADD A, B, C
GIVING D A+B+C D

An error will be indicated at compilation time if the data description
of any item used as an addend specifies the presence of editing
symbols. Operational signs and implied decimal points are not
considered editing symbols. Literals used as addends must be
numeric.

An ADD statement must refer to at least two addends.

The formats associated with all operandsreferred to in an ADD
statement may differ among each other. Decimal point alignment
is automatically supplied throughout the calculation.

If the number of decimal places in the calculated result (sum) is
greater than the number of decimal places associated with the
resultant data-name (the data-name whose value is to be set equal

to the sum), truncation will occur unless the ROUNDED option has
been specified. Truncation is always in accordance with the size
associated with the resultant data-name, When the ROUNDED option
is specified, the least significant digit of the resultant data-name
has its value increased by 1 whenever the most significant digit of
the excess is greater than or equal to 5.

Whenever the number of integral places (those to the left of the
decimal point) in the calculated result exceeds the number of integral
places associated with the resultant data-name, a size error
condition arises.

In the event of a size error condition, one of two possibilities will
occur, depending on whether or not the ON SIZE ERROR option has
been specified.

.

The testing for the size error condition occurs only when the ON
SIZE ERROR option is specified in the verb format. In the event
that ON SIZE ERROR is not specified, and a size error condition
arises, the effect will be unpredictable.

If the ON SIZE ERROR option has been specified, and a size
error condition arises, the value of the resultant data-name will
be altered unpredictably, and the imperative-statement~1 associ-
ated with the ON SIZE ERROR option will be executed.

ALTER

Function

To modify a predetermined sequence of operations,

ALTER

procedure-name-1 TO PROCEED TO procedure-name-2

[procedure—name—3 TO PROCEED TO procedure-name-4 ..]

Notes:

Procedure-name-1, procedure-name-3, ..., are names of para-
graphs, each containing a single sentence consisting of only a GO
TO statement as defined under option 1 of the GO TO verb.

The effect of an ALTER statement is to replace the procedure-name
specified in the GO TO sentence (located at procedure-name-1) by
the procedure-name-2 specified in the ALTER statement.

CLOSE

Function

To terminate the processing of input and output reels and files, with
optional rewind and/or lock.

CLOSE

NO REWIND
file-name-1 [REEL:| [WITH :HE file-name-2 . :I

LOCK.

79

Notes:

1.

80

The CLOSE file-name option (as applied fo the entire file rather than
to individual reels) will initiate the final closing conventions for the
file and release the data area. The CLOSE verb may be applied to
any file with OPEN status but must not be re-used on the same file
without an intervening OPEN instruction. '

CLOSE file-name (without the REEL option) will have the following
effects:

a. Input Files.

(1) i neither NO REWIND nor LOCK is specified, the current
reel of the file will be rewound.

(2) If the NO REWIND option is specified, the current reel of the
file will not be rewound.

(3) If the LOCK option is specified, the current reel of the file
will be rewound and unloaded.

Note that any label processing is performed only when the physical
end-of-file is encountered on the tape. This condition normally
occurs prior to the closing of the file.

b. Output Files.
The final closing conventions for the file are performed and the
data area is released. Furthermore,

(1) If neither LOCK nor NO REWIND is specified, the current
reel of the file will be rewound,

(2) If the NO REWIND option is used on a tape file, the last reel
of the file will remain positioned at the end of the file.

(3) The use of the LOCK option will rewind and unload the current
reel.

If the CLOSE file-name REEL option is used, then, for both input
and output files, the next reel processing procedures are instituted.
More specifically:

a. Input Files.

Processing of the end label will be bypassed but the procedures
for checking the label on the next reel will be executed. I a
CLOSE REEL is given for the last reel of a file, an error will
occur in the object program. Furthermore,

81

(1) If neither LOCK nor NO REWIND is specified, the current
reel will be rewound.

(2) If the NO REWIND option is used, the current reel is not re-
wound, However, this may cause an error in the object
program.

(3) If the LOCK option is used, the current reel will be rewound
and unloaded.

(4)RERUN procedures are not executed for the file.
b. Output Files.

The standard end-of-reel processing takes place immediately.
Furthermore,

(1) If neither LOCK nor NO REWIND is specified, the current reel
will be rewound.

(2) If the NO REWIND option is used, the current reel is not re-
wound. However, this may cause an error in the object
program.

(3) If the LOCK option is used, the current reel will be rewound
and unloaded.

(4) RERUN procedures for the file, if specified, are not executed.

When a CLOSE REEL is given, the locking and rewinding options of
the CLOSE REEL will take precedence only for the current reel and
regardless of the options associated with a CLOSE of file. When a
CLOSE file-name is given, its options will be executed for the
current reel of the file,

If the file has been specified as OPTIONAL (see the FILE-CONTROL
paragraph of the Environment Division), the standard end-oi-file
processing is not performed whenever this file is absent.

If a file is assigned to a system unit, the CLOSE options for the file
may be overridden by the CLOSE options characteristic of the
system unit. For instance, the options concerning the closing of
the IBSYS unit SYSOUL are under control of the compiler regard-
less of the CLOSE options specified in the source program.

COMPUTE

Function

To permit use of formulas.

FROM
data-name-2
COMPUTE data-name-1 [ROUNDED] =
formula
EQUALS

_ ON SIZE ERROR imperative-statement-1
- - NEXT SENTENCE

{ ELSE } imperative-statement-2
OTHERWISE NEXT SENTENCE

Notes:

1. Data-name~1may not be a literal.

2. The data-name-2 option provides a method, other than MOVE, for
making the value of data-name=-1equal to the value of data~name-2.

3. The formula option permits the use of any meaningful combination
of numeric literals, arithmeti¢ operators, and data-names. These
may all be parenthesized as required. Any data-names used must
satisfy the general rules specified for data-names used with the
simple arithmetic verbs.

4, The ON SIZE ERROR option applies only to the final result and does
not apply to any of the intermediate results.

5, All rules regarding the ON SIZE ERROR option, the ROUNDED
option, the size of operands, truncation, and the editing of results
(which are specified for the simple arithmetic verbs) apply also to
the verb COMPUTE. (See ADD.)

6. The words FROM and EQUALS are equivalent to each other and to
the equal sign symbol. They may be used interchangeably, and the
choice is generally made for readability.

7. Data-name-1 or data-name-2 may be the special register, TALLY,

8, ADD, SUBTRACT, MULTIPLY, and DIVIDE are converted fo the

82

corresponding COMPUTE statements by the compiler.

DISPLAY

To display low volume data on an available hardware device.

literal-1 literal-2
DISPLAY [,]

i data-name-1 data-name-2

Notes:

83

The standard DISPLAY device is the on-line printer.

When DISPLAY is followed by multiple operands, the data com~
prising the first operand is displayed as the first set of characters,
the data comprising the second operand as the second set of charac-
ters, and so on. An extra space is inserted after each set,

For any single data item or literal in 7090/7094 COBOL, the maxi-
mum number of characters which may be displayed is 72.

Internal decimal data items (USAGE COMPUTATIONAL) are pre-
pared for external output with a sign overpunch indicated over the
rightmost position when the items are minus. The printer recognizes
this as an alphanumeric character and prints it accordingly. The
user must interpret this character. Floating point data items are
displayed in the scientific decimal form. Other data items are dis-
played as they appear in core storage.

If an output file is assigned to the same device that is used for
DISPLAY statements, WRITE statements on that file and DISPLAY
statements on that device will not necessarily appear on the listing
in the order that the statements of the source program were written.
Output resulting from a WRITE statement is buffered whereas out-
put resuiting from a DISPLAY statement is produced immediately.

DIVIDE

Function

To divide one numerical data item into another and set the value of an
item equal to the result.

—_— —_—

data-name-1 data-name-2
DIVIDE INTO ¢ } [GIVING‘ data—name~?;|

literal-1 literal-2

imperative-statement-1
\:ROUNDED] , ON SIZE ERROR
: NEXT SENTENCE

ELSE { imperative-statement-2
OTHERWISE NEXT SENTENCE }

Notes:

1.

84

The data-names used must refer to the special register, TALLY,
or numeric elementary items whose descriptions appear in the Data
Division of the program.

All rules specified under the verb ADD regarding the size of
operands, the ON SIZE ERROR option, the ROUNDED option, the
GIVING option, truncation, and the editing of results, apply to the
DIVIDE verb. (See ADD.)

An error will be indicated at compilation time if the data descrip-
tion for either data-name=1 or data-name-2 specifies the presence
of editing symbols. Literals used must be numeric.

When the GIVING option is not specified, a literal must not be used
as the dividend.

Division by zero constitutes a special type of size error. Program
control may be provided through the use of a test for zero prior to
attempting division. If the zero test type of program control is not
provided, the rules specified under the ADD verb with respect to
the ON SIZE ERROR option apply.

ENTER
Function

To permit communication between a COBOL object program and one or
more subroutines assembled by IBMAP.

ENTER LINKAGE-MODE.

CALL 'entry-name-1' [USING data-name-1 [, data-name-2...]]
I:RETURNING procedure-name-1 [,procedure-name-2,..]] .

ENTER COBOL.

Notes:

1. ENTER LINKAGE-MODE and ENTER COBOL do not themselves
cause generation of instructions but do permit the use of the special
non~COBOL verb CALL.

2. Eachtime LINKAGE-MODE is entered, CALL may be used as many
times as desired, but normal procedure statements may not be used
again until ENTER COBOL has been given.

3. A CALL statement may have a paragraph-name in the A-margin.

4. The normal rules of program flow apply to CALL statements. That
is, a CALL statement may follow any main routine statement. A
paragraph containing a CALL statement may also be used in a
PERFORM statement.

Entry-name identifies the entry point of the subordinate program.

If the subordinate program was separately assembled under IBMAP
for inclusion with an IBCBC program at load time, the entry name
will correspond to the name given in columns 8-13 of the $IBMAP
card. Entry-name must be surrounded by quotes so that the compiler
will treat it as a non-numeric literal. This allows for use of names
permissible in IBMAP but not normally permissible in COBOL.

[9)]

6. The USING clause provides a means of informing a subordinate
program of the object-time locations of particular data items.
Such data items should be described in the Working-Storage or
Constant Sections since input/output records are variably located
and processed in IOCS buffers.

7. Since the USING clause communicates to a subordinate program the

machine word locations but not the initial character positions of data
items, it is useful to specify such items as SYNCHRONIZED.

85

The RETURNING clause permits communication from the subordinate
program to the COBOL program by means of multiple return points.
Although return from a subordinate program is normally to the
statement following the CALL statement, additional return points
may be indicated by use of RETURNING and additional procedure-
names. Note that the subordinate program may also communicate
with the main program through alteration of the contents of data
items referred to by the USING clause.

For information about the construction of the subordinate program,
consult the IBMAP literature, giving particular attention to the CALL,
RETURN, and SAVE macro-instructions.

EXIT

Function

To provide a paragraph-name which may serve as a reference end
point for PERFORM.

paragraph-name EXIT.

Notes:

EXIT must be preceded by a paragraph-name and appear as a single,
one-word paragraph whose content is non-existent.

2. When a series of procedures is under the control of a PERFORM
verb and the logical flow demands an ultimate common transfer
point, this paragraph provides the predicate for the various GO TO
instructions.

3. When the PERFORM verb is used, an EXIT paragraph-name may be the
procedure-name given as the object of the THROUGH option.

4. 1In all other cases EXIT paragraphs perform no function and
sequential control passes through them to the first sentence of the
next paragraph.

GO TO

Function

To depart from the normal sequence of procedures.

Option 1:
GO TO [procedure—name-l]

Option 2:

GO TO procedure-name-1, procedure-name-2

[procedure-name-S .] DEPENDING ON data-name

86

Notes:

1.

When using option 1, if the GO TO statement is to be modified by
the ALTER verb:
a. The GO TO statement must itself have a paragraph-name.

b. The paragraph in which the GO TO statement is included
must consist solely of the GO TO statement.

The paragraph-name assigned tc the GO TO statement is referred to
by using ALTER verb in order to modify the sequence of the
program. If procedure-name-1 is omitted, and if the GO TO state-
ment is not referred to by an ALTER statement prior to the first
execution of the GO TO statement, execution of the program will be
terminated and control will be returned to IBJOB.

In option 2, the contents of data-name must have a positive integral
value at object time. The branch will be to the 1st, 2nd, ..., nth
procedure-name, as the value of data-name is 1, 2, ..., n. If the
value of data-name is anything other than the integers 1, 2, ..., n,
then no transfer is executed and control passes to the next statement
in the normal sequence for execution.

MOVE

Function

To transfer data, in accordance with the rules of editing, to one or more
data areas.

MOVE

data-name-1

CORRESPONDING data-name-1 TO -data-name-2

literal

1
[, data-name-3 . . J

Notes:

1.

87

Additional receiving areas may be given, following data-name-2.
The data designated by the literal or data-name-1 will be moved
first to data-name-2, then to data-name-3, etc. When data-name-2
is referred to in this discussion, the note also applies to the other
receiving areas.

It is improper to use MOVE (without the CORRESPONDING option)
for a group item whose format is such that editing would be required
on the elementary items in separate operations. If this type of
procedure is desired, the CORRESPONDING option must be used,
or else each elementary item must be handled individually by means
of the verb, MOVE.

3. At object time, data is stored in conformity with the description of
the receiving area. When the sizes of the areas.of two group items
involved in a move are not the same, a warning will be given by the
compiler during compilation. A warning is also given for a move
from an elementary to a group item or vice versa.

4, When

numeric elementary items are moved, they are

subject to the following procedures:

a.

5. When

88

They are aligned by decimal points, with zero filling or
truncation on either end as required. A warning is given by
the compiler if significant digits will be lost through
truncation.

They may be converted from one form to another, e.g.,
internal decimal to external decimal, numeric mode to al-
phanumeric mode.

They may have special editing performed on them with sup-
pression of zeros, insertion of dollar sign, commas, a
decimal point, etc., and alignment as specified by the de-
scription of the receiving area. The presence of these
special characters in an item actually makes the item
alphanumeric. If such an item is referred to a source, the
special characters will be picked up as a part of the data,

and the verb making the reference will treat this data accord-
ing to the rules specified for the treatment of alphanumeric
data.

non-numeric items are moved:
The characters are placed in the receiving area left to right.

If the source field is shorter than the receiving field, the
remaining character positions are filled with spaces.

If the source field is longer than the receiving field, the
generated code provides for termination of the move as soon
as the receiving field has been filled. A warning message is
given for this condition unless one has already been given as
stated in note 3.

A table of legal moves, using the verb MOVE, is given below.

A detailed description of the types of fields represented may
be found under the PICTURE clause in the Data Division.
Numbers in parentheses in the table refer to subsequent
notes.

Receiving Field Type

Group Alpha- Alpha-
Item | Alpha-| numeric numeric External | Internal | Floating | Scientific
Source Field Type (1) betic (SIZE >18)| (SIZEL18) | Report | Decimal | Decimal | Point Decimal
Group Item (1) yes yes yes yes no no no no no
Alphabetic yes yes yes yes no no no no no
Alphapumeric
(SIZE> 18) yes yes yes yes no no no no no
Alphanumeric
(SIZE £18) yes yes yes yes yes(4) yes(4) yes(4) yes(4) yes(4)
Report yes no yes yes no no no no no
External Decimal yes no yes yes(5) yes yes yes yes yes
Internal Decimal yes no yes yes{5) yes yes yes yes yes
Floating Point yes no yes yes(5) yes yes yes yes yes
Scientific
Decimal yes no yes yes(5) yes yes yes yes yes
ZERO [S] or
ZEROS yes no yes yes yes(2) yes yes yes yes(2)
SPACE (s] yes yes yes yes yes(3) | yes(3) no no yes(3)
LOW-VALUE [s] yes no yes yes | no no no no no
HIGH-VALUE [§] yes no yes yes no no no no no
QUOTE [s] yes no yes yes no no no no no
ALL--- yes no yes yes no yes no no no
(1) Group items are treated as having a PICTURE of all X's.
(2) The value zero is moved in accordance with editing requirements.
(3) A warning message is given.
(4) The source field is treated as an integer with sign over the units
position.
(5) The receiving field is considered to have a PICTURE of all 9's

89

(with a sign over the units position when minus).

90

e. Tor source fields of the scientific decimal fype:

At object time a free form of data is allowed within the limits
of the field. For example, a field with PICTURE -99V9E-99
may contain the value 1 in any of the following ways (where
b represents a space):

b . 01b2b (01 X 102

1bb+01b (note scale applied when no point)
.001bb3

b10bbbb (note scale applied when no point)
1000.-3

ete.

Note that the letter E is never part of the data,

If the CORRESPONDING option is used, selected items within data-
name-1 are moved, with any required editing, to selected areas
within data-name-2. Items are selected by matching the data-
names of areas defined within data-name-1 with like data-names of
areas defined within data-name-2, according to the following
rules:

a. At least one of the items of a selected pair must be an
elementary item.

b. The respective data-names are the same including all
qualification up to but not including data-name-1 and
data-name-2.

Each CORRESPONDING source item is moved in conformity with
the description of the receiving area. The results are the same as
if the user had referred to each pair of CORRESPONDING data-
names in separate MOVE statements.

When using a MOVE CORRESPONDING, only the first complete
description of any area will be considered in the case where a
REDEFINE has been used. All items describing the data contained
within a REDEFINE group will be ignored.

If the CORRESPONDING option is used, no items in the group
referred to can contain an OCCURS clause.

9. A MOVE CORRESPONDING must not refer to items having level
numbers 77 or 88.

10. The following is an example of MOVE CORRESPONDING. Note the
non-corresponding items in the source area are not moved and the

SOURCE AREA

INVENTORY- | PART- QNTY- | ON-HAND | SHIPPED| RECEIVED | ORDER-
POSTING NUMBER | USED POINT

RECEIVING AREA

INVENTORY- | PART- PART- ON-HAND UNIT- QNTY- | ORDER-
RECORD NUMBER | NAME COST USED POINT
MULTIPLY
Function

To multiply two numeric data items and set the value of an item equal to

the result.

data-name-1 5 data-name-2 2
MULTIPLY BY F GIVING data*name—3]

literal-1 l literal-2))

- imperative statement-1
ROUNDED] , ON SIZE ERROR

- NEXT SENTENCE
ELSE imperative statement-2
OTHERWISE NEXT SENTENCE

91

Notes:

1. The data-names used must refer to the special register, TALLY,
or numeric elementary items whose descriptions appear in the
Data Division.

2. All rules specified under the verb ADD with respect to the size of
operands, the ON SIZE ERROR option, the ROUNDED option, the
GIVING option, truncation, and the editing of results, also apply
to the MULTIPLY verb. (See ADD.)

3. The formats of data-name-1 and data-name-2 may never contain
editing symbols (dollar signs,commas, etc.). Implied decimal

points and operational signs are not considered editing symbols.

4. A literal must not be specified as the multiplier unless the GIVING
option is used.

NOTE

Function

To allow the programmer, in the Procedure Division of the source
program, to write explanatory statements which will be produced on the
listing but not compiled.

NOTE ...

Notes:

1. Following the word NOTE, any combination of the characters from
the allowable character set may appear.

2. If NOTE is the first verb of a paragraph, the entire paragraph must
be notes. Proper format rules for paragraph structure must be

observed.

3. If NOTE is not the first verb of a paragraph, the commentary ends
with a period followed by a space.

92

OPEN

Function

To initiate the processing of both input and output files. Performs
checking or writing of standard labels, and other input/output functions.

I~ _ -
LINPUT file-name-1 |, file-name-2...]J
OPEN I:OUTPUT file-name-3 [, file-name-4 .. .]]

[INPUT file-name-1 ... OUTPUT file-name-3]

Notes:
1. At least one file must be named when the OPEN verb is used.

2. The verb OPEN must be executed prior to the first READ or WRITE
for any file.

A second OPEN of a file cannot be executed prior to the execution
of -a CLOSE of the file.

w

4, The OPEN does not obtain or release the first data record. A
READ or WRITE, respectively, must be executed to obtain or
release the first data record.

5. OPEN initiates the standard label checking or writing procedures
under the input/output system.

93

6. If an input file has been designated as optional in the FILE-CONTROL
paragraph of the Environment Division, the object program will
cause an interrogation as to the presence or absence of this file.

If the reply to the interrogation is negative, i.e., the file is not
present, the OPEN will not be executed, an indication of the absence
of the file will occur, and an end-of-file signal will be sent to the
Input/Output Control System of the object program. Thus, when the
first READ for this file is encountered, the end-of-file path for this
statement will be taken. The interrogation for the presence or
absence of a file is accomplished by determining if there is a unit
assigned to the file (see FILE~-CONTROL paragraph, ASSIGN TO
NONE clause).

PERFORM

Function

To depart from the normal sequence of procedures in order to execute
one statement, or a sequence of statements, a specified number of times,
or until a condition is satisfied, and to provide a means of return to the
normal sequence.

Option 1.
PERFORM

Option 2.

PERFORM

Option 3.

PERFORM

Option 4.

PERFORM

procedure-name-1 [THRU procedure—name-z:l

data-name-1
procedure-name-1 I:THRU procedure-name- 2:| TIMES
integer-1

procedure-name-1 I:THRU procedure-name—z:l UNTIL condition-1

procedure-name-1 [THRU procedure-name-z:l VARYING :data-name-2

data-name-3 data-name-4
FROM BY UNTIL condition-1
literal-1 literal-2

94

Option 5.

PERFORM procedure-name-1 {THRU procedure—name—Z] VARYING subscript-name-1

data-name-5 data-name-6
FROM } BY { UNTIL condition-2

integer-2 integer-3
data-name-7 data-name-8
AFTER subscript-name-2 FROM BY
\integer-4 7 integer-5
data-name-9
UNTIL condition-3 | AFTER subscript-name-3 FROM }
L linteger-6
data-name-10
BY } UNTIL condition-4
integer-7
Notes:
1. PERFORM is the means by which loops are written in COBOL.

The loop may be executed once, or a number of times, as
determined by a variety of controls.

2. The first statement of procedure-name-1 is the point to which
sequence control is sent by PERFORM. The return mechanism
is automatically inserted as follows:

a. If procedure-name-1 is a paragraph-name, and procedure-
name-2 is not specified, the return is after the last state-
ment of the procedure-name-1 paragraph.

b. If procedure-name-1 is a section-name, and procedure-
name-2 is not specified, the return is after the last state-
ment of the last paragraph of the procedure-name-1 section.

c. If procedure-name-2 is specified and is a paragraph-name,
the return is after the last statement of the procedure-name-2
paragraph.

d. If procedure-name-2 is specified and is a section-name, the

return is after the last statement of the last paragraph of the
procedure-name-2 section.

95

The last statement performed in all of the above cases must not
contain 2 GO TO verb. The GO TO and PERFORM verbs may

occur between procedure-name-1 and the end of procedure-name-

2. If there are two or more paths to the end of the loop, procedure-
name-2 must be a paragraph consisting of the verb EXIT, to which
these paths must lead.

In all cases, after the completion of a PERFORM, a bypass is
automatically created around the return mechanism which had
been inserted after the last statement. Therefore, when no
related PERFORM is in progress, sequence control will pass
through a last statement to the following statement as if no
PERFORM had existed.

The PERFORM mechanism for options 1 through 4 operates as
follows, with note 3 above applying to all options:

a. Option 1 is a simple PERFORM. A return to the statement
following the PERFORM is inserted after the last statement
as defined in note 2, and sequence control is sent to
procedure-name-1,

b. Option 2 is the TIMES option. The specified number of
times must be a positive integer, and may be zero. The
PERFORM mechanism sets up a counter and tests it against
the specified value before each jump to procedure-name-1.
The return mechanism after the last statement increases
the counter and then sends control to the test. The test
gives control to procedure-name-1 the specified number
of times, and after the last time sends control to the state-
ment following the PERFORM.

c. Option 3 is the UNTIL option. This option is the same as
the TIMES option, except that an evaluation of a condition
takes the place of counting and testing against a specified
integer. The condition may be any simple or compound
condition, for example, the condition may involve relations
and tests. When the condition is satisfied, i.e., when the
statement is true, control is transferred to the next state-
ment after the PERFORM statement. If the condition is
true when the PERFORM is entered, no jump to procedure-
name-1 takes place, and control is transferred to the next
statement after the PERFORM statement.

d. Option 4 is the VARYING data-name option, The VARYING
option is assumed to be arithmetic, and all the arithmetic
rules apply. This option is used when it is desired to
increase or decrease the value of any item while the execution
of a procedure or a series of procedures is being accomplished.
Only one item can be varied for each PERFORM statement using
this option. The PERFORM mechanism sets the value of
data-name-2 equal to its starting value (the FROM), then

evaluates the condition (the UNTIL) for truth or falsity. If

the condition is true at this point, then no execution of
procedure-name-1 through procedure-name-2 takes place.
Instead, control is transferred to the next statement after

the PERFORM statement. If the condition is false, then
procedure-name-1 through procedure-name-2 is executed
once. The mechanism then augments the value of data-name-2
by the specified increment or decrement (the BY), and again
evaluates the condition (the UNTIL) for truth or falsity. The
cycle continues until the condition is determined to be true,

at which point control is transferred to the next statement
after the PERFORM statement. Literal-1 and literai-2

must be numeric literals, but need not necessarily be integral,
A diagram for this mechanism is shown below:

One Subscript

ENTRANCE

Set data-name-2 equal to
initial value (FROM)

./ —>

false

v

Execute procedure-name-1
THRU procedure-name-2

Augment data-name-2 with
its BY value

1t should be noted that after completion of the PERFORM, data-
name=2 will have a value which replaces its previously used value
by one increment or decrement, whichever the case may be.

e. Option 5 is the VARYING subscript-name option. This
option is used when it is desired to augment the value of
one or more subscripts in a nested fashion while the
execution of a procedure or a series of procedures is being
accomplished. A maximum of three subscripts can be
varied per PERFORM statement using this option. When
only one subscript is being varied, the mechanism is exactly
the same as that of the VARYING data-name-2 option
(option 4). When two subscripts are varied, the value of
subscript-name-2 goes through a complete cycle (FROM,
BY, UNTIL) each time that subscript-name-1 is augmented

97

with its BY value. The PERFORM is completed as soon as
condition-2 is found to be true. When three subscripts are
varied the value of subscript-name-3 goes through a complete
cycle (FROM, BY, UNTIL) each time that subscript-name-2
is augmented with its BY value. Furthermore, subscript-
name-2 goes through a complete cycle (FROM, BY, UNTIL)
each time that subscript-name-1 is augmented with its BY
value.

The PERFORM is completed as soon as condition-2 is

found to be true, Regardless of the number of subscripts
being varied, as soon as condition-2 is found to be true,
control is transferred to the next statement after the
PERFORM statement. The FROM value must be a positive,
non-zero integer. The BY value must be a non-zero integer,
which may be either positive or negative. Subscript-name-1
subscript-name-2, and subscript-name-3 must never

refer to the same item, i.e., they must not be alternate
names for the same data item. Diagrams for this mecha-
nism are shown below:

Two Subscripts

ENTRANCE

Set subscript-name-1 and subscript-name-2
to initial values (FROM)

(condition-2) true Exit
— —>

false
> ,47
l condition-3) true
false |
Execute procedure-name-1 Set subscript-name-2 to
THRU procedure-name-2 its initial value (FROM)
i i
Augment subscript-name-2 Augment subscript-name-1
with its BY value with its BY value

il

98

Three Subscripts

ENTRANCE

Set
subscript-name-1, subscript-name-2,
subscript-name-3 to initial values

(FROM)
true
‘ condition-2 : _Exit
\ . >
false
} irue
z condition-3)
_
false
‘L—\ true
condition-4)
N—
false
\

Execute Set Set
procedure-name-1 subscript-name-3| |subscript-name-2
THRU procedure-name-2 | |to its initial to its initial

value (FROM) value (FROM)
y \ y
| Augment Augment Augment
subscript-name-3 subscript-name-2| |subscript-name-1
with its BY value with its BY value with its BY value

' |

1t should be noted that after the completion of the PERFORM, subscript-
name-2 and subscript-name-3 will each have a value equal to their
respective initial settings (FROM); while subscript-name-1 will have a
value which replaces its last used value by one increment or decrement,
whichever the case might be.

5. In general, procedure-name-1 should not be the next statement
after the PERFORM. If it is, the loop will be executed one more
time than was probably intended, because after the PERFORM is
satisfied control would go to procedure-name-1 in the normal
continuation of the sequence.

6. If a sequence of statements referred to by a PERFORM includes
another PERFORM statement, the sequence associated with the
included PERFORM must itself either be totally included in, or
totally excluded from the logical sequence referred to by the first
PERFORM.

99

For example, the following illustrations are correct:

x PERFORM a THRU m x PERFORM a THRU m
a a

d PERFORM f THRU j d PERFORM f THRU j
f— h

j— m

m f

The sequence of procedures associated with a PERFORM statement may
overlap or intersect the sequence associated with another PERFORM
statement, provided that neither sequence includes the PERFORM state-
ment associated with the other sequence.

For example:

Correct Incorrect
x PERFORM a THRU m x PERFORM a THRU m
a a
f — d PERFORM f THRU j
m f —
i m
d PERFORM f THRU j j
READ
Function

To make available the next logical record from an input file and to allow
performance of a specified imperative statement when the end of file is

detected.

READ file-name RECORD [INTO data—name] , AT END imperative—statement-l}
NEXT SENTENCE

{ ELSE } { imperative-statement-2
OTHERWISE NEXT SENTENCE

100

Notes:

101

An OPEN statement for the file must be executed prior to the
execution of the first READ for that file,

When a file consists of more than one type of logical record, these
records automatically share the same storage area: This is
equivalent to saying that there exists an implicit redefinition of the
area, and only the information which is present in the current
record is accessible.

No reference can be made by any verb in the Procedure Division to
information which is not actually present in the current record.
Thus, it is not allowable to refer to the nth occurence of data which
appears fewer than n times. If such a reference is made the
results in the object program are unpredictable,

When the INTO data-name option is used, the data-name must be
the name of a Working Storage or output record area. If the

format of the data-name differs from that of the input record,
moving will be performed according fo the rules gpecified for the

MOVE Verb without the CORRESPONDING option.

When the INTO data-name option is used, the file-name RECORD
is still available in the input record area.

Every READ statement must have an AT END clause.

If an OPTIONAL file is not present, the AT END clause will be
executed on the first READ. The standard end-of-file procedures
will not be performed (see the OPEN verb, and the FILE-CONTROL
paragraph in the Environment Division}.

After execution of the AT END clause an attempt to perform a
READ without the execution of a CLOSE and a subsequent OPEN

for that file will constitute an error in the object program.

After recognition of the end of reel, the READ performs the follow-
ing operations:

a. The standard trailer label subroutine.
b. A tape alternation.
c. The standard header label subroutine,

d. Makes the next record available,

STOP

Function

To halt the object program either permanently or temporarily.

literal
STOP
RUN

Notes:

1. If the word RUN is used, then the ending procedure established by
the compiler is instituted.

2. If the literal form is used, the literal will be displayed to the
operator on the on-line printer.

Continuation of the object program will begin with the execution of
the next statement in sequence.

SUBTRACT

Function

To subtract one, or a sum of two or more, numeric data items from a
specified item and set the value of an item equal to the resuit.

literal-1 literal-2 =
SUBTRACT [’ .
data-name-1 data-name-2 -
literal-n T
FROM [GIVING data-name-m [ROUNDED]
data-name-n ~

-imperative-statement-1
, ON SIZE ERROR
NEXT SENTENCE

ELSE imperative-statement-2 }
{OTHERWISE } { NEXT SENTENCE

102

Notes:

1. All data-names used must refer to the special register, TALLY,
or to numeric elementary items whose descriptions appear in the
Data Division of the source program.

2. All rules specified under the verb ADD with respect to the ON
SIZE ERROR option, the size of operands, the ROUNDED option,
the GIVING option, truncation, and the editing of results, apply
to the SUBTRACT verb. (See ADD.)

3. If the data description of any literal or data-name used as either
the mmuend or the subtrahend specifies the presence of an editing
symbol, an error will be indicated at compilation time. Operational
signs and implied decimal points are not considered editing symbols.

4, When the GIVING option is not used, a literal must not be specified
as the minuend.

5. When dealing with multiple subtrahends, the effect of the subtraction

will be as if the subtrahends were first added, and the sum was
then subtracted from the minuend.

WRITE

Function

To release a logical record for an output file.

WRITE record-name [FROM data—name-l]

Notes:
1. After the WRITE is executed, record-name is no longer available.

2. When the FROM option is used, data-name-1 must be the name of a
Working-Storage or an input record area. If the format of data-
name-1 differs from that of the record-name, moving will take
place according to the rules specified for the MOVE verb (without
the CORRESPONDING option). The information in the record-
name area is no longer available, but the information in data-name-1
area is available. It is illegal to use the same name for both
data-name-1 and record-name,

3. No reference can be made by any verb in the Procedure Division
to information which is not actually present in the current record.
Thus, referring to the nth occurrence of data which appears fewer
than n times is not allowed.

103

4. An OPEN statement must be executed prior to executing the first
WRITE for a file,

5. After recognition of the end of reel, the WRITE performs the
following operations:

a. The standard trailer label subroutine.
b. A tape alternation.

c. The standard header label subroutine.

104

Part VI: REFERENCE FORMAT

This section is included to demonstrate the required layout common to
all programs written in COBOL. The rules are few, but binding.

~ GENERAL DESCRIPTION

The Identification, Environment, Data and Procedure Divisions which
constitute a COBOL source program are written on a COBOL Program
Sheet in the above order. This reference format, despite its necessary
restrictions, is of a relatively free form. The programmer should note,
however, that the rules for using it are precise and must be followed
exactly, and that these rules take precedence over any other rules with
respect to spacing.

PROGRAM IDENTIFICATION CODE (Col. 73-80)

These columns can be used to identify the program using any characters
from the COBOL character set, including the blank., The program
identification code has no effect on the program.

SEQUENCE NUMBERS (Col. 1 -6)

The sequence number must consist only of numerals; letters of the
alphabet and special characters may not be used. The sequence number
has no effect as such on the program and need not be written. However,
if the programmer supplies sequence numbers, the compiler will check
the source program cards and will indicate any errors in their sequence,

CONTINUATION INDICATOR (Col. 7)

A hyphen in Column 7 indicates that the first character of this line after
the indentation is the continuation of the last item written on the preceding
line. Regardless of whether the continuation indicator is used or not,
continued items must not begin before Margin B (Col. 12) of the subse-
dguent line.

Continuation of Non-Numeric Literals

A non-numeric literal constitutes one COBOL word. Therefore, when-
ever a non-numeric literal is carried over from one line to another, a
hyphen must be placed in Column 7 of the continued line. Remaining
spaces on the first line are part of the literal. Leading spaces and a
subsequent extra quote mark on the next line are not considered to be
part of the literal. The literal resumes immediately after the extra
quote mark.

105

Continuation of Other Words

A hyphen in Column 7 indicates to the compiler that the first character of
the continuation is to follow the last character of the preceding line with-
out an intervening space.

If a hyphen is not written in Column 7, it is assumed that the last
character of the preceding line is always followed by a blank.

WRITING THE PROGRAM

Division-Names

Section-Names

Other Rules

Columns 8 through 72 are used for the actual data and instructions to be
entered into the computer.

The names of divisions must begin at Margin A (Col. 8) followed by a
space, the word DIVISION, and then a period. The entry must appear on
a line by itself.

A section-name must begin at Margin A followed by a space, the word
SECTION, and then a period. The entry must appear on a line by itself.

The rules for writing the division-names and section-names apply to all
the divisions. However, a section consists of paragraphs in the
Identification, Environment, and Procedure Divisions, whereas it
consists of Data Description entries in the Data Division.

Paragraph-Names

A paragraph-name must also begin at Margin A and must be immediately
followed by a period and a space. The text may start on the same line.
Succeeding lines of the paragraph must begin at Margin B (Col. 12).

Data Description

A File Description entry must begin at Margin A. Succeeding entries may
also begin at Margin A, or may be indented to show the data organization.
A data-name may not begin before column 12,

106

ORGANIZATION OF SOURCE PROGRAM

Shown below is a listing of the items which may appear in a source
program. Some of the items are absolutely required, while others are
optional, This may be checked in the discussion of each individual
COBOL word. The order of appearance of the divisions is mandatory.
Certain sections within the divisions must also appear as specified, while
others have no such rigid rules. Although the sequence given here is the
suggested one, unless specifically stated otherwise in the text, this order

is not binding.

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name,
AUTHOR. author-name.
INSTALLATION, ...
DATE-WRITTEN. ...
DATE-COMPILED. ...
SECURITY. ...

REMARKS. ...

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER- ...
OBJECT-COMPUTER. ...
SPECIAL-NAMES, ...
INPUT-OUTPUT SECTION,
FILE-CONTROL. SELECT ...
I-O-CONTROL. RERUN ...

DATA DIVISION.
FILE SECTION.
FD file-name-1 ...
01 data-name-1 ...
02 data-name ...
03 data-name...
88 condition-name ...

02 data-name ...
01 dai_:a-r'lame ves
FD fil(_a-n'ame-z .

FD file-name-n ...

107

108

WORKING-STORAGE SECTION,
77 data-name ...
88 condition-name ...

77 daga—flame ces

01 data-name ...
02 dai.:a-name cee

01 data-name ...
02 data-name ...
03 data-name ...
88 cogdition—name .

02 data-name ...

01 data-name ...

CONSTANT SECTION.
77 data-name ...

77 data-name ...
01 data-name ...

02 da’ga—name ..
01 da’ca—flame cee

02 data-name ...
03 data-name ...

02 da[:a—ﬁame cen

01 daf.;a-ﬁame “es

PROCEDURE DIVISION.
par'agraph—name. e

sec'tion—name—l SECTION.
paragraph-name-1. ...

par:agraph—name-z. e
parhgraph—name—n. cee
sec:tion—name—z SECTION.

section-name-n SECTION.
paragraph-name-1. ...

par:agraph—name—z. cee

paragraph-name-n. ...

Part VII: COMPLETE LIST OF IBM 7090/7094 COBOL WORDS

The words listed in this section comprise the complete IBM 7090/7094

COBOL vocabulary, Source programmers are warned that these words

are pre-empted and may not be used in a COBOL program except as

specified in the manual,

Many words are given in both singular and plural form. This is for the
convenience of the source programmer, as the compiler will recognize

and accept either form.

oy

e}

ABOUT CARD-READER
ACCEPT CHARACTER

ADD CHARACTERS
'ADDRESS CHECK

ADVANCING CHECKPOINT-UNIT
AFTER CLASS

ALL CLOCK-UNITS
ALPHABETIC CLOSE
ALPHANUMERIC COBOL

ALTER COLLATE-COMMERCIAL
ALTERNATE COMPUTATIONAL
AN COMPUTATIONAL-1
AND COMPUTATIONAL-2
APPLY COMPUTE

ARE CONFIGURATION
AREA CONSTANT

AREAS CONTAINS

AS CONTROL

ASSIGN COPY

AT CORRESPONDING
AUTHOR CREATION-DATE

CREATION-DAY

BCD CREATION-YEAR
BEFORE

BEGINNING DATA

BEGINNING-FILE-LABEL
BEGINNING-TAPE-LABEL

DATE~-COMPILED
DATE-WRITTEN

BINARY DECLARATIVES
BIT DEFINE
BITS DENSITY
BLANK DEPENDING
BLANKS DIGIT
BLOCK DIGITS
BLOCK-COUNT DISPLAY
BY DIVIDE

DIVIDED
CALL DIVISION

CARD-PUNCH

DOLLAR

Word List (continued)

110

ELSE

END

ENDING
ENDING-FILE-LABEL
ENDING-TAPE-LABEL
END-OF-FILE
END-OF-REEL
ENTER
ENVIRONMENT
EQUAL

EQUAILS

ERROR

EVERY

EXAMINE

EXCEEDS

EXIT
EXPONENTIATED

FD

FILE

FILE-CONTROL
FILE-IDENTIFICATION
FILE-SERIAL-NUMBER
FILLER

FILLING

FIRST

FLOAT

FOR

FORMAT

FROM

GIVING
GO
GREATER

HASHED
HEADER

HIGH
HIGH-VALUE
HIGH-VALUES

IBM 7090

IBM 7094

ID
IDENTIFICATION
IF

IN

INCLUDE

INPUT
INPUT-OUTPUT
INSTALLATION
INTO
I-O-CONTROL
IS

JUSTIFIED

KEY-S
KEY-1

KEY-35

LABEL
LABEL-IDENTIFIER
LEADING
LEAVING

LEFT

LESS

LIBRARY

LINES
LINKAGE-MODE
LOCATION
LOCK

LOwW
LOW-VALUE
LOW-VALUES
LOWER-BOUND
LOWER-BOUNDS

MEMORY
MEMORY-DUMP
MEMORY-DUMP-KEY
MINUS

MODE

MODULES

MOVE

MULTIPLE
MULTIPLIED
MULTIPLY

NEGATIVE

NEXT

NO
NO-MEMORY-DUMP
NONE

NOT

Word List (continued)

NOTE REEL-NUMBER
NUMERIC REEL-SEQUENCE-NUMBER
REEL-SERIAL-NUMBER

Pt

OBJECT-COMPUTER REMARKS

OBJECT-PROGRAM RENAMES

OCCURS RENAMING

OF REPLACING

OFF RERUN

OMITTED RESERVE

ON RETENTION-PERIOD

OPEN RETURNING

OPTIONAL REVERSED

OPTIONAL-USAGE REWIND

OR RIGHT

OTHERWISE ROUNDED

OUTPUT RUN

PERFORM SAME

PICTURE SECTION

PLACE SECURITY

PLACES SEGMENT-LIMIT

PLUS SELECT

POINT SENTENCE

POSITION SENTINEL

POSITIVE SEQUENCED

PREPARED SIGN

PRINTER SIGNED

PRIORITY SIZE

PROCEDURE SOURCE-COMPUTER

PROCEED SPACE

PROGRAM-ID SPACES

PROTECT SPECIAL-NAMES

PROTECTION STANDARD

PURGE-DATE STANDARD-LABEL
STATUS

QUOTE STOP

QUOTES SUBTRACT
SUPERVISOR

RANGE SUPPRESS

READ SYNCHRONIZED

RECORD SYSTEM-INPUT-UNIT

RECORD-COUNT SYSTEM-OUTPUT-UNIT

RECORDING

RECORDS TALLY

REDEFINES TALLYING

REEL TAPE

REELS TAPE-UNIT

Word List (continued)

112

TAPE-UNITS
TEST-PATTERN
THAN
THEN
THROUGH
THRU
TIME
TIMES

TO

TYPE
UNEQUAL
UPPER-BOUND
UPPER-BOUNDS
UNTIL

UPON

USAGE

} Equivalent

USE
USING

VALUE
VALUES
VARYING

WHEN

WITH

WORDS
WORKING-STORAGE
WRITE

ZERO
ZEROES
ZEROS

J28-6260-1

TSIV

®
International Business Machines Corporation
Data Processing Division, 112 East Post Road, White Plains, N.Y.

*V°S N ul pajutyg

1-0929-82(

IBM / Technical Newsletter File Number 7090-24

Re: Form No. J28-6260-1
This Newsletter No. N28-0070
Date December 13, 1963
Previous Newsletter Nos. None

IBM 7090/7094 COBOL

This newsletter contains addenda and errata to the publication, IBM 7090/7094
Programming Systems: COBOL Language, Preliminary Specifications, Form
J28-6260-1. It describes features of the 7090/7094 COBOL language which had
previously been deferred. Form J28-6260-0 together with Technical Newsletters
N28-0040 and N28-0052 are equivalent in information to Form J28-6260-1. This
pagination of Form J28-6260-0 differs slightly from that of Form J28-6260-1.
This newsletter applies to Form J28-6260-1 and, except for pagination, to Form
528-6260-0.

Page Amendment
Table of On the second page of the "Table of Contents" change the heading:
Contents EDITING CLAUSES 48
to:
BLANK WHEN ZERO 48

On the fourth page of the '"Table of Contents™:

1. Before the heading "Formulas' add:
Declaratives 74

2. Before the heading "EXIT" add:
EXAMINE 86

3. Before the heading "WRITE" add:
USE 103

6 Replace the first paragraph of note 2 with:

2. Condition-names. A condition-name is the name assigned
to a specific value, within the complete set of values that a
data-name may assume. A condition-name must contain at
least one alphabetic character. The data-name itself is
called a conditional variable and the values it may assume
are referred to by condition-names. A conditional variable
may not be described as a report, scientific decimal, or
floating-point item.

International Business Machines Corp., Programming Systems Publications, P. O. Box 390, Pou ohkeepsie, N. Y.

N28-0070 (J28-6260-1) Page 1 of 26

PRINTED IN U.S.A. .

12

17

18

Amendment

Change the second sentence under the explanation of "ALL' to read:

An alternative form for 'literal' is any figurative constant (not
bounded by quotation marks), e.g., ALL SPACES.

Add the following to the paragraph after the explanation of "ALL'':

When non-numeric figurative constants are used in the Procedure
Division, they may not be associated with data items whose length is
greater than 120 characters. A figurative constant may be specified
in a Record Description VALUE clause for an item longer than 120
characters.

Change the first sentence to read:

When the subscript is represented by data-name, the data-name must
be an elementary item described in the Data Division, or may be the
name of the special register, TALLY.

Replace note 3 at the bottom of the page with:

3. Anywhere within the Data Division itself. For example,
...REDEFINES Y (2) is not permitted.

Add the following paragraph after the heading "CONFIGURATION
SECTION'":

For further information on identifying the computer on which a
program is to be compiled or run, see the section, "Control Card
Discussion" in: IBM 7090/7094 Programming Systems, IBJOB
Processor, Form C28-6275-1.

Replace the format of the Source-Computer paragraph with:

SOURCE COMPUTER. { IBM-7090 } X
IBM-7094

Replace the format of the Object-Computer paragraph with:

OBJECT-COMPUTER.

t]:BM—7090 ’
IBM-7094 | °

Delete notes 2 and 4, changing note 3 to note 2.

N28-0070 (J28-6260~1) Page 2 of 26

Page Amendment

19 Replace the format of the "SPECIAL-NAMES' paragraph with:

SPECIAL-NAMES. KEY literal

[ﬁmnemonic-name—l]
, ON STATUS IS condition-name-1)
, OFF STATUS IS condition-name-2

, ON STATUS IS condition-name-3

\, OFF STATUS IS condition-name-4

[KEY literal

Replace note 1 with the following:

1. This paragraph is not required if the above condition-names are
not used in the Procedure Division.

Replace note 2 with the following:

2. This paragraph is used to assign condition-names to the ON
and/or OFF status of console switches. The console switches
which may be tested are the 36 console entry keys S, 1-35.
Literal may be the letter S or one of the numbers 1 through 35,
and corresponds to a console entry key. Any of the keys may
be designated only once in the Special-Names paragraph. If
both ON and OFF are used, the order in which the ON and OFF
clauses are specified is not significant. By definition, a switch
is ON if it is down and OFF if it is up.

20 Delete the word "OPTIONAL" from the formats for Options 1 and 2.

Place a period at the end of the format for Option 1 of the "FILE-
CONTROL'" paragraph.

N28-0070 (J28-6260-1) Page 3 of 26

Page Amendment

Add the following option:

Option 3.

FILE-CONTROL. SELECT file-name-1

[RENAMING file-name-z]

hypertape-unit-name-1
FOR MULTIPLE REEL

ASSIGN TO HYPERTAPE

hypertape-unit-name-2
hypertape-unit-name-3
FOR MULTIPLE REEL

[sELECT...] .
21 Delete note 2 and renumber the following notes accordingly.
22 Add the following after the third sentence under "Unit Assignment":

A further discussion of unit assignment is contained in:
IBM 7090/7094 Programming Systems: IBJOB Processor,
Form C28-6275.

In the first chart, add the following, for X, under "Significance of Symbol
Shown'"':

The available units on all channels are tape units only.

Add the following after the chart on "symbolic intersystem units" at the
bottom of the page:

In designating an intersystem input unit, model specification should

not be made. A R may be added to any symbolic name for an inter-

system unit to indicate to the System Monitor that reserve status for
the unit is to end after the current job is complete.

23 Add the following before the discussion of "System Units":

¢. Symbolic Hypertape Unit Names. Files may be assigned to
7340 Hypertape units with symbolic names of the following form:

XHK/I where:

N28-0070 (J28-6260-1) Page 4 of 26

Page =~ Amendment

ar

Symbolic Name ; Interpretation Given to the Name by IBLDR

Denotes one of the real channels A, B,...H.
Denctes Hypertape.

Denotes one of the unit numbers 1,...,9,0.
Denotes interface 0 or 1.

R e

If interface 0 is intended the designation /I may be omitted.
Change "c. System Units." to "d. System Units."
24 Add the following to the chart at the top of the page:
SYSCK1 The system checkpoint unit is assigned to the file.
Add the following under the chart:
7340 Hypertape units may be assigned system names. Specific
assignments of this type are controlled by IBSYS control cards.

The following restrictions apply:

1. Specification of DENSITY in the RECORDING MODE clause
is ignored.

2. If two units have been assigned to a file and the first is a
Hypertape unit, the second must also be a Hypertape unit.

Delete the first sentence under note ""d. NONE."

N28-0070 (J28-6260-1) Page 5 of 26

25

Amendment

Replace the page with the following:

File Assignment Table

Form of ASSIGN TO Clause

Contents of Associated $FILE Card Fields

Unit 1 Field

Unit 2 Field

Multireel Field

1 TAPE-UNIT omitted omitted omitted
1 TAPE-UNIT MULTIPLE REEL omitted omitted REELS
2 TAPE -UNITS MULTIPLE REEL * omitted REELS
CARD-READER CRD omitted omitted
CARD-PUNCH PCH omitted omitted
PRINTER PRT omitted omitted
symbolic-tape-unit-name-1 symbolic-tape - omitted omitted
unit-name-1
Example: A A omitted omitted
symbolic-tape-unit-name-2 symbolic-tape- omitted REELS
MULTIPLE REEL unit-name-2
Example: TIV MULTIPLE REEL TV omitted REELS
symbolic-tape-unit-name-3 symbolic-tape -~ symbolic~tape- REELS
symbolic-tape-unit-name-4 unit-name-3 unit-name-4
FOR MULTIPLE REEL
Example: C(3), C(4) MULTIPLE
3 R
REEL C(3) C(4) EELS
symbolic-card-unit-name-1 symbolic-card- omitted omitted
unit-name-1
Example: RDA RDA omitted omitted
system-unit-name-1 abbreviated omitted or may be filled

system-unit-

in automatically

name-1
Example: SYSIN1 # IN1 IN2 REELS
system-unit-name-2 abbreviated omitted or may REELS
MULTIPLE REEL system-unit - be filled in
name-2 automatically
Example: SYSUT1 MULTIPLE UT1 omitted REELS
REEL
system-unit-name-3, abbreviated abbreviated REELS
system-unit-name-4 system-unit- system-unit-
name-3 name-4
Example: SYSUT2, SYSUT3
U U
FOR MULTIPLE REEL T2 T3 REELS
NONE NONE omitted omitted

Note: In the example, this particular file automatically takes on the
MULTIREEL characteristic of the system unit. This is also true for
SYSOU! and SYSPP1 which are system MULTIREEL files.

N28-0070 (J28-6260-1) Page 6 of 26

26

28

30

31

33

Amendment

Replace the format of the '"I-O-CONTROL" paragraph with:

I-O-CONTROL.

RERUN [_Q_I:I CHECKPOINT-UNIT] EVERY
BEGINNING OF REEL OF file-name-1
[, file-name-2...] [RERUN...] .

Add the following note:

4. When the ON CHECKPOINT-UNIT option is not specified,
file-name-i, file-name-2, eic., must be the names of
output files.

In the format add a left bracket before "RECORD CONTAINS. "

Delete note 1 under "BLOCK SIZE' and renumber the notes which follow
accordingly.

Replace the third and fourth sentences of the first paragraph of note 8
with the following:

VAR in the table is used to specify a file which contains logical
records of different sizes. The logical records may include one or
more logical records described by an OCCURS clause with a
DEPENDING ON option.

Replace the last paragraph of note 8 with the following:

If a file contains logical records of different sizes, a control word
in front of each logical record is assumed when reading or is
supplied when writing, unless the WITHOUT COUNT CONTROL
option is specified in the RECORDING MODE clause. MAXRECLTH,
therefore, equals logical record length plus one. When the
CHARACTERS form of the clause is used, the control words must
be included in the block size specified. '

Add the following to the discussion of "BLOCK SIZE":

9. The following chart illustrates the relationship between different
types of files, the media on which they are represented, and the
presence of control words. Optional signifies that control words
may be specified as absent for the file by specifying the WITHOUT
COUNT CONTROL option in the RECORDING MODE clause. R
stands for the RECORDS form of the clause; C stands for the
CHARACTERS form of the clause.

N28-0070 (J28-6260-1) Page 7 of 26

Page

Amendment

Block | Unit |RECORD- Control
Type| Use | Blocked Units | Medium| INGMODE | v o File Characteristics
Clause
1 |Input No -- Tape BCD or No Same Length Records
BINARY
2 |Input No |-- Card BCD No Same Length Records
3 |Input No |-- System- [BCD or No Same Length Records
Unit(3) |BINARY(1)
4 |Qutput No |-~ Tape BCD or No Same Length Records
BINARY
5 {Output No |-- Card BCD No Same Length Records
6 |Output No |-- System- (BCD No Same Length Records
Unit(4)
7 |Input No |-- Tape BCD or Optional Differing Record Lengths
BINARY
8 |Input No |-~ Card BCD No Differing Record Lengths
9 |Input No |-- System- [BCD or Optional (2)|Differing Record Lengths
Unit(3) [BINARY(1)
10 [Output No |-- Tape BCD or Optional Differing Record Lengths
BINARY
11 {OQutput No |-- Card BCD No Differing Record Lengths
12 |Output No |-- System- |[BCD Optional(2) |Differing Record Lengths
Unit(4)
13 |Input Yes |R or C|[Tape BCD or No Same Length Records
BINARY
14 ;Output Yes |Ror C|Tape BCD or No Same Length Records
BINARY
15 |Input Yes |R or C|Tape BCD or Optional [Variable Length Record(5)
BINARY
16 |Output Yes |C Tape BCD or Optional |Variable Length Record(5)
BINARY
17 {Qutput Yes |R Tape BCD or Optional [Variable Length Record(5)
BINARY
18 |Input Yes |R or C|Tape BCD or Yes Differing Record Lengths
BINARY
19 [Output Yes (C Tape BCD or Yes Differing Record Lengths
BINARY
20 | Output Yes |R Tape BCD or Yes Differing Record Lengths
BINARY
(1) Binary recording mode permissible only if unit medium is tape.
(2) Control word permissible only if unit medium is tape.

(3)
4)

)

May only be system unit designated by the name SYSINI.
May only be system unit designated by the names SYSOU1 or SYSPP1.
One logical record type (only one data-name in the DATA RECORDS clause

for the file) containing an OCCURS clause with a DEPENDING ON option in
its description,

N28-0070 (J28-6260-1) Page 8 of 26

35

36

37

38

39

Amendment
Add the following note to the discussion of "LABEL RECORDS":

6. Files that are assigned to SYSIN1, SYSOU1, or SYSPP1 may not
be labeled.

Replace the format of the "RECORDING MODE" clause with:

BINAR HIGH

-

[,RECORDING MODE IS {P—C—Q Y} [{E’—W= DENSITY |

[WITHOUT COUNT CONTROL]J

Add the following notes to the discussion of the "RECORDING MODE"
clause:

5. When the WITHOUT COUNT CONTROL option is specified,
control words preceding logical records on files containing
logical records of different sizes will not be assumed when
reading and will not be supplied when writing.

A discussion of buffer size calculations is contained in the
discussion of BLOCK SIZE.

Under "Contents of literal" for "FILE-IDENTIFICATION,'" change the
text to read:

Eighteen or less alphanumeric characters which identify the file.

Under "Contents of literal" for "FILE~-IDENTIFICATION, " change thé
text to read:

Eighteen or less alphanumeric characters which identify the file.
Change the last sentence of note 1 to read:

If it is not specified, the first eighteen characters of the file-name
are placed in the labels created.

Under "COMPLETE ENTRY SKELETON, ' replace:
[, editing clauses ..]
with:

[BLANK... |

N28-0070 (J28-6260-1) Page 9 of 26

45

46

48

Amendment

Replace note 2 with the following:

2. Those clauses which begin with SIGNED, SYNCHRONIZED,
POINT, PICTURE, and BLANK must not be specified except
at an elementary level.

In the format for "Report Items, ' replace [editing clauses (1)] with:

[BLANK WHEN ZERO |

Add the following to the format for "Scientific~Decimal Items":

[VALUE IS floating—point-—literal]

Delete part d of note 1.

Replace the section, "EDITING CLAUSES" with the following:

BLANK WHEN ZERO

Function

To specify that an item will be filled with blanks (spaces) whenever
the value of the item is zero.

[, BLANK WHEN ZERO |

Notes:

1. When the value of the item is zero, all editing specifications in
a PICTURE clause will be overridden in favor of inserting all
spaces.

2. An item is considered a report item when BLANK WHEN ZERO
is specified for it. It will be considered CLASS ALPHANUMERIC
and USAGE DISPLAY.

3. This clause may only be used at an elementary level.

4. This clause may not be specified when all the numeric character
places in the PICTURE clause for an item contain asterisks.

N28-0070 (J28-6260-1) Page 10 of 26

Page Amendment

50 Replace the format under "OCCURS" with:

[, OCCURS integer-1 TIME [S§] [DEPENDING ON data—name]]

Replace note 1 with the following:

1. Integer-1 must be a numeric literal with a positive integral value
and may not equal zero.

51 Delete notes 5 and 6.
Replace note 7 with the following:

5. The use of the DEPENDING ON option means that the count of the
occurrences of the data is equal to the valueof-the elementary
item called data-name. This value must be a pesitive integer.

If the data-name used in the DEPENDING ON option appears
within the record in which the current Record Description entry
also appears, then data-name must precede the variable portion
of the record. In this case, integer-1 is considered as the maxi-
mum number of occurrences and is used for storage reservation.

Replace note 8 with the following:

6. Data-name should be qualified when necessary, but subscripting
is not permitted. Data-name may be the special register TALLY.

54 Add the following to the paragraph on the "Floating Dollar Sign':
The floating dollar signs must be the leftmost characters in a
PICTURE with the exception that commas may be embedded.
Suppression of leading commas is also provided.

55 Replace the discussion of scientific decimal items with the following:

c. Scientific Decimal Items.

A gcientific decimal item is a special type of report item which

e — ~

specifies editing of a floating-point number. The PICTURE of a
scientific decimal item may contain only the following characters:

+ -9 .VE

Specifically the PICTURE must conform to the form:

{#} [Bm) [iv}] @] E 99

Mantissa Exponent

N28-0070 (J28-6260-1) Page 11 of 26

Amendment

where m and n are positive integers and m + n must be greater
than 0 and less than 17. The symbol E is used to give visual
separation of the exponent from the mantissa.

Add the following note to the discussion of the "USAGE" clause:

7. Items specified as USAGE DISPLAY are stored in the 7090/7094
BCD storage code in multiples of six bits. Each six-bit group
represents one character in the BCD character mode. COMPU-
TATIONAL items are stored as binary numbers in the least
multiple of six bits capable of holding the item including its sign.
The SIZE of a computational item as indicated in the SIZE or
PICTURE clause and the number of six-bit groups which it
occupies are not, in general, the same. The chart which follows
indicates the relationship between the size of a COMPUTATIONAL
item as specified in the SIZE or PICTURE clause and the number
of six-bit groups the item occupies.

Size of item as indicated in Number of six-bit groups
SIZE or PICTURE clause occupied by item

O o030 WNH

[
R o

12
13
14
15
16
17
18

O W 0O ~J-~I3HO0 U1 O ihWWNINDK

-
(=}

[
—

Add the following to the section on "COLLATING SEQUENCE":
The commercial collating sequence is assumed by the Compiler

unless the 7090/7094 collating sequence is specified by placing
BINSEQ on the $IBCBC card.

N28-0070 (J28-6260-1) Page 12 of 26

Page Amendment

71 Replace the format for the "Full Relation Test" with the following:

IS [ggr} GREATER THAN
data-name-1 data-name-2
18 [NOT| LESS THAN
IF { literal-1 literal-2
18 [Nor] =

| formula-1 | formuia-2 |}

IS [I_I_O_:I‘] EQUAL TO

and delete the two sentences that follow.
72 Replace note 3 with the following:
3. Conditional Variable Test. An item whose specific values can
o mem - -be-named-is-called-a conditional-variable,- A-name giventoa -
specific value is called a condition-name. Condition-names must
be specified with a level number of 88 and must contain a VALUE
clause.
A conditional variable test is one in which a conditional variable
is tested to see whether its value is equal to the value specified
for a condition-name associated with it.
The format for the conditional variable test is:
IF [NOT] condition~name
Replace the format of the "Switch Status Test' with:
IF [NOT] condition-name

74 Add the following before the discussion of "FORMULAS":

DECLARATIVES

Declaratives are procedures that are performed in conjunction with
the 7090/7094 Input/Output Control System.

Declaratives, if present, must be grouped together at the beginning
of the Procedure Division, and must be preceded by the key word,
DECLARATIVES, and followed by the key words END DECLARA-
TIVES.

Each Declarative must constitute a single section headed by a

section-name and the key word SECTION. A USE sentence must
immediately follow the section header.

N28-0070 (J28-6260-1) Page 13 of 26

75

76

80

81

82

Amendment

The USE sentence identifies the conditions calling for the execution
of the procedures specified in the paragraphs which follow the USE
sentence.

Change the last sentence to read:

Exponentiation of a negative variable or literal is allowed only if
the exponent is a literal or data-name having an integral value.. If
the exponent is other than a non-negative integer, the result of the
exponentiation will be zero.

Add "USE" to the list of "Compiler Directing Verbs."

Change the sentence under 2a, "Input Files," which begins '"Note that any
label....", to read:

Any label processing and procedures specified in a USE Declarative
are performed only when the physical end of file is encountered on

the tape.

Change the first sentence under 2b, "Output Files," to read:

The final closing conventions and procedures specified in a USE
Declarative are performed and the data area is released.

Change the first sentence under 3a, "Input Files," to read:
Processing of the end label will be bypassed, but procedures for

checking the label on the next reel, including procedures specified
in a USE Declarative, will be executed.

Change the first sentence under 3b, '"Output Files,' to read:

The standard end-of-reel processing, including execution of
procedures specified in a USE Declarative, takes place immediately.

Delete note 5 and renumber note 6 accordingly.
Replace the first line of the format with the following:

COMPUTE data-name-1 [ROUNDED] = {data'name’zl

formula

Delete note 6 and renumber the notes which follow accordingly.

N28-0070 (J28-6260-1) Page 14 of 26

Page Amendment

83 Replace the format and note 1 of the DISPLAY statement with the
following:
[literal-1 literal-2 1 1
DISPLAY [, i . J
data-name-1 data-name-2

[UPON SYSOU1]

Notes:

1. The standard display device is the on-line printer. If the UPON
option is specified, the display device will be the system output
unit. Automatic carriage control for off-line printing of output
on the system output unit is provided. For further information
concerning SYSOU1, see "FILE-CONTROL" in the Environment

Delete the last sentence in note 2.
Add the following note to the discussion of "DISPLAY":

6. The special register TALLY may be used as an operand in a
DISPLAY statement.

85 Replace the discussion of "ENTER" with:

ENTER
Function

To permit communication between a COBOL object program and one
or more subroutines assembled by IBMAP.

Option 1.
ENTER LINKAGE-MODE.

CALL 'entry-name'

—

{data-name-1...) il data-name-mh

, USING i """ o } u U
file-name-1... file-name-n

[, data-name-(m+1)...] [, data-name-K]

-
—

, RETURNING procedure-name-1 [procedure—name-z. ..] .

ENTER COBOL.

N28-0070 (J28-6260-1) Page 15 of 26

Page Amendment

Option 2.

ENTER LINKAGE-MODE.

ENTRY POINT IS 'entry-name'
[RE CEIVE data-name-1... [,data-name-m]]
[PROVIDE data-name-(m+1)... [, data—name-K]] 3

ENTER COBOL.

Option 3.
ENTER LINKAGE-MODE.

RETURN VIA 'entry-name'
[. DEPENDING ON data-name] .

ENTER COBOL.

Notes:

1. The ENTER LINKAGE-MODE statement is used to provide
linkage between programs. After ENTER LINKAGE-MODE is
specified only the statements illustrated in the format may be
used until ENTER COBOL is specified.

2. ENTER LINKAGE-MODE and ENTER COBOL must have a
paragraph-name in the A-margin.

3. Reference format rules for writing statements following ENTER
LINKAGE-MODE are the same as those for ordinary COBOL
statements.

4. If an ENTER option is repeated or if several options are used
consecutively, ENTER LINKAGE-MODE need not be repeated.

5. Option 1 is used in the main program to link to a subordinate
program. Options 2 and 3 are used in a subordinate program to
link to the main program. When option 2 is used 'entry-name'
must be identical to an 'entry-name' in a CALL statement in the
main program. When option 2 and option 3 are used in the same
subordinate program in conjunction with the source CALL state-
ment, the 'entry-name' in options 2 and 3 and in the associated
CALL statement must be identical.

N28-0070 (J28-6260-1) Page 16 of 26

Page

6.

Amendment

'Entry-name' defines the entry point of the subordinate program.
'Entry-name' must consist of one to six characters at least one
of which must be alphabetic and none of which may be blank. It
must be surrounded by quotation marks so that the Compiler will
treat it as a non-numeric literal. This allows for the use of
names permissible in MAP but not normally permissible in
COBOL.

If the subordinate program was separately assembied under
IBMAP for inclusion with a COBOL program at load time, 'entry-
name' in the main COBOL program must correspond to a name
specified by a MAP language ENTRY pseudo-operation.

The USING option provides a means of informing a subordinate
program of the object-time locations of data items or of File

Control Blocks.

9. ~Normal return from the subordinate program is to the next -

10.

11.

sentence in the main COBOL program or to the next ENTER
option, if specified. The RETURNING option is used together
with option 3 to provide alternate returns.

A CALL statement of the following form:

CALL 'name' USING X1, X2,...,XA
will produce a MAP language CALL operation of the following
form:

CALL name (Y1, Y2,...,YA).
If Xi in the CALL statement is a data-name, the corresponding
Y; will be a computer word which object-time initialization will
convert to the form:

PZE A, , Bi
where Ai is the address of the first word containing X; and B, is
the number (0 through 5) of the first six-bit group (byte) in the
first word containing X;.

If X. is a file-name, the corresponding Y; will be the address of
the %irst word of the File Control Block for the file. A further
discussion of File Control Blocks is contained in the publication,
IBM 709/7090 Input/Output Control System, Form C28-6100-2.

The RECEIVE option is used in the subordinate program to move
information from the main program to the subordinate program.
Data-name-1 through data-name-m following RECEIVE are the
names of items into which information is stored. Storing takes
place when control is transferred to the subordinate program by
means of a CALL statement in the main program.

N28-0070 (J28-6260-1) Page 17 of 26

Page

12.

13.

14.

15.

16.

Amendment

The PROVIDE option is used in the subordinate program to
return information to the main program. Data-name-(m+1)
through data-name-K following PROVIDE are the names of items
whose information is stored into the main program. Storing
takes place when control is transferred to the main program by
means of option 3.

The data-names used with options 1 and 2 must conform to the
following rules:

a. They may not specify items which vary in length at object
time.

b. They may not be report or scientific decimal items.

c¢. The total number of data-names specified in the RECEIVE
option plus the number of data-names in the PROVIDE option
must equal the total number of data-names specified in an
associated USING option (that is, where options 1 and 2 have
the same 'entry-name'.) Any repetitions of data-names must
be included in the total number.

d. The names of the data items in the associated USING option
do not have to be identical to the names of the data items in
the RECEIVE and PROVIDE options. However, a data item
in the USING clause must be of the same length and descrip-
tion as its counterpart in the RECEIVE or PROVIDE option.

e. The order of the data items in the associated USING option
must correspond to the order of its counterparts in the
RECEIVE and PROVIDE options.

Option 3 is used in the subordinate program to return to the main
program. 'Entry-name' in the RETURN option must be the same
as 'entry-name' in the CALL statement in the main program.

When the DEPENDING ON option is specified, the value of data-
name is equivalent to the number of an alternate return specified
in the RETURNING option of an associated CALL statement in

the main program. Thus, if the value of data~name is zero, the
normal return will be taken; if the value of data-name is 1, return
will be to procedure-name-1 specified in the RETURNING option.

Following is a coding example illustrating the use of option 1 in a

main COBOL program and option 2 and option 3 in a subordinate
COBOL program.

N28-0070 (J28-6260-1) Page 18 of 26

Amendment

Main Program

PARAGRAPH-NAME-1. ENTER LINKAGE-MODE.

CALL 'ENTPNT"' USING WORK, WORK, AMOUNT.
PARAGRAPH-NAME-2. ENTER COBOL.

Subordinate Program

PARAGRAPH-NAME-3. ENTER LINKAGE-MODE.
ENTRY POINT IS 'ENTPNT'
RECEIVE WORK-A
PROVIDE WORK-A, AMOUNT-A.
PARAGRAPH-NAME-4. ENTER COBOL.

PARAGRAPH-NAME-5. ENTER LINKAGE-MODE.
RETURN VIA 'ENTPNT'.
PARAGRAPH-NAME-6. ENTER COBOL.
Add the following after the discussion of "ENTER™:
EXAMINE

Function

To replace certain occurrences of a specified character and/or to
count the number of such occurrences in a data item.

ALL
TALLYING LEADING
UNTIL FIRST

literal-1 [REPLACING BY literal-2]
EXAMINE data-name 1

ALL]
REPLACING { LEADING
[UNTIL] FIRST[

literal-3 BY literal-4

Notes:

1. Any literal used in an EXAMINE statement must be a member of
the character set associated with the CLASS specified for data-
name. A figurative constant may be specified and will be con-
sidered as a single-character literal. The EXAMINE verb can
be applied only to a data item whose USAGE is DISPLAY.

N28-0070 (J28-6260-1) Page 19 of 26

Amendment

2. When an EXAMINE statement is executed, the examination begins
with the leftmost character of the data item and proceeds to the
right. If the CLASS of the item being examined is NUMERIC, any
operational sign associated with the item will not be considered
when the item is examined.

3. When the TALLYING option is used, a count at object time of the
number of certain characters in data-name is made, and this
count replaces the value of the special register TALLY. TALLY
is the name of a special register (USAGE COMPUTATIONAL
SYNCHRONIZED RIGHT) whose length is equivalent to an integer
of five decimal digits. Its primary use is to hold information
produced by the EXAMINE verb. It may also be used as a data-
name in other procedural statements. The count at object time
depends on which of the three options of TALLYING is employed:

a. If ALL is specified, all occurrences of literal-1 in the data
item are counted.

b. If LEADING is specified, the count represents the number
of occurrences of literal-1 prior to encountering a character
other than literal-1.

c. If UNTIL FIRST is specified, the count represents the number
of characters other than literal-1 encountered prior to the
first occurrence of literal-1.

4. When the REPLACING option is used (either with or without the
TALLYING option), the replacement of characters depends on
which of the four options of REPLACING is employed:

a. If ALL is specified, literal-2 (or literal-4) is substituted for
each occurrence of literal-1 (or literal-3).

b. If LEADING is specified, the substitution of literal-2 for
literal-1 (or literal-4 for literal-3) terminates when a char-
acter other than literal-1 (or literal-3) is encountered.

c. If UNTIL FIRST is specified, the substitution of literal-2
(or literal-4) terminates as soon as the first literal-1 (or

literal-3) is encountered.

d. I FIRST is specified, only the first occurrence of literal-3
is replaced by literal-4.

In the chart, for the case where Source Field Type is ALL and Receiving
Field Type is External Decimal, replace "yes" with:

yes(6)

N28-0070 (J28-6260-1) Page 20 of 26

Page

23

94

101

103

Amendment

Add the following note below the chart:
(6) The literal following ALL must be numeric.
Change note 5 to read:

5. OPEN initiates the standard IOCS label checking for input and
output files and label writing for output files. It is at this time
that label-handling procediires specified by a USE Declarative
are executed.

Delete note 6 under "OPEN."
Replace the format of option 2 under "PERFORM" with:

Ontion 2.

PERFORM procedure-name-1 [THRU procedure-name-z]

TIME [|

data-name-1
integer-1

Delete note 6 and renumber the notes which follow accordingly:
Change note 8 to read:

7. After recognition of the end of reel, the READ performs the
following operations:

a. The standard trailer label subroutine and procedures
specified by a USE Declarative.

b. A tape alternation.

c. The standard header label subroutine and procedures
specified by a USE Declarative.

d. Makes the next record available.

Add the following before the section on "WRITE'':

USE
Function
To specify that procedures for input/output error and/or label

handling are to be used in addition to procedures supplied by the
7090/7094 Input/Output Control System.

N28-0070 (J28-6260-1) Page 21 of 26

Page

Amendment

Option 1.

USE AFTER STANDARD ERROR PROCEDURE

INPUT
file-name-1 [, file-name-2. .]

Option 2.

BEFORE BEGINNING
SE {—/———— D T
U { AFTER } STANDAR [{ENDING :]

[{@ }] LABEL PROCEDURE

FILE

INPUT
ON OUTPUT
file-name-1 [, file-name-2. .]

Notes:

1. A USE sentence, when present, must immediately follow a section
header within the Declaratives portion of the Procedure Division.
Each USE sentence must be followed by one or more procedure
paragraphs. The presence of another section or the statement
END DECLARATIVES terminates a USE section.

2. The procedure paragraphs that follow a USE sentence may not
include statements containing input/output verbs. They may not
include statements which transfer control to procedures contain-
ing input/output verbs.

3. When option 1 is specified, the procedure paragraphs which follow
the USE sentence will be executed after the standard IOCS error
routine is completed. Option 1 may only be used in connection
with the input files.

4. When option 2 is specified, the procedure paragraphs which follow
the USE sentence will be executed before or after the IOCS header
or trailer label checking procedure is completed, depending on
whether the BEFORE or AFTER option is specified. Option 2 may
only be specified for labeled files.

N28-0070 (J28-6260-1) Page 22 of 26

Page Amendment

5. When the BEGINNING option is specified, the procedure
paragraphs which follow the USE sentence will be executed for
header labels; when the ENDING option is specified, the proce-
dure paragraphs will be executed for trailer labels. If neither
BEGINNING nor ENDING is specified, the procedure paragraphs
will be executed for both header and trailer labels.

6. When the REEL option is specified, the procedure paragraphs
are executed for labels between the first header and the last
trailer label of the file. When the FILE option is specified, the
procedure paragraphs are executed for the first header and/or
the last trailer label of the file. Specifying neither REEL nor
FILE is equivalent to specifying both REEL and FILE.

7. When INPUT is specified, the procedure paragraphs are executed
for all labeled input files; when OUTPUT is specified, the proce-
dure paragraphs are executed for all labeled output files.

8. When option 2 is specified, external names are generated by the
Compiler and placed in the object program Control Dictionary.
In jobs consisting of more than one source program, it may,
therefore, be necessary to rename non-unique external names by
means of NAME cards. A further discussion of $NAME cards is
contained in the publication, IBM 7090/7094 Programming Systems:
IBJOB Processor, Form C28-6275-0.

104 Change note 5 to read:

5. After recognition of the end of reel, the WRITE performs the
following operations:

a. The standard trailer subroutine and procedures specified by
a USE Declarative.

b. A tape alternation.

c. The standard header label subroutine and procedures specified
by a USE Declarative.

108 Replace the line "PROCEDURE DIVISION" and what follows with:
PROCEDURE DIVISION.
DECLARATIVES.

section-name-1 SECTION. USE... .
paragraph-name-1. ...

paragraph-name-n. ...

N28-0070 (J28-6260-1) Page 23 of 26

Page

109-112

Amendment

section-name-n SECTION.

paragraph-name-1. ...
paragraph-name-n. ...

END DECLARATIVES.
paragraph-name. ...

section-name-1 SECTION.

paragraph-name-1. ...
paraéraph-name—& ces

paragraph-name-n. ...

section-name-2 SECTION.

section-name-n SECTION.

paragraph-name-1. ...
paragraph-name-2. ...

para{;raph—name—n. .

USE... .

Replace the word list with the following:

ADD

AFTER

ALL
ALPHABETIC
ALPHANUMERIC
ALTER

AN

AND

ARE

ASSIGN

AT

BCD
BEFORE
BEGINNING
BINARY

BLANK
BLOCK
BY

CALL
CARD-PUNCH
CARD-READER
CHARACTER
CHARACTERS
CHECKPOINT-UNIT
CLASS

CLOSE

COBOL

*COLLATE-COMMERCIAL

COMPUTATIONAL
COMPUTATIONAL-1

* This word is not described in this publication but, nevertheless,
is pre-empted and should not be used in a 7090/7094 COBOL

program.

N28-0070 (J28-6260-1) Page 24 of 26

Amendment

COMPUTATIONAL-2
COMPUTE
CONFIGURATION
CONSTANT
CONTAINS

COUNT

CONTROL

CORRESPONDING

DATA
DECLARATIVES
DENSITY
DEPENDING
DIGIT

DIGITS
DISPLAY
DIVIDE
DIVISION

ELSE
END

* ENDING
ENTER
ENTRY
ENVIRONMENT
EQUAL
EQUALS
ERROR
EVERY
EXAMINE
EXCEEDS
EXIT

FD

FILE

FILE-CONTROL
FILE-IDENTIFICATION
FILE-SERIAL-NUMBER
FILLER

FIRST

FOR

FROM

GIVING
GO
GREATER

HIGH
HIGH-VALUE
HIGH-VALUES

HYPERTAPE

IBM-7090
IBM-7094

*IBM7090
*[BM7094

ID
IDENTIFICATION
I¥

IN

INPUT
INPUT-OUTPUT
INTO
I-O-CONTROL

IS

KEY

LABEL
LEADING
LEAVING
LEFT

LESS
LINKAGE-MODE
LOCATION
LOCK

LOW
LOW-VALUE
LOW-VALUES

*MINUS

MODE
MOVE
MULTIPLE
MULTIPLY

NEGATIVE
NEXT

NO

NONE

NOT

NOTE

NUMERIC

* This word is not described in this publication but, nevertheless,
is pre-empted and should not be used in a 7090/7094 COBOL

program.

N28-0070 (J28-6260-1) Page 25 of 26

Page

Amendment

OBJECT-COMPUTER

OCCURS

OF

OFF

OMITTED

ON

OPEN
*OPTIONAL

OR

OTHERWISE

OUTPUT

PERFORM
PICTURE
PLACE
PLACES
*PLUS
POINT
POSITIVE
PRINTER
PROCEDURE
PROCEED
PROVIDE

QUOTE
QUOTES

READ

RECEIVE

RECORD
RECORDING
RECORDS
REDEFINES

REEL
REEL-SEQUENCE-NUMBER
RENAMING
REPLACING

RERUN
RETENTION-PERIOD
RETURN
RETURNING

REWIND

RIGHT

ROUNDED

RUN

SECTION
SELECT
SENTENCE
SIGNED

SIZE
SOURCE-COMPUTER
SPACE

SPACES
SPECIAL-NAMES
STANDARD
STATUS

STOP

SUBTRACT
SYNCHRONIZED
SYSOU1

TALLY
TALLYING
TAPE-UNIT
TAPE-UNITS
THAN

THEN

THROUGH .
THRU } Equivalent
TIME

TIMES

TO

UNEQUAL
UNTIL
UPON
USAGE
USE
USING

VALUE
VARYING
VIA

WITHOUT
WORKING-STORAGE
WRITE

ZERO
ZEROES
ZEROS

* This word is not described in this publication but, nevertheless,
is pre-empted and should not be used in a 7090/7094 COBOL

program.

N28-0070 (J28-6260-1) Page 26 of 26

IBM
/

Technical Newsletter System

Re: Form No. J28-6260-1
This Newsletter No. N28-0092-1
Date April 8, 1964

Previous Newsletter Nos.

IBM 7090/7094 COBOL

This newsletter contains addenda and errata to the publication IBM 7090/7094
Programming Systems: COBOL Language, Preliminary Specifications, Form
J28-6260-1. It makes Technical Newsletter N28-0092 obsolete. Form J28-6260-0
together with Technical Newsletters N28-0040 and N28-0052 are equivalent in
information to Form J28-6260-1. The pagination of Form J28-6260-0 differs
slightly from that of Form J28-6260-1. The pagination in this newsletter and in
Technical Newsletter N28-0070 refers to Form J28-6260-1.

Page Amendment
Table of On the fourth page of the Table of Contents, before the heading "ADD"
Contents add:
ACCEPT 77
26 Replace the format of the "I-O-CONTROL" paragraph with:
I-O-CONTROL.

RERUN [_O_N CHECKPOB\IT-U'NIT] EVERY
BEGINNING OF REEL OF file-name-1
[, file-name-2...] [RERUN. ._.] N

Replace note 4 with the following:

4. When the ON CHECKPOINT-UNIT option is not specified,
file-name-1, file-name-2, etc., must be the names of
labeled output files.

50 Add the following sentence to note 3 under LEVEL-NUMBER:

The 01 level number must be used for the superior levels of
data organization in the Record Description entries. The first
entry must have a level number of 01.

International Business Machines Corp., Applied Programming Publications, 1271 Avenue of the Americas. N. Y. 20,N.Y.

PRINTED IN U.S.A.

N28-0092-1 (J28-6260-1) page 1 of 4

[e.]

Page

54

55

58

60

Amendment

Replace note 2 under OCCURS with the following:

2. The OCCURS clause cannot be specified for an entry which
has a level number of 01 or 77.

Replace the discussions under "The Floating Dollar Sign' and "The
Floating Minus Sign" with the following:

The Floating Dollar Sign. Zero suppression with a floating dollar
sign is specified by placing a dollar sign in each numeric character
position to be suppressed. A dollar sign will be placed in the right-
most position in which suppression is to occur. All floating dollar
signs must be the leftmost characters in a PICTURE with the excep-
tion that single commas, B's, or 0's may be embedded. Suppres-
sion of leading commas, B's, and 0's is also provided.

The Floating Minus Sign. Zero suppression with a floating minus
sign is specified by placing a minus sign in each numeric character
position to be suppressed. If the value of the item is negative, a
minus sign will be placed in the rightmost position in which suppres-
sion is to occur. If the value is positive or zero, a space will be
inserted instead of a minus sign. All floating minus signs must be
the leftmost characters in a PICTURE with the exception that single
commas, B's, or 0's may be embedded. Suppresion of leading
commas, B's, and 0's is also provided.

Replace the discussion under "The Floating Plus Sign" with the following:

The Floating Plus Sign. Zero suppression by means of a floating
plus sign is specified by placing a plus sign in each leading numeric
character position to be suppressed. If the value of the item is
negative, a minus sign will be placed in the rightmost position in
which suppression is to occur. If the value of the item is not nega-
tive, a plus sign will be inserted instead. All floating plus signs
must be the leftmost characters in a PICTURE except that single
commas, B's, or 0's may be embedded. Suppression of leading
commas, B's, and 0's is also provided.

Delete note 3 under "SIGNED'" and renumber the notes which follow
accordingly .

Insert the following sentences after the second sentence under '""Working-
Storage Records."

The OCCURS clause may not be used at the 01 level in either Record

Descriptions or Working-Storage Record Descriptions. The 01 level
number must be used for the superior levels of data organization.

N28-0092-1 (J28-6260-1) page 2 of 4

Page Amendment
69 Change the first sentence under ""Simple Conditions' to read:
Simple conditions test for one of five types of conditions.
72 Add as note 5 the following:
5. Class Test
The format for the class test is:

e s [ror] (IRERE)
TI

Data-name must be either a group item or an alphanumeric
non-report item. When a class test is performed, determination
is made as to whether or not:

1. An item consists of the characters 0-9 (NUMERIC).
2. An item consists of the characters A-Z or blank
(ALPHABETIC).

When a single-character item contains an operational sign, it
will be considered NUMERIC if the test is for a NUMERIC item and
ALPHABETIC if the test is for an ALPHABETIC item. Items con-
‘sisting of more than one character and containing an operational sign
on the low-order character will be considered NUMERIC only if all
the other characters in the item are numbers.

76 Add ACCEPT to the list of input/output verbs.
1T Add the following before the discussion of ADD:
ACCEPT
Function

To obtain low-volume data from an input device.

ACCEPT data-name

Notes:

1. The standard device from which low-volume data is obtained
is the on-line card reader.

N28-0092-1 (J28-6260-1) page 3 of 4

109-112

Amendment

2.

Data-name must be the name of an item defined in the
Working-Storage Section. Data-name may not be described
with an OCCURS DEPENDING ON clause and may not be
followed by any entry within the logical record containing
data-name which is described by an CCCURS DEPENDING
ON clause. No assumption should be made about the con-
tents of data-name beyond the first 72 characters.

Data-name must be USAGE DISPLAY and may only be an
alphanumeric or alphabetic non-report item, an external
decimal item, or a group item.

No editing or error-checking of the value of data-name is
performed.

Add the following words to the COBOL word list as amended by Technical
Newsletter N28-0070:

AUTHOR
DATE-COMPILED
DATE-WRITTEN
INSTALLATION
PROGRAM-ID
REMARKS
SECURITY

N28-0092-1 (J28-6260-1) page 4 of 4

IBM Technical Newsletter File Number 7090-24

Re: Form No. J28-6260-2
This Newsletter No. N28-0103
Date ~ June 15, 1964
Previous Newsletter Nos. None

IBM 7090/7094 COBOL

This newsletter supplements the publication IBM 7090/7094 Programming Systems:
COBOL Language: Preliminary Specifications, Form J28-6260-2.

Form J28-6260-1 with Technical Newsletters N28-0070 and N28-0092 is equivalent in
information to Form J28-6260-2. The pagination in this newsletter refers to Form
J28-6260-2.

In the subject publication, replace the pages listed below with the pages that are at-
tached to this newsletter.

=

Pages 7 and 8
Pages 9 and 10
Pages 25 and 26
Pages 39 and 40
Pages 41 and 42
Pages 53 and 54
Pages 55 and 56
Pages 71 and 72
Pages 77 and 78
Pages 79 and 80
Pages 81 and 82
Pages 93 and 94
Pages 95 and 96
Pages 107 and 108
Pages 109 and 110

. .

-

.

W =1 O Uk W N

.

e e S G S
D U N Sy SN 1)

A vertical line immediately to the left of the column shows where the text was changed.
File this cover page at the back of the bulletin. It will provide a reference to changes,

a method of determining that all amendments have been received, and a check for de-
termining if the bulletin contains the proper pages.

International Business Machines Corp., Programming Systems Publications, P. O. Box 390, Poughkeepsie, N. Y. 12602

PRINTED N U.5.A. " N28-0103 (J28-6260-2) Page 1 of 1

Each condition-name must be unique, or be made unique through
qualification. A conditional variable may be used as a qualifier
for any of its condition-names.

If a condition-name is to be equated to the status of a hardware
device, it is defined in the SPECIAL-NAMES paragraph of the

Environment Division.

The difference between this kind of condition-name and a Data
Division condition-name is automatically handied by the compiler.

3. Procedure-names. A procedure-name is either a paragraph-name
or a section-name. Procedure-names permit one procedure to
refer to others. A procedure-name may be composed solely of
numeric characters. However, two numeric procedure-names are
equivalent only if they are composed of the same number of
numeric digits and have the same numeric value. Thus, 0023 is
not equivalent to 23.

4. Literals. A literal is an item of data, integral to the text, which
is completely defined by its own identity rather than by Data
Division clauses. A literal may belong to one of two classes: non-
numeric (aiphabetic or aiphanumeric) or numeric. Non-numeric
literals must be bounded by quotation marks; numeric literals
must not.

A non-numeric literal is defined as a literal which is composed of
up to 120 of any allowable characters except the quotation mark,
All spaces which are enclosed in the quotation marks are included
as spaces in the literal.

A numeric literal is defined as one which is composed only of

characters chosen from the numerals 0 through 9, the plus or

minus sign, and the decimal point. The rules for formation of
numeric literals are:

a. A numeric literal may contain only one sign
character and/or one decimal point.

b. The literal must contain at least one and not
more than 18 digits.

C. The sign in the literal must appear as the left-
most character. If the literal is unsigned, it
is considered to be positive.

d. The decimal point may appear anywhere within
the literal except as the right-most character,
and is treated as an implied decimal point. If
the literal contains no decimal point, it is
considered to be an integer.

(See Record Description Entry VALUE clause for a discussion
of floating point literals.)

Form J28-6260-2

Page Revised 6/15/64

by TNL N28-0103

If a literal conforms to the rules for formation of numeric literals, but
it is enclosed in quotation marks, it is considered as a non-numeric
literal and will be treated as such by the compiler. For example,
-125.65 is not the same as '-125,65"',

Examples of non-numeric literals are:

'EXAMINE CLOCK NUMBER!'
'PAGE 144 MISSING'
'-125.65'

Examples of numeric literals are:

1506798
-12572.6
+256.75
1435.89

5. Figurative Constants., Certain values have been assigned fixed
data-names. These items with the fixed data-names are called
"figurative constants.'" These names, when used as figurative
constants, must not be bounded by quotation marks. The singular
and plural forms of figurative constants are equivalent, and may be
used interchangeably. If the names are bounded by quotation marks
they will be considered as non-numeric literals. The fixed data-
names and their meanings are as follows:

ZERO
ZEROS Represents the value 0.
ZEROES

SPACE
ms Represents one or more blanks or spaces,
HIGH-VALUE Usually represent one or more 9's, the
HIGH-VALUES highest value in the commercial collating
sequence; but represent one or more left
parentheses if the scientific (binary) col-
lating sequence has been specified by the
option BINSEQ on the $IBCBC control card.

LOW-VALUE Usually represent one or more blanks or
LOW-VALUES spaces, the lowest value in the commercial

collating sequence; but represent one or
more zeros if the scientific (binary) collating
sequence has been specified by the option
BINSEQ on the $IBCBC control card.

QUOTE Represents the character ', Note that the
QUOTES use of the word QUOTE to represent the

character ' at object time is not equivalent
to the use of the symbol ' to bound a literal.

Form J28-6260-2
Page Revised 6/15/64
by TNL N28-0103

pd

ALL 'literal' Represents one or more occurrences of the
single character (bounded by quotation
marks) comprising the literal. An alter-
native form for "literal' is any figurative
constant (not bounded by quotation marks)

e.g., ALL SPACES.

Figurative constants generate a string of homogeneous information
whose length is determined by the compiler, based upon context,
When the length is not deducible from context, a single character

is generated. The figurative constants may be used in the Procedure
and Data Divisions. When non-numeric figurative constants are used
in the Procedure Division, they may not be associated with data items
whose length is greater than 120 characters. A figurative constant
may be specified in a Record Description VALUE clause for an item
longer than 120 characters.

Examples of the above are:

Verbs

a, MOVE ALL '4' TO COUNT-FIELD, where COUNT-FIELD
has been described as having six characters, results in 444444,

b. From the statement MOVE SPACES TO TITLE-BOUNDARY,
the compiler will create coding which puts as many space
characters into the item TITLE-BOUNDARY as are necessary
to fill the item.

c. DISPLAY QUOTE, 'NAME', QUOTE results in 'NAME'.

d. MOVE QUOTE TO AREA-A, where AREA-A has been
described as having five characters, results in '!'*'.

Special Register. TALLY is the name of a special register (USAGE

COMPUTATIONAL, SYNCHRONIZED RIGHT) whose length is
equivalent to a five decimal digit integer. It may be used to hold
intermediate results during the execution of a program.

Special Names. Special names provide a means of relating hardware

with problem-oriented names, and the status of hardware switches
with condition-names.

A verb appears in the Procedure Division, and designates an action:
ADD, MOVE, GO TO, etc.

Reserved Words

Reserved words are used for syntactical purposes and may not be used
as nouns or verbs, There are three types:

Qualifiers

1. Connectives, Connectives are words used to:
a. Denote the presence of a qualifier: OF, IN.

b. Form compound conditionals: AND, OR, AND NOT, OR NOT;
these are called logical connectives.

2. Optional Words. Optional words have been defined and used to
improve the readability of the language. Within each format, upper
case words which are not underlined are designated as optional.
The presence or absence of each optional word within the format
for which it is shown does not alter the compiler's translation.
However, misspelling of an optional word or its replacement by
another word of any kind is not permitted.

3. Key Words. Key words are of three types:
a. Verbs: ADD, READ, ENTER, etc.

b. Required words, which appear in formats in various divisions
of the language and which are needed to complete the meaning
of certain verbs or entries: TO, OMITTED, MEMORY, etc.

c. Words not shown in any format, but which have a specific
functional meaning: NEGATIVE, SECTION, TALLY, etc.

Every name used in 2 COBOL source program must be unique, either
because no other name has the identical spelling, or because the name
exists within a hierarchy of names (so that the name can be made unique
by mentioning one or more of the higher levels of the hierarchy), The
higher levels are called qualifiers when used in this way, and the process
is called qualification. Enough qualification must be mentioned to make
the name unique, but it is not necessary to mention all levels of the
hierarchy unless they are needed to make the name unique. A file-name
is the highest level qualifier available for a data-name. A section-name
is the highest and the only qualifier available for a paragraph-name,
Thus, file-names and section-names must be unique in themselves and
cannot be qualified.

Qualification in COBOL is performed by appending one or more prepo-
sitional phrases, using IN or OF. The choice between IN or OF is based
on readability, since they are logically equivalent. Nouns must appear
in ascending order of hierarchy with either of the words IN or OF
separating them. The qualifiers are considered part of the name. Thus,
whenever a data item or procedure paragraph is referred to, any
necessary qualifiers must be written as part of the name.

10

Form J28-6260-2
Page Revised 6/15/64
by TNL N28-0103

7340 Hypertape units may be assigned system names. Specific assign-
ments of this type are made with IBSYS control cards. (See the $FILE

card in the publication IBM 7090/7094 Programming Systems: IBJOB
Processor, Form C28-6275.) The following restrictions apply:

1. BSpecification of DENSITY in the RECORDING MODE clause is
ignored.

2. If two unit§ have been assigned to a file and the first is a

Hypertape unit, the second must alsc be a Hypertape unit,

€. NONE. When NONE is placed in the Unit 1 field of a $FILE
card, that file is said to be absent for that particular run and no
input activity will be applied to it.

Within certain limitations, it is permissible to change the contents of the
Unit 1 and Unit 2 fields of the $FILE cards after the program has been
compiled. One restriction on changing unit assignments after compilation
is that-files which are assigned to tape media only in the source program
(this includes files assigned to NONE in the source program) can not be
changed to card media; files which are assigned to card media only

in the source program (this includes the printer) can not be changed to
tape media. Files which are assigned to either card or tape media in the
source program (SYSIN1, SYSOU1, and SYSPP1) may be changed to any
other tape or card assignment for a given run of the object program.

A file which is assigned to a system unit must conform to the physical and
logical characteristics inherent in the system unit. The table on the
following pages summarizes the relationships between the permissible
forms of the ASSIGN TO clause and the contents of associated fields in

the $FILE cards which are produced by the compiler.

I[-O-CONTROL

Function

To specify rerun procedures.

I-O-CONTROL.

RERUN [ON CHECKPOINT-UNIT | EVERY

BEGINNING OF REEL OF file-name-1

[, file-name-2. . .] [RERUN...] .

Notes:
1. This paragraph is required only when rerun is desired.
2, RERUN may be used to specify that memory dumps are to be

written under one of the following conditions:

a. At each reel switch of the specified file (whether input or
output), a memory dump is to be written on the unit which
is provided by the compiler as the standard checkpoint-unit.

File Assignment Table

Form of ASSIGN T_QClause

Contents of Associated $FILE Card Fields

Unit 1 Field

Unit 2 Field

Multireel Field

1 TAPE-UNIT omitted omitted omitted
1 TAPE-UNIT MULTIPLE REEL omitted omitted REELS
2 TAPE-UNITS MULTIPLE REEL * omitted REELS
CARD-READER CRD omitted omitted
CARD-PUNCH PCH omitted omitted
PRINTER PRT omitted omitted
symbolic-tape-unit-name-1 symbolic-tape- omitted omitted
unit-name-1
Example: A A omitted omitted
symbolic-tape-unit-name-2 symbolic-tape- omitted REELS
MULTIPLE REEL | unit-name-2 | | |
Example: TIV MULTIPLE REEL TIV omitted REELS
symbolic-tape-~unit-name-3 symbolic-tape- symbolic-tape- REELS
symbolic-tape-unit-name-4 unit-name-3 unit-name-4
FOR MULTIPLE REEL I R R

Example: C(3), C(4) MULTIPLE REEL| C(3) C(4) REELS
symbolic-card-unit-name-1 symbolic-card- omitted omitted

| unit-name-1 | — e —]
Example: RDA RDA omitted omitted
system-unit-name-1 abbreviated omitted or may be filled

system-unit- in automatically

jname-l . 1 ____ |
Example: SYSIN1 ¥ IN1 IN2 REELS
system-unit-name-2 abbreviated omitted or may REELS
MULTIPLE REEL system-unit- be filled in

|name-2 | aufomatically | _ __ ____ |
Example: SYSUT1 MULTIPLE REEL | UT1 omitted REELS
system-unit-name-3, abbreviated abbreviated REELS

system-unit-name-4 system-unit- system-unit-

| name-3 | name-4 | |

Example: SYSUT2, SYSUT3 UT2 UT3 REELS
FOR MULTIPLE REEL

NONE NONE omitted omitted

#Note: In the example, this particular file automatically takes on the

MULTIREEL characteristic of the system unit.

Th

is is also true for

SYSOU1 and SYSPP1 which are system MULTIREEL files.

26

co
-3

Form J28-6260-2
Page Revised 6/15/64
by TNL N28-0103

There is only one storage area reserved for all standard labels,
whether input or output, and all labels are processed in that area.
The VALUE clause, described under VALUE, provides the only
means of referring to this area.

Standard labels are of two types, header labels and trailer labels.
The various items within a label are processed in different ways
depending upon which type label is being read.

Since there is only one label area shared by all files, any references
to items within that area must not be qualified by a file name, i.e.,
each name in the label area is unique.

The standard label area is processed by the IOCS for any one of
the following purposes:

a. To check an input file header label. A header label occurs at
the beginning of the file and at the beginning of every reel of
the file. At the time this type of label is processed by IOCS,
the items FILE-SERIAL-NUMBER, REEL-SEQUENCE-
NUMBER, and FILE-IDENTIFICATION are checked for the
values designated in the respective VALUE OF clauses under
the FD entry for the file.

b. To check an input file trailer label. A trailer label occurs at
the end of the file and at the end of every reel of the file. If
the value of the item LABEL-IDENTIFIER is 'LEORb’, the
label is an END-OF-REEL label; if the value is "1EOFb’, the
label is an END-OF-FILE label. At this time the BLOCK-
COUNT item (this item applies to trailer labels only) is
checked against the number of blocks actually read by the
I0CS.

c. To check the header label on a tape to be used in order to insure
that the tape may be written upon. Tapes that have labels be-
ginning with '1BLANK' are accepted unconditionally, but those
tapes beginning with 'IHDRbb' are accepted only if RETENTION-
PERIOD indicates that the life of the tape has expired.

d. To prepare an output file header label. At the time this label
is formed by the IOCS, the items RETENTION-PERIOD, REEL-
SEQUENCE-NUMBER, FILE-IDENTIFICATION and FILE-
SERIAL-NUMBER are formed from the information supplied
in the respective VALUE OF clauses under the FD entry for
the file.

If these fields have not been specified by $LABEL cards and
if the VALUE clauses have been omitted, IOCS supplies
the following:

Form J28-6260-2
Page Revised 6/15/64
by TNL N28-0103

RETENTION-PERIOD: 000 (days)

REEL-SEQUENCE-NUMBER:b0001b (for a file being
opened and con-
secutively higher
for succeeding
reels)

FILE-SERIAL-NUMBER: the file-serial-number from
the label of the tape being
written over.

FILE-IDENTIFICATION: the file-name given by the
source programmer, which
may have been modified by
the compiler to limit the
name to 18 characters.

e. To prepare an output file trailer label. At this time the
LABEL-IDENTIFIER item is filled with the proper END-OF-
REEL or END-OF-FILE indication, and the BLOCK-COUNT
item is also filled in with the actual number of physical blocks
that have been written on the reel.

6. Files that are assigned to SYSIN1, SYSOU1, or SYSPP1 may not
be labeled.

w
-~
[y

RECORD SIZE

Function

To specify the size of data records.

[, RECORD CONTAINS [integer—S m] integer-4 CHARACTERS]

Notes:

1. Integer-3 and integer-4 must be numeric literals with positive
integral values.

2. The size of each data record is completely defined within the Record
Description entries; therefore this clause is never required. When
present, however, the following notes apply:

a. In this clause, CHARACTERS refers to the number of computer
characters which the record will occupy. Therefore, when
specifying the number of computer characters, careful consider-
ation must be given to items which are either synchronized or
computational.

b. Integer-4 may not be used by itself unless all the data records
in the file have the same size. In this case integer-4 represents
the exact number of characters in the data record. If integer-3
and integer-4 are both shown, they refer to the minimum number
of characters in the smallest size of data record and the maximum
number of characters inthe largest size of data record, respectively.

RECORDING MODE

Function

To specify the external format of a file.

» RECORDING MODE IS {BCD } [{LOW} DENSITY]
BINARY HIGH

[WITHOUT COUNT CONTROL]]

Notes:

1. The BCD mode should be specified for any file assigned exclusively
to card equipment. If the unit assigned to the file may be either a
tape or card unit, as is the case with some system units, the re-
cording mode must agree with the system unit recording mode.

2. If information is recorded on the magnetic tape just as it is found
in core storage (except for check bits), the tape is said to be a
binary tape or to have been written in the binary recording mode.

38

Through the use of auxiliary units, alphanumeric information may
be recorded on or read from a magnetic tape independently of the
computer. Magnetic tapes prepared or used by this auxiliary
equipment employ a special coding system known as binary-coded-
decimal, Tapes which are prepared using the binary-coded-decimal
system are said to be BCD tapes, i.e., the RECORDING MODE IS
BCD. Tapes recorded in the BCD mode cannot contain data items
whose USAGE IS COMPUTATIONAL. Therefore, all data items
recorded in the BCD mode must be described as USAGE ISDISPLAY.

Each tape unit is capable of writing characters on magnetic tapes

at two densities, LOW or HIGH. The density of a tape refers to the
number of characters that can be written on a given area of tape.

The more characters that can be written, the higher the character
density. Some auxiliary equipment requires information to be
recorded in LOW DENSITY. However, if the tape is to be completely
processed on the 7090/94, the HIGH DENSITY option should be used
to minimize the tape area required to contain a given number of
characters.

If the clause is not used, RECORDING MODE will be BCD, HIGH

TTINTQ TN
AJEINOLL T .

When the WITHOUT COUNT CONTROL option is specified,
control words preceding logical records on files containing
logical records of different sizes will not be assumed when
reading and will not be supplied when writing.

A discussion of buffer size calculations is contained in the
discussion of BLOCK SIZE.

VALUE

Function

To specify the contents of particular items in the standard labels
associated with a file.

[, VALUE OF label-data-name-1 IS literal-1 [label—data—name-z IS]]

Notes:

39

Each label-data-name is a data~-name item and must be an item in
the standard label area (see LABEL RECORDS).

When label-data-name is alphanumeric, literal-1 must be a non-
numeric literal (enclosed within quotation marks). When label-
data-name is numeric, literal-1 must not be enclosed in quotation
marks, and must consist only of numerals.

Form J28-6260-2
Page Revised 6/15/64
by TNL N28-0103

3. Files may have label-data-names conforming to the following lists:

a. Input files.
Label-data-name

FILE-IDENTIFICATION

FILE-SERIAL-NUMBER

REEL-SEQUENCE-NUMBER

Contents of literal

Eighteen or less alpha-
numeric characters
which identify the file,

Five or less alphabetic and/

or numeric characters (no
special characters) with no
embedded blanks. This is

the REEL-SERIAL-NUMBER

of the file. The REEL-SERIAL-
NUMBER of a reel of tape is
the number on the external
casing of that reel.

Four or less numerals.
This is the number of the
reel within a given file,
i.e., the first reel of a
file is reel 1, the second
is reel 2. The value
specified in the VALUE OF
clause is checked against
the value in the label of

the first reel of the file
which is processed. Every
time a reel switch occurs
the value is increased by
one, and the new value is
checked against the value
in the label of the new reel,

Each of the above items may or may not be specified for a standard
label input file. If the item is not specified, it is not checked when

the file is processed.

b. Output files.
Label-data-name

FILE-IDENTIFICATION

RETENTION-PERIOD

40

Contents of literal

Eighteen or less alpha-
numeric characters which
identify the file.

Four or less numerals.
This is the number of days
that the file is to be saved
after its date of creation,

Form J28-6260-2

Page Revised 6/15/64

by TNL N28-10
Label-data-name Contents of Literal

The creation date for the
file is supplied by the
input/output system at the

time the file ig created.

FILE-SERIAL-NUMBER Five or less alphabetic and/
or numeric characters (no
special characters) with no
embedded blanks. This item
has the same definition as
input files. (See above.)

REEL-SEQUENCE-NUMBER Four or less numerals,
This item has the same
definition as above.

Each of the preceding items may or may not be specified for a standard
label output file, The IOCS applies the following procedures to these
items:

1.

41

If FILE~-IDENTIFICATION is specified, the non-numeric literal is
placed in the labels created. If it is not specified, the firsteighteen
characters of the file name are placed in the labels created,

If RETENTION-PERIOD is specified, that value is placed in the
labels created. If it is not specified, the value placed in the labels
created will be zero,

The value of FILE-SERIAL-NUMBER is placed in the label only if
the REEL-SEQUENCE-NUMBER value specified is greater than
one. If the REEL-SEQUENCE-NUMBER is not specified as greater
than one, the value used for FILE-SERIAL-NUMBER in creating a
new label will come from the label of the reel chosen to be the next
one used.

If REEL-SEQUENCE-NUMBER is specified, that value will be
placed in the label of the first reel of the file. Each reel after the
first reel will get a REEL-SEQUENCE~NUMBER one greater than
the previous reel. I REEL-SEQUENCE-NUMBER is not specified,
the value used for the first reel will be one.

RECORD DESCRIPTION

General Description

Elements of a Detailed Data Description

A Detailed Data Description consists of a set of entries. Each entry
defines the characteristics of a particular unit of data. With minor
exceptions, each entry is capable of completely defining a unit of data.
Because the COBOL Detailed Data Descriptions involve a hierarchical
structure, the contents of an entry may vary considerably, depending
upon whether or not it is followed by subordinate entries.

In defining the lowest level or subdivision of data, the following
information may be required:

a. A level-number which shows the relationship between this and other
units of data.

b. A data-name.
c. The size in terms of the number of digits or characters.
d. The usage of the data.

e. The number of consecutive occurrences (OCCURS) of elements in a
table or list.

f. The class or type of data, (ALPHABETIC, NUMERIC, or
ALPHANUMERIC),

g. The type of sign.

h. Location of an actual or an assumed decimal point.

i. Location of editing symbols such as dollar signs and commas.
j. Synchronization of the data (SYNCHRONIZED).

k. Special editing requirements such as zero suppression and check
protection.

1. Initial value (VALUE) of a working-storage item or the fixed value
(VALUE) of a constant.

An entry which defines a unit of data must not be contradicted by a sub-
ordinate entry. Thus, once the class is defined, it applies to all sub~
ordinate entries and need not be re-specified. However, when the class
is defined as alphanumeric, subordinate entries may particularize the
class by specifying alphabetic or numeric. I the class has been defined
as either alphabetic or numeric, subordinate entries may not change
the class.

42

T

PICT '

C-l
o3
=

Function

3
o
&
2]

To show a detailed pictur

show a detailed picture of an elementa

istics of the item, and special report editing.

(R
o

(any allowable combination of characters and)1

r
I_’M IS symbols as described below

Notes:
Because the choice of characters in any given PICTURE depends on the
type of data item being described, the characters will be grouped accord-

ing to the type of data item they describe.

1. Numeric Items

The PICTURE of any numeric data item may contain a2 combination of
only the following characters:

9VPS
The significance of these four characters is as follows:

a. The character 9 indicates that the character position will al-
ways contain a numeric character.

b. The symbol V indicates the position of an assumed decimal
point. Since a numeric item cannot contain an actual decimal
point, an assumed decimal point is used to provide the com-
piler with the information concerning the alignment of items
involved in computation.

c. The character P indicates an assumed decimal scaling posi-
tion. It is used to specify the location of an assumed decimal
point when the point is not within the data item. The charac-
ter V may be used or omitted as desired. If it is used,
however, it must be placed in the position of the assumed
decimal point.

d. The character S is equivalent to the SIGNED clause and indi-
cates the presence of an operational sign. If used, it must al-
ways be written as the leftmost character of the PICTURE. If
the USAGE of the item is COMPUTATIONAL, the character S
in a PICTURE is a redundant specification. If the USAGE of
the item is DISPLAY, it specifies a sign overpunch in the units
position.

Form J28-6260-2

Page Revised 6/15/64

by TNL N28-0103

54

Alphabetic Items

The PICTURE of an alphabeticitem can contain only the character A.

An A indicates that the character position will always contain an
alphabetic character, i.e., a letter or a space.

Alphanumeric Items

An alphanumeric item has been defined as an item which may con-
tain any character in the character set of the computer. Alpha-
numeric items can be divided into two types: non-report items for
which editing is not specified, and report items for which editing
has been specified.

a.

Non-report Items

The PICTURE of a non-report item may contain only the
characters 9, A, and X and must contain at least one A or X.
The characters 9 and A have been discussed above. A
mixture is treated as if all the characters were Xs.

An X indicates that the character position may contain any
character in the computer's character set.

Report Items

Editing of numeric data is accomplished by moving the data to
a report item which specifies the insertion, replacement,
and/or suppression of certain characters. The PICTURE of a
report item may contain a combination of the following charac-
ters:

9 VP, .+-Z*CRDBBOS

The uses of 9, V, and P have been discussed above. The re-
maining characters will be explained in three groups: zero
suppression, insertion, and replacement characters.

Zero suppression or character replacement is accomplished

by placing a character designated for the desired editing in

each leading numeric character position that is to be suppressed
or replaced. Three general rules apply:

(1) Suppression and/or replacement terminates with the
character immediately preceding the first digit other
than zero, or the decimal point (assumed or actual)
whichever is encountered first.

(2) If all numeric character positions in a PICTURE
reserved for source data (as opposed to those additional
positions used for insertion characters) contain suppres-
sion characters (asterisk is excluded), then all characters

will be replaced by spaces if the value of the source data
is zero.

Form J28-6260-2
Page Revised 6/15/64
by TNL N28-0103
The insertion characters B and O are treated like the insertion character
comma in these two ways:
1. If all characters to the left of the insertion character have been

o
suppressed, the insertion character will be suppressed.

2. Multiple contiguous insertion characters are not allowed. If a string
of identical characters is specified, it will be replaced by a single
insertion character and a warning message will be issued. Contiguous
insertion characters of different types will cause an E level message
to be issued.

Replacement Characters. The asterisk indicates check protection, i.e.,
the replacement of non-significant zeros by asterisks.

The Floating Dollar Sign. Zero suppression with a floating dollar sign is
specified by placing a dollar sign in each numeric character position to be
suppressed. A dollar sign will be placed in the rightmost position in which
suppression is to occur. All floating dollar signs must be the leftmost
characters in a PICTURE with the exception that single commas, B's, or
0's may be embedded. Suppression of leading commas, B's, and 0's is
also provided.

The Floating Minus Sign. Zero suppression with a floating minus sign is
specified by placing a minus sign in each numeric character position to be
suppressed. If the value of the item is negative, a minus sign will be placed
in the rightmost position in which suppression is to occur. If the value is
positive or zero, a space will be inserted instead of a minus sign. All floating

Form]J28-6260-2
Page Revised 6/15/64
by TNL N28-0103

(3) In any picture containing a string of floating characters,
the number of characters reserved by the picture must
reflect the existence of this editing character. Thus,
the picture of a string of floating characters must be at
least one character larger than the greatest number

that will be moved into it.

Zero Suppression Character. The character Z specifies that the character
position is to be suppressed by a space if a non-significant zerc appears in
the position. Z must never be preceded by 9.

Insertion Characters. The single dollar sign character specifies that a $
is to be placed in the indicated position. It must be the first character
in the PICTURE.

The single minus sign, written either as the first or the last character of
a PICTURE, specifies that a display minus sign is to be placed in the indi-
cated position when the value of the source item is negative. If the value
is not negative, a space will be inserted.

The single plus sign, written either as the first or the last character of a
PICTURE, specifies that a display minus sign is to be placed in the indi-
cated position if the value of the source item is negative. If the value of
the item is not negative, a display plus sign will be inserted.

The comma character specifies that a comma is to be inserted in the indi-
cated position unless the following condition occurs: If the suppression or
replacement has caused the elimination of all digits to the left of the comma,
the comma itself will be suppressed.

The decimal point character specifies that an actual decimal point is to be
inserted in the indicated position and the source item is to be aligned
accordingly. Numeric character positions to the right of an actual decimal
point in a PICTURE must consist of characters of one type.

CR and DB are called the "credit'" and '"debit" symbols and may appear
only at the right end of a PICTURE. These symbols occupy two character
positions and indicate that the specified symbol is to appear in the indi-
cated positions if the value of a source item is negative. If the value is
positive or zero, spaces will appear instead.

The zero specifies that the character 0 is to be inserted in the indicated
position.

The character B specifies that a space is to be inserted in the indicated
position.

55

minus signs must be the leftmost characters in a PICTURE with the ex-
ception that single commas, B's, or 0's may be embedded. Suppression
of leading commas, B's, and 0's is also provided.

The Floating Plus Sign., Zero suppression by means of a floating plus sign
is specified by placing a plus sign in each leading numeric character posi-
tion to be suppressed. If the value of the item is negative, a minus sign
will be placed in the rightmost position in which suppression is to occur.

If the value of the item is not negative, a plus sign will be inserted instead.
All floating plus signs must be leftmost characters in a PICTURE except
that single commas, B's, or 0's may be embedded. Suppression of leading
commas, B's, and 0's is also provided.

c¢. Scientific Decimal Items.

A scientific decimal item is a special type of report item which specifies
editing of a floating-point number. The PICTURE of a scientific decimal
item may contain only the following characters:

+-9.VE
Specifically the PICTURE must conform to the form:

{£} [9(m)][{Y}] [9(n)] E {«} 99

Mantissa Exponent

where m and n are positive integers and m+n must be greater than 0 and
less than 17. The symbol E is used to give visual separation of the exponent
from the mantissa.

4. Record Mark.

The PICTURE character J specifies that the single character called
record mark (of special importance to some peripheral equipment)
is to appear in the indicated position as a constant. If J is used, the
PICTURE must contain only one J, and no other character may
appear with it.

The data item being specified is one alphanumeric character whose
value is a record mark (3) and all the rules for a data item with such
specifications apply

5. General Notes.

a. A PICTURE clause can be used only at the elementary item
level.

b. An integer which is enclosed in parentheses following any sym-
bol listed below indicates the number of consecutive occurrences
of that symbol:

AX9PZ*¥$BO- +

c. The maximum number of characters allowed in a PICTURE is
30.

56

Form)28-6260-2
Page Revised 6/15/64
by TNL N28-0103

b. Comparison of Non-numeric Items. For two non-numeric items,
a comparison results in the determination that one of the items
is less than, equal to, or greater than the other with respect to
a collating sequence. The standard collating sequence is the com-
mercial collating sequence, but an alternate sequence may be
to be used. This is specified by placing the option BINSEQ on the
$IBCBC control card.

The figurative constant HIGH-VALUE [S | assumes the value of
left parenthesis in the 7090/94 collating sequence and 9 in the
commercial collating sequence. The figurative constant LOW-
VALUES [S] assumes the value of zero in the 7090/94 collating
sequence and blank in the commercial collating sequence,

COLLATING SEQUENCE

The two permissible collating sequences, in order, with the lowest
values at the top of the columns, are as follows:

7090/94 commercial
0 through 9 blank or space
!) or
+ + or&
A through I $
) *
) /
- ’
J through R {or %
0 =or #
$ "or @
* 0
blank or space A through I
/ 0
S through Z J through R
* *
s S through Z
(0 through 9

The commercial collating sequence is assumed by the Compiler unless
the 7090/7094 collating sequence is specified by placing BINSEQ on the
$IBCBC card.

-3
oy

2. Full Relation Test Format. There are two cases to consider: equal
length items, and unequal length items.

a. Items of Equal Length. If the items are of equal length, com-
parison proceeds by comparing characters in corresponding
character positions starting from the high order end and con-
tinuing until either a pair of unequal characters is encountered
or the low order end of the item is reached, whichever comes
first. The items are determined to be equal when the low order
éend is reached.

The first pair of unequal characters encountered is compared
for relative location in the ordered character set. The item
which contains that character which is positioned higher in the
ordered sequence is determined to be the greater item.

b. Items of Unequal Length. If the items are of unequal length,
comparison proceeds as described above. If this process ex-
hausts the characters of the shorter item, then the shorter item
is less than the longer item unless the remainder of the longer
item consists solely of spaces, in which case the two items are
equal.

The format for full relation tests is:

IS [NOT] GREATER THAN

data-name-1 data-name-2
IS [NOT | LESS THAN
IF < literal-1 literal-2
s [Nor] =
formula-1 formula-2

IS [NOT]| EQUAL TO

In the above format, the actual choice from data-name-1, literal-1,
or formula-1 is called the subject. The choice from data-name-2,
literal-2, or formula-2 is called the object. The subject and the object
cannot both be literals.

72

the normal hierarchical sequence of execution in formulas where it is
necessary to have some deviation from the normal precedence. When
the sequence of execution is not specified by parentheses, the order of
execution of consecutive operations of the same hierarchical level is
from left to right. Thus, expressions ordinarily considered to be
ambiguous, e.g., A/B*C and A/B/C are permitted in COBOL. They
are interpreted as if they were written (A/B) * C, and (A/B) / C,
respectively. Without parenthesizing, the following example illustrates
normal precedence:

A+B/C+D**E*F -G
would be interpreted as if written:
A+B/C)+ ((D**E)*F)-G

with the sequence of operations working from the inner-most parentheses
toward the outside. Exponentiation will be performed first, then multi-
plication and division and finally addition and subtraction. Exponentiation
of a negative variable or literal is allowed only if the exponent is a

literal or data-name having an integral value. If the exponent is other
than a non-negative integer, the result of the exponentiation will be zero.

Formation Of Symbol Pairs

VERBS

The ways in which symbol pairs may be formed are summarized in the
table below, where P indicates a permissible pair.

Listed By Categories

SECOND SYMBOL
VARIABLE | * / *x* -4+ ()
VARIABLE - P P - P
FIRST *) kx P - P P -
SYMBOL
+ - P - - P -
(p - P P -
) - P P - P
ADD
SUBTRACT
Arithmetic MULTIPLY
DIVIDE
COMPUTE

7

Form J28-6260-2
Page Revised 6/15/64
by TNL N28-0103

READ
WRITE
OPEN
CLOSE
DISPLAY
ACCEPT

Input-Output

GO TO
ALTER
PERFORM

Procedure Control

EXAMINE

Data Movement MOVE

— . —
—~—pm —— A,

Ending STOP
ENTER
EXIT
NOTE
USE

Compiler Directing Verbs

Note: Although the word IF is not a verb in the strictest sense, it
possesses one of the most important characteristics of one,
namely the generation of coding in the object program. Its
occurrence is a vital feature in the Procedure Division.

Specific Verb Formats

The specific verb formats, together with a detailed discussion of the
restrictions and limitations associated with each, appear on the
following pages, in alphabetic sequence.

ACCEPT

Function

To make available low-volume input data from the card reader or from
SYSIN1, the system input unit.

ACCEPT data-name [FROM SYSINl]

Notes:

1. The length of the item may not exceed 72 characters.

2. Data-name must be USAGE DISPLAY and may only be an alphanumeric
or alphabetic. non-report item, an external decimal item, or a group
item.

3. No editing or error checking of the value of data name is performed.

78

Form J28-6260-2
Page Revised 6/15/64
by TNL N28-0103

ADD
Function

To add two or more numeric data items and set the value of an item
equal to the result.

Option 1:
literal-1 literal-2 TO
ADD [, . :l [data—name-n:l
data-name-1 | data~name-2 GIVING

- imperative-statement-1
[ROUNDED J , ON SIZE ERROR
NEXT SENTENCE

{ ELSE } {imperative-statement-2
OTHERWISE f | NEXT SENTENCE }
Option 2:

ADD CORRESPONDING data-name-1 TO data-name-2

[ROUNDED] , ON SIZE ERROR |imperative-statement-1
NEXT SENTENCE

{ELSE } imperative-statement-2 l
OTHERWISE NEXT SENTENCE
Notes:

1. Except when the CORRESPONDING option is used, the data-names
used must refer only to the special register, TALLY, or to numeric
elementary items whose descriptions appear in the Data Division
of the program.

2. The maximum size of any operand (literal or data-name) is 18 decimal
digits. An error will be indicated at compilation time if the format for
any operand specifies a number of digits in excess of 18. Intermediate
results are carried to a maximum of 20 digits with no loss of least sig-~
nificant digits except when the maximum is reached.

3. If the GIVING option is used, the value of data-name-n will be made
equal to the sum of the values of the preceding data-names and/or
literals. Data-name-n is not used as an addend in this option; hence
its format may contain editing symbols.

79

80

If the TO option is used, the sum of the values of data-name-n and
the preceding data-names and/or literals will be calculated; the
value of data-name-n will then be made equal to the sum.

If neither the GIVING nor the TO options are used, the last named
(the rightmost or last written) addend must not be a literal.

The sum of the values of all the data~-names and/or literals will be
calculated. The value of the rightmost data-name will then be made
equal to the sum. Since it is used as an addend in this case the
format of the rightmost data-name may not contain any editing
symbols.

Examples:
Statement Sum Stored In
ADDA, B, C A+B+C C
ADD A, B, TOC A+B+C C
ADDA, B, C
GIVING D A+B+C D

An error will be indicated at compilation time if the data description
of any item used as an addend specifies the presence of editing
symbols. Operational signs and implied decimal points are not
considered editing symbols. Literals used as addends must be
numeric.

. An ADD statement must refer to at least two addends.

The formats associated with all operandsreferred to in an ADD
statement may differ among each other. Decimal point alignment
is automatically supplied throughout the calculation.

If the number of decimal places in the calculated result (sum) is
greater than the number of decimal places associated with the
resultant data-name (the data-name whose value is to be set equal

to the sum), truncation will occur unless the ROUNDED option has
been specified. Truncation is always in accordance with the size
associated with the resultant data-name. When the ROUNDED option
is specified, the least significant digit of the resultant data-name
has its value increased by 1 whenever the most significant digit of

the excess is greater than or equal to 5.

Whenever the number of integral places (those to the left of the
decimal point) in the calculated result exceeds the number of integral
places associated with the resultant data-name, a size error
condition arises.

In the event of a size error condition, one of two possibilities will

occur, depending on whether or not the ON SIZE ERROR option has
been specified.

Form J28-6260-2
Page Revised 6/15/64
by TNL N28-0103

a, The testing for the size error condition occurs only when the ON
SIZE ERROR option is specified in the verb format. In the event

that ON SIZE ERROR is not specified, and a size error condition
arises, the effect will he unpredictable.

O TaiTUL Wiii 0T wapis Tlav

b. If the ON SIZE ERROR option has been specified, and a size
error condition arises, the value of the resultant data-name will
be altered unpredictably, and the imperative-statement-1 associ-
ated with the ON SIZE ERROR option will be executed.

9. When the CORRESPONDING option is used, the treatment of the data
names is similar to that in the CORRESPONDING option of the MOVE
statement except that the quantitie® are added rather than moved. See
Notes 6 through 10 in the section on the MOVE verb.

ALTER
Function

To modify a predetermined sequence of operations.

ALTER

procedure-name-1 TO PROCEED TO procedure-name-2

[procedure-name-3 TO PROCEED TO procedure-name-4 ..]

Notes:

1. Procedure-name-1, procedure-name-3, ..., are names of para-
graphs, each containing a single sentence consisting of only a GO
TO statement as defined under option 1 of the GO TO verb.

2. The effect of an ALTER statement is to replace the procedure-name
specified in the GO TO sentence (located at procedure-name-1) by
the procedure-name-2 specified in the ALTER statement.

CLOSE

Function

To terminate the processing of input and output reels and files, with
optional rewind and/or lock.

CLOSE

NO REWIND
file-name-1 [REEL:| [WITH]E file-name-2 .]
LOCK

Notes:

1.

82

The CLOSE file-name option (as applied to the entire file rather than
to individual reels) will initiate the final closing conventions for the
file and release the data area. The CLOSE verb may be applied to
any file with OPEN status but must not be re-used on the same file
without an intervening OPEN instruction.

CLOSE file-name (without the REEL option) will have the following
effects:

a, Input Files.

(1) If neither NO REWIND nor LOCK is specified, the current
reel of the file will be rewound.

(2) If the NO REWIND option is specified, the current reel of the
file will not be rewound.

(3) H the LOCK option is specified, the current reel of the file
will be rewound and unloaded.

Any label processing and procedures specified in a USE Declarative
are performed only when the physical end of file is encountered on
the tape.

b. Output Files.
The final closing conventions and procedures specified in a USE
Declarative are performed and the data area is released.

(1) If neither LOCK nor NO REWIND is specified, the current
reel of the file will be rewound.

(2) If the NO REWIND option is used on a tape file, the last reel
of the file will remain positioned at the end of the file.

(3) The use of the LOCK option will rewind and unload the current
reel.

I the CLOSE file-name REEL option is used, then, for both input
and output files, the next reel processing procedures are instituted.
More specifically:

a. Input Files.
Processing of the end label will be bypassed, but procedures for

checking the label on the next reel, including procedures specified
in a USE Declarative, will be executed. If a CLOSE REEL is given

for the last reel of a file, an error will occur in the object program,

Furthermore,

Form J28-6260-2
Page Revised 6/15/64
by TNL N28-0103

Notes:

1.

When using option 1, if the GO TO statement is to be modified by

the ALTER verb:

a. The GO TO statement must itself have a paragraph-name.

b. The paragraph in which the GO TO statement is included
must consist solely of the GO TO statement.

The paragraph-name assigned to the GO TO statement is referred to
by using ALTER verb in order to modify the sequence of the
program. If procedure-name-1 is omitted, and if the GO TO state-
ment is not referred to by an ALTER statement prior to the first
execution of the GO TO statement, execution of the program will be
terminated and control will be returned to IBJOB.

2. In option 2, the contents of data-name must have a positive integral
value at object time. The branch will be to the 1st, 2nd, ..., nth
procedure-name, as the value of data-name is 1, 2, ..., n. If the
value of data-name is anything other than the integers 1, 2, ..., n,
then no transfer is executed and control passes to the next statement
in the normal sequence for execution.

MOVE

Function

To transfer data, in accordance with the rules of editing, to one or more
data areas.

Option 1:

MOVE {data—name—l} TO data-name-2 [, data-name-3..]

literal

Option 2:

MOVE CORRESPONDING data-name-1 TO

data-name-2 [, data-name-3..]

Notes:

[Ne}
()

1.

Additional receiving areas may be given, following data-name-2.
The data designated by the literal or data-name-1 will be moved
first to data-name-2, then to data-name-3, etc. When data-name-2
is referred to in this discussion, the note also applies to the other
receiving areas.

It is improper to use MOVE (without the CORRESPONDING option)
for a group item whose format is such that editing would be required
on the elementary items in separate operations. If this type of
procedure is desired, the CORRESPONDING option must be used,
or else each elementary item must be handled individually by means
of the verb, MOVE.

3. At object time, data is stored in conformity with the description of
the receiving area. When the sizes of the areas of two group items
involved in a move are not the same, a warning will be given by the
compiler during compilation. A warning is also given for a move
from an elementary to a group item or vice versa.

4, When

numeric elementary items are moved, they are

subject to the following procedures:

a.

5. When

94

They are aligned by decimal points, with zero filling or
truncation on either end as required. A warning is given by
the compiler if significant digits will be lost through
truncation.

They may be converted from one form to another, e.g.,
internal decimal to external decimal, numeric mode to al-
phanumeric mode.

They may have special editing performed on them with sup~
pression of zeros, insertion of dollar sign, commas, a
decimal point, ete., and alignment as specified by the de-
scription of the receiving area. The presence of these
special characters in an item actually makes the item
alphanumeric. If such an item is referred to a source, the
special characters will be picked up as a part of the data,

and the verb making the reference will treat this data accord-
ing to the rules specified for the treatment of alphanumeric
data.

non-numeric items are moved:
The characters are placed in the receiving area left to right,

If the source field is shorter than the receiving field, the
remaining character positions are filled with spaces.

If the source field is longer than the receiving field, the
generated code provides for termination of the move as soon
as the receiving field has been filled. A warning message is
given for this condition unless one has already been given as
stated in note 3.

A table of legal moves, using the verb MOVE, is given below.

A detailed description of the types of fields represented may
be found under the PICTURE clause in the Data Division.
Numbers in parentheses in the table refer to subsequent
notes.

Receiving Field Type

Form]J28-6260-2
Page Revised 6/15/64
by TNL N28-0103

Group

Item | Alpha-| Alpha- External | Internal | Floating | Scientific
Source Field Type (1) betic numeric Report | Decimal | Decimal | Point Decimal
Group Item (1) yes yes yes no no no no no
Alphabetic yes yes yes no no no no no
Alphanumeric yes ves yes nc no nc 1no no
Report yes no yes no no no no no
External Decimal yes no yes yes yes yes yes yes
Internal Decimal yes no yes yes yes yes yes yes
Floaiing Point yes no yes yes yes yes yes yes
Scientific
Decimal yes no yes yes yes yes yes yes
ZERO [S] or

ZERCES yes no yes yes(2) | vyes yes yes yes(2)

SPACE [s] yes yes yes yves(3) | nc no no no
LOW-VALUE [s] yes no yes no no no no no
HIGH-VALUE [s] yes no yes no no no no no
QUOTE [s] yes no yes no no no no no
ALL--- yes ves(4) ! ves no yes(5) no no no

(1) Group items are treated as having a PICTURE of all X's.

(2) The value zero is moved in accordance with editing requirements.

(3) A warning message is given.

(4) The character must be alphabetic.

(5) The character must be numeric.

95

96

e. For source fields of the scientific decimal type:

At object time a free form of data is allowed within the limits
of the field, For example, a field with PICTURE -99V9E-99
may contain the value 1 in any of the following ways (where
b represents a space):

b . 01b2b (01 X 109

1bb+01b (note scale applied when no point)
.001bb3

b10bbbb (note scale applied when no point)
1000.-3

ete,

Note that the letter E is never part of the data.,

If the CORRESPONDING option is used, selected items within data-
name-1 are moved, with any required editing, to selected areas
within data-name-2, Items are selected by matching the data-
names of areas defined within data-name-1 with like data-names of
areas defined within data-name-2, according to the following
rules:

a. At least one of the items of a selected pair must be an
elementary item.

b. The respective data-names are the same including all
qualification up to but not including data-name-1 and
data-name-2,

Each CORRESPONDING source item is moved in conformity with
the description of the receiving area., The results are the same as
if the user had referred to each pair of CORRESPONDING data-
names in separate MOVE statements.

When using a MOVE CORRESPONDING, only the first complete
description of any area will be considered in the case where a
REDEFINE has been used. All items describing the data contained
within a REDEFINE group will be ignored.

If the CORRESPONDING option is used, no items in the group
referred to can contain an OCCURS clause.

Form]28-6260-2
Page Revised 6/15/64
by TNL N28-0103

Notes:

107

An OPEN statement for the file must be executed prior to the
execution of the first READ for that file.

When a file consists of more than one type of logical record, these
records automatically share the same storage area. This is
equivalent to saying that there exists an implicit redefinition of the
area, and only the information which is present in the current
record is accessible,

No reference can be made by any verb in the Procedure Division to
information which is not actually present in the current record.
Thus, it is not allowable to refer to the nth occurence of data which
appears fewer than n times. If such a reference is made the
results in the object program are unpredictable.

When the INTO data-name option is used, the data-name must be
the name of a Working-Storage or output record area. If the
format of the data-name differs from that of the input record,
moving will be performed according to the rules specified for the
MOVE verb without the CORRESPONDING option.

When the INTO data-name option is used, the file-name RECORD
is still available in the input record area.

Every READ statement must have an AT END clause.

After execution of the AT END clause, an attempt to perform a
READ without the execution of a CLOSE and a subsequent OPEN
for that file will constitute an error in the object program except
for multi-reel unlabeled tape files.

For multi-reel unlabeled files the programmer identifies the file

in the File-Control paragraph as a multiple reel file and provides

a means of communicating to the program, usually by sense switches
or control cards, whether a continuation reel exists for the file.
Upon execution of the AT END clause, if it is determined that the
last reel of the file has been processed, the CLOSE clause may be
executed. If it is determined that a continuation reel does exist

for the file, the next READ statement for the file will cause IOCS

to rewind and unload the reel last read and to effect unit switching

if required.

After recognition of the end of reel, the READ performs the follow-
ing operations:

a. The standard trailer label subroutine and procedures speci-
fied by a USE Declarative.

b. A tape alternation.

c. The standard header label subroutine and procedures speci-
fied by a USE Declarative.

d. Makes the next record available.

Form J28-6260-2
Page Revised 6/15/64
by TNL N28-0103

STOP

Function

To halt the object program either permanently or temporarily.

literal
STOP
RUN

Notes:

1. If the word RUN is used, then the ending procedure established by

the compiler is instituted.

2. If the literal form is used, the literal will be displayed to the

operator on the on-line printer.

Continuation of the object program will begin with the execution of

the next statement in sequence,

SUBTRACT

Function

To subtract one, or a sum of two or more, numeric data items from a
specified item and set the value of an item equal to the result.

[, ON SIZE ERROR

k

Option 1:

literal-1 literal-2 .
SUBTRACT [s ..
data-name-1 data-name-2 -
literal-n .
FROM [GIVING data-name-m
data-name-n ' -

imperative-statement-1

NEXT SENTENCE

OTHERWISE NEXT SENTENCE

ELSE } { imperative-statement-2 }]]

108

[ROUNDED]

Form J28-6260-2
Page Revised 6/15/64
by TNL N28-0103

Option 2:

SUBTRACT CORRESPONDING data-name-1 FROM

data-name-2 |ROUNDED -| , ON SIZE ERROR
[ROUNDED . T

{ imperative-statement-1 —HELSE

NEXT SENTENCE | |OTHERWISE

NEXT SENTENCE

{1mperat1ve -statement- 2’:’

Notes:

1. Except when the CORRESPONDING option is used, all data-names
used must refer to the special register, TALLY, or to numeric
elementary items whose descriptions appear in the Data Division
of the source program.

2. All rules specified under the verb ADD with respect to the ON
SIZE ERROR option, the size of operands, the ROUNDED option,
the GIVING option, truncation, and the editing of results, apply
to the SUBTRACT verh. {See ADD.)

3. If the data description of any literal or data-name used as either
the minuend or the subtrahend specifies the presence of an editing
symbol, an error will be indicated at compilation time. Operational
signs and implied deicmal points are not considered editing symbols.

4, When the GIVING option is not used, a literal must not be specified
as the minuend.

5. When dealing with multiple subtrahends, the effect of the subtrac-
tion will be as if the subtrahends were first added, and the sum was
then subtracted from the minuend.

6. When the CORRESPONDING option is used, treatment of the data-
names is similar to that in the CORRESPONDING option of the

MOVE statement except that the quantities are added rather than
moved. See Notes 6 through 10 in the section on the MOVE verb.

USE
Function
To specify that procedures for input/output error and/or label handling

are to be used in addition to procedures supplied by the 7090/7094 Input/
Output Control System.

109

Option 1:

USE AFTER STANDARD ERROR PROCEDURE

INPUT
file-name-1 [, file-name-2..]
Option 2.
USE BEFORE STANDARD BEGINNING
AFTER ENDING
[REEL
‘-{F—H—J—E— } LABEL PROCEDURE
(INPUT
ON OUTPUT
file-name-1 [, file-name-2...]

Notes:

110

A USE sentence, when present, must immediately follow a section
header within the Declaratives portion of the Procedure Division,
Each USE sentence must be followed by one or more procedure
paragraphs. The presence of another section or the statement END
DECLARATIVES terminates a USE section.

The procedure paragraphs that follow a USE sentence may not include
statements containing input/output verbs. They may not include
statements which transfer control to procedures containing input/
output verbs.

When option 1 is specified, the procedure paragraphs which follow
the USE sentence will be executed after the standard IOCS error
routine is completed. Option 1 may only be used in connection with
the input files.

When option 2 is specified, the procedure paragraphs which follow
the USE sentence will be executed before or after the IOCS header
or trailer label checking procedure is completed, depending on
whether the BEFORE or AFTER option is specified. Option 2 may
only be specified for labeled files.

When the BEGINNING option is specified, the procedure paragraphs
which follow the USE sentence will be executed for header labels:
when the ENDING option is specified, the procedure paragraphs will
be executed for trailer labels. If neither BEGINNING nor ENDING
is specified, the procedure paragraphs will be executed for both
header and trailer labels.

When the REEL option is specified, the procedure paragraphs are
executed for labels between the first header and the last trailer
label of the file. When the FILE option is specified, the procedure
paragraphs are executed for the first header and/or the last trailer
label of the file. Specifying neither REEL nor FILE is equivalent
to specifying both REEL and FILE.

When INPUT is specified, the procedure paragraphs are executed
for all labeled input files; when OUTPUT is specified, the procedure
paragraphs are executed for all labeled output files.

When option 2 is specified, external names are generated by the
Compiler and placed in the object program Control Dictionary. In
jobs consisting of more than one source program, it may, therefore,
be necessary to rename non-unique external names by means of
$NAME cards. A further discussion of $NAME cards is contained
in the publication, IBM 7090/7094 Programming Systems: IBJOB
Processor, Form C28-6275-2.

IBM Technical Newsletter File Number 7090-24

Re: Form No. J28-6260-2
This Newsletter No. N28-0124
Date September 18, 1964
Previous Newsletter Nos. N28-0103

IBM 7090/7094 COBOL

This newsletter supplements the publication IBM 7090/7094 Programming Systems:
COBOL Language: Preliminary Specifications, Form J28-6260-2.

@ Form J28-6260-1 with Technical Newsletters N28-0070, N28-0092, and N28-0103 is
equivalent in information to Form J28-6260-2 with Technical Newsletter N28-0103. The
pagination in this newsletter refers to Form J28-6260-2.

In the subject publication, replace the pages listed below with the pages that are attached
to this newsletter. .

1. Pages 85 and 86

2. DPages 89 and 90

3. Pages 93 and 94

4. Pages 95 and 96
A vertical line immediately to the left of the column shows where the text was changed.

File this cover page at the back of the bulletin. It will provide a reference to changes,
a method of determining that all amendments have been received, and a check for
determining if the bulletin contains the proper pages.

International Business Machines Corp., Programming Systems Publications, P. O. Box 390, Poughkeepsie, N. Y. 12602

PRINTED IN U.S.A.

Form }28-6260-2
Page Revised 9/18/64
by TNL N28-0124

DISPLAY

Function

To display low volume data on an available hardware device.

oo ooo\literal-1 o f - Miteral-2 - -
DISPLAY C]

(data-name-1i) (data—name-z)

[UPON SYSOUI:I

Notes:

1.

85

The standard display device is the on-line printer. If the UPON
option is specified, the display device will be the system output
unit. Automatic carriage control for off-line printing of output
on the system output unit is provided. For further information

‘concerning SYSOUL, see "FILE-CONTROL" in the Environment

Division.

When DISPLAY is followed by multiple operands, the data com-
prising the first operand is displayed as the first set of characters,
the data comprising the second operand as the second set of char-
acters, and so on.

For any single data item or literal in 7090/7094 COBOL, the maxi-
mum number of characters which may be displayed is 72.

Internal decimal data items (USAGE COMPUTATIONAL) are pre-
pared for external output with a sign overpunch indicated over the -
rightmost position. The printer recognizes this as an alphanumeric
character and prints it accordingly. The user must interpretthis
character. Floating point data items are displayed in the scientific
decimal form. Other data items are displayed as they appear in
core storage.

If an output file is assigned to the same device that is used for
DISPLAY statements, WRITE statements on that file and DISPLAY
statements on that device will not necessarily appear on the listing
in the order that the statements of the source program were written.
Output resulting from a WRITE statement is buffered whereas out-
put resulting from a DISPLAY statement is produced immediately.

The special register TALLY 'may be used as an operand in a
DISPLAY statement.

DIVIDE

Function

To divide one numerical data item into another and set the value of an
item equal to the result.

data-name-1 data-name-2
DIVIDE { } INTO [GIVING data—name—?]

literal-1 literal-2

imperative-statement-1
I:ROUNDED] , ON SIZE ERROR
NEXT SENTENCE

ELSE { imperative-statement-2
OTHERWISE } NEXT SENTENCE }

Notes:

1.

86

The data-names used must refer to the special register, TALLY,
or numeric elementary items whose descriptions appear in the Data
Division of the program.

All rules specified under the verb ADD regarding the size of
operands, the ON SIZE ERROR option, the ROUNDED option, the
GIVING option, truncation, and the editing of results, apply to the
DIVIDE verb. (See ADD.)

An error will be indicated at compilation time if the data descrip-
tion for either data-name~1 or data-name-2 specifies the presence
of editing symbols. Literals used must be numeric.

When the GIVING option is not specified, a literal must not be used
as the dividend.

Division by zero constitutes a special type of size error. Program
control may be provided through the use of a test for zero prior to
attempting division. If the zero test type of program control is not
provided, the rules specified under the ADD verb with respect to
the ON SIZE ERROR option apply.

et
fu—
°

12.

13.

14.

15.

89

where Aj is the address of the first word containing X; and B; is
the number (0 through 5) of the first six-bit group (byte) in the
first word containing Xj.

If X; is a file-name, the corresponding Y; will be the address of
+ha Fi-v-st ward nf #ke 'E‘{]e Cantral D]nnk fcw +tha fila A Frivthor Ji

CAASS, AR A YYAJAL LA WIL LAY P AR Y S NAVLALVA VA AU, A LA AALA s LML VLIS L \.L‘-sg
cussion of File Control Blocks is contained in the publication,
IBM 7090/7094 Input/Output Control System, - Form-C28-6345.

The RECEIVE option is used in the subordinate program to move
information from the main program to the subordinate program.
Data-name-1 through data-name-m following RECEIVE are the
names of items into which information is stored. Storing takes
place when control is transferred to the subordinate program by
means of a CALL statement in the main program.

The PROVIDE option is used in the subordinate program to return
information to the main program. Data-name-(m+1) through data-
name-K following PROVIDE are the names of items whose informa-
tion is stored into the main program. Storing takes place when
control is transferred to the main program by means of option 3.

The data-names used with options 1 and 2 must conform to the
following rules:

a. They may not specify items which vary in length at object time.
b. They may not be report or scientific decimal items.

c¢. The total number of data-names specified in the RECEIVE
option plus the number of data-names in the PROVIDE option
must equal the total number of data-names specified in an
associated USING option (that is, where options 1 and 2 have
the same 'entry-name'). Any repetitions of data-names must
be included in the total number.

d. The names of the data items in the associated USING option do
not have to be identical to the names of the data items in the
RECEIVE and PROVIDE options. However, a data item in the
USING clause must be of the same length and description as its
counterpart in the RECEIVE or PROVIDE option.

e. The order of the data items in the associated USING option
must correspond to the order of its counterparts in the
RECEIVE and PROVIDE options.

Option 3 is used in the subordinate program to return to the main
program. 'Entry-name' in the RETURN option must be the same
as 'entry-name' in the CALL statement in the main program.

When the DEPENDING ON option is specified, the value of data-
name is equivalent to the number of an alternate return specified

Form J28-6260-2

Page Revised 9/18/64

by TNL N28-0124

in the RETURNING option of an associated CALL statement in the
main program. Thus, if the value of data-name is zero, the normal
return will be taken; if the value of data-name is 1, return will be
to procedure-name-1 specified in the RETURNING option.

16. Following*is a coding example illustrating the use of option 1 in a

main COBOL program and option 2 and option 3 in a suberdinate
COBOL program.

Main Program
PARAGRAPH-NAME-1. ENTER LINKAGE-MODE.
CALL 'ENTPNT' USING WORK, WORK, AMOUNT,

PARAGRAPH-NAME-2, ENTER COBOL.

Subordinate Program

PARAGRAPH-NAME-3., ENTER LINKAGE-MODE.
ENTRY POINT IS 'ENTPNT'
RECEIVE WORK-A
PROVIDE WORK-A, AMOUNT-A.
PARAGRAPH-NAME-4. ENTER COBOL.

PARAGRAPH-NAME-5. ENTER LINKAGE-MODE.

RETURN VIA 'ENTPNT'.
PARAGRAPH-NAME-6. ENTER COBOL.
EXAMINE

Function

To replace certain occurrences of a specified character and/or to count
the number of such occurrences in a data item.

ALL
TALLYING { LEADING }
UNTIL FIRST
literal-1 [REPLACING BY literal-2]
EXAMINE data-name
ALL
REPLACING | LEADING
[UNTIL] FIRST

literal-3 BY literal-4

90

Notes:

1. When using option 1, if the GO TO statement is to be modified by
the ALTER verb:
a. The GO TO statement must itself have a paragraph-name.
b. The paragraph in which the GO TO statement is included
must consist solely of the GO TQO statement.
The paragraph-name-assigned to the GO TO statement -is referred to
by using ALTER verb in order to modify the sequence of the
program. If procedure-name-1 is omitted, and if the GO TO state-
ment is not referred to by an ALTER statement prior to the first
execution of the GO TO statement, execution of the program will be
terminated and control wiil be returned to IBJOB.

2. In option 2, the contents of data-name must have a positive integral
value at object time. The branch will be to the 1st, 2nd, ..., nth
procedure-name, as the value of data-name is 1, 2, ..., n. If the
value of data-name is anything other than the integers 1, 2, ..., n,
then no transfer is executed and control passes to the next statement
in the normal sequence for execution.

MOVE

Function

To transfer data, in accordance with the rules of editing, to one or more
data areas.

Option 1:

MOVE |data-name-1{ TO data-name-2 [, data-name-3..]
literal

Option 2:

MOVE CORRESPONDING data-name-1 TO

data-name-2 [, data-name-3..]

Notes:

1. Additional receiving areas may be given, following data-name-2.
The data designated by the literal or data-name-1 will be moved
first to data-name-2, then to data-name-3, etc. When data-name-2
is referred to in this discussion, the note also applies to the other
receiving areas.

2. It is improper to use MOVE (without the CORRESPONDING option)
for a group item whose format is such that editing would be required
on the elementary items in separate operations. If this type of
procedure is.desired, the CORRESPONDING option must be used,
or else each elementary item must be handled individually by means
of the verb, MOVE.

93

Form J28-6260-2

Page Revised 9/18/64

by TNL N28-0124

94

At object time, data is stored in conformity with the description of
the receiving area.” When the sizes of the areas of two group items
involved in a move are not the same, a warning will be given by the
compiler during compilation. A warning is also given for a move
from the elementary to a group item or vice versa.

When numeric items are moved, they are subject to the following

procedures:

a. When numeric items are moved to numeric fields, they are
aligned by decimal points with zero filling or truncation on
either end as required. A warning message is given by the
compiler if there is a possibility that significant digits will
be lost through truncation when the program is executed.

b. . When internal decimal items (COMPUTATIONAL) are moved
to external decimal fields (DISPLAY), they are converted
from binary to BCD; i.e., USAGE becomes DISPLAY. Since
COMPUTATIONAL items are assumed to be signed, the
DISPLAY PICTURE will be preceded by an S.

c. When numeric items are moved to report fields for editing,
they are aligned as specified in the report field. (Editing is
explained in the report form of the PICTURE clause.) After
the item is edited, it is treated as alphanumeric data when
referred to in the program.

d. Numeric items are stored in alphanumeric fields from left to
right and the signs are dropped. Non-significant digits are
truncated if the item is too long. Trailing blanks fill in the
alphanumeric field if the item is too short. The following
examples show moves from numeric to alphanumeric fields
(b represents a blank):

Source Initial Receiving Resulting

Field Source Field Receiving
Picture Contents Picture Field Contents
X(4) 1.23 X(6) 1.23bb

9V99 1.23 ©X(6) 123bbb

999 123 X(6) 123bbb

S9(6) -000199 X(4) 0001

9(4)V9(5) 1234.56789 = X(72) 123456789bb. . .b

The last example shows that there is no difference between
treatment of alphanumeric items of lengths greater than or
not greater than 18.

94.1

When non-numeric items are moved:

The characters are placed in the receiving area left to right.

If the source field is shorter than the receiving field, the

remaining character positions are filled with spaces.

If the -source field is longer than the receiving field, the‘

- generated code provides for termination of the move as soon

111 £

as the receiving field has been filled. A warning message is
given for this condition unless one has already been given as
stated in note 3.

A table of legal moves, using the verb MOVE, is given below.

A detailed description of the types of fields represented may
be found under the PICTURE clause in the Data Division.
Numbers in parentheses in the table refer to subsequent
notes.

Receiving Field Type

Group

Item | Alpha-| Alpha- External | Internal | Floating | Scientific
Source Field Type (1) betic numeric Report | Decimal | Decimal | Point Decimal
Group Item (1) yes yes yes no no no no no
Alphabetic yes yes yes no no no no no
- Alphasumeric ves | yes Ty Too 1'mo s g™
Report yes no yes no no no no no
External Decimal yes no yes yes yes yes yes yes
Internal Decimal yes no yes yes yes yes yes yes
Floating Point yes no yes yes yes yes yes yes
Scientific
Decimal yes no yes yes yes yes yes yes
ZERO [S] or

ZEROES yes no yes yes(2) yes yes yes yes(2)

SPACE [s] yes yes yes ves(3) | nc no no no
LOW-VALUE [s] yes no yes ' no no " no | no no
HIGH-VALUE [s] ves no ves no no no no no
QUOTE [s] yes no yes no no no no no
ALL--- yes yes{(4) | vyes no yes(5) no no no

(1) Group items are treated as having a PICTURE of all X's.

(2) The value zero is moved in accordance with editing requirements.
(3) A warning message is given.

(4) The character must be alphabetic.

(5) The character must be numeric.

95

Form J28-6260-2
Page Revised 9/18/64
by TNL N28-0124

96

e. For source fields of the scientific decimal type:

At object time a free form of data is allowed within the limits
of the field. For example, a field with PICTURE -99V9E-99
may contain the value 1 in any of the following ways (where

b represents a space):

b . 01b2b (01 X 102)

1bb+01b (note scale applied when no point)
.001bb3

b10bbbb (note scale applied when no point)
1000.-3

ete.

Note that the letter E is never part of the data.

If the CORRESPONDING option is used, selected items within data-
name-1 are moved, with any required editing, to selected areas
within data-name-2. Items are selected by matching the data-
names of areas defined within data-name-1 with like data-names of
areas defined within data-name-2, according to the following rules:

a. At least one of the items of a selected pair must be an
elementary item.

b. The respective data-names are the same including all
qualification up to but not including data-name-1 and
data-name-2.

Each CORRESPONDING source item is moved in conformity with
the description of the receiving area. The results are the same as
if the user had referred to each pair of CORRESPONDING data-
names in separate MOVE statements.

If an area used as either a source or receiving field is described
with a REDEFINES clause, the MOVE CORRESPONDING statement
refers to the redefined area, not the original description.

If the CORRESPONDING option is used, no items in the group
referred to can contain an OCCURS clause.

	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	N28-0070_01
	N28-0070_02
	N28-0070_03
	N28-0070_04
	N28-0070_05
	N28-0070_06
	N28-0070_07
	N28-0070_08
	N28-0070_09
	N28-0070_10
	N28-0070_11
	N28-0070_12
	N28-0070_13
	N28-0070_14
	N28-0070_15
	N28-0070_16
	N28-0070_17
	N28-0070_18
	N28-0070_19
	N28-0070_20
	N28-0070_21
	N28-0070_22
	N28-0070_23
	N28-0070_24
	N28-0070_25
	N28-0070_26
	N28-0092-1_01
	N28-0092-1_02
	N28-0092-1_03
	N28-0092-1_04
	N28-0103_001
	N28-0103_007
	N28-0103_008
	N28-0103_009
	N28-0103_010
	N28-0103_025
	N28-0103_026
	N28-0103_037.0
	N28-0103_037.1
	N28-0103_038
	N28-0103_039
	N28-0103_040
	N28-0103_041
	N28-0103_042
	N28-0103_053
	N28-0103_054
	N28-0103_055.1
	N28-0103_055
	N28-0103_056
	N28-0103_071
	N28-0103_072
	N28-0103_077
	N28-0103_078
	N28-0103_079
	N28-0103_080
	N28-0103_081
	N28-0103_082
	N28-0103_093
	N28-0103_094
	N28-0103_095
	N28-0103_096
	N28-0103_107
	N28-0103_108
	N28-0103_109.0
	N28-0103_109.1
	N28-0103_110
	N28-0124_01
	N28-0124_85
	N28-0124_86
	N28-0124_89
	N28-0124_90
	N28-0124_93
	N28-0124_94.0
	N28-0124_94.1
	N28-0124_95
	N28-0124_96

