
CONVERTING SYSTEM/36
ENVIRONMENT APPLICATIONS

TQ NATIVE AS/

Converting System/36 Environment Applications to Native AS/400

Document Number GG24-3304-01

September 1990

International Technical Support Center
Rochester, Minnesota

Take Note ---------------------------------,

Before using this information and the product it supports, be sure to read the general information

under "Special Notices" on page iii.

Second Edition (September 1990)

This edition applies to Release 2.0 of the OS/400 licensed program and related licensed programs, and
the IBM AS/400 Programmer Tools PRPQ 5799-DAG Release 2, and to all subsequent releases until
otherwise indicated in new editions or technical bulletins.

Order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address given below.

A form for reader's comments appears at the back of this publication. If the form has been removed,
address your comments to:

IBM Corporation, International Technical Support Center
Department 977, Building 003-1
Rochester, MN 55901 USA

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988,1990, All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Special Notices

This publication is intended to help the customer to convert AS/400 applications
that run in the System/36 Environment so that they do not require the System/36
Environment. It primarily contains discussions of the characteristics of
System/36 Environment applications and their native counterparts, and details
many of the steps required to accomplish conversion.

The information in this document is not intended as the specification of the
interfaces that are provided by the AS/400 system for use by customers in writing
programs to request or receive its services. See the Publications section of the
IBM Programming Announcements for the AS/400 system.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM's intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

AS/400, OS/400, RPG/400, COBOLl400, System/370, OS/2, Systems Application
Architecture, and SAA are trademarks of the International Business Machines
Corporation.

© Copyright IBM Corp. 1988,1990 iii

'" J

iv Converting System/36 Environment Applications to Native AS/400

Abstract

This document is intended for the AS/400 user, planner, or manager who plans
to convert a System/36 Environment application to native AS/400. It is assumed
that the reader is familiar with the application being converted, with RPG or
COBOL, OCl, and SFGR. It is also assumed that the reader is familiar with the
System/36 Environment, AS/400 database concepts, the design and creation of
physical and logical files, Cl, and, to a lesser degree, work management.

This document describes the steps needed to convert applications running in the
System/36 Environment to native AS/400. It also discusses the tools and
approaches that can be used in the conversiorfprocess.

ASYS (210 pages)

© Copyright IBM Corp. 1988,1990 v

vi Converting System/36 Environment Applications to Native AS/400

Acknowledgments

This document has been revised by:

Errol Baird
IBM New Zealand

Klaus Pretsch
IBM Germany

The advisor for this project was:

Mike Anderson
International Technical Support Center, Rochester

This publication is the result of a residency conducted at the International
Technical Support Center, Rochester.

© Copyright IBM Corp. 1988,1990 vii

viii Converting System/36 Environment Applications to Native AS/400

Preface

This document is intended to give the reader an understanding of the steps
needed to convert System/36 Environment applications to native AS/400. It
discusses the choices to be made when converting, and includes performance
considerations. It also discusses tools and techniques that can simplify
conversion and lead to a more satisfying result.

This document is intended for the AS/400 user, planner, or manager who plans
to convert a System/36 Environment application to native AS/400.

This document begins with a discussion of the choices one must make when
considering conversion, such as whether to convert and the approaches that can
be taken. Then it includes a list of actions that can improve the performance of
applications without requiring conversion. It then discusses initial steps that will
help make the conversion process manageable. Next is a discussion of the
conversion of program-described files into externally described database files
using the Programmer Tools PRPQ. Then the document discusses conversion
for display files, menus, and printer files, followed by decimal data error
handling, special considerations for RPG and COBOL, general high-level
language and utility considerations, OCl to Cl conversion, national language
considerations, and Systems Application Architecture (SAA).

Related Publications
Following is a list of publications that contain additional information about the
topics covered in this document.

ITSO Publications
System/36 to AS/400 Application Migration, GG24-3250

System/36 to AS/400 System Migration, GG24-3249

Writing SAA Applications for AS/400, GG24-3438

~ AS/400 Manuals
IBM AS/400 Information Directory, GC21-9678

IBM System/36 and System/38 Application Design Considerations, G580-0912

IBM System/36 to IBM System/38 Conversion Aid, SC09-1067

Control Language Reference, SBOF-0481

Programming: Control Language Programmer's Guide, SC21-8077

Programming: Database Guide, SS21-9659

Programming: Data Description Specifications Reference, SC21-9620

Programming: Data Management Guide, SC21-9658

Programming: Work Management Guide, SC21-8078

Programming: System Reference for the System/36 Environment, SC21-9663

@ Copyright IBM Corp. 1988,1990 ix

Programming: Concepts and Programmer's Guide for the Systeml36
Environment, SC21-9663

Migrating from Systeml36 Planning Guide, GC21-9623

Systeml36 to AS/400 Migration Aid User's Guide and Reference, SC09-1166

Languages: COBOLl400 Reference, SC09-1240

Languages: COBOLl400 User's Guide, SC09-1158

Languages: Systeml36-Compatible COBOL User's Guide and Reference,
SC09-1160

Languages: Systeml38-Compatible COBOL User's Guide and Reference,
SC09-1159

Languages: RPGI400 Reference, SC09-1089

Languages: RPGI400 User's Guide, SC09-1161

Languages: Systeml36-Compatible RPG 1/ User's Guide and Reference,
SC09-1162

System Operations: Operator's Guide, SC21-8082

Systems Application Architecture (SAA) Publications
SAA: An Overview, GC26-4341

SAA Common Programming Interface: Application Generator Reference,
SC26-4355

SAA Common Programming Interface: C Reference, SC26-4353

SAA Common Programming Interface: Communications Reference, SC26-4399

SAA Common Programming Interface: FORTRAN Reference, SC26-4357

SAA Common Programming Interface: COBOL Reference, SC26-4354

SAA Common Programming Interface: Database Reference, SC26-4348

SAA Common Programming Interface: Dialog Reference, SC26-4356

SAA Common Programming Interface: Presentation Reference, SC26-4359

SAA Common Programming Interface: Procedures Language Reference,
SC26-4358

SAA Common Programming Interface: Query Reference, SC26-4349

SAA Common User Access Basic Interface Design Guide, SC26-4583

SAA Writing Applications: A Design Guide, SC26-4362

Other Publications
American National Standard Programming Language COBOL, ANSI X3.23
1985

Converting System/36 Environment Applications to Native AS/400 X

Contents

1.0 Introduction .. 	 1

1.1 Migration, Restructuring, Conversion, and Redesigning 	 1

1.2 Migration .. 	 1

1.3 Restructuring 	 2

1.4 Conversion . 	 2

1.5 Redesigning 	 2

1.6 Full Conversion Versus Redesigning 	 3

1.7 Recommendations 	 4

2.0 Restructuring for Better Performance 	 5

2.1 Relative Performance 	 5

2.2 Recommendations 	 6

2.2.1 	 Making MRT Programs Never-Ending, Specifying Long MRT Delay

Time. 6

2.2.2 Reducing File Create and Delete Activity 7

2.2.3 Using Shared Database File Opens Where Possible 7

2.2.4 Increasing DBLOCK Parameter Value for Sequentially Accessed Files 8

2.2.5 Using Correct Data Types 	 9

2.2.6 Reducing Unnecessary Use of EVOKE and JOBQ ... 	 9

2.2.7 Avoiding Unnecessary Nesting of Operator Commands 	 10

2.2.8 Sort Performance 	 10

2.2.9 Careful Use of 27x132 Display Support 	 10

2.2.10 Eliminating Read Under Format 	 10

2.2.11 Limiting Sign-on and Sign-off Activity 	 11

2:2.12 Changing MRT Security 	 11

2.2.13 Work Management Considerations 	 11

2.2.14 Using Utilities 	 12

3.0 Getting Started with the Conversion 	 13

3.1 Attend AS/400 Education 	 13

3.2 Starting Point for Conversion 	 13

3.3 Conversion Steps 	 14

3.4 AS/400 Programmer Tools PRPQ 5799-DAG 	 14

3.5 Choosing Programs and Files to be Converted 	 15

3.6 Analyzing the Database 	 15

3.7 Moving Selected System/36 Source to New Library 	 16

3.7.1 Member Types 	 17

4.0 Analyzing Files and Fields 	 19

4.1 General File Considerations 	 19

4.2 File Conversion Functions . 	 20

4.2.1 Input to the First Function 	 20

4.2.2 Input to the Second Function 	 21

4.2.3 Rerun Options 	 21

4.3 Creating DDS from System/36 Environment File Descriptions 21

4.4 Retrieving the Descriptions of Program Described Files 	 24

4.4.1 Identifying the Files 	 26

4.4.2 Matching Internal and External Names 	 27

4.5 Field naming considerations 	 33

4.6 Resolving Field Names 	 34

4.7 How to get the information without the PTK 	 41

~ Copyright IBM Corp. 1988,1990 xi

4.7.1 Implications 42

5.0 Convert System/36 Environment Formats to Native Formats . 43

5.1 Finding All Programs That Use the Same Display File 43

5.2 Changes Required to Use Externally Described Display Files 46

6.0 Converting Menus 47

6.1 Menu Considerations 47

6.2 Creating a Native Menu with PTK 47

6.3 Creating Native Menus Without PTK 51

7.0 Converting System/36 Environment Printer Files 57

7.1 PRTF Considerations 57

8.0 Building the Field Reference File 59

8.1.1 Creation Steps 59

8.1.2 Programming Examples 60

9.0 Modifying DDS and Creating Database Files 63

9.1 Adding Documentation 63

9.2 Shortening Record Lengths 63

9.3 Changing Record Names 63

9.4 Adding Keys 64

9.5 Checking Data Type 66

9.6 Alternate Index Files 66

9.7 Creating Files 67

9.8 Format Selection 67

9.8.1 Why Format Selection? 68

9.8.2 How is the Format Selector Written? 69

9.8.3 Recommendations 70

9.9 Copying Data into the Files 71

9.9.1 System/36 File with a Single Record Format 71

9.9.2 System/36 File with Multiple Formats 72

10.0 Decimal Data Errors 75

10.1 Some Rules for Non-Decimal Data " 75

10.2 Finding and Correcting Errors in Files 76

10.2.1 Single Format File 76

10.2.2 Multiple Format File 77

10.2.3 Compiler Options for Decimal Data Errors 77

11.0 RPG Considerations 79

11.1 RPG and Database Files . 79

11.1.1 Auto Report Changes 79

11.1.2 Resolving the Use of Names 81

11.1.3 RPG Changes 81

11.1.4 Changes for Externally Described Files 83

11.1.5 Changing File Specifications 83

11.1.6 Compiling the Program 86

11.1.7 Adjusting Internal Field Names to Match Database Names 89

11.1.8 RPG and a Single Memory Area 91

11.2 RPG and Display Files 92

11.2.1 Old Programs with Display Files that will not Convert 92

11.2.2 Minimum Changes for Program-Described Display File 93

11.2.3 Additional Changes for Externally Described Display Files 99

xII Converting System/36 Environment Applications to Native AS/400

11.2.4 	 Adjusting Internal Field Names to Correspond with Display File

Names 105

11.2.5 A Note on UDATE 107

11.2.6 Removing Internal Field Descriptions 107

11.3 Additional RPG Considerations 108

11.3.1 General 108

11.3.2 Changing an RPG II MRT Program to an RPG/400 SRT Program 109

11.3.3 A Note on the LO Indicator 109

12.0 COBOL Considerations 	 111

12.1.1 Special Cases for COBOL 	 112

12.2 Miscellaneous 	 113

12.2.1 COPY Books 	 113

12.2.2 PROCESS Statement 	 113

12.2.3 MEMORY SIZE Clause and Source/Object Computer .. 114

12.2.4 Literals 114

12.2.5 USAGE IS COMPUTATIONAL 114

12.2.6 Signed Clauses 115

12.2.7 Workstation Control Area 115

12.2.8 Cursor position 	 116

12.2.9 Initial Value of Fields 	 117

12.2.10 CALL and CANCEL 	 118

12.2.11 COBOL MAIN Stub Prior to CL Driver 	 118

12.2.12 Segmentation 	 118

12.2.13 CALL variable-name 	 119

12.2.14 Use of Subprograms 119

12.2.15 Debugging 	 119

12.3 Externally Described Database Files 	 119

12.3.1 Converting to External 	 119

12.3.2 Group Items 	 120

12.3.3 Key Fields 121

12.3.4 Record Area 	 122

12.4 Minimal Display File Changes 	 122

12.4.1 INVITE Keyword 	 122

12.4.2 INDARA Keyword 	 122

12.4.3 ASSIGN Clause 122

12.4.4 Changes for Externally Described Display Files 	 122

12.5 COBOL Examples 	 124

12.5.1 Additional COBOL Considerations 	 126

13.0 Additional Program and Utility Considerations 129

13.1 Program Communication and Program Structure 129

13.1.1 Calling One Program from Another 129

13.1.2 Passing Data to Another Program 129

13.1.3 Evoking a Program 	 129

13.1.4 Using the Attention Key 	 130

13.2 Multiple Requester Terminal Programs 	 130

13.2.1 MRT Considerations in the System/36 Environment 	 130

13.2.2 MRT Considerations for Native AS/400 	 131

13.2.3 MRT Programs and Shared Files 	 131

13.3 Never-Ending Programs 	 132

13.4 Sort Programs 	 132

13.4.1 Sort and Format Data 	 132

13.4.2 The #GSORT Utility 	 133

13.4.3 Sort and Logical Files 	 133

Contents xiii

13.5 DFU Programs 133

14.0 Finding Programs that Cause Decimal Data Errors 135

15.0 Converting from aCl to Cl 137

15.1
 Different Approaches .. 137
15.2
 Tools Available 137
15.3
 Summary of later Topics 138
15.4
 System/34 OCl Considerations 138
15.5
 Cleaning Up Your Procedures 139
15.6
 Operation Control language Statements 139
15.7
 Procedure Control Expressions 148
15.8
 Testing For Active Procedures 149
15.9
 Evaluation 149
15.10
 Job Attributes and Job Control 150
15.11
 Group Files 150
15.12
 Using the local Data Area (lDA) 151
15.13
 System/36 System-Supplied Procedures 151
15.14
 System/36 OCl Programming and Cl Programming 151

15.14.1 Structure of a Cl Program 152

15.14.2 Passing Parameters 154

15.14.3 IF and ELSE Commands 155

15.14.4 *AND. *OR. and *NOT Operators 156

15.14.5 DO and ENDDO Commands 156

15.14.6 Mixing OCl and Cl Programs 156

15.15 Prompting and Read Under Format 157

15.15.1 Prompting for Parameters 158

15.15.2 Prompting for Data 159

15.15.3 Read Under Format (RUF) 160

15.16 A Note about Auto Response 160

15.17 Utilities 160

15.18 Recommendations 161

16.0 National language Support Considerations 163

16.1 Installing the PTK 163

16.2 DSCS Considerations 163

17.0 Systems Application Architecture (SAA) Considerations 165

Appendix A.
 UCS/Procedure Relation Table 167

171

.... 181

185

189

193

197

199

Appendix B.
 Procedure/Cl Relation Table

Appendix C.
 OCLlCl Relation Table

Appendix D.
 acc and Cl Command Table

Appendix E.
 Table of System/36 Substitution Expressions

Appendix F.
 If Conditions and Their Equivalents

Appendix G.
 Procedure Control Statements and Their Equivalents

Appendix H.
 List of Abbreviations

xiv Converting System/36 Environment Applications to Native AS/400

Index 201

Contents XV

xvi Converting System/36 Environment Applications to Native AS/400

Figures

1. PTK File Resolution Screen 29

2. DDS for Native Menu 53

3. DDS Source Not Using Field Reference File 60

4. DDS Source Field Reference File 60

5. Compiled Field Reference File 60

6. DDS Source After Changing to Field Reference File 61

7. Modi'fying DDS - PTK Analyze File Description 64

8. Modifying DDS - A Multiple Record File 64

9. Modifying DDS - Adding a Key to a Physical File 65

10. Modifying DDS - Adding a Key to a Logical File 66

11. Modifying DDS - An Alternate Index 67

12. Format Selection - A Multiple Record Format 69

13. Format Selector Program 70

14. Format Selection - Diagram of Logical File and Three Physical Files 72

15. Format Selection - a General Build Program 73

16. RPG and Database - A Program-Described File . 81

17. RPG and Database - DDS for File MASTER 82

18. RPG and Database - Partially Converted Program 86

19. RPG and Database - Program after Partial Conversion - Page 1. 87

20. RPG and Database - Program after Partial Conversion - Page 2. 88

21. RPG and Database - Converted Program 91

22. Displays - System/36 Program with no First Cycle Calculations 95

23. Displays - AS/400 program with No First Cycle Calculations 95

24. Displays - System/36 Program with First Cycle Calculations 96

25. Displays - AS/400 Program with First Cycle Calculations 97

26. Displays - System/36 Program with First Cycle Calculations 98

27. Displays - AS/400 program with First Cycle Calculations 99

28. Displays - Setting Record Indicator in Calculations 102

29. Displays - Compiler Output for External File 104

30. Displays - Program Modified for External File 107

31. COBOL - Partly Program-Described File 124

32. COBOL - Fully Program-Described File 124

33. COBOL - DDS for File MASTER 125

34. COBOL - Externally Described File 126

35. Example of Converting #GSORT to FMTDTA 133

36. Example of Converting System/36 DFUs 134

37. Running a System/36 Environment Procedure from a CL Program 157

38. CL - DDS for SNDRCVF Prompting 158

39. CL - Sample Program (Shortened) 158

40. CL - Sample Display File DDS Expanded for RUF .. 159

41. CL - Sample Program (Shortened) Expanded for RUF 160

e Copyright IBM Corp. 1988,1990 xvii

xviii Converting System/36 Environment Applications to Native AS/400

1.0 Introduction

This chapter discusses possible ways of running System/36 applications on the
AS/4001 system. It discusses (very generally) migration, restructuring,
conversion, and redesigning. It might not be reasonable, in some cases, to fully
convert an application. In other cases, fully redesigning might be the best way.

1.1 Migration, Restructuring, Conversion, and Redesigning
There are four main approaches to running System/36 applications on the
AS/400. These are migration, restructuring, conversion, and redesigning:

• 	 Migration involves using the migration aid programs to move System/36
applications into the System/36 Environment on the AS/400.

• 	 Restructuring involves changing some characteristics of an application while
keeping it as a System/36 Environment application.

• 	 Conversion involves selectively changing parts of the application to replace
some of the System/36 functions with native AS/400 functions.

• 	 Redesigning involves completely reworking the application to use all AS/400
functions to the fullest extent.

You must consider many factors when you are deciding whether to leave an
application running in the System/36 Environment, or to convert or redesign it.
These factors could include expected lifetime of the application, stability of the
application, cost of maintenance, growth in business volumes, training needs,
system capacity and performance targets, and availability of new or simplified
functions.

1.2 Migration
The migration process is straightforward, does not take much time, and protects
the user's investment in existing applications. Migration allows the user to move
away from the System/36 hardware while continuing to maintain applications
with existing skills. In addition, migrated applications can use some of the
advanced functions of the AS/400, such as journaling and debugging.

On the other hand, migrated applications do not have access to many of the
AS/400 functions which, in the long run, can reduce the cost of application
maintenance and enhancement. The performance of applications that are simply
migrated might not be as good as it could be if the applications were
restructured or redesigned to take advantage of the AS/400 architecture and
functions. Also, if new applications are written in native AS/400, the costs and
problems of maintaining two sets of programming skills might be unattractive
over the long term.

1 AS/400 is a trademark of the International Business Machines Corporation.

Cl Copyright IBM Corp. 1988,1990 1

1.3 Restructuring

While migration moves your System/36 application to AS/400 with relative ease,
there are some disadvantages of running the application unchanged in the
System/36 Environment. The performance of some applications might not be
satisfactory. This is because many of the characteristics of System/36
applications, such as multiple requester terminal (MRT) and read under format
(RUF) take advantage of the architecture of System/36 and the design of its
operating system. Some of the characteristics were necessary to ensure
adequate performance on System/36. AS/400 has a very different architecture,
so some System/36 characteristics are not only unnecessary, they can even
degrade performance. Because of this, restructuring the application while
keeping it in the System/36 Environment can be helpful, and some relatively
simple structural changes can improve performance significantly.

On the other hand, this approach is more expensive than migration. It does not
tap the additional function of the AS/400, nor does it improve your ability to
maintain and enhance your applications.

1.4 Conversion
If your application needs access to functions that are not available in the
System/36 Environment, or if you expect significant maintenance or
enhancements, conversion might be the best solution. Only those parts of the
application needing to move away from the System/36 Environment need be
touched. Thus conversion could allow you to meet your objectives without the
expense and time required to fully redesign the application.

Partly converted applications might also form a satisfactory basis for further
enhancements through use of more AS/400 functions, or for development of new
applications based on existing data files.

On the other hand, a bit-by-bit approach towards moving to the AS/400 native
functions, while still keeping the underlying design of the System/36 application,
may involve as much effort as redesigning without providing the corresponding
advantages. Even extensive conversion may fail to remove restrictions inherent
in the original design.

Also remember that conversion alone will not necessarily improve the
performance of your application.

1.5 Redesigning
Redesigning can produce significant benefits in several areas. (These benefits
also apply, generally to a lesser extent, to the conversion process.)

Consider redesigning for applications that have high visibility, are heavily used,
need optimum response times, or lend themselves to significant functional
enhancement.

Redesigned applications might be able to use some of the code already written
and redesigning could use fewer resources than conversion.

2 Converting System/36 Environment Applications to Native AS/400

Here are some of the benefits of redesigning applications:

• 	 Improved throughput and response times.

• 	 Simplified program logic through the use of system-supported relational data
handling methods (for example, improved selective record processing,
simpler handling of multiple record files through record-name operations,
and better data sequencing functions).

• 	 More productive design and development of new applications

• 	 Replacement of batch applications by (simpler) interactive ones

• 	 Access to new functions in the languages you already use

• 	 Availability of new languages and utilities such as Structured Query
language (SQl) and Query.

• 	 Reduction of the need to maintain System/36 skills

• 	 Compliance with IBM Systems Application Architecture (SAA)2 standards

• 	 Future growth as IBM delivers new AS/400 functions

• 	 Better and faster tools for recovery and restart.

In general, redesigned applications provide the best basis for design and
implementation of both modifications and extensions.

On the other hand, fully redesigning may involve more work than is justifiable for
a stable application having few planned modifications or enhancements and
which has no critical performance requirements.

1.6 Full Conversion Versus Redesigning
The degree to which you rework each System/36 application to run on the
AS/400 is up to you. Many different combinations are possible.

For example, you could:

• 	 Use the migration aid, making only those changes needed to recompile and
run an application on AS/400, then leave the application alone.

• 	 Keep the applications in the System/36 Environment, but make some
structural changes to improve performance of critical programs as discussed
in 2.0, "Restructuring for Better Performance" on page 5.

• 	 Convert some or all parts of each application:

Convert database files to externally described files, but leave screen files
as program-described. This would allow new applications to be
developed using the existing data.

Convert some Operation Control language (OCl) statements and
procedures to Control language (Cl) to gain access to desirable Cl
functions.

2 Systems Application Architecture and SAA are trademarks of the International Business Machines Corporation.

Introduction 3

Convert programs and files to native AS/400 but run the programs from
System/36 Environment eCl procedures. This could provide
performance benefits without eCl conversion in some cases.

Fully convert procedures, programs, and files for your application.

• 	 Redesign key applications or parts of applications. For example, you might
wish to redesign the interactive part of an application but leave the batch
part unchanged as far as possible.

1.7 Recommendations
Remember that a decision to convert or redesign your application should be
made with long-term goals in mind. Performance improvements alone are not
always sufficient reason to convert. In fact, significant performance gains can be
made merely by restructuring your application or making some operational
changes. With this in mind, 2.0, "Restructuring for Better Performance" on
page 5 describes ways you can improve performance without converting your
applications to native AS/400. The rest of this document discusses conversion
and redesigning.

As a general rule, the more thoroughly the conversion or redesigning is done,
the more the benefits will be realized in the long term. Although there might
seem to be lots of steps in the conversion process, many of the steps are
needed to handle worst-case situations, Any particular application is not likely
to need all the steps.

We suggest that you try a pilot conversion of a small application so that you
understand the steps. Then you can estimate the conversion effort and balance
it against the benefits to be gained in your computer system.

We strongly recommend that the database should be described externally in all
cases. The process is straightforward and will give the application access to the
relational database.

Program conversion for batch programs involves few changes. Program
conversion for interactive programs requires extra changes to make display file
processing consistent with AS/400 methods. In many cases the program
changes are made as part of the file changes. Conversion of procedures and ...""
eCl can be more complex. The use of the programs discussed in this document
can accurately convert many of the System/36 statements. But because of the
new functions available on AS/400 and because of the different approaches of
eCl and Cl, it might be better to understand the intent of the eCl procedures
and completely rewrite them.

Display files also need careful consideration. Unless a display file is shared
among several programs, there may be little advantage in making it external. In
addition, because we already had a kind of "external file" for displays on
System/36 (the Sand D specifications), more work might be needed to reconcile
the field names.

4 Converting System/36 Environment Applications to Native AS/400

2.0 Restructuring for Better Performance

This chapter summarizes and briefly describes ways of significantly improving
the performance of System/36 Environment applications without converting them
to native AS/400 applications. Additional information is available through your
IBM representative or business partner. The information contained in this
chapter is covered in more detail in the IBM AS/400 S/36 Environment
Performance Tuning Guide, HONE number 155NC. The Tuning Guide is worth
reading because it will contain the latest detailed performance information.

Application design on a particular machine is influenced by the functions
available in that machine's architecture. Applications that are designed to run
well on one machine might use functions that are supported differently on
another machine, and might thus perform poorly on the other machine.

For example, System/36 users, partly because of the 64K limit, often use
mUlti-step programs alternated with OCl, which passes data using the local data
area (lDA) or read under format (RUF). low memory sizes in the early life of
the System/36 led to extensive use of multiple requester terminal (MRT)
programs. Relatively small disk capacity and simple file-management systems
required user control over disk allocation and the use of sorts and work files.
These features will be particularly present if the application had originated from
earlier System/3X environments.

On the other hand the AS/400, while removing many of the System/36 design
constraints, operates in an environment where file creates, file opens, and job
initiations take longer to complete, and where save/restore methods can be
more complex.

This suggests that the causes of difference in performance are likely to be found
in the above areas.

2.1 Relative Performance
Measurements of interactive transactions in an unstressed environment indicate
that a migrated System/36 interactive application can handle 50 to 85 percent of
the throughput of a similar native application given that each application is
optimized to the System/36 or AS/400 environment respectively.

In a stressed environment with a shortage of disk space, the interactive
performance can be significantly worse.

The following sections describe application changes that might significantly
improve the performance of applications running in the System/36 Environment.
They might permit you to use a smaller AS/400 configuration than would be
required if the changes were not made.

In the material that follows, those changes which solve the most
commonly-occurring performance problems are listed first. Next are changes
that solve problems that occur less frequently, but have more dramatic effect
when they do. last are assorted other recommendations. Of course, your
results might vary, depending on the structure of your applications.

@ CopyrightlBM Corp. 1988,1990 5

2.2 Recommendations
You can make all these changes without converting your application from the
System/36 Environment. Some are merely operational changes. Some are
discussed in more detail in the following paragraphs.

• 	 Make MRT programs never-ending, or specify a long MRT delay time.

• 	 Reduce file create and delete activity.

• 	 Use shared database file opens.

• 	 Increase the DBlOCK parameter value for sequentially accessed files.

• 	 Use packed decimal data, particularly in compute-intensive programs.

• 	 Reduce unnecessary use of EVOKE and JOBQ.

• 	 Avoid unnecessary nesting of operator commands.

• 	 Use alternative index or logical files instead of sorts under certain
circumstances.

• 	 Remove unused and unnecessary OCL.

• 	 Increase storage pool size.

• 	 Use of 27x132 display support carefully.

• 	 Eliminate or simplify read under format.

• 	 Avoid batch-type work in an interactive pool.

• 	 Turn off procedure logging.

• 	 Delete unused spool files.

• 	 Clean up history logs.

• 	 Remove RPG F-specifications that are used only by the DEBUG operation
code.

• 	 Limit sign-on and sign-off activity.

• 	 Change MRT security.

2.2.1 Making MRT Programs Never-Ending, Specifying Long MRT Delay Time.
First, note that MRTs perform well if they are used correctly.

AS/400 is relatively slow when initiating MRTs because starting a new job for the
MRT requires a great amount of system resources. So, avoid ending MRTs
when the last user exits. You can do one of the following to facilitate this:

• 	 Compile individual MRT programs as never-ending programs (MRT-NEP).
This can be done via a parameter or keyword on either the RPGC procedure
or the CRTS36RPG Cl command. You can also use the EDTS36PGMA
command to change the attribute for a program that already exists. Finally,
you can specify NEP-Y on the ATTR DCl statement.

• 	 Change the MRT delay time to at least 300 seconds (5 minutes) or up to an
hour or more for those MRT programs that you do not wa!1t defined as
never-ending. This delay does not affect system performance. The delay
value determines how long a non-NEP MRT remains active after the last user .""""
has exited it. To enable MRT delay, use the CHGS36 command to modify the
time-out value to a non-zero value. Once MRT delay has been enabled, you

Converting System/36 Environment Applications to Native AS/400 6

can activate and deactivate it on a procedure basis using the EDTS36PRCA
command.

A MRT-NEP, or a MRT with a long delay will generally perform better than the
same program as an SRT. The MRT saves memory (It uses only one PAG) and
file opens. Converting MRTs to SRTs is recommended only if the application is
redesigned for the AS/400 native environment or if queuing of multiple users is
causing response time problems.

2.2.2 Reducing File Create and Delete Activity
Creating and deleting scratch or work files is common in System/36 applications.
This activity uses many more AS/400 system resources and can be key to
program load performance. Reducing work file creation and deletion where
possible will help improve performance.

Consider creating file members that remain permanently on disk and removing
data from the members with the ClRPFM command (This approach replaces the
use of DELETE, BlDFllE or II FilE RETAIN-S or -J OCl). The system will handle
space allocation automatically.

2.2.3 Using Shared Database File Opens Where Possible
File opens are key to program load performance and take longer on AS/400. If
the application closes and re-opens files many times then performance can be
improved by making the first file open a "fuW open and the subsequent opens of
the same file "shared" opens that use fewer system resources.

The System/36 Environment automatically shares open data paths if the file is
used in the next job step, and if all the open options and access methods are the
same as in the previous job step or if the JOB-YES keyword is used.

The example below shows how the System/36 Environment analyzes the job
stream FilE statements and tries to use automated shared file opens to
decrease the system overhead. Note that the key to the analysis is not the
program file name (in this case 'FllE1') but the lABEL name.

Restructuring for Better Performance 7

II FILE NAME-FILE3,LABEL-JOBFILE,JOB-YES
II LOAD PROGA
II FILE NAME-FILE1,LABEL-MASTFILE
II FILE NAME-FILE1,LABEL-TRANFILE
II RUN

Program opens FILEI
Program opens FILE2
Program opens FILE3
Program closes FILEI
Program closes FILE2
Program closes FILE3

II LOAD PROGB

<--- Full
<--- Full
<--- Full
<--- File
<--- File
<---- File

open of MASTFILE
open of TRANFILE
open of JOBFILE
is held open
is held open
is held open

I I FILE NAf.1E-FILE1,LABEL-t~ASTFILE
II RUN

<----	 TRANFILE is closed
Program opens FILEI <---- Shared open of MASTFILE
Program closes FILEI <---- File is held open

II LOAD PROGC
II FILE NAME-FILE1,LABEL-JOBFILE
II RUN

<---- MASTFILE is closed
Program opens FILEI <---- Shared open of JOBFILE
Program closes FILEI <---- File is held open

II RETURN
<----	 JOBFILE is closed

To implement shared opens, consider doing the following:

• 	 Add the JOB-YES keyword where applicable. However, be aware of the effect
of any DISP keywords associated with the file.

• 	 Change programs using the same files to always open the files the same
way. For example if the first program opens the file for input and the next
program opens it for update, change the first program so it also opens the
file for update.

• 	 Add a CL program to pre-open the files, thereby forcing shared opens for the
entire session. Create your CL program with the statements

OVRDBF FILE(file-name-on-disk) SHARE(*YES)
OPNDBF FILE(QS36F/file-name-on-disk) OPTION(*ALL)

Call the CL program as an initial program for each user or as part of the
application startup.

Note: 	 The OPTION(*ALL) parameter overrides any blocking and only allows
handling of single records from disk for each I/O operation.
Depending on the application, this may not be the best thing to do.

2.2.4 	 Increasing DBLOCK Parameter Value for Sequentially Accessed Files
You can improve performance for sequentially accessed files (input or output) by
increasing the DB LOCK value or by adding an OVRDBF command with a
SEQONL Y(*YES) parameter.

The recommended DB LOCK value is

For 810 - 845: D8LOCK approximately = (16384) I (record-length +1)

For 850 - 870: D8LOCK approximately = (24576) I (record-length +1)

8 Converting System/36 Environment Applications to Native AS/400

To make the change, do the following:

II LOAD PROGA
II FILE NAME-FILEl,LABEL-BLOCKUP,DBLOCK-nn
II RUN

*** OR ***
OVRDBF FILE(BLOCKUP) SEQONLY(*YES nn)

Note: 	 The System/36 always provides the latest version of each record. Making
the blocking larger on the AS/400, where the file is being shared between
programs, may not always provide the latest version, since there could be
a number of changed records in the block waiting to be written to disk.

2.2.5 Using Correct Data Types
System/36 batch programs are usually designed to handle large volumes of data
and hence have a lot of calculation steps, so this section applies mainly to batch
jobs. The System/36 uses zoned decimal fields in its instruction steps, while the
AS/400 uses packed decimal fields. Thus there are considerable performance
gains to be had by changing programs that have many arithmetic instructions.

In these cases, you should consider:

• 	 Changing to packed decimal data in your files wherever possible. This
saves many unnecessary instructions for conversion to packed decimal fields
when running the program. The more incompatible the data is with packed
decimal, the greater is the overhead. For example, binary fields take even
more overhead than zoned decimal fields.

• 	 Replacing even-length numeric fields with odd-length fields. This saves many
unnecessary instructions that deal with the high-order 4 bits when the
even-length field is used in the packed decimal instruction set (which always
uses odd-length).

• 	 Removing result field truncation (such as a result field too small or
shortened or decimal places dropped) wherever possible, as this has a high
system instruction overhead.

• 	 Analyzing your files for invalid decimal data (that is, non-decimal data, such
as blanks, in decimal fields). While the System/36 Environment allows invalid
decimal data (the same as for the System/36) many additional instructions
must be performed to resolve the data. Also, if AS/400 RPG III programs are
subsequently used to process that data; program failure through data
exception will occur.

2.2.6 Reducing Unnecessary Use of EVOKE and JOBQ
The use of EVOKE or JOBQ to do tasks in an application system (which can be
common in systems generated with an application generator) can have a
dramatic impact on performance.

If your application uses EVOKE or JOBQ to do trivial tasks (tasks that take less
than 10 to 20 seconds), perform them inline.

If you do not want to perform the function inline (perhaps because the response
time is too great for the interactive user), use a data queue. Change the evoked
program into a continually running batch job that waits to receive requests via a
data queue.

Restructuring for Better Performance 9

2.2.7 Avoiding Unnecessary Nesting of Operator Commands
This is an operational change. Simply tell your operators that they should not
run a command while the display from a previous command is still active. They
should exit the previous display by pressing Enter or F3 before running the next
command.

Stacking commands by entering successive commands on the command input
line of the display of the previous command significantly increases the
operator's requirement for main memory (the PAG) and can impact other users
by increasing paging requirements.

2.2.8 Sort Performance
A general guideline is to replace sorts with logical views (using CRTLF
command) if:

• 	 The file has a low update activity where less than 30% of the record keys
are changed between sorts.

• 	 A small percentage of the total records are selected by the sort, and the
selection criteria does not vary.

• 	 Elapsed time for the batch job is critical, and there is extra interactive
capacity (to maintain the logical view).

Sort performance is sensitive to pool size, so you should:

• 	 Increase "BASE size if possible when running large sorts in batch.

• 	 Collapse the interactive pool into "BASE for batch processing when the
interactive load is light.

• 	 Use SOOK per sort minimum, or better, use 2 to 3MB for optimum
performance.

2.2.9 Careful Use of 27x132 Display Support
Mapping the 27x132 display size to 24x80 can have a very dramatic effect.

Avoid writing screen formats to 24X80 displays if they are defined for 27x132
displays. Much more processing time is required to map the data stream
defined for a large screen to a display with a smaller screen. This should be
done only if a large majority of the displays used by the applications have the
larger screen.

If this is a must, then create a new display file suitable for the 24x80 screens
along with a modified program for those screens.

2.2.10 Eliminating Read Under Format
Read under format (RUF) occurs when one program (or PROMPT OCL) writes a

display and another reads it. RUF in the System/36 Environment performs well

when the same file is used in both steps of a single requester terminal (SRT)

program.

Other cases incur significant overhead because of the need to transfer data

between display files in different jobs (in the case of MRTs) or between different """"

file open data paths in the case of:

1 0 Converting System/36 Environment Applications to Native AS/400

• 	 Different file, SRT to MRT or MRT to SRT (worst case)

• 	 Same file, SRT to MRT or MRT to SRT

• 	 Different file, SRT step to SRT step.

If few transactions are made between occurrences of RUF, consider removing or
simplifying the RUF by:

• 	 Making the same program that writes the display, read it (combine programs
and files or change logic).

• 	 Combine the display files used in the two steps, when in an SRT.

2.2.11 Limiting Sign-on and Sign-off Activity
You could also make another operational change. Simply tell your operators
that they should remain signed on the system between transactions. If security
is a concern, it might be necessary to add a routine to the application that
requests and verifies a password.

2.2.12 Changing MRT Security
System/36 Environment support for MRT programs ensures that each user who
attaches to MRTs is authorized to the programs and all the files they are using.
This is expensive. Your security requirements might be satisfied merely by
checking that each user is authorized to the programs. If this is true you can
specify, using the CHGS36 CL command, that only the first user (or the owner) of
each MRT needs to be authorized to all the files. Subsequent users need to be
authorized only to the program.

2.2.13 Work Management Considerations
You should be familiar with the work management practices given in the AS/400
Work Management Guide, particularly those sections that describe balancing the
activity levels and pool sizes in your system. Set your system pools and and
activity levels within those guidelines once your system has reached a steady
work load condition.

Other good work management practices, such as:

• 	 avoiding batch work in interactive pools
• 	 avoiding interactive compiles (do these in batch)
• 	 avoiding large interactive queries
• 	 avoiding interactive sorts (unless these are very small)
• 	 deleting unused spool files
• 	 cleaning up history logs
• 	 ensuring adequate "BASE pool size

can improve the overall system performance, whether you use the System/36
Environment or AS/400 native mode.

You should control the use and definition of logical files and the maintenance of
the access paths, because large numbers of logical views with use of immediate
maintenance will degrade performance.

Restructuring for Better Performance 11

2.2.14 Using Utilities
Replace the use of system procedures. such as BlDFllE. COPYDATA. and
DELETE. with direct OCl (for example. II lOAD $FBlD. II FilE.. , II RUN, ...). This
will generally result in better utility load performance since there are fewer OCl
statements to interpret.

While this is not a significant item, it could be beneficial in a system that uses
many System/36 utilities.

12 Converting System/36 Environment Applications to Native AS/400

3.0 Getting Started with the Conversion

This chapter discusses some steps you can take to simplify the conversion
process, regardless of whether you are converting your entire application or just
some of it.

Note: 	 Many of the directions in later chapters assume you have followed the
steps described in this chapter.

IBM provides a product that helps with many of the conversion steps. This
product is called the IBM AS/400 Programmer Tools PRPQ 5799-0AG. The
functions of this tool, which are discussed in more detail later, will help you to
move your application from the System/36 Environment to AS/400 "native mode".
The product will generally be referred as PTK.

3.1 	 Attend AS/400 Education
Whether you choose to migrate, restructure, convert or redesign, you need a
strong working knowledge of the AS/400 and its functions. We recommend that
you use AS/400 education, starting with the AS/400 Online Education. Contact
your IBM representative or business partner for course details, and work with
them to develop appropriate schedules for your computer system.

3.2 	 Starting Point for Conversion
We assume that you have installed OS/4003 Release 2.0, with all necessary PTFs.
We also assume that the System/36 applications to be converted have already
been migrated from the System/36 to the AS/400 System/36 Environment, and
that you have decided to convert rather than redesign your applications. You
should be familiar with:

• Migrating from Systeml36 Planning Guide

• Systeml36 to ASI400 Migration Aid User's Guide and Reference

• Systeml36 to ASI400 Application Migration (ITSC publication).

If you have not already migrated your System/36 applications to the AS/400
System/36 Environment, we recommend that you do so before starting to
convert. The migration process helps ensure that all applications meet
consistent standards, and converts System/36 Screen Format Generator Routine
(SFGR) S- and O-specifications to AS/400 data description specifications (DDS).
Also, some of the tools that help in the conversion operate on System/36
Environment files and programs.

3 OS/400 is a trademark of International Business Machines Corporation.

© Copyright IBM Corp. 1988,1990 13

3.3 Conversion Steps
A complete conversion could involve the following steps:

1. 	 Choose the programs, files and procedures to be converted.

2. 	 Analyze the database files.

3. 	 Analyze fields within data files and create DDS.

4. 	 Change the DDS to take care of special situations.

5. 	 Create external physical and logical files.

6. 	 Create native screen definitions.

7. 	 Create native menu definitions.

8. 	 Create external printer file definitions.

9. 	 Copy data into the external database files.

10. Detect and remove sources of decimal data errors.

11. Change high-level language (Hll) programs to use external database files.

12. Change Hll programs to use external display files.

13. Change System/36 GCl to AS/400 Cl programs.

14. Test programs.

15. Build a field reference file.

This is a fairly natural sequence of steps for converting program-described files
to AS/400 external files which, if followed, will cut down the amount of work to be
done. Some of these steps can be overlapped. You can start OCl conversion
early since is not dependent on most of the other activities, even though you will
not be able to finish the Cl until file names have been resolved. You can start
data transfer and cleanup as soon as external files have been created.

Screen files are best left until the database files have been resolved, since
screen files may use database fields, and it is only at this point that you know
the database field names to put into the screen files. The same is true for printer
files.

3.4 AS/400 Programmer Tools PRPQ 5799-DAG
The PTK has functions and utilities to help a user convert an application to
AS/400 native mode in a short time. The PTK assists by:

1. 	 Generating DDS from your application

2. 	 Verifying decimal data error within data files

3. 	 Using journal commands to analyze changed data and identify programs
causing decimal data error

4. 	 Converting System/36 Environment GCl to AS/400 Cl

5. 	 Converting RPG II to RPG III

6. 	 Converting System/36 Environment screen format source to AS/400 DDS
source code

14 Converting System/36 Environment Applications to Native AS/400

7. 	 Converting System/36 Environment menu objects to AS/400 menu objects

8. 	 Retrieving DDS from existing files on the AS/400

9. 	 Creating programs on remote systems

10. Tracking the application development process

PTK documentation is available online.

3.5 Choosing Programs and Files to be Converted
You do not have to convert all your System/36 applications at one time. You do
not even have to convert all of a single application. However:

1. 	 If you plan to convert a program. try to convert all files used by that program.
This avoids rework of the program later.

2. 	 If you plan to convert a file. try to convert all programs using that file. This
helps to ensure that the resulting AS/400 file definitions are accurate.

3.6 Analyzing the Database
The AS/400 database operates on files that contain a single record type, and that
contain no repeating groups of fields. Also, the AS/400 requires that records
containing related information (for example. about a customer order) have a
common field (the order number). so that the order information can be collected
for presentation to the user program. Files that are structured in this way are
referred to as normalized files.

The more multiple record files, repeating groups. and missing common fields
there are in your application, the less normalized the files are, and the more
work that will be needed to convert them to the AS/400 database.

We recommend that before starting the conversion. you take the time to
understand the idea of normalization. and reduce your files to at least second
(and preferably third) normal form.

Refer to IBM System/36 and Systeml38 Application Design Considerations for a
discussion of normalization.

Although in most cases we expect that there will be no changes in the logic of
the programs, it might happen that changes are needed. It is worth making the
changes during the conversion process. so that you can fully use the AS/400
relational database functions.

When you migrated from System/36 to AS/400. your files were copied into a "files
library" on AS/400. The default files library is called QS36F, although you might
have specified a different library name when you migrated. Throughout this
document, references to your System/36 Environment files assume that they are
in QS36F; this is reflected in the examples. If you specified a different files
library name when you migrated, use that library name instead of QS36F.

Getting Started with the Conversion 15

3.7 Moving Selected System/36 Source to New Library
During the migration process, you set up one or more AS/400 libraries to hold
the migrated applications. Perhaps you used just one library to hold all
applications, or perhaps there were several libraries - one for payroll, one for
order processing, and so on.

However, in each library some physical files were already created by the the
migration aid:

• 	 High-level language source was put into QS36SRC.

• 	 Copy members were put into QS36SRC.

• 	 OCl and procedures were put into QS36PRC.

• 	 Display format (SFGR) source members were put into QS36SRC, and DDS
members generated from that SFGR source were put into QS36DDSSRC.

In addition, each library contains object programs, and display files (created
from the DDS). These are used to run your System/36 Environment applications.

At this stage, move copies of the source and procedures to be converted into a
separate library so that you can convert them without disturbing the System/36
Environment.

Create a new conversion library. Your library should contain the following
source files QS36SRC, QS36PRC, and QS36DDSSRC at the beginning of the
conversion. If you are working in the System/36 Environment and you use the
BlDLlBR Procedure, the source files QS36SRC and QS36PRC are created for
you. Do the following:

• 	 Create a source file QS36SRC containing all RPG (or COBOL) source
programs and ICOPY modules to be converted. Use the CRTDUPOBJ
command if all your source files are in a single migration library, and all of
that library is to be converted. Otherwise use the Programming
Development Manager (PDM) copy option to copy those source programs to
be converted. (The source programs to be converted will come from the
QS36SRC file in the migration library or libraries.)

• 	 Create a source file QS36PRC. Copy into this file all of the procedures to be
converted.

• 	 Create a source file QS36DDSSRC. Copy into this file all of the display file
source formats. These were created by the Migration Aid.

The next source files are all optional, because the PTK creates them if they are
not in your conversion library.

• 	 Create a QRPGSRC source file to hold RPG programs while they are being
prepared for compilation on AS/400.

• 	 Create a QlBlSRC source file to hold COBOL programs while they are being
prepared for compilation on AS/400.

• 	 Create a QClSRC file to hold the procedures (OCl) that have been
converted to Cl programs.

• 	 Create a QDDSSRC file to hold all of the DDS for your files, formats and
menus.

16 Converting System/36 Environment Applications to Native AS/400

3.7.1 Member Types
You will probably want to use PDM to work with the various source programs.
For some options, PDM uses the member type of the source program to decide
how to operate on the source member. For example, when you use PDM option
14 (Compile), the PDM looks at the type to decide which compiler to use.

Eventually you will want to change the types of the high-level language programs
in your new library from RPG36, CBL36, or RPT36 to RPG, CBL, or RPT
respectively, so that PDM will use only AS/400 options from then on. However,
while using the IBM AS/400 Programmer Tools PRPQ, the member type must
continue to be of the form "xxx36" or "xxx38" so that the PRPQ can correctly
analyze the members.

You are now ready to start the conversion process. All further work will be done
in the new library. You will not need the migration library again, unless you
need to recopy the source for some reason. Remove the migration library from
your library list.

Getting Started with the Conversion 17

18 Converting System/36 Environment Applications to Native AS/400

4.0 Analyzing Files and Fields

In this chapter we describe how to convert System/36 Environment files into
AS/400 externally described database files. We also describe some problems
you could encounter and solutions to these problems.

Read this entire chapter before starting your conversion on AS/400.

We recommend that you use the PTK to create AS/400 DDS. It provides a high
level of assistance and automates many of the key functions. With PTK, you can
efficiently analyze and process your eCL and HLL source files to get file
descriptions. The PTK produces working DDS significantly faster than can be
done by hand. Of course you can also create the DDS without the PTK using
normal AS/400 functions.

This chapter includes some PTK output as examples. Use these examples for
general guidance only. Refer to the PTK documentation for detailed operational
instructions and formats. You can print the documentation by selecting option 10
on the Programmer Tools Main Menu. To print the documentation you must be
enrolled in the distribution directory. Use the WRKDIR command to be enrolled.

4.1 General File Considerations
One of the biggest problems of a conversion is defining the files and fields used
in different programs. On System/36 you have only program described files.
Therefore, different programs can have different descriptions of the same file.
Also, System/36 programs can process alphabetic data as numeric. Neither of
these is allowed with externally described database files on the AS/400.

Here are some other considerations:

• 	 File naming must also be considered. On System/36 and in the System/36
Environment, you can name a disk file, for example, "Z.FILE". On the AS/400
you cannot use this file in a native COBOL program, because the "." (period)
is treated by the COBOL compiler as "end of statement". If you code the
following, the compile will fail:

COPY DDS-ALL-FORMATS OF Z.FILE .
I• In this case, consider changing names of the form "Z.FILE" to "ZPFILE",

substituting a valid character for the period .

• 	 On System/36 and System/36 Environment. you can name a disk file, for
example, "#FILE". Again, on AS/400 you cannot use this file within a native
COBOL program because COBOL doesn't support the "#" (pound sign). If
you must use these kinds of names, use the OVRDBF command to access
this file within a COBOL program.

• 	 In System/36 Environment you can name a disk file, for example,
"DATAFILE1". On the AS/400 you cannot use this file in a native RPG
program because of the length of the file name. RPG/400 only supports 8
characters in a name.

• 	 In a System/36 program you can have an internal name (on the file
specification) that differs from the external name of the file (on the disk).

© Copyright IBM Corp. 1988,1990 19

This is not allowed with externally described files; the names must be the
same at compile time or the program will not include the correct description
of the record formats from the previously created file.

Therefore, the name given to the file when it was created must be put into
the F-specification of the RPG program. This is not a problem unless you
have made it common practice to make external file names user- or
workstation-dependent:

?HS?FNAME or FNAME?USER?

These names are not valid for an external file. Use a valid external name,
for example "WSFILE", for such a file. Then use the same name, "WS FILE",
as the internal name in the program. At run time you can link the name
"WSFILE" with the name of the disk file with an override statement like

OVRDBF FILE(\'JSFILE) TOFILE(AS4BBLIB/~J3Ff1A/~E) t'1BR(~J3)

Refer to the discussion of ?WS? in Appendix E, "Table of System/36
Substitution Expressions" for ways to define a variable whose value is the
workstation ID.

4.2 File Conversion Functions
The second release of the PTK has two function for getting DDS from System/36
Environment files:

1. 	 Creating DDS for System/36 Environment files as they are currently known to
the system (new PTK function).

2. 	 Creating DDS for System/36 Environment files as they are known by
programs and procedures.

How to work with the PTK is shown step-by-step in 4.3, "Creating DDS from
System/36 Environment File Descriptions" on page 21 and 4.4, "Retrieving the
Descriptions of Program Described Files" on page 24. These sections show
most of the screens used by PTK.

4.2.1 Input to the First Function
For this function, PTK creates DDS based on the current descriptions of your
files. As an alternative, you can use the DSPFD and DSPFFD commands on the
AS/400 and then create the DDS from this information.

The resulting DDS can be compiled and the data can be copied into the
externally described database files. This is a very simple way to create native
AS/400 files, but it does not result in files that are useful to your native
programs. While the files are externally described, the descriptions probably do
not include any useful field names.

In spite of it's limitations, this function can be helpful if you have lost your DDS
Source from any externally described files. You can use this function to recreate
the DDS source.

There are some things that are not handled correctly. For example, the function
always gives you a source file member type DSPF. (Simply change the source
type of the resulting source file to PF or LF, whichever is appropriate.) The
function does not handle logical files very well, because it recognizes only the

20 Converting System/36 Environment Applications to Native AS/400

first record format name. But it does give all the names and the lengths of your
fields.

Input to this function is the files for which you want DDS generated.

4.2.2 	 Input to the Second Function
For this function, PTK uses your Hll source statements along with procedures to
create DDS. First, it retrieves the necessary information. Then, with your input, it
analyzes the files and fields, and finally creates the DDS statements.

Each retrieval is identified by the PTK work file member name. The run member
name is a run identification which you will have to remember afterward. Input to
the retrieval step is from up to two files:

• 	 A (mandatory) file containing RPG or COBOL source programs. This will be
QS36SRC if you have followed the instructions in 3.0, "Getting Started with
the Conversion" on page 13.

• 	 A file containing the procedures that load and run the Hll programs. This
file is optional, but its inclusion will help the later steps to match names on
the file specifications with external names on the FilE OCl statements. This
file will be QS36PRC in your conversion library.

The PTK will accept input from any file in any library. The default is to look for
Hll source modules in QS36SRC and all OCl in QS36PRC. Since our source
and procedures were moved to these files during 3.0, "Getting Started with the
Conversion," all you need to do is fill in the appropriate library names.

4.2.3 Rerun Options
Note that all output from the retrieval step is placed in the QPTK library - not the
library where the source files are.

Also note that once you have run a retrieval step and created the work files, you
cannot run another retrieval step with the same "RUN MEMBER" name. This run
member name is a run identification. However you can run a retrieval with a
new run member name over the same set of files as a previous run and run a
new retrieval over a new set of files.

4.3 Creating DDS from System/36 Environment File Descriptions
This section shows you how to use the PTK to get the 5/36 file descriptions as
they are known by the system. This step is optional because it does not effect
the conversion at all, but it does give you some useful information.

Analyzing Files and Fields 21

MAIN AS/400 Main Menu
System: RCHASBBS

Select one of the following:

1. User tasks
2. Office tasks
3. General system tasks
4. Files, libraries, and folders
5. Programming
6. Communications
7. Define or change the system
S. Problem handling
9. Display a menu

10. User support and education

90. Sign off

Selection or command

===> strptk

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=User support

F23=Set initial menu

Enter STRPTK. STRPTK sets QPTK as the product library and displays the
Programmer Tools Main Menu.

PTMENU Programmer Tools Main Menu

Select one of the following:

1. Generate DDS from user applications
2. Verify decimal data
3. Journal commands
4. Analyze changed data
5. Convert applications
6. Create remote object
7. Track application development process

10. Print Programmer Tools documentation

Selection or command (C) COPYRIGHT IBM CORP. 199B
===> ~

F3=Exit F4=Prompt F9=Retrieve F12=Cancel

F13=User support F16=System main menu

Select option 5 (Convert applications). This displays the Convert Applications
menu, which is new in the second release of PTK.

22 Converting System/36 Environment Applications to Native AS/400

QCVMNU1 Convert Appl;cat;ons

Select one of the following:

1. Convert S/36 OCL to AS/400 CL
2. Convert S/36 RPG II to AS/400 RPG III
3. Convert S/36 screen formats to AS/400 DDS
4. Convert S/36 menu files to AS/400 menus
5. Create DDS from data file descriptions

Selection or command

===> ~

F3=Exit F4=Prompt F9=Retrieve F12=Cancel

F13=User support F16=System main menu

Select option 5 (Create DDS from data file description).

Create DDS (CRTDDS)

Type choices, press Enter.

Fi 1 e Z.DRD38 Name, generic*, *ALL

Library ... CONUB Name, *LIBL, *CURLIB

Source File .. gS36DDSSRC Name

Library ... CONUB Name, *CURUB

Submit to batch *NO *NO, *YES

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Type the file name and it's library for which you want DDS created. Also type
the names of the source file and library where you want the resulting DDS
stored. We recommend that you use the QS36DDSSRC source file, not the
QDDSSRC. Do not mix System/36 descriptions with native descriptions.

After you press Enter, PTK collects all of the information about the file and
creates the DDS for you. After this step, it returns to the menu QCVMNU1.

Next you can use the Programming Development Manager (PDM) or Source
Entry Utility to examine the DDS source member that was created. The next
screen shows a simple example.

Analyzing Files and Fields 23

Columns. • . .. 1 71 Browse CONLIB/QS36DDSSRC
Find ... _---,--____________Z. STD15
FMT A*A*. 1 •.. +••• 2 •.• +••• 3 ... +••• 4 ••• +••• 5 ... +••• 6 ••• +••• 7

*************** Beginning of data *************************************
0001.00 A* Z.STD15 CONLIB 900307
0002.00 A R Z@STD15
0003.00 A FOOOOI l2BA B

****************** End of data **

F3=Exit F5=Refresh FlO=Top Fll=Bottom
Fl2=Cance 1 F13=Change defaults F24=More keys

(C) COPYRIGHT IBM CORP. 1981, 1989.

This screen shows you a migrated System/36 file as the file is known in
System/36 Environment. This file has no index, so it has only one field. This
field represents the entire record length.

The next example is a little more complicated:

Co 1umns • • . .: 1 71 Browse CONLIB/QS36DDSSRC
Find ••• Z.DRD30
FMT A*A*. 1 ... +... 2 ... +... 3 ... +... .4 .: .. +... 5 ... +... 6 ... +... 7

*************** Beginning of data *************************************
0001. 00 A* Z.DRD30 CONLIB 900307
0002.00 A UNIQUE
0003.00 A R Z@DRD30
0004.00 A F0000l lA B
0005.00 A K0000l BA B
0006.00 A F00002 247A B
0007.00 A K KOOOOl

****************** End of data **

F3=Exit F5=RefreshF10=Top Fll=Bottom
F12=Cancel F13=Change defaults F24=More keys

(C) COPYRIGHT IBM CORP. 1981, 1989.

This screen shows you a System/36 Environment file as the file is defined to the

system. This file has an index, so it has three fields. These fields represents the

entire record length. The DDS also indicates that the file has a UNIQUE Index ...",

and that K0001 is the key field.

Print this information to have it ready in the next conversion step.

4.4 Retrieving the Descriptions of Program Described Files
This section shows how to get descriptions of program-described files using the
PTK.

You can run the commands either interactively or in batch, and there are
considerations for both. If you run in batch mode, auto report members will be
expanded to capture the interim source, and then analyzed. If you run
interactively, the auto report members will not be expanded, but will be analyzed
just like a normal RPG member. The program will then send a completion
message to the requester indicating that auto report members were found but
not expanded. Also, source members with subtypes not containing the

24 Converting System/36 Environment Applications to Native AS/400

characters 36 or 38 will be analyzed, but their copy book statements will not be
processed, because PTK cannot determine what syntax to use.

To run the retrieval step interactively, do the following:

1. 	Type STRPTK on the command line. The command sets QPTK as the

product library and displays the PTK main menu.

PTMENU Programmer Tools Main Menu

Select one of the following:

1. 	 Generate DDS from user applications
2. 	 Verify decimal data
3. 	 Journal commands
4. 	 Analyze changed data
5. 	 Convert applications
6. 	 Create remote object
7. 	 Track application development process

10. 	 Print Programmer Tools documentation

Selection or command (Cl COPYRIGHT ISt·1 CORP. 1990
===> 1

F3=Exit F4=Prompt F9=Retrieve Fl2=Cancel

Fl3=User support F16=System main menu

2. 	 Take option 1 (Generate DDS from user applications).

PTMENU2 Generate DDS from User Applications

Select one of the following:

1. 	 Retrieve S/36 file description
2. 	 Analyze S/36 file description
3. 	 Analyze 5/36 field description

10. 	 Remove Programmer Tools member

Selection or command

===> 1

F3=Exit F4=Prompt F9=Retrieve F12=Cancel

Fl3=User support F16=System main menu

3. 	 Take option 1 (Retrieve System/36 file description).

Retrieve 5/36 File Description (RTVS36FD)

Type choices, press Enter.

Run Member • . . . KMP030101

Source member file •• QS36SRC Name

Library .••..• CONUB Name, *lIBl, *CURlIB

Procedure member file QS36PRC Name, *NONE

library .•..•. CONUB Name, *lIBl, *CURlIB

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=f10re keys

Analyzing Files and Fields 25

4. Enter a meaningful "Run member" name. Remember this name; you will use
it later.

5. 	 Enter the names of the source file and the library containing your RPG,
COBOL and Copy members.

6. 	 Enter the names of the source file and the library containing your OCl
procedures.

Note that you also can get to this screen by typing the command RTVS36FD and
pressing function key F4. Or you can start the command directly by typing:

RTVS36FD Kt·1P030101 CONLIB/QS36SRC CONLIB/QS36PRC

PTK will collect file-related information from your procedures and programs and
match it together. If you only need the information about how your files are
described within your program, then you only have to type in your source file
that contains the programs.

During this step PTK creates some objects that will be used in the next
conversion step.

To run the retrieval step in batch, do the following:

1. 	 Type STRPTK. (The command sets QPTK as the product library.)

2. 	 Type SBMJOB and press F4.

3. 	 Type RTVS36FD and press F4.

4. 	 Enter a meaningful "Run member" name. Remember this name; you will use
it later.

5. 	 Enter the names of the source file and the library containing your RPG,
COBOL and Copy members.

6. 	 Enter the names of the source file and the library containing your OCl
procedures.

If you have very large application, you can get an error message.

CPA5305. Record not added. Member "run member" is full.

Note the file named in the second-level message text is QATKlIl2. This is a
logical file related to the physical file QATKIFP. The message occurs because
the file QATKIFP was defined with SIZE(10000 1000 3). That is, the initial size of
the file is 10000 records, and it can be extended by 1000 records three times. To
eliminate the problem use the following command.

CHGPF FILE(QPTK/QATKIFP) SIZE(*NOMAX)

4.4.1 Identifying the Files
The file identification step matches the file names as known in the programs
(internal names) with the file names on disk (external names).

The internal names are collected from the Hll file specifications and the NAME
parameter of the FilE OCl statement. The external names are found in the
lABEL parameter of the FilE OCl statement, and in the System/36 Environment
files library.

26 Converting System/36 Environment Applications to Native AS/400

4.4.2 Matching Internal and External Names
The next screens show you how to use PTK to associate the internal and
external file names.

After entering STRPTK to display the PTK Main Menu, select option 1 to display
the menu shown below.

PTMENU2 Generate DDS from User Applications

Select one of the following:

1. Retrieve S/36 file description
2. Analyze S/36 file description
3. Analyze S/36 field description

18. Remove Programmer Tools member

Selection or command
===> .?

F3=Exit F4=Prompt F9=Retrieve FI2=Cancel
F13=User support F16=System main menu

Select option 2 (Analyze S/36 file description) to display the next display.

Alternatively, you could type the ANZS36FD command on a command line and
press F4.

Analyze S/36 File Description (ANZS36FD)

Type choices, press Enter.

Run Member • KMP030181

Bottom
F3=Exit F4=Prompt F5=Refresh FI2=Cancel F13=How to use this display
F24=More keys

Type in the run member name you want to analyze. If you cannot remember the
run member name, press function key F4. PTK shows you a list of the created
run members.

When you press Enter, the PTK performs two steps. First, the information
gathered in the retrieval step is used by the PTK to match, where possible, the
internal and external names.

Second, the result of the matching is displayed as in the following screen so that
you can type the external names for those files which the system could not
match, that is, for those files for which the system could not deduce any external
name.

Analyzing Files and Fields 27

EXTINT 	 Work with External/Internal files

Run member Kl1P838381 Position to •.

File library gS36F

Type options, press Enter.

2=File resolution 3=Format resolution

Ol1t External Internal Procedure Program Rcdln M KS KL Status
2 	 Z.DRD38 DRD38 STP965 STP965 256 1 2 16

Z.DRD38 DRD38 TSP68 TSP68 256 2 16

Z.STD15 STD15 STP965 STP965 128 2

Z.STD25 STD25 STP965 STP965 128 3 28

Z.STD3T8 STD38 TSP68 TSP68 256 2

Z.STD38 STD38 STP965 STP965 256 2 6

Z.STD58 STD58 STP965 STP965 256 2 14

Z.STD58 STD58 TSP68 TSP68 256 2 14

Z.STD55 STD55 STP965 STP965 128 2 6

Z.STD55 STD55 TSP68 TSP68 128 2 6

F3=Exit F5=Refresh F7=Rolldown F8=Rollup
F18=Top Fll=8ottom F14=Sort(program) F15=Set external

Enter an external file name for those files for which PTK could not deduce the
external name. Do not type over a name in the external file name if the PTK has
shown this name. If you do so, you can not run the next conversion step of the
PTK successfully.

External names cannot be deduced when substitution Oel is used, either for the
NAME and lABEL parameters of the FilE Oel statement, or for lOAD Oel
statements. For example:

/ / 	 FILE NAME-DRD30, LABEL-DRD30?~IS?

This next example shows some of the situations that can occur when resolving
file names.

28 Converting System/36 Environment Applications to Native AS/400

EXTINT 	 Work with External/Internal Files

Run member KMP03010 1 Posi ti on to ..

File library QS36F

Type options, press Enter.

2=File resolution 3=Format resolution

Opt External Internal Procedure Program Rcdln M KS KL Status

Note 1 INTF4 PROCA PROG01 132 0

Note 2 ? rrnF5 PROCA PROG01 132 0

Note 3 ACCOUNG ACCOUNG TRANSACT 88 0 3 14

ALTt·1AST 	 ALmAST CBLBNK43 CBNK43 226 0 43 30 Resolved
Note 4 	 ALTONE ALTONE PROCJ PROG10 132 0 2 2

A.FIRST INTFl PROCH PROG08 132 0

A.SECOND INTF2 PROCH PROG08 132 0

A.THIRD INTF3 PROCH PROG08 132 0

Note 5 	 FIVE INTF2 PROCN PROG66 132 0

Figure 1. 	 PTK File Resolution Screen

The entries without notes are good - the Hll, the external and internal names,
and the record length (Rcdln) were found properly. The program field will never
be blank. Entries will be shown only if they can be tied directly to an Hll source
member.

Note 1 	 The external file name was not set by PTK. This means that either the
analyze OCl phase was not done or that PTK did not find a FilE OCl
statement containing the name of that file. In the example, the
procedure name is listed, so the OCl analysis was done, but a FilE
OCl statement could not be found with NAME-INTF4. One common
reason that the PTK cannot find a FilE OCl statement is that the
statement is not between the lOAD OCl and the RUN OCl statement.
Procedures must be of the following form to ensure the the PTK will
find the external file name.

/* PROC1
II lOAD 	PROG
II FilE NAME-FNAME, lABEL-FlABEl
II RUN

In some cases it might be worth the additional time to check your
procedures for this format, because it will save time during the file
name resolution step.

Note 2 	 The external file name was indicated by a "?" (question mark). This
means that PTK found a FilE OCl statement, but the external file name
could not be determined due to substitution expressions.

Note: Do not try to resolve an external file name containing a"?"
(question mark). A file name containing a "?" is an invalid file
name. When the resolution is attempted, the PTK will cancel.
To solve the problem, change your procedure and begin again
with Option 1 (Retrieve S/36 file description) of menu PTMENU2
(Generates DDS from User Applications).

Analyzing Files and Fields 29

01 d OCl Statement = II FI lE NAME-DRD30, lABEl-DRD30?vJS?
New OCl Statement = II FILE NAME-DRD30, lABEl-DRD30WS

Note 3 	 The procedure name was not set by PTK. This means that either the
analyze Oel phase was not done, or no procedure was found that
loaded the Hll program. In the example, the external file name is
shown. It was entered manually, since it could not be determined
without a procedure.

Note 4 	 File AlTONE is an example of an alternate index. later during field
res~lution (see -- Heading 'PTKRES' unknown --) you cannot resolve the
field names because there are none for an alternate index, but the PTK
will create the DDS for a logical file for it.

Note 5 	 PROG66 has had the internal name INTF2 matched against the disk
label FIVE. File INTF2 is also listed within the file group A. But in fact
different files were intended. Be especially careful when resolving file
names if multiple programs use the same internal name for different
files.

At 	 this time you should consider naming conventions for both the (internal)
names used by the programs and the (external) names in the lABEL parameters
of the FilE Oel statements.

Additional considerations for external names include:

1. 	The names you choose for the external files should be the names you use
when creating the files on disk. At this stage it should be a name of an
existing file so PTK can pick up information from the external file. For group
file naming recommendations, refer to 15.11, "Group Files" on page 150.

2. 	 It is particularly important to type in the external names for those internal
files whose external names are blank, like INTF4 alongside note 1 in Figure 1
on page 29. If you do not, the following steps will not bring the field
descriptions for INTF4 in PROG01 forward for later comparison with the
other, possibly different field descriptions held in other programs. This will
make the task of selecting the correct fields for the DDS harder.

In other words, if you suspect that there are different descriptions of the
same file (field names, field length and attributes) in several programs,
assign new external names to those files for each program. Then you can
resolve those differences later on during the"Analyze S/36 Field Description"
step (refer to 4.6, "Resolving Field Names" on page 34). One way to do this
is to change your procedures, specifying different names for the lABEL
parameter in the FilE Oel statements. (Refer to the note at the end of this
list.)

3. 	 A given external file may appear several times on the list, once for each
program in which it appears. Files with external names are grouped
together in alphabetical order at the bottom of the list.

4. 	 As you enter each external name, the line with that name is placed at the
bottom of the list in alphabetical order, while the files with no external
names remain at the top of the list.

5. 	 To attach an external name to a single internal name, type the external
name in the left-hand column and press F5 to rebuild the screen. Note that
just pressing the Enter key does not gather all occurrences of the same
external file name together.

30 Converting System/36 Environment Applications to Native AS/400

"",.

6. Do not try to resolve a file with an external name that is not valid, for
example, one containing question marks.

Note: If PTK finds an external name for the file, do not change that name,
because it is directly pointed to in the next conversion step.

Once the files you want to resolve have external file names, type in 2 for all files
you want to resolve. PTK will display the following screen:

FILRSLV Work with Fil e Reso 1uti on

External file Z.DRD38

Enter/Update resolved definitions, press Enter.

Program Resolved System

Specification Definition Information

File type K f K
Record length 256 256 256
Multiple formats Yes

Unique keys
Key start-l 2 ..1 2
Key length-l 16 8~

F6=Accept F12=Cance1

This screen is shown when you work with file resolution.

For this step, you might find it useful to refer to file descriptions that were
produced in section 4.3, "Creating DDS from System/36 Environment File
Descriptions" on page 21.

If a file is used in more than one program, it will have more than one internal
description. The reso"lution step asks you to ensure that the record length and
key position information for the file is correct.

The system compares the different descriptions and presents a "majority rule"
under the heading Program Specification. If the file exists on the system,
information is shown under System Information, while your choice is entered
under Resolved Definition. You do not have to resolve all the files in one step.
You can leave some and come back to them at a later, re-running this step.

Verify or correct all the information and press function key F6 to resolve the file.
If multiple formats are defined for the file, PTK automatically displays the Work
with Format Resolution screen. Otherwise the Work with External/Internal Files
screen is displayed.

Analyzing Files and Fields 31

FMTRSLV Work with Format Resolution

External file Z.DRD39

Enter format designators, press Enter.

PsI CdI Ps2 Cd2 Ps3 Cd3 Format Status

DRD39-CONTROL-REC

DRD39-DET-REC

F6=Accept F7=Rolldown F8=Ro 11 up FHl=Top
Fll=Bottom F12=Cancel

This screen is shown when you work with format resolution. After a multiple
record file has been resolved, you need to resolve the formats in that file. This
step simply involves choosing a 2-character identifier that will be added to the
end of the file name to give a name to the DOS source that will be created for
each physical file. (One physical file is created for each record type in the
multiple record System/36 file.) Note that the external names have been
restricted to eight characters to allow for this to happen. If you have multiple
record formats in your file and are using RPG, you should not use a file name
longer than six characters. This is because the file name in an RPG/400
program may be no longer than eight characters.

Sometimes only one format is shown on this screen, even when the previous
screens have told you that the file is a multiple-record file. This can happen
because the I-specifications for the file may contain a record 10 (with no fields or
indicators) that is included in the program to catch previously undefined record
types, and thus avoid a run-time error.

Type in a two-character identifier to distinguish your record formats. Then press
command key F6 to resolve the formats. When finished, PTK displays the Work
with External/Internal Files screen.

32 Converting System/36 Environment Applications to Native AS/400

EXTINT 	 Work with External/Internal Files

Run member KMP8J81O 1 Positi on to ••
File library gSJ6F

Type options, press Enter.
2=File resolution 3=Format resolution

Ol!t 	 External Internal Procedure Program Rcdln M KS Kl Status
Z.DRD38 DRD38 STP965 STP965 256 1 2 16 Resolved
Z.DRDJ8 DRDJ8 TSP68 TSP68 256 1 2 16
Z.STD15 STD15 STP965 STP965 128 1 2
Z.STD25 STD25 STP965 STP965 128 1 J 28
Z.STDJT8 STDJ8 TSP68 TSP68 256 1 2
Z.STDJ8 STD38 STP965 STP965 256 1 2 6
Z.STD58 STD58 STP965 STP965 256 1 2 14
Z.STD58 STD58 TSP68 TSP68 256 1 2 14
Z.STD55 STD55 STP965 STP965 128 1 2 6
Z.STD55 STD55 TSP68 TSP68 128 1 2 6

F3=Exit F5=Refresh F7=Rolldown F8=Rollup
Fl8=Top Fll=8ottom F14=Sort(program) F15=Set external

You can see that file Z.DRD30 is now resolved.

Type in 2 for all other files you want to resolve.

4.5 Field naming considerations
Before you resolve field names, you need to be aware of the kinds of problems
that can occur when different programs have different definitions of fields.

On 8/36 you can have non-numeric data within a numeric field. This situation
(decimal data error) is not allowed on A8/400. Therefore you must know
whether a field is or is not numeric. Here is an example that shows how
multiple file definitions can lead to decimal data errors. More information about
finding and correcting decimal data errors can be found in section 10.0, "Decimal
Data Errors" on page 75.

On 8/36 you can have the following field definitions in program PROG1 and
PROG2.

PROGI

FD FILE!.

01 FILE1-RECORD.

05 FIElD-1 PIC 9(5). (numeric field) HEX (F0F0F0F0F0)
05 FIELD-2 PIC X(5). (alpha-numeric) HEX(4040404040)

PROG2

FD FILE!.

01 FILEI-RECORD.

05 FIELD-1 PIC 9(3). HEX(F0F0F0)
05 FIELD-2 PIC X(7). HEX(40404040404040)

Analyzing Files and Fields 33

Both files have the same record length, but each file has different field lengths
and types. So if PROG2 adds or updates a record, and PROG1 reads that record,
PROG1 would find non-numeric characters in the last two characters of FIELD-1.
To solve this problem you need to decide which field definition is correct.

In the next example, two programs have defined fields that have the same data
type, but different lengths.

PROGI

FD FILEI.

01 FILEl-RECORD.

05 FIELD-l PIC X(5).
05 FIELD-2 PIC X(5).

PROG2

FD FILEI.

01 FILEl-RECORD.

05 FIELD-l PIC X(3).
05 FIELD-2 PIC X(7) •

We recommend that the file description for the externally described physical file
look like this:

FD 	 FI LEI.
01 	 FILEl-RECORD.

05 FIELD-l PIC X(3).
05 FIELD-2A PIC X(2).
05 FIELD-2B PIC X(5).

If necessary, you can create logical files that can be used by PROG1 and PROG2
to preserve their different views of the record. But, if the data types are different,
you will have to decide which data type is correct.

Also you should review your field naming conventions. Follow these rules to
help ensure consistent, meaningful field names:

• 	 Use only supported characters.

• 	 Limit field names to eight characters. RPG/400 is restricted to
eight-character field names. For COBOL you can use the DDS Keyword """"'"
ALIAS to define field names longer than eight characters.

• 	 Use names that are self-explaining.

• 	 Use the DDS Keyword TEXT to explain the field. PTK does not permit this,
but it can be done in a later step.

4.6 Resolving Field Names
This is the next PTK step. Now the PTK has enough information to gather
together all the internal field descriptions for each record in a file. During the
field name resolution step you will identify the fields needed to generate daj,,;
descriptions for each AS/400 file.

The following screens show you how to resolve field names using the PTK. Entci'
STRPTK to display the Programmer Tools Main Menu. Then select option 1
(Generate DDS from user applications) to display the following screen:

34 Converting System/36 Environment Applications to Native AS/400

PTMENU2 Generate the DDS from User Appl;cat;ons

Select one of the following:

1. Retrieve 5/36 file description
2. Analyze 5/36 file description
3. Analyze 5/36 field description

18. Remove Programmer Tools member

Selection or con11land

===> 3

F3=Exit F4=Prompt F9=Retrieve F12=Cancel

F13=User support F16=System main menu

Select option 3 (Analyze S/36 field description). The following screen is
displayed.

Analyze S/36 Field Description (ANZS36FFD)

Type choices, press Enter.

Run Member • • • • • • • • KMP030301

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Type in the run member name. If you can not remember the run member name,
press function key F4. PTK shows you a list of run members.

The next screen allows you to select the file whose fields you want to resolve.
You can also display this screen using the ANZS36FFD command. For example:

ANZS36FFD KMP030101

Analyzing Files and Fields 35

FILSEL Select External File KMP07032

External file ••• ____

Enter name or select item from the list.

~ File name Status

~ Z.DRD30

F3=Exit F7=Rolldo'dn F8=Rollup F12=Cancel F21=Select all

The "Analyze S/36 Field Description" display first shows a list of resolved file
names. In our example, we only resolved one file in the previous step.
Therefore there is only one file in the list.

Select the file you want to convert.

If multiple formats are defined for the file you selected, the next screen allows
you to select one of the formats to work with.

FMTSEL Select Format Name KMP030Hll

External fne • Z.DRD30
Format name •

Enter name or select item from the list.

~ Fmt name Status

_ CR
~ DR

F3=Exit F7=Rolldown F8=Ro 11 up F12=Cancel F21=Select all

PTK shows you all of the formats within this file. Select the format of the file you
want to work with.

PTK now gathers together, from every program associated with the file, the field
descriptions for the format you selected. The fields are sorted by start and end
positions and presented on the main field resolution screen. You will use this
screen to build the DDS for the format. In the best case, every program defines
the same fields in the same pOSitions. This could happen, for example, if /COPY
modules had been used for all files. If there are overlapping fields, different

36 Converting System/36 Environment Applications to Native AS/400

definitions for the same record positions, empty record positions, or alternative
spellings of the same field, they are shown on the next screen.

FLDSEL Work with Fields KMP07032

External file •• Z.DRD30 Key str/len 2 / 8 #

Rcds 44

Format name. •• DR Record length 256

Select fields for DDS or enter new items.

K S Beg End T DP DDS fldnam Internal field name Error msg Occur

1 1 00 DRD30RECOR DRD30-RECORD-CODE 2

K 2 4 00 DRD30CUSTA DRD30-CUST-AREA 2

K 2 9 00 DRD30CUSTO DRD30-CUSTOMER Overl ap 2

K 5 9 00 DRD30CUSTO DRD30-CUST-OTHER Subfield 2

10 17 00 DRD30CHARG DRD30-CHARGE-TO 2

18 41 DRD30NAI1E DRD30-NAt1E 2

42 42 DRD30ALPHA DRD30-ALPHA-CODE 2

43 52 DRD30ALPHA DRD30-ALPHA-SEARCH Duplicate 2

53 76 DRD30ADDR1 DRD30-ADDR-1 2

53 124 DRD30ADDR DRD30-ADDR Overlap 2

77 100 DRD30ADDR2 DRD30-ADDR-2 Subfield 2

101 124 DRD30ADDR3 DRD30-ADDR-3 Subfield 2 +

F3=Exit F5=Refresh F7=Rolldown F8=Rollup F9=Add item
Fl0=Top Fll=Bottom F12=Cancel Fl3=Fast

Refer to Chapter 2 in the Programmer Tool Users Guide for a description of the
fields and function keys available on this display.

First, fix the field names for the file. As you do this, remember the rules given in
section 4.5, "Field naming considerations" on page 33. Change field names so
that there are no error messages except Overlap and Subfield.

FLDSEL Work with Fields KMP07032

External file. • Z.DRD30 Key str/len 2 / 8 #

Rcds 44

Format name • • DR Record length 256

Select fields for DDS or enter new items.

K S Beg End T DP DDS fldnam Internal field name Error msg Occur

! 1 1 00 RECOR DRD30-RECORD-CODE 2

K! 2 4 00 CUSTA DRD30-CUST-AREA 2

2 9 00 DRD30CUSTO DRD30-CUSTOMER 2

K 1 5 9 00 CUSTO DRD30-CUST-OTHER 2

! 10 17 00 CHARG DRD30-CHARGE-TO 2

! 18 41 NAME DRD30-NAME 2

! 42 42 ALP HAC DRD30-ALPHA-CODE 2

! 43 52 ALPHAS DRD30-ALPHA-SEARCH 2

! 53 76 ADDR1 DRD30-ADDR-1 2

_ 53 124 ADDR DRD30-ADDR Overlap 2

! 77 100 ADDR2 DRD30-ADDR-2 Subfield 2

! 101 124 ADDR3 DRD30-ADDR-3 Subfield 2 +

F3=Exit F5=Refresh F7=Rolldown F8=Ro 11 up F9=Add item
F10=Top Fll=Bottom Fl2=Cancel F13=Fast

Analyzing Files and Fields 37

After correcting all error conditions except "Subfield" and "Overlap", select those
field names which give a true description of the record format.

For overlapping fields, we recommend that you always select the smallest, or
lowest level fields. Generally, this means you should not select a field with the
Overlap error message. You can define the other fields with a logical file later in
the conversion. When you have finished selecting the fields, exit from the
screen.

If no errors are found, and the file definition matches the external file (That is,
the record length and· key definitions match.), the next screen allows you to
generate the DDS for the format.

FLDSEL Work with Fields Kl'IP07032

External file Z.DR030 Key str/len . 2 / 8 #

Rcds 44

Format name • DR Record length 256

Select fields for DDS or enter new items.

K S Beg End T DP DDS fldnam Internal field name Error msg Occur

Data is approved for DDS
1 8. Do not generate DDS

1. Generate DDS source member

F3=Exi t F5=Refresh F7=Rolldown F8=Rollup F9=Add item
Fl0=Top Fl1=Bottom Fl2=Cance 1 F13=Fast

Note that only the DDS will be generated, not the file itself. You can find the
DDS in a source physical file in the QPTK library with the "run member" name
you have chosen for this run.

The next screen shows that the DDS has been created for format DR, and allows
you to select another format.

FMTSEL Select Format Name KMP07032

External file Z.DRD30
Format name •

Enter name or select item from the list.

~ Fmt name Status

~ CR

DR Generated

F3=Exit F7=Rolldown F8=Rollup Fl2=Cance1 F21=Select all

38 Converting System/36 Environment.Applications to Native AS/400

Select record format CR.

FLDSEL Work with fields KMP07032

External file Z.DRD30 Key str/len . 2 / 8 #

Rcds 10

format name • CR Record length 256

Select fields for DDS or enter new items.

K S Beg End T DP DDS fldnam Internal field name Error msg Occur
1 9 FI LLER FI LLER 2

10 12 P 00 RECOR DRD30-RECORDS 2

13 16 P 00 DATEU DRD30-DATE-UPDATED 2

17 22 PROGU DRD30-PROG-UPDATING 2

23 256 FILLER FILLER Duplicate 2

F3=Exit F5=Refresh F7=Rolldown F8=Rollup F9=Add item
Fl0=Top Fll=Bottom Fl2=Cance1 F13=Fast

Note that this format has no key field definition, yet PTK shows a key start and
length at the top of the screen. This format is part of a multiple record format. It
will result in a logical file over multiple (two in this case) physical files. All the
physical files must have key definitions.

Again, correct the fields to remove errors other than Overlap and Subfield
errors. The next screen shows the result.

FLDSEL Work with fields KMP07032

External file Z.DRD30 Key str/len . 2 / 8 #

Rcds 10

format name • CR Record length 256

Select fields for DDS or enter new items.

K S Beg End T DP DDS fldnam Internal field name Error msg Occur
1 9 Fl FILLER 2

10 12 P 00 RECOR DRD30-RECORDS 2

13 16 P 00 DATEU DRD30-DATE-UPDATED 2

17 22 PROGU DRD30-PROG-UPDATING 2

23 256 F4 FI LLER 2

F3=Exit F5=Refresh F7=Rolldown F8=Rollup F9=Add item
F10=Top Fll=Bottom Fl2=Cance1 F13=Fast

If you have a file with multiple formats where one of the formats has key fields
and the other format does not, you cannot create DDS for this format. PTK
displays the error message "Key Area not discrete", which means that you have
not defined a key area in this in this format. You will get this message when you
try to resolve a format with the wrong Index description.

PTK allows you to add a new field. Press function key F9 to add a new field.

Analyzing Files and Fields 39

FLDSEL 	 Work with Fields KMPB7B32

Externa 1 fi 1 e Z.DRD30 Key str/len • 2 / 8 #

Rcds IB

Format name • • CR Record length
 256

Select fields for DDS or enter new items.

K S Beq End T DP DDS fldnam Internal field name Error msq Occur
1 9 F1 FILLER 2

10 12 P 00 RECOR DRD3B-RECORDS 2
13 16 P 00 DATEU DRD3B-DATE-UPDATED 2
17 22 PROGU DRD3B-PROG-UPDATING 2
23 256 F4 FILLER 2

~ End I DP DDS fldnam

~ ~ ___ KEYFIL Fl2=Cancel

Fill in the correct starting and ending position and the name of the field, then
press enter. PTK will allow you to enter more fields. Press F12 to finish.

FLDSEL 	 Work with Fields KMP07B32

External file Z.DRD3B Key str/len . 2 I 8 #

Rcds 10

Format name • CR Record length 256

Select fields for DDS or enter new items.

K S Beg End T DP DDS fldnam Internal field name Error msq Occur

1· 9 F1 FI LLER 2

! 1 1 Unass i gned

K	! 2 9 KEYFIL KEYFIL

! IB 12 P BB RECOR DRD30-RECORDS 2

! 13 16 P BO DATEU DRD30-DATE-UPDATED 2

1 17 22 PROGU DRD30-PROG-UPDATING 2

! 23 256 F4 FILLER 2

F3=Exit F5=Refresh F7=Rolldown F8=Ro 11 up F9=Add item
FIa=Top Fll=Bottom F12=Cance1 F13=Fast

PTK now shows that an unassigned field has been added. That field is added
automatically to resolve the record length once the key field was added.

In our example, we select the unnamed field instead of field F1, so that we do
not have overlapping fields. Enter a name for the unassigned field, select the
other fields that represent the record, and press enter. The screen that follows
shows the selected fields and their names.

40 Converting System/36 Environment Applications to Native AS/400

FLOSEL Work with Fields KMP97e32

Externa 1 fi 1 e • Z.OR03e Key str/len 2 / 8 /I
Rcds Ie

Format name • • CR Record length 256

Select fields for DOS or enter new items.

K S Beg End T OP ODS fldnam Internal field name Error msq Occur
! 1 1 Fl Fl

1 9 Fl FILLER 2
K 1 2 9 KEYFIL KEYFIL

1 10 12 P 130 RECOR OR03e-RECORDS 2
! 13 16 P 1313 DATEU DRD3e-OATE-UPDATED 2
! 17 22 PROGU DRD3e-PROG-UPDATING 2
! 23 256 F4 FI LLER 2

F3=Exit F5=Refresh F7=Rolldown FB=Ro11up F9=Add item
Fle=Top Fll=Bottom F12=Cancel Fl3=Fast

Now press function key F3 to leave this screen and create the DDS. The
resulting screen confirms that the DDS was generated.

FMTSEL Select Format Name KMPe7e32

External file .•• Z.DRD3e
Format name • • • • ____

Enter name or select item from the list.

~ Fmt name Status

CR Generated
DR Generated

F3=Exit F7=Rolldown F8=Rollup Fl2=Cance1 F21=Se1 ect all

PTK shows you that the DDS was generated for both formats.

Resolution can now be repeated for other files and formats. While this example
showed resolution of only one file, you can resolve more than one file at a time.

Now copy the DDS source file from library QPTK to your conversion library,
renaming your "run member" source file to QDDSSRC.

4.7 How to get the information without the PTK
If you want to convert your System/36 Environment files without the PTK, you can
use Query functions to collect information about all your program source. You
can also use the PDM search function to find the information. Or you can write a
program that gives you the information.

Analyzing Files and Fields 41

The following example shows how to get your internal file names from a COBOL
program with QUERY:

• Use the STRQRY to start AS/400 Query.

• Select the query option "Specify file selection".

• Select the source file (for example, QS36SRC).

• Select the source file member (for example, STP965).

• Select the query option "Select records".

• Type the following definition for COBOL:

AND/OR 	 Field Test Value (Field, Number, or 'Characters'
SRCDTA___ LIKE '%SELECT%'

• Press F5 to get the report.

• Type the following definition for RPG:

AND/OR 	 Field Test Value (Field, Number, or 'Characters'
SRCDTA___ LI KE '%0 ISK% '______________ _

• Then press F5 to get the report.

The report lists all the internal file names used in this program. You also can put
the report into a Database file for later use, or you can print the report. Do this
with every source member. If you search in the procedures you can use the
"LABEL" as search word. This give you all the external file names.

However, you must collect the information from your procedures and source
code and match them together.

4.7.1 	 Implications
Smaller fields, such as day, month, and year, can be concatenated together
through a logical file definition to give larger fields such as DATE. Refer to the
Data Description Specifications Reference manual for details. Note, however,
that there are restrictions on the use of concatenated fields in COBOU400
programs. For more detail refer to 12.0, "COBOL Considerations" on page 111.

42 Converting System/36 Environment Applications to Native AS/400

5.0 Convert System/36 Environment Formats to Native
Formats

Display format conversion is one of the easier parts of application conversion.
You can get the DDS for the native display file in several ways:

• Using the System/36 to AS/400 migration aid

• Using the PTK (Selecting option 5 from the PTK Main Menu)

• Using Screen Design Aid (SDA)

• Creating display files with the CRTS36DSPF command.

You always will find the created DDS in either the QS36DDSSRC or QDDSSRC
source file.

Producing DDS is not a problem on AS/400. But there are some differences
between System/36 Environment and AS/400 native mode:

• 	 System/36 Environment display files use display services which behave like
those of System/36.

• 	 AS/400 native display files use display services which behave like those of
System/3B.

You might see some differences when you are using a display format in both a
System/36 Environment program and a native program. For detailed information
about the differences refer to the Appendix F of the Data Management Guide.

The next problem is that you have different programming techniques between
S/36 and AS/400. Normally nobody uses the "variable start line number"
technique to display a list in AS/400 native mode. Instead, use a subfile. If you
want to convert a program using such techniques you must redesign the
application.

The main problem of screen conversion is that you can have two or more
programs in the System/36 Environment using the same DSPF. These programs
might have different DSPF field names, but when you are using externally
defined display files, you can only have one field name defined. This means that
you have to look very carefully through your programs and make the necessary
changes in the programs and DDS of the display file.

5.1 Finding All Programs That Use the Same Display File
Programming Development Manager (PDM) provides you a search function.
Using this function it is possible to find strings within source mem bers. The
next screens show how to find out which of your programs use the same display
files.

If you followed the recommendations in Chapter 3.0, "Getting Started with the
Conversion" on page 13 you will find your program source in the QS36SRC
source file in your conversion library (CONLIB in this example).

Use the PDM functions or the WRKOBJPDM command, for example:

© Copyright IBM Corp. 1988,1990 43

WRKOBJPDM CONLIB QS36SRC

to get the following display:

Work with Objects Using PDM

Library. • • .. CONUB Position to ••

Position to type

Type options, press Enter.
2=Change 3=Copy 4=Delete 5=Display 7=Rename
B=Display description 9=Save Hl=Restore l1=~love .••

Opt Object Type Attribute Text
25 QS36SRC *FILE PF-SRC

Bottom
Parameters or command
===>
F3=Exit F4=Prompt F5=Refresh F6=Create
F9=Retrieve F18=Command entry F23=More options F24=More keys
This is a subsetted list.
+

Type option number 25 (Find string) in front of the source file and press Enter.

Find String

Type choices, press Enter.

Fi nd • . . • • • . • STP965FM

From column number 1 1 - *RCDLEN
To column number *RCDLEN 1 - *RCDLEN

Kind of match £ l=Same case, 2=Ignore case

Opti on •• *NONE *NONE, Valid option
Prompt • t:! Y=Yes, N=No

Print list y Y=Yes, N=No

Find string in batch t:! Y=Yes, N=No

Parameters . . . • •

F3=Exi t F5=Refresh F12=Cancel F16=User options
FIB=Change defaults

Type in the name of the display format for which you are searching, specify

'NONE for the Option prompt and Y for the Print list prompt, and press Enter to

start the search.

The list of members containing the string is printed and can be found in your

job's output queue (output queue CONUB in library CONUB in this example).

Use the WRKOUTQ command to display your output queue. The resulting display,

is shown next:

44 Converting System/36 Environment Applications to Native AS/400

Work with Output Queue

Queue: CONU B Library: CONLIB Status: RLS

Type options, press Enter.

2=Change 3=Hold 4=Delete 5=Display 6=Release 8=Attributes

Opt File User User Data Sts Pages Copies Form Type Pty
5 QPUOPRTF ITSCID13 ROY 1 1 *STD 5

Bottom

Parameters for option 2 or comnalld

===> --F3=Exit Fll=View 2 F12=Cancel F22=Printers F24=More keys

Type option 5 (Display) next to the entry containing the list of members and
press Enter to display it.

Display Spooled File

Fi 1e • QPUOPRTF Page/Line 1/2

Contro1 Columns

1 - 78

Fi nd .

* ...+•••• 1•••• +•••• 2••••+•••• 3•••• +•••• 4•••• +•••• 5 ••••+•••• 6 •••• +•••• 7••••

+ •••
Q5728PWI R02 MOO 891006 Programming Development Manager - Membe
File . • QS36SRC

Library CONLIB

Member *ALL

Type . • *ALL

Fi nd . . STP965FM

From column 1

To column • *RCDLEN

Kind of match 2 I=Same case, 2=Ignore case

Number of matches 1

Creation Last Changed Deleted
Member Type Date Date Time Records Records Text

STP965 CBL36 03/06/90 03/12/90 11:31:08 02677 00000 Mainp
* * * * * END 0 F LIS TIN G

Bottom

F3=Exit F12=Cancel F19=Left F20=Right F24=More keys

Within this list you find all of the programs that use your defined display file. In
our example. we only have one program using the DSPF. This is only one of the
ways to get the information. But it is a fast way to find the display file name in a
potentially large number of source programs.

Convert System/36 Environment Formats to Native Formats 45

5.2 Changes Required to Use Externally Described Display Files

At this stage we have DDS for the display files and we know which programs are
using these files. But the programs still contain the internal description of the
display file. These descriptions may still contain different names for the fields or
different field attributes.

The next step is to check the internal display file definitions against the external
file definition. To get the external description use the DSPFFD command or look
into the DDS source. To get the internal definition you must look through each
program listed in the search list obtained in the previous step. You can do this
by browsing through each program. If you find differences between the internal
and the external display fields you, should note them. You should also note
whether there are differences between the programs. If there are differences,
you must change either the programs or the display file DDS.

But don't change the programs yet. Conversion of programs is discussed later in
separate sections for COBOL and RPG:

• 12.0, "COBOL Considerations" on page 111 for COBOL programs

• 11.0, "RPG Considerations" on page 79 for RPG programs

In most cases you will have to change your programs because they use different
field names within the programs. The worst case is when you have different field
descriptions. For example, one program might use a field as a numeric field, and
another program might use the field as an alpha-numeric field. In such a case
you must decide how to use the field in both programs. Perhaps you will decide
that a field should be an alpha-numeric field within the program. Later in the
conversion procedure you must remember this, because you cannot use
alpha-numeric data within a calculation, or move it easily to a numeric field.

Remember, changes to your programs are discussed later. So, at this point in
the conversion, limit your changes to those that can be made to the DDS. For
example, if all programs are using a field as an alpha-numeric field, but the DDS
defines the field as numeric field, you should change the DDS so that the field is
defined as an alpha-numeric field.

46 Converting System/36 Environment Applications to Native AS/400

6.0 Converting Menus

This chapter first discusses the building blocks of both the System/36
Environment and the native menus. It then describe how to create native menus
with and without using PTK.

6.1 Menu Considerations
When a System/36 menu is migrated, the result is two members with type
MNU36 in the source file OS36SRC in the specified library:

• 	 One member, whose name includes the suffix "##", contains the menu
commands.

• 	 One member, whose name includes the suffix "DT", contains the $SFGR
definitions of the menu layout.

When you create the menu (CRTS36MNU command), a new source member with
type DSPF is created on source file OS36DDSSRC in your library. Two new
objects are also created in your library:

• 	 One object, with type MSGF, is created by $MGBLD. The name of the object
includes the suffix "##".

• 	 One object, with type *FILE and attribute *DSPF, is created by $BLDMNU.

To create a native menu, you must have the following source members:

• 	 One source member with type MNUDDS. This source member contains the
menu layout.

• 	 One source member with type MNUCMD. This source member contains the
menu commands. The name of this member must contain the suffix "00".

After creating the native menu (CRTMNU command), the following objects are
created in your library:

• 	 One object type *MSGF (The name of the file contains the suffix "00").

• 	 One object type °FI LE, attribute DSPF

• 	 One object type *MENU, attribute DSPF.

6.2 Creating a Native Menu with PTK
PTK converts System/36 Environment menus to native menus. This function is
useful if you need to convert the menus very quickly, and you know that your
menus call only user-written procedures (not System/36 Environment functions,
such as LlSTLlBR). If the menus call the System/36 Environment function, you
must look very carefully at the converted menu commands. If you find functions
that are not converted correctly, you must convert the menus that contain them
manually.

One shortcoming of PTK is that it does not create DDS when converting
System/36 Environment menus to native menus. This means that if you want to
modify converted menus, you must change the System/36 Environment source

© Copyright IBM Corp. 1988,1990 	 47

members. Then, after the modification, you must convert the menus again. The
easiest way to modify the menu is to use the System/36 Environment Screen
Design Aid, but again, you can only change the old menu layout and command
statements. You can not modify the new created CL menu command object.
Therefore you must rerun the conversion after every modification. If you have
menus that will be updated often, you should create them using the native
screen design aid functions.

In spite of this shortcoming, PTK offers a quick, easy way to convert your menus.
After the creation of your Menus, you can use the native command.

GO MENU

PTK needs the System/36 Environment menu objects, so you must create them
or copy the objects from your original library. In our conversion examples we
created the necessary objects again. The necessary menu objects are:

• "MSGF (created by $MGBLD)

• "FILE attribute DSPF (created by $BMENU).

PTK creates new objects for native menus out of the objects, and also creates a
new object of type "MENU with attribute "DSPF, and a list of changed commands.

The following screens show how to create a native Menu with the PTK:

First, create the necessary menu objects in your conversion library. Type
CRTS36MNU and press F4 to display the following screen:

Create 5/36 Menu (CRT536MNU)

Type choices, press Enter.

Command text source member## kml!cbU# Name (## required)

Option text source member *NONE Name (menuDT), *NONE

Command text source file gS36SRC Name

Library *CURLIB Name, *CURLIB· Option text source file gS36SRC Name

Library . . *CMDLIB Name, *Cr~DLlB , *CURLIB
· Menu library (LOADLIB) *CMDLIB Name, *CMDLIB, *CURLIB

Replace menu • *YES *NO, *YES
· Free form menu *NO *NO, *YES

Keep option text msg file *YES *NO, *YES

Bottom

F3=Exit F4=Prompt F5=Refresh F19=Additional parameters F12=Cancel

F13=How to use this display F24=More keys

Type in the text source member name and press Enter to create the menu.

Next, use the STRPTK to display the PTK main menu:

48 Converting System/36 Environment Applications to Native AS/400

PTMENU Programmer Tools Main Menu

Select one of the following:

1. Generate DDS from user applications
2. Verify decimal data
3. Journal commands
4. Analyze changed data
5. Convert applications
6. Create remote object
7. Track application development process

10. Print Programmer Tools documentation

Selection or command (C) COPYRIGHT IBM CORP. 1990
===> ~

F3=Exit F4=Prompt F9=Retrieve F12=Cancel

F13=User support F16=System main menu

Type option number or command.

Select option 5 (Convert applications) to display the next screen.

QCVMNU1 Convert Applications

Select one of the following:

1. Convert S/36 OCl to AS/400 Cl
2. Convert S/36 RPG II to AS/400 RPG III
3. Convert S/36 screen formats to AS/400 DDS
4. Convert S/36 menu files to AS/400 menus
5. Create DDS from data file descriptions

Selection or command
===> ~

F3=Exit F4=Prompt F9=Retrieve F12=Cancel

F13=User support F16=System main menu

Select option 4 (Convert S/36 menu files to AS/400 menus).

Converting Menus 49

QCVMNU5 convert 5/36 Menu Files to A5/488 Menus

Select one of the following:

1. Convert individual menu
2. Create menu conversion list
3. Work with menu conversion list
4. Print menu conversion list
5. Convert menus from conversion list

Ie. Delete menu conversion list

Selection or command
===> 1

F3=Exit F4=Prompt F9=Retrieve F12=Cancel
F13=User support F16=System main menu

Select option 1 (Convert individual menu) to get the following screen.

This screen is also displayed if you use F4 after typing the CVTMNU command.
You can start the conversion directly as a batch job by using:

CVTMNU KMPCBL

Convert Menu (CVTMNU)

Type choices, press Enter.

Menu ... kmpcbl Name
Li brary .. . *CURLIB Name, *CURLIB

To Library .. . *CURLIB Name, *CURLIB
Prefix •.... x A through Z
Submit to batch *YES *NO, *YES

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Type in the name of the menu you want to convert.

Also type a prefix if you wish. The prefix is then added to the called program
name. Use a prefix if you know that your procedures and your RPG or COBOL
programs have the same names. On the System/36 and in the System/36
Environment, procedures and programs may have the same name. But
application conversion normally includes converting procedures to Cl programs.
The Cl programs may not have the same names as the RPG or COBOL
programs. PTK allows you to add a prefix to the name of the procedures that are
called from the menu, and you can add the same prefix to the Cl program name
later when you convert OCl to CL.

When you press enter, PTK creates a conversion list as well as the other
objects. The conversion list can be found in your output queue and displayed
using the WRKOUTQ command as described on 44.

50 Converting System/36 Environment Applications to Native AS/400

Display Spooled File
File . KMPCBL Page/Line 1/1
Control Columns

1 - 78

Find •

• ••• +•••• 1..•. +..•. 2....+•••. 3+ •...4 ..•• +•••• 5 ...• +••.• 6+•••• 7

+••.
CONVERSION AID VERSION02 MENU MESSAGE FILE DISPLAY

MESSAGE FILE NAME KMPCBL## LIBRARY . . • • . . . • :

MSGID COMI~AND

USR0001 CALL PGM(*LIBLjXSTP965)

USR0002 CALL PGM(*LIBLjXTSP60)

Bottom
F3=Exit F12=Cancel Fl9=Left F20=Right F24=More keys

The conversion list shows you what PTK has done with your System/36
Environment menu commands. For example, PTK converted the commands in
the original menu call procedures STP965 and TSP60 to "CAll" commands.

As you can see, the prefix was added to the name of the called program. This is
an easy way to match the names of the Cl programs that will be created from
your procedures in the DCl to CL conversion step.

6.3 Creating Native Menus Without PTK
The easiest way to create a native AS/400 menu is to use AS/400 native SDA.
With SDA you can create the necessary objects. The next screens show you the
old System/36 Environment menu and the new native menu. The DDS for the
new menus is also shown.

COMMAND MENU: KMPCBL W6

Select one of the following:

1. Procedure STP965 13.
2. Procedure TSP60 14.
3. Call program XYZ 15.
4. 16.
5. 17.
6. 18.
7. 19.
8. 20.
9. 21.

10. 22.
11. 23.
12. 24.

Ready for option number or command
===>

Converting Menus 51

This menu is shown by the MENU KMPCBL command in the System/36
Environment. It is the menu we want to convert.

The first step in our menu conversion is collecting all the available information.
We can use the Print key to print the screen layout, and use LlSTLlBR or PDM to
print the menu command source member (the source member with the suffix
"##").

The next step is to rebuild the screen layout with the native SDA menu functions.
Then you must examine your menu commands and change them to usable CL
commands. For a detailed description of how to change OCl to Cl refer to 15.6,
"Operation Control language Statements" on page 139.

The next screen shows the native version of the same menu. This menu was
shown with the GO KMPNAT command.

Kt4PNAT KMPNAT Menu

Select one of the following:

1. Call program STP965
2. Call program TSP68
3. Call program XYZ
4.
5.
6.
7.
8.
9.

18.

Selection or command
===>

F3=Exit F4=Prompt F9=Retrieve F12=Cancel
F13=User support F16=System main menu

SDA creates two source file members for each menu. They are:

• A DDS source member type MNUDDS

• A DDS source member type MNUCMD.

You can use PDM to display the source members.

The next figure shows a listing of the MNUDDS source file.

52 Converting System/36 Environment Applications to Native AS/400

FMT A* ••... A*. 1 ..• +•.• 2 •.. +.•• 3 •.. +... 4 ... +••• 5 ••• +••• 6 ••• +••• 7
*************** Beginning of data *************************************

A* Free Form Menu: KMPNAT
A* 90/03/12 15:35:46 ITSCID13 REL-R02M00 5728-PW1
A
A
A
A
A
A R KMPNAT
A
A
A
A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A
A

A

A

A

A

A

Figure 2 (Part 1 o(2). DDS (or Native Menu

DSPSIZ(24 80 *DS3
27 132 *DS4)

CHGINPDFT
INDARA
PRINT(*LIBL/QSYSPRT)

DSPI·l0D (*DS3)

LOCK

SLNO(01)

CLRL(*ALL)

AU'JROL

CF03

HELP

DSPMOD(*DS3)

LOCK

SLNO(01)

CLRL(*ALL)

AL~JROL

CF03

HELP

HOME

HLPRTN

1 2'KMPNAT'
COLOR(BLU)

1 33'KMPNAT Menu'

DSPATR(HI)

3 2'Select one of the
COLOR(BLU)

5 7'1.'
HLPRTN

1 2'KMPNAT ,
COLOR(BLU)

1 33'KMPNAT Menu'

DSPATR(HI)

following'

3 2'Select one of the following'
COLOR(BLU)

5 7'1.'

6 7'2. '

7 7'3. '

8 7'4. '

9 7'5. '

10 7'6. '
11 7'7. '
12 7'8. '
13 7'9. '
14 6'10. '

Converting Menus 53

A* CMDPRot4PT Do not delete this DDS spec.
A 019 2'Selection or command'
A 5 10'Ca11,
A 5 15'program'
A 5 23'STP965'
A 6 10'Ca11,
A 6 15'program'
A 6 23' TSP60 ,
A 7 10'Call,
A 7 15'program'
A 7 23'XYZ'

****************** End of data **

Figure 2 (Part 2 of 2). DDS for Native Menu

To modify the screen layout you can change the DDS directly within the DDS
source members or you can use SDA functions. We recommend using SDA,
because it is very easy. A discussion of creating and updating an AS/400 menu
without SDA is at the end of this chapter. """'"

Next is a display of the MNUCMD source member.

Columns I 71 Browse CONU BIQDDSSRC
Fi nd . ______________KMPNATQQ
FMT ** ••• +••• I ••• +••• 2 ••• +••• 3 ••• +••• 4 .;.+ ••. 5 ••• +••• 6 ••• +••• 7

*************** Beginning of data *************************************
aaaa.aI KMPNATQQ,I
aaaa.la aaal CALL PGM(CONLIB/STP965)
aaaa.II aaa2 call pgm(conlib/tsp6a)
aaaa.I2 aaa3 call xyz

****************** End of data **

F3=Exit F5=Refresh Fla=Top FII=Bottom
Fl2=Cancel FI3=Change defaults F24=~1ore keys

(C) COPYRIGHT IBM CORP. 1981,
1989.

In most cases you will have to convert the commands that they call to CL
programs. You must create the CL programs from your existing System/36
Environment procedures. Remember, you cannot have two programs with the
same name in the same library. So if you have procedures with the same name
as your programs, you should add a prefix to your called programs (CL) within
your menu. For example, add a P = procedure:

System/36 Environment menu command: PROG01 (II LOAD PROG01).
Native menu command: CALL PROG01P (CALL PROG01).

If you want to create menus, but you do not have SDA, you must execute the
following steps:

1. Describe the ":1enu and menu help information using DDS.

2. Create the described DSPF using the CRTDSPF command.

3. Create a message file using the CRTMSGF command.

54 Converting System/36 Environment Applications to Native AS/400

4. Add messages to the message file using the ADDMSGD command.

5. Create the menu using the CRTMNU command.

For a detailed description of this approach, refer to the CL Programmer's Guide
SC21-8077 Chapter 10.

Converting Menus 55

56 Converting System/36 Environment Applications to Native AS/400

7.0 Converting System/36 Environment Printer Files

7.1 PRTF Considerations
To convert printer file definitions, you should know how to define a printer file on
AS/400. A printer file on AS/400 must have a source type of PRTF and is
described with the DDS.

Conversion to externally described printer files must be done manually. PTK has
no option to help you with this procedure.

We recommend that you do this conversion, only if you have several programs
using the same printer file. The reasons for printer file conversion are easy
maintenance and the availability of IPDS functions within the DDS definition.
There are other programming techniques you can use, but you must redesign
your programs. For example, create a printer program that creates your
printouts. This can be a batch run program using a DATAQUEUE that is started
at the beginning of your work. When you send data into the DATAQUEUE, the
program starts running. After finishing, the print program looks again in the
DATAQUEUE. If there is data in the queue, the program starts again. If there is
no data in the queue, the status of the job becomes DEQW (The job is waiting on
a dequeue operation). In this status, the program is not using the CPU, but the
program is still active. This means that all your printer files are open and the job
has not been initiated the next time.

To create your externally described printer files, search your programs to find
the necessary information about the printer file layout and the printer formats.

The work you must do is approximately the same as creating a display file when
you have different internal display file descriptions.

e Copyright IBM Corp. 1988,1990 57

58 Converting System/36 Environment Applications to Native AS/400

8.0 Building the Field Reference File

A field reference file (FRF) can be considered a dictionary that contains all of the
field descriptions of your database files. You may choose to have several FRFs,
one for each independent application. We recommend that you have only one
FRF, however, because the independent applications might grow together in the
future and use the same fields. The FRF contains only one record format, and is
created like any other physical file on the system. You can save disk space if
you use the MBR(*NONE) parameter when you create the file. You do not need a
member within this file because you never put data into a field reference file. All
fields, together with their attributes, reside in one easily maintained file and any
other file will just refer to the FRF when being created. Each field in an
externally described file is now known to all programs by the same name.

As you can see in the examples on the next page, the existence of an FRF
reduces the difficulty of coding DDS and the incidence of coding errors
dramatically. We could have created the FRF during the process described in
9.0, "Modifying DDS and Creating Database Files" on page 63. However, this
might require additional DDS changes due to changes in the HLL programs.

8.1.1 Creation Steps
There are several ways to create an FRF. The one you select depends on how
many files you have and how many unique records and fields are contained in
them. Here is one way to create the FRF:

1. 	 Create a source physical file (called QDDSSRC, for example) to contain the
FRF. Library QGPL already contains a file by that name that you could use
as well.

2. 	 Create a member with a name of your choice.

3. 	 Add a dummy record name on top of the source.

4. 	 Copy all the fields of your DDS to the FRF source. Consider Figure 3 on
page 60 and Figure 4 on page 60. At this time you could add some
descriptive text and any additional keywords you might need (if not already
done during 9.1, "Adding Documentation" on page 63).

5. 	 Carefully read through the FRF to see whether you have several field names
for the same piece of information. You do not necessarily have to change
them because in some cases (especially for RPG) you may have different
field names for the same field. A field called DATE may be written SDATE
when used in a display file or when read from another database file.

The REFFLD keyword can be used when the same attributes apply to
different field names. Using the previous example, you could name the field
DATE in the FRF and using the REFFLD keyword on the display file, name the
field SDA TE.

6. 	 Now compile the FRF as a physical file. See Figure 5 on page 60 for a
(shortened) sample of the compilation list. From now on, any new database
or display file you create should use the FRF to obtain its field definitions.

7. 	 Change your original DDS (after backup) to refer to the FRF. See Figure 6 on
page 61.

(C) Copyright IBM Corp. 1988,1990 	 59

o 	 Insert a line with REF(FRF) keyword. This specifies the file that is referred
to.

o 	 In the field lines, remove everything except the name itself.

o 	 Insert the character R in column 29 to indicate that this field is a
reference field (defined in file FRF).

This helps ensure that the field attributes are used consistently in all files and
reduces the effort in coding DDS statements. For further information about FRFs
refer to the Database Guide and the Data Description Specifications Reference.

8.1.2 Programming Examples
These are only a few coding examples; they are not related to the previous
examples showing the use of PTK. These examples are included to show you
how easy it is to refer to an FRF.

A R CR

A CUSTNO 8 TEXT('CUSTOMER NO')

A NAI4E 17

A CODE 4 0

A AMOUNT 5 2

Figure 3. DDS Source Not Using Field Reference File

A R DUMMY

A CUSTNO 8 TEXT('CUSTOMER NO')

A NAME 17

A CODE 4 0

A AMOUNT 5 2

A

A

Figure. 4. DDS Source Field Reference File

R DUMMY

CUSTNO 8A B TEXT('CUSTOMER NO')

COLHDG (' CUST #')
NAME 17A B COLHDG (' NAME')
CODE 4P 0B COLHDG (' CODE')
AMOUNT 5P 2B COLHDG('AMOUNT')

Figure 5. Compiled Field Reference File

60 Converting System/36 Environment Applications to Native AS/400

A REF(TETLIBjFRF)
A R MASTREC
A CUSTNO R
A NAME R
A CODE R
A AMOUNT R

Figure 6. DDS Source After Changing to Field Reference File

Building the Field Reference File 61

62 Converting System/36 Environment Applications to Native AS/400

9.0 Modifying DDS and Creating Database Files

This chapter helps you change the DDS created by the PTK to cater to certain
conditions that the PTK does not handle. The following list shows the items
considered here:

• Adding documentation

• Shortening record lengths

• Changing record names

• Adding keys

• Checking data type

• Alternate index files

• Creating files.

9.1 Adding Documentation
The PTK does not add any documentation to the generated DDS. Take this
opportunity to describe the purpose of the file and to specify any relevant
information using the DDS keyword TEXT. Use the DDS Keywords TEXT,
COLHDG, and EDTCDE to describe the field.

9.2 Shortening Record Lengths
In a multiple record file on System/36, the record length of the file is set to that
of the longest record format. On the disk, the longest format uses all of the
record, but the shorter records have some wasted or unused space, usually at
the end of the record.

When you used the PTK to generate the DDS for one of the shorter records, you
had to add a filler or unused field to take up the unused positions. The PTK then
produced the DDS for the record, setting the record length to that of the longest
format in your multiple record file.

On the AS/400, each record format has its own physical file. You can save
space on the disk by reducing the record lengths of the shorter files. Simply edit
the DDS and remove the line (or lines) describing the unused, filler fields.

Do not do this if you want to run your programs using internally described files.

9.3 Changing Record Names
The PTK automatically assigns a record name in the generated DDS. For a
single-format file, the record name will be the name of the file with SF added.
For a multiple-record file the name will be the file name with the two additional
characters (for example AA, BB, or CC) that are ~pecified on the "Analyze File
Description" screen like the one below.

© Copyright IBM Corp. 1988,1990 63

FMTRSLV Format Resolution

Externa1 Fi 1e HID
Enter format designators.

PsI Cdl Ps2 Cd2 Ps3 Cd3 Format Status

0001 CD 0000 0000 AA Generated
0001 CH 0000 0000 BB
0001 CT 0000 0000 CC

Figure 7. Modifying DDS - PTK Analyze File Description

You may wish to change these record names to conform to your own naming
conventions.

9.4 Adding Keys
This step is needed for multiple record format files where the PTK generates the
DDS with key fields of "NONE, instead of using data fields as key fields.

Let us take an example where we have three record formats representing the
order header, order detail, and total records in an order's file. This file might be
read sequentially and matched against a sorted transaction file for update.

IORDERS AA 01 1 CH
I 1 1 ID

2 6 CUST
7 10 ORDER

11 16 DATE
IORDERS BB 02 1 CD
I 1 1 ID
I 2 6 ITEM
I 7 90QTY
I 11 16 DATE
IORDERS CC 03 1 CT
I 1 1 ID
I 2 6 TOTAL

Figure B. Modifying DDS - A Multiple Record File

Note: There is no common field in the record types.

The PTK splits this file into three physical files. The DDS for the detail record,
for example, will contain only the fields 10, ITEM, QTY, and DATE. The DDS for
the detail record does not contain the order field. Therefore, when we come to
recombine the three physical files (through the logical file DDS), there is not
enough information present to let the AS/400 know which details belong to which
order. .

64 Converting System/36 Environment Applications to Native AS/400

This missing information was previously held in the System/36 file because the
detail records immediately followed the header record to which they belonged
(by means of the sequence).

On AS/400 you must add an ORDER field to the detail record layout in the
physical file and an ORDER field to the total record layout for the same reason.
A sample DDS for the original detail record is shown below, followed by the
changed DDS.

A* DETAIL RECORDS
A R BB
A ID 1
A ITHl 4
A QTY 3S e

manually added ORDER field:

A* DETAIL RECORDS
A R BB
A ID 1

-----> A ORDER 5
A ITEM 4
A QTY 3S e

Figure 9. Modifying DDS - Adding a Key to a Physical File

In addition, you must adjust the DDS for the logical file to add the required key
fields:

Modifying DDS and Creating Database Files 65

DDS generated by the PTK:

A* ORDER HEADER
A RAA PFILE(TWOAA)
A K *NONE
A* LINE ITEMS
A R BB PFI LE(TVIOBB)
A K *NONE
A K ITEM
A* ORDER TRAILER
A R CC PFI LE (TVIOCC)
A K *NONE

manually changed key field

A* ORDER HEADER
A RAA PFILE(T\oJOAA)

-----> A K ORDER
A* LINE ITEMS
A R BB PFILE(T\~OBB)

-----> A KORDER
A K ITEM
A* ORDER TRAILER
A R CC PFI LE (TVIOCC)
A K ORDER

Figure 10. Modifying DDS - Adding a Key to a Logical File

9.5 Checking Data Type
The DDS generated for numeric fields may include a data type of "S":

A QTY 35 0

Unless you specifically want such a field treated as a zoned decimal field,
replace the "s" with a "P" to treat the field as a packed decimal field. You will
also need to change the data in the file. This is recommended for performance
reasons, but only if you plan to convert all programs using this file to external
definitions. Otherwise, the buffer positions in the programs will be off.

9.6 Alternate Index Files
Alternate indexes become logical files on AS/400 during migration. On
System/36, the index might have been made up of several fields or positions in
the record. For instance, one index may have used positions 3 to 15 as the key
field, another may have used positions 10 to 20. On the System/36, there was no
need for the key fields to correspond to field names.

66 Converting System/36 Environment Applications to Native AS/400

On AS/400, the PTK tries to use field names when generating the DDS for an
alternate index. Each alternate index generates a logical file (see Figure 11 on
page 67).

The PTK generates DDS for each alternate index at the time when the file on
which the index is based is resolved.

Because the positions specified for the alternate index key may not correspond
with the positions of the fields in the based-on file, the PTK can, if necessary,
substring the fields in the based-on file (see Figure 11).

File contains 	 FIELD A in positions 1 5

FIELD B 15 20

If the alternate index is over positions 2 to 5 of the file,

the generated DDS will look like:

R RECORD
A
HKEYI SST(A 2 4)
B

KHKEY1

Figure ". Modifying DDS - An Alternate Index

The alternate key may also overlap two or more fields.

If the DDS for the alternate indexes contains substrings, you may wish to alter
the DDS of the based-on physical file to give each key field an individual name,
thus removing the need for substrings. The presence of substrings indicates an
unusual and perhaps incorrect database definition of the key fields.

9.7 Creating Files
Now we are ready to create physical and logical files using the proper AS/400
commands. If your application uses external (within the procedure) file names
with substitutions (perhaps USER or WS-ID dependent), choose a "common"
name to create a file containing just the format. Your file specification in your
programs should be changed to that name before compilation (the file must exist
during compilation). Before running the program, use the OVRDBF command to
link to the "real" file.

9.8 Format Selection
This section is intended to provide an understanding of the purpose of format
selection and show how format selection can be done.

The topic is introduced at this stage because one of the methods of doing format
selection (use of a format selector program) could be useful in two subsequent

Modifying DDS and Creating Database Files 67

steps: first, when copying data into the AS/400 database files, and second, at
run time when your programs are using the files.

9.8.1 Why Format Selection?
If your System/36 program processed a file with multiple record formats, we
have discussed how the PTK converted that file to multiple physical files, which
were then joined together by a logical file containing multiple records. Your
program then reads the logical file.

Note that if your System/36 program added records to the multiple record file, it
did so by referring to the name of the file in the output specification. For
example:

OORDERS DADD 01

However, if an AS/400 HLL program tries to add to a multiple record logical file
by referring to the name of the file on the output instruction, it will fail.

The reason is that when asked to add a record to a file named ORDERS, the
AS/400 HLL program does not know which underlying physical file to put the
record into. Extra information must be supplied to the AS/400 data management
to help it select the correct format name.

Format selection information needs to be provided only under certain conditions.
If these conditions do not apply, then you do not have to worry about format
selection.

Format selection is only needed if:

1. You are using the file name instead of the record name.

2. The file is a logical file with more than one record format.

3. You are adding records to a file.

Note that if the program is doing updates only (no adds), you do not need format
selection because the program has already read the record and knows which
physical file it came from.

The name of the record format (rather than the file name) can be supplied to
AS/400 data management in two ways:

1. Selection by Record Names

One way is to replace file names by record names in the HLL source. Thus:

OORDERS DADD 01

could become

ODETAIL DADD 01

or

OHEADER DADD 01

depending on the intent of the program.

68 Converting System/36 Environment Applications to Native AS/400

2. Selection by Format Selector Program

The format selector program allows you to continue using the file name when
adding a record. The format selector program can be written in CL or in RPG.

A COBOL format selector program is also provided. It normally requires more
modification than the RPG format selector. In general, however, the format
being written is obvious in a COBOL program. The record name is used in the
WRITE statement. For COBOL, we suggest that you modify the program to
include the appropriate format name on the WRITE statement.

The format selector program is attached to the logical file. When your program
writes a record to the logical file, the format selector program examines the
record (after it goes outside your HLL program) and, based on the content of the
record, supplies the appropriate record name to the logical file.

9.8.2 How is the Format Selector Written?
You do not have to write a format selector. The PTK generates one written in
RPG for each multiple record logical file. The selector is written when the DDS
for all the physical files supporting the logical file have been created.

Figure 12 shows the multiple record description, and Figure 13 on page 70
shows the format selector program that is attached to the logical file. The logic
of the program uses the RPG record identifying indicators to generate the
appropriate record format name. It is up to you to review the program and make
any needed corrections.

FORDERS IP F 17 DISK
I* HEADER RECORD
IORDERS AA 01 1 CH
I 1 1 ID
I 2 6 CUST
I 7 11 ORDER#
I 12 17 DATE
I* DETAIL RECORD
I BB 02 1 CD
I 1 1 ID
I 2 6 ORDER#
I 7 10 ITEM
I 11 130QTY
1* TOTAL RECORD
I CC 02 1 CT

1 1 ID
2 6 ORDER#
7 112TOTAL

Figure 12. Format Selection - A Multiple Record Format

The format selector is tied to the logical file during the CRTLF command.

Modifying DDS and Creating Database Files 69

* This Format Selector is ONLY a skeleton example of the program
* that is required. Please review the format selection criteria
* and make the necessary adjustments.
* NOTE: Default format selection code must be added below.

E @ ElEl32 1

C *ENTRY PLIST

C PARf·'

C PARr·,

* Format Selection Criteria retrieved from ANZS36FD Format Resolve

C*
C* FORMAT - AA
C*
C @,ElElEll IFEQ 'H'
C 	 f40VEL 'HEADER' FORMAT ,."
C 	 GOTO EOP
C 	 END
C*
C* FORMAT - BB
C*
C @,ElElEll IFEQ '0'
C 	 f40VEL 'DETAIL' FORMAT
C 	 GOTO EOP
C 	 END
C*
C* FORMAT - CC
C*
C @,ElElEll IFEQ 'T'
C 	 f40VEL' TOTAL' FORMAT
C 	 GOTO EOP
C 	 END
C*
C EOP 	 TAG
*
* ==> Add default format processing (ex. MOVEL '??' FORMAT) <==

*

C f40VE '1' *INLR

Figure 13. Format Selector Program

9.8.3 	 Recommendations
If you need to provide format selection in any of your programs, we suggest that
you use the first method (replacement of file names in the program by the
underlying record format names) rather than the second method (format
selector). It is more visible to the maintaining programmer.

70 Converting ,$~stem/36 Environment Applications to Native AS/400

Although the use of record names may involve (in some cases) changes in the
program logic to set up the correct output indicators on the O-specifications, we
believe that there are several benefits to be gained by using record names:

• 	 Ability to add extra formats to the logical file without the need to recompile
the format selector

• 	 No need to understand, create, and maintain format selector programs

• 	 Possible performance advantages of operating directly on the underlying
physical files

It should be stressed that the generated format selector is a "best guess" at the
selection criteria to determine a format. The source must be reviewed and a
default format added where the source indicates it should be.

9.9 Copying Data into the Files
At this stage, the DDS has already been compiled and we have one or more
empty AS/400 files. The data must be copied from the existing System/36 files to
the AS/400 files before our programs can be run.

There are two main cases, which are discussed in this section:

• 	 System/36 file with a single record format

• 	 System/36 file with multiple formats.

9.9.1 System/36 File with a Single Record Format
In this case the PTK has generated a single physical file. Copy the data into the
physical file using the CPYF command with the format:

CPYF 	 FROMFILE(QS36F/S36FILE) TOFILE(NEWLIB/AS400FILE) MBROPT(*REPLACE)
FMTOPT(*NOCHK)

Of course, if the record format of the physical file differs from that of the
System/36 file you must write a program to copy across the correct fields or
create a physical file that describes the layout of your System/36 Environment
file. For example:

The old file has the following field order:

FIELDOl

FIELD02

FIELD03

FIELD04

The new file has the following field order:

FIELDOl

FIELD04

FIELD03

Now you can solve the problem in one of two ways. The first way is to write a
program that reads the System/36 Environment file and moves the fields into the
correct sequence. Then add the record to the native file. Use this technique if
the field names of the files are different.

Modifying DDS and Creating Database Files 71

The other way is to create a physical file that matches the System/36
Environment file. To do this, copy the DDS of your new file and build a physical
file with the old field sequence. In most cases you only have to move the field
description into the correct sequence.

Now copy your System/36 Environment file into the created file. First:

CPYF 	 FROMFILE(file-name) TOFILE(file-name) MBROPT(*REPLACE)
FMTOPT(*NOCHK)

FROMFILE This is your System/36 Environment file.

TOFILE This is your native file with the correct field layout
of your System/36 Environment file.

Because both files use the same field names, but the fields are not in the correct
positions, you have to use the following CPYF command. Next:

CPYF 	 FROMFILE(file-name) MBROPT(*ADD) TOFILE(file-name)
FMTOPT(*MAP *DROP)

FROMFILE This is your native file with the correct field layout
of your System/36 Environment file.

TOFILE This is your native file with the new field layout.

The *MAP keyword allows you to copy fields with the same name from one file to
another even if the fields have different starting positions.

The *DROP keyword allows you to drop fields when they are not defined in the
receiving file.

9.9.2 System/36 File with Multiple Formats
This case is a little more detailed. The PTK has built a logical file over multiple
physical files.

LOGICAL FILE

Format Selector Program

Physical Physical Physical
File 1 File 2 File 3

Figure 14. Format Selection - Diagram of Logical File and Three Physical Files

72 Converting System/36 Environment Applications to Native AS/400

Again, there are several techniques for copying multiple format files:

1. Copy using the format selector created by PTK

This is a quick method because the format selector is already written for you,
and you can use a general-purpose RPG II or RPG/400 program to do the
copying.

If you plan to use this method, be sure that the logical file specifies its format
selector. The selector is given the same name as the logical file with two #
characters added. Thus, a logical file PKFILE would have the selector PKFILE##.
You will need to recreate the logical file (with the FMTSLR keyword) if you have
changed the logical file DDS in any way.

You will then need a program to read the System/36 file and write to the logical
file with its associated selector. A general-purpose program could be like the
one shown in the following figure:

FFILEIN IF F 256 DISK

FFILEOUT 0 F 256 DISK

IFILEIN AA

I 1 256 DATA

C READ FILEIN 99

C *IN99 DO~JEQ I Ell

C EXCPT@\~RITE

C READ FILEIN 99

C END

C MOVE 111 *INLR

OFILEOUT E @WRITE

0 DATA 256

Figure 15. Format Selection - a General Build Program

The record lengths for input and output must be adjusted to the length of the
System/36 input file. The field lengths must be adjusted accordingly. The
program must then be compiled with a suitable name (such as BUILD).

When the program is run you will need override statements to attach the correct
files to the program:

OVRDBF FROMFILE(FILEIN) TOFILE(QS36F/MASTER)
OVRDBF FROMFILE(FILEOUT) TOFILE(PRODLIB/MASTER)
CALL BUILD

You could add to the 'Iogic of the build program to handle the case where
additional fields need to be written to some records. The build program also
could rearrange fields in records. This is because the format selector does not
care what the record layouts of the input and output records are, provided the
characters used for record identification are correct.

The build program could thus be changed to add an order number field to the
item detail records, as required in the earlier example.

2. Copy individual physical files

Modifying DDS and Creating Database Files 73

Another method of copying a multiple format file is to create a program to read

the multiple format files and write records to one or more of the physical files.

This method gives more freedom than the format selector, because there is no ..."",

need to preserve the record identification codes.

3. Copy individual physical files with the CPYF command

Normally on System/36 you have one field within the file that indicates your
record format. You can use this field to identify the record within the CPYF
command. But before you can use the command, you have to build a physical
file that looks like your System/36 Environment file, but has the indicating record
defined. Define all fields as character fields:

FOOOl = (record format identification field)
F0002 = (filler field to match the record length)

Now create the physical file. Copy the data from your System/36 Environment file
into the newly created physical file using the CPYF command:

CPYF FROMFILE(file-name) TOFILE(file-name) MBROPT(*ADD) FMTOPT(*NOCHK)

FROMFILE This is your System/36 Environment file.

TOFILE This is your native file with the correct field layout
for the indicating field of your System/36 Environment file.

Now you have a native file that contains the same records in the same sequence
as the System/36 Environment file. The next step is to copy the correct record
into your newly created files.

Because the format indication field is know known by the system, you can copy
the records to the corresponding files. You have to run the following CPYF
command for each format you have in your file:

CPYF FROMFILE(file-name) TOFILE(file-name) MBROPT(*ADD)
INCCHAR(F0001 1 *EQ 121) FMTOPT(*NOCHK)

FROM FILE Native file with the correct field layout for the
indicating field of your System/36 Environment file

TOFILE Native file, which contains the selected
record layout

F0001 Field name of the indication field

1 	 Start position of the indicating field

*EO Indicates the relationship; in our case it's equal.

'1' 	 Specify the character string compared with the
specified indicating field.

74 Converting System/36 Environment Applications to Native AS/400

10.0 Decimal Data Errors

A decimal data error occurs when an AS/400 program processes an instruction
that requires at least one of the fields involved to contain a number, but where
all of the fields contain values that are not numbers.

This is not a problem on the System/36, because programs in RPG II and ANS
COBOL74 can process non-numeric fields as numeric. Because the System/36
operated on zoned fields, it was able to treat a field like X' 414243' as numeric
"123" when doing arithmetic and still get a correct answer.

AS/400, however, operates internally on numeric fields with packed data. It
requires numeric fields to contain valid numeric values. For example, to be
valid, a zoned decimal field must have the high-order four bits as X'F' except in
the rightmost byte, where a valid sign is required. The number "123" is
represented as X'F1 F2F3'. In fact, on AS/400 all numeric fields (if stored in
zoned form) are converted to packed format before arithmetic calculations are
done on them. A packed decimal numeric field must also have valid numeric
digits and signs.

Thus, a field containing data that could be processed acceptably on System/36 or
the System/36 Environment might not be acceptable in native AS/400.

This problem could be quite severe, because an AS/400 program will cancel if it
processes an instruction that finds non-numeric data where it expects numeric.
We thus need to be able to detect and correct the causes of these errors.

10.1 Some Rules for Non-Decimal Data
Programs compiled with the System/36-compatible RPG II or ANS COBOL74
compilers will run the same way as they did on the System/36. In other words,
they will accept non-numeric fields and process them without decimal data
errors.

Decimal data errors can occur in RPG/400 programs in two ways, either when
the program is doing arithmetic, or at logical 1/0 time. When the program is
moving data from a file input buffer to a field, if the field is specified as numeric
but the data is not numeric, an error will occur. The result is similar for output
fields.

Both RPG II or RPG/400 programs with program-described fields can write
invalid decimal data. The program involved can define the same field
twice--once as numeric and once as non-numeric. This can be done either on
input specifications or with a data structure.

Thus, System/36 Environment RPG II programs and RPG/400 programs can place
invalid data in database files.

COBOL programs can place invalid data in database files as well. Unlike RPG,
which is a field-oriented language, COBOL is a record-oriented language. This
makes it possible to put alphabetic data in a decimal field and then write the
field out to a database file. This could happen if you have mapped your record

© Copyright IBM Corp. 1988,1990 75

layout in the working-storage section, and a field in the working-storage section
has a different attribute (decimal/alphabetic) in the file section. The wrong data
may then be written out using a WRITE FROM.

In COBOL you will not get a "Decimal Data Error" message when reading or
writing alphabetic data to or from decimal fields in a file. That message occurs
only when performing arithmetic operations on that data. On the other hand, the
compiler itself catches some of those operations by not allowing arithmetic
operations on alphabetic fields.

To make sure that you operate on properly defined fields with proper contents in
the file we recommend use of the PTK.

10.2 Finding and Correcting Errors in Files
The PTK can help find fields containing data that should (according to the
external file description) be numeric, but which is not. The PTK is simple to run
and avoids the need to write user programs to do checking.

10.2.1 Single Format File
The PTK will check a file with a single record format and tell you if there are
decimal data errors.

There are two inputs required by the PTK:

• 	 A single format file. This could be a System/36 (program-described) file in
QS36F, or an externally described AS/400 file.

• 	 An AS/400 file that contains the record format description for the single
format file above. Of course, if the single format file was an AS/400
externally described file, it would carry its own format description.

There are three outputs produced by PTK:

• 	 A report indicating the records with decimal data errors

• 	 A copy of the analyzed file with data corrected (optional)

• 	 A completion message telling whether decimal errors were detected.

The PTK takes the record format from the AS/400 file and reads the data
records. It checks to see that each field in the record contains only the type of
data specified in the record format.

If a field specified as numeric contains non-numeric data, the PTK will change it
in one of two ways (you choose which one): either set the whole field to zero
(*ZERO), or set the zone portion of each invalid byte in the field to X'F' (*S36).
For example:

76 Converting System/36 Environment Applications to Native AS/400 -.....-... :.

If your field contains: A B J 8 9
X'CIC2DIF8F9'

PTK corrects it to:

using option *536 1 2 189
X' FlF2FlF8F9'

using option *ZERO o 0 0 0 0'
X'F0F0F0F0F0'

The PTK will also correct errors in packed numeric fields.

10.2.2 Multiple Format File
The PTK currently cannot analyze a file with multiple record formats, like the
ORDERS file with HEADER DETAIL and TOTAL records. This file must be
converted into a logical file and three physical files. If you have already copied
the data into these physical files, just run the PTK over each (single record
format) physical file as described in the previous section.

10.2.3 Compiler Options for Decimal Data Errors
The CRTS36RPG command has an option, FIXDECDTA, to fix decimal data. The
CRTS36CBL command has the same option. The default is *YES. This option
"corrects" any invalid data by forcing the zone portion (high-order four bits) of
each byte to X'F' as described in 10.2.1, "Single Format File" on page 76. Also,
the low-order four bits are forced to zero if they are not in the range, zero
through nine. Results may be unpredictable, the same as for the System/36.

We recommend that the *NO option be used. FIXDECDTA(*NO) will also allow
your programs to run faster, since no correction of the data will be attempted.
Of course, if FIXDECDTA(*NO) is used and there is invalid numeric data, then
your program will stop when a decimal data error occurs.

The CRTRPGPGM command has an option, IGNDECERR, to ignore decimal data
error. (There is no option on the CRTCBLPGM command to do the same.) The
default is *NO. If you change this to *YES, you will not get decimal data errors
when running the program. But your program may give unpredictable results,
because any instruc.tion that detects the error may only partly complete before
processing the next instruction.

Decimal Data Errors 77

78 Converting System/36 Environment Applications to Native AS/400

11.0 RPG Considerations

11.1 RPG and Database Files
The next sections present a step-by-step guide for the process of changing RPG
programs to use externally described database files. This process is required
whether or not you have used PTK for the first stage of the RPG II-to-RPG III
conversion, because you will still have to eliminate the program-described input
and, optionally, the output for the new externally defined files.

The ideas given should cover most of the situations you will find in practice, and
might help solve problems not specifically mentioned.

At this stage we have generated DDS for the AS/400 external database files. But
the programs still contain program-described files, which might differ in record
layout from one program to another.

Several changes must be made to the source code of each program to change a
file from a program-described to an externally described file. These are
discussed below with the aid of some sample code. The following sections
describe the changes to be made.

11.1.1 Auto Report Changes
Read this section if you are using auto report for data files (DISK on the file
specifications). Also read Chapter 8 of the RPGI400 Reference manual.

The intent of this step is to remove the ICOPY modules that contain file
definitions. They are no longer needed on AS/400, since the description of an
external file is held in the file itself.

There might still be some ICOPY modules that you want to keep for frequently
used calculation subroutines or for files that will not be converted because they
contain arrays. These ICOPY modules can still be used on AS/400.

The suggested method of handling auto report uses a preparatory step which, in
effect, converts the auto report program to an ordinary RPG program. You then
follow the steps for converting database files in an RPG program. This method
will work in all cases and gives complete diagnostic messages.

Handling COPY statements Before Conversion
All the auto report programs and ICOPY modules are stored as members in
QS36SRC by the System/36-to-AS/400 migration aid.

• 	 Scan each auto report source program and change every ICOPY statement
to AS/400 format.

For example,

C/COPY library,module

becomes

© Copyright IBM Corp. 1988,1990 	 79

C/COPY AS400LIB/QS36SRC,module.

• 	 Change each ICOPY statement that you want to keep (for example, the
calculations subroutines) to a comment statement. Also, add some
characters, such as "KEEP", so you know it is a COPY statement that you
want to keep.

For example,

C/COPY AS400LIB/QS36SRC,module

becomes

C*COPY AS400LIB/QS36SRC,module KEEP

• 	 Create a new source program that includes all the ICOPY modules that have
not been commented out (that is, the modules for which the source is to be
placed into the program).

To create the new program, run two commands of the form shown below (the
first creates an empty member to receive the output):

ADDPFM FILE(AS400LIB/QRPGSRC) MBR(xxxxxx)

CRTRPTPGM PGM(AS400LIB/xxxxxx) SRCFILE(AS400LIB/QS36SRC)
RPTOPT(*NOCOMPILE) OUTFILE(AS400LIB/QRPGSRC) OUTMBR(xxxxxx)

where xxxxxx is the name of the source program.

This command merges the RPG lines and ICOPY modules from QS36SRC and
places the output in QRPGSRC, in a member with the same name as the original
program. The command can be run repeatedly using PDM, or by writing a
simple CL program that accepts the member name of the member to be
processed.

• 	 If there are any ICOPY modules that still need to be kept, copy them over to
the QRPGSRC file.

• 	 Re-scan the new source program (now in QRPGSRC) and change the
commented *COPY lines that are still needed back to ICOPY.

For example,

C*COPY AS400LIB/QS36SRC,module KEEP

becomes

C/COPY AS400LIB/QRPGSRC,module

• 	 You might also remove the commented *COPY statements generated by the
compilation, as they are no longer required.

• 	 The pre-compile step that merged the program and ICOPY modules removes
the U specification. The U specification is only needed if you want to specify
date or asterisk suppression. All other options may be supplied at compile
time. Insert the U specification if required.

80 Converting System/36 Environment Applications to Native AS/400

• 	 If you still have ICOPY statements in the program, on exit to the PDM screen
you will need to change the member type to RPT to continue to use auto
report.

You now have a source program which, as far as database files are concerned,
is just like a program that never used ICOPY modules.

11.1.2 	 Resolving the Use of Names
RPG II on the System/36 allows multiple uses of any name within a program.
For instance, the same name could be used for a file, a field, and a subroutine,
as long as the purpose was different. RPG III does not allow such usage.

You will need to resolve name usage within your application system and have
some disciplined approach and naming scheme before you start the conversion.

Neither the Migration Aid nor the Programmer Tools PRPQ analyzes this name
conflict. It does not show up until you compile the program with the RPG/400
compiler.

11.1.3 RPG Changes
The following program and DDS are the starting point for the examples in the
following conversion steps. Read them before proceeding.

Here is a sample program with a program-described file. To illustrate a number
of points, an indexed disk file is used requiring random key access. We will
assume that the key is the customer number, which is made of two parts--a store
number and a serial number.

FMASTER UP F 256 8AI 1 DISK

IMASTER AA 01

I 1 2 STORE

I 3 80S ERIAL

I 1 8 CUST#

I 26 290CODE

I 30 342AMOUNT

C r40VELI STORE KEY 8

C MOVE ISERIL KEY

C KEY CHAINMASTER 99

C N99 MOVE CUST# NE~JCUS 8

C 99 r40VE KEY NEWCUS

OMASTER D 01

0 NE~JCUS 8

0 CODE 29

0 AMOUNT 34

~ Figure 16. 	RPG and Database - A Program-Described File

RPG Considerations 81

Next is sample DDS used for the 'MASTER' file. It was generated by PTK,
probably by making field name choices from conflicting and overlapping file and
field definitions from many programs. In this example, there is a composite key
with two database fields, which is different from the way that the file key is
referenced in the RPG II F-specification.

You will also note that there is no overlapping redefinition in the DDS external
record definition, and that the CODE and AMOUNT fields are packed decimal, not
zoned decimal, as in the original definition above.

A R 14ASTREC
A LOCATN 2
A NUMBER 6S 0
A I-lAI4E 17
A CODE 4P e
A AMOUNT 5P 2
A K LOCATN
A K NUMBER

Figure 17. RPG and Database - DDS for File MASTER

In this example there will have to be a number of program changes to convert to
AS/400 native with an externally described file. The PTK conversion will do the
minimum changes required for program described files only. You must make
any further changes and reconciliation of input and output fields for externally
described files. These changes are described in the next sections.

Minimum Changes for Program-Described Files
You should make some changes to the file specifications for program-described
as well as externally described files:

• 	 Be sure the file name on the F-specification is still the same name as the
externally defined file you created. This will ensure that you will not need an
OVRDBF statement (similar to 1/ FILE in System/36) at run time, because the
internal and external names will be the same. (You can still have OVRDBF
to point to a different file or member.)

• 	 Replace Cor D in column 16 (File Designation) with F to indicate that the file
is fully procedural. You still use CHAIN, READ(E/P), and SETxx operations in
the program, and the program logic remains the same.

• 	 Blank out Block Length.

Now you can compile the program. Because the file is still program-described
(F in column 19), the external definition as defined in DDS is overridden by the
program's definition in the F- and I-specifications.

The data fields in each record must, of course, match in length and type with the
fields as defined in the F- and I-specifications. If they do not, the program might
produce decimal data errors when attempting to process alphabetic data as
numeric, or might produce incorrect results when working with fields whose
internal and external lengths are different.

82 Converting System/36 Environment Applications to Native AS/400

The external file as defined by the DDS can be either a physical or logical file.
Either is acceptable, as long as the record layout and sequence is as expected
by the RPG program.

In other words, if the DDS for the file does not exactly match the old record
layout in the F- and I-specifications, the program will compile without error, but
might not run correctly. In this case, you need to change the program source to
match the altered record layout. The program can still be changed and
recompiled with a program-described file. For the example above, you must
change the 1- and O-specifications for the CODE and AMOUNT fields to reflect
the new length and type (packed) of those fields. Or the file can be made fully
external, as described in the next section.

11.1.4 Changes for Externally Described Files
You need to implement the changes described in this section if you intend to use
the externally defined field and record format names in the RPG program.
Changes made to the DDS can then be incorporated directly into the program by
recompiling it. Some of these changes are shown in Figure 19 on page 87.

11.1.5 Changing File Specifications
• 	 Be sure the file name on the F-specification is still the same as for the

externally defined file you created. Your program will not compile if the file
cannot be found. This will also ensure that you will not need an OVRDBF
statement (similar to II FILE in System/36) at run time, because the internal
and external names are the same. (You can still have OVRDBF to point to a
different file or member.)

• 	 Replace Cor 0 in column 16 (File Designation) with F to indicate that the file
is fully procedural. You still use CHAIN, READ(E/P), and SETxx operations in
the program, and the program logic remains the same.

• 	 Replace F in column 19 (File Format) with E to indicate that the file is an
externally described file.

• 	 Blank out the following fields: Block Length, Record Length,
, and Length of Key Field, as these must not be coded for externally
described files.

• 	 Code K in column 31 (Record Address Type) if a key is used to access the
file. See the RPGI400 Reference manual for further information about record
address type.

• 	 Blank out the following fields: File Organization and Key Field Start
Location, , as these must not be coded for externally
described files.

The F-specification in the example program is changed:

FMASTER UP F 256 BAI 1 DISK

Becomes

FMASTER UF E K DISK

If you compiled your program now, you would get compiler messages that tell
you what further changes must be made to process the externally described file.
To save time, these changes are discussed below. Make them before compiling.

RPG Considerations 83

Changing Input Specifications
With an external file, input specifications must refer to the record name, not the
file name. Change the file name coded on the I-specifications to the record
name. In the following example, the file name is changed to the record name
MASTREC. Also, blank out all the I-specification sequence number fields and the
start, end, and decimal positions of the input fields from positions 15-16 and
44-52 respectively. Keep the I-specifications to help in identifying fields that
must be renamed. You will delete these statements later.

IMASTER
I
I
I
I
I

AA Ell
1
3
1

26
3El

2 STORE
BElSERIAL
B CUST#

29ElCODE
342AI40UNT

Becomes

IMASTREC
I
I
I
I

Ell
STORE
SERIAL
CODE
AMOUNT

Additional fields that are not described in the database: As mentioned above,
different programs might have contained different record layouts for the same
record type in a file. The PTK showed us these layouts and, based on our
knowledge of the system, we chose the correct layout to be turned into the
external description.

There might be some programs where the definition of the record needed by the
program does not match the external definition, or there may be specific
redefinition of the input fields for program use.

In this case you can redefine the record layout of the external file by using a
data structure to subdivide an input field so that the program can refer to the
entire field or just the individual subfields. They can be used to redefine an area
and group fields together. See the RPGI4QO User's Guide for details. The data
structure in the sample code is intended to show the way in which fields can be
subdivided and gathered.

In the sample program we make the following change.

1 2 STORE
3 BElSERIAL
1 B CUST#

26 29ElCODE

Becomes

1 2 STORE
3 80SERIAL

26 290CODE

DS
1 8 CUST# <--

I 2 LOCATN
3 80NUMBER

84 Converting System/36 Environment Applications to Native AS/400

Alternatively, a logical file can be used in some cases to concatenate fields that
have similar attributes.

Changing Calculation Specifications
You can still use the file name in C-specifications for any INPUT operations.
There are no operation codes in RPG II for direct output to disk (EXCPT uses the
O-specifications.). Change the C-specifications that perform disk operations so
they use the new external file name. However, be aware that on AS/400 you
have the option of reading from a record format, using RPG/400 operation codes
in the calculations. You can also write directly to a record format. These new
operations might allow you to simplify your program logic in some cases.

See the section on "Composite Keys" on page 88.

Changing Output Specifications
With an external file, output specifications must refer to the record name and not
to the file name. You can do one of the following:

• 	 Change the file name to the record name in the O-specifications.

• 	 Use a format selector. See 9.8, "Format Selection" on page 67 for a
discussion of the format selector.

The recommended method is to change to record names. In the example, we
have changed the file name to the record name MASTREC.

Next, blank out the O-specification end positions in positions 40-43.

Figure 18 on page 86 shows how the program looks after the changes discussed
above.

RPG Considerations 85

FMASTER UF E K DISK

IMASTEREC 01

I STORE

I SERIAL

I CODE

I AMOUNT

DS

1 a CUSH#

1 2 LOCATN

3 a0NUt4BER

C t40VELISTORE KEY a
C t40VE ISERI L KEY
C KEY CHAINMASTER 99
C N99 MOVE CUST' NEWCUS a,
C 99 MOVE KEY NEWCUS

OMASTEREC 01

0 NEWCUS

0 CODE

0 AMOUNT

Figure 18. RPG and Database - Partially Converted Program

11.1.6 Compiling the Program
We have not yet removed the field names on the input and output specifications;
they are left for comparison only, to show the internal names that previously had
been used.

Examine the compiler list to identify internally used field names, which are now
not known to the external file description. These will be highlighted by error
codes 4096 and 6109. ...,.,

Figure 19 on page 87 and Figure 20 on page 88 show a compiler listing of the
program after this first step of partial conversion.

86 Converting System/36 Environment Applications to Native AS/400

Sou r eeL i 5 tin g Page 1
H

100 FMASTER UP E DISK
RECORD FORMAT(S): LIBRARY PKLIB FILE MASTER.

EXTERNAL FORMAT MASTREC RPG NAME MASTREC
200 IMASTREC 01
300 I STORE

* 4096 4096-******
400 SERIAL

* 4096 4096-******
500 I CODE
600 I At40UNT
500 INPUT FIELDS FOR RECORD t4ASTREC FILE t,IASTER FORt,IAT t4ASTREC.

A000001 1 2 LOCATN
A000002 3 80NUt4BER
A000003 9 25 NAt4E
A000004 P 26 280CODE
A000005 P 29 312AMOUNT

1000 OS
1100 1 8 CUSTN
1200 1 2 LOCATN
1300 3 80NUMBER

2000 C MOVELISTORE KEY 8
2100 C MOVE ISERIL KEY
2200 C KEY CHAINMASTER 99
2300 C N99 MOVE cusa NE\~CUS 8
2400 C 99 MOVE KEY NEWCUS

4000 OMASTREC 0 01
4100 0 NEWCUS

* 6109 6109-******
4200 0 CODE
4300 0 AMOUNT

OUTPUT FIELDS FOR RECORD MASTREC FILE MASTER FORMAT MASTREC
B0ElElEl01 **NOT OUTPUT** LOCATN 2 CHAR 2
BEl00002 **NOT OUTPUT** NUMBER 8 ZONE 6,0
B000003 **NOT OUTPUT** NAME 25 CHAR 17
B900004 CODE 28P PACK 4,0
B900005 AMOUNT 31P PACK 5,2

Figure 19. RPG and Database - Program after Partial Conversion - Page 1.

RPG Considerations 87

Source Listing Page 2

Additional Diagnostic Messages

* 7078 2200 FACTOR 1 LENGTH IS 8 BUT LENGTH OF KEY FIELD IS 2.

Message Summary
* QRG4096 Severity: 30 Number: 2

Message : RPG-Field-Name entry for externally

described file is invalid. Specification line ignored.

* QRG6109 Severity: 30 Number: 1
Message : The Field name specified does not exist in

Externally-Described record. Specification ignored.

* QRG7078 Severity: 30 Number: 1

Message : The Factor 1 length not same as First-Key

field in file or record. Specification ignored.

Figure 20. RPG and Database - Program after Partial Conversion - Page 2.

Composite Keys
Many programs contain composite keys where the keyed access to the file was
built from more than one field, usually by using a series of MOVE and MOVEL
operations as illustrated in the example program.

In the following example, two fields (ISTORE and ISERIL) which have different
definitions (alphanumeric and numeric respectively) are placed in a new
alphanumeric composite field KEY, which is then used to access the file
(MASTER). This is quite acceptable in RPG II; it compiles and operates without
error.

C MOVELISTORE KEY 8
C MOVE ISERIL KEY
C KEY CHAINMASTER 99

However, this is unacceptable with RPG/400 externally defined files with
composite keys and will not compile, giving error 7078.

Each field of the key is separate and cannot be combined using MOVE and
MOVEL, so the coding above has to be changed to use a KLiST and KFLD
structure:

C KEY KLIST
C KFLD ISTORE
C KFLD ISERIL
C KEY CHAINMASTER 99

The program will now compile without error.

A further problem now arises. This KEY field cannot be used as a data field in an

operation.

The example requires an operation like this:

C 99 MOVE KEY NE\dCUS

88 Converting System/36 Environment Applications to Native AS/400

The data field KEY has to be replaced with some other defined field, or by
suitable MOVE and MOVEL operations with valid fields.

The best way to do this is to create a new field in a data structure, as follows:

DS
1 8 NE~JKEY
1 2 ISTORE
3 80ISERIL

and replace the operation above with:

C 99 	 MOVE NE~JKEY NEl'iCUS

In spite of creating the data structure as shown, the field NEWKEY cannot be
used to access the MASTER file as a composite key; the compiler error message
7078 will still be given for the statement:

C NEWKEY CHAINMASTER 	 99

11.1.7 Adjusting Internal Field Names to Match Database Names
In the example, the fields STORE, SERIAL, and NEWCUS are unknown to the
external file, which uses the fields LOCATN and NUMBER.

There are two ways to correct the unknown fields shown in the example:

1. 	 The recommended way of making the names the same is to change each
occurrence of the fields like STORE to LOCATN, and SERIAL to NUMBER.
That is, make the field names comply with those chosen for the external file.

Do not change the external file field names to fit the program, because this
would mean changes to other programs using the file.

Do the following:

• 	 Scan your program to see if the fields LOCATN and NUMBER are already
defined and used elsewhere in the program. The compiler
cross-reference listing can help you do this.

If these are already defined as fields in another externally described
file, there might be a conflict. You must resolve this based on your
knowledge of the file structures and the program logic. This could
mean renaming fields in the externally defined files, recreating those
files, and then making further program changes. See 11.1.8, "RPG
and a Single Memory Area" on page 91 for details.

If LOCATN and NUMBER are used as fields in the program but not as
a field in another externally described file, scan the program and
replace all occurrences with another unused name. (Check the
cross-reference listing to choose an unused name).

• Now scan the program and do the following:

Remove the references to NEWCUS, because they are not really
required for output.

Move the new data structure NEWKEY to CUST# in the calculation
specifications. This will set the values of LOCATN and NUMBER as
well.

Replace NEWCUS in the output specifications with the two fields
LOCATN and NUMBER.

RPG Considerations 89

Example
I

Also note that fields not used in input (like NAME) will not be flagged, but
fields not used in output (like NAME) will be flagged as **NOT OUTPUT** in
the list of output fields. These are not errors; they show that the fields
concerned are not specified on the output specifications (lines 4200 and
4300). so they are not output to the file.

2. 	 There is a new function which might be useful when adjusting external
names. The "External Field Name" field in the I-specification (columns 21-30)
can be used to specify the external name (EXTNAM). Columns 53-58 can be
used to specify the corresponding internal name (PRGNAM). At run time, the
program uses the internal name to access the field defined by the external
name.

EXTNAf4 	 PRGNA'~

LOCATN 	 STORE

Figure 21 on page 91 shows how the program looks after making the changes to
resolve the field conflicts that are discussed above.

90 Converting System/36 Environment Applications to Native AS/400

FMASTER UF E K DISK

IMASTEREC Ell
I LOCATN
I NUMBER
I CODE

At40UNT

DS
1 8 CUST#
1 2 LOCATN
3 8ElNUI'1BER

1** ADD A DATA STRUCTURE TO REPRESENT THE Cm4POSITE KEY AS DATA
I DS
I 1 8 NEviKEY
I 1 2 ISTORE
I 3 8ElISERIL

C**

C REPLACE MOVES \~ITH KLIST jKFLD FOR COMPOSITE KEY
C**

C** MOVELISTORE KEY 8
C** MOVE ISERIL KEY
C KEY KLIST
C KFLD ISTORE
C KFLD ISERIL
C KEY CHAINMASTER 99
C**N99 MOVE CUST# NE\~CUS 8 NOT REQUIRED
C 99 MOVE NEW KEY CUST#

OMASTEREC Ell
0 LOCATN
0 NUMBER
0 CODE
0 AMOUNT

Figure 21. RPG and Database - Converted Program

11.1.8 RPG and a Single Memory Area
It might happen that a field name is used in a record format in one external file,
and also used in a record format in a different file. If both of these files are read
into a program, RPG sets up a single memory area for the field.

The compiler gives no warning or error message.

Thus a read from the first format followed by a read from the second format will
overlay the field contents from the first format with the contents of the second
format. This might cause undesirable results.

There is nothing new here for RPG II users, since RPG II behaves the same way.

RPG Considerations 91

If you need to keep two separate memory areas for the two different occurrences
of the same field, you can either:

• 	 Rename one of the fields in the database.

• 	 Redefine one of the fields in the program. This can be done very simply by
using the "External Field Name" function on the I-specification. This is a new
function for RPG II users. See Chapter 5 of the RPGI400 Reference manual
for details.

This same discussion holds true for display file fields as well.

11.2 RPG and Display Files
This section gives a step-by-step guide for the process of changing RPG
programs to allow for the use of externally described display files. Refer to 13.2,
"Multiple Requester Terminal Programs" on page 130 for a description of the
additional steps needed to convert MRT programs into SRT programs.

Display files and disk files are handled in a very similar way on AS/400.
Therefore, the steps needed to convert display files are much like the steps
explained for disk files.

At this point we already have the display file DDS, which was generated by the
migration utility. In fact the System/36 Environment uses the display file created
from the DDS.

The DDS source is in the file QDDSSRC in the conversion library. (It was copied
there from QS36DDSSRC, according to the directions in 3.7, "Moving Selected
System/36 Source to New Library" on page 16.)

Recreate the display file in the conversion library.

The changes needed fall into two groups:

1. 	 Changes needed to run the AS/400 program with program-described display
files. These are the minimum changes needed and must be made before the
program will compile and run with the RPG/400 compiler.

2. 	 Additional changes needed to run the program and make the display file fully
external. You may not get many benefits from this step unless you have
common screen formats (for example, common heading, footing, or error
screens) which are used by many programs. If this is not the case, we
recommend you only complete the minimum changes.

11.2.1 Old Programs with Display Files that will not Convert
You may have programs with display files that will not convert to AS/400 display
files because these programs were originally written for System/34 or earlier
systems.

These files will be CONSOLE, CRT, or KEYBORD file types using the KEYnn and
SETnn operations. While these will recompile in the System/36 Environment, they
have no equivalent in RPG III.

92 Converting System/36 Environment Applications to Native AS/400

In this case you will have to design and create a suitable display file and rewrite
the program in RPG III.

11.2.2 Minimum Changes for Program-Described Display File
Section 9-12 of the RPGI400 User's Guide has a good discussion of
program-described workstation files. We suggest that you have a copy available.

The following changes must be made in order to convert your application,
whether it uses program-described files or externally described files. Refer to
11.2.3, "Additional Changes for Externally Described Display Files" on page 99
for additional changes needed for externally described display files.

Changing File Specifications
We recommend that you change the file name on the F-specification to the name
of the external display file. (This is probably xxxxxxFM, where xxxxxx is the
program name.) If you do this you will not need an OVRDSPF statement at run
time to tie the internal and external names together. An alternative would be to
rename the display file.

If the file is a demand file, replace 0 in column 16 with F for fully procedural, that
is, read and written by explicit operations in the calculation specifications. (If
column 16 is P for primary, leave it alone, unless asked to change it in "RPG/400
Display File Cycle Difference" on page 94.)

Code an F in column 19 (file format) to indicate that the file is a
program-described file.

You might also need to specify a PASS *NOIND entry on the file continuation
specifications. If the program uses a display file containing the INDARA DDS
keyword, then PASS *NOIND must be specified. The display files generated by
the migration utility are all created with INDARA, so if you are converting a
program that uses such a file, you must specify PASS unless you remove the
INDARA keyword from the file. However, removing INDARA will change the
buffer that is returned to the program and will affect other programs that use the
file, so we recommend leaving INDARA in the file and specifying PASS *NOIND
in the program.

Remove the K continuation for the FMTS line if the program has one.

Changing Input SpeCifications
Change the file name to the same name used on the F-specification.

Changing Calculation Specifications
Change the file name to the same name used on the F-specification.

On System/36 and in the System/36 Environment, when the first input or output
operation issued by your program in the first cycle was a READ, the program
would receive either. read under format (RUF) data, program data 'from the
procedure, or a blank record. This initial input is normally used to trigger the
output of the first screen format, but it may also be used to .condition calculations
before the first output. If your program uses this initial input, read and follow
one of the recom,mendations in "RPG/400 Display File Cycle Difference" on
page 94. Output specifications may also change as a result. Re~'Jrn to this point
when you have finished.

RPG Considerations 93

When you perform a read on a WORKSTN file on the System/36, all formats
currently on the display are read back into your program. All input and
input/output fields are passed back to your program, even if they have not
changed since the formats were written. On AS/400, only the last format written
is read back to your program. Also, AS/400 passes back to your program only
those fields that have changed.

These differences might require program changes if you write multiple formats
or overlays to build up displays before reading. Multiple READ operations, one
per format, can retrieve the data into the program.

The Modified Data Tag attribute DSPATR(MDT) is automatically specified when
you migrate SFGR source members from System/36 to AS/400. It is a good idea
to keep this keyword to be sure that all input fields are returned to your
program.

Changing Output Specifications
Change the file name to the same name used on the F-specification.

Multiple Writes and the INVITE Keyword
If the display file is used only by native AS/400 programs and it is not a multiple
device display file, then the INVITE keyword may be removed. It is not needed
and might cause poor performance. If the display file is still being used by
System/36 Environment programs, then the INVITE is needed, but you should still
condition its use to occur only on the last write before a read to improve
performance.

RPG/400 Display File Cycle Difference
The RPG/400 logic cycle differs from the RPG II logic cycle in the way that the
initial workstation cycle is processed.

Before first detail input, the RPG II logic cycle issues a read for first detail input.
This is typically a blank record.

With the RPG/400 compiler, a format must exist at the device before an input
operation can occur.

This means that to convert your interactive program to native AS/400, you will
have to change the program logic. These changes are not difficult. There are
three different methods:

1. This is the simplest method, but will not work in all cases.

If the first-time input is used to set on an indicator, which is then used only to
output a format to the display (that is, if the indicator is not used to perform
any calculations prior to writing the first format), then write out that first
format with the 1 P indicator at first detail output time. (The first detail output
time occurs before the first detail input.)

If you are using an EXCPT to write the first format, and the EXCPT is
conditioned by the first-time input indicator, and if no other calculations are
conditioned by the indicator, remove the EXCPT operation from the
calculations and output the first format at 1 P time. You may have to add
extra output specifications if the same format is written to with EXCPT on
subsequent cycles.

94 Converting System/36 Environment Applications to Native AS/400

See Figure 22 and Figure 23 for before and after examples.

FAF01FM CP F 123 WORKSTN
IAF01FM AA 01 1 C
IAF01FM BB 02 1 CA
C 02 MOVEL'SECOND 'WRK13 13
OAF01FM D 01
0 K3 'ONE'
0 \'JRK13 14
OAF01FM D 02
0 K3 'ONE'
0 I'JRK13 14

Figure 22. Displays - Systeml36 Program with no First Cycle Calculations

F**
F* WRITE SCREEN AT OUTPUT TIME
F**
FAF01FM CP F 123 \,oJORKSTN
IAF01FM BB 02 1 CA
C 02 MOVE 'SECOND 'WRK13 13
OAF01FM D 1P
o 	 K3 'ONE'
o WRK13 14
OAF81FM D 02
o 	 K3 'ONE'
o 	 WRK13 14

Figure 23. Displays - ASI400 program with No First Cycle Calculations

2. 	 This method is a little more work but is applicable in all cases. It is used by
PTK. If you use PTK to convert your programs, you will need to carefully
check the indicators used and make sure that the correct first output is done.
Also make sure that any calculations for the first-time screen are processed
only once.

If your program logic is dependent on doing calculations before the first
format is written to the device, use this method. It does not alter the input or
output specifications and avoids extensive changes to the program logic.
Also, it eliminates the need to create DDS for a dummy format and write out
that dummy format just to allow the first-time input. (A dummy format would,
for example, simply display "Press Enter to continue").

First, make the file fully procedural (F in column 16) to allow the READ
operation code to be added to the logic. Then add lines of code as shown in
the example. If your display file was a demand file, these lines already may
be present. There are some optional lines that might help you avoid testing
the first-time indicator for a large number of lines of code that will not be
processed on the first cycle.

RPG Considerations 95

See Figure 24 on page 96 and Figure 25 on page 97 for one example. See
Figure 26 on page 98 and Figure 27 on page 99 for another example that
handles the first-time processing in a better way because fewer changes
may be needed to convert this program to use fully externally described """'"
screen files.

3. 	 The third method of conditioning the write is to use the INZRCD DDS
keyword. A read to a format with the INZRCD keyword causes a write of the
same format to be done by workstation data management before the read is
done. This method has not been tested.

C**

F* FIRST TIME BLANK SCREEN SETS AN INDICATOR WHICH

F* CONDITIONS CALCULATIONS AND INITIAL OUTPUT

C**

FAF81FM CP 123 ~JORKSTN

F KFMTS AFEXMPFM

1* FIRST-TIME BLANK

IAF01FM AA 81 1 C

IAF01FM BB 02 1 CA

IAF01FM CC 03 1 CB

C 01 MOVEL IIST TIMEIWRK13 13

C 02 MOVELISECOND IWRK13

C 03 SETON LR

OAF81FM D 81

o 	 K3 IONEI
o 	 1 IAI
o WRK13 14

OAF81FM D 82
 ...""o 	 K3 IONEI
o 	 1 IBI
o 	 WRK13 14

This display file DDS will have been created during migration.
A**

A DISPLAY FORMAT FOR THE ABOVE PROGRAM
A**

A INDARA

A INVITE

A R ONE

A ID 1 B 2 2

A NAME 13 B 10 18

Figure 24. Displays - Systeml36 Program with First Cycle Calculations

96 Converting System/36 Environment Applications to Native AS/400

F**
F* ADDITIONAL CODE ADDED TO AVOID THE FIRST-TIME READ
F* INPUT AND OUTPUT SPECIFICATIONS ARE UNCHANGED
F**
FAF01FM CF F 123 liJORKSTN

--> 	 F************************* REMOVE THE FORMATS REFERENCE
F** KFMTS AFEXMPFM
1* FIRST-TIME BLANK
IAF01FM AA 01 1 C
I 1 1 ID
IAF01FM BB 02 1 CA
I 1 1 ID
IAF01FM CC 03 1 CB
I 1 ID
C*** ***

--> 	 C* INDICATORS 04 AND 05 ARE USED - YOU WILL NEED TO CHECK

C* THE PROGRAM FOR VALID INDICATORS TO USE HERE.

C* NOTE: THE DISPLAY FILE WILL READ ON THE SECOND AND

C* SUBSEQUENT CYCLES ONLY.

C**

--> C 04 READ AF01FM 05

--> C N04 SETON 0401

--> C SETOF 05

**

C 01 	 MOVEL'1ST TIME'WRK13 13
C**

--> 	 C* OPTIONAL- BYPASS UNWANTED FIRST-TIME CALCS

C* IF THAT IS NOT ALREADY CODED INTO THE PROGRAM.

C* CAN BE ADDED AFTER ALL FIRST TIME CALCS COMPLETED

C**

--> 	 C 01 GOTO ENDTAG

C 02 MOVEL'SECOND 'WRK13

C 03 SETON LR

C**

--> 	 C* MATCHING TAG FOR GOTO
C**

--> 	 C ENDTAG TAG

OAF01FM D 01

0 K3 'ONE'

0 1 'A'

0 WRK13 14

OAF01FM D 02

0 K3 'ONE'

0 1 'B'

0 ~~RK13 14

Figure 25. Displays - ASI400 Program with First Cycle Calculations

RPG Considerations 97

HJORKSTN CP F 64 ~JORKSTN

nJORKSTN NS 1 CS

1* FORMAT-SELECTOR

I 1 1 #FID

I 2 2 AEPTYP

I NS 1 CA

1* FORMAT -OESCR

I 1 1 #FIO

I 2 16 AEPDES

1* FORMAT-BLANK

I NS

C*---
C* M A I N LIN E

C*--HHLLEE

C f40VE *BLANK #r~SG 40 CLEAR

C SETOF 808199

C*

C #FID CASEQ'S' SUBI00 SELECTOR

C #FID CASEQ'A' SUB200 DESCRIPTION

C CAS SUB900 BLANK

C END

C*---
C SUB900 BEGSR BLANK: INITIALISE
C*--HHLLEE

C SETON 80 PUT SELECTOR

C MOVE 'HALLO' #MSG 1ST MESSAGE

C ENDSR

C*

C*

OvJORKSTN 0 80

o K8 'SELECTOR'
o UDATE Y 8
o #MSG 48
o D 81
o K6 'OEseR I

o N20 AEPDES 15
o 81 #MSG 55
o DR LR,

Figure 26. Displays - Systeml36 Program with First Cycle Calculations

98 Converting System/36 Environment Applications to Native AS/400

FJCS164FMCF F 164 ~vORKSTN

IJCS164FMNS 1 CS
1* FORMAT-SELECTOR
I 1 1 HFID
I 2 2 AEPTYP
I NS 1 CA
1* FORf4AT -DESCR
I 1 1 HFID

2 16 AEPDES
C*---
C* M A I N LIN E
C*---
C* These 3 lines added for preprocessing.
C* 1st cycle will not read but do preprocessing,
C* then output
C* 2nd cycle will read last format written,
C* and continue with normal program logic.
C*--HHLLEE
C 61 READ JCS104Ff4 62
C N61 SETON 61
C SETOF 62
C*--HHLLEE
C MOVE *BLANK Ht4SG 46 CLEAR
C SETOF 808199
C*
C HFID CASEQ'S' SUB106 SELECTOR
C HFID CASEQ'A' SUB200 DESCRIPTION
C CAS SUB900 BLANK
C END
C*---
C SUB900 BEGSR BLANK: INITIALISE
C*--HHLLEE
C SETON 86 PUT SELECTOR
C MOVE 'HALLO' HMSG 1ST MESSAGE
C ENDSR
C*
C*
OVJORKSTN D 80
0 K8 'SELECTOR'
0 UDATE Y 8
0 HMSG 48
0 D 81
0 K6 'DESCR '
0 N20 AEPDES 15
0 81 HMSG 55

Figure 27. Displays - AS/400 program with First Cycle Calculations

11.2.3 Additional Changes for Externally Described Display Files
The changes described below are in addition to those that have already been
described in the section 11.2.2, "Minimum Changes for Program-Described
Display File" on page 93.

RPG Considerations 99

It is likely that more changes will be needed for displays than for disk files. On
System/36 there is an external display description and format member (as SFGR
S- and D-specifications), with the data passed between the program and the
workstation file via a buffer, that does not require matching field names between
the program and the display SFGR source. Therefore there is a possibility of
extensive conflict between the two sets of field names in the program and the
SFGR specifications.

Migration of this SFGR source to DDS further modifies screen field names if you
have used array names that were allowed with the System/36. An array name
such as ARRY,1 would be converted to ARRY$1 to be compatible with DDS.

So before you make changes to the programs you should review the display file
DDS to:

• 	 Resolve the record (format) names. These cannot be the same as any field
names.

• 	 Resolve all of the field names (which may be an extensive job!). Since most
displayed fields originate from database records, you should use the field
names that have been chosen for the database records wherever
appropriate.

• 	 Change output of literals and output field editing in the program to code
these into the display file DDS for externally defined files. Literals in the DDS
can be conditioned with indicators as in the original program. RPG/400 does
not allow program editing of fields or output literals with externally defined
display files.

EXAMPLE:

Displayed output in the original program:

o 	 NUMBERZ 7
o 	 AMOUNT 21 ' , (:), . CR'
o 	 99 34 'ERROR MESSAGE'

Should be coded with in the display file DDS as:

A NUMBER 7 (:)0 4 2EDTCDE(Z)

A AMOUNT 9S 20 5 2EDHJRD(' , (:), . CR')

A 99 2(:) 10'ERROR MESSAGE'

and the editing and literal removed from the program:

Then recreate the display file using the changed DDS.

Changing File Specifications
Replace F in column 19 (File Format) with E to indicate that the file is externally
described.

Blank out the record length.

100 Converting System/36 Environment Applications to Native AS/400

Changing Input Specifications
Make the following changes:

• 	 For the file entries: Change the file name entries to the record names coded
in the display file DDS. Then blank out the sequence, number, and option
fields in columns 15-18, and the record identifying codes in columns 21-41.

• 	 For the field entries: Blank out the P/B/LlR, field location from and to, and
decimal position entries in columns 43-52.

Replacing File Names with Format Names
With an external display file, input and output specifications must refer to the
record name and not the file name.

On System/36, when a data stream from the display is read in, it is examined
according to coded input specifications, and the corresponding record identifying
indicator is set on. For an AS/400 externally described file, this does not
happen. If the program uses the RPG cycle, the format read in will be the last
format written out. If the program uses a procedural file, the format named in
the READ will be returned. In any case, no test is done on the data returned to
the program. The record indicator that is set will be the record identifying
indicator (if any) specified in columns 19 and 20.

Adjustments are needed in cases where the program logic is like the following
example.

The System/36 display file has a single, general purpose format where the fields
displayed are conditioned by indicators. There is a single display format record
called ORDER that displays:

• 	 Order headers (indicator 01, with a record identifying code of A)

• 	 Order details (indicator 02, with a record identifying code of B)

• 	 Order totals (indicator 03, with a record identifying code of C).

When the display file is read back into the RPG II program, the record-identifying
indicator is set on according to whether the identifying code is A, B, or C.

When such a program has the display file name replaced by the format name
and is recompiled, error message RPG 4111 indicates that the record format is
defined more than once. In this case the program must test the incoming record
identifier and set on the corresponding indicator.

RPG Considerations 101

Thus:

IHEADER AA 01 1 CA
I 	 1 1 ID
I

IDETAIL BB 02 1 CB

I 1 1 ID

I 	

nOTAL CC 03 1 CC
I 	 1 1 ID

All of this input will be replaced by, calculation

specifications to test for the appropriate·input.

IORDER

C* TEST INCOMING RECORD TO SEE WHAT TO DO NEXT

C* SET ON THE SAME RECORD IND AS THE INPUT DID BEFORE.

C ID COMP 'A' 01

C ID COMP 'B' 02

C ID COMP 'C' 03

C*

Figure 28. Displays - Setting Record Indicator in Calculations

The format record name must not be the same as the name of a field in the
format. If it is, the program will not compile, even though the display file will be
created without error. Change the record name on the DDS if you need to avoid
this situation.

Calculation Specifications
No changes are needed. Note that on AS/400 you can write and then read
display formats directly from RPG/400 by using EXFMT. This might allow you to
simplify your program logic and write new applications more easily.

Changing Output Specifications
With an external display file, output specifications must refer to the record name
and not to the file name.

• 	 Change the file name to the record name appropriate to the format.

• 	 Remove all the lines that name the output format. These are the lines with K
in column 42; for example, K8 'SELECTOR'.

• 	 Remove any release operations; use LR or RETRN instead.

• 	 The only valid entries for field descriptions are output indicators, field name,
and blank after. Blank out any other fields.

• 	 Output constants and literals and field editing must be removed. Code these
in the display file DDS and condition them on indicators. (See 11.2.3,
"Additional Changes for Externally Described Display Files" on page 99.)

102 Converting System/36 Environment Applications to Native AS/400

Compiling the Program
We have not yet removed the field names on the input and output specifications;
they are left so that when the program is compiled, we will be able to see both
internal and external names.

Examine the compiler list to identify field names used internally that now are not
known to the external file description. These field names will be highlighted by
error codes 4096 and 6109, exactly the same as for external database files.

The following example uses an externally described display file CONVFM with
record(format) CONVREC.

Fields such as KEY, DO, MM, YY, PART, and PROD are among those in the
original program input and output specifications. The process described here is
the same as that used for externally defined database files.

No calculations are shown, because this topic was dealt with under changes for
externally-defined database files.

RPG Considerations 103

F***

FCONVFM CF E ~JORKSTN

ICONVREC 01

I KEY

* 4096 4096-******

I DD

* 4096 	 4096-******
I 	 Mt4

* 4096 4096-******

I YY

* 4096 4096-******

I PART

* 4096 4096-******

I 14SG

* 4096 	 4096-******
1***

INPUT FIELDS FOR RECORD 	 CONVREC FILE CONVFI4 FORMAT CONVREC.
1 1 ID
2 4 KEYl

5 7 KEY2

8 13 DATE

14 17 ITEM

18 19 FL001

20 29 NOTE

OCONVREC D 01
o 	 KEY

* 6109 	 6109-******
o 	 DATE
o 	 PROD

* 6109 	 6109-******
o 	 FL001
o 	 NOTE

OUTPUT FIELDS FOR RECORD CONVREC FILE CONVFM FORMAT CONVREC.

NOT OUTPUT ID 1 CHAR 1

NOT OUTPUT KEYI 4 CHAR 3

NOT OUTPUT KEY2 7 CHAR 3

DATE 13 CHAR 6
NOT 	 OUTPUT ITEM 17 CHAR 4

FL001 19 CHAR 2

NOTE 29 CHAR 10

M e s sag e Sum mar y
* QRG4096 Severity: 30 Number: 5

Message. 	 RPG-Field-Name entry for externally-described
file is invalid. Specification line ignored.

* QRG6109 Severity: 30 Number: 3
Message 	 : The Field name specified does not exist in

Externally-Described record. Specification ignored.

Figure 29. Displays - Compiler Output for External File

104 Converting System/36 Environment Applications to Native AS/400

11.2.4 Adjusting Internal Field Names to Correspond with Display File Names
In 	the previous example the fields PART and PROD are unknown to the external
file, which uses the field ITEM. There are two ways to correct the unknown fields
shown in the example:

1. 	 The recommended way of making the names the same is to change each
occurrence of the fields like PART and PROD in the program to ITEM.

(Do not try to change the name of the display file field to PART. This makes
one of the names match, but still leaves the name PROD unmatched. You
would then have to recreate the DDS with the name PART, and this would
mean changes to any other programs using the display file.)

Do the following:

• 	 Scan your program to see if the field ITEM is already defined. The
compiler cross-reference listing can help you do this.

If ITEM is already defined as a field in another externally described
file, there might be a conflict. You must resolve this based on your
knowledge of the file structures and the program logic. See 11.1.8,
"RPG and a Single Memory Area" on page 91 for details.

If ITEM is used, but not as a field in another externally described file,
scan the program and replace all occurrences with another unused
name. (Check the cross-reference listing to choose an unused
name.)

• 	 Now scan and replace all occurrences of PART and PROD with ITEM.

Fields not used in input (like 10) will not be flagged, but fields not used in
output (like KEY1) will be flagged as **NOT OUTPUT** in the list of output
fields. These are not necessarily errors; they show that the fields concerned
are not specified on the output specifications, so they are not output to the
file.

2. 	 There is a new function that might be useful when adjusting external names.
The "External Field Name" field in I-specification (columns 21-30) can be used
to specify the external name (EXTNAM). Columns 53-58 can be used to
specify the corresponding internal name (PRGNAM). At run time, the
program uses the internal name to access the field defined by the external
name.

EXTNAM 	 PRGNAM
For example:

I ITEt~ PROD

3. 	 The field KEY is required to be output. This field must be replaced with KEY1
and KEY2 in the output. To reference KEY in the body of the program, a data
structure must be created where KEY is structured from KEY1 and KEY2. The
same applies to referencing the fields DO, MM and YY within the
DDS-defined field DATE. This is shown in the next section.

RPG Considerations 105

Adding Additional Fields
Here is an example of the fields from the DDS used above for the input- and
output-specifications of the record format CONVREC.,
IDDS FORMAT lID IKEYl IKEY2 DATE ITEM FL881 NOTE

I I-SPECS. IID I KEY DD I MM I YY PART MSG

IO-SPECS. IID I KEY 	 DATE PROD NAME

The definitions of the record needed by the program do not match the display file
DDS. This is because of the overlapping, subdivided, or grouped fields, like the
DATE and MSG fields in our example.

• 	 The MSG field combines both FL001 and NOTE fields.

• 	 The DDS has a field (10) which is not referred to in the I-specifications or in

the calculations.

• 	 Two or more fields from the DDS (KEY1 and KEY2) are referred to by a single

name (KEY) in the program. KEY is not a valid field name entry for the

externally described file .

• 	 A single field (DATE) from the external file is known as three fields (DO, MM,

and YY) in the program.

In these cases you can redefine the record layout of the external file by using a
data structure. Data structures can be used to subdivide an input field so that
the program can refer to the entire field or just to the individual subfields, as
shown below. They can be used to redefine an area and group fields together.
See the RPGI400 User's Guide for details.

DS
1 6 KEY
1 3 KEYl
4 6 KEY2
7 12 DATE
7 8 DD
9 H) MM

11 12 YY
13 24 MSG
13 14 FL881
15 24 NOTE

This would be included in the program. Therefore, the adjusted program will
now be:

106 Converting System/36 Environment Applications to Native AS/400

FCONVFM CF E ~JORKSTN

ICONVREC 01
I KEYl
I KEY2
I DATE
I ITEM
I FL001
I NOTE
1***

DS
1 6 KEY
1 3 KEYl
4 6 KEY2
7 12 DATE
7 8 DD
9 10 t1f1

11 12 YY
13 24 MSG
13 14 FL001
15 24 NOTE

OCONVREC D 01
o KEYl
o KEY2
o DATE
o ITEM
o FL001
o NOTE

Figure 30. Displays - Program Modified for External File

11.2.5 A Note on UDAlE
There is a new way of handling the field UDATE on AS/400. It is coded on the
DDS as a field-level keyword that displays the current job date. So instead of
coding:

A DATE 8 0 02003

Use the new method:

A 02003DATE EDTCDE(Y)

11.2.6 Removing Internal Field Descriptions
At this stage you might wish to remove the 1- and O-specification lines containing
the old internal field names. But be aware of the following requirements:

• Input specifications might still be required if:

Record identifying indicators are to be specified.

RPG Considerations 107

A field within the record is to be renamed for the program.

Control level or matching field indicators are to be used.

Field indicators are to be used.

• Output specifications might still be required because:

Entries in positions 7 through 37 of the record identification line
determine the conditions under which the records are to be written.

When using field description output specifications for externally
described files, only the fields specified are placed on the output record.
'ALL can be specified in the field name to include all fields in the record.
See the RPGI400 Reference manual for further details.

Output indicators on the field description may be used. If this is the
case, you cannot remove the field descriptions.

Recompile and check for a successful compilation. Of course, the program still
must be tested thoroughly.

11.3 Additional RPG Considerations

11.3.1 General
Here are additional differences between System/36-compatible RPG programs
and RPG/400 programs.

• 	 BSCA, CONSOLE, CRT, and KEYBORD files are not supported in RPG/400.
These files are not converted by PTK, so you will have to convert them
manually.

• 	 EXIT and RLABL operations are not supported in RPG/400, nor are any
Assembler routines that are called by these operations. You will have to
create equivalent functions and use RPG/400 CALL and parameter list as
appropriate.

• 	 Files used by RPG/400 programs must exist prior to being opened. There is
no equivalent to the DISP-NEW keyword in the II FILE statement for output
files.

• 	 RPG/400 programs cannot mix access to display devices and ICF sessions
together through a single WORKSTN file.

• 	 INFDS for RPG/400 is different than for RPG II. For example, the location and
values of a variety of fields, including file status return codes, have changed.

• 	 Numeric fields are internally stored in packed format by default in RPG/400
unless the field is defined in a data structure subfield as zoned decimal.
RPG II uses zoned format as the default. This change in defaults can cause
parameter mismatches on program call interfaces.

• 	 Numeric fields should be initialized before they are referenced, particularly if
these are work fields to be output. All output fields must contain valid data.

• 	 The use of USRDSPMGT in a display file might affect the use of other
keywords or functions.

108 Converting System/36 Environment Applications to Native AS/400

11.3.2 Changing an RPG II MRT Program to an RPG/400 SRT Program
The basic steps needed to convert an RPG II MRT program to an RPG/400 single
requester (SRT) program are:

• 	 Remove the K continuation lines for 10, IND, NUM, and SAVDS, so that
RPG/400 will treat the display file as a single device file instead of a multiple
device file. Leave the data structure (SAVDS) in the program, though, or you
will get undefined field names.

• 	 Remove all of the "release" operation codes in both calculations and output
lines. The REL operation code and the release indicator on the output
specification are not allowed on AS/400 for single device files.

• 	 Recompile the program.

Other changes to the program might be required, particularly where logic has
been developed to share a common output file for multiple users. In this case,
we recommend using a user-related member within the output file with the name
of the member, based in part. on the user 10.

11.3.3 A Note on the LO Indicator
The LO indicator is not supported on RPG/400 output specifications. If it is
present it will give a compile error.

Since LO is always on, it has no effect at output time. The program should work
the same with the LO indicator removed.

RPG Considerations 109

110 Converting System/36 Environment Applications to Native AS/400

12.0 COBOL Considerations

At this stage we have generated DDS for the AS/400 external database files and
for the AS/400 external display files. But the programs still contain
program-described files, which may differ in record layout from program to
program.

There are three methods of COBOL conversion:

1. 	Convert only the necessary differences between the System/36 Environment
and the AS/400 native mode. This means that you do not include externally
described files in your COBOL program, but you still change incompatible
coding statements and add some program logic. This is the fastest way to
get a native COBOL program.

On the AS/400 there is no "MUST" for externally described files within a
program. It is the programmers responsibility to avoid all decimal data
errors. This means that the internally and externally described files have the
same field description for numeric fields.

2. 	 Convert the programs that contain externally described files, but still are
using the old file description within the WORKING STORAGE SECTION.
Otherwise add record formats using the COPY DDS statement. Also do any
necessary changes and add some program logic. This process requires
additional coding effort, but there are some situations where you can use
only this kind of conversion.

For example. If you have level 88 fields in your file description, there is no
way to create the same function with DDS. The only way to solve this
problem is to use your old internal file description in the WORKING
STORAGE SECTION and move the data of the externally described file after
the read to this area. Process your data and move the data back to your
externally described file. Then write the record to your database.

3. 	 Convert the programs that contain only externally described files and do the
necessary changes. This will cost the most effort, and you should test your
program very carefully. In most cases you have to change your program
logic and your program flow to get the correct results.

When converting System/36 Environment COBOL programs to native AS/400,
consider the following areas and make changes accordingly:

• 	 Miscellaneous.

• 	 Externally described database files.

• 	 Display files.

To convert the program, copy the program out of your source file QS36SRC into
the source file QLBLSRC. Change the source type of the file from CBL36 to CBL.
There is no need to bring your COPY members into QLBLSRC, but in this case
you have to qualify your COPY statements. Also if you have to change something
in your COPY members, you must do this in your original version. Therefore, we
recommend that you also copy your COPY members into QLBLSRC.

© Copyright IBM Corp. 1988,1990 111

12.1.1 Special Cases for COBOL
Before you start to work with the PTK, you should note the following problems
and rules for COBOL:

COBOL source code having REDEFINES and OCCURS within the same statement
and level must be restructured to produce two statements with different levels;
the REDEFINES statement at a higher level and the OCCURS at a lower level.

If the PTK does not recognize the COBOL filler fields, you will get the PTK
message "Duplicate Fields". Change these fields to real field names if
necessary. Do not select a filler field in the PTK without changing the name.
Later in the conversion process you can create a logical file over the physical
file. Within the logical file description you select only the fields you really need in
your program. This prevents fields from being accessed like the COBOL FILLER
keyword.

The PTK removes the dashes from long COBOL names and shortens their length
to 10. This might lead to duplicate names.

Program Defined: PTK Shows:
05 MASTER-CODE-ID MASTERCODE
05 MASTER-CODE-REF MASTERCODE Duplicate

One of these DDS field names must be changed. The program-defined field
names may remain the same, since they are converted in their original lengths
to automatically use the DDS field-level ALIAS keyword. When specifying the
substitute name in DDS, change any hyphen "-" to an underscore "_". COBOL
will automatically convert the underscore character to a hyphen during program
compilation. For example, a field name of MASTERCODE and a program-defined ..".
name of MASTER-CODE-ID would generate a DDS field name of MASTERCODE
and with ALlAS(MASTER_CODE_ID).

For a more detailed example of such DDS, refer to Figure 33 on page 125.

PTK creates DDS that contains concatenated key fields. This is not allowed in
COBOL when you use RECORD KEY IS EXTERNALLY DESCRIBED KEY within
your SELECT clause. You really must change your DDS specifications so that
they contain real key fields.

This is the created DDS for the key.

CATKEY CONCAT(FIELD! FIELD2)
K CATKEY

You should change the DDS like this.

FIELD!
FIELD2

K FIELD!

K FIELD2

Now you can use the file as an externally-described file within your COBOL
programs.

112 Converting System/36 Environment Applications to Native AS/400

12.2 Miscellaneous
In this section you will find some differences between System/36 Environment
COBOL and AS/400 native COBOL. Adjustments must be made for these
differences within all COBOL conversion steps.

12.2.1 COPY Books
The native compiler requires a qualified name for the COPY members if they do
not reside in the same library and source file as the main source. In the
System/36 Environment the compiler assumes that the source will always be in
the file QS36SRC in the specified library. If you have COPY statements in your
program, we recommend that you qualify these statements. The qualifier should
always contain the library and the source file with your COPY members.

Old Statement: COpy XYZ.

New Statement: COPY XYZ OF MAINLIB-QS36SRC.

or

Old Statement: COpy XYZ OF COPYLIB.

New Statement: COpy XYZ OF COPYLIB-QS36SRC.

In this example we assumed that only the main program has been copied to the
QLBLSRC source file. If you also have copied your COPY members into
QLBLSRC, change your command from QS36SRC to QLBLSRC.

There are two good reasons to use qualified copy statements:

1. 	The performance of the COpy statement is faster because you do not need
to search your whole library list.

2. 	 You cannot get the wrong COPY members if your library list is not in the
correct sequence.

12.2.2 PROCESS Statement
There are some differences between System/36 Environment COBOL and native
COBOL in the PROCESS statement.

1. 	 In System/36 Environment the parameter NUMBER is the default of the
PROCESS statement. Native it is NONUMBER.

2. 	 In System/36 Environment the parameter OPTION is the default of the
PROCESS statement. Native it is NOOPTION.

3. 	 NOLVLlLVL indicates the FIPS nagging in the System/36 Environment.
NOFIPS/FIPS indicates the FIPS flagging in native mode.

4. 	 FLAGW and FLAGE are used in the System/36 Environment to list the error
messages of a compiler. FLAG(nn) is used in native mode.

S. 	 NOCMPAT/CMPAT is not supported in native mode.

6. 	 NOBLOCKIO is not supported in native mode.

7. 	 LIBRARY is not supported in native mode.

8. 	 NODUMP/DUMP is not supported in native mode.

9. 	 DEBUG/NODEBUG is not supported in native mode.

10. GRAPHIC is not supported in native mode.

COBOL Considerations 113

11. NOSYNTAX/SYNTAX is not supported in native mode.

For more information, see Chapter 2 of the COBOLl400 USER'S GUIDE and
Chapter 3 of the Systeml36-Compatible COBOL User's Guide and Reference.

You are more flexible if you are not using the PROCESS statement and you key
your parameter within the CRTCBLPGM command. You also can change the
command for all programmers by using the CHGCMDDFT command. Now every
programmer receives the same compiler output, but still has the ability to
overwrite these parameters.

12.2.3 MEMORY SIZE Clause and Source/Object Computer
The MEMORY SIZE clause should be removed from the Configuration Section.
Also change the SOURCE- and OBJECT-COMPUTER clauses from IBM-S36 to
IBM-AS400.

12.2.4 Literals
Alphanumeric literals are enclosed in apostrophes on System/36. This produces
a compiler warning message, "Unexpected literal delimiter found" on AS/400. To
prevent this message, you might put the option APOST into the PROCESS
statement or the *APOST into the CRTCBLPGM command. You also can use the
PDM search and replace functions to change the literal delimiter from an
apostrophe to a quotation mark.

12.2.5 USAGE IS COMPUTATIONAL
The ANSI standard states that this data type is mapped to the most efficient
commercial data support for the specific machine. The following is what
COMPUTATIONAL maps to:

• S/3,S/32,S/36 - Zoned Decimal, same as USAGE IS DISPLAY.

• S/38,AS/400 - Packed Decimal, same as USAGE IS COMP-3.

• S/370 - Binary, same as USAGE IS COMP-4.

When you convert a program from System/36 Environment, look for the following
field definitions in your program:

01 FIELD-NAME PIC S9(03) COMP VALUE ZERO.

In the System/36 Environment this field is a zoned decimal field. In native mode
it is a packed decimal field. If you have fields like this in your internal file
description, you must change them to get the correct file length. For example:

01 FIELD-NAME PIC S9(03) VALUE ZERO.

Because packed decimal fields are used on the AS/400, there are some things
that you should consider when declaring COBOL variables. The machine stores
packed decimal data in byte aligned fields. For example:

01 A PICTURE 99 USAGE IS COMP-3 VALUE 12.

would map in storage as a two-byte field

10112FI<- in HEX

Because four bits (one digit) are used for the sign of the number, you can see
that all packed decimal fields are always capable of holding an odd number of

114 Converting System/36 Environment Applications to Native AS/400

decimal digits. In order for the AS/400 to provide the illusion of having an even
number of decimal digits. the compiler and translator must generate extra ItAND
BYTE" instructions to strip (force· to zero) the left-most 4 bits. The
recommendation here is that all COMP-3 fields be declared. where possible, to
an odd number of decimal digits.

If you are converting COBOL programs from a S/36, it is highly recommended
that you change heavily used computational items to packed deCimal. The
overhead you pay for using zoned decimal on the AS/400 is the additional
conversions to and from packed decimal so the arithmetic operation can be
performed (a two-thirds reduction in the number of instructions).

12.2.6 Signed Clauses
This does not effect your conversion, but we recommend that you use the sign
"S" for numeric fields to reduce overhead within a computational operation. The
compiler has to generate extra code to force the sign to a positive value, even if
the result is always positive. For example:

81 FIELD-NAME PIC 59(83) COMP-3 VALUE ZERO.

12.2.7 Workstation Control Area
The control area definition for the display files must be changed from a
System/36 Environment definition to a native definition within the WORKING
STORAGE section. In System/36 Environment, the control area definition of the
workstation may look like this:

81 	 WS-CONTROL-AREA.
8S 	 vIS-CMD- KEY PIC 9(2).

88 ENTER-KEY VALUE 8.
88 CMD1 VALUE 1.
88 CMD2 VALUE 2.
88 CMD3 VALUE 3.
88 CMD4 VALUE 4.
88 CMOS VALUE S.
88 CMD6 VALUE 6.
88 CMD7 VALUE 7.
88 CMD8 VALUE 8.
88 CMD9 VALUE 9.
88 CMD18 VALUE 10.
88 CMDll VALUE 1I.
88 CMD12 VALUE 12.
88 ROLL-UP VALUE 98.
88 ROLL-Omm VALUE 9I.
88 CMD-ENTERED VALUE 1 THRU 24 98 91.

8S TERMINAL-IO PIC X(2).
0S FILLER PIC X(8).
8S CURSOR-ROW PIC 9(3).
8S CURSOR-COL PIC 9(3).

These are the main points of the System/36 Environment workstation control
area:

• WS-CMO-KEY is a 2-byte numeric field.

• The level 88 field VALUES are also defined for numeric fields.

• The TERMINAL-ID is a 2-byte character field.

COBOL Considerations 115

• 	 CURSOR-ROWand CURSOR-COL contain the cursor position.

In 	native mode, the workstation control area must look like the following:

01 	 WS-CONTROL-AREA.
05 WS-CMD-KEY PIC X(2),

88 ENTER-KEY VALUE "08".
88 CMD1 	 VALUE "81".
88 CMD2 	 VALUE "02",
88 Cr~D3 	 VALUE "03".
88 CMD4 	 VALUE "04",
88 Cr~DS 	 VALUE "05",
88 Cr'1D6 	 VALUE "86",
88 Cr~D7 	 VALUE "07",
88 cr~D8 	 VALUE "88",
88 cr~D9 	 VALUE "89",
88 Cr~D10 VALUE "10",
88 Cr~D11 VALUE "11",
88 Cr~012 VALUE "12",
88 ROLL-UP VALUE "98".
88 ROLL-DOWN VALUE "91",
88 CMD-ENTERED VALUE "01" THRU "24" "90" "91".

85 TERMINAL-IO PIC X(10).
05 RECORO-FORMAT-IO PIC X(10),

These are the main points of the native workstation control area:

• 	 WS-CMD-KEY is a 10 byte-character field.

• 	 The level 88 field VALUES are also defined for character fields.

• 	 The TERMINAL-ID is a 10-byte character field.

• 	 CURSOR-ROWand CURSOR-COL are not supported in the workstation
control area.

12.2.8 Cursor position
To get the cursor position you have to look into the I-O-FEEDBACK AREA.
CURSOR-ROWand CURSOR-COL are not supported in AS/400 native COBOL. To
get the cursor position you have to incorporate the following parts into your
programs.

116 Converting System/36 Environment Applications to Native AS/400

)
/

**
Add 	 the following statement to your SPECIAL NAMES clause.
'-,*****

I-O-FEEDBACK IS I-O-F.
**
Insert the following definition into your WORKING-STORAGE SECTION.
**
01 	 I-O-F-AREA.

05 FILLER PIC X(147).
05 ROlli-HEX PIC X(l).
05 COL-HEX PIC X(l).

01 	 I-O-F-WORKING-AREA.
05 ROW-BIN PIC 9(1) BINARY VALUE ZERO.
05 ROW-1 REDEFINES ROW-BIN.

10 	 FILLER PIC X(l).
10 	 ROW-1-2 PIC X(l).

05 	 COL-BIN PIC 9(1) BINARY VALUE ZERO.
10 FILLER PIC X(l).
10 COL-1-2 PIC X(l).

01 CURSOR-ROW PIC 9(2) VALUE ZERO.
01 CURSOR-COL PIC 9(2) VALUE ZERO.
**

Insert this statements after your read screen statements
into the PROCEDURE DIVISION.

ACCEPT I-O-F-AREA FROM I-O-F
MOVE ROW-HEX TO ROW-1-2
MOVE COL-HEX TO COL-1-2
MOVE ROW-BIN TO CURSOR-ROW
MOVE COL-BIN TO CURSOR-COL.

Now 	 you have the row and the column in your program and
you 	 can work with the fields CURSOR-ROWand CURSOR-COL
as 	you have done in the System/36 Environment

12.2.9 Initial Value of Fields
If you have different field-level descriptions coded in your WORKING STORAGE
Section, you have to initialize these fields. Otherwise you can get decimal data
errors. For example, if you have coded the following:

01 	 FI ELD-GROUP.
05 NUM-FIELD PIC 9(4).
05 ALP-FIELD PIC X(4).

Without initialization, the NUM-FIELD contains HEX'40'. HEX'40' = BLANK. This
is because the OS/400 always initializes group fields with HEX'40'. But HEX'40' is
not a valid numeric character. When you move this numeric field to another
numeric field, you get a decimal data error. You should either use the VALUE
parameter within the WORKING STORAGE, or to use INITIALIZE at the beginning
of your program.

The same problem can occur for the internally described files. If you do not
move data into numeric fields, these fields will contain HEX'40' as their initial
value. We recommend that you use the INITIALIZE statement in every COBOL
program. You also have to use the INITIALIZE statement for your externally

COBOL Considerations 117

described files, because there is no way to get the COBOL-VALUE function with
DDS into a program.

12.2.10 CALL and CANCEL
This section is for the users who want to convert directly from System/36 to

AS/400 native mode. If you used the System/36 Dynamic Call PRPQ to get

around the 64K limit, you may need to make changes to avoid problems with

CANCEL in COBOL/400.

The major problems arise from situations where a mix of PRPQ "CALL" and

System/36 COBOL "CALL" are being used. For example:

Program-A "CALLs" Program-B through the PRPQ.

Program-B then "CALLs" Program-C.

Program-C returns to Program-B, which returns to Program-A.

Program-A now "CANCELs" Program-B through the PRPQ.

The difference is that Program-C (since it was linked into Program-B) will also be

canceled by the PRPQ. When this code is converted to COBOLl400 (using native """""

CALL and CANCEL in all cases), Program-C will remain active in its last-used

state. This causes problems for programs that expect it to be in an unused state.

If the subprogram is dependent on the values in working storage being initialized

at every call, you may want to consider adding additional program code to do

this using explicit CANCEL.

12.2.11 COBOL MAIN Stub Prior to CL Driver
The ANSI standard states that the highest level COBOL program in the run-unit
is considered the main program and any attempt to exit that program via an EXIT
PROGRAM is to be considered a STOP RUN. A STOP RUN in COBOL causes the
main program and all the programs called by that program in the entire process
to be canceled. This causes all of the files to be closed. One way to avoid this
and still use a CL driver or menu for a set of COBOL programs that you want to
terminate using EXIT PROGRAM is to create a simple COBOL program that has
a CALL "CL-program" statement in the PROCEDURE division. This small
program is now considered the main program of the run-unit, and all COBOL
programs called out of the menu driver are now considered sub-programs.
These sub-programs can now all terminate using EXIT PROGRAM, and the files
can remain open across menu transitions.

12.2.12 Segmentation
Using segmentation on the AS/400 adds additional overhead to the program.
This feature is provided for compatibility with other COBOL compilers and is not
necessary because of the AS/400 virtual storage model. Remove the SEGMENT
LIMIT statement from the OBJECT COMPUTER paragraph, and the segment
numbers behind your section headers.

118 Converting System/36 Environment Applications to Native AS/400

12.2.13 CALL variable-name
This does not affect your conversion, but it is recommended that you continue
using literals with a CALL statement rather than a variable name that contains
the name of the program to call. The compiler has to generate extra resolve
logic to do the delayed binding of the call.

12.2.14 Use of Subprograms
On System/36, the overhead for CALL and PERFORM was the same. On AS/400,
this is not true. CALL has significantly more overhead than PERFORM. A
general guideline to follow is to do a substantial amount of work in a called
sub-program. If possible, copy small routines into your main program and use
the PERFORM statement.

12.2.15 Debugging
READY TRACE, RESET TRACE, and EXHIBIT are no longer supported. Remove
them. Also, remove USE FOR DEBUGGING, and take advantage of the AS/400
symbolic debug capabilities.

12.3 Externally Described Database Files
In this section we describe ways to convert your programs so that they are using
either only externally described files or a combination of externally and internally
described files.

The advantages of using externally described files are set out in the COBOLl400
User's Guide. Several changes must be made to the source code of each
program to change from program-described to externally described files. These
are discussed below with the aid of some sample code. (If you have been using
COPY members for your file description you can make the changes easily.) To
change a COBOL program to make use of DDS, the following steps are
necessary:

1. 	 Change the ASSIGN clause from DISK to DATABASE.

2. 	 Change RECORD KEY to EXTERNALL Y-DESCRIBED-KEY.

3. 	 Use "COPY DDS" to copy in DDS. If you want ALIAS names, use "COPY DO".

4. 	 Make sure that the DDS matches your internal description.

Keep in mind that the file must already exist during compilation.

12.3.1 Converting to External
The following sections describe the changes to be made.

For these changes, see the following examples:
• 	 Figure 31 on page 124, which is an internal record description with a FILLER

(undefined) field
• 	 Figure 32 on page 124, which is the same description except that the FILLER

is replaced by a valid definition
• 	 Figure 33 on page 125, which shows the DDS generated by the PTK
• 	 Figure 34 on page 126, which is the resolved external description of the

record as the compiler is likely to produce it.

Clean Up Different Definitions

COBOL Considerations 119

Consider Figure 31 on page 124 and Figure 32 on page 124. The difference is
that the first example specifies a FILLER because those fields are not used in
this program, and the second example defines the FILLER field now as field
(CUST-NAME). If you used the PTK to create the DDS, you have already decided
which of the definitions to use in the DDS. Even if the DDS is brought in by the
compiler, you should fix those different internal descriptions.

Change the FILE CONTROL Paragraph

Consider Figure 34 on page 126:

• 	 The ASSIGN clause is changed from DISK to DATABASE.

• 	 The RECORD KEY is (optionally) changed to EXTERNALLY-DESCRIBED-KEY.

Change File Description (FD)

• 	 Add (optionally) a new record format under level 01. See also 12.3.2, "Group
Items."

• 	 Add a format-2 COPY DDS-format name. Or if you have used COPY, you
might change the COpy statement. You might choose the COpy DDS or
COPY DO, depending on the program logic. COPY DDS brings the field
names as mentioned in the external files description into the program.
COPY DO brings in the ALIAS names. Another possibility could be using the
COPY DDS with the REPLACING phrase to change the DDS field names to
those used by your program.

• 	 Make further changes, if necessary, as described in "Group Items."

12.3.2 Group Items
As you see on the compiler list in Figure 34 on page 126, we have level 05 for
the external record format name and level 06 for all the elementary items. DDS
on physical files cannot group fields together.

Following are some ways to solve this problem.

Additional Record Format

Create an additional record format in your program under level 01 for the same
file and use COpy DDS or COPY DO to get the external description. This will
occupy the same storage area as the internal description. Type this just in front
of the COPY DDS statement:

01 	 MASTER-RECORD-DDS.

The advantage is that no further changes are required in the program. But it is
the programmer's responsibility to keep the attributes of the elementary items of
both the external and internal descriptions the same.

Logical File

A logical file could join elementary items into a single field by using the
field-level keyword CONCAT. Care must be taken regarding the data types.
Refer to the index entry CONCA T in the Data Description Specifications
Reference manual.

Renaming

120 Converting System/36 Environment Applications to Native AS/400

Another possibility could be renaming. If your level nesting spans only one level
you might choose level 66 to group elementary items:

85 	 FIRST-NAME PIC X(15).
85 	 LAST-NAME PIC X(Z8).

You could group them by renaming:

66 NAME RENAMES FIRST -NAME THRU LASTNAt4E.

Redefining

You might also consider redefining by moving the internal record description to
the working storage section:

1. 	 Move the internal description to the working storage section.

2. 	 Insert a level 01 (DUMMY) record name (as under 12.3.2, "Group Items" on
page 120).

3. 	 Insert the COPY DDS in the file section.

4. 	 Change file access operations from READ to READ INTO and from WRITE to
WRITE FROM (if the program is not already coded to do so).

Alternatively, you could place the COPY DDS into the working storage section
and take similar action as described above.

12.3.3 Key Fields
Key fields are used to make up the access path to physical data. A migrated
System/36 indexed file is described at the record level with one key field only.
As mentioned earlier, use of the external key fields is provided by specifying the
following statement in the SELECT clause:

RECORD KEY IS EXTERNALLY-DESCRIBED-KEY

If an alternate index file with noncontinuous keys is used, the program must be
changed to use EXTERNALLY-DESCRIBED-KEY, because COBOU400 does not
support multiple data names on the RECORD KEY clause.

COBOL does not support concatenated key fields. If you have concatenated key
fields within your DDS, you have to change the DDS. Neither fields renamed in
DDS nor fields that are part of concatenated fields can be used as keys.

Often the index in the program is made up of more than one field, and those
fields may be grouped. With the PTK there will be as many keys created in the
DDS as were selected at field resolution time for physical files. The physical file
will have that number of keys, too. Keeping those key fields rather than
specifying only one large key field (as on System/36) will allow other programs
to share the access path if they use only a few of the key fields for access.

COBOL ConSiderations 121

12.3.4 Record Area
Your COBOL applications might rely on the contents of the record area after
certain operations which, according to the ANSI standard, leave the record area
undefined. In some cases on System/36 and in the System/36 Environment, this
worked, but it cannot be guaranteed with COBOLl400. Your programs should not
rely on the contents of the record area after a failed READ or a successful
WRITE, REWRITE, or DELETE. Take the time to understand the ANSI standard and
examine your programs to be sure they follow it in this regard.

12.4 Minimal Display File Changes
The following changes should be made within your source.

12.4.1 INVITE Keyword
If the display file is used only by native AS/400 programs and it is not a multiple

device display file, then the INVITE keyword may be removed. It is not needed,

and might cause poor performance. If the display file is still being used by

System/36 Environment programs, then the INVITE is needed, but you should still ..."""

condition its use to occur only on the last write before a read to improve

performance.

12.4.2 I~DARA Keyword
The migration aid also generates, through the SFGR specifications, the keyword
INDARA (indicator area) in the DDS. Without change this will cause a run time
error stating that there is a mismatch between program and file specifications.

There are two ways to solve this:

1. 	 Remove the INDARA keyword from the DDS and recreate the file. This might
require a change in the field layout and in the program's logic, since the
indicators are now part of the record area, not a separate area.

2. 	 Move the INDARA outside the record area. Change the SELECT clause to
filename-SI.

SELECT SCREEN 	 ASSIGN TO WORKSTATION-FORMATS-SI
ORGANIZATION IS TRANSACTION
CONTROL-AREA IS FORMATS-CONTROL.

12.4.3 ASSIGN Clause
Remove any "format-type" values from the ASSIGN clause. (S = Display File; C
= ICF File.)

12.4.4 Changes for Externally Described Display Files
In general, the same considerations as discussed in 12.3, "Externally Described
Database Files" on page 119 apply to display files.

Field Names

$SFGR does not necessarily require field names. During migration to the
System/36 Environment, display files are always created out or the SFGR

122 Converting System/36 Environment Applications to Native AS/400

specifications. If names are missing, the migration tool inserts default names
like FL0001 and FL0002. As long as the file is program-described, the display
record is treated only as buffer. This is also true for externally described display
files, but when using the format-2 COPY DDS you might get unexpected field
names in your program.

This can be resolved by doing one of the following:

• Adding record format

• Renaming

• Redefining

as described under 12.3.2, "Group Items" on page 120.

In order to be consistent with all field names (any piece of information should
exist only once in the system) it is recommended that you change the display file
to use the database names or ALIAS names.

$SFGR also accepts certain special characters (like the dollar sign). Using the
format-2 COpy DDS brings in those names causing the compiler to fail and give
an "invalid character" message (LBL 1041).

COBOL Considerations 123

12.5 COBOL Examples

FILE-CONTROL.
SELECT MASTER ASSIGN TO DISK-MASTER.

RECORD KEY IS CUST-NUMBER.
DATA DIVISION.
FILE SECTION.
FD MASTER

LABEL RECORD ARE STANDARD.
01 MASTER-RECORD.

03 CUST -NUt~BER.
05 CUST-ID.

07 CUST-IDI PIC X(4).
07 CUST -ID2 PIC 9(4).

-----> 03 FILLER PIC X(12).
-----> 03 CUST -AREA-ZIP PIC 9(5).

03 MASTER-CODE.
05 MASTER-CODE-ID PIC 9(2).
05 MASTER-CODE-REF PIC 9(2).

03 MASTER-At~OUNT PIC S9(5)V99.

Figure 31. COBOL - Partly Program-Described File

Two fields are not properly defined: the FILLER and CUST-AREA-ZIP, which
should be a group item (see next example). The same structure could be coded
in the working storage section.

FI LE-CONTROL.
SELECT MASTER ASSIGN TO DISK-MASTER.

RECORD KEY IS CUST-NUMBER.
DATA DIVISION.
FILE SECTION.
FD MASTER

RECORD CONTAINS 32 CHARACTERS
LABEL RECORD ARE STANDARD.

01 MASTER-RECORD.
03 CUST-NUMBER.

05 	 CUST -ID.
07 CUST-IDI PIC X(4).
07 CUST-ID2 PIC 9(4).

03 CUST -NAt4E.
---> 05 CUST-AREA.
---> 07 CUST-AREA-STATE PIC X(12).
---> 07 CUST-AREA-ZIP PIC 9(5).

03 	 MASTER-CODE.
05 MASTER-CODE-ID PIC 9(2).
05 MASTER-CODE-REF PIC 9(2).

03 	 MASTER-AMOUNT PIC S9(5)V99.

Figure 32. COBOL - Fully Program-Described File

The FILLER field in Figure 31 has been replaced by a proper description.

124 Converting System/36 Environment Applications to Native AS/400

A R MASTERFMT
A CUSTID1 4 ALIAS(CUST_ID1)
A CUSTID2 4S ALIAS (CUST_ID2)
A CUSTAREAST 12 ALIAS (CUST_AREA_STATE)
A CUSTAREAZI 5 EJ ALIAS (CUST_AREA_ZIP)
A MASTERCODI 2 EJ ALIAS (MASTER_CODE_ID)
A MASTERCODR 2 e ALIAS (MASTER_CODE_REF)
A t~ASTERAMOU 5 2 ALIAS (MASTER_At~OUNT)
A KCUSTID1
A KCUSTID2

Figure 33. COBOL - DDS for File MASTER

The DDS is created by the PTK. Refer to the sample programs in Figure 31 on
page 124 and Figure 32 on page 124. The ALIASes are inserted automatically
by the PTK. The"_" wi" be changed to "-" when the fields are used in a COBOL
program.

COBOL Considerations 125

FILE-CONTROL.
* SELECT MASTER ASSIGN TO DISK-MASTER.

EXT--> SELECT t~ASTER ASSIGN TO DATABASE-MASTER.

* RECORD KEY IS CUST-NUMBER.

EXT--> RECORD KEY IS EXTERNALLY-DESCRIBED-KEY

DATA DIVISION.

FILE SECTION.

FD MASTER

RECORD CONTAINS 32 CHARACTERS
LABEL RECORD ARE STANDARD.

EXT--> a1 MASTER-RECORD-DDS.

EXT--> COPY DDS-MASTERFMT OF MASTER.

The following was generated through the COPY DDS statement:

* 	 1-0 FORMAT:MASTERFMT FROM FILE MASTER OF LIBRARY SLRES17

* 	 THE KEY DEFINITIONS FOR RECORD FORMAT MASTERRECO
* 	 NUt~BER NAME RETRI EVAL TYPE A
* 	 aaal CUSTIDl ASCENDING SIGNED
* 	 aaa2 CUSTID2 ASCENDING SIGNED

a5 	 MASTERFMT.

a6 CUSTIDl PIC X(4).

06 CUSTID2 PIC S9(4).

06 CUSTAREAST PIC X(l2).

06 CUSTAREAZI PIC S9(5) COMP-3.

a6 MASTERCODI PIC S9(2) COMP-3

06 MASTERCODR PIC S9(2) COMP-3.

06 MASTERAMOU PIC S9(3)V9(2) COMP-3.

The following is the old internal description:

al 	 MASTER-RECORD.

a3 CUST-NUMBER.

05 	 CUST-ID.

07 CUST-IDI PIC X(4).

a7 CUST -ID2 PIC X(4).

03 	 CUST -NAME.
05 	 CUST-AREA.

07 CUST-AREA-STATE PIC X(12).

07 CUST-AREA-ZIP PIC 9(5).

a3 	 MASTER-CODE.

05 MASTER-CODE-ID PIC 9(2).

05 MASTER-CODE-REF PIC 9(2).

03 	 MASTER-AMOUNT PIC S9(5)V99.

Figure 34. COBOL - Externally Described File

12.5.1 Additional COBOL Considerations
Here are additional differences between System/36 compatible COBOL programs
and COBOU400 programs:

• 	 COBOL/400 programs cannot access fields defined in the File Section unless
the file in question is open.

• 	 Files used by COBOU400 programs must exist prior to being opened. There
is no equivalent to the II FILE statement's DISP-NEW for output files.

• 	 The Dynamic Call PRPQ feature is not supported.

126 Converting System/36 Environment Applications to Native AS/400

• 	 System/36 COBOL allowed some variations in syntax. These are not
supported under COBOLl400. For example:

IF A-VALUE IS EQUAL TO TO TO B-VALUE. (repeated TO)

or MOVE A-VALUE B-VALUE. (missing TO)

• 	 ANSI differences: There are a number of differences between ANSI 74 (the
standard for the System/36 compiler) and ANSI 85 (used by the COBOLl400
compiler). These differences are documented in the American National
Standard Programming Language COBOL (ANSI X3.23 - 1985) manual under
"Differences Potentially Affecting". Appendix I in the Systeml38 Compatible
COBOL User's Guide and Reference outlines the differences.

• 	 ANSI also defined a number of additional File Statuses and clarified the use
of others. This may affect users who monitor for specific file status values, or
who rely on the program following an AT END or INVALID KEY path
repetitively.

• 	 MRTs: On System/36, separate copies of the LDA and the UPSI switches are
maintained for each terminal. On AS/400 (COBOLl400), there is a single copy
that "belongs" to the job.

• 	 The mixing of ICF and local workstation support (mixed device files in
System/38 terms) in a single transaction file is not supported.

• 	 The run-time routines such as CBFTOD and CBSTOP are specific to the
System/36 environment and are not supported by COBOLl400.

• 	 COBOLl400 does not support indicator data structures that contain
non indicator data items. For example:

01 W-INDICATORS.

05 ~I-I- TAB

10 W-I-ENTRY PIC X OCCURS 20.

05 W-I-IND REDEFINES W-I-TAB

PIC 1 OCCURS 20 INDICATOR 1.

• 	 In general the System/36 COBOL compiler does not always enforce ANSI
standards. The COBOL/400 compiler, on the other hand, is far stricter in its
compliance. There might be other techniques the System/36 compiler
supported that do not work with COBOLl400.

• 	 The use of USRDSPMGT in a display file might affect the use of other
keywords or functions.

• 	 Values for Extended File Status Key for displays have changed.

COBOL Considerations 127

128 Converting System/36 Environment Applications to Native AS/400

13.0 Additional Program and Utility Considerations

Most of the changes to programs needed in order to change to external files are
discussed in other chapters. The topics here are general ones related more to
program-to-program communication and program initiation. They are not in any
particular order.

13.1 Program Communication and Program Structure

13.1.1 Calling One Program from Another
Most System/36 programs do not call other programs directly. A program
normally ends and calls another program from a procedure. To return to the
first program, it is necessary to start processing at the top of that program. If
you need to start at a point in the middle of the program, it could be difficult.

With System/36 the calling program usually places the name of the next program
in the LOA, where it is picked up by the OCl and substituted in a II lOAD
statement.

This problem is easily solved on AS/400. Cl and Hll programs can use the
CAll statement to transfer between programs. The called program can then
return to the next executable statement in the calling program.

If you want to process a single Cl command from within your program, you can
do so by calling the QCMDEXC program.

You might wish to simplify your System/36 programs by using these new AS/400
options.

Refer to the programmer's guides and reference manuals to get more
information about calling other programs.

13.1.2 Passing Data to Another Program
This procedure is difficult on System/36. It can be done, for example, by means
of a file. The first program can write a record. The second program can test the
file after waiting for a few seconds, and then read any available records.

With AS/400 you can use data queues to transfer data. Data queue transfer is
efficient. The receiving program waits for the data and processes it as it arrives.
You do not have to leave the program to put data in a queue.

You can read about data queues in the Control Language Programmer's Guide.

13.1.3 Evoking a Program
An example here would be an order entry program that prints invoices. Instead
of printing the invoice in the order entry program itself (which would increase the
response time at the terminal), the user can exit the RPG program and start a
separate print program as each order is entered. The users can then attach to
the order program again. On AS/400 the same effect can be gained by using the

e Copyright IBM Corp. 1988,1990 129

data queues described above. In fact, with data queues, more than one copy of
the print program could be running at the same time.

Or, using the QCMDEXC command, you can submit an independent batch job
without leaving your current program.

13.1.4 Using the Attention Key
On System/36, pressing the Attention key suspends the current program and
displays a menu with a number of options, including the ability to start another
session and run another procedure. On AS/400 (both System/36 Environment
and native), equivalent support is provided through the Sys Req key and it's
corresponding menu. There is additional support available for the Attention key.

Read the Work Management Guide and the System Operations: Operator's Guide
for a more detailed explanation.

Some of the available options are:

• 	 Use an alternate session. You can press the Sys Req key and transfer to an
alternate job. The first job is suspended while the second is running. You
can also remove access to the Sys Req key functions by revoking authority
to 'PNLGRP QGMNSYSR in library QSYS.

• 	 Use the Attention key. Each user profile can have an Attention key program
specified. When the Attention key is pressed, the current job is suspended
and the user can be shown another menu or screen .

• 	 Make the current job one of a group. With group jobs, up to 32 programs
can operate from one device (with a maximum of 16 each for a job and the
alternate job), although only one can be active at a time.

13.2 Multiple Requester Terminal Programs
On System/36, a single copy of a program in memory can serve multiple users
by means of the MRT attribute. One copy of the executable statements is shared
by all attached users. The users queue for entry to the code. Only one user is
serviced at a time. Other users wait their turn until the current user enters a
long wait (generally a workstation operation).

System/36 MRTs are supported for both display devices and ICF devices in the
System/36 Environment.

Native AS/400 does not provide support for MRTs, and System/36 Environment
MRT programs must be converted to run in native AS/400.

13.2.1 MRT Considerations in the System/36 Environment
There is no need to rewrite System/36 MRTs in order to run them in the
System/36 Environment. Functional equivalence is provided. There are some
performance considerations that require a good understanding of your specific
MRT application.

• 	 MRTs that are run frequently should be run as NEPs. There are performance
improvements to be gained by changing frequently run non-NEP MRTs to
NEP MRTs.

130 Converting System/36 Environment Applications to Native AS/400

• 	 There is usually not a significant performance payback from converting
MRTs to native AS/400 programs. In some cases, such a conversion will
make performance worse.

13.2.2 MRT Considerations for Native AS/400
There is no native AS/400 support for MRTs, nor is there any native equivalent to
support processing of multiple requester devices from a single program.
However:

• 	 AS/400 provides support for a single program accepting input from multiple
devices through the use of multiple device files, but this support is only
applicable to devices acquired by the program. There is no AS/400 support
to connect multiple requesters (interactive users) to a single program.
RPG/400 and COBOL/400 support multiple device files. See the RPGI400
User's Guide and the COBOLl400 User's Guide for more information.

• 	 AS/400 provides support for a batch job handling requests from multiple
interactive jobs through the data queue support described in Control
Language Programmer's Guide. However, this support is intended for
batch-type work and does not support the use of requester devices in the
batch job.

13.2.3 MRT Programs and Shared Files
There are certain situations where logic changes are needed to move away from
multiple requester programs. These involve database files that are used by
more than one job at the same time.

Suppose a System/36 MRT program has the following logic:

1. 	 Read control record to get the starting relative record number for output.

2. 	 Release control record.

3. 	Write records starting at the relative record retrieved in step 1.

4. 	 Read control record and update with a fresh starting number.

5. 	 Exit the cycle.

This works fine on System/36 and in the System/36 Environment, since the MRT
synchronizes the use of the file. However, if the same logic is placed in an
AS/400 program, and that program is concurrently run by multiple users, two
users might retrieve the same starting relative record number, with undesirable
results. (The same problem would occur on S/36 if the users each had an SRT
program.)

To prevent this, change the program logic to lock or allocate the correct records
to users until they are finished with them.

There are other changes that might be needed to handle cases related to the
use of common output files. The cases below give a few possibilities:

• 	 Users of a program might be sharing a common output file. The program
writes each user's workstation 10 (from the KID field, for RPG) to the output
records so that later programs can tell who created the record.

Consider retrieving the job attributes and passing (for example) the user 10
from the calling CL program to the RPG program. The ID field in the output

Additional Program and Utility Considerations 131

record may need to be enlarged, since the System/36 work station 10 is only
two characters long.

• 	 A program might write to a different file, depending on which display device
the program was run from, using an OCl statement like:

II FILE NAME-TRANS,LABEL-TRAN?HS?

In this case, an OVROBF statement could be used to place the output in a
member of a file. The member name could be built by the Cl program from
the file name and a retrieved job attribute (like user 10). later programs
could process either individual members of the file, or the whole file, by
using OVROBF statements .

• 	 Users of a program might share a file, but each might use a different part of
the file. User 1 may use record 1-1000. User 2 may use records 1001-2000,
and so on. This can be changed to a multiple member file, as in the case
above.

13.3 Never-Ending Programs
For batch programs you can make a program never-ending by coding it to wait
for an entry in a data queue.

For interactive programs there is no native AS/400 support to attach an
interactive user to a program that is already running. An interactive program
could be written as never-ending by always waiting for an additional request
from its specific requester device.

13.4 Sort Programs

13.4.1 	 Sort and Format Data
The discussion, "Restructuring For Better Performance", on the use of sort or
logical files is pertinent here. Use those guidelines to make a choice of method
between the two.

The sort specifications you used on System/36 can also be used on AS/400.

Use the FMTOTA command to name the file to be sorted, the file that will contain
the output records, and the source member containing the SORT specifications.
The output file must exist before executing the FMTDTA command; the sort will
not create an output file when using FMTOTA.

AOOROUT files differ between native AS/400 and the System/36 Environment.
Both the System/36 and System/36 Environment SORT create AOOROUT files
with a record length of 3 and entries starting from O. The AS/400 SORT creates
AODROUT files with a record length of 4 and entries starting from 1, and it uses
-1 to mark the last entry in an ADOROUT file. You must ensure that you use the
correct RPG product when using SORT (RPG II for System/36-compatible SORT;
RPG/400 for native AS/400 SORT), so that AOOROUT file processing works
correctly. Also, if you write your own AOOROUT file processing routines in your
applications, then these routines must be rewritten when converting from
System/36 Environment SORT to native AS/400 SORT.

132 Converting System/36 Environment Applications to Native AS/400

13.4.2 The #GSORT Utility
PTK converts the #GSORT utility to the FMTDTA command correctly, and creates
in the QFMTSRC source file a member that contains the inline SORT
specifications. The name of this member is the original System/36 procedure
name plus a serial number starting at '01' and incrementing depending on the
number and sequence of the #GSORT utilities within the procedure.

The following example shows conversion of the #GSORT utility.

II LOAD #GSORT
II FILE NAME-INPUT,LABEL-CUSTMSTR
II FILE NAME-OUTPUT,LABEL-CUSTREPT,RECORDS-?F'A,CUSTMSTR'?
II RUN

HSORTR llA x

I C 1 2EQCCM ALL CUSTOMER RECORDS

FNC 22 23 BRANCH

FNC 6 11 CUSTOMER NUMBER

FOC 1 256 CUSTOr4ER RECORD

II END

Converts to .•.

CRTPF FILE(MYLIB/CUSTREPT)

FMTDTA INFILE(*LIBL/CUSTMSTR) OUTFILE(MYLIB/CUSTREPT) +

SRCFILE(*LIBL/QFMTSRC) SRCMBR(procedurenn) +

OPTION(*NOCHK *NOPRT)

\vhere ...

'procedurenn' is a source member in the QFMTSRC file that contains

the SORT control statements (between II RUN and II END).

NOTE: 	 Certain keywords in the II FILE statement are ignored

in this case RECORDS-?F'A,CUSTMSTR'? which is not required

for AS/400. You will need to check any converted output to

ensure that the original intentions of the sort are performed.

Figure 	35. Example of Converting #GSORT to FMTDTA

13.4.3 Sort and Logical Files
The logical files used in your application programs may already maintain the
data in a sequence required by one of your sort programs. In this case you can
read the logical file into the application program without having to run the sort
and without having to create the logical file.

If there is no logical file that maintains the data in the sequence you want, you
can create a logical file in place of the sort. This might be the case for an
end-of-year report, where the particular sequence is only needed once a year.

13.5 DFU Programs
DFUs have the same or equivalent functions in the AS/400 native environment,
so they can be converted from one environment to the other.

PTK converts System/36 DFU procedures to CL as follows:

Additional Program and Utility Considerations 133

S/36 DFU AS/400 CL

ENTER/UPDATE CHGDTA

INQUIRY DSPDTA

LIST RUNQRY

Shown in the following examples

ENTER CUSTMSTR,CMENTER"2000",,,HLIBRARY

CRTPF FILE(MYLIB/CUSTMSTR) +

SRCFILE(MYLIB/QDDSSRC)

CHGDTA DFUPGM(HLIBRARY/CMENTER) +

FILE(MYLIB/CUSTMSTR)

LIST CUSTMSTR,CMLIST"NOSORT"",MYQRYLIB

RUNQRY QRY(MYQRYLIB/CMLIST) +

QRYFILE(*SAME) OUTTYPE(*PRINTER)

INQUIRY CUSTMSTR,CMINQRY""",MYLIB"CUSTMAST

DSPDTA DFUPGM(MYLIB/CMINQRY) +

FILE(*LIBL/CUSTMAST)

Figure 36. Example of Converting System/36 DFUs

The ENTER DFU requires that the database file is created before any data can be
entered.

Your System/36 DFUs are not converted and must be recreated in AS/400 native
using STRDFU or STRQRY as appropriate. During the database conversion you
will have resolved fields, records, and file names, which will have made
recreating the DFUs necessary anyway.

In the examples above you must create the physical (or logical) files CUSTMSTR
and CUSTMAST first, using PTK or your own definition. Then you must create the
AS/400 DFU programs CMENTER and CMINQRY and the Query CMLlST in the
appropriate libraries based on the original System/36 DFUs.

134 Converting System/36 Environment Applications to Native AS/400

14.0 Finding Programs that Cause Decimal Data Errors

Finding the program that causes a decimal data error can be difficult. Every
program adding records to or updating a file must be checked, and the programs
can be either System/36 Environment or native programs.

The PTK will help you find problem programs that are updating single record
format files. Use option 4 (Analyze Changed Data) on the PTK Main Menu.

There are three inputs required by the PTK:

• 	 The single format file. This could be a single format, program-described
System/36 file in QS36F, or physical file with external DDS (for example, a
physical file resulting from the split of a multiple format) .

• 	 An AS/400 file that contains the record format description for the single
format file above.

• 	 A journal containing a record of the updates to the single format file. As
each program updates or adds to the file, the journal contains the before
and after-images of the records and the name of the program. You have to
set up the journal and journal receiver and start journaling on the file before
you run the PTK. Remember to specify "BOTH to capture both before- and
after-images in the journal.

The PTK uses the external description, the file itself, and the journal entries to
detect offending programs. It writes a report showing which programs are
causing the decimal data errors.

Again, the PTK cannot, at the time of writing, handle multiple format files or
logical files. The PTK would run to completion with no error messages, but
would not distinguish between the different record types, even with a format
selector program. The PTK would behave as though all fields were present in all
formats; a format with a numeric field in a particular position would be reported
in error if another format had a numeric field in the same position. This is why a
multiple format file must be split into distinct physical files, which are then
examined separately. Journaling can be started on the separate physical files.

© Copyright IBM Corp. 1988,1990 135

136 Converting System/36 Environment Applications to Native AS/400

15.0 Converting from OCl to Cl

This chapter discusses ways in which Cl and OCl can be used on AS/400.
Different approaches and methods are available for conversion.

15.1 Different Approaches
Three broad approaches are possible:

• 	 Convert only the minimum needed to support other parts of the application
that are being converted. Some changes may be required to handle different
file structures. Some changes might be desirable for performance reasons.
But there is no reason why System/36 Environment OCl cannot operate on
AS/400 native files and programs.

• 	 Move all OCl to its Cl equivalent. Most OCl statements can be directly
replaced by one or more Cl statements which produce the same result.
Most OCl procedures can be replaced by Cl statements, again with a
similar effect. This tends to be a one-for-one approach. One line of OCl is
taken and replaced by corresponding Cl, then the next line is taken, and so
on until all procedures have been converted. Little thought may be given to
the overall intent of the procedure. Although some simplifications may be
made, no new AS/400 functions will be added.

• 	 Understand the intent of the old OCl procedures. look for simpler or better
ways to implement the same intent with CL. Be prepared to add new
program logic to simplify inter-program communication and reduce program
initiation. Incorporate new file structures. Use new recovery, restart, and
save-restore functions. Use new messaging and queueing functions. In
other words, rewrite the procedures to take full advantage of the AS/400
environment. This might be particularly desirable if the procedures were
originally written for S/34 or earlier equipment and contain statements that
are allowed with S/36 SSP but not on AS/400.

15.2 Tools Available
If you intend to rewrite procedures, there is no substitute for a knowledge of
OCl, the application to be converted, and CL.

PTK helps you convert System/36 OCl procedures to AS/400 Cl source
members and compiled Cl programs through the following steps:

• 	 Listing unsupported OCl statements

• 	 Converting an individual OCl procedure with optional Cl compilation,
keeping the original OCl statements as comments

• 	 Preparing an OCl procedures conversion list with options to work with and
print the list

• 	 Converting the conversion list with optional Cl compilation

Analyzing and listing suggested performance enhancements in the
generated Cl source

• 	 Removing commented Cl statements.

© Copyright IBM Corp. 1988,1990 	 137

Use of this tool does require a working knowledge of the System/36 application
being converted and may require changes to produce the same or required
results depending on the output of the conversion process and the errors and
messages produced.

We suggest that when using PTK to convert the OCl that you remove the
System/36 OCl from the new Cl programs once they have been tested. The
comments might unnecessarily confuse the viewing and understanding of the Cl
program.

The Programmer Tools PRPQ provides a User's Guide document you can print
by selecting option 10 from the PTK Main Menu. Similar information is displayed
when you use the HELP facility.

15.3 Summary of later Topics
The bulk of the information about OCl and Cl is contained in the tables in the
appendixes. These tables give the exact or nearest Cl equivalent for System/36
OCl and procedural statements. They are:

• Appendix A, "UCS/Procedure Relation Table."

• Appendix B, "Procedure/Cl Relation Table."

• Appendix C, "OCLlCl Relation Table."

• Appendix D, "occ and Cl Command Table."

• Appendix E, "Table of System/36 Substitution Expressions."

• Appendix F, "If Conditions and Their Equivalents."

• Appendix G, "Procedure Control Statements and Their Equivalents."

The remainder of this chapter is used to discuss some of the areas where extra
guidance is needed. This might be because the PTK does not convert to an
equivalent Cl statement, or because several options are available, or because
some extra code is needed to tidy up the PTK output. For example, you should
always check the generated Cl statements to ensure correct device names are
used.

15.4 System/34 Oel Considerations
Many System/36 application systems have themselves been migrated from
System/34 or even earlier systems and can contain OCl and system procedure
statements that are not standard System/36 statements but are allowed for
System/34 compatibility. Such systems will also make extensive use of utility
statements such as $COPY, $DElET, $GSORT or #GSORT, and $MAINT with
inline sort specifications and the ORGANIZE system procedure.

While these will migrate to the System/36 Environment, we suggest that these
statements be edited on the Systeml36 before migrating to the ASI400.

For example, ORGANIZE is replaced with COPYDATA; $COPY with COPYDATA,
SAVE, RESTORE, etc.; $DElET with DELETE, and so on. These changes make
conversion to AS/400 Cl much easier particularly if you use PTK.

138 Converting System/36 Environment Applications to Native AS/400

See Appendix A, "UCS/Procedure Relation Table" on page 167 for more
information.

15.5 Cleaning Up Your Procedures
Over time, many of your procedures will have accumulated redundant
statements, usually by turning OCl lines into comments or having some eCl or
system procedure statements that are not required with the AS/400 operating
system. Statements such as 'II REGION', KEYSORT, and '*j' (for an eCl
statement made into a comment) should be removed before conversion.

You should review all comments and operator messages in your System/36
procedures before conversion to make sure that these are still valid within the
application. Where the operator is asked for answers or other data through a
series of operator messages, you should consider creating a display file for
those answers that is input to the converted Cl program.

Also remove any procedure sequence numbers, particularly if you are using
PTK, because the conversion process in some cases will use sequence numbers
as part of eCl statements being converted. This will create Cl statements that
will not give the expected result.

15.6 Operation Control Language Statements
This section discusses individual OCl statements and some of their parameters.

Where possible, suggestions are given for ways the parameters might be
handled on AS/400. If you are using PTK for conversion, check the resulting Cl
source programs for those statements that do not convert in part or in whole, or
to simplify the generated equivalents of the original OCL. This section should
assist you in this process.

ALLOCATE

The AllOCATE statement is converted to the AlCOBJ Cl command. The
following parameters are not supported:

o 	 AUTO - AS/400 expects to process a single object on one device. You will
have to change your procedures to conform.

o 	 CONTINUE - no equivalent is suggested.

o 	 WAIT - For AlCOBJ, specify the number of seconds to wait.

AlTR

The ATTR statement is converted to the CHGJOB Cl command. The following
ATTR parameters are not supported:

o 	 CANCEL - On AS/400, the Sys Req key support is equivalent to the
System/36 Attention key support. To disable the cancel option on the Sys
Req menu, revoke the user's authority to the ENDRQS Cl command.

o 	 INQUIRY - On AS/400, the Sys Req key support is equivalent to the
System/36 Attention key support. To disable the inquiry option on the Sys
Req menu, revoke the user's authority to the TFRSECJOB Cl command.

Converting from OCl to Cl 139

• 	 MRTMAX - MRT programs should be replaced by single requester programs

on AS/400.

• 	 NEP - There is no AS/400 equivalent.

• 	 RELEASE - This parameter is like an EVOKE statement. The closest AS/400

equivalent is the SBMJOB CL command. Some of the differences are

described in the EVOKE statement discussion later in this section.

• 	 MRTWAIT - There is no AS/400 equivalent.

• 	 NOTIFY - There is no AS/400 equivalent.

Run priorities on AS/400 are different from those on System/36. On AS/400,
priority 1 is the highest and priority 99 is the lowest. The initial default AS/400
priorities are 20 for interactive jobs and 50 for batch jobs. Check the value
chosen by PTK and adjust it if you need a different value.

CANCEL

• 	 The CANCEL statement is converted to the WRKSPLF command.

• 	 Alternatively, to remove one or more spool file entries, use the DL TSPLF

command. Keywords are available to select user, print device, and form

type.

II CANCEL PRT,P7 DLTSPLF FILE(*SELECT) SELECT(*CURRENT P7)

II CANCEL PRT,ALL DLTSPLF FILE(*SELECT) SELECT(*ALL *ALL)

CHANGE

• 	 The CHANGE statement is converted to the WRKSPLF command.

• 	 An alternative, you can use the CHGSPLFA or OVRPRTF command.

II CHANGE COPIES,5 CHGSPLFA 	 FILE(*SELECT)

SELECT(*CURRENT *ALL)

COPIES(5)

DATE

• 	 The II DATE statement is converted to a CHGJOB command. A warning

message is issued. The date format used in the CHGJOB command must be

the same as the date format of the job in which it is running. The system

default for a job's date format is defined by the system value QDATFMT. It

may be changed for an individual job using the CHGJOB command.

I I DATE 021188 CHGJOB 	 JOB(*) DATE('021188')

DEALLOC

• 	 The DEALLOC statement is converted to the DLCOBJ command with the

same keywords used in the corresponding ALCOBJ.

II DEALLOC UNIT-T! DLCOBJ 	 OBJ((*LIBL/QTAPEI *DEVD

*EXCLRD))

EVOKE

• 	 The II EVOKE statement is converted to a SBMJOB command. The
submitted job contains a CALL of the evoked procedure. Be aware that the,

140 Converting System/36 Environment Applications to Native AS/400

.~

submitted job might not run at once but might have to wait in the queue for
other jobs to finish.

See 13.1.3, "Evoking a Program" on page 129 for an alternative method that
avoids this problem.

You must check that the job description used to submit the job contains
those libraries needed to run the job.

Make sure that the submitted job is placed on the correct job queue in your
system (the usual default is QBATCH in QGPL).

In addition, there are often many blank concatenated keywords on the
converted statement that can be removed.

II EVOKE 	 PROC55, SBMJOB RQSDTA('CALL TESTLIB/PROC55

TESTLIB,PARMI PARt4 (, PARtU ') ')

FILE

The FILE statement is converted by PTK. The parameters previously specified
on the II FILE statement are specified either in the file DDS, at file creation time,
or on an override CL command. There are a number of redundant II FILE
statement parameters (such as EXTEND) that do not convert when using PTK.
These are listed below:

o 	 RECORDS and BLOCKS - Use the SIZE keyword when creating the file. Make
sure that you also include any required extensions.

o 	 LOCATION - You can request contiguous storage and a preferred access arm
with the CONTIG and UNIT keywords of the CRTPF command. However, this
is unnecessary and is not recommended. The system will tell you if the
request cannot be met.

o 	 JOB - Use ALCOBJ and DLCOBJ to control allocation and deallocation of a
file.

o 	 WAIT - Use the WAIT keyword on the ALCOBJ CL command. You could also
use WAITFILE keyword on the CRTPF command.

o 	 EXTEND - Automatic extension is performed by AS/400 depending on values
in the SIZE keyword. Warnings can be issued at points specified on the SIZE
keyword of the CRTPF command. On AS/400, the extendibility is determined
at file creation time (the default is extendable) and cannot be overridden
after the file is created.

o 	 AUTO - There is no equivalent.

o 	 BYPASS - Not used.

o 	 DENSITY - There is no equivalent.

o 	 IBLOCK - There is no equivalent.

o 	 DUPKEYS - This is specified in the file DDS. The UNIQUE DDS keyword
indicates that duplicate keys are not allowed.

o 	 DBLOCK - See the SEQONL Y keyword on the OVRDBF command. RPG
automatically handles record blocking for sequential files.

o 	 STORINDX - Not supported.

Converting from OCL to CL 141

FilE OCl is converted to a number of Cl commands by PTK conversion,
depending on the FilE statement and whether the conversion can determine if
this is an output file. This is usually determined by finding a RECORDS or
BLOCKS parameter.

II FILE NAME-FILEI, OVRDBF FILE(FILEI) TOFILE(VENDOR)
LABEL-VENDOR, LVLCHK(*NO) SECURE(*YES)
DISP-SHR, ALCOBJ OBJ(*LIBL/VENDOR *FILE *SHRUPD
EXTEND-IOOe *FIRST)

II FILE NAME-FILE2, CRTPF FILE(QS36F/FILE2)
LABEL-OUTPUTF, SRCFILE(*LIBL/QDDSSRC)
RECORDS-100ee, SRCMBR(*FILE) OPTION(*NOSRC
RETAIN- T *NOLIST) ALWDLT(*NO) LVLCHK(*NO)

OVRDBF FILE(FILE2) TOFILE(OUTPUTF)
LVLCHK(*NO) SECURE(*YES)

ALCOBJ OBJ(*LIBL/OUTPUTF *FILE *EXCL
*FIRST)

II FILE NAME-FILEI,UNIT-II OVRDKTF FILE(FILEl)

LABEL-MASTER TOFILE(*LIBL/MASTER)

VOL(*MOUNTED)

II FILE NAME-FILEl,UNIT-Tl OVRTAPF 	 FILE(FILEl) SEQNBR(l)

EXDATE(*PERM) VOL(*MOUNTED)

While these statements replicate the System/36 operating system file handling
you may want to simplify them.

All files in AS/400 remain on disk until deleted, unless they are created in the
QTEMP library. Put job files (J and S files) in QTEMP, and they will be deleted
with QTEMP at the end of the job. Create the QTEMP files at the start of a job to
reduce later initiation time, or keep a master set of files in your library and put
CRTDUPOBJ into QTEMP.

For RETAIN-S files, such as in the example

II FILE NAME-COPYIN,LABEL-XXXXXX,RETAIN-S

you will have to include a DlTF command in the appropriate step in the Cl
program to effect the intended deletion.

The RECORDS and EXTEND parameters are NOT converted. The following
examples show how these parameters can be handled:

142 Converting System/36 Environment Applications to Native AS/400

An output file is created
II FILE NAME-FILEl, CRTPF FILE(*LIBL/FILEl)

LABEL-MASTER, SRCFILE(*LIBL/QDDSSRC)
RECORDS-800,DISP-SHR, SRCMBR(*FILE) OPTION(*NOSRC
~JAIT-YES, EXTEND-80, *NOLIST) AUJDLT (*YES) LVLCHK (*NO)
DFILE-YES,DUPKEYS-YES SIZE(800 80 5) WAITFILE(*CLS)

OVRDBF FILE(*LIBL/FILEl)
TOFILE(*LIBL/MASTER)

ALCOBJ OBJ(*LIBL/MASTER *FILE *SHRUPD
*FIRST)

NOTE that the RECORDS and EXTEND parameter values are in the
SIZE parameter (the 5 extensions has been arbitrarily chosen).

I I FILE 	 NAt·'E-COPYIN, This will be part of the CPYF command

LABEL-XXXXXX, CPYF FROMFILE(*LIBL/XXXXXX) --etc.-

RETAIN-S then add

DLTF FILE(*LIBL/XXXXXX)
for RETAIN-S

FORMS

• 	 The OVRPRTF command has all the parameters of the II FORMS statement.
There are also some additional useful parameters. Read the OVRPRTF
command to find out about folding, fonts, justification, and other options.

II FORMS 	 DEVICE-P7,LINES-55, OVRPRTF FILE(*PRTF) DEV(P7)

FORMSNO-CHECKl,CPI-15, PAGESIZE(55) LPI(6)

LINES-6,ROTATE-90, CPI(15) DRAWER(2)

DRA~JER-2 PAGRTT (90) FORMTYPE (CHECK)

INCLUDE

• 	 The INCLUDE command is converted to the CAll command with
corresponding parameters.

II INCLUDE PROCI INVNUt4 CALL PGM(MYLIB/PROCI) PARM('INVNUr·,')

INFOMSG

• 	 The II INFOMSG statement is not converted. Change to the CHGMSG
command.

II INFOMSG YES CHGMSGQ MSGQ (*I'JRKSTN) DLVRY (*BREAK)

SEV(OO)

JOBQ

• 	 The JOBQ OCl statement is converted to the submit job (SBMJOB)
command.

You must check that the job description used to submit the job contains
those libraries needed to run the job. The submitted job is placed on the job
queue QBATCH. This might have to be changed. Also, there are often many
blank concatenated parameters on the converted statement that can be
removed.

Converting from DCl to Cl 143

The priority parameters in System/36 are from 0 to 5, where 5 is the highest.

In the AS/400 the values are 1 through 9, where 1 is the highest priority.

II JOBQ 4,PAYLIB, SBMJOB JOB (PAY) JOBD(*USRPRF)
PAYROLL, PARMI 	 USER(*CURRENT) JOBQ(*JOBD)

JOBPTY(2)

CMD(CALL PAYLIB/PAYROLL

(' PARMI'))

LIBRARY

• 	 The LIBRARY OCL statement is converted to the CHGCURLIB command.

The current library remains in the list until you sign off or use library list

commands with different values. Any permanent change will have to be

done using the Change User Profile (CHGUSRPRF) command, which changes

the CURLIB keyword, or by using the Change Job Description (CHGJOBD)

command, which changes the INLlBL keyword.

II LIBRARY 	 NAME-PAYLIB, CHGCURLIB CURLIB(PAYLIB)

SESSION-YES

""iLOAD

On AS/400, the CALL CL command provides the equivalent of the /I lOAD and /I
RUN pair of System/36 OCl statements.

LOCAL

The lOCAL OCl statement is converted to the Change Data Area (CHGDT AARA)
command. In some cases 	where parameter substitution is used to determine
the contents of the LDA, the length parameter is not properly handled.

• 	 BLANK - Use a blank character string.

• 	 AREA - AS/400 supports as many data areas as you need. Two data areas,

called *lDA and *GDA, are already available for use.

II LOCAL OFFSET-l,BLANK-8 CHGDTAARA 	 DTAARA(*LDA (1 8)

VALUE(' '))

LOG

• 	 The lOG statement is converted to change job (CHGJOB) command.

In the System/36 the LOG OCl indicates whether the OCl statements in a

procedure are logged to the history file, regardless of the OCl logging

indicator in the procedure.

The AS/400 equivalent is to controt logging to the job log of a specific job.

The logging of Cl commands run from a Cl program is controlled by the

lOGClPGM keyword of the CHGJOB command, in conjunction with the value

of the lOG keyword specified when the Cl program was created

(CRTCLPGM command). The logging of Cl commands entered interactively

is controlled by the lOG keyword of the CHGJOB command.

II LOG ON 	 CHGJOB JOB(*) LOGCLPGM(*YES)

144 Converting System/36 Environment Applications to Native AS/400

MEMBER

The MEMBER statement converts to the OVRMSGF command. The usages are
not equivalent. LIBRARY, PROGRAM1, PROGRAM2, and USER2 are not
supported. Here is additional information about creating and sending AS/400
messages.

• 	 Create an empty message file with CRTMSGF, then add your message
descriptions with ADDMSGD. If your System/36 application uses a
second-level member, then you use the SECLVL keyword in the ADDMSGD
command, because there is no separate second-level member on AS/400.

The messages are sent with SNDUSRMSG.

• 	 When you change your message member within a procedure you can do
either of the following:

Explicitly specify the name of the message file in the SNDxxxMSG
command.

Use the OVRMSGF command in the CL program.

CRTMSGF MSGF(MYLIB/PAYMSGF)

ADDMSGD MSGID(PAY0010)
MSGF(MYLIB/PAYMSGF)
MSG('PAYROLL EXECUTING')
SECLVL('\~EEKLY PROCESS')
SEV(00)

II MEMBER USER1-PAYMSGF,
USER2-SLVMSGF,

II * 0010
LIBRARY -MYLIB SNDUSRMSG MSGID(PAY0010)

MSGF(MYLIB/PAYMSGF)

The next message will be
displayed on the screen:

PAYROLL EXECUTING

The second level message will be:

\~EEKLY PROCESS

MSG

• 	 The /I MSG command is handled well, but there are other ways to send
messages on AS/400. You can use the following commands: SNDMSG,
SNDBRKMSG, SNDPGMMSG, and SNDNETMSG. The SNDUSRMSG,
SNDPGMMSG. AND SNDNETMSG commands can only be used in a CL
program.

Converting from OCL to CL 145

II MSG ~J5,PLEASE SIGNOFF SNDBRKMSG 	 MSG(PLEASE SIGNOFF)

TOMSGQ(W5) MSGTYPE(*INFO)

II MSG W3,GOOD MORNING SNDMSG 	 MSG('GOOD MORNING')

TOMSGQ (~J3)

II MSG ~Jl ,MOUNT TAPE SNDUSRMSG 	 MSG('MOUNT TAPE')
II PAUSE 	 MSGTYPE (* INFO)

TOMSGQ (~J1)

NOHALT

• 	 Handle NOHALT by monitoring messages in a CL program, using the
MONMSG CL command.

OFF

• 	 The OFF statement is converted to the SIGNOFF command.

On System/36, DROP is the default. On AS/400, the default DROP value is an
attribute defined in the device description. Either DROP(*YES) or DROP(*NO)
may be specified on the SIGNOFF command.

This command also allows you to print your job log.

II OFF DROP SIGNOFF 	 LOG(*NOLIST) DROP(*DEVD)

PAUSE

The PAUSE statement converts to the SNDUSRMSG command with the same
message text as the System/36 message that the operator is familiar with. You
may want to use the SNDBRKMSG command as an alternative.

II 	PAUSE SNDUSRMSG MSG('PAUSE--WHEN READY, +
ENTER 0 TO CONTINUE')

PRINTER

The priorities on System/36 are 0 through 5, with 5 as the highest. The priorities
on AS/400 are 1 through 9, with 1 as the highest. Some parameters are not
supported on the OVRPRTF command:

• 	 CONTINUE - If you need to use the CONTINUE parameter, you have to
understand shared file processing within a job. See the Data Management
Guide.

• 	 ACTIVITY - There is no AS/400 equivalent.

• 	 TYPE - Not supported.

• 	 EXTEN - Not supported.

• 	 EOFMSG - There is no AS/400 equivalent

• 	 TEXT - Not supported. Consider using the PRTQLTY keyword.

II PRINTER NAME-PRTA,DEVICE-P7, 	 OVRPRTF FILE(PRTA) DEV(P7)
LINES-55,LPI-6, PAGESIZE(55) LPI(6)
CPI-10,ALIGN-YES, CPI(10) ALIGN(*YES)
SPOOL-NO,COPIES-2, SPOOL(*NO) COPIES(2)
CONTINUE-YES,HOLD-YES, HOLD(*YES) OUTPTY(l)
PRIORITY-4,FORMSNO-XX FORMTYPE(XX)

146 Converting System/36 Environment Applications to Native AS/400

PROMPT

On AS/400, the combination of the DCLF and SNDRCVF CL commands provides
the closest equivalent. The following parameters are not directly supported:

• 	 START - Parameters are used by name, not by position.

• 	 LENGTH - Length parameters are not used because they are defined in the
display file.

• 	 PDATA - All parameters are variables used by a CL program that contains
DCLF and SNDRCVF CL commands. See 15.15, "Prompting and Read Under
Format" on page 157 for a discussion of differences from System/36.

• 	 UPSI - There is no relationship between UPSI switches (1 through 8) and
indicators (91 through 98), as in System/36.

RUN

On AS/400, the CALL CL command provides the equivalent of the II LOAD and II
RUN pair of System/36 OCL statements.

START

• 	 The START statement converts to the STRPRTWTR command. In some
cases, you will need to add the FORMTYPE keyword.

II START PRT,Pl,CHECK STRPRTWTR DEV(Pl) 	 OUTQ(*DEVD)

FORMTYPE(CHECK)

STOP

• 	 The STOP statement is converted to the ENDWTR command.

I I 	STOP PRT ,P3 ENDWTR WTR(P3) OPTION(*CNTRLD)

SWITCH

• 	 The II SWITCH statement is converted to the CHGJOB command. If you
always want a job to start with a fixed set of switches, use CHGJOBD.

II SWITCH l00XllX8 	 CHGJOB SWS(l00XllX8)

CHGJOBD JOBD(MYJOBD) SWS(l00XllX0)

SYSLIST

• 	 The SYSLIST OCL statement is converted to the OVRPRTF command.
Alternatively, You can obtain the output from the AS/400 commands from a
printer or screen by specifying the OUTPUT parameter in the related
command.

II SYSLIST CRT OVRPRTF FILE(QSYSPRT) OUTQ(CRT)

II SYSLIST PRINTER OVRPRTF FILE(QSYSPRT) OUTQ(PRINTER)

II SYSLIST CRT

II LISTLIBR DIR,LIBRARY,MYLIB DSPLIB LIB(MYLIB) OUTPUT(*)

II SYSLIST PRINTER

II 	LISTLIBR DIR,LIBRARY,MYLIB DSPLIB LIB(MYLIB) OUTPUT(*PRINT)

Converting from OCl to Cl 147

15.7 Procedure Control Expressions
Many of the expressions listed in Chapter 3 (Procedure Control Expressions) of
the System Reference for the Systeml36 Environment were entered into a
System/36 procedure and then converted with PTK.

Most expressions convert very well, although you should check the converted Cl
program to see that you have the equivalent result as the conversion results in
multiple statements, including defined variables, for each OCl statement. In
many cases the converted Cl can be simplified to be more specific to the action
required.

Appendix E has a table containing System/36 substitutions and how these can be
resolved in a Cl program.

Those expressions that do not convert are discussed below. Some of these are
new ones provided for use in the AS/400 System/36 Environment.

?M'OO11,1,20'? message substitution
The resulting expression uses a default message file name
MSGF(USRMSG). Change this to the correct name.

?DEV'P7'? or ?DEV'?WS?'? device name substitution
This expression is new in the System/36 Environment to assist
with mixed applications. It will not be needed if you convert
your application entirely to native AS/400.

?FLIB? library name substitution
This expression is new in the System/36 Environment to assist
with mixed applications. It is not needed if you convert your
application entirely to native AS/400. The native AS/400
equivalent is the library list.

?MSGID? last error message substitution
This expression is new in the System/36 Environment to assist
with mixed applications. It is not needed if you convert your
application entirely to native AS/400. The native AS/400
equivalent is the MONMSG command.

?SLlB? library name substitution
Use RTVJOBA to find the name of the current library in the
AS/400 list.

?F'S,name'? file size substitution
This is not required on the AS/400, so it can be discarded.

?MENU?, ?PROC?, ?VOLlD?, etc.
There are some substitution expressions, like ?MENU?,
?PROC?, ?VOLlD?, which have no equivalent on AS/400. These
substitutions will either have to be removed or you will have to
use data areas to store and retrieve the equivalent values.

148 Converting System/36 Environment Applications to Native AS/400

15.8 Testing For Active Procedures
The IF ACTIVE function is used extensively in System/36 procedures, especially
with batch or where there is dependent processing such as master file updating,
but has no equivalent on the AS/400. This could create problems in the
converted application system, depending on how you want to control the
interdependent procedures (such as CL programs).

The following is given as a method for replicating the System/36 IF ACTIVE
function:

• 	 Create a data area in the procedure (Cl program) PROCA.

CRTDTAARA 	 DTAARA(t·1YLIB/PROCA) TYPE(*CHAR) lEN(l)
VALUE('O') TEXT('Data area for PROCA active test ')

• 	 When this PROCA procedure (Cl program) runs, the first step is to set a
value into the data area to show active status

CHGDTAARA DTAARA(MYLIB/PROCA) VALUE('l')

• 	 When this PROCA procedure ends, set the data area value to zero

CHGDTAARA DTAARA(MYLIB/PROCA) VALUE('O')

• In the dependent procedure (CL program) replace

II IF ACTIVE-'PROCA' * 'PROCA IS EXECUTING '

with

DCL VAR(&ACTEST) TYPE(*CHAR) LEN (1)

RTVDTAARA DTAARA(MYlIB/PROCA) RTNVAR(&ACTEST)
IF (&ACTEST *EQ 111) THEN(DO)

SNDUSRMSG MSG('PROCA IS EXECUTING')
ENDDO

where the THEN(DO) to ENDDO has the required processing.

15.9 Evaluation
The EVALUATE procedure expression in the System/36 cannot be used in
AS/400. Use the Declare Variables (DCl) and Change Variable (CHGVAR)
commands to define variables and change their values.

Using OCl, you can create and change substitution variables easily. For
example, EVALUATE P1 ='ABC' creates the variable, assigning it a value and an
implicit length. On AS/400 this takes multiple statements, as is seen in the
following example, where &Q is equivalent to P1. Note that &Q has to be
specifically defined.

PGM PARM (&Q)
DCL &Q *DEC 5

EVALUATE Pl,5=3550 	 CHGVAR &Q VALUE(3550)
EVALUATE Pl=?1?*2 	 CHGVAR &Q VALUE(&Q * 2)

ENDPGt4

Parameters in AS/400 are named, and there can be as many as you want in a
procedure.

Converting from OCl to Cl 149

The arithmetic operations must be done by using the CHGVAR command. The
division operator (/) must be preceded by a blank if the operand before it is a
variable name. For example:

CHGVAR VAR(&Q) VALUE(&Q /2)

All the other arithmetic operators may be optionally preceded or followed by a
blank.

15.10 Job Attributes and Job Control
A System/36 Environment procedure can use substitution expressions like
?CLlB?, ?DATE?, ?WS?, and ?USER? to obtain job attributes. To obtain these
attributes in an AS/400 CL program, you must use the RTVJOBA (Retrieve Job
Attributes) command. See Appendix E for further details.

15.11 Group Files
There are advantages to using group files in the System/36 Environment. You
can save, restore, or delete all the files in a group using the SAVE, RESTORE, or
DELETE procedures.

With AS/400 CL you will find that you can still process groups of objects by using
generic parameter values for most commands. The generic value 'A" just
means "all objects starting with the character'A'''.

Instead of use

DELETE ALL,Fl""",A DLTF FILE(QS35F/A*)

SAVE ALL,999,#SAVE,IBMIRD,A SAVOBJ OBJ(A*) LIB(QS35F)

RESTORE ALL,#SAVE RSTOBJ OBJ(A*) OBJTYPE(*FILE)

Try to remove group files when converting to AS/400. This could be done by
removing all the '.' characters. This can help simplify the CL programs by
making the file names on the file specifications in your programs the same as
the external name, thus reducing the need for OVRDBF (like the II FILE LABEL-)
statements. However, this might introduce name conflicts that you will need to
resolve. This would happen, for example, if you had two files named "ABCD"
and "ABCD". Also, use caution when converting from System/36 group file
names to AS/400 generic names. Your commands might affect more files than
you expected. For example, if files A.BCD, A.IJK, and AXYZ were on System/36,
then DELETE ALL,F1,,,,,,,A would only delete ABCD and A.lJK. But if the same
files were in library QS36F on AS/400, DL TF FILE(QS36F/ A *) would delete ABCD,
A.IJK. and AXYZ. If all of the files in a group have the same record formats,
consider making them members of a single AS/400 file. The members can then
be processed individually or together at run time by means of the OVRDBF
statement.
•

150 Converting System/36 Environment Applications to Native AS/400

Alternatively, you can get the same effect by:

1. 	 Using repeated CL statements, one per file

2. 	 Placing all the files in the group in a separate library, here they can be
operated on together

3. 	 Using the POM in an interactive environment to perform the same operation
on many different objects

On AS/400 you can still create files that have '.' as part of their name. Members
in a file, too, can have names like System/36 group names. However, ~OS, RPG,
COBOL, and PL/I do not support a period as a valid character in any of their
specifications, so when converting to native AS/400 you should remove the '.'
and replace it with some other character, such as '$'.

15.12 Using the Local Data Area (lOA)
To change LOA using a CL program, you must use the CHGVAR command and
the substring built-in function.

II 	LOCAL OFFSET-l,BLANK-*ALL

To clear the LOA you can use these commands:

CHGVAR VAR (%SST(*LDA 1 512)) VALUE' ,

CHGDTAARA DTAARA(*LDA (1 512)) VALUE' ,

To retrieve the information in the LOA from position 1 to 12, for example, and put
it in a variable called &Q, use:

CHGVAR &Q %SST(*LDA 1 12)

Additionally, you can create named data areas in your library and pass
parameters or data to them. This type of data area can be numeric,
alphanumeric, or logical. You can also put in an initial value.

CRTDTAARA DTAARA(M¥DTAARA) T¥PE(*CHAR) LEN(128) VALUE('INITIAL')

Of course you can delete and change them, using the following commands:

CHGDTAARA

DLTDTAARA

15.13 System/36 System-Supplied Procedures
The System/36 procedures can be converted to AS/400 commands by using the
table in Appendix B, "Procedure/CL Relation Table" on page 171. This
appendix does not necessarily contain all of the System/36 procedures and their
corresponding Cl commands.

15.14 System/36 OCl Programming and Cl Programming
On System/36, procedures, control commands, Operation Control Language
(OCL) statements, and procedure control expressions are used to control all the
jobs running in the system. On AS/400, the same functions are done by CL
commands and CL programs. CL programs consist of compiled CL commands,
and the commands themselves consist of the command statement, keywords,

Converting from OCl to Cl 151

and keyword values. Keyword values may be expressed as variables, constants,
or expressions. Variables can be used as substitutes for most keyword values
on Cl commands. When a Cl program variable is specified as a keyword value
and the command containing it is run, the value of the variable is used as the
keyword value. Every time the command is run, a different value can be
substituted for the variable. Variables and expressions can be used as keyword
values only in Cl programs.

Program variables are not stored in libraries. They are not objects, and their
values are destroyed when the program that contains them terminates. Variable
names in Cl programs must begin with an ampersand (&) followed by no more
than 10 characters. The first character following the & must be alphabetic and
the remaining characters alphanumeric, like &FllE or &DSPFl1.

In addition, variables can be used to:

• Pass information between programs.

• Pass information between programs and display devices.

• Conditionally process commands.

• Create objects.

For more information, see the Control Language Programmer's Guide.

15.14'.1 Structure of a CL Program
The following table compares the structure of an OCl and a Cl program, to give
you an idea of how the main operations correspond:

152 Converting System/36 Environment Applications to Native AS/400

Parts of a CL Program

PGM command (optional)

Begins the program; declares

parameters passed to it.

PGI4 PARI4(&A)

Program variables

PGI,1 PAR~1(&Pl)

DCL VAR(&Pl) TYPE(*CHAR) LEN(4)

CHVAR &Pl 'ABC'

Built-in functions

%SST(*LDA 1 5)

%SST (&PARln 1 5)

IF COND(%SWITCH(XX101Xl1)) .. .

Logic control commands

IF

ELSE

DO

ENDDO

GO TO

Program control commands

CALL

RETURN

TFRCTL

Functional commands

DLTF

CRTPF

More examples in Appendix A

Job control

CHGJOB

CHGCURLIB

More examples in Appendix B

ENDPGM command

Parts of a Procedure

No equivalent in procedures.
Parameters are not
explicitly declared.

No equivalent.

Substitution expressions
not explicitly declared.

?17

II EVALUATE Pl=ABC

?L'l,5'?

No direct equivalent

I I IF S\oJITCH-XX101Xll ...

Procedure Control Expressions

II IF
II ELSE
No equivalent
No equivalent
II GOTO

Procedure control statements

II INCLUDE
or

II LOAD
II RUN
I I RETURN
No equivalent

Procedure commands

DELETE
BLDFILE

OCL statements

II DATE
1/ SWITCH
1/ LIBRARY

No equivalent

The sequence, combination, and extent of these components are determined by
the logic and design of your applications.

Converting from OCl to Cl 153

15.14.2 Passing Parameters
When you pass control to another Cl program, you can also pass information to
it for modification or use within the receiving program.

When you write a Cl program, you must declare each parameter that can be
passed to the program by specifying it on the PGM command and declaring it in
the program.

When you call a Cl program, you must specify exactly the same number of
parameter values as are coded on the PGM command of the called program.

Here is an example of PROCA, which has a parameter passed to it, and which
will pass a parameter to PROCB.

If they are System/36 Environment procedures, you can type:

PROCA PROGRAMI

If they are AS/400 Cl programs, you can type:

CALL PROCA PARM(PROGRAMl)

Here is how you would code PROCA and PROCB in the System/36 Environment
and in native AS/400:

System/36 Environment Native AS/400

PROCA PROCB PROCA PROCB
---- ---- ---- ----

II PROCB ?l? II LOAD ?l? PGM PARM(&PNAME) PGM PARM (&PNAME)
II RUN DCL &PNAME *CHAR(B) DCL &PNAME *CHAR(B)

CALL PROCB + CALL &PNAME
PARM (&PNAME) ENDPGM

ENDPGM

Parameters are passed by position, not name. For example if you call a
program and pass parameters to it, your program will look like this:

CALL PROGC PARM(&A &B &C)

It passes three variables.

The program PROGC starts with:

PGM PARM(&X &Y &Z) 1* PROGB *1

The value of &A in PROGA is used for &X in PROGC, &B is used for &Y in
PROGC, and so on. Also, the order of the DCl statements is unimportant. In
addition to the position of the parameters, it is necessary to pay attention to their
length and variable type.

154 Converting System/36 Environment Applications to Native AS/400

When using System/36 procedures, the special value "All can be used on an
INCLUDE OCl statement to pass all positional parameter values from a calling
procedure to a called procedure. "All can also be used on the /I RETURN
statement to return all positional parameter values from the called procedure
back to the calling procedure. In this way, the called procedure can directly
change positional parameter values in the calling procedure.

AS/400 Cl programs have a similar capability. The calling program must
explicitly pass each parameter to the called program. If a Cl variable is passed
to a program and the called program modifies the variable, the modification is
reflected in the variable in the calling program. However, if a constant value is
passed to a program and the calling program modifies its value, the modification
is not reflected in the calling program.

For example:

PGMA 	 PGMB

PG~1 	 PGM (&PARMI &PARM2)
DCl &VARI *DEC (15 5) DCl &PARMI *DEC (15 5)
DCl &VAR2 *DEC 	 (15 5) DCl &PARM2 *DEC (15 5)
CHGVAR &VARI VAlUE(10) DCl &PARM2A *DEC (15 5)
CHGVAR &VAR2 VAlUE(10) CHGVAR &PARMI VAlUE(&PARMI + 1)
CAll PBMB (&VARI &VAR2) CHGVAR &PARM2A VAlUE(&PARM2 + 1)
CAll PGMB (1 2) 	 ENDPG~1

ENDPGM

PGMA calls PGMB, passing two values. On the first call, variables are passed.
PGMB modifies the value of the first parameter by adding 1 to it. PGMA sets the
variables passed to 10, so after the first call, variable &VAR1 has the value 11 in
PGMA. PGMB also adds 1 to the value of the second parameter, but places the
result in another variable. Since PGMB does not change the second parameter
passed to it, &VAR2 still has a value of 10 in PGMA after the first call. On the
second call, constant values are passed to PGMB. Even though PGMB modifies
one of these values, the modification has no effect on PGMA.

15.14.3 IF and ELSE Commands
The procedure control statement IF has been improved in AS/400, because of the
use of logic operators like "AND, "OR, and "NOT, and the DO, ENDDO
commands, but there are some expressions which are not used (see
Appendix F, "If Conditions and Their Equivalents" on page 193).

The IF command can help you in Cl programs, because you can use it with the
logic operator and DO commands.

The IF command is used to state a condition that, if true, specifies some other
statement or group of statements in the program to be run. The ELSE command
can be used with the IF command to specify a statement or group of statements
to be run if the condition on the IF command is false. For example:

IF (&A *EQ &B) 	 THEN(GOTO lABEL)
ElSE(CAll PROGll)

In addition to the IF expressions like "EQ, "GT, and so on, there are other
conditions that can be tested with IF in the System/36 Environment that must be
changed when converting to CL. Some have equivalents, and others have to

Converting from OCL to CL 155

create a group of CL commands to do the same job. For a table of these
expressions, refer to Appendix F, "If Conditions and Their Equivalents" on
page 193.

15.14.4 *ANO, *OR, and *NOT Operators
These operators are reserved for logical operators used to specify the
relationship between operands in logical expressions. These operators are not
supported in System/36 OCL, but they might be useful to you in CL program
logic.

Some examples using these expressions are:

((&DAY *EQ 30) *AND (&TIME *GT 1800))
((&DAY = 30) *AND (&TIME > 1800))
((&AGE *LT 18) *OR (&AGE *GT 60))

15.14.5 DO and ENODO Commands
The DO command lets you process a group of commands together. The group is
defined as all those commands between the DO and the corresponding ENDDO
commands. This allows you to make your Cl programs structured and avoid the
GOTO and TAG statements you had to use in OCl procedures. For example:

IF (&A=&B) THEN(DO)

CALL PGMX
CHGVAR &A &0

ENDDO

15.14.6 Mixing OCl and Cl Programs
System/36 Environment procedures may contain a mixture of OCl statements
and Cl commands. These procedures must be run in the System/36
Environment. Just add Cl statements to the procedures.

Generally, Cl commands can be used wherever an OCl statement is valid. Cl
commands are not allowed where a utility control statement or source statement
is required (after a II RUN and before II END or /*).

System/36 substitution expressions can be used on any part of a Cl command,
including the command name and keyword names. Additional substitution
expressions have been defined for the System/36 Environment to assist in
adding Cl commands to procedures. These expressions allow you to:

• 	 Determine the name of the System/36 Environment files library (?FLlB?).

• 	 Determine if a message was issued as a result of a Cl command (?MSGID?).

• 	 Determine the AS/400 10-character device name that corresponds to a
2-character System/36 Environment device name (?DEVID?).

Refer to the Concepts and Programmer's Guide for the Systeml36 Environment
and the System Reference for the Systeml36 Environment for more information
about using these substitution expressions and Cl commands in procedures.

CL commands can also be conditioned by II IF conditions. For example:

156 Converting System/36 Environment Applications to Native AS/400

II 	IFF ?1?1 DSPFD ?1?

However, unlike OCl statements, it is not possible to condition parts of a Cl
command by placing each part on a separate line with a comma continuation
character. If a Cl command requires more than one line in the procedure, it can
be continued with a plus (+) sign.

There are other restrictions. Only those Cl commands that are allowed in an
interactive environment are allowed in OCl procedures. The DCl and CHGVAR
commands are not allowed. The MONMSG command is not allowed, so you
cannot use it to test for error messages. In fact, AS/400 messages from Cl
commands in a procedure are simply ignored (they do not cause the procedure
to fail). This is why you should use the new ?MSGID? substitution expression to
determine whether an error has occurred while processing a Cl command.

A procedure may be invoked from a Cl program using the STRS36PRC Cl
command, as shown in Figure 37 on page 157. STRS36PRC will enter the
System/36 Environment, run a procedure, and exit the System/36 Environment.
The STRS36PRC command may not be used if a procedure is already running.
Therefore, a Cl program that uses STRS36PRC cannot be called from a
procedure. This is to prevent recursive System/36 Environment jobs.

In the example, the first parameter passed from the Cl program (&PARM01)
becomes the first parameter ?1? in the OCl procedure. But even if ?1? is
altered in the procedure, its new value is not automatically passed back to the
Cl program when you return. To pass a parameter back, use the *lDA.

This is the Cl program that calls PROC111.

PGM PARM(&PARM81)
DCl VAR(&PARM81) TYPE(*CHAR) LEN(3)
MONMSG MSGID(CPF8888)
STRS36PRC PRC(PROC111) PARM(&PARM81)
RTVDTAARA DTAARA(*LDA (1 3)) RTNVAR(&PARM81)
ENDPGM

This is the procedure PROC111.

II 	* 'MESSAGE IS ?1?'
II 	PAUSE
II 	EVALUATE P1='XYZ'
II 	LOCAL OFFSET-1,DATA-'?1?'

Figure 37. Running a Systeml36 Environment Procedure from a CL Program

15.15 Prompting and Read Under Format
The two main purposes of the PROMPT command are to:

1. 	 Prompt the workstation user for parameters needed in their program.

2. 	 Allow the workstation user to type in data while the processing program is
starting (performance).

Converting from OClto Cl 157

The PDATA parameter no longer has a meaning on AS/400. Data and
parameters are treated in the same way.

Your display file has already been created by the System/36 to AS/400 migration
aid. It is described on the field level. Possibly it does not contain reasonable
field names because on System/36 there is no requirement for field names. In
this case you will find names like FlOO1 and Fl002 after the migration aid
generated them. It is up to you to decide whether the display file should be
changed. If you have already changed your programs to use externally
described display files, then you have already resolved those names.

15.15.1 Prompting for Parameters
If a PROMPT OCl statement specifies PDATA-NO, or omits the PDATA
parameter, display station input is treated as procedure parameters. The
following steps could be performed to convert the PROMPT OCl to CL:

1. 	 Declare the display file (DClF command) with optional RCDFMT(*All).

The Cl compiler generates the variables for you if the display file is described
on the field level (Figure 38 and Figure 39).

2. 	 Issue a SNDRCVF against the declared file mentioning the record format
name (member).

The display file is now sent to the workstation, and the Cl program waits until
the Enter key is pressed.

3. 	 The compiler-generated variables will contain what the workstation user
typed in.

A DSPSIZ(24 B8 *DS3)
A R ORDERREC
A 5 4' ITEMNUMBER: '
A ORDERNUM 3S 3B 5 1BDSPATR(RI)
A B 4' ITEMNAME: '
A ITEMNAME 18A B B 1BDSPATR(RI)

Figure 38. CL - DDS for SNDRCVF Prompting

DCLF FlLEU1YLlB/MYDSPF) RCDFMT(*ALL)
&ORDERNUM *DEC 3 3
&ITEMNAME *CHAR 18

SNDRCVF DEV(*FILE) RCDFMT(ORDERREC)
.. other processing

Declared Variables
Name Defined Type Length References
&ITEMNAME 288 *CHAR 18 388
&ORDERNUM 288 *DEC 3 3 3aa

Note that the variables were picked up from the display file.

Figure 39. CL - Sample Program (Shortened)

158 Converting System/36 Environment Applications to Native AS/400

15.15.2 Prompting for Data
If a PROMPT OCl statement specifies PDATA-YES, display station input is
treated as data for the program's first input operation.

The same as above applies here, with the difference being that the SNDRCVF is
replaced by the SNDF command in the Cl program.

The display file should be recompiled with SHARE(YES).

Here are some ways for the application program to obtain data from the screen:

• 	 change your application program to READ from the prompt format rather
than from the file when reading the display file. Almost no change of the
display file is required for this purpose.

or

• 	 Use the PASSRCD keyword on the file level in the display file. This will pass
the specified record format to the application program. Almost no change of
the application program is required for this purpose. A READ is required,
but in RPG it will be to a blank format name. In COBOL, the READ will be to
the file name.

In both cases, use the KEEP and ASSUME record level DDS keywords. KEEP
causes the data management not to clear the screen when the program closes
the display file. ASSUME causes data management to send the screen to the
program when the program reads it (after OPEN). Almost no change in the
application program is required for this purpose.

You might consider the record level INZRCD, which initializes the record on the
screen for further typing.

For details, refer to the Data Management Guide and the Data Description
Specifications Reference.

This prompting for data is shown in Figure 40 and Figure 41 on page 160.

---> PASSRCD(ORDERREC)

DSPSIZ(*DS3)

---> R ORDERREC KEEP ASSUME

5 4' ITEMNUMBER: I

ORDERNUM 3S 38 5 18DSPATR(RI)

8 4' ITEMNAME: I

ITEMNAME lElA B 8 18DSPATR(RI)

Figure 40. CL - Sample Display File DDS Expanded for RUF

Converting from DCl to Cl 159

DCLF FILE(MYLIB/MYPRMTDF) RCDFMT(ORDERREC)

&ORDERNUM *DEC 3 3

&ITEMNAME *CHAR 10

SNDF DEV(*FILE) RCDFMT(*ALL)
/* Call the application program */

CALL PGM(MYLIB/PROG3)

Figure 41. CL - Sample Program (Shortened) Expanded for RUF

15.15.3 Read Under Format (RUF)
The term read under format is no longer used on AS/400. In fact, there is no
need for it because the storage restrictions of the System/36 no longer exist.
Thus, program chaining using RUF is not required or recommended for native
AS/400 applications. But for the purpose of conversion, there is a good
technique to obtain the RUF.

Again use the KEEP and ASSUME keywords in the display file. Insert the
PASSRCD keyword or change the program to mention a record format in the
READ. Recompile the display file with SHARE(YES).

15.16 A Note about Auto Response
On System/36 you could specify an automatic response for certain messages
system-wide by using the RESPONSE procedure. On AS/400 you can do the
same by using the system reply list with the ADDRPYlE (Add Reply List Entry)
command. There are more possibilities on AS/400 than on System/36. You can
monitor for certain messages and take appropriate action in a Cl program. You
can also specify a message handling program within the message description.
For details, refer to the Control Language Programmer's Guide.

15.17 Utilities
The PTK will convert most utilities and utility control statements (but not all),
including the file OCl (other than the work file statements, if any), to
corresponding Cl commands.

You will need to check the generated Cl commands to ensure that the result
correctly replaces the intention of the utility control statements, because these
are generally used to provide functions that the standard System/36 system
procedures do not allow. We found that the PTK did not always convert the
utility statements completely.

System/34 utilities that will function on the System/36 will, in general, convert
less completely than the same System/36 utility when using PTK.

Where files are being created on output or being deleted (for example, with
RETAIN-S parameter for the input file), you may have to provide the necessary
CRTPF and DlTF Cl commands, depending on the requirements and whether
the characteristics of the output file are the same as the input file.

160 Converting System/36 Environment Applications to Native AS/400

Some utilities, particularly $MAINT, do not convert as utilities when using PTK,
but would convert when replaced by their corresponding system procedures.
Refer to Appendix A, "UCS/Procedure Relation Table", for assistance in this
process.

The following is an example of conversion of a $COPY utility. It is based on the
output of PTK. EXAMPLE:

II LOAD $COPY
I I FILE NAME-COPYIN,LABEL-CASHt4,RETAIN-S
II FI LE NAME-COPYO, LABEL-CASHtHH,BLOCKS-IO, RETAI N- T
II RUN
II COPYFI LE OUTPUT -SAt4E, or·1I T-EO, POS IT ION-I, CHAR- '2', REORG- YES
II SELECT KEY,FROM-112345 1,TO-'67890 '
II END

Converts to

CPYF FROMFILE(*LIBL/CASHM) TOFILE(OS36F/CASHMTH) +
CRTFILE(*YES) COMPRESS(*YES) INCCHAR(*RCD 1 *NE 2) +
FROMKEY(l ('12345 ')) TOKEY(l ('67890'))

DLTF FILE(*LIBL/CASHM)

NOTE: File 'CASHMTH' will have the same characteristics as 'CASHM'

We recommend that you change the utility statements to corresponding
System/36 system procedures, for example $COPY to COPYDATA, SAVE,
RESTORE and then have PTK convert the system procedures.

15.18 Recommendations
Consider using the Programmer Tools PRPQ (5799-DAG). This tool will convert
most System/36 procedures to CL programs without the need for manual
conversion. You must review the resulting CL programs to ensure that these
perform the same functions as those intended by the original OCL.

If you have procedures that contain control expressions, substitutions, system
procedures, and utilities that do not convert, then use the appendixes in this
document to convert to CL commands if possible. Where the conversion is not
possible, you will either have to rewrite the CL program or create a program that
will replace the function.

Alternatively, you could consider a full rewrite. The resources needed might be
relatively low compared to the resources needed if extra functions have to be
added to the application programs.

Converting from OCL to CL 161

162 Converting System/36 Environment Applications to Native AS/400

16.0 National Language Support Considerations

This section covers some considerations when your primary language is not US
English.

16.1 Installing the PTK
As PTK provides only US English machine-readable information (MRI). you may
have to be concerned with the multilingual environment at installation time. If
you have a national language other than US English as the primary language,
you need to have the US English MRI library named QSYS2924 as the secondary
language into which the MRI of PTK is restored.

Install PTK as follows:

• Get the tape of PTK.

• Restore the objects using the RSTLlCPGM command.

RSTLICPGM LICPGM(5799DAG) DEV(TAP01) LNG(2924)

where 2924 is the feature code of US English, and the device name "TAP01"
may be different.

All objects of type *PGM go into the library QPTK.

All objects of type other than *PGM (MRI), go into the library QSYS2924.

When you use PTK, your job must have the library QSYS2924 in your system
library list. This is done by the command CHGSYSLIBL.

CHGSYSLIBL LIB(QSYS2924) OPTION(*ADD)

Or the library QSYS2924 may be added to your system library list automatically
at the sign-on time, because your display terminal is in US English, which is not
the primary language in your system. Refer to Chapter 4 in the Work
Management Guide to change the system library list at the sign-on time.

16.2 DBCS Considerations
When you convert your applications from double-byte character set (DBCS)
System/36 to DBCS AS/400, you should be aware of several things that are not
taken care of by PTK:

• DDS source files:

PTK creates a DDS source physical file that is not a DBCS-capable file.
Therefore, you will have to create another source physical file with DBCS
capability to include DBCS text and column headings. Specify IGCDTA(*YES)
on the CRTSRCPF CL command to create the file. After creating the
DBCS-capable file, you can copy the DDS output of PTK to it.

• Database files

PTK does not set the DBCS attribute in database files when it generates the
DDS from internal descriptions. That means if you want to create the

<e Copyright IBM Corp. 1988,1990 163

DBCS-capable database file, you have to specify "0" in the data type field of
the DDS source generated by PTK. (You can create the DBCS-capable file
by specifying IGCDTArYES) in the CRTPF command, but this is mutually
exclusive with SRCFILE parameter. If you use the DDS, you need to specify
"0" in the data type field to create the DBCS-capable file.) All DDS
generated by PTK should be examined to determine whether the DDS should
have this data type.

In the meantime, all files in the DBCS System/36 are migrated to
DBCS-capable files in AS/400. This is true even if a file contains only
numeric fields. In AS/400 it is impossible to create a DBCS-capable file that
has only numeric fields by using DDS. (The data type "0" cannot be
specified for the numeric fields.) When you copy a file in the System/36
Environment that is DBCS-capable to an AS/400 database file that is not
DBCS-capable, you get the information message CPF2826 saying DBCS data
may be copied to a non-DBCS file. You can ignore this message, because
all records are copied and there should be no DBCS data in the
numeric-only fields file.

164 Converting System/36 Environment Applications to Native AS/400

17.0 Systems Application Architecture (SAA) Considerations

OS/400 participates in IBM Systems Application Architecture (SAA) and joins
OS/2, VM, and MVS as a major operating environment.

When you convert or redesign your application programs, it may be a good time
to consider complying with SAA interfaces.

The major interfaces when you convert the application programs will be:

• 	 Common programming interface (CPI)
RPG/400 and COBOL/400 are SAA CPI languages.

The native RPG and COBOL compilers have the capability of flagging
statements that do not comply with the respective SAA CPI definitions. If you
specify SAAFLAG(*FLAG) on the CRTRPGPGM or CRTCBLPGM CL command
(the default is SAAFLAG(*NOFLAG)), the compiler will flag the statements
that do not comply and summarize them under an "SAA Message Summary"
in the compiler listing. This function is not available with the System/36 or
System/36-compatible compilers.

If you intend to comply fully with SAA from a CPI point of view, you should
also consider using Stuctured Query Language/400 (SQU400) and
Procedures Language 400/REXX, which are the SAA data base and
procedures language CPls. Converting System/36 Environment applications
to use SQL and REXX should probably be considered for only your most
important applications because the effort will be nearly the same as
completely redesigning the applications.

• 	 Common user access (CUA).
Your screen formats may be different than what SAA prescribes. For
example, CMD7 is the standard key in System/36 to terminate, but it is F3 for
SAA. Changing your user interface to comply with SAA rules may require
significant effort, but this is the time to consider whether you want to
participate in SAA from a CUA point of view.

Refer to the following SAA manuals for more details:

• 	 An Overview

• 	 CUA Basic Interface Design Guide

• 	 Writing Applications: A Design Guide

• 	 Common Programming Interface:

Application Generator Reference

C Reference

COBOL Reference

Database Reference

Dialog Reference

FORTRAN Reference

Presentation Reference

Procedures Language Reference

© Copyright IBM Corp. 1988,1990 165

Query Reference

Communications Reference

Also, the ITSC publication, Writing SAA Applications for ASI400, contains
explanations and examples of SAA-conforming applications.

166 Converting System/36 Environment Applications to Native AS/400

Appendix A. UCS/Procedure Relation Table

The following table shows the relationship between System/36 utilities, with their
utility control statements, and the corresponding System/36 procedure
commands. If your applications use the utilities and utility control statements,
you may use this table to find which System/36 procedure commands perform
the same functions. Then refer to Appendix B, "Procedure/CL Relation Table" on
page 171, to find the native AS/400 equivalent of the procedure commands.

System/36 System/36
Uti 1ity Procedure Command

SBICR TRANSFER
II TRANSFER

SBt~ENU BLDI·1ENU
II MENU

$Capy
I I COPYFILE COPYDATA, LISTDATA, SAVE, RESTORE
II COPYALL SAVE, RESTORE
II COPYADD SAVE

SCPPE ERR
II ERR

SDDST KEYSORT
II KEYSORT

$DELET DELETE
II SCRATCH
II REMOVE

$DUPRD COPYIl
II COPYIl

$FBLD BLDFILE, BLDINDEX
II FILE

$FREE CO~IPRESS

II COMPRESS

$GSORT SORT
II SOURCE

continued on next page

© Copyright IBM Corp. 1988,1990 167

Appendix A, "UCS/Procedure Relation Table" continued

System/36
Utility

$HIST
II DISPLY

$INIT
II UIN
II VOL

$KASRT
I I SOURCE

$LABEL
II DISPLAY

$~4A INT
II ALLOCATE
II COPY

II CHANGE
II COMPRESS
I I DELETE
I I COPYLIBR

$~lGBLD

II MGBLD

$RENAM
II RENAME

$SETCF
II SETCF

$TCOPY
II TRANSFER

$TINIT
II VOL

System/36
Procedure Command

HISTORY

INIT

SRTX

CATALOG

ALOCLIBR, BLDLIBR
FROMLIBR, TOLIBR, JOBSTR,
LISTLIBR, LISTFILE, BLDLIBR
CHNGEI~Er~

CONDENSE
REr~OVE

SAVELIBR, RESTLIBR

CREATE

RENAME

SET

TAPECOPY

TAPEINIT

continued on next page

168 Converting System/36 Environment Applications to Native AS/400

Appendix A, "UCS/Procedure Relation Table" continued

System/36
Utility

$TMSERV
II ARCHIVE
I I LISTARCH
II MOVEFLDR
II RESTFLDR
II RETRIEVE
II RORGFLDR
II SAVEFLDR

$UASC

$UASF
II SPOOL

System/36
Procedure Command

ARCHIVE
LISTFILE
MOVEFLDR
RESTFLDR
RETRIEVE
ALOCFLDR, CONDENSE
SAVEFLDR

COPYPRT

COPYPRT

Appendix A. UCS/Procedure Relation Table 169

170 Converting System/36 Environment Applications to Native AS/400

Appendix B. Procedure/CL Relation Table

The following table shows the relationships among procedures in System/36,
System/36 Environment, and AS/400 Native CL commands. This table is not
limited to the conversions performed by PTK, nor does it necessarily contain all
the procedures and CL commands available.

Remember that native AS/400 CL commands may also be used in the System/36
Environment.

System/36 System/36 Native
Procedure Environment AS/400

ALERT (1) CHGMSGD

ALOCFLDR (1) (3)

ALOCLlBR (2) (3)

ALTERBSC (1) rJRKLlND (5)

ALTERCOM (1) \oJRKLlND (5)

GO CFGDEVCMN

ALTERSDL (1) \oJRKLI ND (5)
APAR (1) CRTAPAR

ARCHIVE (1) SAVDLO

ASM (1) (3)

AUTOC AUTOC CRTRPTPGM
CRTS36RPT

BALPRINT (1) (1)
BASIC (1) STRBAS

BASICP (1) STRBASPRC

BASICR (1) CALL

BASICS (1) CRTBASPGM

continued on next page

© Copyright IBM Corp. 1988,1990 171

Appendix B, "Procedure/CL Relation Table" continued

System/36
Procedure

BGUCHART

BGUDATA

BGUGRAPH

BLDFILE

BLDINDEX

BLDLIBR

BLDMENU

CATALOG

CHNGEMEM

CNFIGICF

CNFIGSSP

CNFIGX25

COBOL

COBOLC

COBOLONL

COBOLP

COBSDA

COBSEU

System/36
Environment

(1)
(1)
(1)
BLDFILE

BLDINDEX

BLDLIBR

BLDMENU

CATALOG

CHNGEMEM

(1)
(1)

(1)
(1)
COBOLC

(1)
(1)
COBSDA

COBSEU

Native

AS/4ElEl

STRBGU

STRBGU

STRBGU

CRTPF (sequential)

CRTLF (indexed)

CRTLF .

CRTLIB,

CRTSRCPF (named QS36PRC)

RSTS36LIBI~

STRSDA
CRTMNU

DSPLIB
DSPDKT
DSPFD
DSPOBJD
QUSRTOOL/PRTLIBANL (6)

RNMM
RNMOBJ

GO CFGDEVCMN

CHGS36
GEl LICPGM

GO CFGDEVCMN

CRTCBLPGM

CRTCBLPGM

STRPDM

STRPDM

STRPDM
STRSDA

STRPDM
STRSEU

continued on next page

172 Converting System/36 Environment Applications to Native AS/400

Appendix B, "Procedure/CL Relation Table" continued

System/36 System/36 Native
Procedure Environment AS/4EH:l

C0I4PRESS (1) (2)

CONDENSE (1) (2)

COPYDATA COPYDATA CPYF
RGZPFr4

COPYll COPYIl DUPDKT

COPYPRT COPYPRT CPYSPLF
DSPPFH
HRKSPLF

CREATE CREATE CRTMSGF

DATE DATE CHGJOB

DEFINEID (1) CRTCTLBSC
CHGCTLBSC
GO CFGDEVCt4N

DEFINEPN (1) \1RKCTLD (5)

DEFINLOC (1) CRTCFGL
CHGCFGL
GO CFGDEVCt4N

DEFINX21 (1) \~RKCTLD (5)

DEFINX25 (1) CRTCFGL
CHGCFGL
WRKCTLD

DELETE DELETE DLTLIB
DLTDKTLBL
DLTF
CRLDKT
DLTDLO

DELNRD (1) ~JRKDDMF (5)
DLTF

DFU DFU STRDFU

DISABLE (1) VRYCFG

DSU DSU STRPDM

EM3270 EM3270 STREML3270

continued on next page

Appendix B. Procedure/CL Relation Table 173

Appendix B, "Procedure/CL Relation Table" continued

System/36
Procedure

ENABLE

ENTER

ENTER#

EP3270

ERR

ES3270

FORMAT

FORTRAN

FROMLIBR
for S/36
interchange

FROMLIBR
for AS/400
interchange

HELP

HISTCOPY

HISTORY

ICFDEBUG

IDDU

IDDUDCT

IDDUDFN

IDDUDISK

System/36
Environment

(1)

ENTER

ENTER#

EP3270

ERR

ES3270

FORMAT

(1)

SAVS36LIBM

FROMLIBR

HELP

(1)

(1)

(1)

IDDU

IDDUDCT

IDDUDFN

IDDUDISK

Native
AS/400

VRYCFG

STRDFU
CRTPF
CHGDTA

STRDFU

STREr~L3270

SNDBRKHSG
SNDPGHMSG TYPE(*ESCAPE)
SNDUSRMSG

STREML3270

CRTDSPF

(1)

SAVS36LIBM

SAVLIB
SAVOBJ

GO CMDHLP

(3)

GO CMDLOG

STRDBG

WRKDTADCT (5)

~JRKDTADCT (5)

~JRKDTADFN (5)

WRKDBFIDD (5)

continued on next page

174 Converting System/36 Environment Applications to Native AS/400

Appendix Bt "Procedure/CL Relation Table" continued

System/36 System/36
Procedure Environment

IDDULINK IDDULINK

IDDUPRT IDDUPRT

IDDURBLD (1)

IDDUXLAT (1)

IGC IGC

INIT INIT

INQUIRY INQUIRY

INQUIRY# INQUIRY#

IPL (1)

ITF ITF

JOBSTR JOBSTR

KEYS (1)

KEY SORT KEYSORT

LIBRLIBR LIBRLIBR

LINES LINES

LIST LIST

LIST# LIST#

Native
AS/400

LNKDTADFN

DSPDTADCT

(3)

(1)

(3)

CLRDKT
INZDKT
RNt'lDKT

STRDFU
DSPDTA

STRDFU

P\'JRD~JNSYS

STRITF

STRDKTRDR

GO CMDKBD

(3)

CRTDUPOBJ
CPYSRCF

OVRPRTF

GO CMDQRY
RUNQRY

GO CMDQRY

continued on next page

Appendix B. Procedure/CL Relation Table 175

Appendix B, "Procedure/CL Relation Table" continued

Systemj36
Procedure

LISTDATA

LISTFILE

LISTLIBR
directory
information

LISTLIBR ALL

LISTNRD

LOAD3601

LOG

MSGFILE

MSRJE

NOHALT

OLINK

ORGANIZE

PASSTHRU

PAS S\'JO RD

Systemj36
Environment

LISTDATA

LISTFILE

LISTLIBR

LISTLIBR

(1)

(1)

LOG

(1)

MSRJE

NOHALT

(1)

COPYDATA

(1)

PASSviORD

Native
ASj400

CPYF
CPYFRMDKT
CPYFRMTAP

CPYF
CPYFRt~DKT

CPYFRtHAP
DSPDKT
DSPTAP
Df.1PTAP
DSPLIB

DSPLIB
DSPFD QS36SRC
DSPFD QS36PRC
DSPOBJD
QUSRTOOLjPRTLIBANL (6)
CPYSRCF

CPYSRCF QS36SRC *PRINT
CPYSRCF QS36PRC *PRINT

viRKDDMF

(1)

CHGJOB

GO CMDMSG

GO CMDRJE
STRRJECSL
SBMRJEJOB

140NMSG
CHGRPYLE

(3)

CPYF

STRPASTHR

CHGPW

continued on next page

176 Converting System/36 Environment Applications to Native AS/400

Appendix B, "Procedure/CL Relation Table" continued

System/36
Procedure

PATCH

POST

PRINT

PRINTKEY

PRTGRAPH

QRY

QRYDE

QRYRUN

RH10VE

RENAME

RESPONSE

RESTFLDR

RESTLIBR
S/36
interchange

RESTLIBR
AS/480
interchange

RESTNRD

System/36
Environment

(1)

(1)

PRINT

(1)

PRTGRAPH

QRY

QRYDE

QRYRUN

REt40VE

RENAME

RESPONSE

(1)

RSTS36LIBM

RESTLIBR

(1)

Native
AS/480

STRSST

GO CMDCPY

OVRPRTF
CHGJOB
CHGDEVDSP

CHGDEVDSP

STRBGU

GO CI4DQRY
HRKQRY

UPDDTA
STRDFU

RUNQRY

DLTPGM
RMVM
CLRLIB
DLTPGM

RNMOBJ

MONMSG
CHGRPYLE
WRKRPYLE

RSTDLO

RSTS36LIBM

RSTLIB
CPYFRMTAP

RSTOBJ

continued on next page

Appendix B. Procedure/CL Relation Table 177

Appendix B, "ProcedurelCL Relation Table" continued

System/36
Procedure

RESTORE
S/36
interchange

RESTORE
AS/400
interchange

RETRIEVE

RJFILE

RJTABLE

ROLLKEYS

RPGC

RPGONL

RPGP

RPGR

RPGSDA

RPGSDA

RPGX

SAVE
S/36
interchange

SAVE
AS/400
interchange

SAVEEXTN

System/36
Environment

RSTS36F

RESTORE

(1)

RJFILE

RJTABLE

(1)

RPGC

GO S36PGMLNG

GO S36PGMLNG

RPGR

RPGSDA

RPGSEU

RPGX

SAVS36F

SAVE

(1)

Native
AS/400

RSTS36F .

RSTOBJ

RSTDLO

CVTRJEDTA

GO Cf4DFCTE
GO CMDFCR

CHGPRF

CRTRPGPGM

STRPDM

STRPDM

STRPDM
RPGR

STRPDM
STRSDA

STRPDM
STRSEU

CRTRPGPGM

SAVS36F

SAVOBJ

CPYIGCTBL

178 Converting System/36 Environment Applications to Native AS/400

continued on next page

Appendix B, "Procedure/CL Relation Table" continued

System/36
Procedure

SAVEFlDR

SAVEUBR
S/36
interchange

SAVEUBR
AS/400
interchange

SAVENRD

SDA

SET

SETAlERT

SETCOMM

SETDUMP

SEU

SUB

SOFTWARE

SORT

STARTM

STOPGRP

STOPM

STRTGRP

SWITCH

System/36
Environment

(1)

SAVS36LIBM

SAVUBR

(1)

SDA

SET

(1)
(1)
(1)

SEU

SUB

(1)
SORT

(1)

(1)

(1)
(1)

SWITCH

Native
AS/400

SAVDlO

SAVS/36UBM

SAVUB

SAVOBJ

STRSDA

CHGJOB
CHGDEVD
CHGPRF

CHGMSGD

CHGDEVCI~N

GO CMDDBG
GO CMDBKP

STRSEU

ADDUBlE
CHGCURUB

GO UCPGM

FMTDTA

VRYCFG

ENDMOD

VRYCFG

VRYCFG
STRMOD

CHGJOB

continued on next page

Appendix B. Procedure/CL Relation Table 179

Appendix B, "Procedure/CL Relation Table" continued

System/36 System/36 Native
Procedure Environment AS/400

SYSLIST SYSLIST OVRPRTF

TAPECOPY TAPECOPY CPYFRMTAP
CPYTOTAP

TAPEINIT TAPEINIT INZTAP

TAPESTAT (1) PRTERRLOG

TOLlBR RSTS36LIBI'i! RSTS36L1BM
5/36
interchange

TOLlBR TOLlBR R5TOBJ
AS/400
interchange

TRACE (1) TRCINT

TRANSFER TRANSFER CPYFRMDKT
CPYTODKT
CPYSPRPF

UPDATE UPDATE STRDFU
CHGDTA

UPDATE# UPDATE# STRDFU

WSU (1) (1)

NOTES:

(1) This procedure or command is not supported in this environment.

(2) This is checked for syntax only. No operation is performed.

(3) This procedure or command is no longer needed.

(4) CAll and GO command run objects created in native AS/400.

(5) The WRKxxxx commands work only in interactive mode.

(6) This is available in library QUSRTOOl in Release 1.2.

180 Converting System/36 Environment Applications to Native AS/400

Appendix C. OCL/CL Relation Table

The following table shows the relationships among System/36 DCl statements
and their counterparts in System/36 Environment and native AS/400. This table
does not necessarily show all the Cl commands available.

Remember that native AS/400 Cl commands may also be used in the System/36
Environment.

System/36 System/36 Native
OCL Environment AS/400

ALLOCATE ALLOCATE 	 ALCOBJ

ATTR ATTR 	 CHGJOB
WRKJOB (5)
SBMJOB
RVKOBJAUT

CANCEL CANCEL 	 CHGSPLFA
DLTSPLF
~JRKOUTQ (5)
~JRKSPLF

CHANGE CHANGE 	 CHGSPLFA
CHG~JTR

~JRKOUTQ (5)
WRKSPLF

DATE DATE 	 CHGJOB
WRKJOB

DEALLOC DEALLOC 	 DLCOBJ

EVOKE EVOKE 	 SBMJOB
CALL
STRS36PRC
RTVOBJA

FILE FILE 	 OVRDBF
OVRDKTF
OVRTAPF

FORMS FORMS 	 OVRPRTF

INCLUDE INCLUDE 	 CALL

continued on next page

© Copyright IBM Corp. 1988,1990 181

Appendix C, "QCLlCL Relation Table" continued

System/36
OCL

INFor~SG

JOBQ

LIBRARY

LOAD

LOCAL

LOG

MEMBER

MENU

MSG

NOHALT

OFF

pmJER

PRINTER

PROMPT

System/36
Environment

INFOMSG

JOBQ

LIBRARY

LOAD

LOCAL

LOG

MEMBER

~lENU

MSG

NOHALT

OFF

(1)

PRINTER

PROMPT

Native
AS/400

-CHGMSGQ

SB~lJOB

ADDLIBLE
CHGCURLIB
CHGJOBD
CHGPRF
CHGLIBL
CHGUSRPRF

CALL (4)

CHGDTAARA
CHGVAR

CHGJOB
CHGJOBD

OVRMSGF
SNDxxxMSG

GO (4)
CALL

SNDBRKMSG
SNDMSG
SNDNETMSG
SNDPGMMSG

MONMSG

SIGNOFF

P~JRDWNSYS

OVRPRTF

DCLF &
SNDRCVF

182 Converting System/36 Environment Applications to Native AS/400

continued on next page

Appendix e, "OeLlel Relation Table" continued

System/36 System/36 Native
OCL Environment AS/488

REGION REGION None

RESERVE RESERVE None

RESET RESET TFRCTL

RUN RUN CALL (4)

SESSION SESSION OVRICFDEVE
CALL

S\oIITCH SHITCH CHGJOB

START START STRPRHJTR

STOP STOP ENDl-JTR

SYSLIST SYSLIST None
OVRPRTF

VARY VARY VRYCFG
vJRKCFGSTS

\<JAIT \<JAIT DLYJOB

\<JRKSTN \<JRKSTN OVRDSPF

NOTES:

(1) This procedure or command is not supported in this environment.

(4) 	CALL and GO command run objects created in AS/400 native.
On AS/40a, the CALL command is the equivalent of the combination of
the System/36 II LOAD and II RUN statements.

(5) 	The WRKxxxx commands only work in interactive mode.

Appendix c. DCUeL Relation Table 183

184 Converting System/36 Environment Applications to Native AS/400

Appendix D. acc and CL Command Table

The following table shows the relationships among operator control commands
(OCC) in System/36, System/36 Environment, and native AS/400 CL commands.
This table does not necessarily contain all the operator control commands and
CL available.

System/36

OCC

CANCEL
C P,spoolid
C P, FORr~S
C P,USER
C J,jobname
C J,ALL
C S.id
C jobname

CHANGE

G COPIES

G DEFER

G FORMS

G ID

G PRT

G PRTY

G SEP

G JOBQ

CONSOLE

HOLD
H P,spoolid
H P,prtid
H P,ALL
H J ,jobname

System/36
Environment

CANCEL
C P, spoo1 i d
C P, FORt4S
C P,USER
C J,jobname
C J,ALL

(1)
(1)

CHANGE
G COPIES
G DEFER
G FORMS
G ID
G PRT

(1)

G SEP

(1)
(1)

HOLD
H P,spoolid
H P,prtid
H P ,ALL

(1)

Native
AS/400

DLTSPLF

~JRKOUTQ (5)

~JRKOUTQ (5)

~JRKJOBQ (5)

CLRJOBQ

\'JRKUSRJOB (5)

ENDJOB jobname *IMMED

CHGSPLFA COPIES or WRKOUTQ (5)

CHGSPLFA SCHEDULE or WRKOUTQ (5)

CHGSPLFA FORMTYPE or WRKOUTQ (5)

CHGSPLFA OUTQ or WRKOUTQ (5)

CHGSPLFA PRTSEQ

CHGJOB

CHGWTR

WRKJOBQ (5)

CHGMSGQ QSYSOPR

HLDSPLF or WRKWTR (5)

HLDWTR PRTID or WRK\JITR (5)

HLDWTR PRTID(s) or WRKvlTR (5)

HLDJOB or WRKvlTR (5)

continued on next page

© Copyright IBM Corp. 1988,1990 185

Appendix D, "OCC and CL Command Table" continued

System/36
OCC

INFot,lSG

JOBQ

MENU

MODE

MSG

OFF

PQloJER

PRTY

RELEASE
L P,spoolid
L P,prtid
L P,ALL
L JOBQ
L JOBQ,jobname

REPLY

RESTART

START
S P,prtid
S P,ALL
S JOB
S J
S J,prtq
S SERVICE
S N
S S
S W

System/36
Environment

INFOMSG

JOBQ

MENU

(1)
I'4SG

OFF

(1)
(1)

RELEASE
L P,spoolid
L P,prtid
L P,ALL
L JLF
L JR

(1)

(1)

START
S P,prtid
S P,all

(1)
S J

S J,prtq

(1)
(1)
(1)
(1)

Native
AS/400

CHGr4SGQ

SBMJOB

GO (4)

(1)
SNDMSG
DSPI4SG
SNDBRKI,lSG

SIGNOFF

PI'IRDIoJNSYS

CHGJOB
WRKUSRJOB

WRKOUTQ (5)
~JRK\HR (5)
I~RKIHR (5)
~JRKJOBQ (5)
~JRKUSRJOB (5)
DSPMSG

ENDWTR
STRPRHJTR

STRPRTlHR
SI'JRPRTWTR *ALL
RLSJOB
RLSJOBQ
WRKJOBQ (5)
GO CMDPRBMGT
VRYCFGSTS *UN
STRSBS or STRPRTWTR *ALL
STRSBS or WRKCFGSTS *DEV (5)

continued on next page

186 Converting System/36 Environment Applications to Native AS/400

Appendix 0, "OCC and CL Command Table" continued

Systemj36 Systemj36
OCC Environment

STATUS STATUS
D S,id D S,id
D C (1)
D H (1)
D L (1)
D J D J
D P D P
D N (1)
D I (1)
D A (1)
D M (1)
D I'J D ~J
DI'JRT D ~JRT
D T (1)
D G D G
D U D U

STOP STOP
P P P P
P P,ALL P P,ALL
P job (1)
P J P J
P N (1)
P S (1)
P W, i d (1)
P W,ALL (1)

TIME TIME

VARY
V xxx,id V xxx,id
V xxx,P V xxx,P
V xxx, II V xxx, II
V xxx,ctlid (1)
V xxx"line (1)
V xxx,Tx (1)

NOTES:

Native
ASj4fJfJ

I'JRKJOB
~JRKCFGSTS

l-JRKCFGSTS
I'JRKCFGSTS
\'JRKJOBQ
\'JRKOUTQ
\'JRKCFGSTS
l-JRKCFGSTS
DSPAPPNINF
GO CI·1DRJE
\'JRKCFGSTS
I'JRKHTR
\'JRKACT JOB
DSPMSG
l-JRKACTJOB

ENmJTR or

(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)

or l-JRKCFGSTS (5)

(5)
(5)
(5)

or HRKUSRJOB (5)

HLD~JTR

ENDl'JTR *ALL
I'JRKACT JOB
I'JRKJOBQ or HDLJOBQ
I~RKCFGSTS

ENDSYS
WRKCFGSTS
ENDSBS

DSPSYSVAL QTIME
DSPSYSVAL QDATE

VRYCFG
VRYCFG *DEV
VRYCFG *DEV
VRYCFG *CTL
VRYCFG *UN
VRYCFG *DEV

(5)
(5)
(5)

(5)

(1) This procedure or command is not supported in this environment.

(4) CALL and GO command run objects created in AS/4B9 native.

(5) The WRKxxxx commands only work in interactive mode.

Appendix D. acc and CL Command Table 187

188 Converting System/36 Environment Applications to Native AS/400

Appendix E. Table of System/36 Substitution Expressions

This table contains the System/36 substitutions and how they could be resolved
within a CL program. This table does not necessarily contain all the sUbstitution
expressions and CL expressions available.

Conversion of substitution expressions depends on the context in which they
occur. For example, ?12? will convert, but ??12?? will not.

Systemj36
Substitution ASj488 Cl

?n? DCl VAR(&PRMn) TYPE (*CHAR)

?n'string'? DCl VAR(&PRMn) TYPE(*CHAR)
IF (&PRMn *EQ ' ') THEN(DO)
CHGVAR &PRMn VAlUE('string')
ENDDO

?nT'string'? DCl VAR(&WRKx) TYPE(*CHAR)
DCl VAR(&PRMn) TYPE(*CHAR)
IF (&PRMn *EQ ' ') THEN(DO)
CHGVAR &~JRKx VAlUE('string')
ENDDO
ELSE CMD (DO)
CHGVAR &WRKx VAlUE(&PRMn)
ENDDO

?nF'string'? DCl VAR(&PRMn) TYPE(*CHAR)
CHGVAR &PRMn VAlUE('string')

?R? DCl VAR(&RPlOn) TYPE(*CHAR)
SNDUSRMSG
MSG('Enter Parameter Req')
MSGRPY(&RPlOn)

?nR? DCl VAR(&PRMn) TYPE(*CHAR)
IF (&PRMn *EQ 'I') THEN(DO)
SNDUSRMSG MSG('Enter Missing Parameter')
MSGRPY (&PRMn)
ENDDO

continued on next page

© Copyright IBM Corp. 1988,1990 189

Appendix E, "Table of System/36 Substitution Expressions" continued

Systemj36
Subst itut ion

?R'rnic'?

?nR'mic'?

?Cn?

?C'string'?

ASj400 Cl

DCl VAR(&\1RKn) TYPE(*CHAR)

SNDUSRMSG MSGID('USR' *TCAT 'rnic ')

MSGF(*lIBljUSRMSG)

MSGRPY (&\oJRKn)

DCl VAR(&PRMn) TYPE(*CHAR)

IF (&PRr·1n *EQ ' ') THEN(DO)

SNDUSRMSG MSGID('USR' *TCAT 'rnic')

r~SGF (*LIBljUSRr'lSG)

r~SGRPY (&PRr4n)

ENDDO

DCl VAR(&PRMn) TYPE(*CHAR) lEN(128)

DCl VAR(&lEN01) TYPE(*DEC) lEN(3 0)

DCl VAR(&\~RKx) TYPE(*CHAR) lEN(32)

CHGVAR &lEN01 VAlUE(32)

CNVTAGxx:

IF COND(%SST(&PRMn &lEN01 1) *EQ ' ')

THEN(DO)

CHGVAR VAR(&lEN01) VAlUE(&lEN01 - 1)

IF (COND(&lEN01>0) THEN(GOTO CNVTAGxx)

ENDDO

CHGVAR VAR(&WRKx) VAlUE(&lEN01)

IF COND(%SST(&WRKx 30 3) *EQ value)

to verify length
THEN (DO)

ENDDO

DCl VAR(&lEN01) TYPE(*DEC) lEN(3 0)

DCl VAR(&WRKx) TYPE(*CHAR) lEN(32)

CHGVAR &WRKx VAlUE('string ')

CHGVAR &lEN01 VAlUE(32)

CNVTAGxx:

IF COND (%SST (&WRKx &lEN01 1) *EQ ')
1

THEN(DO)

CHGVAR VAR(&lEN01) VAlUE(&lEN01 - 1)

IF (&NUM04 *GT 0) THEN(GOTO CNVTAGxx)

ENDDO

CHGVAR VAR(&WRKx) VAlUE(&lEN01)

IF COND(%SST(&WRKx 30 3) *EQ value)

to verify length
THEN(DO)

ENDDO

continued on next page

190 Converting System/36 Environment Applications to Native AS/400

Appendix E, "Table of System/36 Substitution Expressions" continued

System/36
Substitution AS/400 Cl

?CD? 	 DCl VAR(&RTGDA) TYPE(*CHAR) lEN(80)
DCl VAR(&WRKX) TYPE(*CHAR)
CHGVAR &vIRKX VALUE (%SST (&RTGDA 1 2))

Return Codes
Examples
0000
2001 - 2024
2090 , 2091
2092 , 2093

?CLIB? 	 DCl VAR(&vJRKx) TYPE(*CHAR)
DCl VAR(&lIBlIST) TYPE(*CHAR) lEN(275)
RTVJOBA USRlIBl(&lIBlIST)
CHGVAR &\oIRKx VAlUE(%SST(&LIBLIST 1 18))

?DATE? 	 DCl VAR(&\~RKx) TYPE(*CHAR)
RTV JOBA DATE (&~IRKx)

?DEV I unit '? System/36 Environment only
?FLIB? Function not supported

?FIS,name ' ? 	 Function not Supported

?FIA,name ' ? 	 Function not Supported

?l'pos,length'? 	 DCl VAR(&WRKx) TYPE(*CHAR)
DCl VAR(&NUMl) TYPE(*DEC) lEN(3 0)
DCl VAR(&NUM2) TYPE(*DEC) lEN(3 0)
CHGVAR VAR(&NUMl) VAlUE(lpOS')
CHGVAR VAR(&NUM2) VAlUE(llength ')
CHGVAR &WRKx VAlUE(%SST(*lDA &NUMI &NUM2))
or
RTVDTAARA DTAARA(*lDA (&NUMI &NUM2) +

RTNVAR(&WRKx)

?~'mi c? 	 DCl VAR(&MSG81) TYPE(*CHAR) lEN(75)
RTVMSG MSG('USR' *TCAT 'mic ')
MSGF (USRMSG) MSGF(&MSG01)

continued on next page

Appendix E. Table of System/36 Substitution Expressions 191

Appendix E, "Table of System/36 Substitution ExpressIons" continued

System/36
Substitution

?M'mic,pos,length ' ?

?t·1SGID?

?14ENU?
?PRINTER?
?PROC?
?SFLIB?
?SLIB?
?SYSLIST?

?TIME?

?USER?

?VOLID?

?WS?

AS/400 Cl

DCl VAR(&MSG1) TYPE(*CHAR) lEN(75)

DCl VAR(&NUM2) TYPE(*DEC) lEN(3 0)

Del VAR(&NUM3) TYPE(*DEC) lEN(3 0)

CHGVAR VAR(&NUM2) VAlUE('pOSI)

CHGVAR VAR(&NUM3) VAlUE('length ')

RTVMSG MSGID('USR' *TCAT 'mic l)

MSGF (USRMSG) t4SGF (&t4SG 1)

CHGVAR &MSGl VAlUE(%SST(&MSGl &NUM2 &NUM3))

System/36 Environment only

Function not supported

Function not supported

Function not supported

Function not supported

Function not supported

Function not supported

Function not supported

DCl VAR(&WRKx) TYPE(*CHAR)

DCl VAR(&TIMEl) TYPE(*CHAR) lEN(6)

RTVSYSVAl SYSVAl(QTIME) RTNVAR(&TIME1)

CHGVAR VAR(&WRKx) VAlUE(&TIMEl)

DCl VAR(&WRKx) TYPE(*CHAR)

RTVJOBA USER(&WRKx)

Function not supported

DCl VAR(&WSID1) TYPE(*CHAR) lEN(2)

DCl VAR(&WRKx) TYPE(*CHAR)

RTVJOBA JOB(&WRKx)

CHGVAR VAR(&WSID1) VAlUE(%SST(&WRKx 1 2))

192 Converting System/36 Environment Applications to Native AS/400

Appendix F. If Conditions and Their Equivalents

System/36 Condition

IF /

IF =

1FT /

1FT =

IFF /

IFF =

IF >

IFF>

ACTIVE

BLOCKS

CONSOLE

DATAF1-Name

DATAI1-Name

CL Equivalent

IF *EO

IF *EO

IF *EO

IF *EO

IF *NE

IF *NE

IF *GT

IF *NG

Function not supported.

However see 15.8, "Testing For Active Procedures"

on page 149

Function not supported

Not relevant to AS/400

For CONSOLE-YES

DCl VAR(&JOB) TYPE(*CHAR) lEN(10)

DCl VAR(&CONSOlE) TYPE(*CHAR) lEN(10)

RTVJOBA JOB(&JOB)

RTVSYSVAl SYSVAl(OCONSOlE)

RTNV AR(&CONSOlE)
IF COND(&JOB *EO &CONSOlE) THEN(DO)

ENDDO
For CONSOLE-NO
IF COND(&JOB *NE &CONSOlE) THEN(DO)

DCl VAR(&RTNCD) TYPE(*CHAR) lEN(1)

CHGVAR VAR(&RTNCD) VAlUE('O')

CHKOBJ OBJ(Name) OBJTYPE(*FllE) MBR(Name)

MONMSG MSGID(CPFOOOO) EXEC(CHGVAR

&RTNCD VAlUE('1'))
IF (&RTNCD *EO '0') THEN DO
ENDDO

DCl VAR(&RTNCD) TYPE(*CHAR) lEN(1)

CHGVAR &RTNCD VALUE('O')

CHKDKT lOC(loc) lABEl(Name)

MONMSG MSGID(CPFOOOO) EXEC(CHGVAR

&RTNCD VAlUE('1'))
IF (&RTNCD *EO '0') THEN (DO)
ENDDO

continued on next page

© Copyright IBM Corp. 1988,1990 193

Appendix F, "If Conditions and Their Equivalents" continued

System/36 Condition

DATAT-Name

DSPLY

ENABLED

EVOKED-YES

EVOKED-NO

INQUIRY

JOBQ-YES

JOBQ-NO

LOAD-Name

MRTMAX

PROC-Name

SECURITY

CL Equivalent

DCl VAR(&RTNCD) TYPE(*CHAR) lEN(1)

CHGVAR VAR(&RTNCD) VAlUE('O')

CHKT AP DEV(TAPnn) VOl(*MOUNTED)

SEONBR(*SEARCH) +
lABEl(Name)

MONMSG MSGID(CPFOOOO) EXEC(CHGVAR

&RTNCD VAlUE('1'))

IF (&RTNCD *EO '0') THEN DO
ENDDO

Function not supported

Function not supported

DCl VAR(&TYPE1) TYPE(*CHAR) lEN(1)
RTVJOBA TYPE(&TYPE1)

IF(&TYPE1 *EO '0') THEN(DO)

ENDDO

Change &TYPE1 by '1'

Function not supported

DCl VAR(&TYPE1) TYPE(*CHAR) lEN(1)

RTVJOBA TYPE(&TYPE1)

IF (&TYPE1 *EO '0') THEN(DO)

ENDDO

Change & TYPE1 by '1'

DCl VAR(&RTNCD) TYPE(*CHAR) lEN(1)

CHGVAR VAR(&RTNCD) VAlUE('O')

CHKOBJ OBJ(LlB/Name) OBJTYPE(*PGM)

MONMSG (CPFOOOO) EXEC(CHGVAR &RTNCD

VAlUE('1'))
IF (&RTNCD *EO '0') THEN(DO)
ENDDO

Function not supported

DCl VAR(&RTNCD) TYPE(*CHAR) lEN(1)

CHGVAR VAR(&RTNCD) VAlUE('O')

CHKOBJ OBJ(LlB/Name) OBJTYPE('PGM)

MONMSG (CPF9801) EXEC(CHGVAR &RTNCD

VAlUE('1'))
IF (&RTNCD 'EO '0') THEN(DO)
ENDDO

NOTE: Assumes procedure is a Cl program object

Function not supported

continued on next page

194 Converting System/36 Environment Applications to Native AS/400

Appendix F. "If Conditions and Their Equivalents" continued

System/36 Condition

SOURCE-Name

SUBR-Name

SWITCH-11xxxxxx

SWITCHn-O

VOLID-NameID.S1

CL Equivalent

DCl VAR(&RTNCD) TYPE(*CHAR) lEN(1)

CHGVAR VAR(&RTNCD) VAlUE('O')

CHKOBJ OBJ(LlB/Source-file) OBJTYPE(*FllE)

MBR(Name)

MONMSG (CPF9800) EXEqCHGVAR &RTNCD

VAlUE('1'))
IF (&RTNCD 'EQ '0') THEN(DO)
ENDDO

DCl VAR(&RTNCD) TYPE('CHAR) lEN(1)

CHGVAR VAR(&RTNCD) VAlUE('O')

CHKOBJ OBJ(LlB/Name) OBJTYPE(·PGM)

MONMSG (CPF9801) EXEqCHGVAR &RTNCD

VAlUE('1'))
IF (&RTNCD ·EQ '0') THEN(DO)
ENDDO

NOTE: Assumes subroutine is a program object

DCl VAR(&SW02) TYPE("Gl)

CHGVAR VAR(&SWS02)

VAlUE(%SWITH(11XXXXXX)
IF (&SWS02 *EQ '1') THEN(DO)
ENDDO

DCl VAR(&WRKx) TYPE("CHAR) lEN(1)
RTVJOBA SWS(&WRKx)

IF (&SST(&WRKx n 1) *EQ '0') THEN(DO)

ENDDO

DCl VAR(&RTNCD) TYPE("CHAR) lEN(1)
CHGVAR VAR(&RTNCD) VAlUE('O')
CHKDKT lOq"S1) "FIRST "WRAP VOl(NamelD)
MONMSG (CPFOOOO) EXEqCHGVAR &RTNCD

VAlUE('1'))
IF (&RTNCD ·EQ '0') THEN(DO)
ENDDO

Appendix F. If Conditions and Their Equivalents 195

http:VOLID-NameID.S1

196 Convrrting System/36 Environment Applications to Native AS/400

Appendix G. Procedure Control Statements and Their

Equivalents

System/36 Condition

ELSE

CANCEL

EVALUATE

GOTOTAG

TAG NAME

RESET

RETURN

PAUSE

/I * 'message'

/I * mic

/I ** 'MESSAGE'

/I ** mic

CL Equivalent

ELSE

Not supported. Use SNDPGMMSG to send escape
to top-level program.

CHGVAR

GOTO TAG

LABEL NAME:

Not supported. TRFCTL can be used in some cases

RETURN

DCL VAR(&RPLYX) TYPE(*CHAR) LEN(1)
SNDUSRMSG MSG('PAUSE-WHEN READY, ENTER

RESP.')
MSGRPY(&RPLY1)

SNDUSRMSG MSG('message') MSGTYPE(*INFO)

SNDUSRMSG MSGID(,USR *TCAT 'mic')

MSGF(usrmsg)

MSGTYPE(*INFO)

DCL VAR(&RPLY1) TYPE(*CHAR) LEN(1)

SNDUSRMSG MSG('MESSAGE')

TOMSGQ(QSYSO PR)

MSGTYPE(*INQ)

MSGRPY(&RPLY1)

DCL VAR(&RPLY1) TYPE(*CHAR) LEN(1)

SNDUSRMSG MSGID(,USR *TCAT 'mic')

TOMSGQ(QSYSOPR) MSGF(usrmsg)

MSGTYPE(*INQ) MSGRPY(&RPLY1)

© Copyright IBM Corp. 1988,1990 197

198 Converting System/36 Environment Applications to Native AS/400

Appendix H. List of Abbreviations

Abbreviations

ANS
APPC
CL
COBOL 74
COBOL 85
CPF
CPI
CUA
OBCS
OOM
DOS
OFU
FRF
HLL
I/O
ICF
IDOU
IPL
ITSC
ITSO
LOA
MDT
MRI
MRT
MVS
NEP
NLS
OCC
OCL
OS/2
PAG
PC
POM
PRPQ
RPG /I
RPQ /II
RUF
SAA
SOA
SFGR
SNA
SNUF
SQL
SRT
SSP
UPS I
VM
VTOC
WSU

Meaning

American National Standard
Advanced program-to-program communications
Command language
Common business-oriented language, 1974 standard
Common business-oriented language, 1985 standard
Control program facility
Common programming interface
Common user access
Double-byte character set
Distributed data management
Data description specifications
Data file utility
Field reference file
High-level language
Input/output
Intersystem communications function
Interactive data definition utility
Initial program load
International Technical Support Center
International Technical Support Organization
Local data area
Modified data tag
Machine-readable information
Multiple requester terminal
Multiple virtual storage
Never-ending program
National language support
Operator control command
Operation control language
Operating system/2
Process access group
Personal computer
Programming development manager
Programming request for price quotation
Report program generator 2
Report program generator 3
Read under format
Systems application architecture
Screen design aid
Screen format generator routine
Systems network architecture
SNA upline facility
Structured query language
Single requester terminal
System support program
User program switch indicator
Virtual machine
Volume table of contents
Work station utility

© Copyright IBM Corp. 1988,1990 199

200 Converting System/36 Environment Applications to Native AS/400

Index

A
ACTIVITY parameter 146

ADDMSGD command 145

ADDRPYlE command 160

AlCOBJ Cl command 141

AllOCATE statement 139

parameters 139

AUTO 139

CONTINUE 139

WAIT 139

analyzing files and fields for conversion 19

analyze S/36 field descriptions

implications 42

special cases for COBOL 112

identifying files for PTK 26

Programmer Tools PRPQ (PTK)

retrieving data for 19, 33

recommendation 19

resolving field names 34

application design

relative performance 5

restructuring for better performance 5

MRT programs 6

applications

choosing for conversion 14, 15

arithmetic operations 150

using CHGVAR command 150

arithmetic operations and procedure control

expressions

in System/36 OCl programming to AS/400 Cl

programming 151

ASSUME parameter 159, 160

AS/400 Cl programming and System/36

programming 152

keyword values and variables 152

variables in keyword values 152

AS/400 Cl programming from System/36
programming 151

AS/400 education 13

AS/400 environment

restructuring for better performance 5

AS/400 manuals, list of ix

ATIR statement 139, 140

parameters 139, 140

CANCEL 139

INQUIRY 139

MRTMAX 139

MRTWAIT 140

NEP 140

NOTIFY 140

RELEASE 140

AUTO parameter 139, 141

automatic response 160

note about 160

B
building

convert System/36 Environment Menu to Native

Menu 43,47

convert System/36 Environment printer

definition 57

BYPASS parameter 141

C
CAll command 143, 144, 147

CANCEL parameter 139

CANCEL statement 140

CHANGE statement 140

changing

System/36 OCl to AS/400 Cl 137, 138

changing DDS and creating database files 63

add documentation 63

add keys 64

alternate index files 66

changing record names 63

check data type 66

copying data into files 71

copying individual physical files 73

create files 67

format selection 67

shorten record lengths 63

CHGCURLIB command 144

CHGDTAARA command 144

CHGJOB command 144, 147

CHGJOBD command 147

CHGMSG command 143

CHGS36 command 6

CHGVAR command

used to change local data area 151

used to retrieve data from local data area 151

used with EVALUATE 149

used with OCl procedures 157

choosing programs and files to be converted 14, 15

Cl - DDS for SNDRCVF prompting 158

Cl and OCC Comleft table 185

Cl and OCl programs, mixing 156

Cl commands

AlCOBJ 141

DlCOBJ 141

Cl programs

used to change local data area 151

Cl to OCl conversion 137

cleaning-up procedures 139

ClRPFM command 7

@ Copyright IBM Corp. 1988,1990 201

CUOCl Relation table 181

CUProcedure Relation table 171

COBOL considerations 111,113,119,120,121,122

changes required to convert to external 119, 120,

121, 122

group items 120

key fields 121

record area 122

COPY books 113

display files 122

externally described database files 119

externally described display files 122

literals 113

MEMORY size 113

commands

ADDMSGD 145

ADDRPYlE 160

CAll 143, 144, 147

CHGCURLIB 144

CHGDTAARA 144, 149

CHGJOB 144, 147

CHGJOBD 147

CHGMSG 143

CHGS36 6

CHGVAR 149, 151, 157

ClRPFM 7

CRTClPGM 144

CRTDTAARA 149, 151

CRTDUPOBJ 7

CRTMSGF 145

CRTPF 163

DCl 149, 157

DClF 147,158

DELETE 150

DlTDTAARA 151

DlTF 150

DO 155,156

EDTS36PRCA 6

ELSE 155

ENDDO 155, 156

ENDS36 157

ENDWTR 147

HlDOUTQ 147

HlDWTR 147

IF 155

MONMSG 146, 157

OVRPRTF 143, 146

RESTORE 150

RlSOUTQ 147

RlSWTR 147

RSTLlCPGM 163

RSTOBJ 150

RTVJOBA 150

SAVE 150

SAVOBJ 150

SBMJOB 143

SIGNOFF 146

SMDMSG 145

commands (continued)

SNDBRKMSG 145

SNDF 159

SNDNETMSG 145

SNDPGMMSG 145

SNDRCVF 147, 158, 159

SNDUSRMSG 145, 146

STRPRTWTR 147

compiled field reference file (FRF)
programming example 60

compiler options for decimal data errors 77

composite keys 88

CONSOLE file 92

CONTIG keyword 141

CONTINUE parameter 139, 146

conversion discussion 2

conversion from OCl to Cl

different approaches 137

equivalence tables 138

OCl discussion 139

Programmer Tools PRPQ (5799-DAG) 137

System/34 OCl discussion 138

tools available 137

conversion library 16

conversion process

analyzing files and fields for conversion 19

attend AS/400 education 13

choosing programs and files to be converted 14,

15

conversion library 16

database analysis for conversion 15

getting started 13

member types 17

migration library 16

migration utility 16

moving selected System/36 source to new

library 16

starting point 13

steps 14

conversion (full) versus redesigning 3

conversion, migration, redesigning, and

restructuring 1

conversion discussion 2

definitions 1

full conversion versus redesigning 3

migration discussion 1

recommendations 4

redesigning discussion 2

restructuring discussion 2

converting

OCl to Cl, recommendations 161

PROMPT OCl to Cl 158

correcting and finding decimal data errors in files
See finding and correcting decimal data errors

CRDTAATA command 151

creating

data areas 151

field reference files (FRF) 59

202 Converting System/36 Environment Applications to Native AS/400

creating data areas 151

CRT file 92

CRTClPGM command 144

CRTDU POBJ command 7

CRTMSGF command 145

CRTPF command 163

o
data areas

creating 151

deleting 151

types of 151

alphanumeric 151

logical 151

numeric 151

use of local 151

Data Description Specifications

conversion process, steps 14

Data Description Specifications (DDS)

changing DDS and creating database files

add documentation 63

add keys 64

alternate index files 66

change record names 63

check data type 66

copying data into files 71

copying individual physical files 73

create files 67

format selection 67

shorten record lengths 63

changing DDS and creating database files for

PTK 63

PTK special cases for COBOL 112

Data Description Specifications (DDS) (DDS)

using DDS source 32

database file operations

shared

restructuring for better performance 7

database files and RPG 79

auto report changes 79

COpy modules 79

handling COpy statements

RPG changes

a single memory area 91

adding fields not described in the database 84

adjust internal field names to match database

names 89

change calculation specifications 85

change file specifications 83

change input specifications 84

change output specifications 85

compile program 86

externally described files 82

program-described files 81

removing internal field descriptions 107

database operations
analysis for conversion

missing common fields 15

multiple record files 15

database operations (continued)
analysis for conversion (continued)

repeating groups 15

DATE statement 140

DBCS

See double-byte character set (DBCS)

DBlOCK parameter 6, 141

DCl command 149, 157

DClF command 147, 158

RCDFMT keyword 158

DDS

See Data Description Specifications

DDS source after changing to a field reference file

programming example 60

DDS source field for field reference file

programming example 60

DEAllOC statement 140

decimal data

compiler options for decimal data errors 77

errors, discussion 75

finding and correcting errors in files 76

finding programs which cause errors 135

multiple format files

finding and correcting errors 77

rules for non-decimal 75

single format files

finding and correcting errors 76

DELAY parameter 6

DELETE command 150

deleting

data areas 151

deleting data areas 151

DENSITY parameter 141

DFU programs 133

display files and RPG 92, 93, 99

adding fields 106

additional changes for externally described display

files 99

adjust internal field names to display file

names 105

calculation specifications 102

change calculation specifications 93

change F-specifications 100

change file specifications 93

change input specifications 93, 101

change output specifications 94, 102

compile program 103

minimum changes for program-described display

file 93

multiple writes and the INVITE keyword 94

note on UDATE parameter 107

replace file name with format names 101

RPG/400 display file cycle difference 94

display files that will not convert

CONSOLE file 92

CRT file 92

KEYBORD file 92

Index 203

display size
27x132

restructuri ng for better performance 10

DLCOBJ CL command 141

DLCOBJ statement 140

DLTDTAARA command 151

DLTF command 150

DO command 155, 156

documentation

See also reference documentation

newsletters ix

red books ix

double-byte character set (DBCS) 163

installation considerations 163

DROP keyword 146

DUPKEYS parameter 141

E
EDTS36PRCA command 6

ELSE command 155

ENDDO command 155, 156

EN DS36 command 157

ENDWTR command 147

EOFMSG parameter 146

equivalence tables for conversion from System/36

OCL to AS/400 CL 138

errors

compiler options for decimal data 77

decimal data 75

finding and correcting decimal data errors in

files 76

finding programs which cause errors 135

rules for non-decimal data 75

EVOKE statement 140

examples

See programming examples

expressions

System/36 substitution 189

EXTEN parameter 146

EXTEND parameter 141

F
field descriptions

analyzing S/36, for PTK

implications 42

special cases for COBOL 112

field File Conversion

building 43, 57, 59

field reference files (FRF) 59

FRF (field reference file)

See field File Conversion, field reference files

(FRF)

field Menu Conversion

building 47

field reference files (FRF)

compiled FRF 60

creating 59

field reference files (FRF) (continued)
programming examples

compiled FRF 60

for DDS source after changing to FRF 60

for DDS source field 60

for normal DDS 60

fields

analyzing for conversion 19

resolving names for PTK 34

File conversion

See field File Conversion

file descriptions

analyzing S/36, for PTK 27

file operations

create

restructuring for better performance 7

delete

restructuring for better performance 7

restructuring for belter performance 5

FILE statement 26, 141

parameters

AUTO 141

BYPASS 141

DBLOCK 141

DENSITY 141

DUPKEYS 141

EXTEND 141

IBLOCK 141

JOB 141

LOCATION 141

RECORDS 141

SEQONLY 141

STORINDX 141

WAIT 141

files

alternate index files 66

analysis for conversion

missing common fields 15

multiple record files 15

repeating groups 15

analyzing for conversion 19

aSSigning external names for PTK 30

Group File naming recommendations 3D, 31

choosing for conversion 14, 15

COBOL considerations 111

changes required to convert to external 119

COpy books 113

display files 122

externally described database files 119

externally described display files 122

group items 120

INDARA keyword 122

INVITE keyword 122

key fields 121

literals 113

MEMORY size 113

record area 122

create 67

204 Converting System/36 Environment Applications to Native AS/400

files (continued)
finding and correcting decimal data errors 76

mUltiple format 77

single format 76

identifying for analyzing for conversion 26

identifying for PTK 26

missing common fields 15

multiple record files 15

repeating groups 15

resolving field names for PTK 34

resolving multiple formats for PTK 32

RPG and database files

a single memory area 91

adding fields not described in the database 84

adjust internal field names to match database

names 89

auto report changes 79

change calculation specifications 85

change file specifications 83

change input specifications 84

change output specifications 85

compile program 86

composite keys 88

externally described files 82

program-described files 81

removing internal field descriptions 107

RPG and display files 92

additional changes for externally described

display files 99

adjust internal field names to display file

names 105

calculation specifications 102

change calculation specifications 93

change F-specifications 100

change file specifications 93

change input specifications 93, 101

change output specifications 94, 102

compile program 103

minimum changes for program-described

display file 93

multiple writes and the INVITE keyword 94

note on UDATE parameter 107

replace file name with format names 101

RPG and single memory Area 106

RPG/400 display file cycle difference 94

finding and correcting decimal data errors

in files 76

multiple format files 77

single format files 76

finding programs which cause errors

compiler options for decimal data 77

formats

prompting (PROMPT) 10, 157

read under (RUF) 10, 157, 160

FORMS statement 143

full conversion versus redesigning 3

G
getting data for PTK

Group File naming recommendations 30,31

group files, converting to AS/400 150

H
high-level language program considerations 129

DFU programs 133

multiple requester terminal programs 130

changing an RPG II MRT program to an RPG/400
single requester (SRT) program 109

MRT considerations for native AS/400 131

MRT considerations in the System/36

Environment 130

MRT programs and shared database files 131

never-ending programs 132

note on the LO indicator 109

program communication and program structure

calling one program from another 129

evoking a program 129

passing data to another program 129

using the attention key 130

sort programs

sort and format data 132

sort and logical files 133

#GSORT utility 133

HLDOUTQ command 147

H LDWTR command 147

IBLOCK parameter 141

identifying files for PTK 26

resolving field names 34

resolving multiple formats 32

IF ACTIVE function 149

IF command 155

IF conditions and their equivalents 193

IF statement 193

conditions and their equivalents 193

IGCDTA keyword 163

INCLUDE statement 143

INFOMSG statement 143

INQUIRY parameter 139

installing, National Language Support (NLS) 163

double-byte character set (DBCS)
considerations 163

INVITE keyword 94

INZRCD keyword 96

J
job attributes 150

job attributes and job control

job control 150

job operations

restructuring for better performance

Index 205

5

6

JOB parameter 141

JOBQ statement 143

K
KEEP parameter 159, 160

KEYBORD file 92

keyword

DROP 146

lOG 144, 146

lOGClPGM 144

keywords

ASSUME 160

CONTIG 141

EDICTAL 163

INDARA 122

INVITE 94, 122

INZRCD 96

KEEP 160

RCDFMT 158

SEClVl 145

SEQONlY 141

SHARE 160

SIZE 141

UNIQUE 141

UNIT 141

WAIT 141

WAITFllE 141

L
LABEL parameter 26

lDA (local data area)

See also local data areas (lOA)

using the CHGVAR command 151

lENGTH parameter 147

LIBRARY statement 144

lOAD statement 144, 147

local data areas (lDA)

change using a Cl program 151

retrieving data from 151

lOCAL statement 144

LOCATION parameter 141

lOG keyword 144, 146

lOG statement 144

lOGClPGM keyword 144

logical operators 155

M
MEMBER statement 145

member types, use of in PDM 17

Menu conversion

See field Menu Conversion
migration

discussion 1

library 16

migration utility, use in conversion

migration, restructuring, conversion, and redesigning
See?

mixing OCl and Cl programs 156

MONMSG command 146, 157

MRT programs

application design performance considerations
NON MRT-NEP delay time 6

high-level language program considerations

M RTMAX parameter 139

MRTWAIT parameter 140

MSG statement 145

N
National language Support (NlS) considerations

database files 163

DDS source files 163

double-byte character set (D BCS) 163

installation 163

NEP parameter 140

newsletters ix

NOHAlT statement 146

NON MRT-NEP delay time 6

restructuring for better performance 6

note about automatic response 160

NOTIFY parameter 140

o
OCC and Cl Command table 185

OCl and Cl programs

mixing 156

recommendations for converting 161

OCl to Cl conversion 137

OCl (operation control language)

See operation control language (OCl) statements

OCUCL Relation table 181

OFF statement 146

operation control language (OCl) statements

AllOCATE 139

ATTR 139

CANCEL 140

CHANGE 140

DATE 140

DEAllOC 140

discussion 139

DlCOBJ 140

EVOKE 140

FilE 141

FORMS 143

handling OCl statement parameters 139

INCLUDE 143

INFOMSG 143

JOBQ 143

LIBRARY 144

lOAD 144

lOCAL 144

lOG 144

MEMBER 145

206 Converting System/36 Environment Applications to Native AS/400

operation control language (OCl) statements
(continued)

MSG 145

NOHAlT 146

OFF 146

PAUSE 146

PRINTER 146

PROMPT 147

RUN 147

START 147

STOP 147

SWITCH 147

SYSLIST 147

operators

arithmetic 150

division (I) 150

logical 155

"AND 156

"NOT 156

'OR 156

OUTPUT parameter 147

OVRPRTF command 143, 146

p
parameters

See also keywords

ACTIVITY 146

AREA 144

ASSUME 159

AUTO 139, 141

BLANK 144

BYPASS 141

C4.NCEl 139

CONTINUE 139,146

DBlOCK 6, 141

DELAY 6

DENSITY 141

DUPKEYS 141

EOFMSG 146

example of passing 154

EXTEN 146

EXTEND 141

handling OCl statement 139

IBlOCK 141

INQUIRY 139

JOB 141

KEEP 159

LABEL 26

lENGTH 147

lOCATION 141

MRTMAX 139

MRTWAIT 140

NEP 140

NOTIFY 140

OUTPUT 147

passing 154

PASSRCD 159

PDATA 147, 157, 159

parameters (continued)

prompting for 158

RECORDS 141

RELEASE 140

SHARE 159

SRT 139

START 147

STORINDX 141

TEXT 146

TYPE 146

UDATE 107

UPSI 147

WAIT 139, 141

PASSRCD parameter 159

PAUSE statement 146

PDATA parameter 147, 157, 159

PDM

See Programming Development Manager (PDM)

PRG II to RPG III conversion 79

PRINTER statement 146

parameters

ACTIVITY 146

CONTINUE 146

EOFMSG 146

EXTEN 146

TEXT 146

TYPE 146

procedure clean-up 139

procedure control expressions 148

procedure control expressions and arithmetic

operations

arithmetic operations 150

in System/36 OCl programming to AS/400 Cl

programming 151

using CHGVAR command 150

Procedure control statements 197

their equivalents 197

Procedure control statements and their

equivalents 197

Procedure 1 UCS Relation table 167

procedures

RESPONSE 160

Procedure/Cl Relation table 171

Programmer Tools PRPQ (PTK) 19

analyze S/36 field descriptions

how to get the information without the

PTK. 112

implications 42

analyzing S/36 file descriptions 27

assigning external file names 30

Group File naming recommendations 30, 31

changing DDS and creating database files 63

add documentation 63

add keys 64

alternate index files 66

change record names 63

check data type 66

copying data into files 71

copying individual physical files 73

Index 207

Programmer Tools PRPQ (PTK) (continued)
changing DDS and creating database files

(continued)
create files 67

format selection 67

shorten record lengths 63

file conversion
input to 20

getting data for 19, 33

identifying files 26

matching internal and external names 27

resolving field names 34

resolving multiple formats 32

retrieval of data 19, 33

run identification 19, 33

work file member 19, 33

Programmer Tools PRPQ (5799-DAG)

for conversion from OCl to Cl 137

programming

high-level language considerations

calling one program from another 129

program communication and program

structure 129

using the attention key 130

multiple requester terminal programs 130

changing an RPG " MRT program to an RPG/400

single requester (SRT) program 109

MRT considerations for native AS/400 131

MRT considerations in the System/36

Environment 130

MRT programs and shared database files 131

never-ending programs 132

note on the lO indicator 109

sort programs

sort and format data 132

sort and logical files 133

sort performance 10

#GSORT utility 133

System/36 OCl programming and Cl
programming 151, 152, 156

keyword values and variables 152

mixing Oel and Cl programs 156

Programming Development Manager (PDM)

use in conversion process 17

programming examples

compiled field reference file (FRF) 60

DDS source field for field reference file 60

field reference files for DDS source after changing

to FRF 60

field reference files for DDS source field 60

field reference files for normal DDS 60

for DDS source after changing to FRF 60

programs

choosing for conversion 14, 15

compiler options for decimal data errors 77

finding those which cause errors 135

using Cl program to change local data area 151

PROMPT statement 147
parameters

lENGTH 147

PDATA 147

START 147

UPSI 147

prompting

Cl - DDS for SNDRCVF prompting 158

for data 159

for parameters 158

prompting and read under formats 157

prompting for parameters 158

prompting (PROMPT) format 10, 157

PTK

See Programmer Tools PRPQ (PTK)

R
RCDFMT keyword 158

read under format (RUF) 157, 160

performance tips 10

recommendations 161

RECORDS parameter 141

redbooks ix

redesigning discussion 2

redesigning, conversion, migration, and

restructuring 1

reference documentation

AS/400 manuals ix

System Application Architecture (SAA)

documentation x

RELEASE parameter 140

rerun options for PTK 21

retrieval step
rerun options 21

resolving use of names 81

RESPONSE procedure 160

RESTORE command 150

restructuring

discussion 2

restructuring for better performance 5

application design 5

file operations 5

job operations 5

read under format (RUF) 10

recommendations 6

change MRT security 11

correct data types 9

display size 10

EVOKE 9

file operations 7

increase DBlOCK param'eter 8

JOBQ 9

MRT programs 6

nested commands 10

NON MRT-NEP delay time 6

packed decimal data 9

shared database files 7

sign-off 11

sign-on 11

208 Converting System/36 Environment Applications to Native AS/400

restructuring for better performance (continued)

recommendations (continued)

sort programs 10

using utilities 12

work management 11

relative performance 5

save/restore operations 5

restructuring. conversion. migration, and

redesigning 1

retrieval step

running for PTK 21. 24

RLSOUTQ command 147

RLSWTR command 147

RPG and database files 79

auto report changes 79

COpy modules 79

handling COPY statements

RPG changes

a single memory area 91

adding fields not described in the database 84

adjust internal field names to match database

names 89

change calculation specifications 85

change file specifications 83

change input specifications 84

change output specifications 85

compile program 86

composite keys 88

externally described files 82

program-described files 81

removing internal field descriptions 107

RPG and display files 92. 93, 99

adding fields 106

additional changes for externally described display

files 99

adjust internal field names to display file

names 105

calculation specifications 102

change calculation specifications 93

change F-specifications 100

change file specifications 93

change input specifications 93. 101

change output specifications 94, 102

compile program 103

minimum changes for program-described display

file 93

multiple writes and the INVITE keyword 94

note on UDATE parameter 107

replace file name with format names 101

RPG/400 display file cycle difference 94

RPG Considerations 79

RSTLlCPGM 163

RSTOBJ command 150

RTVJOBA command 150

rules for non-decimal data 75

run identification for PTK 19, 33

RUN statement 144. 147

running the retrieval step for PTK 21. 24

S
SAA

See Systems Application Architecture

considerations

SAVE command 150

save/restore operations

restructuring for better performance
 5

SAVOBJ command 150

SBMJOB command 143

SBMJOB statement 140

SECLVL keyword 145

SEQONLY keyword 141

SHARE parameter 159. 160

SIGNOFF command 146

SIZE keyword 141

SMDMSG command 145

SNDBRKMSG command 145

SNDF command 159

SNDNETMSG command 145

SNDPGMMSG command 145

SNDRCVF command 147. 158. 159

SNDUSRMSG command 145. 146

SRT parameter 139

START parameter 147

START statement 147

starting the conversion process

analyzing files and fields for conversion 19

attend AS/400 education 13

choosing programs and files to be converted 14.

15

getting started 13

starting point 13

steps 14

statements

ALLOCATE 139

ATIR 139

CANCEL 140

CHANGE 140

DATE 140

DEALLOC 140

DLCOBJ 140

EVOKE 140

FILE 26.141

FORMS 143

INCLUDE 143

INFOMSG 143

JOBQ 143

LIBRARY 144

LOAD 144. 147

LOCAL 144

LOG 144

MEMBER 145

MSG 145

NOHALT 146

OFF 146

PAUSE 146

Index 209

statements (continued)

PRINTER 146

PROMPT 147

RUN 144, 147

SBMJOB 140

START 147

STOP 147

SWITCH 147

SYSLIST 147

STOP statement 147

STORINDX parameter 141

STRPRTWTR command 147

structure of a CL program 152

structure of an OCL program 152

substitution expressions 148

substring function

changing local data areas 151

SWITCH statement 147

switching to the System/36 Envi ronment 157

syntax

changing System/36 OCL to AS/400 CL 137

equivalence tables

SYSLIST statement 147

Systems Application Architecture considerations 165

documentation x

System/34 operation control language (OCL)

statements 138

System/36 environment

restructuring for better performance 5

switching to 157

System/36 OCL programming and AS/400 CL
programming

EVALUATE 149

evaluation 149

I F ACTIVE 149

procedure control expressions 148

substitution expressions 148

System/36 OCL programming to AS/400 CL
programming 151, 152, 156, 158

CL - DDS for SNDRCVF prompting 158

example of parameter passing 154

IF command 155

keyword values and variables 152

mixing OCL and CL programs 156

OCL and CL programs, mixing 156

operators

"AND 156

"NOT 156

"OR 156

para,neter passing 154

PROMPT OCLto CL 158

variables in keyword values 152

System/36 OCL to AS/400 CL syntax 138

changing 138

equivalence tables 138

System/36 OCL to AS/400 CL, changing 137

System/36 substitution expressions 189

System/36 System-Supplied Procedures 151

System/38 conversion aid program 145

S/36 field descriptions

analyzing S/36, for PTK 42, 112

S/36 file descriptions

analyzing S/36, for PTK 27

T
TEXT parameter 146

tools

for conversion from OCL to CL 137

TYPE parameter 146

u
UCS 1 Procedure Relation table 167

UDATE parameter 107

UNIQUE keyword 141

UNIT keyword 141

UPSI parameter 147

use of local data area 151

utilities 160

V

variables

System/36 OCL programming to AS/400 CL

programming 151

W
WAIT keyword 141

WAIT parameter 139, 141

WAITFILE keyword 141

work file member for PTK 19, 33

Special Characters
"AND operator 156

"NOT operator 156

"OR operator 156

#GSORT utility 133

210 Converting System/36 Environment Applications to Native AS/400

READER'S CO:\[\1E:\TS

Title: Converting System/36 Environment Applications to :\ative AS/400

Document l\umber: GG24-3304-01

You may use this [onn to communicate your comments about this publication, its organization
or subject matter with the understanding that IBM amy use or distribute whatever infonnation you
supply in any way it believes appropriate without incurring any obligation to you.

Comments:

Reply Requested: Yes No

Name:

Job Title:

Address:

----- - ----- --- - - --------

Reader's Comment Form

FOld and tape Please Do Not Staple 	 Fold and tape

..

II
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 40 ARMONK. NY

POSTAGE WILL BE PAID BY ADDRESSEE:

18:\1 International Technical Support Center
Department 977, Building 663-3
Highway 52 and ~,\V 37th Street
Rochester, :\Iinnesota 55901 U.S.A.

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

I

..··1I

I
Fold and tape Please Do Not Staple FOld and tape 	 I

I

-..-..- -® -- -.. --
-~-,,-

