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‘: Appendix I

"TGP - TRAJECTORY GENERATOR PROGRAM

1.1 INTRODUCTION

‘ The Trajectory Generator Program (TGP) is a digital computer
program written in FORTRAN IV to run on IBM 7090/7094 computers. The
program is used in mission analysis and planning to generate a preliminary
trajectory {or trajectories) from launch to orbit injection followed by several
options for perforining orbit transfer with or without rendezvcus.

The program employs analytical equations for determining launch
conditions and the atmospheric phase of ascent. The vacuum phase of ascent
(to orbit injection or intercept) is generated with an explicit guidance algorithm.
il orbital burns are considered as impulses and are planned by two different
techniques to provide alternate solutions. The program is based on a spherical
earth model which allows for the rapid generation of coast segments with Kepler-
(,/" type equations. ‘
This program was written to demonstrate feasibility of the Prelim-
‘inary Trajectory Generation Mode of the On-Board Mission Planning Function
(see Section V of the main report). TGP is used to generate initial trajectories

for the Trajectory Cptimizer Program (TOP) which is described in Appendix
II. '

1.2 PURPOSE AND USE

TGP was written to demonstrate preliminary feasibility of on~board
trajectory generation for the QRGT concept. The program also demonstrétes
the capability of the generalized guidance algorithms, developed during this
study, for mission planning purposes. TGP represents the "Explicit" aspect
of the "Optimal-Explicit" approach to on-board trajectory planning which is

outlined in Par. 5.4 of the main report.

o ey

.. This program is employed to generate preliminary trajectories for
( ~»ovarious missions-that may employ the QRGT concept. These preliminary tra-

i jectories are specified a set of parameters which identify: launch conditions,
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ascent to orbit, and all major orbit burns. These parameter sets then become
the input to the Trajecfory Optimizer Program-TOP {Appendix II) where they
are systematically varied in order to minimize some mission performance

function (e.g. total AV or total mission time). TOP then represenfs the "Op-

timal' aspect of the ""Optimal-Explicit'" approach to trajectory planning.

1.3 PROGRAM FEATURES

The present version of TGP makes use of many subroutines gen-

_ erated in different subtasks of Task II during this phase of QRGT. This has

resulted in some duplication and program inefficiency. These deficiencies can
be corrected when a more general and sophisticated program (which will be
necessary for detailed feasibility stﬁdies) is written during Phase II.

The present program employs fairly simple planning logic and
launch routines in conjunction with quite sophisticated ascent and crbit rmmaneu-
ver routines to provide the following features:

° Direct ascent, ascent to orbit and orbit maneuvers (with or

without rendezvous) can be generated.

. ° Spherical gravity model.
. Kepler arcs for coast phases.
° Launch conditions options for minimum out-of-plane angle

or for a specified launch time.

° Maximum and minimum launch azimuth constraints included.

° Ascent to orbit or( intercept with an optimal explicit guidance
algorithm (UP 1 or UP 2 Subroutines, which are really two
entries to a slightly modified version of OP-EX, the algorithm
used for powered-flight guidance and described in Appeﬁdix
III). -

° Two-burn (RENDI Subroutine) or tﬂree-burn {(VPG Subrou-

tine) orbit transfers possible.

° Orbital burns treated as impuilses.
e Mission can be planred from launch or from a parking orbit.
e .. The two burn rendezvous:.routine (RENDI) employs a search

routine to locate local minimum- AV transfers. -
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1.4 PROGRAM OPERATION

The over-all operation of TGP is illustrated in Figure I-1. The
program éor'lsists of an executive routine MAIN and seven major subroutines:
LAUNCH, UP 1, UP 2, EPHEM, RVVR, RENDI and VPG. The MAIN program
reads in all data, performs necessary conversions, sets up program paths,
init_ializes and calls subroutines, and writes all output data. The LAUNCH
subroutine is used to determine the launch fime and launch conditions. The
ascent to orbit or intercept phases is calculated in UP 1 and UP 2 respec-
tively. Ephemeris for the spacecraft and target is updated with EPHEM. The
RVVR routine is used to compute the required velocity necessary for an orbital
burn. Two-burn orbital rendezvous maneuvers are generated with RENDI
while VPG generates several different rendezvous trajectories with three (or
more) burns per trajectory.

For each successful run, the printout includes all parémeters nec-
essary to specify each trajectory. These include: launch time and azimuth;
ascent cut-off state, time, and AV remaining; position, velocity, time and

AV at each orbital burn; and other related data.

l.4.1 MAIN PROGRAM

The executive routine MAIN represents the planning logic and pre-
scriptions of the Preliminary Trajectory Generator Mode of the On-Board Mis-
sion Planning Function (see Section V of the main report). That is, it deter-
mines how a trajectory will be generated, the subroutines necessary and the
linking of subroutines. In TGP this logic and prescriptions are dependent on
the mission type but otherwise fixed. For example, aii missions requiring
rendezvous with an orbiting target (real or fictitious) are planned in the same
way; only the rééults differ. Figure I-2 is a detailed math flow of MAIN,
The symbols used may be found in Table I-1.

Referring to Figures I-1 and I-2, after reading-in and convert-
ing input data MAIN branches if a Surveillance case is to be planned (Mz'4),

otherwise the EPHEM subroutine is called and certain parameters of the tar-

~.ogetls orbivare computed. - If a parking orbit is required (M=3) the LAUNCH
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routine is used to determine the best time to launch; that is, when the out-of-
plane angle with the target orbit is minimum. The léunch time (tL) is con-
étrained to occur after a reference time (to)‘ and before a2 maximum time (th)
both of which are inputs. The outputs of LAUNCH are used with UP 1 to
generate a optional ascent trajectory to a circular pérking orbit,

Once in the parking orbit, the orbital burns necessary to achieve
rendezvous with the target vechicle are generated as a two-burn maneuver with
RENDI or as a set of possible ithree-burn maneuvers with VPG, | v

The results from RENDI and VPG are printed-out with the launch
conditicns and ascent phase, Selected options are then ready to be optimized
with TOP (Appendix II). | |

When a direct ascent is called for (M=1, 2), MAIN branches after
generating the target parameters. The problem here is to determine the launch
conditions and an ascent trajectory so that the coast trajectory after cutoff in-
tersects the target orbit when the target is at the intercept point. This is the
case, for example, when a direct-ascent rendezvous is to be planned. The
first step is to employ LAUNCH to generate launch conditions for minimum
out-cf-plane angle at the earliest possible launch time (t}, = ty). From this,
the intercept direction is determined. The EPHEM routine is then called to
determine the target's position and velocity at the intercept point, and the time
required to reach that point (tf). The intercept position and time to intercept
(tf - t;) are inputted to UP 2 which generates an ascent trajectory, if one exists,
which will arrive at that position at the proper time. If the AV required on
this trajectory 7= less than the maximum available, a solution has been found
and the program writes the results and stops. If, on the other hand, the tra-
jectory is not feasible, the program incremeﬁts the lé,unch time by an‘input
constant (AtL) and proceeds to generate a new trajectory. The launch time is
incremented in this fashion until a feasible trajectory results (i.e., one with
AV <L Avmax

case, the launch time is fixed at the "best" time found so far (i.e., corre-

i 1 ’ ) 3 A +
}), or 2 maximum value for tr, (thax’ is exceeded. In tl}e latter

- sponding kto a minimum value of (AV), and the launch azimuth is mnow incre-~ .

mented from its minimum value (ALmin) by a fixed amount (AAL, an input“i)*.
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In this iteration the fnaximum and minimum (ralues for launch azimuth are set
to the desired value in LAUNCH. This results in the launch conditions and
intercept point when the launch time and the zf}aunch azimuth are specified and
will,in general,not result in the minimum oug—of-plane angle with the target's
orbit. If a solution can not be found for AL__<i A1, max the program stops.
Within the above mentioned constraints of 1a£mch time and launch azimuth, this
exit indicates that the target cannot be reachfed with a direct ascent fra.jectory.

In the case of surveillance missi':bns (M=4), MAIN initially checks

the possibility of a direct over-flight by proper cutoff conditicns during ascent.
This is done by determining the maximum inclination attainable from the launch
site when launch azimutk restrictions are considered. If this maximum incli- |
nation exceeds the latitude of the point to be overflown, a first pass vverflight
is calculated. In this application the inputs to UP 1 are varied in an attempt

to find an elliptic parking orbit which has the desired altitude over the point
and gives overflight at the dcsired time. In this iteration the parking orbit
parameters and overflight time are varied. ’

If a solution cannot be found or if the target's lantude exceeds the
maximum possible inclination, a parking orbit and transfer maneuver is used.
UP 1 is used to put the spacecraft into a circular parking orbit which is as
close to the target as launch azimuth constraints allow. The EPHEM and RVVR
routines are then used in an iteration loop to determine the time or the orbital

burn and the overflight time (which defines an aim point for the burn). The

iterations are continued until a suitable trajectory is found which results in a

: totél AV (ascent to parking orbit and orbital maneuver) which is less than the

vehicle's capability (AV,jay).

1.4.2 - LAUNCH SUBROUTINE

A math flow of the LAUNCH subroutine is presented in Figure I-3
and the corresponding symbols are in Table I-2, This routine is used to de-
termine the launch conditions for: {a) a specified launch time, (b) the launch
time which results in fhe minimum possible out-of-»lane sanglé, or {c) a speci-

fied launch time and launcn azimuth.
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Referring to Figure I-3, Optioﬁ (a) corresponds to LCL positive.
( ‘ The specified launch time (t) is used to determme the location of the launch
s1te relative to the target's ascending mode ¢L) The launch azimuth (A})) is
then computed which will result in the minimum out-of-plane angle with the
given tafget orbit plane. This results in a ?0 degree range angle between
launch and target plane intersection {Af). The computed launch azimuth is
compared with the allowed minimum and maximum values (A'y ;, and A'p o)
and set equal to the appropriate limit when it is exceeded. If the launch azimuth
ie consirained the range angle /A 8 is computed; otherwise it is set to 90 de-
grees. The launch conditions are then speciﬁied by generating unit vector
along the launch radius (r), in the .1a.unch plane defined by Ay, {v; ) and nor-
mal to the launch plane (ny ). Finally, the out-of-plane angle between the
launch and target planes (A1) is calculated.

‘ Option (b), when LCL is negative, is used to determine the launch
times ('Tl and 7)) when the minimum possible out-of-plane angle (A i) can be
achieved. If the launch site latitude (X L) is less than the targets inclination

( (iT) there are two opportunities each day when A\i is zero; otherwise both
opportunities coincide and result in a value of Ai equal to the difference in
A 1, and iT. When this option is uéed, the launch unit vectors 1, vy, .EL are
obtained by setting t = T (or 7,), LCL positive, and re-entering LAUNCH.
The last option (c) is just a special case of (a) where the launch
azimuth limits (A'Lmin and A'Lmax) are both set equal to the desired launch

azimuth, Ajp.

1.4.3 UP 1 AND UF z SUBROUTINES

These two subroutines are really just two entry points to one rou-
tine. This is possible because of the large amount of commonality between the
computations for ascent to a parking orbit (UP 1) and ascent to intercept (UP 2).
This routine is based on the optimal-explicit guidance algorithm developed
during this study which is discussed in Par. 6.4 of the main report and de-

. scribed in detail in Appendix III. This algorithm is used for the <xoatmo-

burning times (and therefore, minimum fuel consumption).

Spherm phase of ascent and gives ascent trajectories with nearly m;mmal
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In order to initialize the explicit guidance equations, the vehicle's
state at the !'top of the atmosphere'’ (dynamic pressure less than 30 lbs/ft.)
must be determined in terms of the launch conditions. Presently, both UP 1
and UP 2 determine these conditions by analytical equations which use three
vehicle-dependent and payload-dependent parameters. These parameters,
once determined, are then fixed and used for all launch azimuths, The three

parameters, in conjunction with the launch conditions, are used to calculate

. the position and velocity at the beginning of explicit guidance by use of spherical

trigonometry relations. This analytical technique of handling the atmospheric
phase of ascent is very efficient computaticnally, but initial simulation re-
sults indicate prediction errors of the ord‘er ofil1 -3 seco_nds in the final in-
jection time., This aspect of planning the ascent phase can and should be im-

proved by a more accurate modeling of the atmospheric phase.

1.4.4 EPHEM SUBROUTINE

' The ephemeris subroutine EPHEM, see Figure I-4 and Table I-3,
is used to determine the spacecraft's or target's position and velocity (r and é)
at a given epoch ba.‘sed on a given ephemeris (_1;0, io) and epoch (TO). The pro-
gram hés two modes of operation: (1) Option A (NOP = 0) when the range angle
(8) between the epochs is specified, and (2) Option B (NOP = 1) when the trans-
fer time (t) is specified. When Option A is employed, the transfer time (t )
is calculated in EPHEM in addition to the position and velocity. This routine

was formulated during the studies of orbit maneuvers and a description of its

‘ operation and the algorithms employed in it are given in Section VI of the main

report.

1.4.5 RVVR SUBROUTINE

| The Required Velocitér Vector Routine (RVVR) is used to determine
the velocity required to transfer between two positions in space. The slope
(target of the flight path angle) at arrival at the second point (ma) is the con-

straint imposed to completely define the problem. Figure I-5is a math flow

*.,fl.of this subroutine and the syrnbols are defined in Table I-4.
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This routine has five options available for specifying the slope a

( and thus, generally, fix-fe transfer options (KK = -1, 0; 1, 2, 3). These op-
tions were developed during this study as part of the generalized guidance
equations subtask in order to study different techniques for generating two-
burn orbit transfer maneuvers. The rationale and irﬁplemenﬁation of these
options is. discussed in Section VI of the main repcrt.

For those cases where a 180 degree transfer is involved and the
transfer plane becomes undefined, an input quantity, @, is used in the subrou-
tiné to define the plane. If this case is not known when the routine is entered,
@ = 0 and the velocity at the first position is used to define the plane and an
indicator is set (N180 = +1), The main program can then specify a value for
a and re-enter the routine, if required. This subroutine calls its own time-
of-flight routine for calculating the time on the transfer arc: TIME (Figure

I-6 and Table I-5) for elliptic arcs and SIMTIM (Figuré I-7 and Table 1-6)

for parabolic and hyperbolic arcs.

(\ 1.4.6 RENDI SUBROUTINE
The Rendezvous-Intercept routine (RENDI) is a trajectory planning
program which is employed to find local minimum - AV two-burns orbit trans-
fers which result in rendezvous with an orbiting target vehicle., The target
may be fictitious as is the case of placing a payload in a synchronous equatorial
orbit where a "target' is introduced to control the.e'arth longitude of the final
orbit injection.
The program uses the EPHEM and RVVR subroutines (paragraphs
1.4.4 and 1. 4.5 above) to generate a two-burn rendezvous and a one-dimen-
sional search routine (Subroutine BEST) to find local minimums of the total AV
required. In TGP this routine is called to generate all local minimum AV
rendezvous for which the first burn is allowed to oécur between TSTART and
TSTOP (two input times).
! This routine represents the planning mode of operation of the Ren~
dezvous-Intercept guidance algorithm which is discussed in detail in Section VI

C of the main report. Figuie 1-84s a math flow of this subroutine and Table I-7
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contains the symbols employed. The one-dimensional search routine (BEST),
based on Powell's technique, is represented in Figure I-9 with a list of sym-

bols in Table I-8.

1.4.7 VPG SUBROUTINE
The Variable Point Guidance (VPG) subroutine is a planning pro-
gram used to generate a series of orbital burns which result in rendezvous

with a specified target vehicle. This is an IBM program basecd on the tech-

- nique developed in the Variable Point Guidance and Targeting Study, Refer-

ence ( 1 ).

This prograin was developed during this study based on earlier re-
ports generated during the various VPG sfudies phases (especially references
1, 8, and 9 of Reference { 1 ). The program incorporates many of the fea-
tures reported in these earlier pape-rs but differs in actual implementation
from that reported in Reference ( 1 ). Some of the important features of the
present version of the VPG subroutine are:

1. The spacecraft starts from a circular parking orbit.

2. The target (real of ficticious) is an arbitrary orbit (relative

to the spacecraft).

3. 11 burns are considered as impulses.

4. Spherical gravity model assumed. |

5. The flight path angle, relative tb local horizontal, is un-

changed by a burn (i.e. except for plane change the AV
added is co-linear with the Qélocity).

6. All burns except the first occur on the iine-of-nodes between

~ the spacecraft and target orbits.

7. The first burn is pasitioned in the parking orbit to satisfy

(5) and (6).
8. Eight options are generated for each input case. Four op-
tions correspond to rendezvous occurring at one node, the
other four to rendezwcus at the opposite node. The four op-
ﬂ so0 .o :tions are Bielliptic Chase, Bielliptic Lob, Full Orbit Phasing
Chase, and Full Orbit Phasing Lob.
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9. Bielliptic maneuvers involve three major burns: the first
at parking orbit altitude, the last at target altitude (on the
line-of-nodes) and the second 180 degrees from the third.
The altitude of the second burn is adjusted to insure proper
phasing at the third burn. If this altitude is below the target
orbit, it is a Chase colution, if abo{re, it is a Lob solution.

10.  Full Orbit Phasing maneuvers also involve three major burns:
The first at the parking orbit and the second and third coin-
cident at the target altitude. The second burn, at the target
orbit, is adjusted to produce a phasing orbit such that after
an integer number' of revolutic;ns the spacecraft and target
are coincident. The third burn then matches the spacecraft's
velocity to that of the target. If the period of the phasing
orbit is less than that of the target, it is a Chase solution,
otherwise it is a Lob solution.

11. The plane change to be effected at each bﬁrn is determined
by optimally splitting the total change between the major
burns. This routine includes an option (input) of also con-
sidering a pure plane change maneuver at target altitude.

One of the major differences between this program and that in

Reference ( 1 ) is that fhe ascent to orbit is not included in the VPG subrou-
tine. This phase of the mission is generated with the UP 1 subroutine ( Para-
graphl.4.3 of this Appendix) because of the flexibility and performance it offers.

A detailed description of the philccophy underlying the Variable

Point Guidance and Targeting technique as well as its implementation can be
found in Reference ( 1 }. A math flow of the VPG subroutine can be found in
Figure I-10 and the symbols are listed in Table I-9. VPG itself ef?n:ploys

11

three subroutines: an optimal Plane Change Angle routine - PCA (Fi%ure I-11

- and Table 1I-10); a Required Velocity routine - REQ (Figure I-12 aiqd Table

I-11); and a Time-of-Flight routine - TOF (Figure I-13 and Table ' I-12).

- The latter two routines (REQ and TOF) were generated when VPG was initially
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altitude (LCO = +1, LCS = +1) the radius magnitude is also calculated inter-

nally to insure a 24 hour period (R is then used only to define the target's

direction at ‘the epoch, tr).
If the mission is to start from a parking orbit (LCL = -1) the space~

craft's ephemeris is inputted:

Rp = Parking orbit position at t = tp
_YP = Parking orbit velocity at t = tp
tp = Epoch time.
The type of mission to be planned is determined by the integer M:
M = 1 Intercept v '
M = 2 Direct Ascent Rendezvous
M = 3 Orbital Rendezvous
M = 4 Surveillance - from parking orbit
M = 5 Surveillance by first pass overflight (set in program if

found possible)

For M = 4, the surveillance point is defined by:

)Y T = Latitude
Q T - Longitude relative to launch site

R'I‘ = Overflight radius

8M = Error tolerance allowed in the overpass.

The additional input data required are: the circular parking orbit
radius RP (when LCL = +1); last possible launch time {1, max’ last possible
final time tfmax? maximum AV capability of the vehicle Avmax; and incre-~
ments of launch time and launch azimuth (AtL and AAL)_ which are used when

M =1 or 2 to find a feasible direct ascent trajectory.

1.6 TEST CASES

Three test cases are presented in order to illustrate the perform-

. ance of TGP. Table T .13 contains a description of the cases, and Table I-14

illustrates ‘the results obtained with TGP.
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: written as an independent program. They were retained when VPG was con-
(, verted into a subroutine for TGP (instead of using RVVR and EPHEM) because
of the internal structure of VPG which would have required a major overhaul

in order to make use of the more general RVVR and EPHEM routines.

1.5 PROBLEM SPECIFICATION

The coordinate system used to define the problem and in which all
calculations are performed is the XYZ ECI (Earth Centered Inertial) system,

" illustrated in Figure I-14., The XY plane is the equatorial plane and the Z-
axis is through the north pole. This figure also illustrates some of the param-
eters involved in the program, which are defined in Table I-1.

If the mission is t§ be planned from launch (LCL = +1) the launch

site is specified by:

N L = Launch site latitude.
Q Lo = Launch site longitude relative to X-axis at t,
( to = Reference time.
A' = Minimum allowable launch azimuth.
Lmin ,
! = Maximum aliowable launch azimuth.
ILmax

Two alternative ways are provided for specifying the target orbit

If LCO = -1, the target orbit is specified by its ephemeris at some epoch:

BT = Target's position at t = tl
yT = Target's velocity at t = t,
1:1 = Epoch time; or,

If a circular target orbit is desired (LCO = +1) the orbit is specified by:

n - Urit normal to target orbit
; Ry = Target's position at t = tl
tt = Epoch time.

R R e ma s mengs v i
-

locity vector with and Rp. When the target orbit corresponds to a synchronous

B¢

* and the program computes the circular velocity from ! Rl eand forms. the ves fro i
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Case 1 - This case requires planning the launch conditions and
orbital maneuvers to achieve rendezvous with a fictitious target in a synchro-
nous equator'ial orbit stationary at launch site longitude. The program gen-
erates, with the LAUNCH subroutine, a launch at t;, = 0 at an azimuth of 90°
which gives the minimum out-of-plane angle possible (Al = 28,5617° = )\L).
The ascent to the circular parking orbit is calculated with UP 1 and requires
483.7 seconds with 14, 444 feet/sec. of AV left for orbit maneuvers.

The orbit transfer necessary for rendezvous is generated as a two-
burn maneuver with RENDI and as a series of three-burn maneuvers with VPG,
In the case of RENDI, Tabie I-14 lists the results of the first local minimum
AV found and the best local minimum in the time span allowed for the search
(tf < 1 day). The VPG results ih Table 1I-14 represent one Bielliptic and one
Full Orbit Phasing Option. Both are three-burn maneuvers and represent
maneuvers which require less AV than is available (14, 444 feet/sec.) and
which, if possible, achieve rendezvous within 1 day (86,400 seconds}.

The Bielliptic option requires 14,138 feet per second but final
rendezvous is at 102, 716 seconds. This is accomplished by gross phasing in
the parking orbit for 7 full orbits after the first nodal crossing. The rendez-
vous is then effected by two 180 degree transfers, with the second burn being
above the target orbit at 143,437,670 feet (target radius is 138,607, 380 feet). .

The second VPG option is a Full Orbit Phasing case which req‘ﬁires
14, 032 feet/second of AV with rendezvous at 64,800 seconds. In this case, the
phasing is accomplished with one orbit at iniﬁal altitude followed by a 180 de-
gree transfer to target altitude. The second pburn ther gvts the spacecraft into
a phasing ellipse with a period of 38,990 seconds (target period is 86,400 sec-
onds) and after ohe phasing orbit the third burn matches the velocities for ren-
dezvous.

Case 2 - The target in this case is é.t Space Station Altitude (185
nm) and the problem is to plan a rendezvous mission from launch. The LAUNCH

routine is used to find the most favorable launch conditions, which are tL =

~ 114,502 seconds .and Ay, = 74. 9178 degrees. This results in the ascent trajec-

tory intersecting the target orbit 90 degrees down range with zero out-of-plane
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angle (iT > A 1,» SO an in-orbit launch time opportunity is available twice per
day). The ascent to a 100 nm parking orbit is then generated with UP 1 and
Izesults in an injecticn time of 15‘, 089 seconds (585 seconds after launch) with
8,762 feet/sec. of AV remaining for the rendezvous maneuvers.

| The orbital maneuver represented in Table I-14is a VPG Full
Orbit Phasing option which requires 6, 057 feet/sec. of AV with rendezvous

at 27,383 seconds (12,881 seccnds after launch). The maneuver jnvolves a

180 degree transfer to target altitude {ollowed by one revolution in a phasing

orbit. The pericd of the phasing orbit is greater than that of the target orbit
(8,280 seconds vs. 5,485 seconds) so that this is a Lob option.
Case 3 - The final test case is the same as Cace 2 except that a

direct ascent rendezvous is to be planned. TGP finds a solution corresponding

to the launch site 80.25 degrees beyond the target's ascending node (ty, = 19,260

seconds);this corresponds to approximately 80 minutes after the launch site

has passcd through the target orbit plane. The launch azimuth of 84.8443 de-

grees results in the intercept point being 90 degrees down range and an out-

of-plane angle of 3.05 degrees. These conditions are inputted to UP 2 with
the time that the target will arrive at the intercept point (2112 seconds after
launch). An ascent trajectory is generated which achieves the desired final
state and has 2,734 féet/sec. of AV left after the adaptation burn for rendez-

vous.
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MAIN PROGRAM SYMBOLS

Math Flow : Description A Program
Symbol Symbol
M Run Type Variable M

td Reference Time TREF

_I.{TO' Initial Position Vector (Target) RTO

_\..[TO' Initial Velocity Vector (Target) VTO
tTO Initial Time v(Target) TTO

m Gravitational Constant = 1,4082878x1010 GC

r Position Vector RTN

v Velocity Vector VTN
TOF Time of Flight TOF
MA Slope at Arrival SLT

ar Semi Major Axis of Tafget Orbit A

hT Angular Momentum ANG

..I.IT Unit Cross Product Vector (Ta;get) UNT

B Target Semi Latus Rectum SEMILR
er Eccentricity E

iT Target Inclination Angle EYE

9] - Longitude of Ascending Node CLONG
ALMAX Maximum Allowable Launch Azimuth Angle ALMAX

(Sheet 1 of 5)
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Table I-1 Main Program Symbols (Continued)
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Math Flow Description Program
Symbol Symbol
ALMIN Minimum Allowable Launch Azimuth Angle ALMIN
T 1st Zero Out-of-Plane Launch Time TAU1
T, 2nd Zero Out-of-Plane Launch Time TAU2
A Launch Site Latitude SLAT
Q Lo Launch Site Longitude at t_ SLONG
t Desired Laurch Time T
AL Launch Azimuth AL
Ai Out-of-Plane Angle DELEYE
JAY:] Range Angle to Target Plane Intersection TANG
I Unit Vector Thru Launch Site RL
C _YL Unit Vector In Launch Plane VL
o Unit Vector Normal to Launch Plane UNITL
N Program Counter = Number of Launch Time
Calculations N
t.l, 2,3,n Launch Times TP(N)»
tl Best Launch Time Tl
R Unit Vector Thiu Launch Site at t R,
RE Earth Radius RE
o Unit Vector Normal to Launch Plane at t) UNIi‘l
T Apogee Radius | RA |
Vrp Pergee Radius RP
C Ro Parking Orbit Altitude | RPARK
| .Q,L - Launch Site Longitude at Launch Timfa XLONG

(Sheet 2 of 5)
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Math Flow Description, Program
Symbol Symbol
AV Current Max Value of Avg DVSTAR
Qf' Range Angle to Target THETF

tf' Time of Insertion or Rendezvous TFP

R, Position Vector at t.' RF
_Yf Velocity Vectof at tf' VE

t* Time of Conditions with Highest Remaining AV TSTAR

AL* Launch Azirﬁuth with Highest Remaining AV ALSTAR

LC1 Program Irdicator to Step Launch Azimuth LC1

AAL Launch Azimuth Iﬁcrement AZ DEL
Atl. Launch Time Increment TDEL

t1 MAX Latest Possible Launch Time TLMAX

IvAx Maximum Inclination Angle EYEMAX
AT Target Latitude TLAT
AT Elé.psed Time DELT

f:4 Transfer Time for Zero Flight Path Angle T4

ET Overpass Position Vector ‘RT

1:f Time at Overpass Position TF

e Error in Time at Overpass Position ERRF

Last Possible Final Time TFMAX

tMAX
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- Table I-1 Main Program Symbols (Continued) AI-19
Math Flow Description Program
Symbol . Symbol
WE Earth Rotational Rate WE
1:2 Time at Injection into Parking Orbit T2
_I;{Z Parking Orbit Position or Cut-Off Vector at Time tz R2
—YZ Parking Orbit or Cut-Oif Velocity Vector at Time t2 \2
AVM Remaining AV(Ft/Sec) Available DELVM
AVR Remeaining AV(Ft/Sec) A'va.ilable DELVR
B Target Positicn Vector at tz RTN
Y Target Velocity Vector at tz VTN
_n, Unit Cross Product Vector of R, and V, CP
o] Cosire of Out-of-Plane Angle Between Parking
Orbit and Target Orbit | AILLPHA
n Unit Vector to Line-of-Nodes CPPR
90 Transfer Angle from Pérking Orbit to Rendezvous THETO
_I’{3 Position Vector at Rendezvous R3
—YS Velocity Vector at Rendezvous V3
t3 Time of Rendezvous T3
ETS Target Position Vector at Rendezvous RT3
—YT?: Ta.rgét ‘.'/'elocity Vector at Rendezvous V'_I'3
Af3 Angular Position of Target Relative to Line-of-Nodes
at t3 DELF3
f3 True Anomaly of Target at t3 F3
C‘ fLN" * Angular Positio?} of Line-of-Node Relative to Targets
L Perigee‘ FLN

(Sheet 4 of 5)




C

AI-20

" Table I-1 Main Program Symbols (Continued)
Msath Flow Description Program
ymbol . Symbol
AV3 Veiocity Required for Overflight DELTV3
S Angular Overpass Error DEL
&* Maximum Allowable Overpass Error DELSTR
QLf Final Launch Longitude XLONGF
‘QTf Final Target Longitude TLONGF
A..QT Target Longitude Relati%re to Launch Site TLONG
BN Unit Vector to Parking Orbits Descending Node CFDN
AVR Remaining AV | DELVN
AQ Range Angle Error DELONG
LCO Parameter to Select Circular Orbit Option L.CO
LCS Parameter to Select Synchronous Orbit Option LCS
LCL Parameter to Select Parking Orbit Data LCL
LCT Parameter to Select VPG Option LCT
Roo Parking Orbit Position Vector RPO
Voo Parking Orbit Velocity Vector VPO '
tpo Parking Orbit Epoch Time TPO
_l}c Radius of Circular Orbit ‘RC‘
v, Velocity of Circular Orbit ve
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TABLE. . I-2

LAUNCH SUBROUTINE SYMBOL TABLE

AI-21

FORTRAN
Math : Program
Symbol Description Symbol
ILCL Option Indicator: +1 when launch time is specified; LC
-1 determines best launch time(s)
)\L Launch site latitude (degrees) LAML
QI o Launch site longitude relative to x-axis at to OLO
(degrees)
'Q'T Loongitude of ascending node of target orbit oT
(degrees)
iT Inclination of target orbit plane to x-y plane IT
(i.T >0) (degrees)
t Desired launch time T
to Reference time (sec) TO
\ Maximum permissable launch azimuth (degrees) ALMAX
L, max :
'L min Minimum permissable launch azimuth (degrees) ALMIN
7 Time at which launch site is nearest target plane T1
7, Time at which launch site isnearest target plane T 2
AL Launch azimuth (degrees) AL
Ai Out of plane angle between launch plane and target DEILI
orbit (degrees)
N Range angle from launch site to intersection with DELTH
target orbit
T Unit vector through launch site RL
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Table I-2 TLaunch Subroutine Symbol Table (Continued) AI-22

) FORTRAN
Math Program
Symbol Description Symbol
VL Unit vector in the launch plane and perpendicular RL
t
o .
L Unit vector normal to launch plane NL
(np= Zp* %)
g Rate of the earth's rotation (raé/sec) . WE
#)L Lvongitudev of launch site at time t relative to PHIL
target orbit's ascending node
v ) c
4)Ll Value of (#L whent = T, PHILI
¢L2 Value of ¢L when t = T, PHIL2
ALl Value of AL, att = Ty for minimum Al ALl
ALZ Value of AL, att = TZ, for minimum Ai ‘ALZ
Ail Value of Ai att = T DELI1
Al Value of Aiatt= T, DELI2
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TABLE 1I-3

EPHEM (EPHEMERIS SUBROUTINE)
SYMBOL TABLE

AI-23

e AR b AR BN S T i e

FORTRAN
Program
Math Description Symbol
Symbol
T r.o Initial position and velocity (ft. and ft/sec) RO, RODOT
TO Initial time (sec) TO
n Gravitational constant U
2 Transfer angle (radian) TH
t Time of transfer-input for option B (sec) T
DLE Convergence criteria DLE
NOP = 0 for Option A (angle input) NOP
= 1 for Option B (time input)
r, r Position and velocity at end of transfer R, RDOT
tof Time of flight (Option A only) (sec) TOF
m Arrival slope MA
a Semi-major axis (ft) A
r Magnitude of r ROM
e Unit radial vector - ERO
ro
V'-o Initial radial velocity (ft/sec) VRO
C Moment of momentum (ftz/sec) C
C Magnitude of C (ftz/sec) CM
Veo' Initial horizontal velocity (ft/sec) VTHO
m_ Initial slope XMGC
r Magnitude of r . RA
| AE " DLEN

Eccentric anomaly (radian)
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Table I-3 EPHEM (Ephemeris Subroutine) Symbol Table (Continued) Al-24

» : FORTRAN
(x‘ Math Program
- Symbol o ) Description ' Symbol
P Period (sec) : _ P
v Radial velocity at arrival ‘ VRA
ra
VQa Horizontal velocity at arrival VTHA
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TABLE 1.4

AI-25
RVVR (REQUIRED VELOCITY VECTOR SUBROUTINE)
SYMBOL TABLE
; ’ FORTRAN
Math Program
Symbol Description Symbol

r r.o Initial position and velocity (ft. and ft/sec) RO, RODOT
r Aim point (ft) RA
m_ Slope at arrival XMA
X1 Constant to determine 186° transfers XK1
7 Gravitation constant U
NN Number of complete orbits during transfer (input) NN
Tora Magnitude of target radius (Option A-3 only) | RTAM
KK = -1 for Option B of Rendezvous-Intercept KK

0 for Option A-1 of Rendezvous-Intercept

1 for Option A-2 of Rendezvous-Intercept

2 for Option A-3 of Réndezvous-lntercept

3 for Option A-4 of Rendezvous-Intercept
mpy Slope at I before velocity change XPO
egeR Unit horizontal vector ETHR
a Plane change angle used in 180° transfers (radian) ALF
N180 = 1 when 180° transfer has been performed N180

= 0 otherwise

Ga Transfer angle (radian) THA
tof Time of flight (sec) TA
Vr Velocity required for transfer (ft/sec) VR
NSIG Indicates type of conic transfer NSICG-
a Seini-major axis (ft) S e ior A, AX

‘(Sheet 1 of 2) -
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Table I-4 RVVR (Required Velocity Vector Subroutine) Symbol Table (Continued) AI-26

FORTRAN

Math Program
Symbol Description Symbol

r Magnitude of ro (ft) ROM

r Magnitude of r (ft) RAM

—a

er Unit radial vector ER

r Radial component of r  (ft) RAR
- ar - A

r.6 Horizontal component of T (ft) RATH

r g Magnitude °f_fa6 (ft) RATHM
Ve Horizontal component of r.o (ft/sec) VTH

VB Magnitude of Ve (ft/sec) VTHM
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TABLE I-5

TIME SUBROUTINE SYMBOL TABLE Al-2T
(‘j  FORTRAN
~ Math Program
Symbol Description Symbol
VHR Horizontal component of velocity ({t/sec) VTHR
VrR Radial component of velocity (ft/sec) VRR
n Gravitational constant U
r Magnitude of position vector‘ (ft) ROM
Qa Transfer angle {radian)"
v cos 98. CTHA
sin §a STHA
m_ Slope at arrival XMA
S Magnitude of arrival point radius (ft) RAM
v ( NN Number of complete orbits NN
tof Time of flight (sec) TA
- e Magnitude of angular momentum CA
a Semi-major axis (ft) A
AE Eccentric anomaly (radian) DE




TABLE 1I-6

)

AI-28
SIMTIM SUBROUTINE SYMBOL TABLE
: : FORTRAN
Math Program
Symbol Description Symbol
6 Transfer angle (radian) TH
m Departure slope XMO
T Departure radius (ft) ROM
C Magnitude of angular momentum H
m Arrival slope MA
M Gravitational constant U
tof Time of flight (sec) TOF, TOFN




TABLE I-7

Al-29
RENDI - RENDEZVOUS-INTERCEPT SUBROUTINE
SYMBOL TABLE
FORTRAN
Math . Program
Symbol Description Symbol
r, Initial interceptor position (ft) RI
—1i
_5; Initial velocity of interceptor (ft/sec) RIDOT
r;I'i Initial target position (ft) RTI
r:I‘i Initial velocity of target (ft/sec) RTIDOT
TSTOP Maximum time at which first burn can occur (sec) TSTOP
m_ ‘Arrival siope MA
kl = -1 for RENDI Option B K1
= 0 for RENDI Option A-1
/ = 1 for RENDI Option A-2
(B = 2 for RENDI Option A-3
= 3 for RENDI Option A-4
NOIT = 0 return when t + TSTART > TSTOP NOIT
= 1 return after first minimum AV is attained or
t + TSTART > TSTOP
= -1 return when AV < AVM or
t + TSTART > TSTOP
TSTART Reference time when r,, r.., r_.., and r. . are TSTART
. —1 ==l —'Tl —oTl
given (sec)
AVM Maximum allowable AV for trajectory (ft/sec) DELVM
M Gravitational constant U
AT Amount by which the time of first burn is incremented | DELT

in search for minimum AV (sec)
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AI-30

Table I-7 RENDI - Rendezvous-Intercept Subroutine Symbol Table (Contihued)

falsi iterations (sec)

. FORTRAN
Math : Program
Symbol v Description Symbol
t Time of first burn relative to TSTART (sec) T
T r'O Interceptor position and velocity at time of first RO, RODOT
-7 burn
r'T, I:T Target position and velocity at time of first burn RT, RTDOT
T, Projection of r onto target plane (ft) RINP
—inp —0 o
6 Angle between r, and r,.. (radian) THH
—inp — T
DLIM Lower limit for transfer angle (radian) DLIM
ULIM Upper limit for transfer angle (radian) ULIM
P Period of interceptor (sec) P
90 Past guess at transfer angle (radian) THO
91 Present guess at transfer angle (radian) THI
TrA? r.TA Target position and velocity after being transferred in| RTA, RTADOT
- - orbit through angle 91'(or 90) from T
T MTA
Mmoo arget slope at BN
T or Time of target transfer from r_, to r resuiting TTAO or TTAl
TAO — —-TA
T from transfer angle of 90 or 91 (sec)
TAl
r ’ Aim point (ft) RA
m Desired interceptor arrival slope "MA
TAO or Time of interceptor transfer from r_to r_ corres- TAO or TAl
TAl ponding to target transfer angle 90 or 91 (sec)
VALUE . The function which is reduced to zero by regula VALUE
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AI-31
Table I-7 RENDI - Rendezvous-Intercept Subroutine Symbol Table (Continued)

. FORTRAN

Math i Program
Symbol Description Symbol
DERIV Approximated derivative ¢f VALUE : DERIV
92 New value of 91 (radian) TH?2

Vr Velocity required by interceptor at r to transfer VR

‘ tor (ft/sec)
- 3

TA Fixed transfer time (sec) ' TA

m, Past guess at arrival slope MAQ
myg Present guess at arrival slope v . MA1l
m,, New guess at arrival slope - MA2

r’a : Arrival velocity of interceptor (ft/sec) RADCT
AV Total change in velocity (ft/sec) : DELV

(Sheet 3 of 3) '




TABLE 1I-8

BEST-SUBROUTINE SYMBOL TABLE Al-32
- g FORTRAN
(;/ Math ‘ Program
- Symbol ‘ Description Symbol
DV Velocity change (AV) DV
T Time of first burn . T
TH Transfer angle TH
IPL Counter to tell when to apply quadratic fit IPL
- DT Time increment equal to 1/4 the interceptor or DT
target pericd, whichever is smaller
TMINSA T at last minimum found TMINSA
NOPT = 1 when minimum has been found NOPT
= 0 otherwise
( S T Time increment = DT/10 SDT
T TM(D) Storage for first burn times TN(I)
I=1, 4
DVEL(I) Storage for AV's corresponding to TM(I) DVEI(I)
I=1, 4
7] Normalized values of TM(I) TM(I)
I=1, 4
T

Normalized value of time indicated by quadratic to

give minimum AV




TABLE I-9

AI-33

VPG - VARIABLE POINT GUIDANCE SUBROUTINE
SYMBOL TABLE
. FORTRAN
Math Program
Symbol Description Symbol
I. Inputs
aT Target semi-major axis (ft) AT
e Target eccentricity ET
“L‘\I Angular Separation of Line-of-Nodes and Target's FLN
Line-of-Apsides {(deg)
Af3 Position of target relative to Line-of-Nodes at t3 DELF3
(deg)
t3 Time of spacecraft's first nodal crossing (sec) T3
RP Radius of spacecraft's circular parking orbit (ft) RP
Ai Out-of-plane angle between spacecraft (S/C) and DELI
target orbits
5 Unit vector normal to S/C parking orbit EN2
nN Unit normal along Line-of-Nodes (defines Node A, ENN
Node B defined by -_rlN)
B Gravitation constant U
II. Internal Symbols
AR Maximum altitude above target orbit allowed for DELRM
intermediate airn point in Bielliptic option (ft) |
R*min Minimum radius allowed for intermediate aim point RMINS
in Bielliptic option (ft)
ARO* Initial altitude increment, added to parking orbit DELROS

- radius, used for intermediate aim point in Bielliptic

option (ft)
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Table I-9 VPG - Variable Point Guidance Subroutine $ymbol Table

: AI-34
(Continued)
» FORTRAN
Math . Program
Symbol Description Symbols
€q Error tolerance used to stop iterations in optimum EPA
plane change angle routine (rad)
SAi Sign of the Ai input to subroutine SDEL1
OJP Angular rate of S/C in its orbit {rad/sec) wP
PP Period of S/C orbit (sec) PP
VP Velocity in circular parking orbit (ft/sec) VP
PT Period of target orbit (sec) PT
hT Angular momentum of target orbit (ftz/sec) HT
TA Target radius at Node A (ft), see_r‘lN .RTA
TB Target radius at Node B (ft), see n RTB
RT3 Target radius at t = ty RT3
VTA Target's velocity at Node A (ft/sec) VTA
VT'B Targét's velocity at Node B (ft/sec) VTB
1 341 -
VT3 Target's velocity at t = t3 VT3
YraA Target's flight path angle at Node A (rad) GAMTA
Y TB Target's flight path angle at Node B (rad) GAMTB
Rii=3’7 S/Cradiusatt=ti,i=3,---,7 R3, »++, R7
v. i=3,7 |S/C velocity at t =t , i=3, =+, 7 V3M, +-+, VIM
1 and VM(I) I = 3, 7
+ 1 .
V. ,i=3,7]S/C velocityattztiT, is 3, «en, 7 V3PL, -++, VIPL
i and VPL(I) I = 3,
R*max Meaximum radius allowed for intermediate aim point RMAXS
in Bielliptic option ' -
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Table I-9 VPG - Variable Point Guidance Subroutine Symbol Table . AI-35
(Continued) A o ‘
N FORTRAN
Math Program
Symbol . Description Symbol
AT Time of flight (sec) DELT
TN Tirﬁ_e for target to reach rendezvous point for the TN
first time (sec)
R* Radius of intermediate aim point in Bielliptic option RS
(£t) |
m* Slope of S/C orbit at R* MS
m, Slope of target orbit at rendezvous point M6
Vr Radial component of required velocity (ft/sec) VR
Ve Tangential component of required velocity (ft/sec) VTH
Y.i=3,7 Flight path angle of S/C orbit at ‘:=ti, i=3,7 GAM1, ..., and
GAM(I)I=3,7
TTl Transfer time to intermediate aim point (sec) TT1
A6 Position of first orbital burn (t= t4) relative to line- DELTH
of-nodes (rad)
¥ Flight path angle at R* GAMS
TTZ Transfer time on second arc in Bielliptic option (sec) | TT2
TT Total transfer time, relative to t3, for S/C excluding | TT
integral number of phasing orbits » ‘
X! Non-integer number of full parking orbits (for phasing)| XP
before first burn '
A R Increment to R* to correct phasing errbr (ft) DELRS
iti PPEO
PPEO Initial value of PPE (sec)
PE Period of phasing ellipse in Full Orbit Phasing option |PPE
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Table I-9 VPG - Variable Point Guidance Subroutine Symbol Table

AI-36
(Continued)

FORTRAN

Math Program

Symbol Description Symbol

aPE Semi-major axis of phasing ellipse APE

Qa. i=3,7 Plane change angle att:ti i=3, ¢ee, 7 LFA3, ... and

i

AF(I)I=3,7

AVi i=3, 7| Velocity impulse at t = t.1 i=3, ..., 7 DV3, ..., DVT

"
w
-
o

<
e
I

w
o

Unit normal to plane defined by__I_{i and._’\i'i

Unit vector along position vector at t = ti i=3,..
Position vector at ti i=3, «+¢, 6
"Unit vector normal to_B.1 and._gi

Velocity vector at 51

Total velocity impulse at ti i=3, ..
Integer, full orbits in parking orbit

option)

Integer, full orbits of target before rendezvous

Integer full orbits in phasing orbit (Full Orbit Phasing

and DELV(I) I=3,7
EN( ,I),I=2,7

EVEC ( ,I),I=3,6

"RVEC( ,I),1=23,6

EVC ( ,1),1=3,6

VVEC ( ,I),!=3,6

DLVL ( ,I),
I =3,6

I

J

K
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TABLE I-10

PCA - PLANE CHANGE ANGLE SUBROUTINE _ AI-37
SYMBOL TABLE
( . FORTRAN
- Math Program
Syrnbol Description Symbol
J, K, L Controls for indices on various vectors J, K, L
NM Iteration Counter NM
Ai Total plane change angle DELI
vig Velocity magnitude before ItE barn VM {I)
v? (1) Velocity magnitude after It burn VPL (I)
y (1) Flight path angle during Ith burn GAM (I)
a (I) Plane change angle at *h burn . ALFA (I)
AVO (1) Impulse at Ith burn with no plane change DELVO (I)
Total impulse at Ith burn DELV (I)




TABLE I-11

. . AI-38
REQ SUBROUTINE
SYMBOL TABLE
. FORTRAN
Math Program
Symbol Description Symbol
r, Radius of vehicle position (ft) R1
T, Radius of aim point (ft) R2
9' Angle between vectors to vehicle position and aim TH
) point (radian)
m Slope at arrival at aim point M
H Gravitational constant U
Ve Horizontal component of required velocity (ft /sec) VTH
Vr Radial compohent of required velocity (ft/sec) VR




TABLE I-12

AI-39
- TOF SUBROUTINE
SYMBOL TABLE
( FORTRAN
Math Program
Symbol Description Symbol
r1 Radius of vehicle position (ft) R1
r, Radius of aim point (ft) R2
Al Angle between vectors to vehicle position and aim DELTH
point (radian)
Vl ‘Velocity of vehicle (ft/sec) V1
73 Gravitational constant U
Y1 Slope of vehicle GAMI
AT Time of flight DELT
.h Magnitude of angular momentum H
( - a Semi-major axis (ft) A
m Slope at arrival at aim point XM
AE Eccentric anomaly (radian) DE




-

A

Table I-13

TEST CASES

Initial Final c
Case Conditions Orbit omments
1 Launch Latitude: X\, = 28. 5617° Semi-Major Axis: Rendezvous with fictitious .ta;jg‘ef
Launch Longitude: QLO =0 ap = 138, 607, 380 ft, in synchronous, equatorial
Reference Time: t =0 Eccentricity: ep = 0 orbit at launch site longitude.
Launch Azimuth Limits: 65°<A; < | Inclination: ip =0
115°
2 Same as Case 1 Semi-Major Axis: Rendezvous with vehicle in 185
ap = 22,060,185 ft, n.m. circular parking orbit.
Eccentricity: e = 0
Inclination: ip = 32°
Longitude of Ascending Node:
Q. =0 |
3 Same as Case 1 but no parking Same as Case 2 Direction Ascent Rendezvdéus to -

orbit used, and ) = 80°
LO

target of Case 2

0%-1IV
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Table I-14

RESULTS QF TEST CASES

Launch Ascent Orbital Maneuvers
RENDI VPG
7 : 2
B " ; SE L s :
g g4 R 3 ; 3 £ | m - 2 g
+ B e~ Y - M — 8 & I E
= o O S AN 9] m - « d " o + 3
pe £ =] o2 0 & ) oo Q . by 0 e o)
£ ge! s O ¢ o ATl 3K 13 e 0 O " Py ® 0 0
ori N ) E q: @) g ® 2 - | H (0] fy n — = 0]
B < Ao = 20 — M — — O ) Gy Gy Gy o O
o o g - O oo Q@ — o o iy 0 o) o) o) ,_4 )
Case| G 3 0P | ¢ BT ol %38 o a DA 0 v °o & -
& £ Lo | o Bl ol <H e 2 “ g 0 o =g o
R S22 |25\ of £ |E |58 |31E |E LE |25 |3
. . O |0 <Bo| Qo - & q A Zz | B E i <@ Z
(sec) | (deg) | (deg) | (sec) [ (n.m.) | (ft/sec) | (sec) [(sec) | (ft/sec) (sec) | (sec)| (sec) |(ft/sec)
. N 4032125050 17697 71)] 38553 {58382 1102716} 14138 (3)
.1 0 90 28,56 483 100 14,444 .
4348875863 | 15489 (2){ 6846 | 25810 | 64800{14032 (4)
2 14502 | 74.92 0 15089 100 8762 19103 {27383 | 30125( 6057 (5)
_ ~(6) (7) (7)
3 19260 | 84,84 3.05}19764 276 10127 21372} -- 7378
RENDI: (5) VPG Full Orbit Phasing Lob

(1) First Min- AV Found
(2) Best Min- AV Found
VPG .
(3) Bielliptic Lob
(4) Full Orbit Phasing Chase

(6) Launch site is 80, 25 degrees from

Target's Ascending Node at Launch

(7) One Orbital Burn At Target Altitude

to Match Velocities,

19-1IV




Input

AI-42

&

e Read Input
e Print Cut Input
e Convert Angles

X

LAUNCE
o Determmine Parking
Crbit Crientation

v

No ) » Direct

Cverflight
N~

Yes

" Surveillance
<
- *Mission

No

MAIN

v

Pararmeters

SIS o
e Calculate Target

Set Up Initial

Zonditions for

o Set Up Initial
Conditions

&

UPi
® Ascent to
Circular Orbit

P

® Deterinine

LAUNCH
aunch
Plane which
Includes Target

EFPEEM
S/ C Position {ov
Crbital Burn

O

~

RVVR
o Velocity Required
For Transfer

Overflights Yes
Time Correct>

No

® Adjust
1) Overflight
Time, or

Time of

2) .
Crbital Burn

v
UP1
e Injection Into
Parking Crbit
with Perigee
Cver Target

.

CEPEEM
e S/C Position at
Cverflight Time

o Adjust Gverflight
Time

L

First Pass

2

X

Yes

<Direct — g
Ascent

@ Deterrmine Eest

LAUMCE
Laaunch
Conditions

Intercent Point

LAUNCH

Launch Time

& ]

v

Ip Target Para-

&

UPI1
Ascent tc Circular
Parking Crbit

s Time to

!

RENDI
Local Mini-~
mum AV
Two-Burn
Rendezvous

v

VPG
Bielliptic & Full
Orbit Phasing
Three-Burn
Rendezous

mgren

T

e Print Cut Fesults ‘

v

EPHEM

meters at
Intgrcept

Point

Intercept ‘
Point

v

UP 2
e Ascentto

Intercept

Launck
Time Limit
Ixceeded

No

Return to
For Next Case
Or Stop

# Increment
" Launch-Azimuth

°® Incre‘gnent
Launch Time

B

v

Figure I-1 Trajectory Generator Program




é - ATI-43

20
Initialize )
Determine Target Ephemeris
2 at Reference Time (to)
Read Call EPHEM (Ryg ' Vyo's tTO"}L:
, Input DUMI, to, 0.001, 1., ¢, v, TOF,
D?‘t? ma, aT) -
7 11 3
Printout
Input Data
Co;%fe:t
Angles to I=(1, 0, Q)
Radians J=1(0, 1, 0)
K = {0, 0, 1)
R =x
uveillan"w g3 » E :z X
- T 2o T0 T
PT = HT d//l,
T :[ 2 - V710 VTO] -1
-0 1R H
. e =[l-(PT/a )] i/2
¥ 7002 L 31
i I'B’TO ! i. = cos™! [K . :i
7004 T =T
2/3

i ‘7008

V =: /, R ‘
c (p C) Vote:” Numbers on Blecks Correspond

l - R71o! , » to Statement Numbers in

70 = Vg ¢ _E_C»\X—f{———}‘f 4 C Fortran Source Program

Figure I-2 Main Program

> L . (Sheet 1 of 12)
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Inclinatic?

Al-44

34

Figure I-2 Main Program '
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AI-45

Calculate Times to Launch with Minimum
(/ . out of Plane Angle (T, &z'rz)
l AL yax ' = AL yax
ALyn ' = ALy .

Call Launch (-1, X, Q4 , 7. i1, t, to,
AL yax's ALy 'y Ty 0 T AL, AL, AS,

r,, VL’_IZL)

— —

No Launch

. Time > T,

Pcss.

Yes

Tirme

W
o
P
€N
(O]
o
o
(0]
(o v
S (3]
1
NN
n —_—
—
w
o
(]
(0]

(“ Last
%ossible t'3 =T, N = 4 No
Launch Time N = 3 t3' =T,
N> Ty - y
2 N = 3 200¢
A 4
No N = 2
3016
N = 2 S
¢ 3020
t,' = to
t2' = timax A
l - 3022
Do this block I = 1, N

Call Launch (1, A, &4, &, i, tiz),
to, AL yax's AL yin', Tis T2, AL, AL,

A8, ,v , 1)

Figure I-2 Main Program
(Sheet 3 of 12)




W e 48 4G

5 e el AR Y AR BT  81

3028

L

AI-46

Following Selects I From Block 3022 which yields Min. out of
Plane Error (Aj) and Sccondly Minimum Launch Time (t)

3032

Min=1

~<IA1(1)|QIA1(3)I>1—~——|
\( 3046 |,

0

FZIALD-1A1{2)!

3056
Min =2

303C

v .
KNT = KNT + 1
IMin Alt (KNT) =2

KNT = KNT + 1
IMin Alt (KNT)=3

Min
KNT =0

=3

O B ) .
T o 0 0 . .
‘_{lAi(l)l—lAi&4)‘>-‘* IAL2)]-1AL(4) o
41 3044 w\/ .
Min =4 ¥ o
m = .
‘—_—___ -
KNT =0 3074 |
o IKNT = KNT + 1 [¢— NG Min Alt (KNT)=4
Min Alt (KNT) =4 @<IAi(3)|-1Ai(4)I>% _
0 v 3068
+ Min =4
KNT =0
Min =4 |—®

[ 3100

Figure I-2 Main Program
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C

Select '
"Minimum No
Launch
Time
Yes 4992

DO 3110 I = 1, KNT
J = MIN ALT (J)

t{MIN) -

+

A4

MIN = MIN ALT (I)

v 3110
Corntinue 4o

v 3112
t, =t (MIN)* <
AL = AL(MIN)*
Ai= Ai(MIN)*
- A8 =ABMIN)*
t= tll : l
Write Out

Al-47
3114

. =80 + W

Calculate L.aunch Conditions
at Time t

Call Launch (1, XL’ QLO’ Q

MIN® T1° T2°

T i
ALYy AL
n_)
-1

L LO r & -t

AL, A, ¢

t,

L’

=

Calculate Ascent to Parking
Orbit Parameters

Call UP1 ($100)

= + AT
t, tlA

R
1
|+

1<
]
1<

Write Cut

tZ, AVO, AVM, 132, ’_\_fz

l | 3120

fl, AL, Ai? aY:]

Figure I-2 Main Program

Initialize For Rendezvous
Intercept Calculation

Call EPHEM (R
A9, ¢

at)

.
1o Lror tor Mo
0.001, I ¥p TOF, ma,

2’

‘Call RENDI (R, V., r, vi 0oy
3,0, t,, BV, p) |

1000 (Sheet 5 of 12)
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—[ .
CALL EPHEM (R,, V,, to

Kk, 85, DUM, 0.001, 0, 1,

v, At, ma, DUM)

I Initialize For ' Ryz=r
Variance Point | _
Guidance ] =33 ‘
) t3= t2+At '
CALL EPHEM (R1, Vig,
to, p, DUM, Ts, 0.001,
J. : 1, r, v, DUM, ma, DUM)
Rp=1R,!
EZZ(_P.\ZX_YZ) 51’3 :_1;
('_.z-~_.)z' Y3 =Y,
=\Or-L2 ~ !
' . I*\T3|
c | SIGN [(iNx 533 ) f‘.’]
Are thé 1004
Two Orbits Yes Ai=o0,
Within 0.8 deg. >—=u  _ 22 b—»
of Being INTR2¥ Rp
Coplanar _ ( 1042 )
No o ,
, 1006

I .
X D
= 22)

= lary= o,l

ny= n'* SIGN [(_I_{.?_x n')-an
Ai=COs™ (a) *SIGN [[n,x n;)-my]

Figure I-2 Main Program
(Sheet 6 of 12)




( 1042 ’ , ( 2000 > AI-49

--Y.

- l_}Direcr}
Target Yes 1059 '/C‘;s?ent
Eccentricity ; fLN Y Loohon
« LETO" :
1044 t 5%
= SIGN (= B 34
f3 SIGN (3;1*3 X:{g) AVE =10
P 'l \
( T/’R 1 l 2002
-1 T3/~ t=t
CcoSs 1 '
L_ - C Cali Launch (1, xlf ﬂlmj,sz, i |
=f -ADf L AL ‘ AL, Ad
fLN =1, A*3 | . to, Alyiax e MIN, (1° 22 S Ai, A8,
o .I;L’ .:";L’ 'E‘L)
1052 . -l;f% COSA8 k<Y + SINAH_QL
-1 : A
|fLN!\ Ne > 9f~r = COS [ﬁf '5’:”0)/ - T %
C\ ' < . - !,1: TOI_I
Yes | ' SIGN [@TO X_gf) »_I‘I'T]
1054 .
- Call EPHEM (R, ., V.., t,
f = | 2T -|f % e (f ) TO TO (o]
LN [ |1md] SIGN {1 )
,u.l, Gfr, DUM, 0,001, 0, "%Ti’
l -Y-Tf’ AT, ma, DUM)
Write Cut 2, € fLN, tt =t +AT
——— f [}
Af ,t, R ,Ai, n_, n
37 3 P . N° =2 R¢ —‘BTf
l ' Mg =Yg
11 VPG =t! -
Ca & (at, et, fLN, Af3, tf tf tl
t3: Rpa Ai, _I.IN: _-".1,2 )

2011

Figure I-2 Main Program
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2011 -

Intercept No

Mission
Yes

2012

Vf—”-O

L 2019

D

Call UP2 ($100)

4

2028

AI-50

M, t

Write Cut

1’,tf= “A*L: AV

3
R f

¢

Is Av
é emaining
Negative

~

Yes

Remaining Less
Than Previous

Exceed
Allowatble

t =
1 t
- " Launch - AL = AL MIN
Angle Exceed
Maximum I1.Cl = -1

Allowatle

Yes

Write Cut

No Solution

|

Figure I-2 Main Program
(Sheet 8 of 12)




! 4012 AI-51 ‘
L .
R
o]

——— e Sm— n
—
by

Eurveillanc:::l

t.=t. + AT

4006

AV = AV
CSA, SIN AL] o
= T
AVM A’\r
N\ 4008 f R, =z
|Targ, Lat| N, =Y
> Max Inclinatio
Angle % 4018
t3 =t, + 600
! 4020
| Call EPHEM (R,, Y s ¢,
( Calculate Parking Crbit w, A8, N 0.001, 1, =, v,
. M=4 AT, ma, DUM)
AL— L R. =_r
Ay rfIN' ,,= AL I
= Vo=
AL max - AT RANR'A
1 T hMax | g 4024
. = 0 =
.QT - t, =t t2400
Call Launch (1, AL, L0, . v 4026
i t
Qs s bt Aps Ars Ts T, Q_ =QLO+AQ +W_ (t, -t)
i . T T E 4 o
1AL, Ai, AQ,_EL,_XL, 'llL)
= Q, S \J
Ry =R [cosxT CosQ,, COsX SINQ,
.stxT]
Cali RVVR (B,, L, R, 0.0, 1 +E-6,
s NORB,AG, R, AT, V_, 2, SI,
TUV, DUM, M180, NSIG, a )
C | ’ tf:-- ts + AT
€, =t. -t
Figure I-2 Main Program : f £ 4

(Sheet 9 of 12)




Time

Error <
15 Sec.

& 4048
Av, = |¥g =X,

Write Cut
No Solution

:

Write Out

fp tp SV

tl, AL, n

tpr Bpr Xpe BV

R., V., AV
-5

t3’ :.33

ty Ry

Av_, AV , AV
o 3

o

3

Figure I-2 Main Program
(Sheet 10 of 12)
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First Pass
Overflight

M

5
t‘:to

QL=QL0+O)E (tl‘“ t())

(cos A cos ., cos A sin Q, sin A )
t,= to

5016
- Q: RN | Kxn . ]
§i; = Sign (L - n) *cos [s i I_I

Figure I-2 Main Program
(Sheet 11 of 12)
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n
(3]
o
S

t=t
Call Launch (1,0, AL, ‘Q'LO’ ‘Q,-n
10 0 Alyiase Alyme T T Al
Al AQ rL, VL’ n )
r pd
a O
rp = T
= (-CO ~STI 2
ooy = Sﬂ,, STi QT, 0) (cosS-SIN }\T)
. . . e cosN\=
9p COST (zp = mpy)* SIGN E—%N * Ip) -9] COSZ}\T
‘Call UPi ($110) ' : AQ= cos™ [cosAD, ]
¢ 5038
- (A e
_Iiz __A T l Atf = (*\Nz*) *SIGN (t3 - tf)
v o=y te =t +Atf
£, =t AT
Av =Av
A‘vn:AvR

= Write
Jt =t + 600

No First Pass

@ Sclution

8= cos™’ <R'z______rtg_> * c1aN [(52 xx) “] I @

Call EPHEM (R, ,, ¢ p,@* DUMI1, 0,001,

0, 1, v, OT, ma, DUM)l 5060

| ty =t +AT Write Out
R, =% B ts b Av -
RS | | e AL

»%3 =Q+BQ W, -t ) - tye Bps Xpo AV,

Eps T roc‘ >\ cos QT3, coé)\ SINQT3, SINA.. tys R, Xss S

85 cos-! E—&% —"T3')/|R3'] - ) é o

Figure I-2 Main Program
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Input

(LCL, A, Q‘Lo’ QT, i

1\‘1, T 3 AL’ Al’ AQS EL’ YL’ _I_]‘_L)

) ’
t tO AL MAX’ AL MIN’

A

Data
W_. = 7.292115 x 10-5

E
1 No
<LCL

S
20
Yes

m
4

Zos i, cosA_ +sini_, sin\ sing
A =tan_1< T L T L L\

= 3 - o) - A
¢, = LWL tb,Q

sin i__ cocs
T € Py,

Ap, = A'L max >

Figure I-3 Launch Subroutine
(Sheet 1 of 3)

AI-55




JANCE

/

2

- lein ; . . _ . cin /
Q (sin ip co >\L s*nqﬁ:L co:)s i sin L)
[cos i cos AL gos >\L - sin i (sin AL cos ('bL
- cos AL sin | sin ¢-L)]

AQ: tan_ Ia

= + W, -
QL QLO WE (t - to) |
r, = (cos )\L cos {QL,, C,OS)\L sinQL, s1n)\L)

~s‘in AL stL - cos AL sin )\L cos QL’

sin A_ cos QL - cos A

L 51n>\L sin QL’

L

cos AL cos )\L

n.= cosAQ_I;L + s;nAG_};L

é - @L Xii,) /|—r—L x|

= (sini_ sin{) -sini_ cos§) ces i
2 ( bp SiR St A T’ T)

i = -1 . * ‘ G .
Al.‘~ cos @L B‘T) SI*”N'[.(BL x_x_lT)" 'EN]

Return

Figure I-3 Launch Subroutine
(Sheet 2 of 3)
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AI-57

l

| :.siﬁ_l Gan)xL / tan iT)
. =T
Tl S G/V_F::)[W/Z Jr‘Q'T_ Q'LO] ALl = sin-l \cos iT//ccs >\L>
l ! A12 7T AL
l; Ai =0 |
2T | Ai, =0 |
AL =T N wé_}_)@ ;Sl . Q )
N 4 17 W UL Tt Lo/
L2 -
Dip= Xy -ip Y +<WIIE"> @)LZ+ 0:-8.0)
Aiz =Ail ‘

= 86,400 + T

Return

Figure I-3 Launch Subroutine
(Sheet 3 of 3)
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v

g

f

I

1 rno -1
[ I'LZ+(1_ - /'LZ )cos@—-———sin@]
C o C To
[cos@-m sin@]
r o
o v
= -vz— - sin @
8o
_k N - sin8]
e [mo (1 -cosf) .,1n9-|
o
I
- ————(1-cosf
1 Cvg {1-cos )‘
o
. .
f_fo "8l
.‘ L] ..
rrey,
( z -1)sin 8 _
T m r
o o -
1 -cosé@ T

Input: ro,i‘o,TO,p.,O,t,
DLE, NOP (0<8<2)
“ Output: ry r, tof, m_;a
Initialize
Kount =0
¥
‘ 1/2
r =lr er
e =r /r
_ro _o o
VvV =2 *1r
~ro _ro _o
C=r xr
= o e
2
C = [ Cse C ]1/
Veo - C/ro

2 2
: 2 Vro + VG o
a= -
r m
: A =1-1 ¢a
(o]
Select Option A

Option

Call SIMTIM

(8, m T C, m_, tof,A/_L)

'

to

AE - Ao sinAE + B0 (1 - eosAE)

£
ys

—_—

'n = Largest Integer Less Than 8/2m
AE =AE +27n I
a=1/a

Return
rV
BO = I‘O__
Vi a

-r r

sinAE = — 2 ¢
JEa |

r

cosAE = :’ (f=1) +1

-1 '
AE =tan ~ (sinAE/ cosAE)

- Figure I-4 EPHEM Subroutine
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AI-59
; Option B Path ' |

B =r V_ /Vu -
o ro

X ey =kt - TO)

/ 3
- P = ZW/inL' a

Integ = largest integer less than (t - TO)/P

X Vit - TO - Integ-P)

 Left -
A
X = kLeft e
v
) -
] Sty) = \/}7 - 51113dy
., z
Cly) = ‘l-cos«/-‘}
Y
vS8
Constrain /-y <88
4 sinh ‘\,/;_Y- - -y
_ + S(y) = 3
S{y} = 11} A/
A -y
1 y YZ ‘1’3 ‘ Y4 /
Cyl==v -3 "% -8 T 1ot Cly) = =2sh¥y -1
a t -y
— ' f o N ,

Figure I-4 EPHEM Subroutin
(Sheet 2 of 3)




AI-60

v 13
Value = X B x°Cly)-A X°S(y)-r X |
= - v) - v) -1 X. 5
. Left o e} o -
e co . Xcly)
. . 3 2 . ¥
Deriv = -do(X -a X S(y) -AOX C(y)-r o
‘ o 3
| X . -X’S(y)
Change = Value/Deriv g = = Left PV
m
X =X = Change
new
TEixtex,
/ Is } r = [I‘ - ]1_/2
: . IChangel Yes- o - =
. hang ‘ 3
< DLE - . f= :/;; (aX7S{y) - X)
"o
No 5
. X
=] « ——— C )
X=X g = &y
new M . e e
r=fr +gr
Kount = Kount +1 - 2 -0
V £rer/r
Ya —e —
.V,”}.rvz]l)/z
fa L= = ra
m =V /V
a - ra Ba
ces @= ro r/(r r)
Write: "Ephemeris _Z’ roxr
‘NR Iterations Did .
Not Converge" 7 =[z. Z]I/Z
sinf=Z+* C/Ct r
| O
g =tan (sinf, cosf)

" Figure I-4 EPHEM Subroutix
. (Sheet 3 of 3)




AI-61

KK R a,N180

*Mpys g

Output : 98 »tof, Vr’ NSIG, a

Trat

Tput s L1 T gn Toa ™y Kok s NN

:

Initialize: XKK =»0, YKK =0
1/2
I = I «T
o [...,o _..o]
- 1/2
Ta [_I_;a’_’a _-!

1:_%9=ra-rarer
1/2
Tag frae. rae]
L — —
T
R __af
eg = ra SGN{(erxr )
6 - -
.(ixfi‘)

N180>0

e

Yes Is

N N1e0<0
Vg ol role
| _ 11/2
v = [V Ve |
o = T
g 18/V9
iGRZCG cosa-!—(i}’xr:e) sin o
N1§0 =1
A
&
7
R
Smea”(_l,a"ig )/ra
V =e er
ro _r _o .
. . 1/2
Vv ={r *r - 2] /
8o o o ro
mPo=Vro/V90

- Figure I-5 RVVR Subroutine
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ya

sin 8
C9~ l-¢cosd
Z,u—
VsV 15—
a
r
v =V, -2

(mPo - InTaL ) CB

2
- ZDCB

4+C9

| '1)2

VR—._I__ ,u,ra(l-cosea)
8 r T,
— -cosf -m sinB
r a a a
o i
T .
—_— - 1y g3
X T . (r )b;n@a
Vr :...2*\,'9 o -
B Ta I-cos 8 a
a J
R R R
Vo= + e
—T V9 26 Vr —T

6 =tan-1 (sin @ /cos 6 )0< 68 <27
a a a a ,

2 2
R . R
Vg ) v, )

IC B

r m
(o}

(Ve ) Vr a/—L:roa E=l‘ox Vr
cc-)se in @ 1
a? ST, c:[c.c] /2

m ,r 4NN
a’ a' E ]

:

tof, ¢, a)

Call SIMTIM

(80’ mda ros C,

m_, tof,p )

-~ Figure I-5 RVVR Subrout

(Sheet 2 of 3)
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Bound = "

I'.a.
z -Cco¢g
r 93-
o
sin 8
a

Test orbit to determine if

hyperbolic, parabolic, rectilinear,

reentry, or elliptic,

This section of flow
changes the value cf

m _, if necessary to
a

make it comnpatible
with the transier,

Yes

Is . I
X .
MASAV XI\/[ASAV
< Bound 2Pound
No No
X MASAV S MASAV
= Round +1 = Bound -1
w v T L 4 R /
r A
- cos @
a N
= — +X
m, " sinf_ MASAV

X

MASAYV - ™,

:

Write "Slope Chahge' to____

141

TR SR Figure I-5 RVVR Subroutine
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R R
Input: V@ s Vr s Mo ro, cos aa,
sin Ba, m_, T, NN

Output: t , c, a
‘ of

©*% Vg

' 2 271
2 (VB _R) +(‘r R) -1
[.L

a = -
T
(o]

T : '
. _ C H . ; _
svaE = T_\/;- (sln 93 + ma’(l ces 9&»
r T | '

cosAE =1 - ol °©2 (1-cos8@ )
CZ a a

S SO S ——

-1
AE = tan (sinAE/cosAE)

!

of

-—: o ‘V'u/"/a?’v

i

Return

Figure I-6 Time Subroutine
(For Elliptic Transfers)
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Input: 6, moaT C,ma, m

Cutput: tof

4
Initialize
NS =5"
tof =0

~

AI-65

\4
FOR n = 0, NS
cos nAf=cos (n-1)ABcosA@-sin{n-1})A8 sin A8
sin nAf = sin(n-1)A8 cos A8 +cos (n-1})Afsin A
= 1 H | mo 5-1
r_ = [ — + ( - } cos nA6 - sin nAg |
n 2 T 2 T
- C o C B o
ZNS 2NS -1
( El = -'%——9_- [14 2 rn2 +16 ) T 2. 7 (roz + rZI?IS)
) n=0,2,4 n=1,3,5 © .
f = EI/C + 2A6(m réz-m r )]
ol 7 % _ o o T a¥2Ns
Yes
‘tof = tof
3 ) N Is
NS = 2NS KOWNT<3
KOWNT =
KOWNT +1

Write ""Simpson's
Time Calculation
off by "

‘Figure I-7 SIMTIM Subroutine




TSTOP

Inputs: I ,r ’rT‘_.T -3

m, s k,3s NOIT, TSTART, AVM,/,L

13

1 AI-66

Read in
TA, TLIM

s

Initialize: N180=0, IPL=1
TMINSA =0, DLE=10-3, XK=10-5,
NN=0, TO=0, t=0,p=0

Call EPHEM to compute tarcmt
position and velocity r

and slope m

taking T, sec,

¢

—~TA = A’

80 after transfer

A

Compute interceptor and target
periods, Initialize AT by
setting it equal to 1/4 the

smaller of the two periods

|

Compute Aim Poinﬁ,
RV I ’irTAl

—

TA

§

© Licn

Call EPHEM subroutine Option B
to compute the interceptor enhemeris

ToeT and target ephemeris r

- e

T’r111
for t sec after epoch (t=0)

Call RVVR with slope Wy,

to compute time ef flight TAO

of interceptor from r to r

—-— O —_—

mAl =mAO+O.Ol

KOUNT =0

Is Yes

f—O

k<0~

No

Compute interceptor position

projection on target plane, P

Call RVVR with slope ™A

to compute time-of flight TAI

cf interceptor from r tor
‘ —

—

) 4

T ~

Compute angle 9 between

r. and I (0<8<2m)

—inp

Use regula  falsi iteraticns to
find zero of VALUE=T -T, .

A AL
with m,q 2s independent |
variable. Cempute new value of
Mmoo called m,s

. T -
4“IL.

i KOUNT =KOUNT +1

R
L&
£
.

Figure I-8 RENDI Subroutine
(Sheet 1 of 4)




°)

DLIM=0,5-8

Write:
"Iterations did
not Converge''

ULIM=27-0,5 -8

v

6 =DLIM
o :

91 = ULIM

No

Return

Is
No IVALUE]

NIM

v 10

mAO’"I'ﬂAI Xres
AL T A2 @
Tao™Tas

Call EPHEM Option B to ccm-
pute the velocity r;:) of inter-

ceptor at arrival point r

— a

v

DLIM<ULIM

Compute AV required at first
and last burns and also total AV

Call EPHEM Cption A to compute
target position and velocity]

_ETA,};TAslope ™Mo as and time

of flight T

T

1 .
TaAg TeSY ting from

angular transfer of DLIM from r

v

Call BEST to enter iriforma"eivon.

‘required for finding minimum

AV and compute new AT

: I

e

—

TaTTTa P

—

1A

' @

AI-67

Figﬁre I-8 RENDI Subroutine
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Call RVVR to compute intercepior
time of flight TAO from T to

. . —
the aim point r
" Ta

Call RVVR to comipute interceptor
time of flight TAl and required

velocity V. from r  to aim
—_— 1 — O

oint r
p —

4
COUNT =0

VALG=T -
TAO TAO

v

\7 JE = -
VALUE = T, =T,

<
o
c
gy
n

3

T

(=
g
|

VALC VADOWN = VALD VAUP=VALUE

= DLIM TEDOWN= ULIM

VADOWN=VALUE

THUP=THI HDOWN =TH1

I ]
¢ @ ?99

KOUNT = KOUNT - 1

Return

Write '"Iterations
did not converge"

Call EPHEM Option A to com-
pute target position and velocity'

slope Mmoo, and time

resulting from

ZTa? i'ﬁ.[‘A
of flight T, , |

angular transfer of 91 from r

: =

=r. P TS /T, ]
FaTr P rpaiTral

i - —

£ - Ya TA
!

|

’ Test to see if
23 zero occurs

(VADOWN - VAUP)
(THDOWN - THUDP)

_ _VALUE
1 = DERIV _

DERIV =

82-‘—'6

:MFigure I-8 RENDI Subroutine
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AI-69

Has

.. No
Minimum No

5 Been Found
\/
Yes Is
t +TSTART *Toa
> TSTOP
6,=8
1 2
Return i
¥ o | .
Outpur ‘ @
Desired :
Data '

=) >
Return )
4.

Figure I-8 RENDI Subroutine

o (Shect 4 of 4)
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Input: DV, T, TH, IPL
DT, TMINSA, NOPT

Y

Data: KOUNT =0

I

KOUNT = KOUNT + 1
ST = DT/IO

Is
KOUNT

TMINSA =T+DT
T=T+2.,3DT
IPL =

Yy

‘ Return ’
3

A

™™ (I'PL\) =T T = T+DT _TM(IPL-1)+T
DVEL(IPL) = DV 2
T =T+8T -
9 DVEL(I) o ‘ l 8
-DVEL(2) §T=-8T
IPL=IPL+1 % T=T+ 8T T=TM(1)+8T

Tael : ' . | Figure I-9 BEST Subroutine
- o (Sheet 'l of 3)
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-

N

Ng_( I DVEL(4)

-DVEL(3) I
>3
. Yes
T=T+4+DT

NOPT = 1
IPL =1 \
TMINSA = TM(3)

N\ Yes DVEL(l)=DVEIL(4)
. ~P

223 TM(1) = TM(4)

xr

3

 DVSAV = DVEIL(I)
DVEL(I) =DVEL(I +1)
DVEL(I+1)=DVSAV

TMSAV = TMI)
TM(I}= TM(I+1}
TM(I+1)= TMSAV

-~ Figure I-9 BEST Subroutine
(Sheet 2 of 3)
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( DVEL(I})=DVEL(I +1)
TM(I) = TM(I+1)

o

\

_ TM(T) - T™M(1)

I 18T

v

DENOM =2 {DVEL(I) (t,-74) + DVEL(2] {5 -7) + DVEL(3) (r, - 72)}.

Is

No
- DENCM

(1'1 - 'rz) (rz - 73) (13 - Tl)

>0 :
Yes
- 2 2 2 z 2
DVEL(1) (7, - 7,7 ) +DVEL(2) {r " - rl") + DVEL(3) (7, -rzz)
. T=
: ( | ‘ DENOM
L | 21
T = TM(1) +7-1ST! T=TM(3)+!8 TISGN[TM(B){IM(Z'}]

IPL=4

\ 4
| T-TM(3)]

Yes
: Return
o | .

Noo | T=TM(3) + DT+ SGN[T-TM(3)]

Figure I-9 BEST Subroutine
. S h (Sheet 3 of 3)
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Appendix II

TOP - TRAJECTORY OPTIMIZER PROGRAM

2.1 INTRODUCTION

The Trajectory Optimizer Program (TOP) is a digital computer
program written in FORTRAN IV to run on IBM 7090/7094 computers. The

‘program is used in mission analysis and planning to generate local minimum

time or minimum fuel trajectories from launch through various orbital ma-
neuvers.

- The program employs 2 direct search optimization algorithm
which systematically varies the paramater of an initial (input) trajectory in
order to minimize a pay-off function - the time or AV required to complete the
mission. Inequality constraints on trajectory parameters are enforced in the
search routine while functional constraints are handled by the addition of
penaltfr terms in the calcula*ion of the pay-off function.

This program was written to demonstrate feasibility of the Tra-
jectory Optimization Mode of the On-Board Mission Planning Function (see

Section V of the main report).

2.2 PURPOSE AND USE

TOP represents a flexible and efficient technique for generating
local optimum time or fuel mission trajectories. The trajectories to be
optimized can start at launch or from orbit and can include any number of
orbital burns for orbit transfer with or without rendezvous (the present version
of TOP is limited to four orbital burns). All orbital burns are treated as
impulses while the ascent-to-orbit employs an explicit guidance algorithm
which provides nearly optimal performance.

This program is used to optimize the trajectories generated by
the Trajectory Generator Program (Appendix I), but it can be used with any
initial trajectory if the proper trajectory parametcrs aresspecified {see Para-

graph 2,5 for iuput requirements). S
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2.3 PROGRAM FEATURES

The presént version of TOP does not represent a production level
program., ft does represent a pdssible technique for on-board generation of
locally optimal mission trajectories. The program is the result of different
efforts of Task II during this phase. The present program configuration is
not designed for high efficiency, and certain approximation used in it must
be studied in more detail before a final version is constructed.,

Some of the features of the present version are:

e Ascent to orbit or intercept (e.g., direct-ascent

- rendezvous capability),

) Spherical gravity model.

° Kepler arcs for coast phases.

»  Total AV or total mission time can be minimized,

° Maximum AV constraints enforced by a penalty term in

the pay-off function (OBJECT) when minimizing total
time.
° Components of the argument vector (I_J) can be con-

strained in the search routine (TEXT),

° Up to four orbital burns can be considered.
° Transfers can be with or without rendezvous.
] Near-optimal vacuum ascent trajectories generated by

an explicit guidance algorithm.
° Atmospheric ascent trajectories calculated with

analytical equations and veliicle-deprndent empirical

parameters.
e  All orbital burns treated as impulses.
° Initial parking orbit, after the ascent phase, is circular.
° Impulse splitting cases can be handled. |
® 180 degree transfers are allowed.
L Optimum transfer plane determined for 180 degree
transfers. |
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Some of the approximations implicit in these features are discussed in Paragraph

2.4.3 of this Appendix.

2.4 PROGRAM OPERATION

The over-all operation of TOP is illustrated in Figure II-1. The
program consists of a Main Program (MAIN) and two major Subroutines,
TEXT and OBJECT. The Main Program reads in all data, periorms neces-
sary conversions, sets up program paths, calls OBJECT and TEXT, and
formats all printout. TEXT is the optimization subroutine which itself con-
sists of a2 number of subroutines that can be used in various combinations.
OBJECT is the subroutine which calculates the vallue of the pay-cff function
{P) corresponding to the present value of the trajectory parameters (U} as
determined in TEXT.

Referring to Figure II-1, MAIN reads in all data including the
initial trajectory, which is spccified by a set of parameters (U (I), I=1,...15).
The initial trajectory specification, _L_TO, is used with OBJECT to provide the
initial value of the pay-off function, Po. TEXT is then called to begin the
search procedure, and control remains in TEXT until a solution has been
found. At this time, MAIN formats and prints the output data and either
proceeds to the next case or stops. In TEXT, the OBJECT subroutine is

called to provide a new value of P whenever U has been changed.

2.4.1 MAIN
A math flow of the executive program MAIN is presented in

Figure 1II-2. The symbols employed may be found in Table II-1. In

~ addition to reading input, printing output, and calling OBJECT and TEXT,

this program:
° Sets constraints on appropriate terms of the argument
vector (U) with the read-in values of U (I)and U . (I).
— max min
® Identifies the components of U to be searched over
(BVA(I) = 1 if U (I) is to be varied, BVA (J) = 0 if U (J)
is to be held fixed).
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° If an impulse-splitting maneuver is being considered,

MAIN reverses the order of the orbital burns before

calling TEXT and changes them back after returning

from TEXT,
The last item relates tc the problem of determining the velocity required to
transfer between two points in space in a finite time when the points are
coincident. This is the case for the so-called impulse splitting maneuver
which is employed in rendezvous missions to introduce a phasing orbit,
When OBJECT is first entered to determine the initial value of the pay-off
function a check is made to see if the last two burné are within p (RHO)-feet
(2n input) of each other. If they are, an indicator is set which, on the return
to MAIN,. causes the order of the orbital bunns to be reversed (i.e., the
program starts at the target orbit and works back to the parkihg orbit). This
is shown on Figure II-2 just before TEXT is called. The optimized orbital
burns are then changed back to the proper order before final printout. By
reversing the order, the first two orbital burns are now coincident in space
but, because of the technkique employed in OBJECT to propagate trajectories,

this causes no problems.

2.4.2 TEXT

TEXT is the optimization algorithm subroutine. It consists of
several options which can be used in various combinations. This sub‘routine
is completely described in Appendix IVwhich includes Math flows, Input/
Output, and examples. In Appendix IVthis algorithm is entitled DSOP
(Direct Search Optimization Program) and its various options are described.
Only the Pattern Move Search (PMS) and UNIVAR options have been em-
ployed in TOP because of the ability of this combination to handle argument
constraints. Any search type algorithm could be employed with TOP but some

reprogramming would be required to interface it with MAIN and OBJECT.
2.4.3 OBJECT
The payoff function associatediwith a/particular trajectory is

computed in the OBJECT subroutine. The input to this routine is the -
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argument vector U which describes the trajectory and the output is the corre-
sponding value of the pay-off function P. The argument vector is supplied by
TEXT while OBJECT calculates the time or AV (the presently available pay-

off options) required on that trajectory.

OBJECT makes use of five subroutines: LAUNCH, UPl, UP2,
EPHEM, and RVVR. The launch conditions are calculated in LAUNCH as a
function of the launch site and launch time. UP1 and UP2, employing the
explicit guidance algorithm described in Par. 6.4 of the main report,
génera‘te near optimal ascent trajectories to orbit injection or intercept.
The determination of position, velocity and time on coast arcs performed in
EPHEM. The RVVR routine is used to caicul_ate the velocity required for
the orbital burns., These subroutines are also used in the Trajectory
Generator Program (TGP) and a complete description of them and TGP may
be found in Appendix I. ; | ,

Figure II-3is a math flow of CBJECT and the symbols are
defined in Table II-1,

The OBJECT subroutine employs certain approximations in order
to provide an efficient techrique for generating ascent and orbital segments
(this routine is called hundreds of times in the process of optimizing a
mission trajectory). These major approximations are related to three areas
of trajectory generation: Aséent, Coast, and Orbital Burns.

° Ascent - the ascent segments are generated with UP1 or

UP2 depending upon whether orbit injection or intercept is
required. Both of these routines (which are really two
entry points to one program) use the explicit guidance
equations, developed during this study, for the vacuum
phase and analytical equations for the atmospheric phase.
The form of the explicit equations are such that they
introduce almost no performance degradation when com-
pared toc an optimal sclution. The analytical equations,

i - which are necessary to initialize the explicit guidancé

equations, are merely spherical trigonometry equations
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relating conditions at first (zero) stage burnout to the

( launch conditions. The equations require three vehicle-

H . dependent parameters which are used for all launch con-
ditions. This analytical technique of handling the atmos-
pheric phase of ascent is very efficient computationally but
it does introduce prediction errors of the order of 1 - 3
seconds in the injection time. This aspect of the ascent
phase can and should be irﬁproved with additional study of
efficient techniques for generating conditions at the ''top

- of the atmsophere' as a function of launch conditions and
vehicle éonfiguraﬁon.

° Coast - All coast arcs are computed with an ephemeris
routine (EPHEM) which employs Keplef-type equations,
that is, assumes a spherical earth. In the case of long
mission times, this will result in sizable errors if un-

\ corrected. The present program could be upgraded by

( considering the effects of oblateness on coast trajectories.

Closed-form expressions for these effects are available.

° Orbital Burns - All orbital burns after ascent are treated
as impulses. This approximation is justified because <of
the ‘a.lmost negligible performance penalty incurred. The
results of Reference (1), for example, indicate this
penalty is less than 1% for an extreme case (AV = 10,000
fps.) and provide a prescription for generating a nearly
optimal finite-thrust trajectory for data derived from the
impulsive trajectory.

One other feature of OBJECT should be mentioned. This involves
the program's ability to generate 180-degree transfers when the transfer plane
is undefined. This would be the case, for example, for a simple Hohnann
transfer between non-coplanar circular orbits., Specifying the times

C e (positions) of the two burns is not sufficient because the. transfer plane is.

b,

 still arbitrary (i.e., the plane change can all be made at the first burn, or

@
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all at the second burn, or split between the two burns in an infinite number of
ways). The logical soiution, of course, is to-divide the plane-change between
the two burns so as to minimize the total AV required for the two burns. This
is exactly what is done in OBJECT when the trajectory specification, U vector,
calls for two burns that are within XKl-degrees (a pfogram constant, presently
set at approximately 0. 080) of being 180 degrees apart. When this situation
arises, a simple one-dimensional search is performed over the angle de-
scribing the transfer plane, to find the value which minimizes the AV required
for these two burns. This capability is required in order to accept such trans-
fers as part of an initial trajectory specification. The VPG Bielliptic option,

for example, always includes such a transfer.

2.5 PROBLEM SPECIFICATION

The coordinate system used in defining input and output mission
data, and in which the problem is solved, is the XYZ ECI (Earth Centered
Inertial) system illustrated in Figure II-4. The XY plane is the equatorial
plane and the Z axis is through the north pole.

If the initial trajectory starts at launch (LCL = +1) the launch site
is specified by four parameters which are varied during the optimization,

tL = Time of launch = U(12)

AL = Launch Azimuth = U(13)

R = Circular parking orbit radius = U(14)

ai =.Dog-leg angle = U(15) | |
The present program only handles circular parking orbits. The dog-leg
angle a L denotes a rotation about the launch radius which defines the de-
sired ascent plane after the atmospheric phase. AL defines the plane for the

atmospheric phase.

The target orbit is specified by the target's ephemeris at some

epoch:
B‘T = Target's position at tp
- 1 < 3 -
Y_To,— Target's velocity at tTO
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tp = Target's epoch
o

If the initial trajectory starts from a parking orbit, LCL = -1, this orbit is
defined by appropriate ephemerié data:

_150 = Spacecraft position at 1:0

\i
—0

i}

Spacecraft velocity at to
to = Spacecraft's epoch

- The specification of the orbital burns requires 3 + 4 (N-2) para-
meters, where N is number of burns (N 22). If rendezvous is required, one
less parameter is involved because of the phasing constraint (i.e., the space-
craft and target must be coincident at the time of the iast burn). For all
values of N, the first and last burns are defined by:

tl = Time of first érbital burn = U(1)
t_= Time of last orbital burn = U(2)

f

maf = Slope or arrival at last burn = U(3)

The position of the first burn is determined by t_ and the initial parking orbit

1
(input or result of the ascent phase). The position of the last burn is de-

termined by t_, and the target's ephemeris. For a two burn orbit transfer,

this and the sjlfope (tangent of the flight path angle) at arrival at the last burn
are sufficient to determine the two impulsive burns required. In the case of
rendezvous, ma. is not used; the phasing constraint is employed instead.

When there are more than two orbital burns, four more para-
meters are required for each additional burn. The parameters used are:

AVi = Velocity impulse at ith burn = U(4i), U(4i+1), U(4i+2)

AOi = Range angle between ith and (i+1)St burns = U(4i43)
where i =1, 2, ... (N-2). This combination allows for efficient generation of
the intermediate trajectories, because only the ephemeris routine (EPHEM)
is required. For example, t

and the spacecraft's ephemeris with EPHEM
av.).
an —Yl)

1

yield the position and velocity just before the first impulse (_I_{l

©.. Adding AYI to Y—l gives the velocity after the impulse which, with Ry -and

-1
AOI , is sufficient for EPHEM to generate the position and velocity just: . -
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before the second burn (BZ and Y_Z). Adding AKZ to V_, proceeding as before

2
enables the next arc to be computed, and so on.

The initial trajectory (input) is thus specified by assigning the
proper values to the initial value cf the argument vector U(i), i =1, 2, <+« 15,

In addition, other input data is required to completely specify the problem.

The total input required is indicated in Table II-1.

o
o

TEST CASES

To demonstrate the capability and performance of TOP, four test
cases are included. Table II-2 contains a description of each case, and
Table II-3 illustrates the results obtained from TOP,

Case 1 - This is a two burn orbit transfer without rendezvous
beiween two similar orbits inclined at 5 degrees. The initial (input) tra-
jectory corresponds to a perigee-to-perigee transfer arriving at the final
orbit with zero flight path angle. This maneuver requires 7619 ft/sec of AV.
The opﬁmized trajectory requires 5663 ft/sec, a saving of 1856 ft/sec. This
case required 155 evaluations of the pay-off function (i.e., passes through
OBJECT) and 2.78 seconds of 7094 time. The running time figure contains
1/0 operations for writing input data, intermediate results, and final results.
This case corresponds to.Optimum 4, Table 1, page 1868 of Reference (2)
which lists a value of 5800 for AV. This difference in results is due to the
fact that the values for AV in Reference (2) are obtained by reading
contour plots which have a contour interval of 500 ft/sec. |

Case 2 - The problem here is to reﬁdezvous with a target in a
highly elliptical orbit with a large semi-major axis. The initial orbit is a
100 n. m. circular parking orbit inclined at 30 degrees to the target orbit.
The starting solution is a three-burn bielliptic transfer which was generated
with the Variable Point Guidance (VPG) routine. This routine is used in the
Trajectory Generator Program and is described in Appendix 1, The VPG
planned trajecf_ory requires 13,528 ft/sec of AV as compared to the optifh.ized
results of 12,715 ft/sec. The véry large number of function evaluations.

(1090) are a result of slow convergence in the algorithm and, especially, - -
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because during rﬁany of the evaluations 180 degree transfers are invoilved and
the optimum transfer plane must be determined (see Par.2.4.3).

Case 3 - This is exactly the same as Case 2 except that the
starting solution is a three-burn, full orbit phasing result from the VPG
routine. In this case the input contains an impulse splitting maneuver be-
cause the second and thrid burns occur at the San‘le point in spaée. The
technique described in 2.4.1 was employed to handle tﬁis case. The opti-
mized trajectory requires 11,496 ft/sec as compared to 11, 764 for fhe initial
frajectory. This case, in rarticular, demonstrates the near-optimal per-
formance of VPG in certain applications '

Case 4 - The target orbit in this case is the same as Cases 2 and
3 but now the missions start at launch. The input trajectory was generated
with the Trajectory Generator Program (Appendix I) and involves a launch
att = 0, at an azimuth of 90 degrees into a 100 n. m. circular pa.rking orbit
with no dog-legging (U(15)=C). This ascent trajectory results in the minimum

out-of-plane angle with the target orbit that can be obtained from the given

launch site (latitude of 30 degrees). The input specification then involves a

two-burn rendezvous maneuver with the target which results in a total AV

of 31,673 ft/sec and requires 15, 706 seconds of time. The optimized tra-
jectory required 255 evaluations of the pay-off function (total AV) and re-
sulted in a mission requiring 14, 769 seconds and 31,417 ft/sec of AV. This.
is a 256 ft/sec savings in AV and 937 seconds in time. The optimized mission
involves a launch at t = 0 (launch time was .constrained to be positive) at an
azimuth of 92.7 degrees with a 1.287 degree dog-leg after the atmospheric
phase. The parking orbit altitude was reduced to its constrained minimum
value of approximately 90 n.m. The two orbital burns were alteréd in time

of occurrence, and thus in position because the parki'ng orbit is different.




TABLE II-1

TRAJECTORY OPTIMIZATION PROGRAM

AII-11

SYMBOLS
FORTRAN
Math * Program
Symbol Description Symbol
I. Inputs te Main Program ILCL
ILCL Equals +1 for Ascent, Equals -1 for maneuvers
that start from Orbit
Note: The following inputs are required only for
LCL = 41, 1 e. for ascent.
)\L Launch site latitude (degrees) LAML
‘QLO ~Launch site longitude relative to x-axis at tLO OLO
(degrees)
.tLO Reference time TLO
'Q'T Longitude of ascending node of target orbit (degrees) oT
afd T Longitude of target overflight point relative to DELOT
launch site (degrees)
)‘:'I' Latitude of target overflight point (deg.) LAMT
iT Inclination of target orbit plane to x - y plane (i> 0) EYET
R, Radius of target overflight point (ft. ) RTP
AV Maximum AV available (ft/sec) DVM
max :
tL Time of launch U(l2)
AL Launch azimuth (degrees) U(13)

Sheet 1 of 6
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Table II-1 Trajectory Optimization Program Symbols (Continued)

FORTRAN

Math * . ' ' Program

Symbol Description Symbol

RP Parking orbit radius {ft.) U(14)

QL Dog-leg angle (degrees) U(15)

MT Equals 1 for Intercept MT

2 for Direct Ascent Rendezvous
3 for Orbital Rendezvous -
4 for Reconnaissance with parkiﬁg orbit
5 for Reconnaissance with first pass
overflight
6 for Orbit injection using a parking orbit
thin , Lower bound on tL o ‘ AC(1)
Limin Lower bound on AL (deg.) AC(2)
Limax | Upper bound on AL (deg.) AC(3)
RPmin Lower bound on RP (ft.) | AC(4)
Prax Upper bound on RP (ft.) . AC(5)
Switch to control the use of above bounds. NAC(1-5)
Note: The remaining inputs pertain to orbit maneuvers.

N BURNS Number of orbital burns (0, 1, 2, 3, or 4} NBURNS
Desired orbital maneuver. Equals +1 for MANEUV
rendezvous and -1 for orbit transfer.

Desired minimum Equals +1 for minimum fuel MINREQ
and -1 for minimum time.

r, Spacecraft position at timc to e RO

Sheet 2 of 6




A II-13

Table II-1 Trajectory Optimization Program Symbols (Continued)

) FORTRAN
Math * Program
Symbol Description Symbol
_Yo Spacecraft velocity at time VO
to Reference time formf0 andlo TO
_f_To Target position at time tTo RTO
V7o Target velocity at time tTo VTO
tTo Reference time for-_fT0 and_zTo TTO
1:1 Time of first orbital burn Ull1)
t:f Time of last orbital burn U(2)
m_ . Slope at last orbital burn U(3)
A_Yl Impulse at firs* orbital burn Uu(4), U(5), U(6)
Ael_z ‘Range éngle between first and second orbital burns U(7)
AV,  Impulse at second orbital burn U(8), U(9), U(10)
A92_3 Range angle between second and third orbital burns U(l1)
te ma?c Upper bound on tf AC(6)
Switch to control use of AC(6) NAC(6)
AV max Maximum available AV FC(1)
Weighting factor to control use of FC(1) NFC(l)
M Gravitation constant U, GC
€ T Rendezvous iteration time tolerance (1 se;.} EPT
P Impulse splitting indicator (5000 ft.) RHO
BIAS-

Optimization search tolerance (=1)

End of inputs Find o fnne
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Table II-1 Trajectory Optimization Program Symbols (Continued)

FORTRAN
Math * Program
Symbol Description - Symbol
II. Internal and Output Symbols to Control and
Object Programs
w - Rotation rate of earth = 7.292115. lO.5 radians/sec WE
R.E Earth equatorial radius _ RE
91 Range angle of S/C from epoch to first burn THI
position
Qf Range angle of target from epoch to final burn THF
position
AV Total velocity change . DV
NPASS Number of passes through Object Subroutine NPASS
R i=1,4 Position vector of i'" orbital burn (ft. ) R( , i)
: h
Vl i=1, 4 Velocity vector of it orbital burn (ft/sec) Vi, i)
: : th | :
T.i=1, 4 Time of i orbital burn (sec) T (i)
RS’ V5, TS Position, velocity, and time at cut-off for R( ,5), V( ,5)
ascent | T(5) |
1avili=1, 4 Magnitude of velocity change due to ith orbital DELV ( , i)
burn lft/sec)
IAV5| Magnitude of velocity change needed during ascent DELV ( ,5)
(ft/sec)
Al Out of plane angle between S/C orbit (or launch plane) DEILI
and target orbit (radians)
Sheet 4 of 6




A II-15

Table II-1 Trajectory Optimization Program Symbols (Continued)

(\ FORTRAN
Math * , Program
Symbol Description Symbol

Al ' Range angle from launch site to intersection . DELTH

with target orbit (radians)

Iy Unit vector through launch site , RL
V'L Unit vector in launch plane and perpendicular ‘ VL
tor
—-L
D, Unit vector normal to launch plane such that NL

I TS SRS 3

_fl Unit vectpr normal to orbital plane UNIT 1, NI
e Longitude of perigee from descending equatorial THETP
? node (radianJ)
( IiB Ppsition vector of launch site RLB

T Orbit apogee radius RA

_fc Cut-off positiop vector (ft) RC

_.VC Cut-off velocity vector (ft/sec) vVC
AVR AV remaining at cut-off (ft/sec) DELVR
AT Cut-cff time relative to launch DELT
TF Desired time of intercept relative tc launch (sec) TF

R Final intercept position (ft) RR

Yy S/C velocity at intercept (ft/sec) \'A%
VT Target velocity at intercept (ft/sec) VVvVT

C ’_ . o Sheet 5§ of 6
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Table II-1 Trajectory Optimization Program Symbols (Continued)

) FORTRAN
Math 3 Program
Symbol Description Symbol

a Semi-major axis of orbit (ft) A, AX
TOF Time of flight (sec) TOF
BT Range angle (radians) THT
VFIN Arrival velocity of S/C (ft/sec) VFIN
m Arrival slope MA

als

to a FORTRAN program symbol. Such cases arise
when in the math flow chart, descriptive phases are

used instead of FORTRAN symbols.

* In some cases there 1s no math symbol corresponding

Steet 6 of 6
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TABLE II-2
TEST CASES
Initial Final Orbit Cut-of-Plane Comments
Case State - _ Angle (deg.)

1 " Elliptical Parking Orbit Elliptical Orbit 5.0 Two-Burn Orbit
Semi-Major Axis = 5208 miles: Semi-Major Axis = 6250 miles Transfer Without
Eccentricity = 0.2 Eccentricity = 0.2 Rendezvous

2 100 n. m. circular Semi-Major Axis = 8444 n.m. 30.0 Three Burn Rendezvous
‘parking orbit Eccentricity = 0.5 with Target in Final |

Line of Apsides 30° from Orbit
- Line of Nodes
3 Same as 2 Same as 2 30.0 Same as above
4 Launch Site Latitude = 30° Same Orbit as 2 and 3, 30.0 Ascent to Parking Orbit

Lying in the Equatorial

Plane

(This is the

minimum
value obtain-
able from the
Launch Site -
if Launch
Azimuth = 90°)

and Rendezvous with

Target in Final Orbit

LTI-IIV
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TABLE iI-3

Y RESULTS OF TEST CASES
' <+
—_— 10} —
- _ Q ~N ~ A ™ .
R R P = I o
— " H H ~N
] i : ol LT R . =B ‘A A v
O s s ESES S RN - B O -
. @ R 2R |EE 8% |E 5 ENI oa 5 e
(CRIE S < ¢ o, 2 a, 3 A, - =t o N = Y S
g W L) w7 ey 5 E M E M E A é ] B < - ¢ > o] ]
( ) 9] O O — = m
og |og o, (D2 [Pr |UE |ov |g = AR = 3!
frn g8 |22 | 2 |12 |12 |eg |3 5 oo | e 3 = X
oo a8 S a H o H QT o © © M o o 5 &
Hm M v - x O O INO K o .| — (ORe A = fxy ~
() _10(2) |UG) [T@) [0y [U6) [U(7) |u(12)] U(13) UG(14)|U(15) | AV |[Passes|Time
(sec) |[(sec) (ft/sed)(ft/sed)i(ft/sec) | (deg) |(sec) | (deg)| (ft)} |(deg) th/sec) _
o ————— S—— — — —— —_— — e
1’ Input 0 2213 0 - - - - - - - - 7619 - -
Output 552 2116 ].07216| - - - - - - - - 5663 155 2.78
2 Input 7515 19920 - -173.9(-43171-2108208.7| - - - - 13528 - -
Output || 7825 19114 - 2262. 0]-4797| -6451189.9 - - - - 12715 1090 -
3 Input 2305 33026 - 358,4|-5668] -2788{203.2| - - - - 11764 - -
Output | 2370 33373 - 879.3|-6329{-10701201.7| - - - - 11496 234 9.83
4 Input 3996.2|15706 - - - - - 0 90,0 (21532438} 0 31673 - -
Output || 3970.2 14769 - - - - - 0 |92.7 [21472348}11.287]31417 255 -
Notes

) Not required for Rendezvous Cases
) Used for Three-Burn Cases
) Includes I/O Time to Write Output

8T1-1I V
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INPUT

MAIN

P
h 4

Real Input

Print Out Input.
Convert Angles
Set-Up Logic
Initialize Text and

Object

OBJECT

I

TEXT

e PMS-
e UNIVAR OBJECT

l

o © ¢ o o

Ic

Print Output

Figure -1 . Trajectory Optimizer Program




Read Input Cards
(See Input Table)

v
Write out
list of inputs
NPASS=0

\ 4

Convert .A@l
NG

22
2-3? AL’

aL from

degrees to radians

L

Set BVA{1)=1
BVA(I)=0,
i=2, 15

v

Set for I=1, 15

UMAX(1)=10>0

- 38
UMIN(I)=-10""

L 13

Convert )\L,
Qo0 Qs B
)\T, AQ’T’

Lmin,

from degrees
to radians

ILomax

Does
tf have
Upper Bound 12

Yes

UMAX(2)

=f
fmax

Yes

Ascent

A4
BVA(13)=1

A II-20

| BVA(12)
=1

A Does
( tL.have

Lower Bound

UMIN(12)

=t .
Lmin

Does

A_ have
L

Lower Bound

UMIN(13)

Imin

Does
AL have
Upper Bound

No

Yes

UMAX(13)

Figure II- 2 MAIN Program (Sheet 1 of 3)




Does

Y
NBURNS =8

=17 v 2
NSER=3
BVA(3):1!
NSER=3+4*
(NBURNS-2)
BVA(2)=1
Orbit
Transfer
I\/Ianeuve ) BVA(2)
Type =1 _

IRendezvous

Is
NBURNS
<3

No

BVA(I)=1
I=4, NSER

Yes

v 6

UMIN(7)=0
UMIN(11)=0
N=NSER

BVA(14) =1

BVA(15)=1

A II-21

Does
RP have >
Lowzr Bound

UMIN(] 4)

=R
Pmin

Does
Rp have
Upper Bound

Yes

UMAX(14)

Pmax

No

Equals 1

v 16

N=15

Nf-:15 \

BVA(1)=0
BVA(2)=1
N=13

Figure II-2 MAIN Program (Sheet 2 of 3)




UB(I)=U(I)
| 1=1, 15°¢
ISP=1

Maneuver

Orbit Transfer

A I1-22

Type ?

Rendezvous

Calil
OBJECT

Splu.tmc /
‘Required?’

jﬁec

U(2)=U{1
U(l)—UB(Z)
U(4)
EEZ; \IBLRNS -
Resets
U(8)
U(9) Search
AYNBURNS-1 Variables
U(lO)
for Text

U(7)=2m =A91~2

U(11)=UB(11)
UMAX(1)=UMAX(2)

UMAX(2)=10°°

UB(I)=U(I)

1=1, 15

Call Optimization
Search Routine, TEXT

v

Ascent No

Yes

QL QLO

wpX (b ~t; )

¥

Convert

radians to
degrees

212

Nas
Impulse

Splitting
-Required

Yes\l’

i=1, NBURNS
R' =R,
-’1 -1
V=V,
—01 ——1
AV = AV,
—_— 1 =]
T! =T,
*'1 1
IAVI.'=IAVI.
R R N BURNS-i+1

-rr|

'Yl ~=NBURNS=i+1
éYl é—\z NBURNS=i+1
Ti ;NBURNS-i-!-l
|AV]. = AV

NBURNS=-i+1

¢

‘Output: tl’ t,m

8s D8, D8, ., A

a. frox*x *adlanq to deg; eegs

Ccnvert 9

LO

r

DY 805 50t By Rpe @
7 = I

X i,j _l_lli.}(x—l, NBURNS

AV, 8, 8,,NPASS

» AV1s B8y 5,

LB

)

v

set of input cards

CLoop back and read ne

D,

Figure II-2 MAIN Program (Sheet 3 of 3)
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All Inputs Entered
from Control Program Is Yes Direct
through COMMON M.<3 > Ricent Path’)
Instructions
’ No
Internal Constants -
3 _ ) Call Launch
AE=10" . '
XE 1?0“4 : (LCLy Ay s QLO’ Os Oyt troe
TK1 Y AL’ AL’ Tl’ Tzs AL,Ai',AQ,
KK=2 r v a.)
NORB=0 o D RS i
‘RE=.ZO9O99Z + 10
Initialize ‘
LI.Cl=1 . n, =cos{a. )n_~sin(a_)v.
LC2=1 —-1 N J}L..L L _ L
AV=0 ILp=EL e
KOUNT=0O e]=nl '
NPASS=NPASS+1 &
r =R
a P
6 =0
P Request
Reconnaissance

Path

Call UP1
300 T

X, g=ISP |AVg =AY ~AVR

TS 1=t1 _ _135'—_"_1;C '

TS2=t, R
Tsth+AT

OO

Sheet 1 of 9
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wet

‘Call EPHEM Option B

(x s st aps 8,5 TSI, AE, NOP, R,
Y, TOF, _, _)°

A I1-24

Other 6~URNS =0 ;»}7 ‘
5
-4 i "'
Call EPHEM Option B Call RVVR
(__n:[ ,—aTo..."" s Mo Bf, TSz, AF NOP, (Elz—Yl’Ruf maf’ XKlfﬁLzNORB
}ET: TOF '“) R 2 TOF: __Yr: KK: s ___ s
'r].:tl —_—
+
ISP AV =y -V
—c-]_ -— T —ol
2,0 CornpatclA\’ I
=R
o= +TOF
Vo'V T,=T +TO!
g | L »
Yy
- 1 6
=R T
-1 T - {I’1=U(1)
+ + -t
Q=0 GHBR et -t )
‘ (1 1 . M
T‘ )=R T cos £ cos )\T
NBURNS R,_(2)=R'_ sin Q_ cos \
>2 RT X P‘T‘ . T
‘ T()—\Tsm,\T

' Figure II-3 OBJECT Program
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Loop if necessary

A , | If NBURNS=3
oy exrsiat, L K-l

Y =V +AV ':X I If NBURNS=4
o1 <K LK TKS i K=1, 2
NOP=O = ommmmmmeme—
Call EPHEM Option A

Ry Voo T B8y ey 8 AF,
NOP, Ry 1o Vp. s TOF,—, a)

3

ISP <O and K=1 and

3 Yes
‘Ael-z" 2w|<1077?
No
TCF=
2 ail,'/ pr/a
\ 4
Tr+1"Tk
+XKS*TOF
< 5
w 2
R =T
~=NBURNS B.T
\A =V

—~NBURNS —T
K=NBURNS~1

A 11-25

NOP=1
ISP=1
XKS=1

A

(r

—

Call EPHEM Option B

To'+To’ tTo"u 2

' E
ef, tf’A 3
TOF , )

= + w{t -t Yy
.Q.L QLO W (L LO

l)=cos A cos:QL

Tyl L
rL(Z)=cos )\L sinQL
rL(3)=sin ).L
TF:tf_tL
*R_

ZirEL

r=r1r,

- —1

®

Path

Rendezvous

v
Call UP2
v
! AVS l = AVmax" A\ITR
T _=t_ +AT

5 L
T1=T2

No

Intercept
Path

- Figure II-3 OBJECT Program
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Sheet 4

‘Call RVVR
N Maneuver Rende?vouq (R1 Vl’ R s 0, XK] s #, NORB, |
, Type Intercep» ., POF’__Yr’ KK, s s
8 ' rbit Transfer 2 ___)
Call RVVR ¥
T_ =T +TOF
Bx Yo Bypurns, Mar Tk 2 71
_NORB, 6, — TOF, V_, KK, -,
-”;z a, N ]8 e a)
4 =
AV - tf tf+6'PT
-p_(\ —»r.:YK
Compute IAV I
InBurNns™ T TTOF
 NOP=0
Compute
|27, |
4
‘Call EPHREM Option A | =@
: AE, NOP ‘
(—IEK’ _Zra___:#: GT:_, s s - * 29
R ‘.., VFIN )
- L S’ — ? -"""", ———‘ _— T =
NBURNS™ - S "NBURNS "¢
No N Yes
BURNS
<3
{ 41
DIST =
'I=NBURNS =K AT (T ~ .
"K=NBURNS-1 " seek ( NBURNS Ty)e XKS
R_=|R '
N I2nBURNS]
IV\IBURNS!
IST = - - ( - (ENBUR’\S JNBURNS )
/ o , start , RN N :
- Impulse—"¢ 0, * N « A
" Splitting
Path,
: Figure II-3 OBJECT Program
of 9
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43
= RVV
2nBUurRNsRK (CRaH N 1; o x
SP=-1" | eK® =K’ =NBURNS, start? T K1®#?
- -1 NORB T,V , KK :
P Tusurns Tk , RBE, 6., .40 P P
) = - - .
AV 5= VB URNS YK @ s s 2)
= /A3 . 7
A [}Yp [}.}.p v
KOWNT=1 N
P =P a0 start
PE (0] 27r":
P = Z..
v T J/r7=a
' m .=m _+0.01
B=2(V . al a0
~« NBURNS

-V .3 s
Ve Vi Vg

15 ‘ Call RVVR '
46 (RK, "YK’ R ™ON\T X # 3 I\‘IORB)

—~NBURNS, Tal’ “k1’

et oo e
,A '—-K' a’ ngoa s ——)
2 2/3
[Z—IRK“~ z } ] $
; Value=AT_ -AT: ,
S=B/|Bl 1 seek

AT _ -AT
i
Deriv= -.._-..—-.-..-.9...

‘ m _-m
: al a0
Value

Change=

Deriv
Restricted to
[Change[ﬁ 0.1

Regula Falsi Iteration Loop

M2 ™
~Change
maozmal
T =AT
a 0 A 1

m . =m
al a2z ,
KOUNT=KOUNT+1

Figure II-3 OBJECT
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2

K=-B+S+/B-4AC

2A

Ji 4

Write

- uSplit!

PPE

= P /KOWNT

\' ={1a 37
Z}."I\J'J':BURI\IS (1 K)A—-»P

|

y

Compute
‘ é:le and

&Y NBURNS]

l

Write: '"Number of
Phasing Orbits
Exceeding 5"

Write "Impulse
Splitting Required',
'K and KOUNT

Figure II-3 OBJECT Program
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AV NBURNS™

' - N
—YNBURNS VE.I

Compute

& purns|

A I1-29

23
Write éYK VoV
Iterations c e | AV
"
did not ommpute Kl
Converge'' NOP=0
AV =102 Call EPHEM Option A
. K* 5 (RI V- : Vr TE;’ /J» 3 aaS
— \ — —
AVNBURNS =10 T, AE, NOP, —, VF;EN,

é..VNBURNS
Y -VFIN

- NBURNS —

y

180° Transfer Case
Optimization of AV
with respect to
plane change, a.
Three successful
passes used to
obtain quadratic

fit and approximate
minimum AV,

- Has
transfer

been optimized ' Yes

with respect
toa?

Is
180° transfer

0O

required
?

Pass

r

A= IAVK'

l NBURNS'

Nurnber

Figure 1I-3 OBJECT Program
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~1 Bkl Fxl

R

- NBURNS -—YNBURNS

= / - Y% )
A Ié}Ki !-A..NBURNSI
r a »
5. Da [ 2 (A ~4)
a- +
N P
- { .
lAz .A+\ 2 )
a=a+Aa a=|
A]:A | 2
L1.Cl=-1
v
[l?ﬁA.l Repeat -
’__ Pass 3
Al—w — ; ‘
a=anAa/2 - Write: 180° transfer
LC2=0 required;aand A
A 4
\
EKX—.K

=n xn

O—

- -2 I—-NB URNS| [NBURNS

23T * 2,
ORI e )
. -1 =2 232k |
=|AVg|HAY, NBURNS |
Aa= 1AL
a=Aa N
LC2=-1

Figure II-3 OBJECT Program
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DV= V|

Minimum\ AV

{BURNS Required .~ !
g
WNBURNS X
_< s 1
«AV—L !A-lel P=t -t P=AV
i=1 f i

Minimum
Required

Time

v

T - S.
NBURNS™ 11! XK

T_ =T -
P ltO

T =(

P=T+ Tp >

AV to
max -

be applied

Does
. AV exceed

AV
max

: lYes

A II-31

No

P=P+NFC(1) (AV- AV
) ) m

)2

ax

Return

N——

/ ‘ Figure II-3 OBJECT Program
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SECOND ORBITAL
BURN (t=15)

"PLANE OF
L\} SECOND
(N \ TRANSFER

oanﬁfgzﬁnei_ \<i>:\\0\\

‘f=7f)

TARGET

CRBIT
FIRST
ORBITAL BURN

(1= 1)

PARKING
ORBIT
PLANE

1<

w
<
-4
—~~

—-
-

S

{ LAUNCH
(=1

Y

Figure II—4; COORDINATE SYSTEM AND TRAJECTORY SPECIFICATION
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Appendix III (Unclassified)

OPTIMAL-EXPLICIT GUIDANCE (OP-EX) FOR POWERED
FLIGHT OUTSIDE THE ATMOSPHERE

This appendix describes the thecry and implementation of OP-EX,
an IBM-developed guidance algorithm for all phases of powered flight outside
the atmosphere, including the exoatmospheric phase of ascent {i.e., that
phase of ascent where the dynamic pressure is less than 30 p.s.i.). As its
name implies, OP-EX is both optimal and explicit. That is, it accepts as
inputs a given 'present' state and propulsion performance models for the
present and future stages of the rocket, and generates an optimal (fuel-
minimal) trajectory which satisfies explicitly stated constraints and final con-
ditions, without dependence cn oif-board precomputations. OP-EX guidance

is compatible with and is used by the Optimal-Explicit Flight Planner.

3.1 SUMMARY CF CAPABI‘LITIES AND ADVANTAGES

‘ - OP-EX is a versatile guidance algorithm usable for exoatmospheric
ascent, orbit transfers, direct rendezvous, direct intercept, deboost - in fact,
for all powered phases outside the atmosphere, For each of these guidance re-
quirements, the resulting fuel expenditure is minimal.

Also, for any given guidance phase, a variety of alternative terminal
conditions can be easily specified. For example, orbit insertions cén be
achieved with specification of (1) orbital plane and orbit orientation, size and
. shape in that plane, or (2) orbit inclination, latitude of perigee, size and shape,
or (3) orbit inclination and latitude and longitude of orbit perigeé. In fact, almost
any reasonable combination of termination conditions imaginable can be easily
implemented, All that is required is the specification of six 'terminal-error"
equations (according to a set of rules which will be derived) which completely
define the mission type. These equations, when satisfied, determine the unique
optimal trajectory. |

OP-EX can optimally perform any magnitude of plane change within
. the vehicle's capabilitics during ascent, It can also optimally perform any

orbital maneuvers for plane change, orbit transfer, rendezvous, or intercept.
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OP-EX has flexible provisions for propulsion performance descrip-
tion (thrusts, stage masses, mass rates). An unlimited number of stages can
be specified and, in theory, any modelable function of time can be used to repre-
sent engine mass flow and exhaust velocity. Even exotic schemes like the Saturn
V PU (propellant-utilization) system, which involves a change of thrust level
at a variable time after stage ignition, can be implemented satisfactorily. In

fact, the optimal time at which to switch the level of thrust could be specified

by OP-EX,

The CP-EX algorithm is computationally efficient, to be practical
for real-time guidance, yet is sufficiently accurate to be used for rapid predic-
tion of AV requirements for flight-g;lanning purposes.

OP-EX provides predicted vehicle states at future staging times
(and other critical times) which can be used in spent-booster impact prediction.

OP-EX has growth capability for the optimal inclusion of additional
constraints such as fixed final attitude, recovery cveiling, etc. Implementation
would require little more than a modification of the control law; the routines
for trajectory generation and for iterative adjustment of trajectory parameters

would be essentially unchanged.

3.2 -~ DERIVATION OF EQUATIONS FOR OPTIMAL TRAJECTORIES

The equations of motion for rocket-powered flight outside the atmos-
phere are

Py " | W

1]

¥o=ogle,t) va(t) b () | | * (2)
where r is the position vector, v is the velocity vector, g is the acceleration due
to gravity, a (t) is the magnitude of thrust acceleration, and 1_/}._(1:) is a unit vector
giving the direction of thrust acceleration. For the one-burn case with non-
throttleable engines, a (t) may be regarded as a given function of time, but in

more complicated cases a propulsion-model must be included in the problem

formulation. For an n-stage rocket, equations determining a (t) are

a = T,/M,
A
M, = -T./c* + w, j=1,2;...n (3)
J J J J ~ 3
O<T,. T

j T Tjmax
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where M is vehicle mass, T is thrust, T is full-throttle thrust, c* is the

max
‘effective exhaust velocity, and w is inert mas3 flow rate due to scheduled
dumping of expendables and propellant leakage and evaporation. The effect of
w is, in general, very small, so to avoid needlessly complicating the dis-
cussion, it will be neglécted. (Should w become significant, the theory can,

of course, be expanded to include its effect.) c*, T and M may change

max?
discontinuously at staging times. Also, c* and T, may be functions of the

. burning time since stage ignition. (For solid fuel rockets, this is usually the
case.) The engines may be non-throttiecable, non-restateable or both., How-
ever, for formulating the optimization theory, it is 'convenient to begin by con-
sidering perfectly throttleable—enginés; For cases in which staging is triggered

by fuel depletion, c¢* and T, ,, may be regarded as given functions of the mass

X
M. Also, (as a mathematical artifice) mass discontinuities at staging may be
regarded as brief intervals with very small c* and correspondingly high values
of M,

Introducing a throttle variable S, Equation (3) can be rewritten as

a = Samax (t) : ‘ (4)
dmax Tmax (M)/M | | (_5)
M = =S Tmax (M)/c*(M) (6) |
o<s<1 o

The optimizaticn problem is to choose control policiés _ﬁ_(t) and S (t) such that
the resulting trajectory satisfies given final conditions and extremizes some
- function of the final values of r, v, M and t. Us‘ually, but not élways, the
quantity to be extremized is the final mass M(t¢).

This is an optimization problem of the Mayer type. It can be ex-
pressed' in standard form by introducing the seven-component state vector
r

=lx : _ (8}

I
|
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and the four~-component vector

A
u

v = o (9)
S

Then the state equations can be expressed in the standard form

x = f(x v, t) ' (10)
where
v ) T
(r, ) +SGa___ (M) |
£ = ED 2 %*max (11)
- (M)
ST . (M) |
The control constraints Iﬁl =1 am'i»O < S £ 1 are independent of the state

variables, so Pontriagin's maximum principle is applicable. Introducing the

adjoint vector

7 . '
P =|A (12)
o _ A

the Hamiltonian can be written as

T_f_ (x,

H(x, p, v, t) = » t) (13a)

e
Ie

——

=m-xtAgtSs [ Acfa -aTmax/c*] (13b)

It is convenient to introduce the abbreviation K for the bracketed quantity in
Equation (13), and G as the symbol for the gravity-gradient matrix. Then the

standard adjoint equation

p = -dH/dx | o 14)
gives ‘

i = -n 4 ' ' ‘ (15)

7 = -G\ | : (16)

o = -SJdK/oM - (17)
The vector A\ is Derek Lawden's ”primer vector, "

The maximum principle requires

4= AN | R - (18)
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- and
1ifK >0
S = ' (19)
Oif K< O
An immediate consequence cf Equations (6) and (17) is
K = (\A-0) |
(A-u) ®max (20)
which simplifies to .
< =In] - ”
K =/ \]| a_ (21)

when use is made of Equation (18). This relation enables K to be computed di-
rectly, so the quantity o becomes unnecessary and need not be computed.

In many cases, the control of thrust magnitude is prescribed or
trivial (full on till cutoff, zero thereafter) so only the optimization of steering
need be considered. For such cases, the differential equations for an optimal

trajectory reduce to

r = v =gl t)talt)A/X S | (22)
X = G\ | | (23)
For an inverse-square central field, the quantities g and G are given by
g = -p/d @4)
T
G = "([J./l‘3) [I - (3/r%)rr ] (25)

where ;;T is the transpose of the column vector r. For multiburn cases, or
cases in which the trajectory starts from a parking orbit with a freely chosen
ignition time, Equations (22) through (25) mﬁst be supplemented by (19) and (21).
v Equation (21) shows that the quantiiies K and |\ |always increase or
decrease together, so local maxima or minima of K along an optimum trajectory

are maxima or minima ofl_)k|also. During coast phases, M and a (M) are

max
assumed constant, so K is linearly related to l _M . (Should an appreciable mass
change occur during coast, due to scheduled dumping of expendables, propellant
leakage or evaporation, or all three, the formulation could be expanded to include
its effect.) Consequently, the magnitude oflllfinust be the same at both ends of

-, coast rhase.. .;The powered phases occur at local maxima 'of'lﬁ(t)l. These

maxima may occur at the beginning or end of the trajectory (exterior maxima)
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or at intermediate points (interior maxima). For interior maxima (i.e., burns
whose beginning and end times are not determined by any consideration other

than optimality), the conditions for optimal thrust control require the integral

7 =flxlamaxdt_ C(26)

burn
to vanish. This requirement does not hold for a bﬁrn whose beginning time or
end time is constrained.

The optimality conditions given above reduce the problérn of tra-
jectory optimization to a two-point boundary value problem (TPBVP). The ini-
tial conditions generally consist of given values of _1_‘_(t0), .‘ﬁ(to)’ M(tG), and toe
For cases in which the final mass 1s to bebmaximized, the final conditions con-
sist of k € 6 mission conditions '(prescribed relations among the final values of
r(tf), _\L(tf), and t; plus 6-k transversality conditions which come from opfirnal
control theory. The transver saiity conditions can be analytically derived from

. the mission conditions by the requirement that

A-dr-2r-8v=0 t2y (27)

must hold for every pair of infinitesimal variations 3r, dv consistent with the

mission conditions and at every point on the coast trajectory.

3.3 NUMERICAL SOLUTION OF THE OPTIMAL TRAJECTORY PROBLEM

As derived in the previous section of this appendix, the differential

equations defining the optimal trajectory of a rocket powered vehicle are

r =y = glr)talt)d  (28a)
X = G (28b)
2 = A/ | (28¢c)

A guidance scheme also based on Equaticns (28), but differing from OP-EX in
computational techniques, has been described by Brown and Johnson (Reference
1). Numerical integrating of these equations from some initial time tj to an
-estimated final time t;, starting frofrl the initial state r(ty,) and v(t,) and esti-
mated initial costate A(to) and A (to), determines the final state, r(ts) and v(tg),
- and the fina} costate variables A (tg) and 2:_ (tf). Seven error quantities, derived

from k specified final state conditions and 6-k transversality conditions and a
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desired normalization of A (t,), must be brought to null by iterative adjustment
of the seven parameters A(to); _)E(to) and t;.” To this end a Newton-Raphson
iteration procedure will be used.

' Since the same tré.jectory integration algorithm is to be used for
both flight planning of all powered phases and for operational guidance duri’ng
the powered phases, the integration must be both fast and accurate. An obvious

method of increasing the speed of solution is to increase the step-size used in

" numerical integration of Equations {28). Since the guidance is''closed loop'" and

can be made accurate near cut-off at small cost, this does not cause guidance
errors. However, it has three possibie adverse and unavcidable effects:
(1) The steering policy becomes non-optimal, incurring a
fuel penalty. | ;
(2) The initial estimate of tf becomes inaccurate, which distorts
flight planning.
(3) Truncation errors in the computation of sensitivity coefficients
(which are requi’red for iterative correction of the estimatead
parameters A (t,), i\(to) and t;) cause them to differ from the
actual sensitivities of the numerically integrated Equations (28).
This degrades the convergence of the iterative solution, and
in extreﬁe instances, destroys convergence completely.
However, it is known that present day explicit guidance schemes,
which are essentially one-step integratibns of the trajectory equations improved

by closed formulae for certain thrust integrals, have small performance penal-

ties. It may therefore be expected that an "explicit-predictor'’ integration

‘scheme which resembles the application of explicit.guidance to each integration

step will have negligible performance penalty for very largé integration steps.
This, in fact, is the case. It has been demonstrated that one integratién step
per stage of the Titan IIIC booster produces a AV performaﬁce penalty of only
0.1 ft/sec.

A Errors in initial estimates of t;, made when the time remaining un-
til thrust cut-off is large, are quite significant for explicit guiaance schemes,

but have been found to be acceptably small when the explicit~-predictor integration
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scheme is used with large steps. It has been repeatedly demonstrated, using
( thé Titan IIIC booster, ‘that integration steps of 100 se'conds produced an error
in predicted cut-off time of less than 0.3 secondsin cases where the time re-
maining until cut-off was greater than 700 seconds. Even larger time steps
are believed useable for mission planning. |
| The remaining factor governing useable step-size is the effect of
truncation error on the convergence of the iterative solution. This effect dis-

. appears ii the sensitivity coefficients are computed by finite differences. This
is done by first generating an "unperturbed' trajectory and evaluating the error
quantities. Then '""perturbed" trajectories are genefated by changing components
of the initial adjoint vector c.:one at a time by a small specified variatioﬁs. Sub-
tracting the error quantities of cach perturbed trajectory from the corresponding

° error quantities of the ‘unperturbed trajectory, and dividing by the change in
the initial adjoint component, gives one column of the sensitivity matrix,

Computing sensitivities by finite difference is similar to performing
experiments on the numerical trajectory solution. Regardless of truncation
errors, approximations in the equations, etc. , the sensitivity coefficients gen-
erated by finite differences will give an accurate prediction (except for round-
off and nonlinearity effects) of the way in which the numerical trajectory solu-
tion will change if its parameters are changed.

Experience with the ascent case has shown that there is no difficulty
in choosing parameter changes large enough to avoid trouble from roundoff
érrors, but small enough for linearity to hold. In trial experiments, the sizes
of the parameter increments were varied over a range of more than three i -

ders of magnitude without appreciable degradation of convergence.

3.4 EXPLICIT-PREDICTOR INTEGRATION ALGORITHM

The "explicit-predictor' integration algorithm is designed to take
advantage of closed formulae for integrals involving thrust acceleration. The

formulae presented here assume that rocket engine mass flow rate M and effec-

tive exhaust velocity c* are constant. This should not be construed as a limita-

C ~ tion of the techniaue., In tlleof'y;:rva'i: 1east,'»\.:a;1}yt?x§odelhblé‘function of burning
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time can be used for either l</1 or c*, For exawtmple, a ''propellant-utilization'
model in which the level of thrust is altered sometime after engine ignition
could be implemented within the framework of the algorithm. Also there is
no limit imposed on the number of rocket stages.

The equations of the integration algorithm will be shown for the jth
rocket stage and the nth time step. Since engine parameters and mass are

generally discontinuous at staging, the integration time step is selected so that

- no more than one stage is ever included in any integral evaluation. In other

words
At = Min ( At , t.-t)
n max- ] n

- . . (29)
tn+l = i.n + Atn

where tj is time at the end of stage j, t is present time and Atmax is the
largest time step allowed.

’ The thrust acceleration term af(t) _1_'}_ is separated into two parts, that
which defines its magnitude a(t) and that which defines its direction ﬁ Over
each integration step, ﬁ_is approximated by a second-order vector function of
time.

Bty = 8(t Y+a (-t )+ B8 (-t )° t < t<t (30)
m n m _n’ m

where

t =t + At /2
m n n

As will be shown subsequently, it is possible to predict ﬁ_(tm) and g—(tn+l)' Given
the three values of ﬁ, the vector coefficients are '
_Ia A '
a = [.g(tnﬂ) y_(tn)] / bt
. 2 (31)
A A A ‘
= + -
-B-n Z[E(tn_H) _1_.1_(tn) 2 E'(tm)] /Atn .
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To complete the single and double integrals of thrust acceleration

from t tot .;, it is necessary to evalulate six integrals:

tn+1
c:::j
L = T FE -t dt
t J J=
n
tn+1
c*j (t-ctm)
L, ~ IR dt
o i
n
tn+1 2
[ o (et )
I3 - T. +t. -t de
° i -1
t
n
t
n+l
t
f 5
14 = e i dsdt
t ot I
n n
t
(s-t )
15 = 'r +t g dsdt
.
n+l t
c*_ (s-t_)
I = J dsdt
6 T. +t -8
t t J J"l
n n

where

T. = -M /I\./.[
J . o J

M | is the mass at the ignitiorn.of stage ji o5 o oo f i
oj :

(32)
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For the assumptions made above, namely that c* and M, are con-
J J

stant
= s +
1"I c ; loge (1 +p)
Ly = by -lgre -t 0
L= b mtha
- + - - !,
13 (rj tj-i tm) (12 c Atn)
tox (T4t -t )2 (2p+ pP)2 (33)
i0 5 7 5.1 7 'm+l
I = (T +t -t)A:I - ¢ At2'/2
5 j j-1 4 J n
. 2
I, = (T, +t, -t )(I.~-c* At~ /2)
6 J j=1 m 5 j n .
3 2, 3
- C'j [(z:] +tj-1 -tn+1) Bp +3p +p)6
: 2
-(T +t, -t )" At /2]
j j-1 mn n
where - '
p o= Bt My -ty

Having constructed the closed formulae for the first and second
integrals of thrust, the total "explicit-predictor' algorithm can now be shown.
The contributions to position and velocity due to thrust acceleration, Ar' and
A y', and due to gravitational acceleration, Ar'" and Av',will be isolated as a
hedge against requiring extended precision integral accumulation. The primer

vector can now be predicted at t ., and &4 by using the second order équations:

A = X +Xh At /2+ X Atlys
m n n n n

n
2 = A /X
—m -m m
* . 2 (34)
= A + X At + X At /2

=n+l1 “n -n n -n n

A N »

"U‘n+1 - An+1 /Xni-l
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After evaluating a and _@ according to Equations (31) and Il’ ***, Iy according

to Equationsa(33), the thrust acceleration contributions to position and velocity

are:
Or! = '+ AVIAL +T 8 4 +
L n+l Ar n “‘_nAtn I4Ern 15 g, I() En
n (35)
t. = 1 + + .
Avtipp = B thL8 he FLE
The gravitational acceleration contributions to position are:
2 3
" - (LS e - + +
Lz n+l Az, n by n Atn N Atn /2 Gn n ALn /6 (36)
Total position is
= + - + 1 + 1H
Iner T I T ¥ Uy m ) By ATy | (37)

Gravitational acceleration and the gravity gradient matrix can now be evaluated

using the predicted value of r . ; then A can be evaluated

n+l

_ 3
Eop1 = W
2

T
G o == (u/r_, )[I -G/r ) T ] (38)
AT Gan Mo
Finally, velocity and primer vector rate are
. ) N "
Ln+1 A>\ +()\ ) At /2
1" - 1" +
Ar' g = A+l te) At /2 (39)
= + " + 1
“n+1 e Av nt+l Av n+l

Equations (34) to (39) are the explicit-predictor integration technique. As the
problem is integratcd, the index j must refer to the 'current' stage. It is worth
noting that no restrictions are placed on the time at which the problem is kegun.

In this way the algorithm is applicabie to the real-time guidance requirement.

3.5 ITERATIVE DETERMINATION OF ESTIMATED PARAMETERS

As pointed out previcusly, scven-error quantities must be brought

« to null by iteratively adjusting the estimated parameters Al(ty), A (t,) and tp.
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Also, since the normalization of the primer vector at tg is irrelevant, by an
expeditious choice of coordinates a '"preferred coordinate'’ can be established
along which ;he component of A can be left invariant. What this means is that
the "preferred axis' should not be chosen orthogonal or nearly orthogonal to
the expected direction of thrust accélefation. In general, this is an easy re-
quirement to meet and ‘is worthwhile since it reduces ‘iteratively corrected

parameters from seven to six.

It is now necessary to establish the six-by-six matrix of sensitivities,

“the so called Jacobian matrix, which relates the variation of estirnated param-

eters to the variation in error quantities. The error quantities used are unique
to, and indeed define, the type of tréjectory being generated. Error quantities
for severaltrajectory types will be presented in a subsequent section.

‘ The Jacobian matrix will be computed, as was stated previously, by
employiﬁg finite difference techniques. Only five ''perturbed' and one ''unper-
turbed' trajectories must be generated. (At this point, one can see the obvious
advantage of an extremely rapid trajectory generation technique.) 'Each per-
turbed trajectory yields one coiumn of the Jacobian matrix. The sixth column,
which represents the changes induced in the error quantities by a unit charge
of the final time, can be evaluated by extrapolating the final state of the unper-
turbed trajectory over some small time increment and then ree\}aluating the
error quantities. |

If the error quantities for the six perturbed trajectories are desig-
nated by column vectors €;, ..., €4 of dimension 6, and the unperturbed tra-

jectory error quantities by g, the six-by-six Jacobiar matrix is

1= [le, - BN (e - AN (e - €)AN, (g - /AN,
| | (40)
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The Newton - Raphson iteration equation in vector form is

~ . ™ — -

DY Xy
A2 Al
A3 — | A3 s J_'..]_ (FSO) : v (41)
A2 A2
A3 A3
| "] | %

where the numbered subscripts on A and S\ refer to the first, second, and
third components., Note that )\1 is arbitrarily chosen to be along the "preferred"
coordinate.

‘ In Equation (41), I" is 2 convergence progress control parameter
which is adjusted according to a '""performance indicator'’. The performance
indicator is defined as

6 2
P =3 W e, ' (42)
jop 1 of
which is the .Weighted sum square of the unperturbed error quantities. The
weighting factors Wi’ are required because the error Ciuantities are not (in gen-
eral) of the same dimensions.

It can be argued that if the Jacobian matrix is correct and non sin-
gular, progress must be made by Equation {41) in reducing the error quantities
if a sufficiently small ' is used. On the other hand, if ' is too small, the re-
duction process will be unnecessarily sluggish. The rule used to adaptively ad-
just I' is as follows: if the performance indicator on the present iteration is
less than it was on the last iteration, [ is set

I' «—Min (2T", I)
and the evaluation of a new Jacobian proceeds. If the performance indicator is
greater than it was on the last iteration, ' is set

- IT=— T/2
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3.6 SPECIFICATION OF ERROR QUANTITIES

As shown previcusly, it is necessary to specify six error quantities
which uniqueiy define 2 mission type and, when brought to zero, satisfy the
mission objectives. Of these six, k are specified final state conditions (or func-
tions of final state conditions) and 6-k are transversality conditions which in-
sure an optimal trajectory.

Three basic options most used by QRGT will be cescribed below.

. The other orbit injection optilons described in the summary of capabilities can

be derived in a straightforward manner but are not presented here.

1) Injection into Orbit, with Specification of Orbit Size, Shape, and
Orientation. |
For injection into orbit with prescribed ‘orbit size, shape and orien- .
taticn, the only degrees of freedom remaining are the time and location at which
orbit insertion is to occur. Let us assume that the desired orbit is specified by

its radius and velocity vectors at perigee, rp and v With this specification,

_ p’
the required velocity vector at any location in the orbit is given by

v = -g; sin @ r

‘ r
+{1 - -S-E- [1 - cos 9]}\_rp

where @ is the true anomaly: The semilatus rectum, s, is given by
2 2 .
= v r L (46)
NG
The magnitude of the required radius at any point in the orbit is

- S
'R~ {1 +ecosf) (47)

where the orbit eccentricity is given by

1/2

e = (s/r -1) (48)
‘ b
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The unit vector normal to the orbital plane is

- %y (49)
PP .

>

As shown above, the required velocity vector and required radius
are functions of the true anomaly. The true anomaly of the generated trajectory

is given by

-1 _I’_(tf) * ,_Y.p/Vp.]

9 = Tan _]_?_(t ) A T /I’ J (50)
f P P

Five of the six required error quantities are

€4
€5 | T YR (8) - v(t,)
€n6
(51)
€, = e (8) - r(t,)
€5, = -ﬁ : z(tf)

These five quantities are sufficient to satisfy all mission specification. The

sixth quantity €_; gives the deviation from satisfaction of a transversality con-

nl
dition, which is

A (t) »g(tp) - Altg) “vltg) = 0 (52)
and expresses the fact that phase-in-orbit is not specified. This is the well-

known transversality condition for "time-free' cases.

2) Direct Ascent to Rendezvous, with Rendezvous Time Specified
Direct-ascent-to-rendezvous means that, after thrust is initially
terminated, only a velocity matching burn at the specified rendezvous radius is
required. For this case, the required velocity, v is determined by means of
Lambert's theorem. One statement of Lambert's theorem is that, if two posi-
tion vectors, the time required to traverse between them, and whether the true
anomaly to be traversed is greater than or less than 180" are specified, the

orbit of traverse is unique and ueterministic. The equations used to determine
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can be found in Reference 2 and are not repeated here. The remaining
three error quantities must be specified by transversality conditions.
To determine the applicable transversality conditions let us first

examine the equation of perturbed motions obtained from Equation (28a).

3Y = &y = G3r +8a | (53)
To obtain Equation (53), it is assumed that l S_I_'_I is small enough to justify ig-
noring terms of the order of lS_r_lz.

Recalling Equation (28b), we see that on a coast trajectory, where
da = 0, Equation (28b) is identical in form to Equatmn (53) Hence, the well
known state transition matrix solutlon for Equation (53) must also be a solution
for Equation (28b). Symbolically,

A(t.)] Z\,(tf)-l
= D (t,t) ) (54)
A | i Alt,)
where t,. is the time of rendezvous. If )‘(tr) is assumed to be zero (i.e., a fixed
attitude O"blt matching burn) the required primer vector rate at thrust cut-off

is given by

. ' -1 )
LR(tf) =@ L {_)_\_(tr) - CID11 é(tf)} (55)
where
D(t_,t) [?.li _:_ _CIf_l_Z:l
db;l : D22

All that remains is to determine A (tp). Recalling Equation (21), we
see that for an optimal trajéctbry the nﬁagnitudes of the primer vector at the
first thrust termination and at the beginning of the velocity matching burn must
be equal. The direction of the primer vector at the beginning of the velocity
matching burn must be approximately in the direction of the velocity-to-bé-

gained vector. Symbolically, e

e = M) [ -xe)] (56)
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where v . (t.) is the target velocity and v(t.) is the interceptors velocity at ren-

( dezvous. Hence, the three additional error quantitieé are
€nl -1
€ | =@ NMegd fxp(e) -t )= D Ae) p=A(t) (57)
12 | 11
€n3

Reference 3 describes a very simple and elegant way of computing
" the required state transition matrix which is valid for all orbits except the de-

generate rectilinear orbit.

3) Direct Ascent to Intercei)t——lntercept Time Specified
Direct-ascent-to-intercept is very similar to direct-ascent-to-

rendezvous just described. The principal difference is that no velocity matching

burn is performed at intercept. The required velocity for intercept v

R
puted in the same manner as for rendezvous but the transversality conditions

, is com-~

are not.

(/ ‘Recalling Equation (27), we have

A8 = A8y e 2y (58
This equation must hold at all points on the coast arc. If we choose the point at
intercept, the perturbation in position, 8r, must, by definition, be zero. Since
there is no constraint on velocity at intercept, the only way Equation (58) can be
satisfied is if A at intercept is also zero.

Equation (57) can now be rewritten for the intercept case and is

r b
€
nl -1 | . |
€| = - 03] o2} Z\_(tf) - L(tf) - | - (59)
12 11
h€n3‘
3.7 USE OF OP-EX FOR ORBITAL MANEUVERS

OP-EX has several attributes which make it ideally suitable for
guiding orbit maneuvers as well as ascent. Principal arr?iiiﬂg these is its ability

\“ : - Ty - i
(: to optimally perform large plane changes. In fact, the direct-ascent-to-rendezvous’
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option can be directly applied (except for minor changes in initialization) to all
intermediate burns and their subsequent coas;:'arcs. As has been shown pre-
viously, additional guidance options can be easily added without sacrificing the
optimal performance of OP-EX, V

In keeping with the QRGT mission planning policy, the time of ini-
tiation of each thrusting maneuver and the location and tiﬁle of the subsequent

thrusting maneuver are determined by the mission planner. Since the planner

" assumes impulsive changes in velocity, the actual time of engine ignition during

active guidance will be modified to make the nominal centroid time of the burn

correspond with the impulse time specified by the planner.

3.8 EFFECT ON OP-EX OF MEASUREMENT OF ENGINE PERFORM-
ANCE DURING ACTIVE GUIDANCE

OP-EX guidance relies on propulsion performance descriptions for
the various stages to extrapolate the trajectory forward to thrust termination.
In activfe guidance, variation of engine performance from that specified will
cause the extrapolated trajectory to be in error. \However, because the guidance
is "closed-loop'’ by design, (that is, the trajectory is recursively extrapolated
every ten seconds during early stages and more frequently in the final stage)
such performance variations do not seriously effect the satisfaction of guidance
objectives, but the fuel optimizing ability of OP-EX is haﬁdicapped (although
certainly not disastrously) by the variations, ' '

A '"mass-rate'' prediction scheme, which will be derived subse-
quently, was implemenfed for study purposés and was found to enhance the f:el
efficiency of OP-EX vguidance in the presence off-nominal engine performance.
The amount of AV saved, in every case, was a few ft/sec.

The "mass-rate”-predictor is formulated as follows: the theoret-

‘ical AV gained in stage j between the k and (k+1) predictions of OP-EX is (if

3

c* 1is constant)

~

M +M [t -t ]
. | by _
AV = c* log e 2 \,,,_,NJ X 1 J L ER AT (60)
, J €)M [+ M.t -t ]
| & ™ -l
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where Moj is initial mass, c*j is effective exhaust {relocity, tj 1 is time of
A v : h
ignition (a measured quantity) and Mj is estimated mass rate of the jth stage.

The measured AV' gained is appfoximate].y
LIr~4 A . -
AV' = afe ) - [wity ) - wit)] | (61)

where ﬁ(t) is the direction of thrust acceleration and w(t) is the velocity-meter

output vector at time t. Predicted average mass rate is then
- M . [1 - exp {-— AV'/C*,}]
oJ ’ J

[tk+1 'tj-l] ) { x tj-ll oxP {- AVI/C*J'}

~
M, =

3 (62)

ot

It can be seen from Equation (62) that errors in initial mass are
absorbed in the estimated mass rate.
If every last ounce of fuel is to be saved, perhaps a multistate filter

of the Kallman type could be uscd to estimate M Mj and c*j.

j:
3.9 : GROWTH CAPAERILITY FOR TREATMENT OF CONSTRAINTS

For some vehicles and missions, the flight guidance must satisfy
constraints other than the usual constraints on final position and velocity. Ex-
amples are (1) recovery-ceiling constraints and (2) requirements for a pre-
scribed attitude at cutoff, together with a low angular rate. The structure of
the OP-EX guidance algorithm facilitates the introduction of modifications to
make it‘capable of handling such constraints. The principal changes required
are (1) modification of the form of the control policy, in a way that introduces
new trajectory parameters, and (2) providing equations for computing new
error quantities which measure constraint violation. The explicit-predictor
algorithm of OP-EX can be used, witho’uﬁ change, to generate trial trajectories

by which the old and new error 'quantities can be evaluated for any given values

~of the old and new trajectory parameters.

Before active guidance begins, the on-board flight planner (using

“part of OP-EX as a subroutine) will genefate a feasible, optimized nominal tra-

jectory and so provide an initial set of values for the trajectory paramsters.
Some of these trajectory parameteré will remain ‘c'onsiaﬁt“fduring active guidance,
others will be iteratively adjusfed by OP-EX. For this purpose, the matrix of

/
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sensitivity coefficients must be enlarged by additional columns corresponding
to new error quantities, and additional rows for new trajectory parameters.
Since the matrix elements are evaluated by finite-difference methods, this en-
largement is straightforward.

Appropriate forms for the control-policy modifications can be de-
rived from optimal control theory. It is not necessary to implement the true
optimal solutions (which would require, in general, the computation of new
- adjoint variables) since it is generaliy not difficult to find simple approxima-
tions which give satisfactory performance.

For example, for the recovery-ceiling constraint, a preliminary
analysis indicates that a satisfactor§ scheme may be realizable as follows:A
the control pblicy is modified by introducing discontinuous changes of A andé\_
at a scheduled future time tg which is prior to the predicted cutoff but after the
latest time at which the recovery-ceiiing constraint might be active. These

changes are of the form

A
A

= k’b‘]_

=' kl';zy | (63)

1> 1>

where k is a parameter ‘to be iteratively adjustedvby QP-EX. The vectors b;
and b, are generated by thé flight planner, tdgether with the time tg, and are
not changed during active guidance. When the danger cf violating the recovery-
ceiling has passed (which will occur before time tg) the parameter k is set to
zero, restoring the normal control policy. At times irﬁmediately after this
switch-over, the rate of change of commanded thrust direction must be liﬁlited
to prevent undesirable transient behavior.

The problem of satisfying attitude .constraints at cutoff involves both
guidance and centrol. Optimal control theéry indicates that the optimal trajec-
tories consist of two arcs. On the first arc, which covers most of the trajectory,
the present OP-EX control policy is optimal, and constraints on angular rates
or angular acceplzerations have no direct influence, On the second arc, the atti-

_ tude control sy’stﬁem is working at maximum ey:vf’f‘ort to achieve the desire dfmal P

attitude and attitude rate. In an actual implementation, thes maximum-effort
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phase must be followed by a precision-control phase that tries to realize
accurate end conditions. A reasonable approach to the over-all problem is to
first consider the attitude-change maneuver .ats a separate optimization prob-
lem (intimately related to the autopilot design) and devise a quasi-optimal
policy (with margins for performance uncertainties) for achieving a given final
orientation with a low final angular rate. This gives a formula for the maneu-

ver~-time required, as a function of angle-to~be-turned-through, which is valid

when the initial angular rate is low. This formula (and approximate forms for

the angular rate profile during the mansuver) can be used in the explicit-
predictive algorithfh for generating pfedicted trajectories. When the attitude-
change maneuver begins, control of 'cutoff position will probably have to be re-
laxed. However, accurate control of both attitude kand velocity is possible by a
pdlicy which rapidly nulls the bcomponents of velocity-te-be-gained which are
normal to the desired final roll-axis direction, and controls the parallel com-

ponent by cutoff time.

3.10 SIMULATION RESULTS

The OP-EX guidance algorithm has been tested by simulation, using
the IBM-developed GISMO simulation program, with the following guidance
options: ' '

1) Direct ascent to intercept; initial ascent plane coincident

with target plane

2) Direct ascent to intercept; target plane rotated 40° from

initial ascent plane

3) Direct ascent to rendezvous; initial ascent plariie» coincident

with target plane

4) Direct ascent to rendezvous; initial ascent plane rotated 40°

- from térget plane

5) Insertion into circular orbit; no dog-leg during ascent
6) Insertion into circular orbit; 40° dog-leg during ascent
7) “Insertion into noncircular orbit (eccentricity 0.047) with

no dog-leg during ascent
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8) Insertion into ﬁoncircular orbit (eccentricity 0.047) with
40° dog-leg during ascent
. 9) Direct rendezvous from orbit; 40° plane change

10) Orbit insertion from orbit; 40° plane change.

In all cases, the Titan IIIC booster was used, Three payload options
were used for the various missions. A épherical Earth Model in GISMO was
used for all tests since gravity oblatness correction equations were not complete
at the time of testing.

 In every case the guidancé algorithm performed with aplomb. No

evidence of non convergence was indicated. The number of iterations for initial
convergence ranged from one for option4)tonine for option 1), This difference is
probably due to the fact that al_l ascent cases were initialized with the same
standard set of initial parameter values, and this set is closer to the requirements
for injection into a circular orbit than to those for intercépt. For all orbit-to-
orbit burns, the primer vector is initially aligned along the estimated velocity-to-
be-gained vecto: furnished by the mission planner. It is possible that this rule
(or an adaptation of it) should be followed for direct-ascent intercept cases also,

In all intercept or rendezvous cases, the error in position at the
specified time of intercept was less than 20 feet. In all orbit insertions, the
error in radial and out of plane position components was less than 20 feet, and the
error in velocity was less than 0.05 ft/sec. These errors were, of course, for
nominal engine performance and probably represent, to a high degree, the numeri-

cal resolution of the 7094 computer.

3.11 OP-EX MATH FLOW DIAGRAMS

Math flow diagrams of OP-EX guidance are presented in Figure III-1,

Table III.1 gives math flow symbol definitions, ’
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TableIIl-1
oé-EX GUIDANCE MATH FLOW‘
SYMBOL TABLE
Effective exhaust velocity of stage m
Eccentricity of specified orbit (option dependent)

Gravitational acceleration at beginning and end of trajectory
integration step

Gravity gradient matrix at to

Gravity gradient ﬁlatrix during integration
Initial stage index

Thrust integrals used during integration step
Newfon-Raphs on iteration count

Jacobian matrix of sensitivi.ty coefficients
nth column of Jacobian matrix
Newton-Raphson convergence control coefficient
Nominal initial mass of stage m

Estimated present mass of stage m

Nominal mass flow rate 'Qf stage m
Estimated mass flow rate of stage m
Nominal fuel mass in present stage

Present sta.ge index

Final stage index

Unit vector normal to specified orbital plane (option
dependent) '




U 4>

g

min

AIII-35

- Table IlI-1. OP-EX Guidance Math Flow Symbol

Table (continued) T

Unit vector along desired body-fixed roll axis
Present value of performance indicator
Last value of performance indicator

Required value of performance indicator for successful
convergence

Unit vector along desired body-fixed pitch axis

Position vector at t
o
Gravitational acceleration contribution tc position vector

Thrust acceleration contribution to position vector
Positidn vector at tco

Position vector at intercept or rendezvous {coption dependent)
Specified perigee position vector (option depeéndent)
Semilatus rectum of specified orbit {option dependént)
Present time

Time at étart of trajectory generétion

Present predicted time of thrust termination

Last predicted time of thrust termination

Nominal burning time of stage m

Estimated remaining burning time ;)f stage m
Estimated time at end of stage m

Time of last guidance iteration

Time of intercept or rendezvous (option dependent)
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Table III-1. OP-EX Guidance Math Flow Symbol

Table (continued)

Time at midpoint of trajectory integration step
Time at beginning of present stage -

Running time during trajectory integration
Steering vector at to

Steering vectors at begirning, midpoint and end of trajectory
integration step

Velocity vector at to

Gravitational acceleration contribution te velocity vector
Thrust acceleration contribution to velocity vector
Velocity vector at tco

Target velocity at rendénzvous (opticn dependent)
Interceptor velocity at intercept (option dependent)
Specified perigee velocity vector (optiozi dependent)
Required velocity (option dependent)

Present velocity meter output

Last velocity meter output

Weighting factors for performance invdicatorbcomputation

Coefficients of parabolic approximation of steering vector
over one trajectory integration step

Correction to estimated time of thrust termination

Correction to estimated initial primer vector
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Table III-1. OP-EX Guidance Math Flow Symbol

Table (continued)

Trajectory integration time step
Maximum trajectory integration time step
Perturbation value for tco
Velocity meter increment added since last guidance iteration
Perturbaition value for components of_i\o

Error quantities for unperturbed ;crajectory

Error quantities f’or perturbed trajectories

True anomaly in specified orbitail piane (option dependent)
Estimated primer vector at to

Primer vector at tco

Last‘ estimated primer vector at to

Primer vector at midpoint of trajectory integration step
Gravitational coefficient of spherical Earth model

"defined by equation'

""defined by equation'

State transition matrix relating state at t, to state at 1:i
(option dependent) B

Three-by-three partition of state transaction matrix
- (option dependent)
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Appendix IV

DIRECT SEARCH OPTIMIZATION PROGRAM "DSOP"

1. INTRODUCTION
A FORTRAN IV program named DSOP (Direct Search Optimization
Program) has been developed for the experimental study of optimization algor-

ithms and their application to mission planning in the QRGT study. DSOPF finds

" a local minimum of any given function of a set of independent variables, sub-

ject to a given set of constraints. Explicit constraints (bounds on the independent
variables) are handled diréctly. Morec general constraints are treaied by the
penalty~function method, |

As the name implies, the optimization algorithms of DSOP are of
the '"direct search' type; that is, they make no use of analytical derivatives.

A test problem (or any problem to which DSOP is applied) is therefore com-
pletely'defined by equations for evaluating the function to be minimized and the
constraint functions (if any). No equations for partial derivatives of these
functions are required. This characteristic is highly desirable in an optimizer
designed for use oﬁ-board a spacecraft, since it greatly reduces the number of
routines that must be provided if there are a large number of different optimi-
zation problems which may require solution., ‘Also, it makes the optimizer
applicable to problems where analytic derivatives would be difficult or expen-
sive to generate, and improves flexibility by simplifying the specification of
new problems for optimization and the modification of existing ones to accom-
modate changes in mission objectives and/or constraints, etc.

DSOP consists of a main program and ten subroutines. This struc-
ture facilitates experimentation since the interconnection of the subroutines can
easily be changed. The structure of MAIN is described in Paragraph 2.

The two principal search methods used are PMS (Pattern Move
Search) and VA04A (Powell's method). PMS is a modification of the direct
search technique develooed by Hook and Jeeves (Ref, i). VAOQ04A is describéd
in Powell's 1964 paper (Ref., 2). PMS, VA04A, and the other search methods

used are described in Paragraphs 3 and 4 of this Appendix.
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Results of this optimization experiments on test functions are pre-
sented in Pafagraph 5. For the experiments without constraints, Powell's
method (VAQ4A) gave the best performance. Experiments using penalty func-
tions to enforce constraints were successful with PMS, but relatively unsuc-
cessful with VA04A, The reasons for this are not fully understood at present.

This report emphasizes:

a) How to use DSOP

b) Block diagrams and listings for better understanding of DSOP

so that future improvements can be easily implemented

c) Results obtained on certain test problems

The following paragraph.s discuss the above mentioned iterns in
more detail. The 7094 FORTRAN IV program listings are given in Paragraph 6.
A list of references, with emphasis on those used in the work in this report,
is given in Paragraph 7. For theoretical background, the reader is referred to
these references. Many further references on direct search techniques are given

in the referenced papers.

2. MAIN PROGRAM
The primary functions performed in the MAIN program are:
a) Input-Output
b) Selection of Type of Search
c) Pattern Search Logic

d) Penalty Function Cycling

A block diagram of the MAIN program is shown in Figure IV-1, Table IV-1

is a General Symbol Table which explains the most used symbols. Table IV-2 con-
tains the symbols used in VAO4A and such key symbols as U, P etc. The under-
iined symbols are vectors, eaéh with the dimension N, Where N is the number
of independent variables. |

The first operation performed by MAIN is initialization and card
reading. The formats for the input cards can be obtained from the listing in

Paragraph 6. ' s
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(_ Initialize lAH Others Minute|Improvement Test PenaltﬂFunction Information
11
Set Parameters 1 43
PA~-PE+BIAS _
& LC's = 0. 12 CALL EXPLOR IPE}NF— IPENF+1
+,0 - Write P, F, INFO,
Read Data Cardsl i IFIN - 0 CALL OBJECT
LC4 WRITE P, F, INFO,
#1 L,C,'s #2 LCPF = 2
#2 & #3 Parameters 1D, Search il UB =U_
#4 to Argument Vectors 15 ALL ONEDS PB - PA IFIN -5. DELF = F
& Associated PB = PF UB : 'EJ'A yan "
#(4+N) Parameters UB = UF —_— = l
g il [P i [ |
TFIN - IFINt1 1 :
64 : 14 XCOUNT = XCOUNT +1 BVBS = BVB - gal‘:ulé}te & Write
Write Headings & IF(XCOUNT COUNT) U = UE+K5- (UA-UE) SEARCH xecution Time
all inputs OR(LC3 <0) GO TO 44 CALL BOUNDU CONVERGED Penalty|Function Cycle Test
' ’ CALL OBJECT BIAS
Initialize l 55 UE =-Ua CONTROL (IPENF -IPENFK)
U (N+1—10 = 0 UB =1U
IF (LC5 = 3) Initialize in OBJECT | Pattern Search PE - PA, f B-P 0, + Sta.rthext Cycle
( U-1UB " 17T UE - uB Go To 64
C EALLUBOUND *LCII*H: 5 1.C6-2 Plot ?
UB = —— ' IFIN=0 #0 0
CALL OBJEC l l l L.C7
PB =P 20 31 0,- ¢+
Write Initial PB LC1 =1 CALL EXPLOR CALL UNIVAR
STF = MINC ‘ l Call PLOTOP
LC6 l
Selects Search|Method
oo l g2 2 B! 32 lAdditional Data Sets?
LC4 CALL EXPLOR| 24 |CALL UNIVAR XCOUNT - COUNT
o Go To 11
5 4| |3 ! ¢ l' * l
251" L cconv 91
2 3 PA - PE COUNT EXCEEDED
Accelerated r
Powel]'s'Method ¢ Convergence l Go To 43 +, 0
CALL VAO4A UB = UA CALL UNIVAR J 22 1
Go To 43 STE = STQ LCI = -1 PB = PE Go To 21
0 PB = PA BVB = BVBS
IF(LCCONY = 2) Go To 43 UB = UE
52 Go To 20

Figure IV -1 Block Diagram of Main Program for DSOP
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GENERAL SYMBOL TABLE

Programs
Where Used

MAIN

UNIVAR,
EXPLOR

UNIVAR

MAIN
OBJECT

MAIN

- MAIN

MAIN

EXPLOR

. EXPLOR

EXPLOR
EXPLOR .

MAIN

UNIVAR

SUCCES,

MAIN
VAOQ4A

SUCCES,
MAIN

Table IV -1

Definition
Controls minute improvement exit test.

Input specifying if U compounents are to
be fixed or varied.

Records which U components are at
bounds. ' '

Storage vector for BVB.
Intermediate quantity used in PFV.

Counter used in minute improvement
exit test.

Penalty function cycle counter.

Number of penalty function cycles to be
tried. '

STF Parameter. 1/2N<K1 <1/N.
STE _.Parametex;.

Success STE Parameter K3 > 1.

Parameter controlling interpolatorv step.

Parameter controlling Pattern Move
step size. ’

STE Parameter.

‘Specifies state of convergence for last
_ iteration.

Controls retaining W for multiple cycles.

Contrcls exit on failure to reduce P.
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Table IV-1, General Symbol Table (continued)

NEWB

FORTRAN Programs
Symbol Where Used Definition
LC3 SUCCES, Controls exit for converged.
EXPLOR,
UNIVAR
LC4 MAIN Type of basic search.
LC5 OBJECT Selects an objective function.
LC6 MAIN Selects UNIVAR or EMR for Pattern
Move.
LC7 MAIN Selects plotting for Pattern Move.
LC8 "UNIVAR Selects New Block Search.
LC11 Not used.
LCl12 UNIVAR Controls entry to quadratic fit.
LCl14 OBJECT Controls initialization for orbit trans-
fer O.F.
LC15 OBJECT Controls printout of objective function
title.
LC17 OBJECT Controls initialization for Test Problem
' #1. ‘
MINC UNIVAR, Minimum magnitude for stepsize in the
EXPLOR, U coordinates. (Also see Table 2).
VAO4A ' '
NPT SUCCES Counter for points to be plotted.
OCOUNT OBJECT - Objective function evaluation count.
OFV OBJECT Cbjective function value using penalty
functions. ' '
PA, PB UNIVAR, Remembered pasf values of P,
EXPLOR, '
MAIN,




FORTRAN

Sme ol

PC

PE

PF
PFEFV

PT

PEFCON

STE

STF

STG

SUM

Table IV -1

Programs
Where Used

ONEDS

MAIN

ONEDS
OBJECT
EXPLOR,
UNIVAR,
NEWB
OBJECT
EXPLOR
EXPLOR,
NEWB
NEWB
EXPLOR
EXPLOR,
ONEDS,
MAIN,
NEWB

EXPLOR,

- ONEDS,

MAIN,
NEWB

MAIN

ONEDS
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General Symbol Table (continued)

Definition
Remembered past value of P.

Remembered value of PA for Pattern
Mcve.

F'inal iteration value for P.
Penalty function value.

Remembered past value of P.

Penalty function par ameter.

Vector used in generating "'steps"
which change U.

Vector used in generating interpolatory
step.

.5 (UA - UB) calculation for STF.
Used in interpolatory step decision.

The ''advance-point'' - the best point
found to date during the current ex-
ploration.

'""Base point'" (from which) exploratory
moves begin. B

Remembered values of UA in pattern
search.

Final iteration values for UA.




FORTRAN
Symbol

uT

UMAX

. UMIN

XCOUNT
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; Table IV-1 General Symbol Table (coﬁtinued)

Programs :
Where Used - Definition
NEWB Used for UB storage.
UNIVAR Input upper bounds for U components.
UNIVAR Input lower bounds for U components.
MAIN - Counter for.number of UNIVAR or EMR

iterations.




FORTRAN Math( 1
Symbol  Symbol

A

T AAA

B

COUNT MAXIT

D d

DA a

DACC

DB b

DC c

DD D

DDMAG

DDMAX

Table IV -2
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- SYMBOL TABLE FOR VA04A

Definiticn

Intermediate qty.
used in D & DD

Convergence
Control Parameter

Intermediate qty.
used in D & DD

No. of iterations
allowed

L.S. Increment
Parameter

Direction Increment
from DB to FA
Coordinate

L.S. Parameter for
Absolute Accuracy
Cutoff

Midpoint for Quadratic
Fits

Direction Increment
from DB to FC
Coordinate

Change of D at current
step & 264 derivative
estimate

Used in DMAG
‘Calculation

Ten Times DMAG

(1) From Reference 5

Statement Sequence Numbers

Where Set in VA04A Listing

111
187, 192, 200, 206, 269
112

Fixed, Input, 237

oy
-~
N

43, 60, 73, 108, 141,

47, 71, 96, 100, 105, 115, 132
37

66, 69, 92, 107, 117, 134

90, 100

48, 142, 168

5, 84, 195, 227, 235

80, 83. 86, 103
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Table IV-2 Symbol Table for VA04A (continued)

FORTRAN Math.
Symbol Symbol

DI

DL

DMAG
DMAX
ESCALE
FA £
FB £
FC f
FHOLD

FI

FKEEP

FP

. FPREV

Definition

Used in Absolute &
Relative Accuracy
Tests

Liast Value of D

Maximum Allowed
Step Size

Used in DMAG
Calculation

Limits Max. Change
of Variables

P value at an end
point in l.s.

P value at midpoint
in 1.s.

‘ P value at an end

point in 1l.s.

Value of F after N
l.s. & before s.
in new direction

Intermediate min.
P seiting

Value of F at pi‘evious'

convergence, used in
complex convergence
procedure when
ICON = 2.

Value of P at beginning

of iteration

Value of P at beginning

of l.s.

Statement Sequence Numbers
Where Set in VA04A Listing

120, 123

42, 49, 102

38, 39

36

Fixed Input, 5, 6, 18

46, 70, 95, 99, 104, 114, 131

65, 68, 91, 106, 116, 133

89, 109
161
121, 124

25, 224, 252

27, 248, 251

156, 157
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Table IV-2 Symbol Table for VA04A (continued)

FORTRAN Math Statement Se quence Numbers

Symbol Symbol Definition Where Set in VA04A Listing
ICON Controls restart for Fixed Input, 214

accuracy test

IDIRN Index for s. Direction 34, 146, 183
Comporents in W.

ILINE Index for s. Direction 25, 199, 197

IND A control integer used 11, 215, 233
when ICON = 2

INN A control integer used 12, 217, 267
‘when ICON = 2

IPRINT A parameter con- Fixed Input, 150
' trolling printing

IS Controls Search Mode 77, 79, 82, 136, 138, 162,
' 45
ISGRAD 2 for lst iteratien, 23, 235

1 thereafter

ITERC Count of iterations 22, 236

ITONE o New direction control 26, 126, 184

IXP Index for W (N + !) - 29, 31, 163, 165, 186, 189,
components 199, 203, 253, 255

J Controls integration 174

of new direction

JIL m Value of ILINE for 158, 247, 250, 264
max. SUM
2

JJ N~ + N Index for new 7
' direction components

337 JT+N Index for W (N +2) 8, 243
components ’ ‘



Table IV-2 Symbol Table for VA04A (continued)

FORTRAN Math
Symbol Symbol

K

MING E

N n

NFCC

P F = f(p)

SCER

SUM A

i) P

W(o) (2)

wip @ £l fn

E(N-l-l)(z) pn - po

w(N +2)3)

Definition

A paramet‘er for DO

loops
E(I) specifies

required accuracy
of Ith argument

Dimensionality of
space

Count of Function
Evaluations

P(U) - the {function
to be minimized

f(ESCALE) used in
calculating DACC

Max [FPREV - P]
ILINE 1-—-N

N - component
argument vector

Holds direction
scaling variables

N stored éear ch
directions

U from iteration or

new search direction

Terminal point of a

previous convergence

when ICON = 2

Statement Sequence

AIv-11

Numbers

Where Set in VA04A Listing

9, 19, 50, 53, 178,
218, 220, 256

185, 193,

Fixed Input, 1€, 205, 206

Fixed Input

56, 225

55, 140, 201, 225, 241

6, 37

28, 157

18, 148, 196
17, 145, 190

32, 166

(2) For notation simplicity write: W(I, J) = W(N J+I) where 1< ISAN
and W(J) = [W(L, ), W(2, J),...W(N, J)]

52, 144, 204, 222, 261
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As shown in Figure IV-l,. the program input LLC4 selects the search
procedure to be used. .Setting L.C4 = 5 selects VAO4A., L.C4 = 4 selects Accel-
erated Convergence, L.LC4 = 3 selects PMS, LC4 = 2 selects EXPLOR with
ONEDS, and L.C4 = 1 selects EXPLOR alone. Additional options can easily be
added. All of these search procedufes are subroutinés except PMS and Accel-
erated Convergence, which are built into MAIN, The operation of PMS will be
explained in the next section. PMS is not a self-contained optimization algor-

'"" subroutine which performs a restricted

_ ithm; it requires an "exploratory
local search about a given point. The two exploratory subroutines presently
included in DSOP are EMR (F‘xploratory Move Routine) and UNIVAR. EMR is
modeled after the exploratory subrou‘cl ne used by Hook and Jeeves (Ref. 1).
UNIVAR is similar to part of a published optimization algorithm called BEST
UNIVAR (Ref. 3 ). These subroutines are described in Paragraph 4. '"Accel-
erated Convergence'' was an experimental procedure combining a modified
UNIVAR (produced by setting program input L.C8 positive) with a special sub-
routine called NEWB. The Accelerated Convergence method, which was an |
attempt to incorporate part of Powell's method into UNIVAR, produced gen-
erally favorable results in experlments with test functions (see Table IV -3 and
Paragraph 5) but has been superseded by VA04A,

PMS and UNIVAR incorporate logic for enforcing upper and lower
limits on each componént of the argument vector. The other search algorithms
do not include any provisions for constraints. Howex}er, regardless of the
search algorithm selected, MAIN provides means for handling general con-
straints by use of penalty functions. In the penalty-function method, the ob-
jective function is modified by adding extra terms which depend on the con-
straints. This enables a constrained minimization problem to be solved {ap-
proximately) by a sequence of unconstrained minimizations. Each cycle of the
sequence consists of an unconstrained minimization of the modified objective
function, followed by an adjustment of.the coefficients in the penalty terms.

In the vusual form of the penalty function method, these coefficients are scale

factors which are 1ncreased each cycle. DSOr experlruer'ts have been made

with a more 50ph13t1cated schpme,' in Wthh the penalty terms include bias
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TABLE OF THE NUMBER OF OBJECTIVE FUNCTION
EVALUATIONS FOR SEVERAL D.S. SCHEMES AND TEST

FUNCTIONS
: Powell's VAQ4A
Pattern ESCALE = 1000.
Accel-~ Move ICON =2
erated With-

Test Conver- | With Out MINC MINC

Function LC5 Point of gence New | New equals equals
(Starting Value) | Value | Recording Test |Block| Block .005 .05
Quadratic 1 N.A;(” 21, 74, | 111, 16. 5.
(0, 1) C. 212, 305, 152. 34, 13,
CUBE 2 N.A.(l) 183. 451, 247, 45, 7.
(0, 1) C. 368. 544, | 247. 120. 14,
Colville's 6 N.a, 1039. | 8l4. 183.
T.P. #4 C. 1235, 944, 330.
("3: "1: "'3: "1)

. (2)
Colville's 7 N.A. 555, 3075. 333,
T.P. #1 C. (PFCON=
(o, 0, 0, 0, 1) 1000.)

1 cycle only

. N.A. - Near Answer
"~ C. - Cutoff Point
1y -

(2)

error (also ICON = 1),

Under .5% error in each component (. 0005 for 0. minimum)
Objective function value close to correct value but coordinates in
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coefficients that are adjusted each cycle, in a manner designed to give rapid
convergence to the constrained minimum.

Figure IV-lshows the logic which handles penalty function cycling.
Each cycle, the hopefully improved values of Uand F are stored in UB and
DELE and the flow is routed to block 64 to start the next cycle. OBJECT is
called again in block 43 because the last computed penalty function values may

not correspond to the best obtained values of U. The input IPENFK controls

. the number of cycles. This automatic cycling has only been used on Test

Problem #1 but it could easily be generalized for use with most objective func-
tions with implicit constraints.

The mathematical form,jof the penalty funciion calculation for Test
Problem i1 in OBJECT originally was:

P=P + PFCON 2 f‘Z (E. + AE))
o.f. i i i

where: f(x) = min (o0, x)

AEi = o for lst cycle

and the summation on i goes over i = 3, 4, 5, 6, 9 only since it can easily be
shown that the others need not be considered. At the end of the convergence

cycle, set Ei = f(E;) using the converged U values and start the next cycle.

However, recent tests have indicated that only i = 5 and 6 were active for

VAO04A trials on T.P. #1, and OBJECT reflects this. Manual cycling was used

with the Penalty Function Test function shown in Figure IV -6.

3. PATTERN MOVE SEARCH (PMS)

The basic logic of Pattern Move Search is shown in Figure IV-2, and its
detailed logic shown in Figure IV-1. The program makes use of an exploratory
subroutine, which operates in two different fnodes. The exploratory subroutine
starts at a given base point UB, and makes exploratory moves, aczording to

built-in rules, in a search for a smaller value of P. The output of the explorétory




Start
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A

Exploratéry
Subroutines
(Mode +)
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¢

\ 4
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Point, Then
Make
Pattern
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l

Explorator*,;
Subroutine
(Mode =)

/

Figure IV-2 Basic Logic of PMS
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subroutine is an "advance point'" UA and function value PA, with PA # PB if the
search succeeds, and with PA = PB, UA = UB if it fails. In '"Mode Plus', the
subroutine keeps trying, varying step sizes and/or other search parameters,
until it either succeeds, or concludes that PMS has converged to a solution.

In "Mode Minus'", the subroutine stops after one run fhrough its exploration
sequence, regardless of success or failure. |

Pattern Move Search proceeds by generating a sequence of accepted

base points, each of which gives a lower function value than the previous one.

A "pattern move' generates a tentative new base point by displacing the newest

accepted base point by a vector equal to {or proportioﬁal to) the difference be-

tween the newest and next-newest aécepted base points. The tentative new base
pbint is improved by use of the exploratory subroutine {in '""Mode Minus'') and
the result tested to see if it is an improvement. If so, it becomes the newest
accepted base point, and the cycle repeats. If it is not an improvement, i.e.,
if the pattern move {together with its associated local exploration) is a failure,
the program returns to the newest accepted base point (UE) and executes the
exploratory subroutine in '"Mode Plus', If this fails, the search ends. If it
succeeds, the output and input of the subroutine become the newest and next-
newest accepted base points respectively. |

A special merit of Pattern Move Search is that the tentative new
base point generated by a pattern move is not tested for success until after an

attempt has been made to improve it by a local exploration, This means that

‘Pattern Move Search can follow a curving valley; even if a pattern move misses

the valley floor and hence gives a high function value, the subsequent explcra-
tion sequence may find the valley again, so the over-all move is a success..
Sea.rch programs which always reject points that do not show an immediate
improvement will sometimes be much less efficient than Pattern Move Search.
(Sometimes they ma.y'be more efficient; persistence is not always a virtue.)
Most of the logic in Figure IV-1 can be understood from the pre-
vious discussion, and comparing with Figure IV-2., FORTRAN reference num-
bers to the left of the blocks are ;usec’gk’in the follewing discussion. LCCONYV is

a branching control quantity set by the exploratory subroutine in subroutine

*
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SUCCES, and subsequently tested by PMS to decide whether to continue or to
tferminate the search. Another possible termination of the search is by the
Minute Improvement Test, which counts the number of consecutive iterations
that have failed to improve the function value by amounts above a given thresh-
old, named BIAS. A third mode of termination occurs if the number of explora-
tory moves, XCOUNT, exceeds a given limit, COUNT.

Block 17 is initialization. Block 27 saves the newest accepted base
. point (labeling it UE) and performs a pattern move. The coefficient Kg in Block
27 is currently set at K5 = 2. By choosing Kg greater than 2, the lengths of a
sequence of pattern moves can be made to grow more rapidly, but with increased
probability of failure. Block 22 reé%:ores the saved base point after failure of
the pattern move. The vector BVB, which remembers which components of
the argument vector are at their bounds (and hence requires different treatment
in the exploratory subroutine) is saved and restored along with UE., The opera-
tion denoted by BOUND U, in Blocks 55 and 27, is a subroutine that examines
each component of U to see if it exceeds the prescribed upper or lower bound.
If so, U(I) is set equal to whichever bound was violated, and _B_\_/'_B is changed
accordingly. |

Pattern Move Search provides a very general framework into which
almost any type of optimization algorithm can be fitted as an exploratory sub-
routine, with minimal changes in PMS itself. For example, if it should be de-
cided to modify the optimizer so it can handle general sets of equality and/or
inéquality constraints, this could be done by developing a new exploratory sub-
routine with the desired capabilities. The anly changeé required in PMS itself
would be (2) replacing BOUNDU with a more elaborate oéeration which enforces,
or approximately enforces, all active constraints, by projecting the search
point onto constraint surfaces, and (b) saving and restoring information that
remembers which constraints are active; this requires an extension of the
BVB vector. |

The PMS program and its associated subroutines were first de-
signed for minimization without constraints, and modified until‘they accom- -

plished this reliably and moderately efficiently on a set of test problems.
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From these eﬁcperiments, UNIVAR appeared to be a better ''valley-follower"
( than EMR and was therefore selected for further development. PMS and UNIVAR
V\.rere modified to provide for the enforcemenf of specified upper and lower bounds
for each component of the argument vector. Also, PMS was modified to incor-
porate an improved stopping rule (the "Minute Improvement Test''). EMR was
not modified, but EMR and the original version of UNIVAR are still usable for

problems where argument bounds are absent, or do not affect the solution.

© 4. SUBROUTINES
The ten subroutines and their intefrelationships are indicated in Fig-
ure IV-3. The arrows indicate which subroutines are called by each individual
subroutine. The subroutines are di.vided into two groups: the primary search
techniques, and accessory subroutines which accomplish smaller tasks. The
subroutine OBJECT evaluates the objective function, and therefore is used by

all the search programs. Block diagrams of the key subroutines are included

in Figures IV-4. IV-5 and IV -T7.

( 4.1 VA04A (POWELL'S METHOD)

Powell's method is what is known as a '"conjugate direction' method.
It proceeds by a sequence of one-dimensional searches. The search directions
arc—; chosen in a manner which will find the exact minimum of a quadratic func-
tion of n variables with continuous second deri\fati.ves, in a finite ﬂurnber of
steps. For functions which are not quadratic, but can be approximated by
quadratic functions in the neighborhood of the mixﬁmum, rapid convergence
may be expected. VAO04A has no provisions for handling constraints except by
| penalty functions. - .

A detailed flow diagram of VA04A, as defined by Powell's unpub-
lished program listing (Ref. 4) is given in Figure IV -4, The principal symbols
are listed in Table IV-2. To understand the program logic, which is fairly com-
plex, Figure IV-4 and Table IV-2 should be studied together with Powell's paper
(Ref. 2 ) which explalns the principles behind his program. The basic operating

cycle of VAO4A has been concisely described in a review paper bv lgfsé}}er |

= N P R

(Ref '5) who presents it in pseudo - ALGOL notation as:

y: = x5

1 step 1 until N do MIN(i);

for 1i:
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Accessory
Subroutines

l

2
ONEDS | SETQ |
3,4
o UNIVAR
SUCCES
1;2,3
FXPLOR
Any
-
> VAO4A
An ,
Y BOUNDU
1,2,3,4

. Figure IV-3

¥

L e
s

Interconnection of Subroutines

PLOTOP (LCT7+)

4

PLOTTING
SUBROUTINES
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Figure IV-4 Block Diagram of M, J,D, Powell's Direct Search Optimization Subroutine "VAO4A '

@ ITONE=1 DMAX:W(ILINE) Dl-1.
( Initialize Working Storage SUM=0 DMAG=MIN [DDMAG, 1. DMAX] @ U=UtDD- W (K=+N) | paspp
DDMAG=, 1- ESCALE W (1—=N)=ESCALE Initial P IXP=JJ DMAX=MAX [DMAG, 20e DACC] | {pp-D-DL|_, EVALUATE P DA--1.
SCER;. 05/ESCALE W [(N + 1) +every N+1] = Evaluate P W (IXP+1=IXP+1+N) ®IDDMAX = 10. DMAG DL=D NFCC=NFCC+1 FB=FHOLD
T7-NZ N ol ie S gy S IF (ITONE=3) GO TO 71 GO Tof10, 11, 12 DB-0:, D=1
JJJ=JJ +N ITERC=1 IDIRN=N+1 DL=0+ D=DMAG, FPREV=P 13,14,96) , IS 1
K=N+1 ISGRAD=2 ILINE=1 IS=5, FA=P, DA=DL FC=P,DC=D
NFCC=1 Bl
_ Later Test For MAX, MOVE SET UP MAX Move @
IND=1 Iterations @ @ -, 0 @
INN=1 ¢ D=DB+SIGN (DB-DA). |[DDMAX P-FB |— —{ P-FP
- - p-.s DA*E?'](DFBA'FB) s . |s=t To.- T ® A-(DB-DC)- (FA-FC)
FB-FA | SGRAD o b -DB| -DDMAX [ DDMAX=2, DDMAX B=(DC-DA)* (FB-FC)
A DBE-DA 1S=4 - - DDMAG=2.DDMAG GO TO 23 FA-P,DA=L P-.FB
8= 21st  |pa-p] - [p-DB [DDMAG-DMAX] GO TO 30
FA=P iteration) ‘ 10, + 1- GO TO C
DA:D D:Z. DB—DA l0’+ loi_ iO’ - L+
15=1 GO TO 8 GO TO 8 GO TO 8 DDMAX=DMAX FC=FB,DC=DB | |GO TO 10 co
@GOTOS GO TO 8 ! b-ra {FB-Pl» 70
QUADRATIC MINIMUM If within 3% of last move, FB=P, DB=D FA=FB - DB=D B
C|(A+B). (DA-DC) D= 5 A.(DB+DC)+B. (DA+DC 12 . Don't Repeat Prediction GO TO 30 *1 pa-DB [¢
10, - . A+B 0 ITONE [~ |D-DI| DACC —-D'I_D-DI]-. 03+ |D| Og GoTos
FA-FB, DA-DB DI=DB, FI=FB 10, - ‘ 9% -y Go TO 41 IDFDMAX D=2D
FB-FC) 3 + GO TO 8
FB=FC, DB=DC g GO TO 41 0.+
' - ®
« GOTO 26 DI-DC, FI-EC ITONE=2 (DA-DC)- (DC-D) | IS=2 —¥(DB-D)- (D-DC) GO TO 8 MAX, CHANGE
~ Prediction of 2" derivative Discard A-Prediction Repeated ¢- o DOESN'T ALTER
P-FI, D=DI - DL 0 WWRITE ITERC FPREW-P-SU IDIRN-JJ] |0, 4 [FA=F B,DA=DB, FB:pc‘.El 1S=3 FUNCTION
DD=A/(DC-DB)(DC -DA){DA-DB)/(A+B NFCC, P, U {0.4, 0.+ l+ DB=DC GO TO 25 GO TO 8
]
g =U+ D _W_(IDIRN""'N) SUM=FPREV-P IND Compute New Direction EXIT
W (IDIRN=+N)=DD. W(IDIRN=+N) IL=1LINE FHOLD=P FP-P  |——» D=2 EP+P-2: FHOLD
W (ILINE)= WILINE)/DD 1 GoTos 1 |1S=6, IXP=JJ To ' (FP-P)2
IDIRN= IDIRN+N GO TO 53], T PlW (IXP+1 +N)=U =W (IXP+l=+N ) 2 (D (FP-FHOLD-SUM)2-SUM
ILINE=ILINE+1 (IPRINT-1) — ITONE 2 DD=1., GO TO 58 GO TO 37 To.s
- : . 2 : GO TO 37
Shift in New Direction IND -
IDIRN-IDIRN-N @ RESTORE I-J- and Choose AAA For Largest Direction Change 1 L @ 2 v+ GO
ITONE=3, K=IDIRN IéfPatTJJ. AVJ;PZ;C;.P. 1P= FHI\?)LD |:&AA=A§§;)}(1.+DI - IND oTosg|J=JIL N+1; (OJ-JJ) »z?
IXP=JJ, AAA=O, U = U - +1 -+ -,
— - W (IX P+ l=+N) onvergence .
W(K=+N) = W {JJ + 1=+N) IF (AAA|MINC(I)|-|W(IX P+1 =+N)|)<0, AAA= | MINC () y2 1 o Normal g Shift Down
W (K =+N)p ) lco TO 106] GO TO 50 AAA-1 W_(J-N=JJ-N)=W (J=JJ)
IF [AAA>|—--—-_-_-————”0. AAA= EQUIVALENCE TABLE — W (JIL-1—=+N)=WJIL=+N
E {1 =+N) W(K=t] =
E'(T_} EQUIVALENCE IND-=1 ITERATIONS Doll3 I=1,N
E (I =+N) U = X OMPLETED - r GO TO 62
W(N)= ESCALE/AAA GO TO 7 ‘ —_— = DDMAG=, 43/FP-P ‘ 3 K=IXP+N —®GO TO D
PoF ISGRAD-1 JILY)
( T P=-FKEEP | ] > -
| INN=2,K=JJJ EVALUATE P vt AAA.
_ : GO TO 78 P)=W IXP)=X(I 1
p| ¥ (Kl =+N)=U | INFCC=NFCC+1 ITERC-ITERC+] | | [G_rREED GO TO 78] |+ [ W(IXP)=W(K} w((n—w)(x)( ) 5o l+
U = U +10.-MINC [™bDMmAG=o0, ACCURACY (ITERC-COUNT) X=W (JIT+1=+N)|  [ii=2 = EXIT
FKEEP=P GO TO 108 LIMITED BYl— pyrr §-,0 e FP=P - - — J1L=2 INN=1
ERRORS IN P [Goros EXIT ({0)|P-FKEEP 113 GO TO 92 GO TO 35




PA = PB
U COUNT = 0
LC1
[ [-»0
'
STF = STG
!

0
' Lcs - -2 ? STE(I) = K11 STE(I)
U =UB LCl12 = -2
Start Inner| Loop (I = 1= N)
8 .
J ? UT =U(I)
ts = U(I) =U(I) + STE(I)
BVB(I) }—» -
BVA(I) (1) cl2 =2 DEL = UMING) - UQ)
! |- 1,0
LC1 l
- +,0 DEL= UMAX(I) - U(I) 94
Y DEL U(I) = UMIN(I)
- + IR DT = MINC(I)
UT = U(I) - 43
U(I) = U(I)STE(I) E(I)_- UMAX(I]
CALL OBJECT T = MINC(I)
(P-PA) 1
+,0 i- 95
’ CALL OBJECT CALL OBJECT
GO TO 99 BVB(I)=0.]%¢ |(P-PA) (P-PA
i‘ - i:, 0 +, 0 l—
87 PT=PA DELI1=U(I)-UT 92 pa=p
PA=P [}(I)ZUT BVB(I) = ]
DEL2=STE(I) l STE(I) = 4, * DT
Go to 90 Go to 29
LCI12
+, 0 -
PT=P
STE(I)=-STE(I)
DEL2=DELI —
Go to 90

Figure IV-5 Block Diagram of UNIVAR Subroutine

Quadratic Fit

98
PMPA = P-PA
PTMPA = PT-PA
E = - PMPA « DELl2 . PTMPA}

QSI

DEL2 -« PMPA + DEL]l . PTMPA

U(I) = U(I) = E
CALL OBJECT
STE(I) = STE(I)/K11
(P-PA)

Inner Loop

_l +,0
"IMpa-p STE(1) =STE(1)/2]| "’
U(l) =UT
72 T
DEL =|STE(I)| -~ MINC(I)
I+ 2
LL.C3 =2 STE(I)=STE(I) MING(I)

l

|sTE(I)|

If (1<N) Go to 29

f

Finished
ua -U_|,
(LC38)
0, -

1

51
lcALL NEWB

LCCONV=0 32
CALL SUCCES
LCCONV

#4

 —

Return

14

Go to 9

A IY -2I
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FUNCTION L.C5s TEST OBJECTIVE FUNCTION
SETTING P
Quadratic 1 uiz + 50, = uZZ
3.2 2 2
C 3 X - (u_ - : ¢ * - + PR
the 2 100, ¢ 58y o+ (1 U y+ 10 g
Orbit Transfer 3 ’Lengthy Evaluaticn
2 i 3
Sharp Valley 4 (1. -uy ) + 100. luz‘--ul
Peralty Function Test 5 Flu)+A&A « G{u)+B « G (u)2
2.2 2 2.2
illefs s - - + . = + ° - +
Colvillefs Test 100 (u2 u, ) (1 ul) 90 (u4 u, )
6 2 2 2
Problem #4 .(1.~u3) + 10,1 (uz—-l) +[(u4-«1) ] +
- l -
19,8 (uz 1) \u4 1) 'A
3 ?
_Colgyll}g s Te?t 5 e u + 5 5 c u u + 5 4 u3
| 7 )RS T RS YD MRS S 2t S B MRS T
Problem #1 j=1 j=1  j=1 j=1

And censtraints are present.

Figure IV-6 Available Test Functicns in Subroutine "Object'




Write-End of One
Complete Pass Through
UNIVAR or EMR
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PA-PB
+,0 -
LC3
+,0 -
v 39 y A 3
LCCONV=4 Write-~Search 41 Write~-Search
(LCI) Conver%ed Success
LCCONYV = 2 LCCONV =1
- +,0 '
Write-Search
Failed 2
LCCONYV = 3
y
4?2
XCOUNT =XCOUNT+1
A 4

Figure IV-7 Block Diagram Jo1r Subroutine Success

Store PA, PB and U

for Plotting

*
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for iz = 1 step 1 until N-1 do p;i=p; t 1
y = x; MIN(N),

PN*

where x is an N-component argument vector (equivalent to the U of our notation),

y is the value x had at the beginning of the cycle, and MIN(i) is a subroutine
which performs a one-dimensional mirimizing search parallel to p;, starting
from the best point found previously. The vectors p; are originally chosen to

be parallel to the coordinate directions. The routine performs a linear search

- parallel to each p; in sequence. The net resulting change in x defines a new

p-vector, and all the p-vectors shift down in the list, the oldest (the previous
p;) being discarded. \ | '

‘Powell's actual procedu;'e is somewhat more complex than this. It
is evideﬁt that if his set of vectors p; ever beccme lirearly dependent, his
search process becomes trapped on a hyperplane and will never find the solu-
tion if it is hot on this plane. To avoid this, he does not always discard the
oldest vector; another vector, chosen by a rather corﬁplex set of rules, is
sometimes discarded instead. Also, the newly generated direction is not al-
ways accepted.

Powell's program perfornis N+1 one-dimensional searches per
iteration, each search requiring at least two new function evaluations., It will

find the exact minimum of a quadratic function in N iterations, requiring a

total of N2 + N linear searches. For non-quadratic functions, the exact answer

is generally not found, and more than N iterations will usually be required to

obtain the accuracy desired. The convergence is ultimately quadratic. That

~is, if the function to be minimized behaves like a quadratic function in the

neighborhood of the optimum, then if the search point is sufficiently close to

_ the solution and at least N cycles have occurred, each subsequent iteration-

will double the number of significant figures. The number of linear searches
required for minimizing a quadratic function could be halved by a slight change
in the program logic, but this change would not double the program's efficiency
for minimizing non-quadratic functions; at most, it might save half of the first
N2 + N searche.s-,»that would otherwisc buiperformed, but subsequent operation

would not be improved.
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The version of VAO4A used in DSOP differs from Powell's original
program by two small changes. The first of these changes eliminates a diffi- |
culty that would otherwise occur in unusual conditions: The zero output of the
branch on FP-P, at Block 96, is now treated like a negative output (GO to 37).

This change prevents a division by zero which would otherwise cause the program
to fail. The second change was introduced to facilitate the efficient use of

VA04A with penalty-function cycling. It provides an option of bypassing Powell's
- initialization, so search directions and scaling are preserved from the last use

of the VAQ4A routine.

4.2 UNIVAR

The subroutine UNIVAR exists in two versions: an original version
which has no provision for bounds on the argumeﬁt variables, and a revised
version that incorporates such bounds. Either version works with PMS, but
only the revised version, whose flow diagram is shown in Figure IV-5,is included
here. |

The original UNIVAR proceeds by making a sequence of one-dimen-
sional searches, each parallel to a coordinate direction, until all directions
have been tried except those for which BVA(I) = 0. Each one-dimensional
search begins from the best point found by the previous search. The logic for
a one-dimensional search is as follows: '

‘ / Step in the stored direction (and by the stored amount; both are de-
finé/d:iby a component of the step vector STE). If this succeeds, increase step
size and repeat. If it fails, reverse direction and go the other way. Proceed
until the minimum along the search direction has been bracke_ted, i.e., until
a set of three points has been found with the smallest function-value in the
middle. This occurs when a success is followed by a failure, or when the first
step fails and is immediately followed by 2 second failure when the reverse di-
rection is tried. Fit a quadratic function to the values found at these three
points, and try the point where this quadratic is minimal. The search result
is either this new point or the previous middle point. whichever has the least

function-value. The step size is reduced t¢ cancel the 1ast increase and is
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further reduced by an extra factor of one-half if the last trial (from the quad-
ratic fit) is not 2 success. However,step sizé is not allowed to go below a
prescribed minimum size,

This one-dimensional search procedure is known to be inefficient,
since it requires a minimum of three new function evaluations per direction,
whereas Powell's one-dimensional search procedure (based on remembering

and updating an estimate of the second derivative) reduces the minimum to two.

. Adopting Powell's rules for one-dimensional searches might reduce the number

of function evaluations for each execution of UNIVAR by as much as 33%. The
average reduction would be less thap this, but still 'significa.nt. This improve=-
ment has not been incorporated because other developments have had higher
priority.

The revised UNIVAR is the same as the original UNIVAR except
for e‘xtra logic to handle upper and lower bounds on the independent variables.
The binary-valued vector BVB keeps track of which variables are at their
bounds. If BVB(I) = 0, indicating that the Ith coordinate is in the interior of
its allowed range, the search along the Ith direction is the same as in the orig-
inal UNIVAR, unless a tentative step reaches or exceeds a boundary. In this
case, a2 step to the boundary is tried instead. If this step fails, the search
along the Ith direction will end at an interior point. ;If it succeeds, BVER(I) is
set to 1, STE(I) is set to call for a small step (4 times the minimum size) away
from the boundary, and the routine goes on to the next direction.

If BVB(I) = 1, indicating that the Ith variable is at a boundary, this

- coordinate is left unaltered unless LCI = +, in which case a step away from the

boundary is attempted. If this succeeds, BVB(I) is set to 0 and the search pro-
ceeds as from an interior point. If it fails,step size is reduced to half its pre-
vious magnitude, or to the minimum magnitude allowed, whichever is greater.
The motivation for restricting attempted inoves away from a tound-
ary to cases when LCI = + (i,e., to times when the pattern-move sequence is
being started for the first time, or is being restarted from an old base point
after failure of a pattern move) isgitb“if»‘.'ed‘l_l‘ceithe number: -of“unsﬁccessful attempts

to move away from the boundary that would otherwise occur if the true final
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solutions call for one or more variables to be at their bounds. Since search
termination onstepsizeis permitted only when LCI1 = +, the program cannot
exit on step size without having tried moves away from all boundaries. It can
""exit on test'' if there is a prolonged sequence of pattern moves which are all
successful but give very small improvement, but this is highly unlikely; in gen-

eral, one of the pattern moves will fail, and the next execution of UNIVAR will

attempt moves away from the boundaries.

" 4.3 EXPLOR

This was the first "'exploratory" program tried with the Pattern

Move Search. Its principles are describedin Reference 1. Noexercised constraints
are allowed. Test runs generally indicated EXPLOR was inferior to UN'IVAR
{see Paragraph 5 of this Appendix). The EXPLOR listing in Paragraph 6 can be
used to follow the discussion below.

. Components of the argument veétor U for w.hich BVA(I) = 0 are
treated as constant constrainis; other compone.nts of U are varied systematically
in a2 search for a local minimum. For each value of I for which BVA(I) = 1, the
routine tentatively changes U(I) in one dir'ection and then (if this fails to reduce
the function value) in the opposite direction. The direction tried first is deter-
mined by the sign of STE(I), and the magnitude of this‘ quantity determines the
step size. If either change succeeds, the value of PA (which is the best value
of P found so far) is updated, and the search proceeds from the altered argu-
ment vector, by consi.dering the next value of I. If both directions of change
along the Ith coordinate axis are unsuccessful, no change is made in U(I), and
the routine moves on to the next value of I after saving some auxiliary infor-
mation. . ,
o When all variable components of U(I) .have been treated as described
above, the routine decides whether to accept the result, or try one additional
"interpolatory'' step, whose components are given by a vector STF. The value

of STF(I) is zero for any value of I for which BVA(I) = 0 or for which either of

.. the steps * STE(I) succeeded. For the remaining cases (i.e., BVA(I) = 1, and

1 STE(I) both unsuccessful), STF(I) is computed by concidering the location of @« s
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the minimum of a quadfatic function fitted to the function values found at the
three points U(I) and U(I) + STE(I), with all other components of U fixed. If

Kj were chosen to be 1/2, and no other coordinates were involved, STF(I)
would give a move to this minimum. A valﬁe of K] less than 1/2 is appropriate
in multidimensional cases. If P(U) is a quadratic function, and if all coordinate
steps have failed, it can be shown that the interpolatory step always succeeds

if Ky < 1/N, and is always too short (undershoots the minimum) if Xy < 1/2N.,
Therefore, K; should be betwcen 1/N and 1/2N.

The decision to try the interpolatory step, or not try it, is made by
comparing the total function reduction obtained by steps + STE(I) with the ex-
pected further reduction obtainable ’ch the interpolatory step. This expected
reduction is proportional to SUM, if interacticn between coordinates is ignored.
A coefficient K, is provided which can be adjusted to bias the decision. If
K4 £ 0, the interpolatory stép is never tried unless all the steps + STE(I) failed.
If K, is made very large, the interpolatory step will always be tried.

The step vector STE is updated during the routine, to provide a
favorable étep for next time. If step STE(I) is successful, the new STE(I) is
larger (K3 >1). If STE(I) fails but the reverse step succeeds, STE(I) reverses
sign but does not change magnitude. If both steps + STE(I) were unsuccessful
th‘e new STE(I)'has its sign determined by comparison of the two unsuccessful
trials.

An input option (LC1) is tested in SUGCES to allow the routine to
exit on failure to reduce the function, or try again with reduced step sizeé until
either success is attained, or the step sizes are reduced to the allowed mini-
mums given by MINC, | ,

The performance of EMR could probably be improved significantly
by adding a one-dimensional search along the direction defined by STE, i. e.,

parallel to the '"interpolatory move.'" However, this experiment has nct been

tried.
4.4 ~ ONEDS
B T .. This-is.simply a one-dimensional search program which is used by

New Block and with a search variation with EXPLOR in the MAIN program.
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4.5 OBJECT

"This program computes a single number which corresponds to the
value of the ,objective function,. 'The inputs are essentially just the independent
variables U. Seven different test functions (see Figure IV-6) have been used in

the experimental tests of the optimization algorithms. The selection is con-

trolled by the input integer L.C5. The two dimensional version of CUBE was

taken from Reference 3; Colville's test problems came from Reference 6; the

orbit transfer problem came from Reference 7,

Additional functions can be readily added to OBJECT by using new
LC7 branches. Also, any available function-evaluation program can be substi-
tuted for OBJECT by appropriately bvrenaming variables and adding COMMON

statements.

4.6 NEWB
NEWB (New Block) uses some of Powell's basic ideas to accelerate
convergence. As is shown in Table IV -3, it nas been uced both with the separate

accelerated convergence test and in UNIVAR with PMS,

4.7 SUCCES |

| This program is used by UNIVAR and EXPLOR after every iteration
to test the condition of the search and set LCCONYV accordingly. LCCONYV is
then tested in the PMS in the MAIN program. Also the iteration counter,
XCOUNT, is updated and information for plotting is stored. See Figure IV-7 for
the Block Diagram.

4.8 SETQ
| SETQ performs some simple necessary settings for UA, UB, PA

and PB.

4.9 BOUNDU

This program limits all components of U to their bounds, called

UMAX and UMIN. These quantities must be inputted on cards (or by modifica-

tion throcugh COMMON), BOUNDU is called éxclusively from MAIN, initially

-~ and in PMS. -Similar operations are also performed in UNIVAR.




Table IV-4

A, R. COLVILLE'S FORMAT FOR
TEST PROBLEMS # 1 AND # 4
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Prep. 2)
Test OBJ. Time Execute Funct. & Std.

Problems & Function Guess Time Constr. Time
Search Method MINC Value (Hrs.) (Sec.) Calcs. Ratio
Test Problem #4 ,05(1) 0. .5 1.3167 330. .0196
Powell
(ICON = 2)
Test Problem #4 | . 005 0. .5 3.667 1235, . 0545
Pattern with
UNIVAR
(ICON = 2)
Test Problem #1 | .05 %) -32.38 1. 2.450 333, .0364
Powell (1 cycle)
(ICON = 1)

1 MINC = .05 for Powell is equivalent to .005 for Pattern Move since Powell
tests for .1 (MINC = E) :

2 7094 Standard Time =

67.2 sec.
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( ' Table IV -5

" ACCURACY AND TIMING COMPARISONS BETWEEN
UNIVAR AND EXPLOR WITH PMS

Test Problem = CUBE

Running Time (sec.)

Starting Conditions UNIVAR EMR
Case 1 (0, 0, 0) : 2.583 2.317
Case 2 (10, 0, 0) : 1.683 2.466
il
UNIVAR Sl EXPLORATORY
: —— ;
oCco _ il oco
UNT| P U)o U(z) - | UNT P U(1) U(2)
\ 1074
7 1. 0. 0. 6 0.9999 0.1056. 0.
-3 -7
1 1. 0. 0. 18 10.9996 0.2082.197710.14021.10
|31 Jo.4727 0.31250 0.03052 30 0.9905 0.4779.10‘2 0.10216,10'7
(‘ige 51 |0.4172 0.35408 0.04439 [ 54 |0.5849 0.23575 0.01031
1 |79 |o.1901 0.56310 0.17855 78 10.2758 0.47495 0.10603
113 |0.07818 0.72039 0.37386 112 | 0.06079 0.75354 0.42716
147 |0.02546 0.84044 0.59365 144 |0.00223 0.95286 0.86495
| : -4
180 {0.00394 10.93726 0.82334 177 10.606.10 " 1,0075 1.02294
- -4
220 |0.655.107%(0. 99919 0.99757 199 |0.570.1077|1.0075 1.02281
10-7
8 i. .596, 0. 10 |0.57554 0.26401 0.
123 |1, 0. 0. 24 |1.4454 0.26401 0.
35 |1. - 0. 0.254.10781 34 |[o0.6165 10.26401 0.
|55 |0.47266 0.3125 0.030518 |55 [0.3370 0.42102 0.078811
Case |82 [0.28749 0.46381 0.09978 84 10.3008 0.45322 0.088791
2 |114 |0.12412 0.64769 0.27170 115 |0.1194  |0.65488 0.279237
147 |0.04666 0.78398 0.48186 149 |0.0255 0.84058 0.59484
182 |0.01184 |0.89119 0.70781 183 [0.74.107° |1.0008 1.0028
- -h
238 |0.655.1070 0.99919 0.99757 ,204 6.11,.1077 11,0009 1.0026
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4.10 PLOTOP |
UA, UB, PA and PB from UNIVAR and EMR can be plotted as func-

tions of XCOUNT by setting LC7+, The necessary storage of quantities is done
in SUCCES.

5. COMPARATIVE TABLES

Four of the test functions shown in Figure IV-6 were used with var-
ious search methods to determine the number of objective functional evaluations
required since this factor is important for problems with the complicated ob-
jective functions expected to be encountered in the QRGTS. Observations from
the results shown in Table IV -3 include:

v 1) Powell's method was supefior in almost all unconstrained

cases, as was expected from a review of References 2 and 8.

2) Accelerated Convergence approached the minimum faster than
PMS but PMS terminated sooner.

3) . PMS with New Block was generally worse than Witho.ut it.

4) Powell's rate of convergence is definitely a function of the
MINC and ESCALE settings. It appears that MINC in addition
to ESCALE should be set to reasonably high values.

5) PMS was generally better than VA04A on Colville's Test

Problem #1 (a problem with constraints) since VA04A failed
for MINC = 0.5 and ICON = 2 and had an excessive number of
evaluations for MINC = ,005.

Table- IV -4 is included so Standérd Time Ratios of several of the
runs in Table IV -3 can be compared with the results in Colville's Nonlinear
Programming Study summary. All three rank in the top half of his listings
with .0196 ranking 5th out of 24 methods. The Standard Time Ratio is an index
developed by Colville (Ref. 6) to compare optimizer efficiencies independently
of computer speeds. 4

Table IV -5 is comparisons between UNIVAR and EMR when used
with PMS on CUBE. These results, aleng with anoiner:#un not shown, were

the determining factors in the decision to furthér develop UNIVAR rather than
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EMR. For CUBE,. EMR has lower OCOUNTS but has a U(2) error of 2% in

( Case 1, and its running time is longer on the average.

.



6

C 808 COFER 3

. FORTRAN IV LISTINGS

MATNOP - EFN SOURCE STATEMENT - IFN(S) -

122761

C MAIN PROGRAM™ FOR DSOP

OIMENS
COMHON

COMMON
COMMON
COMMON
COMMON
COMMON
REAL M
FORMAT
FORMAT
FORMAT
FORMAY
FORMAT
FORMAT
FORMAT
FURMNAT
81 FORMAT
82 FURMAT
83 FORMAT
84 FORMAT
c STE
85 FORMAT
85 FORMAT
C =E15.8
c‘ElS.a,
87 FORMAT
8§8 FORMAT
89 FORMAT
91 FCRMAT
92 FORMAT
93 FORMAT
94 FORMAT
95 FORMAT
96 FORMAT
11 RTIM =
XCOUNT
LCCONYV
UCOUNT
OCOUNT
Ltclt
LC14
tC1s
LCc17
ILIM
NPT =
[PENF
LCPF =
READ
READ !

D3 99

99 READI(S,

OO WNSWN e

#Houou N

INN UE(1C),BVBS(20)

NoUALLO0)4UB(10)4+PAPB,UIL10)sPyPF,UF(10),LC11
#AVA(10) 4yK1 K2 4K3I K4, COUNTySTE(L10)4MINC,LC1,LC3

¢oLCCONV,, XCOUNT #E4LCL1T7,LC8,STF{20),STG(20),PFCON

/JFUNCT/ LC54LC14,0COUNTBIAS NX,LCL5

JUNTV/ K11 ,UCOUNT,UMIN(20) +UMAX(20)48VB(20), ILIMI,ILIM

IVAN/ ESCALEZIPRINT,ICON,LCPF

IPLNT/ US(20,530) sNPT,PAS(500i,PBS(500)

J/PENF/ EX(1C) ¢DELE(10)4Fil3) »OFV,PFV
INCU10) ¢ K1 gK29K31K49K11,,NX{10),K5

12413)

(QEB.5)

(7//(5E20.8))

(LH ///32H0 LIST CF INPUT PARAMETER VALUES)

(1K //7/17HD TIME{SECONDS) =,1E20.8])

(1H1///743H0 DIRECY SEARCH CPTIMIZATION PROGRAM (DSOF))

{1H //25H0 LCGICAL CHCICE SETTINGS)

{1H /34H0 tCl (NEGATIVE IS FAILURE EXIT) =,11)

{42+40 LC4 (TYPE OF BASIC SEARCH -~ PATTERN=3) =,11)

(39HU LCS (SELECTS AN OBJECTIVE FUNLTION) =,11)

(45H0 LC6 (SELECTS UNIVAR{2) OR EMR WHEN LC4=3) =,11)
(iH /111HO N us MINC
' 8vaA ~ UNMIN UMAX )
(7€16.8)

(iH //TH K1 =El5.847H K2 =El15.8,:7H K3 =E15.8,7TH K4
+7H KS =E15.8/1X,8H COUNT = E15.8,7H BIAS =E15.8,7H K11
94 ESCALE =E15.8,8H PFCCN =El5.8)

(1H /26HO THE INITIAL V