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This is the third eJitioll ot th~ APS logical architectULe by the 
Poughkeepsie Aavanced system~ G~oup. It is a refinement and 
extension of the second eQ1tion and is presented as a basis for 
further work and as a veaicle for communication between the 
several groups workin~ on A1S. Aithougb the design effort has 
concentrated on the conceptuaL level, it is being supported by 
concurrent implementation stuJ~es that are d~scussed in the AFS 
System Architecture Manual. 
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GUIDE TO HEADING THIS REPOdT 

Peo~le with dLtferellt DacK~rounJ~ will tLnd Lt expedient to 
approach the study of this material in different ways. This 
guide suggests a reading sequence for engineers. programmers, and 
system analysts. 

1 ) All: read 1.1.1 A One-Page Summation 

2) All: read the rest O£ 1.1 ExecutLve Summary 

3) 

4) 

5) 

6) 

1) 

All: study 2.. 1. 1 
2.. 1.2 
2. 1.3 
2. 1. 4 
2.2. 1 

Storage 
Processes 
Objects 
Access Macnines 
Key Concepts 

All: skim the rest o:t 2 

engineers: 

programmers: 

system analy sts: 

All: 

All: 

study 

study 

study 

study 

stuili 

5 A Logical 
Impl.ementa tioll 

ij.3 A Summary of Basic 
Infixr'orm 

3 System Concepts and 
Facilities 

2 Basic concepts and 
structures 

Xhe rest 
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Part 1 

INTRODuC'rION 

Since AFS is d~velop~ng a new approach to computer system design, 
some background information l.S necessary to place the concepts in 
perspective and to edse tae trdllsLtLon to novel lines of thought. 
Chapter 1.1 presents au overVl.ew of the new concepts, tile 
relationship between AFS dnd otaer developments by LBM and 
competitors, and the obJectLves and requirements that AFS is 
tryin-J to meet. Chapter 1.2 discusses underlying assumptions 
that Illotivate and d~Lec t the des~gll et fort.F inally, chapter 1.3 
presents the notation and syntactl.c convent~ons used throughout 
the remaining parts of this manual. 
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eha pter' 1.1 

~~EeUTiVE SUMMAH! 

AFS, Advanced Future Syste~, ~s proposed as an alternative to 
comp4tible extension of system/310. It ~s ~ntended to meet F5 
Market Requirements by Advanced Systems P14nnLny and ~valuation. 
dasic elements ot AFS include selt-descr101ny data, reference to 
data Dy symbolLc names ratber th4u addresses, dynamic attribute 
examina t.ion, 4 utoma tic stordye aierar'chy, ue twor k i unction 
transparency, and a high-level machine langua<.je called 5L, the 
System Language. Such a tunct~onal base w111 provide a 
signii.1cant gal.n l.n system USdi:> il.J..t y. Tul.s d ocamerl t present s a 
new conceptual toundation, and describes SL and tne associated 
system facilitl.es. A companl.on document, the AFS System 
Architecture Manual, discusses 1mplementat~on and presents 
additional detail. 

'rhe conceptual found ati on for Ali'S loS a synthesis of aJ va nces in 
Computer Science. It ~s moaeled formally uS1n~ the Vienna 
definitl.on methods. It prOVl.deS a frameworK ior mult~processing¥ 
data independence, aata bas~ ~tructuces, tiource/sink ana network 
communications, modular control system structure, unl.form 
resource management, and migration from system/3bO/370 inc~uding 
coexistence and dynamic iuterchange. 

The number ot AFS constructs i~ m1.niwized by explo~tl.ng each 
tully. For example, assign~ellt 15 the universai means to put 
something somewhere, whether assl.~niug a value to a number, 
send~n9 information to a pn.nter¥ or filing a new program under 
some n~me. S~mi~arly, an "obJe~t" has the same formal structure 
whether it represents numeric data, a data structure, a virtual 
devl.ce, a program environment, a funct~on act1vation, an access 
authorization, a communication port, or any other system entity. 

SL is a complete langua~e, waose functions include those 
necessary to represent ~royrams written in contemporary high 
level languages, as well as all system control facl.lities. SL 
statements are constructed with taese funct~ons just as 
arithmetic expressions aCB COU::itruct.ed with arithmetic operators. 
A customer may use COBOL, £»L/1, FORTRAN, AP.I.., or hPG as if each 
were the actual machine laRgua~e. 5L 1S extendible: Dew 
funct10ns and data structures are readil~ accommodated. 
Furthermore, the AFS desl.gn is SUCb that facilities beneath the 
external interia~e may be redefLne~ ~l.tn 5L funct.Lons. 
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The conceptual foundation results from a fresh examination of 
fundamental data and control structures 1n light of the past 
decade of progress in comput~r SC1enca. The approach differs 
from earlier ones ill that PJ:OV1Sl.0ll .l.S made from the outset for 
essential is ingred1ents such as mu~tl.prOCess1ug, data 
1ndependence, data base structures, coeXl.stence of multiple 
arcbitectures (such as Sistem/J70), network communications, 
applications subsystems, ana uUl.fl.ed system resource management. 

The SL design also dl.ffers trom earll.er approaChes in basic 
character: The conceptual frdmeworK provl.des a basis for an 
architecture waich can grow ~rdcetully, rather than one Wll1Ch is 
tightly circumscribed. Extensl.ons and mOdl.i1cations can be 
defineu in SL itself l.n such a maDner t~dt system discl.pline and 
l.ntegrity pervades all levels of redefinition; user programs are 
written as thougb the extensl.ons ~ere an integral part at the 
system. 

This type ot desiyn 1.S called a Recursl.vely Extensible 
A~c~itecture. lt offers us~rs the anility to extend or 
specialize SUbsystems tor tha~r ~drtl.cular re~u~raments, system 
architects the ability to develop the archl.tecture without 
l.mpacting customer programm~ay l.uvestments, and IBM product 
jes~gners the opportunity to bUl.la hardware to support either 
general or specialized tuuctioual extensions. 

1. 1.2.1 Histor~cal Foundation 

Design of the data and coutLO~ structures £e~uired for a 
complete, fuuct~oning system nas hl.storically beeD tu~ task of 
pI:ogrammers. In the process of ouildin;; increasin<jly complex 
systems, a systematic boay of programm1ng knowledge has 
developed. Cantr-al to this body at imowledge is an understanding 
of fundamental structures and algorithms which oc:ur throughout 
all programming practice. Work ~n pr-ogramml.ng lau;;uages over the 
past ten years has to a large ext.ent consistea ot: developing 
notations witb which one can conveniently employ various subsets 
of these basic elements. The SL approach bas been to sur-vey the 
f undamen tal structures, de terml.iii:! a minimal set ot ba sic 
concepts, and design a total external intertace based upon this 
set. 
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Chapter 1.1 

1.1.2.2 Related IBM Activit~e~ 

There are a number ot cur£ent act~v~ties that relate directly or 
indirectly to APS. System A in ReSeaL"Cn ~s exam~uing aD external 
interface similar to SL: Sys~em A is designed to run on an NS 
symmetric mult~processor system, aDd programs at the external 
interface leve 1 will either De compilea into system/ 370 code o.r 
be interpreted in dll intermed~~te lanyuagesim~lar to 51. The 
Endicott Advanced 3ystem Group ha~ worxed on a simLlarly 
motivated de::uyn effort durLn-:; the past several years. Their 
work through 1970 is summar .lzad loll a Febr uary 1, 1 ~71, report 
entitled llb§.-gf.Qt211.~ ~ro]~££ rlel!Qfl. tiore recelltly, Endicott 
ASG representatives have wo£ked both w~th the 5L designers and 
~ith Ray Larner, who has formulated a proposal ror a high level 
~nterface called M1 (Macnine Lauyuagej. Several 1ndividual~ in 
the San Jose Research Center nave been actively participating in 
APS areas. The Palo Alto SC.lent.lfic Center has microcoded a 
Model 25, and now a ModeL 1~~, to ~nterpret API. code directly. 
They nave also conductedre.i.iited stu(1Les concerniIl\j the 
performance of microcoded APL mach1nes vs. conventional 
Lnstructions and comp~Lers. MUCA of tae wor~ on datii base 
or\janization is pertinent, especLally the PROP/DB prototype in 
PoughKeepsie. The New Yor~ Progra~m~ng Center ~s studying the 
signLficance of an APS-i~ke iircn~tecture for the principal 
programming languages, and tbe broader classes of languages and 
language building tools Which may become possJ.ble. Protot ype 
PL/I work done in Uursley, in conjunction with the functional 
memory progriim, has shown several opportunit~es for significant 
performance improvement. Wor~ to date on the iPS project has 
considered s1milar concepts, and it seems that some commonality 
with the eventual fPS direct~on ~s J.illely. 

1.1.2.3 competition 

Numero us university and industr J.al i nves tiga tors :ir-e explor iug 
Af'S-like directions. Some are B)Cplor:in\j these directiollS with 
the intent of developing more eft~c~ent lDJ.crocode tor existing 
hardware. Examples can be found in papers emanating ~~om 
uni.versities. SOBle manufacture1:S are produc~uiJ microcodable 

.hardware which lends itself to provl-ding iugher level interfaces. 
Examples are the IC.l and Gemira machine~. There is cons~dera ble 
discussion ot APL-l~Ke machines, cue CLaims tilat the STAR system 
directly performs APL-l~~e tuuct~ons. McFarland's paper ~n the 
1970 FJCC describes TPL (The ProgrammJ.ny Language), tor which 
direct hardware support ~sdiscusseJ.. II1.fie's Basic Machine and 
Rice's uPL/I" machine are f u.cthec examples o:r mach~nes which 
offer direct support of higAe.c level extecudl ~uterfaces. By far 
the most experienced competitor to ddte is Burrougns: The 85000 
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in the ear 1y sixties a nd the more .recen t rl57 OJ ij, Bb 700, and B7 700 ~~. / 
all support a bigher level interLace directly. Their 
archl.tecture read1.ly offers supfiort, such as virtual meUlOr1.eS and 
multiprocessing, which poses sar1.OUS ditficultl.es for OS or DOS. 
Their desl.gn has permitted coust~uction of an operatl.ng system in 
a higher level language. Furtner uevelopment in Ars directions 
should be antiCipated from rlurrouyhs. . 

AFS is intended as an alternat1.ve to a cOlllpatilJle extension of 
systell/J70 for the fS t1.me f raIDe. AFS must therefore lIleet 
official FS Market Requirements Latner than generate new ones. 
In t~e event that any OI these re~uirements are not achievable, 
AFS ~as the oDjective to e~aal or exceed the best PS p.roposal 
with 5 yste m/31 0 compa ti ble hac aw ace. 

SL is the machine language of AFS and therefoee inherits the 
above eequirements and auy otner AiS requirement that has a 
laDguage implication. At present, these requl.rements are stated 
in a memo. "APS Regu1.rements aud. Ubjectives" Jan. 19, 1971, to c. 
J. Conti and A. A. Maydall from R. B. Bennett and W. D. Wilson. A 
hrief summary of the re~uLrements trom t~e SL point of view is 
gl.ven below: 

SL must allow the ~ser to l.uteeact wl.th AFS ~n ~ high level 
language and suffee neither the iS0lation from the machine caused 
by comp1.lers today nor tne Lnef~icient execut1.on caused by 
interpreters. Tnis loS to be accOmpll.Shed in two ways: on the 
one kand. the mach1.ne language itself will be a h1.gh level 
language exploiting current ~anyuage teChnology; on the other 
band, the user will be aDle to act as it the maChLne language 
were anyone of five favored language~--CObUL, fOHTRAN, PL/I. 
RPG. aud AJ?L--and he lIlust not suffer a ser1.0US pertorlUdDce 
penalty for ignor1.ng machine language. 

To meet this requirement. SL must faLthfully l.nterpret the five 
favored language~: Under AFS, tae conversational user must be 
able to interrupt execution, maKe changes, resume execution, 
execute incomplete or defective code as ~ong as lot makes sense to 
do so, and get the Eull benefits OL a really good l.nterpreter of 
tbe language without pay1.ny the performance penalty normally 
associated with in terpretation. 

SL must be an appropriate Object language for the interpreters 
mentioned above and for com21.lers feom the current pr~ncifal 
high-level languages, extensions that will De made to them, and 
new ~rogra.ming languages that may become popular in the FS time 
frame. 
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security, privacy, and system 1uteyrity must be provided to 
protect one user from another dnd to protect t~e system from the 
users. 

An objective of SL is to fulfill the above requiLements by, among 
other things, design1ng d system ~Lth sel~-descr1b1ng data. To 
this end, attribute exam1u1a~ hardware should enhance beth 
security and system integr~ty and fu1f111 the add1tional 
requirement ot makin~ it ~o3tiib~e to restructure data without 
invalidating ~rograms. 

rbe design of SL must allow ~OLe eti1cient 1mplementation with 
LSI than would be POtisiDle if the h1gh-level source language were 
translated to a low-level machl.ne language implemented with LSI. 

SL must be extendible to dCCOmmOQdte new operators, new data 
types, and new devLcss. It lllust also enforce cOll.straints that 
encour a9 e more disci p1i ne d use. 

SL must accommodate programs tnat exploit new marKet areas: 
particularly data base systems, data communl.cation systems, 
transaction-based ap~licdt1ons, ana interactive use. Tnese new 
areas must be accommodated WLthout los~ng ground in what will 
continue to be a major market, batCh computatLou Ln estdD11shed 
applications. 

AFS must emulate System/37u witn tW1ce the cost/performance. 
when the customer maKes tne t.caIlS..I.t10n to native mode Af'S, there 
must be a four to one ga..l.D 1n prl.ce performance over System/370. 
The customer must be able to ~ake the transit10u 1n d piecemeal 
fashion. The part of an appl..l.cat..l.oll that ha;:; Deen translated. to 
APS native mode must exb..l.bl.t A~S propertLes; tor example, 
translated parts must exhibit user security and system integrity 
that is unachievable in system/J7v. 

To aid a customer's trans1t1on, ~L/l, FORTRAN, COHOL, RPG, and 
APL as executed by APS must meet standard speCifications for the 
languages. 

SL has been 
principles 111 
'lhey are: 

constructed witn 
m1nd. T hey an'! 

d number of spec..l.fic design 
eacn d~scussed in Section 1.2.5. 

Minimum Number ot Hasic Concepts 
Completeness of BaS1C Concepts 
Rigorous Control ana Access Disc..I.plines 
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Maximum Hardware Design Freedom 
Network Function Transparency 
Bit code Independence 
Modifiability 
Extensibilit.y 

Key ~lements ot a high level l.utt;;!riace and 01: a machine that 
directly supports the interface, .ltd. ve been desc.cibed in seve ral 
earl.ier reports, such as the McPherson task force report and the 
Endicott HLS Prototy pe reports. fhe mac.ill.ne is partl. tioned into 
functional units for processl.!l9, storage lila nayem€ nt, and 
source/sink and networK commuuicat1.ons. The inte.cface includes 
self-describing data, generic operd.tors, separation of storage 
trom co mmun ica tions IIO, and pro ViSl.Oll for cOexistence and 
.rnteractl.on of data and program material produced ~or dissimilar 
architectures (such dS syst.em/310, System/3, 7090, 1401, etc.). 

Producing a design capavle ot integrat.l.ng these ~ey elements 
requires more than simply aefining a particular external 
interface. it. tor mal. co nceptuai founda tion must first be erected 
in which it is possible to e~h1D1t basic elements, structures, 
mechan1sms, and key processes W1.t11 Wh1Cn. one can real.ize and. 
prove proper .oeha vior not only for computational fI:ocesses, such 
as arithmetic expression eVdludt~on, but also tor essential 
system fuuctions such as coex~st~uca, ~ultiprocessing, data base, 
netwocks, and aynamic resource llldaal:lement. To date, most of 
these aspects have simply been left 10r t.he system programmer to 
solve. Experience has made.rt clear that system design canDot 
continue to ignore such matters. This is especially true for 
systems such as AFS. 

The conceptual tounda tLon tOl- SL cons.rsts of three basic 
elements: Process, Storage cell, and Object; three basic 
structures: Accessibil~ty J.caph, Eav1.ronment Tree, ana 
DepenJ.ency Graph; two classes ot: basic mechan.rsms: .rnter-object 
communications Pl:otocol andl.nter-ooject request/.t-esponse 
handling; and five key Frocesses: translatiou, expression 
1.nterpretation, symbol resol~tion, procedure activation, and 
resource management. 

A process designates an algoc1thmie activ~ty. It cons1sts of a 
motive force called dD interpreter, a procedural descr.rption, and 
a set of stat.us l.nformat.ion called the PSB (Process stat.us 
decorj). A storage cell is the basic unit of storage. It is 
~dentified by a uni~ue 1.nternalillelltifer calleli a Cell Name, and 
it contains exactly one object. An object is an ent.rty used to /--" 
represent every logical and palsieal reSOilrce ot the St st.em. It ~, __ ?/ 
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Chapter 1. 1 ~x£curIVE SUM8AHY 13 

nas an active subeleillent, a l-lrocess called ali Access Machine. and 
a passive sub~lement. called an uwrred Resource. Every reference 
to thd owned resource is acco~pl~shed by act~vat~on of the access 
machine. This model permits un~locm cepresentat10n and handling 
of all system resources. 

The accassibil~ty grapn Qet~nes tbe paths by wh~ch objects may be 
reached. It contains a sUDycaph. a tree called the Ownership 
Tree. which defines ownersh1.t-' d1ltOll'J objects. The env~ronment tree 
defines the context in Wh~cn symuols appearing in program modules 
dre resolved to part ic ula.c oL je;; ts. 'rne dependenc y gl:aph records 
dynamic dependenc~es among Objects. It includes a sungl:aph 
called the Activat10n il:ee. aud 1t ~s used by resource 
management. 

The names of the bas~c mecndn~sms and Key processes directly 
~uggest their respect1ve roles. 

dy uS1ng the above construct:::>, a conceptual toundation ot the 
necessary ty~e has been J~tineJ. Tue def1nition methods 
developed by the Vienna Laboratory (VDL) wer~ em~loyed to ensure 
formal completeness. SL ~ep.ceseuts a part1cular intertace 
definition wituin the conceptual f.camework~ 

Part 3 of this document Q~scusses the mdnDer 1n which the SL 
conceptual foundation serves dS the basis for a total op~rating 
system that meets FS market re~u~rements. Of particular concern 
bas been consiueration of resource management. user environment~ 
system control. and funct10nal capdn~lities. 

desource management encompa:::>ses nandling ot both nonunique 
resources such as storage anG un~~ue resources such as particular 
data elements. A resource management policy ~s adopted which 
will ensure completion of all Jobs submitted to the system. The 
s_t~tem can be so structured that l,t is possiiae to I!rove that 
r~source conflJ.cts never OCCUL 1.n vital port10ns ;>itjle system. 
Errors occurring elsewhere are prevented from proPdgat~ng to 
other parts OL the system. rnQ~vidual users are offered the 
option of avoiding deadlocks alto-jetxler by stating . .cesource 
requirements in advance. or ot dyuam1cally re~uesting resources 
at the cost of poss1bly tlaV1ng to back out OL deadlock 
situations. 

The AFS system effects a mouular Dandling ot user environments. 
All resources of the sisteill, loncl-udiny ports to the outside 
world. are owned by the reSOIlL::;e mana~er. 'rhe operating systems. 
defined as subsystems in ;;1.. th.cough whl.cb. d user Illay w~sh to 
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avail himself of At'S fac.llitl.'::s at'e also owned by th.e resource ~~/ 
manager ullder the subsystem l.aud.lord. Each subsystem claims 6 and 
is allocated if available 6 a packa~e of resources which it may 
control and allocate to the user V.la its own subsystem resource 
manager. Some operating systems may De granted a "semi-permanent" 
(e.g. "IPL" to "sbut-down") status in the system, existing for 
long pe.riods of time and serVl.Cill9 many users; such Iledicated 
subsystems may have direct, 1..Illpll.cl.t contt'ol over a set o.f ports. 
Thus, a user entering the sy.:nem via any at these ports sees only 
that operating system and teels as though he were running on that 
subsystem's host arChitecture. this.ls tae logical ey,ul.valent of 
virtual machines d.nd permits useI:S 0.t:6 e.g. OS/37;), to run as 
though they were on system/J70. Users entering the system 
through ports not directly controlled by dedicated subsystems 
first encounter the .lnitl.al .lnterpreter, through which they may 
request the creat.lon of a tree SUbsystem tor their private or 
shared use. The subsystems tAUS estab~ishea are transient and 
are granted access to resource packa~es minimal~y including the 
active port and the user's fl..lds. Juce running under a subsystem 
(SL itself ~s an example), tAe user may request the dynamic 
creation of additional subsystems for COilcurrent at: consecuti ve, 
interactive or Datch, depead~nt ot: independent, ex~cution. A 
user job, in the classical sense, is thus inl.tiated at port 
sign-on times and terminated w~tn Sign-off; dynam.lc subsystems 
created in the interim may bodcoae jODs at the user's explicit i-' 
request. ~_/ 

rhe system control structure.lS Dased upon paLtl.t~Onl.ng system 
activity into functional and server configuration levels. Work 
flow on the f unctiona 1 level nanJ.les iui tl.a tion, coordl.aa tioa, 
and termination of comIDunl.cd.tion, data entry, data retrieval, and 
computation functions. On the seI:ver leve1 6 which is beneath the 
SL level, cont.rol .i5 concerneJ wH.h orderly flow ot work through 
the system 6 1ncludiD~ cODtrol ana synchronl.zation of both logical 
and physical resources. 

Consideration of system functional capab~~ities includes 
particular conceI:n regard1ng data base, data communications, and 
coexists nce. 

SL oojects and da ta st ructures prov~de con venient represen ta ti ons 
for the data aggregates aud l.nd~ces re~uired tor either 
ring-structure or en tit y-set data or ganiza tiollS. Access machi nes 
and the accessibil.!.ty graph can be used jointl( to enforce 
privacy and security. 

At the SL leve~ the user deeds vittl processes involving data 
communications by use of objects known as Ports. 'rhe access 
machines of f'orts prov.Lde the bridge to deeper levels of 
comaun ication control. Th.e ueepec con trol levels inc.lude one 
which performs device indepeuUent f ormattLng, and another which .f" 
handles device function dependent and inter-system protocols. 0 
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Data teanmission protocols .to!:' llona conteol anI.! networK (pa tb.) 
management are handled intb.e ;::omUlunications unit beneath the SL 
level. 

The access mach ine al's 0 prov lodes a. poss1ble basis for coeX.1.ste nce 
and interchange of (v~rtual) devices and other systems written 
under differiny architectures. ihe access mach.1.ne is a process 
which is acti va ted whenever d ro ques t is made upon the ob ject of 
whicb it is a pact. The 1ute!:'preter dnd peoceaural description 
of an access mdcbine need not be ot the same architectuee as the 
process making a re~uest upon th~ access machine. SL code can 
therefore call System/370 cJde 1n a riyorously disciplined 
manner, and vice versa. Th1S mechanism also enables one software 
SUbsystem to access uata 1& another, even if the subsystems have 
different arch1tectuees. 

Part 4 of this document descrioes the basic infix form of the 5L 
lauyuage. It 1S. this fOI:ill w!l.1.ch const1tutes the primary 
man-maciline interLace ct the AfS system. Each SL illnct10n is 
described ~epdrateli, along with examples of its use and 
d1Scllssion of ~ts side-eftects. (Tnis level of description of SL 
is only partially complet~ 1U Edit.1.on 3.~ Examples of 
translation of high level lall~uaye constructs to SL are also 
presented. 

Part 5 of the document presents a l.o':;jical .1.lIIplementa tion of A FS. 
The dafinition methods develo2ad Dj the Vienna Laboratory (VDL) 
~ere employed, in ordee to insure formal consistency and 
completeness. This approach ~u~ned out to be particularly 
atfective for this level OL aes~~ll worK. The presentation in 
Part 5 is an X;ngl1sb transcr~pt10n of the formal ililpleme,nta tion 
rather than one whiCh ut.1.1izes the VDL notation. . 

The logica~ ililplementat10n of aFS descI:ines the w~y the system 
operates on an abstract mach~ne which models the concepts SL 
presents to an AFS mactane lallg-uaye pro-j rammer:. Au y physical 
implementation that produ.ces the same oDservable behavior is a 
proper conceete representation of APS. Sjstem desi~ners are free 
to realize the AFS system in tne 1Il0l:it economl.cal fashion .tOl:" each 
particular mar~et. Slav~sh cvpy~uy of the lOY.1.cal model would 
probably result 1ll an 1nferior pUjsical implelilautatl.on. Such an 
implementation, therefoee, 15 Dot l:"ecolilmended. 

IilM CONflDLNTIAL 
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D~SIGN PRrN~lPLES 

There is considerable ev~uence that a Von Neumann drch~tecture is 
inadequate for future HHI systems: such an architecture ~s a 
poor target for compilers, the coding conventions are inefficient 
.ln the inforaa tion tileoretic sense, d.ud the units of work encoded 
dre not optimal for either larga or small machines. Pu~thermore, 
the property of data ~ndependeuce, WA~cA is clearly required for 
future systems, is impossible, or at best prohibitively 
expensive, with an architecture ~ll which attr~butes of data are' 
sprinKled throughout every instruction that references taB data. 
There is also a serious quest~on as to whether a system based 
upon Von Neumann illstruct~ons can guarantee tae security and 
~ntegrity that future systems must provide. 

Another problem that must be corrected is that present 
hardware/software systems re;:luire the user to understand much 
more than he needs to know to do his work. A solution to this 
problem ina limited conte xt has been prov.llied by certain 
conversational systems like JUSS, CPS, and aPL. In these 
systems, the user is not required. to learn unrelated lan'juages 
like machine languaye or JCL in add~t.lon to the lauguaye ~n whiCh 
be writes his program. FULthdrmore, he nas good conversational 
access to what is going on: ~L he does someth.lng wrong, he is 
likely to fina out for~bwith. With new architecture, these 
advantages will extend to the tull ranye ot problems that 
computers solve without ~ncurrLny the performance penalty of a 
software interpreter. 

During the past decade, cons~lieraDle practical aud theoretical 
work on programming languages has Deen done. Although centered 
dround languaye, this work aas aualyzea structures that are 
fundamental to all Eorms of computation: the structures are 
common to many types of languages and appear throughout operatiny 
system design. The time ~s r~pe, theretore, to focus upon these 
basic structures, to implement them directly in hardware, and to 
construct the architecture of an entire system upon the 
ioundation they form. . 



( 

( 

Chapter 1. 2 D~$lGN Pk~NCIPLES 17 

At present, five bas1c architecturaL levels have been ~dentified: 
1) Physical Components 
2) Hardware Boxes 
3) System Control 
4) system Language, SL 
5) General User 

This document d1SCUSSdS the ~ogLcal aspects at the 1uterLace 
between levels 3 and .4. The AfS 3ystem Arch1tdctu~e, of course, 
must define the deta1ls of all intertaces. Several observations 
should be made on the intertace between SL and System Control. 

An AFS system, 10Y1cally, lllaj{e5 availa.ole to a user throuyh the 
SL interface a set of system serV1ces 1n data communications, 
data entry/retrieval, and data manipulat10n and computation. 
Beneath the SL level, the control and syuchrou1zat10n of system 
work flow is under the control ox d System Control program. The 
Sy stem C ontI·ol program 15 arCU1 tect ed to consist of a number of 
functional control modules, Te.I:lllinal Control, Data '::ommunications 
Control, Data Control, L'ionitor Control, and cOiBlllalid Cant rol. The 
Command Conteol module has tae respons11n11 ty to c;)ordina te work 
flow activit1es on both the lOY1ca~ and physical levels. On the 
physical level System Control iunct10ns are mapped onto a 
physical structure which consists ot three basi~ enyineering 
SUbsystems, PPS (Program PrOCeS!i:i1IlY Subsystem) , SMS (storage 
Management Subsystem), and SSS(Soucce/Sink subsystem). Each of 
these u«its requires its own ~oy~cdl conteol proyr~m, which will 
be called an .BCP (Ellgineeri.ng <.;ont.rol Program). The SL/System 
Control interface is common across all AFS installations. 
~ithin the System Control l~ve~, the sc~ 1nteracts wita the 
intertace provided by the respe~t1ve ECP·s. This interiace will 
be called the ~I (~nginee£ing Interface). 

In early computer systems, lO~1ca~ and physical interfaces were 
identical: programming manuals 1ucluded a rough sketch of 
hardware organ1zation, describing reg1sters, data paths, and CPU 
clock. cycles. In System/36\,}, rBM int.roduced a family of 
computers with identical lOY1cal interfaces, but totally 
different phys1cal oryani~atlons and data flow. Software 
developments removea the proyrdwmer even further from hardware: 
with pseudo-devices in HASP ana virtual macnines in CP/67, 
programming in tertaces became pure ly 1091cal, with no direct 
relationshi~ to ~hysical aevices. 

ISM COM~~DENrlAL 
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A lesson froll history shows tilt:! .llllportance of sepaeatiug logical 
and physical interfaces: On tne ~~M 7u~, all I/O went through 
the i'lQ register in the CPU; a proSl ealllllee could 0 vee lap riO and 
computation only by cOlllplex pI:ogcalluling techniques involving 
delicate timing considecations. The rBM 709 added cnannels to 
allow riO transfees to pcoceed wit~out ~ntertering with 
computation, but eacn t e of I/O dev~ce Le u.lred ent set 
cf control instructions. System simplii.led the logical 
.lnteeface by aading control un.lts tilat eesponded to the sallle type 
of command for an entire class ot devices, but the prolifeeation 
of channels and conteDl units .luc~eased the numbec of hacdware 
devices and hence total system cost. To caauce cost, small 
models like System 360 Mod 2~ used CPU log.lc to perfoelll the 
functions of Channels and control units. Aitee a decade of 
progeess, physical intertaces on tbe Mod 25 were the same as on 
the 704, but logical interfaces weL:e totally liiiferent: because 
of funct ional differences Dt:!tllit:!en I/O and computation, c oml>u teL
archJ..tects had defined logical .lnteeiaces that separated channels 
and control units from the CPU; on the 4ssumption that every 
logical inteeface eequires d physical intertace, they had 
designed different hardware devices for eveey functional unit; to 
improve cost/performance, engJ..llt:!ees eventua~ly found ways of 
doing all the fUDctJ..ons on a single unit. The moral is that 
logical interfaces ace pL:ogrammJ..ng aids, pbysic4l interfaces are 
engineering approactlesto Dettee cost/perfoemance, and any 
sJ..mila~ity between the two 15 purely coinc.ldenta~. 

The APS project involves d cCLtical aualysis aDa eadefin.ltion of 
all interfaces in an ~nLOeJlldt10n handling system: the 
peogeammee's interface saould be a pureLY loy~cal one with all 
the aids that can simplify hLS task and with no housekeeping 
details; the physical interface should be designed for opt1mum 
perfoemance at a given cost W.lth no unnecessary consteaints from 
the programming interface. . 

Before considering what ieaturds future systems shou~d have, let 
us contemplate the state .lnto which cucrent systems have evolved. 
For our hardware, assume a hypothetJ..cal Hodel 195 with relocation 
featUres and a modified C~/b7 system to run on it. Then imagine 
a PL/I program using disk 1/0 rUfiIung under 05/360 cllnnJ..ng on the 
modified CP/67 running on the hypothetical Model 195. storage 
management on such a system .lS fantastic: i".lrst, the PL/r 
program must manage transfers between J..ts own stoeage and the 
disk file. Beneath the ~L/I interface, tne compiler inserts 
storage management eout.lnes tu subd~locate storage faster than 
OS/36J can with GHTftAIN and P~~iMA~N. Un the next level, 05/360 
allocates space to the program dud paecels it out 1.n eesponse to '~oj 
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GETKAIN's; it also allocates space on its virtual 2311 disk and 
does housekeep~ng io~ 1/0 re~uests. On the next lower level, 
CP/67 creates tl1.e illusion of stord~e and d.l.sK toe 05/300: it 
busily allocates space in core, lIIove:.:; virtual pages to meet the 
demand, and conjures up a 2311 out of space in core, drum, and 
2314 disk. ~eanwhLle, hardware allocates blocks of space in the 
hign-speed buffer and moves aata to autLc~pate future use; it 
also allocates space ill varLOUS registers iuvisible to the 
program~er: .l.nstruction bULiers, uata buffers, and reservation 
:.:;tations that effectively repLace tbe tloatin~-point . registers 
with d set of virtual registel:s. 'rhe point ot this exalllpl.e is 
that storage md nagem~n t occ urs at every level of cur rent s1 ste ms: 
allocations doue at one level dre trequently unaone at the next; 
most of the allocations are doue by software; and storage 
allocation by bardware is about two orders of ma~nitude faster 
than allocation by sot tWdre. 

As the preceding example snoweJ, storage mandgement by operating 
systems is inefficient cOl&lpacea to management by hardware and is 
inadequate to eliminate further lIIdnayement by problem programs. 
Processor allocation and taSK a.l.spatch.l.ny can dlso be performed 
by hardware: super compdters l~ke the Moae~ lj5 or MPS have 
built sophisticated mult1prOjLamminy al~orithms ~nto hardware; 
even a small machine like the MOdel 25 does hardwaL'e dispatchin~ 
every time the CPU converts .l.tself into an I/O channel; and 
multiplexor channels are nar~~are units designed to appear like 
many channels by internal mUlt.l.programm~ny. A control block isa 
~ind of descriptor that is processed interpret.l.ve11; Burroughs 
adS been building machines Lac the past decade tnat do much, but 
not all, ot descrivtor processing 01 hardware. Compile.rs, 
linkage editors, JCL interpreters, indexed sequential access 
methods, and thousands ot problem proyrams all do symbol 
resolutLon and linkiny, and they could all 0.0 ~t mucn more 
eff~ciently w~th hardware ass~stance. Establishing a new 
environment is done by hardware at every cbauge of PSW and 
whenever a GPU becomes a Channel; Burroughs systems also use 
hardware to switch en v iroI1men ts tor procedure calls. On modern 
systems, these functions occuc lliore frequently than floating 
point multiplies and divides au) are more fundamental to overall 
system operation. For optimum cost/performance, these functions 
s~ould be reduced to a set ot primitives thdt are as firmly 
supported by hardware as fl.oat1ng point ar~thmet1c. 

In order to design a system ot tne 
number of des~yn princ.l.pl~s aave 
Ideally, the AFS system sbould 
directly from these prinCiples: 

gceatest possible util~ty, a 
been adopted as objectives. 
exhioit ~roperties derived 
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1) Minimum number at basic concepts: Current systems suffer 
severe.1y tram constructs -that are seeainglypu.lled out of 
the air with little re~ard for consistency or uniformity. 
Every effort is be~ny made to design SL with a minimum 
number of basic concepts. 

2) Completeness of bas~c concepts: Although few in uumber, 
the Dasic concepts must encompass all structures required 
for the AFS System. Se~arate operating system or command 
constructs, such as the system structure built around the 
APL .1an~uage, must be obv~ateu. 

3) Rigorous control and access disc~plines: rne APS design 
must make it possible to prove that system disciplines 
required for secur~ ty and ~u tegr ity are enforceable. 

4) Maximum hardware design freedom beneath SL: The design 
shou.ld avoi<i constraining the manner in which hardware 
interprets it since d~fLerent AFS maenines may employ 
quite distinct internal representations. 

5) Network function Transparency: The arChitecture shou.ld 
ensure functional transparency to user application 
programs and most system ~acilities 0% the physical 
network location v~rtual (co-exi~tent~, .local, or 
remote - of devices and othe~ systems. Further, it 
should easily a.11ow data dud funct~ons to be logically 
tr ansparent to useJ:'s. 

ti) Bit code independence: ~ae inte~nal bit codes used to 
represent 51 shou.ld not be uofified as part ot the 
architecture. A Standd~d J:'epresentat~on for compiler 
output will be deiJ..ned, but all bit strllctUJ:'es w~thin the 
system will be generdtea D1 execution of S1 ope~ators. 
Inverses of these operators are necessacy to display 
internal structures tor ana.lysis and debuggJ..ng. 

7) Modifiability: Tae architecture should conta~n provision 
for user redefinitJ..oa ot system operators. The user 
should be able to iococporate suitaDly disciplined 
proced ures io place or: . tho;:;e normally s ufJ plied by the 
system. Architecturally, th~s requires that system 
primitives are tneruselves redefinable ~n terms of the 
sy stem. Pul.ly yellerali zed, tins pr~ncii:Jle reg u~res the 
architecture to be recu~s~vely extensible. 

8) ExtensJ..bility: The user should be able to deiine new 
operators that operate w~tain his own contexts and to 
extend the def iuit.ion of ol.a operators to new classes of 
data. 

~-
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1~VELS OF LANGUAGE DESCilIPTION 

Three levels of S1 are ;:i.l.yal.f.l.cant to tne usee. rhese are all 
symbolic in the sellse that dct ual addresses dnd other machine 
oriented quant.l.ties are not accessible to the user; they are 
only represented in 51.. by SYlllbuls. 

Strict ~L is a machine or.l.ente~ level that is mO;:it convenient for 
comp.l.lers to yenerate. Bas.l.c ~ntl.A 51 has the ;:iallle operators as 
str.l.ct 5L, hut it hd;:i a format that 1.S more con~enl.al for people 
and can be lIIapped allllost one-to-one into strict syntax. 
Pollow.l.ny is an expression .l.n str.l.ct syntax: 

stow(quotient(sulII (A;ti) .sum(~;j))) ,£) 

In basic infix, the example becomes 
«A+B).(C+D»->E 

or 
A+B+ (C+1» ->E 

Extended .l.nLl.X is the most fU.l..lt developed 51 syntax. It 
incorporates basic infix as a proper subset. Extended infix will 
be supported by a software tcanslator that will map .l.t to strict 
syntax. The purpose of extenaed illf.l.x is to pro viae a tlex1.ble 
p~ogramming tool for those wao wish to work directly with AFS 
data structures. 

AP1 and LISP dre expression· or.HHlted lanyuages: ttaS result of 
every operation is a value tnat Cdn De used as 1nput to another 
operatoe; conse~uently, e~per.l.enced APL proyram~ers often write 
subroutines cOnS1.st1ng of a ~1.nyle express.l.on w1th dozens of 
fUDctLons and variables; in LISP, an entire pro~ralll 1.S normally 
one long expression. The syntax of APL or LISP bas both 
advdn tages and disad van tages: l. ts ad vantayes l.UC lude sim pIe 
syntactic rules with on.ly on'd statement type and freedom froJi 
aebitrary conventions, a context t~ee structure that allows any 
operand to be replaced by an expression that computes the sallie 
value, dnd a consistency that ~akes programs a .':iuesat ot the list 
structures allowed for data; a ~ossl.ble disaavantage of such 
syntax is that it somet.l.mes leads to long statements that are 
bard to read. Although Long statements may obscure the 
programming style, tbey aCLsa trom the great modularity of 
langudges that can comoine sma~l expressions in an endless 
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variety of ways. Rathee tna.Q resteicting t.he powee ot the \"' .. ~J 
system* AFS will peovide a genoral expression oeiented language 
together with peogralRlI~n':l aias thdt encourage a clear, 
disciplined style. 

As an example of the power of generalizat~on auu the expression 
oriented structuee, considee a program to read records indexed by 
the variable CURRENT from f~lds JO~ and SAM and then write the 
smaller of those two records on tne tile TOM indexed by CURRENT. 
fJL/I re<luires the follow1ng tour sta taments to perfoe.li the task; 

READ FILE (JOE) INTO (,rEMP1) KEY (CUltRENT); 
READ PILE (SAM) INTO (TEl'lfJ2) KEY (CURRENT). 
rEMP1=KIN(TEKP1,TEMP~); 

WRITE FILE (TOM) FROM (TEapl) KEYFROl1 (CURRENT); 
The first observat10n we migat rua~e about these statements is 
that although they perfoem actLons very similar to the fetching 
and stoeing at s.Lngle elements of vectoJ:s, Pi-/I syntax obscuees 
the similaJ:ity. The second ohseevat10n .LS that PL/l chops 
expressions into statements that foeee the user to ceeate 
unnecessary temporary varLable;;; as targets of the riEAD's. In 5L, 
the similarity between l.ndexea vectoes and 1udexeci sequential 
files is reflected in tne lauguage, aud the ta~t that every 
expression has a value allows al~ fou~ PL/I statements to be 
condensed into one 51. statement: 

JOB[CUBRENT] min SAMLCUMR~~lJ -> TOMlCUiiENTJ; ~ 

Although bit encoding of the ~achine Idngua~e is not a primary 
topic of this Lepoct, a concrete notatl.on loS necessary tor giving 
examples and stating detinLt10ns pcecisely. Thereioee, all 
definitions v111 be stated J.n a form called the APS strict 
syntax. ~his form is a dic8ct mdP~iDg of the tree structuee of 
the abstract syntax ana is l.somoJ:phJ.c to the class of bit 
encodings that will be executed directly by hardware. Following 
are production rules for the strict syntax 1n the IBM standard 
metalanguage: 

group ::: 1 s-expr (. s-exprj ••• 1 

s-expr ::= symbol [argument-l~st] iJroup I c onstan t 

argument-list ;! = ( s-expL: [f s-expr] ••• ) 

symbol ::= letter [letteriCligitjUnderscoee] ••• 

An s-expr is an expression iu the strict Sjiltax. Nore general 
expressions in the extended sin tax are Jeil-ned by their mapping 
into s-expr's. A group .LS a collective Object waose elements are 
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complete expressions; ~t co££esponds to BEGIN-END or DU-END 
blOCKS in PL/I and to procedllr-e dud .tunction DOd ies. The group 
is more generai, however, becduse ~t returns d value and can be 
used in place of an ord~uary var1aoie or constant; furthermore, 
it has the structure of a list and can be 1nde~eQ or concatenated 
with other groups. A complete express10n form~uy oue element of 
a group is cailed a statement; iollow~ng 1S an example of a group 
with two statement~: 

(stow (sum (sin ,X) ; eXtJ (cos (1) ) j ;L.) ;sum (dl.f.terence (A;ts) ;C)} 

The f~rst statement saves the resu~t at the computation in Z, and 
the 1:.emporary value is disca.caea linen execution moves on to the 
next statement. The sScond statement computes (A-B+C), wAich is 
r:eturned as the value of the group. 'inis form of syntax has a 
structure that is good for comp1iers, but naa for humans; the 
extended syntax is an 1ntl.X tor:m that is good for humans and 
dl.rectly mappable by comp11ers. 

Although the strict syntax presented aoove 1S wathematically 
elegant, it suffers from tIle LIS~ unr:eadability :o>yndcome: it 
uses too many parentaeses, pn~.u.x notation ~s harder to read than 
infix, and arithmetic expressLons dre not written in familiar 
forms. The sample express10a Y1ven in section 1.3.2 may be 
written in infix form as: 

(sin X+*cos 1->l;A-d+CJ 

To imp.cove readab11ity, extcd D~anks 
inser ted, fa miliar mne monies .1.1 ke I ex p' 
sin91e character operators, and comments 
inserted anywhere blanks may appear:: 

dud pacentheses may be 
may be used instead of 
in french quotes may be 

[s1n I.. + exp cos 'l -> Z; \A-.u+C) «value at gr:>up» j 

The extended syntax will also include add~tional torms that are 
tamiliar from other programml.ng languages such as if ex~ressions 
and do-loops. Since a group 15 a list of expressions, an if 
expression can be constructea by indexing. For example, all 
three of the followl.ng express~ons 

if A=B then X+3->Y else 'l-J->X end 

{'J.-3->X; 1+ 3->Y} (A= B j 

A=B select (Y-3->X; X+3->1j 

can be converted to the stI:ict syutdctic torm 
select{eg{A;B) ; (stow (d1fference(f;JJ IX) ;stol1f(sum{t;3) ;Y)}) 
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The character set for a prograll1i1ung language must be a reasonable 
compromise amoag many contl~ct~ng constraints: 

1) Ease ot prog ra III entry, 
2) ReadabJ..lity, 
3) Use of fawi~~ar conventions, 
4) Avai~ability of existing aud future I/O devices. 

Por good readability and an esthetically pleasing text, a large 
character set is important: ;;itudies of r~ad~ng sI'eed show that 
average reader!:> can read lowei: case text muca Lastel:thall text 
printed in upper case only, and mathematicians use a large 
character set to reduce long formulas to a size that can be more 
easily encompassed by the eye. API. has had conside.rable Silccess 
in introducJ..ng a number of spec~al characters for various 
functions, but rJ..gorous adn~rence to the convention of s~ngle 
character operators leads to absurdities l~ke"l c1rcle X" for 
sin(X) and "I-beam 20" tor t1me. A large character set can 
unfortunately 1utrcduce problem!:> LD program entry: the reversal 
operator in APL requ~re!:> ~ Key strokes--upsnift, 0, backspace, 
upshift, ~--and takes wore typJ..ng effort that a three-letter 
word. I/O devices tor d8-Clld.racter keyboards are comm0I1 1 and 
even larger keyboards will Decome ~ractical wJ..tb ~liT devices, 
while limited character devices lj"K€ keypuncb.es will be less 
common in the F5 time traIBea ~evertheless, character sets with 
about SJ or 9J symbols will 3&ilj" be more accessiDle than those. 
with upwards of 150 symbols. Thereiore, 5L should assume that 
the Dasie :tor In of in put will be with a character set of 88 
symbols, but it should ma-'.e provis~on for devices with a smaller 
set and take advantage ot fllcure devices with larger character 
sets. 

The proposal currently oeing considered for the SL external 
syntax is the set of conventiolls adopted by PAL: all user 
defined symbols are either sJ..uy le lower case letters or 
alphanumeric strings be~iunillY with au upp~r case letter; 
reserved words and system def1ued symbols are e~ther special 
characters or strin~s c~ two or .ore lower case letters. This 
convention includes the APL conveut~ons as a s~ec~al case, but it 
also prov~Qes an infinite number of words with mnemonic 
si911if icance .H.Ke si n, cos, t1me, date, if, and tb en. 
Furthermore, every special Character would have a corresponding 
symbol like 'sum' for I •• so that devices without that character 
could still use the funct10n; tor devices without lower case 
letters, an escape chaLactei could De used to ~ndicate reserved 
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BA,:j.IC CuNCEPT::> AND ,:jTttUCTUH.ES 

Th~s part of the manual uesceiDes the lO<jicalstructllI:es that are 
v~sible to system pro<jrallllllers aud to usee peogrammers who choose 
to code in SL. Although SL is the macnine language for AFS, its 
concepts reflect the structu~es of compilers and operating 
systems much more than details ot typical von Neumann machines. 
Three cnaracter.istl.cs dist~IlYl.ll.sh tne foll.owing pI:'esentation tram 
the principles of operatl.on vi other machines: the absence of 
bit cepresentations, a theol:etl.cal style of defl.nitions and 
theon~lIls, and the Dasic assumptl.on that tI:'dd~tl.onal software j"; tTlfU
functions ot storage al.locatl.on and process dispatching are \\ (..JoItOJ) 

performed at the engineerl.ng level.. . ~l"'~Uf 

Chapter 2.1 beyins with a discussion of oDJects: theiI:' reside nce 
in stoI:'age cells and their natuce as processes. Ali the objects 
in the system make up the object base in Whl.Ch three directed 
graphs embody all l.nten:elat.J.olls1ll.ps: Ule accessibili ty gra ph, 
vh ich incl udes all possi.ole paths tOI: accessing one ob ject f Lom 
another; the environment tree, wal.ch defLnes paths for symbol 
resolu tion; and the depenQ~nCI graph, Which incl udes all 
outstand~ng re~uests by Objects for services bj other objects. 
Furtiler discussion shows .how tnese graphs interact with various 
types of objects, program st£ucture, and resource management. 
The ·final chapter LU this part dl.scusses the built-in tunctions 
provided with the system. 
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OBJ i:CT liASE 

A fundaillen tal concept of A.fS i.i:i that all stordge inte rnal to the 
system is managed automatical~y: the programmer ref~rs to data 
and other objects by symooii.c names rather than by physical 
addresses. Storage management would extend over levels from 
high-speea registers and monoli.th~c memories up through Comanche 
files, optical storage devicas, and even cataloged off-line 
storage such as tape librarLes. Logi.cally, all SUCA storage is 
an integral part of tile systelll, distinctions between levels are 
i.Dvisible to the programmer, and it is considered almost 
unlimited in Si.ze. 

When independent formulati.ons of a prOblem give rise to similar 
concepts, those concepts probaoiy conta~n an essential element of 
tae prOblem thdt is invdridDt under change of notation or frame 
of refer ence. Tue prob lelll at lli.S tl.ng Ul.Shing bet ween ob jects and 
the mecha nism for .Lef erencing tuem is a. fundalllen tal one that 
every computer system, programllling language, and theory ot 
computation must face: In yOU Neumann lllachines, a special type 
of data called an address i.S used to refer to other data; 
althouyn addresses have the u~eful properties ot numbers, they 
are bound so tightly to phys1cal storage that their logical 
proper·ties are inextricably confused. with problems ot allocating 
storage and devices. In the definition ot CPL, Strachey 
distin9uished L-valuei:i and ~-va~ues according to whether the 
value could appear on tue lett or the right of an ass1gnment 
statellen t; the target ot an ass1~plillent hall to be a value "With 
~ocation-like properties. AL~OL 60 can be formally defined 
without the concept of storage onLi because it has a relatively 
slllall number of oasic concepts; to deal Wi.th p01nters and to 
forlllalize concepts of assi.gnment, ALGOL 68 introauced the concept 
of a reference, whicb ~s like all address pointing to a cell 
capable of boldi.ng d 9 ive11 ty pe of object. In his analysis of 
APL, Abrams d1stiuguishes select10n operators aud computational 
operators: the value of a se~ect~oll operator is ll.IlKed to the 
storage of one of its operduds dnd can transmit changes back: to 
i.t; the value of a cowputat1onal operator has no connection to 
tbe storage of its operands aod caunot trallSmi.t Changes back to 
them. Jne of the design pr1nci.ples ot AFS is to search for the 
essential elements underlying all programming languages and to 
build d new system upon them; the concepts of Object and storage 
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cell are fundawental and £equira careful de~.ln1~ion to support a 
~eneral treatment ot a~signwents, synonyms, ownership, aud 
argument pass1ng to funct10ns. 

For defining indices and. ~oiuters, storage addresses are useful, 
but the housekeeping they enta.ll far outweighs t!le.lr usefulness. 
The storage cell in AFS is a logical location capable of holding 
any ob ject or collection of ouj ects, no matter- how large: its 
characteristics of a location ::>.lmp.l..1.fy the definition of 111d.1ces 
and pointer~, but it involves tiO bousekeeping burden because the 
storage management system maKes the cell appear as large as 
necessary and automaticalLy moves .it to any dev.lce that may need 
to process its contents. 

Definition: A 2~2~~~~ ~!! is a lo~ical location iieutified by a 
unique £§d:l l!M~,g. Each .titord.:ie ce.!l contains one and oply 
one object; there is no upper limit on the S.lze of a storage 
cell. The cell name.LS an .lnternal idelltit.lec (abbreviated 
ii~) whose representat10n .LS .lnv.lsible to the user. 

This def ini tion is non -constr uctive: .1 t. defines a storage cell 
Dy axioms or characteristics tnat ar~ visible to tae programmer, 
not by an explicit construction tl:om sometllin,:;} m:>re primiti vee 
The ad Vdn tage of non-coastr u.ct.l ve definitions .lS that the 
implementer bas ma~imum treedom in h~s choice of representations 
and hardware design. Tne d.l.sauvautage of SUCh definitions is 
that they don't prove that an eff.l.cient 1mplementation (or even 
dUy implementation) is possinle. To remedy that situation, the 
informal notes between def~n.lt.lons ~111 illustrate the abstract 
concepts with a sample .lmpleweutdtion; s~nce the illustration 
will not necessarily be the optl.wum engineering solution, the 
implementers are free to Use any des.lgn that sat1sfies tbe 
axioms. 

Deiinl.tion: A j;L\!1!.~£ i::> a tewp0l:a.I:j storage cell created for the 
purpose ot holding an aDject until it can De processed or 
moved. 

Buffers are intiwately related to tae mechau.lsm tor passing 
messages between ob ject.::i suell as iU:'1umen ts to functions and 
results from functions: Normally, what.Ls passed is the cell 
name of some stor:age cell contal.nl.llg the message; in computing 
xl.r j, for: example, the select funct.1.on I:etur:ns t.ne cell name for 
the storage cell containing X1IJ. However, when the sum function 
computes (A+d), there is no permanentiyallocated storage cell 
containing the resal t; therefor:e, the interpreter: that is 
interpreting the funct.lon obta~ns a temporary storage cell, 
called a buffer, to hold tae result. Duffer:s corcespond to I/O 
buffer:s in cur cent systems as wall as to regl.stecs 1n the CPU or 
on a pushdown stack. 

A particular implementation of tae stoI:aye cell concept is 
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discussed in the System Arch.1.tecture Manual. Tile Storage 
Management Subsystem ~MS) described there provides spaces 
identified by unique space num.oers; each space J.S linearly 
addressable by an offset trom the beginning of the space. A 
collection of storage cells can be .1.mplemented asa space divided 
1.nto <l nllmber of L.l.xed length blocks holding object ililages, also 
known as DAPOVs (Descriptor An~ POl.nter Or Value). The cell name 
corresponds to the space number and offset to t~e object image; 
the llniqueness of sPdce nllmbers gUdrantees the uniqueness of cell 
naliles. If an object image ~s very large, the block .l.dentified by 
space number and offset only holds part of the image and contains 
the space numoer of another space holdl.ng the overflow. Since 
spaces can be chained together it necessary, there is no fixed 
bound on the Sl.ze of objects. 

The concept of process l.S tunudmeutal to all levels of an 
information handling system: CPU, channels, operating systems, 
and external devices. A rat.1.onally designed system must nave a 
precise concept of process and of the possiole 1.nteractiQns 
between proce~ses. ~n AFS, the deil.nitl.on of process is based on 
the wall developed foundation ot automata theory aud is designed 
to facilitate the implementation o£ multiprocessing systems. 

Definition: A ££Q£~§§ is au automaton with a set of states Sand 
a set of states W contaLued in S loU Which. it waits for 
input. Processes can De best deSCr.l.Ded by assuming they 
have three parts; 

1) A ~£Q£~§§ ~tatus ~~£Q£~ (abbreviated PSR) containing 
tae current state6 Lnpat, and contents of bllffers 
used fOL workl.n~ storage. There .l.S a one-to-one 
correspondence Detweeil processes and PSR's. 

2) A .££Q£~g!!£.2! de§g~.f!£'!:Qn that encodes a tinl.te set 
of informatl.on dctl.ul.ng the states and permissible 
transit.l.ons between taose states. Some procedural 
descriptions may be shared by many processes. 

3) An ~~~£££et~ th<lt pertorms state trans.1.tions tor a 
process: it examl.nes the procedural descriptl.on and 
tbe psa and sets the PS~ to its next state. An 
interpreter may be time shared among a number of 
processes. 

The process status record Keeps track of all .1.uiormation that 
def~nes the current state of Ii process. J.n au toma ta theory, a 
Ps.a is analogous to the instantaneous de~cr iption of a Tur~ng 

maCD1.ne. In a System/360 ~PU, a PSR 1S analogous to the program 
status word together vitn the contents of the f.l.xed and floating 
registers. In the CDC 7600, the exchange jump package is the 
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equivalent of the PSR. In the rlur:I:oughs 6700, ttle pushdown stack 
toget~er with contro~ words taat may be stored in it form the 
equivalent of a PSR. 

Above the SL l~vel, a procedural ~escript~on could be a read-only 
program. Beneath that level, procedural descr~ptions ruay be in 
microcode or hard wiring. The reason for separating the 
procedural descript~on from otuer parts of a process is to allow 
a number ot re-entrant proce::.ses to use the same description 
simultaneously. Por prilll~tive Objects, the hardware may take 
shortcuts during high-speed exe~utLon and not sepacate the three 
pacts of a process; tor erL.:or Layouts or responses to a 
diagnostic programmer, howevaJ.:, the system must generate a PSR 
that effectively represents tile current state of an object. 

The interpreter is the motive i!0llier that causes a process to move 
from one state to tbe next; ~t ~s the logical abstract~on of 
acti ve servers l~ke CP U 's ana clldnne Is, Dut is more genera 1 si nce 
it includes software interpreters as well as special devices that 
may be attached as HPU·s. The AFS lo~~cal drch~tecture has 
deliberately avoided the concepc of a CPU; instead, the mere 
general concept of process allows tne eng~neer greater freedom to 
build distributed execution ~nits, s~ecial purpose devices, and 
mult1ple pcocessing units to i~prove performance without changing 
any logical interfaces. 

The def1nition of process sets th~ stage for later: discussion of 
wait std.tes, exceptions, ana ;ijusJ:l~nsl.ons: When a process needs 
input, it stays in one of its Wdl.t states indefin~tely; a waiting 
pEocess is considered asleep, dnd sending it input corresponds to 
a waKe-up call. Exceptions are unusual conditions like 
aritnmet1c overflow or vio~at~ons of access r~ghts; when an 
exception occurs, tue process iu which it occurs generates a 
message for another process Ca11.ed a mon~tor and then 90e5 l.nto a 
wait state until it receives a message from the monitor. A 
suspension occurs when the motive force, the ~nterpreter, is 
removed fLam a process, dnd the }?rocess natuLa11y stops beea use 
there is nothing to ma~e it go; suspens~ons result ~rom time 
shaLing tbe 1nterpLeter among many processes so that only one can 
be running at any given t~me, but tbey can d..lso occur when a 
process has run out ot money (us~ng too much time or space) or 
when it is stopped because of some other event like an attention 
signal fLoli the programmer who started it. 

Processes occur at all levels ot a system. When concepts aLe not 
clearly de.fined, engiaeers and pr:ogrammers worK.~ng on different 
levels may be unaware that tney are facing similar problems and 
duplicatiny functions ~erformea on other levels. 1n System/370, 
for exaliple, there dre processes axecut~ng in cRdunels and .I/O 
units, ~n micLocode in the CPU, and dt the ~nstruction level for 
subroutines and tasks. Tlu~ conc~pts, terminology, aud data 
formats at the vari6us levels cowplet~ly obscure any s~mi~arity 
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between these processes: records oi processes in channels and I/O"j 
~nits are maintained in channe~ status words; the record of a 
process at the microlevel is loggeo. out Dy the DIAGNOSE 
instruction; the record of the a rcni tecturally def ined CPU sta tus 
is in the prog ram status wora and register conten ts; and the 
record of a process as v~ewed D} 05/360 is in the task control 
oloclt. Not only does slstem/310 use aw~ward terminology for the 
'iarious processes, it also uses awkward means for switching 
status: for subroutine calls, the BAL instruct~on does only half 
the job since it only modi.ties par t of the .PSi and it doesn' t 
save registers. To call a pro':lram Wl.th different status, an SiC 
instruction must be used wita considerable overhead from the 
operating system. The rest of the status, the registers. are at 
the mercy of the called rou tl. ne to sa v~ or destroy. If the 
called routine is re-entrant, the simple BAL instruction, which 
takes one microsecond on a Model b5, must be supported by two SVC 
instructions to get and free tem~orary storage, at a cost ot over 
200 microseconds. In APS, psa's maintal.u the status and working 
storage for all processes at aLL ldvels. Although data formats 
beneath the SL lev~l are ~PU de~endent structures and cannot 
therefore be identical to formats above that ~evel, the same 
concepts and terminology are used to emphasize the relationship 
between similar problems on ditferent levels of the system 
design. 

In APS, the object is a, ~eneralizatl.on from two sources: 
descriptor/value pairs anJ resource/process associations. 
Descriptors are ma~ntained with aata ~n data management systems, 
APL, EULBR, ana the dynamically varting parts of FL/I. The type 
field in a descripto.r caa be Utter pret~d as the nam~ of a machine 
for dccessing the value pdrt. Although the few bits t.bat 
describe a floating point number don' t exhibit many 
characterist~cs of a procedure, the generality of an access 
machine or procedure l.S valuaDle for complex arrays and 
structures and is essent~al ior the intricate relationships in a 
large data base. The assoc~at~on of a process with every 
resource derives trom D~Jkstra's approach in T.H.E. 
Multiprogramming System and from Ule-Johann Dahl's approach to 
objects in S.HWLA 67. UijKstr:a associates a process with every 
resource in h~s system; the process ~s solely responsible for 
allocating that resource and acts as a central clearinghouse for 
all accesses to it. ChapteL ~.5 shows that all objects in APS 
have the properties of Uijkstra's resources and naturally fit 
into a general scheme of resource management. Alan Perlis 
suggested that simulation lau~uages might provije a suitable 
basis for an operating systems lauguaye since they have the best 
developed concepts of event ana process; the AFS concept of 
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objects as processes is d gen~~dlLzdtion of the objects in the 
simulation language SIMULA 67. 

Det ini tion: An Q!Ug£,! is tile oasl.c entl.ty in the system; l. t has 
an active part called an !!££~22 !!.4.£!!1.jl~ dud a passive part 
called an ~~~ ~souI£g. Lts active part responds to 
re1uests by other Objects and may in turn generate requests 
of its own. 

1) There 1S an input ~ueue of cell names that specl.fy 
bUiters contdin~ng re~uests tor the object. 

2) The access machine is a process that waits in one of 
a set of states called f~agy stal£§ when it is ready 
to respond to input requests. Waen a cell ndme for 
a request a~pears on l.ts input queue, it assumes 
ownership of the buffer contal.niuy the request, 
performs whatever actl.on is dpprOprl.ate, returns a 
buffer contal.niny ~he answer, and returns to a ready 
state. 

3) The owned resource 1S data that is accessed only by 
tne object's access wach1ne; tor ob]~cts ~1ke clocks 
or prl.nters, however, the resource way interact with 
events outSide at the system. 

Since this definl.tion LS general enough to accommodate 
~ource-sinA I/O devices as well as objects a~ ~owerful as a 
Turing Machine, it can inc~ude any conceivable devl.ce within the 
standard accessing and allocating method. Fo.r d floating point 
nUllber, the implementatl.OIl could specify a f~xej length bit 
string as the resource and a few b~ts to ident~fy a hardware unit 
as the access mach~ne. io}; I/J aeVl.ces, tile ouje::t internal to 
the system woulu be ca.i...led a. por-t whose resource would be a 
logical connection to the exter-ndl devl.ce ana waose access 
machine could be a hardware or m~ccocoded control unit. since 
the internal st};ucture of an object 1S l.nvisl.ble to the ca.ller, 
an object implemented in hardwaL·e or mic};ocode on one system 
could be implemented in software on anotaer: as in SLMULA 67, a 
software access macbine is a procedure that defines a potentially 
infinite class of activatl.ons; an object corresponds to a process 
executing in one such act~vdtl.On; a ready state is a point in the 
procedure whe};e the process wal.ts for input; and the owned 
resource is d set ot automatl.C vdr~ables used by the actl.vation. 
Logl.cally, all objects are processes; even a floating point 
variable is a process thatl.s normally wal.tinlj, but must 
occasionally answer re quests to aeli ver a va lue or to stow one 
away. 

Definition: A ~i!~l~Y~ objg£~ is one that cannot be constructed 
from other objects in the system: the PSR, Lnterpreter, and 
procedura~ description thdt make up its access macuine are 
not objects formally def1ued LU the log1cal architecture. 

Somellhere underneath all the lOY1cdl data structures, there must 
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be primitive building bloCKS teom which everything else can be \",_~ 
constructed by software. Althouyh the log~caldet~nitions of 
primitive objects ace parallel to the construct10ns of other 
objects, their substeucture is vis~ble only to the engineers and 
diagnostic programmers. 

Definition: A ~~£!5!ci&le Q!tig£!:: is one that can be constructed 
from other objects: tua PSR, interpreter, and procedural 
description of its access macAine are APS objects that can 
be manipulated 01 S~. 

Pr~mitive objects are detined aXLomatically ~n terms of their 
effects on other parts of tAe system. Somet1mes, reducible 
objects are def ined ax iomat~cally, but most .['educible ob jects are 
defined by an explicit coustruct~on 1n teems of primitive 
ob jects. All primi tl. ve objects d.re ililplaman tation defined j many 
reducible objects are implameutatl.on defLned, and others can be 
user defined. For efficiencj,eeducinle implementation-defined 
objects may be built out ot naruwaee or microcode even though 
they can be constructed out of more primitive objects. 
Logically, however, all reaucl.nle objects have the same status 
whet~er they are implementat10ll defined or usee defined. 

Definition: Tile primitive OhJid~t !!:l,.! nas an aCCdSS machine with 
only one state; for evart eequest, ni~ returns a copy of 
itself. For oPerat~ons on l~sts, nil has the properties of 
a zero ale men t list. " /' 

In APL/360, the empty vectors are similar to nil, but they have 
additional type intormation: the empty character vector has a 
descriptor that indl.cates that it is of type character, and it 
expands into blanKS; the empty numecic vectoe is of type numeriC, 
and it expands into zeros, n14 ~s of type any, and it expands 
l.nto a list OL undefined objects. 

Defini tion: The pr imi t1 va 0.0 ject ~!i5;!;~'! has an access 
with only one 1nterna~ ~tate. Foe every re~uest 
destroy, undef raises au erroc ~xceptioD. 

machine 
except 

Logical storage cells can nevee ue empty. If nothing else has 
been put in them, they contal.u an uD<ietiued variable object. The 
object nil is a general neu~cal element; it responds without 
erro[' exception to any re~uest, altnough some iunctl.ons such as + 
or - may tnemselves raise erCOl: e.xceptionswhen given a nil 
operand. The object undef 1S a 'jeneeal undef1ued element; it 
always raises error exceptLons except when being copied or 
destroyed. 

Primitive objects are so Das~c to the structure of the system 
that they cannot be constructed by softllare. Hardware devices 
may not be primitive l.n tae same sense because a disk drive, foe 
example, could be simulated by a software routine that duplicates 
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its interface dnd uses the storage management system to perform 
the same functions; but tllece loS no sequence of instructions that 
could create a new disk dr~ve ill the corner of the machine room 
and p~ysicallJ attach it to the computer. Therefore, certain 
objects must be built in froll the beg inning I and others may be 
attached as the system expands or removed when they fail. As 
long as the pbys~cal interface ~rovl.des cl.rcuitry that matches 
voltage levels and makes tne ~evice lOOK LiKe a procedure, the 
logical interface can make room for it in the object base and can 
define synonyms and access JI.ldchines that maKe it respond to any 
protocol expected of it. 

Definl. tion: A.E2tl .1.S an OD)ect tila t communicates with the world 
outside the system: .. 1ts access machine handles the 
interface, and 1.ts owned resource is a logical connection to 
a pbysical device. 

since ports are objects, tnet have the same interfa~e as all 
otber Objects: they have a well defined status with respect to 
the accessibil1ty graph, env:l.l:onmeut tree, and aependency graph; 
and they respond to requests 1.n tAe same way as other objects. 
Therefore, it is always possLbLe to replace a port w1th a 
software object that has tue same intertace; proyramlllers can 
create logical printers, simulated 2314 disks, ana even simulated 
networKS. of maChLnes. It a yraphic device hati au unusua~ 
interface, the real port to tue (levice can be t"eplaced by a 
.logical port that behaves 11.~e a printer, but that contains a 
program to massage control l.nformation passea w1th a request and 
send it to the graph1.c device 1.ll the appropriate format. To make 
network commuu.ication moretrdllsl:'arent to the user, the system 
will provide ident ical interfaces for a vlI:tual S ystem/ 370 
emulated inside the system aud tor a real Syste~/310 at the far 
end of a telepaone lLne. 

It commun~cations w1th a system were 1D the character format of 
typewriters and printers, tae Lnternal representat~on of an 
object would be of no coucern to iJrogrammers and could remain 
totally invisible. But since ~ata may De interchanged between 
systems, either conversationally or by removable storage meaLa, 
there must be a standard representation ot an oDject tnat can be 
recorded on an external meal.U~ and reconstructea au a different 
system. This standard representatLon is called an object image; 
every system is free to use its own internal forms, but they must 
all be directly mal:'pable to the standard form tor an object 
image. 

Definition: An objg£i 1J!s.9.g L5 au external representation of an 
object. The object ~mag~ has two parts correspolluLng to the 
two parts of the oDject: a !:i~§££~12.!:Q!:that spec~f~es the 
access machine and a !:.!:tf!£~'§H!i£!tiQ!! of t.l:le ownea resource. 

1) Li the object 1S primitive, the descriptor indicates 
that it is prim~t1ve, dnd the representation is a 
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bit strl.ng specityl.uy wn~Ch object J.t is. \~j 
2) In general, the descrl.ptor specifies the complete 

access machine by ind~catin9 the PSH (which may 
contain zero bits of informat~ou in some simple 
cases), the oDJect image of the procedural 
descrl.ption ot the access machine, and t4e 
interpreter of the access machine. 

3.) If the owned. resource contains storage cells holding 
other objects, tae representation includes the 
Object images of all those objects. 

4) If the object is a synonym containing the cell name 
ot some storage cell, the Object image must contain 
a path name (see section 2.1.5) for reconstructing 
the cell name by londexlong tram some standard vertex 
of the accessibill.ty graph. 

The object image is an external form of the DAPUV (Desctiptor And 
Pointer Or Value) discussed in tne System ArcnitectuL'e Manual. 
Althougn a DAPOV on a small system may be different from a DAPOV 
on a large one, the object images wl.ll be the same for all. The 
object image may be considered as tne DAPOV foe an abstract 
implementation of APS; lot may turn out to be iuentl.cal to the 
internal DAPOVs of one or mora act~al implementations, or it may 
be a compressed encoding of tae internal DAPOVs. 

Definition: The ob~£!.Q~ J.S the set of all objects in the 
system. 

The term object base is more general tban the teem data base 
since it also includes the loglocal interfaces to hard~are 
resources. because of the generality, all hardware devices have 
descriptors and can have synoDyms defined upon tbem. ~henaver a 
device brealts down, its desc.I:l. iltor cau be changed to point to 
another dev~ce or a so ftware sJ..mulator that can J:eplace it. All 
of the advantages of late bindl.uy tuerefore appLy to devices as 
well as data: instead of do~n9 a SYSGEN for every ~onfiguration, 
implementers can provloue standard logical iacilitloes, make 
descr iptors for non-ex l.stent tac 1.1J..tloes pOl.nt to substit utes, and 
keep the logical appearance constant as descriptors are changed 
one by one to reflect the cureen t configuration. 

The definition of object givena.bova illlpi1.es tnat all objects are 
serially reusable resources. ~on-reusable objects can be 
implemented by making the access machine destroy the ObJect after 
its first (or n'th) use; no I:e'luests can oypass this check since 
the object cannot be usea except througll its ac~ess machine. 
He-entrant proceaures and tillie-saareu dev.l.ces corre:::>!!Ond to a 
potentially infinite class OL serially reusable objects: by 
subdividing storage, a s1.og1e re-entrant procedure can provide 
automatic variables fOI: as man}' activations as requested; by 
subdividing tlome, a time-sl.iculg routine can provide multiple 
logical devices that all perio~m tne same function as a siu9le 
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physical device. The APS view of objects as processes treats the 
problem of resource iIlalli1gement as a problem of iater process 
cOllmun icat ion. 

Definition: A +.~g~~st Oll an object is a tr~ple (T.PeD), where T 
identifies the ce quest ty tJe, t' ~s infor ma tion proper to that 
type, and D is the dest~llat~oll oc oDject that is to receive 
the answer. Normally, the access ma.chine 01: the ob ject will 
execute tue request and retuLu a result to the Object D. In 
some cases, the access macnin€ w~ll Ci1use an event called an 
exception; see section 2.~. 1 for a definit~on of exceptions 
and tne ensu~llg events. 

Defiui tion: fEhe de~§lli.s!~!!'£Y ::!£.!!f!h is a structure det ~lle:i over the 
object base: It aa object x has a re~uest on ~ts input 
queue tha.t spec~fies an oOJect y as ~ts destination, then y 
~s said to ~~~!!~ 011 ~, and (y, x) is an edge of the 
dependency graph. 

Later chapters will br~ng out ~mplications at the dependency 
graph in resource lIanagement, process d~~patching, and dea.dlock 
detecminatioll. Chains of su.orout~ne calls form. a subgraph of the 
dependency yra,ph Known as tll~ activat1.on tree: ~f x is an 
activation of a pro~ram taat calls a subroutl-ue y, then x is 
dependent on an act~vatiou of y until ~t returns. 

S1.nce every obJect has an access lllacnine, it al~ais kas an active 
element available to pe£foclll nec~ssary tunct~ons. A typical 
function loS that of mon1.tor~ng: Dur~ny debug mode, the 
programmer may wish to mOUl-tor all accesses to a particular 
variable and then pertorm a specific dction such as recording the 
dccess, calling some proceduce, Oi: 14aiting for 1.nstructions from 
the terminal. For sensitive data, all re~uests on an object may 
cause its access maCUl-ne to ChdC~ cne identity of the.caller and 
to not~fy a securl.ty otfl.cer ot an access attempt by an 
unauthorized user. For propLietaJ.:j software on lease, the access 
machine ml.ght oestray tbe object atter a thousand uses. All 
these applications rely on the ~nvisl.bility of an object's 
~nternal structure--when aa oruillacy variable loS ceplaced by one 
that is being monitored, ~ts normal interface remains unchanged. 

Uefinition: An access maCUl.De 
interface: 

1) .It must have a set of 
for requests Wl.th 
proceSSing a reluast, 
state. 

has the follo~iny external 

ready states 1.U wuicn it waits 
argulllents ('f;P;U) j after 
it must return to a ready 
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2) The ar':Jumeut D ;;;pec..lties the destl.nation for the 
response to the request. 

3) The argument Pspecitles further information proper 
to thereq uest type.., 

4) The argument T specl.fies oue ot the following 
request ty pes: 

!~1~Q£~eg: Request to obtain a synonym to the 
storage cell containing the Object (see section 
2.1.5). 

£.Qn: Re{{uest to obtain d copy of the object. It 
the object may not be copied, the access 
machine rai~es an error exception. 1f the 
ar':Jument P is 0.1.1, tueu the entire object is 
copied. otuerwJ.se, P must specify some subpart 
to be copJ.ed. 

~glel~: Request to delete a storage cell of a 
collect.J.ve OiJJoct. Tlle argument P must be the 
index of tae cli!ll to be deleted (see section 
2.1.6). The Object contained in the cell is 
not destroyed, but is returneu as the response 
to the request. 

Qg~!:..£QY: iiequest to destroy an object. If the 
object is llou-uestructible, its access machine 
raises an error exceptJ.ou. It it is a 
collectl.ve object, it makes destroy requests 
upon all of its elements before finally 
destroying itself. 

~'yg,1~1g: Re{{Uest UlJOIl d. siUlple d:ita obJect to 
delive£ a value or upon a more complex object 
to generate d. vdl~e. The arg~ment P is nil for 
ordinary data oDJects, but must be a list for 
functions (see Delow). 

ld~nt~&y: deguest to obtain a descr~ption of the 
access machine anJ structure ot an object. If 
the argument P is nil, the response includes 
all identiijJ.ny in~ormdtion; otherwise, P 
specl.fies the J.nformation requested (see 
below). 

l!!§grt: dequest upon d collectl.ve object to insert 
a new storaye ce~l J.nto its owned resource (see 
section 2.1.6). P specifies the index to be 
mapped onto tbe new cell hy select requests; if 
P is nLl. the new cell bas no J.ndex. 

/ 

~ele£1: Reque.':it upon a coll.ective object to map P '\.._j 
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onto its ~t~I:'dye cell~: ~ must be a set 
(possibly UL~) ot elem~nts 10 the 1ndex set of 
the object; the Les~onse is a set of cell names 
selected oy those indices (see section 2.1.5 
for further ~iscussion of indexin~). 

~i~S! Request upon au act1vation of a function to 
beyin 1nterpretation of the procedural 
descript~on associated with tne function. The 
argument P is d ~ist of objects to be bound to 
the formal pacdmeters of the function. 

~i2!: Request to stOll the value P .l.n the owned 
resource o~ aD oDJect. The access machine will 
e.l.ther perf oem data conversions to make P 
comply wita Lts conventions or raise er~or 

exceptions 1£ ~ cannot be converted properly or 
.1.t the curreut value cannot be modified. 

5) T~e access maCh.l.Os always reserves the r1yht to tell 
lies about .1.tself dnd its resource; th~s ri~ht is 
essential to data 1ndependence because it must 
a~ways De possible to replace an obJect w.l.th another 
object that may be different in structure, but 
appeacs the same. 

Definition: In ordeI:' to SpeC.l.Ly re~uests, a primLt.1.Ve £~gyest 
£Q!!st~1 l.S de.tined .tor each of the request tYtJes; the Da mes 
of the request constants dre formed by aad~ng 's' to the 
cor respond iug re guest Ddll1\:!: U!.:!!2!L! • .fg§, £2.£!.5Ha, gelg1!lli, 
~::!§trQY§, gYi!lug.!.:g§, i9.g!tt~;U::~2' !!l§g.£i?i, 2~~i2, §1g.££!, 
aud §12J!§. 

Simple data Objects like f~odt~llY point numbers dud character 
strings very se~dom make requests utJ0n any other objects. The 
objects that normally make ra~uests are funct1.ons: pr~mitive 
functions make requests upon arguments passed to tnem in the 
initial evaluate request, aua reduc.1.ble functions are user 
defined programs whose very nature is to make re\juests upon data 
objects, upon pr1mitive functions like sum, d~fterence, product, 
or stow, and upon other user detiuea functions. The fo~lowing 
deiin1tion ot function pres-ants the external interface ota 
function: it describes the act1.OU of a tunction as seen by the 
caller or by the rest ot the system, but does not aescribe the 
internal processes and structures of the function. Chapter 2.2 
describes the internal interface of user defined functions and 
the method of constructin~ them. 

Dei.l.nition: A fu!!£.t!2!!.l.S all oDJect that responds' to evaluate 
requests by creating an £i£1!Y~1J:2!l and then mal<.ulg a start 
request upon the act.l.vat~on to compute the value to be 
returned. 

~.dL1 CiJI'It' liJEN TIAL 
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1) If F is a redQc~ble function, the a=tivations are 
objects dist~nct trom F that reside in storage cells 
with distinct cell names. 

2) If P is a primitive function, its activations are 
not objects and cau.not be mau1..pulated D'j SL 
expressions. When the distinction is relevant, 
activat 1..0 us of PCilll1.. ti ve fUnctions are called 
U~i-.a9£i.!~tigq§. 

3) The argument P l..n the evaluate request upon a 
function I must De a list of the nUllloer of arguments 
required by F. if F takes no arguments, P must be 
nil, and F .is called !!i.l~lgi£. If f taKes 1, 2, 3, 
4, or n arojullents, it is called !!2ai!!i£, Q.yj!S1.£, 
!:£~9:di£, l.!i!1llfU:£, oc !!:.sgi£ respectively. 

The distinction between a tuuct1..on and its activation is 
essential: Since evaluation of a function may ta~e a long time, 
it would be undesirable to keep Ul.e fUIlction tl..ed up and unable 
to respond to any other re~uest during the entire time of 
evaluation; lIany users on a system may want sl..multaneous access 
to a function such as a compiler, an edl..tor, or a trigonometric 
function. Even more fundamental ~re recursive functions whose 
entire structure depends on tile ability for one activation of a 
function to call another activation ot tbd same fun=t~on. On the 
other hand, it would also be undesl..rable to have many copies of 
the function, since the code c~n b~ shared. TaereLore, a call 
upon a function causes it to spin off an activation which 
contains its own temporary storaye, but whiCh uses the same 
cead-only code as all other act~vations of tae function: an 
activation is a process MlllOSe PSR is un~que to it, its procedural 
description is the read-only code which is shared, and its 
interpreter is the decoaing lI'Iecllanislll that may be Shared with 
other activations of the same iUllction as well as with other 
functions written in SL. Fo£ cOllsistency, pcim1..t1..ve functions 
are considered as act~vations of hardware or microcoded 
procedural descriptions, but the activations are ~nvisible to the 
programmer since they are defined at a level beneath his view. 

llefini tion: The triaa.l.c function ~.9..!!g2~ maltes requests U Fon 
objects and returns the value passed back by the access 
machine of the Qbject; request(T;P;X) maKes a request of 
type T with argument P upon object I. 

The request function provides Ii 

upon objects. Certain requests, 
specific contexts that special 
those requests. 

general way of making requests 
however, occur so frequently in 
functions are provided to make 

Definition: The monadic fUnctl..on g!.!!luj!lg makes an evaluate 

.. / 

/ 

reluest upon its argument and returns the value that it 
delivers. lor day obJect X, evaluate~} is equivalent to ~-~ 
request (evaluates; nil; I) .\i..._/ 
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Defilll. tion: T be dyad~ctunctl.on §.:!::Q.!!. mai(es an evaluate reg uest 
upon its left argument to obtd.~ll a value P. It then makes a 
stow request upon its rl.~ilt argument with P as the proper 
argument for stow. The vaLue returned by the function is P. 
For any objects X anti Y, stoW(X;Y) is equivalent to 
re~uest(stows;evaluate(~) ;1). 

The stow functl.on is one of t~utipe~ ot assl.~nment tUllct1.0nS in 
AFS. The other ass1.gnment 1S the replace function ~iscussed in 
sectl.on 2.1.6. The distl.llctioll between stow ana replace is that 
the stow function makes a re~uest upon l.ts tar~et to stowaway 
the value, whereas tneI:eplace .tunctl.on makes a request upon its 
target to destroy itself ana thaD replaces it with a totally new 
object. 'rhe special character sY"iU01 for: stow is a sin9le arrow, 
and for replace a double arrow; these symbols suggest the tact 
that the stow £unct1.on normally cbanges only the owned resource 
of the target, but that the l.eplace functl.on changes both the 
access macbine and tbe resource parts. 

Previous sections detl.ned objects and ce~uests upon them; this 
section defines the poss~ble pa tus foI' rei:1ching one ob ject f I'om 
anotheI'. The stI'ucture that defines tnese paths 1.S the 
dccessiblity graph, whicn is a union of two subyraphs: the 
ownership tree that links coll8ctJ.ve objects witb their elemen·ts 
dnd chains of synonyms tbdt focm lin~s across the tI'ee. Although 
neither the ownershl.p t.L:ee Hor the chains ot synonyms allow 
c.1.rcu1. ts , the access~blitt gr:aph can and must ha ve circuits to 
support various types o~ list and .L:iny structures. As later 
u~scussions ShOW, the accessibil~ti yraph bas the yenerality 
necessary for: various str:uctUI:8S, but it also bas sufficient 
restr-ictions to prevent infl.iute loopl.ng in copying lists or 
resolving references. 

Definition: A 2~Q~I~ 1.S dn oDJect tbat behaves like a cell 
name; if x is an object and y is a synonym to x, then y has 
the following properties: 

1) Tbe resource of y contains a set called the ~ights 
to x which defines permissible requests on x. 

2) The resource of y also contains either the cell name 
ot the storage cell contdl.ning x or: the cell name of 
an object frail wili;:; h x is accessible together with a 
path na~e from that object to x (see the definitions 
OL path ndille aud dccessibill.ty lattiH:: in this 
sect ion) • 

3) In response to r~quests, the access maChine of y 
checks the re(juest. . type; if tbe type l.S in the set 
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of rights to x, ~t passes the request to the object \, ___ / 
x; otherwise, it processes the request itself. 

Cell names are not objects dnd cannot be storeCl. and manipulated 
like objects. Synonyms are cell names with an access machine 
that can respond to requests and with an intertace that gives 
them the same status as other objects. In a sense, synonyms are 
invisible objects because they don't answer requests themselves, 
but pass requests on to some oeuer object. 'rhe r~ghts define the 
re~uests that can get throu~h to the object that the synonym 
points to. For some requests not in the set of rights, the 
synonym raises an error exception; for oUlers, like destroy 
requests, it may maKe the response Ltself, i. e. by destroying 
i tself ~nstead of the ob ]ect it pO.loll ts to. 

Definition: 'r he dyad ic f unctloon s.!!thQ&j,~~ makes an e val uate 
request upon its l~tt argument to return a list ot request 
types and then makes au authorize request upon its right 
argument to obtain a synonym wloth the list of request types 
as the rights of the synonym. If X is an object and L is a 
Ilost of request types, autnor~ze(L;A) is equ~valent to 
re~uest(author~zes;evalQat~(L) ;X). 

Defini tion: The wonadic func tion .21.!! makes an authorize re quest 
upon its ary ument X and retur ns a value s that is a synonym 
to the storage cell conta~aLny X. The access rloghts of 5 do 
not include .rights to make destroy and copy requests upon X; 
in response to suen re~uests, 5 destroys or copies itself. 
The rema~ning rig~ts in 5 are the ones granted by the access 
machine OL X in respoDs~ to tne aut~orize request. If a 
request on S is not in toe set of rights and ~s neither a 
destroy nor a copy request, the access mach1ne of S raises 
an except loon. If i is auy aDject and L ~s a list of all 
request types except cop~es and des~roys, then syn(X) is 
equivalent to autnoriLe{L;Xj, which LS equlovalent to 
request (a u thori zes ;evalua te (1) • X) • 

A data base may somet~lUes have synonyms def10ed upon other 
synonyms; because of the lolUplLcit followLng at pOlonters in 
synonyms, there is danger of tas system getting into an infinite 
loop it there 1S a clorcuit in the synonym graph. since circuits 
at synonyms can only arise as a result of replace assignments, 
the replace function (defined lon section 2.1.&) must have 
built-in checks to insure t~a~ the target of the assignment is 
not along a chain of synonyms extending from the source of the 
assignment. If the system LS Lllit~ally wlothout c~rcuits of 
synonyms, then such check.s \ull guarant.ee that no circuits can 
ar ise. 

Theorem: If a request of type '£ .LS made on all object throug h a 
chain of synonyms, tnen f must be in the intersection of the 
rights of all synonyms loll the chain. \"-J 
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This theorem guarantees that 3afe~uard5 placed on a synonym can 
never be weakened by othe£ syuonyms w~th a more.~er.issive set of 
rights: the rights are a i(:lud of fl.lter that only permits 
certain types of requests to pass through; another filter can 
reduce the number ot types that pass through, but it can never 
make any other filter more transparent. 

Defin~tion: A ,!,g12!!I!!! ~s an Object whose resource conta~ns an 
enclosed synonym (see sect~on 4.1.7). Since tbe synonynl is 
enclosed, the a utollatl.C l:ol.lowing of the poin ter ~s 
inhibited, and a disclose operation must be made.to obtain 
the synonym. 

Although synonyms are ade~uate tor ll.st processl.ng and data base 
applications, they can 't be used tOL pointers.1.n PL/I because 
they are almost indistinyuishaJJle from the objectstlley point to. 
Metonyms are objects that are recognizably different from the 
ones they point to and re<j,uire a specl.al operation to raach them. 
Suppose X is a floating point numbeL, S is a synonym to X, and a 
is a metonym to X; then ,5+1) and (;.{+1) would produce the same 
result, but (ft.1) would raise an error exceptl.on. ihe disclose 
function must be used to produce a synonym from a metonym: the 
resul t of (X. 1 ) co uld be ob ta ined f rOil .M by the express ion 
(disclose (Ii) +1) • 

A synonym is an object that represents or ~ndLrectly addresses 
one other Object; the most compll-cated structures that can be 
built out of synonyms are l~llear chains. Trees represent the 
next level of complexity: a list whose elements may also be 
lists forms a tree; a vector l.ll AP~ ~s a tree whose leaves are 
oae level removed from the root. workspaces in A~L are trees of 
heterogeneous objects such as functions, scalars, vectors, 
arrays, and groups; libraries, iiles, tables, and pools of 
devices all represent collectl.ons of objects, which may in turn 
include collections of other Objects. In AFS, all. these concepts 
are expressed by the general notl.on of a collective ob ject that 
has other objects as elements; together, the collective objects 
form a tree, ca.J..led the owner::ili...1.p tree, that incl udes ever yth ing 
in the objecL base. 

Definition: A £2!lg£t!~ 22jg£~ l.S one wnose owned resource is a 
set of storage cells for containing other objects; the 
collective object is sa~d to a~ft the storage cells in its 
resource. 

_ Definition: If x l.S a collect.1.ve object and y res~des in a 
storage cell owned by x, then y is an g!g~nS of x. 

Definition: An el~!!~S~:£1 Qgj~£!: is one that owns no storage 
cells: it 'is an element of a collective Object, but it bas 
no elements of its own. 
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Uefinition: The ownership r~lat10n between collective objects 
and storage cel.ls aa., the fOJ.l.oving propel:tl.es: 

1) No object ollns tae storage cell it resid.es in. 
2) Tile 21.2~!.~oot it 1S a uni.qlle object whose storage 

cell is not ow.o.ed by any Object. 
3) No storage cell is owned by lIore than one object. 
4) LL 5 is a set ot ObJects containl.ngB and if S 

includes all objects that are elements at objects in 
5, then S includes all. objects in the systeill. 

Theorem: Every object except the system root 15 ~n element of 
one and only one collective object. 

'rneorell: The cwnership relatl.on defines a tree structure over 
the object base: the 5y stem root is the root of the tree, 
collective Objects are at branching nodes, and elementary 
objects are at leaves of the tree. Call this tree the 
2!!!fisbi!! ££~. 

'f·he ownership tree provides a basic organization over the object 
base that resellbl.es the tYl!1cal tree structure at catalogs. The 
entire Library of Congress catalog is a tree structure: it is 
divided into 26 categor1es, Wh1Ch are subdivi.ded into 26 
categories, which are subdivJ.aed into 10 cate~orl.es, which are 
subdivided into 10 categories, etc. The table ot contents of 
eve.rybook. is a tree structure; its index is a tree s'tructure. 
The Yellow Pages of any telepilone book form a tree structure. 
unfortunately, tree structures dre not adequate for all needs: 
almost every index, ca talog, anj phone booK. has cross references.; 
and in complex cases, the number of basic entries may be far 
outnumbered by the cross references. AFS provides both types of 
referencing mechanisms: th.e owner~nip tree includes all objects. 
some of those objects may be synonyms that skip accoss the tree 
to objects along otherbranciles. 'iae un~ou of the ownecship tree 
and chains of synonyms ~orlls the accessib~litJ graph; to the 
programmer, a path that fol.lowH synonyms can be usel exactly IJ.k.e 
a pat~ that only indexes down the ownership tree. 

Defi.nition: Thei.!!g,g~ ~,g1 of an object x is a set of objects 
mapped onto the elements of:x by select requests on the 
access machine of x. The inuex set of an elementary 0.0 ject 
is empty. 

Definition: A 1:1.21 L J.S a collective object with the follow iug 
p'l"operties: 

1) It L has no elel1lent~, ·then L is l.aeut1cal to the 
object nil. 

2) Ii L has N elements, then ~ts index set is the set 
of integers 0, 1, ••• , (N-l). 

Lists a'r.e the Ilost primitl.ve collective objects: they are 
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ordered SHts of poss~bly hetero~eneous oDjects. Although the 
usual torwulat~onsoI set tneoLY con~~aer unor~ered sets to be 
more prim~tive than ordered s~ts, linear orde£~ny a~pear~ to be 
fundamen tal foe a theory ot COlllputd t.~Oll: Common stoJ:aye d.evices 
(incl~ding tne books in whicn set tneo£y ~s fOLmulated) force a 
linear order1ng onall representations of sets. Ii a set ~s 
defined in terms of a pred.1.cat.e P, t.ueu one miy.i1t ma~llta~u that 
"tue ~et of all x such that ~(x)" defines a set without defining 
a representation; in re~ly, we could answer that only recursive 
predicates are meaningful ~n a theory of computation and tbat 
hence tile set lllust be recursivaly ellumeraDie. 

Jefinition: '.the lllooauic 1:Uuct~Ob ;blisS:. md.K.e~ an .1.dent.l.fy request 
upon an Object to obta.l.n .l.tS .l.odex ~et: .l.l.l.st(x) .l.S a l.l.st 
whose elements are copies of objectti in the inaex set of x. 

If .x is a vector in APl., (lttiJ X).l.~ tne length of X, dna (IOTA 
RHO 1) is equal to ilistlX). In AES, however, tue index set ot a 
~eneralized coll~ctive oDJect may not De GOmputaDle fLom a single 
~nte':Jer. In JOSS, .Ior exalllt'le, tne pro'1rammer can define a 
vector with valid indices 1, 2, 5, dnd 9; although aao of such a 
vector LS uude~ined, the funct~on ~lLst Leturns the list 1, ~, 5, 
~. SimildLly, AFS allows oDjects LudexeJ oy Gbardcter stLings; 
dlthough IOTA and HHO of SUCh ObJects are Dot defined, ~list 
would produce the l~~t 01: val..l.U cndLacter strl.ugs. 

Definition: The dyadic funct.l.ou §.~!~£.!: td~es au Object x for its 
r~ght operand dnd an element ~ of ilist(x) as its left 
operand; select(i;x) mdKes aD evaluate reguest on i to 
obtain ~ts current value aud tuen maKes a select reguest on 
x with the value ot ~ as the argument. The value returned 
by select(i;x) 15 the cel~ name of the stoLdye cell that the 
:iccess machine at x assoc~a tes.itn .1.. 

fne select fUDction periorms tue ord.l.nary operat.l.on of indBx~ng 
by .l.nte'1ers that is common in lIIaui languages as well as the more 
~eneral index~ny by chaLacter str~nys dUU other ObJects. The 
method for doing the .l.ndex~uy ~s left to the implementer: 
l.nteger indexing will probaDly De doue by haLuware or microcode; 
indexLng by charactec strin~s mat be daDe with an associative 
memory, a m.1.crocoJeJ sed~ch d~~or~tblll, or a hashing algorithm; 
inde~ing by more exotic objects would uuaoubtedly De aone by a 
software access ruach.l.ne. 

Definl.tl.on: An object x .1.S s!.bf..~£i:bi.. ~££~:i.2.b.Q:bg r.rom y if eithe!: 
X.l.S an element of y, O~ x ~s an element 01 au object z 
which is direct~y access~ble fLom y. 

Definition: An object x 
either i is a synonym 
that is a synonym for x 
y. 

is !!!£!.££.f..!!..l s.££~fHH:.!2l:~ from y ~f 
r.oc ~,or there eX.l.sts an object z 

and z ~s ~nd.l.cectiy accessible fLom 
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An object x is directly accessLOle from 1 if 1t i~ on a branch ot 
tbe ownership tree that Bangs aown trom y. synonyms in AFS are 
analogous to indirect address~s in conventional systems: x is 
indirectly accessible teom i 1t tuere l.S a chain of synonyms 
leading from y to x. 

Definition: AD. object x 15 g££~2.2.io!~ feom y 1f x is either 
directly accessl.ble from y, 1n~irectly acc~ssible tram y, or 
accessible from some oDJect Z..h1Ch l.S acces5i.ble frolB yo 

Direct access1bility 1S a relationship l.50morpnic to the 
owner::.h1 ptree. Inairect access 1bility corresponds to cheuns ot 
synonyms andttle objects tllei P 011lt to. T1H~ accessUa.li ty ~ r aph 
is a union of tue graphs for ~l.rec~ and indirec~ accessibility. 
An Object x is dccess1ble tLom y 1t theee 15 dny path from y to 
x, some par:ts ':loing down the tre~ and. others g01Ug across chains 
of synonyms. 

Oeiini tion: Tue g,££~§'2.iQ1:!gy' ~£9:£k .15 
tree ana the cnains of syl1ouyms: 
grdph if eithtH: x 'is a syaonym for 
x. 

d Ufi10n of the ownership 
(x,y) 1S au edge of the 
Y, or y is an element of 

The dccessib1ll.ty grapb w11l bdV~ C1rcu1ts wbeuever there are 
ring structures or general cross references. Consider a 
structure of collective objects, each with four elements: the 
first element is d synouym chat point5 for~drd to the next 
object, the second element 15 d sluonym that P01Uts baCKward to 
the previous aDject, dU~ the remdl.uiug two elements are data of 
dome sort; tueu suppose that tue oUJects dce ~1U&ea 1D a ring so 
that toe last oDject l.S consl.dacea tae preaecessor or the first: 

~ ~--l 
------ i i -----1 j -. ---- j 1------, 

j----l 
L-_____ J L_. _______ .J 
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Consider the following example: 

"" / . ------- - - - -

/ -' 

/ 
h_~-;r.lf..U.!6~ jt- - - - --
\ 
'! 

./ 
,I )~ .... /'..--.... ~::'< / '\ 

t ,,,";,,- ',""J "; (,r:,.,v.:W:"tdlt:'.;.~ 
\ '\¥ ~_ ..... r;.~ • ! 

)"r~J )-r-<. 
~{ (~ ~ r;;) rt.) ~(,1J 
'- "'f,- '-.:. ,/ ,--" \.:- '-.,i" f'.- ,-.../ ! I 

" ... '- l'~ ____ ~ ___ '::::..-__ . ___ _ i I , 

\ ..... - ~. - - --- I \ \ l..._- ____ --- I 

'\ \... - - -- - -,. - - - - - - - - - - - - - - --' 
'\.- - - - - ..... - - - - - - - ~ - - - - - - - -.- - - -- - - - - ...... - -

Suppose aphiloloyist naliled Joe has a data base consisting of 
ancient Near Eastern texts. Each text could be a collective 
object whose elements are lines; each line would be a collective 
object whose elements are words. ALtbough the division of a text 
into lines and words is straigb ttorward, there are lIany ways of 
grouping texts into larger collect~ons: one way is to put all 
Sumerian texts in one collective object, all Babylonian texts in 
another, and so on for Atxad~au and Ogaritic; another grouping 
would put all texts on myths dnd legends froll all the languages 
in one category, all hymns in dnotller category, codes of law in a 
third, and . business records ..i.n a t ourth; many other bases for 
grouping are equally possib~e--chronological, geographical, etc. 
Bf lIeans of synonyms, the accessibility graph can exhibit all the 
relations siaultaneous.1y. The diayram above shows part of Joe's 
data base: fhe node labeled JOE is a collective object with 
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elements whose ~ud~ces are 'LANGUAGE', 'CATEGORY', and ·SEARCH'. 
Under the collective object JOE. LAL'HiUAGE are collective objects 
tor eacn language Joe 1S work~DY with; uDder eacb language are 
the texts written ~n that lanyuaye. dut it Joe is doing a 
comparative study of illyt~s ill Sumerian and BabyloDLan, he may 
tind it easier to use JOE.CAfEGO~i.BYTli, which is a collective 
object contain~ng synonyms to a~l the texts that relate myths 'in 
any of the languages. LU tn~s example, MYTli.P is a synonym for 
BABYLONlAN.F, LAW.S LS a synonym tor HABlLONlAN.E, and HlMN.U is 
a synonym for SUME~lAN.B. Ther~Lore, the Dode B is d~rectly 
access~ble from the nOues SUH~~IAN, LANGUAGB, and JUE, is 
indirectly accessible from tne uoae U, and is access~ble trom the 
nodes H1MN and CATEGUHY. 

The relations expressed bi syu0DjmS do not have to De built into 
the structure t.rom the Deyinru.ng: when Joe adus a new text to 
n~s collection,. he can ~nsert it under tne approprid.te lau9uage; 
at auy later t~me, he can deiiue synonyms tor ~t ~D d.Dy ex~sting 
categories or even define new caLe~ories. Some texts ruay belong 
to several categories: SUgERIAN.A can be accessed v~a synonyms 
~YTH.R or HyaN.V. And 1ll all cases, a runn~lly proyraru does not 
need to ~now if ~t ~s accass~n~ an object direct~y or via 
synonyms. For even greater tlexib~lity, Joe cail hire a computer 
sc~ence student to wri te some usee-defined access mach.l.nes to 
create special objects tnat nave the same interface as oruinary 
co~lective objects, but that e~ecute elaborate searCD peocedures. 
For example, the object S~ARCd may lOOK exactly like an ordinary 
collective object; but l.nterndll}, it has synonyms to LANGUAGE 
and CATBGORY and has aD access machine that searches down those 
trees. If Joe wants to f~nd tae text ot a myth about Gilgamesh, 
he could request SEARCri.HYTd.~iL~AMESd.TE~T; then the access 
machine would Look througn all the texts accessible from the node 
MYTH to tind one about Gilgamesh. 

l.t x ~s a collect~ve obJect, its l.nUeJ{ set must have enough 
indices to select eve£" y element ot x. It y .l.S an element of x 
and n is the index that selects 1, then n is calLed a s~mple name 
for dccessing y trom x. If i na~~ens to be a synonym for scme 
other object z, then 11 is also d sl.mple name tor ac~essill9 z from 
x, because operations on 1 are automat~cally passed on to z. In 
the above e~ample, 'At ~s a 5~mple name for accessing A from 
SUMERIAN. and 'V' is a simple name for access~ng A from HYM~. If 
x is access~ble from y by some com~~ex path, there must be a l~st 
at simple names for eaca stage oi the patil. In the example r A is 
access~ble f£"cm JOE DY turee d~fferent path names: 
LAN~UAGB.SUMEkIAN.A, CATEGOBI.d~TH.H, and CATEGO~Y.HYHN.V. This 
example does not show auy C~~CUl.ts in the access~b~lity yraph; 
Dut ~heu there are circuits, there are an inL~nite number of 
paths and hence 'path names tor access~nq some objects. (No te: 
this example used unique simple names for every Dode to make the 
discussion easier to follow. l.n general, elements of d~fferent 
collective ObJects may nave tn~ same simple names without causing 
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ambiguity. ) 

Theorem: If x is 
accessible from 
there exists au 
x=select (u; y) • 

au el.ement of y or if x. lo~ 
some object Z wUloCn is an element 

e le ment n in the l.ndex set of y 
Call n a 2~~£!~ ~~!~ tor accessing 
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indirectly 
of y, then 

such that 
x feom y. 

Defini ti on: A ~j;~ fr om au oD ject y to an obJect x is a list of 
Objects, the first of wbl.ch is y dnd tne last x; from au 
aDject u in the list to tae next object v, there must be a 
simple name for access~n~ v trom u. The ll.st of simfle 
names is called the eat~ ~~~~ from y to x. 

rheorem: It x is accessl.ole :t rom y, 
nalle fLom y to x. 

then there exists a path 

The path names provlode a waf ot l.udexing down the ownershi~ tree 
dnd skl.pping across the synonjw Chal.ns. Hefors usiny a path name 
ior accessing an object x, me system must flond the object y £x:om 
which x is accessl.Dle by tnat name. The environment tx:ee 
described in chapter 2.3 defines a searCh procedure for finaing 
the starting point from wnich the path name leads to the aDJect. 
When a program is executlony, tbe lonterpreter reso~ves names by 
searchl.ng up the environment tree until l.t finds a node that 
recogni~es €lother the entl.ce ~dth lldme or at least the first one 
or more simple names in it; tuen Lhe interprete~ can make select 
requests with the remainlong til.ffiVle names ulltil it reaches the 
object x. 

Most operatl.ons on objects illd&~ re~u~sts on the access machl.ne ot 
the 00 J€ct. (;ertal. nope rati':>ll:::> fler formed on collective obje cts 
are intended to mO~Lfy tAe atorage cell contaloning an element. 
Although such operation~ are l.ntended for man~vuLatl.ng storage 
cells, they Cdn have sl.de e~iects of destroying an object or 
moving it to a new storage cell. 

Definition: Let x be a collecLl.ve object, and let L be an object 
Which is not in the set ill.st(x), but whl.ch loS acceptible to 
the access machLDe OX x ior add~t~on to iilost(x). Then tbe 
dyadic function ~~£1 ma~es Losert requests on a collective 
object to insert a new scocage cell and index: lof x already 
has i. loll its index setl ~nsert(l.;x) raises an error 
exception. otherwise, l.t has toe sl.de effect of addl.ng a new 
storage cell to the resource of x, placl.ng a copy of undef 
in the new cell, addin~ i to iList(x), and causing the 
access machine ot x to mdp L onto tae new cell. The value 
retarned oy insert (i;1.:) l.a Ldentical to tae value of 
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s e 1 ec t (i ; x) • 

" c 

BASIC CONCEPTS AMD STdUCTURES 

llefinitl.on: The dYCidic function g,~kg!:g m.aJ(.es a uelete request on 
a collective object to remove a stora~e cell from its 
resource and to remove the inuex to that ceL~ from its index 
set; delete(i;x) has the sl.de effect of removing the storage 
cell contal.n,l.ng x(l.j from the resource of x ahd of remov ing 
i from ilist(~. Tae c~Ll name of tne ol~ cell may not be 
used to identify any other cell ever to De created in the 
system. The value returuea by delete (l.;x) is the obJect in 
the storage cell before the cell was deleted. 

Every function returns a value: the value of insert is useful as 
the target of an assl.gnment for l.nl.tializ1ng the new object; the 
object returnea by delete is usetul to allow a cell to be deleted 
and its contents moved somewbere else 1.ll a single statement. If 
the expression !.ieleta (i .x) acc urs dlone in a statement, the cell 
contain1ng XLi] is deleted by ~be iunctl.on delete, and the value 
of xCi] is destroyed when execution moves on to tbe next 
statem.ent. 

Defi111. tion: T ae IBoHadic t:unct1.on f.£'!!!QY~ remove.:.:; the contents of 
a storage ce~l without delating the cell: remove {x} has the 
side effect of pLaCing a copy of undei ~n the cell 
containing x; the value of remove(x) is the old value of x 
unchanged. 

Definition: The dyad~c .t.unct.1.0h ~£!&£i: ct'estroys the object 
contained ill a storage ceLL dU~ replaces 1.t with a copy of 
another ob ject: repl.ace (x; y) makes a copy Le~uest on x to 
maKe a copy of itself, maKes a destroy request on y to 
destroy itself, and place~ the copy ot x 1n the storage cell 
formerly occupied by y. ~f Y refuses to destroy ~tself, it 
remal.ns unc~anged, and dll erLor exceptl.on occurs. It y is 
~udirectly accessible trom x, then an erLOL exception 
occurs, and the taL'get 1.:.:; not chaugeu. The value of 
replace (x;y) is a copy of x. 

Theorem: No circuits ot synonyma can arise by execution of 
replace. any attempt to form such a circu.1.tl:3.1.ses an error 
exception. 

The replace function is a type ot assiynment used primarily for 
moving objects and pLac1ng ill1.t1al values into new storage cells; 
its use in initialization is the bdSis for executabLe declaration 
statements. For normal assignments, the stow Iunction makes a 
request upon the access maCD.1.De of an object to perform the 
action and maKe necessary converSl.ons. . 

~hen a .:.:;torage cell.1.s aeleted, .:.:;ynonyms dnd metonyms contal.uing 

" \ 

its cell name are not destroyeu; but any use ot them raises an ~. ~ 
eceol: exception. Since cell ndlBes dre never reused, there is no l~ 
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danyer that a new cell could De dccessed V1d ~nva11Q synonyms. 
T~e four functions insert, ~elete, remove, anu replace have 
important side effects on synonyms: suppose x 1S a collective 
object whose i'th element 1S i~ toen the statements 

(1 delete Xi i insert x} 
l.eave a copy of undet whose ~l.cect accessibility is the same as 
y's, but whose storaye cell has d Dew cell Dame that is different 
trom the cell name in p~ev10us synonyms to y; the opecations 
remove(i) and ceplace(undef;y) cause the undefined3DJect to have 
the same accessib1l1ty as i, even 'for synonyms. If y is a 
collect1ve object, dny stora~e cel.ls it owns are part of its 
reSOUCCd and are moved Wl.th l.t; consequently, any synonyms to 
elements of y remain po~ntiug to the same values even though a 
synonym to y it.\ielf may point to a copy of nil in Ule old storage 
cell. 

Theorem: Let x be an object u1rectl} accessible from 
indicectly accessiDle trom z. After the 
delete(i;y) oc r-emove(j) loS executeu, but before 
1(i] is destroyed, x will stl.ll be l.ndirectly 
from z. 

Yl i] and 
operation 

the ob ject 
accessible 

These definl.tions can be ~illpl.ewented etf1ciently: rewovl.og an 
object involves movl.ng a sl.ug~e descciptor frow d space and 
ceplacl.!lg it w~th a descriptor iOI: uodet; the rules for synonyms 
to elements of d collect1ve Object follow immedl.dtel.y from the 
fact that the space contal.nin~ the elements ~s not ~hanged. 

rhe function replace is Qef~ned as mak~ng a copy of it.\i left 
argument; in a later sect~on on lir:0'::icam executl.OH, tne copy rules 
are raod.l t.led to elimina te unueee :::;Sdr 'i cop~es. In particular, no 
copy is requl.red when the vbject 1S the reSUl.t of certain 
functions, whl.ch l.ncluUe remove and delete. Therefore, the 
following exp~ession does tiot uestroy the Object A.B~C, but 
si~ply invalidates all its old nawes and renames it H.F.G: 

replace(delete{'C';A.B);inser:t('G';a.F)} 
In .lnfiA: torlll, the aoolle expressioll mdY be wr~tte11: 

fC' delete !.J:) =) ('G' insert a.p) 

A major ddvant~ge of tue cur-rent desl.~n l.5 that it bas the 
flexibility ox general ll.st proeess.lu~ systems without the 
overneaJ of garbage collect~on O~ reference counts. systems like 
LISP and SNOBOL keep datd ava~ldlJ.le as long as tilers is a 
reference to them; althougn such a propecty is orten convenient, 
it seriou.\ily impairs eiiic~eDcy: In LISP, fur example, the 
standard method of garbage collection 1.\i to stop all computation, 
start at the topmost noue OL tue system, dnd trace all data 
elements to see i± any are uo£eier-enceable; only after all nodes 
have Deen traced can the sjstem throw dlli ddta away, and only 
then is there any space to cesume ekec~tion. The method of 
reference count.\i replaces illdSSLve ya£Dd~e collections at 
infreguent ~ntervals by ~ncrement$ dod decrements to a count 

liH1 COi.'if.ID~NTIAL 

I 

~ 
I 
I 
I 

I 



BASIC CONC~P!S ANU STkUCTUHES 
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field whel1evec synonyms dre cOt"ied dnd erased. AlthouYll most "'-. 
objects bave a count field ot one# all objects must maintain such 
a field with vrovisions tor lettin~ such values 91:0W arb1.trarily 
large. On a stora<.je bierarcay system# reference counts can 
Decoma \luite inef:ticien t Sl.llCe a local ac tion of copying a 
pointer can require the refer~nce count of a distant ooject to be 
modified. The APS approacn is to destroy objects upon explicit 
request and to allow synonym~ to destroyed ohJects to beccme 
invalidated; for ordinary FurtTiAN and BL/I programs, this 
approach is the most etiicient. .If an app1icat1.on re-juires 
reference coun ts, they can always De added by causin9 the access 
machine of a collective object to keep counts of refe.rences to 
its elements# to issue special synonyms that report back waenever 
they are COp1.ed or erasen, and to 3elete the elements Wben their 
reference counts go to zero; tbus, the po~er 1s available when 
needed# but most objects aonft bave to pay for it. 

Much. of the lib.rary and cat.dlo~1.n<j fac1.l.1.ties or: current systems 
can be bandIed Dy the functions 1ntroduced so far: The DD cards 
I.n OS/360 are used to create synonyms between e~ternal and 
internal devices; tor example, 1:t Sisour is the ndme for d 
collect1.ve object whose elemeuts are lOY1cal output devices and 
I.f A is the index for select1u~ Loyical printers, then the DD 
card 

//SYSPRIN~ DD SYSOUT=A 
is equivalent to the expression 

syn SISOUT.A =) SY~PHINT 

Ln 05/360, DD cdrds also SPdC1r:y physicd~ chara=teristics of 
devices and request a ty pe of allocatl.Oll sucn as shared use or 
exclusive use f or mod if1cat.1.0U; in At'S, physical fJarameters are 
totally unnecessary, and the system provides much tiller control 
over dynamic resource allocat1on (see chapter 2.:"). In APL/360, 
system commands are outside ot the lanyuaye and cannot appear in 
functions; tollowiny are toe APS forms of some ABL system 
cOllmands: 

)LOAV 10 LOGIC LLill~.~QGl~ =) Current 
)SAVE 10 LOGIC Current =) LIB10.LOGIC 
)CLEA~ Clearw3 =) ~urcent 

)ERASB JOE SAM delete JOE; delete ~AI 
)COPI 10 LOGIC WPF LIB10.~UGIC.WFP => ,'WEP' insert Cucren~ 
)LIB .1.1ist ctystuff -> j~SPRINT 

The ~PL/360 system makes cOfJies of wor~sPdces because l.t has no 
way of sharing read-only objects an~ no way of defining synonyms 
to objects in other worKspaces. Under AFS, a subsystem would be 
free to make copies 0[' detl.ne sy nony illS aS.1.t chose. 

The elements of a gene~al col~ect~ve obJect have only one thing 
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in common: tney re~~de 18 sLo~dye cells tnat dll have the same 
owner. Special types of cOLLectlve Objects mdY impose mere 
condit10ns either on the elem~uts or on tae adm~~s~Dle index set. 
Typical condit~o8s restr~ct tne 1udex set to luteyers, pairs ot 
inteyer5 1 or character str1ugs; other condlt~ouS restrict the 
dlements to hdve tbe Sdme access mdchlnes or representations. 
Altbo~gh cond1tions restr1ct ~eaeralitl, they may improve 
eftic1ency dud simplify enumeratl0n of all elements. If all 
elements have the same access lliachloe, the descriptor of the 
entire collectlve object nee~ speclxy the access machine only 
once for all elements; such s~vlnys are espec1ally obvious for 
nit vectors. 

2. 1. 7. 1 Lists 

~e have aireauy deflned d 115t 1U sect10n ~.1.5. A l~st is a 
memner of a special cldss ot ~ollective Objects with particular 
1ndex sets. lbe inJexiuy capdbLl1ty of SL provides a mapping 
between a set called the 1ndeA: set and a set WblCh comprises the 
objects in the storage cellS of a collective object. lhe 
elements of the index set are cdl~ed 1ndex objects. As the use 
o± the word "set" imp11es, no structure 1S imputed to either 
set by the index1ny mecnanLsm ~tself. The most primltively 
structured collect1ve object 1B the ~ist. A list is a collective 
object whose index set 1S t~e set ot inte~ers ~ess tnat N for 
some integer N. For example, ~ llst of ten objects has for its 
index set (':1, 3, 5, 1, 7, 4" £o, 6, J, 6). A l~st 1ll part1cuIar, 
aud dily indexed object in geueral, ac~ulres its structure, if 
any, trom the ~nherent structure of the 1ndex~ng objects 
themselves. T11is stcucture must come troill something otner than 
indexiu':]. In the Cdse at the .l.n te-jers" l.uitia 1 segments of vh ich 
!re popular ~ndex sets, that structure 1S prov1ued by the 
arithmetic tunctious whiCh apply to them. loese operations, 
ult~mdte~y def1nable in terms of toe Peauo postul~tes, are the 
oasis for most index sets. AcCord.l.n~li, we may clar1fy the 
definition of a list to say toat a list is a collectlve object 
whose index set is aD in.l.tial seyment at the iuteyers. We intend 
to imply that the order1ng at the 1utegers ~~ a part of the 
definition of a llst. For cORven1ence, we introduce the 
tollowin g 

Definition: A ££!.mitiy~ ~m!~£ ,§g!;; is ah in1tiai segment of the 
non-negative l.ntegers. 

Usually tbe term "l.ndex set" wi~l be used in place of 
"primitive illdex set" wnen tua context per:mits. Lists. form the 
only special class ox collect~ve objects whl.ch 1S pr.l.m1tive to 
the system. There are no re~trictiollS Oil tue elements of a list. 
They may be scaldrs, closures, drD1trdry collect1va objects, or 
other lists. 
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2.1.7.2 structures 

since the elements of a col1ect~ve object may themselves be 
collect~ves, it is ~ossible to build tiered structures of 
arbitrary complex~ty and indexiny depth. It LS useEul to have 
some definitions to talk about these objects. 

Defini tion: A §lI.!!£i.\!~ is a 
whose owned objects is 
together with all OD]ects 
from the given object. 

collective oDject some subset of 
composed of collective objects 
dccessLDle by Lterated indexing 

Definition: An ~ndg!~~ §tr.l!£i.!!£g ~s oue allot waose collective 
objects are indexahle. 

lJefinition: A .1:121 §!£.Y£1.!!£g ~s a structure iill of whose 
collect~ve objects are lidts. 

Definition: The §,lHU!g ot a l.ist LS the number of elements in it. 

Sbape is a general term Wbl.ch also applies to ~rrays. When 
referring to ll.sts or to ve~tors the term length wLll sometimes 
be used. One of the impo.r.:tallt characteristLcs ot a structure ~s 
the Dumber of tiers that have DeeR defined. One can retrieve any 
one of the elements of a list wLtn a sinyla ~ndex~ny operation. 
To specify an element of ~ l~st OL ~ists, the ~n~exing operation 
must be repeated. 

Def~nition: The 
time::; the 
structure 
reached. 

~~21~ of a structure is 
indexing opecat~ou can 

before reacb~ll~ d scalar 

the maximum number of 
be performeu Oll the 
or an o~ject already 

A scalae has depth ~ero. A d~mple lLst nas depth one. One can 
simulate arrays at the progcdwiny level w~th list structures of 
depth two, ie., with l~sts OL ~~sts. 

One may wish to define a deptk two structure of lLsts whose 
elements ace ~ndexable. Unfortunately, the aeptAs ot these 
elements will be added to that OL the structure and any attempt 
to determine the depth w~th o~a~nary functions WLll yield the 
wron~ result. To handle SUCD sLtuations tae encapsulate function 
is provLded. It concedlo:> any drlatrary structu.re witnin a scalar 
so that it can be plac€u ill a st.r.:ucture w~thout increasing its 
deptn. The o.L:iginal str:uctIH:e Cdn be cecovered by using the 
uncover function. 

For convenience in detin~ng the locate function ior lists we 
introduce a related ty pe of ~nuexed Object. It ~s not primitive .x/ 

to SL.",,_~ 
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Defiui tion: A .l:!§.£.y!!g- 1: ~S!: ~s .111 on ject II host: 1.11d ax !:>O::!t cOllsi sts 
of integers. 

2.1.7.3 Arrays 

For a namber of reasons it 13 ja~1rab~e to provide indexing with 
an arbitrary number of objects loll d s~ngle level of indexing. 
The fdc~11ty is provided bi most hign level Languages in use 
today. It provides mucn of tne rlexibl.lity of a list structure 
wi thou t incurr ing tlle ineit 1.";1 ellCY of multiple calls on the 
.l.ndexing operation to retrieve d sl.ugle Object. Furthermore, it 
is eaS1er to rearrange object;;;; within the structure since it is 
not necessary to ;;;;bift tnem fl:o11 one collective object to 
another. 

This desirable facill.ty 1S prov1dea l.ll 5L as in otner languages 
by arrays. In keeping witu the spir1t of 5L, arrays are 
basically dei1ned in a gel1eral way. They d1.t%er from other 
indexable objects in that a r.l.j1d tramework has bean provided 'in 
which t~eir inde~ objects resl.de. fhis frdmeworK is defined with 
the aid of d list structure called the base list or the base 
list structure of the array. No restrl.ctions are placed on the 
index objects themselves, or on tne elements of the array. 

Arrays are not primit~ve to SL. It i~ thUS an implementation 
decision whether the hardware will construct vectors of vector~ 
to describe arrays or not. 

Defin~tion: the Qa2~ li21 or Ddi;:)e ~ ~1 21!".y. ct y'!J~ of an array, 
A, is a l~st structure of uuit or m de pth 2. Tile i-th 
sUblist is called tne ~:.4.~!!g!!2!Q!! !!!s!g~ set of A. 

Detini t1.on: An ~ll~1, A, of L:dnK r ~s all obJect whose index 
set consi;:;;ts of lists 01: Length r. The l.-tu element in 
edch ~ndex object list 15 chosen from the 1-dimension index 
~et of A. The &~~ of A loS the shape of '~ts base list. 
An array of rani(. r is cd,lled au f.:.~&.£.sy. The 2h~E§:' at an 
array is a list of the Slzes of 1tS i-dimens10n iudex sets 
for all applicable 1. 

'fhe monadic function ibasa dtiPl.ieu to an array produce;:; l ts base 
list. lhe com~osite funct10n ;:;;hape ioase produces its rank. for 
dny array, A, the following ~dent1ty hol~~: 

3hape A = shape map 111a;cie A. 

The elements of the index set of A are memDers of the augment 
outer product reduction of tae base ll.st of A. In standard 
terminology, this is the Cartesldn product reduction. 

lB8 CO~flD~NflAL 
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Definition: A y~ctQ..£ is d 1-a.tl:ay. 

Definition! A 1!!:2..t'£A:~ is a 2-au:ay. 

~e shalL refer to a vector with K elements aud ~ l~st with k 
dlGm~nts as a k-vector an~ a k-list, respectively. In 
particular the empty list and the empty vector a,re the O-list 
~tid the O-vector, respectively_ Note that a scalar can be 
considered as an array ot ranK zer-o as w~ll as a list struct ore 
of depth zero. 

For a gdneral array there are no restr~ctions o~ tae elements of 
the sublists of the ha se list. In fact tilere ~s no restriction' 
on the lengths of the subl~sts. For example~ tae integer 
genera tor can prod uce a tJ0teut1.al.ly int1.uite list ,wllicb. can be 
Lndex~d .ith any integer. rh~s l~st is the only entry in the 
base list for the correspond1.n~ iuf1.nite length vector. 

An array may be indexed by clldracters, l1.sts, otner arrays, etc. 
It all the k-dimension 1.nuex ;.;jets ace fl..aite, then the array is 
finite. If all the index sets comprl.se ouly inteyers, then the 
artay is indexed by lists ot ~nte~ers. This 1S the most yeneral 
type of array usually ~anuled. A pdrt1.cularly important subclass 
of finite, integer indexed ~redls 1.5 the following: 

Usfiui tion: A £'£1!!!i.t.!y~ arrd t .I.S one ~n wu~ch the iuddx. set in 
eAch dimension ~s a pt1.m1L.l.Ve 1.odex set. 

rfi order to provide the k~nu OL Llexible restructuring through 
indexin-:j whiCh is available iu, ,[OL' eXdrupl.e, AJ?L we peem1t the 
SUbstitution of certain arrdYs ,ntn1.ll the 11st IIfli;;n constitutes 
an indexing object. These SU0stl.tutl.on;:> aetine an 1niiul.te set 
of structures whicn the select fuuo;tiou IHll accept ior ~ndexing 
arrays. 

Definition: '.rhe ba!i!A:§ for til~ ~Hdex Sdt of au array is the 
Cartesian product reduct~on or the base l1st of the array. 

This is what is usually called tae index. set o~ the areay_ The 
functl.6n ilist on an array produces the basis of the .I.udex set. 

Detl..aition: The £Q!!!ll!!:!1!:l iUlleA set of an array 1.5 derived from 
the bas~s for the .I.lide~ set. For dny pos.l.tion or set of 
consecuti ve Fos~tions l.U a n index list lIlay he substituted 
any array. The elements of tne acray must be l.1.sts of the 
Same length as the part.l.al List the array replaces. The 
eeturbed object will be au array. The base l~st of the 
returned array is the caLenation of the base l.l.sts of the 
participating arrays. 

Sihce the phrase 
t6 "index set", 

"basis lor tue .I.udex set" ~s usually s~ortened 
tne WOCQ "colilplete" must be expressed when 
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impo~ted to prevent con£usion. The base l~~t fo~ an a~ray 
define~ its structure ill cow~lete detail even fo~ arb~trarily 
indexed arrays. The i nformat~oll ~equi~eu to dete~mine the index 
structure for a primLtive ar~dy ~s much less. It ~H simply the 
length of the index set LD 9dCh ~1mension. the shape function 
applied to an ar~ay ~ill return tnLs info~mation ~n the form of a 
list. The fUllct~on igenerator appl~ed to d scalar retu~ns the 
index: list fo~ a l1St of cOL~e~pondLuy lengtb. Xhe funct~on 
igena~dtor ap~lied to tbe snape of a prL~Ltive acray gene~ates 
the index base for that ar~ay Dr tunction dLst~~Dut1on. 

I'he relationships bet.ween th9 va~LOUS types of arrays and lists 
can he desc~ibed by the results ot applying tne various structure 
deterlllLning functions to them. The information LS summarized in 
the follo~ing table. 

list scalar v-vector vect.o&: .1:-array 
--,-- -.--.-----

ill.st I list u-l1st of 0-list of list of list of 
I lLSts 1-l.1sts l-l.ist~ r-lists 
1 

index I scalar- O-lLSt l-J..ist 1-list r-ll.st 
object I 

ibase I list v-list of 1-ll.~t or: 1-1ist ot r-list of 

• lists li.::its lists lists 
I 

shape i scalar \) -lLst l-list l-11 . .::it r-list 
I 

shape of j O-list v 1 1 r 
shap~ I 

-----------------------------------

For convenience ~n definLng the locate function for arrays we 
make tne following defin1tion. 

Defiuitl.on: The ~~de~ QQ~££ ~ff~l of an array A 
primitively indexed array wLth tbe same snape as 
elements are the respective l.w..i.ex objects of A. 

is. the 
A whose 

Note tila t the 1:"ela tLonslup bet ween a pseudo-list ClUJ. its ll.st of 
indices is analogous to thClt between dll drray dud Lts index 
cb ject array. 
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PROGRAM STRUCTURE AND INTERPRETATION 

The access mach~ne of eve~y object i~ a process. This p~oc~ss is 
derived from a procedural descr1pt~on by add1n~ some local 
storage dnd causing au interp~eter to beyin executiny this 
descr~ption. This chapter presents the form dnd executl.Oll of 
pr6grams, that is, procedural descriptions written in SL. The 
chapter beg ins W l.tn an oveL"V iew at tne concepts which are 
important to interpretatl.on and pro~ram structure. After that 
the form of a proyram is ~l.ven. This loS gl.ven as a data 
structure in SL. Then, tae coastra1nts tnat this form implies on 
the external syntax are ~1ven. 

fhe remainder of the cbapter is devoted to th~ 1llterpretation of 
the text of tue program. Tue 1nter~cetation of an expression is 
developed in detail. The protocols tor call1ug other functicns 
are presentea ~n a form suitable tor ~siug fUllct10ns written in a 
foreign (non SL) architecture. Then, the interpretation of 
functions with multiple expL"essl.ons (i.e., st~tement~ are 
described. f'inally, various ope.cdto.cs foe vatying the order of 
interpretation ace d.1scussed. 

Th~s section 1utroduces at all ov~~view level Lue key concepts 
whiCH a.c e re':lul.red to rep1:eseu t and execute dU S1 pl.:og ram. 

2.2.1.1 The Form of the ~an9udge 

In SL there are two forms l.U will.Cil programming iIlay be done: an 
external syntd.ct1c for m and d lIldch.l.ne-orien tea data struct ure 
toem. rhe reason taL th~s dichotomy 1S that tbeee 1S no single 
form which is adequate for both human bBl.ngs and machines. 
rlumans expect clarity of expression and reauabilitl. They often 
fl.nd it easier to mdnipu~ate pl.:o~.cams in textual units such as 
strings. On the other hand, macn1nes WOL"K better with fairly 
r1gid data structures. Then, the machine can use the fixed 
information to provide a more compact progcam representatl.on and 
to optimize execution. 

There is, however, another reason tor having two representations 
for a program. This 15 exem~11f1dd by LISP. In LISP, it is 
possible to input and d1splay dcyc11c list structures in an 
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~xternal syntactic form. ilow~ve~, ~t 1ti dlsc poss~bl~ to write 
LISP programs to bu~ld au~ mO~1ty lLst stcuctures uS1ny the LISP 
functions. Siuce a program in LlS~ is a l~st structare, this bas 
the important consequence that ~t 15 easy to wr1te programs that 
write or modify other programs. 

The flexibil~ty to construct pcograms as data structures 1S very 
important. It makes it poss1D1e to wr1te compilers with greater 
ease. It also belps when program mod1f1cat10n 15 required as in 
a sort generator. finally, Lt allows programs to respond to 
requests by cOllstruct1ng anotaer ~rogram to do the work. This 
type of behavior will become more popular as uata query systems 
grow. 

the external syntact1c torm 15 tbaretore de51yued to give the 
best possible human inter~ace to the system. It provides 
extensions of the strict mach1ne Lorm to better support naive 
users. The external form 111111 be translated into the machine 
form by an 1ncremental, statemdnt-oy-statement tr~llslator whose 
axistence can be ignored ny mo~t users ot the external form. The 
machine form is aefined ill ter~s at data structures which can be 
constructed and manipula ted La 5L. It L5 desiyned to maintain 
the 1nformation needed to do faithtul interpretat~on and to be 
convenient to manipulate. 

Proyram$ are expressed ~n groups of statements. Each statement 
~s a striny OE symbols. A symbol 1S one or more Characters which 
~s clearly delimited. The symbol str1ngs represent 1nt~x 
expression 1U the externdl tor.. In the machine form, the symbol 
str~ugs represent the PoliSh ~refLx form ot an expression. In 
~Lther case, a statement is ailY legal 5L expression. Eacb group 
at statements is rept-esented in the machine torm by a module 
which contains a list of the statements. 

2.2.1.2 The Execution ot the i.augualje 

Program text, even a moau.1e, 1S really only a representation of 
an algorithm descript1ou. It is only bi execut~ng the text or 
module that the intent of tne al~or~tnm is carried out. In 5L 
taere dre a number of steps ~n the process ot axecuting an 
algoritnm or proceuural descr1ption. These steps torm a phased 
aistory of the lite of a module. 

Definition: A module goes tnrough a number ot 
entered, prepared for execution, executed 
discarded. These phases ~ll oruer are: 

EA~§~§ as it 
and tina lly 

Translate: 

Load: 

ConvertLn~ the ~rogram into a modu~e. 

EstaDlishul'1 a naw copy of 
associated loau o~iellt~d 

the module with its 
(stdtic) ~torage ~ll 

. I 



BASIC CONCEPTS AND STaUCTUR~S 

Activate: 

i!:xecute: 

the user's caCI:ent context. 

Crea ting an ob Jec t which con ta ins information 
associatin~ parameter symbols w~tn arguments 
and contains a new generation of the 
activat~on-ociented (automatic) stoI:age. 

Inter p.cetin'1 the body ot the text of the 
moJ.ule. 

ueactivate: Possibly releasin'1 the generdt~on of automatic 
stocage ~£ it can no longec be accessed. 

Unload: Heleas~ug all. stocage associate aicectly witb 
the loaded ~oJule De~n9 unloaded. 

At edch pbase the iocm of the lIloaUL9 Changes. Up to the exec ute 
phase more aud mace ~ntoCll1atLon ~s added. Aftee that, 
infoemation is discacaed. It LS gu~te possible to use a puase of 
a module as the basis for several different ~nstallces of the next 
phase. For example, onLy a sLngLe load LS requ~red foe many 
different ac~ivations of a moaule. Similarly, a s~ngle copy of 
the text of the module can be sllarea Dy many loaas. 

The load and unload 
2.3. In this chaptee 
the load phase to the 
and, fLnally, through 

phases dLe developed in detail in Chapter 
the empadsi~ will be on tDe transition f~om 
actLvate pha::;e, and onto the execute phase 
the deact~va~e phase. 

Definition: The trans~t~on tram the ~04d phase Luta the activate 
phase and onto the execilte tlhase is called ~£'£~Yst~!!g 2: 
f.y'.!!ctio!!. 

The process of funct~on actLv~tLoa ~Dcludes build~ng up a new 
object from the loaued module uy aJd~ny some automatic storage, 
passin~ arguments aud cauS1UY ~he independent execution of the 
new object. It beg~ns when au. eva.lua~e .cequest loS made on a 
loaded module. When the dctLvate phase is entered, the 
interpretation otthe text is Degun. 

Oefinit~on: The J.Q£'~£.E£~~Q~ or d funct~on ~s performed by 
scanning the text of the Luuction module and maK1ny requests 
on the objects assoC~ated with tke sywDolB that are 
encountered. 

In the terms of %ormal log~c, meaning is given to a purely 
syntactic form by assoc1ating objects from a univarse with each 
of the symbols in the form. Then, the form can be evaluated 
using the rules of combindt~oll for the objects associated with 
the symbols in the torm. In SL, tae symbols are associated with 
storage cells wh1ch 001J. tue oDjects that g~ve the symbols 
lIeanin g. 
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Definition: §~~&2! fe§glut~Q~ LS tne mechanism which associdtes 
with each symbol the ceLl ndme of a storaye ceLL in the 
object Dase. 

As will be seen in Chapter 2.3, Lt LS possLble tu separate symbo~ 
resolution into a number ot stayes. Eacll stage inserts 
Lntormat10n which LS fixed wLtn Lespect to all succeeding stages. 
This factoring of symbol Ldsolut10n can ~reatly improve the 
performdnce of the machine SLuce potentia11y repet1tive work is 
done onl yonce. 

As the interpreter moves tarou~b tae moduLe text, Lt w1l1 need to 
Keep some status iniormatLon Ln the PSH tor the activation which 
is being interpreted. One ~i the major p~eces of iufo~mation 
that must be saved is the status or evaluating tue operands of an 
operator. Because expressions Cdil be nested to an arbitLary 
depth, an undetermined number or operators may De in the process 
ot operand evaluation simultanDOUSLj. rhereiore, a special part 
of the PSR is distinguisllBa to Aold operator evaluation 
information. 

DefLnition: An ~yal~~llg is d collective Object WU~Ch holds the 
information about the status of evalua.tion tor one operator 
and its operands. Tne eval~aad is part of the PSi. 

An additional port1on of the PStl ~s used to 
statement is currently bein~ interpreted. Tn~s 

the instruction counter Oil CiaSSLC ~achines. 

retain which 
corresponds to 

Deiini tion: r he 2is!£~1!~:.Hll b!l~~.eL::) a port~oll ot the 1'5 H which 
holds the ~ndex of the statement cur~ently being 
interp.reted. It thert: LS no sucu statement, tnen t.he value 
or the statement inaex ~s undet. 

When tue execution o~ the moaule text ~s completed, the 
activation is destroyea. fh3 storage associated witn that 
actLvat10n mayor may not be destroyea depellQ1ng on wnether or 
not references to symbols aS~ocLatej w1tn tnat storage are stiLL 
legal. In PL/I SUCh references a~e hOt legal so tue storage may 
be released. However, ~a LISP Leierences dre legal and the 
stora~e may outlive the activatLon. 

The basic unit of p.rug ram cons tL uc t10n ~s a stretch o.t text where 
each symbol in that text uas only one meaning. Lnternally, this 
is represented by a module. 

I 
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Definition: A ~2gY1g is a primit~ve collective object consisting 
of two components: the module text dnd the dictionary. 
There is one entry J.n the d~ct~onary for eaCh symbol which 
occur~ in the module text. This dictionary entry also holds 
the informati·on tor symbol. re~olution. 

The fact that each sywnol hd~ only one association w1.thin the 
module makes a module sUit;ible for the mJ.nimum unit of 
translation into internal form. The symbols can be tactor-ed into 
a sepa.t;ate dict ionary, and tluu r occurr-ences in t he text can be 
replaced by offsets into tUdt tdble. Then, symbols can be 
resolved by associating stord9€ cells W1.th the entrl.es in the 
dictionary. This encoding reuuces the size of the program text 
and the complexity of decoding lot. Once program text is encoaed, 
however, it is meaningless W1.thout the associatej dictionary. 
Therefore, whenever program text Wl.th symbol assoc1dtions can be 
selected as a separate un~t, the corresponding dl.ct~onary must be 
available to define the meanl.n~ of offsets in the sncoden text. 

Definition: The gi£1ioag!1 loS composeu ot three component 
structures: the symbol ta.ble, the linl\.a~e table, and the 
attribute table. There 1S a 1-1 correspondence between the 
entries ot each tdb~e. The sYRiDol table nas the character 
representation of the symbOL. Tae corresponj~ll~ entry in 
the linkage table nas the assocl.ation (l.t any) for the 
symbol, and the attribute table entry has ~nformation about 
the symbol. 

The dictionary is logically iudexed by tue symbols. Hence, the 
symbol t able acts as t .lle LIHiex l.l.st ot tne d1ct10nary. However, 
within the text of the module, th~ symbols are re~reseBted by 
symbol references. Symbo~ references dre logl.cal indices 1nto 
the three parallel tables. Tne~etore, the symbol reterences are 
alternate indices for the dJ.ct10llary. The symbo~ r-efereuces 
correspond to the symbol~c UdmeS used iu the system architecture 
man.ual. 

Definition: A 21..!!l.f!2! !:efg£gll~g LS d ~oljJ.cal 
dictJ.onary. ~hen used, Lt selects 
corresponding to the symbol 1t represents. 
w1thin the modu~e in wril.cn ~t was created. 

ind.ex 1nto the 
the component 

It 15 valid only 

Defiuit10n: The tetrad1.c tunction .!!!§.§£1 §.Y.l!U22! causes a new 
symbol to be added to tne sy~bol table o~ the desLgnated 
dictionary and the corresponding entries ill the linkage 
table and the attr~bute table to be filled in. fhe result 
of insert l:>ymbol (I;J...;A;X) is the symbol reference of d new 
entry in the dictionary 1 Wl.tu the value ot I al:> the symbol 
entry, the value of 1. as tile ll.nkage entry, and the value of 
A as the attribute entry. 

The insert_symbol function 1.S much like the normal insert 
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function. Tna major difLereuce i::; t. nat two dd.ditJ.onal argulllen ts, 
the linkage information aud tae dttribute Lnformation, are 
provided. Also. the result 1.::; uot the cell name of the added 
cell, hut is the symbol reiel:euce wn.locn will select the new 
entry. Using a spacial operator to add to tue di=t.l.onary makes 
it possible to d.lscipline tne use of the dictionac:y. 

The attribute component is aroitrary and may De used to store 
.ulformation re':iuirea. by the Id11guage being translated. Hence, it 
may serve as a cOlllp.lole-t.lome dJ.ctiol\i:u:y and as a place to hold 
initializl.ng information at run time. The form of the ll.nkage 
J.nformation wl.ll be ·discussed in Chapter 2.3. Basically, it 
consists of an indicatl.on as to whether the symbol is defined 
within the module or that .lot l.S detLned in some other module. In 
the latter case, it contains t~e informat.l.onon how to find the 
def.l.ning module. It also conta.lons J.nformation ou the storage 
class, since this affects liuKd.;Je. 

Whenever the same symno . .i. occurs LU two difLerent modules, U~e 
occurrences mayor lIlay not b~ assocl.at~d wJ.th the sallie storage 
cell. Due possihle approaCh is to d.efine the symbol-storage cell 
assocLation to be the same for alL tue modules ~n 3Uy collection 
at modules. Tuell, a ditterent symDol would be needed for every 
distinct storage ceLL to be referebced ~n the collection. This 
is annoying for one user and almo::;t impossible to handle when two 
or mO.CB users are cOllloillLng their p['ogralls. frherefore, it must 
be possible to define a context in wuich a particular 
symbol-storage cell associatl.on .loS to hold. It is then possible 
to have more thdn one associat.i.on Ln a set of modules. 

i)efiuJ.tion: A symbol .loS ae!!!!~4 LU a module lot the storage cell 
associatea with the sywool iusitle the module is different 
from the stord~e cell dssoc~ated with the symbol in the 
surrounding context of tAe module. The linKa~e ~ntormation 
correspona~uy to the symDuL ~n the dictl.onary .i.udl.cates when 
the s ymool is defined. 

DefinJ.tloon: A lQ.£~! 2n~Q.l is a symcol wuich is defined within 
the module in which ~t occurs. 

rhe local symbols of SL corre;3pou-l to the local symbols of APL 
and the declared internaL symbols of PL/l. They are also known 
as bound symhols in matnemat.i.Cs. Local symbols are important 
because storage cells aCB allocated for local SYlliDOls when the 
module is used. All other sywbols dre Just refaceness to storage 
cells allocated outsLde tne module. 

Det~nition: A symbol WhLCh i::; not local to d module loS a 1~~ 
2.Y!!!.QQl or a ~g!!~2f. 2YJ:!!!:!Q!. The l.i.ukage information for 
such sYlllDols inl.1icates hOW to fLnu the <iefiuition of the 
symbol and the assocJ.dted storage cell. 

I 
I 
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The symbol-object associatl.OIl tor free symbols J.S derived from '''---_~ 
the surroundiug context of the modu~e. The method for 
determining this dssociatl.on and tne surroundiny context will be 
aiscussed in Chapter 2.3. The free symbols corres~ond to those 
symbols in PL/l pI'ocedures and APL tunctions wnich are not 
dec.l..ared w itllJ.U tIle pI: ocedu['e or f unctl.on. The cesolution of 
parameter symbols is discusseu loU section 2..2.~. 

Definition: The 
sta tements. 

19~1 compou;nt of a module i~ a list of 
Each statement loS a ll.st of symbol references. 

'fne list of sy mbol ref erences eepresents an expression (see the 
next section) in PoLish ~reti~ ioem. Treating statements as a 
IJ.st makes J.t possible to sele~t the statements bJ a simfle 
integer index. ThJ.s maKes edJ.t1.n~ tbe text much sJ.mpler. It 
also provides a clean defJ.nit1.on of local labels. 

Uefinition: A lQ£!!l lab.s!.:!: 
module and associated 
statements in the text. 

£.fQ!::Q1Y.£.s! loS a symbol defined 
wl.th the J.ndex of one of 

in a 
the 

The prototype is made int.o a J.ocal ..Label by :idu1.ug to the 
prototype information whJ.ch 1.nUl.cate~ whien genecations of local 
storage were active when the ldbe~ was ceeated. 

This section sets down the const~aints on the exterual syntax 
that dee conceptually re'luired. It J..S not to be l.uter preted as a 
specification of the syntax, but onJ.y of the form of the syntax. 
Many concrete syntaxes oe exts£nal representat1.ons are compatJ.ble 
WJ.th these properties; one su~h representatiODJ..s tae external 
fotlll presented in Chaptt:!r 4.3. l'ht:! external syntax 1.5 desJ.<jIled 
to be suitable tor human use. It J.S ~ntended that an incremental 
translator will build th~ program representations uescribed ~n 
the previous section. Where J..t J..S relevant, the machine form 
will be discussed with the syntact1.c constrdl.nts. 

2.2.3.1 Symbol Lists 

Definition: f£2g.fg,l!! !gn is a $tI:J.ng of symbols. 

This is an important difference oetween AFS and. existing systems. 
UnlJ.ke the bit encodJ.ngs of system/370, bit encodings in IFS and 
physical addresses ot hard.are devices are Known only to the 
implementation. Bit encodings ace never dJ..splayed to programmers 
in hex dumps and Cdn never be rood1.tied by thelll; l.Dstead, all 
communication is in the form of character stI'ings iefined in the 
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logical archLtecture. 

Definition: A 2y'!!QQl cOll.l:iists of one 01: mOl:e characters treated 
as a single unit; tue Lmplementa~Lon must include 
appropriate delimit~rs or character counts to indicate the 
extent of a symbol. 

Intuitively, symbols cocrespouj to the toKens of ~L/I and APL. 
They Lnclude denotations for constant, s~n~~e and multip~e 
character operdt01:S, and identJ..fiers. The1:e liLll be rules for 
determining the extent of symDo~s so that the last cnaractel: of a 
symbol is obv~ous to a symbol ~arser (lexical dlld~yzer). 

there are two classes of symbols: operator symbols that 
represent operators reyu~rJ..llY operands to be evaluated, and 
elementary symbols that represent objects that ao not reyuire 
operands to be evaluateu. loesa classes are uistLnguished so 
that ~t is possible to sintact~cally preproce.l:is the text: 
Operators must be syntactJ..ca~li dist~nguished from elementary 
symbols if syntax CheCK.~ng or pdrsing ~s to be done. In APL, 
variables are syntactically LUdistJ..nyuLsnaole trom user-def~ned 
operators; therefore, the only way to tell ~t a symbol is an 
operator or ~ variable is to LLDa out what the symbol represents 
at execute time. 

i)efiuJ.. tion: An gl~~ut£!£y 2,l.'!!LQQJ: J..s a symbol ioi~thout any 
syntacticdlly-assoc~ated operands. Two subclasses are 
distinguished: The fir:st sUDclass, !~!:££:!.l 2y!!!£Qls, 
consLsts of symbols wbOs~ torm Ldent~fies the objects they 
represen t. the second ;;:iuDcla ss, £gEf.~§.~!! .. t~t.!.!.~ §.ll£Qls, 
consists of all the remaLniny e~emelltary symbol.l:i. 

These two subclasses correspond to toe classes O~ constants and 
ia.entit~ers resj!ect:lvely. Examples of literal symbols are 'XYZ, 
].4, 2+41. Examples 01 repx:esentative symbol.s are X, 
VAHIAHLE_ONE. The x:ules Lor 1:€solvLng representative symbol.s are 
~iven in Chapter 2.3. howeveL, literal symbols can be resolved 
at transla te time to a spec~a.l constant tabJ..e which is an 
extens~on of the dictionary. Each iJ..teral can be replaced by a 
special internal symDol reieJ..enee totn~s table. 

Defini tion: An .2.E~fA12.£. SymQ2! LS a symbol wilieh ha!:i operands 
that are syntactically assoc~ated. 

There are at least two ways to distinguish operator and 
elementary symDols. One way J..S to enclose the arguments of an 
operator symDo~ in parentbesas as is done witn PLIII function 
references. The second way 15 to put a descriptJ..ou of the number 
and locat~ou of the operands beLo~a or after the ope~ator ~n the 
pI: oyram text. 

These detinitions cause ilLladLc funct~ons to be cons~dered to be 
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/." 
elementary symools becau;::;e they have no operands. However, there"-...../ 
is no need to parse var~ables and niladic ~unct~ons in a 
different way. 

Definition: A §imEl~ ~~E£~§~2ll ~s either a siu~le elementary 
symbol 01: an operator symbol, to~ethec with. the correct 
number of operands. Each QE§f.anS! is a simple expression. 

'this defines expressions recLl!:sively beginning with elementary 
expressions such as constants, vdrLables, and n~ladic functions. 
These may be used as operanas rOI operator symbols to build one 
level expcessions. Then, two La vel expressions way be builtf rom 
these one level expressLons or sLwple expcessLons. This allows 
arbitcacily deep nesting of opecatocs. 

Definition: When au 
tog ether Inth a 
SQ£ Q~fg1.Qf.· 

ex~res;::;Lou has the form of 
set of o~ecauds, the opecator 

d.n opeca tor 
~s called to 

This definition reflects tUd tact that the syntax of an 
expression is really a linear repcesentat~on ot a tree. The 
non-terminal nodes of this tree are the operators, the teIminal 
nodes dre the elementary symbols. The branches ~n the tree 
correspond to the operdnds 01. the operator to which they are 
attached. 

2.2.3.2 Special operators 

There are cases where i~ 1S n~cessary to use dU operator symbol 
as an operand of another Opel:4~or. One eXdmple of such a use 
occurs with the inner product opel:a~or in APL. It takes two 
operators (e.g., + dnd *) ana two drl:ay;::; and produces a result. 
This is written A+.*B where + and * are not operators with 
operands, but ace elementary symbuls used with the dot operator. 
Because of ttle syntactic ruleoti y~veu above, it must be possible 
to syntacticdlly distingu~sh toe two d~ftereDt UseS ot + and *. 

Defin~t~on: Therel.s a pce.t~x simbol g.l:!Q1~ will.ch syntactically 
converts the occucrence ot the symbol following it into an 
elementary occurrence. 

dence, the A.P.l.. inner prouuct would be written in the strict 
syntax as inner (~uote plu;::;;~uote xpn;A;B). ln the extended 
syntax, a simpler expression sl.wiiar: to the APL Eorm might be 
adopted, but such a form woula De a syutactl.c macro whose 
expansion in strict syntax would nave to use elew. ('jote that the 
APL farm requires a precedence relation ~n con)unct~on with the 
dot operator to ov;;n:ride the UOI:lIld.J. use of + and *. 
If quote is used wita elementaLj symbols, it nas no SElect since 
it only indicates how to parse the program and not how the access 
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to a symbol is to be interp.ceted.. Th.1.s is covered below in 
discussing the evaluation of o~erands of operators. 

Another problem occurs Wh~n J.d.uy ud';le:::> l~K.e APL are tr-anslated to 
SL. It is necessary to repre~ent tne proyram text for APL in a 
partid.lly parsed form. In those Cd.ses where it .1.S impossible to 
tell syntactically how to pd.rse the symbol str~ng, the delayed 
parse o~erator is used. 

uefinition: The dyadic ~~~~y~g £~£§g tunct~on taKes two 
operands. There are titree legal comb~nd.t~o1.i.S of 0i'erands: 

tirst operand second operand 
1) nilad~c object monadic tunct~on 
2) niladic object dyad1.cfunction 
3) part.1.al dyau.1.c fen niladic object 

All other comb.1.nat~ons are i11e9al. The result of 
delayed_parse in eacn casel.S: 

1) a nilad.1.c object wh~cb is the result of applying the 
monadl.c functLon to the llilad~c aDJect. 

2) a partial dyad~c function which has as its first 
argument the nilad~c object. rleEore the dyadic 
function can be evaludted, the second argument must 
bl::! obtained. 

3) a niladic oUJect wh~Ch is the result of evaluating 
the partial uyaa.ic fliuction W.1.tn tne niladic object 
as the second ar~~ment. 

This allows th~ APL text to be 
completed at execut~ t.1.me. TUcl 

_Oecome 

~ep~esent~d dnd the parsing to be 
AP~ I::!xpression ABC D E would 

dpar (dpar (dpar: p.par-(E.D);q ;8) ;A) 
where dpar: stands for delayed_Pd~se. 

2.2.3.3 Grolip~ng Expressl.ons 

The s~mple expcessl.on ~s too ~estrl.ct~ve a tocmat for all 
programming. It is neCtlssar i to Y roup expression Ii 11ich are 
executed only tor their side eftects and not for the final 
result. These correspond to sets ot l~n~s in APL or a set ot 
statements in PL/I. 

uefinition: A gf,Q.l!£ is a se~ment of program text beginning with 
an initial mar-ker (e.y., left brace), continuing with 
expressions separated Dj a illar-Ker (e.g., semicolon), called 
the statement marker, and au~iuy with a f~llal marker (e.g., 
right brace). 

Def .1.nition: 'fhe initia..l anti :t~aal ll1Ci.r ~ers are Cd l.led .Y..f oUE 
!g~gf§· 

A group represents a IImoaule constant". That is, the tLdnslation 
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of a ~roup yields a module. Hence, a group is very similar to a 
literal symbol. This tact maKes ~t reasonable to ailow groups to 
occur where an elementary siillboJ. can occur. ThLS leads to 
syntactically embedding ~roups wLthin groups. To accommodate 
this possibility, a group was d.et~ned over expressions rather 
than simple expressions. 

Definition: An ~!Q£g§.si.2l! is e~tneI:' a simple expression or a 
group or an opera~or symbol, together with the correct 
number of operands. £ach operand must be an expression. 

DefinitLon: An expression WhLCh is one of the components of a 
group is called a §!a1~!~~S. 

The syntactic rules given above allow a group to De syntactically 
eabeJ.ded within an expression and, hence, with.in another gr-oup. 
Tilis is purely a syntact~c couven~ence. Each. grol.1p L5 tr-an51ated 
to a separate module whiCh does not contain the emoedded groups. 
Instead, it contaLus Lnternalij-defLned sYiIlDols which are 
associated with the monules for the embedded ~roups. This 
process is analogous to the hannlLng ot lLterals. The procedure 
tor resolving and cOllnectLng tac se~a~ate modules is discussed in 
Chapter 2.3. 

The fo~lowin~ det~n~tions are LDs9£ted to clarixy which symbols 
are in the dictionary of a part~cul,u: moduie. 

Definition: 
group 

A symbol 
mark.ers LS 

markers. 

wh~ch is pact of the text 
cODtaia~g in the ~roup 

enclosed 01 the 
def illeu by the 

Definition: A symbol wh~ch ~s contaLned Ln a y£oup A Dut is not 
only contained in yrou~s textually 'contained in A is 
:!y.~tlx £QntaL!!2Sl in A. 

only those symbols wn~ch are dLrectly conta~ned in a y~oup are 
pu t in the dictionar'i for the moo.ule gener-ated by tna t y roup. 

A typical group is the set of statements wllLch eXChange the 
contents of two variables, A anu ti. r£h~s requices a temporary 
locat4on and three statements; 

lstow(AiTEl'1l?) ;stow (lJ;A) .stow (TEl1P,l3)} 

2.2.3.ij Dec~arations 

If a~l programmLng were done Ln the maChine form o± SL, then 
declarations wOl.1ld unnecessary. All declarations =ould be done 
by executing the insert_pJiIlbol t unction on the approprLa te mod ule 
d~ctionary. However, it ~s ~ecessary to have a way ox indicating 
in tae e.xternal syu tac tLC fOl:m titd. t certain symbols are being 
defined and that others a~e fLee or pa~amete~ symbols. 

; 
/ 
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Therefore, the external syntax must have aeclarations. A 
declaration will be treated as d notation for one or more uses of 
insert_symbol on the dict~onary ot the module wh~cb results from 
translating the group iu wh~cn the declaration occurs. See 
Chapter 4.3 for the syntax ox aeclaratiolls. 

2.2.3.5 Functions 

One ot the most powerful aspects ox mathematicd~ notdt~on is the 
ability to abstract upon an e~ist~n~ expression to define a new 
tunction. An n-adic function can be deL~ned from ail expression 
oy de~ignating n ot the symbOLS occurr~ll~ in tbat expression as 
being pa rd mete r sym.ool s. wuen t he new f unction is applied ted 
set of n values, these values are assoc~atea with the 
corresponding parameter" symbol:::> in the expression. 'fhe cesul t of 
the function ~s the result of evaluatill~ the expression in the 
context of these parameter symuol associations. 

It ~s ~mportant to note that tbe module producea by translating 
the group is a niladic function. An evaluate re~uest is required 
to cause an activat~o.n ot the lIIo<lul~ to be created. TheL'esult of 
such. an act~vation ~s the reSUlt of evaluat~nlj tha text of the 
module. Therefore, the group DracK~ts act to delay the evaluation 
of the text in the group untL~ an evaluate request is made. 
Hence, the grouf represents the text, not the evaluation of the 
text. It is, ~n tact, a module or niladic function constant. 

since a module alL:eady repl.:esellt::> a function, ~t ~s relatively 
easy to create an n-adic iunction from it. All that ~s required 
is to modify the linKaye iniormat~oll of the symbo~s to be treated 
as parameteL' symbols. Tll~S cab be done w~ta insert_:::>ymbol. 
However, it is conven~ent to have a syntactic fOL'm which clearly 
show~ the functional abstract~on. 

oefinition: The dyadic opeLatorla~Q~ takes as its r~ght 
operand a module and as Lts left operand an ordered ~LSt of 
symbols which are not local to that module. The result of 
the operation is a parameter~zed module. The symbols given 
in the left operand are mar'Ked as E£i£i!..!!g1~£ 2y~!!ol.2' The 
parameter symbols will De resolved:La thE:: order in which 
they occur in the left operand of lambda. 

The parameter symbols must De resolved wheu a function is 
activated (see section 2.~.4) since the arguments may diiter from 
use to use. However, the rema~n~ng symbols may have been 
previously resolved. For the rest of tnis Chapter, it is assumed 
that all symbOLS other than the parameter symbols have already 
been resolved by all unspuclliC!L.1 al;vritnUl. 'rh~s cestr"iction is 
removed in Chapter 2.3. 

A good example of the use ot tb~ lambda operator ~s to define a 
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functiou which doubles 1ts ar~ument. Let X be a local variable. 
'Che, ex;pressi:on 2-X yield~ a valu.e wtlich is tluce the value of X. 
'fhis can be Jlada into a .. function bj making ~ a l;idrameter symbol. 
rile expr.ession 

lamhila (1; (product (2;1)j ) 
yields a fuuct.l.on w.h~ch gives tluce its argument vAenever it is 
applied. It is assumed that the s1 mb01 'product' is externally 
defi.ned t.O he the mult1..fi.lj operatoJ:. Th.e literal, symbol '2' 
r.epresen ts the Object 2. Although the only local. symbol in this 
function is. a parameter symool, it is possible t.O have other 
local symbols as well. as free sYlDbols in a :tunetiOit module. 

A function is used by maKing an evaluate L'e~uest on it. The 
ev·aluate request contains tne ,uguments to be used by the 
function. Tne fl.lllctl.OIl mayor may not do the w.orK to compute the 
L'esul t itself. It the function is to be reentcant, it create s a 
new object with uew local stoL:age to compute the result. This 
allows. the tunction to process otiler re'1uests "simultaneouslyu. 
It the function does not create a new object to compute the 
resul t, then the iu-nctioD dutOald tJ..calll' becomes seL'l.ally reusa bie 
because of tae request queue 1.0 the storage cell it resides in. 

"'-.. 

See Cbapter 5.~ £or further detd1LS on fuoct10n act1vdtion. -~ 

Definition: An ~Yi!lYi!sg ~9.!:!~:i1 ou a S1. tunct1.on fH~rforms the 
followin~ actions: 

1) A new dctivat~on ot the £unct~on bel.DY called is 
created by tbe object L:ecsl.viny the evaluate 
.request. 

2) The argument ~1st 1S ~assed to this Dew object via a 
start J:equest. The start request causes the 
interpreter tor the uew act~vat1.on to beg1.n. 

3) The ioterpL:eteL' t.l.L:st associates the pardmeter 
symbols in the ne~ act1.Vat10n witn the storage cells 
of the ~rguments 10 the argument li~t. 

4) The text of the funct10n is theu interpreted. 

Defini ti on: Eaen eval uate re'iuest CL'ea tes an £!£!j,yS!:£io.!! of the 
function which 1.S baLDg illterl:"I:eted. 

rhe matching of arguments to lJarameter symbols is let t to the 
interpreter in the access macuJ..na as is the inter'pretation of the 
body of the operator object. Tul.S allows flexib11ity 1U the 
definition of tbe evaluation ot the opeL'ator. 'rhe operator lDay 
be a SL funct~oll, as dei.l.ned above. However~.l.t may also be a 
pr imi tive opel:at or or a proce dure 1n sowe other Pl:og ramming 
language. For prim1tive operdtOL'S, tbe system 'Will access the 
cu::gulILeut list and the cesiilt of the opeL'at:!,.on is' defined '~./ 



( 

( 

[ 

Chapter 2.2 PHUGHArt STRU~XUh~ aNU INTERPR~TATIUN 69 

axiomatically. In the case o.f procedures wr.lotten in other 
languages, the access machine contains the inter~reter for these 
proced ur es • 

. ConsiJ.er a single fuuctl.on be.lonij dPplied to d set of numeric 
values. For example, tne ex~ress10n 2+3 indicdtes the 
application of the sum .funct10n to t~e operands, 2 and 3. The 
evaludtion of this functl.on .loS re.J..atively simple. Tue values of 
its arguments are dlready com~uted. Therefore, to evaluate the 
function, it suftice~ to aSSOCl.ate the arguments, 2 and 3, with 
the appropriate parameter symbols l.n tlle code for the sum 
fUllction and to begin interj:>ret.l.ng that code. 

This small example already snows several a::.pects of the 
interpretation process. ~f we assume that the sum function 15 
not primitl.ve, for examp.J..e, .lot migat be defl.ued in terms of 
operations uSl.ng the Peano dX.l.OmS for arl.thmetic. Taen, we see 
that eVdluating an operator may Cduse addl.tiona.J.. express10ns to 
be 1nterpreted. There are taree steps l.ll the 1uterpretation of 
the sum operator in the above example. F1rst, the two operands 
are collectea 1n to a l.l.st of op eI:anas. Then, the function 
representing the operatoc .loS activated. The activat10n of the 
function causes the parameter sYIIl!)ols to be a5socia teo. w1th the 
storage cells holdl.ng the O~erdnQs. Pinally, the expression 
wnich fOI:ms tne Dody of tae fUDell.on for sum is interpreted. The 
result of the operat~on LS the va~ue computed by the 
interpretation of the bOuy. 

In the example above, the o~dcdnas were elementaI:Y sym!)ols. The 
syntax allows the operands to De expcessLons. In this case, the 
arguments are not the express.l.ons themselves DUt are the values 
represented by those expeess1ons. That 1S, tae function is 
applied to an argument list wh~eh is constructed from the results 
ot evaluat.l.ng tne express~ons. Thi s com~licates the 
interpretation of d function. Toe ae~umeDt li~t cannot be 
constructed until each ot tne expressions torming the set of 
operands is evaluated. Por example, in the expressicn, 
sum (2; times (3; 5)}, the SUbi::U.p.r1::l5S.l.0n t.lomes (3; 5) must be 
evaluated befoee the sum tUDetLoD can be evaludte~. 

Definition: The occurrence o.t a literal symbOL in the 
text is replaced. by au aSSOC1a tion to a read only 
cell which holds a copy o.f the object the 
represents. ~Yalu~!iQli ot a literal symbol yieldS 
name tor that cell. 

program 
storage 
literal 

the cell 

Literal symbols are treated as expression::. to Le eval.uated at 
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1Icolllpi'le time u • This is in fact what i::. done in 1Il0::it p1:og ramming 
ianguages. A good e.xaJlple of th.l.S .l.S the handl1.ng of vector 
constants in APL. 

Definition: The ~ygY.ll!Q!! of all elementary symbol results in 
the celL ndme of the storage cell associated with that 
symbol. 

Since symbols are always assoc1.ated with storaje cells, th1S is 
the ~ost general resul.t whlcb could be computed. It is clear 
that the contents ot a storaye cell can be obtained if the 
internal ident.l.fier for that call loS known. rlowever, it is not 
possiDle to determine tne cell name ot the celi whl.ch held an 
object when only the object itself loS known. 

One problem with havlny tAe cell name be the 1:esult ot evaluating 
an elementary symbol is that .l.t ~s often the contents of the cell 
or even the result ot evaluat.l.ug tue contents o~ the cell which 
is desired. Therefore, o~erators dre provideu 1n SL to force the 
further evaluation of the contents ot a cell by Illaking calls on 
the object stored in the celio 

Definition: The 
solely of 
symbol. 

iB.te£.E£~lli~Q!! 0.1. an expression winch consists 
an elementar), syrubol is tue evalua tion of that 

An operator symbol cannot ba ~vdluatBd without its arguments. 
fience, it .l.S necessary to simultaneously uet.ine the 
interpretation of an expressl.on dUJ an operator symbol. The 
1nterpretation is begun at the top of the tree representing the 
expression. The ma.l.O reason for th1S is that .l.t allows a context 
to be provided for the evaludt1.on of the operdnus. This context 
can be used to perfo~m u~agdlong, dS Jet1.ned by P. Abrahms. It 
can aiso be used .for the type or optimization used in the iloulder 
PL/l compiler. 

J.>efinition: The i!!1~£g!it!!li2!! of an express1.on wh1.ch consists 
of an operator, together wi th d se t of operands, is done in 
stages. 

1) The object in the storage cell associated w.l.th the 
operator s111001 1.S accessed with an identity call to 
obtain its sttr.l.lJutes. .If.l.t.l.S a tunction or 
procedure and tue 1:eguired number ot arguments 
agrees with the nUlllber ot operands 91ven, then stage 
2 is begun. Uthe~wise, aD error exception is 
raised. 

2) Each expression loU the operdud set is interpreted. 
The results are stored in d set of buffer cells 
associated with the evaluat.l.on ot the operator. 
When all the operands have been evaluated, the 
!!£.9..!U!!m1 1is,£, a vecto~ of storage cells containing 
copies of the results, is constructed ana stage 3 is 
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b~gun. 

3) The operator i~ ~vd~udted usiny tue argument list. 
The result of the e~p~ess10n iB th~ result of the 
1nterpretat10n ot the operator. 

The order of evaluation 1S de~LneJ to be left to rignt to be 
consisteut with the actual J.rup..l.ementatious of most programming 
languages and to ma~e it poss1ule tp pred~ct the oruer 1U which 
side effects will occur. ..l.t LS uot telt tuat any freedom for 
parallel evaluation can De efLectJ.wely exploited at this level. 
'rhe advantage of predLctaoilJ..tj seems to outwe1yh any improvement 
due to parallelism. 

The arguments are passed by reference. This is requirtd to 
implement such primitive iuuctJ..ons as replace. Replace must have 
access to tbe storage cell to be mod1t1ed if it is to operate 
correctly. This is only possible it the cell name is the 
argument to the function. Call OJ value can be 1mplemented by 
having the called functLoll copy the contents ot the cells 
referenced in the argument li~t. ~dll by name is slightly mere 
difficult, but can be ~mple~ented by passLny reterences to 
niladic functions. 'fhen, these fuuctions would be evaluated at 
eaCh use of the call by Dame t'arameter symbol. Wl.thl.D the text ot 
the called function. 

Definition: The ~yglyatl.Qg of ~n 0t>erator symbol and an ar~ument 
list is performed by mdK1ny an evaluate re~uest on the 
object conta1ned in the storage cell associated with the 
operator symbol. The dcyument list 1S passed as the 
ar~ument of tbe evaluate ~e~uest. 

The definition of l.nterpretatJ..on shows that beginning 
interpretation ot an operator causes othar operator~ to also be 
interpreted. 1.0 particular, edcn operand of an operator will be 
interpreted. III hen the operator has a fUIlct10n body, then that 
expression is also l.nter~rete~. Tnus, mdny operators may be in 
some stage of the evaluation process. 

DefinitJ..on: fhe state of evaluation of eacb operator symbol 
being evaluated is ~ept in a collective object called an 
~~l~~~. This collective object Keeps track of the current 
action being performed ana tae partial results whicb have 
been completed. 

The evaluand holds the results of evaluatin~ the operands prior 
to constructing the argument l1st. An evaluand serves much the 
same function as the MarK StaCK ~ontrol Word used in the 
Burroughs architecture. However, l.t controls the bUl.lding of the 
argument lis, as well as tbe call. on tue operator. It is so 
named because it represents a part of the expression being 
evaluated. It can be used to provide status 1n£ormat1on for 
debugging requests. 

I 
I 
[ 
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rlecause evaluation ot expressions ~s strictly left to right, the 
evaluands tor the set ot o~erator symbols wn~ch have not yet 
completed the evaluation of LheLC operands form a chain. This 
chain of evaluands corresponds to the stacK se~ments of the 
Burroughs machines. This cha~n is anchored in the PSR and ends 
with the evaluand for the symboL beLng currently evaluated by the 
in ter pre te r. 

'fhe evaluation of a functloon :leneL'ates a newactlovation which has 
lots own PSR. The interpretation ot th~s new activation may 
create additional evaluauds attacued to the new PSft. These are 
indirectly connecte\! to the eva.luands ~n the PSI.( of the 
activation making the evaluateI:equest by the uepenaency graFh. 
Thet:equest causes the reque;:;;to[' to become ~ndependent on the 
respondent. These linKS in Ule dependency graph form a chain 
through a set of activations. 

.iJefini tion: 
graph. 
property 
re<.j uest 
re'Iuest. 

A s£lJ:!.at,!.Q!! 9!s1:.!! J.S a subgrapb. of the dependency 
Each edge (.1,1) OJ: the activation .;hain has the 
that X is an actJ.vdtion wh~ch has maue an evaluate 
which eausea I to Decome the r~s~ondent to that 

T~e activation cha~ll contdLllS the history of function 
~nvocations. It can be used Lll eouJunction wLth the evaluands it 
links to prov~de the status inJ:ormation when a process is 
suspended. The activatJ.ou chaLD is also used to identify 
generations of activation o£~euted lautomatic) storage. 

A module has a l~st of statements wuieh can be interpreted in two 
different ways. Tne default eVdluat~on of a module causes 
statements to be interpreted ~n strict left to riyat sequential 
order. In the tran~itioll to the next statement, the previous 
statement .result is destroyea. l'he result of the group ~s defined 
to be the result of the last statement executed J.n th~ group. 

An alternative is to use the parallel LunctLon. Tuis function 
evalua tes the stdtemeu ts in au arbitrary or'der. rilis may wean 
actually in parallel if more than one processor is available or 
interleaved execut10U. The re~ult in this case 15 a list made up 
of the results of each statement. 

Definition: 'fhe monadic iunct.~on £s£.!!llgJ: taKes as Lts argument 
a module and y~elds tae list formed by concatenating the 
results of interpret~ng each of the statements in the 
module. T~e order wh~cn the statements are ~nterperted is 
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undefined. 

~bell dea~ing w~th groups, two add~tiona components are needed to 
define the current floint o.f ~nterpretation. The £.!il:aQ.£ specities 
which module is currently actLV~. 1ha statement index indicates 
~hich statement with~n that yroup ~s act~ve. Since evaluation of 
tne parallel funct~oll causes !:iever:al !:itatemeuts 01: ':J roups may be 
simultaneously active, tnere can De multLple activat~on chaitis. 
These chains form the ~£i1!~lk~Q 1£~~. 

The syntactic group IDarKe£..:i (oI:aces) have the funct~on of 
stopp~ng the normal evaluation algorithm. that is, they leave the 
group unevaluated. If, ~oweveJ:, tne ':jroup occu:rs in a context 
where a "value" LS needed, the group wi~l be evaluated 
sequentially. Such a context call be created by the evaluate 
funct~on, or by other val.ue-or~en ted f uuct1.ons SUCll as stow or 
sum. Tne del~.l function ~s useJ. to override a value context. 

When expressions or groups can be the result of a fUDctl.On, ~t is 
not possible to use the ~m~lic1.t 1.nvocation mechanism. For 
example. 1.t might De necessary to se~ect one of two iUDctions to 
apply depending on a truty value lTV). This might be w1:itten as 

(Il: TV, then \juote SLn else quote cos) (.5)-jX 

1.n the extended syntax. Th1.s Decomes 

TV select lquote cos;~uote sLnj apply list .5 stow X 

1.n the gasic syntax. The strict syntax for tb1.S expression ~s 

stow (apply (select(TV;lquote cos'<;luote s~n}) ;list(.5») iX) 

Thereiore, an e pl1.c1.t app~y fUnction 
funct1.on with 1.ts operands. ~t tnere 
:reduces to an evaluate function. 

is neeueu to associate a 
dre no operands, app~y 

Defini tion: The dyadic .function g.i:!jL~.l maK~S au evaluate ca.1l on 
its first argument witn 1.ts expression X(Y). second argument 
as the argument list. ap~ly,~;Y) w1.~l yield the same result 
as the expression 1(1). 
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A powerful, yet d~scLplined system, reguires the abilitLes for 
control to flow to oue ot several alteJ.:'natives and to provide for 
repeated execution of a group. The former facilities is provided 
by the§el~~ function, which extracts statements from a. group. 
The repetitive faci.lity is pronded by the £§2.!iH!1. f unction which 
causes a group to be repeated uuti1 an iteration condition is 
sa tisfied. 

it is possible to terlilinatiO! a group anywnere during the 
sequencing of the yJ.:'oup. The ~~1.s. function causes the current 
group to be terminated and yicllds Ute value of ~ts argument as 
the res u1 t. When it OCCU£S wJ.thin a. group tt~a t is be iug 
repeated, it causes the terliliud tl.OU of tne current repetJ.ticu. 
~hen it occurs i~ tae pJ.:'edicate, it terminates further 
repetitions. 

The£e are times when l.t LS uesu.:avle to couditl.onalJ..y eXlot from a 
group with a va1u~. This capability LS proviaea by the 
£QilltiQMl: function. It. tak.es dS operands a predJ.cate and a 
group. If the predicate y~eld~ 0, then the group is not executea 
and the resuJ..t ot the expressiuu i.:i nil. If the predicate 'yields 
1, the effect is tye same as executLng an eXlot function with the 
g£oup as its argument. 

Gotos are sup~orted but only l.lld~rect~y. Tne ~21Q function 
causes a sequence exceptloon. 'fne standal"d .::;ystem action is to 
reestablish the environment of the ~abel which is the aryument of 
'joto. However, the useI:' IlIdl {l.eId the exceptLon dud reject the 
goto if he desJ.res. 
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'rhis cnapter discu::;,:ies ana pcesents Ul~ rules for r-esolving 
,:iymbols to sto~age cells ~n tae oUJect base. TAe var-LOUS times 
at vhicri symoo~s may De resolvetidre aescrioea. fne metRod for 
providing a context tor free sjmbols is presented. £ne str-uctur-e 
of a procedure is completed. 

The concept of coae whiCh ~s executed at lIrell defuH-:d times 1n 
the lif e ot an execu t~ng PL:OY1:dill is presented. rrhese time 
periods are ca lied. E!!.~~§. !! ndses def J.ne when .lollstances of 
var1dbles may be created~ The phases are: 

translate 
load 
activate 
execute 
deactivate 
unload. 

at any point ~n time, eacn symbol is associated v1th d storage 
cell by a~.Q.!.!A!i.2!l l!!i\j2. Eacn mOdule may have many activations 
for every load. 8ecause the contexts of these act~vations may 
jitter, each activation must lO<jically have .lots OWll unigue 
resolution map. Each separate resolutl.on map will De called an 
~1!!.i~.2.ru!!~!!!· 

Instead of redoing the Whole resolution map, t he par- t of it which 
rema1ns constant is factored ~nto ~ common mapp~ng schema. This 
schema associa tes each local. sy mno.l liI.lth a pha<;;e identifier and 
an offset into the storaye for tnat phdse. The llldPping of local 
symbols is com~leted ~y ~nd.lcdtin~ Which instance of each phase 
corresponds to the a.es~red envJ..£o.il1ent. The lIIdPp1n~ ot free 
symbols is di~cussed in the next section. Wben a resolution map 
is restr~cted to theJ.ocdl symools it is called a 1.2£al 
!tl! vi r a !l!!.!ill.l. 

~hen each phase is executed~ sturd~e is ceserved by creating a 
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collective object 
phase oecome part 
the offset and tbe 
phase, the mapping 

for taat phase. All allocations w~en~n that 
ot that c011ectLve object. Therefore, given 
identification of the correct instance ot the 
is wel~ determe~ned. 

The storage allocated during t.he loading phase corresponds to 
PL/I STATIC storage. PL/l AUTOMATIC storage corresponds to the 
storage allocated by the actLvate phase. If the deactivate phase 
does not explicitly destroy the coll.ectl.ve object ovnin-; the 
storage, it will remain. Th~s ~ermits coroutines ana passing 
functions up the dctl.vity chal.n. 

Local symbols are resolved to ~nstdnces OL 
connecte d with seme phase at the proce.iure in 
defined. Free symbols are reSOLved to 10cal 
other module. This section Jotines tne method 
which local occurrence is used. 

storage cells 
whiCh they are 

symbols l.U some 
tor determin ing 

A simple resolution rule is t.o use tile f~rst occurrence at the 
symbol tound by searching the local environments of the modules 
on the activity chal.n. Thl.S may 9l.ve access to too many symbols, 
so the stQE tuncti"on can De used to hl.de a symbol from the 
searcn. A symbol is Yisi..QJ:~ to tile seat'ch i.t tlle stop t unct ion 
vas not ap plied to 1. t in some module in whiCh .it. l.S visible. 

This rule does not prov~de tor unl.que local environments, 
however, so tae £Q!lD.ect LUllction can De useu to def1.ue d 

particular mudule in wh1.cn to Deyl.ll the searcn. 1t f2!lA~£1 loS 
executed within an active module then the pdrtl.Gulac l.nstance of 
storage to be used l.S al~o JefLueJ. Tne environment of module 
"A ", VU l.ch us es £.Q!1!l~£.t to b UHl moa ule U u" is Cd lled the 
££~Q~£g2§2£ ~nvi£Q.ll'!!!Silll OJ: iUoJule "0". if a symbol. loS not. found 
~n the predecessor enVl.t'Ollmeut tueu its predecessoL is CheCKed, 
etc. The search terminates When DO predacessor exists. rne set 
of predecessors iot'm a Chal.ll called the £'!lYl£Q!!!!::'!!~ £!!al!!. Since 
mdny activations can eXl.st, taese chains torm d tree called the 
~vi£Q.!!.l!!m!l S£~. i'lU.S l.S a tree aefinea on the ownership tree. 

_hen an appropriate local symbol 
resolution map is extended uy a 
reference to the storage cell. whl.ch 
sYllbol occurrence ~s placed ~n tue 
corresponds to the free symbol. 

occurrence is found, the 
process called 1lll!1~. A 
is associat~d wien the found 
resol.ut~on map position which 
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Tue seaI"ch cules given above lIlUst be extenaeuto handle PL/I 
EXTERNAL scope. What is ueeo.edlos a method foe speC1.i:Y1.Ilg ~!!~~ 
in the environment OI" activ1.ty cbal.u the searCD loS to begin and 
end. Tnis storage for a module in whicll the free symbol is to be 
may be defined in teems ot I"elatlova bacK cefecellces along s1.ther 
the actlovity chain OI" t~e enVl.conruent chain. It ruay also be 
provided by a reference to all existlony local environment. 
Similar cond1.tions CQuld be USdj to tecmiuate th~ search. 

Having establisned how sy~bols dI"a cesolved to storage locations, 
it is necessary to indlocate how the contents OL these locat1.ons 
are set. There aI"e several Eunctions for this pucpose. 

The object contained in a LO~dtloon may be cnanyed using the 
£~£l!!£~ function. 1.1: only the owned resource component is to be 
ruou1.iied then the 2to~ iunct1.on loS used.. Eacn object may have 
set up constraints Oll tae values lot will allow as own resources, 
so conversions ruay be caused Dj the stow operation. 

The ££~~~g fUllction is PI"OV1.~~j to allow the user to build new 
objects, given a dclSC£lopt1.on OL the desiI"ed fOI"mat and an 
eX1.st1.ng oDJect trom ifllich to OOtd1.U the components of the new 
object. The descript1.on may be d data description or it ruay be a 
user defined access proceduI"e. It the eX1.sting oLject is 
iucom pa tib le with the descI"iptl on, a con weI"sion is required to 
build the new object. 

Given the rules of caapters 2.2 and 2.3, a progI"dm modu~e becomes 
a complex object. It is a colLection OL text l1sts, each of 
which corresponds to a ph.ase ..ln the life of tILe prograru. TheI"e 
is also a table ot all symbol~ d1.Lactly coota~ned 1.D the module. 
These are partitioned 1.nto local, free, dnd parameteI" categoI"ies 
with the I"estriction that pdLameter syrubols occur only in the 
execute phase modules. Labels at statements are also in this 
symbol table, along with reieJ:ences to the phase in wbich the 
label occurs. 

Each module is basically an orde I"ed stcuctuI"e, wneLe s;)me of the 
componen t statements ma'y be unia dexe d. 'I'11e index set is the set 
of line labels or statement laDe~s. The elements of the 
structure are ordeI"ed by l..loe label values. This allows 
replacements and Changes to be made easily. 

Multiple entry points are allowea. They dre represented by 
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parameters to a common entry ~oillt. This entry ~tablishes the 
argument-parameter symbol correspondences and then branches to 
the appropriate starting point in the execute mo~ule. 
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MULTI~LE ~Oclr~U~ STHUCTUHES 

Tbis chapter treats the pro~lems of exceptional conditions and 
eltp.lic~t creat~on of :processes. do tb s 1ncb ronousl.nter upts s ucb 
as overflo w, and asynchronous 1.U ten: upts such as 1/::1 are defined. 
The mec~anisms for ~dentiiiiny and handling such interrupts are 
given. 

Processes (taskS) may be expl~~itlt created and t~eir execution 
may be monitored and temporarily suspended. It 1.S through these 
mechanisms that debu~giny will ve 1.illplemeuted. fhe jata structure 
of the control tree is aesc1.:l.bed to show how status information 
lIIay be obtained. 

When a primitive function ~s evaluated, condl.tl.ons which are not 
built into the language interprete~ may occur. These conditions 
are called ~.!£ept!.2!!§. 'they ca usel.U terrui:' ts which are 
synchronous with the evaluatl.on of the (unction. These 
interrupts are processeu by L:reat1.ny d fUllction call which is 
staCKed onto the activat.1.on cniun l.llcluding tne fUllctl.on causing 
the exce ption. 

The function tor which tile exception occul:ed is located.1.11 some 
module "A". fhe procedure to handle the exceptl.on l.S found by 
one ot three possiole rules. ~l.thl.n eacb moaule it is possible 
to de£ine a set of proced~£es to be used wben particular 
except10ns occur. The tl.rst Lula is to regUl.L8 the exception 
bandlin~ procedul:e to be defiaea Ln module "A". It it ~s uot then 
the system actl.on is used instead. The second possible rule is to 
searc~ back up the activatl.oa chaLu Ln whl.ch the module l:esides 
for a defiration ot the execptl.on handler. Til..1.3 is what PL/I 
does. rhe third rule LS to search nack up the eavl.conruent chain 
for the exception handler. 

It mast be possible to S.1.ruuldte tbe occurrence ot dny exception 
under program control to iac1litate dSDugging. There is an 
§igngl function which cause~ the exception given as its operand. 
The exceptions will be valut:ls LIl the language so they be usea as 
arguments to functions or corub~ned .1.nto sets. 
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In caaptec 2.2 the interp.cetatl.on of a. sequential geoup proceeded 
1n str.1.;ct left to r.1,;ght o.cder. Most of the programming languages 
to be suppocted allowed transrers in the f~ow of contrel. 
Tbecefoee a §~g!~~£~ elee~t~2!.1,;S def.1.;ned to st~p the normal 
se~uence ot evaluation aud to ~rov1de an argument Wh1Ch specifies 
vhere the evaluation is to cont1nue. This allows the user to 
field this except.1.;on it d.1.;sc.1,;~11nea programs are desl.red. 

As a aid to the usee 
cememDees the point 
transfeced control. 

there .1,;S 
from Whl.C h 

a cell for each group Wh1Ch 
the last se~uence exception 

aid to debugging prog cams with Thlos is an 
gotos. 

The luestion of transfers 
complex. It is necessary 
as well as a statement to 
that, in general, a label. 
index and an envicoument 
has in it the information 

of control outside a module loS more 
to des1gnate au euvironmellt to resume 
cont.1,;uue the execut~oll at. This means 

has two components. It has a statement 
rereceuce. The enviconment reference 

on wnich lllodule to resume. 

In the above discussloon tile re was no dependency on the 
env~conmeut to resume StL~~ neing ~ctive. This peclRlots 
coro~tines and tae environments OL tunctions Which were passed 
upwards to be "reactlovatea". 

lhe parallel functLon doe~ llOt provide sufilocently tlex.1.;ble 
mul tipq,f grawming facloli tl.es. i he r easou loS that t he number of 
pcocesse~ to be ceeated must oe Kllown when the parallel function 
is exec uted. The ££~.9:!g tUllet ion 15 pr-ov.1.;ded to give finer 
conteol over the cceat.loon at new processes. J..t cau~es a new 
p~ocess in the suspended SLate to be cceated and attached as 
subordinate to some process loll the act.1.;vation chain leading to 
the process executing ££~. The eesult of ££~~~~ loS a cell 
nam~ foe the new peocess. 

A sU.bordinate process may be detlowated by dt,ll:llying the .§!act 
f unction to .1.;ts cell name. 1 t way be stot,lped temt,loraeily with 
the 21!2££ud functloon. The process whlocn starts a suspended 
process may continue to run .lon "parallel" wLth the started 
process. When a process h(is coml-l.leted, lot may term1.nate lotself r-
oy the !!~llQI iunctloon. It may also be terminated externally by ~/ 
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If process "A" knows the cell name for process "B" then process 
"A" is a £2!!!:f:Q.lig!1 .E~.Q£~§ fOl: process "H". A controlling 
process can monitor the actions ot its subord~nate processes. 
rhe 1!!oni.!;Q£ tunct~on suspendstne proces!:> execut~llg ~t and starts 
the process given as an operand. The otuer opel:anu is a set of 
events, called ~.!!te££,g.E!.2, wuich can occur in the monitol:ed 
process. When an intercep~ occurs, the monitored process is 
suspended ana the ~oll~tor~n~ process ~s restarted. The result of 
.!!!2.!!i!:2£ is the intercept ue::>olynator .tor the intercept which 
caused the switch. Hrea~po.Lnts may be handled by monitoring the 
execution ot the statements w~th the breakpoints on them. 

Monitoring may be unuone witi;~ tile .!d!!Q£~ tunct.Lou. ~t causes the 
mon~toring process to be react~vated with a !:>pecial indication 
that it is to ignore the process ~t was monitor.Lng. The result 
of the ignore function is n~l. 

Once a process is suspended, J.t may be temporarily activa ted 
using the inj~£l function. 'rlt.L!:> function is useU to execute an 
expression in the environment of Lne suspended process. It is 
useu to chan\j € that ellV irome u t, J.n yes t~ga te the values of 
varianles, etc. 

There are cases where it is nacessary for one process to be able 
to suspend a second process Oll~Y at well defJ.lled po~nts in the 
second process. For exawple, it is desirable that attention 
signals interrupt the ruu.Lny tunction on statement boundaries. 
This capability is j!rovJ.u.ed. III t.be ££!.2.ll1.Y tUllction Which also 
can bellsed to give infor{ilat~ollto tile resource manager. 

The aDove interrupts are a~l 5i uchr onized. w itll the e xecu tiOD of 
the procedures. There are other events such as I/O completion 
and attention s~~ndls wh~ch occur asynchronously w1th respect to 
the execution of the program text. These may a~so be handled by 
a monitoring process. rlowever, olD th.LS ~ase the event being 
monitored may ~ave already occured before the monitoring action 
is attempted. Theretore, J.t J.S nece!:>sary to save the event 
.Lnformation in case .Lt will be UlOIutored. Sett.Lny uj! the ~nJ.tial 
value of an event variable is d problem. 

There are two ways to treat multiple occurrences ot a monitored 
event. These can occur easolly oln asyncoronous avents aud in 
processes which have parallel actolvat~on chains. The monitor can 
be treated as a ser .Lall} rellsab~e resource iHHl the occurrences 
heyonJ ~he first can be queued. Alternatively, d new copy of tne 
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monitoring proc~ss Cdn be made to naIHll~ each new intel:upt. This "'-._/ 
allows a potentially infin1te lluwbe~ o~ copies 01 the monitor to 
be created. Currentl}, restL.:1.cting monitors to be serially 
reusable seems to be more reasonable. 

'fhe acti va tion tree loS a aa ta otruct ure WLll..ch coutains the ::;ta tus 
information tbat determ1nes tne flow ot control. Each act1vation 
in the activation tree conta1ns a cursor (group 
identifier,statement index and axpr:ession otfset),the process id 
for the cha1n in waich it resl..ues, and tue user 1uentifiel:. 
These may be accessed tor debu~gi.n~ information like the APl. 5I 
vector and to do valid1.ty cnecAJ..ll'j Oll acce::;.:;es to protec ted 
objects. A particular act1Yation may be 1dentl..t1ed by selection 
operations on the actiYdt10n tree. The brancnes are ordered by 
their order ot creation so numer1C indices may De used. It is 
unlikly that the information 1U the activation tree can be 
modified US1UY the normal data structure operat10ns because it 
would undermine the system disc1.pline. 
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RESOUHCE MaNAGEMENl 

In an ~deal system# all data would be accurate, and no error 
could be generated anywnere w~thin tue system. In the real 
world, errors occur due to pr0~rdill Gugs or uaruware bugs. Even 
Lf perfection COUld be aChi~vei, it wouldn't necessarily be 
marketable since SUCh a system WOULd probably cost too much to 
produce and run too slowly to Oe salaDle. In designing a system, 
~t is vLtal to s~ecify tue tecnn~~ues to be used in handling the 
various ty pe at er.cors that call occur. 

One way to contdin the effect of an error is to partition the 
system into a set 0% levels SUCh that au error at one level 
cannot propaga te to tue next nigner level in tae system. The 
most Obvious such partition~ag ~s that between user data and 
system data. The following J.1.sCusses error hanJling in each of 
these two categories. 

User data can be put into two general categor.1.es, private data 
and public data. A JOD whose data is all pr.1.vate and whiCh 
suffers an unrecoveraDle error may simply be re-run. If the job 
is run frequently and i1: BI:rU[S drt:! comllion and if .1.t is 
uueconomic to re-run the JOD in ~ts entirety# then the job should 
De temporally segmented. That LS, the job should De broken into 
distinct time seyments. in case 0:1: dll error dUI:l.uy out:!' ::>egment, 
the job is begun again at the end of the prev.1.ous segment. This 
is l,H,ilply the talll.1.liar mechalUSUl of chec.K.point-rt:!start. 

A job tnat only uses publ~c data has a d~iferent set of problems, 
ot whicb the update-in-place pI:oblem .1.S the most obvious. The 
update-in-place problem .1.S solved by def~n1ng a mechanism tor 
gaining exclusLve control of a pOJ:tion of public data, but this 
solution opens the door to the problem of deadlocKs, and it can 
also cause large quantit.1.es at d.ata to be made unav.ailable to 
other users while unuer the exclusive control of one useI:. 
Furthermore# if an error occurs so that it 1S necessary to 
terminate a job that had excl~s.1.ve control of au entire data set, 
it is not clear which # if any, portl. ons of tae data set were lett 
in an .invalid state. A technl.~ue that reduces the scope of data 
potentially aftected by an error, as well as tendl.ng to reduce 
the occurrence of deadlock, l.S to segment the data .lnto smaller 
units such as records or fie~ds. One w~ght cal~ th.1.s approach 
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el: Cal: cant 1:01 v ia physical segllle ll.tation d'::» contI:as ted to tempo ral ~,' 
segmentation. A job to be pertoLmed on d public data set would 
b~ be ol:oken into a number ot: small. operations to be performed on 
all or selected segments ot the data set. In case an erl:or 
occul:red r the segment being operated on at the t~me would be the 
only segment to contain a poss~Dl.e eI:LOL. TheLeI:Ore r tbe segment 
could be flagged and the CLccu~stances regarding the error 
incident could be reported to tbe Data Base admin1strator who 
would see to it that whatever steps were necessary were taken to 
corl:ect the el:rOL. 

Errocs in system data al:e another matter. While it may be 
possible for errOLS to occu~ 1n the system data pertaining to 
individual usecs w~th no more regrettable effect than the 
termination of some subset of tae users on the system, it is not 
tolerable for any errors to OCCllL 10 the ~nfoI:mation tbe system 
ilas about its own structuce. lor: exampl.e, it is not permissible 
foc a queue element to be iocorLect1y deleted from a gueue oc for 
the ':l ueue to become in tertwined W~ th another- queue. ErLor:;;; in 
this class of data can poten t1dlly go undetected for some 
consiJecab1e period at timet d pec10d of t1me sutricient taL them 
to propagate themselves thro~yhout every nook aud cLanny of the 
systeil. SUCh dn ecror can cOlll.i;iound itse1t so that it is not 
poss~ble to K.now wnat inforlBdtl.Oll l..n the sjstem .l.S valid and what 
is ~n valid. Some a ppr naches to tne f.Jroblem of g UiHa ntee il1g the 
validity of system data, a.::» well as of attempting to ellSUCS but 
not to guarantee the validity ot user data, aLe outlined in 
Section 2.5.4 on ~esource Management. 

On batcb systems, users wece o~~erel l..n effect two separate :;;;ets 
of functions with wh.l.ch to .l.rup~em~nt d solut.l.on to a problem: 
those provided by the comp1ler at compile time aud those prov1ded 
by tbe control program at axecut.l.on time. au interactive 
systems, usecs .frequent.l.Y .l.uteruux compilation aud s.xecution. 
And on systems 11ke Ai? L/ 360 1I/1t h excellent debugg iug facilities, 
the aser may suspenu execut~on at dUj t~me to cnauge h1S programs 
and tben resume execution. SUCh 5jstellls, w.tuch (:I.1.1ow fluctuating 
resource reqUirements for eaCll user, ra~se problems that cannot 
be met by the batch-oriented a~gorl.thms ot 05/360. 

An iudividUal Wrl..t1ug d ~royram can control the resources 
availab~e to hLm in Slicn a fashion as to accomp1isn th~ assigned 
function. The wLiteLs ot a contrOL program, Oil the other hand, 
are faced with the fact taat 00 one can pred~ct all the 
combinations of functions tbat can ~e re~uested by eveLY 
statistically aberrant gI:OUp of u~ars 1n any ~1vell time period, 
where each function re quest.ad 1 mplies some resoucce usage that 
the user has neither knowledge ot or control over. Since the 
user is not aware of the resources required to accompl1sh a 
function henas requested, he cannot ass 1st tb~ control program 
in ant1cipatinlj resource usaye, aud so the control program must 
constantly be pLepaced to handLe all WOLst case s1tuations. 
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Chaptclr 2.5 B5 

Holt, in his recen t thes~s on a eaal. ock, has a.lsti ny uJ.shed usa ble 
resourc~s from consumable resources. Consumable resources refer, 
for all pract~cal pur poses, totne type of ~ntera.ction between 
processes typified by the WAIT-POST logic ot O!>/3bO. Processes 
lIIay interact through operations on cousumdble re::iources just as 
they may interact throuya o~erat~ons on reusaDle resources, and 
therefore, both types ot J.llL~ractions can contr~buto to the 
occurrence ot deadlocks. Td~r~ loS an ~mportant difference, 
however. A U::ier process may l.nt~ract on a consumable re::iource 
with e~ther a system process or another process within h.lS cwn 
job. His process wuuld not ~nterdct on a consumable resource 
with another process in d d~stinct Job. Therefore, the user can 
hurt only hJ.mself through the invalid or badly tl.mea use ot a 
consumable resource. The SYSLOW also nas the choice of waiting 
on either a user process or d system process. The rormer case 
should be strl.ctly out~awed, since it Jeo~ardl.zes system 
security. The latter case ~s tior-lIIal anu is to .oe expected. The 
point to be noted is that d~pelldeucl.es .oetween system processes 
interacting on consumable ~esources dre Known at desl.gu time, ana 
therefore deadlock possib~lities can be handled at design time. 
Consumanle resources should not De a deadlOCk conS~Qeratl.on for 
system processes. 

The following aiagram describes a sJ.tuation noted by R. M. Smith. 
It illustrates a potential ~uVdl~d timing ~nteractioll bf;tween two 
~PU's Which no amount of locking will avol.d. The example is 

CPU..L C1'U2 

..L"'~'TZ 
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specifically stated in ter~s ot CPU's. It illustrates the sort 
of ti~ing interaction that mu.::;t. iJ\:! considered l.ll th.e design ot 
any multl.processing conteol program such as AFS. 

In diagram 2.5.1-1, CPU ~ sets b~t 2 to one and then tests bl.t I, 
while CPU 2 .::;ets bl.t 1 to one and then tests bit 2. Both bit 1 
and bit 2 are assumed to have been initialized to zero. Bl.t 1 is 
physically close to CPU I, whl.le bl.t 2 l.S physically close to CPU 
2. If timing l.nteractions are iynorea, taat l.S, l.~ it is assumed 
that all operations are completed l.nstantaneously, then it is 
apparent that at least one and perhaps Doth of the two CPU's will 
amerge from the test ot bl.t l. or nit 2 aaving found th.at the 
t.ested bit was set to one. It i.::; possible thougb that each CPU 
could send a signal to change the value of one of the bits and 
then test the othtH: b1. t be.torethe signal setting the othe 1.' bit 
to 1 bad been recel.ved, so tuat tue two CPU's could find the bits 
both set to zero. 

£he most fundamental resources l.8 the system are space and tl.me: 
in the physical implementat.l.on, space means storage in the 
Storage Management Subsystem (SMS) as d~fineu in the System 
Architecture ~anual, and tl.we medns \:!x~cution tl.me on a PLogram 
Processing Unl.t (PPU). Since dil objects Lesl.de l.U .::;torage 
cells, they all reyuire some s~dce in the SMS; ana since all 
objects dre processes, they all. re~uire some execution tim~ on a 
PPU in order to respond to d Le~uest. By detl.nl.tl.on, the 5M5 
manages all internal storage, dnd the ~PU's serVl.ce the reyuests 
on the ~ueues for various objects. 

On conventional systems, S~dce ana time have Dean managed by 
software control programs, wl.tn the exception of some space 
management by hardware on bu.t.tereu machl.nes l~&e the 370/1b5; on 
APS, such control fUnctions w1.11 be pertormed completely beneath 
the level o± SL programml.ny. Uecause of tuis Lncrease in 
nardware control tunctions, tue ellYl.neering des~gn must solve a 
number of prOblems normally faced only by programmers: For 
example, l.f otf-l~ne storage 1.S treated as a log~cal extension of 
SMS, then the data patfi for re~uesting the operdtor to mount 
tapes must be dedicated to the 5r15; otherwise, d deadlOCK ml.ght 
ar ise if the ope l:d tor was us l.ny tne console for a non- SMS 
function that caused paging in t.he SMS tuat caused an overflow of 
on-line storage that requ~Led t.he moullt~ng ot a new tape that 
required a message to De sent to tue console that was still busy 
with the orl.ginal reluest. Otner possl.oilities for deadlocK 
could arise if dispatch1ng a PPU re~ui~ed space in SMS and 
allocating space in 5MSre~ui£ed some processl.ng by a PPU; even 
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~f normal cases of deadlocK ~clre com~letell el~wLn~ted, problems 
might arise if standard protocols were relaxed when a hardware 
erroe occurred and rec ave ry pr-uceo.ures ma ae the SMS deiJenden t on 
a i>PU tor elller"gency lIIeasures. It treated systematically, these 
pr-oblellis are solva.ole by a serl.es ()f levels like those cuscussed 
in section 2.5.1: tha scts lIIUst De the lIIost funuamental part of 
the system and can uever be .J..o~.J..cally dependent on services by 
anything outside of ~tselr. LOY.J..cal depellden~.J..es can be 
eliminated even ~n emergencies by dedicating certdl.U eesources, 
such as a special lo~-out area ~ll d PPU, tuac cou~d allow a 
physical FPU to become d 10~.J..cd~ part of the s~s for a certain 
peeiod of time. On small macuLues, SUCh procedures could be used 
to allow a single £.lEU to per-to:cm ail functions: Just as the same 
hardware on a 360/25 can behave alternately li&e a CPU, a 
channel, and a coutrol un.J..t, a sinyle PPU could switCh hats and 
act either as a lo~ical scts or as a logical PPU. 

For th~ remaLnder of this cha~ter, ~e Shall assume that space and 
time are allocated Dy harawar~: tbe SMS peov~d~s a pract.J..cally 
liruitl~ss amount of storaye upon re~uest, and the PPU's are queue 
driven boxes of hardware t~at ULsPdtch themselves to serv~ce the 
loS/ical processes. Taese are Dig assumpt~ons that imply a lot of 
engineee~nSl design to maKe possl.ble and eveD more to make 
practical. Sae the System Arch~te~ture ~anual for more detail 
about the hardware design ana var10US s~mulat~on stud~es. 

Some resources, SUCll as ports, correspond to physical devices 
that have au independant ex~st.em":d. Other classes of resources 
are constructed by suballocat1ny space and t~me: the access 
machines of objects re'i uire t1Jl.e OIl a PPUto r eS.l?0nu to requests; 
data repeesentations, internal. 1dent~fiers, procedural 
descriptions, and PS.d'S taKe up storage space in the SMS. 

Definition: ~very obJect.J..~ a resource that D~longs to one of 
the following classes: 

1) fin!~: there ~s a iLw1ted numb~r or objects with 
an equivalent status and ability to respond to 
re';iuests. 

2) y'n~.9.l!~: t here is on~y oue object lU ttl a particu lar 
status dnd aU11itj to respond to re'iue~ts. 

3) QnB.QillH!gs!: the object Delongs to a potentially 
~nfinite class ot equ~valent oDJects; upon demand, a 
new 0.0 jac t of the class can be created by 
suballocating space anti time 1f aVd1lab1e. 

Finite Objects are ones like prl.nters, where trle totd.l number is 
fixed, but anyone o£ s~v~ra~ may be equa~lt capable of 
satisfying a r~quest. Almost all data objects are ull1que; copies 
of eead-only objects may be acceptable in some cases, but tables 
and records liKe airline reservatLon or payroll tiles must have a 
single upddta~le copy. UnDouuded resources correspond to 
funct~on activations where d new one maj be created for every 
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call upon the function. 

One way to increase the ap~arent number of f~nite resources is to 
create function activations that have the same logical properties 
as the limited resource. For example, a multiprograwming system 
with only one pr1nter can prov1de many logical printers by 
creating multiple activations of a spoolin~ pro~ram: each 
activation may respond to requ~sts exactly liKe a printer; after 
receiving a complete document, the act1vat1on w11l compete with 
other activations tOl: service vll the phis.lcal printar. 

A bierarchical stl:ucture for a ~ystem 1S esseuti~l to a good 
des1gn: Each level of the Sjstem can be desi~ned and debugged 
.l.ndependently. Errors ar1S.l.n:j 1n one level CdIUl.Ot propagate to 
higher levels. And the growttl in tus total number: at possible 
interactions between objects 1S 1ioearly proportional to the 
number of objects, oot e .. q.lOnen (.idol. dS in an unstructuL'ed design. 

'rhe AFS concept ot subsystem 1.;; tne bas..ls foe operat1ng systems, 
user jobs. and n~twocks of ~yst~ms. A sUDsystem ~s a subset of a 
system in which alL interactl.ons with Objects outs1de of the 
~ubstst~m are channel~d tnrou~a a 510g1e resource manager. From 
the outsid~. a subsystem benav~s like a s1n9le ODject; f~om the 
inside, the rest of the syste& ~s ouly v~s~ble through the top. 

Def.l.nition: A ~Q21.21g.!!! ..lS a .5UDset ot the Object base witll. the 
following properties: 

1) Tilers ~s d single o.uJsct calleo. the ~QB..2Y21gl!i fQQ!: 
from which all other oDJects in the subsystem are 
directly acceSSLDLe (..l.e. the sUDsystem forms a 
subtree of the ownersnip tree with the subsystem 
root as its root). 

2) the sUDsystem root ~as an element called the 
'£~2Q'y££g !!'.a!!..2:.9:~£ that. 1.S a collect~ve Object whose 
elements are synonyms to all external objects used 
by the subsystem. 

3) The subsystem also forms a subtree of the 
en vi ronmen t tree W 1tn the subsystem IOot as its 
root. 

4) No object ins~de the SUbsystem ~s d~pendent on any 
f.l.nite resource except the ones whose synonyms are 
held by the resource manager. 

~--'-" 
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Resource allocation in AFS Das~cally follows rlaber~ann's 
algorith~ (CACM~ July l~bY) extended to meet the needs of the AFS 
system environment. HaDermano's algorithm requires that each 
user define at job in1tiate t~me the maX1mum usage of each 
resource required by Ais Job. Th~S mdx~mum usaye ~s called the 
claims specix1ed by the job. vurLuy the running of the job, tbe 
user requests resources as nee~ed up to tbe lLffi1t of his claims. 
Upon receiv1n~ a request tor resources, the system tests to 
determine (1) whether:- or uot tue resources a.r:-e dvailab.le, and (2) 
whether 0[' not a saie sequence exists. If the I:'eSOUI:'ces are 
available and a safe se~uence eXists, then the request is granted 
1wmediately. If one or the otber of the two conditions is not 
true, then the re~uest is not granted until the two condit10ns 
have become true. Ii tne re~uest exceeds tne claim, then the 
re~uest is refused. 

J.)efinition: A sequence of JOOi::i, JUlJl, JOB2, ... , JOti~, 1S called 
a 2.9:fe §~.9.~~l!£~ provided thdt if every Job in the next 
instant .cequ~sted a.11 tile reSOUcceti 1t cla1med at initiate 
t1me, taen JOB1, usiU9 the r:-e~ources it now holas ~lus those 
currently Lree, can CUll to complet10n aud so cree up the 
resourceti it now hoids, aWl tIlen JOBL utiin~ the resources it 
now holds plus those curreutly free plus those held by JOBl 
can run to completion, and so then JUil3 • • •• 

It is unreasonabie to re-;iuiretne user at t.ne tel:mLual to specify 
at logon time all the re;;;iourc,JS t.hat h~ ffi1yht tltiS 1nthe coming 
session. In order to permLt toe tlcier to r:-e~uest resotlcces which 
he has not claimed pcevLously, barry Goldstein has suggested an 
important modification to tidUerrnadn's algorlthm. Goldstein's 
alyor1thm allows the user to re~uetit retiourceti wbi~h he has not 
previotlsly claLmed. In response to a reguest tor rei::ioucces, the 
system, as in tlabeI:'maun's algorLtnm, tetita to see whether or not 
the resources are availaDle dnd whether or not a saie se~uence 
exists. If both conditions are tr~e, the resources are granted 
1mmediately. If either couditLon iti fa.1se, taen the user has to 
wait unless ma~ing aim wait would create a dedd.1oc~. The result 
1S that a batch user wuo never exceeds his claims will never 
encounter a deadlock and tuereiore Beed never prepare for 
handling deadlock.s. Un the otnec hand, a terlunal user can 
dynamically request reSOQrces taat had not ~ravLously been 
claimed at the cost ot occasLonall.Y having to l>rog[,HI his way cut 
ot th~ deadloc~. 

There are conflicting demands made by tae two needs to avo1d 
deadlOCks in allocat.1ng resourCdS aad to allocate resources in a 
network. Avoiaing deadloc~ re~u~rei::i that tnere eX1sts a single 
centra~ized allocator witb ~omplete Knowleuye of all the 
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processes in the system dAd al~ ~ne resources assigned to those 
p~ocesses. Running a network, on the other hana, requires that 
each installation ~n the networx enjoy a measure of independence 
fro II the other instdllations.l.f centralized resource allocation 
vere to be performed ~n a network, then every re~uest for 
resources would have to .oerer.arred .oacll to the single specific 
node 4n the network that conta4ned the resource allocator. Since 
this is unfeasible, a method must be found 'for allocating 
resources at each node in a manner that ~s dS independent dS 
possible froll the resource allocation decisions lIade at other 
nodes. This iorm of resoarce allocation can De accomplished 
providing that additional cOlls~raints are placed on the safe 
se~uences ma~ntailled by the .['esource allocators ~n the network. 

Let the systell be co~posed of aisjoint sets of resources dnd tor 
each set of resources define ~ resource allocator. Assume that 
the resource allocators are all at the same level., dAd on top of 
them define a tree structure at resource allocator coordinators. 
Tbe particular tree structuLe ~s drbitrary but ~s fixed tor any 
given network. 

Local jobs are ones that DULY use re30urces in one of the 
dLsjoint sets of resources. Distr~buted jobs dre ones that use 
resources from two or more of the sets of resources. A job can 
enter the system at any node. a ~ocal Job ~s transm~tted to tbe 
node at which it w1ll execute (1£ ~t wdsn't sunmitted at that 
node). A distributeu JOD may enter tbe networK at any node but 
will be passed up the tree or. Lesouece allocatoe cooL'd~nators and 
possibly hack down some other araDcn of tAe tree until it arrives 
at tne lowest ~evel resource a~~ocator coord~nator (or RAC) that 
has jurisdiction over all the resources claimed by the 
distributed job~ The JOD ~s then Droken up 1uto subclaims tagged 
with the following f4eld: 

CU~NrEd.Tl"~.KACIU 

whien specifies the pos~t10n l.U tae safe sequence relat1ve to 
other distributed Jobs tnat tne current .l.DCOm~n\j distributed job 
is to occupy. Generall y the iJ.e a 15 that distr 1DU ted Jobs sbo uld 
be processed in FIFU order. fhe problem ~s to aetecm~ne the 
meaning of FIFO in an environment in which t~me scales may not be 
synchronized. A s1mple t~ml:: stamp does not suf14ce, since 
different BAC's US.l.Dy different clocks could stamp requests for 
different jobs to De sent to the same sate sequence W1t~ tne same 
time. Consequently, JOdl miynt precede JUB~ on one sate 
sequence, while JOB2 precedeJ JOdI on another saf~ se~uence. To 
avoid this and othe~ tim1n~ pcoblems, the cla1ms sent down to the 
resource allocators are tagged W.l.tn tile value COUNTEii.TH'iE.RACID. 
TIME ~s the value of the dAC's time stamp, HACID is the 
identification of the RAC sena~n~ tae request down, and CUUNTER 
is the value of a counter ma~Dta.l.neti ~y the h1ybest level RAC and 
sent down to all lower RAC's. Tuis counter value acts as an 
artif1cal but uniform t~me scale for all RAC's 1n the system. 
S1nce all distributed joos ma1ntain tne same celative ordering 
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~ith respect to eaea other ~D all saLe sequences Ln the system, 
no deadloc Its occur in the Det WOi' k. 

dolt has pointed out (CACM, JaDudLY 1911) the possib~lity at jobs 
beeomin) effectively b~ocKeJ ~n a safe se~uence. such a 
situation could occur if a sequence of high pr~ority jobs 
cont~nua~ly occupied so much cure that d Ii low pr~or~ty job never 
bad its request for a IdLge amount of core satisfied. 
conse~uently, the low pr~or~ty Job woula be bloc~ea ~ndefinitely 
and could not De guaranteed tu complete in any ~iven time. To 
assurd that every job w~ll eventually complete, Holt proposes 
that jobs in the safe se~uencd be tagged with a t~me Value that 
indicates the length of tLme tuuy havu Deeu wait~ng in the queue. 
Then construction ot the safe se~~ence ~s bLasea to favor those 
jobs that have been ~aitillg longest. 

3hoshanL (CACM, November l~o) uas descriUeJ the problems at 
perm~tting simultaneous aCCBbti to the elements ot a list 
structure. Wh~le it .LS not clear that any of the specific 
approaches that he recommenllell shoulll be allopted, AtS must 
provide solution~ that are at least as effect~ve. 

The THE System as descr~Dell ny DijKstra (CACM, Kay 1969) 
contained a very attI:act~ve a~pro~ch to the proble~ of avo~ding 
deadlocks in the system. In8 sy~teill was structured into six 
levels. Level 0 consLsted of a ClOCK aod llispatcher. Levell 
consisted of the paging contr:ol.J..eI:. LI::!Vel 2 was the message 
nandler. Level J handled SOUI."Ge-s.J..Ui\. iUiJut/output. Level '+ held 
the proole m pro,:! rams, and i.evei ~ was the usef:. One LH viol ate 
rule of th& system was that 00 process at a lower level could 
wa~t [or a process at a hiyuer level, though processes at a 
nigher le vel could waL t tOl.' d process a t a :Loiler Ie vel. 
Conse~uently. deadlocks were avo.J..ded partly through the 
enforcement of th~s 3Lillfle rule. Some such structur~llg should be 
undertaKen for IFS not ouly to pf:event deadlocks, nut also to 
reduce the level of complexity of the system to a more manageable 
degree, and thereby allow a ~OLe complete aud accurate desLgn to 
De to.cmulated. 
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r'hs operators of S1 are the basis of t.h.<a system. The elaborate 
structure of dyadic objects dud operators towor~ on them is 
intended to ~mplement an dttr~Dute exam~ning system. The 
operators are the lowest level active element which can be 
programed. In this respect tuay are l1ke S/Jb0 instructions. 
The detailed tunct~on o~ an operator depends 1n part on the 
attributes of the operands at the moment of execution. In this 
respect they are i~~e APL tUDct10ns. The operators are also 
responsive to the environmeut in ~hich tuey are executing as 
determ1ued by expl~c1t program aeclarat10n statements ana the 
activat10n cha1n. This aspect 01 operators is the contribution 
of 51. 

'rbe operands of an 51 operdtor are objects re5iu1ng 1n the 
storage cells associated With the operand symbols in the 
expression conta1niny the oJ:ierdt.or symbol. 'fne, operatoJ: sYlllbol 
itself is associated with a stoJ:dye cell wh~cn contains the 
function object to be activateu. T~is last relat10nsnip enables 
easy operator J:edefill~tion Wilen n.ac<::lssary. Ttle -iyadic nature of 
the operands compl~cates the uet~u1t~on of the operator at the 
object level as compared to tnat of a simple system. The purpose 
is to simplify the aBscript10D at tae pro~ram level. In analogy, 
the description of float~ng p01nt operations are more complicated 
than those of the correspouJ.ing .tixed p01nt 0 lJera t~ons; the 
existence of tuese o~erat~ons, noweveJ:, S1111plifies program 
statement by el~minatlng the need tor sca11ng. 

2.6.0.1 Arguments 

~art of the def~nition of a f~nct10n is the spec1ficdtion of the 
number and type of ~ts ar~umeilts. For monadic and dyadic 
functions written ~n ~nfix: not.ation, tne arguments can be 
recogn ized by na v ing theu; sy m.bols aJ:il!ear next to that for the 
function. This technique is used Dy AP~ to distinguish between 
mohadic and dyadic funct10ns. In the prefix form of notation the 
function must contd~n suff~c1ent information to spec~fy the 
number of arguments. The spellea out forms ot tne functions, 
whiCh d.re dif feren t tor monadic an 0. dyad~c forms, must,,~-~~" 

accordingly, De used in the preLix: notation. fUnctions which ~_/ 
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require more than two arguments will be describej as monaaic, 
with their operandsta:ltl.ng th.:: Shdf.l\~ of Ilosts ot three or more 
members. The symbols whl.ch are assigned to Lunctions may do 
double duty in the sellse at baing used tor Doth a mooadl.c and 
dyadic function. These symDols can only be used ior infix 
notation, where the distinctlooll can be made syntactically. 

~ot all functions have slongle CDdLdcter symbols assigned to them 
yet. In some cases in whicb tbloS has not been done we have 
indicated which pair3 ot one mOlladl.c and one dyadloc function 
should share the same symbol. As a t:lorst ~rincLple one wl.ght try 
to define the monadic Lorm to ba related to the dyadic through 
some sort of default, l.e., having the monaul.C form equal the 
dyadic with some speCial value ~or the missing argument. The 
trouble with this LS that 1:0.L' !Uo::;t symmetrloc opecators the 
natural special value makes tne ~unctl.on into a no-ope For 
example, monauloc El!!§ l.S a standara. no-ope To get maximum 
mileage out of the basl.cally ll.wloted numbsc of slonyle chacacters 
the ~oaadic function is not uHudlly defined l.n terms of the 
dyadic for symmetric functions. An attem,tit to be ceasonable is 
made~ however, in many caHes tollo~l.n~ the exampLe ot APL. 

In addition to the number of arguments Which a function expects 
one must speclotj the type ot argument. 

Definition: A function may pLac~ cectdlon restrict loons on the 
types of itH arguments. Any acgument meetiny these 
restrict~ons is caLl.eo £'&'AdA!A.S1:!~ to the iunction. The 
action 01: the t:unctLon on dll argument of SUCh a type is 
determined entirely by toe uetinition ot the function and 
not by functloon distrlobutl.on. 

For example, numbers are prlomlotLve to tue arlotumetloc operat~ons. 
Zero dnd one are pCloml.t~ve to the logical operdt~ons. A mece 
subtle example is 2Stl~£!. Any Object can be PL"lollutive as a left 
argument. Any indexed object lo~ prlomlotive on the right. If, 
howevec~ the rLyht acyument ot: ~~~~£S has a restricted index set, 
say it is a ll.st l then the prLwit~ve Objects on the lett beccme 
restrlocted, respectively, to integers. 

2.6.J.2 Funct~on Distrl.but~on 

It nas gradually bee n acce pt.ea l.n prog raming liiuyua ges that 
distribu tioD of functions OVclC structures of operands should be 
automatloc as in. APL rattler than re'.1ul.I."l.ug expll.clot loops as in 
early PORTdAN. Since our structureH are very general, our 
definition of function dl.strLoution must be so too. 

We shall discuss function a.istcLbutloon for dyadloc funct~ons. The 
~ituation for monadic functl.ons loS, in tact, simpler and can be 
deduced from the dyadic case. Su~pose ttlat a functl.on appears 
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;--

between two objects nei th~.[' of whJ.c h J.S p.['~IU t1. V~. 'lIne f unct,ion,,-J 
examinies the two objects to s~~ it th~y dr~ two collective 
objects with identical index sets. It not, ;tIl error has 
occurr~d. If the condition ~s sat.l.sL1.ed, tht:! tuuctl.on is aplJlied 
iteratively to the elements ot the structures producing an 
identically iudexed collective object as the result. It any pair 
of objects is not a pair of pr1.m1.tives, the analys1.s ~s executed 
recursively. If at any sta':lB of the recurSJ.Oll one operand is 
primitive and the other not, taa f;cJ.llUtive operand is iillbedded by 
replication in a cOJ.lect1ve object lIlatchJ.ng that of the other 
operand and the function .l.S eVdl uated. 

Note that function distribut.l.on applies only over indexed 
structures, most usually,.l.n practice, over lists and arrays. 
Objects of type closure not pr1.lIl.l.tive to t~e fUllction being 
distributed are not uncovered for distribution. stopping 
distribution is one of tae funct.l.on5 of encapsulation. 

Enclosure can also be used, J.ll conjullction with function 
definition, to modify, as well as s.l.mply to control distribution. 
Suppose, for example, that one w.l.shed to carry out rational 
ar itilmet ic if ith ~ro pe rI:.cact.l.OllS Kept as .l. nteljer pa.1. rs. One 
1II0uld wish for a function, £~1§Q!!!, WhiCh loS §~!!! tor integers 
and d~fines the arithmetic sum for rationals. One defines 
rational numbers as enclosed coJ.lec£~ve ObJects consisting of two 
integers and an identifYJ.ng tJ.elu. Objects of type closure are 
made primitive to g!:~.!!. Wihen a closure .l.S encountered, the 
function itself analyses th~ aDJect to d.ecide wn,<it to do with it. 

Function distribution can also De explicitly controlea by certain 
functionals, as d1.scussed in 2.0.5. 

This section has some symbols wh.l.cn are not properly operators. 
That is, they are not encounterea at execute time. However, they 
are included for completeness. The operators given here are used 
in constructing a runable procedure from symbol strings. 

2.6.1. 1 Parsing operators 

These operators are used. to maKe J.t poss~ble to break {the text 
into units and to hU1.ld a parse tree. 

g,.!!Qte (cf 2.2.3.2) 
~el~ed_.t?.a£§.~ (cf 2.2.3 • .2) 
braces (cf 2.2.3.3) 
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2.b.l.2 Sco~e uuild~ny Operato£s 

These operator~ allow the usa£ to uefina symbol occurrences as 
being local, parameters, OI Lree and to bu~ld the context in 
which the free symbols w~ll be reso~ved. 

ln2~£1-2L!Q21 (cf 2.2.2.) 
!~bd2 (cf 2.2.3.5) 
§12E (ct 2..3.3) 
£.Q!H!~ct (ct 2.3.3) 
l~g 

2.6.1.3 Unique Name Creat40n 

These operators allow CAe user to create unil;iue 
existing names. For exampl.e, t.lJ.ey can be used to 
temporaries. These unique names are not norma~ly 
the symbol table is dumped • 

.!!ni~.!!~n~~ 

names from 
create local 
printed when 

This section includes tne operators Wh~Ch are use1 to construct 
objects from the primitive oJects ot the system. 

2.ti.2.1 Descriptor Defin.l.ng 

rhese operators are used to bU.l.ld up the components of an object 
Jescription from the bU.l.lt ~n dCCdSS mechanLsms or attributes. 
The result of these operators ~s an access macnine. 

~.6.2.2 Object Constructor 

,rhe object constructor g~~1g takes as operands an access machine 
and an existing scala r or co.U.ective object and produces an 
object which is a copy of tae eX.l.st.l.ug object converted to be 
consistent wl.th the gi ven access machine. 

fhis sectiou contains the o~e£ators whLcn dre used to build 
complex data structures. It Lnclu~es such categories as storage 
managemant, index sets, struGtuJ.:dl cOlilbination, and explicit 
structure link~ng. 
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2.6.3.1 Index Set O~erators 

, These are th.e basic operators wllich maKe use of the indexing 
facility and alter and examina inaex sets. 

§!!!~f.! 
'fhe dyadic o}!erator ~1~£1 t.aKes tor its second o~erand an 
~ndexed collective oDJect ana tor its first operand an index 
object of its seconu operand. The result is the 
corresponding element of tae collect~ve object. 

ilis~ 
Tha monadic funct~on ~~!~~ takes an inctexed collective 
object for its operand. The result is a l~st of the .index 
set for tne collective object. S~nce the index sets for 
common objects may De ~~~te large, tuis operator must be 
usea with caut~on. 

Structures of arb~trary compl~x~ty may be bU11t from collective 
objects since their element~ may themselves De collectiVES. 
Because of the ~enerality thera 1S no way ~n tue str1ct syntax to 
index ~nto subobjects OtiHH: thdn 1.)y re~eated use OJ: the indexing 
operator. For exampLe to reier to au element on a subl~st ot a 
sublist of A one writes: 

2h.~~ 

4 se~ (1 sel ~ sel AI). 

taK~s dD array or list fo~ its 
base list. This is a list 

respectively which describes 

·r ne monadic function ifHHi~ 
ar~ ument and ret ur us ~ ts 
structure of depth 2 or 1 
the structure of the argument. 

fionadic 2!!2.E~ takes an array or .l1st as 1tS argument and 
returns the shape of tae argument. This 1S a l.ist structure 
ot depth 1 or O. 

!Ji~!lg£2.~Q£ 
The monad1c function ~.sig!!gg!Qf: taKes a scalar number for 
its argument. it returns a list whose shape is given by the 
argument aud whose elements ar~ 1tS own index set. 

For data~ls on the precedl.u<j Lunctions, refer to the 
section 2.1.7. ~ote that shape is ~he rho operator ot 
primitive arrays, iyenerator sha~e yields 1base. 

Additional o~erdtors are: 
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l!!!.!!!~_Y..!!!.Y~ 
T he dyadic f uncti on J!~l!~_Ys!!Y!:! taKes as ~ ts arg uments a 
value and an object that is to be treatea as the index for 
tllat value in any collective object in which the result of 
llame_ value occu cs. It can be u.sed to pass Keyword acguille nts 
in an eval uate request. 

2.6.3.2 Storage Management 

These operatocs are 
collect4ve objects bi 
collection own by the 

used to add ana. delete components ot 
1nsert1n~ ana deLeting storage cells in the 
object. 

i!12.§£l 
!!~J:et~ 

2.0.1.3 stuctural combinaL1ou 

These o~erators are used to piece s~~arate structures together to 
form d single stcuctuce. Theca aC0 several operators because of 
the ditferen~ ways taat structuces may be combined. The simplest 
structure is a l~st. There 1S an element of ind1rection in a 

( list Which must be caretu~ly cont.coLed. For example, iet 

A - (,a,D,c) , 
aud 

B :: (, d,e ,f} • 
We must dist1nyuish between the lJ.sts 

C :: (, a,D, c, 1J.,e ,1) 
and 

D :: (,Aro) • 

~e introduce four list constru~tin~ 
construct C and 0 from 4 aud 
other operations. 

operators wn~ch enable us to 
H, as well ~s to ~ecform 

£~!~f!!!1~ 
£~1::~.i!!~ takes two o~e£dllds, ~ach ot wnich is a list. The 
cesult ~s a list compr~siu9 the elements of the two lists • 

.i!!HU!!~!! !:. 
!~.!,g.!ll. is a diadic operator. 'rne lett ar'.lument must be a 
list. The right argument is added to the l~st. 

bi§! is a monadic operdtur. It 
operand andfocms a one ~lemen t 
the element. 

accepts dny Object as its 
l1st with tna argument as 
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~~.!~1 
.rne monadJ.c 
object Q. 

o~erator £~.!g! ta~e5 as ar~ument 
It produces tue I:e5ult 

ilist Q sel ~. 

an inuexable 

ie now observe t~at the list C call be tOI:med by A cat B. The 
lJ.st D is formed by list A augment d. It is possible that 
catenate may be redefined to perform limited type conversion so 
that vectOI:S and lists can be comb1aed. In particulaI:, by using 
the ,)-vector as a lett ar:gument foc £~1 a vectOI: can be created 
from its elements by fJ.I:st formJ.ug a list and then converting. 

The next two operators permit the formation of geneI:al arI:ays 
from lists and the resha~J.ng ot existing arrays. 

£!!sh:!IH~ 
The dyadic opecatoc ~!!2.£~ take.:::> tor its left argument a 

"shape, i. e., one of the types of object in the snapeI:ow of 
the table in 2.1.7. The left argument J.S ravelea and then 
inserted in odometer order into a structure described by the 
left argument. The ci~ht acgument is truncated or 
replicated as necessary. 

This operator is the dyadic r~o of APL. T~e ordeI: of entry 
of elements into the structure J.5 as in that language. We refer 
to this order as the odometer order. 

!::~~2~ 
l!ebg§g is a dyadic iunction. Its left acgument must be an 
index base list. Tne ri~nt dr~ument J.s fg.!g1ed and inserted 
into the approprJ.ate stI:UCt. Ul:e in odome te r order. 

2.6.3.4 Opel:ators for Com~osin~ and uecomposing Scalars 

These operators are used to build an Object which is to be 
treated 1i&e a scalar from a set ot components and to obtain the 
components of an existin~ scalar oOJect. 

~ncl.Q.§g 
;rhe monadJ.c opera tor §ll!f.12.2g c rea tes. a sca.lar 
owned resource is the o~erand. The resultiny 
scalar of type closure. Au enclosed synonym is 

di§tl.Q2~ 

object whose 
object is a 
a metonym. 

The monaciJ.c function ,gis£!Q§.g takes 
type closure. The cesult. J.S the 
resource of its operand. 

as argument a scalar of 
object wh~ch ~s the 

2.6.3.5 ExplicLtly Linked StructurJ.ng 
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These operators are ~sed to DULla structures on components which 
are not owned by the structure but are only referenced by it. 
These references may be e~p11c~tli followed or they may be 
imp11c1tly followed when that referencing component is selected. 

s\££E~ 
.e oi!!!:: 
.!!!!::im{!~ 
§.I!lQ!!1.! 

2.6.3.b Implicitly DefineB Data Structures 

These operators really aef1ne data structures ~ut may be used 
when the data structure 1S not ~1n1te. fhey deL1ne a rule which 
complet~ly determines tne vdiue of each component when the 
operands of the operators are ~1ven. They dct lL~e encodiogs of 
the data structure. This ~s s1milar to the impl1cit definiton of 
a set using a predicate the elements o~ the set must satisfy. 

1:g~!! 
§l§!E 
set notation 

This section describe~ tue o~erators which are used to modify 
either the own-resource component of an aDject or the contents of 
ii sto rag e cell.. 

§1:2~ 
£~la£.§! 
£~!Q!'§! 

In addLt~on to the ~Q£lo~ anu ~k2£12~~ operators, which 
provide indirect control of tbe dLstribut10n of tunctions over 
collective objects, a numDeL of functionals provide direct 
control. Th1S explic1t control ~s only provided Ear lists and 
arrays, since those are tn~ ouly collective Objects whose 
struct ure is explici tiy defined. 

£gs!.!!~i1:~!! 
The monadic function £~.l!~£!:l:QQ taK.es a list of three 
elements for ~ts aryu~ent. The f~Lst is a dyad1c fUllction. 
If the second aryumeut is aB arcay tbe definition of 
reduction is as in APL, W1th the thl.rd ar\jument replacing 
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the API. subscript. If the l:i~cond acgumel1t is a list the 
res u1 t is the ::iame as fOL a vac to.c wi til tue sa me ent.cies. 
rf the th~rd ac~ument ~s omitted tue default is as in APL. 

~!!!!~_£fQ.Q:.!!£l: 
This functional ~s defined as ~n 
arguments ace iists the result 
corresponding vectors. 

APL for 
is the 

acrays. li the 
same as for the 

QYl:g£-£f.od.!!.£!; 
This functional is def~nda as in APL tor arrays. If the 
structures are lists, the result is not a lila tc~~ bu't a list 
of the expected elements LU odometer order. 

une desirable feature 01: arrdjS is tne ability to treat them as 
scalars l.n one or more U.l.menS.l.Ol1 so that they Cdn distr.l.bute in 
those dimension dS scalars do. 1'111.;:; feat.ure is provided in APL 
by treating l-vectors as Ldentl.cdl to scalars ~nd similarly 
treating a lengtb of one ~n dUy dimension. ThiS achieves cne 
desira.ole feature at the e~peuse of another, V~Z" md~ntaining 
the distinction between ::>cdldrs dnd otner arrays. We believe 
that this distinction is worlu mdLutd.l.Ding dnd tn~t arcays must 
be of identical structure for runctLon distribution to occuc. fo 
provide the f.lex ible ma tCiaIlJ, we 1.11 troauee another ~ind of 
object. 

Definition: A ,E£!!:!.!.i!! g££,g,.i L..:i liKe an array except th.at one or 
more entries in its base .11.5t: lIldY be scalars. 

A partial array is Lnde~ed exactly like the corc€spondiny array 
in which scalar entcies ~n Lts Dase ~~st have been replaced by 
one element lists. Tbe index set in sea.lar dilllens~ons is the 
entry in the base l~st for tuat dl.mens~on. The function l.base 
applied to a partial drl:ay prod uees the ll.st structuce of mixed 
depth described above. fhe iunctl.Oll shape appl.Led to a partial 
array prod uces an ecror. 

Tbe dyad~c functiona.l 
argument which LS a 
function to refuse to 
to distribute over l.ts 

~A~ uccurs between d 

COL~ect~ve oDJect. 
accept: the ubjec~ as 
elelllent5. 

.functl.on dnd au 
It forces the 
d pr imi ti ve and 

Two operators are used to ~covi~e the ceverse operation to 
indexing. 
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iJ!g~.! 
'fne dyadJ.c function in£!~tf taKes for its .1eft operand an 
array or lJ.st. The L'J.ght operand J.S any oOJect. The result 
is the index ot the first occurrence ot the object in the 
array or list it it exists 

It is desirable to be able to s~drch for a sub-collectJ.on of 
objects. By this we mean searcfiJ.uy tor ona array or list imoedded 
in another. for this imbeddJ.ny to be defined a way of comb1.ning 
arrays of index objects must De aetined. ~n the tYPJ.cal case of 
primitJ.ve arrays, arithmetic p~us, toyether wJ.th J.ts distr1.Dution 
properties can be used. 

iQ£~1~ 
Tnere are two cases OL locate, dependJ.ng Oil Whether the 
operands are arrays orli;ats. 

a) Let A and S be arrays WLtb I tbe J.udex object array 
of S. Let the ranks oi A and. S be equal. Let cemb 
De a function defined un the index objects of A and s. 
Then A loc S J.S H, an J.ndox object ot A, such that 

b) 

B comb I sel A <-> s 

Let A be a lLst dnd j a pseudo-lLst. For lists comb 
is arithmetic sum. In thLs case !Q£~!:~ is defLned so that 
the Coppola identity, 

A loc S +1.1ist S sel A <-> s, 

is satJ.sfied. 

This section descrJ.lJes the ope ra toes lor numec J.cdlly oriented 
cemputation. They create a new oDject us~ny tneir operands as 
input to a rule oi co~bJ.natloll. dence they always cause copying 
to occur. The operands of an operdtor are Objects; the result, 
another object. The opeLdilus, to enable implementation of 
standard languages, must conta1u seveLal kinds ox intoLwation in 
their descriptors. There must be the inforwat~on necessaLY to 
interpret the strin',:j of D~ts 01: Whatever loS in the maChine as a 
number. In addition there mast De the J.nformdt1on whJ.ch the 
programer associates witu the operand throuyb bis declaLation 
statements. For our present purposes a number or value is a 
concept not indigenous to SL 1.0 terms ox which we a.escribe tbe 
functions of the operators. ~e assume tuat a va.1ue J.S someth1ng 
understandable to a u::>er so tl.lat aefining operatJ.ons in terms of 
values makes sense. We shall deil-De the value to be used in 
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operations in terms of a tiX~3 radix rHpresentation with radix 
ten. We assume approximately the goals of PL/I but not the 
achievement of any particul~r ~wplementation. ~e assume that the 
user can designate range and prec.ision or precisl.on only (£i xed 
point and floating point, respectl.vely) of his stored operand. 
puring expression eVdluatl.on the machine will ~eep at least the 
declared precision and, usually, no more than N digits, where 
N depends on the machine. Rlluniny expressions on il machine with 
larger N will not yield less accurate results. N l.S curren tly 
a machine aependent parameter. In the case of SL it will 
presumably be declarable as pact of the program ambience. 

The storage operands are held to the precl.sion spec1.fied by the 
programer. Durl.ng express1.on evaluation greater precision will 
generally be aeld in temporary storage cells. This is analogous 
to the extra guard byte ot ~recis~on held for floating point 
numbers durl.ng 5/360 l.nstructl.ons. Except .tor division the 
precis1.on retained will oe at least as great as that maintained 
by f>L/l. 

A further complication to operator specification is language 
depenJency. A classic example ot this l.S th~ FORTRAN d1v~de. 
If the variables being aivided are integers, the FJRTRAN result 
is the integer obtained by truncation of the correct answer, 
regardless of the result dest1.nat1.on. 

a .. b (FORTRAN) <--> (xT) x floor aDS T<--d + 0 

Naturally the scope of var1.dD1.1ity l.n this area l.S huge. ~f 
every prog~amer chose to de~iue differently the results of all 
possible ordered pairs ot l.nput descr1.ptors the language 
dependence is SL would be unmanageable. Our goal is to provide 
enough flexibility to proviae a reasonable set of alternatives 
for future growth. Special glitches for today's anomalies will be 
provided. It is hoped that taey wiL~ wither away. 

For tae nonce we will define the loyimetric operators over the 
range of t ixed dud floa t1.ng -It::c illhlL numbers with base 10. P L/l 
notation wl.lI be used to aesJ.gnate the current descr1.ptors, i.e., 
(p) or (p, (1) denote s precl.sl. on. we assume that nu mbers are 
~ept in signed true form. We also assume that the program has 
given some specification of tue amoience of execut1.on. Th~s is 
usually derivable from the uata descL'J.ptl.On tor the entir:e 
ex pcessJ.on. 

When an operator executes l.t KUOWS the tollowin~: 

the values of its operanCl.S, incluaing t.he location of 

/ 
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si~nificant dig1ts 
the declared or compate~ ~rec1sion of 1ts o~er~nds 
tbe value of "N", the maximum prec~sion to be used in the 
present environment 
the prec~sion required in the present expression, ~etermined 
from the controling assignment 
the number, K, of o~erators ~n the present expression 

The machine can use run-time values to help w1th prec~sion 
problems, since it rans inter~retLvely. Tne valae ot an operand 
may contain more dLgits tnau Lts specLfied ~recLs10n. This 
bappens typically after a divLde o~eration. A reasonable value is 
specified for the precision ot the result. AdJLtional dLgLts up 
to the precision available mat be kept since they will increase 
the accuracy of the result. bat their loss W1Ll not cause an 
exce ption. 

fhe "precision reqaired" w11l derive xroru the declared 
precision of destination objects Lor assignment operations. In 
general a number of digits appropc1ate to the fLual assignment in 
a statement will be kept. TULS assignment will sometimes be 
called the controliny assLgnment. 

2.6.7.1 Operators with IdentLcaL JomaLn dnd Rauge 

'rhese operators are assOCJ..dt.ivc anu may be used where 
associativity 4S required to make ~ood use of the operator. The 
reduct ion func tional is lilt exaUlj:Jle w heee aSSOC.4a ti V4 ty is need ed. 

~.6.7.1. 1 Numeric Operato~s 

The primitive arguments for the nuweC4C operators are numbees in 
all cases. 

:2!Y§ and !!.!~!!§ 
The monadic functions £~~~ dnd 
value and significance dud precision 
s1gn cbanged in the case ot !i~~. 

ggy,y!! 

!~BY§ retarn the same 
as the input, with the 

S1gnum returns a sill~~e JLg1t with precisJ..on (1,0) dnu value 
1, 0, or -1, accord~ng as tue 1npUt is positive, zeco, or 
negative, respectively. 

!;;~£i.E (+) 
Reciprocal returns a valae e~udl to one d1vided by the value 
of the input. The result precision is (p,g), wherein p is 
equal to the precLsLon 01: ttte influt, and q.LS chosen to 
place the first sigln±icallt dLyit of the result value at the 

IBh CJd~ID~NTIAL 
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left of the field. In addLtion, if the o~eration is 
followed in the ezpLBss10n by multip11cation or 
exponentiat10n, the value 15 Kept as a rat10nal number if 
the absolute value of the denominator is .c!So or less. 
Purther, if the d1vision is not exact in the specified 
field, aQditiona~ digits up to N are kept, but not 
considered crucial; L.e., their truncatLon w1l1 not cause an 
exception. 

£~il!llg and tloQI 
If the precision of the 1Uput JoS (p,'l), with i ~ 0, ~i!ing 
and fl02£ return t",e at'propriate integer with precision 
(p-q,O). If ~ < 0 a doma1n except10n occurs. 

There are additional monadLC operators, to wit: 
g~2 

:h!!. 

There are the dyadic ~orms ot t~ese operators: 
2,!!!!! 
4itfe£g!!'£~ 
E£.Qdu£! 
:l.,!!~tig,n~ 
!!~~ 
!!!!l 
EQ!gf 
lQg 

The g,uqti~~ tunction returns a single scalar result, the 
quotient of its arguments. Two additional dyad1c o~erators are 
related to tnis one. Togetber taey proviae the tunct10ns 
provided by two dLtierent deiJ.nLtions of the £unct10n which has 
been called "mod" ill some lanjua<jes. It seellls aesirabJ..e to get 
away from the name "mod" altogether to avoid further confusion. 
T~e names we have chosen are, u8~ike "mod", consistent with 
mathematical usage. 

:l.,!!oti~Q!;.-f§.!!!aills!.!!£ 
The dyadic funct10n quot~dnt_remainder returns a t~o element 
list. The first element JoS tae same value as that returned 
by the quotient function. The second element is the 
remainder. 

£~2!g!!~ 
rhe dyadic fUIlction £~si~i!~ .lS defined as iu APL. 

!.1!~g!li!:!!!!!!. 
'r he monadJ.c funct ion maSH!!.£ygg Y 1elds the .absolu te value of 
Lts argument. 

2.6.7.1.2 Logical operators 

lrlh CUtU'lUEN TIAL 
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Thes~ operators return domain errors unless the ~nput values are 
within acceptable limits o~ 0 or +1. If the restriction is 
met. the return is the QPpropridt~ single digit uumbar with value 
+1 or O. The result precision is (1,0). Note, for example, 
that ~, may not b~ an ~dentiti operation. 

!lQ!:. ( .... ) 
~.!!g 
Q£ 
!l~!ls! 
llQ£ 

l.6.7.2 Operators with non-uuiiorw Domain and/or ian~e 

These operators are not Qssoc~dtive at all t~mes. In some cases 
the ran~e may be a suhset of tne domain so when the domain is 
restricted to that subset the o~erator is assoc~ative. 

2.6.7.2.1 RangB and Domain Difter 

These are pr~marily compar~sou operators but the elementary 
search operators are also ~llcluaeQ Ln this class. 

~~al and .!!ot~~t~.!!l!1 taKe llUliwer s and strings as £It" imi ti ves. 
with string primit~vt:!s tneu: def~n~tions are tae ~!!Si and 
Q£ reductions, respectivt:!ly, of tnt:! result for ord~nary 
lists. 

Additional operators are: 
l~ 
11 
~1!. 
~ 
!!§!!be£ 

2.6.7.2.2 Dyadic Operators w~tn Heterogeneous ~omains 

These are not exactly computational operators since they really 
build new structures trom eXLst~ng ones. However, they are 
grouped here because their ~nputs dre computational. 

~!l2~!H! 
£2f!.E!:~2 
&~~Yl!ll!~ 
£~R£g~2.1io!! 

IBM CO~f~DB~rIAL 
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This section consists of the operators which 
access path to an object. filey do not make 
selected object nor do they moaiiy that object. 

only def ine an 
a copy of the 

2el~1 
,!;~!~ 
gfQ.£ 
fQ£lig 
f~.!g£~ 

This section descrioes tile operators for d~rectiny the 
control. It ~s divided ~nto two parts. The first 
concerned with a single control ~dth. Tne second part 
operators for multiple control ~aths. 

2.6.9.1 Sequential Coutrol 

flow of 
part is 
uas the 

These - operators are used to s-tart control flowing through a 
program and to modify aud control the sequencing at the text ot 
that program. 

~.!gluS1g (cf 2.1.4) 
~£2~Y (cf ~.2.7) 
~.!i 1 ( c f 2 • 2 • d) 
£~~1 (ef 2.2.d) 
gQ.£Q (cf 2.2.d) 
de!ll (cf 2.2.6) 
fQligitiQ~gl (ct 2.2.8) 
2ig~! (cf 2.4.1) 

2.6.9.~ Mult~pl.e Coutrol 

'rhese operators allow parallel execution of expressl.ons and are 
used to create, control, and manito£: ~ndependent processe::i. 

B~al!~l (cf ~.2.6) 
£~at~ Lef 2.4.3) 
~~1fQ1 tcf 2.4.3) 
2Ya.E~nd (cf 2.4. 3) 
etart (ct 2.4.3) 
ill.Q!l.i!-.2!: (cf 2 • 4 • 3) 
i~Q£~ (cf 2.4.3) 
~llj~£l (cf 2.4.3) 
££iQfit~ (cf 2.4.3) 
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This section descr1bes the operators used 
information flow between ~rocesses and for 
resourc~s. These operators dLe a separate 
1nteract beav~ly witb the arD1trator. 

2.6.10.1 Information Flo~ 

107 

for input/output. 
the allocation of 

class because they 

'rhese otJerators are used Doth to ::iyncuron1ze l.uJependent 
processes and to provide ~he ruadn~ for l.niOLmatl.On transfer 
between two processes. There tunctl.ons are d1scussed in section 
3 ..... 2. 

~fLme§§!gg 
!~!.L~§§ggg 
2.~!HL~~£ 
.!ai.L~~ 
in1;roduc~ 

2.6.1J.2 Resource Allocatl.on 

These operators are used 
acquire resources known 
executed. They also are 
chapter 2.5. 

£ 1 a.!.!! 

!!91gi!.~ 
!.~!~.§~ 

to maKe prelim1ndry claims and 
to the context l.n which they 
ussu to release t~e resources. 

to 
are 
See 

This section l.ntroduces toe opdrators for editing and searching. 
The approach to be used is to eucode the transformation tor a 
finite state transducer whiCh taKes as input the encoding. and 
the strl.ng to edit or searCh and produces as the output the 
result. The machine must be a~ least a generali~ed FSM but even 
more power may be required. 

C' 2.6.11.1 Dyadic Translate 

The form is 

lB~ CUNFID~NTIAL 
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Ii is a translate aac~ine 
~ ~s the transiate s~bject. 

'rhe p~rpose or: 1l!!!21:i!~g ~s to transiate the elements ot the 
translate subject 1Uto ail o~tput torm, suh)ect to the 
constraints, malupulatiolls. and. transtor:mdt1oIlS specl.fied by the 
translate machine. Tbe types of translations wh~Ch can be 
specified range from the f~n~te state operations of the 36J EDIT, 
EDMK,r R, and 'rRT t 1:i.rough Fort.L:a n FO.l.H'1A'r and PL/l PleT URE 
processing to interpretiny/colip~l~ug p.rogramming languages and 
reco~niLing/transduciilg formal Languages. 

rhe :!::£@slS!:!::g 2ubj~£:!::. is a col.lect1 'Ie ob Ject Wi1~ch is ':lenerally 
of type list. The eleweuts of tae 11st are the objects (e.g. 
tokens, characters, symbols) upon wOl.ch the translate maChine 1S 
to operate. 

'rhe i£g.ll2!E~~ l!i!£l!~!!g l.S a collac ti 'Ie ob Ject wn ich ow ns two 
objects: the initializat10n fuuc~l.on and the translate table. The 
translate table is a col~ect1ve oDJect of matr1x extraction. Its / ' 
index set is the cross product ot the set of d1stinct elements I 
in tne input and a set of states S. The elements of the translate 
table are objects which respond to an execute request with a 
value of ni1, ~gde!, or an element of S. dence, these elements 
may be functions (genera~ll tr~ad~c), lambda-expressions, groups, 
varia'oles, or constants. whose a va,luation may entail side-effects 
(such as modifying a push-down stack or adding to an output 
list). The ini tiali za tion .funct 10n J..S basically sim.ilar to an 
element of the transld te table. In response to an e x.ec ute 
request, it md y perf arm sOll1a housekeeping (or pr:e- processi ng, 
such as stacK 1nJ..tia.l.izatlon) <J.utl.es as a side effect, and I:eturn 
a value whiCh is that element of S (together with the first 
element of the translate sUDJect) at wh~ch translation is to 
commence. 

Translate operates 1n the following manner: After 1nit1alizing 
the output (0) to !!!H!~l aua. the 1nput marKel:{J..j to v (Le., the 
zeroth position in the transl.d. ta subject), tlie initialization 
function is called. The result~ny l.nitial state, along with the 
current input, determine an elemen~ of tne translate taDle to be 
executed. This. in turn, produces d new state as J..ts value 
which, together with the flext ~ranslate subject element, can 
again be used as an inde~ into the tranSlate tabla oDject. This 
procedure is applied J..teratively until either 

a) the new state is ~i1: 
or 

b) the new state is undet 
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Case (a) occurr~ng concu~reDtli w~ta eXhaustion of the translate 
subject signif~es a SUCC~SSLul t~ans~at1on, ~n which case the 
output(o) is returned as tu~ value. AUY otner termination 
condition indicates that all erIor has occurred, in which case an 
exception is raised and tOe va~ue to be returned 1S a collective 
object cons~sting of the .Hl co lllJ:Jle ted output (o), the input 
marker{i), the state(s) at the time of the error, and the 
complete translate SUbject. 

rUe 10PUt marke~ aud output mat be mau1pulated Dj tue elements of 
the translate taDle, tnus prov1ding extendea finite ~tate 
operations. By suitable specLi~cation, translate has all the 
power of a (simulated) furLuymacnine. In add~tion, recursive 
calls on translate perm1t the s1illulation of tree-like automata 
and non-determin1stic automata. 

In 5L-like terms, the funct10n eQuid be written as 

(m,k) lambda 
{dcl new (i,s,o) 
ilndef->o; 

} 

)->i; 
apply{sel(l,m}; (a,1,K»->S; 
repeat,s#nilA(s~unJet); 

{apply (sel ( 
(sel (1+1->i;k) ,s); 
sel '-', m) ) • 

(0, 1,X) ) ->sn ; 
sel(s~nil. {a. (o,i,s,k)j) 

wnara sel stands for the seiect function. As ~n example of 
translate, consider the tollow~ny SL progcam seyment: 

• 

• 
O->n; 
(o,i,k)>'(A}=>'£[O;Aj; 
repeat( n+1->n<10; 

{(o,i,k)~{o cat ('$'.n)->o; 
te 5 t ( 0 • i ; J() ; 
Bj=>TlU;Aj, 

(O.1.,k»'ta cat .list ll->J; 
te s t (0 ; 1.; k) ; 
b}=>T[niBJj) ; 

syn TIl ;BI=>T IO;Bl; 
nil=>T[ nil; B J; 
(o,i,k) ~[se1 (shape(k) -2=1., {to cat l1.st '. f_>a}) ; 

5e1(3 res (shape (k)-:'>:"1) =J; {to cat l1.st " '->01) j=>test, 
transla te ( (A, T) ; • 00 1023456 7ti' ) ->r:<a::i ul t; 
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• 
• 

wher~ sel is the select functl..on, res is the dY3.dic residue 
function, and cat l..S the catenate function. 

The value of r~sult woula be the object 
.$1,023,456.78 

2.6.11.2 Monadic Translate 

The monadic form of translate 

takes as argument only the translate SUbJect K. It is assumed 
that k is a SL str~ng 10 external syntax torm. The result of 
translate is the internal, .runctional SL equivalent at the 
external syntax. 



( 

( 

(, 
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Part 2 described the tundam~lltdl structures at toe basis ot AFS. 
These structures provide tae elu~va~ent 0i a "baLe machine" that 
executes SL directly. 'rh~s par-t <1escribes systelll facl-litl.es 
built on top ot that basis to ~rovLje a rl-ch s~t of user oriented 
fUllctions. 

An important concept or AFS is ~oat taere are no privilegea 
instructions, only privileged r-esources. Since all operations 
availdDle to the operating system are therefore aVdl-lable to any 
user, special purpose systems as well as IBri stanaaru systems can 
be designed and run like Ordl.ildry Jobs. 
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SYSXEM DESluN CHIT~RIA 

The system desiglt criteria iire enumerated in tecms of 
applications, operational envl.ronmants, and service modes. These 
ace derived from fS marKet requLrements. The object tor the 
exercise is to c~assl.ft the requirements lnto three somewhat 
mutuaLly independent categories. Criteria from each categor~ are 
used as the basis to Deg~n one aspect of the system design 
effort. 

Topics to be descrined l.U tn~s section ot tae rapoct give an 
indication of the curreut effort to satisfy the appll.cat~on and 
certain of the operational enVLconment crl.teria. 

Criteria l.ncluded in thl.S cat~yort are focused on the types of 
user applications wnich are prevaLent during this time trame. 
lmportan t appll.catiolls inc.iuue: 

• Data Entry/Data ReLcl.€val, 

• llata Manl.pulation dud ~omputation, and 

• uata Communications. 

operational EUVl.rOnlllen ts ace concernell II itll the 
physical demands aud COUStCiil.Uts on a system 
pecfoeminy usee appll.cations. Examples ace: 

• ReliaDill.ty, S~rvl.cedbl.lity, Ava~ldb~iity 

• siz~ OL data Da£B 

• Number of lines ana te~mLnals 

• G~ograp~ical dl.str~but10n of: 
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• UseI'S 

• TeI'lIIinals 

• Da ta Bases 

• System nodes (in a netwOI'K) 

- 'l'raft:ic I'at-a/message Jinx 
- Re sponse Tille 

- Security/Privacy 

Service mudes are concernea ~ita the manner in whicb system 
services are e~erc~seQ bj d user 1n order to satisfy h1S 
application requirelllents wbeu suojected to the appropriate 
operational env~ronl\lent constcd1utS. Service Modes include: 

• Transaction based (clouC1ue processin~), 

• Interaction based (~on-rout1ne pI'ocessing), 

• Event-tr19gered, 

• Batch, and 

• Message 3w1tch~ng. 

Id! CONfIU~~T1AL 
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ENVIRO~MErif MAaAG~MBNT 

The principal functions perLormed Dy an operat~ng system are to 
set up the ellvironm~nts requ~t:ea by procedures and to execute 
them ~ithin tbose environments. ~uct:ent systems have not:mally 
assumed a "standat:d" environment, 1n which ali user code is to 
operate. This enviconment 1S usuallj different from that 
requit:ed by components OE tbe ~per~ting system itself. Software 
tools tot: the user, espec1ally compilers, are designed under the 
assumption that the generatdj code is to operate in the 
"standdt:d" environment. Most tOOlS, tneretore, ace unusanle in 
other contexts, and the "stanJ.dt:d" enviL'onment.Ls otten unsuited 
to more ambit10us user subsystems. wnen faced by non-standard 
circumstances, therefore, the usec ot: systems progI"ammer is on 
bis own and usually resorts to the worst ~inds ot trickery -- by 
necessity, not by Choice. As 1S well known, US/J60 is full of 
such ad hoc solutions. 

Since environment constt:uction dDd management pcimitives are 
incl~ded directly in SL, eithec IBM or user systems may set up 
environments wbich are well SUl.tea to their needs. This implies 
a new outlooK. on softwa.re tools, whiCh no longet: are allowed 
assu~ptiolls about the ellv~ronillellt.Ln wh~c~ generated code ~s to 
operate. In addition, as seen 1D ~at:t 2, steps are now required 
to imbed a procedure witnin 1tS operating context. 50ftwat:e 
subsystems and victual syste~s t01low as corol~~c~es ot this 
appt:oach. Th.e disciplines whJ..:=h .Lnsure ~nteyr:lty, privacy, and 
se2urity pervade the system, inc.Lud~ng all subsystems. 

System control and the command language is also e~bedded ~n 5L: 
user commands would tt:anslate to axp~essions in SL. This view of 
contt:ol is sJ.m~lar to the app~oach taken in the July 1970 draft 
of the ceL re~ort. In eCL the contL01 functions were programed 
in eCL procedut:es. This dPproa~h ~1ves the uset: mot:e flexibility 
in def 1n ing wor it flow tllan a stat.ic lan guage 11Ke JCl.. Nest ing 
of contro~ pcocedures is also allowed. Any IBM standerd command 
language will be pt:ov1deu as pact of tbe system support as well 
as the 5L control functions. 

r 
The root of the system ownecsnip tree is the system resource ('---" 
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manager, which n~s tAe re~pons~b~1~t1 for ~esource control. one 
such resource is the sUbsystem landl.oI'd. 

3.2.1.1 System St'ec~ticdtioll 

The §1!h2Ya£~! !.~ndlQ£Q.. is <i collect.J..ve object that owns all the 
a~ghest level ot'er~ting (sub)~istems ~n.J..t~ally dccess~ble to the 
user; these include systems l.J..Ke U0S, CP, eMS. us, and TSS, as 
well <is user-defined olJecatin':l sistems aud SL subsystems.l.nsect 
requests lIlay be made on ~t to ad~ hew operatin~ s}stems, or to 
delete existing ones; sU.J..table access r.J..~hts iDe th~s capability 
will be installation-derinabld an~ presumably secure. General 
users may not make modifications to dedicated operating syst~ms 
owned Dy the subsystem landlord. 

~nteraction among opecat~ng ~ysteills, such as with ~P/CMS, may be 
achieved via accessors assigned by tne subsystem landlord. 

3.2.1.2 kesource Control 

The resource manager is a collect~ve object Which contrOlS the 
a.ilocatioll of space, time, alld external devices, andtne sharing 
o£ library resources glo~al to multiple operat1ng systems. It 
may logically (i.e., via synonyms) group elementicy resources 
(SUCh as ports, storage dev1ces, o~ liDrar~es) into new generic 
collective objects called. £~2Q~££~ ~~£.!~~2, and pecml.t access to 
them by other system object~ v.J..a the accessor mechanism. In this 
manner, operating systems may be gl.ven control over spec1fic 
groups of terminals, device cl.asses, channels, libcaries, etc. 
Additionally, judicious ass~gnment at access r1yhts may permit 
more detailed delineation of resource availanility. 

For resources which are SAared. ny or accessible to more than one 
operating system, the reSOUI:ce mdna~er 'lil.11 morutor the accesses 
and guard against lockups and ueadloCKs. 

3.2.1.3 Initial Iaterpreter 

All POI:ts to the outside worlj are controlled by the resource 
manager. Some subsets ot these ports illay be combined within a 
r~source package and accessors to taat resource package given to 
a dedicated subsystem. Such ports are called ~~~icaied £Q£1§; a 
user si~ning on to one of those ports is immBdl.ately confronted 
by the SUbsystem to which it was dedicated (e.g., a port 
dedicated to T3S would re~u.J..£e·tbe user to enter the usual LOGON 
message). No other kinds of Jobs save tnose mean.J..ngful to the 
can troll in 9 operating system iIl<iy be en te~ed fL'OITl that port. 

u~~ £Q£ts, Oil the other hand, are init1a.lly UUd.ss~yned. by the 
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system. These ports fall umier the control of the .i!!1:£ial \-..-/ 
i!1~£R~1g£ which is part of the :resource manager. The initial 
interpreter I:esponds to user commands entered VJ.d a iree po:rt, 
and creates the correspondiug sUDsystem under the subsystem 
landlord. such sUDsy ste mSmdj U1C..l ude,for e.xa mple, user-tailored 
versions of OS and DO~, or SL subsystems. Initial resource 
claims fo:r the ne~ SUDsjstem may aLSO be honorea by the initial 
interprete:r Defore control is transfe:rred. 

Au ~~£a1ing §1§te~ is a SUbsystem Whose access ma~hine is a 
p.:rocess called the £Q!!£.£Q'! .f!£21£Y dud w40se resource consists ot 
a set of jobs and a collection ot ll.brdcies called the 2.Y.§te! 
i.!!...2.!!1. Opecating systeills way be situsr g,!:ls!ic~.t~g (122.\HHH oc !£~. 
Dedicated subsystems enJoy a semi-pe:rmanent stdtUS wl.thin the 
system; that .l.S, the resoucee };Iac.Kages as.::;igned to them (in 
particular, groups of ~orts) way De aJ...locatea for extended 
periods and the subsystems tnemselves would tjpically be 
generated by the system operato:r o:r tae installa tl.on. These 
subsystems would include LHM-suppll.ed operat~ng systems such as 
as ~ith TSO. Free subsystems d:re created by use:r :request dnd are 
hence t:ransient; they normally will be destroyed wnen the user 
signs OEt. Thesa SUbsystems Wl.ll ~:rimarily comprise 
user-initiated and -tai~o:red OS and othe:r local operating 
systems, as we~l as all SL SUbsystems. 

3.2.2.1 Resource Cont:ro..l 

Each operating system may be ~iveu dceesso:rs to resource packages 
via the resource manager; tiLl.S may occuc at tlle time the 
operat.l.ug system l.5 adaed to the subsystem landlord, or 
dynamically when the ope:ratiu~ system is .l.nVOKed. In theforme:r 
case .. this permits an operatJ.ll'::l· system to be sole accesso:r of a 
set of ports or lines; tnesece::iources are thus Jedicated to that 
operating system unt.!.J. either: the o~e:ratillg system is Cleleted o:r 
the resource manager:, which stl.ll owns tne resources, :rescinds 
accessioility. In the case of uynamic all.ocation, ~orts and 
lines a:re access.l.ble to t~e operatJ.ug system on. a cequest basis. 
In either case, resources SUCll as dl.SKS, on-line or vi:rtual 
printers and card-:readers, dnd system 11.Dracies in resource 
packages accessible to operat.l.ll~ systems are not shared by othe:r 
systems; hence, management 0t these resources becomes the 
responsibil.l.ty of the operatin~ system control proy:rams, via the 
§~~21§.t~~ ~§2Y££~ !~ga3~~§. 

A dedicated operatl.ug SyStBllI may nave 
assigned by the system resource manager) 
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libraries contained therein ~ay be accessed ny other systems 
provided the subsyste~ resourCe manager of the dedicated 
operating system permits an accessor LO be established. 

].2.2.2 subsystem Resource Manager 

Each subsystem contains ~ts own resource manager to control the 
allocation of resources from tus resource package. Requests for 
additional resource al~ocatLon ueyond that ~n the resource 
paCkage are wade throu~b tne subsystem managers, which 
communicate direct~y with the system resource manager. It is the 
responsib~lity of the ~ubsystew watiagers to mon1tor resource 
requests and perform ~ocal deadlocA. prevention ana control. 

The capability in tn~ system 01 nesting subsyst~ms entails the 
recursive application of suu;,jystem reSOUl:ce management. Each 
SUbsystem may permi t d subsystem nested within ~t dcceSSOI'S to 
part or all of 1ts resource pdcKdge (as would b~ the case when 
running a free user-opt10ned uS under a free user-optioned CP); 
1n tnat event, the nested subsystem's resource manager would 
control those resources d1Lectly. rlow~ver, the niyuer-level 
subsystem may elect to m4~nta~n control over the resources, 1n 
whiCh case lower-level subsyst~m Lesource managecs would have to 
route resource ceque~ts through it (such m~yht be the case when 
cunning 4n incremental PL/~ cOillp~Lec under a SL subsystem). 

3 • 2.. 2.. 3 C on tr 0 1 P rog r a III 

'rhe control pl: og ram co ntains tne 1:' ou t1 nes necessar y to serv ice 
the system input. This 1ncludes 1nsecting ana deleting jobs, 
scheduling, priority assigllin~, Lnterrupt bdudling, managing 
elements at the resoacce paCKage,s), provLdLng for job 
iui tia tion/termina tion, and p~c toculiny syste III IDdin tenance. In 
terms of curcent operatiny sistems, the control ~co~ram reiers to 
the job, tdSk, and ddta .anayament in 05/3&0; the taSK, data, and 
program manay~ment in TSS/3bO; anu tbevirtual machine maua~ement 
in CP/6'l. 

3.2.2.4 System Input 

The opecating system resource cons~sts of the jobs which it is 
cunning or queueing, together witn the appropr1dte libraries and 
otber resources contained in tbe resource pacKa~e allocated by 
the resource manager. Tbe 11brar~es contain Idnguage processors, 
maintenance and accounting files, langua~e-associated 
subroutines, and any other s~mant~c intormat10n reyuired to 
define a job context. The job contains control information 
required by the operating system, dlong with program text or 
modules; in the case of the SL system, this ~nLormation is all 
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part of the proyram it~elf. Jon integrity dud 
provided Vid the allocat~on ut t~me dod s~ace oy 
manager upon ie quest by tile 0fH~r a.t~n~ system. 

security is 
the resource 

A iQ.Q in the 5L sense ~s a subsystem owned Oy the subsystem 
landlord. 

3.2.3.1 Jobs in the 5L Env~ronlBent 

5L jObS may be created D1 toe ~n~t~al ~nterpreter at the user's 
request from a free port, or they ma.y De created iyndmica~ly by 
existing S1 SUbsystems. In tne foriller case, a user enter~ng the 
system through a free port ~nforms toe initial interpreter of his 
desire to run io 5L mode. Th~s ~nit~ates the creat~on of a 5L 
subsystem by the initial interpreter v~a insert requests on the 
subsystem landlord. The resource package for the SUbsystem 
contai~, minimally, an accesso~ to the tree port plus accessors 
to any of the user's files; ~n re~uest~ng a 5L subsystem, the 
user may spec~iy addi tl.onal rclsour;;es to De allocated. Hence, 
the job is log~cally created at s~gn-on t~me aud, if DO 
SUbsystems with aut onomous cOlltrol are cceat eli ~n the inter im, 
lo~ically destroyed with sign-utI. 

Jobs may a~so be in~tiateu irom wLthl.O a SL supsystem by insert 
requests 011 the subsystem law.i~oL·u. The l:esources ot the craa ted 
job must initially be a subset ot the resource package granted to 
the creator. If the two subsystems are then to run 10 parallel, 
only one ma.y have access to tne entry port, and resource contEol 
(tor shared resources) must De dL!H tl:dted by the system resource 
manager. If they are to run nested, then either or both may 
reta~n access to the port; oow~ver, resource reguests by the 
nested job's SUbsystem resource maDager must be reflected bac~ to 
the bigher-level Job. In Dotn cases, mother-daughter jobs (as 
well as other autonomous s~ subsystems) may communLcate via 
~hared data files or message tl:ansm~ssion. 

Each SL subsystem, once createu, is free to wake use of the 
entire 5L language facil~ty: sUDta3Ks may be created for serial 
or parallel execution, elements ot the resource paCkage util~zed, 
etc. The 5L user ha.s the most freedom ~n employing the system 
for his prOblem sol uti all, hUL does Dot have the capdbility of 
impugning the system's integrity or security. 

3.2.3.2 Jobs in Non-5L Hnvi£onment3 
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Jobs under the control ot toreL~n operatLuy systems w~ll maLutain 
the idQntities they wouLd have a~ Lf they weLe running under 
those systems aDU within those sistems' host drch~tectures. 

3.2.3.3 Resource Control 

a SL job may utilize au} resource available ~u its subsystem's 
resource packaye, or it may request the resource manager to 
create aaa~tional resources xoc it through the suusystem resource 
manager. However, regue~ts ior ~ncreased or moaified resources 
oy nonconversational Jobs (~.e., those w~thout a port in their 
reso~rca packa~e) vill result ~n message transmission to the 
mon~toring subsystem (or cancellation 0% the JOb it no 
nigher-level Job exists) ~f the request cannot be granted. 
dence, 5L libraries, vor~spaces, t~Les, etc. fa~l directly under 
the control ot the resource ~anager; tais provides add~tional 
chec~ing facilit~es ior mult~~ly-access~ule iile usage, as an 
example. The user's own libcaries and workspaces may be made 
access~ble ~o the subsystem e~ther at the t~me the subsystem is 
created, or as the user requires taem. 

liesources for jObS under tore.lyn 0.t'erat~n'::l systems are assigned 
to the 0perating systems Ln the manne~ p~ev~ously stated (section 
3.2.2.1). Whereas the accessl.n~ mechanism may be s~milar to that 
above, users of other operdting systems can v ~ew I:esource 
availaDility ~n the manner to wb.:u:;h they have become dccustomed. 

3.2.3.4 Example of System ~onL.lgucation 

'rhe following 1.11ustI:at~on is d. static, logical repI:esentation of 
a system with 6 ports: POI:ts 1 and 2 are dedicated to an OS/370 
subsystem running ODe baCkground and two interactive jobs; POI:ts 
3 and ~ are dedicated to d T55 suusystemrunnin':;j two interactive 
jobs; port 5 was iree, but bas DeeD assigned by the initial 
interpreter (upon user s~yn-on) to dn SL subsystem; and port 6 
was free, but has been assigned to a CP SUbsystem, which has in 
turn initiated a private OS/37J sUDsystem with access to the same 
port. In addl.tion, there is an 5L subsystem which is apparently 
running in the background after having been ~nit~ated by another 
5L subsystem no longerdctive: 
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Syste~ ~ontrol is cOllcerned w1th that set of data structures, 
processes and control mechanisms re~uired to s~pport ~nd control 
the work flow operat1ons 1n tue system ou two levels: 

• r'uilct ional 

• Server confi~urat1ou 

On the funct10nal level, System ~outrol is concerned with the 
l.nitia ti on, coordina ti on aull te rm.lnation ot system f unct ions in 
response to external (e.~., on-line user) st~mul~.l in 

• Data commuuicat10ns 

• ilata Entry and Data detrieval 

• Data Computat.lOll aua Manipulation 

On tne server confi~urat.lOD level, System Control is concerned 
wit~ the control and syncbron.l~at.lon of system work flow dnti the 
allocation/aeallocatioil ot resources. 

fUilctionally SpeaK.ln'j, System ·..;outi:ol can be iu.r:the.r: PdL"t:l.tJ.oned 
to consist of System Command Couti:ol and System Non:l.tor Control. 
System Command Control is concerned with the contro~ and 
management ot normal system O~eL"atLoils involv.ln~ system functions 
and resources in response to ex~arndl (e.y.; U~er) stimulii~ 
System Co*mana Control operate~:l.D 11ne with si~tem wo~k flow. 
On tbe other hdnJ, Sj~tem MOll:l.tor ~ontrol i~ re~~onsibl~ tor the 
monitoring, detecting aud hdudl1ll~o~ exceptLonal cond:l.t~ons 
occurring in the system. Sy;.:itew l'lonLto.r: .Control ot>eI:dtes in 
parallel with both the system ~ork tlow stream dud System Command 
Control. 

In tbe present repo.r:t, emphasis L~ focused entirely ou System 
Command Control, wh~le capaoLl~t~~s characteri~:l.ny System Monitor 
Control will be enumerated 1~ a later sectLon (3.4 System 
Punctional Management). 
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Concepts fuudamen tal toS istem ::; oml.lland Control wJ.ll be pre~en ted ~_/ 
trom the following perspectJ.ves: 

from the. 
functional 
autonomous 

• The Faculty Concet;Jt. Here the 
eyes of the ~ystelll J.tself. The 
responsiuilitJ.es are identified 

funct10nal partitJ.oDs -- Faculties. 

~ystem is viewed 
various areas of 
and grouped into 

• rhe Work Flow concept. Here the system is viewed 
from the point of V.1.e w of a user· demand as the demand travels 
through the system. DucJ.ng this system walk-throuyh,certain 
syste m f unctions are orougnt J.nto focus as d ilid tteI: of sys tem 
overhead while other$ are .1.uvoked exp.1J.cit.1y as a result of 
interpretation and executJ.on Dj tAS system of the user's demand. 

• Basic Control Structucss and MechanJ.sllls. 
.:::;ystem is viewed. also from the vantage pO.1.nt of the 
itself. An extension ot the Kel concepts (Part 2) in 
a~se, ownership tree, and program structure resulted 
formulation of the oasic structures and mechanisms for 
Control. 

Here the 
system 
Object 

in the 
System 

The functional sy~tem structur~ (figure 3~3.1-1) is described in 
terms of its two major const~ta~nt components: 

• The five functionai faCulties 

• The ~ueue mecnanJ.sm tor inter-faculty J.nteraction 

3.3.1.1 Five Facultie~ 

A partitioning of the total slste m .t unct.1.0n~ .1.nto functional 
partitions hased on dredS of responsiDil1ties resu~ted in a 
five-Faculty system s~ructure A summdry description 
hi';lhligh ting the roles of each }' dcui ty is given below: 

1. The Terminal Faculty 

A wide rauJe of terminal capaDJ.lities are 
provided in a modular faShion. WD1Ch can De configured by the 
user to provide him with a delective combination of terminal 
functions to meet his specif1c applicd tion, operational and 
service mode requ1rements. 

2. The Data Communications Faculty 

~dM CONFlu~NTIAL 
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Tbe Data ~ommull~catiolls Faculty ~s concerned 
with the transportation ot datd ~nto and out of tile system. The 
Data COl1lmun.ications funct~ons are: 

• Trausmiss~on dependent 

• Terminal dependent 

• Message ~epenjent 

3. The mouitor ~ont~oi Faculty 

dnd nandling 
Also, ~t is 
support type 

Th~S Faculty ~s responsible tor the detection 
0% exceptional cuud~tions occurring in the system. 
res~ons~ble for system support ana administrative 
of operations. 

4. The Commdn~ Control ~dculty 

rk~s Faculty LS the central nUD of control for 
the system. It is rest>oIl.s~ble .lor Ute ~nit~at~oni coor<lination 
dud termination of system services in response to user demands. 
Also, it is coyn~zant at ail t~mes of system work flow activ~ties 
and system resource availdbil~ty s~atus. 

Through a number ot 
~ontrol mainta~ns, it is cogn~zant oi: 

tables which Command 

• The gloDal working contexts about a user, 

• The Pdrt~cular worKing contexts about a 
user dur ~II.g a specif ic instance ot user/system inter acti on, 

• System ~ork activity status 

• System resource status 

5. The Data t.:ontrol F'ac ul ty 

The respons~D~l~t~es of th~s 
management and control for all system resident 
include: 

tdculty cover the 
data. FUnctions 

• The dccommodation of mUltiple logical 
structures 

• Security control for private aud shareable 
data 

• Exclus~ va cont col for COIlcuu:en t access of 
shared data 

IdM ~ONFIDE~flAL 
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3.3.1.2 Queue Mechanism for InteL-Faculty Interact10n 

In response to an external st1mulusat the user/system interface 
(Figure 3.3.1-1), one or more of the Faculties must collq,borate 
to pertorm the necessary ~orK. Inter-Faculty 1nteractions are 
accomplished viq, the system d9'lUest and Response queues. 

A unified message structure tor ~ntecq,ction is employed by all 
Faculties. Pertinent information to be exchang~d is assembled 
into a standard message structijce. This information cons1sts of: 

• Identifications -- rlequester and Hesponder 10'5, 

• Interaction types -- Bequest and Res~onse types, and 

• Pacameter data. 

Furthermore, on d conceptual level, once d faculty is act1vated, 
it will perform the work 45 spec1f1ed until a lo~icdl conclusion 
point is reached. 

Once a functiollal system structure is postulatea, tbe next step 
in bringiny the role of System Control into focus is to 
scrutinize work flow activ1ty throu~ll the system and 1dentify 
whiCh Faculties would come iuto ~Lay at Which p01nts in the work 
flow process. This is accvlllp11s11ed by a tecnlu-dUe k.nown as 
functi anal tl1read1ny. r .uis t.echu..I..<1ue involves the tr acing of 
external (user) demauds throuyn the sequences of system Faculty 
1nitiations, coocdinations, an~ tecminat10ns. The object is to 
develop functional seq~ences or 1uteract10g FaCULties Lll response 
to specific UHer stimuli..l... To be respoas..I..ve to market 
requirements, the sc~nar10 tor u~er stimuli1 must be develoFed 
based ou user appl~cation~ for the is t1rna frame. 

An order hierarcl1Y 1S r0qu1red to specify the meaningtul 
levels of control that WUHt be established 1U the system. These 
levels of control sAould be IiSLUH:Hl on the Work Session, Job, and 
Faulty levels. System Control u tilL zes tnis control hie£archy to 
establish and ma1ntain successi ve levels of coote:lf;t for control 
rela ti ve to the e.x.ecution of a asee worK. demand. 
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The Fdculty and WorK Flow ~e~s~ectives address the roles ot 
System Control from a gross p~~ot of v~e~ dud ~reseot a p~cture 
of the system structure ~n terms at tuuctional dggregates. Th~s 
is an "Outside-in" apprad~n--1n tuat tAe system ~s described 
stdrting from the application level and etiding up ~nwards at a 
functional part~t~ou level. 

An ent~rely dif~erent ap~roach to dascriDing the roles of System 
Contra 1 is au "l.us~de-O ut lt apl;>l.:oacu. He:ce" the em~has~s is pla ced 
on a descr iptioll of the stI:uct ur es aou mechanisms wh~ch are ba s~c 
to System Control. 

3.3.3.1 A Multi-Server System ~uv~ronment 

From tha point ot view of System Control., work ~s ~erformed by a 
combination of active and fJass.1ve system elements. An active 
element is a system servel.' (e. j., a program process~ng unit) that 
is capable of doing work. TUd passive element is the program 
mouule(s) whiCh contd~ns algor~thm(s) inuLcating how the work is 
to be per£oI:med. This is aD ~tdI:dtive definition in that a 
comb.l.nat ion o± active anJ pas.::ii VB elements lllay af/pear to be the 
active element to a second f/ass.l.ve element,atc. 

rhe external proyram structurd to~ all programs (eitner system 
supe~visor or user a~pl~cation ~rograms) follows the standard 
PL/I static nesting structUI:e (f4~ure 3.3.3-1). The external 
prcgram stI:ucture tor tue system supervisory flro~rams for the 
faculty system structure concept (section 3.3.1.1) is shown in 
figure 3.3.3-2. Logically, tae su~erviso£ control pI:ogram can be 
thought of as a sinyle procedure wbich in turn consists ot tive 
tasie procedures. 

~imilarly, tae internal prograili str~ctUI:e dlso dssumes d uD4torm 
structure. The propeI:t~es of L~.1S structUI:8 are: 

1. All programs "aI:B re-entrant. 

2. One or more pro~ram lllouules make up a progI:am. 

3. A program module COllSLstS ot two components: 

• A progI:dm text component 

• A symbol dict~onary component 

The active system elements wuicn a~e capable ot doing work 
operate in a multi-processing dllvironment. 

Important conc~pts for System ContI:ol in tais area include: 

IdM ~UdFIDt~TlAL 



1. 
opera.tion. 

SISTEK CONC~PTS AND FACILLTIES 

Multiprocessing is the norma.l mode of system 

2. Server pool concept-- System serv~rs art! organized 
into pools of resource by type. All server pools are 
interconnected to one another through an interaction 
network(Figure 3.3.3-4). 

3. The concept of tlo~tLng supervLsor Gontrol-- No 
master/slave relationship e~i~ts amony server elements in the 
server pool. The supervLsory cont.rol prograUl which loS executed 
by every available server is cunsiJered to be the master. 

4. All server el~mt!uLs have id~ntLcal processing 
capabilLties and are equaLly ~ualLfLed at performing work (either 
supervL;ory control or user dpplJ..cdtion work). No server is 
vested with any spec La 1 proct!ssl. ng roles. 

5. A queue-driven system cOllcept-- server's interface 
for work assignment is VLa wo~k ~ueues. Requests for work are 
always enqueuea onto the dPpropri~te work queues. 
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3.3.3.2 Syst~m Interact~ons 

Sy stell In teractions are req Ilirea oetwe~n active ele ments to 
accomplisll control and manaijament. of system functions and 
resou~ces to be respons~ve to an externa~ stimulus. System 
interactions taAe place due to: 

1) Problem Interaction: These relate to logical 
de~endencies witnin a program. Synchron~zation 
between concurrently executing ~nstruction streams 
is required • 

2) . Supervisory In tt:!raction: 'rhe 
interaction ~s conct:!tned mainly wit.h 
ot server resources ana with the job 
tuning the system. 

superv ~sory 
the allocation 
of dynamically 

3) System lnter~ct~ou: Act~ve system elements 
interact with one anotner to ver~fy the validity ot 
system control data, to dynamically reconf~gure the 
system due to loau Dalanciny or waltun=tions, etc. 

at these iut~ractions, System Control's ~nvulvement in the 
supervisory function of taSK assignment and· server element 
select~on will be descr~oed 1n some deta~l to furnish some 
insight into the prOblem. 

The controlaigorithw OB td~k a~signmant aud server element 
selection is based on tna conce £It that all system r~sources are 
executing the most important tasks as determined by the 
environment. In the system ll"~'::fu.re 3.3.3--.), as a server 
completes execut~on of tne worK specified by a task ~ unit of 
work spec~ficatiou),Lt executes the task assi'::fnment algorithm of 
the supervisory program dnd de~ueues a new task frow an 
appropriate work queue. Tnus, taSKS must be assi~ned to server 
elements so that work can be p~r~ormed, and server elements must 
be selected from a ~ool O~ serve~ elements to taKe on the tasks. 
Xhe role of interaction netwoLK is to faci~itate in this 
assignment and selection fJrocess loU order that an optlomum system 
operat10nal environment 1S estab11sned and ma~nta1ned. 

fasKs include botb supervisory and user tasks~ New tasks 
are generated due to new JOD Lutroauct~ons,' taSk spiittings, or 
I/O inter rupts. All tasks are dss.ig aed prl.ori ty numbers. 
Sillilarly, an "availability index" is associated with each. server 
e.1ellent which is execut~ng a t.aSK. I'be ltavailabilloty index" is 
derived directly from tue prLor1ty of the task whl.ch is being 
executed by the server element. The ltavailabi1l.ty index" is a 
measure used to determine t.he re.lative degree of a sel-ver 
element's readiness to taKe on a new task. An idle server 
element has the lowest "ava~ldDilitl index" (l..e.;most ready to 
tak.e on a new task). 
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.,hen a Bew task is bel.n-j ilitr:oduceJ. l.nto th~ system, it is 
~ssigned a priority n~mber dna is ~nq~eued onto the appropriate 
work. q~eue. An idle server ele lIi~nt is selected to taKe on the 
task. In the event no idle ~erver elements are aVdl.lable, an 
active server element must be ~e~ected to take on the task. To 
make the selection, a compacl.son 1.S made between the priority of 
the ready task and the availdb1.11.ty l.udex of each and every 
active server element. lbose Wl.tu lower ava1.1abl.lity indices are 
all available. The one se.rver element Ii ith the lowest 
availaol.lity index, howti:ver, . .l.~ ueemed to be most eligible and 
will be selected to take on tae task. The lower priority active 
task which was being executed prior to the select1.on will yo into 
a dormant state and will be en~ueuea onto the work queue. Should 
ther\::! be more than one e1i'11.1)1e derver element with identical 
availaD1.1ity indices (i.e.; al.l are executing tasks with equal 
priority numbers), a tl.e-bceakl.ng algorl.thm wiil have to be 
executed. 

IBM CUNfIUENTl.AL 



Chapter 3.4 

SYSTEM PUNC~IOjAL MANAGEMENT 

A description of the importdut concepts from some 
system functional areas LS pressuted ~n tais chapter 
indica tion of the directions b~~ng followed. 

of the key 
to give an 

Data .base lIana<;ement is COllCerlHH.1 with the accessin'::j of data by 
aultiple terminal users from an on-line centralized database. A 
terBlinal user's access to tAl:! J.ata base may be (or the purpcse 
of: 

• Read-only data eutry and retrieval, and 

• Read/Write data entey auu retrieval: 

• Data Lnsert.lon 
• Ddta modiil.ca tion 
• Data deletion 

Access in 9 talles p.l.ace in a COliC urrent ana l.ndl:!pelljen t llIaune r l.n 
eit~er the transaction processl.ug mode (routl.nl.~ed ~rocessing) or 
interaction mode (non-routinl.zej processing). 

uata base iunctions to ue adJressed for tae AFS 
architecture· Blust be responsive to these types 
requirements. Accordill<;ly, to~l.CS to be dddressed 
section touch upon all of the rollowl.ug: 

• Data Indepenuence 
• On-lille dvaila~ility 
- Convenieut data entcy dud retr1eval 
• Multiple user data structures 
• symbolic data acce~s 
• Authorization to pI:l. vat~ and ~haredua ta 
-Exclusive control to concurr:ently shiiLeable 
- Data Base recovery 

Historical versions 01 data 
- Transaction aU~1t tr:ai~ 

IilM ~ONfIDENTIAL 
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A logical ~ep~esentation of tue major data base components 
and inte~faces is given 1n F1~u~e 3.4.1.1-1. Use~ activities in 
data ent~y/ retrieval, data manipulation and data base 
aaintenance are presented to tlle system as appl~cation and system 
programs. The proced ural. specific atioli3 o.t the PLOg ra ms are 
defined independently of tue data de~cr1ptions. ~unctional 
capaoilities in each area are made availaDle to the users via the 
Data Manipulation and the Data Descr1pt10n languages. Definition 
of multiple logical data structures on the ·same syste~ resident 
data is allowed to accommodate the many V1ews wnich independent 
users may elect to see ddta. The entity recora set concept in 
terms of entity attribute description of external things is used 
dS the vehicle for logical data structure representation. All 
data accesses dre SUbJect to system data exclus1ve control which 
is responsible to act dS a t11terin~ lunction to resolve the 
contention problem Jue to concurrently shdreable jatd requests. 
Ddta bdse address space is a IllUlt1- linear symbolic address 
space. In add1tion, data cecovwcy constitutes au iutegral part ot 
the total data base management tunction. 

laM ~ONFl~~dT1A~ 
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U~eR AC.TPJ'T(e~ '" : 
. DATA ENTRY 
• DATA RETR\EUAL 
• DATA MA"IPULAi10M 

• DArA 6A!>E MAaNTEHAWC£ 

-------- ..... ------- ...... ~-- .......... 

PROC;~A~ 
LIF)AAR.,-

\ 

LOU-I (AI- DAT~ 5TRUC.n>RES 
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~------------~I\\,--

· E 'C' CW~I ve eo..TADL. 
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DATA 
8,,~e 

REcoveRY 

RGURe: 3.'1.1.1-1: A lOGICAL REVRESENTATION OF 
1IATA6A5E COMPoNeNT~ ~ INTERFA.c.e5 
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The Data Descri~tion Ld.ng~ag~ (DOL) is the language used to 
define an Ent~ty Record set. An Entity 1S a p~rson, place, or 
thin~. The things may be real or abstract. An entity is that 
about which a user wishes to re=otd iniormat10n in t~e data base. 
An entity record set is a collect10n of s1milar entities (Figure 
3.4.1.2-1). To completely describe an entity reCOrd set, it is 
necessary that: 

The attributes which descr1b~ the entity dre described. 

The ent1ty records maKiu~ up the entity record s~t are 
descr1bed. 

The data names dnd tbeir synoujllls are descr1bed. 

In addition, tue DOL can De 
characte ristics of da td in the 
capabilities are available ouly 
mana~er. 

used to descr10e the physical 
data base. However, these 
to tnesystem installation 

The Data Manipulation Ldllgua~e (DaL) is the language which 
enables the user to manipUlate the log1cal data in his 
application program. Data malupulation implies data entry and 
retrieval as well as computat.Loll aad process.1ng. doth of these 
Capabl.lities will be supported in fSL as operatoe5. since a useI:' 
may w1~h to converse uSl.ng any of tne . five languages: PL/I, 
PORTaAN, COBOL, RPG, aud A~L, vaL must rely ou a hOit language to 
provide the computational capab~lities. DML ,in tu~u, ~ill 
pLovl.de the language inteI:taC<il betwE:o!en thE:o!progJ:am and. the data 
base. Tberefore, all call~ to dna tram the data bas~ to retrieve 
data, to enter data, to mod1iy data, or to delete data are 
invoked via DML operators. 

3.4.1.3 

An entity recoI:'d set 15 a two dimensional arI:'ay 
representation of data stLuctuJ:es in terms at Ent1ties and 
Attributes (Flgure3.4.1.~-1). Au clnt1ty ~s a person, place, OI:' 
thing. Attributes are the pLOt-ierty classes wil~Ch chaI:'acterize an 
entity. An entity recoed set 1S a collectLon of s1milar 
eatities. Also, associated w1th each entity recoI:'d set is an 
attrl.bute whose values have a one-tu-one ralatlouship with the 
entities (~.e.; the uni~ua identif1ers). Tbus, an entity record 
is that collection of attribute Vd~ues willcn describe an entity. 

Attributes for an employee entity record set are: 

rBM CONFIDENfIAL 
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1. Unigue Identifier 
2. Employee name 
3. Social security 
4. Sex 
5. Birthdate 
6. Data of hire 
7. Department assi~nment 
8. D~vision as.l:iignmell t 
9. Education record 

10. Marital status as of date 
11. Posi tion as ot date 
12. Perf. ~valuat~on as of date 
13. Salary as of date 

Attribute type 1 1.S tile ulul:!ue identl.tier attribute. 
Attribute types 2 througa 13 ac.e facts about the emIJloyee entity. 
A fact is a relation - a corc~s~ou~~nce between me~bers from two 
sets. Attribute types 2 through 6 establish d one-to-one 
relationship between a memner from the employee entity set and 
the respective attributes. ior l.nstance, there can be only one 
"date of .hire" attribute value tor an employee. On the other 
hand, however, attribute types 7 throu~h 13 establish more 
complex relationships. No one-to-one relationships exist. 
Furthermore, eacn of. the H:!iatl.onsh1.ps can be qualified by a time 
parameter. Thus, an employee can De assigned to work in more 
than one department as of a certal.n date. 

The internal system organl.zat~on of the data for an entity record 
set must be such that it is responsl.ve to the many ways a user 
may elect to view tbe data. One ~ay to express an entity record 
set is in terms ot a collection ot relation sets (Figu~e 
3.4.1.3-1) • i\ celation set is don entity record. set wnieh has only 
a pdir of attrl.bute::i vhe Jl tl.e.3~ lJel.ny the ~dentity 
attribute. Thus, 
data requl.J:eu for the employe~ eutl.ty I;'ecord set CdU be 

materialized trom the twelve r:eldtl.on sets. Note that tne 
identl.ty attribute has Deen r~pl.1.Cdt~a twelve tiwBs to provide 
the connectivity required to 11.nk to~ethec ~he pectinent rela~~on 
sets. 

l 
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3.4.1.4 

Data integeiti is addre~!:iE:!a based on tna way system 
exerCLsas excl~sive control to I'esolve contention, modification 
and ui?date problems d~e to independent concureent data accesses 
on data from a centralized on-lLue data base. Also, data 
integrity is conceened w~ta the way aata I'ecoveI'Y is handled to 
checkpoint pertinent data base intotmat~on so that opeI'at~ons may 
be I'estarted in case of a catasteopnic data base fa~lure. 

All system resLdent data can De classif~ed as: 

Read Only 

Read/Writa Snareable 

All possible ways in whLch a usee lliay choose to access data 
on an entity I'ecord set are sDowu'in FLgure 3.4.1.ij-l. However, 
when two or more independent users are mak~ng simultaneous data 
access requests on the same entity recol.-d set, exclusive con tz:ol 
m~st De exeI'cised. Paramete.lS whlocn the system must consider in 
pertoI'miug the exclusive cont£ol iunction are deteI'miued by the 
type of entLty I'ecord. set ~nvolved (~.e.; Read/Weite OI' 
Read-Only) , and by tne type ot data access 
requests(i~e.;Read-only or R/~). 

lbM CONflU~NTIAL 
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3.4.1.4.2 Q~~~ ~~~ i~~£Y 

The se60nd aspect of the adta 1nteyrity problem will be 
addressed by tocusinl;J a tt~J.ltl.OU to the f uilct10ua l. or:J a Ill. za tion of 
a specific mecnanism tor data Oas~ recovery a Journal 
organization. System roles ",hl.ca can be tulfl.l.l.ed by a Journal 
include: 

1. Data Base rlecovery-- All. data accass requests whiCh 
cause data moditl.cations to taKe place will cause the 
modif1cations to be reflected in both the on-line data 
base and the Journal. 

2. Historical Versions oJ: data -- Udta in tae Journal is 
checK.iJointeu. per 10d1call'y to 9i va a snaiJshot .l.n tiae 
of the datd base conten t. 

J. Transaction audl.t trail--All data modiil.C1ations 
must be captured in the Journal .l.ll the exact manner 
as the modiiicatl.ons dre mdde. 

A Journal organizatl.on wilLcn tulfills these basic principles 
is gi·ven in Figure 3.4.1.4-2. Tllere are two types of Journal 
rlecords: the Checkpol.llt Jou,L'nal reco,rds (Journal ltecords 5 and 
41) ;:ind, Transaction Journalcacords (Journal Records 0, 14, 16, 
18, and 36). Also, there are three types ot Jou~ual threads: the 
Daturn thread, the Transac tl. on thread, dnd the At tI:ib ute 
T~ansaction thread. 

The Transaction Jou~nal (eco~a is cr~ated in tae Journal 
~henever a tI:ansaction taKes place. Th~ Checkpoint Journal 
record, on tne other hand, loS a system assembled Journal record 
whiCh reflects the statuso~ ~ata as of the t1.me the record is 
created. 

The thr~ads are the mecuduism by which to connect together 
all those Journal records which ace gene~ated w~thin particular 
contexts. 
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3.4.2.1 BackgI:ound 

The data communications area, ~n ~ompaI:isoll to the otheI: majoI: 
functional aI:eas of a data process1n~ system, ~s in an earlier 
stage of evolution. As a resu~t special attent~on is required to 
architect a system structure that prov1des t~is aI:Sd w~th the 
flexibility to properly evolve dur~ng the product life of AFS 
withou~ compromisiug the other aI:eas ot the system and the 
oveI:all system structUI:e ~tsel£. 

The ba~ic tenets of APS ~ostulates, with ~ooa technica~ 
jllstification, the dva11alJ11~ty of .:itorage Management Units 
(SMUs) with the capability ot prov1d1ngviable random access to 
an essentially intin1te ~ogicdL add~essing space opaque to the 
individual performance Icapac1t} cnaI:acteI:istics of the vaI:ious 
storage devices in a sau. 'rhey further postulates the 
availability of Program Processo£ Units (PPUs) with a functional 
capaoili ty of pI:OV iaing a n iyh-level S ystellt Language {SL} 
interface, described in ~art 2 in this document, and be opaque to 
the number and ~ndiv idual t>eI: fOl:lDanCe cnaracterist1cs of the 
vaC10US program proc~ssors ~n ~ PPU. in some sense. these could 
be thought oias "ultimate" . .l.ntertaces to these units - or at 
least ones at a very advanced conceptual level. 

A comparible level is not antic1pated for the data =ommunications 
acea at the time AFS is introducted, however. enougk is known to 
allow an architectural structure to be devel.oped which can be 
evolved with low im~act to the system dud neglible impact to 
appl1cation programmers. 

what then are the charactel:istics of the data communications area 
that contrast itsarchitectura~ status to tnat ot the SMU and the 
PPU? 

An (operating) system essent1ally simultaneously services many 
users typically at a central~~ed tacil1ty. On the other hand, 
data communicat1ons must 1n g~neral deal w~th hardware devices 
that interface with a set of 1udividual usel:S at distributed 
locations. The tormer allows for h1gnly tunctional interface 
levels and short well- controlled interlla,l l.t31"1 data paths. Ihe 
latter typically necessita,t~s lQw costs at the asv~ce and needs 
to append functions of a system in a t1me-sharing manner in order 
ta provide the desired user 1nter tace. In ada.l.tion the long 
data paths, generally external to IDa products (telephone lines, 
etc.), create signif1cant ada~t~onal problems in themselv~s. 

Since the advent of LSI w.l.ll all.o~ for expanded aeVLce function, 
the increase in the data commun.l.cations marKet w111 bring about 
dramatic changes in the tecanology dnd pr1cing 01 communication 
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paths, and the ~egui~ement w~ll ycow Ior mo~s application p~ogram 
independence ot device cnaractel:·J.stJ.cs, a system architectural 
framewo~k ~ust be estahlishea Wh1Ch is hoth llexible to such 
changes yet provides guidelines to allow tusm to properly evolve. 

Further complicat1ng th1s area are' the mar.Ket requ1cements to 
allow present systems aud den.ces to co-exist in an emulated 
(virt~al) mo~e under APS; to provide a means for dynamiC 
inte~cbange with those systems (as well as ones in separate 
installations) and devLces; anu to allow for most haruware 
devices to transcend the ~nt~od~ction of AFS. Essential to 
achieving a smoother t~ansLstJ.on from Doth an internal IBM 
progra mmin';J and engLneer J.ng Vl.ew flO in t as well as an external 
customer- viewpoint will be <iIt ea~ly common and coo~dina ted 
~ecogni~ion of FS goals, aud t~adeoifs within all p~esent 
pLqducts during the interJ.1Il towa~d those goals. This is 
discussed in moie detaLI in Cha~ter 3.5 

3.4.2.2 Basic Concepts 

A set of basic concepts have Oeetl identified for establishing 
long-~ange criteria for data communl.cation t~adeotts: 

- All pnysical I/O (external> to source-sink devices and 
other systems w~ll be ~allaLed by tbe commun~cation unit (CU) 
of th.e installation. 'l'h~s .l.ncludes unit record and sensor '" j 

devices as well as typicd1. communications terluna,ls. 

- ~ogical I/O, i.e. as seen irom dU applicatLon program aud 
most of the At'S control program, will have 
virtual/local/remote trallsparency. Tais inCludes any dynamJ.c 
J.nterchanye with other virtudl systems. Physical I/O, i.e. 
as viewed from th~ Source/S.l.ak (S/S) sUbsystew of the 
control program, wi1..l. nave ~ocal/~emote t~ansplrency. 

- The SLand hence dLL (ill.gher-Level Languages) and other PP 
intertaces to applicatiou pro~rams will be by means of a 
minimum ~et OE dev.l.ce classes. The FDL (~ielQ Descriptor 
Language~) for pre-forllldt~llg data structures au complex 
devices such as graphics w.l.~l both ~implifyapplication 
programs anJ increase the1r u~gree ot device independence. 

- doth the terml.u~l user andtne application programme~ have 
functional interfaces - .independent of their locatJ.ons or 
path connecting them. lhe log~c to accomplish these 
functions from either eua snould looK. ..like J.t is satl.siied 
either ny the other or the te~minal device in between them. 
By terminal here, J.S meant either a siagle term1nal on a 
cluster ot common terml.uals with a central controller 
(compound terml.nal). Cost tradeoffs have dictdted, dnd are 
expected to continue to d~ctate, that improved 
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cost/performance Gan De aCiueved if some of t.nis apparent 
tecminal device log.l.c is illiiJlemented .ln the AFS control 
program. This logic has two pacts! one.l.S the formating 
field descriptors mentioued eaclier WU.l.ch must be specified 
by the customer, dud tne other is simply good 
hardware/sot.twace tcadeoLLs. l t is important to keep these 
log.l.cally separate from the path .t.unctions required to 
connect the termina~ W.l.tn the system. These path functions 
are to be pecformed ill the CU and the other netwock 
illaaagement units between the term.l.nal and the system. 

A general AfS control ~rogram ~ueu1ny mechanism for 
passing work to De done between processe5 will allow 
resource management to tune the system LOC a range ot 
response requirements. The .l.ntertace to the CU will be a 
consistent extens10n ot tU.l.S ~ueu1ng lllechauism. 

3.4.2.3 Types 

Data communicat.l.ons w.l.th the 5ystem neeu to be ex~mined at the 
logical I/O 1nterface and of t~a ~uysical I/O interface. decause 
of tne basic AFS concepts 01 u.l.striouted (network) data and 
pLogcams as well as v.l.rtual devices aud systems, there is 
~enerally not a L:~ relat~onsn~iJ between these two interfaces. 

At both interfaces, howeve£, Lntormat10n is cons.l.dered to be 
~.l!!.!ru!bl~, i.e. once seut,l.t can not be obta~ned again, and 
once ceceived. it cannot De ra~uested again. 

3.4.2.3.1 L09ical I/O 

Lo~icd~ I/O is det~ned to be e~pL.l.c.l.t operat.l.ons maus by a 
program to communicate outside tue ~o~icaL closed entity or 
environment conta.l.n.l.ng ~ts Known duthorized data, programs, and 
system services. Such cOliullunlocations are ca~led !~§2g.,gg§ if they 
represent or.l.ginal informd.'t.l.on be1ng sent or rece1ved and ~2~~ 
if they are re~uesting a response to a previous!j sent message. 

rn1er-Af2_~QQ2 - 1hese mes5d~es provide tor 1nterchange 
between normally indepena8nt APS euvironments that want to 
establish local commun.lcatl.on t:>aths. Full supporting system 
services w.l.lL include dynam1c establishment and validation 
of authority and abiL.l.ty ~or controlled snariny of data and 
programs. 

2Q1!££!U~i!!~ - These messd::je5 prov.l.de for 1ntecchange with 
areas outside AFS. These areas dre e.l.ther aevices or other 
operating systems (networ~s). By medns of a welL structured 
data communications path, the 3L intertace to these areas 
will be made almost compLetely tree of ueV.l.ce dependencies 
and absolutely tree of physical path dependenc.1.Bs. 
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;rhe general formats for logical 1./0 fllnctions are as tollows: 

i:nt{Qg!!£~ (argl; •••• ; aCju) ---> ndme 

- lhis provides a means for naming a sOllrc~/tiinK port object 
~aving the characteristLc~ defined by the argument list. A 
name may represent a collectLve object thlls allowing for 
broadcasting to all elements uf that object. 

- ~his sends a data object, msg, to the object called name 
some of whose cnaracterLstLcs may be temporarily modified by 
the argument list. 

The msyid is returned by the system 
subsequent reference to this message if an 
desired or an error condit1on results. 

tu allow to.r 
answer is la ter 

l!ai1::.~22~~ (name (arg, •• etc. » - -- > (msg; msg id) 

- This allOWS the prograii to spec1.tLcally wa1t for a message 
tram the source Object, name. 

- Again the msgLd returaeu allows tor a subsequent answer to 
be returned.. 

- Requests an answer to tile lUessage previously identifieaby 
ms<.J id. 

- Only one of the msgid arguments is to De useJ. It the left 
or input argument LS nOll-void, tbe process plans to wait 
until only that message 1S answered. It tbe lett argu&ent 
is void, then the system w11l return the first answer it 
receives dnd ident~il it wLtb the msyid spe~itied by the 
system earlier when the messaye was sent. 

Physical I/O is defined to De the data communication 
interface between the system dnd the CU wbich in turn 
interfaces with the real aeVLcesor other operating systems 
known to the AFS syste&. Whatever the source of a message, 
its format at this stage 1S 1.D SDUs (Has1.c DeVLce Units). 
Each message (or answer) can be repre~eDted Dy a set of 
fLxed length BDUs w~th elliDeuded se~uenc1.ug informatioll. 
Functionally they contain a GaVLCe ndme, priority 
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infoLmation, and a stILn~ OL bits wb~ch ~s 10~Lcally opaque 
to the cu. Corres~ondin~ly the system LS unaware of the 
external location ot tbe uevLce/system or the patu(s) to 
them. 

rhe HDUs reside on ~ueues of port ObJects in the logical 
address space ot the SMU. these represent a consistent 
extension to the normaL queuLn~ wachallLsm Lor passing 
information between objects lor processing purposes. 

3.ij.2.4 Architectural COllSLdecatLons 

rhe purpose of data commUllLcatLons is to sen3 and receive 
consummable messages oet~een two or more aevices, systems, 
or applLcatJ..oll firograms. 'I'llese messages may be e xplici t.ly 
initiated by a device/another system or applicatLon program 
or they may be implLcitlj LDLtiated within the AFS control 
program to ~rovJ..de networK transparency. 

ExpliCJ..t messages are essentLally those bet~een users either 
at devices or as a result OL wrLting applLcatl0n programs. 
Another system can De t~uu~nt of as just another type of 
davice. Two thlnys can effect a message: J..ts path and the 
functions performed Ln betweeu the sender and the r-eceiver. 
It is the respousiDLlity ot AFS to make the path 
vir-t~al/~ocdl/rewote trdns~arent. The fun~tion~ are 
dependent on the characte~Lstics of the senuer and Leceiver. 
For- example, if both are Just AiS appl~catLon progr-ams 
(inter-AFS job commuuicat10ns) thell the functions in between 
are essential.ly zero, i.e. just normal expression 
processing. On the other ~and if one of the end points is a 
graphics device tilen tha.rti are considerable funct1cns 
required to trallslate the da~a to an applLcatlon program 
from the grid ot the tube and perhaps Lts Llght pen. While 
logically these functions a~~ear to De done in the device, 
cost/performance reasons may require that some of these 
functions be done in th~ ~FS control program. 

In order to ma&e the pato at tne message tr~nsparent, the 
system must handle var10US s1tuations depenu1ng upon whether 
one end point relative to the other is in a bative AiS job, 
ln a virtual device or oj!eratlng system, or' whether it is 
locally or remote~y attacued. The ilrst two situations are 
handled within the AFS contLo! program. The last two are 
physical I/O dnd are nandleu transparently to the control 
program by the cu. 

The following sub-sections translate these message function 
and path aspects into·the serVLces performed Dy the major 
areas of A F5. 

IdM CONFiDENTIAL 
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Before proceeding it should be stated that APS 
flexible enough to dynamicallyadd/del.ete devices, 
associa ted CU to corresponding ly be dDle to ma.k.e 
changes in device types and tue paths to them. 

must be 
and its 
on-line 

The standard system iuuct~ous tor messages are those 
provided Lor dll eKpress~on evaluations. These are such 
things as name resolut~on, attribute exam~nat~on, and 
validation of authority. 

In add~tion, a unique system message identifier (msgid) is 
created for eaCh new messa~e. It ~s retained by the system 
ouly while it Das res~ons~oility for the message and 
forgotten after deLivery ot tbe message to either an 
applicat~on program or a port object queue wa~ch interfaces 
w~th the CU or a virtual ~ev~ce/systell. 

Standard inter-AiS job co~muuications witniu the salle system 
are independent of the Jource/S~llk {SIS} SUbsystem. In the 
case where network processing is required, the cooresponding 
subsystem desir~ng the intormation ~llter:faces with the SIS 
subsystem is the same way (except tor aifferent 
authorizat~on) as all appl~cat~on program. 

Users of the 5/5 suosyste~ are unaware of whether the device 
or other system is CO-tH~st~ng in the same AFS system or 
not, and if not, whether it ~s local or remote. 

3.4.2.4.2 Source/Sink SUDSjstem 

This SUbsystem provi~e~ d ull~form ~llterLace to all 
communications outside it~ si~tem. Its respons~bilities are 
to process the data so taat ~t ~s ~n a su~tabla logical form 
for the eventuai rece~ver - dev~cei operat~ng system or 
applicat~on program. In the case of a device, it may mean 
special format processiny du%r internally cost/performance 
implementation of device functions. In the case of an 
operating system, it meaus tne t>rotocol for communications -
which by the way should be tr~v~al ~t ~t is to another AFS 
system. In any case, its ~nternal system interface is in 
the form of BDUs (Basic Device Un~ts) which are the logical 
interface to auy particular device in question. 

At this point far dowa the processing path, the SIS 
SUbsystem tinally resolves the yuestion of virtual 
attachment. Its answer s~mply determines the port object 
queue tae BDUs are to go on or come from. 

lhe BDUs fundamentally ouly have a device/system name, a 

IBM CO~rlDENTIAL 
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priority to did algorithw1c scoeduliny, and a string of 
represent the data in%O~wat1on. In add1tioo, they 
probably have d fixed ulock format thus requ1rl.ng 
additional imbedded se~uence number. The bits of 
information vill be log1call) opaque to the ~~. 
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bits 
vill 
some 
data 

The message queues tor the port objects ~ill be located in 
the logical aduress sPdce of toe SaU, dnu the mechanism and 
l.nterlocks with the CU vLll ue essentLally Ldeutical to that 
between other objects ~n tue system. One difterence, 
bowever, is that since tne 1uLormation is bal.ny moved out of 
the SMU logical address ~~ace, the cell name tor that will 
no longer be a sUl.table means of identification dnd, if 
going to another s1stem, wl.1I have to be replacea by a 
prescribed networK symbo11c name. 

3.4.2.4.3 CommunLcatl.On tin1t 

Tbe eu is the interface OL the system to tne physical 
communication networ~. Its responsinill.ty is to get tiuUs to 
aod from aevices/ot~er systems for 1tS own system. 

To do so l.t must know ~h~t aevices are connected, the paths 
(lines) to them, ana tele protocol fOL: tnose tJaths. In 
addition, it m~st aetermLue tue optimal transm~ssion DloCk 
size, termed BTU-Has~c TraDsmLSSLon Unit. 

Opay.ue to the contents in the HUUs, it may employ vaeious 
compactiou al~oritnms 1U conjunction w1th associatea 
com mu'nicat1on uni t tac.l.l.l.t.l.es on the net !If or ~ 1f it can 
improve cost/peeformance. 

LiKe the PPU, the CU mdY De a mult1processo~. Furthermore, 
it may be connected to mOL:a titan one ;;;;ystem dnd conversely a 
system may be associated with more tuau one ~U. In the 
latter case, an additioud..l. sm~J.l amount of phys~cd.l network 
awareness may get baCK .loto t~e system desL~n .Lil oeder that 
it may have to decide WDdt deVLce ~oes wLth what cu. 

System aOD itor Con trol .l.S resj;>onsLble to monitor a.ll system 
ope ra tions dnd to cause L ecover 'i ae t~ons to begin ill the 
event of system ta11ure(s). ln add.l.t.l.on, Administrative 
Control (e.g.; statLst1C;:i COLlection aDil customer D1.11ing, 
etc.) and System Sup~ort control (e.g.; dynamic system 
reconfiguration control, etc.) constl.tute .l.mportant system 
roles of System M oni tor Con trol. 

The iollow1ng ~s an enumeration of the donitor Control 
categor Les: 

i 
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-Control of terminal Qser act~vities 

-Assignment of term~llal Qser priorities 

-Degree of Qserlsyst~m ~llteractioll 

-System Opera taL: ailJ Data Hasc AdmuList.r:ator sQPport 

-User Integ.c i ty 

-System service SQ~~OLt 

-Hilling 
-Performance aualysis 
-Ve.c~ficat~on at ~ro~er system overat~ons 

-Ass~gning pa sSilord,;; 

~~ste! £~£i~g£~~~Qll £Qll~£Ql 

-Startup and Shutdowu ot system 

-Set Pr ior it ies 

-Dynamically cbange priorities 

-Provide warning 
condi tions 

alarms on eAcept~onal operating 

- Line or sl?ec~f~c tel: m.l.nal load exce~ds pre-assig ned 
·Blax im QID load 

-Terminal oQtaye 

-Low priority .essay~s are not ueing proc~ssed 

-Data access re~uests are not being honored 

-Unusual number of accesses to data base 

-Erroneous password 

-System 
components 

monitoring 

-Server allocat~on 

SQPport on speci;fic system 
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-Gather: aud output us~ r: sta t~~tics 

-Terminal load by time of day 

-Line load by time ot day 

-Errors by line auu term~nal 

-Number: of message Uj ty~a by t~me of day 

-Response time by messaye type 

-Response ~1me uy time ot day 

-Processing time 01 llieSSd~e type 

-Data access, de.l.eti Oil dud 1nsertion Std t1st1CS on <lata 
base 

-Automatic cheCKpointl. ng of tile entire system based on 
d pre-defined criter1a. 

-Chec.kpointl.uy ~nl. t~a ted expll.citly 
Administra tor. 

by the System 

-Hequested selective check~ointing on specific Entity 
«ecord Sets in1tiate~ explicitly oy the System 
Administrator. All actl.ve aod/or pend1ng processing 
requests involving the t;nt1ty Record sets shoulQ also be 
C beckpointed. 

-Restart' capabJ..lity (warm start.) wiuch involves the 
rest to initial state the Ent~tl Secord Sets updated dnd the 
reconstruction 

-A Restart capab111ty (cold start) aiter d catastrophic 
failure. 

-Enabling a line or term1nal 

-Disabling a 11ne or term~nal 

-Selective terml.Datl.OD of message llandJ..1ny 

-Selective termination of messd~e process~u~ programs 
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-Transmission control 

-Path Control 

~Mes~aye Delivery Coutrol 

-Alternat1on ot intarmed1ate station Characteristics 

~Alteration of Port Prot1ie 

-Shdtdown of a t~rm1nal 

-Edabling and d1saDL1ny of terminal(s) in exclusive 
mode 

-Security lock and unLOCK of terminal(s). 

-Physical at triDute de SCC1 ptor table det init ion 

-Physical 1roup1ngs ot attribute values into Entities 
and Entity Record Sets 

-Physical data organizat.l.on, access methods required 
and storage media spanned 

-Phys1cal index tables to be maintained. 

-Dynaw1cally establ~sh1n9 new complex logical data 
stcuctures 

-Selectively l.uhl.bitl.ny the use of s~ecific Entity 
Record Sets 

"-Batch-moue 
re-organization 

of data base 

control based on t~e data content 

/JlaJ.nta nance 

Control ~aseQ on ~ata access operations on data 

and 

Security class1ficatl.on 6i Entity Record set types 

sacucity class1iicat1on of Entity-AttrU)ute il.elds 

Security classii1cation by level and byassOC1d.ticn 

Control over COllcucceut data access 

las CONFIDENTIAL 
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H~stor:~cal v~rSJ..OHS ot data access 

Trallsact~on aud~t trail o~ historical and/or current 
versions of data. 

IBM Cui'lF lu.c;N r IA.i.. 



I.:hapter 3.5 

aIGRATION, CO-E'~ST~dCE, 'INT~aCHANGK 

This subject is probably the most d~fficult strate~ic issue: to 
understand the reia tionship of a new, yet undefined, system to 
that of present. and chan~1ng, systems. decause Lts 1mpact is so 
broad - engineering. prey ralllling, customers - there is a teude ney 
to delay decisions which, liKe ecology problems, anconsiously 
translate themselves into a default decis10n of incremental 
improvements until eventuallt the panic of crisis forces a major 
change. 

rhe company's goal ~s to maKe proiLt on d continuous basis, both 
yearly and lony range. It ~redominant.ly makes that profit from 
engLneering products, hence tnJ.s is the major migration factor -
and not programming. ObvJ.ouslj, programmLng 15 1mportant to 
making the engineer1ng products attractive, and thus indirectly 
affects profitabil1ty. ~ince ~rogrdmm1lly is the primary user 
interface, it is also importaut to separate it as logically as 
poss1bIe from toe engineering to allow for easy ~ntro~uction of 
new e ngi neering proll ucts. 

The pOLnt being stressed here 1~ taat programm1ny m1gration from 
Que operating system to another is a ~esser, dlbe1t, important 
factor than that of engineeriu~ product migration. It is 
essential to understand what teas1bly can De done to aid 
programmingmigratioll, ana W~dt CdBnot. New system attempts ill 
the .past have burdened themselves. with so wally compatibility 
constraints that they lost. taeu' capability to introduce the new 
concepts that justified nav1ng a liew system ill tbe first place. 

There is another facet of tbese ~elf-deteat1llg myths, namely the 
one that says that anyth1ug conceptually new is too far out (i.e. 
ad tec~) because it is so uLiiicult to evell extend present 
produc ts - witness OS dna DOS. Wll at is generd.u.y .t orgot ten is 
that 1 t is not the new fUnct10ns tna tare conceptuallydiiiicult, 
but it is the unsuitable system structure, present low funct10nal 
engineering interface .J..evels, dud the lack ot programming 
interf ace contI: 01 that are tlls pr1mary Luh1bi t~ng fac tor s. 

A product ship "window" can be .toreseen around 1977 for an 
opportunity to make a major SySt.i:Hll arcnitectural change with the 
combination ot the ending of ~/j70 CPU/memory proauct lives and 
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the advent of LSI components. fna subsequent port~ons o~ this 
section attempt to define tb8 major issues involved in taking 
advantage of tbat "~indow" to ~ntroduce a sist~m base which at 
tbis time has the possibil1ty oi being an "ult1mate" one - from 
technical intuitioIl, abi.l1ty to dUJust to both user tuuct10ns and 
introduct10n 01 ne~ eng1neer~lly ~roducts, and from the eventual 
"defined by enertia" ef~ect. These factors coupled with the 
1llcreasing obvious "ag~ng" ot present operat1n~ systems to 
changes sbould g1ve rise to seL10US mana~ement reflections it we 
do not take advantage of the is "window". 

3 • 5. 2 !.§~H!~2 

There are a number of 1ssues that need to De realistically 
appra1sed to best understand tae tradeoffs over time that need to 
tie maJe to get APS introduced 1nto the marKetplace. 

- First· of alJ.., a tllOrou:Jn evaluation effort tor: AfS from 
all iacets of IBM is esseut1dl to gain the best system base 
possible. In paJ:t1cuJ.ar, a strong central sl stem 
architecture group will be requ1red to ensure that a 
con~~stent set of era~eofis is made to maintain for new 
market re~uirements dnd tdchno.logy. 

- AfS will have a new program SCPI (System Control Program 
Interface), which w~J.l b~ different from US ana DOS. It 
should be r~alized tuae even a new 5/j70 based fS 
operating system would also need a new SCPI. As a result, 
program migration must be as a result of at least 
re-comp1lation. I~ agreement on tne common intersection of 
the feasibly possible user ~nterfaces (HLL, CCl..,FDL, and 
DDL) was obtained (in 197~?), chen emphasis could be made to 
direct users to that common set duriny the ~nterim. A 
corollary of this waich needs to be accepteu ~s that many, 
probahly the ma jority of i!rog rams, Ii ill not be easily moved 
oy re-compilation. These ~n partLcular include the major 
system efforts to taK~ full auvantage of 5/360. 

- Because of the mar~eting ractor that FS PRUs must replace 
S/J70 CPUs, aud because of the ~evel of incompatib~lity 
between the two (in ~pite ot the aoove HLL, etc. 
compatibility erforts), co-existence of present operating 
systems is essdntial.. :C'uL:thermore, a baS1C co-existenCe 
capability is relu~red ,~itb a ~:1 cost/performa~ce} which 
still allows for an attractive performance lure to APS. The 
tradeotfs between theSe tiiO are some of tile most critical 
needed to be made. 

- Second ijeneration IbM systems (l~xx:, 70K-x) should only 

IBM ~O~fIDENTlAL 

il 

I 

I 
il 

! 
~ 



158 

have to be ~imuidted on S/3bO under OSot DOS and hence have 
no direct impact on e1tbar the SL or engineering units of 
Af'S. 

An unresolved issue 1H 
co-existence of GSD systemH. 

the abil1ty/need to have 

Another unresolved issue is tha abi1ity/~eed to have 
co-existence of non-jJ:U'1 HystelIIs. 

The· ab1litJ to dynam1cally inteLckange information 
logically between AF~ and other operat1ny systems shOUld 
only be by means of d. tor-lilal networking pcoioeol. This .,ill 
provide native (eo-eX1stenCe)# local, remote transparency to 
users of these systems as well as limit the impact of 
co-exiStence of the other systems on the st~ucture ot the 
APS control pro:jram. 

Co-existing non~AFS data, along with programs and 
operating systems, must also be controlled by AFS. 
Logically this data 1S owned by their own operating systems 
and requested via the networkJ..ug 1nterface lot. used by a job 
running on the APS control program. Physically, the data 
may be stored in the ~MU or via a 5/370 interface to 
indiv1dual storage devica~. Indiv1dual UeV1ce3 w111 only be 
used by native non-At'S sys·tews. They are at two classes: 
those that can also worK Ln the 5MB and thosa that cannot. 
Non- APS data can be waved in an applicat10n user 
transparent manner oEi the poss1ble sau de~1ces Lnto the SMU 
after which the devices Cdn be added to the SMUt The older 
storage dev 1ces includinij ta~es, wh,1ch are not possible to 
De ·put 1n the sau, can r~maLU until the1C cost/performance 
is low enouyb at wh1Ch t1rue their daia can dlso be moved 
into tile SMLJ and these lleV1ce;;o rt;;moved frow the sy.otem. 

Source/sink equipment, W1t.U the pro~eI: ~nteL'iru ~roa uct 
plan, .ohould he able to d1cectly connect to AFS via a 
27aN-l~ke Communicat10n Url1t (CU). Present operating systems 
should evolve as much as poss1ble towards the data 
communications architecture concepts outlined elsewhere 1n 
this document. In part1cular, native systems .ohould dCt as 
iE they had d CD attached t.o tnem - thus p.covicung a clearer 
1nterface to tDe 50urce/S1uk (5/S) subsystem of the AFS 
control program. 

The general course at act10n at thJ..s t1rue is to develop the broad ~ 
t.E!chnica 1 understanding of AFS archi tecture; rea,listica 11y\. __ 
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appreciate what call be done to aiu mi~rat~oll and their tradeotfs; 
and then seeK to taKe advantd~e ot tne ~nterim time to prepare 
both our: spectru~ ofeu9~neerin~ dnd programming products and the 
customer commuilit y to ease the tr-a nsist~ on of l.ntroducing A.l'S 
into the marketplace. 



Pact 4 

THE MAN-aACdId~ INTERFAC~ INAFS 

this pdct of the re};Jort is to become a d~scciption of Af'S in 
terms of the basic infix forlll.'rhe useI:' wlw wants to learn to 
use the system without ~robiny luto ~ts inner wockings lIIay do so 
by reading on ly this pact. At. };Jcasent, only two cha};Jtecs have 
been started. Chapter 4. J descrioes the functions and syntactic 
matke+,s, and Chapter 4.5 presents examples of SLprog1:ams. 
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In thi~ chapter, the Lunct~oli~ and syntactic marke~s a~e 
desc~ibed as they are used in the bas~c int~x fo~m of SL. This 
is the fo~m that people usuall.i want to s~e and to think about. 
Compile~s wiLL usually p~oduce the strict form, so a few p~op~e 
will be interested in Seel.ll~ strict form. Tne tollowing 
expression is written each way: 

(a+b) + (c+d) stow e 

stow (5 um (q uotient (a; 0) j sum (c;) J • e) 

The bas~c infix fo~m is descr~oed l.n terms of tue st~ict form in 
which the primary description ut 51. has been given. Eventually, 
this chapter will become a pr0:lralJunin<:j Iilanual and wiLL contaJ.n a 
partial repetition of a desccipt~on of the semantJ.cs of SL so 
that a ~rogrammer who chooses not to delve below the basic infix 
level will not have to do so. .t'.or the present, however, only 
enou~h semantics is given here to gUJ.de the reader wuo has read 
the previous chapte~s at least cursorily. 

In particular, the syntactJ.c iOLm oi p~09ram text is ~iscussed in 
2.2.2. Some ~eade~s will tina J.t nelptul. to ~eVl.ew that section 
befo~e readin'::l the following JescL J.ptions ot t unctions. 

Some syntactic lIlarkers have tu~ tOLw 01 Lunctions, so tuey are 
included in ttlJ.S expos1tion wJ.thout fu~th~~ adO sinc~ they have 
syntactic properties like thos~ OL t~ue tunct~ons. Included also 
for completeness a~e certain uther syntacl1c warke~s which a~e 
quite diffe~ellt: pa~enthes~s# braces, semicolon. These are 
listed in alphabetical order w~th tae other syntact1c markers and 
vitb tAe functJ.ons. It may be nelptul to Lead t~ese f1~st. 

The following examples expla~n tne 
n-adic functJ.on and syntactl.c lliarKer 
fOLm to basic infix form: 

f (x) 
f (x; y) 
t(X;y,z) 

becomes 
becomes 
remains 

f j{ 

x t 'i 
f(x;y;",) 

rules used to translate 
definitions f~om st~ict 
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If the fUnction ndme is d.lphd. ot:::tic, bld.uks must be used to 
delimit it. 

tHaIlks may be used freely throUljilout S1 LU lIlost Leasonable 
places. T hey may be placed be.c oLe .01" atter any non-alphallume ric 
character that represents a tUIlction or syntact~c marker, or they 
may be omitted. At ~east one blank must be used to separate 
adjacent dlphanumeric symbols. Waerever one blank may appear, 
dny number ot blanks Dlay be useJ.. Blanks must not appear in a 
symbol, in a function repr:esented oy something pL:oduce<1 with mOI:e 
than one key stroke, 01: in d con~tant that is Dot a character 
string. 

At present, evaluation LS lett to rignt, and· there is llO 

precedence except that seDlLcolons, parentheses, braces, and 
brackets are considered to de~imit expressions. aore precedence 
relations may be intcoduced LD subse ':luen t editLons. 

There are two classes of symbols: function symbols that 
repre5en t functions L'e gUU::Lllg arg uments and elementary 51' mb ols 
that represent ObJects that do not ce'iul.re arguments in order to 
be evaluated. In the strict Lorlll, th~ syntax of the expcession 
in waich tile symbol occurs ~ndLcates the class to which the 
symbol belongs. In the Dasic .LULix form, the not3.tLon is more 
concise and the class of a symDo~ .LS not indicated by the syntax 
of its use. Instead, the class LS recorded in tue dictionary of 
the module, and it is determineu by the aeiLIl.Ltio.n ot the symbol. 
If it is defined oy a ~ambda eXpr€SSLOn with one or mOI:e 
argulI~uts, then it is a t unct.LO II 51 mbol. If it is dei ineJ by a 
functional that has function symbols as arguments, then it is a 
function symool. Other wise, it LS an elementae y sy m.bol. (Ref. 
;. • .2. 2) 

Eventually, many tunctions anu syntactic markers will be 
expressed by single c~dracters. Foe this exposit10n, however, 
most of them are represented by mnemonic names or abbreviations. 

In certain cases a familiar cuaracter has been used (like + or 
-) . 

The iocm used to describe a tUllctl.On or syntactic marker includes 
a "where" sec·tLon that defu~es nOt.ation, va·riables, etc. Certain 
very COmmon abbreviatLons are detLned here for once and for all, 
and the definitions are omitt~j in the m.any operator definitions. 
T~e following are sy utactl.C VaCLdD..l.SS tha t stand for instances of 
classes of characteL· strings. Two instances of an abbreviation 
in a single expression do not. necessarLly stand for the same 
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string. If t11ey do, a digit· wil.l. oe appended (e. g., stmtJ); and 
th~ same digit w~ll be appended in two ~nstances that refer to 
identical strings. 

abbrev~at~on stands for 

expr expression 

stmt s ta temen t 

Eventually, th~s section will become a programm~ng reference 
manual with every function an~ syutactic marKer jascribed. At 
present, the funct~ons listed ~n sectiou 4.3.4 are not described. 
rlowever, the reader who~s tamLl~ar w~th APL cati un~erstand them 
well enough from taeir ndmes and irom the introductory remarks in 
4.3.4. 

Section 4.3.5 lists t unctious that are detiuea elsewhere or not 
defined in this report. 

section 4.3.6 summar~zes the s~tuatLon. 

Section 4.3.7 g~ved a prel.Lm~ndry rough d~alys~s of the 
complexity of SL, judging it ill terms of the number ot funct~ons 
and syntactic markers requ~red. 

The illnctions 
with the names 

and syntactLc mar~ers are 
.1.n t11e bottom ti tle. 

arranged alphabetically 

The examples given at the top ot each page ace intended to be 
exhaustive and to cover alL poss~ble uses of the symbol being 
defined. Th~s goal has Dot beau acnieved in Ed~t~ou 3. 

IBM ~0~fIUE~TIAL 



164 

examples: 

where: 

rHE MAN-MACH.1.i~£ IN'fERi·ACE IN AFS 

<j apply a 

a is an ordeIed list 
is a sin<jle symDo1. 

of symbols like (x;y), o~ it 

<j is an e~preSSl.Oll whose val ue is an unevalua ted 
expression or uueva.1.uated group of statements. 

value: The value of t.e last expression evaluated. 

side effects: None 

use: In the eXdmp~es: Tne dyadl.c apply applies 9 to a. 

comment: . 

References; 

The l.mplicit invocatl.on mecnanl.sm is occasionally 
inhibited by bUl.lt-l.n mechanisms to prevent 
ambiguity. Sometimes , tbe programmer 
inten tional.1.j l.nhitil.t s the in voca tl.Oll mecha Iusm so 
as to be au.1.e to mani pula te an eXl-'ression or gr cup 
rather than j~st l.ts value. When thiS is the 
case , it is clear from the definitions of the 
operators l.uvo.lved. 'rhe purpose 01. apply is to 
execute COBe whose l.nvocation DdS been inhibited. 
The dyadic dPp~y function also associates 
parameters wi til the. function it invokes. The 
monaul.c eva~ periorms this function without 
aSSOCiating parameters. 

~.2.6, 2.6.9.1 I eval 

ltiM CO~FlDB.TIAL apfly 

,/ ""-, 
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exaCllple: 

where: 

value: 

side effects: 

use: 

( 

cOCllments: 

( 
References: 

authori'~e 
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r author~ze x 

(e val u.a tes & cOil~ es) authorize x 

x is au 0.0 ject. 

r is a right~ eZpression. The allowable rights 
are t (1e };iresen t. tense tn~rd person sing ular verb 
forms of the D~me~ of the requests that may be 
made on an Object: authorLzes, copies, deletes, 
destroys, evaluat.es, ideutifies, Lnserts , selects, 
starts, and ~tows. To autnor~~e al~ rLghts 
available in tne Ll.gn t argument, !:>pecify "all". 

A synonym that provLdes authorization tor access 
to x. 

'fhe :;;ynonym, au object, LoS created. 

A synonym ~s li~d a pointer, but it bas safeguards 
so that it cannot be used except by requests with 
the pro~er authorL~ation. Unlike a pointer, a 
synonym automatically passes all authorized 
re,:!uests to the object to wii~ch it points, whereas 
a PL/I pOLnter ra~u~res a further operation on it 
to prod uce a val.ue. 

Synonyms dnd metonyms are accessors. it ~s not 
possible to convert any oth~r "dat.a type into an 
accessor. ThLS ~rotects the system integrLty trom 
incursLons of t~e soct that can nc accomplisbed by 
adding integers to P~/I pointers in OS/360. 

It LS poss~ble to couvert d synonym t~ a metbnym 
bi the enclose i. unction, and vice versa with a 
disclose tunction. 

fbe authorizdt~oll conveyed by a synonym is the 
authocity to use functions that use re,:!uests 
correspond~Bg to the rights Lll ~he rights 
expression. Notice that the names ot the rights 
are the L~rst persoa sin9ular verb forms ot the 
correspondin~ re~uest names. 

An author~~e eA~resSLon that attempts to convey 
rights not possesseu by tne object will raise an 
error except~ou. 

synonyms dnu mutonjillS are needed by data base 
applica t~ons • 

.r:!.1.5, 2.1.4, 2.0.3.5, syn 

I,H'1 L;Otjf IDEN T lAl. authorize 

I 
! 
!, 

I 
I 
Ii 
!, 
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examples,: (stmt .,stmt; stm tj 

L{stmt;stmt~stDlti 

{expr} 

value: Tae value of a gr:-oul:> of statem~Hlts del~m1.ted by 
brac~s and seDl1.~olons is a collective object Ca 
list) whose elements are the statemeats. 

side effects: None 

Uses: A pair of braces Ilelimits a portion of code and 
inhibits the Lmplicit evaluatLon mechanism. 

Comments! 

References: 

A specif ic use ot a pdir of braces is to delillti t a 
group of statements in order to use the group as 
an ar:-~umenL of d function. 

Another specif1.c use loS to enclose 
so as to LIlh.LD lot t ne action of 
evaluation mecnanism. 

an expression 
the implicit 

A pair of Draces may be used in SL to perfor:-m the 
funct~on of J;Li!:~IN; •••• ;END; or:- 1)0 ••••• ;END; in 
PL/I. A new enVl.rOfi~ellt is createa for a grou~ 
when .Lt is Lnvo~ed it and only if some function in 
whose arguments tne group appears or seme 
statement LA tue grou~ re~uires an allocat1.on of 
storage that is local to tnis invocation. 

BLaces can unly be understood lot one understands 
semicolons d.ud parentheses. See t~rst the page on 
delimiters and thea the pages on semicolons and 
pareutneses. 

brace~ are syntactic mdrKers that ao not appear in 
the code that tne machine executes. 

~.2.2, de~im~ters# s9mico~on# parentheses 

IbM CONFIDE~TI4L braces 
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~xamp!e:3: 

where: 
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p coudit~onaL ~~pL 

p is a pre~~cat~, an expression whose value is 
true, 1, or talse, J. 

value: When the value O£ the leit aryument is 1, the 
value of the e~press1on 15 the value of the right 
argument. When the value of the left aryument in 
0, the value ot the express10n 15 niL since it is 
not executed. 

sl.de effects: If the lett a.ryument is 1, control returns t rom 
the group. This 1S Like tne PL/i ~ErUR~-statement 
Which causes control. to retut'n :t.t'om a block. If 
the value ot tae l.ett argument is 0 the expression 
has no siue etfects. 

use: 

comml:'!nts: 

Refet'ences: 

condi tional 

To tet'minate 
cond1 tional.ly. 

the evaluation ot a gr oup 

The conditional provides the means to express 
conditLonal e~~ress10ns. It will probably be 
.represented by a sl.nyle cnaracter. In this case, 
nested PL/I IP TH~N HLSE statements, and LISE 
conditional sta t.eIIH::!uts wiLL be handled conc1sely 
and el.egantly. 

2.2.7, exit 

IBM. CONPIU,t;NTIAL conditional 



val\1e: 

THB MAN-·i'1;.ACuINB HHERFACE IN AFS 

p create ~ 

p is a ,pt"ocedure description. 

xis an object. 

An internal 
construe ts .• 

ideu tifler of the object it 

sid~ efiectp! It constructs dU olJjectwhich has, in its access 
machine, 1> as its proceilural description, dnd a 
process sta. tus record and inteI: prater that are 
appropriate to p. rna resourCe ot the object 1S 
a copy of the resource of x~ trans~ated to fit 
the ne.w acce.ss maChine. 

use: 

Reference: 

cre~t~ 

To construct op je'cts 115i119 so,ttvtlre proced ure 
descr11't io ns. 

2.tJ.2.~ 

ere ate 
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examples! 

value: 

SUM~ARY Ur uASIC INFIX Fo~a 

declare x 1 z stop static; 
V UU.l.:j ue. 

abc new automat.l.C 
{stmt; stmt; still t. stm t; stmt} 

declare d ':I 

d .l.S d list ot scope and storage class 

169 

9 is a yroup of ~tdtements. Among tnese may be 
statements that aLt~ct access macnines, in other 
~ords, declardL.l.ve statements, other than those 
that aiiect scope and. storage class. 

The value of tue group, 
of the last expeess.l.on 
exits trom the group. 

in otber words, the value 
evaluated before control 

side effects: The variables l.l.sted in the space between the 
declare mar&eL and the group have the attributes 
mentioned. 

use: 

comments: 

declare 

To maK.e scope and st.orage class declarations. 

The neea to separate declaL"at.l.ons of scope aud 
storage class feom other declarat~ons .l.sa result 
of the tact that SL is a machine language and the 
basic inf.l.x tarm is not rearranged betore being 
executed.. In tbe extended infix form declarations 
will probably De more li&e those ~n PL/I. 

iua C0~flU~NTlAL aeclare 
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i deletE! x. 

~ is a collect~ve aDject. 

~ ~s a memDe~ ot tAe index. set of x. 

value: 
>.~ ,,' . 

The er3twh~le ~th ~emb~~ of x 

side effects: The storage cell co~responding to 
i~om its iridex ~et •. 

i is removed 

us~: 

Reference: 

dele~~ 

To delete storage cells from tbe resource of a 
collective object. 

~.1.6 

IBa CONfLDENTIAL delete 
~ .< ',," "'" y 

"" , . 

,,{-. 

\~. 
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examples: 

u~es: 

comm.an t: 

deferences: 

deliJlli ters 

171 

{stmt;stwt;stlBt~ This ~s the external 
re~res.antatioD at d ~ollective 
object, a l~st of three 
unevaluatea statements. 

f(stmt;stmt;stmt)Th~s triad~c function~s 
Lnterpreted as a monadic 
(unction that takes as its 
argument a list ot the values 
ot the tbree statements. 

~(stmt;stmt;stmt} This ~s a monad~c function 

a + (b+C} 

{expr) 

tbdt takes, as its argument, a 
list 01 turee unevaluated 
::;tatements. 

the denomiuator ~s the value of 
the sum. 

The braces inb~b~t the implicit 
~nvocdtion mecnanism~ 

A pair of parentheses 
and aoes not 1. nh~j) it 
mechanism. 

delim~ts a port~on of code 
the impll.c~t invocation 

A pa~£ at braces ueliilll.ts a portl.on of code and 
inh~bl.ts tue ~m~l~c~t l.Dvocation mecbau1.sm. 

Semicolons del~mitl.ay the constituent~ of a 
portion at eQua, delimiteu oy uraces or 
parentneses, l.n~icdt~ that the const~tuents dre 
the elements ot d l~st. 

These ae~l.m1.ter~ dre shown toyetner on this page 
to illustrate the symmetry. For details, see 
references. 

braces, farentheses, sem~coloa 

Il<i!limiters 
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examples: 

where: 

value: 

llse: 

comments: 

References: 

disclose 

THE MA~-MA~alN~ I~rERI'~E IN AFS 

dlosclose II 

disclose n + 1 

disclose :l 

II is a metonym tor an object y. 

n is a metonym tor a floating point number x 
for which there ~s a synonym s. 

Y is d col~ective oDJect. 

x is euclose i. 

a synonym for 1, loL the argllment loS d metonym. y 
if the a rg umen t 1. S en close y. 

A meto.uy 111 is d. pOloute rand disc.lose is used to get 
at the value ~t POl-uts to. 

In the second exa mpl.e, n+ 1 would Laise an er ror 
except~on, wnereas 5+1 would compllte the sum 
co.crectly. Note that (disclose n+ 1) = (ru+1), and 
that (ru+ 1) ;: (x+l) • 

Foc any object x, disclose enclose x = x. 

2. 1.5, 2.1.7, enclose 

IdM GONI~DENTIAL disclose 
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example;;i: 

where: 

value: 

uses: 

comments: 

References: 

( 

enclose 

S~M!A~i OF uA~lC INF~X FuaM 17.3 

enclose x 

x is an object 

~f x is a collective oDj~ct, the value is a 
scalar obj~ct that contains the collective object 
x. 

If x LS a sj~onym, the value is a metonym. 

In the f LL"st ca.5e, lot is used to maKe it possi ble 
to compare characters instead ot bit vectors or to 
compare words iusteaa of charactor vectors. 

In the second case, Lt is used to ma~e metonyms 
which are like PL/I pointers. 

Par any oDject, x, dlosclose enclose x = x. 

2.1.5, 2.1.7, disclose 

IBM CONfIU~~TIAL enclose 

I 
il 
I 
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axalllples: 

",here 

THE MAN-MALHlN~ INfEHfACE IN APS 

~valui:1te y 

9 is an Unevaluated grou~ of statements or and 
unevaluated expressl.on. 

value: The value ot tila last expL-ession evaluated. 

5l.de effects: none 

use: To execute an expression or group waen the 
l.lIlplicit invocacl.on mechanism has been inhibited. 

comment: See the com~ent under apply. 

References: apply 

evalud te IBM CUNfLD8NTIAL evaluate 

/, 
; , 

rt'" 
\(/ 
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examples: exit expr 

value: The value of ex~t LS the value at the expression 
that LS it~ r1ght argument. 

side effects: If the ex~t statement occurs ~n a group, control 
returns from the yroup. Th~s ~s l~Ke the effect of 
tae eLI! dETU~N-statement ~hich causes control to 
returu from a b~OCK. 

use: To terminate tue evaluation of a group. 

References: 2.2.7 

exit (monadic-d yadic) ltiM CUNFID~NT1AL exit {monadic-dyaa ic) 
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example: 

where: 

value: 

THE MAN-MACrlI~~ I~TEdFACE IN AFS 

goto s 

s is d. symbol that Ad.S been used as d. label or- an 
expression that aas the value of such a symbol. 

The goto statement is not a normal expression and 
<l oe s not h d. ve a v al u e • 

See comments below. 

side effects: The goto ~enerates d se~uence exception which is 
nandled by the monLtor. Tae next express~on to be 
executed LS tao one whose laDel is the right 
argument o~ goto. 

use: To perform the tuuction of go to or branch in 
object code prouuce.:1 .l.n translating fL:'olU other 
lan'juages. 

comment: goto is not necessary for prograllis written in SL. 

t{eference: 

'J oto 

Many users wLll preier to el.l.minate it trom the 
repertoire of functLons availaDle. 

If it is fea~uble to label expressions as well as 
statements, and if it is feds.l.ble tor a goto 
statement ~o nave t.e value of the last previously 
evaluated eXpre.tiSLOU, then t.e (jato will provide a 
particularly po~erful tool. rlowever, this 
capabil ity Wl..11 not be d.dded if it impl ies 
significant cost increase or performance 
deyradation. 

label 

(joto 
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.axample: ibase x: 

where: x is an drray 

value: The index base of the array x wh~ch is a list of 
I1sts. The ith sublist is d lise of the values 
that the 1th element of a memDer of the index 
set may taKe, dnd they are l1seed in order of 
increasing value. 

siJe effects: The IJ.st of lists 15 created. 

use: To generate the index base. 

comments: The abbreviatiou iDdse stands ior ~ndex base. 

Reference: 2.1.7.3 

ibase IbM CQWFrD~NflAL ibase 
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igemn:ator s 

il:leneratoc (0; I ;L) 

where! s is a lL~t of pos1tive 1otegers. 

value: A list of lists at integecs. Each sub11st is a 
pcimitive index set (i.e., ·0, 1, l, •••• ,n), and 
the number of elements of toe kth sublist is the 
kth element of s. 

s~de effects: The list of ll.sts 1S crea ted. 

uses: 

igenerator 

To genecate the inaex base foc a primitive aJ:cay 
tcom thesllape of tbedrray. 

IBM CONFluENTIAL 1genecator 
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examples: 

where: 

value: 

side e.tfects: 

cOllHuen ts: 

Refecence: 

( 

ilist 

SUMMARI Uf d'S~C INFIX iUrlM 179 

i1ist x 

x is acollect~ve object. 

A list that ~s d copy of the index set of x. 

Production of the copy. 

If x is a vector, lo1ist x ~s the same dsthe 
APL expression loota rho x. 

The dobceVlodtl.On "lollo5t H stands tor "loodex list". 

~. 1. ~ 

ltiM CONFlU£NfIAL 1.1 ist 
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example: 

where: 

value: 

side effects: 

use: 

cOllllen t: 

References: 

insert 

THE MAN-aACh~NilNTE&FAC~ iN AFS 

i insert x 

3 replace (i ~nseLt X) 

i is an object, not ~n the 
suitanle to De added to it, 
object nil. 

index set of x but 
or it may be the 

x is a collect~ve oDject. 

An im pi ici t.J..y de:LuH:lci synonym of the i compon en t 
of x. 

(1) A new storage cell is added to x. 

(2) i is added to the iuaex set of x.. 

(3) ~ is mappe~ outo the new storage ce~l. 

(4) A copy of uncie! ~s place<i in tha cell. 

An important use ~s the one il~ustrated ~n the 
second examp~e which aaas an object, a storage 
cell to put it in, and a member o£ the index set 
ot access ~t w~th. 

The new member ~s added to the end at the Ludex 
set, if tne inaex set is ordered. To 1I0ve it 
elsewhere, a sllosel;iuent appl~cation of .£Q!!!~ will 
do so. 

If ~ is already d member of the inuex set of x, 
or if L LS not n~i and not in tne admissible set 
of ~ndices tor X, au error except~on ~s raised. 

2.1.7,2.6.3.2 

Irll'l CONk'I.l)ENTIAL insert 

_/ 

;(- --" 
\ ;. 
1,-_/ 
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example: s:expr 

where: s is a symbol. 

value: Tae vdlue ot s:ex~r LS the value ot expr. 

side effects: The symbol s becomes a label of expr. 

use: 

comments: 

label 

To attach labels to ex J:lressions so tUdtthey may 
be the tdr~et of a ~oto fUnction. 

The colon ~s d Syutdct~c mdr~e~ that Lndicates 
that some sywnol is a label dnd indicates the 
express~oll that ~t IdDels. 

A laDel ~s a read only value in~t~ali~ed at 
comJ:liletime. 

Labels ap~ear to.be useful primarily for object 
code created Dj trdnslators tram other Idnyuages 
and liot for lldt~ve moue 51 pro~Ldmmin~. 

Poss~Dli, ~t w~lL De found that only statements 
can be labeLed, an~ that Lt LS too costly to be 
able to label expressions ~nside statements. 

l.di"i ~vNF IV.t;;.NTIA1 label 
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examples: 

wh.eJ:"e: 

value: 

THE MA~-MACHrNE lNT~RFACE IN AFS 

a lambda y 

(Xif) lambda {stmt;stmt;stmt} 

a ~s an o£dered-l~st Df symDols. 

9 is a 9J:"ouP 

x and yare symbols. 

An n-ad~c fuuction whel:e li is the uumbel: of 
symbols in tbe lett al:gument. 

side effects: None 

use: A lambda e~pression may be assigned to a symbol, 
making it a fuuct~ou symbol. Altel:natively, the 
ldmbda e.l(t!l:ess~on lllay De useJ l..n Flace of a 
funct~on symbOL LU dU expl:ession. 

commehts: The lambda e~t!re5sLon is the means, in SL, to 

.deferences: 

lambda 

extend t~e functLons available. 5L may be 
extended in data types by det~ning new access 
machines. To accolllmodate new data types, cld 
funct1..ons must be I.:edefined by dssi;Jnl.ng to them 
the value ot an appr:opridte lambda expression. 

The lldmes 
g.l.ven l..ll 
they must 
funct ion. 

or tae arguments of the function are 
the sYlllbol list in the oJ:"der 1..0 which 
appeal: iuan expressLon that uses the 

2.2.3, 2.6. 1.2 

lam bda 
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examples: 

where: 

va lue: 

183 

parallel Ij 

paral~el lstmt;~tmt;stmtj 

g is a group. 

A vector whose elements are the values of the 
statements ~ompr~s1n~ tne group. 

side effects: None 

use: To stdte that the statements compr1s1uy. the group 
may be executed 1n ~arallel or.Ln any order the 
machiueselects. 

References: 2. 2. 5, .2. ti. 9 • .2 

parallel ~BM CONilDENTLAL parallel 
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examples: f(stmt;stmt;stmt) 

al (b+c) 
value: Parentheses do not ~nhibit the ~mplicit invocation 

mechanism so the value ot a portion of code 
delimited by pdrentheses ~s either the value of an 
expd:~ssion or a l~st of values of statt=ments. 

side effects: None 

use: A pail: of fldrtm Laeses is used to delimit a flort ion 
of code w~thou& ~nhinit1ng the implic~t invocation 
mechani s m. 

comments: 

Refecances: 

parentheses 

One specif~c use or parentheses is to control the 
order of executLon of functions in an expression. 

Another specif~c use at parentheses is to delimit 
the argument l~st of all n-adic funct~on ~hen n 
is greater than 2, and when, as is usually the 
case, the arguments art= to be evaluated before the 
function ~s evaLuated. In SL, such a function is 
interpreted to be a monadic lunction that takes 
the argument list as 1ts argument. 

parentheses, ~t ~s necessary to 
serlUco.lon and braces. Head first 

de11m~ters and then the pages on 
Draces, and semicolon. 

To uncle rstand 
understanc.i the 
the page on 
pdrentheses, 

deIim1ters, urdces, sem~colou 

IBM CONFID~iTIAL parentheses 
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example: 

where: 

value: 

side etfects: 

use: 

Reference: 

( 

remove 

lb5 

remove x 

x is an object. 

x 

A cOPJ 
that·1.f 

of unda% 1.5 placed in the storage cell so 
x is evaluated a~ain, au error exception 

is raised. 

To remove the contents ot a storage cell without 
destroying the cell. 

2. 1.6 

Iba ~0~FIDBNTIAL rem ove 
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IIhere: 

side effects! 

use: 

References: 

repeat 

f! rapea t 9 

1 sto wi; (i(10) re peat (i+1 stOWlo; stmt.stmt;stmtj 

P is a pr~dicate, aD expression that evaluates to 
1 or 0 

g is a group ox statements 

i is an integer 

None 

The left argument l.S evaluated. 
one, the argument on the right is 
the left argument LS reevaluated 
repeated. If the value of the 
zero, exec utLOll ~l1ds. The value 
the last expression ex~cuted 

argument. It the CLybt ary~ment 

at all, tbe value loS nLl. . 

If lo ts val ue is 
evaluated. Then 
and the cycle is 

left argument is 
is tile value 0.1 

ill the I:l.ght 
LS not evaluated 

'rue second example .l.S equivalent to , lon l:>L/I: 

DU 1=1 TO lv;stlllt;stmt;stmt;END; 

The exten<.l.ed l.nf,l.x fOLm will t>robably hav'e a 
DO-statement of this sort. 

repeat 

\. .. ./ 
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examples: x re~lace i 

where: x and y are obJe~ts 

value: The value ~s d copy ot x. 

aide effects: The oDject y LS d~stLoye~, unless y refuses to 
destroy itself. In tuis case, i rellla~ns unchanged 
and an exception occurs. 

use: Usually re~lace LS used Wheil ooe argument or the 
other ~s an ex~ress~on that bas the value ot an 
oDject. Then it ~s possible to make an object 
that ~s it copy of a component ot anothec object or 
by usin';i ~nsert, to add a copy 01 ail object as a 
new elemeut of another ObJect. 

comments: 

replace 

Notice tnat r~~ldc~ Changes the whole 
Doth access lIl~ch~n~ and r~source. stow, 
other hand cuan~es only the ~esource. 

References: ".1.7, 2.6.4 

object, 
on the 

rel'lace 

I 
I 
I· 
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·\:!xample;': 

where: 

value: 

comlllan t: 

References: 

delect 

THE MAN-MA~HIN~ ~NT~BFACE IN Af3 

i Sl:!lect x 

i select x stow y 

x is a collective ouject. 

i is a mambeI: 01; a synonym for a member of the 
index set of x. 

Y is an object whose access maclli!le is suitable. 

An implic1cly def1ned synonym f01 a member of the 
right argument ~hoSe index is the left aI:gument. 

select tioes uot create a copy but merely 
1dentities soma parcor parts 0% the collective 
object that coustl.tutes the r1':lht argument. To 
create a copy, ~t is possible to use a stow 
funct10nas 1H t.b.e second exaillfile. 1n this case, 
tbe target y must have an access m~chine that is 
suitable tor the l.tD element ot x. 

2. 1.5, 2.6.3.1 

IBM ~ONfIDENTIAL select 
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e.xamples: 

value: 

side eff ects: 

comments: 

References: 

(-

semicolon 

SUMMAR1 OF U&Sl~ lNF1X pOrla 189 

{stmt; stmt; stllltj 

t(xa.z) 

Semicolon does not h4ve a value. 

The seru~coron.l.s a dS.l.illliter Villose precedence is 
lower than ant .tunctioll or functional. If two 
expressions ard adjacent, one must be an operator 
and the other must be one of .l.ts arguments. 
HoweveJ:,.l.f a se lIi.l.colou inter veues, they nee eme 
two elements of a l.l.st. As such, they are called 
sta temen ts. 

The difference between a statement aud an 
expression is tuat a statement .l.S a member of a 
gtoup of statements aud then, Wben the ~roup is 
evaluated, tae value of a statement .l.S discarded 
after the execut.l.OU cursor passes the semicolon 
and before evaluation of the next statement 
beS/ins. 

The semicoron is used to delimit the arguments of 
an n-ad1c fUnction when n>=3. Tae comma ~s not 
used Decauss .l.t is reserved to be used as the name 
ot a function. 

To understand the sem1colon, it is necessary to 
understand brdces aud Pdrenthe~es. Head first the 
page on de~imiters and then the pages on braces, 
parentheses, an.a seml.colon. 

2. 2. :2, Je.li III.l. te L.\:i, braces, parentheses 

IBB CONFIDENTIAL semicolon 

I 
It 

I ~, 

ii 



190 

shape a 

where: a is an array 

value: A list of inteyers of lengthr where r is the 
rank of th~ array (the membet ot d~mensions) and 
the 1th elemeut 1ll the list is the size of the 
ith dilllens.1.on of th~ array. 

side effects: The list is cre4ted •. 

shape IBM CO~FIDENTIAL shape 
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examples: 

where 

191 

X stow y 

x and 'i are ou]ects or ar~ expre.:::;siolls that have 
the value of objects. 

value: The value ~s an oDject that has the access machine 
ot y and t~e retiOUrCd of the value of x. 

s~de effects: The left aLgumeut iti eVd~udted. fhen, the right 
argument is eval Ud ted. F l.nally, the resource of 
t.he value ox. the right argument replaces the 
resource of tue val. ue of the left a rg umen t. 

uses: This is the normal assignment taat takes place in 
languages like eL/l.. 

comlilents: 

References: 

st01ll 

To produce the ~l.na ot assignlilent that appears in 
APL tiee replace. 

2.1.4, 

l.BM CONFIDENTlaL stow 
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exalllple: 

where: 

value: 

THEMAN-MA~HL~e I~fERfA~E IN AFS 

syn x 

x is au object. 

A synonYIIl that ~rovides authorization for dccess 
to x. 

side effects: The synonym# an obJect, 1S created. 

use: A synonym LS 11~a d ~01nter, but Lt has safeyuards 
so that ~t Cdnnot be used except by re~uests with 
the propeL autuor1zation. UnlLKe a pointer, a 
synonym autoUi at Lcally passes all a utnon. zed 
requests to the aDject to whicb it points, whereas 
a pOLnter demands a Iurtker operat10n on it to 
produce a value. 

comments: It 1S not poss1Dle to convert data 0% auy other 
kind to d syuonYliI. Th1S ~rotects the system 
Lntegrity froil 1ncursions, SUCll as can be 
accompl1shed by ada1ng integers to PL/I ~01nters. 

Refere nces: 

syn 

To yener ate a 
already ha;;;) it 
function. 

synonym with fewer r1ghts than one 
1S necessary to use the authorize 

SynonYllls dre nae~ed for aata base applications. 

2.1.5, 2.6.3.5# 2.1.4, authorize 

syn 

/ 
I, ,/ 
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From the precedLng discussLon and a Knowledge of APL., the 
dpproximate meaning ot the fol~owin~ w11l be obvious. There are 
a total of 59 funct.1.ons.1.u th.1.s category. Notice that some APL 
tunct10ns are defined elsewhere dnd are not l1sted here. the 
nyphen indicates when a d,tadl.canQ monadic tunct10n are related. 
~heu the SL nallle differs tram the APL name, it is snown in 
parentheses. 

11Q!!~di£ 
plus 
recip.I:ocal 
negatiVe(m.1.DUS)
signulII 
ceL11ng 
floor 
ex~onential(exp)
na t .log (In) 
maljn itude 
sin 
cos 
tan 
arcsin 
arccos 
arctan 
sinh 
cosb 
tanh 
arcsinh 
arccosn 
arctanh 
not 
membe.I:ship 

ravel 
revet"se 
transpose 
grade up 
grade down 
pi times 
reduction(reduce) 

Qyi!~!.£ 
pl. us (sum) 
U1 v Lde (<juotien t) 
ilil.nus(d.itference) 
ti mes (product) 
maX.l.lIlum 
IUfi.l.lIlUm 
power 
log 
res.l.due 
and 
or 
ndnu 
nor: 
less (1 t) 
not greater(le) 
equal (eg) 
110t less(ge) 
greaterige) 
not e<jual (ue) 

ta~~ 

dI:Oj;l 

reshape 
catenate 
rotate 
trauspose 
compcess 
expdnd. 
outer PI:'oJ.uct 
l.uae I:' pI:'od uet 

someone might argue that the c.1.rcular .LUllct10ns are just one and 
not 13 iunctions. From one pol-nt of view, thet are 13 functions 
with hard-to-rememoer names. 

IBM COl~~' IDENT IAL 
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The following 38 functions dre d~~iuad or identit~ed elsewhere in 
this report: aguire, augment, ~a~e value, claim, connect, copy, 
delay, delayed parse, destroy, tree, identify, ignore, index, 
inject, insert symbol, ~nteojuCa,list, load, locate, map, 
member, monitor, namsvalue, pOlone, prioI:ity, quotiellt_remainder, 
release, representat~on,send answer, send message, sLgnal, step, 
suspend, translate (dyadic), tl: ansl.ate (monadic), u It imate, uni que 
name, wait answer, wdi t lIiessage. 

Defined in 4.3 
Identified by APL 
Indentified elsewhere 

28 
59 
38 

12~ 

The complexity of 5L can be measured roughly by compdcLny it to 
APLIHti::: b perf o.cms a much more c onstraloned function but has large 
areas 6f similarity. To do this the A~L fUnct10ns that remain 
will be dientified. 

There are 8 APL functions that have clear conterparts among the 
5L funct~ons mentioned: branching(goto), function 
definl.tion(lambda), lOCdl var1dnle identif1cation(declare), 
speCification (replace), siJ;e (silape), tI:ace con teol (monitor arid 
ignore), label (label), indexing (select), comma (augment). 

rhere are 50 more APL fuuctions to do things tuae 5L will do but 
tbe re~ationship is not direct either Decause the details have 
not been worked out or because the work is done difierently. In 
some cases the work is actually done by functions already 
identified. These are: editill~ control, editl.ng . ~arl, display 
controls, locked function, stop controL, terminal input, 
character input, 34 system commauds, 9 system aependent(I-beam) 
functions. In SL all of· these thl.n~s will be done with the kind 
of functions so far identl.fied. Taere will not be the diversity 
seen in APL/36u. 

~inally there are 9 APL 
programmed: 

functions that w~ll probably be .{ 
l 
"--



( 

( 

(~ 

Chapter 4.3 

encode 
factorloal 
roll 

SUMMARY O~ BASI~ INFIX fORM 

decode 
Dlonomial coettlociant 
deal 

three square roots at sums of s~uare~ 

1~5 

No decision has been maQe a5 to which of these marginal APL 
functions belong in the basl.c ~nil.x level ot SL and which should 
be proqrammed. It may be, tor example, that none of the clorcular 
functions will be in the iTlachine language. HOifever, allot. them 
will be in the extended l.ntl.X torm dnd allot. them will be 
supported where they appear loll tae varl.OUS favored hloyh level 
languages. With this iniormatl.on, tl~ languages can be compared 
as follows: 

APL/360 functions with d~rect 5L counterparts 
APL/360 functions 5L will cover 

APL functions to be programmed 

SL functions with clearly deiineu APL counterparts 
Other ~dentitied 5.L tunct~ons 

67 
50 

117 
y 

126 

67 
5d 

125 

Clearly more I:unctions inll De adiltHi to 5L. dowever, it seeDls 
clear that SL will be oniy a 11.ttle more compllocatel that APL/360 
while providing much more capaul.litj. 

IBM CONFlDENT~A~ 
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E~AaPLES uF SL PROGRA35 

T~is chapter demonstrates tue suitabil~ty ot SL as a target 
language for the transldt~ou of programs from PL/I, COBOL, 
POHTdAN, APL, hPG and LISE. For each of taesa langaayes, typical 
program· constructs are illustrated (alollY with contextual 
information when a~propriate) dnd followed by an equivalentSL 
construct. Tbe 5L exam~les given are written ~n the basic infix 
nota ti on (refer to Sec tion 4. J) • 

Programs written in SL .to accompl~sb these same purposes would be 
much simpler since they woulu not involve the complexities of the 
various source languages. 

Example of simple case of PL/I ))0 statement: 

DO I = 1 TO 10. statement_l~st; EN)). 

The 5L code for the above ~s: 

)->I; {I+l->IS10Jrepeat(statement_list} 

In a somewhat more compl~cateQ case with var~ous data types 
involved in the iteration caiculation, there can be rounding 
problems thatp:LOhibit tue simpLe initializat~on used above. 
Furthermore the value 01: tile iteration limit CdR be cuanqed 
during the iteration so there must be a tempo~ary.In this 
case: 
DO 1=1 TO N; 

statement_list 
END; 

Equivalent SL group: 

{declare C unique; 
(0 stow C; 

(eval(C select t{l stow r }. 
(I sum 1 stow I Ie N stow Cj 

} 
,f .. 
! 1, 

'-



( 
cha.pter 4.5 

} 

} 
} rapeat {~ta.tement_listl 

} 
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The general case ot the PL/l DO statement is much more 
complicated than the ord~naLY user realizes, or can utilize 
often. A tull explanat~on OL the interaction aL the TO and HI 
clauses with the WHILE option, wLth more tnan one specification 
present, may be fauna ~n the PL/I ~anguaye SpecLiications 
manual (Y33-6003-1, pp 144-140) or the PL/I (F) Language 
Reference Manual (C28-U201-2, pp 3b4-3b7). TnLS general case 
can De programmed in 5L uSLny d sLuyle SKeleton (with the 
possioility of Lepea~iny one section as toe multiFle 
specifLcatLons re~uLie), suust~tutiny tor the ndmes ot the 
variables used in the DO statement. Au example af tais is ~hown 
below: 

DO I=Jl TO Kl HY Ll~HILE(~l>, 
J2 TO K2 BY L2 WHILE(E2), 

• • • 

END; 

~quLvalent SL group: 

(declare U V W C BODY TEST ilD~que~ 
synlstatement_listJ stow BUDt; 
syn{signum V Is 0 selectlI Ie UtI ye Uj} stow W; 
to stow C; 
;:;yn{evdl .. dud Elj stow'I'EST; 
{eval(C select {[Kl stow U;Ll stow V;J1 stow l;lESf stow C}; 

} 
} ra peat HODY 

j ; 
{J stow c; 

{I sum V stow I;TEST } 

syn(eval Wand ELJ stow T~~f; 
(eval(C select llK2 stow U;LL stciw V;J~ stow I;TEST stow C); 

} 
} re pedt BODY 

} ; 

• 
• 

[I sum V stow .1j'rESi' } 
j 

ltiM CO~'LDENTIAL 
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} 

~ote that the first three lines ace the setup co~e wb~ch need be 
present only once regaraless at the number OE specifications 
appearing in the origina.l !!l./I 1)0 statement. These are foL.lowed 
~y a pattern ~roup wbich is cepeated once perspec1tic&tiori, 
separated by semicolons as necessary, and te.cminating with the 
final right brace. 

This general skeleton can De s~mplified substanti~lly by a 
compiler if the original uu statement does not contain all of 
the most general vptions. Fol.: example, if the eXi:'ressions in 
either the TO or BY clause3 are constants, tue corresponding 
temporaries U and/or V can be eliminated. If the BY expression 
is a· constant, then the entice expression "si~num V 1s on can 
be evaluated at compile t1me, and the result can be used to 
chose the expression to oe sUDstituted for W. suff1cient 
evaluation of constant expr:essJ.:ons at compile tillle can result 
in the reduction ot the general case to a much simpler program, 
like the one shown for the sl.mpie case of flL/l DO. 

Example ot BXAMINE, If' and ALT zli st.a temellts: 

EXAMIMB INPUT-RECO~D TALLY~N~ ALL ','. 
IF TALLY IS i~UAL TO 0 

THEN ALTER SWITCH tu PHO~EED TO EXIT. 
• 
• 
SWITCH. GO TO. 

Equivalent SL statements: 

eLe~ sum reduction 'INPUTBE~ORD member ',') stow TALLY; 
eval ({; {EXIT} stow Xj [TALLY eq 0 J, ; 

• 
goto X; 

Example of ARITHMETIC IF statement: 

IF tE) 12,56,13 

IBM CONFIDENTIAL 
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Equivalent 5L statement: 

yoto(signum E select {12.;56;13j) i 

Example of LLSP conditional statement: 

COND«(Pl Ell 
(P2 £2) 

• 

(Pn En) ) 

Equivalent SL statement: 

eval(Pl condition El;P2 cond1t1on ~2; ••• ;Pn condition En,; 

199 
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A LOGICAL IMPL£MENTATION 

A logical implelllenta tion of the sy.;;telll l.S bel.ug uefined using the 
Vienna Definition Method.llu.tl.allyt.ile logical implementation 
will be presented in Engll.sh. In later verSl.ons of the document, 
the formal notation will be l.ntroduced. 
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BASIC STIWCTURE 

An .QQj~i £2!!:!£Il!££: is a stora-;e cell and its contents. 

A 2!:.Q.~gg,~£g!.!. is nallled by an iid dne\. conta~ns 'jueue(s), a queue 
manager and an object. rid's dre un~que, not reused. An iid is 
the internal representatLon oi a cell name. A storage cell is 
known as a !B!iig,£when the ownet'sh.l.p conventions are suspended, 
e.g. a request is always sent in d bufter because ownership of 
the object construct is retained by the sender until the 
recipient accepts it. 

A ~gl!~ contains the iid. 's ot butters WB.loCh reprasent messages 
being sent between ooject constr ucts. . t,.!ueues are organized ina 
FIFO fashion. There are re<juest queues and response queues. 

A £.~~.!!~g g!!g~ queues 
processing by the access 
this object construct. 
request queue. 

the loia';;) at requests intended for· 
machLne associated wita tae object ot 
Evert storage cell has at least one 

A ,£g§£2n§g gyg~~ queues tue .l.LU·S ot responses for processing by 
the access lllachiae associatedwlota the object of this object 
construct. A storaye ce..ll lIlay tid va none, one, or more resFonse 
·-iueues. 

A .!!~~~g whose loid is pliiced ou a ':lueua is the communication 
llonk to and frolll ob ject constructs. There at'e re-juest messages 
and response lIlessages. 

A ~~~~ ~alla~~£ is associated w.l.tn the queues of each storage 
cell. It is the cOlllml1Il.1.cation in terface betw~en othe r obj ect 
constructs and the object of tb.l.S 0bJect construct. As soon as 
~n object construct is created, toe queue lIlanager can beglon to 
handle incomin':j requests. :£ne ':i ueu~ lIliinager of eacn storage cell 
can bandle lIlessages.1.n p~ra~Lel ~~th the queue managers of all 
other storage cells iu th~ siste~. Eacnqueue manager handles 
its messages sequentially. The Log.l.C of queue managing is 
written extralingually, e.g. in micro-code. 

An Q&j~£1 contains an access IIldchl.lle dnd a resource. 

An ac£g§§ !ru!£il,!!!.g is assuciateu. W.1.til the resource of edch Object. 
It is the process.1.ng interface ~etween the queue miinager and the 
resource of this oDJect. As soon as an object construct is 
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creoted, the access wachine can beyiu to proce~s 1llcoming 
requests. Th~ access machine ot eacn object can process messages 
in paralle~ wito the acqsss macnines of all otber oojects in the 
system. The access machine process 1S uescrioec1 by three 
cowpon~nts. Tbese are a proceduLal Jescription, an interpreter of 
the procedural description, anQ d process status record (PSB). 
The procedural description da.':icribes .the process1ny logic. The 
1nterpreter proviaes the actual motive force tor t~e process by 
interpreting the procedural description. The P5ti is an area of 
storage in which t be in tel:p.ceter records the current sta te of its 
interpretation ottbe p.l:'ocedul:al descrij!tion. The logic of an 
access machine is written either extralingually or in 5L. If the 
logic 1S written extra11ugually, the object is said to be 
£I.iU.£iv~ If the logic ·is we.:Ltten in SL, the object 1S said to 
be regJ!£ible. 

A £I.U.!~ivg o.b.J~£~ is an object wnuse access mdch1ne is written 
extralingually. All requests sent to the queue manager 
assoc.iated with the storage cel.l couta1n1ng a fJrimitive object 
are passed by the que ue mana9~r to the dccess machine ot the 
primitive object for proCeSS.L.IlIj. Iri fact, s~nce the 10g1c ot the 
queue manager and of the aCcess macoine aLe not~ written 
extralingually, t.be fUBct10ns O~ tne ~ueue mduayer can be merged 
i~to t~e funct~ollS of thd access maC0111e for pr1mitive Objects. 
This is being done in the logical definit10n. Fuether, since the 
procedural description, tAe 1Ilterpreter:, and t.he PSl1 tor a 
primitive object are all extrdliugual entit1Bs, these components 
are nat separately denoted, but are jointly denoted oy the object 
type, e.g. a LIST-type aDJect. 

A ~Q.!!£!:12!~ Q!2j~£! is an object wh;)se access machine is written 
in SL. All reqaests sent to toe queue manager associated with the 
storage cell containing a reduc~bl~ object are passed by this 
queue mdnayer to the inter p£e t.e r: ot the SL code wh~cll by be iug 
~nterpreted will process the requests. Since tne procedu ra1 
descr iption, the inter preter, an ci t.ue P5d tor a l:eciuc.l.ole ob j€ct 
are all SL entities, these components are separately denoted by 
their three iid's. 

A ~2.Q.YI£g contains the uudifterentl.atea data value owned by the 
access machine. 

When commun1cating witA fore~gu arcb1tectures, it 1S not 
meaningful to transm~t the 11~ of a storage cell conta1nillg the 
object of interest. It 1$ necessaL'y to transi1\l.t the, object part 
of a, storage cell as a piece of data. An Q.Qj~£:.t. :!:!~g~ is the 
representation of the object~art ot a storage cell as data. 

Parts of the logica ldefini t1 Oil of SL reguil:e representing 
certa.in hardware boxes. Lt;i:s advi:lutageous to .represent them as 
far as possible as object COIl.::itructs. .Instead of being located 
via an iid, a quasi-object constr:'uct is located via its gid. 

l.iH~ CO~f ID£NTIAL 
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Oid's are un~que, not reused, ~ud ~ce d~stingu~shabLe trom ~id's. 
In all other respects quasi-ouJect constructs are treated like 
object constI:uctS. A g,J!!ls~:.obj~£.t is a representation of an 
entity .requiring service when service is prov~ded by multiplexing 
a finite number of servers over a potentially intin~te number of 
such entities. For exalllpl.e, the ~§1!~I-type object (quasi-SL 
interpreter) represents tue re~uirement for hardware multiplexing 
ot a finite set of I-Boxes over all ready processes. The 
Q~!!1-type object (quas~-evaluant) also represents the 
requiremell t for hardware multipl.e)u.ng at a f~n;l.te set of I-boxes 
over all reallY processlds. ·rite ~§!Ha-type ObJect (quasi-sulIl) 
represents the requ~cement for l1ardWare Ulultiplex;l.ny of a finite 
set of adders over all ready processes. 

1- ....... - -- _ ....... --. ...... - ....... - -- -
I 

I 

I , , , 
1 

"..Q\..C..E!u.es, ;;cl" " 
~ ____ ~ ~-------~ -- --P-----~ 
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BlAfter cell 
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-' 

Figure 5.1-1:Structure ot d storage Cell and ;l.ts Contents 
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The user who writes a str1.ct syntax SL tlcogram deals with. 
syntactic oparatocs and syntactic simple operands. ~hen his text 
is interpreted, the names he used tor h1.S syntact1.c :>perators and 
simple operands will berasol ve 11 to some i1.d • informally, both 
operators dnd operands are re~resented by objects. To the user 
ah opecator represents an aDject which he ~ants to invoke, to 
pass some arguments, to have it otlecate on the arguments, to send 
back an answer, and to ~uit. fo tue user, an operand cepcesents 
an object which the user w~nts to pass as an acgument to some 
operator. 

The name, e.g. sum, syu, cLeate, foc a pC1.m1.t1.vely defined 
syntactic operatoc cesolves to an iid of d storage cell of an 
object construct whose object's object-type is PfUNCTION (foc 
primitive function) and Whose cesource pact contains an 
indication of the pc.i.m1.t1.vely uef1.ned ope.ration to oe pertormed, 
e. g. addition, synonym creation, oDject coust.c:uction. 

The name, e.g. translate, S1.n, tor a ceducibly defined syntact1.c 
operator resol ves to an iid or. d. stot·age cell of all object 
construct whose object's type loS fUNCTION and waose resoucce part 
contains the iid of the 51. text, the iid of S.L symbol table, the 
iid of the SL link table, auj the iid of the outstanding 
activation tab~e. The interpcetat1.on at the S1 text aefines the 
opecation to be pecforaed, e.~. progrdm translation, sine 
compll tat ion. 

The name for a pcimitively ue~~ned syntact1.c simple operand 
cesolve::; to an iid of a storage cell of an object constrllct whcse 
obJect's object type could be INT~~ER, LIST, SIN, FUNCT~O~, •••• 
in the case ot an INT~GE~-type object, the cesource part is the 
in teger itself. 

The name for d redUC1.Dly jei1.ned syntactic simple operand 
resolves to an iid of a stora~e ceLl of an object construct which 
contains a reducible object. The resource part of the ceducible 
object contains the iid of storage used by 5L text as it is being 
ill ter pceted. 

IB~ C0NF1DENTIAL 
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BASICi.1r.;CHAl.l ISMS 

Some ot the most important ba~LC ruecnan~sms are th~se permitting 
message communication betw~eu object constructs dnd those 
permitting message hdndl~ng ny an object construct. 

The 1ueue manager assoc~ated wLtb the ~ueues oi au object 
construct can invoke the message communicat1on mechanisms. They 
are: send request mechan.l.sm# f OL'WdL'U reC:iuest mechan.l.sm# and send 
response mechanism. 

The queue manager CdO alsu 
mechanisms. They are: waLt tor 
response# read response. 

Luvoke the message 
re~uest# read request, 

Ilanal.ing 
vai t for 

rhe access machine associate~ w.l.tn the resource of an object 
performs the actual process.l.n~ ox tn~ re~uests anu the responses. 

conventions for the forlildt Ol. a 
cre4tor of Ule message, tne C:iueue 
uses these conventions. 'rhey are! 
response format convent.l.on. 

message are ~ntroduced. The 
manager or the access machine, 

request format convention and 

In describing the mechau~sms Ln ~n~lish, the logical steps are 
listed sequent.l.ally. In tact some ot these steps will occur 1n 
parallel, dnd will be so llotell Wlleu we descr~be t ha mecnanism in 
VD~ notation. 

5.2.2.1 Send Request decnan~d~ 

Queue l.'1anager" 

1. passes 
lIleChan~dlll: 
recip1ent's 
representing 
. request, the 

the folLow~ng ~ard~et~L'S to the sena request 
of the request, the 
iia O~ the bu1£er 
of tue sender of the 

the iiu of the recLpient 
request (iueue nUlUuer ~ the 
the re~uest message, the iid 
sender's response queue nu~ber • 
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Send Request Mechanism 

2. produces a unique msgid. 1* A rnsgia is a uniiue identifier 
used to tag a request for the ~urpose o± responding to it.*1 

3. completes the re~uest message oy adding the msgid to the 
request message. The ~id of tb~ re~uest message ~s tbe iid of a 
buffer containing a LIS~-type object. it replaces the first 
subobject of this .LIST- type object with a 11SGl.U-type subobject 
whose resource part conta~ns toe wsgid pcoduced for this re~uest 
message. 

4. adds an entry to the system ~ommunication Table. Each entry 
contain. the following informat~on: the msg~d, the iid of the 
sender of the re':luest, the l:it::!uder's response queue numbec, the 
lid of the recipient of the request, the cec~i!ient' s request 
<lueue number, and the iid ot the request message. 1* the first 
two pieces of ~ntormation are essent~al to messaye communication. 
By ke~pin9 all these infocmation p~eces ~e depict the Dependency 
Gcaph, thus a~ding resource management, system restorat~on, and 
system verification *1. 

5. puts the iid of the request message on tne speCified request 
queue of the specit~ed recipLdut. 

6. passes bact to the queue rna.llage[' the msgid. 

i F 

u.x.~ ~tte I 
• { t 

'm 5 d t c.\ I , 
t 
t 

i i cl 

"_n, •. __ ~.",. "~"_"'~'_~~"' • __ .. ,_~.". _"n 

I , 

ii..d 
of . 

I-'e~ue'it 

Figure S.2.2-1;System CommUn~(;dt.l.On Table Eutry Format 
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~.2.2.2 Forwara Request Mecbaui~m 

Queue Manager 

1. passes the l:ollow.ln':i pal.'ameters to the forward request 
mechanism: the ii~ of the rec~p~ent ot the re~uest, the 
~ecipieut's re~uest queue numoer, and the iid of the buffer 
representing the request llIessa~e. 

Forward Request Mechanism 

2. the iid of the request llIe~sa~e is the ~id of a but fer 
conta1niny a LISf-type oDject. Us~ny the msyid in the resource 
part of the l'lSGlD-type sUboDJect of this LIST-type object, it 
locates the appropriate entry 1U tua System Communi=ation Tab~e. 

3. updates the iid of the raC1p.lent of the request and the 
recipient's re~uest queue numDer w1th tbe spec.l.t~ed new recipient 
and new request gueue numDer. 

4. puts the .lid of the request message on the spec1fied request 
queue of the specified recipient. 

5. returns to the queue mana~er 

5.2.2.3 Send Response Mecnan.lsm 

lJueua Manager 

1 • passes 
mechanism: 
message. 

tae 
the 

tollow.lu';J 
iid of the 

Send Response Mechan.lSill 

parameter to the 
nuffer Lepresent1ng 

send 
tL.e 

response 
response 

2. the iid ot the response illessdg~ in tne iid 01: a. but ter 
containing a LIST-type oDject. Us~n~ the wsyid 1n the resource 
part of the MDGID-type SUDODject of this LIST-ty~e object, it 
locates the appropr~ate ~.Iltry ~ll tne System COillillunication Taole. 
The entry in the SeT specifies thcl iid of the recip1ent of the 
response and the recipient' ~r:eBp onse ~ueue uumoer. 1* the 
response yoes back w1th the same wsgid used to tay tae re'iuest to 
which it is a respoIlse*l. 

3. puts the ~id ot the r-esponse llIessage on the specified 
response queue of the specif.l.e~ rec~pient. 
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4. deletes the entry frolfl Ute!::iystem ComiUun~cation ''cable 

5. returns to the queue manager-

5.2.j.1 Wait Mechanism 

Queue Manager-

1. passes the following par-<1illetecs to the wa~t lllechanism: the 
queue number to wait on or d list 0% queue numbers to wait on 
where the list determ~nes the priority order of message 
retrieval. 

wait Mecilanism 

2. waits for an iid to appeaL au the speci%ied queue. 1* Nete 
that the one wait mechanism dll0 ws waitJ.ng on a reSt,uest queue or 
on a r-esponse queue/*. 

J. when an ~id appears, it passes back to the queue manager the 
'lueue number on whiCh the iid appears. 

5.2.3.2 Read Re~uest MechanJ.sill 

uueue Manager 

1. passes the follow~ng par-ailleter to the read request mechanism: 
the queue number containJ.ng the J.J.J of the butter representing 
the request message. 

aeaa Request Mechanism 

2. rem~ves the first i~d from tue spec~f~ed queue. 

3. deletes the J.id from the s~ecJ.tieu queue. 

4. verJ.fies that indeed the D~rier represents d request message • 
. fhe iid of a request messdge is the iid of a buffer containing a 
LIST-type object. It cheCKS that tne second subobject of the 
~IST-type object is a RE~UEST-type object. 

5. ~t yes, ~t passes back to tne queue manage~ the iid of the 
buffer representing the re~uest message. 

(( . 

',,- ./ 
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5.2.3.3 Read Response Mechan1sm 

Queue Manager 

1. passes the followin':J fiardmeter 
mechanism: the queue numbec containing 
representing the response message. 

Read Response Mechanism 

to the 
the iia 

2. removes the first iia trom the speciLiea queue 

3. Jeletes the iid from the spec1iLed queue 

209 

read restJonse 
of the bufter 

4. verifies that 1ndeed tbe Dufter represents a response 
message. The Lid of a response message 1S the Lid of a buffer 
containing a LIST-type object. It checks taat the sec~nd 
subobject of the LIs'r-type object 1.5 not a d£QUE5T~type object. 

5. 1.f yes, it passes haCK to the ~ueue manager the iid of the 
butfer representing the response message. 

( 5. 2. 4 !1~222.~ gf.Q.~22i~g 
Queue Manager 

( 

1. passes the following paramater to the access macnine: the iid 
of tne buffer representiny the request or resflo.use message. 

Access Machine 

1. 1* the request processl.uy lay1.c provided by an access illdcLine 
involves 'if ••• then' logl.c: 1.1 re~uest so and so, then perform 
such and SUCh, wbere such anj such varie~ DJ object type. For 
example, what a FUNCTION-ty~e Object dues to process au execute 
request is tar different trom what a F1JAT-type oDject does to 
process an execute request. The details of what actions each 
object type does dS d fuuction ot rclceiviny any poss1ble re~uest, 
has yet to be defin~d in this model*1 

1dM Cv~FIU~NTIAL 
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5.2.5.1 Request Format ConventLoli 

~ueue Manager or Access MaCnLne 

1. If the send request mechan~sm is subse~uently going to he 
invoJted, tae creator of the L~quest message COilstr-ucts in a 
Duffer a LIST-type object. The first subob]ect must be an 
ONDEl-type object. The second subobject must oe a .i1EQUEST-tYfJe 
object whose resource part conta~ns the name of the r~guest. The 
remaining subobjects must be object types appropriate to each of 
the parameters ot the re~u~st.· A request need not have 
parameters but if Lt aoes then, for ~xample, it a parameter is 
the iid of some stor-aye cell, the suCobject would De an ACC-type 
object. If a parameter LS S~llie ~nteger, the subobject woula be 
an INTEGEH-ty~e object. /* a Duff~r acquir-ea woen some request 
was sent to the queue manager could be used as tue buffer in 
which to construct tue request */. 

lid 

• • • 

Figure 5.2.~-1:format of a Hequest 
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·5.2.5.2 Response format Conveut~ou 

Queue Mdna~er or Access Macnin~ 

1. If the send response mecaanism is sUbsequdntly going to be 
invoKed, the creator of the r-esjionse message constructs in a 
buffec a LIS'r-type object. The f.~rst subobJect must be a 
MSGID-type object Whose resou£~e jidLt conta1ns the msg1d that 
came over with the request messaye to which th1s 1S d response. 
The remaininy subobjects must De ODJect types appropriate to each 
of tue components ot the response. 1* Tue butter representing 
the request to which t~is resi!0n~e message is d response should 
be used as the buffer in wh1ca to construct the response. The 
correct msgid is already there./. 

i i d. 

o 

IdM ~U~FLDidTlA1 
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KEY P~OCBSSING ACTIVITIES 

The definition ot the basic m~chda~sms of the yueue manager and 
the definitions of the re~uest aad res~onse processing activities 
of each access machine tipe ~s essentially a logical d~fin~tiou 
of SL. Certain access macnine processing activ~ties are 
especially important. Some o~ them are translat~on, expression 
evaluation and symbol resoiut~on. The def~nition or expression 
evaluation ~s described is described below. 

Eacb reducible object will ca~se one QSLINT-type quasi-object to 
be spun otf ..tor the ~nterpretation ot all the statements of the 
syntactic group associated ~Lth the reducLble object. Each 
QPARALLEL-type quasi-ouJect will cause one USLIN'r-type 
quasi-object to be spun off for the Lnterpretat~on ot each 
statement of the syntactLc ~roup associateQ with the 
QPAf1ALLEL-type quasi-object. A QSLINT-type quasi-object is known 
as au interpreter. 

Each USLINT success~vely spins otf one QEVAL-type quas~-object 
for each statement in the statement group ~t is process1ug. A 
QEVAL-type quas~-object is Known as dD eVdluant. 

Each ~EVAL, not handling a s~m~~e"operand, spius oft a UEVAL-type 
luasi-object for each operand in the expression Lt is processi~g. 

Access Machine of the QSLINT-type ~uas1-object (the interpreter) 

1. 1* Assume tbat the followiuy parameters were passed to USL~NT 
if it ware called by a reducibLe oDJect: 

(1) the i1.d ot an obJec t constr- uct which has a 
FUNCTION-type object 1* t.LS ~iQ loS ~n the acccess macbine 
of the reducible Object *1. Located in the resource part of 
the FUNCTION-type object 1.5 the iid of an object construct 
whiCh has a LIST-Lype Object. This LISf-type object 
represents the stdtement jCoup. Located ~n the resource part 
of thi::; LIST-type Object are the iid's of object constructs ,1(-

which r"epresent sta teman ts. A statemen t ma y e~tller be Ii ',-_ 

ltiM CUNFI0~NTIAL 
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simple operand (5 U1BOLJ.if!r'EhENCt:-tYJ!e object) or a complex 
operand (LIS'f-ty pe object). A £Q.!!£l~ Q.E~£s!'.!!Q. is a 
LIST-type object cepreseut.1.ug an operatoc and l.ts opecands. 
Located 1.n the resoucce ~aLt of a LIST-type object, 
repcesentin~ such a compl~x operand, ~s the 1.ii of an object 
construct which has d SUIBuLREr'ERENCB-ty pe ob ject. The 
re~ource pact of this SY~dJLREfErlENCE-type Object contains a 
symbol number. This SY11riiJLli.J:;FEiU:NCE-t.ype object represents 
t.he operator. Also lO~dtea in the resource part of a 
LIST-type object, Lepresentin~ a complex opecand, are the 
iid's of object constructs representl.ng the arguments to the 
function. These Object constructs c~n have a 
5YMBOLREFEltENCE-tlpe object or d L.l.S:r-type Object. 

(2) the iid of an Object constcuct Which has an UNILI::F-type 
object 1* this 1.id is in t.ile access machine of the reducible 
object */. This UNU~F-t.ipe object reJ!resents the 
interpreter workacea (IWA) wUl.ch is part of the ~SK. 

(3) the iid of t.i:le ooject coustcuct r:epcesent1.lllJ the 
st.orage used by the SL pcogcam bein~ l.nterpr:eted /* this iid 
is in the resoucce pd~t o( the reducl.ble ooject *1. 

(4) the ~~d of the obj~ct con~truct represent1ng the actual 
dr~uments intended fOL the function. 

Assume that th~ follo'Winy paralllete:cs wece passed to I.lSLrt~T if it 
were called by a QPAHALLEL-type qUd~l.-obJect: 

(1) the ~id of all Object. construct whl.ch has a LISr-tYJ!e 
Object representiny a nest.ed statement group 

(2) the iid of an oDject construct waich LidS all UNUEF-type 
object 1* this iii! loS l.il the cesource part of a LISr-type 
object repcesentin~ th~ 1.uterpreter wo:ck~rea of the 
predecessor intecpreter *1. This UNDEF-type object 
cepresents d nested interpreter wockacea {LWA}. 

(3) the iid ot the object construct representing the 
storage used by the ~L pcogrdffi oel.ng 1utecpreted. 

(4) the iid of tile object constructcepresent1.ng the actual 
pacameters intended tor tae function. *1 

IdM ~ONflU~NTIAL 
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Figure 5.3.2-1:~t£uctu£e of d ~aillple iUDct10n 
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l. replaces the UNUHP-type aDject represent~uy an IWA with a 
LIST-type object. Tnis LIST-type object represents the (nested) 
interpreter workarea. 

3. augments this LIST-type obJect, tbus creating an UNDEr-type 
object. 

4. replaces the UNDEE- ty 1:'e obJect with a LIST-t :ipe ob ject. This 
LIST-type object represents the seqaencing workarea. 

5. augments th1£ LIST-type object tw~ce, thus creating two 
UNDEr-type objects. 

6. replaces each UNV~P-type object ~ith an INTEGEH-type object. 
The first INTEGEB.-type repre;:;ents the statement counter. The 
second INTEGER-type object re1:'resents the statement count. 

7. if it were passed the iid ot dll object construct which has a 
FUNCrION-type object, ~t retL1eves the LIST-type object 
representing a statement group; else it was passed the iid of a 
LIST-type object represeutin9 a (nested) statement group. 

8. uses the request format cunvent10n and t~e send request 
mechanism to send an ident~fi re~uest to the LISf-type object 
representing the statement group. It needs to ~now the number of 
statements it 1S to interpret. 

9. uses the wa~t mecna nism Lv 1/ a1 t for tue response. 

Access Machine of the LIST-type oDJect repres8nt1ug the statement 
group 

10. uses the. read request mecoaD1sm to read the identify request 

11. 1* Deta1ls of bow a LISf-type object processes the identify 
request are not described now*/ 

12. uses the response format convention and the sena response 
mechanism to pass back a respoBse tu the QSLINT-type quasi-obJect 
The response indicates the number or statements to be interpreted 
by the interpreter. 

13. uses the wait mecnan1sm to wa1t fur tne next request. 

AcCess Machine of the QSLINf-type ~uasi-oDJect (the 1nterpreter) 

14. uses the read response meCaaULsm to read the respunse. 

15. stores the number of statements in the resource part of the 
INTEGER-type object representin~ tue statement count. 

16. stores zero in the resource part 0% the LNTEGER-type Object 

~ilM CONFlu~dTIAL 
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representing the statement couater. 

17. if it WHre passed the i~J of au aDject constru=t which bas a 
fUNCTION-type object, it binds tne parameters and handles the 
p1:ologue if any. 

1d. crea tes 
'luas~-abject. 

a quasi-oDJec t construct with a \.lEVAL-type 

19. augments the (nested) I~&, thus creating ~n UNDEF type 
object. This object will repr~sent the evaluand. 

20. uses the request .tot:luat convention aud the send request 
mechan1sm to send a start re~uest to the ~EVAL-tipe quasi-object 
just created. The parameters to start are the i1d of an object 
construct wh~ch has a LISX-tl~e oDject representing it (nested) 
statement, tbe iid of an object construct Wh1Ch has a LIST-type 
object representing the symbol table, the 1id of the (nested) IWA 
just created, and the iid of the object construct representing 
storage. 

21. uses the lIIai t mechanism to wa~t for a res,!;)onse. 

Access Machine of the JEVAl.-tY,!;)d quasi-object (the eva~uant) 

22. use the read re':iuest meCild.nism to read the staLt request. 

2J. if it weLe passed an S¥MHOLREFEdENCE-type object 
representing a simple operand reference, Lt performs steps 2~-J3. 
If it were passed a LIsr-ty~e object representing a complex 
opecand, it perfor ms steps J .. -ti5. 

If tile evaluant were j;lassea. an SYI.HHJLrlEFER,C;NCE-type object 
representiny a simple operand, then it -

24. uses the symbol resoluti on mec ilan.1.sm to locate the 
the stocaye cell of tlle ODjclctc;oustI:uct l:'I~,!;)resented 

simple operaud. The symbol number .loU the resource part 
SYKB01HEFERENCE-type object ~ndicates the symbol table 
which c~rresponds to the simi;lle operand. 

il.d of 
by the 
of the 
eutry 

25. uses ~he request format COllvent1on and 
mechanism to send an autilDr1zd £BSiuest to the 
just located. It wants a ~o1nteL to the 

the send request 
object construct 

object construct 
represented oy tae simple opeLd.ud. 

26. uses the wait mechanism to wait fOL a cesj;lonse. 

Access Machine of the object constLuct just located 

27. uses the Lead ct.i!qlJest mecnanl.sm to read the authorize 
re<juest. 

Idri CU~F1UclNTIA1 
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lB. 1* Details of how the si~ple operand processes an authorize 
request are not described now */ 

29. uses the ['esponse f 01: lIld t COllvent~on dnd the send ['esponse 
mechani.;im to p ass bacK a resJ:ionse to the \J~VAL-ti' pe 'i uaslo-ob ject. 
The response indicates the iid of an object construct which has 
an ME10~YM-tipe object. 

30. uses the wait mechanism to wal.t ior a request. 

Access MaChine of the JEVAL-type ~uasi~object (the evaludn~ 

31. uses the read response mechanism to read the response. 

32. uses the send response mechaul.sm to pass back a response to 
the interpreter (QSLINT) 01: evaluant (~EVAL) that invoked it. 

33. destroys itself. 

If the evaluant was passed d LIST-type object representing a 
cOlIlplex operand, then it -

34. ce places the UN DEf'-type 0 bJect cepcesentlong the e val uand 
with a LIST-type object. Tbis LIST-type object (epcasents the 
evaluaud. 

35. augments this LIST-type 0 bJec t tw ice, tilUS cr.'ea ting two 
UNDEF-type Objects. 

30. replaces the second U NJ.)~l!'-ty j;>e ob Ject with a h~QU ES'l'-t ype 
object whose cesoucce part con tdins the ndme tlvaluate. 

37. uses the symbol resolution mtlcilanism to locate the iid of the 
storage cell ox the object construct cepce~ented by tbe opecatoc. 
The symbol numDec ~n the ~esource pact ot the 
SY~HOLREFEk~NCE-type object ~ndl.cates the symbol table entry 
wh~cn corresponds to t~e o~ecator. 

3d. uses the request fOLmat cOilvention and the sena ['e~uest 
mechanism to send an identifj re~uest to the oDject constcuct 
just located. It must know if the ob]tlct construct Just located 
represents a function and ~L so, it tbe number o~ opecands 
syntactically supplied l.S equa~ to the numnec of actual 
pacameters semantically requireQ hi the function. 

39. uses the wa~t mechan~sm to walot foe a cesponse. 

Access Machine of the object construct just located 

~O. uses the read cequest meCban~sm to read the lodentify 
request. 

IBM CO~jlU~NTlAL 
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41. I*Details of hov the oDJect processes the Ldentify re~uest 
are not described now *1 

42. uses the respon!:>e format convention and tile send response 
mechanism to pass back. a response to the QEAUL-type 'juasi-object. 
The response indicates wnether OL' not an evaluate request will be 
processed and the nUlllber ot seillautically ceq uired pa rame terse 

43. uses the wait meChanism to waLt for a reguest. 

Access Machine of the QEVAL-type quasi-object (tae evaluaut) 

44. uses the read I'esponse mecllanl.sm to read tlle restJonse. 

45. uses the I'equest format Gonventl.on and send I'equest 
mechanism to send an identit:y J:e';iuest to the LIST-type object, 
repI'esenting the complex opeL'anl, sent to it as a parameter. It 
wants to know the numoer ot actual paI'ameters syntactically 
supplied. 

46. uses the wait mechanism to waLt foI' a response. 

Access Machine of the LISt-type oDject 

'-+7. uses the I'ead. re':j,uest lIleCnalUsm to I'Bad the identify 
request. 

4d. 1* Detal-Is ot: how the object processes the identify request 
aI'e not described now*1 

49. uses the I'esponse t:ocmat couventLon anL! the sena resflonse 
mechanism to pass back a res~onse to the U~VAL-tipe quasi-object. 
The response l.ndLcates the number of subobjects augmented fI'Olll 
this LIST-type object. 

50. uses the wait mechanLsm to waLt foI' d re~uest. 

Access Machine of the QEVAL-type quasl.-object (tbe evaluant) 

51. uses the read response meCbdu~sm to read the response. 

52. subtI'acts one from tUB numb~L sent baCK LU this response and 
veI'ifies that the number ot syntactically sUPtJ~ied parameters 
equals the numbeI' of semant~ca~ly re~uired parameters. 

53. tor each parameteI' Lt creates a quas~-obJect construct with 
a Q£VAL-type quasi-object; Lt au~ments the (nested) IWA, thus 
creating an UNDEr'-type object ref'resenting an evaluand; and it 
llses the I'equest tOJ:.:mat convention aud the senJ. ceguest mechanism 
to send a start request to the ~EVAL-type quasi-object just 
cceated. The parameteI's to start lnaicate the expression to be 
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interpreted, the symbol table, the (nested) lWA Just created, and 
the storage. For eacn par~mater it augments the LIST-type 
object, representing its evaluand, thus creat~ny UNDEl-type 
objects; and it replaces these UtWf:F-type oDjects with aSGID-type 
objects whose resource part conta~ns the msg~ds of the various 
start requests. 1* The order ot tbe MSGID-type objects in the 
evaluand reflect the order in wuich parameters w~ll be pas~ed to 
thefuIlction*1 

5q. uses the wait mechanism to wa~t for d response. 

Access Machine of QEVAL-type ~UdsL-object 

55. uses the eead response lIlecnarusm to read the response. 

56. uses the msgid of the eQsponse to locate the appeopriate 
MSGID-type object in its evalUdnd. 

57. replaces the MSliID-type object w~th taB object vb-ose iid was 
passed back in the response. 

58. deletes teom the LIST-type aDject eepeesent~n~ its IWA, the 
LIST-type object eepreseuting the evaluand of the evaluant which 
just returned the response. 

59. deterw1nes if its evaluanJ contains any outstanding 
messages. If it does, it uses the wait mech~n~sm to w~it tor a 
response, and repeats ste~s 55-59 as necessary 

1* If individual o~erand evaluat~on should be done ~n sequence 
rather than in parallel, tbe evaluant performs aLl the steps 
53-59 for each operand *1 

60. uses the send requesL meCUdn~sm to send the evaluate ~equest 
to the object construct represente~ by the operator iocated via 
the symbol resolution meChdn~sm ~n step 37. 1* The re~uest format 
convention was adhered to ~ll tile cousLruction or this request, 
since the eval~allt built up the request ~n the evaluand.*1 

61. uses the ~a~t mechan~sm to wa~t for a response. 

62. 1* Details of now a fUBetioll processes its parameters are 
not described here -- see scellaLios 1 and 2 *1 

63. uses the read response mechanism to read the response. 

64. uses the send response mechanism to pass back the response 
to the interpreter (~SLIN~) or eVdluaut (yKVAL) tnat invoked it. 

65. destroys itself 

Access Machine of a ~SLINT-type quas~-oDject 
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bb. uses the read r~spon~a mechahL~m to read tb~ response. 

67. deletes from the LIST-type objectrepresent:Lng his IWA# the 
LIST-type object repre~ent~ng tne eva~uand of the evaluant that 
just returned the response. 

bS. det~rmines if there are more statements in the group to be 
processed by compar:Lng the statement count with the statement 
counter. If there are# ~t adds one to the statement counter, and 
goes back to step 18. 

6'). uses tile send response mecnan~'::>111 to pas;;; oa::K a response 
either to the reduc1ble aDjeCt or the ~PARALLEL-type quasi-object 
that called :Lt. 

" 

70. destroys his IWA 

~da CJNFIU~ITIAL 
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~ . stCv..l(S11l(X) Q.}" ..• } l ... ) ) .) 

Figure 5.3.2-3:Y~VAL J~~Do~f foe SubexpLess~olls 

IBK CUNFIDBciTIAL 



( 

Chaptec ::>.4 

The scenacios are examples Chasen to t~e togethec iaaas presented 
und~r Basic stcuctuce r Bas~c ftechduisms, and K~y Processing 
Activit~es. 

( ••• ;sum(a,b) ; •• .} 

Expression EvaLuation 

1. /* Assume that the eXpLeSSl.On evaluatl.on mechanism has 
reached the point where l.t ~s ready to iuYoke the sum tuncticn, 
passing it the eva~uated sl.mple operands d and D as actual 
pa ca lie te C5 *1 

2. uses the sendre ':iue st mech an~sm to send t ne evaluate C8 guest 
to the object construct nameu sum wAich was located via the 
symbol resolution meclldnism. The parameters to evaluate are the 
i~d's of the object constructs named a and b. 

J. uses the wait mechdnism to wal.t tor a response. 

Access Machine of the PFUNCTION-type object (the sum functl.on) 

q. uses the read rejU8st wecb~ni~m to read the evaluate re~uest. 

~. crea tes a quas~-olJject construct Wl. ttl a '..lSUM-type 
':1 uas . .L-ob ject. 

b. uses the request format COllveutl.On and the [ocward re~uest 
mecnanislI, 1* no new msgl.d */, to torward a stact request to the 
QSUM-type quasi-ob ject just c£ea teli. 'rne para mete.cs to sta£t are 
tbe iid's of the object construct~ ndIDed d and D. 

7. uses the wa~t mechanism to waLt for the next request. 1* The 
PFUNCfION-type object is compLetely severed fro~ tae QSUM type 
quasi-object*1 

( Access Machine of the QSUM typd quasi-oDJect 

~. uses the read re'1uest mecnaui~iII to ceadt.he start request. 

lui;' (,;0.».1:' IDclNTIAL 
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9. 1* Details of prtK;isell nuw ""SUM does the acidl.t.l.on of a aud b 
are not described now *1 

10. uses tbe response format convention and the send response 
mechanism to pass back a responsy to the expression eva~uation. 
l'he response consists of the i.i.d of the object construct which 
represents the result ot add.l.a~ a dnd b. 

11. destroys itself 

Expression Eva~uation 

12. uses the read response meCBan.l.Sm to read tne response. 

13. 1* Refer to the expression eva lua t~on mechanism fOl: details 
of response handling *1 

Figure 5.4.2-1:Prl.&l.tive Operator Flow 

IBM CQNFID~Nr~AL 
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{ ••• ; sin (x) ; ••• j 

Expression Evaluation 

1. 1* 
reached 
passing 
*1 

Assume that the exprass~on evaluation mechanism has 
the ~o~nt where Lt ~s ready to invoke the tunction sin, 
it the evaluated simple operand ~ as an actual parameter 

2. uses the senu re~uest mecnafi1sm to send the evaluate request 
to the object construct named S111 whiCh was located via the 
symbol resolution mechan1sm. rue parameter to evaluate is the iid 
ot the object construct named x. 

3. uses the wait mechan~sm to ~ait for a r~sponse. 

Access Machine ot: the FUIH':TIUtJ-tYlJe Object (the ~i1n function) 

It. uses the read reiuest mechanism to read the evaluate request. 

5. creates an object construct w1tn an UNDEr-type object. 

6. replaces the UNDEF-tfpe oJ:)ject with an object whose access 
machine contains three i1d ' 5: the iid of the object construct 
named sin which has a FUNCT~ON-type object 1* the SL interpreter 
will need access to the SL taxL and symhol table *1; the iid of 
the object construct named sl1ut whicA has a PFU NCTION-t ype 
object 1* this PFUNCTION-type ob ject will spin off an SL 
interpreter *1; and the iid at dIl Object construct wh1cn has an 
UNDEl-type object /* this 1S the £ISH and vill be used by the SL 
interpreter for its workspace */. Such an Object ~s a reducible 
object. 

1. uses the request format convent~on dnd the senu request 
mechanism to send a start reguest to the reducible object just 
created. Tue parameter to titart 1S the iid ot the object 
construct named x. 

8. adds an entry to its ()utstdlHan~ Activat10n Tabla. The entry 
contains the msgid ot the eval uate re~uest just processed, the 
msgid of the start regue;;it just sent to the reduc1ble object, and 
the iid of the reducible object. 1* BaCk FUNCTION-type object 
must keep a record at al~ spun-oft reduc~ble objects still dctive 
so that it can block change re1uests (a request to Change tbe SL 
text) u~til all spun-off reduciDle objects have terminated or 
suspended */. 

9. uses the wait mechanLsm LO wa~t for the next reguest or 
response. /* The FUN(;'r LON-type 0 bject i::> effectively severed f [om 

ISd co~tIDENflAL 
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~

the r-educible object s~nce the l'UNC'rlON-type object may now'",-,~. 
process new r-equests or replies. */ 

Queue Manager ot the Reducible Object 

10. uses the read reljuest mecnanism to read the start 1:eguest. 

11. uses the request format convention and the send request 
mechanism to send an evaluate request to the object construct 
named slint which was located y~a the iid in tne :iccess machine 
of tile reducible object. The paralllete.rs to evaluate are the iid 
of the object construct named SLll which has a FUNCT10~-type 
object/* this iid is in the access machine of the reducible 
object*/; the iid of an object construct which has an UNDBF-type 
object 1* this iid is in t~e access machine of the reducible 
object *1; the iid of the oOject construct used for- storage by 

. the in ter-preted SL prog ram 1* tilLS 1. id ~s in t.her-esource part of 
the r-educible object */; and tae i1d ot the request sent to it by 
the FUNCTION-type object (tne S1n function) I. this re~ue$t 
contains a start request type and the iid of the object constr uct 
named x *1. 1* The queue manager- associated with a reducible 
object always pac~ages up the requests sent to it and sends them 
on without examination for theLr- Luterpretation by SL text */ 

12. uses the wait mechan~sm to waLt tor a response. 

Access Machine of the PFUNCTluN-type object (the SLINT funct~on) 

13. uses the read request mechanism to read the evaluate 
request. 

14. crea tes 
quasi - ob ject. 

a ~uasL-ohject coustr-uct with a QSLINT-type 

15. uses the request format convention and the forward request 
mechanism to send a start rey,ues t to the QSLINT-ty p3 quasi-object 
just created. The parameters to star~ are ~dentical to the 
parameter-s of the evaluate re~uest iiscussad ~n step 11. 

16. uses the wait mechanism to wait for the next r-equest. /* The 
~FUNCTION-type object is completely severed from the YSLINT type 
quasi-object *1. 

Access Machine of the QSLINT-type ~uas~-object 

17. uses the .read request mechauism to read the start request. 

18. since the object represeutLn~ the process status record 
(PSR) is an UNDE.F-ty pe object (~. e. it is l.nit~alized) # the 
IJSL.Lt4T-type quasL-ooject l>.nolis that it is not resuming a 
suspended in terpreta ticn, but is neg1.nning a llew iu ter1:'re ta ti on. ((~ 
therefore, it binds the parametars intended for pr-ocessing by 51 \,-
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code, and it augments the storage named Ln the resource part of 
the reducible object. It binds tae parameter, the iLu ot the 
object construct named x, as tollows: it locates the symbol 
number of the formal paraaeter ill the SL symbol table. The 
property of being a. forDidl parameteI: has been associated with the 
symbol number. It then locates the SL link ta ble en tr y using the 
sl mbol number as offset, dnu inserts the iid of the ob j ect 
construct naliled x into the iid slot of the entry. 

19. 1* Details of interpretLng 5L text represent~ng the sin 
operation are not described. now. Reier to the expression 
evaluation mechanism for detaLls on interpreting 5L text *1. 

20. uses the response forma t conventiou and the send response 
mechanism to pass back a response to the reducible object •. The 
response consists of the 1~d of the object construct computed by 
the interpretation of the S1. text representiny the Sill function. 

21. destroys itself 

Queue Manager of the reducible object 

22. uses the read response mechanism to read the response~ 

23. uses the send response mechanism to pass bac~ the response 
to the FUNCfION-type object (the sin function,. The response 
consists of the iid of the object construct computed by the 
interpretation of the 5L te~t representing the sin function. 

24. sirice the PSli indicates that an 5L return fun=tion had been 
interpreted, it destroys itselt. 

Acc~ss Machine of the FUNCT~ON-type object (the s~n function) 

l5. uses the read response lIteClld[aSm to read the rasponse. 

26. uses the msgid in 
object represent~ng the 
Activation Table for the 
of the original evalua te 
the entry_ 

the first subobject of the LIST-type 
response to searc h the OU tstanaing 

approprLate entcy, retrLeVes the msgid 
request for use ~n step 27 and deletes 

27. uses the seud cesponse mechanism to pass bac~ the response 
to expression evaluation. 'Ihe response consists ot the iid of 
the object const~uct computed by the interpretation of the SL 
text represented by the sin operator. 

28. uses the wait mechanism to wait for the next ceguest or 
response. 

Expression Evaluation 

LdM CONFlD~NTlAL 
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29. uses the read response mechanism to read the response. 

30. 1* Befer to the expression evaluat:l.on lDecnani:i1l for details 
ofrespons~ handling */. 

DO: .j 

I . 'I' . ','.1 , f h:.\ 
I 

I 

\ 

Figure ~.4.~-2:Reduc~Dle Operator Flow 
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The following words aud phrases ~nclude terms forma~~1 defined in 
the logical architecture together with important terms in the 
informal discussions. Words 11e91.nni£1g with lower case letters 
are built-in objects, either constants or functions. Numbers in 
parentheses indicate the sect~on in wh1.ch the term is defined. 
The letters (GT) indicate terms from graph theory. 

Access machine (2.1.~ The actl.ve part of an aDject that responds 
to requests upon the Object. 

Accessibility graph (2.1.5) A Ijraph of all paths 
objects. It has two major subgraphs: toe 
and the chains of synonyms. 

for accessing 
ownership tree 

Accessible (2.1.5) An object x is accessible from y it there is a 
path in the accessiol.lity graph from 1 to x. 

Activa.tion tree (2.2.5) A tree linlling activatl.ons of functions 
to the activations 0:£ functiollstaey called. It is a 
s~bgraph of the dependency graph. 

Admissible index set (2.1.~) A set of ObJects admissible as 
indices to the a.ccess machine of a collective object. 

Argument (2.2.5) The result of evaluating an operand for a 
function. 

Assignment (2. 1.4) An iniorma.l tet:m for refeI."r inl;;j to the stow and 
replace functions. 

authorize (2.1.5) A dyadic functLon that makes 
request upon an object in order to obtain a 
object with a given set of r~gftts. 

an a utho.r" ize 
synonym to the 

Buffer (2.1.1) A temporary stord~e cell us~d for holding an 
object or shipp.ing ~t sOllew here else. 

Cell ~ame (2.1.1) An identifier that uniquely specifies a storage 
cell. 

C~ain (GT) A graph "whose edge~ ~e~~ne a strict linear ordering of 
the vertices. It is both a tce~ ~nd a rooted tree. 

rBM ~OaFrDENTrAL 
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Circuit (GT) A path whose first and last vertice.\:i are identical. 

Collective object (2.1.5) An aDject that owns storage cells 
containing other objects. 

Connected graph (GT) A grapb in WhloCh for any two vertices x and 
1. there exists an undirected pata from x to y. 

create (2.1.4) A dyadic function that creates a new object by 
activating an access IlldClline and providing lot with inlotial 
values tal; its oWlled resource. 

Deadlock (2.5.1) A state at tile system in which a 
requests can never be reso.lve<1. It result.\:i 
in the dependency graph. 

set of gue ued 
f;rom a circuit 

delete (2.1.6) A dyadic function that deletes storage cells f I:OBl 

~the owned resource of a collective object. 

Dependency graph (2.1.3) A graph of 
objects: if x is waiting for a 
an edge of the dependency y raph. 

outstand~n9 requests upon 
request on Y, then (x,y) is 

Descriptor (2.1.3) An impleaentatloon defined represantation of an 
dccess machine: .l.t contal.ns a PSR and specifies the 
interpreter and procedura~ description. 

Dictionary (2.2.2) For each module, 
information about all .\:ijillools: 
linkage. and initial attr.l.hutes. 

the dictionary maintains 
character representation, 

Directlyaccessible (2.1.5) An object X.l.S dlorectlyaccessible 
from y if there is a path in cne ownership tree from y to x. 

Edge (GT) An ordered pair of Vertices in d grap4. 

Zlement (2.1.5) An object residin~ ~n a storage cell owned by a 
collect i ve oh ject • 

Elementary symbol (2.2.3) A symbol in program te~t wi thout any 
syntactically associated operands. 

Elementary object (2.1.5) An object that does not own any storage 
cells; all elementary obje~ts dce scalars. . 

Envi~onmenttree (2.3.3) A rooted tree that defines search paths 
. for symbol resolu tion. 

evalua ta (2.1.4) A monadic fu nct.l.on that ~~kes an e val uate 
re~uest on its argument to deliver or generate a value. 

/-



( 

( 

App~ndix 1 231 

Bxc~ptiun (2.4.1) A re~~ollse by an ~cc~ss ~ach1ne ~nJicatiu9 that 
the normal response cauDot b~ made. 

ExteuJed syutax (1. 3. 3) Au 111t: i.x: notation that iucludes macro 
facilities to be mapped i~to strict syntax. 

Forest (GT) A 'jrdpn consLstl.ny ot one or more ullcouuected trees. 

Funct10n (2.1.4) An object that .cespOH\lS to evaluate re~uests by 
creating an d.ctl.vat.ion tilat computes an Object as I'esult. 

Genera tor (2. 1. 7) A collective 0 bJec t Wh05~ ~leillents are COlli pu ted 
upon demand instead of bel.ny stored in the 58S. 

~rapb (GT) A set ot points ca~leu vert1ces and ot: ordered pairs 
at vertices caLled euge~. Ull~i direct~d graphs aLe used in 
the discussion. 

~roup (2.2.3) A list of state~ents enclo~ed 1n br~ces. A gLOUp 
is the external form of a moaule. 

l.dentit:y (2.1.4) A monadic tUDction tuat aSKS an object t6 
1dentify 1ts access maChine. 

ilist (2.1.5) A monadic LunctLon tuat returns the index set of a 
collect1ve object. 

Incoming edge (GT) An edye (X,y) 1S an 1ncoming edge with respect 
to the vertex y. 

Index set (2.1.5) The set of objects mapped by salect re~u~sts 
onto storage cells of a cullect.ive o.bject. 

Lnd.~l:"ectly accessible 
accessible from y 

(2.1 • .>J An 
if t.ueru is d. 

object x LS 1ndirectly 
chdLn of synonyms from y to 

x. 

insert (2.1.6) A dyadic Lunc"t...I..:>n that 1nserts new sto.cage cells 
Ln the owned resource of d collective object. 

Interp.ceter (2.1.2) The mot.l.ve .torce behind 
~xamiues the ~SR, decoues the procedural 
puts the ~SR in its ue.x:t state. 

a process: it 
Jescription, and 

lambda (2.2.3) A function that ~Leates a Dew fuuct10n by b1nding 
formal paramete£s to a mo~ule. 

~ist (2.1.5) The most fr..l..W1tLva type ot collective object. 
elements dre ..I..uuexea by consecutive Luteyers starting 
and may be of different types. 

Its 
at 0 

rtetonym (2.1.~) An encdPsu~ate~ synonym. It 1S used ror p01nters 
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in PL/l to 
definition. 

conform to re~tr1ctLons Lll the language 

ctodule (2.2.2) The machine %orm of 4 group: ~t cont~ins the text 
for the group 'to~ether ~Lth a dictionary ot all symbols in 
the group. 

n~l (2.1.3) A primitive Object tbat 
element list. 

Object (2.1.3) Hasic entity til the 
called an acCess maCU1ue dnd d 

resource. 

has the properties of a zero 

system; it has an act.Lve part 
passive part called an owned 

Object base (2.1.3) Set at all objects in the syStem. 

Object ima~e (2.1.3) An internal representation oi an object: it 
contains the descr1~tor of its access ~achine and a 
representat~on of the owned resource. 

Offset (2.1.1) A displace~ent from the beginn1ng ot a table. 
This term is not a formal part ot the defin1tion. 

operand (2.2.3) An exptession 1D pr09ram text that evaluates to 
an argument for a function. 

operator symbol (2.2.3) A symbol that resolves to i function and , 
that has syntacticalll associated operands. 

outgoing edge (GT) An edge (~,1) 1S an outgoiny edge witb respect 
to the Vel:tex ~. 

Owned resourc's (2.1.3) PaSS1ve pal:t. of au object that 15 managed 
by the access wacaine. 

Ownel:slnp tree (2.1.5) A tree .:l9 fiue d ovel: the OD Ject base by the 
ownersh1p relation between collect~ve objects and storage 
cells. 

parallel (2.2.5) A wonadic function that causes the statements of 
a module to be executed iu pal:dllel. 

Parameter (2.2.3) A symbol locd~ to a module taat 1S l:esol~ed to 
an argument evel:Y tiille ttle module is activated. 

pjth (GT) A se~uence of vert~ces of a ~raph G such that it x and 
y dre adjacent vert.Lces, (~d) is an edge of G. 

Port ,(2.1.3) An object whose access mach.Lne and resource connect 
to a data path through the Soul:ce-Siuk subsyst.em (see the 
S ys tem Arcai tectul:e Manual) • 



Appendix 1 233 

Prim~tive object (2.1.~ Au object that cannot be const~ucted 
from otber objects defined in the logical architecture. 

Procedural description (:G.l.2) Bncoded informdt~on that defines 
the states of a process all~ pe1:m~ssible state trans~tions. 

Process (2.1.2) An dutomdtoll 
~tatus recoru (PSti), d 

interpreter. 

tnat has three pd1:tS: a process 
procedural description, and an 

Process status recoru (2.1.2) The L~cord of the current state o± 
a process, its ~nput, and ~ts working storage. 

Program text (~.2.j) A strLng ot symbols. 

PSR (2.1.2) Abbreviation for p1:ocess status record. 

luote (2.2.3) A syntactic mdr~er tnat suppresses automat1c 
evaluation of a function. 

aeady state (2.1.3) state ot an access machine when it is ready 
to res~ond to a request. 

Reducible object (2.1.3) An aDject that can be constructed from 
more primitive oojects Ln the logical architecture. 

remove (2.1.6) A monadic funct10n that removes an object from a 
storage cell w1thout deletLng the cell. 

replace (2.1.6) A dyadic fuuctLon used for ass1gnments that 
replace the target compietely. 

Request (2.1.3) A pair pt parameters passed to au object to 
reluest some service. 

Reservei word (1.3.1+) A str~ug at two or more lower case letters 
used to designate syste~ ~efined oDjects and various 
construct~ons in the exteadea syntax. 

Resource manager (2.S.3) The object 1n a subsyste~ that obtains 
r~ghts to objects outside oi ttte subsystem and allocates the 
rights to other objects w~thLD it. 

Ri~hts (2.1.5) A set of requests tllat a synonym passes on to the 
object it points te. 

Root (GT) The distinguished Verte& of either a tree or d rooted 
tree. 

Rooted tree (GT) A connected ~raph in wh1ch there is a 
dis tinguished ver tex: with 110 outgoing edges and allot ber 
vertices have exact~i one outgoing edge. 

Id~ CO~flD~NTIA1 
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Seed (GT) A tree wita orte vertex and no eJyes. 

select (2.1.5) A dyadic tunction that makes select requests on a 
COLlective object to map ~ndices onto storage ~ells. 

Sequential synonym (2.1.b) 4 synonym that can be se~uenced 
through success~ve elements ot a collective object. 

SMS (2.1.1) Abb~eviation for the Storage Management SUbsystem 
(see the System Arciutecture l1auual.). 

Space number (~.1.1) A number identLfying a loy~cal space in the 
SMS. Th~s term refers to tue implementation Lather than to 
the tormal definition. 

Statement (2.2.3) A complete express~on used as Dna element of a 
mod ule. 

Stor.:::tye cell (2.1.1) 
any object. 

A logLcdL location large enou~h to contain 

stow (2.1.4) A Jyad~cfunctLou that makes a stow 
target to pertorm ass~:1nmeuts. It makes 
Change than the repl.ace functLon. 

re~uest on the 
d less dras tic 

Strict syntax (1.3.2) A pref~x notation tnat is ~apped one-to-one 
into the internal machine coae. 

Strongly connected graph (GT) A ~rd~h in which for any two 
vertices x and y # there e4ists a pa til from 4 to y.. 

Structare (2.1.7) A subtree ot the oWlle~Ship tree together with 
all objects accessible from oDjects ~n the tree. 

Subsystem (2.5.3) A subset of tue object base ndving only one 
pOLnt of connect~on w~th the ~raphs 11nk~n~ the rest of the 
system, 

Symbol (2.2.3) A str iu~ of one Ot' lAore chdracters. 

Symbol resolution (2.2.1) The dct of resolving symbols to c~ll 
llallles at ~torage cells contdLuLny objects. 

syn (2.1.5) A monadic function thac makes an author~ze request to 
ootal.n a synonym tha t respondS to copy and destroy requests 
itself. 

Synonym (2.1.5) An object that automdtl.cally passes requests to 
the object whose storage cell ~t names. 

system root (2.1.5) The object at the root of t~e ownership tree; 

rBM ~QNrID~dT1AL 
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<111 ObjHCt5 in tilt:! tiY5leUl d.L.u dJ.I:ectly d.cc..:e:';::;.L.l.llu l[."()W the 
sY.3telll root. 

Tree (GT) A connected yrapb Ln wh~ch tbere L5 a ~L5tinyu15hed 
vertex with no ~ncomiu9 edges, and ~ll other vertices have 
exactly one 1ncaming edge. 

~ndet (2.1.3) A primLtive uadet~ned object. 

Undirected path (GT) A sequence at vertices o~ a ~rapb G such 
that if x and yare adJacent vertices, then either (x,y) 0[," 

(y, x) is an edge of G. 

vertex (GT) A pOint on a grapa. 
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SDD - Poughkeepsie 
D/B11 , B/706-2 
Extension 3-2589 

March 15, 1971 

Memorandum to: Recipients of Advanced Future System Proposal 

Subject: Index to SL Report 

Enclosed is an index to the "Fundamental Concepts and System 
Language" Report. Page numbers correspond,to the third edition, 
dated March S, 1971. 

John F. Sowa 
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access machine 
accessibility granh 
accessible 
acquire function 
activate phase 
activating a function 
activation 
activation chain 
activation tree 
admissable index set 
and function 
answer 
aoply function 
argument 
argument list 
array 
augment function 
authorize function 
authorize request 

base list 
base value function 
basi~ 
braces 
buffer 

catenate function 
ceiling function 
cell name 
claim function 
collective object 
complete index set 
comnress function 
conditional function 
connect function 
consumable 
contained 
control program 
controlling proces~ 
coPY function 

. copy request 
create function 
cursor 

data base 
data communication 
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31,21')1,229 
44,229 
44,229 
107 
57 
58 
37,68 
72 
73,229 
229 
105 
147 
73,106,164 
229 
70 
53 
97 
40,165,229 
36 

53 
105 
54 
65,73,94,166 
27,201,2?9 

97 
104 
27,22Q 
107 
41,230 
54 
105 
74,106,167 
76,95 
85,147 
66 
116 
81 
o 
36 
77,80,~5,106,168,230 
73 
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145 
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deactivate phase 
deadlock 
declare 
dedicated ports 
dedicated subsystem 
defined 
delay function 
delayed narse function 
delete tunction 
delete request 
delimiter 
deT"lend 
denendency graph 
denth 
destroy function 
destroy request 
dictionary 
difference function 
directly accessible 
directly contained 
disclose function 
dron function 

element 
elementary object 
elementary symbol 
enclose function 
environment 
environment tree 
environmental chain 
eq function 
evaluand 
evaluate function 
evaluate request 
evaluation 
exception 
execute phase 
exit function 
exp function 
expand function 
exnression 
extended syntax 

finite resource 
floor function 
free function 
free ports 
free subsystem 
free sym!:>ol 
function 
functional level 

INDPX 

57 
B5,/'29 
16q 
115 
116 
61 
73,1 ()6 
65,94 
48,c)7,170,23 fl 

36 
171 
35 
35,2V) 
52 
BO,106 
36 
6fl,23,) 
1 ,., Ll 

43,230 
66 
98,172 
1r)6 

41,210 
41,230 
63,23'l 
9A,173 
75 
76,23f) 
76 
105 
59,71 
3 8 , 1 ') 6 , 1 7 L! , /. 1 0 
36,68 
69,70,71,20' 
7Q ,231 
57 
74,1,)6,175 
1f)1l 

105 
66 
23,231 

87 
104 
11')7 
115 
116 
61 
37 
1/,1,122 
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ge function 
generator 
goto function 
group 
group markers 
gt function 

i-dimension index 
ibase function 
identify function 
identify request 
igenerator function 
ignore function 
iid 
ilist function 
index function 
index object array 
index set 
indexed structure 
indirectly accessible 
initial interpreter 
inject function 
inner nroduct function 
insert function 
insert request 
insert symbol function 
inter-AFS job 
intercent 
internretation 
interpreter 
introduce function 

job 

k-list 
k-vector 

label 
lambda function 
Ie function 
linking 
list 
list function 
list structure 
literal symbol 
In function 
load function 
load nhase 
local environment. 
local label prototyne 
local symbol 
locate function 
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105 
99,231 
7 LJ,10(),176 
65,231 
65 
105 

53 
96,177 
231 
36 
96,99,178 
81,1015 
27 
43,96,17Q,231 
101 
55 
42,231 
52 
43,231 
116 
81,1f)(; 
If)O 
47,97,180,231 
36 
60,95 
147 
81 
5R,70 
28,231 
107,148 

118 

54 
54 

181 
67 , 95 , 1 82 , 211 
10S 
76 
42,231 
97 
52 
63 
1 f) I~ 
95 
57 
75 
62 
61 
101 
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log function 
It function 

maqnitude function 
map function 
matrix 
max function 
member function 
message 
metonym 
migration 
min function 
minus function 
module 
monitor function 

name value function 
nand-function 
ne function 
nil 
nor function 
not function 

object 
object base 
object construct 
object image 
offset 
operand 
operating system 
operator symbol 
or function 
outer product function 
own 
owned resource 
ownership tree 

parallel function 
narameter symbol 
parentheses 
nath 
path name 
phases 
olus function 
!,oint function 
port 
power function 
nredecessor environment 
nrimitive argument 
prirni tive array 
primitive index set 
primitive object 
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1 f) L~ 
105 

1()4 
100 
54 
104 
105 
147,201 
41,231 
156 
104 
103 
6'l,23? 
81,1()6 

97 
105 
105 
32,232 
105 
105 

31,201,232 
34,232 
201 
33,202,232 
232 
64,232 
116 
63,232 
105 
100 
41 
31,202,232 
42,232 

72,106,1R3,232 
61,67,232 
184 
47,232 
47 
57 
103 
99 
33,232 
1()U 
76 
93 
54 
51 
31,:'.02,233 
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priority function 
nrocedural description 
process 
nrocess status record(PSR) 
nroduct fucntion 
program text 
pseudo list 

qeval 
qslint 
qsum 203 
quasi-activation 
quasi-object 
queue 
queue manager 
qid 
quote 
quotient remainder function 
quotient-function 

r-array 
rank 
ravel function 
ready states 
rebase function 
recinrocal function 
reducible object 
reduction function 
release function 
remove function 
reneat function 
renlace function 
renresentation 
renresentation function 
representative symbol 
recruest 
request constant 
request function 
recruest queue 
reshane function 
residue function 
resolution man 
resource manager 
resource nackages 
res?onse queue 
reverse fucntion 
rights 
rotate function 

safe sequence 
select function 
select request 
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104 
62,233 
53 
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38 
203 
21)1 
201,205 
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104 
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53 
53 
98 
31,233 
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107 
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39,233 
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/ semicolon 
send ans\..rer function 
send message function 
sequence exception 
sequential synonym 
server configuration 
shape function 
signal function 
signum function 
gimple exoression 
simple name 
SHS 
space number 
source/sink 
start function 
start request 
stateMent 
statement index 
sten function 
stop 
storage cell 
stm..r function 
stow request 
strict syntax 
structure 
subsystem 
subsystem landlord 
subsystem resource managers 
subsystem root 
sum function 
suspend function 
symbol 
symbol reference 
symbol resolution. 
syn function 
synonym 
system input 
system root 

take function 
text 
ton onerator 
translate function 
translate machine 
translate nhase 
translate subject 
transnose function 

ultimate function 
unbounded resource 
undef 
unique n~e function 
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95 
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unique resource 
unload r>hase 

vector 
visi1:)le 

wait ans~.,er function 
wait message function 
where 
".rork flow 
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