
AFS FUNDAMENTAL CON~BPT~ AND SYSTEM LANGUAGE

T HIRD ED if ION

IBM LuNF~DENT~AL

/

"~

This document contains information of a proprietary nature. All
information couta1.ned herein shall be J(ept in confirience. None
of tnis information shall be divulJed to persons other than: IBM
employees authorized by tbe Uii ture of the~r duties to receive
such i nf orma tion.. or 1.nd1. v itiudls 01: organizations author ized by
the Systems Development D~vis1.on u, accordance with existing
policy regarding release ot company inrormation.

IBM ~ONFLD~N!IAL

(

(

(

At'S fU NtAl1EN'r AL CUNC.r;P 1':;) AN:O S LiTEM l.A NGUaGL

TAJ:iL.c: Ot' CIJNTENTS

Table of Contents ••• 3
Preface ••• '"
Guide to Reading this Repo.tt •••••••••••••••••••••••••••••••••• 5

1 • 1
1.2
1. J

2. 1
2.2
2.3
2.4
2.5
2.6

3. 1
3.2
3.3
3.4
3.5

5. 1
5.2
5.3
5.4

Part 1: rutr:oduction

.t:xecuti ve Summa r: y •••••••• • • • ••• • • · • ••• • ••• • ••••••••••• 1
Design Pr: inciples •••••••••••••• • • • ••• • ••• • • • • •• • • • • • • • • • • 16
l..evels of Language Oescr.1.pt~on. • • • ••• • ••• • • • • • ••. , ••••••• • 21

Pdr:t 2: Bas.1.c Concepts and Structures

Object Base •• 25
Program Str:uctur:e and Interpretation ••••••••••••••••••••• 56
Environment •• 75
Multiple Centrol str:~ctures ••••
Resour:ce Management ••••••••
F unction Set •••••••••••••••••••

• •
• •

• ••• ..
• • • •

• •••
• • • •
• •••

~ . . . • •• • •••• • ••• 79
• ••• • ••••••• • •• .. 83
• ••• • •••• " •••••• • 92

Par:t 3: System Concepts and Facil~ties

3ystelIl oesign Criter:ia ••• • • • ••• • • • ••• • • • • • ••••••••••••••• 111
Bnv ir: onmen t l"lanagement ••• • • • ••• • • • ••• • • • • • ••• • • • ••• • ••••• 114
System Con tr:ol •••••••• 0 •••• • ••• • • • ••• • • • • • • • • • • • ••• • ••••• 121
Syste m Functional Mana<jemen t ••• • • • ••• • ••• • ••• • • · 134
M~gration, Coexistence, In ter:cnange •• • ••• • ••• •• • • •• • • • • • • 15b

Par:t 4: The ~an-~dchine Inter:face in APS

.summary of Basic Infl.x j,o'or:lIl •••••••••••••••••••••••••• 0 ••• 161
Examples of SL Programs •••• 0 •••••••••• 0 •••••••••••••• 0 ••• 196

Par:t 5: A Log.1.ca~ Implementation

Basic .s tr uct ure •• 0 • • • • • • • • • • • • • • • • ••• • ••• • ••• ' ... · • ••• 200
Basic Mechanisms •• • • • • • • • • • • • • • • • • ••• • ••• • ••• • •• • •• • • • ••• 205
Key Processiny Ac t i v J. tl.es •• • ••• • • • ••• • ••• • ••• o •• • •• • • • ••• 212
Scenarios •••••••••••••••••• • ••• • • • ••• • ••• • ••• • ••••• • • • ••• 223

Glossd.cy ••• • 229

Its! CONF .ID~NTIAL

/~~'"

! '-_./

(

(

(

This is the third eJitioll ot th~ APS logical architectULe by the
Poughkeepsie Aavanced system~ G~oup. It is a refinement and
extension of the second eQ1tion and is presented as a basis for
further work and as a veaicle for communication between the
several groups workin~ on A1S. Aithougb the design effort has
concentrated on the conceptuaL level, it is being supported by
concurrent implementation stuJ~es that are d~scussed in the AFS
System Architecture Manual.

IBM CONPIDENTLAL

~-

(

(

GUIDE TO HEADING THIS REPOdT

Peo~le with dLtferellt DacK~rounJ~ will tLnd Lt expedient to
approach the study of this material in different ways. This
guide suggests a reading sequence for engineers. programmers, and
system analysts.

1) All: read 1.1.1 A One-Page Summation

2) All: read the rest O£ 1.1 ExecutLve Summary

3)

4)

5)

6)

1)

All: study 2.. 1. 1
2.. 1.2
2. 1.3
2. 1. 4
2.2. 1

Storage
Processes
Objects
Access Macnines
Key Concepts

All: skim the rest o:t 2

engineers:

programmers:

system analy sts:

All:

All:

study

study

study

study

stuili

5 A Logical
Impl.ementa tioll

ij.3 A Summary of Basic
Infixr'orm

3 System Concepts and
Facilities

2 Basic concepts and
structures

Xhe rest

IBM COMflD~NTlAL

" "

(

Part 1

INTRODuC'rION

Since AFS is d~velop~ng a new approach to computer system design,
some background information l.S necessary to place the concepts in
perspective and to edse tae trdllsLtLon to novel lines of thought.
Chapter 1.1 presents au overVl.ew of the new concepts, tile
relationship between AFS dnd otaer developments by LBM and
competitors, and the obJectLves and requirements that AFS is
tryin-J to meet. Chapter 1.2 discusses underlying assumptions
that Illotivate and d~Lec t the des~gll et fort.F inally, chapter 1.3
presents the notation and syntactl.c convent~ons used throughout
the remaining parts of this manual.

IBH CONF1U~NTIAL

(~

eha pter' 1.1

~~EeUTiVE SUMMAH!

AFS, Advanced Future Syste~, ~s proposed as an alternative to
comp4tible extension of system/310. It ~s ~ntended to meet F5
Market Requirements by Advanced Systems P14nnLny and ~valuation.
dasic elements ot AFS include selt-descr101ny data, reference to
data Dy symbolLc names ratber th4u addresses, dynamic attribute
examina t.ion, 4 utoma tic stordye aierar'chy, ue twor k i unction
transparency, and a high-level machine langua<.je called 5L, the
System Language. Such a tunct~onal base w111 provide a
signii.1cant gal.n l.n system USdi:> il.J..t y. Tul.s d ocamerl t present s a
new conceptual toundation, and describes SL and tne associated
system facilitl.es. A companl.on document, the AFS System
Architecture Manual, discusses 1mplementat~on and presents
additional detail.

'rhe conceptual found ati on for Ali'S loS a synthesis of aJ va nces in
Computer Science. It ~s moaeled formally uS1n~ the Vienna
definitl.on methods. It prOVl.deS a frameworK ior mult~processing¥
data independence, aata bas~ ~tructuces, tiource/sink ana network
communications, modular control system structure, unl.form
resource management, and migration from system/3bO/370 inc~uding
coexistence and dynamic iuterchange.

The number ot AFS constructs i~ m1.niwized by explo~tl.ng each
tully. For example, assign~ellt 15 the universai means to put
something somewhere, whether assl.~niug a value to a number,
send~n9 information to a pn.nter¥ or filing a new program under
some n~me. S~mi~arly, an "obJe~t" has the same formal structure
whether it represents numeric data, a data structure, a virtual
devl.ce, a program environment, a funct~on act1vation, an access
authorization, a communication port, or any other system entity.

SL is a complete langua~e, waose functions include those
necessary to represent ~royrams written in contemporary high
level languages, as well as all system control facl.lities. SL
statements are constructed with taese funct~ons just as
arithmetic expressions aCB COU::itruct.ed with arithmetic operators.
A customer may use COBOL, £»L/1, FORTRAN, AP.I.., or hPG as if each
were the actual machine laRgua~e. 5L 1S extendible: Dew
funct10ns and data structures are readil~ accommodated.
Furthermore, the AFS desl.gn is SUCb that facilities beneath the
external interia~e may be redefLne~ ~l.tn 5L funct.Lons.

IBM caN~lUENflAL

!
i

I
I

d

The conceptual foundation results from a fresh examination of
fundamental data and control structures 1n light of the past
decade of progress in comput~r SC1enca. The approach differs
from earlier ones ill that PJ:OV1Sl.0ll .l.S made from the outset for
essential is ingred1ents such as mu~tl.prOCess1ug, data
1ndependence, data base structures, coeXl.stence of multiple
arcbitectures (such as Sistem/J70), network communications,
applications subsystems, ana uUl.fl.ed system resource management.

The SL design also dl.ffers trom earll.er approaChes in basic
character: The conceptual frdmeworK provl.des a basis for an
architecture waich can grow ~rdcetully, rather than one Wll1Ch is
tightly circumscribed. Extensl.ons and mOdl.i1cations can be
defineu in SL itself l.n such a maDner t~dt system discl.pline and
l.ntegrity pervades all levels of redefinition; user programs are
written as thougb the extensl.ons ~ere an integral part at the
system.

This type ot desiyn 1.S called a Recursl.vely Extensible
A~c~itecture. lt offers us~rs the anility to extend or
specialize SUbsystems tor tha~r ~drtl.cular re~u~raments, system
architects the ability to develop the archl.tecture without
l.mpacting customer programm~ay l.uvestments, and IBM product
jes~gners the opportunity to bUl.la hardware to support either
general or specialized tuuctioual extensions.

1. 1.2.1 Histor~cal Foundation

Design of the data and coutLO~ structures £e~uired for a
complete, fuuct~oning system nas hl.storically beeD tu~ task of
pI:ogrammers. In the process of ouildin;; increasin<jly complex
systems, a systematic boay of programm1ng knowledge has
developed. Cantr-al to this body at imowledge is an understanding
of fundamental structures and algorithms which oc:ur throughout
all programming practice. Work ~n pr-ogramml.ng lau;;uages over the
past ten years has to a large ext.ent consistea ot: developing
notations witb which one can conveniently employ various subsets
of these basic elements. The SL approach bas been to sur-vey the
f undamen tal structures, de terml.iii:! a minimal set ot ba sic
concepts, and design a total external intertace based upon this
set.

IdM C0NfIDEITIAL

/

(

Chapter 1.1

1.1.2.2 Related IBM Activit~e~

There are a number ot cur£ent act~v~ties that relate directly or
indirectly to APS. System A in ReSeaL"Cn ~s exam~uing aD external
interface similar to SL: Sys~em A is designed to run on an NS
symmetric mult~processor system, aDd programs at the external
interface leve 1 will either De compilea into system/ 370 code o.r
be interpreted in dll intermed~~te lanyuagesim~lar to 51. The
Endicott Advanced 3ystem Group ha~ worxed on a simLlarly
motivated de::uyn effort durLn-:; the past several years. Their
work through 1970 is summar .lzad loll a Febr uary 1, 1 ~71, report
entitled llb§.-gf.Qt211.~ ~ro]~££ rlel!Qfl. tiore recelltly, Endicott
ASG representatives have wo£ked both w~th the 5L designers and
~ith Ray Larner, who has formulated a proposal ror a high level
~nterface called M1 (Macnine Lauyuagej. Several 1ndividual~ in
the San Jose Research Center nave been actively participating in
APS areas. The Palo Alto SC.lent.lfic Center has microcoded a
Model 25, and now a ModeL 1~~, to ~nterpret API. code directly.
They nave also conductedre.i.iited stu(1Les concerniIl\j the
performance of microcoded APL mach1nes vs. conventional
Lnstructions and comp~Lers. MUCA of tae wor~ on datii base
or\janization is pertinent, especLally the PROP/DB prototype in
PoughKeepsie. The New Yor~ Progra~m~ng Center ~s studying the
signLficance of an APS-i~ke iircn~tecture for the principal
programming languages, and tbe broader classes of languages and
language building tools Which may become possJ.ble. Protot ype
PL/I work done in Uursley, in conjunction with the functional
memory progriim, has shown several opportunit~es for significant
performance improvement. Wor~ to date on the iPS project has
considered s1milar concepts, and it seems that some commonality
with the eventual fPS direct~on ~s J.illely.

1.1.2.3 competition

Numero us university and industr J.al i nves tiga tors :ir-e explor iug
Af'S-like directions. Some are B)Cplor:in\j these directiollS with
the intent of developing more eft~c~ent lDJ.crocode tor existing
hardware. Examples can be found in papers emanating ~~om
uni.versities. SOBle manufacture1:S are produc~uiJ microcodable

.hardware which lends itself to provl-ding iugher level interfaces.
Examples are the IC.l and Gemira machine~. There is cons~dera ble
discussion ot APL-l~Ke machines, cue CLaims tilat the STAR system
directly performs APL-l~~e tuuct~ons. McFarland's paper ~n the
1970 FJCC describes TPL (The ProgrammJ.ny Language), tor which
direct hardware support ~sdiscusseJ.. II1.fie's Basic Machine and
Rice's uPL/I" machine are f u.cthec examples o:r mach~nes which
offer direct support of higAe.c level extecudl ~uterfaces. By far
the most experienced competitor to ddte is Burrougns: The 85000

IBM CO~FLDSNTIAL

lv IbiTROD UC'£ rON

in the ear 1y sixties a nd the more .recen t rl57 OJ ij, Bb 700, and B7 700 ~~. /
all support a bigher level interLace directly. Their
archl.tecture read1.ly offers supfiort, such as virtual meUlOr1.eS and
multiprocessing, which poses sar1.OUS ditficultl.es for OS or DOS.
Their desl.gn has permitted coust~uction of an operatl.ng system in
a higher level language. Furtner uevelopment in Ars directions
should be antiCipated from rlurrouyhs. .

AFS is intended as an alternat1.ve to a cOlllpatilJle extension of
systell/J70 for the fS t1.me f raIDe. AFS must therefore lIleet
official FS Market Requirements Latner than generate new ones.
In t~e event that any OI these re~uirements are not achievable,
AFS ~as the oDjective to e~aal or exceed the best PS p.roposal
with 5 yste m/31 0 compa ti ble hac aw ace.

SL is the machine language of AFS and therefoee inherits the
above eequirements and auy otner AiS requirement that has a
laDguage implication. At present, these requl.rements are stated
in a memo. "APS Regu1.rements aud. Ubjectives" Jan. 19, 1971, to c.
J. Conti and A. A. Maydall from R. B. Bennett and W. D. Wilson. A
hrief summary of the re~uLrements trom t~e SL point of view is
gl.ven below:

SL must allow the ~ser to l.uteeact wl.th AFS ~n ~ high level
language and suffee neither the iS0lation from the machine caused
by comp1.lers today nor tne Lnef~icient execut1.on caused by
interpreters. Tnis loS to be accOmpll.Shed in two ways: on the
one kand. the mach1.ne language itself will be a h1.gh level
language exploiting current ~anyuage teChnology; on the other
band, the user will be aDle to act as it the maChLne language
were anyone of five favored language~--CObUL, fOHTRAN, PL/I.
RPG. aud AJ?L--and he lIlust not suffer a ser1.0US pertorlUdDce
penalty for ignor1.ng machine language.

To meet this requirement. SL must faLthfully l.nterpret the five
favored language~: Under AFS, tae conversational user must be
able to interrupt execution, maKe changes, resume execution,
execute incomplete or defective code as ~ong as lot makes sense to
do so, and get the Eull benefits OL a really good l.nterpreter of
tbe language without pay1.ny the performance penalty normally
associated with in terpretation.

SL must be an appropriate Object language for the interpreters
mentioned above and for com21.lers feom the current pr~ncifal
high-level languages, extensions that will De made to them, and
new ~rogra.ming languages that may become popular in the FS time
frame.

10M CONFIDENTIAL

(

Chapter 1.1 EIECJflVE ~UMftABI 11

security, privacy, and system 1uteyrity must be provided to
protect one user from another dnd to protect t~e system from the
users.

An objective of SL is to fulfill the above requiLements by, among
other things, design1ng d system ~Lth sel~-descr1b1ng data. To
this end, attribute exam1u1a~ hardware should enhance beth
security and system integr~ty and fu1f111 the add1tional
requirement ot makin~ it ~o3tiib~e to restructure data without
invalidating ~rograms.

rbe design of SL must allow ~OLe eti1cient 1mplementation with
LSI than would be POtisiDle if the h1gh-level source language were
translated to a low-level machl.ne language implemented with LSI.

SL must be extendible to dCCOmmOQdte new operators, new data
types, and new devLcss. It lllust also enforce cOll.straints that
encour a9 e more disci p1i ne d use.

SL must accommodate programs tnat exploit new marKet areas:
particularly data base systems, data communl.cation systems,
transaction-based ap~licdt1ons, ana interactive use. Tnese new
areas must be accommodated WLthout los~ng ground in what will
continue to be a major market, batCh computatLou Ln estdD11shed
applications.

AFS must emulate System/37u witn tW1ce the cost/performance.
when the customer maKes tne t.caIlS..I.t10n to native mode Af'S, there
must be a four to one ga..l.D 1n prl.ce performance over System/370.
The customer must be able to ~ake the transit10u 1n d piecemeal
fashion. The part of an appl..l.cat..l.oll that ha;:; Deen translated. to
APS native mode must exb..l.bl.t A~S propertLes; tor example,
translated parts must exhibit user security and system integrity
that is unachievable in system/J7v.

To aid a customer's trans1t1on, ~L/l, FORTRAN, COHOL, RPG, and
APL as executed by APS must meet standard speCifications for the
languages.

SL has been
principles 111
'lhey are:

constructed witn
m1nd. T hey an'!

d number of spec..l.fic design
eacn d~scussed in Section 1.2.5.

Minimum Number ot Hasic Concepts
Completeness of BaS1C Concepts
Rigorous Control ana Access Disc..I.plines

IBM CUNilD~~TIAL

r:'l'duU UI.:'L' LON

Maximum Hardware Design Freedom
Network Function Transparency
Bit code Independence
Modifiability
Extensibilit.y

Key ~lements ot a high level l.utt;;!riace and 01: a machine that
directly supports the interface, .ltd. ve been desc.cibed in seve ral
earl.ier reports, such as the McPherson task force report and the
Endicott HLS Prototy pe reports. fhe mac.ill.ne is partl. tioned into
functional units for processl.!l9, storage lila nayem€ nt, and
source/sink and networK commuuicat1.ons. The inte.cface includes
self-describing data, generic operd.tors, separation of storage
trom co mmun ica tions IIO, and pro ViSl.Oll for cOexistence and
.rnteractl.on of data and program material produced ~or dissimilar
architectures (such dS syst.em/310, System/3, 7090, 1401, etc.).

Producing a design capavle ot integrat.l.ng these ~ey elements
requires more than simply aefining a particular external
interface. it. tor mal. co nceptuai founda tion must first be erected
in which it is possible to e~h1D1t basic elements, structures,
mechan1sms, and key processes W1.t11 Wh1Cn. one can real.ize and.
prove proper .oeha vior not only for computational fI:ocesses, such
as arithmetic expression eVdludt~on, but also tor essential
system fuuctions such as coex~st~uca, ~ultiprocessing, data base,
netwocks, and aynamic resource llldaal:lement. To date, most of
these aspects have simply been left 10r t.he system programmer to
solve. Experience has made.rt clear that system design canDot
continue to ignore such matters. This is especially true for
systems such as AFS.

The conceptual tounda tLon tOl- SL cons.rsts of three basic
elements: Process, Storage cell, and Object; three basic
structures: Accessibil~ty J.caph, Eav1.ronment Tree, ana
DepenJ.ency Graph; two classes ot: basic mechan.rsms: .rnter-object
communications Pl:otocol andl.nter-ooject request/.t-esponse
handling; and five key Frocesses: translatiou, expression
1.nterpretation, symbol resol~tion, procedure activation, and
resource management.

A process designates an algoc1thmie activ~ty. It cons1sts of a
motive force called dD interpreter, a procedural descr.rption, and
a set of stat.us l.nformat.ion called the PSB (Process stat.us
decorj). A storage cell is the basic unit of storage. It is
~dentified by a uni~ue 1.nternalillelltifer calleli a Cell Name, and
it contains exactly one object. An object is an ent.rty used to /--"
represent every logical and palsieal reSOilrce ot the St st.em. It ~, __ ?/

IBM COUF~DE~TIAL

(

(

Chapter 1. 1 ~x£curIVE SUM8AHY 13

nas an active subeleillent, a l-lrocess called ali Access Machine. and
a passive sub~lement. called an uwrred Resource. Every reference
to thd owned resource is acco~pl~shed by act~vat~on of the access
machine. This model permits un~locm cepresentat10n and handling
of all system resources.

The accassibil~ty grapn Qet~nes tbe paths by wh~ch objects may be
reached. It contains a sUDycaph. a tree called the Ownership
Tree. which defines ownersh1.t-' d1ltOll'J objects. The env~ronment tree
defines the context in Wh~cn symuols appearing in program modules
dre resolved to part ic ula.c oL je;; ts. 'rne dependenc y gl:aph records
dynamic dependenc~es among Objects. It includes a sungl:aph
called the Activat10n il:ee. aud 1t ~s used by resource
management.

The names of the bas~c mecndn~sms and Key processes directly
~uggest their respect1ve roles.

dy uS1ng the above construct:::>, a conceptual toundation ot the
necessary ty~e has been J~tineJ. Tue def1nition methods
developed by the Vienna Laboratory (VDL) wer~ em~loyed to ensure
formal completeness. SL ~ep.ceseuts a part1cular intertace
definition wituin the conceptual f.camework~

Part 3 of this document Q~scusses the mdnDer 1n which the SL
conceptual foundation serves dS the basis for a total op~rating
system that meets FS market re~u~rements. Of particular concern
bas been consiueration of resource management. user environment~
system control. and funct10nal capdn~lities.

desource management encompa:::>ses nandling ot both nonunique
resources such as storage anG un~~ue resources such as particular
data elements. A resource management policy ~s adopted which
will ensure completion of all Jobs submitted to the system. The
s_t~tem can be so structured that l,t is possiiae to I!rove that
r~source conflJ.cts never OCCUL 1.n vital port10ns ;>itjle system.
Errors occurring elsewhere are prevented from proPdgat~ng to
other parts OL the system. rnQ~vidual users are offered the
option of avoiding deadlocks alto-jetxler by stating . .cesource
requirements in advance. or ot dyuam1cally re~uesting resources
at the cost of poss1bly tlaV1ng to back out OL deadlock
situations.

The AFS system effects a mouular Dandling ot user environments.
All resources of the sisteill, loncl-udiny ports to the outside
world. are owned by the reSOIlL::;e mana~er. 'rhe operating systems.
defined as subsystems in ;;1.. th.cough whl.cb. d user Illay w~sh to

Ldrt ~OjfIU~NfLAL

wItH
II' c:kf.)

I tU>NFtter'

~~ 11iti-~

14

/
I

avail himself of At'S fac.llitl.'::s at'e also owned by th.e resource ~~/
manager ullder the subsystem l.aud.lord. Each subsystem claims 6 and
is allocated if available 6 a packa~e of resources which it may
control and allocate to the user V.la its own subsystem resource
manager. Some operating systems may De granted a "semi-permanent"
(e.g. "IPL" to "sbut-down") status in the system, existing for
long pe.riods of time and serVl.Cill9 many users; such Iledicated
subsystems may have direct, 1..Illpll.cl.t contt'ol over a set o.f ports.
Thus, a user entering the sy.:nem via any at these ports sees only
that operating system and teels as though he were running on that
subsystem's host arChitecture. this.ls tae logical ey,ul.valent of
virtual machines d.nd permits useI:S 0.t:6 e.g. OS/37;), to run as
though they were on system/J70. Users entering the system
through ports not directly controlled by dedicated subsystems
first encounter the .lnitl.al .lnterpreter, through which they may
request the creat.lon of a tree SUbsystem tor their private or
shared use. The subsystems tAUS estab~ishea are transient and
are granted access to resource packa~es minimal~y including the
active port and the user's fl..lds. Juce running under a subsystem
(SL itself ~s an example), tAe user may request the dynamic
creation of additional subsystems for COilcurrent at: consecuti ve,
interactive or Datch, depead~nt ot: independent, ex~cution. A
user job, in the classical sense, is thus inl.tiated at port
sign-on times and terminated w~tn Sign-off; dynam.lc subsystems
created in the interim may bodcoae jODs at the user's explicit i-'
request. ~_/

rhe system control structure.lS Dased upon paLtl.t~Onl.ng system
activity into functional and server configuration levels. Work
flow on the f unctiona 1 level nanJ.les iui tl.a tion, coordl.aa tioa,
and termination of comIDunl.cd.tion, data entry, data retrieval, and
computation functions. On the seI:ver leve1 6 which is beneath the
SL level, cont.rol .i5 concerneJ wH.h orderly flow ot work through
the system 6 1ncludiD~ cODtrol ana synchronl.zation of both logical
and physical resources.

Consideration of system functional capab~~ities includes
particular conceI:n regard1ng data base, data communications, and
coexists nce.

SL oojects and da ta st ructures prov~de con venient represen ta ti ons
for the data aggregates aud l.nd~ces re~uired tor either
ring-structure or en tit y-set data or ganiza tiollS. Access machi nes
and the accessibil.!.ty graph can be used jointl(to enforce
privacy and security.

At the SL leve~ the user deeds vittl processes involving data
communications by use of objects known as Ports. 'rhe access
machines of f'orts prov.Lde the bridge to deeper levels of
comaun ication control. Th.e ueepec con trol levels inc.lude one
which performs device indepeuUent f ormattLng, and another which .f"
handles device function dependent and inter-system protocols. 0

IbH COUilUENTIAL

(

Chapte.r 1. 1 EAE~UT~V£ SUMMARY 15

Data teanmission protocols .to!:' llona conteol anI.! networK (pa tb.)
management are handled intb.e ;::omUlunications unit beneath the SL
level.

The access mach ine al's 0 prov lodes a. poss1ble basis for coeX.1.ste nce
and interchange of (v~rtual) devices and other systems written
under differiny architectures. ihe access mach.1.ne is a process
which is acti va ted whenever d ro ques t is made upon the ob ject of
whicb it is a pact. The 1ute!:'preter dnd peoceaural description
of an access mdcbine need not be ot the same architectuee as the
process making a re~uest upon th~ access machine. SL code can
therefore call System/370 cJde 1n a riyorously disciplined
manner, and vice versa. Th1S mechanism also enables one software
SUbsystem to access uata 1& another, even if the subsystems have
different arch1tectuees.

Part 4 of this document descrioes the basic infix form of the 5L
lauyuage. It 1S. this fOI:ill w!l.1.ch const1tutes the primary
man-maciline interLace ct the AfS system. Each SL illnct10n is
described ~epdrateli, along with examples of its use and
d1Scllssion of ~ts side-eftects. (Tnis level of description of SL
is only partially complet~ 1U Edit.1.on 3.~ Examples of
translation of high level lall~uaye constructs to SL are also
presented.

Part 5 of the document presents a l.o':;jical .1.lIIplementa tion of A FS.
The dafinition methods develo2ad Dj the Vienna Laboratory (VDL)
~ere employed, in ordee to insure formal consistency and
completeness. This approach ~u~ned out to be particularly
atfective for this level OL aes~~ll worK. The presentation in
Part 5 is an X;ngl1sb transcr~pt10n of the formal ililpleme,nta tion
rather than one whiCh ut.1.1izes the VDL notation. .

The logica~ ililplementat10n of aFS descI:ines the w~y the system
operates on an abstract mach~ne which models the concepts SL
presents to an AFS mactane lallg-uaye pro-j rammer:. Au y physical
implementation that produ.ces the same oDservable behavior is a
proper conceete representation of APS. Sjstem desi~ners are free
to realize the AFS system in tne 1Il0l:it economl.cal fashion .tOl:" each
particular mar~et. Slav~sh cvpy~uy of the lOY.1.cal model would
probably result 1ll an 1nferior pUjsical implelilautatl.on. Such an
implementation, therefoee, 15 Dot l:"ecolilmended.

IilM CONflDLNTIAL

Cha1?ter 1.2

D~SIGN PRrN~lPLES

There is considerable ev~uence that a Von Neumann drch~tecture is
inadequate for future HHI systems: such an architecture ~s a
poor target for compilers, the coding conventions are inefficient
.ln the inforaa tion tileoretic sense, d.ud the units of work encoded
dre not optimal for either larga or small machines. Pu~thermore,
the property of data ~ndependeuce, WA~cA is clearly required for
future systems, is impossible, or at best prohibitively
expensive, with an architecture ~ll which attr~butes of data are'
sprinKled throughout every instruction that references taB data.
There is also a serious quest~on as to whether a system based
upon Von Neumann illstruct~ons can guarantee tae security and
~ntegrity that future systems must provide.

Another problem that must be corrected is that present
hardware/software systems re;:luire the user to understand much
more than he needs to know to do his work. A solution to this
problem ina limited conte xt has been prov.llied by certain
conversational systems like JUSS, CPS, and aPL. In these
systems, the user is not required. to learn unrelated lan'juages
like machine languaye or JCL in add~t.lon to the lauguaye ~n whiCh
be writes his program. FULthdrmore, he nas good conversational
access to what is going on: ~L he does someth.lng wrong, he is
likely to fina out for~bwith. With new architecture, these
advantages will extend to the tull ranye ot problems that
computers solve without ~ncurrLny the performance penalty of a
software interpreter.

During the past decade, cons~lieraDle practical aud theoretical
work on programming languages has Deen done. Although centered
dround languaye, this work aas aualyzea structures that are
fundamental to all Eorms of computation: the structures are
common to many types of languages and appear throughout operatiny
system design. The time ~s r~pe, theretore, to focus upon these
basic structures, to implement them directly in hardware, and to
construct the architecture of an entire system upon the
ioundation they form. .

(

(

Chapter 1. 2 D~$lGN Pk~NCIPLES 17

At present, five bas1c architecturaL levels have been ~dentified:
1) Physical Components
2) Hardware Boxes
3) System Control
4) system Language, SL
5) General User

This document d1SCUSSdS the ~ogLcal aspects at the 1uterLace
between levels 3 and .4. The AfS 3ystem Arch1tdctu~e, of course,
must define the deta1ls of all intertaces. Several observations
should be made on the intertace between SL and System Control.

An AFS system, 10Y1cally, lllaj{e5 availa.ole to a user throuyh the
SL interface a set of system serV1ces 1n data communications,
data entry/retrieval, and data manipulat10n and computation.
Beneath the SL level, the control and syuchrou1zat10n of system
work flow is under the control ox d System Control program. The
Sy stem C ontI·ol program 15 arCU1 tect ed to consist of a number of
functional control modules, Te.I:lllinal Control, Data '::ommunications
Control, Data Control, L'ionitor Control, and cOiBlllalid Cant rol. The
Command Conteol module has tae respons11n11 ty to c;)ordina te work
flow activit1es on both the lOY1ca~ and physical levels. On the
physical level System Control iunct10ns are mapped onto a
physical structure which consists ot three basi~ enyineering
SUbsystems, PPS (Program PrOCeS!i:i1IlY Subsystem) , SMS (storage
Management Subsystem), and SSS(Soucce/Sink subsystem). Each of
these u«its requires its own ~oy~cdl conteol proyr~m, which will
be called an .BCP (Ellgineeri.ng <.;ont.rol Program). The SL/System
Control interface is common across all AFS installations.
~ithin the System Control l~ve~, the sc~ 1nteracts wita the
intertace provided by the respe~t1ve ECP·s. This interiace will
be called the ~I (~nginee£ing Interface).

In early computer systems, lO~1ca~ and physical interfaces were
identical: programming manuals 1ucluded a rough sketch of
hardware organ1zation, describing reg1sters, data paths, and CPU
clock. cycles. In System/36\,}, rBM int.roduced a family of
computers with identical lOY1cal interfaces, but totally
different phys1cal oryani~atlons and data flow. Software
developments removea the proyrdwmer even further from hardware:
with pseudo-devices in HASP ana virtual macnines in CP/67,
programming in tertaces became pure ly 1091cal, with no direct
relationshi~ to ~hysical aevices.

ISM COM~~DENrlAL

l.NT.l.Wl) Uc r iON

A lesson froll history shows tilt:! .llllportance of sepaeatiug logical
and physical interfaces: On tne ~~M 7u~, all I/O went through
the i'lQ register in the CPU; a proSl ealllllee could 0 vee lap riO and
computation only by cOlllplex pI:ogcalluling techniques involving
delicate timing considecations. The rBM 709 added cnannels to
allow riO transfees to pcoceed wit~out ~ntertering with
computation, but eacn t e of I/O dev~ce Le u.lred ent set
cf control instructions. System simplii.led the logical
.lnteeface by aading control un.lts tilat eesponded to the sallle type
of command for an entire class ot devices, but the prolifeeation
of channels and conteDl units .luc~eased the numbec of hacdware
devices and hence total system cost. To caauce cost, small
models like System 360 Mod 2~ used CPU log.lc to perfoelll the
functions of Channels and control units. Aitee a decade of
progeess, physical intertaces on tbe Mod 25 were the same as on
the 704, but logical interfaces weL:e totally liiiferent: because
of funct ional differences Dt:!tllit:!en I/O and computation, c oml>u teL
archJ..tects had defined logical .lnteeiaces that separated channels
and control units from the CPU; on the 4ssumption that every
logical inteeface eequires d physical intertace, they had
designed different hardware devices for eveey functional unit; to
improve cost/performance, engJ..llt:!ees eventua~ly found ways of
doing all the fUDctJ..ons on a single unit. The moral is that
logical interfaces ace pL:ogrammJ..ng aids, pbysic4l interfaces are
engineering approactlesto Dettee cost/perfoemance, and any
sJ..mila~ity between the two 15 purely coinc.ldenta~.

The APS project involves d cCLtical aualysis aDa eadefin.ltion of
all interfaces in an ~nLOeJlldt10n handling system: the
peogeammee's interface saould be a pureLY loy~cal one with all
the aids that can simplify hLS task and with no housekeeping
details; the physical interface should be designed for opt1mum
perfoemance at a given cost W.lth no unnecessary consteaints from
the programming interface. .

Before considering what ieaturds future systems shou~d have, let
us contemplate the state .lnto which cucrent systems have evolved.
For our hardware, assume a hypothetJ..cal Hodel 195 with relocation
featUres and a modified C~/b7 system to run on it. Then imagine
a PL/I program using disk 1/0 rUfiIung under 05/360 cllnnJ..ng on the
modified CP/67 running on the hypothetical Model 195. storage
management on such a system .lS fantastic: i".lrst, the PL/r
program must manage transfers between J..ts own stoeage and the
disk file. Beneath the ~L/I interface, tne compiler inserts
storage management eout.lnes tu subd~locate storage faster than
OS/36J can with GHTftAIN and P~~iMA~N. Un the next level, 05/360
allocates space to the program dud paecels it out 1.n eesponse to '~oj

IBM ~aNF .lD~N'rIAL

(

(

Chapter 1.2 D~S~GN PHIHCIPLES 19

GETKAIN's; it also allocates space on its virtual 2311 disk and
does housekeep~ng io~ 1/0 re~uests. On the next lower level,
CP/67 creates tl1.e illusion of stord~e and d.l.sK toe 05/300: it
busily allocates space in core, lIIove:.:; virtual pages to meet the
demand, and conjures up a 2311 out of space in core, drum, and
2314 disk. ~eanwhLle, hardware allocates blocks of space in the
hign-speed buffer and moves aata to autLc~pate future use; it
also allocates space ill varLOUS registers iuvisible to the
program~er: .l.nstruction bULiers, uata buffers, and reservation
:.:;tations that effectively repLace tbe tloatin~-point . registers
with d set of virtual registel:s. 'rhe point ot this exalllpl.e is
that storage md nagem~n t occ urs at every level of cur rent s1 ste ms:
allocations doue at one level dre trequently unaone at the next;
most of the allocations are doue by software; and storage
allocation by bardware is about two orders of ma~nitude faster
than allocation by sot tWdre.

As the preceding example snoweJ, storage mandgement by operating
systems is inefficient cOl&lpacea to management by hardware and is
inadequate to eliminate further lIIdnayement by problem programs.
Processor allocation and taSK a.l.spatch.l.ny can dlso be performed
by hardware: super compdters l~ke the Moae~ lj5 or MPS have
built sophisticated mult1prOjLamminy al~orithms ~nto hardware;
even a small machine like the MOdel 25 does hardwaL'e dispatchin~
every time the CPU converts .l.tself into an I/O channel; and
multiplexor channels are nar~~are units designed to appear like
many channels by internal mUlt.l.programm~ny. A control block isa
~ind of descriptor that is processed interpret.l.ve11; Burroughs
adS been building machines Lac the past decade tnat do much, but
not all, ot descrivtor processing 01 hardware. Compile.rs,
linkage editors, JCL interpreters, indexed sequential access
methods, and thousands ot problem proyrams all do symbol
resolutLon and linkiny, and they could all 0.0 ~t mucn more
eff~ciently w~th hardware ass~stance. Establishing a new
environment is done by hardware at every cbauge of PSW and
whenever a GPU becomes a Channel; Burroughs systems also use
hardware to switch en v iroI1men ts tor procedure calls. On modern
systems, these functions occuc lliore frequently than floating
point multiplies and divides au) are more fundamental to overall
system operation. For optimum cost/performance, these functions
s~ould be reduced to a set ot primitives thdt are as firmly
supported by hardware as fl.oat1ng point ar~thmet1c.

In order to design a system ot tne
number of des~yn princ.l.pl~s aave
Ideally, the AFS system sbould
directly from these prinCiples:

gceatest possible util~ty, a
been adopted as objectives.
exhioit ~roperties derived

ltiM ~ONFIDENf~AL

~,;(l'i/
(vr".y(lll tJt, .
flfovi-.O 1£
lIff flA4ya

uf flwtiIJ rf4IIQ

1rLH£iJPff .

20 I ~T .iOD aCT ION

1) Minimum number at basic concepts: Current systems suffer
severe.1y tram constructs -that are seeainglypu.lled out of
the air with little re~ard for consistency or uniformity.
Every effort is be~ny made to design SL with a minimum
number of basic concepts.

2) Completeness of bas~c concepts: Although few in uumber,
the Dasic concepts must encompass all structures required
for the AFS System. Se~arate operating system or command
constructs, such as the system structure built around the
APL .1an~uage, must be obv~ateu.

3) Rigorous control and access disc~plines: rne APS design
must make it possible to prove that system disciplines
required for secur~ ty and ~u tegr ity are enforceable.

4) Maximum hardware design freedom beneath SL: The design
shou.ld avoi<i constraining the manner in which hardware
interprets it since d~fLerent AFS maenines may employ
quite distinct internal representations.

5) Network function Transparency: The arChitecture shou.ld
ensure functional transparency to user application
programs and most system ~acilities 0% the physical
network location v~rtual (co-exi~tent~, .local, or
remote - of devices and othe~ systems. Further, it
should easily a.11ow data dud funct~ons to be logically
tr ansparent to useJ:'s.

ti) Bit code independence: ~ae inte~nal bit codes used to
represent 51 shou.ld not be uofified as part ot the
architecture. A Standd~d J:'epresentat~on for compiler
output will be deiJ..ned, but all bit strllctUJ:'es w~thin the
system will be generdtea D1 execution of S1 ope~ators.
Inverses of these operators are necessacy to display
internal structures tor ana.lysis and debuggJ..ng.

7) Modifiability: Tae architecture should conta~n provision
for user redefinitJ..oa ot system operators. The user
should be able to iococporate suitaDly disciplined
proced ures io place or: . tho;:;e normally s ufJ plied by the
system. Architecturally, th~s requires that system
primitives are tneruselves redefinable ~n terms of the
sy stem. Pul.ly yellerali zed, tins pr~ncii:Jle reg u~res the
architecture to be recu~s~vely extensible.

8) ExtensJ..bility: The user should be able to deiine new
operators that operate w~tain his own contexts and to
extend the def iuit.ion of ol.a operators to new classes of
data.

~-

(

(

1~VELS OF LANGUAGE DESCilIPTION

Three levels of S1 are ;:i.l.yal.f.l.cant to tne usee. rhese are all
symbolic in the sellse that dct ual addresses dnd other machine
oriented quant.l.ties are not accessible to the user; they are
only represented in 51.. by SYlllbuls.

Strict ~L is a machine or.l.ente~ level that is mO;:it convenient for
comp.l.lers to yenerate. Bas.l.c ~ntl.A 51 has the ;:iallle operators as
str.l.ct 5L, hut it hd;:i a format that 1.S more con~enl.al for people
and can be lIIapped allllost one-to-one into strict syntax.
Pollow.l.ny is an expression .l.n str.l.ct syntax:

stow(quotient(sulII (A;ti) .sum(~;j))) ,£)

In basic infix, the example becomes
«A+B).(C+D»->E

or
A+B+ (C+1» ->E

Extended .l.nLl.X is the most fU.l..lt developed 51 syntax. It
incorporates basic infix as a proper subset. Extended infix will
be supported by a software tcanslator that will map .l.t to strict
syntax. The purpose of extenaed illf.l.x is to pro viae a tlex1.ble
p~ogramming tool for those wao wish to work directly with AFS
data structures.

AP1 and LISP dre expression· or.HHlted lanyuages: ttaS result of
every operation is a value tnat Cdn De used as 1nput to another
operatoe; conse~uently, e~per.l.enced APL proyram~ers often write
subroutines cOnS1.st1ng of a ~1.nyle express.l.on w1th dozens of
fUDctLons and variables; in LISP, an entire pro~ralll 1.S normally
one long expression. The syntax of APL or LISP bas both
advdn tages and disad van tages: l. ts ad vantayes l.UC lude sim pIe
syntactic rules with on.ly on'd statement type and freedom froJi
aebitrary conventions, a context t~ee structure that allows any
operand to be replaced by an expression that computes the sallie
value, dnd a consistency that ~akes programs a .':iuesat ot the list
structures allowed for data; a ~ossl.ble disaavantage of such
syntax is that it somet.l.mes leads to long statements that are
bard to read. Although Long statements may obscure the
programming style, tbey aCLsa trom the great modularity of
langudges that can comoine sma~l expressions in an endless

IBM CONFIDiNTIAL

22 l.NTRUDU~'I:.i.O~

/"~

variety of ways. Rathee tna.Q resteicting t.he powee ot the \"' .. ~J
system* AFS will peovide a genoral expression oeiented language
together with peogralRlI~n':l aias thdt encourage a clear,
disciplined style.

As an example of the power of generalizat~on auu the expression
oriented structuee, considee a program to read records indexed by
the variable CURRENT from f~lds JO~ and SAM and then write the
smaller of those two records on tne tile TOM indexed by CURRENT.
fJL/I re<luires the follow1ng tour sta taments to perfoe.li the task;

READ FILE (JOE) INTO (,rEMP1) KEY (CUltRENT);
READ PILE (SAM) INTO (TEl'lfJ2) KEY (CURRENT).
rEMP1=KIN(TEKP1,TEMP~);

WRITE FILE (TOM) FROM (TEapl) KEYFROl1 (CURRENT);
The first observat10n we migat rua~e about these statements is
that although they perfoem actLons very similar to the fetching
and stoeing at s.Lngle elements of vectoJ:s, Pi-/I syntax obscuees
the similaJ:ity. The second ohseevat10n .LS that PL/l chops
expressions into statements that foeee the user to ceeate
unnecessary temporary varLable;;; as targets of the riEAD's. In 5L,
the similarity between l.ndexea vectoes and 1udexeci sequential
files is reflected in tne lauguage, aud the ta~t that every
expression has a value allows al~ fou~ PL/I statements to be
condensed into one 51. statement:

JOB[CUBRENT] min SAMLCUMR~~lJ -> TOMlCUiiENTJ; ~

Although bit encoding of the ~achine Idngua~e is not a primary
topic of this Lepoct, a concrete notatl.on loS necessary tor giving
examples and stating detinLt10ns pcecisely. Thereioee, all
definitions v111 be stated J.n a form called the APS strict
syntax. ~his form is a dic8ct mdP~iDg of the tree structuee of
the abstract syntax ana is l.somoJ:phJ.c to the class of bit
encodings that will be executed directly by hardware. Following
are production rules for the strict syntax 1n the IBM standard
metalanguage:

group ::: 1 s-expr (. s-exprj ••• 1

s-expr ::= symbol [argument-l~st] iJroup I c onstan t

argument-list ;! = (s-expL: [f s-expr] •••)

symbol ::= letter [letteriCligitjUnderscoee] •••

An s-expr is an expression iu the strict Sjiltax. Nore general
expressions in the extended sin tax are Jeil-ned by their mapping
into s-expr's. A group .LS a collective Object waose elements are

IBM CO~iIUENTIAL

Chapter 1.3 LEVELS Of LAM~UAGh DESCRIPTIUN 23

complete expressions; ~t co££esponds to BEGIN-END or DU-END
blOCKS in PL/I and to procedllr-e dud .tunction DOd ies. The group
is more generai, however, becduse ~t returns d value and can be
used in place of an ord~uary var1aoie or constant; furthermore,
it has the structure of a list and can be 1nde~eQ or concatenated
with other groups. A complete express10n form~uy oue element of
a group is cailed a statement; iollow~ng 1S an example of a group
with two statement~:

(stow (sum (sin ,X) ; eXtJ (cos (1)) j ;L.) ;sum (dl.f.terence (A;ts) ;C)}

The f~rst statement saves the resu~t at the computation in Z, and
the 1:.emporary value is disca.caea linen execution moves on to the
next statement. The sScond statement computes (A-B+C), wAich is
r:eturned as the value of the group. 'inis form of syntax has a
structure that is good for comp1iers, but naa for humans; the
extended syntax is an 1ntl.X tor:m that is good for humans and
dl.rectly mappable by comp11ers.

Although the strict syntax presented aoove 1S wathematically
elegant, it suffers from tIle LIS~ unr:eadability :o>yndcome: it
uses too many parentaeses, pn~.u.x notation ~s harder to read than
infix, and arithmetic expressLons dre not written in familiar
forms. The sample express10a Y1ven in section 1.3.2 may be
written in infix form as:

(sin X+*cos 1->l;A-d+CJ

To imp.cove readab11ity, extcd D~anks
inser ted, fa miliar mne monies .1.1 ke I ex p'
sin91e character operators, and comments
inserted anywhere blanks may appear::

dud pacentheses may be
may be used instead of
in french quotes may be

[s1n I.. + exp cos 'l -> Z; \A-.u+C) «value at gr:>up» j

The extended syntax will also include add~tional torms that are
tamiliar from other programml.ng languages such as if ex~ressions
and do-loops. Since a group 15 a list of expressions, an if
expression can be constructea by indexing. For example, all
three of the followl.ng express~ons

if A=B then X+3->Y else 'l-J->X end

{'J.-3->X; 1+ 3->Y} (A= B j

A=B select (Y-3->X; X+3->1j

can be converted to the stI:ict syutdctic torm
select{eg{A;B) ; (stow (d1fference(f;JJ IX) ;stol1f(sum{t;3) ;Y)})

IBft COHflu£NTIAL

24 INTROJ) UC'l' ION

The character set for a prograll1i1ung language must be a reasonable
compromise amoag many contl~ct~ng constraints:

1) Ease ot prog ra III entry,
2) ReadabJ..lity,
3) Use of fawi~~ar conventions,
4) Avai~ability of existing aud future I/O devices.

Por good readability and an esthetically pleasing text, a large
character set is important: ;;itudies of r~ad~ng sI'eed show that
average reader!:> can read lowei: case text muca Lastel:thall text
printed in upper case only, and mathematicians use a large
character set to reduce long formulas to a size that can be more
easily encompassed by the eye. API. has had conside.rable Silccess
in introducJ..ng a number of spec~al characters for various
functions, but rJ..gorous adn~rence to the convention of s~ngle
character operators leads to absurdities l~ke"l c1rcle X" for
sin(X) and "I-beam 20" tor t1me. A large character set can
unfortunately 1utrcduce problem!:> LD program entry: the reversal
operator in APL requ~re!:> ~ Key strokes--upsnift, 0, backspace,
upshift, ~--and takes wore typJ..ng effort that a three-letter
word. I/O devices tor d8-Clld.racter keyboards are comm0I1 1 and
even larger keyboards will Decome ~ractical wJ..tb ~liT devices,
while limited character devices lj"K€ keypuncb.es will be less
common in the F5 time traIBea ~evertheless, character sets with
about SJ or 9J symbols will 3&ilj" be more accessiDle than those.
with upwards of 150 symbols. Thereiore, 5L should assume that
the Dasie :tor In of in put will be with a character set of 88
symbols, but it should ma-'.e provis~on for devices with a smaller
set and take advantage ot fllcure devices with larger character
sets.

The proposal currently oeing considered for the SL external
syntax is the set of conventiolls adopted by PAL: all user
defined symbols are either sJ..uy le lower case letters or
alphanumeric strings be~iunillY with au upp~r case letter;
reserved words and system def1ued symbols are e~ther special
characters or strin~s c~ two or .ore lower case letters. This
convention includes the APL conveut~ons as a s~ec~al case, but it
also prov~Qes an infinite number of words with mnemonic
si911if icance .H.Ke si n, cos, t1me, date, if, and tb en.
Furthermore, every special Character would have a corresponding
symbol like 'sum' for I •• so that devices without that character
could still use the funct10n; tor devices without lower case
letters, an escape chaLactei could De used to ~ndicate reserved

/
!

\.
'-.

words. ,r,
''-j

IBM CO~FLUGNrlAL

(

(

(

Pact 2

BA,:j.IC CuNCEPT::> AND ,:jTttUCTUH.ES

Th~s part of the manual uesceiDes the lO<jicalstructllI:es that are
v~sible to system pro<jrallllllers aud to usee peogrammers who choose
to code in SL. Although SL is the macnine language for AFS, its
concepts reflect the structu~es of compilers and operating
systems much more than details ot typical von Neumann machines.
Three cnaracter.istl.cs dist~IlYl.ll.sh tne foll.owing pI:'esentation tram
the principles of operatl.on vi other machines: the absence of
bit cepresentations, a theol:etl.cal style of defl.nitions and
theon~lIls, and the Dasic assumptl.on that tI:'dd~tl.onal software j"; tTlfU
functions ot storage al.locatl.on and process dispatching are \\ (..JoItOJ)

performed at the engineerl.ng level.. . ~l"'~Uf

Chapter 2.1 beyins with a discussion of oDJects: theiI:' reside nce
in stoI:'age cells and their natuce as processes. Ali the objects
in the system make up the object base in Whl.Ch three directed
graphs embody all l.nten:elat.J.olls1ll.ps: Ule accessibili ty gra ph,
vh ich incl udes all possi.ole paths tOI: accessing one ob ject f Lom
another; the environment tree, wal.ch defLnes paths for symbol
resolu tion; and the depenQ~nCI graph, Which incl udes all
outstand~ng re~uests by Objects for services bj other objects.
Furtiler discussion shows .how tnese graphs interact with various
types of objects, program st£ucture, and resource management.
The ·final chapter LU this part dl.scusses the built-in tunctions
provided with the system.

IB~ COuFIDE~TIAL

)~ "'r
~1I41Jwf~

Chdpt~r i.. 1

OBJ i:CT liASE

A fundaillen tal concept of A.fS i.i:i that all stordge inte rnal to the
system is managed automatical~y: the programmer ref~rs to data
and other objects by symooii.c names rather than by physical
addresses. Storage management would extend over levels from
high-speea registers and monoli.th~c memories up through Comanche
files, optical storage devicas, and even cataloged off-line
storage such as tape librarLes. Logi.cally, all SUCA storage is
an integral part of tile systelll, distinctions between levels are
i.Dvisible to the programmer, and it is considered almost
unlimited in Si.ze.

When independent formulati.ons of a prOblem give rise to similar
concepts, those concepts probaoiy conta~n an essential element of
tae prOblem thdt is invdridDt under change of notation or frame
of refer ence. Tue prob lelll at lli.S tl.ng Ul.Shing bet ween ob jects and
the mecha nism for .Lef erencing tuem is a. fundalllen tal one that
every computer system, programllling language, and theory ot
computation must face: In yOU Neumann lllachines, a special type
of data called an address i.S used to refer to other data;
althouyn addresses have the u~eful properties ot numbers, they
are bound so tightly to phys1cal storage that their logical
proper·ties are inextricably confused. with problems ot allocating
storage and devices. In the definition ot CPL, Strachey
distin9uished L-valuei:i and ~-va~ues according to whether the
value could appear on tue lett or the right of an ass1gnment
statellen t; the target ot an ass1~plillent hall to be a value "With
~ocation-like properties. AL~OL 60 can be formally defined
without the concept of storage onLi because it has a relatively
slllall number of oasic concepts; to deal Wi.th p01nters and to
forlllalize concepts of assi.gnment, ALGOL 68 introauced the concept
of a reference, whicb ~s like all address pointing to a cell
capable of boldi.ng d 9 ive11 ty pe of object. In his analysis of
APL, Abrams d1stiuguishes select10n operators aud computational
operators: the value of a se~ect~oll operator is ll.IlKed to the
storage of one of its operduds dnd can transmit changes back: to
i.t; the value of a cowputat1onal operator has no connection to
tbe storage of its operands aod caunot trallSmi.t Changes back to
them. Jne of the design pr1nci.ples ot AFS is to search for the
essential elements underlying all programming languages and to
build d new system upon them; the concepts of Object and storage

Id~ CONFIO~NfIAL

(
Chapter 2.1 27

cell are fundawental and £equira careful de~.ln1~ion to support a
~eneral treatment ot a~signwents, synonyms, ownership, aud
argument pass1ng to funct10ns.

For defining indices and. ~oiuters, storage addresses are useful,
but the housekeeping they enta.ll far outweighs t!le.lr usefulness.
The storage cell in AFS is a logical location capable of holding
any ob ject or collection of ouj ects, no matter- how large: its
characteristics of a location ::>.lmp.l..1.fy the definition of 111d.1ces
and pointer~, but it involves tiO bousekeeping burden because the
storage management system maKes the cell appear as large as
necessary and automaticalLy moves .it to any dev.lce that may need
to process its contents.

Definition: A 2~2~~~~ ~!! is a lo~ical location iieutified by a
unique £§d:l l!M~,g. Each .titord.:ie ce.!l contains one and oply
one object; there is no upper limit on the S.lze of a storage
cell. The cell name.LS an .lnternal idelltit.lec (abbreviated
ii~) whose representat10n .LS .lnv.lsible to the user.

This def ini tion is non -constr uctive: .1 t. defines a storage cell
Dy axioms or characteristics tnat ar~ visible to tae programmer,
not by an explicit construction tl:om sometllin,:;} m:>re primiti vee
The ad Vdn tage of non-coastr u.ct.l ve definitions .lS that the
implementer bas ma~imum treedom in h~s choice of representations
and hardware design. Tne d.l.sauvautage of SUCh definitions is
that they don't prove that an eff.l.cient 1mplementation (or even
dUy implementation) is possinle. To remedy that situation, the
informal notes between def~n.lt.lons ~111 illustrate the abstract
concepts with a sample .lmpleweutdtion; s~nce the illustration
will not necessarily be the optl.wum engineering solution, the
implementers are free to Use any des.lgn that sat1sfies tbe
axioms.

Deiinl.tion: A j;L\!1!.~£ i::> a tewp0l:a.I:j storage cell created for the
purpose ot holding an aDject until it can De processed or
moved.

Buffers are intiwately related to tae mechau.lsm tor passing
messages between ob ject.::i suell as iU:'1umen ts to functions and
results from functions: Normally, what.Ls passed is the cell
name of some stor:age cell contal.nl.llg the message; in computing
xl.r j, for: example, the select funct.1.on I:etur:ns t.ne cell name for
the storage cell containing X1IJ. However, when the sum function
computes (A+d), there is no permanentiyallocated storage cell
containing the resal t; therefor:e, the interpreter: that is
interpreting the funct.lon obta~ns a temporary storage cell,
called a buffer, to hold tae result. Duffer:s corcespond to I/O
buffer:s in cur cent systems as wall as to regl.stecs 1n the CPU or
on a pushdown stack.

A particular implementation of tae stoI:aye cell concept is

28 BASIC CONCEPtS AN~ STRUCTUBBS

discussed in the System Arch.1.tecture Manual. Tile Storage
Management Subsystem ~MS) described there provides spaces
identified by unique space num.oers; each space J.S linearly
addressable by an offset trom the beginning of the space. A
collection of storage cells can be .1.mplemented asa space divided
1.nto <l nllmber of L.l.xed length blocks holding object ililages, also
known as DAPOVs (Descriptor An~ POl.nter Or Value). The cell name
corresponds to the space number and offset to t~e object image;
the llniqueness of sPdce nllmbers gUdrantees the uniqueness of cell
naliles. If an object image ~s very large, the block .l.dentified by
space number and offset only holds part of the image and contains
the space numoer of another space holdl.ng the overflow. Since
spaces can be chained together it necessary, there is no fixed
bound on the Sl.ze of objects.

The concept of process l.S tunudmeutal to all levels of an
information handling system: CPU, channels, operating systems,
and external devices. A rat.1.onally designed system must nave a
precise concept of process and of the possiole 1.nteractiQns
between proce~ses. ~n AFS, the deil.nitl.on of process is based on
the wall developed foundation ot automata theory aud is designed
to facilitate the implementation o£ multiprocessing systems.

Definition: A ££Q£~§§ is au automaton with a set of states Sand
a set of states W contaLued in S loU Which. it waits for
input. Processes can De best deSCr.l.Ded by assuming they
have three parts;

1) A ~£Q£~§§ ~tatus ~~£Q£~ (abbreviated PSR) containing
tae current state6 Lnpat, and contents of bllffers
used fOL workl.n~ storage. There .l.S a one-to-one
correspondence Detweeil processes and PSR's.

2) A .££Q£~g!!£.2! de§g~.f!£'!:Qn that encodes a tinl.te set
of informatl.on dctl.ul.ng the states and permissible
transit.l.ons between taose states. Some procedural
descriptions may be shared by many processes.

3) An ~~~£££et~ th<lt pertorms state trans.1.tions tor a
process: it examl.nes the procedural descriptl.on and
tbe psa and sets the PS~ to its next state. An
interpreter may be time shared among a number of
processes.

The process status record Keeps track of all .1.uiormation that
def~nes the current state of Ii process. J.n au toma ta theory, a
Ps.a is analogous to the instantaneous de~cr iption of a Tur~ng

maCD1.ne. In a System/360 ~PU, a PSR 1S analogous to the program
status word together vitn the contents of the f.l.xed and floating
registers. In the CDC 7600, the exchange jump package is the

L~M ~ONFrDENTIAL

(

«

Chapter 2. 1 29

equivalent of the PSR. In the rlur:I:oughs 6700, ttle pushdown stack
toget~er with contro~ words taat may be stored in it form the
equivalent of a PSR.

Above the SL l~vel, a procedural ~escript~on could be a read-only
program. Beneath that level, procedural descr~ptions ruay be in
microcode or hard wiring. The reason for separating the
procedural descript~on from otuer parts of a process is to allow
a number ot re-entrant proce::.ses to use the same description
simultaneously. Por prilll~tive Objects, the hardware may take
shortcuts during high-speed exe~utLon and not sepacate the three
pacts of a process; tor erL.:or Layouts or responses to a
diagnostic programmer, howevaJ.:, the system must generate a PSR
that effectively represents tile current state of an object.

The interpreter is the motive i!0llier that causes a process to move
from one state to tbe next; ~t ~s the logical abstract~on of
acti ve servers l~ke CP U 's ana clldnne Is, Dut is more genera 1 si nce
it includes software interpreters as well as special devices that
may be attached as HPU·s. The AFS lo~~cal drch~tecture has
deliberately avoided the concepc of a CPU; instead, the mere
general concept of process allows tne eng~neer greater freedom to
build distributed execution ~nits, s~ecial purpose devices, and
mult1ple pcocessing units to i~prove performance without changing
any logical interfaces.

The def1nition of process sets th~ stage for later: discussion of
wait std.tes, exceptions, ana ;ijusJ:l~nsl.ons: When a process needs
input, it stays in one of its Wdl.t states indefin~tely; a waiting
pEocess is considered asleep, dnd sending it input corresponds to
a waKe-up call. Exceptions are unusual conditions like
aritnmet1c overflow or vio~at~ons of access r~ghts; when an
exception occurs, tue process iu which it occurs generates a
message for another process Ca11.ed a mon~tor and then 90e5 l.nto a
wait state until it receives a message from the monitor. A
suspension occurs when the motive force, the ~nterpreter, is
removed fLam a process, dnd the }?rocess natuLa11y stops beea use
there is nothing to ma~e it go; suspens~ons result ~rom time
shaLing tbe 1nterpLeter among many processes so that only one can
be running at any given t~me, but tbey can d..lso occur when a
process has run out ot money (us~ng too much time or space) or
when it is stopped because of some other event like an attention
signal fLoli the programmer who started it.

Processes occur at all levels ot a system. When concepts aLe not
clearly de.fined, engiaeers and pr:ogrammers worK.~ng on different
levels may be unaware that tney are facing similar problems and
duplicatiny functions ~erformea on other levels. 1n System/370,
for exaliple, there dre processes axecut~ng in cRdunels and .I/O
units, ~n micLocode in the CPU, and dt the ~nstruction level for
subroutines and tasks. Tlu~ conc~pts, terminology, aud data
formats at the vari6us levels cowplet~ly obscure any s~mi~arity

30 BAS~C CONCiPfS AND STHUCTURES
,/-,

between these processes: records oi processes in channels and I/O"j
~nits are maintained in channe~ status words; the record of a
process at the microlevel is loggeo. out Dy the DIAGNOSE
instruction; the record of the a rcni tecturally def ined CPU sta tus
is in the prog ram status wora and register conten ts; and the
record of a process as v~ewed D} 05/360 is in the task control
oloclt. Not only does slstem/310 use aw~ward terminology for the
'iarious processes, it also uses awkward means for switching
status: for subroutine calls, the BAL instruct~on does only half
the job since it only modi.ties par t of the .PSi and it doesn' t
save registers. To call a pro':lram Wl.th different status, an SiC
instruction must be used wita considerable overhead from the
operating system. The rest of the status, the registers. are at
the mercy of the called rou tl. ne to sa v~ or destroy. If the
called routine is re-entrant, the simple BAL instruction, which
takes one microsecond on a Model b5, must be supported by two SVC
instructions to get and free tem~orary storage, at a cost ot over
200 microseconds. In APS, psa's maintal.u the status and working
storage for all processes at aLL ldvels. Although data formats
beneath the SL lev~l are ~PU de~endent structures and cannot
therefore be identical to formats above that ~evel, the same
concepts and terminology are used to emphasize the relationship
between similar problems on ditferent levels of the system
design.

In APS, the object is a, ~eneralizatl.on from two sources:
descriptor/value pairs anJ resource/process associations.
Descriptors are ma~ntained with aata ~n data management systems,
APL, EULBR, ana the dynamically varting parts of FL/I. The type
field in a descripto.r caa be Utter pret~d as the nam~ of a machine
for dccessing the value pdrt. Although the few bits t.bat
describe a floating point number don' t exhibit many
characterist~cs of a procedure, the generality of an access
machine or procedure l.S valuaDle for complex arrays and
structures and is essent~al ior the intricate relationships in a
large data base. The assoc~at~on of a process with every
resource derives trom D~Jkstra's approach in T.H.E.
Multiprogramming System and from Ule-Johann Dahl's approach to
objects in S.HWLA 67. UijKstr:a associates a process with every
resource in h~s system; the process ~s solely responsible for
allocating that resource and acts as a central clearinghouse for
all accesses to it. ChapteL ~.5 shows that all objects in APS
have the properties of Uijkstra's resources and naturally fit
into a general scheme of resource management. Alan Perlis
suggested that simulation lau~uages might provije a suitable
basis for an operating systems lauguaye since they have the best
developed concepts of event ana process; the AFS concept of

IBM CONi" IDEN'r~AL

(

Chaptec 2.1 UilJ l:::Cl' rlASl: 31

objects as processes is d gen~~dlLzdtion of the objects in the
simulation language SIMULA 67.

Det ini tion: An Q!Ug£,! is tile oasl.c entl.ty in the system; l. t has
an active part called an !!££~22 !!.4.£!!1.jl~ dud a passive part
called an ~~~ ~souI£g. Lts active part responds to
re1uests by other Objects and may in turn generate requests
of its own.

1) There 1S an input ~ueue of cell names that specl.fy
bUiters contdin~ng re~uests tor the object.

2) The access machine is a process that waits in one of
a set of states called f~agy stal£§ when it is ready
to respond to input requests. Waen a cell ndme for
a request a~pears on l.ts input queue, it assumes
ownership of the buffer contal.niuy the request,
performs whatever actl.on is dpprOprl.ate, returns a
buffer contal.niny ~he answer, and returns to a ready
state.

3) The owned resource 1S data that is accessed only by
tne object's access wach1ne; tor ob]~cts ~1ke clocks
or prl.nters, however, the resource way interact with
events outSide at the system.

Since this definl.tion LS general enough to accommodate
~ource-sinA I/O devices as well as objects a~ ~owerful as a
Turing Machine, it can inc~ude any conceivable devl.ce within the
standard accessing and allocating method. Fo.r d floating point
nUllber, the implementatl.OIl could specify a f~xej length bit
string as the resource and a few b~ts to ident~fy a hardware unit
as the access mach~ne. io}; I/J aeVl.ces, tile ouje::t internal to
the system woulu be ca.i...led a. por-t whose resource would be a
logical connection to the exter-ndl devl.ce ana waose access
machine could be a hardware or m~ccocoded control unit. since
the internal st};ucture of an object 1S l.nvisl.ble to the ca.ller,
an object implemented in hardwaL·e or mic};ocode on one system
could be implemented in software on anotaer: as in SLMULA 67, a
software access macbine is a procedure that defines a potentially
infinite class of activatl.ons; an object corresponds to a process
executing in one such act~vdtl.On; a ready state is a point in the
procedure whe};e the process wal.ts for input; and the owned
resource is d set ot automatl.C vdr~ables used by the actl.vation.
Logl.cally, all objects are processes; even a floating point
variable is a process thatl.s normally wal.tinlj, but must
occasionally answer re quests to aeli ver a va lue or to stow one
away.

Definition: A ~i!~l~Y~ objg£~ is one that cannot be constructed
from other objects in the system: the PSR, Lnterpreter, and
procedura~ description thdt make up its access macuine are
not objects formally def1ued LU the log1cal architecture.

Somellhere underneath all the lOY1cdl data structures, there must

32 BASIC ~ONCiPTS ANil STHUCTURES

be primitive building bloCKS teom which everything else can be \",_~
constructed by software. Althouyh the log~caldet~nitions of
primitive objects ace parallel to the construct10ns of other
objects, their substeucture is vis~ble only to the engineers and
diagnostic programmers.

Definition: A ~~£!5!ci&le Q!tig£!:: is one that can be constructed
from other objects: tua PSR, interpreter, and procedural
description of its access macAine are APS objects that can
be manipulated 01 S~.

Pr~mitive objects are detined aXLomatically ~n terms of their
effects on other parts of tAe system. Somet1mes, reducible
objects are def ined ax iomat~cally, but most .['educible ob jects are
defined by an explicit coustruct~on 1n teems of primitive
ob jects. All primi tl. ve objects d.re ililplaman tation defined j many
reducible objects are implameutatl.on defLned, and others can be
user defined. For efficiencj,eeducinle implementation-defined
objects may be built out ot naruwaee or microcode even though
they can be constructed out of more primitive objects.
Logically, however, all reaucl.nle objects have the same status
whet~er they are implementat10ll defined or usee defined.

Definition: Tile primitive OhJid~t !!:l,.! nas an aCCdSS machine with
only one state; for evart eequest, ni~ returns a copy of
itself. For oPerat~ons on l~sts, nil has the properties of
a zero ale men t list. " /'

In APL/360, the empty vectors are similar to nil, but they have
additional type intormation: the empty character vector has a
descriptor that indl.cates that it is of type character, and it
expands into blanKS; the empty numecic vectoe is of type numeriC,
and it expands into zeros, n14 ~s of type any, and it expands
l.nto a list OL undefined objects.

Defini tion: The pr imi t1 va 0.0 ject ~!i5;!;~'! has an access
with only one 1nterna~ ~tate. Foe every re~uest
destroy, undef raises au erroc ~xceptioD.

machine
except

Logical storage cells can nevee ue empty. If nothing else has
been put in them, they contal.u an uD<ietiued variable object. The
object nil is a general neu~cal element; it responds without
erro[' exception to any re~uest, altnough some iunctl.ons such as +
or - may tnemselves raise erCOl: e.xceptionswhen given a nil
operand. The object undef 1S a 'jeneeal undef1ued element; it
always raises error exceptLons except when being copied or
destroyed.

Primitive objects are so Das~c to the structure of the system
that they cannot be constructed by softllare. Hardware devices
may not be primitive l.n tae same sense because a disk drive, foe
example, could be simulated by a software routine that duplicates

IBM CON¥IDLNTIAL

(
Chapter 2.1 ObJ~":T dASi.: 33

its interface dnd uses the storage management system to perform
the same functions; but tllece loS no sequence of instructions that
could create a new disk dr~ve ill the corner of the machine room
and p~ysicallJ attach it to the computer. Therefore, certain
objects must be built in froll the beg inning I and others may be
attached as the system expands or removed when they fail. As
long as the pbys~cal interface ~rovl.des cl.rcuitry that matches
voltage levels and makes tne ~evice lOOK LiKe a procedure, the
logical interface can make room for it in the object base and can
define synonyms and access JI.ldchines that maKe it respond to any
protocol expected of it.

Definl. tion: A.E2tl .1.S an OD)ect tila t communicates with the world
outside the system: .. 1ts access machine handles the
interface, and 1.ts owned resource is a logical connection to
a pbysical device.

since ports are objects, tnet have the same interfa~e as all
otber Objects: they have a well defined status with respect to
the accessibil1ty graph, env:l.l:onmeut tree, and aependency graph;
and they respond to requests 1.n tAe same way as other objects.
Therefore, it is always possLbLe to replace a port w1th a
software object that has tue same intertace; proyramlllers can
create logical printers, simulated 2314 disks, ana even simulated
networKS. of maChLnes. It a yraphic device hati au unusua~
interface, the real port to tue (levice can be t"eplaced by a
.logical port that behaves 11.~e a printer, but that contains a
program to massage control l.nformation passea w1th a request and
send it to the graph1.c device 1.ll the appropriate format. To make
network commuu.ication moretrdllsl:'arent to the user, the system
will provide ident ical interfaces for a vlI:tual S ystem/ 370
emulated inside the system aud tor a real Syste~/310 at the far
end of a telepaone lLne.

It commun~cations w1th a system were 1D the character format of
typewriters and printers, tae Lnternal representat~on of an
object would be of no coucern to iJrogrammers and could remain
totally invisible. But since ~ata may De interchanged between
systems, either conversationally or by removable storage meaLa,
there must be a standard representation ot an oDject tnat can be
recorded on an external meal.U~ and reconstructea au a different
system. This standard representatLon is called an object image;
every system is free to use its own internal forms, but they must
all be directly mal:'pable to the standard form tor an object
image.

Definition: An objg£i 1J!s.9.g L5 au external representation of an
object. The object ~mag~ has two parts correspolluLng to the
two parts of the oDject: a !:i~§££~12.!:Q!:that spec~f~es the
access machine and a !:.!:tf!£~'§H!i£!tiQ!! of t.l:le ownea resource.

1) Li the object 1S primitive, the descriptor indicates
that it is prim~t1ve, dnd the representation is a

IrlM CUNF~DENTIAL

,
I

]4 BASIC COHCEP~S AND ST~UCTURES

bit strl.ng specityl.uy wn~Ch object J.t is. \~j
2) In general, the descrl.ptor specifies the complete

access machine by ind~catin9 the PSH (which may
contain zero bits of informat~ou in some simple
cases), the oDJect image of the procedural
descrl.ption ot the access machine, and t4e
interpreter of the access machine.

3.) If the owned. resource contains storage cells holding
other objects, tae representation includes the
Object images of all those objects.

4) If the object is a synonym containing the cell name
ot some storage cell, the Object image must contain
a path name (see section 2.1.5) for reconstructing
the cell name by londexlong tram some standard vertex
of the accessibill.ty graph.

The object image is an external form of the DAPUV (Desctiptor And
Pointer Or Value) discussed in tne System ArcnitectuL'e Manual.
Althougn a DAPOV on a small system may be different from a DAPOV
on a large one, the object images wl.ll be the same for all. The
object image may be considered as tne DAPOV foe an abstract
implementation of APS; lot may turn out to be iuentl.cal to the
internal DAPOVs of one or mora act~al implementations, or it may
be a compressed encoding of tae internal DAPOVs.

Definition: The ob~£!.Q~ J.S the set of all objects in the
system.

The term object base is more general tban the teem data base
since it also includes the loglocal interfaces to hard~are
resources. because of the generality, all hardware devices have
descriptors and can have synoDyms defined upon tbem. ~henaver a
device brealts down, its desc.I:l. iltor cau be changed to point to
another dev~ce or a so ftware sJ..mulator that can J:eplace it. All
of the advantages of late bindl.uy tuerefore appLy to devices as
well as data: instead of do~n9 a SYSGEN for every ~onfiguration,
implementers can provloue standard logical iacilitloes, make
descr iptors for non-ex l.stent tac 1.1J..tloes pOl.nt to substit utes, and
keep the logical appearance constant as descriptors are changed
one by one to reflect the cureen t configuration.

The definition of object givena.bova illlpi1.es tnat all objects are
serially reusable resources. ~on-reusable objects can be
implemented by making the access machine destroy the ObJect after
its first (or n'th) use; no I:e'luests can oypass this check since
the object cannot be usea except througll its ac~ess machine.
He-entrant proceaures and tillie-saareu dev.l.ces corre:::>!!Ond to a
potentially infinite class OL serially reusable objects: by
subdividing storage, a s1.og1e re-entrant procedure can provide
automatic variables fOI: as man}' activations as requested; by
subdividing tlome, a time-sl.iculg routine can provide multiple
logical devices that all perio~m tne same function as a siu9le

~dM CO~FIUENTIAL

(,

Chapter 2.1 OBJ t:-.; T UA SE 35

physical device. The APS view of objects as processes treats the
problem of resource iIlalli1gement as a problem of iater process
cOllmun icat ion.

Definition: A +.~g~~st Oll an object is a tr~ple (T.PeD), where T
identifies the ce quest ty tJe, t' ~s infor ma tion proper to that
type, and D is the dest~llat~oll oc oDject that is to receive
the answer. Normally, the access ma.chine 01: the ob ject will
execute tue request and retuLu a result to the Object D. In
some cases, the access macnin€ w~ll Ci1use an event called an
exception; see section 2.~. 1 for a definit~on of exceptions
and tne ensu~llg events.

Defiui tion: fEhe de~§lli.s!~!!'£Y ::!£.!!f!h is a structure det ~lle:i over the
object base: It aa object x has a re~uest on ~ts input
queue tha.t spec~fies an oOJect y as ~ts destination, then y
~s said to ~~~!!~ 011 ~, and (y, x) is an edge of the
dependency graph.

Later chapters will br~ng out ~mplications at the dependency
graph in resource lIanagement, process d~~patching, and dea.dlock
detecminatioll. Chains of su.orout~ne calls form. a subgraph of the
dependency yra,ph Known as tll~ activat1.on tree: ~f x is an
activation of a pro~ram taat calls a subroutl-ue y, then x is
dependent on an act~vatiou of y until ~t returns.

S1.nce every obJect has an access lllacnine, it al~ais kas an active
element available to pe£foclll nec~ssary tunct~ons. A typical
function loS that of mon1.tor~ng: Dur~ny debug mode, the
programmer may wish to mOUl-tor all accesses to a particular
variable and then pertorm a specific dction such as recording the
dccess, calling some proceduce, Oi: 14aiting for 1.nstructions from
the terminal. For sensitive data, all re~uests on an object may
cause its access maCUl-ne to ChdC~ cne identity of the.caller and
to not~fy a securl.ty otfl.cer ot an access attempt by an
unauthorized user. For propLietaJ.:j software on lease, the access
machine ml.ght oestray tbe object atter a thousand uses. All
these applications rely on the ~nvisl.bility of an object's
~nternal structure--when aa oruillacy variable loS ceplaced by one
that is being monitored, ~ts normal interface remains unchanged.

Uefinition: An access maCUl.De
interface:

1) .It must have a set of
for requests Wl.th
proceSSing a reluast,
state.

has the follo~iny external

ready states 1.U wuicn it waits
argulllents ('f;P;U) j after
it must return to a ready

ltHi CutffIDBN'fIAL

36 HASIC CO~C~PfS A~U STHUCTURHS

2) The ar':Jumeut D ;;;pec..lties the destl.nation for the
response to the request.

3) The argument Pspecitles further information proper
to thereq uest type..,

4) The argument T specl.fies oue ot the following
request ty pes:

!~1~Q£~eg: Request to obtain a synonym to the
storage cell containing the Object (see section
2.1.5).

£.Qn: Re{{uest to obtain d copy of the object. It
the object may not be copied, the access
machine rai~es an error exception. 1f the
ar':Jument P is 0.1.1, tueu the entire object is
copied. otuerwJ.se, P must specify some subpart
to be copJ.ed.

~glel~: Request to delete a storage cell of a
collect.J.ve OiJJoct. Tlle argument P must be the
index of tae cli!ll to be deleted (see section
2.1.6). The Object contained in the cell is
not destroyed, but is returneu as the response
to the request.

Qg~!:..£QY: iiequest to destroy an object. If the
object is llou-uestructible, its access machine
raises an error exceptJ.ou. It it is a
collectl.ve object, it makes destroy requests
upon all of its elements before finally
destroying itself.

~'yg,1~1g: Re{{Uest UlJOIl d. siUlple d:ita obJect to
delive£ a value or upon a more complex object
to generate d. vdl~e. The arg~ment P is nil for
ordinary data oDJects, but must be a list for
functions (see Delow).

ld~nt~&y: deguest to obtain a descr~ption of the
access machine anJ structure ot an object. If
the argument P is nil, the response includes
all identiijJ.ny in~ormdtion; otherwise, P
specl.fies the J.nformation requested (see
below).

l!!§grt: dequest upon d collectl.ve object to insert
a new storaye ce~l J.nto its owned resource (see
section 2.1.6). P specifies the index to be
mapped onto tbe new cell hy select requests; if
P is nLl. the new cell bas no J.ndex.

/

~ele£1: Reque.':it upon a coll.ective object to map P '\.._j

(
Chapter 2.1 37

onto its ~t~I:'dye cell~: ~ must be a set
(possibly UL~) ot elem~nts 10 the 1ndex set of
the object; the Les~onse is a set of cell names
selected oy those indices (see section 2.1.5
for further ~iscussion of indexin~).

~i~S! Request upon au act1vation of a function to
beyin 1nterpretation of the procedural
descript~on associated with tne function. The
argument P is d ~ist of objects to be bound to
the formal pacdmeters of the function.

~i2!: Request to stOll the value P .l.n the owned
resource o~ aD oDJect. The access machine will
e.l.ther perf oem data conversions to make P
comply wita Lts conventions or raise er~or

exceptions 1£ ~ cannot be converted properly or
.1.t the curreut value cannot be modified.

5) T~e access maCh.l.Os always reserves the r1yht to tell
lies about .1.tself dnd its resource; th~s ri~ht is
essential to data 1ndependence because it must
a~ways De possible to replace an obJect w.l.th another
object that may be different in structure, but
appeacs the same.

Definition: In ordeI:' to SpeC.l.Ly re~uests, a primLt.1.Ve £~gyest
£Q!!st~1 l.S de.tined .tor each of the request tYtJes; the Da mes
of the request constants dre formed by aad~ng 's' to the
cor respond iug re guest Ddll1\:!: U!.:!!2!L! • .fg§, £2.£!.5Ha, gelg1!lli,
~::!§trQY§, gYi!lug.!.:g§, i9.g!tt~;U::~2' !!l§g.£i?i, 2~~i2, §1g.££!,
aud §12J!§.

Simple data Objects like f~odt~llY point numbers dud character
strings very se~dom make requests utJ0n any other objects. The
objects that normally make ra~uests are funct1.ons: pr~mitive
functions make requests upon arguments passed to tnem in the
initial evaluate request, aua reduc.1.ble functions are user
defined programs whose very nature is to make re\juests upon data
objects, upon pr1mitive functions like sum, d~fterence, product,
or stow, and upon other user detiuea functions. The fo~lowing
deiin1tion ot function pres-ants the external interface ota
function: it describes the act1.OU of a tunction as seen by the
caller or by the rest ot the system, but does not aescribe the
internal processes and structures of the function. Chapter 2.2
describes the internal interface of user defined functions and
the method of constructin~ them.

Dei.l.nition: A fu!!£.t!2!!.l.S all oDJect that responds' to evaluate
requests by creating an £i£1!Y~1J:2!l and then mal<.ulg a start
request upon the act.l.vat~on to compute the value to be
returned.

~.dL1 CiJI'It' liJEN TIAL

38 BASIC CONCEPT5 AND STRUCTURES

1) If F is a redQc~ble function, the a=tivations are
objects dist~nct trom F that reside in storage cells
with distinct cell names.

2) If P is a primitive function, its activations are
not objects and cau.not be mau1..pulated D'j SL
expressions. When the distinction is relevant,
activat 1..0 us of PCilll1.. ti ve fUnctions are called
U~i-.a9£i.!~tigq§.

3) The argument P l..n the evaluate request upon a
function I must De a list of the nUllloer of arguments
required by F. if F takes no arguments, P must be
nil, and F .is called !!i.l~lgi£. If f taKes 1, 2, 3,
4, or n arojullents, it is called !!2ai!!i£, Q.yj!S1.£,
!:£~9:di£, l.!i!1llfU:£, oc !!:.sgi£ respectively.

The distinction between a tuuct1..on and its activation is
essential: Since evaluation of a function may ta~e a long time,
it would be undesirable to keep Ul.e fUIlction tl..ed up and unable
to respond to any other re~uest during the entire time of
evaluation; lIany users on a system may want sl..multaneous access
to a function such as a compiler, an edl..tor, or a trigonometric
function. Even more fundamental ~re recursive functions whose
entire structure depends on tile ability for one activation of a
function to call another activation ot tbd same fun=t~on. On the
other hand, it would also be undesl..rable to have many copies of
the function, since the code c~n b~ shared. TaereLore, a call
upon a function causes it to spin off an activation which
contains its own temporary storaye, but whiCh uses the same
cead-only code as all other act~vations of tae function: an
activation is a process MlllOSe PSR is un~que to it, its procedural
description is the read-only code which is shared, and its
interpreter is the decoaing lI'Iecllanislll that may be Shared with
other activations of the same iUllction as well as with other
functions written in SL. Fo£ cOllsistency, pcim1..t1..ve functions
are considered as act~vations of hardware or microcoded
procedural descriptions, but the activations are ~nvisible to the
programmer since they are defined at a level beneath his view.

llefini tion: The triaa.l.c function ~.9..!!g2~ maltes requests U Fon
objects and returns the value passed back by the access
machine of the Qbject; request(T;P;X) maKes a request of
type T with argument P upon object I.

The request function provides Ii

upon objects. Certain requests,
specific contexts that special
those requests.

general way of making requests
however, occur so frequently in
functions are provided to make

Definition: The monadic fUnctl..on g!.!!luj!lg makes an evaluate

.. /

/

reluest upon its argument and returns the value that it
delivers. lor day obJect X, evaluate~} is equivalent to ~-~
request (evaluates; nil; I) .\i..._/

IBM CO~FID~NTIAL

(

(

Chaptl3r 2.1 OtlJi:LT BASE 39

Defilll. tion: T be dyad~ctunctl.on §.:!::Q.!!. mai(es an evaluate reg uest
upon its left argument to obtd.~ll a value P. It then makes a
stow request upon its rl.~ilt argument with P as the proper
argument for stow. The vaLue returned by the function is P.
For any objects X anti Y, stoW(X;Y) is equivalent to
re~uest(stows;evaluate(~) ;1).

The stow functl.on is one of t~utipe~ ot assl.~nment tUllct1.0nS in
AFS. The other ass1.gnment 1S the replace function ~iscussed in
sectl.on 2.1.6. The distl.llctioll between stow ana replace is that
the stow function makes a re~uest upon l.ts tar~et to stowaway
the value, whereas tneI:eplace .tunctl.on makes a request upon its
target to destroy itself ana thaD replaces it with a totally new
object. 'rhe special character sY"iU01 for: stow is a sin9le arrow,
and for replace a double arrow; these symbols suggest the tact
that the stow £unct1.on normally cbanges only the owned resource
of the target, but that the l.eplace functl.on changes both the
access macbine and tbe resource parts.

Previous sections detl.ned objects and ce~uests upon them; this
section defines the poss~ble pa tus foI' rei:1ching one ob ject f I'om
anotheI'. The stI'ucture that defines tnese paths 1.S the
dccessiblity graph, whicn is a union of two subyraphs: the
ownership tree that links coll8ctJ.ve objects witb their elemen·ts
dnd chains of synonyms tbdt focm lin~s across the tI'ee. Although
neither the ownershl.p t.L:ee Hor the chains ot synonyms allow
c.1.rcu1. ts , the access~blitt gr:aph can and must ha ve circuits to
support various types o~ list and .L:iny structures. As later
u~scussions ShOW, the accessibil~ti yraph bas the yenerality
necessary for: various str:uctUI:8S, but it also bas sufficient
restr-ictions to prevent infl.iute loopl.ng in copying lists or
resolving references.

Definition: A 2~Q~I~ 1.S dn oDJect tbat behaves like a cell
name; if x is an object and y is a synonym to x, then y has
the following properties:

1) Tbe resource of y contains a set called the ~ights
to x which defines permissible requests on x.

2) The resource of y also contains either the cell name
ot the storage cell contdl.ning x or: the cell name of
an object frail wili;:; h x is accessible together with a
path na~e from that object to x (see the definitions
OL path ndille aud dccessibill.ty lattiH:: in this
sect ion) •

3) In response to r~quests, the access maChine of y
checks the re(juest. . type; if tbe type l.S in the set

IBM CON~.1.ti~NTIAL

BASIC ~UNC£PTS AND STRUCTUH~S

of rights to x, ~t passes the request to the object \, ___ /
x; otherwise, it processes the request itself.

Cell names are not objects dnd cannot be storeCl. and manipulated
like objects. Synonyms are cell names with an access machine
that can respond to requests and with an intertace that gives
them the same status as other objects. In a sense, synonyms are
invisible objects because they don't answer requests themselves,
but pass requests on to some oeuer object. 'rhe r~ghts define the
re~uests that can get throu~h to the object that the synonym
points to. For some requests not in the set of rights, the
synonym raises an error exception; for oUlers, like destroy
requests, it may maKe the response Ltself, i. e. by destroying
i tself ~nstead of the ob]ect it pO.loll ts to.

Definition: 'r he dyad ic f unctloon s.!!thQ&j,~~ makes an e val uate
request upon its l~tt argument to return a list ot request
types and then makes au authorize request upon its right
argument to obtain a synonym wloth the list of request types
as the rights of the synonym. If X is an object and L is a
Ilost of request types, autnor~ze(L;A) is equ~valent to
re~uest(author~zes;evalQat~(L) ;X).

Defini tion: The wonadic func tion .21.!! makes an authorize re quest
upon its ary ument X and retur ns a value s that is a synonym
to the storage cell conta~aLny X. The access rloghts of 5 do
not include .rights to make destroy and copy requests upon X;
in response to suen re~uests, 5 destroys or copies itself.
The rema~ning rig~ts in 5 are the ones granted by the access
machine OL X in respoDs~ to tne aut~orize request. If a
request on S is not in toe set of rights and ~s neither a
destroy nor a copy request, the access mach1ne of S raises
an except loon. If i is auy aDject and L ~s a list of all
request types except cop~es and des~roys, then syn(X) is
equivalent to autnoriLe{L;Xj, which LS equlovalent to
request (a u thori zes ;evalua te (1) • X) •

A data base may somet~lUes have synonyms def10ed upon other
synonyms; because of the lolUplLcit followLng at pOlonters in
synonyms, there is danger of tas system getting into an infinite
loop it there 1S a clorcuit in the synonym graph. since circuits
at synonyms can only arise as a result of replace assignments,
the replace function (defined lon section 2.1.&) must have
built-in checks to insure t~a~ the target of the assignment is
not along a chain of synonyms extending from the source of the
assignment. If the system LS Lllit~ally wlothout c~rcuits of
synonyms, then such check.s \ull guarant.ee that no circuits can
ar ise.

Theorem: If a request of type '£ .LS made on all object throug h a
chain of synonyms, tnen f must be in the intersection of the
rights of all synonyms loll the chain. \"-J

IBM CD~FLDENTIAL

('

(

Chapter 2.1 OrlJE(';T BASE 41

This theorem guarantees that 3afe~uard5 placed on a synonym can
never be weakened by othe£ syuonyms w~th a more.~er.issive set of
rights: the rights are a i(:lud of fl.lter that only permits
certain types of requests to pass through; another filter can
reduce the number ot types that pass through, but it can never
make any other filter more transparent.

Defin~tion: A ,!,g12!!I!!! ~s an Object whose resource conta~ns an
enclosed synonym (see sect~on 4.1.7). Since tbe synonynl is
enclosed, the a utollatl.C l:ol.lowing of the poin ter ~s
inhibited, and a disclose operation must be made.to obtain
the synonym.

Although synonyms are ade~uate tor ll.st processl.ng and data base
applications, they can 't be used tOL pointers.1.n PL/I because
they are almost indistinyuishaJJle from the objectstlley point to.
Metonyms are objects that are recognizably different from the
ones they point to and re<j,uire a specl.al operation to raach them.
Suppose X is a floating point numbeL, S is a synonym to X, and a
is a metonym to X; then ,5+1) and (;.{+1) would produce the same
result, but (ft.1) would raise an error exceptl.on. ihe disclose
function must be used to produce a synonym from a metonym: the
resul t of (X. 1) co uld be ob ta ined f rOil .M by the express ion
(disclose (Ii) +1) •

A synonym is an object that represents or ~ndLrectly addresses
one other Object; the most compll-cated structures that can be
built out of synonyms are l~llear chains. Trees represent the
next level of complexity: a list whose elements may also be
lists forms a tree; a vector l.ll AP~ ~s a tree whose leaves are
oae level removed from the root. workspaces in A~L are trees of
heterogeneous objects such as functions, scalars, vectors,
arrays, and groups; libraries, iiles, tables, and pools of
devices all represent collectl.ons of objects, which may in turn
include collections of other Objects. In AFS, all. these concepts
are expressed by the general notl.on of a collective ob ject that
has other objects as elements; together, the collective objects
form a tree, ca.J..led the owner::ili...1.p tree, that incl udes ever yth ing
in the objecL base.

Definition: A £2!lg£t!~ 22jg£~ l.S one wnose owned resource is a
set of storage cells for containing other objects; the
collective object is sa~d to a~ft the storage cells in its
resource.

_ Definition: If x l.S a collect.1.ve object and y res~des in a
storage cell owned by x, then y is an g!g~nS of x.

Definition: An el~!!~S~:£1 Qgj~£!: is one that owns no storage
cells: it 'is an element of a collective Object, but it bas
no elements of its own.

IBM CO~PIDENTIAL

BASIC ~ONC&PTS A~D STaUCTU~ES

Uefinition: The ownership r~lat10n between collective objects
and storage cel.ls aa., the fOJ.l.oving propel:tl.es:

1) No object ollns tae storage cell it resid.es in.
2) Tile 21.2~!.~oot it 1S a uni.qlle object whose storage

cell is not ow.o.ed by any Object.
3) No storage cell is owned by lIore than one object.
4) LL 5 is a set ot ObJects containl.ngB and if S

includes all objects that are elements at objects in
5, then S includes all. objects in the systeill.

Theorem: Every object except the system root 15 ~n element of
one and only one collective object.

'rneorell: The cwnership relatl.on defines a tree structure over
the object base: the 5y stem root is the root of the tree,
collective Objects are at branching nodes, and elementary
objects are at leaves of the tree. Call this tree the
2!!!fisbi!! ££~.

'f·he ownership tree provides a basic organization over the object
base that resellbl.es the tYl!1cal tree structure at catalogs. The
entire Library of Congress catalog is a tree structure: it is
divided into 26 categor1es, Wh1Ch are subdivi.ded into 26
categories, which are subdivJ.aed into 10 cate~orl.es, which are
subdivided into 10 categories, etc. The table ot contents of
eve.rybook. is a tree structure; its index is a tree s'tructure.
The Yellow Pages of any telepilone book form a tree structure.
unfortunately, tree structures dre not adequate for all needs:
almost every index, ca talog, anj phone booK. has cross references.;
and in complex cases, the number of basic entries may be far
outnumbered by the cross references. AFS provides both types of
referencing mechanisms: th.e owner~nip tree includes all objects.
some of those objects may be synonyms that skip accoss the tree
to objects along otherbranciles. 'iae un~ou of the ownecship tree
and chains of synonyms ~orlls the accessib~litJ graph; to the
programmer, a path that fol.lowH synonyms can be usel exactly IJ.k.e
a pat~ that only indexes down the ownership tree.

Defi.nition: Thei.!!g,g~ ~,g1 of an object x is a set of objects
mapped onto the elements of:x by select requests on the
access machine of x. The inuex set of an elementary 0.0 ject
is empty.

Definition: A 1:1.21 L J.S a collective object with the follow iug
p'l"operties:

1) It L has no elel1lent~, ·then L is l.aeut1cal to the
object nil.

2) Ii L has N elements, then ~ts index set is the set
of integers 0, 1, ••• , (N-l).

Lists a'r.e the Ilost primitl.ve collective objects: they are

(

(

Cha~ter 2.1 OBJ .c:Cl' riA.:i,t; 43 .

ordered SHts of poss~bly hetero~eneous oDjects. Although the
usual torwulat~onsoI set tneoLY con~~aer unor~ered sets to be
more prim~tive than ordered s~ts, linear orde£~ny a~pear~ to be
fundamen tal foe a theory ot COlllputd t.~Oll: Common stoJ:aye d.evices
(incl~ding tne books in whicn set tneo£y ~s fOLmulated) force a
linear order1ng onall representations of sets. Ii a set ~s
defined in terms of a pred.1.cat.e P, t.ueu one miy.i1t ma~llta~u that
"tue ~et of all x such that ~(x)" defines a set without defining
a representation; in re~ly, we could answer that only recursive
predicates are meaningful ~n a theory of computation and tbat
hence tile set lllust be recursivaly ellumeraDie.

Jefinition: '.the lllooauic 1:Uuct~Ob ;blisS:. md.K.e~ an .1.dent.l.fy request
upon an Object to obta.l.n .l.tS .l.odex ~et: .l.l.l.st(x) .l.S a l.l.st
whose elements are copies of objectti in the inaex set of x.

If .x is a vector in APl., (lttiJ X).l.~ tne length of X, dna (IOTA
RHO 1) is equal to ilistlX). In AES, however, tue index set ot a
~eneralized coll~ctive oDJect may not De GOmputaDle fLom a single
~nte':Jer. In JOSS, .Ior exalllt'le, tne pro'1rammer can define a
vector with valid indices 1, 2, 5, dnd 9; although aao of such a
vector LS uude~ined, the funct~on ~lLst Leturns the list 1, ~, 5,
~. SimildLly, AFS allows oDjects LudexeJ oy Gbardcter stLings;
dlthough IOTA and HHO of SUCh ObJects are Dot defined, ~list
would produce the l~~t 01: val..l.U cndLacter strl.ugs.

Definition: The dyadic funct.l.ou §.~!~£.!: td~es au Object x for its
r~ght operand dnd an element ~ of ilist(x) as its left
operand; select(i;x) mdKes aD evaluate reguest on i to
obtain ~ts current value aud tuen maKes a select reguest on
x with the value ot ~ as the argument. The value returned
by select(i;x) 15 the cel~ name of the stoLdye cell that the
:iccess machine at x assoc~a tes.itn .1..

fne select fUDction periorms tue ord.l.nary operat.l.on of indBx~ng
by .l.nte'1ers that is common in lIIaui languages as well as the more
~eneral index~ny by chaLacter str~nys dUU other ObJects. The
method for doing the .l.ndex~uy ~s left to the implementer:
l.nteger indexing will probaDly De doue by haLuware or microcode;
indexLng by charactec strin~s mat be daDe with an associative
memory, a m.1.crocoJeJ sed~ch d~~or~tblll, or a hashing algorithm;
inde~ing by more exotic objects would uuaoubtedly De aone by a
software access ruach.l.ne.

Definl.tl.on: An object x .1.S s!.bf..~£i:bi.. ~££~:i.2.b.Q:bg r.rom y if eithe!:
X.l.S an element of y, O~ x ~s an element 01 au object z
which is direct~y access~ble fLom y.

Definition: An object x
either i is a synonym
that is a synonym for x
y.

is !!!£!.££.f..!!..l s.££~fHH:.!2l:~ from y ~f
r.oc ~,or there eX.l.sts an object z

and z ~s ~nd.l.cectiy accessible fLom

BASIC CUNCEPTS AND SfdUCTUaeS

An object x is directly accessLOle from 1 if 1t i~ on a branch ot
tbe ownership tree that Bangs aown trom y. synonyms in AFS are
analogous to indirect address~s in conventional systems: x is
indirectly accessible teom i 1t tuere l.S a chain of synonyms
leading from y to x.

Definition: AD. object x 15 g££~2.2.io!~ feom y 1f x is either
directly accessl.ble from y, 1n~irectly acc~ssible tram y, or
accessible from some oDJect Z..h1Ch l.S acces5i.ble frolB yo

Direct access1bility 1S a relationship l.50morpnic to the
owner::.h1 ptree. Inairect access 1bility corresponds to cheuns ot
synonyms andttle objects tllei P 011lt to. T1H~ accessUa.li ty ~ r aph
is a union of tue graphs for ~l.rec~ and indirec~ accessibility.
An Object x is dccess1ble tLom y 1t theee 15 dny path from y to
x, some par:ts ':loing down the tre~ and. others g01Ug across chains
of synonyms.

Oeiini tion: Tue g,££~§'2.iQ1:!gy' ~£9:£k .15
tree ana the cnains of syl1ouyms:
grdph if eithtH: x 'is a syaonym for
x.

d Ufi10n of the ownership
(x,y) 1S au edge of the
Y, or y is an element of

The dccessib1ll.ty grapb w11l bdV~ C1rcu1ts wbeuever there are
ring structures or general cross references. Consider a
structure of collective objects, each with four elements: the
first element is d synouym chat point5 for~drd to the next
object, the second element 15 d sluonym that P01Uts baCKward to
the previous aDject, dU~ the remdl.uiug two elements are data of
dome sort; tueu suppose that tue oUJects dce ~1U&ea 1D a ring so
that toe last oDject l.S consl.dacea tae preaecessor or the first:

~ ~--l
------ i i -----1 j -. ---- j 1------,

j----l
L-_____ J L_. _______ .J

10M CONFID~NT~AL

Chapter 2.1 O$J~C'r jjASE 45

Consider the following example:

"" / . ------- - - - -

/ -'

/
h_~-;r.lf..U.!6~ jt- - - - --
\
'!

./
,I)~ /'..--.... ~::'< / '\

t ,,,";,,- ',""J "; (,r:,.,v.:W:"tdlt:'.;.~
\ '\¥ ~_ r;.~ • !

)"r~J)-r-<.
~{ (~ ~ r;;) rt.) ~(,1J
'- "'f,- '-.:. ,/ ,--" \.:- '-.,i" f'.- ,-.../ ! I

" ... '- l'~ ____ ~ ___ '::::..-__ . ___ _ i I ,

\ - ~. - - --- I \ \ l..._- ____ --- I

'\ \... - - -- - -,. - - - - - - - - - - - - - - --'
'\.- - - - - - - - - - - - ~ - - - - - - - -.- - - -- - - - - - -

Suppose aphiloloyist naliled Joe has a data base consisting of
ancient Near Eastern texts. Each text could be a collective
object whose elements are lines; each line would be a collective
object whose elements are words. ALtbough the division of a text
into lines and words is straigb ttorward, there are lIany ways of
grouping texts into larger collect~ons: one way is to put all
Sumerian texts in one collective object, all Babylonian texts in
another, and so on for Atxad~au and Ogaritic; another grouping
would put all texts on myths dnd legends froll all the languages
in one category, all hymns in dnotller category, codes of law in a
third, and . business records ..i.n a t ourth; many other bases for
grouping are equally possib~e--chronological, geographical, etc.
Bf lIeans of synonyms, the accessibility graph can exhibit all the
relations siaultaneous.1y. The diayram above shows part of Joe's
data base: fhe node labeled JOE is a collective object with

IB8 CONFIDENTIAL

i~ ,

46 BASlC CUNCt~£S AND STRUCTURES

elements whose ~ud~ces are 'LANGUAGE', 'CATEGORY', and ·SEARCH'.
Under the collective object JOE. LAL'HiUAGE are collective objects
tor eacn language Joe 1S work~DY with; uDder eacb language are
the texts written ~n that lanyuaye. dut it Joe is doing a
comparative study of illyt~s ill Sumerian and BabyloDLan, he may
tind it easier to use JOE.CAfEGO~i.BYTli, which is a collective
object contain~ng synonyms to a~l the texts that relate myths 'in
any of the languages. LU tn~s example, MYTli.P is a synonym for
BABYLONlAN.F, LAW.S LS a synonym tor HABlLONlAN.E, and HlMN.U is
a synonym for SUME~lAN.B. Ther~Lore, the Dode B is d~rectly
access~ble from the nOues SUH~~IAN, LANGUAGB, and JUE, is
indirectly accessible from tne uoae U, and is access~ble trom the
nodes H1MN and CATEGUHY.

The relations expressed bi syu0DjmS do not have to De built into
the structure t.rom the Deyinru.ng: when Joe adus a new text to
n~s collection,. he can ~nsert it under tne approprid.te lau9uage;
at auy later t~me, he can deiiue synonyms tor ~t ~D d.Dy ex~sting
categories or even define new caLe~ories. Some texts ruay belong
to several categories: SUgERIAN.A can be accessed v~a synonyms
~YTH.R or HyaN.V. And 1ll all cases, a runn~lly proyraru does not
need to ~now if ~t ~s accass~n~ an object direct~y or via
synonyms. For even greater tlexib~lity, Joe cail hire a computer
sc~ence student to wri te some usee-defined access mach.l.nes to
create special objects tnat nave the same interface as oruinary
co~lective objects, but that e~ecute elaborate searCD peocedures.
For example, the object S~ARCd may lOOK exactly like an ordinary
collective object; but l.nterndll}, it has synonyms to LANGUAGE
and CATBGORY and has aD access machine that searches down those
trees. If Joe wants to f~nd tae text ot a myth about Gilgamesh,
he could request SEARCri.HYTd.~iL~AMESd.TE~T; then the access
machine would Look througn all the texts accessible from the node
MYTH to tind one about Gilgamesh.

l.t x ~s a collect~ve obJect, its l.nUeJ{ set must have enough
indices to select eve£" y element ot x. It y .l.S an element of x
and n is the index that selects 1, then n is calLed a s~mple name
for dccessing y trom x. If i na~~ens to be a synonym for scme
other object z, then 11 is also d sl.mple name tor ac~essill9 z from
x, because operations on 1 are automat~cally passed on to z. In
the above e~ample, 'At ~s a 5~mple name for accessing A from
SUMERIAN. and 'V' is a simple name for access~ng A from HYM~. If
x is access~ble from y by some com~~ex path, there must be a l~st
at simple names for eaca stage oi the patil. In the example r A is
access~ble f£"cm JOE DY turee d~fferent path names:
LAN~UAGB.SUMEkIAN.A, CATEGOBI.d~TH.H, and CATEGO~Y.HYHN.V. This
example does not show auy C~~CUl.ts in the access~b~lity yraph;
Dut ~heu there are circuits, there are an inL~nite number of
paths and hence 'path names tor access~nq some objects. (No te:
this example used unique simple names for every Dode to make the
discussion easier to follow. l.n general, elements of d~fferent
collective ObJects may nave tn~ same simple names without causing

IBM C0NFIDE~TIAL

(

(

~h apter 2. 1

ambiguity.)

Theorem: If x is
accessible from
there exists au
x=select (u; y) •

au el.ement of y or if x. lo~
some object Z wUloCn is an element

e le ment n in the l.ndex set of y
Call n a 2~~£!~ ~~!~ tor accessing

47

indirectly
of y, then

such that
x feom y.

Defini ti on: A ~j;~ fr om au oD ject y to an obJect x is a list of
Objects, the first of wbl.ch is y dnd tne last x; from au
aDject u in the list to tae next object v, there must be a
simple name for access~n~ v trom u. The ll.st of simfle
names is called the eat~ ~~~~ from y to x.

rheorem: It x is accessl.ole :t rom y,
nalle fLom y to x.

then there exists a path

The path names provlode a waf ot l.udexing down the ownershi~ tree
dnd skl.pping across the synonjw Chal.ns. Hefors usiny a path name
ior accessing an object x, me system must flond the object y £x:om
which x is accessl.Dle by tnat name. The environment tx:ee
described in chapter 2.3 defines a searCh procedure for finaing
the starting point from wnich the path name leads to the aDJect.
When a program is executlony, tbe lonterpreter reso~ves names by
searchl.ng up the environment tree until l.t finds a node that
recogni~es €lother the entl.ce ~dth lldme or at least the first one
or more simple names in it; tuen Lhe interprete~ can make select
requests with the remainlong til.ffiVle names ulltil it reaches the
object x.

Most operatl.ons on objects illd&~ re~u~sts on the access machl.ne ot
the 00 J€ct. (;ertal. nope rati':>ll:::> fler formed on collective obje cts
are intended to mO~Lfy tAe atorage cell contaloning an element.
Although such operation~ are l.ntended for man~vuLatl.ng storage
cells, they Cdn have sl.de e~iects of destroying an object or
moving it to a new storage cell.

Definition: Let x be a collecLl.ve object, and let L be an object
Which is not in the set ill.st(x), but whl.ch loS acceptible to
the access machLDe OX x ior add~t~on to iilost(x). Then tbe
dyadic function ~~£1 ma~es Losert requests on a collective
object to insert a new scocage cell and index: lof x already
has i. loll its index setl ~nsert(l.;x) raises an error
exception. otherwise, l.t has toe sl.de effect of addl.ng a new
storage cell to the resource of x, placl.ng a copy of undef
in the new cell, addin~ i to iList(x), and causing the
access machine ot x to mdp L onto tae new cell. The value
retarned oy insert (i;1.:) l.a Ldentical to tae value of

lrll CO~tlU~NTlAL

r

I

48

s e 1 ec t (i ; x) •

" c

BASIC CONCEPTS AMD STdUCTURES

llefinitl.on: The dYCidic function g,~kg!:g m.aJ(.es a uelete request on
a collective object to remove a stora~e cell from its
resource and to remove the inuex to that ceL~ from its index
set; delete(i;x) has the sl.de effect of removing the storage
cell contal.n,l.ng x(l.j from the resource of x ahd of remov ing
i from ilist(~. Tae c~Ll name of tne ol~ cell may not be
used to identify any other cell ever to De created in the
system. The value returuea by delete (l.;x) is the obJect in
the storage cell before the cell was deleted.

Every function returns a value: the value of insert is useful as
the target of an assl.gnment for l.nl.tializ1ng the new object; the
object returnea by delete is usetul to allow a cell to be deleted
and its contents moved somewbere else 1.ll a single statement. If
the expression !.ieleta (i .x) acc urs dlone in a statement, the cell
contain1ng XLi] is deleted by ~be iunctl.on delete, and the value
of xCi] is destroyed when execution moves on to tbe next
statem.ent.

Defi111. tion: T ae IBoHadic t:unct1.on f.£'!!!QY~ remove.:.:; the contents of
a storage ce~l without delating the cell: remove {x} has the
side effect of pLaCing a copy of undei ~n the cell
containing x; the value of remove(x) is the old value of x
unchanged.

Definition: The dyad~c .t.unct.1.0h ~£!&£i: ct'estroys the object
contained ill a storage ceLL dU~ replaces 1.t with a copy of
another ob ject: repl.ace (x; y) makes a copy Le~uest on x to
maKe a copy of itself, maKes a destroy request on y to
destroy itself, and place~ the copy ot x 1n the storage cell
formerly occupied by y. ~f Y refuses to destroy ~tself, it
remal.ns unc~anged, and dll erLor exceptl.on occurs. It y is
~udirectly accessible trom x, then an erLOL exception
occurs, and the taL'get 1.:.:; not chaugeu. The value of
replace (x;y) is a copy of x.

Theorem: No circuits ot synonyma can arise by execution of
replace. any attempt to form such a circu.1.tl:3.1.ses an error
exception.

The replace function is a type ot assiynment used primarily for
moving objects and pLac1ng ill1.t1al values into new storage cells;
its use in initialization is the bdSis for executabLe declaration
statements. For normal assignments, the stow Iunction makes a
request upon the access maCD.1.De of an object to perform the
action and maKe necessary converSl.ons. .

~hen a .:.:;torage cell.1.s aeleted, .:.:;ynonyms dnd metonyms contal.uing

" \

its cell name are not destroyeu; but any use ot them raises an ~. ~
eceol: exception. Since cell ndlBes dre never reused, there is no l~

.IBM CO Nr' llJ.t:N TIAL

Chapter 2.1 OBJ ~~'r tiA SE 49

danyer that a new cell could De dccessed V1d ~nva11Q synonyms.
T~e four functions insert, ~elete, remove, anu replace have
important side effects on synonyms: suppose x 1S a collective
object whose i'th element 1S i~ toen the statements

(1 delete Xi i insert x}
l.eave a copy of undet whose ~l.cect accessibility is the same as
y's, but whose storaye cell has d Dew cell Dame that is different
trom the cell name in p~ev10us synonyms to y; the opecations
remove(i) and ceplace(undef;y) cause the undefined3DJect to have
the same accessib1l1ty as i, even 'for synonyms. If y is a
collect1ve object, dny stora~e cel.ls it owns are part of its
reSOUCCd and are moved Wl.th l.t; consequently, any synonyms to
elements of y remain po~ntiug to the same values even though a
synonym to y it.\ielf may point to a copy of nil in Ule old storage
cell.

Theorem: Let x be an object u1rectl} accessible from
indicectly accessiDle trom z. After the
delete(i;y) oc r-emove(j) loS executeu, but before
1(i] is destroyed, x will stl.ll be l.ndirectly
from z.

Yl i] and
operation

the ob ject
accessible

These definl.tions can be ~illpl.ewented etf1ciently: rewovl.og an
object involves movl.ng a sl.ug~e descciptor frow d space and
ceplacl.!lg it w~th a descriptor iOI: uodet; the rules for synonyms
to elements of d collect1ve Object follow immedl.dtel.y from the
fact that the space contal.nin~ the elements ~s not ~hanged.

rhe function replace is Qef~ned as mak~ng a copy of it.\i left
argument; in a later sect~on on lir:0'::icam executl.OH, tne copy rules
are raod.l t.led to elimina te unueee :::;Sdr 'i cop~es. In particular, no
copy is requl.red when the vbject 1S the reSUl.t of certain
functions, whl.ch l.ncluUe remove and delete. Therefore, the
following exp~ession does tiot uestroy the Object A.B~C, but
si~ply invalidates all its old nawes and renames it H.F.G:

replace(delete{'C';A.B);inser:t('G';a.F)}
In .lnfiA: torlll, the aoolle expressioll mdY be wr~tte11:

fC' delete !.J:) =) ('G' insert a.p)

A major ddvant~ge of tue cur-rent desl.~n l.5 that it bas the
flexibility ox general ll.st proeess.lu~ systems without the
overneaJ of garbage collect~on O~ reference counts. systems like
LISP and SNOBOL keep datd ava~ldlJ.le as long as tilers is a
reference to them; althougn such a propecty is orten convenient,
it seriou.\ily impairs eiiic~eDcy: In LISP, fur example, the
standard method of garbage collection 1.\i to stop all computation,
start at the topmost noue OL tue system, dnd trace all data
elements to see i± any are uo£eier-enceable; only after all nodes
have Deen traced can the sjstem throw dlli ddta away, and only
then is there any space to cesume ekec~tion. The method of
reference count.\i replaces illdSSLve ya£Dd~e collections at
infreguent ~ntervals by ~ncrement$ dod decrements to a count

liH1 COi.'if.ID~NTIAL

I

~
I
I
I

I

BASIC CONC~P!S ANU STkUCTUHES

I~

field whel1evec synonyms dre cOt"ied dnd erased. AlthouYll most "'-.
objects bave a count field ot one# all objects must maintain such
a field with vrovisions tor lettin~ such values 91:0W arb1.trarily
large. On a stora<.je bierarcay system# reference counts can
Decoma \luite inef:ticien t Sl.llCe a local ac tion of copying a
pointer can require the refer~nce count of a distant ooject to be
modified. The APS approacn is to destroy objects upon explicit
request and to allow synonym~ to destroyed ohJects to beccme
invalidated; for ordinary FurtTiAN and BL/I programs, this
approach is the most etiicient. .If an app1icat1.on re-juires
reference coun ts, they can always De added by causin9 the access
machine of a collective object to keep counts of refe.rences to
its elements# to issue special synonyms that report back waenever
they are COp1.ed or erasen, and to 3elete the elements Wben their
reference counts go to zero; tbus, the po~er 1s available when
needed# but most objects aonft bave to pay for it.

Much. of the lib.rary and cat.dlo~1.n<j fac1.l.1.ties or: current systems
can be bandIed Dy the functions 1ntroduced so far: The DD cards
I.n OS/360 are used to create synonyms between e~ternal and
internal devices; tor example, 1:t Sisour is the ndme for d
collect1.ve object whose elemeuts are lOY1cal output devices and
I.f A is the index for select1u~ Loyical printers, then the DD
card

//SYSPRIN~ DD SYSOUT=A
is equivalent to the expression

syn SISOUT.A =) SY~PHINT

Ln 05/360, DD cdrds also SPdC1r:y physicd~ chara=teristics of
devices and request a ty pe of allocatl.Oll sucn as shared use or
exclusive use f or mod if1cat.1.0U; in At'S, physical fJarameters are
totally unnecessary, and the system provides much tiller control
over dynamic resource allocat1on (see chapter 2.:"). In APL/360,
system commands are outside ot the lanyuaye and cannot appear in
functions; tollowiny are toe APS forms of some ABL system
cOllmands:

)LOAV 10 LOGIC LLill~.~QGl~ =) Current
)SAVE 10 LOGIC Current =) LIB10.LOGIC
)CLEA~ Clearw3 =) ~urcent

)ERASB JOE SAM delete JOE; delete ~AI
)COPI 10 LOGIC WPF LIB10.~UGIC.WFP => ,'WEP' insert Cucren~
)LIB .1.1ist ctystuff -> j~SPRINT

The ~PL/360 system makes cOfJies of wor~sPdces because l.t has no
way of sharing read-only objects an~ no way of defining synonyms
to objects in other worKspaces. Under AFS, a subsystem would be
free to make copies 0[' detl.ne sy nony illS aS.1.t chose.

The elements of a gene~al col~ect~ve obJect have only one thing

lrlM CO~flDEN~IAL

./

(

(

(-

Chapt~r ~.1 51

in common: tney re~~de 18 sLo~dye cells tnat dll have the same
owner. Special types of cOLLectlve Objects mdY impose mere
condit10ns either on the elem~uts or on tae adm~~s~Dle index set.
Typical condit~o8s restr~ct tne 1udex set to luteyers, pairs ot
inteyer5 1 or character str1ugs; other condlt~ouS restrict the
dlements to hdve tbe Sdme access mdchlnes or representations.
Altbo~gh cond1tions restr1ct ~eaeralitl, they may improve
eftic1ency dud simplify enumeratl0n of all elements. If all
elements have the same access lliachloe, the descriptor of the
entire collectlve object nee~ speclxy the access machine only
once for all elements; such s~vlnys are espec1ally obvious for
nit vectors.

2. 1. 7. 1 Lists

~e have aireauy deflned d 115t 1U sect10n ~.1.5. A l~st is a
memner of a special cldss ot ~ollective Objects with particular
1ndex sets. lbe inJexiuy capdbLl1ty of SL provides a mapping
between a set called the 1ndeA: set and a set WblCh comprises the
objects in the storage cellS of a collective object. lhe
elements of the index set are cdl~ed 1ndex objects. As the use
o± the word "set" imp11es, no structure 1S imputed to either
set by the index1ny mecnanLsm ~tself. The most primltively
structured collect1ve object 1B the ~ist. A list is a collective
object whose index set 1S t~e set ot inte~ers ~ess tnat N for
some integer N. For example, ~ llst of ten objects has for its
index set (':1, 3, 5, 1, 7, 4" £o, 6, J, 6). A l~st 1ll part1cuIar,
aud dily indexed object in geueral, ac~ulres its structure, if
any, trom the ~nherent structure of the 1ndex~ng objects
themselves. T11is stcucture must come troill something otner than
indexiu':]. In the Cdse at the .l.n te-jers" l.uitia 1 segments of vh ich
!re popular ~ndex sets, that structure 1S prov1ued by the
arithmetic tunctious whiCh apply to them. loese operations,
ult~mdte~y def1nable in terms of toe Peauo postul~tes, are the
oasis for most index sets. AcCord.l.n~li, we may clar1fy the
definition of a list to say toat a list is a collectlve object
whose index set is aD in.l.tial seyment at the iuteyers. We intend
to imply that the order1ng at the 1utegers ~~ a part of the
definition of a llst. For cORven1ence, we introduce the
tollowin g

Definition: A ££!.mitiy~ ~m!~£ ,§g!;; is ah in1tiai segment of the
non-negative l.ntegers.

Usually tbe term "l.ndex set" wi~l be used in place of
"primitive illdex set" wnen tua context per:mits. Lists. form the
only special class ox collect~ve objects whl.ch 1S pr.l.m1tive to
the system. There are no re~trictiollS Oil tue elements of a list.
They may be scaldrs, closures, drD1trdry collect1va objects, or
other lists.

52 BASIC Cu~C~PT~ AND STHOCTURBS

2.1.7.2 structures

since the elements of a col1ect~ve object may themselves be
collect~ves, it is ~ossible to build tiered structures of
arbitrary complex~ty and indexiny depth. It LS useEul to have
some definitions to talk about these objects.

Defini tion: A §lI.!!£i.\!~ is a
whose owned objects is
together with all OD]ects
from the given object.

collective oDject some subset of
composed of collective objects
dccessLDle by Lterated indexing

Definition: An ~ndg!~~ §tr.l!£i.!!£g ~s oue allot waose collective
objects are indexahle.

lJefinition: A .1:121 §!£.Y£1.!!£g ~s a structure iill of whose
collect~ve objects are lidts.

Definition: The §,lHU!g ot a l.ist LS the number of elements in it.

Sbape is a general term Wbl.ch also applies to ~rrays. When
referring to ll.sts or to ve~tors the term length wLll sometimes
be used. One of the impo.r.:tallt characteristLcs ot a structure ~s
the Dumber of tiers that have DeeR defined. One can retrieve any
one of the elements of a list wLtn a sinyla ~ndex~ny operation.
To specify an element of ~ l~st OL ~ists, the ~n~exing operation
must be repeated.

Def~nition: The
time::; the
structure
reached.

~~21~ of a structure is
indexing opecat~ou can

before reacb~ll~ d scalar

the maximum number of
be performeu Oll the
or an o~ject already

A scalae has depth ~ero. A d~mple lLst nas depth one. One can
simulate arrays at the progcdwiny level w~th list structures of
depth two, ie., with l~sts OL ~~sts.

One may wish to define a deptk two structure of lLsts whose
elements ace ~ndexable. Unfortunately, the aeptAs ot these
elements will be added to that OL the structure and any attempt
to determine the depth w~th o~a~nary functions WLll yield the
wron~ result. To handle SUCD sLtuations tae encapsulate function
is provLded. It concedlo:> any drlatrary structu.re witnin a scalar
so that it can be plac€u ill a st.r.:ucture w~thout increasing its
deptn. The o.L:iginal str:uctIH:e Cdn be cecovered by using the
uncover function.

For convenience in detin~ng the locate function ior lists we
introduce a related ty pe of ~nuexed Object. It ~s not primitive .x/

to SL.",,_~

IdM COlfID~N!lAL

(
53

Defiui tion: A .l:!§.£.y!!g- 1: ~S!: ~s .111 on ject II host: 1.11d ax !:>O::!t cOllsi sts
of integers.

2.1.7.3 Arrays

For a namber of reasons it 13 ja~1rab~e to provide indexing with
an arbitrary number of objects loll d s~ngle level of indexing.
The fdc~11ty is provided bi most hign level Languages in use
today. It provides mucn of tne rlexibl.lity of a list structure
wi thou t incurr ing tlle ineit 1.";1 ellCY of multiple calls on the
.l.ndexing operation to retrieve d sl.ugle Object. Furthermore, it
is eaS1er to rearrange object;;;; within the structure since it is
not necessary to ;;;;bift tnem fl:o11 one collective object to
another.

This desirable facill.ty 1S prov1dea l.ll 5L as in otner languages
by arrays. In keeping witu the spir1t of 5L, arrays are
basically dei1ned in a gel1eral way. They d1.t%er from other
indexable objects in that a r.l.j1d tramework has bean provided 'in
which t~eir inde~ objects resl.de. fhis frdmeworK is defined with
the aid of d list structure called the base list or the base
list structure of the array. No restrl.ctions are placed on the
index objects themselves, or on tne elements of the array.

Arrays are not primit~ve to SL. It i~ thUS an implementation
decision whether the hardware will construct vectors of vector~
to describe arrays or not.

Defin~tion: the Qa2~ li21 or Ddi;:)e ~ ~1 21!".y. ct y'!J~ of an array,
A, is a l~st structure of uuit or m de pth 2. Tile i-th
sUblist is called tne ~:.4.~!!g!!2!Q!! !!!s!g~ set of A.

Detini t1.on: An ~ll~1, A, of L:dnK r ~s all obJect whose index
set consi;:;;ts of lists 01: Length r. The l.-tu element in
edch ~ndex object list 15 chosen from the 1-dimension index
~et of A. The &~~ of A loS the shape of '~ts base list.
An array of rani(. r is cd,lled au f.:.~&.£.sy. The 2h~E§:' at an
array is a list of the Slzes of 1tS i-dimens10n iudex sets
for all applicable 1.

'fhe monadic function ibasa dtiPl.ieu to an array produce;:; l ts base
list. lhe com~osite funct10n ;:;;hape ioase produces its rank. for
dny array, A, the following ~dent1ty hol~~:

3hape A = shape map 111a;cie A.

The elements of the index set of A are memDers of the augment
outer product reduction of tae base ll.st of A. In standard
terminology, this is the Cartesldn product reduction.

lB8 CO~flD~NflAL

J

BA~IC CONC~Pf5 ANil STRUCTURES

Definition: A y~ctQ..£ is d 1-a.tl:ay.

Definition! A 1!!:2..t'£A:~ is a 2-au:ay.

~e shalL refer to a vector with K elements aud ~ l~st with k
dlGm~nts as a k-vector an~ a k-list, respectively. In
particular the empty list and the empty vector a,re the O-list
~tid the O-vector, respectively_ Note that a scalar can be
considered as an array ot ranK zer-o as w~ll as a list struct ore
of depth zero.

For a gdneral array there are no restr~ctions o~ tae elements of
the sublists of the ha se list. In fact tilere ~s no restriction'
on the lengths of the subl~sts. For example~ tae integer
genera tor can prod uce a tJ0teut1.al.ly int1.uite list ,wllicb. can be
Lndex~d .ith any integer. rh~s l~st is the only entry in the
base list for the correspond1.n~ iuf1.nite length vector.

An array may be indexed by clldracters, l1.sts, otner arrays, etc.
It all the k-dimension 1.nuex ;.;jets ace fl..aite, then the array is
finite. If all the index sets comprl.se ouly inteyers, then the
artay is indexed by lists ot ~nte~ers. This 1S the most yeneral
type of array usually ~anuled. A pdrt1.cularly important subclass
of finite, integer indexed ~redls 1.5 the following:

Usfiui tion: A £'£1!!!i.t.!y~ arrd t .I.S one ~n wu~ch the iuddx. set in
eAch dimension ~s a pt1.m1L.l.Ve 1.odex set.

rfi order to provide the k~nu OL Llexible restructuring through
indexin-:j whiCh is available iu, ,[OL' eXdrupl.e, AJ?L we peem1t the
SUbstitution of certain arrdYs ,ntn1.ll the 11st IIfli;;n constitutes
an indexing object. These SU0stl.tutl.on;:> aetine an 1niiul.te set
of structures whicn the select fuuo;tiou IHll accept ior ~ndexing
arrays.

Definition: '.rhe ba!i!A:§ for til~ ~Hdex Sdt of au array is the
Cartesian product reduct~on or the base l1st of the array.

This is what is usually called tae index. set o~ the areay_ The
functl.6n ilist on an array produces the basis of the .I.udex set.

Detl..aition: The £Q!!!ll!!:!1!:l iUlleA set of an array 1.5 derived from
the bas~s for the .I.lide~ set. For dny pos.l.tion or set of
consecuti ve Fos~tions l.U a n index list lIlay he substituted
any array. The elements of tne acray must be l.1.sts of the
Same length as the part.l.al List the array replaces. The
eeturbed object will be au array. The base l~st of the
returned array is the caLenation of the base l.l.sts of the
participating arrays.

Sihce the phrase
t6 "index set",

"basis lor tue .I.udex set" ~s usually s~ortened
tne WOCQ "colilplete" must be expressed when

11311 CJ.NF IDt:N 'f LA I.

'"",J

(

(

(

Chapter 2.1 OtiJ.t!:C I uASE 55

impo~ted to prevent con£usion. The base l~~t fo~ an a~ray
define~ its structure ill cow~lete detail even fo~ arb~trarily
indexed arrays. The i nformat~oll ~equi~eu to dete~mine the index
structure for a primLtive ar~dy ~s much less. It ~H simply the
length of the index set LD 9dCh ~1mension. the shape function
applied to an ar~ay ~ill return tnLs info~mation ~n the form of a
list. The fUllct~on igenerator appl~ed to d scalar retu~ns the
index: list fo~ a l1St of cOL~e~pondLuy lengtb. Xhe funct~on
igena~dtor ap~lied to tbe snape of a prL~Ltive acray gene~ates
the index base for that ar~ay Dr tunction dLst~~Dut1on.

I'he relationships bet.ween th9 va~LOUS types of arrays and lists
can he desc~ibed by the results ot applying tne various structure
deterlllLning functions to them. The information LS summarized in
the follo~ing table.

list scalar v-vector vect.o&: .1:-array
--,-- -.--.-----

ill.st I list u-l1st of 0-list of list of list of
I lLSts 1-l.1sts l-l.ist~ r-lists
1

index I scalar- O-lLSt l-J..ist 1-list r-ll.st
object I

ibase I list v-list of 1-ll.~t or: 1-1ist ot r-list of

• lists li.::its lists lists
I

shape i scalar \) -lLst l-list l-11 . .::it r-list
I

shape of j O-list v 1 1 r
shap~ I

For convenience ~n definLng the locate function for arrays we
make tne following defin1tion.

Defiuitl.on: The ~~de~ QQ~££ ~ff~l of an array A
primitively indexed array wLth tbe same snape as
elements are the respective l.w..i.ex objects of A.

is. the
A whose

Note tila t the 1:"ela tLonslup bet ween a pseudo-list ClUJ. its ll.st of
indices is analogous to thClt between dll drray dud Lts index
cb ject array.

Cha pter 2..;'

PROGRAM STRUCTURE AND INTERPRETATION

The access mach~ne of eve~y object i~ a process. This p~oc~ss is
derived from a procedural descr1pt~on by add1n~ some local
storage dnd causing au interp~eter to beyin executiny this
descr~ption. This chapter presents the form dnd executl.Oll of
pr6grams, that is, procedural descriptions written in SL. The
chapter beg ins W l.tn an oveL"V iew at tne concepts which are
important to interpretatl.on and pro~ram structure. After that
the form of a proyram is ~l.ven. This loS gl.ven as a data
structure in SL. Then, tae coastra1nts tnat this form implies on
the external syntax are ~1ven.

fhe remainder of the cbapter is devoted to th~ 1llterpretation of
the text of tue program. Tue 1nter~cetation of an expression is
developed in detail. The protocols tor call1ug other functicns
are presentea ~n a form suitable tor ~siug fUllct10ns written in a
foreign (non SL) architecture. Then, the interpretation of
functions with multiple expL"essl.ons (i.e., st~tement~ are
described. f'inally, various ope.cdto.cs foe vatying the order of
interpretation ace d.1scussed.

Th~s section 1utroduces at all ov~~view level Lue key concepts
whiCH a.c e re':lul.red to rep1:eseu t and execute dU S1 pl.:og ram.

2.2.1.1 The Form of the ~an9udge

In SL there are two forms l.U will.Cil programming iIlay be done: an
external syntd.ct1c for m and d lIldch.l.ne-orien tea data struct ure
toem. rhe reason taL th~s dichotomy 1S that tbeee 1S no single
form which is adequate for both human bBl.ngs and machines.
rlumans expect clarity of expression and reauabilitl. They often
fl.nd it easier to mdnipu~ate pl.:o~.cams in textual units such as
strings. On the other hand, macn1nes WOL"K better with fairly
r1gid data structures. Then, the machine can use the fixed
information to provide a more compact progcam representatl.on and
to optimize execution.

There is, however, another reason tor having two representations
for a program. This 15 exem~11f1dd by LISP. In LISP, it is
possible to input and d1splay dcyc11c list structures in an

idM CU~FIDENrIAL

(

('

Chapter 2.2 ~ROGrlAM STrlUCTUrl~ ANJ INT~rlpaETATIUN 57

~xternal syntactic form. ilow~ve~, ~t 1ti dlsc poss~bl~ to write
LISP programs to bu~ld au~ mO~1ty lLst stcuctures uS1ny the LISP
functions. Siuce a program in LlS~ is a l~st structare, this bas
the important consequence that ~t 15 easy to wr1te programs that
write or modify other programs.

The flexibil~ty to construct pcograms as data structures 1S very
important. It makes it poss1D1e to wr1te compilers with greater
ease. It also belps when program mod1f1cat10n 15 required as in
a sort generator. finally, Lt allows programs to respond to
requests by cOllstruct1ng anotaer ~rogram to do the work. This
type of behavior will become more popular as uata query systems
grow.

the external syntact1c torm 15 tbaretore de51yued to give the
best possible human inter~ace to the system. It provides
extensions of the strict mach1ne Lorm to better support naive
users. The external form 111111 be translated into the machine
form by an 1ncremental, statemdnt-oy-statement tr~llslator whose
axistence can be ignored ny mo~t users ot the external form. The
machine form is aefined ill ter~s at data structures which can be
constructed and manipula ted La 5L. It L5 desiyned to maintain
the 1nformation needed to do faithtul interpretat~on and to be
convenient to manipulate.

Proyram$ are expressed ~n groups of statements. Each statement
~s a striny OE symbols. A symbol 1S one or more Characters which
~s clearly delimited. The symbol str1ngs represent 1nt~x
expression 1U the externdl tor.. In the machine form, the symbol
str~ugs represent the PoliSh ~refLx form ot an expression. In
~Lther case, a statement is ailY legal 5L expression. Eacb group
at statements is rept-esented in the machine torm by a module
which contains a list of the statements.

2.2.1.2 The Execution ot the i.augualje

Program text, even a moau.1e, 1S really only a representation of
an algorithm descript1ou. It is only bi execut~ng the text or
module that the intent of tne al~or~tnm is carried out. In 5L
taere dre a number of steps ~n the process ot axecuting an
algoritnm or proceuural descr1ption. These steps torm a phased
aistory of the lite of a module.

Definition: A module goes tnrough a number ot
entered, prepared for execution, executed
discarded. These phases ~ll oruer are:

EA~§~§ as it
and tina lly

Translate:

Load:

ConvertLn~ the ~rogram into a modu~e.

EstaDlishul'1 a naw copy of
associated loau o~iellt~d

the module with its
(stdtic) ~torage ~ll

. I

BASIC CONCEPTS AND STaUCTUR~S

Activate:

i!:xecute:

the user's caCI:ent context.

Crea ting an ob Jec t which con ta ins information
associatin~ parameter symbols w~tn arguments
and contains a new generation of the
activat~on-ociented (automatic) stoI:age.

Inter p.cetin'1 the body ot the text of the
moJ.ule.

ueactivate: Possibly releasin'1 the generdt~on of automatic
stocage ~£ it can no longec be accessed.

Unload: Heleas~ug all. stocage associate aicectly witb
the loaded ~oJule De~n9 unloaded.

At edch pbase the iocm of the lIloaUL9 Changes. Up to the exec ute
phase more aud mace ~ntoCll1atLon ~s added. Aftee that,
infoemation is discacaed. It LS gu~te possible to use a puase of
a module as the basis for several different ~nstallces of the next
phase. For example, onLy a sLngLe load LS requ~red foe many
different ac~ivations of a moaule. Similarly, a s~ngle copy of
the text of the module can be sllarea Dy many loaas.

The load and unload
2.3. In this chaptee
the load phase to the
and, fLnally, through

phases dLe developed in detail in Chapter
the empadsi~ will be on tDe transition f~om
actLvate pha::;e, and onto the execute phase
the deact~va~e phase.

Definition: The trans~t~on tram the ~04d phase Luta the activate
phase and onto the execilte tlhase is called ~£'£~Yst~!!g 2:
f.y'.!!ctio!!.

The process of funct~on actLv~tLoa ~Dcludes build~ng up a new
object from the loaued module uy aJd~ny some automatic storage,
passin~ arguments aud cauS1UY ~he independent execution of the
new object. It beg~ns when au. eva.lua~e .cequest loS made on a
loaded module. When the dctLvate phase is entered, the
interpretation otthe text is Degun.

Oefinit~on: The J.Q£'~£.E£~~Q~ or d funct~on ~s performed by
scanning the text of the Luuction module and maK1ny requests
on the objects assoC~ated with tke sywDolB that are
encountered.

In the terms of %ormal log~c, meaning is given to a purely
syntactic form by assoc1ating objects from a univarse with each
of the symbols in the form. Then, the form can be evaluated
using the rules of combindt~oll for the objects associated with
the symbols in the torm. In SL, tae symbols are associated with
storage cells wh1ch 001J. tue oDjects that g~ve the symbols
lIeanin g.

IBM CON~IV~NTIAL

(
Chapter 2.2 ~HOGHAa STHUCTUd~ ANV INTER~H~TATIUb

Definition: §~~&2! fe§glut~Q~ LS tne mechanism which associdtes
with each symbol the ceLl ndme of a storaye ceLL in the
object Dase.

As will be seen in Chapter 2.3, Lt LS possLble tu separate symbo~
resolution into a number ot stayes. Eacll stage inserts
Lntormat10n which LS fixed wLtn Lespect to all succeeding stages.
This factoring of symbol Ldsolut10n can ~reatly improve the
performdnce of the machine SLuce potentia11y repet1tive work is
done onl yonce.

As the interpreter moves tarou~b tae moduLe text, Lt w1l1 need to
Keep some status iniormatLon Ln the PSH tor the activation which
is being interpreted. One ~i the major p~eces of iufo~mation
that must be saved is the status or evaluating tue operands of an
operator. Because expressions Cdil be nested to an arbitLary
depth, an undetermined number or operators may De in the process
ot operand evaluation simultanDOUSLj. rhereiore, a special part
of the PSR is distinguisllBa to Aold operator evaluation
information.

DefLnition: An ~yal~~llg is d collective Object WU~Ch holds the
information about the status of evalua.tion tor one operator
and its operands. Tne eval~aad is part of the PSi.

An additional port1on of the PStl ~s used to
statement is currently bein~ interpreted. Tn~s

the instruction counter Oil CiaSSLC ~achines.

retain which
corresponds to

Deiini tion: r he 2is!£~1!~:.Hll b!l~~.eL::) a port~oll ot the 1'5 H which
holds the ~ndex of the statement cur~ently being
interp.reted. It thert: LS no sucu statement, tnen t.he value
or the statement inaex ~s undet.

When tue execution o~ the moaule text ~s completed, the
activation is destroyea. fh3 storage associated witn that
actLvat10n mayor may not be destroyea depellQ1ng on wnether or
not references to symbols aS~ocLatej w1tn tnat storage are stiLL
legal. In PL/I SUCh references a~e hOt legal so tue storage may
be released. However, ~a LISP Leierences dre legal and the
stora~e may outlive the activatLon.

The basic unit of p.rug ram cons tL uc t10n ~s a stretch o.t text where
each symbol in that text uas only one meaning. Lnternally, this
is represented by a module.

I

dASIC CONCEPXS AND S'ft<UCTUR£S

Definition: A ~2gY1g is a primit~ve collective object consisting
of two components: the module text dnd the dictionary.
There is one entry J.n the d~ct~onary for eaCh symbol which
occur~ in the module text. This dictionary entry also holds
the informati·on tor symbol. re~olution.

The fact that each sywnol hd~ only one association w1.thin the
module makes a module sUit;ible for the mJ.nimum unit of
translation into internal form. The symbols can be tactor-ed into
a sepa.t;ate dict ionary, and tluu r occurr-ences in t he text can be
replaced by offsets into tUdt tdble. Then, symbols can be
resolved by associating stord9€ cells W1.th the entrl.es in the
dictionary. This encoding reuuces the size of the program text
and the complexity of decoding lot. Once program text is encoaed,
however, it is meaningless W1.thout the associatej dictionary.
Therefore, whenever program text Wl.th symbol assoc1dtions can be
selected as a separate un~t, the corresponding dl.ct~onary must be
available to define the meanl.n~ of offsets in the sncoden text.

Definition: The gi£1ioag!1 loS composeu ot three component
structures: the symbol ta.ble, the linl\.a~e table, and the
attribute table. There 1S a 1-1 correspondence between the
entries ot each tdb~e. The sYRiDol table nas the character
representation of the symbOL. Tae corresponj~ll~ entry in
the linkage table nas the assocl.ation (l.t any) for the
symbol, and the attribute table entry has ~nformation about
the symbol.

The dictionary is logically iudexed by tue symbols. Hence, the
symbol t able acts as t .lle LIHiex l.l.st ot tne d1ct10nary. However,
within the text of the module, th~ symbols are re~reseBted by
symbol references. Symbo~ references dre logl.cal indices 1nto
the three parallel tables. Tne~etore, the symbol reterences are
alternate indices for the dJ.ct10llary. The symbo~ r-efereuces
correspond to the symbol~c UdmeS used iu the system architecture
man.ual.

Definition: A 21..!!l.f!2! !:efg£gll~g LS d ~oljJ.cal
dictJ.onary. ~hen used, Lt selects
corresponding to the symbol 1t represents.
w1thin the modu~e in wril.cn ~t was created.

ind.ex 1nto the
the component

It 15 valid only

Defiuit10n: The tetrad1.c tunction .!!!§.§£1 §.Y.l!U22! causes a new
symbol to be added to tne sy~bol table o~ the desLgnated
dictionary and the corresponding entries ill the linkage
table and the attr~bute table to be filled in. fhe result
of insert l:>ymbol (I;J...;A;X) is the symbol reference of d new
entry in the dictionary 1 Wl.tu the value ot I al:> the symbol
entry, the value of 1. as tile ll.nkage entry, and the value of
A as the attribute entry.

The insert_symbol function 1.S much like the normal insert

IilM C0NFIDEN£~AL

(

Chapter 2.2 PBOGRAM SX~UCTUH~ A~U rNT~h~k~TATIUN b 1

function. Tna major difLereuce i::; t. nat two dd.ditJ.onal argulllen ts,
the linkage information aud tae dttribute Lnformation, are
provided. Also. the result 1.::; uot the cell name of the added
cell, hut is the symbol reiel:euce wn.locn will select the new
entry. Using a spacial operator to add to tue di=t.l.onary makes
it possible to d.lscipline tne use of the dictionac:y.

The attribute component is aroitrary and may De used to store
.ulformation re':iuirea. by the Id11guage being translated. Hence, it
may serve as a cOlllp.lole-t.lome dJ.ctiol\i:u:y and as a place to hold
initializl.ng information at run time. The form of the ll.nkage
J.nformation wl.ll be ·discussed in Chapter 2.3. Basically, it
consists of an indicatl.on as to whether the symbol is defined
within the module or that .lot l.S detLned in some other module. In
the latter case, it contains t~e informat.l.onon how to find the
def.l.ning module. It also conta.lons J.nformation ou the storage
class, since this affects liuKd.;Je.

Whenever the same symno . .i. occurs LU two difLerent modules, U~e
occurrences mayor lIlay not b~ assocl.at~d wJ.th the sallie storage
cell. Due possihle approaCh is to d.efine the symbol-storage cell
assocLation to be the same for alL tue modules ~n 3Uy collection
at modules. Tuell, a ditterent symDol would be needed for every
distinct storage ceLL to be referebced ~n the collection. This
is annoying for one user and almo::;t impossible to handle when two
or mO.CB users are cOllloillLng their p['ogralls. frherefore, it must
be possible to define a context in wuich a particular
symbol-storage cell associatl.on .loS to hold. It is then possible
to have more thdn one associat.i.on Ln a set of modules.

i)efiuJ.tion: A symbol .loS ae!!!!~4 LU a module lot the storage cell
associatea with the sywool iusitle the module is different
from the stord~e cell dssoc~ated with the symbol in the
surrounding context of tAe module. The linKa~e ~ntormation
correspona~uy to the symDuL ~n the dictl.onary .i.udl.cates when
the s ymool is defined.

DefinJ.tloon: A lQ.£~! 2n~Q.l is a symcol wuich is defined within
the module in which ~t occurs.

rhe local symbols of SL corre;3pou-l to the local symbols of APL
and the declared internaL symbols of PL/l. They are also known
as bound symhols in matnemat.i.Cs. Local symbols are important
because storage cells aCB allocated for local SYlliDOls when the
module is used. All other sywbols dre Just refaceness to storage
cells allocated outsLde tne module.

Det~nition: A symbol WhLCh i::; not local to d module loS a 1~~
2.Y!!!.QQl or a ~g!!~2f. 2YJ:!!!:!Q!. The l.i.ukage information for
such sYlllDols inl.1icates hOW to fLnu the <iefiuition of the
symbol and the assocJ.dted storage cell.

I
I

BASIC CONCEPTS AND STRUCTURES

The symbol-object associatl.OIl tor free symbols J.S derived from '''---_~
the surroundiug context of the modu~e. The method for
determining this dssociatl.on and tne surroundiny context will be
aiscussed in Chapter 2.3. The free symbols corres~ond to those
symbols in PL/l pI'ocedures and APL tunctions wnich are not
dec.l..ared w itllJ.U tIle pI: ocedu['e or f unctl.on. The cesolution of
parameter symbols is discusseu loU section 2..2.~.

Definition: The
sta tements.

19~1 compou;nt of a module i~ a list of
Each statement loS a ll.st of symbol references.

'fne list of sy mbol ref erences eepresents an expression (see the
next section) in PoLish ~reti~ ioem. Treating statements as a
IJ.st makes J.t possible to sele~t the statements bJ a simfle
integer index. ThJ.s maKes edJ.t1.n~ tbe text much sJ.mpler. It
also provides a clean defJ.nit1.on of local labels.

Uefinition: A lQ£!!l lab.s!.:!:
module and associated
statements in the text.

£.fQ!::Q1Y.£.s! loS a symbol defined
wl.th the J.ndex of one of

in a
the

The prototype is made int.o a J.ocal ..Label by :idu1.ug to the
prototype information whJ.ch 1.nUl.cate~ whien genecations of local
storage were active when the ldbe~ was ceeated.

This section sets down the const~aints on the exterual syntax
that dee conceptually re'luired. It J..S not to be l.uter preted as a
specification of the syntax, but onJ.y of the form of the syntax.
Many concrete syntaxes oe exts£nal representat1.ons are compatJ.ble
WJ.th these properties; one su~h representatiODJ..s tae external
fotlll presented in Chaptt:!r 4.3. l'ht:! external syntax 1.5 desJ.<jIled
to be suitable tor human use. It J.S ~ntended that an incremental
translator will build th~ program representations uescribed ~n
the previous section. Where J..t J..S relevant, the machine form
will be discussed with the syntact1.c constrdl.nts.

2.2.3.1 Symbol Lists

Definition: f£2g.fg,l!! !gn is a $tI:J.ng of symbols.

This is an important difference oetween AFS and. existing systems.
UnlJ.ke the bit encodJ.ngs of system/370, bit encodings in IFS and
physical addresses ot hard.are devices are Known only to the
implementation. Bit encodings ace never dJ..splayed to programmers
in hex dumps and Cdn never be rood1.tied by thelll; l.Dstead, all
communication is in the form of character stI'ings iefined in the

IB~ CO~FIDBNTIAL

(

(

Chapter 2.2 PWOGRAM ST~U~TUR~ A~U INTEhPHETATLON 63

logical archLtecture.

Definition: A 2y'!!QQl cOll.l:iists of one 01: mOl:e characters treated
as a single unit; tue Lmplementa~Lon must include
appropriate delimit~rs or character counts to indicate the
extent of a symbol.

Intuitively, symbols cocrespouj to the toKens of ~L/I and APL.
They Lnclude denotations for constant, s~n~~e and multip~e
character operdt01:S, and identJ..fiers. The1:e liLll be rules for
determining the extent of symDo~s so that the last cnaractel: of a
symbol is obv~ous to a symbol ~arser (lexical dlld~yzer).

there are two classes of symbols: operator symbols that
represent operators reyu~rJ..llY operands to be evaluated, and
elementary symbols that represent objects that ao not reyuire
operands to be evaluateu. loesa classes are uistLnguished so
that ~t is possible to sintact~cally preproce.l:is the text:
Operators must be syntactJ..ca~li dist~nguished from elementary
symbols if syntax CheCK.~ng or pdrsing ~s to be done. In APL,
variables are syntactically LUdistJ..nyuLsnaole trom user-def~ned
operators; therefore, the only way to tell ~t a symbol is an
operator or ~ variable is to LLDa out what the symbol represents
at execute time.

i)efiuJ.. tion: An gl~~ut£!£y 2,l.'!!LQQJ: J..s a symbol ioi~thout any
syntacticdlly-assoc~ated operands. Two subclasses are
distinguished: The fir:st sUDclass, !~!:££:!.l 2y!!!£Qls,
consLsts of symbols wbOs~ torm Ldent~fies the objects they
represen t. the second ;;:iuDcla ss, £gEf.~§.~!! .. t~t.!.!.~ §.ll£Qls,
consists of all the remaLniny e~emelltary symbol.l:i.

These two subclasses correspond to toe classes O~ constants and
ia.entit~ers resj!ect:lvely. Examples of literal symbols are 'XYZ,
].4, 2+41. Examples 01 repx:esentative symbol.s are X,
VAHIAHLE_ONE. The x:ules Lor 1:€solvLng representative symbol.s are
~iven in Chapter 2.3. howeveL, literal symbols can be resolved
at transla te time to a spec~a.l constant tabJ..e which is an
extens~on of the dictionary. Each iJ..teral can be replaced by a
special internal symDol reieJ..enee totn~s table.

Defini tion: An .2.E~fA12.£. SymQ2! LS a symbol wilieh ha!:i operands
that are syntactically assoc~ated.

There are at least two ways to distinguish operator and
elementary symDols. One way J..S to enclose the arguments of an
operator symDo~ in parentbesas as is done witn PLIII function
references. The second way 15 to put a descriptJ..ou of the number
and locat~ou of the operands beLo~a or after the ope~ator ~n the
pI: oyram text.

These detinitions cause ilLladLc funct~ons to be cons~dered to be

lciM CUjflU~NTIA~

BASIC CONCEPTS AND STRUCfUl1.ES

/."
elementary symools becau;::;e they have no operands. However, there"-...../
is no need to parse var~ables and niladic ~unct~ons in a
different way.

Definition: A §imEl~ ~~E£~§~2ll ~s either a siu~le elementary
symbol 01: an operator symbol, to~ethec with. the correct
number of operands. Each QE§f.anS! is a simple expression.

'this defines expressions recLl!:sively beginning with elementary
expressions such as constants, vdrLables, and n~ladic functions.
These may be used as operanas rOI operator symbols to build one
level expcessions. Then, two La vel expressions way be builtf rom
these one level expressLons or sLwple expcessLons. This allows
arbitcacily deep nesting of opecatocs.

Definition: When au
tog ether Inth a
SQ£ Q~fg1.Qf.·

ex~res;::;Lou has the form of
set of o~ecauds, the opecator

d.n opeca tor
~s called to

This definition reflects tUd tact that the syntax of an
expression is really a linear repcesentat~on ot a tree. The
non-terminal nodes of this tree are the operators, the teIminal
nodes dre the elementary symbols. The branches ~n the tree
correspond to the operdnds 01. the operator to which they are
attached.

2.2.3.2 Special operators

There are cases where i~ 1S n~cessary to use dU operator symbol
as an operand of another Opel:4~or. One eXdmple of such a use
occurs with the inner product opel:a~or in APL. It takes two
operators (e.g., + dnd *) ana two drl:ay;::; and produces a result.
This is written A+.*B where + and * are not operators with
operands, but ace elementary symbuls used with the dot operator.
Because of ttle syntactic ruleoti y~veu above, it must be possible
to syntacticdlly distingu~sh toe two d~ftereDt UseS ot + and *.

Defin~t~on: Therel.s a pce.t~x simbol g.l:!Q1~ will.ch syntactically
converts the occucrence ot the symbol following it into an
elementary occurrence.

dence, the A.P.l.. inner prouuct would be written in the strict
syntax as inner (~uote plu;::;;~uote xpn;A;B). ln the extended
syntax, a simpler expression sl.wiiar: to the APL Eorm might be
adopted, but such a form woula De a syutactl.c macro whose
expansion in strict syntax would nave to use elew. ('jote that the
APL farm requires a precedence relation ~n con)unct~on with the
dot operator to ov;;n:ride the UOI:lIld.J. use of + and *.
If quote is used wita elementaLj symbols, it nas no SElect since
it only indicates how to parse the program and not how the access

IBM CONFIU~NTIAL

"
./

(
Chapter 2.2 PROGdAM STrlUCTUdB A~il INTEHPBBTATIUN 65

to a symbol is to be interp.ceted.. Th.1.s is covered below in
discussing the evaluation of o~erands of operators.

Another problem occurs Wh~n J.d.uy ud';le:::> l~K.e APL are tr-anslated to
SL. It is necessary to repre~ent tne proyram text for APL in a
partid.lly parsed form. In those Cd.ses where it .1.S impossible to
tell syntactically how to pd.rse the symbol str~ng, the delayed
parse o~erator is used.

uefinition: The dyadic ~~~~y~g £~£§g tunct~on taKes two
operands. There are titree legal comb~nd.t~o1.i.S of 0i'erands:

tirst operand second operand
1) nilad~c object monadic tunct~on
2) niladic object dyad1.cfunction
3) part.1.al dyau.1.c fen niladic object

All other comb.1.nat~ons are i11e9al. The result of
delayed_parse in eacn casel.S:

1) a nilad.1.c object wh~cb is the result of applying the
monadl.c functLon to the llilad~c aDJect.

2) a partial dyad~c function which has as its first
argument the nilad~c object. rleEore the dyadic
function can be evaludted, the second argument must
bl::! obtained.

3) a niladic oUJect wh~Ch is the result of evaluating
the partial uyaa.ic fliuction W.1.tn tne niladic object
as the second ar~~ment.

This allows th~ APL text to be
completed at execut~ t.1.me. TUcl

_Oecome

~ep~esent~d dnd the parsing to be
AP~ I::!xpression ABC D E would

dpar (dpar (dpar: p.par-(E.D);q ;8) ;A)
where dpar: stands for delayed_Pd~se.

2.2.3.3 Grolip~ng Expressl.ons

The s~mple expcessl.on ~s too ~estrl.ct~ve a tocmat for all
programming. It is neCtlssar i to Y roup expression Ii 11ich are
executed only tor their side eftects and not for the final
result. These correspond to sets ot l~n~s in APL or a set ot
statements in PL/I.

uefinition: A gf,Q.l!£ is a se~ment of program text beginning with
an initial mar-ker (e.y., left brace), continuing with
expressions separated Dj a illar-Ker (e.g., semicolon), called
the statement marker, and au~iuy with a f~llal marker (e.g.,
right brace).

Def .1.nition: 'fhe initia..l anti :t~aal ll1Ci.r ~ers are Cd l.led .Y..f oUE
!g~gf§·

A group represents a IImoaule constant". That is, the tLdnslation

IbM C0wFIDE~TIAL

I

dASIC CON~EPTS AND STRUCTUR~S

of a ~roup yields a module. Hence, a group is very similar to a
literal symbol. This tact maKes ~t reasonable to ailow groups to
occur where an elementary siillboJ. can occur. ThLS leads to
syntactically embedding ~roups wLthin groups. To accommodate
this possibility, a group was d.et~ned over expressions rather
than simple expressions.

Definition: An ~!Q£g§.si.2l! is e~tneI:' a simple expression or a
group or an opera~or symbol, together with the correct
number of operands. £ach operand must be an expression.

DefinitLon: An expression WhLCh is one of the components of a
group is called a §!a1~!~~S.

The syntactic rules given above allow a group to De syntactically
eabeJ.ded within an expression and, hence, with.in another gr-oup.
Tilis is purely a syntact~c couven~ence. Each. grol.1p L5 tr-an51ated
to a separate module whiCh does not contain the emoedded groups.
Instead, it contaLus Lnternalij-defLned sYiIlDols which are
associated with the monules for the embedded ~roups. This
process is analogous to the hannlLng ot lLterals. The procedure
tor resolving and cOllnectLng tac se~a~ate modules is discussed in
Chapter 2.3.

The fo~lowin~ det~n~tions are LDs9£ted to clarixy which symbols
are in the dictionary of a part~cul,u: moduie.

Definition:
group

A symbol
mark.ers LS

markers.

wh~ch is pact of the text
cODtaia~g in the ~roup

enclosed 01 the
def illeu by the

Definition: A symbol wh~ch ~s contaLned Ln a y£oup A Dut is not
only contained in yrou~s textually 'contained in A is
:!y.~tlx £QntaL!!2Sl in A.

only those symbols wn~ch are dLrectly conta~ned in a y~oup are
pu t in the dictionar'i for the moo.ule gener-ated by tna t y roup.

A typical group is the set of statements wllLch eXChange the
contents of two variables, A anu ti. r£h~s requices a temporary
locat4on and three statements;

lstow(AiTEl'1l?) ;stow (lJ;A) .stow (TEl1P,l3)}

2.2.3.ij Dec~arations

If a~l programmLng were done Ln the maChine form o± SL, then
declarations wOl.1ld unnecessary. All declarations =ould be done
by executing the insert_pJiIlbol t unction on the approprLa te mod ule
d~ctionary. However, it ~s ~ecessary to have a way ox indicating
in tae e.xternal syu tac tLC fOl:m titd. t certain symbols are being
defined and that others a~e fLee or pa~amete~ symbols.

;
/

(

(

Chapter 2.2 PROGRAM STRUCTUdh A~D INTEtiPRE1AT1UN 67

Therefore, the external syntax must have aeclarations. A
declaration will be treated as d notation for one or more uses of
insert_symbol on the dict~onary ot the module wh~cb results from
translating the group iu wh~cn the declaration occurs. See
Chapter 4.3 for the syntax ox aeclaratiolls.

2.2.3.5 Functions

One ot the most powerful aspects ox mathematicd~ notdt~on is the
ability to abstract upon an e~ist~n~ expression to define a new
tunction. An n-adic function can be deL~ned from ail expression
oy de~ignating n ot the symbOLS occurr~ll~ in tbat expression as
being pa rd mete r sym.ool s. wuen t he new f unction is applied ted
set of n values, these values are assoc~atea with the
corresponding parameter" symbol:::> in the expression. 'fhe cesul t of
the function ~s the result of evaluatill~ the expression in the
context of these parameter symuol associations.

It ~s ~mportant to note that tbe module producea by translating
the group is a niladic function. An evaluate re~uest is required
to cause an activat~o.n ot the lIIo<lul~ to be created. TheL'esult of
such. an act~vation ~s the reSUlt of evaluat~nlj tha text of the
module. Therefore, the group DracK~ts act to delay the evaluation
of the text in the group untL~ an evaluate request is made.
Hence, the grouf represents the text, not the evaluation of the
text. It is, ~n tact, a module or niladic function constant.

since a module alL:eady repl.:esellt::> a function, ~t ~s relatively
easy to create an n-adic iunction from it. All that ~s required
is to modify the linKaye iniormat~oll of the symbo~s to be treated
as parameteL' symbols. Tll~S cab be done w~ta insert_:::>ymbol.
However, it is conven~ent to have a syntactic fOL'm which clearly
show~ the functional abstract~on.

oefinition: The dyadic opeLatorla~Q~ takes as its r~ght
operand a module and as Lts left operand an ordered ~LSt of
symbols which are not local to that module. The result of
the operation is a parameter~zed module. The symbols given
in the left operand are mar'Ked as E£i£i!..!!g1~£ 2y~!!ol.2' The
parameter symbols will De resolved:La thE:: order in which
they occur in the left operand of lambda.

The parameter symbols must De resolved wheu a function is
activated (see section 2.~.4) since the arguments may diiter from
use to use. However, the rema~n~ng symbols may have been
previously resolved. For the rest of tnis Chapter, it is assumed
that all symbOLS other than the parameter symbols have already
been resolved by all unspuclliC!L.1 al;vritnUl. 'rh~s cestr"iction is
removed in Chapter 2.3.

A good example of the use ot tb~ lambda operator ~s to define a

tiASrc. CONCEP'.rS AND STRU C.TURES

functiou which doubles 1ts ar~ument. Let X be a local variable.
'Che, ex;pressi:on 2-X yield~ a valu.e wtlich is tluce the value of X.
'fhis can be Jlada into a .. function bj making ~ a l;idrameter symbol.
rile expr.ession

lamhila (1; (product (2;1)j)
yields a fuuct.l.on w.h~ch gives tluce its argument vAenever it is
applied. It is assumed that the s1 mb01 'product' is externally
defi.ned t.O he the mult1..fi.lj operatoJ:. Th.e literal, symbol '2'
r.epresen ts the Object 2. Although the only local. symbol in this
function is. a parameter symool, it is possible t.O have other
local symbols as well. as free sYlDbols in a :tunetiOit module.

A function is used by maKing an evaluate L'e~uest on it. The
ev·aluate request contains tne ,uguments to be used by the
function. Tne fl.lllctl.OIl mayor may not do the w.orK to compute the
L'esul t itself. It the function is to be reentcant, it create s a
new object with uew local stoL:age to compute the result. This
allows. the tunction to process otiler re'1uests "simultaneouslyu.
It the function does not create a new object to compute the
resul t, then the iu-nctioD dutOald tJ..calll' becomes seL'l.ally reusa bie
because of tae request queue 1.0 the storage cell it resides in.

"'-..

See Cbapter 5.~ £or further detd1LS on fuoct10n act1vdtion. -~

Definition: An ~Yi!lYi!sg ~9.!:!~:i1 ou a S1. tunct1.on fH~rforms the
followin~ actions:

1) A new dctivat~on ot the £unct~on bel.DY called is
created by tbe object L:ecsl.viny the evaluate
.request.

2) The argument ~1st 1S ~assed to this Dew object via a
start J:equest. The start request causes the
interpreter tor the uew act~vat1.on to beg1.n.

3) The ioterpL:eteL' t.l.L:st associates the pardmeter
symbols in the ne~ act1.Vat10n witn the storage cells
of the ~rguments 10 the argument li~t.

4) The text of the funct10n is theu interpreted.

Defini ti on: Eaen eval uate re'iuest CL'ea tes an £!£!j,yS!:£io.!! of the
function which 1.S baLDg illterl:"I:eted.

rhe matching of arguments to lJarameter symbols is let t to the
interpreter in the access macuJ..na as is the inter'pretation of the
body of the operator object. Tul.S allows flexib11ity 1U the
definition of tbe evaluation ot the opeL'ator. 'rhe operator lDay
be a SL funct~oll, as dei.l.ned above. However~.l.t may also be a
pr imi tive opel:at or or a proce dure 1n sowe other Pl:og ramming
language. For prim1tive operdtOL'S, tbe system 'Will access the
cu::gulILeut list and the cesiilt of the opeL'at:!,.on is' defined '~./

(

(

[

Chapter 2.2 PHUGHArt STRU~XUh~ aNU INTERPR~TATIUN 69

axiomatically. In the case o.f procedures wr.lotten in other
languages, the access machine contains the inter~reter for these
proced ur es •

. ConsiJ.er a single fuuctl.on be.lonij dPplied to d set of numeric
values. For example, tne ex~ress10n 2+3 indicdtes the
application of the sum .funct10n to t~e operands, 2 and 3. The
evaludtion of this functl.on .loS re.J..atively simple. Tue values of
its arguments are dlready com~uted. Therefore, to evaluate the
function, it suftice~ to aSSOCl.ate the arguments, 2 and 3, with
the appropriate parameter symbols l.n tlle code for the sum
fUllction and to begin interj:>ret.l.ng that code.

This small example already snows several a::.pects of the
interpretation process. ~f we assume that the sum function 15
not primitl.ve, for examp.J..e, .lot migat be defl.ued in terms of
operations uSl.ng the Peano dX.l.OmS for arl.thmetic. Taen, we see
that eVdluating an operator may Cduse addl.tiona.J.. express10ns to
be 1nterpreted. There are taree steps l.ll the 1uterpretation of
the sum operator in the above example. F1rst, the two operands
are collectea 1n to a l.l.st of op eI:anas. Then, the function
representing the operatoc .loS activated. The activat10n of the
function causes the parameter sYIIl!)ols to be a5socia teo. w1th the
storage cells holdl.ng the O~erdnQs. Pinally, the expression
wnich fOI:ms tne Dody of tae fUDell.on for sum is interpreted. The
result of the operat~on LS the va~ue computed by the
interpretation of the bOuy.

In the example above, the o~dcdnas were elementaI:Y sym!)ols. The
syntax allows the operands to De expcessLons. In this case, the
arguments are not the express.l.ons themselves DUt are the values
represented by those expeess1ons. That 1S, tae function is
applied to an argument list wh~eh is constructed from the results
ot evaluat.l.ng tne express~ons. Thi s com~licates the
interpretation of d function. Toe ae~umeDt li~t cannot be
constructed until each ot tne expressions torming the set of
operands is evaluated. Por example, in the expressicn,
sum (2; times (3; 5)}, the SUbi::U.p.r1::l5S.l.0n t.lomes (3; 5) must be
evaluated befoee the sum tUDetLoD can be evaludte~.

Definition: The occurrence o.t a literal symbOL in the
text is replaced. by au aSSOC1a tion to a read only
cell which holds a copy o.f the object the
represents. ~Yalu~!iQli ot a literal symbol yieldS
name tor that cell.

program
storage
literal

the cell

Literal symbols are treated as expression::. to Le eval.uated at

IBM C0NFIU~NTIAh

BASIC CONCBPTS AND STRUCTURES

1Icolllpi'le time u • This is in fact what i::. done in 1Il0::it p1:og ramming
ianguages. A good e.xaJlple of th.l.S .l.S the handl1.ng of vector
constants in APL.

Definition: The ~ygY.ll!Q!! of all elementary symbol results in
the celL ndme of the storage cell associated with that
symbol.

Since symbols are always assoc1.ated with storaje cells, th1S is
the ~ost general resul.t whlcb could be computed. It is clear
that the contents ot a storaye cell can be obtained if the
internal ident.l.fier for that call loS known. rlowever, it is not
possiDle to determine tne cell name ot the celi whl.ch held an
object when only the object itself loS known.

One problem with havlny tAe cell name be the 1:esult ot evaluating
an elementary symbol is that .l.t ~s often the contents of the cell
or even the result ot evaluat.l.ug tue contents o~ the cell which
is desired. Therefore, o~erators dre provideu 1n SL to force the
further evaluation of the contents ot a cell by Illaking calls on
the object stored in the celio

Definition: The
solely of
symbol.

iB.te£.E£~lli~Q!! 0.1. an expression winch consists
an elementar), syrubol is tue evalua tion of that

An operator symbol cannot ba ~vdluatBd without its arguments.
fience, it .l.S necessary to simultaneously uet.ine the
interpretation of an expressl.on dUJ an operator symbol. The
1nterpretation is begun at the top of the tree representing the
expression. The ma.l.O reason for th1S is that .l.t allows a context
to be provided for the evaludt1.on of the operdnus. This context
can be used to perfo~m u~agdlong, dS Jet1.ned by P. Abrahms. It
can aiso be used .for the type or optimization used in the iloulder
PL/l compiler.

J.>efinition: The i!!1~£g!it!!li2!! of an express1.on wh1.ch consists
of an operator, together wi th d se t of operands, is done in
stages.

1) The object in the storage cell associated w.l.th the
operator s111001 1.S accessed with an identity call to
obtain its sttr.l.lJutes. .If.l.t.l.S a tunction or
procedure and tue 1:eguired number ot arguments
agrees with the nUlllber ot operands 91ven, then stage
2 is begun. Uthe~wise, aD error exception is
raised.

2) Each expression loU the operdud set is interpreted.
The results are stored in d set of buffer cells
associated with the evaluat.l.on ot the operator.
When all the operands have been evaluated, the
!!£.9..!U!!m1 1is,£, a vecto~ of storage cells containing
copies of the results, is constructed ana stage 3 is

rbd CONFIDENT~AL

(
Chapter 2.2 PROGRAd SXRUCTUR~ AND ~NTERP~ETATiON 71

b~gun.

3) The operator i~ ~vd~udted usiny tue argument list.
The result of the e~p~ess10n iB th~ result of the
1nterpretat10n ot the operator.

The order of evaluation 1S de~LneJ to be left to rignt to be
consisteut with the actual J.rup..l.ementatious of most programming
languages and to ma~e it poss1ule tp pred~ct the oruer 1U which
side effects will occur. ..l.t LS uot telt tuat any freedom for
parallel evaluation can De efLectJ.wely exploited at this level.
'rhe advantage of predLctaoilJ..tj seems to outwe1yh any improvement
due to parallelism.

The arguments are passed by reference. This is requirtd to
implement such primitive iuuctJ..ons as replace. Replace must have
access to tbe storage cell to be mod1t1ed if it is to operate
correctly. This is only possible it the cell name is the
argument to the function. Call OJ value can be 1mplemented by
having the called functLoll copy the contents ot the cells
referenced in the argument li~t. ~dll by name is slightly mere
difficult, but can be ~mple~ented by passLny reterences to
niladic functions. 'fhen, these fuuctions would be evaluated at
eaCh use of the call by Dame t'arameter symbol. Wl.thl.D the text ot
the called function.

Definition: The ~yglyatl.Qg of ~n 0t>erator symbol and an ar~ument
list is performed by mdK1ny an evaluate re~uest on the
object conta1ned in the storage cell associated with the
operator symbol. The dcyument list 1S passed as the
ar~ument of tbe evaluate ~e~uest.

The definition of l.nterpretatJ..on shows that beginning
interpretation ot an operator causes othar operator~ to also be
interpreted. 1.0 particular, edcn operand of an operator will be
interpreted. III hen the operator has a fUIlct10n body, then that
expression is also l.nter~rete~. Tnus, mdny operators may be in
some stage of the evaluation process.

DefinitJ..on: fhe state of evaluation of eacb operator symbol
being evaluated is ~ept in a collective object called an
~~l~~~. This collective object Keeps track of the current
action being performed ana tae partial results whicb have
been completed.

The evaluand holds the results of evaluatin~ the operands prior
to constructing the argument l1st. An evaluand serves much the
same function as the MarK StaCK ~ontrol Word used in the
Burroughs architecture. However, l.t controls the bUl.lding of the
argument lis, as well as tbe call. on tue operator. It is so
named because it represents a part of the expression being
evaluated. It can be used to provide status 1n£ormat1on for
debugging requests.

I
I
[

dASIC CONCEPTS AND STftUC'l'URES

rlecause evaluation ot expressions ~s strictly left to right, the
evaluands tor the set ot o~erator symbols wn~ch have not yet
completed the evaluation of LheLC operands form a chain. This
chain of evaluands corresponds to the stacK se~ments of the
Burroughs machines. This cha~n is anchored in the PSR and ends
with the evaluand for the symboL beLng currently evaluated by the
in ter pre te r.

'fhe evaluation of a functloon :leneL'ates a newactlovation which has
lots own PSR. The interpretation ot th~s new activation may
create additional evaluauds attacued to the new PSft. These are
indirectly connecte\! to the eva.luands ~n the PSI.(of the
activation making the evaluateI:equest by the uepenaency graFh.
Thet:equest causes the reque;:;;to[' to become ~ndependent on the
respondent. These linKS in Ule dependency graph form a chain
through a set of activations.

.iJefini tion:
graph.
property
re<.j uest
re'Iuest.

A s£lJ:!.at,!.Q!! 9!s1:.!! J.S a subgrapb. of the dependency
Each edge (.1,1) OJ: the activation .;hain has the
that X is an actJ.vdtion wh~ch has maue an evaluate
which eausea I to Decome the r~s~ondent to that

T~e activation cha~ll contdLllS the history of function
~nvocations. It can be used Lll eouJunction wLth the evaluands it
links to prov~de the status inJ:ormation when a process is
suspended. The activatJ.ou chaLD is also used to identify
generations of activation o£~euted lautomatic) storage.

A module has a l~st of statements wuieh can be interpreted in two
different ways. Tne default eVdluat~on of a module causes
statements to be interpreted ~n strict left to riyat sequential
order. In the tran~itioll to the next statement, the previous
statement .result is destroyea. l'he result of the group ~s defined
to be the result of the last statement executed J.n th~ group.

An alternative is to use the parallel LunctLon. Tuis function
evalua tes the stdtemeu ts in au arbitrary or'der. rilis may wean
actually in parallel if more than one processor is available or
interleaved execut10U. The re~ult in this case 15 a list made up
of the results of each statement.

Definition: 'fhe monadic iunct.~on £s£.!!llgJ: taKes as Lts argument
a module and y~elds tae list formed by concatenating the
results of interpret~ng each of the statements in the
module. T~e order wh~cn the statements are ~nterperted is

IBM CONFIDENTIAL

/

(

(

Chapter 2.2 EdOG~AM ST~U~TUa~ AND INTE~PiETaTION 73

undefined.

~bell dea~ing w~th groups, two add~tiona components are needed to
define the current floint o.f ~nterpretation. The £.!il:aQ.£ specities
which module is currently actLV~. 1ha statement index indicates
~hich statement with~n that yroup ~s act~ve. Since evaluation of
tne parallel funct~oll causes !:iever:al !:itatemeuts 01: ':J roups may be
simultaneously active, tnere can De multLple activat~on chaitis.
These chains form the ~£i1!~lk~Q 1£~~.

The syntactic group IDarKe£..:i (oI:aces) have the funct~on of
stopp~ng the normal evaluation algorithm. that is, they leave the
group unevaluated. If, ~oweveJ:, tne ':jroup occu:rs in a context
where a "value" LS needed, the group wi~l be evaluated
sequentially. Such a context call be created by the evaluate
funct~on, or by other val.ue-or~en ted f uuct1.ons SUCll as stow or
sum. Tne del~.l function ~s useJ. to override a value context.

When expressions or groups can be the result of a fUDctl.On, ~t is
not possible to use the ~m~lic1.t 1.nvocation mechanism. For
example. 1.t might De necessary to se~ect one of two iUDctions to
apply depending on a truty value lTV). This might be w1:itten as

(Il: TV, then \juote SLn else quote cos) (.5)-jX

1.n the extended syntax. Th1.s Decomes

TV select lquote cos;~uote sLnj apply list .5 stow X

1.n the gasic syntax. The strict syntax for tb1.S expression ~s

stow (apply (select(TV;lquote cos'<;luote s~n}) ;list(.5») iX)

Thereiore, an e pl1.c1.t app~y fUnction
funct1.on with 1.ts operands. ~t tnere
:reduces to an evaluate function.

is neeueu to associate a
dre no operands, app~y

Defini tion: The dyadic .function g.i:!jL~.l maK~S au evaluate ca.1l on
its first argument witn 1.ts expression X(Y). second argument
as the argument list. ap~ly,~;Y) w1.~l yield the same result
as the expression 1(1).

lti5 CONFIDENfIAL

BASIC CONCEPTS AND STRUCTURES

A powerful, yet d~scLplined system, reguires the abilitLes for
control to flow to oue ot several alteJ.:'natives and to provide for
repeated execution of a group. The former facilities is provided
by the§el~~ function, which extracts statements from a. group.
The repetitive faci.lity is pronded by the £§2.!iH!1. f unction which
causes a group to be repeated uuti1 an iteration condition is
sa tisfied.

it is possible to terlilinatiO! a group anywnere during the
sequencing of the yJ.:'oup. The ~~1.s. function causes the current
group to be terminated and yicllds Ute value of ~ts argument as
the res u1 t. When it OCCU£S wJ.thin a. group tt~a t is be iug
repeated, it causes the terliliud tl.OU of tne current repetJ.ticu.
~hen it occurs i~ tae pJ.:'edicate, it terminates further
repetitions.

The£e are times when l.t LS uesu.:avle to couditl.onalJ..y eXlot from a
group with a va1u~. This capability LS proviaea by the
£QilltiQMl: function. It. tak.es dS operands a predJ.cate and a
group. If the predicate y~eld~ 0, then the group is not executea
and the resuJ..t ot the expressiuu i.:i nil. If the predicate 'yields
1, the effect is tye same as executLng an eXlot function with the
g£oup as its argument.

Gotos are sup~orted but only l.lld~rect~y. Tne ~21Q function
causes a sequence exceptloon. 'fne standal"d .::;ystem action is to
reestablish the environment of the ~abel which is the aryument of
'joto. However, the useI:' IlIdl {l.eId the exceptLon dud reject the
goto if he desJ.res.

IBM ~U~FLDENTIAL

(

(

'rhis cnapter discu::;,:ies ana pcesents Ul~ rules for r-esolving
,:iymbols to sto~age cells ~n tae oUJect base. TAe var-LOUS times
at vhicri symoo~s may De resolvetidre aescrioea. fne metRod for
providing a context tor free sjmbols is presented. £ne str-uctur-e
of a procedure is completed.

The concept of coae whiCh ~s executed at lIrell defuH-:d times 1n
the lif e ot an execu t~ng PL:OY1:dill is presented. rrhese time
periods are ca lied. E!!.~~§. !! ndses def J.ne when .lollstances of
var1dbles may be created~ The phases are:

translate
load
activate
execute
deactivate
unload.

at any point ~n time, eacn symbol is associated v1th d storage
cell by a~.Q.!.!A!i.2!l l!!i\j2. Eacn mOdule may have many activations
for every load. 8ecause the contexts of these act~vations may
jitter, each activation must lO<jically have .lots OWll unigue
resolution map. Each separate resolutl.on map will De called an
~1!!.i~.2.ru!!~!!!·

Instead of redoing the Whole resolution map, t he par- t of it which
rema1ns constant is factored ~nto ~ common mapp~ng schema. This
schema associa tes each local. sy mno.l liI.lth a pha<;;e identifier and
an offset into the storaye for tnat phdse. The llldPping of local
symbols is com~leted ~y ~nd.lcdtin~ Which instance of each phase
corresponds to the a.es~red envJ..£o.il1ent. The lIIdPp1n~ ot free
symbols is di~cussed in the next section. Wben a resolution map
is restr~cted to theJ.ocdl symools it is called a 1.2£al
!tl! vi r a !l!!.!ill.l.

~hen each phase is executed~ sturd~e is ceserved by creating a

76 ilASIC CONCEPTS A~O STRUCTUHES

collective object
phase oecome part
the offset and tbe
phase, the mapping

for taat phase. All allocations w~en~n that
ot that c011ectLve object. Therefore, given
identification of the correct instance ot the
is wel~ determe~ned.

The storage allocated during t.he loading phase corresponds to
PL/I STATIC storage. PL/l AUTOMATIC storage corresponds to the
storage allocated by the actLvate phase. If the deactivate phase
does not explicitly destroy the coll.ectl.ve object ovnin-; the
storage, it will remain. Th~s ~ermits coroutines ana passing
functions up the dctl.vity chal.n.

Local symbols are resolved to ~nstdnces OL
connecte d with seme phase at the proce.iure in
defined. Free symbols are reSOLved to 10cal
other module. This section Jotines tne method
which local occurrence is used.

storage cells
whiCh they are

symbols l.U some
tor determin ing

A simple resolution rule is t.o use tile f~rst occurrence at the
symbol tound by searching the local environments of the modules
on the activity chal.n. Thl.S may 9l.ve access to too many symbols,
so the stQE tuncti"on can De used to hl.de a symbol from the
searcn. A symbol is Yisi..QJ:~ to tile seat'ch i.t tlle stop t unct ion
vas not ap plied to 1. t in some module in whiCh .it. l.S visible.

This rule does not prov~de tor unl.que local environments,
however, so tae £Q!lD.ect LUllction can De useu to def1.ue d

particular mudule in wh1.cn to Deyl.ll the searcn. 1t f2!lA~£1 loS
executed within an active module then the pdrtl.Gulac l.nstance of
storage to be used l.S al~o JefLueJ. Tne environment of module
"A ", VU l.ch us es £.Q!1!l~£.t to b UHl moa ule U u" is Cd lled the
££~Q~£g2§2£ ~nvi£Q.ll'!!!Silll OJ: iUoJule "0". if a symbol. loS not. found
~n the predecessor enVl.t'Ollmeut tueu its predecessoL is CheCKed,
etc. The search terminates When DO predacessor exists. rne set
of predecessors iot'm a Chal.ll called the £'!lYl£Q!!!!::'!!~ £!!al!!. Since
mdny activations can eXl.st, taese chains torm d tree called the
~vi£Q.!!.l!!m!l S£~. i'lU.S l.S a tree aefinea on the ownership tree.

_hen an appropriate local symbol
resolution map is extended uy a
reference to the storage cell. whl.ch
sYllbol occurrence ~s placed ~n tue
corresponds to the free symbol.

occurrence is found, the
process called 1lll!1~. A
is associat~d wien the found
resol.ut~on map position which

(

(-

ChapteI" 2.3 EIlIIf .UiOtUl.c:N'r 77

Tue seaI"ch cules given above lIlUst be extenaeuto handle PL/I
EXTERNAL scope. What is ueeo.edlos a method foe speC1.i:Y1.Ilg ~!!~~
in the environment OI" activ1.ty cbal.u the searCD loS to begin and
end. Tnis storage for a module in whicll the free symbol is to be
may be defined in teems ot I"elatlova bacK cefecellces along s1.ther
the actlovity chain OI" t~e enVl.conruent chain. It ruay also be
provided by a reference to all existlony local environment.
Similar cond1.tions CQuld be USdj to tecmiuate th~ search.

Having establisned how sy~bols dI"a cesolved to storage locations,
it is necessary to indlocate how the contents OL these locat1.ons
are set. There aI"e several Eunctions for this pucpose.

The object contained in a LO~dtloon may be cnanyed using the
£~£l!!£~ function. 1.1: only the owned resource component is to be
ruou1.iied then the 2to~ iunct1.on loS used.. Eacn object may have
set up constraints Oll tae values lot will allow as own resources,
so conversions ruay be caused Dj the stow operation.

The ££~~~g fUllction is PI"OV1.~~j to allow the user to build new
objects, given a dclSC£lopt1.on OL the desiI"ed fOI"mat and an
eX1.st1.ng oDJect trom ifllich to OOtd1.U the components of the new
object. The descript1.on may be d data description or it ruay be a
user defined access proceduI"e. It the eX1.sting oLject is
iucom pa tib le with the descI"iptl on, a con weI"sion is required to
build the new object.

Given the rules of caapters 2.2 and 2.3, a progI"dm modu~e becomes
a complex object. It is a colLection OL text l1sts, each of
which corresponds to a ph.ase ..ln the life of tILe prograru. TheI"e
is also a table ot all symbol~ d1.Lactly coota~ned 1.D the module.
These are partitioned 1.nto local, free, dnd parameteI" categoI"ies
with the I"estriction that pdLameter syrubols occur only in the
execute phase modules. Labels at statements are also in this
symbol table, along with reieJ:ences to the phase in wbich the
label occurs.

Each module is basically an orde I"ed stcuctuI"e, wneLe s;)me of the
componen t statements ma'y be unia dexe d. 'I'11e index set is the set
of line labels or statement laDe~s. The elements of the
structure are ordeI"ed by l..loe label values. This allows
replacements and Changes to be made easily.

Multiple entry points are allowea. They dre represented by

.LilM CONt'IDi:NrIAL

78 BASIC CONCEPTS ANU ST~UCTURES

parameters to a common entry ~oillt. This entry ~tablishes the
argument-parameter symbol correspondences and then branches to
the appropriate starting point in the execute mo~ule.

IUM CONFIDENTIAL

/ .~

c

MULTI~LE ~Oclr~U~ STHUCTUHES

Tbis chapter treats the pro~lems of exceptional conditions and
eltp.lic~t creat~on of :processes. do tb s 1ncb ronousl.nter upts s ucb
as overflo w, and asynchronous 1.U ten: upts such as 1/::1 are defined.
The mec~anisms for ~dentiiiiny and handling such interrupts are
given.

Processes (taskS) may be expl~~itlt created and t~eir execution
may be monitored and temporarily suspended. It 1.S through these
mechanisms that debu~giny will ve 1.illplemeuted. fhe jata structure
of the control tree is aesc1.:l.bed to show how status information
lIIay be obtained.

When a primitive function ~s evaluated, condl.tl.ons which are not
built into the language interprete~ may occur. These conditions
are called ~.!£ept!.2!!§. 'they ca usel.U terrui:' ts which are
synchronous with the evaluatl.on of the (unction. These
interrupts are processeu by L:reat1.ny d fUllction call which is
staCKed onto the activat.1.on cniun l.llcluding tne fUllctl.on causing
the exce ption.

The function tor which tile exception occul:ed is located.1.11 some
module "A". fhe procedure to handle the exceptl.on l.S found by
one ot three possiole rules. ~l.thl.n eacb moaule it is possible
to de£ine a set of proced~£es to be used wben particular
except10ns occur. The tl.rst Lula is to regUl.L8 the exception
bandlin~ procedul:e to be defiaea Ln module "A". It it ~s uot then
the system actl.on is used instead. The second possible rule is to
searc~ back up the activatl.oa chaLu Ln whl.ch the module l:esides
for a defiration ot the execptl.on handler. Til..1.3 is what PL/I
does. rhe third rule LS to search nack up the eavl.conruent chain
for the exception handler.

It mast be possible to S.1.ruuldte tbe occurrence ot dny exception
under program control to iac1litate dSDugging. There is an
§igngl function which cause~ the exception given as its operand.
The exceptions will be valut:ls LIl the language so they be usea as
arguments to functions or corub~ned .1.nto sets.

jjA:.iIC I..:Ubh;t;Pf:.> AND STnUCTUrtE5

In caaptec 2.2 the interp.cetatl.on of a. sequential geoup proceeded
1n str.1.;ct left to r.1,;ght o.cder. Most of the programming languages
to be suppocted allowed transrers in the f~ow of contrel.
Tbecefoee a §~g!~~£~ elee~t~2!.1,;S def.1.;ned to st~p the normal
se~uence ot evaluation aud to ~rov1de an argument Wh1Ch specifies
vhere the evaluation is to cont1nue. This allows the user to
field this except.1.;on it d.1.;sc.1,;~11nea programs are desl.red.

As a aid to the usee
cememDees the point
transfeced control.

there .1,;S
from Whl.C h

a cell for each group Wh1Ch
the last se~uence exception

aid to debugging prog cams with Thlos is an
gotos.

The luestion of transfers
complex. It is necessary
as well as a statement to
that, in general, a label.
index and an envicoument
has in it the information

of control outside a module loS more
to des1gnate au euvironmellt to resume
cont.1,;uue the execut~oll at. This means

has two components. It has a statement
rereceuce. The enviconment reference

on wnich lllodule to resume.

In the above discussloon tile re was no dependency on the
env~conmeut to resume StL~~ neing ~ctive. This peclRlots
coro~tines and tae environments OL tunctions Which were passed
upwards to be "reactlovatea".

lhe parallel functLon doe~ llOt provide sufilocently tlex.1.;ble
mul tipq,f grawming facloli tl.es. i he r easou loS that t he number of
pcocesse~ to be ceeated must oe Kllown when the parallel function
is exec uted. The ££~.9:!g tUllet ion 15 pr-ov.1.;ded to give finer
conteol over the cceat.loon at new processes. J..t cau~es a new
p~ocess in the suspended SLate to be cceated and attached as
subordinate to some process loll the act.1.;vation chain leading to
the process executing ££~. The eesult of ££~~~~ loS a cell
nam~ foe the new peocess.

A sU.bordinate process may be detlowated by dt,ll:llying the .§!act
f unction to .1.;ts cell name. 1 t way be stot,lped temt,loraeily with
the 21!2££ud functloon. The process whlocn starts a suspended
process may continue to run .lon "parallel" wLth the started
process. When a process h(is coml-l.leted, lot may term1.nate lotself r-
oy the !!~llQI iunctloon. It may also be terminated externally by ~/

ldM CONFID~NTIAh

(

(

Chapter 2.4 MULTIP~E CO~r80L SfBUCTU~ES 81

If process "A" knows the cell name for process "B" then process
"A" is a £2!!!:f:Q.lig!1 .E~.Q£~§ fOl: process "H". A controlling
process can monitor the actions ot its subord~nate processes.
rhe 1!!oni.!;Q£ tunct~on suspendstne proces!:> execut~llg ~t and starts
the process given as an operand. The otuer opel:anu is a set of
events, called ~.!!te££,g.E!.2, wuich can occur in the monitol:ed
process. When an intercep~ occurs, the monitored process is
suspended ana the ~oll~tor~n~ process ~s restarted. The result of
.!!!2.!!i!:2£ is the intercept ue::>olynator .tor the intercept which
caused the switch. Hrea~po.Lnts may be handled by monitoring the
execution ot the statements w~th the breakpoints on them.

Monitoring may be unuone witi;~ tile .!d!!Q£~ tunct.Lou. ~t causes the
mon~toring process to be react~vated with a !:>pecial indication
that it is to ignore the process ~t was monitor.Lng. The result
of the ignore function is n~l.

Once a process is suspended, J.t may be temporarily activa ted
using the inj~£l function. 'rlt.L!:> function is useU to execute an
expression in the environment of Lne suspended process. It is
useu to chan\j € that ellV irome u t, J.n yes t~ga te the values of
varianles, etc.

There are cases where it is nacessary for one process to be able
to suspend a second process Oll~Y at well defJ.lled po~nts in the
second process. For exawple, it is desirable that attention
signals interrupt the ruu.Lny tunction on statement boundaries.
This capability is j!rovJ.u.ed. III t.be ££!.2.ll1.Y tUllction Which also
can bellsed to give infor{ilat~ollto tile resource manager.

The aDove interrupts are a~l 5i uchr onized. w itll the e xecu tiOD of
the procedures. There are other events such as I/O completion
and attention s~~ndls wh~ch occur asynchronously w1th respect to
the execution of the program text. These may a~so be handled by
a monitoring process. rlowever, olD th.LS ~ase the event being
monitored may ~ave already occured before the monitoring action
is attempted. Theretore, J.t J.S nece!:>sary to save the event
.Lnformation in case .Lt will be UlOIutored. Sett.Lny uj! the ~nJ.tial
value of an event variable is d problem.

There are two ways to treat multiple occurrences ot a monitored
event. These can occur easolly oln asyncoronous avents aud in
processes which have parallel actolvat~on chains. The monitor can
be treated as a ser .Lall} rellsab~e resource iHHl the occurrences
heyonJ ~he first can be queued. Alternatively, d new copy of tne

82 BASIC CONCEPrs AND STfiUCTUl\ES

monitoring proc~ss Cdn be made to naIHll~ each new intel:upt. This "'-._/
allows a potentially infin1te lluwbe~ o~ copies 01 the monitor to
be created. Currentl}, restL.:1.cting monitors to be serially
reusable seems to be more reasonable.

'fhe acti va tion tree loS a aa ta otruct ure WLll..ch coutains the ::;ta tus
information tbat determ1nes tne flow ot control. Each act1vation
in the activation tree conta1ns a cursor (group
identifier,statement index and axpr:ession otfset),the process id
for the cha1n in waich it resl..ues, and tue user 1uentifiel:.
These may be accessed tor debu~gi.n~ information like the APl. 5I
vector and to do valid1.ty cnecAJ..ll'j Oll acce::;.:;es to protec ted
objects. A particular act1Yation may be 1dentl..t1ed by selection
operations on the actiYdt10n tree. The brancnes are ordered by
their order ot creation so numer1C indices may De used. It is
unlikly that the information 1U the activation tree can be
modified US1UY the normal data structure operat10ns because it
would undermine the system disc1.pline.

(

(..

RESOUHCE MaNAGEMENl

In an ~deal system# all data would be accurate, and no error
could be generated anywnere w~thin tue system. In the real
world, errors occur due to pr0~rdill Gugs or uaruware bugs. Even
Lf perfection COUld be aChi~vei, it wouldn't necessarily be
marketable since SUCh a system WOULd probably cost too much to
produce and run too slowly to Oe salaDle. In designing a system,
~t is vLtal to s~ecify tue tecnn~~ues to be used in handling the
various ty pe at er.cors that call occur.

One way to contdin the effect of an error is to partition the
system into a set 0% levels SUCh that au error at one level
cannot propaga te to tue next nigner level in tae system. The
most Obvious such partition~ag ~s that between user data and
system data. The following J.1.sCusses error hanJling in each of
these two categories.

User data can be put into two general categor.1.es, private data
and public data. A JOD whose data is all pr.1.vate and whiCh
suffers an unrecoveraDle error may simply be re-run. If the job
is run frequently and i1: BI:rU[S drt:! comllion and if .1.t is
uueconomic to re-run the JOD in ~ts entirety# then the job should
De temporally segmented. That LS, the job should De broken into
distinct time seyments. in case 0:1: dll error dUI:l.uy out:!' ::>egment,
the job is begun again at the end of the prev.1.ous segment. This
is l,H,ilply the talll.1.liar mechalUSUl of chec.K.point-rt:!start.

A job tnat only uses publ~c data has a d~iferent set of problems,
ot whicb the update-in-place pI:oblem .1.S the most obvious. The
update-in-place problem .1.S solved by def~n1ng a mechanism tor
gaining exclusLve control of a pOJ:tion of public data, but this
solution opens the door to the problem of deadlocKs, and it can
also cause large quantit.1.es at d.ata to be made unav.ailable to
other users while unuer the exclusive control of one useI:.
Furthermore# if an error occurs so that it 1S necessary to
terminate a job that had excl~s.1.ve control of au entire data set,
it is not clear which # if any, portl. ons of tae data set were lett
in an .invalid state. A technl.~ue that reduces the scope of data
potentially aftected by an error, as well as tendl.ng to reduce
the occurrence of deadlock, l.S to segment the data .lnto smaller
units such as records or fie~ds. One w~ght cal~ th.1.s approach

IBM CJMflD~~rIAL

84 BASIC ~ONCEP£S A~u STiUCTUHES

('-- "

el: Cal: cant 1:01 v ia physical segllle ll.tation d'::» contI:as ted to tempo ral ~,'
segmentation. A job to be pertoLmed on d public data set would
b~ be ol:oken into a number ot: small. operations to be performed on
all or selected segments ot the data set. In case an erl:or
occul:red r the segment being operated on at the t~me would be the
only segment to contain a poss~Dl.e eI:LOL. TheLeI:Ore r tbe segment
could be flagged and the CLccu~stances regarding the error
incident could be reported to tbe Data Base admin1strator who
would see to it that whatever steps were necessary were taken to
corl:ect the el:rOL.

Errocs in system data al:e another matter. While it may be
possible for errOLS to occu~ 1n the system data pertaining to
individual usecs w~th no more regrettable effect than the
termination of some subset of tae users on the system, it is not
tolerable for any errors to OCCllL 10 the ~nfoI:mation tbe system
ilas about its own structuce. lor: exampl.e, it is not permissible
foc a queue element to be iocorLect1y deleted from a gueue oc for
the ':l ueue to become in tertwined W~ th another- queue. ErLor:;;; in
this class of data can poten t1dlly go undetected for some
consiJecab1e period at timet d pec10d of t1me sutricient taL them
to propagate themselves thro~yhout every nook aud cLanny of the
systeil. SUCh dn ecror can cOlll.i;iound itse1t so that it is not
poss~ble to K.now wnat inforlBdtl.Oll l..n the sjstem .l.S valid and what
is ~n valid. Some a ppr naches to tne f.Jroblem of g UiHa ntee il1g the
validity of system data, a.::» well as of attempting to ellSUCS but
not to guarantee the validity ot user data, aLe outlined in
Section 2.5.4 on ~esource Management.

On batcb systems, users wece o~~erel l..n effect two separate :;;;ets
of functions with wh.l.ch to .l.rup~em~nt d solut.l.on to a problem:
those provided by the comp1ler at compile time aud those prov1ded
by tbe control program at axecut.l.on time. au interactive
systems, usecs .frequent.l.Y .l.uteruux compilation aud s.xecution.
And on systems 11ke Ai? L/ 360 1I/1t h excellent debugg iug facilities,
the aser may suspenu execut~on at dUj t~me to cnauge h1S programs
and tben resume execution. SUCh 5jstellls, w.tuch (:I.1.1ow fluctuating
resource reqUirements for eaCll user, ra~se problems that cannot
be met by the batch-oriented a~gorl.thms ot 05/360.

An iudividUal Wrl..t1ug d ~royram can control the resources
availab~e to hLm in Slicn a fashion as to accomp1isn th~ assigned
function. The wLiteLs ot a contrOL program, Oil the other hand,
are faced with the fact taat 00 one can pred~ct all the
combinations of functions tbat can ~e re~uested by eveLY
statistically aberrant gI:OUp of u~ars 1n any ~1vell time period,
where each function re quest.ad 1 mplies some resoucce usage that
the user has neither knowledge ot or control over. Since the
user is not aware of the resources required to accompl1sh a
function henas requested, he cannot ass 1st tb~ control program
in ant1cipatinlj resource usaye, aud so the control program must
constantly be pLepaced to handLe all WOLst case s1tuations.

IdM CO~FID~~TIAL

,f
I"

''''--_ . .-

(

(

Chaptclr 2.5 B5

Holt, in his recen t thes~s on a eaal. ock, has a.lsti ny uJ.shed usa ble
resourc~s from consumable resources. Consumable resources refer,
for all pract~cal pur poses, totne type of ~ntera.ction between
processes typified by the WAIT-POST logic ot O!>/3bO. Processes
lIIay interact through operations on cousumdble re::iources just as
they may interact throuya o~erat~ons on reusaDle resources, and
therefore, both types ot J.llL~ractions can contr~buto to the
occurrence ot deadlocks. Td~r~ loS an ~mportant difference,
however. A U::ier process may l.nt~ract on a consumable re::iource
with e~ther a system process or another process within h.lS cwn
job. His process wuuld not ~nterdct on a consumable resource
with another process in d d~stinct Job. Therefore, the user can
hurt only hJ.mself through the invalid or badly tl.mea use ot a
consumable resource. The SYSLOW also nas the choice of waiting
on either a user process or d system process. The rormer case
should be strl.ctly out~awed, since it Jeo~ardl.zes system
security. The latter case ~s tior-lIIal anu is to .oe expected. The
point to be noted is that d~pelldeucl.es .oetween system processes
interacting on consumable ~esources dre Known at desl.gu time, ana
therefore deadlock possib~lities can be handled at design time.
Consumanle resources should not De a deadlOCk conS~Qeratl.on for
system processes.

The following aiagram describes a sJ.tuation noted by R. M. Smith.
It illustrates a potential ~uVdl~d timing ~nteractioll bf;tween two
~PU's Which no amount of locking will avol.d. The example is

CPU..L C1'U2

..L"'~'TZ

IdM C0NF~u~NTlAL

il

86 BASIC CONC~PfS AND STRUCTURes

specifically stated in ter~s ot CPU's. It illustrates the sort
of ti~ing interaction that mu.::;t. iJ\:! considered l.ll th.e design ot
any multl.processing conteol program such as AFS.

In diagram 2.5.1-1, CPU ~ sets b~t 2 to one and then tests bl.t I,
while CPU 2 .::;ets bl.t 1 to one and then tests bit 2. Both bit 1
and bit 2 are assumed to have been initialized to zero. Bl.t 1 is
physically close to CPU I, whl.le bl.t 2 l.S physically close to CPU
2. If timing l.nteractions are iynorea, taat l.S, l.~ it is assumed
that all operations are completed l.nstantaneously, then it is
apparent that at least one and perhaps Doth of the two CPU's will
amerge from the test ot bl.t l. or nit 2 aaving found th.at the
t.ested bit was set to one. It i.::; possible thougb that each CPU
could send a signal to change the value of one of the bits and
then test the othtH: b1. t be.torethe signal setting the othe 1.' bit
to 1 bad been recel.ved, so tuat tue two CPU's could find the bits
both set to zero.

£he most fundamental resources l.8 the system are space and tl.me:
in the physical implementat.l.on, space means storage in the
Storage Management Subsystem (SMS) as d~fineu in the System
Architecture ~anual, and tl.we medns \:!x~cution tl.me on a PLogram
Processing Unl.t (PPU). Since dil objects Lesl.de l.U .::;torage
cells, they all reyuire some s~dce in the SMS; ana since all
objects dre processes, they all. re~uire some execution tim~ on a
PPU in order to respond to d Le~uest. By detl.nl.tl.on, the 5M5
manages all internal storage, dnd the ~PU's serVl.ce the reyuests
on the ~ueues for various objects.

On conventional systems, S~dce ana time have Dean managed by
software control programs, wl.tn the exception of some space
management by hardware on bu.t.tereu machl.nes l~&e the 370/1b5; on
APS, such control fUnctions w1.11 be pertormed completely beneath
the level o± SL programml.ny. Uecause of tuis Lncrease in
nardware control tunctions, tue ellYl.neering des~gn must solve a
number of prOblems normally faced only by programmers: For
example, l.f otf-l~ne storage 1.S treated as a log~cal extension of
SMS, then the data patfi for re~uesting the operdtor to mount
tapes must be dedicated to the 5r15; otherwise, d deadlOCK ml.ght
ar ise if the ope l:d tor was us l.ny tne console for a non- SMS
function that caused paging in t.he SMS tuat caused an overflow of
on-line storage that requ~Led t.he moullt~ng ot a new tape that
required a message to De sent to tue console that was still busy
with the orl.ginal reluest. Otner possl.oilities for deadlocK
could arise if dispatch1ng a PPU re~ui~ed space in SMS and
allocating space in 5MSre~ui£ed some processl.ng by a PPU; even

laM C0NFIUE~TLAL

(

(-

Chapter 2. 5 b7

~f normal cases of deadlocK ~clre com~letell el~wLn~ted, problems
might arise if standard protocols were relaxed when a hardware
erroe occurred and rec ave ry pr-uceo.ures ma ae the SMS deiJenden t on
a i>PU tor elller"gency lIIeasures. It treated systematically, these
pr-oblellis are solva.ole by a serl.es ()f levels like those cuscussed
in section 2.5.1: tha scts lIIUst De the lIIost funuamental part of
the system and can uever be .J..o~.J..cally dependent on services by
anything outside of ~tselr. LOY.J..cal depellden~.J..es can be
eliminated even ~n emergencies by dedicating certdl.U eesources,
such as a special lo~-out area ~ll d PPU, tuac cou~d allow a
physical FPU to become d 10~.J..cd~ part of the s~s for a certain
peeiod of time. On small macuLues, SUCh procedures could be used
to allow a single £.lEU to per-to:cm ail functions: Just as the same
hardware on a 360/25 can behave alternately li&e a CPU, a
channel, and a coutrol un.J..t, a sinyle PPU could switCh hats and
act either as a lo~ical scts or as a logical PPU.

For th~ remaLnder of this cha~ter, ~e Shall assume that space and
time are allocated Dy harawar~: tbe SMS peov~d~s a pract.J..cally
liruitl~ss amount of storaye upon re~uest, and the PPU's are queue
driven boxes of hardware t~at ULsPdtch themselves to serv~ce the
loS/ical processes. Taese are Dig assumpt~ons that imply a lot of
engineee~nSl design to maKe possl.ble and eveD more to make
practical. Sae the System Arch~te~ture ~anual for more detail
about the hardware design ana var10US s~mulat~on stud~es.

Some resources, SUCll as ports, correspond to physical devices
that have au independant ex~st.em":d. Other classes of resources
are constructed by suballocat1ny space and t~me: the access
machines of objects re'i uire t1Jl.e OIl a PPUto r eS.l?0nu to requests;
data repeesentations, internal. 1dent~fiers, procedural
descriptions, and PS.d'S taKe up storage space in the SMS.

Definition: ~very obJect.J..~ a resource that D~longs to one of
the following classes:

1) fin!~: there ~s a iLw1ted numb~r or objects with
an equivalent status and ability to respond to
re';iuests.

2) y'n~.9.l!~: t here is on~y oue object lU ttl a particu lar
status dnd aU11itj to respond to re'iue~ts.

3) QnB.QillH!gs!: the object Delongs to a potentially
~nfinite class ot equ~valent oDJects; upon demand, a
new 0.0 jac t of the class can be created by
suballocating space anti time 1f aVd1lab1e.

Finite Objects are ones like prl.nters, where trle totd.l number is
fixed, but anyone o£ s~v~ra~ may be equa~lt capable of
satisfying a r~quest. Almost all data objects are ull1que; copies
of eead-only objects may be acceptable in some cases, but tables
and records liKe airline reservatLon or payroll tiles must have a
single upddta~le copy. UnDouuded resources correspond to
funct~on activations where d new one maj be created for every

IBM ~ONiIDENTIAL

88 BASIC CONl:E1?l'S ANi) STtWCTU RES

call upon the function.

One way to increase the ap~arent number of f~nite resources is to
create function activations that have the same logical properties
as the limited resource. For example, a multiprograwming system
with only one pr1nter can prov1de many logical printers by
creating multiple activations of a spoolin~ pro~ram: each
activation may respond to requ~sts exactly liKe a printer; after
receiving a complete document, the act1vat1on w11l compete with
other activations tOl: service vll the phis.lcal printar.

A bierarchical stl:ucture for a ~ystem 1S esseuti~l to a good
des1gn: Each level of the Sjstem can be desi~ned and debugged
.l.ndependently. Errors ar1S.l.n:j 1n one level CdIUl.Ot propagate to
higher levels. And the growttl in tus total number: at possible
interactions between objects 1S 1ioearly proportional to the
number of objects, oot e .. q.lOnen (.idol. dS in an unstructuL'ed design.

'rhe AFS concept ot subsystem 1.;; tne bas..ls foe operat1ng systems,
user jobs. and n~twocks of ~yst~ms. A sUDsystem ~s a subset of a
system in which alL interactl.ons with Objects outs1de of the
~ubstst~m are channel~d tnrou~a a 510g1e resource manager. From
the outsid~. a subsystem benav~s like a s1n9le ODject; f~om the
inside, the rest of the syste& ~s ouly v~s~ble through the top.

Def.l.nition: A ~Q21.21g.!!! ..lS a .5UDset ot the Object base witll. the
following properties:

1) Tilers ~s d single o.uJsct calleo. the ~QB..2Y21gl!i fQQ!:
from which all other oDJects in the subsystem are
directly acceSSLDLe (..l.e. the sUDsystem forms a
subtree of the ownersnip tree with the subsystem
root as its root).

2) the sUDsystem root ~as an element called the
'£~2Q'y££g !!'.a!!..2:.9:~£ that. 1.S a collect~ve Object whose
elements are synonyms to all external objects used
by the subsystem.

3) The subsystem also forms a subtree of the
en vi ronmen t tree W 1tn the subsystem IOot as its
root.

4) No object ins~de the SUbsystem ~s d~pendent on any
f.l.nite resource except the ones whose synonyms are
held by the resource manager.

~--'-"

(.

(

Chapter 2.5 RESOURC~ hANAGEM~~T

Resource allocation in AFS Das~cally follows rlaber~ann's
algorith~ (CACM~ July l~bY) extended to meet the needs of the AFS
system environment. HaDermano's algorithm requires that each
user define at job in1tiate t~me the maX1mum usage of each
resource required by Ais Job. Th~S mdx~mum usaye ~s called the
claims specix1ed by the job. vurLuy the running of the job, tbe
user requests resources as nee~ed up to tbe lLffi1t of his claims.
Upon receiv1n~ a request tor resources, the system tests to
determine (1) whether:- or uot tue resources a.r:-e dvailab.le, and (2)
whether 0[' not a saie sequence exists. If the I:'eSOUI:'ces are
available and a safe se~uence eXists, then the request is granted
1wmediately. If one or the otber of the two conditions is not
true, then the re~uest is not granted until the two condit10ns
have become true. Ii tne re~uest exceeds tne claim, then the
re~uest is refused.

J.)efinition: A sequence of JOOi::i, JUlJl, JOB2, ... , JOti~, 1S called
a 2.9:fe §~.9.~~l!£~ provided thdt if every Job in the next
instant .cequ~sted a.11 tile reSOUcceti 1t cla1med at initiate
t1me, taen JOB1, usiU9 the r:-e~ources it now holas ~lus those
currently Lree, can CUll to complet10n aud so cree up the
resourceti it now hoids, aWl tIlen JOBL utiin~ the resources it
now holds plus those curreutly free plus those held by JOBl
can run to completion, and so then JUil3 • • ••

It is unreasonabie to re-;iuiretne user at t.ne tel:mLual to specify
at logon time all the re;;;iourc,JS t.hat h~ ffi1yht tltiS 1nthe coming
session. In order to permLt toe tlcier to r:-e~uest resotlcces which
he has not claimed pcevLously, barry Goldstein has suggested an
important modification to tidUerrnadn's algorlthm. Goldstein's
alyor1thm allows the user to re~uetit retiourceti wbi~h he has not
previotlsly claLmed. In response to a reguest tor rei::ioucces, the
system, as in tlabeI:'maun's algorLtnm, tetita to see whether or not
the resources are availaDle dnd whether or not a saie se~uence
exists. If both conditions are tr~e, the resources are granted
1mmediately. If either couditLon iti fa.1se, taen the user has to
wait unless ma~ing aim wait would create a dedd.1oc~. The result
1S that a batch user wuo never exceeds his claims will never
encounter a deadlock and tuereiore Beed never prepare for
handling deadlock.s. Un the otnec hand, a terlunal user can
dynamically request reSOQrces taat had not ~ravLously been
claimed at the cost ot occasLonall.Y having to l>rog[,HI his way cut
ot th~ deadloc~.

There are conflicting demands made by tae two needs to avo1d
deadlOCks in allocat.1ng resourCdS aad to allocate resources in a
network. Avoiaing deadloc~ re~u~rei::i that tnere eX1sts a single
centra~ized allocator witb ~omplete Knowleuye of all the

·l

90 BASI~ CONCEPTS a~D STRUCTURES

processes in the system dAd al~ ~ne resources assigned to those
p~ocesses. Running a network, on the other hana, requires that
each installation ~n the networx enjoy a measure of independence
fro II the other instdllations.l.f centralized resource allocation
vere to be performed ~n a network, then every re~uest for
resources would have to .oerer.arred .oacll to the single specific
node 4n the network that conta4ned the resource allocator. Since
this is unfeasible, a method must be found 'for allocating
resources at each node in a manner that ~s dS independent dS
possible froll the resource allocation decisions lIade at other
nodes. This iorm of resoarce allocation can De accomplished
providing that additional cOlls~raints are placed on the safe
se~uences ma~ntailled by the .['esource allocators ~n the network.

Let the systell be co~posed of aisjoint sets of resources dnd tor
each set of resources define ~ resource allocator. Assume that
the resource allocators are all at the same level., dAd on top of
them define a tree structure at resource allocator coordinators.
Tbe particular tree structuLe ~s drbitrary but ~s fixed tor any
given network.

Local jobs are ones that DULY use re30urces in one of the
dLsjoint sets of resources. Distr~buted jobs dre ones that use
resources from two or more of the sets of resources. A job can
enter the system at any node. a ~ocal Job ~s transm~tted to tbe
node at which it w1ll execute (1£ ~t wdsn't sunmitted at that
node). A distributeu JOD may enter tbe networK at any node but
will be passed up the tree or. Lesouece allocatoe cooL'd~nators and
possibly hack down some other araDcn of tAe tree until it arrives
at tne lowest ~evel resource a~~ocator coord~nator (or RAC) that
has jurisdiction over all the resources claimed by the
distributed job~ The JOD ~s then Droken up 1uto subclaims tagged
with the following f4eld:

CU~NrEd.Tl"~.KACIU

whien specifies the pos~t10n l.U tae safe sequence relat1ve to
other distributed Jobs tnat tne current .l.DCOm~n\j distributed job
is to occupy. Generall y the iJ.e a 15 that distr 1DU ted Jobs sbo uld
be processed in FIFU order. fhe problem ~s to aetecm~ne the
meaning of FIFO in an environment in which t~me scales may not be
synchronized. A s1mple t~ml:: stamp does not suf14ce, since
different BAC's US.l.Dy different clocks could stamp requests for
different jobs to De sent to the same sate sequence W1t~ tne same
time. Consequently, JOdl miynt precede JUB~ on one sate
sequence, while JOB2 precedeJ JOdI on another saf~ se~uence. To
avoid this and othe~ tim1n~ pcoblems, the cla1ms sent down to the
resource allocators are tagged W.l.tn tile value COUNTEii.TH'iE.RACID.
TIME ~s the value of the dAC's time stamp, HACID is the
identification of the RAC sena~n~ tae request down, and CUUNTER
is the value of a counter ma~Dta.l.neti ~y the h1ybest level RAC and
sent down to all lower RAC's. Tuis counter value acts as an
artif1cal but uniform t~me scale for all RAC's 1n the system.
S1nce all distributed joos ma1ntain tne same celative ordering

IdM CONrLU~NTIAL

(
Chapter 2.5 91

~ith respect to eaea other ~D all saLe sequences Ln the system,
no deadloc Its occur in the Det WOi' k.

dolt has pointed out (CACM, JaDudLY 1911) the possib~lity at jobs
beeomin) effectively b~ocKeJ ~n a safe se~uence. such a
situation could occur if a sequence of high pr~ority jobs
cont~nua~ly occupied so much cure that d Ii low pr~or~ty job never
bad its request for a IdLge amount of core satisfied.
conse~uently, the low pr~or~ty Job woula be bloc~ea ~ndefinitely
and could not De guaranteed tu complete in any ~iven time. To
assurd that every job w~ll eventually complete, Holt proposes
that jobs in the safe se~uencd be tagged with a t~me Value that
indicates the length of tLme tuuy havu Deeu wait~ng in the queue.
Then construction ot the safe se~~ence ~s bLasea to favor those
jobs that have been ~aitillg longest.

3hoshanL (CACM, November l~o) uas descriUeJ the problems at
perm~tting simultaneous aCCBbti to the elements ot a list
structure. Wh~le it .LS not clear that any of the specific
approaches that he recommenllell shoulll be allopted, AtS must
provide solution~ that are at least as effect~ve.

The THE System as descr~Dell ny DijKstra (CACM, Kay 1969)
contained a very attI:act~ve a~pro~ch to the proble~ of avo~ding
deadlocks in the system. In8 sy~teill was structured into six
levels. Level 0 consLsted of a ClOCK aod llispatcher. Levell
consisted of the paging contr:ol.J..eI:. LI::!Vel 2 was the message
nandler. Level J handled SOUI."Ge-s.J..Ui\. iUiJut/output. Level '+ held
the proole m pro,:! rams, and i.evei ~ was the usef:. One LH viol ate
rule of th& system was that 00 process at a lower level could
wa~t [or a process at a hiyuer level, though processes at a
nigher le vel could waL t tOl.' d process a t a :Loiler Ie vel.
Conse~uently. deadlocks were avo.J..ded partly through the
enforcement of th~s 3Lillfle rule. Some such structur~llg should be
undertaKen for IFS not ouly to pf:event deadlocks, nut also to
reduce the level of complexity of the system to a more manageable
degree, and thereby allow a ~OLe complete aud accurate desLgn to
De to.cmulated.

Cha pter i.. b

FUNcrIO~ SET

r'hs operators of S1 are the basis of t.h.<a system. The elaborate
structure of dyadic objects dud operators towor~ on them is
intended to ~mplement an dttr~Dute exam~ning system. The
operators are the lowest level active element which can be
programed. In this respect tuay are l1ke S/Jb0 instructions.
The detailed tunct~on o~ an operator depends 1n part on the
attributes of the operands at the moment of execution. In this
respect they are i~~e APL tUDct10ns. The operators are also
responsive to the environmeut in ~hich tuey are executing as
determ1ued by expl~c1t program aeclarat10n statements ana the
activat10n cha1n. This aspect 01 operators is the contribution
of 51.

'rbe operands of an 51 operdtor are objects re5iu1ng 1n the
storage cells associated With the operand symbols in the
expression conta1niny the oJ:ierdt.or symbol. 'fne, operatoJ: sYlllbol
itself is associated with a stoJ:dye cell wh~cn contains the
function object to be activateu. T~is last relat10nsnip enables
easy operator J:edefill~tion Wilen n.ac<::lssary. Ttle -iyadic nature of
the operands compl~cates the uet~u1t~on of the operator at the
object level as compared to tnat of a simple system. The purpose
is to simplify the aBscript10D at tae pro~ram level. In analogy,
the description of float~ng p01nt operations are more complicated
than those of the correspouJ.ing .tixed p01nt 0 lJera t~ons; the
existence of tuese o~erat~ons, noweveJ:, S1111plifies program
statement by el~minatlng the need tor sca11ng.

2.6.0.1 Arguments

~art of the def~nition of a f~nct10n is the spec1ficdtion of the
number and type of ~ts ar~umeilts. For monadic and dyadic
functions written ~n ~nfix: not.ation, tne arguments can be
recogn ized by na v ing theu; sy m.bols aJ:il!ear next to that for the
function. This technique is used Dy AP~ to distinguish between
mohadic and dyadic funct10ns. In the prefix form of notation the
function must contd~n suff~c1ent information to spec~fy the
number of arguments. The spellea out forms ot tne functions,
whiCh d.re dif feren t tor monadic an 0. dyad~c forms, must,,~-~~"

accordingly, De used in the preLix: notation. fUnctions which ~_/

ibM CON~ID£~rIAL

(

(

Chapter 2.6 fUNCTION SHT 93

require more than two arguments will be describej as monaaic,
with their operandsta:ltl.ng th.:: Shdf.l\~ of Ilosts ot three or more
members. The symbols whl.ch are assigned to Lunctions may do
double duty in the sellse at baing used tor Doth a mooadl.c and
dyadic function. These symDols can only be used ior infix
notation, where the distinctlooll can be made syntactically.

~ot all functions have slongle CDdLdcter symbols assigned to them
yet. In some cases in whicb tbloS has not been done we have
indicated which pair3 ot one mOlladl.c and one dyadloc function
should share the same symbol. As a t:lorst ~rincLple one wl.ght try
to define the monadic Lorm to ba related to the dyadic through
some sort of default, l.e., having the monaul.C form equal the
dyadic with some speCial value ~or the missing argument. The
trouble with this LS that 1:0.L' !Uo::;t symmetrloc opecators the
natural special value makes tne ~unctl.on into a no-ope For
example, monauloc El!!§ l.S a standara. no-ope To get maximum
mileage out of the basl.cally ll.wloted numbsc of slonyle chacacters
the ~oaadic function is not uHudlly defined l.n terms of the
dyadic for symmetric functions. An attem,tit to be ceasonable is
made~ however, in many caHes tollo~l.n~ the exampLe ot APL.

In addition to the number of arguments Which a function expects
one must speclotj the type ot argument.

Definition: A function may pLac~ cectdlon restrict loons on the
types of itH arguments. Any acgument meetiny these
restrict~ons is caLl.eo £'&'AdA!A.S1:!~ to the iunction. The
action 01: the t:unctLon on dll argument of SUCh a type is
determined entirely by toe uetinition ot the function and
not by functloon distrlobutl.on.

For example, numbers are prlomlotLve to tue arlotumetloc operat~ons.
Zero dnd one are pCloml.t~ve to the logical operdt~ons. A mece
subtle example is 2Stl~£!. Any Object can be PL"lollutive as a left
argument. Any indexed object lo~ prlomlotive on the right. If,
howevec~ the rLyht acyument ot: ~~~~£S has a restricted index set,
say it is a ll.st l then the prLwit~ve Objects on the lett beccme
restrlocted, respectively, to integers.

2.6.J.2 Funct~on Distrl.but~on

It nas gradually bee n acce pt.ea l.n prog raming liiuyua ges that
distribu tioD of functions OVclC structures of operands should be
automatloc as in. APL rattler than re'.1ul.I."l.ug expll.clot loops as in
early PORTdAN. Since our structureH are very general, our
definition of function dl.strLoution must be so too.

We shall discuss function a.istcLbutloon for dyadloc funct~ons. The
~ituation for monadic functl.ons loS, in tact, simpler and can be
deduced from the dyadic case. Su~pose ttlat a functl.on appears

IdM CO~Fl.D~NfIAL

i

I
i)
I:

t

94 BASIC CONC~TS ANu STRUCTURES Part 2

;--

between two objects nei th~.[' of whJ.c h J.S p.['~IU t1. V~. 'lIne f unct,ion,,-J
examinies the two objects to s~~ it th~y dr~ two collective
objects with identical index sets. It not, ;tIl error has
occurr~d. If the condition ~s sat.l.sL1.ed, tht:! tuuctl.on is aplJlied
iteratively to the elements ot the structures producing an
identically iudexed collective object as the result. It any pair
of objects is not a pair of pr1.m1.tives, the analys1.s ~s executed
recursively. If at any sta':lB of the recurSJ.Oll one operand is
primitive and the other not, taa f;cJ.llUtive operand is iillbedded by
replication in a cOJ.lect1ve object lIlatchJ.ng that of the other
operand and the function .l.S eVdl uated.

Note that function distribut.l.on applies only over indexed
structures, most usually,.l.n practice, over lists and arrays.
Objects of type closure not pr1.lIl.l.tive to t~e fUllction being
distributed are not uncovered for distribution. stopping
distribution is one of tae funct.l.on5 of encapsulation.

Enclosure can also be used, J.ll conjullction with function
definition, to modify, as well as s.l.mply to control distribution.
Suppose, for example, that one w.l.shed to carry out rational
ar itilmet ic if ith ~ro pe rI:.cact.l.OllS Kept as .l. nteljer pa.1. rs. One
1II0uld wish for a function, £~1§Q!!!, WhiCh loS §~!!! tor integers
and d~fines the arithmetic sum for rationals. One defines
rational numbers as enclosed coJ.lec£~ve ObJects consisting of two
integers and an identifYJ.ng tJ.elu. Objects of type closure are
made primitive to g!:~.!!. Wihen a closure .l.S encountered, the
function itself analyses th~ aDJect to d.ecide wn,<it to do with it.

Function distribution can also De explicitly controlea by certain
functionals, as d1.scussed in 2.0.5.

This section has some symbols wh.l.cn are not properly operators.
That is, they are not encounterea at execute time. However, they
are included for completeness. The operators given here are used
in constructing a runable procedure from symbol strings.

2.6.1. 1 Parsing operators

These operators are used. to maKe J.t poss~ble to break {the text
into units and to hU1.ld a parse tree.

g,.!!Qte (cf 2.2.3.2)
~el~ed_.t?.a£§.~ (cf 2.2.3 • .2)
braces (cf 2.2.3.3)

roM COl~F IDENTIAL

/
!

(
Chapter 2.6

2.b.l.2 Sco~e uuild~ny Operato£s

These operator~ allow the usa£ to uefina symbol occurrences as
being local, parameters, OI Lree and to bu~ld the context in
which the free symbols w~ll be reso~ved.

ln2~£1-2L!Q21 (cf 2.2.2.)
!~bd2 (cf 2.2.3.5)
§12E (ct 2..3.3)
£.Q!H!~ct (ct 2.3.3)
l~g

2.6.1.3 Unique Name Creat40n

These operators allow CAe user to create unil;iue
existing names. For exampl.e, t.lJ.ey can be used to
temporaries. These unique names are not norma~ly
the symbol table is dumped •

.!!ni~.!!~n~~

names from
create local
printed when

This section includes tne operators Wh~Ch are use1 to construct
objects from the primitive oJects ot the system.

2.ti.2.1 Descriptor Defin.l.ng

rhese operators are used to bU.l.ld up the components of an object
Jescription from the bU.l.lt ~n dCCdSS mechanLsms or attributes.
The result of these operators ~s an access macnine.

~.6.2.2 Object Constructor

,rhe object constructor g~~1g takes as operands an access machine
and an existing scala r or co.U.ective object and produces an
object which is a copy of tae eX.l.st.l.ug object converted to be
consistent wl.th the gi ven access machine.

fhis sectiou contains the o~e£ators whLcn dre used to build
complex data structures. It Lnclu~es such categories as storage
managemant, index sets, struGtuJ.:dl cOlilbination, and explicit
structure link~ng.

9.6 ~Asrc CO~CEPT~ AND STRUCTURES Part 2

2.6.3.1 Index Set O~erators

, These are th.e basic operators wllich maKe use of the indexing
facility and alter and examina inaex sets.

§!!!~f.!
'fhe dyadic o}!erator ~1~£1 t.aKes tor its second o~erand an
~ndexed collective oDJect ana tor its first operand an index
object of its seconu operand. The result is the
corresponding element of tae collect~ve object.

ilis~
Tha monadic funct~on ~~!~~ takes an inctexed collective
object for its operand. The result is a l~st of the .index
set for tne collective object. S~nce the index sets for
common objects may De ~~~te large, tuis operator must be
usea with caut~on.

Structures of arb~trary compl~x~ty may be bU11t from collective
objects since their element~ may themselves De collectiVES.
Because of the ~enerality thera 1S no way ~n tue str1ct syntax to
index ~nto subobjects OtiHH: thdn 1.)y re~eated use OJ: the indexing
operator. For exampLe to reier to au element on a subl~st ot a
sublist of A one writes:

2h.~~

4 se~ (1 sel ~ sel AI).

taK~s dD array or list fo~ its
base list. This is a list

respectively which describes

·r ne monadic function ifHHi~
ar~ ument and ret ur us ~ ts
structure of depth 2 or 1
the structure of the argument.

fionadic 2!!2.E~ takes an array or .l1st as 1tS argument and
returns the shape of tae argument. This 1S a l.ist structure
ot depth 1 or O.

!Ji~!lg£2.~Q£
The monad1c function ~.sig!!gg!Qf: taKes a scalar number for
its argument. it returns a list whose shape is given by the
argument aud whose elements ar~ 1tS own index set.

For data~ls on the precedl.u<j Lunctions, refer to the
section 2.1.7. ~ote that shape is ~he rho operator ot
primitive arrays, iyenerator sha~e yields 1base.

Additional o~erdtors are:

IBM COclF IDENTIAL

table in
APL. For

Chapt'~c 2. 6 FUNCTlUN SET 97

l!!!.!!!~_Y..!!!.Y~
T he dyadic f uncti on J!~l!~_Ys!!Y!:! taKes as ~ ts arg uments a
value and an object that is to be treatea as the index for
tllat value in any collective object in which the result of
llame_ value occu cs. It can be u.sed to pass Keyword acguille nts
in an eval uate request.

2.6.3.2 Storage Management

These operatocs are
collect4ve objects bi
collection own by the

used to add ana. delete components ot
1nsert1n~ ana deLeting storage cells in the
object.

i!12.§£l
!!~J:et~

2.0.1.3 stuctural combinaL1ou

These o~erators are used to piece s~~arate structures together to
form d single stcuctuce. Theca aC0 several operators because of
the ditferen~ ways taat structuces may be combined. The simplest
structure is a l~st. There 1S an element of ind1rection in a

(list Which must be caretu~ly cont.coLed. For example, iet

A - (,a,D,c) ,
aud

B :: (, d,e ,f} •
We must dist1nyuish between the lJ.sts

C :: (, a,D, c, 1J.,e ,1)
and

D :: (,Aro) •

~e introduce four list constru~tin~
construct C and 0 from 4 aud
other operations.

operators wn~ch enable us to
H, as well ~s to ~ecform

£~!~f!!!1~
£~1::~.i!!~ takes two o~e£dllds, ~ach ot wnich is a list. The
cesult ~s a list compr~siu9 the elements of the two lists •

.i!!HU!!~!! !:.
!~.!,g.!ll. is a diadic operator. 'rne lett ar'.lument must be a
list. The right argument is added to the l~st.

bi§! is a monadic operdtur. It
operand andfocms a one ~lemen t
the element.

accepts dny Object as its
l1st with tna argument as

IdM CONFID~N~~AL

98 BASIC CONC~PTS ANU STRUCTUHES PaI:t 2

~~.!~1
.rne monadJ.c
object Q.

o~erator £~.!g! ta~e5 as ar~ument
It produces tue I:e5ult

ilist Q sel ~.

an inuexable

ie now observe t~at the list C call be tOI:med by A cat B. The
lJ.st D is formed by list A augment d. It is possible that
catenate may be redefined to perform limited type conversion so
that vectOI:S and lists can be comb1aed. In particulaI:, by using
the ,)-vector as a lett ar:gument foc £~1 a vectOI: can be created
from its elements by fJ.I:st formJ.ug a list and then converting.

The next two operators permit the formation of geneI:al arI:ays
from lists and the resha~J.ng ot existing arrays.

£!!sh:!IH~
The dyadic opecatoc ~!!2.£~ take.:::> tor its left argument a

"shape, i. e., one of the types of object in the snapeI:ow of
the table in 2.1.7. The left argument J.S ravelea and then
inserted in odometer order into a structure described by the
left argument. The ci~ht acgument is truncated or
replicated as necessary.

This operator is the dyadic r~o of APL. T~e ordeI: of entry
of elements into the structure J.5 as in that language. We refer
to this order as the odometer order.

!::~~2~
l!ebg§g is a dyadic iunction. Its left acgument must be an
index base list. Tne ri~nt dr~ument J.s fg.!g1ed and inserted
into the approprJ.ate stI:UCt. Ul:e in odome te r order.

2.6.3.4 Opel:ators for Com~osin~ and uecomposing Scalars

These operators are used to build an Object which is to be
treated 1i&e a scalar from a set ot components and to obtain the
components of an existin~ scalar oOJect.

~ncl.Q.§g
;rhe monadJ.c opera tor §ll!f.12.2g c rea tes. a sca.lar
owned resource is the o~erand. The resultiny
scalar of type closure. Au enclosed synonym is

di§tl.Q2~

object whose
object is a
a metonym.

The monaciJ.c function ,gis£!Q§.g takes
type closure. The cesult. J.S the
resource of its operand.

as argument a scalar of
object wh~ch ~s the

2.6.3.5 ExplicLtly Linked StructurJ.ng

Ida COriPIDE~TIAL

/

/

(

(

J:o'ULiC .I.'ION JET 99

These operators are ~sed to DULla structures on components which
are not owned by the structure but are only referenced by it.
These references may be e~p11c~tli followed or they may be
imp11c1tly followed when that referencing component is selected.

s\££E~
.e oi!!!::
.!!!!::im{!~
§.I!lQ!!1.!

2.6.3.b Implicitly DefineB Data Structures

These operators really aef1ne data structures ~ut may be used
when the data structure 1S not ~1n1te. fhey deL1ne a rule which
complet~ly determines tne vdiue of each component when the
operands of the operators are ~1ven. They dct lL~e encodiogs of
the data structure. This ~s s1milar to the impl1cit definiton of
a set using a predicate the elements o~ the set must satisfy.

1:g~!!
§l§!E
set notation

This section describe~ tue o~erators which are used to modify
either the own-resource component of an aDject or the contents of
ii sto rag e cell..

§1:2~
£~la£.§!
£~!Q!'§!

In addLt~on to the ~Q£lo~ anu ~k2£12~~ operators, which
provide indirect control of tbe dLstribut10n of tunctions over
collective objects, a numDeL of functionals provide direct
control. Th1S explic1t control ~s only provided Ear lists and
arrays, since those are tn~ ouly collective Objects whose
struct ure is explici tiy defined.

£gs!.!!~i1:~!!
The monadic function £~.l!~£!:l:QQ taK.es a list of three
elements for ~ts aryu~ent. The f~Lst is a dyad1c fUllction.
If the second aryumeut is aB arcay tbe definition of
reduction is as in APL, W1th the thl.rd ar\jument replacing

10M C(HH' IDEN 'riAL

100 tiASIC CONC~~f~ A~u STHUCTU~ES Part 2

the API. subscript. If the l:i~cond acgumel1t is a list the
res u1 t is the ::iame as fOL a vac to.c wi til tue sa me ent.cies.
rf the th~rd ac~ument ~s omitted tue default is as in APL.

~!!!!~_£fQ.Q:.!!£l:
This functional ~s defined as ~n
arguments ace iists the result
corresponding vectors.

APL for
is the

acrays. li the
same as for the

QYl:g£-£f.od.!!.£!;
This functional is def~nda as in APL tor arrays. If the
structures are lists, the result is not a lila tc~~ bu't a list
of the expected elements LU odometer order.

une desirable feature 01: arrdjS is tne ability to treat them as
scalars l.n one or more U.l.menS.l.Ol1 so that they Cdn distr.l.bute in
those dimension dS scalars do. 1'111.;:; feat.ure is provided in APL
by treating l-vectors as Ldentl.cdl to scalars ~nd similarly
treating a lengtb of one ~n dUy dimension. ThiS achieves cne
desira.ole feature at the e~peuse of another, V~Z" md~ntaining
the distinction between ::>cdldrs dnd otner arrays. We believe
that this distinction is worlu mdLutd.l.Ding dnd tn~t arcays must
be of identical structure for runctLon distribution to occuc. fo
provide the f.lex ible ma tCiaIlJ, we 1.11 troauee another ~ind of
object.

Definition: A ,E£!!:!.!.i!! g££,g,.i L..:i liKe an array except th.at one or
more entries in its base .11.5t: lIldY be scalars.

A partial array is Lnde~ed exactly like the corc€spondiny array
in which scalar entcies ~n Lts Dase ~~st have been replaced by
one element lists. Tbe index set in sea.lar dilllens~ons is the
entry in the base l~st for tuat dl.mens~on. The function l.base
applied to a partial drl:ay prod uees the ll.st structuce of mixed
depth described above. fhe iunctl.Oll shape appl.Led to a partial
array prod uces an ecror.

Tbe dyad~c functiona.l
argument which LS a
function to refuse to
to distribute over l.ts

~A~ uccurs between d

COL~ect~ve oDJect.
accept: the ubjec~ as
elelllent5.

.functl.on dnd au
It forces the
d pr imi ti ve and

Two operators are used to ~covi~e the ceverse operation to
indexing.

IdM CONtIDENTIAL

, .. /

(
Chapter 2.b 101

iJ!g~.!
'fne dyadJ.c function in£!~tf taKes for its .1eft operand an
array or lJ.st. The L'J.ght operand J.S any oOJect. The result
is the index ot the first occurrence ot the object in the
array or list it it exists

It is desirable to be able to s~drch for a sub-collectJ.on of
objects. By this we mean searcfiJ.uy tor ona array or list imoedded
in another. for this imbeddJ.ny to be defined a way of comb1.ning
arrays of index objects must De aetined. ~n the tYPJ.cal case of
primitJ.ve arrays, arithmetic p~us, toyether wJ.th J.ts distr1.Dution
properties can be used.

iQ£~1~
Tnere are two cases OL locate, dependJ.ng Oil Whether the
operands are arrays orli;ats.

a) Let A and S be arrays WLtb I tbe J.udex object array
of S. Let the ranks oi A and. S be equal. Let cemb
De a function defined un the index objects of A and s.
Then A loc S J.S H, an J.ndox object ot A, such that

b)

B comb I sel A <-> s

Let A be a lLst dnd j a pseudo-lLst. For lists comb
is arithmetic sum. In thLs case !Q£~!:~ is defLned so that
the Coppola identity,

A loc S +1.1ist S sel A <-> s,

is satJ.sfied.

This section descrJ.lJes the ope ra toes lor numec J.cdlly oriented
cemputation. They create a new oDject us~ny tneir operands as
input to a rule oi co~bJ.natloll. dence they always cause copying
to occur. The operands of an operdtor are Objects; the result,
another object. The opeLdilus, to enable implementation of
standard languages, must conta1u seveLal kinds ox intoLwation in
their descriptors. There must be the inforwat~on necessaLY to
interpret the strin',:j of D~ts 01: Whatever loS in the maChine as a
number. In addition there mast De the J.nformdt1on whJ.ch the
programer associates witu the operand throuyb bis declaLation
statements. For our present purposes a number or value is a
concept not indigenous to SL 1.0 terms ox which we a.escribe tbe
functions of the operators. ~e assume tuat a va.1ue J.S someth1ng
understandable to a u::>er so tl.lat aefining operatJ.ons in terms of
values makes sense. We shall deil-De the value to be used in

IUM CONPID£~TIAL

102 BASIC CONCE~!S A~D SfhUCTUnES Part 2'

operations in terms of a tiX~3 radix rHpresentation with radix
ten. We assume approximately the goals of PL/I but not the
achievement of any particul~r ~wplementation. ~e assume that the
user can designate range and prec.ision or precisl.on only (£i xed
point and floating point, respectl.vely) of his stored operand.
puring expression eVdluatl.on the machine will ~eep at least the
declared precision and, usually, no more than N digits, where
N depends on the machine. Rlluniny expressions on il machine with
larger N will not yield less accurate results. N l.S curren tly
a machine aependent parameter. In the case of SL it will
presumably be declarable as pact of the program ambience.

The storage operands are held to the precl.sion spec1.fied by the
programer. Durl.ng express1.on evaluation greater precision will
generally be aeld in temporary storage cells. This is analogous
to the extra guard byte ot ~recis~on held for floating point
numbers durl.ng 5/360 l.nstructl.ons. Except .tor division the
precis1.on retained will oe at least as great as that maintained
by f>L/l.

A further complication to operator specification is language
depenJency. A classic example ot this l.S th~ FORTRAN d1v~de.
If the variables being aivided are integers, the FJRTRAN result
is the integer obtained by truncation of the correct answer,
regardless of the result dest1.nat1.on.

a .. b (FORTRAN) <--> (xT) x floor aDS T<--d + 0

Naturally the scope of var1.dD1.1ity l.n this area l.S huge. ~f
every prog~amer chose to de~iue differently the results of all
possible ordered pairs ot l.nput descr1.ptors the language
dependence is SL would be unmanageable. Our goal is to provide
enough flexibility to proviae a reasonable set of alternatives
for future growth. Special glitches for today's anomalies will be
provided. It is hoped that taey wiL~ wither away.

For tae nonce we will define the loyimetric operators over the
range of t ixed dud floa t1.ng -It::c illhlL numbers with base 10. P L/l
notation wl.lI be used to aesJ.gnate the current descr1.ptors, i.e.,
(p) or (p, (1) denote s precl.sl. on. we assume that nu mbers are
~ept in signed true form. We also assume that the program has
given some specification of tue amoience of execut1.on. Th~s is
usually derivable from the uata descL'J.ptl.On tor the entir:e
ex pcessJ.on.

When an operator executes l.t KUOWS the tollowin~:

the values of its operanCl.S, incluaing t.he location of

/

(

(

10 j

si~nificant dig1ts
the declared or compate~ ~rec1sion of 1ts o~er~nds
tbe value of "N", the maximum prec~sion to be used in the
present environment
the prec~sion required in the present expression, ~etermined
from the controling assignment
the number, K, of o~erators ~n the present expression

The machine can use run-time values to help w1th prec~sion
problems, since it rans inter~retLvely. Tne valae ot an operand
may contain more dLgits tnau Lts specLfied ~recLs10n. This
bappens typically after a divLde o~eration. A reasonable value is
specified for the precision ot the result. AdJLtional dLgLts up
to the precision available mat be kept since they will increase
the accuracy of the result. bat their loss W1Ll not cause an
exce ption.

fhe "precision reqaired" w11l derive xroru the declared
precision of destination objects Lor assignment operations. In
general a number of digits appropc1ate to the fLual assignment in
a statement will be kept. TULS assignment will sometimes be
called the controliny assLgnment.

2.6.7.1 Operators with IdentLcaL JomaLn dnd Rauge

'rhese operators are assOCJ..dt.ivc anu may be used where
associativity 4S required to make ~ood use of the operator. The
reduct ion func tional is lilt exaUlj:Jle w heee aSSOC.4a ti V4 ty is need ed.

~.6.7.1. 1 Numeric Operato~s

The primitive arguments for the nuweC4C operators are numbees in
all cases.

:2!Y§ and !!.!~!!§
The monadic functions £~~~ dnd
value and significance dud precision
s1gn cbanged in the case ot !i~~.

ggy,y!!

!~BY§ retarn the same
as the input, with the

S1gnum returns a sill~~e JLg1t with precisJ..on (1,0) dnu value
1, 0, or -1, accord~ng as tue 1npUt is positive, zeco, or
negative, respectively.

!;;~£i.E (+)
Reciprocal returns a valae e~udl to one d1vided by the value
of the input. The result precision is (p,g), wherein p is
equal to the precLsLon 01: ttte influt, and q.LS chosen to
place the first sigln±icallt dLyit of the result value at the

IBh CJd~ID~NTIAL

10~ BA51(; CON(.;EP1'j AND STRUCl'URBS Part .c!

left of the field. In addLtion, if the o~eration is
followed in the ezpLBss10n by multip11cation or
exponentiat10n, the value 15 Kept as a rat10nal number if
the absolute value of the denominator is .c!So or less.
Purther, if the d1vision is not exact in the specified
field, aQditiona~ digits up to N are kept, but not
considered crucial; L.e., their truncatLon w1l1 not cause an
exception.

£~il!llg and tloQI
If the precision of the 1Uput JoS (p,'l), with i ~ 0, ~i!ing
and fl02£ return t",e at'propriate integer with precision
(p-q,O). If ~ < 0 a doma1n except10n occurs.

There are additional monadLC operators, to wit:
g~2

:h!!.

There are the dyadic ~orms ot t~ese operators:
2,!!!!!
4itfe£g!!'£~
E£.Qdu£!
:l.,!!~tig,n~
!!~~
!!!!l
EQ!gf
lQg

The g,uqti~~ tunction returns a single scalar result, the
quotient of its arguments. Two additional dyad1c o~erators are
related to tnis one. Togetber taey proviae the tunct10ns
provided by two dLtierent deiJ.nLtions of the £unct10n which has
been called "mod" ill some lanjua<jes. It seellls aesirabJ..e to get
away from the name "mod" altogether to avoid further confusion.
T~e names we have chosen are, u8~ike "mod", consistent with
mathematical usage.

:l.,!!oti~Q!;.-f§.!!!aills!.!!£
The dyadic funct10n quot~dnt_remainder returns a t~o element
list. The first element JoS tae same value as that returned
by the quotient function. The second element is the
remainder.

£~2!g!!~
rhe dyadic fUIlction £~si~i!~ .lS defined as iu APL.

!.1!~g!li!:!!!!!!.
'r he monadJ.c funct ion maSH!!.£ygg Y 1elds the .absolu te value of
Lts argument.

2.6.7.1.2 Logical operators

lrlh CUtU'lUEN TIAL

I
~.

Chapter 2.6 :fiJNCfIUN SET 105

Thes~ operators return domain errors unless the ~nput values are
within acceptable limits o~ 0 or +1. If the restriction is
met. the return is the QPpropridt~ single digit uumbar with value
+1 or O. The result precision is (1,0). Note, for example,
that ~, may not b~ an ~dentiti operation.

!lQ!:. (....)
~.!!g
Q£
!l~!ls!
llQ£

l.6.7.2 Operators with non-uuiiorw Domain and/or ian~e

These operators are not Qssoc~dtive at all t~mes. In some cases
the ran~e may be a suhset of tne domain so when the domain is
restricted to that subset the o~erator is assoc~ative.

2.6.7.2.1 RangB and Domain Difter

These are pr~marily compar~sou operators but the elementary
search operators are also ~llcluaeQ Ln this class.

~~al and .!!ot~~t~.!!l!1 taKe llUliwer s and strings as £It" imi ti ves.
with string primit~vt:!s tneu: def~n~tions are tae ~!!Si and
Q£ reductions, respectivt:!ly, of tnt:! result for ord~nary
lists.

Additional operators are:
l~
11
~1!.
~
!!§!!be£

2.6.7.2.2 Dyadic Operators w~tn Heterogeneous ~omains

These are not exactly computational operators since they really
build new structures trom eXLst~ng ones. However, they are
grouped here because their ~nputs dre computational.

~!l2~!H!
£2f!.E!:~2
&~~Yl!ll!~
£~R£g~2.1io!!

IBM CO~f~DB~rIAL

106 BASIC CONCEPrS AND STRUCTUR.t::S Part 2

This section consists of the operators which
access path to an object. filey do not make
selected object nor do they moaiiy that object.

only def ine an
a copy of the

2el~1
,!;~!~
gfQ.£
fQ£lig
f~.!g£~

This section descrioes tile operators for d~rectiny the
control. It ~s divided ~nto two parts. The first
concerned with a single control ~dth. Tne second part
operators for multiple control ~aths.

2.6.9.1 Sequential Coutrol

flow of
part is
uas the

These - operators are used to s-tart control flowing through a
program and to modify aud control the sequencing at the text ot
that program.

~.!gluS1g (cf 2.1.4)
~£2~Y (cf ~.2.7)
~.!i 1 (c f 2 • 2 • d)
£~~1 (ef 2.2.d)
gQ.£Q (cf 2.2.d)
de!ll (cf 2.2.6)
fQligitiQ~gl (ct 2.2.8)
2ig~! (cf 2.4.1)

2.6.9.~ Mult~pl.e Coutrol

'rhese operators allow parallel execution of expressl.ons and are
used to create, control, and manito£: ~ndependent processe::i.

B~al!~l (cf ~.2.6)
£~at~ Lef 2.4.3)
~~1fQ1 tcf 2.4.3)
2Ya.E~nd (cf 2.4. 3)
etart (ct 2.4.3)
ill.Q!l.i!-.2!: (cf 2 • 4 • 3)
i~Q£~ (cf 2.4.3)
~llj~£l (cf 2.4.3)
££iQfit~ (cf 2.4.3)

IBM CON¥ID.t::NllAL

('--',,,

~_//

•

(

Chapter 2.6 iUL1IC1'lObi ;jET

This section descr1bes the operators used
information flow between ~rocesses and for
resourc~s. These operators dLe a separate
1nteract beav~ly witb the arD1trator.

2.6.10.1 Information Flo~

107

for input/output.
the allocation of

class because they

'rhese otJerators are used Doth to ::iyncuron1ze l.uJependent
processes and to provide ~he ruadn~ for l.niOLmatl.On transfer
between two processes. There tunctl.ons are d1scussed in section
3 2.

~fLme§§!gg
!~!.L~§§ggg
2.~!HL~~£
.!ai.L~~
in1;roduc~

2.6.1J.2 Resource Allocatl.on

These operators are used
acquire resources known
executed. They also are
chapter 2.5.

£ 1 a.!.!!

!!91gi!.~
!.~!~.§~

to maKe prelim1ndry claims and
to the context l.n which they
ussu to release t~e resources.

to
are
See

This section l.ntroduces toe opdrators for editing and searching.
The approach to be used is to eucode the transformation tor a
finite state transducer whiCh taKes as input the encoding. and
the strl.ng to edit or searCh and produces as the output the
result. The machine must be a~ least a generali~ed FSM but even
more power may be required.

C' 2.6.11.1 Dyadic Translate

The form is

lB~ CUNFID~NTIAL

108 Part 2

Ii is a translate aac~ine
~ ~s the transiate s~bject.

'rhe p~rpose or: 1l!!!21:i!~g ~s to transiate the elements ot the
translate subject 1Uto ail o~tput torm, suh)ect to the
constraints, malupulatiolls. and. transtor:mdt1oIlS specl.fied by the
translate machine. Tbe types of translations wh~Ch can be
specified range from the f~n~te state operations of the 36J EDIT,
EDMK,r R, and 'rRT t 1:i.rough Fort.L:a n FO.l.H'1A'r and PL/l PleT URE
processing to interpretiny/colip~l~ug p.rogramming languages and
reco~niLing/transduciilg formal Languages.

rhe :!::£@slS!:!::g 2ubj~£:!::. is a col.lect1 'Ie ob Ject Wi1~ch is ':lenerally
of type list. The eleweuts of tae 11st are the objects (e.g.
tokens, characters, symbols) upon wOl.ch the translate maChine 1S
to operate.

'rhe i£g.ll2!E~~ l!i!£l!~!!g l.S a collac ti 'Ie ob Ject wn ich ow ns two
objects: the initializat10n fuuc~l.on and the translate table. The
translate table is a col~ect1ve oDJect of matr1x extraction. Its / '
index set is the cross product ot the set of d1stinct elements I
in tne input and a set of states S. The elements of the translate
table are objects which respond to an execute request with a
value of ni1, ~gde!, or an element of S. dence, these elements
may be functions (genera~ll tr~ad~c), lambda-expressions, groups,
varia'oles, or constants. whose a va,luation may entail side-effects
(such as modifying a push-down stack or adding to an output
list). The ini tiali za tion .funct 10n J..S basically sim.ilar to an
element of the transld te table. In response to an e x.ec ute
request, it md y perf arm sOll1a housekeeping (or pr:e- processi ng,
such as stacK 1nJ..tia.l.izatlon) <J.utl.es as a side effect, and I:eturn
a value whiCh is that element of S (together with the first
element of the translate sUDJect) at wh~ch translation is to
commence.

Translate operates 1n the following manner: After 1nit1alizing
the output (0) to !!!H!~l aua. the 1nput marKel:{J..j to v (Le., the
zeroth position in the transl.d. ta subject), tlie initialization
function is called. The result~ny l.nitial state, along with the
current input, determine an elemen~ of tne translate taDle to be
executed. This. in turn, produces d new state as J..ts value
which, together with the flext ~ranslate subject element, can
again be used as an inde~ into the tranSlate tabla oDject. This
procedure is applied J..teratively until either

a) the new state is ~i1:
or

b) the new state is undet

ldM CONF~U~NTIAL

,/""".
(

(

(/

Chapter 2.6 10~

Case (a) occurr~ng concu~reDtli w~ta eXhaustion of the translate
subject signif~es a SUCC~SSLul t~ans~at1on, ~n which case the
output(o) is returned as tu~ value. AUY otner termination
condition indicates that all erIor has occurred, in which case an
exception is raised and tOe va~ue to be returned 1S a collective
object cons~sting of the .Hl co lllJ:Jle ted output (o), the input
marker{i), the state(s) at the time of the error, and the
complete translate SUbject.

rUe 10PUt marke~ aud output mat be mau1pulated Dj tue elements of
the translate taDle, tnus prov1ding extendea finite ~tate
operations. By suitable specLi~cation, translate has all the
power of a (simulated) furLuymacnine. In add~tion, recursive
calls on translate perm1t the s1illulation of tree-like automata
and non-determin1stic automata.

In 5L-like terms, the funct10n eQuid be written as

(m,k) lambda
{dcl new (i,s,o)
ilndef->o;

}

)->i;
apply{sel(l,m}; (a,1,K»->S;
repeat,s#nilA(s~unJet);

{apply (sel (
(sel (1+1->i;k) ,s);
sel '-', m)) •

(0, 1,X)) ->sn ;
sel(s~nil. {a. (o,i,s,k)j)

wnara sel stands for the seiect function. As ~n example of
translate, consider the tollow~ny SL progcam seyment:

•

•
O->n;
(o,i,k)>'(A}=>'£[O;Aj;
repeat(n+1->n<10;

{(o,i,k)~{o cat ('$'.n)->o;
te 5 t (0 • i ; J() ;
Bj=>TlU;Aj,

(O.1.,k»'ta cat .list ll->J;
te s t (0 ; 1.; k) ;
b}=>T[niBJj) ;

syn TIl ;BI=>T IO;Bl;
nil=>T[nil; B J;
(o,i,k) ~[se1 (shape(k) -2=1., {to cat l1.st '. f_>a}) ;

5e1(3 res (shape (k)-:'>:"1) =J; {to cat l1.st " '->01) j=>test,
transla te ((A, T) ; • 00 1023456 7ti') ->r:<a::i ul t;

110 BAS1C CONCE~fS ANU SThUCTURES Part 2

•
•

wher~ sel is the select functl..on, res is the dY3.dic residue
function, and cat l..S the catenate function.

The value of r~sult woula be the object
.$1,023,456.78

2.6.11.2 Monadic Translate

The monadic form of translate

takes as argument only the translate SUbJect K. It is assumed
that k is a SL str~ng 10 external syntax torm. The result of
translate is the internal, .runctional SL equivalent at the
external syntax.

(

(

(,

t> ar t j

Part 2 described the tundam~lltdl structures at toe basis ot AFS.
These structures provide tae elu~va~ent 0i a "baLe machine" that
executes SL directly. 'rh~s par-t <1escribes systelll facl-litl.es
built on top ot that basis to ~rovLje a rl-ch s~t of user oriented
fUllctions.

An important concept or AFS is ~oat taere are no privilegea
instructions, only privileged r-esources. Since all operations
availdDle to the operating system are therefore aVdl-lable to any
user, special purpose systems as well as IBri stanaaru systems can
be designed and run like Ordl.ildry Jobs.

Cnatlter j.1

SYSXEM DESluN CHIT~RIA

The system desiglt criteria iire enumerated in tecms of
applications, operational envl.ronmants, and service modes. These
ace derived from fS marKet requLrements. The object tor the
exercise is to c~assl.ft the requirements lnto three somewhat
mutuaLly independent categories. Criteria from each categor~ are
used as the basis to Deg~n one aspect of the system design
effort.

Topics to be descrined l.U tn~s section ot tae rapoct give an
indication of the curreut effort to satisfy the appll.cat~on and
certain of the operational enVLconment crl.teria.

Criteria l.ncluded in thl.S cat~yort are focused on the types of
user applications wnich are prevaLent during this time trame.
lmportan t appll.catiolls inc.iuue:

• Data Entry/Data ReLcl.€val,

• llata Manl.pulation dud ~omputation, and

• uata Communications.

operational EUVl.rOnlllen ts ace concernell II itll the
physical demands aud COUStCiil.Uts on a system
pecfoeminy usee appll.cations. Examples ace:

• ReliaDill.ty, S~rvl.cedbl.lity, Ava~ldb~iity

• siz~ OL data Da£B

• Number of lines ana te~mLnals

• G~ograp~ical dl.str~but10n of:

Ida CJNFIU~~TIAL

as}?ects
relative

of
to

ChapteI' 3.1 113

• UseI'S

• TeI'lIIinals

• Da ta Bases

• System nodes (in a netwOI'K)

- 'l'raft:ic I'at-a/message Jinx
- Re sponse Tille

- Security/Privacy

Service mudes are concernea ~ita the manner in whicb system
services are e~erc~seQ bj d user 1n order to satisfy h1S
application requirelllents wbeu suojected to the appropriate
operational env~ronl\lent constcd1utS. Service Modes include:

• Transaction based (clouC1ue processin~),

• Interaction based (~on-rout1ne pI'ocessing),

• Event-tr19gered,

• Batch, and

• Message 3w1tch~ng.

Id! CONfIU~~T1AL

Cha !;Itet: J. 2

ENVIRO~MErif MAaAG~MBNT

The principal functions perLormed Dy an operat~ng system are to
set up the ellvironm~nts requ~t:ea by procedures and to execute
them ~ithin tbose environments. ~uct:ent systems have not:mally
assumed a "standat:d" environment, 1n which ali user code is to
operate. This enviconment 1S usuallj different from that
requit:ed by components OE tbe ~per~ting system itself. Software
tools tot: the user, espec1ally compilers, are designed under the
assumption that the generatdj code is to operate in the
"standdt:d" environment. Most tOOlS, tneretore, ace unusanle in
other contexts, and the "stanJ.dt:d" enviL'onment.Ls otten unsuited
to more ambit10us user subsystems. wnen faced by non-standard
circumstances, therefore, the usec ot: systems progI"ammer is on
bis own and usually resorts to the worst ~inds ot trickery -- by
necessity, not by Choice. As 1S well known, US/J60 is full of
such ad hoc solutions.

Since environment constt:uction dDd management pcimitives are
incl~ded directly in SL, eithec IBM or user systems may set up
environments wbich are well SUl.tea to their needs. This implies
a new outlooK. on softwa.re tools, whiCh no longet: are allowed
assu~ptiolls about the ellv~ronillellt.Ln wh~c~ generated code ~s to
operate. In addition, as seen 1D ~at:t 2, steps are now required
to imbed a procedure witnin 1tS operating context. 50ftwat:e
subsystems and victual syste~s t01low as corol~~c~es ot this
appt:oach. Th.e disciplines whJ..:=h .Lnsure ~nteyr:lty, privacy, and
se2urity pervade the system, inc.Lud~ng all subsystems.

System control and the command language is also e~bedded ~n 5L:
user commands would tt:anslate to axp~essions in SL. This view of
contt:ol is sJ.m~lar to the app~oach taken in the July 1970 draft
of the ceL re~ort. In eCL the contL01 functions were programed
in eCL procedut:es. This dPproa~h ~1ves the uset: mot:e flexibility
in def 1n ing wor it flow tllan a stat.ic lan guage 11Ke JCl.. Nest ing
of contro~ pcocedures is also allowed. Any IBM standerd command
language will be pt:ov1deu as pact of tbe system support as well
as the 5L control functions.

r
The root of the system ownecsnip tree is the system resource ('---"

lsa CONPIULNTIAL

(

Chapter 3.2 115

manager, which n~s tAe re~pons~b~1~t1 for ~esource control. one
such resource is the sUbsystem landl.oI'd.

3.2.1.1 System St'ec~ticdtioll

The §1!h2Ya£~! !.~ndlQ£Q.. is <i collect.J..ve object that owns all the
a~ghest level ot'er~ting (sub)~istems ~n.J..t~ally dccess~ble to the
user; these include systems l.J..Ke U0S, CP, eMS. us, and TSS, as
well <is user-defined olJecatin':l sistems aud SL subsystems.l.nsect
requests lIlay be made on ~t to ad~ hew operatin~ s}stems, or to
delete existing ones; sU.J..table access r.J..~hts iDe th~s capability
will be installation-derinabld an~ presumably secure. General
users may not make modifications to dedicated operating syst~ms
owned Dy the subsystem landlord.

~nteraction among opecat~ng ~ysteills, such as with ~P/CMS, may be
achieved via accessors assigned by tne subsystem landlord.

3.2.1.2 kesource Control

The resource manager is a collect~ve object Which contrOlS the
a.ilocatioll of space, time, alld external devices, andtne sharing
o£ library resources glo~al to multiple operat1ng systems. It
may logically (i.e., via synonyms) group elementicy resources
(SUCh as ports, storage dev1ces, o~ liDrar~es) into new generic
collective objects called. £~2Q~££~ ~~£.!~~2, and pecml.t access to
them by other system object~ v.J..a the accessor mechanism. In this
manner, operating systems may be gl.ven control over spec1fic
groups of terminals, device cl.asses, channels, libcaries, etc.
Additionally, judicious ass~gnment at access r1yhts may permit
more detailed delineation of resource availanility.

For resources which are SAared. ny or accessible to more than one
operating system, the reSOUI:ce mdna~er 'lil.11 morutor the accesses
and guard against lockups and ueadloCKs.

3.2.1.3 Initial Iaterpreter

All POI:ts to the outside worlj are controlled by the resource
manager. Some subsets ot these ports illay be combined within a
r~source package and accessors to taat resource package given to
a dedicated subsystem. Such ports are called ~~~icaied £Q£1§; a
user si~ning on to one of those ports is immBdl.ately confronted
by the SUbsystem to which it was dedicated (e.g., a port
dedicated to T3S would re~u.J..£e·tbe user to enter the usual LOGON
message). No other kinds of Jobs save tnose mean.J..ngful to the
can troll in 9 operating system iIl<iy be en te~ed fL'OITl that port.

u~~ £Q£ts, Oil the other hand, are init1a.lly UUd.ss~yned. by the

IilM ~uNfIDENTIAL

116 SYS££M FA~L~lTIES

r',
I

system. These ports fall umier the control of the .i!!1:£ial \-..-/
i!1~£R~1g£ which is part of the :resource manager. The initial
interpreter I:esponds to user commands entered VJ.d a iree po:rt,
and creates the correspondiug sUDsystem under the subsystem
landlord. such sUDsy ste mSmdj U1C..l ude,for e.xa mple, user-tailored
versions of OS and DO~, or SL subsystems. Initial resource
claims fo:r the ne~ SUDsjstem may aLSO be honorea by the initial
interprete:r Defore control is transfe:rred.

Au ~~£a1ing §1§te~ is a SUbsystem Whose access ma~hine is a
p.:rocess called the £Q!!£.£Q'! .f!£21£Y dud w40se resource consists ot
a set of jobs and a collection ot ll.brdcies called the 2.Y.§te!
i.!!...2.!!1. Opecating systeills way be situsr g,!:ls!ic~.t~g (122.\HHH oc !£~.
Dedicated subsystems enJoy a semi-pe:rmanent stdtUS wl.thin the
system; that .l.S, the resoucee };Iac.Kages as.::;igned to them (in
particular, groups of ~orts) way De aJ...locatea for extended
periods and the subsystems tnemselves would tjpically be
generated by the system operato:r o:r tae installa tl.on. These
subsystems would include LHM-suppll.ed operat~ng systems such as
as ~ith TSO. Free subsystems d:re created by use:r :request dnd are
hence t:ransient; they normally will be destroyed wnen the user
signs OEt. Thesa SUbsystems Wl.ll ~:rimarily comprise
user-initiated and -tai~o:red OS and othe:r local operating
systems, as we~l as all SL SUbsystems.

3.2.2.1 Resource Cont:ro..l

Each operating system may be ~iveu dceesso:rs to resource packages
via the resource manager; tiLl.S may occuc at tlle time the
operat.l.ug system l.5 adaed to the subsystem landlord, or
dynamically when the ope:ratiu~ system is .l.nVOKed. In theforme:r
case .. this permits an operatJ.ll'::l· system to be sole accesso:r of a
set of ports or lines; tnesece::iources are thus Jedicated to that
operating system unt.!.J. either: the o~e:ratillg system is Cleleted o:r
the resource manager:, which stl.ll owns tne resources, :rescinds
accessioility. In the case of uynamic all.ocation, ~orts and
lines a:re access.l.ble to t~e operatJ.ug system on. a cequest basis.
In either case, resources SUCll as dl.SKS, on-line or vi:rtual
printers and card-:readers, dnd system 11.Dracies in resource
packages accessible to operat.l.ll~ systems are not shared by othe:r
systems; hence, management 0t these resources becomes the
responsibil.l.ty of the operatin~ system control proy:rams, via the
§~~21§.t~~ ~§2Y££~ !~ga3~~§.

A dedicated operatl.ug SyStBllI may nave
assigned by the system resource manager)

IrlM CONFID~N~IAL

tne only accesso:r (as
to its system l.nputj the

(

(

Chapter 3.2 117

libraries contained therein ~ay be accessed ny other systems
provided the subsyste~ resourCe manager of the dedicated
operating system permits an accessor LO be established.

].2.2.2 subsystem Resource Manager

Each subsystem contains ~ts own resource manager to control the
allocation of resources from tus resource package. Requests for
additional resource al~ocatLon ueyond that ~n the resource
paCkage are wade throu~b tne subsystem managers, which
communicate direct~y with the system resource manager. It is the
responsib~lity of the ~ubsystew watiagers to mon1tor resource
requests and perform ~ocal deadlocA. prevention ana control.

The capability in tn~ system 01 nesting subsyst~ms entails the
recursive application of suu;,jystem reSOUl:ce management. Each
SUbsystem may permi t d subsystem nested within ~t dcceSSOI'S to
part or all of 1ts resource pdcKdge (as would b~ the case when
running a free user-opt10ned uS under a free user-optioned CP);
1n tnat event, the nested subsystem's resource manager would
control those resources d1Lectly. rlow~ver, the niyuer-level
subsystem may elect to m4~nta~n control over the resources, 1n
whiCh case lower-level subsyst~m Lesource managecs would have to
route resource ceque~ts through it (such m~yht be the case when
cunning 4n incremental PL/~ cOillp~Lec under a SL subsystem).

3 • 2.. 2.. 3 C on tr 0 1 P rog r a III

'rhe control pl: og ram co ntains tne 1:' ou t1 nes necessar y to serv ice
the system input. This 1ncludes 1nsecting ana deleting jobs,
scheduling, priority assigllin~, Lnterrupt bdudling, managing
elements at the resoacce paCKage,s), provLdLng for job
iui tia tion/termina tion, and p~c toculiny syste III IDdin tenance. In
terms of curcent operatiny sistems, the control ~co~ram reiers to
the job, tdSk, and ddta .anayament in 05/3&0; the taSK, data, and
program manay~ment in TSS/3bO; anu tbevirtual machine maua~ement
in CP/6'l.

3.2.2.4 System Input

The opecating system resource cons~sts of the jobs which it is
cunning or queueing, together witn the appropr1dte libraries and
otber resources contained in tbe resource pacKa~e allocated by
the resource manager. Tbe 11brar~es contain Idnguage processors,
maintenance and accounting files, langua~e-associated
subroutines, and any other s~mant~c intormat10n reyuired to
define a job context. The job contains control information
required by the operating system, dlong with program text or
modules; in the case of the SL system, this ~nLormation is all

IdM C0NflDENTIA1

118 51STHM FACILITIHS

part of the proyram it~elf. Jon integrity dud
provided Vid the allocat~on ut t~me dod s~ace oy
manager upon ie quest by tile 0fH~r a.t~n~ system.

security is
the resource

A iQ.Q in the 5L sense ~s a subsystem owned Oy the subsystem
landlord.

3.2.3.1 Jobs in the 5L Env~ronlBent

5L jObS may be created D1 toe ~n~t~al ~nterpreter at the user's
request from a free port, or they ma.y De created iyndmica~ly by
existing S1 SUbsystems. In tne foriller case, a user enter~ng the
system through a free port ~nforms toe initial interpreter of his
desire to run io 5L mode. Th~s ~nit~ates the creat~on of a 5L
subsystem by the initial interpreter v~a insert requests on the
subsystem landlord. The resource package for the SUbsystem
contai~, minimally, an accesso~ to the tree port plus accessors
to any of the user's files; ~n re~uest~ng a 5L subsystem, the
user may spec~iy addi tl.onal rclsour;;es to De allocated. Hence,
the job is log~cally created at s~gn-on t~me aud, if DO
SUbsystems with aut onomous cOlltrol are cceat eli ~n the inter im,
lo~ically destroyed with sign-utI.

Jobs may a~so be in~tiateu irom wLthl.O a SL supsystem by insert
requests 011 the subsystem law.i~oL·u. The l:esources ot the craa ted
job must initially be a subset ot the resource package granted to
the creator. If the two subsystems are then to run 10 parallel,
only one ma.y have access to tne entry port, and resource contEol
(tor shared resources) must De dL!H tl:dted by the system resource
manager. If they are to run nested, then either or both may
reta~n access to the port; oow~ver, resource reguests by the
nested job's SUbsystem resource maDager must be reflected bac~ to
the bigher-level Job. In Dotn cases, mother-daughter jobs (as
well as other autonomous s~ subsystems) may communLcate via
~hared data files or message tl:ansm~ssion.

Each SL subsystem, once createu, is free to wake use of the
entire 5L language facil~ty: sUDta3Ks may be created for serial
or parallel execution, elements ot the resource paCkage util~zed,
etc. The 5L user ha.s the most freedom ~n employing the system
for his prOblem sol uti all, hUL does Dot have the capdbility of
impugning the system's integrity or security.

3.2.3.2 Jobs in Non-5L Hnvi£onment3

IdM ~UNflu~NTIAL

/' --
(

\"-.-

(

(

(

11~

Jobs under the control ot toreL~n operatLuy systems w~ll maLutain
the idQntities they wouLd have a~ Lf they weLe running under
those systems aDU within those sistems' host drch~tectures.

3.2.3.3 Resource Control

a SL job may utilize au} resource available ~u its subsystem's
resource packaye, or it may request the resource manager to
create aaa~tional resources xoc it through the suusystem resource
manager. However, regue~ts ior ~ncreased or moaified resources
oy nonconversational Jobs (~.e., those w~thout a port in their
reso~rca packa~e) vill result ~n message transmission to the
mon~toring subsystem (or cancellation 0% the JOb it no
nigher-level Job exists) ~f the request cannot be granted.
dence, 5L libraries, vor~spaces, t~Les, etc. fa~l directly under
the control ot the resource ~anager; tais provides add~tional
chec~ing facilit~es ior mult~~ly-access~ule iile usage, as an
example. The user's own libcaries and workspaces may be made
access~ble ~o the subsystem e~ther at the t~me the subsystem is
created, or as the user requires taem.

liesources for jObS under tore.lyn 0.t'erat~n'::l systems are assigned
to the 0perating systems Ln the manne~ p~ev~ously stated (section
3.2.2.1). Whereas the accessl.n~ mechanism may be s~milar to that
above, users of other operdting systems can v ~ew I:esource
availaDility ~n the manner to wb.:u:;h they have become dccustomed.

3.2.3.4 Example of System ~onL.lgucation

'rhe following 1.11ustI:at~on is d. static, logical repI:esentation of
a system with 6 ports: POI:ts 1 and 2 are dedicated to an OS/370
subsystem running ODe baCkground and two interactive jobs; POI:ts
3 and ~ are dedicated to d T55 suusystemrunnin':;j two interactive
jobs; port 5 was iree, but bas DeeD assigned by the initial
interpreter (upon user s~yn-on) to dn SL subsystem; and port 6
was free, but has been assigned to a CP SUbsystem, which has in
turn initiated a private OS/37J sUDsystem with access to the same
port. In addl.tion, there is an 5L subsystem which is apparently
running in the background after having been ~nit~ated by another
5L subsystem no longerdctive:

120

,- -

iT
,

I,'
/1

I I I
/ I

I
I I

/ I J I I ,
I I . I

I I
I

I I
J I I

I

IBM CJ.~.f IuENT IA1

(

(

5ISTEi'1 CuN£ROi.

Syste~ ~ontrol is cOllcerned w1th that set of data structures,
processes and control mechanisms re~uired to s~pport ~nd control
the work flow operat1ons 1n tue system ou two levels:

• r'uilct ional

• Server confi~urat1ou

On the funct10nal level, System ~outrol is concerned with the
l.nitia ti on, coordina ti on aull te rm.lnation ot system f unct ions in
response to external (e.~., on-line user) st~mul~.l in

• Data commuuicat10ns

• ilata Entry and Data detrieval

• Data Computat.lOll aua Manipulation

On tne server confi~urat.lOD level, System Control is concerned
wit~ the control and syncbron.l~at.lon of system work flow dnti the
allocation/aeallocatioil ot resources.

fUilctionally SpeaK.ln'j, System ·..;outi:ol can be iu.r:the.r: PdL"t:l.tJ.oned
to consist of System Command Couti:ol and System Non:l.tor Control.
System Command Control is concerned with the contro~ and
management ot normal system O~eL"atLoils involv.ln~ system functions
and resources in response to ex~arndl (e.y.; U~er) stimulii~
System Co*mana Control operate~:l.D 11ne with si~tem wo~k flow.
On tbe other hdnJ, Sj~tem MOll:l.tor ~ontrol i~ re~~onsibl~ tor the
monitoring, detecting aud hdudl1ll~o~ exceptLonal cond:l.t~ons
occurring in the system. Sy;.:itew l'lonLto.r: .Control ot>eI:dtes in
parallel with both the system ~ork tlow stream dud System Command
Control.

In tbe present repo.r:t, emphasis L~ focused entirely ou System
Command Control, wh~le capaoLl~t~~s characteri~:l.ny System Monitor
Control will be enumerated 1~ a later sectLon (3.4 System
Punctional Management).

122 SYS!BM CONCE~TS A~J FAClLITIBS

1("--'\

Concepts fuudamen tal toS istem ::; oml.lland Control wJ.ll be pre~en ted ~_/
trom the following perspectJ.ves:

from the.
functional
autonomous

• The Faculty Concet;Jt. Here the
eyes of the ~ystelll J.tself. The
responsiuilitJ.es are identified

funct10nal partitJ.oDs -- Faculties.

~ystem is viewed
various areas of
and grouped into

• rhe Work Flow concept. Here the system is viewed
from the point of V.1.e w of a user· demand as the demand travels
through the system. DucJ.ng this system walk-throuyh,certain
syste m f unctions are orougnt J.nto focus as d ilid tteI: of sys tem
overhead while other$ are .1.uvoked exp.1J.cit.1y as a result of
interpretation and executJ.on Dj tAS system of the user's demand.

• Basic Control Structucss and MechanJ.sllls.
.:::;ystem is viewed. also from the vantage pO.1.nt of the
itself. An extension ot the Kel concepts (Part 2) in
a~se, ownership tree, and program structure resulted
formulation of the oasic structures and mechanisms for
Control.

Here the
system
Object

in the
System

The functional sy~tem structur~ (figure 3~3.1-1) is described in
terms of its two major const~ta~nt components:

• The five functionai faCulties

• The ~ueue mecnanJ.sm tor inter-faculty J.nteraction

3.3.1.1 Five Facultie~

A partitioning of the total slste m .t unct.1.0n~ .1.nto functional
partitions hased on dredS of responsiDil1ties resu~ted in a
five-Faculty system s~ructure A summdry description
hi';lhligh ting the roles of each }' dcui ty is given below:

1. The Terminal Faculty

A wide rauJe of terminal capaDJ.lities are
provided in a modular faShion. WD1Ch can De configured by the
user to provide him with a delective combination of terminal
functions to meet his specif1c applicd tion, operational and
service mode requ1rements.

2. The Data Communications Faculty

~dM CONFlu~NTIAL

(

(

Caaptl'![" J.3 1:.::3

Tbe Data ~ommull~catiolls Faculty ~s concerned
with the transportation ot datd ~nto and out of tile system. The
Data COl1lmun.ications funct~ons are:

• Trausmiss~on dependent

• Terminal dependent

• Message ~epenjent

3. The mouitor ~ont~oi Faculty

dnd nandling
Also, ~t is
support type

Th~S Faculty ~s responsible tor the detection
0% exceptional cuud~tions occurring in the system.
res~ons~ble for system support ana administrative
of operations.

4. The Commdn~ Control ~dculty

rk~s Faculty LS the central nUD of control for
the system. It is rest>oIl.s~ble .lor Ute ~nit~at~oni coor<lination
dud termination of system services in response to user demands.
Also, it is coyn~zant at ail t~mes of system work flow activ~ties
and system resource availdbil~ty s~atus.

Through a number ot
~ontrol mainta~ns, it is cogn~zant oi:

tables which Command

• The gloDal working contexts about a user,

• The Pdrt~cular worKing contexts about a
user dur ~II.g a specif ic instance ot user/system inter acti on,

• System ~ork activity status

• System resource status

5. The Data t.:ontrol F'ac ul ty

The respons~D~l~t~es of th~s
management and control for all system resident
include:

tdculty cover the
data. FUnctions

• The dccommodation of mUltiple logical
structures

• Security control for private aud shareable
data

• Exclus~ va cont col for COIlcuu:en t access of
shared data

IdM ~ONFIDE~flAL

.d~storical version~ of data

/" -"'\

~
'. '

If U~R./5'(~TEM INTEeFAC.e.

H
b:;
~

21 sr:
PI;l
t-; :1
~
~I

ltfMlAAL
FACULT'(

~

RES~ GtJ£UE ~

CoMMAND
COttT~o'

FACU\.:ry

DATA
CO..ma:>\...
~LTY

LREQUE~T
c5l.u£oE

MOf.ohTort
COWT£oL
l=AOJI.l"'{

FIGUR.E. 3.3·1-1 A fU~c.nDN"L S'f'5TEM STRUCruR.E

.~

r.
r:r
~

"0
rt-

I(\)

'H
i
rw
I •
IW

1.;.
it<;
:V;
,I"ij

!~
("
c
z
I"'j

~
Ie
it""
I

~

~
I

12Q

3.3.1.2 Queue Mechanism for InteL-Faculty Interact10n

In response to an external st1mulusat the user/system interface
(Figure 3.3.1-1), one or more of the Faculties must collq,borate
to pertorm the necessary ~orK. Inter-Faculty 1nteractions are
accomplished viq, the system d9'lUest and Response queues.

A unified message structure tor ~ntecq,ction is employed by all
Faculties. Pertinent information to be exchang~d is assembled
into a standard message structijce. This information cons1sts of:

• Identifications -- rlequester and Hesponder 10'5,

• Interaction types -- Bequest and Res~onse types, and

• Pacameter data.

Furthermore, on d conceptual level, once d faculty is act1vated,
it will perform the work 45 spec1f1ed until a lo~icdl conclusion
point is reached.

Once a functiollal system structure is postulatea, tbe next step
in bringiny the role of System Control into focus is to
scrutinize work flow activ1ty throu~ll the system and 1dentify
whiCh Faculties would come iuto ~Lay at Which p01nts in the work
flow process. This is accvlllp11s11ed by a tecnlu-dUe k.nown as
functi anal tl1read1ny. r .uis t.echu..I..<1ue involves the tr acing of
external (user) demauds throuyn the sequences of system Faculty
1nitiations, coocdinations, an~ tecminat10ns. The object is to
develop functional seq~ences or 1uteract10g FaCULties Lll response
to specific UHer stimuli..l... To be respoas..I..ve to market
requirements, the sc~nar10 tor u~er stimuli1 must be develoFed
based ou user appl~cation~ for the is t1rna frame.

An order hierarcl1Y 1S r0qu1red to specify the meaningtul
levels of control that WUHt be established 1U the system. These
levels of control sAould be IiSLUH:Hl on the Work Session, Job, and
Faulty levels. System Control u tilL zes tnis control hie£archy to
establish and ma1ntain successi ve levels of coote:lf;t for control
rela ti ve to the e.x.ecution of a asee worK. demand.

IbM CONF li),Gl'l'fI1\l,

,I
I .. ,

~j

(

(

Chdpter 3.3 127

The Fdculty and WorK Flow ~e~s~ectives address the roles ot
System Control from a gross p~~ot of v~e~ dud ~reseot a p~cture
of the system structure ~n terms at tuuctional dggregates. Th~s
is an "Outside-in" apprad~n--1n tuat tAe system ~s described
stdrting from the application level and etiding up ~nwards at a
functional part~t~ou level.

An ent~rely dif~erent ap~roach to dascriDing the roles of System
Contra 1 is au "l.us~de-O ut lt apl;>l.:oacu. He:ce" the em~has~s is pla ced
on a descr iptioll of the stI:uct ur es aou mechanisms wh~ch are ba s~c
to System Control.

3.3.3.1 A Multi-Server System ~uv~ronment

From tha point ot view of System Control., work ~s ~erformed by a
combination of active and fJass.1ve system elements. An active
element is a system servel.' (e. j., a program process~ng unit) that
is capable of doing work. TUd passive element is the program
mouule(s) whiCh contd~ns algor~thm(s) inuLcating how the work is
to be per£oI:med. This is aD ~tdI:dtive definition in that a
comb.l.nat ion o± active anJ pas.::ii VB elements lllay af/pear to be the
active element to a second f/ass.l.ve element,atc.

rhe external proyram structurd to~ all programs (eitner system
supe~visor or user a~pl~cation ~rograms) follows the standard
PL/I static nesting structUI:e (f4~ure 3.3.3-1). The external
prcgram stI:ucture tor tue system supervisory flro~rams for the
faculty system structure concept (section 3.3.1.1) is shown in
figure 3.3.3-2. Logically, tae su~erviso£ control pI:ogram can be
thought of as a sinyle procedure wbich in turn consists ot tive
tasie procedures.

~imilarly, tae internal prograili str~ctUI:e dlso dssumes d uD4torm
structure. The propeI:t~es of L~.1S structUI:8 are:

1. All programs "aI:B re-entrant.

2. One or more pro~ram lllouules make up a progI:am.

3. A program module COllSLstS ot two components:

• A progI:dm text component

• A symbol dict~onary component

The active system elements wuicn a~e capable ot doing work
operate in a multi-processing dllvironment.

Important conc~pts for System ContI:ol in tais area include:

IdM ~UdFIDt~TlAL

1.
opera.tion.

SISTEK CONC~PTS AND FACILLTIES

Multiprocessing is the norma.l mode of system

2. Server pool concept-- System serv~rs art! organized
into pools of resource by type. All server pools are
interconnected to one another through an interaction
network(Figure 3.3.3-4).

3. The concept of tlo~tLng supervLsor Gontrol-- No
master/slave relationship e~i~ts amony server elements in the
server pool. The supervLsory cont.rol prograUl which loS executed
by every available server is cunsiJered to be the master.

4. All server el~mt!uLs have id~ntLcal processing
capabilLties and are equaLly ~ualLfLed at performing work (either
supervL;ory control or user dpplJ..cdtion work). No server is
vested with any spec La 1 proct!ssl. ng roles.

5. A queue-driven system cOllcept-- server's interface
for work assignment is VLa wo~k ~ueues. Requests for work are
always enqueuea onto the dPpropri~te work queues.

IdM CONfIDENtIAL

(--,

\,-._/

./

(f -"
"'-j

Chapter 3.3 129

A

(

(,

FIGURE 3·3·3- t A PL/I. PROGRAM STf<UCTURE

ldM COwfID~NTIAL

130 Chapter 3.3 SYSTEM: CONCEPTS AND FACILITIES

PR.ocEDU'2E (\-AC.oLT'(SYSTEM STRLJCTURE)

'TE'<MIAA\.... FACULT'(

PROCEDURE.

DATA COMMUHlCJ\TION ~ FACI.JL 1"'(

L
PF<oCE.DU "-e

PROCEDURE

DAIA CON11<OL FAC.ULTY

MO~ITOR CONTRDL FACULTY

F(GUf<E. 3·3 'S-d-: PROG~AM STRuCrUl<E fOt< THE
IBM CoI'J~ \06wr\,A1.. FACULTY SYSTEM S~ruRE

(

(,

("

Chapter 3.3

• ~ ~

·If ,
INTEAACTION

~

• • •

"
,~

5E2VER •••
ELeMEt-lT

~ ,

Nt:. TWORl<..

4~ ~ . . . , ,Ir

INPUT / OUTPuT

131

•

Fl G-U~E "3 \ 3· '3 - lot-: A MULTI - SER\JE2 CoNflG-URAllDN

132 SYSTEM CO~CEP~~ ANil FAC~1~TleS

3.3.3.2 Syst~m Interact~ons

Sy stell In teractions are req Ilirea oetwe~n active ele ments to
accomplisll control and manaijament. of system functions and
resou~ces to be respons~ve to an externa~ stimulus. System
interactions taAe place due to:

1) Problem Interaction: These relate to logical
de~endencies witnin a program. Synchron~zation
between concurrently executing ~nstruction streams
is required •

2) . Supervisory In tt:!raction: 'rhe
interaction ~s conct:!tned mainly wit.h
ot server resources ana with the job
tuning the system.

superv ~sory
the allocation
of dynamically

3) System lnter~ct~ou: Act~ve system elements
interact with one anotner to ver~fy the validity ot
system control data, to dynamically reconf~gure the
system due to loau Dalanciny or waltun=tions, etc.

at these iut~ractions, System Control's ~nvulvement in the
supervisory function of taSK assignment and· server element
select~on will be descr~oed 1n some deta~l to furnish some
insight into the prOblem.

The controlaigorithw OB td~k a~signmant aud server element
selection is based on tna conce £It that all system r~sources are
executing the most important tasks as determined by the
environment. In the system ll"~'::fu.re 3.3.3--.), as a server
completes execut~on of tne worK specified by a task ~ unit of
work spec~ficatiou),Lt executes the task assi'::fnment algorithm of
the supervisory program dnd de~ueues a new task frow an
appropriate work queue. Tnus, taSKS must be assi~ned to server
elements so that work can be p~r~ormed, and server elements must
be selected from a ~ool O~ serve~ elements to taKe on the tasks.
Xhe role of interaction netwoLK is to faci~itate in this
assignment and selection fJrocess loU order that an optlomum system
operat10nal environment 1S estab11sned and ma~nta1ned.

fasKs include botb supervisory and user tasks~ New tasks
are generated due to new JOD Lutroauct~ons,' taSk spiittings, or
I/O inter rupts. All tasks are dss.ig aed prl.ori ty numbers.
Sillilarly, an "availability index" is associated with each. server
e.1ellent which is execut~ng a t.aSK. I'be ltavailabilloty index" is
derived directly from tue prLor1ty of the task whl.ch is being
executed by the server element. The ltavailabi1l.ty index" is a
measure used to determine t.he re.lative degree of a sel-ver
element's readiness to taKe on a new task. An idle server
element has the lowest "ava~ldDilitl index" (l..e.;most ready to
tak.e on a new task).

IBM CONFIDENTIAL

(

(-

Ch apter 3. 3 ;jYstEd CUN£lWL 133

.,hen a Bew task is bel.n-j ilitr:oduceJ. l.nto th~ system, it is
~ssigned a priority n~mber dna is ~nq~eued onto the appropriate
work. q~eue. An idle server ele lIi~nt is selected to taKe on the
task. In the event no idle ~erver elements are aVdl.lable, an
active server element must be ~e~ected to take on the task. To
make the selection, a compacl.son 1.S made between the priority of
the ready task and the availdb1.11.ty l.udex of each and every
active server element. lbose Wl.tu lower ava1.1abl.lity indices are
all available. The one se.rver element Ii ith the lowest
availaol.lity index, howti:ver, . .l.~ ueemed to be most eligible and
will be selected to take on tae task. The lower priority active
task which was being executed prior to the select1.on will yo into
a dormant state and will be en~ueuea onto the work queue. Should
ther\::! be more than one e1i'11.1)1e derver element with identical
availaD1.1ity indices (i.e.; al.l are executing tasks with equal
priority numbers), a tl.e-bceakl.ng algorl.thm wiil have to be
executed.

IBM CUNfIUENTl.AL

Chapter 3.4

SYSTEM PUNC~IOjAL MANAGEMENT

A description of the importdut concepts from some
system functional areas LS pressuted ~n tais chapter
indica tion of the directions b~~ng followed.

of the key
to give an

Data .base lIana<;ement is COllCerlHH.1 with the accessin'::j of data by
aultiple terminal users from an on-line centralized database. A
terBlinal user's access to tAl:! J.ata base may be (or the purpcse
of:

• Read-only data eutry and retrieval, and

• Read/Write data entey auu retrieval:

• Data Lnsert.lon
• Ddta modiil.ca tion
• Data deletion

Access in 9 talles p.l.ace in a COliC urrent ana l.ndl:!pelljen t llIaune r l.n
eit~er the transaction processl.ug mode (routl.nl.~ed ~rocessing) or
interaction mode (non-routinl.zej processing).

uata base iunctions to ue adJressed for tae AFS
architecture· Blust be responsive to these types
requirements. Accordill<;ly, to~l.CS to be dddressed
section touch upon all of the rollowl.ug:

• Data Indepenuence
• On-lille dvaila~ility
- Convenieut data entcy dud retr1eval
• Multiple user data structures
• symbolic data acce~s
• Authorization to pI:l. vat~ and ~haredua ta
-Exclusive control to concurr:ently shiiLeable
- Data Base recovery

Historical versions 01 data
- Transaction aU~1t tr:ai~

IilM ~ONfIDENTIAL

logical
of usee
ill this

data

(

(

Cbapt~r 3.4 135

A logical ~ep~esentation of tue major data base components
and inte~faces is given 1n F1~u~e 3.4.1.1-1. Use~ activities in
data ent~y/ retrieval, data manipulation and data base
aaintenance are presented to tlle system as appl~cation and system
programs. The proced ural. specific atioli3 o.t the PLOg ra ms are
defined independently of tue data de~cr1ptions. ~unctional
capaoilities in each area are made availaDle to the users via the
Data Manipulation and the Data Descr1pt10n languages. Definition
of multiple logical data structures on the ·same syste~ resident
data is allowed to accommodate the many V1ews wnich independent
users may elect to see ddta. The entity recora set concept in
terms of entity attribute description of external things is used
dS the vehicle for logical data structure representation. All
data accesses dre SUbJect to system data exclus1ve control which
is responsible to act dS a t11terin~ lunction to resolve the
contention problem Jue to concurrently shdreable jatd requests.
Ddta bdse address space is a IllUlt1- linear symbolic address
space. In add1tion, data cecovwcy constitutes au iutegral part ot
the total data base management tunction.

laM ~ONFl~~dT1A~

1036 SYSfEM CU~CE~TS ANU PACL~ITLES

U~eR AC.TPJ'T(e~ '" :
. DATA ENTRY
• DATA RETR\EUAL
• DATA MA"IPULAi10M

• DArA 6A!>E MAaNTEHAWC£

-------- ------- ~--

PROC;~A~
LIF)AAR.,-

\

LOU-I (AI- DAT~ 5TRUC.n>RES

• eWTlTY ctecoRt> &'IT
MAW"6e: MeNT

,

(,

'~

(

~------------~I\\,--

· E 'C' CW~I ve eo..TADL.

-""--'-- ---- -----
I

PttY!>l'-AL. OATA SPA(.e

DATA
8,,~e

REcoveRY

RGURe: 3.'1.1.1-1: A lOGICAL REVRESENTATION OF
1IATA6A5E COMPoNeNT~ ~ INTERFA.c.e5

liiM CONF .11)~NTIA.l.

(

(

Chapter 3.4 SlSTBM FON~TIU~A~ MANAGEMENT 137

The Data Descri~tion Ld.ng~ag~ (DOL) is the language used to
define an Ent~ty Record set. An Entity 1S a p~rson, place, or
thin~. The things may be real or abstract. An entity is that
about which a user wishes to re=otd iniormat10n in t~e data base.
An entity record set is a collect10n of s1milar entities (Figure
3.4.1.2-1). To completely describe an entity reCOrd set, it is
necessary that:

The attributes which descr1b~ the entity dre described.

The ent1ty records maKiu~ up the entity record s~t are
descr1bed.

The data names dnd tbeir synoujllls are descr1bed.

In addition, tue DOL can De
characte ristics of da td in the
capabilities are available ouly
mana~er.

used to descr10e the physical
data base. However, these
to tnesystem installation

The Data Manipulation Ldllgua~e (DaL) is the language which
enables the user to manipUlate the log1cal data in his
application program. Data malupulation implies data entry and
retrieval as well as computat.Loll aad process.1ng. doth of these
Capabl.lities will be supported in fSL as operatoe5. since a useI:'
may w1~h to converse uSl.ng any of tne . five languages: PL/I,
PORTaAN, COBOL, RPG, aud A~L, vaL must rely ou a hOit language to
provide the computational capab~lities. DML ,in tu~u, ~ill
pLovl.de the language inteI:taC<il betwE:o!en thE:o!progJ:am and. the data
base. Tberefore, all call~ to dna tram the data bas~ to retrieve
data, to enter data, to mod1iy data, or to delete data are
invoked via DML operators.

3.4.1.3

An entity recoI:'d set 15 a two dimensional arI:'ay
representation of data stLuctuJ:es in terms at Ent1ties and
Attributes (Flgure3.4.1.~-1). Au clnt1ty ~s a person, place, OI:'
thing. Attributes are the pLOt-ierty classes wil~Ch chaI:'acterize an
entity. An entity recoed set 1S a collectLon of s1milar
eatities. Also, associated w1th each entity recoI:'d set is an
attrl.bute whose values have a one-tu-one ralatlouship with the
entities (~.e.; the uni~ua identif1ers). Tbus, an entity record
is that collection of attribute Vd~ues willcn describe an entity.

Attributes for an employee entity record set are:

rBM CONFIDENfIAL

138

1. Unigue Identifier
2. Employee name
3. Social security
4. Sex
5. Birthdate
6. Data of hire
7. Department assi~nment
8. D~vision as.l:iignmell t
9. Education record

10. Marital status as of date
11. Posi tion as ot date
12. Perf. ~valuat~on as of date
13. Salary as of date

Attribute type 1 1.S tile ulul:!ue identl.tier attribute.
Attribute types 2 througa 13 ac.e facts about the emIJloyee entity.
A fact is a relation - a corc~s~ou~~nce between me~bers from two
sets. Attribute types 2 through 6 establish d one-to-one
relationship between a memner from the employee entity set and
the respective attributes. ior l.nstance, there can be only one
"date of .hire" attribute value tor an employee. On the other
hand, however, attribute types 7 throu~h 13 establish more
complex relationships. No one-to-one relationships exist.
Furthermore, eacn of. the H:!iatl.onsh1.ps can be qualified by a time
parameter. Thus, an employee can De assigned to work in more
than one department as of a certal.n date.

The internal system organl.zat~on of the data for an entity record
set must be such that it is responsl.ve to the many ways a user
may elect to view tbe data. One ~ay to express an entity record
set is in terms ot a collection ot relation sets (Figu~e
3.4.1.3-1) • i\ celation set is don entity record. set wnieh has only
a pdir of attrl.bute::i vhe Jl tl.e.3~ lJel.ny the ~dentity
attribute. Thus,
data requl.J:eu for the employe~ eutl.ty I;'ecord set CdU be

materialized trom the twelve r:eldtl.on sets. Note that tne
identl.ty attribute has Deen r~pl.1.Cdt~a twelve tiwBs to provide
the connectivity required to 11.nk to~ethec ~he pectinent rela~~on
sets.

l

,(

(-

(

Chclpter 3.4

• • _ .• fI • "

.e., a" C\'1. ct,~ • • • • II • •

•
•

•

•
•

•

FIGURE 3 -4-.1 .2.:-1: 1 LLUSTRATION OF AN,
. E~TIi'(I<ECORD SeT

139

. ~
I
I
I
i

I
I
I

lifO s't STEM CONC.E:J7TS AND FAG \ L I Tl E..S

FIGURE3.;d.3·': U5ER. ~ SY~TEM \J1'E.w~ OF AtJ €t-lT'ITY ee-(O~O SeT

11£. tMt>LO"(SE

~1l1"1 ~o -~T

(~~ 'Hew)
...

VNI61U£
loe ... nFlEt

-

EMPI;.O,(eE ~OC.I~l..

... ~Me se.c.vtlT'(# ~e)(

-------~

1l1E EMPLo"Ce.E
EwTtr-,' ~CORO

SET
(~Y~NM \) lEW)

RaAnoN ~T .. I ~
U~(Que: EMpl.o,(ee
I OiN'TI'flefl ~I\ME

UN I QUE· 'PATE Of-
\OiNT' flalt l-t,~

Ut-lHiOE MAR-IrA\..
\OamfleR. ~TATU,;)

UN H~\Je . P~""-E

IOENnf\ER. tv"WATlOM

•

•

, 8M. CON F J J) /:H T I A L.

-I'

7

Ut·h$.L>! SoLIAL-

I {)SN'T1'f,elt Sic.oa.:tTY 11

U,,-, I (illE. SIRTH
l 1)i;t..IT\ Flee< "ATE.

UN' 6l"e DepAIl:tMa.lT
IO&lTI'FtER. ASSt&tIIMa.li

RELA1l0.... t.>ET • t t.

(,
Chapter 3.4 SYSTEM fUNCTIUNA1 MANAGEMENT 141

3.4.1.4

Data integeiti is addre~!:iE:!a based on tna way system
exerCLsas excl~sive control to I'esolve contention, modification
and ui?date problems d~e to independent concureent data accesses
on data from a centralized on-lLue data base. Also, data
integrity is conceened w~ta the way aata I'ecoveI'Y is handled to
checkpoint pertinent data base intotmat~on so that opeI'at~ons may
be I'estarted in case of a catasteopnic data base fa~lure.

All system resLdent data can De classif~ed as:

Read Only

Read/Writa Snareable

All possible ways in whLch a usee lliay choose to access data
on an entity I'ecord set are sDowu'in FLgure 3.4.1.ij-l. However,
when two or more independent users are mak~ng simultaneous data
access requests on the same entity recol.-d set, exclusive con tz:ol
m~st De exeI'cised. Paramete.lS whlocn the system must consider in
pertoI'miug the exclusive cont£ol iunction are deteI'miued by the
type of entLty I'ecord. set ~nvolved (~.e.; Read/Weite OI'
Read-Only) , and by tne type ot data access
requests(i~e.;Read-only or R/~).

lbM CONflU~NTIAL

U"I AI AL A:3 . " " AYl
'2,
€,.
e,

•
I

"
•
•

e~

UI. A. AJ '"
e,

UI. A. A'J. " • " • AYl

•
"

d. Ot-JE O~ f\1ot<.E eNilTY- A"'~\eo~
VAUJe~

U"t A, . .
" AM-\ A.",

e. ~
e"

V/~

~ ~

eM ~

FIGrU,<E 3·4.1.'1-1: c.o..tOlno s SUBlec.T 10 f:)(CLl)~\UE CoNTRoL
'8M COI'tF-1 D~Tl AL

(

Chapter 3. '+ SISTEM FUNCfl0~AL MA~AG~MENT 143

3.4.1.4.2 Q~~~ ~~~ i~~£Y

The se60nd aspect of the adta 1nteyrity problem will be
addressed by tocusinl;J a tt~J.ltl.OU to the f uilct10ua l. or:J a Ill. za tion of
a specific mecnanism tor data Oas~ recovery a Journal
organization. System roles ",hl.ca can be tulfl.l.l.ed by a Journal
include:

1. Data Base rlecovery-- All. data accass requests whiCh
cause data moditl.cations to taKe place will cause the
modif1cations to be reflected in both the on-line data
base and the Journal.

2. Historical Versions oJ: data -- Udta in tae Journal is
checK.iJointeu. per 10d1call'y to 9i va a snaiJshot .l.n tiae
of the datd base conten t.

J. Transaction audl.t trail--All data modiil.C1ations
must be captured in the Journal .l.ll the exact manner
as the modiiicatl.ons dre mdde.

A Journal organizatl.on wilLcn tulfills these basic principles
is gi·ven in Figure 3.4.1.4-2. Tllere are two types of Journal
rlecords: the Checkpol.llt Jou,L'nal reco,rds (Journal ltecords 5 and
41) ;:ind, Transaction Journalcacords (Journal Records 0, 14, 16,
18, and 36). Also, there are three types ot Jou~ual threads: the
Daturn thread, the Transac tl. on thread, dnd the At tI:ib ute
T~ansaction thread.

The Transaction Jou~nal (eco~a is cr~ated in tae Journal
~henever a tI:ansaction taKes place. Th~ Checkpoint Journal
record, on tne other hand, loS a system assembled Journal record
whiCh reflects the statuso~ ~ata as of the t1.me the record is
created.

The thr~ads are the mecuduism by which to connect together
all those Journal records which ace gene~ated w~thin particular
contexts.

144

E.

E.

E.

(l,

SYSTEM CUNC£~rS AdU FACIL~fIES

'DATUM leVEL.
(n-')

Arr(Z\6UrE TRAN~~TlON
~R&\O

(

(

CllapteI: 3.4 SY3T88 FUNCT~U~A~ MANA~ea&NT 14!:)

3.4.2.1 BackgI:ound

The data communications area, ~n ~ompaI:isoll to the otheI: majoI:
functional aI:eas of a data process1n~ system, ~s in an earlier
stage of evolution. As a resu~t special attent~on is required to
architect a system structure that prov1des t~is aI:Sd w~th the
flexibility to properly evolve dur~ng the product life of AFS
withou~ compromisiug the other aI:eas ot the system and the
oveI:all system structUI:e ~tsel£.

The ba~ic tenets of APS ~ostulates, with ~ooa technica~
jllstification, the dva11alJ11~ty of .:itorage Management Units
(SMUs) with the capability ot prov1d1ngviable random access to
an essentially intin1te ~ogicdL add~essing space opaque to the
individual performance Icapac1t} cnaI:acteI:istics of the vaI:ious
storage devices in a sau. 'rhey further postulates the
availability of Program Processo£ Units (PPUs) with a functional
capaoili ty of pI:OV iaing a n iyh-level S ystellt Language {SL}
interface, described in ~art 2 in this document, and be opaque to
the number and ~ndiv idual t>eI: fOl:lDanCe cnaracterist1cs of the
vaC10US program proc~ssors ~n ~ PPU. in some sense. these could
be thought oias "ultimate" . .l.ntertaces to these units - or at
least ones at a very advanced conceptual level.

A comparible level is not antic1pated for the data =ommunications
acea at the time AFS is introducted, however. enougk is known to
allow an architectural structure to be devel.oped which can be
evolved with low im~act to the system dud neglible impact to
appl1cation programmers.

what then are the charactel:istics of the data communications area
that contrast itsarchitectura~ status to tnat ot the SMU and the
PPU?

An (operating) system essent1ally simultaneously services many
users typically at a central~~ed tacil1ty. On the other hand,
data communicat1ons must 1n g~neral deal w~th hardware devices
that interface with a set of 1udividual usel:S at distributed
locations. The tormer allows for h1gnly tunctional interface
levels and short well- controlled interlla,l l.t31"1 data paths. Ihe
latter typically necessita,t~s lQw costs at the asv~ce and needs
to append functions of a system in a t1me-sharing manner in order
ta provide the desired user 1nter tace. In ada.l.tion the long
data paths, generally external to IDa products (telephone lines,
etc.), create signif1cant ada~t~onal problems in themselv~s.

Since the advent of LSI w.l.ll all.o~ for expanded aeVLce function,
the increase in the data commun.l.cations marKet w111 bring about
dramatic changes in the tecanology dnd pr1cing 01 communication

1~6 SYSTEM CONC~P~S ANU FACILITI~S

paths, and the ~egui~ement w~ll ycow Ior mo~s application p~ogram
independence ot device cnaractel:·J.stJ.cs, a system architectural
framewo~k ~ust be estahlishea Wh1Ch is hoth llexible to such
changes yet provides guidelines to allow tusm to properly evolve.

Further complicat1ng th1s area are' the mar.Ket requ1cements to
allow present systems aud den.ces to co-exist in an emulated
(virt~al) mo~e under APS; to provide a means for dynamiC
inte~cbange with those systems (as well as ones in separate
installations) and devLces; anu to allow for most haruware
devices to transcend the ~nt~od~ction of AFS. Essential to
achieving a smoother t~ansLstJ.on from Doth an internal IBM
progra mmin';J and engLneer J.ng Vl.ew flO in t as well as an external
customer- viewpoint will be <iIt ea~ly common and coo~dina ted
~ecogni~ion of FS goals, aud t~adeoifs within all p~esent
pLqducts during the interJ.1Il towa~d those goals. This is
discussed in moie detaLI in Cha~ter 3.5

3.4.2.2 Basic Concepts

A set of basic concepts have Oeetl identified for establishing
long-~ange criteria for data communl.cation t~adeotts:

- All pnysical I/O (external> to source-sink devices and
other systems w~ll be ~allaLed by tbe commun~cation unit (CU)
of th.e installation. 'l'h~s .l.ncludes unit record and sensor '" j

devices as well as typicd1. communications terluna,ls.

- ~ogical I/O, i.e. as seen irom dU applicatLon program aud
most of the At'S control program, will have
virtual/local/remote trallsparency. Tais inCludes any dynamJ.c
J.nterchanye with other virtudl systems. Physical I/O, i.e.
as viewed from th~ Source/S.l.ak (S/S) sUbsystew of the
control program, wi1..l. nave ~ocal/~emote t~ansplrency.

- The SLand hence dLL (ill.gher-Level Languages) and other PP
intertaces to applicatiou pro~rams will be by means of a
minimum ~et OE dev.l.ce classes. The FDL (~ielQ Descriptor
Language~) for pre-forllldt~llg data structures au complex
devices such as graphics w.l.~l both ~implifyapplication
programs anJ increase the1r u~gree ot device independence.

- doth the terml.u~l user andtne application programme~ have
functional interfaces - .independent of their locatJ.ons or
path connecting them. lhe log~c to accomplish these
functions from either eua snould looK. ..like J.t is satl.siied
either ny the other or the te~minal device in between them.
By terminal here, J.S meant either a siagle term1nal on a
cluster ot common terml.uals with a central controller
(compound terml.nal). Cost tradeoffs have dictdted, dnd are
expected to continue to d~ctate, that improved

(.

Chapter 3.4 SYST~M FUNCTIONAL ctANAG8MENT 147

cost/performance Gan De aCiueved if some of t.nis apparent
tecminal device log.l.c is illiiJlemented .ln the AFS control
program. This logic has two pacts! one.l.S the formating
field descriptors mentioued eaclier WU.l.ch must be specified
by the customer, dud tne other is simply good
hardware/sot.twace tcadeoLLs. l t is important to keep these
log.l.cally separate from the path .t.unctions required to
connect the termina~ W.l.tn the system. These path functions
are to be pecformed ill the CU and the other netwock
illaaagement units between the term.l.nal and the system.

A general AfS control ~rogram ~ueu1ny mechanism for
passing work to De done between processe5 will allow
resource management to tune the system LOC a range ot
response requirements. The .l.ntertace to the CU will be a
consistent extens10n ot tU.l.S ~ueu1ng lllechauism.

3.4.2.3 Types

Data communicat.l.ons w.l.th the 5ystem neeu to be ex~mined at the
logical I/O 1nterface and of t~a ~uysical I/O interface. decause
of tne basic AFS concepts 01 u.l.striouted (network) data and
pLogcams as well as v.l.rtual devices aud systems, there is
~enerally not a L:~ relat~onsn~iJ between these two interfaces.

At both interfaces, howeve£, Lntormat10n is cons.l.dered to be
~.l!!.!ru!bl~, i.e. once seut,l.t can not be obta~ned again, and
once ceceived. it cannot De ra~uested again.

3.4.2.3.1 L09ical I/O

Lo~icd~ I/O is det~ned to be e~pL.l.c.l.t operat.l.ons maus by a
program to communicate outside tue ~o~icaL closed entity or
environment conta.l.n.l.ng ~ts Known duthorized data, programs, and
system services. Such cOliullunlocations are ca~led !~§2g.,gg§ if they
represent or.l.ginal informd.'t.l.on be1ng sent or rece1ved and ~2~~
if they are re~uesting a response to a previous!j sent message.

rn1er-Af2_~QQ2 - 1hese mes5d~es provide tor 1nterchange
between normally indepena8nt APS euvironments that want to
establish local commun.lcatl.on t:>aths. Full supporting system
services w.l.lL include dynam1c establishment and validation
of authority and abiL.l.ty ~or controlled snariny of data and
programs.

2Q1!££!U~i!!~ - These messd::je5 prov.l.de for 1ntecchange with
areas outside AFS. These areas dre e.l.ther aevices or other
operating systems (networ~s). By medns of a welL structured
data communications path, the 3L intertace to these areas
will be made almost compLetely tree of ueV.l.ce dependencies
and absolutely tree of physical path dependenc.1.Bs.

SYST~M CONC~PTS AND FACI~ITI~S

;rhe general formats for logical 1./0 fllnctions are as tollows:

i:nt{Qg!!£~ (argl; •••• ; aCju) ---> ndme

- lhis provides a means for naming a sOllrc~/tiinK port object
~aving the characteristLc~ defined by the argument list. A
name may represent a collectLve object thlls allowing for
broadcasting to all elements uf that object.

- ~his sends a data object, msg, to the object called name
some of whose cnaracterLstLcs may be temporarily modified by
the argument list.

The msyid is returned by the system
subsequent reference to this message if an
desired or an error condit1on results.

tu allow to.r
answer is la ter

l!ai1::.~22~~ (name (arg, •• etc. » - -- > (msg; msg id)

- This allOWS the prograii to spec1.tLcally wa1t for a message
tram the source Object, name.

- Again the msgLd returaeu allows tor a subsequent answer to
be returned..

- Requests an answer to tile lUessage previously identifieaby
ms<.J id.

- Only one of the msgid arguments is to De useJ. It the left
or input argument LS nOll-void, tbe process plans to wait
until only that message 1S answered. It tbe lett argu&ent
is void, then the system w11l return the first answer it
receives dnd ident~il it wLtb the msyid spe~itied by the
system earlier when the messaye was sent.

Physical I/O is defined to De the data communication
interface between the system dnd the CU wbich in turn
interfaces with the real aeVLcesor other operating systems
known to the AFS syste&. Whatever the source of a message,
its format at this stage 1S 1.D SDUs (Has1.c DeVLce Units).
Each message (or answer) can be repre~eDted Dy a set of
fLxed length BDUs w~th elliDeuded se~uenc1.ug informatioll.
Functionally they contain a GaVLCe ndme, priority

(

(

(

Chapter 3.4 SYSTEM YU~~T~ONA1 MANAGEMENT

infoLmation, and a stILn~ OL bits wb~ch ~s 10~Lcally opaque
to the cu. Corres~ondin~ly the system LS unaware of the
external location ot tbe uevLce/system or the patu(s) to
them.

rhe HDUs reside on ~ueues of port ObJects in the logical
address space ot the SMU. these represent a consistent
extension to the normaL queuLn~ wachallLsm Lor passing
information between objects lor processing purposes.

3.ij.2.4 Architectural COllSLdecatLons

rhe purpose of data commUllLcatLons is to sen3 and receive
consummable messages oet~een two or more aevices, systems,
or applLcatJ..oll firograms. 'I'llese messages may be e xplici t.ly
initiated by a device/another system or applicatLon program
or they may be implLcitlj LDLtiated within the AFS control
program to ~rovJ..de networK transparency.

ExpliCJ..t messages are essentLally those bet~een users either
at devices or as a result OL wrLting applLcatl0n programs.
Another system can De t~uu~nt of as just another type of
davice. Two thlnys can effect a message: J..ts path and the
functions performed Ln betweeu the sender and the r-eceiver.
It is the respousiDLlity ot AFS to make the path
vir-t~al/~ocdl/rewote trdns~arent. The fun~tion~ are
dependent on the characte~Lstics of the senuer and Leceiver.
For- example, if both are Just AiS appl~catLon progr-ams
(inter-AFS job commuuicat10ns) thell the functions in between
are essential.ly zero, i.e. just normal expression
processing. On the other ~and if one of the end points is a
graphics device tilen tha.rti are considerable funct1cns
required to trallslate the da~a to an applLcatlon program
from the grid ot the tube and perhaps Lts Llght pen. While
logically these functions a~~ear to De done in the device,
cost/performance reasons may require that some of these
functions be done in th~ ~FS control program.

In order to ma&e the pato at tne message tr~nsparent, the
system must handle var10US s1tuations depenu1ng upon whether
one end point relative to the other is in a bative AiS job,
ln a virtual device or oj!eratlng system, or' whether it is
locally or remote~y attacued. The ilrst two situations are
handled within the AFS contLo! program. The last two are
physical I/O dnd are nandleu transparently to the control
program by the cu.

The following sub-sections translate these message function
and path aspects into·the serVLces performed Dy the major
areas of A F5.

IdM CONFiDENTIAL

150 SYSTEM CONC~PTS AND FACIL~TIES

Before proceeding it should be stated that APS
flexible enough to dynamicallyadd/del.ete devices,
associa ted CU to corresponding ly be dDle to ma.k.e
changes in device types and tue paths to them.

must be
and its
on-line

The standard system iuuct~ous tor messages are those
provided Lor dll eKpress~on evaluations. These are such
things as name resolut~on, attribute exam~nat~on, and
validation of authority.

In add~tion, a unique system message identifier (msgid) is
created for eaCh new messa~e. It ~s retained by the system
ouly while it Das res~ons~oility for the message and
forgotten after deLivery ot tbe message to either an
applicat~on program or a port object queue wa~ch interfaces
w~th the CU or a virtual ~ev~ce/systell.

Standard inter-AiS job co~muuications witniu the salle system
are independent of the Jource/S~llk {SIS} SUbsystem. In the
case where network processing is required, the cooresponding
subsystem desir~ng the intormation ~llter:faces with the SIS
subsystem is the same way (except tor aifferent
authorizat~on) as all appl~cat~on program.

Users of the 5/5 suosyste~ are unaware of whether the device
or other system is CO-tH~st~ng in the same AFS system or
not, and if not, whether it ~s local or remote.

3.4.2.4.2 Source/Sink SUDSjstem

This SUbsystem provi~e~ d ull~form ~llterLace to all
communications outside it~ si~tem. Its respons~bilities are
to process the data so taat ~t ~s ~n a su~tabla logical form
for the eventuai rece~ver - dev~cei operat~ng system or
applicat~on program. In the case of a device, it may mean
special format processiny du%r internally cost/performance
implementation of device functions. In the case of an
operating system, it meaus tne t>rotocol for communications -
which by the way should be tr~v~al ~t ~t is to another AFS
system. In any case, its ~nternal system interface is in
the form of BDUs (Basic Device Un~ts) which are the logical
interface to auy particular device in question.

At this point far dowa the processing path, the SIS
SUbsystem tinally resolves the yuestion of virtual
attachment. Its answer s~mply determines the port object
queue tae BDUs are to go on or come from.

lhe BDUs fundamentally ouly have a device/system name, a

IBM CO~rlDENTIAL

(

(

(~

Chapt~H' 3.4 S~STEM Fu~crlU~AL 6ANA~~ctENI

priority to did algorithw1c scoeduliny, and a string of
represent the data in%O~wat1on. In add1tioo, they
probably have d fixed ulock format thus requ1rl.ng
additional imbedded se~uence number. The bits of
information vill be log1call) opaque to the ~~.

151

bits
vill
some
data

The message queues tor the port objects ~ill be located in
the logical aduress sPdce of toe SaU, dnu the mechanism and
l.nterlocks with the CU vLll ue essentLally Ldeutical to that
between other objects ~n tue system. One difterence,
bowever, is that since tne 1uLormation is bal.ny moved out of
the SMU logical address ~~ace, the cell name tor that will
no longer be a sUl.table means of identification dnd, if
going to another s1stem, wl.1I have to be replacea by a
prescribed networK symbo11c name.

3.4.2.4.3 CommunLcatl.On tin1t

Tbe eu is the interface OL the system to tne physical
communication networ~. Its responsinill.ty is to get tiuUs to
aod from aevices/ot~er systems for 1tS own system.

To do so l.t must know ~h~t aevices are connected, the paths
(lines) to them, ana tele protocol fOL: tnose tJaths. In
addition, it m~st aetermLue tue optimal transm~ssion DloCk
size, termed BTU-Has~c TraDsmLSSLon Unit.

Opay.ue to the contents in the HUUs, it may employ vaeious
compactiou al~oritnms 1U conjunction w1th associatea
com mu'nicat1on uni t tac.l.l.l.t.l.es on the net !If or ~ 1f it can
improve cost/peeformance.

LiKe the PPU, the CU mdY De a mult1processo~. Furthermore,
it may be connected to mOL:a titan one ;;;;ystem dnd conversely a
system may be associated with more tuau one ~U. In the
latter case, an additioud..l. sm~J.l amount of phys~cd.l network
awareness may get baCK .loto t~e system desL~n .Lil oeder that
it may have to decide WDdt deVLce ~oes wLth what cu.

System aOD itor Con trol .l.S resj;>onsLble to monitor a.ll system
ope ra tions dnd to cause L ecover 'i ae t~ons to begin ill the
event of system ta11ure(s). ln add.l.t.l.on, Administrative
Control (e.g.; statLst1C;:i COLlection aDil customer D1.11ing,
etc.) and System Sup~ort control (e.g.; dynamic system
reconfiguration control, etc.) constl.tute .l.mportant system
roles of System M oni tor Con trol.

The iollow1ng ~s an enumeration of the donitor Control
categor Les:

i

152 SYSTEM CO~CHPTS AND FACILITIES

-Control of terminal Qser act~vities

-Assignment of term~llal Qser priorities

-Degree of Qserlsyst~m ~llteractioll

-System Opera taL: ailJ Data Hasc AdmuList.r:ator sQPport

-User Integ.c i ty

-System service SQ~~OLt

-Hilling
-Performance aualysis
-Ve.c~ficat~on at ~ro~er system overat~ons

-Ass~gning pa sSilord,;;

~~ste! £~£i~g£~~~Qll £Qll~£Ql

-Startup and Shutdowu ot system

-Set Pr ior it ies

-Dynamically cbange priorities

-Provide warning
condi tions

alarms on eAcept~onal operating

- Line or sl?ec~f~c tel: m.l.nal load exce~ds pre-assig ned
·Blax im QID load

-Terminal oQtaye

-Low priority .essay~s are not ueing proc~ssed

-Data access re~uests are not being honored

-Unusual number of accesses to data base

-Erroneous password

-System
components

monitoring

-Server allocat~on

SQPport on speci;fic system

(

(

(

Chapter 3.4 153

-Gather: aud output us~ r: sta t~~tics

-Terminal load by time of day

-Line load by time ot day

-Errors by line auu term~nal

-Number: of message Uj ty~a by t~me of day

-Response time by messaye type

-Response ~1me uy time ot day

-Processing time 01 llieSSd~e type

-Data access, de.l.eti Oil dud 1nsertion Std t1st1CS on <lata
base

-Automatic cheCKpointl. ng of tile entire system based on
d pre-defined criter1a.

-Chec.kpointl.uy ~nl. t~a ted expll.citly
Administra tor.

by the System

-Hequested selective check~ointing on specific Entity
«ecord Sets in1tiate~ explicitly oy the System
Administrator. All actl.ve aod/or pend1ng processing
requests involving the t;nt1ty Record sets shoulQ also be
C beckpointed.

-Restart' capabJ..lity (warm start.) wiuch involves the
rest to initial state the Ent~tl Secord Sets updated dnd the
reconstruction

-A Restart capab111ty (cold start) aiter d catastrophic
failure.

-Enabling a line or term1nal

-Disabling a 11ne or term~nal

-Selective terml.Datl.OD of message llandJ..1ny

-Selective termination of messd~e process~u~ programs

ldM CJNflDENT1AL

,
t :.

~

r ,

i
.1

SYSTEM CONCEPTS A~D FACILITIES

-Transmission control

-Path Control

~Mes~aye Delivery Coutrol

-Alternat1on ot intarmed1ate station Characteristics

~Alteration of Port Prot1ie

-Shdtdown of a t~rm1nal

-Edabling and d1saDL1ny of terminal(s) in exclusive
mode

-Security lock and unLOCK of terminal(s).

-Physical at triDute de SCC1 ptor table det init ion

-Physical 1roup1ngs ot attribute values into Entities
and Entity Record Sets

-Physical data organizat.l.on, access methods required
and storage media spanned

-Phys1cal index tables to be maintained.

-Dynaw1cally establ~sh1n9 new complex logical data
stcuctures

-Selectively l.uhl.bitl.ny the use of s~ecific Entity
Record Sets

"-Batch-moue
re-organization

of data base

control based on t~e data content

/JlaJ.nta nance

Control ~aseQ on ~ata access operations on data

and

Security class1ficatl.on 6i Entity Record set types

sacucity class1iicat1on of Entity-AttrU)ute il.elds

Security classii1cation by level and byassOC1d.ticn

Control over COllcucceut data access

las CONFIDENTIAL

(

(

Chapter: j.~ 155

H~stor:~cal v~rSJ..OHS ot data access

Trallsact~on aud~t trail o~ historical and/or current
versions of data.

IBM Cui'lF lu.c;N r IA.i..

I.:hapter 3.5

aIGRATION, CO-E'~ST~dCE, 'INT~aCHANGK

This subject is probably the most d~fficult strate~ic issue: to
understand the reia tionship of a new, yet undefined, system to
that of present. and chan~1ng, systems. decause Lts 1mpact is so
broad - engineering. prey ralllling, customers - there is a teude ney
to delay decisions which, liKe ecology problems, anconsiously
translate themselves into a default decis10n of incremental
improvements until eventuallt the panic of crisis forces a major
change.

rhe company's goal ~s to maKe proiLt on d continuous basis, both
yearly and lony range. It ~redominant.ly makes that profit from
engLneering products, hence tnJ.s is the major migration factor -
and not programming. ObvJ.ouslj, programmLng 15 1mportant to
making the engineer1ng products attractive, and thus indirectly
affects profitabil1ty. ~ince ~rogrdmm1lly is the primary user
interface, it is also importaut to separate it as logically as
poss1bIe from toe engineering to allow for easy ~ntro~uction of
new e ngi neering proll ucts.

The pOLnt being stressed here 1~ taat programm1ny m1gration from
Que operating system to another is a ~esser, dlbe1t, important
factor than that of engineeriu~ product migration. It is
essential to understand what teas1bly can De done to aid
programmingmigratioll, ana W~dt CdBnot. New system attempts ill
the .past have burdened themselves. with so wally compatibility
constraints that they lost. taeu' capability to introduce the new
concepts that justified nav1ng a liew system ill tbe first place.

There is another facet of tbese ~elf-deteat1llg myths, namely the
one that says that anyth1ug conceptually new is too far out (i.e.
ad tec~) because it is so uLiiicult to evell extend present
produc ts - witness OS dna DOS. Wll at is generd.u.y .t orgot ten is
that 1 t is not the new fUnct10ns tna tare conceptuallydiiiicult,
but it is the unsuitable system structure, present low funct10nal
engineering interface .J..evels, dud the lack ot programming
interf ace contI: 01 that are tlls pr1mary Luh1bi t~ng fac tor s.

A product ship "window" can be .toreseen around 1977 for an
opportunity to make a major SySt.i:Hll arcnitectural change with the
combination ot the ending of ~/j70 CPU/memory proauct lives and

IdB CONf.J..UE~TIAL

(

(

Chapter 3.5 MIGKATION, CO-BtrsTE~CE, I~r~RCHANGE 157

the advent of LSI components. fna subsequent port~ons o~ this
section attempt to define tb8 major issues involved in taking
advantage of tbat "~indow" to ~ntroduce a sist~m base which at
tbis time has the possibil1ty oi being an "ult1mate" one - from
technical intuitioIl, abi.l1ty to dUJust to both user tuuct10ns and
introduct10n 01 ne~ eng1neer~lly ~roducts, and from the eventual
"defined by enertia" ef~ect. These factors coupled with the
1llcreasing obvious "ag~ng" ot present operat1n~ systems to
changes sbould g1ve rise to seL10US mana~ement reflections it we
do not take advantage of the is "window".

3 • 5. 2 !.§~H!~2

There are a number of 1ssues that need to De realistically
appra1sed to best understand tae tradeoffs over time that need to
tie maJe to get APS introduced 1nto the marKetplace.

- First· of alJ.., a tllOrou:Jn evaluation effort tor: AfS from
all iacets of IBM is esseut1dl to gain the best system base
possible. In paJ:t1cuJ.ar, a strong central sl stem
architecture group will be requ1red to ensure that a
con~~stent set of era~eofis is made to maintain for new
market re~uirements dnd tdchno.logy.

- AfS will have a new program SCPI (System Control Program
Interface), which w~J.l b~ different from US ana DOS. It
should be r~alized tuae even a new 5/j70 based fS
operating system would also need a new SCPI. As a result,
program migration must be as a result of at least
re-comp1lation. I~ agreement on tne common intersection of
the feasibly possible user ~nterfaces (HLL, CCl..,FDL, and
DDL) was obtained (in 197~?), chen emphasis could be made to
direct users to that common set duriny the ~nterim. A
corollary of this waich needs to be accepteu ~s that many,
probahly the ma jority of i!rog rams, Ii ill not be easily moved
oy re-compilation. These ~n partLcular include the major
system efforts to taK~ full auvantage of 5/360.

- Because of the mar~eting ractor that FS PRUs must replace
S/J70 CPUs, aud because of the ~evel of incompatib~lity
between the two (in ~pite ot the aoove HLL, etc.
compatibility erforts), co-existence of present operating
systems is essdntial.. :C'uL:thermore, a baS1C co-existenCe
capability is relu~red ,~itb a ~:1 cost/performa~ce} which
still allows for an attractive performance lure to APS. The
tradeotfs between theSe tiiO are some of tile most critical
needed to be made.

- Second ijeneration IbM systems (l~xx:, 70K-x) should only

IBM ~O~fIDENTlAL

il

I

I
il

!
~

158

have to be ~imuidted on S/3bO under OSot DOS and hence have
no direct impact on e1tbar the SL or engineering units of
Af'S.

An unresolved issue 1H
co-existence of GSD systemH.

the abil1ty/need to have

Another unresolved issue is tha abi1ity/~eed to have
co-existence of non-jJ:U'1 HystelIIs.

The· ab1litJ to dynam1cally inteLckange information
logically between AF~ and other operat1ny systems shOUld
only be by means of d. tor-lilal networking pcoioeol. This .,ill
provide native (eo-eX1stenCe)# local, remote transparency to
users of these systems as well as limit the impact of
co-exiStence of the other systems on the st~ucture ot the
APS control pro:jram.

Co-existing non~AFS data, along with programs and
operating systems, must also be controlled by AFS.
Logically this data 1S owned by their own operating systems
and requested via the networkJ..ug 1nterface lot. used by a job
running on the APS control program. Physically, the data
may be stored in the ~MU or via a 5/370 interface to
indiv1dual storage devica~. Indiv1dual UeV1ce3 w111 only be
used by native non-At'S sys·tews. They are at two classes:
those that can also worK Ln the 5MB and thosa that cannot.
Non- APS data can be waved in an applicat10n user
transparent manner oEi the poss1ble sau de~1ces Lnto the SMU
after which the devices Cdn be added to the SMUt The older
storage dev 1ces includinij ta~es, wh,1ch are not possible to
De ·put 1n the sau, can r~maLU until the1C cost/performance
is low enouyb at wh1Ch t1rue their daia can dlso be moved
into tile SMLJ and these lleV1ce;;o rt;;moved frow the sy.otem.

Source/sink equipment, W1t.U the pro~eI: ~nteL'iru ~roa uct
plan, .ohould he able to d1cectly connect to AFS via a
27aN-l~ke Communicat10n Url1t (CU). Present operating systems
should evolve as much as poss1ble towards the data
communications architecture concepts outlined elsewhere 1n
this document. In part1cular, native systems .ohould dCt as
iE they had d CD attached t.o tnem - thus p.covicung a clearer
1nterface to tDe 50urce/S1uk (5/S) subsystem of the AFS
control program.

The general course at act10n at thJ..s t1rue is to develop the broad ~
t.E!chnica 1 understanding of AFS archi tecture; rea,listica 11y\. __

(

(

Chapter: 3.5 rtIGHATION, CO~Et~SfbN~B, l~rEHCHAN~~ 159

appreciate what call be done to aiu mi~rat~oll and their tradeotfs;
and then seeK to taKe advantd~e ot tne ~nterim time to prepare
both our: spectru~ ofeu9~neerin~ dnd programming products and the
customer commuilit y to ease the tr-a nsist~ on of l.ntroducing A.l'S
into the marketplace.

Pact 4

THE MAN-aACdId~ INTERFAC~ INAFS

this pdct of the re};Jort is to become a d~scciption of Af'S in
terms of the basic infix forlll.'rhe useI:' wlw wants to learn to
use the system without ~robiny luto ~ts inner wockings lIIay do so
by reading on ly this pact. At. };Jcasent, only two cha};Jtecs have
been started. Chapter 4. J descrioes the functions and syntactic
matke+,s, and Chapter 4.5 presents examples of SLprog1:ams.

Ida CO~F1U~NTIAL

(

SUHHA~I Uf dASIC INFLI FORM

In thi~ chapter, the Lunct~oli~ and syntactic marke~s a~e
desc~ibed as they are used in the bas~c int~x fo~m of SL. This
is the fo~m that people usuall.i want to s~e and to think about.
Compile~s wiLL usually p~oduce the strict form, so a few p~op~e
will be interested in Seel.ll~ strict form. Tne tollowing
expression is written each way:

(a+b) + (c+d) stow e

stow (5 um (q uotient (a; 0) j sum (c;) J • e)

The bas~c infix fo~m is descr~oed l.n terms of tue st~ict form in
which the primary description ut 51. has been given. Eventually,
this chapter will become a pr0:lralJunin<:j Iilanual and wiLL contaJ.n a
partial repetition of a desccipt~on of the semantJ.cs of SL so
that a ~rogrammer who chooses not to delve below the basic infix
level will not have to do so. .t'.or the present, however, only
enou~h semantics is given here to gUJ.de the reader wuo has read
the previous chapte~s at least cursorily.

In particular, the syntactJ.c iOLm oi p~09ram text is ~iscussed in
2.2.2. Some ~eade~s will tina J.t nelptul. to ~eVl.ew that section
befo~e readin'::l the following JescL J.ptions ot t unctions.

Some syntactic lIlarkers have tu~ tOLw 01 Lunctions, so tuey are
included in ttlJ.S expos1tion wJ.thout fu~th~~ adO sinc~ they have
syntactic properties like thos~ OL t~ue tunct~ons. Included also
for completeness a~e certain uther syntacl1c warke~s which a~e
quite diffe~ellt: pa~enthes~s# braces, semicolon. These are
listed in alphabetical order w~th tae other syntact1c markers and
vitb tAe functJ.ons. It may be nelptul to Lead t~ese f1~st.

The following examples expla~n tne
n-adic functJ.on and syntactl.c lliarKer
fOLm to basic infix form:

f (x)
f (x; y)
t(X;y,z)

becomes
becomes
remains

f j{

x t 'i
f(x;y;",)

rules used to translate
definitions f~om st~ict

IUM CONrlUENIIA1

1t>2 THE MAN-!ACdrN~ INT~RPAC~ ~N APS

If the fUnction ndme is d.lphd. ot:::tic, bld.uks must be used to
delimit it.

tHaIlks may be used freely throUljilout S1 LU lIlost Leasonable
places. T hey may be placed be.c oLe .01" atter any non-alphallume ric
character that represents a tUIlction or syntact~c marker, or they
may be omitted. At ~east one blank must be used to separate
adjacent dlphanumeric symbols. Waerever one blank may appear,
dny number ot blanks Dlay be useJ.. Blanks must not appear in a
symbol, in a function repr:esented oy something pL:oduce<1 with mOI:e
than one key stroke, 01: in d con~tant that is Dot a character
string.

At present, evaluation LS lett to rignt, and· there is llO

precedence except that seDlLcolons, parentheses, braces, and
brackets are considered to de~imit expressions. aore precedence
relations may be intcoduced LD subse ':luen t editLons.

There are two classes of symbols: function symbols that
repre5en t functions L'e gUU::Lllg arg uments and elementary 51' mb ols
that represent ObJects that do not ce'iul.re arguments in order to
be evaluated. In the strict Lorlll, th~ syntax of the expcession
in waich tile symbol occurs ~ndLcates the class to which the
symbol belongs. In the Dasic .LULix form, the not3.tLon is more
concise and the class of a symDo~ .LS not indicated by the syntax
of its use. Instead, the class LS recorded in tue dictionary of
the module, and it is determineu by the aeiLIl.Ltio.n ot the symbol.
If it is defined oy a ~ambda eXpr€SSLOn with one or mOI:e
argulI~uts, then it is a t unct.LO II 51 mbol. If it is dei ineJ by a
functional that has function symbols as arguments, then it is a
function symool. Other wise, it LS an elementae y sy m.bol. (Ref.
;. • .2. 2)

Eventually, many tunctions anu syntactic markers will be
expressed by single c~dracters. Foe this exposit10n, however,
most of them are represented by mnemonic names or abbreviations.

In certain cases a familiar cuaracter has been used (like + or
-) .

The iocm used to describe a tUllctl.On or syntactic marker includes
a "where" sec·tLon that defu~es nOt.ation, va·riables, etc. Certain
very COmmon abbreviatLons are detLned here for once and for all,
and the definitions are omitt~j in the m.any operator definitions.
T~e following are sy utactl.C VaCLdD..l.SS tha t stand for instances of
classes of characteL· strings. Two instances of an abbreviation
in a single expression do not. necessarLly stand for the same

(

{

(

Chapter 4.3 SUMMARY OF BASIC INFIX FOHM 163

string. If t11ey do, a digit· wil.l. oe appended (e. g., stmtJ); and
th~ same digit w~ll be appended in two ~nstances that refer to
identical strings.

abbrev~at~on stands for

expr expression

stmt s ta temen t

Eventually, th~s section will become a programm~ng reference
manual with every function an~ syutactic marKer jascribed. At
present, the funct~ons listed ~n sectiou 4.3.4 are not described.
rlowever, the reader who~s tamLl~ar w~th APL cati un~erstand them
well enough from taeir ndmes and irom the introductory remarks in
4.3.4.

Section 4.3.5 lists t unctious that are detiuea elsewhere or not
defined in this report.

section 4.3.6 summar~zes the s~tuatLon.

Section 4.3.7 g~ved a prel.Lm~ndry rough d~alys~s of the
complexity of SL, judging it ill terms of the number ot funct~ons
and syntactic markers requ~red.

The illnctions
with the names

and syntactLc mar~ers are
.1.n t11e bottom ti tle.

arranged alphabetically

The examples given at the top ot each page ace intended to be
exhaustive and to cover alL poss~ble uses of the symbol being
defined. Th~s goal has Dot beau acnieved in Ed~t~ou 3.

IBM ~0~fIUE~TIAL

164

examples:

where:

rHE MAN-MACH.1.i~£ IN'fERi·ACE IN AFS

<j apply a

a is an ordeIed list
is a sin<jle symDo1.

of symbols like (x;y), o~ it

<j is an e~preSSl.Oll whose val ue is an unevalua ted
expression or uueva.1.uated group of statements.

value: The value of t.e last expression evaluated.

side effects: None

use: In the eXdmp~es: Tne dyadl.c apply applies 9 to a.

comment: .

References;

The l.mplicit invocatl.on mecnanl.sm is occasionally
inhibited by bUl.lt-l.n mechanisms to prevent
ambiguity. Sometimes , tbe programmer
inten tional.1.j l.nhitil.t s the in voca tl.Oll mecha Iusm so
as to be au.1.e to mani pula te an eXl-'ression or gr cup
rather than j~st l.ts value. When thiS is the
case , it is clear from the definitions of the
operators l.uvo.lved. 'rhe purpose 01. apply is to
execute COBe whose l.nvocation DdS been inhibited.
The dyadic dPp~y function also associates
parameters wi til the. function it invokes. The
monaul.c eva~ periorms this function without
aSSOCiating parameters.

~.2.6, 2.6.9.1 I eval

ltiM CO~FlDB.TIAL apfly

,/ ""-,

Chapter 4.3

exaCllple:

where:

value:

side effects:

use:

(

cOCllments:

(
References:

authori'~e

SUMMAdY OF HAS1~ INFIX FORM 165

r author~ze x

(e val u.a tes & cOil~ es) authorize x

x is au 0.0 ject.

r is a right~ eZpression. The allowable rights
are t (1e };iresen t. tense tn~rd person sing ular verb
forms of the D~me~ of the requests that may be
made on an Object: authorLzes, copies, deletes,
destroys, evaluat.es, ideutifies, Lnserts , selects,
starts, and ~tows. To autnor~~e al~ rLghts
available in tne Ll.gn t argument, !:>pecify "all".

A synonym that provLdes authorization tor access
to x.

'fhe :;;ynonym, au object, LoS created.

A synonym ~s li~d a pointer, but it bas safeguards
so that it cannot be used except by requests with
the pro~er authorL~ation. Unlike a pointer, a
synonym automatically passes all authorized
re,:!uests to the object to wii~ch it points, whereas
a PL/I pOLnter ra~u~res a further operation on it
to prod uce a val.ue.

Synonyms dnd metonyms are accessors. it ~s not
possible to convert any oth~r "dat.a type into an
accessor. ThLS ~rotects the system integrLty trom
incursLons of t~e soct that can nc accomplisbed by
adding integers to P~/I pointers in OS/360.

It LS poss~ble to couvert d synonym t~ a metbnym
bi the enclose i. unction, and vice versa with a
disclose tunction.

fbe authorizdt~oll conveyed by a synonym is the
authocity to use functions that use re,:!uests
correspond~Bg to the rights Lll ~he rights
expression. Notice that the names ot the rights
are the L~rst persoa sin9ular verb forms ot the
correspondin~ re~uest names.

An author~~e eA~resSLon that attempts to convey
rights not possesseu by tne object will raise an
error except~ou.

synonyms dnu mutonjillS are needed by data base
applica t~ons •

.r:!.1.5, 2.1.4, 2.0.3.5, syn

I,H'1 L;Otjf IDEN T lAl. authorize

I
!
!,

I
I
Ii
!,

l'~,Q

examples,: (stmt .,stmt; stm tj

L{stmt;stmt~stDlti

{expr}

value: Tae value of a gr:-oul:> of statem~Hlts del~m1.ted by
brac~s and seDl1.~olons is a collective object Ca
list) whose elements are the statemeats.

side effects: None

Uses: A pair of braces Ilelimits a portion of code and
inhibits the Lmplicit evaluatLon mechanism.

Comments!

References:

A specif ic use ot a pdir of braces is to delillti t a
group of statements in order to use the group as
an ar:-~umenL of d function.

Another specif1.c use loS to enclose
so as to LIlh.LD lot t ne action of
evaluation mecnanism.

an expression
the implicit

A pair of Draces may be used in SL to perfor:-m the
funct~on of J;Li!:~IN; •••• ;END; or:- 1)0 ••••• ;END; in
PL/I. A new enVl.rOfi~ellt is createa for a grou~
when .Lt is Lnvo~ed it and only if some function in
whose arguments tne group appears or seme
statement LA tue grou~ re~uires an allocat1.on of
storage that is local to tnis invocation.

BLaces can unly be understood lot one understands
semicolons d.ud parentheses. See t~rst the page on
delimiters and thea the pages on semicolons and
pareutneses.

brace~ are syntactic mdrKers that ao not appear in
the code that tne machine executes.

~.2.2, de~im~ters# s9mico~on# parentheses

IbM CONFIDE~TI4L braces

(

(

Cha}:Jter 4.3

~xamp!e:3:

where:

SUM5Ahi OF dASl~ I~FI~ poaft 167

p coudit~onaL ~~pL

p is a pre~~cat~, an expression whose value is
true, 1, or talse, J.

value: When the value O£ the leit aryument is 1, the
value of the e~press1on 15 the value of the right
argument. When the value of the left aryument in
0, the value ot the express10n 15 niL since it is
not executed.

sl.de effects: If the lett a.ryument is 1, control returns t rom
the group. This 1S Like tne PL/i ~ErUR~-statement
Which causes control. to retut'n :t.t'om a block. If
the value ot tae l.ett argument is 0 the expression
has no siue etfects.

use:

comml:'!nts:

Refet'ences:

condi tional

To tet'minate
cond1 tional.ly.

the evaluation ot a gr oup

The conditional provides the means to express
conditLonal e~~ress10ns. It will probably be
.represented by a sl.nyle cnaracter. In this case,
nested PL/I IP TH~N HLSE statements, and LISE
conditional sta t.eIIH::!uts wiLL be handled conc1sely
and el.egantly.

2.2.7, exit

IBM. CONPIU,t;NTIAL conditional

val\1e:

THB MAN-·i'1;.ACuINB HHERFACE IN AFS

p create ~

p is a ,pt"ocedure description.

xis an object.

An internal
construe ts .•

ideu tifler of the object it

sid~ efiectp! It constructs dU olJjectwhich has, in its access
machine, 1> as its proceilural description, dnd a
process sta. tus record and inteI: prater that are
appropriate to p. rna resourCe ot the object 1S
a copy of the resource of x~ trans~ated to fit
the ne.w acce.ss maChine.

use:

Reference:

cre~t~

To construct op je'cts 115i119 so,ttvtlre proced ure
descr11't io ns.

2.tJ.2.~

ere ate

(

Chapter 4.3

examples!

value:

SUM~ARY Ur uASIC INFIX Fo~a

declare x 1 z stop static;
V UU.l.:j ue.

abc new automat.l.C
{stmt; stmt; still t. stm t; stmt}

declare d ':I

d .l.S d list ot scope and storage class

169

9 is a yroup of ~tdtements. Among tnese may be
statements that aLt~ct access macnines, in other
~ords, declardL.l.ve statements, other than those
that aiiect scope and. storage class.

The value of tue group,
of the last expeess.l.on
exits trom the group.

in otber words, the value
evaluated before control

side effects: The variables l.l.sted in the space between the
declare mar&eL and the group have the attributes
mentioned.

use:

comments:

declare

To maK.e scope and st.orage class declarations.

The neea to separate declaL"at.l.ons of scope aud
storage class feom other declarat~ons .l.sa result
of the tact that SL is a machine language and the
basic inf.l.x tarm is not rearranged betore being
executed.. In tbe extended infix form declarations
will probably De more li&e those ~n PL/I.

iua C0~flU~NTlAL aeclare

11Q ..

i deletE! x.

~ is a collect~ve aDject.

~ ~s a memDe~ ot tAe index. set of x.

value:
>.~ ,,' .

The er3twh~le ~th ~emb~~ of x

side effects: The storage cell co~responding to
i~om its iridex ~et •.

i is removed

us~:

Reference:

dele~~

To delete storage cells from tbe resource of a
collective object.

~.1.6

IBa CONfLDENTIAL delete
~ .< ',," "'" y

"" , .

,,{-.

\~.

Chaptar 4.3

examples:

u~es:

comm.an t:

deferences:

deliJlli ters

171

{stmt;stwt;stlBt~ This ~s the external
re~res.antatioD at d ~ollective
object, a l~st of three
unevaluatea statements.

f(stmt;stmt;stmt)Th~s triad~c function~s
Lnterpreted as a monadic
(unction that takes as its
argument a list ot the values
ot the tbree statements.

~(stmt;stmt;stmt} This ~s a monad~c function

a + (b+C}

{expr)

tbdt takes, as its argument, a
list 01 turee unevaluated
::;tatements.

the denomiuator ~s the value of
the sum.

The braces inb~b~t the implicit
~nvocdtion mecnanism~

A pair of parentheses
and aoes not 1. nh~j) it
mechanism.

delim~ts a port~on of code
the impll.c~t invocation

A pa~£ at braces ueliilll.ts a portl.on of code and
inh~bl.ts tue ~m~l~c~t l.Dvocation mecbau1.sm.

Semicolons del~mitl.ay the constituent~ of a
portion at eQua, delimiteu oy uraces or
parentneses, l.n~icdt~ that the const~tuents dre
the elements ot d l~st.

These ae~l.m1.ter~ dre shown toyetner on this page
to illustrate the symmetry. For details, see
references.

braces, farentheses, sem~coloa

Il<i!limiters

172

examples:

where:

value:

llse:

comments:

References:

disclose

THE MA~-MA~alN~ I~rERI'~E IN AFS

dlosclose II

disclose n + 1

disclose :l

II is a metonym tor an object y.

n is a metonym tor a floating point number x
for which there ~s a synonym s.

Y is d col~ective oDJect.

x is euclose i.

a synonym for 1, loL the argllment loS d metonym. y
if the a rg umen t 1. S en close y.

A meto.uy 111 is d. pOloute rand disc.lose is used to get
at the value ~t POl-uts to.

In the second exa mpl.e, n+ 1 would Laise an er ror
except~on, wnereas 5+1 would compllte the sum
co.crectly. Note that (disclose n+ 1) = (ru+1), and
that (ru+ 1) ;: (x+l) •

Foc any object x, disclose enclose x = x.

2. 1.5, 2.1.7, enclose

IdM GONI~DENTIAL disclose

Chapter 4.3

example;;i:

where:

value:

uses:

comments:

References:

(

enclose

S~M!A~i OF uA~lC INF~X FuaM 17.3

enclose x

x is an object

~f x is a collective oDj~ct, the value is a
scalar obj~ct that contains the collective object
x.

If x LS a sj~onym, the value is a metonym.

In the f LL"st ca.5e, lot is used to maKe it possi ble
to compare characters instead ot bit vectors or to
compare words iusteaa of charactor vectors.

In the second case, Lt is used to ma~e metonyms
which are like PL/I pointers.

Par any oDject, x, dlosclose enclose x = x.

2.1.5, 2.1.7, disclose

IBM CONfIU~~TIAL enclose

I
il
I

171+

axalllples:

",here

THE MAN-MALHlN~ INfEHfACE IN APS

~valui:1te y

9 is an Unevaluated grou~ of statements or and
unevaluated expressl.on.

value: The value ot tila last expL-ession evaluated.

5l.de effects: none

use: To execute an expression or group waen the
l.lIlplicit invocacl.on mechanism has been inhibited.

comment: See the com~ent under apply.

References: apply

evalud te IBM CUNfLD8NTIAL evaluate

/,
; ,

rt'"
\(/

(

Chapter 4.3 SUMMARY Uf dAS1C rNFl~ FURM 175

examples: exit expr

value: The value of ex~t LS the value at the expression
that LS it~ r1ght argument.

side effects: If the ex~t statement occurs ~n a group, control
returns from the yroup. Th~s ~s l~Ke the effect of
tae eLI! dETU~N-statement ~hich causes control to
returu from a b~OCK.

use: To terminate tue evaluation of a group.

References: 2.2.7

exit (monadic-d yadic) ltiM CUNFID~NT1AL exit {monadic-dyaa ic)

176

example:

where:

value:

THE MAN-MACrlI~~ I~TEdFACE IN AFS

goto s

s is d. symbol that Ad.S been used as d. label or- an
expression that aas the value of such a symbol.

The goto statement is not a normal expression and
<l oe s not h d. ve a v al u e •

See comments below.

side effects: The goto ~enerates d se~uence exception which is
nandled by the monLtor. Tae next express~on to be
executed LS tao one whose laDel is the right
argument o~ goto.

use: To perform the tuuction of go to or branch in
object code prouuce.:1 .l.n translating fL:'olU other
lan'juages.

comment: goto is not necessary for prograllis written in SL.

t{eference:

'J oto

Many users wLll preier to el.l.minate it trom the
repertoire of functLons availaDle.

If it is fea~uble to label expressions as well as
statements, and if it is feds.l.ble tor a goto
statement ~o nave t.e value of the last previously
evaluated eXpre.tiSLOU, then t.e (jato will provide a
particularly po~erful tool. rlowever, this
capabil ity Wl..11 not be d.dded if it impl ies
significant cost increase or performance
deyradation.

label

(joto

(

Chapter 4.3 SUMMARI OF dAS1~ lNF~X Fo~a 177

.axample: ibase x:

where: x is an drray

value: The index base of the array x wh~ch is a list of
I1sts. The ith sublist is d lise of the values
that the 1th element of a memDer of the index
set may taKe, dnd they are l1seed in order of
increasing value.

siJe effects: The IJ.st of lists 15 created.

use: To generate the index base.

comments: The abbreviatiou iDdse stands ior ~ndex base.

Reference: 2.1.7.3

ibase IbM CQWFrD~NflAL ibase

118 THE MAN-dACti~~E I~T~dFA~E IN AFS

igemn:ator s

il:leneratoc (0; I ;L)

where! s is a lL~t of pos1tive 1otegers.

value: A list of lists at integecs. Each sub11st is a
pcimitive index set (i.e., ·0, 1, l, •••• ,n), and
the number of elements of toe kth sublist is the
kth element of s.

s~de effects: The list of ll.sts 1S crea ted.

uses:

igenerator

To genecate the inaex base foc a primitive aJ:cay
tcom thesllape of tbedrray.

IBM CONFluENTIAL 1genecator

(
Chapter 4.3

examples:

where:

value:

side e.tfects:

cOllHuen ts:

Refecence:

(

ilist

SUMMARI Uf d'S~C INFIX iUrlM 179

i1ist x

x is acollect~ve object.

A list that ~s d copy of the index set of x.

Production of the copy.

If x is a vector, lo1ist x ~s the same dsthe
APL expression loota rho x.

The dobceVlodtl.On "lollo5t H stands tor "loodex list".

~. 1. ~

ltiM CONFlU£NfIAL 1.1 ist

180

example:

where:

value:

side effects:

use:

cOllllen t:

References:

insert

THE MAN-aACh~NilNTE&FAC~ iN AFS

i insert x

3 replace (i ~nseLt X)

i is an object, not ~n the
suitanle to De added to it,
object nil.

index set of x but
or it may be the

x is a collect~ve oDject.

An im pi ici t.J..y de:LuH:lci synonym of the i compon en t
of x.

(1) A new storage cell is added to x.

(2) i is added to the iuaex set of x..

(3) ~ is mappe~ outo the new storage ce~l.

(4) A copy of uncie! ~s place<i in tha cell.

An important use ~s the one il~ustrated ~n the
second examp~e which aaas an object, a storage
cell to put it in, and a member o£ the index set
ot access ~t w~th.

The new member ~s added to the end at the Ludex
set, if tne inaex set is ordered. To 1I0ve it
elsewhere, a sllosel;iuent appl~cation of .£Q!!!~ will
do so.

If ~ is already d member of the inuex set of x,
or if L LS not n~i and not in tne admissible set
of ~ndices tor X, au error except~on ~s raised.

2.1.7,2.6.3.2

Irll'l CONk'I.l)ENTIAL insert

_/

;(- --"
\ ;.
1,-_/

(

(

(

Chapt~r 4.3 SUMctAR~ O~ rlASL~ IMFLI FOH~ 181

example: s:expr

where: s is a symbol.

value: Tae vdlue ot s:ex~r LS the value ot expr.

side effects: The symbol s becomes a label of expr.

use:

comments:

label

To attach labels to ex J:lressions so tUdtthey may
be the tdr~et of a ~oto fUnction.

The colon ~s d Syutdct~c mdr~e~ that Lndicates
that some sywnol is a label dnd indicates the
express~oll that ~t IdDels.

A laDel ~s a read only value in~t~ali~ed at
comJ:liletime.

Labels ap~ear to.be useful primarily for object
code created Dj trdnslators tram other Idnyuages
and liot for lldt~ve moue 51 pro~Ldmmin~.

Poss~Dli, ~t w~lL De found that only statements
can be labeLed, an~ that Lt LS too costly to be
able to label expressions ~nside statements.

l.di"i ~vNF IV.t;;.NTIA1 label

182

examples:

wh.eJ:"e:

value:

THE MA~-MACHrNE lNT~RFACE IN AFS

a lambda y

(Xif) lambda {stmt;stmt;stmt}

a ~s an o£dered-l~st Df symDols.

9 is a 9J:"ouP

x and yare symbols.

An n-ad~c fuuction whel:e li is the uumbel: of
symbols in tbe lett al:gument.

side effects: None

use: A lambda e~pression may be assigned to a symbol,
making it a fuuct~ou symbol. Altel:natively, the
ldmbda e.l(t!l:ess~on lllay De useJ l..n Flace of a
funct~on symbOL LU dU expl:ession.

commehts: The lambda e~t!re5sLon is the means, in SL, to

.deferences:

lambda

extend t~e functLons available. 5L may be
extended in data types by det~ning new access
machines. To accolllmodate new data types, cld
funct1..ons must be I.:edefined by dssi;Jnl.ng to them
the value ot an appr:opridte lambda expression.

The lldmes
g.l.ven l..ll
they must
funct ion.

or tae arguments of the function are
the sYlllbol list in the oJ:"der 1..0 which
appeal: iuan expressLon that uses the

2.2.3, 2.6. 1.2

lam bda

(~

(

(

Chapter 4.3

examples:

where:

va lue:

183

parallel Ij

paral~el lstmt;~tmt;stmtj

g is a group.

A vector whose elements are the values of the
statements ~ompr~s1n~ tne group.

side effects: None

use: To stdte that the statements compr1s1uy. the group
may be executed 1n ~arallel or.Ln any order the
machiueselects.

References: 2. 2. 5, .2. ti. 9 • .2

parallel ~BM CONilDENTLAL parallel

184 fHE aAN-MACHlN~ l~fERfAC~ IN AFS

examples: f(stmt;stmt;stmt)

al (b+c)
value: Parentheses do not ~nhibit the ~mplicit invocation

mechanism so the value ot a portion of code
delimited by pdrentheses ~s either the value of an
expd:~ssion or a l~st of values of statt=ments.

side effects: None

use: A pail: of fldrtm Laeses is used to delimit a flort ion
of code w~thou& ~nhinit1ng the implic~t invocation
mechani s m.

comments:

Refecances:

parentheses

One specif~c use or parentheses is to control the
order of executLon of functions in an expression.

Another specif~c use at parentheses is to delimit
the argument l~st of all n-adic funct~on ~hen n
is greater than 2, and when, as is usually the
case, the arguments art= to be evaluated before the
function ~s evaLuated. In SL, such a function is
interpreted to be a monadic lunction that takes
the argument list as 1ts argument.

parentheses, ~t ~s necessary to
serlUco.lon and braces. Head first

de11m~ters and then the pages on
Draces, and semicolon.

To uncle rstand
understanc.i the
the page on
pdrentheses,

deIim1ters, urdces, sem~colou

IBM CONFID~iTIAL parentheses

Chapter 4.3

example:

where:

value:

side etfects:

use:

Reference:

(

remove

lb5

remove x

x is an object.

x

A cOPJ
that·1.f

of unda% 1.5 placed in the storage cell so
x is evaluated a~ain, au error exception

is raised.

To remove the contents ot a storage cell without
destroying the cell.

2. 1.6

Iba ~0~FIDBNTIAL rem ove

I,
H
~ ,

1 tit>.

IIhere:

side effects!

use:

References:

repeat

f! rapea t 9

1 sto wi; (i(10) re peat (i+1 stOWlo; stmt.stmt;stmtj

P is a pr~dicate, aD expression that evaluates to
1 or 0

g is a group ox statements

i is an integer

None

The left argument l.S evaluated.
one, the argument on the right is
the left argument LS reevaluated
repeated. If the value of the
zero, exec utLOll ~l1ds. The value
the last expression ex~cuted

argument. It the CLybt ary~ment

at all, tbe value loS nLl. .

If lo ts val ue is
evaluated. Then
and the cycle is

left argument is
is tile value 0.1

ill the I:l.ght
LS not evaluated

'rue second example .l.S equivalent to , lon l:>L/I:

DU 1=1 TO lv;stlllt;stmt;stmt;END;

The exten<.l.ed l.nf,l.x fOLm will t>robably hav'e a
DO-statement of this sort.

repeat

\. .. ./

(

(

C11 apter 4. j SUMMA~X Uf ~ASIC INFIX iOH~ 187

examples: x re~lace i

where: x and y are obJe~ts

value: The value ~s d copy ot x.

aide effects: The oDject y LS d~stLoye~, unless y refuses to
destroy itself. In tuis case, i rellla~ns unchanged
and an exception occurs.

use: Usually re~lace LS used Wheil ooe argument or the
other ~s an ex~ress~on that bas the value ot an
oDject. Then it ~s possible to make an object
that ~s it copy of a component ot anothec object or
by usin';i ~nsert, to add a copy 01 ail object as a
new elemeut of another ObJect.

comments:

replace

Notice tnat r~~ldc~ Changes the whole
Doth access lIl~ch~n~ and r~source. stow,
other hand cuan~es only the ~esource.

References: ".1.7, 2.6.4

object,
on the

rel'lace

I
I
I·

I,·

I
r
II

~
11
~

r

188

·\:!xample;':

where:

value:

comlllan t:

References:

delect

THE MAN-MA~HIN~ ~NT~BFACE IN Af3

i Sl:!lect x

i select x stow y

x is a collective ouject.

i is a mambeI: 01; a synonym for a member of the
index set of x.

Y is an object whose access maclli!le is suitable.

An implic1cly def1ned synonym f01 a member of the
right argument ~hoSe index is the left aI:gument.

select tioes uot create a copy but merely
1dentities soma parcor parts 0% the collective
object that coustl.tutes the r1':lht argument. To
create a copy, ~t is possible to use a stow
funct10nas 1H t.b.e second exaillfile. 1n this case,
tbe target y must have an access m~chine that is
suitable tor the l.tD element ot x.

2. 1.5, 2.6.3.1

IBM ~ONfIDENTIAL select

Chapter 4.3

e.xamples:

value:

side eff ects:

comments:

References:

(-

semicolon

SUMMAR1 OF U&Sl~ lNF1X pOrla 189

{stmt; stmt; stllltj

t(xa.z)

Semicolon does not h4ve a value.

The seru~coron.l.s a dS.l.illliter Villose precedence is
lower than ant .tunctioll or functional. If two
expressions ard adjacent, one must be an operator
and the other must be one of .l.ts arguments.
HoweveJ:,.l.f a se lIi.l.colou inter veues, they nee eme
two elements of a l.l.st. As such, they are called
sta temen ts.

The difference between a statement aud an
expression is tuat a statement .l.S a member of a
gtoup of statements aud then, Wben the ~roup is
evaluated, tae value of a statement .l.S discarded
after the execut.l.OU cursor passes the semicolon
and before evaluation of the next statement
beS/ins.

The semicoron is used to delimit the arguments of
an n-ad1c fUnction when n>=3. Tae comma ~s not
used Decauss .l.t is reserved to be used as the name
ot a function.

To understand the sem1colon, it is necessary to
understand brdces aud Pdrenthe~es. Head first the
page on de~imiters and then the pages on braces,
parentheses, an.a seml.colon.

2. 2. :2, Je.li III.l. te L.\:i, braces, parentheses

IBB CONFIDENTIAL semicolon

I
It

I ~,

ii

190

shape a

where: a is an array

value: A list of inteyers of lengthr where r is the
rank of th~ array (the membet ot d~mensions) and
the 1th elemeut 1ll the list is the size of the
ith dilllens.1.on of th~ array.

side effects: The list is cre4ted •.

shape IBM CO~FIDENTIAL shape

,f'
I ',,,,

(

(

(

Chapter 4.3

examples:

where

191

X stow y

x and 'i are ou]ects or ar~ expre.:::;siolls that have
the value of objects.

value: The value ~s an oDject that has the access machine
ot y and t~e retiOUrCd of the value of x.

s~de effects: The left aLgumeut iti eVd~udted. fhen, the right
argument is eval Ud ted. F l.nally, the resource of
t.he value ox. the right argument replaces the
resource of tue val. ue of the left a rg umen t.

uses: This is the normal assignment taat takes place in
languages like eL/l..

comlilents:

References:

st01ll

To produce the ~l.na ot assignlilent that appears in
APL tiee replace.

2.1.4,

l.BM CONFIDENTlaL stow

19~

exalllple:

where:

value:

THEMAN-MA~HL~e I~fERfA~E IN AFS

syn x

x is au object.

A synonYIIl that ~rovides authorization for dccess
to x.

side effects: The synonym# an obJect, 1S created.

use: A synonym LS 11~a d ~01nter, but Lt has safeyuards
so that ~t Cdnnot be used except by re~uests with
the propeL autuor1zation. UnlLKe a pointer, a
synonym autoUi at Lcally passes all a utnon. zed
requests to the aDject to whicb it points, whereas
a pOLnter demands a Iurtker operat10n on it to
produce a value.

comments: It 1S not poss1Dle to convert data 0% auy other
kind to d syuonYliI. Th1S ~rotects the system
Lntegrity froil 1ncursions, SUCll as can be
accompl1shed by ada1ng integers to PL/I ~01nters.

Refere nces:

syn

To yener ate a
already ha;;;) it
function.

synonym with fewer r1ghts than one
1S necessary to use the authorize

SynonYllls dre nae~ed for aata base applications.

2.1.5, 2.6.3.5# 2.1.4, authorize

syn

/
I, ,/

(

(

Chaptiar 4.3 StlMMARY O~ tiaS!C iNFIX FORM 193

From the precedLng discussLon and a Knowledge of APL., the
dpproximate meaning ot the fol~owin~ w11l be obvious. There are
a total of 59 funct.1.ons.1.u th.1.s category. Notice that some APL
tunct10ns are defined elsewhere dnd are not l1sted here. the
nyphen indicates when a d,tadl.canQ monadic tunct10n are related.
~heu the SL nallle differs tram the APL name, it is snown in
parentheses.

11Q!!~di£
plus
recip.I:ocal
negatiVe(m.1.DUS)
signulII
ceL11ng
floor
ex~onential(exp)
na t .log (In)
maljn itude
sin
cos
tan
arcsin
arccos
arctan
sinh
cosb
tanh
arcsinh
arccosn
arctanh
not
membe.I:ship

ravel
revet"se
transpose
grade up
grade down
pi times
reduction(reduce)

Qyi!~!.£
pl. us (sum)
U1 v Lde (<juotien t)
ilil.nus(d.itference)
ti mes (product)
maX.l.lIlum
IUfi.l.lIlUm
power
log
res.l.due
and
or
ndnu
nor:
less (1 t)
not greater(le)
equal (eg)
110t less(ge)
greaterige)
not e<jual (ue)

ta~~

dI:Oj;l

reshape
catenate
rotate
trauspose
compcess
expdnd.
outer PI:'oJ.uct
l.uae I:' pI:'od uet

someone might argue that the c.1.rcular .LUllct10ns are just one and
not 13 iunctions. From one pol-nt of view, thet are 13 functions
with hard-to-rememoer names.

IBM COl~~' IDENT IAL

i
I'
~

I
I

194

The following 38 functions dre d~~iuad or identit~ed elsewhere in
this report: aguire, augment, ~a~e value, claim, connect, copy,
delay, delayed parse, destroy, tree, identify, ignore, index,
inject, insert symbol, ~nteojuCa,list, load, locate, map,
member, monitor, namsvalue, pOlone, prioI:ity, quotiellt_remainder,
release, representat~on,send answer, send message, sLgnal, step,
suspend, translate (dyadic), tl: ansl.ate (monadic), u It imate, uni que
name, wait answer, wdi t lIiessage.

Defined in 4.3
Identified by APL
Indentified elsewhere

28
59
38

12~

The complexity of 5L can be measured roughly by compdcLny it to
APLIHti::: b perf o.cms a much more c onstraloned function but has large
areas 6f similarity. To do this the A~L fUnct10ns that remain
will be dientified.

There are 8 APL functions that have clear conterparts among the
5L funct~ons mentioned: branching(goto), function
definl.tion(lambda), lOCdl var1dnle identif1cation(declare),
speCification (replace), siJ;e (silape), tI:ace con teol (monitor arid
ignore), label (label), indexing (select), comma (augment).

rhere are 50 more APL fuuctions to do things tuae 5L will do but
tbe re~ationship is not direct either Decause the details have
not been worked out or because the work is done difierently. In
some cases the work is actually done by functions already
identified. These are: editill~ control, editl.ng . ~arl, display
controls, locked function, stop controL, terminal input,
character input, 34 system commauds, 9 system aependent(I-beam)
functions. In SL all of· these thl.n~s will be done with the kind
of functions so far identl.fied. Taere will not be the diversity
seen in APL/36u.

~inally there are 9 APL
programmed:

functions that w~ll probably be .{
l
"--

(

(

(~

Chapter 4.3

encode
factorloal
roll

SUMMARY O~ BASI~ INFIX fORM

decode
Dlonomial coettlociant
deal

three square roots at sums of s~uare~

1~5

No decision has been maQe a5 to which of these marginal APL
functions belong in the basl.c ~nil.x level ot SL and which should
be proqrammed. It may be, tor example, that none of the clorcular
functions will be in the iTlachine language. HOifever, allot. them
will be in the extended l.ntl.X torm dnd allot. them will be
supported where they appear loll tae varl.OUS favored hloyh level
languages. With this iniormatl.on, tl~ languages can be compared
as follows:

APL/360 functions with d~rect 5L counterparts
APL/360 functions 5L will cover

APL functions to be programmed

SL functions with clearly deiineu APL counterparts
Other ~dentitied 5.L tunct~ons

67
50

117
y

126

67
5d

125

Clearly more I:unctions inll De adiltHi to 5L. dowever, it seeDls
clear that SL will be oniy a 11.ttle more compllocatel that APL/360
while providing much more capaul.litj.

IBM CONFlDENT~A~

I

r

I
:

Chal;>ter 4.5

E~AaPLES uF SL PROGRA35

T~is chapter demonstrates tue suitabil~ty ot SL as a target
language for the transldt~ou of programs from PL/I, COBOL,
POHTdAN, APL, hPG and LISE. For each of taesa langaayes, typical
program· constructs are illustrated (alollY with contextual
information when a~propriate) dnd followed by an equivalentSL
construct. Tbe 5L exam~les given are written ~n the basic infix
nota ti on (refer to Sec tion 4. J) •

Programs written in SL .to accompl~sb these same purposes would be
much simpler since they woulu not involve the complexities of the
various source languages.

Example of simple case of PL/I))0 statement:

DO I = 1 TO 10. statement_l~st; EN)).

The 5L code for the above ~s:

)->I; {I+l->IS10Jrepeat(statement_list}

In a somewhat more compl~cateQ case with var~ous data types
involved in the iteration caiculation, there can be rounding
problems thatp:LOhibit tue simpLe initializat~on used above.
Furthermore the value 01: tile iteration limit CdR be cuanqed
during the iteration so there must be a tempo~ary.In this
case:
DO 1=1 TO N;

statement_list
END;

Equivalent SL group:

{declare C unique;
(0 stow C;

(eval(C select t{l stow r }.
(I sum 1 stow I Ie N stow Cj

}
,f ..
! 1,

'-

(
cha.pter 4.5

}

}
} rapeat {~ta.tement_listl

}

197

The general case ot the PL/l DO statement is much more
complicated than the ord~naLY user realizes, or can utilize
often. A tull explanat~on OL the interaction aL the TO and HI
clauses with the WHILE option, wLth more tnan one specification
present, may be fauna ~n the PL/I ~anguaye SpecLiications
manual (Y33-6003-1, pp 144-140) or the PL/I (F) Language
Reference Manual (C28-U201-2, pp 3b4-3b7). TnLS general case
can De programmed in 5L uSLny d sLuyle SKeleton (with the
possioility of Lepea~iny one section as toe multiFle
specifLcatLons re~uLie), suust~tutiny tor the ndmes ot the
variables used in the DO statement. Au example af tais is ~hown
below:

DO I=Jl TO Kl HY Ll~HILE(~l>,
J2 TO K2 BY L2 WHILE(E2),

• • •

END;

~quLvalent SL group:

(declare U V W C BODY TEST ilD~que~
synlstatement_listJ stow BUDt;
syn{signum V Is 0 selectlI Ie UtI ye Uj} stow W;
to stow C;
;:;yn{evdl .. dud Elj stow'I'EST;
{eval(C select {[Kl stow U;Ll stow V;J1 stow l;lESf stow C};

}
} ra peat HODY

j ;
{J stow c;

{I sum V stow I;TEST }

syn(eval Wand ELJ stow T~~f;
(eval(C select llK2 stow U;LL stciw V;J~ stow I;TEST stow C);

}
} re pedt BODY

} ;

•
•

[I sum V stow .1j'rESi' }
j

ltiM CO~'LDENTIAL

198 THE MAN-MA~aIN~ INr~aFACE IN A£S

}

~ote that the first three lines ace the setup co~e wb~ch need be
present only once regaraless at the number OE specifications
appearing in the origina.l !!l./I 1)0 statement. These are foL.lowed
~y a pattern ~roup wbich is cepeated once perspec1tic&tiori,
separated by semicolons as necessary, and te.cminating with the
final right brace.

This general skeleton can De s~mplified substanti~lly by a
compiler if the original uu statement does not contain all of
the most general vptions. Fol.: example, if the eXi:'ressions in
either the TO or BY clause3 are constants, tue corresponding
temporaries U and/or V can be eliminated. If the BY expression
is a· constant, then the entice expression "si~num V 1s on can
be evaluated at compile t1me, and the result can be used to
chose the expression to oe sUDstituted for W. suff1cient
evaluation of constant expr:essJ.:ons at compile tillle can result
in the reduction ot the general case to a much simpler program,
like the one shown for the sl.mpie case of flL/l DO.

Example ot BXAMINE, If' and ALT zli st.a temellts:

EXAMIMB INPUT-RECO~D TALLY~N~ ALL ','.
IF TALLY IS i~UAL TO 0

THEN ALTER SWITCH tu PHO~EED TO EXIT.
•
•
SWITCH. GO TO.

Equivalent SL statements:

eLe~ sum reduction 'INPUTBE~ORD member ',') stow TALLY;
eval ({; {EXIT} stow Xj [TALLY eq 0 J, ;

•
goto X;

Example of ARITHMETIC IF statement:

IF tE) 12,56,13

IBM CONFIDENTIAL

(

(

(

Chapter 4.5 EXAMPLES OF SL PROGRAMS

Equivalent 5L statement:

yoto(signum E select {12.;56;13j) i

Example of LLSP conditional statement:

COND«(Pl Ell
(P2 £2)

•

(Pn En))

Equivalent SL statement:

eval(Pl condition El;P2 cond1t1on ~2; ••• ;Pn condition En,;

199

i?ar t 5

A LOGICAL IMPL£MENTATION

A logical implelllenta tion of the sy.;;telll l.S bel.ug uefined using the
Vienna Definition Method.llu.tl.allyt.ile logical implementation
will be presented in Engll.sh. In later verSl.ons of the document,
the formal notation will be l.ntroduced.

(

Chapt.er ;'.1

BASIC STIWCTURE

An .QQj~i £2!!:!£Il!££: is a stora-;e cell and its contents.

A 2!:.Q.~gg,~£g!.!. is nallled by an iid dne\. conta~ns 'jueue(s), a queue
manager and an object. rid's dre un~que, not reused. An iid is
the internal representatLon oi a cell name. A storage cell is
known as a !B!iig,£when the ownet'sh.l.p conventions are suspended,
e.g. a request is always sent in d bufter because ownership of
the object construct is retained by the sender until the
recipient accepts it.

A ~gl!~ contains the iid. 's ot butters WB.loCh reprasent messages
being sent between ooject constr ucts. . t,.!ueues are organized ina
FIFO fashion. There are re<juest queues and response queues.

A £.~~.!!~g g!!g~ queues
processing by the access
this object construct.
request queue.

the loia';;) at requests intended for·
machLne associated wita tae object ot
Evert storage cell has at least one

A ,£g§£2n§g gyg~~ queues tue .l.LU·S ot responses for processing by
the access lllachiae associatedwlota the object of this object
construct. A storaye ce..ll lIlay tid va none, one, or more resFonse
·-iueues.

A .!!~~~g whose loid is pliiced ou a ':lueua is the communication
llonk to and frolll ob ject constructs. There at'e re-juest messages
and response lIlessages.

A ~~~~ ~alla~~£ is associated w.l.tn the queues of each storage
cell. It is the cOlllml1Il.1.cation in terface betw~en othe r obj ect
constructs and the object of tb.l.S 0bJect construct. As soon as
~n object construct is created, toe queue lIlanager can beglon to
handle incomin':j requests. :£ne ':i ueu~ lIliinager of eacn storage cell
can bandle lIlessages.1.n p~ra~Lel ~~th the queue managers of all
other storage cells iu th~ siste~. Eacnqueue manager handles
its messages sequentially. The Log.l.C of queue managing is
written extralingually, e.g. in micro-code.

An Q&j~£1 contains an access IIldchl.lle dnd a resource.

An ac£g§§ !ru!£il,!!!.g is assuciateu. W.1.til the resource of edch Object.
It is the process.1.ng interface ~etween the queue miinager and the
resource of this oDJect. As soon as an object construct is

A LO~l~AL r~~L~Ml~TATIvN

creoted, the access wachine can beyiu to proce~s 1llcoming
requests. Th~ access machine ot eacn object can process messages
in paralle~ wito the acqsss macnines of all otber oojects in the
system. The access machine process 1S uescrioec1 by three
cowpon~nts. Tbese are a proceduLal Jescription, an interpreter of
the procedural description, anQ d process status record (PSB).
The procedural description da.':icribes .the process1ny logic. The
1nterpreter proviaes the actual motive force tor t~e process by
interpreting the procedural description. The P5ti is an area of
storage in which t be in tel:p.ceter records the current sta te of its
interpretation ottbe p.l:'ocedul:al descrij!tion. The logic of an
access machine is written either extralingually or in 5L. If the
logic 1S written extra11ugually, the object is said to be
£I.iU.£iv~ If the logic ·is we.:Ltten in SL, the object 1S said to
be regJ!£ible.

A £I.U.!~ivg o.b.J~£~ is an object wnuse access mdch1ne is written
extralingually. All requests sent to the queue manager
assoc.iated with the storage cel.l couta1n1ng a fJrimitive object
are passed by the que ue mana9~r to the dccess machine ot the
primitive object for proCeSS.L.IlIj. Iri fact, s~nce the 10g1c ot the
queue manager and of the aCcess macoine aLe not~ written
extralingually, t.be fUBct10ns O~ tne ~ueue mduayer can be merged
i~to t~e funct~ollS of thd access maC0111e for pr1mitive Objects.
This is being done in the logical definit10n. Fuether, since the
procedural description, tAe 1Ilterpreter:, and t.he PSl1 tor a
primitive object are all extrdliugual entit1Bs, these components
are nat separately denoted, but are jointly denoted oy the object
type, e.g. a LIST-type aDJect.

A ~Q.!!£!:12!~ Q!2j~£! is an object wh;)se access machine is written
in SL. All reqaests sent to toe queue manager associated with the
storage cell containing a reduc~bl~ object are passed by this
queue mdnayer to the inter p£e t.e r: ot the SL code wh~cll by be iug
~nterpreted will process the requests. Since tne procedu ra1
descr iption, the inter preter, an ci t.ue P5d tor a l:eciuc.l.ole ob j€ct
are all SL entities, these components are separately denoted by
their three iid's.

A ~2.Q.YI£g contains the uudifterentl.atea data value owned by the
access machine.

When commun1cating witA fore~gu arcb1tectures, it 1S not
meaningful to transm~t the 11~ of a storage cell conta1nillg the
object of interest. It 1$ necessaL'y to transi1\l.t the, object part
of a, storage cell as a piece of data. An Q.Qj~£:.t. :!:!~g~ is the
representation of the object~art ot a storage cell as data.

Parts of the logica ldefini t1 Oil of SL reguil:e representing
certa.in hardware boxes. Lt;i:s advi:lutageous to .represent them as
far as possible as object COIl.::itructs. .Instead of being located
via an iid, a quasi-object constr:'uct is located via its gid.

l.iH~ CO~f ID£NTIAL

(

Chapter 5. 1 203

Oid's are un~que, not reused, ~ud ~ce d~stingu~shabLe trom ~id's.
In all other respects quasi-ouJect constructs are treated like
object constI:uctS. A g,J!!ls~:.obj~£.t is a representation of an
entity .requiring service when service is prov~ded by multiplexing
a finite number of servers over a potentially intin~te number of
such entities. For exalllpl.e, the ~§1!~I-type object (quasi-SL
interpreter) represents tue re~uirement for hardware multiplexing
ot a finite set of I-Boxes over all ready processes. The
Q~!!1-type object (quas~-evaluant) also represents the
requiremell t for hardware multipl.e)u.ng at a f~n;l.te set of I-boxes
over all reallY processlds. ·rite ~§!Ha-type ObJect (quasi-sulIl)
represents the requ~cement for l1ardWare Ulultiplex;l.ny of a finite
set of adders over all ready processes.

1- - -- _ --. - - -- -
I

I

I , , ,
1

"..Q\..C..E!u.es, ;;cl" "
~ ____ ~ ~-------~ -- --P-----~

Sto,..~~e cell
010"

BlAfter cell

-- _.

t ,
,
~

Ob1€ct I

I",o..Cj-e I

I

-'

Figure 5.1-1:Structure ot d storage Cell and ;l.ts Contents

I.t:Hi L:Jl'tFl.D~NTIAL

l04 A LOul~AL 16~~~M~~TATION

The user who writes a str1.ct syntax SL tlcogram deals with.
syntactic oparatocs and syntactic simple operands. ~hen his text
is interpreted, the names he used tor h1.S syntact1.c :>perators and
simple operands will berasol ve 11 to some i1.d • informally, both
operators dnd operands are re~resented by objects. To the user
ah opecator represents an aDject which he ~ants to invoke, to
pass some arguments, to have it otlecate on the arguments, to send
back an answer, and to ~uit. fo tue user, an operand cepcesents
an object which the user w~nts to pass as an acgument to some
operator.

The name, e.g. sum, syu, cLeate, foc a pC1.m1.t1.vely defined
syntactic operatoc cesolves to an iid of d storage cell of an
object construct whose object's object-type is PfUNCTION (foc
primitive function) and Whose cesource pact contains an
indication of the pc.i.m1.t1.vely uef1.ned ope.ration to oe pertormed,
e. g. addition, synonym creation, oDject coust.c:uction.

The name, e.g. translate, S1.n, tor a ceducibly defined syntact1.c
operator resol ves to an iid or. d. stot·age cell of all object
construct whose object's type loS fUNCTION and waose resoucce part
contains the iid of the 51. text, the iid of S.L symbol table, the
iid of the SL link table, auj the iid of the outstanding
activation tab~e. The interpcetat1.on at the S1 text aefines the
opecation to be pecforaed, e.~. progrdm translation, sine
compll tat ion.

The name for a pcimitively ue~~ned syntact1.c simple operand
cesolve::; to an iid of a storage cell of an object constrllct whcse
obJect's object type could be INT~~ER, LIST, SIN, FUNCT~O~, ••••
in the case ot an INT~GE~-type object, the cesource part is the
in teger itself.

The name for d redUC1.Dly jei1.ned syntactic simple operand
resolves to an iid of a stora~e ceLl of an object construct which
contains a reducible object. The resource part of the ceducible
object contains the iid of storage used by 5L text as it is being
ill ter pceted.

IB~ C0NF1DENTIAL

(

(

BASICi.1r.;CHAl.l ISMS

Some ot the most important ba~LC ruecnan~sms are th~se permitting
message communication betw~eu object constructs dnd those
permitting message hdndl~ng ny an object construct.

The 1ueue manager assoc~ated wLtb the ~ueues oi au object
construct can invoke the message communicat1on mechanisms. They
are: send request mechan.l.sm# f OL'WdL'U reC:iuest mechan.l.sm# and send
response mechanism.

The queue manager CdO alsu
mechanisms. They are: waLt tor
response# read response.

Luvoke the message
re~uest# read request,

Ilanal.ing
vai t for

rhe access machine associate~ w.l.tn the resource of an object
performs the actual process.l.n~ ox tn~ re~uests anu the responses.

conventions for the forlildt Ol. a
cre4tor of Ule message, tne C:iueue
uses these conventions. 'rhey are!
response format convent.l.on.

message are ~ntroduced. The
manager or the access machine,

request format convention and

In describing the mechau~sms Ln ~n~lish, the logical steps are
listed sequent.l.ally. In tact some ot these steps will occur 1n
parallel, dnd will be so llotell Wlleu we descr~be t ha mecnanism in
VD~ notation.

5.2.2.1 Send Request decnan~d~

Queue l.'1anager"

1. passes
lIleChan~dlll:
recip1ent's
representing
. request, the

the folLow~ng ~ard~et~L'S to the sena request
of the request, the
iia O~ the bu1£er
of tue sender of the

the iiu of the recLpient
request (iueue nUlUuer ~ the
the re~uest message, the iid
sender's response queue nu~ber •

206 A LOGICAL IMP~eME~TATION

Send Request Mechanism

2. produces a unique msgid. 1* A rnsgia is a uniiue identifier
used to tag a request for the ~urpose o± responding to it.*1

3. completes the re~uest message oy adding the msgid to the
request message. The ~id of tb~ re~uest message ~s tbe iid of a
buffer containing a LIS~-type object. it replaces the first
subobject of this .LIST- type object with a 11SGl.U-type subobject
whose resource part conta~ns toe wsgid pcoduced for this re~uest
message.

4. adds an entry to the system ~ommunication Table. Each entry
contain. the following informat~on: the msg~d, the iid of the
sender of the re':luest, the l:it::!uder's response queue numbec, the
lid of the recipient of the request, the cec~i!ient' s request
<lueue number, and the iid ot the request message. 1* the first
two pieces of ~ntormation are essent~al to messaye communication.
By ke~pin9 all these infocmation p~eces ~e depict the Dependency
Gcaph, thus a~ding resource management, system restorat~on, and
system verification *1.

5. puts the iid of the request message on tne speCified request
queue of the specit~ed recipLdut.

6. passes bact to the queue rna.llage[' the msgid.

i F

u.x.~ ~tte I
• { t

'm 5 d t c.\ I ,
t
t

i i cl

"_n, •. __ ~.",. "~"_"'~'_~~"' • __ .. ,_~.". _"n

I ,

ii..d
of .

I-'e~ue'it

Figure S.2.2-1;System CommUn~(;dt.l.On Table Eutry Format

Ida C0MFIDENTLAL

(
Chapter ~."2 207

~.2.2.2 Forwara Request Mecbaui~m

Queue Manager

1. passes the l:ollow.ln':i pal.'ameters to the forward request
mechanism: the ii~ of the rec~p~ent ot the re~uest, the
~ecipieut's re~uest queue numoer, and the iid of the buffer
representing the request llIessa~e.

Forward Request Mechanism

2. the iid of the request llIe~sa~e is the ~id of a but fer
conta1niny a LISf-type oDject. Us~ny the msyid in the resource
part of the l'lSGlD-type sUboDJect of this LIST-type object, it
locates the appropriate entry 1U tua System Communi=ation Tab~e.

3. updates the iid of the raC1p.lent of the request and the
recipient's re~uest queue numDer w1th tbe spec.l.t~ed new recipient
and new request gueue numDer.

4. puts the .lid of the request message on the spec1fied request
queue of the specified recipient.

5. returns to the queue mana~er

5.2.2.3 Send Response Mecnan.lsm

lJueua Manager

1 • passes
mechanism:
message.

tae
the

tollow.lu';J
iid of the

Send Response Mechan.lSill

parameter to the
nuffer Lepresent1ng

send
tL.e

response
response

2. the iid ot the response illessdg~ in tne iid 01: a. but ter
containing a LIST-type oDject. Us~n~ the wsyid 1n the resource
part of the MDGID-type SUDODject of this LIST-ty~e object, it
locates the appropr~ate ~.Iltry ~ll tne System COillillunication Taole.
The entry in the SeT specifies thcl iid of the recip1ent of the
response and the recipient' ~r:eBp onse ~ueue uumoer. 1* the
response yoes back w1th the same wsgid used to tay tae re'iuest to
which it is a respoIlse*l.

3. puts the ~id ot the r-esponse llIessage on the specified
response queue of the specif.l.e~ rec~pient.

208 A LOG~CAL LHPLEMENXATION

4. deletes the entry frolfl Ute!::iystem ComiUun~cation ''cable

5. returns to the queue manager-

5.2.j.1 Wait Mechanism

Queue Manager-

1. passes the following par-<1illetecs to the wa~t lllechanism: the
queue number to wait on or d list 0% queue numbers to wait on
where the list determ~nes the priority order of message
retrieval.

wait Mecilanism

2. waits for an iid to appeaL au the speci%ied queue. 1* Nete
that the one wait mechanism dll0 ws waitJ.ng on a reSt,uest queue or
on a r-esponse queue/*.

J. when an ~id appears, it passes back to the queue manager the
'lueue number on whiCh the iid appears.

5.2.3.2 Read Re~uest MechanJ.sill

uueue Manager

1. passes the follow~ng par-ailleter to the read request mechanism:
the queue number containJ.ng the J.J.J of the butter representing
the request message.

aeaa Request Mechanism

2. rem~ves the first i~d from tue spec~f~ed queue.

3. deletes the J.id from the s~ecJ.tieu queue.

4. verJ.fies that indeed the D~rier represents d request message •
. fhe iid of a request messdge is the iid of a buffer containing a
LIST-type object. It cheCKS that tne second subobject of the
~IST-type object is a RE~UEST-type object.

5. ~t yes, ~t passes back to tne queue manage~ the iid of the
buffer representing the re~uest message.

((.

',,- ./

(
Chapter 5.2 dAsrc rl~CriANl~MS

5.2.3.3 Read Response Mechan1sm

Queue Manager

1. passes the followin':J fiardmeter
mechanism: the queue numbec containing
representing the response message.

Read Response Mechanism

to the
the iia

2. removes the first iia trom the speciLiea queue

3. Jeletes the iid from the spec1iLed queue

209

read restJonse
of the bufter

4. verifies that 1ndeed tbe Dufter represents a response
message. The Lid of a response message 1S the Lid of a buffer
containing a LIST-type object. It checks taat the sec~nd
subobject of the LIs'r-type object 1.5 not a d£QUE5T~type object.

5. 1.f yes, it passes haCK to the ~ueue manager the iid of the
butfer representing the response message.

(5. 2. 4 !1~222.~ gf.Q.~22i~g
Queue Manager

(

1. passes the following paramater to the access macnine: the iid
of tne buffer representiny the request or resflo.use message.

Access Machine

1. 1* the request processl.uy lay1.c provided by an access illdcLine
involves 'if ••• then' logl.c: 1.1 re~uest so and so, then perform
such and SUCh, wbere such anj such varie~ DJ object type. For
example, what a FUNCTION-ty~e Object dues to process au execute
request is tar different trom what a F1JAT-type oDject does to
process an execute request. The details of what actions each
object type does dS d fuuction ot rclceiviny any poss1ble re~uest,
has yet to be defin~d in this model*1

1dM Cv~FIU~NTIAL

l10

5.2.5.1 Request Format ConventLoli

~ueue Manager or Access MaCnLne

1. If the send request mechan~sm is subse~uently going to he
invoJted, tae creator of the L~quest message COilstr-ucts in a
Duffer a LIST-type object. The first subob]ect must be an
ONDEl-type object. The second subobject must oe a .i1EQUEST-tYfJe
object whose resource part conta~ns the name of the r~guest. The
remaining subobjects must be object types appropriate to each of
the parameters ot the re~u~st.· A request need not have
parameters but if Lt aoes then, for ~xample, it a parameter is
the iid of some stor-aye cell, the suCobject would De an ACC-type
object. If a parameter LS S~llie ~nteger, the subobject woula be
an INTEGEH-ty~e object. /* a Duff~r acquir-ea woen some request
was sent to the queue manager could be used as tue buffer in
which to construct tue request */.

lid

• • •

Figure 5.2.~-1:format of a Hequest

IdM CON'Iu~NTrAL

(

(

(~

Chapter 5.2 211

·5.2.5.2 Response format Conveut~ou

Queue Mdna~er or Access Macnin~

1. If the send response mecaanism is sUbsequdntly going to be
invoKed, the creator of the r-esjionse message constructs in a
buffec a LIS'r-type object. The f.~rst subobJect must be a
MSGID-type object Whose resou£~e jidLt conta1ns the msg1d that
came over with the request messaye to which th1s 1S d response.
The remaininy subobjects must De ODJect types appropriate to each
of tue components ot the response. 1* Tue butter representing
the request to which t~is resi!0n~e message is d response should
be used as the buffer in wh1ca to construct the response. The
correct msgid is already there./.

i i d.

o

IdM ~U~FLDidTlA1

• •
•

Chd.~ter S.3

KEY P~OCBSSING ACTIVITIES

The definition ot the basic m~chda~sms of the yueue manager and
the definitions of the re~uest aad res~onse processing activities
of each access machine tipe ~s essentially a logical d~fin~tiou
of SL. Certain access macnine processing activ~ties are
especially important. Some o~ them are translat~on, expression
evaluation and symbol resoiut~on. The def~nition or expression
evaluation ~s described is described below.

Eacb reducible object will ca~se one QSLINT-type quasi-object to
be spun otf ..tor the ~nterpretation ot all the statements of the
syntactic group associated ~Lth the reducLble object. Each
QPARALLEL-type quasi-ouJect will cause one USLIN'r-type
quasi-object to be spun off for the Lnterpretat~on ot each
statement of the syntactLc ~roup associateQ with the
QPAf1ALLEL-type quasi-object. A QSLINT-type quasi-object is known
as au interpreter.

Each USLINT success~vely spins otf one QEVAL-type quas~-object
for each statement in the statement group ~t is process1ug. A
QEVAL-type quas~-object is Known as dD eVdluant.

Each ~EVAL, not handling a s~m~~e"operand, spius oft a UEVAL-type
luasi-object for each operand in the expression Lt is processi~g.

Access Machine of the QSLINT-type ~uas1-object (the interpreter)

1. 1* Assume tbat the followiuy parameters were passed to USL~NT
if it ware called by a reducibLe oDJect:

(1) the i1.d ot an obJec t constr- uct which has a
FUNCTION-type object 1* t.LS ~iQ loS ~n the acccess macbine
of the reducible Object *1. Located in the resource part of
the FUNCTION-type object 1.5 the iid of an object construct
whiCh has a LIST-Lype Object. This LISf-type object
represents the stdtement jCoup. Located ~n the resource part
of thi::; LIST-type Object are the iid's of object constructs ,1(-

which r"epresent sta teman ts. A statemen t ma y e~tller be Ii ',-_

ltiM CUNFI0~NTIAL

(
Chapter S.3 213

simple operand (5 U1BOLJ.if!r'EhENCt:-tYJ!e object) or a complex
operand (LIS'f-ty pe object). A £Q.!!£l~ Q.E~£s!'.!!Q. is a
LIST-type object cepreseut.1.ug an operatoc and l.ts opecands.
Located 1.n the resoucce ~aLt of a LIST-type object,
repcesentin~ such a compl~x operand, ~s the 1.ii of an object
construct which has d SUIBuLREr'ERENCB-ty pe ob ject. The
re~ource pact of this SY~dJLREfErlENCE-type Object contains a
symbol number. This SY11riiJLli.J:;FEiU:NCE-t.ype object represents
t.he operator. Also lO~dtea in the resource part of a
LIST-type object, Lepresentin~ a complex opecand, are the
iid's of object constructs representl.ng the arguments to the
function. These Object constructs c~n have a
5YMBOLREFEltENCE-tlpe object or d L.l.S:r-type Object.

(2) the iid of an Object constcuct Which has an UNILI::F-type
object 1* this 1.id is in t.ile access machine of the reducible
object */. This UNU~F-t.ipe object reJ!resents the
interpreter workacea (IWA) wUl.ch is part of the ~SK.

(3) the iid of t.i:le ooject coustcuct r:epcesent1.lllJ the
st.orage used by the SL pcogcam bein~ l.nterpr:eted /* this iid
is in the resoucce pd~t o(the reducl.ble ooject *1.

(4) the ~~d of the obj~ct con~truct represent1ng the actual
dr~uments intended fOL the function.

Assume that th~ follo'Winy paralllete:cs wece passed to I.lSLrt~T if it
were called by a QPAHALLEL-type qUd~l.-obJect:

(1) the ~id of all Object. construct whl.ch has a LISr-tYJ!e
Object representiny a nest.ed statement group

(2) the iid of an oDject construct waich LidS all UNUEF-type
object 1* this iii! loS l.il the cesource part of a LISr-type
object repcesentin~ th~ 1.uterpreter wo:ck~rea of the
predecessor intecpreter *1. This UNDEF-type object
cepresents d nested interpreter wockacea {LWA}.

(3) the iid ot the object construct representing the
storage used by the ~L pcogrdffi oel.ng 1utecpreted.

(4) the iid of tile object constructcepresent1.ng the actual
pacameters intended tor tae function. *1

IdM ~ONflU~NTIAL

I
I

214 A LUGICAL ltl~L~HEN~ATION

Figure 5.3.2-1:~t£uctu£e of d ~aillple iUDct10n

Ititl ~ONiID~NTIAL

(

Chapter 5.3 ~EY PBOC~S$I~b ACTIVITIES

-------.-~ ... ~ ... --_ .. _
.--1"-~ fu 'h C -t.-l' }1

il~[~} :-r-r-4---.-
I
I

i
i

I
\
I,

\
\

\ ,
\
,
\

\

l"igure 5.3. ~-2:StI:ucture of a Sample P!:ili

IdM CONfIDE~TIA~

215

216 A LOGICAL IMP1~ME~TATION

l. replaces the UNUHP-type aDject represent~uy an IWA with a
LIST-type object. Tnis LIST-type object represents the (nested)
interpreter workarea.

3. augments this LIST-type obJect, tbus creating an UNDEr-type
object.

4. replaces the UNDEE- ty 1:'e obJect with a LIST-t :ipe ob ject. This
LIST-type object represents the seqaencing workarea.

5. augments th1£ LIST-type object tw~ce, thus creating two
UNDEr-type objects.

6. replaces each UNV~P-type object ~ith an INTEGEH-type object.
The first INTEGEB.-type repre;:;ents the statement counter. The
second INTEGER-type object re1:'resents the statement count.

7. if it were passed the iid ot dll object construct which has a
FUNCrION-type object, ~t retL1eves the LIST-type object
representing a statement group; else it was passed the iid of a
LIST-type object represeutin9 a (nested) statement group.

8. uses the request format cunvent10n and t~e send request
mechanism to send an ident~fi re~uest to the LISf-type object
representing the statement group. It needs to ~now the number of
statements it 1S to interpret.

9. uses the wa~t mecna nism Lv 1/ a1 t for tue response.

Access Machine of the LIST-type oDJect repres8nt1ug the statement
group

10. uses the. read request mecoaD1sm to read the identify request

11. 1* Deta1ls of bow a LISf-type object processes the identify
request are not described now*/

12. uses the response format convention and the sena response
mechanism to pass back a respoBse tu the QSLINT-type quasi-obJect
The response indicates the number or statements to be interpreted
by the interpreter.

13. uses the wait mecnan1sm to wa1t fur tne next request.

AcCess Machine of the QSLINf-type ~uasi-oDJect (the 1nterpreter)

14. uses the read response meCaaULsm to read the respunse.

15. stores the number of statements in the resource part of the
INTEGER-type object representin~ tue statement count.

16. stores zero in the resource part 0% the LNTEGER-type Object

~ilM CONFlu~dTIAL

.4
I
~

(

(

(

Chapter 5.3 KE¥ PdOCBS~l~u ACTIV~rIES 217

representing the statement couater.

17. if it WHre passed the i~J of au aDject constru=t which bas a
fUNCTION-type object, it binds tne parameters and handles the
p1:ologue if any.

1d. crea tes
'luas~-abject.

a quasi-oDJec t construct with a \.lEVAL-type

19. augments the (nested) I~&, thus creating ~n UNDEF type
object. This object will repr~sent the evaluand.

20. uses the request .tot:luat convention aud the send request
mechan1sm to send a start re~uest to the ~EVAL-tipe quasi-object
just created. The parameters to start are the i1d of an object
construct wh~ch has a LISX-tl~e oDject representing it (nested)
statement, tbe iid of an object construct Wh1Ch has a LIST-type
object representing the symbol table, the 1id of the (nested) IWA
just created, and the iid of the object construct representing
storage.

21. uses the lIIai t mechanism to wa~t for a res,!;)onse.

Access Machine of the JEVAl.-tY,!;)d quasi-object (the eva~uant)

22. use the read re':iuest meCild.nism to read the staLt request.

2J. if it weLe passed an S¥MHOLREFEdENCE-type object
representing a simple operand reference, Lt performs steps 2~-J3.
If it were passed a LIsr-ty~e object representing a complex
opecand, it perfor ms steps J .. -ti5.

If tile evaluant were j;lassea. an SYI.HHJLrlEFER,C;NCE-type object
representiny a simple operand, then it -

24. uses the symbol resoluti on mec ilan.1.sm to locate the
the stocaye cell of tlle ODjclctc;oustI:uct l:'I~,!;)resented

simple operaud. The symbol number .loU the resource part
SYKB01HEFERENCE-type object ~ndicates the symbol table
which c~rresponds to the simi;lle operand.

il.d of
by the
of the
eutry

25. uses ~he request format COllvent1on and
mechanism to send an autilDr1zd £BSiuest to the
just located. It wants a ~o1nteL to the

the send request
object construct

object construct
represented oy tae simple opeLd.ud.

26. uses the wait mechanism to wait fOL a cesj;lonse.

Access Machine of the object constLuct just located

27. uses the Lead ct.i!qlJest mecnanl.sm to read the authorize
re<juest.

Idri CU~F1UclNTIA1

218 A ~Ou~CA~ ~MPL~~ENTATI0N

lB. 1* Details of how the si~ple operand processes an authorize
request are not described now */

29. uses the ['esponse f 01: lIld t COllvent~on dnd the send ['esponse
mechani.;im to p ass bacK a resJ:ionse to the \J~VAL-ti' pe 'i uaslo-ob ject.
The response indicates the iid of an object construct which has
an ME10~YM-tipe object.

30. uses the wait mechanism to wal.t ior a request.

Access MaChine of the JEVAL-type ~uasi~object (the evaludn~

31. uses the read response mechanism to read the response.

32. uses the send response mechaul.sm to pass back a response to
the interpreter (QSLINT) 01: evaluant (~EVAL) that invoked it.

33. destroys itself.

If the evaluant was passed d LIST-type object representing a
cOlIlplex operand, then it -

34. ce places the UN DEf'-type 0 bJect cepcesentlong the e val uand
with a LIST-type object. Tbis LIST-type object (epcasents the
evaluaud.

35. augments this LIST-type 0 bJec t tw ice, tilUS cr.'ea ting two
UNDEF-type Objects.

30. replaces the second U NJ.)~l!'-ty j;>e ob Ject with a h~QU ES'l'-t ype
object whose cesoucce part con tdins the ndme tlvaluate.

37. uses the symbol resolution mtlcilanism to locate the iid of the
storage cell ox the object construct cepce~ented by tbe opecatoc.
The symbol numDec ~n the ~esource pact ot the
SY~HOLREFEk~NCE-type object ~ndl.cates the symbol table entry
wh~cn corresponds to t~e o~ecator.

3d. uses the request fOLmat cOilvention and the sena ['e~uest
mechanism to send an identifj re~uest to the oDject constcuct
just located. It must know if the ob]tlct construct Just located
represents a function and ~L so, it tbe number o~ opecands
syntactically supplied l.S equa~ to the numnec of actual
pacameters semantically requireQ hi the function.

39. uses the wa~t mechan~sm to walot foe a cesponse.

Access Machine of the object construct just located

~O. uses the read cequest meCban~sm to read the lodentify
request.

IBM CO~jlU~NTlAL

(

(

(

Chapter 5. j KEY PdOC~S~IN~ ACTIVlrl~S 219

41. I*Details of hov the oDJect processes the Ldentify re~uest
are not described now *1

42. uses the respon!:>e format convention and tile send response
mechanism to pass back. a response to the QEAUL-type 'juasi-object.
The response indicates wnether OL' not an evaluate request will be
processed and the nUlllber ot seillautically ceq uired pa rame terse

43. uses the wait meChanism to waLt for a reguest.

Access Machine of the QEVAL-type quasi-object (tae evaluaut)

44. uses the read I'esponse mecllanl.sm to read tlle restJonse.

45. uses the I'equest format Gonventl.on and send I'equest
mechanism to send an identit:y J:e';iuest to the LIST-type object,
repI'esenting the complex opeL'anl, sent to it as a parameter. It
wants to know the numoer ot actual paI'ameters syntactically
supplied.

46. uses the wait mechanism to waLt foI' a response.

Access Machine of the LISt-type oDject

'-+7. uses the I'ead. re':j,uest lIleCnalUsm to I'Bad the identify
request.

4d. 1* Detal-Is ot: how the object processes the identify request
aI'e not described now*1

49. uses the I'esponse t:ocmat couventLon anL! the sena resflonse
mechanism to pass back a res~onse to the U~VAL-tipe quasi-object.
The response l.ndLcates the number of subobjects augmented fI'Olll
this LIST-type object.

50. uses the wait mechanLsm to waLt foI' d re~uest.

Access Machine of the QEVAL-type quasl.-object (tbe evaluant)

51. uses the read response meCbdu~sm to read the response.

52. subtI'acts one from tUB numb~L sent baCK LU this response and
veI'ifies that the number ot syntactically sUPtJ~ied parameters
equals the numbeI' of semant~ca~ly re~uired parameters.

53. tor each parameteI' Lt creates a quas~-obJect construct with
a Q£VAL-type quasi-object; Lt au~ments the (nested) IWA, thus
creating an UNDEr'-type object ref'resenting an evaluand; and it
llses the I'equest tOJ:.:mat convention aud the senJ. ceguest mechanism
to send a start request to the ~EVAL-type quasi-object just
cceated. The parameteI's to start lnaicate the expression to be

ItlB CUJPIU~NTIAL

220 A LOGICAL IrtPLE~ENTATION

interpreted, the symbol table, the (nested) lWA Just created, and
the storage. For eacn par~mater it augments the LIST-type
object, representing its evaluand, thus creat~ny UNDEl-type
objects; and it replaces these UtWf:F-type oDjects with aSGID-type
objects whose resource part conta~ns the msg~ds of the various
start requests. 1* The order ot tbe MSGID-type objects in the
evaluand reflect the order in wuich parameters w~ll be pas~ed to
thefuIlction*1

5q. uses the wait mechanism to wa~t for d response.

Access Machine of QEVAL-type ~UdsL-object

55. uses the eead response lIlecnarusm to read the response.

56. uses the msgid of the eQsponse to locate the appeopriate
MSGID-type object in its evalUdnd.

57. replaces the MSliID-type object w~th taB object vb-ose iid was
passed back in the response.

58. deletes teom the LIST-type aDject eepeesent~n~ its IWA, the
LIST-type object eepreseuting the evaluand of the evaluant which
just returned the response.

59. deterw1nes if its evaluanJ contains any outstanding
messages. If it does, it uses the wait mech~n~sm to w~it tor a
response, and repeats ste~s 55-59 as necessary

1* If individual o~erand evaluat~on should be done ~n sequence
rather than in parallel, tbe evaluant performs aLl the steps
53-59 for each operand *1

60. uses the send requesL meCUdn~sm to send the evaluate ~equest
to the object construct represente~ by the operator iocated via
the symbol resolution meChdn~sm ~n step 37. 1* The re~uest format
convention was adhered to ~ll tile cousLruction or this request,
since the eval~allt built up the request ~n the evaluand.*1

61. uses the ~a~t mechan~sm to wa~t for a response.

62. 1* Details of now a fUBetioll processes its parameters are
not described here -- see scellaLios 1 and 2 *1

63. uses the read response mechanism to read the response.

64. uses the send response mechanism to pass back the response
to the interpreter (~SLIN~) or eVdluaut (yKVAL) tnat invoked it.

65. destroys itself

Access Machine of a ~SLINT-type quas~-oDject

(

Chapter 5.3 KEY PliU~ES~IN~ aCT~VlfIE$ 221

bb. uses the read r~spon~a mechahL~m to read tb~ response.

67. deletes from the LIST-type objectrepresent:Lng his IWA# the
LIST-type object repre~ent~ng tne eva~uand of the evaluant that
just returned the response.

bS. det~rmines if there are more statements in the group to be
processed by compar:Lng the statement count with the statement
counter. If there are# ~t adds one to the statement counter, and
goes back to step 18.

6'). uses tile send response mecnan~'::>111 to pas;;; oa::K a response
either to the reduc1ble aDjeCt or the ~PARALLEL-type quasi-object
that called :Lt.

"

70. destroys his IWA

~da CJNFIU~ITIAL

222 A LO~ICA~ IM~L~MBNTATION

~ . stCv..l(S11l(X) Q.}" ..• } l ...)) .)

Figure 5.3.2-3:Y~VAL J~~Do~f foe SubexpLess~olls

IBK CUNFIDBciTIAL

(

Chaptec ::>.4

The scenacios are examples Chasen to t~e togethec iaaas presented
und~r Basic stcuctuce r Bas~c ftechduisms, and K~y Processing
Activit~es.

(••• ;sum(a,b) ; •• .}

Expression EvaLuation

1. /* Assume that the eXpLeSSl.On evaluatl.on mechanism has
reached the point where l.t ~s ready to iuYoke the sum tuncticn,
passing it the eva~uated sl.mple operands d and D as actual
pa ca lie te C5 *1

2. uses the sendre ':iue st mech an~sm to send t ne evaluate C8 guest
to the object construct nameu sum wAich was located via the
symbol resolution meclldnism. The parameters to evaluate are the
i~d's of the object constructs named a and b.

J. uses the wait mechdnism to wal.t tor a response.

Access Machine of the PFUNCTION-type object (the sum functl.on)

q. uses the read rejU8st wecb~ni~m to read the evaluate re~uest.

~. crea tes a quas~-olJject construct Wl. ttl a '..lSUM-type
':1 uas . .L-ob ject.

b. uses the request format COllveutl.On and the [ocward re~uest
mecnanislI, 1* no new msgl.d */, to torward a stact request to the
QSUM-type quasi-ob ject just c£ea teli. 'rne para mete.cs to sta£t are
tbe iid's of the object construct~ ndIDed d and D.

7. uses the wa~t mechanism to waLt for the next request. 1* The
PFUNCfION-type object is compLetely severed fro~ tae QSUM type
quasi-object*1

(Access Machine of the QSUM typd quasi-oDJect

~. uses the read re'1uest mecnaui~iII to ceadt.he start request.

lui;' (,;0.».1:' IDclNTIAL

224 A LO~ICAL IMPLEMENTATION

9. 1* Details of prtK;isell nuw ""SUM does the acidl.t.l.on of a aud b
are not described now *1

10. uses tbe response format convention and the send response
mechanism to pass back a responsy to the expression eva~uation.
l'he response consists of the i.i.d of the object construct which
represents the result ot add.l.a~ a dnd b.

11. destroys itself

Expression Eva~uation

12. uses the read response meCBan.l.Sm to read tne response.

13. 1* Refer to the expression eva lua t~on mechanism fOl: details
of response handling *1

Figure 5.4.2-1:Prl.&l.tive Operator Flow

IBM CQNFID~Nr~AL

/ -

(

(

(

Chapter 5.40 225

{ ••• ; sin (x) ; ••• j

Expression Evaluation

1. 1*
reached
passing
*1

Assume that the exprass~on evaluation mechanism has
the ~o~nt where Lt ~s ready to invoke the tunction sin,
it the evaluated simple operand ~ as an actual parameter

2. uses the senu re~uest mecnafi1sm to send the evaluate request
to the object construct named S111 whiCh was located via the
symbol resolution mechan1sm. rue parameter to evaluate is the iid
ot the object construct named x.

3. uses the wait mechan~sm to ~ait for a r~sponse.

Access Machine ot: the FUIH':TIUtJ-tYlJe Object (the ~i1n function)

It. uses the read reiuest mechanism to read the evaluate request.

5. creates an object construct w1tn an UNDEr-type object.

6. replaces the UNDEF-tfpe oJ:)ject with an object whose access
machine contains three i1d ' 5: the iid of the object construct
named sin which has a FUNCT~ON-type object 1* the SL interpreter
will need access to the SL taxL and symhol table *1; the iid of
the object construct named sl1ut whicA has a PFU NCTION-t ype
object 1* this PFUNCTION-type ob ject will spin off an SL
interpreter *1; and the iid at dIl Object construct wh1cn has an
UNDEl-type object /* this 1S the £ISH and vill be used by the SL
interpreter for its workspace */. Such an Object ~s a reducible
object.

1. uses the request format convent~on dnd the senu request
mechanism to send a start reguest to the reducible object just
created. Tue parameter to titart 1S the iid ot the object
construct named x.

8. adds an entry to its ()utstdlHan~ Activat10n Tabla. The entry
contains the msgid ot the eval uate re~uest just processed, the
msgid of the start regue;;it just sent to the reduc1ble object, and
the iid of the reducible object. 1* BaCk FUNCTION-type object
must keep a record at al~ spun-oft reduc~ble objects still dctive
so that it can block change re1uests (a request to Change tbe SL
text) u~til all spun-off reduciDle objects have terminated or
suspended */.

9. uses the wait mechanLsm LO wa~t for the next reguest or
response. /* The FUN(;'r LON-type 0 bject i::> effectively severed f [om

ISd co~tIDENflAL

226 A LOGICAL ~MPLEMENTATION

~

the r-educible object s~nce the l'UNC'rlON-type object may now'",-,~.
process new r-equests or replies. */

Queue Manager ot the Reducible Object

10. uses the read reljuest mecnanism to read the start 1:eguest.

11. uses the request format convention and the send request
mechanism to send an evaluate request to the object construct
named slint which was located y~a the iid in tne :iccess machine
of tile reducible object. The paralllete.rs to evaluate are the iid
of the object construct named SLll which has a FUNCT10~-type
object/* this iid is in the access machine of the reducible
object*/; the iid of an object construct which has an UNDBF-type
object 1* this iid is in t~e access machine of the reducible
object *1; the iid of the oOject construct used for- storage by

. the in ter-preted SL prog ram 1* tilLS 1. id ~s in t.her-esource part of
the r-educible object */; and tae i1d ot the request sent to it by
the FUNCTION-type object (tne S1n function) I. this re~ue$t
contains a start request type and the iid of the object constr uct
named x *1. 1* The queue manager- associated with a reducible
object always pac~ages up the requests sent to it and sends them
on without examination for theLr- Luterpretation by SL text */

12. uses the wait mechan~sm to waLt tor a response.

Access Machine of the PFUNCTluN-type object (the SLINT funct~on)

13. uses the read request mechanism to read the evaluate
request.

14. crea tes
quasi - ob ject.

a ~uasL-ohject coustr-uct with a QSLINT-type

15. uses the request format convention and the forward request
mechanism to send a start rey,ues t to the QSLINT-ty p3 quasi-object
just created. The parameters to star~ are ~dentical to the
parameter-s of the evaluate re~uest iiscussad ~n step 11.

16. uses the wait mechanism to wait for the next r-equest. /* The
~FUNCTION-type object is completely severed from the YSLINT type
quasi-object *1.

Access Machine of the QSLINT-type ~uas~-object

17. uses the .read request mechauism to read the start request.

18. since the object represeutLn~ the process status record
(PSR) is an UNDE.F-ty pe object (~. e. it is l.nit~alized) # the
IJSL.Lt4T-type quasL-ooject l>.nolis that it is not resuming a
suspended in terpreta ticn, but is neg1.nning a llew iu ter1:'re ta ti on. ((~
therefore, it binds the parametars intended for pr-ocessing by 51 \,-

(

(

(

Chapter 5.ij S';~NAtUuS 227

code, and it augments the storage named Ln the resource part of
the reducible object. It binds tae parameter, the iLu ot the
object construct named x, as tollows: it locates the symbol
number of the formal paraaeter ill the SL symbol table. The
property of being a. forDidl parameteI: has been associated with the
symbol number. It then locates the SL link ta ble en tr y using the
sl mbol number as offset, dnu inserts the iid of the ob j ect
construct naliled x into the iid slot of the entry.

19. 1* Details of interpretLng 5L text represent~ng the sin
operation are not described. now. Reier to the expression
evaluation mechanism for detaLls on interpreting 5L text *1.

20. uses the response forma t conventiou and the send response
mechanism to pass back a response to the reducible object •. The
response consists of the 1~d of the object construct computed by
the interpretation of the S1. text representiny the Sill function.

21. destroys itself

Queue Manager of the reducible object

22. uses the read response mechanism to read the response~

23. uses the send response mechanism to pass bac~ the response
to the FUNCfION-type object (the sin function,. The response
consists of the iid of the object construct computed by the
interpretation of the 5L te~t representing the sin function.

24. sirice the PSli indicates that an 5L return fun=tion had been
interpreted, it destroys itselt.

Acc~ss Machine of the FUNCT~ON-type object (the s~n function)

l5. uses the read response lIteClld[aSm to read the rasponse.

26. uses the msgid in
object represent~ng the
Activation Table for the
of the original evalua te
the entry_

the first subobject of the LIST-type
response to searc h the OU tstanaing

approprLate entcy, retrLeVes the msgid
request for use ~n step 27 and deletes

27. uses the seud cesponse mechanism to pass bac~ the response
to expression evaluation. 'Ihe response consists ot the iid of
the object const~uct computed by the interpretation of the SL
text represented by the sin operator.

28. uses the wait mechanism to wait for the next ceguest or
response.

Expression Evaluation

LdM CONFlD~NTlAL

i
I
Ii

228 A LOGl:CA1 ..1:MPl.,EliENTATION

29. uses the read response mechanism to read the response.

30. 1* Befer to the expression evaluat:l.on lDecnani:i1l for details
ofrespons~ handling */.

DO: .j

I . 'I' . ','.1 , f h:.\
I

I

\

Figure ~.4.~-2:Reduc~Dle Operator Flow

IHliCOtH" In:;"" 'riAL

(

(

ApfH:!ndl.x 1

GL(JSSARl

The following words aud phrases ~nclude terms forma~~1 defined in
the logical architecture together with important terms in the
informal discussions. Words 11e91.nni£1g with lower case letters
are built-in objects, either constants or functions. Numbers in
parentheses indicate the sect~on in wh1.ch the term is defined.
The letters (GT) indicate terms from graph theory.

Access machine (2.1.~ The actl.ve part of an aDject that responds
to requests upon the Object.

Accessibility graph (2.1.5) A Ijraph of all paths
objects. It has two major subgraphs: toe
and the chains of synonyms.

for accessing
ownership tree

Accessible (2.1.5) An object x is accessible from y it there is a
path in the accessiol.lity graph from 1 to x.

Activa.tion tree (2.2.5) A tree linlling activatl.ons of functions
to the activations 0:£ functiollstaey called. It is a
s~bgraph of the dependency graph.

Admissible index set (2.1.~) A set of ObJects admissible as
indices to the a.ccess machine of a collective object.

Argument (2.2.5) The result of evaluating an operand for a
function.

Assignment (2. 1.4) An iniorma.l tet:m for refeI."r inl;;j to the stow and
replace functions.

authorize (2.1.5) A dyadic functLon that makes
request upon an object in order to obtain a
object with a given set of r~gftts.

an a utho.r" ize
synonym to the

Buffer (2.1.1) A temporary stord~e cell us~d for holding an
object or shipp.ing ~t sOllew here else.

Cell ~ame (2.1.1) An identifier that uniquely specifies a storage
cell.

C~ain (GT) A graph "whose edge~ ~e~~ne a strict linear ordering of
the vertices. It is both a tce~ ~nd a rooted tree.

rBM ~OaFrDENTrAL

230 AJ? P eN Dl.cr;s Appendix 1

Circuit (GT) A path whose first and last vertice.\:i are identical.

Collective object (2.1.5) An aDject that owns storage cells
containing other objects.

Connected graph (GT) A grapb in WhloCh for any two vertices x and
1. there exists an undirected pata from x to y.

create (2.1.4) A dyadic function that creates a new object by
activating an access IlldClline and providing lot with inlotial
values tal; its oWlled resource.

Deadlock (2.5.1) A state at tile system in which a
requests can never be reso.lve<1. It result.\:i
in the dependency graph.

set of gue ued
f;rom a circuit

delete (2.1.6) A dyadic function that deletes storage cells f I:OBl

~the owned resource of a collective object.

Dependency graph (2.1.3) A graph of
objects: if x is waiting for a
an edge of the dependency y raph.

outstand~n9 requests upon
request on Y, then (x,y) is

Descriptor (2.1.3) An impleaentatloon defined represantation of an
dccess machine: .l.t contal.ns a PSR and specifies the
interpreter and procedura~ description.

Dictionary (2.2.2) For each module,
information about all .\:ijillools:
linkage. and initial attr.l.hutes.

the dictionary maintains
character representation,

Directlyaccessible (2.1.5) An object X.l.S dlorectlyaccessible
from y if there is a path in cne ownership tree from y to x.

Edge (GT) An ordered pair of Vertices in d grap4.

Zlement (2.1.5) An object residin~ ~n a storage cell owned by a
collect i ve oh ject •

Elementary symbol (2.2.3) A symbol in program te~t wi thout any
syntactically associated operands.

Elementary object (2.1.5) An object that does not own any storage
cells; all elementary obje~ts dce scalars. .

Envi~onmenttree (2.3.3) A rooted tree that defines search paths
. for symbol resolu tion.

evalua ta (2.1.4) A monadic fu nct.l.on that ~~kes an e val uate
re~uest on its argument to deliver or generate a value.

/-

(

(

App~ndix 1 231

Bxc~ptiun (2.4.1) A re~~ollse by an ~cc~ss ~ach1ne ~nJicatiu9 that
the normal response cauDot b~ made.

ExteuJed syutax (1. 3. 3) Au 111t: i.x: notation that iucludes macro
facilities to be mapped i~to strict syntax.

Forest (GT) A 'jrdpn consLstl.ny ot one or more ullcouuected trees.

Funct10n (2.1.4) An object that .cespOH\lS to evaluate re~uests by
creating an d.ctl.vat.ion tilat computes an Object as I'esult.

Genera tor (2. 1. 7) A collective 0 bJec t Wh05~ ~leillents are COlli pu ted
upon demand instead of bel.ny stored in the 58S.

~rapb (GT) A set ot points ca~leu vert1ces and ot: ordered pairs
at vertices caLled euge~. Ull~i direct~d graphs aLe used in
the discussion.

~roup (2.2.3) A list of state~ents enclo~ed 1n br~ces. A gLOUp
is the external form of a moaule.

l.dentit:y (2.1.4) A monadic tUDction tuat aSKS an object t6
1dentify 1ts access maChine.

ilist (2.1.5) A monadic LunctLon tuat returns the index set of a
collect1ve object.

Incoming edge (GT) An edye (X,y) 1S an 1ncoming edge with respect
to the vertex y.

Index set (2.1.5) The set of objects mapped by salect re~u~sts
onto storage cells of a cullect.ive o.bject.

Lnd.~l:"ectly accessible
accessible from y

(2.1 • .>J An
if t.ueru is d.

object x LS 1ndirectly
chdLn of synonyms from y to

x.

insert (2.1.6) A dyadic Lunc"t...I..:>n that 1nserts new sto.cage cells
Ln the owned resource of d collective object.

Interp.ceter (2.1.2) The mot.l.ve .torce behind
~xamiues the ~SR, decoues the procedural
puts the ~SR in its ue.x:t state.

a process: it
Jescription, and

lambda (2.2.3) A function that ~Leates a Dew fuuct10n by b1nding
formal paramete£s to a mo~ule.

~ist (2.1.5) The most fr..l..W1tLva type ot collective object.
elements dre ..I..uuexea by consecutive Luteyers starting
and may be of different types.

Its
at 0

rtetonym (2.1.~) An encdPsu~ate~ synonym. It 1S used ror p01nters

232 Appendix 1

in PL/l to
definition.

conform to re~tr1ctLons Lll the language

ctodule (2.2.2) The machine %orm of 4 group: ~t cont~ins the text
for the group 'to~ether ~Lth a dictionary ot all symbols in
the group.

n~l (2.1.3) A primitive Object tbat
element list.

Object (2.1.3) Hasic entity til the
called an acCess maCU1ue dnd d

resource.

has the properties of a zero

system; it has an act.Lve part
passive part called an owned

Object base (2.1.3) Set at all objects in the syStem.

Object ima~e (2.1.3) An internal representation oi an object: it
contains the descr1~tor of its access ~achine and a
representat~on of the owned resource.

Offset (2.1.1) A displace~ent from the beginn1ng ot a table.
This term is not a formal part ot the defin1tion.

operand (2.2.3) An exptession 1D pr09ram text that evaluates to
an argument for a function.

operator symbol (2.2.3) A symbol that resolves to i function and ,
that has syntacticalll associated operands.

outgoing edge (GT) An edge (~,1) 1S an outgoiny edge witb respect
to the Vel:tex ~.

Owned resourc's (2.1.3) PaSS1ve pal:t. of au object that 15 managed
by the access wacaine.

Ownel:slnp tree (2.1.5) A tree .:l9 fiue d ovel: the OD Ject base by the
ownersh1p relation between collect~ve objects and storage
cells.

parallel (2.2.5) A wonadic function that causes the statements of
a module to be executed iu pal:dllel.

Parameter (2.2.3) A symbol locd~ to a module taat 1S l:esol~ed to
an argument evel:Y tiille ttle module is activated.

pjth (GT) A se~uence of vert~ces of a ~raph G such that it x and
y dre adjacent vert.Lces, (~d) is an edge of G.

Port ,(2.1.3) An object whose access mach.Lne and resource connect
to a data path through the Soul:ce-Siuk subsyst.em (see the
S ys tem Arcai tectul:e Manual) •

Appendix 1 233

Prim~tive object (2.1.~ Au object that cannot be const~ucted
from otber objects defined in the logical architecture.

Procedural description (:G.l.2) Bncoded informdt~on that defines
the states of a process all~ pe1:m~ssible state trans~tions.

Process (2.1.2) An dutomdtoll
~tatus recoru (PSti), d

interpreter.

tnat has three pd1:tS: a process
procedural description, and an

Process status recoru (2.1.2) The L~cord of the current state o±
a process, its ~nput, and ~ts working storage.

Program text (~.2.j) A strLng ot symbols.

PSR (2.1.2) Abbreviation for p1:ocess status record.

luote (2.2.3) A syntactic mdr~er tnat suppresses automat1c
evaluation of a function.

aeady state (2.1.3) state ot an access machine when it is ready
to res~ond to a request.

Reducible object (2.1.3) An aDject that can be constructed from
more primitive oojects Ln the logical architecture.

remove (2.1.6) A monadic funct10n that removes an object from a
storage cell w1thout deletLng the cell.

replace (2.1.6) A dyadic fuuctLon used for ass1gnments that
replace the target compietely.

Request (2.1.3) A pair pt parameters passed to au object to
reluest some service.

Reservei word (1.3.1+) A str~ug at two or more lower case letters
used to designate syste~ ~efined oDjects and various
construct~ons in the exteadea syntax.

Resource manager (2.S.3) The object 1n a subsyste~ that obtains
r~ghts to objects outside oi ttte subsystem and allocates the
rights to other objects w~thLD it.

Ri~hts (2.1.5) A set of requests tllat a synonym passes on to the
object it points te.

Root (GT) The distinguished Verte& of either a tree or d rooted
tree.

Rooted tree (GT) A connected ~raph in wh1ch there is a
dis tinguished ver tex: with 110 outgoing edges and allot ber
vertices have exact~i one outgoing edge.

Id~ CO~flD~NTIA1

I
I.

Ii

I

234 A.t-'PENDIC.r;S A ppendi x 1

Seed (GT) A tree wita orte vertex and no eJyes.

select (2.1.5) A dyadic tunction that makes select requests on a
COLlective object to map ~ndices onto storage ~ells.

Sequential synonym (2.1.b) 4 synonym that can be se~uenced
through success~ve elements ot a collective object.

SMS (2.1.1) Abb~eviation for the Storage Management SUbsystem
(see the System Arciutecture l1auual.).

Space number (~.1.1) A number identLfying a loy~cal space in the
SMS. Th~s term refers to tue implementation Lather than to
the tormal definition.

Statement (2.2.3) A complete express~on used as Dna element of a
mod ule.

Stor.:::tye cell (2.1.1)
any object.

A logLcdL location large enou~h to contain

stow (2.1.4) A Jyad~cfunctLou that makes a stow
target to pertorm ass~:1nmeuts. It makes
Change than the repl.ace functLon.

re~uest on the
d less dras tic

Strict syntax (1.3.2) A pref~x notation tnat is ~apped one-to-one
into the internal machine coae.

Strongly connected graph (GT) A ~rd~h in which for any two
vertices x and y # there e4ists a pa til from 4 to y..

Structare (2.1.7) A subtree ot the oWlle~Ship tree together with
all objects accessible from oDjects ~n the tree.

Subsystem (2.5.3) A subset of tue object base ndving only one
pOLnt of connect~on w~th the ~raphs 11nk~n~ the rest of the
system,

Symbol (2.2.3) A str iu~ of one Ot' lAore chdracters.

Symbol resolution (2.2.1) The dct of resolving symbols to c~ll
llallles at ~torage cells contdLuLny objects.

syn (2.1.5) A monadic function thac makes an author~ze request to
ootal.n a synonym tha t respondS to copy and destroy requests
itself.

Synonym (2.1.5) An object that automdtl.cally passes requests to
the object whose storage cell ~t names.

system root (2.1.5) The object at the root of t~e ownership tree;

rBM ~QNrID~dT1AL

(

Appendix 1 GLuSSA.tH 235

<111 ObjHCt5 in tilt:! tiY5leUl d.L.u dJ.I:ectly d.cc..:e:';::;.L.l.llu l[."()W the
sY.3telll root.

Tree (GT) A connected yrapb Ln wh~ch tbere L5 a ~L5tinyu15hed
vertex with no ~ncomiu9 edges, and ~ll other vertices have
exactly one 1ncaming edge.

~ndet (2.1.3) A primLtive uadet~ned object.

Undirected path (GT) A sequence at vertices o~ a ~rapb G such
that if x and yare adJacent vertices, then either (x,y) 0[,"

(y, x) is an edge of G.

vertex (GT) A pOint on a grapa.

IdM CONflDENTIAL

('

/'

("

/

SDD - Poughkeepsie
D/B11 , B/706-2
Extension 3-2589

March 15, 1971

Memorandum to: Recipients of Advanced Future System Proposal

Subject: Index to SL Report

Enclosed is an index to the "Fundamental Concepts and System
Language" Report. Page numbers correspond,to the third edition,
dated March S, 1971.

John F. Sowa

JFS:dc

Enclosure

(

access machine
accessibility granh
accessible
acquire function
activate phase
activating a function
activation
activation chain
activation tree
admissable index set
and function
answer
aoply function
argument
argument list
array
augment function
authorize function
authorize request

base list
base value function
basi~
braces
buffer

catenate function
ceiling function
cell name
claim function
collective object
complete index set
comnress function
conditional function
connect function
consumable
contained
control program
controlling proces~
coPY function

. copy request
create function
cursor

data base
data communication

INn~x

31,21')1,229
44,229
44,229
107
57
58
37,68
72
73,229
229
105
147
73,106,164
229
70
53
97
40,165,229
36

53
105
54
65,73,94,166
27,201,2?9

97
104
27,22Q
107
41,230
54
105
74,106,167
76,95
85,147
66
116
81
o
36
77,80,~5,106,168,230
73

13LI
145

IBl'! CONFIDF~lTT.J\r~

(

deactivate phase
deadlock
declare
dedicated ports
dedicated subsystem
defined
delay function
delayed narse function
delete tunction
delete request
delimiter
deT"lend
denendency graph
denth
destroy function
destroy request
dictionary
difference function
directly accessible
directly contained
disclose function
dron function

element
elementary object
elementary symbol
enclose function
environment
environment tree
environmental chain
eq function
evaluand
evaluate function
evaluate request
evaluation
exception
execute phase
exit function
exp function
expand function
exnression
extended syntax

finite resource
floor function
free function
free ports
free subsystem
free sym!:>ol
function
functional level

INDPX

57
B5,/'29
16q
115
116
61
73,1 ()6
65,94
48,c)7,170,23 fl

36
171
35
35,2V)
52
BO,106
36
6fl,23,)
1 ,., Ll

43,230
66
98,172
1r)6

41,210
41,230
63,23'l
9A,173
75
76,23f)
76
105
59,71
3 8 , 1 ') 6 , 1 7 L! , /. 1 0
36,68
69,70,71,20'
7Q ,231
57
74,1,)6,175
1f)1l

105
66
23,231

87
104
11')7
115
116
61
37
1/,1,122

IBH CONFIDB~'lTIAL

3

.",.

(,

c

4

ge function
generator
goto function
group
group markers
gt function

i-dimension index
ibase function
identify function
identify request
igenerator function
ignore function
iid
ilist function
index function
index object array
index set
indexed structure
indirectly accessible
initial interpreter
inject function
inner nroduct function
insert function
insert request
insert symbol function
inter-AFS job
intercent
internretation
interpreter
introduce function

job

k-list
k-vector

label
lambda function
Ie function
linking
list
list function
list structure
literal symbol
In function
load function
load nhase
local environment.
local label prototyne
local symbol
locate function

IND:RX

105
99,231
7 LJ,10(),176
65,231
65
105

53
96,177
231
36
96,99,178
81,1015
27
43,96,17Q,231
101
55
42,231
52
43,231
116
81,1f)(;
If)O
47,97,180,231
36
60,95
147
81
5R,70
28,231
107,148

118

54
54

181
67 , 95 , 1 82 , 211
10S
76
42,231
97
52
63
1 f) I~
95
57
75
62
61
101

IB!1 Cm!F'IDF."TTTAT,

i,
i.
I,,"

I
:I i;
II
II
i

(

c

log function
It function

maqnitude function
map function
matrix
max function
member function
message
metonym
migration
min function
minus function
module
monitor function

name value function
nand-function
ne function
nil
nor function
not function

object
object base
object construct
object image
offset
operand
operating system
operator symbol
or function
outer product function
own
owned resource
ownership tree

parallel function
narameter symbol
parentheses
nath
path name
phases
olus function
!,oint function
port
power function
nredecessor environment
nrimitive argument
prirni tive array
primitive index set
primitive object

IND~X

1 f) L~
105

1()4
100
54
104
105
147,201
41,231
156
104
103
6'l,23?
81,1()6

97
105
105
32,232
105
105

31,201,232
34,232
201
33,202,232
232
64,232
116
63,232
105
100
41
31,202,232
42,232

72,106,1R3,232
61,67,232
184
47,232
47
57
103
99
33,232
1()U
76
93
54
51
31,:'.02,233

I!3H COf';J'PIDPNTTAT ..

5

(

6

priority function
nrocedural description
process
nrocess status record(PSR)
nroduct fucntion
program text
pseudo list

qeval
qslint
qsum 203
quasi-activation
quasi-object
queue
queue manager
qid
quote
quotient remainder function
quotient-function

r-array
rank
ravel function
ready states
rebase function
recinrocal function
reducible object
reduction function
release function
remove function
reneat function
renlace function
renresentation
renresentation function
representative symbol
recruest
request constant
request function
recruest queue
reshane function
residue function
resolution man
resource manager
resource nackages
res?onse queue
reverse fucntion
rights
rotate function

safe sequence
select function
select request

INDF.X

81,106
28,233
28.,233
28,233
104
62,233
53

203
203

38
203
21)1
201,205
202
64,9 IJ,233
104
104

53
53
98
31,233
98
103
32,202,233
99
107
48,<:)9,185,233
74,106,1Rfi
48,77,99,187,233
33
105
61
35,233
37
38
201
98
104
7.5
88,114,233 ,
115
201
106
39,233
106

89
43,96,106,188,234 /
36

IBH CONFIDENTIAL

('

/ semicolon
send ans\..rer function
send message function
sequence exception
sequential synonym
server configuration
shape function
signal function
signum function
gimple exoression
simple name
SHS
space number
source/sink
start function
start request
stateMent
statement index
sten function
stop
storage cell
stm..r function
stow request
strict syntax
structure
subsystem
subsystem landlord
subsystem resource managers
subsystem root
sum function
suspend function
symbol
symbol reference
symbol resolution.
syn function
synonym
system input
system root

take function
text
ton onerator
translate function
translate machine
translate nhase
translate subject
transnose function

ultimate function
unbounded resource
undef
unique n~e function

IND:r.X

189
107,148;'()7
107,1 LIA,205
Sf)
2~4
121,127
52,53,96,190
79,106
103
64
47
234
2 3 L~
147
81),11')G
37
66,'34
5Cl
97
76,95
27,201,21L!
39,77,99,191,'14
37
2::>,234
52,23 LI
88,234
115
116
88
11') 11

8f),1()6
63,23 LI
60
5'),234
40,9C),1Q2,234
39,234
116
42,234

106
62
64
108,110
108
57
10n
o

99
87
32,235
95

IB~1 Cont'TD'P.NTJJ\L

7

:f
I~
II
II

I ~

(

8

unique resource
unload r>hase

vector
visi1:)le

wait ans~.,er function
wait message function
where
".rork flow

tNDF.X

87
57

54
76

107,148,?OR
107,14R,?'lR
77
126

rm CONFTD:P.NTIAL

