
Systems Reference Library

Cammon Business Oriented Language (COBOL)

General Information

The COBOL language is designed primarily for com
mercial data processing. The name COBOL is derived
from the words Common Business Oriented Language.
The COBOL language was developed by the Confer
ence of Data Systems Languages (coDASYL). CODASYL

is a voluntary effort by a number of users and manu
facturers of data processing systems.

The COBOL language is similar to English. Program
mers with COBOL experience for one data processing
system can quickly learn to write in COBOL for other
systems. Programs written in COBOL for one data
processing system are readily adaptable to any other
system for which a COBOL processor is available.

This publication consists of three parts. The first part
is a COBOL primer; the second and third parts are a
detailed description of the COBOL language.

File Number GENL-24

Form F28-8053-2

MINOR REVISION

This publication is a minor revision of the pub
lication COBOL, Form F28-8053-1. It incorpo
rates the changes published in Technical News
letter N28-0019. No other changes have been
made. Each change is marked by the symbol
"•" next to the paragraph affected.

This edition is a reprint of the previous edition.
The format has been changed from that of a
General Information Manual to that of a Sys
tems Reference Library publication.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D91, PO Box 390, Poughkeepsie, N. Y.

© 1960, 1961 by International Business Machines Corporation

Preface

The technique of using electronic data processing systems to solve problems of
many kinds has developed rapidly in recent years. Because of the great speeds
made possible by electronic methods, computers have been of great value in solv
ing problems which involve either a great many calculations or a large mass of
data. Originally, they were used primarily in complex scientific analyses. In the last
few years, however, they have been used increasingly to handle the great volumes
of data which must be processed in the day-to-day operations of business. Beyond
this, they have provided management with new techniques for analyzing and fore
casting important developments in many areas.

The first electronic data processing systems could be used only by experts. Instruc
tions to the computer had to be given in special codes-in what is generally called
"machine language." However, it was soon learned that it is possible to write
machine-language programs that enable a computer to recognize instructions writ
ten in other languages. This discovery led to the development of programming lan
guages which were simpler to use than the machine languages.

The first such developments permitted the programmer to write convenient equiva
lents of machine instructions, using mnemonic symbols to represent them. The
computer, acting under the control of previously written machine-language pro
grams, would then "translate" these instructions into equivalent machine instruc
tions, which could then be used in solving problems.

Later, programmers developed "macro-instructions"-that is, single instructions
which could be used to produce a whole series of machine instruction.~. This devel
opment greatly increased the power of programming languages. Today, the art of
programming has progressed to a point at which it is possible to give directions to
a computer by writing statements and sentences in a language which is based on,
and which can be read in the same way as, English itself.

The COBOL system is a result of efforts to produce an English-like programming
language which can be used with many different types of data processing systems.
The name itself is derived from the words "COmmon Business Oriented Language."
Unlike the first programming languages, COBOL is "problem oriented." That is to
say, the language itself, and the techniques for using it, are conceived in terms of
the problems to be solved and the results to be obtained, not, for the most part, in
terms of the technical features of the computer. Of course, each problem must still
be solved by technical means; it is still necessary to produce a machine-language
program before a problem can be solved. However, the language written by a
COBOL programmer bears little resemblance to machine language, and the pro
grammer has little direct concern with the method by which the COBOL-language
program is translated into machine language.

The COBOL]language was developed through the joint efforts of computer manufac
turers and users, in cooperation with the United States Department of Defense.
The language was first described in a report to the Conference on Data Systems
Languages (CODASYL), issued by the United States Government Printing Office.
in April, 1960. Further refinements have brought the language to its present stage,.
which is known as coBoL-1961. It is this language which is described in the present:
manual.

COBOL-1961 has been defined by CODASYL as consisting of two main portions,
REQUIRED COBOL-1961 and ELECTIVE COBOL-1961, as follows:

"'REQUIRED COBOL-1961' consists of that group of features and options, within the

complete COBOL specifications for the year 1961, which have been designated as
comprising the minimum subset of the total language which must be implemented
(to the extent of hardware capability) by any implementor claiming a 'proper'
coBOL-1961 compiler."

"'ELECTIVE coBoL-1961' consists of those features and options, within the complete
COBOL specifications for the year 1961, whose implementation has been designated
as optional for the manufacturers for the year 1961. If an implementor chooses to
include any of these features or options (either totally or partially) in his compiler
for 1961, he is expected to implement them in accordance with the specifications,
for the feature or option, which are given in the COBOL-1961 manual."

The COBOL language described in this manual consists of all of REQUIRED COBOL-
1961 as so defined, together with a large portion of ELECTIVE COBOL-1961. This
language is fully supported by IBM and will be available for most of its computer
systems.

ACKNOWLEDGMENT

In accordance with the requirements of the official government manual describing
COBOL-1961, the following extract from that manual is presented for the informa
tion and guidance of the user:

"This publication is based on the COBOL System developed in 1959 by a committee
composed of government users and computer manufacturers. The organizations
participating in the original development were:

Air Materiel Command, United States Air Force
Bureau of Standards, United States Department of Commerce
Burroughs Corporation
David Taylor Model Basin, Bureau of Ships, United States Navy
Electronic Data Processing Division, Minneapolis-Honeywe11

Regulator Company
International Business Machines Corporation
Radio Corporation of America
Sylvania Electric Products, Inc.
UNIV AC Division of Sperry Rand Corporation

"In addition to the organizations listed above, the fol1owing other organizations
participated in the work of the Maintenance Group:

Allstate Insurance Company
The Bendix Corporation, Computer Division
Control Data Corporation
E. I. du Pont de Nemours and Company
General Electric Company
General Motors Corporation
Lockheed Aircraft Corporation
The National Cash Register Company
Philco Corporation
Standard Oil Company (New Jersey)
United States Steel Corporation

"This coBoL-61 manual is the result of contributions made by all of the above
mentioned organizations. No warranty, expressed or implied, is made by any con
tributor or by the committee as to the accuracy and functioning of the program
ming system and language. Moreover, no responsibility is assumed by any con
tributor, or by the committee, in connection therewith.

"It is reasonable to expect that many improvements and additions will be made to
COBOL. Every effort will be made to insure that improvements and corrections will
be made in an orderly fashion, with due recognition of existing users' investments
in programming. However, this protection can be positively assured only by indi
vidual implementors.

"Procedures have been established for the maintenance of COBOL. Inquiries con
cerning the procedures and the methods for proposing changes should be directed
to the Executive Committee of the Conference on Data Systems Lang,uages.

"The authors and copyright holders of the copyrighted material used herein:
FLOW-MATIC (Trade-mark of Sperry Rand Corporation) Programming for the
UNIVAC® I and II, Data Automation Systems© 1958, 1959, Sperry Rand Cor
poration; IBM Commercial Translator, Form No. F28-8013, copyrighted 1959 by
IBM, have specifically authorized the use of this material, in whole or in part, in
the COBOL-61. specifications. Such authorization extends to the reproduction and use
of COBOL specifications in programming manuals or similar publications.

"Any organization interested in reproducing the COBOL report and initial specifica
tions in whole or in part, using ideas taken from this report or utilizing this report
as the basis for an instruction manual or any other purpose is free to do so. How
ever, all such organizations are requested to reproduce this section as part of the
introduction to the document. Those using a short passage, as in a book review,
are requested to mention 'coBoL' in acknowledgment of the source but need not
quote the entire section."

Contents

Part I: A COBOL Primer

CHAPTER 1: A COBOL PRIMER
Business Problems and Machine Procedures ..
A Few Facts About Electronic Data Processing

The Language of the Computer
Basic Types of Machine Instructions
Matching the Machine and the Problem
Identifying Data for the Machine

Programming in the COBOL Language-
A Sample Problem

Using COBOL to Perform Arithmetic
Directing the Computer to Make Decisions ..
Handling Exceptional Cases
"Getting at the Data"
Making the Computer Repeat a Procedure-
Cyclical Operations

Differences Among Computers

Part 11: The COBOL Language-Component:s
and Concepts

CHAPTER 2: THE ORGANIZATION OF A COBOL
PROGRAM

Describing the Data
Analyzing the Problem
Creating a Machine-Language Program
Distinguishing One Program from Another
A Guide to this Manual
Notation Used in the Basic Formats of Verbs
and Other Entries in this Manual

CHAPTER 3: THE STRUCTURE OF THE LANGUAGE
Character Set
Names

Data-Names
Procedure-Names
Condition-Names
Special-Names
Rules for Forming Names
Qualification of Names
Assigning Nam es in the Program

Constants
Literals
Named Constants
Figurative Constants

TALLY
Verbs
Operat~1:s· . :

Arithmetic Operators
Relational Operators
Logical Operators-AND, OR, and NOT

Restrictions on Words
Key Words
Optional Words

1

2
2
5
5
6
9

10

11
13
15
16
17

18
20

23

24
24
25
26
26
27

28

29
29
30
30
30
31
31
31
32
32
33
33
34
34
36
36
36
36
37
37
37
38
38

Syntax . 38
Expressions . 38

Arithmetic Expressions 38
Conditional Expressions 39

Items to be Compared-Comparison of Two
Numeric Items, Comparison of Non-
N umeric I terns . 40
Simple Relational Conditions. 41
Condition-Names . 41
Compound Conditions 42
Other Types of Conditions-Sign Condi
tions, Class Conditions, Switch-Status-
N ames . 43
Implied Subjects . 45
Implied Operators . 46

Statements . 46
Imperative Statements . 46
Conditional Statements 46

Sentences . 48
Imperative Sentences . 49
Conditional Sentences . 49
Punctuation of COBOL Sentences. 49

Paragraphs . 50
Sections . 50

CHAPTER 4: CONCEPTS OF DATA ORGANIZATION. . . . 51
The Organization of Related Data. 51

Elements and Groups of Elements. 52
Records . 52
Files . 53

Data Division Entries . 53
Levels . 54
Qualification of Names . 57

Rules for Qualification of Names. 57
Subscripts . 57

General Rules Pertaining to Subscripting... . 59
Differences Between Qualification
and Subscripting . 60

The Library . 60
Entries Associated with the Data Division. . . 60
Entries Associated with the
Environment Division . 60

Part Ill: The Divisions of a COBOL Program. 61

CHAPTER 5: REFERENCE FORMAT-THE COBOL
PROGRAM SHEET . 62

Reference Format Principles 62
The COBOL Program Sheet. 62

Sequence Number . 64
Program Identification Code. 64
Continuation Indicator 64

Writing the Program . 65
Summary of Format Rules. 65

CHAPTER 6: DATA DIVISION. 67

Organization of the Data Division 67
Entries . 67
Computer-Independent Data Descriptions. . . . 67

The File Description Entry. 68
File Level Indicator and File Name. 69
RECORDING MODE . 69
BLOCK . 69
LABEL RECORDS . 70
VALUE . 70
DATA RECORDS . 71
COPY . 71
RECORD . 72

The Record Description Entry. 72
Level-Number and Name 73
SIZE . 73
CLASS . 74
USAGE . 74

Combining the SIZE, CLASS, and
USAGE Clauses . 75
POINT LOCATION . 76
SIGNED . 76
VALUE . 76
PICTURE . 77

The Editing Clause . 86
BLANK . 86
JUSTIFIED . 86
SYNCHRONIZED . 87
OCCURS . 87
REDEFINES . 88
COPY . 89

Working-Storage Section 89
Independent Work Areas 89
Group Work Areas 90
Initial Values . 90

Constant Section . 91
Independent Constant Entries 91
Grouped Constants . 91
Values.................................. 91

Constructing Tables of Constants 92

CHAPTER 7: PROCEDURE DIVISION. 94

Introduction . 94
Program Verbs . 95

The Input/Output Verbs 95
<)PEN . 95
HEAD . 96
WRITE . 97
CLOSE . 98
ACCEPT , . . 99
DISPLAY 100

Data Manipulation Verbs
MOVE
EXAMINE

The Arithmetic Verbs

ADD ·. · · · · · · · • · · · · · · · · · ·

General Rules for Arithmetic Verbs
The ROUNDED Option
The ON SIZE ERROR Option
SUBTRACT
MULTIPLY
DIVIDE · .. ,. · · ·
COMPUTE

The Sequence Control Verbs
GO TO
ALTER · ·.
PERFORM
STOP ·

Processor Verbs

ENTER · .. ·. · · · · · · · · · · ·
EXIT ··.········
NOTE

CHAPTER 8: ENVIRONMENT DIVISION :
Configuration Section

SOURCE-COMPUTER
OBJECT-COMPUTER ,
SPE~IAL-NAMES

Input-Output Section
FILE-CONTROL
I-0-CONTROL

101
101
104
105
105
107
107
107
108
108
109
110
111
111
112
113
120
121
121
121
122

123
124
124
124
125
126
126
127

CHAPTER 9: IDENTIFICATION DIVISION. 128

Appendices
APPENDIX A: SUPPLEMENTARY REFERENCE
MATERIAL 131

Conditional Express ions . 131
Conditions . 131
Evaluation of Conditional Expressions. 132
Simple Relational Conditions with Implied
Subjects and Implied Refational Operators. . 133

Conditional Statements 133
Arithmetic Expressions . 133
List of COBOL Verb Forms. 134
Data Division Entry Formats 138

The Complete File Description Entry. 138
The Complete Record Description Entry. . . . 139

List of COBOL Words 140
APPENDIX B: SAMPLE PROBLEMS. 142

Problem 1-A Table of Salaries 142
Problem 2-A File Search. 146
Problem 3-A Work Card Study 151

APPENDIX c: GLOSSARY. 154

Index 161

Part I:

A COBOL Pr:imer

Chapter 1: A COBOL Primer

This chapter is written for the reader who seeks a general understanding of the
COBOL system. It tells him what this system is, and it willl give him an idea of
how the COBOL language can be used in solving commercial data processing prob
lems. The discussion is general and informal. It does not define the rules for using
the COBOL system or for writing the COBOL language. That is done in later chap
ters. Instead, it attempts to explain the basic concepts of the system by means of
relatively simple examples.

If the reader is familiar with basic programming pr:inciples, he may wish to begin
at once with the detailed specifications of the COBOL system. He will find these in
Parts II and III of this manual. Part II is devoted to basic concepts, including the
organization of a COBOL program, the elements of the language, the rules for com
bining these elements into meaningful instructions, and fhe means of preparing
data for use in a COBOL program. Like Part I, Part II is written informally, since
many readers will be encountering for the first time some of the concepts on which
computer programming is based.

Part III contains the working rules of the COBOL system, stated in detailed, but
more condensed, form. Part III is intended to be the main reference portion of the
manual, the part to which the reader will most often refer after he has become
:familiar with the basic concepts of Part II. It specifies in detail the exact forms
which the programmer must follow in writing instructions in the COBOL language,
together with other necessary information.

The experienced programmer may find Chapter I of interest. However, it is written
primarily for the reader who has had little, if any, experience with the program
ming of computers.

Business Problems and Machine Procedures

2

The electronic computer should be thought of as a tool which man may use to help
him solve his problems. It has no powers man has not given to it, and it can solve
no problems man himself cannot solve, given enough time and patience. It has,
however, three important characteristics. The things it can do, it can do at phe
nomenal speeds. It can be instructed, in advance, as to how it is to solve problems
to be presented to it later on. And it can be given alternative courses of action and
can be left to "decide" which course to follow, depending on the circumstances.
Once the computer has been properly instructed, it can be left to its own devices,
so to speak, and it will carry out its instructions faithfully, accurately, and at in
credible speeds. As the reader goes further into this chapter, he will begin to see
that these three powers give the electronic data processing system a quite extraor
dinary capacity to solve problems of immense size and complexity.

What must a programmer know in order to use a computer? First of all, he must
know what his problem consists of-he must be able to analyze it and reduce it to
a series of steps that can be performed, one after the other. Second, he must know
how to describe this sequence of steps in the form of instructions that the machine
will understand. This manual is concerned with the second of these phases, and it
will show how the COBOL language may be used to instruct a machine.

The COBOL language is actually a kind of shorthand way of giving directions to the
computer. In most cases, a single COBOL statement represents a great many separate
steps which the machine will have to carry out. But before we discuss the COBOL

language itself, we should consider some of the principles on which it is based.

The COBOL language is derived from English, and it looks like English. Thus, the
programmer can work with it easily, without having to learn a long list of special
symbols and codes, and the rules for using them. The following are typical coBOL
language sentences:

SUBTRACT DEDUCTIONS FROM GROSS GIVING NET.

PERFORM TAX-CALCULATION.

IF STOCK IS LESS THAN ORDER-POINT PERFORM
REORDER-lROUTINE.

WRITE MONTHLY-STATEMENT.

These sentences are meaningful even to the casual reader. However, operations
within a computer are controlled by instructions in code-in the internal language
of the machine. In order for a computer to be able to interpret a COBOL sentence,
the sentence must first be "translated" into the machine's language. As the COBOL
system is designed, the COBOL-language program need be translated only once, and
the resulting machine-language program can be used and reused indefinitely with
out further translation.

This translation is accomplished within the computer itself, employing many of the
same techniques used in processing ordinary business data. A special program,
known as a processor and supplied by IBM for the particular computer, is first
entered into the machine. The COBOL-language program (often referred to as the
source program) is then read into the machine, where the processor reads it and
analyzes it The computer acts on it in accordance with instructions built into the
processor, and as a result of this process it creates a new program in machine lan
guage. This program is known as an object program. Once the object program has
been produced, it may be us:ed to process data whenever it is required. It may be
used at once, or it may be recorded in some external medium and stored for future
use. It may be used over and over again as long as it is needed.

A simple example will illustrate the basic principles. t Suppose we wish to increase
the value of an item called INCOME by the value of an item called DIVIDENDS. The
COBOL language allows us to specify this addition by writing the following sentence:

ADD DIVIDENDS TO INCOME.

Before the processor can interpret this sentence, however, it must be given certain
information. For example, the programmer will have to write the names DIVIDENDS
and INCOME in a special part of the program known as the Data Division. Here he
will state certain facts about the data represented by those names, such as the
maximum size of the individual items of data, the fact that the data consists of
numerals, and so on. There are technical reasons for this, which we need not con
sider here. It is sufficient at this point to say that the Data Division is used to
describe data so that the computer can recognize it, obtain it when needed, and
know how to treat it in accordance with its special characteristics.

When the processor encounters the sentence ADD DIVIDENDS TO INCOME, therefore,
it will have access to certain information that will aid it in translating the sentence.
In addition, it will be able to obtain certain information "built into" the processor
itself. Let us take this sample sentence and see some of the things that might

t For the convenience of the readier in following the various examples and formats of this manual,
words which may be used directly in a COBOL program are printed entirely in capital letters. Some
of these words are reserved for special use in the COBOL system. Others are typical of names which
may be given by the programmer to some element of the program-such as an item of data-in
accordance with rules given later in this manual.

3

4

happen to it. (The reader should note, however, that the exact procedure would
vary from machine to machine, and that, in any case, the programmer is not directly
concerned with the details.)

First, the processor will have to examine the word ADD. It will then consult a special
list of words that have clearly defined meanings in the COBOL language. This list is
part of the processor. As it happens, ADD is one of these words, and the processor
will interpret it to mean that it must insert into the object program the machine
instruction (or instructions) necessary to perform an addition.

The processor must also examine the word DIVIDENDS. Since it can obtain, from the
Data Division, certain information about DIVIDENDS, it will know where and how
DIVIDENDS information is to be stored in the computer, and it will insert into the
object program the instructions the computer will need in order to locate and
obtain the data.

When the processor encounters the word To, it will again consult its list of special
words. In this case, it will find that this word directs that it is the value of INCOME
which is to be increased as a result of the addition. (It could have been DIVIDENDS,
or some other value, if the sentence had been written differently.) Actually, it
makes no difference to the processor in this case whether the programmer has writ
ten ADD DIVIDENDS TO INCOME or, simply, ADD DIVIDENDS INCOME. The former, of
course, is more like conventional English, and this is the reason why the program
mer is allowed to use TO in this sentence instead of omittiing it. The meaning is
clear to the processor in either case, even though the second form of the sentence
might be ambiguous to a casual reader. The COBOL language contains a number
of words which can be used in this way to improve the readability of COBOL
sentences.

The processor must now examine the word INCOME. Again, it will have access to
certain information about this word, and, as a result, it will be able to place in the
object program the instructions necessary in locating and using INCOME data.

'i\T e have indicated that the programmer placed a period after the word INCOME,
just as he would in terminating an English-language sentence. The effect of the
period on the COBOL processor is quite similar. In this case, it tells the processor
that it has reached the last word to which the verb ADD applies.

The steps we have described are performed by the processor in creating the object
program. They might not be performed in exactly this way or in precisely the
same sequence, since machines vary and since each processor must be adapted to
a particular machine. However, regardless of the machine, the same COBOL-lan
guage sentence would produce machine instructions that will cause the object
program to add together the values of DIVIDENDS and INCOME. Thus, the programmer
can use the COBOL language to describe a procedure he wishes the computer to
follow, and the computer, acting under the direction of its processor, will generate
the program necessary to accomplish the desired result.

All of these steps are preparatory in nature, and they are required only in creating
the object program used to process the actual data. They need be taken only once.
Once the object program has been completed, the source program may be dis
regarded, and the object program is used for the actual processing. The source
program is not required further, unless the programmer wishes to make a change
in it; in that case, it must be reprocessed to create a new object program.

In the example we have been describing, the object program could perform the
addition of the two specified items very simply. It would require very few machine
instructions to do so-in some cases, only one. However, we have been talking about
a very simple example. In actual practice, a single COBOL instruction may produce

dozens of machine instructions, and in many cases a few COBOL sentences may cause
hundreds, 01r even thousands, of machine operations. In fact, when the programmer
knows how to make the computer repeat a procedure as long as data is available
to be worked on, he will see that with a few COBOL sentences he can start the com
puter on an operation that can go on indefinitely. It is not an exaggeration to
say that a computer can be left to perform millions-even billions-of procedures
rapidly and accurately and without supervision.

Perhaps the best way to understand how the COBOL system works is this: The COBOL

language contains a basic list of key words and symbols. Each key word and symbol
specifies to the processor a definite set of machine operations. In effect, the pro
grammer thus has at his disposal a whole series of "prefabricated" portions of the
object program he wishes the computer to construct. When he writes a COBOL

language program, he is actually directing the computer to bring together, in the
proper sequence, the groups of machine instructions necessary to accomplish the
desired result. The language in which he does this is not only easy to work with;
it saves him from having to specify a great many machine steps in detail. The rules.
for writing the COBOL language are much simpler than those which govern the
machine languages, and the programmer is enabled to write his programs easily,
rapidly, and accurately. Using the processor appropriate to his particular machine~
he can use English words and conventional arithmetic symbols to direct and con
trol the complicated operations of the computer.

A Few facts About E'lectronic Dalia Processing

The Language of
the Computer

If the reader has not had some previous exposure to the basic facts of electronic
data processing, it will be worth while to discuss some of them briefly at this point.
In particular, we should give some thought to some of the methods used for repre
senting data within a computer and some of the types of operations the computer
can perform on data.

Information can be represented in many ways. When we write English, we use
printed symbols. If we wish to transmit information by telegraph line, we must
usually have it expressed in the form of special codes. Similarly, when we wish to
communicate with a computer, we must convert our data into codes which the
computer will understand. In most practical operations, this conversion is made
automatically, and the programmer will rarely need to think in terms of the actual
codes.

The COBOL programmer may first write his program on an ordinary sheet of paper,
though he will usually find it more convenient to use a special printed form. (The
reader will see examples of such a form later in this manual.) It would be possible
to enter the program and the associated data directly into the data processing
system by means of a keyboard much like that of a typewriter. However, the com
puter can accept data at extremely high rates of speed, and no human operator
could possibly keep up with it. Thus, it is usually better to convert the data into
codes which the computer can use efficiently before it is presented to the computer.

A convenient way of doing this is to punch the data into IBM cards, using a conven
tional card punch. This unit has a keyboard resembling that of a typewriter. When
a key is pressed, a pattern of rectangular holes is punched in the card. There is a
special pattern for each letter of the alphabet, each numeral, and each special
character.

A further conversion is now required-into the special codes used within the com
puter. In many machine systems, the cards are fed into a special reading unit which
makes the :required conversion and stores the data in the form of magnetized spots

5

Basic Types of
Machine Instructions

6

on one of various magnetic storage media. For example, codes may be stored on
magnetic tapes or in a system of magnetic "cores" within the computer. Most high
speed computers use cores for main storage and tapes for external storage. Mag
netic tape, which resembles that used on a tape recorder, has a special convenience:
A reel of tape may be connected to the computer when it is required, and removed
and stored when it is not needed. It has become the standard medium for entering
data into the system, for recording data as output from the system, and for storing
it when not in use. The usual procedure for entering data into a computer is to
place it on a tape first, using a card-to-tape converter, and then to connect the
tape to the computer so that its contents can be read. Preparation of the tape can
be accomplished by other equipment while the computer is at work on other pro
grams, and this practice saves using valuable machine time for the conversion.

The internal codes of the computer may be used not only to represent data, but to
represent instructions to the machine as well. At any one time, the storage unit of
the computer will usually contain both data and instructions. Its capacity to store
and use both kinds of information, simultaneously and in volume, is an important
factor in its ability to handle complex problems.

Every computer is designed to perform a basic repertory of operations. These
operations may be specified by the use of machine codes reserved for the purpose.
For example, one code may cause a simple addition, another may cause an item of
data to be moved from one part of storage to another, while a third may cause a
numeric value to be rounded.

Each such code, together with information needed to specify the data or the part
of the machine affected, may be thought of as a "machine instruction." In this sense,
a machine instruction describes the smallest element of procedure which a com
puter may be directed to perform, and the code or codes used to specify it are
"built into" the machine.

A small computer may have a basic repertory of twenty or thirty such machine
instructions, while a larger computer may have several hundred. In the latter case,
the extra instructions represent refinements and additional features which simplify
programming and greatly increase the speed and efficiency of the equipment.
However, virtually all of these instructions can be related to just a few basic kinds
of operations-movement of data, simple arithmetic, instructions that control the
sequence in which operations are performed, and tests or comparisons of data that
can be used for what might loosely be called "decision making." Programs of great
power and complexity can be built up by combining instructions of a very few
basic types.

In the first part of this chapter we said that the COBOL language is a kind of short
hand method of giving directions to a computer. We saw that a simple statement,
such as ADD DIVIDENDS TO INCOME, may cause the machine 1to perform an extended
sequence of machine operations. If the reader will review that example, he will
see that those operations fall, in one way or another, into a few basic types.

For example, it was stated that the computer would have to examine a list of COBOL

words to locate the word ADD. In many current machines, a search of this kind
involves matching the word ADD successively against the words in the list. The
machine begins by comparing the word ADD against the first word. If the words are
not identical, it proceeds to the next. Until it finds a match, the computer goes
through a series of comparisons or tests. A machine instruction may be required
for each step and, if so, the program must provide for each comparison and must
specify in each case what is to be done when a match is found. Thus, an extended
sequence of machine operations is required to cover all the possible steps in just
this one search.

Data Movement Instructions

Arithmetic Instructions

So far, we have been talking about comparisons of data. We will see later that the
ability to examine data in this way enables the computer to "make decisions" of
many kinds. In the case of the search we have been describing, decision was lim
ited to two possible courses of action-if the match was not found, the computer
should make another comparison; if the match was found, the machine should
replace the word ADD by the machine instruction (or instructions) equivalent to it.

The actual substitution of ma.chine instructions for the word ADD would involve a
movement of data, which is another basic kind of machine operation. When the
processor creates the object program, it actually builds it up by obtaining the
component parts (the machine instructions) and moving them into place in an
area reserved for the purpose. It might be said that the COBOL-language program
is a sort of blueprint, and that the processor studies it, marks off an area for building
the object program, and then proceeds to locate the specified parts and move them
into place, piece by piece.

In this particular example, we have been talking about comparisons and move
ments of data which are made in the course of creating the object program. How
ever, the object program itself will frequently have to compare and move data in
the same way. In the ADD statement we have been discussing, the actual values of
DIVIDENDS and INCOME will be moved at object time-i.e., at the time the object
program is run-before the addition can be performed.

In order to add two such values, one of them will usually have to be moved into a
special location or register. Then the second value is added to the first. Speaking
figuratively~ it could be said that the second value is "moved in and superimposed
on" the first value to create the sum. This sum may be left where it stands for
further processing, but ultimately it will have to be moved elsewhere. This will
usually require another machine instruction. Thus, it is clear, even a simple addi
tion requires some kind of data movement. Some of this movement may occur auto
matically, but in other cases, data movement instructions must be inserted into the
object program at the proper places. When the programmer uses the COBOL lan
guage to specify an arithmetic operation, the COBOL processor will provide these
data movement instructions automatically.

Certain kinds of machine instructions occur constantly in computer operations,
and the reader will find it useful to know something about them, even though the
actual instructions are written for him by the processor. The major points are sum
marized in the brief discussion which follows.

Data movement instructions are used to transfer data from one place to another.
The term is used here in a broad sense to include movements of data into and out
of the computer system, as well as movements within storage. It is also used to
include shifts of data. For example, numeric data is often shifted to the left or
right in order to align decimal points correctly for calculation. It is often necessary
to shorten, or to round, a number, and these operations may require one or more
shifts.

Input and output instructions present special problems, and for this reason IBM
provides an input/ output control system (often referred to as an mcs) for most of
its computers. These systems facilitate the flow of data into and out of the com
puter. The COBOL processor for each machine is designed to take advantage of the
input/ output control system for the machine. Thus, the COBOL programmer can
specify many of the important input/ output operations directly in the COBOL
language.

A major function of an electronic data processing system is to perform calculations.
Actually, most calculation can be reduced to a form of addition, although shifting

7

"Decision-Making"
lnsfrudiont

8

and comparing operations may be used to facilitate it. Thus, subtraction may be
treated as negative addition, multiplication as a form of repeated addition, and
division as a form of repeated subtraction.

These four basic arithmetic operations could be specified by writing the proper
sequences of data movement, comparison, and addition instructions. However,
most computers provide a single machine instruction for each basic type of arith
metic operation. Thus, a division can be specified in a single instruction; this saves
the programmer from writing a long sequence of steps.

In addition to these basic operations, computers often provide machine instruc
tions of a more sophisticated kind. An instruction for rounding a number will illus
trate this point. Let us assume that a number is expressed within the computer by
codes which correspond, digit for digit, to the numerals as we would write them
on a sheet of paper. Suppose, further, that the number as stored in the computer
consists of seven digits and that we wish to round it off to five. The programmer
could accomplish this result by directing the computer to perform the following
steps, or their equivalent:

1. Shift the number one place to the right.

2. Check to see whether the number is positive or negative.

3. Add a value of 5 to the right-hand digit if the number ils positive, or subtract 5
if the number is negative.

4. Shift the number one more place to the right, dropping the digit to which the 5
had been added or subtracted.

The result of this procedure is that the fifth digit from the left will be increased by
one if the sixth digit had previously contained a value of 5 or more.

This is not an exact description of the method by which rounding is actually ac
complished in any particular machine. In any case, rounding can often be specified
in one machine instruction. Thus it is clear that there are cases in which a single
machine instruction can accomplish a result that might otherwise require a number
of instructions.

Arithmetic instructions can in some cases be extremely complicated. On some com
puters, for example, it may be possible to use a single machine instruction to cause
the calculation of a square root. The reader will recognize, of course, that execu
tion of this one instruction would require many steps within the machine.

We have seen that a computer can examine data to determ:lne whether a particular
condition exists. The following partial list will give the reader some idea of the
kinds of conditions that can be tested:

An item can be examined to determine whether:
It is positive.
It is not positive. (This is not necessarily the same as being negative.)
It is negative.
It is not negative. (This is not necessarily the same as being positive.)
It is zero.
It is not zero.

Two items can be compared to determine whether:
They are equal.
They are not equal.
The first is greater than the second.
The first is less than the second.

Matching the Machine
and the Problem

An item may also be tested to determine whether it has certain other special char
acteristics. For instance, an item may be examined to determine whether the
internal code used to represent it within the machine possesses a particular prop
erty. Such tests may be useful for such purposes as separating one class of data
from another. In practice, the COBOL programmer will rarely have any direct con
cern with tests that depend on machine factors. However, a COBOL processor may
make use of these factors in making a test, and in such cases the programmer will
be able to take advantage of them indirectly. For example, the COBOL system per
mits the programmer to test an item to determine whether it consists of alphabetic
characters. In the case of certain machines, such a test may be made easily by exam
ining the codes for certain characteristics. The fact that the programmer may not
know these codes is immaterial; he may still direct the processor to specify the
test for him.

On some machines, a particular test may be specified in a single machine instruc
tion. In other cases, it may not be possible to test for the particular condition by
using just one instruction, but the same result can be obtained by using a succession
of tests to determine that the alternative conditions are not present. In most cases,
the COBOL processor will determine how to make a test of this kind, and the pro
grammer will merely need to indicate the test he wishes made. However, as he
will see, he still retains the power to specify a number of different ways of making
tests. He will find this an advantage in meeting varying conditions.

How is a comparison or test used in the machine? The exact answer will vary with
the machine, of course, but the method will be based in general on the following
principles:

Normally, a computer will follow its instructions in the order in which they are
stored within it. It advances:, in a physical sense, from one storage location to the
next, reading and carrying out the instructions in succession.

However, the programmer may specify that this sequence be interrupted at any
point and that the computer take its next instruction from some other location. All
machines provide "transfer" instructions for this purpose. The simplest of these
may be called an "unconditional" transfer. Such an instruction directs the computer
to skip-either forward or backward-to a specified location to find its next instruc
tion. This feature makes it possible for the computer to repeat a procedure it has
already performed or to skip over a procedure that is not wanted.

A transfer instruction can be specified in such a way that its execution depends on
the results of a comparison or test. For example, it is possible to write an instruc
tion which causes the computer to examine an item of data and then to transfer to
a specified location if the item is found to be positive. If the item is not found to be
positive, the computer will ignore the transfer instruction and will proceed to the
next instruction in sequence.

Later in this chapter we will see how this "decision-making" power can be used
to control data processing. It is an extremely important feature of the electronic
computer. Since transfers can be made to virtually any location in storage, and
since the point to which tr an sf er is made may itself contain another test and/ or
transfer instruction, it is possible to set up a series of tests and transfers that will
cause the computer to perform instructions in any sequence the programmer wishes
to prescribe.

It may seem to the reader that the machine has to do a great deal of work to solve
a simple problem. But them are two points he should keep in mind. First, the
machine can perform each individual step in a few millionths of a second, and it
can finish a considerable number of calculations so rapidly that the stop light may

9

Identifying Data for
the Machine

10

flash on before the operator can get his finger off the start key. Second, the steps
performed by the machine parallel, more or less exactly, the steps that a human
being would have to perform to do the same problem; a derk may do many things
by habit and instinct that the computer must be specifically instructed to do, but
the fact remains that even the simplest clerical operation consists of a great many
individual steps.

The relationship between machine instructions and the steps a clerk might take is
fairly obvious in the case of the basic arithmetic instructions and those instructions
which cause the machine to make decisions. Less obvious, perhaps, is the parallel
between data movement instructions and clerical operations.

Let us see, however, how a clerk goes about performing a typical operation.
Usually, he will have to locate one or more items on a business form of some kind.
This may require reading labels, page numbers, column headings, and the like.
Each such step requires obtaining the information in the first place, which is not
unlike the concept of entering data into a machine. Each reading of a label, page
number, and so on, actually involves a comparison of its "value" against some value
the clerk has in mind. He will reject each value until he finds one that matches the
one he is looking for. This process of reading, comparing, and rejecting will be
repeated until the desired item is found. The clerk does all of this so rapidly, of
course, that he is hardly aware that he does it at aH.

Let us go a little further. When the clerk locates the item, he will want to use it
according to some plan he has in mind-his "program," so to speak. As one of his
first steps, he is likely to copy the item. Perhaps he will write it on a scratch pad or
post it to another record. He may wish to perform a calculation on it, and this may
require entering it on the keyboard of a desk calculator. All of these steps, of
course, involve a kind of data movement, and many more will be required before
he completes the job.

The operations of a computer closely parallel operations with which the program
mer is already familiar, even though he may have been performing them uncon
sciously and automatically. This relationship provides him with a means of trans
ferring a problem to the computer. In order to do so, he must analyze the problem,
reduce it to its component steps, and find some way to express each step in terms
the computer will accept. Since the COBOL language provides many short cuts for
doing this, he will not have to think of all of the details, but he will write more
efficient programs if he is aware of this fundamental relationship between the com
puter and the problems it solves.

We have seen that an electronic data processing system is capable of storing both
data and instructions. The reader may wonder how it distinguishes between them.
The answer is that it really doesn't. It has no way of knowing whether a particular
series of codes represents an instruction or an item of data--at least, not by merely
reading the codes. For this reason (among others), the programmer must identify
the data for the computer, and he must also give the computer certain information
about it. This is done in a part of the program known as the Data Division, and the
information given in that division is usually referred to as data description. Descrip
tion of data is one of the most important parts of programming, and the data
description must be given to the processor before the object program is created.

One of the reasons for this-and it is the only one we need concern ourselves with
at this point-is that each item of data must be assigned a specific location within
the computer system. This is necessary because data can be identified within the
system only by its location. If we were writing a program in machine language,
we would have to know how to get each item into its proper place, and when we

wanted to obtain it, we would have to specify its location in each machine instruc
tion that referred to it.

When we wrote the COBOL statement ADD DIVIDENDS TO INCOME, we were not only
taking short cuts in specifying the machine operations; we were also using the
names DIVIDENDS and INCOME as a short-cut way of identifying machine locations.
The actual machine instruction.s, as produced by the COBOL processor, will direct
the computer to add together the data found in two specific machine locations. If,
by some chance, the data found there is not DIVIDENDS and INCOME, this fact will
not matter to the computer. It will take whatever items it finds and will add them
together anyhow. This means that it might try to add the letters of the alphabet,
punctuation marks, and other characters. The results would vary, depending on
the type of computer, but the programmer could not predict them, and they would
be meaningless in any case. Furthermore, there is nothing to prevent the computer
from trying to add two machine instructions. And even if DIVIDENDS and INCOME

are found in their proper locations but, through an error in the data description,
the decimai points are not properly aligned, the computer may add them just as it
finds them, ilgnoring the decimal point. The resulting sum, of course, would be in
error. The reader will thus recognize the importance of describing the data
accurately.

When the processor reads the source program, it will note each kind of data to be
used, together with its characteristics, and will assign it a location in storage. The
programmer does not have to know what this location is. Instead, he gives each
item a name, and when the object program is created, the processor will record
both this name and the location in which the data will be stored. Later, when the
processor reads the name of an item of data in a procedure statement, it will look
up the name, read the address·-i.e., the location-of the item, and insert that address
into the appropriate machine instructions.

One important fact must be emphasized: A data-name always refers to a kind of
data, not to a particular value. Thus, SALARY might be the name of a kind of data,
while the individual value located there would vary for each employee. A data
name is like a column head in a ledger; it identifies the values in the column but
does not specify them. When the programmer writes a data-name in a procedure
statement, the computer will obtain whatever value happens to be located there
at the time.

This capacity to refer to and identify data by name is one of the most useful and
important features of the COBOL system. It saves the programmer from having to
keep track of a great many storage locations. Equally important, the concept of
naming makes it possible to assign names to procedure statements. Thus it becomes
a simple matter to direct the computer to make a transfer from one procedure to
another. For example, if a procedure for calculating a tax were called TAX-CALCU

LATION, it would be possible to cause the computer to perform it by writing such
statements as GO TO TAX-CALCULATION or PERFORM TAX-CALCULATION. Some of the
advantages this offers will be illustrated in the sample problem that occupies the
remainder of this chapter.

Programming in the COBOL Language-A Sample Problem

The COBOL language provides a link between business English and the language ot
the computer. It is based on English, using English words and certain rules of
syntax derived from English. However, since it is a computer language, it must be
a very precise language. The programmer must therefore learn the rules which
govern it and follow them exactly. The rules for doing this are specified in Parts II
and III of this manual.

11

12

However, the reader may prefer to get a general idea of what the language looks
like before he proceeds to the details. Accordingly, we will discuss a simplified
inventory problem, showing how it may be expressed in the COBOL language.

Let us assume that we wish to write a procedure to record changes in the stocks
of office furniture offered for sale by a manufacturer. We have said that one of the ,
first things we must do is to identify and prepare the data to be used. In this case
we will be working with such things as an item code to identify each type of prod
uct, the item name corresponding to it, the stock on hand, the unit price of each
item, the value of the stock, and the order point used to initiate orders to replace
depleted stock.

For the purposes of this problem we will consider only two aspects of data descrip
tion: (1) We will inform the computer that we will work with two kinds of records,
a master record, and a detail record, as shown below. (!~) We will assign data
names to each of the items of data to be used.

First, we must organize the data into the two basic kinds of records. The first one
we will call MASTER-RECORD and the second DETAIL-RECORD. The MASTER-RECORD

will probably be derived from ledger records that :look something like this:

Unit Stock
Item Stock Price Value Order
Code Item Name On Hand ($) ($) Point

AIO 2-drawer file cabinets 100 50 5,000 50
All 3-drawer file cabinets 175 80 14,000 80
Al2 4-drawer file cabinets 200 110 22,000 150

BIO Secretarial desks 150 200 30,000 120
Bll Salesmen's desks 50 175 8,750 50
Bl2 Executive desks 75 500 37,500 60

CIO Secretarial posture chairs 125 50 6,250 140
cu Side chairs 50 40 2,000 60
Cl2 Executive swivel chairs 25 150 3,750 20

Figure 1-1.

Actually, there will be a MASTER-RECORD for each item in this list, but in describing
the data for the computer, we will assume that all of these records will be of the
same form-and we must be sure that they are. Thus we need specify the character
istics of only a single record. Accordingly, we will define MASTER-RECORD as con
sisting of data items having the following names:

ITEM-CODE
ITEM-NAME
STOCK-ON-HAND
UNIT-PRICE
STOCK-VALUE
ORDER-POINT

For the purposes of this chapter, it is not necessary to show just how this is done.
We may note in passing, however, that when the actual data description is written,
we will have to give the computer certain additional information. For example,
we will mention that the data known as ITEM-CODE will consist of items three char
acters long, of which the first will be alphabetic and the second and third numeric.
We will point out that STOCK-ON-HAND, UNIT-PRICE, STOCK-VALUE, and ORDER-POINT

represent numeric values and that the data represented by ITEM-NAME may consist

Using COBOL to
Perform Arithmetic

of letters of the alphabet, numerals, and certain special characters. In general, the
information required in the data description is fairly straightforward, and we do
not need to concern ourselves here with the details.

MASTER-RECORD, of course, is the main record of current inventory. Changes to this
record are made by entering the details of individual transactions or groups of
transactions. Thus, receipts of new stock and shipments to customers will obviously
change both STOCK-ON-HAND and STOCK-VALUE. These changes are summarized in
the detail record for each item. A typical record might appear in a ledger in the
following form:

Item
Code

Bll

Item Name

Salesmen's desks

Figure 1-2.

Receipts Shipments

25 15

We will therefore designate this kind of record as DETAIL-RECORD and specify that
it contains data items called:

ITEM-CODE
ITEM-NAME
RECEIPTS
SHIPMENTS

Again, full details will have to be written out in the data description, but we will
assume that this has been done and that we are ready to tell the computer how to
operate on our data.

Figure 1-2 showed that changes had been made in the stock of salesmen's desks.
Specifically, it showed receipts: of 25 and shipments of 15, resulting in a net increase
in stock of 10 desks. According to the record shown in Figure 1-1, the previous
stock of this item was 50, its unit price was $175, and the stock value was $8, 750.
Now we must get the computer to bring this record up to date.

Let us assume for the time being that we have arranged to get these records into
storage, ignoring the steps by which this was done. We will now reduce our prob
lem to its very simplest elements and take it step by step.

We have already seen that the COBOL language contains the verb ADD. Thus, we
may now add RECEIPTS to STOCK-ON-HAND by writing a simple ADD sentence, as
follows:

ADD RECEIPTS TO STOCK-ON-HAND.

The computer will then find the value of RECEIPTS in the detail record and add it to
the value of STOCK-ON-HAND in the MASTER-RECORD.

Now we must reduce this new value of STOCK-ON-HAND by the amount of SHIPMENTS.

The COBOL language contains another verb which will accomplish this result, the
verb SUBTRACT. Thus, we may write another simple sentence, such as:

SUBTRACT SHIPMENTS FROM STOCK-ON-HAND.

These two instructions, carried out in succession (or in reverse order, for that
matter) will produce a current value of STOCK-ON-HAND.

Actually, there is a better way of doing this particular calculation. We have broken
it into two steps, but the COBOL language provides another verb which permits us
to specify more than one such step in a single sentence. This is the verb COMPUTE.

13

14

Consider the following sentence:

COMPUTE STOCK-ON-HAND STOCK-ON-HAND +
RECEIPTS - SHIP:MENTS.

This sentence is interpreted as follows:

«Compute the value of the expression at the right of the equal sign (i.e.,
STOCK-ON-HAND + RECEIPTS - SHIPMENTS) and change the
value of the item at the left of the equal sign (i.e., STOCK-ON-HAND)
to equal this value."

The name STOCK-ON-HAND occurs twice in this sentence, but this causes no diffi
culty. The expression at the right is calculated first; thus it is the current value of
STOCK-ON-HAND which is used as the basis for computing the new value. When this
new value has been calculated, it replaces the old value of STOCK-ON-HAND in the
MASTER-RECORD.

A COMPUTE statement is always interpreted to mean that: the value at the left of
the equal sign will be changed to equal the value obtained by performing the cal
culation specified at the right of the equal sign. The reader will see that this one
verb gives him a great deal of power to express calculations of many kinds.

So far, we have succeeded only in bringing the value of STOCK-ON-HAND up to date.
But a change in this value will obviously cause a change in STOCK-VALUE as well.
We will assume that this figure does not include allowances for quantity discounts,
damage to stock, or other factors, and that the value of the stock is nothing more
than the unit price of the item multiplied by the number of items in stock. As we
might expect, the COBOL language provides us with a verb that will permit us to
make this multiplication. Thus, we could compute STOCK-VALUE by writing the
following sentence:

MULTIPLY STOCK-ON-HAND BY UNIT-PRICE GIVING STOCK-VALUE.

This is a simple way of doing the job. It is understood that the result of the calcu
lation will be placed in the MASTER-RECORD as the new value of STOCK-VALUE.

But we have already seen that the COMPUTE verb allowed us to specify several
additions and subtractions in one sentence. We will now see that it can be used
to specify multiplication and division as well. Among the special characters of the
COBOL language are four which represent the four basic arithmetic operations. These
characters are as follows:

Character

+

I

Operatio11

Addition
Subtraction
M ultiplica1tion
Division

Thus, making use of the information we already have, we may now write this
sentence:

COMPUTE STOCK-VALUE = UNIT-PRICE 0 (STOCK-ON-HAND +
RECEIPTS - SHIPMENTS).

We may or may not wish to handle it this way. The STOCK-ON-HAND value, of course,
is the original-not the updated-value, and if our sole purpose is to compute
STOCK-VALUE (as it might be if we were preparing a special report), this method is
very convenient. It does not provide, of course, for inserting the new value of
STOCK-ON-HAND in the MASTER-RECORD, and if that is required, we would use one of
the methods shown earlier.

Directing the Computer
to Make Decisions

The point, however, is that the COBOL language provides a variety of ways to accom
plish the same result, and that some of them are extremely compact and powerful.
It is up to the programmer to select the methods suited to his needs.

Before we leave the subject of calculating, we should note that in addition to the
four basic arithmetic operations, the COBOL language allows the programmer to
specify exponents in a formula. Thus, if we wish to express the square of a value
called LENGTH (as in calculating an area), we could write it as LENGTH 0 0 2. The
double asterisk means "exponentiated by," or, to put it less formally, "to the
power of."

We have already seen that the computer can examine data to determine whether
or not some condition is present and that, depending on what it finds, it can be
left to carry out an appropriate course of action. Our inventory example gives us
an opportunity to see how this ability may be used.

The MASTER-RECORD, as we have defined it, contains an item called ORDER-POINT.

Let us assume that an item is to be reordered when its stock has been reduced to
or below its order point. Let us further assume that we have stored in the computer
a procedure for initiating such an order and that we have given the name REORDER

ROUTINE to this procedure. We may now write the following two sentences:

IF STOCK-ON-HAND IS LESS THAN ORDER-POINT GO TO
HEORDER-ROUTINE.

IF STOCK-ON-HAND IS EQUAL TO ORDER-POINT GO TO
REORDER-ROUTINE.

The effect of the first sentence will be as follows: The computer will compare the
present value of STOCK-ON-HAND with the present value of ORDER-POINT. If STOCK

ON-HAND is the lesser value, the computer will transfer at once to REORDER-ROUTINE

and begin the procedure for issuing the necessary order. If STOCK-ON-HAND is not
less than ORDER-POINT, the computer will merely proceed to the next instruction.

Again it will be required to make a test, this time to see whether or not the present
values of STOCK-ON-HAND and OR.DER-POINT are equal. If they are, the computer wil1
transfer immediately to REORDER-ROUTINE. If not, the computer will continue with
the next instruction. We haven't indicated what that instruction will be, but pre
sumably it will tell the computer what to do if STOCK-ON-HAND is greater than
ORDER-POINT.

It may be useful to make these two tests separately, as shown above, and if the
tests specify different transfers, each test must, of course, be specified individually.
Unless there is some reason to keep them separate, however, we may simplify our
instructions, just as we have used the verb COMPUTE to simplify calculation. Thus,
we may write this sentence:

IF STOCK-ON-HAND IS LESS THAN ORDER-POINT OR EQUAL
TO ORDER-POINT GO TO REORDER-ROUTINE.

Here we are using an implied subject. That is, STOCK-ON-HAND, which is the subject
of the first condition, is understood to be the subject of the second condition as
well. The rules for writing compound conditions, especially those using implied
subjects, are quite specific and must be followed carefully. However, they do
provide increased ability and flexibility in handling many kinds of problems.

The reader will surely have noted that in this example the computer is asked to test
successively for two conditions out of a possible three. Unless he has some need to
distinguish between these two conditions (as he might, if he were counting the
number of times each situation occurred, or if he wanted to prescribe a different

15

Handling Exceptional
Cases

16

action in each case), would it not be simpler to test for just the third condition
instead?

This might, in fact, be the better way of making the test .. The following sentence
shows how it might be done:

IF STOCK-ON-HAND IS GREATER THAN ORDER-POINT NEXT
SENTENCE OTHERWISE GO TO REORDER-ROUTINE.

The phrase NEXT SENTENCE is a special instruction built into the COBOL language.
The computer will understand it to mean "go to the next sentence after this one."

While it should now be clear that the computer has the power to select a course of
action in accordance with conditions it may find, the following examples may give
the reader a better idea of the kinds of tests a computer is often called on to make:

IF GROSS-PAY IS LESS THAN 4800 GO TO FICA-CALCULATION.
IF ITEM-CODE IS ALPHABETIC PERFORM TYPE-A-FREIGHT

CALCULATION.
IF DISCOUNT-PERCENTAGE IS ZERO GO TO BILLING

ROUTINE.
IF HOURS-WORKED IS NEGATIVE GO TO ERROR-ROUTINE.
IF EMPLOYEE-NUMBER IS NOT NUMERIC PEHFORM SPECIAL

CLASS-ROUTINE.
IF (A+ B - CID) 0 E IS NOT GREATER THAN (F - G) /H +

12.73 GO TO ROUTINE-F.

The actual rules for specifying tests and comparisons will be given in Chapter 3.
It is enough for the present if the reader begins to realize some of the power inher
ent in the ability to pass on to the computer the task of making decisions.

Perhaps one small point should be noted here. In the fourth example above, refer
ence is made to a procedure called ERROR-ROUTINE. Normally one would expect
that HOURS-WORKED would always have a positive value. \Ve would hope that if a
negative value were discovered, the computer would recognize that something had
gone wrong. Errors of this kind sometimes occur. For example, the data read in
might be erroneous-perhaps the decimal point was in the wrong place and an
otherwise normal subtraction produced a value below zero. Perhaps the program
mer had not planned for all the possibilities that might develop when performing
some previous part of the program. Perhaps a switch had s:omehow been set incor
rectly. In any case, we assumed that if HOURS-WORKED turns out to have a negative
value, a condition has arisen which requires special handling.

Good programmers learn to allow for certain kinds of errors, and very often they
can write routines which will take care of them without: stopping the machine.
Suppose that in the example mentioned the value of HOURS-WORKED did turn out
to be negative in a certain case, owing to an ermr in the original data. If the
computer were to continue processing this record, it might calculate an unauthor
ized deduction from net pay, or make some other error. To prevent this, the pro
grammer could anticipate the possibility of the error and write a special routine
to be followed whenever the value of HOURS-WORKED is found to be negative. In
the example mentioned, we have assumed that the programmer has written some
such procedure and that he has called it ERROR-ROUTINE. Such a routine might cause
the computer to stop processing the particular records, print out the data con
cerned so that it could be examined and corrected, and proceed automatically to
the next records.

Such routines are used as double checks. When a program has been properly writ
ten and tested, few, if any, errors, are likely to occur which would either stop the

uGetting at the Data"

computer or allow inaccurate information to pass through without being marked
for the operator's attention.

Earlier in this chapter, we saw that data processing requires a great deal of data
movement. One of the most important kinds of data movement is input and output
from and to the magnetic tapes, punched cards, or other media in which data is
stored externally. The verb OPEN, as in the sentence OPEN INPUT INVENTORY-FILE,

establishes communication between the computer and an external file of data.
When the computer has no further need of the file, the verb CLOSE is used in a
similar manner to sever this line of communication. While these verbs need not
be discussed here, mention of them leads to a brief discussion of the two verbs
used to obtain and release information after communication has been established
with the file, the verbs READ and WRITE.

When we began to discuss our inventory problem, we assumed the data was already
stored in the machine. Actually, to get it there, we would have had to write a
sequence of steps like the following:

OPEN INPUT DETAIL-FILE, MASTER-FILE.

READ DETAIL-FILE RECORD.

READ MASTER-FILE RECORD.

As we have seen, input/ output instructions actually involve movements of data.
When the computer executes the READ statements given here, it will read the
DETAIL-FILE and the MASTER-FILE and actually obtain one new DETAIL-RECORD and
one new MASTER-RECORD; it will then move each record into a location in storage
reserved for it.

Once the data is located in storage, the computer can perform the operations we
have already specified. When these operations have been completed, we will wish
to have the results written out in some form. In accordance with instructions given
previously, MASTER-RECORD will contain new information after processing has been
completed. In some cases it may be necessary to move this record to a location
from which it can be transferred to some output medium, such as a magnetic tape,
a printed form, or a series of punched cards. In order to make this transfer, we may
use the verb MOVE. Consider the following sentence:

MOVE MASTER-RECORD TO UPDATED-MASTER-RECORD.

If we have properly defined a record called UPDATED-MASTER-RECORD, the entire
MASTER-RECORD will be moved as a unit to UPDATED-MASTER-RECORD, where it will
replace any data previously stored there. We may now have this information
written out by means of such a sentence as WRITE UPDATED-MASTER-RECORD.

Here. we should consider one of the special characteristics of electronic data
processing. In most cases, when an item of data is "moved," what actually happens
is that a copy of it is made in a new location. The old data remains intact where it
was and can be used again. Thus, when we wrote READ MASTER-FILE RECORD, the
computer copied one record into a reserved area in storage. The record as it
originally appeared in its input medium (probably a magnetic tape) remained
unaltered and could be used again-just as the tape for a tape recorder can be
played over and over.

However, when an item of data is moved into a specified location, it usually will
destroy any previous data stored there. We have gone to some trouble to calculate
new values for our MASTER-RECORD, and if we wish to save it, we must move it out
before a new MASTER-RECORn is read in. This is one of the reasons we wrote the
statement MOVE MASTER-RECOJID TO UPDATED-MASTER-RECORD. The record could have
been written out directly, but in certain cases it may be better to move it first to
an intermediate area, for reasons we need not discuss here. We have actually

17

Making the Computer
Repeat a Procedure
Cyclical Operations

18

created a new record, which may be used at a later date as a replacement for the
old MASTER-RECORD. In the meantime, the original MASTER-RECORD remains intact
on its original tape and can be retained as long as it is needed.

Now let us proceed a step further. In our inventory example, there will probably
be as many MASTER-RECORD and as many DETAIL-RECORD Hems to process as there
are kinds of furniture kept in stock. It is customary to process all related records at
one time before going on to another phase of the program. In this case, let us
assume we want to repeat the processing cycle as long as there are records to
process. To show one way of doing this, consider the following series of sentences:

NEXT-DETAIL-RECORD-ROUTINE. READ DETAIL-FILE RECORD.

NEXT-MASTER-RECORD-ROUTINE. READ MASTER-FILE RECORD.

IF ITEM-CODE OF MASTER-RECORD= ITEM-CODE OF DETAIL
RECORD COMPUTE STOCK-VALUE = UNIT-PRICE 0 (STOCK-
ON-HAND + RECEIPTS - SHIPMENTS) MOVE MASTER-
RECORD TO UPDATED-MASTER-RECORD WRITE UPDATED-
MASTER-RECORD GO TO NEXT-DETAIL-RECORD-ROUTINE.

IF ITEM-CODE OF MASTER-RECORD IS LESS THAN ITEM-CODE
OF DETAIL-RECORD GO TO NEXT MASTEH-RECORD-ROUTINE.

Figure 1-3.

The reader will recognize in this sequence a number of the statements we have
previously examined. However, several new elements have been introduced.

We have previously noted that names can be given to procedures as well as to
data. The above sequence contains two procedure-names, NEXT-DETAIL-RECORD

ROUTINE and NEXT-MASTER-RECORD-ROUTINE. The fact that these names extend to
the left of the procedure statements has certain significance which will become
apparent later in this book. For the moment, it is sufficient to note that when the
program is printed, this device permits the reader to spot the procedure-names
at a glance.

In the example above, the computer is required to compare two values: ITEM-CODE

OF MASTER-RECORD and ITEM-CODE OF DETAIL-RECORD. If the reader will refer back
to Figures 1-1 and 1-2, he will note that both the master and the detail records
contained items which we called ITEM-CODE. Since identical names were used in
our data description, we must have some means of distinguishing between them.

The naming system used in COBOL allows us to make this distinction by reference
to the name of some larger group of data of which the item is part. Thus, the name
ITEM-CODE OF MASTER-RECORD clearly identifies one of thes:e items, while ITEM-CODE

OF DETAIL-RECORD identifies the other. The use of an additional name (related to it
by the word OF or IN) is called name qualification. Name qualification is often
required in making distinctions between otherwise identical names.

In Figure 1-3, we are concerned with matching each detail record to the corre
sponding master record. This match is determined by comparing the two item
codes. (We could have compared ITEM-NAME data, but this would take longer, since
more characters would have to be compared.) The words IF ITEM-CODE OF MASTER

RECORD = ITEM-CODE OF DETAIL-RECORD will cause the computer to compare these
values. If they are not equal, the computer will skip to the next sentence, which
causes a test to see IF ITEM-CODE OF MASTER-RECORD IS LESS THAN ITEM-CODE OF

DETAIL-RECORD.

In this example, we are assuming that both the maste:r records and the detail
records are arranged in ascending numerical order, and we are not allowing, at
this point, for the possibility that any record is out of order. Neither are we pro-

viding a means of continuing to the next part of the program, or of stopping the
computer when the last record has been processed. This, of course, would have to
be done.

If the item codes are not equal, obviously the records do not correspond and no
processing should be done. The next step is to get the next master record and see
whether it its the one corresponding to the detail record. As the program specifies,
the computer should transfer to NEXT-MASTER-RECORD-ROUTINE if ITEM-CODE OF

MASTER-RECORD is found to be LESS THAN ITEM-CODE OF DETAIL-RECORD. When it
makes this transfer, it will read the next MASTER-RECORD and it will then repeat
the same tests all over again.. If the new MASTER-RECORD still does not match the
DETAIL-RECORD, the computer will continue bringing in new master records and
testing them until a match is found.

When the records match, the computer will compute STOCK-VALUE, move the revised
MASTER-RECORD to UPDATED-MASTER-RECORD, write out this record, and transfer to
NEXT-DETAIL-RECORD-ROUTINE. It will continue to run through this cycle indefinitely,
and additional instructions will be required to stop it after the last record in the
file has been processed.

The ability to repeat a series of instructions in this manner greatly increases the
power of the computer. In the example of Figure 1-3, we did not show how the
computer would be directed to stop repeating a procedure and go on to a new
phase of the program, and, of course, it would be essential to do so. The reader
has seen how tests and comparisons can be used in making the computer repeat a
procedure, and he can no doubt invent ways of his own to use such tests to termi
nate a repetitive process. Since the principles are based on those we have already
considered, let us proceed instead and consider several other possibilities for con
trolling a repetitive procedure.

The verb PERFORM resembles the verb co in a number of ways. Like GO, PERFORM

specifies a transfer to the first sentence of a routine. Unlike GO, however, the
PERFORM verb also provides that the computer will transfer back to the next state
ment following the PERFORM statement after it has completed the specified pro
cedure. In addition, it provides various ways of determining how many times the
procedure is to be performed.

A PERFORM statement may specify that a single sentence or paragraph be per
formed, or, if the desired procedure consists of more than one paragraph, it can
specify two names which identify the beginning and the end of the procedure. To
show a typical usage, let us rewrite the example of Figure 1-3 as follows:

NEXT-DETAIL-RECORD-ROUTINE. READ DETAIL-FILE RECORD.

NEXT-MASTER-RECOB.D-ROUTINE. READ MASTER-FILE RECORD.
IF ITEM-CODE OF MASTER-RECORD= ITEM-CODE OF DETAIL-
RECORD PERFORM STOCK-VALUE-CALCULATION MOVE
MASTER-RECORD TO UPDATED-MASTER-RECORD WRITE
UPDATED-MASTER-RECORD GO TO NEXT-DETAIL-RECORD
ROUTINE. IF ITEM-CODE OF MASTER-RECORD IS LESS THAN
ITEM-CODE OF DETAIL-RECORD GO TO NEXT-MASTER
RECORD-ROUTINE.

STOCK-VALUE CALCULATION. COMPUTE STOCK-VALUE = UNIT
PRICE ~ (STOCK-ON-HAND + RECEIPTS - SHIPMENTS).

Figure 1-4.

19

After reading a MASTER-RECORD, the computer will test, as in the example of Figure
1-3, to see whether ITEM-CODE OF MASTER-RECORD matches ITEM-CODE OF DETAIL
RECORD. If it does, the computer will perform STOCK-VALUE-CALCULATION. This in
volves a transfer to the first instruction of that calculation, which in this case is the
same calculation specified in Figure 1-3. However, when the calculation has been
completed, the computer will transfer back to the main sequence of instructions,
taking the next one in order, which in this case is the MOVE statement.

The PERFORM verb allows for a variety of ways of performing a given procedure.
For example, the sentence containing the PERFORM verb may specify the exact
number of times the routine is to be performed, or it may specify that the routine
is to be performed until a certain condition exists. In fact, if no such information
is supplied, the computer will interpret the command as if the number of times
had been specified as 1.

To show how this might work, let us rewrite a portion of Figure 1-4. Instead of
specifying the actual test to determine whether the records match, and then stating
the required action, we could have written the test instructions as follows:

IF ITEM-CODE OF MASTER-RECORD IS LESS THAN ITEM-CODE
OF DETAIL-RECORD PERFORM NEXT-MASTER-RECORD
ROUTINE UNTIL ITEM-CODE OF MASTER-RECORD
ITEM-CODE OF DETAIL-RECORD.

In fact, we could simplify this statement still further, thus:

PERFORM NEXT-MASTER-RECORD-ROUTINE UNTIL ITEM
CODE OF MASTER-RECORD = ITEM-CODE OF DETAIL
RECORD.

The phrase beginning with the word UNTIL specifies the condition which must be
met in order to terminate the performance of this routine. The reader will find, in
the discussion of the PERFORM verb in Chapter 7, that this is just one of several ways
of controlling the number of times a routine is to be performed. Each way has its
own special uses.

Similarly, the programmer may write GO and PERFORM statements to do the same
job and yet have specific reasons for selecting one over the other. For example,
it may be desirable to use the same procedure as parts of two entirely different
sections of the program. In this case, PERFORM offers a convenient way of getting
back to the point from which the transfer was made. Similarly, if there is a likeli
hood that there will be changes to the routine after the program has been written,
it may be easier to change it if it is separate; if written separately, of course, a
PERFORM statement will usually be required. On the other hand, if the programmer
wishes to proceed directly to a portion of the program following the routine, a GO
statement will often provide the best method of making the initial transfer.

Differences Among Computers

20

The COBOL language has been written in such a way that business problems may be
expressed in it directly. That is, the structure of the language resembles that of
English, and the kinds of operations that can be performed closely parallel those
that are carried out every day in business offices. The COBOL language is said to be
"problem oriented," whereas machine languages are necessarily "machine oriented."
This is the reason why a processor is used to create a machine-language program
from the initial COBOL-language program.

Nevertheless, in order to use a particular machine, the programmer must take
account of its particular operating characteristics. For example, some machines
store data in units of fixed length, usually called machine words, while in other

machines data may be stored in words of variable length. Where this difference
occurs, there will be some differences in the way the data is handled. Similarly, in
some machilnes, the internal codes are so designed that there is a particular code
for each digit, letter, or special character of data, w bile in others a code system
may be used in which there is no such correspondence. Again, this will result in
some differences in the handling of the data.

To a very large extent, writing the procedure statements for a COBOL program
requires no knowledge of machine characteristics. These characteristics do have
some bearing, however, on the way the data is described in the Data Division, so
that the data description may have to be written by someone who has some
knowledge of the machine.

The Environment Division of a COBOL program, however, is the division in which
the programmer relates his program to his particular machine. He will have to
give such information as the amount of storage space available for data and instruc
tions, the assignment of files to specific tape units, and the availability of printers,
card readers, etc. For this reason, special publications will be provided to cover
the environment description applicable to each computer. The reader may study
the present manual, however, with relatively little thought of machine require
ments. The material it contains has been arranged to stress the factors that are
common to all COBOL programs, and the elements needed to adjust a program for a
particular machine are identified. Detailed discussion of those elements, however,
is left to the appropriate environment description publications.

In Chapter 2 the reader will find a general outline of this manual. Chapter 2 de
scribes the organization of a COBOL program and guides the reader to those chapters
in which the relevant material will be found.

21

Part II:

The COBOL Language -

Cornponents and Concepts

Chapter 2: The Organization of a COBOL Program

Chapter 3: The Structure of the Language

Chapter 4: Concepts of Data Organization

Chapter 2:

Describing the Data

24

The Organization of a COBOL Program

The COBOL system provides a convenient method of giving instructions to a com
puter. It consists of two main elements: the COBOL language, and, for each type of
machine, a COBOL processor.

The COBOL language is the medium in which the programmer describes the opera
tions he wishes the computer to perform. It is a language based on English. Its
words are English words, and its "grammar" and punctuation are derived from
English usage. A single COBOL statement may cause the computer to perform dozens
of separate machine operations. Before a program can be nm, each of these opera
tions must be specified by an individual instruction in the internal language of the
machine. Therefore, a program written in the COBOL language must be "translated"
into the machine's language before any data can be processed. This translation is
accomplished by means of a COBOL processor.

The COBOL language is capable of describing business problems of many kinds and
of specifying the basic steps required to solve them. Procedures may be written in
it with relatively little understanding of the detailed steps the computer will take
in carrying out its assignment. The programmer will write more efficient programs
if he has at least some understanding of machine operations, hut the procedural
portion of the language itself is, in large part, "machine independent."

In order to write a workable program, the programmer must first analyze the
problem he wishes the computer to solve. This means that he must analyze the
data itself and the manner in which it is organized. This analysis is necessary
because he will have to describe the data in such a way that the computer will be
able to identify it. If the data is not in a form in which the computer can use it, he
must arrange it in such a form before he can describe it.

Description of data includes writing down such information as the following:

'The name or names by which data is to be identified.

The organization of each item of data with respect to other data-i.e., the
scheme by which the individual items are grouped, and the relation
ships among the groups.

The length of each kind of data.

The location of the decimal point in numeric items.

The "value" of constants-i.e., the actual values of the names, numbers,
special characters, and so on which are to be :stored in the computer
for use in processing other data. Numbers in a table and names in a
list are typical constants.

Each kind of data to be used in a program must be described in accordance with
clearly defined rules. The portion of the program reserved for this purpose is known
as the DATA DIVISION. The general concepts of data description are covered in
Chapter 4 and the detailed rules in Chapter 6.

A substantial portion of the Data Division can be written in such a way that the
same data description will be usable regardless of the type of computer on which
the program is to be run. Certain portions of it, however, are related to specific
machine characteristics, and therefore these portions must be rewritten should it
become necessary to run the program on a different type of machine.

Analyzing the Problem

Having first described the data, the programmer must next determine the pro
cedural steps required to solve his problem. This will mean writing instructions
that cause the computer to perform such operations as the following:

Obtaining the data from some external source, such as a reel of magnetic
tape or a deck of punched cards.

Obtaining the specific records which are to be processed.

Comparing key data whenever two or more records must be matched
for example, in making sure that the name on an invoice matches the
name on the corresponding ledger account.

Examining data to determine which of several possible operations are to
be performed.

Performing necessary calculations.

Assembling the data in the groupings in which it will appear as final out
put.

Issuing the data in final form, which may include printing it on a report,
punching it into cards, recording it on magnetic tape, etc.

Repeating any or all of these operations selectively, using new data as re
quired, until all desired records have been processed.

Stopping the computer when the job is done.

All of these steps, and other steps necessary to meet special situations, can be
expressed by means of COBOL procedure statements. Most computer operations can
be reduced to one or another of the following types:

Moving data into and out of the system and transferring it from place to
place within the system.

Performing the four basic arithmetic operations: addition, subtraction,
multiplication, and division.

Comparing two items of data to determine whether they are equal, or
whether one is greater than the other.

Testing an item of data to determine whether it possesses certain charac
teristics, such as whether it is positive, negative, numeric, alphabetic,
etc.

Altering the sequence in which the computer performs the instructions it
has been given. Usually, such changes in sequence are carried out as
a result of a comparison or test of data.

Accordingly, the heart of a COBOL program is the description of the operations to
be performed. These operations are expressed in English-like sentences, and they
are written in a part of the program called the PROCEDURE DIVISION. The rules gov
erning procedure statements are covered in detail in Chapter 7 of this manual.

The procedure description of a COBOL program can usualJy be written without
reference to machine characteristics. Thus, the Procedure Division of a program,
if properly written, can be run on any computer which uses the COBOL system. In
some cases, however, an expert programmer may wish to take advantage of special
characteristics of his machine. In so doing, he may obtain maximum efficiency from
his particular system, but at the same time he may find that his program will not
run as smoothly on another computer. It is for the individual installation to decide
whether it is more important for a program to make greater use of a machine's
capacity or for it to be more readily usable on more than one kind of machine. The
COBOL system is equally adaptable to either purpose.

25

Creating a Machine-Language Program

It has been pointed out that a COBOL-language program will have to be translated
into a machine-language program before it can be used to process data. This trans
lation is accomplished as follows:

For each IBM computer using the COBOL system, IBM will supply a COBOL processor.
A processor is actually a special program, which analyzes the words and characters
of a COBOL-language program and creates a new program in the internal language
of the machine. A single COBOL-language statement-sometimes even a single word
or character-will often produce a great many machine instructions. It is the func
tion of the processor to determine what these instructions should be and to combine
them to form a new program. The processor must also take care of such supporting
details as reserving space in storage for data and instructions and providing a
means of identifying each item.

The processor is stored in the computer first. Then the source program-i.e., the
COBOL-language program-is read in and the processor analyzes it and creates the
object program-the machine-language program. The object program is prepared
in a form suitable for the particular computer. It will be recorded on magnetic
tape, punched in a deck of cards, or both. When the object program has been pre
pared, it may be read back into the computer at once, or it may be stored externally
for future use. Before data can he processed, the object program must be read back
into the computer's internal storage. The system is then ready to process data.

Since the object program is a machine-language program, the processor must take
into account the operating characteristics of the machine and the capacity of the
equipment available to it. Each installation will differ in some way from others of
its type. For example, the storage capacity available for storing data and instruc
tions internally may be greater in one installation than in another. Furthermore,
the number of tape units available for external storage of data may vary, either as
to the number of units actually installed or the number available for the particular
job.

It is therefore necessary to furnish the processor with certain basic information
about the equipment available to it. This is done by writing the proper coBOL
language statements in a portion of the program called the ENVIRONMENT DIVISION.
The rules for doing so are set down in Chapter 8 of this manual.

The Environment Division also provides the programmer with the capacity to
assign names to various units of the equipment so that these names can be used in
the procedure statements. For example, if the programmer wishes certain informa
tion to be written out on a typewriter, he can write such a procedure statement as
DISPLA y RESULT UPON TYPEWRITER, provided he has identified the typewriter by
name in the environment description. This division also provides facilities for
naming the conditions of switches for use in the procedure statements. Thus, such
a phrase as IF INDICATOR-ON could be used in the Procedure Division to direct the
computer in a course of action required when a switch called INDICATOR is on.

Distinguishing One Program from Another

26

The Data, Procedure, and Environment Divisions are the three main portions of a
COBOL program. A fourth division, however, is provided so that the programmer
can indicate certain information about the program itself, such as a name assigned
to the program as a whole, the name of the programmer, the date of the program,
and so on. This information may be specified in the portion of the program known
as the IDENTIFICATION DIVISION, which is described in Chapter 9 of this manual.

A Guide to this Manual

When the source program has been written, it must be arranged in the following
sequence:

IDENTIFICATION DIVISION

ENVIRONMENT DIVISION

DA TA DIVISION

PROCEDURE DIVISION

However, it is felt that this is not the most convenient sequence in which to study
the COBOL system. Accordingly, the discussion has been rearranged to aid the reader
in learning how to organize and write a COBOL program. Following is a brief guide
to this manual:

PART I: A COBOL PRIMER (Chapter 1)

PART II: THE COBOL LANGUAGE-COMPONENTS AND CONCEPTS

Chapter 2: The Organization of a COBOL Program.

Chapter 3: The Structure of the Language. This chapter describes the elements
of the language-the basic character set, the rules for forming words, expres
sions, statements, sentences, paragraphs, and sections. It shows how arithmetic
can be expressed in the COBOL language and states the rules for using the con
ditional expressions which give the computer the power to make decisions and
select from a number of alternative procedures.

Chapter 4: Concepts of Data Organization. Chapter 4 discusses the fundamental
principles of data description and gives definitions of many of the basic terms,
such as file, record, and level. It also shows how the programmer may specify
lists, tables, and constants for reference by the object program.

PART III: THE DIVISIONS OF A COBOL PROGRAM

Chapter 5: Iieference Format--The COBOL Program Sheet. This chapter describes
the format in which COBOL-language statements must be written in order to be
accepted by the processor.

Chapter 6: Data Division. This chapter specifies in detail the rules which govern
the writing of the data description.

Chapter 7: Procedure Division. Chapter 7 covers in detail the verbs used in
the COBOL language to specify procedures to be carried out by the computer.

Chapter 8: Environment Division. This chapter provides certain basic informa
tion on how to specify details of the equipment to be used in running the object
program.

Chapter 9: Identification Division. The forms to be used in identifying the
program and in recording other useful information about it are specified in
Chapter 9 ..

APPENDICES

Appendix A contains a summary of certain basic rules and other information, ar
ranged in a form for quick reference.

Appendix B consists of short extracts from several sample programs which show
how certain kinds of commercial problems might be described in the COBOL
language.

Appendix C is a glossary of terms used in the COBOL system.

27

Notation Used in the Basic Formats of Verbs and Other Entries in this Manual

28

Throughout this manual, basic formats are prescribed for the various verbs, clauses,
entries, and other essential elements of the COBOL language. These are generalized
formats intended to guide the programmer in writing his own statements. The fol
lowing rules of notation have been followed:

1. All words printed entirely in capital letters are COBOL words-i.e., words which
have preassigned meanings in the COBOL system.

2. All underlined words are required unless the portion of the format containing
them is itself optional-Le., enclosed in square brackets. These are key words,
and if any such word is missing or is incorrectly spelled, it is considered an
error in the program.

3. All COBOL words not underlined may be included or omitted at the option of
the programmer. These words are ~sed only for the sake of readability. Mis
spelling, however, constitutes an error. These words are called optional words.

4. All italicized words represent information which must be supplied by the pro
grammer. The nature of the information required is indicated in each case. In
most instances, the programmer will be required to provide an appropriate
data-name, procedure-name, literal, etc.

5. Material enclosed in square brackets [] may be used or omitted as required
by the programmer.

6. When material is enclosed in braces { } , one, and only one, of the enclosed
items is required; the others are to be omitted. The choice is to be determined
by the programmer.

7. Punctuation, where shown, is essential. Other punctuation may be inserted by
the programmer in accordance with the rules specified in this manual.

8. Special characters, such as the equal sign, are essential where shown, although
they may not be underlined.

9. In certain cases, a succession of operands or other elements may be used in
the same statement. In such a case, this possibility is indicated by the use of
three dots following the item affected. The dots apply to the last complete
element preceding them; thus, if a group of operands and key words are
enclosed within brackets and the brackets are followed by three dots, the
entire group must be repeated if any repetition is required, not merely the
last operand.

10. Restrictions and comments on each basic format w:ill be found in the accom
panying text. The formats should not be used without proper study of the text.

Chapter 3:

Character Set

The Structure of the Language

This chapter will be devoted to explaining and defining the COBOL language by
considering its basic elements and the ways in which they are combined. COBOL,
like the English language, is built up from its smallest possible units, a set of
characters (letters, numbers, punctuation marks, etc.). These characters are used
to form meaningful words by following certain rules, just as English words are
formed by following general rules of spelling. In English we find different types
of words, such as nouns, verbs, conjunctions, etc. The types are combined, follow
ing the rules of grammar, to form expressions, statements, sentences, and para
graphs. The COBOL language also contains different types of words, and they are
combined, using coBoL's rules of grammar, into statements, sentences, etc.

We will begin with the smallest parts of COBOL, the characters, and then build
words, expressions and the larger units of the language. It is emphasized that the
concepts, definitions and rules presented in this chapter must be thoroughly under
stood before proper COBOL programs can be written. In order to express an idea
in COBOL, the programmer must use the language correctly and precisely.

Each computer is constructed so that certain characters are meaningful to it. A set
of such characters is referred to in this manual as a "computer character set."
Because of the physical characteristics of each type of computer, the character sets
for different types of computers may not be identical. Of course, all programs writ
ten in COBOL for a given machine must contain only characters from that machine's
character set.

The COBOL character set given below is a set of characters which is common to. all
IBM computers on which COBOL programs may be run. The COBOL character set
consists of the numerals 0 through 9, the 26 letters of the alphabet, and the special
char'acters shown in the table below.

Special Che11racters Used in the COBOL Language

Nia me

Space
Plus Sign
Minus Sign{
Hyphen ~

Multiplication Sign (
Check Protection Symbol~
Division Sign
Left Parenthesis
Right Parenthesis
Comma
Period {
Decimal Point~
Dollar Sign
Equal Sign
Quotation Mark

Characterf

+

I
(
)

$
=

Card Code

(blank)
12

11

11-4-8

0-1
0-4-8
12-4-8
0-3-8

12-3-8

11-3-8
3-8
4-8

fThis group of special characters is one of several character sets available for IBM equipment.
All sets use the same card codes, but one code may represent one character in one set and
another character in another SE~t. For example, a "12" punch indicates a plus sign in certain
sets, while in other sets it represents an ampersand. The COBOL system employs the codes of
Set H, shown a hove. The use of each of these characters will be explained later in this manual.

29

Names

Data-Names

Procedure-Names

30

Any language must contain words which stand a.s symbols for things. They are
known as names or nouns. COBOL also employs names whilch the programmer uses
to refer to things he is handling in his program. In ordinary language we do not
usually have to distinguish consciously between the name of an object and the
object itself. But this is very important in COBOL. A programmer must always keep
in mind that when he gives an item of data a name and then refers to that item by
writing its name in a program, he is referring to the data, not to the name. Thus,
a name can be said to represent the value of the associated data item. A name may
represent a data item that assumes many values during the course of a data process
ing job. If a payroll is being processed, the name HOURLY-RATE may represent the
value of the wage rate of first one employee, and then of each succeeding em
ployee as each paycheck is processed.

In other programming languages it is often said that a name is given to a location
in storage, and that anything that occupies that location is referred to by the name
given to the location. The concept that a name represents a value is a different way
of saying exactly the same thing; however, when working; with a language which
is problem-oriented rather than machine-oriented, the latter concept is more con
venient and more closely akin to problem-oriented terminologies. The way in
which data is recorded internally varies widely from computer to computer, and
so the idea of a name as representing a location may vary somewhat from machine
to machine. In this light, the idea that a name represents a value is less restrictive.

There are four general categories of names in COBOL. They are data-names, condi
tion-names, procedure-names, and special-names.

Data-names are names given to the data used in a program. As the reader will see,
data-names usually will represent a number of values during the course of a pro
gram. For example, if a program is written to compute the payroll for a business
firm, the programmer might name one item of data MAN-NUMBER. Then, as the
payroll is processed, the data-name MAN-NUMBER refers to the man number of the
man whose pay is currently being computed. In other words, the data-name
MAN-NUMBER would represent a value equal to the man number of each man as
his pay is being calculated. If RATE-OF-PAY is another data-name, it would represent
the value of each man's rate of pay as his pay is being computed. The programmer,
of course, controls the way in which a data item assumes different values. Data
items assume different values as a result of reading data into the system, by using
arithmetic expressions to compute new values, etc. This will be discussed later.

Data-names are devised and assigned to data following the rules given in this
chapter which govern the formation of names. In general, all data referred to in a
source program must be named.

Procedure-names are names assigned to individual portions of a program so that
one procedure statement can refer to another. For example, suppose an item of
data called SWITCH is to be tested to see if it is positive or negative; if it is positive,
the program is to proceed normally, but if it is negative a special sequence of com
mands must be executed to compute a refund. This special sequence of commands
(sometimes called a "routine") might be assigned the procedure-name REFUND

ROUTINE, and if the data is found to be negative, this routine might be entered by
writing: IF SWITCH IS NEGATIVE GO TO REFUND-ROUTINE.

Like data-names, procedure-names are devised and assigned by the programmer as
he needs them, following the rules for name formation given in this chapter. They
are placed at the beginning of the portion of the program to which they apply.

Condition-Names

Special-Names

Rules forr Forming Names

A procedure-name must be assigned to each paragraph and section of the program.
Further details on the use of procedure-names may be found later in this chapter,
and in Chapters 5 and 7.

The concept of condition-names will be more clearly understood after the reader
has studied the discussion of conditional expressions later in this chapter. In gen
eral, however, a condition-name is a name which is assigned to denote one of a
number of values which may be assumed by an item of data. It is often used when
the procedure to be used in processing data depends on a "code" which is part of
the data. For example, suppose a wholesaler is keeping an inventory of the number
of rubber door mats he has in stock. These mats come in four colors, red, green,
blue, and black. If each incoming or outgoing shipment were recorded on a
punched card, there might be one column set aside to specify the color of the mats
in the shipment. Red might be represented by punching a 1, green by a 2, blue by
a 3, and bllack by a 4. If the inventory records were being maintained by a COBOL

program, the programmer might create a data-name, COLOR. Then COLOR could
assume the values 1, 2, 3, or 4, depending on the color of the door mats. Also, in
the Data Division of the program, the condition-name RED would be associated
with the value 1, GREEN with the value 2, BLUE with the value 3, and BLACK with the
value 4. Then to test for the shipment of red door mats, we could write a statement
beginning with the words IF HED. As a result, the data-name COLOR will be examined
to see whether it has the value 1. If, for some reason, we wished to avoid using a
condition-name, we could state the same test by writing IF COLOR = 1, which in
this case is exactly equivalent to IF RED.

Condition-names are subject to the general rules for the formation of names, which
are given in this chapter. They are assigned by the programmer at his discretion.

Special-names are names which may be assigned by the programmer to various
physical parts of a computer. For example, one card punch unit might be named
MASTER, while another punch unit might be named DETAIL. Then, any time the
programmer refers to either device he uses the special-name he has assigned to the
device, MASTER or DETAIL.

One purpose of assigning special-names is to enable one COBOL program to be run
on different computers. For example, if a given program is to ACCEPT or DISPLAY

information (see Chapter 7) by means of an input or output device, the device
must be assigned a special-name by the programmer. Then, if the program is to
be run on a different computer, with different types of input/output devices, the
special-names are reassigned by the programmer, depending on the devices avail~
able on each machine.

Special-names are assigned in the Environment Division of a COBOL program, as
explained in Chapter 8. Each type of computer has a different set of devices to
which special-names may be assigned, and these will be listed in the publication
covering the appropriate COBOL processor.

The rules for forming special-names are the same as those for writing data-names
and are given below.

Names may be formed by combining any of the following characters: the letters
A to Z, the numerals 0 to 9, :and the hyphen. In addition, the following rules must
be followed:

1. Names must not contain blanks.

2. They may contain from 1 to 30 characters.

31

Qualification of Names

Assigning Names
in the Program

32

3. They may neither begin nor end with a hyphen. However, hyphens may be
used freely elsewhere in the name for the sake of readability.

4. Data-names, condition-names, and special-names must contain at least one
alphabetic character. Procedure-names may consist exclusively of numerals if
the programmer so desires.

5. Names may be "qualified" by the use of other names, as described below.

In many cases a program will contain "duplicate" names. This often happens when
an input file is "updated" to produce an output file, since each file will usually
contain the same kinds of records.

Suppose that an input record is named INPUT-MASTER and an output record is
called OUTPUT-MASTER. Suppose, also, that each record contains the date of the last
shipment of a certain type of goods and that in both records this date is called
LAST-SHIPMENT-DATE. If the programmer writes MOVE LAST-SHIPMENT-DATE TO

WORK-AREA, he is writing an ambiguous statement. Does he want LAST-SHIPMENT

DATE in OUTPUT-MASTER moved, or is he referring to LAST-SHIPMENT-DATE in
INPUT-MASTER?

This problem can be easily resolved if he writes MOVE LAST-SHIPMENT-DATE IN

INPUT-MASTER TO WORK-AREA. Now there is no doubt of the programmer's intent.
This is an example of qualification of names.

If a name is not unique, it must be qualified by one or more additional names until
it is unique. The words OF and IN are the key words which indicate qualification.
One of them must appear between the name and the qualifier and one must also
appear before each additional qualifier. Either OF or IN may be used, since they
mean the same thing to the COBOL processor. They are known as qualifying con
nectives. Specific details of name qualification are discussed in Chapter 4.

The reader has seen that the COBOL system uses names as a convenient - in fact,
indispensable - means of identifying data, procedures, and conditions. It is now
necessary to indicate how each name is placed in the program in a way that permits
the processor to connect it with the item (or value) to which it refers.

Procedure-names differ from other names in one important respect. They are used
as names for paragraphs and sections of the program, whereas data-names and
condition-names represent the information being processed by the program.

Procedure-names are written in the Procedure Division immediately before the
text associated with them, in accordance with the :rules given in Chapter 5. Once
the name has been written, any reference to the name is interpreted as a reference
to the associated procedure.

Data-names and condition-names, however, require further discussion. The COBOL

processor must know whether the data is numeric or whether it contains alphabetic
or special characters. It must know where decimal points, if any, are to be placed,
where to place dollar signs, and so on. There are a number of such details which
must be specified.

Each data-name and each condition-name used in the Procedure Division must be
properly accounted for in the Data Division, as explained in Chapter 4. Once this
has been done, the programmer is free to refer to the name repeatedly throughout
the Procedure Division.

Constants

Literals

Numeric l.iterals

Up to this point, it has been emphasized that a data item usually assumes one or
more values during the running of a program. These values, we have said, might
be entered into the computer as input data or could be created by computation
during the course of the program.

However, the occasion often arises when a fixed value is used in processing. For
example, suppose a program were written to handle the sales of a wholesale house.
Assume that for certain kinds of items, a ten per cent tax must always be added.
Since this value of ten per cent never varies, it would be convenient to be able to
write it directly at the time the program is written, rather than having to enter it
as data. A fixed value which never changes during the execution of a program is
called a constant. A constant can be numeric or it can be non-numeric, i.e., alpha
numeric. Generally, a constant may be anything that can be expressed by a com
bination of the characters in the given computer's character set. Thus, both of the
following are constants:

.10
'THIS IS A NON-NUMERIC CONSTANT.'

A data-name which represents non-numeric information is said to represent a non
numeric value.

There are two general types of constants, literals and named constants.

One way to specify a constant is to enter the actual value of the constant at the
point in the procedure at which it will be used. Such a constant is known as a
literal constant, or simply as a literal. The programmer does not name a literal. The
characters of a literal are written in the program at the point at which they will be
used at object time. For example, the constant value ten per cent might be entered
into a program as a literal in the following way:

COMPUTE TAX = .10 ~ PRICE

Thus, a literal is "literally" stated. It is not denoted by a name. There are two types
of literals, numeric literals and non-numeric (i.e., alphanumeric) literals.

A numeric literal may consist of any combination of the numerals 0 to 9. One deci
mal point and/or one plus or minus sign may also appear in a numeric literal.

Rules for Forming Numeric Literals

1. A numeric literal intended for use in computation must consist of at least one
numeral and not more than 18 numerals. Other numeric literals may contain as
many as 120 characters.

2. One sign and/ or one decimal point may appear in a numeric literal.
3. The sign of the literal, if present, must be the leftmost character. If the literal

is unsigned, it is assumed to be positive.
4. The decimal point may appear anywhere in the literal except as the rightmost

character. If no decimal point is used, the literal is treated as an integer.
5. Numeric literals must not be enclosed in quotation marks. If they are, they will

be treated as non-numeric literals.

EXAMPLES

173718281647356
98.6

+1.54316
-.001

Note: When a plus or minus sign appears in a numeric literal, it must not be
followed by a blank.

33

Non-Numeric Literals

Named Constants

Figurative Constants

34

There are occasions when it is convenient to write non-numeric information as a
literal. For example, if a program were written to prepare a report in which every
page was to have the same heading, the heading might be entered into the program
as a non-numeric literal (sometimes called an alphanumeric literal). Another use
of non-numeric literals is to display short messages at the computer console to
inform the operator of any necessary manual operations during the course of the
program. Non-numeric literals must never be used for computation. They are
defined by enclosing them in quotation marks. The quotation marks are not part
of the literals but are used only to define them as non-numeric literals to the COBOL

processor. Thus, any set of consecutive characters, including blanks, which is
enclosed in quotation marks will be treated as a non-numeric literal.

Rules for Forming Non-Numeric Literals

1. Any character in the computer character set except the quotation mark may be.
used in a non-numeric (alphanumeric) literal. Blanks a:re treated as characters
and may be included freely.

2. A non-numeric literal may consist of from I to 120 characters.

3. A non-numeric literal must be enclosed in quotation marks.

4. If a literal conforms to the general format of a numerie literal but is enclosed
in quotation marks, it is treated as a non-nume:ric literal and cannot be used
for computation.

EXAMPLES

'THIS IS A NON-NUMERIC LITERAL'
'INVENTORY (OF DOOR MATS) BEGUN'
'-5326.7143'

The second way in which a programmer can specify a constant is to write it as a
named constant.

A named constant is defined in the Data Division, where a data-name is assigned
to it and its value is specified. A named constant is used exactly like any other 'data
:item, except that its value must never be changed during the course of the program.
The details of specifying named constants are given in Chapter 6.

If, in the calculation of the tax shown earlier, the programmer had decided to use
a named constant instead of a literal, he might have, in the Data Division, assigned
the data-name TAX-PERCENT to the value .10. Then the following statements would
have precisely the same meaning:

COMPUTE TAX = TAX-PERCENT 0 PRICE
COMPUTE TAX .IO 0 PRICE

Figurative constants are certain named constants which have been provided with
standard names. They are automatically recognized by COBOL so that the program
mer need not define them in the Data Division of each program.

Hereafter in this manual, figurative constants will be c<;>ns:idered as special types
of literals. ZERO may be used as either a numeric or a non-numeric literal at any
place in a program. All other figurative constants are considered as being alpha
numeric and generally may be used wherever an alphanumeric literal would be
appropriate.

A list of the figurative constants and their values is given below.

ZERO
ZEROS
ZEROES

SPACE
SPACES

These are the only figurative constants that may be used with
either COMPUTATIONAL data or DISPLAY data. (See the discussion
of USAGE in Chapter 6.) When used with COMPUTATIONAL data,
ZERO, ZEROS, or ZEROES represents the numeric value zero. If
used with a DISPLAY item, any one of the three represents a
sequence of zero characters.

The following figurative constants can be used only with data
of DISPLAY USAGE:

SP ACE or SP ACES represents a sequence of spaces (blanks).

HIGH~VALUE Either HIGH-VALUE or HIGH-VALUES represents a sequence com
HIGH-VALUES posed of the highest character in the computer's collating se

quence. (See the discussion of comparisons later in this chapter
for an explanation of collating sequence.)

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

ALL (any non
numeric literal)

These constants represent a sequence of the lowest characters
in the computer's collating sequence.

Either of. these figurative constants represents a sequence of
quotation mark characters.

This figurative constant generates a sequence of characters
specified hy any non-numeric literal. See the additional discus
sion several paragraphs below.

Note: No distinction is made between the singular and plural forms of figurative
constants. When a figurative constant is used in such a way that the exact
number of characters required cannot be determined, only one character
is generated. For example, DISPLAY ZEROES would produce one zero charac
ter, since, in this case, the length of the sequence of zeros to be displayed
cannot be determined. (See the discussion of DISPLAY in Chapter 7.)

EXAMPLES CONTAINING FIGU:HATIVE CONSTANTS

MOVE SPACES TO AREA-A
COMPUTE RATE = ZERO
IF NAME EQUAL TO HIGH-VALUES GO TO END-OF-JOB
DISPLAY QUOTE
DISPLAY 'PROGRAM' QUOTE 'ENDED' QUOTE

The last two examples would cause output to appear during the running of the
program. The fourth statement would produce a single quotation mark. The mes
sage displayed by the fifth statement would be PROGRAM 'ENDED'; note that this
message actually consists of four items, the non-numeric literal PROGRAM, the figur
ative constant QUOTE, the non-numeric literal ENDED, and the second figurative
constant QUOTE.

ALL

The last figurative constant operates somewhat differently than the others. It con
sists of the word ALL, followed by an alphanumeric literal of the programmer's
choice.

The reader will note that if we write MOVE SPACES TO PART-NUMBER the data item
PART-NUMBER will assume the value of spaces. As the reader will see in Chapter 6,
the programmer must specify in the Data Division the number of characters which

35

TALLY

Verbs

Operators

Arithmetic Operators

36

each data-name represents. If PART-NUMBER were specified as representing a value
six characters in length, then the above command would make each of the six
characters a space.

The ALL figurative constant works in a similar way. If we were to write MOVE ALL

'NONE' TO PART-NUMBER, the value assumed by the data item PART-NUMBER would
become NONENO. The non-numeric literal used with ALL is repeated over and over
until the number of characters represented by the data-name have been completely
filled by the characters of the literal. If CODE is a data-name representing 11 charac
ters, then the statement: MOVE ALL 'MAY 9' TO CODE would cause the item repre
sented by CODE to assume the value MAY 9MAY 9M.

The COBOL system finds use for one "special register" which is called TALLY. The
word TALLY is the name of a data item which can assume a numeric value of up to 5
digits. The register it represents is used primarily to hold information produced by
the EXAMINE verb (discussed in Chapter 7), but it may also be used by the pro
grammer for other purposes.

Verbs specify action. Whenever a programmer uses a verb, he will cause some
action to take place. However, not all verbs cause action to take place as the pro
gram is being executed at object time. Some verbs are caHed processor-directing
verbs, or, simply, processor verbs. They provide the processor with additional in
formation needed to complete the source program. For example, during the course
of writing a program, it is sometimes convenient to write information which will
not be used in producing the object program, but which merely comments on the
associated COBOL statements in order to make a listing of the program more mean
ingful to a reader. The processor verb NOTE is used to preface a message which will
appear in the listing of the program, but which wm have no effect whatsoever on
the formation of the object program. The verb NOTE, therefore, may be used to
complete the source program, but it does not cause an action in the object program.
A complete discussion of processor verbs appears in Chapter 7.

Most verbs will cause some action to be taken at the time the program is executed.
The verb DISPLAY will cause specified information to be printed or otherwise dis
played, and the verb STOP will cause the computer to halt. Verbs which cause action
at the time the program is executed are called program verbs.

There are other words and symbols besides verbs that cause action. For example,
the expression A + B - C directs that C is to be subtracted from the sum of A
and B. Thus, the symbols + and - are operators. In general, operators specify
actions or relationships without actually expressing them in verb form. There are
three basic kinds of operators: arithmetic operators, relational operators, and log
ical operators.

The complete list of arithmetic operators is given below. They are used in forming
arithmetic expressions, as explained later in this chapter.

Operator

+

I
00

Meaning

Addition
Subtraction
Multiplication
Division
Exponentiation

Relational Operators

logical Operators -
AND, OR, and NOT

Restrictions on Words

The need frequently arises in programming to make tests in order to determine
what should be done next. COBOL provides a number of relational operators which
enable the programmer to express the tests he wants performed. For example, the
statement IF SALARY = ZERO is built around the relationship implied by the equal
sign, which is a relational operator. Another statement might be IF AGE IS GREATER

THAN 21 ADD A TO B. The words IS GREATER THAN form a relational operator. In this
case, they specify that the IS GREATER THAN relationship between AGE and 21 must
be fulfilled in order for A to be added to B.

A list of the relational operators in the COBOL language follows:

IS GREATER THAN

IS EQUAL TO or =

IS LESS THAN

Words in the above list which are underlined must be present when the operator
is used. Words which are not underlined may be omitted, if the programmer
desires, with no resulting effect on the meaning of the operator.

Relational operators are combined with data-names, literals, etc. to create condi
tional expressions and statements. The detailed rules for using relational operators
will be presented later in this chapter under Conditional Expressions.

The three logical operators are AND, OR, and NOT. AND and/ or OR are used when two
or more tests are specified in the same expression. NOT is used to specify the nega
tive of a condition.

Consider the following example:

IF MARRIED AND AGE NOT GREATER THAN 21 ADD A TO B

Notice how the words AND and NOT are used to augment the two basic tests. Be
cause the tests are connected by AND, they both must be true for A to be added to B.

Consider the following:

IF MARRIED OR AGE NOT GREATER THAN 21 ADD A TO B.

This time the logical operator OR specifies that A is to be added to B if either or both
conditions are fulfilled.

These logical operators will be discussed in detail and rules will be given for using
them later in this chapter under Compound Conditions.

The preceding sections of this chapter have discussed various types of words and
how they may be used in a COBOL program. Generally, all words used in a program
will be one of two kinds, those which are used as names (data-names, procedure
names, etc.), and those which specify procedure (verbs, connectives, etc.). The
latter group actually includes every word in a COBOL program which is meaningful
to the processor and which is not a name or literal.

As we have seen, names and literals are specified by the programmer. However,
all other types of words used by the programmer must be selected from a pre
assigned list of words that have special meanings as explained in this manual. They
must be used only according to COBOL rules. These "other" words are known as
"coBOL words." COBOL words, then, are all words in a program, other than names
and literals, which are meaningful to the processor. They include all verbs, con-

37

Key Words

Optional Words

Syntax

Expressions

Arithmetic Expressions

38

nectives, and operators, as well as certain other words to be discussed later. The
most important rule governing COBOL words is that no COBOL word can be used as a
name. A complete list of COBOL words is given in Appendix A. COBOL words may be
separated into two categories: key words and optional words.

Key words are words which are essential in conveying the meaning of a statement.
A key word cannot be omitted. All verbs are key words. The word GREATER is a
key word; logical operators are key words, etc.

Some words are not required in conveying the meaning of a statement but may
or may not be used at the programmer's discretion in order to improve readability.
They are called optional words. For example, all of the following expressions are
correct and have the same meaning:

A IS GREATER THAN B
A GREATER THAN B
A IS CREA TER B
A GREATER B

In these examples, the words IS and TIIAN are optional. They may be included or
omitted without changing the meaning of the statement.

When two or more names are written in a series, the comma and/ or the word
AND may be used as optional series separators. The items of such a series must
be separated by a space, but, in addition, they may be separated by a comma,
the word AND, or a comma followed by AND. For example, all of the following
expressions have exactly the same meaning:

ADD A AND B AND C
ADD A, B, AND C
ADD A, B, C
ADD ABC

Throughout the language, there are numerous cases where a word is optional in
a certain place. If an optional word is used, it must be spelled correctly. If an
optional word is omitted, it must not be replaced by any other word not explicitly
stated to be its equivalent. It is important for the programmer to know which words
are key words and which words are optional words in every statement he writes.
Format notation used to identify key and optional words is given on page 28.

The rules of syntax specify how words and symbols are put together to form intel
ligible statements. COBOL, like English, is written in sentences and paragraphs.
However, before we consider a COBOL sentence, it is necessary to discuss thoroughly
the main elements which make up a sentence. These are: expressions and state
ments.

An expression may be defined as a meaningful combination of names, literals,
COBOL words, and/or operators which may be reduced 1to a single value. This
definition will become clear after the reader has studied the two types of expres
sions employed in COBOL, the arithmetic expression and the conditional expression.

An arithmetic expression is a combination of data-names and numeric literals
joined by one or more arithmetic operators in such a way that the entire expression
can be reduced to a single numeric value. (An arithmetic operator is any symbol

•

Order of Computation
in Arithmetic Expressions

Cor1ditional Expressions

representing addition, subtraction, etc.; a list of arithmetic operators is given earlier
in this chapter.)

The following are examples of arithmetic expressions:

(HOURS + OVERTIME ., 1.5) ., WAGE-RA TE - FICA
PI ., RADIUS ., ., !2 ., HEIGHT I 3
WEEKLY-SALES u .05

Note that each of the above expressions is a combination of data-names and/or
literals joined by arithmetic operators. At object time, each data-name will repre
sent a value and, in each of the above examples, one numeric value will result from
the specified computation. Thus, if WEEKLY-SALES has the value 574.20, the third
example could reduce to the value of 28.71.

As will be seen later, arithmetic expressions may be in~luded in conditional expres
sions. Thus, it is possible to test a given arithmetic expression to see whether it
reduces to a specific value.

The way in which an arithmetic expression is to be evaluated can be specified by
parentheses. Thus, the expression A 0 B + C might be considered ambiguous.
Does the programmer mean (A 0 B) + C, or does he mean A 0

(B + C)? In
COBOL, the programmer may use pairs of parentheses in order to describe exactly
the way in which he wants the computation to proceed.

If parentheses are not written to specify the order of computation, COBOL will
evaluate an arithmetic expression using the following rules:

1. All exponentiation is performed first.

2. Then, multiplication and division are performed.

3. Finally, addition and subtraction are performed.

4. In each of the three above steps, computation starts at the left of the expression
and proceeds to the right. Thus, A 0 B I C is computed as (A 0 B) I C, and
A I B ° C is computed as (A I B) ~ C.

5. When parentheses are present, computation begins with the innermost set and
proceeds to the outermost. Items grouped in parentheses will be evaluated in
accordance with the above rules, and the result will then be treated as if the
parentheses were removed.

Note: In general, two consecutive operators cannot appear in an arithmetic ex
pression. All allowable possibilities are covered in the table of symbol pairs
in Appendix A.

In the general definition of expressions it was stated that any expression may be
reduced to a single value. This definition holds for a conditional expression if we
consider that a true expression reduces to the value of "truth," and a false expres
sion reduces to the value of "falsity."

Thus, a conditional expression is an expression which, taken as a whole, may be
either true or false, depending on the circumstances existing when the expression is
evaluated.

Generally, a conditional expression will contain one or more variables, i.e., data
items whose value may change during the course of the program. Then the truth
or falsity of the expression depends on the particular value assumed by the variable
or variables. For example, the expression YEARLY-INCOME IS GREATER THAN 5000 is
a conditional expression, because it may or may not be true, depending on the

value of YEARLY-INCOME. If YEARLY-INCOME has the value 4250, the expression is
false; if it has the value 6700, the expression is true.

39

Items lo Be Compared

40

Conditional expressions are composed of one o:r more conditions. A condition
expresses a relation which may or may not be true. Thus YEARLY-INCOME IS

GREATER THAN 5000 states a relation between YEARLY-INCOME and 5000. It is a
condition as well as a conditional expression. A conditional expression may contain
several conditions, as will be seen later.

The idea of determining the truth or falsity of a relation implies that two values
will be compared and a decision will be made on the outcome of the comparison. It
becomes important to know how comparisons are made.

Is it meaningful to ask: "Is the character A greater than the character 6?" "Are
the numerals 0-9 greater or less than the letters A-Z?" "Is the asterisk less than 7?
than X?" Since it is possible for a data item to have a non-numeric value, these
questions must be resolved.

To answer them, we must see how a computer makes comparisons. The basic
means the computer uses in comparing any two characters is its collating se
quence. Each computer has its own character set, in which the characters have a
specified order of precedence. This order is "built into" the machine, and every
character meaningful to the computer has its position in this ordering. This order
is called the collating sequence. Therefore, generally, it is meaningful to compare
any character to any other character. The result wiU depend on the relative position
of each character in the machine's collating sequence. The collating sequences for
individual machines may be found in publications covering the various machines.

Comparison of Two Numeric Items

A comparison of two numeric items tests their arithmetic values. For example, a
comparison of a data item which has a value of + 000003 with a data item which
has a value of +03 will result in an "equal" condition. Similarly, the value of 000000
is equal to the value of 000. In COBOL, zero is a unique value and is neither negative
nor positive.

Two numeric items may be compared regardless of the USAGE specified in the Data
Division for each item. See Chapter 6 for a discussion of USAGE.

Comparison of Non-Numeric Items

Comparisons are made in a different way if non-numeric items are being compared.
It has been mentioned that the programmer must specify in the Data Division
of his program the maximum number of characters each item of data may contain.
In a comparison of two non-numeric items, each character in an item is compared
with the corresponding character of the other item. The comparison begins with
the leftmost character of each item. If these two characters are found to be equal,
the next two are compared, and so on. As soon as an unequal condition is noted,
the comparison stops and the result is recorded.

If each individual character comparison results in an equality and the two items
consist of the same number of characters, the items are said to be equal.

When non-numeric items of unequal length are compared, the comparison pro
ceeds as though the shorter item were filled out on the right with spaces until it is
of the same length as the longer item. For example, if the value EXP9R73 were
compared to the value EXP9Tll, EXP9Tll would be found to be the greater
because T is "greater than" R. In comparing the value lEXP9R73 to the value
EXP9R, EXP9R73 would be found greater, since the two items are of different
lengths and the two additional right-hand characters in the longer item are not
spaces. ABCD is less than BBCD, and 0 956Q4° is less than °957Q4°.

Simple Relational Conditions The basic type of condition is the simple relational condition. Almost any relation
between two items can be expressed by using simple relational tests. (However,
it will be seen later that several "shorthand" ways of writing certain relations are
available and are sometimes more convenient.) The general form in which a
simple relational condition is written is:

Condition-Names

literal IS l:NOTl LESS THAN literal
{

data-name } {IS l_;NOTJ GREATER THANl {data-name }

arithmetic expression I~ l_NOTl EQUAL TO arithmetic expression

The data-name, literal, or arithmetic expression to the left of the relational operator
is known as the subject of the simple relational condition. The data-name, literal,
or arithmetic expression on the right of the relational operator is called the object.
The subject: and the object of any given simple relational condition must not both
be literals.

EXAMPLES:

STOCK IS LESS THAN (ORDER-POINT + 3500) I 3.25
.053 IS GREATER. THAN SAMPLING-ERROR
AGE GREATER THAN 21

GROSS = NET
MARITAL-STATUS = 1

Using the l,ogical Operator NOT

It should be noted that the word NOT is included to make the relational operator
specify exactly the opposite of the relation expressed without the word NOT. For
example, AGE NOT GREATER THAN 21 is the.opposite of AGE GREATER THAN 21. NOT is
a logical operator, since it affects the "logical meaning" of the condition in which
it is used.

However, NOT can be used in two ways with a simple relational condition. It may
be used in the relational operator as in AGE NOT GREATER THAN 21, or it may pre
cede the entire condition, as iin NOT (AGE GREATER THAN 21). AGE NOT GREATER THAN

21 and NOT (AGE GREATER THAN 21) are exactly equivalent in meaning. If NOT pre
cedes a simple relational condition which contains NOT in the relational operator,
a "double negative" will result. For example, NOT (AGE NOT GREATER THAN 21) is a
double negative and is equivalent to AGE GREATER THAN 21.

Earlier in this chapter a condition-name was defined as a name given to one value
of a data-name. In the Data Division, a condition-name is assigned to a particular
value of a particular data-name. For example, in a program processing a payroll, the
data item MARITAL-STATUS might be a code indicating whether an employee is
married, divorced, or single. Let us assume that if MARITAL-STATUS has the value 1,
the employee is single, if it has the value 2, he is married, and if it equals 3, he is
divorced. To determine whether or not an employee is married, the programmer
could test this condition by using a simple relational condition in a conditional
statement such as IF MARITAL-STATUS = 2 SUBTRACT MARRIED-DEDUCTION FROM

GROSS.

41

Compound Conditions

42

However, if he so chooses, he can associate a condition-name with each value that
MARITAL-STATUS might assume. Thus, in the Data Division, the condition-name
SINGLE might be associated with the "condition" that the data-name MARITAL
STATUS has a value of 1. MARRIED might be similarly associated with 2, and
DIVORCED with 3. Then, as a "shorthand" form of the simple relational condition
MARITAL-STATUS = 2, the programmer could write the single condition-name MAR
RIED. Therefore, the following two statements would produce identical results:

IF MARITAL-STATUS = 2 SUBTRACT MARRIED-DEDUCTION
FROM GROSS

IF MARRIED SUBTRACT MARRIED-DEDUCTION FROM GROSS

The condition-name, then, is another form of a condition .. It is an alternative way
of expressing certain conditions which could be expressed by a simple relational
condition. The details of specifying condition-names in the Data Division are
given in Chapter 6.

As was stated earlier in this chapter, a conditional expression consists of one or
more conditions. A conditional expression consisting of a single condition is known
as a simple conditional expression; one composed of two or more conditions is
called a compound conditional expression.

The conditions within a compound conditional expression are linked by the logical
connectives AND and OR.

Suppose the following conditions were being used in a program:

NOT MARRIED
OVER-21
HOURLY-RATE IS LESS THAN 5.00
HOURLY-RATE IS GREATER THAN 3.50

These conditions could be linked by AND and OR in any sequence which would
express a desired "overall" condition. Suppose we wanted to search a personnel file
for every person married or not over 21 whose pay rate i:s between 3.50 and 5.00
dollars per hour. The following compound conditional expression would specify
the desired overall condition:

(MARRIED OR NOT OVER-21) AND HOURLY-RATE LESS THAN 5.00
AND HOURLY-RATE GREATER THAN 3.50

Rules for Forming Com pound Conditional Expressions

1. In general, two or more conditions combined by AND and/or OR may make up
a compound conditional expression.

2. The word OR is used to mean "either or both." Thus,_ the expression A ORB is
true if: A is true, or B is true, or both A and B are true.

3. The word AND is used to mean "both." Thus, the expression A AND B is true if,
and only if, both A and B are true.

4. Parentheses may be used to specify the order :in which conditions are evalu
ated. Parentheses must always be paired. Evaluation begins with the innermost
pair of parentheses and proceeds to the outermost. Thus, in the above example,
MARRIED OR OVER-21 would be evaluated as either true or false before the rest
of the expression is considered.

5. If the order of evaluation is not specified by parentheses, the expression will be
evaluated in the following way: The conditions surrounding all ANDS will be
evaluated first, starting at the left of the expression and proceeding to the right.

Other Types of Conditions

Then the ORS will be evaluated, also working from left to right. Thus, if the
above example did not contain parentheses, it would be evaluated as MARRIED

OR (NOT OVER-21 AND HOURLY-RATE LESS THAN 5.00 AND HOURLY-RATE GREATER

THAN 3.50), which is not the desired condition.

6. If a compound conditional expression consists of several consecutive simple
relational conditions, and if these conditions have common subjects and/or
common relational operators, the common factors may be implied instead of
explicitly repeated in each condition. The rules for writing implied subjects and
operators are given later in this chapter.

The following examples of compound conditional expressions may help to clarify
the above rules:

Compound Conditional Expression

MARRIED OR DIVORCED

MARRIED AND NOT AGE
GREATER THAN 21

A AND (B OR C) OR D

A AND B OR C OR D

Interpretation

Either or both of these two conditions
must be true for the expression as a
whole to be true.

The condition MARRIED must be fulfilled
and the condition AGE GREATER THAN 21
must not be fulfilled for this expression
to be true.

One of the following must be true for
the expression to be true:
1. D must be true, or
2. A must be true and either B or C (or

both) must be true, or
3. Both the above must be true.

If both A and B are true, then the condi
tion of C and D do not matter. If either
A or B (or both) is false, then either C
or D (or both) must be true for the ex
pression as a whole to be true.

In order to facilitate the expression of many different types of conditions, COBOL

contains three more ways of expressing a condition (in addition to the simple
relational condition and the condition-name). These three forms of conditions are
sign conditions, class conditions, and switch-status-names.

Sign Conditions

The sign condition can be used only in connection with numeric data. This form
of condition may be used to express a test to see whether an item satisfies one of
the following: (I) a "negative condition" (is less than zero), (2) a "zero condi
tion" (equals zero), (3) a "positive condition" (is greater than zero). The general
form for wrilting a sign condition is:

. } {POSITIVE }
{

arithmetic expression IS [NOTJ NEGATIVE
data-name ZERO

43

44

If a data-name appears in a sign condition, it must represent a numeric value. If
the value is unsigned and is not equal to zero, it is conside:red to be positive.

Note that GROSS IS NEGATIVE is equivalent to GROSS IS LESS THAN 0, that GROSS

IS NOT ZERO is equivalent to GROSS IS NOT EQUAL TO 0, and that GROSS IS POSITIVE is
equivalent to GROSS IS GREATER THAN 0. Any condition which can be expressed as a
sign condition can be expressed as a simple relational condition. The sign condition
is merely a convenient way of expressing certain things that could be expressed by
a simple relational condition.

Class Conditions

The class condition can be fully understood only if the discussion of the CLASS

clause in Chapter 6 has been studied. In general, the characters in a computer's
character set may be placed into three categories. These categories are called
classes and they are defined as follows:

1. The NUMERIC class includes the numerals 0 through 9i as well as operational
signs; these will be discussed in Chapter 6.

2. The ALPHABETIC class includes the letters of the alphabet and the space.

3. The ALPHANUMERIC class includes every character in a given computer's charac-
ter set.

The group of characters composing any given item falls into one of these three
classes. Thus, it can be said that any item is NUMERIC or ALPHABETIC, or ALPHA

NUMERIC. The class condition may be used to test an item at object time to deter
mine whether the item contains data which is either wholly numeric or wholly
alphabetic. The form in which the class condition is written is:

{
NUMERIC }

data-name IS lNOTJ ALPH~BETIC

The data-name must be defined in the Data Division as being of the ALPHA

NUMERIC class.

Examples of class conditions are:

STOCK-NUMBER IS NOT ALPHABETIC
DATA IS NUMERIC

Switch-Status-Names

The last type of condition, the switch-status-name, is very similar to the condition
name. Most computers are equipped with one or more switches. Such switches may
be set either "on" or "off," and their status can be tested by the program. A switch
status-name can be associated with either the "on" position of a switch or the "off"
position, just as a condition-name is associated with one value of a data-name.
Switch-status-names are assigned in the Environment Division (see Chapter 8).
For example, suppose a given program prod~es a report. Sometimes it may be
desired that the report be printed out immedi tely under control of the program
(i.e., "on line"). At other times, the report is ot so urgently needed and can be
written on magnetic tape for later printing on a~ "off-line printer." The programmer
could designate a switch to be "on" if immediate printing is desired, or "off" if
delayed printing is wanted.

Summary

Implied Subiects

This switch may be given a name as explained earlier in this chapter under
Special-Names. Then the "off" position could be given a switch-status-name such as
DELAYED-PRINTING and the "on" position could be assigned the name IMMEDIATE

PRINTING. Then, at the point of writing the report, the following conditional sen
tence might be used to control the operation:

IF IMMEDIATE-PRINTING GO TO PRINT-ROUTINE OTHERWISE
GO TO TAPE-ROUTINE.

Here, IMMEDIATE-PRINTING is the switch-status-name. The program will check to
see if the condition of the indicated switch is "on," and control will be transferred
accordingly.

We have seen that a conditional expression consists of one or more conditions. If
two or more conditions make up a conditional expression, the conditions are linked
by AND and/ or OR.

The basic form of expressing a condition is the simple relational condition; how
ever, four other forms may be used in certain cases. They are condition-names,
sign conditions, class conditions, and switch-status-names.

Often a conditional expression will contain several consecutive simple relational
conditions. These conditions may have common subjects. For example, the condi
tional expression AGE GREATER THAN 21 AND AGE LESS THAN 65 contains the common
subject AGE. We will see how AGE can be implied, that is, stated in the first simple
relational condition and then omitted in the second. Thus, if the second occurrence
of AGE were implied, the expression would appear as AGE GREATER THAN 21 AND

LESS THAN 65.

The expression AGE GREATER THAN 21 AND LESS THAN 65 OR = 16 OR = 18 would
be interpreted as AGE GREATER THAN 21 AND AGE LESS THAN 65 OR AGE = 16 OR

AGE= 18.

The following rules specify when and how implied subjects may be used:

1. Only conditions written as simple relational conditions may have implied sub
jects. Sign conditions and class conditions can never have implied subjects.

2. The first of a series of simple relational conditions must always consist of sub
ject, operator, and object, and all of these must be explicitly stated.

3. Subjects may be implied only in a series of consecutive simple relational con
ditions connected by AND and/ or OR.

4. When the subject of a simple relational condition is implied, the subject used
is the first subject to the left which is explicitly stated. For example, A = B OR

= C OR D = E AND = F is interpreted as A = B OR A = C OR D = E AND D =

F, since Dis the first stated subject to the left of = F.

The following examples illustrate these rules:

1. STOCK = ORDER-POINT OR STOCK IS LESS THAN ORDER POINT may be written as
STOCK= ORDER POINT OR IS LESS THAN ORDER-POINT.

2. AGE GREATER THAN 21 AND MARRIED AND LESS THAN 65. This expression is illegal,
because the subject of LESS THAN 65 is not stated and the next condition to the
left is not a simple relational condition but a condition-name.

3. TAX IS GREATER THAN INCOME~ .34 OR IS NEGATIVE. This expression is illegal be
cause TAX IS NEGATIVE is not a simple relational condition; it is a sign condition
and therefore cannot have an implied subject.

45

Implied Operators

Statements

Imperative Statements

Conditional Statements

46

In some cases, relational operators may be implied .in a serJies of consecutive simple
relational conditions in much the same way in which subjects can be implied. Thus,
the expression AGE = 16 OR AGE = 18 OR AGE = 21 could be written as AGE = 16
OR 18 OR 21. Not only is the subject, AGE, implied in the last two conditions, but the
relational operator, =, is also implied.

The following rules apply to the use of implied operators:

1. A relational operator can be implied only in a simple conditional relation where
the subject is also implied. Thus, sign conditions and dass conditions can never
have implied operators (and, in fact, do not have operators).

2. When an operator is implied, it is assumed to be the operator of the nearest
completely stated simple relational condition to the left. For example, TAX rs
LESS THAN 100.00 OR (GREATER THAN 300.00 AND l500.00) would be interpreted as
TAX IS LESS THAN 100.00 OR (TAX rs GREATER THAN 300.00 AND TAX IS LESS THAN

500.00).

Consider the following examples:

1. INCOME GREATER TAX AND INCOME GREATER INSURANCE could be written as IN

COME GREATER TAX AND INSURANCE.

2. AGE = ZERO OR GREATER THAN 10 AND LESS THAN 21 OH 65 is equivalent to AGE

= ZERO OR AGE GREATER THAN 10 AND AGE LESS '!HAN 21 OR AGE= 65.

The next larger unit of the COBOL language to be considerced is the statement. The
statement in COBOL is roughly comparable to the clause in. English. In its simplest
form, a statement contains a verb and its operands. (The word "operand" will be
used frequently hereafter to designate an item which is acted upon.)

An imperative statement consists of one or more "commands." A simple imperative
statement consists of one verb and its operands. Thus, ADD A TO B is a simple im
perative statement. DISPLAY AREA UPON TYPEWRITER .is another.

A compound imperative statement consists of a sequence of simple imperative
statements. COMPUTE AREA= HEIGHT 0 WIDTH DISPLAY AREA UPON TYPEWRITER is a
compound imperative statement, since it consists of two simple imperative state
ments. The simple statements making up a compound statement may be separated
by the optional word THEN if the programmer so desires.

Imperative statements, as described above, direct the computer to perform certain
specified actions. They give directions which are specific and unequivocal; the
computer is given no option of not performing them. However, as has been shown
earlier in this chapter, the programmer may wish the computer to perform an
operation only under certain circumstances. In such a case, he would find it con
venient to be able to modify an imperative statement so that its execution will
depend on the evaluation of a conditional expression. He may therefore attach one
or more conditional expressions to an imperative statement; such a statement then
becomes a conditional statement.

There are three basic forms of conditional statements, but all have in common the
fact that a stated action is performed only if a specified condition is present. The
three forms are as follows:

Option 1

Optfon 2

ll'. conditional exp1~ession statement-I

Optio~

IF, d.' . l . {statement-I } -· con 1t1ona expression NEXT SENTENCE

{
statement-2 }
NEXT SENTENCE

Option 3

{
statement-I AT END }
statement-2 ON .S..IZE ERROR statement-3

(OTHERWISE}
(_ELSE

Whenever a conditional expression is encountered, it will be evaluated before any
other action is taken. In general, if the expression is found to be true, the program
will next carry out whatever action is specified immediately following the condi
tional expression, whereas if the expression is found to be false, the program will
skip to some other statement, in accordance with the principles described below.
The rules for using the three forms of conditional statements are as follows:

If the conditional expression is found to be true, statement-1 will be executed.
Statement-1 may be either of the following: (1) A simple imperative statement.
(2) A compound imperative statement.

If the conditional expression is found to be false, statement-1 will be bypassed; the
program will instead proceed to the next sentence. A conditional statement in the
form of Option 1 need not be the only statement in a sentence, but it must be the
last. (See the discussion of sentences later in this chapter.)

EXAMPLES

IF SHIPPING-WEIGHT IS LESS THAN 10 GO TO PARCEL-POST
ROUTINE.

IF SEHIAL-NUMBER IS GREATER THAN 2999 GO TO ERROR-
ROUTINE.

In each of these cases, it is assumed that the only reason for deviating from the
normal sequence of program steps would be the presence of the specified condition.
There is thus no reason to specify an action to be taken if the condition is found to
be false; where the programmer has such a need, he may use Option 2.

Option 2 represents the fullest form of a conditional statement. If the conditional
expression is found to be true, either statement-1 or NEXT SENTENCE, whichever is
specified, will be executed. Statement-1 may be either (1) a simple imperative
statement, or (2) a compound imperative statement. It may not be another condi
tional statement. If NEXT SENTENCE is specified, the program will bypass the remain
der of the sentence containing the conditional statement and will proceed to the
next sentence in the program.

If the conditional expression :is found to be false, the program will take no action
until it encounters either the word ELSE or the word OTHERWISE, one of which must
be written.][t will then execute statement-2 or NEXT SENTENCE, whichever has been
specified. Statement-2 may be one of the following: (1) A simple imperative state-

47

Option 3

Sentences

48

ment. (2) A compound imperative statement. (3) A conditional statement. If
NEXT SENTENCE is specified, a skip will be made to the next .sentence in the program.

EXAMPLES

IF YR-TO-DATE-GROSS IS GREATER THAN 4800 NEXT SENTENCE
OTHERWISE PERFORM FICA-ROUTINE.

IF YR-TO-DATE-GROSS IS GREATER THAN 4800 NEXT SENTENCE
OTHERWISE IF CURRENT-PAY IS CREA TEH THAN ZERO PER
FORM FICA-ROUTINE.

In the first of these examples, statement-2 is a simple imperative statement; in the
second example, it is a conditional statement.

This option represents a special form of conditional statement. It can be used only
with the arithmetic verbs and the verb READ, as explained in Chapter 7, and its
form is incorporated in the basic formats prescribed in that chapter for those
verbs. It differs from other conditional statements because of the nature of the
conditional expressions which are evaluated. There are two of these, as follows:

1. The AT END condition. When the records in a file of data are being made avail
able to the object program by means of READ statements, the programmer may
wish a particular action to be carried out if the end of the file is reached. The
words AT END constitute a kind of switch which is used to alter the sequence of
a program when an end of file is found. In Option 3, statement-1 represents
a READ statement, which must be written according to the rules specified in
Chapter 7. The words AT END (or, simply, the word END) must be followed by
statement-3, which prescribes the action to be carried out if the condition is
found to exist. Statement-3 must be an imperative statement. It must not be a
conditional statement.

2. The SIZE ERROR condition. A computation specified by one of the arithmetic
verbs may produce a result which is larger than the space the programmer has
allowed for it in storage. In this case, a "size error" occurs, and it may have
unforeseen effects. The programmer may therefore specify a test to determine if
a size error has occurred. The special conditional expression used for this pur-;
pose consists of the words ON SIZE ERROR. In the format shown for Option 3,
statement-2 represents a statement employing one of the arithmetic verbs; this
statement must be written in accordance with the rules: given for those verbs in
Chapter 7. It is followed by the words ON SIZE ERROR (or' simply' SIZE ERROR)'
and then by statement-3, which prescribes the action to be followed if a size
error is found. Statement-3 must be an imperative statement. It must not be a
conditional statement.

EXAMPLES

READ INVENTORY RECORD AT END PERFORM ANALYSIS
ROUTINE.

ADD INSURANCE TO TAX GIVING DEDUCTIONS ON SIZE
ERROR GO TO RECOVERY-ROUTINE.

The sentence is the basic unit of expression in the COBOL language, as it is in
English. A COBOL sentence is made up of one or more statements, the last of which
is terminated by a period.

Imperative Sentences •
An imperative sentence consists of either a simple or a compound imperative
statement terminated by a period and a space.

EXAMPLES

ADD PAY TO GROSS GO TO REFUND-ROUTINE.
COMPUTE AREA = HEIGHT ~ WIDTH DISPLAY AREA UPON

TYPEWRITER SUBTRACT 1.5 FROM NEW-RATE.

MOVE INCOME TO WORK-AREA.

Processor .. Directing Sentences A sentence containing a processor-directing verb is called a processor-directing
sentence. It must contain only the one verb and its operands (if any), followed
by a period and a space. Two processor-directing verbs must never appear in the
same sentence. Also, a program verb and a processor-directing verb must never be
contained in the same sentence. Examples of processor-directing sentences follow:

Conditional Sentences

Punctuation of
COBOL Sentences

ENTER AUTOCODER.
ENTER COBOL.

A conditional sentence is a conditional statement terminated by a period; the con
ditional statement may be preceded by an imperative statement not terminated by
a co or STOP RUN (see Chapter 7). Examples of conditional sentences follow:

IF AGE GREATER THAN 21 ADD 1 TO MAJOR-COUNT.
IF AGE GREATER THAN 21 ADD 1 TO MAJOR-COUNT ELSE ADD

1 TO MINOR-COUNT.

MOVE MASTER-·RECORD TO WORK-AREA ADD 600 TO INCOME
TO-DATE ON SIZE ERROR GO TO ERROR-ROUTINE.

Wherever possible in COBOL, punctuation has been made non-critical; that is, lack
of punctuation will not result in an error. However, the following rules must be
observed when punctuating:

I. At least one space must always appear between two successive words and/or
parenthetical expressions. Two or more successive spaces are treated as a single
space except in non-numeric literals.

2. If a period or comma follows a word or parenthetical expression, it must
appear immediately after the word or expression and then be followed by
a space.

3. Each sentence must be terminated by a period and a space in that order.

4. When an arithmetic operator or an equal sign is used, it must be preceded by
a space and followed by another space.

5. When a series of operands occurs within a statement, the items may be
separated by series separators, which are the comma, the word AND, and the
comma followed by AND. For example, ADD A B, C AND D, AND E TO F.

6. Subscripts must be enclosed in parentheses. If two or more subscripts are
present within the parentheses, they must be separated by spaces and can be
separated by commas as well. (See the discussion of subscripts in Chapter 4.)

7. Parentheses may be used wherever needed in arithmetic expressions and con
ditional expressions. Where ambiguity would result from their omission, they
must be used.

49

Paragraphs

Sections

50

8. The rules of punctuation do not apply to constants defined in the Data Division,
or to non-numeric literals, which may contain any characters except the quota
tion mark.

9. The statement separator THEN may be placed before or after any imperative
statement but should not be used at the beginning or end of a sentence.

COBOL sentences may be combined to form paragraphs. A paragraph, as in English,
may contain one or more sentences. Every paragraph must: begin with a procedure
name (i.e., there must be no unnamed paragraphs). A sentence within a paragraph
cannot be assigned a procedure-name, but a paragraph may consist of only one
sentence. For example, processor-directing paragrapbs often will be one-sentence
paragraphs. The rules for writing paragraphs on a coding sheet are given in
Chapter 5.

One or more paragraphs can be grouped into a section. The section is the largest
unit in COBOL to which a procedure-name may be assigned. Sections must always
be named. This is done by writing a procedure-name, followed by the key word
SECTION, followed by a period; the remainder of the line on which it is written
must be left blank. The Procedure Division need not be broken into sections at all
if the programmer does not find it convenient. The rules for writing sections on a
coding sheet are given in Chapter 5.

Chapter 4: Concepts of Data Organization

In COBOL, writing the Procedure Division might be compared with teaching a set
of rules to clerks who would manually maintain a set of files. These clerks would
have to be instructed to transfer certain data from incoming forms to the master
ledger, to perform any required computations, etc. In general, the rules which a
clerk follows when maintaining a set of books are comparable to the statements
which make up the Procedure Division of a COBOL program.

However, a clerk must have another type of information at his disposal in order to
do his job effectively. He must know some of the general characteristics of the data
itself that he will handle.

Often, much of the information regarding the nature and format of the data to be
processed may be obtained from the form or ledger in which the data is recorded;
The following questions would be relevant when organizing any new bookkeeping
system:

1. What forms will be needed in this system? A master ledger? Several types of
"transaction" forms to carry out everyday business?

2. What information will each form contain? How will the spaces for each item
of data be placed on each form? What is the most convenient grouping of
related data? Should the description of an item be placed next to its unit price?
Should a given address be broken into separate items such as street, city, zone,
and state?

3. How large should the space for each item be? Should spaces which will always
contain monetary values be provided with a preprinted dollar sign? Should
certain spaces contain an indication of where the decimal is to be placed to
insure proper alignment of digits?

4. Where will these records be kept? What types of :Sling cabinets are available?

In effect, the answers to the above questfons describe important characteristics of
the data to be handled in a data processing job. To insure the proper and efficient
handling of data by a computer, similar information must be provided to the conoL
processor regarding the data to be encountered by the object program. This infor
mation, concerned with the organization and the format of the data to be processed,
is provided in the Data Division. The relation of data items to each other, the
length of each data item, the placement of decimal points, dollar signs, etc. are all
specified in the Data Division.

All data-names are assigned in the Data Division to the items they represent.
Condition-names are also spedfled there. Every name which is referred to in the
Procedure Division must be described in the Data Division with the following
exceptions:

1. Procedure-names.

2. Special-names, which are denned in the Environment Division.

3. Figurative constants, which are names "pre-assigned" to standard values, as
shown in Chapter 3.

The Organization of Related Data

In any application, related data is grouped in certain ways. Even the largest mass
of data can be treated as a single item. Thus, a dictionary can be considered a book

51

Elements and
Groups of Elements

Records

52

(which is an item), or it can be considered a series of chapters (which is a series
of items), or a series of definitions, words, or characters (which are other series of
items). In each case, there is some pattern by which the items are grouped. Like
wise, bodies of related information are grouped in an orderly way in COBOL.

A file is the largest body of related information in a COBOL program. A file may con
sist of any number of records, and records are made up of group items and ele
mentary items.

An element of data (elementary item) is a piece of data which is never further
divided. DATE could be the name of an elementary item if it were never referred to
as anything but DATE. However, if the Procedure Division ever referred to only a
part of the date, say, the month, then DATE would have to be broken into parts.
These parts might be named DAY, MONTH, and YEAR. Then DATE would not be the
name of an element, because it is subdivided into DAY, MONTH, and YEAR.

The term item, as used in this manual, refers to any element or group of elements.
Thus, it is correct to say that D~TE is the name of an item. However, it is not the
name of an elementary item, because the item is actually a group-DAY, MONTH, and
YEAR.

An item can also be a group of groups. Suppose the item YEAR in the previous
example were divided into two parts, named DECADE and YR, for example. YEAR
would not be the name of an element-it would be the name of an item consisting
of a group of elements. Then DATE would be the name of an item that was a group
containing a group.

To review, elements can be combined to form groups which, .in turn, can form
groups of groups. Either an element or a group may be regarded as an item. An
element is a unit of data which is never broken into smaller units. The discussion of
levels (later in this chapter) will help to clarify the concept of elements and groups
of elements.

Elements and groups of elements of data are combined to make up records. In a
program processing a payroll, the permanent data concerning each employee would
probably constitute a single record. Items in this record might be the employee's
man number, his name, shift, rate of pay, marital status, number of dependents,
etc. Thus, there would be a series of similar records, .:me for each employee. All of
these records would usually be of the same format, i.e.~ would contain the same
items; but the items would have different values for each employee. Probably, they
would all be stored together on a single reel of magnetic tape or in a single deck of
cards. Another series of records (again, one for each employee) might contain the
record of each man's time card for the past week. Thus, the payroll program would
have two records available pertaining to each employee, one containing permanent
information, the other containing the record of the employee's past week of work.
As will be seen below, these two different types of records would usually be kept
in different files.

An important characteristic of the record is that it is the unit of data which is
handled by the READ and WRITE verbs. (See Chapter 7.) If, in the above example,
the records containing the permanent information for all employees are stored in
a file called PERMANENT-PAYROLL-INFORMATION, then each time the statement READ
PERMANENT-PAYROLL-INFORMATION RECORD is encountered, one man's permanent
information would become available for processing. That is, it would be "read" into
the system. In COBOL, it is not possible to read only a fraction of a record and not
the rest of the record. Similarly, only an entire record can be "written," that is,
made available for output to an external medium such as magnetic tape.

Files

Data Division Entries

Conceptually, a file in COBOL may be compared to a filing cabinet or group of cab
inets which hold a collection of data, all of a certain type. The master records for
all checking accounts in a bank might make up one file. If this master file of check
ing accounts were maintained manually, it would occupy a number of drawers in
one or more filing cabinets. If it were maintained electronically, it might occupy
one or more reels of magnetic tape. In either case the file would be made up of a
number of records.

In COBOL, then, a file is a series of records containing related information. As will
be seen in Chapter 6, however, all the records in a file need not have the same
format. Every time a record is read by a READ statement, the incoming record
replaces any record from the same file which was previously available. If the needs
of the program require that two records from the same file be available concur
rently, the first must be read and then moved to a work area before the second is
read.

In addition to data records, a file often contains label records, usually preceding
and following all of the data records. In a sense, these label records are similar to
labels on filing cabinet drawers. In general, they serve as a checking device to make
sure that the operator mounted the right tape on the right unit, that the second
reel of a file is not processed before the first reel, etc. Most of these details are
handled automatically. Further discussion of label records may be found in
Chapters 6 and 7.

There is no relation between the length of a file and the capacity of a reel of tape.
A file may occupy more than one reel of tape or one reel of tape may contain several
files.

Two verbs which deal directly with a file are OPEN and CLOSE. Before any records
can be read from a file, the file must be "opened." Among other things, the OPEN

verb checks the label to insure that the proper tape reel is present. After the pro
gram has finished processing all the records in a file, the file should be "closed."
CLOSE will process or write any labels at the end of the file, as specified by the pro
grammer, and then make the file unavailable for further use until it is again opened.
Thus, when a file is closed, a READ or WRITE verb cannot be used to refer to any
records in that file. OPEN and CLOSE may be thought of as performing functions
similar to unlocking or locking a filing cabinet.

After a programmer has determined how his items of data will be organized into
records and files, he must make this organization known to the COBOL processor.
He does this in the Data Division of his program. The Data Division is made up of
entries, each of which is composed of a number of independent clauses.

In the Data Division, the programmer is not free to create sections at his own
discretion. A Data Division always contains from one to three sections. They are
called the File Section, the Working-Storage Section and the Constant Section, and
they must be arranged in that order.

The File Section contains all entries which describe incoming and outgoing data.
As will be seen later, each :file is described by a File Description entry and each
record is described by one or more Record Description entries. The specific format
of each type of entry is described in Chapter 6.

The Working-Storage Section contains Record Description entries that specify any
work areas which may be needed during the processing of information in data
records. Work areas are to the computer what scratch pads are to the clerk. When
doing a series of computations with pencil and paper, one often finds occasion to

53

Levels

54

"jot down" intermediate results. In the computer, work areas allow the temporary
storage of intermediate results. Sometimes a record will be read and then parts of
it will be moved to a work area where they can be separated, processed, and re
assembled again. The details of writing the Working-Storage Section are discussed
in Chapter 6.

In Chapter 3, we encountered named constants and said that they were specified
in the Data Division. All named constants must be defined in the C ons-tant Section
of the Data Division. They are defined by the same type of entries that specify file
records and work areas, that is, Record Description entries. The value of a constant
is specified by one of the clauses which may appear in a .Record Description entry,
the VALUE clause. The details of writing this section appear in Chapter 6.

Level-numbers are used in COBOL to show how data items: are related to each other.
The general concept of levels can be observed in many places other than comput
ing. The organization of this manual, for example, illustrates an application of the
concept of levels. The structure of this manual may be summarized as follows: The
manual is divided into three parts; each part is composed of one or more chapters;
each chapter is made up of several main topics; each main topic is composed of
subtopics, etc. This "hierarchy" is shown clearly in the Table of Contents by using
different indentations and type faces to show the different levels of headings. All
chapter headings are printed using the same style and size of type. The titles of the
three parts are printed in the same way to show that each part is equal in the
structure of the manual to each other part. The headings of the topics within each
chapter are printed in the Table of Contents so the reader can determine the struc
ture of the chapter at a glance.

Data in a COBOL program is organized into a hierarchy much like the hierarchy of
organization of the material in this manual. We have already seen that the "highest
level" (the most inclusive) grouping of data is the file and that the next lower level
grouping is the record. Also, it was mentioned that records are made up of items
which may be groups or elements. The COBOL processor must know what records
are in each file, what items are in each record, and whfoh items are groups and
which are elements.

Consider a data record which contains, as one item, a man's address. The address
might be given the data-name ADDRESS. However, if the programmer, somewhere
in his program, has to refer to the individual parts of the address, he has to name
them. He might name them STREET, CITY, ZONE, and STATE. If he wished to "move"
the item CITY from one place in the computer to another (using the verb MOVE),

he could do so in two ways. He could write MOVE CITY, which would move only the
item CITY, or he could write MOVE ADDRESS and all the parts of ADDRESS could be
moved at once, CITY included. In this case, ADDRESS is at a higher level than CITY,

and ADDRESS includes CITY. Obviously, the COBOL processor must have a way of
knowing that CITY, STATE, etc. are parts of ADDRESS. This ils done by grouping the
entries describing the related items and assigning a level-number to each item. If
ADDRESS were assigned a level-number of 05 and STREET, CITY, ZONE, and STATE were
each assigned a level-number of 06, this would indicate that the last four were of a
lower level than ADDRESS. In general, the higher the numeric value of the level
number, the lower the hierarchical level of the item; the number denoting the
record level is 01; the lowest level is 49. (The level-numbers 77 and 88 are special
cases which will be explained later in this chapter.) The file level is indicated by
the special level indicator FD in place of a level-number, as explained in Chapter 6.

The effect of levels is illustrated in the following example. This is the description
of a record making up a file which contains the master information for the checking
accounts of a bank. Each record contains information pertaining to one checking
account. Items of data include: NAME, which is broken down into three elements,
LAST, FIRST and MIDDLE; ACCOUNT-NUMBER; ADDRESS, which is broken down into
STREET, CITY, ZONE, and STATE; and BALANCE. The record itself is called CHECK

ACCOUNT-RECORD.

The description of this record in the File Section of the Data Division would consist
of a series of Record Description entries, one for each item. The first item of a
Record Description entry is always a level-number; the second is the data-name
which will be assigned to the item. These are followed by several clauses which
completely describe the item. (These clauses are described in Chapter 6 and are
omitted here for the sake of simplicity.)

The entries might be arranged as follows:

01 CHECK-ACCOUNT-RECORD .
02 NAME

05 LAST
05; FIRST
05 MIDDLE

02 ACCOUNT-NUMBER .
02 ADDRESS

04 STREET
04 CITY
04 ZONE
04 STATE

02 BALANCE

In the above example, NAME is assigned the level 02. Immediately following are
entries describing LAST, FIRST, and MIDDLE. These three items are identified as being
contained in NAME because:

l. They follow NAME and no other item with a level-number equal to or numeri
cally lower than that of NAME ha.s intervened.

2. They have level-numbers numerically higher than that of NAME.

Consider another example, this one a portion of a payroll record:

01 PAYROLL-RECORD
03 MAN-NUMBER .
03 NAME

27 LAST
27 FIRST
27 MIDDLE

03 ADDRESS
12 STREET
12 CITY
12 ZONE
12 STATE

03 DA TE-HIRED
04 MONTH
04 DAY
04 YEAR
14 DECADE ..
14 YR

03 RATE-OF-PAY

55

•

Special Level-Numbers

56

The principal rules for assigning level-numbers are illustrated in this example and
may be summarized as follows:

1. The level 01 is reserved exclusively to identify a record.

2. Any item, B, is contained in any other item, A, if all of the following conditions
are met:
a. The entry for B follows the entry for A.
b. B has been assigned a numerically higher level-number than A.
c. An entry with a level-number numerically equal to or lower than that for A

docs not occur between A and B. Thus, even though DECADE has a higher
level-number than STATE, it is not part of STATE, because entries with level
numbers lower than 12 occur between STATE and DECADE.

3. Level-numbers need not be assigned consecutively. Thus, MONTH, DAY, and YEAR

could be assigned any level-number numerically higher than that assigned to
DATE-HIRED and lower than that assigned to DECADE.

4. A group may .include more than one level. However, all items which make up a
level within the same group (i.e., MONTH, DAY and YEAR) must have the same
level-number.

5. When an entry is to have a numerically lower level-number than the one im
mediately preceding it, the level-number must be chosen from the level
numbers of the groups which include the preceding item. Thus, ADDRESS must
be assigned level 03, because that is the only level-number assigned to a group
that contains the preceding item, MIDDLE. ADDRESS could not be assigned the
level-number 01, because it is not a record. RATE-OF-PAY could assume one of
two level-numbers, 03 or 04, depending on the programmer's wishes, since the
item YR is contained in two groups, one with the level-number 04, and the other
with the number 03. However, if it were assigned the number 04, it would be
treated as a part of the group called DATE-HIRED, which would probably not be
the programmer's intent.

There are two level-numbers which are used for identifying special types of entries.
They are the level-numbers 77 and 88.

The level-number 77 is used when describing certain constants or work areas. If a
constant consists of one item which is not further subdivided and which is not a
part of any larger constant, then it is said to be independent. Similarly, if the pro
grammer needs a work area that is not composed of several parts and is not part of
a larger work area, it is called an independent work area. These need no level
numbers to show their relationship to other items, since they stand completely by
themselves and are not a part of any hierarchy; the special level-number 77 is
used to denote independent items of this kind.

The second special level-number, 88, is used to identify condition-names. A condi
tion-name is not the name of an item; it is the name of a value which an item may
assume. Thus, it is given the special level-number 88. Condition-names are assigned
by writing an entry for the item of data itself, immediately followed by an entry for
each condition-name to be associated with the item. For example, if the data item
were MARITAL-STATUS, and the three conditions were MARRIED, SINGLE, and DI

VORCED, the entries might be grouped like this:

05 MARITAL-ST A TUS . .
88 MARRIED .. .
88 SINGLE
88 DIVORCED ..

The details for writing these "special" Record Description entries are discussed in
Chapter6.

Qualification of Names

·Rules for Qualification
of Names

.Subscripts

The general concept of qualification of names was presented in Chapter 3. Quali
fication is required in many cases when a single data-name has been used to name
more than one item. Thus, if an item of data in MASTER-RECORD is called NAME, and
an item of data in DETAIL-RECORD also is called NAME, then the data-name NAME is
not unique. Whenever either item is referred to, it must be associated with one or
more additional names to make it unique, as explained below. In this case, it must
appear in qualified form such as NAME IN MASTER-RECORD or NAME IN DETAIL-RECORD,

whichever is meant.

1. If any data-name, paragraph-name, or condition-name is assigned to more than
one item in a program, it must be qualified whenever it is referred to in the
Procedure Division, the Data Division, or the Environment Division.

2. A name may be qualified by writing either IN or OF after it, followed by the
name of a group which contains it, as explained in Chapter 3.

3. A number of qualifiers may be required in order to make a name unique. More
qualifiers may be used than are absolutely needed. Thus, if NAME OF VENDOR is
needed to make NAME unique, NAME OF VENDOR OF DESKS IN MASTER-RECORD is
also permitted, although not required.

4. A qualifier must be the name of a group which contains the item it is qualifying.

5. A name must not be assigned to a group which contains an item of the same
name. In other words, a name cannot appear to qualify itself. For example, in
the payroll record used previously to illustrate levels, the group YEAR contains
an element YR; but YEAR could not contain an element named YEAR. Thus, YEAR

OF YEAR is not permitted.

6. The name of an item to which condition-names have been assigned may be used
to qualify any of its condition-names. For example, SINGLE OF MARITAL-STATUS

is permitted where MARITAL-STATUS is the item which has a condition-name
SINGLE associated with it.

7. A paragraph-name must not be duplicated within the same section.

8. A paragraph-name can be qualified only by a section-name. When it is qualified
by a section-name, the word SECTION must not appear as part of the qualifier .

The need often arises to have entire tables of information Rccessible to a COBOL pro
gram. Specific items are often referred to in such tables by means of subscripting.

Like all other data, tables must be described in the Data Division of the program.
Without subscripting, this could become tedious, since each item in the table would
have to be described in a separate entry. Consider a table consisting of the popula
tions of the 50 states. The first item ls the population of Alabama, the second, the
population of Alaska, etc. according to alphabetical order of the states. If the
population of Alabama were named ALABAMA-POPULATION, and each of the 49
other entries were similarly named, any one population could be referred to at any
time. However, this would entail writing 50 Record Description entries, one de
scribing the population figure for each state. A shorter way of describing this table
would be to use the occuRs clause, one of the optional clauses which may be used
in a Record Description entry. The details of this clause are described in Chapter 6;
however, this clause essentially allows one to describe a series of similar items once
for all of the items. In this case, we would write a Record Description entry de-

57

58

scribing the population data for one state-perhaps as an 8-place integer-and then
say that this item "occurs" 50 times. Now we have written one entry which will
describe 50 items, but they do not have individual names. They all have been
named collectively by the name appearing in the entry describing all 50 items.
Describing a table in this way would require a total of two Record Description
entries. They would look something like the following:

01 POPULATION-TABLE
02 POPULATION ... OCCURS 50 TIMES

The data-name POPULATION-TABLE represents all of the fifty items, i.e., the whole
table.

We can now refer to each population figure in the following way: We know that
the populations are arranged by alphabetical order of the states. Thus, the popula
tion of Alabama is the first figure in the table, the population of Alaska is the
second, etc. Therefore, we can refer to the population of Alabama as POPULATION

(1) and the population of Alaska as POPULATION (2). This is called subscripting.
Numeric literals or data-names used to locate items in a list or table are known as
subscripts. Subscripts are always placed in parentheses following the data-name to
be subscripted.

In the above example, we have, in effect, set up a code number for each state; that
is, 1 represents Alabama, 2 represents Alaska, and so on for each of the 50 states.
If we set up an item called STATE, and then STATE assumes a value of 1,2,3, ... or 50,
we could write POPULATION (STATE), and the current value of STATE would be used
as the subscript of POPULATION. The two following examples are precisely equiva
lent in effect and would refer to the population of Arizona, provided the value of
STATE is 3:

MOVE POPULATION (3) TO WORK-AREA
MOVE POPULATION (STATE) TO WORK-AREA

Thus, w~ have seen that a subscript can be either a numeric literal or a data-name.
If it is a data-name, it may be qualified; for example, if STATE were not unique, then
the subscript might be POPULATION (STATE IN ADDRESS OF VENDOR). Similarly, if
POPULATION ·were not unique, it, too, could be qualified, as in POPULATION IN VITAL

STATISTICS (STATE IN ADDRESS OF VENDOR).

Suppose, now, we expand our table of populations so that it contains the population
figures for 1900, 1910, 1920, 1930, 1940, 1950, and 1960 for each state. Now we have
a list of 50 "states," each of which is actually a list of seven population figures. Any
item in this table can be obtained by using two subscriipts. The table would be
described in the Data Division as follows: As before, the entire table will be called
POPULATION-TABLE, and the entry for each state will be ealled POPULATION. How
ever, we now have one additional entry, which will be called DECADE. DECADE rep
resents the population at a particular date. Each "level'' in the table requires one
Record Description entry to describe it; thus, this table requires three entries to
describe the 350 items. The entries might look like this:

01 POPULATION-TABLE
02 POPULATION ... OCCURS 50 TIMES

03 DECADE ... OCCURS 7 TIMES

To refer to the population of a particular state for a particular year, two subscripts
must be used, one to indicate the state and the other to indicate the year. For
example, if we want to refer to the population of Alaska in 1960, we would want
the seventh number in the list of populations for the second state in the list of
states. We could write this as DECADE (2, 7). Note that the name of the lower-level
item, not the higher, is the one subscripted. As before, we could also represent one

General Rules Pertaining
to Subscripting

•

or both of the subscripts by data-names, instead of numeric literals, and write
DECADE (STATE, YEAR) and a population figure would be selected, depending on the
current values of the data-names STATE and YEAR.'If the name DECADE is not unique
in the program, it must be qualified. In that case, the above examples might he
written as DECADE OF POPULATION (2, 7) and DECADE OF POPULATION (STATE, YEAR)'
respectively.

COBOL allows a maximum of three subscripts. This may be illustrated by enlarging
the above table so that for each year and each state two population figures are
present, one for the urban population, and one for the rural population. Then the
Record Description entries might look like the following:

01 POPULATION-TABLE
02 POPULATION ... OCCURS 50 TIMES

03 DECADE . . . OCCURS 7 TIMES
04 RURAL-URBAN ... OCCURS 2 TIMES

Then the urban population of Alabama in 1930 could be referred to as RURAL-URBAN
OF DECADE OF POPULATION (1, 4, 2). This assumes that for each year the rural popu
lation is given before the urban population. The unqualified form of this would be
RURAL-URBAN (1, 4, 2),

To refer to all of the 14 populations which the table contains for the state of Wyo
ming, one could write POPULATION (50). Or to refer to the set of two populations
for the state of Wyoming for the year 1920, one could write DECADE OF POPULATION
(50, 3) or DECADE (50, 3). If one wished to refer to the whole population table, the
data-name POPULATION-TABLE would be used.

1. A subscript must always have a positive integral value. It may be specified by a
literal or a data-name.

2. Subscripts are placed in parentheses to the right of the subscripted data-name
with a space intervening. If the subscripted data-name is in qualified form, the
subscripts must appear to the right of all qualifiers, for example, WORD IN PAGE
IN VOLUME (2, 61, 211),

3. When two or three levels of subscripts are present, the subscripts are separated
by commas and arranged from left to right in order of decreasing inclusiveness.
A space must follow each comma. Thus, word 211 on page 61 of the second
volume of a book might be referred to as WORD OF PAGE OF VOLUME (2, 61, 211).
A maximum of three levels of subscripting is permitted.

4. A subscripted data-name must be qualified when it is not unique, in accordance
with the rules of qualification.

5. A data item which involves an occuRs clause at its own level or which has an
occuRs clause implicit from a higher level must be subscripted whenever it is
referred to by the programmer. Furthermore, subscripting can be used only
with such a data item.

6. The programmer may refer to blocks (sets) of data within a table in the follow
ing way: The data-name of the block is written, followed by the subscript of. the
particular block wanted, plus any other subscript which might be necessary to
locate it:. For example, the whole of page 61 in Volume 2 can be referred to as
PAGE (2, 61) or PAGE OF VOLUME (2, 61). All of Volume 2 may be referenced by
VOLUME (2). A complete table may be referred to by using the name of the
table.

7. If references to an item which has been assigned condition-names require sub
scripting, then the condition-names must also be subscripted whenever men
tioned.

8. Subscripts must not themselves be subscripted. 59

Differences Between
Qualification and
Subscripting

The Library

Entries Associated with
the Data Division

Entries Associated with
the Environment Division

60

Qualification and subscripting should not be confused. They are very different
things. Qualification involves appending additional data-names to a name which
has been used to represent several different items. Subscripting is used to refer to
one item among a group of items which are organized as a table or a list.

The COBOL library, usually referred to hereafter simply as "the library," is a collec
tion of pre-written parts of COBOL programs. It is built up by the programmers at a
given installation and is usually recorded on tape and is made available to the
COBOL processor at the time the source program is processed. The library may con
tain data descriptions and environment descriptions which are used in a number
of the COBOL programs written at a given installation. For example, a series of
Record Description entries describing a "standard" record format might appear in
the library. Then any COBOL program which processes records of this type could
copy the library entries describing these records into the source program by using
the COPY clause as explained in Chapter 6.

The library contains two types of entries which correspond to two of the divisions
of a COBOL program, Data and Environment.

File Description entries and Record Description entries which have been placed in
the library may be included in a source program by the use of the COPY clause,
which is described in Chapter 6. Each File Description entry in the library is a
separate entry. If such an entry is referred to by a COPY clause, only that single
entry is extracted from the library. The programmer must make separate provisions
for the appearance in the source program of the Record Description entries asso
ciated with that file. However, if a COPY is used with a Hecord Description entry,
it may extract one entry, or a number of entries, from the library, depending onthc
material in the library. This is discussed in detail in Chapter 6 in connection with
the COPY clause.

Any of the four main paragraphs which constitute the Environment Division may
appear in the library and can then be placed in a source program through the use
of the COPY option of each of the paragraphs.

A complete section of the Environment Division cannot be extracted from the
library by a single COPY; that is, the COPY option operates only on the paragraph
level. Details on the use of the COPY option appear in Chapter 8.

Part Ill:

The Divisions of a COBOL Program

Chapter 5: Reference Format-The COBOL Program Sheet
Chapter 6: Data Division
Chapter 7: Procedure Division
Chapter 8: Environment Division
Chapter 9: Identification Division

Chapter 5: Reference Format-The COBOL F,rogram Sheet

When the programmer defines a problem in the COBOL language, he must use the
language very precisely, in accordance with the rules given in this manual. He
must be equally precise in arranging and describing his data so that it will be
acceptable to the object program, and in describing the machine components that
affect the creation of the object program.

Since all of this information must eventually be entered into the computer, it fol
lows that the programmer should also employ a very precise way of recording it
so that it can be processed correctly. A standard R.eference Format is used for this
purpose. The Reference Format prescribes the sequence in which the source pro
gram is to be entered into the machine, and it also prescribes certain ways in which
information within the source program must be arranged.

Reference Format Principles

Basically, the design of the Reference Format provides what might be called
"starting points" or "left-hand margins" for writing each of various kinds of infor
mation used in the program. These margins furnish the processor with reference
points which it requires in analyzing the source program. The programmer must
observe these margins in recording his program; for his convenience, therefore,
the COBOL Program Sheet, which is used for this purpose, incorporates in its design
the principal features of the Reference Format. (See Figure 5-1.)

The Reference Format serves three main purposes:

I. It provides a standard and convenient form in which the programmer can state
his program. The COBOL Program Sheet, which is based on it, is an aid to both
the programmer and the card punch operator in arranging the program in the
proper form.

2. It identifies to the COBOL processor certain kinds of items, such as procedure
names, for its use in creating the object program.

3. It provides a standardized form in which the printed listing of the source pro
gram will appear. This standard form has the particular merit that it may be
used as the input form to a COBOL processor on another machine. The format is
thus valuable in furthering compatibility among programs and .. machine systems.

This Reference Format, despite its necessary restrictions:. is of a relatively "free"
form. The programmer should note, however, that the rules for using it are precise
and must be followed exactly, and that these rules take precedence over any other
rules given in this manual with respect to the spacing of names, data, and other
textual material.

The COBOL Program Sheet

62

Figure 5-1 shows a COBOL Program Sheet, which describes the Reference Format
used in the COBOL system. The design of this form reflects the fact that much of the
information to be entered into a computer is first punched into standard IBM cards.
The form provides for 80 columns of information, corresponding to the 80 columns
of a card. However, this format is not limited to card input or output, since the
equivalent of card format can be represented in such other media as magnetic tape
and punched paper tape.

a

'IBM
• COBOL PROGRAM SHEET

SYSTEM PAGE I PROGRAM
3 I

PROGRAMMER

SERIAL It-= zlA
4 618 8

19
1
12 16 20 24 28

DATE

32 36 40 44 48 52 56

Figure 5-1.

SHEET OF

IOENT. 73 801

60 64 68 72

Sequence Number

Program Identification
Code

Continuation Indicator

64

Each line of the form is used to record th~ information to be punched on one IBM

card. Thus, one such form, since it has 25 lines, can be used to specify the data to
be punched in 25 cards. In Appendix B the reader will find a number of Program
Sheets filled in with data such as might be used in a COBOL program.

It is assumed that the information in Columns I through 3 and Columns 73 through
80 will be identical for all 25 cards represented by the same Program Sheet. Thus,
the information for these columns need be written only once on each sheet-in the
spaces marked PAGE and IDENT., at the upper left and upper right, respectively, of
the form. The information to be punched in Columns 4 through 72 is assumed to
be variable. Thus, 69 spaces are provided on each printed line.

Columns I through 6 are used for sequence numbers. These are numbers which
may be assigned to the cards by the programmer to indicate the proper order of
the cards. Each sequence number consists of two parts. The Page Number is shown
in Columns I through 3, and the Serial Number is placed in Columns 4 through 6.
It is standard practice to use only Columns 4 and 5 of the Serial Number when the
program is initially written, to permit additions, if necessary, at a later time. The
lines may be conveniently numbered from 01 to 25, making Column 6 zero. Then,
if the programmer should need to insert additional material between lines already
carrying serial numbers, he may use Column 6 to carry the numbers of the addi
tional lines. Such numbers will be treated as decimal fractions-thus, 025 and 028,
for example, would fall between 020 and 030.

The sequence number must consist only of numerals; letters of the alphabet and
special characters may not be used. The sequence number has no direct effect as
such on the program and need not be written. However, if the programmer supplies
sequence numbers, the processor will check the source program cards and will indi
cate any errors in their sequence. When the source program is listed, the processor
will assign sequence numbers in the order in which the cards were entered into the
machine; these numbers may or may not correspond directly to those originally
written by the programmer.

Columns 73 through 80 are reserved for any code name or group of symbols the
programmer may wish to assign to the program. These are used to identify the
cards as belonging to the particular program, and any characters from the COBOL

character set, including the blank, may be used. The program identification code
has no effect on the program.

The information entered in Columns 73 through 80 has no connection with the
information entered in the Identification Division of a program, except, of course,
that all cards punched for a program will normally carry an entry in these columns.

Many paragraphs and entries in a program will require more than one line. In such
a case, the programmer may choose to break a line between words or literals; if so,
he will probably leave one or more blanks at the end of the line. In any case, it
will be assumed that a blank should be understood to exist after the last character
written on that line, unless the programmer indicates otherwise by placing a
hyphen in Column 7 of the next line. If this hyphen does appear, however, the
processor will assume that the first character of the continuation is to follow the
last character written on the preceding line without an intervening space. This pro
vision makes it possible to carry a word or literal over from one line to another
without interruption.

Regardless of whether the continuation indicator is used or not, continued items
must be indented in accordance with the rules specified in this chapter. If a literal

Writing the Program

is to be carried over from one line to another, all blanks left at the end of the first
line, as well as any additional blanks beginning at the point where the entry is to
be continued on the next, will be counted as part of the literal.

Columns 8 through 72 are used for the actual data and instructions to be entered
into the computer. Two margins are prescribed for aligning the data in these
columns. These are Margin A, placed between Columns 7 and 8, and Margin B,
between Columns 11 and 12. In other words, when an item is aligned with Margin
A, its first character will appear in Column 8, while an item aligned with Margin B
will appear with its first character in Column 12.

In general, Margin A is usedl to locate major subdivisions of the program, while
Margin B locates subordinate items and continuations of items from one line to
another. Thus, the names o:f divisions, sections, and paragraphs are placed at
Margin A, as are the main entries of the Data Division. Most other items are placed
at Margin B.

Paragraph-names are used to designate sequences of procedure which may consist
of one or more sentences, as in the Procedure Division, or one or more clauses or
statements, as in the Identification and Environment Divisions. A paragraph-name
may appear by itself on one line·, in which case the associated text begins at
Margin B on the next line. However, the text may begin on the same line as the
paragraph-name. In either case, a period and at least one space should follow the
paragraph-name.

The rules vary slightly for the data description entries of the Data Division. Any
entry having a level indicator (FD) must begin at Margin A. Succeeding data
entries may also begin at Margin A if the programmer desires. However, if he
wishes to call attention to the way in which the data is organized, using the prin
ciple of indentation, he may do so. A subordinate entry-that is, one having a level
number of a numerically greater val"e-may be indented four spaces to the right
of the starting position of the entry immediately preceding it. Indentation will not
affect the meaning of the level-number; indentation is used only for its visual effect
-it will appear on both the Program Sheet and the listing of the source program.
Subject to this rule, the programmer may use as many indentations as he wishes.
He is not required to use indentation every time a subordinate item appears; some
items may be indented, some not.

When an item is carried over from one line to the next, the continued portion must
begin at Margin B, unless it is a data description entry. In that case, it begins under
the starting position of its own data-name. The data-name in such an entry always
appears as the first item following the level indicator or the level-number. It is
placed on the same line, leaving at least one space after the level indicator or level
number. Since the data-name may begin at many different positions on the line,
any continuation of the same entry will have to be adjusted accordingly.

Summary of format Rules

As noted in Chapter 2, the program must be read into the computer in the follow
ing sequence: Identification Division, Environment Division, Data Division, and
Procedure Division. Page and serial numbers should be assigned accordingly.

The rules for placing instructions and data on the Program Sheet are tabulated for
convenience in Figure 5-2.

65

66

Summary of Rules for Using the COBOL Pr·ogram Sheet
(Reference Format)

This table shows the starting position of each of the various types of entries which
can be made on a COBOL Program Sheet. In this table, the word "line" should be
understood to mean Columns 8 through 72, i.e., the portion of each line reserved
for entries which are part of the actual COBOL program, as opposed to those items
that are used to show the sequence of the entries or the identity of the program.

Names

Data
Description
Entries

Sentencesf

Continued
Items

Non-Program
Entries

Item

Division-Name

Section-Name

Divisions Begin:s at

All A (Col. 8)

Environment A (Col. 8)
Data
Procedure

Paragraph-Name Identification A (Col. 8)
Environment

FD entry and
other unindented
entries

Other entries
where indenta
tion is desired

Sentence begin
ning on same line
as a paragraph
name or follow
ing the end of a
preceding
sentence

All other
sentences

Data description
entry

Sentencef

Page number

Serial number

Program identi
fication

Procedure

Data

Data

Identification
Environment
Procedure

A (Col. 8)

4 spaces to the
right of the
starting position
of the previous
level-num her
or indicator

Following the
name or sen
tence, leaving
at least one
space after the
period

Identification B (Col. 12)
Environment
Procedure

Data

Environment
Identification
Procedure

All

All

All

Under the first
letter of its
own data-name

B (Col. 12)

Col. 1-3

Col. 4-6

Col. 73-80

t Includes paragraphs of the Identification Division.

Figure 5-2.

Remarks

Name is followed by a pe
riod; remainder of line
must be left blank.

Name is followed by a
space, then the word SEC
TION, then a period; re
mainder of line must be
left blank.

Name is followed by a pe
riod and at least one space.
Text may follow on same
line, or at B on following
line.

Each entry begins with a
level indicator (FD) or a
level-number. This is fol
lowed by one or more
:spaces and then the data
name. Each clause of the
entry is separated from the
preceding name or clause
by one or more spaces.

Breaks between lines may
occur at any convenient
point, leaving blank spaces
a.t the end of the line if de
sired; if a word or literal is
divided between two lines,
a hyphen must be placed
in Column 7 of the second
line.

These columns may be
used for any purpose re
quired by the program
mer. Information in these
columns will be ignored by
the processor in creating
the object program.

Chapter 6: Data Division

Chapter 4 presented the concepts of the file, the record, and other items of data.
It was stated that each file, record, and data item is described within a program by
writing data description entries in the Data Division of the source program. Every
data-name referred to in the Procedure Division except figurative constants must
be described in the Data Division. Items and records are described by Record
Description entries, and files are described by File Description entries. This chapter
will be devoted to the details of writing the Data Division of a COBOL program.

Organization of the Data Division

Entries

The Data Division is composed of three sections, each of which consists entirely of ·
entries, rather than paragraphs and sentences. The three sections are the File Sec
tion, the Working-Storage Section, and the Constant Section; they must appear in
that order within the division. If any of the sections is not required in the particular
program beling written, it may be omitted entirely.

The Data Division begins with the header DATA DIVISION. Each of the sections also
begins with a header; the name of the section is followed by the word SECTION, as
shown below:

FILE SECTION.

WORKING-STORAGE SECTION.

CONSTANT SECTION.

The File Section consists of File Description entries and Record Description entries.
The Working-Storage Section and the Constant Section are made up entirely of
Record Description entries.

An entry consists of a level-number, a data-name, and one or more independent
clauses. As will be seen later in this chapter, a File Description entry is identified
by the level indicator FD in place of a level-number. The data-name immediately
following the level-indicator is called the subject of the entry. All data-names other
than the subject which appear anywhere in an entry must be qualified if necessary
to insure uniqueness. An entry is always ended with a period. The specific rules for
writing enbies on the COBOL Program Sheet are given in Chapter 5.

Computer-Independent Data Descriptions

In a system such as COBOL, which is used on many different computers, it is neces
sary to have a way of describing data which is independent of any particular
machine. This is because the internal representation of data may differ from one
computer to another. For example, binary computers represent all information as
a series of zeros and ones. Some decimal machines use combinations of the numbers
0 through 9. Some use still other schemes. Because of these differences, the COBOL

system provides a standard way of describing the characteristics of data that will
be meaningful for many kinds of computers. The COBOL system permits the pro
grammer to think of data as :it might appear on a printed form. Thus, he can deal
with numeric data as if it were represented in the decimal system, regardless of
how it might actually be represented for the particular computer, and he can deal
with letters: and other characters without regard to the codes used to represent

67

them. A typical binary computer, for example, might repr1esent the letter A by the
six binary digits 010001, but the programmer can think of it simply as A.

The COBOL processor, analyzing the entries in the Data Division, determines what
conversions will be needed, how much space in storage should be reserved for each
item, what format will be used to represent each item in storage, etc. The reader
will understand more clearly how this is done after he has studied the individual
clauses that make up the entries.

The File Description Entry

68

One File Description entry must be written for each file processed by a program.
The general purpose of a File Description entry is to specify the physical character
istics of a file. It may include: (1) the mode in which the data is recorded in the
file, (2) the number of characters in each record, (3) the grouping of records in
the file, (4) the names and values of label records (if any) in the flle, and (5) the
names of data records which constitute the file.

A complete series of Record Description entries describing every item in a file
must immediately follow the File Description entry for that file. For example, if a
file called MASTER-CHECK-FILE contains records called SPECIAL-CHECK-RECORD and
REGULAR-CHECK-RECORD, the entries describing the file might be organized as
follows:

FD MASTER-CHECK-FILE
01 SPECIAL-CHECK-RECOllD ..

02 NAME

01 REGULAR-CHECK-RECORD .
02 NAME ...

The general form for a File Description entry is the following:

Option 1

FD file-name COPY library-name.

Option 2

FD file-name [RECORDING MODE IS mode]

[BLOCK CONTAINS integer-I {~~5._~~kRISl}]

[RECORD CONTAINS [integer-2 TOJ integer·-3 CHARACTERrSJ]

tAUEL RJ!CORD!SJ {tsRE} {~~~D}

[VALUE OF data-name-1 IS literal [data-name-2 IS ••• J J
DAT A RECORD!SJ { tgRE} data-name-3 [datt.t-name-4 • • •] •

File Level Indicator
and Fi le Name

RECORDING MODE

BLOCK

Option 1 is used when the desired File Description entry already exists in the
library. (See Chapter 4.)

Several of the clauses in Option 2 may or may not appear, depending on the
machine and the file. The use of each clause is explained below. A File Description
entry is terminated with a period.

The level indicator FD identHles the beginning of the File Description entry and
precedes the file name assigned by the programmer.

FD file-name

The purpose of this clause is to specify the format of data as it appears in the file.
The general form of the clause is: .

[RECORDING MODE IS mode J

The RECORDING MODE clause is necessary for those computers which have more than
one way of representing data. The mode in which the file is written will depend on
the computer being used. For example, an IBM 7090 can read or write magnetic
tapes with information coded in binary mode or in binary-coded-decimal mode, and
either of these may be written in "high density" or "low density."

If the RECORDING MODE clause is omitted, it will be understood that the standard
mode prescribed for the computer will be used. This standard mode, together with
the other available modes and their names, will be specified in the COBOL publica
tion for each processor.

Records in a file may be grouped physically in blocks to conserve external storage
space-e.g., the length of magnetic tape required to store a file. This physical group
ing does not affect the logic of the program. In many applications, however, the
amount of storage conserved as a result of blocking may amount to one or more
reels of tape. In such cases, the running time of the object program is reduced
significantly. A block cannot contain less than one record; it must consist of one or
more entire records. That is, a block and a record may be equal in size, or several
records may be contained in a block. The general form of the clause specifying the
size of a block is shown below:

[
. . {RECORD[SJ t] BLOCK CONTAINS mteger-1 CHARACTER[SJ f

lnteger-1 must be a numeric literal with an integral value. The BLOCK clause is
required in all cases except two: It is not required when a block contains one, and
only one, complete r.ecord. When a block size has been designated as standard
for a particular system, omission of the BLOCK clause implies the use of the standard
size. This s:ize will be specified in the publications covering the various systems.

The size of a block must be stated in terms of CHARACTERS when variable-length
records are used. The word CHARACTERS is an optional word. If neither RECORDS nor
CHARACTERS is written, integer-1 is assumed to be the number of characters in the
block.

69

LABEL RECORDS

VALUE

70

In Chapter 4, it was said that label records are often used at the beginning and the
end of a file. They also can appear at the beginning and end of each reel of a tape
file if the file is several reels in length.

The main purpose of label records is to identify a file or the reels of a file. Usually,
the date the file was written is included in a label record. Also, the number of
blocks of information on the reel may be indicated. At the time a file is written,
label records are written containing information identifying the file. Then, when
this file is used as input, this information is checked to be sure that, among other
things, the right file is present and that no records in previous reels have been in
advertently skipped.

Each type of computer system has its own standard format for label records. These
formats are explained in the publications covering the various COBOL processors.
To· specify whether label records are present in an incoming file, or should be
included in an output file, the following clause is used in the File Description entry:

-----------·------------------------

LABEL RECORD!Sl .J ARE} j STANDARQ}
llS lOMITTED

This clause must always be present in a File Description entry. When describing
an output file (a file being created by the program), the programmer may specify
whether labels are to be present or not, according to his wishes. However, when
describing an input file, if labels are present in the file, the programmer must write
LABEL RECORDS ARE STANDARD. Thus, it is illegal to attempt to ~gnore existing label
records by writing LABEL RECORDS ARE OMITTED.

In certain cases, the programmer may want to specify the value of an item in a
label record at the time he writes his program, just as he would specify the value
of a named constant in the Constant Section. The general form of the VALUE clause
is as follows:

------- ----

[VALUE OF data-name-1 IS literal [data-name-2 IS • , , J J

Data-name-1 must be qualified, when necessary, but subscripting is not permitted.
A figurative constant may be used in the VALUE clause where a literal is specified.
Suppose a programmer wishes to have the name of a file appear in a label record
of the file, so that the program can check to make sure that the proper file is present
before processing is begun. Suppose, also, that the label record contains an item
called NAME. If the name of the file is MASTER-FILE, the prog:rammer could write the
clause VALUE OF NAME 1s 'MASTER-FILE' in the File Description entry for the file.
Then, one of the f9llowing things would happen at object time:

1. If :r..usTER-FILE is·an output file, then as the label record is written, NAME will
be given the value of the non-numeric literal MASTER-FILE.

2. If MASTER-FILE is an input file (a file to be read by the progran1), then the item
NAME, when read by the computer, will automatically be checked to see whether
it has the non-numeric value MASTER-FILE. If not, an error will be indicated.

DAT A RECORDS

COPY

Because the format and content of a label record depend on the specific computer
being used, all details of the rules for using the VALUE clause will be given in the
publications describing the various COBOL processors.

This clause allows the processor to cross-reference the File Description entry and
the individual Record Descriiption entries of each record whenever necessary. The
general form of the clause is:

DAT A RECORD!SI { fsRE} data-name-3 [data-name-4 • • • J

This clause is· required in every File Description entry. Data-name-3, data-name-4,
etc., must each be the subject of a Record Description entry with a level-number
of 01.

The appearance of more than one data-name in this clause means that the file con
tains a corresponding number of different types of records. These records may be
of differing sizes and formats. The order in which they are listed in the DATA

RECORDS clause is not important.

It must be remembered that no two records of the same file are made available for
processing at the same time .. In other words, if one record is read from a file and
then another record is read from the same file, the second record replaces the first
record. One way to save the first record would be to move it to a work area, using
the READ verb with the INTO option, as explained in Chapter 7.

This clause is used by the processor to incorporate a prewritten File Description
entry into the Data Division of a program. When this clause is used, the processor
obtains the specified entry from the library and places it in the program. Since the
entire File Description entry is copied from the library, the COPY clause must appear
as the only clause in the entry when this option is used. The general form of the
complete File Description containing a COPY clause is given below.

[FD file-name COPY library-name.]

As the enb-y to be copied is extracted from the library and placed in the program,
it retains the level indicator FD, while the subject of the COPY entry (file-name)
replaces the subject of the library entry (library-name). For example, suppose the
following entry exists in the library: FD OUTPUT-FILE-DESCRIPTION-ENTRY, RECORDING

MODE rs This entry could be called from the library by the entry FD NEW-MASTER

COPY OUTPUT-FILE-DESCRIPTION-ENTRY. The File Description entry, as it is placed in
the source program, would appear as FD NEW-MASTER RECORDING MODE IS ••••

It should be noted that the COPY clause will copy only a File Description entry, not
the associated Record Description entries.

71

RECORD The RECORD clause may be used to specify the size of a record in terms of the
number of characters it contains. The general format of the clause is as follows:

[RECORD CONTAINS [integer-2 TOI integer-3 CHARACTER[S]J

Since the size of a record is completely defined by its Record Description entries,
the RECORD clause is optional. If used, the following considerations apply:

Integer-2 is used to specify the minimum number of characters in the smallest
record of the file, while integer-3 indicates the maximum number of characters in
the largest record. If all records in the file are of exactly the s:ame size, only integer-3
need be specified. Both integer-2, when used, and integer-3 must be numeric literals
with integral values.

The Record Description Entry

72

Record Description entries are the means by which items of data are described to
the COBOL processor. Every item that is given a separate name must be described
in a separate entry.

Like the Fi]e Description entry, the Record Description entry consists of a number
of independent clauses. In the following discussion, the clauses that may be used
in a Record Description entry will be covered separately. Special rules for writing
entries in the Working-Storage and Constant Sections will be presented later in this
chapter.

The general form of a Record Description entry is given below. In general, the
order in which clauses are written in an entry is not critical (except where specifi
cally noted). The entry must begin, however, with a level-number and name.

Option 1

level-number data-name [REDEFINES ••• J ~OPY •••

Option 2

level-number {~~1;!-!~me} [REDEFINES • • . J [SIZE . . • J

[USAGE ... J [OCCURS ... J [SIGNED J [SYNCHRONIZED ... J

[POINT . . . J [CLASS . . • J [PICTURE . . 'J [JUSTIFIED ••. J
[ZERO SUPPRESS . . . J [BLANK .•. J [VALUE .•• J .

Those clauses which begin with SIGNED, SYNCHRONI:lED, POJ[NT, PICTURE, JUSTIFIED,

ZERO SUPPRESS, and BLANK may appear only in an entry which describes an elemen
tary item.

Level-Number and Name Every Record Description entry must begin with a level-number _and a name, as
shown in the following general format:

SIZE

levd-number {
FILLER }
data-name

The level-number is used to show the relation of the item to other items. The gen
eral concept of levels is discussed in Chapter 4. Level-numbers must be chosen
from the integers 1 (or 01) through 49, 77, and 88. Single-digit level-numbers (1-9)
must be preceded by either a zero or a blank. Level-number 1 (or 01) is applicable
only to records, not to just a part of a record. Level-number 77 has a special use in
connection with constants and work areas; this will be explained later in this
chapter. Level-number 88 is used to denote condition-names; entries having this
level-number must follow immediately after the entry describing the data-name
with which the condition-names are associated.

Every Record Description entry must have a subject, that is, a name which is to
be assigned to the item being described. This name must appear immediately after
the level-number. The word nLLER may be thought of as a special kind of name
which must be used if the entry describes an item to which no name has been given.

The subject of an entry must never be in qualified or subscripted form. Even if
data-name-1 is not unique, it must not be qualified at this point in an entry, because
its level-number and placement in relation to other entries automatically supply
qualification. Thus, it is correct to write:

05 VENDOR
06 NAME

05 RETAILER
06 NAME

If an item is given the key word FILLER as a name, that name must never be referred
to in the Procedure Division. When FILLER is used to name an item, the only clause
required in the entry is SIZE (or PICTURE).

The purpose of the SIZE clause is to specify, in terms of the number of characters
or digits, the size of an item o:f data. The general form of this c1ause is as follows:

[
. [{CHARACTER[SJ}J] SIZE IS mteger-1 DIGIT[SJ

The size of an item is independent of its format within the computer. All DIGITS are
considered to be decimal, regardless of the number base used by the computer. All
alphabetic and alphanumeric CHARACTERS are considered as though they were in
printed or typewritten form. Arithmetic signs belonging to items used in computa
tions are treated as operators (operational signs) and are never counted in deter
mining the size of an item. However, when the alphanumeric characters + and -
are associated with non-computational items, as in edited reports, they are counted
in determining the size.

Decimal points in numeric items used for computation are always "assumed." That
is, the decimal point does not occupy an actual character position. Therefore, such
a decimal point is not counted in determining the size of a numeric item. Further
details concerning assumed decimal points will be found in the discussions of the
PICTURE and POINT LOCATION clauses.

73

CLASS

USAGE

74

If the entry describes an elementary item, it must have ·either a SIZE clause or a
PICTURE clause. If the entry describes a group, on the other hand, neither clause is
required, but if the size is specified at a group level, it must be equal to the sum of
the sizes of the elementary items within the group. If both PICTURE and SIZE appear,
they must not contradict each other.

Each computer has its own internal character set, which may or may not be limited
to the characters of the COBOL character set. Each such set can be subdivided into
numeric, alphabetic, and alphanumeric (alphameric) characters. Thus it can be
said that any data item can be classified as numeric, alphabetic, or alphanumeric,
depending on the characters it contains. The purpose of the CLASS clause is to indi
cate to the processor the class of the data as defined in this manner. The basic
format is as follows:

)NUMERIC ~
[

(ALPHABETIC)]

CLASS IS l~~rHANUMERICJ

AN is an abbreviation of ALPHANUMEIUC.

These three classes may be described as follows:

Class Descriptiion

NUMERIC Consists entirely of digits (0-9); may also contain an
operational plus or minus sign; an actual decimal point
is a non-numeric character and is not permitted.

ALPHABETIC Consists entirely of letters of the alphabet; may also
contain one or more spaces (blanks).

ALPHANUMERIC Consists of any characters from the machine's character
set. May be wholly numeric or wholly alphabetic.

The CLASS clause may be written at any level. If a CLASS clause appears in an entry
describing an item which is a group, it specifies the class for each item within the
group; it must not be contradicted by the CLASS descriptions (if any) of the mem
bers of the group. It is not considered a contradiction for an ALPHANUMERIC group
to contain an item which is either NUMERIC or ALPHABETIC, since the ALPHANUMERIC

class contains the other two classes.

If an entry contains a PICTURE clause, a CLASS clause is not necessary. However, if
both are used, they must be compatible.

Data may be used within a computer in various ways. In general, data processing
operations are of two principal kinds: (I) operations involving computation, and
(2) operations which ultimately affect the form in which the data is edited and/ or
presented-i.e., "displayed"-for reading. In order to improve the efficiency of the
object program, it is desirable to indicate to the COBOL pmcessor whether an item
will be used most frequently for COMPUTATIONAL or for DISPLAY purposes. The
USAGE clause serves this purpose. Its basic format is as follows:

[
USAGE IS {COMPUTATIONAL}]

DISPLAY

•

Combining the SIZE,
CLASS, and
USAGE Clauses

The USAGE clause may be written at any level. If it is written at a group level, it
specifies the USAGE of all items contained in the group and must not be contradicted
by a lower-level entry in that group. If the USAGE of an item is not specified, it is
assumed to be DISPLAY.

The USAGE specified in this clause does not limit the operations of the object pro
gram, nor does it restrict in any way the operation of any verb on the data. How
ever, it may affect the way in which the data is represented inside the computer,
and this in turn will affect the efficiency of the object program. The programmer
should therefore indicate the manner in which each item of data will most fre
quently be used. Designation of one USAGE does not prevent an item from being
used according to the other. For example, COMPUTATIOXAL usage will be specified
for most NUMERIC items; this description, however, does not prevent their being
displayed. The converse is also true. In effect, the USAGE clause provides a descrip
tion of the internal representation of data. It will not convert data from one repre
sentation to another except in conjunction with Procedure Division clauses.

If an item is specified as being COMPUTATIONAL, it must be of the NUl\IERIC class,
and therefore the CLASS clause may be omitted.

Because the USAGE clause affects the way in which data is represented within the
computer, a more complete discussion of its effects will be found in the publications
covering the various processors.

If the programmer desires, he may combine the SIZE clause with the CLASS clause
and/ or the USAGE clause in a special form. This allows him to specify the SIZE, CLASS,
and USAGE of an item by writing one clause instead of three. The general fmm for
combining these clauses is:

[
[

(Al.PHABETIC)] []
. .)NUMERIC ~ fcoMPUTATIONALl

SIZE IS tnteget-l (~M'HANUMERIC) (DISPLAY f

[
j CHARACTER[Sll_J]
tDIGITlSJ J

This clause can be used to specify:

1. The SIZE and CLASS of an item.

2. The SIZE and USAGE of an item.

3. The SIZE, CLASS, and USAGE of an item.

The rules governing the use of this clause are the same as the rules pertaining to
the use of the separate SIZE, CLASS, and USAGE clauses as discussed previously. The
order in which the CLASS and USAGE are specified is not important; they may appear
in either sequence.

EXAMPLES

SIZE IS 7 NUMERIC DISPLAY DIGITS

SIZE IS 7 DISPLAY NU:MERIC DIGITS

SIZE IS 15 DISPLAY CHARACTERS

SIZE IS 10 NUMERIC CHARACTERS 75

POINT LOCATION

SIGNED

VALUE

76

The POINT clause is used to specify the position of an assumed decimal point if a
PICTURE clause is not used in describing a numeric item. For an explanation of
assumed decimal points, see the discussion of PICTURE. The general form of the
POINT clause is given below.

[{
LEFT } .] POINT LOCATION IS RIGHT tnteger··3 PLACE[SJ

An actual decimal point cannot be specified by means of a POINT clause; a PICTURE
clause must be used instead. If neither a PICTURE clause nor a POINT clause is used
with a NUMERIC item, the item will be assumed to be an integer.

Integer-3 must be a numeric literal with an integral value. The assumed decimal
point w"Hl be located integer-3 digit positions to the left or right of the right end of
the item. Thus, the clause POINT Is LEFT 4 PLACES would cause the number -3597 421
to be treated as -359.7421, whereas the clause POINT IS RIGHT 4 PLACES would cause
the same number to be treated as -3597 4210000. This clause can be used only to
describe an elementary item.

The purpose of this clause is to indicate that an elementary item has an operational
sign. An operational sign is a character or code that indicates to the computer
whether a value is positive or negative. Actual operational signs cannot be specified
in the COBOL language; they are incorporated in the actual data for interpretation
by the machine at object time. Sign conventions vary from one computer to another
and will be specified in the publications covering the various processors. The gen
eral form of the clause is:

[s1GNED J

A SIGNED item must be NUMERIC; thus, when the SIGNED clause is used, the CLASS
clause may be omitted. When an operational sign is specified in a PICTURE clause,
the SIGNED clause is not required. The SIGNED clause can be used only in describing
an elementary item. An item for which editing is specificed (in either an editing
clause or a PICTURE clause) must not have an operational sign. Therefore, the
SIGNED clause cannot be used in an entry containing any of the editing options
(ZERO SUPPRESS, CHECK PROTECT, FLOAT DOLLAR SIGN' and BLANK WHEN ZERO). An
operational sign is not counted as a character in determining SIZE.

The v ALUE clause is used to specify the value of a named constant, a condition
name, or an item in a work area. The general form of the v ALUE clause is given
below.

[VALUE IS literal]

Literal may be any numeric or non-numeric literaX or figurative constant. It must
be of the same CLASS specified for this item. If the VALUE clause is used to define the
value of a condition-name, no other clause is needed in the same entry. The VALUE
clause may be used in an entry in the Working-Storage Section to specify the value

•

•
PICTURE

of a condition-name or to specify the initial value of an item. In the File Section,
it may be used only to descrilbe condition-names, and any other use of this clause
in that section is incorrect. The VALUE clause is used in the Constant Section to
specify the value of a named constant.

When a VALUE clause appears in conjunction with a scaled item, a zero for each
scaled position in the item must be included in the literal defining the VALUE.

(See the discussion of the character P as used in the PICTURE clause.)

If the VALUE clause is used at: the group level in the \Vorking-Storage or Constant
Sections, it must not appear in the entries v,rithin the group. Also, the VALm;: clause
must not appear in an entry containing an occuRs clause or in an entry which is
subordinate to an entry containing an occuRs clause.

EXAl\fPLES

The following is an example of the use of the VALUE clause to show the value of
three condition-names associated with a data-name:

05 l\JARITAL-STATUS SIZE 1 COMPUTATIONAL.

88 SINGLE VALUE IS 1.

88 MARRIED VALUE IS 2.

88 DIVORCED VALUE IS 3.

The following examples might be used to specify the values of named constants or
the initial values of items in work areas:

VALUE IS 6
VALUE 'SIX'

VALUE IS '6.0'

VALUE IS SPACE

VALUE QUOTE

VALUE 'JOHN'
VALUE IS ALL '32'

(CLASS is NUMERIC.)

(CLASS is ALPHABETIC or ALPHANUMERIC.)

(CLASS is ALPHANUMERIC.)

(CLASS is ALPHABETIC or ALPHANUMERIC.)

(CLASS is ALPHANUMERIC.)

(CLASS is ALPHABETIC or ALPHANUMERIC.)

(CLASS is ALPHANUMERIC.)

The various clauses of a Record Description entry are used to describe certain
characteristics of data so that the computer can process it efficiently. The PICTURE

clause provides an alternative, and more compact, way of specifying most of the
same information. Each character of a data item is represented by a code chosen to
describe its principal characteristics. The "picture" of an item may be thought of as
a kind of "blueprint" of it. The general form of the clause is as follows:

[:PICTURE IS any allowable combination of characters and]
!iymbols as described below

Only elementary items can be described by a PICTURE clause. \Vhen this clause is
used, no other clause is required in the same entry, except that tl1e REDEFIXES clause
is necessary when redefinition must be specified. If desired, however, the other
Record Description clauses may also be written, provided they do not contradict
the PICTURE clause.

Speaking generally, the PICTURE clause indicates the SIZE of an item, the CLASS, tl1e
presence or absence of an operational sign and/ or an assumed decimal point, and
provides additional information which would otherwise have to be specified in
other Record Description clauses.

77

Numeric Items

78

In addition, the PICTURE clause can be used to specify the editing of data. Editing
may be described as an alteration of the format a.nd/ or punctuation of an item,
usually for such purposes as improving readability or protecting it against unau
thorized alteration. Editing involves the suppression of certain characters and/ or
the addition of others. For example, after computation, the digits representing a
man's pay might be 0012531. However, they would be much more readable on a
paycheck in an edited form, such as $00125.31; moreover, the use of the asterisks
would hamper an attempt to alter the amount. Editing of data always requires
moving it to an item for which the proper editing symbols have been specified.

In the following discussion, each character which may appear in a PICTURE is pre
sented. Because the choice of characters in any given PICTURE depends on the type
of data item being described, the characters will be grouped for discussion accord
ing to the type of data item they describe.

A numeric item is an item which may contain only the numerals 0 through 9 and an
operational sign. As will be seen below, a numeric item may also have an assumed
decimal point associated with it. The PICTURE of any numeric data item may con
tain combinations of only the following characters: 9, V, P, and S. An explanation
of each of these characters and their uses is given helow.

Character

9

Meaning and Use

A 9 indicates that the character position will always contain a
NUMERIC character.

V A V indicates the position of an assumed decimal point. Since a
numeric item cannot contain any character other than numerals and
an operational sign, the actual decimal point (the special character
period) cannot appear. Therefore, an assumed decimal point is used
to provide the processor with information mncerning the alignment
of items involved in computation. An assumed decimal point, thus,
does not occupy a character position at object time and is not counted
in the size of an item. For example, if a data item is described as hav
ing a PICTURE of 99V9 and the digits 123 are moved to it, the value
would be treated in calculation as 12.3, but the size of the item would
be three characters, not four. If it were printed, it would print as 123
because the decimal point character is not actually present.

S The character S is equivalent in meaning and use to the SIGNED

clause; it indicates the presence of an operational sign. If used, it
must always be written as the leftmost character of the PICTURE.

It is not counted in the size of an item.

P The character P indicates an assumed decimal scaling position. It is
used to specify the location of an assumed decimal point when the
point is not within the number as it appears in input data. In effect,
the item will be treated as if a zero were substituted for each P and
the decimal point were placed "outside" the last P-i.e., to the right
if the zeros are on the right, to the left if the zeros are on the left.
The character V may be used or omitted as desired. If it is used, it
must be placed in the position of the assumed decimal point. For
example, an item composed of the digits 123 would be treated by an
arithmetic procedure statement as 123000 if the PICTURE were
999PPPV or as .000123 if the PICTURE were VPPP999. The charac
ter Pis never considered as part of the size of an item; in the above
examples, the size would be three characters.

Alphabetic Items

Alphanumeric Items

Character Meaning and Use

When P is used in a PICTURE in an entry in the Working-Storage
Section or the Constant Section, and if the entry also includes a
v ALUE clause, the following rule applies: A zero must appear in the
VALUE clause for every character position described by a P in the
PICTURE clause.

The following examples show the PICTURE of an item, a corresponding
VALUE clause which might appear in the same entry, and the actual
digits which would be placed in storage as a result of these clauses.

Actual Characters
Placed in

PICTURE VALUE Clause Associated Storage Area

999PPP VALUE IS 146000 146

PPP99 VALUE IS .0003 30
VP9 VALUE IS .01 1

999PPPV VALUE IS 1234000 234

VPPP99 VALUE IS .000372 37

Note that the last two examples would each produce an error mes
sage when the object program is created and would cause truncation
at object time. In general, if a v ALUE clause and an associated PICTURE
do not specify the same number of digits, truncation or zero fill will
occur according to the rules of the MOVE verb given in Chapter 7.

In the discussion of cr.Ass, an ALPHABETIC item was denned as one which could
contain only the letters of the alphabet and the space. The PICTURE of an ALPHA
BETIC item can contain only the character A.

Character

A

Meaning and Use

The character A, when used in a PICTURE, indicates that the character
position will always contain either a letter or a space.

An ALPHANUMERIC item has been defined as an item which may contain any char
acter in the computer's character set. However, it is often convenient to think of
ALPHANUMERIC items as being divided into two types: non-report items and report
items. Non-report items are items for which editing is not specified. Report items
are items foir which editing has been speci:6ed.

Non-Report Items
The PICTUim of an ALPHANUMERIC non-report item may contain only the characters
9, A, and X .. The characters 9 and A have been discussed above.

Character

x

Meaning and Use

The character X, when appearing in a PICTURE, indicates that the
character position may contain any character in the computer's char
acter set. For example, the PICTURE AAA.XX.XX indicates that the
described item has a size of seven characters, that the first three char
acters will always be alphabetic, and that the last four characters
may be any characters.

79

80

Report Items

It may be desirable to edit data which is being prepared for printing. Editing in
volves the insertion of certain characters and/ or the suppression of others. Editing
of data is accomplished by moving the data to a report item. A report item is an
ALPHANUMERIC item governed by the following rules:

1. Any data which is moved to a report item is automatically altered according to
the editing specifications given in the Record Description entry corresponding
to the item. Editing may be specified by means of a PICTURE or by using the
editing clause discussed later in this chapter.

2. A report item can receive only data which is numeric :iJri content.

The characters which may appear in the PICTURE of a report item are shown below.

9 V , . + - Z ° CR DB B 0 $

All the characters in the PICTURE of a report item, with the exception of V, must
be counted in determining the size of the item. The uses of 9 and V have been dis
cussed above. The remainder of the characters will be explained in three groups,
zero suppression, insertion, and replacement characters.

Zero suppression and replacement characters are used to suppress and/ or replace
characters in accordance with the rules given in this section. Two general rules
apply to these characters, as follows: (1) Except in the cases of 0 and B, suppres
sion and/ or replacement terminates with the character immediately preceding the
:first digit other than 0, or the decimal point, whichever is encountered first; e.g.,
zeros following a significant digit will not be suppressed or replaced. (2) If all
data character positions in a PICTURE reserved for source data (as opposed to
those additional positions used for insertion characters) contain suppression
and/ or replacement characters (other than 0), then all characters will be replaced
by blanks if the value of the data is zero. Note that this rule is equivalent in effect
to the BLANK clause.

ZERo SUPPRESSION CHARACTER

Character

z

Meaning and Use

The character Z specifies zero suppression of the indicated characters.
Zero suppression is the process of replacing unwanted left-hand zeros
by blanks. The following table indicates the effect of zero suppres-
sion:

Source Editing Edited
Item PICTURE Item

12345 ZZZ99 12345
00123 ZZZ99 123

00100 zzzgg 100
00000 zzzgg 00
00100 zzzzz 100
00000 zzzzz

A Z must never be preceded by a 9, a B, or a 0.

INSERTION CHARACTERS

An insertion character is one which is inserted into a report item. An insertion
character does not take the place of any data; it appears in addition to the infor
mation moved to the item. The insertion characters are$,. + - CR DB. When
any of these characters is used, the size of the report item must be larger than
the maximum number of digits which might be moved to the item. This principle
is illustrated in the discussion of the dollar sign below.

Character

$

Meaning and Use

The single dollar sign, placed in the leftmost position of a PICTURE,

specifies that a dollar sign character is to be placed in that position in
the data, as illustrated in the following table:

Source Editing
Item PICTURE

123 $999
012 $999
012 $ZZZ
000 $ZZZ
010 $ZZZ

Edited
Item

$123
$012
$ 12

$ 10
Note that the PICTURE of the item specifies four character positions;
however, a maximum of three digits of data can be moved to the item.

If the minus sign is written as either the first character or the last
character of a PICTURE, a display minus sign (as opposed to an
operational sign) will be inserted into the indicated character posi
tion when the value of the item is negative. If the value of the item
is not negative, a blank will be inserted. Consider the following:

Source Editing Edited
ltemt PICTURE Item

12 -99 -12

12 -99 12

12 99- 12-

12 99- 12

00 99- 00-

00 99- 00

+ If the plus sign is written either as the first character of a PICTURE

or as the last, a display sign will be placed in the indicated character
position. If the value of the item is negative, a minus sign will appear;
otherwise, a plus sign will be inserted. If an item is unsigned, it is
assumed to be positive. The following table illustrates the above
principle:

Source Editing Edited
ltemt PICTURE Item

12 +99 -12
+

12 +99 +12

12 99+ 12-
+

12 99+ 12+

00 99+ 00-
+

00 99+ 00+
f A sign over the u11its position of a number indicates an operational sign.

81

•

•

82

Character

I

Meaning and Use

The comma, when used to describe a character position, will be in
serted at the indicated position in the data being edited. For example,
the PICTURE 9,999 would cause 7461 to become 7,461 after editing.
The comma itseH will be suppressed if zero suppression has caused
the elimination of all digits to the left.

This character represents an actual decimal point. When used to de
scribe a character position:

1. The data being edited is aligned by decimal point.

2. An actual decimal point will appear in the indicated character
position.

Thus, the integer 7531 would appear as ~17,531.00 if the notation
$9,999.99 were used as the editing PICTUUE. Unlike the assumed
decimal point, the actual decimal point occupies a character position
and is counted in determining the size of an item. A PICTURE may
never contain more than one decimal point, assumed or actual.

CR The credit and debit symbols CR and DB may appear only at the
and right end of a PICTURE. These symbols occupy two character posi-
DB tions. When the value of the described item is negative, the specified

symbol will be placed at the right end of the item. If the value of the
item is positive, these character positions will contain blanks. For

0
(zero)

B

example, the PICTURE $99.99CR will cause 6.325 to become $63.25CR
+

and 6325 to become $63.25 after editing.

The character 0 (zero) will cause a zero to be inserted in the indi
cated character position. For examp1e, if the digits 123456 are to be
moved to an item with a PICTURE of 999000Sl99, the item will appear
as 123000456.

The character B specifies that a blank will be inserted in the indicated
character position. For example, if the digits 121456 are to be moved
to an item with a PICTURE of 99B99B99, the item will appear as
12 14 56.

REPLACEMENT CHARACTERS

Several of the characters used in PICTURE specify that, at object time, certain digits
will be replaced by other characters much in the same way that the Z specifies the
replacement of lefbnost zeros with blanks. The list of repl(acement characters con
sists of: 0

, 0, B, the floating dollar sign, the floating minus sign, and the floating
plus sign.

Character

*

Meaning and Use

The asterisk is used to indicate checlc protection, i.e. the suppression
of each specified zero on the left and its replacement by an asterisk.
The following table illustrates the use of the asterisk.

Character

The
floating
dollar
sign

The
floating
minus
sign

The
floating
plus
sign

Meaning and Use

Source Editing Edited
Item PICTURE Item

12345 00099 12345
00123 00099 00123
00100 00099 00100
()()()()() 00099 00000

()()()()() 00000

00100 00000 00100

An asterisk can be preceded only by a dollar sign, a plus sign, a minus
sign, a decimal :point, or a comma.

Zero suppression with a fioating dollar sign is specified by placing a
dollar sign in each leading numeric character position to be sup
pressed. A dollar sign will be placed in the rightmost position in
which suppression by a dollar sign is to occur. The following table
illustrates the principle:

Source Editing Edited
Item PICTURE Item

123 $$99 $123
012 $$99 $12
001 $$ZZ $ 1
000 $$$$

Zero suppression with a fioating minus sign is specified by placing a
minus sign in each leading numeric character position to be sup
pressed. If the value of the item is negative, a minus sign will be
placed in the rightmost position in which suppression by a minus sign
is to occur. If the value of the item is positive or zero, a blank will be
inserted instead of a minus sign. The following table illustrates the
principle:

Source Editing Edited
Item PICTURE Item

123 --99 123

012 --99 -12

001 --ZZ - 1
000

All floating minus signs must be the leftmost characters in a PICTURE.

Zero suppression by means of a fioating plus sign is specified by
placing a plus sign in each leading numeric character position to be
suppressed. If the value of the item is negative, a minus sign will be
placed in the rightmost position in which suppression is to occur;
if the value of the item is not negative, a plus sign will be inserted
instead. The following examples illustrate the effect of the floating
plus sign:

83

Reserved Characters

General Notes on the
PICTURE Clause

Examples of the
PICTURE Clause

84

Source Editing Edited
Item PICTUHE Item

123 ++99 +123

012 ++99 +12
-

012 ++99 -12
-

001 ++99 -01

000 ++++

All floating plus signs must be the leftmost characters in a PICTURE.

The characters J and K are reserved for special uses in a PICTURE and are explained,
as appropriate, in the publications covering the various processors.

1. When an integer is placed in parentheses immediately following a PICTURE

character, it indicates the number of successive times that character is to be
present. For example, the notation P (4) 9 (10) is equivalent to PPPP9999999999
and will be interpreted in the same way. The parentheses must follow the indi
cated symbol without an intervening space.

2. The number of characters in a PICTURE must not exceed 30. For example,
$$ZZ.99 is a PICTURE containing seven characters, 9V9 contains three characters
and 9 (1000) contains seven characters. Thus, the number of characters in a
PICTURE may be different than the number of character positions described by
the PICTURE.

The following are examples of applications of PICTURE clauses which do not contain
editing symbols. A sign over the units position of a number indicates an operational
sign as opposed to a display sign.

Non-Editing Applications

then the item willl
and the characters be used in pro- and its class

If PICTURE is: in the item are: cedures as: will be:

99999 12345 12345 NUMERIC

999V99 12345 123.45 NUMERIC
+ +

S999V99 12345 123.45 NUMERIC

S9(3)V9(2) 12345 123.45 NUMERIC

xxxxx 12345 12345 ALPHANUMERIC

AA AAA ABCDE ABCDE ALPHABETIC

xxxxx ABCDE ABCDE ALPHANUMERIC

999X99 123.45 123.45 ALPHANUMERIC

999AA 123AB 123AB ALPHANUMERIC

999XX 123AB 123AB ALPHANUMERIC

XXXAA 123AB 123AB ALPHANUMERIC

xxxxx 123AB 123AB ALPHANUMERIC

9(3)A(2) 123AB 123AB ALPHANUMERIC

99PPP 12 12000 NUMERIC

99PPPV 12 12000 NUMERIC

P(3)9(2) 12 • 00012 NUMERIC

VP{3)9(2) 12 • 00012 NUMERIC

The examples which follow illustrate the use of PICTURE to edit data. In each
example a movement of data is implied, as indicated by the column headings.

Source Area

PICTURE

99999

99999V

9(5)
9(5)V

9(5)

9(5)
999V99

V99999

9(5)

9(5)

9(5)

9(5)

9(5)
99V999

V99999

9(5)

9(5)

9(5)

9(5)
9999V9

V9(5)

S99999V

S9(5)V

S9(5)
$99999

S9(5)

S9(5)

S9(5)

S9(5)

S9(5)

S9(5)

S9(5)

S9(5)

S9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

S9(5)

S9(5)

DATA

12345

00123

00100

00000

00000

00000

12345

1234·5

12345

00123

00000

00000

00000

12345

12345

12345

00123

00000

00000

12345

12345

12345
+

12345

00123
+ 1234.5

12345
+

00123

ooooi
12345

12345
+

12345

12345

0012~
00001

00123

00123

00000

00000

12345

12345

12345
+

12345

Editing ApplicaHons

Receiving Area

PICTURE

$ZZ,ZZ9.99

$ZZ,ZZ9.99

$ZZ, ZZ9. 99

$ZZ,ZZ9.99

$ZZ,ZZZ.99

$ZZ,ZZZ.ZZ

$ZZ,ZZ9.99

$ZZ, ZZ9. 99

$**,**9.99

$**,**9.99

$**,***.99

$**,***·**
$**,***.ZZ
$**,**9.99

$**,**9.99
$$$,$$9.99

$$$,$$9.99

$$$,$$9.99

$$$,$$$.ZZ

$$$,$$9.99

$$$,$$9.99
-ZZZZ9,99

-ZZZZ9.99

-ZZZZ9.99

ZZZZ9.99-

ZZZZ9.99-

------.99

------.99
+ZZZZZ.99
+ZZZZZ.99

ZZZZZ.99+

ZZZZZ.99+
++-H-++,99

++-H-++,99
++++++.99

------,99
++-H-++.ZZ

------.ZZ
BB999,00

00099.00

$$$$$$. 99CR
$$$$$$. 99CR

EDITED DATA

$ 1 2 ' 3 4 5 • 0 0

$ 1 2 3 • 0 0

$ 1 0 0 • 0 0

$

$

0. 0 0

• 0 0

$ 1 2 3 • 4 5

$ 0 • 1 2

$ 1 2 , 3 4 5 • 0 0

$ * * * 1 2 3 • 0 0

$ * * * * * * . 0 0

$ * * * * 1 2 . 3 4

$ * * * * * 0 • 1 2
$ 1 2 , 3 4 5 • 0 0

$ 1 2 3 • 0 0

$ 0 • 0 0

$ 1 ' 2 3 4 • 5 0

$ 0 • 1 2

- 1 2 3 4 5 • 0 0

1 2 3 4 5 • 0 0

1 2 3 . 0 0

1 2 3 4 5 • 0 0

1 2 3 4 5 • 0 0 -

1 2 3 • 0 0

- 1 • 0 0

+ 1 2 3 4 5 • 0 0

- 1 2 3 4 5 • 0 0

1 2 3 4 5 • 0 0 +

1 2 3 4 5 • 0 0 -

+ 1 2 3 • 0 0

+ 1 • 0 0

+123.00

1 2 3 • 0 0

3 4 5 • 0 0

0 0 0 4 5 . 0 0

$12345.00CR
$ 1 2 3 4 s . 0 0

85

The Editing Clause

BLANK

JUSTIFIED

86

This clause allows the programmer to specify certain kinds of editing without using
the PICTURE clause. Zero suppression, check protection, and the floating dollar sign
are available by the use of this clause. (For a discussion of these editing terms, see
PICTURE.) The general form of the editing clause is shown below:

[{
ZERO SUPPRESS } [J] CHECK PROTECT LEAVING integ.rtr-4 PLACE[SJ
FLOAT DOLLAR SIGN

This clause can be applied only to elementary items and to items which edit
NUMERIC values.

ZERO SUPPRESS will replace all left-hand zeros with blanks until either a digit other
than a zero or a decimal point (assumed or actual) is encountered.

CHECK PROTECT will replace all left-hand zeros with asterisks until either a digit
other than zero or a decimal point (assumed or actual) is encountered.

FLOAT DOLLAR SIGN will cause all left-hand zeros to be suppressed and a dollar sign
to be placed immediately to the left of either the first non-zero digit or the decimal
point.

If the LEAVING option is used, the suppression or insertion will stop at such a point
as to "leave" the specified number of places to the left of the decimal point. For
example, a five-digit number described by the dau~e CHECK PROTECT LEAVING 3
PLACES would edit the number 7 so that it would appear as 00007 when printed.
Integer must be a numeric literal with an integral value.

The editing clause cannot be used to specify zero suppression to the right of a
decimal point; the BLANK clause is used for that purpose. If a PICTURE clause is used
in the same entry as an editing clause, the two must not be contradictory.

The purpose of the BLANK clause is to make an item blank when its value is equal
to zero. The general form of the clause is:

[BLANK WHEN ZERO J

When this clause is present, the item being described will be filled with blanks
(spaces) whenever the value of the item is zero. When the zero condition exists,
all editing specifications in a PICTURE or editing clause will be overridden in favor
of inserting all blanks. This clause can be used onlly with an elementary item.

An item of data may be moved within the computer by means of a MOVE statement
or as a result of computation or some other operation. If the location to which it is
moved is larger in size than the data itself, it may be necessary to specify the posi
tion the data is to occupy in its new location. In the absence of instructions to the
contrary, NUMERIC data will be "right justified" under these circumstances, unless
an assumed decimal point has been explicitly specified for the item; in that case,
decimal point alignment occurs. When an item is right justified, its rightmost char
acter will be placed in the rightmost position of the new location, and any unused
positions at the left will be filled with zeros. ALPHABETIC and ALPHANUMERIC data,
on the other hand, will be "left justified" in the absence of instructions to the con
trary and any unused character positions at the right will be filled with blanks.

SYNCHRONIZED

OCCURS

•

If the programmer wishes to specify right justification in lieu of left justification,
or the reverse, he may do so by means of the JUSTIFIED clause, which has the follow
ing form:

If the data is NUMERIC and an assumed decimal point has been expHcitly specified,
this clause must not be used.

In many data processing systems, data is stored in machine "words" of a fixed
length. Thus, it is possible for an item to be shorter than the space allowed for it.
This means that there may be unoccupied "pieces" of words which are filled with
non-significant characters, such as zeros or blanks, depending on the system. How
ever, it may be desirable to fill all available space with data, so that more than one
item may be placed in one machine word. This is known as "packing."

If the SYNCHRONIZED clause is used, the processor will understand that the item
being described is not packed. The clause is used, therefore, to describe the
"unpacked" arrangement of items within input records in the FILE SECTION, and to
specify that items within output records are not to be packed. It can also be used
to describe items in the Working-Storage and Constant Sections.

The general form of the SYNCHRONIZED clause is as follows:

[SYNCHRONIZED f LEFT l J
)_RIGHTf

If SYNCHRONIZED LEFT is specified, the leftmost character of the described item will
occupy the left-hand position of the next machine word. This may mean that the

• right-hand portion of the preceding word is unoccupied. Note that the right-hand
portion, if any, of the last machine word which the item requires will contain the
first portion of the next item unless the latter is described as synchronized.

If SYNCHRONIZED RIGHT is specified, the rightmost character of the item will occupy
the right-hand end of a word. If the item is not a multiple of full machine words
in length, the left-hand portion of the first word in which it is contained will be
unoccupied.

If synchronization is not specified, successive items of data are packed. Packing
makes efficient use of storage space, but it may make each item relatively inacces
sible and cause an increase in the running time of the object program. Therefore,
if an item is referred to often, it may be advisable to synchronize it so that it can
be obtained in less time.

The occuRs clause is used to describe a sequence of data items of the same format,
such as might appear in the form of a table. A single item which is part of such a
sequence may be referred to in a procedure statement only by the use of subscript
ing. A general discussion of subscripting and the occuRs clause is given in Chapter
4. (See also the discussion on constructing tables of constants, at the end of this
chapter.) The general form of the occuns clause follows:

[OCCURS integer-2 TIMEISIJ

87

REDEFINES

88

The occuRs clause must not be used in a, Record Description entry having a level
number of 1 (or 01), 77, or 88. Integer-2 must be a positive numeric literal having
an integral value greater than zero.

It is sometimes necessary to "overlap" items in storage, i.e., to use the same storage
area for different items at different times. For example, suppose a work area called
REFUND-WORK-AREA is needed in a program and another work area, BILLING-WORK
AREA, is used later in the same program. Normally, each area would be described
separately in the Working-Storage Section, and each would occupy different por
tions of storage. However, if the programmer knows that REFUND-WORK-AREA is
never used when BILLING-WORK-AREA is used, he may use the REDEFINES clause and
cause both items to occupy the same physical area in storage. The general form of
the REDEFINES clause is given below.

level-number data-name-1 [REDEFINES data-name-2 J

As the format indicates, the REDEFINES clause, if used, must immediately follow
data-name-1.

The following rules apply to the use of REDEFINES:

1. The level-numbers of data-name-1 and data-name-2 must be equal.

2. Redefinition starts at data-name-2 and ends when a fovel-number numerically
less than or equal to that of data-name-2 is encountered.

3. The entries redefining an axea must immediately follow the entries originally
describing the same area.

4. The size associated with the redefinition, i.e., with data-name-1, must not exceed
the size of the original area, i.e., data-name-2.

5. This clause is not used at the record (01) level in the File Section; a DATA
RECORD clause in the FD entry that names more than one data record implies
automatic redefinition.

When an area is redefined, all descriptions of the area remain in effect. Thus, if B
and C are two separate items which share the same storage area, the procedure
statements MOVE x TO B or MOVE Y TO c could be executed at any point in the pro
gram. In the first case, B would assume the value of X and take the form specified
by the description of B. In the second case, the same physical area would receive Y
according to the description of C. A redefinition does not cause any data to be
erased and does not supersede a previous description.

The original example shown in this discussion might be redefined as follows within
the Working-Storage Section:

01 REFUND-WORK-AREA ..

01 BILLING-WORK-AREA REDEFINES REFUND-WORK-AREA

COPY

Working-Storage Section

An additional application of the REDEFINES clause will be discussed later in this
chapter under the heading Constructing Tables of Constants.

The purpose of the COPY clause is to enable the programmer to include prewritten
Record Description entries in the Data Division. These prewritten entries may be
copied from elsewhere in the Data Division or from the COBOL library. (See Chapter
4 for a discussion of the library.) Briefly, the effect of the COPY clause is to extract
an entry or a series of entries from another place and put it into a program at the
point where the COPY clause appears. The complete general form of a Record
Description entry containing a COPY clause is the following:

level-number data-name-1 [REDEFINES data-name-2 J
COPY data-name-3 [FROM LIBRARY J.

As shown in the above diagram, when COPY is used, the only other clause that may
appear in the entry is REDEFINES.

The information being copied is inserted at the point in an entry where the COPY

clause appears. Thus, level-number-1 and data-name-1 are not replaced by the in
formation being copied, nor is the REDEFINES clause if it is present.

Copying ends when, in the entries being copied, a level-number is encountered
which is numerically equal to, or less than, the level-number originally associated
with data-name-3. In this way, one entry or many entries may be duplicated with
one COPY.

The level-number of data-name-3 does not have to equal the level-number of
data-name-1. If the level-numbers differ, all level-numbers of succeeding entries
being copied will be adjusted appropriately by the difference between the level
numbers of data-name-1 and data-name-3.

When data-name-3 is an entry appearing elsewhere in the Data Division (rather
than in the library), it may occur either before or after the entry referring to it.
Data-name-3 must never be subscripted.

When information is to be copied from the library, the FROM LIBRARY option must
be included. Then if data-name-3 is not at the 1 (01) level in the library, it must
be qualified by the item containing it which does have a level-number of 1. This
qualification its necessary, even though data-name-3 may be unique. An entry being
copied may itself contain a COPY clause only if it refers to the library.

The Working-Storage Section is used to describe areas of storage where intermedi
ate results and other items are stored temporarily at object time. This section con
sists of a series of Record Description entries, each of which describes an item in a
work area. The entries must be preceded by the header WORKING-STORAGE SECTION.

In general, work area items are of two types, independent and grouped.

Independent Work Areas An independent work area consists of a single item which is not subdivided and is
not itself a subdivision of some other item. It is always assigned the level-number
77. Each independent item must be described in a separate Record Description
entry consisting of the following parts:

89

Group Work Areas

Initial Values

90

The level-number 77.

A data-name.

A CLASS or PICTURE clause.

A SIZE clause (if a PICTURE clause Jis not used).

The OCCURS clause must not be used in describing an independent item. The use
of any other clause is optional. When writing the Working-Storage Section, entries
for all independent items are placed before the entries describing grouped items.

Independent work areas are frequently used for the temporary storage of inter
mediate results pending completion of a calculation. For example, suppose the pro
grammer wishes to total several items in order to obtain an average, but that he
wishes to retain the total for some further calculation. In this case, the total would
have to be stored temporarily. Unless it were to be used as part of a larger grouping
of items, it would often be convenient to store it in some independent work area.

A group work area consists of two or more items grouped to form a record. The
entries used to write the description of a group work area in the Working-Storage
Section are exactly the same in format as those used to describe a record in the
File Section. Any clause which may be used in a Record Description entry may
also be used to describe an item in this part of the Working-Storage Section.

The initial value of any item in the Working-Storage Section may be specified by
using a v ALUE clause in the Record Description entry describing the item. An initial
value is a value to be assumed by the item at the time execution of the object pro
gram is begun.

Any initial value, numeric or non-numeric, may be assigned to an item in the
Working-Storage Section with the following restrictions:

1. The value must be compatible with the CLASS of the item. For example, if the
CLASS is NUMERIC, only a numeric value may be assigm.ed as an initial value.

2. The size of the initial value must not exceed the SIZE of the item. If the size of
the value is less, standard rules for justification applly.

3. If the initial value of a work area is not specified by a VALUE clause, its initial
value will be unpredictable at object time.

Any item within a work area may be assigned condition-names.

The example below shows how entries for a Working-Storage Section might be
written. The header WORKING-STORAGE SECTION is followed immediately by the
entries describing independent items, and these are followed in tum by entries
describing grouped items.

WORKING-STORAGE SECTION.

77 TAX-DISCOUNT PICTURE 99999V99 USAGE IS COMPUTATIONAL
VALUE IS ZERO.

77 MARITAL-STATUS CLASS IS NUMERIC SIZE IS 1 USAGE IS
COMPUTATIONAL.

88 MARRIED VALUE IS 1.

88 SINGLE VALUE IS 2.

Constant Section

Independent
Constant E·ntries

Grouped Constants

Values

01 WORK-MASTER.
02 NAME CLASS IS ALPHANUMERIC USAGE IS DISPLAY
03 LAST-NAME

01 PAY-CHECK-RECORD

The concept of the named constant was introduced in Chapter 3. A named constant
is a named :item having a value that does not change during the course of a pro
gram. The Constant Section of the Data Division contains the entries which de
scribe named constants and specify their values.

The Constant Section is organized in exactly the same manner as the Working
Storage Section. It is begun with the header CONSTANT SECTION and consists solely
of Record Description entries. As in the Working-Storage Section, entries are of
two types, independent and grouped.

An independent constant entry describes a single item which is not subdivided and
is not itself a subdivision of some other item. It is always assigned the level-number
77. Each independent item must be described in a separate Record Description
entry consisting of the followilng parts:

The level-number 77.

A data-name.

A CLASS or PICTURE clause.

A SIZE clause (if a PICTURE clause is not used) .

A VALUE clause.

Neither the occuRs clause nor the REDEFINES clause is meaningful in an independent
constant entry. When the Constant Section is written, independent entries precede
the group entries.

Grouped constant entries consist of two or more constants grouped to form a
record. Such entries are often used to describe a series of constants to be stored for
use in a table. The entries used to write the description of a group of constants in
the Constant Section are exactly the same in format as those used to describe a
record in the File Section. Any clause which may be used in a Record Description
entry may also be used to describe an item in the Constant Section.

Any value, numeric or non-numeric, may be specified for a constant, with the fol
lowing restrictions:

I. The size of the literal in the VALUE clause must not exceed the SIZE of the item.
If the size of the literal is less, standard rules for justification apply.

2. The value specified must not contradict the CLASS of the item.

91

Constructing Tables of Constants

92

Reference data is often organized in the form of a table. The COBOL system provides
two methods of constmcting such tables. One method involves naming and describ
ing each item of data individually; this is often done in the Constant Section, but
input data may be organized into tables by means of appropriate entries in the
File Section. The second method involves the use of subscripting, as explained in
Chapter4.

If the programmer wishes to employ subscripting to obtain items from a table, he
must first describe the table in the Constant Section as a group of constants. He
must then redefine the table by means of a REDEFINES dause, accompanied by an
occURS clause which furnishes the processor with the information necessary to
permit subscripting.

For example, suppose that a table consists of the 1960 populations of the 50 states,
organized according to the alphabetical order of the state names. This table could
be written in the Constant Section as a record containing a group of constants.
The following entries might be used:

01 POPULATION-RECORD

02 ALABAMA PICTURE 99999999 USAGE COMPUTATIONAL
VALUE 32667 40.

02 ALASKA PICTURE 99999999 USAGE COMPUTATIONAL
VALUE 226167.

02 ARIZONA PICTURE 99999999 USAGE COMPUTATIONAL
VALUE 1302161.

At object time, this table of 50 population figures wiH be available for use in
processing data. For example, the population for Arizona could be moved to a
work area called TOTAL-POPULATION by writing MOVE ARIZONA TO TOTAL-POPULA

TION.

Suppose, however, that the programmer wishes to use subscripting in referring to
the table. In effect, subscripting allows the programmer to select an item by its
relative position in the table, as opposed to the technique of referring to it by name.
Thus, a subscript which selected the third POPULATION-:RECORD would in this case
select the figure for Arizona.

Before the programmer can make use of subscripts, he must redefine the group of
constants representing the population figures. This migh1t be done by the following
entries, which would create a table called POPUJ ... ATION-TABLE, consisting of items
called STA TE-POPULATION.

01 POPULATION-TABLE REDEFINES POPULATION-RECORD.

04 STATE-POPULATION PICTURE 99999999 USAGE IS COMPU
TATIONAL OCCURS 50 TIMES.

The effect of the OCCURS clause is to inform the processor that the series of constants
consists of 50 successive items, each with a PICTURE 0£ 99999999 and COMPUTA

TIONAL USAGE. Once this has been done, any of the 50 items can be referred to by
the use of a subscript.

In the example given, it is assumed that the population figure for Arizona will be
the third figure in the table. The subscript 3 is therefore required to obtain it. The

programmer might specify the subscript directly, using such a statement as MOVE

STATE-POPULATION (3) TO TOTAL-POPULATION. On the other hand, he could arrange
to have the value 3 assumed by a data-item called STATE; then he might write MOVE

STATE-POPULATION (STATE) TO TOTAL-POPULATION. In the latter case, the object
program would employ the current value of the item called STATE, namely 3, as the
subscript. This technique permits the programmer to vary the subscript as a result
of changes in input data or by calculation; it allows him to select any value in the
table by means of a single procedure statement, whereas if he specified a particular
subscript value, he would be limited to the one item indicated. The technique of
subscripting, in other words, permits the programmer to cause the selection from
the table to be made at object time in accordance with the nature of the data being
processed.

The general procedure of specifying a table as a group of constants and then rede
fining it so that it can be referred to by subscripting can be applied to one, two, or
three levels of subscripting.

93

Chapter 7:

Introduction

Verbs

Format

94

Procedure Division

Just as verbs in the English language designate action, so :it is with the COBOL verbs.
Whereas the entries in the other divisions of a COBOL source program describe or
define things, the verbs specify action, or procedures, to be carried out. Accord
ingly, the COBOL verbs form the basis of the Procedure Division of a source pro
gram. The verbs fall into two main categories. Most of them are used in statements
that specify the data processing steps the object program is to perform and thus
they are called program verbs. The other category comprises the verbs that direct
the processor; they are known as processor-directing verbs, or simply as processor
verbs.

The COBOL verbs are listed below. The organization of tMs chapter is based on the
classifications used in this list:

Program Verbs

Input/Output

OPEN
READ
WRITE
CLOSE
ACCEPT
DISPLAY

D M . l . {MOVE
ata ampu abon EXAMINE

Arithmetic
{

ADD
SUBTRACT_
MULTIPLY
DIVIDE
COMPUTE

ALTER

{

GO TO

Sequence Control PERFORM

STOP

Processor Verbs

ENTER
EXIT
NOTE

Each verb in COBOL has one or more fixed formats, or contexts, in which it can be
employed. The format indicates the arrangement of a verb and its operands and
thus defines a particular type of procedure statement. The verb formats as pre
sented in thfa chapter are set off by horizontal lines to dilstinguish them from text
and examples.

As noted in Chapter 3, commas can be used as series separators when a verb has
two or more operands. Because this usage is optional, such commas do not appear

Program Verbs

The Input/Output Verbs

OPEN

in the verb formats. Commas do appear in some of the sample statements, however,
to illustrate how the programmer can insert them for the sake of readability.

The way in which statements are combined to form sentences and the ways in
which the larger units of procedure (i.e., paragraphs and sections) are formed
are discussed in Chapter 3. The rules for entering this information on COBOL Pro
gram Sheets are given in Chapter 5.

Each of the COBOL program verbs causes some event or series of events to take
place at object time, that is, at the time at which the object program is run. In
order to simplify the discussion of the program verbs and the statements in which
they appear, expressions such as, "when the COMPUTE verb is executed," are used
occasionally in this chapter. The reader should realize that such usage actually
refers to the object-time execution of the corresponding machine instructions pro
duced by the processor.

In a data processing system, the flow of data through the computer is governed
by an input/ output control system. Associated with this system in COBOL are the
input/ output verbs. Four of the verbs-OPEN, READ, WRITE and CLOSE-are used to
specify the flow of data to and from files stored in external media. The remaining
verbs, ACCEPT and DISPLAY, are used to govern low-volume information that is to
be obtained from or sent to 1/0 devices such as a card reader or console typewriter.

The input/ output control system is a record processing system. That is, the unit of
data made available by a READ or passed along by a WRITE is the record, as
described in the chapters on data description. The programmer is concerned only
with the use of individual records; the input/ output control system automatically
provides for such operations as the movement of data into buffers and/ or internal
storage, validity checking, error correction (where feasible), unblocking and
blocking, and tape alternation.

The OPEN verb is used to initiate the processing of one or more input and/ or output
files. Its format is:

OPEN [INPUT file-name-I ~le-name-2 • •• J J [OUTl'UT file-name-3

[file-name-4 • • • J J
At least one of the two optional clauses (INPUT or OUTPUT) must be written.
An OPEN statement can name just one file or it can name all of the files to be
processed by the program. In other words, the programmer can open all the files
at one time, if desired, or he can open one or more at a time according to the
requirements of the program. In any case, an OPEN statement must be executed for
a given file before a READ or a WRITE pertaining to that file can be executed.

Some examples of the U" - of the OPEN verb are:

OPEN INPUT BACK-ORDERS

OPEN INPUT MASTER-IN TRANSACTIONS OUTPUT MASTER-OUT
INVOICES EXCE:PTIONS

OPEN OUTPUT STATISTICS

95

READ

96

These additional points should be noted in connection with OPEN:

1. Each file named in an OPEN statement must be defined by an FD (File Descrip
tion) entry in the Data Division of the program.

2. If the FD entry for a given file indicates that label records are used, the execu
tion of an OPEN statement causes the checking of the J!abel record (if .INPUT)

or the writing of a label record (if OUTPUT).

3. When the file being opened is an input file, the OPEN does not cause the first
data record to be made available for processing. This oecurs only as a result of
the first READ.

4. A second OPEN of a particular file can be executed only if preceded by execu
tion of a CLOSE of that file.

5. If a file being opened is an input file designated as OPTIONAL in the FILE-CONTROL

paragraph of the Environment Division, the object program will contain an
interrogation procedure to determine whether the file is present. If the file is
not present, the OPEN will not be executed; furthermore, a message will be dis
played indicating the absence of the file and the object program will proceed
as though the file were in end-of-file status. Thus, when the first READ for the
file is encountered, the end-of-file action specified in the READ statement (see
the AT END option of the READ verb) will occur.

The function of the READ verb is to get the next record from an input file and make
it available for processing. Provision is made for the execution of an imperative
statement when the end of file is reached. The format of a READ statement is:

READ file-name RECORD [INTQ area-name J
[AT END any imperative statement J

An OPEN statement for the file-name file must be executed prior to the execution
of the first READ for that file.

When a READ is executed, the next record in the named file becomes accessible in
the mput area defined by the associated Record Description in the File Section of
the Data Division. The record remains available in the input area until the next
READ (for that file) is executed. The named file must be defined by an FD entry in
the Data Division of the program.

If a file contains more than one type of record, the READ verb delivers the next
record regardless of type. The differing records automatically share the same input
area; thus the programmer must provide for determining the type of the current
record and must refer only to information that is present in the current record.

Each time an end-of-reel condition occurs in a reel other than the last, the READ

verb causes the following operations to take place:

1. If labels are present (as specified in the FD for that file) the standard end-of
reel label subroutine of the input/ output control system is executed.

2. A tape alternation occurs, if appropriate.
3. If labels are present, the standard beginning-of-reel label subroutine is ex

ecuted.
4. The next record in the file is made available for processing.

WRITE

If the file-name file is OPTIONAL and is not present at object time, the any imperative
statement will be executed when the first READ for the file is encountered. (See the
comments on OPTIONAL files in the discussion of the FILE-CONTROL paragraph in
Chapter 8 and the OPEN verb in this chapter.)

The INTO Option

The INTO area-name option converts the READ into a READ and MOVE. The area-name
specified must be the name of either a working area or an output record area. If
the format of the INTO area differs from that of the input record, the data will be
moved in accordance with the rules for the MOVE verb without the CORRESPONDING
option.

When the INTO area-name option is used, the current record becomes available in
the input record area, as well as in the INTO area.

The AT END Option

The AT ENO option permits the programmer to specify one imperative statement to
be executed when the end of file is detected. The AT END any imperative statement
is actually a special type of conditional statement and is discussed as such in
Chapter 3.

Every REAJD statement must contain either an explicit or an implicit AT END state
ment. If none is stated, the processor will examine all other READ statements asso
ciated with the particular file. If just one of the READ statements contains an AT END
statement, the processor wm, in effect, append that statement to each of the other
READ statements. However, if more than one, but not all, READS for a given file have
AT END statements, this will constitute an error and the processor will so indicate.

Once an AT END statement has been executed, an attempt to READ from the asso
ciated file will constitute an error unless a subsequent CLOSE and OPEN have been
executed for that file.

EXAMPLES

Some typical READ statements are:

READ TRANSACTIONS RECORD

READ MASTER-IN RECORD INTO WORK-AREA AT END GO TO
END-OF-JOB

READ STATISTICS RECORD AT END GO TO SUMMARY

The WRITE verb is used to release a record for insertion in an output file. The
format for a WRITE is:

WRITE record-name [FROM area-name J

The file associated with record-name must be defined by an FD entry in the Data
Division of the program. At object time, an OPEN statement for that file must be
executed before the first WRITE for the file is executed.

When a WRITE statement is executed, the record-name record is released. Accord
ingly, all the desired processing steps must be performed before the WRITE occurs.

97

CLOSE

98

At the end of each reel other than the last in the output file, the WRITE verb causes
the following operations to take place:

l. If labels are specified (in the FD for that file), the standard end-of-reel label
subroutine of the input/ output control system is executed.

2. A tape alternation occurs, if appropriate.

3. If labels are specified, the standard beginning-of-reel subroutine is executed.

The FROM Option

The FROM area-name option of the WRITE verb is comparable to the INTO area-name
option of the READ verb. It effectively converts the WRITE into a MOVE and WRITE.

The area-name must be the name of an input record area, a working area, or a
constant area. If the format of the FROM area differs from that of record-name, the
data will be moved in accordance with the rules for the MOVE verb without the
CORRESPONDING option.

When the FROM area-name option is used, the information in the area-name area
continues to be available.

Note: The names used for record-name and for airea-name cannot be the same.

EXAMPLES

Some sample statements illustrating the use of the WRITE verb are:

WRITE INVOICE

WRITE MASTER-OUT FROM WORK-AREA

WRITE VOLUME FROM TABLJE (R-VALUE)

The purpose of the CLOSE verb is to terminate the processing of one or more input
and/ or output reels or files. Provision is included for optional rewinding and/ or
locking. The CLOSE format is:

CLOSE file-name-1 [)3.EEL J [WITH {~~C~EWIND} J ~le-name-2 • • • J

Each file named in a CLOSE statement must be defined in an FD entry in the Data
Division of the source program.

CLOSE file-name

An OPEN statement must be executed for a given file beforn it can be closed. When
a CLOSE file-name statement is executed at object time, the final closing conventions
are performed for each file specified and the data areas are released.

Detailed information concerning the functioning of the CLOSE verb with respect to
the mcs (input/ output control system) will be presented in the publications deal
ing with the respective processors. In general, however, thee following events occur
when a CLOSE is executed with respect to an entire file (i.e., as opposed to a reel
of the file) :

1. If the file is an input file and it is in end-of-file status, ending-label checking will
be performed (assuming labels are present) by the end-of-file label subroutine
of the mcs, the end-of-file routine of the IGCs will be executed, and the data

ACCEPT

areas will be released. If the file is not in end-of-file status, no label checking
will occur, but the other steps will be performed.

2. If the :61e is an output file and labels are specified, label writing will be accom
plished by the mcs end-of-file label subroutine.

3. Furthermore, for either an input file or an output file:

a. If neither the LOCK nor the NO REWIND option has been specified, the current
(final) reel of the file will be rewound.

b. If the NO REWIND option is used, the current (final) reel of the file will re
main in its current position.

c. If the LOCK option is used, the current (final) reel will be rewound using
an appropriate technique to insure that it cannot be read or written upon.

If a file mentioned in a CLOSE statement is an OPTIONAL input file (see the FILE
CONTROL paragraph of the Environment Division), the closing conventions will not
be performed when the file is not present at object time.

CLOSE file-name REEL

The CLOSE file-name REEL option can be employed with either an input or an output
file. This option is used only when it is desired to CLOSE a reel of a file prior to its
normal end. Details will be specified in the respective processor publications; but,
in general, the following action will take place with respect to the current reel of
the file:

I. If the reel is part of an inpiut file: There will be no checking of the ending label.
If the reel happens to be the last one in the file, an error may result at object
time, since no end of file will occur.

2. If the reel is part of an output file, the standard end-of-reel processing takes
place immediately.

3. Furthermore, for either input or output:

a. If neither LOCK nor NO JREWIND is specified, the reel will be rewound.

b. If the NO REWIND option is used, the current reel is not rewound.

c. If the LOCK option is used, the current reel will be rewound utilizing a tech
nique to insure that it cannot be read or written upon.

EXAMPLES

Some examples of CLOSE statements are:

CLOSE TRANSACTIONS

CLOSE MASTER-IN WITH LOCK MASTER-OUT WITH LOCK

CLOSE SAMPLING-ANALYSIS WITH NO REWIND

CLOSE INVOICES REEL, BACK-ORDERS REEL

The function of the ACCEPT verb is to obtain low-volume data from an input device.
The format of ACCEPT is:

ACCEPT data-name [FROM mnemonic-name J

99

DISPLAY

100

For each machine system, a standard ACCEPT device will be specified in the publi
cation covering the details of the Environment Division for that system. In most
cases, this device will be the card reader. Unless the FHOM option is used, the
data-name data is read from the standard device. Data can be obtained from an
alternate device by utilizing the FROM mnemonic-name option. In this case,
mnemonic-name corresponds to an input device defined in the SPECIAL-NAMES

paragraph of the Environment Division of the program. Thus, the programmer
might write ACCEPT statements such as:

ACCEPT CANCELLATIONS

ACCEPT DATE FROM CONSOLE

ACCEPT CODE FROM CARD-READER

The maximum size of the data represented by data-name will be specified in the
publications dealing with the respective processors. If the format of data-name
contains fewer than the maximum number of characters, the data will appear in
the leftmost positions of the input area associated with the device. The processor
will provide appropriate instructions in the object progrnm to accommodate any
difference in size and to move the data to the data-·name area.

This verb is used to display low-volume data on an output device. The format of
the DISPLAY verb is:

D A {
data-name-I} [{data-name-2}] [~ .] ISPL y literal-1 literal-2 • • • UPON mnemonic-name

For each machine system, a standard DISPLAY device will be specified in the pub
lication dealing with the details of the Environment Division for that system. In
most cases, the standard device will be a typewriter or a printer. Unless the UPON

option is used, the specified data-name(s) and/or literal(s) will be "written" on
this device. The programmer can cause information to be displayed on an output
device other than the standard DISPLAY device by utilizing the UPON mnemonic
name option. The mnemonic-name must correspond to an output device defined in
the SPECIAL-NAMES paragraph of the Environment Division of the program.

A combination of data-names and literals can be used in a DISPLAY statement in
order to convey the desired information. A literal employed in the statement will
itself appear in the resulting message, whereas it is the value of a data-name that
will appear in the information displayed. To illustrate this point, suppose that the
programmer has written the following DISPLAY statement:

DISPLAY 'VALUE OF CHECK-SUM IS ' CHECK-SUM.

Assume further that the value of the data item named Cll_E:CK-SUM is 0342112 at the
time this DISPLAY statement is executed. Then, the information that will appear on
the DISPLAY device at object time is:

VALUE OF CHECK-SUM IS 0342.112

Some other examples of DISPLAY statements are:

DISPLAY 'END OF PHASE l'

DISPLAY GRAND-TOTAL UPON PRINTER

DISPLAY HIGH-VALUES

DISPLAY QUOTE 'QUOTE' QUOTE

As indicated in the last two of these sample statements, figurative constants can be
used in DISPLAY statements. It should be noted that the third statement above will
cause a single HIGH-VALUE character to be displayed at object time, since any other
number of such characters is indeterminable. The last example will cause the fol
lowing infomiation to appear at object time:

'QUOTE'

The DISPLAY device produces output only in multiples of some minimum unit; the
data items will appear one after the other so as to fill the first unit, then the second,
and so on. For example, if a card punch is used for DISPLAY purposes and three
50-character data items are to be displayed, the first item and the first 30 characters
of the second item will be punched in the 80 columns of the first card, and the
balance of the second item and all of the third item will be punched in the first
70 columns of a second card.

Data Manipulation Verbs The movement of data from one place to another within the computer and the
inspection of data are implicit iln the functioning of several of the COBOL verbs. For
example, execution of the COMPUTE verb can involve editing of, as well as move
ment of, the :result. This handling of data is incidental to the main purpose, how
ever, except in the case of the two data manipulation verbs, MOVE and EXAMINE.

The MOVE verb has as its primary function the transmission of data from one area
to another. EXAMINE involves the inspection of data within the computer, with or
without movement. These two verbs are discussed in detail in the following
paragraphs.

MOVE The MOVE verb is used to transfer information from one data area to one or more
other areas within the computer. Concurrent editing takes place automatically in
certain cases according to the format of the data items as described in the Data
Division. The MOVE verb can be used in either of two formats:

Option 1

{
data-name-1} 'T''Q J [J J MOVE literal ~ uata-name-2 uata-name-3 •••

Option 2

MOVE CORRESPONDING data-name-I TO data-name-2 [data-name-3 ••• J

The Simple MOVE

When the simple MOVE (Option 1) is executed at object time, the data represented
by data-name-1 or the specified literal is moved to the area designated by data
name-2. The same information is moved also to any additional area(s) mentioned
in the statement, i.e., to the data-name-3 area, etc. This movement does not destroy
the original data-it makes "copies" of it in the designated areas.

Since both a "source" (specified by data-name-1 or literal) and a "receiving" area
(designated by data-name-2, data-name-3, etc.) can be either an elementary data
item or a group item, a MOVE can involve one of four possible situations:

101

102

elementary item ~ elementary item

elementary item ~ group item

group item ~ elementary item

group item ~ group item

All four of these cases are permitted. However, when a group item is involved, as
in the latter three cases, the data is moved without any regard to the level structure
of the group items involved and without any editing. Thus, when a group item is
present, the data being moved is treated simply as a sequence of alphanumeric
characters and is placed in the receiving area in accordance with the rules for
moving elementary non-numeric items (see below). If the two items differ in size,
the processor will produce a warning message when the statement is encountered.
Normally, when a group item is involved, the MOVE is a group-to-group transfer
of data and the descriptions of the two items are iidentical.

When both the source and the receiving areas are elementary items, editing appro
priate to the format of the receiving area occurs automatically in the execution of
the MOVE. The editing that is performed depends on whether the source data
(specified by data-name-1 or literal) is numeric or non-numeric, as follows:

NUMERIC DATA ITEMS

I. The data from the source area is aligned with respect to the decimal point
(assumed or actual) in the receiving area. This alignment may result in the
loss of leading digits or of low-order digits (or both if the source area is larger
than the receiving area) ; a situation that would result in the loss of leading
digits will cause the processor to produce a warning message at process time.
Any excess positions in the receiving area will be filled with zeros.

2. If necessary, the data from the source area is converted to the mode of internal
representation specified for the receiving area. For example, a difference in
USAGE might require conversion from COMPUTATIONAL mode to DISPLAY mode.

3. If required by the format of the receiving area, zeros are replaced by spaces
(blanks) ; and dollar signs, decimal points, and commas are inserted.

4. If no decimal point has been specified, the data will be right justified unless the
data description of the item specifies JUSTIFIED LEFT.

NON-NUMERIC DATA ITEMS

1. The data from the source area is placed in the receiviltlg area beginning at the
left (or at the right if the format description of the receiving area specifies
JUSTIFIED RIGHT). Note that when a group item is moved, left justification is
standard.

2. If the receiving area is not completely filled by the data being moved, the re
maining positions are filled with spaces.

3. If the receiving area cannot contain all of the data being transferred, the MOVE
terminates when the receiving area is filled. A MOVE statement that would pro
duce this situation will cause the processor to produce a warning message at
process time.

Some examples of MOVE statements are:

MOVE MASTER-RECORD TO WORK-AREA

MOVE RESULT TO A-RECORD, B-RECORD, C-RECORD

MOVE HIGH-VALUES TO CONTROL-ITEM

MOVE ALL '9' TO SERIAL-NUMBER

Figure 7-1 contains several examples illustrating the editing feature of the MOVE
verb.

Source Area Receiving Area

Data Data Data Data
PICTURE before MOVE after MOVE PICTURE before MOVE after MOVE

99V99 1234 1234 99V99 9876 1234

99V99 1234 ll 234 99V9 987 123

9V9 12 :L 2 99V999 98765 01200

xxx A2B A2B xxxxx Y9X8W A2B

9V99 123 :l 23 99.99 87.65 01. 23

AAAAAA REPORT REPORT AAA JKL REP
99V99 1234 t 234 $ZZZ9. 99 $8765.43 $ 12.34

Figure 7-1. Examples of data before and after MOVE is executed. Standard justification is as
sumed (see the JUSTIFIED clause in Chapter 6).

Note that in each case in Figure 7-1 the data in the source area remains unaltered
after the MOVE has been executed. Note also, as in the fourth example, that the
information in any excess positions of a non-numeric receiving area is replaced by
spaces at the right. The sixth example shows a situation that would cause the
processor to produce a warning message at process time.

The CORRESPONDING Option

The CORRESJPONDING option (Option 2) of the MOVE verb permits the programmer
to specify the transfer of a group item containing one or more elementary items
that require editing in conjunction with the MOVE. When a MOVE CORRESPONDING
statement is executed at object time, selected items within the source area (data
name-1 area) are moved, with any required editing, to selected areas within the
receiving area (data-name-2, data-name-3, etc.). Items are selected by matching
the data-names of items within data-name-1 with like data-names of areas within
data-name-2, according to these rules:

I. At least one of the items of a selected pair must be an elementary item.
2. The two data-names must be identical, including all qualification up to but not

including data-name-1 and data-name-2.

Each corresponding item in the source area is moved to its corresponding receiving
area. Editing appropriate to the format of the receiving area takes place automati
cally. The mies stated for the simple MOVE apply to each pair of corresponding
items in the MOVE CORRESPONDING; thus, the effect of a MOVE CORRESPONDING state
ment is equivalent to a series of simple MOVE statements.

The following additional rules apply only to the CORRESPONDING option:

1. No area described by an occuRs clause (in the Data Division) can be involved
in the MOVE.

2. Data items with level numbers 77 and 88 (i.e., independent data items and
condition-names) cannot be referenced.

To illustrate the use of MOVE CORRESPONDING, suppose that the programmer wishes
to transfer corresponding items from a work area named INVENTORY-POSTING to an
output area. designated INVENTORY-RECORD. He could write this statement:

MOVE CORRESPONDING INVENTORY-POSTING TO
INVENTORY-RECORD

103

EXAMINE

104

Figure 7-2 shows the movement of data that might result from this statement. Note
that non-corresponding items in the source area are not moved and that non
corresponding items in the receiving area are not affected.

IN:~~i~~Y- PART-NO QTY-USED ON-HAND SHIPPED RECEIVED ORDER-PT

IN~:~~~Y- PART-NO PART-NAME ON-HAND UNIT-COST QTY-USED ORDER-PT

Figure 7-2. Movement of data resulting from execution of MOVE CORRESPONDING.

The EXAMINE verb is used to replace a given character and/or to count the number
of times it appears in a data item. Its format is:

TALLYING {titoING }
UNTIL FIRST

EXAMINE data-name literal-1 [REPLJ\&ING BY literal-2 J

{
ALL } REPLACING LEADING: literal-3 BY literal-4
[UNTIL] FIRST

The EXAMINE verb can be applied only to a data :item whose USAGE is defined as
DISPLAY. If USAGE is COMPUTATIONAL, the processor will indicate an error condition.

Any literal used in an EXAMINE statement must be a member of the charr ~ter set
associated with the CLASS specified for data-name. In other words, if the descrip
tion of data-name in the Data Division specifies a CLASS that uses less than the full
character set (e.g., NUMERIC or ALPHABETIC), then each literal used in an EXAMINE

statement must be one of the characters in the restricted set. Thus, if the CLASS of
data-name is NUMERIC, each literal used in the statement must be a numeric
character.

It is important to note that all literals in EXAMINE statements are employed in the
sense of alphanumeric literals. If a literal is a numeric character, say 0, the data
item is examined for the presence of the character 0, not for the value 0. Accord
ingly, all literals in EXAMINE statements are considered alphanumeric and therefore
are enclosed in quotation marks.

When an EXAMINE statement is executed, the examination begins with the first
(i.e., the leftmost) character of the data item and proceeds to the right. Each char
acter in the item represented by data-name is examined in tum. If the data item
being examined is numeric, any operational sign associated with the item will be
ignored.

The effects of an EXAMINE statement depend on the options employed by the pro
grammer, as follows:

The Arithmetic Verbs

ADD

If TALLYING is specified:

When the TALLYING option is used, a count of the number of certain characters in
data-name is made and this count replaces the value of a special register called
TALLY, which is accessible to the programmer. The count depends on which of the
three options of TALLYING is employed:

1. If ALL is specified, all occurrences of literal-1 in the data item are counted.
2. If LEADING is specified, the count represents the number of occurrences of

literal-1 prior to encountering a character other than literal-1.
3. If UNTIL FIRST is specified,, the count represents the number of characters other

than literal-1 encountered. prior to the first occurrence of literal-1.

If REPLACING is specified:

When the REPLACING option is used (either with or without the TALLYING option),
the replacement of characters depends on which of the four options of REPLACING

is employed:

I. If ALL is specified, a literal-2 (or a literal-4) is substituted for each occurrence
of literal-1 (or literal-3) .

2. If LEADING is specified, the substitution of literal-2 for literal-1 (or literal-4 for
literal-3) terminates when a character other than literal-1 (or literal-3) is en
countered or when the right-hand boundary of the data item is reached.

3. If UNTIL FIRST is specified, the substitution of literal-2 (or literal-4) terminates
as soon as the first literal-1 (or literal-3) is encountered or the right-hand
boundary of the item is reached.

4. If FIRST is specified, only the first occurrence of literal-3 is replaced by literal-4.

Several examples of EXAMINE statements are included in Figure 7-3. These ex
amples illustrate the various ways in which EXAMINE can be used and also show
the effect of each statement on a hypothetical data item and on the TALLY register.
(Figure 7-3 appears on the following page.)

COBOL provides a verb corresponding to each of the four basic arithmetic opera
tions: ADD, SUBTRACT, MULTIPLY and DIVIDE. A fifth arithmetic verb, COMPUTE, is
provided to permit the programmer to include arithmetic expressions in his source
program. These verbs are discussed in turn in the following paragraphs, although
the itemized rules stated under the ADD verb apply to all of the arithmetic verbs.

ADD is used to add two or more numeric values and to substitute the resulting sum
for the cun:ent value of an item. The format of an ADD statement is:

ADD {"-a.ta-name-1} [{d_ata-name-2} ••• J
ltteral-1 ltteral-2

[{~?VING} data-name-n] [ROUNDED]
[ON SI2'~ ERROR any imperative statement J

An ADD statement must name at least two addends. Thus the minimum ADD state
ment is of the form, ADD data-name-1 data-name-2 or of the form, ADD data-name-1
TO data-name-n.

105

106

Resulting
ITEM-1 Ci a ta Value of

EXAMINE Statement Before After TALLY

EXAMINE ITEM-! TALLYING
ALL 'O' 101010 101010 3

EXAMINE ITEM-! TALLYING
ALL T REPLACING BY 'O' 101010 000000 3

EXAMINE ITEM-! TALLYING
LEADING 'O' 004070 004070 2

EXAMINE ITEM-! TALLYING
LEADING 'A' REPLACING
BY SPACE AA4070 4070 2

EXAMINE ITEM-1 TALLYING
UNTIL FIRST 'X' ZZZ1X2 ZZZ1X2 4

EXAMINE ITEM-! TALLYING
UNTIL FIRST 'Z' REPLACING
BY 'Y' ZZZ1X2 ZZZ1X2 0

EXAMINE ITEM-1 REPLACING
ALL 'O' BY T 101010 111111 (unchanged)

EXAMINE ITEM-1 REPLACING
LEADING ' 0

' BY SPACE 007000 7000 (unchanged)
EXAMINE ITEM-1 REPLACING

FIRST ' 0
' BY '$' 001.94: $0 1.94 (unchanged)

EXAMINE ITEM-1 REPLACING
UNTIL FIRST 'C' BY 'D' ABCABC DDCABC (unchanged)

Figure 7-3. Sample EXAMINE statements showing the effect of each statement on the associated
data item and on the TALLY register.

When the GIVING option is used, the value of data-name-n is made equal to the sum
of the values of the preceding data-names and/or literals. If data-name-n is not
used as an addend, its format can contain editing symbols (see Rule 5 below).

When the TO option is used, the values of all the data-names, including data
name-n, and literals in the statement are added and the resulting sum becomes the
value of data-name-n.

If neither the GIVING nor the TO option is used, the rightmost addend must be a
data-name. The values of the literals and/or data-names are summed and the result
replaces the current value of the rightmost data-name.

Some examples of the use of the ADD verb are:

ADD BASEPAY, 0-T-PAY, BONUS GIVING GROSSPAY

ADD I TO COUNTER
ADD 40, OVERTIME TO HOURS-WORKED

ADD QTY-USED, YR-TO-DATE-USAGE

In the first of these examples, the values of BASEPAY, o-T-PAY, and BONUS are added
and the resulting sum becomes the new value of GROSSPAY. In the second case, the
value 1 is added to the current value of COUNTER. The next example results in the
sum of 40 and the value of OVERTIME being added to the value of HOURS-WORKED.

In the last example, the value of QTY-USED is added to the value of YR-TO-DATE

USAGE.

General Rules for
Arithmetic Verbs

The ROUNDED Option

The ON SIZE ERROR Option

The following rules apply to the ADD verb and to the other four arithmetic verbs as
well. These rules are not repeated in the discussion of SUBTRACT, MULTIPLY, DIVIDE

and COMPUTE:

1. All data-names used in arithmetic statements must represent numeric data items
that are defined as elementary items in the Data Division of the program. A
data-name that is defined as having a constant value cannot appear in an arith
metic statement as the name of a result.

2. All literals used in arithmetic statements must be numeric.

3. The maximum size of any operand (data-name or literal) is 18 decimal digits.
If the format for any operand specifies a size greater than 18 digits, the proces
sor will produce an error message when the discrepancy is encountered. The
limit of 18 digits does not apply to intermediate results, which are carried out
by the object program to one more place (both on the right and on the left)
than is specified for the largest operand involved in the computation.

4. The formats of the two or more operands in an arithmetic statement may differ
from each other; e.g., the programmer can ADD data-name-1 TO data-name-2
even though the PICTURES of the two operands are 99V9 and 9V99, respectively.
DecimaX point alignment is supplied automatically throughout computations.

5. The format of any data item involved in computations (e.g., addends, subtra
hends, multipliers, etc.) cannot contain editing symbols. If this rule is violated,
the processor will indicate the error by an appropriate message. Operational
signs and implied decimal points are not considered editing symbols (see the
discussion of editing and PICTURE in Chapter 6). The data-name in the GIVING

option of each of the four simple arithmetic verbs and the data-name-1 in the
COMPUTE verb format represent data items which must not enter into computa
tions if they contain editing symbols.

6. The only figurative constant permitted in arithmetic statements is ZERO (in
cluding ZEROS and ZEROES) •

If the number of decimal places in a computed result (sum, difference, product or
quotient) exceeds the number of decimal places in the format of the data-name
associated with the result (i.e., the data-name that is to take on the value of the
result), truncation will occur unless the ROUNDED option has been used. Truncation,
which is simply the dropping of excess digits, is always determined by the format
of the data-name associated with the result. When ROUNDED is specified, however,
the least-significant digit specified by the format of the result is increased by 1
whenever the most-significant digit of the excess is greater than or equal to 5.

Thus, with a format of 9999.9:, the value 1076.36 becomes 1076.4 when the ROUNDED

option is specified, and 1076.3 when ROUNDED is not used and truncation occurs.

Whenever the number of integral places (those to the left of the decimal point)
in a computed result exceeds the number of integral places in the format of the
data-name associated with the result, a size error condition arises. In this event,
one of two situations will obtain, depending on whether the ON SIZE ERROR option
has been used:

1. If ON SIZE ERROR is not used and a size error condition arises, the effect is un
predictable. Testing for a size error condition occurs only when the option is
specified in the arithmetic statement.

2. If the ON SIZE ERROR option is used and a size error condition occurs, the data
name associated with the result will retain its value and will not take on the

107

SUBTRACT

MULTIPLY

108

value of the computed result. Instead, the any imperaUve statement specified
in the ON SIZE ERROR option will be executed.

Some typical applications of ON SIZE ERROR are:

ADD PAGE-TOTAL TO INVOICE-TOTAL ON SIZE ERROR
GO TO INVOICE-ERROR

ADD BASEPAY, OVERTIME GIVING GROSSPAY ON SIZE
ERROR GO TO EXCESS-PAY-ROUTINE

The ON SIZE ERROR any imperative statement is actually a special type of conditional
statement which is discussed in Chapter 3.

Using the SUBTRACT verb the programmer can specify the subtraction of one or
more numeric values from a specified value and the substitution of the resulting
difference for the current value of an item. The format is:

SUBTRACT {d_ata-name-1} [{d_ata-name-2} •••]'
lzteral-1 lzteral-2

{
data-name-n} [G NG d. J FROM literal-n IVI ata-name-m

[ROUNDED J [ON SIZE ERROR any imperative statement J

The effect of the SUBTRACT verb is to sum the subtrahends, i.e., to add the values of
all the operands that precede the FROM, and then to subb·act that sum from the
minuend, i.e., from the value of the FROM operand. If the GIVING option is used, the
resulting difference replaces the current value of data-name-m. Otherwise it re
places the current value of the minuend (data-name-n); accordingly, the minuend
must not be a literal when the GIVING option is not used.

Note: Rules 1 through 6, the ROUNDED option and the ON SIZE ERROR option (which
appear following the discussion of ADD) apply also to the SUBTRACT verb.

Some examples of SUBTRACT are:

SUBTRACT RETURNS, ON-ORDER FROM ORDERS

SUBTRACT YR-TO-DATE-FICA FROM 144.00 GIVING FICA-DUE

In the first of these statements, the sum of the values of RETURNS and ON-ORDER is
subtracted from the value of ORDERS and the difference becomes the new value of
ORDERS. In the second case, the value of YR-TO-DATE-FICA is subtracted from 144.00
and the difference replaces the current value of FICA-DUE.

The MULTIPLY verb is used to multiply two numeric value:; and to substitute the
resulting product for the current value of an item. The MULTIPLY format is:

MUL TIPL y {t!_ata-name-1} BY {d_ata-nam1'!·2}
ltteral-1 - ltteral-2

[GIVING data-name-3 J [ROUNDED J
[ON SIZE ERROR any imperatlve statement]

DIVIDE

Summary ~of Simple
Arithmetic Verbs

When the GIVING option is used, the product of the multiplication replaces the
current value of data-name-3 .. If GIVING is not specified, the result replaces the cur
rent value of the multiplier (i.e., the second operand). In this case the multiplier
cannot be a literal.

Note: Rules I through 6, the ROUNDED option and the ON SIZE ERROR option (which
appear following the discussion of ADD) apply also to the MULTIPLY verb.

Typical usage of MULTIPLY is shown in these statements:

MULTIPLY INTEREST-RATE BY MIN-BALANCE ROUNDED
MULTIPLY QTY-USED BY UNIT-COST GIVING MONTHLY-COST

In the first example, the product of the values of INTEREST-RATE and MIN-BALANCE,

after rounding, will replace the current value of MIN-BALANCE. In the second case,
the result of the multiplication will become the new value of MONTHLY-COST.

The DIVIDE verb provides a means of dividing one numeric value into another and
using the result to replace the value of an item. The format is:

DIVIDE {J.ata-name-1} INTO {J.ata-name-2}
ltteral-1 -- ltteral-2

[GIVING data-name-3 J [ROUNDED J
[ON SIZJl ERROR any imperative statement]

When the GIVING option is used, the resulting quotient replaces the current value
of data-name-3. If GIVING is not specified, the quotient replaces the current value
of the dividend (i.e., the second operand). In this case the dividend cannot be a
literal.

Division by zero constitutes a special case of the size error condition. The pro
grammer can anticipate this condition by testing the value of data-name-1 for zero
before the division occurs. Otherwise, the rules of the ON SIZE ERROR option apply.

Note: Rules I through 6, the ROUNDED option and the ON SIZE ERROR option (which
appear following the discussion of ADD) apply also to the DIVIDE verb.

These examples illustrate the use of DIVIDE:

DIVIDE PURCHASE-QUANTITY INTO TOTAL-COST
GIVING UNIT-COST ROUNDED

DIVIDE 18.75 INTO BOND-DEDUCTIONS
GIVING NO-OF-BONDS

In order to summarize briefly the functioning of the four simple arithmetic verbs,
each verb is shown in Figure 7-4 in each of its major variations. The tabular infor
mation on the right shows how each operand in each statement is affected by the
execution of the statement.

109

COMPUTE

110

Value of l!ach Data Item after
Execution of Statement

Arithmetic Statement A B c D

ADD A, B, C A B .A+B+C
ADD A, B TO C A B .A+B+C
ADD A, B, C GIVING D A B c A+B+C
SUBTRACT A, B FROM C A B C-(A+B)
SUBTRACT A, B FROM C GIVING D A B c C-(A+B)
MULTIPLY A BY B A AXB
MULTIPLY A BY B GIVING C A B AXB
DIVIDE A INTO B A JB/A
DIVIDE A INTO B GIVING C A B BIA

Figure 7-4. Examples of arithmetic statements showing results of execution.

With the COMPUTE verb, the programmer can use arithmetic expressions to specify
one or a series of arithmetic operations. The format of this verb is:

COMPUTE data-name-I [ROUNDED J = arithmetic expression

[ON SIZE ERROR any imperative statement]

The arithmetic expression can consist of any meaningful combination of data
names, numeric literals, and the figurative constant ZERO, joined by arithmetic
operators. The arithmetic expression may consist simply of a single item. Thus
the COMPUTE verb permits most arithmetic operations to be specified in a much
more concise manner than is possible using the simple arithmetic verbs. The
following examples illustrate this point and also show typical usage of COMPUTE:

COMPUTE QTY-ON-HAND = STOCK + RECEIPTS + RETURNS
- ORDERS-FILLED

COMPUTE D = A + B + C ON SIZE ERROR GO TO EXCESS-D

COMPUTE GROSSPAY ROUNDED = BASE-RATE 0

(HRS-WORKED + .5 ° (HRS-WORKED - 40.0))

COMPUTE VOLUME = 4 I 3 ° PI 0 R "° 3

These examples include at least one usage of each of the five arithmetic operators,
which are shown in the following table:

Operator

+

Arithmetic Operation

Addition
Subtraction
Multiplication

I Division
o 0 Exponentiation

The third of the foregoing examples illustrates the way in which parentheses are
used in arithmetic expressions to specify the desired sequence of operations. Paren
theses can also be used simply to facilitate reading. Chapter 3 contains additional

The Sequence
Control Verbs

GO TO

information concerning the arithmetic operators and the use of parentheses in
arithmetic expressions.

Additional points that should be noted in connection with the COMPUTE verb are:

I. Rules 1 through 6, the ROUNDED option and the ON SIZE ERROR option (which fol
low the discussion of ADD) apply also to COMPUTE.

2. The ON SIZE ERROR option applies only to the final result, not to any of the inter
mediate results.

3. When a COMPUTE statement is reduced to its simplest form, i.e., COMPUTE data
name-1 = data-name-2 or COMPUTE data-name = literal, the resulting operation
is equivalent to a MOVE.

Note: The formal rules for forming arithmetic expressions are included in Ap
pendix A.

Four of the verbs in COBOL are designed to specify the sequence in which the vari
ous source program procedures are to be executed. These verbs are referred to as
the sequence control verbs; they are GO TO, ALTER, PERFORM and STOP. Unless one of
these verbs is encountered, the statements, sentences and paragraphs of the Pro
cedure Division of a source program are executed one after another in the order of
their appearance. The verbs GO TO and PERFORM are used to interrupt the normal
execution sequence and to transfer control to some other point in the program.
The other two verbs are supplementary-ALTER provides a means of modifying GO
TO statements and STOP is used to halt execution of the program. Detailed specifica
tions and examples of these four verbs follow:

The GO TO verb provides a means of departing from the normal sequence of pro
cedures, i.e., it is used to specify transfer-type operations. There are two formats in
which GO TO can be used:

Option 1

GO TO [procedure-name J
Option 7:_

GO TO procedure-name-I procedare-name-2 [procednre-name-3 ••• J
DEPENDING ON data-name

The Unconditional GO TO

The first form of the GO To verb specifies an unconditional transfer of control to the
point named1 that is, to the procedure-name paragraph or section. As indicated in
the format, however, procedure-name can be omitted. This alternative of leaving
procedure-name unspecified can be used only if a procedure-name is to be supplied
by an ALTER statement prior to the first execution of the Go TO. (See the discussion
of ALTER in the next section of this chapter.) If, at object time, such a GO To sentence
is not completed by means of an ALTER before its first execution, an error stop pro
vided by the processor will occur.

Because of its transfer effect, the unconditional GO TO can be used only as the final
statement in the sequence in which it appears. In other words, the programmer

111

ALTER

112

must take care not to use a GO TO in such a way as to bypass succeeding statements
and prevent their execution.

The following are typical uses of the unconditional oo TO verb:

GO TO FICA-ROUTINE.

PERFORM EQUAL-ROUTINE GO TO EXIT-3.

Note: A co To sentence that is to be altered must be an unconditional GO To and
must appear as a separate, named paragraph consisting solely of the GO TO

sentence. (See the discussion of the ALTER verb.)

The Selective GO TO

The selective GO TO (Option 2) constitutes a multiple branch-point. Control is
transferred to one of two or more procedure-names according to the current value
of the data-name specified in the DEPENDING ON phrase. The data-name must have
a positive integral value. Control goes to the 1st, 2nd, . . . nth procedure-name
as the value of data-name is l, 2, ... n. If data-name should happen to have a value
other than an integer in the range 1 to n, no transfer takes: place and control passes
to the next statement after the GO TO statement.

To show the use of the selective Go TO, suppose that in a payroll accounting prob·
lem, one of three tax routines is to be used depending upon the period of time
involved. The programmer could write:

GO TO QUARTERLY-TAX, SEMI-ANNUAL-TAX, ANNUAL-TAX
DEPENDING ON PERIOD-CODE.

In this case, a transfer to one of the three tax routines will occur depending on
whether the value of the data item PERIOD-CODE is l, 2 or 3.

The purpose of the ALTER verb is to modify the effect of GO TO sentences else
where in the program and thus to change a predetermined sequence of operations.
The format for ALTER is:

ALTER procedure-name-I TO PROCEED TO procedure-name-2

[procedNre-name-3 TO PROCEED TQ procedNre-name-4 • •• J

A GO TO sentence that is to be altered must

1. be an unconditional GO TO sentence;

2. be written as a separate paragraph consisting solely of the GO TO sentence,
preceded by a procedure-name.

The effect of an ALTER statement is to replace the procedure-name specified in the
GO TO sentence by the procedure-name-2 specified :in the ALTER. Thus, if the named
GO TO sentence,

SWITCH-1. GO TO PRIMARY-RUN.

were modified by the ALTER statement,

ALTER SWITCH-I TO PROCEED TO SECONDARY-RUN

the effect would be to change the GO To sentence to:

SWITCH-I. GO TO SECONDARY-RUN.

PERFORM The PERFORM verb provides a means of departing temporarily from the nonnal
sequence of procedure execution in order to execute some other procedure a
specified number of times or until a specified condition is satisfied.

PERFORM has several different formats which vary in complexity. In the simplest
format, the procedure referred to is executed just once each time the PERFORM is
encountered. Other formats permit repetitive execution, or "looping," of the refer
enced procedure, using one or more of several optional controls.

The five fonnats in which the PERFORM verb can be used are:

Option 1

PERFQRM procedure-name-1 [THRU procedure-name-2 J
Option 2

PERFORM procedure-name-1 [THRU procedure-name-2 J

{
integer-I } TIME[SJ
data-name-I ----

Option 3

PERFORM procedure-n1i~me-I [THRU procedure-name-2 J
UNTIL condition-I

Option 4

PERFORM procedure-name-1 [THRU procedure-name-2 J
VARYING data-name-I FROM {numeric-literal-I}

--- data-name-2

BY {numeric-literal-2} UNTIL condition-I
-- data-name-3

Option 5

PERFORM procedure-nt.-eme-I [THRU procedure-name-2 J
VAR YING subscrih.t-name-I FROM {in.teger-I } BY {integer-2 }

r data-name-I - data-name-2

UNTIL condition-I [AFTER subscriht-name-2 FROM {~t~ger-3
3
} ___ --- r ua,,a-name-

BY {~t~ger-4
4

} UNTIL condition-2] [AFTER subscriht-name-3 -- ua,,a-name- r

FROM {integer-5 } BY {integer-6 } UNTIL condition-3]
--- data-name-5 - data-name-6

General Discussion

When a procedure is performed, i.e., executed, the PERFORM transfers sequence
control to the first statement of procedure-name-1 and also provides for return of

113

114

control. The point at which control is returned depends upon the structure of
the procedure being executed and is determined as follows::

I. If procedure-name-1 is a paragraph-name and a procedure-name-2 is not speci
fied, control is returned after the last statement of the procedure-name-1
paragraph.

2. If procedure-name-1 is a section-name and a procedure:-name-2 is not specified,
control is returned after the last statement of the last paragraph of the pro
cedure-name-1 section.

3. If procedure-name-2 is specified and is a paragraph-name, control is returned
after the last statement of the procedure-name-2 paragraph.

4. If procedure-name-2 is specified and is a section-name, control is returned after
the last statement of the last paragraph of the procedure-name-2 section.

Note: The sentence containing the "last statement" referred to in each of the
above cases must not include an unconditional GO TO statement.

When procedure-name-2 is specified, the only required relationship between pro·
cedure-name-1 and procedure-name-2 is that of logical sequence. That is, execu
tion sequence must proceed from procedure-name-1 to the last statement of the
procedure-name-2 paragraph or section. GO To statements mid other PERFORM state
ments are permitted between procedure-name-1 and the last statement of pro
cedure-name-2, provided that the sequence ultimately returns to the final state
ment of procedure-name-2. If the logic of a procedure requires a conditional exit
prior to the final sentence, the EXIT verb is used in order to comply with the fore
going requirements. In this case, procedure-name·-2 must be the name of a para
graph consisting solely of the verb EXIT; all paths must lead to this point. (See the
discussion of EXIT.)

A procedure referenced by one PERFORM statement can be referenced by other
PERFORM statements. Moreover, a procedure referenced by one or more PERFORMS

can also be executed by "dropping through," that is, by entering the procedure
through the normal passage of control from one statement: to the next in sequence.
Accordingly, procedure-name-1 normally should not be the next statement after
the PERFORM. If it were the next statement, the procedure probably would be
executed one more time than was intended because, after execution of the PERFORM,

control would pass to procedure-name-1 in the normal continuation of sequence.

The Simple PERFORM

Option I of the formats shows the simple PERFORM. A procedure referenced by
this type of PERFORM statement is executed once and then control passes to the
next statement after the PERFORM.

Some examples of the simple PERFORM are:

PERFORM INVENTORY-ANALYSIS

PERFORM GROSS-PAY THRU NET-PAY

The TIMES Option

Option 2 is the TIMES option. This form provides a means of performing a pro
cedure repetitively a specified number of times. The number of times, whether
stated as a number or as a data-name, must have a positive integral value and
can be zero.

When the TIMES option is used, a counter is set up and this counter is tested against
the specified number of executions (the TIMES) before control is sent to pro
cedure-name-1. After control is returned, the counter is increased by I and is tested

again. This process is repeated until the value of the counter equals the specified
number of executions, whereupon control passes to the statement following the
PERFORM statement. If the initial value is zero, there will be no executions.

These examples illustrate the use of the TIMES option:

PERFORM MONTHLY-INTEREST 3 TIMES.

PERFORM CREDIT-CARD-ISSUE NO-OF-COPIES TIMES.

The UNTIL Option

The UNTIL option (Option 31) is essentially the same as the TIMES option except
that no counting takes place and the PERFORM causes evaluation of the specified
conditional expression instead of testing the value of a counter against a specified
number of executions.

C ondition-1 can be any simple or compound conditional expression as described
in Chapter 3. The conditional expression is evaluated before the specified pro
cedure is executed; if it is found to be unsatisfied, i.e., not true, control passes to
procedure-name-1, the procedure is executed once and control returns to the
PERFORM. This process is repeated until such time as the conditional expression is
determined to be true, at which point control goes to the next statement after the
PERFORM. Note that if the conditional expression is true when the PERFORM is
encountered the specified procedure will not be executed.

Typical PERFORM statements utilizing the UNTIL option are:

PERFORM RE-ORDER UNTIL ON-ORDER + ON-HAND =
MONTHLY-USAGE 0 2.5

PERFORM SALES-ANALYSIS THRU SALES-REPORT UNTIL
STATE-CODE IS GREATER THAN 50

The VARYING data-name Option

The v ARYING data-name option (Option 4) makes it possible to PERFORM a pro
cedure repetitively, increasing or decreasing the value of a data item once for each
repetition, until a specified conditional expression is satisfied. The value of only
one data-name can be varied in a PERFORM statement using this option.

In this fom1, the PERFORM first sets the value of data-name-1 equal to the specified
initial value (the FROM value) and then causes the conditional expression (the
UNTIL condition) to be evaluated. If the expression is true at this point, no execu
tion of the procedure takes place and control goes to the statement immediately
following the PERFORM. If the expression is false, the procedure is executed once,
after which the PERFORM augments the value of data-name-1 by the specified
increment or decrement (the BY value) and again causes the conditional expression
to be evaluated. This process continues until the conditional expression is found
to be true; thereupon, control passes to the next statement after the PERFORM.

The items used in the BY and FROM clauses may have any numeric value and need
not be integers; such values may be positive, negative, or zero. A diagram illustrat
ing this option of the PERFORM verb is given in Figure 7-5.

It will be noted from the diagram (Figure 7-5) that after execution of the PERFORM,

the value of data-name-1 will be one increment {or decrement) greater than {or
less than) its last-used value.

To show the use of this type of PERFORM, suppose that a manufacturing concern
has developed a formula for pricing its products and that a routine called PRICING

FORMULA has been programmed to apply the formula. For a particular product,
management might want to know how the computed price would be affected if

115

116

one of the factors involved in the formula varied between certain limits. The
desired information could be obtained by repeated use of the PRICING-FORMULA

routine, varying the factor in question and holding other factors constant. To
accomplish this, the programmer could use a PERFORM statement such as this:

PERFORM PRICING-FORMULA VARYING FACTOR-X
FROM -1.00 BY .05 UNTIL FACTOH-X = .50

The execution of this statement would result in repetitive •execution of the PRICING

FORMULA routine, using a different value of F ACTOR-x and producing a different
computed result (price) for each of thirty iterations. The value of F ACTOR-X would
be -1.00 in the first iteration, .45 in the last iteration, amd .50 after completion
of the PERFORM. Note that UNTIL means "until but not including."

Entrance
(from previously exe

cuted statement)

l
Set data- name-1 equal to
its FROM value.

l
.-----~ .. , Condition-1 ,_T_ru_e __ ,~To next statement

l False

Execute procedure-name-1
THRU procedure-name-2.

l
Augment data-name-1 with
its BY value.

J

Figure 7-5. Functioning of the PERFORM verb when the VARYING data-name option is used.

The VARYING subscript-name Option

Option 5, the v ARYING subscript-name option, is 1the mo:st powerful form of the
PERFORM verb. It is used when the programmer wishes to increment the value of
one or more subscripts in a "nested" fashion in conjunction with repetitive execu
tion of a procedure. As indicated by the format of this option, a maximum of three
subscripts can be varied in a given PERFORM statement.

When only one subscript is being varied, this option functions in the same manner
as the v ARYING data-name option. (See Figure 7-5.)

The functioning of the v ARYING subscript-name option employing two subscripts is
shown in detail in Figure 7 -6. After the two subscripts are set to their initial
(FROM) values, condition-1 is first evaluated; if it is found to be unsatisfied, ie.,
false, then condition-2 is evaluated. If condition-2 is unsatisfied, the specified pro
cedure is executed once for each value of subsc1·ipt-name-2 until condition-2 is

,__ ___

Entrance
(from prc~viously exe•

cuted statement)

l
Set subscript-name- I and
subscript-name-2 to their
FROM valut!s.

I --'---11

·'[~r· True
~ one 1t1on- I J 1

False

.....

~I Conclition-2 J True

False

y

Execute procedure-name- I
THRU procedure-name-2.

l
Augment subscript-name-2
with its BY value.

-->-T o next statement

l
Set subscript-name-2 to its
FROM value.

l
Auiment subscript-name- I
wit its BY value.

I
Figure 7-6. Functioning of the PERFORM verb when the VARYING subscript-name option
employing two subscripts is used.

found to be true. At this po:int, subscript-name-2 is reset to its initial value, sub
script-name-1 is increased or decreased by its BY value, and condition-1 is again
evaluated. If condition-1 remains unsatisfied, the procedure is again executed
once for each value of subscript-name-2 until condition-2 is true. This process
continues until condition-1 is determined to be true, whereupon the PERFORM is
completed and control goes to the statement immediately following the PERFORM

statement.

Figure 7-7 shows how this option functions when three subscripts are involved.
It operates in the same manner as described above except that a third dimension
is added. The subscripts are first set to their initial values. Then, the value of
subscript-name-3 goes through a complete cycle for each value of subscript-name-2
which in tum goes through a complete cycle for each value of subscript-name-1.

It is important to note that,. regardless of the number of subscripts involved, a
PERFORM statement of this type is complete as soon as condition-1 is found to be
true. As the diagrams indicate, condition-1 is evaluated before the procedure is
executed the first time. Accordingly, if condition-1 is true when the PERFORM

statement is encountered, th~· procedure will not be executed even though con
dition-2 and condition-3 m~f not be true. In addition, the following rules apply,
regardless of the number of subscripts that are varied:

I. The initial (FROM) value of a subscript must be a positive, non-zero integer.
2. The increment (i.e., the BY value) must be a non-zero integer. (It can be

negative.)

117

118

3. Subscript-name-1, subscript-name-2 and subscrlipt-name-3 cannot refer to the
same item; i.e., they must not be alternative names for the same data item.

After completion of a PERFORM, the values of subscript··name-2 and subscript
name-3 are equal to their respective initial (rnoM) values, while subscript-name-1
has a value exceeding its initial value by one increment (or decrement).

Entrance
(from previously exe

cuted statement)

l
Set
subscript-name-1,
subscript-name-2,
subscript-name-3
to their
FROM values.

I I
True

~---- Condition-1 .---------·---

1 False

-+To next statement

d
.. I True

~ Con ltlon-2 J1-------------·------.

False
y

r-+I Condition-31-T_ru_e __ __,l

l False

Execute
procedure-name-1
THRU
procedure-name-2.

l
Augment
subscript-name-3

L---
1 with its BY

value.

~=~script-nam:J-3
to its FROM
value.

!i'b~~~;~-nam:J-2
with its BY
value.

Set
subscript-name-2
to its FROM
value.

l
Augment
subscript-name-1
with its BY
value.

,____ _______ ,_J
Figure 7-7. Functioning of the PERFORM verb when the VARYING subscript-name option
employing three subscripts is used.

To help clarify the way in which the v ARYING subscript-ruime option is used, sup
pose that a rate table is employed in a billing procedure and that the table requires
periodic updating. This hypothetical rate table is three-dimensional, being divided
into five regions, each of which includes ten states, each of which contains the
rates for ten cities. It is assumed further that an appropriate rate-updating pro
cedure is available elsewhere in the program. Such a procedure might appear as:

RATE-UPDATING. MULTIPLY RATE (REGION, STATE, CITY) BY
ADJUST-FACTOH GIVING RATE (REGION, STATE, CITY).
IF RATE (REGION, STATE, CITY) IS GREATER THAN MAX
RATE MOVE MAX-RATE TO RATE (REGION, STATE, CITY).

It is desired to execute this RATE-UPDATING procedure once for each city of each
state in each region, using the current rate for a given city and producing an
adjusted rate for that city. Accordingly, the programmer employs a PERFORM

statement with the v ARYING subscript-name option:

PERFORM RATE-UPDATING VARYING REGION FROM I BY I
UNTIL REGION IS GREATER THAN 5 AFTER STATE FROM
I BY I UNTIL ST.ATE= 11 AFTER CITY FROM 1BY1 UNTIL
CITY IS GREATER THAN 10.

One feature of this example requires amplification. The MAX-RATE item in the
RATE-UPDATING procedure is a constant that limits the value of any rate. If this
limit is exceeded, the maximum rate is used in lieu of the computed (new) rate.

When the PERFORM is executed at object time, the RATE-UPDATING procedure is
executed :first for the first city of the first state in region l, then for the next city,
and so on. The PERFORM is complete when the procedure has been executed for
the tenth city of the tenth state of region 5, by which time the procedure will have
been executed 500 times.

"Nested" PERFORM Statements

If a procedure referenced by a PERFORM statement includes another PERFORM

statement, the procedure associated with the inner PERFORM must be either entirely
included in, or entirely excluded from, the procedure related to the outer PERFORM.

For example, the cases shown below are correct:

x PERFORM a THRU m

d PEHFORM f THRU j

f

m-·----

whereas, the following is incorrect:

x PEHFORM a THRU m

a-------------.

d PEHFORM f THRU j

f m---1-

x PERFORM a THRU m

a----------,

d PERFORM f THRU j

h

m---------~

119

STOP

120

However, a procedure associated with one PERFORM can overlap or intersect the
procedure associated with another PERFORM, provided that neither procedure in
cludes the PERFORM associated with the other procedure.

For example:

Correct Incorrect

x PERFORM a THRU m x PJERFOHM b THRU n

b

d PERFOilM g THRU k

d PERFORM f THRU j : ___ 3
These rules and examples apply to all five options of the PERFORM verb.

The STOP verb permits the programmer to specify a temporary or final halt in the
object program. Its format is:

STOP {literal}
-- RUN

When a literal is used in a STOP statement, the object program will display the
literal at the time the STOP occurs. Following execution of a STOP literal statement,
continuation of the object program begins with the next statement in sequence.

The STOP RUN option is used to indicate an end-of-program halt. Because of its
terminal effect, the STOP RUN option can be used only as the final statement of the
sequence in which it appears. Otherwise, the succeeding statements would never
be executed. The action following execution of a STOP RUN statement depends upon
the procedures established for· a given installation and/oil' a particular computer.
This subject will be discussed in more detail in the publications dealing with the
respective processors.

Some examples of STOP statements are:

STOP 0034

STOP RUN

STOP 9

STOP 'END OF INTERMEDIATE PHASE'

When numeric literals are employed in STOP statements, as in the first and third
examples above, the usual practice is to specify a different number for each STOP

in the source program. These numbers can then be used as keys to a list of the
various STOPS and their respective meanings in the program.

Processor Verbs

t:NTER.

EXIT

The COBOL processor verbs are instructions directed to the processor; they cause
the processor to take certain specific action. Two of the three processor verbs have
an indirect effect on the object program. However, the other, the NOTE verb, has
no effect whatsoever on the object program.

The ENTER verb enables the programmer to use other programming languages in
a COBOL source program. This facility makes it possible to incorporate into a COBOL

program existing routines written in another language. The format in which ENTER

is used is:

E__NTER language-name.

The language-name informs the processor as to what kind of "other language"
statements aire to be inserted at this point in the procedure. The publications for
the respective processors will specify which languages can be entered.

The "other language" statements must be written in-line immediately following
the ENTER statement and they must be followed by an ENTER COBOL entry to indicate
the point at which the COBOL source language is resumed. Each ENTER statement
must constitute a separate para.graph in the source program.

An example of the use of ENTER is given below. Note that each ENTER statement
is preceded by its paragraph-name:

LEAVE. ENTER AUTOCODER.

RETUBN. ENTER COBOL.

Note: All statements between an ENTER language-name statement and the follow
ing ENTER COBOL statement must conform to the rules of the named lan
guage.

The EXIT verb is used when it :is necessary to provide an end point for a procedure
that is to be executed by means of a PERFORM. While EXIT is classified as a processor
verb because it supplies the processor with necessary information and does not
produce any coding in the object program, it can be thought of also as a "dummy"
program verb. Its format is simply:

EXIT.

As mentioned in the discussion of the PERFORM verb, the logic of a procedure refer
enced by a PERFORM may involve a conditional exit prior to the last sentence. When
this is the case, the EXIT verb must be used to provide an ending point common to
all paths. This is illustrated in the following PERFORM statement and associated
procedure:

121

•

NOTE

122

. PERFORM ANALYSIS-ROUTINE THRU FINISH-ANALYSIS

ANALYSIS-ROUTINE. COMPUTE RETURNS-RATIO = RETURNS
I (ORDERS-FILLED + BACK-ORDERS - RETURNS). IF RE
TURNS-RA TIO IS LESS THAN .20 GO TO .FINISH-ANALYSIS.
IF RETURNS-RA TIO IS LESS THAN .33 ADD I TO HIGH
RATIO-COUNTER GO TO FINISH-ANALYSIS. PERFORM
HIGH-RA TIO-REPORT.

FINISH-ANALYSIS. EXIT.

In this example there are two points at which execution of the procedure may
terminate prior to the last statement; i.e., either of the two conditional sentences
can cause the remainder of the procedure to be bypassed. Accordingly, an EXIT

is required and all paths lead to it.

As indicated in the example, EXIT must appear in the source program as a one-word
paragraph, preceded by a paragraph-name.

The NOTE verb is used for inserting statements and comments in the source program
to explain or annotate the procedures being defined. A NOTE appears in the program
listing but has no effect on the object program. The format of a NOTE statement is:

NOTE any comment.

Any combination of characters from the COBOL character set can follow the word
NOTE. The combination of characters may constitute a sentence or a paragraph
according to these rules:

I. If NOTE is the first word of a paragraph, the entire paragraph must be devoted
to the note(s). The paragraph must be named and all other format rules for
paragraph structure must be observed.

2. If NOTE is not the first word of a paragraph, the commentary is terminated by a
period followed by a space.

Some examples of NOTE are:

... NOTE END OF FIRST PHASE.

NOTE-1. NOTE THAT THE WORD 'NOTE-I' IS THE PARAGRAPH
NAME OF THIS PARAGRAPH. THE VERB, NOTE, IS THE
FIRST WORD OF THE FIRST SENTENCE:.

Chapter 8:

Introduction

Organization

Environment Division

In the COBOL system, all aspects of the total data processing problem that depend
on the physical characteristics of a specific computer are segregated in one portion
of the source program known as: the Environment Division. Thus, the primary func
tions of the Environment Division are to describe the computer system on which
the object program is to run and to establish the necessary links between the other
divisions of the source program and the characteristics of the computer.

Since the Environment Division is completely machine-oriented, it follows that it
must be rewritten each time the source program is to be processed for a different
computer. Re-writing and reprocessing may also be necessary if the program is to
be run on a different configuration of the computer for which it was written
originally.

The Environment Division of a COBOL source program consists of two sections, each
of which has a fixed section-name-CONFIGURATION and INPUT-OUTPUT.

The CONFIGU:RATION section is concerned with the specifications of computers. It
comprises three paragraphs which also have fixed names: The SOURCE-COMPUTER
paragraph names the computer on which the COBOL processor is to be run. The
OBJECT-COMPUTER paragraph identifies and describes the machine system on which
the object program is to be nm. The SPECIAL-NAMES paragraph is used to relate
the machine names (i.e., the names of machine components and devices) used by
a particular processor to the names used by the programmer in his source program.

The INPUT-OUTPUT section deals with the external media of the data to be processed
by the object: program and with techniques for handling the data. This section con
sists of two paragraphs, again with fixed paragraph-names: The FILE-CONTROL para
graph names the data files and specifies the external media with which they are to
be associated. The I-O-CONTROL paragraph is used to designate special input/output
techniques.

The overall structure of the Environment Division of a source program is shown
below:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. computer-name.
OBJECT-COMPUTER. computer-name
SPECIAL-NAMES. device-name ... switch-name

INPUT-OUTPUT SECTION.
FILE-CONTROL. SELECT
1-0-CONT:ROL. APPLY

Each of the five paragraphs of the Environment Division is discussed in tum in the
balance of this chapter. The discussion is in general terms, however. No attempt is
made to provide information :regarding specific machine systems or the respective
processors. Such detailed information will be published separately for each of the
IBM data processing systems involved.

123

Configuration Section

Source-Computer

Obiect-Computer

124

This paragraph of the Environment Division is used to name the computer on
which the COBOL processor is to be run, i.e., on which the source program is to be
processed. The format is simply:

SOURCE-COMPUTER. computer-name.

The SOURCE-COMPUTER paragraph can be thought of as being essentially a comment
or NOTE. The computer-name is a fixed name that will he specified in the publica
tions for the respective processors.

The purpose of this paragraph is to describe the computer on which the object
program is to be run and to permit the programmer to specify the input device
from which the program will be read at object time. The format of the OBJECT

COMPUTER paragraph is:

9ption 1

OBJECT-COMPUTER. COPY librar_v-name.

Option 2

OBJECT-COMPUTER. computer-name

[ASSIGN OBlECT-PROGRAM 'J'O device-name-I J

r MEMOR y SIZE J integer-I { ~i?,&>1C'J'ERS} t] l 1 ADDRESS integer-2 1'HRU integer-3 J
[[integet-4 J device-name-2 [[integer-5] det•ice-name-3 •• -] l

The COPY library-name option (i.e., Option I) can be used if the library contains
a complete description of the object computer. Otherwise, the object computer
must be defined utilizing Option 2.

Fixed computer-names and device-names will be assigned in the publications for
the individual processors. Moreover, computer-name will represent a particular
configuration of equipment, including memory size, memory addresses, and type
and number of devices.

The MEMORY SIZE specified by the programmer may, however, be greater or smaller
than that of the implicit configuration. In either case, the processor will adjust
MEMORY SIZE accordingly. Should the requirements of the program exceed the
specified configuration, the processor will indicate an error condition at process
time.

The last clause of the OBJECT-COMPUTER paragraph is used in specifying a configura
tion of equipment other than the particular configuration implied by computer
name. The device-names designated in this clause may include input/output de-

Sped al-Names

vices and machine features such as index registers, floating-point arithmetic
devices, additional machine instructions, etc.

When the ASSIGN OBJECT-PROGRAM clause is employed, the processor assigns the
device-name unit as the input unit from which the object program will be read at
object time. If this clause is omitted, a standard input device (predetermined for
each processor) will be assigned for this purpose.

The function of the SPECIAL-NAMES paragraph is to equate mnemonic names with
the standard names for actual machine devices or switches, and condition-names
with the standard names for the status of actual machine switches. The format is:

Option 1

SPECIAL-NAMES~ COPY library-name.

Option 2

SPECIAL-NAMES.

[device-name-1 IS mnemonic-name-I [device-name-2 IS

mnemonic-name-2 • • • J l
[switch-name-I [IS mnemonic-name-3 J [ON STATUS IS

condition-name-I J [OFF STATUS IS condition-name-2 J

[switcb-name-2 • • • J l
The entire SPECIAL-NAMES paragraph can be omitted if no condition-names (per
taining to machine switches) or mnemonic-names appear in the Procedure Divi
sion of the source program. Option 1 is used when the library contains a complete
description of all the SPECIAL-NAMES used in the program; otherwise Option 2 must
be employed.

Each mnemonic-name used in ACCEPT or DISPLAY statements (in the Procedure
Division) must have a standard device-name assigned to it in the SPECIAL-NAMES

paragraph. (The standard device-names will be specified in the publications for
the respective processors.) It: should be noted that mnemonic-names cannot be
used in a source program except in those verb formats which specifically permit
their usage.

A machine switch can be referred to in the Procedure Division either by means of
a mnemonic-name or by means of one or two condition-names associated with the
ON/OFF status of the switch. In this event, the SPECIAL-NAMES paragraph is used to
assign a standard switch-name to each mnemonic-name and/ or to relate the switch's
ON/OFF status to one or two condition-names. Thus, as indicated in the paragraph
format, a given switch-name ean have one, two, or all three of the optional clauses
associated with it.

125

Input-Output Section

File-Control

126

In the Procedure Division of the program~ the status of a machine switch is interro
gated by means of conditional expressions utilizing the condition-name(s).

The FILE-CONTROL paragraph is used to name each file, identify its media, and to
assign it to one or more input/ output devices. Provision is made for specifying
alternate input/ output areas. The format of this paragraph is:

Option 1

FILE-CONTROL. 00EY library-name.

Option 2

J'ILE-CONTROL. SELECT [OPTIONAI] file-name-1

[RENAMING file-name-2 J ASSIGN TO [integer-1 J device-name-1

[device-name-2 • • • J [FOR MULTIPLE REEL J
[RESERVE {~~ger-2} ALTERNATE AREA[SJJ

[SELECT ..• J
Option 1 is used when the complete description of FILE-CONTROL is available in the
library. Otherwise the programmer must employ Option 2 and specify the details.

Each file to be processed by the object program must be named in a SELECT file
name entry; the designated name must be unique within the source program.
Each file employed in the program must also be assigned to an input or output
medium, i.e., to a device-name. The device-names used in making such assignments
are fixed names that will be specified in the publications for the respective proces
sors. The word OPTIONAL must appear immediately following the word SELECT if
the file being named is an input file that will not necessarily be present each time
the object program is run. (See the discussion of the OPEN, READ, and CLOSE verbs
in Chapter 7.)

The file-name-1 file must be described by a File Descriptilon in the Data Division
of the source program unless file-name-1 is RENAMING another file, i.e., file-name-2,
for which a File Description is given. The RENAMING option is used when the File
Description of one file (file-name-2) is applicable to another file (file-name-1), as in
the case of a file that is to be processed as an input file and as an output file in the
same program. The RENAMING of a file implies a sharing of a single File Descrip
tion; it does not allow the two names to be used interchalllgeably in the program.

In assigning a file to an input or output medium, integer-1 can be used only if
device-name-1 designates magnetic tape as the medium (as opposed to specific
tape units). In this case, integer-1 indicates the number of tape units to be assigned
to the file. If desired, however, the programmer can omit integer-1 and designate
specific tape unit assignments using specific device-names, i.e., device-name-1,

1-0-Control

device-name-2, etc., which will be provided for each processor. If integer-1 is omit
ted for a tape file and device-name-1 specifies the tape medium, then the processor
will determine the number of tape units to be used, based on the number available
(as specified in the OBJECT-COMPUTER paragraph) and the number required for
other files. To provide the processor with the necessary information, the MULTIPLE

REEL option must be included when:

1. Integer-1 is not specified and the file may contain more than one reel.
2. Integer-1 is specified but the file may contain more than that number of reels.

The RESERVE: clause of the FILE-CONTROL paragraph makes it possible to modify the
standard number of input/output areas allocated for a given file by the processor.
The programmer can designate a certain number (integer-2) of additional alternate
areas to be reserved, or he can specify that NO alternate areas are to be reserved.

The 1-0-CONTROL paragraph permits the programmer to specify input/ output tech
niques and to establish rerun, or restart, provisions that are implemented by the
input/ output control system. The format of the paragraph is:

Option 1

1-0-CONTROL. COPY library-name.

Option 2

I-0-CONTROL. [APPLY input-output technique ON file-name J

[
RERUN [oN {fidle-?ame-l }] EVERY END OF REEL OF file-name-2.J - evtce-name --

This paragraph need be included in the Environment Division of a source program
only if one or both of its features are desired. The COPY option can be used if the
library contains a complete description of 1-0-CONTROL; otherwise, Option 2 is
employed to specify the details.

The input/ output control system for a given computer may provide alternative
input/ output techniques. The APPLY input-output technique clauses in Option 2
are used to select the technique appropriate to each specified file.

Using the second clause in Option 2, RERUN points can be established for each end
of reel of a file. Since the ON clause has two alternate forms and is itself optional,
there are three ways to specify how the RERUN information is to be treated, i.e.,
where the contents of memory is to be placed:

1. If the ON clause is omitted, the contents of memory will be written on each reel
of the file-name-2 file, which, in this case, must be an output file. The publica
tion for each processor will specify where on the reel the information will
appear.

2. When the oN file-name-1 option is employed, the contents of memory will be
written in file-name-1 (which must be an output file) each time an end of reel
occurs in file-name-2. In this case, file-name-2 can be either an input file or an
output file. Again, the respective processor publications will specify where the
RERUN information will appear in file-name-1.

3. If the ON device-name option is used, memory will be written on a separate
RERUN tape, i.e., on a tape unit designated by device-name, each time an end
of reel occurs in the file-na.me-2 file.

127

Chapter 9:

128

Identification Division

The fourth major part of a COBOL source program, the Identification Division, is
used to identify or label the program and to provide any other pertinent informa
tion concerning the program. As is noted in Chapter 5, the Identification Division
precedes the other divisions when the source program is presented to the processor
at process time.

The format of the Identification Division is relatively brief and straightforward.
The format for the entire division is:

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. author-name. J
[INSTALLATION. any sentence or g:roup of sentences. J
[DATE-WRITTEN. any sentence or group of sentences.]

[DATE-COMPILED. any sentence or group of sentences.]

[SECURITY. any sentence or group of sentences. J
[REMARKS. any sentence or group of sentences. J

The Identification Division is essentially an extended NOTE (see Chapter 7). The
information supplied to the processor becomes a part of the program listing, but it
has no effect on the object program.

Fixed paragraph-names are used throughout the Identifllcation Division. As the
format indicates, only the PROGRAM-ID paragraph is required; the other paragraphs
are optional and the programmer can specify any or all of them. Thus, the Identi
fication Division of a source program can consist of from one to seven paragraphs.

The format presented above is largely self-explanatory. It should be noted, how
ever, that the PROGRAM-ID paragraph must always appear .as the first paragraph of
the Identification Division. The program-name designatedl in this paragraph must
be either a name or a literal as defined in Chapter 3. The program-name should be
used in referring to the source program, the object program, and all associated
documentation.

The Identification Division of a typical program might be written as follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. INVENTORY-MAINTENANCE.

AUTHORS. J. DOE AND R. SMITH.
INSTALLATION. ACCOUNTING DEPT., XYZ MANUFACTURING

CORP.

DATE-WRITTEN. JUNE 5, 1961.
REMARKS. DESIGNED FOR WEEKLY UPDATING OF INVEN

TORY-MASTER FILE. INPUT IS FROM RUN 10 AND OUTPUT
IS USED IN RUN 17.

129

.Appendix A:

Conditional Expressions

Conditions

Supplementary Reference Material

Conditional expressions may contain conditions and the logical operators AND, OR,

and NOT. Subexpressions may be contained in parentheses as required.

One or more conditions are contained in a conditional expression. The five forms
in which conditions may be written are given below:

1. Simple Relational Conditions

{ } {

IS lNOTl GREATER THAN} { } d_ata-name IS (NOT] LESS THAN d_ata-name
literal --- -- literal
arithmetic expression ~ LNOTJ EQUAL TO arithmetic expression

2. Sign Conditions

{

POSITIVE}
{

arithmetic e;icpression} IS [NOTJ NEGATIVE
data-name ZERO

3. Class Conditions

}NUMERIC }
data-name IS [NOTJ lA.LPHABETIC

4. Condition-Names

condition-name

5. Switch-Status-Names

switch-status-name

131

Evaluatic:m of
Conditional Expressions

132

If the i-th conditional expression (such as MARRIED or PAY IS GREATER 'ffi.AN 2 ° x
+ Y) is designated by the symbol Ci the following rules may be stated concerning
the formation of conditional expressions involving Ci, and the logical operators NOT,

AND, andoR:

1. The Conditional Expression Is True If

Cl Cl is tme

NOT Cl Cl is false

Cl AND C2 Both Cl and C2 are true

Cl OR C2 Either Cl is true, C2 is true,
or both are true

NOT (Cl AND C2) Cl is false, C2 is false, or
both are false

NOT (Cl OR C2) Cl and C2 are both false

2. If Cl and C2 are conditional expressions, then "Cl AND C2" and "Cl OR C2,.
are conditional expressions, as are similar expressions formed with the use of
NOT. Thus, an expression of the form

Cl AND (C2 OR NOT (C3 OR C4))

may be successively reduced as follows:

Let C5 equal "C3 OR C4"

Let C6 equal "C2 OR NOT C5"

Let C7 equal "Cl AND C6"

Cl AND (C2 OR NOT C5)

Cl AND C6

C7

This rule indicates how conditional expressions may be formed from conditional
expressions.

3. The conditional expression "Cl OR C2 AND Gr' is identical with "Cl OR (C2
AND C3)" but is not the same as "(Cl OR C2) AND C3." In other words, con
ditional expressions are grouped Rrst according to AND and subsequently by OR.

However, the programmer's use of parentheses will affect the order of grouping.

4. The rules for formation of symbol pairs are contained in the table below. The
letter P indicates that the specified pair is permissible, while the dash indicates
that it is not.

Second Symb<l>I

c OR AND NOT ()
-f-·

c - p p - - p
-

0
OR p - - p p -

.a
AND p p p

i-E - - -
>- -
"' NOT Pt p - - - - -
"' .. -ii: (p - - p p -

) I - p p - - p

f Permissible only if the condition itself does not contain a NOT.

Simple Relational Conditions with Implied Subjects and Implied Relational Operators
Only simple relational conditions may have implied subjects. If Si, Ri, and 01 are
the subject, relational operator, and object respectively of the first simple relational
condition of a series, and if Sn, Rn, and On are the components of the nth simple
relational condition of the series; then the following diagram shows the general
form for a series of consecutive simple relational conditions with implied subjects:

Conditional Statements

Arithmetic Expressions

A relational operator can be implied only when a subject is also implied. The
general form for writing consecutive simple relational conditions with implied sub
jects and relational operators is given below using the notation of the above
diagram:

The following diagrams show the three ways in which a conditional statement may
be written:

Option 1

IF conditional expr~~ssion statement-1

Option~

IF d . . I . {statement-1 } _ con 1t1ona expression NEXT SENTENCE

{
statement-2 }
NEXT SENTENCE

Option 3

{
statement-1 AT END }
statement-2 ON SIZE ERROR statement-3

{
OTHERWISE}
ELSE

Arithmetic expressions may contain numeric literals, names of variables, names of
constants, arithmetic operators, and the figurative constant ZERO (including ZEROS

and ZEROES). Sub-expressions may be enclosed in parentheses as required. The
rules for forming arithmetic expressions are:

1. Arithmetic operators must be chosen from the following list:

Addition +
Subtraction
Multiplication
Divisi.on
Exponentiation

I

133

2. The ways in which symbol pairs may be formed are summarized in the table
below. The letter P indicates that the specified pair is permissible, while the
dash indicates that it is not.

Second Symbol

Variable 0 or I or 00 +or - ()

Variable - p p - p

0 0 or I or 00 p .a - p p -
E p >- +or - - - p -U't -VI (p p p .. - -

u:::
) - p p - p

3. When the hierarchy of operations in an expression is not completely specified
by parentheses, the order of operations is assumed to be exponentiation, then
multiplication and division, and finally addition and subtraction. Thus the
expression A + B I C + D 0 0 E ° F - G wiH be taken to mean A + (B I C)
+ (DE ° F) - G.

4. When the order of a sequence of consecutive operations on the same hierarchal
level (i.e., consecutive multiplications and divisions or consecutive additions
and subtractions) is not completely specified by parentheses, the order of opera
tions is assumed to be from left to right. Thus, certain expressions ordinarily
considered ambiguous are permitted in COBOL. For example, A I B ° C and
A I B IC are taken to mean (A I B) ° C and (A I B) IC. The more complex
expression A 0 BI C 0 Dis taken to mean ((A 0 B) IC) 0 D.

5. The expression AB0 cannot be written as A 00 B 00 C; it should be written as
either (A 00 B) 0 ° C or A 00 (B 0 ° C), whichever is intended.

List of COBOL Verb forms

134

The general forms of all of the COBOL verbs are present,ed below in alphabetical
order for reference purposes.

ACCEPT data-name [FROM mnemonic-name J

ADD {".ata-name-1} [{".ata-name-2} • • • J
-- literal-I ltteral-2

[{~VING} data-name-n J [ROUNDED J
[ON SIZE ERROR any imperative statement]

ALTER procedure-name-I TO PROCEED TO procedure-name-2

[procedure-name-3 TO PROCEED TO procedure-name-4 • •• J

CLOSE file-name-1 [REEL J [WITH {~ic~EWIND} J ~le-name-2 • •• J

COMPUTE data-name-I [ROUNDED J = arithmetic ex_pression

[ON SIZE ERROR any imperative statement]

D S Ay {
data-name-I} [{data-name-2} J [uPON · J I PL . literal-I literal-2 • • • --- mnemontc-name

DIVIDE {".ata-name-1} INTO {".ata-name-2}
ltteral-I -- ltteral-2

[GIVING data-name-3 J [ROUNDED J
[ON SIZE ERROR any imperative statement]

ENTER language-name.

TALL YING {tHDING }
UNTIL FIRST

EXAMINE data-name literal-1 [REPLACING BX literal-2 J

{
ALL }

REPLACING LEADING literal-3 BY literal-4
[UNTIL] FIRST

EXIT.

135

136

Option 1

GO TO [procedure-name J
Option 2

GO TO procedure-name-I procedure-name-2 [procedure-name-3 • • •]

DEPENDING ON data-name

OptioE_!

MOVE {d_ata-name-l} IQ data-name-2 [d,ita-name-3 •..] --- literal

Option 2

MOVE CORRESPONDING data-name-I TO data-name-2 [data-name-3 ••• J

MUL TIPL y {d_ata-name-1} BY f d_ata-n,t,me-2}
ltteral-1 -) ltteral-2

[GIVING data-name-3 J [ROUNDED J
[ON SIZE ERROR any imperative statement]

NOTE any comment.

QPEN [INPUT file-name-I ~le-name-2 • •• J J [QUTPUT file-name-3

[file-name-4 • • • J]

Option 1

PERFORM procedure-name-I [THRU procedure-name-2 J
Option 2

PERFORM procedure-name-I [THRU procedure-name-2 J
{

integer-I } TIMEJS]
data-name-I --

Option 3

PERFORM procedure-name-I [THRU procedure-name-2 J
UNTIL condition-I

Option 4

PERFORM procedure-name-I [THRU procedure-name-2 J
VARYING data-name-I FROM {numeric-literal-I}

--- data-name-2

BY {numeric-literal-2} UNTIL condition-I
- data-name-3

Option 5

PERFORM procedure-name-I [THRU procedure-name-2 J
VARYING subscriht-·name-I FROM {integer-I } BY {integer-2 }

r data-name-1 - data-name-2

UNTIL condition-1 ["AFTER subscript-name .. 2 FROM {c1.intteger-3
3
} --- a a-name-

BY {d.intteger-4
4
} UNTIL condition-2] [AFTER subscriht-name-3 - a a-name- ---- r

FROM {integer-5 ·} BY {integer-6 } UNTIL condition-3]
-- data-name-:.1 - data-name-6

READ file-name RECORD [INTO area-name J
[AT ENIQ any imperative statement J

STOP {literal}
-- RUN

137

SUBTRACT {d_ata-name-1} [{d_ata-name-2} • • • J
ltteral-1 ltteral-2

{
data-name-n} [J J FROM literal-n GIVING uata-nam,e-m

[ROUNDED J [ON SIZE ERROR any imperative statement J

WRITE record-name [FROM area-name J

Data Division Entry formats

The Complete File
Description Entry

138

The complete general forms of the File Description Entry and the Record Descrip
tion Entry are given below for reference purposes.

Option 1

FD file-name COPY library-name.

Option 2

FD file-name [RECORDING MODE IS mode J
[BLOCK CONTAINS integer-I {~~<ii1!.~~~kRISJ} J
[RECORD CONTAINS [integer-2 TOI integer-3 CHARACTER IS I J
LABEL RECORD[SJ {ARE} {STANDARD}

IS OMITTED

[VALUE OF data-name-I IS literal [data-name-2 IS ••• J J
DATA RECORDISJ {~} data-name-3 [data-name-4 • •• J.

The Complete Record
Description Entry

Option 1

level~number data-name-1 [REDEFINES data-name-2 J
COPY data-name··3 [FROM LIBRARY J .

Option 2

level-number {~I~LER 1} [REDEFINES data-name-2] a a-name-

[SIZE IS integer-I [{ g~&~rR[SJ} J]

[USAGE IS {ii?s~ATIONAL} J [OCCURS integer-2 TIMEISJJ

[SIGNED J [SYNCHRONIZED { 1!¥c'fin} J [POINT LOCATION

IS {k%1n} integer-3 PLACEISJJ [CLASS IS {~i~t::ruc} l
[PICTURE IS an:y allowable combination of characters and]

symbols as described in Chapter 6

[JUSTIFIED {i~~1T}] [{~~~~i'i>irollf:~T }
- -- FLOAT DOLLAR SIGN

[LEAVING integer-4 PLACEISIJ] [~LANK WHEN ZERO J

[vALUE IS literal].

139

List of COBOL Words

140

Following is a list of words which have pre-assigned meanings in the COBOL lan
guage, including both optional and key words. Certain words are key words in one
context but are optional in other contexts. However, no COIIOL word should be used
in any context other than has been prescribed for it in this manual. For this reason,
no distinction is made in this list between optional and key words. Certain addi
tional words will be assigned for reference in the Environment Divison. These
words will be specified in the publications covering the various processors and, like
the words in the list below, should not be used except in the specified contexts.

It may be noted that it has been a general principle in the COBOL language to allow
both the singular and plural forms of words in order to impmve readability. In most
cases, both forms have been shown in the general formats used in this manual.
In several other cases, the availability of the optional forms was considered of
minor importance and was not indicated in the formats. In all cases, however, both
forms have been allowed for in the following list:

ACCEPT CONTAINS HIGH-VALUE
ADD COPY HIGH-VALUES
ADDRESS CORRESPONDING
ADDRESSES IDENTIFICATION
AFTER DATA IF
ALL DATE-COMPILED IN
ALPHABETIC DATE-WRITTEN INPUT
ALPHANUMERIC DEPENDING INPUT-OUTPUT
ALTER DIGIT INSTALLATION
ALTERNATE DIGITS INTO
AN DISPLAY 1-0-CONTROL
AND DIVIDE IS
APPLY DIVISION
ARE DOLLAR JUSTIFIED

AREA
LABEL AREAS ELSE

ASSIGN END
LEADING

AT ENTER
LEAVING

AUTHOR ENVIRONMENT
LEFT

AUTHORS EQUAL LESS
LIBRARY ERROR
LOCATION BLANK EVERY

BLOCK EXAMINE LOCK

BLOCKS EXIT LOW-VALUE

BY LOW-VALUES

FD MEMORY
CHARACTER FILE MODE
CHARACTERS FILE-CONTROL MOVE
CHECK FILLER MULTIPLE
CLASS FIRST MULTIPLY
CLOSE FLOAT
COBOL FOR NEGATIVE
COMPUTATIONAL FROM NEXT
COMPUTE NO
CONFIGURATION GIVING NOT
CONSTANT GO NOTE
CONTAIN GREATER NUMERIC

OBJECT-COMPUTER RECORDS SUPPRESS
OBJECT-PROGRAM REDEFINES SYNCHRONIZED
OCCURS REEL
OF REELS TALLY
OFF REMARKS TALLYING
OMITTED RENAMING THAN
ON REPLACING THEN
OPEN RERUN THROUGHt
OPTIONAL RESERVE THRU
OR REWIND TIME
OTHERWISE RIGHT TIMES
OUTPUT ROUNDED TO

RUN
PERFORM UNTIL
PICTURE SECTION UPON
PLACE SECURITY USAGE
PLACES SELECT
POINT SENTENCE VALUE
POSITIVE SIGN VARYING
PROCEDUHE SIGNED
PROCEED SIZE WHEN
PROGRAM-ID SOURCE-COMPUTER WITH
PROTECT SPACE WORDS

SPACES WORKING-STORAGE
QUOTE SPECIAL-NAMES WRITE
QUOTES STANDARD

STATUS ZERO
READ STOP ZEROES
RECORD SUBTRACT ZEROS
RECORDING

fMay be used in lieu of THRU.

141

Appendix B: Sample Problems

In the following pages are presented three short sample problems intended to show
some of the ways in which the COBOL system may he used to solve typical commer
cial problems. The programs have been written on COBOL F'rogram Sheets in accord
ance with the rules given in Chapter 5. They ate complete, except for the Environ
ment Division entries, which are shown in abbreviated fmm. The manner in which
the programs have been written on the Program Sheets varies from problem to
problem with respect to such matters as indentation, spacing, and so on. These
variations are intentional; they illustrate the relatively free form of the Reference
Format.

Problem 1-A Table of Salaries

142

The :6rst problem shows how a computer may be directed to compute a set of values
to be listed in a table and then to print the table on a priinter with 120 character
positions. Speci:6cally, a monthly salary of $500 is to be used to compute the cor
responding weekly and annual salaries, and the resulting J!lgures are to be printed
in columns headed WEEKLY, MONTHLY, and ANNUAL. The monthly salary figure is
then to be increased by $10 and the procedure repeated. This process is to continue
until the table shows the corresponding figures for all monthly salaries from $500
to $1,000 at increments of $10.

The format of the printed table is speci:6ed as follows: The :6rst 46 columns of each
line are to remain blank. Six columns are then left for the heading WEEKLY, and for
the :6gures that will be printed below it. Similarly, seven columns are allowed for
the heading MONTHLY, and six for the heading ANNUAL. Three columns are to be
left blank between columns, and the 49 spaces remaining at the end of the line are
also to remain blank.

1814
COBOL PROGRAM SHEET

PROGRAM £ SYSTEM SHEET

PROGRAMMER DATE IOENT.

32 36 40 44 48 52 56 60 64 68 72

I I •

.....
~

.....
t IBM • COBOL PROGRAM SHEET

PROGRAM
E

SYSTEM SHEET

PROGRAMMER DATE IOENT.

32 36 40 44 48 52 56 60 64 68 72

I--'
..i:::...
C1l.

IB:t4

PROGRAM

PROGRAMMER

I I

..s

COBOL PROGRAM SHEET

SYSTEM

DATE

28 32 36 40 44 48

SHEET

IDENT.

52 56 60 64 68 72

Problem 2 - A File Search

146

This example illustrates a type of statistical analysis that is often required in mar
keting research and similar studies. The computer]is directed to search a file of data
to find all records containing certain specified data; it is then to write each such
record in a separate file, simultaneously recording the Illumber of records found
and, when finished, displaying this count on a staindard display device.

The records to be examined in this case contain the names and physical descriptions
of a large number of persons. The records are stored, unblocked, on magnetic tape.
Each record consists of 80 characters of information, of which the first 21 are used
in this problem. The following information is included:

Character
Positions Item Codes Meaning of the Codeis

1-15 Name (none)

16 Sex M Male
F Female

17 Age y Less than20
M At least 20, but not over 50
E Over50

18 Height T Over six feet
M At least five feet, six inches, but not over

six feet
s Less than five feet, six inches

19 Weight H Over 185 pounds
M At least 120 pounds, but not over 185 pounds
L Less than 120 pounds

20 Eyes L Black
R Brown
A Hazel
E Grey

21 Hair R Brown
L Black
G Grey
D Bald

22-80 (this information not pertinent to this problem)

The computer is directed to obtain the records of all persons having the following
characteristics:

I. Females under 20 years of age, five feet, six inches, and over in height, from
120 to 185 pounds in weight, with either hazel or brown eyes, and not bald.

2. Males over .50 years of age, over six feet in height, and over 185 pounds in
weight.

Each record meeting these requirements is to be written in a separate file. All
records found are to be counted, and the count is to be displayed on a standard
display device.

1-1
H:;:..
-l

IBM • COBOL PROGRAM SHEET

68 72

~
00 IBWI

COBOL PROGRAM SHEET

PROGRAM SYSTEM SHEET

PROGRAMMER DATE IDENT. 80

28 32 36 40 44 48 !52 56 60 64 68 72

I I t I

• • I I I I I I I I I I f I I I I I I

IBM e COBOL PROGRAM SHEET

PROGRAM
CH

SYSTEM SHEET

PROGRAMMER DATE IDENT.

20 24 28 32 36 40 44 48 ~2 56 60 64 68 72

I I I I I I I
I-'

~

""""" ~ IB14
COBOL PROGRAM SHEET

PROGRAM SYSTEM SHEET

PROGRAMMER DATE IOENT. 80

28 32 36 40 44 48 52 56 60 64 68 72

Problem 3-A Work Carel Study

This problem illustrates a use of the subscripting principle. In this case, the com
puter is directed to read a seri.es of records showing the hours worked by employees
and then to compute the daily average for each employee. The records are stored,
unblocked, on magnetic tape. Each record contains 80 character positions, of which
the first 48 are pertinent to this problem. The information in these positions includes
a statement of the number of hours worked by an employee on each of five working
days in a week. The times are shown decimally as hours and hundredths of hours.
The character positions in each record are used as follows:

Character
Positions

1-15
16-20
21-24
2.5-28
29-32
3:3-36
3'7-40
41-44
4.5-48
49-80

Item

NAME
DEPT
MON-TIME
TUES-TIME
WED-TIME
THUR-TIME
FRI-TIME
TOTAL-TIME
AVERAGE-TIME
FILLER

The computer is directed to compute TOTAL-TIME by summing the times for Monday
through Friday. As shown in the Data Division for this program, these five times
are grouped under the data--name TIME, and the PICTURE associated with it is
repeated five times, using an occuRs clause. In the actual processing, a subscript,
represented by the data-name N, is used to obtain each time value in turn. When
the five values have been totaled, the computer is directed to divide them by five
to obtain the average, and it is then instructed to create a new file consisting of the
same records as updated with total and average times.

151

•

...... IBM 01.
to

II>

COBOL PROGRAM SHEET

PROGRAM SYSTEM SHEET

PROGRAMMER DATE !DENT.

B
32 36 40 44 48 52 56 60 64 68 72

I I

IBM e
COBOL PROGRAM SHEET

PAG~ I PROGRAM W..., R K c 9 B D p R 0 G 8 , , M I I 2 2 I SYSTEM SHEET

PROGRAMMER DATE IDENT.

52 56 60

I I I I I I
......
~

Appendix C:

ACTUAL
DECIMAL POINT

ALPHABETIC

ALPHAMERIC

ALPHANUMERIC

ARITHMETIC
EXPRESSION

ASSUMED
DECIMAL POINT

BLOCK

BLOCKING

CHARACTER

154

Glossary

Many of the important terms used in this manual are defined in the following pages.
In studying them, the reader should recognize that the field of electronic data proc
essing has grown so rapidly, and has developed so many special needs, that it has
been difficult to agree on standardized terminology. There are many terms that are
used widely throughout the field, but they tend to acquire special meanings when
used in connection with particular systems. The COBOL system, however, is designed
to permit a high degree of programming compatibility among machine systems, and
its vocabulary reflects a common usage. Accordingly, the terms given below have
been defined in a manner to emphasize those aspects and meanings which refer in
particular to the COBOL system and in general to the art of electronic data processing
as it is most widely practiced. The definitions are not intended to be comprehen
sive, and the reader should consult the text of the manual if he wishes further
details.

A decimal point used for "display" purposes. E.g., when .a numeric value is listed
on a printed report, the decimal point will often appear as an actual printed char
acter. When specified for data to be used within a computer, it requires an actual
space in storage. (Cf. ASSUMED DECIMAL POINT.)

With respect to data, consisting of one or more of the letters of the alphabet and/ or
one or more spaces. As used in the COBOL system, the term does not include other
non-numeric characters.

Alphanumeric.

With respect to data, consisting of any of the characters of a computer's character
set. As used in this manual, the term includes the characters of the COBOL character
set and, in addition, any other characters which may be lllsed within a particular
machine system through the use of a COBOL processor.

An expression containing any combination of data-names, numeric literals, and
named constants, joined by one or more arithmetic opera.tors in such a way that
the expression as a whole can be reduced to a single numeric value. (See the dis
cussion of arithmetic expressions in Chapter 3 and in Appendix A; see also the
arithmetic verbs, as described in Chapter 7.)

The point within a numeric item at which the decimal point is assumed to be lo
cated. When a numeric item is to be used within a computer, the location of the
assumed decimal point is considered to be at the right unless otherwise specified
in the appropriate Record Description entry. It will not occupy an actual space in
storage, but it will be used by the computer to align the value properly for calcu
lation.

In the COBOL system, a group of characters or records which may be treated as an
entity for movement into and out of a computer.

The process of combining two or more data records to form a block.

One of a set of elementary symbols which may be arranged in ordered groups to
express information. These symbols may include the decimal digits 0 through 9,

COBOL WORD

COLLATING SEQUENCE

CONDITION

CONDITIONAL
EXPRESSION

CONDITION-NAME

CONSTANT

CONSTANT AREA

DATA DESCRIPTION

DATA DIVISION

DATA ITEM

DATA-NAME

DATA RECORD

DIGIT

DISPLAY

EDITING

the letters A through Z, punctuation symbols, special input and output symbols,
and any other symbols which may be accepted by a data processing system.

One of a group of words having pre-assigned meanings in the COBOL system. A list
of COBOL words will be found. in Appendix A of this manual.

A sequence of characters as aITanged in the order of their relative precedence. The
collating sequence of a particular computer is determined as part of its design;
each character acceptable to the computer has a pre-assigned place in this se
quence. A collating sequence is used primarily in comparing operations.

In the COBOL system: I. One of a set of specified values that a data item can as
sume. 2. The status of a switch as specified in the SPECIAL-NAMES paragraph of the
Environment Division. 3. A simple conditional expression. (See CONDITIONAL

EXPRESSION.)

In the COBOL language, an expression which has the particular characteristic that,
taken as a whole, it may be either true or false, in accordance with the rules given
in Chapter 3 of this manual.

A name assigned by the programmer to a value representing one of several condi
tions which may be assumed by a data item, in accordance with the rules given in
Chapter 3 of this manual.

A value which is to be used in a program without alteration, in accordance with the
rules given in Chapters 3 and 6 of this manual. (Cf. FIGURATIVE CONSTANT, LITERAL.)

A location within the computer in which one or more constants may be stored for
reference.

The entry or entries in the Data Division used to describe the characteristics of a
data item, in accordance with the rules given in Chapters 4 and 6 of this manual.

That division of a COBOL program which consists of entries used to define the nature
and characteristics of the data to be processed by the object program.

In the COBOL system, a unit of recorded information which may be identified by a
name or by a combination of names and subscripts.

A name assigned by the programmer to a data item for use in a COBOL program, in
accordance with the rules given in Chapters 3 and 6 of this manual.

A record containing data to be processed by a program.

One of the numerals from 0 through 9. In the COBOL system, the term is not used
with reference to any other symbols.

The representation of a data item in visible form, as on a printed report, or in lights
or indicators on a machine console or other device. Also, a mode of recording data
for ultimate display. (See the discussion of USAGE in Chapter 6.)

The process of arranging data. for such purposes as improving readability or pro
tecting it against unauthorized alteration; it involves an alteration of format and/or
punctuation, together with the suppression of certain characters and/ or the addi
tion of others. (See the discussion of PICTURE in Chapter 6.)

155

E1 .. EMENTARY ITEM

ENVIRONMENT
DIVISION

FIGURATIVE CONSTANT

FILE (noun)

FORMAT

IDENTIFICATION
DIVISION

IMPERATIVE
STATEMENT

INTEGER

JUSTIFICATION

KEY WORD

LABEL RECORD

LEVEL

LEVEL INDICATOR

LEVEL-NUMBER

LITERAL

156

In the COBOL system, a data item containing no subordinate items.

That division of a COBOL program in which the programmer specifies the equipment
and equipment features to be used in a program, such as the nature of the input/
output equipment, the size and nature of the storage area available, and so on.
This subject is further discussed in the publications covering the COBOL processors
for the various machine systems.

One of several constants which have been "pre-named" and "pre-defined" in a
COBOL processor so that they can be written in the program without having to be
described in the Data Division. A list of figurative constants will be found in
Chapter 3 of this manual.

A set of related data records and/ or label records organized for use in a data
processing system.

A predetermined arrangement of the types of characters of which a data item is
composed. The format of each item is specified by the programmer in the Data
Division of a program.

That portion of a COBOL program in which the programmer provides certain infor
mation necessary to identify the source and object programs. (See Chapter 9 of
this manual.)

A statement consisting of a verb and its operand (s); also, a series of such state
ments. A statement expresses a complete unit of procedure.

A whole number; e.g., 26 is an integer, while 26.7 .is not.

1. In printing or listing, the alignment of a margin. 2. In the COBOL system, the
alignment of characters with respect to the left or right boundaries of data items,
as explained in the discussion of the JUSTIFIED clause in Chapter 6 of this manual.
(Cf. SYNCHRONIZATION.)

In the COBOL language, a word which is essential to the meaning and structure of a
COBOL statement. In this manual, key words are indicated. in the basic formats of
verbs and statements by underscoring. A list of key words will be found in
Appendix A.

A record used to identify the contents of a file or rnel of magnetic tape.

In the COBOL system, the status of one data item relative to another, showing
whether one is to be treated as part of the other or whether they are unrelated, as
specified in the rules governing level-numbers in Chapters 4 and 6 of this manual.

In the COBOL system, a symbol or level-number used in a Data Division entry to
indicate level. For example, FD is a level indicator. (See the discussion of levels in
Chapter 4 of this manual.)

A numeric level indicator.

A character, or group of characters, used in a program to represent the value "lit
erally" expressed. Thus, the literal 7 represents the value 7, whereas SEVEN is a
name that could be used to represent the value 7. (See the rules governing literals
in Chapter 3 of this manual.)

LOCK (verb) To terminate the processing of a magnetic tape in such a way that its contents are
no longer accessible, as explained in the discussion of the CLOSE verb in Chapter 7
of this manual.

LOOP A sequence of procedures intended to be repeated under program control, usually
with some modification of at least one of the procedures and/ or of the data being
operated upon.

MACHINE LANGUAGE The system of codes by which instructions and data are represented internally
within a particular data processing system.

MACHINE WORD (SeewoRo.)

MACHINE-INDEPENDENT An adjective used to indicate that a procedure or a program is conceived, organ
ized, or oriented without specific reference to the operating characteristics of any
one data processing system. Use of this adjective usually implies that the procedure
or program is oriented or organized in terms of the logical nature of the problem,
rather than in terms of the characteristics of the machine used in solving it.

MEMORY Main storage. (See STORAGE.)

.MODE (See RECORDING MODE.)

NON~NUMERIC In the coBor. system, not having a numeric value. In this manual, the term is con
sidered equivalent to ALPHANUMERIC. (Cf. NUMERIC.)

NUMERIC In the COBOL system, having a numeric value. In this manual, the term is used to
refer to a value, rather than to the characters used to represent it.

OBJECT PROGRAM In the COBOL system, a program in machine language resulting from the translation
of a source program by a processor.

OBJECT TIME The time at which an object program is executed, as opposed to the time at which
a source program is translated into machine language to create an object program.

OFF-LINE Not under direct computer control; the term generally refers to the operation of
input/ output devices.

ON-LINE Under the direct control of a computer program; the term generally refers to the
operation of input/ output devices.

OPERAND In the COBOL language, the "object" of a verb or an operator-i.e., the data or equip
ment governed, or operated on, by a verb or an operator.

OPERATOR In the COBOL system, a word or symbol, other than a verb, which directs the data
processing system to take some action; e.g., the arithmetic operator + instructs
the system to perform an addition, and the conditional operator IF directs it to test
a conditional expression.

OUTPUT AREA A portion of storage in which processed data is assembled in proper sequence and
form for release as output from a program.

PROCEDURE In the COBOL system, a set of one or more statements which direct the computer to
perform some operation. A routine.

157

PROCEDURE DIVISION

PROCESS TIME

PROCESSOR

PROCESSOR VERBS

PROCESSOR-DIRECTING
VERBS

PROGRAM

PROGRAM VERBS

QUALIFICATION

RECORD

RECORDING MODE

REDEFINE

RELATIONAL
EXPRESSION

RERUN

ROUND

ROUTINE

SECTION

158

That portion of a COBOL program which consists of statements directing the data
processing system to take specified actions at object time.

The time at which a source program is translated into an object program through
the action of a processor.

A specialized program used to translate a source program into an object program.

Verbs which specify to the processor the procedures by which a source program is
to be translated into an object program. Such verbs do not cause action at object
time. (Cf. PROGRAM VERBS.)

Processor verbs.

A complete set of instructions directing a computer to perform a data processing
task. The term implies an extended sequence incorporating all of the detailed steps
and procedures required to complete a job. (See also OBJECT PROGRAM and SOURCE

PROGRAM.)

Verbs which cause the processor to generate machine instructions which will be
executed by the object program. (Cf. PROCESSOR VERBS.)

With reference to COBOL names, the technique of modifying a name by the addi
tion of another name in order to make it unique, in accordance with the rules given
in Chapter 3 of this manual. The name to be qualified is followed by either the
word OF or the word IN and then by the qualifying name.

A set of one or more related data items grouped for handling by an input/ output
system. (Cf. DATA RECORD, FILE, LABEL RECORD.)

In the COBOL system, the representation in external media of data associated with
a data processing system.

In the COBOL system, to use the same portion of storage for different data items at
different times during the running of a program.

In the COBOL language, an expression that describes a relationship between two
terms. For example, A IS LESS THAN B.

A repetition of all or part of a program, either from the beginning or from some
designated reference point. Rerun. procedures are often included in a program so
that, in case of an interruption, the program can be restarted from the nearest pre
ceding reference point, thus avoiding reprocessing of the entire program.

In the COBOL system, to shorten a number, increasing the least significant remaining
digit by 1 when the most significant digit of the part removed is greater than or
equal to 5. (Cf. TRUNCATION.)

A set of one or more statements used in a program to cause a computer to perform
some operation or series of related operations.

In the COBOL system, a sequence of one or more paragraphs defined in accordance
with the rules given in Chapter 3. Also, one of the portions of the program defined

SENTENCE

SOURCE LANGUAGE

SOURCE PROGRAM

STATEMENT

STORAGE

STORED PROGRAM

SUBSCRIPT

SWITCH

SYNCHRONIZATION

TAPE ALTERNATION

TRUNCATION

UNBLOCKING

as a section in the rules governing the format of a COBOL program; e.g., the File
Section and the Constant Section of the Data Division.

In the COBOL language, a complete sequence consisting of one or more statements
specifying one or more operations, in accordance with the rules given in Chapter 3
of this manual. A sentence mu.st be terminated by a period.

As used in this manual, the COBOL language, or some other language made available
by means of the ENTER verb, as explained in Chapter 7.

As used in this manual, a program written in the source language. (Cf. SOURCE

LANGUAGE.)

In the COBOL language, a group of words (including symbols where appropriate)
which expresses a command, in accordance with the rules given in Chapter 3 of
this manual; it may also include a condition to be tested. A statement consists of
one or more verbs and their associated operands.

A medium in which data may be retained. Storage may be internal or external.
Main storage-the principal internal area in which data and program instructions
are retained for active use within a data processing system. Auxiliary storage-a
supplementary storage medium, less active in use than main storage, in which data
may be retained; data in auxiliary storage can be used directly by the system, but
access is generally slower than to main storage.

A data processing program which is stored internally within a data processing
system. The program itself occupies storage in the same manner as the data used
in the program and can be treated as if it were such data.

An integer used to identify a particular item in a list or table, in accordance with
the rules specified in Chapter 4 of this manual. It may be written in a COBOL pro
gram as a numeric literal or a data-name.

1. A point in a program from which a program may proceed to one of several pos
sible courses of action, depending on conditions established by the programmer;
conditional statements are often used to establish switches of this kind; a branch
point. 2. A mechanical, electromechanical, or electronic device, built into a unit of
equipment, which can be interrogated in order to select a course of action.

In the COBOL system, the alignment of data with respect to the left or right bound
aries of machine words, as explained in the SYNCHRONIZED clause in Chapter 6 of
this manual. (Cf. JUSTIFICATION.)

A selection, usually controlled automatically by a program, of first one tape unit
and then another, normally during input or output operations, which permits suc
cessive reels of a file to be mounted and removed without interrupting the program.

The process of dropping one or more digits of a number, either at the left or the
right, without altering any of the remaining digits. For example, in most operations
the number 3847.39 would become 3847.3 when truncated one place at the right,
while it would become 3847.4 when rounded correspondingly. (Cf. ROUND.)

The process of separating and obtaining one or more records from a block. (See
BLOCKING.)

159

VALUE

VARIABLE

VERB

WORD

WORK AREA

160

In the COBOL system, the information represented by a data item, arithmetic expres
sion, or conditional expression.

In the COBOL system, a named data item in storage which may assume different
values at different times during the running of the object program.

In the COBOL language, one of a selected list of words that specify one or more
operations to be performed by a data processing system. (See Chapter 7 of this
manual.)

In the COBOL language, a basic unit of language, serving the same general purposes
as words in other languages. Machine word-a subdivision of storage having a
fixed size.

A portion of storage in which a data item may be processed or temporarily stored.
The term often refers to a place in storage used to retain intermediate results of
calculation, especially those results which will not appeair directly as output from
the program.

Index

ACCE:PT 99-100
Special-Names 125

.ADD ,· 105-108
ALL ... 35-36
ALPHABETIC44, 74
ALPHANUMERIC44, 7 4
ALTER .. 112

See also: Go To
AND

Logical Operator 37
Series Separator . 38

Arithmetic Expressions 38-39, 133-134
Arithmetic Operators 36, 49, llO, 133
Arithmetic Verbs 105-1 ll

General Rules 107
Asterisk

See: Replacement of Characters
AT END 48, 97
BLANK .. 86
BLOCK .. 69
Character Set

COBOL Character Set 29
Computer Character Set. 29

CHECK PROTECT 86
Check Protection 82, 86
CLASS .. 7 4, 75

See also: PICTURE

Class Conditions44, 131
Clauses, Data Division. 53
CLOSE .. 98-99
COBOL Program Sheet 62-66
COBOL Words 28, 37

List of conoL Words 140-141
Coding Sheet

See: COBOL Program Sheet
Collating Sequence 35, 40
Comma ; 38, 49
Comparison of Items. 40
Compound Conditions 42-43, 132, 133
Computation, Order of 39, 134
COMPUTE llO-lll
Conditional Expressions 39-46, 131-132, 133
Conditional Sentences . 49
Conditional Statements 46-48, 133
Condition-Names 31, 41-42, 131

See also: VALUE

Conditions 31, 40-46, 131-133
See also: AT END, Class Conditions, Conditional

Expressions, Sign Conditions, SIZE ERROH,

Switch-Status-Names
CONFIGURATION 123, 124
Constant Section 54, 91-93
CONSTANT SECTION 67, 91
Constants 33, 91-93

Grouped Constants 91

Independent Constants 91
See also: Figurative Constants, Literals, Named

Constants
Continuation Indicator . 64
COPY

File Description Entry. 71
FILE-CONTROL ••• , , ••••••••••••••••••.•••••••••• 126
I-0-CONTROL •••••••••••••••••••••••••••••••••••• 127
OBJECT-COMPUTER ••••••••••••••••••••••••••••••• 124
Record Description Entry. 89
SPECIAL-NAMES ••••••••••••••• , , , , , •••••• , • , ••••• 125

Data Description 10-ll, 24, 51, 67-68
See also: Data Division, File Description Entry,

Record Description Entry
Data Division 24, 67-93
DATA DIVISION 67
Data Items . 52

See also: Elementary Item, Groups
Data Manipulation Verbs 101-105
Data Organization 51-60, 67

See also: Levels
DATA RECORDS 71
Data-Names 11, 30
Decimal Points

Actual 73, 76
Assumed 73, 76
See also: PICTURE, POINT LOCATION, SIZE

DISPLAY 100-101
Special-Names 125

Display Signs , 81
DIVIDE ... 109
Editing .. 78, 86

Editing Clause . 86
MOVE •••••••••••••••••••••••.•••••••••••••• 101-104
Report Items 80-85
SIGNED •••••••••• , ••••••••••••••••••.••.•••••••• 76

Elementary Items ; . 52
See also: Data Items, Groups

EJLSE
See: Conditional Statements

ENTER .. 121
Entries

Data Division Entries 53-54, 60, 67
Environment Division Entries . 60
COBOL Program Sheet . 66

Environment Division 26, 123-127
ENVIRONMENT DIVISION)23/
EXAMINE : 104-105: 106
E:XIT .. 121-122
Expressions 38-46

See also: Arithmetic Expressions, Conditional
Expressions

Figurative Constants 34-36
File Description Entry. 68

See also: Entries

161

File Section . 53
FILE SECTION . 67
FILE-CONTROL 126-127
Files ... 52, 53
FILLER ... 73
FLOAT DOLLAR SIGN. 86
Floating Signs

See: Editing Clause, PICTURE, Replacement
of Characters

Formats
ACCEPT •.••••••••••••••••••••• , ••••••••••••• , •• 99
ADD •••••••••••••••••••••••••.•••••.••• , •••••••• 105
ALTER •••.••••••••••••••• , ••• , ••••••. , .•••• , ••• 112
BLANK ••••••••••••••••••• , •••••••••.•••••• , •••• 86
BLOCK •••••••••••••••••••• , ••• , •••• ,,., •• , •••••• 69
CHECK PROTECT ••. , , , •••••• , •••••••••• , • • • • • • • • • 86
CLASS ••••••••••••••••••.•••• , •••••••••••••••••• 74
Class Conditions 44, 131
CLOSE •••••••••• , •••••••••••••••.•••• , ••• , • , •••• 98
COBOL Program Sheet. 63
COMPUTE •••••••••••••••••••••••••••••••••• , • , .110
Conditional Statements 47, 133
Conditions 41, 43, 44, 131
CONFIGURATION •••••••• , •••• , • , , ••••• , • , , , •••• , .124
COPY

Environment Division Entries 124, 125, 126, 127
File Description Entry. .. . 71
Record Description Entry. 89

DATA RECORDS •••••••••••••••.• , ••• , ••••••• , • • • • 71
DISPLAY •••••••••••••.• , ••••• , , , •• , ••••••••••••• 100
DIVIDE ••••••••••••• , ••••.• , ••••••••••• , ••• , •• , •• 109
Editing Clause . 86
ENTEU •••••••••••••••• , •. , , ••••• , •• , •• , •• , , ••• 121
EXAMINE ••••••••••••••••••••••••••••••••••••• , .104
EXIT ••• 121
File Description Entry 68, 138
FILE-CONTROL •••••••••.••• , ••••••••••••• , ••• , • , .126
FLOAT DOLLAR SIGN •••••• , • , •••• , •.•••••••••••• , • 86
GO TO ••••••••••••••••••••••••••••••.•••••••••• Ill
I-0-CONTROL •••••••••••••••• , •• , ••••.••••••••• , .127
JUSTIFIED ••••••••• , ••••••••••.••• , ••••• , •••• , , • • 87
LABEL RECORDS .•••••••••• , • , • , , .•••• , ••••••• , , • • • 70
Level Indicator . 69
Level-Numbers . 73
MOVE ••••••.••••••••••••••••••.••.•••••••••••••• 101
MULTIPLY ••••••••.••••••••••••••••• , ••••••••••• 108
NOTE •.•••••• •\•• •••••••.•••••••••••••••••••••••• 122
OBJECT-COMPUTER .••••••••••••••••••••••••••• , .124
OCCURS ••••••.••.•••• , •••••••..••••••••••• , •••• , • 87
OPEN •••••••••••••• , •••• , , ••••• , •• , •••••••••.••• 95
PERFORM •••••••••••••••••••..••••• , •• , .•••••••• 113
PICTURE .•••••••••••• , •••••••.• , ••••.••••••••• •.• 77
POINT LOCATION ••••••••• , ••• , •• , ••••.••••••• , • , • 76
PROGRAM-ID ••••••.••••••• , •••.•••••••••••.••••• 128
READ •••••••••••••••• , •••••••••• , •••••• ,,.,,., •• 96
RECORD ••••••••••••••••••• ,., •• , ••••••••••• , ••• , 72
Record Description Enh·y 72, 139
RECORDING MODE • . • • . . • . • . • • . • • • • • • • • • • • • • • • 69
REDEFINES ••••••••••••••••••••••••• , •.•••• , • • • • • 88
Sign Conditions43, 131

162

SIGNED ••• , , •• , •• , •• , •••••••• , •• , ••••••••••••• , • 76
Simple Relational Conditions41, 131
SIZE •••• , • , • , , , •• , •••••••.. , ••••••• , •••••••••••• 73
SOURCE-COMPUTER •••••••••. , ••••••••••••••• • •• • , .124
SPECIAL-NAMES , •••••••••••••••• 125
STOP • , .. 120
SUBTRACT , , •••••••••••••••• 108
SYNCHRONIZED • • • •• • • • 87
USAGE ••••••••••••••.••••••••••••••••••••••••••• , 74
VALUE

File Description Entry. 70
Record Description Entry. 76

Verbs (Complete List) 134-138
WRITE •• 97
ZERO SUPPRESS •••.•••••••••••••••••••••••• • • • • • • 86

GO TO ... 111-112
See also: ALTER

Group Work Areas 90
Grouped Constants 91
Groups (of Data Items) . 52

See also: Data Items, Elementary Items
HIGH-VALUE•........................... 35
Identification Division 26, 128-129
IDENTIFICATION DIVISION 128
Imperative Sentences . 49
Imperative Statements . 46
Implied Operators 46, 133
Implied Subjects 45, 133
Independent Constants 56, 91
Independent Work Areas 56, 89-90
INPUT-OUTPUT 123
Input-Output Section 126-127
Input/Output Verbs 95-101
Insertion Characters 81-82
I-0-CONTROL 123, 127
Items

See: Data Items
JUSTIFIED 86-87
Key Words 28, 38, 140-141
LABEL RECORDS 70
Level Indicator 54, 69
Level-Numbers 54-56, 73
Levels .. 54-56

See also: Level Indicator, Level-Numbers
Library 60, 71, 124, 125, 126, 127
Literals ... 33-34

Non-Numeric 34
Numeric 33
See also: Constants

Logical Operators 37, 41
Looping

See: GO TO, PERFORM

LOW VALUE 35
Machine Components 125-126
Machine Instructions 6-9
Margins ... 65
MODE

See: RECORDING MODE

MOVE 101-104
MULTIPLY 108-109

Named Constants 34
Names ... 30-32

Assigning , . 32
COBOL Program Sheet . 65
FHe Description Entry 68
Qualification 32, 57, 60, 73
Record Description Entry . 73
See also: Condition-Names, Data-Names, Procedure-

Names, Special-Names, Switch-Status-Names
NEXT SENTENCE47-48
Non-Report Items 79
NOT .. 37, 41
Notation Used in Formats 28
NOTE ... 122
NUMERIC 44, 74
Object Program 3, 26
OBJECT-COMPUTER 123, 124-125
OCCURS 87, 92

See also: Subscripts
OPEN ... 95-96
Operational Signs 73, 76

See also: PICTURE

Operators 1 ••••••••••••••••••••••••••••••••• 36-37
See also: Arithmetic Operators, Logical Operators,

Relational Operators
OPTIONAL Files 126

See also: CLOSE, OPEN, READ

Optional Wo~ds 38, 140-141
Notation Used in Formats 28

OR .. 37
OTHERWISE

See: Conditional Statements
Packing .. 87
Paragraphs 50
Parentheses . 49
PERFORM 113-120
Period .. 49
PICTURE ~ 77-85

See also.: CLASS, SIGNED, SIZE

POINT LOCATION . 76
See also: Decimal Points

Procedure Division 25, 94-122
Procedure-Names 30-31, 32
Processor 3-5, 26
Processor Verbs ... : 36, 49, 121-122

List of Processor Verbs. 94
Processor-Directing Sentences . 49
Processor-Directing Verbs

See: Processor Verbs
Program Identification Code. 64
Program Verbs 36, 95-120

List of Program Verbs 94
PROGRAM-ID 128
Punctuation 49-50
Qualification of Names 32, 57, 60

See also: Level-Numbers, Names
Qualifying Connectives . 32
QUOTE .. 35
READ ... 96-97
RECORD .. 72

Record Description Entry 55, 72
RECORDING MODE 69
Records .. 52

See also: DATA RECORDS, LABEL RECORDS

REDEFINES 88-89, 92
Reference Format 62-66
Relational Conditions

See: Simple Relational Conditions
Relational Operators . 37

See also: Conditions
Repetitive Operations

See: GO TO, PERFORM

Replacement of Characters
EXAMINE , , •••• , , • , •••• , ••• , , , • , , •• , , • , .104-10.5, 106
PICTURE • , • , , , ••••••••••••••••••••••• , •••••••• 82-84

Report Items 79, 80-85
Rounding .. 107
Scaling Position . 78
Sections . 50
Sentences 48-50

COBOL Program Sheet . 65
See also: Conditional Sentences, Imperative

Sentences
Sequence Control Verbs , 111-120
Sequence Numbers . 64
Series Separators 38, 49
Sign Conditions43-44, 131
SIGNED ... 76

See also: PICTURE

Signs
See: Display Signs, Operational Signs, PICTURE,

SIG~ED

Simple Relational Conditions41, 131
See also: Implied Operators, Implied Subjects

SIZE .. 73, 75
See also: PICTURE

SIZE ERROR48, 107-108
Source Program 3, 26
SOURCE-COMPUTER 123, 124
Space .. 49
SJ~ACE ... 35
Special-Names 31, 125-126

ACCEPT ••••••••••••.••••••••.•••••.••..••.••••• 100
DISPLAY •• , •••••••••••••••••••••••.••••.••••..•• 100

SPECIAL-NAMES 125-126
Statements 46-48

See also: Conditional Statements, Imperative
Statements

s~roP .. 120
Subjects

See: Entries, Implied Subjects] Simple Relational
Conditions

Subroutines
See: GO TO, PERFORM

Subscripts 49, 57-60, 92-93
OCCURS •••••••• , •••••••••.•••••••••••••••••••..• 87
PERFORM • , ••••• , ••••••••••.••••••••••••..•• 116-120
Sample Problem . 151

SlJBTRACT 108
Switch-Status-Names44-45, 131

163

F28-8053-2

Symbol Pairs, Tables of
Arithmetic Expressions 134
Conditional Expressions 132

SYNCHRONIZED . 87
Tables 57-60, 92-93
TALLY .. 36

EXAMINE ••••••••••••• , •••••••••••••••• 104-105, 106
THEN ... 46, 50
USAGE .. 74-75
VALUE

Condition-Names 77, 90
Constant Section 91
File Description Entry 70
PICTURE •• 79
Record Description Entry 76-77
Working-Storage Section 90

Tirn~
e

International Business Machines Corporatian

Data Processing Division

112 East Post Road, White Plains, N. Y. 10601

Verbs .. 36
Formats 134-138
List by Type . 94
See also: Arithmetic Verbs, Data Manipulation

Verbs, Input/Output Verbs, Processor Verbs,
Program Verbs, Sequence Control Verbs

Words
See: COBOL Words, Key Words, Names,

Optional Words, Verbs
Working-Storage Section 53-54, 89-91
WORKING-STORAGE SECTION 67, 89, 90
WRITE .. 97-98
ZERO ... 34
ZERO SUPPRESS 86
Zero Suppression 80, 86

Zero Suppression Character . 80
See also: PICTURE

'!>
>'rj
Nl
00
I

00
0
01
w
I

Nl

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164

