High-Speed Arithmetic in Binary Computers
O. L. MacSorley / TR 00. 740

LB

September 14, 1960 TR 00.740

HIGH-SPEED ARITHMETIC IN BINARY COMPUTERS

O. L. Mac Sorley

ABSTRACT

Methods of obtaining high speed in addition, multiplication, and division in
parallel binary computers are described and then compared with each other
as to efficiency of operation and cost. The transit time of a logical unit is
used as a time base in comparing the operating speeds of different methods,
and the number of individual logical units required is used in the comparison
of costs. The methods described are logical and mathematical, and may be
used with various types of circuits. The viewpoint is primarily that of the
systems designer, and examples are included wherever doing so clarifies the
application of any of these methods to a computer. Specific circuit types are
assumed in the examples.

Product Development Laboratory, Data Systems Division
International Business Machines Corporation, Poughkeepsie, New York

CONTENTS

Introduction . . ,

Adders, 1
Multiplication, 1
Division, 2
General, 2

Binary Adders o4

Binary adders, fixed time, 4
Binary adders, variable time, 9

Binary Multiplication L2

Multiplication using variable length shift, 12
Multiplication using uniform shifts, 17

Uniform shifts of two, 17

Uniform shifts of three, 20

Multiplication using carry-save adders, 22
Component reduction with carry-save adders, 31

BinaryDiVision....................................36

Division using single adder, one-times divisor, and shifting across zeros
and ones, 38

Division using double adder and one-half, one, and two times divisor, 43

Division using single adder with one-half, one and two times divisor, 48

Quotient development and termination when using one-half, one, and two

multiples, 49
Division using divisor multiples of three-fourths, one, and three-halves, 51
Comparative evaluation of various methods of division, 55

Acknowledgements8
References B9
Figures 1 through 16 6l S
AppendiX . ..o L L L o e

The full adder, 77

Completion recognition adders, 78
Multiplication, 79

Multiplication using carry-save adders, 83
Division, 83

Division using carry-save adder, 85

Figures 17 through 23 88ff

HIGH-SPEED ARITHMETIC IN BINARY COMPUTERS
by

O. L. Mac Sorley

INTRODUCTION

The purpose of this report is to describe various methods of increasing
the speed of performing the basic arithmetic operations in such a manner
that one method may be readily compared with another, as to both relative
operating efficiency and relative equipment cost. It is divided into three
parts: Adders, Multiplication, and Division.

Adders

As it is generally recognized that most of the time required by adders is
due to carry propagation time, this section deals with methods of reducing
this time, together with their efficiency and relative costs. It considers
adders both from the standpoint of reducing the length of the carry path when
using a fixed-time adder and of recognizing the completion of an addition to
take advantage of the short length of an average carry. Circuits shown are
in terms of basic logic blocks, and use the transit time of a logical block as
a unit to permit the application of conclusions to various types of circuits.

Multiplication

In multiplication, if one addition is performed for each one in the
multiplier, the average multiplication would require half as many additions
as there are bits in the multiplier. This can be improved considerably by

the use of both addition and subtraction of the multiplicand. The rules

-2-

for determining when to add and subtract are developed, and the method of
determining the number of operations to expect from the bit grouping is ex-
plained. This results in a variable number of add cycles for fixed-length
multipliers. For some applications a fixed number of cycles is preferable.
To accomodate this requirement, rules are developed for handling two-and
three-bit multiplier groupings.

Multiplication, which involves repeated additions in which the selection
of the various addends is not affected by a previous sum, offers the possi-
bility of improved speed by the use of carry-save adders. Condictions under
which such improvements will be realized are investigated, and methods that
may be used to reduce the amount of equipment required are described.
Division

Working from the premise that a division should require no more additions
than would be required if the resulting quotient were used as the multiplier in
a multiplication, the development of such a method is traced through several
stages. Then another and still faster method is also described. Methods of
evaluating the speeds of these various methods are developed in such a manner
as to also permit evaluation of the effects of variation in maximum shifter size.
General

For the purpose of illustrating points in the use of these various arith-
metical inethods which may affect their application to computers, several
typical systems circuits are shown, and the use of these is assumed in the
numerical examples included. The following is a brief description of the circuits

that are assumed available and a definition of terms that will be used.

-3-

DC rather than pulse type logic is assumed. Registers, or data storage
devices, are assumed to be separate from the adder. The use of a separate
shifter rather than a shifting register is assumed. Most registers used are
""latch-registers''; this means a register capable of being set from data lines
which are in turn controlled by the output of the same register upon the appli-
cation of a latch-control signal. A gate is a group of two input AND circuits,
each having one of its two inputs connected to a common line, and the other
input to a data input line. A shifter is a device for transferring all bits in a
register a specified number of positions left or right. The term '"addition"
will be used to include both addition and subtraction, and the same adder will
be used for both. Subtraction will always be performed by the use of the
two'scomplement of the number to be subtracted from the other. This will be
obtained by inverting all bits in the number and also forcing an additional one
into the carry position of the low order bit position of the adder when per-
forming the addition.

Logical circuits are shown with inputs on the left and outputs on the right.
The bottom output position represents the logical function described in the box,
while the top output position represents its inverse. The logical symbols used
within the boxes are AND (&), INCLUSIVE OR (\/), and EXCLUSIVE OR (&)-
When the word OR is used alone, it means INCLUSIVE OR.

Unless otherwise specified, arithmetic used in examples is assumed to
be binary floating point, although the methods described are not limited in
their use to this type of arithmetic. When a number is described as normalized,
it means that the fraction has been shifted in the register until the high order

one in the fraction is located just to the right of the binary point, and the ex-

4
ponent has been adjusted accordingly. Thus a normalized fraction will al-
ways have a value less than one and equal to or greater than one-half. In the

examples exponent handling is implied, but not described in detail.

BINARY ADDERS

Binary Adders, Fixed Time

The basic binary adder is comparatively simple and quite well-known.

It is also comparatively slow. Figure 1 shows one version of one stage of such
an adder.

In the discussion of adders the lowest order bit or adder position will be
designated as one. The two multi-bit numbers being added together will be
designated as A and B, with individual bits being Al’ AZ’ B, etc. The third
input will be C. Outputs will be S (Sum) R (Carry), and T (Transmit).

The conventional ripple-carry adder consists of a number of stages like
that shown in Figure 1, connected in series, with the R output of one stage being
the C input of the next. The time required to perform an addition in such an
adder is the time required for a carry originating in the first stage to ripple
through all intervening stages to the S or R output of the final stage. Using
the transit time of a logical block as a unit of time, this amounts to two levels
to generate the carry in the first stage, plus two levels per stage for transit
through each intervening stage, plus two levels to form the sum in the final
stage, which gives a total of two times the number of stages.

The usual forms of the logical description of the sum and carry from the
nth stage of an adder are S = (An‘NLBn).lCn) and R = (A B VAnCnVBn C,)

Also, from the description of connection between sections, C, = Rn-l' If

-5-

the carry description is rearranged to read R, = (Ar'lV Bn) CnVAan, and if
T, is defined as (A ¥ B,) and D_ is defined as (A B), then R = DnVTnCn.
This separates the carry out of a particular stage into two parts, that pro-
duced internally and that produced externally and passed through. The former
is called a generated carry and the latter is called a propagated carry. From
this the description of the carry into any stage may be expanded as follows.

Ch= Rp-1
Cn = Dn-1 vTn-l Ry-2

C = Dn-lVTn-an-ZVTn-lTn-Z Rn_3

Q
i

D ,¥T D VT T _.D .¥T T _T
n-1 n-1"n-2 "n

-1 "n-2"n-3 n-1"n-2 n-3Rn-4

This can be continued as far as is desired.

Figure 2 illustrates the application of this Principle to a section of a carry
propagate adder to increase its speed of operation. By allowing n to have
successive values starting with one and omitting all terms containing a resulting
negative subscript, it may be seen that each stage of the adder will require one
OR stage with n inputs and n AND circuits having one through n inputs, where
n is the position number of the particular stage under consideration.

It is obvious that circuit limitations will put an upper limit on the number
of stages of an adder than can be connected together in this manner. However,
within this limit the maximum carry path between any two stages is two levels,
or six levels for the complete addition.

Assume that five stages represent a reasonable number of adder stages to
be connected in this manner and designate such an arrangement as a '‘group'.
The group containing the five low-order positions of the adder will be group 1,

etc. A carry into group n will be an, while a carry out of the group will be

-6-
Rgn‘ If these five-bit groups are now connected in series with an = Rg(n-l)’
a carry will require four levels to be produced and reach the output of the first
group, two levels to go through each intermediate group, and four levels to
reach and be assimilated into the sum in the final group. Thus, for five-bit
groups, the maximum carry path length would be 4 + (2n/5) as compared to 2n
for a straight ripple-carry adder. For a 50-bit adder this would give 24 levels
as compared to 100.

Since each five-bit group may be considered as one stage in a radix-32
adder, a transmit signal may be generated to take a carry across the group.
This will be designated as Tgn’ and will be defined as Tg = T1T2T3T4T5,
where the numbers 1, 2, etc., refer to positions within the group rather than
within the adder. At the same time Dgn’ which includes only carries originating
within the group, may replace Rgn’ which includes the effect of an, whenever
a higher level of look-ahead than the one under consideration is being used with
it. The use of R n where Dgn is called for will not produce an error, but will
add unnecessary components.

This process may be continued by designating five groups as a section and
then using carry speed-up circuits between the sections. Carries into a section
will be C_ and carries out of a section will be D__ . (If the third level of carry
look-ahead is not used, Rsn must be used in place of Dsn') The maximum path
length for a carry to be generated within a section and reach the output Dy, is
six levels. The maximum path length for a carry appearing at the input to a

section as CSn to affect the sum is also six levels. The maximum path length

for a carry originating within a section to affect a sum within the same section

is ten levels.

-7-
Carry look-ahead between bits within a group is called level one look-
ahead, between groups within a section is called level two, and between sections
is called level three. The following table gives a comparison of speed im-
provement for different amounts of look-ahead. Five bits to the group and
five groups to the section are assumed. The time units are logical level

transit times.

Look-ahead
Levels —» 0 1 1 &2 1, 2, & 3
Adder Bits
5 10 6 - -
10 20 8 - -
25 50 14 10 -
50 100 24 12 -
100 200 44 16 14

The transmit signal has been described as the EXCLUSIVE OR combination
of A and B. Correct operation will also be obtained if the INCLUSIVE OR is used
instead of or in combination with the EXCLUSIVE OR. The only effect will be a
redundant signal at times.

Figures 2 and 3 together illustrate a 100-bit adder with full carry look-
ahead. In Figure 2, part 1 shows the details fo the basic sum generation unit,
while part 2 shows the basic carry look-ahead unit. Figure 3 shows the method
of combining the parts to give the completé adder. The complete circuit shown

on Figure 2 represents one group on Figure 3.

-8-

Various modifications may be made to the circuit shown in Figure 3 if
smaller size or less than maximum speed is required. Some of the possi-
bilities which are likely to be of particular use to the computer designer are
lis ted below, and their relative speeds and costs will be included in the com-
parison table. Some minor variations which these modifications may cause
and which would be obvious to anyone considering the problem will not be de-
scribed in detail. Comparisons will be made on the basis of 50-bit and 100-bit
adders.

(1) Eliminate the look-ahead within groups, but retain it between groups
and between sections.

(2) Retain the look-ahead within groups, but use ripple carry between
groups.

(3) Use the very elementary carry speed-up circuit used with the
Completion Recognition adder (Figure 4). This can be wused with any adder,
and will give almost a four-to-one increase in speed over that of a full ripple-
carry adder of 100 bits for only about 2.5% increase in equipment. It pro-
vides a carry bypass circuit within rather than around the group. Its principal
merit is the high percentage improvement per unit increase in cost.

The following table summarizes the comparative costs and speeds for five
different adder versions for 50-bit and 100-bit adders. The 50-bit ripple-carry
adder is usedas a reference for cost comparison. The types being compared
are (1) full ripple carry, (2) full carry look-ahead, (3) ripple carry within five-
bit groups, look-ahead between groups, (4) look-ahead within five-bit groups,
ripple carry between groups, (5) carry bypass within five-bit groups, ripple

carry between groups.

50-Bit Adder 100-Bit Adder

Adder Logical Comp. L.ogical Comp.

Tvpe Units Cost Time Units Cost Time
1 400 100.0 100 800 200.0 200
2 636 159. 0 12 1294 323.4 14
3 466 116.5 24 954 238.4 26
4 580 145.0 24 1160 290.0 44
5 410 102. 5 36 820 205.0 52

Binary Adders, Variable Time

It can be shown that for a large number of binary additions the average
length of the longest carry of each addition will not be greater than logp N,
where N is the number of bits in the numbers being added together. Random
distribution of bits within the numbers is assumed. This gives an average
maximum carry length of not greater than 5.6 for a 50-bit sum or 6. 6 for a
100-bit sum.

In a ripple-carry adder a six-position carry would represent twelve units
of time, as compared to fourteen units maximum for a 100-bit adder with full
look-ahead. Also, the twelve units represent actual transit time, while the
fourteen units represent predicted time with safety factor. In addition, the
carry look-ahead adder represents 60% more equipment thanthe basic ripple -
carry adder.

The variable time (completion recognition) adder must contain additional
equipment that will permit the recognition of the completion of carry propa-
gation. Ideaily this equipment should have three characteristics. It should

be inexpensive. It should not add to the time needed to complete the addition.

-10-
It should not indicate completion, even momentarily, when an addition is
still incomplete, and if an input changes after an addition has been completed,
the completion signal should immediately go off and remain off until the new
result is completed.

Figure 4 illustrates one version of a completion recognition adder. While
it does not meet all of the requirements of an ideal unit, it does appear to be
reliable when used with the proper restrictions. This adder requires appro-
ximately 1280 logical units for 100 bits, which is essentially the same as the
1294 units for the full carry look-ahead adder. Thus costwise they may be
considered the same. However, part of the additional equipment required for
the carry-recognition circuits may also be used as part of the checking cir-
cuitry. To obtain equivalent checking with the carry look-ahead adder would
require considerable additional equipment.

Each stage of the adder generates a carry and a no-carry signal, and
these are propagated through the adder along separate paths. If these signals
are designated as C and N, completion of the addition is recognized by the
existence of the condition[(C OR N) and not (C AND N] at the output of every
bit position in the adder.

The operation of this adder will be more readily understood if it is recog-

nizedthat C =A B_VT C andthat N =A B VT N .. At the start of
n n n n n n n n n n

-1 -1

an addition the inputs to the adder must be cleared. This sets the N output
of each block to one and the C output to zero. The desired inputs are then
entered, which changes the N outputs to zero for those positions which have a

one in either or both inputs. This turns off the completion signal. The C

-11-
output is changed to one for those positions having an input of 11 and the T
signal is changed to one for those positions having 01 or 10. The latter
positions have zero on both the C and N lines. Signals will then ripple down
either the C or N lines from positions having either 00 or 11 inputs until all
positions have either the C or the N output energized, at which time a com-
pletion signal will be generated. To prevent false indications of completion,
the two inputs must enter the adder simultaneously; once the operation has
started, no changes may be made in the inputs; and both inputs must be changed

to zero before the next addition may be performed. An alternative to this is

to force ones into all input positions by using an additional input to the OR

circuits that are usually present at the input to adders. The restriction here
would be that the correct inputs are present at the input to the OR circuits at
the time the forcing inputs are turned off.

No general statement can be made as to whether fixed-time or variable-
time adders are better. The use of a completion recognition adder offers many
attractions to the systems designer, particularly if his circuits have a large
spread between average and maximum transit time. On the other hand, the
limitations on data handling required to prevent ambiguities in the control
signals may nullify some or all of the theoretical advantages. The best choice
can only be made by a careful consideration of all of the factors involved for the

particular application.

-12-

BINA RY MULTIPLICATION

Multiplication Using Variable Length Shift

Multiplication in a computer is usually performed by repetitive addition.
For constant circuit and adder speeds, the time required to perform a
multiplication is proportional to the number of additions required. The slowest
way would be to go through one add cycle for each bit of the multiplier. Sub-
stituting shift cycles for add cycles when the multiplier bit is a zero can reduce
this time; providing the ability to shift across more than one position at a time
when there are several zeros in a group can reduce the time still further.

Assuming random distribution with equal numbers of ones and zeros in the

multiplier, this should result in a 50% reduction in time. This is as much im-
provement as is obvious from normal methods of performing multiplication.
Further improvements may be secured by taking advantage of some of the
properties of the binary system. The rules for handling multiplication to ob-
tain this improvement will be developed.
A binary integer may be written in the following form:

n-1 n-2 2 1 0
2 +An_22 + ------ +A,2 +A12 +A02

A 2"+ A
n n-1
The actual number, as written, consists of the characteristics only and would

be written AnAn-l An-Z ---A A AO’ where each A would have a value of either

2771
one or zero. If such a number contained the coefficients ---011111111110---,
this part of the number would have the value 2n-1 4 pon-2 4 _____ + 2D"X where

n is the position number of the highest order one inthe group for which the
lowest order position in the number is designated zero, and x is the number of

successive ones in the group. The numerical value of this last expression may

zn"x

also be obtained from the expression 20 - , where n and x have the same

-13-

values as before. For example, in the binary number 0111100, n is 6 and

5+24‘+23+22=

x is 4. The decimal equivalent of the number is given by 2
32416+ 8+4=60. Itisalsogiven 2% - 22 = 64 - 4 = 60. Thus for any

string of ones in a multiplier, the necessity for one addition for each bit can
be replaced by one addition and one subtraction for each group. The only

additional equipment required is a means of complementing the multiplicand
to permit subtracting and, of course, some additional control equipment. To
illustrate this a typical multiplier is shown below with the required operations

indicated. Each group of ones is underlined.

1111000011101110101000101
+ - + -+ -+ -4 - + -+ -

Additional improvement may be obtained by using the fact that + 2" - 22-1 -} pn-1
and - 20 ¢ 20-1 = _ 2n-1 Thig g illustrated by applying it to the above example.
The original results are given first, with the operations to be combined under-

lined.

1111000011101110101000101

+ - + -+ -+ -+ - + -+ -
+ - + - - - - + o+
+ - + -+ -4 -+ - + -+ -
+ - + - - o+ + + o+

Two different arrangements are shown. Both will give the correct result,
and the number of cycles required is the same. The first is that obtained by
starting at the high order end, and the second by starting at the low order end.

For a given multiplier, the number of additions that will be required may
be computed as follows. Define a group of ones as a series of bits containing
not more than a single zero between any pair of ones within the series, con-

taining at least one pair of adjacent ones, and starting and ending with a one.

-14-
Then the number of add cycles is equal to the following: Two times the number
of groups, plus the number of zeros contained within groups, plus the number
of ones not contained within groups. This may be illustrated with the previous

example.

1111000011101110101000101

There are two groups. The first group contains no zeros, the second contains
three. There are two ones not contained in any groups. This gives (2 x 2) + 3
+ 2 =9, which is the numberof operationsthat was obtained. Within the limi-
tation of using only multiples of the multiplicand that can be obtained directly
by shifting and using only one of these at a time it is believed that this represents
the least number of additions with which a binary multiplication can be performed.
The rules for performing a multiplication may now be given. It is as sumed
that the multiplier and the partial product will always be shifted the same amount
and at the same time. The multiplier is shifted in relation to the decoder, and
the partial product witﬁ relation to the multiplicand. Operation is assumed
starting at the low order end of the multiplier, which means that shifting is to
the right. If the lowest order bit of the multiplier is a one, it is treated as
though it had been approached by shifting across zeros.
(1) When shifting across zeros (from low order end of multiplier), stop at the
first one.
(2) If this one is followed immediately by a zero, add the multiplicand,
then shift across all following zeros.
(b) If this one is followed immediately by a second one, subtract the

multiplicand, then shift across all following ones.

-15-
(2) When shifting across ones (from low order end of multiplier), stop at the

first zero.

(a) If this zero is followed immediately by a one, subtract the multi-

plicand, then shift across all following ones.

(b) If this zero is followed immediately by a second zero, add the

multiplicand, then shift across all following zeros .

A shift counter or some equivalent device must be provided to keep track
of the number of shifts and recognize the completion of the multiplication.

If the high order bit of the multiplier is a one and is approached by shifting
across ones, that shift will be to the first zero beyond the end of the multiplier,
and that zero along with the bit in the next higher order position of the register
will be decoded to determine whether to add or subtract. For this reason, if
the multiplieris initially located in the part of the register in which the product
is to be developed, it should be so placed that there will be at least two blank
positions between the locations of the low order bit of the partial product and
the high order bit of the multiplier. Otherwise the low order bit of the product
will be decoded as part of the multiplier, An alternative to this is for the fact
that the shift counter indicates the end of the multiplication to force the last
operation to be an addition.

It should be noted that whenever the shifting is across groups of ones the
partial product will be in complement form, which means that the shifter must
contain provision for inserting ones in all high order positions that would nor-
mally be left blank by the shifting.

If the multiplication is performed starting from the high order end of the

-16-
multiplier, the partial product will always be in true form,but any operation
may result in a carry traveling the full length of the partial product. The
shifting rules are a little more complicated, as may be seen below.

(1) When shifting across zeros (from high order end of multiplier)
(a) If the first one following the zeros is followed immediately

by a second one, stop shifting at the last zero and add the

multiplicand, then shift across following ones.

(b) If the first one following the zeros is followed immediately
by a zero, stop shifting at the first one and add the multiplicand,
then shift across following zeros.

(2) When shifting across ones (from high order end of multiplier)

(a) If the first zero following the ones is followed immediately
by a second zero, stop shifting at the last one and subtract
the multiplicand; then shift across the following zeros.

(b) If the first zero following the ones is followed immediately by

a one , stop shifting at the first zero and subtract the multi-

plicand, then shift across the following ones.
The high-order one of the multiplier is treated as though there were at

least two zeros immediately preceding it.

As was previously stated, there two methods of decoding the multiplier will
yield the same number of add cycles. This number is dependent on the number

and distribution of ones within the multiplier. If random distribution is assumed,

it can be shown that the average shift for each addition will be 3.0 bit positions
when using an infinite shifter, or 2.9 bit positions for a shifter having a limit of

six.

-17-

Multiplication Using Uniform Shifts

For some applications a method of multiplication which uses shifts of
uniform size and permits predicting the number of cycles that will be required
from the size of the multiplier is preferable to a method that requires varying
sizes of shifts. The most important use of this method is in the application of
carry-save adders to multiplication, although it can also be used for other
applications. The use of carry-save adders will be discussed in a later section.

Two methods will be described. The first requires shifting the multiplier
and partial product in steps of two, the second in steps of three. Both methods
require the ability to shift the position of entry of the multiplicand into the adder
in relation to its normal position. The latter is designated as the one-times-
multiplicand position and used as a reference position in all descriptions. This
small shifter will be the length of the multiplicand rather than of the partial pro-
duct. Both methods may be used starting from either end of the multiplier,
but because of the reduced requirements on the size of the adder, are usually
used starting from the low-order end. The latter will be assumed for any oper-
ating descriptions, but for easier explanation the rules of operation will be
developed assuming a start from the high order end.

Uniform Shifts of Two

Assume that the multiplier is divided into two bit groups, an extra zero
being added to the high order end if necessary to produce an even number of bits.
Only one addition or subtraction will be made for each group, and, using the
position of the low order bit in the group as a reference, this addition or sub-
traction will consist of either two times or four times the multiplicand. These

multiplies may be obtained by shifting the position of entry of the multiplicand

-18-
into the adder one or two positions left from the reference position. The last
cycle of the multiplication may require special handling. Rules for this will
be considered after the general rules have been developed.

The general rule is that, following any addition or subtraction, the resulting
partial product will be either correct or larger than it should be by an amount
equal to one times the multiplicand. Thus, if the high order pair of bits of the
multiplier is 00 or 10, the multiplicand would be multiplied by zero or two and
added, which gives a correct partial product. If the high order pair of bits is 01
or 11, the multiplicand is multiplied by two or four, not one or three, and added.
This gives a partial product that is larger than it should be, and the next add
cycle must correct for this.

Following the addition the partial product is shifted left two positions. This
multiplies it by four, which means that it is now larger than it should be by four
times the multiplicand. This may be corrected during the next addition by sub-
tracting the difference between four and the desired shift.

Thus, if a pair ends in zero, the resulting partial product will be correct
and the following operation will be an addition. If a pair ends in a one, the re-
sulting partial product will be too large, and the following operation will be a
subtraction.

It can now be seen that the operation to be performed for any pair of bits
of the multiplier may be determined by examining that pair of bits plus the low
order bit of the next higher order pair. If the bit of the higher order pair is a
zero, an addition will result; if it is one, a subtraction will result. If the low
order bit of a pair is considered to have a value of one and the high order bit a

value of two, then the multiple called for by a pair is the numerical value of the

-19-
pair if that value is even and one greater if it is odd. If the operation is an
addition, this multiple of the multiplicand is used. If the operation is a sub-
traction (the low order bit of the next higher order pair a one), this value is
combined with minus four to determine the correct multiple to use. The result

will be zero or negative, with a negative result meaning subtract instead of

add. The following table summarizes these results.
Multiplier Operation Multiplier Operation
0-00 + 0 1-00 -4+0=-4
0-01 + 2 1-01 -4+2=-2
0-10 +2 1-10 ~-4+2=-2
0-11 + 4 1-11 -4+4=-0

It is obvious from the method of decoding described that the multiplier may
be scanned in either direction. When starting from the high-order end, the
partial product will always be in true form, but starting from the low order end
will result in a complement partial-product part of the time. This means that
the main shifter must be designed to handle the shifting of complement numbers.

The possibility that the low-order bit of the multiplier will be a one presents
a special problem. For operations starting at the high order end of the multiplier
this may be handled in either of two ways. One requires an additional cycle
only when the low-order bit is a one, and consists of adding the complement of
one-times the multiplicand following a zero shift after the completion of the last
regular operation. The other method adds an additional add cycle to every multi-
plication by always treating the multiplier as though it had two additional low-order

zeros. The two extra zeros which this introduces into the product are then ignored.

-20-

When operating from the low order end of the multiplier this problem may
be handled more easily. On the first cycle there is no previous partial product.
Therefore zeros are being entered into one side of the adder. If the low order
bit of the multiplier is a one, enter the complement of one times the multiplicand
into the adder by way of the input usually used for the partial product. At the
same time, the multiple of the multiplicand selected by decoding the first pair
of bits of the multiplier is entered at the other adder input. This does not require
any additional cycles.

Uniform Shifts of Three

This method of handling three bits of the multiplier at a time requires being
able to obtain two, four, six, or eight times the multiplicand. One times may
also be required to handle the condition of a one in the low order bit position
of the multiplier. One, two, four, and eight times can all be obtained by proper
positioning of the multiplicand, but the six times must be generated in some
manner. This can be done by adding one times the multiplicand to two times the
multiplicand, shifting the result one position, and storing it in a register,

The development of the decoding rules for this method follows the same

basic requirements already described for handling two bit groups. This is

evident from the table given below, and will not be repeated.

Multiplier Operation Multiplier Operation
0-000 + 0 1-000 -8+0=-8
0-001 + 2 1-001 -8+2=-6
0-010 + 2 1-010 -8+2=-6

"
1
NS

0-011 + 4 1-011 -8+4

-21-

(Continued)
Multiplier Operation Multiplier Operation
0-100 + 4 1-100 ~8+4=-4
0-101 +6 1-101 -8+ 6=-2
0-110 + 6 1-110 ~-8+6=-2
0-111 + 8 10111 -8+8=-0
There are some general facts that apply to both the two-shift and the
three-shift methods of multiplication.
(1) The choice of true or complement entry of the multiplicand into the

adder is dependent only on the condition of the low-order bit of the next higher
order group of the multiplier.

(2) Special provision must be made for the condition of a one in the low
order bit position of the multiplier. Procedure is the same for both methods.

(3) Whenever complement inputs are used for multiplicand multiples,
there must also be provision for entering a low order one into the adder to
change the one's complement to a two's complement. This includes the comple-
ment of one-times the multiplicand used because of a low order multiplier one.
This can result in a design problem, since odd numbers in the two low order
groups of the multiplier may call for the entry of two additional ones into the
low order position of the adder, making a total of four entries. A solution to
this is to decode the low-order group of the multiplier to call for the desired
multiple or one less instead of one more. Then the true value of one times the
multiplicand can be used in the partial product position on the first cycle when
the multiplier has a low order one. This may be done very easily, on the first
cycle only, by forcing the low-order bit of the group to enter the decoder as a

zero, but using its actual value to determine whether or not to add one-times

“22-
the multiplicand. The justification for this may be seen from either table.
This modification of the decoding will not work for any cycle except the first,
and only when operating from the low order end of themultiplier.
To permit a comparison, the illustrative multiplier used previously to
show decoding for the variable shift method will be shown below for variable
shift, two-position shifts, and three-position shifts.

(1) 001111000011101110101000101
+ - + - -+ 4 + 4+

+2 -0 =240 +2 -0 -2 -0 -2 -2 -4 +2 -4+
(2) 0'0 1'1 1'1 0'0 0'0 1'11'0 1'1 1'0 1'0 1'00'0 1'0 1°

+ - + - - - - + - 4
+2 -0 -8 +4 -2 -2 +6 -8 44+
(3) '001'111'000'011'101'110'101'000'1 01!
+ - + - - 4+ - + o+

All decoding shown is based on starting at the low order end of the multiplier.
Multiplier groupings are indicated in (2) and (3). The use of multiples of four in
(2) and of eight in (3) places the effective location of the operation under the low
order bit of the next higher group. An underline under a pair of operations in
(3) indicates the use of the previously prepared three-times multiple. The (+)
following the multiple figure for the low order group indicates that one-times the
multiplicand is also used