International Technical Support Centers

Print and View Data Streams

Document Number GG24-3938-00

December 1993

International Technical Support Organization
Poughkeepsie Center

—— Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xv.

First Edition (December 1993)

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader’s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
H52 Mail Station P099

§22 South Road

Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

iy

Abstract

This document describes different data streams that are used in printing and
viewing. It also deals with the transformation from one data stream to another.

This document was written for customers and IBM system engineers and system
specialists who need information about these data streams.

No special prerequisite knowledge is required, but some general knowledge of
data processing is assumed.

The contents of this document apply to the those releases of hardware and
software that were available for the residency at that time.

There may be changes in the more recent releases of the software.

The reader is asked to find the current information in the product manuals and
announcement letters.

— ITSC Printing Library

This publication is part of the ITSC Printing Library.

LS MR PR PS VM (248 pages)

© Copyright IBM Corp. 1993 iii

iv Print and View Data Streams

Contents

Abstract e iii
Special Notices e XV
Preface e XiX
How This Document is Organized Xix
Related Publications XX
International Technical Support Organization Publications XXi
Acknowledgments XXV
Chapter 1. Introduction 1
1.1 Objectives e 1
1.2 Terms with Special Meanings 2
1.3 Overall Structure 4
1.4 Print and View: the Messages, the Opportunities 5
Chapter 2. Overview of Information Interchange Architecture 9
2.1 Introductionto A e 9
2.1.1 Relationship of Architectures and Data Streams under SAA 10
21.2 IAComponents e 11
2.1.3 Document Languages e 1
2.1.4 Document Architectures 12
2.1.5 Content Architectures 14
Chapter 3. IBM Architectures 17
3.1 Mixed Object Document Content Architecture 17
3.1.1 Minimum Functions Required for MO:DCA 18
3.2 Revisable-Form-Text Document Content Architecture 19
3.2.1 Minimum Functions Required for RFT.DCA 19
Chapter 4. Defined Standard Architectures 21
4.1 The relationships between SGML, DSSSL,and SPDL 22
4.2 Office Document Architecture 22
421 General Conceptof ODA 23
4.3 Industry Standard and non-IBM Proprietary Architecture 27
Chapter 5. IBMDataStreams 29
5.1 Device Dependent Data Streams 29
5.1.1 Intelligent Printer Data Stream 29
51.2 3270 Data Stream e e e 32
5.1.3 Character Data Representation Architecture 33
514 SCS . . e e e 35
515 LinePrinterData 36
5.1.6 IBM Personal Printer Data Stream 36
5.4.7 CDPDS e e 39
5.2 Device Independent Data Streams 39
521 AFPDS e e 39
522 MODCA e e 39

© Copyright IBM Corp. 1993 v

vi

Chapter 6. Industry Standard Data Streams
6.1 Device Independent Data Streams
6.1.1 PostScript e

Chapter 7. Non-IBM Proprietary Data Streams
7.1 Microsoft Rich Text Format
7.2 PCL (Printer Control Language)o....

Chapter 8. IBM Object Content Architectures and Definitions
8.1 Objects e
8.1.1 Object Structure
8.1.2 Presentation Text Object Content Architecture
8.1.3 Image Object Content Architecture
8.1.4 Graphics Object Content Architecture
8.1.5 Foni Gbject Conient Architeciure
8.1.6 Formatted Data Object Content Architecture
8.1.7 Bar Code Object Content Architecture
8.2 FontOverview

Chapter 9. Defined Standard Object Content Architectures and Definitions . .
9.1 Office Document Architecture
9.1.1 CCA . e e
9.1.2 RGCA e
9.1.3 GGCA . . e

Chapter 10. Industry Standard Object Content Architectures and Definitions .
10.1 Hewlett-Packard Graphics Language
10.2 GIF . . e
10.3 Tagged Image File Format (TIF)

10.3.1 Content e e

Chapter 11. Document Languages and Formatting Languages
11.1 What is a Document Language?
11.2 What is a Formatting Language?
11.3 Examples Considered Here
11.4 The Advantages of Using Document Languages

11.4.1 Why Some Documents Need One Way, and Others Another

11.4.2 WYSIWYG Is Always Format-based, Isn’tIt?
11.5 GML Starter Set and IBM BookMaster
116 SGML e
11.7 TeXand LATEX . . . o e
11.8 XICS . . . e

Chapter 12. Print and View within the Different Environments
12.1 Basic PSF Functions
12.2 How PSF handles Object Content Architectures
12.3 Advanced Function Printing (AFP) on Mainframes (MVS, VM, VSE) .

12.3.1 Mainframe Model
12.4 IBM Print Services Facility Version2
12,5 Font Pruning
12.6 Operating System/400 Advanced Function Printing

12.6.1 Support for Medium to High Speed Page Printers

Print and View Data Streams

126.2 HowtoStart
12.7 AS/400 AFP Model e
12.8 Print Output in AS/400 Systems
12.9 Advanced Function Printing Utilities/400
12.10 Advanced Function Printing Fonts/400
12.11 IBM Database Publisher/DOS for the AS/400 Version2
12.12 Advanced Function Printing (AFP) on Workstations
12.13 Remote PrintManager Version2.0

12.13.1 Remote Print Manager Version20
12.14 Remote PrintManager (RPM) V30

12.14.1 Remote Print Manager Version 30
12.15 Print Services Facility/2

12151 VERSION 1.0 e

12.15.2 Print Service Facility/2V.1.0 o oo

12.15.3 IBM Print Services Facility/2 Version1.10

12.15.4 Print Service Facility/2V11

12.15.5 AFPDS Driver under OS/2 and DOS/WINDOWS
12.16 Data Streams and Hardware Connection of Printers

Chapter 13. Practical Tasks
13.1 Getting Pictures into IBM BookManager from Corel Draw
13.1.1 Color Pictures
13.1.2 Monochrome Pictures,
13.2 Combining Desk-top PublishingwithGML
13.3 | Want an AFP Print of a Scanned Image Saved as an IOCA
13.4 Getting Formulas into Mainframe Publishing
13.5 Scan a Logo, Improve It, and Integrate It in an Overlay
13.6 | Want an AFP Print of a Scanned Photo SavedasaTIF
13.7 | Have a Plot File and | Want It Printedonthe Host
13.8 | Want to Prepare Host Output for Workstation Print and View
13.9 How do | Use PSEG Files with my DTP Programs?
13.10 How Do | Use Mainframe CAD Pictures in DTP?
13.11 How do | Use Output from Workstation Programs on the Host?
13.12 | Want Bigger Volumes of Print from my Workstation Applications

Chapter 14. Process Definitions
14.1 Format Conversions
14.2 Image Conversion under GDQF
143 Convert TIFto PSEG i i
14.3.1 Using DOS Platforms
14.3.2 Using OS/2 Platforms
144 Convert HPGLto PSEG,
1441 Using DOS e
1442 Using OS/2
14.4.3 Using GDDM on the Mainframe
14.5 Generate Overlays Using the DCF Post Processor
14.6 Preparing PostScript
14.6.1 Onthe Workstation
14.6.2 Using ProcessMaster (VM, MVS)
146.3 Using DCF e
147 Preparing PCLo

Chapter 15. Transforms

154 Typesof Transform
152 Roundand RoundWe Go

Contents

viii

Appendix A. Source Code for Sample Transforms and EXECs
A.1 Conversion Between AmiProand GML
A.1.1 Functional Description
A1.2 Invocation e e
A13 Profile File
A2 Changing DatainContext
A.2.1 Sample Code: Simple Context-Sensitive Filter
A.3 Conversion from BookManager READ Copy FormtoGML
A.3.1 Sample Code: GML from BookManager READ
A.4 Combine Ilmage CellsinPSEG
A.4.1 Sample Code: Recombine PSEG Cells
A5 Reblock Uploaded PSEG
A.5.1 Sample Code: Reblock Uploaded PSEG

Appendix B. Images; Graphics; and Data Streams
B.1 Major Image Formats and Where They AreUsed
B.2 Major Graphics Formats and Where They AreUsed
B.3 Major Data Streams and Where They AreUsed
B.4 Types of BitmapImages
B.4.1 Bilevel Images e
B.4.2 Grayscalelmages
B.4.3 Palette-colorimages
B.44 RGBImagesttt
B.45 CMYKImages
B.46 YCbCrimages i
B.47 CIEL*a*b*Images

AppendixC. Products
C.1 Software for Print and View Data Streams under MVS and VM
C.2 Software for Print and View Data Streams under OS/400 and 0S/2 . . .
C.3 Input and Output of Major Programs
C.4 Access to Data Based upon Office
C.5 Access to Data Based upon Publishing
C.6 Access to Data Based uponImagePlus
C.7 Page Printer Formatting Aid/370
C.8 Overlay Generation Language/370
C.9 Line Datato AFPDS Converter
C.9.1 Converting Line Datato AFPDS
C.10 Document Composition Facility
C.11 SCRIPT Mathematical Formula Formatter Feature
C.12 ProcessMaster CALS Application Feature
C.13 SGML Translator DCF Edition
C.14 SGML Text Write 0S/2 Edition and SGML Text Write Tools 0S/2
Edition e
C.14.1 SGML Text Write OS/2 Edition Product Overview
C.14.2 SGML Text Write Tools 0S/2 Edition Product Overview
C.15 IBM Enterprise Printing Overview
C.15.1 Products Provided for Enterprise Printing
C.15.2 Description
C.15.3 AFP Printers, Printer Features, and Attachments
C.15.4 Print Application Development Aids
C.15.5 Integration with Applications and Application Environments
C.16 IBM SAA PrintManager
C.17 Advanced Function Image and Graphics Feature and Decompression
Performance Enhancement Feature

Print and View Data Streams

C.18 Publishing Systems BookMaster 201

C.19 IBM Publishing Systems TextTagger 202
C.20 Publishing Systems BrowseMaster 202
C.21 Graphical Display and Query Facility 203
C.22 Image Handling Facility, 203
C.23 Graphical Data Display Manager (GDDM) 204
C.23.1 ProductsIncluded: 204
C.24 ADMUCIMV . . . e e 207
C.25 BookManager Family Overview 208
C.26 Publishing Systems PostScript Interpreter for AFP 210
C.27 Ventura Publisher 211
C.28 IBM Interleaf Publisher, 212
C.29 IBM ImagePlus Workstation Program Family 212
C.30 IBM Workstation AFP View Program 214
C31 AMiPro e 215
C.32 Corel Draw e 216
C.33 Freelance e 217
C.34 0OS/21Image Support e 217
C.35 MARKUP . . . e 218
C.36 IBM PS/2 Image Adapter/A 219
C.37 DisplayWrite/370 e 219
C.37.1 Description 219
C.37.2 Compatibility with Document Composition Facility (DCF) 219
C.37.3 Document Interchange 220
C.37.4 Printer Support 220
C.38 OfficeVision/MVS 220
C.39 IBM SAA OfficeVision/400 Version 2 221
C.40 IBM Presentation Manager Office/2 221
C.41 Application Area Summary e 223
Appendix D. Products Involved in Printing and Viewing 225
D.1 Product and Operating System Tables 225
D11 BCOCA . . . e e e e 225
D.1.2 CDRA e 225
D13 DIA . 225
D.1.4 FD:OCA . . . e 226
D15 FOCA . . . e 226
D16 GOCA e 226
D17 I0CA . e 226
D.1.8 IPDS e e e 227
D.1.9 MODDCA . . . e 227
D.1.10 PTOCA . . e e e e 227
D111 RFT:IDCA . . e 228
D.1.12 3270DS e e 228
Appendix E. Bibliography, 229
E.1 IBM Publications e 229
E.1.1 Architecture 229
E.1.2 Publishing Systems ProcessMaster VM Edition 229
E.1.3 Publishing Systems ProcessMaster MVS Edition 229
E.1.4 Publishing Systems TextTagger 230
E.1.5 Document Composition Facility 230
E.1.6 Document Composition Facility - Office Document Feature 230
E.1.7 Publishing Systems BookMaster 230
E.1.8 Publishing Systems BrowseMaster e 230

Contents X

E.1.9 Publishing Systems DrawMaster 230

E.1.10 Publishing Systems PostScript Interpreter 231
E.1.11 BookManager-VM 231
E.1.12 BookManager-MVS 231
E.1.13 SGML Translator DCF Edition 231
E. 114 CALS e e 231
E.1.15 SGML TextWrite 232
E.1.16 Image Handling Facility 232
E1.17 GDDM . . . e e 232
E1.18 GDQF e e e 232
E.1.19 Image e e e e e 233
E1.20 Office e e 233
E.1.21 OS/2 Image Support 233
E.1.22 ISO Standards e 233
E123 ITSC Red BOOKS ittt e e e e e 233
E.1.24 Other Documentation 234
E.2 Workstation Documents 234
Glossary e e 235
Index e 243

X Print and View Data Streams

Figures

©ENOO AWM=

WWWWWWWNNNDNDMNNNNNDODNONNQQQIAAQAQAQa
SOARINAOOPRNDIRDINZIOOININAED®NDO

© Copyright IBM Corp. 1993

Just a Few of Our, Well, Not Exactly Problems 1
Relationship Between Data Streams, Objects, and Composite Documents 3
Overview of Architectures under llA 10
Overview of Information Interchange Architecture 1
SGML,DSSL,and SPDL 22
Diagram of a Logical Structure of a Document 25
Diagram of a Layout Structure of a Document 26
Use of EPSFiles 41
IBM Products and Postscript L . 42
Document Language Processing 66
The Document Spectrum 69
Example of GML Starter Set and IBM BookMaster 71
Intersystem Documentation Exchange with SGML 73
Formatting XICS Source 74
SAA Model for Printand View 77
Mainframe Model for AFP Printing 81
AS/400 Model for AFP Printing 85
RPM V.2 Model for AFP Printing 93
RPM V.3 Model for AFP Printing 95
PSF/2 V.1.0 Model for AFP Printing 97
PSF/2 V.1.1 Model for AFP Printing 99
ADMGDF Vector Graphic from Corel Draw 105
ADMGDF Vector Graphic from Corel Draw 105
PSEG Created from Corel Draw Graphic 106
Equation TgX Source from AmiPro 110
Equation Produced using Ami Pro Equation Editor 111
A WINAFP PSEG Overflowing 121
A WINAFP PSEG not Overflowing 122
The Original PSEG i 123
Popular Data Streams and Some Transform Software 129
Integration of Host and Workstation Printing 138
Text Type Transforms 140
Ami Pro Output before Upload 142
Ami Pro Output after Everything 144
SAA PrintManagerModel 200
Application Area Summary 223

xi

Xii Print and View Data Streams

Tables

N R O

e e e e e e T
A o ol Al

© Copyright IBM Corp. 1993

Architectures, Content Architectures, and Data Streams under SAA
PPDS Single Byte Control Codes
Common PPDS Escape Sequences
Data Streams and Objects by Printer
Major Image Formats and Where They AreUsed
Major Graphics Formats and Where They AreUsed
Major Data Streams and Where They AreUsed
Software for Print and View Data Streams
Software for Print and View Data Streams
Inputs and Outputs of Major Programs
Access to Data Based upon Office
Access to Data Based upon Publishing
Access to Data Based uponimagePlus
Some Ventura Publisher Formatting Codes
Ami Pro Import/Export
Corel Draw Import/Export

xiii

XiV Print and View Data Streams

Special Notices

This publication is intended to help the customers and IBM system engineers
and system sepcialists to understand the different data streams that are used for
printing and viewing. The information in this publication is not intended as the
specification of any programming interfaces that are provided by any of the
program products mentioned in the document. See the PUBLICATIONS section
of the IBM Programming Announcement for the referred products for more
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM’s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM’s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of

Licensing, IBM Corporation, 208 Harbor Drive, Stamford, CT 06904 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and integrate
them into the customer’s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

© Copyright IBM Corp. 1993 XV

Advanced Function Printing
AIX

AS/400

BCOCA

BookMaster

Critique

DisplayWrite

DrawMaster

Facsimile Support/400

IBM

Intelligent Printer Data Stream
Micro Channel

OfficeVision

OfficeVision/VM

Operating System/2

ng/Ann

Presentation Manager
ProcessMaster
Proprinter

PSF

SAA

System/370

VM/XA

AFP
Application System/400

Bar Code Object Content Architecture

BookManager
cics

DB2

Distributed Relational Database
Architecture
DRDA

GDDM
ImagePlus

IPDS

MVS/ESA
OfficeVision/MVS
OfficeVision/400
08/2

Personal System/2

Print Services Facility

PROFS

PS/2

Quietwriter

SQL/DS

Systems Application Architecture
VTAM

The following terms, which are denoted by a double asterisk (**) in this
publication, are trademarks of other companies:

Aldus

Ami Pro

CADAM

CALCOMP

CATIA

Century Schoolbook
CompuServe

Corel

DEC

DXF

GEM

Harvard Graphics
Helvetica
Hewlett-Packard

HP

HP PCL4

ITC Avant Garde Gothic
ITC Souvenir
LaserJet

Lexmark
Micrografx Designer
Microsoft Windows
Monotype Garamond
PageMaker
Paintbrush

Paradox

PostScript
Professional Write
Samma Word
Symphony

Times New Roman
UNIX

Ventura Publisher
Windows

Print and View Data Streams

Aldus Corporation

Samna Corporation

Cadam Inc

Sanders Associates, Inc.
Dassault Systemes

American Type Foundry
CompuServe Incorporated
Corel Systems Corporation
Digital Equipment Corporation
AutoDesk, Inc.

Digital Research, Inc.

Software Publishing Corporation
Linotype Company
Hewlett-Packard Company
Hewlett-Packard Company
Hewlett-Packard Company
International Typeface Corporation
International Typeface Corporation
Hewlett-Packard Company
Lexmark International, Inc.
Micrografx Incorporated
Microsoft Corporation

The Monotype Corporation plc. (public limited company)

Aldus Corporation

Z-Soft Corporation

Borland International, Inc.
Adobe Systems Incorporated
Software Publishing Corporation
Samma Corporation

Lotus Development Corporation
Monotype Corporation, Limited
X/OPEN Company, Ltd.

Ventura Software, Inc.
Microsoft Corporation

WordPerfect
WordStar
XEROX
Xerox

1-2-3

WordPerfect Corporation

MicroPro International Corporation
XEROX Corporation

Xerox Corp.

Lotus Development Corporation

Special Notices

XV

xviii Print and View Data Streams

Preface

This document describes data streams used for printing and viewing. A large
part of the document deals also with the interrelationships between the different
data streams. There are lots of programming examples to show how to convert
the data streams to each other. Although some products are described in this
document quite thoroughly, the document is not meant to be a product summary.
The current information of the products mentioned can be found in the respective
product manuals.

This document is intended for customers as well as IBM system engineers and
system specialists.

How This Document is Organized
The document is organized as follows:

© Copyright IBM Corp. 1993

Chapter 1, “Introduction”
This chapter describes the purpose and structure of the document.
Chapter 2, “Overview of Information Interchange Architecture”

In this chapter there is an overview of the IBM Information Interchange
Architecture (lIA).

Chapter 3, “IBM Architectures”

This chapter describes other IBM architectures related to documents as well
as printing an viewing.

Chapter 4, “Defined Standard Architectures”

This chapter lists international standards for documents.

Chapter 5, “IBM Data Streams”

IBM data streams for different applications are described in this chapter.
Chapter 6, “Industry Standard Data Streams”

This chapter describes the industry standard data streams used in printing
and viewing.

Chapter 7, “Non-IBM Proprietary Data Streams”

This chapter gives some examples of data streams that are neither IBM nor
industry standard data streams, but are proprietary data streams used by
some other companies.

Chapter 8, “IBM Object Content Architectures and Definitions”

This chapter describes in detail IBM Object Content Architecture.

Chapter 9, “Defined Standard Object Content Architectures and Definitions”
This chapter describes other standard object content architectures.

Chapter 10, “Industry Standard Object Content Architectures and Definitions”

In this chapter there are some of the industry standard object content
architectures described.

Chapter 11, “Document Languages and Formatting Languages”

xix

This chapter deals with document and formatting languages.
e Chapter 12, “Print and View within the Different Environments”

This chapter describes printing and viewing in different environments.
e Chapter 13, “Practical Tasks”

This chapter includes a lot of practical examples a user may find when
dealing with different data streams.

e Chapter 14, “Process Definitions”

This chapter describes procedures to convert between different formats of
data streams.

e Chapter 15, “Transforms”

This chapter gives more examples of programs to be used for data stream
conversions.

e Appendix A, “Source Code for Sample Transforms and EXECs”

This appendix includes a lot of programming examples how to migrate from
one data stream to the other.

e Appendix B, “Images, Graphics, and Data Streams”
This appendix summarizes images and graphics data streams.
e Appendix C, “Products”

This appendix has a short description of IBM products related to printing and
viewing.

e Appendix D, “Products Involved in Printing and Viewing”
This appendix has a table of the products is used in printing and viewing.
* Appendix E, “Bibliography”

This appendix includes a list of related publications.

Related Publications

There is a list of publications in Appendix E, “Bibliography” on page 229. This
list includes publications that contain more information about the topics covered
in this document.

XX Print and View Data Streams

International Technical Support Organization Publications

A complete list of International Technical Support Organization publications, with
a brief description of each, may be found in:

Bibliography of International Technical Support Centers Technical Bulletins,
GG24-3070.

The following chart shows the GBOF Code Form Numbers by which ITSO red
books are shipped.

If you need help placing an order, or if you need assistance with adjusting your
publications’ subscription, your IBM Representative can assist you.

Category GBOF Code
AIX Application Development and Database 6339
AIX Communications 6337
AIX Distributed Computing Environment 6342
AIX/ESA 6349
AIX Operating System/Systems Management & High Availability 6338
AIX Computer Graphics Series and User Interface (formerly called AIX 3D 5216
Computer Graphics Series)

Application Development Platform 6321
Application Development Design and Modeling 6323
Application Development Maintenance and Test 6322
Application Generators 6324
Architecture 6360
Artificial Intelligence and Knowledge Based Systems 6326
AS/400 Communications and Systems Management 5225
AS/400 Office and Advanced Technology 5224
AS/400 PC Support 5223
AS/400 Systems, Application Development and Performance 5222
Automated Operations 6351
Banking - ATM 6352
Banking - Consumer Transact 6354
Banking - LAN DP 6353
Bibliography (SLSS by Form Number Only) GG24-3070
cics 6328
Communication Controller Products 5207
Connectivity 5208
Data Delivery and Information Warehouse 6331
DB2 6330
Distributed Applications 6333
Distributed Data Base 6332
Engineering and Scientific 2200

© Copyright IBM Corp. 1993 xxi

Category GBOF Code
Enterprise Networking 5210
High Level Languages 6325
Host Systems Management 5204
IBM OS/2 Ext Ed Cookbooks 2195
IBM 0S/2 V2.0 Remote Installation Maintenance 2224
IBM 0S/2 Version 2.0 / 2.1 Technical Compendium 2254
IDNX 6362
ImagePlus/MVS 6318
ImagePlus/400 6319
ImagePlus/2 6320
IMS 6329
Large Systems Hardware 5200
Local Area Networks 6367
Miscellaneous/Cross Category 0429
MVS/ESA Open and Client/Server 6334
MVS/ESA Systems Products (formerly Large Systems Software) 5201
NCP 6364
NetWare for AIX 6341
NetWare for OS/2 6336
Network Distribution 6356
Network Management 5209
Network Performance 6355
Network Security 6358
Object Oriented Technology 6327
Open Networking 6359
Office Systems - AIX Systems 6346
Office Systems - Client/Server Systems 6348
Office Systems - Cross Systems 6347
Office Systems - LAN 6343
Office Systems - MVS Systems 6345
Office Systems - VM Systems 6344
osi 6366
08/2 Communications 6370
0S/2 LAN and Distributed Systems 6335
08/2 V1.X 6301
0S8/2 V2.X 6303
Personal Systems - Configuration, Installation, Distribution (CID) 6304
Personal Systems Hardware 6300
Personal Systems - Multimedia 5212
Personal Systems Software & Application Development 6302
Printing 5202

xxii Print and View Data Streams

Category GBOF Code
Retail 5214
RISC/6000 Hardware 6340
Storage Hardware - Magnetic DASD 6306
Storage Hardware - Optical DASD 6308
Storage Hardware - Tape 6307
Storage Software - DFSMS/MVS 6309
Storage Software - DFSMS/VM 6310
Storage Software - Distributed Storage Management 6311
System/Network Design 6371
Systems Application 6357
Systems Solution Library 6372
System Management Reference Library 6373
TCP/IP 6368
VM Systems 2201
VM/VSE 6313
VM/VSE - CSP 6317
VM/VSE - SQL 6314
Voice Enablers 5211
VSE 6312
VTAM 6363
X.26 6369
3174 6365
937X 6361

International Technical Support Organization Publications

xxiii

xxiV Print and View Data Streams

Acknowledgments

The advisors for this project were:

Andy Herrup
International Technical Support Organization, Poughkeepsie Center

Mikko Markkula
International Technical Support Organization, Poughkeepsie Center

The authors of this document are:

Mike Calder-Smith
IBM United Kingdom

Rudolf Hochscheid
IBM Germany

This publication is the result of a residency conducted at the International
Technical Support Organization, Poughkeepsie Center.

The authors would also like to thank:

Paul Jackson
IBM Hursley Laboratory, UK

© Copyright IBM Corp. 1993 XXV

XXvi Print and View Data Streams

ITSO Technical Bulletin Evaluation

GG24-3938-00

Fold and Tape

RED000

Please do not staple

Fold and Tape

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization

Mail Station P402
522 SOUTH ROAD
POUGHKEEPSIE NY
USA 12601-5400

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

(GG24-3938-00

Please do not staple

Fold and Tape

ITSO Technical Bulletin Evaluation REDO00O

Print and View Data Streams
Publication No. GG24-3938-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

* Mail it to the address on the back (postage paid in U.S. only)
* Give it to an IBM marketing representative for mailing

e Fax it to: Your International Access Code + 1 914 432 8246
¢ Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Organization of the book Grammar/punctuation/spelling
Accuracy of the information Ease of reading and understanding
Relevance of the information Ease of finding information
Completeness of the information Level of technical detail

Value of illustrations Print quality

Please answer the following questions:
a) Ifyou are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes No____

Are you in a Services Organization? Yes No____
b) Are you working in the USA? Yes_ No____
c) Was the Bulletin published in time for your needs? Yes_ No____
d) Did this Bulletin meet your needs? Yes____ No

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organization

Phone No.

Chapter 1. Introduction

SGML mi™

%

BCOCA GIF GL

MASTER
MANAGER

Figure 1. Just a Few of Our, Well, Not Exactly Probiems ...

1.1 Objectives

The primary objective of this document is to clarify the interrelationships
between different print and view data streams to help make it easier to
understand which products will work together properly.

This can be shown by:

* Outlining what type of data is contained in each data stream.

e Outlining how they relate to each other and the I/0 devices that will be used
to display or print the data.

* Indicating which of the most commonly used programs produce and use
which types of data streams.

Clearly, these objectives are very wide ranging, and we must restrict ourselves
to the most commonly used data streams. The book will consider only those
data streams in common use in publishing and printing, and which have
significant use on IBM* platforms.

© Copyright IBM Corp. 1993

This will, for example, exclude such formats as IGES, which is more specific to
the CAD (Computer Aided Design) arena, and such as proprietary typesetting
data streams will be effectively ignored as being specific to particular
manufacturer’s output devices.

The book is divided logically into two parts:

* The first chapters introduces the major IBM architectures, data streams, and
objects, some international standards, and some data streams and objects
which are commonly used in the data processing industry in general.

¢ The last chapters show how they can be used, relationships between them,
and common programs that use them.

This volume takes the approach that these aspects are best introduced and
explained by use of practical examples, so we use specific user examples to
Avnmloin hawi maviciilar neadiiatae ava 1itaad A Achanana and 11an data atranrmeae
CI\'J!GIII 11U PGII.IDUIGl ’JIUUUDID alv uovu w UIIGIISU aliu uov uvatla gu vvaitlio

and objects.

You should not expect this volume to give a complete and detailed definition or
description of data streams, architectures, data objects, programs, or means of
transforming from one form to another; to do so would be to duplicate existing
material. Where possible, we refer to documents which give that detailed
information. The purpose of this document is to introduce the relationships, and
indicate known paths though this complex area.

Finally, there are many situations where the user has data in one format or data
stream, and needs it in another form, or to be output on a device that needs
some other data stream or format, for which there is no existing process for
conversion.

In this case, if the user need is to be met, a special conversion program, or
transform must be written. Chapter 15, “Transforms” on page 135 introduces
some of the principles and considerations to be taken into account when
designing transforms, and outlines the factors which will affect the degree of
success that can be expected from the transform.

1.2 Terms with Special Meanings

2

So that we do not have to continually qualify our descriptions, and to make the
text more concise, we use some terms in specific ways in this book, which may
not be the meanings you normally associate with those phrases.

The glossary should contain most technical words and phrases used here but
not in common use, but these definitions are largely those accepted by the
technical community.

Before reading this book, you should note the specific meanings we intend for
the phrases below.

Data stream This is a phrase generally used to mean several things. In
this book, one particular meaning is intended: a definition
of format or formats that can be used to specify the
content of a data file or a data stream along a
communications link, which is capable of being used to
contain a composite document.

Print and View Data Streams

Data object

(A composite document is one which may contain text,
font, vector graphic, and image data — and possibly other
things as well.)

In this book, we use the phrase data stream to refer both
to these composite formats and also to instances of them.

Data Stream formats may be defined in Data Architectures.

We needed a phrase to describe an instance of a data file
or stream in a single format (text only, vector graphic only,
and so on) which could either stand on its own or be a
component of a data stream. In this book we use the
phrase data object in this restricted sense.

Data object formats may be defined in Content
Architectures.

Composite document A composite document is a document which may contain

multiple types of data object, for example, vector graphic
artwork as well as alphabetic text. A document in this
sense need not be expressed on paper; the phrase can
refer to a data set which could be used to create a paper
document, or indeed the expression of it in softcopy form.

Data Stream Definition |4—May be defined by€—

Composite Document
Data Refers to
Object
Format «—]

Composite Document

Data
Data Object May include arbitrary types of
Object] Format
Format
| l L
Defines—|Data
Objects
Data Data
Object — Objects
Format ——————————1__ |
Defines >

Figure 2. Relationship Between Data Streams, Objects, and Composite Documents

Chapter 1. Introduction 3

Interchange The process of providing a document to a receiving person
or device, by means of data communication or by
exchange of storage media.

Editing The carrying out of operations associated with creation
and amendment of the structure and/or the content of a
document.

Formatting The carrying out of operations to determine the layout of a

document, that is, the appearance of its content on a
presentation medium.

Presentation The operation of rendering the content of a document in a
form perceptible to a human being. Typical presentation
media are paper and video screens.

1.3 Overall Structure

There are many terms used to describe this area of data streams, and IBM
terminology is often different from other parts of the industry. Competitive data
streams can also have different types of relationships. In this book we attempt to
divide the subject into the following:

IBM offerings
Defined standards
Industry standards

Non-IBM proprietary offerings
Under each of these, we consider architectures, data streams, and data objects.

The distinction we make between Defined Standards and Industry Standards is
that Defined Standards are the subject of a published standard prepared by
some national or international body such as ISO or ANSI, while Industry
Standards are generally accepted within the industry as de facto standards and
are used by many suppliers. Needless to say, there is often argument about the
latter.

These cannot be hard and fast distinctions; one man’s Industry Standard is
another man’s competition; PostScript can be considered a data stream or a
data object, and so on.

However, we need some kind of a framework, and so long as we remember that
some boundaries can be fluid, this can be a useful classification.

At the architecture level, we will place most emphasis on IBM and Defined
Standard architectures, as being of most interest to our audience. Competitive
and Industry Standard areas are dealt with more at the data stream and data
object level; one tends to attempt to convert or use a document or data file from
one system or format to another in practice. Considerations of relative
architectural structures or merits are more of academic or marketing interest.

For people who want an overview of particular architectures, data streams, and
file formats, the first part of this book contains such material. The information in
these chapters is also cross-referenced to where appropriate by the task-related
sections which follow.

4 Print and View Data Streams

1.4 Print and View: the Messages, the Opportunities
Point 1 Every application is an AFPDS application.

With PSF/2 and the IBMAFP printer drivers we can integrate printing
from host and workstation applications.

It is well understood how to migrate host applications to AFP*, but
most people don’t realize that now every 0S/2 and DOS/Windows

application can create an AFPDS just by setting up a simple printer
driver.

This means that every workstation application can now take
advantage of the speed, volume, and integrity benefits of AFP, while
maintaining the quality of output they are used to.

EVERY APPLICATION

AFPDS
APPLICATION.

‘Workstation

Applications Q
D
AFP
Printer
AFPDS, p ;m&a
PostScript, <

Metafile,
ASCIL.

Point 2 Every printer is an AFPDS printer.

The AFP Workbench for Windows application isn’t just a way of
looking at AFPDS files before you print them. As a DOS/Windows
application, it can take advantage of every printer driver that there is
for DOS/Windows That means that any workstation printer can now
print AFPDS data streams! Ali you have to do is load it into AFP

Workbench for Windows, and print it off, using the appropriate driver.

Not only that, but the drivers can be “connected” to a file, so AFP
Workbench for Windows can be used to convert AFPDS to
PostScript**, PPDS, PCL, you name it.

Chapter 1. Introduction

6

Point 3 -

Print and View Data Streams

EVERY PRINTER

AFPDS
PRINTER.
PCL
Printer
AFPDS it
PostScript
Printer

Ami Pro** to GML to Ami Pro to GML to ...

Using the ASCII import/export with style names functions of Ami Pro,
and a couple of simple workstation programs, we can go round this
cycle as much as we like, preserving the vast majority of our
structure and formatting information. There are limitations; we can’t
preserve all table structures, for example, but we can use Ami Pro as
a WYSIWYG front end to GML, and use Ami Pro as a workstation GML
formatter for a very wide range of GML documents.

It also means we can:
e Use a WYSIWYG workstation editor for GML documents.
* Format and AFP print GML on the workstation.
e Combine workstation documents into mainframe publishing.

* Archive workstation documents on the host using BookManager*
READ, and use READ’s powerful free text search on the archive.

Point 4 AFP Resources from standard tools

Until recently, it has been either awkward to make such things as
overlays, or you have had to get expensive, specialized software.
With the IBMAFP drivers, or AFP Workbench for Windows, you can
now take a graphic or page layout from virtually any workstation
graphic program, or word processing program, or DTP program, and
create an overlay immediately. A PSEG is just as easy.

All you have to do to use them on the mainframe is upload, and run a
simple record reblocking EXEC against them, to split the file into
records.

Chapter 1. Introduction 7

8 Print and View Data Streams

Chapter 2. Overview of Information Interchange Architecture

Information Interchange Architecture (llA) is IBM’s way of defining a structure for
information of all kinds, to clarify where particular formats of data relate one to
another. It encompasses both IBM-specific elements and some international
standards, so we give a brief overview here before looking at the parts of it in
more detail.

2.1 Introduction to lIA
Below are some general concepts of IlA:
¢ |lA consists of architectural components.
* These components are used for the interchange of composite documents.
* Composite documents can contain mixtures of text, images, and graphics.
The architectural components consist of:

e Standard Generalized Markup Language
SGML

e Office Document Architecture
ODA

¢ Revisable Form Text/Document Content Architecture
RFT:DCA

* Mixed Object: Document Content Architecture
MO:DCA

These architectural components can define document-carrying data
streams for interchange, and content architectures that define the
data objects that make up documents

e Within llA, data and attributes are separated from the document description.
This minimizes data stream transformations within a system and makes it
possible to support complex combinations of different data types, resources,
and document descriptions in application-specific data streams as well as in
device-specific data streams.

* The structure of IlA is open ended thus providing for functional growth in the
future.

¢ Applications making full use of llA and its architectures are more effective in
communication, are working together, and are more efficient in a system and
across a network.

More information about Information Interchange Architecture components under
IIA can be found in the ITSO red book: Information Interchange Architecture:
Concepts, GG24-3503.

© Copyright IBM Corp. 1993 9

2.1.1 Relationship of Architectures and Data Streams under SAA

10

Communication
within
SAA

Architectures
for
Communication

Document
Architectures

SAA
Common To other
Communication SAA
Support Components
Communication Information
SNA IIA
Compound Documents Mark-up RFTDCA
— (MODCA) SGML
Text/Image/Graphics
Revisable Presentation
MODCA-L MODCA-P

v
Print Applications

AFPDS

v
Device Interface

— IPDS

ODA

Figure 3. Overview of Architectures under llA. This figure shows the relationships
between document architectures and content architectures.

Print and View Data Streams

2.1.2 1IA Components

Normally users don’t care what languages or architectures they use for their
work; they know or learn how to handle available tools to produce a printed
document on a printer they have access to.

The world of printing and communication has changed. Documents need to be
printed on any printer in an enterprise. Wherever printing occurs, the end user
expects to get the same page layout, the same data, and the same positioning of
the data regardless of where the printer is physically located.

This means the users, or more likely whoever supports them, has to deal with a
new world. The rest of this chapter introduces where things fit in an enterprise
wide solution for printing and viewing.

Information Interchange Architecture
Document Document Content
Language Architectures Architectures
GML/SS ODA CCA
SGML/SS MO : DCA PTOCA
BookMaster RFT : DCA GGCA
LATEX GOCA
XICS 10CA
RGCA
FOCA
BCOCA
ODIF

Formatting

Languages:

SCRIPT

TEX

Figure 4. Overview of Information Interchange Architecture. This figure shows the main
components of llA, and what document architectures and content architectures are part of
lA.

2.1.3 Document Languages

Document Languages are device-independent and application-independent ways
of defining the source content of composite documents. They are large, as they
are intended to be humanly readable and editable. Before documents written in
a document language are printed, they must be processed by some kind of
computer program into a data stream that the printer to be used can interpret to
produce the finished document.

Chapter 2. Overview of Information Interchange Architecture 11

A brief description is given here; a fuller one in Chapter 11, “Document
Languages and Formatting Languages” on page 65.

2.1.31 GML (Generalized Markup Language)

Within IBM production publishing are two major document language families:
GML and SGML. Their data formats are tag-based. Adding tags to text and data
defines structural elements of the document, which are then formatted by a
computer program according to rules defined in a sty/e or profile.

The source document thus doesn’t contain formatting information, as opposed to
most documents created by office systems or word processors, where the user
often decides on the formatting while typing the text into the system.

This means that documents written in a document language are device

£ frvrmmtn t1iad hir Al c;m ;e e~
independent, and can be produced in a variety of formats just by changing the

style or profile. Equally, use of standard house styles ensures that formal
documents are produced in a consistent high quality format.

IBM Generalized Markup Language is a part of Document Composition Facility
(DCF). IBM BookMaster* is an extended markup language which uses the DCF
formatter to give a richer set of document elements and document styles.

DCF is a licensed program that is used in the preparation of printed documents.
It can also process documents that are written in the IBM Script formatting
language; in fact currently GML and IBM BookMaster are implemented using
macros written in the IBM Script language, and text programmers can produce
enterprise specific tags by writing new macros and adding them to the system
libraries.

21.3.2 SGML (Standard Generalized Markup Language)

SGML is an international standard that builds on the original definition of markup
languages. It provides a standard for the definition of markup languages, and
provides for document structure control as well as the definition of document
elements.

It is intended to provide a standard for information interchange between different
computer processing systems and platforms.

The Standard Generalized Markup Language (SGML) Translator allows DCF to
be used to format SGML data, by either of the following:

e Translating CALS SGML into a DCF understandable form
* Providing an SGML “Starter Set” of tags and macros to format them.

As with GML or IBM BookMaster, the use of SGML in an enterprise can be
extended by a text programmer providing macros to format particular SGML
tags.

2.1.4 Document Architectures

Document Architectures are ways of specifying the definition of data streams
that can contain composite documents. Usually they refer to formatted data of
some kind, unlike Document Languages.

The intention behind defining Document Architectures is to provide a consistent
basis for the production of composite documents, and to provide an application

12 Print and View Data Streams

and device independent means of interchanging data between different users,
applications, and computer systems.

They cannot provide total device independence, unlike Document Languages,
because format definition always implies some specific capability on the part of
the output device; however Document Architectures are usually aimed at either
some family of output devices, or subsets of function that are expected to be
available on the type of output device selected.

21.41 ODA

Office Document Architecture (ODA) is an ISO data stream architecture for
interchanging revisable and presentation documents. The ODA standard
provides controls for describing both the logical view and the layout view of a
document.

An ODA document has the following perspectives:
* The content of the document, which is again divided into content portions
* The logical structure, which is a hierarchy of logical objects
* The layout structure, which is a hierarchy of logical layout objects

Logical objects are subdivisions of the document based on meaning.
Layout objects are subdivisions of the document based on appearance.
Content portions are associated with both kinds of objects.

ODA provides three classes of document architecture that represent the
revisable form of a document as well as the presentation form:

1. Formatted
2. Processable

3. Formatted and processable (not included in lIA)

Additionally ODA provides architectures at the document level. Currently it
provides architectures for text, image, and graphics, and it is extendable for
other types.

However, ODA is useful for a standardized interchange on both a document level
and at content level.

2.1.4.2 RFT:DCA

Revisable Form Text/Document Content Architecture (RFT:DCA) is an IBM data
stream architecture for interchanging revisable documents. A RFT:DCA
document is a combination of content and format information. A recipient of a
RFT:DCA document can modify both the content and the format.

Historically, RFT:DCA has been a text-oriented architecture, but extensions have
been made available for including data of non-text types.

Format information includes the general characteristics of a document contained
in format declarations such as:

¢ Page width
e Page depth
e Page numbering scheme

Chapter 2. Overview of Information Interchange Architecture 13

These format declarations are separate from the text of the body of the
document. They contain the information required to modify the overall structure
of a document without disturbing the text.

Office Systems may be dissimilar and they may therefore offer different
capabilities. RFT:DCA supports interchange among dissimilar office systems in
three environments:

The Text Revision environment RFT:DCA allows the text in a document to
be modified at the receiving location.

The Format Revision environment RFT:DCA allows the format information in
a document to be modified to fit
conditions at the receiving location.

The Final Format environment FFT/DCA allows documents to be
presented only as intended by the
originator.

21.43 MO:DCA

Mixed Object: Document Content Architecture (MO:DCA) defines a mixture of
different types of information within a single document. This is as opposed to
FFT/DCA and RFT:DCA that define the interchange of text only documents.

MO:DCA contains text, image, graphics, and layout structures within one
document.

MO:DCA divides into several interchange subsets:

1. MO:DCA-P is a final form data format to be printed or displayed.
P stands for Presentation.

2. MO:DCA-L contains resource documents (mostly images and graphics) to be
stored for a later reference by presentation data streams.
L stands for Library. It normally shows up within ImagePlus*.

3. MO:DCA-R contains resource documents to be stored for a later reference by
presentation data streams.
R stands for Resources. An overlay is often treated as a MO:DCA-R
document, since it is referenced to be included into an AFPDS data stream.

2.1.5 Content Architectures

14

In order to describe how a Document Content Architecture builds up, here are a
few definitions of some terms used when describing IBM MO:DCA:

Document A document is a machine-readable collection of
one or more objects which forms a complete
composition.

Document Element A Document Element (also known as a

Structured Field) is a record of variable length
which is self identifying. It contains either
control information or data or both.

Structured Field Another name for a Document Element.

Document Component A Document Component is a set of related
structured fields which are bounded by
structured fields marking the beginning and
end.

Print and View Data Streams

Document Content Architecture Within a Document Content Architecture there
is a family of Content Architectures that define
the syntax and semantics of the different
document components which are defined to be
part of the document content architecture data
stream.

2.1.5.1 Who Carries What

Document Content Architectures define what kind of data objects can be carried
by the data stream.

MO:DCA-P can carry:

* FOCA
GOCA
I10CA

» PTOCA
* BCOCA*

ODA can carry:

* GGCA
* RGCA
* CCA

For a description of the MO:DCA content architectures refer to Chapter 8, “IBM
Object Content Architectures and Definitions™ on page 49.

For a description of the ODA architectures refer to Chapter 9, “Defined Standard
Object Content Architectures and Definitions” on page 59.

Chapter 2. Overview of Information Interchange Architecture 15

16 Print and View Data Streams

Chapter 3. IBM Architectures

Table 1. Architectures, Content Architectures, and Data Streams under SAA. This table shows which print
and view architectures and data streams are applicable under which operating system.

0s/2 AS/400 VM MVS IMS cICcS
Architectures
RFT:DCA X X X X X
MO:DCA-P X X X X X
Content Architectures
PTOCA X X X X X
IOCA X X X X X X
GOCA X X X X X X
BCOCA X X X
FOCA X X X X X X
FDOCA X X X X X
CDRA X X X X
Data streams
AFPDS X X X X X X
IPDS X X X X X X
3270DS X X X X X
SCs X X X X X
ASCII X

Note: Architectures are introduced in chapter Chapter 2, “Overview of Information Interchange
Architecture” on page 9.

Content architectures are covered in more detail in chapter Chapter 8, “IBM Object Content
Architectures and Definitions” on page 49.

Data streams are covered in more detail in chapter Chapter 5, “IBM Data Streams” on page 29.

3.1 Mixed Object Document Content Architecture

The Mixed Object Document Content Architecture (MO:DCA) is designed to

integrate the different OCA data objects into a single, device-independent data

stream that can be interchanged between application programs. The programs
can be in the same system or on different systems. MO:DCA defines a memory
and storage format for the data that is independent of communications protocols.

Thus, the MO:DCA data stream can be interchanged across communications
lines or through a common storage medium such as tape or disk.

The MO:DCA data stream consists of the following components:

Layout structure

© Copyright IBM Corp. 1993

defines the way objects should be presented.

17

Objects (such as text, graphics, image, and bar code) define
the pieces of a document.

Mapping specifies the relationship between the layout structure
and objects.

Because a document’s layout structure and objects are separate in the MO:DCA
data stream, a change in one does not affect any other.

All functions and data that make up a MO:DCA data stream are contained in
logical records called structured fields. Related structured fields are grouped
into categories and bound by unique “begin” and “end” structured-field
delimiters.

3.1.1 Minimum Functions Required for MO:DCA

18

The minimum funciions required for interchangeable MO:DCA data streams are
based on the intended use of the data stream and are defined by interchange
sets (IS). Currently, three interchange sets are defined—two for presentation
(MO:DCA-P IS/1 and MO:DCA-P 1S/2) and one for library (MO:DCA-L).

Within these interchange sets, the minimum functions required are dependent on
the product class—generator, receiver, or receiver/generator. A generator is a
product that creates data streams, while a receiver is a product that interprets
and processes existing data streams.

In general, a generator is only required to generate a valid subset of an
interchange set. A receiver must be capable of interpreting and processing all
of the MO:DCA constructs contained in the interchange set and all of the
constructs for at least one of the data objects contained in the interchange set.
While a product classified as a generator may be able to receive its own
interchange set subset, only those products that fully meet the requirements for
both a generator and a receiver are classified as receiver/generator products.

A MO:DCA-P data stream is intended for presentation at a workstation or on a
printer. MO:DCA-P IS/1 implementations must support all of the base MO:DCA
constructs contained in the interchange set and at least one of the following
objects:

* Presentation Text (PT1)
* Graphics (DR/2V0)
¢ Image (FS10)

MO:DCA-P IS/2 implementations must support all of the base MO:DCA constructs
contained in the interchange set and at least one of the following objects:

* Presentation Text (PT1)
e Graphics (DR/2V0)

* Image (FS10 or FS11)

e Bar Code (BCD1)

A MO:DCA-L data stream is intended to save data (usually in a library) for later
use by an application program. For example, the Presentation Manager* creates
a MO:DCA-L data stream known as a metafile by means of calls to its SAA*
presentation interface. MO:DCA-L implementations must support all of the base
MO:DCA constructs contained in the interchange set, as well as the following
objects:

* Graphics (DR/3V1)

Print and View Data Streams

¢ Image (FS20)

More detailed information about MO:DCA can be found in Mixed Object
Document Content Architecture Reference, SC31-6802.

3.2 Revisable-Form-Text Document Content Architecture

Revisable-Form-Text Document Content Architecture (RFT:DCA) defines the
structure of a text document that is in a form that can be edited or later
formatted. Each recipient of a revisable-form document can modify its contents
and format.

An RFT:DCA data stream consists of format units, text units, and an end unit.

e Format units contain format declarations and include no text except top and
bottom margin text.

¢ One or more text units contain the body of the document.

* The end unit identifies the end of the document.

3.2.1 Minimum Functions Required for RFT:DCA

The minimum functions required for RFT:DCA interchange are:

* Format unit 1

e Format unit 2

*+ One or more text units
e An end unit

A text unit must contain at least one body-text structured field.

Additional information about RFT:DCA is in Document Content Architecture:
Revisable-Form-Text Reference, GG23-0758.

Chapter 3. IBM Architectures 19

20 Print and View Data Streams

Chapter 4. Defined Standard Architectures

Architectures in this category are defined by national and international standards
bodies. In this case, the responsible body is International Standards
Organization, and the standards that will be addressed, albeit briefly, in this
section are:

1. Standard Generalized Markup Language (SGML) - ISO 8879

2. Document Style Semantics and Specification Language (DSSSL) - ISO Draft
Standard DIS 10179

3. Standard Page Description Language (SPDL) - ISO Draft Standard DIS 10180
4. Office Document Architecture (ODA) - ISO 8613

SGML is described in overview in Chapter 11, “Document Languages and
Formatting Languages” on page 65, particularly in 11.6, “SGML” on page 72.

DSSSL and SPDL are as yet just draft standards, and there are few if any
applications which are based on them at the time of writing. Given the thrust
towards open systems, and the success to date of SGML, it is unlikely that
anyone in the industry can afford to ignore them. The only question is the time
scale over which they will become significant.

Because of this, a very slight overview of them and their relationship with SGML
is given below.

ODA has already been briefly referred to in Chapter 2, “Overview of Information
Interchange Architecture” on page 9 as it is a component of Information
Interchange Architecture. It is described in a little more detail as an international
standard below.

© Copyright IBM Corp. 1993 21

4.1 The relationships between SGML, DSSSL, and SPDL

SGML DSSSL
DTD Specification
defines how to tells the formatter
mark up an how to lay the

document out

SGML Formatter Formatted —|Printer
document ———|Program — | document
instance

;

expressed in
SPDL

Figure 5. SGML, DSSL, and SPDL

SGML is the ISO document language. A document expressed in a document
language must be formatted by a formatting program. For the formatting
program to do its job, there must be expressed somewhere a set of rules which
define how the document elements described in the document language are to
be formatted. In IBM BookMaster, for example, these rules are contained in a
macro library written in the IBM Script formatting language.

DSSSL is the ISO standard which defines how these rules are to be expressed,
so that SGML-complying formatters can convert the source text to a final form.

The final form produced by formatters is often a data stream that is only
understood by particular output devices. Many IBM programs use AFPDS as a
final form; many workstation programs use PostScript.

ISO are in the process of defining a “Page Description Language” which is
intended to become a standard final form for interchange. It may be used either
directly by output devices, or possibly it may be converted to another print or
view data stream for final presentation.

The ISO PDL is to be SPDL. It is based on the concepts which have proved so
successful in the PostScript Page Description Language, and can in many ways
be considered a superset of that language.

4.2 Office Document Architecture

22

Office Document Architecture (ODA) is an ISO data stream architecture for
interchanging revisable and presentation documents. The ODA standard
provides controls for describing both the logical view and the layout view of a
document. The ODA document model has a threefold perspective:

1. The content, which is divided into content portions.

Print and View Data Streams

2. The logical structure, which is a hierarchy of logical objects.

3. The layout structure, which is a hierarchy of layout objects.
Logical objects are subdivisions of the document based on meaning, and /ayout
objects are subdivisions of the document based on appearance.

Content portions are associated with both kinds of objects. For example, a text
content portion may be associated, in the logical structure, with a logical object
called "glossary definition.” After formatting, that content portion may also be
associated, in the layout structure, with a layout object called a “block.”

In addition, ODA permits the creation of styles, which are collections of attributes
affecting the layout and presentation of a document.

In order to represent both the revisable form of a document and the presentation
form, ODA provides three classes of document architecture:

1. Formatted

2. Processable

3. Formatted-processable
(lIA does not currently include the formatted form or the
formatted-processable form)

ODA also provides for document classes, where a particular class is defined by
a particular generic logical or layout structure. Generic structures serve as
templates for the processing of individual documents.

In addition to expressing the logical structure and layout structure at the
document level, ODA provides architectures at the content level. ODA currently
provides architectures for:

o Text
* Image
¢ Graphics

It is extensible for other types. This inclusiveness makes ODA useful for
standardized interchange of both document-ievel information and content-level
information.

4.21 General Concept of ODA
Purpose of ODA

The purpose of the document architecture is to facilitate the
interchange of documents in a manner such that:

» Different types of content, including text, image, graphic and
sound, can coexist within a document.

* The intentions of a document originator with respect to editing,
formatting and presentation can be communicated most
effectively.

The Office Document Architecture provides for the representation of
documents in three forms:

1. Formatted form
allows documents to be presented as intended by the originator.

2. Processable form

Chapter 4. Defined Standard Architectures 23

24

allows documents to be edited and formatted.

3. Formatted processable form
allows documents to be presented as well as edited and
reformatted.

Alternative terms commonly used are final form and image form
formatted form, and revisable form for processable form.

Each of these forms allows the originator to express intentions
regarding the structuring and/or formatting of the interchanged
document.

Overall Concept of ODA

The concept of ODA is based on:

* The existence of a layout view and a logical view of the
document, the view from the physical viewpoint (for example, a
collection of pages), and the view in the sense of its abstract
components (for example, an assembly of sentences).

* The existence of a specific structure and a generic structure. The
specific “"document” structure is the one that the user may read;
the generic structure is the template that guides the creation of
the document and that could be reused for its amendment

¢ The existence of document classes:
a document class is the set of generic features that are common
to a category of documents (for example, Sales Report Form).

Logical Structure and Layout Structure

Print and View Data Streams

The key concept in the document architecture is that of structure.
Document structure is the division and repeated subdivision of the
content of a document into increasingly smaller parts. The parts are
called objects. The structure has the form of a tree.

The document architecture permits two structures to be applied to a
document:

1. A logical structure
2. A layout structure
Any one or both structures may be applied to a given document.

In the logical structure, the document is divided and subdivided on
the basis of the meaning. Examples of logical objects are chapters,
sections, figures, and paragraphs.

Chapter Chapter
l v l
Section Section Section
Paragraphs Paragraphs Paragraphs
Figures Figures Figures

Figure 6. Diagram of a Logical Structure of a Document. The logical structure of a
document is determined by the author of the document. It is based upon chapters and the
different sections within chapters.

In the layout structure, the document is divided and subdivided on the basis of
the layout. Examples of layout objects are pages and blocks.

The logical structure and the layout structure provide alternative but
complementary views of the same document. For example, a book can be
regarded as consisting of chapters containing figures and paragraphs, or
alternatively, as consisting of pages that contain text blocks and/or graphic
blocks.

Content Portions: The basic elements of the content of a document are called
content elements. For content consisting of character text, the content
elements are characters. In the case of images or graphics, the
content elements are picture elements (also called pels).

Content Architectures: A content portion associated with a basic logical object or
a basic layout object may have a more detailed internal structure.
The rules governing such an internal structure depend on the type of
content and are called a content architecture. The content of a basic
logical object or a basic layout object is structured according to only
one content architecture.

Attributes: An attribute is a property of a document, or of a document
constituent. It expresses a characteristic of the document component
concerned, or a relationship with one or more documents or
document components.

Relations Between Logical Structure and Layout Structure: The logical structure
and the layout structure are, in principle, independent of each other.
The logical structure of a document is determined by the author and

Chapter 4. Defined Standard Architectures 29

embedded in the document during the editing process. The layout
structure is usually determined by a formatting process. The
formatting process may be controlled by attributes called layout
directives associated with the logical structure.

Specific and Generic Structures: In a document, the logical objects and/or the
layout objects can often be classified into groups of similar objects.
Therefore the concept of object class is introduced.

The similarity may be related to logical features such as chapter,
section, or paragraph hierarchy, to layout features such as size or
styl, or to content such as page headers and footings. Even an entire
document may be a member of a group of similar documents, a letter,
a memorandum, or a report.

Document Profile: The document profile consists of a set of attributes associated
with a document as a whole. In addition to reference information such
as title, date, and author’s name, which facilitates storage and
retrieval of the document, the document profile contains a summary
of the document architecture features that are used in the document,
in order that a recipient can easily determine which capabilities are
required for processing or imaging the document.

Generic-document: A generic-document consisting of a document profile and
generic structures can be used to assist in the processing of
interchanged documents. A generic-document may be interchanged.

For a complete description of ODA refer to Information Interchange
Architecture: Concepts, GG24-3503.

Page Page
l v l
Text Image Graphic
Attributes Attributes Attributes

Figure 7. Diagram of a Layout Structure of a Document. The layout structure of a
document is determined by the formatting process and controlled by attributes. It is based
upon pages or block.

26 Print and View Data Streams

4.3 Industry Standard and non-IBM Proprietary Architecture

In this book we deal with “Industry Standard” and non-IBM proprietary machine
readable documentation at the data stream or object level. Our concern is to
describe for the benefit of IBM system users how to make data in these formats
fit into their systems and documentation.

There are no architectures that are “Industry Standard” in any case; the only
architectures widely accepted in the computer industry in this sense are the ISO
standards which are introduced in the previous section.

Chapter 4. Defined Standard Architectures 27

28 Print and View Data Streams

Chapter 5. IBM Data Streams

A data stream is a continuous ordered stream of data elements conforming to a
given format. The data streams that are part of SNA Common Communications
Support of SAA (CCS) can transfer data between:

e Application programs
¢ An application program and a printer
¢ A workstation and an application program

The application programs, workstation, and printer can be on the same system
or on different systems.

The data streams in Common Communications Support include:

* The Intelligent Printer Data Stream* (IPDS”) is the system-to-printer data
stream for all-points-addressable printing.

* The 3270 Data Stream defines a formatted data stream used to transmit data
between an application program and a nonprogrammable workstation or
printer.

¢ The Character Data Representation Architecture (CDRA) is the data stream
that preserves the original meaning of graphic characters during accessing,
processing, conversion, and interchange of character data between and
across SAA systems.

* The Mixed Object Document Content Architecture (MO:DCA) defines the data
stream used to transmit objects from an application program to a
programmable workstation or to another application program.

* The Revisable-Form-Text Document Content Architecture (RFT:DCA)
(RFT:DCA) defines the data stream used to transmit revisable-form text and
non-text objects between application programs in an office environment.

5.1 Device Dependent Data Streams

The next sections describe different data streams that are device dependent.
The data streams include commands that can be interpreted correctly only by a
device that has support for the data stream concerned.

5.1.1 Intelligent Printer Data Stream

The Intelligent Printer Data Stream (IPDS) is used to send data created by the
AFP printer driver PSF or an application program to an all-points-addressable
printer. The Intelligent Printer Data Stream can carry the BCOCA*, FOCA,
GOCA, IOCA, and PTOCA document objects, described in 8.1, “Objects.”
Therefore, it is possible to print pages containing a mixture of different data
types. Different application programs can create source data (text, graphics,
image, and bar code) independently of each other. IPDS architecture allows the
output of these independent application programs to be merged when printed, so
that an integrated mixed-object page results.

Because IPDS architecture is independent of the communication protocol, the
same data stream can be transmitted to printers that are attached to channels,
to controllers, or to local area networks or any other communication link that
allows transparent transmission of data. All data and commands are transferred

© Copyright IBM Corp. 1993 29

30

through self-identifying structured fields that describe the presentation of one or
more pages. IPDS products must be part of the printing subsystem of each
environment in which IPDS data streams will be interchanged. All printing
subsystems have the following elements in common:

* Application programs generate the source data to be printed. Some
application programs generate text data that previously would have been
directed to line printers. Other application programs generate
all-points-addressable text or other data types such as image, graphics, and
bar code for IPDS printers.

* Presentation services accept source data, transform it into an Intelligent
Printer Data Stream without changing the existing source data, and
communicate with an IPDS printer. Presentation services also permit the
output of line-printer application programs to be enhanced by IPDS

nonohl tine ciirnh ac Adunlavina n\larla\lc [alartranins farme) nad multinl
apachitcs, Sutn as GuUpL:iCXing, ayo \CiCLu Uit iUininiigg, and uluuulu e

high-quality fonts.

e |IPDS printers accept the Intelligent Printer Data Stream. They can attach to
several different system or subsystem environments using one or more
communication protocols.

The IPDS implementation requirements differ for presentation services products
and printer products. For more information, see 5.1.1.2, “Minimum Functions
Required for IPDS Support” on page 32.

The detailed reference to the AFPDS data stream itself, to the level of the
structured fields and object descriptions is AFP Data Stream Reference,
8544-3202, to which the reader is referred for that level of technical detail.

5.1.1.1 IPDS Functional Areas
The IPDS architecture is divided into several functional areas, called command
sets, each representing a major printer capability. A command set consists of:

¢ |PDS commands, including semantics (the relationship of the command
symbol to its meaning)

e Syntax (the command structure and format)
* Architecturally valid values for each field in the command

In addition, the architecture contains a registry of exception-reporting codes for
error conditions in each of its command sets and for printer-related failure, fault,
or host-notification conditions.

Each command set is further divided into at least one subset of defined function
and a subset of optional function. Some command sets have more than one
subset of defined function. Command sets that are defined to carry object data
also define a data tower that describes the data carried in the “Write” command
of the corresponding IPDS command set.

The command-set design allows IPDS architecture to support a wide range of
printer products. Product developers can match command-set implementations
to the specific needs of their products.

Device Control This command set is composed of the IPDS commands that
initialize the environment for a page, communicate device
controls, and manage the printer acknowledgment protocol.

Print and View Data Streams

Text This command set is composed of the IPDS commands for
presenting text information on a page, a page segment, or an
overlay.

10 Image This command set is composed of the IPDS commands for
presenting images on a page, a page segment, or an overlay.

Graphics This command set is composed of the IPDS commands for
presenting graphics on a page, a page segment, or an overlay.

Bar Code This command set is composed of the IPDS commands for
presenting machine-readable bar code information on a page, a
page segment, or an overlay.

Page Segment This command set is composed of the IPDS commands to store
and present IPDS constructs containing text, graphics, image,
and bar code information. These stored constructs, which can
be merged with a logical page to assume the current
environment, are called page segments.

Overlay This command set is composed of the IPDS commands to store
and present IPDS constructs containing text, graphics, image,
and bar code information. These stored constructs, which
specify their own environment and are often used as electronic
forms, are called overlays.

Loaded Font This command set is composed of the IPDS commands to load
and delete font information.

For some IPDS command sets, a data tower exists that consists of the data
carried in the “Write” command of the corresponding IPDS command set. A
data tower can be divided into levels. In that case, a higher level of a data tower
consists of all lower levels, plus some set of additional functions.

Some data towers are defined and controlled by Object Content Architectures
and are simply registered by IPDS architecture. The following data-tower
definitions include the name of the architecture that defines and controls each of
the data towers.

Text This data tower is composed of Presentation Text Object Content
Architecture (PTOCA) control sequences contained in the data field of
the Write Text command. These control sequences are required to
present text information in a page, a page segment, or an overlay.
The text data tower contains two presentation text (PT) levels—PT1
and PT2—defined by PTOCA.

10 Image This data tower is composed of Image Object Content Architecture
(IOCA) self-defining fields contained in the data field of the “Write
Image 2" command. These self-defining fields are required to present
image data in a page, a page segment, or an overlay. The |0-image
data tower contains one level—FS10— defined by IOCA.

Graphics This data tower is composed of Graphics Object Content Architecture
(GOCA) drawing orders contained in the data field of the “Write
Graphics” command. These drawing orders are required to present
graphics in a page, a page segment, or an overlay. The graphics
data tower contains one level—DR/2V0—defined by GOCA.

Bar Code This data tower is composed of Bar Code parameters contained in
the data field of the “Write Bar Code” command. These parameters
are required to present machine-readable bar-code information in a

Chapter 5. IBM Data Streams 31

page, a page segment, or an overlay. The Bar Code data tower
contains one level-BCD1— defined by the BCOCA architecture.

5.1.1.2 Minimum Functions Required for IPDS Support
To claim support of the IPDS architecture, an IPDS printer product must do the
following:

¢ |Implement the DC1 subset of the device-control command set.
* Implement at least one of the following subsets of the IPDS command sets:
— Text (TX1)
— Image (101)
— Graphics (GR1)
— Bar codes (BC1)

To claim support of the IPDS architecture, a presentation services product must
do the following:

¢ For all commands generated by the presentation services, the command
must conform to the IPDS state diagram.

¢ For all commands generated by the presentation services, the command
syntax must conform to the syntax defined by the IPDS architecture.

5.1.1.3 Command-Set Support Requirements

To claim support of the text, graphics, 10-image, or bar-code command sets of
the IPDS architecture, an IPDS printer product must implement an architecturally
defined subset of the command set. Printers can support additional, optional
elements of the command set. In addition, a printer product must also
implement a level of the corresponding data tower.

To claim support of any other IPDS command set, a printer product must
implement an architecturally defined subset of the command set. Printers can
support additional, optional elements of the command set.

Refer to Intelligent Printer Data Stream Reference, S544-3417, for additional
information on IPDS command sets.

5.1.1.4 Data Tower Support Requirements
To claim support of a data tower, a printer product must implement an
architecturally defined level of the data tower.

5.1.2 3270 Data Stream

32

The 3270 Data Stream is a formatted data stream used to transmit data between
an application program and a 3270-type workstation or printer. The 3270 Data
Stream is based upon the presence of a mapped character buffer in the 3270
workstation. A fixed one-to-one relationship exists between each
character-storage location in the buffer and each character position on the
display.

An application program uses one of two methods to communicate with the user
at a workstation:

* The application program leaves the display surface unformatted and the user
uses it in a free-form manner.

e The application program either completely or partially formats the display
surface (arranges it into fields) and the user enters data into the fields.

Print and View Data Streams

The 3270 Data Stream allows the application programmer to divide the display
surface into one active area and, optionally, one or more reference areas; each
area is called a partition. The partition that is active contains a cursor and is the
only partition in which the user can enter data or requests.

5.1.2.1 Minimum Functions Required for 3270 Data Stream

The 3270 functions required for Common Communications Support are called
extended function base support (EBASE). EBASE specifies functions in the
following categories:

¢ Query replies
 Structured fields

* Basic 3270 commands
* Basic 3270 orders

e 3270 controls/special characters
Please refer also to 5.1.5, “Line Printer Data” on page 36.

The document /IBM 3270 Data Stream Programmer’s Reference identifies the
specific functions required in an SAA 3270 Data Stream.

5.1.3 Character Data Representation Architecture

Graphic characters such as letters of the alphabet and punctuation marks are
the fundamental basis of written communication. For processing and
communication by computers, they are encoded, processed, and stored as
binary numbers, commonly referred to as code points. The result of the
encoding process for a graphic character set is called a coded graphic character
set, or simply a code page, which associates graphic characters with their
corresponding code points.

Over the years, industry, national, and international standards have been
created to provide rules for encoding graphic characters. Today it is common
place for large communication networks to span several countries. Many
problems have resulted from the use of different character representation codes.
Some of the more common problems follow:

* The dollar symbol ($) is sent in an unarchitected data file from a US-based
host system to a UK system, where it then appears as a pound sterling
symbol (£).

* The Personal Computer supports a larger character set than can be
processed in a non-PC environment.

* Code point conversion tables vary among different products, producing
inconsistent results.

Character Data Representation Architecture (CDRA) is the CCS data stream that
defines a set of identifiers, services, supporting resources, and conventions to
achieve consistent representation, processing, and interchange of graphic
character data' in SAA environments.?

1 Graphic character data is not to be confused with the “graphic” data type, which is used to represent double-byte data in
some programming languages.

2 Though CDRA is primarily focused on SAA environments, it is applicable in non-SAA environments.

Chapter 5. |BM Data Streams 33

34

CDRA supports the principle of data and application independence, which is a
vital requirement of distributed computing environments. It follows the premise
that the elements of character representation are essentially data attributes, and
these elements must be uniquely captured by a method of identification that can
be associated with the data. Using CDRA, applications or devices handling data
have one identifier from which they can derive all the information needed to
correctly identify the graphic characters represented by code points. Having one
identifier permits consistent and correct handling of graphic character data.

CDRA defines:
e An identification mechanism and associated supporting resources

* Functions such as tagging to associate the identifier with data and
applications

Liiie VUiV OrwiwIs Wi W uT .

character data

¢ Recommended strategic coded graphic character sets

These CDRA features are described in the following sections.

5.1.3.1 Identification Mechanism

The CDRA identification mechanism is used to specify the identity of graphic
character data and uniquely refer to this data at any place in a system. It can be
thought of as providing additional information to eliminate the ambiguity inherent
in the binary code point. This identification mechanism has two forms:

¢ The short form is a fixed-length two-byte identifier, known as the Coded
Character Set Identifier (CCSID), which represents the elements of the
long-form identifier.

* The long form is a variable-length identifier, composed of multiple elements:

— Encoding scheme identifier

— Character set identifier

— Code page identifier

— Additional elements as needed for each additional pair of character set
and code page identifiers

— Additional coding-related required information (ACRI), which can be used
to specify the ranges of valid first bytes for double-byte characters as
implemented by the IBM Personal Computer

5.1.3.2 Tagging

Products implementing CDRA associate the CDRA identifiers with the data
objects they manage. This tagging of data objects is the method used to identify
the meaning of the coded graphic characters in the object. This allows a graphic
character that has different code points assigned in different machine types to
maintain its meaning.

The tag may be in a data structure that is logically associated with the data
object (known as explicit tagging). Alternatively, it may be inherited from the tag
fields associated with other related data objects, or from the computing
environment itself (known as implicit tagging).

Print and View Data Streams

5.1.4 SCS

5.1.3.3 Code Point Conversion

The process of managing character data representations that are different from
the representations expected by applications, devices, or interchange
environments is known as difference management. This process involves the
ability to recognize if a difference exists, and the ability to deal with differences
consistently and correctly. CDRA describes how to manage the representational
differences in coded graphic characters, and the criteria to be used for the
creation of character conversion tables and methods.

5.1.3.4 Strategic Coded Graphic Character Sets

CDRA defines the SAA character sets and code pages that can be used to
minimize differences in coded graphic character representations and related
potential data loss. When data is transferred between environments using
different character representations, the integrity of characters that are common
to the two sets of coded graphic characters can be maintained. Integrity in
CDRA terms is the ability to preserve the meaning of a coded graphic character
as defined by the CDRA identifier.

CDRA defines CCSIDs for coded character sets. The two types of CCSIDs are:

e SAA
* Migration and coexistence

The SAA CCSIDs provide strategic direction for new applications by enabling the
preservation of character data integrity within a country or a group of countries
that use the SAA character set composing the SAA CCSIDs.

5.1.3.5 Minimum Functions Required for CDRA
Products implementing CDRA Level 1 must implement the appropriate functions
from the following list:

¢ The identification mechanism and associated supporting resources
* The tagging function to associate the identifier with data and applications

¢ The difference management function to provide consistent code point
conversion of coded graphic character data

* The strategic coded graphic character sets. This support might entail
migrating existing support for current coded graphic character sets.

Additional information about CDRA is in Character Data Representation
Architecture—Level 1 Reference, SC09-1390. Other books related to CDRA are
listed in Appendix E, Bibliography.

The SNA Character Stream is a sequential character string composed of EBCDIC
controls and user data. The primary function of the control codes is to format
data either on a printer or a display. SCS control codes can be intermixed with
graphic data characters. SCS functions do not include data flow control
functions.

Examples of SNA Character Stream control are:

Backspace
Carrier return
Form feed
Horizontal tab

Chapter 5. IBM Data Streams 35

Presentation position
Word underscore

5.1.5 Line Printer Data

Normally applications are programmed to generate output for line printers. This
output is often in fixed length records, with each letter is already on the offset
where it will be printed.

The first position is used either as an ANSI carriage control character or as a
machine carriage control character.

This data stream is often also called the 1403 data stream, because that was the
first printer that this data stream was defined for.

}'
)
3
3
=3
-+

tr -~ Alan aitidtabhla Faw AP Daledi;a sasidlemued e am oo

ie line prin eam is also suitable for AFP Printing without any need
for changing existing application programs. AFP supports this by providing tools
to define print definitions externally to application programs, and allowing
invocation of them at print time.

Please refer also to 5.1.2, “3270 Data Stream” on page 32.

5.1.6 IBM Personal Printer Data Stream

36

It’s stretching things a little to call this a data stream, as it is principally text
based, but it can contain bitmap data, so it does just qualify. Also, it is known as
a data stream, so it would be confusing for us to treat it as a data object.

PPDS was previously known also as IBM PC ASCIl Printer Data Stream, and was
designed to handle printing on the IBM PC in an eight bit byte ASCII
environment.

PPDS is an expandable standard, and generally devices should ignore
unsupported control codes; however, this may not be true of some older devices.

PPDS is essentially text or bitmap interleaved and managed by control codes.
There are three types of control codes:

Single byte control codes
Escape sequences
Control sequences functions

PPDS is still found wherever there are PCs, and is probably still the most widely
used workstation print data stream.

PPDS is split into three levels, each indicating a level of development:
Level 1 contains support for the following:

* 9 pin printers

¢ 24 pin printers

* Basic paper handling (new page)

¢ Limited font selection

¢ Image Graphics with multiple resolutions

Level 2 contains additional support to level 1 for the following:

* Quietwriter*
¢ Quickwriter lli
* Better font selection

Print and View Data Streams

Level 3

Better font control

* Enhanced paper handling (cut sheet)
» Better text justification and formatting

contains additional support to level 1 and 2 for the following:

Support for page printers (IBM 4019)

Random placement of text and graphic images
Limited drawing by printer

Selection of paper orientation

User of typographic fonts

The following single byte controls are supported by most IBM personal Printers:

Table 2. PPDS Single Byte Control Codes

Mnemonic Decimal Hex Function

NUL 00 00 Null

BEL 07 07 Bell

BS 08 08 Backspace

HT 09 09 Horizontal Tab

LF 10 0A Line Feed

vT 1 0B Vertical Tab

FF 12 oC Form Feed

CR 13 0D Carriage Return

SO 14 OE Shift Out - Double wide print line mode
Si 15 OE Shift In - Condensed print

DC1 17 11 Device Control 1 - Select/XON

DC2 18 12 Device Control 2 - Set 10 cpi

DC3 19 13 Device Control 3 - Deselect/XOFF

DC4 20 21 Device Control 4 - Cancel Double wide
CAN 24 18 Cancel (Clear printer buffer)

ESC 27 1B Escape

Note: This level of detail doesn’t really belong in this book, but the authors have
lost count of the numbers of times they have needed these and haven’t been
able to find them.

5.1.6.1 Escape Sequences
Escape sequence functions consist of the Escape character (decimal 27) followed
by a code, and in some cases then by parameters.

Table 3 (Page 1 of 2). Common PPDS Escape Sequences

Hex Code Function Parameter

X2D’ Auto Underscore X'00’ off, or X'01’ on
X’30° Set line spacing 1/8 inch

X’31 Set line spacing 7/72 inch

X'32’ Set line space to last Esc X'1B41’ value, or

to 1/6 inch if none

Chapter 5. 1BM Data Streams 37

Table 3 (Page 2 of 2). Common PPDS Escape Sequences

Hex Code Function Parameter

X33 Set graphic line spacing Hex number of 1/216 inch increments

X34 Set current position as top of form

X35 Set Auto Line Feed X’00" off or X’01” on

X’36” Select PC Character Set 2

X'37 Select PC Character Set 1

X3A’ Set pitch 12 cpi

X'41’ Set Text Line Spacing Hex number of 1/72 inch increments

X'42 Set Vertical Tab stops n hex numbers specifying n tab stops in
numbers of lines, x’00” terminating

X43’ Set Page length Hex number of lines, or X080’ and hex length
in inches

X44 Set Horizontal Tab stops n hex numbers specifying n tab stops in no.
of columns, x’00” terminating

X'45 Begin Emphasized Print

X'46’ End Emphasized Print

X417 Begin Double Strike Print

X’48’ End Double Strike Print

X 4A’ Relative Move Base Line Hex number of 1/216 inch vertical move

X’4B’ Normal density bit image (60 dpi, 72 dpi First byte is low byte, second high, of two

vertical) byte count of image bytes; followed by n

image bytes. Each image byte represents 8
vertical dots.

X'4C’ Dual Density bit image (120 dpi, 72 dpi As for 4B

vertical)

X'4F’ Set skip perforation Hex number of lines to be skipped at bottom
of page

X 4F’ Reset skip perforation

X'52 Set default Tab racks

X’53’ Begin sub or superscript X’00” superscript, X'01” subscript

X'54 End sub or superscript

X’'55 Set print direction X’00’ bidirectional, X’01’ L2R, X02’ R2L

X'5C’ Print All Characters First byte is low byte, second high, of two
byte count of bytes to be printed as graphic
characters, including those normally controls

X'SE’ Print Single character Next character to be interpreted as graphic

X’'SF Continuous overscore mode X’00’ off, X’01’ on

X'64’ Relative move inline forward Move (byte1 + byte2*256)/120 inches right

X’65 Relative move inline back Move (byte1 + byte2*256)/120 inches left

X'6A’ Stop printing

X’6B’ Set Portrait orientation

X'6C’ Set Landscape orientation

X’6F’ Select aspect ratio X’00’, X’01’, or X'03’

38 Print and View Data Streams

5.1.7 CDPDS

5.1.6.2 Control Sequence Functions

Control sequence functions form more sophisticated controls for newer printers.
They consist of an escape character, followed by a hexadecimal ‘5B, followed by
a one-byte code, followed by a two-byte count (least significant byte first) of the
number of bytes following in the sequence.

Esc [Code Count_low Count_high (Count)bytes_of parameter_data

Composed Document Printer Data Stream is a final form data stream created
when documents are to be printed.

It is basically a subset of the MO:DCA-P architecture. This data stream contains
device dependent controls (medium related fields).

When working with this data stream the device driver is normally GDDM. The
software generating this data stream are normally of the DisplayWrite* family.

5.2 Device Independent Data Streams

5.2.1 AFPDS

5.2.2 MO:DCA

Advanced Function Printing Data Stream is a final form data stream created as a
result of a print request originated from various office, publishing, and business
applications.

AFPDS supports a Superset of MO:DCA data stream functions.

It is the input data stream to PSF (Print Services Facility is the Printer Driver for
AFP printers) and to GDDM as well as products working with GDDM* (such as
GQDF or BrowseMaster) for display, manipulation, and/or conversion.

Mixed Object: Document Content Architecture defines IBM’s SAA presentation
data stream.

5.2.21 MO:DCA-P

Mixed Object: Document Content Architecture for Presentation

This data stream contains a collection of various data objects such as text,
images, graphics, and other components such as layout structures.

Presentation documents consists of one or more pages of final form data in a
format that is ready to be printed or displayed.

5.2.2.2 MO:DCA-R

Mixed Object: Document Content Architecture for Resources

Presentation documents contain objects that are intended to be stored in a
library for later reference by presentation data streams. A typical example is a
page overlay used by ImagePlus data streams.

Chapter 5. IBM Data Streams 39

40

5.2.2.3 MO:DCA-L
Mixed Object: Document Content Architecture for Libraries

Presentation documents contain objects that are intended to be stored in a
library. A typical example is a page overlay used by ImagePlus data streams.

5.2.2.4 DCA
Document Content Architecture in the office world describes the form and
meaning of the contents of a document. Documents in this format can be

interchanged through a network. The text of a document is one of the two forms:

REVISABLE and FINAL.

RFTDCA Revisable Form Text/Document Content Architecture specifies how IBM

Office systems interchange documents in revisable form and defines the
structure of the data stream

The data stream contains the text and fields containing general formatting
specifications.

Contents and format in revisable form can be modified by any person that has
access to it.

FFTDCA Final Form Text / Document Content Architecture specifies how IBM
Office systems interchange documents in final form and defines the structure of
the data stream

The data stream contains the text and control codes representing the formatting
specifications.

Contents and format in final form cannot be modified. It is for presentation on a
display or printer.

RFTXT Revisable Form Text Documents are created on IBM equipment other
than Personal Services /370. An example of these devices is the IBM
Displaywriter.

Documents in this format that are created on a workstation can be loaded to a
system /370 or AS/400* for further processing.

Documents created with Personal Services /370 or Personal Services/400 can be
downloaded to a workstation for further processing.

Print and View Data Streams

Chapter 6. Industry Standard Data Streams

6.1 Device Independent Data Streams

The following section describes data streams that are not device dependent.
These data streams are supported by different devices.

6.1.1 PostScript

We are treating PostScript as a data stream for the purposes of this document
because it is capable of containing mixed data types and describing a full
composite document.

PostScript objects are generally denoted by the use of a file type or extension of
PS or EPS. LISTPS is also seen.

6.1.1.1 PostScript and Encapsulated PostScript

EPS stands for Encapsulated PostScript, and can contain anything a PostScript
data stream contains. Encapsulated PostScript objects are intended to be
included in other composite documents, while PostScript data streams are
generally documents in their own right. These composite documents need not
be PostScript data stream; many desk-top publishing products use EPS files for
their graphic entities. An Encapsulated PostScript file usually doesn’t contain
showpage commands (the PostScript command to print a page), and depends on
the document containing it to control the where and on which page it is printed.
It also contains bounding box data which defines its size and internal coordinate
system.

Composite Document

Defines which page —>

Defines position

EPS

Figure 8. Use of EPS Files

© Copyright IBM Corp. 1993 41

42

6.1.1.2 Stream Contents

A PostScript data stream can contain text, font data, vector graphics, and bitmap
images. While usually monochrome, PostScript is capable of supporting full
color.

The PostScript data stream is device and resolution independent, except for
image bitmaps, which of course have a defined number of picture elements.
Output resolution and color capabilities are dependent on the device at which
output is expressed.

Text is stored as characters, and the output form is dependent on the font
current at that point. The PostScript data stream can contain the font data, or
can just give the name of the font and assume that font data exists at the output
device.

PostScript was designed as a Page Description Language, and has all the
richness of a full programming language. PostScript instances can be very
complex (equally, simple PostScript instances can produce excellent output).

6.1.1.3 Usage

PostScript is effectively the industry standard for high quality output in the
publishing industry. The vast majority of typesetters now use PostScript as their
input medium for both monochrome and high quality color work. Anyone
intending to do serious work in the publishing industry must be capable of
handling PostScript.

PostScript is also effectively the industry standard for quality output in the
workstation world. Low-cost laser printers at the date of publishing are
continuing to use proprietary data streams, but all but the cheapest now offer
PostScript as an option, and PostScript printers are becoming lower in price.
Virtually all desk-top publishing software, and all serious graphics software, offer
PostScript as an output option, if not the default and only option.

6.1.1.4 IBM Data Stream Integration with PostScript

Document 1BM

Composition —»| PostScript

Facility l Interpreter
PostScript AFPDS | &—

ProcessMaster T Print

AFPDS to -————| Services

PostScript Facility

Figure 9. IBM Products and Postscript

IBM’s mainframe publishing formatter, DCF, can provide output in PostScript as
well as AFP. IBM is in line with the industry. Thus all applications which use
DCF as their formatter are PostScript capable.

Print and View Data Streams

IBM has AFP as its medium quality output data stream for non-publishing
software. We deliberately use the term “medium quality” in this context,
because although 240 and 300 pels per inch is regarded as high quality in the
computer printer world, in publishing it is at best “medium quality”; a publisher
would only start calling output “high quality” above around 1000 pels per inch.
The VM and MVS product IBM ProcessMaster contains an AFPDS to PostScript
conversion utility, which allows any AFPDS data stream to be used with
PostScript devices. Note however, that the files created by this utility tend to be
extremely large, even by PostScript standards, and may take a significant time to
transfer over communications links and to print.

The reverse process, of converting PostScript to AFP, is carried out by the IBM
PostScript Interpreter. This mainframe product allows any PostScript data
stream to be output on AFP devices. Note in this case that some PostScript
products allow for the inclusion of an “image header” which is often ignored by
PostScript devices; the IBM PostScript Interpreter will not, and any files to be
used with the IBM PostScript Interpreter should be created without this header.

At the time of writing, IBM has announced, but not yet delivered, the capability of
handling PostScript as an input data stream to PSF/2 (Print Services Facility/2),
in version 1.1. PSF/2 is a product which allows the use of AFP printers in a LAN
environment, and, with version 1.1, in a mixed LAN/host environment.

6.1.1.5 Transform Availability

Many programs provide PostScript as output, because of both its capability of
providing a device and resolution independent data stream containing text,
vector, and bitmap graphics, and also the large range of printers and other
output devices that support it.

Fewer programs support it as an input data stream, because of its relative
complexity. In general, where it is allowed as input, either only a very simple
subset is used, or the input is converted to a bitmap.

6.1.1.6 Device Independence

PostScript defined for a specific printer or operating system can be less than
totally device independent. If you have the option (when selecting printer drivers
for an application under OS/2* or DOS/Windows, for example) select a generic
PostScript driver (often just identified as “PostScript Printer”). This will
maximize your chances of producing a data stream that can be used anywhere.
(Another frequently offered option it is best to avoid is “Image Header” — not all
interpreters can handle these.)

This also applies to PostScript when it is being used as a programming
language, or writing applications that produce PostScript as an output stream. It
is best to ensure that the subset of PostScript that is being written does not
contain any printer-specific commands if you want your output to be truly
portable. Fortunately this is relatively easy given the richness of the PostScript
definition.

Chapter 6. Industry Standard Data Streams 43

44 Print and View Data Streams

Chapter 7. Non-IBM Proprietary Data Streams

7.1 Microsoft Rich Text Format

Though not totally device independent (it contains, for example, font information
which may not be appropriate on some output devices — it cannot itself contain
font definitions to devices not containing those fonts, like PostScript can), this
data stream is not tied to specific devices.

It is essentially a workstation format used to store document information by
several Microsoft** application programs. The format documentation is available
to developers, and so can be used to exchange information between
applications.

lts principal use is as a revisable document definition language for storage and
interchange.

An RTF document can contain font and formatting reference information, and
character text. Though not sufficiently rich to be described a Page Description
Language, the position on page of text, font family, and size can be defined.

An RTF stream can contain embedded picture information; either OS/2 or
DOS/Windows metafile, or bitmap. Other formats must be converted before
inclusion in the document.

If it is necessary to convert an RTF data stream to another for use by other
programs, the Ami Pro word processor can import RTF, and export as many
kinds of file format; including RFT:DCA, and a tagged ASCll format that is readily
transformed to GML (see A.1, “Conversion Between Ami Pro and GML” on

page 147).

7.2 PCL (Printer Control Language)

The PCL Printer Language was and is defined by the Hewlett-Packard™* (HP**)
Company to drive their range of printers, and has been adopted by several other
companies as either the only or an optional way to drive the printers they make
as well. This print data stream has evolved as new printers with new functions
became available, and the current level is PCL 5.

PCL is a complex data stream, and as a printer data stream does not in general
lend itself to ready conversion to other forms. It should not be generated unless
it is to be used to drive a printer which understands it.
The PCL data stream allows the printing of:

e Typographic quality text

* Raster images

* Vector graphics

PCL 5 has added the capability of handling scalable fonts to the previous bitmap
font capability, and incorporated the HPGL/2 vector graphics definitions into PCL.

© Copyright IBM Corp. 1993 45

46

The PCL language is defined in detail in The HP PCL 5 Printer Language
Technical Reference Manual, Hewlett-Packard part no. 33459-90903, which should
be referred to for any specific details. We recommend this manual as an
exhaustive reference to both PCL and HPGL.

However, to allow simple parsing of the data stream if required, we include a
brief overview of its structure below.

Raster graphics included in the data stream may be uncompressed, or
compressed using:

¢ Run length encoding
e The TIF “packbits” coding scheme

¢ Delta Row compression

The run-length encoding is done with a pair of bytes, the first of which is a
repetition of the data in the second byte; a repetition count of O says the pattern
is not repeated, 1 says it is repeated twice, and so on.

Packbytes (also known as packbits) compression is a form of run-length
encoding. Again a control byte precedes the raster data, and determines
whether the raster data is to be repeated some number of times or whether the
control byte is followed by a number of literal raster bytes. If the sign of the
control byte is positive, the control byte is a number of bytes following the
control byte that are explicit raster data. If the sign of the control byte (two’s
complement) is negative, the absolute value of the two’s complement number is
the number of times the following byte is to be repeated. (Control byte values 0
to 127, add 1 to get number of literal bytes; 129 to 255, subtract from 256 to get
the number of repetitions.)

Delta row compression is a scheme that transmits only changes in the bit
pattern from row to row. For each row, a control byte contains in bits 7 to 5 the
number of bytes to replace, and in bits 4 to O the relative offset from the last
untreated byte. This is followed by the data bytes. If more than 8 data bytes are
required in a row, the command byte is repeated. Offset values of 0 to 30 are
from the 1st to 31st byte, 31 indicates that the next byte is to be added to the
offset. If this next byte is 255 then additional bytes are to be added until one less
than 255 is found.

The PCL language consists of:
» Control codes - essentially the normally defined ASCII control codes

e PCL commands, also known as escape sequences
¢ HPGL/2 commands

PCL escape sequences are either two character or parameterized.

Two-character escape sequences consist of the Escape character (decimal 27,
hex 1B) followed by any ASCII character from decimal 48 to 126 inclusive.
Parameterized escape sequences have the form:

Esc X y val z1 val z2 val z3 . . . val Zn [data]
where:

X ASCII 33 to 47 decimal - code indicating parameterized command

Print and View Data Streams

y Group type of control - ASCII 96 to 126 decimal

val numeric value {may be preceded by + or -, may contain decimal
point). If required by command and value is unspecified, O is
assumed.

zn Parameter Character (identifies parameter to which previous value
applies) - ASCII 96 to 126 decimal

Zn Termination character (identifies parameter to which previous value
applies) - ASCII 64 to 94 decimal

data Eight bit data (for example, graphics, fonts). Number of bytes is

specified by a value field (usually the last one).
All except X may be optional, depending on the command.
Parameterized escape sequences may be combined, providing the following
rules are met:

e The first two characters after the Escape character must be the same in all
the commands that will be combined.

e All alphabetic characters within the combined sequence will be lower case,
except the last which will be upper case (upper case characters are
termination characters).

* The commands are performed left to right.

HPGL/2 commands consist of:
¢ A two-character mnemonic

* A variable number of parameters separated by a comma, a space, or a sign
character

¢ An optional terminator character, the semicolon

Chapter 7. Non-IBM Proprietary Data Streams 47

48 Print and View Data Streams

Chapter 8. IBM Object Content Architectures and Definitions

8.1 Objects

Documents and databases can be made up of different kinds of data, such as
text, graphics, images, database data, and bar codes. Object content
architectures describe the structure and content of each type of data that can
exist in a document or database.

Formatted data objects are associated with databases, while the following types
of objects are associated with documents:

e Data objects such as text objects, graphics objects, image objects, and bar
code objects

* Resource objects such as font objects, which are referred to by data objects.

All objects exist as peers and function as equals. All object content
architectures (OCAs) are free to define their own formatting functions. For
example, the OCA for text data specifies the spacing between lines and the size
of the white space appearing between words.

The object content architectures in Common Communications Support are:

* Presentation Text Object Content Architecture (PTOCA) describes
presentation-text objects in a document.

* Image Object Content Architecture (IOCA) describes image objects in a
document.

» Graphics Object Content Architecture (GOCA) describes graphic objects in a
document.

* Font Object Content Architecture (FOCA) defines the structure and content of
digital fonts used by data objects in a document.

* Formatted Data Object Content Architecture (FDOCA) describes formatted
data, such as data extracted from a database or read from a file.

* Bar Code Object Content Architecture* (BCOCA) describes and generates
bar code symboils.

Additional information about object content architectures can be found in
Information Interchange Architecture: Concepts, GG24-3503. Technical details
about the object definitions in the list above can be found in AFP Data Stream
Reference, S544-3202.

8.1.1 Object Structure

All objects in MO:DCA are made up of two parts: an object descriptor and object
data. The content of individual fields varies, depending on the kind of object.

Objects are designed to be carried by, and become part of, a data stream. Data
streams are used to pass documents between application programs or between
an application program and a device. The data stream carrying the object
provides all external relationships for the object.

© Copyright IBM Corp. 1993 49

8.1.2 Presentation Text Object Content Architecture

After text has been processed (formatted), it is in presentation form—the text is
ready to be presented at a printer. This is the text part of AFPDS. The
Presentation Text Object Content Architecture (PTOCA) defines presentation-text
objects in a document. A presentation-text object describes the portion of a text
document that has been generated from one of many possible sources such as:

e OQOutput from formatting processes
¢ Direct generation by processes or application programs
* Transformation from text of different presentation formats.

The presentation-text object space defines the area into which the graphic
characters will fit when they are presented. This area has no relationship to the
physical media or printed page until the final document is actually created.

8.1.2.1 Minimum Functions Required for PTOCA

PTOCA functions are divided into a PT1 and a PT2 subset. The PT1 subset
includes all of the functions required by the most primitive receiver of
presentation-text objects. The PT1 subset is the minimum that must be
implemented for receivers of presentation-text objects in CCS.

The PT2 subset includes all of the PT1 subset, plus specialized functions such as
underscore, overstrike, superscript, and subscript. Detailed information on
PTOCA function sets is in Presentation Text Object Content Architecture
Reference, SC31-6803.

8.1.3 Image Object Content Architecture

Many business applications require the inclusion of image data in documents,
such as signatures, logos, media articles, and photographs. The Image Object
Content Architecture (IOCA) defines the characteristics of image data in a
device-independent format, thereby allowing image information to be
interchanged among different applications and devices.

Image characteristics that can be represented by IOCA are:

* |mage size

* Resolution

¢ Recording algorithm

e Compression algorithm

¢ Number of bits per pixel®

* |dentification of look-up table

8.1.3.1 Minimum Functions Required for IOCA

IOCA function set 10 (FS10) is required for interchanging images in presentation
format using the IPDS and MO:DCA data streams. FS10 represents bilevel
images which can be compressed using either:

* IBM Modified Modified READ (MMR) compression algorithm
e CCITT T.6 G4 Facsimile compression algorithm

Function set 11 (FS11), a superset of FS10, is required for interchanging images
in presentation format using the MO:DCA-P data stream. FS11 represents

3 A picture element (pixel or pel) is the smallest element of a displaceable or printable surface that can be independently
assigned color and intensity.

S0

Print and View Data Streams

bilevel, gray scale, and color images. The following compression algorithms are
also supported:

¢ |BM Modified Modified READ (MMR) compression algorithm

e CCITT T.6 G4 Facsimile compression algorithm

* |BM Adaptive Bilevel Image Compression (ABIC) binary Q-coder
compression algorithm

* |BM concatenated ABIC compression algorithm

* |SO/CCITT Joint Photographic Experts Group (JPEG) compression algorithms

Function set 20 (FS20) is required for interchanging images in the library format
of the MO:DCA data stream. FS20 can represent up to 24 bits-per-pixel color
images.

Detailed information on IOCA function sets is in Image Object Content
Architecture Reference, SC31-6805.

8.1.4 Graphics Object Content Architecture

The term computer graphics refers to the definition and representation of graphic
elements used to build pictures for presentation either on hard-copy devices
(such as printers and plotters) or on soft-copy devices {such as vector or raster
displays). The Graphics Object Content Architecture (GOCA) uses primitives and
attributes to define the structure of computer graphics; GOCA also defines
operations for manipulating these graphics.

8.1.4.1 Structure of Graphic Objects

Segments are the basic units from which a picture is constructed; they are
uniquely identified, self-contained collections of primitive drawing orders and
attributes. Primitives include things such as:

* Lines and relative lines

e Full arcs, partial arcs, and fillets (rounded corners)
* Character strings

* Areas

* Images

Typically, attributes describe characteristics of primitives; for example:

¢ Color

¢ Line attributes such as type (for example, solid) and width
* Character attributes such as precision, angle, character set
* Patterns

Every segment is either chained or nonchained. A collection of one or more
chained segments defines the picture to be drawn. A picture can be subdivided
into “subpictures.” Nonchained segments typically define “subpictures” that are
incorporated into the main picture by being called from another segment.

8.1.4.2 Minimum Functions Required for GOCA

The minimum function set required for GOCA interchange is the DR/2VO function
set used in either a presentation MO:DCA data stream or an IPDS data stream.
DR/2V0 orders are matched to the capabilities of some typical output-only
displays and some printers. The functions include curved lines, areas, and
images.

Chapter 8. IBM Object Content Architectures and Definitions 51

The DR/3V1 function set is required for interchanging graphics pictures in the
library format of the MO:DCA data stream. DR/3V1 includes additional functions
such as:

¢ General clipping paths

¢ Individual primitive attributes

e Extra curve-generating primitives

* Raster operations to support the requirements of sophisticated workstations

Detailed information on GOCA function sets is in Graphics Object Content
Architecture Reference, SC31-6804.

8.1.5 Font Object Content Architecture

52

Graphic characters are the visual representation of symbols used in text; they
are letters, numerals, punctuations, or any symbols that represent information.

A font is a set of graphic characters that have a characteristic design, or a font
designer’s conception of how associated graphic characters should appear. This
sentence shows examples of the italic font, bold font, and SMALL-CAP FONT.

Font Object Content Architecture (FOCA) defines the parameters required to
describe digital fonts used by text and graphic editors, document formatters, and
presentation devices. FOCA permits product applications, document references,
and presentation devices to access font information.

A method of storing fonts at the system level is described in Host Font Data
Stream Reference, S544-3289. Using this method, font resources can be
managed by a system for font referencing and data access.

Methods of referencing fonts at the data stream level are described in the Mixed
Object Document Content Architecture Reference, SC31-6802, and in Document
Content Architecture: Revisable-Form-Text Reference, GG23-0758. Using these
methods, a document data stream can identify the font resources needed for
formatting and presentation.

A method of accessing fonts at the system level is described in the SAA
Common System Programming Interface: Presentation Reference, GG26-4359.
Using this method, a system can determine which font resources it has available
and can obtain specific information from those resources.

A method for accessing fonts at the printer level is described in Intelligent
Printer Data Stream Reference, S544-3417. See 5.1.1, “Intelligent Printer Data
Stream” on page 29 for additional information on the IPDS architecture.

8.1.5.1 How Digitized Fonts Are Used

Font resources are made available for text processing by font production, font
storage, and font accessing. FOCA provides the common and consistent font
information required for text processing. It also supports font production by
defining the font attributes and their interdependencies; however, FOCA does not
define how that information is to be generated or modified.

FOCA supports font storage and font access by defining the set of font attributes
required by the SAA application environments, and by defining a general format
for that information. Application programs that implement FOCA must use the
defined font-parameter definitions; however, the application programs are free to
define their own internal format for that information.

Print and View Data Streams

FOCA defines a set of font-referencing parameters, which may be used to specify
and describe a font resource. Each implementing product may specify a set of
required font resources; the implementing product may also specify the
character content of those font resources. The content of font resources is not
defined or controlled by FOCA. For consistency when interchanging and
presenting documents, all receiving sites, processing application programs, and
presentation devices must have access to the same or equivalent font resources.

FOCA supports the presentation process by allowing device-specific techniques
of character-shape representation and presentation. FOCA also permits font
producers and product implementers to make use of more generic
representation techniques.

8.1.5.2 Minimum Functions Required for FOCA

Font Object Content Architecture Reference, S544-3285, lists the font parameters
(or attributes) defined in FOCA that must be supported for various levels of font
information interchange. An interchanged font need not contain all of the
information specified by one of the attribute lists, but the processing application
programs must be able to accept, build, or pass through all of the information
contained in the supported attribute list without information being lost. To
ensure that no information is lost during data interchange, the following attribute
lists are required:

¢ Font descriptive parameters

¢ Font character set parameters
* Font metric parameters

* Character metric parameters
* Character shape parameters
* Code-page parameters

8.1.6 Formatted Data Object Content Architecture

In interconnected networks, you may need to extract data from, or add data to, a
central file or database that can be in a different SAA system. Likewise, you
may need to interchange data extracted from a database with an application that
is on the same or a different system. Interchange can occur, for instance, when
exporting or importing files, or when passing parameters from one application
program to another, in the same node or different nodes of a network.

Typically, formatted data* comes from, or is intended for, databases® or files.
The Formatted Data Object Content Architecture (FD:OCA) is used to describe
data from databases and traditional application programs. FD:OCA can be
viewed as a language that makes it possible to express the present format and
meaning, as far as is relevant, of any given data item. Format and meaning
refers to those aspects of the data that are relevant for a program in a given
environment, namely what the data type and its representation are. FD:OCA
constructs can express such properties and attach them to the data.

4 The term formatted data refers to (1) traditional data-processing “data” that has a fixed and strict format and (2) any data that
has an unarchitected, but known, format and meaning, and needs a corresponding description.

5 In the context of FD:OCA, the term database is used to mean small or large data collections, with or without internal structure
and interdependencies; in other words, simple files are always included when the term database is used.

Chapter 8. IBM Object Content Architectures and Definitions 53

8.1.6.1 The Structure of Formatted Data Objects
A formatted data object has two components—a descriptor and a value.

e The descriptor describes the format and structure of the value part of the
formatted data object. It tells the data type and the representation used for
the individual parts, and how together they make up the value.

* The value contains the described data.

Except for the constructs defining where the value begins and ends, no other
architectural constructs are intermixed with the data. The data occurs as it has
been read from the database, or as it would be recorded in the database.

Depending on the interchange purpose, the formatted data objects are
embedded in architected constructs of another CCS architecture, such as the
Distributed Relational Database* Architecture (DRDA*). The embedding
architecture identifies and brackets the formatted data object and its
components, as appropriate within its syntax.

8.1.6.2 Minimum Functions Required for FD:OCA

The descriptive facilities of FD:OCA are divided into a base subset and a DRDA
support subset. The base subset (subset 0000) functions allow products to
perform a basic interchange of formatted data. The DRDA support subset
(subset 0100) includes the complete base subset, plus the meta data construct.
The meta data construct is used to encode additional application meaning of the
data it is associated with. Subset 0100 is required for all products that access
data from relational databases built on the Distributed Relational Database
Architecture.

Detailed information about FD:OCA is in Formatted Data Object Content
Architecture Reference, SC31-6806.

8.1.7 Bar Code Object Content Architecture

The Bar Code Object Content Architecture (BCOCA) is used to describe and
generate bar code symbols.

A bar code is an accurate, easy, and inexpensive method of data presentation
and data entry for Automatic Identification (AutolD) information systems. Bar
codes are the predominant AutolD technology used to collect data about any
person, place, or thing. Bar codes are used for item tracking, inventory control,
time and attendance recording check-in/check-out, order entry, document
tracking, monitoring work in progress, controlling access to secure areas,
shipping and receiving, warehousing, point-of sale operations, patient care, and
other applications.

A bar code is a predetermined pattern of bars and spaces that represent
numeric or alphanumeric information in a machine readable form. The way the
bars and spaces are arranged is called symbology. The Universal Product Code
(UPC), the European Article-Numbering (EAN) system, 3-of-9 Code, Interleaved
2-of-5, and Code 128 are some examples of symbologies.

BCOCA can exist in, or be invoked by, a number of environments. Each of these
controlling environments can be specialized for a particular application area.
For example, the controlling environment can be:

* The environment involved in electronically distributing documents in a
network (such as MO:DCA)

54 print and View Data Streams

* A presentation system communicating with hard copy presentation devices
(such as IPDS)

Bar code data objects stored in the BCOCA format are device-independent, and
can be presented on any device that supports BCOCA.

8.1.7.1 Minimum Functions Required for BCOCA

BCOCA provides a wide range of bar code function to cover many different
symbologies that are defined for a variety of uses. Not all of the defined BCOCA
function is supported by all BCOCA receivers.

A subset of the full capabilities of BCOCA, called BCD1, is defined to specify the
minimum support required of all BCOCA receivers. Each field within a BCOCA
data structure allows a range of possible values and also identifies the values
that every receiver supports. Most receivers support more than the minimum
ranges.

Detailed information about BCOCA can be found in Bar Code Object Content
Architecture Reference, S544-3766.

8.2 Font Overview

The information which follows is specific to AFP and IBM applications in general.
Some of these terms are generally used in the industry, but such as “code
page” and “code point” would not be generally understood.

A font refers to one size and one typeface in a particular type family. An
example of a type family might be Times New Roman**. Medium, Bold, or Italic
might be defined typefaces within that family. A font is strictly speaking a fully
qualified description of a typeface with a defined size — Times New Roman Italic
12 point.

Both typefaces and fonts are often copyright of the designer or the employer of
the designer, and the names equally so. For example, “Helvetica” is a copyright
name, and a font used in a program cannot be called Helvetica* unless it is
licensed from the copyright owner. Sometimes type faces become so popular
that they are widely copied, and the term “type family” becomes extended to
include all the different people’s expressions of the same basic design. There
are many designs of Garamond, for example, from many different type designers;
but they all share some of the common characteristics of the original Garamond
design.

The size (height) of a font is usually measured in points (1 point = 1/72 inch).
The size (width) of a font is called pitch and is measured in characters per inch.
The family and style will determine the artistic characteristics of the font.

An example of an IBM font might be Sonoran-Serif 16 point Roman Medium; a
Roman style of the Sonoran-Serif family, in a medium weight and 16 point size.

Each font is given an ID (Font Global ID (FGID)) and name.

Chapter 8. IBM Object Content Architectures and Definitions 95

3 OCR-B
11 Courier 10
19 OCR-A
244 Courier 5

A graphic character is a letter, a numeric digit, or a symbol. Each graphic
character is given a character ID and a description.

Character ID Description
A LAG20000 A capital
a LAG10000 a small
é LE110000 e acute small
E LE140000 E grave capital
1 NDG10060 one

Character Set Set of Characters.
Each character set has a name and ID. For example, character set ID
‘697’ is called "Country Extended Code Page’ and it has upper- and
lower-case letters, numeric characters, symbols and several
countries’ unique characters and currency symbols such as A, £, @,
fl, $ ¥, etc.

Code Point A code point is a one-byte binary value representing one of 256
potential characters. Each of the 256 combinations is normally
referred to by its bit configuration in hexadecimal, with two hex
characters per byte: X’00" to X’FF’.

The AS/400 uses the Extended Binary Coded Decimal Interchange
Code (EBCDIC) to represent characters. Printable characters in
EBCDIC are restricted to the values of X’40” through X'FF’ (192
values). The code points between X’00” and X'3F” are reserved for
printer instructions and commands.

Code Page A code page is a mapping table that assigns graphic character IDs
for a character set to specific code points.

There are several hundred different characters that could be created
for a given character set and only 192 printable character values or
code points. A code page is used to determine which characters are
to be assigned to the available code points.

Some common code pages are: ‘00500 for international #5, ‘00437’
for PC code page and so on.

A character set and code page combination is used to specify the
group of symbols available for printing and how they can be

referenced.

Character Set Code Page Country or Name
00043 00013 Netherlands
00697 00500 International
00697 00284 Latin America/Spain

A character set and code page combination is used on the AS/400 as
one of the system values QCHRID or as the printer file parameter
CHRID. These values can be changed by the user (with adequate
authority) with CL commands.

56 Print and View Data Streams

8.2.1 AFP Font Resources - AS/400

In Advanced Function Printing” terminology, a font consists of three parts:
* Font Character Set
e Code Page
¢ Coded Font
These three pieces are stored on the AS/400 as *FNTRSC (font resource) objects.

Font Character Set Font character Set is similar in concept to the character set
listed above, but a font character set defines font properties (size,
style, weight) in addition to the set of characters. The naming
convention uses a font character set ID instead of a FGID.

For example, font character set id COSOCR10 is the character set of
Courier Roman 10-PT font.

A font character set is an object on the AS/400 with FNTCHRSET
attributes and an object type *FNTRSC.

Code Page Code page function is the same as defined earlier.

A code page in AFP has an object attribute CDEPAG in object type
*FNTRSC.

Coded Font A coded font associates a code page and a font character set as a
pair. A single-byte coded font contains one code page and one
character set pair.

For example, the coded font ID X0GT10 is the association of the font
character set COSOAE10 (APL ROMAN 10-PT) and the code page
T1SOAE10 (APL). A coded font has an object attribute of CDEFNT in
object type *FNTRSC.

A double-byte coded font contains more than one code page and font
character set pair; each pair is called a coded font section. A
double-byte coded font requires a two-byte code in text for each
graphic character.

* The first byte to identify the section
* The second byte to identify the code point in that section.

Glyph A glyph is a graphic shape which is one of the representations of a
character or symbol. A character code defines a given character,
given a code page. That character has one or more glyphs which can
represent it. A typeface will have a representation of one of those

glyphs.

Chapter 8. 1BM Object Content Architectures and Definitions 57

58

Character Glyphs Type Bitmap Scaleable
code faces fonts fonts

ASCll ... 61
OR
EBCDIC . . C1

The advent of scalable fonts has confused the issue a little. By definition,
“scalable” means they don’t have a fixed size, so they don't fit the classical
definition, unlike bitmap fonts, which are representations of a typeface at a

specific size. Scalable fonts should really be called scalable typefaces, but the
usage is too well entrenched now to change.

Print and View Data Streams

Chapter 9. Defined Standard Object Content Architectures and
Definitions

9.1 Office Document Architecture

Below are definitions for architectures within office document architecture.

9.1.1 CCA

Character Content Architecture contains character data, positional controls and
attributes that represent formatted text.

Its purpose is to carry the text part of presentation documents. CCA is an ISO
architecture and is part of ODA. It compares to PTOCA within MO:DCA.

9.1.2 RGCA

Raster Graphics Content Architecture contains the raster image data and the
attributes that apply to the image.

It is intended to carry raster image information in presentation, revision, and
resource documents. RGCA is an ISO architecture and is part of ODA. It
compares to the IOCA part of MO:DCA.

9.1.3 GGCA

Geometric Graphics Content Architecture contains the drawing orders, positional
controls, and attributes that represent a vector graphic.

Its purpose is to carry vector graphics information in presentation, revision, and
resource documents. GOCA is an ISO architecture and is part of ODA. It
compares to the GOCA part of MO:DCA.

More information about ODA can be found in the Red Book: Information
Interchange Architecture: Concepts, GG24-3503.

9.2 Computer Graphics Metafile (CGM)
The CGM format is ANSI standard X3.122-1986.

Data Type: This standard defines a file format capable of storing vector graphic
data. It is largely based on the Graphics Kernel System (GKS), an early attempt
to define a graphical language callable from high level computer languages.

It is reasonably widely used by workstation based packages for the storage or
interchange of vector graphical files.

The standard defines simple graphics primitives which can be used to build up
vector graphic pictures:

* Lines and polylines

e Arcs, circles, and ellipses
e Text

* Rectangles and polygons

© Copyright IBM Corp. 1993 59

60

together with appropriate attributes, including area fill.

This standard does not define any notion of structure, such as graphics
segments defined in later standards such as PHIGS; each graphics primitive
stands alone. The most that the CGM standard does for grouping information is
to define “bundle” information for graphics attributes for different types of
primitive; so for a line, reference to a particular line attribute bundle defines the
line type, color, and thickness.

The text definition of which it is capable is limited, and many of the packages
that use it will code typographical text as vectors and polygons in CGM, to
ensure fidelity of representation. It could not be used to define a composite
document with typographic text in a revisable form.

Compression: This standard does not define any data compression.

Transform Availability: Many workstation packages import and export this file
format. GDDM on the host will also convert this file type to ADMGDF for use with
mainframe software (see 13.1.1, “Color Pictures” on page 103). Corel** Draw on
the workstation will both import and export this format. However, see the note
above concerning the text limitations of this file format.

The CGM standard was defined as the interchange format for business graphics
for the CALS initiative of the US Department of Defense, so most defense
suppliers will have software to handle the format.

Print and View Data Streams

Chapter 10. Industry Standard Object Content Architectures and
Definitions

This chapter describes architectures that can be considered to be industry
standards.

10.1 Hewlett-Packard Graphics Language

Sometimes also known as “Industry Standard Graphics Language” (ISGL), this is
a data format which was originally designed to carry instructions between a
program which created graphics, and a plotting device. IBMGL and IBM-GL
(IBM Graphics Language) is occasionally seen as a data type identifier; this is
functionally identical to HPGL.

HPGL is often thus termed the “plot file” format (though there are other plot file
formats).

The current level of HPGL defined by the Hewlett-Packard company is HPGL/2
which has extensions over the original language. The HPGL/2 language is
defined in detail in The HP PCL 5 Printer Language Technical Reference Manual,
Hewlett-Packard part no. 33459-90903. HPGL/2 commands can be included in
the printer data stream PCL 5 (q.v.).

Besides being an output form for plotters, the IBM 4019 and 4029 Laser Printers
also accept this type of data object when running in plotter mode. The resulting
images are similar or identical to those produced by many IBM and
Hewlett-Packard multipen graphic plotters.

Other piot file formats are not considered in this book, as it is only HPGL that
has any significance currently in the printing and publishing world.

Data Type: Vector graphic file type.

The file contains essentially simple graphics primitives and device commands.

Complexity: Though the full definition of the language includes simple text and
more complex graphics primitives, many programs restrict themselves to a very
simple subset of the language, often no more than “pen up,” “pen down,” and
“move” commands. The format has no structural information, and is not capable
of carrying typographic text except as actual graphics orders. Its principal use
today is for output of simple business graphics and computer aided design (CAD)
drawings; many business charting programs are capable of this format as
output, as business charts are often produced on color transparency through
plotters.

Transform Availability: Though originally primarily an output format, and still
heavily so used, because of the need to incorporate business graphics and CAD
output into printed documents and other publishing output, there are many
publishing products which will accept this as an input format. Corel Draw will
accept HPGL as input, and can be used to modify these graphics before storing
them forward for use in a more conventional publishing or printing format.
Below is a sample HPGL plot file

© Copyright IBM Corp. 1993 61

INg

PA;

SP1;
PU1512,4606;
PD4170,8670;
PD4745,3707;
PU3128,5469;
PD3162,5408;
PD3199,5347;
PD3237,5286;
PD3277,5226;
PD3318,5165;
PD3361,5104;
PD3405,5043;
PD3449,4982;
PD3494,4920;
PD3540,4859;
PD3586,4797;
PD3632,4735;
PD3678,4673;
PD3724,4610;
PD3770,4548;
PUG,0;SPO;

10.2 GIF

GIF is the Graphics Interchange Format defined by CompuServe** Incorporated.

GIF is a popular format for the exchange and interchange of raster data on PC
platforms.

Data Type: Raster file type, supporting bilevel, grayscale, and color bitmaps.
The grayscale or color is defined by reference to a global or local color table
(the GIF format can hold multiple images in a single file, and each may have
individual color tables, or a single table may be defined for the file).

Compression: The GIF file type is compressed using a LZW algorithm, which
gives good compression ratios. Note, however, that the LZW algorithm is now
claimed to fall under patents held by Unisys, so code handling this format shouid
be licensed to use the LZW method.

Complexity: The full specification has many subtypes, many of which are
disregarded by some software that claims to handle the format. Much software
will only deal with basic GIF, which means that users cannot be certain of full
functionality with display, print, or transform software in all cases. Test typical
cases before depending on software or files; however, some results will almost
always be obtained, though perhaps with inappropriate color or other artifacts.
When it is used properly, it can have excellent results.

Transform Availability: Transforms are readily available to and from most other
raster filetypes, and from some vector filetypes. Many of these transforms are
freeware or shareware. See, however, the notes under “Complexity,” and test
the transformation software before depending on any of them, particularly when
dealing with larger numbers of colors.

62 Print and View Data Streams

10.3 Tagged Image File Format (TIF)

10.3.1 Content

Tagged Image Format objects are generally denoted by the use of a file
extension of TIF, occasionally TIFF.

TIF is now a standard capable of defining complex high quality images, as well
as simple bilevel bitmaps; it is perhaps most familiar in the latter aspect, but as
an established standard, and with the increased demands being placed on
computer systems in terms of resolution and color values of images {both
numbers of expressible colors and device independence of color), it is the first
where it is going to become an even more important interchange format than
before.

The TIF standard defines two levels of compliance, baseline and extended. All
programs that create or use the TIF format should be capable of handling
anything in the baseline definition, but functions in the extended standard are
optional — complying applications need not create or use them. However,
applications receiving extended function they can’t handle should do so
gracefully, and where possible make best use of what they can understand.
Clearly, some programs will achieve this better than others.

We outline here what capabilities are in version 6.0 of the TIF specification,
published by ALDUS. Version 6.0 is dated July 1992; most applications will be
written to the previous specification, level 5.0, so we will indicate which facilities
are new in version 6.0. The authors of the specification state that if applications
written to the previous specification were properly coded, they will be able to
use files to the new baseline standard.

10.3.1.1 Types of Files
A baseline TIF file can hold the following types of images:

¢ Bilevel

* Grayscale

* Palette color
¢ RGB color

Extended TIF files can hold the following types of images:

¢ CMYK color (V 6.0)
e YCDbCr color (V 6.0)
e CIE L*ab* (V 6.0)

(Any image types you are unfamiliar with are described briefly in B.4, “Types of
Bitmap Images” on page 176.)

10.3.1.2 Compression type
A baseline TIF file can have the following compression types:

* No compression

* Packbytes encoding (a simple run-length encoding - see 7.2, “PCL (Printer
Control Language)” on page 45 for an explanation of this scheme)

e CCITT T.3 encoding (modified Huffman)

Note: We have come across some applications that cannot import any
compressed TIF files — just because an application says it can handle TIF files
doesn’t mean it meets the standard. As always, where this is critical, test it out.

Chapter 10. Industry Standard Object Content Architectures and Definitions 63

64

Extensions add the following new compression methods:

CCITT T4

CCITT T.6

¢ LZW compression

JPEG compression (V 6.0)

CCITT compressions are defined for bilevel images. LZW and JPEG
compression are aimed at grayscale and color renditions, though LZW will work
on bilevel. JPEG is a family of compression methods defined by the Joint
Photographic Experts Group, and contains both lossless and lossy compression
techniques. (All other compression methods mentioned are lossless.)

JPEG techniques are targeted at large photographic images requiring high
compression ratios, and even lossy JPEG compression should not give
significant degradation of the image.

It was originally thought that the LZW (Lempel-Ziv & Welch) algorithm was public
domain. It has now been claimed by UNISYS to be covered by a patent of theirs,
and UNISYS claim that code expressing it should be licensed by them.
Apparently there are also other companies holding patents that might affect code
using LZW algorithms.

The upshot of this is that the LZW technique may become less widely used than
is currently the case, and as it is an extension to the baseline standard, you
should not expect any particular program to handle LZW compression uniess it
specifically states so.

10.3.1.3 Strips and Tiles

Images tend to be large, so to help practical manipulation of the image, the
standard allows for partitioning of the image into manageable chunks (the
standard recommends a size of about 8KB as reasonable).

The baseline standard does this by partitioning the image into strips, while
version 6.0 now introduces the idea of tiles.

10.3.1.4 Colorimetry
Plain RGB color information is device-specific; a triplet does not define a precise
color.

For high quality work, this is not acceptable, and to transfer precise color
information for photographic and prepress work, the TIF extensions allow the
specification of colorimetric information, which allows mapping of the RGB triplet
information onto a defined international color standard (CIE 1931 XYZ). This is
largely new in version 6.0.

We can expect to see this aspect, and the device-independent CIELAB
colorimetric encoding, become more important at the higher quality, professional
end of the market over the next few years.

Print and View Data Streams

Chapter 11. Document Languages and Formatting Languages

This chapter deals with document and formatting languages. The definition and
description of a document and a formatting language are included. There are
also descriptions of several document and formatting languages.

11.1 What is a Document Language?

A document language is a format-, device-, and software-independent data
stream which is capable of defining a composite document. Document language
instances usually contain the text portion of the document directly, and refer to
external files containing the non-text elements, so they are not strictly equivalent
to composite document data streams, but they are functionally equivalent.

For example, to include a piece of artwork in a GML document, either the GML
Starter Set .im macro or the IBM BookMaster :artwork. tag is used, both of
which refer to the file name of the included graphic.

Normally, SGML behaves in a similar fashion, using entity definitions, but it is
possible to define an SGML Document Type Definition to include non-text
elements directly inside the document.

A document written in a document language contains information defining the
structural elements of the document. The position and boundaries of document
elements such as headings, paragraphs, lists, figures, tables, and so on, as well
as the elements they are composed of, are precisely defined. As document
languages are usually humanly readable, the user can see these definitions,
usually called tags.

Because they contain this information about the structure and meaning of the
elements of a document, document languages are usually considered to be a
level above data streams. A document language expression of a document
contains more information about the document than a revisable format
expression which just contains the text, graphics, and layout, font, and formatting
information.

Because a document language is format independent, format information must
be added, usually by a program called a “formatter.” The formatter program
adds format information dependent on the structural element and format
instructions contained in a style definition. For example, an element may be
defined as a chapter heading, and the style definition may instruct the formatter
to print chapter headings at the top of a new page, in a specific font at a defined
size, and leave so much whitespace afterwards.

The output from the formatter is usually a formatted data stream.

© Copyright IBM Corp. 1993 65

Editor

Program Style »
Definitions
I
v
Document stored Formatted
“»| in document ——|Formatter »| data —» | Printer
language form stream

—|Different T" Printer

Format L
Printer

Figure 10. Document Language Processing

The reverse process to formatting, creating document language from formatted
documents, is difficult; usually this can only be done by making assumptions
drawn from the format, which are not always correct. This reverse process
almost always involves human checking or editing.

11.2 What is a Formatting Language?

66

A formatting language is very similar to a document language, except that it
does not usually define structural information; the control tags define directly
how the output is to be formatted by the formatter program, and usually no style
definition is involved.

Formatting languages have largely been superseded by document languages
and integrated publishing or word processing programs.

While not considered in detail here, the file formats stored by workstation based
desk-top publishing programs and the more sophisticated word processing
programs can be considered to be proprietary document languages, formatting
languages, or data streams; which one they are depends on how the program
works.

Some store documents in a form similar to a document language; an example is
Ventura Publisher**, which stores its documents using a tag language (though it
does store some formatting instructions as well).

Some store text and formatting instructions, and can be considered to be
proprietary formatting languages, because they must be run through the
formatting portion of the package before they can be sent to any output device in
a usable form. Very few store in a printable data stream.

Print and View Data Streams

11.3 Examples Considered Here
The document languages considered in this document are:

¢ GML Starter Set (IBM DCF Starter Set GML)

IBM BookMaster

SGML (Standard Generalized Markup Language)
LATEX

XICS (Xerox Integrated Composition System)

The IBM document languages |BM DCF Starter Set GML and IBM BookMaster
grew out of a formatting language called SCRIPT, and LATgX is based on the
formatting language TgX.

Formatting languages not associated with specific editing programs are usually
now more of historical interest than actual use, but three are briefly considered
in this book,

¢ SCRIPT
L4 TEX
¢ nroff and troff

SCRIPT because of the large amount of documentation still existing in it, and TgX
because it is still widely used in academic areas, where it has still not been
supplanted by LATgX. (LATgX is to TgX approximately what IBM BookMaster is
to SCRIPT.)

nroff and troff are formatters under UNIX**, using a more or less common
formatting language; they are briefly introduced for completeness and historical
interest.

11.4 The Advantages of Using Document Languages

An unfortunate, almost “religious” dispute seems to have arisen between
proponents of document languages and the users of WYSIWYG desk-top
publishing programs. The dispute is actually as unnecessary as it is mistaken.

Most desk-top systems save their output in some proprietary formatting
language, and the users interact in what has come to be called a “What You See
Is What You Get” (WYSIWYG) way, specifying the format and layout of their
documentation as they create it.

Traditionally, document language users have created their text and document
markup using a system editor, which does not show anything like the finished
result; the formatted output could only be seen after the source text and markup
were passed through a formatting program.

The proponents of WYSIWYG programs, which tended to be introduced later than
document languages, rightly said that the WYSIWYG approach was easier to
understand and use, particularly for simple, short documents; definitely for
documents where close control of layout is essential, and so on; therefore the
WYSIWYG, format-based approach is superior, and should supersede the use of
these old-fashioned document languages.

So why are they still used? The answer is in two parts:

¢ One size doesn‘t fit all, and

Chapter 11. Document Languages and Formatting Languages 67

¢ Actually, WYSIWYG (or something like it) can be used to create document

language output.

11.4.1 Why Some Documents Need One Way, and Others Another

68

There is a very great variety of different types of documents. It is a gross
oversimplification, but they can be conceptualized lying on a spectrum of
importance of several factors:

e The first is the importance of the appearance of the document compared with

the structure of the contents of the document. Both are always important,
but the relative importance varies.

An advertising brochure must be designed very carefully to catch and hold
the eye; format and appearance is critical, and must be closely controlled. A
format-based approach is almost certainly the best way to produce this.

That may not be the case with a technical manual; appearance is important,
but to the level that it can be controlled by simple rules, and use of
appropriate fonts, both of which can be encapsulated in a style definition to a
formatter. Here it is more important that information is in the right place —
we might be creating an online hypertext version from the same source text
as a printed copy; structure is critical, so a document language is more
appropriate.

The number of updates, and the need to keep multiple versions or not, can
be an important factor. Simple documents with many versions can be easily
handled by format-based systems, but when the documents get more
complex, then document languages are probably better; they tend to have
specific facilities for version control.

If the document has to be produced in several versions, perhaps on different
output media, or different sizes of paper, this may be easier to do with a
document language system. This is particularly true where the document is
documenting something that has multiple versions simultaneously — for
example, where it describes a product that is produced in more than one
type, but the bulk of the documentation refers to all types. A document
language allows all versions to be described by a single document, with
common text held once, and all variants included by optional text defined as
such in the appropriate place.

Where style may be freely defined by the author, format-based systems
probably allow for more freedom over the styles that can be created. Where
documents must be consistent with a house style, this is easier to maintain
with a document language. Also, if the style has to be changed, with a
document language, only the style definition has to be changed; all
documents then conform to the new standard - there is no formatting
information inside them which has to be changed.

The life of a document may affect which approach to use. If a document is to
be produced once, and never printed again, then it is most appropriate to
use whatever is the simplest and easiest way of producing it; that method
may, depending on other factors, be a format-based method.

If the document is to have a long life {(measured in years), and might have to
be printed again (even though it won’t be changed), the device independence
and software version independence become critical. Document languages
have these virtues.

Print and View Data Streams

Advertising Technical
Brochure Novel Manual
Parish
Newsletter Dictionary

Appearance Structure
is is
all-important all-important
Documents tend Documents tend
to be produced to be updated
once for all often
Documents are Documents are
produced in produced in
only one version many versions
Document style can Document style must
be freely defined be controlled to
by the author house style
Documents have Documents are
a relatively kept for a
short life very long time
Document is most Document is most
effectively effectively
produced using a produced using a
format-based document
system language system

Figure 11. The Document Spectrum

So, it’s not always a simple decision, but usually it is reasonably clear that one
method is probably a bit better than the other for any particular document. With
many, it won’t matter too much, which is probably all to the good, as many users
will only have one system.

However, a user who is forcing things using an inappropriate system might well
find life easier by having both types available.

Chapter 11. Document Languages and Formatting Languages 69

11.4.2 WYSIWYG Is Always Format-based, Isn’t It?

70

No.

Well, sort of. Since documents produced using a document language only have
a specific format when the final form document is actually produced, then
WYSIWYG isn’t really the term. It should be more of “WYSIWYMG” (“What You
See Is What You Might Get.”)

However, it is possible to use an editor which shows a possible formatted layout
of the document, while what it stores is a document language form, with no
format information in there. The editor is like the formatter in this case; it holds
a style definition which allows it to interpret the structural information in the
document language.

£ oA

The efiect for ihe user is effectively the same as WYSIWYG, whiie retaining the
operational flexibility of a structure based document language.

IBM sells two such editors which run on the PC, both of which can be used to
produce both IBM DCF Starter Set GML and IBM BookMaster:

* IBM MARKUP
* IBM TextWrite

IBM MARKUP is a DOS-based editor, which has a simple, character-based,
“structural WYSIWYG” approach.

IBM TextWrite is OS/2 based, and makes much more use of “fancy fonts,” color,
and other formatting. IBM TextWrite can also be used to produce SGML.

There are also several non-IBM editors which can be customized to produced
IBM DCF Starter Set GML or IBM BookMaster.

Nor should it be forgotten that some well desighed desk-top publishing programs
and word processors can be used to create GML as well as formatted print. It is
for example relatively easy to define WordPerfect** macros that will save text as
IBM BookMaster. Ventura Publisher** is a desk-top publishing program which
saves tagged files; Ami Pro is a word processing program with similar behavior;
to convert these to any GML requires an almost trivial filter program.

11.4.21 Converting Existing Text

There are also several programs available which will take any formatted ASCII
file, and use the formatting context to analyze the structure of the text, and
“automatically” tag these files. These programs therefore allow, within limits,
any text file to be readily converted to GML; either documents which have been
created already, or text created on other systems, or as a by-product of some
other process.

One such program is TextTagger. This is a general purpose conversion program
which can be used on a wide range of source text, from printer listings to office
documents. In its TextTagger/ESA incarnation, it is capable of being customized
to a degree that allows of very successful conversion of a wide range of tags on
a wide range of source formats.

Its generality can also mean it is not suited for all situations; the customization
requires code level skill, so it is probably best suited for organizations that will
have to do large quantities of conversions, probably with more than a few input

Print and View Data Streams

formats, and that have skilled people available to customize it. In these
circumstances, it probably cannot be bettered.

However, where there is only the need for a small quantity of conversion, from
only one or two formats, it may be more appropriate to write or have written
specific conversion utilities; particularly where the tagging needs are simple.

Also, TextTagger/ESA is not announced in all countries.

Because of these points, we include in A.3, “Conversion from BookManager
READ Copy Form to GML” on page 163 a typical example of a conversion
program which is capable of adding simple tags to a file, based on the original
text format.

11.5 GML Starter Set and IBM BookMaster

IBM BookMaster is not only a product sold to IBM customers, but also the tool
used to create the majority of IBM product documentation - the output of one of
the world’s three largest publishers. This document was created with IBM
BookMaster.

Both GML Starter Set and IBM BookMaster evolved originally from SCRIPT, and
both use Document Composition Facility as their formatter. It is not surprising
that they are fairly similar.

GML Starter Set is, as the name suggests, less rich in its element definitions
than IBM BookMaster. IBM BookMaster allows the definition of some three
hundred different document elements and components, GML Starter Set perhaps
forty or so. The major difference is, however, that IBM BookMaster allows more
control over document style without changing tlie macros used by the formatter.

Both allow from simple to very sophisticated technical documentation to be
created. To allow of simple migration, the vast majority of GML Starter Set
documents can be processed using IBM BookMaster without change.

+h2.0bjectives

:p.The primary objective of this document is

to clarify the interrelationships between different print and view
data streams to help make it easier to understand which products will
work together properly.

:p.This can be shown by:

sul,

:1i.0utlining what type of data is contained in each data stream
:1i.0utlining how they relate to each other and the I/0 devices

that will be used to display or print the data.

:1i.Indicating which of the most commonly used programs produce and use
which types of data streams.

ceul.

Figure 12. Example of GML Starter Set and IBM BookMaster. This is the markup that
created some of the text at the beginning of this book. The :h1. tag defines a header, :p.s
define paragraphs, and the :ul. to :eul. defines a list of which the :li.s are individual items
(the “ul” stands for “unordered list,” as opposed to a numbered one).

Chapter 11. Document Languages and Formatting Languages 71

11.6 SGML

Generalized Markup Languages, after their initial development by IBM, became
increasingly popular for the production of complex, high-quality documentation.

It was also becoming obvious that there should be a standard for interchange of
technical documentation between differing types of computer systems, each of
which was using perhaps different software, and it was realized that Generalized
Markup Languages offered an efficient means of attaining that end.

So the International Standards Organization defined SGML, a “meta-standard”
which defines how Generalized Markup Languages should be written. A
Generalized Markup Language which can be defined by an SGML Document
Type Definition is termed a “SGML conforming GML,” and can be understood
and processed by any “conforming SGML system.”

SGML was adopted by the United States Department of Defense for its CALS
(Computer Aided Logistical Support) initiative, and the various CALS DTDs are
now widely used in the defense industry.

The IBM SGML Translator is a program that can transform SGML to GML Starter
Set given the SGML Document Type Definition and translate tables. It is
delivered with customization for the CALS DTD and an SGML Starter set.

The SGML standard allows the definition of markup languages that define not
only the structural elements of documents, but also the ways in which these
elements can be combined — in what context specific elements can appear.

It also defines a Reference Concrete Syntax, which is a syntax for a markup
language in which SGML languages can be written, though deviations from this
are allowed in the standard if correctly defined in the DTD and SGML
declaration. This flexibility allows existing markup languages such as GML
Starter Set and IBM BookMaster to conform to the SGML standard providing an
appropriate SGML DTD is declared.

Such SGML DTDs exist, which means that GML Starter Set and IBM BookMaster
can be processed on any computer which has programmed for it a conforming
SGML formatter.

So, given GML Starter Set, the IBM SGML Translator, optionally IBM
BookMaster, and appropriate SGML DTDs, an IBM mainframe system can both
produce printed and online documentation from SGML source text from any
origin (given SGML DTDs and translate tables), and also provide any SGML
conforming system with input that it can format to whatever output devices it
supports.

72 Print and View Data Streams

Output

Devices
Other Output
Manufacturer's Data Stream
Computer
System SGML
Conforming
SGML Formatter
Editor
SGML 1BM
Translator |System
AFPDS DCF ¢y *+1— 1y
GML or
PostScript $ BookMaster
BookManager |Source —»WYSIWYG Editors
BUILD 1]

Hypertext
Softcopy <—————————J7

——Tagging DTP program

‘——Conversion Programs

Plain Text Program output

Figure 13. Intersystem Documentation Exchange with SGML

11.7 TeX and LATeX

TeX and LATgX (pronounced “tekh” and “latekh”) are products for producing
good quality typographic output that originated in the academic and UNIX worlds.
They are still widely used in those arenas.

TeX is essentially a formatting language, while LATgX is a macro language

based on it, which is more structural and in line with other document languages,
though it does at times betray its formatting origins.

Chapter 11. Document Languages and Formatting Languages 73

The output from a TgX formatter is in a device independent form called “DVI.”
This is printed to a particular device with a specific output program for that
device, with the name of the output program normally beginning dvi2.

These output programs need input bitmap font files at resolutions required for
the output device as well as the device independent data stream. This means
that to print at any particular point size, the user must have a font bitmap at that
size available, or a program to generate such a bitmap.

An exception to the above process is dvi2ps, which, if available, transforms the
output to PostScript, which is, of course, resolution independent.

There are other programs associated with TgX, of which the main one is
METAFONT, used for generating typographic fonts for use with TgX and LATgX
output. There are others, for example to create graphics.

As with much of the academic and UNIX world, there is a strong freeware flavor
associated with TgX. Versions of TEX (which from now on will be taken to
include LATgX) are freely available for both UNIX and PC systems. Commercial
offerings also exist on both these platforms, and there is a PRPQ for TgX on the
RS/6000.

Further information, source, and executable code, are available from:

TeX Users Group
PO Box 9506
Providence, Rhode Island 02940 USA

11.8 XICS

XICS (Xerox Integrated Composition System) is a mixture of document language
and formatting language, but is really more formatting oriented than otherwise.

Source text Composition Xerox
with — F——| LPS
copymarks Program Output

Figure 14. Formatting XICS Source
(Xerox LPS stands for “Xerox Laser Printer System.”)

It is processed on Xerox** machines in much the same way as SCRIPT is in an
IBM environment. Like SCRIPT, it is a text composition language, and graphic
elements are merged in via a macro command.

XICS has a full set of functions for text composition, with boxes and rules, and is
capable of generating complex, high-quality typographic output.

General automatic translation of a large number of XICS copymarks to SCRIPT
commands is possible, though there is not a strict one for one correspondence.

74 Print and View Data Streams

Some manual intervention by a skilled text programmer will almost certainly be
needed.

Automatic translation of XICS to SCRIPT or a combination of SCRIPT and GML is
possible where a specific set of functions and macros have been employed in
XICS; in this case a transform written for this specific subset by a competent text
programmer would be capable of translating a larger proportion of the input.
However, manual checking and some intervention is again almost certainly
essential.

If a conversion to TgX were required, it is likely that TEX macros could be written
to simulate the effect of a set of XICS copymarks and macros used by particular
applications. This would not be trivial, however, and would require a competent
TeX programmer.

Translation to pure GML Starter Set, IBM BookMaster, or SGML would be
problematic, and should be considered on a case-by-case basis. It would
depend very much on what types of copymark and macro were used and how
they were used. It is unlikely that precise similarity of output format could be
achieved, though functional equivalence should be possible reasonably readily.

For a more detailed introduction to the XICS language, see Page Printer
Migration Programming Guide, S544-3228.

11.9 nroff and troff
nroff and troff are formatting programs which run on most UNIX systems and IBM
AIX*, using essentially the same formatting language.

nroff is used to format text to printers, and troff is used to format to specific
phototypesetters. The differences between the two as far as input is concerned
are minor ones with regard to machine space units; otherwise the formatting
languages are essentially identical.

Both nroff and troff can also be used in conjunction with several preprocessing
macro programs, which are used to simplify the use of the formatting language
for more complex tasks, like the production of tables or mathematical formulas.

The actual formatting language is very low level, and very similar in nature to
the SCRIPT language of DCF.

Some sample formatting controls are:

Control Meaning

.br Break output line

.cen Center the next n lines

.in +/-n Adjust indentation

Isn Set line spacing

.Sp Space vertical distance

trab Translate character a to character b
ulbn Underline next n lines

Chapter 11. Document Languages and Formatting Languages 75

Preprocessor macro expansion programs are available to make complex tasks
simpler in the nroff/troff environment, such as:

Memorandum macros (general document formatting)
Viewgraph macros
Table macros

Mathematics equation macros

There are so far as we are aware no transforms currently available to convert
nroff/troff input to any other format; if this were required, a change to SCRIPT
controls should be relatively simple to define.

76 Print and View Data Streams

Chapter 12. Print and View within the Different Environments

This section contains an overview of the different platforms where Advanced

Function Printing is done, and a description of how PSF handles different object
content architectures to achieve optimized performance and minimize the work
load on the processor during printing.

AFP printing can be done with one of the following printer drivers:

e MVS PSF
* VM PSF
* VSE PSF

* AS/400 Print Services

* PSF/2

* IBMAFP AFPDS Drivers for 0OS/2 and DOS/Windows

* RPM V.20
* RPM V.3.0

PSF optimizes print performance with these content architectures:

e |OCA
* GOCA

* FOCA for 4028

exchange
MVS < > W
“ T [
ex- ex-
change Print View change
4
| tt ¢ J
0S/400 0S/2
T > AIX <
exchange exchange

Figure 15. SAA Model for Print and View. An enterprise-wide solution for printing and
viewing demands a solution to work on all platforms available under SAA. Users want to
exchange data to print and view between platforms, and they expect no additional
conversion activities. Working within the rules of SAA provides this solution and it is
extendable to other platforms as they become available under SAA.

© Copyright IBM Corp. 1993

144

12.1 Basic PSF Functions

Print Services Facility is the printer driver for AFP printers.

include:

IBM 3800
IBM 3835
IBM 3828
IBM 3827
IBM 3825
IBM 3820
IBM 3812
IBM 3816
1BM 4028
IBM 4224
IBM 4234
IBM 3800-3

The functions PSF provides, amongst others, including:

Interfacing to the spool

Combining and merging

— Print data

— Fonts

— Images

— Overlays

Two-way dialog between printer and the driver
Error recovery

Different attachments for the printers

These printers

PSF includes all the necessary resources to switch from a line printer to an AFP
printer without the need for any program change. The printed layout is the same
as on a line printer but with the improved quality possible with an AFP printer.

This is accomplished by providing a FORMDEF, which contains all the
information fcr a physical page description, and a PAGEDEF, which contains the
information on how and where to position data from an application program onto
the page.

The base package also includes compatibility font objects.

PSF provides the means to move formatting out of a program.

12.2 How PSF handles Object Content Architectures

When a print job is submitted to PSF it first establishes a dialog with the printer
that the user has directed the output to.

PSF must have answers from the target printer to questions like:

¢ Who are you?

* What are your capabilities?

* How do you expect IPDS?

* What resources are available in the printer?

A printer gives answers to PSF to those questions and PSF uses them to:

78 Print and View Data Streams

* Optimize the printing process

* Make sure that the printed page has the same appearance on any AFP
printer, wherever it is physically located.

* Decide how to print when the printer can’t handie a function activated by a
definition.

For example, if duplex printing is requested on a fanfold printer, PSF
instructs the printer to print the back side page on the next sheet. The user
is guaranteed that the printed page has exactly the same layout as it would if
duplex were possible.

* Reduce workload on the processor, if the printer is able to do some work by
itself.

* Where possible during printing, and where the printer is capable, to
download resources only once and keep them ready for printing inside the
printer.

* Only download resources when necessary. If they are already available or
in the printer PSF will not download them.

For example, the IBM 4028 printer has over 30 fonts at a resolution of 300
pels available in the printer. If these fonts can be used, PSF just sends the
control information on which font to use.

* The printer tells PSF that it has the features installed to decompress IOCA in
the printer or to accept GOCA, PSF will download IOCA in a compressed
form, or will download data in GOCA format.

* Handle error recovery. PSF knows at every moment where physically a form
is on the paper path. If there is a paper jam, PSF works together with the
printer and the controlling subsystem (JES, for example) to set up the
printing process again, starting with the page that was the first one not to be
placed in the output bin.

The error recovery is very powerful. No operator intervention is needed to
restart a job on the right page, or to even switch printing to another printer
which is also driven by the same instance of PSF, and to continue printing
starting at a checkpoint (CKPT).

12.3 Advanced Function Printing (AFP) on Mainframes (MVS, VM, VSE)

The basic concept of Advanced Function Printing on a mainframe is the same in
the different operating systems.

1. PSF as printer driver accepts as input:

1403DS
AFPDS
1403DS and AFPDS mixed

2. PSF is provided via job control with the necessary information: what data,
with what resources, and where on a page to print.

FORMDEF (physical page description)

PAGEDEF (logical page description)

Overlays, referenced in FORMDEF or documents

Page segments, referenced in overlays or documents

Fonts, referenced in PAGEDEFs, in overlays, or in documents

Chapter 12. Print and View within the Different Environments 79

80

3. PSF reads the input data from the spool and converts it into the IPDS data
stream.

4. IPDS is used for communication between PSF and the printer and for
transporting all data and resources to the printer.

5. The printer is able to interpret IPDS:

Where PSF works:
e Within MVS, PSF is a functional subsystem under JES.

e Within VM as virtual machines:

SFCM (Spool File Control Manager)

There is one of these virtual machines in a system. It checks the input,
data, and resources and passes them to the appropriate printer driver
according to the printer choice specified by the user.

PDMxx (Printer Driver Machine)

There is one of these virtual machines for every AFP printer on the
system. It receives its input from the SFCM1 machine and takes care of
the actual printing. An “xx” in the name means a number internally

assigned to a printer an defined by the system programmer.

* Within VSE, PSF runs in a partition

For printing on printers that are attached via communication lines VTAM* is
required.

Print and View Data Streams

12.3.1 Mainframe Model

AFPDS File AFPDS LINE Data LINE Data
from other File File from other
System System
»| Qutput <
Queue
Mainframe 3820
3825
Overlay Channel 3827
Library — —> 3828
3835
3900
FORMDEF
Library ——mm»
PSF
4028
Coax 3812
Font —> 3816
Library — 4230
under 4224
4234
Segment
Library p——» MVS SDLC
—> 3820
VM
PAGEDEF VSE
Library [———» SNA PC: (RPM)
+«——»| PS/2:
Token (RPM)
Ring (PSF/2
AS/400
Two-Way
Dialog

Figure 16. Mainframe Model for AFP Printing

Chapter 12. Print and View within the Different Environments 81

12.4 IBM Print Services Facility Version 2

Version 2 adds to the functions so far described.

The IBM LaserPrinter 4028 Model NS1 is supported and can print using
downloaded 300 pel resolution host fonts from System/370* or by accessing
resident fonts in the printer. Font processing is aided by the use of a new batch
utility and font metrics provided with PSF. The font metrics assist in formatting
documents when using resident fonts. The batch utility is used to convert
existing 240 pel font libraries to 300 pel. This conversion aids users in printing
on the 4028 using PSF.

Full PSF support is provided for the IBM 3300 Advanced Function Printer,
equivalent to the IBM 3835.

PSF has been functionally enhanced to enable or facilitate new business
application solutions:

e Support for printer-based vector graphics, image decompression, image
rotation, image clipping, and image scaling to allow reduction/enlargement.
Printer-based bar codes are made available with optional human readable
characters. Transformation capability from IM1 image to IOCA and
uncompressed IOCA to IM1 provides additional flexibility and interchange
potential.

¢ Ability to position electronic overlays dynamically on each page of output. In
previous releases, overlays were limited to the same fixed origin point on
every page.

¢ Enhanced duplex printing support. Users can now specify different horizontal
and vertical offset values for the front and back sides of pages. This
facilitates printing on punched paper, for example.

¢ |t is now possible to specify printing of an overlay on the front or back side of
a sheet with no variable data. In previous releases, an application change
was required to insert a blank record for each side with no variable data.

* Using these new functions in the AFP resources is supported in a new
release of the Page Printer Formatting Aid program product.

¢ The Core Interchange fonts include typographic and uniformly spaced fonts
which provide a rich selection of point sizes, typefaces, and national
language character sets for a variety of print applications.

e Support for color on the 4224 and a quality selection function on the 4224 and
4234,

e Envelope selection for the IBM 4028.

= All PSF Version 2 print driver functions are available in the base package.
No additional features need to be installed.

12.5 Font Pruning

82

Performance considerations
The number of characters in the Core Interchange and Proprinter
Emulation character sets is greater than the number of characters in
current IBM-supplied Compatibility Font character sets. Therefore,
use of font pruning may be required for complex print applications
using many fonts.

The font pruning capability provided with Version 2 of PSF/VM and
PSF/MVS downloads only the characters required for the requested

Print and View Data Streams

code page. This reduces the amount of data sent to a printer when
loading fonts.

In cases where the additional CPU time required to analyze the fonts
outweighs the print savings, font pruning can be turned off. In either
case, overall printer resource management is improved and greater
efficiency realized.

12.6 Operating System/400 Advanced Function Printing

08/400 includes support for AFP printers as part of the basic operating system.
The following sections describe OS/400 AFP implementation and AFP functions
available to the user in an 0S/400 environment.

12.6.1 Support for Medium to High Speed Page Printers

The 0S/400* licensed program now includes PSF-like support for IBM 3812-002,
3816-01S, 3820, 3825, 3827 and 3835 Page Printers attached to an AS/400 system.

08/400 software support for the IBM 3820, 3825, 3827 and 3835 Page Printers
uses the same interfaces currently used for the IBM 3812 and 3816 Page
Printers, including selection of fonts, page rotation, computer output reduction,
drawer and code page.

An AS/400 system can now be used as a remote print server for System/370
generated Advanced Function Printing Data Stream (AFPDS). It is the customer’s
responsibility to transfer AFPDS from a System/370 to an AS/400 system with file
transfer facilities.

The CL command (PRTAFPDTA) is provided to move this file onto an 0S/400
output queue. System/370 generated overlays, page segments, and form
definitions can be downloaded from a System/370 and stored on an AS/400
system for later use.

The AS/400 licensed program, IBM AS/400 Advanced Function Printing Fonts
(5728-FNT), offers System/370 equivalent families of fonts for printing AFPDS on
an AS/400 system.

08/400 commands DSPSPLF and CPYSPLF are not supported for AFPDS. On an
AS/400 system, AFPDS can be printed only on the IBM 4028, 3812-002, 3816-01S,
3820, 3825, 3827 and 3835 Page Printers.

Printing of System/370 generated 1403 line data on AS/400 attached printers is
supported with RJE. Use of System/370 page and form definitions is not
supported with 1403 line data on the AS/400 system.

Printing of System/370 generated AFPDS graphics, image and bar codes is
supported on AS/400 attached IBM 4028, 3812-002, 3816-01S, 3820, 3825, 3827 and
3835 Page Printers. Printing of AS/400 generated graphics, image and bar codes
is supported on AS/400 attached IBM 4028, 3812-002 and 3816-01S Page Printers,
and is not supported on AS/400 attached IBM 3820, 3825, 3827 and 3835 Page
Printers. If required, solutions from AFP partners are available.

The IBM 3820, 3825, 3827, and 3835 Page Printers will attach to the AS/400
System Units through the IBM Token-Ring Network with the Remote
PrintManager” Version 2.0.3 support. The IBM 3820 Page Printer will also attach

Chapter 12. Print and View within the Different Environments 83

to the AS/400 through an SDLC communications line. The IBM 3820, 3825, 3827,
and 3835 Page Printers attach to all models of the AS/400.

12.6.2 How to Start
For a user to work on AS/400 with AFP, it is necessary to establish the correct
environment:

1. Check for a correct Library List
Library QAFP and available font libraries are required.

2. The command: GO AFPU calls the menu, which allows you to start working
with the AFP utilities.

84 Print and View Data Streams

12.7 AS/400 AFP Model

AFPDS AFPDSLINE LINE Data| 1 Native AS/400
File File File Application
<+— Printer
File
»| OQutput —
Queue
Overlay AS/400
Library ——» 4028
Twinax 3812
—> 3816
4230
FORMDEF 4224
Library p—mm» 4234
0S/400 SDLC
Font —> 3820
Library [f—— Print
Services
Token 3820
Segment —> 3825
Library p——— Ring 3835
3827
PAGEDEF Two-Way
Library P——> Dialog

Figure

17. AS/400 Mode/ for AFP Printing

Chapter 12. Print and View within the Different Environments

85

12.8 Print Output in AS/400 Systems

Four different types of output in an AS/400 System can be directed to an AFP
printer. Each output type uses a different interface, to reach the printer
Although a description of data streams can be found elsewhere in this book,
here is a description from the viewpoint of an AS/400 user.

SNA Character String (SCS) data stream The SCS print data stream is based on

AFPDS

IPDS

a set of single- and multiple-control codes inserted with the print data.
08/400 creates the SCS data stream based on the request of the
application program and places the SCS print file on the output
queue.

If this output is destined to be printed on an SCS printer, the SCS
print file is sent to an SCS printer. However, if the SCS print file is to
be printed on an AFP printer, 0S/400 converts the SCS data stream to
Intelligent Printer Data Stream (IPDS).

This conversion lets existing AS/400 applications be printed on AFP
printers without change.

The new support in Version 2 Release 2 of DEVTYPE(*AFPDS)
generates native AFPDS, eliminating the SCS data stream conversion.

The AFPDS data stream provides an application interface for AFP
applications. This fully paginated data stream is device independent
and enables the construction of pages composed of text, image, and
graphics objects.

The IPDS data stream is generated by the 0S/400 Print Services and
is similar to the AFPDS data stream; however, the IPDS data stream
contains a dialog component to communicate with the printer in a two
way conversation.

Compared to the AFPDS data stream, the IPDS data stream is bound
to a specific printer device, which means it is generated by the printer
driver (OS/400) and must be bound to the device that will print it.

Line data output The line data stream dates back to the 1403 printer and is

commonly used for printing on line printers. The data stream is
composed of a single-byte character in the first byte of the print
record followed by the data to be printed.

The control characters instruct the printer to do basic functions, such
as skipping to a specific line on the page or skipping to a new page.

AFPDSLINE data stream This data stream is a hybrid of line data and AFPDS

Print and View Data Streams

data mixed into the same data stream. This data stream can be
interpreted by PSF.

This type of data is often created when an existing LINE data
application is enhanced by inserting an occasional AFPDS structured
field record in the line data output to perform function such as
printing an overlay. The printer driver for AFP Printers accepting
IPDS data streams is part of the operating system within AS/400.

12.9 Advanced Function Printing Utilities/400

The IBM Advanced Function Printing Utilities/400 provides interactive,
menu-driven facilities that allow Application System/400* users to design, create,
and manage advanced function printing (AFP) resources such as overlays
(electronic forms and labels) and page segments (logos and images) natively on
the AS/400 system for the users of intelligent printer data stream (IPDS) printers.

The AFP Utilities creates AFP resources that conform to the Advanced Function
Printing Data Stream (AFPDS) on the AS/400 system. It also provides the facility
to print users’ data from a database file in various formats with various fonts and
bar codes on the IPDS printer without developing any application programs. As
an example, it allows the customer to print bar code labels from data stored in
the database file.

With this program, a non-programmer user can design, create, update, and
manage a variety of forms and labels, and print users” data using those forms
and labels.

The AFP Utilities provides the support needed to take full advantage of
All-Points-Addressable (APA) IPDS printer capability for AS/400 users. Its
functions is equivalent to the System/370 Advanced Function Printing (AFP).

Through the near WYSIWYG (What You See Is What You Get) editor, the user can
interactively design, create, and verify AFP resources such as overlays.

With the AFP Utilities and a PC image program such as:

¢ Image Data Utility (PC/IDU) (5785-EDW)

with IBM Image Support Facility 2 (5669-197)
* IBM ImagEdit V2.0 (75X3255)
* 0S8/2 Image Support (49F4608)

users can easily design logos and images on the PC, and store them in the
folder as PC documents through the IBM PC Support/400 shared folder function.
Then users can convert the image to a page segment and include it in the
overlay. Users can also scan an existing preprinted form on the PC, print the
scanned image with the grid, and then by referring to the printout, use rs can
easily design and create the overlay from it.

The AFP Utilities also provides the capability to print users’ data in a database
file in various formats with various fonts on IPDS printers without developing any
application programs.

The IBM Advanced Function Printing Utilities/400 V2 is comprised of an
integrated set of advanced print functions:

1. Overlay Utility

2. Resource Management Utility

3. Print Format Utility

Overlay Utility provides an interactive overlay resource design and creation
function. It allows users to design an overlay by the near WYSIWYG
editor that provides the approximate image of the printout on the
screen and store it as a source overlay.

Chapter 12. Print and View within the Different Environments 87

The source overlay is created, and stored as a member of a physical
file. Users can modify the source overlay by the editor on the design
overlay screen which shows the approximate image of the form, and
build the overlay resource from it.

The overlay resource created by Overlay Utility conforms to the
Advanced Function Printing Data Stream (AFPDS).

Resource Management Utility (RMU) provides the integrated AFP resource

management functions for overlays and page segments.

Users can create a page segment from either a PC document in a
folder or a database fiie member. With the PC support shared folder
function, users can store PC files in the folder of the AS/400 system.
Users can use folders from the PC as if they are PC disks directly
connected to the PC. In this way, users can use a PC image product
such as Personal Computer/Image Document Utility (PC/IDU),
ImagEdit, and OS/2 Image Support to scan logos and preprinted
forms, edit the scanned images, and store them in the folder as PC
documents. With the ES/9370*, System/370, or System/390* connected
to the AS/400 system through communication lines, users can use the
product such as GDDM and Image Handling Facility (IHF) to create an
image file, send it to the AS/400 system, and store it in the database
file member.

Then, by using the page segment creation function of the RMU, users
can convert the image data in the page segment format so that it can
be included in the overlay.

Note: The image data stored in the PC document or database file
member must be in Image Object Content Architecture (IOCA)
format (Image Data Stream (IMDS)).

RMU also allows users to copy, delete, print and display the
description, and change the text of AFP resources from the list of AFP
resources found inthe selected libraries.

Print Format Utility (PFU) provides the function to print a member of a database

file in various formats with various fonts and bar codes on IPDS
printers without developing any application programs.

Users can design a record layout and page layout using the near
WYSIWYG editor similar to the overlay editor, and store it as a
Printout Format Definition (PFD) definition. Users can update the PFD
definition with the editor to change the printout format.

When printing the database file member, users specify the PFD
definition name so that its corresponding print format is used. PFU
provides the function to perform record selection so that the printout
contains only selected records.

12.10 Advanced Function Printing Fonts/400

Document processing and publishing applications require a large variety of
proportional typefaces in order to satisfy demands for aesthetics, variety of style,
emphasis, and readability.

88

The Advanced Function Printing Fonts/400 Version 2 contain fifteen separately
orderable font features.

Print and View Data Streams

¢ Sonoran Serif

e Sonoran Serif Headliner

e Sonoran Sans Serif

¢ Sonoran Sans Serif Headliner
¢ Sonoran Sans Serif Condensed
¢ Sonoran Sans Serif Expanded
¢ Monotype Garamond**

¢ Century Schoolbook**

¢ Pi and Specials

* |TC Souvenir**

¢ |TC Avant Garde Gothic**

¢ Mathematics and Science

« DATA1

e APL2

¢ Optical Character Recognition

12.11 IBM Database Publisher/DOS for the AS/400 Version 2

Database Publisher integrates the IBM AS/400 native data base with desk-top
publishing programs. The process is automated and data-driven and enables
publication of documents as business needs dictate.

Once AS/400 system data needed to publish is defined, and the document format
is chosen, Database Publisher can be run in “batch” mode as an extension to an
existing AS/400 system or DOS application.

Using IBM Interleaf** Publisher, Aldus** PageMaker** or Ventura Publisher, the
user defines how the final document should look. After identifying the data
needed from the AS/400 data base and sending it to the workstation through PC
Support, a decision is made on how to convert the data using Database
Publisher. The instructions specified are converted to a “recipe.” The recipe can
be called as a DOS process and can build a publication or partial components
automatically on demand.

12.12 Advanced Function Printing (AFP) on Workstations

Advanced Function Printing was not originally available on workstations. There
was a need to provide it for two main reasons:

1. To print remotely with high quality and on high volume printers

2. To integrate workstation users into high quality and high volume printing.

Development of workstation printing was went with the following products:

Remote Print Print Manager Version 2.0
is a program running under DOS. A PS/2* or a PC-AT* with a /370
channel card is required. RPM V.2 establishes a fixed connection to
PSF on the mainframe and the printer, though PSF is the actual
printer driver.

To improve performance printing with RPM V2.0, all of the required
resources such as fonts, overlays, and page segments can be stored
on the hard disk of the workstation at any time, and they are kept
there for permanent use.

Chapter 12. Print and View within the Different Environments 89

90

During printing then, no down loading of resources decreases
performance and blocks other users sharing the same line.

Remote Print Print Manger Version 3.0

is a program running under DOS. A PS/2 with a /370 channel card is
required. RPM V.3 is divided into several programs to accomplish
host data printing as well as printing work station data.

There are three main programs. They can work one at a time in one,
two, or three workstations in parallel depending on the workload. All
programs is given access to the same hard disk for reading or
writing, depending on the task.

1. Host Print File Receiver
PSF establishes a dialog between the printer and itself. This
program tells PSF on the mainframe to be the printer. PSF spools
print data to a program and this program stores the IPDS data
stream on hard disk, thus providing remote spooling.

2. LAN Print File Receiver Converter
This program receives ASCIl data from LAN users. Then they are
converted and send to the hard disk, where the printer server has
access to it.

3. Printer Server
This program has access to the print files sent down from the
mainframe and to converted ASCII data from the LAN and can
send both to the printer.
It is also able to mix an overlay from the host with converted
ASCIl data and then print it.

PSF/2 Version 1.0

Print and View Data Streams

is a program providing full AFP functions on a workstation integrated
into a LAN. It runs under OS/2. Its functions are comparable to those
of PSF. It supports the following data streams as input:

e ASCI
* AFPDS
* Metafile

PSF/2 supports many different output devices. So it has to provide
different output data streams depending on the printer it has to
support:

¢ Channel-attached printers

— 1BM 3900
— IBM 3827
— |IBM 3825
— |BM 3820

» Coax-attached printers

— IBM 4028
— IBM 3812
— IBM 3816

* LPT1

— IBM 4018
— IBM 4029
— Printers supporting:

- PPDS
- HP-PCL4

Using channel-attached or coax-attached AFP printers only the
two way dialog between printer driver and printer is available.
Printers attached via LPT1 receive a complete page in the form of
a bit map which is automatically prepared by PSF/2.

PSF/2 Version 1.1 This version provides the full set of functions of PSF/2 V.1.0.
The main differences between PSF/2 V1.0 and PSF/2 V.1.1 are:

* PostScript is accepted as an input data stream
e HP-PCLS is supported as an output data stream
e Printing from the main frame in a LAN is done automatically.

AFP Viewer This program runs under Windows** and allows you to display files
as an alternative to printing them. Files that can be displayed include
AFPDS files, page segments, overlays, as well as ASCII files. While a
file is displayed you can:

* Clip a portion of the displayed page and scale the clipped area.

* Copy one or more pages from an AFPDS document into a new
AFPDS document.

e Convert a page or clipped area to an AFPDS overlay.
¢ Print one or more selected pages or the clipped area.
¢ Change which AFPDS form definition is used to display the file.

The AFP Viewer can only view documents that are stored on the
workstation’s disks. Host files must be downloaded before they can
be viewed. The AFP viewer itself does not provide any facilities for
downloading files.

12.13 Remote PrintManager Version 2.0

Remote PrintManager is an IBM Personal Computer-based program that allows
print resources such as fonts, overlays, and page segments to be made resident
at the location of a remote printer.

Version 2 of Remote PrintManager extends support to the IBM 3820, 3825, 3827,
and 3835 Page Printers and gives the user a choice of remotely attaching the
printers via either an SDLC communication line or token-ring attachment using
SNA LU 6.2.

Remote PrintManager Version 2.0 allows the printing of double-byte character
sets on those RPM supported printers that provide double-byte support.

Remote PrintManager performs three main functions:

1. Pass-through emulation. Remote PrintManager receives records from PSF,
transmits the records unchanged to the printer, and receives printer
responses and error signals and transmits them back to PSF.

2. Remote library management. This function records and informs PSF of
resources available at the remote site and downloads them to the attached
printer.

Chapter 12. Print and View within the Different Environments 91

3. Resource object collection. This function scans the data stream targeted for
the printer by PSF and copies resources marked “public” by the user to the
Remote PrintManager V2 Resource Library.

92 Print and View Data Streams

12.13.1 Remote Print Manager Version 2.0

Mainframe
- MVS
- VM
- VSE
- AS/400
PSF VTAM
SNA LU 6.2
IPDS <+ Two-Way
l Dialog
C:\
PC-AT or
PS/2
Overlay under DOS
Library —> v
| 3820
R P M 3825
Font /370 3827
Library > —>
Version Channel
2.0 3835
Segment
Library >

Figure 18. RPM V.2 Model for AFP Printing

12.14 Remote PrintManager (RPM) V3.0

Remote PrintManager V3.0 allows the remote connection of the IBM 3820, 3825,
3827, and 3835 page printers. RPM V3.0 uses an IBM Personal System/2
equipped with a System/370 channel emulator card and a communications card.
It can:

* Manage a remote print spool from the print server workstation

Chapter 12. Print and View within the Different Environments 93

* Download jobs from the host at night and place them on the spool for
printing the next day

e Attach to PS/2 machines which use the Micro Channel* bus
¢ Share the printer between the host and other workstations on a LAN

¢ Merge ASCII data with forms overlays downloaded from the host

94 print and View Data Streams

12.14.1 Remote Print Manager Version 3.0

Mainframe other
- MVS Work
- WM T stations
- VSE l
PSF VTAM Token
Ring
SNA LU 6.2
IPDS
C:\
PC-AT or
ASCII PS/2
converted > under DOS
Two-Way
Dialog
IPDS
from Host >
Overlay
Library —»> v
3820
R P M 3825
Font /370 3827
Library > —>
Version Channel
3.0 3835
3900
Segment
Library —>

Figure 19. RPM V.3 Mode/ for AFP Printing

Chapter 12. Print and View within the Different Environments

95

12.15 Print Services Facility/2

Print Services Facility/2 (PSF/2*) Version 1.0 functions as a LAN print server,
supporting multiple workstations, data streams, and printer types.

Version 1.1 allows both host and workstation application data to be printed on
LAN-attached printers. It also provides a transform that processes Adobe Type 1
fonts.

12.151 VERSION 1.0

PSF/2 Version 1.0 serves as either a printer driver on a stand-alone system or a
print server for a local area network (LAN). It may also be used to print host
sourced AFP files if the print jobs and resources are manually downloaded. It
supplies the following functions:

* Support for the following input data streams and applications:
— Support for Microsoft Windows** 3.0 applications
— Support for OS/2 Presentation Manager applications
— ASCIl (Proprinter* Il and QuietWriter Il emulation)
— Advanced Function Printing Data Stream (AFPDS)
— Mixed Object Document Content Architecture Presentation Interchange
Set 1 (MO:DCA-P 1S/1) with the following data objects:
- Bar Code (BCOCA)
- Graphics (GOCA)
- Image (IOCA)
- Presentation text (PTOCA)
— 08/2 Graphics data in metafile format
* Resource management and error recovery
* Arrich selection of AFP fonts:
— |IBM Core Interchange Fonts (240 and 300 pel)
— |BM-supplied compatibility fonts (240 and 300 pel)

PSF/2 supports the following AFP printers:

e |BM 3812 PagePrinter Model 2

IBM 3816 PagePrinter Models 01S and 01D
IBM LaserPrinter 4028 Model NS1

IBM 3820 Page Printer

IBM 3825 Page Printer

IBM 3827 Page Printer

IBM 3835 Page Printer

IBM 3900 Advanced Function Printer

PSF/2 also supports the following non-AFP printers:

* IBM LaserPrinter 4019 and 4029 (supported as a 4019) in either:
— IBM Personal Printer Data Stream (PPDS) mode
— Hewlett-Packard Printer Command Language ({HP PCL4**) LaserJet*™*
emulation mode
¢ Hewlett-Packard LaserJet printers and other compatible printers that accept
the HP PCL4 data streams.

Note: PSF/2 generates HP PCL4 and therefore supports HP PCL5 printers as
HP PCL4 printers.

96 Print and View Data Streams

12.15.2 Print Service Facility/2 V.1.0

Mainframe other
- MVS Work
- WM T stations
- VSE l
PSF VTAM Token
Ring
SNA LU 6.2
Two-Way
C:\ 1 Dialog
PS/2
under 0S/2
Metafile > Coax 4028
—> 3812
3816
ASCII >
from LAN
3820
Overlay 3825
Library > /370 3827
>
Channel
P S F /2 3835
Font 3900
Library »
Version
1.0 No two-way dialog
Segment
Library > LPT1 4019
—»| 4029
HPPCL4
PCL-Emu.

Figure 20. PSF/2 V.1.0 Model for AFP Printing

ASCIl, AFPDS, and metafile data stream support means that DOS, UNIX, and
08/2 applications may be accommodated, and can take advantage of AFP

Chapter 12. Print and View within the Different Environments

97

functions such as merging forms overlays and page segments (logos, graphics,
signatures). IBM Print Services Facility/2 also supports printing of MO:DCA-P
IS/1 documents generated by ImagePlus applications.

PSF/2 provides an OS/2 Presentation Manager device driver that generates
AFPDS for applications that use the 0S/2 PM Graphic Programming Interface.
The AFPDS can then be printed by PSF/2.

PSF/2 provides a Microsoft Windows 3.0 device driver that generates AFPDS for
applications that use the Windows 3.0 Graphic Device Interface. The AFPDS can
then be directed to the LAN for printing by PSF/2. This driver enables Windows
3.0 users to use IPDS printers as well as the error recovery and job management
capabilities of PSF/2.

In addition, PSF/2 can be used in conjunction with OS/2 Transmission Control
Protocol/Internet Protocol (TCP/IP) to support printing from UNIX clients,
including IBM Advanced Interactive Executive (AlX*).

Printer sharing between PSF/2 and the OS/2 Print Manager is also possible for
the 4019, 4029, and HP PCL4 printers. This enables current OS/2 users to print
both AFP and current applications without additional hardware.

12.15.3 IBM Print Services Facility/2 Version 1.10

98

Besides the functions of PSF/2 V.1.0 additionally Version 1.1 enables host
PSF/MVS, PSF/VM, and PSF/VSE users to direct output and associated resources
automatically to PSF/2 via communications and/or LAN-attached OS/2 systems
for spooling and subsequent printing.

PostScript as an input data stream is supported in Version 1.1. HP-PCLS5 as an
output data stream is also supported in Version 1.1.

PSF/2 Version 1.1 enhancements include:

* Server-based printer sharing between the host and the LAN

* Lower cost printer support (3812, 3816, 4019, 4028, 4029, HP PCL4 and
compatibles)

Improved ASCII emulation (ProPrinter Il and QuietWriter lil)

JISCII (Doublebyte ASCIl) emulation

Concurrent spooling/printing on a single PS/2

Multiple printers driven from each PSF/2

* Expanded connectivity which exploits 0S/2 Communications Manager.

A Type Transformer will be provided in Version 1.1 which converts fonts in
Adobe Type 1 format to fonts compatible with AFP. These fonts can be delivered
to the 08/2, VM, MVS, and 0S/400 environments.

The IBM Core Interchange Fonts are provided in Adobe Type 1 outline format for
use by the Type Transformer. They consist of three type families (Times New
Roman, Helvetica, and Courier) which support the International Organization for
Standardization (ISO) single byte character sets for Latin-1 thru Latin-5.

Print and View Data Streams

12.15.4 Print Service Facility/2 V1.1

Mainframe other
- MVS Work
- WM T stations
- VSE l
PSF VTAM Token
Ring
SNA LU 6.2
Two-Way
C:\ l Dialog
PS/2
under 0S/2
Metafile > Coax 4028
—> 3812
3816
ASCII >
from LAN
3820
Overlay 3825
Library > /370 3827
“«—
Channel
P S F /2 3835
Font 3900
Library >
Version
1.1 No two-way dialog
Segment
Library > LPT1 4019
—»| 4029
HPPCL4
HPPCL5
PostScript PCL-Emu.

Figure 21. PSF/2 V.1.1 Model for AFP Printing

Chapter 12. Print and View within the Different Environments

99

12.15.5 AFPDS Driver under 0S/2 and DOS/WINDOWS

100

PSF/2 contains both an 0S/2 and a Microsoft Windows-based printer device
driver that produces Advanced Function Printer Data Stream (AFPDS) output.
These are called the IBMAFP printer drivers.

They can be used with any OS/2 or Windows application to produce output
printable on AFP printers.

Other versions of these printer drivers are available in the AFP Workbench for
Windows product, and internally within IBM as the WINAFP driver.

For image, all of these at present produce IOCA, both compressed and
uncompressed, depending on the target printer. For printers that are not
capable of accepting IOCA only, PSF V.2. converts uncompressed IOCA into IM,
which can ithen be prinied.

The default output mode is to produce a print file, which is made up of a form
definition and a document.

Overlay and Page Segment objects can also be produced. They will also contain
IOCA, either compressed or uncompressed.

The WINAFP driver can be installed using the Windows control panel. Choose
the printer icon, and then install an “Unlisted Prin