

Print and View Data Streams

Document Number GG24-3938-00

December 1993

International Technical Support Organization
Poughkeepsie Center

~efore using this information and the product it supports, be sure to read the general information under
"Special Notices" on page xv.

First Edition (December 1993)

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader's feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
H52 Mail Station P099
522 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

/

.ii
+

Abstract

This document describes different data streams that are used in printing and
viewing. It also deals with the transformation from one data stream to another.

This document was written for customers and IBM system engineers and system
specialists who need information about these data streams.

No special prerequisite knowledge is required, but some general knowledge of
data processing is assumed.

The contents of this document apply to the those releases of hardware and
software that were available for the residency at that time.

There may be changes in the more recent releases of the software.

The reader is asked to find the current information in the product manuals and
announcement letters.

ITSC Printing Library ------------------------.

This publication is part of the ITSC Printing Library.

LS MR PR PS VM (248 pages)

© Copyright I BM Corp. 1993 iii

/

/

Iv Print and View Data Streams

(Contents

Abstract iii

Special Notices . .

Preface
How This Document is Organized

xv

xix
xix

Related Publications xx

International Technical Support Organization Publications xxi

Acknowledgments xxv

Chapter 1. Introduction . 1
1.1 Objectives . 1
1.2 Terms with Special Meanings 2
1.3 Overall Structure . 4
1.4 Print and View: the Messages, the Opportunities 5

Chapter 2. Overview of Information Interchange Architecture 9
2.1 Introduction to llA . 9

2.1.1 Relationship of Architectures and Data Streams under SAA 10
2:1.2 llA Components . 11
2.1.3 Document Languages . 11
2.1.4 Document Architectures 12
2.1.5 Content Architectures . 14

Chapter 3. IBM Architectures 17
3.1 Mixed Object Document Content Architecture 17

3.1.1 Minimum Functions Required for MO:DCA 18
3.2 Revisable-Form-Text Document Content Architecture 19

3.2.1 Minimum Functions Required for RFT:DCA 19

Chapter 4. Defined Standard Architectures 21
4.1 The relationships between SGML, DSSSL, and SPDL 22
4.2 Office Document Architecture . 22

4.2.1 General Concept of ODA . 23
4.3 Industry Standard and non-IBM Proprietary Architecture 27

Chapter 5. IBM Data Streams
5.1 Device Dependent Data Streams

5.1.1 Intelligent Printer Data Stream
5.1.2 3270 Data Stream .
5.1.3 Character Data Representation Architecture
5.1.4 scs
5.1.5 Line Printer Data
5.1.6 IBM Personal Printer Data Stream

29
29
29
32
33
35
36
36

5.1.7 CDPDS 39
5.2 Device Independent Data Streams

5.2.1 AFPDS
5.2.2 MO:DCA

39
39
39

Cl Copyright IBM Corp. 1993 v

Chapter 6. Industry Standard Data Streams 41
6.1 Device Independent Data Streams . 41

6.1.1 Postscript 41 \

Chapter 7. Non-IBM Proprietary Data Streams 45
7.1 Microsoft Rich Text Format . 45
7.2 PCL (Printer Control Language) 45

Chapter 8. IBM Object Content Architectures and Definitions 49
8.1 Objects . 49

8.1.1 Object Structure 49
8.1.2 Presentation Text Object Content Architecture 50
8.1.3 Image Object Content Architecture . 50
8.1.4 Graphics Object Content Architecture 51
8.1.5 Font Object Content Architecture 52
8.1.6 Formatted Data Object Content Architecture 53
8.1.7 Bar Code Object Content Architecture 54

8.2 Font Overview . 55
8.2.1 AFP Font Resources - AS/400 . 57

Chapter 9. Defined Standard Object Content Architectures and Definitions . . 59
9.1 Office Document Architecture 59

9.1.1 CCA 59
9.1.2 RGCA 59
9.1.3 GGCA 59

9.2 Computer Graphics Metafile (CGM) . 59

Chapter 10. Industry Standard Object Content Architectures and Definitions . 61
10.1 Hewlett-Packard Graphics Language . 61
10.2 GIF .. 62
10.3 Tagged Image File Format (TIF) . 63

10.3.1 Content . 63

Chapter 11. Document Languages and Formatting Languages 65
11.1 What is a Document Language? 65
11.2 What is a Formatting Language? 66
11.3 Examples Considered Here . 67
11.4 The Advantages of Using Document Languages 67

11.4.1 Why Some Documents Need One Way, and Others Another 68
11.4.2 WYSIWYG Is Always Format-based, Isn't It? 70

11.5 GML Starter Set and IBM BookMaster 71
11.6 SGML .. 72
11.7 TEX and LATEX 73
11.8 XICS ... 74
11.9 nroff and troff 75

Chapter 12. Print and View within the Different Environments 77
12.1 Basic PSF Functions 78
12.2 How PSF handles Object Content Architectures 78
12.3 Advanced Function Printing (AFP) on Mainframes (MVS, VM, VSE) 79

12.3.1 Mainframe Model 81
12.4 IBM Print Services Facility Version 2 82
12.5 Font Pruning 82 --~ _,,
12.6 Operating System/400 Advanced Function Printing 83

12.6.1 Support for Medium to High Speed Page Printers 83

VI Print and View Data Streams

" I

12.6.2 How to Start : 84
12.7 AS/400 AFP Model 85
12.8 Print Output in AS/400 Systems 86
12.9 Advanced Function Printing Utilities/400 87
12.10 Advanced Function Printing Fonts/400 88
12.11 IBM Database Publisher/DOS for the AS/400 Version 2 89
12.12 Advanced Function Printing (AFP) on Workstations 89
12.13 Remote PrintManager Version 2.0 91

12.13.1 Remote Print Manager Version 2.0 93
12.14 Remote PrintManager (RPM) V3.0 93

12.14.1 Remote Print Manager Version 3.0 95
12.15 Print Services Facility/2 96

12.15.1 VERSION 1.0 96
12.15.2 Print Service Facility/2 V.1.0 97
12.15.3 IBM Print Services Facility/2 Version 1.10 98
12.15.4 Print Service Facility/2 V1.1 99
12.15.5 AFPDS Driver under OS/2 and DOS/WINDOWS 100

12.16 Data Streams and Hardware Connection of Printers 101

Chapter 13. Practical Tasks . 103
13.1 Getting Pictures into IBM BookManager from Corel Draw 103

13.1.1 Color Pictures . 103
13.1.2 Monochrome Pictures . 105

13.2 Combining Desk-top Publishing with GML 107
13.3 I Want an AFP Print of a Scanned Image Saved as an IOCA 108
13.4 Getting Formulas into Mainframe Publishing 109
13.5 Scan a Logo, Improve It, and Integrate It in an Overlay 111
13.6 I Want an AFP Print of a Scanned Photo Saved as a TIF 115
13.7 I Have a Plot File and I Want It Printed on the Host 115
13.8 I Want to Prepare Host Output for Workstation Print and View 116
13.9 How do I Use PSEG Files with my DTP Programs? 118
13.10 How Do I Use Mainframe CAD Pictures in DTP? 118
13.11 How do I Use Output from Workstation Programs on the Host? 119
13.12 I Want Bigger Volumes of Print from my Workstation Applications . . 123

Chapter 14. Process Definitions . 125
14.1 Format Conversions . 125
14.2 Image Conversion under GDQF . 127
14.3 Convert TIF to PSEG . 130

14.3.1 Using DOS Platforms . 130
14.3.2 Using OS/2 Platforms . 130

14.4 Convert HPGL to PSEG . 130
14.4.1 Using DOS . 130
14.4.2 Using OS/2 . 131
14.4.3 Using GDDM on the Mainframe . 131

14.5 Generate Overlays Using the DCF Post Processor 131
14.6 Preparing Postscript . 132

14.6.1 On the Workstation . 132
14.6.2 Using ProcessMaster (VM, MVS) . 133
14.6.3 Using DCF . 133

14.7 Preparing PCL . 133

Chapter 15. Transforms . 135
15.1 Types of Transform . 136
15.2 Round and Round We Go ... 138

Contents Vii

Appendix A. Source Code for Sample Transforms and EXECs 147
A.1 Conversion Between Ami Pro and GML 147

A.1.1 Functional Description . 147
A.1.2 Invocation 148
A.1.3 Profile File . 148

A.2 Changing Data in Context . 158
A.2.1 Sample Code: Simple Context-Sensitive Filter 161

A.3 Conversion from BookManager READ Copy Form to GML 163
A.3.1 Sample Code: GML from BookManager READ 163

A.4 Combine Image Cells in PSEG . 169
A.4.1 Sample Code: Recombine PSEG Cells 169

A.5 Reblock Uploaded PSEG . 170
A.5.1 Sample Code: Reblock Uploaded PSEG 170

.Appendix B. Images; Graphics; and Data Streams 173
B.1 Major Image Formats and Where They Are Used 173
B.2 Major Graphics Formats and Where They Are Used 174
B.3 Major Data Streams and Where They Are Used 174
B.4 Types of Bitmap Images . 176

B.4.1 Bilevel Images . 176
B.4.2 Grayscale Images . 176
B.4.3 Palette-color Images . 177
B.4.4 RGB Images . 177
B.4.5 CMYK Images 177
B.4.6 YCbCr Images . 177
B.4.7 CIE L *a*b* Images . 178

Appendix C. Products . 179
C.1 Software for Print and View Data Streams under MVS and VM 180
C.2 Software for Print and View Data Streams under OS/400 and OS/2 . . . 181
C.3 Input and Output of Major Programs . 182
C.4 Access to Data Based upon Office . 184
C.5 Access to Data Based upon Publishing 185
C.6 Access to Data Based upon lmagePlus 186
C.1 Page Printer Formatting Aid/370 . 187
C.8 Overlay Generation Language/370 . 187
C.9 Line Data to AFPDS Converter . 188

C.9.1 Converting Line Data to AFPDS . 188
C.10 Document Composition Facility . 189
C.11 SCRIPT Mathematical Formula Formatter Feature 190
C.12 ProcessMaster CALS Application Feature 190
C.13 SGML Translator DCF Edition . 191
C.14 SGML Text Write OS/2 Edition and SGML Text Write Tools OS/2

Edition . 192
C.14.1 SGML Text Write OS/2 Edition Product Overview 192
C.14.2 SGML Text Write Tools OS/2 Edition Product Overview 193

C.15 IBM Enterprise Printing Overview . 193
C.15.1 Products Provided for Enterprise Printing 193
C.15.2 Description . 194
C.15.3 AFP Printers, Printer Features, and Attachments 195
C.15.4 Print Application Development Aids 196
C.15.5 Integration with Applications and Application Environments 197

C.16 IBM SAA PrintManager . 198 \
C.17 Advanced Function Image and Graphics Feature and Decompression

Performance Enhancement Feature . 200

viii Print and View Data Streams

C.18 Publishing Systems BookMaster . 201
C.19 IBM Publishing Systems TextTagger . 202
C.20 Publishing Systems BrowseMaster . 202
C.21 Graphical Display and Query Facility . 203
C.22 Image Handling Facility . 203
C.23 Graphical Data Display Manager (GDDM) 204

C.23.1 Products Included: . 204
C.24 ADMUCIMV . 207
C.25 BookManager Family Overview . 209
C.26 Publishing Systems Postscript Interpreter for AFP 210
C.27 Ventura Publisher . 211
C.28 IBM lnterleaf Publisher . 212
C.29 IBM lmagePlus Workstation Program Family 212
C.30 IBM Workstation AFP View Program . 214
C.31 Ami Pro . 215
C.32 Corel Draw . 216
C.33 Freelance . 217
C.34 OS/2 Image Support . 217
C.35 MARKUP . 218
C.36 IBM PS/2 Image Adapter/A . 219
C.37 DisplayWrite/370 . 219

C.37.1 Description . 219
C.37.2 Compatibility with Document Composition Facility (DCF) 219
C.37.3 Document Interchange . 220
C.37.4 Printer Support . 220

C.38 OfficeVision/MVS . 220
C.39 IBM SAA OfficeVision/400 Version 2 . 221
C.40 IBM Presentation Manager Office/2 . 221
C.41 Application Area Summary . 223

Appendix D. Products Involved in Printing and Viewing 225
D.1 Product and Operating System Tables . 225

D.1.1 BCOCA . 225
D.1.2 CORA . 225
D.1.3 DIA . 225
D.1.4 FD:OCA . 226
D.1.5 FOCA . 226
D.1.6 GOCA . 226
D.1.7 IOCA . 226
D.1.8 IPDS . 227
D.1.9 MO:DCA 227
D.1.10 PTOCA . 227
D.1.11 RFT:DCA . 228
D.1.12 3270DS . 228

Appendix E. Bibliography . 229
E.1 IBM Publications . 229

E.1.1 Architecture . 229
E.1.2 Publishing Systems ProcessMaster VM Edition 229
E.1.3 Publishing Systems ProcessMaster MVS Edition 229
E.1.4 Publishing Systems TextTagger . 230
E.1.5 Document Composition Facility . 230
E.1.6 Document Composition Facility - Office Document Feature 230
E.1.7 Publishing Systems BookMaster . 230
E.1.8 Publishing Systems BrowseMaster 230

contents ix

E.1.9 Publishing Systems DrawMaster
E.1.10 Publishing Systems Postscript Interpreter
E.1.11 BookManager- VM
E.1.12 BookManager - MYS
E.1.13 SGML Translator DCF Edition
E.1.14 CALS
E.1.15 SGML TextWrite
E.1.16 Image Handling Facility
E.1.17 GDDM
E.1.18 GDQF
E.1.19 Image
E.1.20 Office
E.1.21 OS/2 Image Support .
E.1.22 ISO Standards

E.1.24 Other Documentation
E.2 Workstation Documents

Glossary .

Index ...

X Print and View Data Streams

230
231
231
231
231
231
232
232
232
232
233
233
233
233
233
234
234

235

243

Figures

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

©Copyright IBM Corp. 1993

Just a Few of Our, Well, Not Exactly Problems 1
Relationship Between Data Streams, Objects, and Composite Documents 3
Overview of Architectures under llA 10
Overview of Information Interchange Architecture 11
SGML, DSSL, and SPDL 22
Diagram of a Logical Structure of a Document 25
Diagram of a Layout Structure of a Document . 26
Use of EPS Files 41
IBM Products and Postscript 42
Document Language Processing 66
The Document Spectrum 69
Example of GML Starter Set and IBM BookMaster 71
lntersystem Documentation Exchange with SGML 73
Formatting XICS Source 74
SAA Model for Print and View 77
Mainframe Model for AFP Printing 81
AS/400 Model for AFP Printing 85
RPM V.2 Model for AFP Printing 93
RPM V.3 Model for AFP Printing 95
PSF/2 V.1.0 Model for AFP Printing 97
PSF/2 V.1.1 Model for AFP Printing 99
ADMGDF Vector Graphic from Corel Draw 105
ADMGDF Vector Graphic from Corel Draw 105
PSEG Created from Corel Draw Graphic 106
Equation TEX Source from Ami Pro 110
Equation Produced using Ami Pro Equation Editor 111
A WINAFP PSEG Overflowing . . . 121
A WINAFP PSEG not Overflowing 122
The Original PSEG 123
Popular Data Streams and Some Transform Software 129
Integration of Host and Workstation Printing 138
Text Type Transforms 140
Ami Pro Output before Upload 142
Ami Pro Output after Everything 144
SAA PrintManager Model 200
Application Area Summary 223

xi

xii Print and View Data Streams

Tables

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.

©Copyright IBM Corp. 1993

Architectures, Content Architectures, and Data Streams under SAA
PPDS Single Byte Control Codes
Common PPDS Escape Sequences
Data Streams and Objects by Printer
Major Image Formats and Where They Are Used ..
Major Graphics Formats and Where They Are Used
Major Data Streams and Where They Are Used
Software for Print and View Data Streams
Software for Print and View Data Streams
Inputs and Outputs of Major Programs
Access to Data Based upon Office
Access to Data Based upon Publishing ..
Access to Data Based upon lrnagePlus ...
Some Ventura Publisher Formatting Codes
Arni Pro Import/Export
Corel Draw Import/Export

17
37
37

101
173
174
174
180
181
182
184
185
186
211
215
216

xiii

xiv Print and View Data Streams

\ .
'- /

Special Notices

This publication is intended to help the customers and IBM system engineers
and system sepcialists to understand the different data streams that are used for
printing and viewing. The information in this publication is not intended as the
specification of any programming interfaces that are provided by any of the
program products mentioned in the document. See the PUBLICATIONS section
of the IBM Programming Announcement for the referred products for more
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM's intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 208 Harbor Drive, Stamford, CT 06904 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

<Cl Copyright IBM Corp. 1993 xv

Advanced Function Printing
AIX
AS/400
BCOCA
BookMaster
Critique
DisplayWrite

Draw Master
Facsimile Support/400
IBM
Intelligent Printer Data Stream
Micro Channel
Office Vision
OfficeVisionNM
Operating System/2
OS/400
Presentation Manager
ProcessM aster
Proprinter
PSF
SAA
System/370
VM/XA

AFP
Application System/400
Bar Code Object Content Architecture
BookManager
CICS
DB2
Distributed Relational Database
Architecture
DRDA
GDDM
lmagePlus
IPDS
MVS/ESA
OfficeVision/MVS
OfficeVision/400
OS/2
Peisonal System/2
Print Services Facility
PROFS
PS/2
Quietwriter
SQUDS
Systems Application Architecture
VTAM

The following terms, which are denoted by a double asterisk (**) in this
publication, are trademarks of other companies:

Aldus
Ami Pro
CAD AM
CALCOMP
CATIA
Century Schoolbook
CompuServe
Corel
DEC
DXF
GEM
Harvard Graphics
Helvetica
Hewlett-Packard
HP
HP PCL4
ITC Avant Garde Gothic
ITC Souvenir
LaserJet
Lexmark
Micrografx Designer
Microsoft Windows
Monotype Garamond
Page Maker
Paintbrush
Paradox
Postscript
Professional Write
Samma Word
Symphony
Times New Roman
UNIX
Ventura Publisher
Windows

XVI Print and View Data Streams

Aldus Corporation
Samna Corporation
Cadam Inc
Sanders Associates, Inc.
Dassault Systemes
American Type Foundry
CompuServe Incorporated
Corel Systems Corporation
Digital Equipment Corporation
AutoDesk, Inc.
Digital Research, Inc.
Software Publishing Corporation
Linotype Company
Hewlett-Packard Company
Hewlett-Packard Company
Hewlett-Packard Company
International Typeface Corporation
International Typeface Corporation
Hewlett-Packard Company
Lexmark International, Inc.
Micrografx Incorporated
Microsoft Corporation
The Monotype Corporation pie. (public limited company)
Aldus Corporation
Z-Soft Corporation
Borland International, Inc.
Adobe Systems Incorporated
Software Publishing Corporation
Samma Corporation
Lotus Development Corporation
Monotype Corporation, Limited
X/OPEN Company, Ltd.
Ventura Software, Inc.
Microsoft Corporation

WordPerfect
WordStar
XEROX
Xerox
1-2-3

WordPerfect Corporation
MicroPro International Corporation
XEROX Corporation
Xerox Corp.
Lotus Development Corporation

Special Notices XVii

XViii Print and View Data Streams

(

Preface

This document describes data streams used for printing and viewing. A large
part of the document deals also with the interrelationships between the different
data streams. There are lots of programming examples to show how to convert
the data streams to each other. Although some products are described in this
document quite thoroughly, the document is not meant to be a product summary.
The current information of the products mentioned can be found in the respective
product manuals.

This document is intended for customers as well as IBM system engineers and
system specialists.

How This Document is Organized
The document is organized as follows:

@Copyright IBM Corp. 1993

• Chapter 1, "Introduction"

This chapter describes the purpose and structure of the document.

• Chapter 2, "Overview of Information Interchange Architecture"

In this chapter there is an overview of the IBM Information Interchange
Architecture (llA).

• Chapter 3, "IBM Architectures"

This chapter describes other IBM architectures related to documents as well
as printing an viewing.

• Chapter 4, "Defined Standard Architectures"

This chapter lists international standards for documents.

• Chapter 5, "IBM Data Streams"

IBM data streams for different applications are described in this chapter.

• Chapter 6, "Industry Standard Data Streams"

This chapter describes the industry standard data streams used in printing
and viewing.

• Chapter 7, "Non-IBM Proprietary Data Streams"

This chapter gives some examples of data streams that are neither IBM nor
industry standard data streams, but are proprietary data streams used by
some other companies.

• Chapter 8, "IBM Object Content Architectures and Definitions"

This chapter describes in detail IBM Object Content Architecture.

• Chapter 9, "Defined Standard Object Content Architectures and Definitions"

This chapter describes other standard object content architectures.

• Chapter 10, "Industry Standard Object Content Architectures and Definitions"

In this chapter there are some of the industry standard object content
architectures described.

• Chapter 11, "Document Languages and Formatting Languages"

xix

This chapter deals with document and formatting languages.

• Chapter 12, "Print and View within the Different Environments"

This chapter describes printing and viewing in different environments.

• Chapter 13, "Practical Tasks"

This chapter includes a lot of practical examples a user may find when
dealing with different data streams.

• Chapter 14, "Process Definitions"

This chapter describes procedures to convert between different formats of
data streams.

• Chapter 15, "Transforms"

This chapter gives more examples of programs to be used for data stream
conversions.

• Appendix A, "Source Code for Sample Transforms and EXECs"

This appendix includes a lot of programming examples how to migrate from
one data stream to the other.

• Appendix B, "Images, Graphics, and Data Streams"

This appendix summarizes images and graphics data streams.

• Appendix C, "Products"

This appendix has a short description of IBM products related to printing and
viewing.

• Appendix D, "Products Involved in Printing and Viewing"

This appendix has a table of the products is used in printing and viewing.

• Appendix E, "Bibliography"

This appendix includes a list of related publications.

Related Publications
There is a list of publications in Appendix E, "Bibliography" on page 229. This
list includes publications that contain more information about the topics covered
in this document.

XX Print and View Data Streams

International Technical Support Organization Publications

A complete list of International Technical Support Organization publications, with
a brief description of each, may be found in:

Bibliography of International Technical Support Centers Technical Bulletins,
GG24-3070.

The following chart shows the GBOF Code Form Numbers by which ITSO red
books are shipped.

If you need help placing an order, or if you need assistance with adjusting your
publications' subscription, your IBM Representative can assist you.

Category GBOF Code

AIX Application Development and Database 6339

AIX Communications 6337

AIX Distributed Computing Environment 6342

AIX/ESA 6349

AIX Operating System/Systems Management & High Availability 6338

AIX Computer Graphics Series and User Interface (formerly called AIX 3D 5216
Computer Graphics Series)

Application Development Platform 6321

Application Development Design and Modeling 6323

Application Development Maintenance and Test 6322

Application Generators 6324

Architecture 6360

Artificial Intelligence and Knowledge Based Systems 6326

AS/400 Communications and Systems Management 5225

AS/400 Office and Advanced Technology 5224

AS/400 PC Support 5223

AS/400 Systems, Application Development and Performance 5222

Automated Operations 6351

Banking - ATM 6352

Banking - Consumer Transact 6354

Banking - LAN DP 6353

Bibliography (SLSS by Form Number Only) GG24-3070

CICS 6328

Communication Controller Products 5207

Connectivity 5208

Data Delivery and Information Warehouse 6331

DB2 6330

Distributed Applications 6333

Distributed Data Base 6332

Engineering and Scientific 2200

©Copyright IBM Corp. 1993 xxi

Category GBOF Code

Enterprise Networking 5210

High Level Languages 6325

Host Systems Management 5204

IBM OS/2 Ext Ed Cookbooks 2195

IBM OS/2 V2.0 Remote Installation Maintenance 2224

IBM OS/2 Version 2.0 I 2.1 Technical Compendium 2254

IDNX 6362

lmagePlus/MVS 6318

lmagePlus/400 6319

lmagePlus/2 6320

IMS 6329

Large Systems Hardware 5200

Local Area Networks 6367

Miscellaneous/Cross Category 0429

MVS/ESA Open and Client/Server 6334

MVS/ESA Systems Products (formerly Large Systems Software) 5201

NCP 6364

NetWare for AIX 6341

NetWare for OS/2 6336

Network Distribution 6356

Network Management 5209

Network Performance 6355

Network Security 6358

Object Oriented Technology 6327

Open Networking 6359

Office Systems - AIX Systems 6346

Office Systems - Client/Server Systems 6348

Office Systems - Cross Systems 6347

Office Systems - LAN 6343

Office Systems - MVS Systems 6345

Office Systems - VM Systems 6344

OSI 6366

OS/2 Communications 6370

OS/2 LAN and Distributed Systems 6335

OS/2 V1.X 6301

OS/2 V2.X 6303

Personal Systems - Configuration, Installation, Distribution (CID) 6304

Personal Systems Hardware 6300

Personal Systems - Multimedia 5212

Personal Systems Software & Application Development 6302

Printing 5202

XXll Print and View Data Streams

Category GBOF Code

Retail 5214

RISC/6000 Hardware 6340

Storage Hardware - Magnetic DASO 6306

Storage Hardware - Optical DASO 6308

Storage Hardware - Tape 6307

Storage Software - DFSMS/MVS 6309

Storage Software - DFSMSNM 6310

Storage Software - Distributed Storage Management 6311

System/Network Design 6371

Systems Application 6357

Systems Solution Library 6372

System Management Reference Library 6373

TCP/IP 6368

VM Systems 2201

VMNSE 6313

VMNSE- CSP 6317

VMNSE- SOL 6314

Voice Enablers 5211

VSE 6312

VTAM 6363

X.25 6369

3174 6365

937X 6361

International Technical Support Organization Publications XXiii

\.

XXiV Print and View Data Streams

Acknowledgments

The advisors for this project were:

Andy Herrup
International Technical Support Organization, Poughkeepsie Center

Mikko Markkula
International Technical Support Organization, Poughkeepsie Center

The authors of this document are:

Mike Calder-Smith
IBM United Kingdom

Rudolf Hochscheid
IBM Germany

This publication is the result of a residency conducted at the International
Technical Support Organization, Poughkeepsie Center.

The authors would also like to thank:

Paul Jackson
IBM Hursley Laboratory, UK

© Copyright IBM Corp. 1993 xxv

XXVi Print and View Data Streams

ITSO Technical Bulletin Evaluation
GG24-3938-00

REDOOO

Fold and Tape

Fold and Tape

GG24-3938-00

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Mail Station P402
522 SOUTH ROAD
POUGHKEEPSIE NY
USA 12601-5400

1 ••• 11 •• 1.1.11 •• 11 11.1.1 •• 1 •• 111 ••• 11 111

Please do not staple

--- ----------- ---= - - :§'=f !§: ®

Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

Fold and Tape

ITSO Technical Bulletin Evaluation

Print and View Data Streams

Publication No. GG24-3938-00

REDOOO

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

• Mail it to the address on the back (postage paid in U.S. only)
• Give it to an IBM marketing representative for mailing
• Fax it to: Your International Access Code + 1 914 432 8246
• Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

0Yera!! Satisfaction

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spelling
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time?

Are you in a Services Organization?

b) Are you working in the USA?

c) Was the Bulletin published in time for your needs?

d) Did this Bulletin meet your needs?

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organization

Phone No.

Yes No --
Yes No

Yes No -- --
Yes No

Yes No --

Chapter 1. Introduction

Figure 1. Just a Few of Our, Well, Not Exactly Problems ...

1.1 Objectives
The primary objective of this document is to clarify the interrelationships
between different print and view data streams to help make it easier to
understand which products will work together properly.

This can be shown by:

• Outlining what type of data is contained in each data stream.

• Outlining how they relate to each other and the 1/0 devices that will be used
to display or print the data.

• Indicating which of the most commonly used programs produce and use
which types of data streams.

Clearly, these objectives are very wide ranging, and we must restrict ourselves
to the most commonly used data streams. The book will consider only those
data streams in common use in publishing and printing, and which have
significant use on IBM* platforms.

Cl Copyright IBM Corp. 1993 1

This will, for example, exclude such formats as IGES, which is more specific to
the CAD (Computer Aided Design) arena, and such as proprietary typesetting
data streams will be effectively ignored as being specific to particular
manufacturer's output devices.

The book is divided logically into two parts:

• The first chapters introduces the major IBM architectures, data streams, and
objects, some international standards, and some data streams and objects
which are commonly used in the data processing industry in general.

• The last chapters show how they can be used, relationships between them,
and common programs that use them.

This volume takes the approach that these aspects are best introduced and
explained by use of practical examples, so we use specific user examples to
explain hew particulai pioducts are used to change and use data streams
and objects.

You should not expect this volume to give a complete and detailed definition or
description of data streams, architectures, data objects, programs, or means of
transforming from one form to another; to do so would be to duplicate existing
material. Where possible, we refer to documents which give that detailed
information. The purpose of this document is to introduce the relationships, and
indicate known paths though this complex area.

Finally, there are many situations where the user has data in one format or data
stream, and needs it in another form, or to be output on a device that needs
some other data stream or format, for which there is no existing process for
conversion.

In this case, if the user need is to be met, a special conversion program, or
transform must be written. Chapter 15, "Transforms" on page 135 introduces
some of the principles and considerations to be taken into account when
designing transforms, and outlines the factors which will affect the degree of
success that can be expected from the transform.

1.2 Terms with Special Meanings
So that we do not have to continually qualify our descriptions, and to make the
text more concise, we use some terms in specific ways in this book, which may
not be the meanings you normally associate with those phrases.

The glossary should contain most technical words and phrases used here but
not in common use, but these definitions are largely those accepted by the
technical community.

Before reading this book, you should note the specific meanings we intend for
the phrases below.

Data stream

2 Print and View Data Streams

This is a phrase generally used to mean several things. In
this book, one particular meaning is intended: a definition
of format or formats that can be used to specify the
content of a data file or a data stream along a
communications link, which is capable of being used to
contain a composite document.

Data object

(A composite document is one which may contain text,
font, vector graphic, and image data - and possibly other
things as well.)

In this book, we use the phrase data stream to refer both
to these composite formats and also to instances of them.

Data Stream formats may be defined in Data Architectures.

We needed a phrase to describe an instance of a data file
or stream in a single format (text only, vector graphic only,
and so on) which could either stand on its own or be a
component of a data stream. In this book we use the
phrase data object in this restricted sense.

Data object formats may be defined in Content
Architectures.

Composite document A composite document is a document which may contain
multiple types of data object, for example, vector graphic
artwork as well as alphabetic text. A document in this
sense need not be expressed on paper; the phrase can
refer to a data set which could be used to create a paper
document, or indeed the expression of it in softcopy form.

Data Stream Definition ~ay be defined by

r
Data Refers to
Object
Format

Data
Object
Format

Data
Object •
Format

Da
Ob
Fo

D

Composite Document

Composite Document
ta
ject May include arbitrary types of
rmat

efines---+ Data
Objects

Data
Objects

efi nes-------• ---

Figure 2. Relationship Between Data Streams, Objects, and Composite Documents

Chapter 1. Introduction 3

Interchange

Editing

Formatting

Presentation

1.3 Overall Structure

The process of providing a document to a receiving person
or device, by means of data communication or by
exchange of storage media.

The carrying out of operations associated with creation
and amendment of the structure and/or the content of a
document.

The carrying out of operations to determine the layout of a
document, that is, the appearance of its content on a
presentation medium.

The operation of rendering the content of a document in a
form perceptible to a human being. Typical presentation
media are paper and video screens.

There are many terms used to describe this area of data streams, and IBM
terminology is often different from other parts of the industry. Competitive data
streams can also have different types of relationships. In this book we attempt to
divide the subject into the following:

IBM offerings

Defined standards

Industry standards

Non-IBM proprietary offerings

Under each of these, we consider architectures, data streams, and data objects.

The distinction we make between Defined Standards and Industry Standards is
that Defined Standards are the subject of a published standard prepared by
some national or international body such as ISO or ANSI, while Industry
Standards are generally accepted within the industry as de facto standards and
are used by many suppliers. Needless to say, there is often argument about the
latter.

These cannot be hard and fast distinctions; one man's Industry Standard is
another man's competition; Postscript can be considered a data stream or a
data object, and so on.

However, we need some kind of a framework, and so long as we remember that
some boundaries can be fluid, this can be a useful classification.

At the architecture level, we will place most emphasis on IBM and Defined
Standard architectures, as being of most interest to our audience. Competitive
and Industry Standard areas are dealt with more at the data stream and data
object level; one tends to attempt to convert or use a document or data file from
one system or format to another in practice. Considerations of relative
architectural structures or merits are more of academic or marketing interest.

For people who want an overview of particular architectures, data streams, and
file formats, the first part of this book contains such material. The information in
these chapters is also cross-referenced to where appropriate by the task-related
sections which follow.

4 Print and View Data Streams

1.4 Print and View: the Messages, the Opportunities
Point 1

Point 2

Every application is an AFPDS application.

With PSF/2 and the IBMAFP printer drivers we can integrate printing
from host and workstation applications.

It is well understood how to migrate host applications to AFP*, but
most people don't realize that now every OS/2 and DOS/Windows
application can create an AFPDS just by setting up a simple printer
driver.

This means that every workstation application can now take
advantage of the speed, volume, and integrity benefits of AFP, while
maintaining the quality of output they are used to.

EVERY APPUCATION
is an

AFPDS

APPUCATION.

Every printer is an AFPDS printer.

The AFP Workbench for Windows application isn't just a way of
looking at AFPDS files before you print them. As a DOS/Windows
application, it can take advantage of every printer driver that there is
for DOS/Windows That means that any workstation printer can now
print AFPDS data streams! All you have to do is load it into AFP
Workbench for Windows, and print it off, using the appropriate driver.

Not only that, but the drivers can be "connected" to a file, so AFP
Workbench for Windows can be used to convert AFPDS to
Postscript**, PPDS, PCL, you name it.

Chapter 1. Introduction 5

Point 3

6 Print and View Data Streams

EVERY PRINTER
ia an

AFPDS

PRINTER.

AFPDS C:::::;i~n;::j"';; =
' ~-~ ~ PostScript

Printer

Ami Pro** to GML to Ami Pro to GML to ...

Using the ASCII import/export with style names functions of Ami Pro,
and a couple of simple workstation programs, we can go round this
cycle as much as we like, preserving the vast majority of our
structure and formatting information. There are limitations; we can't
preserve all table structures, for example, but we can use Ami Pro as
a WYSIWYG front end to GML, and use Ami Pro as a workstation GML
formatter for a very wide range of GML documents.

It also means we can:

• Use a WYSIWYG workstation editor for GML documents.

• Format and AFP print GML on the workstation.

• Combine workstation documents into mainframe publishing.

• Archive workstation documents on the host using BookManager*
READ, and use READ's powerful free text search on the archive.

\

"·- _/

Point 4 AFP Resources from standard tools

Until recently, it has been either awkward to make such things as
overlays, or you have had to get expensive, specialized software.
With the IBMAFP drivers, or AFP Workbench for Windows, you can
now take a graphic or page layout from virtually any workstation
graphic program, or word processing program, or DTP program, and
create an overlay immediately. A PSEG is just as easy.

All you have to do to use them on the mainframe is upload, and run a
simple record reblocking EXEC against them, to split the file into
records.

Chapter 1. Introduction 7

8 Print and View Data Streams

(

Chapter 2. Overview of Information Interchange Architecture

Information Interchange Architecture (llA) is IBM's way of defining a structure for
information of all kinds, to clarify where particular formats of data relate one to
another. It encompasses both IBM-specific elements and some international
standards, so we give a brief overview here before looking at the parts of it in
more detail.

2.1 Introduction to llA
Below are some general concepts of llA:

• llA consists of architectural components.

• These components are used for the interchange of composite documents.

• Composite documents can contain mixtures of text, images, and graphics.

The architectural components consist of:

• Standard Generalized Markup Language
SGML

• Office Document Architecture
ODA

• Revisable Form Text/Document Content Architecture
RFT:DCA

• Mixed Object: Document Content Architecture
MO:DCA

These architectural components can define document-carrying data
streams for interchange, and content architectures that define the
data objects that make up documents

• Within llA, data and attributes are separated from the document description.
This minimizes data stream transformations within a system and makes it
possible to support complex combinations of different data types, resources,
and document descriptions in application-specific data streams as well as in
device-specific data streams.

• The structure of llA is open ended thus providing for functional growth in the
future.

• Applications making full use of llA and its architectures are more effective in
communication, are working together, and are more efficient in a system and
across a network.

More information about Information Interchange Architecture components under
llA can be found in the ITSO red book: Information Interchange Architecture:
Concepts, GG24-3503.

(C) Copyright IBM Corp. 1993 9

2.1.1 Relationship of Architectures and Data Streams under SAA

Communication
within

SAA

Common
Communication

Support

I

SAA

Architectures Communication Information
IIA for SNA

Communication

Document
Architectures

, ..
Compound Documents

(MODCA)
Mark-up

SGML

Text/Image/Graphics

Revisable
MODCA-L

Presentation
MODCA-P

!
Print Applications

AFPDS

!
Device Interface

IPDS

To other
SAA

Components

..
RFTDCA

Figure 3. Overview of Architectures under /IA. This figure shows the relationships
between document architectures and content architectures.

10 Print and View Data Streams

,
ODA

."- -- ./

/,_

2.1.2 llA Components
Normally users don't care what languages or architectures they use for their
work; they know or learn how to handle available tools to produce a printed
document on a printer they have access to.

The world of printing and communication has changed. Documents need to be
printed on any printer in an enterprise. Wherever printing occurs, the end user
expects to get the same page layout, the same data, and the same positioning of
the data regardless of where the printer is physically located.

This means the users, or more likely whoever supports them, has to deal with a
new world. The rest of this chapter introduces where things fit in an enterprise
wide solution for printing and viewing.

Information Interchange Architecture

Document
Language

GML/SS
SGML/SS
BookMaster
LATEX
XICS

Formatting
Languages:
SCRIPT
TEX

Document
Architectures

ODA
MO : DCA
RFT : DCA

Content
Architectures

CCA
PTO CA
GGCA
GOCA
IOCA
RGCA
FOCA
BCOCA
ODIF

Figure 4. Overview of Information Interchange Architecture. This figure shows the main
components of /IA, and what document architectures and content architectures are part of
/IA.

2.1.3 Document Languages
Document Languages are device-independent and application-independent ways
of defining the source content of composite documents. They are large, as they
are intended to be humanly readable and editable. Before documents written in
a document language are printed, they must be processed by some kind of
computer program into a data stream that the printer to be used can interpret to
produce the finished document.

Chapter 2. Overview of Information Interchange Architecture 11

A brief description is given here; a fuller one in Chapter 11, "Document
Languages and Formatting Languages" on page 65.

2.1.3.1 GML (Generalized Markup Language)
Within IBM production publishing are two major document language families:
GML and SGML. Their data formats are tag-based. Adding tags to text and data
defines structural elements of the document, which are then formatted by a
computer program according to rules defined in a style or profile.

The source document thus doesn't contain formatting information, as opposed to
most documents created by office systems or word processors, where the user
often decides on the formatting while typing the text into the system.

This means that documents written in a document language are device
independent, and can be produced in a variety of foimats just by changing the
style or profile. Equally, use of standard house styles ensures that formal
documents are produced in a consistent high quality format.

IBM Generalized Markup Language is a part of Document Composition Facility
(DCF). IBM BookMaster* is an extended markup language which uses the DCF
formatter to give a richer set of document elements and document styles.

DCF is a licensed program that is used in the preparation of printed documents.
It can also process documents that are written in the IBM Script formatting
language; in fact currently GML and IBM BookMaster are implemented using
macros written in the IBM Script language, and text programmers can produce
enterprise specific tags by writing new macros and adding them to the system
libraries.

2.1.3.2 SGML (Standard Generalized Markup Language)
SGML is an international standard that builds on the original definition of markup
languages. It provides a standard for the definition of markup languages, and
provides for document structure control as well as the definition of document
elements.

It is intended to provide a standard for information interchange between different
computer processing systems and platforms.

The Standard Generalized Markup Language (SGML) Translator allows DCF to
be used to format SGML data, by either of the following:

• Translating CALS SGML into a DCF understandable form
• Providing an SGML "Starter Set" of tags and macros to format them.

As with GML or IBM BookMaster, the use of SGML in an enterprise can be
extended by a text programmer providing macros to format particular SGML
tags.

2.1.4 Document Architectures
Document Architectures are ways of specifying the definition of data streams
that can contain composite documents. Usually they refer to formatted data of
some kind, unlike Document Languages.

The intention behind defining Document Architectures is to provide a consistent
basis for the production of composite documents, and to provide an application

12 Print and View Data Streams

1"

and device independent means of interchanging data between different users,
applications, and computer systems.

They cannot provide total device independence, unlike Document Languages,
because format definition always implies some specific capability on the part of
the output device; however Document Architectures are usually aimed at either
some family of output devices, or subsets of function that are expected to be
available on the type of output device selected.

2.1.4.1 ODA
Office Document Architecture (ODA) is an ISO data stream architecture for
interchanging revisable and presentation documents. The ODA standard
provides controls for describing both the logical view and the layout view of a
document.

An ODA document has the following perspectives:

• The content of the document, which is again divided into content portions

• The logical structure, which is a hierarchy of logical objects

• The layout structure, which is a hierarchy of logical layout objects

Logical objects are subdivisions of the document based on meaning.
Layout objects are subdivisions of the document based on appearance.
Content portions are associated with both kinds of objects.

ODA provides three classes of document architecture that represent the
revisable form of a document as well as the presentation form:

1. Formatted

2. Processable

3. Formatted and processable (not included in llA)

Additionally ODA provides architectures at the document level. Currently it
provides architectures for text, image, and graphics, and it is extendable for
other types.
However, ODA is useful for a standardized interchange on both a document level
and at content level.

2.1.4.2 RFT:DCA
Revisable Form Text/Document Content Architecture (RFT:DCA) is an IBM data
stream architecture for interchanging revisable documents. A RFT:DCA
document is a combination of content and format information. A recipient of a
RFT:DCA document can modify both the content and the format.

Historically, RFT:DCA has been a text-oriented architecture, but extensions have
been made available for including data of non-text types.

Format information includes the general characteristics of a document contained
in format declarations such as:

• Page width
• Page depth
• Page numbering scheme

Chapter 2. Overview of Information Interchange Architecture 13

These format declarations are separate from the text of the body of the
document. They contain the information required to modify the overall structure
of a document without disturbing the text.

Office Systems may be dissimilar and they may therefore offer different
capabilities. RFT:DCA supports interchange among dissimilar office systems in
three environments:

The Text Revision environment RFT:DCA allows the text in a document to
be modified at the receiving location.

The Format Revision environment RFT:DCA allows the format information in
a document to be modified to fit
conditions at the receiving location.

The Final Format environment

2.1.4.3 MO:DCA

FFT/DCA allows documents to be
p;esented only as intended by ihe
originator.

Mixed Object: Document Content Architecture (MO:DCA) defines a mixture of
different types of information within a single document. This is as opposed to
FFT/DCA and RFT:DCA that define the interchange of text only documents.

MO:DCA contains text, image, graphics, and layout structures within one
document.

MO:DCA divides into several interchange subsets:

1. MO:DCA-P is a final form data format to be printed or displayed.
P stands for Presentation.

2. MO:DCA-L contains resource documents (mostly images and graphics) to be
stored for a later reference by presentation data streams.
L stands for Library. It normally shows up within lmagePlus*.

3. MO:DCA-R contains resource documents to be stored for a later reference by
presentation data streams.
R stands for Resources. An overlay is often treated as a MO:DCA-R
document, since it is referenced to be included into an AFPDS data stream.

2.1.5 Content Architectures
In order to describe how a Document Content Architecture builds up, here are a
few definitions of some terms used when describing IBM MO:DCA:

Document

Document Element

Structured Field

Document Component

14 Print and View Data Streams

A document is a machine-readable collection of
one or more objects which forms a complete
composition.

A Document Element (also known as a
Structured Field) is a record of variable length
which is self identifying. It contains either
control information or data or both.

Another name for a Document Element.

A Document Component is a set of related
structured fields which are bounded by
structured fields marking the beginning and
end.

Document Content Architecture Within a Document Content Architecture there
is a family of Content Architectures that define
the syntax and semantics of the different
document components which are defined to be
part of the document content architecture data
stream.

2.1.5.1 Who Carries What
Document Content Architectures define what kind of data objects can be carried
by the data stream.

MO:DCA·P can carry:

• FOCA
• GOCA
• IOCA
• PTOCA
• BCOCA*

ODA can carry:

• GGCA
• RGCA
• CCA

For a description of the MO:DCA content architectures refer to Chapter 8, "IBM
Object Content Architectures and Definitions" on page 49.

For a description of the ODA architectures refer to Chapter 9, "Defined Standard
Object Content Architectures and Definitions" on page 59.

Chapter 2. Overview of Information Interchange Architecture 15

16 Print and View Data Streams

Chapter 3. IBM Architectures

Table 1. Architectures, Content Architectures, and Data Streams under SAA. This table shows which print
and view architectures and data streams are applicable under which operating system.

OS/2 AS/400 VM MVS /MS C/CS
Architectures

RFT:DCA x x x x x x
MO:DCA-P x x x x x
Content Architectures

PTOCA x x x x x
/OCA x x x x x x
GOCA x x x x x x
BCOCA x x x
FOCA x x x x x x
FDOCA x x x x x
CORA x x x x
Data streams

AFPDS x x x x x x
IPDS x x x x x x
3270DS x x x x x
scs x x x x x
ASCII x
Note: Architectures are introduced in chapter Chapter 2, "Overview of Information Interchange
Architecture" on page 9.

Content architectures are covered in more detail in chapter Chapter 8, "IBM Object Content
Architectures and Definitions" on page 49.

Data streams are covered in more detail in chapter Chapter 5, "IBM Data Streams" on page 29.

3.1 Mixed Object Document Content Architecture
The Mixed Object Document Content Architecture (MO:DCA) is designed to
integrate the different OCA data objects into a single, device-independent data
stream that can be interchanged between application programs. The programs
can be in the same system or on different systems. MO:DCA defines a memory
and storage format for the data that is independent of communications protocols.
Thus, the MO:DCA data stream can be interchanged across communications
lines or through a common storage medium such as tape or disk.

The MO:DCA data stream consists of the following components:

Layout structure defines the way objects should be presented.

©Copyright IBM Corp. 1993 17

Objects

Mapping

(such as text, graphics, image, and bar code) define
the pieces of a document.

specifies the relationship between the layout structure
and objects.

Because a document's layout structure and objects are separate in the MO:DCA
data stream, a change in one does not affect any other.

All functions and data that make up a MO:DCA data stream are contained in
logical records called structured fields. Related structured fields are grouped
into categories and bound by unique "begin" and "end" structured-field
delimiters.

3.1.1 Minimum Functions Required for MO:DCA
ihe minimum functions required for interchangeable MO:DCA data streams are
based on the intended use of the data stream and are defined by interchange
sets (IS). Currently, three interchange sets are defined-two for presentation
(MO:DCA-P IS/1 and MO:DCA-P IS/2) and one for library (MO:DCA-L).

Within these interchange sets, the minimum functions required are dependent on
the product class-generator, receiver, or receiver/generator. A generator is a
product that creates data streams, while a receiver is a product that interprets
and processes existing data streams.

In general, a generator is only required to generate a valid subset of an
interchange set. A receiver must be capable of interpreting and processing all
of the MO:DCA constructs contained in the interchange set and all of the
constructs for at least one of the data objects contained in the interchange set.
While a product classified as a generator may be able to receive its own
interchange set subset, only those products that fully meet the requirements for
both a generator and a receiver are classified as receiver/generator products.

A MO:DCA-P data stream is intended for presentation at a workstation or on a
printer. MO:DCA-P IS/1 implementations must support all of the base MO:DCA
constructs contained in the interchange set and at least one of the following
objects:

• Presentation Text (PT1)
• Graphics (DR/2VO)
• Image (FS10)

MO:DCA-P IS/2 implementations must support all of the base MO:DCA constructs
contained in the interchange set and at least one of the following objects:

• Presentation Text (PT1)
• Graphics (DR/2VO)
• Image (FS10 or FS11)
• Bar Code (BCD1)

A MO:DCA-L data stream is intended to save data (usually in a library) for later
use by an application program. For example, the Presentation Manager* creates
a MO:DCA-L data stream known as a metafi/e by means of calls to its SAA•
presentation interface. MO:DCA-L implementations must support all of the base
MO:DCA constructs contained in the interchange set, as well as the following
objects:

• Graphics (DR/3V1)

18 Print and View Data Streams

• Image (FS20)

More detailed information about MO:DCA can be found in Mixed Object
Document Content Architecture Reference, SC31-6802.

3.2 Revisable-Form-Text Document Content Architecture
Revisable-Form-Text Document Content Architecture (RFT:DCA) defines the
structure of a text document that is in a form that can be edited or later
formatted. Each recipient of a revisable-form document can modify its contents
and format.

An RFT:DCA data stream consists of format units, text units, and an end unit.

• Format units contain format declarations and include no text except top and
bottom margin text.

• One or more text units contain the body of the document.

• The end unit identifies the end of the document.

3.2.1 Minimum Functions Required for RFT:DCA
The minimum functions required for RFT:DCA interchange are:

• Format unit 1
• Format unit 2
• One or more text units
• An end unit

A text unit must contain at least one body-text structured field.

Additional information about RFT:DCA is in Document Content Architecture:
Revisable-Form-Text Reference, GG23-0758.

Chapter 3. IBM Architectures 19

20 Print and View Data Streams

Chapter 4. Defined Standard Architectures

Architectures in this category are defined by national and international standards
bodies. In this case, the responsible body is International Standards
Organization, and the standards that will be addressed, albeit briefly, in this
section are:

1. Standard Generalized Markup Language (SGML) - ISO 8879

2. Document Style Semantics and Specification Language (DSSSL) - ISO Draft
Standard DIS 10179

3. Standard Page Description Language (SPDL) - ISO Draft Standard DIS 10180

4. Office Document Architecture (ODA) - ISO 8613

SGML is described in overview in Chapter 11, "Document Languages and
Formatting Languages" on page 65, particularly in 11.6, "SGML" on page 72.

DSSSL and SPDL are as yet just draft standards, and there are few if any
applications which are based on them at the time of writing. Given the thrust
towards open systems, and the success to date of SGML, it is unlikely that
anyone in the industry can afford to ignore them. The only question is the time
scale over which they will become significant.

Because of this, a very slight overview of them and their relationship with SGML
is given below.

ODA has already been briefly referred to in Chapter 2, "Overview of Information
Interchange Architecture" on page 9 as it is a component of Information
Interchange Architecture. It is described in a little more detail as an international
standard below.

©Copyright IBM Corp. 1993 21

4.1 The relationships between SGML, DSSSL, and SPDL

SGML
DTD

defines how to
mark up an

l
SGML
document
instance

DSSSL
Specification

tells the formatter
how to lay the
document out

i
Formatter
Program

Figure 5. SGML, DSSL, and SPDL

Formatted
document

expressed in
SPDL

SGML is the ISO document language. A document expressed in a document
language must be formatted by a formatting program. For the formatting
program to do its job, there must be expressed somewhere a set of rules which
define how the document elements described in the document language are to
be formatted. In IBM BookMaster, for example, these rules are contained in a
macro library written in the IBM Script formatting language.

DSSSL is the ISO standard which defines how these rules are to be expressed,
so that SGML-complying formatters can convert the source text to a final form.

The final form produced by formatters is often a data stream that is only
understood by particular output devices. Many IBM programs use AFPDS as a
final form; many workstation programs use Postscript.

ISO are in the process of defining a "Page Description Language" which is
intended to become a standard final form for interchange. It may be used either
directly by output devices, or possibly it may be converted to another print or
view data stream for final presentation.

The ISO POL is to be SPDL. It is based on the concepts which have proved so
successful in the Postscript Page Description Language, and can in many ways
be considered a superset of that language.

4.2 Office Document Architecture
Office Document Architecture (ODA) is an ISO data stream architecture for
interchanging revisable and presentation documents. The ODA standard
provides controls for describing both the logical view and the layout view of a
document. The ODA document model has a threefold perspective:

1. The content, which is divided into content portions.

22 Print and View Data Streams

2. The logical structure, which is a hierarchy of logical objects.

3. The layout structure, which is a hierarchy of layout objects.

Logical objects are subdivisions of the document based on meaning, and layout
objects are subdivisions of the document based on appearance.

Content portions are associated with both kinds of objects. For example, a text
content portion may be associated, in the logical structure, with a logical object
called "glossary definition." After formatting, that content portion may also be
associated, in the layout structure, with a layout object called a "block."

In addition, ODA permits the creation of styles, which are collections of attributes
affecting the layout and presentation of a document.

In order to represent both the revisable form of a document and the presentation
form, ODA provides three classes of document architecture:

1. Formatted

2. Processable

3. Formatted-processable
(llA does not currently include the formatted form or the
formatted-processable form)

ODA also provides for document classes, where a particular class is defined by
a particular generic logical or layout structure. Generic structures serve as
templates for the processing of individual documents.

In addition to expressing the logical structure and layout structure at the
document level, ODA provides architectures at the content level. ODA currently
provides architectures for:

• Text

• Image

• Graphics

It is extensible for other types. This inclusiveness makes ODA useful for
standardized interchange of both document-level information and content-level
information.

4.2.1 General Concept of ODA
Purpose of ODA

The purpose of the document architecture is to facilitate the
interchange of documents in a manner such that:

• Different types of content, including text, image, graphic and
sound, can coexist within a document.

• The intentions of a document originator with respect to editing,
formatting and presentation can be communicated most
effectively.

The Office Document Architecture provides for the representation of
documents in three forms:

1. Formatted form
allows documents to be presented as intended by the originator.

2. Processable form

Chapter 4. Defined Standard Architectures 23

allows documents to be edited and formatted.

3. Formatted processable form
allows documents to be presented as well as edited and
reformatted.

Alternative terms commonly used are final form and image form
formatted form, and revisable form for processable form.

Each of these forms allows the originator to express intentions
regarding the structuring and/or formatting of the interchanged
document.

Overall Concept of ODA

The concept of ODA is based on:

• The existence of a layout view and a !ogica! view of the
document, the view from the physical viewpoint (for example, a
collection of pages), and the view in the sense of its abstract
components (for example, an assembly of sentences).

• The existence of a specific structure and a generic structure. The
specific "document" structure is the one that the user may read;
the generic structure is the template that guides the creation of
the document and that could be reused for its amendment

• The existence of document classes:
a document class is the set of generic features that are common
to a category of documents (for example, Sales Report Form).

Logical Structure and Layout Structure

24 Print and View Data Streams

The key concept in the document architecture is that of structure.
Document structure is the division and repeated subdivision of the
content of a document into increasingly smaller parts. The parts are
called objects. The structure has the form of a tree.

The document architecture permits two structures to be applied to a
document:

1. A logical structure

2. A layout structure

Any one or both structures may be applied to a given document.

In the logical structure, the document is divided and subdivided on
the basis of the meaning. Examples of logical objects are chapters,
sections, figures, and paragraphs.

Chapter

, , •
Section Section Section

Paragraphs ~ Paragraphs Paragraphs

Figures i. Figures Figures

Figure 6. Diagram of a Logical Structure of a Document. The logical structure of a
document is determined by the author of the document. It is based upon chapters and the
different sections within chapters.

In the layout structure, the document is divided and subdivided on the basis of
the layout. Examples of layout objects are pages and blocks.

The logical structure and the layout structure provide alternative but
complementary views of the same document. For example, a book can be
regarded as consisting of chapters containing figures and paragraphs, or
alternatively, as consisting of pages that contain text blocks and/or graphic
blocks.

Content Portions: The basic elements of the content of a document are called
content elements. For content consisting of character text, the content
elements are characters. In the case of images or graphics, the
content elements are picture elements (also called pels).

Content Architectures: A content portion associated with a basic logical object or
a basic layout object may have a more detailed internal structure.
The rules governing such an internal structure depend on the type of
content and are called a content architecture. The content of a basic
logical object or a basic layout object is structured according to only
one content architecture.

Attributes: An attribute is a property of a document, or of a document
constituent. It expresses a characteristic of the document component
concerned, or a relationship with one or more documents or
document components.

Relations Between Logical Structure and Layout Structure: The logical structure
and the layout structure are, in principle, independent of each other.
The logical structure of a document is determined by the author and

Chapter 4. Defined Standard Architectures 25

embedded in the document during the editing process. The layout
structure is usually determined by a formatting process. The
formatting process may be controlled by attributes called layout
directives associated with the logical structure.

Specific and Generic Structures: In a document, the logical objects and/or the
layout objects can often be classified into groups of similar objects.
Therefore the concept of object class is introduced.

The similarity may be related to logical features such as chapter,
section, or paragraph hierarchy, to layout features such as size or
styl, or to content such as page headers and footings. Even an entire
document may be a member of a group of similar documents, a letter,
a memorandum, or a report.

Document Profile: The document profile consists of a set of attributes associated
with a document as a whole. In addition to reference information such
as title, date, and author's name, which facilitates storage and
retrieval of the document, the document profile contains a summary
of the document architecture features that are used in the document,
in order that a recipient can easily determine which capabilities are
required for processing or imaging the document.

Generic-document: A generic-document consisting of a document profile and
generic structures can be used to assist in the processing of
interchanged documents. A generic-document may be interchanged.

~1

For a complete description of ODA refer to Information Interchange
Architecture: Concepts, GG24-3503.

r r
..

Page c:J
r • 1

Text .Image Graphic

Attributes I ~1 Attributes I ~1 Attributes I
Figure 7. Diagram of a Layout Structure of a Document. The layout structure of a
document is determined by the formatting process and controlled by attributes. It is based
upon pages or block.

26 Print and View Data Streams

4.3 Industry Standard and non-IBM Proprietary Architecture
In this book we deal with "Industry Standard" and non-IBM proprietary machine
readable documentation at the data stream or object level. Our concern is to
describe for the benefit of IBM system users how to make data in these formats
fit into their systems and documentation.

There are no architectures that are "Industry Standard" in any case; the only
architectures widely accepted in the computer industry in this sense are the ISO
standards which are introduced in the previous section.

Chapter 4. Defined Standard Architectures 27

28 Print and View Data Streams

Chapter 5. IBM Data Streams

A data stream is a continuous ordered stream of data elements conforming to a
given format. The data streams that are part of SNA Common Communications
Support of SAA (CCS) can transfer data between:

• Application programs

• An application program and a printer

• A workstation and an application program

The application programs, workstation, and printer can be on the same system
or on different systems.

The data streams in Common Communications Support include:

• The Intelligent Printer Data Stream* (IPDS*) is the system-to-printer data
stream for all-points-addressable printing.

• The 3270 Data Stream defines a formatted data stream used to transmit data
between an application program and a nonprogrammable workstation or
printer.

• The Character Data Representation Architecture (CDRA) is the data stream
that preserves the original meaning of graphic characters during accessing,
processing, conversion, and interchange of character data between and
across SAA systems.

• The Mixed Object Document Content Architecture (MO:DCA) defines the data
stream used to transmit objects from an application program to a
programmable workstation or to another application program.

• The Revisable-Form-Text Document Content Architecture (RFT:DCA)
(RFT:DCA) defines the data stream used to transmit revisable-form text and
non-text objects between application programs in an office environment.

5.1 Device Dependent Data Streams
The next sections describe different data streams that are device dependent.
The data streams include commands that can be interpreted correctly only by a
device that has support for the data stream concerned.

5.1.1 Intelligent Printer Data Stream
The Intelligent Printer Data Stream (IPDS) is used to send data created by the
AFP printer driver PSF or an application program to an all-points-addressable
printer. The Intelligent Printer Data Stream can carry the BCOCA*, FOCA,
GOCA, IOCA, and PTOCA document objects, described in 8.1, "Objects."
Therefore, it is possible to print pages containing a mixture of different data
types. Different application programs can create source data (text, graphics,
image, and bar code) independently of each other. IPDS architecture allows the
output of these independent application programs to be merged when printed, so
that an integrated mixed-object page results.

Because IPDS architecture is independent of the communication protocol, the
same data stream can be transmitted to printers that are attached to channels,
to controllers, or to local area networks or any other communication link that
allows transparent transmission of data. All data and commands are transferred

©Copyright IBM Corp. 1993 29

through self-identifying structured fields that describe the presentation of one or
more pages. IPDS products must be part of the printing subsystem of each
environment in which IPDS data streams will be interchanged. All printing
subsystems have the following elements in common:

• Application programs generate the source data to be printed. Some
application programs generate text data that previously would have been
directed to line printers. Other application programs generate
all-points-addressable text or other data types such as image, graphics, and
bar code for IPDS printers.

• Presentation services accept source data, transform it into an Intelligent
Printer Data Stream without changing the existing source data, and
communicate with an IPDS printer. Presentation services also permit the
output of line-printer application programs to be enhanced by IPDS
capabilities, such as duplexing, overlays (electronic forms), and multiple
high-quality fonts.

• IPDS printers accept the Intelligent Printer Data Stream. They can attach to
several different system or subsystem environments using one or more
communication protocols.

The IPDS implementation requirements differ for presentation services products
and printer products. For more information, see 5.1.1.2, "Minimum Functions
Required for IPDS Support" on page 32.

The detailed reference to the AFPDS data stream itself, to the level of the
structured fields and object descriptions is AFP Data Stream Reference,
5544-3202, to which the reader is referred for that level of technical detail.

5.1.1.1 IPDS Functional Areas
The IPDS architecture is divided into several functional areas, called command
sets, each representing a major printer capability. A command set consists of:

• IPDS commands, including semantics (the relationship of the command
symbol to its meaning)

• Syntax (the command structure and format)

• Architecturally valid values for each field in the command

In addition, the architecture contains a registry of exception-reporting codes for
error conditions in each of its command sets and for printer-related failure, fault,
or host-notification conditions.

Each command set is further divided into at least one subset of defined function
and a subset of optional function. Some command sets have more than one
subset of defined function. Command sets that are defined to carry object data
also define a data tower that describes the data carried in the "Write" command
of the corresponding IPDS command set.

The command-set design allows IPDS architecture to support a wide range of
printer products. Product developers can match command-set implementations
to the specific needs of their products.

Device Control This command set is composed of the IPDS commands that
initialize the environment for a page, communicate device
controls, and manage the printer acknowledgment protocol.

30 Print and View Data Streams

Text This command set is composed of the IPDS commands for
presenting text information on a page, a page segment, or an
overlay.

10 Image This command set is composed of the IPDS commands for
presenting images on a page, a page segment, or an overlay.

Graphics This command set is composed of the IPDS commands for
presenting graphics on a page, a page segment, or an overlay.

Bar Code This command set is composed of the IPDS commands for
presenting machine-readable bar code information on a page, a
page segment, or an overlay.

Page Segment This command set is composed of the IPDS commands to store
and present IPDS constructs containing text, graphics, image,
and bar code information. These stored constructs, which can
be merged with a logical page to assume the current
environment, are called page segments.

Overlay This command set is composed of the IPDS commands to store
and present IPDS constructs containing text, graphics, image,
and bar code information. These stored constructs, which
specify their own environment and are often used as electronic
forms, are called overlays.

Loaded Font This command set is composed of the IPDS commands to load
and delete font information.

For some IPDS command sets, a data tower exists that consists of the data
carried in the "Write" command of the corresponding IPDS command set. A
data tower can be divided into levels. In that case, a higher level of a data tower
consists of all lower levels, plus some set of additional functions.

Some data towers are defined and controlled by Object Content Architectures
and are simply registered by IPDS architecture. The following data-tower
definitions include the name of the architecture that defines and controls each of
the data towers.

Text This data tower is composed of Presentation Text Object Content
Architecture (PTOCA) control sequences contained in the data field of
the Write Text command. These control sequences are required to
present text information in a page, a page segment, or an overlay.
The text data tower contains two presentation text (PT) levels-PT1
and PT2-defined by PTOCA.

10 Image This data tower is composed of Image Object Content Architecture
(IOCA) self-defining fields contained in the data field of the "Write
Image 2" command. These self-defining fields are required to present
image data in a page, a page segment, or an overlay. The IC-image
data tower contains one level-FS10- defined by IOCA.

Graphics This data tower is composed of Graphics Object Content Architecture
(GOCA) drawing orders contained in the data field of the "Write
Graphics" command. These drawing orders are required to present
graphics in a page, a page segment, or an overlay. The graphics
data tower contains one level-DR/2VO-defined by GOCA.

Bar Code This data tower is composed of Bar Code parameters contained in
the data field of the "Write Bar Code" command. These parameters
are required to present machine-readable bar-code information in a

Chapter 5. IBM Data Streams 31

page, a page segment, or an overlay. The Bar Code data tower
contains one level-BCD1- defined by the BCOCA architecture.

5.1.1.2 Minimum Functions Required for IPDS Support
To claim support of the IPDS architecture, an IPDS printer product must do the
following:

• Implement the DC1 subset of the device-control command set.
• Implement at least one of the following subsets of the IPDS command sets:

Text (TX1)
Image (101)
Graphics (GR1)
Bar codes (BC1)

To claim support of the IPDS architecture, a presentation services product must
do the following:

• For all commands generated by the presentation services, the command
must conform to the IPDS state diagram.

• For all commands generated by the presentation services, the command
syntax must conform to the syntax defined by the IPDS architecture.

5.1.1.3 Command-Set Support Requirements
To claim support of the text, graphics, 10-image, or bar-code command sets of
the IPDS architecture, an IPDS printer product must implement an architecturally
defined subset of the command set. Printers can support additional, optional
elements of the command set. In addition, a printer product must also
implement a level of the corresponding data tower.

To claim support of any other IPDS command set, a printer product must
implement an architecturally defined subset of the command set. Printers can
support additional, optional elements of the command set.

Refer to Intelligent Printer Data Stream Reference, 5544-3417, for additional
information on IPDS command sets.

5.1.1.4 Data Tower Support Requirements
To claim support of a data tower, a printer product must implement an
architecturally defined level of the data tower.

5.1.2 3270 Data Stream
The 3270 Data Stream is a formatted data stream used to transmit data between
an application program and a 3270-type workstation or printer. The 3270 Data
Stream is based upon the presence of a mapped character buffer in the 3270
workstation. A fixed one-to-one relationship exists between each
character-storage location in the buffer and each character position on the
display.

An application program uses one of two methods to communicate with the user
at a workstation:

• The application program leaves the display surface unformatted and the user
uses it in a free-form manner.

• The application program either completely or partially formats the display
surface (arranges it into fields) and the user enters data into the fields.

32 Print and View Data Streams

The 3270 Data Stream allows the application programmer to divide the display
surface into one active area and, optionally, one or more reference areas; each
area is called a partition. The partition that is active contains a cursor and is the
only partition in which the user can enter data or requests.

5.1.2.1 Minimum Functions Required for 3270 Data Stream
The 3270 functions required for Common Communications Support are called
extended function base support (EBASE). EBASE specifies functions in the
following categories:

• Query replies

• Structured fields

• Basic 3270 commands

• Basic 3270 orders

• 3270 controls/special characters

Please refer also to 5.1.5, "Line Printer Data" on page 36.

The document IBM 3270 Data Stream Programmer's Reference identifies the
specific functions required in an SAA 3270 Data Stream.

5.1.3 Character Data Representation Architecture
Graphic characters such as letters of the alphabet and punctuation marks are
the fundamental basis of written communication. For processing and
communication by computers, they are encoded, processed, and stored as
binary numbers, commonly referred to as code points. The result of the
encoding process for a graphic character set is called a coded graphic character
set, or simply a code page, which associates graphic characters with their
corresponding code points.

Over the years, industry, national, and international standards have been
created to provide rules for encoding graphic characters. Today it is common
place for large communication networks to span several countries. Many
problems have resulted from the use of different character representation codes.
Some of the more common problems follow:

• The dollar symbol ($) is sent in an unarchitected data file from a US-based
host system to a UK system, where it then appears as a pound sterling
symbol(£).

• The Personal Computer supports a larger character set than can be
processed in a non-PC environment.

• Code point conversion tables vary among different products, producing
inconsistent results.

Character Data Representation Architecture (CDRA) is the CCS data stream that
defines a set of identifiers, services, supporting resources, and conventions to
achieve consistent representation, processing, and interchange of graphic
character data1 in SAA environments.2

1 Graphic character data is not to be confused with the "graphic" data type, which is used to represent double-byte data in
some programming languages.

2 Though CORA is primarily focused on SAA environments, it is applicable in non-SAA environments.

Chapter 5. IBM Data Streams 33

CORA supports the principle of data and application independence, which is a
vital requirement of distributed computing environments. It follows the premise
that the elements of character representation are essentially data attributes, and
these elements must be uniquely captured by a method of identification that can
be associated with the data. Using CORA, applications or devices handling data
have one identifier from which they can derive all the information needed to
correctly identify the graphic characters represented by code points. Having one
identifier permits consistent and correct handling of graphic character data.

CORA defines:

• An identification mechanism and associated supporting resources

• Functions such as tagging to associate the identifier with data and
applications

• Tables necessary for cons!stent code point conversion of ceded graphic
character data

• Recommended strategic coded graphic character sets

These CORA features are described in the following sections.

5.1.3.1 Identification Mechanism
The CORA identification mechanism is used to specify the identity of graphic
character data and uniquely refer to this data at any place in a system. It can be
thought of as providing additional information to eliminate the ambiguity inherent
in the binary code point. This identification mechanism has two forms:

• The short form is a fixed-length two-byte identifier, known as the Coded
Character Set Identifier (CCSIO), which represents the elements of the
long-form identifier.

• The long form is a variable-length identifier, composed of multiple elements:

Encoding scheme identifier
Character set identifier
Code page identifier
Additional elements as needed for each additional pair of character set
and code page identifiers
Additional coding-related required information (ACRI), which can be used
to specify the ranges of valid first bytes for double-byte characters as
implemented by the IBM Personal Computer

5.1.3.2 Tagging
Products implementing CORA associate the CORA identifiers with the data
objects they manage. This tagging of data objects is the method used to identify
the meaning of the coded graphic characters in the object. This allows a graphic
character that has different code points assigned in different machine types to
maintain its meaning.

The tag may be in a data structure that is logically associated with the data
object (known as explicit tagging). Alternatively, it may be inherited from the tag
fields associated with other related data objects, or from the computing
environment itself (known as implicit tagging).

34 Print and View Data Streams

5.1.4 scs

5.1.3.3 Code Point Conversion
The process of managing character data representations that are different from
the representations expected by applications, devices, or interchange
environments is known as difference management. This process involves the
ability to recognize if a difference exists, and the ability to deal with differences
consistently and correctly. CDRA describes how to manage the representational
differences in coded graphic characters, and the criteria to be used for the
creation of character conversion tables and methods.

5.1.3.4 Strategic Coded Graphic Character Sets
CDRA defines the SAA character sets and code pages that can be used to
minimize differences in coded graphic character representations and related
potential data loss. When data is transferred between environments using
different character representations, the integrity of characters that are common
to the two sets of coded graphic characters can be maintained. Integrity in
CDRA terms is the ability to preserve the meaning of a coded graphic character
as defined by the CDRA identifier.

CDRA defines CCSIDs for coded character sets. The two types of CCSIDs are:

• SAA
• Migration and coexistence

The SAA CCSIDs provide strategic direction for new applications by enabling the
preservation of character data integrity within a country or a group of countries
that use the SAA character set composing the SAA CCSIDs.

5.1.3.5 Minimum Functions Required for CORA
Products implementing CDRA Level 1 must implement the appropriate functions
from the following list:

• The identification mechanism and associated supporting resources

• The tagging function to associate the identifier with data and applications

• The difference management function to provide consistent code point
conversion of coded graphic character data

• The strategic coded graphic character sets. This support might entail
migrating existing support for current coded graphic character sets.

Additional information about CDRA is in Character Data Representation
Architecture-Level 1 Reference, SC09-1390. Other books related to CDRA are
listed in Appendix E, Bibliography.

The SNA Character Stream is a sequential character string composed of EBCDIC
controls and user data. The primary function of the control codes is to format
data either on a printer or a display. SCS control codes can be intermixed with
graphic data characters. SCS functions do not include data flow control
functions.

Examples of SNA Character Stream control are:

Backspace
Carrier return
Form feed
Horizontal tab

Chapter 5. IBM Data Streams 35

Presentation position
Word underscore

5.1.5 Line Printer Data
Normally applications are programmed to generate output for line printers. This
output is often in fixed length records, with each letter is already on the offset
where it will be printed.

The first position is used either as an ANSI carriage control character or as a
machine carriage control character.

This data stream is often also called the 1403 data stream, because that was the
first printer that this data stream was defined for.

The line piintei data stieam is also suitable foi AFP P;inting without any need
for changing existing application programs. AFP supports this by providing tools
to define print definitions externally to application programs, and allowing
invocation of them at print time.

Please refer also to 5.1.2, "3270 Data Stream" on page 32.

5.1.6 IBM Personal Printer Data Stream
It's stretching things a little to call this a data stream, as it is principally text
based, but it can contain bitmap data, so it does just qualify. Also, it is known as
a data stream, so it would be confusing for us to treat it as a data object.

PPDS was previously known also as IBM PC ASCII Printer Data Stream, and was
designed to handle printing on the IBM PC in an eight bit byte ASCII
environment.

PPDS is an expandable standard, and generally devices should ignore
unsupported control codes; however, this may not be true of some older devices.

PPDS is essentially text or bitmap interleaved and managed by control codes.
There are three types of control codes:

Single byte control codes
Escape sequences
Control sequences functions

PPDS is still found wherever there are PCs, and is probably still the most widely
used workstation print data stream.

PPDS is split into three levels, each indicating a level of development:

Level 1 contains support for the following:

• 9 pin printers
• 24 pin printers
• Basic paper handling (new page)
• Limited font selection
• Image Graphics with multiple resolutions

Level 2 contains additional support to level 1 for the following:

• Quietwriter*
• Quickwriter Ill
• Better font selection

36 Print and View Data Streams

• Better font control
• Enhanced paper handling (cut sheet)
• Better text justification and formatting

Level 3 contains additional support to level 1 and 2 for the following:

• Support for page printers (IBM 4019)
• Random placement of text and graphic images
• Limited drawing by printer
• Selection of paper orientation
• User of typographic fonts

The following single byte controls are supported by most IBM personal Printers:

Table 2. PPDS Single Byte Control Codes

Mnemonic

NUL

BEL

BS

HT

LF

VT

FF

CR

so
SI

DC1

DC2

DC3

DC4

CAN

ESC

Table 3 (Page

Hex Code

X'2D'

X'30'

X'31'

X'32'

Decimal Hex Function

00 00 Null

07 07 Bell

08 08 Backspace

09 09 Horizontal Tab

10 OA Line Feed

11 OB Vertical Tab

12 oc Form Feed

13 OD Carriage Return

14 OE Shift Out • Double wide print line mode

15 OE Shift In • Condensed print

17 11 Device Control 1 • Select/XON

18 12 Device Control 2 • Set 10 cpi

19 13 Device Control 3 - Deselect/XOFF

20 21 Device Control 4 • Cancel Double wide

24 18 Cancel (Clear printer buffer)

27 1B Escape

Note: This level of detail doesn't really belong in this book, but the authors have
lost count of the numbers of times they have needed these and haven't been
able to find them.

5.1.6.1 Escape Sequences
Escape sequence functions consist of the Escape character (decimal 27) followed
by a code, and in some cases then by parameters.

1 of 2). Common PPDS Escape Sequences

Function Parameter

Auto Underscore X'OO' off, or X'01' on

Set line spacing 1/8 inch

Set line spacing 7/72 inch

Set line space to last Esc X'1 B41' value, or
to 1/6 inch if none

Chapter 5. IBM Data Streams 37

Table 3 (Page 2 of 2). Common PPDS Escape Sequences

Hex Code Function Parameter

X'33' Set graphic line spacing Hex number of 1 /216 inch increments

X'34' Set current position as top of form

X'35' Set Auto Line Feed X'OO' off or X'01' on

X'36' Select PC Character Set 2

X'37' Select PC Character Set 1

X'3A' Set pitch 12 cpi

X'41' Set Text Line Spacing Hex number of 1/72 inch increments

X'42' Set Vertical Tab stops n hex numbers specifying n tab stops in
numbers of lines, x'OO' terminating

X'43' ~ot P::.n,o lonnth U.o.:v "'• • ...,...a....,.. .. -~Ii"',..,,.. -..- 'U'1nn1 __ _... a..._..,.. •---•L..
--· • -~- ·-··~ .. I I

I IVA I IUI I llJVI UI 111 IV..:tt UI A VV CJ.I IY I IVA 1.:;::;1 l~LI I

in inches

X'44' Set Horizontal Tab stops n hex numbers specifying n tab stops in no.
of columns, x'OO' terminating

X'45' Begin Emphasized Print

X'46' End Emphasized Print

X'47' Begin Double Strike Print

X'48' End Double Strike Print

X'4A' Relative Move Base Line Hex number of 1/216 inch vertical move

X'4B' Normal density bit image (60 dpi, 72 dpi First byte is low byte, second high, of two
vertical) byte count of image bytes; followed by n

image bytes. Each image byte represents 8
vertical dots.

X'4C' Dual Density bit image (120 dpi, 72 dpi As for 4B
vertical)

X'4E' Set skip perforation Hex number of lines to be skipped at bottom
of page

X'4F' Reset skip perforation

X'52' Set default Tab racks

X'53' Begin sub or superscript X'OO' superscript, X'01' subscript

X'54' End sub or superscript

X'SS' Set print direction X'OO' bidirectional, X'01' L2R, X'02' R2L

X'SC' Print All Characters First byte is low byte, second high, of two
byte count of bytes to be printed as graphic
characters, including those normally controls

X'SE' Print Single character Next character to be interpreted as graphic

X'SF' Continuous overscore mode X'OO' off, X'O 1 ' on

X'64' Relative move inline forward Move (byte1 + byte2*256)/120 inches right

X'65' Relative move inline back Move (byte1 + byte2*256)/120 inches left

X'6A' Stop printing

X'6B' Set Portrait orientation

X'6C' Set Landscape orientation

X'6E' Select aspect ratio X'OO', X'01', or X'03'

38 Print and View Data Streams

5.1.7 CDPDS

5.1.6.2 Control Sequence Functions
Control sequence functions form more sophisticated controls for newer printers.
They consist of an escape character, followed by a hexadecimal '58', followed by
a one-byte code, followed by a two-byte count (least significant byte first) of the
number of bytes following in the sequence.

Esc [Code Count_low Count_high (Count)bytes_of_parameter_data

Composed Document Printer Data Stream is a final form data stream created
when documents are to be printed.

It is basically a subset of the MO:DCA-P architecture. This data stream contains
device dependent controls (medium related fields).

When working with this data stream the device driver is normally GDDM. The
software generating this data stream are normally of the DisplayWrite* family.

5.2 Device Independent Data Streams

5.2.1 AFPDS

5.2.2 MO:DCA

Advanced Function Printing Data Stream is a final form data stream created as a
result of a print request originated from various office, publishing, and business
applications.

AFPDS supports a Superset of MO:DCA data stream functions.

It is the input data stream to PSF (Print Services Facility is the Printer Driver for
AFP printers) and to GDDM as well as products working with GDDM* (such as
GQDF or BrowseMaster) for display, manipulation, and/or conversion.

Mixed Object: Document Content Architecture defines IBM's SAA presentation
data stream.

5.2.2.1 MO:DCA·P
Mixed Object: Document Content Architecture for Presentation

This data stream contains a collection of various data objects such as text,
images, graphics, and other components such as layout structures.

Presentation documents consists of one or more pages of final form data in a
format that is ready to be printed or displayed.

5.2.2.2 MO:DCA·R
Mixed Object: Document Content Architecture for Resources

Presentation documents contain objects that are intended to be stored in a
library for later reference by presentation data streams. A typical example is a
page overlay used by lmagePlus data streams.

Chapter 5. IBM Data Streams 39

5.2.2.3 MO:DCA-L
Mixed Object: Document Content Architecture for Libraries

Presentation documents contain objects that are intended to be stored in a
library. A typical example is a page overlay used by lmagePlus data streams.

5.2.2.4 DCA
Document Content Architecture in the office world describes the form and
meaning of the contents of a document. Documents in this format can be
interchanged through a network. The text of a document is one of the two forms:
REVISABLE and FINAL.

RFTDCA Revisable Form TexVDocument Content Architecture specifies how IBM
Office systems interchange documents in revisable form and defines the
structure of the data stream

The data stream contains the text and fields containing general formatting
specifications.

Contents and format in revisable form can be modified by any person that has
access to it.

FFTDCA Final Form Text I Document Content Architecture specifies how IBM
Office systems interchange documents in final form and defines the structure of
the data stream

The data stream contains the text and control codes representing the formatting
specifications.

Contents and format in final form cannot be modified. It is for presentation on a
display or printer.

RFTXT Revisable Form Text Documents are created on IBM equipment other
than Personal Services /370. An example of these devices is the IBM
Displaywriter.

Documents in this format that are created on a workstation can be loaded to a
system /370 or AS/400* for further processing.

Documents created with Personal Services /370 or Personal Services/400 can be
downloaded to a workstation for further processing.

40 Print and View Data Streams

(

Chapter 6. Industry Standard Data Streams

6.1 Device Independent Data Streams

6.1.1 Postscript

The following section describes data streams that are not device dependent.
These data streams are supported by different devices.

We are treating Postscript as a data stream for the purposes of this document
because it is capable of containing mixed data types and describing a full
composite document.

Postscript objects are generally denoted by the use of a file type or extension of
PS or EPS. L/STPS is also seen.

6.1.1.1 Postscript and Encapsulated Postscript
EPS stands for Encapsulated Postscript, and can contain anything a Postscript
data stream contains. Encapsulated Postscript objects are intended to be
included in other composite documents, while Postscript data streams are
generally documents in their own right. These composite documents need not
be Postscript data stream; many desk-top publishing products use EPS files for
their graphic entities. An Encapsulated Postscript file usually doesn't contain
showpage commands (the Postscript command to print a page), and depends on
the document containing it to control the where and on which page it is printed.
It also contains bounding box data which defines its size and internal coordinate
system.

1-1

1-1

Composite Docu~ent

Defines which page

Defines position

•
1

EPS

1
l

Figure 8. Use of EPS Files

©Copyright IBM Corp. 1993 41

6.1.1.2 Stream Contents
A Postscript data stream can contain text, font data, vector graphics, and bitmap
images. While usually monochrome, Postscript is capable of supporting full
color.

The Postscript data stream is device and resolution independent, except for
image bitmaps, which of course have a defined number of picture elements.
Output resolution and color capabilities are dependent on the device at which
output is expressed.

Text is stored as characters, and the output form is dependent on the font
current at that point. The Postscript data stream can contain the font data, or
can just give the name of the font and assume that font data exists at the output
device.

Postscript was designed as a Page Description Language, and has all the
richness of a full programming language. Postscript instances can be very
complex (equally, simple Postscript instances can produce excellent output).

6.1.1.3 Usage
Postscript is effectively the industry standard for high quality output in the
publishing industry. The vast majority of typesetters now use Postscript as their
input medium for both monochrome and high quality color work. Anyone
intending to do serious work in the publishing industry must be capable of
handling Postscript.

Postscript is also effectively the industry standard for quality output in the
workstation world. Low-cost laser printers at the date of publishing are
continuing to use proprietary data streams, but all but the cheapest now offer
Postscript as an option, and Postscript printers are becoming lower in price.
Virtually all desk-top publishing software, and all serious graphics software, offer
Postscript as an output option, if not the default and only option.

6.1.1.4 IBM Data Stream Integration with Postscript

Document
Composition
Facility

ProcessMaster
AFPDS to
Postscript

Postscript

Figure 9. IBM Products and Postscript

IBM
Postscript
Interpreter

Print
Services
Facility

IBM's mainframe publishing formatter, DCF, can provide output in Postscript as
well as AFP. IBM is in line with the industry. Thus all applications which use
DCF as their formatter are Postscript capable.

42 Print and View Data Streams

/

IBM has AFP as its medium quality output data stream for non-publishing
software. We deliberately use the term "medium quality" in this context,
because although 240 and 300 pels per inch is regarded as high quality in the
computer printer world, in publishing it is at best "medium quality"; a publisher
would only start calling output "high quality" above around 1000 pels per inch.
The VM and MVS product IBM ProcessMaster contains an AFPDS to Postscript
conversion utility, which allows any AFPDS data stream to be used with
Postscript devices. Note however, that the files created by this utility tend to be
extremely large, even by Postscript standards, and may take a significant time to
transfer over communications links and to print.

The reverse process, of converting Postscript to AFP, is carried out by the IBM
Postscript Interpreter. This mainframe product allows any Postscript data
stream to be output on AFP devices. Note in this case that some Postscript
products allow for the inclusion of an "image header" which is often ignored by
Postscript devices; the IBM Postscript Interpreter will not, and any files to be
used with the IBM Postscript Interpreter should be created without this header.

At the time of writing, IBM has announced, but not yet delivered, the capability of
handling Postscript as an input data stream to PSF/2 (Print Services Facility/2),
in version 1.1. PSF/2 is a product which allows the use of AFP printers in a LAN
environment, and, with version 1.1, in a mixed LAN/host environment.

6.1.1.5 Transform Availability
Many programs provide Postscript as output, because of both its capability of
providing a device and resolution independent data stream containing text,
vector, and bitmap graphics, and also the large range of printers and other
output devices that support it.

Fewer programs support it as an input data stream, because of its relative
complexity. In general, where it is allowed as input, either only a very simple
subset is used, or the input is converted to a bitmap.

6.1.1.6 Device Independence
Postscript defined for a specific printer or operating system can be less than
totally device independent. If you have the option (when selecting printer drivers
for an application under OS/2" or DOS/Windows, for example) select a generic
Postscript driver (often just identified as "Postscript Printer"). This will
maximize your chances of producing a data stream that can be used anywhere.
(Another frequently offered option it is best to avoid is "Image Header" - not all
interpreters can handle these.)

This also applies to Postscript when it is being used as a programming
language, or writing applications that produce Postscript as an output stream. It
is best to ensure that the subset of Postscript that is being written does not
contain any printer-specific commands if you want your output to be truly
portable. Fortunately this is relatively easy given the richness of the Postscript
definition.

Chapter 6. Industry Standard Data Streams 43

44 Print and View Data Streams

Chapter 7. Non-IBM Proprietary Data Streams

7.1 Microsoft Rich Text Format
Though not totally device independent (it contains, for example, font information
which may not be appropriate on some output devices - it cannot itself contain
font definitions to devices not containing those fonts, like Postscript can), this
data stream is not tied to specific devices.

It is essentially a workstation format used to store document information by
several Microsoft** application programs. The format documentation is available
to developers, and so can be used to exchange information between
applications.

Its principal use is as a revisable document definition language for storage and
interchange.

An RTF document can contain font and formatting reference information, and
character text. Though not sufficiently rich to be described a Page Description
Language, the position on page of text, font family, and size can be defined.

An RTF stream can contain embedded picture information; either OS/2 or
DOS/Windows metafile, or bitmap. Other formats must be converted before
inclusion in the document.

If it is necessary to convert an RTF data stream to another for use by other
programs, the Ami Pro word processor can import RTF, and export as many
kinds of file format; including RFT:DCA, and a tagged ASCII format that is readily
transformed to GML (see A.1, "Conversion Between Ami Pro and GML" on
page 147).

7.2 PCL (Printer Control Language)
The PCL Printer Language was and is defined by the Hewlett-Packard** (HP**)
Company to drive their range of printers, and has been adopted by several other
companies as either the only or an optional way to drive the printers they make
as well. This print data stream has evolved as new printers with new functions
became available, and the current level is PCL 5.

PCL is a complex data stream, and as a printer data stream does not in general
lend itself to ready conversion to other forms. It should not be generated unless
it is to be used to drive a printer which understands it.

The PCL data stream allows the printing of:

• Typographic quality text

• Raster images

• Vector graphics

PCL 5 has added the capability of handling scalable fonts to the previous bitmap
font capability, and incorporated the HPGU2 vector graphics definitions into PCL.

©Copyright IBM Corp. 1993 45

The PCL language is defined in detail in The HP PCL 5 Printer Language
Technical Reference Manual, Hewlett-Packard part no. 33459-90903, which should
be referred to for any specific details. We recommend this manual as an
exhaustive reference to both PCL and HPGL.

However, to allow simple parsing of the data stream if required, we include a
brief overview of its structure below.

Raster graphics included in the data stream may be uncompressed, or
compressed using:

• Run length encoding

• The TIF "packbits" coding scheme

• Delta Row compression

The run-length encoding is done with a pair of bytes, the first of which is a
repetition of the data in the second byte; a repetition count of 0 says the pattern
is not repeated, 1 says it is repeated twice, and so on.

Packbytes (also known as packbits) compression is a form of run-length
encoding. Again a control byte precedes the raster data, and determines
whether the raster data is to be repeated some number of times or whether the
control byte is followed by a number of literal raster bytes. If the sign of the
control byte is positive, the control byte is a number of bytes following the
control byte that are explicit raster data. If the sign of the control byte (two's
complement) is negative, the absolute value of the two's complement number is
the number of times the following byte is to be repeated. (Control byte values 0
to 127, add 1 to get number of literal bytes; 129 to 255, subtract from 256 to get
the number of repetitions.)

Delta row compression is a scheme that transmits only changes in the bit
pattern from row to row. For each row, a control byte contains in bits 7 to 5 the
number of bytes to replace, and in bits 4 to 0 the relative offset from the last
untreated byte. This is followed by the data bytes. If more than 8 data bytes are
required in a row, the command byte is repeated. Offset values of 0 to 30 are
from the 1st to 31st byte, 31 indicates that the next byte is to be added to the
offset. If this next byte is 255 then additional bytes are to be added until one less
than 255 is found.

The PCL language consists of:

• Control codes - essentially the normally defined ASCII control codes

• PCL commands, also known as escape sequences

• HPGU2 commands

PCL escape sequences are either two character or parameterized.

Two-character escape sequences consist of the Escape character (decimal 27,
hex 18) followed by any ASCII character from decimal 48 to 126 inclusive.
Parameterized escape sequences have the form:

Esc X y val zl val z2 val z3 ..• val Zn [data]

where:

X ASCII 33 to 47 decimal - code indicating parameterized command

46 Print and View Data Streams

/

y Group type of control - ASCII 96 to 126 decimal

val numeric value (may be preceded by + or-, may contain decimal
point). If required by command and value is unspecified, 0 is
assumed.

zn Parameter Character (identifies parameter to which previous value
applies) - ASCII 96 to 126 decimal

Zn Termination character (identifies parameter to which previous value
applies) - ASCII 64 to 94 decimal

data Eight bit data (for example, graphics, fonts). Number of bytes is
specified by a value field (usually the last one).

All except X may be optional, depending on the command.

Parameterized escape sequences may be combined, providing the following
rules are met:

• The first two characters after the Escape character must be the same in all
the commands that will be combined.

• All alphabetic characters within the combined sequence will be lower case,
except the last which will be upper case (upper case characters are
termination characters).

• The commands are performed left to right.

HPGU2 commands consist of:

• A two-character mnemonic

• A variable number of parameters separated by a comma, a space, or a sign
character

• An optional terminator character, the semicolon

Chapter 7. Non-IBM Proprietary Data Streams 47

48 Print and View Data Streams

Chapter 8. IBM Object Content Architectures and Definitions

8.1 Objects
Documents and databases can be made up of different kinds of data, such as
text, graphics, images, database data, and bar codes. Object content
architectures describe the structure and content of each type of data that can
exist in a document or database.

Formatted data objects are associated with databases, while the following types
of objects are associated with documents:

• Data objects such as text objects, graphics objects, image objects, and bar
code objects

• Resource objects such as font objects, which are referred to by data objects.

All objects exist as peers and function as equals. All object content
architectures (OCAs) are free to define their own formatting functions. For
example, the OCA for text data specifies the spacing between lines and the size
of the white space appearing between words.

The object content architectures in Common Communications Support are:

• Presentation Text Object Content Architecture (PTOCA) describes
presentation-text objects in a document.

• Image Object Content Architecture (IOCA) describes image objects in a
document.

• Graphics Object Content Architecture (GOCA) describes graphic objects in a
document.

• Font Object Content Architecture (FOCA) defines the structure and content of
digital fonts used by data objects in a document.

• Formatted Data Object Content Architecture (FDOCA) describes formatted
data, such as data extracted from a database or read from a file.

• Bar Code Object Content Architecture* (BCOCA) describes and generates
bar code symbols.

Additional information about object content architectures can be found in
Information Interchange Architecture: Concepts, GG24-3503. Technical details
about the object definitions in the list above can be found in AFP Data Stream
Reference, 5544-3202.

8.1.1 Object Structure
All objects in MO:DCA are made up of two parts: an object descriptor and object
data. The content of individual fields varies, depending on the kind of object.

Objects are designed to be carried by, and become part of, a data stream. Data
streams are used to pass documents between application programs or between
an application program and a device. The data stream carrying the object
provides all external relationships for the object.

©Copyright IBM Corp. 1993 49

8.1.2 Presentation Text Object Content Architecture
After text has been processed (formatted), it is in presentation form-the text is
ready to be presented at a printer. This is the text part of AFPDS. The
Presentation Text Object Content Architecture (PTOCA) defines presentation-text
objects in a document. A presentation-text object describes the portion of a text
document that has been generated from one of many possible sources such as:

• Output from formatting processes
• Direct generation by processes or application programs
• Transformation from text of different presentation formats.

The presentation-text object space defines the area into which the graphic
characters will fit when they are presented. This area has no relationship to the
physical media or printed page until the final document is actually created.

8.1.2.1 Minimum Functions Required for PTOCA
PTOCA functions are divided into a PT1 and a PT2 subset. The PT1 subset
includes all of the functions required by the most primitive receiver of
presentation-text objects. The PT1 subset is the minimum that must be
implemented for receivers of presentation-text objects in CCS.

The PT2 subset includes all of the PT1 subset, plus specialized functions such as
underscore, overstrike, superscript, and subscript. Detailed information on
PTOCA function sets is in Presentation Text Object Content Architecture
Reference, SC31-6803.

8.1.3 Image Object Content Architecture
Many business applications require the inclusion of image data in documents,
such as signatures, logos, media articles, and photographs. The Image Object
Content Architecture (/OCA) defines the characteristics of image data in a
device-independent format, thereby allowing image information to be
interchanged among different applications and devices.

Image characteristics that can be represented by IOCA are:

• Image size
• Resolution
• Recording algorithm
• Compression algorithm
• Number of bits per pixel3
• Identification of look-up table

8.1.3.1 Minimum Functions Required for IOCA
IOCA function set 10 (FS10) is required for interchanging images in presentation
format using the IPDS and MO:DCA data streams. FS10 represents bilevel
images which can be compressed using either:

• IBM Modified Modified READ (MMR) compression algorithm
• CCITT T.6 G4 Facsimile compression algorithm

Function set 11 (FS11), a superset of FS10, is required for interchanging images
in presentation format using the MO:DCA-P data stream. FS11 represents

3 A picture element (pixel or pel) is the smallest element of a displaceable or printable surface that can be independently
assigned color and intensity.

50 Print and View Data Streams

bilevel, gray scale, and color images. The following compression algorithms are
also supported:

• IBM Modified Modified READ (MMR) compression algorithm
• CCITT T.6 G4 Facsimile compression algorithm
• IBM Adaptive Bilevel Image Compression (ABIC) binary Q-coder

compression algorithm
• IBM concatenated ABIC compression algorithm
• ISO/CCITT Joint Photographic Experts Group (JPEG) compression algorithms

Function set 20 (FS20) is required for interchanging images in the library format
of the MO:DCA data stream. FS20 can represent up to 24 bits-per-pixel color
images.

Detailed information on IOCA function sets is in Image Object Content
Architecture Reference, SC31-6805.

8.1.4 Graphics Object Content Architecture
The term computer graphics refers to the definition and representation of graphic
elements used to build pictures for presentation either on hard-copy devices
(such as printers and plotters) or on soft-copy devices (such as vector or raster
displays). The Graphics Object Content Architecture (GOCA) uses primitives and
attributes to define the structure of computer graphics; GOCA also defines
operations for manipulating these graphics.

8.1.4.1 Structure of Graphic Objects
Segments are the basic units from which a picture is constructed; they are
uniquely identified, self-contained collections of primitive drawing orders and
attributes. Primitives include things such as:

• Lines and relative lines
• Full arcs, partial arcs, and fillets (rounded corners)
• Character strings
• Areas
• Images

Typically, attributes describe characteristics of primitives; for example:

• Color
• Line attributes such as type (for example, solid) and width
• Character attributes such as precision, angle, character set
• Patterns

Every segment is either chained or nonchained. A collection of one or more
chained segments defines the picture to be drawn. A picture can be subdivided
into "subpictures." Nonchained segments typically define "subpictures" that are
incorporated into the main picture by being called from another segment.

8.1.4.2 Minimum Functions Required for GOCA
The minimum function set required for GOCA interchange is the DR/2VO function
set used in either a presentation MO:DCA data stream or an IPDS data stream.
DR/2VO orders are matched to the capabilities of some typical output-only
displays and some printers. The functions include curved lines, areas, and
images.

Chapter 8. IBM Object Content Architectures and Definitions 51

The DR/3V1 function set is required for interchanging graphics pictures in the
library format of the MO:DCA data stream. DR/3V1 includes additional functions
such as:

• General clipping paths
• Individual primitive attributes
• Extra curve-generating primitives
• Raster operations to support the requirements of sophisticated workstations

Detailed information on GOCA function sets is in Graphics Object Content
Architecture Reference, SC31-6804.

8.1.5 Font Object Content Architecture
Graphic characters are the visual representation of symbols used in text; they
are letters, numerals, punctuations. or any symbols that represent information.
A font is a set of graphic characters that have a characteristic design, or a font
designer's conception of how associated graphic characters should appear. This
sentence shows examples of the italic font, bold font, and SMALL-CAP FONT.

Font Object Content Architecture (FOCA) defines the parameters required to
describe digital fonts used by text and graphic editors, document formatters, and
presentation devices. FOCA permits product applications, document references,
and presentation devices to access font information.

A method of storing fonts at the system level is described in Host Font Data
Stream Reference, S544-3289. Using this method, font resources can be
managed by a system for font referencing and data access.

Methods of referencing fonts at the data stream level are described in the Mixed
Object Document Content Architecture Reference, SC31-6802, and in Document
Content Architecture: Revisable-Form-Text Reference, GG23-0758. Using these
methods, a document data stream can identify the font resources needed for
formatting and presentation.

A method of accessing fonts at the system level is described in the SAA
Common System Programming Interface: Presentation Reference, GG26-4359.
Using this method, a system can determine which font resources it has available
and can obtain specific information from those resources.

A method for accessing fonts at the printer level is described in Intelligent
Printer Data Stream Reference, S544-3417. See 5.1.1, "Intelligent Printer Data
Stream" on page 29 for additional information on the IPDS architecture.

8.1.5.1 How Digitized Fonts Are Used
Font resources are made available for text processing by font production, font
storage, and font accessing. FOCA provide~ the common and consistent font
information required for text processing. It also supports font production by
defining the font attributes and their interdependencies; however, FOCA does not
define how that information is to be generated or modified.

FOCA supports font storage and font access by defining the set of font attributes
required by the SAA application environments, and by defining a general format
for that information. Application programs that implement FOCA must use the
defined font-parameter definitions; however, the application programs are free to
define their own internal format for that information.

52 Print and View Data Streams

FOCA defines a set of font-referencing parameters, which may be used to specify
and describe a font resource. Each implementing product may specify a set of
required font resources; the implementing product may also specify the
character content of those font resources. The content of font resources is not
defined or controlled by FOCA. For consistency when interchanging and
presenting documents, all receiving sites, processing application programs, and
presentation devices must have access to the same or equivalent font resources.

FOCA supports the presentation process by allowing device-specific techniques
of character-shape representation and presentation. FOCA also permits font
producers and product implementers to make use of more generic
representation techniques.

8.1.5.2 Minimum Functions Required for FOCA
Font Object Content Architecture Reference, 5544-3285, lists the font parameters
(or attributes) defined in FOCA that must be supported for various levels of font
information interchange. An interchanged font need not contain all of the
information specified by one of the attribute lists, but the processing application
programs must be able to accept, build, or pass through all of the information
contained in the supported attribute list without information being lost. To
ensure that no information is lost during data interchange, the following attribute
lists are required:

• Font descriptive parameters
• Font character set parameters
• Font metric parameters
• Character metric parameters
• Character shape parameters
• Code-page parameters

8.1.6 Formatted Data Object Content Architecture
In interconnected networks, you may need to extract data from, or add data to, a
central file or database that can be in a different SAA system. Likewise, you
may need to interchange data extracted from a database with an application that
is on the same or a different system. Interchange can occur, for instance, when
exporting or importing files, or when passing parameters from one application
program to another, in the same node or different nodes of a network.

Typically, formatted data4 comes from, or is intended for, databases5 or files.
The Formatted Data Object Content Architecture (FD:OCA) is used to describe
data from databases and traditional application programs. FD:OCA can be
viewed as a language that makes it possible to express the present format and
meaning, as far as is relevant, of any given data item. Format and meaning
refers to those aspects of the data that are relevant for a program in a given
environment, namely what the data type and its representation are. FD:OCA
constructs can express such properties and attach them to the data.

4 The term formatted data refers to (1) traditional data-processing "data" that has a fixed and strict format and (2) any data that
has an unarchitected, but known, format and meaning, and needs a corresponding description.

5 In the context of FD:OCA, the term database is used to mean small or large data collections, with or without internal structure
and interdependencies; in other words, simple files are always included when the term database is used.

Chapter 8. IBM Object Content Architectures and Definitions 53

8.1.6.1 The Structure of Formatted Data Objects
A formatted data object has two components-a descriptor and a value.

• The descriptor describes the format and structure of the value part of the
formatted data object. It tells the data type and the representation used for
the individual parts, and how together they make up the value.

• The value contains the described data.

Except for the constructs defining where the value begins and ends, no other
architectural constructs are intermixed with the data. The data occurs as it has
been read from the database, or as it would be recorded in the database.

Depending on the interchange purpose, the formatted data objects are
embedded in architected constructs of another CCS architecture, such as the
Distributed Relational Database* Architecture (DRDA*). The embedding
architecture identifies and brackets the formatted data object and its
components, as appropriate within its syntax.

8.1.6.2 Minimum Functions Required for FD:OCA
The descriptive facilities of FD:OCA are divided into a base subset and a DRDA
support subset. The base subset (subset 0000) functions allow products to
perform a basic interchange of formatted data. The DRDA support subset
(subset 0100) includes the complete base subset, plus the meta data construct.
The meta data construct is used to encode additional application meaning of the
data it is associated with. Subset 0100 is required for all products that access
data from relational databases built on the Distributed Relational Database
Architecture.

Detailed information about FD:OCA is in Formatted Data Object Content
Architecture Reference, SC31-6806.

8.1.7 Bar Code Object Content Architecture
The Bar Code Object Content Architecture (BCOCA) is used to describe and
generate bar code symbols.

A bar code is an accurate, easy, and inexpensive method of data presentation
and data entry for Automatic Identification (AutolD) information systems. Bar
codes are the predominant AutolD technology used to collect data about any
person, place, or thing. Bar codes are used for item tracking, inventory control,
time and attendance recording check-in/check-out, order entry, document
tracking, monitoring work in progress, controlling access to secure areas,
shipping and receiving, warehousing, point-of sale operations, patient care, and
other applications.

A bar code is a predetermined pattern of bars and spaces that represent
numeric or alphanumeric information in a machine readable form. The way the
bars and spaces are arranged is called symbology. The Universal Product Code
(UPC), the European Article-Numbering (EAN) system, 3-of-9 Code, Interleaved
2-of-5, and Code 128 are some examples of symbologies.

BCOCA can exist in, or be invoked by, a number of environments. Each of these
controlling environments can be specialized for a particular application area.
For example, the controlling environment can be:

• The environment involved in electronically distributing documents in a
network (such as MO:DCA)

54 Print and View Data Streams

• A presentation system communicating with hard copy presentation devices
(such as IPDS)

Bar code data objects stored in the BCOCA format are device-independent, and
can be presented on any device that supports BCOCA.

8.1.7.1 Minimum Functions Required for BCOCA
BCOCA provides a wide range of bar code function to cover many different
symbologies that are defined for a variety of uses. Not all of the defined BCOCA
function is supported by all BCOCA receivers.

A subset of the full capabilities of BCOCA, called BCD1, is defined to specify the
minimum support required of all BCOCA receivers. Each field within a BCOCA
data structure allows a range of possible values and also identifies the values
that every receiver supports. Most receivers support more than the minimum
ranges.

Detailed information about BCOCA can be found in Bar Code Object Content
Architecture Reference, 5544-3766.

8.2 Font Overview
The information which follows is specific to AFP and IBM applications in general.
Some of these terms are generally used in the industry, but such as "code
page" and "code point" would not be generally understood.

A font refers to one size and one typeface in a particular type family. An
example of a type family might be Times New Roman**. Medium, Bold, or Italic
might be defined typefaces within that family. A font is strictly speaking a fully
qualified description of a typeface with a defined size - Times New Roman Italic
12 point.

Both typefaces and fonts are often copyright of the designer or the employer of
the designer, and the names equally so. For example, "Helvetica" is a copyright
name, and a font used in a program cannot be called Helvetica** unless it is
licensed from the copyright owner. Sometimes type faces become so popular
that they are widely copied, and the term "type family" becomes extended to
include all the different people's expressions of the same basic design. There
are many designs of Garamond, for example, from many different type designers;
but they all share some of the common characteristics of the original Garamond
design.

The size (height) of a font is usually measured in points (1 point = 1/72 inch).

The size (width) of a font is called pitch and is measured in characters per inch.

The family and style will determine the artistic characteristics of the font.

An example of an IBM font might be Sonoran-Serif 16 point Roman Medium; a
Roman style of the Sonoran-Serif family, in a medium weight and 16 point size.

Each font is given an ID (Font Global ID (FGID)) and name.

Chapter 8. IBM Object Content Architectures and Definitions 55

FGID

3
11
19

244

NAME

OCR-B
Courier 10
OCR-A
Courier 5

A graphic character is a letter, a numeric digit, or a symbol. Each graphic
character is given a character ID and a description.

Character ID Description
----------- -------- ----------------

A LA020000 A capital
a LA010000 a small
e LE110000 e acute small
E LE140000 ~ nl"':iiua r:i.rd T.::111

~ ::II' -...""' '-U.1

1 ND010000 one

Character Set Set of Characters.
Each character set has a name and ID. For example, character set ID
'697' is called 'Country Extended Code Page' and it has upper- and
lower-case letters, numeric characters, symbols and several
countries' unique characters and currency symbols such as A, A:, 0,
fl,$¥, etc.

Code Point A code point is a one-byte binary value representing one of 256
potential characters. Each of the 256 combinations is normally
referred to by its bit configuration in hexadecimal, with two hex
characters per byte: X'OO' to X'FF'.

The AS/400 uses the Extended Binary Coded Decimal Interchange
Code (EBCDIC) to represent characters. Printable characters in
EBCDIC are restricted to the values of X' 40' through X'FF' (192
values). The code points between X'OO' and X'3F' are reserved for
printer instructions and commands.

Code Page A code page is a mapping table that assigns graphic character IDs
for a character set to specific code points.

56 Print and View Data Streams

There are several hundred different characters that could be created
for a given character set and only 192 printable character values or
code points. A code page is used to determine which characters are
to be assigned to the available code points.

Some common code pages are: '00500' for international #5, '00437'
for PC code page and so on.

A character set and code page combination is used to specify the
group of symbols available for printing and how they can be
referenced.

Character Set
00043
00697
00697

Code Page
00013
00500
00284

Country or Name
Netherlands
International
Latin America/Spain

A character set and code page combination is used on the AS/400 as
one of the system values QCHRID or as the printer file parameter
CHRID. These values can be changed by the user (with adequate
authority) with CL commands.

8.2.1 AFP Font Resources - AS/400
In Advanced Function Printing* terminology, a font consists of three parts:

• Font Character Set

• Code Page

• Coded Font

These three pieces are stored on the AS/400 as *FNTRSC (font resource) objects.

Font Character Set Font character Set is similar in concept to the character set
listed above, but a font character set defines font properties (size,
style, weight) in addition to the set of characters. The naming
convention uses a font character set ID instead of a FGID.

For example, font character set id COSOCR10 is the character set of
Courier Roman 10-PT font.

A font character set is an object on the AS/400 with FNTCHRSET
attributes and an object type *FNTRSC.

Code Page Code page function is the same as defined earlier.

A code page in AFP has an object attribute CDEPAG in object type
*FNTRSC.

Coded Font A coded font associates a code page and a font character set as a
pair. A single-byte coded font contains one code page and one
character set pair.

Glyph

For example, the coded font ID XOGT10 is the association of the font
character set COSOAE10 (APL ROMAN 10-PT) and the code page
T1SOAE10 (APL). A coded font has an object attribute of CDEFNT in
object type *FNTRSC.

A double-byte coded font contains more than one code page and font
character set pair; each pair is called a coded font section. A
double-byte coded font requires a two-byte code in text for each
graphic character.

• The first byte to identify the section

• The second byte to identify the code point in that section.

A glyph is a graphic shape which is one of the representations of a
character or symbol. A character code defines a given character,
given a code page. That character has one or more glyphs which can
represent it. A typeface will have a representation of one of those
glyphs.

Chapter 8. IBM Object Content Architectures and Definitions 57

Character
code

Glyphs Type
faces

Bitmap
fonts

Scale able
fonts

ASCII ... 61

OR <:
EBCDIC .. C1

••• for

different

point

sizes

····~;···~······
The advent of scalable fonts has confused the issue a little. By definition,
"scalable" means they don't have a fixed size, so they don't fit the classical
definition, unlike bitmap fonts, which are representations of a typeface at a
specific size. Scalable fonts should really be called scalable typefaces, but the
usage is too well entrenched now to change.

58 Print and View Data Streams

Chapter 9. Defined Standard Object Content Architectures and
Definitions

9.1 Office Document Architecture

9.1.1 CCA

9.1.2 RGCA

9.1.3 GGCA

Below are definitions for architectures within office document architecture.

Character Content Architecture contains character data, positional controls and
attributes that represent formatted text.

Its purpose is to carry the text part of presentation documents. CCA is an ISO
architecture and is part of ODA. It compares to PTOCA within MO:DCA.

Raster Graphics Content Architecture contains the raster image data and the
attributes that apply to the image.

It is intended to carry raster image information in presentation, revision, and
resource documents. RGCA is an ISO architecture and is part of ODA. It
compares to the IOCA part of MO:DCA.

Geometric Graphics Content Architecture contains the drawing orders, positional
controls, and attributes that represent a vector graphic.

Its purpose is to carry vector graphics information in presentation, revision, and
resource documents. GOCA is an ISO architecture and is part of ODA. It
compares to the GOCA part of MO:DCA.

More information about ODA can be found in the Red Book: Information
Interchange Architecture: Concepts, GG24-3503.

9.2 Computer Graphics Metafile (CGM)
The CGM format is ANSI standard X3.122-1986.

Data Type: This standard defines a file format capable of storing vector graphic
data. It is largely based on the Graphics Kernel System (GKS), an early attempt
to define a graphical language callable from high level computer languages.

It is reasonably widely used by workstation based packages for the storage or
interchange of vector graphical files.

The standard defines simple graphics primitives which can be used to build up
vector graphic pictures:

• Lines and polylines
• Arcs, circles, and ellipses
• Text
• Rectangles and polygons

(C) Copyright IBM Corp. 1993 59

together with appropriate attributes, including area fill.

This standard does not define any notion of structure, such as graphics
segments defined in later standards such as PHIGS; each graphics primitive
stands alone. The most that the CGM standard does for grouping information is
to define "bundle" information for graphics attributes for different types of
primitive; so for a line, reference to a particular line attribute bundle defines the
line type, color, and thickness.

The text definition of which it is capable is limited, and many of the packages
that use it will code typographical text as vectors and polygons in CGM, to
ensure fidelity of representation. It could not be used to define a composite
document with typographic text in a revisable form.

Compression: This standard does not define any data compression.

Transform Availability: Many workstation packages import and export this file
format. GDDM on the host will also convert this file type to ADMGDF for use with
mainframe software (see 13.1.1, "Color Pictures" on page 103). Corel** Draw on
the workstation will both import and export this format. However, see the note
above concerning the text limitations of this file format.

The CGM standard was defined as the interchange format for business graphics
for the CALS initiative of the US Department of Defense, so most defense
suppliers will have software to handle the format.

60 Print and View Data Streams

Chapter 10. Industry Standard Object Content Architectures and
Definitions

This chapter describes architectures that can be considered to be industry
standards.

10.1 Hewlett-Packard Graphics Language
Sometimes also known as "Industry Standard Graphics Language" (ISGL), this is
a data format which was originally designed to carry instructions between a
program which created graphics. and a plotting device. IBMGL and IBM-GL
(IBM Graphics Language) is occasionally seen as a data type identifier; this is
functionally identical to HPGL.

HPGL is often thus termed the "plot file" format (though there are other plot file
formats).

The current level of HPGL defined by the Hewlett-Packard company is HPGL/2
which has extensions over the original language. The HPGL/2 language is
defined in detail in The HP PCL 5 Printer Language Technical Reference Manual,
Hewlett-Packard part no. 33459-90903. HPGL/2 commands can be included in
the printer data stream PCL 5 (q.v.).

Besides being an output form for plotters, the IBM 4019 and 4029 Laser Printers
also accept this type of data object when running in plotter mode. The resulting
images are similar or identical to those produced by many IBM and
Hewlett-Packard multipen graphic plotters.

Other plot file formats are not considered in this book, as it is only HPGL that
has any significance currently in the printing and publishing world.

Data Type: Vector graphic file type.

The file contains essentially simple graphics primitives and device commands.

Complexity: Though the full definition of the language includes simple text and
more complex graphics primitives, many programs restrict themselves to a very
simple subset of the language, often no more than "pen up," "pen down," and
"move" commands. The format has no structural information, and is not capable
of carrying typographic text except as actual graphics orders. Its principal use
today is for output of simple business graphics and computer aided design (CAD)
drawings; many business charting programs are capable of this format as
output, as business charts are often produced on color transparency through
plotters.

Transform Availability: Though originally primarily an output format, and still
heavily so used, because of the need to incorporate business graphics and CAD
output into printed documents and other publishing output, there are many
publishing products which will accept this as an input format. Corel Draw will
accept HPGL as input, and can be used to modify these graphics before storing
them forward for use in a more conventional publishing or printing format.
Below is a sample HPGL plot file

© Copyright IBM Corp. 1993 61

10.2 GIF

IN;
PA;
SPl;
PU1512,4606;
PD4170, 8670;
PD4745,3707;
PU3128,5469;
PD3162,5408;
PD3199,5347;
PD3237,5286;
PD3277,5226;
PD3318,5165;
PD3361,5104;
PD3405,5043;
PD3449,4982;
PD3494:4920;
PD3540,4859;
PD3586,4797;
PD3632,4735;
PD3678,4673;
PD3724,4610;
PD3770,4548;
PU0,0;SP0;

GIF is the Graphics Interchange Format defined by CompuServe** Incorporated.

GIF is a popular format for the exchange and interchange of raster data on PC
platforms.

Data Type: Raster file type, supporting bilevel, grayscale, and color bitmaps.
The grayscale or color is defined by reference to a global or local color table
(the GIF format can hold multiple images in a single file, and each may have
individual color tables, or a single table may be defined for the file).

Compression: The GIF file type is compressed using a LZW algorithm, which
gives good compression ratios. Note, however, that the LZW algorithm is now
claimed to fall under patents held by Unisys, so code handling this format should
be licensed to use the LZW method.

Complexity: The full specification has many subtypes, many of which are
disregarded by some software that claims to handle the format. Much software
will only deal with basic GIF, which means that users cannot be certain of full
functionality with display, print, or transform software in all cases. Test typical
cases before depending on software or files; however, some results will almost
always be obtained, though perhaps with inappropriate color or other artifacts.
When it is used properly, it can have excellent results.

Transform Availability: Transforms are readily available to and from most other
raster filetypes, and from some vector filetypes. Many of these transforms are
freeware or shareware. See, however, the notes under "Complexity," and test
the transformation software before depending on any of them, particularly when
dealing with larger numbers of colors.

62 Print and View Data Streams

.r

10.3 Tagged Image File Format (TIF)

10.3.1 Content

Tagged Image Format objects are generally denoted by the use of a file
extension of TIF, occasionally TIFF.

TIF is now a standard capable of defining complex high quality images, as well
as simple bilevel bitmaps; it is perhaps most familiar in the latter aspect, but as
an established standard, and with the increased demands being placed on
computer systems in terms of resolution and color values of images (both
numbers of expressible colors and device independence of color), it is the first
where it is going to become an even more important interchange format than
before.

The TIF standard defines two levels of compliance, baseline and extended. All
programs that create or use the TIF format should be capable of handling
anything in the baseline definition, but functions in the extended standard are
optional - complying applications need not create or use them. However,
applications receiving extended function they can't handle should do so
gracefully, and where possible make best use of what they can understand.
Clearly, some programs will achieve this better than others.

We outline here what capabilities are in version 6.0 of the TIF specification,
published by ALDUS. Version 6.0 is dated July 1992; most applications will be
written to the previous specification, level 5.0, so we will indicate which facilities
are new in version 6.0. The authors of the specification state that if applications
written to the previous specification were properly coded, they will be able to
use files to the new baseline standard.

10.3.1.1 Types of Files
A baseline TIF file can hold the following types of images:

• Bilevel
• Grayscale
• Palette color
• RGB color

Extended TIF files can hold the following types of images:

• CMYK color (V 6.0)
• YCbCr color (V 6.0)
• CIE L *a*b* (V 6.0)

(Any image types you are unfamiliar with are described briefly in B.4, "Types of
Bitmap Images" on page 176.)

10.3.1.2 Compression type
A baseline TIF file can have the following compression types:

• No compression
• Packbytes encoding (a simple run-length encoding - see 7.2, "PCL (Printer

Control Language)" on page 45 for an explanation of this scheme)
• CCITT T.3 encoding (modified Huffman)

Note: We have come across some applications that cannot import any
compressed TIF files - just because an application says it can handle TIF files
doesn't mean it meets the standard. As always, where this is critical, test it out.

Chapter 10. Industry Standard Object Content Architectures and Definitions 63

Extensions add the following new compression methods:

• CCITT T.4
• CCITT T.6
• LZW compression
• JPEG compression (V 6.0)

CCITT compressions are defined for bilevel images. LZW and JPEG
compression are aimed at grayscale and color renditions, though LZW will work
on bilevel. JPEG is a family of compression methods defined by the Joint
Photographic Experts Group, and contains both lossless and lossy compression
techniques. (All other compression methods mentioned are lossless.)

JPEG techniques are targeted at large photographic images requiring high
compression ratios, and even lossy JPEG compression should not give
significant degradation of the image.

It was originally thought that the LZW (Lempel-Ziv & Welch) algorithm was public
domain. It has now been claimed by UNISYS to be covered by a patent of theirs,
and UNISYS claim that code expressing it should be licensed by them.
Apparently there are also other companies holding patents that might affect code
using LZW algorithms.

The upshot of this is that the LZW technique may become less widely used than
is currently the case, and as it is an extension to the baseline standard, you
should not expect any particular program to handle LZW compression unless it
specifically states so.

10.3.1.3 Strips and Tiles
Images tend to be large, so to help practical manipulation of the image, the
standard allows for partitioning of the image into manageable chunks (the
standard recommends a size of about 8KB as reasonable).

The baseline standard does this by partitioning the image into strips, while
version 6.0 now introduces the idea of tiles.

10.3.1.4 Colorimetry
Plain RGB color information is device-specific; a triplet does not define a precise
color.

For high quality work, this is not acceptable, and to transfer precise color
information for photographic and prepress work, the TIF extensions allow the
specification of colorimetric information, which allows mapping of the RGB triplet
information onto a defined international color standard (CIE 1931 XYZ). This is
largely new in version 6.0.

We can expect to see this aspect, and the device-independent CIELAB
colorimetric encoding, become more important at the higher quality, professional
end of the market over the next few years.

64 Print and View Data Streams

Chapter 11. Document Languages and Formatting Languages

This chapter deals with document and formatting languages. The definition and
description of a document and a formatting language are included. There are
also descriptions of several document and formatting languages.

11.1 What is a Document Language?
A document language is a format-, device-, and software-independent data
siream which is capable of defining a composite document. Document language
instances usually contain the text portion of the document directly, and refer to
external files containing the non-text elements, so they are not strictly equivalent
to composite document data streams, but they are functionally equivalent.

For example, to include a piece of artwork in a GML document, either the GML
Starter Set . im macro or the IBM BookMaster : artwork. tag is used, both of
which refer to the file name of the included graphic.

Normally, SGML behaves in a similar fashion, using entity definitions, but it is
possible to define an SGML Document Type Definition to include non-text
elements directly inside the document.

A document written in a document language contains information defining the
structural elements of the document. The position and boundaries of document
elements such as headings, paragraphs, lists, figures, tables, and so on, as well
as the elements they are composed of, are precisely defined. As document
languages are usually humanly readable, the user can see these definitions,
usually called tags.

Because they contain this information about the structure and meaning of the
elements of a document, document languages are usually considered to be a
level above data streams. A document language expression of a document
contains more information about the document than a revisable format
expression which just contains the text, graphics, and layout, font, and formatting
information.

Because a document language is format independent, format information must
be added, usually by a program called a "formatter." The formatter program
adds format information dependent on the structural element and format
instructions contained in a style definition. For example, an element may be
defined as a chapter heading, and the style definition may instruct the formatter
to print chapter headings at the top of a new page, in a specific font at a defined
size, and leave so much whitespace afterwards.

The output from the formatter is usually a formatted data stream.

©Copyright IBM Corp. 1993 65

Editor
Program

Document stored
in document

language form

Style
Definitions

Figure 10. Document Language Processing

Formatted
data

stream

I Different I 1 •I Printer I I Format IL
IPrinterl

The reverse process to formatting, creating document language from formatted
documents, is difficult; usually this can only be done by making assumptions
drawn from the format, which are not always correct. This reverse process
almost always involves human checking or editing.

11.2 What is a Formatting Language?
A formatting language is very similar to a document language, except that it
does not usually define structural information; the control tags define directly
how the output is to be formatted by the formatter program, and usually no style
definition is involved.

Formatting languages have largely been superseded by document languages
and integrated publishing or word processing programs.

While not considered in detail here, the file formats stored by workstation based
desk-top publishing programs and the more sophisticated word processing
programs can be considered to be proprietary document languages, formatting
languages, or data streams; which one they are depends on how the program
works.

Some store documents in a form similar to a document language; an example is
Ventura Publisher**, which stores its documents using a tag language (though it
does store some formatting instructions as well).

Some store text and formatting instructions, and can be considered to be
proprietary formatting languages, because they must be run through the
formatting portion of the package before they can be sent to any output device in
a usable form. Very few store in a printable data stream.

66 Print and View Data Streams

11.3 Examples Considered Here
The document languages considered in this document are:

• GML Starter Set (IBM DCF Starter Set GML)
• IBM BookMaster
• SGML (Standard Generalized Markup Language)
• LATEX
• XICS (Xerox Integrated Composition System)

The IBM document languages IBM DCF Starter Set GML and IBM BookMaster
grew out of a formatting language called SCRIPT, and LAT EX is based on the
formatting language TEX.

Formatting languages not associated with specific editing programs are usually
now more of historical interest than actual use, but three are briefly considered
in this book,

• SCRIPT
• TEX
• nroff and troff

SCRIPT because of the large amount of documentation still existing in it, and TEX
because it is still widely used in academic areas, where it has still not been
supplanted by LAT EX. (LAT EX is to TEX approximately what IBM BookMaster is
to SCRIPT.)

nroff and troff are formatters under UNIX**, using a more or less common
formatting language; they are briefly introduced for completeness and historical
interest.

11.4 The Advantages of Using Document Languages
An unfortunate, almost "religious" dispute seems to have arisen between
proponents of document languages and the users of WYSIWYG desk-top
publishing programs. The dispute is actually as unnecessary as it is mistaken.

Most desk-top systems save their output in some proprietary formatting
language, and the users interact in what has come to be called a "What You See
Is What You Get" (WYSIWYG) way, specifying the format and layout of their
documentation as they create it.

Traditionally, document language users have created their text and document
markup using a system editor, which does not show anything like the finished
result; the formatted output could only be seen after the source text and markup
were passed through a formatting program.

The proponents of WYSIWYG programs, which tended to be introduced later than
document languages, rightly said that the WYSIWYG approach was easier to
understand and use, particularly for simple, short documents; definitely for
documents where close control of layout is essential, and so on; therefore the
WYSIWYG, format-based approach is superior, and should supersede the use of
these old-fashioned document languages.

So why are they still used? The answer is in two parts:

• One size doesn't fit all, and

Chapter 11. Document Languages and Formatting Languages 67

• Actually, WYSIWYG (or something like it) can be used to create document
language output.

11.4.1 Why Some Documents Need One Way, and Others Another
There is a very great variety of different types of documents. It is a gross
oversimplification, but they can be conceptualized lying on a spectrum of
importance of several factors:

• The first is the importance of the appearance of the document compared with
the structure of the contents of the document. Both are always important,
but the relative importance varies.

An advertising brochure must be designed very carefully to catch and hold
the eye; format and appearance is critical, and must be closely controlled. A
format-based approach is almost certainly the best way to produce this.

That may not be the case with a technical manual; appearance is important,
but to the level that it can be controlled by simple rules, and use of
appropriate fonts, both of which can be encapsulated in a style definition to a
formatter. Here it is more important that information is in the right place -
we might be creating an online hypertext version from the same source text
as a printed copy; structure is critical, so a document language is more
appropriate.

• The number of updates, and the need to keep multiple versions or not, can
be an important factor. Simple documents with many versions can be easily
handled by format-based systems, but when the documents get more
complex, then document languages are probably better; they tend to have
specific facilities for version control.

• If the document has to be produced in several versions, perhaps on different
output media, or different sizes of paper, this may be easier to do with a
document language system. This is particularly true where the document is
documenting something that has multiple versions simultaneously - for
example, where it describes a product that is produced in more than one
type, but the bulk of the documentation refers to all types. A document
language allows all versions to be described by a single document, with
common text held once, and all variants included by optional text defined as
such in the appropriate place.

• Where style may be freely defined by the author, format-based systems
probably allow for more freedom over the styles that can be created. Where
documents must be consistent with a house style, this is easier to maintain
with a document language. Also, if the style has to be changed, with a
document language, only the style definition has to be changed; all
documents then conform to the new standard - there is no formatting
information inside them which has to be changed.

• The life of a document may affect which approach to use. If a document is to
be produced once, and never printed again, then it is most appropriate to
use whatever is the simplest and easiest way of producing it; that method
may, depending on other factors, be a format-based method.

If the document is to have a long life (measured in years), and might have to
be printed again (even though it won't be changed), the device independence
and software version independence become critical. Document languages
have these virtues.

68 Print and View Data Streams

.'-._ -

Advertising
Brochure

Parish
Newsletter

Appearance
is
all-important

Documents tend
to be produced
once for all

Documents are
produced in
only one version

l

Document style can
be freely defined
by the author

Documents have
a relatively
short life

Document is most
effectively
produced using a
format-based
system

Figure 11. The Document Spectrum

Novel
Technical

Manual

Structure
is
all-important

Documents tend
to be updated
often

Documents are
produced in
many versions

Document style must
be controlled to
house style

Documents are
kept for a
very long time

Document is most
effectively
produced using a
document
language system

So, it's not always a simple decision, but usually it is reasonably clear that one
method is probably a bit better than the other for any particular document. With
many, it won't matter too much, which is probably all to the good, as many users
will only have one system.

However, a user who is forcing things using an inappropriate system might well
find life easier by having both types available.

Chapter 11. Document Languages and Formatting Languages 69

11.4.2 WYSIWYG Is Always Format-based, Isn't It?
No.

Well, sort of. Since documents produced using a document language only have
a specific format when the final form document is actually produced, then
WYSIWYG isn't really the term. It should be more of "WYSIWYMG" ("What You
See Is What You Might Get.")

However, it is possible to use an editor which shows a possible formatted layout
of the document, while what it stores is a document language form, with no
format information in there. The editor is like the formatter in this case: it holds
a style definition which allows it to interpret the structural information in the
document language.

The effect ior the user is effectiveiy the same as WYSiWYG, whiie retaining the
operational flexibility of a structure based document language.

IBM sells two such editors which run on the PC, both of which can be used to
produce both IBM DCF Starter Set GML and IBM BookMaster:

• IBM MARKUP

• IBM TextWrite

IBM MARKUP is a DOS-based editor, which has a simple, character-based,
"structural WYSIWYG" approach.

IBM TextWrite is OS/2 based, and makes much more use of "fancy fonts," color,
and other formatting. IBM TextWrite can also be used to produce SGML.

There are also several non-IBM editors which can be customized to produced
IBM DCF Starter Set GML or IBM BookMaster.

Nor should it be forgotten that some well designed desk-top publishing programs
and word processors can be used to create GML as well as formatted print. It is
for example relatively easy to define WordPerfect** macros that will save text as
IBM BookMaster. Ventura Publisher** is a desk-top publishing program which
saves tagged files: Ami Pro is a word processing program with similar behavior:
to convert these to any GML requires an almost trivial filter program.

11.4.2.1 Converting Existing Text
There are also several programs available which will take any formatted ASCII
file, and use the formatting context to analyze the structure of the text, and
"automatically" tag these files. These programs therefore allow, within limits,
any text file to be readily converted to GML: either documents which have been
created already, or text created on other systems, or as a by-product of some
other process.

One such program is TextTagger. This is a general purpose conversion program
which can be used on a wide range of source text, from printer listings to office
documents. In its TextTagger/ESA incarnation, it is capable of being customized
to a degree that allows of very successful conversion of a wide range of tags on
a wide range of source formats.

Its generality can also mean it is not suited for all situations: the customization
requires code level skill, so it is probably best suited for organizations that will
have to do large quantities of conversions, probably with more than a few input

70 Print and View Data Streams

/
(

(

formats, and that have skilled people available to customize it. In these
circumstances, it probably cannot be bettered.

However, where there is only the need for a small quantity of conversion, from
only one or two formats, it may be more appropriate to write or have written
specific conversion utilities; particularly where the tagging needs are simple.

Also, TextTagger/ESA is not announced in all countries.

Because of these points, we include in A.3, "Conversion from BookManager
READ Copy Form to GML" on page 163 a typical example of a conversion
program which is capable of adding simple tags to a file, based on the original
text format.

11.5 GML Starter Set and IBM BookMaster
IBM BookMaster is not only a product sold to IBM customers, but also the tool
used to create the majority of IBM product documentation - the output of one of
the world's three largest publishers. This document was created with IBM
BookMaster.

Both GML Starter Set and IBM BookMaster evolved originally from SCRIPT, and
both use Document Composition Facility as their formatter. It is not surprising
that they are fairly similar.

GML Starter Set is, as the name suggests, less rich in its element definitions
than IBM BookMaster. IBM BookMaster allows the definition of some three
hundred different document elements and components, GML Starter Set perhaps
forty or so. The major difference is, however, that IBM BookMaster allows more
control over document style without changing the macros used by the formatter.

Both allow from simple to very sophisticated technical documentation to be
created. To allow of simple migration, the vast majority of GML Starter Set
documents can be processed using IBM BookMaster without change.

:h2.0bjectives
:p.The primary objective of this document is
to clarify the interrelationships between different print and view
data streams to help make it easier to understand which products will
work together properly.
:p.This can be shown by:
:ul.
:li.Outlining what type of data is contained in each data stream
:li.Outlining how they relate to each other and the I/O devices
that will be used to display or print the data.
:li.Indicating which of the most commonly used programs produce and use
which types of data streams.
: eul.

Figure 12. Example of GML Starter Set and IBM BookMaster. This is the markup that
created some of the text at the beginning of this book. The :ht. tag defines a header, :p.s
define paragraphs, and the :ul. to :eul. defines a list of which the :li.s are individual items
(the "ul" stands for "unordered list," as opposed to a numbered one).

Chapter 11. Document Languages and Formatting Languages 71

11.& SGML
Generalized Markup Languages, after their initial development by IBM, became
increasingly popular for the production of complex, high-quality documentation.

It was also becoming obvious that there should be a standard for interchange of
technical documentation between differing types of computer systems, each of
which was using perhaps different software, and it was realized that Generalized
Markup Languages offered an efficient means of attaining that end.

So the International Standards Organization defined SGML, a "meta-standard"
which defines how Generalized Markup Languages should be written. A
Generalized Markup Language which can be defined by an SGML Document
Type Definition is termed a "SGML conforming GML," and can be understood
and processed by any "conforming SGML system."

SGML was adopted by the United States Department of Defense for its CALS
(Computer Aided Logistical Support) initiative, and the various CALS DTDs are
now widely used in the defense industry.

The IBM SGML Translator is a program that can transform SGML to GML Starter
Set given the SGML Document Type Definition and translate tables. It is
delivered with customization for the CALS OTO and an SGML Starter set.

The SGML standard allows the definition of markup languages that define not
only the structural elements of documents, but also the ways in which these
elements can be combined - in what context specific elements can appear.

It also defines a Reference Concrete Syntax, which is a syntax for a markup
language in which SGML languages can be written, though deviations from this
are allowed in the standard if correctly defined in the OTO and SGML
declaration. This flexibility allows existing markup languages such as GML
Starter Set and IBM BookMaster to conform to the SGML standard providing an
appropriate SGML OTO is declared.

Such SGML DTDs exist, which means that GML Starter Set and IBM BookMaster
can be processed on any computer which has programmed for it a conforming
SGML formatter.

So, given GML Starter Set, the IBM SGML Translator, optionally IBM
BookMaster, and appropriate SGML DTDs, an IBM mainframe system can both
produce printed and online documentation from SGML source text from any
origin (given SGML DTDs and translate tables), and also provide any SGML
conforming system with input that it can format to whatever output devices it
supports.

72 Print and View Data Streams

Output
Devices

i
Output Other

Manufacturer's
Computer

Data Stream

System SGML
fo-------1 Conforming 1----'

SGML Formatter
Editor

SGML IBM
Translator System

AFPDS DCF

Postscript

Hypertext
Softcopy

1----+---1 GML or
BookMaster

BookManager Source
BUILD

Plain Text

WYSIWYG Editors

Tagging DTP program

onversion Programs

t
I

Program output

Figure 13. lntersystem Documentation Exchange with SGML

11.7 TEX and LATEX
TEX and LAT EX (pronounced "tekh" and "latekh") are products for producing
good quality typographic output that originated in the academic and UNIX worlds.
They are still widely used in those arenas.

TEX is essentially a formatting language, while LAT EX is a macro language
based on it, which is more structural and in line with other document languages,
though it does at times betray its formatting origins.

Chapter 11. Document Languages and Formatting Languages 73

11.8 XICS

The output from a TEX formatter is in a device independent form called "DVI."
This is printed to a particular device with a specific output program for that
device, with the name of the output program normally beginning dvi2.

These output programs need input bitmap font files at resolutions required for
the output device as well as the device independent data stream. This means
that to print at any particular point size, the user must have a font bitmap at that
size available, or a program to generate such a bitmap.

An exception to the above process is dvi2ps, which, if available, transforms the
output to Postscript, which is, of course, resolution independent.

There are other programs associated with TEX, of which the main one is
METAFONT, used for generating typographic fonts for use with TEX and LAT EX
output. There are others, for example to create graphics.

As with much of the academic and UNIX world, there is a strong freeware flavor
associated with TEX. Versions of TEX (which from now on will be taken to
include LAT EX) are freely available for both UNIX and PC systems. Commercial
offerings also exist on both these platforms, and there is a PRPQ for TEX on the
RS/6000.

Further information, source, and executable code, are available from:

TeX Users Group
PO Box 9506
Providence, Rhode Island 02940 USA

XICS (Xerox Integrated Composition System) is a mixture of document language
and formatting language, but is really more formatting oriented than otherwise.

Source text Composition Xerox
with LPS

copymarks Program Output

Figure 14. Formatting XICS Source

(Xerox LPS stands for "Xerox Laser Printer System.")

It is processed on Xerox** machines in much the same way as SCRIPT is in an
IBM environment. Like SCRIPT, it is a text composition language, and graphic
elements are merged in via a macro command.

XICS has a full set of functions for text composition, with boxes and rules, and is
capable of generating complex, high-quality typographic output.

General automatic translation of a large number of XICS copymarks to SCRIPT
commands is possible, though there is not a strict one for one correspondence.

74 Print and View Data Streams

Some manual intervention by a skilled text programmer will almost certainly be
needed.

Automatic translation of XICS to SCRIPT or a combination of SCRIPT and GML is
possible where a specific set of functions and macros have been employed in
XICS; in this case a transform written for this specific subset by a competent text
programmer would be capable of translating a larger proportion of the input.
However, manual checking and some intervention is again almost certainly
essential.

If a conversion to TEX were required, it is likely that TEX macros could be written
to simulate the effect of a set of XICS copymarks and macros used by particular
applications. This would not be trivial, however, and would require a competent
TEX programmer.

Translation to pure GML Starter Set, IBM BookMaster, or SGML would be
problematic, and should be considered on a case-by-case basis. It would
depend very much on what types of copymark and macro were used and how
they were used. It is unlikely that precise similarity of output format could be
achieved, though functional equivalence should be possible reasonably readily.

For a more detailed introduction to the XICS language, see Page Printer
Migration Programming Guide, 5544-3228.

11.9 nroff and troff
nroff and troff are formatting programs which run on most UNIX systems and IBM
AIX*, using essentially the same formatting language.

nroff is used to format text to printers, and troff is used to format to specific
phototypesetters. The differences between the two as far as input is concerned
are minor ones with regard to machine space units; otherwise the formatting
languages are essentially identical.

Both nroff and troff can also be used in conjunction with several preprocessing
macro programs, which are used to simplify the use of the formatting language
for more complex tasks, like the production of tables or mathematical formulas.

The actual formatting language is very low level, and very similar in nature to
the SCRIPT language of DCF.

Some sample formatting controls are:

Control Meaning

.br Break output line

.ce n Center the next n lines

.in + /-n Adjust indentation

.Is n Set line spacing

.sp Space vertical distance

.tr a b Translate character a to character b

.ul n Underline next n lines

Chapter 11. Document Languages and Formatting Languages 75

Preprocessor macro expansion programs are available to make complex tasks
simpler in the nroff/troff environment, such as:

Memorandum macros (general document formatting)

Viewgraph macros

Table macros

Mathematics equation macros

There are so far as we are aware no transforms currently available to convert
nroff/troff input to any other format; if this were required, a change to SCRIPT
controls should be relatively simple to define.

76 Print and View Data Streams

/
f

Chapter 12. Print and View within the Different Environments

This section contains an overview of the different platforms where Advanced
Function Printing is done, and a description of how PSF handles different object
content architectures to achieve optimized performance and minimize the work
load on the processor during printing.

AFP printing can be done with one of the following printer drivers:

• MVS PSF
• VM PSF
• VSE PSF
• AS/400 Print Services
• PSF/2
• IBMAFP AFPDS Drivers for OS/2 and DOS/Windows
• RPM V.2.0
• RPM V.3.0

PSF optimizes print performance with these content architectures:

• IOCA
• GOCA
• FOCA for 4028

ex­
change

MVS

,
l

OS/400

t
exchange

..

exchange
VM

Print View

J • t
1

OS/2

AIX Ill

exchange

,

j

ex­
change

Figure 15. SAA Model for Print and View. An enterprise-wide solution for printing and
viewing demands a solution to work on all platforms available under SAA. Users want to
exchange data to print and view between platforms, and they expect no additional
conversion activities. Working within the rules of SAA provides this solution and it is
extendable to other platforms as they become available under SAA.

©Copyright IBM Corp. 1993 77

12.1 Basic PSF Functions
Print Services Facility is the printer driver for AFP printers. These printers
include:

• IBM 3900
• IBM 3835
• IBM 3828
• IBM 3827
• IBM 3825
• IBM 3820
• IBM 3812
• IBM 3816
• IBM 4028
• IBM 4224
• IBM 4234
• IBM 3800-3

The functions PSF provides, amongst others, including:

• Interfacing to the spool
• Combining and merging

Print data
Fonts
Images
Overlays

• Two-way dialog between printer and the driver
• Error recovery
• Different attachments for the printers

PSF includes all the necessary resources to switch from a line printer to an AFP
printer without the need for any program change. The printed layout is the same
as on a line printer but with the improved quality possible with an AFP printer.

This is accomplished by providing a FORMDEF, which contains all the
information fer a physical page description, and a PAGEDEF, which contains the
information on how and where to position data from an application program onto
the page.

The base package also includes compatibility font objects.

PSF provides the means to move formatting out of a program.

12.2 How PSF handles Object Content Architectures
When a print job is submitted to PSF it first establishes a dialog with the printer
that the user has directed the output to.

PSF must have answers from the target printer to questions like:

• Who are you?

• What are your capabilities?

• How do you expect IPDS?

• What resources are available in the printer?

A printer gives answers to PSF to those questions and PSF uses them to:

78 Print and View Data Streams

• Optimize the printing process

• Make sure that the printed page has the same appearance on any AFP
printer, wherever it is physically located.

• Decide how to print when the printer can't handle a function activated by a
definition.

For example, if duplex printing is requested on a fanfold printer, PSF
instructs the printer to print the back side page on the next sheet. The user
is guaranteed that the printed page has exactly the same layout as it would if
duplex were possible.

• Reduce workload on the processor, if the printer is able to do some work by
itself.

• Where possible during printing, and where the printer is capable, to
download resources only once and keep them ready for printing inside the
printer.

• Only download resources when necessary. If they are already available or
in the printer PSF will not download them.

For example, the IBM 4028 printer has over 30 fonts at a resolution of 300
pels available in the printer. If these fonts can be used, PSF just sends the
control information on which font to use.

• The printer tells PSF that it has the features installed to decompress IOCA in
the printer or to accept GOCA, PSF will download IOCA in a compressed
form, or will download data in GOCA format.

• Handle error recovery. PSF knows at every moment where physically a form
is on the paper path. If there is a paper jam, PSF works together with the
printer and the controlling subsystem (JES, for example) to set up the
printing process again, starting with the page that was the first one not to be
placed in the output bin.

The error recovery is very powerful. No operator intervention is needed to
restart a job on the right page, or to even switch printing to another printer
which is also driven by the same instance of PSF, and to continue printing
starting at a checkpoint (CKPT).

12.3 Advanced Function Printing (AFP) on Mainframes (MVS, VM, VSE)
The basic concept of Advanced Function Printing on a mainframe is the same in
the different operating systems.

1. PSF as printer driver accepts as input:

140308
AFPDS
140308 and AFPDS mixed

2. PSF is provided via job control with the necessary information: what data,
with what resources, and where on a page to print.

FORMDEF {physical page description)
PAGEDEF (logical page description)
Overlays, referenced in FORMDEF or documents
Page segments, referenced in overlays or documents
Fonts, referenced in PAGEDEFs, in overlays, or in documents

Chapter 12. Print and View within the Different Environments 79

3. PSF reads the input data from the spool and converts it into the IPDS data
stream.

4. IPDS is used for communication between PSF and the printer and for
transporting all data and resources to the printer.

5. The printer is able to interpret IPDS:

Where PSF works:

• Within MVS, PSF is a functional subsystem under JES.

• Within VM as virtual machines:

SFCM (Spool File Control Manager)
There is one of these virtual machines in a system. It checks the input,
data, and resources and passes them to the appropriate printer driver

PDMxx (Printer Driver Machine)
There is one of these virtual machines for every AFP printer on the
system. It receives its input from the SFCM1 machine and takes care of
the actual printing. An "xx" in the name means a number internally
assigned to a printer an defined by the system programmer.

• Within VSE, PSF runs in a partition

For printing on printers that are attached via communication lines VTAM* is
required.

80 Print and View Data Streams

12.3.1 Mainframe Model

AFPDS File AFPDS LINE Data LINE Data
from other File File from other
System System

l
+ Output ..

Queue

l
Mainframe 3820

3825
Overlay Channel 3827
Library ~ • .. 3828

3835
3900

FORMDEF
Library ...

P S F
4028

I I

Coax 3812
Font • .. 3816
Library .. 4230

under 4224
4234

Segment
Library ~ M V S SDLC

.. 1 I • 3820
V M

PAGEDEF V S E
Library SNA PC: (RPM)

• .. PS/2:
Token (RPM)

Ring (PSF/2
~ AS/400

.--
...._ Two-Way

Dialog
~

Figure 16. Mainframe Model for AFP Printing

Chapter 12. Print and View within the Different Environments 81

12.4 IBM Print Services Facility Version 2
Version 2 adds to the functions so far described.

The IBM LaserPrinter 4028 Model NS1 is supported and can print using
downloaded 300 pel resolution host fonts from System/370* or by accessing
resident fonts in the printer. Font processing is aided by the use of a new batch
utility and font metrics provided with PSF. The font metrics assist in formatting
documents when using resident fonts. The batch utility is used to convert
existing 240 pel font libraries to 300 pel. This conversion aids users in printing
on the 4028 using PSF.

Full PSF support is provided for the IBM 3900 Advanced Function Printer,
equivalent to the IBM 3835.

PSF has been functionally enhanced to enable or facilitate new business
application solutions:

• Support for printer-based vector graphics, image decompression, image
rotation, image clipping, and image scaling to allow reduction/enlargement.
Printer-based bar codes are made available with optional human readable
characters. Transformation capability from IM1 image to IOCA and
uncompressed IOCA to IM1 provides additional flexibility and interchange
potential.

• Ability to position electronic overlays dynamically on each page of output. In
previous releases, overlays were limited to the same fixed origin point on
every page.

• Enhanced duplex printing support. Users can now specify different horizontal
and vertical offset values for the front and back sides of pages. This
facilitates printing on punched paper, for example.

• It is now possible to specify printing of an overlay on the front or back side of
a sheet with no variable data. In previous releases, an application change
was required to insert a blank record for each side with no variable data.

• Using these new functions in the AFP resources is supported in a new
release of the Page Printer Formatting Aid program product.

• The Core Interchange fonts include typographic and uniformly spaced fonts
which provide a rich selection of point sizes, typefaces, and national
language character sets for a variety of print applications.

• Support for color on the 4224 and a quality selection function on the 4224 and
4234.

• Envelope selection for the IBM 4028.
• All PSF Version 2 print driver functions are available in the base package.

No additional features need to be installed.

12.5 Font Pruning
Performance considerations

82 Print and View Data Streams

The number of characters in the Core Interchange and Proprinter
Emulation character sets is greater than the number of characters in
current IBM-supplied Compatibility Font character sets. Therefore,
use of font pruning may be required for complex print applications
using many fonts.

The font pruning capability provided with Version 2 of PSF/VM and
PSF/MVS downloads only the characters required for the requested

code page. This reduces the amount of data sent to a printer when
loading fonts.

In cases where the additional CPU time required to analyze the fonts
outweighs the print savings, font pruning can be turned off. In either
case, overall printer resource management is improved and greater
efficiency realized.

12.6 Operating System/400 Advanced Function Printing
OS/400 includes support for AFP printers as part of the basic operating system.
The following sections describe OS/400 AFP implementation and AFP functions
available to the user in an OS/400 environment.

12.6.1 Support for Medium to High Speed Page Printers
The OS/400* licensed program now includes PSF-like support for IBM 3812-002,
3816-018, 3820, 3825, 3827 and 3835 Page Printers attached to an AS/400 system.

OS/400 software support for the IBM 3820, 3825, 3827 and 3835 Page Printers
uses the same interfaces currently used for the IBM 3812 and 3816 Page
Printers, including selection of fonts, page rotation, computer output reduction,
drawer and code page.

An AS/400 system can now be used as a remote print server for System/370
generated Advanced Function Printing Data Stream (AFPDS). It is the customer's
responsibility to transfer AFPDS from a System/370 to an AS/400 system with file
transfer facilities.

The CL command (PRTAFPDTA) is provided to move this file onto an OS/400
output queue. System/370 generated overlays, page segments, and form
definitions can be downloaded from a System/370 and stored on an AS/400
system for later use.

The AS/400 licensed program, IBM AS/400 Advanced Function Printing Fonts
(5728-FNT), offers System/370 equivalent families of fonts for printing AFPDS on
an AS/400 system.

OS/400 commands DSPSPLF and CPYSPLF are not supported for AFPDS. On an
AS/400 system, AFPDS can be printed only on the IBM 4028, 3812-002, 3816-018,
3820, 3825, 3827 and 3835 Page Printers.

Printing of System/370 generated 1403 line data on AS/400 attached printers is
supported with RJE. Use of System/370 page and form definitions is not
supported with 1403 line data on the AS/400 system.

Printing of System/370 generated AFPDS graphics, image and bar codes is
supported on AS/400 attached IBM 4028, 3812-002, 3816-018, 3820, 3825, 3827 and
3835 Page Printers. Printing of AS/400 generated graphics, image and bar codes
is supported on AS/400 attached IBM 4028, 3812-002 and 3816-018 Page Printers,
and is not supported on AS/400 attached IBM 3820, 3825, 3827 and 3835 Page
Printers. If required, solutions from AFP partners are available.

The IBM 3820, 3825, 3827, and 3835 Page Printers will attach to the AS/400
System Units through the IBM Token-Ring Network with the Remote
PrintManager* Version 2.0.3 support. The IBM 3820 Page Printer will also attach

Chapter 12. Print and View within the Different Environments 83

to the AS/400 through an SDLC communications line. The IBM 3820, 3825, 3827,
and 3835 Page Printers attach to all models of the AS/400.

12.6.2 How to Start
For a user to work on AS/400 with AFP, it is necessary to establish the correct
environment:

1. Check for a correct Library List
Library QAFP and available font libraries are required.

2. The command: GO AFPU calls the menu, which allows you to start working
with the AFP utilities.

84 Print and View Data Streams

f

12.7 AS/400 AFP Model

I

AFPDS
File

AFPDSLINE
File

LINE Data
File

Native AS/400
Application

l+---j Printer
File

~------+- Output -+--~

Queue

•
Overlay AS/400
Library _.. 4028 ~

Twinax 3812 3816
4230

FORMDEF 4224
Library 4234

OS/400 SDLC

I
·I I Font .. 3820

Library .. Print

Services
Token 3820

Segment 3825
Library + Ring 3835

~ 3827

r--

PAGEDEF '--I Two-Way
Library _.. Dialog

'---

Figure 17. AS/400 Model for AFP Printing

Chapter 12. Print and View within the Different Environments 85

12.8 Print Output in AS/400 Systems
Four different types of output in an AS/400 System can be directed to an AFP
printer. Each output type uses a different interface, to reach the printer
Although a description of data streams can be found elsewhere in this book,
here is a description from the viewpoint of an AS/400 user.

SNA Character String (SCS) data stream The SCS print data stream is based on

AFPDS

IPDS

a set of single- and multiple-control codes inserted with the print data.
OS/400 creates the SCS data stream based on the request of the
application program and places the SCS print file on the output
queue.

If this output is destined to be printed on an SCS printer, the SCS
print file is sent to an SCS printer. However, if the SCS print file is to
be printed on an AFP printer, OS/400 converts the SCS data stream to
Intelligent Printer Data Stream (IPDS).

This conversion lets existing AS/400 applications be printed on AFP
printers without change.

The new support in Version 2 Release 2 of DEVTYPE(*AFPDS)
generates native AFPDS, eliminating the SCS data stream conversion.

The AFPDS data stream provides an application interface for AFP
applications. This fully paginated data stream is device independent
and enables the construction of pages composed of text, image, and
graphics objects.

The IPDS data stream is generated by the OS/400 Print Services and
is similar to the AFPDS data stream; however, the IPDS data stream
contains a dialog component to communicate with the printer in a two
way conversation.

Compared to the AFPDS data stream, the IPDS data stream is bound
to a specific printer device, which means it is generated by the printer
driver (OS/400) and must be bound to the device that will print it.

Line data output The line data stream dates back to the 1403 printer and is
commonly used for printing on line printers. The data stream is
composed of a single-byte character in the first byte of the print
record followed by the data to be printed.

The control characters instruct the printer to do basic functions, such
as skipping to a specific line on the page or skipping to a new page.

AFPDSLINE data stream This data stream is a hybrid of line data and AFPDS
data mixed into the same data stream. This data stream can be
interpreted by PSF.

86 Print and View Data Streams

This type of data is often created when an existing LINE data
application is enhanced by inserting an occasional AFPDS structured
field record in the line data output to perform function such as
printing an overlay. The printer driver for AFP Printers accepting
IPDS data streams is part of the operating system within AS/400.

12.9 Advanced Function Printing Utilities/400
The IBM Advanced Function Printing Utilities/400 provides interactive,
menu-driven facilities that allow Application System/400* users to design, create,
and manage advanced function printing (AFP) resources such as overlays
(electronic forms and labels) and page segments (logos and images) natively on
the AS/400 system for the users of intelligent printer data stream (IPDS) printers.

The AFP Utilities creates AFP resources that conform to the Advanced Function
Printing Data Stream (AFPDS) on the AS/400 system. It also provides the facility
to print users' data from a database file in various formats with various fonts and
bar codes on the IPDS printer without developing any application programs. As
an example, it allows the customer to print bar code labels from data stored in
the database file.

With this program, a non-programmer user can design, create, update, and
manage a variety of forms and labels, and print users' data using those forms
and labels.

The AFP Utilities provides the support needed to take full advantage of
All-Points-Addressable (APA) IPDS printer capability for AS/400 users. Its
functions is equivalent to the System/370 Advanced Function Printing (AFP).

Through the near WYSIWYG (What You See Is What You Get) editor, the user can
interactively design, create, and verify AFP resources such as overlays.

With the AFP Utilities and a PC image program such as:

• Image Data Utility (PC/IOU) (5785-EDW)
with IBM Image Support Facility 2 (5669-197)

• IBM lmagEdit V2.0 (75X3255)
• OS/2 Image Support (49F4608)

users can easily design logos and images on the PC, and store them in the
folder as PC documents through the IBM PC Support/400 shared folder function.
Then users can convert the image to a page segment and include it in the
overlay. Users can also scan an existing preprinted form on the PC, print the
scanned image with the grid, and then by referring to the printout, use rs can
easily design and create the overlay from it.

The AFP Utilities also provides the capability to print users' data in a database
file in various formats with various fonts on IPDS printers without developing any
application programs.

The IBM Advanced Function Printing Utilities/400 V2 is comprised of an
integrated set of advanced print functions:

1. Overlay Utility

2. Resource Management Utility

3. Print Format Utility

Overlay Utility provides an interactive overlay resource design and creation
function. It allows users to design an overlay by the near WYSIWYG
editor that provides the approximate image of the printout on the
screen and store it as a source overlay.

Chapter 12. Print and View within the Different Environments 87

The source overlay is created, and stored as a member of a physical
file. Users can modify the source overlay by the editor on the design
overlay screen which shows the approximate image of the form, and
build the overlay resource from it.

The overlay resource created by Overlay Utility conforms to the
Advanced Function Printing Data Stream (AFPDS).

Resource Management Utility (RMU) provides the integrated AFP resource
management functions for overlays and page segments.

Users can create a page segment from either a PC document in a
folder or a database file member. With the PC support shared folder
function, users can store PC files in the folder of the AS/400 system.
Users can use folders from the PC as if they are PC disks directly
connected to the PC. In this way, users can use a PC image product
such as Personal Computer/Image Document Utility (PC/IOU),
lmagEdit, and OS/2 Image Support to scan logos and preprinted
forms, edit the scanned images, and store them in the folder as PC
documents. With the ES/9370*, System/370, or System/390* connected
to the AS/400 system through communication lines, users can use the
product such as GDDM and Image Handling Facility (IHF) to create an
image file, send it to the AS/400 system, and store it in the database
file member.

Then, by using the page segment creation function of the RMU, users
can convert the image data in the page segment format so that it can
be included in the overlay.

Note: The image data stored in the PC document or database file
member must be in Image Object Content Architecture (IOCA)
format (Image Data Stream (IMDS)).

RMU also allows users to copy, delete, print and display the
description, and change the text of AFP resources from the list of AFP
resources found inthe selected libraries.

Print Format Utility (PFU) provides the function to print a member of a database
file in various formats with various fonts and bar codes on IPDS
printers without developing any application programs.

Users can design a record layout and page layout using the near
WYSIWYG editor similar to the overlay editor, and store it as a
Printout Format Definition (PFD) definition. Users can update the PFD
definition with the editor to change the printout format.

When printing the database file member, users specify the PFD
definition name so that its corresponding print format is used. PFU
provides the function to perform record selection so that the printout
contains only selected records.

12.10 Advanced Function Printing Fonts/400
Document processing and publishing applications require a large variety of
proportional typefaces in order to satisfy demands for aesthetics, variety of style,
emphasis, and readability.

The Advanced Function Printing Fonts/400 Version 2 contain fifteen separately
orderable font features.

88 Print and View Data Streams

• Sonoran Serif
• Sonoran Serif Headliner
• Sonoran Sans Serif
• Sonoran Sans Serif Headliner
• Sonoran Sans Serif Condensed
• Sonoran Sans Serif Expanded
• Monotype Garamond**
• Century Schoolbook**
• Pi and Specials
• ITC Souvenir**
• ITC Avant Garde Gothic**
• Mathematics and Science
• DATA1
• APL2
• Optical Character Recognition

12.11 IBM Database Publisher/DOS for the AS/400 Version 2
Database Publisher integrates the IBM AS/400 native data base with desk-top
publishing programs. The process is automated and data-driven and enables
publication of documents as business needs dictate.

Once AS/400 system data needed to publish is defined, and the document format
is chosen, Database Publisher can be run in "batch" mode as an extension to an
existing AS/400 system or DOS application.

Using IBM lnterleaf** Publisher, Aldus** PageMaker** or Ventura Publisher, the
user defines how the final document should look. After identifying the data
needed from the AS/400 data base and sending it to the workstation through PC
Support, a decision is made on how to convert the data using Database
Publisher. The instructions specified are converted to a "recipe." The recipe can
be called as a DOS process and can build a publication or partial components
automatically on demand.

12.12 Advanced Function Printing (AFP) on Workstations
Advanced Function Printing was not originally available on workstations. There
was a need to provide it for two main reasons:

1. To print remotely with high quality and on high volume printers

2. To integrate workstation users into high quality and high volume printing.

Development of workstation printing was went with the following products:

Remote Print Print Manager Version 2.0
is a program running under DOS. A PS/2* or a PC-AT* with a /370
channel card is required. RPM V.2 establishes a fixed connection to
PSF on the mainframe and the printer, though PSF is the actual
printer driver.

To improve performance printing with RPM V2.0, all of the required
resources such as fonts, overlays, and page segments can be stored
on the hard disk of the workstation at any time, and they are kept
there for permanent use.

Chapter 12. Print and View within the Different Environments 89

During printing then, no down loading of resources decreases
performance and blocks other users sharing the same line.

Remote Print Print Manger Version 3.0
is a program running under DOS. A PS/2 with a /370 channel card is
required. RPM V.3 is divided into several programs to accomplish
host data printing as well as printing work station data.

There are three main programs. They can work one at a time in one,
two, or three workstations in parallel depending on the workload. All
programs is given access to the same hard disk for reading or
writing, depending on the task.

1. Host Print File Receiver
PSF establishes a dialog between the printer and itself. This
program tells PSF on the mainframe to be the printer. PSF spools
print data to a program and this program stores the IPDS data
stream on hard disk, thus providing remote spooling.

2. LAN Print File Receiver Converter
This program receives ASCII data from LAN users. Then they are
converted and send to the hard disk, where the printer server has
access to it.

3. Printer Server
This program has access to the print files sent down from the
mainframe and to converted ASCII data from the LAN and can
send both to the printer.
It is also able to mix an overlay from the host with converted
ASCII data and then print it.

PSF/2 Version 1.0

90 Print and View Data Streams

is a program providing full AFP functions on a workstation integrated
into a LAN. It runs under OS/2. Its functions are comparable to those
of PSF. It supports the following data streams as input:

• ASCII

• AFPDS

• Metafile

PSF/2 supports many different output devices. So it has to provide
different output data streams depending on the printer it has to
support:

• Channel-attached printers

IBM 3900
IBM 3827
IBM 3825
IBM 3820

• Coax-attached printers

IBM 4028
- IBM 3812
- IBM 3816

• LPT1

IBM 4019
IBM 4029
Printers supporting:

./

- PPDS
- HP-PCL4

Using channel-attached or coax-attached AFP printers only the
two way dialog between printer driver and printer is available.
Printers attached via LPT1 receive a complete page in the form of
a bit map which is automatically prepared by PSF/2.

PSF/2 Version 1.1 This version provides the full set of functions of PSF/2 V.1.0.
The main differences between PSF/2 V1.0 and PSF/2 V.1.1 are:

• Postscript is accepted as an input data stream

• HP-PCL5 is supported as an output data stream

• Printing from the main frame in a LAN is done automatically.

AFP Viewer This program runs under Windows** and allows you to display files
as an alternative to printing them. Files that can be displayed include
AFPDS files, page segments, overlays, as well as ASCII files. While a
file is displayed you can:

• Clip a portion of the displayed page and scale the clipped area.

• Copy one or more pages from an AFPDS document into a new
AFPDS document.

• Convert a page or clipped area to an AFPDS overlay.

• Print one or more selected pages or the clipped area.

• Change which AFPDS form definition is used to display the file.

The AFP Viewer can only view documents that are stored on the
workstation's disks. Host files must be downloaded before they can
be viewed. The AFP viewer itself does not provide any facilities for
downloading files.

12.13 Remote PrintManager Version 2.0
Remote PrintManager is an IBM Personal Computer-based program that allows
print resources such as fonts, overlays, and page segments to be made resident
at the location of a remote printer.

Version 2 of Remote PrintManager extends support to the IBM 3820, 3825, 3827,
and 3835 Page Printers and gives the user a choice of remotely attaching the
printers via either an SDLC communication line or token-ring attachment using
SNA LU 6.2.

Remote PrintManager Version 2.0 allows the printing of double-byte character
sets on those RPM supported printers that provide double-byte support.

Remote PrintManager performs three main functions:

1. Pass-through emulation. Remote PrintManager receives records from PSF,
transmits the records unchanged to the printer, and receives printer
responses and error signals and transmits them back to PSF.

2. Remote library management. This function records and informs PSF of
resources available at the remote site and downloads them to the attached
printer.

Chapter 12. Print and View within the Different Environments 91

3. Resource object collection. This function scans the data stream targeted for
the printer by PSF and copies resources marked "public" by the user to the
Remote PrintManager V2 Resource Library.

92 Print and View Data Streams

12.13.1 Remote Print Manager Version 2.0

Mainframe
- MVS
- VM
- VSE
- AS/400

PSF VTAM

SNA LU 6.2

IPDS

!
C:\

PC-AT or
PS/2

Overlay under DOS
Library +

R p M
Font
Library

Version
2.0

Segment
Library

Figure 18. RPM V.2 Model for AFP Printing

12.14 Remote PrintManager (RPM) V3.0

r-... Two-Way
Dialog
'--

3820
3825

/370 3827
Channel

3835

Remote PrintManager V3.0 allows the remote connection of the IBM 3820, 3825,
3827, and 3835 page printers. RPM V3.0 uses an IBM Personal System/2
equipped with a System/370 channel emulator card and a communications card.
It can:

• Manage a remote print spool from the print server workstation

Chapter 12. Print and View within the Different Environments 93

• Download jobs from the host at night and place them on the spool for
printing the next day

• Attach to PS/2 machines which use the Micro Channel* bus

• Share the printer between the host and other workstations on a LAN

• Merge ASCII data with forms overlays downloaded from the host

94 Print and View Data Streams

12.14.1 Remote Print Manager Version 3.0

Mainframe
- MVS
- VM
- VSE

PSF VTAM

SNA LU 6.2

IPDS

I
c \ :

ASCII
converted __..

IPDS
from Host

Overlay
Library __..

Font
Library ~

Segment
Library __..

other
Work

~
stations

t

i

Token
Ring

PC-AT or
PS/2
under DOS

R p M

Version
3.0

..----

t

/370
Channel

Two-Way
Dialog

3820
3825
3827

3835
3900

Figure 19. RPM V.3 Model for AFP Printing

Chapter 12. Print and View within the Different Environments 95

12.15 Print Services Facility/2
Print Services Facility/2 (PSF/2*) Version 1.0 functions as a LAN print server,
supporting multiple workstations, data streams, and printer types.

Version 1.1 allows both host and workstation application data to be printed on
LAN-attached printers. It also provides a transform that processes Adobe Type 1
fonts.

12.15.1 VERSION 1.0
PSF/2 Version 1.0 serves as either a printer driver on a stand-alone system or a
print server for a local area network (LAN). It may also be used to print host
sourced AFP files if the print jobs and resources are manually downloaded. It
supplies the following functions:

• Support for the following input data streams and applications:
Support for Microsoft Windows** 3.0 applications
Support for OS/2 Presentation Manager applications
ASCII (Proprinter* II and QuietWriter Ill emulation)
Advanced Function Printing Data Stream (AFPDS)
Mixed Object Document Content Architecture Presentation Interchange
Set 1 (MO:DCA-P IS/1) with the following data objects:

- Bar Code (BCOCA)
- Graphics (GOCA)
- Image (IOCA)
- Presentation text (PTOCA)

OS/2 Graphics data in metafile format
• Resource management and error recovery
• A rich selection of AFP fonts:

- IBM Core Interchange Fonts (240 and 300 pel)
- IBM-supplied compatibility fonts (240 and 300 pel)

PSF/2 supports the following AFP printers:

• IBM 3812 PagePrinter Model 2
• IBM 3816 PagePrinter Models 01S and 01D
• IBM LaserPrinter 4028 Model NS1
• IBM 3820 Page Printer
• IBM 3825 Page Printer
• IBM 3827 Page Printer
• IBM 3835 Page Printer
• IBM 3900 Advanced Function Printer

PSF/2 also supports the following non-AFP printers:

• IBM LaserPrinter 4019 and 4029 (supported as a 4019) in either:
IBM Personal Printer Data Stream (PPDS) mode

- Hewlett-Packard Printer Command Language (HP PCL4**) LaserJet**
emulation mode

• Hewlett-Packard LaserJet printers and other compatible printers that accept
the HP PCL4 data streams.

Note: PSF/2 generates HP PCL4 and therefore supports HP PCL5 printers as
HP PCL4 printers.

96 Print and View Data Streams

/

12.15.2 Print Service Facility/2 V.1.0

Mainframe
- MVS
- VM
- VSE

PSF VTAM

SNA LU 6.2

C:\

Metafile

ASCII
from LAN

Overlay
Library

Font
Library

Segment
Library

other
Work

~
.i~

stations

j

Token
Ring

1 ~ ~

PS/2 +
under OS/2

Coax . ..

/370
Channel

P S F /2

~

Two-Way
Dialog
L-

4028
3812
3816

3820
3825
3827

3835
3900

Version
1.0 f No two-way dialog

LPTl 4019
4029
HPPCL4
PCL-Emu.

Figure 20. PSF/2 V.1.0 Model for AFP Printing

ASCII, AFPDS, and metafile data stream support means that DOS, UNIX, and
OS/2 applications may be accommodated, and can take advantage of AFP

Chapter 12. Print and View within the Different Environments 97

functions such as merging forms overlays and page segments (logos, graphics,
signatures). IBM Print Services Facility/2 also supports printing of MO:DCA-P
IS/1 documents generated by lmagePlus applications.

PSF/2 provides an OS/2 Presentation Manager device driver that generates
AFPDS for applications that use the OS/2 PM Graphic Programming Interface.
The AFPDS can then be printed by PSF/2.

PSF/2 provides a Microsoft Windows 3.0 device driver that generates AFPDS for
applications that use the Windows 3.0 Graphic Device Interface. The AFPDS can
then be directed to the LAN for printing by PSF/2. This driver enables Windows
3.0 users to use IPDS printers as well as the error recovery and job management
capabilities of PSF/2.

In addition, PSF/2 can be y,sed in conjunction with OS/2 Transmission Control
Protocol/Internet Protocol (TCP/IP) to support printing from UNIX clients,
including IBM Advanced Interactive Executive (AIX*).

Printer sharing between PSF/2 and the OS/2 Print Manager is also possible for
the 4019, 4029, and HP PCL4 printers. This enables current OS/2 users to print
both AFP and current applications without additional hardware.

12.15.3 IBM Print Services Facility/2 Version 1.10
Besides the functions of PSF/2 V.1.0 additionally Version 1.1 enables host
PSF/MVS, PSF/VM, and PSF/VSE users to direct output and associated resources
automatically to PSF/2 via communications and/or LAN-attached OS/2 systems
for spooling and subsequent printing.

Postscript as an input data stream is supported in Version 1.1. HP-PCL5 as an
output data stream is also supported in Version 1.1.

PSF/2 Version 1.1 enhancements include:

• Server-based printer sharing between the host and the LAN
• Lower cost printer support (3812, 3816, 4019, 4028, 4029, HP PCL4 and

compatibles)
• Improved ASCII emulation (ProPrinter II and QuietWriter Ill)
• JISCll (Doublebyte ASCII) emulation
• Concurrent spooling/printing on a single PS/2
• Multiple printers driven from each PSF/2
• Expanded connectivity which exploits OS/2 Communications Manager.

A Type Transformer will be provided in Version 1.1 which converts fonts in
Adobe Type 1 format to fonts compatible with AFP. These fonts can be delivered
to the OS/2, VM, MVS, and OS/400 environments.

The IBM Core Interchange Fonts are provided in Adobe Type 1 outline format for
use by the Type Transformer. They consist of three type families (Times New
Roman, Helvetica, and Courier) which support the International Organization for
Standardization (ISO) single byte character sets for Latin-1 thru Latin-5.

98 Print and View Data Streams

/

12.15.4 Print Service Facility/2 V1.1

Mainframe
- MVS

other
Work

- VM
- VSE ~

stations

t

PSF VTAM

SNA LU 6.2

C:\

Metafile

ASCII
from LAN

Overlay
Library

Font
Library

Segment
Library

Postscript

Token
Ring

i ~
PS/2
under OS/2

P S F /2

Version
1.1

Figure 21. PSF/2 V.1.1 Model for AFP Printing

r-

r- Two-Way

Coax

/370
Channel

Dialog
'--

4028
3812
3816

3820
3825
3827

3835
3900

INo two-way dialog

LPTl 4019
___p 4029

HPPCL4
HPPCL5
PCL-Emu.

Chapter 12. Print and View within the Different Environments 99

12.15.5 AFPDS Driver under OS/2 and DOS/WINDOWS
PSF/2 contains both an OS/2 and a Microsoft Windows-based printer device
driver that produces Advanced Function Printer Data Stream (AFPDS) output.
These are called the IBMAFP printer drivers.

They can be used with any OS/2 or Windows application to produce output
printable on AFP printers.

Other versions of these printer drivers are available in the AFP Workbench for
Windows product, and internally within IBM as the WINAFP driver.

For image, all of these at present produce IOCA, both compressed and
uncompressed, depending on the target printer. For printers that are not
capable of accepting IOCA only, PSF V.2. converts uncompressed IOCA into IM,
which can then be printed.

The default output mode is to produce a print file, which is made up of a form
definition and a document.

Overlay and Page Segment objects can also be produced. They will also contain
IOCA, either compressed or uncompressed.

The WINAFP driver can be installed using the Windows control panel. Choose
the printer icon, and then install an "Unlisted Printer." You'll then have to
download WINAFP.MRO into the \WINDOWS\SYSTEM directory by hand.

Users of the IBMAFP drivers should refer to the instructions they received with
PSF/2.

AS/400 users can use the PC Support/400 Virtual Print function (data type 5) to
seamlessly upload the output to the AS/400 spool.

The output contains an inline form definition called IBMAFP. This contains
information on duplexing and source drawer. If your PSF platform is unable to
use this form definition, the duplexing and drawer selection controls from the
main setup dialog will not affect the output.

100 Print and View Data Streams

12.16 Data Streams and Hardware Connection of Printers

Table 4 (Page 1 of 2). Data Streams and Objects by Printer. This table indicates
which printers support what Object Content Architecture, and how they are physically
connected to a system.

Printer Supported Connection Remarks
Data
Stream

3900 PTO CA Channel The data streams
(with AFIG) IOCA are enveloped into

GOCA MO:DCA or into
FOCA AFPDS and

converted to IPDS
by PSF or PSF/2 or
Print Services/400.

3835 PTOCA Channel As 3900
(with AFIG) IOCA

GOCA
FOCA

3828 PTO CA Channel As 3900
FOCA

3827 PTOCA Channel As 3900
(with AFIG) IOCA

GOCA
FOCA

3825 PTOCA Channel As 3900
(with AFIG) IOCA

GOCA
FOCA

3820 PTO CA Channel As 3900
FOCA V24, SDLC

3816 PTO CA Coax As 3900; 3816-015
IOCA Twinax prints simplex and
GOCA 3816-010 prints
FOCA duplex
BCOCA

3812 PTOCA Coax As 3900
IOCA Twinax
GOCA
FOCA
BCOCA

4028 PTO CA Coax As 3900; Printer is
IOCA Twinax driven either by
GOCA PSF, or PSF/2, or
FOCA Print Services/400.
BCOCA

Chapter 12. Print and View within the Different Environments 101

Table 4 (Page 2 of 2). Data Streams and Objects by Printer. This table indicates
which printers support what Object Content Architecture, and how they are physically
connected to a system.

4224 PTOCA Coax certain models
GOCA Twinax support printing of
FOCA IPDS data stream
BCOCA

4230 PTOCA Coax certain models
GOCA Twinax support printing of
FOCA IPDS data stream
BCOCA

4234 PTO CA Coax certain models
GOCA Twinax support printing of
FOCA IPDS data stream
BCOCA

Lexmark** PTO CA connected to AFPDS printed via
printers IOCA workstation as AFP Workbench for

GOCA LPTt Windows
FOCA IPDS is converted
BCOCA to either PPDS or

PCL
Printer is driven by
PSF/2

Complementary PTOCA connected to AFPDS printed via
printers IOCA workstation as AFP Workbench for

GOCA LPTt Windows
FOCA IPDS is converted
BCOCA to either PPDS or

PCL
Printer is driven by
PSF/2

Note:
Printers working with the AFIG feature have additional support for IOCA and
GOCA available.

Note:
If a channel attached printer is connected to a workstation, a channel
adapter card is required.

Note:
If a normal coax or twinax attached printer is connected to a workstation, a
coax adapter card is required.

Note:
If a channel attached printer is connected to a workstation, it can be driven
either by PSF/2, or RPM V2.0, or RPM V3.0

102 Print and View Data Streams

Chapter 13. Practical Tasks

The purpose of this section is to use practical examples to introduce the
relationships between major data streams and objects, and what common
programs can be used with them.

It is not intended to replace the ITSC Document Transforms Cookbook,
GG24-3530, to which the reader is referred for details of many transforms not
covered in this document.

13.1 Getting Pictures into IBM BookManager from Corel Draw
Corel Draw is extremely useful for both preparing graphics to put into IBM
BookManager books, and also for converting graphics from other sources for the
same purpose.

Depending on the form of graphics required at the end of the process, however,
and on what host software is available, the route taken to convert the graphics
will vary, for best results.

13.1.1 Color Pictures
Input The graphic is held in any form valid for Corel Draw on the PC. In

this case, we want to use it as a color vector graphic inside IBM
BookManager.

The translation process to GDF maps the almost continuous color
capability of PC programs to a restricted number of colors. The way
these are represented may vary between host graphics terminals and
PC color displays.

It is difficult to give general guidelines, and the best advice is to try
samples, and build small test books to check rendition by the different
routes. If your books are to be used on both host and PC platforms,
check on both; rendition will probably be slightly different.

The consistently best results seem to be given by the PIF process out
of Corel Draw, and this is the route we recommend you try first.

In any case, where graphics are to be created specifically for use with
IBM BookManager, it is recommended that you use colors that you
know your translation process will render effectively. A little
experimentation the first time will pay off.

The first process below will also work with any other product that can
save vector graphics as CGM, but works best with those for which
GDDM has color translation profiles.

The profile name quoted below is specific for Corel Draw. Others are:

CGMFP2 For Freelance Plus version 2

CGMFP3 For Freelance Plus version 3

CGMHG For Harvard Graphics**

CGMMD For Micrografx Designer**

CGM General purpose

© Copyright IBM Corp. 1993 103

Process

Output

104 Print and View Data Streams

The second process will only work for PC programs that can save
files in IBM PIF format, as Corel Draw can. Where this is possible,
this process is to be preferred, as the translation is rather more
direct, and color is often rendered rather better on both mainframe
and PC platforms.

1. The graphic can be exported from Corel Draw as a CGM, and
uploaded in binary from the workstation.

2. Once on the host, the file can be converted to an ADMGDF for
direct inclusion in IBM BookManager by one of the following
commands:

VM Use the base GDDM utility

ADMUCG filename CGM filemode
filename ADMGDF filemode
(PROFILE CGMCD

where "fm" is the disk filemode (usually "a").

MVS Use the base GDDM utility

Alternatively:

CALL 1SYSl.GDDMLOAD(ADMUCG) 1

FROM(userid.filename.CGM)
TO(userid.filename.ADMGDF)
PROFILE(CGMCD) 1

1. The graphic is exported as a PIF from Corel Draw, and

2. Either on

MVS Uploaded in binary, and then

ADMUFILE PUT 1 userid.filename.ADMGDF 1

1 userid.filename.PIFBIN 1 options

or on VM uploaded and converted simultaneously using

SEND filename.PIF filename ADMGDF filemode
(ADMGDF

The output ADMGDF file can now be included in IBM BookManager
books, using either the .im macro in GML Starter Set, or the :artwork
tag in IBM BookMaster.

Here is an example of a simple graphic which has gone through this
second process - it will appear as color in IBM BookManager when
displayed on a device supporting color images, but monochrome
when printed.

Figure 22. ADMGDF Vector Graphic from Corel Draw

Software required for conversion:

• Workstation
- Corel Draw

• Host
- GDDM

13.1.2 Monochrome Pictures
Input The graphic is held in any form valid for Corel Draw on the PC. In

this case, we want to use it as a monochrome bitmap graphic inside
IBM BookManager.

If, instead of this route, we took the same route as for a vector
graphic, via ADMGDF, and then used GDDM to convert the ADMGDF
to a PSEG, we would find that all colors in the original, and all
shading, would be rendered as black.

For example, this picture:

Figure 23. ADMGDF Vector Graphic from Corel Draw

would be rendered as a solid black silhouette of an elephant, while
the result we might well prefer, which this procedure will give us, is
as follows:

Chapter 13. Practical Tasks 105

Figure 24. PSEG Created from Corei Draw Graphic

Process

Output

Note: On some output devices, the PSEG might look like the vector
graphic, but they are different, believe us!

"All black" works fine if we have a simple line drawing to start with,
and we were not concerned with rendering the differing colors as
different gray shadings. If this is the case, then this path, using the
Postscript Interpreter, is not necessary, and you can use the
procedure outlined in 13.1.1, and then use the standard GDDM
command on your system to create a PSEG from an ADMGDF. (Use
IBM ProcessMaster if you have it, or the ADMUCIMV exec with
GDDM, or the ADMUCIMT clist. If in doubt about any of these
"standard" transforms, see ITSC Document Transforms Cookbook,
GG24-3530. Additionally refer to C.24, "ADMUCIMV" on page 207 to
see the coding of the EXEC for comparing if your parameters are all
correct or where to change if necessary.

1. The graphic should be exported from Corel Draw as an EPS, and
uploaded in binary from the workstation.

2. Once on the host, the file can be converted to a PSEG for direct
inclusion in IBM BookManager by use of the Postscript
Interpreter. Consult your local system documentation for how this
is used in your environment - usually this is via a front-end
panel.

Note: If your installation uses the standard EXEC PS370 panel,
then ensure the option 0 is specified for Origin translation, and Y
for automatic scaling, in the parameters panel. Provided these
are so set, then the PSEG you produce will fill the area you define
for the output PSEG in the first panel. Don't make this area too
large, or the graphic will take up a lot of space; equally, if you
make it too small, then you will lose detail.

The output PSEG file can now be included in IBM BookManager
books, using either the .im macro in GML Starter Set, or the :artwork.
tag in IBM BookMaster.

Software required for conversion:

• Workstation
- Corel Draw

106 Print and View Data Streams

'··

• Host
GDDM

- Postscript Interpreter

13.2 Combining Desk-top Publishing with GML
In my organization there are several departments that want to create
simple documentation with desk-top publishing programs, as they are
simple and easy to use with little training.

However, some of this documentation needs to be included into more
corporate documents, which are produced using GML.

Is it possible to reconcile the two? Surely we don't have to key the text
twice? Is there some way we could convert the formatting done in the
desk-top world into GML?

Description of working steps

1. Save your Ami Pro or Ventura Publisher file as ASCII with tag
information. With Ami Pro, save files as ASCII while "keeping
styles"; this gives a file which can be very easily converted into
GML. Ventura Publisher saves its files with tags which can be
considered to be at least partially structural; those controls which
are format-based can be used to give context for further
conversion.

2. Both of these Ami Pro and Ventura Publisher files can be easily
converted into GML.

The reverse process into Ami Pro is just as easy, importing the
result of conversion to Ami Pro ASCII format resulting in a
document that contains sufficient style information to print
directly.

A sample program capable of conversion in both directions is
given in A.1, "Conversion Between Ami Pro and GML" on
page 147.

An alternative means of conversion is to use TextTagger if it is
available, from a formatted ASCII file provided by either. However,
since TextTagger makes its decisions purely on the format of the text,
and the tags saved by either of these programs contain more
information about document structure than can be inferred from the
structure, a transform such as that described in the appendix is
preferable in this case. Nor can TextTagger make the reverse
transform, which this program can.

However, if the software you are using cannot save tag information,
or you have many historical files that are just purely formatted ASCII
(or indeed EBCDIC), then TextTagger may well be an appropriate
means of getting them into GML.

Requirements Required software

• Workstation
- Ami Pro or Ventura Publisher, and
- a simple conversion utility outlined below.

• Host
GML Starter Set or IBM BookMaster

Chapter 13. Practical Tasks 107

13.3 I Want an AFP Print of a Scanned Image Saved as an IOCA
I use OS/2 Image Support to edit and manipulate images. I can save
them from this as IOCA files - how do I get PSEGs from that to print in
my AFP files?

Scanned images are required in print more and more. The preferred method of
converting such images to PSEG format used to be with the IHF product, but this,
though excellent in function, is now less often used. IHF remains an option that
should be considered by professionals who require high quality output and high
functionally in image processing products; it is, however, perhaps less
appropriate where simple image transfer is what is required.

For such situations, OS/2 Image Support is an excellent product, and provides as
much and probably more functionally than is required in the majority of caseso
However, the IOCA files it saves need just a little conversion on the host before
they can be used.

Description of working steps

1. The IOCA file must first be uploaded to the mainframe. Specify a FIXED
record format, and a record length of 80.

2. GDDM can then be used to convert the IOCA file to a PSEG. A sample
exec is given below for VM.

108 Print and View Data Streams

/***/
/* Convert IOCA file to a PSEG using GODMREXX */
/***/
trace o
arg ifn ift ifm ofn oft ofm

if ·I loft=. then oft='PSEG3820'
if . I lofn=. then ofn=ifn
if . I lofm=. then ofm='A'

bpseg='5A001003A85F00000007C7E2F0F0F0F0F0'x
epseg='5A001003A95F00000007C7E2F0F0F0F0F0'x

/* afp page segment */
/* structures */

/**/
/*read file into variable rec., number of records in nrecs */
/**/
1 STA TE 1 ifn ift ifm
if rc~=0 then exit re
'FINIS ' ifn ift ifm
nrecs=l
Do forever

'EXECIO 1 DISKR 1 ifn ift ifm ' (VAR 1 rec.nrecs
if rc~=0 then leave
nrecs=nrecs+l

End
nrecs=nrecs-1
/**/
/* load into GDDM, as image number 1 */
/**/
I GDDMREXX !NIT I
address GDOM
'IMAPTS 1 0 2 0' /* imageid=l projid=0 format=2 compression=0 */
do i =1 to nrecs

' IMA PT 1 • • rec. ' i

end
I IMAPTE 1'

/***/
/* get the image back from GDDM, in PSEG format. put it in rec.*/
/***/
'IMAGTS 1 0 3 4' /* imageid=l projid=0 format=3 compression=4 */

/*build up datastream in rec., counted by nrecs */
nrecs=0;
nrecs=nrecs+l;
rec.nrecs=bpseg /* add BEGIN PAGE SEG to the datastream*/
do forever

'IMAGT' 1 2000 °.line .retlen"
if rc~=0 I retlen=0 then leave
nrecs=nrecs+l
rec.nrecs=left(line,retlen)
end

I IMAGTE 11

nrecs=nrecs+l;
rec.nrecs=epseg /* add END PAGE SEG to the datastream */

/**/
/*write out the file from variable rec., */
/**/
address command
'ERASE' ofn oft ofm
Do i=l to nrecs

'EXECIO 1 DISKW 1 ofn oft ofm 1 e V (VAR REC. 'i
End
'FINIS' ofn oft ofm
exit re

Requirements for conversion

• Software on the workstation:

- OS/2 Image Support

• Software on the host:

GDDM
GDDMREXX

13.4 Getting Formulas into Mainframe Publishing
I have an occasional need to create mathematical formulas into
documents published on the mainframe, but not so many as to justify
SMFF (Script Mathematical Formula Formatter). How can I best create
and modify them?

Description of working steps

If you are creating any significant quantity of formulas for the
mainframe, and are using GML, then SMFF is probably the best, and
certainly the most consistent, method to use.

However, many people have the need for occasional use of formulas,
but not enough to justify SMFF. For them, there are several ways of
attacking the problem.

Chapter 13. Practical Tasks 109

1. The simplest, but perhaps the least satisfactory method, is to use
a graphics program to draw the formulas, and create a graphics
image which can be included in the document. Corel Draw is a
program capable of doing this sort of work - but this type of
program was not really designed for this purpose, and you would
almost certainly have to generate some of your symbology
yourself.

2. Some of the more capable desk-top publishing programs and
word processors have direct support for formula creation and
editing. For example, both Ami Pro and Ventura Publisher have
good simple equation editors capable of handling much of this
kind of work. The finished product can be exported as an
Encapsulated Postscript file into mainframe documents as
outlined in 6.1.1, "Postscript" on page 41. This kind of editor has
the advantage that if changes need to be made, they are easier to
make than with a simple graphics editor. If you have the need for
a desk-top publishing program as well, this could be a good
solution to the problem.

3. There are dedicated equation editing programs available, and
most of these can create Postscript output; so if you have the
need for a significant quantity of sophisticated formulas, these are
another possible route. However, if your need is such as to be
able to justify such an editor, you are also probably a large
enough user for SMFF to be a viable solution, and you should
consider whether you really need a workstation solution, in which
case go for the dedicated editor, or whether your problem is
really an enterprise or production publishing one, in which case
you should really be using SMFF.

4. One other option not often considered, especially in organizations
with academic contacts, is that TEX has reasonable equation
handling facilities; and a TEX expression of an equation, though
somewhat lower level than a SMFF expression, and rather more
format-related, does have some of the advantages of a GML-like
equation definition. TEX can be used to create Postscript, where
an appropriate filter is part of the TEX installation (usually called
dvi2ps or something similar). and again this could be included as
a graphic. 11. 7, "TEX and LAT EX" on page 73 outlines the
process of taking Postscript from TEX to GML image inclusion.

5. A combination of the equation editor and TEX route is possible
with Ami Pro, which allows of WYSIWYG editing of a TEX formula.
If Ami Pro is available, then this is probably the route we would
recommend.

This TEX source was created by the Ami Pro equation editor,
which is an excellent WYSIWYG tool.

$\int\nolimits_aAbf\left(x\right) dx=\lim \frac{b-a}n\sum_{r=l}An\left(
a+\frac rn\left(b-a\right) \right) $

Figure 25. Equation TEX Source from Ami Pro

110 Print and View Data Streams

When saved as a EPS file (the whole page must be saved, and
then cropped using the IBM Postscript Interpreter), the following
result was obtained:

J!fix)dx = lim 1;1 L~1 (a+ f,(b-a))

Figure 26. Equation Produced using Ami Pro Equation Editor

(This is using a large font - variable sizes are available.)

(To crop using the IBM Postscript Interpreter, specify the final
size you want the PSEG to be, and use the origin and translation
option parameters to define where the conversion is to start.)

Requirements Required software:

• Workstation

Possibly one of the following:
Ami Pro
Corel Draw
TEX
Ventura Publisher

• Host
Possibly IBM Postscript Interpreter
Possibly SMFF
GML Starter Set or IBM BookMaster

13.5 Scan a Logo, Improve It, and Integrate It in an Overlay
I have a company logo in hard copy. It needs to be made into an overlay
for AFP.

It can be scanned on a PC, but given the resolution of the scanner, the
print size would be wrong at 240 pels per inch; also scanning gives a
fuzzy image.

What is the best way to get a good logo as an overlay?

Description of working steps

A scanned image can be made into a page segment overlay, cleaned
up, at any required size.

1. First, the logo is scanned using appropriate software for the
available scanner, and saved as a TIF. At this stage, the image
would look something like the following:

Chapter 13. Practical Tasks 111

112 Print and View Data Streams

achyderm
Productions

2. The TIF image must then be converted to a vector format, so that
the graphic can be resized to any desired ratio without unwanted
artefacts such as stepping or fringes. This is done using the
Corel Trace program, which is part of the Corel Draw package. In
this case we converted it with the "outline" option, which the
Corel Trace program then saves as an EPS file, which can be
loaded into Corel Draw for cleaning up and conversion.

Note: Don't try to convert halftone images in this way! You'll end
up with the largest files in the known universe, as Corel Trace will
try its little best to draw vectors round every dot.

After this stage, the image doesn't look much different:

achyderm
Productions

3. Once in vector form, the graphic can be resized and cleaned up
using standard functions of Corel Draw, and then saved as an EPS
file. Here is the result of that stage - any stepping from here on
is the result of printing at a given resolution - the object is now
defined as smooth curves:

Pachyderm
Productions

If required, the graphic can be freely amended at this stage;
changed to any size, or amended. As an example, we include
here a new version where we changed the elephant from an

/

Indian to an African - the ears have been extended - which only
took a few seconds.

Pachyderm
Productions

4. The EPS file is uploaded to the host in binary, and then converted
to a PSEG using the IBM Postscript Interpreter.

5. Once we have a PSEG, we design the overlay using DCF input to
lay out the design of the overlay page, including the PSEG at an
appropriate point using either a .im macro or an :artwork. tag,
and use this to create an overlay as outlined in 14.5, "Generate
Overlays Using the DCF Post Processor" on page 131.

An alternative procedure, once the graphic is in Corel Draw, is to use
the IBMAFP printer driver from inside Corel Draw to "print" the image
to a file directly as a PSEG. The user is given options at that time to
define the size of the resulting PSEG. The only concern here is to
make sure that the file is uploaded with the correct file format and
record length, and to use the appropriate EXEC on the mainframe to
reblock the variable length records. We include a sample exec in A.5,
"Reblock Uploaded PSEG" on page 170.

Requirements

• Required software on the workstation:
Scanning Program

- Corel Trace (part of Corel Draw package)
- Corel Draw

• Required software on the host:
Source Editor

- OGL

Chapter 13. Practical Tasks 113

F'achyc:lerrn
F'roc:luctions

Pachyderm
Productions

114 Print and View Data Streams

/

13.6 I Want an AFP Print of a Scanned Photo Saved as a TIF
I have a scanner attached to my PC. It lets me scan both bilevel images
and halftones. The software that came with it saves the images with a
fi letype of Tl F.

How can I get a photograph scanned with this printed on a mainframe
AFP printer in a document created on the mainframe in either GML
Starter Set or IBM BookMaster?

The TIF object definition is given in 10.3.

Description of working steps

Output

1. The TIF file must first be converted to a PSEG on the mainframe.
Some ways this can be done are outlined in 14.3, "Convert TIF to
PSEG" on page 130.

2. The PSEG is included in the GML document; if the document is
GML Starter Set then an .im macro is used; if it is IBM
BookMaster, then an :artwork. tag is used.

3. The document is formatted using DCF, and the resulting output
printed on an AFP printer, using a standard system CLIST or
EXEC.

The output of DCF can be an AFPDS data stream.

Other options for output from DCF include Postscript, described in
6.1.1, "Postscript" on page 41.

Requirements for conversion

• Software on the workstation:

- Scan program
- Corel Draw

• Software on the host:

- GDDM

• Special hardware

- Scanner, attached to Workstation

13.7 I Have a Plot File and I Want It Printed on the Host
The file is either one created on a Workstation or on the host and needs to be
printed in both Postscript format and in AFPDS format.

"Plot file" is a rather generic term. Normally what is meant by this is the HPGL
format, though there are other formats defined by other manufacturers. The
HPGL format is rather more common, though, particularly in the workstation
world.

The HPGL object definition is given in 10.1, "Hewlett-Packard Graphics
Language" on page 61.

Description of working steps

• Generated on a workstation

1. One method of creating first a Postscript, and then a PSEG,

Chapter 13. Practical Tasks 115

file from a HPGL file is given in 14.4, "Convert HPGL to PSEG"
on page 130.

2. If the PSEG is to be printed using AFPDS, it is then included in
a GML document or in an overlay.

Another method is to use the AFPDS printer driver from Corel
Draw after importing the HPGL into Corel Draw, as outlined in
13.5, "Scan a Logo, Improve It, and Integrate It in an Overlay"
on page 111.

If the document is GML Starter Set then an .im macro is
used, or if it is IBM BookMaster, then an :artwork. tag.
The document is formatted using DCF, and the resulting
output printed on an AFP printer, using a standard system
CLIST or EXEC.
If the graphic is required to become part of an overlay, it
needs to be defined and positioned in the overlay with the
IFPDS DEFINE SEGMENT and PLACE SEGMENT
commands. The procedure is outlined in 14.5, "Generate
Overlays Using the DCF Post Processor" on page 131.
The machine-readable overlay then is defined in a
FORMDEF, which tells Print Services Facility or Print
Services Facility/2 what overlay to use and where on a
page to position the overlay.

• Generated on a mainframe

1. If the plot file is an output file of the CAD/CAM world, GDQF is
used for conversion and if necessary for manipulation.

2. GDQF can be used to create an AFPDS data stream, and IBM
ProcessMaster contains conversion facilities to convert this to
Postscript, which can then be used on the work station after
downloading.

Requirements

• Required software on the workstation:

- Plot program
- Corel Draw

• Required software on the host:

GDDMICU
GDQF
IBM ProcessMaster
Overlay post processor of DCF
CAD/CAM Software

13.8 I Want to Prepare Host Output for Workstation Print and View
I have host programs that have been used for some years which create
line data. I would like to have this output to be able to be printed and
viewed on workstations.

What is the best way to do this, and what software do I need either in the
workstation or on the host to convert the data?

116 Print and View Data Streams

PSF/2 has the capability of driving many workstation printers from AFPDS,
Postscript, and ASCII data streams. If the output data is already in AFPDS or
Postscript, then there can be little argument that PSF/2 is the only tool that is
required. Equally, if the output can be easily transformed into AFPDS, the same
is true.

However, if PSF/2 is not available, or the data stream is one which PSF/2 cannot
at the moment transform, then another route must be found.

If the data stream needs to be viewed on the workstation, then AFP Workbench
for Windows can be used to:

• Look at the data before it is printed

• Split particular pages out for printing or further use

• Print directly on non-PSF supported printers (IBM Graphics Printer, for
example - as a DOS/Windows program, AFP Workbench for Windows can
print on any output device for which you have a driver)

• Transformed into a PS or PCL file - again, any filetype for which you have a
driver

Options: There are basically three data streams that are commonly used on the
workstation for printing:

• PPDS

• Postscript

• PCL

Which is to be selected depends on the capabilities of the printers you have
available, and the format of the output data that is to be printed.

PPDS is most appropriate where the printer population is essentially IBM
workstation printers or non-IBM devices which use IBM controls.

PCL is supported by some IBM workstation printers and several non-IBM
suppliers.

Postscript is supported generally only by higher function printers, but has
the advantage of device independence, richness of function, and the
capability of also being used as a view data stream with the faster
workstations using Display Postscript, which in general PPDS and PCL
cannot. Postscript printers are also becoming more cheaper and more
common.

There are no specific conversion products available to turn line data with
mainframe carriage controls into these data streams; however, there are several
utilities available on the PCTOOLS disk to convert such 1403 data files to PPDS.
In any case, simple print programs can be written to do the task.

Alternatively, word processor programs can often import plain ASCII data, and
can be used to print directly, or after minimal formatting.

So, the best solution seems to be to try to get the data stream from the
mainframe already in AFPDS form. In that form, you then have the fullest
flexibility for workstation use as well as host use, given the availability of PSF
and AFP Workbench for Windows.

Chapter 13. Practical Tasks 117

Chapter 15, "Transforms" on page 135 deals with general considerations about
transforms of all kinds, and the three data streams above are outlined in

• 5.1.6, "IBM Personal Printer Data Stream" on page 36

• 6.1.1, "Postscript" on page 41

• 7.2, "PCL (Printer Control Language)" on page 45

13.9 How do I Use PSEG Files with my DTP Programs?
I have many graphics on the mainframe in PSEG form, and in many
cases the original source is long gone. I want to be able to use them in
workstation programs. How do I get them there without printing them and
scanning them fresh?

These graphics need to be converted to TIF, as being probably the most popular
image format for use with DTP programs on the workstation.

Once converted to TIF, then can then be used, edited by many programs, or
even, if they are not halftoned or otherwise composed of very many small
elements, converted to a vector format by such a program as Corel Trace.

Description of working steps

1. The first step is to convert the PSEG to a form that can be
handled by OS/2 Image Support - the preferred form is IOCA. A
PSEG can be converted to IOCA either by using GDDM IVU, or by
using GDDM functions directly in a similar way to the reverse
conversion outlined in 13.3, "I Want an AFP Print of a Scanned
Image Saved as an IOCA" on page 108.

2. OS/2 Image Support can then be used to convert the IOCA files to
TIF, together with any appropriate resizing, cropping, and so on.

An alternative option is the use of GDQF. GDQF can load and display
a PSEG, and then save it in several formats, three of which are
different types of TIF (using different compression algorithms). Test all
three of those with the workstation program you want to use, as not
all programs can handle all types of TIF compression.

Requirements

• Required software on the workstation:

- OS/2 Image Support

• Required software on the host:

GDDMIVU
- GDQF

13.10 How Do I Use Mainframe CAD Pictures in DTP?
The host has CAD models stored in a library, and I can access them with
GDQF, or create GDF files from the CATIA** or CADAM** models directly.
How can these be cleaned up and used in workstation DTP programs?

GDF is an IBM mainframe format; what format is needed on the workstation will
depend on the software used. Possibilities are:

118 Print and View Data Streams

• CGM
• PCX
• TIF

and many others. The best approach is to convert them to a form with minimal
loss of information, and store them with a program capable of exporting to as
many different formats as possible. One possible candidate for this is Corel
Draw.

Description of working steps

1. Download the GDF file as a PIF file. This can be done using the
PC3270 emulator using the ADMGDF option:

receive filename.ext filename admgdf fm (admgdf

2. The PIF file can then be directly imported into Corel Draw, and
stored as a Corel Draw file. At this stage, all the artistic
attributes such as color are preserved.

3. Corel Draw can then be used to export the graphic in a number of
formats, of which TIF is one. Most DTP programs can make use
of TIF graphics, or EPS, which Corel Draw also provides.

Requirements

Be careful, though, of some of the transforms which may lose
information. If you want to retain color, for example, then the
options you have may be limited; also, some of the transforms
which convert color to monochrome will do a more appropriate
job of converting color to halftone patterns than others for some
tasks.

• Required software on the workstation:

- DTP software
- Corel Draw

• Required software on the host:

- CADAM, CATIA, GDQF, etc.

13.11 How do I Use Output from Workstation Programs on the Host?
Many users in my organization use workstation programs under 08/2
and DOS/Windows to create material, both text and graphics. We have a
significant investment in these programs, and much information in the
form they use. It would cost too much to switch everybody to some new
set of standard programs, both in retraining and software costs.

It would be useful in many cases to be able to incorporate some of this
material into mainframe applications. One of the major problems we
have is being able to archive all this stuff. It would be useful to be able
to search through it all for particular information, too.

How can we incorporate all this workstation information easily?

Graphics are fairly straightforward, as is text or mixed text and graphics output if
you are happy to treat them as effectively graphics objects. Printing them on the
workstation using the AFPDS driver as described below will produce files that

Chapter 13. Practical Tasks 119

are essentially IOCA (wrapped up as AFPDS, PSEG, or OVERLAY files). If what
you want is a page or other image, this is fine.

The problem with this is that the information content can be printed or displayed,
but can't be searched on - the text strings no longer exist; they are bitmaps,
which are rather harder to search.

Producing a searchable file that is usable on the host can be difficult from a
GUI-based workstation. The only printer drivers that produce content with
embedded strings are usually the Postscript or PCL ones, and neither are an
ideal input medium; they are designed as Page Description Languages, and are
not an easily used data input format. There are generic text printer drivers, but
many GUI programs won't work with these; they produce either a Postscript
definition, or a bitmap in one form or another. The printer drivers that do
include text tend to be like Postscript or PCL, and not to be suited to generic
input.

So if the text or formatted data is to be used, the output of workstation programs
often can't be used.

Often, the input, stored, or exported version of the data is a better route; some of
these are described in 15.2, "Round and Round We Go ... " on page 138. If you
can get your data into IBM BookManager in this way, the text is searchable; this
is a good way to create an archive of workstation documentation.

Description of working steps

120 Print and View Data Streams

1. To produce an AFPDS file from within OS/2 or DOS/Windows,
make sure you have either the PSF/2 OS/2 or Windows printer
driver (IBMAFP), or the WINAFP printer driver installed. (WINAFP
is available on PCTOOLS - the IBMAFP printer drivers are part of
the PSF/2 and AFP Workbench for Windows products.)

2. Use the DOS/Windows Control Panel to connect the WINAFP
driver to a file instead of :LPT1 (or similar functions for the other
drivers, and so on below).

The setup functions accessible from the DOS/Windows Control
Panel allow you to specify whether the file to be produced is to be
an AFP listing file, a PSEG, or an overlay.

3. Upload to the mainframe; remember to use a file transfer set to
variable record format and maximum record length of 32767, and
then use the supplied AFPSPLIT EXEC to reformat the file
appropriately.

If you use PSEGs made in this way in IBM BookMaster, you will find a
slight problem. The driver partitions images into a number of
segments which are held together in one file. Unfortunately, IBM
BookMaster takes the dimension of the first segment as the space to
assign in the document for the whole, and then goes on to use the
whole. This means that the PSEG will overflow its assigned space,
and if you don't leave space after it, it could wrap over following text,
as in the example below.

WTSC

Here's what we mean; we'll repeat the last paragraph a couple of
times for it to wrap over so you don't miss anything. (Oh, and by the
way, IBM BookManager users - we haven't gone insane; you won't
see any of these problems, so bear with us for a minute.)

(BEGIN OF REPEATED TEXT.)

e in this way in IBM BookMaster, you will find a
time of writing, the driver partitions images
ents which are held together in one file.

ookMaster takes the dimension of the first
ce to assign in the document for the whole, and

se the whole. This means that the PSEG will
n"O"P!'l'flto'1'1117""ffis signed space, and if you don't leave space after it, it

over following text, like the example below.

If you use PSEGs made in this way in IBM BookMaster, you will find a
Pouw"I* ~111hlihl~river partitions images into a number of

tS'{frWlilff'~'l~~eld together in one file. Unfortunately, IBM
BookMaster takes the dimension of the first segment as the space to
assign in the document for the whole, and then goes on to use the
whole. This means that the PSEG will overflow its assigned space,
and if you don't leave space after it, it could wrap over following text,
like the example below.

The overprinting of the picture and text on this page is intentional. It
shows what happens if the bottom margin of the picture Is not
adjusted in the :artwork tag.

Chapter 13. Practical Tasks 121

(BACK TO UNREPEATED TEXT HERE.) While here we fix it by adding
some whitespace to the :artwork. tag, as here:

:artwork botmar=3i name=world2

instead of

:artwork name=world2.

WTSC Poughkeepsie

Figure 28. A WINAFP PSEG not Overflowing

122 Print and View Data Streams

You'll probably get messages about the PSEG overflowing the right
page boundary, as well - this is because the PSEG extent information
is full page width (and adding the IBM BookMaster margin to that
makes it overflow). Don't worry about that; it's probably all empty
space, unless of course you did make the PSEG with content all the
way over to the right hand edge of the page, in which case go back
and make it smaller.

Note: There is one further step necessary if you want to use this kind
of segmented PSEG in IBM BookManager. BookManager
BUILD ignores all but the first segment of such PSEGs, so you
would only see a small part of them included in the book.

To show you the effect, we left the first picture unconverted.
You probably noticed, and wondered what was happening.
(This time people reading the paper book won't know what
we're going on about, as IBM BookMaster uses all the
graphic.) The solution is to recombine the segments. This can
be done with a simple REXX exec on the mainframe, and a
sample one is included in A.4, "Combine Image Cells in PSEG"
on page 169.

By the way, the PSEG we used above has had an interesting career. We found it
loitering on a disk as a PSEG, and decided to play. We loaded it into GDQF, and
saved it as a TIF file, then downloaded it to a PC. On the PC, we loaded the TIF
into Corel Trace, and used that to change it to a vector file. That vector file was
then put into Corel Draw, where we added the text "WTSC Poughkeepsie." In
Corel Draw, we printed it as a PSEG as described above, and then brought it
back to the mainframe.

As it stands, it could use a little cleaning up, but it shows the level of fidelity that
can be preserved through that kind of cycle. The vast majority of the
degradation happened in the PSEG to vector conversion in Corel Trace, as you
would expect. However, once in vector form, cleaning up pictures in an editor
like Corel Draw is relatively quick and easy.

We've put the original below so you can compare for yourself.

Figure 29. The Original PSEG

13.12 I Want Bigger Volumes of Print from my Workstation Applications
We have working solutions to our business needs using various
workstation applications, but the printers aren't fast enough to process
the volumes.

The faster IBM printers are AFP - can we get the output from the
existing applications printed on them? What do we have to do in order
to make it all automated, with the printers on the workstations too? We
don't want to have to beef up the mainframe or communications network
just to handle the local print load.

PSF/2 version 1.1 has conversion filters built into it. Providing your applications
can provide:

• Postscript

• AFPDS

Chapter 13. Practical Tasks 123

• ASCII

• Metafile

output data streams, then PSF/2 will take that as input, and can convert it to
IPDS and print it on fast AFP printers.

If you don't have access to PSF/2, but you want the occasional piece of
workstation output to print on an AFP printer for volume or quality, then
investigate using the IBMAFP printer driver from AFP Workbench for Windows.
Once you produce an AFPDS file, you can upload and print on a host AFP
printer, after reblocking the file using an exec like that in A.5, "Reblock Uploaded
PSEG" on page 170.

Main requirements

Result

124 Print and View Data Streams

1. Generate appropriate input:

a. DTP programs are used to produce combined text and
drawings which must be printed on one page.

b. A work station application program generates address data in
ASCII.

c. Text, drawings, and address data are combined for a direct
mail campaign.

2. Get the hardware and software in place:

a. Attach an AFP printer to a workstation in a LAN and have it
driven by PSF/2.

High volume print; no change to existing procedures to produce the
input; minimum additional control needed.

Chapter 14. Process Definitions

This chapter introduces how format conversions between data stream can be
done.

14.1 Format Conversions
The data streams shown in Figure 30 on page 129 are amongst the most
popular being produced by applications, and there is often the need to convert
them into another format for further processing.

Rather than describe all conversions in detail, we have here a list of some of the
simpler conversions together with the tools needed to perform them. There are
later sections that deal with some conversions that justify more explanation.

We can also recommend ITSC Document Transforms Cookbook, GG24-3530, for
other methods and conversions not cited.

Convert IOCA to LIST38xx

Convert IOCA to PSEG38xx

Convert IOCA to Postscript

Convert IOCA to OVL Y38xx

Convert LIST38xx to IOCA

Convert LIST38xx to PSEG38xx

Convert LIST38xx to Postscript

©Copyright IBM Corp. 1993

• Standard function of GDDM-IVU.

• Standard function of GDDM-IVU.

• Use GDDM-IVU to convert the IOCA file
to a PSEG.

• lmbed the PSEG in a dummy DCF
document.

• Define Postscript as the output device
to DCF.

• DCF creates a Postscript document.

• Use GDDM-IVU to convert the IOCA file
to a PSEG.

• lmbed the PSEG in a dummy DCF
document.

• Define LIST3820 file as the output
device to DCF.

• DCF creates a normal document.
• Use the DCF post processor to

generate an overlay.

• Standard function of the GDQF image
editor.

• Standard function of GDDM-IVU.

Method 1

• Use AFP to Postscript (under
Process Master*)

125

Convert LIST38xx to OVL Y38xx

Convert PSEG38xx to LIST38xx

Convert PSEG38xx to IOCA

Convert PSEG38xx to Postscript

Convert PSEG38xx to OVL Y38xx

Convert Postscript to LIST38xx

126 Print and View Data Streams

Method 2

• Use AFP Workbench for Windows on
the workstation.

Method 1

• Use the DCF post processor to
generate an overlay from a LIST38xx.

Method 2

• Use AFP Workbench for Windows on
the workstation.

Method 1

• Standard function of GDDM-IVU.

Method 2

• lmbed the PSEG in a dummy DCF
document.

• Define LIST3820 file as the output
device to DCF.

• DCF creates the document.

• Standard function of the GDQF image
editor.

Method 1

• lmbed the PSEG in a dummy DCF
document.

• Define LIST3820 file as the output
device to DCF.

• DCF creates the document.

Method 2

• Use AFP Workbench for Windows on
the workstation.

Method 1

• lmbed the PSEG in a dummy DCF
document.

• Define LIST3820 file as the output
device to DCF.

• DCF creates the document.
• Use the DCF post processor to

generate an overlay.

Method 2

• Use AFP Workbench for Windows on
the workstation.

• Use Postscript to AFP (under
ProcessMaster).

Convert Postscript to PSEG38xx

Convert Postscript to IOCA

Convert Postscript to OVL Y38xx

Convert OVL Y38xx to IOCA

Convert OVL Y38xx to PSEG38xx

Convert OVL Y38xx to Postscript

14.2 Image Conversion under GDQF

• Use Postscript to AFP (under
ProcessMaster) to create a LIST38xx.

• Use GDDM-IVU to create the page
segment from the LIST38xx.

• Use Postscript to AFP (under
ProcessMaster) to create a LIST38xx.

• Use GDQF to create the IOCA file from
the LIST38xx.

• Use Postscript to AFP (under
ProcessMaster) to create a LIST38xx.

• Use GDDM-IVU to create a page
segment from the LIST38xx.

• lmbed the PSEG in a dummy DCF
document.

• Define LIST3820 file as the output
device to DCF.

• DCF creates a normal document.
• Use the DCF post processor to

generate an overlay.

• Standard function of the GDQF image
editor.

• Standard function of the GDQF image
editor.

• Include the overlay in a dummy DCF
document. The overlay is included with
using either the .cg or .oi IBM Script
command.

• Define Postscript as the output device
to DCF.

• DCF creates the document.

Since GDQF is mentioned a lot of times as it provides tools to convert from one
format to another, we include here an overview of these.

The image conversion utility of GDQF allows the conversion of many types of
image objects into other formats.

By providing appropriate options, converted images can also be rotated, sized,
negated, scaled or changed in resolution.

Chapter 14. Process Definitions 127

GDQF can convert to:

• ADMIMG

• AFPDS

PSEG38PP
PSEG3820
LIST38PP
LIST3820
OVLY38PP
OVLY3820

• Bitmap

• CALS

= IOCA

• MO:DCA

• RFTDCA

• TIFF

No compression
- CCITT G.3
- CCITT G.4

• CALS

For more information about converting image data please refer to
Graphical Display and Query Facility Using GDQF Base Ver. 2 Rel.1.0
(VM), SH52-0252 when you work under VM.

For more information about converting image data please refer to
Graphical Display and Query Facility Using GDQF Base Vers. 2 Rel.
1.0(MVS), SH52-0253 when you work under MVS

Note also the large number of transforms from AFPDS to other types, which is
possible using AFP Workbench for Windows. By diverting the output to a file (an
option in the Printer Setup function), you can use this product to create any
printer data stream for which you have a printer driver. You have to install
these using the "Install Printer" functions, but you will have available to you at
least:

• Postscript

• PCL

• PPDS

128 Print and View Data Streams

(

IOCA
(AFPDS)
Image

data streams
coming from the
work station

AFPDS
TIF
EPS
GDF

Corel Draw

LIST38xx
(AFPDS)
(Document) PSEG38xx l

(AFPDS) J
Page Segment

j +lfro"I'
to •<111-----~!

•

•
OVLY38xx
(AFPDS)
(Overlay)

AFPDS
ASCII
DCA/FFT
DCA/RFT

Ami Pro

Postscript

+
RFT:DCA
MO:DCA
TIFF
IOCA

.,.....___. OS/2 Image
Support

Figure 30. Popular Data Streams and Some Transform Software

Chapter 14. Process Definitions 129

14.3 Convert TIF to PSEG

14.3.1 Using DOS Platforms
One method of converting a TIF to a PSEG uses Corel Draw, a PC product
described in C.32, "Corel Draw" on page 216. This is probably the preferred
route when the PC platform is running PC-DOS, provided that the application
supplying the TIF file produces a TIF that is readable by Corel Draw. Note that
not all files with a file extension of TIF are necessarily to the TIF specification,
and it is possible that some versions of Corel Draw do not necessarily cope with
the full TIF specification. However, most applications provide compatible
subsets.

1. The TIF file is imported into Corel Draw, and saved as an EPS file, using
standard Corei Draw functions.

2. The EPS file is uploaded to the mainframe as a binary object without
conversion using standard file transfer.

3. The EPS file on the mainframe is converted to a PSEG using the IBM
Postscript Interpreter.

An alternative route is if you have the IBMAFP or WINAFP AFPDS printer driver
installed; then printing to a file allows the direct creation of a PSEG. This also
needs an EXEC on the mainframe to reblock the file, or an equivalent MVS
procedure to that supplied for VM. If such an exec wasn't supplied with your
software, you might like to try that in A.5, "Reblock Uploaded PSEG" on
page 170.

Publisher's Paintbrush will also convert TIF to EPS.

14.3.2 Using OS/2 Platforms
Corel Draw will run under OS/2 as a DOS/Windows program, and is also
available as a native OS/2 application, so can be used under OS/2 to convert TIF
to EPS, and then follow the same path as under the PC-DOS method. The
IBMAFP printer driver is also available under OS/2.

14.4 Convert HPGL to PSEG

14.4.1 Using DOS
One method of converting a Plot File to a PSEG uses Corel Draw, a PC product
described in C.32, "Corel Draw" on page 216.

1. The Plot File file is imported into Corel Draw, and saved as an EPS file, using
standard Corel Draw functions. The HPGL file is "imported" into Corel Draw,
and will be placed on the page into which it is imported at a position and
size determined by the original size and placement definitions inside the plot
file. Note that an HPGL file is a defined size, and may be offset from the
defined origin.

Corel Draw can be used to resize the graphic before further transforms. The
trap select function using the crunch box can be used to select all the
elements of the graphic, which can then be resized and repositioned on the
page.

130 Print and View Data Streams

An EPS file is created from the graphic by using the "export" function. Note
that there is an option in Corel Draw EPS export to include an "image
header." This must not be selected if the IBM Postscript Interpreter is to be
used on the file. This image header is only used by certain workstation
programs to give a preview of the contents of the EPS without having to
interpret the Postscript. The image header is not standard Postscript, and
many programs, including the IBM Postscript Interpreter, will reject the file if
it is preceded by an image header.

2. The EPS file is uploaded to the mainframe as a binary object without
conversion using standard file transfer.

3. The EPS file on the mainframe is converted to a PSEG using the IBM
Postscript Interpreter. The IBM Postscript Interpreter allows resizing and
cropping of the graphic. An EPS file contains size definitions; with the IBM
Postscript Interpreter, you can define the size of the resulting PSEG, the
relative origin inside the EPS that is to be the origin of the PSEG, and a scale
factor that determines the relative sizes of elements in the PSEG compared
to the original EPS.

If you don't have the IBM Postscript Interpreter, and have access to an IBMAFP
printer driver (from either PSF/2 or AFP Workbench for Windows, or the internal
WINAFP driver), then once the graphic is in Corel Draw it can be "printed"
directly as a PSEG, either under DOS or OS/2. See 14.3, "Convert TIF to PSEG"
on page 130 for more information.

14.4.2 Using OS/2
Corel Draw will run under OS/2 as a DOS/Windows program, and is also
available as a native OS/2 application, so can be used under OS/2 to convert
Plot File to EPS, and then follow the same path as under the PC-DOS method.

14.4.3 Using GDDM on the Mainframe
If the file is on a host system, it can be converted with either GDDM Interactive
Chart Utility or with GDQF. Both of these can import an HPGL file and save it as
a GDF.

The GDF can then be converted to a PSEG as outlined in 13.1.2, "Monochrome
Pictures" on page 105.

14.5 Generate Overlays Using the DCF Post Processor
The overlay should be prepared using DCF input to create a page image of the
layout and size required. DCF can then be used to create a LIST3820 file, which
is used as input to the Post Processor.

The Post Processor is part of DCF, and is available under:

• VM
• MVS
• VSE

but the Overlay postprocessor is not supplied as a VSE runtime. The DCF
postprocessor PL/I source code is supplied as part of the package.

The postprocessor places each page of the formatted document into a separate
file. It just has to be run against the DCF input; no other user input is required.

Chapter 14. Process Definitions 131

The exec or CLIST may be called PPOVLRUN. If you can't find that, talk to your
system administrator.

For more information about the Post Processor and its use, refer to DCF Post
Processor Examples 5544-3484-00 which also describes a mail merge post
processor, and one to print page printer output multiple up (print several pages
on one).

14.6 Preparing Postscript
There is an overview of what Postscript and EPS are in 6.1.1, "Postscript" on
page 41.

14.6.1 On the Workstation
There are two ways Postscript can be produced on the workstation, usually
under a GUI - either DOS/Windows or OS/2.

1. Directly by an application

2. By the GUI using a printer driver

Usually EPS is produced only by the first of these.

There shouldn't be any great difference in the output provided by either method;
but usually now applications are making more use of the GUI facilities, and more
fonts tend to be available to the applications that do this.

The one warning note about using some of these fonts is that unless you can be

/

sure that the fonts you use are resident in your printer, and you tell the "---··
application or printer driver that this is the case (usually through an options
panel), the more fonts you use the larger will be your files and communications
time. Sometimes these can be very large indeed.

In any case, it is generally good practice to restrict the number of fonts used in
any single document, unless there is very good reason to do otherwise.

When the GUI has a Postscript printer driver, this means that any application
using the GUI, even if it doesn't have native Postscript facilities, can then have
its output produced in Postscript

Note: This doesn't apply to DOS programs running under DOS/Windows. These
usually talk directly to the printer instead of using the GUI drivers.

Printer drivers, as their name implies, are normally used to spool the output of
various programs to a printer, in this case a Postscript printer. It is sometimes
the case that we don't want to print directly, but create a Postscript (or
Encapsulated Postscript) file to use for further processing, perhaps to be
transformed into something else.

This can usually be done by changing an option in the GUI. In DOS/Windows, for
example, there is a "connect" option in the printer setup function in the Control
Panel. This can be used to point the output of any printer driver to any available
port on the machine, or to a file.

When you have the printer driver directed to a file, every time you print
something you are then prompted for the file name to send the output to.

132 Print and View Data Streams

14.6.2 Using ProcessMaster (VM, MVS)
IBM ProcessMaster has a transform program to create Postscript from any
AFPDS data stream. So when IBM ProcessMaster is available, any application
that produces AFP output can also be used to generate Postscript.

14.6.3 Using DCF
DCF is used to generate Postscript by defining Postscript as the device type for
output. So, any application that uses DCF as a formatter is capable of
generating Postscript. That includes:

BookMaster

The SGML Translator

as well as any user written applications, such as database publishing.

14.7 Preparing PCL
This is a typical workstation data stream.

PCL is usually generated by a workstation printer driver. The same comments
about printer drivers, and direction of their output to files, as written in 14.6,
"Preparing Postscript" on page 132 apply.

For more information about PCL data streams refer to 7.2, "PCL (Printer Control
Language)" on page 45.

Chapter 14. Process Definitions 133

134 Print and View Data Streams

f

Chapter 15. Transforms

There are many programs which transform data from one format to another. In
some cases, this is as a side issue to the main function of the program - an
example is Corel Draw, which can import and export many file formats, and thus
transform between them. This function is in Corel Draw so that Corel Draw can
use artwork from many sources, and be used in many situations, and not for it to
be used primarily as a conversion tool. Nonetheless, it does allow this, if a more
direct route is not available.

Some system utilities are more directly aimed at transformation, together with
other system function. An example here might be GDDM, which besides being a
graphics facilitator, has specific functions for converting file types.

Finally, there are purpose written conversion utilities, which might be hard coded
to perform a single transform, or can be tailored to meet a wide range of
conversions. An example of the latter is TextTagger.

Even with all of these available, there will be many occasions when the
transform required is not available, or if available, doesn't work quite as
required, or might be a host program when the change is required on a PC. It is
then that a custom transform might need to be written. This chapter aims at
assisting in these cases, by pointing out some of the more obvious points that
should be considered when choosing which path to take, and how to design and
how to write transform programs that take you along that route.

One piece of practical experience is that there is a fine balancing act to be
performed between being very specific in the task that is addressed, and aiming
for a little more generality. We show in Appendix A, "Source Code for Sample
Transforms and EXECs" on page 147 four quite different transforms. Of these,
two are quite specific in the tasks they were written to perform. The other two
are a little bit more general, in that they do a particular type of job on types of
files, but are table driven in the precise functions they perform, these tables
being read in from an external "profile" file.

Specific transforms are usually quicker to write, but are clearly relatively
inflexible. They are the most efficient at doing a specific job, which can be
important for intensive tasks. Where the initial specification is ill defined, or in
an environment subject to change, a more generalized approach, whether
controlled by a profile or other means, can be more effective not only in the long
run, but actually in the quite short term. It is often not that much more difficult to
write generalized transforms than complex specific ones, and sometimes
simpler. The more generalized transforms not only are more resistant to the
effects of a changing environment, but can often be reused for purposes
unconnected with the original design.

One point which usually selects itself is the language to write the code in. This
will be selected by a combination of factors, such as what skills are available,
and what platform the job is to be done on. Most languages will do most jobs,
sometimes with a little tweaking, so this is not a very important choice; we have
used C and REXX for our examples because they are relatively commonly
understood, they are capable, and we happen to understand their basics.

@Copyright IBM Corp. 1993 135

15.1 Types of Transform
A little consideration of the types of transforms, and their implications, can be
useful in deciding whether to attempt to try to follow a particular route, and can
give an idea of the likelihood of success, and how faithfully the transformed data
stream can be expected to reflect the original.

Transforms can be categorized in many ways, but it is useful to distinguish
between:

• Reformat transforms

• Change state transforms

An example of a reformat transform would be one that changed a formatted text
file from one WYSIWYG word processor format to the format used by a similar
word processor produced by another manufacturer. All the data would be
preserved, the text would remain text, but the formatting controls and commands
would be different. In reformatting, the data stays essentially the same; only the
form in which it is expressed changes.

In general, reformat transforms are the simplest to write and the most likely to
be successful.

An example of a change state transform would be one that converted a file of
plot commands to a bitmap. The resulting image when printed might look very
similar, but a definite change in the way the data is held has taken place; a
change that is different in kind from a simple reformat. Not only the form of
expression has changed, but the data is now of essentially a different type.

Change state transforms may be symmetrical or polarized. A symmetrical
change state transform is one where the reverse transform is as easy to perform
as the forward transform. A polarized transform is where the reverse transform
is much more difficult than the forward transform, if not impossible.

Most change state transforms tend to be polarized, as in the example given
above; it is far more difficult to change a bitmap to a plot file compared with the
other direction (ignoring the trivial solution of plotting each bit in the bitmap as a
very short vector).

Also, transforms can

• Lose information

• Preserve information

• Add information

during the process of the transform.

It is easy to see how information can be lost during a transform; this loss can be
either deliberate and required, or a by-product of the transform process. Of
course, once lost, it is virtually impossible to replace without human intervention.

For example, in the plotfile to bitmap transform, the plotfile might contain color
information, but the bitmap may be wanted in monochrome. Typically,
monochrome bitmaps use shading patterns to represent color; it may be that the
bitmap, to give reasonable resolution, can only use eight different shading
patterns to represent different colors, while the original file had sixteen colors.

136 Print and View Data Streams

/

r
I

Thus, there is both required and unwanted loss in this example. The loss of
color is required, but half the possible grey scales cannot be represented, giving
an undesired loss of information.

Both polarized and lossy transforms are often necessary. The important thing to
do is to consider whether any reversing of the process is likely to be necessary
later; if so, consideration should be given to preserving the original, changing
the sequence of transforms, or even redesigning the system (for example, if it
seems to be necessary to update the transformed data, and then try to reverse
the process). In general, the form with the highest information content should be
the master, and it is this form that should be the subject of updates; other forms
should be derived from this.

For example, if it is necessary to store both GML and final form versions of a
document, it is always easiest to make updates to the GML version and recreate
the final form automatically from that; it is almost always easier to update a
vector graphic, and recreate a bitmap from that, instead of the reverse
processes.

It is easy to conceive examples where all information is preserved (typical of
simple reformatting transforms, for example), but more difficult to imagine a
mechanical process actually adding information.

It is in fact arguable whether information is truly added, but some transforms can
give the appearance of doing so.

What they actually do is use implicit information in the input, and make it explicit
in the output, or expand combinations of data items in the input by use of rules
or lookup tables to add apparently new information.

Often it is necessary to "add information" in a transform. An example would be
from a vector format which does not contain any concept of hierarchy or
segmentation (such as a simple plot file) to a file format which demands
segment information. In cases such as this it is often necessary to create
dummy hierarchical levels. In the absence of any specific information, these
arbitrarily assigned levels may be entirely illogical; but there is essentially no
alternative option. This kind of transform can often be less than totally
satisfactory, no matter how much effort is put into the logic.

A simple example is a transform which takes a formatted text file, and turns it
into a tagged GML file, by making assumptions about the text in the file (blocks
of text separated by blank lines are paragraphs, all capital text centered in a
single line at the top of a new page followed by two blank lines is a chapter
heading, and so on).

It is easy to see that a program which loses information will probably also be a
polarized one; usually the information that is lost cannot be recreated
automatically.

An example of an "add information" transform can be found in A.3, "Conversion
from BookManager READ Copy Form to GML" on page 163.

Finally, a factor that can significantly affect the complexity of a transform
program is whether or not the information needed to determine the final form is
locally defined in the input, or is spread all over the input data, what we might
call "context-free" or "context-sensitive." Generally speaking, context-sensitive

Chapter 15. Transforms 137

transforms are much more difficult to write and get right than context-free ones.
A context-free transform can be as simple as a global change command using
an editor program; a context-sensitive one may have to inspect and analyze the
whole of the input data before processing the first output record. An example of
a very simple context-sensitive transform is given in A.2, "Changing Data in
Context" on page 158, which was written to handle some problems in converting
from GML document languages to word processing style definitions.

15.2 Round and Round We Go ...
With products like Corel Draw and OS/2 Image Support, we have seen that we
can effectively combine the mainframe and workstation worlds as far as graphics
and images are concerned, and use whatever we create using any particular
program in most other places.

People have long wanted to do the same with formatted text, combining the use
of office systems, word processors, and formatting systems on both the
workstation and mainframe.

With PSF/2 and AFP Workbench for Windows, we are well on the way to
integrating host and workstation display and print of formatted output from
applications that can generate AFPDS With the IBMAFP printer driver, the
applications that can create AFPDS now include the majority of workstation GUI
applications.

Mainframe

Host

Applications

File Transfer

Workstation IBMAFP ~ Workstation
GUI f-+ Printer I-+ I AFPDS AFP
Applications Driver Printers

Workstation
Workstation AFP ... Workstation

Viewer Non-AFP
Printers

Figure 31. Integration of Host and Workstation Printing

The only thing that remains is to integrate the WYSIWYG world of word
processing and desk-top with the more formal, but more powerful, capabilities of
document language processing, and particularly the exciting prospects that
softcopy offers for the future in the areas of textual database searching and

138 Print and View Data Streams

retrieval, multimedia integration and control, and hypertext viewing and
navigation models.

Chapter 15. Transforms 139

E Advance Write
Ami Pro
ASCII

• dBase
• DCAIFFT

DCA/RFT
• DIF
• DisplayWrite 4

Enable i Excel
Exec MemoMaker
Manuscript
Microsoft Wonf
Multimate i NavyDIF
Office Writer
Paradox
Peach Text
Professional Write f Rich Text Fonnat
Samna Word
Smart Ware
Symphony
Document

Figure 32. Text Type Transforms

140 Print and View Data Streams

~
Re tag
transform

f
GML2AMI transform

Ami Pro

BookManager
READ

DCF

BookManager
BUILD

The picture is still not perfect, but with products like Ami Pro, and some almost
trivial filters, we can do a lot.

As an example of this, we'll show you a trivial document we sent around this
loop. For the sake of starting somewhere, we created the document in Microsoft
Word.

From Microsoft Word, the document was imported into Ami Pro, using the option
Keep style names. This ensures that individual text elements retain
identification.

Inside Ami Pro, a standard style sheet was overlaid on the document, and
"Revert to style" for both text font and spacing selected (this overrides the
values carried from Microsoft Word, and allows full style control).

The document was printed at this stage, and looks like this:

Chapter 15. Transforms 141

This is a sample document

This document was created in Microsoft Word as an example of text to move through various
transforms.

It consists of simple text, with a top heading and a list:

1 Apples

2 Oranges

3 Pears

To see how well these simple elements can be carried from one application to another.

To check this further, we have a sub heading:

Sub-Heading

A sub-sub heading

Sub-sub heading

And one even lower:

Sub-sub-sub

The intention is to move the document through Ami Pro, use a special filter to convert
exported ASCII from Ami Pro to change the document to GML, and upload it to the host for
processing using DCF. There, we intend to build it as a book using BookManager BUILD.

Downloaded to the PC, BookManager READ/DOS will then be used to create an ASCII file
from the softcopy book, which we will pass through a simple filter to remark the document
with GML. This will then be refiltered into ASCII which Ami Pro can understand by the same
filter we originally used to take Ami Pro ASCII to GML Gust using another conversion
profile).

At each stage, we will take a print, and see how things look. At each stage we will report
how things look, and how much manual intervention was required at each stage.

Figure 33. Ami Pro Output before Upload

142 Print and View Data Streams

The file was saved both as an Ami Pro file, and an ASCII file with style names.
This was put through the AMl2GML filter described in A.1, "Conversion Between
Ami Pro and GML" on page 147, and the resulting GML uploaded to a VM
mainframe.

The GML was processed by DCF, and the document output both on paper and
through BookManager BUILD as a softcopy book. The document was visible as
softcopy both on the VM host, and when downloaded back to the PC.

A standard function of both mainframe and READ/DOS is to print in untagged
ASCII whatever topics of a softcopy book are requested by the reader; as well as
being printed they can be copied to a file.

This was done, and the resulting ASCII file retagged to GML using the RETAG
program outlined in A.3, "Conversion from BookManager READ Copy Form to
GML" on page 163.

This conversion could have been done with TextTagger, but the conversion
required at this level is so simple that this would have been overkill, unless the
product was already available for some other purpose. See 11.4.2.1, "Converting
Existing Text" on page 70 for a discussion of TextTagger versus specially written
taggers.

The reverse process, from GML to word processing, though apparently simple,
has one twist. Some GML tags are context dependent; how they will be
formatted depends on tags around them. A simple-minded transform such as
AMIGML can't handle that. In A.2, "Changing Data in Context" on page 158 we
show a simple example of a context sensitive transform. This can be used as a
first pass to handle some of the reverse process, such as the handling of nested
list tags of different types.

When the results of using this were passed again through the AMIGML filter, this
time with a profile for converting GML to Ami Pro tags, the resulting document
was again loaded into Ami Pro, and the correct style sheet applied.

That process gave the following result when printed.

Chapter 15. Transforms 143

This is a sample document

This document was created in Microsoft Word as an example of text to move through various
transforms.

It consists of simple text, with a top heading and a list:

Apples

2 Oranges

3 Pears

To see how well these simple elements can be carried from one application to another.

To check this further, we have a sub heading:

Sub-Heading

A sub-sub heading

Sub-sub heading

And one even lower:

Sub-sub-sub

The intention is to move the document through Ami Pro, use a special filter to convert exported
ASCII from Ami Pro to change the document to GML, and upload it to the host for processing
using DCF. There, we intend to build it as a book using BookManager BUILD.

Downloaded to the PC, BookManager READ/DOS will then be used to create an ASCII file from
the softcopy book, which we will pass through a simple filter to remark the document with GML.
This will then be reftltered into ASCII which Ami Pro can understand by the same filter we
originally used to take Ami Pro ASCII to GML (just using another conversion profile).

At each stage, we will take a print, and see how things look. At each stage we will report how
things look, and how much manual intervention was required at each stage.

Figure 34. Ami Pro Output after Everything

144 Print and View Data Streams

The only differences appear to be due to a minor change made in the style sheet
between the two prints - the font size of the sub-sub heading - and some slight
difference in text word flow, apparently due to Ami Pro respecting Microsoft
Word word flow in the first instance, and following its own rules in the second.

So, it can be seen that we can, with a little ingenuity, pass documents around
multiple word processors, between workstation and host formatters, and
between softcopy and revisable text, and retain full information necessary to
format the document appropriately.

This allows us to:

• Use a WYSIWYG workstation editor for mainframe GML

• Format and print GML on the workstation

• Archive workstation documents in softcopy using BookManager BUILD

We have done so here only for relatively simple document structures; more
complex ones such as tables present more of a problem, and for example will
only be partially translated from Ami Pro into GML. However, taking a pragmatic
approach, either such elements are fairly rare in documentation, in which case it
is acceptable to have human involvement in the transform process; or they form
a large proportion of documentation, in which case it is worthwhile investing a
little effort in putting more logic and capability into the simple transforms
demonstrated here.

Chapter 15. Transforms 145

146 Print and View Data Streams

Appendix A. Source Code for Sample Transforms and EXECs

Important: The sample code in this section is presented for tutorial purposes
only. While this code has been used to perform the functions stated under the
system conditions experienced by the authors, the authors and IBM make no
representation that this code or derivatives will necessarily work in all or any
other situations, and the authors and IBM accept no responsibility for any
damage or loss arising out of its use. It is entirely the responsibility of any user
to ensure that this code is appropriate to their needs.

Some of the code below is known to contain imperfections and shortcomings;
none is complete answer to the problems they start to address. They are offered
as a proof of concept that these questions can be addressed with relatively
simple tools while achieving a significant percentage of the required results.

Where-real life situations like these must be met, these examples may serve as
a starting point, IBM customers may wish to use IBM services to build on them.

A.1 Conversion Between Ami Pro and GML
This section describes a simple utility to convert Ami Pro tagged ASCII files to
GML and vice versa. It won't cope with all the components of files (tables will
need a bit of human manipulation, for example), but it will get you a fair bit of
the way there.

This lets you use programs such as Ami Pro not only to create nice printouts on
the workstation, but also convert your text without rekeying into GML, so that it
can be used in more structured documentation. The reverse direction is also
possible; that lets you take GML files and look at them with a WYSIWYG editor,
and print them nicely on the workstation also.

Note: If you want to convert from GML to Ami Pro, call the profile file for your
changes "GML.PRO." If you do that, the code below will recognize that the
output is required for Ami Pro, and will only put carriage returns in front of tags.
This is the form required for Ami Pro to recognize paragraph sections - import it
into Ami Pro with the ASCII option "carriage returns after paragraphs."

This code and documentation may be freely used inside IBM for any
business-related purpose. This includes delivery of the EXEC or derivatives to
customers as part of work done under a service contract, or provision to
customers on an unsupported "as-is" basis. IBM will accept no responsibility for
the suitability of the code for any particular purpose.

The copyright remains owned by IBM United Kingdom Limited.

A.1.1 Functional Description
The EXEC on which this code was based was originally written to convert some
books written using a desk-top program to BookMaster format. As all the tags
that would eventually appear in the files couldn't be defined at the start, the
program was written to be table driven. This meant that it turned out not to be
specific to the package for which it was originally written; it has been used to
convert SGML, and tapes containing printer's codes, to BookMaster. It may have
even more generality than that, but that's up to you to discover.

©Copyright IBM Corp. 1993 147

A.1.2 Invocation

It was later converted into Con the PC, which is the current version.

The fact that it is table driven means it can be used with programs such as Ami
Pro and Ventura Publisher, which allow the user to create their own tag names
("styles," for you Ami Pro users). If you create your own tag names, then you'll
also have to modify the profile files that do the conversion, to tell the program
what to change your tags to, and what to change to your tags.

It assumes that most controls will be at the start of lines. This may not always
be the case. If this is so, the text needs to be split into lines beginning with the
controls. This can usually be done by global change commands in an editor, or
by using a multiple change filter, such as David Mitchell's excellent MULCH filter
on PCTOOLS.

Controls within lines can be found, but only a simple replacement can be done
for this kind of control - no clever stuff such as putting special controls before
the first or after the last in a group. The most you can do with inline changes is
to give a different replacement string for odd and even occurrences of the
control within a line - that lets you switch highlighting on and off, for example.

The simplest kind of change is simple substitution of tag for control. Clearly the
EXEC can do that. Almost as complex is the handling of blocks of controls - for
example bullets or other dingbats to represent a list. Straight substitution can
handle the list item tags, but this EXEC can also insert the list start and end tags.

The command to invoke the program is:

AMIGML infilename outfilename profilefilename

where:

infilename Fully qualified name of input file

outfilename Fully qualified name of output file

profilefilename Fully qualified file name of change specification file.

A.1.3 Profile File
The profile file consists of List Headers which precede lists of Change
Specifications. The List Header defines the type of change the Change
Specifications following it will be used for. For example, the REPLACE List
Header precedes the Change Specifications which define all straight
substitutions.

A.1.3.1 List Headers
A List Header has the following format:

>>LIST identifier

>>LIST Identifies the line as a List Header.

identifier Identifies the type of Change Specifications which follow the header.

The Change Specification types which can be identified are:

NULL Any lines starting with control codes defined in the Change
Specifications following this header are totally ignored.

148 Print and View Data Streams

\

REPLACE The Change Specifications following this header define simple
substitutions. The control code is replaced by the substitution tag.

FOREFIRST These define substitutions which will occur only on the first
occurrence of a code in a block of lines all starting with the same
code. The substitution tag is placed in a separate line before the line
containing the matching code. The code itself can then be subject to a
match against a REPLACE or other substitution.

FOREALL Like FOREFIRST substitutions, the tags are placed in a line prior to
that containing the matching code, but these occur for all occurrences
of the matching code, not just the first in a block.

POSTALL Like FOREALL, but the tag is again placed on the following line.

POSTLAST Like FORELAST, but you get the idea.

INLINE Most Change Specifications check for control codes at the beginning
of a line. These check for codes anywhere in the text. The Change
Specifications for INLINE controls specify two tags, one for odd
occurrences, and one for even occurrences.

Where only one tag is needed for a control, it is more efficient if that
can be forced to the beginning of a line and handled by a REPLACE
specification.

CONTINUATION (You shouldn't need to use this one with Ami Pro files, but
we've left it in in case you find another use for it.) The specifications
after this header define strings at the end of a line which are to be
treated as continuation markers, which identify blocks of lines which
are to be treated as a single logical line.

This program strips the continuation control sequences from the file.

A.1.3.2 Change Specifications
There are two kinds of Change Specifications, those for INLINE substitutions,
and those for most of the others (the Standard Change Specification).

Standard Change Specifications: Standard Change Specifications have the
following format:

tag << control code string

The tag is the string to be substituted for the control code. It may be all blank, in
which case no tag is substituted for the matching control code.

The control code string is what is matched against in the input file. Where this
code is found at the beginning of a line (end of a line for a CONTINUATION
specification), it is deleted from the file and replaced by the tag.

A control code string may be either a character string or a hexadecimal string. A
character string is defined by all characters in the line following the < < marker,
less all preceding and trailing blanks. All blanks within the string are significant.

A string is taken to be a hexadecimal string if it is preceded by a quotation
character, and terminated by a quotation character followed by an x. The x may
be either upper- or lower-case, and the quotation characters may be either the
single quote or the double quote, as long as both are the same.

Appendix A. Source Code for Sample Transforms and EXECs 149

lnline Change Specifications: These are very similar to the standard, but they
have two tags:

tagl tag2 << control code str;ng

Control code strings are as defined for the Standard Specification.

Tagf is used for odd numbered occurrences of the control code matched, tag2
for even numbered occurrences. If a code is to be replaced by the same tag in
both cases, it must be specified twice. If only one tag is specified in an INLINE
specification, then even numbered occurrences will be null substituted.

Blanks in replacement strings: If you want a blank in a string which is to
replace an existing one, put a "_" character where you want the blank. This will
be replaced by a blank on output.

Carriage return in replacement strings: If you want a carriage return in a string
which is to replace an existing one, put a """ character where you want the
carriage return. This will be replaced by a carriage return on output.

A.1.3.3 Examples
Example 1

»LIST NULL
« /*

»LIST INLINE
:q. :eq. << I

:q. :eq. << •

This simple example would produce an output file containing none of the lines
beginning with /* in the input file, and with all quote marks changed to :q. :eq.
pairs.

Example 2:

>>LIST FOREFIRST
:nl. <<<List>
»LIST REPLACE
:li. <<<List>
»LIST POSTLAST
:enl. <<<List>

This example would, if given this input:

any old text
<List> first item
<List> second item
<List> third
followed by other text

produce the following output:

any old text
:nl.
: l i. first item
:li. second item
:li. third
:enl.
followed by other text

150 Print and View Data Streams

Example 3 - Converting an Ami Pro file: Say you have an Ami Pro file
containing just:

<Heading>Memo
<Body Text>To Fred
<Body Text>From Harry
<Body Single>12th June
<Body Text>! hope you managed to sort out the production line. I need
<Numbered List>4 sprockets,
<Numbered List>a widget, and
<Numbered List>43 doohickeys
<Body Text> by Monday at the latest!

You can get a plain ASCII file out of Ami Pro, with the tags intact as above, by
using the Save As .. menu, selecting ASCII as the output file type, and making
sure that you select the ASCII Options .. "CR/LF after lines" and "Keep style
names."

The sample AMI.PRO profile file -

»LIST FOREFI RST
:ol. <<<Numbered List>
:ul. <<<Indent>
»LIST POSTLAST
: eol.
:eul.
:etable.

<< <Numbered List>
<< <Indent>
« <Table Text>

:ethd.A:row. << <Table Heading>
»LIST REPLACE
:li. <<<Numbered List>
:hl. <<<Heading>
:hl. <<<Title>
:h2. << <Subhead>
:li. <<<Indent>
:p. << <Body Text>
:row. << <Table Text>

« <Body Single>
»LIST INLINE
:table.A:thd. :table.A:thd. << <Table Heading>

will convert this to a GML file like:

: hl.Memo
:p.To Fred
:p.From Harry
12th June
:p.I hope you managed to sort out the production line. I need
:ol.
:li.4 sprockets,
:li.a widget, and
:li.43 doohickeys
:eol.
:p.by Monday at the latest!

Not very sophisticated, perhaps, but it's up to you to extend it!

The exhausting problem of writing a profile to reverse the process is left as an
exercise for the student.

Appendix A. Source Code for Sample Transforms and EXECs 151

A.1.3.4 Sample Code: Change AMI PRO ASCII Files to GML (and back):
int fl i dx;

/*
AMIGML.C
Change AMI PRO ASCII files with tags to GML

*/

#define HAXNL 100
#define MAXFF 50
#define HAXFA 50
#define MAXFL 50
#define MAXPF 50
#define MAXPA 50
#define HAXPL 50
#define HAXRR 150
#define HAXCT 5
#define MAXIL 50
#define REPSIZE 40
#define TAGSIZE 40

/* Requires three arguments; first is input filename,
second is output filename,
the third is the profile file name. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void init(void);
int checknull(void);
void presub(void);
void chglin(void);
void postsb(void);
void inline(char *);
void getword(char *,char *,char*);
void gettest(char *,int,char *);
/*void parse(char *, char*, char, char*); */
void substr(char *,char *,int,int);
int gettwo(char *,char*);
int strip(char *);
void hexit(char *);
void cchar(void);
void chknxt(void);

FILE *infile,*outfile,*chgfile;

char lastkl[REPSIZE];
char nextkl[REPSIZE];
int savcont;
int contchar;
int match;
int wasblank;
int gml2ami;
int list;
int hilite;
int indent;
int firstblank;
int lastsize;
char instr1[1024];
char instr2[1024];
char outstr[1024];

/* Configuration arrays */
char nl rstr[MAXNL] [REPSIZE];
int nlidx;
char ffrstr[HAXFF][REPSIZE];
char fftag[MAXFF][TAGSIZE];
int ffflag[MAXFF];
int ffidx;
char farstr[MAXFA][REPSIZE];
char fatag[MAXFA][TAGSIZE];
int faidx;
char flrstr[MAXFL][REPSIZE];
char fltag[MAXFL][TAGSIZE];

152 Print and View Data Streams

char pfrstr[MAXPF][REPSIZE];
char pftag[MAXPF][TAGSIZE];
char pfrstridx[MAXPF];
int pfidx;
char parstr[MAXPA][REPSIZE];
char patag[MAXPA][TAGSIZE];
int paidx;
char plrstr[MAXPL][REPSIZE];
char pltag[MAXPL][TAGSIZE];
int plidx;
char rrrstr[HAXRR](REPSIZE];
char rrtag[MAXRR][TAGSIZE];
int rridx;
char ilrstr[MAXIL][REPSIZE];
char iloddtag[MAXIL][TAGSIZE];
char ilevntag[MAXFF][TAGSIZE];
int ilodd[MAXIL];
int i lidx;
char ctrstr[HAXCT][REPSIZE];
int ctidx;

main(argc, argv, envp)
int argc;

{

char *argvO;
char *envpO;

int lnum;
int endit=0;
int sec, ssc;

gml2ami=0;
instrl[0]='\0';
instr2[0]='\0';

/* Check input parameters */
if (argv[l]==NULL) {

}

fprintf(stderr,"No input file specified\n");
return 4;

if (argv[2]=•NULL) {

}

fprintf(stderr,"No output file specified\n");
return 4;

if (argv[3]==NULL) {

}

fprintf(stderr,"No changes file specified\n");
return 4;

/* Open files */
if ((infile=fopen(argv[l],"r"))==0) {

fprintf(stderr, "Unable to open input file %s\n",argv[l]);
return 6;

} /* endif */
if ((outfile=fopen(argv[2],"w"))•=0) {

fprintf(stderr,"Unable to open output file %s\n",argv[2]);
return 6;

} /* endif */
ff ((chgfile=fopen(argv[3],"r"))==0) {

fprintf(stderr,"Unable to open profile file %s\n",argv[2]);
return 6;

} /* endif */

/* Main Processing */
prfntf("\nAMI2GHL: Copyright IBM United Kingdom 1992

All Rights Reserved\n\n");
init();
lnum=0;
if (strlen(argv[3])>6}

substr(instrl,argv[3],strlen(argv[3])-7,7);
if (strcmpl (instrl, "GHL.PR0")••0) {

gml2ami=l;

(

}

printf("Converting GML to Ami Pro tagged ASCil\n\n");
}
instrl[0]='\0';
while (!endit) {

}

endit=gettwo(instrl,instr2);
lnum++;
if (endit) break;
if (checknull()) continue;
presub();
scc=contchar;
ssc=savcont;
chglin();
contchar•scc;
savcont=ssc;
postsb();
savcont=0;
if (contchar==l) savcont=l;

fclose(infile);
fclose(outfile);

return;

int checknul l ()
{

}

char test[REPSIZE];
int i;

int rc=0;
for (i•0;i<nlidx;i++) {

gettest(test,strlen(nlrstr[i]),instrl);
if (strcmp(test,nlrstr[i])==NULL) {

rc=l;

}
}

break;

return re;

/* Read change intructions file and initialise */
void init()
{

char line [1024];
char key[40];
char test [40];
char parm[40];
char itag[256];
char rest [1024];
char rstring[l024];
char rstr2[1024];
char sep[40];
int i;

lastk1[0]='\0';
savcont=0;
match=0;
li st=0;
hi lite=0;
indent•0;
firstb lank=l;
lasts i ze•l00;

nlidx•B;
ffidx•B;
faidx=B;
flidx•B;
pfidx•0;
paidx=0;
plidx•0;
rridx=0;
ilidx•0;
ctidx=0;

fgets(line,1023,chgfile);
while (1) {

getword(key,rest,line);
if (strcmp (key, "»LIST") ==NULL) {

while (strcmp(key, "»LIST")==NULL) {
ff (fgets(line,1023,chgfile)==NULL) return;
if ((line[O]=='>')&(line[l]=='>')) break;
getword(itag,rstr2, line);
ff (strcmp(itag, "«")==NULL) {

itag[0]= '\0';
strcpy(rstring,rstr2);

} else {
getword(sep,rstring,rstr2);

}
strip(rstring);
strip(itag);
for (i=0;i<=strlen(itag);i++) {

if (itag[i]== '_ ') itag[i]=' ';
if (itag[f]u'A') itag[i]='\n';

}
strip(rest);
hexit(rstring);
if (strcmp(rest,"NULL")•=NULL) {

if (nlidx<MAXNL) {
strcpy(nlrstr[nlidx],rstring);
nlidx++;

} else {
fprintf(stderr,

"Number of NULL identifiers exceeded (%d). \n" ,MAXNL);
}
continue;

}
if (strcmp(rest, "FOREFIRST")==NULL) {

}

if (ffidx<HAXFF) {
strcpy(ffrstr[ffidx],rstring);
strcpy(fftag[ffidx],itag);
ffflag[ffi dx] =l;
ffidx++;

} else {

}

fprintf (stderr,
"Number of FOREFIRST identifiers exceeded (%d). \n",

HAXFF);

continue;

if (strcmp(rest, "FOREALL ")==NULL) {

}

if (faidx<HAXFA) {
strcpy(farstr[faidx],rstring);
strcpy(fatag[faidx],itag);
faidx++;

} else {
fprintf(stderr,

}

"Number of FOREALL identifiers exceeded (%d).\n",
HAXFA);

continue;

if (strcmp(rest,"FORELAST")==NULL) {

}

if (flidx<HAXFL) {
strcpy(flrstr[flidx],rstring);
strcpy(fltag[flidx],itag);
fl idx++;

} else {
fprintf(stderr,

}

"Number of FORELAST identifiers exceeded (%d).\n",
HAXFL);

continue;

if (strcmp(rest,"POSTFIRST")•=NULL) {
if (pfidx<HAXPF) {

strcpy(pfrstr[pfidx],rstring);
strcpy(pftag[pfidx],itag);
pfidx++;

} else {

Appendix A. Source Code for Sample Transforms and EXECs 153

fprintf (stderr,
"Number of POSTFIRST identifiers exceeded (%d).\n•,

MAXPF);

} else {
fprintf(stderr,

"Number of CONTINUATION identifiers exceeded (%d).\n"
,MAXCT); }

continue;
}
if (strcmp (rest, "POST ALL") =•NULL) {

}

if (paidx<MAXPA) {
strcpy(parstr[paidx],rstring);
strcpy(patag[paidx],itag);
paidx++;

} else {

}

fprintf (stderr,
"Number of POST ALL i denti fie rs exceeded (%d). \n",

MAXPA);

continue;

if (strcmp(rest,"POSTLAST")••NULL) {
if (plidx<MAXPL) {

strcpy(plrstr[plidx],rstring);
strcpy(pltag[plidx],itag);
plidx++;

} else {
fprintf(stderr,

}
}

}
continue;

} else {
fprintf(stderr,

"Changes file does not contain valid specifications. \n);
fclose(infile);

}

}
}

fclose(outfile);
fcl ose (chgfil e);
exit (16);

return;

/* Snarf first word from input
void getword(word,rest,line)
char *word;
char *rest;

line. */

"Number of POSTLAST identifiers exceeded (%d). \n", char *line;
MAXPL); {

}
continue;

}
if (strcmp(rest, "REPLACE") .. NULL) {

}

if (rridx<HAXRR) {
strcpy(rrrstr[rridx],rstring);
strcpy(rrtag[rridx],itag);
rridx++;

} else {
fprintf(stderr,

}

"Number of REPLACE identifiers exceeded (%d).\n",
MAXRR);

continue;

if (strcmp(rest,"INLINE")••NULL) {
if (illdx<MAXIL) {

if (strcmp(itag, "»")..:NULL) {
il oddtag[il i dx] [0] = '\0';
i levntag[i l i dx] [0] = '\0';
strip(rstr2);
strcpy(ilrstr[ilidx],rstr2);

} else {

}

strcpy(iloddtag[ilidx],itag);
getword(ilevntag[ilidx],rstring,rstr2);
strip(ilevntag[ilidx]);
for (i=0;i<=strlen(ilevntag[ilidx]);i++) {

if (ilevntag[ilidx)[i]=='-')
ilevntag[ilidx] [i]=' ';

if (ilevntag[ilidx)[i)=="")
i l evntag[i l i dx] [i] • '\n';

}
getword(sep,rstr2,rstring);
strip(rstr2);
strcpy(ilrstr[ilidx],rstr2);
i li dx++;

} else {
fprintf(stderr,

}

int i,j,flag;

j=0;
flag•0;
word[0]='\0';
rest[0]• '\0';

for (i=0;i<=strlen(lfne);i++) {
if (!flag) {

}

}

if (line[i):..' ') continue;
else flag=l;

if ((line[i]-=' ')&(flag==l)) {
word[j)='\0';
j=0;
flag=2;

}
if (flag==l) word[j++J=line[i];
else rest[j++)=line[i];

rest [j) = '\0';
strip(rest);
if (rest[strlen(rest)-1)=='\n')

rest[strlen(rest)-1)•'\0';
return;

/" Get comparison string from input line. */
void gettest(compstr,clen,line)
char *compstr;
int clen;
char *line;
{

int i;

for (i=0;i<clen;i++) {
compstr[f) =l fne[i];

}
"Number of INLINE identifiers exceeded (%d).\n", compstr[i]='\0';

}
continue;

}
if (strcmp(rest, "CONTINUATION")==NULL) {

ff (ctidx<HAXCT) {
strcpy(ctrstr[ctidx],rstring);
ctidx++;

154 Print and View Data Streams

HAXIL); return;
}

/" Convert a string fn valid REXX hex notation to a string "/
void hexit(string)
char *string;
{

}

char cl,c2;
char digit[3];
int last;
int temp;
int i;
last=strlen(string)-1;

if ((string[last]=='x') 11 (string[last]=='X')) {
cl=string[O];

}

c2=string[last-1];
if (((cl=='\' ')&(c2=='\' '))I l((cl=='"')&(c2=="")))

digit[l]='\O';
for (i=O;i<((last-l)/2);i++) {

di git [O] =string [i +i +1];

}
}

if (digit[O]=='A') strcpy(digit,"10");
else if (digit[O]=='B') strcpy(digit,"11")
else if (digit[O]=='C') strcpy(digit,"12")
else if (digit[O]=='D') strcpy(digtt,"13")
else if (digit[O]=='E') strcpy(digit,"14")
else if (digit[O]=='F') strcpy(digit,"15")
else if (digit[O]=='a') strcpy(digit,"10")
ehe if (digit[O]=='b') strcpy(digit, "11")
else if (digit[O]== 'c ') strcpy(digit, "12")
else if (digit[O]=='d') strcpy(digit,"13"),
else if (digit[O]=='e') strcpy(digit,"14");
else if (digit[O]=='f') strcpy(digit, "15");
temp=atoi(digit)*16;
digit[O]=string[i+i+2];
digit[l]= '\0';
if (digit[O]=='A') strcpy(digit,"10");
else if (digit[O]=='B') strcpy(digit,"11");
else if (digit[O]=='C') strcpy(digit,"12");
else if (digit[O]=='D') strcpy(digit,"13");
else if (digit[O]=='E') strcpy(digit,"14");
else if (digit[O]=='F') strcpy(digit,"15");
else if (digit[O]=='a') strcpy(digit,"10");
else if (digit[O]=='b') strcpy(digit,"11");
else if (digit[O]=='c') strcpy(digit,"12");
else if (digit[O]=='d') strcpy(digit,"13");
else if (digit[O]=='e') strcpy(digit,"14");
else if (digit[O]=='f') strcpy(digit,"15");
temp=temp+atoi(digit);
string[i]=(char)temp;
string[i+l]='\O';

return;

void parse(line,pref,sepa,rest)
char *line;
char *pref;
char sepa;
char *rest;
{

int i,j;
int test=O;
j=O;

pref[O]='\O'; /*Strings null before start. */
rest[O]= '\O';

for (i=O;i<=strlen(line);i++) {
if (line[i]==sepa) {

test=l;

}

pref[i]= '\O';
continue;

if (!test) {
pref[i]=l ine[i];

} else {
rest [j++] =l ine[i];

}

}
}
rest [j]= '\0';
return;

/*Strip leading and trailing blanks from string */
int strip(string)
char *string;
{

}

int i,end;
int start=-1;
int indent=O;
end=strlen(string);

for (i=O;i<strlen(string);i++) {
if (string[i] !=' ') break;
indent++;
start=i;

}
for (i=(strlen(string)-l);i>O;i--) {

if (string[i]=='\n') continue;
if (string[i] !=' ') break;
end=i;

}
if ((start!=-1) 11 (end!=strlen(string))) {

for (i=O;i<(end-start-1) ;i++) {
string[i]=string[i+start+l];

}
string[i]= '\O';

}
return indent;

void postsb()
{

char test[REPSJZE];
int i;

chknxt ();

for (i=O;i<paidx;i++) {
gettest(test,strlen(parstr[i]),instrl);
if (strcmp(parstr[i],test)==NULL) {

if (!contchar) {
strcpy(outstr,patag[i]);

}

if (gml2ami) {
fputc('\n',outfile);
strcat(outstr," ");

} else {
strcat (outstr, "\n");

}
fputs(outstr,outfile);
strcpy(lastkl,test);
match=l;
break;

} else if ((strcmp(parstr[i],lastkl)==NULL)&(!contchar)&
(savcont)) {

}
}

strcpy(outstr,patag[i]);
if (gml2ami) {

fputc('\n',outfile);
strcat(outstr," ");

} e 1 se {
strcat(outstr,"\n");

}
fputs(outstr,outfile);
strcpy(lastkl,test);
match=l;
break;

for (i=!J;i<pfidx;i++) {

Appendix A. Source Code for Sample Transforms and EXECs 155

}

gettest(test,strlen(pfrstr[i]),instrl);
if ((strcmp(pfrstr[i],test)==NULL)&(pfrstridx[i])) {

if (!contchar) {

}

strcpy(outstr,pftag[i]);
if (gml2ami) {

fputc('\n',outfile);
strcat(outstr," ");

} else {
strcat(outstr,"\n");

}
fputs(outstr,outfile);
strcpy(lastkl,test);
match=l;
break;

} else if ((strcmp(pfrstr[i],lastkl)==NULL)&(!contchar)&
(savcont)) {

strcpy(outstr,pftag[i]);
if (gml2ami) {

fputc('\n',outfile);
~+.,.,. f ...,,.+ .. 4-- II II\ a

Ol&.I "'"\A" \UW";)l,.I ' I'

} else {
strcat(outstr,'\n');

}
fputs(outstr,outfile);
strcpy(lastkl,test);
match=l;
break;

} else if (strcmp(pfrstr[i],test)==NULL) {
pfrstri dx [i] =1;

}

for (i=O;i<plidx;i++) {
gettest(test,strlen(plrstr[i]),instrl);
substr(nextkl,instr2,0,strlen(plrstr[i]));
if (strcmp(plrstr[i],test)==NULL) {

if ((strcmp(plrstr[i],nextkl)!=NULL)&(!contchar)) {
strcpy(outstr,pltag[i]);

}
}

if (gml2ami) {
fputc('\n',outfile);
strcat(outstr,' ');

} else {
strcat(outstr,'\n");

}
fputs(outstr,outfile);
strcpy(lastkl,test);
match=l;
break;

if ((strcmp(plrstr[i],lastkl)==NULL)&
(strcmp(plrstr[i],nextkl)!=NULL)&

(!contchar)&(savcont)) {
strcpy(outstr,pltag(i]);
if (gml2ami) {

fputc('\n',outfile);
strcat(outstr,' ');

} e 1 se {
strcat(outstr,'\n");

}
fputs(outstr,outfile);
strcpy(lastkl,test);
match=l;
break;

}
}

/* if ((!match)&(!savcont)&(!contchar)) {
lastkl[O]='\O';

}
if (contchar) lastsize=lOO;

*/

return;

void pre sub()
{

char test[REPSIZE];
int i;

chknxt ();

for (i=O; i<faidx; i++) {
gettest(test,strlen(farstr[i]),instrl);
if (strcmp(farstr[i],test)==NULL) {

strcpy(outstr,fatag[i]);

}
}

if (gm12ami) {
fputc('\n',outfile);
strcat(outstr,' ');

} else {
strcat(outstr,"\n");

}
fputs(outstr,outfile);
strcpy(lastkl,test);
match=l;
break;

for (i=O;i<ffidx;i++) {
gettest(test,strlen(ffrstr[i]),instrl);
if ((strcmp(ffrstr[i],test)==NULL)&(ffflag[i])&(

strcmp(lastkl,ffrstr[i])!=NULL)) {
strcpy(outstr,fftag[i]);

}

if (gml2ami) {
fputc('\n',outfile);
strcat(outstr," ");

} else {
strcat(outstr,"\n");

}
fputs(outstr,outfile);
strcpy(lastkl,test);
match=l;
ffflag[i]=O;
break;

} else if (strcmp(test,ffrstr[i])==NULL) {
ffflag[i]=l;

}
}

for (i=O;i<flidx;i++) {
gettest(test,strlen(flrstr[i]),instr2);
if (strcmp(flrstr[i],test)==NULL) {

strcpy(outstr,fltag[i]);

}
}

if (gml2ami) {
fputc('\n',outfile);
strcat(outstr,' ");

} else {
strcat(outstr,"\n");

}
fputs(outstr,outfile);
strcpy(lastkl,test);
match=l;
break;

return;

void chglin()
{

int i;
int ltst;
int wrote;
char kl[REPSIZE];
char temp [1024];

} savcont=contchar;

156 Print and View Data Streams

cchar();
inline(instrl);
wrote=0;
for (i=0;i<rridx;i++) {

ltst=strlen(rrrstr[i]);
gettest(kl,ltst,instrl);
if (strcmp(kl,rrrstr[i])==NULL) {

substr(temp,instrl, ltst,strlen(instrl)-ltst);
strip(temp);
strcpy(outstr0rrtag[i]);
strcat(outstr,temp);
if (gml2ami) {

}

outstr[strlen(outstr)-1]='\0';
fputc('\n',outfile);

fprintf(outfile,outstr);
if (gml2ami) fputc(' ',outfile);
strcpy(lastkl,kl);
match=l;
wrote=l;
lastsize=l00;
break;

} else if ((strcmp(rrrstr[i],lastkl)==NULL)&

}

}

}
instrl[i]= '\0';
strip(instrl);
i=strlen(instrl);
if (instrl[i-1] !='\n') instrl[i++]='\n';
instrl[i]='\0';

return;

/* Substring routine */
void substr(target,source,start,length)
char *target;
char *source;
int start;
int length;
{

int i;

(strcmp (rrrstr[i], kl) --NULL)) {

for (i=0;i<=start;i++) {
if (source[i]=='\0') {

target [0] = '\0';
return;

}

strcpy(lastkl,kl);
wrote=0;
break;

}
}
if (!wrote) {

strcpy(outstr,instrl);
ltst=strlen(outstr);
if (!ltst) ltst=l;

}

if (!lastsize) lastsize=l;
if (gml2ami) {

outstr[strlen(outstr)-1]='\0';
}
fprintf(outfile,outstr);
if (gml2ami) fputc(' ',outfile);
lastsize=ltst;
match•0;

return;

void cchar()
{

int i,j,k;
int testlen;
char test [1024];
char kl[REPSIZE];

contchar=0;
for (i=0;i<ctidx;i++) {

strcpy(test,instrl);
strip(test);
testlen=strlen(ctrstr(i]);
if (testlen=•0) return;
for (j=strlen(test)-l,k=testlen-l;k>=0;j--,k--) {

kl [k] =test [j];
if (kl[k]=='\n') {

k++;
}

}
kl[testlen]•'\0';
if (strcmp(kl,ctrstr[i])••NULL) {

contchar=l;

}
}

break;

if (contchar) {
for (i•0;i<(strlen(test)-testlen-l);i++) {

if (test[i]••'\0') instrl[i]•' ';
else instrl[i]•test(i];

}

}
}
for (i•0;i<length;i++) {

target[i]=source[i+start];
}
target [length]= '\0';
return;

/*Get next two non-blank lines.
Return end=V if eof on first line. */

int gettwo(inl,in2)
char *inl;
char *in2;
{

}

char *re;

if (inl[0]=='\0') {

}

/* Hust be start of program */
while ((in2[0]=='\n')ll(in2[0]••'\0')) {

rc=fgets(in2,1023,infile);
if (rc==NULL) {

}
}

return l;

if (in2[0]=='\0') {
/* Can only have been from an EDF last time. */
return l;

}
strcpy(inl,in2);
in2[0]='\0';
wasblank=0;
while ((in2[0]=='\n'lll(in2[0]=='\0')) {

rc=fgets(in2,1023,infile);
strip (in2);
if (in2[strlen(in2)-l]!•'\n') {

strcat (in2, "\n");
}
if ((in2[0]=•'\0'lll(in2[0]=='\n')) wasblank•l;
if (rc==NULL) {

}
}

in2[0] • '\0';
break;

return 0;

Appendix A. Source Code for Sample Transforms and EXECs 157

void inline(instr)
char *instr;
{

}

int i,idx,ltst;
char kl[REPSIZE];
char temp[l024];

strcpy(outstr,instr);
for (idx=0;idx<ilidx;idx++) {

ltst=strlen(ilrstr[idx]);

}

if (strlen(instr)<ltst) continue;
for (i=0;i<=(strlen(instr)-ltst);i++) {

substr(kl,instr,i,ltst);
if (strcmp(kl,ilrstr[idx])•=NULL) {

if (ilodd[idx]) ilodd[idx]=0;
else ilodd[idx]=l;

}
}

if (i>l) substr(outstr,instr,0,i);
else outstr[0]•'\0';
if (ilodd[idx]) strcat(outstr,iloddtag[idx]);
else strcat(outstr,ilevntag[idx]);
if ((i+ltst-l)<strlen(instr)) {

}

substr(temp,instr,i+ltst,(strlen(instr)-i-ltst));
strcat(outstr,temp);

strcpy(instr,outstr);

return;

void chknxt ()
{

char test[REPSIZE];
int i;

/* We assume that lines with no tag are continuations
of the last tag; Ami Pro separates elements with a
blank line.
You may wish to null this routine for programs
which do not do this, but use continuation characters
(such as Ventura). */

/* Return with contchar=0 if next line is blank or a tag,
otherwise 1 *I

if (strlen(instr2)••0) {
contchar=0;
return;

}

contchar=l;
for (i=0;i<nlidx;i++) {

gettest(test,strlen(nlrstr[i]),instr2);
if (strcmp(nlrstr[i],test)==NULL) {

contchar=0;

}
}

return;

A.2 Changing Data in Context

}

for (i=0;i<ffidx;i++) {
gettest(test,strlen(ffrstr[i]),instr2);
if (strcmp(ffrstr[i],test)==NULL) {

contchar=0;

}
}

return;

for (i=0;i<faidx;i++) {
gettest(test,strlen(farstr[i]),instr2);
if (strcmp(farstr[i],test)==NULL) {

contchar•0;

}
}

return;

for (i•0;i<flidx;i++) {
gettest(test,strlen(flrstr[i]),instr2);
if (strcmp(flrstr[i],test)==NULL) {

contchar•0;

}
}

return;

for (i=0;i<pfidx;i++) {
gettest(test,strlen(pfrstr[i]),instr2);
if (strcmp(pfrstr[i],test)••NULL) {

contchar=0;

}
}

return;

for (i=0;i<paidx;i++) {
gettest(test,strlen(parstr[i]),instr2);
if (strcmp(parstr[i),test)••NULL) {

contchar•0;

}
}

return;

for (i=0;i<plidx;i++) {
gettest(test,strlen(plrstr[i]),instr2);
if (strcmp(plrstr[i],test)==NULL) {

contchar=0;

}
}

return;

for (i=0;i<rridx;i++) {
gettest(test,strlen(rrrstr[i]),instr2);
if (strcmp(rrrstr[i],test)==NULL) {

contchar=0;

}
}

return;

for (i=0;i<ilidx;i++) {
gettest(test,strlen(ilrstr[i]),instr2);
if (strcmp(ilrstr[i],test)==NULL) {

contchar=0;

}
}

return;

return;

One problem that often arises when changing data from one form to another is
that there is not always a one-for-one correspondence in the changes we want to
make. A does not always have to become B; it sometimes has to become C,
depending on context.

158 Print and View Data Streams

/

We have exactly this problem with converting GML files to word processor files
with style controls. The classic example is with lists, though there are others as
well.

In GML, we tag all list items as such - we depend on what list is currently active
to determine what kind of an item it is - what we might call the context. So, in te
following:

:ol.
: l; .
: l i.
:ul.
: l i.
: l i.
: eul.
: l i.
:eol.

the first two items are part of an ordered list, the second two are part of a
bulleted list, and the final one is part of the previous ordered list (this "nesting"
being a particularly powerful feature of document languages in general).

But it does give us the problem that we can't do a simple global change on the
:li.s to some style control, or even use a filter like the previous AMIGML
program.

We need a program that will recognize context, and there's a simple example of
one below. It's restricted in that it only changes things (tags or whatever) that
are at the front of input lines, but that's fine for the majority of GML. If you need
something that handles inline strings, it's an interesting exercise for you to
extend it. We've made it table driven, so you can change the way it works
without having to rewrite the code. With it and AMIGML, you should be able to
do quite a respectable job of converting GML into, say, Ami Pro, though being
table driven, you can probably make it useful for getting to your favorite word
processor or DTP program, though you'll almost certainly have to use it in
conjunction with other change filters as well.

Each line in the profile file must have six entries (as is usual in such sample
code, the error checking is totally absent). The entries are, in order:

1. The group number of the context

2. An indicator to say whether this context increases indentation

3. The context indicator string

4. The context closing string

5. The string that we want to replace

6. The string we want to replace it by in this context

Sounds horrid, but it's actually quite simple.

Appendix A. Source Code for Sample Transforms and EXECS 159

Ignoring the group number and the indentation code for the moment, take the
profile line;

1 y :ol. :eol. :li. <nlist>

This says that in the input file, wherever there is a string ":Ii." between an ":ol."
and an ":eol.," we want it replaced by the string "< nlist>"

The strings mustn't have any blanks or carriage returns in them, by the way. If
you want any of the strings to have these for any reason, use an _ character for
a blank, and a " for a carriage return.

The group number helps us with nesting. If we have:

1 y :ol. :eol. :li. <nlist>
1 y :ul. :eul. :li. <ulist>

it says that only one of the contexts can be effective at the same time, and tells
the program to remember the previous states in the group, and the sequence in
which they were switched on, so that when they're switched off in turn, it can tell
which to carry on using.

The indentation codes are quite simple; a "y" says that the context increases
indentation. So the first one above says that an :ol. tag increases indentation,
and an :eol. tag decreases it. A code of"" says that this tag doesn't affect
indentation one way or the other. Finally, a code of "r" says that this tag resets
indentation to 0. So for example, we'd want to give this value to major header
tags. Since these probably don't do much else to the context as far as we are
concerned, when we have an entry for headers like this, we just use the same
header tag as the end of context indicator as well; and we might just as well
change them to themselves while we're at it (that's just a way of making sure
that the profile entry doesn't do much other than just reset the indentation -
we've shown a couple of examples below).

Contexts/replacement string pairs that are independent of each other we give
different group numbers, so they don't interfere with each other. So, we might
have:

1 y :ol. :eol. : 1 i. :lin.
1 y : ul. :eul. : 1 i. : 1 i u.
1 y :sl. :esl. : 1 i. : 1 is.
2 n : fig. :efig. :xmp. :cgr.
3 n : fig. :efig. :exmp. :ecgr.
4 r : hl. :hl. :h2. : hl.
5 r :h2. :h2. :h2. :h2.

as a simple profile to help convert from GML to Ami Pro. After passing through
the CONTEXT filter, then the list items in the file will be uniquely identified so
that the AMIGML program can now be used to convert it fully into a form Ami
Pro can read, with all the elements uniquely identified so they can be assigned
different styles.

In this case, we'll have changed :xmp.s inside figures to something else as well.
Note that as far as we're concerned, when we're changing them, the start and
end tags have independent group numbers. The same context on/context off
string pairs can appear as many times as we need, as with the figure ones
above; each line only determines the context for one change specification. The
lines in the profile can be in any order.

160 Print and View Data Streams

When you use this filter to signify indentation like this, what you get out are the
replacement strings you specify, plus a number after the first character defining
the indentation level. With this simple example, what happens if the indentation
level goes above 9 is undefined - almost certainly something nasty.

Of course, you'd probably set it all up with a simple batch command file so that
you don't have to remember all the commands and profile names. The way to
invoke this filter on its own is:

CONTEXT inputfilename outputfilename profilefilename

Here's the source code for the filter itself.

A.2.1 Sample Code: Simple Context-Sensitive Filter

/*
CONTEXT.C

Simple table-driven context-sensitive
filter program

*/

#include <stdio.h>
#include <string.h>

/* MAXPRO is maximum number of profile entries */
#define MAXPRO 100
/* MAXLEN is maximum length of context, tag,

and replacement strings */
#define MAXLEN 20

void inpro(void);
void substr(char *,char *,int,int);
void getword(char *,char *,char*);
int strip{char *);

char context[MAXPRO][MAXLEN];
char conoff[MAXPRO][MAXLEN];
char tag[MAXPRO][MAXLEN];
char rep [MAXPRO] [MAXLEN];
char instr[l024];
char rest[l024];
char outstr[l024];

int npro;
int cgroup[MAXPRO];
int iscon[MAXPRO];
char indind[MAXPRO];
int level;

FILE *infile,*outfile,*profile;

main{argc, argv, envp)

{

int argc;
char *argv [];
char *envp [];

int i,11, 12,j,thistime;
long linum;
char test [20];

/* Check input parameters */
if {argv[l]==NULL) {

}

fprintf{stderr,"No input file specified\n");
return 4;

if {argv[2]••NULL) {

}

fprintf{stderr, "No output file specified\n");
return 4;

if {argv[3]••NULL) {

}

fprintf(stderr, "No profile file specified\n");
return 4;

/* Open files */
if {(infile=fopen(argv[l],"r"))=•0) {

fprintf(stderr,"Unable to open input file %s\n",argv[l]);
return 6;

} /* endif */
if ((outfile=fopen(argv[2],"w"))==0) {

fprintf(stderr, "Unable to open output file %s\n" ,argv[2]);
return 6;

} /* endif */
if ((profile=fopen(argv[3],"r"))==0) {

fprintf(stderr,"Unable to open profile file %s\n",argv[3]);
return 6;

} /* endif */

/* Main Processing */
1 inum=0;
inpro{);
if (npro==0) {

}

fprintf{stderr,"Profile file %s empty\n",argv[3]);
return 8;

for {i=0;i<MAXPRO;i++) {
iscon[i]=0;

}
while (fgets{instr,1023,infile)!=NULL) {

1 inwn++;
/* For each record, check if it is switching a

context on */
for {i=0;i<npro;i++) {

ll=strlen{context[i]);
strncpy{test,instr,11);
test[ll]='\0';
if {strcmp{test,context[i])==0) {

iscon[i]=l;

}
}

/* A context switched on flips any in same group */
for {j=0;j<npro;j++) {

if {iscon[j)==0) continue;
if {j==i) continue;
if (cgroup[j)==cgroup[i]) {

}
}

if {iscon[j)==l) iscon[j)•-1;
else iscon[j)•iscon[j)-1;

/* Check if the context is increasing indentation */
if {indind[i)=•'y') level++;
if {indind[i]=='r') levelc0;
continue;

/* Or off */
thi st ime•0;
for {i=0;i<npro;i++) {

ll•strlen(conoff[i]);

Appendix A. Source Code for Sample Transforms and EXECs 161

}

}

strncpy(test,instr,11);
test[ll]•'\B';
ff (strcmp(test,conoff[i])••B) {

iscon[i] .. B;

}

/*A context switched off flips any in same group */
for (j .. B;j<npro;j++) {

if (iscon[j]=•B) continue;
ff (j==f) continue;
ff (cgroup[j]••cgroup[i]) {

ff (iscon[j]==-1) fscon[j]=l;
else fscon[j] .. iscon[j]+l;

}
}
/* Check ff the context is decreasing indentation */
if ((indind[i]-='y')&(!thistime)) {

}

thfstfme=l;
level--;

continue;

/* Then check ff ft should be changed. */
strcpy(outstr,instr);
for (i=B;i<npro;f++) {

/* No point checking if context off or flipped */
if (iscon[i]<•B) continue;
ll=strlen(tag[i]);
strncpy(test,instr,11);
test[ll]='\B';
ff (strcmp(test,tag[f])•=B) {

/* We have something to change! */
strcpy(outstr,rep[f]);
for (12=11;12<=strlen(instr);12++) {

outstr[++ll]=fnstr[12];
}
ff (outstr[strlen(outstr)-1]!='\n')

strcat(outstr,"\n");
break;

}
}
/* Finally, write the record. */
/* If the record starts with a tag character, insert a

level number ff greater than B */
if (((outstr[B] .. •':'ll(outstr[B]•"'<'))&(level>B)) {

strcpy(instr,outstr);

}

outstr[l]=(char)(level+48);
for (i=l;f<=strlen(instr);f++) {

outstr[i+l]•instr&lbrki&rbrk;
}

fputs(outstr,outfile);
} /* endwhile */

/* Be tidy */
fclose(fnfile);
fclose(outfile);

/* Read profile */
void fnpro(vofd)
{

int f;

npro•0;
while (lfeof(proff le)) {

/* Each input record should contain 1 numeric, a single
character, and 4 strings */

fscanf(profile, "%d %c %s %s %s %s",&cgroup[npro],
&indind[npro],
context[npro]conoff[npro],
tag[npro],rep[npro]);

/* cgroup is context group parameters belong to, */
/* indind fs indent indicator;

y•fncrease indentation level,

162 Print and View Data Streams

}

}

n•don't,
r=reset ft to 0 */

/* context is the string that switches context on */
/* conoff is the string that switches ft off */
/*while on, tag */
/* should be replaced by rep */

/* If you want a blank in a string, use a ;
a CRLF, use a A */

for (i•B;i<HAXLEN;i++) {

}

if (context[npro][f]=='-')

if (tag[npro][i] .. '_')

ff (rep[npro] [f] .. •_•)

context[npro] [i]•' ';

tag[npro][i] =' ';

rep[npro][i]•' ';
if (context[npro][f]=="'')

context[npro][i]•'\n'
if (tag[npro][i]•• "'')

tag[npiu] [i] = '\n';
if (rep[npro][i] .. •A•)

rep[npro] [i]= '\n';

npro++;

npro--;
return;

/* Substring routine */
void substr(char *target,char *source,int start,int length)
{

}

int i;

for (i•0;i<length;i++) {
target[i]=source[i+start];

}
target[length]•'\0';
return;

/* Snarf first word from input line. */
void getword(char *word,char *rest,char *line)
{

}

int i,j,flag;

j=0;
flag=0;
word [0] • '\0';
rest[0]='\8';

for (i•B;i<•strlen(line);i++) {
if (!flag) {

}

}

if (line[f]==' ') continue;
else flag=l;

if ((line[f]==' ')&(flag==l)) {
word[j]='\0';
j•0;
flag=2;

}
if (flag-=1) word[j++]•line[f];
else rest[j++]=line[i];

rest[j]= '\0';
strip(rest);
return;

/* Strip leading and trailing blanks from string */
int strip(char *string)
{

int i,end;

/

int start=-1;
int indent=O;
end=strlen(string);

for (i=O;i<strlen(string);i++) {
if (string[i] !=' ') break;
indent++;
start=i;

}
for (i=(strlen(string)-l);i>=O;i--) {

if (! ((string[i]==' ') 11

(string[i]=='\n'))) break;
end=i;

}
if ((start!=-1) 11 (end!=strlen(string))) {

for (i=O;i<=(end-start-2);i++) {
string[i]=string[i+start+l];

}
string[i]='\0';

}
return indent;

A.3 Conversion from BookManager READ Copy Form to GML
BookManager READ on the workstation cannot copy or print topics or ranges of
topics in GML form. (The mainframe version can, though it does go overboard in
its use of &rbl.s.)

This sample program is offered as both an example of a filter which can "add
information," and a means of getting the output of workstation READ into GML
(or mainframe READ into sensible GML). Of course it doesn't magically "add"
information; it tries to deduce content from form, and it is sometimes successful.

Don't expect it to be perfect. Always validate the output from transform
programs that try to reverse entropy (go the wrong way through a polarized
process).

A.3.1 Sample Code: GML from BookManager READ
/*

RETAG.C
Retag BookManager copy files

Requires two arguments; first is input filename,
second is output filename.

A third parameter is optional. If given, it specifies
a list of dingbats by which to recognize items in an
unordered list.

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void init(void);
int gettwo(char *,char*);
void getword(char *,char *,char*);
int strip(char *);
char chkhd(char *);
void substr(char *,char *,int,int);
int chkdef(char *,char*);
int revex(char *,char*);
void chkpref(char *,int);
int verify(char *,char *);

FILE *infile,*outfile;

int thisindent,nextindent,lastindent;
int baseindent,itemindent;
char outstr[1024];
char deft[256];
char def [256];
int deflist;
int lentenn;
int tennind;
int def ind;
int revised;
int isexamp;
int blankbef ,blankbet;

int 1 ineno;
int thislen,lastlen;
int llc;
int thisline,nextline;
int thisnlist,nextnlist;
char dinglist[24];
int cont line;

char type[40];
int posllc[40];

main(argc, argv, envp)
int argc;

{

char *argv[];
char *envp [];

char instr1[1024];
char instr2[1024];
char rest [1024];
char pref [256];
char nprf [256];
char nrst[1024];
char ding[40];
char dingline[1024];
int endit=O;
int tag;
int re;
int xmpind;
int i;

instrl[O]='\O';
instr2[0]= '\O';
thislen=O;
lastlen=O;
isexamp=O;
lineno=O;
1 lc=O;
cont 1 i ne=O;

/* Check input parameters */

Appendix A. Source Code for Sample Transforms and EXECs 163

if (argv[l]==NULL) {

}

fprintf(stderr, "No input file specified\n");
return 4;

if (argv[2]==NULL) {

}

fprintf(stderr,"No output file specified\n");
return 4;

if (argv[3]••NULL) {
strcpy(dinglist," *o+-");

} else {
strcpy(dinglist,argv[3]);

}

/* Open files */
if ((infile•fopen(argv[l],"r"))==B) {

fprintf (stderr, "Unable to open input file %s\n" ,argv [l]);
return 6;

} /* endif */
if ((outfile•fopen(argv[2],"w"))==0) {

fprintf(stderr,"Unable to open output file %s\n",argv[2]);
return 6;

} /* endif */

/* Hain Processing */
printf

("\n\nIBH BookHanager Copy file to GHL filter sample code.\n");
printf

("\n\nCopyright (c) 1992 IBM United Kingdom\n");
printf

("This program remains copyright IBM United Kingdom but may be\n");
printf

("freely used by IBM customers for any purpose provided only\n");
printf

("that the copyright notice remain intact in both source and\n');
printf

("executable versions. \n\n");
init();
while (!endit) {

/*Get next two text lines */
l ineno++;
endit=gettwo(instrl,instr2);
if (endit) break;

/* Print and return irnnediately if an example */
if (isexamp••2) {

}

/* If indent decreases, finish example */
if ((nextindent<xmpind)) {

fputs(instrl,outfile);
fputs (": exmp. \n" ,outfil e);
isexamp,.0;

} else {
fputs(instrl,outfile);

}
continue;

/* Revisions, braced examples, and character graphics. */
rc=revex(instrl,instr2);
if (rc==l) continue;

/* Is it a header? */
if (chkhd(instrl)=='V') {

thislen=B;
continue;

}
/* Is it a definition list ? */
/* note this also copies instrl to outstr, and strips it. */
rc•chkdef(instrl,instr2);
if (rc••l) continue;

/*Start by assuming we don't tag this line */
tag=B;

/* If a blank before an indent Increases, start example "/

164 Print and View Data Streams

if ((blankbef>B)&(thisindent>lastindent)) {
xmpind=thisindent;

}

fputs(":xmp. \n" ,outfile);
for (i=B;i<thisindent;i++) fputc(' ',outfile);
isexamp=2;
fputs(instrl,outfile);
/*But if it's only a single line example ••• */
if (nextindent<xmpind) {

isexamp•B;
fputs (" :exmp. \n", outfil e);

}
continue;

/*Now check for numeric lists */
getword(pref,rest,instrl);
getword(nprf,nrst,instr2);
chkpref(pref,l);
if ((thisline)&(!thisnlist)) {

getword{ding;dfngline;instrl);
}
chkpref(nprf,2);
if (thisline) {

}

tag•l;
strip(rest);
thisindent=thisindent+strlen(instrl)-strlen(rest);
lastindent•thisindent;

if (nextline) {

}

strip(nrst);
nextindent•strlen(instr2)-strlen(nrst);

if ((llc==B)&(thisline)) {
11 c++;

}

if (thisnlist) {
strcpy(outstr,":nl.\n");
type [ll c] = 'N';

} else {

}

strcpy(outstr,•:ul.\n");
type[llc]='U';

posllc[llc]•thisindent;
fputs(outstr,outfile);
thislen=0;

if (thisline) {
if (thisnlist) {

strcpy(outstr,":li.");
strip(rest);
strcat(outstr,rest);

} else {
strcpy(outstr,":li.');
strip(dingline);
strcat(outstr,dingline);

}
fputs(outstr,outfile);
thislen=0;

} else {
/* Is it the beginning of a new paragraph? */
strcpy(outstr,instrl);
strip(outstr);
lastlen=thislen;
thislen=strlen(outstr);
/*if ((lastlen==B)ll((thislen-lastlen>lB))) { */
if (blankbef>B) {

strcpy(rest,outstr);
strcpy(outstr,":p.");
strcat(outstr,rest);
fputs(outstr,outfile);

} else {
fputs(outstr,outfile);

}
}
if (((thisline)&(!nextline)&(nextindent>•posllc[llc]))

ll((contline==l)&(!nextline)&(nextindent>•posllc[llc]))

I l((contline==l)&(nextline)&(nextindent==posllc[llc]))) {
contline=l;
continue;

}
if ((!nextline)&(nextindent>=posllc[llc])) continue;
if ((!thisline)&(nextline)) {

}

Ile++;
if (nextnlist) {

strcpy(outstr,":nl.\n");
type[llc]='N';

} else {
strcpy(outstr,":ul.\n");
type [11 c] = 'U' ;

}
posllc[llc]=nextindent;
fputs(outstr,outfile);
this 1 en=O;
continue;

if ((thisline)&(!nextline))

}

while (nextindent<posllc[llc]) {
cont l i ne=O;
if (type[llc]=='N') {

strcpy(outstr,":enl.\n");
} else if (type[llc]=='U') {

strcpy(outstr,":eul.\n");
}
l lc--;
lastindent=posllc[llc];
fputs(outstr,outfile);
thislen=O;
continue;

}

}

}

strip(instrl);
strcpy(outstr,instrl);

/*If it's not been tagged and there's a blank
line in front, then it's a paragraph. */

if (tag==O) {

}

if (blankbef>O) {
strcpy(outstr,":p.");
strcat(outstr,instrl);

}
/* and in any case, output the line */
fputs(outstr,outfile);

while (llc>O) {

}

if (type[llc]=='N') {
strcpy(outstr,"enl.\n");

} else if (type[llc]=='U') {
strcpy(outstr,"eul.\n");

}
fputs(outstr,outfile};
Ile--;

if (isexamp==2) fputs(":exmp.\n",outfile);

/* Be tidy */
fclose(infile);
fclose(outfile);

if (((!thisline)&(!nextline)&(contline==l))) {
contline=O; /*Get next two non-blank lines.

}

if (type[llc]=='N') {
strcpy(outstr, ":en 1. \n");

} else if (type[llc]=='U') {
strcpy(outstr,":eul.\n");

}
fputs(outstr,outfile);
thislen=O;
Ile--;
lastindent=posllc[llc];
continue;

if ((thisline)&(nextline)) {
if (thisindent>nextindent) {

while (nextindent<posllc[llc]) {
contl ine=O;
if (type[llc]=='N') {

strcpy(outstr,":enl.\n");
} else if (type[llc]=='U') {

strcpy(outstr,":eul.\n");
}
llc--;
lastindent=posllc[llc];
fputs(outstr,outfile);
thislen=O;
continue;
}

}
if (thisindent<nextindent) {

llc++;

}

if (nextn list) {
strcpy(outstr,":nl.\n");
type [11 c] = 'N';

} else {

}

strcpy(outstr,":ul.\n");
type[llc]= 'U';

posllc[llc]=nextindent;
fputs(outstr,outfile);
thislen=6;

Return end=Y if eof on first line.
Ignore "=-=-=-=-="and following copyright lines
Return count of blank lines before first line and
between the two in blankbef and blankbet */

int gettwo(char *inl,char *in2)
{

char *re;
int i ,j, length;

if (inl[0]=='\0') {

}

/* Must be start of program */
blankbet=-1;
while ((in2[0]=='\n') 11 (in2[0)=='\0')) {

blankbet++;
rc=fgets(in2,1023,infile);
if (rc==NULL) {

}
}

return l;

if (in2[0]=='\0') {

}

/* Can only have been from an EDF last time. */
return l;

strcpy(inl, in2);
blankbef=blankbet;
blankbet=-1;
in2[0]= '\0';
while (((in2[0)=='\n') 11 (in2[0]=='\0'))

11 ((in2[0]==' ')&(in2[1]== '\n'))) {
blankbet++;
if ((i sexamp !=O) &(b lankbef !=O)) fputs ("\n", outfil e);
rc=fgets(in2,1023,infile);
if (rc==NULL) break;
if ((in2[1] == '= ') &(in2[2] == '- ')

&(in2[3]=='=')&(in2[4]=='-')) {
rc=fgets(in2,1023,infile);
rc=fgets(in2,1023,infile);

}

Appendix A. Source Code for Sample Transforms and EXECs 165

}

}
if (in2[9]..,'\n') in2[9]•'\0';
/* Calculate indents */
for (i•9;i<strlen(inl);i++) {

thisindent=i;
ff (fnl[i] !•' ') break;

}
for (i=9;i<strlen(in2);i++) {

nextindent=i;
if (in2[i]I=' ') break;

}
for (f•9;f<strlen(fnl);f++) {

if (inl[i]••'&') {
length=strlen(inl);

}
}

for (j=length;j>i;j--) {
inl (j+4] •inl (j];

}
inl(j++]•'&';
fnl(j++]•'a';
fnl[j++]='m';
inl(j++]•'p';
fnl[j] ='. ';

for (f=9;i<strlen(inl);i++) {
if ((inl[f]==': ')

}
}

&! ((inl [i+l]==' ')
11 (fnl[i+l]=='\n'))) {

length•strlen(inl);
for (j=length;j>i;j--) {

fnl(j+4]=inl[j];
}
inl(j++]•'&';
fnl(j++]='g';
inl(j++]•'m';
fnl(j++]='l ';
inl(j]='. ';

return 9;

/* Strip leading and trailing blanks from string */
int strip(char *string)
{

int i,end;
int start=-1;
int indent=B;
end=strlen(string);

for (f•9;f<strlen(string);i++) {
if (string[i] !•' ') break;
indent++;
start•i;

}
for (i=(strlen(strfng)-2);i>9;i--) {

if (I ((string[i]=•' ')I I (string[i] =• '\n ')))
break;

}

end=i;
}
if ((startl•-l)ll(end!•strlen(strfng))) {

for (i=B;i<•(end-start-2);1++) {
string[i]=string[i+start+l];

}
string[f]s '\9';

}
return indent;

/* Check if the line is a header from numeric prefix.
If so, write it out. */

char chkhd(char *line)
{

char word[255];

166 Print and View Data Streams

}

char rest (1924];
char tstr[l924];
char dot[2]=". ";
char head[3]•":h";
int i,level,start;
int test;

getword(word,rest, line);

I* Headers are only headers if the first word consists
solely of numerics */

test•strspn(word,"9123456789.");
if (test!•strlen(word)) return 'N';

/* If the first character of the first word is a ., then
it isn't a header */

if (word[9]=='. ') return 'N';

/* If the last character of the first word is a ., then
ft isn't a header */

if (word[strlen(word)-1]••'.') return 'N';

/*If two .s consecutive, then it's not a header*/
if (strstr(word," •• ")!=NULL) return 'N';

start=l;
level=9;
while (start>9) {

}

level++;
start=(int)(strchr(word,'.')-word);
if ((start<9)ll(start>strlen(word))) start•-1;
if (start>9) word[start++]='x';

if (level==l) return 'N';
if (level-=2) {

i=strlen(word)-1;
ff ((word[i]••'9')&(word[i-l]u'x')) level=l;

}
/* Before writing header, close off any existing lists */
whfle (llc>9) {

}

if (type[llc]=•'N') {
strcpy(outstr,"enl.\n");

} else if (type[llc]=='U') {
strcpy(outstr,•eul.\n");

}
fputs(outstr,outfile);
llc--;

lastindent=baseindent;
strip(rest);
strcpy(tstr,dot);
strcat(tstr,rest);
itoa(level,word,19);
strcpy(rest,word);
strcat(rest,tstr);
strcpy(tstr,head);
strcat(tstr,rest);
fputs(tstr,outfile);
return 'Y';

/* Snarf first word from input line. */
void getword(char *word,char *rest,char *line)
{

int i ,j, flag;

j•9;
flag•B;
word[9]•'\9';
rest[9]='\9';

for (i=B;f<=strlen(lfne);f++) {
if (!flag) {

ff (line[f] .. • ') continue;
else flag=l;

\

}

}
if ((line[i]==' '}&(flag==l)) {

word[j]='\fl';
j=fl;
flag=2;

}
if (flag==l) word[j++]=line[i];
else rest[j++]=line[i];

}
rest[j]='\fl';
strip(rest);
return;

/* Initialize globals */
void init(void)
{

}

de fl i st=fl;
termind=fl;
defind=fl;
revised=fl;
baseindent=4;
lastindent=4;
posllc[fl]=baseindent;
isexamp=fl;

return;

/* Check if line is part of definition list */
/* Return code 1 if line handled */
int chkdef(char *linel,char *line2)
{

char stubl[lfl24];
char stub2[lfl24];
int posl,pos2;
int newlist;

/*It's a definition list start if:
there's a blank line before it,
the line has at least three blanks separating

two groups of text,
the next line either starts lined with the second group,

or lines up with the first, has at least two blanks
before the second group, and lines up with that too. */

/* If we're not already in a list,
check for start of new one */

if (!deflist) {
newl i st=fl;
/*Not if no blank line */
if (blankbef==B) return fl;
strip(linel);
strcpy(outstr,linel);
/* Not if no sequence of at least 3 blanks */
if (strstr(linel," ")==NULL) return B;
posl=(int)(strstr(linel," ")-linel)+thisindent;
/* Get the position of the definition term */
substr(stubl,linel,posl,strlen(linel)-posl);
strip(stubl);
pos2=strlen(linel)-strlen(stubl)+thisindent-l;
/* Where we look in line 1 is less because

we've stripped that */
posl=pos2-thisindent;

/*Not if line 2 hasn't got blanks lining up
with first line, and a nonblank after */

if ((line2[posl]==' ')&(line2[posl+l] !=' ')
&(line2[pos2+1] !=' ')) {

defl ist=l;
termind=thisindent;
defind=posl+termind+l;
newlist=l;
lenterm=defind-termind;
/* Definition term */

}

substr(deft, linel,B, lenterm);
strip(deft);
/*Definition */
substr(def,linel,defind-termind,

strlen(linel)-defind+termind);
strip (def);
fputs(":dl.\n",outfile);
strcpy(outstr,":dt.");
strcat(outstr,deft);
strcat(outstr,"\n");
fputs(outstr,outfile);
strcpy(outstr,":dd.");
strcat(outstr,def);
fputs(outstr,outfile);
return 1;

} else {
return B;

}
}
/*We are supposedly already in a definition list.

Either the definition is continuing (if indent=defind),
or there is a new item (indent=termind, and spaces before
defind, but defind itself is non-blank,
or there is a subsidiary element (indent> defind)
or the list has ended. */

if (thisindent==defind) {
strip(linel);
fputs(linel,outfile);
return l;

} else if ((thisindent==termind)&(linel[defind] !=' ')
&(linel[defind-1]==' ')) {

/* Definition term */
substr(deft, linel,termind,lenterm);
strip(deft);
/* Definition */
substr(def, linel,defind,strlen(linel)-defind);
strip(def);
strcpy(outstr,":dt.");
strcat(outstr,deft);
strcat(outstr,"\n");
fputs(outstr,outfile);
strcpy(outstr,":dd.");
strcat(outstr,def);
fputs(outstr,outfile);
return l;

} else if (thisindent>defind) {
return a;

} else {

}

defind=B;
fputs(":edl.\n",outfile);
de fl i st=B;
return a;

return a;

/* Substring routine */
void substr(char *target,char *source,int start,int length)
{

}

int i;

for (i=B; i<length; i++) {
target [i]=source[i+start];

}
target [length]=' \B' ;
return;

/*Return code 1 means line handled */
int revex(char *linel,char *line2)
{

int i;
char tch;

/* Do we switch revisions on or off ? */

Appendix A. Source Code for Sample Transforms and EXECs 167

{

}

if (linel[2]=='1') {
if (!revised) {

/* Set revision on */
revised•l;
fputs (":rev refid=revname. \n", outfi le);
linel[2]=' ';

} else {
linel[2]=' ';

}
for (f=B;i<strlen(linel);i++) {

thisindent=f;
ff (lfnel[f] !"' ') break;

}
} else {

ff (revised) {
/* Set revision off */
revised•B;
fputs (": erev refi d=revname. \n", outfil e);

}
}
/* And anything in big braces is an example */
if ((linel[4]==' ~')&(linel[S]••'-')) {

isexamp•l;
fputs(":xmp. \n",outfile);
return l;

} else if ((linel[4]•='l')&(linel[5]=='-')) {
isexamp=B;

}

fputs (": exmp. \n", outfil e);
return l;

ff ((isexamp==l)ll(isexamp=•2)) {
fputs(linel,outfile);
return l;

} else {
/* Finally, anything starting with character graphic box

is an cgraphic */
tch=linel[thisindent];
if ((tch=·'~')ll(tch•='l')ll(tch••'l')ll(tch=='B'))

}

if (!isexamp) {
fsexamp=3;
fputs (" :cgraphf c. \n" ,outfi le);

}
fputs(linel,outfile);
return l;

}
tch•linel[thisindent];
if ((isexamp==3)&!((tch=='l'> ll(tch=='I')

11(tch••'I')11 (tch== 'B'))) {
isexampmB;

}

fputs (" :ecgraphi c. \n" ,outfile);
return B;

return 0;

/*Check prefix to see if it's a list. */
void chkpref(char *string,int which)
{

char ding[4B];
char dingline[lB24];
int length;

if (strlen(string)••0) {
if (which==l) thisline•B;
else nextlfne=B;

168 Print and View Data Streams

}

return;
}
if (which==l) thisnlist=B;
else nextnlist=0;

length=strlen(string);
if ((length==l)&(verify(string,dinglist))) {

if (which==l) thislfne=l;
else nextline=l;
return;

}
if (which••l) thisnlist•l;
else nextnlist•l;
if (length>S) {

}

ff (whfch==l) thf sline•0;
else nextlfne•0;
return;

if (verify(strfng,"ivx.")) {
if (which••l) thisline=l;
else nextline=l;
return;

}
if (verffy(string,"IVX.")) {

if (which==l) thislfne=l;
else nextline=l;
return;

}
if (verify(string, "0123456789. ")) {

if (which==l) th!sline•l;
else nextline=l;
return;

}
ff ((length••2)&(string[l]•',')) {

if (wh!ch==l) thfslfne=l;
else nextlfne=l;
return;

}
if (which••l) thisline•0;
else nextline=0;
if (whfch==l) thisnlist=0;
else nextnlist•0;
return;

int verify(char *haystack,char *needle)
{

}

int i,j, 11,12,found,rc;
rc=l;
ll=strlen(needle);
12•strlen(haystack);
for (f=0;i<l2;i++) {

}

for (j•B;J<ll;j++) {
found=B;
ff (haystack[i)=aneedle[j)) {

found•l;

}
}

break;

if (found) continue;
rc•B;
break;

return re;

A.4 Combine Image Cells in PSEG
With some versions of the IBMAFP driver to create AFPDS from workstation
programs, PSEGs are created containing multiple image cells in the form of
horizontal bands. The reason for this is that it is easier to deal with relatively
small image blocks on the PC.

This is not a problem in many cases, but with IBM BookMaster and IBM
BookManager, the PSEGs may not be processed appropriately. In IBM
BookMaster, the whole of the PSEG is used, but the dimensions of the first cell
are used for layout, so text may be overrun. In IBM BookManager, only the first
cell is recognized.

The EXEC below will take such PSEGs, and recombine them into a single image
cell.

It does this by throwing away all Begin and End Image structured fields except
the first begin and the last end, and all Image Input Descriptors but the first (it is
the Image Input Descriptor that defines the size of the image cell), and all Image
Output Controls but the first (these define the origin from which all subsequent
raster data is measured). Image Output Controls after the first have their origin
added to the offset position from which the raster data is measured in each data
record. Finally, in a second pass, the remaining Image Input Descriptor is
updated with the total size of the PSEG.

A.4.1 Sample Code: Recombine PSEG Cells

/* VH REXX EXEC.
Refonnat PSEG to single image cell.
Note that this EXEC perfonns absolutely no error checking.
This EXEC is designed for the situation where
multiple image objects are in a single PSEG, and they
are tiled vertically (i.e., they are horizontal bands
across the total field.
If you have other situations, this should at least be
a starting point to build on. */

trace o
arg fn ft fm •
of n=f n
oft=TEMP
ofmsfm

'STATE ' fn ft fm
if rc~=e then exit
'FINIS ' fn ft fm
'ERASE ' ofn oft ofm
nrecs•0
iocfirst=l
iidfirst=l
bimfirst•l
xdelta=-1
ydelta=-1

do forever
'EXECID 1 OISKR ' fn ft fm ' { VAR INSTR'
ff rc~·e then leave
nrecs-nrecs+l
parse var instr 4 code +3 rest
ff code='d3a77b'x then do

/* Structured Field is IOC - Image Output Control */
/* Write first out unchanged, and set origins.

Subsequent ones, increment deltas but don't write out */
parse var rest 4 xorg +3 yorg +3 remains
if f ocfirst•l then do

xdelta=0
ydelta=0

xorigin=c2d(xorg)
yorigin•c2d(yorg)

'EXECID 1 DISKW ' ofn oft ofm ' 0 (VAR INSTR'
iocfirst=0
end

else do
xdelta=c2d{xorg)-xorigin
ydelta=c2d(yorg)-yorigin
end

end
else if code='d3ac7b'x then do

/* Structured field is ICP - Image Cell Position */
/*Add delta values to cell offsets, then write out */
parse var instr start 10 xoff +2 yoff +2 remains
xoffset=c2d(xoff)
yoffset=c2d(yoff)
xoffset=xoffset+xdelta
yoffset=yoffset+ydelta
xoff•d2c(xoffset,2)
yoff=d2c(yoffset,2)
rout=startl lxoffl lyoffl I remains

'EXECID 1 DISKW ' ofn oft ofm ' 0 (VAR ROUT'
end

else if code='d3a87b'x then do
/* Structured field is BIM - Begin Image - IM */
/*Write first of these out, ignore all others */
if bfmffrst=l then do

bimfirst=0
'EXECIO 1 DISKW ' ofn oft ofm ' 0 (VAR INSTR'
end

end
else if code='d3a67b'x then do

/* Structured field is 110 - Image Input Descriptor */
/* Write first of these out, use others to increment

total y size of cell */
parse var instr start 28 xsz +2 ysz +2 remains
xsize=c2d(xsz)
ysize=c2d(ysz)
if iidfirst=l then do

iidfirst=0

Appendix A. Source Code for Sample Transforms and EXECs 169

end

'EXECIO 1 DISKW ' ofn oft ofm ' G (VAR INSTR'
toty=ysize
end

else do
toty=toty+ysize
end

end
else if code='d3a97b'x then do

/* Structured field is EIM - End Image - IM */
/*All of these ignored - last one written before EPS */
lastrec=instr
end

else if code='d3a95f'x then do
/* Structured field is EPS - End Page Segment */
/* Write unchanged preceded by last End Image */

'EXECIO 1 DISKW ' ofn oft ofm ' G (VAR LASTREC'
'EXECIO 1 DISKW ' ofn oft ofm ' G (VAR INSTR'
end

else do
/*All other records passed unchanged*/
'EXECIO 1 DISKW ' ofn oft ofm ' G (VAR INSTR'
end

'FINIS ' ofn oft ofm

A.5 Reblock Uploaded PSEG

/* Pass two, to set total image size */

ft='TEMP'
oft='OUTPUT'
'ERASE ' ofn oft ofm

do forever
'EXECIO 1 DISKR ' fn ft fm ' (VAR INSTR'

end

if rc~=G then leave
parse var instr 4 code +3 rest
if code='d3a67b'x then do

/* Structured field is 110 - Image Input Descriptor */
parse var instr start 28 xsz +2 ysz +2 remains
ysz=d2c(toty,2)
rout=startl lxszl lyszl I remains

'EXECIO 1 DISKW ' ofn oft ofm ' G (VAR ROUT'
end

else do
'EXECIO 1 DISKW ' ofn oft ofm ' G (VAR INSTR'
end

'ERASE ' fn ft fm
'FINIS ' ofn oft ofm

Some versions of the IBMAFP driver to create AFPDS from workstation programs
are provided with an EXEC to reblock files uploaded from the workstation. (This
is necessary because the variable record file structure of PSEG files is not
readily handled by most file transfer programs.)

Where an EXEC or CLIST is provided, this should be used. Where it is not, the
EXEC below can be used.

The file should have been uploaded as a variable length record format file
(RECFM V) with a maximum record length of 32767.

We also found that early versions of the AFP Workbench for Windows program
didn't provide the leading '!' in all cases, so we have commented three places in
the EXEC where it can be modified to handle that situation if you come across it.

A.5.1 Sample Code: Reblock Uploaded PSEG

/* VM REXX EXEC.
Splits uploaded file into records

*/
trace o
arg fnl ftl fml fn2 ft2 fm2

if fnl = '' I fnl = '?' then
do
say 'AFPSPLIT takes an unformatted AFPDS file and
say 'formats it into records, each record consisting'
say 'of a structured field.
say
say 'Format:
say
say ' AFPSPLIT fnl ftl fml fn2 ft2 fm2
say
say ' fnl ftl fml
say The name of the file to be formatted.
say fml = A
say ' f n2 f t2 fm2
say The name of the output formatted file.
say Defaults: ft2 = LIST382G
say fm2 = A
say

170 Print and View Data Streams

exit
end

if fnl='' I ftl='' then do

end

say 'Error - No input file given'
exit

if fml='' then fml='A'
if fn2='' then fn2=fnl
if ft2='' then ft2='LIST382G'
if fm2='' then fm2='A'

/* CHECK WHETHER FILE EXISTS */
ADDRESS COMMAND 'ESTATE' fnl ftl fml
if re ~= e then

do
/* woops -- file gone? */

SAY 'AFPSPLIT: File' fnl ftl fml 'not found; RC='RC
exit

end

'listfile ' fnl ftl fml ' (stack alloc '

pull pl p2 p3 recfm lrecl norecs blocks •
code= a
if recfm~='V' then do

say 'Record format is not V for Variable.'
code=l

end
if lrecl~=32767 then do

say 'Record length is not 32767.'
code=l
if norecs=l then do

say "-but only one record, so that's cool."
code=0;

end
end
if code=l then do

say 'Upload again with correct parameters.'
exit

end

infile = fnl ftl fml
outfile = fn2 ft2 fm2
'erase 'outfil e

line =
bytes = a
do forever

'execio 1 diskr 'infile' (VAR INLINE'
if rc~=e then leave
line = line I linline

do forever
/* If the file doesn't contain leading ! characters

in every record, then the following line should be
replaced by

*/

end
end

linelen c2d(substr(line,1,2))

linelen c2d(substr(line,2,2))

if linelen>length(line) then leave

bytes = bytes + linelen

/* If the file doesn't have leading ! characters,
this time comment out the following "if" block*/

if substr(line,1,1)~='!' then do

end

say 'Error at 'bytes' bytes - attempting recovery'
line = substr(line,2)
iterate

/* If the file doesn't have leading characters,
replace the following line by

outline substr(line,l,linelen)
*/
outline substr(line,1,linelen+l)
'execio 1 diskw 'outfile' (VAR OUTLINE'

/* If the file doesn't have leading ! characters,
replace the following line by

line= substr(line, linelen+l)
*/
line= substr(line, linelen+2)

'finis * * *'
say 'Split completed'
exit

Appendix A. Source Code for Sample Transforms and EXECs 171

..

172 Print and View Data Streams

Appendix B. Images, Graphics, and Data Streams

B.1 Major Image Formats and Where They Are Used

Table 5. Major Image Formats and Where They Are Used. This table indicates, for the major image formats,
where they are used and what tools either generate them or accept them as input.

Major Image Formats Used by Tools that create Tools that accept

IOCA .. lmagePlus PCllDU PSF
GDDM OIS PSF/2
OV/2 Release2 Editor DW512 PCllDU
OV/400 Editor DW/370 OIS
DW512 GDQF DW/370
DW 1370 GDQF

PSEG IBM BookMaster PCllDU GDDM-IVU
IBM BookManager GDDM-IVU ProcessMaster
SGML Translator ProcessMaster GDQF

GDQF lmagePlus
lmagePlus

EPS IBM BookMaster ProcessMaster DrawMaster*
SGML Translator DW512 ProcessMaster

Postscript

ADM I MG DW/370 GDDM-IVU GDDM-IVU
IBM BookManager ProcessMaster ProcessMaster

DW/370 DW/370
GDQF GDQF

TIFF GDDM PCl/DU PCllDU
Workstation OIS OIS
Applications ProcessMaster ProcessMaster

DW512 DW512
GDQF GDQF

Note:
PSEG/IM1 = normal bitmap
IOCA = Compressed image

Note:
Postscript interpreter accepts normal Postscript as well as EPS.
An EPS file actually can contain image and/or graphic and/or text.

Note:
PMWE supports ADMIMG, Host ProcessMaster does not support ADMIMG.

@Copyright IBM Corp. 1993 173

B.2 Major Graphics Formats and Where They Are Used

Table 6. Major Graphics Formats and Where They Are Used. This table indicates, for the major graphics
formats, where they are used and what tools either generate them or accept them as input.

Major Graphics Used by Tools that create Tools that accept
Formats

RFT/GOCA OV/2 Release2 Editor DW/370 DW/370
OV/400 Editor Display Graphics Display Graphics
DW512 DW512 DW512
DW 1370 OV/400 Editor OV/400 Editor

EPS IBM BookMaster ProcessMaster DrawMaster
SGML Translator DW512 ProcessMaster

Postscript Interpreter

ADM GDF DW 1370 GDDM GDDM
IBM BookManager GDQF GDDM-ICU

DW/370 GDQF
DrawMaster AS
ProcessMaster DW/370

DrawMaster
ProcessMaster
Workstation
Applications

Note:
Postscript interpreter accepts normal Postscript as well as EPS
An EPS file actually can contain image and/or graphic and/or text

B.3 Major Data Streams and Where They Are Used

Table 7 (Page 1 of 3). Major Data Streams and Where They Are Used. This table indicates, for the major
data streams where they are used and what tools either generate them or accept them as input. A more
detailed overview is contained inD.1, "Product and Operating System Tables" on page 225 .

Major Data Streams Tools that create Tools that accept Hardware working
with It

MO:DCA lmagePlus lmageP/us

FOCA PSF

IOCA PSF/2

PTO CA Print Services/400

GOCA
BCOCA

174 Print and View Data Streams

Table 7 (Page 2 of 3). Major Data Streams and Where They Are Used. This table indicates, for the major
data streams where they are used and what tools either generate them or accept them as input. A more
detailed overview is contained in D.1, "Product and Operating System Tables" on page 225.

AFPDS DCF PSF

FOCA
BookManager PSF/2

IOCA
GDQF lmageP/us

PTOCA
GDDM BrowseMaster

GOCA OGL GDQF

BCOCA
AS/400 AFP Utilities GDDM
lmagePlus
AFPDS-driver
installed under
Windows
Line to AFP convert
program
Complementary
products

IPDS PSF all AFP printers
Print Services/400
PSF/2

RFT:DCA DW/370 GDDM all printers that have
Office Vision/MVS GDDM as device
Office Vision/400 driver available
Office Vision/2

CDRA DW/370 GDDM all printers that have
Office Vision!MVS GDDM as device
Office Vision/400 driver available
Office Vision/2

DIA DW/370 GDDM all printers that have
Office Vision/MVS GDDM as device
Office Vision/400 driver available
Office Vision/2

FD:OCA DW/370 GDDM all printers that have
Office Vision/400 GDDM as device

driver available

3270DS traditional application traditional application 3270 Display Stations
programs programs

1403DS traditional application traditional application Line printers
programs programs AFP printers

PSF
PSF/2
Print Services/400
traditional line
printers

Postscript DCF DCF Postscript printers
Workstation Postscript adapter

(applications running program
under Windows PSF/2 Vt.1

Appendix B. Images, Graphics, and Data Streams 175

Table 7 (Page 3 of 3). Major Data Streams and Where They Are Used. This table indicates, for the major
data streams where they are used and what tools either generate them or accept them as input. A more
detailed overview is contained in D.1, "Product and Operating System Tables" on page 225.

PPDS Workstation Workstation printers
applications on LPT1 supported by

PSF/2

PCL Workstation Workstation printers
applications on LPT1 supported by

PSF/2

Note: Object Content Architectures are part of AFPDS and as such they are generated by the
programs generating AFPDS.
For more information please refer to Information Interchange Architecture: Concepts, GG24-3503 .
... _ .. __
""""'
Input to PSF is 1403DS or AFPDS.
Input to PSF/2 is ASCII, Meta File, AFPDS, and Postscript.

Note:
1403DS must be converted to ASCII, Postscript, or AFPDS prior to input to PSF/2.

Note:
In order to generate PPDS or PCL data streams the corresponding printer driver must be available
on the workstation.

B.4 Types of Bitmap Images

B.4.1 Bilevel Images
Bilevel images are images that contain only two values, black and white. Line
drawings are typical bilevel images.

Bilevel images are the most economical image types for storage, as each pixel
can be represented by a single bit.

Most computer printers are only capable of printing bilevel images. This means
that other images have to be simulated by bilevel. A typical method is to use
halftoning to represent a grayscale image. Color images are rendered by
assigning grayscales to colors before halftoning.

B.4.2 Grayscale Images
Grayscale images use more than a single bit per pixel to store information about
the relative brightness of the picture element.

Typically, 4 or 8 bits are used, allowing the representation of either 16 or 256
gray levels.

What each level represents is application dependent. Some images represent
black at one end of the scale and white at the other, with roughly evenly split
light levels between, while more sophisticated ones attempt to give more
information about the image by making the number of pixels in the image
assigned to each gray level approximately equal in number. In the latter case, a
"gray response curve" is then necessary to interpret the image correctly.

176 Print and View Data Streams

A common technique to do this assignment is called "histogram equalization."

8.4.3 Palette-color Images
In this type of image, the information stored for each pixel is an index into a
"palette," or color look-up table.

Images with limited color information are often stored this way.

8.4.4 RG8 Images
An RGB image is capable of storing more or less continuous color information.
Here, each pixel is represented by three numbers, representing the relative
strengths of the red, green, and blue components of the light value for the pixel.

Occasionally other values per pixel are stored, to represent such values as
opacity or transparency.

RGB images are device dependent; that is, the precise color rendered by the
display, printer, or other output device is not uniquely defined in the absence of
information about the device. The same triplet value may render different
results on different devices.

In prepress and other high-quality work, it is necessary to define the color
precisely. In an RGB system, this can only be done by specifying other
information besides the pixel values, such as the chromaticities of the reference
white value and each individual primary color, top and bottom range limits for
each primary (headrooms and footrooms), and transfer functions for each
primary (to map response curves to a linear representation). This is called
colorimetry information.

B.4.5 CMYK Images
Color image encoding using the CYMK model is essentially designed for color
printing. CYMK images are device-specific, and for each pixel, they define the
amount of cyan, magenta, yellow, and black process inks that are to be used for
that pixel.

This model is not suited for interchange.

B.4.6 YCbCr Images
The television industry doesn't use RGB; for digital video, they define
luminescence and chrominance values of the image.

For this kind of work, the YCbCr standard, based on CCIR Recommendation
601-1, Encoding Parameters of Digital Television for Studios, is used, for example
as part of the TIF standard.

Each triplet is defined as a Y luminescence value, and two color difference
chrominance components, Cb and Cr. The image must also have defined for it
coefficients for transfer functions, and reference black and white values, to
enable transform to an RGB color space.

Appendix B. Images, Graphics, and Data Streams 177

B.4.7 CIE L *a*b* Images
CIE L*a*b* is a standard for the definition of high-quality color images. Unlike
RGB, CIE L*a*b* unambiguously defines a color space which is inherently
colorimetric. It is thus completely device independent, and is based on the CIE
1931 Standard Observer, which means that it is designed to match human color
response.

The color space of the CIE L *a*b* model is three dimensional, one axis being L*
representing lightness, a* representing the red/green axis, and b* the
yellow/blue axis.

Besides being colorimetric, separating the color space in this way allows simple
conversion to monochrome, and compressibility is better than RGB.

178 Print and View Data Streams

Appendix C. Products

The following pages contain overview information in tabular form. They are
intended to help a reader to find quick answers to questions such as:

• What data formats should I use in my environment?

• What programs should I use to get the data formats I need?

• Do I have all required programs available?

• What data stream is required to proceed?

• What programs accept the data I have?

• What program generates the output format needed?

• If I need to convert, what programs do I need?

©Copyright IBM Corp. 1993 179

C.1 Software for Print and View Data Streams under MVS and VM

Table 8. Software for Print and View Data Streams. This table indicates which products work with print and
view data streams in SAA environments.

Operating Program product Remarks
System

MVS OfficeVision/MVS

DW/370

lmagePlus Folder Application Facility

lmagePlus Object Distribution Manager

!BM BookMaster

BrowseMaster

DCF

GDDM

ProcessMaster

SGML Translator SGML is also processed under
DEC** and UNIX

Postscript to AFPDS works under ProcessMaster

AFP Software PSF, PMF, PPFA, OGL,
Complementary solutions

TextTagger!ESA not announced in all countries

IBM BookManager READ

IBM BookManager Build

VM OfficeVision/VM (PROFS)

IBM BookMaster

DW/370

BrowseMaster

DCF

GDDM

ProcessMaster

SGML Translator SGML is also processed under
DEC and UNIX

TextTagger not announced in all countries

Postscript to AFPDS works under ProcessMaster

AFP Software PSF, PMF, PPFA, OGL,
Complementary solutions

IBM BookManager READ

IBM BookManager Build

180 Print and View Data Streams

C.2 Software for Print and View Data Streams under OS/400 and OS/2

Table 9. Software for Print and View Data Streams. This table indicates which products work with print and
view data streams in SAA environments.

Operating Program product Remarks
System

AS/400 OfficeVision/400

lmagePlus Workfolder Application Facility/400

AFP Utilities/400 PFU, RSU, RMU

BGU

Workstation OfficeVision/2 LAN

lmagePlus Workstation Program/DOS

lmagePlus Workstation Program/2

AFP Workbench for Windows Reads AFP files, prints and files
using workstation printer drivers

ProcessMaster Workstation Edition

TextTagger OS/2 creates SGML files as well as
BookMaster

IBM BookManager READ /DOS

IBM BookManager READ OS/2

DW 512

PSF/2

AFP Driver Part of PSF/2 and AFP
Workbench for Windows, drivers
for OS/2 and DOS/Windows

DTP programs AFPDS driver installed under
OS/2.
AFPDS driver installed under
DOS/Windows
Postscript as input to PSF/2

Appendix C. Products 181

C.3 Input and Output of Major Programs

Table 10 (Page 1 of 2). Inputs and Outputs of Major Programs. This table shows the main input and output
formats available with several of important products.

Program Input Output

GDDM AFPDS AFPDS
CC/TT G.3 MO:DCA-P
CC/TT G.4 /OCA
/OCA OS/2 Bitmap
IMAGE (Metafile)
MO:DCA RFTDCA
IMDS ADM/MG
ADM I MG ADMGDF
RFT TIFF
BITMAP CGM
GDF
CGM
GL

GDQF AFPDS AFPDS
CC/TT G.3 MO:DCA-P
CC/TT G.4 /OCA
TIFF OS/2 Bitmap
MO:DCA (Metafile)
/MDS RFTDCA
ADM/MG ADM/MG
RFT TIFF
BITMAP CGM
GDF Gamma Fax
GL

PSF 1403DS /PDS
AFPDS

PSF/400 1403DS IPDS
scs
AFPDS

PSF/2 ASCII IPDS
Metafile PPDS
AFPDS HP-PCL4
Postscript HP-PCL5

RPM V.2. IPDS IPDS

RPMV.3 /PDS IPDS
ASCII

OGL 3270DS AFPDS
as source code

DCF 3270DS AFPDS
as source code Postscript

and many others

lmagePlus /OCA MO:DCA-P

182 Print and View Data Streams

\
'--·

Table 10 (Page 2 of 2). Inputs and Outputs of Major Programs. This table shows the main input and output
formats available with several of important products.

DW/370

Office
System
Products

Corel Draw

Ami Pro

015

32700S
AOMGOF

32700S
AOMGOF

TIFF
EPS
PIC
PLT
PIF
and many others

ASCII
DCAIFFT
DCA/RFT
DIF
DOC
RTF
and many others

TIFF
IOCA
MOD:DCA-P
Bitmap
RFT:DCA
PCX
CALS
PIC

RFT-OCA
FFT-OCA
scs
32700S

RFT-OCA
FFT-OCA
scs
32700S

TIFF
EPS
PIC
PLT
PIF
Postscript
AFPDS using IBMAFP driver
and others

ASCII
DCAIFFT
DCA/RFT
DIF
DOC
RTF
Postscript
AFPDS using IBMAFP driver
and others

IOCA
MOD:DCA-P
PCX
PIC
RFT:DCA
TIFF
Bitmap
AFPDS using IBMAFP driver

Note: PSF/2 and AFP Workbench for Windows contain AFPDS Drivers, which can be installed as a
printer drivers under OS/2 and DOS/Windows. These can produce AFPDS output with most
programs which run under OS/2 or DOS/Windows.
This AFPDS data stream can be printed on any AFP printer in any environment.

Appendix C. Products 183

C.4 Access to Data Based upon Office

Table 11. Access to Data Based upon Office. This table shows how data may be moved in and out of various
environments. Environments covered are Office, Publishing and lmagePlus.

Office Products Output formats Input formats Transform tools

OfficeVision/2* LAN RFTDCA ASCII ODF
OfficeVision/MVS* ASCII EBDCIC TextTagger
OfficeVision/VM* EBDC/C TIFF OCR
OfficeVision/400* PRINT ADM/MG

PDA

Note: Tools are required only for moving Office Text into Publishing

Note:
ODF = Office Document Feature
Accessed under ProcessMaster. Converts RFT into GML, SGML. Manual editing is required to
achieve full conversion.
ODF accepts RFT:DCA input and generates

GML
Input for IBM BookMaster

CALS SGML
Input for IBM BookMaster

Note:
TextTagger analyzes a document and creates markup in the text. Manual editing is suggested to
check for proper conversion.
Input formats accepted by TextTagger:

ASCII
EBCDIC
RFT:DCA
PRINT
PDA

Output formats generated by TextTagger:

GML
Input for IBM BookMaster
Input for IBM BookManager Build

SGML
Input for SGML Translator
Output of SGML Translator is input to IBM BookManager Build

Note:
OCR = Optical Character Recognition
PDA = Processed Document Architecture
There are several solutions available through IBM Business Partners which generate either ASCII
or PDA, which in turn can be input to TextTagger.

184 Print and View Data Streams

C.5 Access to Data Based upon Publishing

Table 12. Access to Data Based upon Publishing. This table shows how data may be moved in and out of
various environments. Environments covered are Office, Publishing and lmagePlus.

Publishing Products

Production Publishing
BookMaster
BrowseMaster
ProcessMaster
ProcessMaster CALS
Feature SGML
Translator TextTagger
BookManager

Professional
Publishing IBM
lnterleaf Publisher
PS/2
lnterleaf PS/6000

Personal Publishing
Postscript
Complementary
Software

Output formats

AFPDS
CDPDS
EBCDIC
Print Spool File

Input formats

GML
SGML
CALS SGML
EBCDIC
IOCA
PSEG

Transform tools

ODF
TextTagger
OCR
Transform programs
of lmagePlus

Note: Transform programs of lmagePlus are used to transform MO:DCA-P to either IOCA, or
PSEG.

Note: Other Tools for transforming to the appropriate data stream are:

TextTagger
PC/IOU
OIS

Appendix C. Products 185

C.6 Access to Data Based upon lmagePlus

Table 13. Access to Data Based upon lmagePlus. This table shows how data may be moved in and out of
various environments. Environments covered are: Office, Publishing and lmagePlus.

lmagePlus Products

MVS/ESA*

lmagePlus Folder Application
Facility

lmagePlus Object Distribution
Manager

AS/400

lmagePlus Workfolder Application
Facility/400

Workstation

lmagePlus Workstation
Program/DOS

lmagePlus Workstation Program/2

Output formats

MOD CA
IOCA
ASCII

Input formats

MO DC A
IOCA
ASCII

Transform tools

ODF

Note: Transform programs are used to provide an appropriate input data stream to lmagePlus.

ASCI !(Workstation)
IOCA (Workstation)
MO:DCA-P (MVS, AS/400)
EBCDIC (AS/400)

Note: Transform programs are used to provide an appropriate output data stream from lmagePlus
for office or publishing.

IOCA (Publishing)
ASCII (Workstation)

186 Print and View Data Streams

C.7 Page Printer Formatting Aid/370
IBM Page Printer Formatting Aid/370 Release creates Advanced Function
Printing (AFP) resources that control how information is printed on a page.

These resources are called form definitions (FORMDEFs) and page definitions
(PAGEDEFs). FORMDEFs specify how the printer should handle the physical
sheets of paper. PAGEDEFs specify how data should be arranged on the logical
page.

These printing resources provide the capability to print in simplex or duplex
mode, to print one or more application pages on the same side of a physical
page, to print in portrait or landscape mode and to include or exclude
application data and electronic overlays on different pages of the same print job.
Several additional parameters can be specified to choose differing colors, print
density, or paper bins on printers that support those capabilities.

PAGEDEFs and FORMDEFs defined with predecessor IBM PPFA programs are
upwardly compatible with IBM PPFA/370.

PAGEDEFs and FORMDEFs created for use in the VM environment are
functionally equivalent to PAGEDEFs and FORMDEFs created for use in the MVS
and VSE environments.

Developing FORMDEFs and PAGEDEFs with PPFA on the main frame is to use a
normal text editor and after entering the source code it is submitted to the
compiler PPFA which generates a machine readable code for the printer driver.
that can also be exchanged with other systems and other SAA platforms.
Meanwhile some complementary software on work stations is available allowing
a user to develop PAGEDEFs and FORMDEFs and overlays in a WYSIWYG mode.

PPFA/370 is a follow on product of preceding versions which were designed for
the environments MVS, VM, or VSE. IBM Page Printer Formatting Aid/370 is a
program that replaces the following licensed programs with a single, new, cross
system product:

C.8 Overlay Generation Language/370
IBM Overlay Generation Language/370 Release 1.0 provides the ability to create
electronic forms overlays for use by Print Services Facility in formatting print
jobs for Advanced Function Printing (AFP) page printers. The program has been
enhanced with improved algorithms for the formation of rounded corners when
using dotted or dashed lines with OGL graphics commands.

OGU370 has the ability to identify which IBM System/370 SCP environment it is
operating in and conditionally process system dependent code without user
intervention.

Generating overlays allows placement of all necessary information on the page
that is not part of the output of an application program:

• Images

• Graphics

• Text

Appendix C. Products 187

- In selected fonts
- Rotated as required

• Shaded areas

• Boxes lines

• Circles

Overlays are developed on the mainframe using a normal text editor. After the
source code is entered, it is submitted to the OGL compiler, which generates a
machine readable overlay (AFPDS, MO:DCA-R).

Complementary workstation software is available which allows the user to
develop overlays in a WYSIWYG mode. PAGEDEFs and FORMDEFs can also be
created by this software.

Users should also be aware that overlays can now be generated by virtually any
graphics program on the workstation; the IBMAFP printer driver allows them to
create overlays (see 13.5, "Scan a Logo, Improve It, and Integrate It in an
Overlay" on page 111).

C.9 Line Data to AFPDS Converter
This is not a formal IBM product, but is generally available.

This program will convert System 370 line printer data streams to Advanced
Function Print Data Streams (AFPDS) in a manner analogous to PSF/MVS. The
output format is controlled by a Page Definition. The resulting AFPDS may be
printed by any AFP-compatible printer.

C.9.1 Converting Line Data to AFPDS
Line data consists of individual records containing one line of text to be printed
and optional carriage control and table reference characters (for identifying the
font to print a line on a 3800 line printer).

When line data is to be printed on an AFP page printer, it is converted into
printable pages by Print Services Facility (PSF). PSF uses a Page Definition
(PAGEDEF) to construct each printed page. The Page Definition contains
instructions on how a page is to be formatted, including the number of lines per
page, the font(s) to use in printing each line, and the placement of lines on the
page.

In addition to a Page Definition and line data, PSF can print other text and
graphics on a page. By including structured fields within line data, PSF may be
instructed to place a page segment on the same page with line data. The Include
Page Segment (IPS) structured field names a segment contained in a segment
library to be included on a page. For more information on using structured fields
within line data, see PSF/MVS User's Programming Guide, 5544-3084.

LINEAFP takes as input a PAGEDEF (and, optionally, a FORMDEF) and line data,
and creates as output an AFP data stream that can print on any AFP-supported
printer. In environments which do not process line data for AFP page printers,
such as AS/400, the program may be used to convert MVS-created line data sets
to be printed on AS/400 attached printers. LINEAFP currently runs in MVS/370,

188 Print and View Data Streams

MVS/XA*, or MVS/ESA. The output dataset is suitable for sending to any system
that supports AFP data streams that contain no embedded line data.

C.10 Document Composition Facility
DCF is a host-based text formatting program designed for high-volume, in-house
industrial, technical, and educational publishing and text processing applications.

DCF includes the SCRIPT/VS text formatter, which provides formatting support
for the BookMaster, SGML Translator, and BookManager BUILD products.

A Foreground Environment Feature enables DCF to be used within TSO under
MVS, and CICS* and CMS under VM.

With the Document Library Facility (DLF). the SCRIPT/VS formatter can operate
in a batch environment under MVS and VSE. DLF provides an interface to the
formatter.

DCF has an Office Document Feature (ODF) which allows DCF to convert a
RFT:DCA file to a file suitable for formatting by SCRIPT/VS, and ODF can also
convert this file back to an RFT:DCA file. This conversion is at a pure format
level and should not be considered as a substitute for conversion to GML.

DCF has an optional Mathematical Formula Formatter (SMFF). This feature
allows the entry of tags to define mathematical formulas, allowing them to be
formatted by DCF for later printing or display.

DCF can now handle formatting of DBCS text in documents.

Highlights:

• Output for:

Line printers
- AFPDS
- Postscript

• Supports color

• Separates masters by color

• Includes many kinds of image:

Page Segments
IOCA uncompressed
IOCA compressed
EPS if output device is a Postscript device

• Interprets:

The IBM Script formatting language
- GML tags
- BookManager tags

• The output of DCF is the base for BookManger Build

Appendix C. Products 189

C.11 SCRIPT Mathematical Formula Formatter Feature
The SCRIPT Mathematical Formula Formatter is a separately charged feature of
DCF. It allows equations to be defined to DCF by using a descriptive formula
language designed to be easy to learn and use. The mathematical expression
can then be described in words, roughly equivalent to the way one would read it
over the telephone.

Input can be made from any workstation or terminal used for DCF text. Since
special symbols that appear in equations are entered as symbolic names, any
alphanumeric keyboard can be used to create these equations. Users also have
the ability to enter abbreviated symbolic names for both the special symbols
used in the equations and the formatting keywords used to describe them, or to
define their own symbols for complete formulas or parts of equations.

A Formula Formatter Starter Set of Generalized Markup Language (GML) tags is
provided with SMFF that can be installed as an extension to the DCF starter set,
or it can be used by other DCF applications or source documents. The IBM
Publishing Systems BookMaster provides a tag and macro interface to use SMFF
within BookMaster documents.

SMFF extends the function set of Document Composition Facility. It provides for
typesetting of mathematical equations and scientific formulas. It is designed to
be easy to use for people who know neither mathematics nor typography. SMFF
does not check the mathematical validity of an expression. Equations can be
interspersed within DCF text files, and can be merged with images such as
signatures, logos, halftone photographs, vector graphics converted to images, or
graphics scanned on a host attached scanner, or created by IBM programs
designed for that purpose.

SMFF can format piles of characters, Greek letters, fractions, subscripts and
superscripts, roots, big parentheses and brackets, embellished characters, and
more. The printing of the formatted equations must be done on an all-points
addressable output device, or page printer.

Postscript output is also supported by DCF and SMFF.

Note: Within VSE SMFF is not available. It is presently also not possible to
generate Postscript output with DCF under VSE.

C.12 ProcessMaster CALS Application Feature
The CALS Application Feature is part of a set of products that address the
requirements of the CALS initiative. It is composed of five components:

• CALS MIL-M-38784B Formatting Application
• CALS 1840A Tape Create/Read Utility
• CALS MIL-D-28003 CGM/ADMGDF Transform
• CALS MIL-R-28002 CCITT G4 Raster lmage/PSEG Transform
• CALS OS/2 Workstation Driver

CALS formatting application provides the ability to format documents that comply
with the Department of Defense using DCF. This will allow DCF to

/

format compliant documentation for all of the supported APA-printers. '-

190 Print and View Data Streams

In addition, the same documentation will be able to be printed on any
DCF-supported printer for draft copies.

The SGML Translator DCF Edition will validate the source code and
translate it into CALS DCF. Using the output of the translator and the
CALS DCF macro library, DCF then creates MIL-M-387848 conforming
documents. Graphic elements referenced by the SGML source must
be in PSEG or Postscript format for the destination printer. Document
objects in standard CALS graphic format must be transformed to
PSEG or Postscript format before formatting.

Tape Generation Utility The Tape Generation Utility provides a means of writing a
set of files or data sets comprising one or more MIL-STD-1840A
documents onto tape in ANSI X3.27 format for delivery to the
Department of Defense or other companies. It also provides a means
of reading tapes written in that format.

Graphic Transforms The Graphic Transform converts vector graphic objects in
MIL-STD-28003 CGM (Computer Graphics Metafile) format to and from
ADMGDF format.

Image Transforms The Image Transform converts the MIL-R-28002 RASTER
format to and from the PSEG format.

CALS 05/2 workstation driver The Workstation Driver function provides a set of
menus and procedures that allow the user to access host and
workstation document development tools in a CUA* Presentation
Manager interface. Some of the functions accessible are:

• Host or workstation print
• Library functions
• Editors (text, graphic, and image)
• SGML validator and translator
• Graphic and image conversions
• TextTagger (host or workstation)
• Tape creation

Document Declarations
- Build headers
- Tape create

• Tape read

The CALS OS/2 Workstation Driver Feature is distributed with the
CALS Application feature.

C.13 SGML Translator DCF Edition
The SGML Translator DCF Edition is a program that processes SGML documents
prior to their formatting by the Document Composition Facility. It translates the
SGML data into DCF compatible source data. Once created, this data can be
processed by the Document Composition Facility to create printable information.
The SGML Translator also validates that the data being processed conforms to
the SGML standard (ISO International Standard 8879-1986).

The SGML Translator DCF Edition is made up of four components:

• SGML Validator

• DCF Translator

• Sample SGML Starter Application

• Mathematical Formula Application

Appendix C. Products 191

SGML Validator The SGML Validator is a program that is used to validate SGML
documents after they are created, edited, or received from another
source. It parses the SGML source input according to the ISO
8879/1986 standard and insures the data complies with the standard.
This SGML Validator may be used to process any SGML Document
Type Definition and document developed in accordance with ISO
International Standard 8879 and, as such, is a valuable tool to be
used in developing Document Type Definitions and SGML documents.
There is no output from this component other than messages
indicating the results of the validation.

DCF Translator The DCF Translator converts SGML documents marked up
according to the SGML Reference Concrete Syntax into DCF/GML
syntax and provides for other preprocessing needed to use DCF as
the formatter for SGML documents. It is used to support new SGML
applications and applications migrated to SGML from existing DCF
applications.

Sample SGML Starter Application This component consists of a Document Type
Definition (OTO) and a translation table and a set of processing
routines. These files provide a basic level of functions for simple
applications and provide an example of an SGML application based
on DCF. The DCF starter set maclib is used to process the data
translated by this component.

Mathematical Formula Application A mathematical formula application is
provided with the SGML Translator. This application is not intended to
be used by itself, but can be incorporated into the SGML Starter
Application or a customized application to allow users to mark-up
mathematical formulas according to the standards defined in ISO
Technical Report 9573.

C.14 SGML Text Write OS/2 Edition and SGML Text Write Tools OS/2 Edition
SGML Text Write is two major products, with the first a prerequisite for the
second:

1. Text Write OS/2 Edition

2. SGML Text Write Tools OS/2 Edition

C.14.1 SGML Text Write OS/2 Edition Product Overview
The SGML Text Write OS/2 Edition is a software program that helps writers and
editors create and modify SGML-compliant documents. The SGML Text Write
OS/2 Edition also provides standard word processing functions. SGML Text Write
OS/2 Edition runs in an OS/2 environment under Presentation Manager and
takes advantage of the inherent features in this windowing environment.

SGML Text Write OS/2 Edition:

• Creates CALS-compliant and other SGML Documents that can be formatted
on an IBM host using:

Document Composition Facility IBM SGML Translator DCF Edition,
Publishing Systems ProcessMaster CALS Application feature.

• Provides a WYSIWYG editing interface
• Includes an internal SGML parser that ensures documents are fully ISO 8879

(SGML) compliant by validating the markup.

192 Print and View Data Streams

• Provides formatted and unformatted views of the document.
The formatted view gives the writer a good idea of what the document
will look like when it is printed.
The unformatted view allows the writer to see the text and the markup
(elements or tags).

These views and the parser help ensure that the document will be fully
compliant.

• Includes the CALS Document Type Definition and Document Type Definition
according to ISO Technical Report 9573, as well as Document Type
Definitions for DCF GML Starter Set and DCF SampleDoc applications as
examples for publications departments to create their own non-CALS
Document Type Definitions.

• Editor will support SGML features.
• Includes spell-checking.
• A graphic may be referenced in an SGML document and viewed in a

separate window with an appropriate graphic editor.

C.14.2 SGML Text Write Tools OS/2 Edition Product Overview
SGML Text Write Tools OS/2 Edition is a software program that helps users:

• Create new Document Type Definitions

• Modify existing ones

• Write screen formatting in support of a particular Document Type Definition.

SGML Text Write Tools OS/2 Edition will run in an OS/2 environment under
Presentation Manager and will exploit the inherent features in the windowing
environment. The product enables the user to:

• Modify the parameters associated with formatting of the Document Type
Definition components for a local display and printing. These parameters
include font, point size, color, indentation, generated text, and automatic
numbering,

• Create and/or modify an application that is similar in content to an existing
application.

SGML Text Write Tools OS/2 Edition requires SGML Text Write OS/2 Edition to be
installed on the workstation as a prerequisite.

C.15 IBM Enterprise Printing Overview
This section contains redundant information. Particularly, this section introduces
again, in a short form, the products described in enterprise-wide printing.

For more detailed information on the different products, refer to documents
referenced in Appendix E, "Bibliography" on page 229.

C.15.1 Products Provided for Enterprise Printing
• IBM 3900 Advanced Function Printer

• Advanced Function Image and Graphics Feature

• IBM LaserPrinter 4028 Model NS1

• PSF/MVS, PSF/VM, and PSF/VSE Version 2

• IBM AFP Core Interchange Fonts

Appendix C. Products 193

• Document Composition Facility (DCF) Release 4

• Overlay Generation Language/370 and Page Printer Formatting Aid/370

• IBM SAA PrintManager/400 in OS/400 Release 3

• IBM SAA PrintManager for MVS and VM

• Further hardware and software

Highlights IBM's Advanced Function Printing system provides:

• Support for a wide range of IBM printers, including desktop,
high-speed, cutsheet and fanfold printers

• Local and remote attachment

• Fast, efficient handling of image and graphics

• Support for printer°*resident bar code piocessing

• Fonts that allow data to be printed and displayed with consistency
across environments

• Flexible electronic form overlays

• Automated data security, integrity, and auditability

• An architected platform for easily integrating new printers and
printing function

• An open, published architecture that is part of SAA

• Application independence from specific printer characteristics or
attachments.

Relationship to system/390 The Advanced Function printers along with currently
supported page printers, are supported on both System/370 and the
System/390 processors.

C.15.2 Description

The Advanced Function Printing software products are supported in
their intended operating environments by the current levels of the
respective operating systems.

IBM Advanced Function Printing (AFP) and SAA IBM Systems Application
Architecture* (SAA) is the framework for developing consistent
applications across offerings of the major IBM computing
environments. The architectural element of SAA Common
Communication Support (CCS) for the creation of compound
documents (documents that contain text, image and graphics) is
Mixed Object Document Content Architecture for Presentation
MO:DCA-P). The AFP data stream (AFPDS) was published in
September 1989, as the SAA compliant print data stream for
applications. MO:DCA-P is supported as a subset of the AFP data
stream. System programs convert the AFP data stream into the SAA
Intelligent Printer Data Stream (IPDS) for the targeted printer.

194 Print and View Data Streams

Also, the IBM SAA PrintManager product, available for MVS, VM, and
provided as part of the operating system of OS/400, provides an SAA
interface for enterprise printing providing consistency, management,
and portability of print applications.

IBM Advanced Function Printing Products

The heart of the system is the Print Services Facility (PSF), which
converts AFPDS or line data applications into the IPDS printer stream.
Differences between most printer characteristics and carrier
protocols, such as channels and telecommunication lines, are
handled automatically by PSF.

PSF also provides system management functions such as automatic
resource management, spool management for error recovery,
checkpoint restart and workload balancing, message routing, and
print job accounting.

Please refer also to Chapter 12, "Print and View within the Different
Environments" on page 77 for a more complete overview of the
printer driver in the different environments.

In the OS/400 environment, a Print Services Facility-like function is
integrated into the base operating system.

The IBM SAA PrintManager allows programmers to select and
validate printers and print options from within an application program
in a consistent way in the MVS, VM and OS/400 environments without
the use of system specific commands.

A set of core interchange fonts, including two typographic families
and a family of fixed-space fonts, enhance document interchange
between displays and printers in the OS/2 environment and printers
attached to S/370* systems. The IBM enterprise print products support
a family of 14 cutsheet and fanfold IBM printers in a range of speeds
from approximately 3 to 229 impressions per minute (ipm).

C.15.3 AFP Printers, Printer Features, and Attachments
IBM 3900 Advanced Function Printer The IBM 3900 Advanced Function Printer is

a 229 ipm continuous forms page printer. It is based on the same
control unit as the 3825, 3827, and 3835, and is a fully compatible
member of the AFP printer family.

IBM 3825, 3827, 3835 and 3900 AFIG Feature The Advanced Function Image and
Graphics feature allows processing of compressed image and vector
graphics orders on the 3825, 3827, 3835 and 3900 Page Printers.
Applications that produce the IBM SAA Image Object Content
Architecture (IOCA) or Graphic Object Content Architecture (GOCA)
formats may now be printed on a high-speed system printer.

IBM Laserprinter 4028 The IBM LaserPrinter 4028 is a cutsheet, simplex laser
printer with print speeds of up to 10 ipm and attaches to the 3270
family of controllers and adapters. It is based on the same print
engine as the IBM 4019 LaserPrinter with 300 picture element (PEL)
addressability.

Print Services Facilities PSF/MVS and PSF/VM
These versions provide common print support in MVS and VM
environments for enabling print applications on the System/370 SAA
platform.

Version 1 supports most of the current available AFP printers. In
addition Version 2 supports the printer 4028 and provides improved
ways to support printing in comparison to version 1.

Appendix C. Products 195

Version 2 of PSF provides a simplified packaging method which
incorporates the key printer attachment features into the PSF base
product.

Version 2 of PSF in the System/370 environments supports the
following printers and printer features:

• 3900 Advanced Function Printer
• Advanced Function Image and Graphics feature
• IBM LaserPrinter 4028
• IBM 4224 and 4234 workstation printers
• Printer-based bar code processing

Please refer also to Chapter 12, "Print and View within the Different
Environments" on page 77 for a more complete overview of the
printer driver in the different environments.

PSFNSE Version 2 PSF/VSE Version 2 supports:

• 3900 Advanced Function Printer
• 3812 and 3816 Printers
• Remote PrintManager for the IBM 3820, 3825, 3827 and 3835

Printers
• Conditional processing for line data applications, like that in

PSF/MVS and PSF/VM
• Compressed image

PSF/VSE Version 2 also provides support for POWER JCL commands,
job restart capability, and a sample utility for transferring print
resources from an MVS or VM system to VSE.

New IBM AFP Core Interchange Fonts New IBM AFP Core Interchange fonts are
available with Version 2 of PSF/MVS, PSF/VM and PSF/VSE. These
fonts will provide consistent printing across AFP platforms and
printing of OS/2 Presentation Manager based applications on host
attached printers. Availability of display and printer fonts with the
same typeface and metrics enables Presentation Manager
applications to provide WYSIWYG (what you see is what you get)
capability on printers.

The Core Interchange fonts include three general Latin language type
families:

Times New Roman
Helvetica
Courier

These fonts match in typeface and metrics those available in the OS/2
environment for display on the PS/2. They also include non-Latin
language fonts.

C.15.4 Print Application Development Aids

C.15.4.1 Overlay Generation Language/370 and Page Printer
Formatting Aid/370
IBM's host-based batch products for creating print formatting resources, Overlay
Generation Language (OGL) and Page Printer Formatting Aid (PPFA), have been
replaced by new cross system programs that provide enhanced functions in all
supported System/370 environments: MVS, VM and VSE.

196 Print and View Data Streams

Please refer also to C.7, "Page Printer Formatting Aid/370" on page 187 for a
more complete overview of the tools provided to generate print resources.

C.15.4.2 IBM SAA PrintManager
IBM SAA PrintManager for MVS and VM implements the PrintManager interface
allowing application output to be placed on system spool for printing in a
consistent manner. It provides a Print Request Facility (PRF) for directing output
to any printer in the enterprise, and enables automatic printing of PS/2
application output on host-attached printers, via the IBM SAA Connection
Services/MVS and VM.

Application programs that are written to the IBM SAA PrintManager interface
and use the PrintManager print descriptors can use a common set of print
options from within an application program. Print files may then be sent to the
system spool in a simplified, consistent manner. These SAA-compliant
applications may be moved between VM, MVS, and OS/400 environments with
little or no modification. Users may submit jobs for printing on any printer,
including AFP printers. Logical printer names are used for selecting and
validating print options before placing a print job on the system spool, reducing
the possibility of print errors.

C.15.4.3 IBM SAA PrintManager/400
IBM SAA PrintManager/400 is the AS/400 implementation of the PrintManager
interface, the print element of the SAA CPI. Applications developed using
PrintManager/400 in the OS/400 environment (or PrintManager in MVS or VM)
may be moved to any supported environment without changing the way the
application selects printers and print options, or places print data on the system
spool.

C.15.5 Integration with Applications and Application Environments

C.15.5.1 Document Composition Facility (DCF)
DCF provides document formatting function for IBM host-based publishing.
Release 4 functions include:

• Language improvements, including hyphenation and index sort support for
six additional languages (Portuguese, Swedish, Finnish, Icelandic, Norwegian
and Danish); and algorithmic hyphenation for all 15 DCF languages

• Shading for boxes, areas, and tables for AFP and Postscript devices

• The ability to produce separation masters for multiple color printing and
multi-part forms

• Support for including page overlays with variable origin positions (floating
overlays)

• Page segment handling enhancements, including compressed image in page
segments, an ABSOLUTE parameter on the .SI control word, and adding the
library name in error messages

• Logical device support for the new IBM LaserPrinter 4028 300 dpi printer

There are now online HELP screens for messages and enhancements to revision
codes.

DCF includes the optional SCRIPT Mathematical Formula Formatter feature for
supporting documentation for science and engineering applications.

Appendix C. Products 197

C.15.5.2 LOTUS 1-2-3/M
LOTUS 1-2-3/M is available as a host-based component of a 1-2-3 based
Enterprise Spreadsheet System which supports mainframe line and
all-points-addressable (APA) printers. Lotus 1-2-3/M produces AFPDS files for
APA printing in addition to files with ANSI line printer controls and files without
printer controls.

C.15.5.3 WordPerfect/370
WordPerfect available on VM/SP/XA (CMS Version 4 Release 12 or higher)
operating system, supports AFP by generating the AFPDS data stream.
WordPerfect has indicated intent to provide similar support for TSO/Eon the
MVS operating system.

C.15.5.4 IBM Publishing Systems BookMaster
Publishing Systems BookMaster, IBM's host-based publishing solution, provides
a wide range of services for creating, formatting, and managing documents,
including text, image, and graphics. BookMaster output is based upon the DCF
text formatter.

C.15.5.5 IBM BookManager
The IBM BookManager solution is an SAA application that allows the provision
of softcopy documentation to users anywhere in the enterprise, from a centrally
managed online library. IBM product documentation may be customized or
combined with customer documentation to provide printed or online manuals.

C.15.5.6 IBM GDDM
GDDM provides support for AFP applications. GDDM and its associated
programs may be used for creating business graphics and images for printing
under AFP as documents or page segments.

When using GDDM with IBM BookMaster, and publishing functions in general,
ensure that current levels of PTF are always applied; the publishing image and
graphics world is fast changing.

C.15.5.7 IMS/ESA V.3. R.2.
IMS/ESA* includes support that allows IMS applications to send print output to
the JES2 spool via an IMS Spool API. This capability, similar to that provided for
CICS applications in CICS/MVS, allows IMS applications to take full advantage of
AFP program and printer capabilities.

C.16 IBM SAA PrintManager
IBM SAA PrintManager provides common access to printing, including Advanced
Function Printing (AFP) across the supported Systems Application Architecture
(SAA) environments: VM, MVS, and AS/400

Through the use of the PrintManager Interface and the application programming
interface (API), a common set of print options from within an application program
can be employed.

Print files can then be sent to the system spool in a simplified, consistent
manner. These applications can be moved between SAA platforms with little or
no modification. Additional ease of use and function are provided by the
PrintManager Print Request Facility (PRF).

198 Print and View Data Streams

The Print Request Facility provides a user with a consistent way to submit print
jobs. The PRF provides both a command interface and a set of interactive
menus, which are ISPF based. These menus can be customized to meet the
needs of an enterprise.

Printing concept The sequence of printing is (please refer to the following figure):

1. An end user selects a printer by its printer descriptor name.

2. The end user is allowed to override predefined print options or
specify additional options.

3. PrintManager put the job on the system spool, from which a
printer driver can select it for printing.

• When printing using PrintManager in distributed systems, a
communication program sends the job to the spool of the
receiving system and printing can then occur.

Appendix C. Products 199

• .. Print
Descriptor

Application
Program

Print
* Batch Data
* Interactive +-+ PrintManager File
* Print

Manager
PRF

I I
~ AFP

Resource

Print Data
Print Controls , ,

Spool I-+ Printer ~g Program Driver

T 1
Spool

Figure 35. SAA PrintManager Model. This figure shows an overview of the general
concepts of printing using SAA PrintManager.

C.17 Advanced Function Image and Graphics Feature and Decompression
Performance Enhancement Feature

The Advanced Function Image and Graphics Feature supports the printing
process by decompressing images and by preparing graphical data for printing
in the printer.

This feature is available for the following printers:

• IBM 3825

200 Print and View Data Streams

• IBM 3827

• IBM 3835

• IBM 3900

In addition, other channel attached printers can have the Decompression
Performance Enhancement (DPE) feature.

Description of the AFIG feature The AFIG feature provides several functions. It
improves IM1 image performance intensively. It supports printer
microcode image decompression of Image Object Content
Architecture (IOCA) data streams that were compressed by industry
standard compression routines:

• CCITT Group 3 and 4

• Modified Modified Read (MMR)

• Adaptive Bilevel Image Compression (ABIC)

IBM Advanced Function Image and Graphics support is able to
correct the resolution of an input image to match the printer's 240 pel
resolution and thereby provide input resolution independence for
scanned input. Image scaling is supported to expand or contract
images in the printer. Scale to fit, center and trim, and position and
trim are some of the additional image mapping functions supported in
the printer. Images can be clipped in the printer as well as rotated 90,
180 or 270 degrees.

Graphics Object Content Architecture (GOCA) graphics commands
are supported for execution by the printer control unit.

Description of the OPE feature The DPE feature supports printer hardware image
decompression of Image Object Content Architecture (IOCA) data
streams that were compressed using standard compression routines:

• CCITT Group 3 and 4

• Modified Modified Read (MMR)

The DPE capability improves again the decompression performance
offered with the AFIG feature.
The AFIG feature is a prerequisite for the DPE feature.

C.18 Publishing Systems BookMaster
• BookMaster provides a rich set of tags for the creation and layout of

documents that can be composed and delivered via printed output or for
online viewing using BookManager.

• The user can specify the character set for the specific language he or she
requires using Country Extended Code Pages.

• BookMaster incorporates functions for the definition and creation of
separation masters for multi-color printing.

Business Solutions

• BookMaster, DCF, and the BookManager BUILD and READ family
of products provide a host-based solution for professional and
enterprise publishing. BookMaster helps generate printed output
and online softcopy books that can be displayed and viewed on

Appendix C. Products 201

host terminals as well as IBM Personal System/2s and personal
computers under several operating systems.

• BookMaster can be used with the IBM Publishing Systems
ProcessMaster (VM and MVS Edition) products. In conjunction
with the other Master Series and BookManager products,
ProcessMaster provides facilities for source file management,
transformation of data formats, and document preview prior to
printing.

C.19 IBM Publishing Systems TextTagger
IBM Publishing Systems TextTagger provides a way for data generated on
PC-based word processors to be integrated into BookMaster or SGML data
bases. This provides a pathway for PC generated text to be incorporated in
BookMaster or SGML documents or BookManager books.

The programmability of IBM Publishing Systems TextTagger provides a way to
create custom tagging applications that convert data from PC formats to host
formats.

Productivity of authors using word processors is enhanced by providing a tool
that can minimize the amount of work required to convert documents from:

• ASCII printer files
• Plain text files (both ASCII and EBCDIC)
• PDA (Processed Document Architecture) files
• Revisable-Form Text Document Content Architecture (RFTDCA) files
• Word Perfect 5.0 and 5.1 files
• LIST1403 files

to formats such as:

• BookMaster
• CALS
• SGML Starter Set

This allows professional writers to access data generated from other sources
without having to re-key and re-tag the data.

C.20 Publishing Systems BrowseMaster
BrowseMaster assists departments in electronically publishing documents by
importing and converting graphical illustrations, image information,
Computer-Aided Drafting (CAD) plot information, and then previewing formatted
data before sending it to a supported printer.

BrowseMaster offers several import and conversion facilities.

CALS user's can convert the CALS Computer Graphics Metafile (CGM) subset
into ADMGDF format for viewing and cropping. CGM can also be produced from
ADMGDF. CALS-conforming image information CCITT G4 compression can be
converted into page segments for CALS publications.

Other bilevel image formats can be converted back and forth from the CALS
format, page segment, Image Object Content Architecture (IOCA), and others.

202 Print and View Data Streams

Likewise, CAD information, California Computers Products Incorporated
(CALCOMP**), Graphics Language (GL), and ADMGDF) can be converted into
page segments for output. These files can also be converted to ADMGDF first
(for viewing and cropping) before conversion to page segment.

Note: BrowseMaster is a subset of Graphical Display and Query Facility (GDQF).
A customer could start with BrowseMaster and as additional function is
needed, migrate to the GDQF Base (5688-169) product.

C.21 Graphical Display and Query Facility
With GDQF, publishing departments can electronically combine graphical
illustrations with text, preview formatted data before sending it to print, and
convert data to formats used in publications. GDQF offers a set of utilities to
quickly and easily convert several data types for inclusion in documentation.
Computer-Aided Acquisition and Logistics Support (CALS) users can view, edit,
and convert image information into CCITT G4 (CALS image format) or printer
graphics formats for CALS publications.

• Text Text in multiple type sizes and type styles.

• Vector graphics data bar and pie charts, line art, engineering drawings, and
flow diagrams.

• Image data scanned or faxed data.

• Raster image data scanned data that is stored in the system as a series of
bit maps or byte maps (black and white or shades of gray).

Office productivity is improved by providing the ability to send drawings to
non-engineers for review. Executives can view data, monitor changes, annotate,
and return data to the originator. Communication between engineering and
office is enhanced by providing office personnel access to graphical data.
Graphics can be faxed, edited, and stored in the data repository. Graphics can
also be attached to electronic mail and stored in the office database. GDQF also
connects to the IBM Professional Office System (PROFS*), providing information
access. Marketing departments can use GDQF by accessing drawings for sales
information. Sales trends can be effectively analyzed by creating business
graphics with the Interactive Chart Utility available under GDQF. Business
graphics can also be converted to formats used for publishing technical
documents.

Since GDQF is a very powerful tool in converting from one data type to another,
please refer also to 14.1, "Format Conversions" on page 125 and 14.2, "Image
Conversion under GDQF" on page 127.

C.22 Image Handling Facility
The focus of Image Handling Facility, Version 2 is the preparation of pictures
(images) to be included in documents. It supports the interactive manipulation of
images in a manner similar to the photographic reproduction process. Images
can be line art (drawings) or continuous tone pictures (photographs). They may
be monochrome (black/white) as well as color.

Highlights

• Rotate and shear through any angle

• Gray level image display

Appendix C. Products 203

• Crop, invert, and requantify gray level images

• Color conversion for gray level images

• TIFF support

• CCITT Group 4 import without header

• Postscript output

• Multi-line text input (GDDM Vector Symbol Set or 4250 Fonts)

• Interactive 4250 Font selection

• Compression/Decompression enhancement

• Support of variable image widths

C.23 Graphical Data Display Manager (GDDM)
The IBM Graphic Data Display Manager (GDDM) is the base for many graphic
applications in different IBM environments.

C.23.1 Products Included:
• GDDM/VM
• GDDM/VMXA
• GDDM/MVS
• GDDM/VSE
• GDDM-PGF (Presentation Graphics Facility)
• GDDM Interactive Map Definition
• GDDM-IVU (Image View Utility)
• GDDM-REXX
• GDDM-GKS (Graphical Kernel System)
• GDDM-CSPF (Central Slide and Plot Facility)
• GDDM-OS/2 Link
• GDDM-PCLK

The Graphical Data Display Manager (GDDM) Series consists of the licensed
programs listed above. GDDM is IBM's primary device support and host
graphics program, supporting graphics and images on displays, 3270-PC family,
5080 Graphics System, 3117 and 3118 Scanners, and printers.

Application programs call GDDM routines to do full-screen alphanumerics or
images, or to create business charts. Applications may also use graphic input
and display to perform functions with information such as cartographic data that
is meaningful only when a pictorial format is used.

The interactive chart utility (ICU) of GDDM-PGF allows users to create and
customize business charts and graphs without the need to write application
programs.

All products under GDDM are briefly described below.

GDDMNM, GDDMNMXA, GDDM/MVS, and GDDMNSE These programs provide
a set of user-callable subroutines that provide graphic and image
functions and management of alphanumeric fields for terminal display
stations, printers, and plotters.

204 Print and View Data Streams

GDDM generates the data necessary to make up the display/printer
picture, manages the complex data stream required for transmission,
and minimizes the data-stream lengths through compression.

GDDM subroutines provide:

• Screen format control

• Alphameric display and input

• Graphics construction and display (lines, arcs, text)

• Control of attributes
(color, line type, line width, symbols, shading patterns)

• Control of graphic input

• Control of display partitions

• Display and printing control

• Printing and viewing of composite document files containing
formatted text, graphics, and images

Image Symbol Editor GDDM also contains the image symbol editor (ISE) utility,
which permits the user to interactively define, edit, and save sets of
images.
ISE can create programmed symbol sets that can be saved by the
utility and later loaded by GDDM or another program that provides
the symbol set load capability. ISE can also create patterns, markers,
and larger image symbols that can be used by GDDM applications.

GDDM-PGF PGF contains a comprehensive set of high-level presentation
graphics and charting callable routines oriented toward business
graphics. They provide support of the following functions:

• Chart types:
Bar charts (both vertical and horizontal)
Tower charts
Histograms
Line graphs
Scatter plots
Pie charts
Surface charts
Venn diagrams
Polar charts
Table charts
Graphics-text-only charts

• Functions that can be specified:
Position and size of the chart
Headings
Axes
Lines and grids
Key symbols to identify chart components
Attributes (line types, marker symbols, color shading patterns,
and symbol sets)
Ten selectable type styles
Degree of curve smoothing
Chart annotation

GDDM-PGF also includes two utilities:

Appendix C. Products 205

• The interactive chart utility (ICU) enables a user either to create
business graphs and charts without application programming or
to call the utility from an application program. Assisted by menus
that are presented on the display, the user can:

Enter data
Create and customize the same types of charts and graphs
that can be created by the callable subroutines
Save, for subsequent use, information about the chart format
and data
Print charts

• The vector symbol editor provides the user with the ability to
construct vector symbol sets for use by GDDM. Symbols have the
following characteristics:

They are defined by a series of lines or curves drawn from
point to point in a defined space.
They can be used by calls to GDDM from an application
program or from the interactive chart utility.
They can be scaled to desired size, sheared, colored, and
drawn at an angle/direction by calls to GDDM.

GDDM Interactive Map Definition GDDM Interactive Map Definition enables
interactive definition of alphanumeric screen and printer layouts
known as maps. The maps can be used in conjunction with GDDM
application programs and can contain a graphics field (but not an
image field).

GDDM Image View Utility GDDM-IVU adds ease of use to the GDDM base image
application programming interface (API) by providing higher-level
processes for handling images. GDDM-IVU can be accessed
interactively by end users or by user-written application programs.
The image processes facilitate user tasks such as:

• Input: Import/scan/load
• Process: Projection definition/image manipulation/viewing
• Output: Export/prinUfile

GDDM-IVU is used for transforming data types. Please refer to 14.1,
"Format Conversions" on page 125 to see where it is of help.

GDDMNMXA GDDM/VMXA offers functions similar to GDDM/VM and in addition
exploits the capabilities of the VM/XA * operating system, in particular,
31-bit addressing and virtual machines larger than 16 megabytes.
GDDM/VM is functionally stabilized at Version 2 Release 2 and is
superseded by GDDM/VMXA for VM/SP Release 6 and VM/IS 6.

GDDM-REXX GDDM-REXX allows almost any GDDM/VM, GDDM/VMXA,
GDDM/MVS, GDDM/VSE, GDDM-PGF, GDDM-IVU, and GDDM-GKS
call to be coded in a REXX-language procedure running under CMS.

GDDM-Graphical Kernel System GDDM-GKS provides a graphics application
programming interface under TSO and CMS that is an alternative to
the GDDM base products. It is an implementation of the International
Graphical Kernel System standard, ISO 7942.

GDDM-Central Slide and Plot Facility GDDM-CSPF is a software package for
post-processing GDDM graphics. Starting with print files created by
GDDM applications such as the interactive chart facility (ICU), it
produces high-quality 35-mm slides and prints, overhead
transparencies (foils), and paper plots.

206 Print and View Data Streams

GDDM-PCLK Users of PC DOS on personal systems can use GDDM-PCLK to run
GDDM graphics application programs in the host under CMS, TSO,
and CICS. A personal system with a graphics display adapter and
3270 terminal emulator can access a set of end user functions similar
to those of a 3192 terminal, including color graphics and
alphanumerics, a mouse, and an attached printer or plotter. GDDM
pictures can be saved in PC files for later processing. PCLKF (PCLK
feature) is required on the GDDM base programs in the host if
GDDM-PCLK is to be used in the personal system.

GDDM-OS/2 Link Users of OS/2 EE Version 1.2 or later can use GDDM-OS/2 Link
to run GDDM applications in the host under CMS, TSO, and CICS.
GDDM-OS/2 Link makes use of the OS/2 Presentation Manager
functions, including windowing, print; plot, and file interchange to PM
Metafile. GDDM-OS/2 Link is for users who want the type of function
of GDDM-PCLK Version 1.1 under OS/2.

C.24 ADMUCIMV
Here is the VM version of this important EXEC. It can be used for several
functions, but not all are fully explained in the help given with the EXEC, but a
brief inspection will show how to select the appropriate values of parameters.
Please refer to the appropriate places and check that the procedure has the
options set correctly for you.

Ensure the correct definitions are set for:

• Device Token

• Document Type

• Data Stream Type

• Image Format

Other values may be specified when calling this procedures, or the default
values taken.

* NAME: ADMUCIMV
*
* FUNCTION: DRIVE MODULE ADMUCDSO TO OUTPUT CHARTS OR GDF
* FOR A COMPOSED PAGE (FAMILY-4) PRINTER
*
* INPUT: CHART_DATA_NAME CHART_FORMAT_NAMEI 'GDF'
*
*
*
*
*
*
&CONTROL ERROR
*

5668-812
(C) COPYRIGHT IBM CORP. 1979,1986
LICENSED MATERIALS - PROPERTY OF IBM

* REQUEST INPUT PARAMETERS IF NOT PRESENT ON ENTRY
*
&IF &INDEX > 0 &GOTO -PARMOK
&SPACE
&BEGTYPE
==>ENTER FILENAME OF CHART DATA (AND FORMAT IF DIFFERENT):
&END
&READ ARGS
&IF &INDEX = 0 &EXIT 4
*
* PROCESS CHART DATA NAME

Appendix C. Products 207

*
*

CHART FORMAT NAME (OPTIONAL)

-PARMOK
&CD = &l
&CF • •
&IF &INDEX = 1 &TYPE *** CHART FORMAT NAME ASSUMED • CHART DATA
NAME.
&IF &INDEX > 1 &CF = &2
*
* ICU DISPLAY OPTION:
* DEFAULT DISPLAY = 6
* IF THE DATA FILE IS GDF THEN DISPLAY = 99
* THIS CAUSES ADMUCDSO TO LOAD THE GDF AND DISPLAY
* DIRECTLY ONTO THE REQUESTED DEVICE.
* THIS IS NOT A CHART DISPLAY OPTION.
*
&DP = 6
&IF &CF = GDF &DP = 99
*
* DEFINE DEVICE TOKEN: (!HG600X} 4250 PRINTER
* (IHG240X) 3800-3/3820 PRINTER
*
&OT = IMG600X
"
" DSOPEN OPTION GROUP 5

" DEFINE DATA STREAM TYPE: (0) DOCUMENT (PRIMARY D/STREAM)
"
&OS = 0
" " DSOPEN OPTION GROUP 6
* =================···=
" DEFINE SPILL FILE USAGE: (0) KEEP INTERNAL DATA IN A SPILL FILE
* (1) KEEP INTERNAL DATA IN HAIN STORAGE
*
&SP = 0
" * DSOPEN OPTION GROUP 7
* ··=====···=·=========
* DEFINE THE NUMBER OF SWATHES THAT HAKE UP THE COMPLETE IMAGE
*
&N "' 8
*
" DSOPEN OPTION GROUP 8
* ·====================
" DEFINE IMAGE WIDTH
" DEPTH
" UNITS: (0) TENTHS OF AN INCH
" (1) MILLIMETERS
"
&W " 60
&D " 40
&U = 0

"
" DSOPEN OPTION GROUP 9
* ==============······=
* DEFINE IMAGE FORMAT:
"
"
"
*
&FO • 1

"

(0) UNFORMATTED (BIT ARRAY)
(1) FORMATTED D/STREAM TO CDPF/PSF REQUIREMENTS:

(CDPF IS THE 4250 DEVICE DRIVER)
(PSF IS THE 3800-3/3820 DEVICE DRIVER)

* DSOPEN NAMELIST PARAMETERS
* =··=·=================····
* DEFINE OUTPUT IMAGE FILE NAME
* FILE-TYPE
* FILE:HODE
*
&F = &CD
&T • *
&M = Al
*
* PRINTOUT OF ALL VARIABLES FOR A VISUAL CHECK
*

208 Print and View Data Streams

/

&SPACE
&TYPE • CHART DATA NAME = &CD
&TYPE CHART FORMAT NAME = &CF
&TYPE •••• DEVICE TOKEN= &OT
&IF &OS = 0 &IF &FD = 1 &TYPE .DATA STREAM TYPE = DOCUMENT
&IF &OS = 1 &IF &FD = 1 &TYPE .DATA STREAM TYPE = PAGE
SEGMENT
&IF &SP = 0 &TYPE .SPILL FILE USAGE = REQUIRED
&IF &SP= 1 &TYPE .SPILL FILE USAGE= NOT REQUIRED
&TYPE NUMBER OF SWATHES = &N
&TYPE • • • • • IMAGE WIDTH = &W
&TYPE IMAGE DEPTH = &D
&IF &U = 0 &TYPE .IMAGE SIZE UNITS= TENTHS OF AN INCH
&IF &U = 1 &TYPE .IMAGE SIZE UNITS= MILLIMETERS
&IF &FD= 0 &TYPE •.•. IMAGE FORMAT= BIT ARRAY
&IF &FD= 1 &IF &OT= IMG600X &TYPE ••.• IMAGE FORMAT= CDPF
D/STREAM
&IF &FD= 1 &IF &OT= IMG240X &TYPE .•.. IMAGE FORMAT= PSF
O/STREAM
&TYPE • OUTPUT FILENAME = &F
&TYPE • OUTPUT FILETYPE = &T
&TYPE • OUTPUT FILEMODE = &M
*
* GO/QUIT DECISION
*
&SPACE
&TYPE ==> ENTER GO OR QUIT:
&READ VARS &REPLY
&IF .&REPLY NE .GO &EXIT 100
*
* PARAMETERS AT ADMUCDSO ENTRY:
*
* CHARTDATA CHARTFORM CHARTDISP DSOPEN-PARAMETERS
*
* CHARTDISP IS THE DISPLAY PARAMETER FOR CSSICU.
*
* THE DEVICE-ID IS OMITTED FROM DSOPEN-PARAMETERS. THE
* PROCLIST AND NAMELIST ARE WRITTEN IN BRACKETS SO THAT THE
* PROCOPT-COUNT AND NAMELIST COUNT ARE DEDUCED BY ADMUCDSO
*
* PARAMETERS AT ADMUCDSO DSOPEN CALL TO GDDM:
*
* FAMILY DEVICE-TOKEN (PROCOPT-LIST) (NAMELIST)
*
ADMUCDSO &CD &CF &DP 4 &OT (5 &OS 6 &SP 7 &N 8 &W &D &U 9 &FO)(&F &T &M)
*
&EXIT &RC

C.25 BookManager Family Overview
Why BookManager? Information is a vital asset, and much of that information is

contained in the manuals, publications, proposals, and other
structured documents typically published in paper, hard copy, form.
This information is often voluminous, complex, and needs frequent
updating. Libraries of these documents require extensive storage
space and manual management systems. Finding the information
needed to perform required procedures, answer customer inquiries,
or complete an analysis can be time consuming and error prone.

What is BookManager? BookManager's softcopy application enabling tools
provide an efficient means to put information online and to use it with
improved productivity. Information that can also be used to produce
printed documents is converted to an online, or softcopy form that can
be viewed, searched, annotated, copied, and printed at end users'
workstations in a number of key IBM systems environments.

BookManager consists of a group of programs available on the
mainframe and on workstations:

Appendix C. Products 209

Highlights

• BookManager READ (VM, MVS)
• BookManager BUILD (VM, MVS)
• BookManager Read/DOS
• BookManager READ/2

• Helps organizations manage published information by enabling
computerized online delivery of information traditionally provided
in hard copy

• Enables enterprise and cross-enterprise documentation
applications by providing:

A common online information format

BookManager programs to provide softcopy functions across
piatforms

• Enables IBM to ship softcopy versions of IBM product manuals to
customers and meet their requirements for electronic distribution
and storage

• Allows companies using IBM DCF and Master Series products or
SGML to move from hard-copy to softcopy publishing using
existing source files and without significant special effort

• Helps end users find information faster and handle larger libraries
by providing new information retrieval techniques

• Improves end user productivity by enabling online annotation,
copying and printing of information retrieved

Note: When moving files between host and workstation, remember to use binary
file transfer, and when uploading to the host, to specify record format F and
record length 4096.

RECEIVE filename.BOO filename BOOK
SEND filename.BOO filename BOOK (RECFM F LRECL 4096

C.26 Publishing Systems Postscript Interpreter for AFP
Publishing Systems Postscript Interpreter transforms Postscript files into AFPDS
format for printing on the AFP printer family.

This capability provides data interchange between host and workstation-based
publishing systems and allows the use of IBM printers and networks for
documents created on Postscript language-based publishing systems.

The Postscript Interpreter for AFP processes files with PS (Postscript), EPS
(Encapsulated Postscript), and LISTPS filetypes to create files that users can
print on several IBM printers. The type of output the Interpreter creates depends
on the release of the program.

This program is available under MVS and VM. If it is installed under VM, just
enter the command PS370.

Highlights

210 Print and View Data Streams

• Transformation of Postscript files for printing on IBM AFP printers.
Convert either to page segment (PSEG38xx) or to a document
(LIST38xx)

• Interchange between host and workstation-based publishing
systems

• Allows use of AFP networks for printing Postscript documents

• Provides means to install type faces

• Provides means to build a 3820 font from Postscript fonts

C.27 Ventura Publisher

Table 14 (Page 1

Code

<I>

<M>

<S>

<A>

<V>

<U>

<O>

<=>

<Pn>

<N>

<R>

<$!text>

<$Ftext>

Ventura Publisher is a widely used desk-top publishing program.

It is notable in that it stores text in a humanly readable form with tags at the
beginning of document elements, which though essentially format-related (they
are effectively macro names which define specific formatting) can in many
circumstances be treated as if they were intent based markup similar to that
defined in GML and SGML systems; Ventura Publisher, and programs like it, can
be used with a little ingenuity as a bridge between the desk-top world and that of
GML.

Ventura tags are largely defined by the user, and formatting values associated
with them. For example, we have seen @PARA = as a paragraph tag, and @BULL =

for a bulleted item in a list. It is not a long step to change these to :p. and :Ii.

Ventura Publisher does also have direct formatting controls; but again these are
clearly distinguished, and can often be simply converted. For example, as long
as the creator of a document has been reasonably consistent, and has used
simple controls, the highlighting in a document may consist simply of (Bold)
and <BI> (Bold Italic) format controls. (These controls are automatically turned off
at the end of a paragraph or with a <D> control.) Again, it doesn't take a
complex filter to change these to :hpl., :hp2., and their associated end tags.

C.27.1.1 Formatting Codes

of 2). Some Ventura Publisher Formatting Codes

Meaning

Bold type

Italic type

Medium weight type

Small type

Superscript

Subscript

Underline

Overscore

Double underline

Change font size to point size n

Space where line break not allowed

Newline

"text" is a non-printing comment

"texet" is placed in a footnote referenced from this position

Appendix C. Products 211

Table 14 (Page 2 of 2). Some Ventura Publisher Formatting Codes

Code Meaning

<$n/m> Prints fraction n over m

<$n over m> Prints fraction n over m

C.28 IBM lnterleaf Publisher
The IBM lnterleaf Publisher program provides the user with functions to create,
edit and manage documents containing textual, graphical, and image data.

• It provides a fully integrated desktop publishing environment. The user is
able to perform text editing, graphics editing and image editing within a
uniform set of operating procedures including keyboard commands and
pop-up and pull-down menus.

• Provides native Postscript to a Postscript printer or to an output data file.
• Provides plain ASCII output from the text components of IBM lnterleaf

Publisher documents.
• Supports incorporation of the following textual and graphical data formats

within the limitations of the IBM lnterleaf Publisher:
ASCII text
IBM RFT DCA
Microsoft Word RTF format
Multi-Mate
WordPerfect files in IBM RFT DCA format
IBM 3117/3118/3119 scanner image data stream (IMDS)
(bi-level or gray-scale).
Tagged image format files (TIFF) (bi-level or gray-scale, uncompressed
or compressed).
Encapsulated Postscript files
Hewlett-Packard Graphics Language (HP-GL) files
Other complementary data formats

• Provides text editing functions
• Provides graphics functions
• Free hand drawing
• Provides image functions
• Capability to share documents and fonts with other users attached to a

common network file server.

C.29 IBM lmagePlus Workstation Program Family
IBM Image Plus Workstation Program Family is part of the IBM SAA Image Plus
Folder Application Facility MVS/ESA with IBM SAA lmagePlus Object Distribution
Manager MVS/ESA, and the IBM SAA lmagePlus Workfolder Application
Facility/400 environments.

IBM has designed the lmagePlus Workstation Program Family based on the
following:

• IBM lmagePlus Workstation Program upgradability gives the customer a
consistent upward migration path as workstation technology evolves.

• Use of standard architectures provides a consistent, standardized
environment within which system growth may take place.

212 Print and View Data Streams

/

\ -

IBM Object Content Architectures:

- MO:DCA-P (Mixed Object: Document Content Architecture -
Presentation) - used as an envelope to contain the document to
handle multi-page image documents.

- PTOCA (Presentation Text Object Content Architecture) - used to
describe a page of coded data.

- IOCA (Image Object Content Architecture) - used to describe a page
of image data.

Image Data Compression: IBM Modified Modified Read (MMR);
Consultative Committee on International Telephone and Telegraph
(CCITT) Group 4; Adaptive Bi-level Image Compression (ABIC) bi-level
compression techniques; Joint Photographic Expert Group (JPEG) color
compression.

• Common User Access (SAA/CUA) compliance provides the IBM SAA
lmagePlus Workstation Program/2 user with a familiar workstation
environment, one consistent throughout all SAA-compliant systems.

• Common Communications Support (SAA/CCS) compliance provides the IBM
SAA lmagePlus Workstation Program/2 user with a consistent
communications environment, enabling distributed processing to be
performed among SAA-compliant systems, with minimal user intervention.
As consistent communications between IBM systems continues to evolve
through SAA, this standard ensures the user a framework within which his
image system may grow, without concern for inter-system compatibility.

• SNA Type LU 6.2 Command and Printer/Scanner Interfaces provide the user
with a consistent means of adding image to existing or new applications and
attaching a wide range of scanners and printers to the workstation. These
interfaces for IBM SAA lmagePlus Workstation Program/2 Version 1 will be
published by IBM,

The IBM Image Plus Workstation Program Family consists of the DOS-based IBM
PS/2 lmagePlus Workstation Program Version 1 and IBM lmagePlus Workstation
Program/DOS Versions 2.1 and 2.2, and the OS/2-based IBM SAA lmagePlus
Workstation Program/2 Version 1.

Highlights

• High-speed batch scanning with auto indexing may improve
productivity by providing capture and indexing capabilities
significantly faster than earlier manual approaches.

• National Language Support (NLS) allows international users to
support image processing applications in non-English-speaking
environments.

• OS/2 capabilities such as Presentation Manager(TM),
Communications Manager and multi-tasking, form the basis of a
powerful, multi-function, OS/2-based image-processing
workstation.

The following functions in the OS/2-based IBM SAA lmagePlus
Workstation Program/2 Version 1, can provide practical solutions for
new and existing business applications:

• Color and Grayscale support for a variety of paper and
photographic applications such as personnel or patient-care
records.

Appendix C. Products 213

• Open Interfaces that allow users and business partners the
flexibility to integrate their own applications with image and to
attach their own scanners and printers.

• A workstation Import/Export to Disk File feature that gives users
the opportunity to exchange information (images, coded data, etc.)
among applications such as Office and lmagePlus.

The following features can help users expand their image
applications:

• lmagePlus Workstation Program upgradability, migratability and
co-existence

• Use of standard IBM image architectures

• System Application Architecture/Common User Access
(SAA/CUA) compliance and System Application
Architecture/Common Communications Support (SAA/CCS)
compliance

• Published interfaces for IBM SAA lmagePlus Workstation
Program/2 Version 1

C.30 IBM Workstation AFP View Program
AFP Workbench for Windows provides a significant step towards the integration
of applications and data streams on the host and workstation platforms, and
extends the usability of the AFP architecture by allowing viewing of the AFPDS
data stream on workstations, and by extending the print capability of AFPDS to
all workstation printers, not just those supported by and defined to PSF/2.

AFP Workbench for Windows provides the user with the capability of viewing any
AFPDS data stream on a workstation using OS/2 or DOS/Windows.

The user can see a good approximation to the final form of the document, limited
only by the capabilities of the display screen on the workstation being used.

AFP Workbench for Windows also provides local print capability by using
available device drivers. Users can therefore now print on devices not
supported by or not defined to PSF/2.

With appropriate device drivers, AFP Workbench for Windows can support local
printing on printers using the following data streams:

• AFPDS

• Personal Printer Data Stream

• Postscript

• Printer Control Language

The AFP Workbench for Windows product includes the IBMAFP printer driver to
support local printing on AFP devices.

By connecting the printer driver to file instead of a printer, these data streams
can be used for further processing as required.

214 Print and View Data Streams

\

"-

C.31 Ami Pro

Highlights

• Workstation view of any AFPDS output.

• Local print of AFPDS on any workstation printer.

• Capability of printing only selected pages of an AFPDS document.

• Crop and copy portions of AFPDS pages.

• Capability to convert any AFPDS output to an overlay.

• Support of AFPDS output devices by the provision of the IBMAFP
device driver.

• Capability of conversion of AFPDS output to other data streams by
connection of available device drivers to file.

Ami Pro is a product of the Lotus Development Corporation, and is used
extensively on Personal Computers as a high function word processor.

Ami Pro is also notable for the number of products it can import word processing
file from, and export them to.

Ami Pro's import and export capabilities include:

Table 15 (Page 1 of 2). Ami Pro Import/Export

File Type Import Export

Advance Write y y

ASCII y y

dBase y N

DCA/FFT y y

DCA/RFT y y

DIF** y N

DisplayWrite 4 y y

Enable y N

Excel y N

Exec MemoMaker y y

Manuscript y y

Microsoft Word y y

Multi mate y y

Navy DIF y y

Office Writer y y

Paradox** y N

Peach Text y y

Professional Write** y y

Rich Text Format (RTF) y y

Samna Word** y y

SmartWare y N

Appendix C. Products 215

Table 15 (Page 2 of 2). Ami Pro Import/Export

File Type Import Export

Symphony•• y N

Windows Write y y

Word for Windows y y

WordPerfect y y

WordStar*"' y y

WordStar 2000 y y

Note:

y Yes
N No

Note that not all characteristics will be preserved in all import or export movements. Where it is critical that
a particular function is preserved, check It first.

C.32 Corel Draw
Corel Draw is a product of the Corel Systems Corporation, and is used
extensively on Personal Computers to create high quality graphics images.

The Corel Draw package includes a program called Corel Trace, which allows
bitmaps to be converted to vector graphics. This can be a very useful facility, to
allow easy modification of graphics, to save storage, and to allow transforms that
could not be otherwise performed.

Corel Draw is also notable for the number of file types it can import graphics and
images from, and export graphics and images to.

Corel Draw's import and export cap~bilities include:

Table 16. Corel Draw Import/Export

File Type Import Export

Computer Graphics Metafile(CGM) y y

Autocad DXF Interchange file(DXF**) p p

Encapsulated PostScript(EPS) p y

Digital Research GEM format(GEM*"') y y

.. Graphics Language .. (plot file)(GL) y y

Apple PICT file(PCT) y y

Paintbrush PCX file(PCX) y M

Picture Interchange File(PIF) y y

Tagged Image Format(TIF) y M

Note:

y Yes
N No
M Monochrome only
p Only partial conversion

216 Print and View Data Streams

C.33 Freelance
Freelance is a product of the Lotus Development Corporation, and is used
extensively on Personal Computers to create good quality business graphics and
charts.

Freelance can export the widely used CGM standard of graphics file, which
allows it to share its output across the workstation and mainframe world. When
moving files into the mainframe world, a special profile for conversion to GDF
exists in GDDM, CGMFP2 for Freelance version 2, and CGMFP3 for Freelance
version 3. Use of these profiles will ensure the most faithful conversion of
Freelance colors into the mainframe environment.

Otherwise, Freelance CGM files can be treated in exactly the same way as Corel
Draw CGM files (see 13.1, "Getting Pictures into IBM BookManager from Corel
Draw" on page 103). Freelance CGM files can be imported into Corel Draw if
they have to be converted into a format that Freelance doesn't support.

C.34 OS/2 Image Suppor1
The OS/2 Image Support program enables users to create color, greyscale, and
bilevel images using a scanner or video adapter.

Functions provided for working with images:

• Modify
• Print
• Change
• Format
• Display
• Convert

From the OS/2 clipboard images can be:

• Stored
• Retrieved

OS/2 Image Support:

• Uses the Presentation Manager environment of OS/2 Standard Edition
Version 1.2 or OS/2 Extended Edition Version 1.2

• Scanner support via IBM 3119 PageScanner, IBM 3118 Scanner and
complementary scanners.

• Prints on all-points-addressable printers supported by OS/2 PM and on
complementary printers.

• File formats supported are:
IOCA
TIFF
MO:DCA-P
RFT:DCA
PIC
GIF
CGM
and others

• OS/2 Image Support is accessed from:
Main OS/2 OfficeVision

- Window via an image icon

Appendix C. Products 217

C.35 MARKUP

- Being invoked automatically
• Via OfficeVision/2 communication links, images may be stored and retrieved

from:
OS/400
MVS host
VM host
Local area network (LAN) server

• Creates images that can be used by other programs, for example,
OfficeVision/2
Storyboard Plus
OS/2 Office editor
lmagePlus Workstation/2
Facsimile Support/400*
GDQF
iBivi CAD
Corel Draw
Microsoft Windows 3.0 Paintbrush**,
lnterleaf Publishing
Image-capable DisplayWrite products

The MARKUP program contains an entry-assist program that helps you enter
GML document elements. Tags and editing commands can be selected from a
menu or specially-designated keys can be used to enter the tags and editing
commands. In either case, MARKUP provides interactive feedback to help you
structure your document and enter GML elements correctly.

The MARKUP program also contains a separate customization program called
TAILOR. This program determines how GML tags work with the text on the
MARKUP screen and allows you to customize keyboard and screen features.

The tags customized with TAILOR must also be recognized by DCF to format and
print on the host.

MARKUP'S two programs combine to give you the flexibility to create different
types of documents supported by your host processor.
For example, you can create and customize:

• Reports
• Memos
• Manuals
• Books
• Parts Listings
• Directories

MARKUP provides context-sensitive, online help for information about program
functions. MARKUP also supports locally attached IBM printers allowing you to
print draft copies of documents as they appear on the MARKUP screen.

MARKUP is designed as a productivity aid for business professionals who are
conversant with GML but who are not proficient GML users.

218 Print and View Data Streams

C.36 IBM PS/2 Image Adapter/A
Available Versions:

Highlights

C.37 DisplayWrite/370

C.37.1 Description

• The IBM PS/2 Image Adapter/ A 1 MB

• The IBM PS/2 Image Adapter/ A 3MB

• The IBM PS/2 Image Adapter/ A 3MB 6091

• Supports high speed compression/decompression algorithms that
contribute to rapid response times for printing, scanning, or
displaying image information.

• Supports maximum resolutions of 1600 x 1200 monochrome and
1280 x 1024 color.

• Provides upgrade options to enable business growth and protect
the customers investment in base components.

• Supports up to 256 colors from a palette of 16 million and up to
256 grayscales, for a broad range of image and technical
professional applications.

• Provides compatibility with VGA and 8514/A modes.

• Supports all IBM PS/2 displays plus 8506/8 and 6091-019.

• Has high performance processor and built-in hardware assist
features.

• Features 16 Bit data transfer path to PS/2 Micro Channel bus.

DisplayWrite/370 is a System /370 host text processing application package
which includes functions for document creation and revision, interactive
document formatting, printing, and linguistic support.

Highlights

• Full screen interactive text editor/formatter
• Complete context dependent help and tutorial
• Command lists to perform special tasks
• Basic text entry and editing capabilities
• Advanced text editing capabilities
• Support of RFT:DCA and FFT:DCA document interchange
• National Language Support
• Multi-language linguistic aids

C.37.2 Compatibility with Document Composition Facility (DCF)
DisplayWrite/370 provides an interactive formatting function, whereby the
"finished" view of the document is directly presented to the user. Formatting
functions which require two-pass processing, such as table of contents, indexing
or footnote references will not be supported. These functions may be handled by
Document Composition Facility.

Appendix C. Products 219

Under VM/SP, DisplayWrite/370 enables the user to convert most of the RFT:DCA
controls into SCRIPT controls. This conversion route has to be handled with
care. SCRIPT controls are format specific, and the preferred conversion is to
device and application independent GML.

C.37.3 Document Interchange
DisplayWrite/370 documents can be interchanged in either revisable form
(RFT:DCA) or final form (FFT:DCA) by all products supporting the Document
Content Architecture.

• DisplayWrite/370 makes no distinction between the document origination and
document types. Whether it is created by DisplayWrite/370 or it is received
from other systems or products using the Document Content Architecture
standard set of controls, the same mode of operation is provided.

• Any RFT:DCA defined structure fields, structures, single- or multi-byte
controls, and/or the parameter setting in these controls, if not supported by
DisplayWrite/370, will be kept intact in the data stream, so as to preserve the
data stream integrity as required by the Document Content Architecture.

C.37.4 Printer Support
Printer support is depending on the facilities provided by the program that
invokes DisplayWrite/370. Under MVS/SP or VSE/SP, DisplayWrite/370 can
create the following data stream:

• SNA Character String (SCS)

• IBM 5210 (using SCS in CICS environment)

Under VM/SP, DisplayWrite/370 can create the following data streams:

• FFT:DCA

• 1403DS

• 3800 Model 1

In the VM environment, there is no direct printer support. It is expected that the
file created via the transform process will be printed on an appropriate printer as
supported by the operating system spool service.

By transforming the DisplayWrite/370 document to DCF, it can be printed on a
high-quality printer.

C.38 OfficeVision/MVS
IBM OfficeVision/MVS (OV/MVS) is the MVS member of the IBM OfficeVision
Family of office systems applications. OfficeVision/MVS provides a set of office
functions for non-programmable terminals and IBM Disk-Operating (DOS)
programmable workstations. OfficeVision/MVS Release 2.0 enhances Release 1.0
by adding an Enterprise Address Book, an Entry Level Enrollment Option,
toleration of Double Byte Character Set (DBCS) information, and usability,
performance, and installation enhancements.

Document writing feature enhancements Provides the ability, via the Application
Connectivity Feature (ACF), to transfer TSO Graphic Data files (GDF)
and store these files in the ADMF data set of GDDM, or to incorporate
them through DW/370 into an RFT document. This capability requires

220 Print and View Data Streams

_

the Document Writing Feature and DW/370 (DW/370 Version 2 or
DW/370 Image and Graphics Feature).

C.39 IBM SAA OfficeVision/400 Version 2
IBM SAA OfficeVision/400 Version 2 provides a rich set of office functions for
document preparation, filing and retrieval of information, communication of
information and time management.

Documents can be prepared using the OfficeVision/400 Editor or one of the
DisplayWrite Family of editors if using the PC Support/400 licensed program. In
addition, PC Support/400 Version 2 Release 1 Modification 1 provides a tool to
allow the use of a non-IBM editor as "editor of choice". This tool is contained in
a PC Support Tools folder that is shipped with PC Support/400 and does not
receive full support. Refer to Programming Announcement ZP91-0245 dated April
22, 1991 for more information regarding the PC Support Tools folder.

Proofreading aids are provided and use the optional IBM Language
Dictionaries/400 licensed program and/or user-created permanent dictionaries.

Information can be filed into a document library. The library can contain
documents, PC files, images and graphics. A user can retrieve information from
the library by specifying a number of search parameters or document
descriptors. Using Version 2 Release 1 Modification 1, users will be able to
specify a text search that will result in full-text retrieval of RFT:DCA and FFT:DCA
documents which have been indexed for this type of search.

Information can be exchanged between OfficeVision/400 users and with users in
other environments in the OfficeVision Family. This information includes
documents, PC files and notes. Notes and documents may also be exchanged
through TCP/IP and through X.400. Exchange with X.400 is available in V2 R1.1.
Exchange with OV/VM, TCP/IP and X.400 will require additional software.

C.40 IBM Presentation Manager Office/2
PM0/2 functions are detailed as follows:

Access to incoming electronic mail. An overview of the in-basket is transferred
to OS/2 and presented through a window, where each element can be
selected for further processing through a separate window. Pull-down
menus control further processing of the elements, for example, reply
to incoming mail, printing and deletion. The user has the option to
make notes, documents and files available for further processing on
the host or workstation.

Out-going electronic mail. Through a simple icon interface notes, documents,
and files can be sent from the OS/2 workstation. All types of
documents and files from the workstation can be mailed via the host
system's electronic mail functions. Notes can be created and mailed
individually or in conjunction with a document or file.

Address book on OS/2. The option of using a set of address books to keep track
of personal correspondence can be used when creating outgoing
mail.

Appendix C. Products 221

Access to files on the host system. Windows are created showing documents
and files on the host system via an easy-to-use icon interface. As with
the in-basket, the individual elements can be selected for further
processing in a separate window. Using another icon OS/2 files and
documents are transferred to the host file cabinet.

Access to host system functions. Other functions on the host system are
accessed via 3270 emulation which can also be activated via the icon
interface.

222 Print and View Data Streams

C.41 Application Area Summary

Office Vision ImagePlus Production Publishing

generates: Text Text Text
Image Image Image
Graphics Graphics

output data stream RFT:DCA MO:DCA-P GML
SGML

normal tasks: Edit Display Edit
Display Print Format
Print Retrieve Display
Distribute Print

Distribute

Software for: Edit Retrieve Edit
DW/370 ImagePlus Text Editor

Format
DCF

Display Display Display
BrowseMaster ImagePlus BrowseMaster

Print Print Print
PSF PSF PSF
GDDM PSF/2 PSF/2

GDDM
Distribute Distribute

SNA SNA
File transfer File transfer

Software overview: OfficeVision/2 LAN MVS/ESA Production publishing
OfficeVisonfMVS Folder Appl. Facility BookMaster
OfficeVison/VM Object Distr. Mgr. BrowseMaster
OfficeVison/400 AS/400 ProcessMaster

Workfolder Appl. ProcessMaster CALS
Facility/400 SGML Translator

Workstation TextTagger
Workstation Prog./DOS BookManager
Workstation Prog./2 Professional publising

IBM Interleaf
Publisher - PS/2

Interleaf RS/6000
Personal publishing

Postscript printers
Compl. Software
Postscript
Interpreter for AFP

Figure 36. Application Area Summary. A summary of the major functions and software by application area.

Appendix c. Products 223

/

224 Print and View Data Streams

Appendix D. Products Involved in Printing and Viewing

This appendix contains tables showing IBM products involved in Printing and
Viewing. They have essentially been taken directly from SAA Common
Communications Support Summary, GC31-6801.

D.1 Product and Operating System Tables

D.1.1 BCOCA

D.1.2 CDRA

D.1.3 DIA

The following tables list the products and platforms that implement the Common
Communications Support architectures of SAA. The tables do not specify the
portions of an architecture that a product may implement or indicate how data
may be interchanged among implementing products. For information about
interchange requirements, refer to the appropriate topic in this document.

Each table has the headings MVS, VM, OS/400, OS/2, IMS, and CICS. When
products in one of these operating environments implement an architecture, the
product names are listed. When the operating environment itself implements an
architecture, the operating environment name is shown.

MVS VM OS/400 OSl2 IMS CICS

PSF PSF AFPU& PSF PSF Al Forms
3812-27 3812-27 FormsX& 3812-27 3812-27 PSF
38167 38167 OS/400 38167 38167 3812-27
40287 40287 3812-27 40287 40287 38167
42247 42247 38167 42247 40287
42307 42307 40287 42307 42247
42347 42347 42247 42347 42307

42307 42347
42347

MVS VM OS/400 OSl2 IMS CICS

DB2 SQUDS OS/400 DDCS/2 DB2 DB2
CIM S/400

MVS VM OS/400 0512 IMS CICS

PS/TSO AS/400 Ofc OV/2 DISOSS
OS/400 OV/MVS
OV/400

& Generator - creates data streams.

1 Receiver - interprets and processes data streams.

a Refers to the Record Level Input/Output (RLIO) and Distributed FileManager (DFM) facilities of the File Resource Manager
component of Data Facility Distributed Storage Manager. DFM is source only.

©Copyright IBM Corp. 1993 225

D.1.4 FD:OCA
MVS VM OS/400 OS/2 IMS CICS

DB2 SQUDS CIM S/400 DDCS/2 DB2 DB2
OS/400

D.1.5 FOCA
IPDS, MO:DCA, and RFT:DCA use FOCA defined parameters. Therefore, all
products that implement these architectures also implement FOCA.

D.1.6 GOCA
MVS VM OS/400 OS/2 IMS CICS

DW/3709 DW/3709 AS/400 Ofc DW5/2 GDDM DW/3709
GDDt..1 rnnl1

\,,;;;lllJL.llYI OS/400 """'"''r1n-uyy;;,/4.\... PSF GDDM
CSP CSP OV/400 OS/2 EE 3812-27 CSP
PSF PSF 3812-27 OV/2 38167 PSF

3812-27 3812-27 38167 PSF 38257, 10 3812-27
38167 38167 38257, 10 3812-27 38277, 10 38167

38257, 10 38257, 10 38277, 10 38167 38287 38257, 10

38277, 10 38277, 10 38317, 10 38257, 10 38317, 10 38277, 10

38287 38287 38357, 10 38277, 10 38357, 10 38287
38317, 10 38317, 10 40287 38287 40287 38317, 10

38357, 10 38357, 10 42247 38317, 10 42247 38357, 10

40287 40287 42307 38357, 10 42307 40287
42247 42247 42347 40287 42347 42247
42307 42307 42307
42347 42347 42347

D.1.7 IOCA

D.1.7.1 FS10
MVS VM OS/400 OS/2 IMS CICS

DW/3709 DW/3709 AS/400 Ofc DW5/2 GDDM DISOSS
GDDM GDDM lmagePlus DW5/2C Image Plus DW/3709
IHFN2 IHFN2 OS/400 Image Plus PSF GDDM

lmagePlus IVU OV/400 OS/2 EE 3812-27 lmagePlus
IVU CSP 3812-27 OS/2 IS 38167 IVU

CSP OVNM 38167 PSF 38257, 10 CSP
PSF PROFS 38257, 10 3812-27 38277, 10 PSF

3812-27 PSF 38277, 10 38167 38287 3812-27
38167 3812-27 38317, 10 38257, 10 38317, 10 38167

38257, 10 38167 38357, 10 38277, 10 38357, 10 38257, 10

38277, 10 38257, 10 40287 38287 40287 38277, 10

38287 38277, 10 38317, 10 38287
38317, 10 38287 38357, 10 38317, 10

38357, 10 38317, 10 40287 38357, 10

40287 38357, 10 40287
40287

9 Image and Graphics Feature.

10 With the Advanced Function Image and Graphics (AFIG) feature.

226 Print and View Data Streams

D.1.7 .2 FS11
MVS VM OS/400 OSl2 IMS CICS

lmagePlus Image Plus lmagePlus lmagePlus lmagePlus

D.1.8 IPDS
MVS VM OS/400 OSl2 IMS CICS

GDDMB GDDMB OS/4006 PSFB, 7 GDDMB GDDMB
PSFB PSFB RPM 3812-27 PSFB PSFB

RPMB, 7 RPMB, 7 3812-27 38167 RPM&, 7 RPMB, 7

3812-27 3812-27 38167 38207 3812-27 3812-27
38167 38167 38207 38257 38167 38167
38207 38207 38257 38277 38207 38207
38257 38257 38277 38287 38257 38257
38277 38277 38317 38317 38277 38277
38287 38287 38357 38357 38287 38287
38317 38317 40287 39007 38317 38317
38357 38357 42247 40287 38357 38357
39007 39007 42307 39007 39007
40287 40287 42347 40287 40287
42247 42247 42247 42247
42307 42307 42307 42307
42347 42347 42347 42347

D.1.9 MO:DCA

D.1.9.1 MO:DCA-P IS/1
MVS VM OS/400 OSl2 IMS CICS

lmagePluss PSF7 Image Plus& lmagePluss lmagePluss lmagePluss
PSF7 OS/4007 PSF7 PSF7 PSF7

D.1.9.2 MO:DCA-P IS/2
MVS VM OS/400 OSl2 IMS CICS

lmagePluss, lmagePluss, lmagePluss, lmagePluss, lmagePluss,
7 7 7 7 7

D.1.9.3 MO:DCA-L
MVS VM OS/400 OSl2 IMS CICS

AConnS7
OS/2 EE&, 7

OS/2 157
PSF7

D.1.10 PTOCA

Appendix D. Products Involved in Printing and Viewing 227

MVS VM OS/400 OS/2 IMS CICS

DW/370 DW/370 Image Plus lmagePlus lmagePlus DW/370
lmagePlus PSF OS/400 PSF PSF lmagePlus

PSF 3812-27 3812-27 3812-27 3812-27 PSF
3812-27 38167 38167 38167 38167 3812-27
38167 38207 38207 38207 38207 38167
38207 38257 38257 38257 38257 38207
38257 38277 38277 38277 38277 38257
38277 38287 38317 38287 38287 38277
38287 38317 38357 38317 38317 38287
38317 38357 40287 38357 38357 38317
38357 39007 42247 39007 39007 38357
39007 40287 42307 40287 40287 39007
40287 42247 42347 42247 40287
42247 42307 42307 42247
42307 42347 42347 42307
42347 42347

D.1.11 RFT:DCA
MVS VM OS/400 OS/2 IMS CICS

DW/370 DW/370 AS/400 Ofc DW5/2 DISOSS
PM aster PM aster OV/400 DW5/2C DW/370

OV/2

D.1.12 3270DS
MVS VM OS/400 OS/2 IMS CICS

GDDM CICS OS/40011 OS/2 EE GDDM CICS
TSO/E GDDM IMS GDDM

11 AS/400 supports the 3270 Data Stream from 3174 controllers attached via a remote line or token ring. Conversion to and from
the 5250 data stream is handled internally in the OS/400. The OS/400 can pass a 3270 data stream through to a System/370
computer.

228 Print and View Data Streams

Appendix E. Bibliography

E.1 IBM Publications
The following publications are considered particularly suitable for a more
detailed discussion of the topics covered in this document.

Working with this book we recommend a close look the the Red books
mentioned at the end of this chapter.

E.1.1 Architecture
• Data Stream and Object Architectures: Mixed Object Document Content

Architecture Reference, SC31-68G2
• Data Stream and Object Architectures: Presentation Text Object Content

Architecture Reference, SC31-6803
• Data Stream and Object Architectures: Graphics Object Content Architecture

Reference, SC31-6804
• Data Stream and Object Architectures: Image Object Content Architecture

Reference, SC31-6805
• Advanced Function Printing Data Stream Reference, S544-3202
• Font Object Content Architecture Reference, S544-3285
• Bar Code Object Content Architecture Reference, S544-3766
• Character Data Representation Architecture-Level 1 Reference, SC09-1390
• Formatted Data Object Content Architecture Reference, SC31-6806
• Document Content Architecture: Revisable-Form Text Reference, GC23-0758
• Information Interchange Architecture Concepts, GG24-3503

E.1.2 Publishing Systems ProcessMaster VM Edition
• IBM Publishing Systems ProcessMaster VM Edition General Information,

GC34-5031
• IBM Publishing Systems ProcessMaster VM Edition Administrator's Guide,

SC34-5034
• IBM Publishing Systems ProcessMaster VM Edition User's Guide, SC34-5033
• IBM Publishing Systems ProcessMaster VM Edition Editing, SC34-5035
• IBM Publishing Systems ProcessMaster VM Edition Character Graphics

Editing, SC34-5036
• IBM Publishing Systems ProcessMaster VM Edition Reference Summary,

SC34-5037
• IBM Publishing Systems ProcessMaster VM Edition Critique Guide,

SC34-5139
• IBM Publishing Systems ProcessMaster Workstation Edition User's

Reference, SC34-5050

E.1.3 Publishing Systems ProcessMaster MVS Edition

©Copyright IBM Corp. 1993

• IBM Publishing Systems ProcessMaster MVS Edition Licensed Program
Specifications, GC34-5090

• IBM Publishing Systems ProcessMaster MVS Edition General Information,
GC34-5091

• IBM Publishing Systems ProcessMaster MVS Edition User's Guide,
SC34-5092

229

• IBM Publishing Systems ProcessMaster MVS Edition Administrator's Guide,
SC34-5093

• IBM Publishing Systems ProcessMaster MVS Edition Reference Summary,
SC34-5094

• IBM Publishing Systems ProcessMaster Workstation Edition User's
Reference, SC34-5050

E.1.4 Publishing Systems TextTagger
• IBM Publishing Systems ProcessMaster TextTagger Feature User's Guide

and Reference, SC34-5142
The following publication is shipped with the product and is not available
separately.

• IBM Publishing Systems TextTagger Workstation Edition User's Guide and
Reference

E.1.5 Document Composition Facility
• Document Composition Facility and Document Library Facility General

Information Manual, GH20-9158
• Document Composition Facility: SCRIPT/VS Language Reference, SH35-0070
• Document Composition Facility: Starter Set User's Guide, SH20-9186
• Document Composition Facility: GML Starter Set Reference, SH20-9187
• Document Composition Facility: Messages, SH35-0048
• Document Composition Facility: SCRIPT/VS Text Programmer's Guide,

SH35-0069
• DCF Post Processor Examples, S544-3484

E.1.6 Document Composition Facility - Office Document Feature
• Document Composition Facility: Office Document Feature User's Guide,

G544-3129
• Document Composition Facility: Office Document Feature Reference,

S544-3130

E.1. 7 Publishing Systems BookMaster
• IBM Publishing Systems BookMaster General Information, GC34-5006
• IBM Publishing Systems BookMaster User's Guide, SC34-5009
• IBM Publishing Systems BookMaster Creating Named Styles, SC34-5008

E.1.8 Publishing Systems BrowseMaster
• IBM Publishing Systems BrowseMaster V2 Installing and Using, SH23-0016

E.1.9 Publishing Systems DrawMaster
• IBM Publishing Systems DrawMaster General Information, GC34-5021
• IBM Publishing Systems DrawMaster User's Guide and Reference, SC34-5022
• IBM Publishing Systems DrawMaster Introduction, SC34-5023
• IBM Publishing Systems DrawMaster Quick Reference, SC34-5024

230 Print and View Data Streams

E.1.10 Publishing Systems Postscript Interpreter
• IBM Publishing Systems Postscript Interpreter for Advanced Function

Printing MVS User's Guide, SC34-5112
• IBM Publishing Systems Postscript Interpreter for Advanced Function

Printing VM User's Guide, SC34-5082

E.1.11 BookManager - VM
• BookManager READ/VM and BookManager BUILD/VM General Information,

GC23-0447
• BookManager READ/VM: Getting Started and Command Summary,

SC23-0448
• BookManager READ/VM: Displaying Online Books, SC23-0449
• BookManager READ/VM: Installation and Customization, SC23-0455
• BookManager BUILD/VM: Preparing Online Books, SC23-0450
• BookManager BUILD/VM: Installation and Customization, SC23-0451
• BookManager READ/VM and BookManager BUILD/VM: Directory of

Programming Interfaces, GC23-0453

E.1.12 BookManager - MVS
• BookManager READ/MVS and BookManager BUILD/MVS General

Information, GC38-2032
• BookManager READ/MVS: Getting Started and Command Summary,

SC38-2033
• BookManager READ/MVS: Displaying Online Books, SC38-2034
• BookManager READ/MVS: Installation and Customization, SC38-2035
• BookManager BUILD/MVS: Preparing Online Books, SC38-2036
• BookManager BUILD/MVS: Installation and Customization, SC38-2037

E.1.13 SGML Translator DCF Edition

E.1.14 CALS

• IBM Publishing Systems SGML Translator DCF Edition General Information,
GC34-5071

• IBM Publishing Systems SGML Translator DCF Edition Programming Guide
and Reference, SC34-5072

• IBM Publishing Systems SGML Translator DCF Edition Validating and
Translating an SGML Document, SC34-5074

• IBM Publishing Systems SGML Translator DCF Edition Creating a DTD,
SC34-5075

• IBM Publishing Systems SGML Translator DCF Edition Creating an SGML
Document for DCF Processing, SC34-5076

• IBM Publishing Systems ProcessMaster CALS Application Feature VM User's
Guide, SC34-5150

• IBM Publishing Systems ProcessMaster CALS Application Feature Creating
CALS Documents, SC34-5151

• IBM Publishing Systems CALS Glossary, SC34-5152
• IBM Publishing Systems ProcessMaster CALS Application Feature MVS

User's Guide, SC34-5154

Appendix E. Bibliography 231

E.1.15 SGML TextWrite
The following publications are shipped with the product and are not available
separately.

• SGML TextWrite OS/2 Edition User's Guide and Reference
• SGML TextWrite OS/2 Edition CALS Application User's Guide and Reference
• SGML TextWrite OS/2 Edition General Document Application User's Guide

and Reference
• SGML TextWrite Tools OS/2 Edition User's Guide and Reference
• SGML TextWrite Tools OS/2 Edition Application Worksheet Packet

E.1.16 Image Handling Facility

E.1.17 GDDM

E.1.18 GDQF

• Introducing Image Handling Facility Version 2 Messages, GH12-5278
• Image Handling Facility Version 2 Messages, SH12-5282
• Getting Started with Image Handling Facility Version 2 Tutorial, SH12-5279
• Using Image Handling Facility Version 2, SH12-5280
• Image Handling Facility Version 2 Installation and Administration, SH12-5281

• GDDM General Information GC33-0319
• GDDM Release Guide GC33-0320
• GDDM Library Guide and Master Index GC33-0595
• GDDM Image View Utility SC33-0479
• GDDM-REXX Guide SC33-0478
• GDDM Interactive Map Definition SC33-0338
• GDDM Guide for Users SC33-0327
• GDDM-PGF Interactive Chart Utility SC33-0328
• GDDM Image Symbol Editor SC33-0329
• GDDM-PGF Vector Symbol Editor SC33-0330
• GDDM Typefaces and Shading Patterns, SC33-0554
• GDDM-PCLK Reference Summary SX33-6067
• GDDM-CSPF User's Guide SC33-0552
• GDDM Application Programming Guide SC33-0337
• GDDM Base Programming Reference SC33-0332
• GDDM Base Programming Reference Summary SX33-6053
• GDDM-PGF Programming Reference SC33-0333
• GDDM-PGF Programming Reference Summary SX33-6054
• GDDM-GKS Programming Guide and Reference SC33-0334
• GDDM Installation and System Management for MVS, GC33-0321
• GDDM Installation and System Management for VSE, GC33-0322
• GDDM Installation and System Management for VM, GC33-0323
• GDDM Performance Guide, SC33-0324
• GDDM Messages, SC33-0325
• GDDM Diagnosis and Problem Determination Guide, SC33-0326

• Graphical Display and Query Facility General Information Manual, GH20-6223
• Graphical Display and Query Facility Using GDQF Base Version 2 Release

1.0 (VM), SH52-0252
• Graphical Display and Query Facility Using GDQF Base Version 2 Release

1.0 (MVS), SH52-0253

232 Print and View Data Streams

E.1.19 Image

E.1.20 Office

• IBM lmagePlus Folder Application Facility MVS/ESA Application Program
Interface Version 2 Application Programmers Guide, SC31-7531

• MVS/ESA Folder Application Facility, Programmers Guide Release 2,
SC38-2013

• AS/400 Workfolder Application Facility Application Programming Interfaces,
GC38-3034

• IBM SAA lmagePlus Workfolder Application Facility/400 Programming
Interfaces Version 2 Release 1, SC38-3049

• IBM SAA lmagePlus Workstation Program/2 Programmers Guide, SC09-1300

• AS/400 Office: Application Programming Interface Integration Guide for
Programmers, GG22-9442

• AS/400 Office Application Programming Interface Integration Guide,
GG24-9442

• OS/2 Office Application Integration, SH21-0447
• Programming Interfaces for OfficeVision/MVS, SH21-0531
• OfficeVision/VM Programmers Guide, SH21-0581
• Using CLISTS with DisplayWrite/370, SH12-5196

E.1.21 OS/2 Image Support
• Introducing OS/2 Image Support, GX09-1213
• Installing OS/2 Image Support, SC09-1334
• OS/2 Image Support V1.1, G221-2661

E.1.22 ISO Standards
• International Standard ISO 8879: Information processing--Text and office

systems--Standard Generalized Markup Language (SGML)
• International Draft Standard ISO DIS 10179: Document Style Semantics and

Specification Language (DSSSL)
• International Draft Standard ISO DIS 10180: Standard Page Description

Language (SPDL)
• International Standard ISO 8613: Office Document Architecture (ODA)

E.1.23 ITSO Red Books
• ITSC IBM Architectures, GG24-3503
• ITSC Document Transforms Cookbook, GG24-3530
• ITSC PSF/VSE V2.1, GG24-3638
• ITSC RPM V3 Implementation Guide, GG24-3620
• ITSC Document Processing Guidelines, GG24-3659
• ITSC Distributed Print, GG24-3766
• ITSC Office Systems Primer, GG24-1635
• ITSC Printing in a VM Office Environment: End User's Guide, GG24-3830
• ITSC DW/370 V2 in OV/MVS R2, GG24-3683
• ITSC OV/400 Printing, GG24-3697
• ITSC AS/400 Printing II, GG24-3704
• ITSC FAX Support/400, GG24-3797
• ITSC OS/2 V2.0 Vol 5: Print Subsystem (ITSC), GG24-3775
• ITSC Printing Postscript Language, GG24-3529

Appendix E. Bibliography 233

E.1.24 Other Documentation
• Applications System/400 Advanced Function Printing by Example, SC21-8181
• SAA Common System Programming lnferface: Presentation Reference,

SC26-4359
• IBM Distributed Printing Solution, G511-1725
• IBM Print Services Facility/2, G511-1726
• Page Printer Migration Programming Guide, S544-3228
• Host Font Data Stream Reference, S544-3289
• Intelligent Printer Data Stream Reference, S544-3417

E.2 Workstation Documents
• Microsoft Windows User's Guide, Z85F-1687-00
• Corel Draw User's Guide
• Ami Pro User's Guide
• HP PCL 5 Printer Language Technical Reference Manual, 33459-90903
• Aldus TIFF Developer's Toolkit, Aldus Corporation

234 Print and View Data Streams

Glossary

This glossary includes definitions from the following
sources:

• Definitions reprinted from the American National
Dictionary for Information Processing Systems are
identified by the symbol (A) following the
definition.

• Definitions reprinted from a published section of
the International Organization for
Standardization's Vocabulary-Information
Processing or from a published section of the ISO
Vocabulary-Office Machines are identified by the
symbol (1) following the definition. Because many
ISO definitions are also reproduced in the
American National Dictionary for Information
Processing Systems, ISO definitions may also be
identified by the symbol (A).

• Definitions reprinted from working documents,
draft proposals, or draft international standards of
ISO Technical Committee 97, Subcommittee 1
(Vocabulary) are identified by the symbol (T)

following the definition, indicating that final
agreement has not yet been reached among its
participating members.

• Definitions that are specific to IBM products are
so labeled, for example, "In SNA," or "In VM."

© Copyright IBM Corp. 1993

References

The following cross-references are used in this
glossary:

Contrast with. This refers to a term that has an
opposite or substantively different meaning.

Synonym for. This indicates that the term has the
same meaning as a preferred term, that is also
defined
in this glossary.

Synonymous with. This is a backward reference
from a defined term to all other terms that have the
same meaning.

See. This refers to multiple-word terms that have the
same last word.

See also. This refers to related terms that have a
related, but not synonymous, meaning.

Deprecated term for. This indicates that the term
should not be used. It refers to a preferred term, that
is also defined in this glossary.

235

A

ABIC. Adaptive Bilevel Image Compression

Advanced Function Printing. A set of licensed
programs that use the all-points-addressable concept
to print text and graphics on a printer.

Advanced function printing data stream. The printer
data stream used for printing advanced function
printing data. The AFPDS includes composed text,
page segments, electronic overlays, form definitions,
and fonts that are downloaded from the system.

Advanced printer function. A function of the AS/400
Application Development Tools licensed program that
aiiows a user to design symbois, iogos, speciai
characters, large characters, and forms tailored to a
business or data processing application, and supports
printing of any design on the 5224 or 5225 dot matrix
printer.

Advanced program-to-program communications.
Data communications support that allows programs
on an AS/400 system to communicate with programs
on other systems having compatible communications
support. APPC is the AS/400 method of using the SNA
LU session type 6.2 protocol.

AFIG. Advanced Function Image and Graphics
Feature

AFP. Advanced Function Printing

AFPDS. Advanced Function Printer Data Stream

AFPU. Advanced Function Printing Utilities/400

All points addressable. In computer graphics,
pertaining to the ability to address and display or not
display each picture element (pel) on a display
surface.

Alphanumeric. Pertaining to a character set that
contains letters, digits, and other characters such as
punctuation marks. (A). Synonymous with
alphanumeric.

American National Standards Institute. An
organization for the purpose of establishing voluntary
industry standards.

ANSI. American National Standards Institute
see also American National Standards Institute

APA. All points addressable

APA printers. Devices that are all points
addressable; in other words, devices that print with
picture elements on the printing medium at any valid
location on a sheet of paper.

236 Print and View Data Streams

APF. advanced printer function

APPC. Advanced Program-to-Program
Communications

AS/400 Ofc. AS/400 Office

AS/400. Application System/400

ASCII. American Standard Code for Information
Interchange; standardized format and collating
sequence for internal representation of characters,
used by a number of operating systems including IBM
Operating System/2.

B
Bar code. A code representing characters by sets of
parallel bars of varying thickness and separation that
are read optically by transverse scanning. (I)

BCD1. A subset of the full capabilities of BCOCA

BCOCA. Bar Code Object Content Architecture

BGU. Business Graphics Utilities

Boldface. (1) A heavy-faced type. (2) Printed in
heavy-faced type

Bounded-box format. An organization of character
graphics and information used by advanced-function­
printing programs for printing on printers such as the
IBM 3820 and 3827. Character boxes containing each
character graphic do not require character-positioning
information in the form of untoned pets in the
character boxes. In addition, a single character set
can be used for all combinations of character rotation
and text orientation. Fonts in bounded-box format
usually require less storage than fonts in
unbounded-box format. Contrast with unbounded-box
format.

c
CAD. Computer-aided Design

CADAM. Computer-graphics Augmented Design and
Manufacturing System. CADAM is an interactive
graphics system used for two- or three-dimensional
design and drafting.

CAD/CAM. Computer-aided design/computer-aided
manufacturing.

CAEDS. Computer Aided Engineering Design
Systems. CAEDS is an integrated design system for
solving mechanical design and analysis problems.

CALS. Computer-aided Acquisition and Logistic
Support

/

CATIA. Computer-graphics Aided Three-dimensional
Interactive Application

Camera-ready master. Text and graphics merged on
a page, ready for printing.

CCA. Character Content Architecture

CCITT. International Telegraph and Telephone
Consultative Committee

CCS. Common Communication Support

CCSID. Coded Character Set Identifier

CDPF. Composed Document Printing Facility. An
IBM program product that allows the user to produce
high-quality, high-resolution, "camera ready" master
pages.

CDPDS. Composed Document Printer Data Stream
(GDDM)

CORA. Character Data Representation Architecture

CGM. Computer Graphics Metafile

Character. A symbol used in printing. For example, a
letter of the alphabet, a numeral, a punctuation, or
any other symbol that represents information.

Character set. (1) A finite set of different characters
that is considered complete for some purpose.
(2) The object format data set component that
contains the character graphics and their
descriptions. (3) The source definition that specifies
included character groups and printing properties.

Characters per inch. The number of characters
printed horizontally within an inch across a page.

CL. The set of all commands with which a user
requests system functions (AS/400).

CMY. Cyan, Magenta, Yellow (colors)

Coded font. (1) A font component that associates a
code page and font character set. (2) A font that is
fully described in terms of typeface, point size,
weight, width, and attributes.

Code page. (1) A particular assignment of
hexadecimal identifiers to graphic characters. (2)
(ADVPRINT) A font file that associates code points
and graphic character identifiers.

Code point. A 1-byte code representing one of 256
potential characters.

Composed-text data. Text data and text-control
information that dictates the format, placement, and
appearance of the data to be printed.

Composite document. A document that contains
graphics or images as well as text. See 1.2, "Terms
with Special Meanings" on page 2.

Composition. The act or result of formatting a
document.

Computer-aided design/computer-aided
manufacturing. An application in which devices such
as personal computers can be used to design and
develop products such as circuit boards, machine
hardware, and other mechanical and electrical parts.

Control language. see CL

CPF. Control Program Facility (AS/400)

D

Database. (1) A set of data, part or the whole of
another set of data that consists of at least one file,
and that is sufficient for a given purpose or for a
given data-processing system. (I) (A) (2) A
collection of data fundamental to a system. (A)

Data object. Part of a data stream; see 1.2, "Terms
with Special Meanings" on page 2.

Data Stream. For the purposes of this book, a data
stream is a format definition of data which can be
used to define a composite document. Therefore,
AFPDS and Postscript are data streams; but TIF is not
a data stream because it cannot describe all objects
in a composite document. TIF is therefore defined as
a file format, and TIF files are data objects that can
form part of a composite data stream.

For a full discussion of these points, see 1.2, "Terms
with Special Meanings" on page 2.

DB. database

DCA. Document Content Architecture

DCF. Document Composition Facility.

DFU. Data File Utility (AS/400)

DIA. Document Interchange Architecture

DIF. Display Information Facility

DisplayWrite. An IBM licensed program that provides
word-processing capabilities for a number of printers.

DLF. Document Library Facility, licensed program
which allows the SCRIPTNS formatter to operate in
batch environments and MVS and VSE.

Document. In word processing, a collection of
information that pertains to a particular subject or
related subjects.

Document Composition Facility. An IBM

Glossary 237

licensed program that provides text formatting for a
number of printers.

DOS. Disk Operating System

OPE. Decompression Performance Enhancement
(IBM 3900)

OTO. SGML Document Type Definition

DTP. Desk Top Publishing

Duplex. Usually wrongly used to mean a mode of
copying or printing on both sides of a sheet ("Duplex
Printing"). "Duplex" is properly the process of
formatting a data stream such that pages are
alternately formatted into different layouts to suit
printing on the two faces of a sheet of paper (to keep
larger margins at the bound edge, page numbers out,
etc.).

DVI. Version independant data stream of TEX

OW. DisplayWrite

DW/370. DisplayWrite /370

DWS/2. DisplayWrite 5/2

DW5/2C. DisplayWrite 5/2 Composer

E
EAN. European article number (barcode format)

EBCDIC. Extended Binary Coded Decimal
Interchange Code; standardized format and collating
sequence for internal representation of characters,
used by most IBM host systems.

Editing. the processes associated with creating and
amending the structure or content of documents.

Electronic form. A collection of constant data that is
electronically composed in the host processor and
can be merged electronically with variable data on a
sheet during printing. See preprinted form. See also
overlay.

Enterprise. Within the context of this document, a
business organization which is dispersed and divided
into multiple functional and geographical units.

EPS. Encapsulated Postscript

External formatting. Controls for the placement of
data on the page that are imbedded outside the
actual application program.

238 Print and View Data Streams

F

FD:OCA. Formatted Data Object Content Architecture

FFT. Final Form Text

FFT:DCA. Final Form Text Document Content
Architecture

FLSF. Font Library Services Facility.

FOCA. Font Object Content Architecture

Font. (1) An assortment of characters of a given size
and type style. (2) (SAA) A particular style of type
(for example, Bodini or Times Roman) that contains
definitions of character sets, marker sets, and pattern
sets.

Font character set. A font file that contains the raster
patterns, identifiers, and descriptions of characters.

Font ID. A number that identifies the character style
and size for certain printers.

Font Library Services Facility. An IBM licensed
program used to maintain font libraries.

Font object. A member of a font library.

Form. (1) The paper on which output data is printed
by a line printer or a page printer. (2) A physical
sheet of paper. (3) See electronic form, preprinted
form.

Format. (1) A specified arrangement of such things
as characters, fields, and lines, usually used for
displays, printouts, or files. (2) To arrange such
things as characters, fields, and lines.

Formatting. The process of determining the
appearance of the content of a document on a
presentation medium.

FORMDEF. Form Definition. See also form definition

Form definition. A resource that defines the
characteristics of the form which include overlays to
be used (if any), text suppression, the position of page
data on the form, and the number and modifications
of a page. Contrast with page definition.
A form definition is referenced in the print job an
interpreted by PSF. Form definitions may be created
with PMF, PPFA or complementary software.

Form type. A 10-character identifier, assigned by the
user, that identifies each type of form used for printed
output.

Forms flash. On the 3800 Printing Subsystem, a
means of printing an overlay using a negative plate
projected on a form.

G
GDDM. Graphical Data Display Manager.

Generalized Markup Language. An IBM licensed
program that identifies the parts of a source
document without respect to a particular processing
system.

GDF. A Graphics Data Format file used extensively
within GDDM and GDQF. It contains graphics data in
a device-independent format that can be converted to
a suitable format for several different types of output
devices. The GDF/ADMGDF is defined by the
Graphical Data Display Manager (GDDM).

GDQF. Graphic Display and Query Facility

GGCA. Geometric Graphics Content Content
Architecture

GIF. Graphics Interchange Format

GKS. Graphics Kernel System

GL. Graphics Language.

GML. Generalized Markup Language.

Glyph. A glyph is a graphic shape which is one of the
representations of a character or symbol. A
character code defines a given character, given a
code page. That character has one or more glyphs
which can represent it. A typeface will have a
representation of one of those glyphs.

GOCA. Graphics Object Content Architecture

Graphic character-set ID. A 5-digit registered
identifier used to specify a graphic character set. The
graphic character-set ID is the first part of the
QCHRID system value or the CHRID parameter value.
See also code-page ID.

Graphical Data Display Manager. Is a host-based
product providing graphics manipulation and display
services for applications.

H
HPGL. Hewlett-Packard Graphics Language

HPGL/2. Hewlett-Packard Graphics Language
contains extensions over the original language

HPPCL. Hewlett-Packard Printer Command Language
(PCL3, PCL4, PCL5)

I
IBMGL. IBM Graphics Language

IBM-GL. IBM Graphics Language

ICU. Interactive Chart Utility (GDDM)

IOU. PC/IOU, Image Data Utility

IGES. Initial Graphics Exchange Specification

IHF. Image Handling Facility.

llA. Information Interchange Architecture

Image. (1) Pictorial information that is specified in
terms of the dots (pixels) of which is made up.

Image Handling Facility. An IBM licensed program
that prepares black and white or color images to be
used as page segments in documents.

IMO. Interactive Map Definition

IMDS. image data stream

Impact printer. (1) A device in which printing results
from mechanical impacts. (I) (A) (2) Contrast with
non-impact printer.

Intelligent printer data stream. (1) An
all-points-addressable data stream that allows users
to position text, images, and graphics at any defined
point on a printed page. (2) (Graphics) A
structured-field data stream for managing and
controlling printer processes, allowing both data and
controls to be sent to the printer.

Interchange. the process of providing a person or
device with a document by means of data interchange
or exchange of storage media.

IOCA. Image Object Content Architecture

IS. Interchange Sets (MO:DCA)

ISE. Image Symbol Editor, part of GDDM

ISGL. Industry Standard Graphics Language

ISO. International Organization for Standardization

IVU. Image View Utility (GDDM)

J
JPEG. Joint Photographic Experts Group
(compression algorithm)

Glossary 239

K
Kanji. A character set of symbols used in Japanese
ideographic alphabet.

L
LATEX. Language TEX

Line data. Information that enables a line printer to
print one line at a time. Line data is usually
characterized by carriage control characters and table
reference characters. See composed-text data.

Line printer. A device that prints a line of characters

Lines per inch. The number of characters that can be
printed vertically within an inch.

Logical page. The boundary for determining the
limits of printing on a physical page as determined by
software commands. Contrast with physical page.

Lpi. See lines per inch.

LU6.2. SNA Logical Unit Type 6.2; communications
protocol definition for peer-level communication
between intelligent devices over an SNA network.

LZW. Lempel-Ziv Welch (compression algorithm)

M

Mixed-pitch font. A font that simulates a typographic
font. The characters are in a limited set of pitches; for
example, 10-pitch, 12-pitch, and 15-pitch.

MMR. IBM Modified Modifed Read (De-,
Compression Algorithm)

MO:DCA. Mixed Object Document Content
Architecture

MO:DCA-L. Mixed Object Document Content
Architecture for Library

MO:DCA-P. Mixed Object Document Content
Architecture for Presentation

MO:DCA-R. Mixed Object Document Content
Architecture for Resources

Multiple up. The printing of more than one page on a
single surface of a sheet of paper.

240 Print and View Data Streams

N

Non-impact printer. (1) A device in which printing is
not the result of mechanical impacts; for example,
thermal printers, electrostatic printers, photographic
printers. (I) (A) (2) Contrast with impact printer.

0
OCR. Optical Character Recognition

ODA. Office Document Architecture

Offset stacking. A function that allows the printed
output pages to be offset for easy separation of the

OGL. Overlay Generation Language.

OIS. OS/2 Image Support

Overlay. A collection of predefined data such as
lines, shading, text, boxes, or logos that can be
merged with variable data on a page while printing.
See also electronic form, preprinted form.

Overlay Generation Language. An IBM licensed
program used to create electronic forms.

p

PAGEDEF. Page Definition. See also page definition

Page definition. An object containing a set of
formatting controls for printing logical pages of data.
It includes controls for number of lines per printed
sheet, font selection, print direction, and mapping
individual fields in the data to positions on the printed
sheets. Contrast with form definition.
A page definition is referenced in the print job an
interpreted by PSF. Page definitions may be created
with PMF, PPFA or complementary software.

Page printer. A device that prints one page as a unit.
(I) (A) Contrast with line printer.

Page Printer Formatting Aid. An I BM licensed
program that allows for creation and storage of form
definitions and page definitions-resource objects for
print-job management.

Page segment. An object containing composed text
and images, prepared before formatting and included
during printing.

PC. Personal Computer (also usually includes PS/2)

PCL. Printer Command Language

PCX. Paintbrush PCX File

Pel. A picture element (pixel or pet) is the smallest
element of a displayable or printable surface that can
be independently assigned color and intensity.

POL. Page Description Language

PFD. Print Format Definition (AS/400)

PFU. Print Format Utility (AS/400)

PGF. Presentation Graphics Feature

Phototypesetting. The process of producing high
quality text by means of a photographic process.

Physical page. The side of a sheet of paper that is to
be printed on. Contrast with logical page.

Picture element. An element of a raster pattern
about which a toned area on the photoconductor
might appear. See also raster pattern and pel.

PIF. Picture Interchange File

Pixel. see pel

Plotter. An output unit that presents data in the form
of a two-dimensional graphic representation. (I) (A)

PMF. Print Management Facility.

Post-processing option. A hardware device that
attaches to the output side of a printer; for example,
an envelope stuffer, binder, or stapler.

PPDS. Personal Printer Data stream

PPFA. Page Printer Formatting Aid.

Preprinted form. A sheet of paper containing a
preprinted design of constant data. Variable data can
be merged on such a form. See electronic form.

Pre-processing option. A hardware device that
attaches to the input side of a printer; for example, a
paper roll feed or multiple input bins.

Presentation. the operation of rendering a document
in a form perceptible to a human.

PRF. Print Request Facility, directs output to any
printer. Is part of the SAA PrintManager.

Print Descriptor. Print Descriptor is collection of data
describing the characteristics of the page, PSF
resources, GDDM tokens and the routing information
for SAA PrintManager.

Print Services Access Facility. A menu-driven, IBM
licensed program that allows the user to select print
parameters for page printers controlled by PSF.

Print Services Facility. An IBM licensed program that
produces printer commands from the data sent to it.

Printer driver. A program that passes commands and
resources with a data stream from the system spool
to tell the printer how to print the page.

Printer Management Facility. An IBM licensed
program that creates fonts, page segments, page
definitions, and form definitions.

PS/2. Personal System/2 (See PC)

PSAF. Print Services Access Facility.

PSEG. Page Segment (rasterized file from GDDM)

PSF. Print Services Facility.

PSF/2. Print Services Facility under OS/2

PTOCA. Presentation-Text Object Content
Architecture

Q

R
Raster graphics. (1) Computer graphics in which a
display image is composed of an array of picture
elements (pels) arranged in rows and columns. (1)
(A) (2) Contrast with vector graphics.

Remote PrintManager. A personal computer product
that allows selected font data, overlays, and page
segments that are present in advanced function
printing data streams to be available to a locally
attached IBM page printer.

Resource library. (1) A collection of related files.
(2) A place to store resources, such as form
definitions, page definitions, page segments, fonts,
and overlays.

RFT. Revisable Form Text

RFT:DCA. Revisable Form Text Document Content
Architecture

RFTXT. Revisable Form Text Documents

RGB. Red, Green, Blue (colors)

RGCA. Raster Graphics Content Content
Architecture

RSU. Resource Service Utility (AS/400)

RTF. Rich Text Format

Rule. A solid or patterned line of any weight,
extending horizontally or vertically across a column
or row.

Glossary 241

s
SAA. System Application Architecture

Scan line. (1) One horizontal sweep of the laser
beam. (2) A single row of pels.

SCRIPT. A formatting program used by Document
Composition Facility for processing text.

SCS. SNA Character Stream

SGML. Standard Generalized Markup Language

Simplex. Pertaining to formatting for print on one
face of the paper. Cf. duplex.

SMFF. Script Mathematical Formula Formatter

SPDL. Standard Page Description Language

Systems Application Architecture. Is a set of defined
rules, guidelines, interfaces and protocols for
application and system design, intended to facilitate
cross-system consistency and application portability.

T
Text. A graphic representation of information on an
output medium. Text consists of alphanumeric
characters and symbols arranged in paragraphs,
tables, columns, or other shapes.

Text-formatting program. A program that determines
the manner in which data will be placed on a page.

TIF. TIF stands for Tagged Image Format. On some
systems it appears as TIFF, standing for Tagged
Image Format File. The format is more fully described
in section 10.3, "Tagged Image File Format (TIF)" on
page 63.

Typeset. (1) To arrange the type on a page for
printing. (2) Pertaining to material that has been set
in type.

Typographic font. A typeface originally designed for
typesetting systems. Contrast with mixed-pitch font,
uniformly spaced font.

u
Unbounded-box format. An organization of character
graphics and information used by advanced-function­
printing programs for printing on the IBM 3800 Models
3, 6, and 8. Character boxes containing each
character graphic do require character-positioning
information in the form of untoned pels in the

242 Print and View Data Streams

character boxes. In addition, a separate character set
is required for each combination of character rotation
and text orientation. Fonts in unbounded-box format
usually require more storage than fonts in
bounded-box format. Contrast with bounded-box
format.

Uniformly spaced font. A font in which the characters
have the same character increment. Contrast with
typographic spaced font.

UPC. Universal Product Code (barcode format)

v
Vector. !n computer graphics, a directed !ine
segment.

Vector graphics. (1) Computer graphics in which
display images are generated from display commands
and coordinate data. (I) (A) (2) Contrast with raster
graphics.

w
Word processing. The entry, modification, formatting,
display, and printing of text on personal computers,
microprocessors, and stand-alone word processors.

Work station. (1) A configuration of input/output
equipment at which an operator works. (T) (2) A
terminal or microcomputer, usually one that is
connected to a mainframe or to a network, at which a
user can perform applications.

WVSIWVG. What You See Is What You Get

x
XICS. XEROX Integrated Composition System

y

z
Zoom. The progressive scaling of an entire display
image in order to give the visual impression of
movement of all or part of a display group toward or
away from an observer. (I) (A)

'"'

Index

Numerics
3270 Data Stream 32
3270DS 33
3825 195
3827 195
3835 195
3900 195
4028 195

A
ABIC 51, 201
Access to data based upon lmagePlus 186
Access to data based upon Office 184
Access to data based upon Publishing 185
ACF 220
ACRI 34
Adaptive Bilevel Image Compression 201
Additional Features within AFP Printers 200
Additional Information 229
Additional Information about Publications 229
ADMGDF 60
ADMUCIMV 207
Advanced Function Image and Graphics Feature 200
Advanced Function Printing (AFP) on
workstations 89

Advanced Function Printing Data Stream 86
Advanced Function Printing under MVS 79
Advanced Function Printing under VM 79
Advanced Function Printing under VSE 79
Advanced Function Printing Utilities/400 87
Advantages of using document languages 67
AFIG 195
AFIG feature 200
AFP Font Resources - AS/400 57
AFP Fonts/400 88
AFP on AS/400 83

Support for High-Speed Page Printers 83
Support for Medium-Speed Page Printers 83

AFP on work stations 91
AFP print of a scanned image saved as an IOCA 108
AFP print of a scanned photo saved as a TIF 115
AFP Printers 195
AFP Viewer 91
AFP Workbench for Windows 214
AFPDS 39, 86, 91
AFPDS Driver under DOS/WINDOWS 100

AS/400 100
AFPDS Driver under OS/2 100
AFPDS driver under OS/2 and DOS/Windows 183
AFPDSLINE 86
AFPSPLIT 170
AFPU/400 87

Cl Copyright IBM Corp. 1993

AIX 75
Ami Pro 147, 215
Ami Pro output after everything 144
Ami Pro output before upload 142
ANSI 4
Application area summary 223
Architectural components 9

MODCA 9
ODA 9
RFTDCA. 9
SGML 9

Architectures 61
AS/400 AFP Model 85
ASCII 36, 91
Attachments 195
Attributes: 25

B
Bar Code 18
Bar Code Object Content Architecture 49, 54
Bar codes (BC1). 32
Basic PSF Functions 78
BC1 32
BCD1 18, 32, 55
BCOCA 32, 49, 54
Bibliography 229
Bigger print volumes from workstation

applications 123
Bilevel Images 176
BookManager 198, 209
BookMaster 67, 198, 201
BrowseMaster 202

c
CALS 72, 190
CCA 59
CCITT 50, 63, 201
ccs 29, 33,49,54
CCSID 34, 35
CDPDS 39
CORA 29, 33
CGM 59
Character 56
Character Data Representation Architecture 29, 33
Character Set 56
CHRID 56
CIE L*a*b* Images 178
CMYK Images 177
Code Page 56, 57
Code Point 56
Coded Font 57
Color pictures 103

243

Combine image cells in PSEG 169
Combining Desk-top Publishing with GML 107
Common Communications Support 29, 49
Compatibility with DCF 219
Compatibility with Document Composition

Facility 219
Compression types 63
Computer Graphics Metafile 59
Content Architectures 14, 25
content portions 13, 25
control codes 36
Conversion Ami Pro to GML 147
Conversion GML to Ami Pro 147
convert 128
Convert HPGL to PSEG 130
Convert IOCA to LIST38xx 125
Convert IOCA to OVL Y38xx 125
Convert IOCA to Postscript 125
Convert IOCA to PSEG38xx 125
Convert LIST38xx to IOCA 125
Convert LIST38xx to OVL Y38xx 126
Convert LIST38xx to Postscript 125
Convert LIST38xx to PSEG38xx 125
Convert OVLY38xx to IOCA 127
Convert OVL Y38xx to Postscript 127

Image Conversion under GDQF 127
Convert OVLY38xx to PSEG38xx 127
Convert Postscript to IOCA 127
Convert Postscript to LIST38xx 126
Convert Postscript to OVLY38xx 127
Convert Postscript to PSEG38xx 127
Convert PSEG38xx to IOCA 126
Convert PSEG38xx to LIST38xx 126
Convert PSEG38xx to OVLY38xx 126
Convert PSEG38xx to Postscript 126
Convert TIF to PSEG 130
Converting existing text 70
Corel Draw 216
Corel Trace 216

D
Data Streams 29, 101, 173
Data streams and hardware connection of

printers 101
DC1 32
DCF 71, 189, 197
DCF Post Processor 131
Decompression Performance Enhancement

feature 201
Defined Standard Architectures 21
Defined Standard Object Content Architectures 59
Definitions 61
Delta row compression 46
Description 219
Device Dependent Data Streams 29
Device Independent Data Streams 39, 41
DisplayWrite/370 219

244 Print and View Data Streams

Document 14
Document Architectures 12
Document Component 14
Document Composition Facility 189, 197
Document Content Architecture 15
Document Element 14
Document Interchange 220
Document Languages 11, 65
Document Languages and formatting languages 65
Document Profile 26
Document structure 24
Double-byte coded font 57
OPE feature 201
DR/240 51
DR/2VO 18, 31
DR/3V1 18, 52

DSSL 21
DSSSL 22
DVI 74

E
EAN 54
EBASE 33
EBCDIC 56
Encapsulated Postscript 41
end unit 19
Enterprise Printing Overview 193
EPS 210
escape sequences 46 I
EXECs 147 ~
Extended Binary Coded Decimal Interchange

Code 56

F
FDOCA 49, 53
FFT:DCA 14
FFTDCA 14
final form 24
FOCA 49, 52
Font Character Set 57
Font Object Content Architecture 49, 52
Font overview 55
Font Pruning 82
Font Resources 57
Fonts on AS/400 57

*FNTRSC 57
Format Conversions 125
Format unit 19
format-based 70
Formatted Data Object Content Architecture 49, 53
Formatted form 23
Formatted processable form 24
Formatting languages 65
FORMDEF 78, 187
Freelance 217

·~ /

FS10 18, 31, 50
FS11 50
FS20 19, 51
functions of PSF 78

G
GDDM 39, 198, 204
GDF 220
GOOF 203
General Concept of ODA 23
Generalized Markup Language 72
Generate Overlays using the DCF Post

Processor 131
Generic Structures 26
Generic-document 26
Getting Formulas into Mainframe Publishing 109
Getting pictures into IBM BookManager from Corel

Draw 103
GGCA 59
GIF 62
GKS 59
glossary 235
Glyph 57
GML 12, 147
GML Starter Set 71
GML Starter Set and IBM BookMaster 71
GMLSS 67
GO AFPU 84
GOCA 31, 49, 51, 195, 201
GR1 32
graphic character 56
Graphic characters 52
Graphical Data Display Manager 204
Graphical Display and Query Facility 203
Graphics 18, 173
Graphics (GR1) 32
Graphics Interchange Format 62
Graphics Object Content Architecture 49, 51
Grayscale Images 176

H
Hardware connection of printers 101
Hewlett-Packard Graphics Language 61
Host GDF pictures on the workstation 118
Host output printed and viewed on workstation 116
Host Print File Receiver 90
How PSF handles Object Content Architectures 78
HP PCL4 96
HPGL 61
HPGL/2 61

IBM AFP Core Interchange Fonts 196
IBM Architectures 17
IBM BookMaster 71

IBM data stream integration with Postscript 42
IBM Database Publisher/DOS for the AS/400 Version

2 89
IBM lnterleaf Publisher 212
IBM Print Services Facility/2 Version 1.10 98
IBM products and Postscript 42
IHF 203
llA 9
llA Components 11
IM1 201
Image 18, 19
Image (101) 32
Image Adapter/A 219
image form 24
Image Handling Facility 203
Image Object Content Architecture 49, 50
Image Symbol Editor 205
lmagePlus 212
Images 173
Improve a logo 111
IMS/ESA 198
Industry Standard 27
Industry Standard and non-IBM Proprietary

Architectures 27
Industry Standard Data Streams 41
Industry Standard Object Content Architectures and

Definitions 61
Input and Output of major programs 182
Input of major programs 182
Integrate a logo in an overlay 111
Intelligent Printer Data Stream 29
interchange format 63
interchange sets 18
International Standards Organization 21
Introduction 1
Introduction to llA 9
101 32
IOCA 31,49, 50, 195, 201
IPDS 29, 32
IS 18
ISE 205
ISO 4, 21, 27

J
JPEG 51,64

L
LAN Print File Receiver Converter 90
LATEX 67, 73
Layout structure 17, 24
Library List 84
Line data output 86
Line Data to AFPDS Converter 188
Line Printer data 36
LISTPS 210
logical layout 13

Index 245

logical objects 13
Logical Structure 24
Logical Structure and Layout Structure 24
LOTUS 1-2-3/M 198
LZW 62
LZW compression 64

M
Mainframe Model 81
Major data streams 174
Major data streams and where they are used 174
Major data streams where used 174 '
Major graphics formats 174
Major graphics formats and where they are

used 174
Major graphics formats where used 174
Major image formats 173
Major image formats and where they are used 173
Mapping 18
MARKUP 70, 218
Meanings for phrases 2
Microsoft Rich Text Format 45
Mixed Object Document Content Architecture 17, 29
MMR 50, 201
MO:DCA 14, 17, 29, 39

DCA 40
FFTDCA 40
MO:DCA-L 40
MO:DCA-P 39
MO:DCA-R 39
RFTDCA 40

MO:DCA-L 18
MO:DCA-P 15, 18
MO:DCA-P IS/1 18
MO: DCA-P IS/2 18
MODCA 14

MO:DCA-L 14
MO:DCA-P 14
MO:DCA-R 14

Modified Modified Read 201
Monochrome pictures 105

N
Non-IBM Proprietary Architectures 27
Non-IBM Proprietary Data Streams 45
nroff 75
nroff and troff 75

0
Object content architectures 49, 78
Object Structure 49
Objectives 1
Objects 18, 49
OCA 49
ODA 13, 15, 21, 22

246 Print and View Data Streams

Office Document Architecture 22, 59
Office Systems 14
OfficeVision/MVS 220
OGL 187, 196
Operating System/400 Advanced Function

Printing 83
OS/2 Image Support 217
Output of major programs 182
Overall Concept of ODA 24
Overall Structure of this book 4
Overlay 91
Overlay Generation Language 187
Overlay Generation Language/370 196
Overview (Architectures) 61
Overview (Definitions) 61
Overview of llA 9, 11
Overview of Information Interchange Architecture 9,

11

p
Packbytes compression 46
Page Printer Formatting Aid 187
Page Printer Formatting Aid/370 196
PAGEDEF 78, 187
Palette-color Images 177
PCL 45
Performance 82
PHIGS 60
Postscript 41
Postscript to AFP 210
PPDS 36, 96
PPFA 187, 196
Practical examples 103
Practical Tasks 103
Preparing PCL 133
Preparing Postscript 132

On the workstation 132
Using DCF 133
Using ProcessMaster 133

presentation 13
Presentation Manager Office/2 221
Presentation Text 18, 31
Presentation Text Object Content Architecture 49, 50
Print a plot file on a host printer 115
Print and View within the different Environments 77
Print Service Facility/2 V.1.0 97
Print Service Facility/2 V1 .1 99
Print Services Facilities 195
Print Services Facility/2 96
Printer features 195
Printer Server 90
Printer Support 220
Process Definitions 125
Processable form 23
ProcessMaster CALS Application Feature 190
Products 179
Products for host based publishing 201

(

Products Included 204
Products involved in Printing and Viewing 225
Products provided for Enterprise Printing 193
PRTAFPDTA 83
PS 210
PS/2 Image Adapter/A 219
PS370 106
PSEG 169, 170
PSF 29,39, 78,80, 195

requiring VTAM 80
under MVS 80
under VM 80
under VSE 80

PSFV.2 82
PSF/2 96
PSF/2 V.1.0 97
PSF/2V.1.1 98
PSF/2 Version 1.0 90
PSFNSE Version 2 196
PT 31
PT1 18, 31, 50
PT2 31, 50
PTOCA 31, 49, 50
Publications 229
Publishing Systems BookMaster 198, 201
Publishing Systems BrowseMaster 202
Publishing Systems Postscript Interpreter for

AFP 210
Publishing Systems TextTagger 202
Purpose of ODA 23

Q
QAFP 84
QCHRID 56

R
Reblock uploaded PSEG 170
Relations Between Logical Structure and Layout

Structure 25
Relationship of Architectures and Data Streams under

SAA 10
Remote Print Print Manager Version 2.0 89
Remote Print Print Manger Version 3.0 90
Remote PrintManager V.3.0 93
Remote PrintManager Version 2.0 93
Remote PrintManager Version 3.0 95
Remote PrintManger Version 2.0 91
remote spooling 90
revisable 13
revisable form 24
Revisable-Form-Text Document Content

Architecture 19, 29
RFT:DCA 13, 14, 19
RFT/DCA 29
RFTDCA 14
RFTXT 40

RGB Images 177
RGCA 59
Round and Round we go ... 138
RPM V.2.0 89, 91
RPM V.3.0 90, 93
RTF 45
Run-length encoding 46

s
SAA 29
SAA model for print and view 77
SAA OfficeVision/400 Version 2 221
SAA PrintManager 197, 198
SAA PrintManager/400 197
Sample EXECs 169, 170
Scan a logo 111
Scan a logo, improve it and integrate it in an

overlay 111
SCRIPT 67, 71, 75
SCRIPT Mathematical Formula Formatter

Feature 190
scs 35, 86
Set of Characters 56
SGML 12, 21, 22, 67, 72, 191, 192, 193
SGML Text Write OS/2 Edition 192
SGML Text Write OS/2 Edition Product Overview 192
SGML Text Write Tools OS/2 Edition 192
SGML Text Write Tools OS/2 Edition Product

Overview 193
SGML Translator DCF Edition 191
SMFF 190
SNA 29
SNA Character String (SCS) 86
Software for print and view data streams under MVS

and VM 180
Software for print and view data streams under

OS/400 and OS/2 181
Source code for sample transforms and execs 147
SPDL 21, 22
Specific and Generic Structures 26
Specific Structures 26
Stream contents 42
Structured Field 14, 18

T
Tagged Image File Format 63
Tailor 218
TEX 73, 75
TEX and LATEX 73
Text (TX1) 32
Text type transforms. 140
text unit 19
TextTagger 202
TextWrite 70
The Relatfonships between SGML, DSSSL, and

SPDL 22

Index 247

TIF 63
TIF Types 63
TIFF 63
Transform Availability 43
Transforms 135, 147
troff 75
TX1 32
Types of bitmap image 176
Types of transform 136

u
UNIX 74, 75
UPC 54
Upload 170
Upload AFPDS 170
Usage 42
Use of EPS files 41
Using PSEG files on the workstation 118

v
Ventura Publisher 211
VERSION 1.0 96

w
What is a document language? 65

GML 65
SGML 65

What is a formatting language? 66
Who c.;3rries what 15
Why ~ome documents need one way, and others

anottier 68
WordPerfect/370 198
Workstation output on the host 119
WYSIWYG 67, 70

x
Xerox Laser Printer System 74
Xerox LPS 74
XICS 67, 74

y
YCbCr Images 177

248 Print and View Data Streams

GG2+3938-00

GG24-3938-00

--.,.- ------ ----- -- -.. ---- -- -~------_ _.._ .. _
~

