
p

M I C R 0 S 0 F T~

Programmers Reference

PROGRAMMER'S
REFERENCE
LIBRARY

I

Microsoff
Operating System/2
Programmers Reference

Version}.}

Written, edited, and produced
by Microsoft Corporation

Distributed by Microsoft Press

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software and/or databases
described in this document are furnished under a license agreement or nondisclosure
agreement. The software and/or databases may be used or copied only in accordance
with the terms of the agreement. The purchaser may make one copy of the software for
backup purposes. 'No part of this manual and/or database may be reproduced or trans­
mitted in any form or by any means, electronic or mechanical, inc1udingphotocopying,
recording, or information storage and retrieval systems, for any purpose other than the
purchaser's p~rsonal use, without the written permission of Microsoft Corporation.

PUBLISHED BY
Microsoft Press
A· Division of Microsoft Corporation
16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717

© Copyright Microsoft Corporation, 1989. All rights reserved.

Library of Congress Cataloging in Publication Data
Microsoft OS/2 programmer's reference.
Includes index.
1. Microsoft OS/2 (Computer operating system) I. Microsoft Press
QA76.76.063078 1989 005.4'469 89-2817
ISBN 1-55615-220-5(Vol. 1)

Printed and bound in the United States of America.
1 2 3 4 5 6 7 8 9 FGFG 3 2 1 0 9

Distributed to, the book trade in the United States by Harper & Row.
Distributed to the book trade in Canada by General Publishing Company, Ltd.
Distributed to the book trade outside the United States and Canada
by Penguin' Books Ltd.
Penguin Books Ltd., Harmondsworth, M~ddlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria,. Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

Writers: Brad Hastings
Stan Krute
Donn Morse
Ralph Walden
Dan Weston

The character-set tables in this manual are reprinted by permission from the IBM
Operating System/2 User's Reference, © 1987 by International Business Machines Cor­
poration.

Microsoft®, MS®, MS-DOS®, and the Microsoft logo are registered trademarks of
Microsoft Corporation.

IBM®, Personal System/2®, and PSI2® are registered trademarks of International Busi­
ness Machines Corporation.

Intel® is a registered trademark of Intel Corporation.

PostScript® is a regis.ter~d trademark of Adobe Systems, Inc.

Document No. LN0702A-11O-R00-0289

iii
ii!ii~iffi!!iiI!mH!i1}~tjimfiP::gigii!!iJPji~.mi_!~~lii!ii~ff.!f!{fiS!~nifiiS~am~itl~2i~iii;U~a:Ii$U!lii!jiIDititlfUmi~lifii~!i1*s~!i~iHml

Contents

Part 1 Introducing MS OS/2 .. . 3

Chapter 1 Introduction
1.1 Overview..................... 7
1.2 About the MS OS/2 Programmer's Reference..................... 7
1.3 How to Use This Manual.. 8
1.4 MS OS/2 and the C Programming Language........................ 8
1.5 MS OS/2 Naming Conventions.. 9
1.6 Notational Conventions.......... 11

Chapter 2 MS OS/2 Overview
2.1 Introduction.. 15
2.2 MS OS/2 and Presentation Manager 15
2.3 The Window Manager.. 17
2.4 The Graphics Programming Interface................................. 19
2.5 System Services .. 22
2.6 The MS OS/2 System Functions.......... 25

Chapter 3 MS OS/2 Programming Models
3.1 Introduction.. 29
3.2 Full-Screen Programs ... 29
3.3 Presentation Manager Applications 30
3.4 The Family Application Programming Interface 32
3.5 U sing the Command Line... 37
3.6 Using Structures.. 38
3.7 Using Bit Masks .. 39
3.8 Sharing Resources ... 40
3.9 C-Language Header Files 40

Part 2 Window Manager... 47

Chapter 4 Windows
4.1 Introduction.. 51
4.2 About Windows .. 51
4.3 System-Modal Windows.. 58
4.4 Using Windows ... 66
4.5 Summary ~... 72

iv
l!ih1i~jiiiillil~IiUlliirsli!iii!!~~.E~~II~~l~!il?;~!!m!iNWa~liruili~ieiiii!1i!H!I!U~\~~I~~Jiimt~~iil~~liii~ihinii!l~~im!tD.!5~!

Chapter 5 Messages and Message Queues
5.1 Introduction.. 79
5.2 About Messages and Message Queues................................ 79
5.3 Using Messages in an Application 86
5.4 Summary.. 89

Chapter 6 Window Classes
6.1 Introduction ... ~.. 93
6.2 About Window Classes .. 93
6.3 Using Window Classes ... 98
6.4 Summary.. 98

Chapter 7 Window Procedures
7.1 Introduction.. 101
7.2 About Window Procedures......... 101
7.3 Using a Window Procedure ... 103
7.4 Summary.. 105

Chapter 8 Mouse and Keyboard Input
8.1 Introduction.. 111
8.2 About Mouse and Keyboard Input 111
8.3 Using the Mouse and Keyboard in an Application 112
8.4 Summary.. 120

Chapter 9 Frame Windows
9.1 Introduction.. 127
9.2 About Frame Windows .. 127
9.3 Using Frame Windows ... 139
9.4 Summary .. 141

Chapter 10 Control Windows
10.1 Introduction.. 145
10.2 About Control Windows... 145
10.3 Using Control Windows in an Application 146
10.4 Creating a Custom Control Window................................... 146
10.5 Summary.. 147

Chapter 11 Title-Bar Controls
11.1 Introduction.. 153
11.2 About Title Bars ... 153
11.3 Using Title-Bar Controls in Applications 153
11.4 Default Title-Bar Behavior .. 154
11.5 Summary.. 155

v
i!ti~ii5i!!ii!!iIflilniti(f~m!l:gif.!ili!~iiji!~.mi~!~i!I!i!~~!t!i~S!~!!~!~!t.=r:l!ffi~rMi~~iOOi~!ff:li.ltm1i!iIDl~fiilmjii¥lifii~'il!s~~~~~

Chapter 12 Button Controls
12.1 Introduction.. 159
12.2 About Button Controls..................... 159
12.3 Using Button Controls in an Application 160
12.4 Default Button Behavior 164
12.5 Summary..... 165

Chapter 13 Entry-Field Controls
13.1 Introduction.. 171
13.2 About Entry-Field Controls 171
13.3 Using Entry-Field Controls in an Application 171
13.4 Default Entry-Field Behavior... 174
13.5 Summary.. 176

Chapter 14 List-Box Controls
14.1 Introduction.. 181
14.2 About List Boxes .. 181
14.3 Using a List Box in an Application 181
14.4 Default List-Box Behavior .. 187
14.5 Summary.. 189

Chapter 15 Static Controls
15.1 Introduction.. 195
15.2 About Static Controls .. 195
15.3 Using Static Controls in an Application 195
15.4 Default Static-Control Behavior ... 197
15.5 Summary.. 198

Chapter 16 Scroll-Bar Controls
16.1 Introduction.. 203
16.2 About Scroll Bars.. 203
16.3 Using Scroll Bars .. 207
16.4 Summary.. 210

Chapter 17 Menus
17.1 Introductioll.. 215
17.2 About Menus.. 215
17.3 Defining Menu Items in a Resource File............................. 217
17.4 Menu Data Structures.. 219
17.5 U sing Menus in your Applications 221
17.6 Summary.. 232

vi
iiii&1ifslijiDi!!IDiitilir!t~ilf!~~iP.4IID~Um~~ml~iml~:il1i~!~~Hm~I~!!iiii~H!!!!1~~~Ei;~~~mtmi~iIUr1t~$Ii!iiffi!~i5Iiilij!li§~!1rufit!fi~~

Chapter 18 Accelerator Tables
18.1 Introduction.. 239
18.2 About Accelerator Tables........... 239
18.3 Accelerator Tables in a Resource-Definition File................. 239
18.4 Accelerator-Table Data Structures 240
18.5 Using an Accelerator Table in an Application 241
18.6 Summary.. 242

Chapter 19 Dialog Windows
19.1 Introduction.. 247
19.2 About Dialog Windows .. 247
19.3 Dialog Data Structures ... 249
19.4 Dialog Resources... 250
19.5 Using Message and Dialog Boxes ~...................................... 251
19.6 Summary.. 258

Chapter 20 Painting and Drawing
20.1 Introduction 265
20.2 About Painting and Drawing 265
20.3 Strategies for Painting and Drawing.................................... 268
20.4 Printing.. 275
20.5 Summary.. 275

Chapter 21 Drawing in Windows
21.1 Introduction.. 281
21.2 Window-Drawing Functions .. 281
21.3 Using Window-Drawing Functions 282
21.4 Summary.. 285

Chapter 22 Mouse Pointers and Icons
22.1 Introduction ' '.. 289
22.2 About Mouse Pointers.. 289
22.3 Using a Mouse Pointer in an Application 290
22.4 Summary.. 291

Chapter 23 Cursors
23.1 Introduction.. 297
23.2 About Cursors.. 297
23.3 Using Cursors in an Application.. 297
23.4 Summary.. 298

vII
1i~!Ui~lm!atimltil~m!i!!al~~~!~.rnifm.;!~!!iim~~!~~iflm!i~i~~~;g~~~ii!i!?;if:~mii!iill~tailmj"lii~iifS~~I~!§i~m.

Chapter 24 Printing
24.1 Introduction.. 303
24.2 About Printing ... 303
24.3 Printing.. 305
24.4 Special Printing Topics ... 313
24.5 Summary.. 317

Chapter 25 Heaps
25.1 Introduction.. 321
25.2 About Heaps .. 321
25.3, Using a Heap in an Application... 322
25.4 Summary ~.. 330

Chapter 26 Clipboard
26.1 Introduction.. 333
26.2 About the Clipboard.. 333
26.3 Using the Clipboard....... 335
26.4 Summary.. 342

Chapter 27 Dynamic Data Exchange
27.1 Introduction.. 347
27.2 About Dynamic Data Exchange... 347
27.3 Using Dynamic Data Exchange.. 349
27.4 Summary.. 360

Chapter 28 Hooks
28.1 Introduction.. 365
28.2 About Hooks.. 365
28.3 Types of Hooks... 365
28.4 Using Hooks... 372
28.5 Hook Example.. 373
28.6 Summary.. 374

Chapter 29 Help
29.1 Introduction.. 379
29.2 About Help ... 379
29.3 U sing Help in an Application.. 381
29.4 Summary .. :......... 386

viii
:lliib1iriiijii1illm!iiU!&'iifsifIil~in;p.E!re;m=J~mll:!!!u?';~~!!iH§i~I!ruilgiUii!lli!t!1!l~!~l.iiii~~~mtm1t§JiiU~f.aiiiiiYitHSPJ!I!§~~mfD;g~!

Part 3 Graphics Programming Interface 389

Chapter 30 Presentation Spaces and Device Contexts
30.1 Introduction 393
30.2 About Presentation Spaces and Device Contexts.................. 393
30.3 Using Presentation Spaces and Device Cont~xts 399
30.4 Summary ~.. 400

Chapter 31 Coordin~te Spaces and Transformations
31.1 Introduction.. 405
31.2 About Coordinate Spaces and Transformations................... 405
31.3 Using Coordinate Spaces and Transformations 421
31.4 Summary.. 423

Chapter 32 Line and Arc Primitives
32.1 Introduction.. 427
32.2 About Line and Arc Primitives ... 427
32.3 Using Line and Arc Primitives .. 432
32.4 Summary.......... 436

Ctlapter 33 Fonts and Character Primitives
33.1 Introduction.. 441
33.2 About Fonts and Character Primitives................................ 441
33.3 Using Fonts and Character Primitives................................. 459
33.4 Summary ~.. 462

Chapter 34 Color and Mix Modes
34.1 Introduction.. 469
34.2 About Color and Mix Modes... 469
34.3 U sing Colors and Mix Modes ~............... 474
34.4 Summary ... '..................... 476

Chapter 35 Paths
35.1 Introduction.. 481
35.2 About Paths.. 481
35.3 U sing Paths . ~.. 490
35.4 Summary ~.. 492

ix
rni!~~I!fI!n.~~~f!r.~li!iti!fjjU~ifjiUi!iafg;;k11,.~irn!!§rli1!l!SJ!!ifi§"ililliRi;filfi115il~!!Jw.m:~!~iiii~iilafffSiii~~~ifi~~~lif!il!i~lmfiW:iDfm~.j!tfliiiB!aifiilmfi

Chapter 36 Area Primitives
36.1 Introduction.. 495
36.2 About Areas and Area Primitives...... 495
36.3 U sing Areas and Area Primitives....................................... 501
36.4 Summary.. 504

Chapter 37 Marker Primitives
37.1 Introduction.. 507
37.2 Abolit Marker Primitives.. 507
37.3 Using Markers•... 509
37.4 Summary.. 510

Chapter 38 Bitmaps
38.1 Introduction.. 513
38.2 About Bitmaps.. 513
38.3 Using Bitmaps... 520
38.4 Summary.. 524

Chapter 39 Regions
39.1 Introduction.. 529
39.2 About Regions .. 529
39.3 Using Regions ... 533
39.4 Summary.. 537

Chapter 40 Clipping
40.1 Introduction.. 541
40.2 About Clipping ... 541
40.3 Using Clipping ~.. 543
40.4 Summary.. 547

Chapter 41 Metafiles
41.1 Introduction.. 551
41.2 About Metafiles... 551
41.3 Using Metafiles ... 554
41.4 Summary•... 557

Chapter 42 Segments and Retained Graphics
42.1 Introduction.. 563
42.2 About Segments and Retained Graphics 563
42.3 U sing Segments and Retained Drawings•... 570
42.4 Summary.. 573

x
;!l";f.I~~~~II1!@i~i!P:~riiii.ii!U!~i!i~ii~U~.lfi!iijf;iili2lliitlilil~~mien~HfL:ar~~~iDmml.faS.li~Ei~mii!1~i!~~!liiifjifi!~ii!ffii~

Part 4 System Services .. 583

Chapter 43 Processes, Threads, and Sessions
43.1 Introduction.. 587
43.2 About Processes, Threads, and Sessions 587
43.3 Using Processes ... 593
43.4 Using Threads :... 597
43.5 Summary.. 599

Chapter 44 The Memory Manager
44.1 Introduction ,... 603
44.2 About the Memory Manager. 603
44.3 Using the Memory Manager ... 604
44.4 Summary.. 611

Chapter 45 Dynamic Linking ,
45.1 Introduction .. ~· ~.. 615
45.2 About Dynamic Linkipg ... 615
45.3 Building Dynamic-Link Libraries....................................... 616
45.4 U sing Dynamic Linking.. 620'
45.5 Summary.. 620

Chapter 46 The File System
46.1 Introduction 623
46.2 About the File Sy~tem... 623
46.3 U sing the File System .. 626
46.4 Summary ~.. 634

Chapter 47 Video Input and Output
47.1 Introduction .. ~..................... 639
47.2 About Video Input and Output... 639
47.3 U sing Video Input and Output... 640
47.4 Summary.. 644

Chapter 48 Advanced Video Input and Output
48.1 Introduction 649
48.2 About Advanced Video Input and Output........................... 649
48.3 Using Advanced Video Input and Output............................ 653
48.4 Summary.. 654

xi
w.i1;l~!!mj~mf!fi~~jiI!Jin~liSim!i;t!m~ilw.g~:m!!f!!iffii!il1iRUtiilii1ia'i~i.~1b~mlifJl~lifi1S.iirufffjj~~~~iF.h'i'JJif!ir!i~f§[Sf~~~!rniim!~mffij

Chapter 49 The Mouse
49.1 Introduction.. 661
49.2 About the Mouse... 661
49.3 Using the Mouse ... 662
49.4 Summary.. 665

Chapter 50 The Keyboard
50.1 Introduction.. 669
50.2 About the Keyboard .. 669
50.3 Using the Keyboard ... 670
50.4 Summary.. 674

Chapter 51 Interprocess Communication
51.1 Introduction.. 677
51.2 About Interprocess Communication... 677
51.3 Using Interprocess Communication.................................... 683
51.4 Summary.. 689

Chapter 52 Timers
52.1 Introduction.. 695
52.2 About Timers... 695
52.3 U sing Timers.. 695
52.4 Summary.. 696

Chapter 53 Window Timers
53.1 Introduction.. 699
53.2 About Window Timers 699
53.3 U sing Window Timers.. 700
53.4 Summary....................... 701

Chapter 54 Device Monitors
54.1 Introduction.. 705
54.2 About Device Monitors. ... 705
54.3 Using Device Monitors................... 705
54.4 Summary.. 705

Chapter 55 Atom Tables
55.1 Introduction.. 709
55.2 About Atom Tables... 709
55.3 Using Atom Tables in an Application 710
55.4 Summary.. 713

xii
fA~~~~m!lt~~I~l!f!Umiiii!ill!~lfii~Uif~I&ii~lilltfljiii~iI~i~~i!~~~e1lmlD~ii!UiimijiA!i.~.II!~5i~fii~~:~ii~Uifii!ifiii~~f5iiii

Chapter 56 System Information
56.1 Introduction.. 717
56.2 About System Information ... 717
56.3 U sing System Information .. 724
56.4 Summary.. 729

Index .. 733

xiii
~!:l~Umi~!§lf~~t!!i~jjil~~miiiM!iff~1i,.~rffl!f!ifm!l!§J1!ij~iliffimlfiIIDiffit~iie~!R:~1~i~liiit.fffiiifi~!§!i!!F.~1§Iljf!!!!i~l§jjiW:¥.Jfm~!miiiHfiiimfii!

Figures

Figure 2.1
Figure 11.1
Figure 12.1
Figure 14.1
Figure 17.1
Figure 17.2
Figure 19.1
Figure 19.2
Figure 20.1
Figure 20.2
Figure 20.3
Figure 20.4
Figure 20.5
Figure 20.6
Figure 21.1
Figure 22.1
Figure 24.1
Figure 24.2
Figure 24.3

Figure 24.4
Figure 24.5
Figure 25.1
Figure 25.2

Figure 25.3

Figure 27.1
Figure 29.1
Figure 31.1
Figure 31.2
Figure 31.3
Figure 31.4
Figure 31.5
Figure 31.6
Figure 31.7

Figure 31.8
Figure 31.9

A Typical Presentation Manager Window................. 17
Frame Window with Title Bar................................. 153
Button Types.. 159
Typical List-Box Control.. 181
Menu-Bar and Pull-Down Menus............................. 216
Submenus.. 218
Sample Message Box... 249
Sample Dialog Box... 251
Application-to-Device Path..................................... 265
Clip Region and Visible Region.............................. 267
Update Region and Visible Region.......................... 267
Cached-Micro Presentation Space........................... 271
Micro Presentation Space 273
Normal Presentation Space 274
Rectangle Types ... 282
Bit Values in the AND and XOR Masks.................. 289
Application to Device Path.................................... 303
World-Space to Device-Space Translation................ 310
Portrait-Mode Pages
in World Space... 311
Landscape-Mode Pages in World Space 311
IBM4201 Page Setup .•... 313
Heap in Automatic Data Segment........................... 321
Back Pointer for Moveable Heap Object
in Automatic Data Segment................................... 326
Back Pointer for Moveable Heap Object
in Separate Data Segment...................................... 327
Typical DDE Segment. 351
Help Menu Item... 380
Device Coordinate System..................................... 406
Video Display and Single-Coordinate-Space System... 406
Diagonal Line in a Single-Coordinate-Space System... 407
One Rectangle Displayed on Two Different Devices.. 407
Fixed Value.. 410
Rotating an Object.. 411
Subpictures in Four Chained Segments
in World Space... 413
Two Model Spaces.. 414
Viewing Limit in Model Space... 414

xiv
~~~~~~I1iOOi~l~i~iiii!H~~Jf!i~~~m~;~Ifllff!fiii~ilii:JL$~'i!m1i§~en~HiiiWgn~ii!iII~l_i!~Ei~fij~i!f£~!im_Ii~~~ffi!~ 

Figure 31.10 

Figure 31.11 
Figure 31.12 

Figure 31.13 
Figure 31.14 
Figure 31.15 
Figure 31.16 
Figure 32.1 
Figure 32.2 
Figure 32.3 

Figure 32.4 
Figure 33.1 
Figure 33.2 
Figure 33.3 
Figure 33.4 
Figure 33.5 
Figure 33.6 
Figure 33.7 
Figure 33.8 
Figure 33.9 
Figure 33.10 
Figure 33.11 
Figure 33.12 
Figure 33.13 
Figure 33.14 
Figure 33.15 
Figure 33.16 
Figure 33.17 
Figure 33.18 
Figure 33.19 
Figure 33.20 
Figure 33.21 
Figure 33.22 
Figure 33.23 
Figure 33.24 
Figure 33.25 
Figure 33.26 
Figure 33.27 
Figure 33.28 
Figure 33.29 

Retained Subpicture Drawn Using Model 
Transformations ................................................... 415 
Clip Path in World Space....................................... 416 
Scaling the Clipped Part of a Subpicture 
in Model Space..................................................... 417 
Presentation Page in Page Space ............................. 419 
Page Viewport in Device Space............................... 419 
Determining Scaling Factors................................... 420 
Translating the Page Viewport in Device Space......... 420 
Sample Illustrations Using Line and Arc Functions... 427 
Arcs ................................................................... 429 
Transforming the Unit Circle 
U sing the Arc Parameters...................................... 430 
Line Styles...... .......... ........ ......... .......................... 431 
Strokes................................................................. 441 
Serifs .................................................................. 441 
Bold Font ............................................................ 442 
Italic Font............................................................ 442 
Normal Font........................................................ 442 
Character Cell...................................................... 443 
Em Height........................................................... 443 
X Height.............................................................. 443 
Maximum Ascender.............................................. 444 
Maximum Descender............................................. 444 
Lowercase Ascent................................................. 444 
Lowercase Descent............................................... 445 
Internal Leading................................................... 445 
External Leading................................................... 445 
Em Increment...................................................... 446 
Maximum Baseline Extent...................................... 446 
Character Slope.................................................... 446 
In-line Direction ...... ................................ ........ .. .... 447 
Character Rotation ............................................... 447 
Superscript.......................................................... 448 
Subscript............................................................. 448 
Image Font. ... ....... ...... ............. ............................ 450 
Outline Font ........................................................ 450 
Character-Cell Alignment...................................... 450 
Proportional and Fixed Fonts ..... .... ........... ............. 450 
Code Page 437 ...................................................... 451 
Character Shear .................................................... 453 
Image Font and Character Shear....... ...................... 453 
Image Font and Character Angle ............................ 454 



xv 
!;i!nJi1f!im~~_!l.HfI~lf~fjmi_iro~iffli!M~~!§J!iii~!lif;mfjlliiiffi!~~fi!mii!il~iif.1511r.ffiifi~!§!mT.,;'m!jf!l~is'jf~~~i_~ra;Iii: 

Figure 33.30 
Figure 33.31 
Figure 33.32 
Figure 33.33 
Figure 33.34 
Figure 35.1 
Figure 35.2 
Figure 35.3 
Figure 35.4 
Figure 35.5 
Figure 35.6 
Figure 35.7 
Figure 35.8 
Figl.ue 35.9 
Figure 35.10 
Figure 36.1 
Figure 36.2 
Figure 36.3 
Figure 37.1 
Figure 37.2 
Figure 38.1 
Figure 38.2 

Figure 38.3 
Figure 38.4 
Figure 38.5 
Figure 39.1 
Figure 39.2 
Figure 39.3 
Figure 39.4 
Figure 39.5 
Figure 39.6 
Figure 40.1 
Figure 40.2 
Figure 40.3 
Figure 42.1 
Figure 42.2 
Figure 42.3 
Figure 42.4 
Figure 42.5 
Figure 48.1 
Figure 48.2 

Image Font and Three Sizes of Character Box.......... 454 
Outline Font and Character Shear........................... 455 
Outline Font and Character Angle .......................... 455 
Outline Font and Three Sizes of Character Box........ 455 
Graph with Outline Font........................................ 456 
Stroked and Filled Rectangles ................................ 481 
Geometric Lines and Normal Lines ............ ............. 484 
Stroked Paths....................................................... 484 
Filled Paths.......................................................... 485 
Fill Modes ........................................................... 485 
Alternate-Mode Test............................................. 486 
Winding-Mode Test............................................... 486 
Triangular Clip Path.............................................. 487 
Geometric Line Ends............................................ 488 
Geometric Line Joins............................................ 488 
Two Areas........................................................... 495 
Disjoint Area ....................................................... 495 
Predefined Fill Patterns.......................................... 500 
Default Marker Set............................................... 507 
Markers Used in a Graph ...................................... 508 
Bitmap and Image................................................. 513 
Bitmap Shown on Two Displays 
with Different Aspect Ratios .................................. 514 
Bits and Pels in a Bitmapped Image......................... 514 
A Bitcount and its Associated Color Table ........ ...... 516 
Bits and Pels in a Special BitmappedImage ............ ~. 519 
Disjoint Region .................................................... 529 
Region of Two Intersecting Rectangles .................... 530 
Text in Client Area ............................................... 531 
Disjoint Clip Region.............................................. 531 
Combining Regions ........... ~................................... 532 
Three Square Regions and Three Fill Patterns .......... 532 
Text in an Elliptical Clipping Area.......................... 541 
Valid Clipping Areas............................................. 542 
Clipping in Four Coordinate Spaces............ ...... ...... 543 
Combining Subpictures to Create a Floor Plan.......... 564 
Chained and Called Segments................................. 565 
Correlation Operation........................................... 568 
Inserting a New Element in a Segment..................... 569 
Replacing an Element with a New Element............... 570 
2-Byte Character Format........................................ 650 
4-Byte Character Format........................................ 651 



xvi 

Tables 

Table 30.1 
Table 38.1 
Table 38.2 

Presentation-Space Features and Restrictions............ 393 
Drawing Modes and Bitmapped Output..................... 518 
GpiBitBlt Output................................................... 524 



Part 1 
Introducing MS OS/2 

I 
I 2 .. Y21 

fillet 





3 
aigU~l~i~!mllf.~liifffill~ll;'iii_~:~f;1!m"".~~a!fjjil~r!i_£!Il4!jt'fiiii1Ui;;!lifrJIl!ifi~~~lI~h!ifth1tiiliriiliHiti.1li.1liliim!i!m 

Part 1 

Introducing MS OS/2 
Chapter 1 

Chapter 2 

Chapter 3 

Introduction ............................................................ 5 

MS OS/2 Overview................................................. 13 

MS OS/2 Programming Models ............................. 27 





Chapter 

1 

Introduction 
1.1 Overview ................................................................ 7 

1.2 About the MS OS/2 Programmer's Reference............... 7 

1.3 How to Use This Manual........................................... 8 

1.4 MS OS/2 and the C Programming Language.................. 8 

1.5 MS OS/2 Naming Conventions................................... 9 

1.6 Notational Conventions ............................................. 11 





Chapter 1: Introduction 7 
!igff~l~~Umlf.~!ii~i~tiiiMi8_jJliru;I~I~~~~I~nijl!i§~ii§!ffi£§i~~ii5in!UI~!w~!§ia~~~1ii§ip.!i:fl!1i1!iiif.:i:iHi!i.iIi.iHiiltilm1!!Jj 

1.1 Overview 
This manual describes the Microsoft® Operating System/2 (MS® OS/2) system 
functions. MS OS/2 is a single-user, multitasking operating system for personal 
computers. MS OS/2 system functions let programs use the operating system to 
carry out tasks such as reading from and writing to disk files, allocating memory, 
and starting other programs. 

Part 1, "Introducing MS OS/2," introduces the MS OS/2 system functions. It 
provides a brief description of the Microsoft Operating System/2 Programmer's 
Reference, describes the role of the C programming language in the Program­
mer's Reference, and gives the calling and notational conventions used in this 
manual. The chapters in this part provide a general overview of the MS OS/2 
system functions and describe the three MS OS/2 programming models. 

Part 2, "Window Manager," describes the portion of MS OS/2 that lets applica­
tions create and manage windows. The chapters in this part provide detailed 
information about windows, messages, message queues, control windows, dialog 
windows, and other window-management topics. 

Part 3, "Graphics Programming Interface," describes the portion of MS OS/2 
that lets applications use device-independent graphics. The chapters in this part 
provide detailed information about presentation spaces, transformations, device 
contexts, graphics primitives, retained graphics, metafiles, and other graphics­
related topics. 

Part 4, "System Services," describes the portion of MS OS/2 that lets applica­
tions use the basic multitasking services of MS OS/2. The chapters in this part 
provide detailed information about processes and threads, memory management, 
the file system, dynamic linking, keyboard and mouse input, video output, device 
contro!, and other information about the system. 

This manual is intended to describe the purpose of the MS OS/2 system func­
tions and to explain the operating-system concepts behind them. It also shows 
how the MS OS/2 system functions work together to carry out specific tasks. It 
does not show how to write, compile, and link programs containing these func­
tions. For more information on these topics, see Microsoft Operating System/2 
Programming Tools. 

1.2 About the MS OS/2 Programmer's Reference 
The Microsoft Operating System12 Programmer's Reference, a set of three 
volumes, fully describes the MS OS/2 system functions and related data types, 
macros, structures, messages, and file formats. The Programmer's Reference is 
the source for specific information about programming for MS OS/2. 

This manual, Volume 1 of the three-volume set, describes the purpose of the MS 
OS/2 system functions and the concepts and principles behind the functions. 
Volume 1 is intended for programmers new to MS OS/2 or learning parts of MS 
OS/2 for the first time. This volume provides the basic information needed for 
an understanding of MS OS/2. 



8 MS OS/2 Programmer's Reference, Vol. 1 
I!lmJ~ffiii1i.5i~igHifilmis~iffif~i![~.Ji!~§ltf~ii~r~~~d~~~iimim;ll$iiitl~~~Il§jm$?1Um;~~illli'.amnffifi!!i!il.aimii§iiiR:.i~$iiI~~iW:fiil 

Volumes 2 and 3 consist of alphabetical listings of MS OS/2 system functions 
and related data types, macros, structures, and messages. These two vol,umes 
define the details of the syntax, parameters, and return values of each MS OS/2 
system function. Volumes 2 and 3 are intended to be used by programmers 
already acquainted with MS OS/2 and who need only specifics of particular func­
tions. 

1.3 How to Use This Manual 
This manual describes the MS OS/2 system functions in individual-topic chap­
ters. Each chapter describes the portion of MS OS/2 that lets an application 
carry out a specific task or set of related tasks. For example, the chapter on 
memory management defines the basic memory management terms" describes 
the role of the memory-management functions, and illustrates how to use those 
functions. 

Each chapter has three parts: a general description, programming samples, and a 
summary. The general description contains a thorough discussion of the purpose 
and operation of pertinent MS OS/2 functions. The programming samples show 
how to use those MS OS/2 functions in applications to carry out useful tasks. 
The summary briefly describes each function and message described in the 
chapter. 

In many cases, the reader must have some basic knowledge of other portions of 
MS OS/2 in order to understand the concepts described in the chapter. Each 
chapter lists the prerequisite topics. 

1.4 MS OS/2 and the C Programming Language 
The C programming language. is the preferred development language for MS 
OS/2 programs. Many of the programming features of MS OS/2 were designed 
with C and other high-level languages in mind. MS OS/2 programs can also be 
developed in Pascal, FORTRAN, BASIC, and assembly language, but C is the 
most straightforward and easiest language to use to access MS OS/2 functions. 
For this reason, all syntax and program samples in this manual are written in the 
C programming language. 

The MS OS/2 system functions use many types, macros, and structures that are 
riot part of standard C language. These types, macros, and structures have been 
defined to make the task of creating MS OS/2 programs· simpler and to make 
program sources clearer and easier to understand. 

All types, macros, and structures discussed iIi this manual are defined in the MS 
OS/2 C-Ianguage include files. Programmers may wish to Use these include files 
when developing MS OS/2 programs in other computer languages such as Pascal 
or assembly language. If include files for a given language are not available, a 
programmer can translate the definitions by following the guidelines given in 
Volumes 2 and 3 of the Programmer's Reference. 

Many chapters in this manual include program examples. These examples show 
how to use MS OS/2 system functions to accomplish simple tasks. In nearly all 



Chapter 1: Introduction 9 
~~!i!l~~~2!i.iifmirriFJei!i~:ffiiiii'fll!f5!i!i~Imlr.f1m~~limili!!~i!f~im~!~~:n~..mJ!!Mifii!ifiiiJg§i$;§I1{ff.~~_~!mms~!S!~n~!;§li!U~fJ;lii! 

cases, the examples are code fragments, not complete programs. A code frag­
ment is intended to show the context in which a function can be used; it often 
assumes that variables, structures, and constants used in the example have been 
defined and/or initialized. A code fragment may also use comments to represent 
a task instead of giving the actual statements. 

Although the examples are not complete, you can use them in your programs by 
taking the following steps: 

• Include the os2.h file in your program. 

• Define the appropriate include constants for the functions, structures, and 
constants used in the example. 

• Define and initialize all variables. 

• Replace comments that represent tasks with appropriate statements. 

• Check return values for errors and take appropriate actions. 

Some examples in this manual combine both MS OS/2 and C run-time functions 
to carry out their tasks. 

1.5 MS OS/2 Naming Conventions 
In this manual, all parameter, variable, structure, field, and constant names con­
form to MS OS/2 naming conventions. MS OS/2 naming conventions are rules 
that define how to create names that indicate both the purpose and data type of 
an item used with MS OS/2 system functions. These naming conventions are 
used in this manual to help YOll readily identify the purpose and type of the func­
tion parameters, structure fields, and variables. These conventions are also used 
in most MS OS/2 sample program sources to make the sources more readable 
and informative. 

The following list briefly describes the MS OS/2 naming conventions: 

Item 

Variable 
Parameter 
Field 

Structure 

Convention 

All variable, parameter, and field names consist of up 
to three elements: a prefix, a base type, and a qualifier. 
The names always consist of at least a base type or a 
qualifier. In most cases, the name also includes a prefix. 
The base type identifies the data type of the item; the 
prefix specifies additional information, such as whether 
the item is a pointer, an array, or a count of bytes. The 
qualifier specifies the purpose of the item. All letters in 
the prefix and base type are lowercase. The letters in 
the qualifier are mixed-case (both uppercase and lower­
case). When naming variables, the prefix and base type 
are optional for common integer types such as SHORT 
and USHORT. 

All structure names consist of a word or phrase that 
specifies the purpose of the structure. All letters in the 
structure name are uppercase. . 



10 MS OS/2 Programmer's Reference, Vol. 1 
il1fmlm;!;Siiti5r~iI~~~ilJm..!l~IfI~~!iifi"ii~m~!~!ii§imlmi;!~itfiH¥i!OOlij§9'!i~1..!i!i!~Jili~lJ~~I~~B!irI!1i~~[:;mi~liIf~.!!!ti!fti~2 

Item 

Constant 

Function 

Convention 

All constant names consist of a prefix (derived from the 
name of the function associated with the constant) and 
a word or phrase that specifies the meaning of the con­
stant in terms of a value, action, color, or condition. 
All letters in the constant name are uppercase and an 
underscore (_) separates the prefix from the rest of the 
name. 

All function names consist of a three-letter system 
prefix and a word or phrase that describes the action of 
the function. Each word in the function name starts 
with an uppercase letter. Verb and noun combinations, 
such as DosGetDateTime, are recommended. 

The following examples show some of the standard prefix and base types you will 
see in this manual: 

Prefix/Base type Description Example 

I Boolean flag; TRUE if successful BOOL fSuccess; 

ch 8-bit character CHAR chChar; 

S 16-bit signed integer SHORT sRate; 

32-bit signed integer LONG lDistance; 

uch 8-bit unsigned character UCHAR uchScan; 

us 16-bit unsigned integer USHORT usHeight; 

ul 32-bit unsigned integer ULONG ulWidth; 

b 8-bit unsigned integer BYTE bAttribute; 

SZ Zero-terminated array of characters CHAR szName [] ; 

fb Array of flags in a byte BYTE fbMask; 

Is Array of flags in a short USHORT fsMask; 

fl Array of flags in a long ULONG flMask; 

sel 16-bit segment selector SEL selSegment; 

p 32:..bit far pointer to a given type PCH pchBuffer; 

np 16-bit near pointer to a given type NPCH npchBuffer; 

a Array of a given type CHAR achData[l]; 

Index to an array of a given type USHORT ichlndex; 

C Count of items of a given type USHORT cb; 

hi Handle identifying a given object HFILE hf; 

off Offset USHORT offSeg; 

id Identifier for a given object USHORT· idSession; 



Chapter 1: Introduction 11 
~!!ili!im~~2!iiUmiiri?jffi!E!!fiiiill§!!f!!i!lUillmm!§!i~nf.~i~m~1H!ij!ti9~m~.rnJ:!If:~ilifiiil'fjs!~~~_f§i1ma~fS!~U~!~nmi!!figlli' 

1.6 Notational Conventions 
The following notational conventions are used throughout this manual: 

Convention 

bold 

italics 

monospace 

Meaning 

Bold type is used for keywords-for example, the 
names of functions, data types, structures, and 
macros. These names are spelled exactly as they 
should appear in source programs. 

Italic type is used to indicate the name of an 
argument; this name must be replaced by an 
actual argument. Italics are also used to show 
emphasis in text. 

Monospace type is used for example program­
code fragments. 





Chapter 

2 

MS OS/2 Overview 
2.1 Introduction............................................................ 15 

2.2 MS OS/2 and Presentation Manager ............................ 15 
2.2.1 Queued Input............................ ...................... 16 
2.2.2 Device-Independent Graphics.............................. 16 
2.2.3 Shared Resources ............................................ 16 

2.3 The Window Manager............................................... 17 
2.3.1 Windows ....................................................... 17 
2.3.2 Menus .......................................................... 18 
2.3.3 Dialog Windows .............................................. 18 
2.3.4 The Message Loop........................................... 18 

2.4 The Graphics Programming Interface........................... 19 
2.4.1 Presentation Spaces and Device Contexts................ 19 
2.4.2 Graphics Primitives.......................................... 19 
2.4.3 Other Graphics Tools ....................................... 20 
2.4.4 Drawing... ............•................ .... ............. ... .. .. 21 
2.4.5 Retained Graphics and Segments.......................... 22 
2.4.6 Metafiles ....................................................... 22 

2.5 System Services ....................................................... 22 
2.5.1 Multitasking ...... ..... .......... .............................. 22 
2.5.2 Dynamic Linking ............................................. 23 
2.5.3 Memory Management........................................ 23 
2.5.4 The File System .............................................. 23 
2.5.5 Full-Screen Keyboard, Mouse, 

and Video Operations ....................................... 24 
2.5.6 Interprocess Communication............................... 24 

2.6 The MS OS/2 System Functions........ ......................... 25 





Chapter 2: MS OS/2 Overview 15 
3§~!iIi~~~i~!ir:I;urrl!ja!R~J!;ii&lm'!fei!!fllim!fj!1!!~lIliiu;j!§:'-i~im!'-mtmn:IP.J§I!lf:if:ifiiil~s~11!f~iliMa"JSljj!m1mlift~Hii18l 

2.1 Introduction 
This chapter is an overview of the features of Microsoft Operating System/2. 
The most important of these features are the graphical user interface and 
device-independent graphics provided by the MS OS/2 Presentation Manager 
and the multitasking and other system services provided by the MS OS/2 base. 
In particular, this overview describes the following: 

• MS OS/2 and Presentation Manager 

• The window manager 

• The graphics programming interface (GPI) 

• The system services 

• The MS OSI2 system functions 

2.2 MS OS/2 and Presentation Manager 
In a multitasking environment,· it is important to give all applications some 
portion of the screen through which they can interact with the user. One of the 
principal goals of MS OS/2 is to provide visual access to most, if not all, appli­
cations at the same time. This access can be granted either by giving selected 
applications full use of the screen while other applications wait in the back­
ground or by letting applications share the screen. In MS OS/2, each application 
decides which method to use by choosing a "session" to run in. The session dic­
tates whether the application receives complete control of the screen or must 
share it with other applications" 

When MS OS/2 first starts, it creates the Presentation Manager session. All 
applications in this session share the screen. Applications that run in this session 
are called Presentation Manager applications, since Presentation Manager is the 
portion of MS OS/2 that creates and manages the Presentation Manager session. 
When a new application starts, it can direct the system to create a new session 
for it. The new session gives complete control of the screen to the application. 
Applications that use the full screen are called full.:.screen applications. 

A Presentation Manager application shares the display with other applications by 
using a "window" for interaction with the user. Basically, a window is a rectangu­
lar portion of the system display that the system grants to an application. How­
ever, a window is also a combination of visual devices, such as menus, controls, 
and scroll bars, with which the user directs the actions of the application. 

A Presentation Manager application must create its own window before produc­
ing any output or receiving any input. Once the application creates its window, 
MS OS/2 provides the application with detailed information about what the user 
is doing with the window and automatically carries out many of the tasks the 
user requests, such as moving and sizing the window. 

A Presentation Manager application can create and use any number of windows 
to display information in a·variety of ways. The system manages the screen, con­
trolling the placement and display of windows and ensuring that no two applica­
tions attempt to access the same part of the system display at'the same time. (In 
the latter case, the system overlaps the window of one application with the win­
dow of the other.) 



16 MS OS/2 Programmer's Reference, Vol. 1 
;ij~faf.!~!m~~~~fii~;f#H!ltiljjf~ugi~i"EilS1ma!!l!ii§im:~~ififn~ili!H~lmliil~i:.tEim~1J~~~~I~lfi~~!H!if.~!!m~~[zimliP.fBlii~~~i~! 

2.2.1 Queued Input 
In traditional programming environments, a program reads from the keyboard 
by making an explicit call to a function (getchar, for example). The function typ­
ically waits until the user presses a key before returning the character code to 
the progr~m. A Presentation Manager application does not make explicit calls to 
read from the keyboard. Instead, MS OS/2 receives all input from the keyboard, 
mouse, and timer into its system queue and automatically redirects the input to 
the application by copying it from the system queue to the application queue. 
When the application is ready to retrieve input, it reads from its queue and 
dispatches the message to the appropriate window. 

In Presentation Manager, input from the keyboard and mouse is provided auto­
matically to every window that is created. MS OS/2 provides input in a uniform 
format called an input message. This message contains information about the 
input that far exceeds the information available in other environments. An input 
message specifies the system time, the position of the mouse, the state of the 
keyboard, the scan code of the key (if a key is pressed), the number of the 
mouse button (if a button is pressed), and the device that generated the mes­
sage. For example, the keyboard message ~CHAR corresponds to a press 
or release of a specific key. In each message, MS OS/2 provides a device­
independent virtual-key code that identifies the key, as well as the device­
dependent scan code generated by the keyboard. The message also specifies 
the status of other keys on the keyboard, such as SHIFT, CTRL, and NUMLOCK. 
Keyboard, mouse, and timer messages all have the same format and are pro-
cessed in the same manner. ' 

2.2.2 Device-Independent Graphics 
In Presentation Manager, you have access to a rich set of device-independent 
graphics operations. This means that your applications can easily draw lines, 
rectangles, circles, and complex regions, and can use the same calls and data to 
draw on a high-:resolution graphics display as they use to draw on a dot-matrix 
printer. 

MS OS/2 requires device drivers to convert graphics-output requests to output 
for a printer, plotter, display, or other output device. A device driver is a special 
executable library that an application can load and use to carry out graphics 
operations in the "context'"of the specific device-that is, the device driver, the 
output device, and the communications port. 

2.2.3 Shared Resources 
MS OS/2 is a multitasking system. This means that more than one application 
can run at a time. Presentation Manager applications must share the display, the 
keyboard, the mouse, and even the CPU with all other applications that are 
currently running in the same session. For this reason, MS OS/2 carefully con­
trols these resources and requires' applications to use a specific program inter­
face that guarantees this control. 



Chapter 2: MS OS/2 Overview 17 
i!!~it5i$im!~mtH.t;fIDm§!~!ffji!~i~!~.llii_:!!!!i~~i!r.!f!i~iiif~!i~i~~=r:~!!Mi~21~ilim~l!r:~~~liIDl~fdlJmiW.lS:;i~!;*s~!!ilmfeJii!m! 

2.3 The Window Manager 
The MS OS/2 window manager consists of the MS OS/2 system functions that 
let applications create and manage windows and related elements. These related 
elements are primarily menus, dialog windows, and the message loop. The win­
dow manager provides the elements that your applications need to construct a 
graphical user interface. 

2.3.1 Windows 

Figure 2.1 

A window is the primary input and output device of any Presentation Manager 
application. It is the application's only access to the system display, so, since 
nearly all Presentation Manager applications interact with the user in some way 
through the system display, these applications must use windows. 

A window is a rectangle on the system display. A typical window is composed of 
a title bar, a menu bar, scroll bars, borders, and other features. You list the fea­
tures you want for a window when you create the window. MS OS/2 then draws 
and manages the window. Figure 2.1 shows the main features of a window: 

A Typical Presentation Manager Window 

Menu bar Minimize box 

l !;=: S.m,'. ","<aU .. ~:~ L rimlze box 

file Edit ~earch .Qptions Fonts SIzes I Fl = Help 
~ ~ 

I I 
Scroll arrow Border 

Work area 

I~ 

Help key 
Scroll bar 

Slider 

Interestingly, most Presentation Manager user-interface elements are also win­
dows, including menus, title bars, buttons, entry fields, icons, and scroll bars. 

Although an application creates a window and technically "owns" it, the manage­
ment of the window is actually a collaborative effort between the application and 
the system. The system maintains the position and appearance of the window, 
manages the standard window features such as the border, scroll bars, and title, 
and carries out many tasks initiated by the user that directly affect the window. 



18 MS OS/2 Programmer's Reference, Vol. 1 
ij&'iiiilijmill1ii!!Jm:MIlii!!~iP._:l!f.iP.i;I~~Ir;!:~i~~lijHrn~l!ruiliJiiiii!ij!!t!ml~~~aii~~~mIm1mniif~r~m!iirr~iiHfj!liiH~it=ti~E 

2.3.2 Menus 

The application maintains everything else about the window-in particular, the 
client window, in which the application is free to display anything it wants. 

To manage this collaborative effort, MS OS/2 advises each window of changes 
that might affect it. Every window must have a corresponding window procedure 
that receives these window-management messages and responds appropriately. 
Window-management messages either specify actions for the function to take or 
request information from the function. 

Menus are the principal means of user input for a Presentation Manager applica­
tion. A menu is a list of commands that the user can view and choose from. 
When you create an application, you supply the menu name and the command 
names. MS OS/2 displays and manages the menus for you, sending a message to 
the window procedure when the user makes a choice. This message is the signal 
to carry out the command. 

2.3.3 Dialog Windows 
A dialog window is a temporary window that you can create to let the user sup­
ply more information for a command. A dialog window contains one or more 
controls. A control is a small window that has a very simple input or output 
function. The controls in a dialog window give the user a means of supplying 
filenames, choosing options, and otherwise directing the action of the command. 
For example, an entry-field control lets the user enter and edit text. 

2.3.4 The Message Loop 
Since your application receives input through a message queue, the chief feature 
of any Presentation Manager application is the message loop. The message loop 
retrieves input messages from the message queue and dispatches them to the 
appropriate windows. 

For example, MS OS/2 collects hardware input, in the form of messages, in its 
system queue. It then copies this input to the appropriate message queue. The 
message loop in the application retrieves a message from the message queue and 
dispatches it, through the system, to the appropriate window procedure. The 
window procedure can respond to an input message by calling MS OS/2 func­
tions to carry out work in the window. 

For a more specific example, consider how the system and an application collab­
orate to process keyboard-input messages. The system receives keyboard input 
when the user presses and releases a key. The system copies the keyboard mes­
sages from the systein queue to the application's message queue. The message 
loop retrieves the keyboard messages, translates them into ANSI-character 
W1LCHAR m~ssages, and dispatches the ~CHAR messages to the appro­
priatewindow procedure. The window procedure then uses the GpiCharString 
function to display the character in the client window. 

MS OS/2 sends window-management messages directly to a window (Win) func­
tion. For example, after MS OS/2 carries out a request to destroy a window, it 
sends a WMJ)ESTROY message directly to the window procedure, bypassing 
the message queue. The window procedure must then use the WinPostMsg func­
tion to copy a ~QUIT message into the message queue, signaling the main 



Chapter 2: MS OS/2 Overview 19 
~i§iiiiiNim!falfim!lOOrup.!iiP:~!~~iln!~.mi_!~i!ii!!ii!if.!f!i~S!~!!~i~~:m~li~rMi~2i~!iii{i~i~lif~iiji~I~!mJm!~Ii§iiti{i~~~~mnr~ 

function that the window is destroyed and that the application should terminate. 
When the message loop retrieves the W~QUIT message, the loop terminates 
and the main function exits. 

2.4. The Graphics Programming Interface 
The graphics programming interface (GPI) consists of the MS OS/2 system func­
tions that let you create device-independent graphics for your applications. The 
Gpi functions are used in conjunction with the window manager to draw lines, 
shapes, and text in a window. Applications can also use the Gpi functions to 
draw graphics output on such devices as raster printers and vector plotters. 

2.4.1 Presentation Spaces and Device Contexts 
A presentation space is the key to an application's access to the system display, 
to printers, and to other graphics-output devices. Conceptually, a presentation 
space is a device-independent space in which you can create and manipulate 
graphics for display. The presentation space defines your drawing environment 
by specifying the tools you have available to create graphics. These tools include 
the graphics primitives granted to every presentation space, as well as the bit­
maps and fonts that your application loads for its exclusive use. 

Actually, a presentation space is little more than a data structure whose fields 
contain values that define the drawing environment. The values represent the 
colors, widths, styles, and other attributes of the graphics you draw. The system 
creates the data structure when you create the presentation space and initializes 
the structure to default values. 

You must create a presentation space to create graphics. You must also create a 
device context to display those graphics on a device. A device context is a bridge 
from a presentation space to a specific device. You create a device context by 
specifying the device you want to access and the type of access you want, such 
as direct or queued (for printing). You begin displaying graphics on the device 
by associating the device context with the presentation space. Once you have 
associated the device context, any lines, text, and images you draw in the presen­
tation space are also displayed on the given device. 

Like a presentation space, a device context is a data structure. It contains infor­
mation about the device driver that supports the specified device. The device 
driver interprets graphics commands sent to it from the presentation space and 
creates the corresponding commands for its device. It then sends the commands 
either directly to the device or to the spooler, depending on the type of access 
you gave the device context when you created it. 

2.4.2 Graphics Primitives 
In MS OS/2, graphics primitives are lines, arcs, markers, text, areas, and 
images. They are called primitives because you use them as the basic tools to 
create the documents, pictures, and other composite graphics that your appli­
cations display to the user. 

You draw a primitive by using a Gpi function. For example, to draw a line, you 
use the GpiLine function and specify the ending point of the line. The function 
uses the current point as the starting point for the line and draws from the 



20 MS OS/2 Programmer's Reference, Vol. 1 
iiiih'ii~jlJli!UiliitijiW_iI!'~i~m!E"~~¥~I~imlJ:jgi~!~~mji~l!MllliWii£!ii!!t!!!}~~~ei1~~~mt§1f§i~ftr~;!~F,ijJ3j!~Umi§~ii!~:U~~ 

starting point to the ending point. The current point is simply the ending point of 
the last primitive, unless you explicitly set the current pointby using a function 
such as GpiMove. 

A line primitive is a straight line. An arc primitive is a curve. Curves can be arcs 
of a circle or of an ellipse, or they can be more complex curves such as splines 
and fillets. A marker primitive is a mark or character that you draw at a specific 
point. Markers are typically used to plot points in a graph. An area primitive is a 
closed figure that has been filled with a pattern. A common use for an area 
primitive is to represent a cross-section in a mechanical drawing. An image is a 
bit mapped image, with each bit representing the color of a pel (picture element) 
on the device. Images are often used for complex pictures that cannot easily be 
drawn. 

Every primitive has a corresponding set of primitive attributes. The attributes 
specify the color, style, size, and orientation of the primitive when your applica­
tion draws it. The primitive attributes are given default values when you create 
the presentation space, so you can use the primitives immediately. However, you 
can reset the attributes at any time. You have the choice of changing the attri­
butes for individual primitives or changing a specific attribute for all primitives. 
For example, you can set the color for all primitives by using the GpiSetColor 
function, or you can set it for just the line primitive by using the GpiSetAttrs 
function. 

2.4.3 Other Graphics Tools 
In addition to the graphics primitives, MS OS/2 provides graphics tools that you 
can use to draw graphics and to affect how the graphics are drawn. These tools 
are paths, bitmaps, clipping areas, transformations, and color tables. 

A path is a sequence of lines that you can use to create a filled area, a geometric 
line, or a clip path. A path is very much like an area primitive, in that you can 
use the path as a closed figure and fill it with a pattern. Unlike an area primitive, 
however, a path can be used to create geometric lines, sometimes called wide 
lines. Geometric lines are drawn, using a given width and pattern, so that they 
follow the outline specified by the path. Geometric lines give you a selection of 
line styles and patterns that are not available with the line primitive. 

A bitmap is an array of bits that represents an image that you can display on a 
raster output device. Bitmaps typically represent scanned images and icons and 
are very much like image primitives. Unlike an image primitive, however, a bit­
map can have several different formats, each format specifying color information 
that an image primitive cannot contain. Also, bitmaps can be used to create fill 
patterns that you can use to fill figures created using paths and area primitives. 
Finally, bitmaps can be copied from one presentation space to another or even 
from one location to another within the same presentation space. 

A font is a collection of characters and symbols that you can use to draw text. 
Characters in a font belong to the same typeface and share stroke-width and 
serif characteristics. Some common fonts are I2-point Helvetica, IO-point Times 
Roman Bold, and I2-point Courier Italic. To use fonts in an application, you 
first create a logical font that describes the typeface and other characteristics 
that you want. Then you use the local identifier for the logical font to set that 
font as the current font for the presentation space. Subsequent text functions 
use the current font to draw text. 



Chapter 2: MS OS/2 Overview 21 
i!i~!Uf~i~~!~ll~!Ii.lf~m~i§iiililJf~iir.~!~.n;i~!frfi!!U!U~~!fii~~I~!i~l1i!~~~~i~li~iiii!i~I~Iir.!.Et~ljWI~!dUmi~li§iii1!~~~~~ij!U~~ 

Clipping is a process that limits graphics output to a specific region on the 
display or on a page of printer paper. You can use clipping with a presentation 
space by creating a clipping area. The clipping area is the region where output 
can appear. If an application attempts to draw output outside a clipping area, the 
system will "clip" the output, preventing it from appearing on the device. You 
can create a clipping area for a presentation space by setting the dimensions of 
the graphics field and viewing limits or by creating a clip path or clip region. The 
final clipping area is the intersection of these four possible clip regions. 

A transformation defines how the system should map the points in one coordi­
nate space onto another coordinate space. Since all graphics primitives and 
other drawing tools use coordinate spaces, a transformation affects the way all 
graphics are drawn by your application. For example, you can use a transforma­
tion to move a figure from one place to another on the display or to rotate or 
adjust the size of the figure. Transformations are typically used to give the user 
different perspectives on a single drawing or to create rotated or sheared figures 
that would be time-consuming for the application to plot and draw. 

A logical color table is an array of colors that an application uses when drawing 
graphics. Any primitive or other graphic you draw has one of the colors given in 
the table. You specify a color by giving a color index. The index identifies the 
table entry defining the color you want. Every presentation space has a default 
color table when it is created, but you can create a new logical color table to 
replace the default table if you need other colors. Creating a new table associ­
ates the color indexes with whatever color you have specified in the correspond­
ing table entry. 

2.4.4 Drawing 
You draw graphics by using the MS OS/2 drawing functions. A drawing function 
draws a primitive or other graphic, applying the primitive attributes and whatever 
information you supply to the function when you call it. For example, when 
drawing line primitives, the system applies the current line color and style. The 
style determines whether the line is solid or a series of dashes, dots, or both. 

Some attributes apply to all graphics primitives. For example, the foreground 
and background colors and mix modes affect all primitives. The foreground 
color defines the color of the primitive and the background color defines the 
color "behind" the primitive. For a line drawn using a dashed style, the dashes 
have the foreground color and the gaps between the dashes have the background 
color. The mix modes define how the foreground and background colors are 
combined with colors already on the display. The mix mode can cause the color 
to overpaint the existing color, leave it alone, or mix with it by using a binary 
operator such as the exclusive-OR operator. 

Some attributes are specific to a particular graphics primitive. For example, the 
arc parameters apply only to arcs. The arc parameters specify a transformation 
that maps a circle to another circle, ellipse, or similar shape. When you draw an 
arc, the system uses the shape defined by the transformed circle as the shape for 
your arc. You supply a multiplier to set the final size of the arc. 

A number of drawing functions use loadable resources to draw graphics. For 
example, the text-drawing functions, such as GpiCharString and GpiCharString­
Pos, can use a loaded font to draw text. To make a loadable resource available 
for these functions, you typically load the resource into memory and create a 
local identifier for the resource. For example, to use a font resource, you load it 



22 MS OS/2 Programmer's Reference, Vol. 1 
iiiih1iriliJiIU~lii'!iji&~IQj!!~iP.~F.m2¥~UII~~llfif!~i~im~Uoo~l!ruim~ii!!i!fi!!!U§!i§ll€lif~~.AimIiffimfiim~ranmlrn~J;i5~ii!I~~l!iY~~~ 

using the GpiLoadFonts function and then set the local identifier by using the 
GpiCreateLogFont function. Once you have a local identifier, you can set the 
resource to be the current resource by using a function such as GpiSetCharSet. 
Along with the text-drawing functions, the marker and area functions can use 
resources when they draw. 

2.4.5 Retained Graphics and Segments 
MS OS/2 lets you retain the graphics you draw in your application by storing 
them in retained segments. You create a retained segment by setting the drawing 
mode of the presentation space to D~ETAIN or DMJ)RAWANDRETAIN 
and opening the segment. All subsequent graphics are stored in the segment 
(and are also drawn on the device, if you specified DMJ)RAWANDRETAIN). 
You can close the segment at any time and draw the contents by using a function 
such as GpiDrawSegment. 

Retained segments are useful for storing graphics that result from user input. 
Once stored, the graphics can be redrawn or edited at any time. An element 
pointer lets the application move to a specific graphics element in a segment. 
The element can then be drawn or replaced, or new elements can be inserted. 

2.4.6 Metafiles 
A metafile, created by using a special device context, is another method of stor­
ing graphics. In this case, you associate the metafile device context with the 
presentation space, draw the graphics you want in the metafile, and then disasso­
ciate the device context and close it. Closing the metafile returns a handle that 
you can use to save the metafile in a disk file. 

Metafiles are a useful way of transferring graphics images from one computer to 
another. An application can load a metafile from disk and play it into a presen­
tation space. The presentation space can be associated with any device-display 
or printer. The graphics in the metafile are stored as graphics commands, not as 
a bitmap, so an application can examine and extract portions of the metafile if 
necessary. 

2.5 System Services 
The system services consist of all the MS OS/2 system functions that let you 
create processes and threads, access disk files and devices, allocate memory, 
and retrieve or set information about the system. In Presentation Manager appli­
cations, the system-service functions are typically used to carry out tasks for 
which no corresponding window-manager or Gpi function exists. In full-screen 
programs, system-service functions are used almost exclusively, even to interact 
with the user and access the devices of the computer. 

2.5.1 Multitasking 
Multitasking, one of the principal features of MS OS/2, is the ability of the sys­
tem to manage the execution of more than one program at a time. This ability 
helps to optimize use of the computer, since time normally spent by a program 
waiting for user input is distributed to other programs that may be printing a 
document or recalculating a spreadsheet. 



Chapter 2: MS OS/2 Overview 23 
!i=*!Uir;!~l!Ulli;~g~!B§!~iilii~if.~I~.flii_!~imim~~l~~~ml~~i!il~~i!~~~ili!i~~~.mi;jiiill!i1fdUmj~liiii;1tiirs~~~W~ 

MS OS/2 provides multitasking in the traditional sense of having more than one 
program run at a time, and it also extends this concept to permit a single pro­
gram to run more than one copy of itself at the same time. 

Every program that has been loaded into memory and is running is called a pro­
cess. Each copy of a process is called a thread. A process always has at least 
one thread, called the main thread or thread 1, and can create more threads. 
These additional threads are useful for carrying out tasks unrelated to the pro­
cessing of the main thread. For example, a process may create a thread to write 
data to a disk file. This frees the main thread so that it can continue to process 
user input. 

2.5.2 Dynamic Linking 
Dynamic linking lets a program gain access at run time to functions that are 
not part of its executable code. These functions are contained in dynamic-link 
libraries-special program modules that contain executable code but cannot be 
run as programs. Instead, programs load the appropriate dynamic-link libraries 
and execute the code in the libraries by linking to them dynamically. 

Dynamic-link libraries are very common in MS OS/2. In fact, most of the sys­
tem is contained in dynamic-link libraries. The chief advantage of dynamic-link 
libraries is that they reduce the amount of memory needed by a program. A pro­
gram loads a library only if it needs to execute a function in the library. Once 
the library is loaded, the system also shares it with any other program that needs 
it. This means that only one copy of the library is ever loaded at anyone time. 

2.5.3 Memory Management 
Programs can, at any time, allocate additional memory for their own use. MS 
OS/2 controls access to system memory through the use of selectors. A selector 
is a unique number identifying a specific segment in memory. When a program 
allocates a segIl1ent, it specifies the size of the segment (in bytes) and receives a 
selector for that segment. This selector can then be used to access the memory. 

MS OS/2 protects memory from unauthorized use. The process that allocates 
memory owns that memory, and no other process can access it. Attempting to 
access memory owned by another process causes a protection violation and usu­
ally terminates the process. 

If two processes need to share memory, a process can create shared memory 
and either pass the selector to the process that is to share the memory or pass 
the name of the shared segment to that process. When two processes share a 
segment, no protection violation occurs for them, but the memory remains pro­
tected from all other processes. The sharing processes must manage the shared 
memory. 

2.5.4 The File System 
MS OS/2 programs have complete access to the disk files and devices of the 
computer. MS OS/2 manages its disk files and its devices in essentially the same 
way. For example, a program can use the same functions to open and read from 
a disk file as it uses to open and read from a serial port. Each open file or device 
is identified by a unique file handle. The program uses the handle in system func­
tions to access the file or device. 



24 MS OS/2 Programmer's Reference, Vol. 1 
iliih1iiiiiliiilMf~~ai&'E'iiilil~;;~~mlml~mlJ;U!~U~!~~n§i~I!ruil~!imiii!illH!!!l;ru~~~1~~~imtiffimiiif~r~tmif~iiliif.&j!I~~~~!fi~ 

MS OS/2 lets programs create, open, move, and delete files and directories in 
the file system. When a process opens a file, it specifies whether the file can be 
shared-tllat is, whether it can be accessed and possibly modified by other 
processes. This sharing also applies to devices that a process may open. Pro­
cesses can open any device directly, including the parallel port, the serial ports, 
and the disk drive. MS OS/2 provides a wide range of input-and-output-control 
functions that a process can use to access and set the modes of the devices it 
has opened. 

Ordinarily, the system automatically opens three files when a program starts: the 
standard-input, standard-output, and standard-error files. These files correspond 
to the· keyboard and the full-screen display. The program can use these files to 
read from the keyboard and write to a full-scre~n display. 

2.5.5 Full-Screen Keyboard, Mouse, and Video Operations 
For full-screen programs, MS OS/2 provides access to the keyboard, the mouse, 
and the video display. A program can open these devices in much the same way 
as it opens a file. The MS OS/2 keypoard (Kbd) functions return much more 
information about a keystroke than do the standard file-system functions. Also, 
the keyboard functions let a program create logical keyboards and manage these 
keyboards for the processes in the same screen group. 

Similarly, a program can open the mouse and read events from the mouse-event 
queue. An event is a mouse motion or button click. The program can also man­
age the mouse pointer, moving it, hiding it, and showing it as necessary. 

Any full-screen program can write individual characters and strings directly to a 
character-based display. Unlike Presentation Manager applications, which must 
write characters to windows, a full-screen program has complete control 'of the 
system display while its session is in the foreground. The program can write both 
characters and attributes to the display, read characters from the display, and 
change modes for the display. A program that uses the video functions in a full-
screen session must manage the display for that session.' , 

The keyboard and mouse functions should not be used in Presentation Manager 
applications, since the system provides its own mouse and keyboard manage­
ment. Many of the video functions can be used in a special type of Presentation 
Manager application called an advanced-video-input-and-output (A VIO) pro- ' 
gram. An A VIO program creates a window but uses the video functions to write 
text to the window. 

2.5.6 Interprocess Communication 
MS OS/2 provides several methods of interprocess communication: semaphores, 
pipes, signals, and queues. 

A semaphore is a special variable that a process can use to signal the beginning 
and ending of a given operation and to prevent more than one thread within the 
process from accessing a specific resource at the same time. A process can 
create and use three types of semaphores: system, RAM, and fast-:-safe RAM. 
System semaphores are used between processes to control access to a shareq. 
resource. RAM semaphores are used between threads in the same process to 
control a resource or to signal the end of an operation. Fast-safe RAM sema­
phores are used between threads or processes to control a resource. The RAM 
semaphores are typically used when semaphore processing must be fast. 



Chapter 2: MS 05/2 Overview 25 
~1~lm1~!f!ii!ttmf~~~iH!ii1n~iij!Uifiii1w.;if;t.~iffl!!§I~!aJ!fiil§iIUmnUfiliii~im~~ml~J~iifiIWimffWni~~~IF.~r§';JiIDI1~i~l§jjseJ;rurn!mmR!~~ffii 

A pipe is a special file that two processes can use to transfer data. Although a 
pipe is like a file~ it does not correspond to a device or a file on disk. Instead, 
the pipe is maintained by the system. Two processes use a pipe by opening the 
pipe and retrieving two handles: a read handle and a write handle. One process 
uses the write handle to write data to the pipe. The other process uses the read 
handle to read the data from the pipe. 

A signal is a special interrupt that is sent to a process by the system or by 
another process. The signal temporarily stops normal execution of the process 
and causes the process to execute a signal handler. Sigrials are typically used to 
stop a process and exit. For example, pressing the CTRL+C key combination in a 
full-screen session generates a signal that usually stops the current process. The 
signal handler defines what a process does when it receives a signal. If a process 
does not want default signal handling, it can disable a signal or replace the signal 
handler with one of its own. 

A queue is a special buffer that a process creates and shares with other pro­
cesses. A queue is a convenient way for one process to channel data from two 
or more related processes into a single buffer. Note that this kind of queue is 
different from the message queue used by Presentation Manager. The queues are 
not related. 

2.6 The MS OS/2 System Functions 
The MS OS/2 system functions give applications access to all the features of 
MS OS/2. The MS OS/2 features, such as windows, device-independent graph­
ics, and multitasking, let you create programs that make optimal use of the com­
puter's memory, display, and CPU while still meeting the needs of a wide range 
of users through either the traditional character-based interface or the graphical 
user interface of Presentation Manager. 

The MS OS/2 system functions are organized into several distinct groups, as 
described in the following list: 

Function group 

Dev 

Dos 

Usage 

Use the Presentation Manager device (Dev) func­
tions to open and control Presentation Manager 
device drivers. These functions let you create 
device contexts that you can associate with a 
presentation space and use with the Gpi func­
tions to carry out device-independent graphics 
operations for displays, printers, and plotters. 

Use the disk-operating-system (Dos) functions in 
full-screen and Presentation Manager sessions to 
read from and write to disk files, to allocate 
memory, to start threads and processes, to com­
municate with other processes, and to access the 
computer's devices directly. Most functions in 
this group can be used in Presentation Manager 
applications. 



26 MS OS/2 Programmer's Reference, Vol. 1 
~!I"~~J~iH~ef~m!i;iii~!~iiii!HiY~Ii!i~a~~i~:~ifjmlraji~lwlim!.\~~~~~tifefsiffi~;ii1iifiiHl§i~!!~.ir:~fii~~!~i\iil!!;m~m;~f,;j!!j!ru 

Function group 

Gpi 

Kbd 

MOll 

Vio 

Win 

Usage 

Use the graphics-programming-interface (Gpi) 
functions to create graphics output for a display, 
a printer, or other output devices. The Gpi func­
tions give you a full range of graphics primitives, 
from lines to complex curves to bitmaps. You 
choose the attributes for the primitives (such as 
color, line width, and pattern) and then draw 
lines, text, and shapes. The retained-graphics 
capability lets you save the drawings in segments 
and build complex pictures by drawing a chain of 
segments. 

Use the keyboard (Kbd) functions in full-screen 
sessions to read keystrokes from the keyboard, 
to manage multiple logical keyboards, and to 
change code pages and translation tables. Since 
the Presentation Manager session provides its 
own keyboard support, Kbd functions are not 
needed in Presentation Manager applications. 

Use the mouse (MOll) functions in full-screen 
sessions to read mouse input from the mouse­
event queue, to set the mouse-pointer shape, and 
to manage the mouse for all processes in a ses­
sion. As with the keyboard, the Presentation 
Manager session provides its own mouse support, 
so MOll functions are not needed in Presentation 
Manager applications. 

Us.e the video-input-and-output (Vio) functions in 
full-screen sessions to write characters and char­
acter attributes to the screen, to create pop-up 
windows for messages, to change video modes, 
and to access physical video memory. Vio func­
tions can also be used in advanced-video-input­
and-output (A VIO) applications for the Presenta­
tion Manager session, to write characters and 
character attributes in a window. Most Presenta­
tion Manager applications, however, use the 
graphics-programming-interface (Gpi) functions 
to write text in a window. 

Use the window-manager (Win) functions to 
create and manage windows. Presentation 
Manager applications use windows as the main 
interface with the user. The Win functions let 
you create menus, scroll bars, and dialog win­
dows that let the user choose commands and 
supply input. Your application receives all mouse 
and keyboard input as messages from the mes­
sage queue. The Win functions let you retrieve 
messages from the queue and dispatch them to 
the window the input is. intended for. 



Chapter 

3 

MS OS/2 Programming Models 
3.1 Introduction............................................................ 29 

3.2 Full-Screen Programs................................................ 29 

3.3 Presentation Manager Applications.............................. 30 

3.4 The Family Application Programming Interface............. 32 

3.5 Using the Command Line.......................................... 37 

3.6 Using Structures ..... ............ ........... .......... ... ..... ........ 38 

3.7 Using Bit Masks ........................................................ 39 

3.8 Sharing Resources.................................................... 40 

3.9 C-Language Header Files........................................... 40 





Chapter 3: MS OS/2 Programming Models 29 
Imi!;Jllm~!mi~~~f~~~i~§fl~fjiUiU~w;~1i§i!i!M~~!§J~~!iUflmlfilii1:ml~~iilw.m:j5I/~iimaUlftitii~~!§!~lEb'il~!iID!!~iijlmim~;m~4!ta!iim!~m~1 

3.1 Introduction 
This chapter describes the types of programs that you can develop for MS OS/2. 
MS OS/2 supports the following program types: 

• Full-screen programs 

• Full-screen programs in a window 

• Presentation Manager applications 

• Advanced-video-input-and-output (A VIO) programs 

• Family-application-programming-interface (F API) programs 

3.2 Full-Screen Programs 
A full-screen program is any MS OS/2 program that does not create a Presenta­
tion Manager message queue. In other words, it is a program that does not rely 
on the Presentation Manager mouse and keyboard processing for input. Full­
screen programs typically run in a full-screen session. 

Most full-screen programs use the Dos functions to perform input, output, 
memory management, and other activities. Full-screen programs also commonly 
use the standard-input, standard-output, and standard-error files created for 
them when they start. 

A full-screen program uses a main function as its starting point and can call as 
many other functions as needed to complete its designated task. The following 
simple full-screen program copies the line "Hello, world" to the screen: 

iinclude <os2.h> 

main ( ) 
{ 

USHORT cbWritten; 

DosWrite(l. "Hello. world\r\n". 14. &cbWritten); 
} 

The MS OS/2 system functions use many structures, data types, and constants 
that are not part of the standard C language. For example, the data type 
USHORT is a special MS OS/2 data type that specifies an unsigned short 
integer. In order to use these items, you must include the MS OS/2 header file 
os2.h at the beginning of your program source file. For more information about 
the C-Ianguage header files, see Section 3.9. 

The MS OS/2 system functions are not standard C functions. They use the Pas­
cal calling convention. This means, for example, that the MS OS/2 functions 
expect parameters to be passed in left-to-right order instead of the standard 
right-to-Ieft order of C functions. To use the MS OS/2 functions in a C-Ianguage 
program, you must declare them with the pascal keyword, which directs the C 
compiler to generate proper instructions for the function call. All MS OS/2 
functions are declared this way within the os2.h file, so including the file saves 
you the trouble of declaring each function individually. 

The os2.h file also declares the parameter types for each function. Without these 
declarations, many function parameters would require type casting to avoid com­
piler errors. For example, the DosWrite function shown in the preceding exam­
ple requires the second parameter to be a complete far (32-bit) address to the 



30 MS OS/2 Programmer's Reference, Vol. 1 
~!I .. ;m~J.~~~!2!~!mi~i~:~iiiii!Ui!!~I~1ia~~im:~mrn!§ijii~iiiillim!l~ii\~jj;~E5l~nffu,~AAiii;iiiifiijUIN\~EiiS!nmi!i~i!uii!!l;m~Ii!~~ffi!~ 

given string. Since the os2.h file declares the second parameter with this type, 
the compiler does the cast for you. 

Some full-screen programs can also run in a window in the Presentation Manager 
session. Although the program runs in a window, it does not create the window. 
Instead, the system creates the window and provides the input and output to the 
program just as if it were running in a full-screen session. A full-screen program 
can run in a window only if it does not use functions that directly access the 
devices that Presentation Manager controls. For example, a program that 
attempts to retrieve the address of the video buffer or to change video modes 
may fail. 

3.3 Presentation Manager Applications 
A Presentation Manager application is any MS OS/2 program that creates a mes­
sage queue. A window is the only means a Presentation Manager application has 
to receive input and display output, so Presentation Manager applications typi­
cally create one or more windows to interact with the user. 

All MS OS/2 Presentation Manager applications have essentially the following 
structure: 

• A main function 

• One or more window procedures 

• Optional functions to support the main function and/or the window pro­
cedures 

Since nearly all Presentation Manager applications create and use windows, the 
main function carries out the same basic tasks in most applications. The typical 
main function does the following, in the order shown: 

1 Initializes the application for Presentation Manager. 

2 Creates a message queue. 

3 Creates a window class. 

4 Creates a window. 

5 Starts the message loop and continues to dispatch messages until the ~QUIT 
message is retrieved. 

6 Destroys the window when finished using it. 

7 Destroys the message queue. 

8 Terminates the application. 

Every MS OS/2 Presentation Manager application has at least one thread of exe­
cution. Each thread that calls Presentation Manager functions must register with 
the system by calling the WinInitialize function. This function creates an anchor 
block and returns an anchor-block handle that the thread can use in subsequent 
functions. 

An anchor block links a process with the system. The anchor block includes an 
instance data segment in which to store the process's environment and storage 
for error messages. The anchor-block handle is used in. the call to the 



Chapter 3: MS OS/2 Programming Models 31 
Iw.I!ftllmf!mi~~f~~~ilf!fiJfl~lS1miii;r:iro!iirsHWff.!1!Ji§Ufim!!lN!im:film~!~!!illmli!il~i1!fJlimr.fiiii~~~;mrm,'fJj!jf,llmlmJmeiimJaimiim~fii~!;il 

WinTerminate function that ends the association with the anchor block just 
before the application terminates. 

The application creates the message queue by using the WinCreateMsgQueue 
function. This function returns a queue handle that can be used in subsequent 
functions. Once the queue is created, the application can register a window 
class, create a window and start the message loop. After the message loop ends, 
the application can destroy the window and use the queue handle in the Win­
DestroyMsgQueue function to destroy the queue. 

Once the application is initialized and a message queue and window are created, 
the application can enter the main message loop. The application waits there 
for messages to appear in the queue, retrieves them, and dispatches them, as 
appropriate, to its windows. When the user or system chooses to terminate an 
application, a W1LQUIT message is used to trigger an exit from the message 
loop. 

After leaving the message loop, an application carries out various termination 
activities, including destroying windows, releasing memory, destroying message 
queues, closing files, and severing connections with the shell and other applica­
tions. 

The following code fragment from a simple Presentation Manager application 
copies the line "Hello, world" to its window: 

#define INCL_WIN 
#define INCL_DOS 
#include <os2.h> 
HAB hab; 
HMQ hmq; 
QMSG qmsg; 

1* anchor-block handle *1 
1* message-queue handle *1 
1* message-queue structure *1 

MRESULT CALLBACK MyWindowProc(HWND, USHORT, MPARAM, MPARAM); 

HWND hwndFrame; 1* frame-window handle *1 
HWND hwndClient; 1* client-window handle *1 
ULONG flStyle FCF_TITLEBAR I FCF_SYSMENU I FCF_SIZEBORDER I 

FCF_MINMAX I FCF_SHELLPOSITION I FCF_TASKLIST; 

main () 
{ 

1* 
* Initialize the thread for making Presentation Manager calls and 
* create the message queue. 
*1 

hab = WinInitialize(O); 
hmq = WinCreateMsgQueue(hab, DEFAULT_QUEUE_SIZE); 

1* Register the class, terminate on failure. *1 
if (IWinRegisterClass(hab, "MyClass", 

MyWindowProc, CS_SIZEREDRAW, NULL» 
DosExit(EXIT_PROCESS, 0); 

1* Create the window, terminate on failure. *1 

if (I (hwndFrame = WinCreateStdWindow(HWND_DESKTOP, WS_VISIBLE, 
&flStyle, "My Windowl", OL, NULL, 0, &hwndClient») 

DosExit(EXIT_PROCESS, 0); 

1* Get and dispatch messages. *1 

while (WinGetMsg(hab, &qmsg, NULL, 0, 0» 
WinDispatchMsg(hab, &qmsg, NULL, 0, 0); 



32 MS OS/2 Programmer's Reference, Vot 1 
;~.:w.t~~~!t2I~~l~i!J:ii~~iiii!Hm~l!airuii~u~;~lilml§iiii~jjiai:imU~I~l~~~el~!i~w.i3ifiiiill1iJf!i!n§r;s~i!~5liS~if~i~~~!I;mifiii~~ij!!§ 

WinDestroyWindow(hwndFrame) ; 
WinDestroyMsgQueue(hmq) ; 
WinTermiriate(hab); 

/* destroy the main window */ 
/* destroy the message queue */ 
/* terminate */ 

} 

MRESULT CALLBACK 
HWND hwnd; 
USHORT msg; 
MPARAM mpl; 
MPARAM mp2; 

MyWindowProc(hwnd, usMessage, mpl, mp2) 

{ 

} 

HPS hps; 
RECTL rcl; 
POINTL ptl; 

/* presentation-space handle */ 
/* rectangle structure */ 
/* point structure */ 

switch (msg) { 
case WM_PAINT: 

hps = WinBegiriPaint(hwnd, 
NULL, NULL); 

WinQueryWindowRect(hwnd, &rcl); 
WinFiIIRect(hps, &rcl, CLR_WHITE); 
ptl.x = (rcl.xRight - rcl.xLeft) / 2; 
ptl.y = (rcl.yTop - rcl.yBottom) / 2; 
GpiMove(hps, &ptl); /* move to 
GpiCharString(hps, 12L, 

"Hello, world"); 
WinEndPaint(hps); 
return (OL); 

default: 

/* start painting */ 
/* get window size */ 
/* fill background */ 

center of window */ 

/* draw string */ 
/* end painting */ 

return (WinDefWindowProc(hwnd, msg, mpl, mp2»; 
} 

An advanced-video-input-and~output (A VIO) program is a Presentation Manager 
program that uses the advanced Vio functions.for text output. These .function let 
a Presentation Manager application write text to a window just as if it were writ­
ing the text to a full screen. These programs must run in the Presentation 
Manager session and must create at least one window for input and output. 

3.4 The Family Application Programming Interface 
Many MS OS/2 functions can be used in programs intended to be run in real 
mode. These functions, collectively called the family application programming 
interface (family API, or FAPI), let developers create MS OS/2 programs that 
can run in both protected and real modes; that is, they can run under MS OS/2 
and under MS-DOS versions 2.x and 3.x. 

To use the family API in real-mode programs, you must use only the MS OS/2 
functions that belong to the F API, and you must observe the restrictions that 
apply to these functions when running in real mode. Also, you must bind your 
program by using the Microsoft Operating System/2 Bind utility (bind). The 
bind utility supplies the code needed to link the MS· OS/2 functions to the 
corresponding MS-DOS system calls. This code is used only when the program 
is run in real mode; that is, a bound program can still run in proteCted mode. 

Not all MS OS/2 functions belong to the FAPI, and some that do belong have 
slightly different behavior when used in real mode than when used in protected 
mode. The following is a complete list of the F API functions. Those functions 
marked with a dagger (t) operate differently in real mode than in protected 
mode; all other F API functions operate identically in both protected and real 
modes. 



Chapter 3: MS OS/2 Programming Models 33 
a!!!i§;l~i~;~lli:~~ifi!li~;ru~mie~jjlial~fimi®LE~;!nmt~l~ru~I~~1iSU~!i~~ii~mui~§frmi~1i~~~~~mitiJm~~iIi!ifi!i~iiiiltii!filiim 

DosAlIocHuge t DoslnsMessage t KbdFlushBuffer t 
DosAlIocSeg t DosMkDir KbdGetStatust . 

DosBeep DosMove KbdPeek t 

DosBufReset DosNewSize KbdSetStatus t 
DosCaseMap t DosOpen t KbdStringlnt 

DosChDir DosPutMessage t VioGetBuf 

DosChgFilePtr DosQCurDir VioGetCurPos 

DosClose DosQCurDisk VioGetCurType 

DosCreateCSAlias t DosQFHandState VioGetMode 

DoSDelete DosQFilelnfo VioGetPhysBuf 

DosDevConfig DosQFileMode VioReadCellStr 

DosDevIOCtl t DosQFSlnfo VioReadCharStr 

DosDupHandle DosQVerify VioScrLock t 
DosErrClass DosRead t VioScrollDn 

DosError t DosReallocHuge t VioScrollLf 

DosExecPgm t DosReallocSeg t VioScrollRt 

DosExit t DosRmDir VioScrollUp 

DosFileLocks DosSelectDisk VioScrUnLock 

DosFindClose DosSetDateTime VioSetCurPos 

DosFindFirst t DosSetFHandState t VioSetCurType 

DosFindNext t DosSetFilelnfo VioSetMode 

DosFreeSeg t DosSetFileMode VioShowBuf 

DosGetCollate t DosSetFSlnfo VioWrtCellStr 

DosGetCtrylilfo t DosSetSigHandler t Vio WrtCharStr 

DosGetDateTirrie DosSetVec t Vio WrtCharStrAtt 

DosGetDBCSEv t DosSetVerify VioWrtNAttr 

DosGetEnv DosSleep Vio WrtNCell 

DosGetHugeShift DosSubAlIoc Vio WrtNChar 

DosGetMachineMode DosSubFree VioWrtTTY 

DosGetMessage t DosSubSet 

DosGetVersion DosWrite 

DosHoldSignal t KbdCharIn t 

Note The DosGetMacblileMode function is especially useful in FAPI programs, since it 
specifies which environment the program is running in: MS OS/2 or MS-DOS. 



34 MS OS/2 Programmer's Reference, Vol. 1 
l!iiiil __ r.~i!ii~fi!ni5fmi!!Jaw.!i!iffii!~~!iilfi\il~i~.lff&r:!ffi§!~~iimi~5tIF.ilm!!,J!ml§;5l~llie;~JU_ilmlffdmmlS;m:;iPiiR,Wi~HiiiiiU~'if:m1 

Following are the real-mode restrictions and/or differences in operation for the 
FAPI functions marked with daggers (t) in the preceding list: 

DosAllocHuge Rounds the usPartialSeg parameter value up to the next para­
graph (l6-byte) value. This function copies the actual segment address, not a 
selector, to the variable pointed to by the psel parameter. 

DosAllocSeg Rounds the usSize parameter value up to the next paragraph (16-
byte) value. This function copies the actual segment, address, not a selector, to 
the variable pointed to by the psel parameter. 

DosCaseMap Provides no method of identifying the boot drive. The system 
assumes that the country.sys file is in the root directory of the current drive. 

DosCreateCSAlias Returns as a selector the actual segment address of the allo­
cated memory. Freeing either the returned selector or the original selector imme­
diately frees the block of memory. 

DosDevIOCtl Restricts the input-and-output-control functions that can be used. 
Categories 2, 3, 4, 6, 7, 10, and 11 cannot be used. Also, some control functions 
in categories 1,5, and 8 can be used with MS-DOS 3.x but not with MS-DOS 
2.x. The following input-and-output-control functions can be used in FAPI pro­
grams: 

ASYNC_SETBAUDRATE 
ASYNC_SETLINECTRL 
bS~LOCKREMOVABLE 
DSK_GETLOGICALMAP 
DS~OCKDRIVE t 
DSK.REDETERMINEMEDIA t 
DSICSETLOGICALMAP 
DSICUNLOCKDRIVE t 
PRT_GETFRAMECTL 
PRT _GETINFINITERETRY 
PRT_GETPRINTERSTATUS 
PRT JNITPRINTER 
PRT_SETFRAMECTL (for IBM Graphics Printers only) 
PRT_SETINFINITERETRY (current program only) 

t These input-and-output-control functions can be used only 
with MS-DOS versions 3.2 and later. 

DosError If the tEnable parameter is HARDERRO~ISABLE, causes all 
subsequent int 24h requests to fail, until another call is made to the DosError 
function with tEnable set to HARDERRO~NABLE. 

DosExecPgm Allows only the value EXEC_SYNC for the fExecFlags parame­
ter. Other values cause errors. The buffer pointed to by the pchFailName param­
eter is filled with blanks, even if the function fails. The codeResult field of the 
RESULTCODES structure receives the exit code for the DosExit function or the 
MS-DOS call that terminates the program. 

DosExit Exits from the currently executing program, since there are no threads 
in the real-mode environment. If the /Terminate parameter is EXIT_THREAD, 
the entire process ends', not just a thread. 

DosFindFirst Requires the phdir parameter to be HDIR_SYSTEM. 

DosFindNext Requires the hdir parameter to be HDI~SYSTEM. 



Chapter 3: MS OS/2 Programming Models 35 
eigffli!!fi~!ImIir:l!§m!U~~j~mi;§::iaJ~;U'i~~~I1lliti1i~!f!jJ~iliiih'i£!ii!mtii!i~jiimfimi~fi~~~511i§i~!iHh'iUiiiE.:fmRiiiiIiiHii.!tii!ft!i!i 

DosFreeSeg Does not treat a code-segment selector (created by using the Dos­
CreateCSAlias function) and the corresponding data-segment selector as unique. 
Freeing one frees both. 

DosGetCollate Provides no method of identifying the boot drive. The system 
assumes that the country .sys file is in the root directory of the current drive. 

DosGetCtryInfo Provides no method of identifying the boot drive. The system 
assumes that the country.sys file is in the root directory of the current drive. 

DosGetDBCSEv Provides no method of identifying the boot drive. The system 
assumes that the country.sys file is in the root directory of the current drive. 

DosGetMessage Provides no method of identifying the boot drive. The system 
assumes that the message file is in the root directory of the current drive. 

DosHoldSignal Recognizes only the signal-interrupt (SIG_CTRLC) and signal­
break (SIG_CTRLBREAK) signals. 

DoslnsMessage Provides no method of identifying the boot drive. The system 
assumes that the message file is in the root directory of the current drive. 

DosOpen Restricts the values that can be used with the JsOpenMode parame­
ter. The parameter can be a combination of the following values: 

Value Meaning 

OPEN~CCESS--READONL Y Read-only access mode. 

OPEN~CCESS_ WRITEONL Y Write-only access mode. 

OPEN~CCESS--READWRITE Read/write access mode. 

OPEN_SHAREJ)ENYREADWRITE Deny read/write share mode. 
Not available in MS-DOS 2.x. 
Available in MS-DOS 3.x only 
when the share command has 
been used. 

OPEN ... SHAREJ)ENYWRITE Deny-write share mode. Not 
available in MS-DOS 2.x. 
Available in MS-DOS 3.x only 
when the share command has 
been used. 

OPEN_SHAREJ)ENYREAD Deny-read share mode. Not 
available in MS-DOS 2.x. 
Available in MS-DOS 3.x only 
when the share command has 
been used. 

OPEN_SHAREJ)ENYNONE Deny-none share mode. Not 
available in MS-DOS 2.x. 
Available in MS-DOS 3.x only 
when the share command has 
been used. 

OPENYLAGS_NOINHERIT Inheritance flag. Not available 
in MS-DOS 2.x. 



36 MS OS/2 Programmer's Reference, Vol. 1 
UlliiJ.r.~~;~iiinifiimi!SGflimtiffiH~iiiiiimUiltf~ilil1,i:;;!f:~§!ii!!~i~ff51!$im!~~!!f\i§;§!~i~~;~_aJ,ml!frlmm!sim~mm,~i~:mii~iiilill 

Value Meaning 

OPENYLAGS_ WRITE_THROUGH Write-through flag. Not avail­
able in MS-DOS 2.x. 

OPENYLAGS~ASD Direct-access-storage-device 
(DASD) flag. 

The fail-on-error flag (OPENYLAGSYAIL_ON~RROR) is not available to 
real-mode programs. 

DosPutMessage Provides no method of identifying the boot drive. The system 
assumes that the message file is in the root directory of the current drive. 

DosRead Uses the KbdStringln function whenever the specified file handle 
identifies the keyboard device. In real mode, KbdStringln reads only the number 
of characters specified in the call, then beeps to signal the user that no addi­
tional characters can be entered. (In protected mode, the user can enter charac­
ters until the keyboard buffer is full.) 

DosReallocHuge Rounds the usPartialSize parameter value up to the next para­
graph (l6-byte) value. 

DosReallocSeg Rounds the usNewSize parameter value up to the next para­
graph (16-byte) value. 

DosSetFHandState Requires that the OPENYLAGSYAIL_ON~RROR 
flag and the OPENYLAGS_ WRITE_THROUGH flag not be set. Also, the 
OPENYLAGS_NOINHERIT flag must not be set in MS-DOS 2.x. 

DosSetSigHandler Can be used to install signal handlers for only the signal­
interrupt (SIG_CTRLC) and signal-break (SIG_CTRLBREAK) signals. Further­
more, the SIG_CTRLC and SIG_CTRLBREAK signals are treated as the same 
signal, so the function accepts only the SIG_CTRLC value when setting a signal 
handler. 

DosSetVec Does not accept VECTO~XTENSION~RROR as the usVec­
Num value, since this exception is not raised in machines using the 8088 or 8086 
microprocessor. 

KbdCharIn Does not copy the system time to the KBDKEYINFO structure and 
provides no interim character support. This function retrieves characters only 
from the default keyboard (handle 0). The tbStatus field can be OXOOOO or 
SHIFf~EY_IN. The hkbd parameter is ignored. 

KbdFlushBuffer Ignores the hkbd parameter. 

KbdGetStatus Does not support the interim or turnaround character. 

KbdPeek Does not copy the system time to the KBDKEYINFO structure and 
provides no interim character support. This function retrieves characters only 
from the default keyboard (handle 0). The tbStatus field can be OxOOOO or 
SHIFf~EYJN. The hkbd parameter is ignored. 

KbdSetStatus Does not support the interim character or the turnaround char­
acter. Raw input mode with echo mode on is not supported. The hkbd parame­
ter is ignored. 



Chapter 3: MS OS/2 Programming Models 37 
!!gffl!l!!i~!~If~!ii~:~li!m;~liru~.;tiII~~iIl~imun!jjl!!§iSfi§Uiii!i~~H!iiI!UI;;~m.Ii!iifi~II~~i§ili!ii1JjiU.iUirr·mUUYiiili.iliiiitii1ft!iWi 

KbdStringln Ignores the hkbd parameter. 

VioScrLock Always indicates that the lock was successful. 

3.5 Using the Command Line 
In standard C-Ianguage programs, you can use the argc and argv parameters of 
the main function to retrieve individual copies of the command-line arguments. 
You can use these parameters in MS OS/2 programs, but you can also retrieve 
the entire command line, exactly as the user typed it, by using the DosGetEnv 
function. 

When it starts a program, MS OS/2 prepares an environment segment for the 
program. This segment contains definitions of all environment variables, as well 
as the command line. The DosGetEnv function retrieves the segment selector for 
this environment segment and the address offset within that segment for the start 
of the command line. 

You can echo the command line on the screen by using the DosGetEnv function 
to get the address of the command line in the environment segment, as shown in 
the following sample program: 

#define INCL_DOS 
#include <os2.h> 

main ( ) 
{ 

} 

SEL selEnvironment; 
USHORT off Command; 
PSZ pszCommandLine; 
USHORT cbWritten; 
USHORT i, cch; 

DosGetEnv(&selEnvironment, &offCommand); 
pszCommandLine = MAKEP(selEnvironment, off Command) ; 

/* 
* The first string is the program name. The command line is the 
* next null-terminated string. 
*/ 

for (1 = 0; pszCommandLine[1); i++); 

/* Find the length of the command-line string. */ 

for (1++, cch = 0; pszCommandLine[cch + i); cch++); 

DosWrite(l, &pszCommandLine[i) , cch, &cbWritten); 

The command line has two parts. The first part is the program name, terminated 
by a zero byte. The second part is the rest of the command line, terminated by 
two zero bytes. The preceding progra,m echoes the command line by skipping 
over the program name and then writing everything up to the next zero byte to 
the screen. The first for statement skips over the command name; the second 
for statement computes the length of the string. The MAKEP macro creates the 
far pointer that is needed to access the command line in the environment seg­
ment. 

You can examine your program's environment by using the selector retrieved by 
the DosGetEnv function. The program's environment consists of the environ­
ment variables that have been declared and passed to the program. Each pro­
gram has a unique environment that is typically inherited from the program that 
started it-for example, from the MS OS/2 command processor, cmd. 



38 MS OS/2 Programmer's Reference, Vol. 1 
mlni!frEr.!ij~~!ilnimtilmiiiiiiim!~DR~.Ji!~!iIif~ii~iifO!!!ir:I§!ieHmii~H&11$fmi~J!ml§;iJf~1ii~~IL~_afmlfdi21iU!simi5=m,~i~imiiM~miim;( 

You can use the DosScanEnv function to scan for a specific environment vari­
able. This function takes as an argument the name of the environment variable 
that you are interested in and copies the current value of this variable to a buffer 
that you supply. The following sample program uses DosScanEnv to display the 
value of the environment variable specified in the command line: 

#define INCL_DOSQUEUES 
#include <os2.h> 

main ( ) 
{ 

SEL selEnvironment; 
USHORT off Command; 
PSZ pszCommandLine; 
PSZ pszValue; 
USHORT cbWritten; 
USHORT i, cch; 

DosGetEnv(&selEnvironment, &offCommand); 
pszCommandLine = MAKEP(selEnvironment, off Command); 

for (i = 0; pszCommandLine[i]; i++); 
for (i++; pszCommandLine[i] == ' '; i++); 

if (IDosScanEnv(&pszCommandLine[i], &pszValue» { 
for (cch = 0; pszValue[cch]; cch++); 
DosWrite(l, pszValue, cch, &cbWritten); 

} 
} 

3.6 Using Structures 
Many MS OS/2 functions use structures for input and output. To use a structure 
in an MS OS/2 function, you first define the structure in your program and then 
pass the 32-bit far address of the structure as a parameter in the function call. 

For example, the DosGetDateTime function copies the current date and time to 
a DATETIME structure whose address you supply:. The fields of the DATETIME 
structure define the month, day, and year, as well as the time of day (to hun­
dredths of a second). The DATETIME structure, defined in the os2.h file, has 
the following form: 

typedef struct _DATETIME { 
UCHAR hours; 
UCHAR minutes; 
UCHAR seconds; 
UCHAR hundredths; 
UCHAR day; 
UCHAR month; 
USHORT year; 
SHORT timezone; 
UCHAR weekday; 

} DATETIME; 

/* date */ 

To retrieve the date and time, you call the DosGetDateTime function, using the 
address operator (&) to specify the address of the DATETIME structure. The 
following sample program shows how to make the call: 

#include <os2.h> 

CHAR szDayName [] = "MonTueWedThuFriSatSun"; 
CHAR szMonthName[] = "JanFebMarAprMayJunJulAugSepOctNovDec"; 
CHAR szDate[] = "xx:xx:xx xxx xxx xx, xxxx\r\n"; 



Chapter 3: MS OS/2 Programming Models 39 
!!gff#Jf!:!i~ll!lllf.~!ii~:~fiij~mi;m!!.f::iru~;tiII~~k.:miii1I~ffi3iI~~iiB!mjgi!1mtii~'!lm;~~!iifi~I~~1ti§jli!iflmn.tiiiE.:§IiItiJij~lfil!tif!ii1!!m 

main ( ) 
{ 

} 

DATETIME date; 
SHORT offset; 
SHORT i; 
USHORT usYear; 
USHORT cbWritten; 

DosGetDateTime(&date); /* address of DATETIME structure */ 

szDate[O] (date.hours / 10) + '0'; 
szDate[l] (date.hours % 10) + '0'; 
szDate[3] (date.minutes / 10) + '0'; 
szDate[4] (date.minutes % 10) + '0'; 
szDate[6] (date. seconds / 10) + '0" 
szDate[7] (date.seconds % 10) + '0'; 
offset = date.weekday * 3; 
for (i = 0; i < 3; i++) 

szDate[i + 9] = szDayName[i + offset]; 
offset = (date.month - 1) * 3; 
for (i = 0; i < 3; i++) 

szDate[i + 13] = szMonthName[i + offset]; 
szDate[17] = (date.day < 10) ? ' , : (date.day / 10 + '0'); 
szDate[18] = (date.day % 10) + '0'; 
usYear = date.year; 
szDate[21] = (usYear / 1000) + '0'; 
usYear = usYear % 1000; 
szDate[22] = (usYear / 100) + '0'; 
usYear = usYear % 100; 
szDate[23] = (usYear / 10) + '0'; 
szDate[24] = (usYear % 10) + '0'; 

DosWrite(l, szDate, 27, &cbWritten); 

One drawback to using MS OS/2 functions exclusively is that there are no for­
matted output functions, such as the C-Ianguage printf function. Therefore, the 
preceding program formats the data itself before displaying it. The program uses 
the integer-division operators (/ and %) to convert binary numbers to ASCII 
characters. The program then copies the ASCII characters to a string and 
displays the string by using the DosWrite function. . 

Some MS OS/2 functions require that you fill one or more fields of the structure 
before calling the function. For example, there are some structures whose length 
depends on the version of the operating system being used; MS OS/2 requires 
that you supply the expected length so that the function does not copy data 
beyond the end of your structure. 

3.7 Using Bit Masks 
In MS OS/2, many functions use bit masks. A bit mask (also called an array of 
flags) is a combination of two or more Boolean flags in a single byte, word, or 
double-word value. In C-Ianguage programs, you can use the bitwise AND, OR, 
and NOT operators to examine and set the values in a bit mask. 

If a function retrieves a bit mask, you can check a specific flag in the bit mask 
by using the AND operator, as shown in the following code fragment: 

USHORT fsEvent; 

if (fsEvent & Ox0004) 
/* is the flag set? */ 



40 MS OS/2 Programmer's Reference, Vol. 1 , , 
iUmi.*Uj~li!liir;~e1i~lfiiim!i@i~U~.Ji!~li:!ifijnlE~l&r:~§!i@.;~i~H=-t!;rmi!!,Ji§l§is$1?~~~!lya.ii1h"flfJ;r:m~imi!tl!i!iaW:iifi~i~~iiHsp'! 

You can set a flag in a bit mask by using the OR operator, as shown in the fol­
lowing code fragment: 

ULONG flFurictions; 

flFunctions = flFunctlons I KR_KBDPEEK; 

Finally, you cali clear a flag in a bit mask by using the AND arid NOT opera­
tors, as shown in the following code fragment: 

USHORT fsEverit; 

fsEvent = fsEvent & -Ox0004; 

3.8 Sharing Resources 
Many MS OS/2 functions let you use the resources of the computer, such as the 
keyboard, screen, disk, and even the system speaker. Since MS OS/2 is a multi­
tasking operating system and more than one program may be running at a time, 
MS OS/2 considers all resources of the computer to be shared resources. As a 
result, programs must not claim exclusive access to a given resource. 

Consider a simple program that plays a short tune by using the DosBeep func­
tion. This furiction, when called by a single program, generates a tone at the sys­
tem speaker, but if two programs call DosBeep at the same time, the result is 
chaotic. For example, try running two or more copies of the following program 
at the same time: 

#include <os2.h> 

#def~rie CNOTES 14 
USHOR~ ausTune[] { 

440, 1000, 
480, 1000, 
510, 1000, 
550, 1000, 
590, 1000, 
620, 1000, 
660, 1000 
}; 

main ( ) 
{ 

} 

int i; 

for (i = 0; i < CNOTES; i += 2) 
DosBeep(ausTune[i], ausTune[i + 1]); 

The first parameter of the DosBeep function specifies the frequency of the note. 
The second parameter specifies the duration. The array ausTune defines fre­
quency and duration values for each note in the tune. 

DosBeep is intended tobe used for signaling the user when an error occurs, 
such as pressing an incorrect key. Since the system speaker is a shared resource, 
a process should use the DosBeep function sparingly. 

3.9 C-Language Header Files 
The MS OS/2 C-Ianguage header file os2.h contains the definitions you need to 
use the functions, data types, structures, and constants described in the Micro­
soft Operating Systeml2 Programmer's Reference. 



Chapter 3: MS OS/2 Programming Models 41 
IF.i!ii~~ijl~s!iiiniflrt4ifJiii .. :miW'~!!i!liiiUilimm!S1i~n2ia!i!im~iiil~!i!tmm~.rnJi!if:iii':ifaIi!~§i~lmf.~~.i23n~fS!~!!m~li'n~n;1@. 

When you include the os2.h file, the C preprocessor automatically defines many, 
but not all, of the most commonly used MS OS/2 functions. The os2.h header 
file is the "ma~ter" file of a set of files that contain the MS OS/2 function 
definitions. Each file contains definitions for the functions, data types, struc­
tures, and constants associate4 with a specific group of MS OS/2 functions. To 
minimize the time required to process the many header files, each function 
group is conditionally processed on the basis of whether a corresponding con­
stant is defined within the program source file. The following is a list of these 
constants, with descriptions of the function groups they represent: 

Constant Meaning 

INCL~ VIO Includes all MS OS/2 version 1.1 
A VIO functions. 

INCLJ3ASE Include all MS QS/2 version 1.1 sys­
tem functions (Dos, Vio, Kbd, Moo). 

INCLJ3ITMAPFILEFORMAT Include the bitmap file-header struc­
ture BITMAPFILEHEADER. 

INCLJ)EV Include all MS OS/2 version 1.1 
device functions (Dev). 

INCLJ)EVERRORS Include the Dev-function error con­
stants. 

INCLJ)OS Include all MS OS/2 version 1.1 ker­
nel functi()ns (Dos). 

INCLJ)OSDATETIME Include the date/time and timer func­
tions. 

INCLJ)OSDEVICES Include the device and IOPL support 
fUQ,ctions. 

INCLJ)OSDEVIOCTL Include all MS OS/2 version 1.1 
input-and-output control functions 
(IOCtls). 

INCLJ)OSERRORS Include the Dos-function error con­
stants. 

INCLJ)OSFILEMGR 

INCLJ)OSINFOSEG 

INCLJ)OSMEMMGR 

INCLJ)OSMISC 

INCLJ)OSMODULEMGR 

INCLJ)OSMONITORS 

INCL_DOSNLS 

Include the file-management func­
tions. 

Include the information-segment 
functions. 

Include the memory-management 
functions. 

Include miscellaneous Dos functions. 

Include the module-manager func­
tions. 

Include the monitor functions. 

Include national-language-support 
functions. 



42 MS OS/2 Programmer's Reference, Vol. 1 
iiim1fiil!ij:ii'-i!~~!'-f~ifJm.lI!II1~~:!tiifl_iJ~!~I!i~i~E-iii!§j~ii..!:1ffm!!~~~Jim5ffJ~ln~!§lfj~B~~~~:ar:f.~I~~i~if~i~~~ 

Constant 

INCL-DOSNMPIPES 

INCL-DOSPROCESS 

INCL-DOSQUEUES 

INCL-DOSRESOURCES 

INCL-DOSSEMAPHORES 

INCL-DOSSESMGR 

INCL-DOSSIGNALS 

INCL-DOSTRACE 

INCL~RRORS 

INCLYONTFILEFORMAT 

INCL_GPIBITMAPS 

INCL_GPICONTROL 

INCL_GPICORRELATION 

INCL_GPIERRORS 

INCL_GPILCIDS 

Meaning 

Include named-pipe functions. 

Include the process- and thread­
support functions. 

Include the queue functions and 
other miscellaneous functions. 

Include the resource-support func­
tions. 

Include the semaphore functions. 

Include the session-manager func­
tions. 

Include the signal functions. 

Include the DosPTra~e function. 

Include all MS OS/2 version 1.1 error 
constants. 

Include the font-file structures. 

Include all MS OS/2 version 1.1 
graphlcs-programming-interface func-
tions (Gpi). 

Include the bitmap and pel functions. 

Include the basic presentation-space­
control functions. 

Include the pick-aperture, boundary, 
and correlation functions. 

Include the Gpi-function error con­
stants. 

Include the physical- and logical-font 
functions. 

INCL_GPILOGCOLORTABLE Include the logical-color-table func-

INCL_GPIMETAFILES 

INCL_GPIPATHS 

INCL_GPIPRIMITIVES 

INCL_GPIREGIONS 

INCL_GPISEGEDITING 

tions. 

Include the metafile functions. 

Include the path and clipping func­
tions. 

Include the drawing-primitive and 
primitive-attribute functions. 

Include the region and clipping func-
tions. ' I 

Include the segment-editing func­
tions. 



Chapter 3: MS OS/2 Programming Models 43 
;r.miili~iiiUf~!iii!iiiifdFJiii~!mmU§lif~!ruf!ilimmfimi§§ffili~i1f!;~i!f~1HIy;~mml!!.mfi!if;!il~~:i~i~jgit~_~~l!!ei~~!fl!rn!~IM!~tailS 

Constant 

INCL_GPISEGMENTS 

INCL_GPITRANSFORMS 

INCLJ(BD 

INCL~OU 

INCL_NOCOMMON 

INCLYM 

INCL_SHLERRORS 

INCL_SUB 

INCL_ WINACCELERATORS 

INCL_WINATOM 

INCL_ WINBUTIONS 

INCL_ WINCATCHTHROW 

INCL_ WINCLIPBOARD 

INCL_ WINCOUNTRY 

INCL_ WINCURSORS 

INCL_ WINDIALOGS 

INCL_WINENTRYFIELDS 

INCL_ WINERRORS 

INCL_ WINFRAMECTLS 

INCL_ WINFRAMEMGR 

Meaning 

Include the segment-control and 
drawing functions. 

Include the transformation and 
transform-conversion functions. 

Include all MS OS/2 version 1.1 key­
board functions (Kbd). 

Include all MS OS/2 version 1.1 
mouse functions (Mou). 

Exclude any function group not 
explicitly defined. 

Include all MS OS/2 version 1.1 
Presentation Manager functions and 
structures. 

Include the shell error constants. 

Include all MS OS/2 version 1.1 
video, keyboard, and mouse func­
tions (Vio, Kbd, and Mou). 

Include all MS OS/2 version 1.1 
video functions (Vio). 

Include all MS OS/2 version 1.1 win­
dow functions (Win). 

Include the keyboard-accelerator 
functions. 

Include the atom-manager functions. 

Include the button-control functions. 

Include the WinCatch and WinThrow 
support functions. 

Include the clipboard-manager func­
tions. 

Include the country-support func­
tions. 

Include the text-cursor functions. 

Include the dialog-box functions. 

Include the entry-field functions. 

Include the Win-function error con­
stants. 

Include the frame-control (title bar 
and size border) functions. 

Include the frame-manager functions. 



44 MS OS/2 Programmer's Reference, Vol. 1 
!Rrmfiil!ii~~i!!w!~JUlf~i~liiJjj~i.l!iiiifj"~lima!i~I!ii!iimlf~ifi.!~ifI!fi.'tru!!iS~iW~Ji!ifBl~;~~~1:1~rmi~i!r.f!!m~!Br:[z;mi~mf~f~Prfti!l! 

Constant 

INCL_ WINHEAP 

INCL_ WINHOOKS 

INCL_WININPUT 

INCL_ WINLISTBOXES 

INCL_ WINMENUS 

INCL_ WINMESSAGEMGR 

INCL_WINPOINTERS 

INCL_ WINPROGRAMLIST 

INCL_ WINRECTANGLES 

INCL_ WINSCROLLBARS 

INCL_ WINSHELLDATA 

INCL_ WINSTATICS 

INCL_ WINSWITCHLIST 

INCL_WINTIMER 

INCL_ WINTRACKRECT 

INCL_ WINWINDOWMGR 

Meaning 

Include the heap-manager functions. 

Include the hook -manager functions. 

Include the mouse- and keyboard­
input functions. 

Include the list-box-control functions. 

Include the menu-control functions. 

Include the message-management 
functions. 

Include the mouse-pointer functions. 

Include the shell-program-list API 
functions. 

Include the rectangle functions. 

Include the scroll-bar-control func­
tions. 

Include the shell-data functions. 

Include the static-control functions. 

Include the shell-switch-list API func­
tions. 

Include the system-value and color 
functions. 

Include the timer functions. 

Include the WinTrackRect function. 

Include the general window­
management functions. 

To use a function within your program, you simply define the corresponding 
constant by using the #define directive before you include the os2.h file. For 
example, the following code fragment includes definitions for the memory­
management and file-management functions: 

#define INCL_DOSMEMMGR 
#define INCL_DOSFILEMGR 
#include <os2.h> 

main ( 
{ 

} 

Once you have defined a constant, you can use any function, structure, or data 
type in that function group. 



Part 2 
Window Manager 

-~~::r::;::Jc;::r:a 





47 
~~IiF.~~~l~!ii!nilir~J~§~l~~mliF:ii!:~il1mj1m~llm~i§lm~im~mf~l!i~.J!it!f:!inifiiiIYsi~I1!lf~o;n_m!mJE!s!ii!ml!i§ft~filllifl 

Part 2 

Window Manager 
Chapter 4 

Chapter 5 

Chapter 6 

Chapter 7 

Chapter 8 

Chapter 9 

Chapter 10 

Chapter 11 

Chapter 12 

Chapter 13 

Chapter 14 

Chapter 15 

Chapter 16 

Chapter 17 

Chapter 18 

Chapter 19 

Chapter 20 

Chapter 21 

Chapter 22 

Chapter 23 

Chapter 24 

Chapter 25 

Chapter 26 

Chapter 27 

Chapter 28 

Chapter 29 

Windows .................................................................. 49 

Messages and Message Queues.............................. 77 

Window Classes...................................................... 91 

Window Procedures........ ..... ............. ...................... 99 

Mouse and Keyboard Input ................................... 109 

Frame Windows.... ........ .... ... ........ ........................... 125 

Control Windows.................................................... 143 

Title-Bar Controls................................................... 151 

Button Controls.. ........ ............................................ 157 

Entry-Field Controls... ............................................ 169 

List-Box Controls................................................... 179 

Static Controls. ........ ..... .... ........... ........................... 193 

Scroll-Bar Controls................................................. 201 

Menus ...................................................................... 213 

Accelerator Tables ................................................. 237 

Dialog Windows...................................................... 245 

Painting and Drawing.............................................. 263 

Drawing in Windows .............................................. 279 

Mouse Pointers and Icons...................................... 287 

Cursors .................................................................... 295 

Printing .................................................................... 301 

Heaps ...................................................................... 319 

Clipboard................................................................ 331 

Dynamic Data Exchange ........................................ 345 

Hooks ...................................................................... 363 

Help ......................................................................... 377 





Chapter 

4 

Windows 
4.1 Introduction............................................................ 51 

4.2 About Windows....................................................... 51 
4.2.1 Desktop Windows ............................................ 51 
4.2.2 Application Windows........................................ 51 
4.2.3 Window Creation............................................. 52 

4.2.3.1 Window-Creation Functions ...................... 54 
4.2.3.2 Window-Creation Messages ...................... ~ 54 

4.2.4 Window Handles ............................................. 54 
4.2.5 Window Size and Position .................................. 55 
4.2.6 Window Styles................................................ 55 
4.2.7 Window Destruction ......................................... 56 
4.2.8 Locked Windows............................................. 57 
4.2.9 Disabled Windows............................................ 58 

4.3 System-Modal Windows ............................................ 58 
4.3.1 Window Data.................................................. 59 
4.3.2 Subclassed Windows......................................... 59 
4.3.3 Window Relationships....................................... 60 

4.3.3.1 Parent-Child Relationship............ ..... ........ 61 
4.3.3.2 Ownership.......................................... 62 
4.3.3.3 Object Windows ................................... 63 

4.3.4 Visibility.......... .................... ............... ...... ...... 63 
4.3.5 Size ............................................................. 64 
4.3.6 Position......................................................... 64 

4.3.6.1 Size and Position Messages ....................... 64 
4.3.7 Z Order .. ~..................................................... 64 
4.3.8 Maximized and Minimized Windows...................... 65 
4.3.9 Redrawing Windows......................................... 65 
4.3.10 System Commands........................................... 65 



4.4 Using Windows........................................................ 66 
4.4.1 Creating a Window ................. ~......................... 66 
4.4.2 Creating a Frame Window.................................. 66 
4.4.3 Destroying a Window........................................ 67 
4.4.4 Setting and Querying Window Data....................... 67 
4.4.5 Creating a Top-Level Window.............................. 67 
4.4.6 Creating an Object Window................................ 68 
4.4.7 Changing the Parent Window............................... 68 
4.4.8 Finding a Parent, Child, or Owner Window............. 68 
4.4.9 Setting an Owner Window.................................. 69 
4.4.10 . Finding a Child or Owned Window........................ 69 
4.4.11 Enumerating Top-Level Windows ......................... 69 
4.4.12 Moving and Sizing a Window............................... 70 
4.4.13 Moving a Window in a Stack of Windows................ 71 
4.4.14 Showing and Hiding a Window............................. 72 
4.4.15 Maximizing, Minimizing, and Restoring a Window..... 72 

4.5 Summary................................................................ 72 
4.5.1 Window Functions.... ... ..................................... 72 
4.5.2 Standard· Window Messages................................ 73 
4.5.3 Relationship Functions ...................................... 74 
4.5.4 Functions for Moving, Sizing, and Changing ............ 74 
4.5.5 Messages for Moving, Sizing, and Changing............. 75 



Chapter 4: Windows 51 
;i1~irnSiiil!IiIHI;1J!Hm~m§l!_i~~lm!!!¥.mi.!!!iii~~~I~~~f~!~~i~~l!ffi~~i~'i~iii!i~r:Ii.4U~liiiiml~fdiJmj~liimi!ir.s~~~i!!Y 

4.1 Introduction 
This chapter describes the portions of MS OS/2 that let you create and use win­
dows; manage relationships between windows; and size, move, and display win­
dows in your Presentation Manager application. You should also be familiar with 
the following topics: 

• Standard user-interface guidelines 

• Application initialization and termination 

• Messages and message queues 

• Window classes and window procedures 

4.2 About Windows 
A window is a rectangular area of the screen where an application displays out­
put and receives input from the user . You might think of a window as a "graph­
ics terminal" that shares the screen with other terminals. Only one "terminal" 
is active at a time, and when it is, a user can use the mouse and keyboard to 
interact with the application that owns the terminal. 

Unlike a graphics terminal, however, a window must be created by an applica­
tion before it can be used. MS OS/2 does not create a window by default. This 
means that one of the first tasks of a Presentation Manager application is to 
create a window. 

4.2.1 Desktop Windows 
MS OS/2 automatically creates two windows: the desktop window and the 
desktop-object window. The desktop window is the base (bottom-most) window 
in the Presentation Manager session. It is the window that paints the background 
for this session. It serves as the base for all windows created and displayed by 
applications. The desktop-object window is like a desktop window that is never 
displayed. It serves as a base for windows that coordinate the activity of other 
windows that are not displayed. 

4.2.2 Application Windows 
Every application creates at least one window, called the main window, to serve 
as the "graphics terminal" for the application. The application also creates many 
other windows either directly or indirectly to carry out tasks related to the main 
window. In fact, most windows used by an application are composed of several 
different windows. Each window plays a part in displaying output and receiving 
input from the user. 

Typically, an application's main window is made up of several windows acting 
together as one. The main window is usually a frame window that contains 
a client window and one or more control windows, such as a title bar and a 
System menu. 

An application can use several types of windows: frame windows, client win­
dows, control windows, dialog windows, message boxes, and menus. 



52 MS OS/2 Programmer's Reference, Vol. 1 
liliL'ir~jmi!UlliWJif!t_jIQl!!~iP._~~¥ml~~ll~:iMi~~~Hfji~lffiijll!iliii!ii!!t!ml~!~ail~~Jiimtmimniil~r~1iiiJjiiiif.ii!t!§~iim5U5~! 

A frame window is a special window that the application uses as the base when 
constructing a main window or other composite window. A frame window pro­
vides basic features, such as borders and system-command processing, that a 
main window needs to conform to the MS OS/2 user-interface guidelines. 

A dialog window is a frame window that contains one or more control windows. 
Dialog windows are used almost exclusively for prompting the user for input. An 
application usually creates a dialog window when it needs additional information 
to complete a command. It then destroys the dialog window when the requested 
information has been entered. 

A message box is a frame window that an application uses to display a note, cau­
tion, or warning to the user. Message boxes are commonly used to inform the 
user of problems the application encounters while carrying out a task. 

A client window is the window in which the application displays the current 
document or data. For example, a desktop-publishing application displays the 
current page of a document in a client window. Most applications create at least 
one client window. The application must process input to the window and then 
display output. 

A control window is any window used in conjunction with another window to 
carry out useful input or output tasks, such as displaying messages or reading 
text. MS OS/2 provides several predefined control-window classes that can be 
used to create control windows. Control windows include buttons, entry fields, 
list boxes, menus, scroll bars, static text, and title bars. 

A menu is a control window that presents a list of commands and other menus 
to the user. The user chooses commands from the list by using a mouse or key­
board. The application then carries out the chosen task. 

Many simple applications create only a main window. The application manages 
the client window and allows the frame and control windows to operate as 
defined by MS OS/2. 

4.2.3 Window Creation 
An application creates windows by using a window-creation function, such as 
WinCreateWindow, and supplying information about the window to be created. 
An application can create one or more windows in any thread for which it has 
created a message queue. An application creates a message queue for a thread 
by using the WinCreateMsgQueue function after initializing the application for 
Presentation Manager by using the WinInitialize function. 

The following information must be supplied when creating a window: 

• Window class 

• Window name 

• Parent window 

• Window position relative to the parent window 



Chapter 4: Windows 53 
~~!i5i~iii1!~mnpjf~p:!§Ilml~~i!!;!~.llif~!~i!fiil!n~i!¥.!~~~f~!~~i~~=ii~r!~i~2i~if&!i~~llir:miiijiiil~!iUmj~lii~!iiwa~!!i~i!i~ 

• Window position relative to its sibling windows (Z order) 

• Window width and height 

• Window styles 

• Owner window 

• Window identifier 

• Class-specific data 

Every window belongs to a window class. The window class defines how the win­
dow behaves and appears when operating. The chief component of the window 
class is the window procedure. The window procedure is a function that receives 
and processes all input and requests for action sent to the window by the system. 
The window class also defines the class styles. These tell MS OS/2 what initial 
window styles to give a window created with this class. 

A window can have a name. A window name is a text string that identifies the 
window for the user. The window name is typically displayed in the window or 
in a title bar within the window. How the name is used depends on the window 
class. 

Every window created has a parent window. The parent window provides the 
coordinate system used for positioning the window and defines the relationship 
the new window has with other windows in the system. The parent window also 
affects the behavior and appearance of the window. For example, when the 
parent window is hidden, the child window is also hidden. 

Every window has a position, size, and Z-order position. The position specifies 
the location on the screen of the window's lower-left corner. This position is 
relative to the lower-left corner of the parent window (in pels). A window's size 
is the width and height in the window (in pels). A window's Z-order position 
specifies the position of the window in the stack of overlapping windows. The 
window at the top of the Z order overlaps all sibling windows (that is, windows 
having the same parent window). A window at the bottom of the Z order is over­
lapped by all sibling windows. An application sets a window's Z-order position 
by placing it behind a given sibling window. 

Every window can have a style. The window style specifies how the window 
behaves or appears. For example, a window style can specify whether the win­
dow is visible or invisible when first created. A few window styles apply to all 
windows, but most apply to windows of specific window classes. The window 
procedure for that class interprets the style. 

A window can be owned by another window. An owner window is similar to a 
parent window, but it does not affect the behavior or appearance of the window 
in the same way. The owner window usually coordinates the activity of a window 
so that it can operate in conjunction with other windows. The window sends 
messages about its state to its owner window; the owner window sends messages 
about what action to carry out next. 

A window can have a window identifier. A window identifier uniquely identifies a 
window that operates in conjunction with other windows. A window identifier is 
especially useful if a window sends information to the owner window. 



54 MS OS/2 Programmer's Reference, Vol. 1 
illib1iriijmi!I.ID~fiU!@f_iliQi!~~iP._~;m=liilimll~fi1{i~!~l!iHi~ltruilniWiim=:i!H!l!l~!~~1~~Jiimti!NmiJi;Uftr~;Ji!mii~itifr.ami§9ii!m.!fi~! 

A window can have class-specific data. This data further defines how the window 
behaves and appears when first created. The system passes class-specific data to 
the window procedure. The window procedure then applies the data to the new 
window. 

4.2.3.1 Window-Creation Functions 
The basic window-creation function is Win Create Window. The WinCreate­
Window function takes window class, style, size, and position information and 
creates a new window. All other window-creation functions, such as Win­
CreateStdWindow and WinCreateDlg, supply some of this information by 
default and create windows of a specific class or style. 

Although WinCreate Window provides the most direct means of creating a 
window, most applications do not use it. Instead, they typically use the Win­
CreateStdWindow function to create a main window and use the WinD 19B ox 
or WinCreateDlg function to create dialog windows. 

The WinCreateMenu, WinLoadMenu, WinLoadDlg, WinMessageBox, and 
WinCreateFrameControls functions also create windows. Each of these func­
tions substitutes for one or more calls to the Win Create Window function 
required to create a given window. For example, you can create a frame window, 
one or more control windows, and a client window, all in a single call to Win­
CreateStdWindow. 

4.2.3.2 Window-Creation Messages 
The system sends messages to the window procedure as it creates a window. 
Each window procedure receives a 'WM.-CREATE message, specifying that the 
window is being created. 

The system also sends a ~DJUSTWINDOWPOS message, specifying the 
size and position for the window. This message allows the window procedure to 
adjust the size and position before they are actually applied to the window. 

The system also sends other messages. The number and order of these messages 
depend on the window class and style and on the function used to create the 
window. 

4.2.4 Window Handles 
When a window is created, the creation function returns a window handle. A 
window handle uniquely identifies the window and can be used in functions to 
direct the action of the function to the window. Window handles have the data 
type HWND; applications must use this type when declaring the variables that 
hold window handles. 

There are several special constants that can be used in place of a window handle 
in certain functions. For example, HWNDJ)ESKTOP can be used in the Win­
CreateWindow function to specify the desktop window as the new window's 
parent window. Similarly, HWND_OBJECT represents the desktop-object win­
dow. HWND_TOP and HWND-BOTTOM represent the top and bottom posi­
tions when setting the Z-order position for a window. 



Chapter 4: Windows 55 
~~imsiwilWllm!PJif~m!fP:~l~~iI!i!J!i.mH!!!imi!@~~!t!{~~!~!~~j~~$!i~rMmi~iii!i~I~Iir~liijliil.dUmjif.l§iffi!ii!s~!!i~~j!o~ 

Although the NULL constant is not a window handle, it can be used in some 
functions to specify that no window is affected. For example, NULL can be used 
in the WinCreate Window function to specify that there is no owner window. 
Some functions may return NULL, indicating that the given action applies to no 
window. 

4.2.5 Window Size and Position 
A window's size and position can be expressed as a bounding rectangle, given in 
coordinates relative to its parent window. The window's size and position can be 
explicitly specified when it is created, or the system can use default values. The 
window's size and position can be changed at any time. 

The default coordinate system for a window specifies that the point (0,0) is at 
the window's lower-left corner; coordinates increase upward and to the right. 

When two sibling windows overlap, the system must specify which window is 
displayed in front. This ordering of sibling windows is known as the Z order. For 
more information about Zorder, see Section 4.3.7. 

4.2.6 Window Styles· 
A window style is a value that specifies how a window behaves or appears in a 
given situation. Window styles let applications adapt windows of a given class for 
special circumsta~ces. For example, an application can give a window the style 
WS_SYNCP AINT to cause it to paint immediately whenever any portion of the 
window becomes invalid. A window normally paints only if there are no mes­
sages waiting in the message queue. 

An application usually sets the window style when it creates the window. It can 
also set the window style after creation by using the WinShowWindow and Win­
SetWindowULong functions. MS OS/2 provides several standard window styles 
that apply to all windows. It also provides many styles for the predefined frame 
and control windows. The frame anq control styles are unique to each pre­
defined window class and can be used only for windows belonging to the 
corresponding class. . 

Initially, the class styles of the window class used to create the window deter­
mine the window styles of the new window. If the window class h::ts the style 
CS_SYNCP AINT, all windows created using that class have the style 
WS_SYNCP AINT by default. 

MS OS/2 has the following standard window styles: 

Style Description 

Makes the Window visible. MS OS/2 draws 
the window on the screen unless overlap­
ping windows completely obscure it. Win­
dows without this style are hidden. If over­
lapping windows completely obscure the 
window, the window is still considered to 
be visible. Visibility simply means that 
MS OS/2 draws the window if it can. 



56 MS OS/2 Programmer's Reference, Vol. 1 
iliib1ir;!ilmmiUffii!@fE'i6.Qi!!~;w.E"~s~~I~mll~:~I~!~!iffm~liruill!£e!iii!~!t!!!l~~~Iill;~~Jiimtmi~iiU~r~m!mt$1$15liiinif!l!§~ifiY~~~1 

Style 

WSJ)ISABLED 

WS_CLIPCHILDREN 

WS_CLIPSIBLINGS 

WSYARENTCLIP 

WS~INIMIZED 

WS~AXIMIZED 

WS_GROUP 

4.2.7 Window Destruction 

Description 

Disables mouse and keyboard input to the 
window. This style is used to temporarily 
prevent the user from using the window. 

Prevents a window from painting over its 
child windows. 

Prevents a window from painting over its 
sibling windows. . 

Prevents a window from painting over its 
parent window. 

Saves the image under the window as a bit­
map. When the window is moved or hidden, 
the system restores the image by copying 
the bits. 

Causes the window to immediately receiv~ 
WMY AINT messages after a part of the 
window becomes invalid. Without this style, 
the window receives ~ AINT messages 
only if no other message is waiting to be 
processed. . 

Reduces the window to the minimum size. 

Enlarges the window to the maximum size. 

Identifies the window as the first dialog item 
in a group of dialog items. This style is llsed 
with controls in dialog windows to permit 
the user to move among the controls by 
pressing the direction keys. 

Identifies the window as a tabstop window. 
This style is used with controls in dialog 
windows to permit the user· to move to the 
control by pressing the TAB key. 

An application can destroy the windows it has created. When a window is de­
stroyed, the system hides the window if it is visible, and then removes any inter­
nal data associated with the window. This invalidates the window handle;· it can 
no longer be used in functions. An application destroys a window by using the 
WinDestroyWindow function. 

Most applications destroy the windows they create soon after creating them. 
For exampl~, an application usually destroys any dialog windows as soon as the 
application has sufficient input from the user to continue its task. An application 
eventually destroys the main window of the application (before terminating). In 
general~(J.n application n1Ust destroy all the windows it creates. 



Chapter 4: Windows 57 
w.i!flnm~!mi~~fffi~~iiii§lI~fjlmiijjf;f;~1j£iirn!~!.~ial!fiili1!1if;Jffflfilrn~i~!!lImll!ft~i~15mramMifi~!§,!~:F.b'iff!il!i!~isl§Hm~;mm!~ml~~r:M: 

Destroying a window does not affect the window class from which the window is 
created. New windows can still be created using that class and any existing win­
dows of that class continue to operate. 

Destroying a window also destroys that window's child and· owned windows. The 
WinDestroyWindow function sends a WMJ)ESTROY message to the window, 
which in turn sends the same message to all its child and owned windows. Each 
child and owned window passes the message on to other child and owned win­
dows. In this way, all descendant windows of the window being destroyed are 
also destroyed. 

Before destroying a window, an application should save or remove any data asso­
ciated with the. window and release any resources. For example, a presentation 
space created for the window by the WinGetPS function must be released by 
calling the WinReleasePS function. This must be done before calling the Win­
DestroyWindow function. If a presentation space is associated with the device 
context for the window, the application should disassociate or destroy the 
presentation space by using the GpiAssociate or GpiDestroyPS function before 
calling WinDestroyWindow. Failing to release a resource can cause an error. 

The WinDestroyWindow function may send several messages to a window. The 
following is a list of possible messages sent by WinDestroyWindow: 

Message 

WMJ)ESTROY 

WMACTIVATE 

Description 

Always sent to the window being destroyed after it 
has been hidden, but before its child windows 
have been destroyed. 

Sent with the first message parameter equal to 
FALSE if the window being destroyed is the active 
window. 

~OTHER~NDOVVDESTROYED 

Sent to all main windows of the window being de­
stroyed and to its descendant windows, if the win­
dow beingdestfoyed has been registered with the 
WinRegisterWindowDestroy function. 

~ENDERALLFMTS 

Sent if the clipboard owner is being destroyed and 
there are unrendered formats on the clipboard. 

If the window being destroyed is the active window, both the active and focus 
states are transferred to another window. The window that becomes the active 
window is the next window (as defined by the ALT+ESC key combination). The 
new active window determines which window has the input focus. 

4.2.8 Locked Windows 
A window can be locked. An application typically locks a window to prevent it 
from being destroyed. This is useful whenever a window needs to access data 
that may be lost if the associated window is destroyed. An application can lock a 
window by using the WinLockWindow function. 



58 MS OS/2 Programmer's Referer1~e~ Vol. 1 
il!l~~~m!t!'li~i~\~!~~i!Hi!!~I!!i~ii!m~i!f.~mlff!~jjiiilii::l$_\~~~ell~n_~3i!iiiimim!~~I!~Eii5fi!i§~i!!£iii1iilitiimimi~ffiim 

Each window has a lock count. When a window is created, its lock count is set 
to zero, meaning.that the window is unlocked. An application can use the Win­
LockWindow function to increment or decrement the lock count. If the lock 
count is greater than zero, the window is locked. If the lock count is zero, the 
window is unlocked. The lock count can never be less than zero. An application 
can retrieve the current lock count by using the WinQueryWindowLockCount 
function. 

The WinQueryWindow, WinQueryActive Window, and WinQuerySysModal­
Window functions also lock a window if specified. 

4.2.9 Disabled Windows 
A window can be disabled. A disabled window temporarily receives no keyboard 
or mouse input. An application typically disables a window to prevent the user 
from using the window. For example, the application may disable a push button 
in a dialog window to prevent the user from choosing it. An application can 
enable a disabled window at any time. Enabling a window restores normal input. 
An application enables or disables a window by using the WinEnable Window 
function. 

By default, a window is enabled when created. The WSJ)ISABLED style can 
be specified, however, to disable a new window. If an application uses the 
WinEnable Window function to disable an existing window, that window also 
loses the keyboard focus. The keyboard focus is set to NULL, meaning no win­
dow has the focus. If a child window or other descendant window has the key­
board focus, the descendant window loses it when the window is disabled. 

An application can determine whether a window is disabled by using the Win­
Is WindowEnabled function. 

4.3 System-Modal Windows 
System-modal windows require the user to respond immediately to warnings 
about the state of the system. Because the system-modal window receives all 
keyboard and mouse input, all other windows are effectively disabled when the 
system-modal window is set; the user cannot continue working in other windows 
until the system-modal window has been cleared. An application sets and clears 
the system-modal window by using the WinSetSysModalWindow function. 

Due to its absolute control of input, applications must use care when setting a 
system-modal window. Ideally, an application uses a system-modal window only 
when there is danger of losing data if the user does not respond to the problem 
immediately. 

Although an application can destroy a system-modal window, the new active win­
dow will also be the new system-modal window. An application can also make 
another window active while the system-modal window exists. Again, the new 
active window is also the new system-modal window. In general, once a system­
modal window is set, a system-modal window will continue to exist in the Presen­
tation Manager session until explicitly cleared. 



Chapter 4: Windows 59 
~lfllm1~!mi!"~!lif!¥i~li!ifimjjn~lijimiijjfli1~~iffljmr~!!f!fif~ilifilruffiilrn1all*t!~!!l1ill~lifiliJimfifiii5~~~l§~'Wljf!!I!islwsnm;mmiHiiUHl~~r:;i 

4.3.1 Window Data 
Every window has an associated data structure. The window data structure con­
tains all the information specified for the window when it was created and any 
additional information supplied for the window since creation. Although the 
exact number and meaning of fields in the window data structure is private to 
the system, an application can directly access any of the following fields: 

• Pointer to window-class data structure 

• Pointer to window procedure 

• Parent-window handle 

• Owner-window handle 

• Handle of first child window 

• Handle of next sibling window 

• Window size and position (expressed as a rectangle) 

• Lock count 

• Window style 

• Window identifier 
•. Update-region handle 

• Message-queue handle 

An application can examine and modify these fields by using functions such as 
WinQueryWindowUShort and WinSetWindowUShort. These functions let an 
application access fields, such as the lock count, which are stored as 16-bit 
integers. Other functions let an application access fields containing 32-bits 
integers and pointers. There are several fields that indirectly affect the fields in 
the window data structure. For example, the WinLockWindow function modifies 
the lock-count field; the WinSubclassWindow function replaces the window­
procedure pointer. 

An application can extend the number of available fields in the window data 
structure by specifying a count of extra bytes when it registers the corresponding 
window class. The window procedure can then use these bytes to store informa­
tion about the window. Functions such as WinQueryWindowUShort and Win­
SetWindowUShort give direct access to the extra bytes. 

If a window needs more than a few bytes of storage added to the window data 
structure, using extra bytes alone is not the best solution. One common alterna­
tive is to dynamically allocate some memory and then store a pointer to that 
dynamic memory in the extra bytes of the window data structure. 

4.3.2 Subclassed Windows 
A subclassed window is any window whose original window procedure has been 
replaced with another window procedure. The original window procedure is 
specified by the window class used to create the window. An application typi­
cally subclasses a window (replaces the window procedure) so that it can support 



60 MS OS/2 Programmer's Reference, Vol. 1 
il!l,,~~~~!el~!IDii¥ii!f:il~iiii!H!~I~~ii~U~I~IiJJfl!j1li~il~:~~il~~~£;il=tiR;ii~!iliDJijill!~~i!~ei~fai~t~i~UIDlliiiimi~~ijj;~ 

additional capabilities in a window created with a given class. For example, an 
application may subclass a push-button control so that it can add sound when 
the user chooses the button. An application subclasses a window by using the 
WinSubclass Window function. 

Typically, a window procedure used to subclass a window will pass most (if not 
all) messages on to the original window procedure. The usual goal of subclassing 
is to add capability. The WinSubclass Window function returns the address of 
the original window procedure, making it easy to call the original function from 
the new window procedure. The following code fragment shows the general for­
mat ofa window procedure used for subclassing: 

PFNWP pfnwp; 

main () { 

} 

1* Subclass in main function or other window procedure. *1 

pfnwp = WinSubclassWindow(hwnd, MySubClass); 

MRESULT CALLBACK MySubClass(hwnd, usMessage, mpl, mp2) 
HWND hwnd; 
USHORT usMessage; 
MPARAM mpl; 
MPARAM mp2; 
{ 

switch (usMessage) { 

. 1* Process messages. *1 

} 
return (pfnwp(hwnd, usMessage, mpl, mp2»; 

} 

Note that the replacement window procedure calls the original window pro­
cedure instead of the WinDelWindowProc function. 

An application can subclass only one window at a time. It cannot subclass an 
entire class. 

4.3.3 Window Relationships 
Window relationships define how windows interact with each other on the screen 
and through messages. There are parent-child window relationships and owner­
ship relationships. 

The parent-child relationship determines how a window looks when drawn on 
the screen. It also determines what happens to a window when a related window 
is destroyed or hidden. The parent-child rules apply to all windows at all times 
and cannot be modified. 

Ownership determines how windows communicate using messages. Cooperative 
windows define the rules of ownership and then carry them out. Although some 
windows, such as windows belonging to the preregistered, public window class 
WCYRAME, have quite complex rules of ownership, the application ordinarily 
defines the ownership rules. 



Chapter 4: Windows 61 
itirr~liIi!~!!!i~~iMfgj~j;in!ljjll~ijj!UiI~Ii!~~i:m!!fm;tfBJ!!if~jJifiimffE!Iiia;!w.!!ff:!!fii51/Sfijilifilii!lfa~ifi~~i!i!f¥~WJjf!!l!i~lmIlWl.Jim~!miiml~iilii! 

4.3.3.1 Parent-Child Relationship 
Most windows have a parent window. (The exceptions to this rule are the desk­
top and the desktop-object windows. These windows, created by the system 
when it first starts, have no parent windows.) An application sets the parent win­
dow when it creates the window; the system uses the parent window to deter­
mine where and how to draw the new window, as well as when to destroy the 
window. 

A window is drawn relative to its parent window. The coordinates given to 
specify the position of a window's lower-left corner are relative to the lower-left 
corner of its parent window. For example, a window whose coordinates are 
(10,10) is placed 10 pels left and 10 pels up from the lower-left corner of its 
parent window. A window is a top-level window if its parent window is the desk­
top window. Top-level windows are drawn relative to the lower-left corner of the 
screen (the desktop window's lower-left corner). 

Windows with the same parent window are called sibling windows. All top-level 
windows are sibling windows since they share a common parent window, the 
desktop window. Sibling windows can overlap; an application or a user can 
arrange the windows so that some appear on top of others. Every sibling window 
has a Z-order position that specifies where it lies in the stack of overlapping win­
dows. The parent window for the sibling windows is always at the bottom of the 
stack. 

A window is clipped to its parent window. This means that no part of a child 
window is ever drawn outside of its parent window. If an application creates a 
child window that is larger than the parent window or positions a child window 
so that some or all of the window extends beyond the edges of the parent win­
dow, the system automatically clips (does not draw) the portion of the child win­
dow that extends beyond the edges. Depending on the window styles for a win­
dow, a window may also be clipped to its child and its sibling windows. When a 
window has the style WS_CLIPCHILDREN or WS_CLIPSIBLINGS, the sys­
tem clips the window. 

A window is destroyed when its parent window is destroyed. When the parent 
window is destroyed, the system sends WMJ)ESTROY messages to each child 
window. This is convenient for composite windows (for example, the applica­
tion's main window) since an application needs to destroy only the parent win­
dow; all the related windows, including the client window, are destroyed auto­
matically. The parent window is always the last window to be destroyed. This 
allows the parent window to use any data saved or left behind by its child win­
dows. 

While every window has only one parent window, a window can have any num­
ber of child windows. Any child window can have child windows. Each child 
window in this chain of windows is a called a descendant window of the original 
parent window. Immediate child windows are child windows directly related to 
the parent window, not just descendant windows. 

An application can change a window's parent window at any time. Changing the 
parent window changes where and how the child window is drawn. 



62 MS OS/2 Programmer's Reference, Vol. 1 
;'1I .. ~~~m~mt~~i~i~:iliiii!Hi!~I!!illii~n~~HJJff!~ii~iI~'LmU~fln~~~el~1iBmiiifi!iliJiijml_il~E;iefij!i.if~i~iiW!liiifilfi!~iiifiim 

4.3.3.2 Ownership 
Any window can have an owner window. An owner is a window, not necessarily 
a parent window, that controls some aspect of another window. Applications 
typically use ownership to establish a connection between windows so that 
together they can carry out useful tasks. For example, the title bar in an appli­
cation's main window is owned by the frame window. Together they let the user 
move the entire main window by clicking the mouse in the title bar. An applica­
tion can set the owner window when it creates the window, or it can set the 
owner window at a later time. 

Ownership establishes a relationship between windows that is independent of 
the parent-child relationship. Unlike parent and child windows, there are no 
predefined rules for how the owner and owned windows interact. The window 
procedures for the owner and owned windows must carry out any special interac­
tions specified. 

The preregistered, public window classes provided by MS OS/2 recognize owner­
ship. Control windows, created with classes such as WC_TITLEBAR and 
WC_SCROLLBAR, notify their owners of events; frame windows, created using 
theWCJRAME class, receive and process notification messages from the con­
trol windows they own. For example, a title-bar control sends a notification mes­
sage to its owner when it receives a mouse click. If the owner is a frame win­
dow, the frame window receives the notification message and prepares to move 
the frame window and its child windows. 

Owner and owned windows must be created by the same thread; that is, they 
must belong to the same message queue. Since ownership is independent of the 
parent-child relationship, the owner and owned windows do not have to be des­
cendants of the same parent window. This means one window can be a descen­
dant of the desktop window and the other a descendant of the desktop-object 
window. This can affect how windows are destroyed. Destroying the owner win­
dow does not necessarily destroy the owned window. An application must expli­
citly destroy any owned window that is not a descendant window of the owner. 

Frame windows often have owned windows that are not descendants (they are 
sibling windows instead). A frame window has the following special properties: 

• Destroys all owned windows, even if they are not descendants, when the 
frame window is destroyed. 

• Moves owned windows when the frame window moves. The owned windows 
that are not descendants maintain their position relative to the upper-left 
(not the usual lower-left) corner of the owner window. Any owned window 
with the style FS_NOMOVEWITHOWNER does not move. 

• Changes the Z-order position of all owned windows when the frame window 
changes. 

• Hides all owned windows when the frame window is minimized or hidden. 
Owned windows hidden in this way are restored when the frame window is 
restored. 

If an application needs the same special processing for its own window classes, 
it must provide that support in the window procedures for those classes. 



Chapter 4: Windows 63 
imi~~Umg,~~fffi~~iiiiin~lmlm!ijlmijP.iBi~jg~l!t!fii;iiliiiifijrliIIDiaJi~1iiHl!U.1ii!llgil!tiSllrftf:iifi~~~:r.,;'fJJ!jf!lr!islmr~~r.~ilflillif!lif.iifiM! 

4.3.3.3 Object Windows 
Any descendant of the desktop-object window is called an object window. An 
object window is like any other window but it is not displayed. Applications typi­
cally use object windows to provide services for windows. For example, an appli­
cation might use an object window to manage a shared database. The advantage 
of using an object window in this way is that a window can request information 
from the database by sending a message to the object window and receive a reply 
as a message. 

Because object windows are not displayed, the window procedure for an object 
window does not have to process input and paint messages. This means that an 
application can use object windows just as it would other objects in object­
oriented environments. The object window processes messages that affect the 
data belonging to the object. 

The rules for parent-child relationship and ownership also apply to object win­
dows. In particular, changing the parent window of an object window to the 
desktop window or to a descendant of the desktop window causes the system to 
display the window if it is visible. 

4.3.4 Visibility 
A window can be visible or invisible. The system displays visible windows on the 
screen. It hides invisible windows by not drawing them. If a window is visible, 
the user can supply input to the window and view output. If a window is invisi­
ble, the window is effectively disabled. An application sets a window's visibility 
state when it creates the window. Later, a user or the application can change 
these initial values. 

A window is visible if the style WS_ VISIBLE is set for the window. An applica­
tion can set this style when it creates the window. By default, the WinCreate­
Window function creates invisible windows unless the WS_ VISIBLE style is 
given. After a window is created, an application typically hides a window to hide 
the details of operation from the user. For example, an application may keep a 
new window invisible while it customizes the window's appearance. 

Even if a window is visible, the user may not be able to see the window on the 
screen. Other windows may completely overlap the window or the window may 
have been moved beyond the edge of the screen. The window is considered visi­
ble but it cannot be seen. 

A visible window is subject to the clipping rules established by its parent~child 
relationship. If the window's parent window is not visible, the window will not 
be visible. Since a child window is drawn relative to the parent's lower-left 
corner, if the parent window is moved beyond the edge of the screen, the child 
window will also move. 

A user may move only part of the parent window containing the child window 
off the edge of the screen, so although the window and its parent window are 
visible, the user may not be able to see them. An application determines 
whether the user can actually see a visible window by checking the window's 
current position. 



64 MSOS/2 Programmer's Reference, Vol. 1 
i!Uw.!~J~~U!ll!iU~i~!U!r:U~tiiiitUru~lF.illli~~i~:~mmlmjj~I~Ii$~ii}~~~~l~HfffifsUfi~l~iii.ruUgfSJJ!I!~l~~mii~~i~i~iimifEi$1fi;~i~U~!~ 

4.3.5 Size 
Every window has a size (width and height) given in pels. The size can be any 
integer value in the range 0 through 65,535. A window can have zero width 
and/or height. A window with zero width or height is not drawn on the screen 
even though it may be visible. 

Although an application can create very large windows, it should consider the 
size of the screen when choosing a window size. One way to choose an appropri­
ate size is to use the WinGetMaxPosition function to retrieve the size of the 
maximized window. A window that is larger than its maximized size will also be 
larger than the screen. 

An application can retrieve the current size of the window by using the Win­
QueryWindowRect function. 

4.3.6 Position 
Every window has a position. The position is specified as the coordinates of the 
window's lower-left corner. The coordinates, sometimes called window coordi­
nates, are always relative to the lower-left corner of the parent window. 

To improve drawing performance, a frame window may adjust its horizontal 
position so that it is a multiple of 8, relative to the screen origin (the lower-left 
corner of the screen). Coordinates that are mUltiples of 8 correspond to byte 
boundaries in the screen-memory bitmap. It is usually faster to draw starting 
at a byte boundary. An application can override this action by using the 
FCF_NOBYTEALIGN style when creating the window. 

4.3.6.1 Size and Position Messages 

4.3.7 Z Order 

A window receives messages when it changes size or position. Before a change is 
actually made, the system may send a WM~DJUSTWINDOWPOS message to 
allow the window procedure to make final adjustments to the win,dow's size and 
position. This message includes an SWP structure that contains the width, 
height, and position requested. If the window procedure adjusts these values in 
the structure, the system uses the adjusted values to draw the new window. The 
~JUSTWINDOWPOS message is not sent if the change is. a result of a 
call to the WinSetWindowPos function and the SWP .... NOADJUST constant is 
specified. 

After a change has been made to a window, the system sends a ~SIZE mes­
sage to specify the new size of the window. If the window has the class style 
CS.-MOVENOTIFY, the system also sends a W1LMOVE message. The 
W1LMOVE message includes the new position for the window. The system 
sends a W1LSHOW message if the visibility of the window has changed. 

Every window has a Z-order position. Imagine an axis extends outward from the 
screen toward the viewer. A window at the top of the Z order is displayed in 
front of its sibling windows when the windows overlap. A window at the bottom 
of the Z order is displayed behind its sibling windows when the windows overlap. 



Chapter 4: Windows 65 
~igffl!l~i~l~llf.~!§~i~~j~m~§:im~~~II~~~~li5Im3iJ~~ii§!I~~i~mr:fi~illiil~~~ffiUi~~I~~1i~~!iIlHit!ii~iliRi~ilff!lfilltii!mi~ 

4.3.8 Maximized and Minimized Windows 
A maximized window is a window that has been enlarged so it fills the screen. 
Although a window's size can be set so it exactly fills the screen, a maximized 
window is slightly different-the system automatically moves the window's title 
bar to the top of the screen and sets the WS~AXIMIZED window style. 

A minimized window is a window whose size has been reduced so that it is 
exactly the size of an icon. Like a maximized window, a minimized window is 
more than just a window of a given size. The system typically moves the mini­
mized window to the lower part of the screen and sets the WS~INIMIZED 
style for that window. The lower part of the screen is sometimes call the icon 
area. The system moves a minimized window into the first available icon position 
in the icon area if no other position is specified. 

If a window is created with the styles WS~AXIMIZED or WS~INIMIZED, 
the system draws the window as a maximized or minimized window. 

An application can restore a maximized or minimized window to its previous 
size and position. 

4.3.9 Redrawing Windows 
After the system moves or changes the size of a window, it may invalidate all or 
part of the window. If at all possible, the system tries to preserve the contents of 
the window and simply copy them to the new position. But if a window's size has 
increased, the window must fill the area exposed by the size change. If a window 
has moved from behind an overlapping window, any area that was fonrierly 
obscured by the other window must be drawn. In these cases, the system invali­
dates the exposed areas and the window receives a WMJ' AINT message. 

An application can require that the system invalidate the entire window for each 
move or size change by setting the CS_SIZEREDRA W class style in the corre­
sponding window class. This class style is typically used for applications that use 
the window's current size and position to determine how to draw the window. 
For example, a clock application may always draw the face of the clock so that it 
exactly fills the window. 

An application can also explicitly specify which parts of the window to preserve 
during a move or size change. Before any change is made, the system sends a 
~CALCV ALIDRECTS message to windows that do not have the style 
CS_SIZEREDRA W. This allows the window procedure to specify what part of 
the window to save and where to align it after the move or size change. 

4.3.10 System Commands 
An application that has a window with a System menu can change the size and 
position of that window by sending system commands. The system commands 
are usually generated by the user choosing commands from the System menu. 
An application can emulate the user action by sending a ~SYSCOMMAND 
message to the window. 



66 MS OS/2 Programmer's Reference, Vol. 1 
'!im_ffii1~i~!iifliimjsamm!~~[~~filif~J!111Ii1r.f;!f;~§!u!!~iiGH~!fiiRt!~I§!;§ifi!~1Jie;~~H!f.81mlfdmiU!mm~!i~i!!litiiifiru'ilmif 

Some of the system commands are listed here: 

Command 

SC.MOVE 

SC.MINIMIZE 

SC.MAXIMIZE 

SC.-RESTORE 

4.4 Using Windows 

Description 

Starts a size command. The user can change 
the size of the window by using the mouse or 
keyboard. 

Starts a move command. The user can move 
the window by using the mOuse and keyboard. 

Minimizes the window. 

Maximizes the window. 

Restores a minimized or maximized window to 
its previous size and position. 

Closes the window. This command sends a 
~CLOSE message to the window. The 
window carries out any steps needed to clean 
up and destroy itself. 

The following sections explain how to create and use windows in an application, 
how to manage ownership and parent-child window relationships, and how to 
move and size windows. 

4.4.1 Creating a Window 
You create windows by using the WinCreate Window function. 

For all windows, the parent-child relationship is set when you create the window 
using the WinCreateWindow function or other window-creation function. You 
can set the ownership for a window at any time. (Note that a window does not 
need an owner window unless you want to establish a· relationship other than the 
standard parent-child relationship for the window.) 

You can specify the initial size and position for a window when you create it. 
You can change these settings at any time. 

4.4.2 Creating a Frame Window 
Although WinCreateWindow can be used to create all windows, most applica­
tions do not call this function. Instead, they use the WinCreateStdWindow func­
tion to create frame windows and the WinD 19B ox or WinCreateDlg function to 
create dialog windows. 



Chapter 4: Windows 67 
!!gfflil~i~HruIf.~!i§fffilim:flii!!iiil_lialF.!f!;t!~tI!~I~OIm!fiif.i!j!~'fi~1!ilii¥!If;mt~~~I~~~~!ifiilt'aiii;iliHitiilmllntii!ft!l!m 

4.4.3 Destroying a Window 
You can destroy a window by using the WinDestroyWindow function. The fol­
lowing code fragment shows how to create and then destroy an entry-field con­
trol: 

HWND hwndMain; 
HWND hwnd; 

/* applioation's main window */ 

hwnd = WinCreateWindow( ... ); 

/* Read from the oontrol. */ 

WinDestroyWindow(hwnd); 

4.4.4 Setting and Querying Window Data 
You can examine the data associated with a window by using the WinQuery­
WindowUShort and WinQueryWindowULong functions. 

Each of these functions specifies a field to examine. The index value can be an 
integer representing a zero-based index or a constant (QW_) that specifies a 
specific field. 

4.4.5 Creating a Top-Level Window 
You can create a top-level window by setting the desktop window as the win­
dow's parent window. Almost all main windows for applications are top-level 
windows; the desktop window is frequently given in calls to the WinCreate­
StdWindow function. 

The following code fragment creates a top-level window for an application: 

/* Set the oreation flags. */ 

ULONG flCreationFlags 
FCF_TITLEBAR I 
FCF_SIZEBORDER 
FCF_MINMAX I 
FCF_MENU I 
FCF_SYSMENU I 
FCF_HORZSCROLL I 
FCF_VERTSCROLL; I 

/* title bar */ 
/* size border */ 
/* minimize and maximize buttons */ 
/* menu */ 
/* System menu */ 
/* horizontal soroll bar */ 
/* vertioal soroll bar */ 

/* 
* Create a frame window with a olient window that belongs to the 
* window olass "MyPrivateClass". 
*/ 

hwndFrame = WinCreateStdWindow( 
HWND_DESKTOP, /* owner is desktop window */ 
OL, /* no styles for frame window */ 
&flCreationFlags, /* frame oontrols */ 
"MyPrivateClass", /* window olass for olient */ 
"Sample Window", /* window title */ 
OL, /* no styles for olient */ 
NULL, /* use applioation's module */ 
1, /* resouroe ID */ 
&hwndClient) ; /* olient handle */ 



68 MS OS/2 Programmer's Reference, Vol. 1 
mmEiiiiU!iit!Uilliii'ilmislflimt~iUL~i~d81if~i~.r.ri!f;~~~Ui!!!mG!mIliiR1i~m!I!;mRiif~~;S:_afmlrmmmf§ifniliil~i!f:Giii~1f:iil 

4.4.6 Creating an Object Window 
You can create an object window by using the WinCreate Window function and 
setting the desktop-object window as the parent window. 

The following code fragment creates an object window: 

hwndObject = WinCreateWindow( 
HWND_OBJECT, /* parent is object window */ 
"MyPrivateClass", /* window class for client */ 
"Sample Window", /* window title */ 
OL, /* no styles for object window */ 
0, 0, /* lower-left corner */ 
0, 0, /* width and height */ 
NULL, /* no owner * / 
HWND_TOP, /* insert at top of Z order */ 
1, /* window ID */ 
NULL, /* no class-specific data */ 
NULL); /* no presentation data */ 

4.4.7 Changing the Parent Window 
You can change a window's parent window by using the WinSetParent function. 
For example, an application that uses child windows to display documents may 
want only the active-document window to show a System menu. One way to do 
this is to change that menu's parent window back and forth between the docu­
ment window and the object window when ~CTIV ATE messages are 
received. This is shown in the following code fragment: 
case WM_ACTIVATE: 

hwndMenu = WinWindowFromID(hwnd, FlO_MENU); 
if (SHORT1FROMMP(mpl) == TRUE) 

WinSetParent(hwndMenu, hwnd, TRUE); 
else 

WinSetParent(hwndMenu, HWND_OBJECT, TRUE); 

4.4.8 Finding a Parent, Child, or Owner Window 
You can determine the parent, child, and owner windows for any window by 
using the WinQueryWindow function. The function returns the window handle 
of the requested window. It can also lock that window. If a window is locked, it 
must be unlocked by using the WinLockWindow function. 

The following code fragment determines the parent window of the given window 
(it does not lock the parent window): 
HWND hwndParent; 

hwndParent = WinQueryWindow(hwnd, QW_PARENT, FALSE); 

The following code fragment determines the topmost child window and locks it: 
HWND hwndChild; 

if (hwndChild = WinQueryWindow(hwnd, QW_TOP, TRUE» { 

/* Lock the child window. */ 

WinLockWindow(hwndChild, FALSE); 
} 

If a given window does not have an owner or child window, the function returns 
NULL. 



Chapter 4: Windows 69 
!igfflil!!ii!!~Ilf.~liifff!li~~i~i8;I!§!j]!~~~~!i~ .... ~imt~l~fi~I~Eiimffii!i1t~fi!ii~i~ug~mia~~I~~1ii§jf!!i:ihitlii~ififiiii~ij!tiim!~ 

4.4.9 Setting an Owner Window 
You can set the owner for a window by using the WinSetOwner function. After 
setting the owner, a window typically notifies the owner window of the new rela­
tionship by sending a message. 

The following code fragment shows how to set the owner window and send it a 
message: 

#define NEW_OWNER 
HWNO hwnd; 
HWNO hwndOwner; 

1 

if (WinSetOwner(hwnd, hwndOwner» { 

/* window to get new owner */ 
/* window to become new owner */ 

/* Send a notification message. */ 

WinSendMsg(hwndOwner, /* send to owner */ 
WM_CONTROL, /* control message for notification */ 
MAKELONG(NEW_OWNER, 1), /* notification code and IO */ 
NULL) ; /* no extra data * / 

} 

A window can have only one owner, so WinSetOwner removes any previous 
owner. 

4.4.10 Finding a Child or Owned Window 
A parent or owner window can retrieve the handle of a child or owned window 
by using the Win WindowFromID function and supplying the identifier of the 
child or owned window. Win WindowFromID searches all child and owned win­
dows to locate the window having the given identifier. The window identifier is 
set when the application creates the child or owned window. 

An owner window typically uses the WinWindowFromID function to respond to 
a notification message from an owned window. 

The following code fragment retrieves the window handle of the owned window 
having the window identifier 1: 

hwndOwned = WinWindowFromIO(hwndOwner, 1); 
WinSendMsg(hwndOwned, WM_ENABLE, MPFROM2SHORT(O, TRUE), NULL); 

You can also retrieve the handle of a child window by using the Win Window­
FromPoint function and supplying a point in the corresponding parent window. 

4.4.11 Enumerating Top-Level Windows 
You can enumerate all top-level windows by using the WinBeginEnum Windows 
and WinGetNextWindow functions. An application can create a list of all child 
windows for a given parent window by using the WinBeginEnum Windows func­
tion. This list contains the window handles of immediate child windows. An 
application can retrieve, one at a time, the window handles from the list using 
the WinGetNextWindow function. When the application has finished using the 
list, it must release it by using the WinEndEnumWindows function. 



70 MS OS/2 Programmer's Reference, Vol. 1 
l!iml.r.IIinfmi4iiimimi~liw.mtrntp'~§PiJiiiiillU~il~F.!n!!.i!f:i§!u!!!miiimiHat!mim!~1mli§ii!~lIilE;;l~;~_8J,mlffd~iU!§iml5m~i~iif:I~UiliiW:iii 

The following code fragment shows how to enumerate all top-level windows (all 
immediate child windows of the desktop window): 

/* Enumerate all top-level windows. */ 

henum = WinBeginEnumWindows(HWND_DESKTOP); 

/* 
* Loop through all enumerated windows, performing the desired task 
* on each one. 
*/ 

while (hwnd = WinGetNextWindow(henum» { 

/* Lock the window. */ 

WinLockWindow(hwnd, FALSE); /* unlock window when done */ 
} 

/* Return memory required for enumeration back to the system. */ 

WinEndEnumWindows(henum); 

4.4.12 Moving and Sizing a Window 
You can move a window by using the WinSetWindowPos function and specifying 
the SWP .-MOVE constant. The function changes the position of the window to 
the specified position. The position is always given as coordinates relative to the 
parent window. 

The following code fragment moves the window to the position (10,10): 

WinSetWindowPos( 
hwnd, /* window handle */ 
NULL, /* not used for moving and sizing */ 
10, 10 /* new position */ 
0, 0, /* not used for moving */ 
SWP_MOVE); /* move and size * / 

You can set the size of a window by using the WinSetWindowPos function and 
specifying the SWP _SIZE constant. The function changes the width and height 
of the window to the specified width and height. 

You can combine moving and sizing in a single function call, as shown in the fol­
lowing code fragment: 

WinSetWindowPos( 
hwnd, 
NULL, 
10, 10 

/* window handle */ 
/* not used for moving and sizing */ 
/* new position */ 
/* width and height */ 200, 200, 

SWP_MOVE I SWP_SIZE); /* move and size */ 

You can retrieve the current size and position of a window by using the Win­
QueryWindowPos function. This function copies the current information to an 
SWP structure. 



Chapter 4: Windows 71 
!igU~I~i~!~llf.~!iiffi!li~~jp.m;~!im;f~im.f~~tm!~iEi!f!ifilUiiSiiib'ii!iitit'li5iiaP.i~~~i!1i1\~i~~~R!~i!it~i&;1liHi!illiiiiiltiifiliim 

The following code fragment uses the current size and position to change the 
height of the window, but leaves the width and position unchanged: 

SWP swpCurrent; 

WinQueryWindowPos(hwnd, 
WinSetWindowPos( 

hwnd, 
NULL, 
0, 0, 
swpCurrent.cx, 
swpCurrent.cy + 200, 
SWP_SIZE); 

&swpCurrent); 

/* window handle 
/* not used for moving 
/* not used for sizing 
/* current width 
/* new height 
/* change the size 

*/ 
and sizing */ 

*/ 
*/ 
*/ 
*/ 

You can also move and change the size of several windows at once by using the 
WinSetMultWindowPos function. This function takes an array of SWP struc­
tures. Each structure specifies the window to be moved or changed. 

4.4.13 Moving a Window in a Stack of Windows 
You can move a window to the top or bottom of the Z order by passing the 
SWP 20RDER constant to the WinSetWindowPos function. You specify where 
to move the window by specifying HWND_TOP or HWND.-BOTTOM. 

The following code fragment uses WinSetWindowPos to reorder a stack of child 
windows: 

HENUM henum; 
HWND hwndParent; 
HWND hwndNext; 

henum = WinBeginEnumWindows(hwndParent); 

while (hwndNext = WinGetNextWindow(henum» { 

} 

WinSetWindowPos( 
hwndNext, 
HWND_TOP, 
0, 0, 0, 0, 
SWP_ZORDER); 

/* next window to move */ 
/* put window on top */ 
/* not used for Z order */ 
/* change Z order */ 

WinLockWindow(hwndNext, FALSE); /* unlock window */ 

/* Wait a little before doing the next window. */ 

WinEndEnumWlndows(henum); 

You can also specify the window you want the given window to move behind. In 
this case, you specify the window handle instead of the HWND_TOP or 
HWND.-BOTTOM constant. 

If you enumerate windows as shown in the previous code fragment, the following 
code fragment will reverse the order of every other pair of windows: 

hwndExchange = WinGetNextWindow(henum): 

/* hwndNext has top window, hwndExchange has window under the top */ 

WinSetWindowPos( 
hwndNext, 
hwndExchange, 
0, 0, 0, 0, 
SWP_ZORDER); 

/* next window to move */ 
/* put lower window on top */ 
/* not used for Z order */ 
/* change Z order */ 



72 MS OS/2 Programmer's Reference, Vol. 1 
mG1t~r.lil~;~!ijn~mi!iiimm1~~[~i~:iIH~li~r.ft~~i~ii!!!mlU~H2!!!ii~!~i!l!iii!5.i1Ii~~H~.at1infff.mmfBimiililR:~i~imlij~~iif:iil 

4.4.14 Showing and Hiding a Window 
Moving and sizing a window still applies if a window is not visible. The effects of 
moving and sizing cannot be seen until the window is visible. Y oucan show and 
hide a window by using the WinShowWindow function. This function changes 
the WS_ VISIBLE style for it window to the specified setting. You can also use 
the WinIs WindowVisible function to check the visibility of a window. The func­
tion returns TRUE if the window is·visible. 

4.4.15 Maximizing, Minimizing, and Restoring a Window 
You can maximize, minimize, or restore a frame window bY,using the Win­
SetWindowPos function and specifying the constant SWP~AXIMIZE, 
SWP ~INIMIZE, or SWP -RESTORE. Only a frame window can maximize 
and minimize by default. For any other window, you must provide support for 
these actions in the corresponding window procedure. 

The following code fragment shows how to maximize a frame window: 

SWP swpCurrent; 

WinQueryWindowPos(hwnd, &swpCurrent); 
WinSetWindowPos( 

4.5 Summary 

hwnd, /* window handle */ 
NULL, /* not used to maximize */ 
swpCurrent.x, 
swpCurrent.y, /* stored for restoring window */ 
swpCurreht.cx, 
swpCurrent.cy, /* stored for restoring window */ 
SWP_MAXIMIZE I SWP_SIZE I SWP_MOVE); /* maximize */ 

The following sections list all the functions and messages an application can use 
to create, maintain, and destroy windows; to manage window relationships; and 
to set, query, and initialize the size, position, and visibilitY of windows. 

4.5.1 Window Functions 
The following functions are used by an application to create, maintain, and 
destroy windows: 

WinCreate Window Creates a window. This is the most flexible, general pur­
pose window-creation function. It can be used to create windows.of any class. 
The function's parameters let you specify the wiridow class, the parent window, 
the owner window, the window size and position, the Z-order position, the win­
dow identifier, general and class-specific window styles, and additional class­
specific data. Other window-creation functions make one or more calIs to this 
function to create their window( s). 

WinDestroyWindow Destroys a window. Related child windows and owned 
windows will also be destroyed. 

WinEnable Window Enables or disables a window. A disabled window loses the 
focus and ignores input. This function clears or sets the WS~ISABLED style. 



Chapter 4: Windows 73 
~~ii!l~~~~!mli!flrri?JffliE1HimU§!!mli!:Ui!immfiP.iit=.~llmaii!if!f~m!~!i!tmm~~i1if:~ib~~i~jgil.~~&ilms~fS!~!rn!~J~n!!f!s.Ui 

WinIsWindow Determines if a window handle is valid. 

WJnIsWindowEnabled Determines whether a window is enabled or disabled. 
The function tests the WSJ)ISABLED style. 

WinLockWindow Increments or decrements a window lock count. The lock 
count is initialized to zero and must be zero for the window to be destroyed. 

WinQuerySysModalWindow Determines the system-modal window. This func­
tion returns the system-modal window handle if successful or NULL if there is 
no system-modal window. 

WinQueryWindowLockCount Retrieves the window lock count. 

WinQueryWindowPtr Examines a pointer in a window data structure. 

WinQueryWindowULong Examines a 32-bit field in a window data structure. 

WinQueryWindowUShort Examines a 16-bit field in a window data structure. 

WinRegisterWindowDestroy Notifies other applications when the specified win­
dow is destroyed. 

WinSetSysModalWindow Sets a window as the system-modal window or ends 
the system-modal state. This function should be called only while processing key­
board or mouse input. 

WinSetWindowBits Sets bits in a 32-bit field in a window data structure. 

WinSetWindowPtr Sets a pointer in a window data structure. 

WinSetWindowULong Sets a 32-bit field in a window data structure. 

WinSetWindowUShort Sets a 16-bit field a window data structure. 

WinSubclassWindow Changes a window procedure. If successful, the function 
returns a pointer to the previous window procedure. 

4.5.2 Standard Window Messages 
The following are standard window messages: 

W1LCREATE Sent to a window during processing of the WinCreate Window 
function, before the window is sized, positioned, or shown. 

WMJ)ESTROY Sent to the window being destroyed. This message is sent 
after the window has been hidden on the device but before its child windows 
have been destroyed. 

W1L£NABLE This message is sent when a window is being enabled. 

W~OTHERWINDOWDESTROYED Sent to all top-level windows when.l 
window is destroyed. 

W1LQUERYWINDOWP ARAMS Sent to obtain certain window data. The 
data is specified and returned by using a WNDPARAMS data structure. 

W1LSETWINDOWP ARAMS Sent to set window data. 



74 MS OS/2 Programmer's Reference, Vol. 1 
l!i~Ii@if!si~~~!ID~~~i~I~~~1.W:iStjllim1UI~;~!if!iimlE~im§jim!~!m!!iS~gw .. ~!!ifiil~~'~111~~B!ir.~1!m~;r:f.IjjfiI!P.lili~f~~J~! 

4.5.3 Relationship Functions 
The following functions can be used to manage window relationships: 

WinBeginEnum Windows Begins the window-enumeration process. This func­
tion creates an enumeration list of the immediate child windows of a window and 
returns the list handle. 

WinEndEnum Windows Ends a window enumeration process. This function 
destroys the enumeration list (just the list, not the windows) created by the Win­
BeginEnum Windows function. 

WinGetNextWindow Obtains a window handle from a window list created by a 
call to the WinBeginEnumWindows function. Each call returns the next window 
in the list or NULL at the end of the list. The function locks the window that 
has the returned handle. The application must unlock the window after process­
ing. Calling this function after it has returned NULL causes it to wrap around to 
the beginning of the list. . 

WinIsChild Determines if one window is the child of another window. 

WinQueryDesktop Window Obtains a handle of the desktop window 
HWNDJ)ESKTOP. 

WinQueryObjectWindow Obtains a handle of the desktop-object window 
HWND_OBJECT. 

WinQueryWindow Retrieves a window's parent, owner, or child windows. This 
function returns the handle of the specified window or NULL if no such window 
exists. 

WinSetOwner Sets a window's owner window. Note that you can set the handle 
of the owner window to NULL, meaning it has no owner. 

WinSetParent Sets a window's parent window. This allows you to change 
object windows to regular windows, descendant windows of top-level windows to 
top-level windows, and vice versa. 

4.5.4 Functions for Moving, Sizing, and Changing 
The following functions can be used to move and change the position of a win­
dow: 

WinGetMaxPosition Obtains a window's maximized size and position. A 
window's maximized size is the size of its parent window plus an adjustment out­
ward in all four directions equal to the size of its border. The adjustment is 
made because maximized windows do not show their border. 

WinGetMinPosition Obtains an icon location for a minimized window. The 
function searches for an icon area, starting at the given point and continuing 
with subsequent positions until the next available icon position is found. 

WinIsWindowVisible Determines whether a window is visible. 

WinQueryWindowPos Determines a window's current size and position. 



Chapter 4: Windows 75 
:t.r!!iIiF.~~~a!iiU§flr"Jiil!i&.:!iimn§lif5iilUilimm!~~~li2ia!!!!iI~!H!liI!i§~m~..rnI!!ir:~:ifaiil~§i~~~ggms~!i:~!lU!~n!UJ!ij8Ui 

WinQueryWindowRect Determines a window's bounding rectangle, relative to 
its parent window. You can determine the window's size and position from the 
bounding rectangle. 

WinSetWindowPos Sets a window's size, position, and Z order. Position is 
specified in window coordinates relative to the parent window's lower-left 
corner. Size is specified in device units. Z order is relative to a window's sibling 
windows. 

WinSetMultWindowPos Sets the size, position, and Z order for an array of 
windows. This function and the WinSetWindowPos function are the same except 
for the number of windows each can affect. 

WinShowWindow Makes a window visible or invisible. 

4.5.5 Messages for Moving, Sizing, and Changing 
The following messages are received by a window procedure when the 
corresponding window is moved or changes size or visibility: 

~DJUSTWINDOWPOS Sent to a window about to be moved or sized. 
This message allows the window to adjust the new size and position before they 
take effect. This message is sent, by default, during calls to the WinCreate­
Window, WinSetWindowPos, and WinSetMultWindowPos functions. 

~CALCV ALIDRECTS Sent from the WinSetWindowPos and WinSet­
MultWindowPos functions when a window is about to be resized. Both these 
functions determine if there is a rectangular area of the window that can be 
preserved across the size change. If such a valid rectangle exists, its bitmap data 
can be simply and quickly copied to the new window image. Handlers of this 
message can specify the coordinates of the valid rectangle to be preserved, as 
well as determine where the valid rectangle will be placed within the resized win­
dow. 

~OVE Sent by the system when a window with CS~OVENOTIFY style 
changes its absolute (relative to the screen) position. The window's new position 
can be obtained by calling the WinQueryWindowPos function. 

~SHOW Sent by the system after a window's WS_ VISIBLE style bit has 
changed. An mpJ value of TRUE indicates an invisible window has become visi­
ble. An mpJ value of FALSE indicates a visible window has become invisible. 
The default window procedure takes no action on this message. 

~SIZE Sent after a window has changed size, but before any repainting has 
been performed. Resizing or repositioning of child windows resulting from the 
size change usually occurs during the processing of this message. This message is 
not sent when a window is created. 





Chapter 

5 

Messages and Message Queues 
5.1 Introduction............................................................ 79 

5.2 About Messages and Message Queues.......................... 79 
5.2.1 Messages ....................................................... 79 
5.2.2 Message Queues .............................................. 80 
5.2.3 Message Loop................................................. 81 
5.2.4 Messages and Window Procedures........................ 82 
5.2.5 Application Messages........................................ 83 
5.2.6 System-Defined Messages................................... 84 
5.2.7 Application-Defined Messages............................. 85 
5.2.8 Semaphore Messages ........................................ 85 
5.2.9 Message Priorities............................................ 85 
5.2.10 Message Filtering.. .................... ......... .... ..... ..... 86 

5.3 Using Messages in an Application ............................... 86 
5.3.1 Creating a Message Queue and Message Loop .......... 86 
5.3.2 Examining the Message Queue............................. 87 
5.3.3 Posting a Message to a Window............................ 88 
5.3.4 Sending a Message to a Window........................... 88 
5.3.5 Broadcasting a Message ..................................... 88 
5.3.6 Using Message Macros ...................................... 89 

5.4 Summary................................................................ 89 





Chapter 5: Messages and Message Queues 79 
1I~1!~~~ili!iiif;nr"Jiii!i~JF:iirumliP:ii!l~iltmf~~lmUi!~m~im~~~lI!~.Jm!!lf:if:.§fim'~i~Il!W~tii!iil~~fS!iii!!m!JjIi'nti~~: 

5.1 Introduction 
This chapter describes creating and using messages and message queues in MS 
OS/2 Presentation Manager applications. You should also be familiar with the 
following topics: 

• Windows 
• Window procedures 

• Threads, processes, and sessions 

5.2 About Messages and Message Queues 
Unlike traditional applications that take complete control of the computer's key­
board, mouse, and screen, Presentation Manager applications must share these 
resources with other applications running at the same time. Because all applica­
tions run independently, Presentation Manager applications rely on MS OS/2 to 
help them manage shared resources. The system manages shared resources by 
controlling the operation of each application, communicating with each applica­
tion when there is keyboard and mouse input or when an application must move 
and size its windows. The system uses messages to communicate with an applica­
tion and the windows belonging to that application. 

A message is information, a request for information, or a request for an action 
to be carried out by the application. The system communicates a message to an 
application so that the application can use the information or respond to the 
request. The system communicates in two ways: posting and sending. 

The system posts a message to an application's message queue if the message 
represents information or a request that does not need immediate action. The 
message queue is an application-created storage area used to hold messages. The 
application can then retrieve and process a message at the appropriate time. The 
system posts a message by copying the message data to the message queue. 

The system sends a message to an application when it needs an immediate 
response from the application. It sends a message by passing the message data 
as arguments to the window procedure. The window procedure carries out the 
request or lets the system carry out default processing for the message. 

The following sections describe messages and message queues in detail. 

5.2.1 Messages 
All messages contain information that an application uses to carry out tasks. 
There are two types of messages: queue messages and window messages. Queue 
messages are messages stored in a message queue. Window messages are mes­
sages sent to a window procedure. Although these message types have very 
different formats, the information they contain is nearly identical. 

Every message contains a message identifier. The message identifier is an integer 
value that determines whether the message is information or a request. When an 
application processes a message, it uses the message identifier to determine what 
to do. 

Every message contains a window handle. The window handle identifies the 



80 MS OS/2 Programmer's Reference, Vol. 1 
i~~I;!!~!m=~~~t~!~i~ltiljj~illiiimi"~!lai!l!iUlimlf~i;J~!ei~~lrul!aY~1WJ~~1i!!il!a1J~ik~~l~l!i~=iru!~~l~~~:jjill~liti:r4~~i!¥.i!!! 

window for which the message is intended. The window handle is important 
because most message queues and window procedures serve more than one win­
dow. The window handle ensures that the application processes the message for 
the appropriate window. 

Messages contain two message parameters. A message parameter is a 32-bit 
value that specifies data or the location of data to be used in processing the mes­
sage. The meaning and value of a message parameter depends on the message. 
Message parameters can be pointers to structures containing additional data, 
integer values, packed bit flags, and so on. Some messages do not use message 
parameters and typically set the parameters to zero. An application always 
checks the message identifier to determine how to interpret the message parame­
ters. 

Queue messages also contain the message time and mouse position. The message 
time specifies the system time, in milliseconds, when the message was created. 
The mouse position specifies the location of the mouse pointer, in screen coordi­
nates, when the message was created. 

A queue message is a QMSG data structure that contains six fields representing 
the window handle, message identifier, two message parameters, message time, 
and mouse position. The time and position are provided because most queue 
messages are input messages, representing keyboard or mouse input from the 
user. The time and position help the application identify the context of the mes­
sage. The system posts a queue inessage by filling the QMSG structure and copy­
ing it to a message queue. 

A window message consists of the window handle, the message identifier,and 
two message parameters. A window message does not include the message time 
and mouse position because most window messages are requests to carry out a 
task that is not related to the current time or mouse-pointer position. The system 
sends a window procedure by passing these values as individual arguments to a 
window procedure. 

5.2.2 Message Queues 
Every Presentation Manager application needs a message queue. A message 
queue is the only means an application has to receive input from the keyboard or 
mouse. Only applications that create message queues can create windows. 

A message queue is internal storage reserved by the application for receiving anq 
holding posted messages. An application creates a message queue by using the 
WinCreateMsgQueue function. This function returns a handle the application 
can use to access the message queue. After an application creates a message 
queue, th{! system posts messages intended for windows in the application to that 
queue. The application can retrieve queue messages by specifying the message­
queue handle in a call to the WinGetMsg function. It can examine messages 
without retrieving them by using the WinPeekMsg function. When an applica­
tion no longer needs the message queue, it can destroy it by using the Win­
DestroyMsgQueue function. 

Message queues serve all windows created by the application. This means a 
queue may hold messages for several windows. Most mes~ages specify the win­
dows to which they belong, so the application can easily apply a message to the 
appropriate window. Messages that do not specify a window apply to the entire 
application. 



Chapter 5: Messages and Message Queues 81 
~i§iii.ij~imiimfim!UJU~lmHP:~1~i!!!i~!~.mi~!~~mi~~~~f!f!S!~!~~!i:!s1em~tgi~!2i~fiiU~!!f:~miiliml~fdlfmj~l~i~!*;s~~~i~JY 

An application that has more than one thread can create more than one message 
queue. The system allows one message queue for each thread. A message queue 
created by an application thread belongs to that thread and has no connection to 
other queues in that application. When an application creates a window in a 
given thread, the system associates the window with the message queue in that 
thread. The system then posts all subsequent messages intended for the window 
to that queue. 

Although multiple messages queues are possible, most Presentation Manager 
applications use threads sparingly and so use only one message queue. 

Since several windows typically use a message queue, it is important that the 
message queue be large enough to hold all possible messages that may be posted 
to it. An application can set the size of the message queue when it creates the 
queue by specifying the maximum number of messages the queue can hold. 

To minimize the queue size, several types of posted messages are not actually 
stored in a message queue. Instead, the system keeps a record in the queue of 
the message being posted and combines any information contained in the mes­
sage with information from previous messages. Timer, semaphore, and paint 
messages are handled in this way. For example, if more than one WMJ> AINT 
message is posted, the system combines the update regions for each into a single 
update region. Although there is no actual message in the queue, the system 
constructs one WMJ> AINT message with the single update region when an 
application uses the WinGetMsg function. 

Mouse and keyboard input messages are also not stored in the message queue. 
These are stored in the system message queue. The system message queue is a 
system-owned queue that receives and holds messages for all mouse and key­
board input. The system does not copy these messages to application message 
queues. Instead, the WinGetMsg function searches the system queue for input 
messages belonging to the application when there are no other higher-priority 
messages in the application's message queue. The system message queue is usu­
ally large enough to hold all input messages, even if the user is typing or moving 
the mouse very quickly. If the system queue does run out of room, the system 
ignores the most recent keyboard input (usually beeping to indicate it is ignored) 
and collects mouse motions into a single motion. 

Every message queue has a corresponding data structure. The data structure 
specifies the identifiers of the process and thread that own the message queue 
and gives a count of the maximum number of messages the queue can receive. 
An application can retrieve the data structure by using the WinQueryQueuelnfo 
function. 

A message queue also has a current status. The status specifies whether any mes­
sages are available in the queue. An application can retrieve the queue status by 
using the WinQueryQueueStatus function. Since this function is very fast, appli­
cations typically use it to check for messages rather than using the WinPeekMsg 
function, which inspects the thread's message queue. 

5.2.3 Message Loop 
Every application with a message queue is responsible for retrieving the mes­
sages from that queue. An application can do this by using a message loop. A 
message loop is a program loop, usually in the application's main function, that 
retrieves messages from the message queue and dispatches them to the 



82 MS OS/2 Programmer's Reference, Vol. 1 
iijjilirilijiI!!ljUf'JI~j!~~iP."':if.s~~imlfU:~i~!~~!ffi&i1lmmniWiiif:i!!t!ml~U~lmi~~~mImimniil~r~lJi!iiF.ij~iiHm~il!§~!f.lfi:~~! 

appropriate windows. The message loop consists of two function calls: one to 
the WinGetMsg function, the other to the WinDispatchMsg function. The mes­
sage loop has the following form: 

while (WinGetMsg(hab, &qmsg, NULL, 0, 0» 
WinDispatchMsg(hab, &qmsg): 

An application starts the message loop after creating the message queue and at 
least one application window. Once started, the message loop continues to 
retrieve messages from the message queue and to dispatch (send) them to the 
appropriate windows. The WinDispatchMsg function sends each message to the 
window specified by the window handle in the message. 

Only one message loop is needed for a message queue, even if the queue con­
tains messages for more than one window. Each queue message is a QMSG 
structure that contains the handle of the window to which the message belongs, 
so the WinDispatchMsg function always dispatches the message to the proper 
window. Th~ WinGetMsg function retrieves messages from the queue in first-in, 
first-out (FIFO) order, so the messages are dispatched to windows in the same 
order they were put in the queue. 

If there are no messages in the queue, the system temporarily stops processing 
the WinGetMsg function until a message arrives. This means that CPU time 
slices that would otherwise be spent waiting for a message can be given to the 
applications (or threads) that do have messages in their queues. 

The message loop continues to retrieve and send messages until the WinGetMsg 
function retrieves a ~QUIT message. This message causes the function to 
return FALSE, terminating the loop. In most cases, terminating the message 
loop is the first step in terminating the application. An application can terminate 
its own loop by posting the ~QUIT message in its own queue. 

An application can modify its message loop in a variety of ways. For example, it 
can retrieve messages from the queue without dispatching them to a window. 
This is useful for applications that post messages that do not specify a window 
(these messages apply to the application rather than to a specific window; they 
have NULL window handles). An application can also direct the WinGetMsg 
function to search for specific messages, leaving other messages in the queue. 
This is useful for applications that temporarily need. to bypass the usual first-in, 
first-out order of the message queue. 

5.2.4 Messages and Window Procedures 
When the system needs an immediate response from an application, it sends a 
message to a window procedure. A window procedure is a function that receives 
and processes all input and requests for action sent to the window by the system. 
Every window class has a window procedure and every window created using 
that class uses the window procedure to respond to messages. . 

The system sends a message to the window procedure by passing the message 
data as arguments to the window procedure. The window procedure carries out 
an appropriate action for the given request. Most window procedures check the 
message identifier, then use the information specified by the message parameters 
to carry out the request. When it has completed processing the message, the 
window procedure returns a message result. Each message has a particular set of 
possible return values. The window procedure must return the appropriate value 
for the processing it carried out. 



Chapter 5: Messages and Message Queues 83 
;l!!li§iilliftiiii!!nml;1!!~~lm§p:Hl~~~m!~.mf~!~!mi~~~Ifi{~~!~!i~!~~$!i~~i~~~fii!i~I~ilir:m~ijml~!ilmj~lii~!~:s~~~~mm! 

A window procedure cannot ignore a message. If it does not process a message, 
it must pass the message back to the system for default processing. The window 
procedure can do this by calling the WinDetwindowProc function. This function 
carries out a default action and returns the message result. The window pro­
cedure must return this value as its own message result. 

A window procedure commonly processes messages for several windows. It uses 
the window handle specified in the message to identify the appropriate window. 
Most window procedures process a few types of messages and pass the others 
on to the system by calling the WinDetwindowProc function. 

5.2.5 Application Messages 
Any application can post and send messages. Like the system, an application 
posts a message by copying it to a message queue. It sends a message by passing 
the message data as arguments to a window procedure. An application can post 
a message by using the WinPostMsg function. It can send a message by using 
the WinSendMsg function. 

Typically, an application posts a message to notify a specific window to carry out 
a task. The WinPostMsg function creates a QMSG structure for each message 
and copies the message to the message queue corresponding to the given win­
dow. The application's message loop eventually retrieves the message and 
dispatches it to the appropriate window procedure. One message commonly 
posted is ~QUIT. This message terminates the application by terminating the 
message loop. 

Typically, an application sends a message to notify a specific window procedure 
to immediately carry out a task. The WinSendMsg function passes the message 
to the window procedure corresponding to the given window. The function waits 
until the window procedure completes processing and then returns the message 
result. It is very common for parent and child windows to communicate by send­
ing messages to each other. For example, a parent window that has an entry-field 
control (as its child window) can set the text of the control by sending the child 
window a message. The control can notify the parent window of changes to the 
text (carried out by the user) by sending messages back to the parent window. 

Occasionally, an application may need to send or post a message to all windows 
in the system. For example, if the application changes a system value, it must 
notify all windows about the change by sending a 'WM..-SYSV ALUECHANGED 
message. An application can send or post messages to any number of windows 
by using the WinBroadcastMsg function. The options in WinBroadcastMsg 
determine whether the message is sent or posted and specify the number of win­
dows to receive the message. 

If an application has more than one thread, any thread in the application can 
post messages to a message queue, even if that thread has no message queue of 
its own. However, only threads that have a message queue can send messages. 
Posting or sending messages between threads is relatively uncommon. One rea­
son for this is that it is costly in terms of system performance to send a message. 
If you do post messages between threads, it is likely to be for semaphore mes­
sages. Semaphore messages permit window procedures to jointly manage a 
shared resource. 

An application can post a message without specifying a window. If the applica­
tion supplies a NULL window handle when it calls the WinPostMsg function, 



84 MS OS/2 Programmer's Reference, Vol. 1 
i!iih1i~jim!I.ID~fiU!@f_itJiiel!~~.Ei~~fill~i5l1S!!a;,;~~~nfia~lfiiiiliJfi!mi!ii!!t!i!}~~~~;~~~fm~~iiffif.*"~~F.ii~iUjS1ij!li§~~i!~i§~! 

the function posts the message that is in the message queue of the thread calling 
the function. Because the message has no window handle, the message loop 
processes the message. This is one way to create messages that apply to the 
entire application instead of to a specific window. 

A window procedure can determine whether it is processing a message sent by 
another thread by using the WinInSendMsg function. This is useful when mes­
sage processing depends on the origin of the message. 

A common programming error is to assume that the WinPostMsg function 
always posts a message. This is not true when the message queue is full. An 
application should check the return value of the function to see if the message 
has been posted. In general, if an application intends to post many messages to 
the queue, it should set the message queue to an appropriate size when it creates 
the queue. The default message-queue size is ten messages. 

5.2.6 System-Defined Messages 
There are many system-defined messages. The system uses these messages to 
control the operation of applications and to provide input and other information 
for applications to process. The system sends or posts a system-defined message 
when it communicates with an application. An application can also send or post 
system-defined messages. Applications typically use these messages to control 
the operation of control windows created using the preregistered window classes. 

Each system message has a unique message identifier and a corresponding sym­
bolic constant. The symbolic constant, defined in MS OS/2 header files, typically 
states the purpose of the message. For example, the WMJl AINT constant 
represents the paint message. The paint message requests a window to paint its 
contents. 

The symbolic constants also specify the message category. System-defined mes­
sages can belong to several categories; the prefix identifies the type of window 
that can interpret and process the messages. The following list gives the prefixes 
and related message categories: 

Prefix Message category 

BM Button-control 

EM Entry-field control 

LM List-box control 

MM Menu 

SBM Scroll-bar control 

SM Static control 

TBM Title-bar control 

WM General window 

General window messages cover a wide range of information and requests and 
include mouse and keyboard-input messages, menu and dialog-input messages, 
window-creation and window-management messages, and dynamic-data-exchange 
(DDE) messages. 



Chapter 5: Messages and Message Queues 85 
li§~ilii!iif!ifll!i1!!UJ~'IDm!iP:Igifilli!~il!i!~.mi_!t!i!i~~~!;Hi~!~!~~i;;!s1liffi~¥M~~~!ii;U~!~~miiliiiil!§l!ilmj~ls;i~f§i=s~!l~i!mY 

5.2.7 Application-Defined Messages 
An application can create its own messages to use in its own windows. If an 
application creates messages, the window procedure that receives the message 
must interpret the message and provide appropriate processing. 

MS OS/2 reserves the message-identifier values in the range OxOOOO through 
(W~USER-l) for system-defined messages. Applications cannot use these 
values for private messages. Values in the range ~USER through OxBFFF 
are available for message identifiers defined by an application for use in that 
application. Values in the range OxCOOO through OxFFFF are reserved for mes­
sage identifiers defined by an application using the atom-manager registration for 
use in any application. 

5.2.8 Semaphore Messages 
The semaphore messages are a way of signaling the end of an event through the 
message queue. Applications use these messages like they use MS OS/2 sema­
phore functions to coordinate events by passing signals. Semaphore messages are 
often used in conjunction with MS OS/2 semaphores. 

There are four semaphore messages: ~SEMl, ~SEM2, ~SEM3, and 
~SEM4. An application posts one of the semaphore messages to signal the 
end of the given event. The window that is waiting for the given event receives 
the semaphore message when the message loop retrieves and dispatches the mes­
sage. 

Each semaphore message includes a bit flag that can be used to uniquely identify 
32 possible semaphores for each semaphore message. The application passes the 
bit flag (with the appropriate bit set) as a message parameter with the message. 
The window procedure that receives the message then uses the bit flag to identify 
the semaphore. 

To save space in a message queue, the system does not store semaphore mes­
sages in the message queue. Instead, it sets a record in the queue, indicating the 
semaphore message has been received, and then combines the bit flag for the 
message with the bit flags from previous messages. When the window procedure 
eventually receives the message, the bit flag specifies each semaphore message 
posted since the last message was retrieved. 

5.2.9 Message Priorities 
The WinGetMsg function retrieves messages from the message queue based on 
message priority. The function retrieves messages with higher priority first. If it 
finds more than one message at a particular priority level, it retrieves the oldest 
message first. Messages have the following priority: 

Priority 

1 

2 

3 

Message 

~SEMI 

Messages posted using WinPostMsg 

Input messages from the keyboard or mouse 



86 MS OS/2 Programmer's Reference, Vol. 1 
iiiih1i~jii!i!!miroi~i~i~iP._~im~l~rnll~Iil1I~!~~Hm~liruili!~iiif:i!!t!!!l~!~~i~~~mtmimni~~r~illiF.;jill¥nii!li§9!rn!tiiifi~! 

5.2.10 

Priority Message 

4 ~SEM2 

5 WMJAINT 

6 ~SEM3 

7 ~TIMER 

8 ~SEM4 

Message Filtering 
Applications can choose specific messages to retrieve from the message queue 
(ignoring other messages) by specifying a message filter with the WinGetMsg or 
WinPeekMsg function. The message filter is a range of message identifiers 
(specified by a first and last identifier), a window handle, or both. The functions 
use the message filter to select the messages to retrieve from the queue. Message 
filtering is useful if an application needs to search ahead in the message queue 
for messages that have a lower priority or that arrived in the queue later than 
other less important messages. 

Any application that filters messages must ensure that a message satisfying the 
message filter can be posted. For example, filtering for a ~CHAR message 
in a window that does not have the input focus prevents the WinGetMsg func­
tion from returning. Some messages, such as ~COMMAND, are generated 
from other messages; filtering for them may also prevent WinGetMsg from 
returning. 

The ~UTTONCLICKFIRST and ~UTTONCLICKLAST, 
W1LMOUSEFIRST and W1LMOUSELAST, and WMJ)DEYIRST and 
WMJ)DE~AST constants can be used to filter button, mouse, and DDE 
messages. 

5.3 Using Messages in an Application 
This section explains how to use the message and message-queue functions to 
create and manage message queues and to post and send messages between win­
dows. 

5.3.1 Creating a Message Queue and Message Loop 
Your application needs a message queue and message loop to process messages 
for windows. You create a message queue by using the WinCreateMsgQueue 
function. You create a message loop by using the WinGetMsg and Win­
DispatchMsg functions. You must create and show at least one window after 
creating the queue but before starting the message loop. The window is required 
because it is the only way the user can supply input to the message queue. 



Chapter 5: Messages and Message Queues 87 
lE~iiii!limi~!m!VJg~mlljgl~~~!~.mi.!!I!!ii!i~if.!~~~!!~i~~l!ffi~~~~iiini!~~emijiill~itiJmj~li~'~!!s!1!!~i. 

The following code fragment shows how to create a message queue and a 
message loop: 

HAB hab; 
HMQ hmq; 
QMSG qmsg; 

1* anchor-block handle *1 
1* message-queue handle *1 
1* queue-message structure *1 

VOID cdecl maine) 
{ 

} 

hab Winlnitialize(NULL); 
hmq = WinCreateMsgQueue(hab, DEFAULT_QUEUE_SIZE); 

1* * Use WinRegisterClass to register your window class. 
* Use WinCreateStdWindow to create your window. 
*1 

while (WinGetMsg(hab, &qmsg, NULL, 0, 0» 
WinDispatchMsg(hab, &qmsg); 

1* Use WinDestroyWindow to destroy your window. *1 

WinDestroyMsgQueue(hmq); 
WinTerminate(hab) ; 

Both the WinGetMsg and WinDispatchMsg functions take a pointer to a QMSG 
structure as a parameter. If a message is available, WinGetMsg copies it to the 
QMSG stru~ture; WinDispatchMsg then uses the fields of the structure as argu­
ments for the window procedure. 

Occasionally, you may need to process the message before dispatching it. This 
can occur, for example, if a window procedure posts a message to the queue for 
which a NULL window handle has been specified. Because the WinDispatchMsg 
function needs a window handle to dispatch the message, the message loop must 
process the message before dispatching it. The following code fragment shows 
how the message loop might process messages that have NULL window handles: 

while (WinGetMsg(hab,&qmsg, NULL, 0, 0» { 
If (qmsg.hwnd == NULL) { 

1* Process the message. *1 
} 
else 

WinDispatchMsg(hab, &qmsg); 
} 

5.3.2 Examining the Message Queue 
You can examine the contents of the message queue by using the WinPeekMsg 
or WinQueryQueueStatus function. It is useful to examine the queue if you start 
a lengthy operation that additional user input can affect, or if you need to look 
ahead in the queue to anticipate a response to user input. 

You can use the WinPeekMsg function to check for specific messages in the 
message queue. The function is useful for extracting messages for a specific win­
dow from the queue. 'The function returns immediately if there is no message in 
the queue. This funct~on can be used in a loop without requiring the loop to wait 
for a message to arrive. The following code segment checks the queue for 
~CHAR messages: 

if (WinPeekMsg(hab, &qmsg, NULL, WM_CHAR, WM_CHAR, PM_NOREMOVE» 



88 MS OS/2 Programmer's Reference, Vol. 1 
ilijh1iriiJiDi!!m~i!iJ!{g~i~!~;p'-Ei~imml~mll~nliitl!!!~Ui&~liruilmWiii!iii!t!ml~!~~i~~jiimimif§ifU~t~mmei$.!ilil~~!I!§~liiYfS::g~! 

You can also use the WinQueryQueueStatus function to check for messages in 
the queue. This function is very fast and returns information about the kinds of 
messages available in the queue and which messages have been recently posted. 
Most applications use this function in program loops that need to be as fast as 
possible. 

If you have a very long operation to carry out, you should consider creating a 
separate thread for the operation. Despite the MS OSI2 multitasking features, 
any application thread having a message queue that does not periodically relin..., 
quish control by calling the WinGetMsg or Win WaitMsg function risks monopo­
lizing the CPU and seriously degrading system performance. 

5.3.3 Posting a Message to a Window 
You can use the WinPostMsg function to post a message to a window. The mes­
sage goes to the window's message queue. For example, the following code frag­
ment posts the ~QUIT message: 

if (IWinPostMsg(hwnd. WM~QUIT. OL. OL» 

/* Message was not posted. */ 

The function returns FALSE if the queue was full and the message could not be 
posted. 

5.3.4 Sending a Message to a Window 
You can use the WinSendMsg function to send a message directly to a window. 
Applications typically use this function to send messages to child winqows. For 
example, the following code fragment directs a button control to draw a check 
mark by sending the B1LSETCHECKmessage to the control: 

WinSendMsg(hwndButton. BM_SETCHECK. MPFROMSHORT(l). OL): 

WinSendMsg calls the window's window procedure and waits for that procedure 
to handle the message and return a result. A message can be sent to any window 
in the system; all that is required is a handle to the window. The message is not 
stored in the message queue. The thread making the call must have a message 
queue. . 

5.3.5 Broadcasting a Message 
You can send messages to multiple windows by using the WinBroadcastMsg 
function. This function is useful after an application changes a system value, for 
broadcasting the W1LSYSV ALUECHANGED message. The following coqe 
fragment shows how to broadcast this message to all frame windows in all appli­
cations: 

WinBroadcastMsg( 
hwnd. 
WM_SYSVALUECHANGED. 
OL. 
OL. 
BMSG_FRAMEONLY I BMSG_POSTQUEUE): 

/* window handle */ 
/* message ID */ 
/* no message parameters */ 

/* all frame windows */ 

You can broadcast messages to all windows, to just frame windows, or to just 
the windows in your application. 



Chapter 5: Messages and Message Queues 89 
'~;;;lliEl!!i!ji~~€Mfgj~j;ji!ljj!~iiS!mlijlif~1i,,;;jffli~~:an~f;§jJifiim1fliliii15f!ml~Ib~~Ii5ifSil¥i~lii!~ulii~~!m:F.~fejliID;{!!i~l~iisimtrur.d!miillilliiiilm1§ 

5.3.6 Using Message Macros 
The MS OS/2 include files define several macros that help create and interpret 
message parameters. 

; 

One set of macros helps you construct message parameters. Macros are useful 
for sending and posting messages. For example, the following code fragment 
uses the MPFROMSHORT macro to convert a 16-bit integer into the 32-bit mes­
sage parameter: 

WinSendMsg(hwndButton, BM_SETCHECK, MPFROMSHORT(l) , OL); 

A, second set of macros helps you extract values from a message parameter. 
They are useful for handling messages in a window procedure. The following 
code fragment illustrates this: 

case WM_FOCUSCHANGE: 
fsFocusChange = SHORT2FROMMP(mp2); 
if (SHORT1FROMMP(mp2)) 

hwndLoseFocus = HWNDFROMMP(mpl); 

A third set of macros helps you construct a message result. They are useful for 
returning message results in a window procedure. This is illustrated by the fol­
lowing code fragment: 

return (MRFROM2SHORT(1, 2)); 

5.4 Summary 
The following are the functions and the message you can use to create and use 
message queues and messages: 

WinBroadcastMsg Sends or posts messages to one or more windows or posts 
messages to all message, queues. 

WinCallMsgFilter Calls a message-filter hook procedure, passing it a message 
and a message-filter control code. 

WinCreateMsgQueue Creates a message queue for the current thread and 
returns a handle to the queue. 

WinDemlgProc Carries out default processing for messages sent to a dialog 
window. 

WinDeiWindowProc Carries out default processing for messages sent to a win­
dow. 

WinDestroyMsgQueue Destroys a particular message queue. This function 
must be called before terminating a thread that has a message queue. 

WinDispatchMsg Sends a message to a specified window. 

WinGetMsg Retrieves the next message from a message queue, removing that 
message from the queue. This function does not return until a message is avail­
able. 

WinlnSendMsg Determines whether the current thread is processing a message 
sent from another thread. 



90 MS OS/2 Programmer's Reference, Vol. 1 
ili!lJail~J~~i!r.ii!Uni~i~!~~i!Hi!!~n!l1!\ll!.i!iii!HiJffliiHiili~iim!~il~~~el~b_gfi~ltm!iljti!m_i!~l~~m!n!if!J~~~i!imiiiilii~iiii!~ 

WinMsgMuxSemWait Waits for one of a list of semaphores to clear. This func­
tion is similar to the DosMuxSemWait function, except that the thread can con­
tinue to process messages sent to it from other threads. 

WinMsgSem Wait Waits for a semaphore to clear. This function is similar to 
the DosSemWait function, except that a thread can continue to process mes­
sages sent to it from other threads. 

WinPeekMsg Copies the next message from a message queue without removing 
it from the queue. This function returns immediately, whether or not a message 
is available. 

WinPostMsg Posts a message to the message queue for a specified window. 
After placing the message in the queue, the function returns immediately. 

WinPostQueueMsg Posts a message in a specified message queue in the sys­
tem. The function returns immediately after placing the message in the queue. 

WinQueryMsgPos Retrieves the mouse-pointer position (in screen coordinates) 
that was stored with a posted message. 

WinQueryMsgTime Retrieves the system time (milliseconds since the system 
was booted) that the message was posted. 

WinQueryQueueInfo Retrieves information about a message queue. 

WinQueryQueueStatus Retrieves status information about a message queue. 

WinSendDlgItemMsg Sends a message to a control window that belongs to the 
specified dialog window. 

WinSendMsg Sends a message directly to the window procedure of a specified 
window. The function does not return until the message has been processed by 
the window procedure. 

WinTranslateAccel Translates a ~CHAR message to a ~COMMAND 
message if there is an entry for the specific character in the accelerator table. 

WinWaitMsg Waits until a particular type of message appears in a message 
queue. 

~QUIT Marks the end of message processing for a message queue. This 
message causes the WinGetMsg function to return FALSE. 



Chapter 

6 

Window Classes 
6.1 Introduction............................................................ 93 

6.2 About Window Classes ............................................. 93 
6.2.1 Custom Window Classes .................................... 93 
6.2.2 Class Styles.................................................... 94 
6.2.3 Window Procedures.......................................... 95 
6.2.4 Public Window Classes...................................... 95 
6.2.5 Preregistered Window Classes.............................. 96 
6.2.6 Custom Public Classes....................................... 97 
6.2.7 Class Data..................................................... 97 

6.3 U sing Window Classes.............................................. 98 
6.3.1 Registering a Private Window Class....................... 98 
6.3.2 Registering an Imported Window Procedure ............ 98 

6.4 Summary ........ ~....................................................... 98 





Chapter 6: Window Classes 

6.1 Introduction 
This chapter describes how applications create and use window classes. You 
should also be familiar with the following topics: 

• Windows 
• Window procedures 

• Messages and message queues 

• The os2.ini file 

6.2 About Window Classes 

93 

A window class determines the window styles and window procedure given to 
windows of that class when they are created. Every window created by an appli­
cation is a member of a window class. Each window class has an associated win­
dow procedure that it shares with all windows of that same class. The window 
procedure handles messages for all windows of that class and therefore defines 
the behavior and appearance of the window. 

When an application creates a window, it must specify a window class. The 
Win Create Window function requires that the class be given explicitly. Other 
window-creation functions use specific classes by default. In all cases, a window 
class must be registered before it can be used to create windows. An application 
can register its own (private) window classes or use pregistered, public window 
classes. 

6.2.1 Custom Window Classes 
A custom ( or private) window class is any window class registered by an applica­
tion. The application defines the window procedure, class style, and window data 
size for the class and then registers the class by using the WinRegisterCJass 
function. The window class is available to the application, but only to that appli­
cation. Classes created in this way are private and cannot be shared by other 
applications. When the application terminates, the system removes any data 
associated with the private window class and invalidates the class name. 

An application can register its own window classes at any time. Typically, an 
application registers window classes as part of its initialization, but this is not 
required. The only restriction is that no window of a particular class can be 
created until that class is registered by the application. 

When an application registers a window class, it must supply the following infor­
mation: 

• Class name 

• Class styles 

• Window procedure 

• Window data size 

The class name identifies the window class. The application uses the class name 
when creating a window, specifying the class to use. The class name can be a 



94 MS OS/2 Programmer's Reference, Vol. 1 
iU1Uw.!~J~~~t!Il!I~!iml~!~iiiE!UiU~Ii!i1!lu~~:~!~mm!raji~iiil;m«~il~~~~~HiP.i1mi~iiiniiijill!fir;sJ!i!~l~~fii~~i~U~l!imifimi~iimffi!~ 

character string or an integer value. The class name must be unique. The system 
checks to see if a public class or a class already registered by the application has 
the same name. If the class name is not unique, an error is returned. 

The class style is one or more values that tell the system what initial window 
styles to give a window created with this class. Some class styles (for example, 
CS_SYNCP AINT) cause a new window to be given the corresponding window 
style when it is created. Styles such as CS-.MOVENOTIFY direct the system to 
send messages to the window procedure when it ordinarily would not. 

The window procedure is a function that receives and processes all messages 
sent to the window by the system. It is the chief component of the window class 
because it explicitly defines the appearance and behavior of each window created 
with the class. The window procedure can be part of the application or part of a 
dynamic-link library. In either case, it must be an exported function. When a 
window procedure is in a dynamic-link library rather than in the application, the 
application must import the window procedure by using an import library when 
linking, using the IMPORTS statement in the application's module-definition file, 
or using the DosLoadModule and DosGetProcAddr functions to retrieve the 
function address. 

The window data size is a value that specifies the number of extra bytes to allo­
cate for each window data structure. The system creates a window data structure 
for each window. The extra bytes can be used by an application to store addi­
tional information about a particular window. 

Once created, a window-class data structure cannot be changed. However, it is 
relatively easy to change the window styles and window procedure of a window 
created with that class. An application cannot deregister a window class. Win­
dow classes remain registered and available until the application terminates. 

An application that registers a window class can also support its own set of win­
dow styles for windows of that class. Standard window styles-for example, 
WS_ VISIBLE and WS_SYNCPAINT-still apply to these windows. However, 
since a window style is a 32-bit integer and only the high 16 bits are used for the 
standard window styles, an application can use the low 16 bits for styles unique 
to the custom window. 

MS OS/2 has unique window styles for all preregistered window classes. Styles 
such as FS_BORDER and BSYUSHBUTTON are processed by the window 
procedure for the corresponding class and not by the system. This means that an 
application can build the support for its own window styles into the window pro­
cedure for its custom class. Using a window style designed for one window class 
will not work with another window class. 

If more than one instance of an application is running at the same time, the win­
dow classes in one instance are not available to any other instance. This means a 
second instance must register the classes for itself. If an instance of an applica­
tion terminates, the window classes for any other instance of that application 
remain unchanged. 

6.2.2 Class Styles 
Each window class has one or more· class styles. A class style tells the system 
what initial window style to give a window created with that class. An application 
sets the class styles for a window class when it registers the class. The styles can­
not be changed. 



Chapter 6: Window Classes 95 
6ij~lJWf!illil.~~~U!ft;!~gi~fj1tru~2iJiil~!{lf~~i§n!if~!lii~tliliii:mI~!!iJtSmiiS4l~i1!ilBU:r.Hmii~~lml~~11J~!jfil~all.w~~~!mruH:lif.iii;il 

When you register a window class, you can specify one or more class styles, 
combining them as necessary by using the bitwise OR operator. 

An application can examine the class style for any window class by using the 
WinQueryClasslnfo function. There are ten class styles, as listed below: 

Style 

CS_CLIPCHILDREN 

CS_CLIPSIBLINGS 

CSYARENTCLIP 

CSYRAME 

CSYUBLIC 

CSJIITTEST 

CS-MOVENOTIFY 

6.2.3 Window Procedures 

Description 

Sets the WS_CLIPCHILDREN style for win­
dows created with this class. 

Sets the WS_CLIPSIBLINGS style for win­
dows created with this class. 

Sets the WSY ARENTCLIP style for· win­
dows created with this class. 

Sets the WS_SA VEBITS style for windows 
created with this class. 

Sets the WS_SA VEBITS style for windows 
created with this class. 

Identifies windows created with this class as 
frame windows. 

Creates a public window class. 

Directs the system to send WMJIITTEST 
messages to windows of this class whenever 
the mouse pointer moves in the window. 

Directs the system to invalidate the entire 
window whenever the size of the window 
changes. 

Directs the system to send ~OVE mes­
sages to the window whenever the window is 
moved. 

The window procedure for a window class handles the messages sent to windows 
of that class. One window procedure is shared by all windows of a class, so 
applications must ensure that no conflicts arise when two windows of the same 
class attempt to access the same global data. In other words, the window pro­
cedure must protect global data and other shared resources. 

6.2.4 Public Window Classes 
Although MS OS/2 allows an application to register its own window classes, 
most applications rarely register more than one window class. This window class 
supports the client window in the application's main window. For all other win­
dows, the application generally uses public window classes. Public window 
classes support frame windows, controls, menus, and dialog windows. 

Public window classes are available to all applications. An application does not 
need to register a public window class to use it. The window procedure for a 
public window class always resides in a dynamic-link library and is accessible to 



96 MS OS/2 Programmer's Reference, Vol. 1 
~~"~~j;~~~!2I~~1i;i~:~iiiii!Yi!!~Ii!i1!lii~U~:~mW~ii~liilll$~~!~~~el~Hff.tfs';ffi~i~imlli!i~~J!i!~§i~fiii!ijf!!~~~l!imififii~iiira!~ 

all applications. An application does not need to import the window procedure 
to use a public window class. 

6.2.5 Preregistered Window Classes 
MS OS/2 provides several preregistered, public window classes. Applications 
can use these public window classes to create frame windows, dialog windows, 
menus, push buttons, entry fields, and other controls. The window procedures 
for these classes are predefined so the application does not register the class 
before using it. 

An application uses a preregistered, public window class by specifying its class 
in a callto the WinCreateWindow function. The class names for the prereg­
istered, public window classes are integer values represented by the following 
constant names: 

Class name 

WCYRAME 

WC-ENTRYFIELD 

WCJ.ISTBOX 

WC~ENU 

Description 

Creates a frame window. Has class 
styles CSYRAME, CSJIITTEST, 
CS_SYNCPAINT, CSYUBLIC, and 
CS_CLIPSIBLINGS. 

Creates a button control. Has class styles 
CSYARENTCLIP, CS_SYNCP AINT, 
CS_SIZEREDRAW, and CSYUBLIC. 

Creates a text-entry control field. Has 
class styles CSYARENTCLIP, 
CS_SYNCP AINT, CS_SIZEREDRA W, 
and CSYUBLIC. 

Creates a list box. Has class styles 
CSYARENTCLIP, CS_SYNCP AINT, 
and CSYUBLIC. 

Creates a menu. Has class styles 
CS_SYNCPAINT, CS_SIZEREDRAW, 
and CSYUBLIC. 

Creates a scroll bar. Has class styles 
CSJIITTEST, CSYARENTCLIP, 
CS_SYNCPAINT, CS_SIZEREDRAW, 
and CSYUBLIC. 

Creates a static control. Has class styles 
CSYARENTCLIP, CS_SYNCP AINT, 
CS_SIZEREDRAW, CSJIITTEST, and 
CSYUBLIC. 

Creates a title bar. Has class styles 
CSJIITTEST, CSYARENTCLIP, 
CS_SYNCPAINT, CS_SIZEREDRAW, 
and CSYUBLIC. 

Each preregistered, public window class also supports several window styles that 
an application can use to customize a window. For example, a window created 
with the WC~UTTON class can have anyone of four different behaviors and 



Chapter 6: Window Classes 97 
!i~ff~l~i~!nlllf..J~ffliIi~iiii~!ijj;~lial~~ii!i~ma..~tm!!ii!Ii$imjtl~iiSiijfiii~iit~H!ii~i~!§f~i9i~~n~ii'm~R!~i!it~ii;ilifti§!il!r.ilii.!tii!fi!iiJ~ 

appearances. The application specifies the style (and the behavior and appear­
ance of the window) in the call to the WinCreateWindow function. For a list of 
the available styles and more detailed information on each of the preregistered, 
public window classes, see Chapter 10, "Control Windows." 

An application must not use the preregistered, public window-class names when 
it registers its own window classes. 

6.2.6 Custom Public Classes 
An application can create its own public window class, but this must be done in 
a special manner at system initialization. Only the shell can register a public win­
dow class and only when the system starts. Registering a public window class 
requires a special load entry in the os2.ini file that instructs the shell to load a 
dynamic-link library whose initialization routine registers the window class. Pub­
lic window classes must be registered by using the WinRegisterClass function 
and· must have the class style CSYUBLIC. A public window class registered in 
this way can have the same name as an existing public window class, but this 
replaces the original window class. 

If a dynamic-link library replaces a public window class, it can also save the pre-· 
vious window-procedure address and use it to subclass the original window class. 
The dynamic-link library retrieves the original window-procedure address by 
using the WinQueryClasslnfo function. The new window procedure then passes 
unprocessed messages to the original window procedure. All windows created 
using this revised public window class will automatically be subclassed. 

When subclassing a public window class, the window data size cannot be smaller 
than the original window data size. All public window classes defined by MS 
OS/2 use four extra bytes for storing a pointer to custom window data. This size 
is not guaranteed for public window classes defined by dynamic-link modules not 
belonging to MS OS/2. 

6.2.7 Class Data 
An application can examine a registered window class by using the Win Query­
Classlnfo function. This is useful for checking the class styles of a public win­
dow class. An application can also retrieve the name of the class for a given win­
dow by using the WinQueryClassName function. Using the window class name, 
you can then call the WinQueryClasslnfo function to retrieve the window class 
data. 

The WinQueryClassName function retrieves the name of the window class. If 
the window is one of the preregistered, public window classes, the window class 
name returned is in the form #nnnnn, where nnnnn is up to five digits represent­
ing the value of the window class name constant. 

The WinQueryClasslnfo function retrieves information about a window class. It 
copies the class style, window-procedure address, and window data size to a 
CLASSINFO data structure. The CLASSINFO structure has the following form: 

typedef struct _CLASSINFO { /* cisi */ 
ULONG flCIassStyIe; 
PFNWP pfnWindowProc; 
USHORT cbWindowData; 

} CLASSINFO; 



98 MS OS/2 Programmer's Reference, Vol. 1 
mmlar.;[iifmjli_mi~liiii~ffi!iU~~~Iif~i~.P~~i!iE!~ii§H;J!!ilm!~i!li§i5!sp.~~~~~.mmliP.iii;U!mm15tR~i;1imii~1f:ijl 

6.3 Using Window Classes 
The following sections explain how to register and use window classes in your 
applications. 

6.3.1 Registering a Private Window Class 
You can register a private window class at any time by using the WinRegister­
Class function. You must define the window procedure in your application, 
choose a unique name, and set the window class styles for the class. The follow­
ing code fragment shows how to register the window class name "MyPrivate-
Name". . 

WinRegisterClass(hab, 
"MyPrivateName", 
MyWindowProc, 
CS_SIZEREDRAW, 
0) ; 

1* anchor-block handle *1 
1* class name *1 
1* far pOinter to procedure *1 
1* class style *1 
1* window data *1 

6.3.2 Registering an Imported Window Procedure 
You do not have to limit window procedures to your application's code seg­
ments. You can also register a window procedure that is imported from a 
dynamic-link library. You can do this in several ways. The easiest way is to 
import the window-procedure name by using either the IMPORTS statement in 
the application's module-definition file or by linking with an import library that 
contains an import record for the function. 

6.4 Summary 
An application can use the following functions to register and use window 
classes: 

WinQueryClassInfo Obtains information about a window class. The class is 
specified by name. The function fills a CLASSINFO data structure. This gives 
you the long word of the window-class style, a pointer to its window procedure, 
and the number of additional words stored as part of the class. 

WinQueryClassName Obtains a window class name for a given window. If the 
window class is one of the preregistered, public classes, the class name returned 
is in the form #nnnnn, where nnnnn is up to five digits representing the value of 
the window class name constant. 

WinRegisterClass Registers a window class. 



Chapter 

7 

Window Procedures 
7.1 Introduction.. ........ ... .. ............................ ... .. ..... .. . .. .. 101 

7.2 About Window Procedures ........................................ 101 
7.2.1 Structure of a Window Procedure......................... 101 

7.2.1.1 Calling Convention ................................ 101 
7.2.1.2 Arguments ......................................... 102 
7.2.1.3 Return Value......... ..... ... ...................... 103 

7.2.2 Default Window Procedure................................. 103 

7.3 U sing a Window Procedure........................................ 103 
7.3.1 Associating a Window Procedure and Classes .......... 104 
7.3.2 Processing a Default Window Procedure................. 104 

7.4 Summary............................................... ................. 105 
7.4.1 Window-Procedure Syntax.................................. 105 
7.4.2 Messages Processed by the 

Default Window Procedure................................. 105 





Chapter 7: Window Procedures 101 
!!!ii~!l!i~imJ~~~ffOOi~ifij~!Hiey!!jj:i5:!i~iif!~~tm!tfi1Ii£§ru3iI~~ilS!iiii!i~~fi5iil!P.i~~imi1m~~n~h1l~R!iHim~itiH!i~ili.ilii~@'iiJi 

7.1 Introduction 

• 
This chapter describes window procedures and the default window procedure. 
You should also be familiar with the following topics: 

• Standard user-interface guidelines 

• Window classes 

• Window messages and message queues 

• Dialog windows and dialog procedures 

7.2 About Window Procedures 
Every window in MS OS/2 is associated with a window procedure that controls 
all aspects of the window: its appearance, how it responds to state changes, and 
how it processes user input. 

Each window class has an associated window procedure, and all windows of that 
class use the same window procedure. For example, the system defines a window 
procedure for the frame window class, and all frame windows use that window 
procedure. 

Applications typically define at least one new window class and an associated 
window procedure. The application can then create many instances of windows 
with that class, all of which use the same window procedure. Note that this 
means that the same piece of code may be called from several sources simultan­
eously. Therefore, care must be used when modifying shared resources from a 
window procedure. 

Dialog procedures have the same structure and function as window procedures. 
All material referring to window procedures in this chapter also applies to dialog 
procedures. The only real difference between a dialog procedure and a window 
procedure is the recommended default procedure and what messages are han­
dled. 

The rest of this chapter shows how to write a window procedure and associate it 
with a window class. 

7.2.1 Structure of a Window Procedure 
All window procedures share a common syntax and structure. Because all 
messages must use the same calling syntax, the arguments and return value for 
window procedures are interpreted differently depending on the message being 
handled. The following sections describe the syntax and structure of a window 
procedure. 

7.2.1.1 Calling Convention 
From a programmer's point of view, a window procedure is a function that takes 
four arguments and returns a long word. The function must use Pascal calling 
conventions; that is, the arguments are pushed on the stack from left to right in 
the function definition and the function must clear the arguments from the stack 
before returning. This is different from the normal C-Ianguage calling conven­
tion, so the Microsoft C Optimizing Compiler provides the pascal keyword for 
defining functions that use the Pascal calling convention. 



102 MS OS/2 Programmer's Reference, Vol. 1 
!t!ifi~r.:al~;$jfijin~mi!~lfti~~~~~i~~Iif~H~.lif~~~ii!1~im;H;J!mim!~Ji!l§iiffiH1Jif.~;~.mtmlfrli!iiUf§imia~~i~i!f:ii~ru1f:fiil 

You should use the EXPENTRY macro when defining window procedures to 
ensure that the functions are declared appropriately. 

Finally, you must ensure that the data-segment register is properly set up on 
entry to the window procedure. When the system calls the window procedure, it 
passes the proper data segment in the ax register. If you are prografnming in 
Microsoft C, use the Joadds keyword in your window-procedure definitions. 
This causes the compiler to insert the proper prolog and epilog code in your win­
dow procedures so that the data segment is initialized and restored properly. If . 
you are programming in assembly language, you should load the ds register from 
ax on entry and restore the ds register on exit. If you are using another develop­
ment environment, consult the relevant documentation for the appropriate com­
piler switch. 

Because a window procedure can be called recursively, it is probably best to 
minimize the number of local variables used in the window procedure. To avoid 
overusing local variables and possible stack overflow in deep recursion, you 
should call other functions outside your window procedure to process individual 
messages. 

7.2.1.2 Arguments 
A window procedure takes four arguments: The first is a window handle; the 
second is a USHORT message designator; and the last two arguments are 
declared with the MPARAM data type, which is defined in the include files as a 
far pointer to the VOID data type (a generic pointer). The message arguments 
often contain information in both the low and high words of the long word. 
There are several macros defined in the pmwin.h include file that make it easier 
to extract bytes or integers from the MPARAM value. These macros include 
SHORTIFROMMP, which extracts the low-order word from an MPARAM 
value. 

The window-procedure arguments are described in the following list: 

Argument 

hwnd 

msg 

mpJ 

mp2 

Description 

Window handle of the window receiving the message. 

Message identifier. The message will generally corre­
spond to one of the predefined constants (for example, 
W1LCREATE) defined in the system include files. This 
argument can also be equal to an application-defined 
message identifier. Application-defined messages must be 
greater than W1LUSER. If a window procedure does 
not process a message, it is strongly recommended that it 
pass the message to the WinDelWindowProc function. 
This allows the default processing for the message to 
occur. 

Message parameter. Its interpretation depends on the 
particular message. 

Message parameter. Its interpretation depends on the 
particular message. 



Chapter 7: Window Procedures 103 
f!igHlii~i~!mllf:J!Sifffjli~~j~iSL.:irufaitiii!!~ ... ~tm!iii1if53jfiljjl~ilSiSh'iiiSi~~'li~~ii?~m:irnifi~i~~11!§if!!:tiJiit~~1iIiRiiiil&11ii!tii!.fi!~ 

7.2.1.3 Return Value 
The return value of a window procedure is defined as an MRESULT type. This 
is defined in the include files as a far pointer to a VOID data type. The actual 
interpretation of the return value depends on the particular message. Consult the 
description of each message to determine the appropriate return value. 

7.2.2 Default Window Procedure 
All windows in MS OS/2 share certain fundamental behavior. This basic 
behavior· is encapsulated in the WinDeIWindowProc function, the default win­
dow procedure. The default window procedure is provided so you can get the 
minimal functionality for a window by calling WinDeIWindowProc. Control win­
dows defined by the system can also call WinDeIWindowProc for default pro­
cessing. 

7.3 Using a Window Procedure 
The following code fragments show a sample window procedure. It shows how 
to use the message argument in a switch statement with individual messages han­
dled by each case statement. Notice that each case returns a value specifically 
for that message. Consult the description of each message to determine the 
appropriate return value. 

The window procedure calls the WinDeIWindowProc function for any messages 
that it does not handle itself. WinDeIWindowProc performs default processing 
for essential messages sent to windows. 

MRESULT CALLBACK MyWindowProc(hwnd, msg, mpl, mp2) 
HWND hwnd; 
USHORT msg; 
MPARAM mpl; 
MPARAM mp2; 
{ 

} 

/' local variables 'I 

switch (msg) { 

} 

case WM_CREATE: 
I' Initialize private window data. '/ 

return OL; 

case WM_PAINT: 
I' Paint the window. 'I 

return OL; 

case WM_DESTROY: 
I' Clean up private window data. '/ 

return OL; 

default: 
break; 

return (WinDefWindowProc(hwnd, msg, mpl, mp2»; 

A dialog procedure is exactly like a window procedure except that it receives a 
WMJNITDLG message instead of the ~CREATE message. A dialog pro­
cedure should pass all unprocessed messages to the WinDeIDlgProc function 
instead of passing them to the WinDeIWindowProc function. 



104 MS OS/2 Programmer's Reference, Vol. 1 
!J!mt~r.~i!i;~igni5fmi!imi!m!iffi~[~ijfrflil{f~il~itf~~I~~~iimiHQlI!iiMli~i!!l~i!i!Ei!1fi~~ij~~81mlff.i!imlBimiii;;tR:~j~iif:lj~ru1if:iil 

It is possible to write a window procedure that passes all messages to WinDer.;. 
WindowProc, but the window will have no personality of its own. At the very 
least, a window procedure should handle the WMJ> AINT message to draw 
itself. Typically, it should handle mouse and keyboard messages as well. Consult 
the descriptions of individual messages to determine if your window procedure 
should handle them. 

There are times when you may want to create a window that does not change 
the default window behavior. That window's sole purpose is to keep track of its 
child windows. Object windows are often used this way. An easy way to create a 
window that does not change the default window behavior is to specify the Win­
DefWindowProc function as your window procedure when registering the win­
dow class. The application then does not write a separate window procedure for 
windows of this class. 

7.3.1 Associating a Window Procedure and Classes 
A window procedure is associated with a window class by passing a far pointer 
to the window procedure to the WinRegisterClass function. Once registered this 
way, the window procedure will be associated with each new window created 
with that class. 

The following code fragment shows how to associate a window procedure with a 
window class: 

WinRegisterClass(hab, 
szClassName, 
MyWindowProc, 
CS_SIZEREDRAW, 
0) ; 

/* anchor-block handle */ 
/* class name */ 
/* far pointer to procedure */ 
/* class style */ 
/* window data */ 

Another useful option is to subclass a window of an existing class. This is most 
often used to add functionality or to alter the behavior of frame windows. 

To subclass a window, call the WinSubclassWindow function. This function 
returns a pointer to the window procedure for the window. SubclaSsing allows 
you to process messages using your own window. procedure before passing 
unprocessed messages to the original window procedure. In this way, you can 
use the original window procedure instead of WinDefWindowProc for default 
window processing. 

7.3.2 Processing a Default Window Procedure 
Typically, you. call the WinDefWindowProc function for any messages. that are 
not handled in your window procedure. For each message handled you should 
return an explicit value that depends on the particular message. For all other 
messages you should return the WinDefWindowProc function. The following 
code fragment shows how to structure a window procedure to call the default 
window procedure for any unused messages: 

switch (usMessage) { 

} 

case WM_PAINT: 
hps = WinBeginPaint(hwnd, NULL, &rect); 
WinFillRect(hps, &rect, CLR_WHITE); 
WinEndPaint(hps) ; 
return OL; 

default: 
break; 

return (WinDefWindowProc(hwnd, usMessage; mpl, mp2»; 



Chapter 7: Window Procedures 105 
l!¥i!i!:!i~~~ra!i:iif~r"JeiEl~ii~~l!f$!alUi1~m!~~;§lIm~i~m~lH!S!~~Ul~..ruJi!if:iif~iil~§i~~~_~~miii~f!j!~Um;§li!fa~ijglS 

You can also call WinDetwindowProc as part of your own processing of a win­
dow message. In these cases, you may want to modify the parameters to the 
message before passing it to WinDetwindowProc, or you may want to continue 
with the default processing after performing your own operations. 

7.4 Summary 
This section gives the window-procedure syntax and lists the messages processed 
by the default window procedure. 

7.4.1 Window-Procedure Syntax 
The following shows the syntax for a window procedure: 

MRESULT CALLBACK WindowProc(HWND hwnd, USHORT msg, 
MPARAM mpJ, MPARAM mp2) 

7.4.2 Messages Processed by the Default Window Procedure 
The following messages are handled by the WinDetwindowProc function. For 
each message, the default processing is described; typical reasons for overriding 
the default behavior are also given: 

WMJlUTTONIDBLCLK The default window procedure passes this message 
to the owner window. Processing this message allows you to add functionality to 
mouse clicks and to differentiate the three possible mouse buttons. 

WMJlUTTONIDOWN The default window procedure activates the window 
by calling the WinSetActive Window function. Processing this message allows you 
to add functionality to mouse clicks and to differentiate the three possible mouse 
buttons. 

WMJlUTTONIUP The default window procedure passes this message to the 
owner window. Processing this message allows you to add functionality to mouse 
clicks and to differentiate the three possible mouse buttons. 

WMJlUTTON2DBLCLK The default window procedure passes this message 
to the owner window. Processing this message allows you to add functionality to 
mouse clicks and to differentiate the three possible mouse buttons. 

WMJlUTTON2DOWN The default window procedure activates the window 
by calling the WinSetActive Window function. Processing this message allows you 
to add functionality to mouse clicks and to differentiate the three possible mouse 
buttons. 

WMJlUTTON2UP The default window procedure passes this message to the 
owner window. Processing this message allows you to add functionality to muuse 
clicks and to differentiate the three possible mouse buttons. 

WMJlUTTON3DBLCLK The default window procedure passes this message 
to the owner window. Processing this message allows you to add functionality to 
mouse clicks and to differentiate the three possible mouse buttons. 

WMJlUTTON3DOWN The default window procedure activates the window 
by calling the WinSetActiveWindow function. Processing this message allows you 



106 MS OS/2 Programmer's Reference, Vol. 1 
iIiRi:fm;!~i!ii:fif~iill~~!~i~I~Jjj~~i!f~iiIJiimlil;;!~!ii!iimlf4iru~~3~!rui!~ifi!ir~ .. Ef!i!fiJ~i~ll~1il~!fJ~~iir~!!i~~~:jjj!Igp,lfil~Er~i~! 

to add functionality to mouse clicks and to differentiate the three possible mouse 
buttons. 

WM.J3UTfON3UP The default window procedure passes this message to the 
owner window. Processing this message allows you to add functionality to mouse 
clicks and to differentiate the three possible mouse buttons. 

~CALCV ALIDRECTS The default window procedure returns the . long­
word value. Processing this message allows you to specify the portion of the 
window that is preserved when the window is resized and to specify where the 
preserved area is aligned when the window is redrawn. 

~CHAR The default window procedure passes this message to the window 
owner . You can process this message to evaluate incoming keyboard events. In 
the case of standard control windows, unused ~CHAR messages are passed 
to the WinDetwindowProc function and passed up the parent- and child­
window hierarchy until reaching a frame or dialog window where default dialog 
effects, such as pressing the TAB key to move from control to control, are imple­
mented. 

~CLOSE The default window procedure posts a ~QUIT message to 
the queue, which causes the message loop to terminate. Processing this message 
allows you to prevent the Close menu item in the System menu from terminating 
the program. This is particularly useful with child frame windows in a multiple­
document application. 

~CONTROLHEAP The default window procedure returns the heap handle 
for the heap maintained by the system for the window message queue. You pro­
cess this message if the window maintains a separate beap. 

~CONTROLPOINTER The default window procedure returns the mouse 
pointer passed in the mp2 parameter, thus allowing the default pointer shape. 
This message is sent to the owner of a control window to. allow it to change the 
shape of the mouse pointer when the pointer is over the control window . You 
can return a different mouse-pointer handle to override the mouse pointer 
chosen by the control window. For example,a special control that handles its 
mouse-movement message by sending a ~CONTROLPOINTER message to 
its owner with its special pointer. The owner window then determines what 
pointer to use. The default window procedure would use the control's special 
pointer. 

WMJ)DEJNITIATE The default window procedure frees the selector in the 
mp2 parameter and returns FALSE. You should process this message if your 
application supports the dynamic-data-exchange (DDE) protocol. 

WMJ)DEJNITIATEACK The default window procedure frees the selector 
in the mp2 parameter and returnsF ALSE. You should process this message if 
your application supports the dynamic-data-exchange (DDE) protocol. 

~OCUSCHANGE The default window procedure passes the message to 
the owner window (if one exists) or to the parent window if no owner exists. If 
no owner or parent window exists, the default window procedure does nothing. 
Generally, this message is passed up the parent- and child-window hierarchy 
until it reaches a frame window, where the appropriate ~CTIV ATE, 
~SETSELECTION, and ~SETFOCUS messages are generated. This 
message is the first indication of a focus change. 



Chapter 7: Window Procedures 107 
~i!iIi!l~~~a!iiif§ftrIifJi5f~J!!iii1n§!if5iiilftiliim!S!i~~li~it!i~i!f~ml!j!lli1mm~..mI:fif;~~Ib.=;'!i~jgit:S~~~~l~fml~!m!~~;Sns.lli 

WMJIELP The default window procedure passes this message to the parent 
window (if one exists). You process this message to provide context-sensitive 
help. 

WMJIITTEST The default window procedure returns HT~RROR if the win­
dow is disabled; otherwise, it returns HT_NORMAL. Processing this message to 
return HT_NORMAL for a disabled window allows the disabled window to 
receive mouse messages. 

~ENUSELECT The default window procedure returns TRUE, which 
means the menu selection should be processed normally . You can process this 
message if you want to perform context-sensitive actions-for example, process­
ing explanatory messages, each time a menu item is selected. 

~OUSEMOVE The default window procedure sets the mouse pointer to 
the arrow pointer . You normally process this message for mouse tracking after a 
mouse button-down message. This message is also useful for setting the mouse­
pointer shape, depending on where the mouse is in the window. 

WMJ> AINT The default window procedure calls the WinBeginPaint and 
WinEndPaint functions to empty the update region for the window. If you do 
not process this message, the window will not be drawn. 

W1LQUERYCONVER TPOS The default window procedure returns the 
cursor size and positional data pointed to by the mpJ parameter and returns 
QCP_CONVERT to signify that the RECTL structure passed was properly con­
verted. 

W1LQUER YFOCUSCHAIN The default window procedure performs the 
default processing of this message, which defines the focus chain for that win­
dow. 

W1LQUERYFRAMECTLCOUNT The default window procedure passes this 
message to the parent window until it finds a frame window, where it will be pro­
cessed. 

W1LQUERYWINDOWPARAMS The default window procedure sets all win­
dow parameters in the passed structure to zero and returns FALSE to indicate 
that the operation was not successful. 

W1LSETWINDOWP ARAMS The default window procedure does nothing 
except return FALSE. 

W1L TIMER The default window procedure blinks the cursor for the window 
if the timer message has the TID_CURSOR timer ID. You process this message 
only if they create their own timers. Applications should pass a W1LTIMER 
(TID_CURSOR) message to the WinDelWindowProc function even if the appli­
cation processes its own timers. 

WM_TRANSLATEACCEL The default window procedure passes this mes­
sage to the parent window (if one exists). This message is usually passed from a 
child window to its parent window until it reaches a frame window, where the 
default frame-window procedure calls the WinTranslateAccel function to deter­
mine if the key pressed is a valid accelerator key. 





Chapter 

8 

Mouse and Keyboard Input 
8.1 Introduction... ......................................................... 111 

8.2 About Mouse and Keyboard Input.............................. 111 
8.2.1 The System Message Queue ................................ 111 
8.2.2 Mouse Capture................................................ 112 
8.2.3 Keyboard Focus .............................................. 112 
8.2.4 Window Activation........................................... 112 

8.3 Using the Mouse and Keyboard in an Application .......... 112 
8.3.1 Responding to Activation Events.......................... 113 
8.3.2 Responding to Mouse Messages ........................... 113 

8.3.2.1 Responding to Button Clicks ..... ........ ........ 114 
8.3.2.2 Responding to Mouse Movement ................ 114 

8.3.3 Changing the Mouse Capture............................... 115 
8.3.4 Keyboard Messages .......................................... 115 
8.3.5 Responding to Keyboard Messages........................ 116 

8.3.5.1 Key-Down or Key-Up Events..................... 116 
8.3.5.2 Repeat-Count Events.............................. 117 
8.3.5.3 Character Codes................................... 117 
8.3.5.4 Virtual-Key Codes................................. 117 
8.3.5.5 Scan Codes ........................................ 118 
8.3.5.6 Accelerator-Table Entries... ..... ........ ........ 119 

8.3.6 Changing the Keyboard Focus.............................. 119 

8.4 Summary................................................................ 120 
8.4.1 Functions ................................. ..................... 120 
8.4.2 Messages....................................................... 121 

8.4.2.1 Focus Change and Activation Messages......... 121 
8.4.2.2 Mouse Messages ................................... 122 
8.4.2.3 Keyboard Message............ ..................... 123 





Chapter 8: Mouse and Keyboard Input 111 
!!!~Ii!lE~~2if:fiifJrrifJe!§&':~iiiim!iF:ii:~IiIiI;m~llaiili!~I~lm~mf~iU"'Jti!!Jf:{jjliim~si~l!f~iRf9m8~fSl!f:!!miIUi'Uiifiillji' 

8.1 Introduction 
This chapter describes how to use mouse and keyboard input in your applica­
tions. You should also be familiar with the following topics: 

• Standard user-interface guidelines 

• Window messages and message queues 

• Accelerator tables 

8.2 About Mouse and Keyboard Input 
MS OS/2 Presentation Manager applications should support input from both the 
mouse and keyboard. The mouse can have either one, two, or three buttons. 
Only one window at a time can receive mouse input and only one window at a 
time can receive keyboard input. These windows are not necessarily the same, 
although they can be. 

8.2.1 The System Message Queue 
All mouse and keyboard input is routed through a single system message queue. 
The system takes input events, such as keys being pressed or mouse movements, 
out of the system queue and routes them to the appropriate application. Gen­
erally, mouse input is directed to the application that owns the window in which 
the mouse-pointer event occurs. An application can route all mouse input, 
regardless of mouse position, to a particular window by setting the mouse cap­
ture window. Keyboard input is sent to the· application that owns the "keyboard 
focus" window. Keyboard focus and mouse capture are discussed more fully 
later in this chapter. 

The system takes messages out of the system message queue and places them in 
the appropriate application message queue. An application receives input mes­
sages from its own queue by calling the WinGetMsg or WinPeekMsg function. 

Mouse and keyboard events in the system queue are strictly ordered so that an 
input event cannot be processed until all previous input events have been fully 
processed. This is because the destination window of an input event is not 
known until all previous input has been processed. 

For example, if a user types a command in one window, uses the mouse to 
activate another window, and then types another command in the second win­
dow, the destination of the second keyboard command depends on how the 
mouse click is handled. An application might not activate its window in response 
to the mouse click. The second keyboard event goes to the second window only 
if that window becomes active as a result of the mouse click, which also depends 
on how the application processes the mouse click. 

Because the input queue is strictly ordered and events cannot be processed until 
all previous input has been processed, it is very important that applications pro­
cess input events quickly to avoid slowing user interactions with the system. 



112 MS OS/2 Programmer's Reference, Vol. 1 
;~tmf~!~fii5il§~~J~j~;~I!iIj!~~~f1iifilliiimma!~!i€§im!~~ifln~i!!iN~rruli~if!i'~Ji!i!il~J*iik~~~I~l!i~~!m~~~~~r.liimmatiii~~i!fli~! 

8.2.2 Mouse Capture 
Generally, a mouse message goes to the window under the mouse pointer at the 
time the event is read from the system queue. Applications can change this by 
setting the mouse capture window, in which case all mouse input is sent to the 
mouse capture window until the mouse capture is released or set to another win­
dow. Mouse capture is useful if a window should receive all mouse input even 
when the mouse pointer moves outside the window. For example, it is common 
to track the mouse-pointer position after a mouse button-down event, following 
the mouse pointer until a mouse button-up event is received. If you do not set 
the mouse capture to a particular window and the user moves the mouse pointer 
outside the window and releases the mouse button, your application will not 
receive the mouse button-up message. If you set the mouse capture to a particu­
lar window while tracking the mouse pointer, your application will receive the 
mouse button-up message even if the mouse moves outside the window. 

8.2.3 Keyboard Focus 
Only one window at a time receives keyboard input. The window receiving the 
keyboard input is called the keyboard-focus window. Applications can allow the 
system to set the keyboard-focus window by default as windows are activated and 
deactivated, or an application can specifically set the keyboard focus to a 
specific window. If there is no keyboard-focus window specified, the system 
sends keyboard input to the currently active frame window. 

8.2.4 Window Activation 
Because there can be many windows belonging to many applications on the 
screen at the same time, MS OS/2 provides a way to arbitrate input among win­
dows and applications. There is at most one active application at any time in the 
Presentation Manager screen group. The active application usually has only one 
active frame window, although it is possible to have more than one active frame 
window. For example, an application with a multiple-document interface can 
have several child frame windows. 

The activation state of a window is important when an application responds to 
mouse clicks. It is also important because activation and keyboard focus are 
closely related window attributes. 

The WinQueryActiveWindow function returns the currently active frame win­
dow. Note that a client window is never returned by this function. Activation of 
the client window is an attribute of frame windows. . . 

8.3 Using the Mouse and Keyboard in an Application 
An application that uses the mouse and keyboard for input must respond to 
activation, mouse, and keyboard events. The following sections describe how to 
handle these three related topics. 



Chapter 8: Mouse and Keyboard Input 113 
~~irn¥iim!~!1]l!UPil~lrn~l~1~~11!!!~.mfR!~!S:i~~~l~~lii!~!i~i~s1affigrY.i~~~!iiin~I~~m~iiiiili!Sfiilmi~fiii~!~*s~~mifiinillm! 

8.3.1 Responding to Activation Events 
A client window receives a ~CTIV ATE message when its parent frame 
window is being activated or deactivated. The activation or deactivation message 
is usually accompanied by messages to set or lose the keyboard focus. There­
fore, applications should not use the ~CTIV ATE message to change the 
keyboard focus. 

The low word of the first message parameter is TRUE if the window is activated, 
and FALSE if the window is deactivated. 

One use for the ~CTIVATE message is to toggle the state of an 
application's private variable that tells whether a window is active or not, as 
shown in the following code fragment: 

case WM_ACTIVATE: 
fActivated = (BOOL) mpl; 
return(OL); 

It is important to know the activation state of a window in order to correctly 
handle mouse-button clicks. 

8.3.2 Responding to Mouse Messages 
Mouse messages occur when a user presses or releases one of the mouse buttons 
(a click) and when the mouse is moved. All mouse messages contain the x- and 
y-coordinates of the mouse-pointer hot spot (relative to the window coordinates 
of the window receiving the message) at the time the event occurs. 

The system sends a WMJIITTEST message to the window that is about to 
receive a mouse message. The window can determine if it should actually receive 
the mouse message or not. The default processing of this message in the Win­
DetWindowProc function is to return HT~ORMAL if the window is enabled 
and HT-ERROR if the window is disabled. If the return value is HT-ERROR, 
the system does not send the mouse message to the window. Most applications 
pass WMJIITTEST messages on to the WinDetWindowProc function by 
default so disabled windows do not receive mouse messages. Windows that 
specifically respond to WMJIITTEST messages can change this default 
behavior. 

Because windows process WMJ-IITTEST and mouse messages, an application 
can ignore hit-test code in a mouse message unless the application returns spe­
cial values for hit-test code. One possible use for hit-test code is to react 
differently to a mouse click in a disabled window. 

The contents of the mouse-message arguments (mpJ and mp2) are listed below: 

• The x-position is in low word of mpl. 

• The y-position is in high word of mpl. 

• The hit-test code is in low word of mp2. 



114 MS OS/2 Programmer's Reference, Vol. 1 
iiiiL1iriijmil!i~flil~iii!~il.&p' ... ~gl~iill!!!!iP.i~~~Hff~liiiiimiiiiifJ!!t!I!~~atlii!i~lIjijmt~~iii~f*-fdi!1ir;:}.1il~ii!i!!~~.rJtijm~l 

8.3.2.1 Responding to Button Clicks 
Applications typically respond to mouse button-down events differently depend­
ing on whether the window is currently active. The first button-down event in an 
inactive window should activate a window. A subsequent button-down event in 
an active window produces an application-specific action. 

Typically, an application processes mouse clicks in the client window of a stan~ 
dard frame window. Because the activatedl deactivated status of a window is a 
frame-window characteristic, the system does not provide an easy way to deter­
mine if the client window is active. That is, the window handle returned by the 
WinQueryActiveWindow function is the active frame-window handle rather than 
the client window owned by the frame. 

The following are two typical methods for determining if a client is an active 
frame window: 

• Call the WinQueryActiveWindow function and compare the window handle 
it returns with the frame window that contains the client window, as shown 
in the following code fragment: 

fActivated = (WinQueryWindow(hwndClient, QW_PARENT, FALSE) == 
WinQueryActiveWindow(HWND_DESKTOP, FALSE» 

• Maintain a private variable for the client window that is set and cleared when 
processing WM-ACTIVATE messages. Each time the frame window is 
activated, the client window receives a ~CTIV ATE message with the 
low word of the first parameter equal to TRUE. When the frame window is 
deactivated, the client window receives a ~CTIV ATE message with a 
FALSE activation indicator. The following code fragment shows how to use 
activation messages to toggle a private-status variable: 

case WM_ACTIVATE: 
fActivated = (BOOL) mpl; 
return (OL); 

Depending on the method used to determine if a client window is active, a 
mouse button-down message is passed to the WinDelWindowProc function if the 
window is not active at the time of the message. The default processing activates 
the window and its frame. 

A common problem for an application processing WMJ3UTTON1DOWN or 
similar messages is the failure to activate or set the window focus. If the window 
processes character messages, the window procedure should call the WinSet­
Focus function to make sure the window receives the input focus and is 
activated. If the window does not need the keyboard focus, an application 
should call the WinSetActive Window function. 

8.3.2.2 Responding to Mouse Movement 
The system sends mouse-move messages to the window under the mouse pointer 
or the current mouse-capture window, if any, whenever the mouse pointer 
moves. This is useful for tracking the mouse pointer and changing its shape 
based on its location in a window. For example, the mouse pointer changes 
shape when it passes over the size border of a standard frame window. 

All standard control windows use mouse-move messages to set the mouse­
pointer shape. If your application handles WM.-MOUSEMOVE messages in 



Chapter 8: Mouse and Keyboard Input 115 
~~iffiNim!:mtlm!ittif~m§p:gig~il!i'J!¥.fiif.!fr!!mi~~~It!{~~!~!i~!~~1!!m~WMi~!i~iii!i~Iif;~miiiiml~~mj~li§i~!i!s~I!i~j~~ 

some situations but not others, unused messages should be passed to the Win­
DeIWindowProc function to change the shape of the mouse pointer. 

8.3.3 Changing the Mouse Capture 
Mouse messages are usually routed to the window under the mouse pointer. 
Applications can call the WinSetCapture function to process all mouse messages 
by a specified window. This is particularly useful when an application is tracking 
the mouse pointer after a button-down message. 

For example, in a paint application that uses a button-down message to start a 
drawing operation, the application tracks the mouse using mouse-move messages 
until a button-up message is received. If a user drags the mouse pointer outside 
the window and releases the button, the button-up message will not go to the 
original window unless the application has called the WinSetCapture function 
for that window. 

Some applications must receive a button-up message to match a button-down 
message. When processing a button-down message, these applications call the 
WinSetCapture function to set the capture to their own window, and then they 
call the WinSetCapture function with a NULL window handle to release the 
mouse capture when processing a matching button-up message. 

8.3.4 Keyboard Messages 
All keyboard messages come to a window as WM_CHAR messages. The system 
reads the keyboard and collects keyboard events in the system queue. It then 
routes these messages to the appropriate windows depending on the current 
keyboard-focus window at the time the message is sent. 'WM.-CHAR messages 
are sent to the window that has the keyboard focus. If no window has the key­
board focus, then 'WM.-CHAR messages are posted to the active frame-window 
queue. The following are two typical situations where applications receive 
'WM.-CHAR messages: 

• An application has a client window or custom control window, each of 
which can have the keyboard focus. If a window procedure for the client or 
control window does not process characters, it should pass them to its owner 
window, which can be accomplished by passing them through to the Win­
DeIWindowProc function. This is especially true for dialog-control items, as 
this is how the TAB and direction-key control processing is implemented in 
the user interface. 

• An application window owns a control window that handles some, but not 
all 'WM.-CHAR messages. This is common in dialog windows. If a control 
window that has the focus in a dialog window cannot process a 'WM.-CHAR 
message, it can call the WinDeIWindowProc function to send the message to 
its owner, which is usually a dialog-frame window. The application dialog 
procedure then receives the 'WM.-CHAR message. This is also the case 
when an application client window owns a control window. 



116 MS OS/2 Programmer's Reference, Vol. 1 
tir~~~&~~i~U?li~~~!f.l\~.H~!¥a~mii!fii~ii!iiifi~Ji~~iiU\~n~m'i~A\~!rnH~if1~!ru!~i~I~\.i~~]}m~tJItii~ninU~lmi!ru!~~\~iiUfri,~~ii~ 

8.3.5 Responding to Keyboard Messages 
A W1LCHAR message may represent a key-down or key-up transition. It may 
contain a character code, a virtual-key code, or a scan code. This message also 
contains information about the state of the SHIFf, CONTROL, and ALT keys. 

Each time a user presses a key, at least two W1LCHAR messages are gen­
erated: one when the key is pressed down, and one when the key is released. If 
the key is held down long enough to trigger the keyboard repeat, multiple 
W1LCHAR key-down messages are generated. 

If the keyboard repeats faster than the application can retrieve the events 
from the event queue, the system combines repeating character events into 
one W1LCHAR event representing multiple-key events for the same key. 
W1LCHAR messages contain a count byte indicating the number of keystrokes 
represented by the message. Generally, this byte is set to 1, but it should be 
checked every time a W1LCHAR message is processed to avoid missing key­
strokes. 

A control may ignore the repeat count; for example, it may ignore the count on 
direction keys. If the system is slow, it may be more aesthetic to have a cursor 
move slowly than to see it jump 40 characters. 

Applications decode W1LCHAR messages by examing individual bits in the 
flag word contained in the low word of the first argument passed with every 
W1LCHAR message. These bits may be set in various combinations. For 
example, a W1LCHAR message can have the KCJ(EYDOWN, KC_CHAR, 
KC_SCANCODE, and KC_SHIFf attribute bits all set at the same time. 

The mpl and mp2 parameters that are part of the message contain different 
information depending on the nature of the keyboard event, as follows: 

• The flag word is in low word of mpl. 

• The repeat-key count is in low byte of high word of mpl. 

• The· scan code is in high byte of high word of mpl. 

• The character code (ASCII) is in low word of mp2. 

• The virtual-key code is in high word of mp2. 

An application window procedure should return TRUE if it processes a particu­
lar W~CHAR message, or FALSE otherwise. Typically, applications respond 
to key-down events and ignore key-up events. 

The following sections describe the different types of W1LCHAR messages. 
Generally, decoding these messages consists of layers of conditional statements 
to eliminate and discriminate the different combinations of attributes that can 
occur in a keyboard message. 

8.3.5.1 Key-Down or Key-Up Events 

Generally, the first attribute that an application checks in a W1LCHAR- mes­
sage is the key-down or key-up events. The distinction between a key-down and a 
key-up event is found by examining the KCJ(EYUP bit of the low word of the 
first message parameter. If this flag bit is set, then the message is from a key-up 
event. If the bit is clear, then the message is from a key-down event. The follow­
ing code fragment shows how to decode a message for this information: 



Chapter 8: Mouse and Keyboard Input 117 
~i§iiill!im!imfI11l!PJf4~lm~lgiF.rui~iiIJ!~.mi_!~!!i~~~l~~~f~!i~i;;li$1~~~~~~iiiiU~!~l~miiliiilliSfdUmi~lit;i~t~~~~ImW~ig 

case WM_CHAR: 
fs = SHORT1FROMMP(mpl); 

if «fs & KC_KEYUP» 

/* this is a key-up event */ 

else 

/* this is a key-down event */ 

return TRUE; 

8.3.5.2 Repeat-Count Events 
Applications should always check the key repeat-count part of a ~CHAR 
message to see if the message represents more than one keystroke. The count is 
greater than one if the keyboard is sending characters to the system queue faster 
than the application can retrieve them. If the system queue fills up, the system 
combines consecutive keyboard events for each key in a single ~CHAR mes­
sage with the repeat count set to the number of combined events. The repeat 
count is in the low byte of the high word of the first message parameter. 

8.3.5.3 Character Codes 
The most typical use of ~CHAR messages is to extract a character code 
from the message and display the character on the screen. When the KC_CHAR 
bit is set in the ~CHAR message, the low word of the second message 
parameter contains a character code based on the current code page. Generally, 
this value is a glyph code (typically an ASCII code) for the character for the key 
that was pressed. 

The following code fragment shows how to respond to a character message: 

fs = SHORT1FROMMP(mpl); 

if ( fs & KC_CHAR) { 

/* CHAR is in SHORT1FROMMP(mp2) */ 

/* handle the key character */ 

return (TRUE) ; 
} 

Note that if the KC_CHAR bit is not set, the SHORTIFROMMP(mp2) parame­
ter may still contain useful information. If either the ALT or CTRL key, or both, 
are down, the KC_CHAR bit will not be set when the user presses another key. 
For example, pressing the a key when the ALT key is down, the low word of mp2 
will contain a Ox0041, the KC~LT bit will be set, and the KC_CHAR bit will 
be clear. If the translation does not generate any valid characters, the char field 
is set to zero. 

8.3.5.4 Virtual-Key Codes 
~CHAR messages often contain virtual-key codes that correspond to various 
function keys and direction keys on a typical keyboard. These keys do not cor­
respond to any particular glyph code but are used to initiate operations. When 
the KC_VIRTUALKEY bit is set in flag word of a ~CHAR message, the 
high word of the second message parameter contains a virtual-key code for the 
key. 



118 MS OS/2 Programmer's Reference, Vol. 1 
iliihl1r~Ji1iil!~Ui!ii~~ii!~i;;;p'.E;~~I~rell~lmf~!~~H§i~lfruimijil!fiH!l!l~\1ijliiii~~~mt~mniif~f~!iiF.e~iliiif&i!i!§~iiill~iIl~! 

Note that some keys, such as the ENTER key, have both a valid character code 
and a virtual-key code. ~CHAR messages for these keys will contain charac­
ter codes for newline characters (ASCII 11) and virtual-key codes 
(VICENTER). 

The following code fragment shows how to decode a ~CHAR message con­
taining a valid virtual-key code: 

fs = SHORT1FROMMP(mpl); 

if (fs & KC_VIRTUALKEY) { 

} 

8.3.5.5 Scan Codes 

/* virtual key is in SHORT2FROMMP(mp2) */ 

switch (SHORT2FROMMP(mp2» { 

} 

case VK_TAB: 

/* handle the TAB key */ 

return (TRUE); 

/* handle the LEFT key */ 

return (TRUE); 

case VK_UP: 

/* handle the UP key */ 

return (TRUE); 

case VK_RIGHT: 

/* handle the RIGHT key */ 

return (TRUE); 

case VK_DOWN: 

/* handle the DOWN key */ 

return (TRUE); 

default: 
return (FALSE); 

A third possible value in a ~CHAR message is the scan code for the key 
pressed. The scan code represents the value generated by the keyboard hardware 
when a key is pressed. An application can use the scan code to identify the 
physical key pressed, as opposed to the character code represented by the same 
key. The byte-length value for the scan code is in the high byte of the high word 
of the first message parameter. 

All ~CHAR messages that are generated by the keyboard have valid scan 
codes. ~CHAR messages that are posted by other applications mayor may 
not have valid scan codes. The following code fragment shows how to extract a 



Chapter 8: Mouse and Keyboard Input 119 
im~ii!i!i~!HlmntDifIDmfm_l~~ij}j!~.m_!~!!ili~i!f.!r!i~ifi!~!!~i~~~!~~!!~!ii!i!!~~miiiiii!l~filiJmj~l~i~{ii!!s~!!i~jt.:mI 

scan code from a W1LCHAR message: 

fs = SHORT1FROMMP(mpl); 

if (fs & KC_SCANCODE) { 

} 

/* scan code is in HIBYTE(HIWORD(mpl» */ 

return (TRUE); 

8.3.5.6 Accelerator-Table Entries 
The system checks all incoming keyboard messages to see if they match any 
existing accelerator-table entries, either in the system queue or in the 
application-message queue. The translation first checks the accelerator table 
associated with the active frame window, and if no match is found, it uses the 
accelerator table associated with the message queues. If the keyboard event 
corresponds to an accelerator-table entry, the W1LCHAR message changes to a 
W1LCOMMAND, W1LSYSCOMMAND, or WMJIELP message, depending 
on the attributes of the accelerator table. The original ~CHAR message is 
not processed by the application. 

Accelerator tables should be used to implement keyboard shortcuts in applica­
tions rather than translating command keystrokes. For example, if an application 
uses the F2 key to save a document, a keyboard accelerator entry for the F2 vir­
tual key should be create(J so that it generates a ~COMMAND message 
rather than a ~CHAR message. 

8.3.6 Changing the Keyboard Focus 
Applications can change the keyboard focus window by calling the WinSetFocus 
function for the new focus window. 

The WinSetFocus function causes the following events to occur: 

• If a window currently has the focus, it receives a ~SETFOCUS message 
indicating the loss of focus. 

• If a window currently has the focus, it receives a ~SETSELECTION 
message indicating that it should deselect the current selection. 

• If changing focus causes a change in the active window and there is a 
currently active window, a ~CTIV ATE message is sent to the active 
window indicating the loss of active status. 

• A new active window, new focus window, and the active application are 
established. 

• If the active window is changing, a ~CTN ATE message is sent to the 
new main window indicating the acquisition of active status. 



120 MS OS/2 Programmer's Reference, Vol. 1 
:i1iiUj~jijnm~f4J1!mE"ifji~!~~.Ei~;m=I~~ll!:~i~~~ffia~l!ruimfaiii!1i!!t!J!}~!~ai1~~JilmtimmiiimArw~i!IiF.ij~lIliiiUmi§~lffi!~lfi~~ 

• The new focus window is sent a W1LSETSELECTION message indicating 
that it should select the current selection. 

• The new focus window is sent a W1LSETFOCUS message indicating the 
acquisition of focus. 

Using the WinQueryActiveWindow or WinQueryFocus function while processing 
the WinSetFocus function causes the previous active and focus windows to be 
returned until new active and focus windows are established. In other words, 
even though W1LSETFOCUS and ~CTIVATE messages with th~ fFocus 
parameter equal to FALSE may have been sent to the previous windows, those 
windows are considered active and have the focus until the system establishes 
new active and focus windows. 

If the WinSetFocus function is called during the ~CTIV ATE message pro­
cessing, a ~SETFOCUS message with the fFocus parameter equal to 
FALSE is not sent because no window has the focus. 

8.4 Summary 
The following sections describe the functions and messages associated with 
activation and keyboard/mouse input. 

8.4.1 Functions 
The following are the functions associated with activation, keyboard, and mouse 
input: 

WinEnablePhyslnput Enables or disables mouse and keyboard input, depend­
ing on the fEnable argument. Because this call affects the system queue, it is 
important that any application that disables input should enable it again as soon 
as possible. . 

WinFocusChange A version of the WinSetFocus function that allows more 
control over messages generated for the old and new focus windows. For exam­
ple, if an application sets the focus to a new window without deselecting text in 
the old focus window, this function should be used. 

WinGetKeyState Used to determine whether a specified virtual key is up, 
down, or toggled. A key, such. as the CAPSLOCK key, is toggled if it has been 
pressed an odd number of times. This function can also be used to obtain the 
state of the mouse buttons that use the VILBUTTONl, VILBUTTON2, and 
VKJlUTTON3 virtual key codes. 

WinGetPhysKeyState Returns information about the asynchronous (interrupt 
level) state of a specified virtual key. This function returns the physica~ state of 
the key; it is not synchronized to the processing of input and is not affected by 
calls to the WinSetKeyboardStateTable function. 

WinIsPhyslnputEnabled Returns the status, on or off, of mouse and keyboard 
input. 

WinQueryCapture Returns the window handle of the window currently holding 
the mouse capture. If the fLock argument is TRUE, the window is returned 
locked and remains locked until it is unlocked by calling the WinLockWindow 
function with fLock set to FALSE. .. 



Chapter 8: Mouse and Keyboard Input 121 
Yfr!;!!iN!lmii~"lfimffi~~if!!li!tl~I{j!US!~iMlm~1i,,~iffllmIl!1!I!§Jlfi~#iiffruifilmaJlmislw.miJli4l~i~liiiraf:fAiii~l§l~i~gif~Jijfli(!i§'~iS!mJi4~~!fjffi~llii~r:i! 

WinQueryFocus Returns the keyboard focus window, or NULL if no focus 
window exists. If the fLock argument is TRUE, the window is returned locked 
and remains locked until it is unlocked by calling the WinLockWindow function 
with fLock set to FALSE. 

WinSetCapture Sends all mouse messages to a specified window. Specifying a 
NULL window handle releases the mouse capture so that mouse input is sent to 
the window beneath the mouse pointer. 

WinSetFocus Sets the focus window to the specified window, or to no window 
if a NULL window is specified for the hwndSetFocus argument. This function 
can .cause activation and deactivation messages to go to the current and new 
focus windows. The window losing focus receives ~SETFOCUS(F ALSE) 
and ~SETSELECTION(FALSE) messages. The frame window losing the 
focus receives a WM.-ACTIV ATE(F ALSE) message, and by default passes it to 
its FID_CLIENT window. The frame window receiving the focus receives a 
~CTIVATE(TRUE) message, which it passes to its FID_CLIENT 
window by default. The window receiving the focus receives the 
~SETSELECTION(TRUE), and WM-SETFOCUS(TRUE) messages. 

WinSetKeyboardStateTable This function receives or sets the keyboard-state 
table. To change the state of one virtual key, call the WinSetKeyboardState­
Table function with the fSet argument set to FALSE to copy the current state 
table into a 256-byte table (pointed toby the pKeyStateTable argument). It is 
then possible to modify a virtual-key entry in the table and call the WinSet­
KeyboardStateTable function using the same table and fSet argument set to 
TRUE. This call does not change the physical state of the keyboard. It affects 
the result of subsequent calls to the WinGetKeyState function, but not the result 
of calls to the WinGetPhysKeyState function. 

8.4.2 Messages 
The following sections describe the messages associated with focus change, 
activation, the mouse, and the keyboard. 

8.4.2.1 Focus Change and Activation Messages 
The following messages are associated with focus change and activation: 

~CTIVATE Sent to a window when it is activated or deactivated. This 
function can be used for tracking the activation state of a client window. 

WMYOCUSCHANGE Sent to a window when the focus is changing. Most 
applications pass this message to the WinDetwindowProc function, which sends 
it to the parent frame window. The frame window uses this message to generate 
appropriate ~CTIVATE, WM-SETFOCUS, and W1LSETSELECTION 
messages for the old and new focus windows. 

W1LQUERYFOCUSCHAIN Used to define the focus chain (that is, to keep 
from hard wiring the focus chain to the parent-window relationship). 

~SETFOCUS Sent to a window when it is losing or receiving the keyboard 
focus. A typical response is to display a text-insertion cursor when receiving the 
focus and hide the cursor when losing the focus. 

~SETSELECTION Sent to a window when it is receiving or losing the key­
board focus. A typical response is to highlight the currently selected text when 
receiving the focus and unhighlight the selection when losing the focus. 



122 MS OS/2 Programmer's Reference, Vol. 1 
iiIU!H!~J~~~t2tli!~imi~!~~i!H!~I!!illijiiUii!~ifjm!iijf~Iii::l$~il~~~§il~~mtii!iiiliiJ!tl!I_i!~Ei~fii~i!u~~liijj~liii~~ffi!~ 

8.4.2.2 Mouse Messages 
The following messages are associated with mouse events: 

WMJ3U'ITONIDBLCLK Sent to the window under the mouse pointer or the 
current mouse capture window, if any, when the user clicks the first mouse but­
ton twice in a system-specified time limit. The amount of time between clicks 
necessary to make the action a double-click is a system parameter that a user 
can set using Control Panel. The application receives a WM.-BUTTONIDOWN 
and WMJJUTTONIUP message for the first click of a double-click. 

~U'ITONIDOWN Sent to the window under the mouse pointer or the 
current mouse capture window, if any, when the user presses the first mouse but-
ton. A 

~UTTONIUP Sent to the window under the mouse pointer or the current 
mouse capture window, if any, when the user releases the first mouse button. 

~UTTON2DBLCLK Like ~UTTONIDBLCLK but for the second 
mouse button. 

~UTTON2DOWN Like WMJ3UTTONIDOWN but for the second 
mouse button. 

WMJ3UTTON2UP Like WNLBUTTONIUP but for the second mouse button. 

WMJ3UTION3DBLCLK Like WMJ3UTTONIDBLCLK but for the third 
mouse button. 

WMJ3UTION3DOWN Like WMJ3UTTONIDOWN but for the third mouse 
button. 

WMJ3UTTON3UP Like WMJ3UTTONIUP but for the third mouse button. 

WMJnTTEST This message occurs when an application requests a message 
by calling the WinPeekMsg or WinGetMsg function. If the message represents a 
mouse event, it is sent to the the window under the mouse pointer or to the 
current capture window, if any, to determine whether the message is destined for 
the window. The default window procedure returns HT-ERROR if the window 
is disabled; otherwise, it returns HT_NORMAL. The handling of this message 
determines whether a disabled window can process mouse clicks. 

~OUSEMOVE Sent to the window under the mouse pointer or the win­
dow with the mouse capture, if any, when the mouse pointer moves. The system 
generates this message only as often as the application requests new messages. 
The distance the mouse pointer moves before this message is posted depends on 
how fast the application executes its message loops. 



Chapter 8: Mouse and Keyboard Input 123 
Wilf!~I!ilii~"lfi§iIIli~l!!ii!!lil~iijlUiiifiimU:1k~iffll!§I~"l:SI~ll§JJfi;imtfiliiiai;mi!r.~!Ifij!J!~i~lii!~~ifj~~~iF.l:'IDJif!;r!i~I~i§i¥.Jfiir.~!tf!iiiBl~ii!ii! 

8.4.2.3 Keyboard Message 
The following message is associated with keyboard events: 

~CHAR Posted to the current focus window whenever there is a keyboard 
event. The message contains a flag word that indicates the composition of the 
message. The following list of flag values can be used to test the flag word to 
determine the nature of a message: 

Flag Meaning 

KC.-ALT The ALT key was down when this message was 
generated. 

KC_CHAR The message contains a valid character code 
for a key. Typically, this code is an ASCII 
code. 

KC_COMPOSITE In combination with the KC_CHAR flag this 
flag bit means that the character code is a 
combination of the key that was pressed and 
the previous dead key. This is used to create 
characters with diacritical marks. 

KC_CTRL The CONTROL key was down when this mes­
sage was generated. 

KCJ)EADKEY In combination with a KC_CHAR flag this flag 
bit means that the character code represents a 
dead-key glyph (such as an accent). An appli­
cation displays the dead-key glyph and does 
not advance the cursor. Typically, the next 
W1LCHAR message is a KC_COMPOSITE 
message containing the character associated 
with the dead-key character. 

KCJNV ALIDCHAR The current character is not valid for the 
current translation tables. 

KCJNV ALIDCOMP The current character is not valid in combina­
tion with the previous dead key. 

KCJ(EYUP The message was generated when the user 
released the key. If this flag bit is clear, the 
message was generated when the user pressed 
the key. Use this bit to determine key-down 
and key-up events. 

KCJ.ONEKEY No other key was pressed while this key was 
down. Typically used to indicate that the user 
pressed the ALT key by itself. 

KCYREVDOWN In combination with a KC_ VIRTUALKEY 
flag this flag bit means that the virtual key was 
previously down. If this flag bit is clear, the 
virtual key was previously up. 



124 MS OS/2 Programmer's Reference, Vol. 1 
;~ .. IW.!~~~!BI~~11~iff!U¥iJiiiii!mU~If.i~airu~l~i~m.rruiaiiml~lifi~t~I~~~el~D!ffi3ii~iliifiml~~I!~EiiSfii!ij!~i*-uID1~&mi~~~f5!tii 

Flag Meaning 

The message contains a valid raw scan code 
generated by the keyboard when the key is 
pressed. The scan code is used by the system 
to identify the character code in the current 
code page, therefore, most applications do not 
need the scan code unless they cannot identify 
the key that was pressed. W1LCHAR mes­
sages generated by actual user keyboard 
input generally have a valid scan code, but 
W1LCHAR messages posted to the queue by 
other applications might not contain a scan 
code. 

The SHIFf key was down when this message 
was generated. 

The KC_TOGGLE bit toggles "on" and "off" 
every time the key is pressed. For example, it 
is set "on" every odd number of presses and 
"off" every even number of presses. This is 
important for keys like NUMLOCK, which have 
an on or off state. 

The message contains a valid virtual-key code 
for a key. Virtual keys typically correspond to 
function keys. 



Chapter 

9 

Frame Windows 
9.1 Introduction............................................................ 127 

9.2 About Frame Windows ............................................. 127 
9.2.1 Main Window................................................. 127 
9.2.2 Frame Controls ............................................... 128 
9.2.3 Client Window ................................................ 128 
9.2.4 Sizing Border and Minimize and Maximize Buttons .... 129 
9.2.5 Frame-Control Identifiers................................... 129 
9.2.6 Frame-Window Creation .................................... 129 
9.2.7 Frame-Control Flags ........................ ................. 130 
9.2.8 Frame-Window Styles ........................................ 132 
9.2.9 Frame-Window Resources .................................. 133 
9.2.10 Frame-Window Class Data ................................. 134 
9.2.11 Frame-Window Data ......................................... 135 
9.2.12 Frame-Window Operation .................................. 135 
9.2.13 Nonstandard Frame Windows .............................. 136 
9.2.14 Default Frame-Window Behavior.......................... 137 

9.3 Using Frame Windows .............................................. 139 
9.3.1 Creating a Main Window .................................... 139 
9.3.2 Retrieving Frame Handles .................................. 141 

9.4 Summary ................................................................ 141 
9.4.1 Functions ... 0 0.00 •• 0 00.0000000.00 •••••••••• 000 •• 00 •••• 0.0 •••• 0. 141 
9.4.2 Messages .... 0 0 ••••••••••• 0 ••••• 0 •••• 0 ••••••••••• 0 ••••• 0........ 141 





Chapter 9: Frame Windows 127 
ri.fr!~tlmUmi~!JJf~~!iH!ii!ff~fjjUiiifif$iiro.Gimi!§f~~f9f!!if~ilif;SRflfilfii~I~!!fi~1!l1i5Il~i!f,lS.lim~~~~~lfi1~lj~ll!!i~'!HseJrmr.d!_'iiri&! 

9.1 Introduction 
This chapter describes creating and using frame windows in Presentation 
Manager applications. You should also be familiar with the following topics: 

• Standard user-interface guidelines 

• Windows 
• Window relationships 

• Control windows 

• Messages and message queues 

• Resources and using the MS OS/2 Resource Compi~er (rc) 

9.2 About Frame Windows 
A frame window is the basic window used by most Presentation Manager appli­
cations. A frame window provides a base for the application's main window, dia­
log windows, and message boxes. Although applications rarely use frame win­
dows alone, applications nearly always start with a frame window to create a 
composite window that consists of.the frame window, several frame controls, 
and a client window. The frame window coordinates the actions of the other 
windows, allowing the composite window to act as if it were a single unit. 

A frame window is a window of the preregistered, public-window class 
WCYRAME. The frame-window class, like the preregistered control classes, 
defines the appearance and behavior of the frame window. The appearance and 
behavior of a frame window are designed to match the standard user-interface 
guidelines for MS OS/2 Presentation Manager applications, including applica­
tions that use the multiple-document interface. This means that applications that 
use frame windows have a quick and efficient way to create the "standard" win­
dows recommended by the user-interface guidelines. 

Although frame windows are an important part of dialog windows, dialog win­
dows are not described in this chapter. For a complete description of dialog win­
dows, see Chapter 19, "Dialog Windows/' 

9.2.1- Main Window 
An application's main window is typically made up of a frame window with con­
trol windows such as a title bar, System menu, menu bar, and scroll bar. The 
main window also typically includes a client window. 

The frame window is sometimes under other windows. Although it is not visible, 
it provides the standard services the user expects from the window-for exam­
ple, moving, sizing, minimizing, and maximizing. The frame window receives 
input from the control windows (called frame controls). It sends messages to the 
frame controls and to the client window to tell what action is needed next. 



128 MS OS/2 Programmer's Reference, Vol. 1 
~~~~J;~~~!!I1!\~i~tmU~i~i!Hi!!~Ii!i1!iU~!1~;~m.mJiijjiiiil~ILMiiiiin~~~el~~~w.t~~iiljmljidn.~~~i!~~!i~U~~~i~u~!liffi~lii~~iji!§ 

9.2.2 Frame Controls
When an application creates a frame window, it can specify that one or more
control windows be created as child windows of the frame window. A frame win­
dow can have a title-bar, System-menu, menu, and scroll-bar controls. Each is a
unique window created from a preregistered control-window class.

These frame controls provide a particular aspect of the user interface for a
"standard" application window. A title bar appears at the top of the window and
displays the application and/or window title. A System menu appears at the left
end of the title bar. It contains the commands used to move, size, and close the
window. A menu appears below the title bar and contains the commands the
user can choose to carry out work with the application. The scroll bars appear at
the right edge and bottom of the frame window. These let the user scroll the
contents of the client window.

Although all frame controls are optional, most, if not all, application main win­
dows use the title-bar and System-menu controls. These provide the minimum
functionality for a window that meets the user-interface guidelines.

Each frame control is a child window of the frame window. Each frame control
is owned by the frame window. That is, the frame window is the owner as well
as the parent window for each frame control. Because the main role of a frame
window is to coordinate the activities of other windows, ownership of the frame
controls is very important. Ownership gives the frame controls a way to send
notification messages to the frame window. Notification messages tell the frame
window what the user does with the frame control.

For example, a user can move a window by clicking the title bar and then drag­
ging the window to a new position using a mouse. The title bar responds to the
click by sending a message to the frame window notifying it of the user's request
to move the window. The frame window can then track the mouse motion and
move the frame window and all its child windows to the new position.

An application can add frame controls to a frame window by specifying the
FCF_TITLEBAR, FCF_SYSMENU, FCF~ENU, FCF_VERTSCROLL, and
FCF JIORZSCROLL styles. Frame controls are described in separate chapters.
For a general discussion of controls, see Chapter 10, "Control Windows."

9.2.3 Client Window
Every main window has a client window. The client window is the part of the
main window where the application displays output and receives mouse and key­
board input. What an application displays in the client window, how it displays
it, and how it interprets input to the window is controlled entirely by the applica­
tion.

An application creates the client window when it creates the frame window. The
client window is specific to the application; it is nearly always created by using a
private window class (a class registered by the application). Like frame controls,
the client window is· a child window and an owned window of the frame window.
This means, for example, that the client window moves when the frame window
moves, that the client window is clipped to the frame-window size, and that the
client window is destroyed when the frame window is destroyed.

Chapter 9: Frame Windows 129
~!~ii~li!lwa;mllf.~!§ffl!Il~FID~!ijj;Y!!lil~I~~iii!!~iJru...~im!!tili~ffiifiU~i5isUiii!i~~fi5iiimj~~~i$A\~n~~i!j~!ifii!iiliUi:;1m!i!i!i!iimi~,!fi!:~

The relationship between the frame window and the client window allows the
frame window to pass messages from other frame controls to the client window
and vice versa. For example, a scroll-bar control notifies the frame window when
the user requests scrolling; the frame window then sends a message to the client
window. The client window requests that the frame window change the window
title; the frame window sends a message to the title-bar control.

9.2.4 Sizing Border and Minimize and Maximize Buttons
Although the sizing border and minimize and maximize buttons are not frame
controls, they act very much like controls for the frame window. However, they
are different than frame controls because the frame window draws and maintains
these items; frame controls draw and maintain themselves.

The sizing border, enclosing the frame window, lets the user change the size of
the window by using a mouse. The minimize button, at the right end of the title
bar, lets the user shrink the frame window to an icon. The maximize button,
next to the minimize button, lets the user enlarge the window so that it fills the
screen. An application can add these items to a frame window by using the
FCF _SIZEBORDER, FCF -MAXBUTTON, and FCF -MINBUTTON (or the
FCF -MINMAX) styles. (The FCF -MINMAX style adds both a minimize and a
maximize button.)

9.2.5 Frame-Control Identifiers

9.2.6

A frame window uses a set of standard constants to identify the frame controls
and the client window. The frame-control identifiers all begin with the prefix
FID_ and can be used in functions such as Win WindowFromID to uniquely
identify a given control or the client window. The frame controls also use these
identifiers in notification messages they send to the frame window. The following
are the frame-control identifiers:

• FID_CLIENT

• FIDJIORZSCROLL

• FID-MENU

• FID-MINMAX

• FID_SYSMENU

• FID_TITLEBAR

• FID_ VERTSCROLL

Frame-Window Creation
An application can create a frame window by using the WinCreate Window func­
tion and specifying the WCYRAME window class. This creates the frame win­
dow but does not add the frame controls and client window that accompany
most frame windows in applications. To add these additional windows, the appli­
cation can continue to call the WinCreateWindow function, specifying the origi­
nal frame window as the parent and owner window. for each frame control and
for the client window. Or the application can call WinCreateStdWindow, which
automatically carries out the individual calls to WinCreate Window.

130 MS OS/2 Programmer's Reference, Vol. 1
jfimUfrl!jr.!il~lijinira~iI!1Gfrimli@jP.~~~llU~i~iif~!f:i§!Hi!!miI~H5tI;rm!~!mlf§ji~~~~n~_~m}frl!ii;u.:mm~!im,~i~iiilii~ib1f:ii~

Frame windows are also used to create dialog windows. In this case, the frame
window contains control windows but no client window. An application can
create a dialog window by using the WinLoadDlg or WinCreateDlg function.
These functions require an appropriate dialog template from the application's
resources on disk or from memory. The dialog template specifies the styles and
dimensions for the frame window and the control windows that make up the dia­
log window.

9.2.7 Frame-Control Flags
An application can specify both the frame-window style and the frame controls
for a frame window by using the frame-control flags with the WinCreateStd­
Window function. The following are the frame-control flags:

Flag

FCF _TITLEBAR

FCF _SYSMENU

FCF~ENU

FCF ~INBUTTON

FCF ~AXBUTTON

FCF~INMAX

FCF _ VERTSCROLL

FCF JIORZSCROLL

FCF _SIZEBORDER

FCFJ30RDER

FCF J)LGBORDER

FCF _SHELLPOSITION

Description

Creates a title bar.

Creates a System menu.

Creates a menu. This flag loads
a menu from the application's
resources on disk.

Creates a minimize button.

Creates a maximize button.

Creates both a minimize and a max­
imize button.

Creates a vertical scroll bar.

Creates a horizontal scroll bar.

Creates a sizing border. A sizing
border lets the user adjust the size
of the window.

Creates a border. Use this flag for
windows that must not change size.

Creates a dialog border. Use this
flag for dialog windows.

Directs the frame window to request
an initial size and position from
Start Programs.

Adds the window title to the switch
list of Task Manager. If the process
creating a frame window already has
an entry in the switch list, the win­
dow title is appended to the previ­
ous entry.

Chapter 9: Frame Windows 131
aigii~li¥i~!n1lli:~!iiffli!i~if5j~i8S;~jjl~I~~i!i"~~i.m!!i1iiiiiru3ilu§'ilSii§ffii~i~mfiH!ii~ii?~imi~~~n~~~p.!iti;mi.iiir.:§{iIli§1iliiltji!tii!.fi!~~

Flag

FCF _NOBYTEALIGN

FCF _NOMOVEWITHOWNER

FCFJCON

FCF~CCELTABLE

FCF _SCREENALIGN

FCF -MOUSEALIGN

Description

Enables the frame window to be
moved to any position on the
screen. If this flag is not given, a
frame window always adjusts its
position so that the x-coordinate of
its left edge is a multiple of 8. Using
this flag affects how quickly the sys­
tem can draw the frame window.

Enables the frame window to main­
tain its position even if its owner
window moves. This applies only to
frame windows that are not child
windows of the owner. If this flag is
not given, the frame window moves
when the owner window moves.

Loads an icon from the applica­
tion's resources on disk. The icon is
used whenever the frame window is
minimized.

Loads an accelerator table from the
application's resources on disk. The
accelerator table is used for all key­
board input to the frame window.

Creates a system-modal frame win­
dow. Setting this flag is the same as
using the WinSetSysModalWindow
function.

Aligns the initial position of the
frame window relative to the screen
origin instead of to the parent win­
dow.

Aligns the initial position of the
frame window relative to the mouse
position instead of to the parent
window. An application can use this
flag to position the default button in
a dialog window under the mouse
pointer.

Combines the FCF _TITLEBAR,
FCF _SYSMENU, FCF -MENU,
FCF _SIZEBORDER,
FCF-MINMAX, FCFJCON,
FCF~CCELTABLE,
FCF _SHELLPOSITION, and
FCF _TASKLIST styles.

132 MS OS/2 Programmer's Reference, Vol. 1
U!mJ_iflitm~~iiifi~mis~imt~r.[~ljW,:iIU~1?il~r,f;!f;~I§!!i!!~iimi~§!!iim!~J.!!§!1§jii!~1JiW,~ij~_a1mlffdiimmimi5UiiR:~i~i!iliiUru1W:iil

When the WinCreateStdWindow function is called without any of these flags set,
the standard window is created invisible, behind all its sibling windows, in Z
order, with a width and height of zero, positioned at the lower-left of its parent
window. When WinCreateStdWindow returns, you can call WinSetWindowPos
to change the window's size, x- and y-positions, Z-order position, and visibility.

When WinCreateStdWindow is called with the FCF _SHELLPOSITION frame­
control flag, the window is created in front of its sibling windows, in Z order,
with a standard size and x- and y-positions obtained from the shell program.

9.2.8 Frame-Window Styles
The frame-window class, like other preregistered window classes, provides many
class-specific window styles that applications can use to adapt the appearance
and behavior of a frame window. The frame-window styles, specified as con­
stants starting with the FS_ prefix, can be combined with the standard window
styles when creating a frame window. The following are the frame-window styles:

Style

FS.ACCELTABLE

FSJ30RDER

FS_SIZEBORDER

FS-DLGBORDER

FSJCON

FS_SCREENALIGN

FS.MOUSEALIGN

Description

Loads an accelerator table from the
application's resources on disk. The
frame window uses the accelerator table
to translate keyboard input.

Creates a single-line border. Use this
style when the window must not change
size.

Creates a sizing border. Use this style to
let the user adjust the size of the win­
dow.

Creates a double-line dialog border. Use
this style for dialog windows.

Loads an icon from the application's
resources on disk. The frame window
draws the icon when the window is
minimized.

Aligns the initial position of the frame
window relative to the screen origin
instead of to the parent window.

Aligns the initial position of the frame
window relative to the mouse position
instead of to the parent window. An
application can use this style to position
the default button in a dialog window
under the mouse pointer.

Chapter 9: Frame Windows 133
[ji~ii~l~i~i~l!f.~!2jffi!ll~~~mj;m1!lj:iaf~fi!i!!~mm...~imUii1I~fi1ifil!~ilSiijUiit!j~iit1!!iiaP.I!?§jill~1i~m~~~miti<~iitili!tj!i!iffmHii!ti;!.ft!!~

Style Description

FS_NOBYTEALIGN Enables the frame window to be moved
to any position on the screen. If this
style is not given, a frame window
always adjusts its position so that the x­
coordinate of its left edge is a multiple
of 8. Using this style affects how quickly
the system can draw the frame window.

FS_NOMOVEWITHOWNER Enables the frame window to keep its
position even if its owner window
moves. This applies only to frame win­
dows that are not child windows of the
owner window. If this style is not given,
the frame window moves when the
owner window moves.

FS_SHELLPOSITION Directs the frame window to request an
initial size and position from Start Pro­
grams.

FS_SYSMODAL Creates a system-modal window. Using
this style is the same as calling the Win­
SetSysModalWindow function for the
frame window.

FS_TASKLIST Adds the window title to the switch list
of Task Manager. If the process creat­
ing a frame window already has an entry
in the switch list, the window title is
appended to the previous entry.

FS_STANDARD Combines the FSJCON,
FS~CCELTABLE,
FS_SHELLPOSITION, and
FS_TASKLIST styles.

The FS_ window styles are rarely used. Although the constants are useful for
creating a frame window without also creating frame controls, most applications
use frame controls and therefore use the FCF _ constants to specify the frame­
window styles. For each FS_ constant there is an equivalent FCF _ constant. For
more information, see the following section.

9.2.9 Frame-Window Resources
If the FCF ~ENU, FCF JCON, FCF ~CCELTABLE, FCF _STANDARD,
FSJCON, FS~CCELTABLE, or FS_STANDARD style is specified when
creating the frame window, the application must provide the appropriate
resources to support these styles. Depending on the style, a frame window may
attempt to load one or more resources from the application's resources on disk.

134 MS OS/2 Programmer's Reference, Vol. 1
If!m_r.IEi~i~fi~flr.;:mi!ilifsi!ii!iffiHllii!liiir.i~IU~I~;!t!i!f:l§!U!!iJ!mir:iHmlmiMil~!!f:§i5!5i1Ji&I~i!~.afID1fd~ililSim1Smm.~j~.$litiU~ijfiii

You can use Resource Compiler to add icon and accelerator-table resources to
the application's executable file. Each resource must have a resource identifier
that matches the resource identifier specified in the FRAMECDATA structure
passed to the WinCreate Window function or in the idResources parameter of the
WinCreateStdWindow function.

The following list gives the frame-control flags and styles that require resources
and describes what the resource should be:

Style

FCFJCON
FSJCON

FCF~ENU

FCF-ACCELTABLE
FS-ACCELTABLE

FCF_STANDARD
FS_STANDARD

Resource

Requires an icon resource. The frame win­
dow draws the icon whenever the window is
minimized.

Requires a menu-template resource. A
frame window uses the menu template to
create a menu containing the commands
and menus specified by the resource.

Requires an accelerator-table resource. The
frame window uses the accelerator table to
translate WM-CHAR messages to
WM-COMMAND, W1LSYSCOMMAND,
or WMJIELP messages.

Requires a menu template, an accelerator
table, and an icon resource.

The application must specify the module containing the resources (typically the
application's executable file) when it creates the frame window. The resources
must have the same resource identifier and the application must supply this
identifier when creating the window.

9.2.10 Frame-Window Class Data
An application can specify class-specific data for a frame window by passing a
FRAMECDATA structure to the WinCreateWindow function. The class-specific
data contains the frame-control flags, resource-module handle, and resource
identifier to be used when creating the frame window.

Frame-control flags specify what controls to create for the frame window and
what window styles to apply to the frame window. The frame-control flags
are the same flags (FCF _) used in the WinCreateStdWindow function. The
resource-module handle and the resource identifier specify where to find
resources for the frame window.

Supplying class-specific data with WinCreate Window is similar to using the Win­
CreateStdWindow function without creating a client window.

Chapter 9: Frame Windows 135
~igiil!l~!~i~JIf.~!iiiai!miil~m;RUaflifiif!~L~~!ii1ii&§~I~3i!ls.tm!!iit~"fi!ii'i!i:jg!ijimii§iij~~:2~~mifi;miilir.~Hi$i!ililii.itii!fi1iW~

9.2.11 Frame-Window Data
Frame-window data specifies the state of the frame window. at a given time.
An application can retrieve the frame-window data by calling the Win Query­
WindowUShort function. A frame window has the following state flags:

Flag

FF-ACTIVE

FF J)LGDISMISSED

FF YLASHHILITE

FF YLASHWINDOW

FF _NOACTIV ATESWP

FF _OWNERHIDDEN

FF _OWNERDISABLED

FURAME

FLOWNERHIDE

FI-ACTIV ATEOK

FLNOMOVEWITHOWNER

9.2.12 Frame-Window Operation

Description

The frame window is activated.

A frame window that is a dialog win­
dow has been dismissed by a call to
the WinDismissDlg function.

The frame window is flashing and its
flash state is TRUE.

The frame window flashes as the result
of a call to the WinFlash Window func­
tion or a WMYLASHWINDOW mes­
sage.

The system should do no Z ordering
on this frame window.

The frame window's owner window is
hidden or minimized so the frame win­
dow is also hidden.

For a frame window that is a dialog
window, this flag indicates whether the
owner window was enabled or disabled
when the dialog window was loaded.

The frame window has selection
turned on.

The window isa frame window.

The frame window should be hidden
or shown as a result of its owner win­
dow being hidden, shown, minimized,
or maximized.

The window can be activated.

The window should move when its
owner window moves.

The frame window maintains the size, position, and visibility of itself, its frame
controls, and its client window. It responds to user requests to move, size,
minimize, maximize, and redraw the window. It also responds to requests to
close (destroy) the window and to change the focus and activation.

136 MS OS/2 Programmer's Reference, Vol. 1
It!Gil_r.~~;~;iim~mi~l§iili!iffiP.~iiii.Jiiii:~IH~r~i:f;~m.n§!ii!!~iimiH51!iiim!~Ji§!1!jmj?ni~~;~.almlfff.~iUl§im~!iiQl§i~liruiUif;1W:ill

When moving or sizing a frame window, all owned windows maintain their posi­
tion relative to owner window's upper-left corner.

Whenever the frame window redr~ws itself (for example, after moving or sizing),
it draws the frame controls first, then lets the application draw the client win­
dow. This order ensures that the rapidly drawn frame controls are drawn before
the relatively slowly drawn client window.

The order in which the frame controls are drawn depends on the Z-order posi­
tion of the controls. Because the frame controls are sibling windows, the Z-order
position of one is relative to the others. The following list specifies the Z-order
position of the frame controls (from top to bottom):

FID_SYSMENU
FID_TITLEBAR
FID~ENU
FID_ VERTSCROLL
FIDJIORZSCROLL
FID_CLIENT

Although an application can change the Z-order position of any window, chang­
ing the relative positions of frame controls is not recommended.

When a frame window receives a request to minimize the window, it locates an
available icon space in the lower part of the screen, hides all frame controls and
the client window, and draws its icon. If the frame window has no icon (that is,
the window was created without the FCF JCON style), the frame window hides
all but the client window. The client window must then draw the minimized win­
dow. An application can determine the size of a minimized frame window by
calling WinQueryWindowUShort and specifying the QWS~INIMIZE and
QWS_ YMINIMIZE indexes.

When a frame window is maximized, it grows to the size of its parent window,
plus an additional amount on each of its four sides equal to the width of its siz­
ing border. Because a window is always clipped to its parent window, a maxi­
mized standard frame window does not show its sizing border.

Frame controls owned by a frame window or windows owned by child windows
of a frame window are automatically destroyed when the frame window pro­
cesses the W~ESTROY message.

9.2.13 Nonstandard Frame Windows
Although most applications use frame windows to create main window and dia­
log windows, they are not limited to frame windows. Applications can create
nonstandard frame windows and still use the standard frame controls, such as
the title bar and System menu, within the nonstandard windows. One reason for
creating nonstandard frame windows is to expand the capability of the frame
window to support special features such as the multiple-document interface.

There are two ways to create nonstandard frame windows: subclass a frame win­
dow or create a private frame-window class. An application that subclasses a
frame window can intercept the messages sent to the window and process them

Chapter 9: Frame Windows 137
~m!iIl~~~aliiilffiirdrJffii~:!iiiiin§lif5liilDiliiml§!i~liiiia!!i~!!f§lmli!~mm~.rnmit;:~i~lh~!;i~iS!t~~~!m~r.fe1;~!m!~J~n§!f~lS

in new ways. An application that creates private frame-window classes essentially
rewrites the frame-window procedure. In either case, the application gains much
more control over the placement of frame controls in the frame window by
creating nonstandard frame windows.

The messages WMJ'ORMATFRAME, ~UPDATEFRAME, and
~CALCV ALIDRECTS control the arrangement of frame controls for appli­
cations that subclass. By intercepting these messages, an application can rear­
range the placement of frame controls in a frame window.

For applications that create private frame-window classes, the WinCreate­
FrameControls, WinCalcFrameRect, and WinFormatFrame functions provide
much the same capability as frame windows to maintain the size and position of
frame controls.

9.2.14 Default Frame-Window Behavior
This section describes all the messages specifically handled by the predefined
frame-window class.

Message

~CTIVATE

~UTTON1DOWN

~UTTON2DOWN

WM-BUTTON3DOWN

~UTTON1UP

WM-BUTTON2UP

~UTTON3UP

WM-BUTTON1DBLCLK

~UTTON2DBLCLK

~UTTON3DBLCLK

WMJIITTEST

Description

Sent to a title bar or sizing border
so its highlight state matches the
frame window's activation state.

If the frame window is minimized,
captures the mouse. If the window
is not minimized, activates the win­
dow.

Activates the frame window.

Activates the frame window.

Processes messages from minimized
window frames.

Not processed.

Not processed.

If the frame window is minimized,
posts a W1LSYSCOMMAND mes­
sage to itself. Otherwise, activates
the frame window and any control
clicked.

Not processed.

Not processed.

If the frame control is minimized,
returns HT~RROR if the window
is disabled; otherwise, returns
TF-MOVE.

138 MS OS/2 Programmer's Reference, Vol. 1
!R~far.!;;iii5f~!§1!~fU~i~i~I~Ijj~~iiiti".iJi!!!I!ii§imlf~im~if,fiH~tm!!i§~~ .. ~ifBJi!m~~~IS~!8fIJ!j~~f$IDI~~f~~"J!;f

Message

~CALCVALIDRECTS

~CLOSE

~CONTROLHEAP

~CREATE

WMJ)ESTROY

~NABLE

~RASEBACKGROUND

WMYORMATFRAME

WMj1INMAXFRAME

Description

If there is no client window or
the client window has the style
CS_SIZEREDRA W, returns
CVILREDRA W to invalidate
the entire window.

If there is a client window, passes
this message to it; otherwise, this
message returns WinDetWindow­
Proe.

Attempts to allocate a heap for the
frame controls. Returns a handle if
successful; otherwise, returns
NULL.

Creates specified frame controls by
calling WinCreateFrameControls.
Also creates any accelerator tables,
loads icons, and adds itself to the
switch list in Task Manager. These
actions depend on the frame win­
dow and frame-control styles
specified for the window.

If the focus is held by a child
window of the frame window, sets
the focus to the frame window's
parent window. Destroys any win­
dows oWfled by the frame window.
Destroys any child windows. Frees
any contrpl heaps. Destroys any
icon created with the FSJCON
style. Destroys any accelerator
table created with the
FS-ACCELTABLE style.

RetumsWinDetWindowProe.

Sent by the frame window to itself
during WMY AINT processing. '
Returns TRUE, signaling that the
window should erase the client­
window area.

Calls WinFormatFrame and Win­
SetMultWindowPos to format and
position the frame controls.

If there is a client window, passes a
message to it; otherwise, passes a
message via the WinDetWindow­
Proe function.

Chapter 9: Frame Windows 139
~~!!!i~~~~!ii'ifmir~jiS!iti!l!iiF.ilI~liF:!i!!~li!1mf!m~lImu!!!~~~!HI!i!i!I~iH~..mIi!ili~ilifaii)'fi~=~:s~~ii!il!!6f!i!l!~!m!l~~~ijg1S

Message

WMj10USEMOVE

WMJAINT

~QUERYTRACKINFO

W1LSHOW

W1LSIZE

W1LSYSCOMMAND

WM_UPDATEFRAME

9.3 Using Frame Windows

Description

Determines the correct mouse
pointer to use and returns Win­
DelWindowProc.

If the frame window is minimized,
sends W1LQUERYICON and
~RASEBACKGROUND
messages to itself and draws
the icon. Otherwise, paints
all of its controls, sends a
~RASEBACKGROUND
message to the client window, and
paints the client window.

Obtains the default tracking infor­
mation.

Returns WinDelWindowProc.

Sends a WM...FORMATFRAME
message to itself.

If the mouse is captured, ignores
the system command. Otherwise,
uses one of the following com­
mands: SCJESTORE, SC_SIZE,
SC~OVE, SC_CLOSE,
SC_TASKMANAGER,
SC_NEXT, SC_NEXTFRAME,
SC_SYSMENU, SC~PPMENU.

Calls WinFormatFrame to format
the frame controls.

The following sections detail creating and using frame windows in your Presenta­
tion Manager applications.

9.3.1 Creating a Main Window
You can create a main window by using the WinCreateStdWindow function. The
following code fragment creates a typical main window: a frame window that has
a System menu, title bar, menu, vertical and horizontal scroll bars, minimize
and maximize buttons, and a sizing border:

140 MS OS/2 Programmer's Reference, Vol. 1
1iitm1mi!;Si~5f12i§1~~I~i~I~ljJf~illj~;ati"~~I~!~!ii!iimlf~i~~if!iR!9lrul!~if:![?Jim§1ia1J~il.m~l.~l~mE:i=t;r.~~J~lfi!i[:ij)li~fiJi~~~i!ffi!i!

/* Create a main window. */

ULONG flFrameControlFlags =
FCF_SYSMENU I FCF_TITLEBAR
FCF_MENU I FCF_MINMAX
FCF_VERTSCROLL;

hwndFrame = WinCreateStdWindow(

FCF_SIZEBORDER
FCF_HORZSCROLL

HWND_DESKTOP, /* frame-window parent */
OL, /* no window styles */
&flFrameControlFlags, /* frame-control flags */
"MyClass", /* client-window class */
"Main Window", /* window title */
OL, /* no client-window styles */
NULL, /* app module has resources */
1, /* resource ID */
&hwndClient); /* client-window handle */

You can also create a "standard" main window for an application by creating a
frame window with the FCF _STANDARD style. You create the frame window
using the WinCreateStdWindow function. The following code fragment creates
the window:

/* Set the frame-control flags. */

ULONG flFrameControlFlags = FCF_STANDARD;

hwndFrame = WinCreateStdWindow (HWND_DESKTOP, "', &hwndClient);

Another way to create a main window and its frame controls is by calling the
WinCreate Window function to create the frame window and the frame controls
and then calling WinCreate Window to create the client window. One advantage
of this approach is that you can specify an initial size and position of the frame
window when you create it. The following code fragment illustrates this:

FRAMECDATA fcdata;

fcdata.cb = sizeof(fcdata);
fcdata.flCreateFlags = FCF_STANDARD;
fcdata.hmodResources = NULL;
fcdata.idResources = idFrame;

hwndFrame = WinCreateWindow(
HWND_DESKTOP, /* frame-window parent */
WC_FRAME, /* frame-window class */
"Main Window", /* window title */
OL, /* initially invisible */
0, 0, 0, 0, /* size and position = 0 */
NULL, / * no owner * /
HWND_TOP, /* top Z-order position */
idFrame, /* fr~me-window ID */
&fcdata, /* pOinter to class-specific data */
NULL); /* no presentation parameters */

hwndClient = WinCreateWindow(
hwndFrame, /* client-window parent */
"My Class", /* client-window class */
NULL, /* no title for client window */
OL, /* initially invisible */
0, 0, 0, 0, /* size and position = 0 */
hwndFrame, /* owner is frame window */
HWND_BOTTOM, /* bottom Z-order position */
FID_CLIENT, /* standard client-window ID */
NULL, /* no class-specific data */
NULL) ; /* no presentation parameters */

/* ... continue initialization ... */

WinShowWindow(hwndFrame, TRUE);

Chapter 9: Frame Windows 141
~!§l!li~~~l2!liif~i~Je!iQ~I~rmm!!miiii~~mi~~~llml§!~m~im!i~mlll~.J§!!!Jf:filh~§i~I~W~~ii§fim~!m~~fF!!jj!rnf!lmrz~~~i

9.3.2 Retrieving Frame Handles
You can easily retrieve a frame-control handle by using the Win WindowFromID
function. The following code fragment retrieves the control handle of the title
bar:

hwndTitleBar = WinWindowFromID(hwndFrame, FID_TITLEBAR);

Given a frame-control handle, you can retrieve its parent frame-window handle
by using the WinQueryWindow function:

hwndFrame = WinQueryWindow(hwndTitleBar, QW_PARENT, FALSE);

By using identifiers to identify frame controls rather than window classes, you
can create your own controls to replace the predefined controls.

9.4 Summary
The following sections list the messages and functions you can use to create and
use frame windows.

9.4.1 Functions
The following functions are used to create and use frame windows:

WinCreateStdWindow Creates a standard frame window.

Win Create Window Creates a standard frame window.

WinCreateFrameControls Creates standard frame controls for a given window.

WinFormatFrame Calculates the size and position of frame controls within a
frame window. This function is typically used by applications that require a non­
standard frame-window layout.

WinCalcFrameRect Determines the size of a frame window or its client win­
dow.

WinGetMinPosition Obtains a frame window's minimized position.

WinGetMaxPosition Obtains a frame window's maximized position.

WinFlash Window Starts or stops frame-window flashing.

9.4.2 Messages
The following messages are used to create and use frame windows:

~RASEBACKGROUND Sent to the client window when the background
needs to be redrawn.

WMYLASHWINDOW Sent to a frame window as a result of a call to the
WinFlash Window function.

142 MS OS/2 Programmer's Reference, Vol. 1
l~nm~l;fim~~£ID~JI!i~t~t~lfj!f~tlli~1Sfiili"!lg!~!i£§'m!~~i~!J!li!.iiH~OOli~~!ir.J~~if;~~!!;l~~l~lf~~!Hl;;r.~mn~~[zmIi~miii~.!!!i~i~!

WMYORMATFRAME Sent to a frame window to calculate the sizes and
positions of its component windows.

~INMAXFRAME Sent to a frame window when it is about to be mini­
mized, maximized, or restored.

WNLNEXTMENU Sent to the owner window (the frame window) to obtain
the next or previous menu window.

WNLQUERYACCELTABLE Sent to a frame window to obtain the
accelerator-table handle.

WNLQUERYBORDERSIZE Sent to the frame window to determine the size
of the window border.

WNLQUERYFRAMECTLCOUNT Sent to the frame window to determine
the maximum number of frame controls that can exist for a frame window.

WNLQUERYFRAMEINFO Sent to determine the following things about the
frame window: whether the window is a frame window; whether the window can
be activated; whether the window should move as a result of its owner being
moved; whether the window should be hidden or shown as a result of its owner
window being hidden, shown, minimized, or maximized.

WNLQUERYICON Sent to the frame window to obtain the icon handle.

WNLQUERYTRACKINFO Sent to the window procedure of the owner (the
frame window) of a title-bar control at the start of track-move processing.

WNLSETACCELT ABLE Sent to the frame window to set the accelerator­
table handle.

WNLSETICON Sent to the frame window to set the icon the frame-window
uses when it is minimized.

WNLTRACKFRAME Sent to the frame window to start the tracking opera­
tion for a frame window.

WNLTRANSLATEACCEL Sent to the focus window (the frame window) to
allow for accelerator-translation of the WNLCHAR message.

WNLUPDATEFRAME Sent after frame controls have been added or removed
from the frame window to notify the frame window to update the appearance of
the window.

Chapter

10

Control Windows
10.1 Introduction .. 145

10.2 About Control Windows ... 145
10.2.1 Control-Window Features................................... 145

10.3 Using Control Windows in an Application 146

10.4 Creating a Custom Control Window............................ 146

10.5 Summary. 147
10.5.1 Predefined Control-Window Classes 147
10.5.2 Messages Sent to a Control Window...................... 148
10.5.3 Messages from a Control Window

to an Owner Window.. 148

Chapter 10: Control Windows 145
i!§~iillSiif!!imf!i1l!~JU~imiiP:glff~iii!!i!:!~.mi_!!!i!i!~U~~itH~~!~!i~i~t;m~ffi~~i~!ai~iftU~I~l~miiiiiilli§l!mjmi~l~imi!~;s~!!{~~n!im!

10.1 Introduction
This chapter describes the functions that allow you to use control windows in
your applications. You should also be familiar with the following topics:

• Standard user-interface guidelines

• Resources and using the MS OS/2 Resource Compiler (rc)

• Window Frames and creating standard frame windows

• Window messages and message queues

10.2 About Control Windows
Control windows are predefined window classes that applications use for input
and output. Control windows are typically used as part of a dialog window and
are defined in the dialog template. Applications can also create control windows
by calling the Win Create Window function with the appropriate window-class
specification. The following control-window classes are predefined in MS OS/2:

Control

Button

Entry field

Static

List box

Menu

Scroll bar

Title bar

Description

Buttons or boxes that the user selects by clicking or
using the keyboard. Several button types are available,
including push buttons, radio buttons, and check boxes.

A single line of text that the user can edit.

Text, icons, or bitmaps that do not respond to user
input.

A window containing a list of items, usually text strings,
. from which the user may scroll and make selections.

A list of items, either text or bitmaps. The items in a
menu may be displayed horizontally across the top of a
frame window, as in a menu bar, or vertically, in a
menu. Menus typically provide the command interface
for an application.

A bar that allows a user to scroll the contents of a win­
dow. Scroll-bar controls contain directional arrows and
an absolute-position indicator called the slider.

A title or caption displayed across the top of a frame
window. They can be used by a user to move the win­
dow, by dragging the title-bar control.

10.2.1 Control-Window Features
Control windows are always owned by other windows, usually dialog windows or
application frame windows. The ownership relationship is important because a
control window sends notification messages to its owner whenever an action
occurs in the control window. A control-window position is also expressed in the
coordinate space of its owner.

Control windows are like other predefined window classes in that they respond

146 MS OS/2 Programmer's Reference, Vol. 1
iiiimiriijm!!!miitil!@f~if!~~;HEU~Bliiliimlfi!:iP.i~!~ein§i~I!ruilili!iiifJ.!t!I!Wim!!Sl~i~~~mtm:liJi;;tft~1iiiYii~~!l!§~~Ef5i!{j~~

to standard window management messages and functions, such as the Win­
SetWindowText and WinShowWindow functions.

Control windows are usually painted synchronously. This means that a control
window is redrawn as soon as any part of it becomes invalid.

All control windows have a window ID. This ID is set either in a dialog template
or when the control is created by the WinCreate Window function. The ID is
used when the control window sends notification messages to its owner. Care
must be taken to make sure that the control ID for a particular window is not
duplicated. Note that the control-window ID should not be the same as the com­
mand ID associated with individual menu items.

All control-window classes have a set of specific messages that they send and
receive. The summary at the end of this chapter lists the messages that all con­
trol windows have in common.

10.3 Using Control Windows in an Application
Control windows can be used in dialog windows and standard-frame or client
windows.

To use a control window ina dialog window, an application defines the control.
A dialog template typically includes several control windows as part of the dialog
template in its resource file. Then, when the dialog resource is loaded and
displayed, control windows are automatically displayed as part of the dialog win­
dow. The application can then send messages to the control window to change
its state. The dialog-window procedure defined by an application receives
notification messages from the control window. The nature of these messages
depends on the specific type of control window.

To use a control window in a non-dialog window, an application must call the
WinCreateWindow function using the appropriate window-class specification.
An application usually specifies one of its client windows as the owner of the
control window. Therefore, the client-window procedure receives notification
messages from the control window. In some cases where a control is owned by
the frame window (such as a menu control), the notification messages to the
frame are passed on to the client window.

10.4 Creating a Custom Control Window
MS OS/2 provides several predefined control-window classes. You can create
custom-control windows to fit specific purposes in an application by doing the
following:

• Using the user-drawn buttons, list boxes, and menus

• Subclassingan existing control-window class

• Registering and implementing a window class from scratch

Buttons, list boxes,. and menus have an optional style designation that marks
them as "user-drawn." This means that the owner window of the control with
this style receives a message whenever the control must be drawn. (If the owner
window is a frame window, it sends owner-drawn messages to its client windows,
which should be handled by the client-window procedure.) This allows you to

Chapter 10: Control Windows 147
E§ii§iii!i!im!ilmll1!!PJifrum§ll;glB~~i!i!~.mi~!~imj~~~!~~~!~!i~i~~~~~i~aUgiliiiU~!!r:I~UIDi:imli§fdiJmi~lii~!~~~!!UP.!i1ii!Jiiiml

alter the appearance of a control window. For buttons, the owner-drawn style
affects the drawing of the entire control. For menus and list boxes, the owner
draws the individual items within the control, and the system draws the external
outline of the control.

Subclassing an existing control window is an easy way to make custom controls.
When you subclass an existing control window, you only alter those behaviors
you want to change, letting all other messages through to the original control­
window procedure.

The techniques for defining a custom control window are the same as those used
in creating a client-window class. However, if you are creating your own
custom-control window class, be sure it can send and receive the messages listed
in Section 10.5.

If you create a custom control-window class by subclassing a control class or by
creating a window class from scratch, you can use its class name in the dialog
template just like a predefined window-class constant. For example, if you define
and register a window class called "MyControIClass" in an application, you can
define a dialog window containing a control window using the following resource

. definition:

DLGTEMPLATE IDD_CUSTOM_TEST
BEGIN

END

10.5 Summary

DIALOG "", IDD_CUSTOM_TEST, 1, 1, 126, 130, FS_DLGBORDER, 0
BEGIN

END

CONTROL "This is Text", IDD_TITLE,
37, 107, 56, 12,
WC_STATIC,
SS_TEXT I DT_CENTER I DT_TOP DT_WORDBREAK
I WS_VISIBLE

CONTROL "Custom Control", IDD_CUSTOM,
33, 68, 64, 13,
"MyControlClass",
WS_VISIBLE

CONTROL "Okay", DID_OK,
57, 10, 24, 14,
WC_BUTTON,
BS_PUSHBUTTON I BS_DEFAULT I WS_TABSTOP I WS_VISIBLE

The following sections describe the predefined control-window classes and the
messages common to all control windows.

10.5.1 Predefined Control-Window Classes
These the predefined control-window classes in MS OS/2:

WCJlUTTON A button control, including push buttons, radio buttons, and
check boxes.

WC.-ENTRYFIELD An entry-field control that allows single-line text editing.

WC_STATIC A static control that displays text, icons, or bitmap data.

WCJ,ISTBOX A list box that displays a list of items that can be scrolled.

WC~ENU A menu, including a menu bar and menus.

148 MS OS/2 Programmer's Reference, Vol. 1
~1~~n~Ui!iYli~I~!I]U§fr.~~~~m1mi.~!e~iIi.~.mm~1{;iIrufiSmi~!~!H!~ijfitill~~I~Ebl~~i~iiiiiGYiml~"~~1ti5!1iilmIffiru~tiiiiim~~

WC_SCROLLBAR A scroll bar that allows a user to scroll the contents of a
window.

WC_TITLEBAR The title of a window at the top of the frame that allows a
user to reposition a window on screen.

10.5.2 Messages Sent to a Control Window
All types of control windows receive the following messages:

~DJUSTWINDOWPOS Sent to the control window by the WinSetWin­
dowPos function to allow the control to modify its position. The message con­
tains a pointer to an SWP structure that specifies the new control size and posi­
tion. The control can modify the data in the SWP structure before the control is
actually displayed or moved. For example, the dimensions of an entry-field con­
trol define the limits of the area that can be edited (not the border). The entry­
field control modifies the fields of the SWP structure, specifying the size and
position, including the border. List-box controls also modify their size and posi­
tion, including any borders, and they can adjust their height to display all list
items.

~QUERYDLGCODE Sent to the control window by the system to deter­
mine the kinds of messages the control processes. The control window returns a
dialog code that is a combination of bit flags describing the messages the control
responds to.

10.5.3 Messages from a Control Window to an Owner Window
The following are messages sent from a control window to an owner window:

~COMMAND Posted to the owner-message queue by menus and buttons.
The owner window receives this message when the user selects a push button or
chooses a menu item. This message also includes information about its source.

~CONTROL Sent (with the WinSendMsg function) to the owner of the
control window. This message includes the control-window ID and other infor­
mation specific to the type of control and nature of the message.

~CONTROLHEAP Sent by the control to its owner window when it needs
a handle to a heap to allocate memory. For example, entry-field controls allocate
memory to hold text associated with a control window. Generally, an application
ignores this message, passing it on to the default window procedure that returns
a handle to a heap.

~CONTROLPOINTER Sent to an owner window when the mouse pointer
moves over the control window. The owner sets the mouse pointer to a different
shape, if desired. The control passes an HPOINTER to a mouse pointer as part
of this message. The owner can alter the default pointer shape by passing a
different HPOINTER back. Applications that use the default should pass the
same HPOINTER back as the result of this message or just pass the message on
to the WinDeIWindowProc function.

WMJIELP Posted by controls with the appropriate style. This message is like
the ~COMMAND message. The owner window receives this message and
responds with help information, depending on the context information included
in the message.

Chapter 10: Control Windows 149
~i§iirn~iii!!~!ll)!tim~lm§l!i~im;.mi!U~!~.mi~!~i!I~~~!~~~f~!~~i~!t:r:;m~~i~2i~!iil!i~~!l.i~miilifi1l!iUiUmj~!~i~!§i~~!!l~~m.§Y

W1LSYSCOMMAND Posted by controls with the appropriate style. This mes­
sage is like the W1LCOMMAND message. It is not passed from a frame win­
dow to a client window. Generally, the only control sending this message is the
system menu in a frame window.

Chapter

11

Title-Bar Controls
11.1 Introduction.. 153

11.2 About Title Bars........................ 153

11.3 Using Title-Bar Controls in Applications 153
11.3.1 Altering Dragging Action 154

11.4 Default Title-Bar Behavior... 154

11.5 Summary.. 155

Chapter 11: Title-Bar Controls 153
ifi1~~mUmigjf~IHi~~!if!l~lt~ij'jim!i;'fm;!m"i!ffl!§f~~'l!!fl!ifi!iilif~mlfilruaiSll~ftF:!!fi!ai/~i1iilii!r.ft:iifi~!§"!!miF.Milj1if!i1!i§lmiSimfm~~itf!iiiB~~~ffi!

11.1 Introduction
This chapter describes creating and using title-bar control windows. The title-bar
control window is part of a standard frame window. You should also be familiar
with the following topics:

• Standard user-interface guidelines

• Standard frame windows

• Window messages and message queues

11.2 About Title Bars

Figure 11.1

A standard frame window is made up of several overlapping control windows
that give the window its distinctive look and behavior. This chapter discusses
one of these control windows: the title bar. Menus and scroll bars, the other
control-window types that can be part of a frame window, are discussed in other
chapters in this manual. Figure 11.1 shows a standard frame window with its title
bar:

Frame Window with Title Bar

Title bar
I

·,.i,iiJi'·' launcher!lmilll!!lIIl!il!!IliI!!Illil,!;., ~ Ii»
Elle .Edit LF1-Help

The title bar in a standard frame window performs four functions. First, it
displays the title of the window across the top of the frame. Second, it changes
its highlight appearance to show whether the frame window is active or not. Nor­
mally, the topmost window in a screen display is the active window. Third, the
title bar responds to the user;.....-for example, when the user drags the frame win­
dow to a new location on the screen. Finally, the title bar flashes (as a result of
the WinFlashWindow function).

Title-bar control windows, like all control windows, must be owned by another
window. Title-bar controls are owned by the frame window. A title-bar control
sends messages to its owner when the control receives user input.

11.3 Using Title-Bar Controls in Applications
Typically, you need not be too concerned with the title-bar control. The default
behavior of the title-bar control follows the standard user-interface guidelines.
Most applications allow the title-bar control to operate according to these guide­
lines.

To include a title-bar control in a standard frame window, the application must
compare (by using the OR operator) constants representing each control type

154 MS OS/2 Programmer's Reference, Vol. 1
il!Uw.U~~~~el~l~i~i~liji~ii!Hi!!~Ii!il1U~~imi~iimJ~ji~i~itm!~11~~~~~H~rm~llEJiD!ilmii!.i!~lf:mtiii~i!l~ii!¥!;miai~!~~fS!~

and pass the resulting value to the WinCreateStdWindow function. The follow­
ing code fragment shows the creation of a standard frame window with a title
bar, a minimum/maximum control, a size border, a System menu, and an appli­
cation menu. (The System menu and application menu are considered frame
controls. For more information about frame controls, see Chapter 9, "Frame
Windows.")

ULONG lControlStyle = FCF_TITLEBAR I FCF_SIZEBORDER
FCF_SYSMENU I FCF_MENU;

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
WS_VISIBLE I FS_ACCELTABLE,
&lControlStyle,
szClassName,
szClassName,
OL, NULL,
ID_MENU_RESOURCE,
&hwndClient) ;

Once the frame controls are in place in the frame window, most applications can
ignore them. The system handles the frame controls. In some cases, the applica­
tion may take control of the title bar by sending messages to the title-bar control
window.

To get the window handle of a title-bar control in a frame window, the applica­
tion calls the Win WindowFromID function with the frame-window handle and a
constant identifying the title-bar control, as shown in the following code:

hwndTitleBar = WinWindowFromID(hwndFrame, FID_TITLEBAR);

To change the text of ~ title bar, the application sets the window text of the
frame window by calling the WinSetWindowText function. The frame window
passes the message to the title bar. This changes the title-bar text.

11.3.1 Altering Dragging Action
When the user clicks in the title-bar control, the title bar sends its owner (the
frame window) a ~TRACKFRAME message. The frame window also sends
a ~QUERYfRACKINFO message to itself to fill in a TRACKINFO struc­
ture that defines the tracking parameters and boundaries. To modify the default
behavior, you must subclass the frame window and intercept the message
WNLQUERYfRACKINFO and modify the TRACKINFO structure. If you
return TRUE for the WNLQUERYfRACKINFO message, the tracking infor­
mation proceeds according to the information in the TRACKINFO structure. If
you return FALSE, no tracking occurs.

11.4 Default Title-Bar Behavior
This section describes all the messages specifically handled by the predefined
title-bar control class.

Message

WNLCREATE

Description

Sets the window text for the con­
trol. Returns FALSE if creation
succeeds.

Chapter 11: Title-Bar Controls 155
~~flllmf!mj~~f~~~l!i!1flft~ijimi1~;;h1b~irni!M~~iSl!!fli!!lif~fHlfiliiiimi~~~mil!f1~i~~l!rraf::iii~!§!~:r.~'ifi!il!l!!fflljjj1W,m;mtdit~mH!~mffii

Message Description

WMJ)ESTROY Frees the window text for the con­
trol.

WM-QUERYWINDOWP ARAMS Returns the requested window
parameters.

WM-SETWINDOWP ARAMS Sets the specified window parame­
ters.

WMJAINT Draws the title bar.

WMJIITTEST Always returns HT_NORMAL, so
the title bar does not beep when it
is disabled (it is disabled when the
frame window is maximized).

WMJ3UTION1DOWN Sends the ~TRACKFRAME
message to the owner (typically a
frame window) to start tracking.

WMJ3UTTON1DBLCLK Restores the window if the owner
window is minimized or maxi­
mized. If the window is neither,
maximizes the window.

W1LADJUSTWINDOWPOS Returns FALSE. Process this
message to prevent the WinDer­
WindowProc function from send­
ing the size and show messages.

WM-QUERYDLGCODE Returns the predefined constant
DLGC_STATIC. A user cannot
use the TAB key to move to this
window in a dialog box.

TB1LQUERYHILITE Returns the highlight state of the
title bar.

TB1LSETHILITE Sets the highlight state of the title
bar, repainting it if the state is
changing.

11.5 Summary
The following messages are associated with frame-control windows:

TB~SETHILITE Sets the highlight state of the title bar to TRUE or FALSE.
The system usually sends this message to a title bar to show whether or not the
frame window containing the title bar is active.

TB~QUERYHILITE Returns the highlight state (TRUE or FALSE) for a
title-bar control window.

Chapter

12

Button Controls
12.1 Introduction ... i...... 159

12.2 About Button Controls ... 159

12.3 Using Button Controls in an Application 160
12.3.1 Buttons in a Dialog Window 160
12.3.2 Buttons in a Client Window 162
12.3.3 Responding to a Button-Notification Message........... 162
12.3.4 Changing the Button State.................................. 163
12.3.5 Owner-Drawn Buttons....................................... 163

12.4 Default Button Behavior.. 164

12.5 Summary .. 165
12.5.1 Button Styles 166
12.5.2 Messages Sent to Button Controls......................... 167
12.5.3 Messages Sent from Buttons to Owner Windows....... 167

Chapter 12: Button Controls 159
'm;I;l!ml1!f!ii~iJifm~s!ii!!ijj!f~iiSimiiafili!1t.iifiP.mrm;t!st~n!!jfifmmlfJiliiii9fSfi.!fimn!fii51f~iiiliiiir.~m~~~lii~'mJjIDil!is'§ffSli?lrmmifii!iiBffiiiiUfi!

12.1 Introduction
This chapter describes how to use button-control windows in your applications.
You should also be familiar with the following topics:

• Standard user-interface guidelines

• Resources and using the MS OS/2 Resource Compiler (rc)

• Window messages and message queues

12.2 About Button Controls

Figure 12.1
Button Types

A button control is a window that represents a buttc;m that a user can select
using the mouse or keyboard. Buttons can appear by themselves or in groups,
and can appear with or without label text. A user can select a button by clicking
it with the mouse or pressing the ENTER key when the button window has the
keyboard focus. Buttons typically change appearance when selected.

There are four main types of buttons: push buttons, radio buttons, check boxes,
and three-state check boxes. The appearance and behavior of button controls is
determined by the style of the button. Figure 12.1 shows the different types of
button controls.

GroupBo.-----,
IX! Check Bo •

• 3 8tete Button

• RediD Button

Push Button)

Radio buttons, check boxes, and three-state check boxes are used to control
attributes of an operation. Push buttons are used to initiate operations. For
example, a user might indicate paper size, print quality, and printer type in a
print-command dialog window containing an array of radio buttons and check
boxes. Once the user sets each option, a push button can be used to tell an
application that printing should begin (or be canceled). The application queries
the state of each radio button and check box to determine the printing parame­
ters.

Push buttons are rounded-corner rectangular windows containing text strings.
Push buttons become highlighted when they are selected by a user. They
return to an unhighlighted state when the user releases the mouse button or
the SPACEBAR. Push buttons are typically used to start or stop operations. A
push button posts a ~COMMAND message to its owner window.

Radio buttons are windows with text displayed to the right of a small, circular
indicator. A radio button toggles between selected and unselected, each time
the user selects it. The button retains the state until the next selection. Radio

160 MS OS/2 Programmer's Reference, Vol. 1
i~!!~~;~~!t!f~~Jimi~irmi~i!mU~IP.i~lli~nl~;~iilrruiiii~il~'~~il~~~£m~tiH~iii;!iiJilliiA!~Ui!~eiiS~~~i~U~!litSimfii~ii!fil~

buttons usually appear in groups with only one button selected at a time. Radio
buttons are appropriate where an exclusive choice is required from a group of
related options. A radio button sends a ~CONTROL message to its owner
window.

Check boxes are similar to radio buttons except that they are used by themselves
instead of in groups. They also toggle on or off application features. A check
box sends a ~CONTROL message to its owner window.

Three-state check boxes are similar to check boxes except that they can be
displayed in halftone as well as selected or unselected. A three-state check box
sends a ~CONTROL message to its owner window.

In addition to the four predefined button-control types, an application can create
buttons that appear defined by the owner window. Buttons using this style send
BNYAINT messages to their owner windows when they must be drawn or
highlighted.

Button-control windows are always owned by otherwindows, typically by
an application client window or a dialog window. A button control posts
~COMMAND messages or sends W1LCONTROL notification messages
to its owner when a user selects the button. Owner windows can also send
messages to button controls to query or set states.

12.3 Using Button Controls in an Application
The most common way to use button controls is in a dialog window. An applica­
tion defines one or more button controls in the dialog template in the resource
file, and processes button messages in the dialog-window procedure.

Buttons can be associated in groups in dialog windows. A user can move from
one button in a group to another button in the same group by pressing the direc­
tion keys. The TAB key moves from one group to the next. Groups are estab­
lished by setting the WS_GROUP style bit for the first member of each group in
the dialog template.

You can also use button controls in standard client windows. For these windows,
create a button-control window by calling the WinCreate Window function with a
window class of WC-BUTTON. Specify the client window as the owner of the
button window. The owner window receives messages from buttons and can send
messages to the buttons to alter their control state. The control state includes
highlighting control text, button position, and the enabled/disabled state.

Applications can create custom buttons that appear to be controlled by the
application. The BS_USERBUTTON style, used in conjunction with other but­
ton styles, creates a button that notifies the application whenever the button
must be drawn, allowing the application to draw the button.

12.3.1 Buttons in a Dialog Window
Buttons are typically used in dialog windows. An application can define buttons
as part of a dialog-template resource file, as shown in the following sample
Resource Compiler source-code fragment:

Chapter 12: Button Controls 161
!!!ii~l~i~!~Jlf.~!ilffmli~ii1~m;~:ialF:!:~~!!~~~tm!~ii5iru~l!~iais!I~i!i~!iifi!!iii!ifi~!W1mi1iiU\~n~~~p.!itimt~it-miRiili~ifii~Wi!i~~

DLGTEMPLATE IDD_BUTTON
BEGIN

DIALOG "", 2, 64, 9, 235, 130
BEGIN

END
END

AUTORADIOBUTTON "R'"adio1". ID_RADI01, 15. 20. 40. 12. WS_GROUP
AUTORADIOBUTTON "Ra'"dio2", ID_RADI02, 15, 40, 40, i2
AUTORADIOBUTTON "Rad'"io3", ID_RADI03, 15, 60, 40, 12
AUTORADIOBUTTON "R'"adi04", ID_RADI04,15, 80, 40, 12

PUSHBUTTON "Button 1", ID_PUSH1, 100, 50, 14, WS_GROUP
PUSHBUTTON "Button 2", ID_PUSH2, 75, 100, SO, 14, WS_GROUP
PUSHBUTTON "Button 3", ID_PUSH3, 130, 100, 60, 14, WS_GROUP

CHECKBOX "Check Box 1", ID_CHECK1, 150, 20, 58, 12, WS_GROUP
CHECKBOX "no toggle", ID_CHECK2, 150, 40, 58, 12

AUTOCHECKBOX "Check Box 3", ID_CHECK3, 150, 60, 58, 12. WS_GROUP
DEE'PUSHBUTTON "OK", DID_OK, 75, 26, 46, 20, WS_GROUP

Each button item in a dialog window has an ID (for example, ID.-RADIOl) that
allows an application to identify the source of the W1LCOMMAND and
W1LCONTROL messages. The ID is also used to retrieve the button-window
handle using the Win WindowFromID function.

The dialog template also specifies the text for each button, which is displayed in
a rectangular box. If the button text is too long to fit in the button, it is clipped
to the rectangle. For radio buttons and check boxes, text is displayed to the right
of the button. A user selects the button by clicking either the button or the text
itself.

The WS_GROUP attribute identifies the beginning of each new group of but­
tons. In the example above, the first four auto-radio buttons are in the same
group, the following push buttons are in their own group, and the following two
check boxes are in their own group. The auto-radio buttons in the first group can
only be selected one at a time. An application must see that only one check box
in a group is selected at a time. The group can wrap around from the end of the
item list to the beginning.

Notice the DEFPUSHBUTTON style with the DID_OK identification number in
the code fragment above. It is customary to include an OK button with this ID
in most dialog windows to provide a uniform user interface. The DEFPUSH­
BUTTON style draws a thick border around a button and allows a user to select
the button by pressing the ENTER key.

The dialog-window procedure for a dialog window containing buttons must
respond to ~COMMAND and W1LCONTROL messages. A common stra­
tegy is to use auto-radio buttons and auto-check boxes to allow a user to set a
list of attributes for a command, and execute it by choosing the OK button. In
this case, the dialog-window procedure ignores all W1LCONTROL messages
that come from auto-radio buttons and auto-check boxes. These controls select
and deselect themselves. When the dialog-window procedure receives a
~COMMAND message for the OK button, it should query the auto-radio
buttons and auto-check boxes to determine which options have been selected
before proceeding with the operation.

162 MS OS/2 Programmer's Reference, Vol. 1
u:m~r.~i!i;~ii~n~mi!~lfrm:t~~ii~JiliJ~Iif~fii!1jo!~mn§!iii!~iimiti511mf~i!,J!ml!;m~~~~!~_~JiUfd~iU!§i~~!Rlii.~i;!imiiU~'J!m:.1

12.3.2 Buttons in a Client Window
Applications can also use buttons in non-dialog windows. An application can
create a button window using an application client window as the owner, as
shown in the following code fragment:

/* Create a button window. */

hwndButton = WinCreateWindow(hwndClient,
WC_BUTTON,
"Test Button",
WS_VISIBLE I BS_PUSHBUTTON,
10, 10,
60, 70,
hwndClient,
HWND_TOP,
ID_PBWINDOW,
NULL,
NULL);

/* parent
/* class
/* text
/* style
/* x, y

cx, cy
owner
behind
ID

*/
*/
*/
*/
*/
*/
*/
*/
*/

/*
/*
/*
/*
/*
/*

control data */
parameters */

Once created in the client window, the button posts a ~COMMAND mes­
sage, or sends a W1LCONTROL message to the client-window procedure. The
window procedure should examine the message ID to determine the button that
sent the message.

Applications that have client-window buttons may move and size the buttons
when the window receives a W~SIZE message. This message indicates that
the window is changing size. Buttons can be moved and sized using the WinSet­
WindowPos function. You can obtain a window handle for a button by calling
the Win WindowFromID function using the parent window and the window
ID for each button.

12.3.3 Responding to a Button-Notification Message
A button control sends a message to its owner window when a user selects
the button, by either using the mouse or the keyboard. Buttons created
with the BSJUSHBUTTON or BS_USERBUTTON styles generate a
W1LCOMMAND message each time they are selected (this can be altered by
specifying the BSJIELP or BS_SYSCOMMAND style when the button is
created). All other button styles generate W1LCONTROL messages when
selected.

A push button is automatically highlighted when a user selects it using the
mouse. The button tracks the mouse until the user releases the mouse button.
The highlight is turned off if the mouse moves outside the button boundaries.
The push button does not generate any messages to its owner window until the
user releases the mouse button, and then only if the mouse button is released
inside the push-button boundary. When the owner window receives a
W~COMMAND message from a push button, the low word of the first
parameter in the message contains the button window ID, as specified in the
dialog template or when the button was created.

You should avoid duplicating IDs in menu commands and buttons because they
both send IDs to owner windows as W~COMMAND messages. However,
it is possible to tell whether a ~COMMAND message came from a menu
or a push button by looking for the value CMDSRCJUSHBUTTON or
CMDSRC~ENU in the low word of the second parameter of the message.

Chapter 12: Button Controls 163
ei!tUlil~i~;l!jlli.~!i§~i~iilil~!ijS;~lial~~ii!i~mru....~tmitii1ii5imifilmi~tS!rni!!i~~1i!iii!P.j~HefimiiffiAlirSilia~~P.!lfihlt~ifr1.li!li~iI£r.iiii..itii!.fi1iiJ~

Button types other than push buttons generate ~CONTROL messages when
selected. Applications can examine the low word of the first parameter in the
message to find the button ID and the high word of the first parameter to deter­
mine the notification code for the control message. The notification code tells
the application whether the control message originated from the user clicking or
double clicking, or if the button needs to be drawn.

When a check box or radio button is selected, it sends a ~CONTROL mes­
sage with a notification BN_CLICKED code to the owner window. The owner
window responds by sending a message back to the button to toggle its state.

In the case of auto-check boxes and auto-radio buttons, an application need not
respond because these buttons toggle themselves in response to the mouse. The
application still receives ~CONTROL messages each time the button is
selected. Most applications that use this default for radio buttons and check
boxes should also use the automatic versions of these buttons and ignore any
~COMMAND messages.

12.3.4 Changing the Button State
An application can query and set the highlight and checked state of its buttons
by sending messages to button windows. The window handle for a button can be
obtained by calling the Win WindowFromID function using the parent window
and the window ID of the button. In the case of a dialog window, the parent
would be the dialog window and the ID would be the button item ID from the
dialog template.

Button-window text is stored as window text, and is accessible by using the
WinSetWindowText and WinQueryWindowText functions. The size, position,
and visibility of a button are set using standard window functions.

12.3.5 Owner-Drawn Buttons
An application can create custom buttons by using the BS_USERBUTTON
style in combination with other styles. For example, an application can create
a custom auto-radio button that works like an auto-radio button but whose
appearance is controlled by the application. The owner window receives
W~CONTROL messages for these buttons whenever they must be drawn,
highlighted, or disabled.

When a button must be drawn, the owner window receives a ~CONTROL
message with the low word of the first parameter equal to BNJ> AINT. The
second parameter is a pointer to a USERBUTTON structure that contains neces­
sary information the application needs to draw the button. The USERBUTTON
structure is shown below.

typedef struct _USERBUTTON {
HWND hwnd;
HPS hps;
USHORT fsState;
USHORT fsStateOld;

} USERBUTTON;

An application uses the bwnd field in this structure to find the bounding rect­
angle for the button. The bps field is used as a presentation space for any draw­
ing. The high byte of the fsState field contains flags that tell an application how

164 MS OS/2 Programmer's Reference, Vol. 1
mm!liiiff~~i~i!.iH~mi!!lBfli!ii!fffiiUi:ii.JiiWJliif~..IDH~.r.ri!i~I§!!e~iimi~;t!mimi~J.is!;!iEi!~]iemm~~aUmffd~iUlSim:as£im,lt§ji~litlii~;jiW:i#i:

to draw the button: highlighted, unhighlighted, or disabled. The high byte of the
fsStateOld field contains flags describing the current highlighted, unhighlighted,
or disabled state of the button.

12.4 Default Button Behavior
This section describes the messages specifically handled by the predefined
button-control window class.

Message

~CREATE

WMJ)ESTROY

WMJAINT

~SETFOCUS

~UTTONIDOWN

WhLMOUSEMOVE

~UTTONIUP

WMLBUTTONIDBLCLK

~CHAR

Description

Validates the requested button
style and sets the window text.

Frees the memory containing the
window text.

Draws the button according to its
style and current state.

Creates a cursor if receiving the
focus, destroys the cursor if losing
the focus.

Sets mouse capture for the button
window.

Sets the default mouse pointer. If
the button has the mouse capture,
the button highlight state changes
as the mouse pointer moves in and
out of button area.

If the button has mouse capture,
releases the mouse capture and
sends notification message to the
owner window if the mouse pointer
is inside the button when the
mouse button is released. If the
button is a BSYUSHBUTTON,
a ~COMMAND message is
posted, otherwise a
~CONTROL message with
the BN_CLICKED code is sent.

Marks the button, sending a
BN~BLCLICKED notification
code when the button-up message
arrives.

Sets mouse capture when the
SPACEBAR is pressed, releases
capture when the SPACEBAR is
released. Passes other key mes­
sages to the default window
procedure.

Chapter 12: Button Controls 165
ra'!iil!!l:!i~!mJlt.~!iammi~ii~!ij;~~mal~~~!~~tm!~ii5irujil~¥i51sUii!i~~fi!iii!P.j~!§f!millli~~iI~~~!51jfiJmlii~1Ii!liill~IiUtii!fi!!iffl

Message Description

W1LQUERYDLGCODE Returns DLGC-.BUTION com­
bined using the OR operator with
the appropriate bits to designate
the particular button type.

W1LQUERYWINDOWPARAMS Returns the requested window
parameters.

W1LSETWINDOWP ARAMS Sets the requested window param­
eters and redraws the button,
including the cursor, if the window
has the focus.

W1L£NABLE Draws the button.

WM.-MATCHMNEMONIC Returns TRUE if mpJ matches a
button mnemonic.

BM.-QUERYCHECKINDEX Returns the zero-based index to
the selected item in the same
group as the button. Returns - 1 if
no button in the group is selected
or if the button receiving the mes­
sage is not a radio button or auto­
radio button.

BM.-CLICK Sends a WM.-BUTIONIDOWN
and WMJ3UTIONIUP message
to itself to simulate a user-button
selection.

BM.-QUERYCHECK Returns the checked state of the
button.

BM.-SETCHECK Sets the checked state of the but­
ton, returns the previous checked
state.

BM.-QUERYHILITE Returns the highlight state of the
button.

BM.-SETHILITE Sets the highlight state of the but­
ton, returns the previous highlight
state.

BM_SETDEFAULT Sets the default button state,
redraws the button.

12.5 Summary
The following section lists the available styles for buttons and the messages asso­
ciated with button controls.

166 MS OS/2 Programmer's Reference, Vol. 1
;niDi~!\!~ffiilftl!ftlli!~iil1!I!~~I~~Uii~iillliiiliil!i!fUI.\\rui~i~Uf1!!S~itU~UmS..i~ii~niilf!iirrutsiliiiii!l~~¥iii~nljlmf!ii~\f~\m\~iliitiitmili

12.5.1 Button Styles
The following are available button styles:

BS~STATE Similar to a check box, except that it toggles between selected,
unselected, and halftone states. The owner window receives a ~CONTROL
message and changes the state of the three-state check box when it is selected.

BS.-AUT03STATE Similar to a three-state check box, except it changes its
state when selected.

BS.-AUTOCHECKBOX Similar to a check box, except that it automatically
changes its state when selected. An auto-check box sends a W1LCONTROL
message to its owner window.

BS.-AUTORADIOBUTTON Similar to a radio button, except that it automati­
cally responds to a selection by changing its state and the state of all other radio
buttons in its group.

BS_CHECKBOX A check box is a small square window that is empty when
it is unselected, and contains an "x" when selected. Check-box text is dis­
played to the right of the check box. The owner window is notified with a
~CONTROL message when the check box is selected and is responsible for
changing the check-box state.

BS-DEFAULT A button with this style is outlined with a heavy black border.
A user can select this button by pressing the ENTER key. This is useful for allow­
ing a user to quickly select the most likely option, the default option, by pressing
the ENTER key.

BS-HELP A button with this style posts a WMJIELP message when selected.

BS_NOBORDER A button with this style is drawn without a border.

BS_NOPOINTERFOCUS A button with this style does not receive the focus
when selected.

BSYUSHBUTTON A push button. The button posts a ~COMMAND
message to the owner window when selected.

BS~ADIOBUTTON Similar to a check box, except that it is used in
groups of mutually exclusive choices. The owner window is notified with a
~CONTROL message when a radio button is selected, and changes the
state of the selected radio button and all other buttons in the group.

BS_SYSCOMMAND A button with this style posts a ~SYSCOMMAND
message when selected.

BS_USERBUTTON An application-defined button. This style, used in con­
junction with other styles, allows the owner window to draw the button control
in a highlighted, unhighlighted, enabled, or disabled state. The owner window
receives a BNYAINT message when the button must be drawn.

Chapter 12: Button Controls 167
~Hffi=Usli!i;i~i!!Y!l!i!l!if.!lamiii$i!§imIDmii~ll~g~m~B~iij\'f@i!§!l!i@miPjlm!i~!tJm1if~~II~nif.i!im~l~lUtimimi!iilH~i!!~~~imliM!IUiil~~!i:

12.5.2 Messages Sent to Button Controls
The following messages are sent to button controls:

B1LCLICK The button responds as if it were selected using the mouse or the
keyboard. This is useful when simulating a user selection for a particular button.

B1LQUERYCHECK Sent to a check box and radio button. Returns 0 if the
button is unselected, 1 if the button state is selected, and 2 if the button state is
indeterminate (for example, the grayed state for three-state buttons).

B1LQUERYCHECKINDEX The button responds to this message by setting
the result to the zero-based index of the selected radio button in the same group
as the sender. Returns - 1 if no button in the group is selected or the receiver is
not a radio button, or if the radio button has no parent window.

B1LQUERYHILITE For push buttons, returns TRUE if the button is cur­
rently highlighted, FALSE otherwise. Returns FALSE if the button receiving the
message is not a push button.

B1LSETCHECK Sets the state to unselected, selected, or indeterminate (for
three-state buttons) for check boxes and radio buttons. If the button receiving
the message also has the style BS_USERBUTTON, a ~CONTROL message
is sent to the button owner telling it to select or unselect the button.

B1LSETDEFAULT Sets or removes the BS.-DEFAULT style bit in the
receiving button.

B1LSETHILITE Sent to a push button. Sets the state of the button to
highlighted or unhighlighted, depending on the parameters supplied with the
message. If the button receiving the message has the BS.:...USERBUTTON style,
a ~CONTROL message is sent to the button owner telling it to highlight or
unhighlight the button.

12.5.3 Messages Sent from Buttons to Owner Windows
The following messages are sent from buttons to their owner windows:

~COMMAND Posted from a push button to its owner window when a user
selects the button. Additional parameters in the message indicate whether the
selection was done using the mouse or the keyboard, although applications gen­
erally do not track how the button was selected.

~CONTROL Sent from a button control to its owner to indicate that a
user has selected the button or when the owner must draw the button. Included
in the message is one of the following notification codes:

Code

BN_CLICKED

BN.-DBLCLICKED

BNYAINT

Description

A user selected the button.

A user double-clicked the button.

Sent from a BS_USERBUTTON button to the
owner window instructing it to draw the· button
control. The ~CONTROL message con­
tains a pointer to a USERBUTTON structure.

168 MS OS/2 Programmer's Reference, Vol. 1
II!m~r.~~;~iiin~~i~iift!m1iffi~~gpJiiP.il~IU~Il~iif~~i§!li!'!~fimi~~I!!iim!~i!!I!i!i!$?1iilfffiJ~.almlfrli!!i~l§im~Ulm,~i~iiflitii!ru1tf:iii

WMJIELP Posted instead of the ~COMMAND message from a push
button to its owner window when the button has the BSJIELP style.

~SYSCOMMAND Posted instead of the W1LCOMMAND message
from a push button to its owner window when the button has the style
BS_SYSCOMMAND.

Chapter

13

Entry-Field Controls
13.1 Introduction .. 171

13.2 About Entry-Field Controls 171

13.3 Using Entry-Field Controls in an Application 171
13.3.1 Entry-Field Controls in a Dialog Window................ 172
13.3.2 Entry-Field Controls in a Client Window................. 172
13.3.3 Responding to a Message

from an Entry-Field ControL............................... 173
13.3.4 Changing the State of an Entry-Field Control........... 173
13.3.5 Communicating with the System Clipboard.............. 174

13.4 Default Entry-Field Behavior...................................... 174

13.5 Summary..... 176
13.5.1 Entry-Field Control Styles 176
13.5.2 Messages Sent to Entry-Field Controls 177
13.5.3 Messages Sent from an Entry-Field

to an Owner Window.. 178

Chapter 13: Entry-Field Controls 171
!J.!Rliill~~:iille!iiif§flr~Jii!~lmmn§!!f5ii!1~ii!]m!~~~lIiti~i~m~!Hlii!!i§tmm~~iiif:!if:ifiiiJ'!iSi=jgil.~_si1ms~fS!~!m!!§li!!'n!!ngla

13.1 Introduction
This chapter describes the functions that allow you to use entry-field control win­
dows in your applications. You should also be familiar with the following topics:

• Standard user-interface guidelines

• System clipboard

• Resources and using the MS OS/2 Resource Compiler (rc)

• Basic concepts of window messages and the message queue

13.2 About Entry-Field Controls
An entry-field control is a rectangular window that displays a single line of text a
user can edit. When the entry-field control has the focus, it displays a flashing
bar to mark the current insertion point. It also allows a user to select text by
dragging the mouse or by using the keyboard. Entry-field controls allow applica­
tions to provide standard-interface text editing to users for short selections.

Users can select a range of text in an entry-field control. Many text-editing
operations on the contents of an entry-field control affect the current selection
rather than the entire text.

Entry-field controls are typically used in dialog windows, although they may be
used in non-dialog windows as well. Entry-field control windows are always
owned by other windows. The entry-field control window sends notification mes­
sages to its owner when it gains or loses the focus, or when its contents change
or are scrolled.

Entry-field control windows have style bits that determine whether the text is
left, center, or right-justified in the window, and whether the text automatically
scrolls horizontally, showing the current insertion point. Style bits also control
whether entry-fields have borders. These styles are set when the control is
created.

13.3 Using Entry-Field Controls in an Application
Entry-field controls can be used in dialog windows and regular client windows.
As part of a dialog window, the entry-field control is defined as part of the dia­
log template in the application resource file. In a client window, the application
creates a window with the window class WC.-ENTRYFIELD.

Once created, the contents, font, and selection range of the entry-field control
can be changed by sending appropriate messages to the entry-field control win­
dow. Entry-field controls hold up to 32 characters by default, but applications
can expand or reduce this limit, depending on memory limits, once the control is
created. Applications can query the current contents or the current selection in
an entry-field control.

172 MS OS/2 Programmer's Reference, Vol. 1
iRni:~~!;I~:fiS~!ID~t~i~illm.!l~Jj!i~~!ifi1i~.il~ii¥l!if¥jiffilf~ifi!~~~~OOi!if1~!ir~..ei1i!i1iFlgfii~lJ~1:1~SiG!if~!!~~[:;mI~liU~~~~i~!

Applications can also transfer text and data between the entry-field control and
the system clipboard by using cut, copy, clear, and paste operations. This facility
is useful for moving text from an entry-field control to another window or pro­
cess.

13.3.1 Entry-Field Controls in a Dialog Window
Entry-field controls are typically used in dialog windows. The dialog window
serves as the parent and owner window for the entry-field control. The applica­
tion dialog procedure receives notification messages from entry-field controls.
Generally, a dialog window includes a button that signals that the user wants to
carry out an operation. The application ignores most notification messages from
an entry-field control, allowing default text editing to occur. When the user
selects the button that indicates an operation should begin, the application
queries the contents of the entry-field control and proceeds with the operation.

To include an entry-field control in a dialog window, include a definition for an
entry-field control item in the dialog-template definition in the resource file. The
definition sets up the initial text, window ID, size, position, and style of the
entry-field control. A sample dialog template containing an entry-field control is
shown below.

DLGTEMPLATE IDD_SAMPLE
{
DIALOG "Sample Dialog", 50, 7, 7, 253, 145, FS_DLGBORDER,O

{
DEFPUSHBUTTON "NOk", DID_OK, 8, 151, 50, 23, WS_GROUP
ENTRYFIELD "Here is some text", ID_ED1, 42, 46, 68, 15,

ES_MARGIN I ES_AUTOSCROLL
}

}

Once created as part of a dialog window, the entry-field control sends
notification messages to the dialog window. An application handles these mes­
sages in its dialog-window procedure.

An application communicates with an entry-field control in a dialog window by
sending messages to the entry-field control window. The handle of the entry-field
control window is obtained by calling the WinWindowFromID function (using
the dialog window as the parent window and the window ID for the entry-field
control as defined in the dialog template).

13.3.2 Entry-Field Controls in a Client Window
To have an entry-field control in a non-dialog window, an application calls the
WinCreateWindow function with the window class WC~NTRYFIELD. An
application client window owns the entry-field control. The client-window pro­
cedure receives notification messages from the entry-field control. The following
code fragment shows how to create an entry-field control window in a client
window:

hwndEntryField = WinCreateWindow(hwndClient,
WC_ENTRYFIELD,
"initial text contents",
WS_VISIBLE I ES_AUTOSCROLL I ES_MARGIN,
xPos, yPos,
xSize, ySize,
hwndClient,
HWND_TOP,
hwndEntryField,
(PVOID) NULL,
(PVOID) NULL);

/" parent "/
/" class "/
/" text "/
/ft style "/
/" x, y "/
/" cx, cy "/
/" owner "/
/" behind "/
/ft win ID "/
/" ctl data "/
/" reserved "/

Chapter 13: Entry-Field Controls 173
~!!i!iIi~W:~J2!;;fenr~ji5i!j;elr.iim~~!F:!iil~~liii~~~lImjgji§im~!HI~!~~m~J!ij!ilf:if~RI~si~mr,:~iiiW~!m!~r.IS!lf:!rn!~§ft~~~

The entry-field control created in the preceding example has a 32-character
default limit. An application can change this limit by sending an
E~SETIEXTLIMIT message to the control window. The limit can be set
to a non-default value at creation by supplying a pointer to an ENTRYFDAT A
structure as the ctldata parameter to the WinCreateWindow function.

The other fields of the ENTRYFDATA structure can be set to specify the selec­
tion length and the first visible character at the left edge of the control window.
Entry-field control attributes can also be changed by sending messages to the
control after it is created. It is not necessary to provide this information in the
ENTRYFDATA structure for creation to occur.

13.3.3 Responding to a Message from an Entry-Field Control
An entry-field control communicates with its owner by sending WM..CONTROL
messages. These messages contain notification codes that specify the exact
nature of the message. Typically, an application does not respond to notification
messages from an entry-field control for default text-editing. For more special­
ized uses, an application uses notification messages to perform input filtering.

For example, if an application has an entry-field control that is intended for
entering a number, it can use the EN_CHANGED message to check the con­
tents after each new character is entered. This tells a user that an inappropriate
character has been entered.

On a deeper level, an application can use the EN_SETFOCUS and
EN.J<.ILLFOCUS messages to toggle the input filtering that occurs before the
character messages are sent to the entry-field control. An application can
use conditional code in its main-event loop to filter incoming WM..CHAR
messages whenever the entry-field control has the focus. By intercepting
WM..CHAR messages before they are dispatched using the WinDispatchMsg
function, an application can prevent inappropriate characters from reaching the
entry-field control. You might also want to apply special interpretation to certain
keystrokes, such as the ENTER key, as long as the entry-field control has the
focus.

13.3.4 Changing the State of an Entry-Field Control
You can set or retrieve text in an entry;..field control window by calling the Win­
SetWindowText or WinQueryWindowText function. To retrieve the text for the
current selection, an application first calls the WinQueryWindowText function to
retrieve the contents, and then sends an E~QUERYSEL message to retrieve
the offsets to the first and last character of the text selection. These offsets are
used to retrieve selected text from the entire text.

Edit fields containing numerical values can be set or queried by calling the Win­
SetDlgltemShort or WinQueryDlgltemShort function and passing the entry-field
ID and the parent window. The WinSetDlgltemShort function converts a signed
or unsigned integer into a text string and sets the field text with it. The Win­
QueryDlgltemShort function converts the entry-field text to a signed or unsigned
integer and returns the value in a specified variable.

An application can set or query the selection range, although the entry-field con­
trol automatically handles selection changes in response to user input in keeping

174 MS OS/2 Programmer's Reference, Vol. 1
iiijffilf~ilfiji;mliru;JlIf;~!ilt!!!ifiii!t;eiIQit~f!WJiil~t~f.ili~~_iji!ilSlitf.iill!~imleiIDeim!!1~i~i1r:7ii'mii!f.~;[~~~iiimfrdll1ijgmfSlt!~!ffim;~'i~JUa

with the standard user-interface guidelines. However, it can be useful to have an
application select the entire text prior to cutting or pasting to the system clip­
board.

13.3.5 Communicating with the System Clipboard
Entry-field controls respond to messages designed to simplify transferring data to
and from the system clipboard. These messages support the standard cut, copy,
clear, and paste operations defined by the standard user-interface guidelines. All
clipboard messages for entry-field controls use the CF _TEXT clipboard-data for­
mat. See the summary section at the end of this chapter for a description of
each message. .

13.4 Default Entry-Field Behavior
This section describes all the messages specifically handled by the predefined
entry-field control-window class.

Message

~CREATE

WMJ)ESTROY

WMJ3UTTONIDOWN

WMJ3UTTONIDBLCLK

WMJ3UTTONIUP

WMJ3UTTON2DOWN

WMJ3UTTON3DOWN

~AINT

~CHAR

Description

Validate the requested style and
set the window text.

Free the memory used for the win­
dow text.

Set the mouse capture and key­
board focus to the entry-field and
prepare to track the mouse during
W1LMOUSEMOVE messages.

Set the mouse capture and key­
board focus to the entry-field and
prepare to track the mouse during
W1LMOUSEMOVE messages.

Release the mouse capture.

Return TRUE to prevent this mes­
sage from being processed further.

Return TRUE to prevent this mes­
sage from being processed further.

Draw the entry-field control and
text.

Handle key events according to the
standard user-interface guidelines.

Chapter 13: Entry-Field Controls 175
~~!i!I~~~i2!iiilmirri?JiEi1i~lrnirumUF:liil~immj!m~~!I&iaii§lm~iH!~mI~m~J!ii!lf:iii':ifiRl~si~l~~IB~inme:~~!if:!rn!~§fs~~liiI!

Message Description

~SETSELECTION Invert the current selection range.

~SETFOCUS If gaining the focus, create a cur­
sor and send to the owner window
a ~CONTROL message with
the EN_SETFOCUS control code.
If losing the focus, destroy the
current cursor and send to the
owner window a ~CONTROL
message with the control code
ENJ(lLLFOCUS.

~QUERYDLGCODE Return the predefined constant
DLGC~NTRYFIELD.

~QUERYWINDOWP ARAMS Return the requested window
parameters.

" ~SETWINDOWP ARAMS Set the specified window param­
eters, redraw the control, and send
to the owner window a
~CONTROL message with the
EN_CHANGED control code.

~OUSEMOVE If the mouse button is down, track
the text selection. If the mouse
button is up, set the mouse pointer
to the default arrow shape.

~NABLE Invalidate the entire entry-field
control window, causing a
WMJ> AINT message to be
sent to the control.

~TIMER Blink the insertion point if the
control has the focus. Scroll the
text, if necessary, while extending
a selection to text not visible in the
window.

~DJUSTWINDOWPOS Change the rectangle for the con­
trol size to adjust for the margin if
the control has the ES~ARGIN
style.

E~QUERYFIRSTCHAR Return the offset to the first char­
acter visible at the left edge of the
control window.

E~SETFIRSTCHAR Scrolls the text so that the charac­
ter at the specified offset is the first
character visible at the left edge
of the control window. Returns
TRUE if successful, or FALSE if
it is not.

176 MS OS/2 Programmer's Reference, Vol. 1
l~~ii!~iru5ii~!ID~Jf!i~i~ililijf~~~1Bfr"~ifimfA!~!il§j~f~if4!~l!!in~truli~~1f~Jim~l!~i:nl:.i1.~t~iti~~~!if.~!!m~~~zJmimffltiii~~~i~E

Message

EM-QUERYCHANGED

EM-QUERYSEL

EM-SETSEL

EM-SETTEXTLIMIT

EM-CUT

EM-COPY

EM-CLEAR

EMYASTE

13.5 Summary

Description

Returns TRUE if the text
has changed since the last
EM-QUERYCHANGED mes­
sage.

Returns a long word that contains
the offsets for the first and last
characters of the current selection
in the control window.

Sets the current selection to the
specified character offsets.

Allocates memory from the con­
trol heap for the specified max­
imum number of characters,
retu.rning TRUE if it is successful,
FALSE if it is not. Failure causes
a WM..CONTROL message with
the E~EMERROR control
code to be sent to the owner
window.

Copies the current text selection to
the system clipboard in CF _TEXT
format and deletes the selection
from the control window.

Copies the current text selection to
the system clipboard in CF _TEXT
format.

Deletes the current text selection
from the control window.

Copies the current contents of the
system clipboard that have
CF _TEXT format, replacing the
current text selection in the con­
trol.

The following sections describe the styles and messages associated with entry­
field controls.

13.5.1 Entry-Field Control Styles
The following style constants, specified when the entry-field control is created,
determine its behavior and appearance:

'ES.-AUTOSCROLL Scrolls text horizontally to show the current insertion
point.

ES_CENTER Displays text centered within the control window.

Chapter 13: Entry-Field Controls 177
~~irn!ia!ilmnm!p_~rumHP:~if.m[~il.~!~.fiIi~!~!mi!!n~~I~~~!~!i~!~~ll~!§rgi~l!~!ii;!i~!~ilifi~iB;jfijl~iiWmj~fiiffi.{~Si~!!iffi~r.m~!Y

ESJ.,EFf Displays text on the left within the control window.

ES-.MARGIN Paints a wide border around the control window. The border is
one-half characters wide and one-fourth characters high. Without this style, no
border is drawn around the control window. The entry-field window rectangle is
inflated (outset) on all sides by this margin. After an ES-.MARGIN style entry­
field is created, the WinQueryWindowRect function returns a larger rectangle,
with a different origin than the one specified at creation because it now includes
this margin. Note this when moving or sizing an entry-field control or it will
become larger after each move or size operation.

ES-RIGHT Displays text on the right within the control window.

13.5.2 Messages Sent to Entry-Field Controls
This section describes the messages that are specific to entry-field controls:

E1LCLEAR Deletes the current selection in the entry-field control.

E1LCOPY Sends the current selection to the system clipboard in CF _TEXT
format.

E1LCUT Sends the current selection to the system clipboard in CF _TEXT
format and then deletes the selection from the entry-field control.

E1LP ASTE Replaces the current selection (or inserts text if the current selec­
tion is an insertion point) with text from the system clipboard. No replacement
occurs if the clipboard does not contain any CF _TEXT data.

EM_QUERYCHANGED Returns TRUE if the contents of the entry-field con­
trol have changed since last receiving a W1LQUERYWINDOWP ARAMS or
E1LGETCHANGED message; it returns FALSE if the contents have not
changed.

E1LQUERYFIRSTCHAR Returns the zero-based byte offset of the first char­
acter visible at the left edge of the control window.

E1LQUERYSEL Returns the offsets for the first and last characters of the
current selection as the low and high word of the function return value.

E1LSETFIRSTCHAR Displays a character, specified by its zero-based byte
offset, as the first character visible at the left edge of the control window,
scrolling the text if necessary.

E1LSETSEL Sets the selection range between the supplied first and last char­
acter positions. If the first-character position is zero and the last-character posi­
tion is greater than the number of characters in the control window, the entire
text is selected.

E1LSETTEXTLIMIT Sets the maximum number of characters that the entry­
field control can hold. It returns TRUE if the operation is successful, or FALSE
if there was not enough memory.

178 MS OS/2 Programmer's Reference, Vol. 1
i1imirilljmill.ID~mi!&~iiJiie!~~;p'E.~~ml~~I!:~i~~l!iHm~I!ruili!iiiii!ii!!t!!!l~!~lEi~~~mtiiJi~iiU~f~meii~itiiffl~!li§~iii!~ifi~!

13.5.3 Messages Sent from an Entry-Field to an Owner Window
The following section describes messages that an entry-field control sends to its
owner window:

'WM.-CONTROL Notifies the owner window of a significant change in the con­
trol. The low word of the first parameter contains the window ID of the entry­
field control window. The high word of the first parameter contains one of the
following notification codes:

Control code

ENJ(ILLFOCUS

EN-MEMERROR

Description

Contents of the entry-field control have
changed and the change is displayed on
screen.

Entry-field control loses the keyboard focus.

Entry-field control cannot allocate enough
memory to perform the requested opera­
tion, such as extending the text limit.

Entry-field control is about to scroll hor­
izontally. This happens when a user enters
text beyond the edge of the entry-field con­
trol boundary, requiring the text to scroll to
continue displaying the insertion point.

Entry-field control receives the keyboard
focus.

Chapter

14

List-Box Controls
14.1 Introduction 181

14.2 About List Boxes ... 181

14.3 Using a List Box in an Application. 181
14.3.1 Creating a List-Box Window................................ 182
14.3.2 List Boxes in Dialog Windows 183
14.3.3 Adding and Deleting an Item in a List Box.............. 183
14.3.4 Responding to a User Selection in a List Box........... 184
14.3.5 Handling Multiple Selections............................... 185
14.3.6 Owner-Drawn List Items.................................... 185

14.4 Default List-Box Behavior... 187

14.5 Summary.. 189
14.5.1 List-Box Styles.......... 189
14.5.2 Messages Sent from a List Box

to an Owner Window.. lW
14.5.3 Messages Sent to a List Box 191

l

Chapter 14: List-Box Controls 181
imi§iirn~iH!!ia!f!mmfU~im~l~iff~~ii~!~.mi~!~!!i~~~~f!{i~f~!i~!~§;iem~~i~~~!ii:U~!i!~fHjjjirm~fdlJff,i~l;;i~!~~:m!§{mgrF-1i~

14.1 Introduction
This chapter describes creating and using list-box control windows in your appli­
cations. You should also be familiar with the following topics:

• Standard user-interface guidelines

• Resources and using the MS OS/2 Resource Compiler (rc)

• Window messages and message queues

14.2 About List Boxes

Figure 14.1

A list box is a control window containing a list of items. Each item contains a
text string and a handle. The text string is usually displayed in the list-box win­
dow. The handle is available to the application to reference other data associ­
ated with the list item.

A list-box window must be owned by another window. This ownership relation­
ship is important because the owner window receives messages from the list box
when events occur-for example, when a user selects an item from the list box.
Typically, the owner window is a client window of an application frame window
or a dialog window. The client-window procedure or the dialog-window pro­
cedure defined by an application responds to messages sent from the list box.

A list box always contains a scroll bar. If the list box contains more items than
can be displayed in the list-box window, the scroll bar is enabled. Otherwise, the
scroll bar is disabled. The list box responds to clicks in the scroll bar by scroll­
ing the list.

The maximum number of items in a list box is 32,767. This limit on list-box
items is controlled by the 64K heap-size limit used in storing the list-box items.

Figure 14.1 shows a typical list-box control.

Typical List-Box Control

ActlveTltle
AppWorkapace
Backvround
HelpBackvround
HelpHlllta
HelpText
InactlveBorder

14.3 Using a List Box in an Application
An application uses a list-box control to display a list in a window. List boxes
can be displayed in standard application windows, although they are more com­
monly used in dialog windows. Either way, notification messages are sent from
the list box to the owner window, allowing the application to respond to user
actions in the list. In practice, if a list box is owned by a dialog window,mes­
sages are handled in dialog-window procedures. If the list box is owned by a
client window, notification messages are handled in the client-window procedure.

182 MS OS/2 Programmer's Reference, Vol. 1
:il&ih1ir~jmil!inmU~~li!i~!~~~;m~liilim11W!~;~!~e;Hia~liruilmIDiii!1i!!i!i!l~!~~i~~jijmt~t§jiS~t~!tiF.i~it~ij!li§9~~~~!

Once a list box is created, the application controls inserting and deleting list
items. Items can be inserted at the end of the list, automatically sorted into the
list, or inserted at a specified index position. Applications can turn list drawing
on and off to speed up the process of inserting numerous items into a list.

The window procedure of the owner window of the list box receives messages
when a user manipulates the list-box data. Most default list actions (for example,
highlighting selections and scrolling) are handled automatically by the list box
itself. The application controls the responses when the user chooses an item in
the list, either by double-clicking the item or pressing ENTER after an item is
highlighted. The application is also notified whenever the selection changes or
when the list is scrolled.

Normally, list items are text strings drawn by a list box. An application can also
draw and highlight the iteJ;Ils in a list. This allows customized lists containing
graphics or special fonts to be created. When an application creates a list box
with the LS_OWNERDRA W style, the owner of the list box receives a
WMJ)RA WITEM message for each item that should be drawn or highlighted.
This is similar to the owner-drawn style for menus, but unlike menus, the
owner-drawn style applies to the entire list rather than to individual items.

14.3.1 Creating a List-Box Window
List boxes are WC-LISTBOX class windows and are predefined by the system.
Applications can create list boxes by calling the WinCreate Window function,
using WC-LISTBOX as the window-class parameter.

A list box passes notification messages to its owner window, so an application
uses its client window, rather than the frame window, as the owner of the list.
The client-window procedure receives the messages sent from the list box.

For example, to create a list box that completely fills the client area of a frame
window, an application would make the client window the owner and parent of
the list-box window and make the list-box window the same size as the client
window. This is shown in the following code fragment:

/* How big is the client window? */

WinQueryWindowReet(hwndClient, &reet);

/* Make a list-box window. */

hwndList = WinCreateWindow(hwndClient,
WC_LISTBOX,
1111

WS_VISIBLE I LS_NOADJUSTPOS,
0, 0,
reet.xRight, rect.yTop,
hwndClient,
HWND_TOP,
ID_LISTWINDOW,
NULL,
NULL);

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

parent */
class */
name */
style */
x, y */
ex, ey */
owner */
behind */
ID */
control data */
parameters */

Because the list box draws its own border and a frame-window border already
surrounds the client area of a frame window (because of the adjacent frame con­
trols), the effect is a double-thick border around the list box. To change this,
call the WinInftateRect function to overlap the list-box border with the surround­
ing frame-window border. This results in one list-box border.

Chapter 14: List-Box Controls 183
ii!!*im~iiililmfll~!p_~rum~R1B~U~!f!¥.i~!~iS;i~~~!;;{~iif!~!i~i~§ru$1i~tMi~2i~ili!i~I~~mii!iml~li.Jmi~li5i~!~~~~~l~ni!iY

Notice that the code specifies the list-box window style LS_NOADJUSTPOS.
This ensures that the list box is created in exactly the size specified. If the
LS_NOADJUSTPOS style is not specified, the list-box height is rounded down,
if necessary, to make it a multiple of the item height. Allowing a list box to
automatically adjust its height is useful for preventing partial items from being
displayed at the bottom of a list box.

14.3.2 List Boxes in Dialog Windows
List boxes are most commonly used in dialog windows. A list box in a dialog
box is a control window, like a push button or an entry field. Typically, the
application defines a list box as one item in a dialog template in the resource­
definition file, as shown in the following Resource Compiler source-code frag­
ment:

DLGTEMPLATE IDD_OPEN
BEGIN

END

DIALOG "Open ... ", IDD_OPEN, 35, 35, 150, 135,
FS_DLGBORDER, FCF_TITLEBAR

BEGIN

END

LISTBOX
PUSHBUTTON
DEFPUSHBUTTON
PUSHBUTTON

IDD_FILELIST, 15, 15, 90, 90
"Drive", IDD_DRIVEBUTTON, 115, 70, 30, 14
"Open", IDD_OPENBUTTON, 115, 40, 30, 14
"Cancel", IDD_CANCELBUTTON, 115, 1S, 30, 14

Once the dialog resource is defined, the application loads and displays the dialog
box as it normally would. The application should insert items into the list when
processing the WMJNITDLG message. The dialog-window procedure gets the
window handle for the list box by calling the Win WindowFromID function using
the list-box ID given in the dialog template. The following code fragment from a
dialog-window procedure illustrates this:

case WM_INITDLG:
hwndList = WinWindowFromID(hwndDialog, IDD_FILELIST);

. /* Now use hwndList to send LM_INSERTITEM messages. */

return OL;

It is very common for a dialog window with a list box to have an OK button.
The user may select items in the list and then indicate a final selection by
double-clicking, pressing ENTER, or clicking the OK button. When the dialog­
window procedure receives a message that the user has clicked the OK button,
it should query the list box to determine the current selection (or selections
if the list allows multiple selections) and then respond as if it received a
~CONTROL message with the LN.-£NTER notification code.

14.3.3 Adding and Deleting an Item in a List Box
Applications can add or delete items in a list box by sending LMJNSER TITEM
and LMJ)ELETEITEM messages to the list-box window. Items in a list are
specified with a zero-based index (beginning at the top of the list). A new list j~
always created empty. The application must initialize the list by inserting itr

The application specifies the text and position for each new item. Jt
an absolute-position index or one of the following predefined jr -

184 MS OS/2 Programmer's Reference, Vol. 1
iiiih'!r~jlili!lm~iiiim.t~i~~~iUEi~;§~fgl~~l!~:~!~i~~mfa~ltruill!~iii!!i!!t!!!U~!~alll~~JiimItml§ij~~r~m!~~~ljtl~Um!~i!ill~!fi~!

Value

LITJ,ND

LIT_SORTASCENDING

LIT_SORTDESCENDING

Meaning

Insert item at end of list.

Insert item alphabetically ascending
into list.

Insert item alphabetically descending
into list.

The application must send an LMJ)ELETEITEM message and supply the abso­
lute index position of the item when deleting items from a list. The
LMJ)ELETEALL message deletes all items in a list.

One wayan application can speed up the process of inserting list items is to
suspend drawing in the list while inserting items. The list is redrawn after the
insertion process is finished. This is a particularly valuable approach when using
a sorted insertion process, when inserting one item can cause rearrangement of
the entire list. List drawing is turned off by calling the WinEnable Window­
Update function with FALSE for the enable parameter, and· then calling the
WinShowWindow function. This forces a complete update when insertion is
complete. The following code fragment illustrates this concept:

/* Disable updates while filling the list. */

WinEnableWindowUpdate(hwndFileList, FALSE);

. /* Send LM_INSERTITEM messages to insert all new items. */

/* Now cause the window to update and show the new information. */

WinShowWindow(hwndFileList, TRUE);

Note that this optimization is not necessary if adding list items when processing
a WMJNITDLG message because the list box is not visible and the list-box rou-
tines are internally optimized. '

14.3.4 Responding to a User Selection in a List Box
The primary notification an application receives when a user chooses an item in
a list is a W~CONTROL message with the LNJ,NTER control code sent to
the owner window of the list. The owner window is an application client window
or a dialog window. Within the window procedure for the owner window, the
application responds to the LNJ,NTER control code by querying the list box
for the current selection (or selections, in the case of an LS~ULTIPLESEL
list box).

The LNJ,NTER control code notifies the application that the user has selected
a list item. A ~CONTROL message with an LN_SELECT control code is
sent to the list-box owner whenever a selection in a list changes, such as when a
user moves the mouse pointer up and down a list while pressing the mouse but­
ton. In this case, items are selected but not yet chosen. An application may
ignore LN_SELECT control codes when the selection changes, responding only
when the item is actually chosen. An application might use the LN_SELECT
control code to display context-dependent information that changes rapidly with
each selection made by the user.

Chapter 14: List-Box Controls 185
ii.11i1nmf!mi~t~HWJ!m@!ii!i~il!!mfjllliii;;'flMiifrl.§jm1g;fl.~§J~~!lif~mifiiruiml~!~~~~ii!il~i~lij;!lftii:ti~~~~:F.MiJj!ifti!~islmiSJ~I~~~!~af~~~r;J!

14.3.5 Handling Multiple Selections
When a list box has the style LS_MULTIPLESEL, more than one item may be
selected at a time. An application must use different strategies when working
with this type of list. For example, when responding to an LN~NTER control
code, it is not sufficient to send a single L~QUERYSELECTION message
because that message will find only the first selection. To find all current selec­
tions, an application should continue sending LM-QUERYSELECTION mes­
sages, using the return index of the previous message as the starting index of the
next message, until no items are returned.

14.3.6 Owner-Drawn List Items
To draw its own list items, an application must create a list that has the style
LS_OWNERDRA W. The owner window of the list box must respond to the
W~EASUREITEM and WMJ)RA WITEM messages.

When the owner window receives a ~ASUREITEM message, it must
return the height of the list item. All items in a list must have the same height
(greater than or equal to 1). The WM.-MEASUREITEM message is sent only
once, when the list box is created. You can change the item height by sending an
LM-SETITEMHEIGHT message to the list-box window.

The owner window receives a WMJ)RA WITEM message whenever an item in
an owner-drawn list should be drawn or highlighted. The owner window returns
FALSE if the list box must draw the text of the item. The owner window returns
TRUE if it actually draws the item. This tells the list box not to draw the item.
This is useful if the owner window alters the appearance of certain items, allow­
ing other items to be drawn by the list box.

Although it is quite common for an owner-drawn list to draw items, it is less
common to override the system-default method of highlighting. (The system­
default highlighting method inverts the rectangle that contains the item.) Do not
create your own highlighting unless the system-default method is unacceptable to
you.

The ~DRA WITEM message contains a pointer to an OWNERITEM data
structure. The OWNERITEM data structure contains the window ID for the list
box, a presentation-space handle, a bounding rectangle for the item, the position
index for the item, and the application-defined item handle. This structure also
contains two fields that determine if a message draws, highlights, or removes the
highlighting from an item. The OWNERITEM data structure has the following
form:

typedef struct _OWNERITEM {
HWND hwnd;
HPS hps;
USHORT fsState;
USHORT fsAttribute;
USHORT fsStateOld;
USHORT fsAttributeOld;
RECTL rclltem;
SHORT idltem;
ULONG hltem;

} OWNERITEM;

When the item must be drawn, the owner window receives a WMJ)RA WITEM
message with the fsState field set differently than the fsStateOld field. If the
owner window draws the item in response to this message, it returns TRUE,

186 MS OS/2 Programmer's Reference, Vol. 1
iif!Uw.!~J~~!el~\~i;l~!~liiii!Hi!!~I~1!lii~~I~l~ifSm!raiiiiiliili\.$~ll~f§~£m=!immmt~iiiiiiji!l~_i!~~liSfii!ii!~i~Git!!I;mififiii~r.mfSi~

telling the system not to draw the item. If the owner window returns FALSE,
the system draws the item using the default list-item drawing method.

You can get the text of a list item by sending an LM-QUERYITEMTEXT mes­
sage to the list-box window. You should draw the item using the bps and rclItem
arguments provided in the OWNERITEM structure.

If the item being drawn is currently selected, then the fsState and fsStateOld
fields will both be TRUE; they will both be FALSE if the item is not currently
selected. The window receiving a WMJ)RA WITEM message can use this infor­
mation to highlight the selected item at the same time it draws the item. If the
owner window highlights the item, it should leave the fsState and fsStateOld
fields equal to each other. If the system provides default highlighting for the item
(by inverting the item rectangle), the owner window should set the fsState field
to 1 and the fsStateOld field to 0 before returning from the WMJ)RA WITEM
message.

The owner window also receives a WMJ)RA WITEM message when the
highlight state of a list item changes. For example, when a user clicks an item,
the highlighting must be removed from the currently selected item and the new
selection must be highlighted. If these items are owner-drawn, then the owner
window receives one WMJ)RA WITEM message for each unhighlighted item
and one message for the newly highlighted item. To highlight an item, the fsState
field must equal TRUE and the fsStateOld field must equal FALSE. In this
case, the application should highlight the item and . return the fsState and fs­
StateOld fields equal to FALSE. This tells the system not to highlight the
item. The application can also return the fsState and fsStateOld fields with
two different values (not equal) and the list box will highlight the item (the
default) ..

To remove highlighting from an item, the fsState field must equal FALSE and
the fsStateOld field must equal TRUE. An application can remove the highlight­
ing and return both the fsState and fsStateOld fields as FALSE, or it can return
the fsState field with a value that is not equal to the fsStateOld field and the sys­
tem will remove the highlighting (the default).

The following code fragment shows these selection processes:

case WM_DRAWITEM:

/* Test to see if this is drawing or highlighting/unhighlighting. */

if CCCPOWNERITEM) mp2)->fsState 1=
«POWNERITEM) mp2)->fsStateOld) {

/* This is either highlighting or unhighlighting. */

if (C(POWNERITEM) mp2)->fsState) {

. /* Highlight the item. */

} else {

/* Remove the highlighting.*/

}

Chapter 14: List-Box Controls 187
!F.i!;l~l!iYj=IHi~R!il!!1lt1t~lijimi~;1m1i:1i,.~irni!§!~fBJ!eijj§ifNgru~lmaJoo~lb~miiii/f!l1fi~l~iifaifmfiiiiii~~i~U~j)jID!I!i~l~sSJl'mrn!jf!!lijtf~iilii~

/* Set fsState = fsStateOld to tell system you did it. */

«POWNERITEM) mp2)->fsState =
«POWNERITEM) mp2)->fsStateOld = O·

return (TRUE); /* Tells list box you did the highlighting. */

} else {

. /* Draw the item. */

/* Check to see if item is selected. */

if «(POWNERITEM) mp2)->fsState) {

. /* Highlight the item. */

/* Set fsState = fsStateOld to tell system you did it. */

«POWNERITEM) mp2)->fsState
«POWNERITEM) mp2) ->fsStateOld = 0;

}
return (TRUE); /* Tells list box you did the drawing. */

}

14.4 Default List-Box Behavior
This section lists all the messages handled by the predefined list-box window­
class procedure.

Message

WM.-CREATE

WMJ)ESTROY

WMYAINT

WM.-CHAR

WM.-SETFOCUS

Description

Creates an empty list box with a
scroll bar.

Destroys the list and deallocates
any memory allocated during its
existence.

Draws the list box and its items.

Processes virtual keys for line
and page scrolling. Sends an
LN~NTER notification code for
the ENTER key. Returns TRUE if
the key is processed; otherwise,
passes the message to the Win­
DelWindowProc function.

If gaining the focus, creates a cur­
Sor and sends an LN_SETFOCUS
notication code to the owner
window. If losing the focus, des­
troys the cursor and sends an
LNJ(ILLFOCUS notification
code to the owner window.

188 MS OS/2 Programmer's Reference, Vol. 1
;~ .. ~~~!H~el~~!i~l1Y!i~iiiiE!Hi!!~I?i~iiiID~i;al~Hi!ff!~lfiil~I~~llm;~~el~nD!miW!ih1iiji!n.t!~~i!~EiiS~~t~!i!£UIDlIittii!ilii~~~i~

Message

WM.-ADJUSTWINDOWPOS

WM-£NABLE

WM.-TIMER

WM.-BUITON2DOWN

WM.-BUITON3DOWN

WMj10USEMOVE

WM.-VSCROLL

L~QUERYITEMCOUNT

LMJNSERTITEM

L~SEITOPINDEX

L~QUERYTOPINDEX

L~ELETEITEM

LM-SELECTITEM

Description

If the list box has the style
LS_NOADJUSTPOS, makes no
changes to the SWP structure
and returns FALSE. Otherwise,
adjusts the height of the list box so
that a partial item is not shown at
the bottom of the list. Returns
TR UE if the SWP structure is
changed.

Enables the scroll bar if there are
more items than can be displayed
in a list window.

Uses timers to control automatic
scrolling that occurs when a user
drags the mouse pointer outside
the window.

Returns TRUE; the message is
ignored.

Returns TRUE; the message is
ignored.

Sets the mouse pointer to the
arrow shape and returns TRUE to
show that the message was pro­
cessed.

Handles scrolling indicated by the
list -box scroll bar.

Returns the number of items in the
list.

Inserts a new item in the list
according to the position informa­
tion passed with the message.

Shows the specified item as the top
item in the list window, scrolling
the list as necessary.

Returns the zero-based index to
the item currently visible at the top
of the list.

Removes the specified item from
the list, redrawing the list as neces­
sary. Returns the number of items
remaining in the list.

Selects the specified item. If the
list is a single-selection list,

Chapter 14: List-Box Controls 189
'~I;;lmI~!i/ji~~fm~~itI!ljjll~iiilmii;'fli!if;i,.:;ifflj!ru~!at~ff§iINiiiiifjliiiiffii*~ftrn!liifilt~li!f,liilmfffiiifj~~~iF.h'iJilim!!!iSJlmiSb1Iii~~!fi!iliif!~mffi~

Message

LM.-QUERYSELECTION

Description

deselects the previous selection.
Sends a ~CONTROL message
(with the LN_SELECT code) to
the owner window.

For a single-selection list box,
returns the zero-based index of
the currently selected item. For
mUltiple-selection list boxes,
returns the next selected item or
LIT_NONE if no more items are
selected.

LM.-SETITEMTEXT Sets the text for the specified item.

LM.-QUERYITEMTEXTLENGTH Returns the length of the specified
item text.

LM.-QUERYITEMTEXT

LM.-SETITEMHANDLE

LM.-QUERYITEMHANDLE

LM.-SEARCHSTRING

LM.-SETITEMHEIGHT

LMJ)ELETEALL

14.5 Summary

Copies the specified item's text to
a buffer supplied by the message
sender.

Sets the specified item handle.

Returns the specified item handle.

Searches the list for a match to the
specified string.

Sets the item height for the list.
All items in the list have the same
height.

Deletes a11 items in the list.

List boxes are control windows that have style bits and that can send and receive
messages. These styles and messages are listed in the following sections.

14.5.1 List-Box Styles
The style of a list box determines how it displays its items and how it responds
to user input. The following styles are used by list boxes:

LS-"MULTIPLESEL Allows more than one list item to be selected at a time.

LS_NOADJUSTPOS Automatically adjusts the list-box height (by default) so
that it is a multiple of the item height. This is done so that a list box will not
display a partial item at the bottom of the list. The size of the list box can be
different than the size specified by the application that created it. The style
LS_NOADJUSTPOS tells the list box not to adjust the height of window in
response to a WM.-SIZE message. Applications that need absolute control over
list-box size should use the LS_NOADJUSTPOS style (for example, when a list
box needs to completely fill a client area). This style may cause items at the bot­
tom of the box to be displayed partially.

190 MS OS/2 Programmer's Reference, Vol. 1
;!ln~~J~~!ell!{~i~l!fil~iiiE!Hi!!~Jf.il\li~~Im:~ii1mI§iiji!iiliill~~il~~~£5l~ti~mi~iii!iijJljm~r;:J!i!il!iiiSfii~1~i~ii~!liiifi;li;~~ffiim

LS_OWNERDRA W Causes the owner window to receive a WMJ)RA WITEM
message each time an item must be drawn or highlighted.

14.5.2 Messages Sent from a List Box to an Owner Window
Messages sent from a list box to an owner window notify the owner of events in
the list box, such as when a user selects an item. The following messages are
sent from list boxes to owner windows:

W1LCONTROL Sent to the owner window of the list box when a user event
occurs in the list box. This message contains a control code that notifies the
owner that an event occurred and indicates the type of event. The following are
possible control codes:

Code Description

LN-ENTER Sent to the owner window when the user presses
ENTER or double-clicks an item while the list box
has the focus. This code indicates that the user has
chosen an item. The owner window may then query
the current selection and respond accordingly.

LNJ(ILLFOCUS Sent to the owner window when the list box loses
the focus.

LN_SCROLL Sent to the owner window when the list box scrolls.

LN_SELECT Sent to the owner window when a different item in
the list is selected. The owner window can use this
code to query the current selection and respond
accordingly.

LN_SETFOCUS Sent to the owner window when the list box
receives the focus.

WMJ)RA WITEM Sent to the owner window of a list box with the style
LS_OWNERDRA W each time an item must be drawn. The owner window
should return TRUE if it actually draws the item; otherwise, it should return
FALSE. If the item contains text, the owner window can return FALSE and the
list box will draw the item. This message allows the owner window to draw the
item or allows default text drawing by the list box. This message contains a struc­
ture with a presentation space and a bounding rectangle in which to draw the
item. It is also sent when an item must be highlighted. The owner window can
handle the highlighting or indicate that the list box should handle this process.

~ASUREITEM This message is sent to the owner window of a list box
that has the style LS_OWNERDRA W. The owner window returns a value that is
the height of an item in the list. Note that all items in a list must have the same
height and that this must be greater than or equal to 1. It is not necessary to
specify the width of an item since the item is clipped to the width of the list box
when drawn.

Chapter 14: List-Box Controls 191
!~!fllHi!:!mi!'~~fm~l!!iiI!JjJiI~iiim!i~mii:11.Girni!M~~!§t!!ii@!liJ;fiiti'ilfii~I~~~mli!i1~i~l5iI!ftimijj~~i£fi:fr.'1'iJ~!imillisl§il'SJ~~r.d!af~~fmll

14.5.3 Messages Sent to a List Box
Messages sent to a list box set or query the list data. The following messages are
sent to list-box controls:

LMJ)ELETEALL Deletes all items in the list.

LMJ)ELETEITEM Deletes a specified item from the list.

LMJNSER TITEM Inserts an item in the list box. Items can be inserted at a
specified index, at the beginning or the end, or sorted in ascending or descend­
ing order.

LM.-QUERYITEMCOUNT Returns the number of items in the list box.

LM.-QUERYITEMHANDLE Returns the item handle for the specified item.

LM.-QUERYITEMTEXT Copies the text for a specified item into a buffer pro­
vided by the caller. The size of the required buffer can be determined by sending
an LM.-QUERYITEMTEXTLENGTH message for the item.

LM.-QUERYITEMTEXTLENGTH Returns the length of the text for a speci­
fied item in the list.

LM.-QUERYSELECTION Returns the index of the selected item in the list or
LIT...;NONE if no item is selected. In a mUltiple selection list, this message
returns the first selected item, starting at a specified index.

LM.-QUERYTOPINDEX Returns the index of the item currently displayed at
the top of the list-box window or LIT_NONE if the list is empty.

LM.-SEARCHSTRING Searches the list for a match with the specified string,
returning the first matching item. Match criteria can be set using flags for case
sensitivity and substring matching. Another parameter allows the search to start
at a specified index, allowing iterative searches to start from the previous match­
ing item.

LM.-SELECTITEM Sets the selection state of a specified item. If the list box
allows only a single selection, the previous selection is deselected. An index of
LIT_NONE deselects all items in the list. Sending an LM.-SELECTITEM mes­
sage with LIT_NONE set to a multiple-selection list box does not deselect any­
thing. However, it does remove the cursor.

LM.-SETITEMHANDLE Sets the item handle for the specified item.

LM.-SETITEMHEIGHT Sets the height of all items in the list, redrawing the
list box and all visible items.

LM.-SETITEMTEXT Sets the text of a specified item in the list.

LM.-SETTOPINDEX Displays a specified item at the top of the list box, scroll­
ing the list ·as necessary.

Chapter

15

Static Controls
15.1 Introduction .. 195

15.2 About Static Controls ... 195

15.3 Using Static Controls in an Application....................... 195
15.3.1 Static Controls in a Dialog Window....................... 195
15.3.2 Static Controls in Client Windows......................... 196
15.3.3 Changing the Static-Control Handle....................... 196

15.4 Default Static-Control Behavior.................................. 197

15.5 Summary .. 198
15.5.1 Static-Control Styles... 198
15.5.2 Messages Sent to Static Controls.......................... 199

Chapter 15: Static Controls 195
a!!!i~!~i~;iallr.~!iiiff!li!mifijr.!ijj;~jj:iEf~iiii!i~""~!miti1iw.umifil!&§'~ii!!ffii!iitmr:H!iii!P.i~§jimil!li~~m~lal~~!iliiiii~iti:i!ti~ili.ilBj!til!f:!!!im

15.1 Introduction
This chapter describes how to use static control windows in your applications.
You should already be familiar with the following topics:

• Standard user-interface guidelines

• Resources and using the MS OS/2 Resource Compiler (rc)

• Window messages and message queues

15.2 About Static Controls
Static controls are simple text fields, bitmaps, or icons that can be used to label,
enclose, or separate other control windows. Static controls do not accept user
input and they do not send notification messages to their owners.

Static controls have style bits that determine whether the control displays text,
draws a simple box containing text, displays an icon or a bitmap, or shows
framed or unframed colored boxes. The various styles for static controls are dis­
cussed individually in Section 15.5.

Static text controls are most commonly used in dialog windows as labels. Iconic
and bitmap static controls can be used to provide graphic objects in dialog win­
dows. One advantage of static controls is that, once created, they provide labels
and graphics and require little attention from an application.

Static controls never accept the keyboard focus. When a static control receives a
~SETFOCUS message, or when a user clicks a static control, that control
advances the focus to the next sibling window that is not a static control. If there
are no sibling windows to the static control, the focus is given to the owner of
the static control.

15.3 Using Static Controls in an Application
Static controls can be used in dialog windows and client windows. There is usu­
ally very little interaction between an application and the static control once the
control is created. However, an application can change the state of the static
control.

Static controls also are associated with a long-word handle which may be set and
queried by an application. By default, icon and bitmap static controls use this
handle to contain a handle to their display object. Applications can modify this
handle by using the S~SETHANDLE and S~QUERYHANDLE messages to
change static-control appearance.

15.3.1 Static Controls in a Dialog Window
Static controls are most commonly used as labels and separators in dialog win­
dows. As such, they are defined as part of a dialog template in the application
resource file. Once the dialog window is displayed, the static controls do not
interact with the application unless the application changes their state. Typically,
an application might change the text or position of a static control. These opera­
tions are achieved by using the WinSetWindowText and WinSetWindowPos
functions.

196 MS OS/2 Programmer's Reference, Vol. 1
mmfiffii1~i~ijjnifmi!3~iiffi!f~r.iL~!iF.gglU~.IDii~r.f~~I~UiigmUmiH~!$iRti~J.!§!:§im~1IiW,;l!J~~almlfd~iUlSiflilaoiiilm,~i!t~iU~iW:ill

When defining icon or bitmap static controls in a dialog template, the text for
the control is interpreted as the resource ID of the bitmap or the icon. There
are two ways that the text can be interpreted. If the first byte is '#', the rest
of the text is assumed to be an ASCII decimal representation of the icon-or
bitmap-resource ID. If the first byte of the text is OxFF, the second byte is the
low byte of the resource ID, and the third byte is the high byte of the resource
ID. The following are two sample Resource Compiler definitions:

CONTROL "#2S6",ID_ICON1, 140, 20, 0, 0, WC_STATIC,
SS_ICON I WS_VISIBLE

CONTROL OxFF000100, ID_ICON2, 140, 20, 0, 0, WC_STATIC,
SS_ICON I WS_VISIBLE

Each definition specifies an SSJCON static control that uses an icon with
resource ID 256 (OxOlOO). The icon is assumed to be in the current application
resource file.

The window handle for a static-control window can be obtained by calling the
Win WindowFromID function using the dialog-window handle and the window ID
of the static control as defined in the dialog template.

15.3.2 Static Controls in Client Windows
Applications can create static-control windows in non-dialog windows by calling
the WinCreateWindow function with a WC_STATIC window class. The appear­
ance of the control is defined by the style parameter to the WinCreate Window
function.

If the application creates a control with SSJCON or SSJUTMAP style, it must
ensure that the resource ID specified by the window text corresponds to an
actual resource in the application resource file or the static control will not be
created.

Once created, the static-control window can be moved and sized just like any
other child window. An application can obtain the window handle of the static
control by calling the Win WindowFromID function, supplying the parent window
and the window ID of the static control.

15.3.3 Changing the Static-Control Handle
The static-window handle contains a handle to an icon or bitmap. Applica­
tions can query and set this handle by using the S~QUERYHANDLE and
S~SETHANDLE messages. Setting the handle causes the static item to be
redrawIl, so the handle must be a valid icon or bitmap handle.

For non-icon and non-bitmap static-control items, the handle is available for
use by the application and has no effect on the appearance of the control.

Chapter 15: Static Controls 197
!!!!~l~j~I~!f.~mimmi!mimr.~Ia~!if~~ii!im:~~tm1~liisUi!3iI~~iij1iiU!jitifiH!iii!P.i~!W1miiffi~~iI~~~RlifiJ!iU.iliftiliRi~iIfr.jHii!tii!ID!im

15.4 Default Static-Control Behavior
This section describes all the messages specifically handled by the predefined
static-control class.

Message

WMJ>AINT

WMJ)ESTROY

~DJUSTWINDOWPOS

~QUERYWINDOWPARAMS

~SETWINDOWP ARAMS

~NABLE

~QUERYDLGCODE

W1LMOUSEMOVE

SM-SETHANDLE

SM-QUERYHANDLE

Description

Draws the static control based on
its style attributes.

Sets the window text for static­
text controls. Loads the bitmap
or icon resource for the bitmap
or icon static controls. Returns
TRUE if the resource cannot be
loaded.

Frees the text for static-text con­
trols. Destroys the bitmap or icon
for the bitmap and icon static
controls. The icon for a sysicon
static control is not destroyed,
because it belongs to the system.

Adjusts the SWP structure so
that the new window size matches
the bitmap, icon, or sysicon
dimensions associated with the
control.

Returns the requested window
parameters.

Allows the window text to be set
for· static-text controls only.

Invalidates the entire control win­
dow, forcing it to be redrawn.

Returns the predefined constant
DLGC_STATIC.

Sets the mouse pointer to the
arrow pointer and returns TRUE.

Sets the focus to the next sibling
window that can accept the focus,
or if no such sibling exists, it sets
the focus to the parent window.

Sets the handle associated with
the static control and invalidates
the control window, forcing it to
be redrawn.

Returns the handle associated
with the static-control window.

198 MS OS/2 Programmer's Reference, Vol. 1
If!mJar.:a1mi~!i!fli5tmis!illia:!iffiH[iiiJiliil~lU~li~jol~~§!ii!!~iif:iH!aliiirl.!~J.i!!l§ifi!5P.1fi~~n~iMiJjSlmlffdi!imtaim:;mm.~i~iifdiUm1f:ili

Message

~ATCHMNEMONIC

WMJIITIEST

15.5 Summary

Description

Returns TRUE if the mnemonic
passed in the mpJ parameter
matches the mnemonic in the
control-window text.

Returns HT_TRANSPARENT
for the following static control
styles:
SS_GROUPBOX,
SSYGNDRECT,
SSJIALFfONERECT,
SS~KGNDRECT,
SSYGNDFRAME,
SSJIALFfONEFRAME,
SS~KGNDFRAME.
For other styles, returns the Win­
DefWindowProc function.

The following sections describe the styles and messages associated with static­
control windows.

15.5.1 Static-Control Styles
The following styles are associated with static-control windows:

SS~ITMAP Draws a bitmap. The resource ID for the bitmap resource is
determined in the same way as for SSJCON controls. The bitmap resource is
assumed to be in the current application resource file.

SS~KGNDFRAME Draws a rectangular frame with the current background
color.

SS~KGNDRECT Draws a filled rectangle with the current background color.

SSYGNDFRAME Draws a rectangular frame with the current foreground
color.

SSYGNDRECT Draws a filled rectangle with the current foreground color.

SS_GROUPBOX Draws a box with control text in the upper-right corner of
the box. This style is useful for enclosing groups of radio buttons or check boxes
in a box.

SSJIALFfONEFRAME Draws a rectangular frame with a halftone pattern in
the current foreground color.

Chapter 15: Static Controls 199
!!!iilil5i~;mJlf.~!i§mm;im~~!BS;~fiafF:!Uml!t ... ~tm!!iiiii5Ufjjil!;i~ilS1t'ii~i~iiifi!ji~ij;ygimimU\~iI~iii~Rlifii!it~itiIi!{j~irn1imi!tii!fi!~~

SSJIALFfONERECT Draws a filled rectangle with a halftone pattern in the
current foreground color.

SSJCON Draws an icon. The text of the control is interpreted as the resource
ID of the icon. The bytes that make up the text can be interpreted as numeric
values or as ASCII representations of numbers, depending on the value of the
first byte. If the first byte is '#', the remaining text is assumed to be an ASCII
decimal representation of the icon resource ID. If the first byte of the text is
OxFF, the second byte is the low byte of the resource ID and the third byte is
the high byte of the resource ID.

SS_SYSICON Displays a system pointer icon. The ID of the icon is extracted
from the control text, as in the SSJCON style. To display this icon, the system
calls the WinQuerySysPointer function with the specified ID.

SS_ TEXT Allows various formatting options to be combined with the
SS_TEXT style to produce formatted text in the boundaries of the control. The
formatting option flags are the same as those used for the WinDrawText func­
tion.

15.5.2 Messages Sent to Static Controls
The following messages are associated with static-control windows:

S~QUERYHANDLE-Returns the private handle for the static control. For
controls with SSJCON, SSJUTMAP, or SS_SYSICON style, the handle of the
icon or bitmap is returned. For all other types of static controls, the handle is
available for application-defined purposes.

S~SETHANDLE-Sets the private handle for the static control. Static con­
trols with SSJCON, SSJUTMAP, or SS_SYSICON style automatically use this
handle to store the icon or bitmap when the control is created. An application
can change the appearance of these controls by setting the handle. For all other
types of static controls, the handle is available for application-defined purposes.

Chapter

16

Scroll-Bar Controls
16.1 Introduction.................................. 203

16.2 About Scroll Bars .. 203
16.2.1 Scroll-Bar Creation .. 203
16.2.2 Scroll-Bar Range and Position 204
16.2.3 Scroll-Bar Notification Messages 204
16.2.4 Scroll Bars and the Keyboard.............................. 206

16.3 Using Scroll Bars 207
16.3.1 Creating Scroll Bars ... 208
16.3.2 Retrieving a Scroll-Bar Handle............................. 208
16.3.3 Using the Scroll-Bar Range and Position 209

16.4 Summary.. 210
16.4.1 Messages ... 210
16.4.2 System Values ... 210

Chapter 16: Scroll-Bar Controls 203
~mlili~~~2!ii!fmir~Jiii!i~J!!imn§1!mialUi!lmm!~~i§llfiia!!!~i!f~!m~!i!lmiH~~!!if:!il1ifaii!'ii~i~i.!iii.:a~~gs!f,~fS!m!rn!!!~i!!nsllil

16.1 Introduction
This chapter describes creating and using scroll bars in Presentation Manager
applications. You should also be familiar with the following topics:

• Standard user-interface guidelines

• Windows

• Frame windows

• Messages and message queues

• Control windows

16.2 About Scroll Bars
Scroll bars are control windows that convert mouse and keyboard input into
integer values. Applications typically use scroll bars to control scrolling the con­
tents in a client window.

A scroll bar has several parts: the bar, arrows, and the slider. These are found
on vertical and on horizontal scroll bars. Arrows are located at each end of a
scroll bar. The left scroll arrow, on the left side of a horizontal scroll bar, lets
the user scroll toward the left in a document. The right scroll arrow lets the user
scroll toward the right. The upper scroll arrow lets the user scroll upward in the
document. The lower scroll arrow lets the user scroll downward.

The slider, a hollow box, lies between the two scroll arrows. The slider position
in the scroll bar the reflects current value of the scroll bar. When the slider is
against the left or top scroll arrow, the scroll-bar value is at a minimum; when
the slider is against the right or bottom arrow, the scroll-bar value is at a max­
imum. The area between the scroll arrows is called the slider background.

Scroll bars monitor the slider position and send notification messages to the
owner window when the slider position changes through mouse or keyboard
input.

Scroll bars are often used in frame windows. A frame window automatically
places scroll bars at the right and bottom sides of a window, depending on the
scroll-bar style. The frame window automatically passes scroll-bar messages on
to its client window. The client window handles these messages by adjusting the
display. The client window can also send messages directly to the scroll bar,
directing the scroll bar to adjust its range so that it will map to the data scrolling
in the client window.

An application can use scroll bars as stand-alone controls in any size or shape,
at any position, in any sort of window. Scroll bars. can be used as parts of other
controls-for example, list-box controls use a scroll bar to let the user view
items when the list box is too small to display all the items.

16.2.1 Scroll-Bar Creation
An application creates a scroll bar by using the preregistered window class
WC_SCROLLBAR. The application can create a scroll bar by using the Win­
CreateWindow function. There are two scroll-bar styles: SBSJIORZ and
SBS_ VERT. The style SBSJIORZ creates a horizontal scroll bar; SBS_ VERT

204 MS OS/2 Programmer's Reference, Vol. 1
i~tmfar.!~lm!f512em~~!~if1m!I~Ijj~illii~iifi~i1~!~!i~iffiff~irin~it,Bi3~m!!!~i1i!if? .. ~!i!~j*ii~~Im.~I~;r~~L;r.~~J~~~~11i!P.ltti~~~~i~2

creates a vertical scroll bar. Although most applications specify an owner when
creating a scroll bar, an owner is not required. If no owner is specified, the
scroll bar does not send notification messages. An application can retrieve the
scroll bar's current slider position by sending the SB~QUERYPOS message to
the scroll bar.

An application can specify class-specific data when creating a scroll bar. The
SBCDATA structure specifies the initial range and slider position for the scroll
bar.

If a scroll bar is a descendant of a frame window, its position relative to the
parent window may change when the frame window's position changes. Frame
windows draw scroll bars relative to the upper-left corner of the frame win­
dow (rather than the lower-left corner). The frame window may adjust the y­
coordinate of the scroll-bar position. This is desirable when the scroll bar is an
immediate child window of the frame window, but may be undesirable if the
scroll bar is not an immediate child window.

16.2.2 Scroll-Bar Range and Position
Every scroll bar has a range and a slider position. The range specifies the max­
imum and minimum values for the slider position. As the user moves the slider
in the scroll bar, its position is reported as an integer value in the range. If the
slider position is the minimum value, the slider is at the top of a vertical scroll
bar or at the left end of a horizontal scroll bar. If the slider position is the max­
imum value, the slider is at the bottom or right end of the vertical or horizontal
scroll bar, respectively.

An application can adjust the range to convenient integer values by using the
SB~SETSCROLLBAR message (or initially, by using the SBCDATA struc­
ture). This makes it easy to translate the slider position to a value that corre­
sponds to the data being scrolled. For example, an application that has 260 lines
of text to display in a window that can show only 16 lines at a time can set the
vertical scroll-bar range to 1 through 244. When the slider is at position 1, the
first line is at the top of the window. When the slider is at position 244, the last
line is at the bottom of the window.

To keep the scroll-bar range in useful relationship with the data, an application
must adjust the range whenever the data or the size of the window changes. This
means an application should adjust the range as part of processing ~SIZE
messages.

An application must move the slider in the scroll bar. Although the user makes
a request for scrolling in the scroll bar, the scroll bar does not update the slider
position. Instead, it passes the request to the owner window. The owner window
must scroll the data and update the slider position by using the SB~SETPOS
message. Because the application controls the slider movement, it can move the
slider in increments that work best for the data being scrolled.

16.2.3 Scroll-Bar Notification Messages
The scroll bar sends notification messages to the scroll-bar owner whenever the
user clicks the scroll bar. The ~ VSCROLL and WMJISCROLL messages
are the notification messages for vertical and horizontal scroll bars, respectively.
If the scroll bar is a frame-control window, the message is passed by the frame
window to the client window.

Chapter 16: Scroll-Bar Controls 205
~mlili~w.!!.m!m;;n~flf~jlE!JiEI~i&im!iF:ii!:~i!mi~~~llmiYi!~m~im~!i§~lU~~!!If:!iI~im~si~~W.~~iRf~3mJ~~!s!!f:!ml!§fi!i~H;lii!

Each notification message includes the scroll-bar identifier, the specific scroll­
bar command code that corresponds to the user's action, and, in some cases,
the current position of the slider. If a scroll bar is created as part of a frame­
control window, the scroll-bar identifier is one of the predefined constants
FID_ VERTSCROLL or FIDJIORZSCROLL. Otherwise, it is the identifier
given in the WinCreateWindow function.

The scroll-bar command codes specify the action the user has taken. The code
specifies where the user has clicked the mouse. MS OS/2 user-interface guide­
lines recommend certain responses for each action. The following is a list of the
command codes and the recommended responses. In each case, a "unit" is
defined by the application and should be appropriate for the given data. For
example, when scrolling text vertically, the unit is typically a line.

Command code

SB-LINEUP

SB-LINEDOWN

SB-LINELEFT

SB-LINERIGHT

SBYAGEUP

SBYAGEDOWN

SBYAGELEFT

SBYAGERIGHT

Description

User clicked the top scroll arrow. Decre­
ment the slider position by one and scroll
toward the top of the data by one unit.

User clicked the bottom scroll arrow. Incre­
ment the slider position by one and scroll
toward the bottom of the data by one unit.

User clicked the left scroll arrow. Decre­
ment the slider position by one and scroll
toward the left end of the data by one unit.

User clicked the right scroll arrow. Incre­
ment the slider position by one and scroll
toward the right end of the data one unit.

User clicked the scroll-bar background
above the slider. Decrement the slider posi­
tion by the number of data units in the win­
dow and scroll toward the top of the data by
the same number of units.

User clicked the scroll-bar background
below the slider. Increment the slider posi­
tion by the number of data units in the win­
dow and scroll toward the bottom of the
data by the same number of units.

User clicked the scroll-bar background to
the left of the slider. Decrement the slider
position by the number of data units in the
window and scroll toward the left end of the
data by the same number of units.

User clicked the scroll-bar background to
the right of the slider. Increment the slider
position by the number of data units in the
window and scroll toward the right end of
the data by the same number of units.

206 MS OS/2 Programmer's Reference, Vol. 1
!~ffilf~I~!il~§~~l!f~ilW!i!:ilfjji~i!!ii1§fiJi .. n~!!il!iu!im!f~ifiin~~H~!mli~~iir~Ji!i!~J~i~~~I~l!i~!I!fil!w.~I!jj~~[zfil1i~fi1iii~.!!!fi!fli!i!

Command code

SB_SLIDERTRACK

SB_SLIDERPOSITION

SB~NDSCROLL

Description

User is dragging the slider. Applications
that draw data quickly can set the slider to
the position given in the message and scroll
the data by the same number of units the
slider has moved. Applications that can­
not draw data quickly should wait for the
SB_SLIDERPOSITION code before mov­
ing the slider and scrolling the data.

User released the slider after dragging it.
Set the slider to the position given in the
message and scroll the data by the same
number of units the slider has moved.

User released the mouse after holding it on
an arrow or in the scroll-bar background.
No action is necessary.

If the scroll-bar command code is either SB_SLIDERPOSITION or
SB_SLIDERTRACK, indicating that the user is moving the scroll-bar slider, the
notification message also contains the current position of the slider.

The owner window can send a message to the scroll bar to read its current value
and range or to reset its current value. The owner window can adjust data con­
trolled by the scroll bar to reflect any changes in the state of the scroll bar.

An application can disable a scroll bar by using the WinEnable Window function.
A disabled scroll-bar window ignores the user's actions, sending out no notifi­
cation messages when the user tries to manipulate it. If an application has no
data to scroll or all data fits in the client window, it should disable the scroll bar.

Scroll bars have their own system color, SYSCL~SCROLLBAR. This color is
used to paint the scroll-bar background. Other system colors are used in other
parts of the scroll bar.

16.2.4 Scroll Bars and the Keyboard
When a scroll bar has the keyboard focus, it generates notification messages for
the following keys:

Key

UP

LEFf

DOWN

RIGHT

PAGE UP

PAGE DOWN

Command code

SB-LINEUP or SB-LINELEFf

SB-LINEUP or SB-LINELEFf

SB-LINEDOWN or SB-LINERIGHT

SB-LINEDOWN or SB-LINERIGHT

SBJAGEUP or SBJAGELEFf

SBJAGEDOWN or SBJAGERIGHT

Chapter 16: Scroll-Bar Controls 207
!!U!ili!!~~~ira!~nir.;ri!Uiii§~J~p.1U~1~1a!Ul!im!flii!!!~!Iftili!§im~iH!!'-mtmm~.J!iIif:if:aim~si~Il!W~_~~~!s!iii!mt~liift~~mI!

If an application uses scroll bars to scroll data but does not give the scroll bar
the input focus, the window with the focus should process keyboard input itself.
The window can generate scroll-bar notification messages or carry out the indi­
cated scrolling. The following list gives the keys a window should process and
what action to take for each:

Key

UP

DOWN

PAGE UP

PAGE DOWN

CONTROL+HOME

CONTROL+END

LEFf

RIGHT

CONTROL+PAGE UP

CONTROL+PAGE DOWN

HOME

END

Command

SBJ.-INEUP

SBJ.-INEDOWN

SBYAGEUP

SBYAGEDOWN

SB_SLIDERTRACK with slider set to
minimum position

SB_SLIDERTRACK with slider set to
maximum position

SBJ.-INELEFf

SBJ.-INERIGHT

SBYAGELEFf

SBYAGERIGHT

SB_SLIDERTRACK with slider set to
minimum position

SB_SLIDERTRACK with slider set to
maximum position

Vertical scroll bars that are part of list boxes have the following keyboard inter­
face:

Key

CONTROL+UP

CONTROL+DOWN

F7

F8

Command

SB_SLIDERTRACK with slider set to
minimum position

SB_SLIDERTRACK with slider set to
maximum position

SBYAGEUP

SBYAGEDOWN

The application must implement the suggested scroll-bar/keyboard interface.
This can be accomplished by appropriate handling of W1LCHAR messages.

16.3 Using Scroll Bars
This section explains how to create and use scroll bars in an application. Scroll
bars are most often used in frame windows to let the user scroll data in the
corresponding client window.

208 MS OS/2 Programmer's Reference, Vol. 1
§!fi!f:l~l~!u!i2i!iffiii~~WfmJ1ltm!!~Irn;irll~Ift§Hmm~~mi§lm~~if.iliilf!i~I~~~iWt!'il1tw.lta;;lttiiiiij~ii~;li~miiim~IDi~~g!~;f@~!iin~m!lml1~

16.3.1 Creating Scroll Bars
You can add scroll bars to a frame window by using the FCFJIORZSCROLL
flag, the FCF _ VERTSCROLL flag, or both flags when creating the frame win­
dow with the WinCreateStdWindow function. This adds a horizontal and/or a
vertical scroll bar to the frame window. Because the frame window owns the
scroll bars, it passes notification messages from these controls to the client win­
dow.

The following code fragment adds scroll bars to a frame window:

/* Set flags for a main window with scroll bars. */

ULONG ulFrameControlFlags =
FCF_STANDARD I FCF_HORZSCROLL

/* Create the window. */

hwndFrame = WinCreateStdWindow(HWND_DESKTOP, WS_V1S1BLE,
&ulFrameControlFlags, szClientClass, szFrameTitle,
OL, NULL, OL, &hwndClient);

Scroll bars created this way have the window identifier FIDJIORZSCROLL or
FID_ VERTSCROLL. The frame window determines the size and position of the
scroll bars. A frame window uses the standard size specified by the system
values SV _CXVSCROLL and SV _CYHSCROLL. The position is always the
right and bottom edges of the frame window.

Another way to create scroll bars is by using the WinCreate Window function.
This is most common for stand-alone scroll bars. Creating scroll bars in this way
lets ycm set the size and position of the scroll bars. You can also specify the win­
dow to receive notification messages.

The following code fragment creates a stand-alone scroll bar:

HWND hwndScroll; /* scroll-bar handle */

hwndScroll = WinCreateWindow(
hwndClient /*
WC_SCROLLBAR, /*
NULL, /*
SBS_VERT I WS_V1S1BLE, /*
10, 10, /*
20,100, /*
hwndClient, /*
HWND_TOP, /*
1, /*
NULL, /*
NULL) ; /*

16.3.2 Retrieving a Scroll-Bar Handle

scroll-bar parent */
preregistered scroll-bar class */
no window title */
vertical style and visible */
position */
size * /
owner
Z-order position
scroll-bar 1D
no class-specific data
no presentation parameters

*/
*/
*/
*/
*/

If you create a scroll bar as a child window of the frame window by using the
WinCreateStdWindow function, you need a way to retrieve the scroll-bar handle.
One way is to use the Win WindowFromID function, the frame-window handle,
and a predefined identifier (such as FID_HORZSCROLL or
FID_ VERTSCROLL) to retrieve the scroll-bar handle:

hwndHorzScroll WinWindowFrom1D(hwndFrame, F1D_HORZSCROLL);
hwndVertScroll = WinWindowFrom1D(hwndFrame, F1D_VERTSCROLL);

Chapter 16: Scroll-Bar Controls 209
~~!w!imi~iil!!VJifrum~HifiUi!~il~'~Jiif~!t!iii~n!;1~!f!i~jj;!~!i~i~t:r!~gtY.i~1i~!ii!i~!~I~~~iimliiUijilmi~l~i~!~*s~!iffi!~n~UEm!

If the standard frame window includes a client window, you can use that handle
to access the scroll bars. The idea is to retrieve the frame-window handle first,
then the scroll-bar handle. This is illustrated by the following code fragment:

I' Get a handle to the horizontal scroll bar. 'I

hwndScroll = WinWindowFromID(
WinQueryWindow(hwndClient, QW_PARENT, FALSE),
FID_HORZSCROLL) ;

16.3.3 Using the Scroll-Bar Range and Position
You can initialize a scroll bar's current value and range to nondefault values by
sending the SBCDATA structure with class-specific data for a call to the Win­
Create Window function:

SBCDATA sbcd;

I' Set up scroll-bar control data. 'I

sbcd.posFirst = 200;
sbcd.posLast = 400;
sbcd.posThumb = 300;

I' Create the scroll bar. 'I

hwndScroll = WinCreateWindow(hwndClient, WC_SCROLLBAR, NULL,
SBS_VERT I WS_VISIBLE,
10, 10, 20, 100,
hwndClient, HWND_TOP, 1,
&sbcd, I' class-specific data 'I
NULL);

You can adjust a scroll-bar value and range by sending it an
SB~SETSCROLLBAR message:

I' Set the scroll-bar value and range. 'I

WinSendMsg(hwndScroll, SBM_SETSCROLLBAR,
MPFROM2SHORT(300, 0),
MPFROM2SHORT(200, 400»;

You can read a scroll-bar value by sending it an SB~QUERYPOS message:

USHORT usSliderPos;

I' Read the scroll-bar value. 'I

usSliderPos = (USHORT) WinSendMsg (hwndScroll ,
SBM~QUERYPOS, NULL, NULL);

Similarly, you can set a scroll-bar value by sending an SB~SETPOS message:

I' Set the vertical scroll-bar value. 'I

WinSendMsg(hwndScroll, SBM_QUERYPOS, MPFROM2SHORT(300, 0), NULL);

210 MS OS/2 Programmer's Reference, Vol. 1
iiii&11~jii!i!tIDiml!m_i1i~~~nip.-E~~~I~~ll~:~i~~~Hfii~l!ruimiiiii!!i!!f!!!l~!~~i~~~mt~mfiiif~t~llt!Rif;=~ill!Um~~~ii~~t

You can read a scroll-bar range by sending it an SB~QUERYRANGE mes­
sage:

MRESULT mr;
USHORT iMinimum, iMaximum;

/* Read the vertical scroll-bar range. */

mr = WinSendMsg(hwndScroll, SBM_QUERYRANGE, NULL, NULL);

iMinimum = SHORTIFROMMR(mr); /* minimum in the low word */.
iMaximum = SHORT2FROMMR(mr); /* maximum in the high word */

16.4 Summary
This section lists the messages and system values that applications use to create
and control scroll-bar control windows.

16.4.1 Messages
Applications use the following messages to create and control scroll bars:

SB~QUERYHILITE Sent to a scroll bar to obtain its highlight state.

SB~QUERYPOS Sent to a scroll bar to obtain the current value of the
scroll bar.

SB~QUERYRAN..GE Sent to a scroll bar to obtain the scroll-bar range.

SB~SETHILITE Sent to a scroll bar to set the highlight state.

SB~SETPOS Sent to a scroll bar to set the current value of the scroll bar.

SB~SETSCROLLBAR Sent to a scroll bar to set the current value and
range.

WMJISCROLL Sent by a horizontal scroll bar to its owner window when the
user changes the state of the scroll bar. The high word of the second parameter
(mp2) contains a scroll-bar command code. .

~ VSCROLL Sent by a vertical scroll bar to its owner window when the
user changes the state of the scroll bar. The high word of the second parameter
(mp2) contains a scroll-bar command code.

16.4.2 System Values
Applications use the following system values to create and control scroll bars:

SV_CXHSCROLLARROW Width (in pels) of the scroll-arrow area in a hor­
izontal scroll bar.

SV _CXVSCROLL Width (in pels) of a standard vertical scroll bar.

SV_CYHSCROLL Height (in pels) of a standard horizontal scroll bar.

Chapter 16: Scroll-Bar Controls 211
;lmi§iim!!if!!imI!i1}!lim~m§!!_iF.!illiiifl~!~.m~!~i!il!!~~!~~~!~!i~i~~1!!§fi!!rgi~1i~ifi!i~I~Iir~~iiiiIl~!diJmi~!ii~!fi*s~'!!iffi~f~W$!!

SV _CYVSCROLLARROW Height (in pels) of the scroll-arrow area in a verti­
cal scroll bar.

SV YIRSTSCROLLRA TE Initial rate at which a scroll bar sends notification
messages when the user clicks the scroll arrows or scroll-bar background.

SV _SCROLLRATE Similar to SV YIRSTSCROLLRATE, this is the rate at
which the scroll bar sends messages.

SYSCLR-SCROLLBAR Color for drawing scroll-bar backgrounds.

TID_SCROLL Timer ID for a reserved scrolling timer. This timer is used for
sending notification messages when a scroll arrow or scroll-bar background is
clicked.

Menus

Chapter

17

17.1 Introduction .. 215

17.2 About Menus .. 215
17.2.1 Menu-Bar and Pull-Down Menus 215
17.2.2 System Menu.. 216
17.2.3 Menu-Item Styles... 217
17.2.4 Menu-Item Attributes .. 217

17.3 Defining Menu Items in a Resource File....................... 217

17.4 Menu Data Structures... 219
17.4.1 Menu Template ... 220

17.5 Using Menus in your Applications 221
17.5.1 Including a Menu in a Standard Window 222
17.5.2 Adding Menus to a Dialog Window................... 223
17.5.3 Accessing the System Menu................................ 223
17.5.4 Responding to a User's Menu Choice 223
17.5.5 Using Menus with the Keyboard 224
17.5.6 U sing Keyboard Accelerators.............................. 225
17.5.7 Help Item in the Menu Bar................................. 226
17.5.8 Setting and Querying Menu-Item Attributes............. 226
17.5.9 Setting and Querying Menu-Item Contents 227
17.5.10 Adding and Deleting Menu Items 227
17.5.11 Owner-Drawn Menu Items 230

17.6 Summary .. 232
17.6.1 Menu-Item Styles ... 232
17.6.2 Menu-Item Attributes .. 233
17.6.3 Menu Functions... 233
17.6.4 Messages Sent from a Menu to an Owner Window... .. 234
17.6.5 Messages Sent to a Menu................................. .. 235

Chapter 17: Menus 215
~i§iiUisiii!ilWl!i1np_tif~m§!;eig~il!:!~.mi~!~i!il!!~~I~~~!~!i~i~~!§!1~~i~2i~iji;U~I~~;J;ti;iiml~!Uilmj~liiii1!ii!s~~~l;llm~

17.1 Introduction
This chapter describes how to use menus in your applications. You should also
be familiar with the following topics:

• Standard user-interface guidelines

• Resources and using the MS OS/2 Resource Compiler (rc)

• Accelerator tables

• Creating standard frame windows

• Window messages and message queues

17.2 About Menus
Menus are windows that contain a list of items. These items can be text strings,
bitmaps, or images drawn by the application. Menus allow the user to use the
mouse or keyboard to choose from a predetermined list of choices. When a user
makes a choice from a menu, the menu posts a message containing the item's
unique menu-item identifier to the menu's owner window.

Typically, an application defines its menus by using Resource Compiler and
associates the menus with an frame window when the window is created. Appli­
cations can also create menus by filling in menu-template data structures and
then creating windows with the WC.-MENU class. Either way, applications can
dynamically add, delete, or change menu items by sending messages to menu
windows.

Menu windows are always owned by another window; this is important because
a menu sends messages to its owner whenever a menu item is highlighted or
chosen by the user. Owner windows send messages to menus to add, delete, or
change menu items.

17.2.1 Menu-Bar and Pull-Down Menus
Typically, an application uses a menu-bar menu and several pull-down sub­
menus. The menu bar is a child window in the parent window frame. The sub­
menuS are normally hidden and become visible when the user makes selections
in the menu bar. Figure 17.1 shows a typical menu-bar and submenu layout in a
standard frame window:

216 MSOS/2 Programmer's Reference, Vol. 1 ,
ii6~1a~litii!!ru~~a~_~~~~~.E;~;m~liilimlJ:U!l}?i~!~Einm~l!ruP.llilliiii!ill!f!!!!1~~~~i!!!!~~mt~~iiil~iw.1~!Hiiili~iiS1~m!!!9~E~m~!

Figure 17.1
Menu-Bar and Pull-Down Menus

Pull-down menu
Menu bar

l- " <>1'0'
·erogram I ~roup 1 Fl-Help

"
jitart roup_

Add". r.!
Change •••
Delete .•. ,.
Minimize on Run I.

File System
OS/2 full-screen command prompt
OS/2 windowed command prompt
Page Setup Test

~

There are two main types of menu items: command items and submenu items.
When the user chooses a command item, a command message is immediately
posted to the parent window. When the user selects a submenu item, a pull­
down menu is displayed from which the user may choose another command
item. Since a pull-down menu window can also contain a submenu item, pull­
down menus can originate from other pull-down menus. An item in the menu
bar may be a command item or a submenu item.

When a command item is selected, either from the menu bar or from a
pull-down menu, the menu system posts a ~COMMAND, WMJIELP, or
~SYSCOMMAND message to the owner window, depending on the menu
item's style bits.

The menu bar is a child window of the frame window; the menu-bar window
handle is the key to communicating with menus. The handle of the menu-bar
window can be obtained by calling the Win WindowFromID function with the
handle of the parent window and the FID~ENU frame-control identifier. Most
messages for menus and submenus can be sent to the menu-bar window. Flags in
the messages tell the ~indow whether to search submenus for requested menu
items.

17.2.2 System Menu
The System menu in the upper-left corner of a standard frame window is
different from the menu-bar and pull-down menus defined by the application.
The System menu is controlled and defined almost exclusively by the system.
Your only decision about the System menu is whether or not to include it when
creating a frame window. (It is unusual for a frame window not to include a Sys­
tem menu.) The System menu generates WM....SYSCOMMAND messages
instead of W~COMMAND messages. Most applications simply allow the
default behavior for ~SYSCOMMAND messages.

Chapter 17: Menus 217
~i;;~~~i~~ml~~~it!!ljjU~iiSlm:ijlifii:~~iffl!~m;l!!J!!f~i!if~ru1ii!maJillit!r.~~!!llifSJ~i~lii!runtiifj~!§i~IF.ll~:lif!il!iijl~i§~nm~iffiiiml~rir;J!

If necessary, you can obtain the handle of the System menu by calling the
WinWindowFromID function with the handle of the parent (frame) window and
the FID_SYSMENU frame-control identifier. The application can add, delete,
and change System-menu entries.

17.2.3 Menu-Item Styles
All menu items have a combination of style bits that determine what kind
of data the item contains and what kind of message it generates when it is
chosen by the user. For instance, a menu item can have the MIS_TEXT,
MIS.-BITMAP, or other styles, specifying what kind of display object visually
represents the menu item on the screen. Other styles determine what kinds of
messages the item sends to its owner window and whether the owner window
draws the item. Menu-item styles typically do not change during program
execution, but they can be queried and set by sending ~SETITEM and
MM_QUERYITEM messages to the menu with the identifier of the item. The
possible menu-item styles are described in Section 17.6.1.

17.2.4 Menu-Item Attributes
Menu items have attributes that determine how they are displayed and whether
or not the user can choose them. Menu-item attributes can be set and queried by
sending M~SETITEMATfR and M~QUERYITEMATTR messages with the
identifier of the item to the menu-bar menu window. If the specified item is in a
submenu, you must set a flag in the message so that submenus are searched for
the item. The possible attributes of a menu item are listed in Section 17.6.2.

17.3 Defining Menu Items in a Resource File
A menu resource consists of command items and submenu items. One menu
resource typically represents the menu bar and all its submenus. An application
can specify the identifier of the menu resource when creating a standard window,
or it can load the menu resource directly by using the WinLoadMenu function.
A menu-item definition is organized as follows:

MENUITEM item text, item identifier, item style, item attributes

The menu resource-definition file specifies the text of each item in the menu,
unique identifier, its style and its attributes, and whether it is a command item or
a submenu item. Following is sample source code that defines a menu resource
for Resource Compiler. The code defines a menu with three submenu items in
the menu bar (File, Edit, and Fonts) and a command item (Help). Each sub­
menu has several command items, and the Fonts submenu has two other sub­
menus within it.

218 MS OS/2 Programmer's Reference, Vol. 1
ii~lw.!~~~~~!!~H~.limi~i~liiiE1Ut,g~Ii5..i1!iil~U~~~m.ltiliin~l~i~~~~~~el~Hmifs'gfi~iiiliiilli~;,gNi~EiSfiiiij1~i!Uli~1Iim~lii~~!fii~

Figure 17.2
Submenus

MENU ID_MENU_RESOURCE
BEGIN

SUBMENU ""File",
BEGIN

MENUITEM
MENUITEM
MENUITEM
MENUITEM
MENUITEM

END
SUBMENU ""Edit",

BEGIN
MENUITEM
MENUITEM
MENUITEM
MENUITEM
MENUITEM
MENUITEM

END

""Open ... " ,
""Close\tF3",
""Quit",
""
""About Sample",

""Undo",
"" ""Cut",
"C"ppy" ,
""Paste",
"C"lear",

SUBMENU "Font", IDM_FONT
BEGIN

END

SUBMENU "Style",
BEGIN

MENUITEM "Plain",
MENUITEM "Bold",
MENUITEM "Italic",

END
SUBMENU "Size",

BEGIN

END

MENUITEM "10",
MENUITEM "12",
MENUITEM "14",

IDM_FI_OPEN
IDM_FI_CLOSE, MIS_DISABLED
IDM_FI_QUIT
IDM_FI_SEP1, MIS_SEPARATOR
IDM_FI_ABOUT

IDM_ED_UNDO, 0, MIA_DISABLED
IDM_ED_SEP1, MIS_SEPARATOR
IDM_ED_CUT
IDM_ED_COPY
I DM_ED_PASTE
IDM_ED_CLEAR

IDM_FONT_STYLE

IDM_FONT_STYLE_PLAIN
IDM_FONT_STYLE_BOLD
IDM_FONT_STYLE_ITALIC

IDM_FONT_SIZE

IDM_FONT_SIZE_10
IDM_FONT_SIZE_12
IDM_FONT_SIZE_14

MENUITEM "Fl=Help", OxOO, MIS_TEXT I MIS_BUTTONSEPARATOR I MIS_HELP
END

Figure 17.2 shows how the submenus within a Delete submenu are displayed.

- . : «)\i} •
file I .Q.ptlon. \ F1-Help •

)leve entry Ctrl-S 1' •
Add +1: ... ,- Delete ell keyword. \
About Brow.er ..•

,- -,

PM_Font. -
~

~ k PM_ProgremU.toOO 1.;1

PM_ProgremUatOO1 ~
c:\deaktoD\menu.tllt

You can indicate a mnemonic keystroke for the menu item by preceding that
character in the item text with a tilde, as in "-File". The user can choose that
item by pressing the mnemonic key when the menu is active. (The menu bar is
active when the user presses and releases the ALT key, and the first item in the
menu bar is highlighted. A pull-down menu is active when it is open.)

In addition to mnemonics, a menu item can have an associated keyboard
accelerator. Accelerators are different from mnemonics, in that the menu does
not have to be active for the accelerator key to work. If a menu item has a key­
board accelerator associated with it, the corresponding menu item should display

Chapter 17: Menus 219
'~!llltii!f!mi~ijf!Jif~~l!!iiI!ii!iI~iilUi!i~m;~1i,.Giffli!{[~~!at!fi~ili1iimlfilliiim:w.i!iHF:!!11i5i/~ilfili_lit.f;~ifj~~~!F.h'mljf!il!iijlmj'sfJ3lmr.~!liimBl~ii~i

the accelerator to the right of the menu item. This is done by placing a tab char­
acter (\t) in the menu text before the characters that should be displayed on the
right. For example, if the Close item had the F3 function key as its keyboard
accelerator, the text for the item would be "Close\tF3". For more information
on accelerators, see Section 17.5.6.

Each entry that defines a menu item specifies the text for the item, its identifier,
and the style and attributes of the item. A menu item that has no specification
for style or attributes has the default style of MIS_TEXT and all attribute bits
off, indicating that the item is enabled. The MIS_SEPARATOR style identifies
nonselectable lines between menu items.

To define a menu item with the MIS.J3ITMAP style, an application should use a
tool such as Icon Editor to create a bitmap, include the bitmap in the applica­
tion's resource-definition file, and define a menu in the file (as shown in the fol­
lowing code fragment). The text for the bitmap menu items is an ASCII repre­
sentation of the resource identifier of the bitmap resource to be displayed for
that item.

I' Bring externally created bitmaps into the resource file. 'I

BITMAP 101 button.bmp
BITMAP 102 hirest.bmp
BITMAP 103 hizoom.bmp
BITMAP 104 hired.bmp

I' Connect a menu item with a bitmap. 'I

SUBMENU ""'Bitmaps", IDM_BITMAP
BEGIN

END

MENUITEM "#101", IDM_BM_01, MIS_BITMAP
MENUITEM "#102", IDM_BM_02, MIS_BITMAP
MENUITEM "#103", IDM....;BM_03, MIS_BITMAP
MENUITEM "#104", IDM_BM_04, MIS_BITMAP

17.4 Menu Data Structures
There are two main data structures that define the contents of a menu: the
menu-item structure and the menu-template structure. The menu-item structure
defines a single menu item, and the menu-template structure contains all the
menu items that make up a menu resource, including the menu bar and all its
pull-down menus.

A single menu item is defined by the MENUITEM data structure. This data
structure is used with the MMJNSERTITEM message to insert items into a
menu, or to query and set item characteristics with the M~QUERYITEM and
M~SETITEM messages. The MENUITEM data structure has the following
form:

typedef struct _MENUITEM {
SHORT iPosition;
USHORT afStyle;
USHORT afAttribute;
USHORT id;
HWND hwndSubMenu;
ULONG hItem;

} MENUITEM;

220 MS OS/2 Programmer's Reference, Vol. 1
il~,,~~fai2i~elll~!linl~!i§i~i!HiU~l!ai~Ua~m;I~Hlm!~ii~il~;L§I~il~i§~el~tiiiimlm~ftill'iljmB!_i!eeim~rut~il!iiiii!il:mifiliii~U~~!:ii

The values of most of the fields in the data structure can be derived directly
from the resource-definition file shown in Section 17.3. The last field in the
structure, bItem, depends on the style of the menu item.

The iPosition field specifies the ordinal position of the item within its menu win­
dow. If the item is part of the menu bar, iPosition gives its relative left-to-right
position, with zero being the leftmost item. If the item is part of a submenu,
iPosition gives its relative top-to-bottom and left-to-right position, with zero
being the upper-left item. An item with the MISJ3REAKSEP ARATOR style
in a pull-down menu will cause a new column to begin.

The afStyle field contains the style bits of the item. The afAttribute field con­
tains the attribute bits.

The id field contains the identifier for the menu item. The identifier should be
unique but does not have to be. When multiple items have the same identifier,
they post the same command number in the W~COMMAND, WMJIELP,
and ~SYSCOMMAND messages. Also, any message that specifies a menu
item with a non unique identifier will find the first item that has that identifier.

The bwndSubMenu field contains the window handle of a pull-down menu win­
dow (if the item is a submenu item). The bwndSubMenu field is NULL for com­
mand items.

The hItem field contains a handle to the display object for the item, unless the
item has the MIS_TEXT style, in which case bItem is NULL. For example, a
menu item with the MISJ3ITMAP style has an bItem field that is equal to its
bitmap handle.

17.4.1 Menu Template
A menu template is a variable-length data structure that represents the entire
menu, including all items and submenus. A menu template is made up of a
series of variable-length records. Each record represents a single menu item. If
the item is a submenu, the template that describes the submenu is nested after
the submenu item record.

The menu template is a representation of the menu as it is defined in the
resource-definition file. Typically, applications require information about the
internal structure of a menu template only when creating a menu template
without using a resource-definition file.

A template is defined as shown in the following code fragment:

typedef struct _MT {
USHORT cb;
USHORT version;
USHORT codepage;
USHORT iInputsize;
USHORT cMti;
MTI rgMti(cMti);

} MT;

/* length of template in bytes */
/* version; set to zero * /
/* code page */
/* length of input field for host terminals */
/* count of items */

Chapter 17: Menus 221
i~!;lIi.!£lI!iiii~'ftmfm~eil!!ljJlI~i{jlUS!ij!jf1if!1,,~irnl!§B~l!Snfji!§jfiimm;fjlmi91~~~l!fi~f~1i~JijiruufMiiii;~~iF.NmJiff!;15i~I!t"§i¥.IJi~i!fliimf~~iffi!

MS OS/2 version 1.1 sets the version, code-page, and input-size fields to zero,
and ignores the contents of these fields if set by an application. The cMti field
specifies the number of menu-template items that follow. Each menu-template
item describes one item in the menu. Since each menu item can require a dif­
ferent amount of storage, the following variable definition of a menu-template
item is used:

typedef struct _MTI {
USHORT afStyle;
USHORT afAttribute;
USHORT idltem;
if (afStyle AND MIS_BITMAP)

CHAR szItemString ? ;
if (afStyle AND MIS_OWNERDRAW)

VOID;
if (afStyle AND MIS_TEXT)

CHAR szItemString ? ;
if (aStyle AND MIS_SEPARATOR)

VOID;
if (afStyle AND MIS_SUBMENU)

MT MenuTemplate;
} MTI;

The first three fields of a structure for a menu-template item specify the style,
attributes, and identifier of the item. The data that follows these fields is deter­
mined by the style of the item. The cases can be summarized as follows:

If the afStyle field is MIS_TEXT, the data that follows the idItem field is a null­
terminated string representing the menu-item text.

If the afStyle field is MISJ3ITMAP, the data that follows idItem is a null­
terminated string that can represent one of three things:

• If the first byte is NULL, then no bitmap resource is defined; the application
provides a bitmap handle for the item.

• If the first byte is "#", subsequent characters make up the decimal represen­
tation of the bitmap resource-identifier.

• If neither of the previous cases apply, the handle is set to NULL, and the
application must set it manually.

If the afStyle field is MIS_OWNERDRAW or MIS_SEPARATOR, there is no
data following the idItem field.

If the afStyle field is MIS_SUBMENU, a complete menu-template structure for
the submenu follows the idltem field.

17.5 Using Menus in your Applications
Typically, an application that uses menus defines them in a resource-definition
file and includes them in a standard frame window. During program execution,
the application's window procedure receives messages generated by the menu
windows in response to user input, either from the mouse or the keyboard. The
application responds to these messages by using the identifier of the menu item
that is contained in each menu message.

222 MS OS/2 Programmer's Reference, Vol. 1
illl"~~~~~!!!l!i!~imj!f1!~iiiii!Hm!iIi!;1!i~mi~i~:~iiBmJrali~jiiliim!~ii}~~~el~Hff.mmi~;iE!miMiti_if~l~~fii~!~Uijjil;mifillii~~ffi!~

The application can also load menu resources at run time and associate them
with a particular owner window. This is useful for putting menus in windows
other than the standard frame window.

The user-interface guidelines specify that a user should not be required to have
a mouse to operate an MS OS/2 application. Applications can define keyboard
equivalents to menu items to aid users without mice.

It is also suggested that all applications have a Help item in their menu bar. This
presents a standard interface for the novice user across all applications. The
Help item is defined with a particular style, attributes, and position in the menu,
as shown in the resource-definition file in Section 17.3. The Help command item
generates a ~ELP message when chosen by the user, allowing the applica­
tion to respond appropriately. For more information on the help system, see
Chapter 29, "Help."

Applications can change the attributes, style, and contents of menu items, and
insert and delete items at run time, to reflect changes in the command environ­
ment. An application can also add or delete items from the menu bar or sub­
menus. For example, an application might maintain a menu of the currently
available fonts in the system. This application would use Gpi calls to determine
which fonts were available, and then insert a menu item for each font into a sub­
menu. Furthermore, the application might set the "checked" attribute of the
menu item for the currently chosen font. When the user chooses a new font, the
application would remove the check-mark attribute from the previous choice and
add it to the new choice.

An application can also draw a menu item itself by setting the attribute
MIS_OWNERDRA W for the menu item. Typically, this is done by specifying
the MIS_OWNERDRA W attribute for the menu item in the resource-definition
file, but it can also be done at run time. When the application draws a menu
item, it must respond to messages from the menu each time the item needs to
be drawn.

17.5.1 Including a Menu in a Standard Window
If you have defined a menu resource in a resource-definition file, you can include
the menu in a standard window. You include the menu by using the FCF ~ENU
attribute flag and specifying the menu resource identifier in a call to the Win­
CreateStdWindow function, as shown in the following code fragment:

ULONG lControlStyle = FCF_MENU I FCF_SIZEBORDER
FCF_TITLEBAR I FCF_ACCELTABLE;

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
WS_VISIBLE,
&lControlStyle,
szClassName,
szClassName,'
OL, NULL,
ID_MENU_RESOURCE,
&hwndClient);

Chapter 17: Menus 223
ii.i!~U~f!mi~~f!WJf~i~iiil~fjlmli"~1j~irn!g;f~~i§Im!r;ij"if~~IID~!m!!iflm!i!i1~ii!fjISUifafiiii~~~OOlF.~'iJ;!jftll~~l.mImiEi~r.~imiim:~~i;il

After you make this call, MS OS/2 automatically includes the menu in the
window, drawing the menu bar across the top of the window. When the user
chooses an item from the menu, the menu posts the message to the frame win­
dow. The frame window passes any ~COMMAND messages to the client
window. (The frame window does not pass W~SYSCOMMAND messages to
the client window.) WMJIELP messages are posted to the focus window. The
WinDefWindowProc function passes WMJIELP messages to the parent win­
dow. If a WMJIELP message is passed to a frame window, the frame window
calls the HKJIELP hook. Your client window procedure should process these
messages to respond to the user's actions. The details of responding to menu
selections are shown in Section 17.5.4.

17.5.2 Ad~ing Menus to a Dialog Window
You may want to use menus in windows that were not created by using the
WinCreateStdWindow function. For these windows, you can load a menu
resource by using the WinLoadMenu function and specify the parent window for
the menu. WinLoadMenu assigns the specified menu resource to the parent win­
dow. To see the menu in the window, you must send a ~UPDATEFRAME
message to the parent window after loading the menu resource. This strategy is
especially useful for adding menus to a window created as a dialOg window, but
it can be used no matter what type of window is specified as the parent window.

17.5.3 Accessing the System Menu
Although most applications do not atter the System menu, you can obtain the
handle of the System menu by calling the Win WindowFromID function with a
frame-window handle (or dialog-window handle) and the FID_SYSMENU
identifier. Once you have the handle of the System menu, you can access the
individual menu items by using predefined constants. For example, the following
code fragment shows how to disable the Close menu item in the System menu of
a window:

HWND hwndSysMenu;

hwndSysMenu = WinWindowFromID(hwndFrame, FID_SYSMENU);

WinSendMsg(hwndSysMenu, MM_SETITEMATTR,
MPFROM2SHORT(SC_CLOSE, TRUE),
MPFROM2SHORT(MIA_DISABLED, MIA_DISABLED»;

17.5.4 Responding to a User's Menu Choice
When a user chooses a menu, item your client window procedure receives a
~COMMAND message with the low word of the mpl parameter equal to
the menu identifier of the selected item. Your application should use the menu
identifier to guide its response to the selection. Typically, the code in the client
window procedure resembles the following code fragment:

case WM_COMMAND:
DoMenuCommand(hwnd, LOUSHORT(mpl»;
return 0;

224 MS 05/2 Programmer's Reference, Vol. 1
~~ .. :w.!{g;f*~~!!I~~li~t~mili~i!~i!!~IP.illii~~i~:~mmJraii~iI~l~liti!I~~~el~Hmfs!ffi~iiiSiiiJiJn~~J!i!~~H~fi!iiiiil~!!U~!!ii~lii~~m!~

The function that translates the menu identifier into an action typically resembles
the following code fragment:

VOID DoMenuCommand(hwnd, usltemID)
HWND hwnd;
USHORT usltemID;
{

}

/* Test the menu item. */

switch (usltemID) {

}

case IDM_FI_NEW:
DoNew(hwnd) ;
break;

The menu system sends a ~ENUSELECT message every time the menu
selection changes. The low word of the mpJ parameter contains the identifier of
the item that is changing state and the. high word is a 6-bit Boolean value that
describes whether or not the item is chosen; the mp2 parameter contains the
handle of the menu.

If the Boolean value is FALSE, the item is selected but not chosen-for exam­
ple, the user may have moved the cursor or mouse pointer over the item while
the button was down. An application can use this message to display help infor­
mation at the bottom of the application window. The return value is· ignored.

If the Boolean value is TRUE, the item is chosen-that is, the user pressed
ENTER or released the mouse button when an item was selected. If the applica­
tion returns FALSE, the menu does not generate a W~COMMAND,
~SYSCOMMAND, or WMJIELP message, and the menu is not dismissed.

17.5.5 Using Menus with the Keyboard
MS OS/2 is designed to work with or without a mouse or other pointing device.
The system provides default behavior to allow a user to interact with menus
without using a mouse. The following are the keystrokes that produce this
default behavior:

Keystroke

ALT

ALT, SPACEBAR

ESC

Action

Toggles into and out of menu mode.

Shows the System menu.

Backs up one level. If a pull-down menu is
displayed, it is canceled. If no pull-down menu
is displayed, this keystroke exits from menu
mode.

Chapter 17: Menus 225
s!gii~1~i~;~I!f.~~iff!!i~ml~!ij;~jjl~l~iiil!i~mru...~fm!~ii5iifljtU~fS1i§ii~!!i~~fi5ii2iii~~lmi~~~n~~~R!itii!ii~~ililliHi!ili.iaii_~im!!im

Keystroke

RIGHT

LEFT

UP or DOWN

ENTER

Alphabetic characters

Action

Cycles to the next menu-bar item. If the
selected item is at the far-left side of the
menu bar, the menu code sends a
W1LNEXTMENU message to the frame.
The default processing by the frame is to cycle
between the application and System menus.
(An application can modify this behavior by
subclassing the frame window.) If the selected
item is in a pull-down menu, the next column
in the· pull-down menu is selected or the next
menu-bar item is selected; this key may also
send or process a W1LNEXTMENU message.

Works like the RIGHT key, except in the oppo­
site direction. In pull-down menus, this key­
stroke backs up one column, except when the
currently selected item is in the far-left
column, in which case the previous pull-down
menu is selected.

Activates a pull-down menu when in the menu
bar. This keystroke selects the next or previ­
ous item when in a pull-down menu.

Activates a pull-down menu and highlights the
first item if an item has a pull-down menu
associated with it; otherwise, this keystroke
chooses the item as if the user released the .
mouse button while the item was selected.

Selects the first menu item with the specified
character as its mnemonic key. A mnemonic is
defined for a menu item by placing a tilde C)
before the character in the menu text. If the
selected item has a pull-down menu or second­
ary menu associated with it, the menu is
displayed and the first item is highlighted; oth­
erwise, the item is chosen.

An application does not need to support this default behavior with any unusual
code. The application receives a message when a menu item is chosen by using
the keyboard just as if it had been chosen by using a mouse.

17.5.6 Using Keyboard Accelerators
Applications can define accelerator tables to make user interaction with menus
more efficient. Accelerator tables are resources that associate keystrokes with
menu command items. For example, an application can define an accelerator
table resource that makes the F8 key generate a W1LCOMMAND message that
is identical to the message generated when the user chooses the Quit item from
the File menu. Accelerator tables provide a shortcut for proficient users that
allows them to work more quickly with the application.

226 MS OS/2 Programmer's Reference, Vol. 1
Illm~r.~itii~!i!m5tmil!ilifflmtiffi!i[~!iF.:iIH~ll~Iif~~j~ti!!~Um;H;t!!iim!~J!!:!ifi!5iH]i~r:ij~_SlI.fnfrl~iUlS;mi5Uim,~i~iifiiiUru1f:ii!

A sample resource-definition file for an accelerator table is shown in the follow­
ing code fragment:

ACCELTABLE ID_ACCEL_RESOURCE
BEGIN

END

VK_F8, IDM_FILE_QUIT, VIRTUALKEY
VK_F3, IDM_SEARCH_FIND, VIRTUALKEY
VK_Fl, NULL, VIRTUALKEY, HELP

The resource-definition file associates keystrokes with menu-item command
identifiers. Notice that the definition uses virtual-keystroke definitions that are
independent of the particular scan codes generated by different keyboard
hardware.

In order to use an accelerator table with a window, the window should be
created with the FS-A.CCELT ABLE style, and the resource identifier of the
accelerator table must be the same as the identifier of the window's menu. Alter­
natively, you can associate an accelerator table with a frame window after the
window is created, by calling the WinSetAccelTable function.

For more information on keyboard accelerators, see Chapter 18, "Accelerator
Tables."

17.5.7 Help Item in the Menu Bar
The user-interface guidelines suggest that all applications have a Help menu item
at the far-right end of the menu bar. The item should read "Fl=Help", have an
identifier of zero, and have the MISJ3UTTONSEPARATOR or MISJIELP
item style. The Help menu item should be the last item in the menu template,
so that it is displayed at the far-right end of the menu bar.

The user can use either a mouse or the Fl key to select the Help menu item, if
the application uses the system default accelerator table. (For more information
on the system default accelerator table, see Section 175.6.) The Help item gen­
erates a WMJIELP message instead of a ~COMMAND message.

17.5.8 Setting and Querying Menu-Item Attributes
Menu-item attributes are represented in the afAttribute field of the MENUITEM
data structure. Typically,. attributes are set in the resource-definition file of
the menu and changed at run time as required .. Applications can use the
MM-SETITEMATTR and MM-QUERYITEMATTR messages to set and query
attributes for a particular menu item. One of the most common uses of these
messages is to check and uncheck menu items to let the user know what option
is currently selected. For example, if you have a menu item that should toggle
between checked and unchecked each time it is chosen, you could use the fol­
lowing code to change the checked attribute. You first send an
MM-QUERYITEMATTR message to the menu item to obtain its current
checked attribute, then use the exclusive OR operator to toggle the state,
and then you send the new attribute-state back to the item by using an
MM-SETITEMA TTR message.

Chapter 17: Menus 227
a!giili!~in!;~If.~~ifI!Ii~~~Uijm~jj:if~timl~L~tm!~I~Wiiil~~ISfiii!!iitit1i1!iiaP.i~sg~mi~~iliaim1~mifilm~iir.:mi!itiilFr.iifin\jj!.rniW!J

usAttrib = (SHORT) WinSendMsg(hwndMenu,
MM_QUERYITEMATTR,
MPFROMSHORT(itemID),
MPFROMSHORT(MIA_CHECKED»;

/* submenu window
/* message
/* identifier of item
/* attribute mask

/* XOR to toggle checked attribute

*/
*/
*/
*/

*/

WinSendMsg(hwndMenu, /* submenu window */
MM_SETITEMATTR, /* message */
MPFROMSHORT(itemID), /* identifier of item */
MPFROM2SHORT(MIA_CHECKED, usAttrib»; /* attribute mask, value */

There are two methods for manipulating individual menu items in submenus.
The first is to send M~SETITEMATTR and M~QUERYITEMATTR mes­
sages to the menu-bar menu, specifying the identifier of the item and setting a
flag so that the message searches all submenus for the item. The handle of the
menu-bar window can be obtained by calling the Win WindowFromID function
with the handle of the frame window and the FID-MENU frame-control iden­
tifier.

The second method, which is more efficient if you'want to work with more than
one item in a submenu or set the same item several times, involves two steps:

1 Sending an M~QUERYITEM message to the menu-bar window with the iden­
tifier of the submenu. The updated MENUITEM structure contains the ~indow
handle of the submenu.

2 Send an M~QUERYITEMATTR (or M~SETITEMATTR) message to the
submenu window, specifying the identifier of the item in the submenu.

17.5.9 Setting and Querying Menu-Item Contents
Applications can change the contents of a menu item dynamically by sending
messages to the menu. For MIS_TEXT items, an M~SETITEMTEXT message
sets the text. The M~QUERYITEMTEXT message queries the item's text.

For nontext menu items, the hItem field of the MENUITEM data structure
typically contains a handle of a display object, such as a bitmap handle for
MIS.-BITMAP menu items. You can change the hltem field for a menu item by
sending an M~QUER YITEM message to the menu to fill in the MENUITEM
structure, changing the relevant fields, and then sending the structure back to the
menu with an M~SETITEM message.

17.5.10 Adding and Deleting Menu Items
An application can add and delete items from its menus dynamically by sending
M~NSERTITEM and M~ELETEITEM messages to the menu window.
Any item, including those in submenus, can be deleted by sending a message to
the menu-bar window. Messages to insert items in submenus must be sent to the
submenu's pull-down menu window (rather than to the menu-bar window).
The handle of the pull-down menu window can be obtained by sending an
M~QUERYITEM message to the menu-bar window and specifying the

228 MS OS/2 Programmer's Reference, Vol. 1
l!;iiiJ_min~!i~illi1iimi!slfIi!i:!~n[:j!i.Jijjijf81if~~il~iiZ!i~I~unillHii~ti5t!iiiR1i~i~:§i5!~1Jit!I~~j~~~mlff.~iU!simialimi.~i!liGlii~ru1f:ii~

identifier of the submenu item for the submenu, as shown in the following code
fragment:

/* IOM_MYMENUIO is the IO of the submenu containing the item. */

MENUITEM mi;

hwndActionBar = WinWindowFromIO(hwndFrame, FlO_MENU);
WinSendMsg(hwndActionBar, /* handle of menu bar */

MM_QUERYITEM, /* message * /
MPFROM2SHORT(IDM_MYMENUIO, TRUE), /* submenu identifier */
(MPARAM) &mi); /* pointer to MENUITEM */

hwndpul~down = mi.hwndSubMenu; /* handle to submenu */

Once the application has the handle of the pull-down menu window, it can insert
an item by filling in a MENUITEM structure and sending an MMJNSERTITEM
message to the pull-down menu. For text-menu items, the application must send
a pointer to the text string as well as to the MENUITEM structure.

mi.iPosition = MIT_END;
mi.afStyle = MIS_TEXT;
mi.afAttribute = 0;
mi.id = IOM_MYMENU_FIRST;
mi.hwndSubMenu = NULL;
mi.hltem = NULL;

WinSendMsg(hwndpulldown, MM_INSERTITEM, (PMENUITEM) &mi,
(MPARAM) szNewltemString);

To delete an item, the application sends an MM.J)ELETEITEM message to the
menu-bar window, specifying the identifier of the item to delete. For example, to
clear all the items following IDM-MYMENUYIRST in a submenu in which the
items are numbered sequentially, you would use the following code fragment:

/* Clear all the items in MYMENU. */

hwndActionBar = WinWindowFromIO(hwndFrame, FlO_MENU);
usltemNum = IOM_MYMENU_FIRST;
while (WinSendMsg(hwndActionBar, MM_OELETEITEM,

MPFROM2SHORT(usltemNum++, TRUE), (MPARAM) OL»;

Adding a complete submenu to the menu bar is a more complicated procedure
than shown in the previous examples. There are two strategies. The recom­
mended technique is to define all possible submenus in your resource-definition
file and then selectively remove and insert the submenus as needed as your pro­
gram runs.

For example, assume that your program has a submenu that you want to be
displayed only when a particular application tool is in use. You define the sub­
menu as part of the main menu resource in your resource-definition file, so that
the system reads in the resource menu template and creates the submenu win­
dow along with the rest of the menu. You can then remove the submenu from
the menu bar, saving the title of the submenu and the MENUITEM data struc­
ture that defines the submenu, as shown in the following code fragment:

Chapter 17: Menus 229
eigiilil~i~!l!lllf.~!Slf1f!!i~Pfij~iijie~jjliruF,!ftimi~~tm!~iiiiiifljiji~iiSii§frni!i~~fi~i~i~§f1mi~!~n~~~~!ifil.ftiiitimili!if.ii~iij.!§iI!ftl!~

HWNO hwndActionBar;
MENUlTEM mi;
CHAR szMenuTitle[MAX_STRlNGSlZE];

/* Remove a submenu so that you can replace it later. */

/* Obtain the handle of a menu menu. */

hwndActionBar = WinWindowFromlO(WinQueryWindow(hwnd, QW_PARENT, FALSE),
FlO_MENU);

/* Obtain information on the item to remove. */

WinSendMsg(hwndActionBar, MM_QUERYlTEM,
MPFROM2SHORT(lOM_MENUlO, TRUE), /* TRUE to search submenus */
&mi) ;

/* Save the text for the submenu item. */

WinSendMsg(hwndActionBar, MM_QUERYlTEMTEXT,
MPFROM2SHORT(lOM_FONT, MAX_STRlNGSIZE),
szMenuTitle);

/* Remove the item, but retain mi and szMenuTitle. */

WinSendMsg(hwndMenu, MM_REMOVElTEM,
MPFROM2SHORT(lOM_FONT, TRUE), NULL);

It is important to use the M~EMOVEITEM message to remove the item,
rather than the MMJ)ELETEITEM message; deleting the item destroys the sub­
menu window but removing it does not destroy the submenu. The submenu
should remain intact so that you can insert it later.

To reinsert the submenu, send an MMJNSERTITEM message to the menu
bar, passing the MENUITEM structure and menu title that you saved when you
removed the item. The following code fragment shows how to insert a submenu
that was removed by using the previous code example:

/* Put the submenu back in and obtain the handle of the menu bar. */

hwndMenu = WinWindowFromlO(WinQueryWindow(hwnd, QW_PARENT, FALSE),
FlO_MENU);

/* Use the information that you saved when you removed the menu. */

WinSendMsg(hwndMenu, MM_lNSERTlTEM, &mi, szMenuTitle);

The other technique that you can use to insert a submenu in the menu bar is to
build up a data structure as a menu template in memory and use that template
and the WinCreate Window function to create a submenu window. The result­
ing submenu window handle is then placed in the hwndSubMenu field of a
MENUITEM structure and the menu item is sent to the menu bar with an
MMJNSERTI'fEM message.

You also can create an empty submenu window by using the WinCreate Window
function. Pass NULL for the petlData and pPresParams parameters, instead of
building the menu template in memory. Then insert a new menu item into the
menu bar by using the MMJNSERTITEM message, setting the style
MIS_SUBMENU, and putting the window handle of the created menu into the
hwndSubMenu parameter. Then use the MMJNSERTITEM message to insert
the items into the new pull-down menu.

230 MS OS/2 Programmer's Reference, Vol. 1
IliGll~r.lEji.m;~ii~n~m1i!ilifsi!iif~!i~~iiF.f!IU~l!~iiftIDim.n§!iE~i~~;U$imi~Ji!li§iii!5H]if,~J1JS!_8ImlfiP.mm!simia!iU;it§1iif$iii~ib'ifil~

17.5.11 Owner-Drawn Menu Items
Applications can customize the appearance of an individual menu item by
setting the MIS_OWNERDRA W style bit for the item. MS OS/2 sends two
different messages to an application that includes owner-drawn menu items:
W1LMEASUREITEM and WMJ)RA WITEM. Both messages include a
pointer to an OWNERITEM data structure, as shown in the following code frag­
ment:

typedef struct _OWNERITEM {
HWND hwnd; /* handle of menu window */
HPS hps; /* presentation space in which to draw */
USHORT fsState; /* requested style */
USHORT fsAttribute; /* requested attribute */
USHORT fsStateOld; /* current style */
USHORT fsAttributeOld; /* current attribute */
RECTL rclltem; /* bounding rectangle of item */
SHORT idltem; /* item identifier */
ULONG hltem; /* handle of item-display object */

} OWNERITEM;

The W1LMEASUREITEM message is sent only once for each owner-drawn
item, when the menu is initialized. The message is sent to the menu's owner
window (typically, a frame window), which forwards the message to its client
window. Typically, the client window procedure processes the message
W1LMEASUREITEM by filling in the yTop and xRight fields of the RECTL
structure specified by the rclItem field of this OWNERITEM structure; this
specifies the size of the rectangle needed to enclose the item when it is drawn.
The code fragment shown below responds to a W1LMEASUREITEM message.
If your owner-drawn menu contains text, you should compute the size of the
items from the height of the system font or some other system characteristic.

case WM_MEASUREITEM:
(POWNERITEM) mp2->rclltem.xRight = 26;
(POWNERITEM) mp2->rclltem.yTop = 10;
return «MRESULT) 0);

If a menu item has the MIS_OWNERDRA W style, the owner window receives a
WMJ)RA WITEM message every time the menu item needs to be drawn. You
should process this message by using the hps and rclItem fields of the OWNER­
ITEM structure to draw the item. There are two situations in which the owner
window receives a WMJ)RA WITEM message:

• The item needs to be completely redrawn.

• The item needs to highlighted or unhighlighted.

You can choose to handle one or both of these situations. Typically, you handle
the drawing of the item. The system default behavior of inverting the item rect­
angle to show that the item is selected is often acceptable, however, so you may
not want to do this yourself.

The two situations in which a WMJ)RA WITEM message is received are
detected by comparing the values of the fsAttribute and fsAttributeOld fields of
the OWNERITEM structure that is sent as part of the message. If the two fields
are the same, you should draw the item. When drawing the item, you can also
check the attributes of the item to see if the item has the MI~CHECKED,
MIAYRAMED, or MI~ISABLED attribute. You should draw the item
according to the settings of the attribute bits.

Chapter 17: Menus 231
!igff~li!i~!mllf:J!iimmi~~i~i8!;u!!!Jjliru;i~mfi~""~~f:tiii1liSiii!ifil!~sii§Uii!i~~1i5iii!iijg§f1mi~lj~il~~~R!itimt~~1GiIii!i!ilfaiitii~i!.fi1iJim

For example, when the checked attribute of a owner-drawn menu item changes,
the system sends a WMJ)RA WITEM message to the item so that it can redraw
itself and either ~raw or remove the check mark. If you want the system default
check mark, simply draw the item and leave the fsAttribute and fsAttributeOld
fields unchanged; the system will draw the check mark, if necessary. If you draw
the check mark yourself, clear the MIA.-CHECKED bit in both fsAttribute and
fsAttributeOld, so that the system does not attempt to draw a check mark.

If the fsAttribute and fsAttributeOld fields of the OWNERITEM structure in a
WMJ)RA WITEM message are not equal, the highlight showing that an item
is selected needs to change. The MIAJIILITED bit of the fsAttribute field is
set if the item needs to be highlighted and is not set if the item needs to be
unhighlighted. If you do not wish to provide your own, you should ignore any
WMJ)RA WITEM message in which fsAttribute and fsAttributeOld are not
equal.. If you do not alter these two fields, the system performs its default
highlighting operation, which is to invert the bits within theitem rectangle. If,
however, you wish to provide your own visual cue that an item is selected, you
should respond to a WMJ)RA WITEM message in which fsAttribute and
fsAttributeOld are not equal by providing the cue and then clearing the
MIAJIILITED bit of both fsAttribute and fsAttributeOld before returning
from the message.

Likewise, the MIA_CHECKED and MIA-FRAMED bits of the fsAttribute and
fsAttributeOld fields can either be used to perform the corresponding action or
can be passed on unchanged so that the system performs the action.

The following code fragment shows how to respond to a WMJ)RA WITEM
message when you want to draw the item and also be responsible for its
highlighted/unhighlighted state:

case WM_DRAWITEM:
POWNERITEM poi;
RECTL rcl;

poi = (POWNERITEM) mp2;

/*
* If the new attribute equals the old attribute,
* redraw the entire item.
*/

if (poi->fsAttribute == poi->fsAttributeOld) {

/*
* Draw the item in poi->hps and poi->rclItem,
* and check the attributes for check marks. If you
* produce your own check marks, use this line of code:
* poi->fsAttributeOld = (poi->fsAttribute &= NMIA_CHECKED;
*/

/* Else the item should be highlighted or unhighlighted. */

} else if «poi->fsAttribute & MIA_HILITED) 1=
(poi->fsAttributeOld & MIA_HILITED» {

/*
* Set bits the same so that the menu system does not make
* the item highlighted or unhighlighted.
*/

poi->fsAttributeOld = (poi->fsAttribute &= MMIA_HILITED);
}
return TRUE; /* TRUE means item is drawn */

232 MS OS/2 Programmer's Reference, Vol. 1
!!!iflJ~ii;s.~i~iiifi~mi3~ii~iffi~iiiii.JilWJ§iii1~~il~itfi~~I~ii!i~iiW:i~e!l$i~!~r.i!!1~iii!ffi?lliJ~mm~~au.mffd~m!siffirrgUltR:1§i~iif:li~ru1::il!

17.6 Summary
This section describes the styles, attributes, functions, and messages associated
with menus.

17.6.1 Menu-Item Styles
Menu item styles determine what kind of data a menu contains (text, bitmap,
etc.), how the menu is displayed (whether or not it is drawn by the owner),
and what kind of message it generates when chosen (WM_COMMAND,
~SYSCOMMAND, or WMJIELP). Menu-item styles are set when the
menu item is created and are not typically changed at run time. Menu item attri­
butes, described in the next section, are used for the aspects of a menu item that
change frequently while a program is running.

MISJ3ITMAP The menu-display object is a bitmap.

MISJ3REAK The item begins a new row or column.

MISJ3REAKSEP ARATOR Same as MISJ3REAK, except that it draws a
separator between rows or columns.

MISJ3UTTONSEP ARATOR The item cannot be selected by using the cursor
keys, but it can be selected by using the mouse or the appropriate accelerator
key. A menu bar can have zero, one, or two button-separator items. They are
always placed at the right side of the menu bar or at the bottom of a pull-down
menu.

MISJIELP A command item with this style notifies its owner window
that it has been chosen by using a WMJIELP message rather than a
~COMMAND message.

MIS_OWNERDRA W The item is drawn by the owner window. The menu
sends WMJ)RA WITEM and WM~EASUREITEM messages to the owner
window to draw the item and specify its size.

MIS_SEPARATOR This item is a horizontal dividing line in a pull-down
menu. It cannot be checked, disabled, or selected.

MIS_STATIC The item is for information only. It cannot be selected by using
the mouse or keyboard.

MIS_SUBMENU The item is a submenu item. When the user selects a sub­
menu item, a pull-down menu window is displayed from which the user can
choose a command item.

MIS_SYSCOMMAND A command item with this style notifies its owner win­
dow that it has been chosen by using a ~SYSCOMMAND message, rather
than a W~COMMAND message.

Chapter 17: Menus 233
~i!i!If.~~~aii;mmrriiJffii!i~lllii~n~!if5!ir:Ui!ii!1m!S1i~~llm~n~i~~m!~!~ffim~~:!if:~fu~si~~r.:~~~~!~~rs!!f:!!~!~§il~fiSliii

MIS_TEXT The menu-display object is a text string. This is the default menu­
item style.

The following menu-item styles are mutually exclusive; they may not be specified
in combination with each other:

MIS~ITMAP
MIS_OWNERITEM
MIS_SEPARATOR
MIS_TEXT

Likewise, the following menu-item styles are mutually exclusive:

MISJIELP
MIS_SYSCOMMAND

17.6.2 Menu-Item Attributes
Menu-item attributes specify changing display aspects of a menu item, such as its
highlighted, and checked state. Attributes are set when the item is created and
typically can change frequently as the program executes and the user interacts
with the menus.

MI~CHECKED Set to produce a check mark to the left of the item.

MIA-ENABLED Set when the item can be selected by the user. If not set, the
item is drawn grayed and cannot be selected by the user. An application should
disable a menu item when choosing it would be inappropriate-for example, a
Save menu item should be disabled when there have been no changes since the
last save operation.

MIA-FRAMED Set when a submenu item in the menu bar is framed by verti­
cal lines to the left and right when its pull-down menu is displayed. This is typi­
cally handled by the system; an application does not usually have to set this
attribute.

MIAJIILITED Set only when the item is currently selected. The application
rarely sets this attribute directly, relying instead on the default processing of user
input to set the highlighted state of an item.

17.6.3 Menu Functions
Most applications will not use the menu functions listed below, relying instead
on the automatic association of menus and frame windows provided by menu
resources and the WinCreateStdWindow function. These menu functions are
useful if you want to use menus in a nonstandard way.

WinCreateMenu Creates a menu window from a menu-template data structure,
assigning ownership to the specified window. This function is like the WinLoad­
Menu function, except that the menu data is stored as a menu template in
memory, rather than in a resource-definition file.

WinLoadMenu Loads a menu resource from the specified resource-definition
file (NULL for the current application's resource file) and assigns ownership
to the specified window. The menu is owned by the specified window and is
displayed when the owner window receives a ~UPDATEFRAME message.

234 MS OS/2 Programmer's Reference, Vol. 1
ilimlUimSim~~!IDmfit~i~i~lsl5ji~~!ijfi"~iJ~!~!i~imlf~iIDr:l~H~OOi!~~![? .. ~m§l~1iim;~~~!§;m~~t;r.~y!~~[z;mi~fii{~~~~i~!

17.6.4 Messages Sent from a Menu to an Owner Window
These messages are sent from a menu to an owner. If the owner window is a
standard frame window, the messages are passed to the client window's window
procedure. All applications that use menus must respond to ~COMMAND
messages. Other messages in this section are appropriate for applications that
use the more advanced features of menus.

~COMMAND Notifies the owner window when the user chooses a menu
item. Applications must respond to this message to use menus.

~SYSCOMMAND Notifies the owner window when the user chooses a
System menu item; this is equal to the '~COMMAND message except that
the menu item has the MIS_SYSCOMMAND style. The frame window
usually does not pass this message to the client window. To process a
~SYSCOMMAND message, the application must subclass the frame
window.

WMJIELP Notifies the owner window when the user chooses a Help menu
item; equal to the ~COMMAND message except that the menu item has the
MIS-HELP style. This message is usually generated by the "Fl=Help" command
item in the menu bar. Applications should respond to this message with a help
dialog-box or by using the help-hook facility.

~NITMENU Notifies the owner window that the menu or submenu is
about to be displayed. This message allows an application to change the state of
a menu before the menu is displayed.

~ENUSELECT Notifies the owner window each time a menu item is
selected. Applications do not need to handle this message to obtain the
default menu behavior. For example, an application receives multiple
~ENUSELECT messages when a user moves the mouse pointer up and
down in a menu while the mouse button is pressed. This message allows an
application to perform some other action coincident with the selection of a
menu item, such as displaying a context-appropriate message in another part of
the window. This message is also sent when the user actually chooses a menu
item. If the application returns FALSE in response to this message when the
user chooses a menu item, the command associated with the menu item is not
posted, and the menu is not dismissed.

~ENUEND Notifies the owner window when exiting from menu mode.

WMJ)RA WITEM Notifies the owner window when an item with the style
MIA-OWNERDRA W needs to be drawn. Applications with owner-drawn menu
items must respond to this message. The message contains a pointer to a data
structure containing a presentation space handle and a rectangle in which to
draw the item.

~EASUREITEM Allows the owner window to specify the dimensions
of an owner-drawn menu item. Applications with owner-drawn menu items must
respond to this message.

~QUERYFOCUSCHAIN Temporarily sets the focus to the menu bar
while in menu mode. This message is routed to the window from which the
menu took the focus.

Chapter 17: Menus 235
!~iill~~~~!iif§flrrifJffii!ii~J!iiF.illfllif5liiiUilimm!~~~lIf1~j~m~ml!i!t~mm~.mn!if;~liUiil'fl~~jgil.~-.r~!mmsfii!m!~!m!~J!l~f!!ll¥.

WMYOCUSCHANGE Exits from menu mode, if the menu is losing the
focus. If the exit operation fails, this message sets the state and is passed to
the window that had the focus before menu mode was started.

W1LSETFOCUS Posts an M~STARTMENUMODE message to initiate
menu processing, if receiving the focus. If losing the focus, call the WinDef­
WindowProc function.

W1LQUERYDLGCODE Returns DLGC-MENU or DLGC_STATIC to indi­
cate that this is a menu control and that the menu should not receive the focus
when the user presses the DIRECTION keys or the TAB key.

W1LP AINT Draws the menu.

W1LCREATE Creates a list of items from the menu-template structure.

WMJ)ESTROY Destroys the menu and all its submenus and any display
objects associated with the menu items.

~NABLE Invalidates the window rectangle, causing it to be redrawn.

~DJUSTWINDOWPOS Reformats the contents of the menu window.

W1LCONTROLHEAP Notifies the owner of a menu that a control needs the
handle of a heap from which memory will be allocated.

W1LCONTROLPOINTER Notifies the owner of a menu that the mouse
pointer is over the window.

~UTTON1DOWN Begins processing a user's menu choice.

~OUSEMOVE Sets the default mouse pointer (arrow cursor).

~UTTON2DOWN Activates the menu window.

~UTTON3DOWN Activates the menu window.

W1LQUERYCONVERTPOS Determines whether or not to begin double­
byte character set (Kanji) conversion. Menus in MS OS/2 version 1.1 return
QCP_NOCONVERT, which indicates that the menu code does not set up
the rectangle pointed to by the mpJ parameter with the cursor bounding rect­
angle and that conversion should not be performed. Edit controls return
QCP _CONVERT and fill in a RECTL structure with the cursor boundaries.
(Programs can use this rectangle to position a Kanji window next to the cursor.)

17.6.5 Messages Sent to a Menu
The messages in this section are sent to menus, either by the system or by appli­
cations. Many of these messages are for manipulating the data that represents
the state of menu items. Applications will find these messages useful for dynami­
cally adjusting menus to reflect the current processing environment. Other mes­
sages in this section control the display of menu items during menu selection;
these typically are sent automatically by the system, although an application can
send them to control its menus more directly and override the default behavior.

M~QUERYITEMCOUNT Returns the number of items in the menu. For the
menu bar, this is the number of items in the menu bar. For a submenu, this is
the number of items in the submenu.

236 MS OS/2 Programmer's Reference, Vol. 1
ilifmfi@;!~i~!fif~!ID~~f~i~I~~~~!§fli!~iJ~!!l!i~imlE~ii!§j~ii.,l'am.!!!ffllJi!i~Ji!i!~1!~iln~l~m~B~~~J~~[:jjjll~!iil~~~~i~B

M1LSTARTMENUMODE Starts menu-selection processing, including mouse
tracking for menu-item selection.

M~NDMENUMODE Exits from menu mode and hides any active sub­
menus.

MMJNSERTITEM Insert the specified menu item in the menu.

M1LDELETEITEM Removes the specified item from the menu and destroys
any resources and data structures for that item (such as display objects or sub­
menus).

M~EMOVEITEM Same as the M~ELETEITEM message, except that
it does not destroy associated submenus or display objects.

M1LSELECTITEM Selects the specified item; and if the fDismiss flag is set,
posts a W1LCOMMAND, W1LSYSCOMMAND, or WMJlELP message.

M1LQUERYSELITEMID Returns the identifier of the currently selected
item.

M1LQUERYITEM Copies information about a specified item into a caller­
supplied MENUITEM data structure.

M1LQUERYITEMTEXT Copies the text for a specified menu item into a
caller-supplied buffer.

M1LQUERYITEMTEXTLENGTH Returns the length of the text, not includ­
ing the NULL terminator, for a specified item.

M1LSETITEMHANDLE Sets the menu-item handle for a nontext item and
forces the item to be redrawn.

M1LSETITEMTEXT Sets the text for a menu item and forces the item to be
redrawn.

MMJSITEMV ALID Returns TRUE if item can be selected.

M1LSETITEM Sets the state of an item, based on the data in a MENUITEM
structure, and forces the item to be redrawn.

MMJTEMPOSITIONFROMID Returns the position of a menu item in a
menu window, searching submenus if requested.

M1LITEMIDFROMPOSITION Returns the identifier of the menu item at the
specified position in the menu window.

M1LQUERYITEMA TTR Returns the current attributes of a menu item.

M1LSETITEMA TTR Sets the specified attributes of a menu item.

Chapter

18

Accelerator Tables
18.1 Introduction.. 239

18.2 About Accelerator Tables... 239

18.3 Accelerator Tables in a Resource-Definition File 239

18.4 Accelerator-Table Data Structures.............................. 240

18.5 Using an Accelerator Table in an Application 241
18.5.1 Including an Accelerator Table in a Frame Window ... 241
18.5.2 Modifying an Accelerator Table 242

18.6 Summary................................... 242
18.6.1 Functions .. 242
18.6.2 Accelerator-Item Styles..................................... 243
18.6.3 Messages... 243

Chapter 18: Accelerator Tables 239
~aiii!l~W~E;iijUffiirIiJffii~lmp.!n§!if51i!1Uilii1mf~~~1If&~i~i!i§!~!~!~mm~~:!ir:~iiJils~~~qge;n~!s!~!(~!~~~ijgl§;!

18.1 Introduction
This chapter describes how to use accelerator tables in your applications. You
should also be familiar with the following topics:

• Standard user-interface guidelines

• Resources and using the MS OS/2 Resource Compiler (rc)

• Menus
• Creating standard frame windows

• Window messages and the message queue

18.2 About Accelerator Tables
Accelerators are keystrokes that generate command messages for an application;
they elicit the same behavior as choosing a menu item. Menus provide an easy
way to learn an application's command set, but accelerators provide quicker
access to those commands.

Accelerators filter keyboard input. Accelerator keystrokes are translated into
command messages before they reach the application. When an accelerator
is used, the application receives a command message rather than a keyboard
message.

Accelerators function differently from the usual keyboard-to-menu interface. By
default, a user can use the ALT key to access submenus and the arrow keys to
move along the menu bar. Accelerators provide single keystrokes that generate
command messages without the visual effects of pulling down menus or stepping
from one item to another.

Like menu items, accelerators can generate ~COMMAND, WMJIELP,
and ~SYSCOMMAND messages, depending on the setting of the accel­
erator's style bits. Although accelerators are normally used to generate com­
mands that already exist as menu items, they can also send commands that have
no equivalent menu items.

An accelerator table contains an array of accelerators. Accelerator tables exist
at two levels within MS OS/2. MS OS/2 maintains a single accelerator table for
the system queue and individual accelerator tables for application windows.
Accelerators in the system queue apply to all applications-for example, the Fl
key always generates a WMJIELP message. Having accelerators for individual
application windows ensures that an application can define its own accelerators
without interfering with other applications. An accelerator for an application
window overrides the accelerator in the system queue. An application can mod­
ify both its own accelerator table and the system accelerator table.

18.3 Accelerator Tables in a Resource-Definition File
An application that uses accelerators typically creates an accelerator table
resource-definition file containing its accelerators and associates that resource
with a standard frame window when the window is created.

240 MS OS/2 Programmer's Reference, Vol. 1
~~~~!~im5il~!ID~J~i!§ilfW.li~Ijj!~i!!li~i~ii.iilmfU§l'ii!!imlf~i~!~iUiH~OOli~~1irJ~~m;l'FJ~i~~~i~lfis.i~!!Ht~~!P,ll~~[:imi~matiii~~i!P.i!:2 

The resource-definition file of an accelerator table is a list of accelerator items. 
Each item defines the keystroke that triggers the accelerator, the command that 
the accelerator generates, and the accelerator's style. The style bits specify 
whether the keystroke is a virtual key, a character, or a scan code, and whether 
the message that is generated is W1LCOMMAND, W1LSYSCOMMAND, or 
WMJIELP. (W~COMMAND is the default message.) 

A resource-definition file for an accelerator table is shown in the following code 
fragment: 

ACCELTABLE 
BEGIN 

ENO 

VK_ESC, 
VK_OELETE, 
VK_F2, 
VK_INSERT, 

IOM_EO_UNOO, 
IOM_EO_CUT, 
IOM_EO_COPY, 
IOM_EO_PASTE, 

VIRTUALKEY, 
VIRTUALKEY 
VIRTUALKEY 
VIRTUALKEY 

SHIFT 

This accelerator table has four accelerator items. The first one is triggered when 
the user presses SHIFf+ESC; it sends a W1LCOMMAND message (the default) 
just as if the ID~D_UNDO menu item had been chosen. 

The accelerator table resource-definition file has a resource-identification number 
that is usually the same as the identifier of the application's menu resource; this 
allows the accelerator table to be associated with a standard frame window when 
the frame window is created. You can also define accelerator-table resources 
with other identification numbers and associate them with windows after the win­
dows are created. 

18.4 Accelerator-Table Data Structures 
Applications that manipulate accelerator tables can refer to them with a 32-bit 
handle (HACCEL). Using this handle allows an application to make most API 
function calls for accelerators without needing to account for the internal struc­
tures that define the accelerator table. To use accelerator tables in the default 
manner, it is sufficient to define the table in the resource-definition file and asso­
ciate it with a standard frame window when creating the window. When an appli­
cation needs to dynamically create or change an accelerator table, it must use 
the ACCEL and ACCELTABLE data structures. 

An accelerator table is made up of individual accelerator items. Each item is 
represented by an ACCEL data structure that defines the accelerator's style, key­
stroke, and command identifier. The ACCEL structure has the following form: 

typedef struct _ACCEL { 
USHORT fs; 
USHORT key; 
USHORT cmd; 

} ACCEL; 

Typically, an application defines the aspects of the accelerator in the resource­
definition file for the accelerator, but the data structure can be built in memory 
at run time, if necessary. 



Chapter 18: Accelerator Tables 241 
;~~iill§imilmt!i~!Um~imHP:I~ig~l~!!!¥jlf.!~i!i~~~lf!{;~f~!i~i11!!:r:affi~rP.i~~~iiii!i~!~!=r:m~iiml~fi£iJmj~l;;i~!~Us~!§{fmWiIDi~ 

An accelerator table is made up of one or more accelerator items and informa­
tion that specifies the number of accelerator items in the table and the code page 
used for the keystrokes in the accelerator items. The ACCELTABLE structure 
has the following form: 

typedef struct _ACCELTABLE { 
SHOR T cAcce 1 ; 
USHORT codepage; 
ACCEL aaccel[l]; 

} ACCELTABLE; 

Notice that the array of accelerator items is defined as having only one member. 
Applications that use accelerator-table data structures directly must allocate 
sufficient memory to hold all the items in the table. 

18.5 Using an Accelerator Table in an Application 
An application can automatically load an accelerator table resource-definition 
file when creating a standard frame window, or it can load the resource indepen­
dently and associate it with a window or with the entire system. 

An application can set and query the accelerator tables for a specific window 
or for the entire system. For example, an application could query the system 
accelerator table, copy it, modify the copied accelerator-table data structures, 
and then use the modified copy to set the system accelerator table. An applica­
tion that does this should maintain the original accelerator table and restore it 
when the application terminates. An application can also modify its window's 
accelerator table at run time to respond more appropriately to the current 
environment. 

18.5.1 Including an Accelerator Table in a Frame Window 
An application can add an accelerator table to a frame window either by using 
the WinSetAccelTable function or by defining an accelerator-table resource and 
creating a frame window with the FCF .-ACCELTABLE frame style. The second 
method is shown in the following code fragment: 

ULONG lControlStyle = FCF_MENU I FCF_SIZEBORDER 
I FCF_TITLEBAR I FCF_ACCELTABLE; 

hwndFrame = WlnCreateStdWlndow(HWND_DESKTOP, WS_VISIBLE, 
&lControlStyle, szClassName, szTitle, OL, NULL, ID_MENU_RESOURCE, 
&hwndClient); 

Note that if you set the IControlStyle parameter to FCF _STANDARD you must 
define an accelerator-table resource, because FCF _STANDARD includes the 
FCF .-ACCELTABLE flag. 

If the window being created also has a menu, the menu resource and the accel­
erator resource must have the same resource identifier; this is because the Win­
CreateStdWindow function has only one input parameter to specify the resource 
ID of menus, accelerator tables, and icons. If an application creates a resource­
definition file for the accelerator table and then opens a standard frame window, 
as shown in the preceding example, the accelerator table is automatically 
installed in the window's input queue and keyboard events are translated during 



242 MS OS/2 Programmer's Reference, Vol. 1 
ilti&1iriijmill.~tifiii~i~!i!ii!-E~~mliJ.relJ:MliP.;~i~~H~~I!ruillJieilii!illHlm!~!jij~i~~Jiimt~~iil~f.~mii$Yiit~im~9~rJiitlft~! 

normal events-processing. The application responds to ~COMMAND, 
~SYSCOMMAND, and WMJIELP messages; it does not matter whether 
they come from a menu or from an accelerator. 

An application can also add an accelerator table to a window by calling the Win­
SetAccelTable function with an accelerator-table handle and a frame-window 
handle. The application can call either the WinLoadAccelTable function to 
retrieve an accelerator table from a resource file or the WinCreateAccelTable 
function to create an accelerator table from an accelerator-table data structure 
in memory. 

18.5.2 Modifying an Accelerator Table 
An application can modify an accelerator table, either for its own windows or 
for the system, by retrieving the handle of the accelerator table, using the handle 
to copy the accelerator-table data to an application-supplied buffer, changing the 
data in the buffer, and then using the data in the buffer to create a new accelera­
tor table. The application can then use the new accelerator-table handle to set 
the accelerator table, either for a window or for the system. This process is out­
lined in the following list: 

1 Call the WinQueryAccelTable function to retrieve an accelerator-table handle. 

2 Call the WinCopyAccelTable function with a null buffer handle to determine 
how many bytes are in the table. 

3 Allocate sufficient memory for the accelerator-table data. 

4 Call the WinCopyAccelTable function with a pointer to the allocated memory. 

5 Modify the data in the buffer (assuming it has the form of an ACCELTABLE 
data structure). . 

6 Call the WinCreateAccelTable function, passing a pointer to the buffer with the 
modified accelerator-table data. 

7 Call the WinSetAccelTable function with the handle returned by the Win­
CreateAccelTable function. 

18.6 Summary 
This section summarizes the functions, styles, and messages related to accelera­
tor tables. 

18.6.1 Functions 
The following functions allow your application to use accelerator tables: 

WinCopyAccelTable Copies the specified accelerator table to an application­
provided ACCELTABLE data structure. 

WinCreateAccelTable Creates an accelerator table using an ACCELTABLE 
data structure. This is similar to the WinLoadAccelTable function except that 
this function does not use resources. 

WinDestroyAccelTable Destroys the specified accelerator table. 



Chapter 18: Accelerator Tables 243 
i~i§iirn!iii!iiml!lii!U~~im~lgl~~~iI!l!~.mf~!~iS:i~~~!~f~!~!l~i~i§iSffi~~i~~~!n;!t5Uil~miiijID1~fdlJffiiSf.li!ii~!~~~~~iim'i! 

WinLoadAccelTable Loads a specified accelerator table from a specified 
dynamic-link module (the module handle is NULL for the current application) 
and returns a handle of the accelerator table. 

WinQueryAccelTable Returns the accelerator-table handle for the specified 
window, or for the system if the window handle is NULL. 

WinSetAccelTable Sets the accelerator table for the specified window, or for 
the system if the window handle is NULL. WinSetAccelTable will remove an 
existing accelerator table if the accelerator-table handle is NULL. 

WinTranslateAccel Translates a ~CHAR message into a 
~COMMAND, ~SYSCOMMAND, or WMJIELP message by using the 
specified accelerator table. This function is normally called automatically by the 
WinGetMsg or WinPeekMsg function when a 'WM.-CHAR message is received. 

18.6.2 Accelerator-Item Styles 
The following accelerator-item styles are specified in the fs field of the ACCEL 
structure: 

AF ~LT Means the ALT key must be held down when the key is pressed. 

AF _CHAR Means the keystroke is a translated character, using the code page 
for the accelerator table. This is the default style. 

AF _CONTROL Means the CTRL key must be held down when the key is 
pressed. 

AF -HELP Means the accelerator generates a WMJIELP message instead of a 
~COMMAND message. 

AF -LONEKEY Means no other key is pressed while the key is down. This 
style is typically used with the ALT key to specify that simply pressing and releas­
ing the ALT key triggers theaccelerator. 

AF _SCANCODE Means the keystroke is an untranslated scan code from the 
keyboard. 

AF _SHIFT Means the SHIFf key must be held down when the key is pressed. 

AF _SYSCOMMAND Means a ~SYSCOMMAND message is generated by 
the accelerator, instead of a ~COMMAND message. 

AF _ VIRTUALKEY Means the keystroke is a virtual key-for example, the Fl 
function key. 

18.6.3 Messages 
The following messages are used in the management of accelerator tables: 

~QUERYACCELTABLE Sent to a frame window by the WinQuery­
AccelTable function. 

~SETACCELTABLE Sent to a frame window by the WinSetAccelTable 
function. 

~TRANSLATEACCEL Sent to a frame window by the WinTranslate­
Accel function. 





Chapter 

19 

Dialog Windows 
19.1 Introduction............................................................ 247 

19.2 About Dialog Windows ........................................•.... 247 
19.2.1 Modal and Modeless Dialog Windows .................... 247 
19.2.2 Dialog Items................................................... 247 
19.2.3 Dialog-Control Groups...................................... 248 
19.2.4 Message Boxes................................................ 248 

19.3 Dialog Data Structures.............................................. 249 
19.3.1 Dialog Coordinates ....... ... ......... ... ... ..... ...... ....... 250 

19.4 Dialog Resources ..................................................... 250 

19.5 Using Message and Dialog Boxes ................................ 251 
19.5.1 Message Boxes................................................ 251 

19.5.1.1 System-Modal Message Boxes .................... 252 
19.5.2 Dialog Boxes...................... .. ... .... . ... . .. .. .... . . .... 253 

19.5.2.1 Modal Dialog Boxes ............................... 253 
19.5.2.2 Modeless Dialog Boxes ........................... 254 
19.5.2.3 Initializing a Dialog Box.......................... 255 
19.5.2.4 Menus in Dialog Boxes ......... ~ .................. 255 
19.5.2.5 Dialog Procedure .................................. 256 
19.5.2.6 Manipulating Dialog Items. ..... ........ .......... 257 

19.6 Summary................................................................ 258 
19.6.1 Dialog-Window Styles ........................................ 258 
19.6.2 Message-Box Styles .......................................... 258 
19.6.3 Message-Box Return Values ................................ 259 
19.6.4 Functions ........... ............. ... .................. ......... 2(5() 
19.6.5 Messages Sent to Dialog Boxes and Dialog Items ...... 261 





Chapter 19: Dialog Windows 247 
!i!iiiUi~!'~i~mn1ijf~m~~i~~ll!il~.ffiiai~iSi~~~!§1~~I~li~i~~~!~i~1i~!iillell~~;mi;iiii1l.dilmjif.!i§i~!ins~~ffi!~iij!.!i~ 

19.1 Introduction 
This chapter describes creating and using dialog windows and message boxes in 
your applications. You should also be familiar with the following topics: 

• Standard user interface guidelines 

• Resources and using the MS OS/2 Resource Compiler (rc) 

• Control windows 

• Window messages and message queues 

19.2 About Dialog Windows 
A dialog window (also called a dialog box or a dialog) is a window that contains 
one or more child control windows and is typically used to display messages to 
and gather input from the user. It is often a temporary window that an applica­
tion creates to gather specific input, destroying the window immediately after 
use. 

Dialog windows provide a high-level method for applications to display and 
gather information. MS OS/2 contains many functions and messages that help 
manage the control windows that make up a dialog window, thus easing the bur­
den of maintaining complex input and output systems. 

19.2.1 Modal and Modeless Dialog Windows 
Dialog windows can be modal or modeless. A modal dialog window requires that 
the dialog window be dismissed before the user can activate other windows in 
the same application. Generally, an application uses a modal dialog window to 
get essential information from the user before proceeding with an operation. A 
modeless dialog window allows the user to activate other windows without 
dismissing the dialog window. 

Both modal and modeless dialog windows allow the user to activate windows in 
another application before responding to the dialog window. For more informa­
tion, see Section 19.2.4. 

Modal dialog windows are simpler for an application to manage because they are 
created, perform their task, and close, all in a single function call. 

Modeless dialog windows require more attention from the application because 
they exist until explicitly dismissed. Modeless dialog windows provide a more 
flexible interface, however, by allowing the user to move to other windows in the 
application before responding to the dialog window. 

19.2.2 Dialog Items 
A dialog item is a child window of the dialog window. The dialog window is usu­
ally a window of class WCYRAME. MS OS/2 provides many predefined win­
dow classes, called control windows, that are used as dialog items. Predefined 
control windows include static display boxes, text-entry fields, buttons, and list 
boxes. Customized window classes can also be used as dialog items. 



248 MS OS/2 Programmer's Reference, Vol. 1 
:iliih1ir#Jliiil!m!ftUng_iJili!!i$.~E;~;m~Jiiliffill!!!iv.;t~!~~!ffii~l!ruimieiili!llimi!n~\$@i~!§1~mt~~iiiirif*-im!m:;jtiitliSlaU~~~rJ~lfi~! 

Because dialog items are windows, they can be manipulated by all window­
management functions relating to size, position, and visibility. Dialog items are 
always owned by the dialog frame window. Most predefined control-window 
classes send notification messages to their owners when the user interacts with 
their control windows. The dialog frame window receives these notification mes­
sages and passes them on to the application through the application:...defined dia­
log procedure. 

19.2.3 Dialog-Control Groups 
Items within a dialog window can be organized into groups. When items are 
arranged in a group, the user can move from one item to another in the same 
group by using the direction keys. When the user presses a direction key, the 
focus moves from one item in a group to the next item of the same group, but 
not to items of other groups within the dialog window. 

Arranging items in groups is useful for radio buttons. Although other control 
types can also be displayed this way, entry-field controls cannot; they process 
direction keys themselves. 

The first item in a dialog-control group has the WS_GROUP window style. All 
subsequent items in the dialog template are considered part of that group until 
another item is given the WS_GROUP style, which begins a new group. 

The WS_TABSTOP style is often used along with the WS_GROUP style. This 
style marks the items that can receive the focus when the user presses the TAB 
key. Each time the user presses the TAB key, the focus moves to the next item 
that has theWS_TABSTOP style. Generally, the WS_GROUP and 
WS_TABSTOP styles are defined together for the first item of each group in the 
dialog template. This makes it possible for a user to press the TAB key to move 
between groups of items and to use the direction keys to move between items 
within a group. 

The WS_TABSTOP style should not be used for radio buttons because the sys­
tem automatically maintains a tabstop on any selected item in a radio-button 
group; the focus will always be on the currently selected item when pressing the 
TAB key in a group of radio buttons. 

The WS_GROUP and WS_TABSTOP styles are also useful for preventing the 
user from moving to a particular button when using the keyboard. For example, 
if the dialog window has an OK and a Cancel button, you should put them in the 
same group, with the OK button as the first item in the group. The user can 
press the TAB key to select the OK button, but not the Cancel button. To move 
to the Cancel button by using the keyboard, the user must first press the TAB key 
to move to the OK button, and then press a direction key to move the focus to 
the Cancel button. For more information on how to define groups and tabstops 
in dialog windows, see Section 19.4. . 

19.2.4 Message Boxes 
Message boxes are dialog windows predefined by the system and used as a sim­
ple interface for applications without creating dialog-template resources or dialog 
procedures. An application can call the WinMessageBox function and specify 
the type of message box and message text. The system displays the message and 



Chapter 19: Dialog Windows 249 
w.i1~!tfi:l!i!j;~'lff&f~~~iiiljj!l~i;siUSU~!if;t[;t,~irn!~!!1;1!aI!fiiljJilNilflUmliiilali~iS~~1!f:UiJ/gl~iiiJI:rau1f~~!§ji~!:rEN~J!iID!I~!~I§iSJ~ni4~ifEi~!lfi~~~ 

Figure 19.1 

waits for the user to dismiss the message box by selecting a button in the mes­
sage box. The system then returns a result code to the application, indicating 
which button the user selected. 

Message boxes are best for short notification messages that require a simple 
acknowledgment or choice by the user. Applications do not specify a dialog 
procedure for message boxes, so they cannot readily change the action of a 
message box. There are many predefined message-box styles. Figure 19.1 shows 
a sample message box. 

Sample Message Box 

® Thl. I •• m •••• oe boa 

c::s:!!:) CE!:J (C.ncel) 
I. ......................................................... . 

Message boxes can be application-modal or system-modal. Application-modal 
means that the user cannot activate another window in the current application 
before responding to the message box, but can switch to another application 
before responding. System-modal means that the user cannot activate another 
window in any application while the message box is present. A system-modal 
message box should be used only to display urgent error messages (running out 
of memory, for example). 

19.3 Dialog Data Structures 
A dialog-window item is a control window that is owned by the dialog window. 
Each dialog-window item is described by a DLGTITEM data structure. The 
DLGTITEM structure is rarely accessed directly by an application. Most manipu­
lation of dialog items is handled by system functions. Applications that create 
dialog items that are not defined as part of a dialog-template resource must 
create dialog-window-item structures in memory. The format of a DLGTITEM 
structure is as follows: 

typedef struct _DLGTITEM { 
USHORT fsltemStatus; 
USHORT cChildren; 
USHORT eehClassName; 
USHORT offClassName; 
USHORT eehText; 
USHORT off Text; 
ULONG flStyle; 
SHORT x; 
SHORT y; 
SHORT ex; 
SHORT ey; 
USHORT id; 
USHORT offPresParams; 
USHORT offCtlData; 

} DLGTITEM; 



250 MS OS/2 Programmer's Reference, Vol. 1 
ill1,,~iHUs~~~I~~Jiml~~m!ii!Yi!!~I~..i~ii~U~;~m..lfffiijjiiiliii;imU~t~~~~~£mImf.i~Um~liEim!i!!!!~~\~~iiSfi§!!!if!i~iiii~i!;m~ltii~ffii~ 

Because a dialog window can have many items, a DLGTEMPLATE data struc­
ture consists of header information followed by an array of dialog-window items. 
Applications that create dialog windows without using dialog resources must 
create a dialog template in memory and then call the WinCreateDIg function. 
The format of a DLGTEMPLATE structure is as follows: 

typedef struct 
USHORT 
USHORT 
USHORT 
USHORT 
USHORT 
USHORT 
USHORT 
DLGTITEM 

} DLGTEMPLATE; 

_DLGTEMPLATE { 
cbTemplate; 
type; 
codepage; 
offadlgti; 
fsTemplateStatus; 
iltemFocus; 
coffPresParams; 
adlgti[l]; 

19.3.1 Dialog Coordinates 
Coordinates in a dialog template are specified in dialog coordinates and are 
based on the size of the system font. A horizontal unit is one-fourth of the 
system-font-character average width; a vertical unit is one-eighth of the system­
font-character average height. The origin of the dialog template is the lower-left 
corner of the dialog window. MS OS/2 provides the WinMapDIgPoints function 
for converting dialog coordinates into window coordinates. 

19.4 Dialog Resources 
Most applications define dialog templates in resource files rather than construct­
ing template data structures in memory at run time. The dialog-resource file 
defines the size and style of the dialog-window frame and specifies each control 
item. 

The following source-code fragment creates a dialog template. Notice that the 
WS_GROUP and WS_TABSTOP style designations are given for the first item 
in each group. The dimensions and position for each item are given in dialog 
coordinates rather than in window coordinates. 

DLGTEMPLATE IDD_ABOUT 
BEGIN 

DIALOG "", IDD_ABOUT2, 10, 10, 150, 110, FS_DLGBORDER, 0 
BEGIN 

CONTROL "Attributes:", 100, 
10, 30, 100, 70, 
WC_STATIC, 
SS_GROUPBOX I WS_VISIBLE 

CONTROL "Highlighted", 101, 
20, 80, 58, 12, 
WC_BUTTON, 
WS_GROUP I WS_TABSTOP I BS_AUTOCHECKBOX I WS_VISIBLE 

CONTROL "Enabled",102, 
20, 60, 58, 12, 
WC_BUTTON, 
BS_AUTOCHECKBOX I WS_VISIBLE 

CONTROL "Checked", 103, 
20, 40, 58, 12, 
WC_BUTTON, 
BS-AUTOCHECKBOX I WS_VISIBLE 

CONTROL "Okay", DID_OK, 
10, 10, SO, 14, 
WC_BUTTON, 
WS_GROUP I WS_TABSTOP BS_PUSHBUTTON I BS_DEFAULT I WS_VISIBLE 



Chapter 19: Dialog Windows 251 
'ir.I!~H..fi!~!mi=I~~~iii!lill~iiSim!ia1$1i:11~irni!§Im!l~I!!if~ififmmffii!fii1if:w.i.!r.~~!iliiii/~iiiliiir.fi;tifi~~!~Uf.¥~m1if!!!!i~lmj§s!fmr.~!Jflllijf!~iir:i~ 

CONTROL "Cancel", DID_CANCEL, 
80, 10, SO, 14, 
WC_BUTTON, 
BS_PUSHBUTTON I WS_VISIBLE 

END 
END 

Figure 19.2 shows the dialog box created by the previous dialog-template 
resource definition: 

Figure 19.2 
Sample Dialog Box 

~'i" 

Required 

Progrem We •••• 

Peth end file neme 

Optlonel 

Add Pro rem 

Peremeter •••••• :=' ======~ 
Working directory •• ,'------_ ...... 

19.5 Using Message and Dialog Boxes 
The simplest dialog window is the message box. Most message boxes present 
simple messages and offer the user one, two, or three responses (represented by 
buttons). A message box is easy to use and is appropriate when an application 
requires a clearly defined response to a static message. However, message boxes 
lack flexibility in size and placement on the screen, and they are limited in the 
choices they offer the user. Applications that require more control over size, 
position, and content should use regular dialog boxes instead of message boxes. 

19.5.1 Message Boxes 
Message boxes provide an easy way for applications to display simple messages 
without creating dialog templates or writing dialog procedures. Message boxes 
are intended mainly for conveying information to users, although they do have 
limited input capabilities. 

There are several different kinds of predefined message boxes. There are three 
parts to a message box: the icon, the message, and buttons. Applications specify 
the icons and buttons using message-box style constants. Message text is 
specified by a null-terminated string. 

To create a message box, the application calls the WinMessageBox function, 
which displays the message box and processes user input until the user selects a 
button in the message box. The return value of the WinMessageBox function 
indicates which button was selected. 

The following code fragment illustrates how to create a message box with a 
default Yes button, a No button, and a question-mark (?) icon. This exam­
ple assumes that you have defined a string resource with the identifier 
MY ~ESSAGESTR_ID in the resource file. 



252 MS OS/2 Programmer's Reference, Vol. 1 
1t~iR*~'f*m~i!U~!IDiin\~UiJiiii!H~~lp"l~~mi~i~~Hl~l~liiiil~i~_l~~~i;ll~Hii.mmi~~'ff~n!!~~l!~iiiS~!§[~i~~~ififiii!ili!~~~!~ 

CHAR sZMessageString[2SS]; 
USHORT cch; 
USHORT usResult; 

cch = WinLoadString(hab, 
(HMODULE) NULL, 

MY_MESSAGESTR_ID, 
sizeof(szMessageString), 
szMessageString); 

usResult = WinMessageBox(hwndFrame, 
hwndFrame, 
szMessageString, 
(PSZ) "", 
MY_MESSAGEWIN, 
MB_YESNO I 
MB_ICONQUESTION 
MB_DEFBUTTON1); 

if (usResult == MBID_YES) 

1* do yes case *1 

else 

I" do no case "l 

I" parent "l 
I" owner "l 
1* text *1 
1* caption "l 
1* window ID *1 

1* style *1 

The WinMessageBox function returns predefined values indicating which button 
has been selected. These values are listed in Section 19.6.3. 

Note that strings for message boxes should be defined as string resources to 
facilitate program translation for other countries. However, there is a danger in 
using string resources in message boxes that are called in low-memory situations. 
Loading a string resource in these situations could cause severe memory prob­
lems and cause an application to fail. One way to solve this problem is to 
preload the string resource and make it nondiscardable so it will be available 
when the message box must be displayed. 

19.5.1.1 System-Modal Message Boxes 
Message boxes are always modal. The default style for a message box is 
application-modal. With this style, a user cannot select another window in the 
same application until the message box is dismissed. However, the user can 
switch to a different application. 

It is possible to create a message box that is system-modal. A system-modal mes­
sage box prevents a user from selecting another window in the current applica­
tion or switching to a different application until responding to the message box. 
A system-modal message box is useful when displaying a warning to the user that 
there may be serious problems with the system, such as insufficient memory. 

There are two levels of modality for system-modal message boxes-soft modal 
and hard modal. A soft-modal message box does not allow keystrokes or mouse 
input to reach any other window, but does allow other messages, such as deac­
tivation and timer messages, to reach other windows. A hard-modal message box 
does not allow any messages to reach other windows. A hard-modal message box 
is appropriate for serious system warnings. 

A hard-modal message box is created by combining the MBJCONHAND 
style with the MB_SYSTEMMODAL style. A soft-modal message box is 
created by using the MB_SYSTEMMODAL style with any style other than 
MBJCONHAND. The MB_SYSTEMMODAL icon is always in memory and 
is available even in low-memory situations. 



Chapter 19: Dialog Windows 253 
~12liill!~i!"~mfm~SiIi!lIj!l~iiSimlia1!i!i£~,iffll!!il~~!~~!~f~ilifim~lmaJ!Efi:ii!b~!!Ii~l~lii§!iil:r.U~ffi~~imi~~~i)jID1!!i~l~iS~li~iiEjY!faw.m;r:fi~ 

19.5.2 Dialog Boxes 
When using dialog boxes, an application must load the dialog box, process user 
input, and destroy the dialog box when the user finishes the task. The process 
for handling dialog boxes varies, depending on whether the dialog box is modal 
or modeless. A modal dialog box requires the user to dismiss the dialog box 
before activating another window in the application. However, the user can 
activate windows in different applications. A modeless dialog box does not 
require an immediate response from the user. It is similar to a frame window 
containing control windows. The following sections discuss how to use both 
types of dialog boxes. 

19.5.2.1 Modal Dialog Boxes 
Modal dialog boxes present users with information and questions in such a way 
that they must respond before proceeding with other operations in the applica­
tion. 

The easiest way to use a modal dialog box is to define a dialog template in the 
resource file and then call the WinDlgBox function, specifying the dialog-box 
resource ID and a pointer to the dialog procedure. The WinDlgBox function 
loads the dialog-box resource, displays the dialog box, and handles all user input 
until the user dismisses the dialog box. The dialog procedure receives messages 
when the dialog box is created (WMJNITDLG) and other messages when the 
user interacts with each dialog item, such as entering text in entry fields or 
selecting buttons. 

You must specify both the parent and owner windows when loading a dialog 
box using the WinDlgBox function. Generally, the parent window should be 
HWNDJ)ESKTOP and the owner should be a client window in your applica­
tion. 

Dialog boxes typically contain buttons that send ~COMMAND messages 
when selected by the user. W1LCOMMAND messages passed to the Win­
DeIDlgProc function result in the WinDismissDlg function being called, with the 
window ID of the source button as the return code. Dialog boxes with OK or 
Cancel as the only buttons can ignore W1LCOMMAND messages, allowing 
them to be passed to the WinDeIDlgProc function. The WinDeIDlgProc func­
tion calls the WinDismissDlg function to dismiss the dialog box and returns the 
DID_OK or DID_CANCEL code. 

Passing WM_COMMAND messages to the WinDeIDlgProc function means that 
all button presses in the dialog box will dismiss the dialog box. If you want par­
ticular buttons to initiate operations without closing the dialog box or if you want 
to perform some processing without closing the dialog box, you should handle 
the ~COMMAND messages in the dialog procedure. 

If you handle ~COMMAND messages in the dialog procedure, you must call 
the WinDismissDlg function to dismiss the dialog box. Your dialog procedure 
passes the DID_OK code to the WinDismissDlg function if the user selects the 
OK button or the DID_CANCEL code if the user selects the Cancel button. 

When you call the WinDismissDlg function or pass the ~COMMAND 
message to the WinDeIDlgProc function, the dialog box is dismissed and the 
WinDlgBox function returns the value passed to the WinDismissDlg function. 
This return value identifies the button selected. 



254 MS OS/2 Programmer's Reference, Vol. 1 
s.~ .. :w.!~~~~el~m1i;~!i!!F.ili~i!U~¥ilf.illU~!i~i~mm!fajiill~'lmIlili~~~~m1~n_~~iiiilljjJijidn.~fiJ~!!~5U.~Iai~i!!iii~11&liii~~~!~ 

An alternative to using the WinD 19B ox function is to call the individual func­
tions that duplicate its functionality,· as shown in the following code fragment: 

dIg = WinLoadDlg( ... ); 
result = WinProcessDlg(dlg); 
WinDestroyWindow(dlg) ; 

After calling the WinProcessDlg function, your dialog procedure must call the 
WinDismissDlg function to dismiss the dialog box. Although the dialog box is 
dismissed (hidden), it still exists. You must call the WinDestroyWindow function 
to destroy a dialog box if it was loaded using the WinLoadDlg function. The 
WinD 19B ox function automatically destroys a dialog box before returning. 

If you want to manipulate individual items in a dialog box or add a menu after 
loading the dialog box (but before calling WinProcessDlg), it is better to make 
individual calls rather than calling the WinDlgBox function. Individual calls are 
also useful for querying individual dialog items, such as the contents of an entry­
field control after a dialog box is closed but before it is destroyed. Destroying a 
dialog box also destroys any dialog-item control windows that are child windows 
of the dialog box. 

19.5.2.2 Modeless Dialog Boxes 
A modeless dialog box, unlike a modal dialog box, does not require user interac­
tion to activate another window in the current application. 

To use a modeless dialog box in an application, you should create a dialog tem­
plate in the resource file, just as for a modal dialog box. Because modeless dia­
log boxes share the screen equally with other frame windows, it is a good idea to 
give modeless dialog boxes a title bar so they can be moved around the screen. 
The following Resource Compiler source fragment shows a dialog template for a 
dialog box with a title bar, a System menu, and a Minimize Box. 

DLGTEMPLATE IDD_SAMP 
BEGIN 

END 

DIALOG "Modeless Dialog", IDD_SAMP, 80, 92, 126, 130, 
WS_VISIBLE I FS_DLGBORDER, 
FCF_TITLEBAR I FCF_SYSMENU I FCF_MINIMIZE 

BEGIN 

/* Put control-window definitions here. */ 

END 

The application loads the dialog resource from the resource file by using the 
WinLoadDlg function, receiving. in return a window handle to the dialog box. 
The application treats the dialog box as if it were an ordinary window. Messages 
for the dialog box are dispatched through the event loop the application uses for 
its other windows. In fact, an application can have a modeless dialog box as its 
only window. 

The resource for a modeless dialog box is just like that used for a modal dialog 
box. The difference between modal and modeless dialog boxes is in the way 
applications handle input to each box. For a modal dialog, the WinDlgBox and 
WinProcessDlg functions handle all user input to the dialog box, preventing 
access to other windows in the application. For a modeless dialog box, the appli­
cation does not call these functions, relying instead on a normal message loop to 
dispatch messages to the dialog procedure. 



Chapter 19: Dialog Windows 255 
'~I~~~iji~~fffl~l!!it!!ijjll~lij!miia1!mi:~,irn!!§j~!9U~iiiifNiimifiil1iiialSit!iHlU!lI~f~i~liii:r.ft;jj~~~!F.b'1li)jf!i!!i~I§i[Sf.m;rur.~!!f!mifl~iilii! 

The main difference between a modeless dialog box and a standard frame win­
dow with child control windows is that for a modeless dialog box, an application 
can define child windows for the dialog box in a dialog template, automating the 
creation process of the window and its child windows. The same effect can be 
achieved by creating a standard frame window, but the child control windows 
must be created individually. 

It is important that an application keep track of all open modeless dialog boxes 
so that it can destroy all open windows before terminating. 

19.5.2.3 Initializing a Dialog Box 
Generally, an application defines a dialog template in its resource file and loads 
the dialog box by calling the WinLoadDlg function or the WinDlgBox function 
(which itself calls WinLoadDlg). The dialog box is created as an invisible win­
dow unless the window style WS_ VISIBLE is specified in the dialog template. A 
WMJNITDLG message is sent to the dialog procedure before the WinLoadDlg 
function returns. As each control defined in the template is created, the dialog 
procedure may receive various control notifications before the function returns. 
A dialog window can be destroyed by using the WinDestroyWindow function. 
The WinLoadDlg function returns a handle to the dialog window immediately 
after creating a dialog box. 

In general, it is a good idea to define a dialog box as invisible since this allows 
for optimization. For example, an experienced user may rapidly type ahead, 
anticipating the processing of a dialog-box command. In such a case, there is no 
need to display the dialog box because the user has finished the interaction . 
before the window can be displayed. This is how the WinProcessDlg function 
works-it does not display a dialog box while there are still ~CHAR mes­
sages in the input queue. It allows these messages to be processed first. 

As control windows in a dialog box are created from the template, strings 
in the template are processed by the WinSubstituteStrings function. Any 
WM-SUBSTITUTESTRING messages are sent to the dialog procedure before 
the WinLoadDlg function returns. 

When child windows of a dialog window are created, the Win Substitute Strings 
function is used so child windows can make substitutions in their window text. If 
any child-window text string contains the percent sign (%) substitution character, 
the length of the text string is limited to 256 characters after it is returned from 
the substitution. 

19.5.2.4 Menus in Dialog Boxes 
To create a menu bar and menus in a dialog box, an application should first load 
the dialog box to get a handle to the dialog-frame window. The dialog-frame win­
dow can be associated· with a menu resource by calling the WinLoadMenu func­
tion. This function requires arguments specifying the menu ID and handle of the 
parent window for the menu. Finally, the dialog-frame window must incorporate 
the menu by sending a ~UPDATEFRAME message to the dialog box. The 
following code fragment illustrates these operations: 

/* Get the dialog resource. */ 

hwndDialog = WinLoadDlg( ... ); 

/* Get the menu resource and attach it to the dialog. */ 

hwndMenu = WinLoadMenu(hwndDialog, ... ); 



256 MS OS/2 Programmer's Reference, Vol. 1 
;.~u~~1*~!el~~Uiiim:~i~i!ili!!~I!!i~lii~~I~;~iiDm!jijii~iI~,Lm!~til~~~i51Ilifiiifsmi~liiffi!ilimg_i!~Ela!'ii!!i!~i!!iitii~!!iim;m;~~film 

1* Inform the dialog that it has a new menu. *1 

WinSendMsg(hwndDia1og, WM_UPDATEFRAME, OL, OL); 

Applications can create menus in modal and modeless dialog boxes. The code 
fragment above can be used for either type of dialog box. In the case of a modal 
dialog box, your application should call the WinProcessDlg function to handle 
user input until the dialog box is dismissed. For a modeless dialog box, your 
application should call the WinShowWindow function to display the dialog box, 
allowing the message loop to direct messages to the dialog box. 

19.5.2.5 Dialog Procedure 
The main difference between a dialog procedure and a window procedure is that 
a dialog procedure does not receive ~CREATE messages. Instead, a dialog 
procedure receives WMJNITDLG messages, which are sent after a dialog box 
is created but before it is displayed. The WMJNITDLG message can be used to 
do the same type of initialization tasks that are handled by W1LCREATE mes­
sages. 

For example, if a dialog box contains a list box, you should use the message 
WMJNITDLG to fill the list box with items. This procedure can also be used to 
enable or disable buttons in a dialog box, depending on your application. 

You can also call the WinSetDlgItemText or WinSetDIgltemShort function dur­
ing dialog initialization to set up text items that reflect the current conditions in 
your application. 

Another typical task for the WMJNITDLG message handler is centering a dia­
log on the screen or within its owner window. The following code fragment illus­
trates how to center a dialog box on screen using the WMJNITDLG message: 

case WM_INITDLG: 
I' Center the dialog box and get the screen rectangle. 'I 

WinQueryWindowRect(HWND_DESKTOP, &rc1ScreenRect); 

I' Get the dialog-box rectangle. *1 

WinQueryWindowRect(hwnd, &rc1Dia1ogRect); 

I' Get the dialog-box width. 'I 

sWidth = (SHORT) (rc1Dia1ogRect.xRight - rc1Dia1ogRect.xLeft); 

I' Get the dialog-box height. *1 

sHeight = (SHORT) (rc1Dia1ogRect.yTop - rc1Dia1ogRect.yBottom); 

I' Set the lower-left corner horizontal coordinate. 'I 

sBLCx = «SHORT) rc1ScreenRect.xRight - sWidth) I 2; 

I' Set the lower-left corner vertical coordinate. 'I 

sBLCy = «SHORT) rc1ScreenRect.yTop - sHeight) I 2; 

I' Move, size, and show the window. 'I 

WinSetWindowPos(hwnd, 
HWND_TOP, 
sBLCx, sBLCy, 
0, 0, I' ignores size arguments 'I 
SWP_MOVE); 

return OL; 



Chapter 19: Dialog Windows 257 
s!!i!i~l~i~!mllf.~!§~I~ril~!ijS;ga!jj!~I~~iii!!~~~tm!!ii1Ii5irujil~~iijfrni!i1t~i!!iii!P.j~~imimi~~iI~~~mifiJm~m:;iliiiiii~lii!tii!.fi!!~i 

The dialog procedure receives notification messages from each control-window 
item in a dialog box whenever a user clicks an item or enters text in an entry 
field. Most dialog procedures wait for the user to select one or more dialog­
window buttons to signal that he or she has finished with the dialog box. When 
the dialog procedure receives one of these messages, it should call the Win­
DismissDlg function, as shown in the following code fragment. The second argu­
ment to the WinDismissDlg function is the value returned by the WinDlgBox or 
WinProcessDlg function. Generally, the ID of the button that was pressed is 
returned. 

MRESULT FAR PASCAL SampDialogProc(hwnd, usMessage, mp1, mp2) 
HWND hwnd; 
USHORT usMessage; 
MPARAM mp1; 
MPARAM mp2; 
{ 

} 

switch (usMessage) { 
case WM_COMMAND: 

} 

switch (SHORT1FROMMP(mp1» { 
case DID_OK: 

} 
break; 

/* 
* Final dialog-item queries, 
* dismiss the dialog. 
*/ 

WinDismissDlg(hwnd, DID_OK); 
return OL; 

return (WinDefDlgProc(hwnd, usMessage, mp1, mp2»; 

Other dialog-box items send notification messages specific to the type of control 
window . Your dialog procedure should respond to notification messages from 
each dialog item. Any messages that a dialog procedure does not handle should 
be passed to the WinDeffilgProc function for default processing. The default 
dialog procedure is exactly the same as the default frame-window procedure. 

The W1LCOMMAND message from the OK button indicates that the user has 
selected the OK button and is finished with the dialog box. If the dialog box has 
other controls, such as entry fields or check boxes, your dialog procedure should 
query the contents or state of each control when it receives a message from the 
OK button. Before dismissing a dialog box, your dialog procedure should collect 
input from each dialog-box control before closing the dialog box. 

19.5.2.6 Manipulating Dialog Items 
Dialog items are control windows, and as such they cart be manipulated using 
standard window~management function calls. The window handle is obtained for 
each dialog item by calling the Win WindowFromID function and passing the 
window handle for the dialog box and the window ID for the dialog item as 
defined in the dialog template. For example, the following Resource Compiler 
source-code fragment should be included in your dialog template: 

DLGTEMPLATE IDD_ABOUT 
BEGIN 

END 

DIALOG "", IDD_ABOUT, 80, 92, 126, 130, FS_DLGBORDER, 0 
BEGIN 

PUSHBUTTON "My Button", ITEMID_MYBUTTON, 37, 107, 56, 12 

/* Other item definitions ... */ 

END 



258 MS OS/2 Programmer's Reference, Vol. 1 
a!immwiff~i!ii~ii.KJ1i5!1mi!3itfsi!i!~r.!L~iiifiif~JSiili1rlilm~I~ii!!lImimi~;l!i!i~!~J.i!11~iii!ffi?lI!ii~~;~_a1mlffdmiY!Bimlimlii:,§i;:fi!f:iiUib1f:iii 

Based on the above code fragment, your application will receive the button-item 
handle by initiating the following call to the WinWindowFromID function: 

hwndltem = WinWindowFromID(hwndDialog, ITEMID_MYBUTTON); 

Applications often change the contents, enabled state, or position of dialog 
items at run time. For example, in a dialog box that contains a list box of 
filenames and an Open button, the Open button should be disabled until the user 
selects a file from the list. To do this, the button should be defined as disabled 
in the dialog resource so that it is disabled when the dialog box is first displayed. 
At run time, the dialog procedure receives a notification message from the list 
box when the user selects a file. At that time, the dialog procedure calls the 
WinEnableWindow function to enable the Open button. 

Applications can also change the text in static dialog items and buttons. This is 
done by calling the WinSetWindowText function and using the window handle of 
particular dialog item. 

19.6 Summary 
The following sections summarize the styles, functions, and messages associated 
with dialog windows and message boxes. 

19.6.1 Dialog-Window Styles 
The following style constants can be used to specify the border and alignment of 
a dialog box: 

FCF J)LGBORDER Draws the dialog window with a double border that 
identifies it as a dialog box. 

FCF .-MOUSEALIGN Draws the dialog window using the x- and y-position 
relative to the mouse position at the time the dialog window is created. The dia­
log window position is modified to keep it within the screen boundaries, if pos­
sible. The dialog window can be drawn with the OK button under the mouse 
pointer by using negative x- and y-position values in the dialog template. 

FCF _SCREENALIGN Draws the dialog window using the x- and y-position 
relative to the coordinates of the entire screen rather than using the default coor­
dinates of the owner window. 

19.6.2 Message-Box Styles 
The following style constants can be used to specify the type of message box 
created by calling the WinMessageBox function: 

MB-ABORTRETRYIGNORE Creates a message box that has Abort, Retry, 
and Ignore buttons. 

MB-APPLMODAL Creates an application-modal message box. A user cannot 
select other windows in the current application, but can switch to other applica­
tions. 

MB_CANCEL Creates a message box that has a Cancel button. 

MBJ)EFBUTTONI Defines the first button in a message box as the default 



Chapter 19: Dialog Windows 259 
~!g!i~!i!i~;~It.~!elifm!i!m~~!HIa~!iaL~ti!!!~JmU, ... ~tm!!ii1ii5jfUail~~liitiij!ai~~H~ii!iii~i§jffifsmU;~mEruii~mitilm~iiiiflfti~ilEr.iiii.~!fi!iW~ 

button. All message boxes have this style unless MBJ)EFBUTION2 or 
MBJ)EFBUTION3 is specified. 

MBJ)EFBUTION2 Defines the second button as the default button. 

MBJ)EFBUTION3 Defines the third button as the default button. 

MB~NTER Creates a message box that has an Enter button. 

MB~NTERCANCEL Creates a message box that has Enter and Cancel but­
tons. 

MBJIELP Creates a message box that has a Help button. 

MBJCONASTERISK Creates a message box that has an asterisk (*) icon. 

MBJCONEXCLAMATION Creates a message box that has a exc1amation­
point (!) icon. 

MBJCONHAND Creates a message box that has the hand icon. This icon is 
always in memory and should be used when displaying message boxes in low­
memory situations. 

MBJCONQUESTION Creates a message box that has a question-mark (?) 
icon. 

MB-.MOVEABLE Creates a message box that a user can move by using the 
mouse. 

MB_NOICON Creates a message box that has no icons. 

MB_OK Creates a message box that has an OK button. 

MB_OKCANCEL Creates a message box that has OK and Cancel buttons. 

MB.-R,ETRYCANCEL Creates a message box that has Retry and Cancel but­
tons. 

MB_SYSTEMMODAL Creates a system-modal message box. A user cannot 
select any other window in the current application or switch to another applica­
tion until this message box is dismissed. This style is used in combination with 
MBJCONHAND to prevent any messages from being sent to other windows or 
applications. This is useful in situations where the system is damaged or there 
are other serious problems. 

MB_YESNO Creates a message box that has Yes and No buttons. 

MB_YESNOCANCEL Creates a message box that has Yes, No, and Cancel 
buttons. 

19.6.3 Message-Box Return Values 
The following are predefined values returned by the WinMessageBox function, 
indicating which button is pressed to dismiss the message box: 

MBID~BORT Abort button dismisses the message box. 

MBID_CANCEL Cancel button dismisses the message box. 

MBID_ENTER Enter button dismisses the message box. 



260 MS OS/2 Programmer's Reference, Vol. 1 
~i!~E*ii}~i~iii~miitii~!~\\imw.~~iii!Jmi~i~i~!iSt;I;mUerulj~iU4il!~U§j~~i~~i~~!em~it!fi'illY:.~!i~~rumi1t~lmh~glSig-aUmi~i~!rill 

MBID-ERROR An error has occurred in processing the message box. 

MBIDJIELP Help button dismisses the message box. 

MBIDJGNORE Ignore button dismisses the message box. 

MBID_NO No button dismisses the message box. 

MBID_OK OK button dismisses the message box. 

MBID~ETRY Retry button dismisses the message box. 

MBID_YES Yes button dismisses the message box. 

19.6.4 Functions 
The following functions are used with dialog windows and message boxes: 

WinAlarm Creates an audible signal. The type of sound is specified by one of 
three predefined constants: W ~ WARNING, W ~NOTE, and W A-ERROR. 
The actual sound emitted for these styles varies, depending on the hardware 
capabilities. 

WinCreateDlg Functions similarly to the WinLoadDlg function except that the 
WinCreateDlg function dialog template is in memory rather than in a resource 
file. This function returns a handle to the dialog window. 

WinDeIDlgProc Creates the default dialog procedure that processes dialog 
messages (messages that the application dialog procedure does not process). 
This action is identical to that produced by the WinDelWindowProc function for 
frame windows. 

WinDestroyWindow Destroys the dialog window and all its child control win­
dows. This function uses the dialog-window handle. 

WinDismissDlg Hides the dialog box and causes the WinProcessDlg or 
WinDlgBox function to return a specified result. Applications call this function 
from a dialog procedure when a user selects a button indicating the interaction 
with the dialog box is finished. 

WinD 19B ox Loads and processes a modal dialog box and returns the result 
generated by the WinDismissDIg function. This function makes the dialog box 
visible when the message queue is empty. This means that a dialog box defined 
as invisible will not become visible as long as there is input for it. This allows 
a user to type ahead and even dismiss the dialog box before the dialog box 
becomes visible, thus saving the time needed to draw the dialog box. The Win­
DIgBox function is equivalent to the following code fragment: 

dlg = WinLoadDlg( ... ); 
result = WinProcessDlg(dlg); 
WinDestroyWindow(dlg); 
return (result); 

WinEnumDlgItem Searches dialog-box child windows for the next control win­
dow that fits a specified characteristic. An application can specify a child win­
dow from which to start the search; this facilitates repeated linear searches for 
the next occurrence of a particular type of child window. This function allows an 
application to identify the next tabstop or group item. 



Chapter 19: Dialog Windows 261 
!!!ii!ili¥iifm;1j!f;l~ifOOi~fij~~IaR!if~i~!!~"'~~7:!!fiili5iruaili~~!iStiiii2i~~fi!ii~jgygimi1ffl~liiniEhll~l'€!ifitm~im~~,Hi!@'iIk1iWiitii!fi!iiJi 

WinLoadDlg Loads a dialog resource from a specified resource-file module 
(NULL indicates the current application's executable file). The parent and 
owner window of the new dialog box must specified, as well as a pointer to the 
dialog procedure for the application. This function returns a handle to the dialog 
window. 

WinMapDlgPoints Converts dialog coordinates into window coordinates and 
vice versa. 

WinMessageBox Creates a modal message box with specified caption, icon, 
buttons, and text. The WinMessageBox function maintains control until the user 
selects one of the message-box buttons. The return value is a predefined con­
stant that indicates which button is selected. 

WinProcessDlg Processes messages for a modal dialog box, making the dialog 
box visible when the message queue is empty. This means that a dialog box 
defined as invisible will not become visible as long as there is input for it. This 
allows a user to type ahead and even dismiss the dialog box before the dialog 
box becomes visible, thus saving the time needed to draw the dialog box. This 
function does not return until the dialog procedure calls the WinDismissDlg 
function. 

WinQueryDlgItemShort Translates the text of a specified dialog item into a 
short integer. 

WinQueryDlgItemText Retrieves the window text of a specified dialog item. 

WinSendDlgItemMsg Sends a message to a child window in the specified dialog 
box. This function is used for child windows in standard frame windows. 

WinSetDlgItemShort Sets the text of the specified dialog item to the text 
representation of the specified short integer. 

WinSetDlgItemText Sets the window text for a specified dialog item. 

WinSubstituteStrings Performs a substitution process on a text string, replacing 
certain marker characters with application-supplied text. When the string %n 
(where "n" is a number from 0 through 9) is encountered in the source string, a 
~SUBSTITUTESTRING message is sent to a specified window. This mes­
sage returns a text string that replaces the characters %n in the destination 
string, which is an exact copy of the source string. This function is important for 
dialog boxes because the ~SUBSTITUTESTRING message is received by 
the dialog procedure, allowing an application to make string substitutions in dia­
log items that reflect the current environment. 

19.6.5 Messages Sent to Dialog Boxes and Dialog Items 
The following messages are sent to dialog boxes and dialog items: 

~NITDLG Sent to a dialog procedure after a dialog box is created but 
before it is shown. This allows an application to perform run-time initialization 
for the dialog box, such as filling in default text for entry fields, static-text con­
trols, or list boxes. If any control window in a dialog box requires text substitu­
tion, the dialog box receives a W1LSUBSTITUTESTRING message before the 
~NITDLG message. The ~NITDLG message also contains a window 
handle of the control window in the dialog box that receives the keyboard focus 



262 MS OS/2 Programmer's Reference, Vol. 1 
Ilim~r.iili.!ml~ii!nif'iimi~GfsUiji~H[!i!lilmlf!lif~l~iifJf;SflI§!U!i~imiN;t!$imi~!!I!iimiif]i~~ii~~81mlfdiiimff,miSimiQ~iSlliiiiiU~1if:iii 

when the dialog box is shown. An application can change the focus by calling 
the WinSetFocus function for another control window and then returning 
TRUE. To leave the focus as is, it should return FALSE. 

WM.-QUERYDLGCODE Sent by the system to control windows in a dialog 
box to determine the capabilities of the control. Most applications ignore this 
message unless they are creating custom control windows. The following are 
predefined result codes for the WM.-QUERYDLGCODE message: 

Code Meaning 

DLGC-BUITON Button item 

DLGC_CHECKBOX Check box 

DLGCJ)EFAULT Default push button 

DLGC~NTRYFIELD Entry-field item, handles EM_SETSEL 
messages 

DLGCj1ENU Menu 

DLGCJ>USHBUITON Non-default push button 

DLGCJADIOBUITON Radio button 

DLGC_SCROLLBAR Scroll bar 

DLGC_STA TIC Static item 

DLGC_TABONCLICK Next-on-tab control 

WM.-SUBSTITUTESTRING Sent to a dialog box when it is created (before 
the WMJNITDLG message is sent) when the system encounters the characters 
%n (where n is a number from 0 through 9) in the window text of a dialog con­
trol window. This message allows an application dialog procedure to make text 
substitutions. For example, an application can define dialog-box entry-field text 
as the characters %1, substituting context-appropriate text in the response to the 
WM.-SUBSTITUTESTRING message. 



Chapter 

20 

Painting and Drawing 
20.1 Introduction............................................................ 265 

20.2 About Painting and Drawing ...................................... 265 
20.2.1 Presentation Spaces and Device Contexts................ 265 
20.2.2 Window Regions.............................................. 266 

20.3 Strategies for Painting and Drawing ............................. 268 
20.3.1 When to Draw in a Window ................................ 268 
20.3.2 The WMJAINT Message .................................. 269 

20.3.2.1 Drawing the Minimized View ..................... 270 
20.3.3 Drawing Without the WMJAINT Message ............. 270 
20.3.4 . Three Kinds of Presentation Spaces ...................... 270 

20.3.4.1 Cached-Micro Presentation Spaces....... ........ 271 
20.3.4.2 Micro Presentation Spaces........................ 272 
20.3.4.3 Normal Presentation Spaces ...................... 274 

20.4 Printing.................................................................. 275 

20.5 Summary ................................................................ 275 
20.5.1 Window Styles for Painting ................................. 275 
20.5.2 Functions ........................................... 0 •• 000.00.. 276 
20.5.3 Messages for Painting ........................................ 278 





Chapter 20: Painting and Drawing 265 
='-i!i!:!i~~~a!ii!fffiirriFJffii!ii~:mim~§!!f5ii!if~limlimm~~m~iili~~m~ml~!~~m~~:!if:$f:ifauli5~i~~~~~iS;m~~!m!~!rn!~I!fIi!!f!§Ui 

20.1 Introduction 
This chapter describes presentation spaces, device contexts, and window 
regions, and how an application uses them for painting and drawing. (For infor­
mation on functions that are specifically designed for graphics production, see 
Chapter 21, "Drawing in Windows," and Part 3, "Graphics Programming Inter­
face.") You should also be familiar with the following topics: 

• Standard user-interface guidelines 

• Standard frame windows 

• Window messages and message queues 

• Presentation spaces and device contexts 

• Graphics programming interface (GPI) 

20.2 About Painting and Drawing 
An application typically maintains an internal representation of the data that it is 
manipulating. The information displayed by a screen, window, or by printed 
copy is a visual representation of some portion of that data. MS OS/2 provides a 
rich environment for displaying information in a variety of ways. This chapter 
introduces concepts and strategies necessary to make your application function 
smoothly and cooperatively in the MS OS/2 display environment. 

20.2.1 Presentation Spaces and Device Contexts 
A presentation space is a data structure maintained by the operating system that 
describes the drawing environment for an application. An application can create 
and hold several presentation spaces, each describing a different drawing envi­
ronment. All drawing in an MS OS/2 application must be directed into a presen­
tation space. 

Each presentation space is associated with a device context that describes the 
physical device where graphics commands are displayed. The device context 
translates graphics commands made to the presentation space into commands 
that cause the physical device to display information. Typical device contexts 
are the screen (windows), printers and plotters, and off-screen memory bitmaps. 
Figure 20.1 shows how graphics commands from an application go through a 
presentation space, to a device context, and then to the physical device. 

Figure 20.1 
Application-to-Device Path 

Application 
Presentation 

space 
Device 
context 



266 MS OS/2 Programmer's Reference, Vol. 1 
liim:liiif!if~~~~~~i~i~t~~~~~i~iiflgna;~I!!~jililf-if~fij!mimJ~!!~~iW~ .. ~nsi'fJ=~=J~I§!n~lmiW.w:~lmi~~f.:jJj!I~iili~~.Jf~~ 

By creating presentation spaces and associating them with particular device con­
texts, an application can control where its· graphics output appears. Because a 
presentation space and device context isolate the application from the physical 
details of displaying graphics, the same graphics commands can typically be used 
for many types of displays. This virtualization of output can reduce the amount 
of display code that an application needs to support. 

This chapter discusses how an application sets up its presentation spaces and 
device contexts before drawing and how to use window-drawing functions. Other 
chapters in this manual discuss the individual graphics routines available in 
MS OS/2. 

20.2.2 Window Regions 
A window and the presentation space associated with it have three regions that 
control where drawing takes place in the window. These regions ensure that the 
application does not draw outside the boundaries of the window or intrude into 
the space of an overlapping window. 

Region 

Update region 

Clip region 

Visible region 

Description 

This region represents the area of the window 
that needs to be redrawn. This region changes 
when overlapping windows change their Z order 
or when an application explicitly adds an area to 
the update region to force a window to be 
painted. 

This region and the visible region determine 
where drawing takes place. Applications can 
change the clip region to limit drawing to a 
particular portion of a window. Typically, a 
presentation space is created with a clip region 
equal to NULL, which means that there is no 
clipping supplied by this region. 

This region and the clip region determine where 
drawing takes place. The system changes the visi­
ble region to represent the portion of a window 
that is visible. Typically, the visible region is used 
to mask out overlapping windqws. When the 
application calls the WinBeginPaint function in 
response to a WMJl AINT me~sage, the system 
sets the visible region to the intersection of the 
visible region and the update region to produce a 
new visible region. Applications cannot change 
the visible region directly. ' 

Whenever drawing occurs in a window's presentation space, the output is 
clipped to the intersection of the visible region and the clip region. Figure 20.2 
shows how the intersection of the visible region and the clip region of a window 
that is behind another window prevents drawing in the back window from intrud­
ing into the front window. The clip region includes the overlapped part of the 



Chapter 20: Painting and Drawing 267 
!a;iili~ifJgilia!;milliifJfjB!miiU!l!!f5!alillimmf~~mmJ:ii~i!i~lm!j!!i§mm~.rn!iif;!il~Jb.:i~~OOi.:ai;lnf~l~fiimfmf~J.!~Uf!nslS 

Figure 20.2 

back window, but the visible region excludes that portion of the back window. 
The system maintains the visible region to protect other windows on the screen 
and the application maintains the clip region to specify the portion of the win­
dow in which it draws. Together, these two regions provide safe and controllable 
clipping. 

Clip Region and Visible Region 

Figure 20.3 

r------------- ------------, ,------------, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 

Il _________ I _________________ J 1oo...---,I~i[:::~:~::~::;:~:::·~.-.. -.. -.... J 
I I 

Clip region Visible region 

The update region is manipulated by both the system and the application to 
further control drawing. For example, if the windows shown in Figure 20.2 
switch positions front to back, several changes occur in the regions of both win­
dows. The system adds the lower-right corner of the new front window to that 
window's visible region. The system also adds that corner area to the window's 
update region, as shown in Figure 20.3. Adding an area to this window's update 
region causes the window's window procedure to receive a WM-P AINT mes­
sage. During the processing of the WMJ> AINT message, the system sets the 
new visible region to be the intersection of the previous visible region and the 
update region. With this restricted visible region, only the appropriate part of 
the window is redrawn-the lower-right corner. 

Update Region and Visible Region 

'---... [--] 

[ ......... , .............. _ .......... ..1 

Update region 
I 
Visible region 



268 MS OS/2 Programmer's Reference, Vol. 1 
i~rwlii!~i~~~!ID~~!~i~I~~~ill.ljifili,,~zreii~!~!i~iilllf~ii!r:i~ihl'iJ~Hi§iF.iW~ .. ~!il~fi1iiiil:l~:;:l~;r~~~~!!!'l~!fi!i[~ll~fiJi~~~~i!l! 

20.3 Strategies for Painting and Drawing 
The following sections discuss drawing strategies for an MS OS/2 application. 
Because an application shares the screen with other windows and applications, 
drawing must not interfere with other applications and windows. When these 
strategies are followed, your application will coexist with other applications and 
still take full advantage of the graphics capabilities of MS OS/2. 

20.3.1 When to Draw in a Window 
Ideally, all drawing in a window should be done during the processing of the 
WM.Y AINT message. Applications maintain an internal representation of what 
should be displayed in the window, such as text or a linked list of graphics 
objects, and use the WM.Y AINT message as a cue to display a visual represen­
tation of that data in the window. 

To route all display output through the WM.Y AINT message, an application 
should not draw on the screen at the time its data changes. Instead, the applica­
tion should update the internal representation of the data and then call the 
WinInvalidateRect or WinlnvalidateRegion function to invalidate the portion of 
the window that needs to be redrawn. Of course, it is often much more efficient 
to draw directly in a window without relying on the WM.Y AINT message-for 
example, when drawing and redrawing an object for a user who is dragging or 
sizing with the mouse. 

If the window has the WS_SYNCP AINT or CS_SYNCP AINT style, invalidating 
a portion of the window causes a WM.Y AINT message to be sent to the window 
immediately. Because sending a message is essentially like making a function 
call, the actions corresponding to the WM.Y AINT message are carried out 
before the call that caused the invalidation returns-that is, the painting is syn­
chronous. 

If the window does not have the WS_SYNCP AINT or CS_SYNCP AINT style, 
invalidating a portion of the window causes the invalidated region to be added to 
the window's update region. The next time the application calls the WinGetMsg 
or WinPeekMsg function when there are no other messages in the queue and the 
update region for the window is not empty, the application is sent a WM.Y AINT 
message. If there are many messages in the queue the painting occurs after the 
invalidation-that is, the painting is asynchronous. Painting for windows that do 
not have the WS_SYNCP AINT or CS_SYNCP AINT style is a low-priority 
operation; all other messages are processed first. Because a ~ AINT mes­
sage is not posted to the queue in this case, all invalidation operations since the 
last WM.Y AINT message are consolidated into a single ~ AINT message 
the next time the application has no messages in the queue. 

There are advantages to both synchronous and asynchronous painting. Windows 
that have simple painting routines should be painted synchronously. Most of the 
system-defined control windows,such as buttons and frame controls, are painted 
synchronously because they can be painted quickly without interfering with the 
responsiveness of the program. Windows with more time-consuming painting 



Chapter 20: Painting and Drawing 269 
~i§li!l~~~iEl~fmir~Jei§~I~imm~!m!i!:~~lili~~~llma;!§im~iH!~!~~l!i~Jlli!!Jf;~m~si~l~W~tlBf~!m!~~!f!!§i!!m~§ft~r.~~: 

operations should be painted asynchronously so that the painting can be initiated 
only when there are no other pending messages that might otherwise be blocked 
while waiting for the window to be painted. Also, windows that use an incremen­
tal approach to invalidating small portions of the window should usually allow 
those operations to consolidate into a single asynchronous WM.Y AINT mes­
sage, rather than a series of synchronous WMY AINT messages. 

If necessary, an application can call the WinUpdateWindow function to cause 
an asynchronous window to update itself without going through the event loop. 
WinUpdate Window sends a WMJ> AINT message directly to the window if the 
window's update region is not empty. 

20.3.2 The WM_PAINT Message 
A window receives a WM.Y AINT message whenever its update region is not 
NULL. A window procedure should respond to a WM.Y AINT message by call­
ing the WinBeginPaint function, drawing to fill in the update areas, and then 
calling the WinEndPaint function. 

The WinBeginPaint function returns a handle to a presentation space that is 
associated with the device context for the window and that has a visible region 
equal to the intersection of the window's update region and its visible region. 
This means that only those portions of the window that need to be redrawn are 
drawn. Attempts to draw outside this region are clipped and do not appear on 
the screen. 

If the application maintains its own presentation space for the window, it can 
pass that handle of the presentation space to the WinBeginPaint function, which 
modifies the visible region of the presentation space and passes the handle of the 
presentation-space back to the caller. If the application does not have its own 
presentation space, it can pass a NULL presentation-space handle and the sys­
tem will return a cached-micro presentation space for the window. In either 
case, the application can use the presentation space to draw in the window. 

The WinBeginPaint function takes a pointer to a RECTL structure that it fills in 
with the coordinates of the rectangle enclosing the area to update. The applica­
tion can use this rectangle to optimize drawing, by drawing only those portions 
of the window that intersect with the rectangle. If an application passes a NULL 
pointer for the rectangle argument, the application draws the entire window and 
relies on the clipping mechanism to filter out the unneeded areas. 

After the WinBeginPaint function sets the update region of a window to NULL, 
the application does the drawing necessary to fill the update areas. If an applica­
tion handles a WM.Y AINT message and does not call WinBeginPaint or other­
wise empty the update region, the application continues to receive WM.Y AINT 
messages as long as the update region is not empty. 

Once the application has finished drawing, it should call the WinEndPaint func­
tion to restore the presentation space to its former state. When a cached-micro 
presentation space is returned by the WinBeginPaint function, the presentation 
space is returned to the system for reuse. If the application supplies its own 
presentation space to WinBeginPaint, the presentation state is restored to its 
previous state. 



270 MS OS/2 Programmer's Reference, Vol. 1 
lli~~!~i;I~~~~J!!i~tlJm.ll!iljJflfii!fl!~i"~if.n~~§l!ii§jiW~~i~!~iliin~truili§~if¢Jim!iii'a1f*iim~~1~§i~eHti!r~!!m~~fdiili~lIti~~.i!j!mJi~2 

20.3.2.1 Drawing the Minimized View 
When an application creates a standard frame window, it has the option of 
specifying an icon that the system will use to represent the application in its 
minimized state. Typically, if an icon is supplied, the system draws the icon in 
the minimized window and labels the icon with the name of the window. If the 
application does not specify the FSJCON style for the window, the window 
receives a WMJl AINT message when it is minimized. The code in the window 
procedure that handles the WMJl AINT message can determine if the frame 
window is currently minimized and then draw accordingly. Notice that because 
the WS-MINIMIZED style is relevant only for the frame window, not for the 
client, the window procedure checks the frame window rather than the client 
window. The following code fragment shows how to draw a window in the 
minimized state and the normal state: 

case WM_PAINT: 
hps = WinBeginPaint(hwnd, NULL, &rect); 

/* See if the frame window (client's parent) is minimized. */ 

ulStyle = WinQueryWindowULong(WinQueryWindow(hwnd, QW_PARENT, 
FALSE), QWL_STYLE); 

if (ulStyle & WS_MINIMIZEO) { 

. /* paints the minimized state */ 

} 
else { 

. /* paints the normal state */ 

} 
WinEndPaint(hps); 
return OL; 

20.3.3 Drawing Without the WM_PAINT Message 
An application can draw in a window's presentation space if it has not received 
a WMY AINT message. As long as there is a presentation space for the win­
dow, an application can draw into the presentation space and avoid intruding 
into other windows or the desktop. Applications that draw without using the 
WMY AINT message typically call the WinGetPS function to obtain a cached­
micro presentation space for the window and call the WinReleasePS function 
when they have finished drawing. An application can also use any of the other 
types of presentation spaces described in the following sections. 

20.3.4 Three Kinds of Presentation Spaces 
All drawing must take place within a presentation space. MS OS/2 provides 
three kinds of presentation spaces for drawing: the normal presentation space, 
the micro presentation space, and the cached-micro presentation space. 



Chapter 20: Painting and Drawing 271 
1!§1i!l~~!!~l~!liif~i~JlE!3;~J~i~U~t~;Ir:Ji{tim!tiim~ilmlgj!§i~~i~!ilm!~:!!~J!i!!Itliiilii&~!;I~l1am~~fif~ln~~Ifi!!ii!iif!~~~~~i 

The normal presentation space provides the most functionality, allowing access 
to all the graphics functions of MS OS/2 and allowing the application to draw to 
all device types. The normal presentation space is more difficult to use than the 
other two kinds of presentation spaces and it uses more memory. It is created by 
using the GpiCreatePS function and it is destroyed by using the GpiDestroyPS 
function. 

The micro presentation space allows access to only a subset of the MS OS/2 
graphics functions, but it uses less memory and is faster than a normal presenta­
tion space. The micro presentation space also allows the application to draw to 
all device types. It is created by using the GpiCreatePS function and destroyed 
by using the GpiDestroyPS function. 

The cached-micro presentation space provides the least functionality of the three 
kinds of presentation spaces, but it is the most efficient and easiest to use. The 
cached-micro presentation space draws only to the screen. It is created and des­
troyed by using either the WinBeginPaint and WinEndPaint functions or the 
WinGetPS and WinReleasePS functions. 

The following sections describe each of the three types of presentation spaces in 
detail and discuss strategies for using each type in an application. (For more 
information, see Chapter 30, "Presentation Spaces and Device Contexts.") All 
three kinds of presentation spaces can be used in a single application. Some win­
dows, especially if they will never be printed, are best served by cached-micro 
presentation spaces. Other windows may require the more flexible services of 
micro or normal presentation spaces. 

20.3.4.1 Cached-Micro Presentation Spaces 

Figure 20.4 

The cached-micro presentation space provides the simplest and most efficient 
drawing environment. It can be used only for drawing on the screen, typically in 
the context of a window. It is most appropriate for application tasks that need 
simple window-drawing functions that do not need to be printed. Cached-micro 
presentation spaces do not support retained graphics. 

After an application draws to a cached-micro presentation space, the drawing 
commands are routed through an implied device context to the current display. 
The application does not need information about the actual device context, since 
it is assumed to be the display. This process makes cached-micro presentation 
spaces easy for applications to use. Figure 20.4 illustrates this process: 

Cached-Micro Presentation Space 

Application 

Cached-micro 
presentation 

space 

'-------"" 

r······························., .,::,. 



272 MS OS/2 Programmer's Reference, Vol. 1 
!~ff€!iIi.i;fim9i:~!ID~OOi!§1iltirui~liji~~i~:~B!I§!§J!imjm!f~i~!~~H~tru1ia:1iii!lf.;1~~Hima1J~;~~l~l!i§i~!H~~~l~~[~i!n~iii~~~i!!! 

There are two common strategies for using cached-micro presentation spaces in 
an application. The simplest is to call the WinBeginPaint function during the 
WMY AINT message, use the resulting cached-micro presentation space to draw 
in the window, and then return the presentation space to the system by calling 
the WinEndPaint function. By using this method, the application only interacts 
with the presentation space when it needs to draw in the presentation space. 
This method is most appropriate for simple drawing. A disadvantage of this 
method is that the application must set up any special attributes for the presenta­
tion space, such as line color and font, each time a new presentation space is 
obtained. 

A second strategy is for the application to allocate a cached-micro presentation 
space during initialization, by calling the WinGetPS function and saving the 
resulting presentation-space handle in a static variable. The application can then 
set attributes in the presentation space that persist for the life of the program. 
The presentation-space handle can be used as an argument to the WinBeginPaint 
function each time the window gets a WMY AINT message; the system modifies 
the visible region and returns the presentation space to the application with its 
attributes intact. This strategy is appropriate for applications that need to cus­
tomize their window-drawing attributes. 

A presentation space that is obtained by calling the WinGetPS functiori should 
be released by calling WinReleasePS when the application has finished using it. 
(Typically, this will be during program termination.) A presentation space that is 
obtained by calling the WinBeginPaint function should be released by calling the 
WinEndPaint function, typically as the last part of processing aWMJ> AINT 
message. 

20.3.4.2 Micro Presentation Spaces 
The main advantage of a micro presentation space over a cached-micro presenta­
tion space is that it can be used for printing as well as for painting in a window. 
An applications that uses a micro presentation space must explicitly associate it 
with a device context. This makes the micro presentation space useful for paint­
ing to a printer, plotter, or an off-screen memory bitmap. 

A micro presentation space does not support the full set of MS OS/2 graphics 
functions. Unlike a normal presentation space, a micro presentation space does 
not support retained graphics. 

An application that needs to display in a window and print to a printer or plotter 
typically maintains two presentation spaces: one for the window and one for the 
printing device. Figure 20.5 shows how an application's graphics output can be 
routed through separate presentation spaces to produce a screen display and 
printed copy: 



Chapter 20: Painting and Drawing 273 
1i!!~!lli!i~!nmim!lttifrum~l!ilmi~~u..!l,~.mi~!!!!!iil!!~~l~~~f~H~i~~:r:$fi~~i~ai~i1i!i~l~lir~iiijii1l!mfdllmi~l~i~!~S3~~~s!!i!iml 

Figure 20.5 
Micro Presentation Space 

Micro 
presentation 

r;::Il I~I./} space .... 
Application .... 

Micro 
presentation 

space 

.... 

.... 

Device 
context 

Device 
context ~

. . . . . .... : : 
Device 

An application creates a micro presentation space by calling the GpiCreatePS 
function. Because a device context must be supplied at the time the micro 
presentation space is created, an application typically creates a device context 
and then a presentation space. The following code fragment demonstrates this 
by obtaining a device context for a window and associating it with a new micro 
presentation space: 

hdc = WinOpenWindowDC( ... ); 
hps = GpiCreatePS( ... ,hdc, ... ,GPIA_ASSOC); 

To create a micro presentation space for a device other than the screen, replace 
the call to the WinOpen WindowDC function with a call to the DevOpenDC 
function, which obtains a device context for a device that is not the screen. The 
device context that is obtained by this call can be used as an argument to the 
GpiCreatePS function. 

An application typically creates a micro presentation space during initialization 
and uses it until termination. Each time the application receives a WM.Y AINT 
message, it should pass the handle of the micro presentation space as an argu­
ment to the WinBeginPaint function; this prevents the system from returning a 
cached-micro presentation space.· The sys~em modifies the visible region of the 
supplied micro presentation space and returns the presentation space to the 
application. This method allows the application to use the same presentation 
space for aU drawing in a specified window. 

Micro presentation spaces created by using the GpiCreatePS function should 
be destroyed by calling the GpiDestroyPS function before the application termi­
nates. Do not call the WinReleas~PS function to release a presentation space 
obtained by using the GpiCreatePS function. Before terminating, applications 
should also use the DevCloseDC function to close any device contexts opened 
by using the DevOpenDC function. No action is necessary for device contexts 
obtained wi~h the WinOpen WindowDC function, since the system automatically 
closes these device contexts when destroying the associated windows. 



274 MS OS/2 Programmer's Reference, Vol. 1 
iiiiffiiriljminm~fiU~~~~;p'_:if.~=I~rnll!:~i~!~~Hfii~lffiiimiWiii!ill!t!HU~!~~i~~~mt~f§ji;a~r~lli!iiF.fi~iliir.ij!Ii§~iiill~i9~! 

20.3.4.3 Normal Presentation Spaces 

Figure 20.6 

The normal presentation space supports the full power of MS OS/2 graphics, 
including retained graphics. The main advantages of a normal presentation space 
over the other two presentation-space types are its support of all graphics func­
tions, including retained graphics, and its ability to be associated with many 
kinds of device contexts. 

A normal presentation space can be associated with many different device con­
texts. Typically, this means that an application creates a normal presentation 
space and associates it with a window device context for screen display. When 
the user asks to print, the application associates the same presentation space 
with a printer device context. Later, the application can reassociate the presenta­
tion space with the window device context. A presentation space can be associ­
ated with only one device context at a time, but the normal presentation space 
allows the application to change the device context whenever necessary. Figure 
20.6 shows how an application typically routes graphics through one normal 
presentation space into another device context: 

Normal Presentation Space 

Application 

Normal 
presentation 

space 

Device 
context 

Device 
context g . . . . . .= : 

Device 

A normal presentation space can be associated with a device context when the 
normal presentation space is created, or association can be deferred to a later 
time. The GpiAssociate function associates a device context with a normal 
presentation space after the presentation space has been created. An application 
typically associates the normal presentation space with a device context when 
calling the GpiCreatePS function and later associates the presentation space 
with a different device context by calling GpiAssociate. To obtain a device con­
text for a window, call the WinOpenWindowDC function. To obtain a device 
context for a device other than the screen, call the DevOpenDC function. 

An application typically creates a normal presentation space during initialization 
and uses it until termination. Each time the application- receives a WMJ> AINT 
message, it should pass the handle of the normal presentation space as an argu­
ment to the WinBeginPaint function; this prevents the system from returning a 
cached-micro presentation space. The system modifies the visible region of the 



Chapter 20: Painting and Drawing 275 
~~ii5is!aa!~imtliNf~m!l~i~~rn:!~.fiiia!~!!fiii!!~~l~i~I~!~~i~~~!i~~i2i~fii!i~1~ilir;.miiijii1l!siiinuj~l~iffi.!~rs~!i~,#.ml~ 

supplied normal presentation space and returns the presentation space to the 
application. This method allows the application to use the same presentation 
space for all drawing in a specified window. 

Normal presentation spaces created by using the GpiCreatePS function should 
be destroyed by calling the GpiDestroyPS function before the application ter­
minates. Do not call the WinReleasePS function to release a presentation space 
obtained by using the GpiCreatePS function. Before terminating, applications 
should also use the DevCloseDC function to close any device contexts opened 
by using the DevOpenDC function. No action is necessary for device contexts 
obtained with the WinOpenWindowDC function, since the system automatically 
closes these device contexts when destroying the associated windows. 

20.4 Printing 
Although a detailed discussion of printing is beyond the scope of this chapter, 
printing should be seen as a variation of screen painting. To draw in a window, 
an application issues graphics calls to a presentation space associated with a 
screen device context. To print, the application makes graphics calls to a presen­
tation space associated with a printer device context. In an application that sup­
ports a what-you-see-is-what-you-get window display, the printing code should be 
the same as or very similar to the window-display code, as though the printed 
page were an 81f2-by-11-inch window. (Of course, many applications will optimize 
printing code to take advantage of such properties of the output device as high­
resolution page-description languages.) 

An application achieves greater device-independence if it does not use pels as its 
drawing unit. For example, if an application does all its drawing into a presenta­
tion space with PU-LOENGLISH units (.01 inch), a 100-unit line is certain to 
be one inch long on any printing device. The presentation space and device con­
text automatically scale a drawing to compensate for the resolution of the output 
device. 

20.5 Summary 
This section summarizes the window styles related to window painting; the func­
tions that control presentation spaces, device contexts, and window regions; and 
the messages related to window painting. 

20.5.1 Window Styles for Painting 
Most of the styles relating to window drawing can be set either for the window 
class (CS prefix) or for an individual window (WS prefix). The following styles 
control how the system manipulates the window's regions and how the window is 
notified to paint itself: 

WS_CLIPCHILDREN, CS_CLIPCHILDREN All of the child windows of a 
window with this style. are excluded from the window's visible region. This style 
protects child windows but more time is required when calculating the visible 
region. This style is normally not necessary, since if the parent and child overlap 



276 MS OS/2 Programmer's Reference, Vol. 1 
i1i~1jrilijmi!I.ID!i!ijf{g_jJili!!~~!E;~;mf4liiti~ll!!!~;~!~~Hiji~lffiiimiWiii!illH!Hn~!ffi~!~~jiimt~t§jim~r~ims;Yii~i!t!!:i9arJ~m~F. 

and are both invalidated, the parent is drawn before the child. If the child is 
invalidated independently from the parent, only the child is redrawn. If the 
update region of the parent does not intersect the child, drawing· the parent 
should not disturb the child. 

WS_CLIPSIBLINGS, CS_CLIPSIBLINGS Any windows that have the same 
parent as a window with this style and that are in front of the window are 
excluded from the window's visible region. This style protects windows with the 
same parent from being drawn in accidentally but requires more time when cal­
culating the visible region. This style is appropriate for windows that overlap and 
that have same parent. 

WSYARENTCLIP, CSYARENTCLIP The visible region for a window with 
this style is the same as the visible region of the parent window. This style sim­
plifies the calculation of the visible region but is potentially dangerous, since the 
parent window's visible region is usually larger than the child window. Windows 
with this style should not draw outside their boundaries. 

WS_SA VEBITS, CS_SA VEBITS The system saves the bits underneath a win­
dow with this style when the window is displayed. When the window moves or is 
hidden, the uncovered bits are simply restored by the system; there is no need to 
add the area to the uncovered window's update region. Because this operation 
can consume a great deal of memory, it is recommended only for transient win­
dows such as menus and dialog boxes, not for main application windows. 

WS_SYNCP AINT, CS_SYNCP AINT Windows that have this style receive 
WMY AINT messages as soon as their update regions are not empty and are 
updated immediately (synchronously). For more details on synchronous painting, 
see Section 20.3.1. 

CS_SIZEREDRA W A window with this class style receives a WM.Y AINT 
message and is completely invalidated whenever the window is resized, even if it 
is made smaller. (Typically, only the uncovered area of a window is invalidated 
when a window is resized.) This class style is useful when an application scales 
graphics to fill the current window. 

20.5.2 Functions 
The following functions control presentation spaces, device contexts, and win­
dow regions: 

DevCloseDC Closes a device context created by using the DevOpenDC func­
tion. Do not use this function to close a device context that was created by using 
the WinOpen WindowDC function. 

DevOpenDC Creates a device context for a specified device type. 

GpiAssociate Creates an association between a presentation space and a device 
context. Any subsequent drawing to the presentation space goes to the specified 
device. This function is typically used only with normal presentation spaces, 
since micro presentation spaces must be associated with a device context during 
the call to the GpiCreatePS function. 

GpiCreatePS Creates a handle of a normal or micro presentation space. The 
presentation space can be associated with a specified device context at the time 
of creation (this is mandatory for micro presentation spaces), or it can be associ­
ated later by using the GpiAssociate function. 



Chapter 20: Painting and Drawing 277 
iIl~irn§iif!iimlif~!pjf~m§lll~ig~tl..!:'~.ffli~!!!i!;i~~~It;i~~f~H~i;;li$iliffi~iifi~2i~iiii!i~!allifi;~iiiilill~diJfflj~!~i~f~~~!§j~eJiimY 

GpiDestroyPS Destroys a presentation space. Do not attempt to destroy a 
cached-micro presentation space by using this function. 

WinBeginPaint Returns a handle of a presentation space that has a visible 
region equal to the intersection of the window's update region and the visible 
region of the window's presentation space. This function is called when a 
WMJl AINT message is received. If the hps parameter is a valid presentation­
space handle, the visible region of the presentation space is modified and the 
handle is returned. If the hps parameter is NULL, the system returns the handle 
of a cached-micro presentation space. The update region of the window is set to 
NULL by this function because the system assumes that the caller will do all 
drawing necessary to fill the invalid region of the window. 

WinEnableWindowUpdate Sets the window-visibility state for subsequent draw­
ing~ without causing any visible change to the window. This function can be used 
to defer drawing when making a series of changes to a window. 

WinEndPaint Indicates that a drawing operation that was started by using the 
WinBeginPaint function is finished. The hps parameter is the presentation-space 
handle returned by WinBeginPaint. A cached-micro presentation space is 
returned to the system for reuse and the drawing environment of a previous 
presentation space is restored. 

WinExcludeUpdateRegion Removes the update region from the clip region of 
the specified window. This can be useful for optimization, since it prevents draw­
ing in the update region. The application must restore the clip region when the 
exclusion is no longer needed. 

WinGetClipPS Returns a clipped presentation space for the specified window. 
The type of clipping depends on the flag settings of the function's parameters. 
The presentation space should be released by using the WinReleasePS function. 

WinGetPS Returns the handle of a cached-micro presentation space for the 
specified window. The presentation space should be released by using the Win­
ReleasePS function. 

WinGetScreenPS Returns a presentation-space handle that can be used to draw 
anywhere on the screen. 

WinlnvalidateRect Adds the specified rectangle to the update region of the 
window. If the specified window has the WS_SYNCP AINT style, it receives a 
WMJl AINT message before WinlnvalidateRect returns. This function can be 
used to force part of a window to be repainted. If the flncludeChildren parame­
ter is TRUE, any child windows that intersect the invalid rectangle are also 
invalidated. 

WinlnvalidateRegion Adds the specified region to the update region of the 
specified window. If the window has the WS_SYNCP AINT style, it receives a 
WMJ AINT message before WinlnvalidateRegion returns. This function can be 
used to force a portion of a window to be repainted. If the flncludeChildren 
parameter is TRUE, any child windows that intersect the invalid region are also 
invalidated. 

WinLockWindowUpdate Prevents updates to the specified window and its child 
windows. This is useful if you need to delay updating during incremental data 
changes, such as adding items to a list box. Calling WinLockWindowUpdate 



278 MS OS/2 Programmer's Reference, Vol. 1 
ilijl!1ir~jii!il1iWidi!m~ii1i~~~;p'~~;§l=I~~ll~:~n_~i~~Hffi~liruil!!~ii!w.H!ml~!~ai1~~JilmI~~j;a~r~;1~F.fj~jll~nf!Ii§~lii!fitlfi~! 

with NULL for the hwndLock Update parameter invalidates the windows that 
were previously locked and causes WMY AINT messages to be sent to those 
windows. 

WinLockVisRegions Locks or unlocks the visible regions of all windows on the 
screen. This function is useful to threads because it prevents the visible regions 
of windows from changing while the thread performs a screen operation, such as 
copying screen pels into a memory bitmap. 

WinOpen WindowDC Returns a device-context handle for the specified win­
dow. Attempting to open more than one device context for a given window is an 
error. The returned device context is automatically closed when the window is 
destroyed; it must not be closed by using the DevCloseDC function. 

WinQueryUpdateRect Returns the coordinates of the smallest rectangle that 
encloses the window's update region. 

WinQueryUpd~teRegion Obtains the update region of the specified window. 

WinQueryWindowDC Returns the device-context handle associated with the 
specified window. 

WinReleasePS Releases the handle of a cached-micro presentation space that 
was obtained by using the WinGetPS or WinGetClipPS function. This function 
should not be used for presentation-space handles that are not cached-that is, 
WinReleasePS should not be used for presentation spaces obtained by using the 
GpiCreatePS function. 

Win ValidateRect Removes the specified rectangle from the update region of 
the window. This function can be used to avoid duplicate drawing, by signaling 
that part of the window has been drawn without using the WMY AINT message. 

Win ValidateRegion Removes the specified region from the update region of 
the window. This function can be used to avoid duplicate drawing, by signaling 
that part of the window has been drawn without using the WMY AINT message. 

Win WindowFromDC Returns the handle of the window associated with the 
specified device-context. 

20.5.3 Messages for Painting 
The following message is used in the management of window painting: 

WM.Y AINT This message is sent when some portion of the window needs to 
be repainted. The window procedure should respond to the message by painting 
the relevant portion of the window. 



Chapter 

21 

Drawing in Windows 
21.1 Introduction............................................................ 281 

21.2 Window-Drawing Functions ....................................... 281 
21.2.1 Points and Rectangles........................................ 281 

21.3 Using Window-Drawing Functions ............................... 282 
21.3.1 Working with Points and Rectangles ...................... 282 
21.3.2 Scrolling Window Contents................................. 283 
21.3.3 Drawing Bitmaps............................................. 284 
21.3.4 Drawing Text .................................................. 285 

21.4 Summary................................................................ 285 





Chapter 21: Drawing in Windows 281 
~!~I!m!!mi~&I!~~iif!lfj!l~l'§lmiii!mif~~irn1Wf~~!aI~~!lif~mlfiim:m:~l!lb~mlIails&f1mlijJ!:r.ftiiifi~l§'!~:F.b'ili!iif!!r~mlmimim~r.diffliiBfI~~!i&l~ 

21.1 Introduction 
This chapter describes the functions that are specifically designed to help you 
draw in windows. (For information on the complete set of drawing functions, see 
Part 3, "Graphics Programming Interface.") You should also be familiar with the 
following topics: 

• Standard user-interface guidelines 

• Standard frame windows 

• Presentation spaces and device contexts 

• Graphics programming interface (GPI) 

21.2 Window-Drawing Functions 
The functions described in this chapter overlap the functionality of similar draw­
ing functions provided by the GPI sections of MS OS/2. The difference between 
the Gpi drawing functions and these window-drawing functions is that the func­
tions described in this chapter are designed specifically for drawing in windows. 
Because these window-drawing functions are less general than the Gpi functions, 
they are somewhat easier to use, but they also offer fewer capabilities than the 
complete set of Gpi functions. The functions described in this chapter offer a 
quick and easy way to create simple graphics. Programmers seeking more func­
tionality should use the Gpi functions of MS OS/2. 

21.2.1 Points and Rectangles 
All drawing in a window takes place in the context of the window's coordinate 
system. Locations in the window are described by POINTL structures that con­
tain an x- and a y-coordinate for the location. The lower-left corner of a window 
always has the coordinates (0,0). The POINTL structure has the following form: 

typedef struct _POINTL { 
LONG x; 
LONG y; 

} POINTL; 

The RECTL structure defines a rectangular area in a window. This structure is 
made up of two points that define the lower-left and upper-right corners of the 
rectangle. The RECTL structure has the following form: 

typedef struct _RECTL { 
LONG xLeft; 
LONG yBottom; 
LONG xRight; 
LONG yTop; 

} RECTL; 

An empty rectangle is a rectangle that has no area: the right coordinate is less 
than or equal to the left coordinate or the top coordinate is less than or equal to 
the bottom coordinate. 



282 MS OS/2 Programmer's Reference, Vol. 1 
1i~"~~4~~~!I~t~i~i!'fi!~~i!H~~1i§;11ll!mU!f.~itlmliajj~1Iii!'l$i~fi!~~~el~tiff.i4nmiUi~jml!~lii!iiEI~~iil~Ii!iU~ilitiii!imi~~til~ 

Figure 21.1 
Rectangle Types 

There are two types of rectangles in MS OS/2: inclusive-exclusive and inclusive­
inclusive. In inclusive-exclusive rectangles the lower-left coordinate of the rect­
angle is included in the rectangle at:ea while the upper-right coordinate is 
excluded from the rectangle area. In an inclusive-inclusive rectangle, both the 
lower-left and the upper-right coordinates are included in the rectangle. Figure 
21.1 shows both types of rectangles: 

(5,5) (5,5) 

(0,0) (0,0) 

Inclusive/Inclusive Inclusive/Exclusive 

The dimensions of an inclusive-exclusive rectangle can be calculated as follows: 

ex = rel.xRight - rel.xLeft; 
ey = rel.yTop - rel.yBottom; 

The dimensions of an inclusive-inclusive rectangle can be calculated as follows: 

ex = (rel.xRight - rel.xLeft) + 1; 
ey = (rel.yTop - rel.yBottom) + 1; 

In general, graphics operations involving device coordinates (such as regions, 
bitmaps and bit blits, and window management) use inclusive-exclusive rect­
angles. All other graphics operations, such as Gpi functions that define paths, 
use inclusive-inclusive rectangles. 

21.3 Using Window-Drawing Functions 
The functions described in this chapter are intended for simple drawing. The 
rectangle functions manipulate and combine rectangles. The drawing and 
scrolling functions perform within a presentation space's coordinate system. 
For more advanced drawing you should use the Gpi functions of MS OS/2. 

21.3.1 Working with Points and Rectangles 
MS OS/2 includes many functions for manipulating rectangles. Many of these 
functions change the coordinates of a rectangle. Other functions draw in a 
presentation space, using a rectangle to position the drawing operation. 



Chapter 21: Drawing in Windows 283 
rli.i!;tl1.~!!mm~m!~~l;i!!!ljJ1I~iialUi!i;1lmif;i,,~imi!§I~"I!2'!!ijj§!!Niim~!Iii1iflw.~~~~1ifS/f!r~ilfilijiliift;tjj~~~iF.blf§iJjf!;!~i~/~ss!~~!fi!iillf!~ri&~ 

The WinFillRect function fills a rectangle with a specified color. For example, to 
fill an entire window with blue in response to a WMJ>AINT message, you could 
use the following code fragment, which is taken from a window procedure: 

case WM_PAINT: 
hps = WinBeginPaint(hwnd, NULL, NULL); 
WinQueryWindowRect(hwnd, &rect); 
WinFillRect(hps, &rect, CLR_BLUE); 
WinEndPaint(hps) ; 
return OL; 

A more efficient way of painting a client window is to pass a rectangle to the 
WinBeginPaint function. The rectangle will be set to the coordinates of the rect­
angle that encloses the update region of the window. Drawing in this rectangle 
updates the window; this can make drawing faster if only a small portion of the 
window needs to be painted .. This method is shown in the following code frag­
ment. Notice that the WinFillRect function uses the presentation space and a 
rectangle defined in window coordinates to guide the paint operation. 

case WM_PAINT: 
hps = WinBeginPaint(hwnd, NULL, &rect); 
WinFillRect(hps, &rect, CLR_BLUE); 
WinEndPaint(hps); 
return OL; 

Of course, you can draw the entire window during the WMJ> AINT message, but 
the graphics output will be clipped to the update region. 

The default method of indicating that a particular portion of a window has been 
selected is for the WinInvertRect function to invert the rectangle's bits. 

The rest of the rectangle functions are mathematical and do not draw. They are 
used to manipulate and combine rectangles to produce new rectangles, which 
can then be used for drawing operations. 

The WinMap WindowPoints function converts the points from one window­
coordinate space to another window-coordinate space. If one of the specified 
windows is HWNDJ)ESKTOP, then screen coordinates are used. This function 
is useful for converting from window coordinates to screen coordinates and back 
again. 

21.3.2 Scrolling Window Contents 
An application normally responds to a click in a scroll bar by scrolling the con­
tents of the window. This operation typically has three parts. First, the applica­
tion changes its internal data-representation state to show what portion of the 
image should now be in the window. Next, the application moves the current 
image in the window. Finally, the application draws in the area that has been 
uncovered by the scrolling operation. 

For example, a simple text editor may display a small portion of several pages of 
text in a window. When the user clicks the down arrow of the vertical scroll bar, 
the application should move all the text up one line and display the next line at 
the bottom of the window. 



284 MS OS/2 Programmer's Reference, Vol. 1 
~li\~fi!.ffiOO!!t~u;wJ1!;~!mIIm.~!!!~mt§!Ip.I~m~itiilriilSiiu,nii\m!Ml~i5ytiIe~~_lm~ln!\iii!h~ij~im~\~S.!\~ID!slle1i~~ 

When the user clicks the down arrow of the vertical scroll bar, the client window 
of the frame window that owns the scroll bar receives a message. The applica­
tion responds to this message by changing its internal data-representation state to 
show which line of text is topmost in the window, scrolling the text in the win­
dow up one line, and drawing the new line at the bottom of the window. There is 
normally no need to completely redraw the entire window, because the scrolled 
portion of the image remains valid. 

The WinScrollWindow function allows applications to scroll the contents of 
their windows. WinScrollWindow scrolls a specified rectangular area of the 
window by a specified x- and y-offset (in window coordinates). By setting the 
SWJNVALIDATERGN flag for this function, the areas uncovered by the 
scroll are automatically added to the window's update region, causing a 
WMYAINT message to be sent to the window for those areas. 

For example, in the simple text editor described earlier, the following call scrolls 
the text up one line (assuming that iVScrolllnc is the height of the current font) 
and adds the uncovered area at the bottom of the window to the update region. 
/* Scroll, adding new area to update region. */ 

WinScrollWindow (hwnd, /* window */ 
0, /* x-displacement */ 
- (iVScrollInc), /* y-displacement */ 
NULL, /* scroll rectangle is entire window */ 
NULL, /* clip rectangle is entire window */ 
NULL, /* update region */ 
NULL, /* update rectangle */ 
SW_INVALIDATERGN); /* flags */ 

When the uncovered area at the bottom of the window is added to the window's 
update region, a WMJ> AINT message is sent to the window. When the message 
is received, the window draws the line of text at the bottom of the window. If 
the window has the WS_SYNCP AINT style, the WMJ> AINT message is sent to 
the window before the WinScrollWindow function returns. 

To optimize scrolling speed for repeated scrolling operations, you can omit the 
SWJNVALIDATERGN flag from the call to the WinScrollWindow function. 
This prevents WinScrollWindow from adding the invalid region uncovered by 
the scroll to the window's update region. If the SWJNVALIDATERGN flag is 
omitted, you must pass a region or rectangle to WinScrollWindow. The rectangle 
or region will contain the area that needs to be updated after scrolling. 

21.0.1 Drawing Bitmaps 
The WinDrawBitmap function draws a bitmap, specified by a bitmap handle, in 
a specified rectangle. This function allows you to shrink or enlarge the bitmap 
from the source rectangle to the destination. WinDrawBitmap can also draw in 
several different copy modes, including using the OR operator to combine 
source and destination pels. 



Chapter 21: Drawing in Windows 285 
~!f1n~f!m!~~f~ISfGfi~jtl~ijlmlifi1lS1im,.~irnimrf.~!§!!!i~!lUamffiliiiiruiw.~@.~~mli!f1~i!iJS;!rr.ffiifii~~~lF.Mif;!jf!i!~isl.mJmi¥.l;m~itimmf~~~! 

21.3.4 Drawing Text 
There are many ways to draw text in a window in an MS OS/2 application. The 
simplest way is to use the WinDrawText function, which draws a single line of 
text in a specified rectangle, using a variety of alignment methods. 

The WinDrawText function allows you to set a flag so that the function does not 
draw any text; instead, it returns the number of characters in the string that will 
fit in the specified rectangle. For a section of running text, an application could 
alternate between computation and calls to WinDrawText to draw successive 
lines of text. The DT_WORDBREAK flag in the WinDrawText function can be 
set, when performing this kind of repetitive operation, to put line breaks on 
word boundaries rather than between arbitrary characters. 

21.4 Summary 
The following functions are provided specifically for drawing in windows and 
manipUlating rectangles: 

WinCopyRect Copies the coordinates of one rectangle to another. 

WinDrawBitmap Draws a bitmap in a rectangle, scaling the bitmap to fit, if 
necessary. 

WinDrawBorder Draws a rectangle. 

WinDrawText Draws a single line of formatted text in a specified rectangle. 

WinEqualRect Returns TRUE if two rectangles have the same coordinates or 
FALSE if the coordinates are different. 

WinFilIRect Fills a rectangle with a specified color. 

WinlnftateRect Enlarges or shrinks the rectangle horizontally and vertically by 
the specified amounts. If the specified values are negative, the rectangle is inset. 

WinlntersectRect Calculates the intersection of two source rectangles and 
returns the result in a destination rectangle, or returns FALSE if the result is an 
empty rectangle. 

WinlnvertRect Inverts the pels in a rectangle. 

WinIsRectEmpty Returns TRUE if the rectangle is empty (that is, if the right 
coordinate is less than or equal to the left coordinate or if the top coordinate is 
less than or equal to the bottom coordinate). 

WinMap WindowPoints Converts points from one window-coordinate system to 
another. 

WinOffsetRect Changes the left and right coordinates of a rectangle by the 
specified offsets. 



286 MS OS/2 Programmer's Reference, Vol. 1 
S~"~~J~~~!I~~~i~i~!ifiU~i!Hm~I?i~iii~~I~~iim!raii~I~,Lit!~il~~~ml~HfiiaU~i~iiijjjlljill~f;lJ!i!~!ii~mi!~~i~~!liffii!&mi~~ffi!§ 

WinPtInRect Returns TRUE if the point is inside the rectangle or FALSE if it 
is not. 

WinScrollWindow Scrolls the contents of a rectangular area of a window. If 
the proper flags are set, the area uncovered by scrolling is added to the window's 
update region,causing.a WMJ» AINT message to be sent. The application can 
then respond to the message by drawing in the invalidated region of the window. 

WinSetRect Sets the rectangle's coordinates. 

WinSetRectEmpty Sets the coordinates of a rectangle to (0,0,0,0). 

WinSubtractRect Subtracts the coordinates of one rectangle from those of 
another rectangle. This function returns FALSE if the result is an empty rect­
angle. 

WinUnionRect Calculates a rectangle that encloses two source rectangles. This 
function returns FALSE if the result is an empty rectangle. 



Chapter 

22 

Mouse Pointers and Icons 
22.1 Introduction............................................................ 289 

22.2 About Mouse Pointers .......... ............. ..... .................. 289 
22.2.1 Mouse Pointers and Icon Bitmaps ... ~ ..................... 289 
22.2.2 Mouse-Pointer Hot Spot .................................... 290 

22.3 Using a Mouse Pointer in an Application .... ....... ...... .... 290 
22.3.1 Creating or Loading a Mouse Pointer. .................... 290 
22.3.2 Changing the Mouse Pointer................................ 290 
22.3.3 Drawing an Icon.............................................. 291 
22.3.4 System Bitmaps............................................... 291 

22.4 Summary ................................................................ 291 
22.4.1 Predefined Mouse Pointers .................................. 292 
22.4.2 Mouse-Pointer Functions.................................... 293 





Chapter 22: Mouse Pointers and Icons 289 
~igfl#;l~i!!imlf.~!i§~:!5.:lii!iiiim-.!~I!!M~;;II~!!fa...~~~il6lfiiml!Ai?lSiiirn~j~gmHSiialll!l~~ffii!~r~~iji§rn!iI1mi~;tiflm~i~mj~r!(;!i~ 

22.1 Introduction 
This chapter describes how to use mouse pointers and icons in your applica­
tions. You should also be familiar with the following topics: 

• Standard user-interface guidelines 

• Resources and using the MS OS/2 Resource Compiler (rc) 

• Window messages and message queues 

• Bitmaps 

22.2 About Mouse Pointers 
Mouse pointers are special bitmaps that MS OS/2 uses to show a user the 
current location of the mouse on the screen. The mouse pointer moves around 
the screen in response to user manipulation. 

Mouse pointers are also used to draw icons on the screen, such as graphics in 
inessage boxes and icons that represent minimized windows on the desktop. The 
data structures for mouse pointers and icon bitmaps are identical. 

22.2.1 Mouse Pointers and Icon Bitmaps 

Figure 22.1 

Mouse pointers and icons are made up of monochrome bitmaps that MS OS/2 
uses to paint an image of the pointer or icon on the screen. A monochrome bit­
map is a series of bytes. Each bit corresponds to a single pel in the image (the 
bitmap representing the display typically has four bits for each pel). 

A mouse pointer or icon bitmap is always twice as tall as it is wide. The top half 
of the bitmap is. an AND mask, where the bits are combined using the AND 
operator with the screen bits where the pointer is being drawn. The lower half of 
the bitmap is the XOR mask, which is combined using the XOR operator with 
the destination screen bits. 

The combination of the AND and XOR masks results in four possible colors in 
the bitmap. The pels of an icon or pointer can be bla(;k, white, transparent (the 
screen color beneath the pel), or inverted (inverting the screen color beneath the 
pel). Figure 22.1 shows the relationship of the bit values in the AND and XOR 
masks: 

Bit Values in the AND and XOR Masks 

AND mask 
XOR mask 

Result 

o 
o 

Black 

o 
1 

White 

1 
o 

Transparent 

1 
1 

Inverted 



290 MS OS/2 Programmer's Reference, Vol. 1 
If!mlifrilir,~~~ium5tmili~mt~H[~im;f;1Iif~.m~.Fl~~§!ii!!~iif:inmlmim!~J!~:§;i5!]i~~l~.~mlfdi1iUiimiiitim,~i~ililifiU~1f:iil~ 

22.2.2 Mouse-Pointer Hot Spot 
Each mouse pointer has a hot spot defined as an x- and y-offset from the lower­
left corner of the mouse-pointer bitmap. The hot spot defines the single point 
that represents the mouse-pointer location. For the arrow-shaped pointer, the 
hot spot is at the tip of the arrow. For the cross-hairs pointer, the hot spot is at 
the center of the cross. Each pointer has its own hot spot. 

22.3 Using a Mouse Pointer in an Application 
Applications typically use mouse-pointer resources to control the appearance of 
the mouse pointer and to draw icons in windows. The following sections show 
how to use mouse pointers in applications. 

22.3.1 Creating or Loading a Mouse Pointer 
Before an application can use a mouse pointer, it must first receive a handle to 
the pointer. Most applications load mouse pointers from the system or their own 
resource file. MS OS/2 maintains many predefined mouse pointers that an appli­
cation can use by calling the WinQuerySysPointer function. System mouse 
pointers include all the standard mouse-pointer shapes and message-box icons. 

You can also load mouse pointers that are defined in the resource file for your 
application. Typically, you define the mouse-pointer resource using Icon Editor 
or a similar program. The resulting mouse pointer or icon can then be included 
in your resource file. This is done by pulling the Icon Editor data file into your 
resource file using the key word POINTER, a resource ID number, and a 
filename for the mouse-pointer data created by the Icon Editor. When the 
mouse-pointer resource is included in the resource file, you can use it by calling 
the WinLoadPointer function, specifying the pointer-resource ID and the 
resource-module handle. Typically, the resource resides in the executable file of 
the application, so you can supply NULL for the module handle to indicate the 
current application resource file. 

Finally, you can create mouse pointers at run time by constructing a bitmap for 
the pointer and calling the Win Create Pointer function. The bitmap must be 
twice as tall as it is wide, with the first half defining the AND mask and the 
second half defining the XOR mask. You also must specify the hot spot when 
you create a mouse pointer. The handle returned can be used to set or draw the 
mouse pointer. 

22.3.2 Changing the Mouse Pointer 
Once you create or load a mouse pointer, you can change its shape by calling the 
WinSetPointer function. The following are three main situations where an appli­
cation typically changes the shape of the mouse pointer: 

• When an application receives a ~OUSEMOVE message, there is an 
opportunity to change the mouse pointer based on its location the window. 
If you want the standard arrow pointer, pass this message on to the Win­
DeLWindowProc function. 

• When an application is about to start a time-consuming process during which 
it will not accept user input, the application should display the "system-wait" 



Chapter 22: Mouse Pointers and Icons 291 
sigff~i~i~;~l:r.~!i~i!!ililiii~m;~liaJ;:tiiifi~"'~im!~I~ffl3il~~ii§h'iiE!!I~iiifi!!iii!P.i!?§l;mli!lU~~~'~~~i!!i:i;m~ii;iIi!tiSiiilk1ilii!ij;!fi!!~ 

mouse pointer. This pointer is shaped like an hourglass, indicating that the 
user must wait. Once this process is complete, the application should reset 
the mouse pointer to its former shape. 

• The following code fragment shows how to save the current mouse pointer, 
set the hourglass pointer, and then restore the original mouse pointer. 
Notice that the hourglass pointer is also saved in a global variable so that 
the application can return it when responding to a ~OUSEMOVE 
message during a time-consuming process. 

/* Get current pointer. */ 

hptrOld = WinQueryPointer(HWND_DESKTOP); 

/* Get wait mouse pointer. */ 

hptrWait = WinQuerySysPointer(HWND_DESKTOP, SPTR_WAIT, FALSE); 

/* Save wait pointer to use in WM_MOUSEMOVE processing.*/ 

hptrCurrent = hptrWait; 

/* Set mouse pointer to wait pointer.*/ 

WinSetPointer(HWND_DESKTOP, hptrWait); 

/* Do time-consuming operation; restore original mouse pointer.*/ 

WinSetPointer(HWND_DESKTOP, hptrOld); 

• The mouse pointer can be used to indicate the current operational mode of 
an application. For example, a paint program with a palette of drawing tools 
should change the mouse pointer shape to indicate which drawing tool is 
currently in use. 

22.3.3 Drawing an Icon 
You can use mouse-pointer resources to draw icons. The WinDrawPointer func­
tion draws a specified mouse pointer in a specified presentation space. Many of 
the predefined system mouse pointers are standard icons displayed in message 
boxes. 

22.3.4 System Bitmaps 
In addition to mouse pointers and icons defined by the system, you can use stan­
dard system bitmaps by calling the WinGetSysBitmap function. This function 
returns a bitmap handle that is passed to the WinDrawBitmap function or one of 
the Gpi bitmap calls. The system uses standard bitmaps to draw portions of con­
trol windows such as the system menu, the minimize/maximize box, and scroll­
bar arrows. 

22.4 Summary 
The following sections describe the system mouse pointers and the functions 
available for mouse pointers, icons, and system bitmaps. 



292 MS OS/2 Programmer's Reference, Vol. 1 
nimtar.~~;~!iin~mj~iifrim!~~~~.Ji!~fil!J~il~F:ft!t:~§!te~iiGm;!!$irl.!~!!1§i!i!ii!]if.r:!i~~~mlfd~Uil§im~~iR:lj§i~~i~ru11f:fii! 

22.4.1 Predefined Mouse Pointers 
MS OS/2 provides many predefined mouse-pointer shapes. You receive a handle 
to these pointers by using one of the following constants as an argument to the 
WinQuerySysPointer function: 

SPTILAPPICON Square icon. 

SPTILARROW Arrow that points to the upper-left corner of the screen. 

SPTRJCONERROR Icon containing an exclamation point, used in a warning 
dialog box. 

SPTRJCONINFORMATION Octagon-shaped icon containing the image of a 
human hand, used in a warning dialog box. 

SPTRJCONQUESTION Icon containing a question mark, used in a query 
dialog box. 

SPTRJCONW ARNING Icon containing an asterisk, used in a warning dialog 
box. 

SPT~OVE Four-headed arrow, used when dragging an object or window 
around the screen. 

SPTlLSIZENESW Two-headed diagonal arrow that points from the upper~ 
right (northeast) window border to the lower-left (southwest) window border, 
used when sizing a window. 

SPTlLSIZENS Two-headed arrow that points from top to bottom (north to 
south), used when sizing a window. 

SPTlLSIZENWSE Two-headed diagonal arrow that points from the upper-left 
(northwest) window border to the lower-right (southeast) window border, used 
when sizing a window. 

SPTILSIZEWE Two-headed arrow that points from left to right (west to east), 
used when sizing a window. 

SPTlLTEXT Text-insertion and selection pointer, often called the I-beam 
pointer. 

SPTlL WAIT Hourglass, used to indicate that a time-consuming operation is in 
progress. 

MS OS/2 contains a second set of predefined mouse pointers that are used as 
icons in Presentation Manager. The resulting mouse pointer must be explicitly 
destroyed using the WinDestroyPointer function before the application ter­
minates. These icons are available for application use by supplying one of the 
following constants to the WinQuerySysPointer function: 

SPTlLFILE Icon representing a single file (in the shape of a single sheet of 
paper). It must be explicitly destroyed before the application terminates. 

SPTlLFOLDER Icon representing a file folder. It must be explicitly destroyed 
before the application terminates. 

SPTRJLLEGAL Circular icon containing a slash, used to indicate an illegal 
operation. It must be explicitly destroyed before the application terminates. 



Chapter 22: Mouse Pointers and Icons 293 
!!gli~l~i~!~IIi.~!Siffl!li~liii~iaj;~ji!if~~iii!!~mm....~tm!!ii1ii5imifili~~ilj!J~i!i~if."li!ii;mi~!Wimiilli~~!'m~~lil~Hit~ifriH!ii~~ltil~!.ii1iiJ~ 

SPTR-MULTFILE Icon representing multiple files. It must be explicitly 
destroyed before the application terminates. 

SPTRJlROGRAM Icon representing an executable file. It must be explicitly 
destroyed before the application terminates. 

22.4.2 Mouse-Pointer Functions 
The following mouse-pointer functions can be used in your application: 

WinCreatePointer Creates a mouse pointer from a bitmap. 

WinDestroyPointer Destroys a pointer or an icon. A pointer can only be 
destroyed by the thread that created it. This function decrements the use count 
of processes that have accessed the pointer. The pointer is deleted when the use 
count reaches zero. 

WinDrawPointer Draws the specified mouse pointer (or icon) in a presentation 
space. 

WinGetSysBitmap Returns a handle to one of the standard bitmaps provided 
by the system. The bitmap returned can be used for any routine bitmap opera­
tions. The WinGetSysBitmap function returns a new copy of the system bitmap 
each time it is called. 

The following bitmaps are available: 

Bitmap 

SBMP .-BTNCORNERS 

SBMP _CHECKBOXES 

SBMP _CHILDSYSMENU 

SBMP-DRIVE 

SBMPYILE 

SBMPYOLDER 

SBMP ~AXBUTTON 

SBMP~NUATTACHED 

SBMP ~ENUCHECK 

SBMP ~INBUTTON 

SBMP JROGRAM 

SBMP -RESTOREBUTTON 

Description 

Push-button corners. 

Check-box or radio-button check 
mark. 

Smaller version of the system-menu 
bitmap, used in child windows. 

Symbol used by File System to indicate 
a disk drive. 

Symbol used by File System to indicate 
a file. 

Symbol used by File System to indicate 
subdirectories. 

Maximize button. 

Symbol used to indicate that a menu 
item has an attached, hierarchical 
menu. 

Menu check mark. 

Minimize button. 

Symbol used by File System to indicate 
that a file is an executable program. 

Restore button. 



294 MS OS/2 Programmer's Reference, Vol. 1 
J!lmJBfiiJ!15!~frurdiimisiflim!~i!ii._mtfiftfi!.mi~.r.;~~I~~H!mif:i§;Jl$iiiti~i!Ii§j!i!5P.1Ji~~iiS'.8fmlffd!iml§imi5*iit~i~l!f:iii!~1f:iii 

Bitmap 

SBMP _SBDNARROW 

SBMP _SBLFARROW 

SBMP _SBRGARROW 

SBMP _SBUPARROW 

SBMP _SIZEBOX 

SBMP _SYSMENU 

SBMP_TREEMINUS 

SBMP _TREEPLUS 

Description 

Scroll-bar down arrow. 

Scroll-bar left arrow. 

Scroll-bar right arrow. 

Scroll-bar up arrow. 

Symbol used to indicate an area of a 
window that a user can click to resize 
the window. 

System menu. 

Symbol used by File System to indicate 
that an entry in the directory tree is 
empty. 

Symbol used by File System to indicate 
that an entry in the directory tree con­
tains more files. 

WinLoadPointer Loads a pointer resource from a resource file into the system 
and returns a mouse-pointer handle. A new copy of the pointer is created each 
time this function is called. Once used, the pointer created by this function must 
be explicitly destroyed by using the WinDestroyPointer function. 

WinQueryPointer Returns a mouse-pointer handle for the current mouse 
pointer. and can be used to restore the mouse pointer after any temporary 
changes. 

WinQueryPointerInfo Retrieves information about a specific mouse pointer, 
including its bitmap and its hot-spot coordinates. 

WinQueryPointerPos Retrieves the current mouse-pointer position in screen 
coordinates. 

WinQuerySysPointer Returns a handle to the specified system mouse pointer. 
You can specify whether you want a handle to the system's copy of the mouse 
pointer or if you want a separate copy for modification. 

WinSetPointer Sets the current mouse pointer. 

WinSetPointerPos Sets the mouse-pointer position in screen coordinates. 

WinShowPointer Shows or hides the mouse pointer. 



Chapter 

23 

Cursors 
23.1 Introduction............................................................ 297 

23.2 About Cursors......................................................... 297 

23.3 Using Cursors in an Application ................................. 297 
23.3.1 Creating a Cursor ...... ....... ......... ................ ...... 297 
23.3.2 Destroying a Cursor.......................................... 298 
23.3.3 Showing the Cursor.......................................... 298 
23.3.4 Positioning the Cursor....................................... 298 

23.4 Summary ................................................................ 298 





Chapter 23: Cursors 297 
~a;I!Ei~~:i§il~!iifmiirifJffi!ffii~!ffii~n§!lffliii1ftiliim!im~~mn~i~E!i~mlii!!~mmff!~!ll;~i~m~~i~jgil.~~&$JlfSii~!i;;m!rn!~1!i~Hs.lS 

23.1 Introduction 
This chapter describes the functions that allow you to use cursors in your appli­
cations. You should also be familiar with the following topics: 

• Standard user-interface guidelines 

• Window activation and deactivation 

• Keyboard focus 

23.2 About Cursors 
A cursor is a rectangle that can be shown at any location in a window. It is usu­
ally used to mark a text-insertion point or to indicate when a control window has 
the keyboard focus. For example, entry-field controls use a flashing vertical bar 
to show the insertion point when the control has the keyboard focus. A button 
control, on the other hand, appears as a halftone rectangle the size of the button 
when the button has the keyboard focus. MS OS/2 draws and flashes the cursor, 
freeing the application from handling these details. Note that the cursor has no 
direct relationship with the mouse pointer. 

23.3 Using Cursors in an Application 
Typically, applications use cursors to mark the text-insertion point in a text win­
dow or to indicate that a window has the keyboard focus. 

There can be only one cursor in use by the system at one time, so windows 
must create and destroy cursors as they gain and lose the keyboard focus. 
The following code fragment shows how an application should respond to a 
W1LSETFOCUS message when using a cursor in a particular window: 

case WM_SETFOCUS: 
if (SHORT1FROMMP(mp2» { 

/* gain focus */ 

WinCreateCursor( ... ) ; 
WinShowCursor(hwnd, TRUE); 

} else { 

} 

/* lose focus */ 

WinDestroyCursor(hwnd); 

return OL; 

23.3.1 Creating a Cursor 
An application creates a cursor by calling the WinCreateCursor function. Gen­
erally, this is done when a window gains the keyboard focus. An application 
specifies the window in which the cursor will be displayed. This window may be 
HWNDJ)ESKTOP, an application window, or a control window. 

An application specifies the cursor position, in window coordinates, and the cur­
sor height and width. It also specifies whether the cursor rectangle should be 
filled, framed, flashing, or halftone. 



298 MS OS/2 Programmer's Reference, Vol. 1 
l!im:lm;!~iii::5~!ID~~i~i!1mll~Ijj~~~iiafim~mm~!~!i~imlf~iIDr:l~it.lffQt!l!iS~gr~.,fi!i!BJiiii~'~1I1~!r~~~;,r~!!m~!W,if.rjj;I~mi~f.f~flJ~a 

The cursor width is usually zero (nominal border width is used) for text-insertion 
cursors. This is preferable to a value of 1, since such a fine width is almost 
invisible on a high-resolution monitor. The cursor width may also be related to 
the window size; for example, when a button control uses a dotted-line cursor 
around the button text to indicate focus. 

Finally, an application can specify a clipping rectangle, in window coordinates, 
that controls the cursor clipping region. TypiCally, the most efficient strategy is 
to specify NULL, causing the rectangle to clip the cursor to the window rect­
angle. 

23.3.2 Destroying a Cursor 
Applications should destroy cursors by calling the WinDestroyCursor function 
when they lose the keyboard focus. It is important that they be destroyed when 
they lose the focus. Manipulating two cursors in MS OS/2 simultaneously can 
have unpredictable results and affect other applications. 

23.3.3 Showing the Cursor 
MS OS/2 maintains a "show level" for the cursor. The cursor is visible when the 
show level is zero. Each time the cursor is hidden, its show level is incremented. 
Each time the cursor is shown, its show level is decremented. Because the 
show/hide relationship is one for one, the show level can never go below zero. 

An application should show the cursor when it is first created since the cursor is 
created with a show level of 1. 

MS OS/2 automatically hides the cursor when the WinBeginPaint function is 
called, and shows the cursor when the WinEndPaint function is called. There­
fore, there is no conflict with the cursor during WMJ» AINT processing. 

23.3.4 Positioning the Cursor 
An application can set the position of an existing cursor by calling the Win­
Create Cursor function with the CURSOR-SETPOS flag set. This function can 
also be used to move a cursor around a window. Position arguments are given in 
window coordinates. To change the cursor size, destroy the current cursor and 
then create a new one with the desired size. 

23.4 Summary 
The following section summarizes the functions related to cursor management. 

WinCreateCursor Creates a new cursor or changes the position of an existing 
cursor. The cursor is created when the window gains the keyboard focus 
(receives a W~SETFOCUS message with the fFocus parameter set to TRUE). 

WinDestroyCursor Destroys the cursor. The cursor is destroyed when the win­
dow loses the keyboard focus (receives a ~SETFOCUS message with the 
fFocus parameter set to FALSE). 

WinShowCursor Shows or hides the cursor. The cursor is visible if its show 
level is zero. Hiding the cursor increments its show level. Showing the cursor 



Chapter 23: Cursors 299 
"~Ii!l~~~aiimffiirri!.lSi~JmF.in§!!f5ii!UilimIlUim~limil!i~f!f~lmlil!i§mm~~!!if;~lil'~~tBfjgll.~~B~fmi~!m!~r,~n!!fiSlli 

decrements the show level. The show level cannot go below zero (so the cursor 
can be shown an infinite number of times). 

WinQueryCursorInfo Fills in a supplied CURSORINFO data structure with 
information about the cursor, including its size, position, and current show level. 





Chapter 

24 

Printing 
24.1 Introduction............................................................ 303 

24.2 About Printing........................................................ 303 
24.2.1 The Print Queue and the Spooler.......................... 304 

24.3 Printing .................................................................. 305 
24.3.1 Specifying the Default Printer .............................. 305 
24.3.2 Opening a Device Context for a Printer.................. 306 

24.3.2.1 Logical Address ............ .............. ......... 306 
24.3.2.2 Printer-Driver Name............................... 307 
24.3.2.3 The Driver-Data Field............................. 307 
24.3.2.4 The Data-Type Field .............................. 307 
24.3.2.5 Using the Print Queue....... ... ................... 307 
24.3.2.6 Creating a Device Context........................ 308 

24:3.3 Starting a Print Job.............. ............................. 308 
24.3.4 Associating a Presentation Space.......................... 309 
24.3.5 Drawing for Printing......................................... 310 

24.3.5.1 Determining Page Size .. ...... ..... ... ..... ....... 310 
24.3.5.2 Printing a Page..................................... 312 
24.3.5.3 Finishing a Print Job .............................. 312 

24.3.6 Destroying the Printer Device Context................... 312 

24.4 Special Printing Topics .............................................. 313 
24.4.1 Page Setup... .................................................. 313 
24.4.2 Using a Thread to Print ..................................... 315 
24.4.3 Printing to a File.............................................. 315 
24.4.4 Printing a Bitmap............................................. 316 
24.4.5 Optimizing Printing for a Particular Printer.............. 317 

24.5 Summary ................................................................ 317 





Chapter 24: Printing 303 
~Slili~~m!I!!¥.iltlU~i~~n~jl!~§fi!~tiD.iiifili~i~'!i!iiIDIWiS!~~l!i!~!i;iR!mi!~~!i~\ii!!~m;~g~m~~~..JM~i~~J~iIIDi~\~!lSIi§~Im1! 

24.1 Introduction 
This chapter describes how to print graphics and text to printers and plotters. 
You should also be familiar with the following topics: 

• Standard user-interface guidelines 

• Device contexts and presentation spaces 

• Window painting 

• Graphics programming interface (GPI) 

• Extracting information from the os2.ini file 

24.2 About Printing 

Figure 24.1 

The graphics model in MS OS/2 is based on presentation spaces and device con­
texts. Applications draw in a presentation space by using Gpi graphics functions. 
The presentation space is associated with a device context that translates graph­
ics commands into device-specific operations that display graphics on a device. 
By associating a presentation space with different device contexts, an application 
can direct output to different devices, ranging from screen displays to printers 
and plotters. 

The central concept when printing in MS OS/2 is device independence. The 
same graphics commands used to draw on the screen can be used to draw graph­
ics. For example, a word processor can display its text in a window by calling 
Gpi character and string-drawing functions. When printing, the same application 
can use the same Gpi functions to draw the text, the only difference being that 
the presentation space is associated with a printer instead of with a window. 
Printing can be thought of as drawing in a window the size of a sheet of paper. 
Figure 24.1 shows how output goes through a presentation space to a device con­
text and finally to an output device. 

Application to Device Path 

Application 
Presentation 

space 
Device 
context 

Choosing the appropriate presentation-space units is an important considera­
tion in achieving device independence for an application. If you use device­
independent units, such as LOENGLISH, HIENGLISH, LOMETRIC, or 
HIMETRIC, your graphics commands will produce nearly the same results on 
all devices. If you use the PELS unit, you must explicitly allow for the pel size 
and aspect ratio of the output device. 



304 MS OS/2 Programmer's Reference, Vol. 1 
;~~i~!~fm~§!ill~t*-i~;/1m.!ltiljjf~~f1fi1i"~ft.n~!~!iG!imlf~i~~!kBjH~OOi!i1iJi!i? .. ~!i!~1!gfi:~~Im.~I~~G~;r.~~~~~:jiJll~~{~!f~f~tlJ~1 

For example, if you use LOENGLISH units (each unit is 0.01 inch), a call to the 
GpiBox function asking for a 100-unit box produces a 1-inch box on any output 
device, regardless of the pel size or aspect ratio. In contrast, if you issue the 
same command using the PELS unit, the box will be one size on the screen 
(approximately 72 pels per inch) and much smaller on a laser printer (300 pels 
per inch). Additionally, the box will not be square on an EGA display because 
its pels are not square. 

Of course, there are limits to the device-independence of MS OS/2 graphics, 
depending on the physical limitations of the output device. Output typically 
looks better on a laser printer with 300 pels per inch than on a dot-matrix printer 
with lower resolution. The value of device independence is that you do not have 
to be concerned with the different capabilities of each device. Instead, images 
are drawn in a virtual page and the device context makes the best use of the 
available resolution. 

If you use the PELS units, you can do scaling by querying the device context to 
determine the horizontal and vertical resolution. But it is much better to use a 
device-independent measurement unit and allow MS OS/2 to scale your drawings 
to the selected device. . 

24.2.1 The Print Queue and the Spooler 
MS OS/2 provides the means for applications to spool printing jobs so that 
applications do not wait for printing to finish before proceeding with other pro­
cessing. The main components of the spooling capability of MS OS/2 are the 
spooler (pmspool.exe) and the queue processor (pmprint.qpr). When an applica­
tion submits a queued print.ng job, the graphics commands that comprise the 
print job are output in a device-independent metafile format. The queue proces­
sor takes the metafile output and sends it to the printer, translating the contents 
into printer~specific commands. (The queue processor calls the printer driver to 
help translate the metafile commands into printer-specific commands.) 

The spooler mayor may not be involved in this process. If it is active, the 
spooler manages the metafile output as a spool file and coordinates a queue of 
spool files waiting to be processed by the queue processor. If the spooler is not 
active, the metafile is passed directly from the application to the queue proces­
sor. The spooler is an optional intermediary between the application and the 
queue processor. 

It is irrelevant to an application whether or not the spooler is active. The user 
determines if the spooler is running by using Control Panel. An application 
should always queue its printing output because this takes advantage of the 
device-independent features of metafiles and the queue processor. If the spooler 
is active, the queued output will be managed by the spooler. If the spooler is not 
active, the spooled output will go directly to the queue processor. An application 
might need to wait longer before printing finishes when the spooler is not active. 



Chapter 24: Printing 305 
i~i§iirn!!ini~lm!it~~im~~i~~i!!:!~.mf~!i!i!ii~n~~!~~~!~!!~i~~1:!§!i~~i~~!ii!i~!~i~m~iiWI~!iiJm!~!ii~!~~~!!i~ijmF.m! 

24.3 Printing 
The following sections describe the typical steps for printing from an MS OS/2 
application. The procedures described here allow you to print to the widest 
range of output devices. Special printing strategies are described later in this 
chapter. The following topics will be discussed: 

• Specifying the default printer 

• Opening a device context for a printer 

• Starting a print job 

• Associating a presentation space for printing 

• Drawing the print job in the presentation space 

• Finishing a print job 

• Destroying the printer device context 

24.3.1 Specifying the Default Printer 
A user specifies each printer attached to a particular system by making choices 
in Control Panel that is part of the user shell. A user can install new printer 
drivers and associate printers with print queues. Information about available 
printers can be found in the os2.ini file. You can access this information by call­
ing the WinQueryProfileString function, specifying the appropriate sections and 
keywords. 

An application should not set the default printer directly. Applications should 
use the printer specified as the default in the os2.ini file. 

Before using a printer with an application, you should know its driver name and 
the logical address. To find this information, find the name of the default printer 
by calling the WinQueryProfileString function for the "PM-SPOOLER" section 
and the "PRINTER" keyword, as shown in the following code fragment: 

/* Get the default printer name, for example, "PRINTER!." */ 

cb = WinQueryProfileString(hab, 
"PM_SPOOLER" , /* section name * / 
"PRINTER", /* keyname */ 
" " / * de fa u 1 t * / 
szPrinter, /* profile string */ 
32); /* maximum characters */ 

szPrinter[cb-2] = 0; /* remove terminating ";" */ 

The call to the WinQueryProfileString function fills the supplied string 
variable with the name of the installed printer. A typical printer name is 
"PRINTERl". You use this name of the printer as the keyword specifier and 
"PM-SPOOLERYRINTER" as the section name, and then call the WinQuery­
Profile String function again to get a string, called the "printer details," contain­
ing several substrings. The substrings contain the name of the printer driver and 
the name of the logical port that the printer is attached to. The following code 
fragment shows how to use the WinQueryProfileString function to extract this 
information. The code fragment assumes'that the name of the default printer in 



306 MS OS/2 Programmer's Reference, Vol. 1 
iiiih1i~jmi!!IDimliW~It!1ij1!~i1!Eilif.iH~~I~mll~nl1;~~~nID~liruilmWiii!ii!H!HU~!~l5ll~~JilmIm!mni~~r~mtIi5l$jllir.ti!I!5~§y~:U~~ 

the variable szPrinter has been filled in by a call to WinQueryProfileString. 

/* Get. the printer details. 
* Fill in a supplied string with substrings: 
* <physical port>;<driver name>;<queue port>;<network params>; 

typically tlLPT1;IBM4201;LPT1Q;;" 
*/ 

cb WinQueryProfileString(hab, 
"PM_SPOOLER_PRINTER", /* section 
szPrinter, /* keyname 
tItI /* default 
szOetails, /* profile 
256) ; /* maximum 

name */ 
*/ 
*/ 

string */ 
characters */ 

Once you extract the long string of substrings from os2.ini, you must parse the 
string to find the substrings. The string contains four substrings: the name of the 
physical-printer port (for example, LPTl), the name of the printer driver (for 
example, IBM4201), the name of the logical port (for example, LPTIQ), and 
network information (if any). Each substring is separated from the next by a 
semicolon (;), so you can use the library function strchr to search for semi­
colons and return pointers to the positions in the string. 

There can be more than one driver name. For example, the string might look 
like the following: 

LPT1;IBM4201,PSCRIPT;LPT1Q;; 

When more than one name is included, the first name is the default name. You 
should always check for a comma (,) in the driver name to make sure only one 
name is returned. Control Panel sometimes appends other information to the 
driver name. You should always parse the driver name and strip off text begin­
ning at the period. 

Once you determine the name of the driver and the logical address of the 
printer, you can open a device context and a presentation space for the printer. 

24.3.2 Opening a Device Context for a Printer 
Calls to the WinQueryProfileString function to produce the name of the 
installed-printer driver and logical address. Using this information, you can open 
a device context for a printer. The main role of the device context is to translate 
graphics calls from an application into device-specific operations. The device 
context is associated with a presentation space. All drawing in the presentation 
space is directed to the device rather than to the screen. 

You open a device context for a printer by calling the DevOpenDC function and 
passing it a pointer to a DEVOPENSTRUC data structure. There are eight 
pointers in DEVOPENSTRUC, but typically only the first four fields must be 
filled (the logical address, the printer-driver name, driver data, and data type) to 
open a device context. 

24.3.2.1 Logical Address 

The logical address of a printer is the destination for the print data. Gener-
ally, you use the third substring of the printer-detail string returned by the 
WinQueryProfileString function, as explained earlier in this chapter. You can 
also print directly to a physical port, such as LPTl, by specifying the name of 
the physical port as the logical address. You can also supply a filename to direct 
print output to a file. 



Chapter 24: Printing 307 
i!§i~iUi!iaaiill!l!m!PJit~m§l!~lf!!~iif.illi!~.mi.!~!!i!'§i~~~~~~!~!!~i~~~§~~i2i~iii!i~Iw:mr~iiliiiIl~fdiJmji;¥!ii~!ii;s~!!i~ii!.IiiI§Y 

24.3.2.2 Printer-Driver Name 
The printer-driver name identifies the driver that controls the printing device. 
The printer-driver name is usually extracted from the printer-detail string in the 
os2.ini file, as explained earlier in this chapter. MS OS/2 adds a filename exten­
sion (.drv) to the name you supply. 

24.3.2.3 The Driver-Data Field 
The driver-data field points to a printer-specific data structure that describes 
aspects of the page, such as the page layout (portrait or landscape) and the 
default data format (P~Q_STD or P~QJA W). If you set this field to 
NULL, the printer driver uses the default settings established by the user when 
the printer driver was installed with Control Panel. The user can also use Con­
trol Panel at any time to change printer settings. 

If NULL is passed for the driver-data pointer, the settings most recently set in 
Control Panel will be used. Because Control Panel is always available, it is not 
necessary for an application to provide the means to change these settings. How­
ever, it is possible to change the driver data for a particular print job from an 
application by calling the DevPostDeviceModes function. 

24.3.2.4 The Data-Type Field 
The data-type field is a string that specifies the print-data format. The two possi­
bilities supported by MS OS/2 version 1.1 are P~Q_STD and P~QJAW. 
You can supply NULL for this field to obtain the default data type for the 
printer. 

• The P~Q_STD format contains data generated by Gpi graphics calls, 
including graphics calls to draw text. This format is generally used and is the 
most versatile and printer-independent. 

• The P~QJA W format contains a printer-specific data stream generated 
by the application rather than by the translated graphics commands of the 
P~Q_STD format. You should use the P~QJA W format only if you 
know the exact capabilities of the printer. For example, this format might be 
useful for an application that produces its own PostScript output directly 
rather than relying on Gpi commands to be translated by the device context. 
It might also be useful for sending a text stream to a printer that does not 
support graphics. If you use the P~QJA W format, you can send the data 
to the printer by calling DevEscape with the DEVESCJAWDATA control 
code. 

24.3.2~5 Using the Print Queue 
One of the arguments to the DevOpenDC function specifies the type of device 
context to open. The possibilities that are applicable to printing-device contexts 
are aD_QUEUED, OD-DIRECT, and ODJNFO. Generally, aD_QUEUED 
is used to take advantage of the spooling capabilities of MS OS/2. If a user has 
the spooler turned on, graphics calls are captured as a spool file and placed in 
the print queue. The spooler passes the spool file to the queue processor for 
actual printing. Once a queued file has been written to its spool file, the applica­
tion is free to continue with other tasks. This means that a user can continue 
working without waiting for a document to print. 



308 MS OS/2 Programmer's Reference, Vol. 1 
iilib1iliijillillifliW!!m~it!i~!~;p'-Ei~~=I~ffill~liP.it~!~~nm~l!ilijll!iGiiii!ill!t!!!U~!~a;;~~~mtm1~j~Nr~l1i!ii~1ii5~~!t!§~~~ifi~f, 

Even if the spooler is turned off, you should use a OD_QUEUED device con­
text. If the spooler is absent, printing data is passed directly from the application 
to the queue processor where it is processed for final output to the device. It 
does not matter if the spooler is running or not. You should always queue your 
printing output, except when you want to bypass the print queue or when you 
want to open a device context for information only. You can use ODJ)IRECT 
when you want to bypass the print queue, such as when printing to a file. 

You can use ODJNFO to open a device context for information only, such as 
during program initialization when determining the page size of the current 
printer. Knowing the page size of the printer can be used to provide on-screen 
pagination information. However, an application should always check the page 
dimensions before printing because the user may have changed the default 
printer. 

24.3.2.6 Creating a Device Context 
Once the device-specific information described earlier in this chapter is 
obtained, you can open the device context. In the DEVOPENSTRUC structure, 
the first three fields point to the driver name, the logical-address name, and the 
DRIVDATA structure, respectively. The device-context type is set to 
OD_QUEUED so that the output will be queued. The following code fragment 
shows how to open a device context, assuming that the printer-driver name and 
the logical-address name have been obtained: 

/* 
* Fill in the DEVOPENSTRUC structure 

* The name of the driver and logical address were obtained by calling 
* WinQueryProfileString. The driver data came from DevPostDeviceModes. 
*/ 

DEVOPENSTRUC dop; 
PSZ pszDriverName; 
PSZ pszLogAddress; 

/* 
* Use WinQueryProfileString to fill in pszDriverName 
* and pszLogAddress. 
*/ 

dop.pszDriverName = pszDriverName; /* from os2.ini */ 
dop.pszLogAddress = pszLogAddress; /* from os2.ini */ 
dop.pdriv = NULL; 
dop.pszDataType = tlPM_Q_STDtI; 

/* Now open the device context. */ 
hdcPrinter = DevOpenDC(hab, 

OD_QUEUED, 
"*" 
4L, /* use first four fields */ 
(PDEVOPENDATA) &dop, 
(HDC) NULL); 

24.3.3 Starting a Print Job 
Once a device context is successfully opened using a printer driver, a "start doc" 
message must be issued to the device context to tell it a new document is start­
ing. The start-doc escape call includes a string that is displayed by the queue 



Chapter 24: Printing 309 
~i§iiUi~!miimliill!tiJif~m§!llimiJfJ;i~~~!~.mf.!fr!!!iii.@~~I~~~f~!i~i~~11t1i§~i~2i~iliU~I~~mliiiiiil~fdiJmi~lii~!~ns~I!Up.~~i~ 

manager as the print-job name. Typically, a filename is supplied as the document 
name, as shown in the following code fragment: 

LONG Ire; 

/* Start a document. */ 

Ire = DevEscape(hdcPrinter, 
DEVESC_STARTDOC, 
strIen(pszDocName), 
pszDocName, 
NULL, 
NULL) ; 

24.3.4 Associating a Presentation Space 
The device-context handle returned by the DevOpenDC function is used to 
create a presentation space for drawing. You specify zero for the x- and y­
dimensions of the presentation space so that the system can make the presenta­
tion space large enough to include a single page using the specified device con­
text. You cannot use a cached-micro presentation space for printing. If you use 
an absolute-measurement environment-for example, PUJ.,OENGLISH or 
PUJUMETRIC, graphics will automatically be the same size on screen and 
when printed. If you use PUYELS, you must scale the graphics commands to 
match the different resolutions of the screen and the printer. 

SIZEL sizl; 

sizl.cx = OL; 
sizl.cy = OL; 

hpsPrinter = GpiCreatePS(hab, hdcPrinter, &sizl, 
PU_LOENGLISH I GPIF_DEFAULT I GPIT_NORMAL I GPIA_ASSOC); 

Another strategy is to use for printing the same presentation space used for win­
dow painting. This saves creating a new presentation space. In this case, the 
presentation space must be a GPIT_NORMAL presentation space. The presen­
tation space must first be disassociated from the device context that it has been 
associated with (usually a window device context), and then associated with the 
printer device context, as shown in the following code fragment: 

GpiAssociate(hpsWindow, NULL); /* disassociate first */ 

GpiAssociate(hpsWindow, hdcPrinter); /* associate with printer */ 

You must be cautious of the WMJ> AINT message during printing operations if 
you use the same presentation space for printing and window drawing. The 
presentation space cannot be used to respond to the paint message while the 
presentation space is associated with the printer device context. For more infor­
mation, see Section 24.4.2. 

Once a printer device context has been associated with a presentation space, 
graphics functions can be called to draw each document page. 



310 MS OS/2 Programmer's Reference, Vol. 1 
iiiib1iliijmilt.inI1Jiilf_iliii!~~m!E~;m~liili~I~!iJ?U~~EiHm~l!ruill~imili!lliH!ml~]'~~I~~~mt~~ii~r~1iF.i!~iili1ii!Ii§~iiE5t!fi~i 

24.3.5 Drawing for Printing 

Figure 24.2 

Application data images are usually expressed in "world space." This is the 
coordinate system in which all graphics commands areexpressed. The units 
of the world space are typically application-convenient units, such as O.Ol-inch 
(LOENGLISH). Images are drawn in windows by expressing graphics commands 
in convenient units. The system scales and converts these units to the device­
specific units of the display so that the image appears correct in the window. 

If an image is larger than a window, a matrix translation is used to slide the 
coordinate system of the world space to match the coordinate system of the win­
dow. Figure 24.2 illustrates how a translation might be used to map a portion of 
the world space to a window display space. 

World-Space to Device-Space Translation 

World space ~: 

I 

Device space -

I __ L ____________ _ 

/: 

The central idea behind drawing for printing is that it is very similar to drawing 
for a window that is the size of a piece of paper. The system performs the same 
scaling transformation to convert world-space units to device units. This 
automatic scaling allows the same imaging code to draw for both a 72-dot-per­
inch impact printer and a 300-dot-per-inch laser printer. 

24.3.5.1 Determining Page Size 
In order to print images to a printer or plotter, the page size must be expressed 
in convenient units. For example, if you do all your drawing in O.Ol-inch 
(LOENGLISH) units, you will need the page size in O.Ol-inch units rather than 
in device units (PELS). To determine the page size, call the DevQueryCaps 
function for the given device to get the width and height of the device page in 
device units. These units can be converted to presentation-space units by calling 
the GpiConvert function, as shown in the following code fragment: 



Chapter 24: Printing 311 
i!i$!i!f~i~ltum;i~~~mfi!!~!mi~~il!:J~.mi.!i!i!im~if.!~i~f~!~~i~~l~~~ii:!i~!li!i~~Ifg~i;ljiiil~i~mj~!iiffi!ij$.i~~~~W~ 

Figure 24.3 

SIZEL sizl; 

/* page size */ 

DevQueryCaps(hdcPrinter, CAPS_WIDTH, 2L, (PLONG) &sizl); 

GpiConvert(hpsWindow, CVTC_DEVICE, CVTC_WORLD, lL, (PPOINTL) &sizl); 

Once the page size has been determined, the image can be divided and drawn 
into pages for printing. Figure 24.3 shows how a multiple-page document might 
be broken into pages, assuming a user has selected portrait mode during printer 
setup. The figure shows how the page size is used to divide the world space into 
pages. 

Portrait-Mode Pages in World Space 

Figure 24.4 

~T" 

,r~1 

The page size returned reflects either portrait or landscape mode, depending on 
what the user selects in Control Panel. Figure 24.4 shows how these same pages 
are divided for landscape mode. Notice that no additional page rotation or extra 
support work must be done for landscape mode. As long as you use the x- and 
y-sizes returned by the DevQueryCaps and GpiConvert functions, a document 
will be correctly paginated. 

Landscape-Mode Pages in World Space 

-------._---------_.--,-----------_._--------, 

i i 

TT~J 



312 MS OS/2 Programmer's Reference, Vol. 1 
;ilIiUiiri!ijiDi!lifl;i!ii!{g_~~!~iUEi~~n=l~ffills!l~iSU!~~nru~I~1lP.!!iruili!ij!!t!!!!\~\~ail~~~mi§i~i~ftr~~!mffiij;~~iJn~~lffi!~!{i~i 

24.3.5.2 Printing a Page 
Each page of a print job is drawn by making Gpi calls to the world space of the 
presentation space. If a document consists of only one page, then the origin of 
the world space probably cQrresponds to the origin of the device page, so no 
translation is necessary. To print a multi-page document, you must translate 
world-space coordinates so that they line up each page with the origin before 
drawing. 

For example, to print page 2 in Figure 24.4, you would apply a translation on the 
x- and y-axis to slide the desired page so that its lower-left corner sits at the ori­
gin. Assuming that a SIZEL structure holds the horizontal and vertical dimen­
sions of the page, a call to the GpiSetDefauItViewMatrix function slides page 2 
down and over to the origin. Notice that first you call the GpiQueryDefault­
ViewMatrix function to fill in the other values of the nine-element matrix, then 
the x- and y-translation fields are filled in, then the matrix is set. 

MATRIXLF matrix; 
SIZEL sizl; /* size of page, in world units */ 

/* First get the current transformation matrix. */ 

GpiQueryDefaultViewMatrix(hps, 9, &matrix); 

/* Change the x- and y-translation elements. */ 

matrix.lM31 = -sizl.cx; 
matrix.lM32 = -sizl.cy; 

/* Call GpiSetDefaultViewMatrix to translate image to page. */ 

GpiSetDefaultViewMatrix(hps, 9, &matrix, TRANSFORM_REPLACE); 

For a multi-page document, you must call the DevEscape function with the 
DEVESC.-NEWFRAME escape at the end of each page to begin a new page. It 
is not necessary to send a DEVESC_NEWFRAME escape after the last page. 

24.3.5.3 Finishing a Print Job 
After printing all pages in a print job, you must call the DevEscape function 
with the DEVESC~NDDOC code telling the queue processor that the print job 
is finished. 

24.3.6 Destroying the Printer Device Context 
Once drawing is finished, the presentation space should be disassociated from 
the printer device context. If a special presentation space was created for print­
ing, it can be destroyed along with the device context, as shown in the following 
code fragment: 

GpiAssociate(hpsPrinter, NULL); 
DevCloseDC(hdcPrinter) ; 
GpiDestroyPS(hpsPrinter); 

However, if an existing presentation space was used for printing, you should 
disassociate the presentation space from the printing device context, reassociat­
ing the presentation space with its original window device context. 



Chapter 24: Printing 313 
jij!~llffJ:!mi~~fffi~eiH!ljjU~IIS!m:iii1~I!1b~irnl!§f~~iaJ!fi~Uif;ru!tlilii11ml~L@'lb~!!liifSf~i1mlii;!ttH!jifi~~!!lF.~ilJ!iIDil!i~lmim~I~~~~i!flii~f~~~§j 

24.4 Special Printing Topics 
The following sections describe special printing techniques. 

24.4.1 Page Setup 
One of the fields in the DEVOPENSTRUC structure, used when opening a 
device context, is pDriverData, a pointer to a DRIVDATA structure. This struc­
ture contains device-specific information about the page configuration (landscape 
or portrait), page size, default font, and other page-configuration details. The 
size and contents of the DRIVDATA structure depend on the printer being used. 
Typically, a user specifies the default configuration information from Control 
Panel. Control Panel stores this information for each printer in the os2.ini file. If 
NULL is supplied for the driver data when opening the device context, the 
printer driver retrieves the system-wide default driver data from os2.ini and uses 
it to configure page characteristics. 

An application can always use the page configuration specified by the user in 
Control Panel. If more control is required, calling the DevPostDeviceModes 
function displays a dialog window that can be used to specify new page charac­
teristics for individual print jobs. Driver data retrieved by this dialog window 
applies to the current print job. It does not change the system default settings. 

Figure 24.5 shows a dialog window that fills in the DRIVDATA structure for an 
IBM4201 printer. 

Figure 24.5 
IBM4201 Page Setup 

[current Form 
Stenderd 

Defined Forms 

r
Forma 

~~(Delete) 

Defeult Spool File Type 

0 .. " Form Feed Control 
o None 

o Compulsory 

• Condltlonel 

Orlentetion----, 
o Portrelt 

• Lendscepe 

&~ .. Print Quellty-----, 
o Dreft 

• Neer Letter Quellty 

The DevPostDeviceModes function displays the page-setup dialog window. Any 
changes in page setup are reflected in the DRIVDATA structure and passed to 
the DevOpenDC function to obtain a device context matching the page charac­
teristics. 



314 MS OS/2 Programmer's Reference, Vol. 1 
i!l"~~J~~~!fl!l~i~t~!~~i!"i!!~Ii!i1!\U~~:~~IfBJtiJ~ji~liil&i$.I~~~£5l~ti~im~iiiniJifjmm!JJti!~Eii5nm~~i!nID!limitiilii~~ijjl~ 

The following code fragment shows how to call the DevPostDeviceModes func­
tion to fill the DRIVDATA structure. You call it first with a NULL structure 
pointer to determine the size of the device-specific structure. Using the size 
value returned, it is possible to allocate memory and pass a far pointer to the 
DevPostDeviceModes function, which in turn fills the device information in the 
structure. 

ULONG ulSize; 
PDRIVDATA pdriv; 

ulS1ze = DevPostDev1ceModes(hab, 
NULL, /* NULL for data s1ze only */ 
pszDriverName, /* driver name */ 
NULL, /* device name */ 
szPrinter, /* printer name */ 
OL); /* not used here */ 

/* Now allocate some memory. */ 

usResult = DosAllocSeg(ulS1ze, &sel, 0); 

pdr1v = MAKEP(sel, 0); 

ulS1ze = DevPostDeviceModes(hab, 
pdriv, /* buffer for drivdata */ 
pszDriverName, /* driver name */ 
NULL, /* dev1ce name */ 
szPrinter, /* printer name */ 
OL) ; /* Display dialog. Do not change os2.1n1. */ 

Notice that the last argument to the DevPostDeviceModes function is a long 
word that determines whether or not the function changes the contents of the 
os2.ini file. The following values are valid: 

Value 

o 

1 

2 

Meaning 

Displays a dialog window for driver data without chang­
ing the defaults in the os2.ini file. This is appropriate for 
an application that configures a single print job without 
changing system-wide settings. 

Displays a dialog window for driver data and writes the 
new driver data, which becomes the default, to the 
os2.ini file. This is appropriate for Control Panel because 
the new default settings affect the entire system. Gen­
erally, applications should not change the driver data for 
the entire system. 

Does not display a dialog window; returns the default­
driver data from the os2.ini file. This is useful for saving 
default-driver data with a particular document. 

If you use the DevPostDeviceModes function to set up the driver data for an 
individual document, you should save the driver data along with the document so 
that the settings are available to the user when the document is reopened. Be 
sure the printer driver is the same as it was when the driver data was created 
because the data format is unique to each printer driver. 



Chapter 24: Printing 315 
w.i!flllmUmi~~mf~~~i~ijtt~jjiUiii;'f~tm."Gjm!!!f~!§'!fif~!lif;tfij;fiill'iiimlW.!iilb~l!liUSt~i~li.ilrraf:lifj~~~!F.b'irilif!ll!isl§iiiiJEJrmniirniiiH!liiii~! 

24.4.2 Using a Thread to Print 
An MS OS/2 application should not be unresponsive to user input for an 
extended period of time. Any operation that takes longer than 1 second should 
be carried out in a separate thread, allowing the user-interface thread to con­
tinue to respond to user input. 

Printing typically begins when a user chooses a command from a menu in an 
application. A client window receives a W1LCOMMAND message from the 
menu and begins the printing operation. No further mouse clicks or keystrokes 
are processed until the application calls the WinGetMsg or WinPeekMsg func­
tion again. Therefore, the user cannot interact with an application menu or 
switch to another application until one of these two functions is called. 

The following are two basic ways to allow an application to remain responsive 
during a lengthy printing operation: 

• Call the WinGetMsg or WinPeekMsg function at regular intervals during 
printing to handle user input. 

• Create a separate thread to handle printing. The main thread can continue to 
call the WinGetMsg function while the printing thread executes. 

Handling user input during printing can cause many problems with data integ­
rity and synchronization. For example, should a user be allowed to modify a 
document while it is printing? Semaphores should be used to protect shared 
resources whenever there are potential conflicts. 

One simple solution to the data synchronization problem is to create a thread for 
printing and display a message box in the main thread that allows a user to can­
cel printing. The printing thread could periodically check a semaphore con­
trolled by a message box to determine if printing has been cancelled. This way a 
user cannot modify data in an application while it is printing, but can switch to 
another application while printing continues. 

Another possible problem when handling messages during printing is receiving 
WMJ>AINT messages. Because printing and window drawing typically use the 
same drawing functions and the same data, drawing routines must be reentrant. 
If the same presentation space is used for window painting and printing, an 
application should not draw in the window when the presentation space is associ­
ated with the printer device context. 

24.4.3 Printing to a File 
Some printer drivers allow data to be sent to a file rather than to a device. 
In particular, a PostScript device driver and a plotter device driver direct 
print data to files if a filename is supplied in the pszLogAddress field of the 
DEVOPENSTRUC structure when opening a device context for printing. All out­
put from printing is sent to this file. If the file already exists, its data is overwrit­
ten. If the file does not exist, the device driver creates it. These two device 



316 MS OS/2 Programmer's Reference, Vol. 1 
;~,,~~~m~el~~i~i~Uiiiiii!Mi!~JP.i~li~U~I~mm!~li~ilii:Ii$~l!~~~el~H~~i'lifi~m~iji!ll!!i;S~!!~~iiS3fii!!im!!!!!uiil11;miiili;~~f!i!~ 

drivers support this feature because their data stream is ASCII text. The 
IBM4201 device driver, which sends mostly binary data to the printer, does not 
support printing to a file. 

You should open an OD_DIRECT device context when printing to a file. 

24.4.4 Printing a Bitmap 
Printing a bitmap requires that the bitmap be converted from its original format, 
which is usually compatible with the video display, to a format for the current 
printing device. The GpiSetBitmap function converts bitmaps from one device 
format to another. 

You must perform the following steps to print a bitmap on a printer: 

1 Create a device context and a presentation space for the screen. 

2 Create a memory device context for the screen and associate it with a presenta­
tion space. 

3 Create a bitmap and attach it to the memory presentation space and device con­
text using the GpiSetBitmap function. 

4 Draw the bitmap from the screen presentation space and device context to 
the memory presentation space and device context using the GpiBitBlt or 
GpiWCBitBlt function. 

5 Create a device context and presentation space for the printer. 

6 Create a memory device context for the printer and associate it with a presenta­
tion space. 

7 Convert the bitmap from the display-memory presentation space and device con­
text to the format of the printer-memory presentation space and device context. 

8 Attach it to the printer-memory presentation space and device context by calling 
the GpiSetBitmap function. 

9 Draw the bitmap from the printer-memory presentation space and device context 
to the printer presentation space and device context by using the GpiBitBIt or 
GpiWCBitBlt function. Do any scaling necessary to correct for resolution 
differences between the display and the printer. 

The GpiSetBitmap function converts the different device formats, such as color 
to monochrome, but does not correct for differences in pel resolution between 
devices. For example, if you are printing a screen bitmap (typically about 72 pels 
per inch to a laser printer with 300 pels per inch, you must scale the image when 
converting from the printer-memory device context to the device context. You 
can determine the differences in pel resolution by calling the DevQueryCaps 
function for each device. 



Chapter 24: Printing 317 
r~!~llml!miSs~~lffi~~iamDil~fjiffili~;;if~~irn!~~~!§J~fl!!ilij~m~!fiii91:W.t~J1!!liiii!~i1fili;lruffiji~~l§i~:F.~iJi!if!!r!isl§jJ1W~J;m~irniiiifl~~m§ 

24.4.5 Optimizing Printing for a Particular Printer 
You can optimize printing for certain printers not usually available through the 

. API by using the DevEscape function. Escape calls are sent to the device driver, 
which must interpret them. The DevEscape function signals the beginning and 
end of documents of single pages, and sends printer-specific binary data to a 
printer. 

24.5 Summary 
The following functions can be used in setting up a printing operation: 

DevCloseDC Closes a device context opened by the DevOpenDC function. 

DevEscape Sends escape codes to the specified device. Starts and stops print­
ing, signals the end of a page, and sends printer-specific binary data to a printer. 

DevOpenDC Opens a device context for a printing device. 

DevPostDeviceModes Displays a dialog window for a user to specify various 
printer configuration information. 

DevQueryCaps Returns information about a specific device, such as the width 
and height of a page. 

GpiAssociate Associates a presentation space with a device context for a par­
ticular printer, or disassociates the presentation space from its current device 
context if a NULL device context is specified. 

GpiConvert Converts device units to world coordinates from one coordinate 
system to another. 

GpiCreatePS Creates a presentation space that can be associated with a 
printing-device context. 

GpiDestroyPS Destroys a presentation space created by the GpiCreatePS func­
tion. 

GpiQueryDefaultViewMatrix Queries the current viewing transformation matrix 
and fills in a supplied MA TRIXL structure. This function retrieves the current 
viewing transformation matrix so that the x- and y-translation elements can be 
changed. 

GpiSetBitmap Connects a bitmap with a presentation space that is associated 
with a memory device context, converting a bitmap from one device format to 
another, such as converting between the screen and a printer. 

GpiSetDefauItViewMatrix Sets the viewing transformation matrix so that the x­
and y-translation values can be used to move portions of a world-space image to 
the origin for printing. 

WinQueryProfileString Retrieves the name of the current default printer and 
printer driver from the os2.ini file. 





Chapter 

25 

Heaps 
25.1 Introduction ............................................................ 321 

25.2 About Heaps ........................................................... 321 

25.3 Using a Heap in an Application .................................. 322 
25.3.1 Creating a Heap .............................................. 322 
25.3.2 Heaps in a Separate Data Segment ........................ 323 
25.3.3 Moveable Heap Objects ..................................... 324 

25.3.3.1 Moveable Heaps in an 
Automatic Data Segment......................... 326 

25.3.3.2 Moveable Heaps in a Separate Data Segment. .. 326 
25.3.4 Allocating Memory from Heaps ........................... 328 
25.3.5 Deallocating Memory from a Heap ....................... 328 
25.3.6 Using Dedicated Free Lists ................................. 329 
25.3.7 Destroying Heaps ............................................. 329 

25.4 Summary ................................................................ 330 





Chapter 25: Heaps 321 
~!!iilil~i~;~lll.~!i§ffimi~~~!ijS;~I~I~i~f!®'mU...~!f:!~ii5iffiiil~~tiSnii!!iit~fi~iimig!§jm:iaiia\~iI~~~Rlifihli~irr1.liHi~iliilfji!tii!.ft!iiJ~ 

25.1 Introduction 
This chapter describes the functions that allow you to use heaps for memory 
management in your applications. You should also be familiar with the following 
topic: 

• Memory management in MS OS/2 

25.2 About Heaps 

Figure 25.1 

A heap is a memory segment containing other memory-block objects that are 
allocated and deallocated by the functions of the heap manager (the group of 
functions that manage heaps in MS OS/2). The heap functions are provided to 
supplement, and in some cases replace, the basic memory-management functions 
of MS OS/2. The heap functions provide more functionality than the basic 
memory-management functions, including moveable objects within a segment 
and faster allocation implementation. 

A heap exists within a memory segment. The segment can be the automatic data 
segment of an application or dynamic-link module, or it can be another segment 
that has been allocated explicitly by using the DosAlIocSeg·function. Typically, 
the heap is part of an automatic data segment, and it shares that segment with 
the application's static data and stack. The combined size of the heap, static 
data, and stack cannot be larger than 64K-this is the maximum segment size in 
MS OS/2. Heaps in separate segments also cannot be larger than 64K. 

Figure 25.1 shows how a heap can share an automatic data segment with the 
static data and stack: 

Heap in Automatic Data Segment 

t t 
--------------

Heap 

Stack 

Static data 



322 MS OS/2 Programmer's Reference, Vol. 1 
mm_r.!i!~;~n~nmf~1i~rnm~iffili~~iir.i~I1f~H~iif;!f:~§!iE!~ii~H;m;im!~!ml!;ii!~1J~~~;~_mfmlfdmfU.~imi5mlQ~i!liSii~~mHm1. 

A heap typically contains many memory-allocation objects. Each object is 
accessed by an offset (near pointer) from the beginning of the segment. Notice 
that the beginning of the heap is not necessarily at the beginning of the segment. 
For heaps in the automatic data segment, the application or dynamic-link 
module can use the near pointer to the memory object directly, because the 
data-segment selector is implicit. For heaps allocated in separate segments, the 
near pointer must be combined with the segment selector to make a far pointer. 

A heap can be created so that objects within the heap are moveable. This allows 
the system to rearrange objects on the heap to make more free memory available 
and avoid heap fragmentation. 

MS OS/2 attempts to make the heap larger if a memory-allocation request can­
not be filled by using the existing heap. This growth is controlled by setting 
growth limits when the heap is created. 

25.3 Using a Heap in an Application 
Applications typically create a heap, allocate and deallocate memory blocks in 
the heap as needed, and destroy the heap when terminating. A heap can be 
created using many different memory sources and it can have moveable or non­
moveable memory objects. The following sections discuss how to use heaps in 
applications and dynamic-link libraries. 

25.3.1 Creating a Heap 
Applications and dynamic-link libraries create a heap by calling the Win­
CreateHeap function. The heap is created within an automatic data segment or 
in a separate segment, depending on the values of the selHeapBase and cbHeap 
parameters of WinCreateHeap. The possible values of these parameters are 
summarized in the following list: 

selHeapBase cbHeap 

Zero Zero 

Selector Nonzero 

Selector Zero 

Zero Nonzero 

Meaning 

The calling process is an application that 
places the heap at the end of its automatic 
data segment. 

The calling process is either a dynamic-link 
library that places a heap at the end of its 
automatic data segment, or an application or 
dynamic-link library that has explicitly allo­
cated a segment and places the heap at the end 
of the segment. 

The calling process is either an application or 
dynamic-link library that has explicitly allo­
cated a segment and places a heap in that seg­
ment. 

The calling process is either an application or 
dynamic-link library that places a heap of a 
specific size in a separate segment but does 
not call the DosAllocSeg function. 



Chapter 25: Heaps 323 
eigff~l~i~I~IIf.~!i§ffmI:~.I!m~§lim~~iUW~aa..~im!!fi1Ii51ruifiJ~siii!ffi!!iltmfifi1aiii!ijIg~1mil!ii~~n~~~R!ifil!ii~iirr1.lifi!fililir.ilii.!tii!.rniiJj 

In addition to the characteristics of the heap described by the preceding list, the 
creator of the heap may specify whether the heap contains moveable objects and 
whether the functions should check the validity of certain arguments to heap­
manager functions. The H~OVEABLE attribute specifies that the heap can 
contain moveable objects. The H~ VALID SIZE attribute, which can be used 
only in conjunction with H~OVEABLE, specifies that the heap manager 
should check the validity of size arguments in heap-deallocation calls. Moveable 
heap objects allow a more flexible memory-management scheme for applications 
with heavy memory requirements. 

You must specify the minimum amount the heap will grow each time it enlarges 
to satisfy a memory request. The default minimum is 512 bytes. 

The cbMinDed and cbMaxDed parameters of the WinCreateHeap function 
define how many dedicated free lists the heap manager should maintain for the 
heap. Dedicated free lists can make the allocation of fixed-size blocks signifi­
cantly faster, but they are not essential to the operation of the heap. Zeros can 
be passed as values for these parameters to generate the default heap behavior 
without using dedicated free lists. More information about dedicated free lists is 
given later in this chapter. 

For more information on the WinCreateHeap function, see the Microsoft 
Operating Systeml2 Programmer's Reference, Volume 2. 

The following code fragment shows how to create a heap with the default 
behavior and the moveable attribute: 

hHeap = WinCreateHeap(O, 
0, 
1024, 
0, 
0, 
HM_MOVEABLE); 

/* uses automatic data segment */ 
/* uses HEAPSIZE from .def file */ 
/* minimum size to grow heap */ 
/* minimum size of dedicated free list */ 
/* maximum size of dedicated free list */ 

The ability to share a heap depends upon the sharing attributes of the segment 
containing the heap. Heaps in an application's data segment are private to that 
application. Segments explicitly allocated with the DosAllocSeg function are 
shared or private, depending upon the value of the fsAlloc parameter. Segments 
allocated by using the WinCreateHeap function are shareable. Because shared 
segments cannot shrink, heaps within a shared segment also do not shrink. 

The heap manager does not prevent multiple threads from calling the heap 
manager with the same heap handle. The calling process must ensure that this 
does not occur. 

25.3.2 Heaps in a Separate Data Segment 
One of the options you can specify when creating a heap is that the heap will be 
created in a data segment that is separate from the automatic data segment. You 
might choose this option if there is insufficient space in the automatic data seg­
ment for the static variables, the stack, and the heap. A heap in a separate data 
segment can occupy up to 64K. 



324 MS OS/2 Programmer's Reference, Vol. 1 
U!m~r.iil~i~iiifl~misiiflgjjjiffiHii.::i!liiiJ:iiif~H~r.film~I~Ui!gmiif:iHa!liiiRl!~i!tl~15!ffi!:1Ji~~~i~_afmltf.IDm!BimiiiiiR:l£§i!1~IUru1f:iil 

The pointer returned by the WinAlIocMem function is an offset value that 
locates the allocated memory block relative to the beginning of the segment 
that contains the heap. If the heap is in a separate segment, you must use far 
pointers to access memory blocks that are allocated on the heap. You can deter­
mine the far pointer to a heap object by using the heap's segment selector and 
the offset. The WinLockHeap function returns a far pointer to the beginning of 
a specified heap. You can combine the selector from this far pointer with the 
offset to a memory block on the heap to produce a far pointer to the heap 
object, as shown in the following code fragment: 

HHEAP 
SEL 
NPBYTE 
PBYTE 
PVOID 

hHeap; 
selHeap; 
npbObject; 
pbObject; 
pvHeap; 

/* Allocate a heap in a separate segment. */ 

hHeap = WinCreateHeap(O, 
32*1024, 
1024, 
0, 
0, 
HM_MOVEABLE); 

/* uses a separate segment */ 
/* allocates 32K for heap */ 
/* minimum size to grow heap */ 
/* minimum size of dedicated free list */ 
/* maximum size of dedicated free list */ 

/* Allocate an object and retrieve a near pOinter.*/ 

npbObject = WinAllocMem(hHeap, ... ); 

/* Retrieve a far pointer to the start of the heap. */ 

pvHeap = WinLockHeap(hHeap); 

/* Make a far pointer to the heap object. */ 

pbObject = MAKEP(SELECTOROF(pvHeap), npbObject); 

25.3.3 Moveable Heap Objects 
A moveable heap allows the memory objects within the heap to move in order to 
reclaim fragmented heap space. All heaps are ~oveable in the sense that a seg­
ment that contains a heap can move as a result of the mapping of selectors to 
physical addresses that is provided by MS OS/2. Moveable heaps differ from 
regular heaps in that individual objects within a movable heap can change their 
positions relative to the beginning of the segment. The moveable-heap attribute 
is specified when the heap is created and lasts until the heap is destroyed. 

Allocated memory blocks in a moveable heap have a header structure that is 
attached to the beginning of the block. This header structure contains a pointer 
to the variable holding the pointer to the memory block and a field containing 
the size of the block (not including the.header structure). The near pointer 
returned by the WinAllocMem function points to the first byte after the block­
header words. The C definition of the header structure is as follows: 

typedef struct _MOVBLOCKHDR { 
NPBYTE *ppmem; 
USHORT cb; 

} MOVBLOCKHDR; 



Chapter 25: Heaps 325 
!!~i;~i~i~im!lf.~miifm!i!!i:~~iijS;~jj!ial~~~!i~mru....~~!f:!~ii5imifilU§¥iSii§!rn!!i~~fi!iillilli?!§f1mil!ln'~il~~1ii§iP.!iiimt~~iti!liSiiili.i;ai!tiI!fi!!!m 

The size parameter of the WinReallocMem and WinFreeMem functions is 
ignored for objects in a moveable heap and the value of the size word is used 
instead. However, if the H~ V ALIDSIZE option is specified in the Win­
CreateBeap function when the heap is created, the WinReallocMem and 
WinFreeMem functions verify that the passed size matches the current size 
and return an error if it does not. 

Objects in a moveable heap can move whenever the WinA vailMem function is 
called. Because this function is also called by WinAlIocMem and WinRealloc­
Mem, objects can also move when these functions are called. WinReallocMem 
and WinA vailMem move blocks that have a back pointer. Allocated objects 
whose back pointer is zero are considered fixed and do not move. 

When allocating memory blocks within a moveable heap, the calling process 
specifies that the block is moveable by altering the back pointer (ppmem) field 
of the header structure so that it points to the variable holding the pointer 
returned by the WinAlIocMem function. When WinAlIocMem creates a block on 
a moveable heap, it clears the back pointer to zero. As long as the back pointer 
remains zero, the heap manager cannot move the block. If the application alters 
the value of the back pointer so that it points to a valid variable address within 
the same segment (by using an offset from the beginning of the segment), the 
heap manager will move the block, when necessary, to compact the heap. When­
ever the heap manager moves the moveable block it also updates the variable 
pointed to by the back pointer so that the variable points to the new location of 
the block. The back pointer ensures that the application's reference to the move­
able block is updated when the block moves. 

Note that MS OS/2 alters only the variable pointed to by the back pointer when 
it moves a moveable block. If the application has made copies of this variable, 
those copies will be invalid if the memory object moves. 

The SETMEMBACKPTR macro sets the back pointer of a moveable block. (It 
is assumed that the MOVBLOCKBDR data structure described above is also 
defined.) SETMEMBACKPTR uses the variable that holds the pointer returned 
by the WinAlIocMem function and sets the back pointer of that block to point to 
the variable. The SETMEMPACKPTR macro is shown below. Note that it 
should not be used on nonmoveable heaps. 

#define SETMEMBACKPTR(npb) «(PMOVBLOCKHDR) npb) -1) -> ppmem = &npb 

The back pointer of a moveable block should point to the variable that holds the 
pointer returned by the WinAlIocMem function. Since the back pointer is a near 
pointer, the variable pointed to must be in the same data segment as the heap. If 
the heap is in the automatic data segment (the default case), you can use a static 
or stack-based variable to hold the pointer. If the heap is in a separate data seg­
ment, you must allocate space for the pointer variable as a nonmoveable block 
on the heap. 

U sing moveable blocks allows an application to use memory more efficiently and 
to avoid most memory-fragmentation problems. Using moveable heap objects, 
however, requires that the pointer references to the objects remain valid even 
when the objects move. The back pointer allows MS OS/2. to handle updating 
an application's pointer variables, but the application must use the macro 
SETMEMBACKPTR to set the original link between the moveable block and its 
pointer variable. 



326 MS OS/2 Programmer's Reference, Vot 1 
IJ!ill.~~itmfni!n~mi!iifsi3l!~Ii!U~lif.:llU~li~.t.fi!t;~fi!Ui!~iimiHm!mlm!~J!!1!i5!Ei!~i~~;!Wf.8fmlfff.iiiHi!ffimi§itiim,~i~$iii~ru1iiUiil 

25.3.3.1 Moveable Heaps in an Automatic Data Segment 

Figure 25.2 

Figure 25.2 shows the relationship of the pointer returned by the WinAlIocMem 
function and the back pointer of the memory-block header when the heap is in 
the automatic data segment: 

Back Pointer for Moveable Heap Object 
in Automatic Data Segment 

Moveable heap object 

r---+' - - - - - -ppmem - - - - - ;>-.--- Heap 

} Stack 

L....., pobject } Static data 

The following code fragment shows how to allocate a block and then make it 
moveable by altering the value of the back pointer. This code works only if the 
heap is inthe automatic data segment (the default case for most applications). 

static NPBYTE pObject; 

/* Allocate the block for the object. */ 

pObject = WinAllocMem(hHeap, sizeof(YOUR_OBJECT_TYPE»; 

/* Make the block move.ble. */ 

SETMEMBACKPTR(pObject); 

You should avoid placing a pointer to a moveable heap object on the stack-that 
is, making it a local variable-if the heap object will continue to exist after the 
function has ended and the local variable has been cleared from the stack. This 
is dangerous because the heap manager could attempt to update the pointer vari­
able, using the back pointer, and inadvertently write into the stack frame of 
another function. 

25.3.3.2 Moveable Heaps in a Separate Data Segment 
The variable pointed to by the back pointer must be in the same segment as the 
moveable block. For most applications, in which the heap is in the application's 
automatic data segment, the pointer variable can be in the application's static­
data area. If the heap is in a separate segment, the variable must also be allo­
cated on the same heap, and it must be in a nonmoveable block. 

• 



Chapter 25: Heaps 327 
iifiii~til;ml§i!!i!ru:~'i!&~~~~ .. ~~I~ffilia!i~~ml!iP~ift!mi!,iii!i~~!m~lliii~~liI~!fii!iai~IH!i!~~~m!~~~!~~mtiii 

Figure 25.3 

Figure 25.3 shows the relationship of the pointer returned by the WinAlIocMem 
function and the back pointer of the memory-block header when the heap is in a 
separate data segment: 

Back Pointer for Moveable Heap Object 
in Separate Data Segment 

Static { 
data 

Automatic Data Segment 

ppobject 

r---+ 
.--

~ 

Heap Data Segment 

Moveable 
object ------------ppmem 

pobject __ Nonmoveable 
heap object 

Figure 25.3 shows a variable in the application's static-data area that points to 
the nonmoveable block containing the pointer to the moveable memory block. 
The variable that the application uses in its static-data area is a pointer to a 
pointer. Since the pointer to a pointer is pointing to another data segment, it 
must be a far pointer, consisting of the selector of the heap's data segment and 
the offset within that segment. 

The following code fragment shows how to allocate a block in a heap in a 
separate data segment and then make the block moveable by altering the value 
of the back pointer. The ppObject variable is declared with the static storage 
class so that it will be in the static area of the automatic data segment, rather 
than on the stack. 

static NPBYTE FAR *ppObject; 

1* 
* Allocate nonmoveable space for the pointer to the object 
* and make a far pointer to the pointer. 
*1 

ppObject = MAKEP(SELECTOROF(WinLockHeap(hHeap», 
WinAllocMem(hHeap, sizeof(NPBYTE»); 

1* Allocate the block for the object. *1 

*ppObject = WinAllocMem(hHeap, sizeof(YOUR_OBJECT_TYPE»; 

1* Make the block moveable. *1 

SETMEMBACKPTR(*ppObject) ; 



328 MS OS/2 Programmer's Reference, Vol. 1 
!!liiiJ~munSI~ien~m1i!iliftm;n~m~~iimfiliJ~ll~F~!m~I~tj!!~iif:iHe!!$im!~Jiml!iii!ffi?1nmir:i;~~Slliilff.~iU!simii>i=;'~i~$liii!~mf:i#li 

Once the pointer to a pointer is set up correctly and the back pointer is initial­
ized, the ppObject variable should be dereferenced twice whenever the moveable 
memory block is accessed, as shown in the following example: 

/* Put a value into the moveable block. */ 

**ppObject = 2; 

25.3.4 Allocating Memory from Heaps 
Once an application or dynamic-link library has created a heap, it can allocate 
blocks on the heap by calling the WinAllocMem function. The value returned by 
this function is a near pointer to the memory block, or NULL if the function is 
unsuccessful. 

All pointers to memory objects within a heap are 16-bit offsets from the start of 
the heap's segment. All memory objects in the heap are aligned on a 32-bit-word 
boundary-this means that the contents of the 2 low-order bits of a returned 
pointer are unused. The WinAllocMem function clears these bits. (The Win­
ReallocMem and WinFreeMem functions require that they be zero.) The appli­
cation can use these two bits for any purpose. The HEAP ~ASK constant can 
be used to clear the bits when passing a parameter for a memory-block pointer 
to WinReallocMem or WinFreeMem. 

If the heap is created with the H~OVEABLE attribute, the size argument 
for the allocation is retained in the size word of the allocated block's header. 
The returned address is the address of the first byte after the header. 

The heap manager searches the heap for the first free block large enough to 
fulfill the allocation request. If the free block that is found is larger than what is 
needed to satisfy the request, the extra space is added to the appropriate dedi­
cated free list. If no free block is found that is large enough, the heap manager 
attempts to combine free blocks by calling the WinAvailMem function. If this 
call does not generate a large enough free block, the heap manager attempts to 
enlarge the heap segment by the combined values of the size of the request and 
the minimum-growth parameter specified in the call to the WinCreateHeap func­
tion. If this attempt fails, the WinAllocMem function returns NULL, indicating 
that it could not allocate the memory block. 

25.3.5 Deallocating Memory from a Heap 
Memory blocks on the heap can be deallocated by calling the WinFreeMem 
function. The calling process must specify the heap handle, the pointer to the 
block, and the size of the block. The size argument must be accurate because 
the heap manager does not normally validate this argument. Passing an incorrect 
size argument to WinFreeMem can damage other blocks on the heap. 

The WinFreeMem function returns NULL if it successfully dea1locates the 
memory block. The return value is NULL for success because of the following 
idiom for deallocating a memory block and invalidating the variable that contains 
the pointer to the block, all in one line of code: 

pMem = WinAllocMem( ... ); 

/* Code that uses the block. */ 

pMem = WinFreeMem(pMem); 



Chapter 25: Heaps 329 
~~!i!l~~~a!iii!ffiir~J~!ili~I!iii~n§!!f5iiiiUili1mtim~~lltii~i~m~mlli!!i§ffim~~i!if;!ii~QJ~~i$f;§~~t1~fSjlJ§ii~~;~!rn!~I!i~Hs.l¥. 

For nonmoveable heaps, the heap manager has no way to check the size of 
blocks that it deallocates. For moveable blocks on a heap created with the 
H~OVEABLE and H~ V ALIDSIZE attributes, the heap manager checks 
the size argument against the size specification in the moveable block's header 
and returns the pointer (instead of NULL) if the size parameter is invalid. 

25.3.6 U sing Dedicated Free Lists 
A dedicated free list is a linked list of free blocks of a particular size on the 
heap. For example, the heap manager might maintain a dedicated free list of 
memory blocks that are 1024 bytes in length. It is much faster to search for a 
memory block in a dedicated free list than to do a straight linear search of all 
blocks on the heap. Thus, dedicated free lists are very useful if your application 
allocates many blocks with the same size. 

The size of memory blocks that should be maintained in dedicated free lists is 
specified when the heap is created. Two arguments to the WinCreateHeap func­
tion specify the minimum block size and the maximum block size to put into 
dedicated free lists. All memory sizes between the minimum and maximum 
sizes, in four-byte increments, are maintained in separate lists. 

For example, if you specify 1024 for the minimum size and 2048 for the max­
imum size, the heap manager creates dedicated free lists for memory blocks of 
1024 bytes, 1028 bytes, 1032 bytes, and so on, through 2048 bytes. The cost of 
each dedicated free list is an additional two bytes in the heap-control block for 
each size of memory block that is maintained in the list. 

Blocks that are not within the size limits of existing dedicated free lists are main­
tained in a single nondedicated free list. The heap manager first looks in the 
dedicated free lists, starting with the list whose memory-block size is greater 
than or equal to the requested size. It continues to look in the dedicated free 
lists until it either finds the smallest block that is greater than or equal to the 
requested size or it exhausts the dedicated free lists. If no block is found on the 
dedicated free lists that is large enough, the heap manager does a linear search 
of the nondedicated free list for the first block that satisfies the request. (This 
may not be the smallest free block that would satisfy the request, since the order 
of the nondedicated free list is implementation-dependent.) Dedicated free lists 
are organized in last-in, first-out (LIFO) order. 

To produce dedicated free lists in a heap, pass nonzero arguments for the 
cbMinDed and cbMaxDed parameters of the WinCreateHeap function. 

25.3.7 Destroying Heaps 
The WinDestroyHeap· function destroys a heap that was created by using the 
WinCreateHeap function. If WinCreateHeap calls the DosAllocSeg function to 
allocate space for the heap, then WinDestroyHeap calls DosFreeSeg to free the 
allocated segment. Otherwise, WinDestroyHeap frees only the heap handle that 
is passed to it. 

The return value is zero if the WinDestroyHeap function is successful. Other­
wise, the return value is the heap handle that is passed to the function. (A rea­
son this function could fail is if the heap handle is invalid.) This function is not 
affected by allocated memory objects within the heap. 



330 MS OS/2 Programmer's Reference, Vol. 1 
11itff:fm;!;sliig!s!ID~~iii1ifW-!!t~~~~i.mii§fi"~iJ~!~!iijjiffilE~ifi!~ifI!iili!mi!i!!~!i~Jiii!i1i'flgfjl~~ml§;m!!i~~~~~~~'iJilI~IjI{~~i~IJ~2 

The return value is zero for success because of the following idiom for destroy­
ing a heap and invalidating the variable that contains the handle to the heap, all 
in one line of code: 

hHeap = WinCreateHeap( ... ); 

/* Code that manipulates the heap. */ 

hHeap WinDestroyHeap(hHeap); 

25.4 Summary 
The following functions allow your application to manage heaps: 

WinAllocMem Returns a near pointer to a memory block of the specified size 
on the heap. Returns NULL if the memory cannot be all~cated. 

WinA vailMem Returns the largest free block of memory on the heap. 

WinCreateHeap Creates a heap that can be used for memory management. 

WinDestroyHeap Destroys a heap. All memory objects on the heap are lost. 

WinFreeMem Frees a memory block that was allocated by using the WinAlloc­
Mem function. 

WinLockHeap Returns a far pointer to the beginning of the segment containing 
the heap and locks the heap. This is useful for a heap allocated in a separate 
segment. 

WinReallocMem Reallocates a heap memory block to a new size. If the new 
size is larger than the previous size, a new block is allocated by using the Win­
AllocMem function and the previous block is copied to the new block. 



Chapter 

26 

Clipboard 
26.1 Introduction............................................................ 333 

26.2 About the Clipboard............. ... ...... ........................... 333 
26.2.1 Cutting, Copying, and Pasting Data ....................... 333 
26.2.2 Clipboard-Data Formats .................................... 334 
26.2.3 Shared Memory and the Clipboard........................ 334 

26.3 Using the Clipboard .................................................. 335 
26.3.1 Putting Data on the Clipboard .............................. 335 
26.3.2 Retrieving Data from the Clipboard....................... 336 
26.3.3 Becoming the Clipboard Viewer........................... 337 
26.3.4 Becoming the Clipboard Owner ........................... 339 
26.3.5 Custom Clipboard Formats................................. 340 

26.3.5.1 Assigning a Unique Format ID................... 341 
26.3.5.2 Display Formats ................................... 341 

26.3.6 Delayed Rendering ............................................ 341 

26.4 Summary................................................................ 342 
26.4.1 Standard Clipboard Formats ............................... 342 
26.4.2 Clipboard Functions ..... :................................... 342 
26.4.3 Clipboard Messages.......................................... 343 





Chapter 26: Clipboard 333 
~!§li!i~~~lE!i:!f~l"riFJe!!i~I!*imW.l!fgii!:~~!ii~~~llmigjU~im~im~!~~lU~.J§U!Jf:~m~siellar,:~~~inJ~~!sl!f:!im~li!'U~m;1§i: 

26.1 Introduction 
This chapter describes how to use the clipboard to transfer data between appli­
cations. You should also be familiar with the following topics: 

• Standard user-interface guidelines 

• Window messages and message queues 

• MS OS/2 memory management and shared memory 

26.2 About the Clipboard 
The clipboard is a set of functions that can be used by Presentation Manager 
applications for exchanging data. In particular, the clipboard provides support 
for the generalized cut, copy, and paste user-interface common to Presentation 
Manager applications. The clipboard supports data formats common to most 
applications, as well as allowing individual applications to define new formats for 
special purposes. 

The data on the clipboard is maintained in memory only. Clipboard data is lost 
when the computer is turned off. 

Data exchange on the clipboard is controlled by the user. An application should 
not perform any clipboard operations unless the user explicitly initiates them. 
Other MS OS/2 features, such as pipes, queues, and shared memory should be 
used when data exchange is needed without the knowledge of the user. For 
example, an application that continuously passes remotely collected data to a 
data-analysis application should not use the clipboard. Such an application 
should use the other interprocess data communication capabilities of MS OS/2 
instead. 

26.2.1 Cutting, Copying, and Pasting Data 
All Presentation Manager programs should support the cut, copy, and paste data 
exchange in a single application and between applications. These are all user­
initiated operations. Typically, a user selects data in an application, called the 
"current selection." The application should provide visual feedback, such as 
inverting the data display, to indicate the current selection. The user can then 
initiate a cut, copy, or paste operation on the current selection. 

The standard cut, copy, and paste operations are summarized below: 

Operation 

Cut 

Copy 

Paste 

Description 

Copies the current selection to the clipboard and deletes 
the current selection from the application document. The 
previous contents of the clipboard are destroyed. 

Copies the current selection to the clipboard. The 
current selection remains unchanged. The previous con­
tents of the clipboard are destroyed. 

Deletes the current selection and replaces it with the 
contents of the clipboard. The contents of the clipboard 
are not changed. 



334 MS OS/2 Programmer's Reference, Vol. 1 
;~tmf~!~!iii~~!ID~t~i~if1m.!i!i~f~lllii1mi"iimm~!ijJ!ii§iffi!f~if!!~~H~§fjii~~gr~~~m61~i~~~I~~=~~mH~!a!lf.'iill~miff4~~i!fl!!;! 

Operation 

Clear 

Description 

Deletes the current selection without putting the data on 
the clipboard. The contents of the clipboard are not 
changed. 

26.2.2 Clipboard-Data Formats 
The clipboard accepts data in several formats. MS OS/2 supports three standard 
formats: text, bitmap, and metafile. Applications can use these predefined for­
mats or create their own formats. 

Typically, all formats on the clipboard are simply different representations of the 
most recent selection on the clipboard. For example, a word processor that sup­
ports multiple fonts might write a selection to the clipboard in three formats: 
straight text, rich text, and metafile. Another application (pasting from the clip­
board) could then choose the format most applicable to its own capabilities. All 
of these formats refer to the same data. 

26.2.3 Shared Memory and the Clipboard 
Because data on the clipboard can be accessed by different applications, it is 
important that it be stored in shared memory. The clipboard uses two types of 
memory: selectors for shareable segments (allocated by the DosAllocSeg func­
tion), and Presentation Manager objects such as bitmaps and metafiles. Clip­
board functions use two flag values, CFLSELECTOR and CFUIANDLE, to 
distinguish each memory type. 

When an application writes either a bitmap or a metafile to the clipboard, it 
passes a bitmap or metafile handle to the clipboard. The clipboard functions 
make the object "shareable." The application cannot access the object once it 
closes the clipboard. Once an object is passed to the clipboard, it can no longer 
be used in the application. Likewise, when an application requests a bitmap or 
metafile from the clipboard, it receives a handle to a bitmap or metafile object 
that is good only until the application closes the clipboard. Typically, the appli­
cation either uses the object immediately before closing the clipboard, or it 
copies the object to local memory for future use, then closes the clipboard. 

To give a selector to the clipboard, an application must put data into a segment 
allocated by using the DosAllocSeg function with the SEG_GIVEABLE attri­
bute. Once an application passes the selector for that segment to the clipboard 
and closes the clipboard, the clipboard owns the segment. The application can­
not access the shared segment. When an application requests a selector from the 
clipboard, the clipboard gives the segment to the application. An application 
must use the selector before closing the clipboard or it must copy the data from 
the shared segment to a local segment before closing the clipboard. 

An application must use a shared segment when writing text to the clipboard. 
An application must also use shared segments for any application-defined clip­
board formats. In this case, it is important to specify the CFLSELECTOR flag 
when sending data to the clipboard. 



Chapter 26: Clipboard 335 
~i!i!;F.~~~rali.ii!iiftlliFj~§ii~1!iiim'§1!F:1IDUilimm!~~~lIei~!~m~!H!~!~~m~.,nij!!Jf:!f:aiiiJ~si~iS1i.~_gmei~fS!m!!~Ii§Ii!i~rcS~! 

26.3 Using the Clipboard 
Applications should use the clipboard when cutting, copying, or pasting data. 
Typically, an application places data on the clipboard for cut and copy opera­
tions and removes data from the clipboard for paste operations. An application 
can use the standard clipboard-data formats or create its own formats. An appli­
cation that uses custom clipboard formats often becomes the clipboard owner, 
assuming control of drawing or freeing data on the clipboard. 

Clipboard data does not need to be generated, or rendered, when it is placed on 
the clipboard. Instead, an application can delay rendering, waiting until the data 
is requested by another application. 

Finally, an application can become the clipboard viewer, showing the clipboard 
contents, and receiving messages when the clipboard contents change. 

26.3.1 Putting Data on the Clipboard 
To put data on the clipboard, an application must first call the WinOpenClipbrd 
function to verify that other applications are not trying to retrieve or set clip­
board data. The WinOpenClipbrd function does not return if another thread has 
the clipboard open. The WinOpenClipbrd function waits until the clipboard is 
free or there is a message in the calling thread's message queue. In practice, this 
means that the WinOpenClipbrd function waits until the clipboard is available 
or until the calling application responds to a message. If the clipboard cannot 
be opened before a message arrives, the application receives the message and 
the WinOpenClipbrd function continues to try to open the clipboard. The Win­
OpenClipbrd function does not return until the clipboard is open. However, 
the application continues receiving messages. 

Once an application successfully opens the clipboard, it should remove any pre­
viously stored data on the clipboard by calling the WinEmptyClipbrd function. 
Although the clipboard supports many data formats, all the formats on the clip­
board should represent the same data at anyone time. For this reason, it is 
important to clear the clipboard of old data before writing new data. If the clip­
board is not cleared, writing a format that already exists on the clipboard will 
replace the old data with the new data. 

When the clipboard is cleared, an application should write its data to the clip­
board in as many standard formats as possible. For each format, the application 
should pass the data to the clipboard by calling the WinSetClipbrdData func­
tion, specifying the data format. Because the clipboard is not cleared when a 
new format is written to the clipboard, all new data formats coexist with each 
other until the clipboard is cleared by the next clipboard user. 

Data passed to the clipboard can take many forms, depending on the format of 
the data. For text data, the data handle is a selector to a shared segment con­
taining the text. For bitmap data, the data handle is a bitmap handle. For a 
metafile format, the data handle is a metafile handle. If an application passes 
NULL for the data handle, it renders the data on request. 

Once an application passes a selector or a handle to the clipboard, the applica­
tionshould not alter the contents of that segment or handle. The clipboard owns 
that data from then on. 



336 MS OS/2 Programmer's Reference, Vol. 1 
;ii~I~!iI!ii~§!ID~~i!l;lm!.!i~ljj~illii1ifiJi_!!~!i!l!ii§imlf~i!\tJ~i!!iU!!iilmili§iJ1ii;1J~mfiJ~iklllm.~!~m~=!Sr.~m!ll!fP.~[:ID1Ii!IUilili~~~1~~ 

Finally, when an application finishes writing the clipboard data, it should release 
the clipboard by calling the WinCloseClipbrd function so that other applications 
can use the clipboard. 

The following code fragment shows how an application places text data on the 
clipboard, how it opens the clipboard, copies the text to a shared segment, emp­
ties the clipboard, and passes the selector to the clipboard: 

if (WinOpenClipbrd(hab» { 

} 

I' 
, Allocate a shareable segment for the data szClipString in the 
, application's copy of the text. 
'I 

if (usSuccess = DosAllocSeg(strlen(szClipString) + 1. 
&sel, SEG_GIVEABLE » { 

} 

I' Make a far pointer (selector:O) out of the selector. 'I 

pszDest MAKEP(sel, 0); 

I' Set up the source pOinter to point to text. 'I 

pszSrc = &szClipString[O]; 

I' Copy the string to the segment. 'I 

while ('pszDest++ = 'pszSrc++); 

I' Clear old data from the clipboard. 'I 

WinEmptyClipbrd (hab); 

I' 
, Pass the selector to the clipboard in CF_TEXT format. Note 
, that the selector must be a ULONG value. 
'I 

fSuccess = WinSetClipbrdData(hab, (ULONG) sel, 
CF_TEXT, CFI_SELECTOR); 

I' Close the clipboard. 'I 

WinCloseClipbrd(hab); 

26.3.2 Retrieving Data from the Clipboard 
To retrieve data from the clipboard, an application must first call the WinOpen­
Clipbrd function to verify that no other applications are trying to retrieve or set 
the clipboard data. 

Once an application successfully opens the clipboard, it should call the Win­
QueryClipbrdData function, specifying a preferred format. If that format is not 
available, indicated by a NULL return from the WinQueryClipbrdData function, 
the application should repeat calls to the WinQueryClipbrdData function for 
other possible formats until it either receives the data or runs out of format 
choices. 

If the clipboard contains one of the requested formats, the WinQueryClipbrd­
Data function returns a 32-bit integer, the meaning of which depends on the par­
ticular format. For text data, the return value is a selector (in the lower 16 bits 
of the long integer) to a shareable segment containing the text. For bitmap data, 



Chapter 26: Clipboard 337 
~~!i5i~:~!~;m!pj4~m~i~~i~~iiiiil!il~.ffiia!~!mi~~if.l§!~~f~!1~i~~1!~i~~i~!ai~ili!i~I~I~:.mUiiii1I!SiWnri!~I~i~I~*S~~~~nr.§'ii 

, 

the return value is a bitmap handle. For metafile data, the return value is a 
metafile handle. 

Whatever the format, the handle or selector returned is valid only while the clip­
board remains open. An application can use the data while the clipboard is open 
or copy the data to its own memory and use it after the clipboard is closed. 

It is important that an application close the clipboard as soon as possible so that 
other applications can access it. 

The following code fragment shows how to open the clipboard, retrieve data in 
the requested format, copy the data to a local segment, and close the clipboard: 

if (WinOpenClipbrd(hab» { 

} 

if (hText = WinQueryClipbrdData(hab, CF_TEXT» { 

/* Turn the selector into a pointer. */ 

pszClipText = MAKEP«SEL) hText, 0); 

/* Copy text from the selector segment to a local segment. */ 

while (*pszLocalText++ = *pszClipText++); 
} 
WinCloseClipbrd(hab); 

26.3.3 Becoming the Clipboard Viewer 
A window can become a clipboard viewer and display the current contents of 
the clipboard. The clipboard viewer is informed whenever the clipboard contents 
change. Typically, the clipboard viewer is a window that can draw the standard 
clipboard formats. The clipboard viewer is a convenience for the user; it does 
not have any effect on the data-transaction functions of the clipboard. 

To create a clipboard viewer, an application calls the WinSetClipbrdViewer 
function, specifying the window in which the clipboard data will be displayed. 
This is usually the client window of an application. There can only be one clip­
board viewer at any time in the system, so setting a clipboard viewer replaces 
any previous clipboard viewer. The WinQueryClipbrdViewer function receives 
the handle to the current clipboard viewer so that the application can reset it 
when finished with the clipboard viewer. 

Once a window becomes the clipboard viewer, it receives 
WMJ)RA WCLIPBOARD messages whenever the contents of the clipboard 
change. The window should respond to these messages by drawing the contents 
of the clipboard. 

The clipboard viewer displays all the standard formats and should process 
CFLOWNERDISPLA Y items by sending the appropriate clipboard message to 
the clipboard owner. 

Three.special formats exist for of the clipboard viewer: CF J)SPTEXT, 
CF J)SPBITMAP, and CF J)SPMETAFILE. Applications that write data to 
the clipboard in private formats should also write the data in one of these for­
mats. These DSP formats should be a representation of the private formats. If 
the clipboard viewer does not find one of the standard formats (CF _TEXT, 
CF ~ITMAP, or CF ~ETAFILE), it can search for one of the DSP formats. 
Display strategies for these formats are the same as for the corresponding stan­
dard formats. 



338 MS OS/2 Programmer's Reference, Vol. 1 
iiiiL1ir~jmill.mU!U!&&gil!iim\iI;;:_Iif.3l=I~~I!!iN;~!~eiHi~l!ruimiiiiiii!~H!H!l~~~~;~~~mtmimniifftrafa!'li!iiF.'fj~iiifin&f!Ii§~!iiYfi!!l~a 

The following code fragment shows how a sample clipboard viewer responds to 
the WMJ)RA WCLIPBOARD message, drawing text and bitmap data in its win­
dow. Note that the code uses the data retrieved from the clipboard before clos­
ing the clipboard. An alternate strategy would be to copy the data to a local seg­
ment and then close the clipboard. In any case, the original data from the clip­
board cannot be used after the clipboard is closed. 

case WM_DRAWCLIPBOARD: 
if (IWinOpenClipbrd(hab» 

return OL; 

1f (hText = W1nQueryC11pbrdData(hab, CE_TEXT» { 
pszText = MAKEP«SEL) hText, 0); 

} 

hps = WinGetPS(hwnd); 
WinQueryWindowRect(hwnd, &rect); 

WinDrawText(hps, 
OxFFFF, /* null-terminated string */ 
pszText, /* the string */ 
&rect, /* where to put the string */ 
CLR_BLACK, /* foreground color */ 
CLR_WHITE, /* background color */ 
DT_CENTER I DT_VCENTER I DT_ERASERECT); 

WinValidateRect(hwnd, (PRECTL) NULL, EALSE); 
WinReleasePS(hps) ; 

else if (hBitmap = WinQueryClipbrdData(hab, CF_BITMAP» { 
hps = WinGe~PS(hwnd); 

} 

ptlDest.x = ptlDest.y = 0; 
WinQueryWindowRect(hwnd, &rect); 
WinEillRect(hps, &rect, CLR_WHITE); 
WinDrawBitmap(hps, 

hBitmap, 
(PRECTL) NULL, /* draws entire bitmap */ 
&ptlDest, /* destination */ 
CLR_BLACK, /* foreground color */ 
CLR_WHITE, /* background color */ 
DBM_NORMAL) ; /* bitmap flags */ 

WinValidateRect(hwnd, (PRECTL) NULL, EALSE); 
WinReleasePS(hps); 

WinCloseClipbrd(hab) ; 
return OL; 

/* closes the clipboard */ 

The clipboard viewer uses a similar sequence of calls to get clipboard data when 
responding to a WMJ» AINT message. 

The clipboard viewer is also responsible for sending messages to the clipboard 
owner when clipboard data has the attribute CFLOWNERDISPLAY. Typically, 
an application sets the attribute CFLOWNERDISPLA Y only for private clip­
board formats and not for any standard formats. The clipboard viewer must send 
messages to the clipboard owner when the clipboard owner does not provide a 
standard clipboard format in addition to its private formats. In this case, the 
viewer sends messages to the clipboard owner of a CFLOWNERDISPLA Y for­
mat to draw, scroll, and resize the clipboard-image data. 

The clipboard viewer determines the attributes of a particular clipboard format 
by calling the WinQueryClipbrdFmtInfo function. The identity of the current 
owner can be found by calling the WinQueryClipbrdOwner function. 



Chapter 26: Clipboard 339 
~i§iill!imi:ml!l1!!PJururnHP:l~!F:¥Ji!~!H:!~.mf_!~!Ei~~~!f!i~S!~!lii!~s1~~rgii:~~JiiiU~nt:iW.iimiiiimli&f!ilfmj~li5i~!~!s~~~]lliim'Y 

26.3.4 Becoming the Clipboard Owner 
The clipboard owner is any application window that is connected to the clip­
board data. To become the clipboard owner, an application must call the Win­
SetClipbrdOwner function. The following are situations in which an application 
should call the WinSetClipbrdOwner function to become the clipboard owner: 

• The application calling the WinSetClipbrdData function passes a NULL 
selector orhandle to the clipboard, indicating that the application renders 
the data in a particular format on request. As a result, the system sends 
rendering requests to the current clipboard owner. 

• The application calling the WinSetClipbrdData function passes data with the 
attribute CFLOWNERFREE, indicating that the application frees memory 
for data when the clipboard is emptied. As a result, the system sends 
owner-free requests to the current clipboard owner. 

• The application calling the WinSetClipbrdData function passes data with the 
attribute CFLOWNERDISPLA Y, indicating that the owner application 
draws the data in the clipboard viewer. As a result, the clipboard viewer 
sends drawing-related requests to the current clipboard owner. 

The window specified in the call to the WinSetClipbrdOwner function should 
respond to the following messages: 

Message Description 

~ENDERFMT Sent by the system to the clipboard 
owner when a particular format with 
delayed rendering must be rendered. 
The receiver should render the data in 
the specified format and pass it to the 
clipboard by calling the WinSet­
ClipbrdData function. For more infor­
mation, see Section 26.3.6. 

~ENDERALLFMTS Sent by the system to the clipboard 
owner just before the owner applica­
tion terminates. The receiver should 
render the clipboard data in all for­
mats on the clipboard with delayed 
rendering. It should pass the data for 
each format to the clipboard by calling 
the WinSetClipbrdData function. For 
more information, see Section 26.3.6. 

WMJ)ESTROYCLIPBOARD Sent by the system to the clipboard 
owner when the clipboard is cleared 
by another application calling the 
WinEmptyClipbrd function. The 
receiver should free the memory occu­
pied by any clipboard formats using 
the attribute CFLOWNERFREE. 

W1LSIZECLIPBOARD Sent by the clipboard viewer to the 
clipboard owner when the clipboard 
contains the data handle with the attri­
bute CFLOWNERDISPLA Y and 



340 MS OS/2 Programmer's Reference, Vol. 1 
iiiib1ir~jiDinmiitiiiGfgi1i~~~;v._lif.slml~mll~li}f.it~!~~Ufji~lffiiim~ili!illruH!}~!;;ta;l~~~imt§im5i;U~r~m!tiw~lillif.imi§~~f.1~m~! 

Message Description 

when the clipboard-viewer changes 
size. When the clipboard viewer is 
being destroyed or reduced to an icon, 
this message is sent with the coordi­
nates of the opposite corners set to 
(0,0), which permits the owner to free 
its display resources. 

~ VSCROLLCLIPBOARD Sent by the clipboard viewer to the 
clipboard owner when the clipboard 
contains data with the attribute 
CFLOWNERDISPLA Y and when an 
event occurs in the clipboard-viewer 
scroll bars. The receiver should 
respond to this message by scrolling 
the image, invalidating the appropriate 
area of the clipboard viewer, and 
updating the scroll-bar position. 

WMJlSCROLLCLIPBOARD Sent by the clipboard viewer to the 
clipboard owner when the clipboard 
contains data with the attribute 
CFLOWNERDISPLA Y and when an 
event occurs in the scroll bars of the 
clipboard viewer. The receiver should 
respond to this message by scrolling 
the image, invalidating the appropriate 
area of the clipboard viewer, and 
updating the scroll-bar position. 

~ AINTCLIPBOARD Sent by the clipboard viewer to the 
clipboard owner when the clipboard 
contains data with the attribute 
CFLOWNERDISPLA Y and when the 
clipboard-viewer client area needs 
repainting. The receiver should 
respond to this message by painting 
the requested format (by calling 
WinGetPS for the window handle of 
the clipboard viewer). 

An application automatically loses ownership of the clipboard when the clip­
board data is cleared by the WinEmptyClipbrd function. Ownership is necessary 
only when data is present on the clipboard. Typically, an application loses own­
ership when another application places data on the clipboard. 

26.3.5 Custom Clipboard Formats 
Applications often use custom clipboard formats when standard formats are 
insufficient for representing clipboard data. For example, a word processor 
might have a rich-text format that contains font and style information in addition 
to the usual text characters. Clearly, if the word processor uses the clipboard to 
support cut, copy, and paste operations for moving data in its documents, a 
standard text format would be inadequate. 



Chapter 26: Clipboard 341 
~i§iirn~iif!!imflm!tl~~m~gl~]!~~!~.ffif~!t!!!i~~~lf!i~~f~!i~i~~i!!ffi~~i~~iii!i~!~l~maiiii!I~~diJmjii¥!i;imi!~;s~!!imif~i~ 

Such a word processor should write at least two formats to the clipboard for 
each cut or copy operation: a standard text format representing the text of the 
current selection, and a private rich-text format representing the true state of the 
selection. If the word processor performs a paste operation using clipboard data, 
it can use the rich-text format to retain all formatting. If another application 
requests the same data, it can use the standard-text format if it does not recog­
nize the private format. The word processor should also be able to render data 
in CF JUTMAP and CF ~ETAFILE formats for painting or drawing applica­
tions. 

26.3.5.1 Assigning a Unique Format 10 

Each private format must have an identification number when it is written to the 
clipboard. To obtain a unique ID number for a private clipboard format, the 
application should register the name of the format in the system atom table. The 
system assigns a unique ID number for the format name. Other applications that 
know the format name can query the system atom table for the format ID. An 
application can interpret its own private formats and can request them from the 
clipboard for cutting and pasting its own data. Other applications that know the 
private format ID can also interpret the formatted data. The following code frag­
ment illustrates how an application obtains a unique identification number for a 
clipboard format. This technique can be used either by the application that 
creates the format or by another application. 

hatomtbl = WlnQuerySystemAtomTable(); 
formatID = WlnAddAtom(hatomtbl, "SuperCAD_Format"); 

26.3.5.2 Display Formats 
Three standard display formats exist for applications that use private formats: 
CF J)SPTEXT, CF J)SPBITMAP, and CF J)SPMETAFILE. These three for­
mats correspond to the standard text, bitmap, and metafile formats with the 
exception that they are intended only for use by the clipboard viewer. An appli­
cation that uses a private format should write one of the DSP formats that 
approximates the appearance of the private data so that the clipboard viewer can 
display the data regardless of the format. For example, a word processor using 
the rich-text format should also write a CF J)SPBITMAP formatted picture of 
the selected text that contains all the type fonts and styles. Note that you might 
choose delayed rendering for DSP formats because there may not always be a 
clipboard viewer active on the screen. With delayed rendering, an application 
does not actually render the format unless it is requested to do so. 

26.3.6 Delayed Rendering 
An application can pass NULL instead of a selector or a handle, indicating that 
the data is rendered only when another application requests it from the clip­
board. This is useful if an application supports several clipboard formats that are 
time-consuming to render. With delayed rendering, an application can send 
NULL handles for each clipboard format that it supports, and render individual 
formats only when the format is actually requested from the clipboard. An appli­
cation can either write data for standard formats or choose delayed rendering for 
more complex formats. 

When an application uses delayed rendering for one or more of its clipboard for­
mats, it must become the clipboard owner. As long as the application is the clip­
board owner, it receives a WM....RENDERFMT message whenever a request is 



342 MS OS/2 Programmer's Reference, Vol. 1 
i1ii~1ir~jinminftiJ!mEi6~!~~!Ei~~=liilirell~la:ii~!!!~Hfii~lmiig~iii!~H!ml~\~~i~~jijmt~~iilftr~Sll!mF.fj~i1~ij!l!§~~fS::U~! 

received by the clipboard for a format using delayed rendering. When the appli­
cation receives such a message, it should render the data and pass the selector 
or handle to the clipboard by calling the WinSetClipbrdData function. The rules 
for shared-memory access for rendered data are the same as those for standard 
clipboard data. This is simply a delayed execution of the operation that occurs if 
the data does not have delayed· rendering. 

The clipboard owner with one or more delayed-rendering formats on the clip­
board receives a ~ENDERALLFMTS message just before the clipboard 
owner application terminates. This insures that the application renders all of its 
data before terminating. 

26.4 Summary 
The following sections summarize the standard clipboard data formats, the func­
tions that control the clipboard, and the window messages associated with the 
clipboard. 

26.4.1 Standard Clipboard Formats 
The following are the standard clipboard-data formats used in MS OS/2: 

CF JUTMAP The handle returned by the WinQueryClipbrdData function is a 
bitmap handle. 

CF J)SPBITMAP A bitmap representation of a private-data format. The clip­
board viewer uses this format to display a private format. 

CF J)SPMETAFILE A metafile representation of a private-data format. The 
clipboard viewer uses this format to display a private format. 

CF J)SPTEXT A text representation of a private-data format. The clipboard 
viewer uses this format to display a private format. 

CF .-METAFILE The handle returned by the WinQueryClipbrdData function. 

CF _TEXT The handle returned by the WinQueryClipbrdData function has a 
selector (in the low word) to an array of text characters that can include newline 
characters indicating line breaks. The null character indicates the end of the text 
data. 

26.4.2 Clipboard Functions 
The following are the MS OS/2 functions that control the clipboard: 

WinCloseClipbrd Closes the clipboard, allowing other applications to open 
and use it. This function sends a WMJ)RA WCLIPBOARD message, causing 
the clipboard contents to be drawn in the clipboard viewer (if any). The clip­
board must be open before this function is used. 

WinEmptyClipbrd Empties the clipboard, removing and freeing all handles to 
clipboard data. 

WinEnumClipbrdFmts Enumerates the available clipboard data formats. The 
fmtPrev argument specifies the index of the last clipboard-data format enumer­
ated using this function. This index should start at zero, in which case the first 
available format is obtained. Subsequently, it should be set to the last format 



Chapter 26: Clipboard 343 
~~!mV;i~!umlm!lijf~m~l!E1!ii~~~l~.ffii~i!m!mii!!~~!§i~~I~li~i~~~~rMi~1i~!fi!i~lflliftmi;liWl~iijjJm!~lii~{i;~~~~l!li~$!l 

index value returned by this function. The return value is the index of the next 
available clipboard-data format on the clipboard. Enumeration is complete (no 
further formats are available) when zero is returned. 

WinOpenClipbrd Opens the clipboard and prevents other threads and pro­
cesses from examining or changing the clipboard contents. If another thread or 
process already has the clipboard open, this function does not return until the 
clipboard is available. However, it passes messages to the application while it 
waits for the clipboard. 

WinQueryClipbrdData Retrieves data with a specified format from the clip­
board. This function returns zero if no data with that format exists on the clip­
board. 

WinQueryClipbrdFmtInfo Determines whether a particular data format is 
present on the clipboard. If it is, this function provides information to the caller 
about that format. 

WinQueryClipbrdOwner Returns the current clipboard owner (if any). The 
fLock argument specifies whether the clipboard-owner window should be locked. 
If the window is locked, the calling application must unlock the window. This 
window handle should be locked while being used because it may belong to 
another process. Locking prevents· ot~er·processes from destroying the window. 

WinQueryClipbrdViewer Returns the current clipboard viewer (if any). The 
fLock argument specifies whether the clipboard viewer is locked. If the window 
is locked, the calling application must unlock the window. This window handle 
should be locked while being used because it may belong to another process. 
Locking prevents other processes from destroying the window. 

WinSetClipbrdData Puts data in a specified format on the clipboard. 

WinSetClipbrdOwner Sets the current clipboard owner. An application should 
become the clipboard owner when it sends delayed-rendering data to the clip­
board or when it has data it must draw in the clipboard viewer. 

WinSetClipbrdViewer Sets the current clipboard viewer to a specified window. 
The clipboard viewer receives the WMJ)RA WCLIPBOARD message when the 
clipboard contentsphange. This allows the clipboard viewer to display an up-to­
date version of the clipboard contents. The clipboard must be open before this 
function is called. 

26.4.3 Clipboard Messages 
The following are the window messages used with the clipboard: 

WMJ)ESTROYCLIPBOARD Sent by the system to the clipboard owner 
when the clipboard is emptied by the WinEmptyClipbrd function. If any of the 
formats have the CFLOWNERFREE flag set, the clipboard owner must free the 
data when it receives the WMJ)ESTROYCLIPBOARD message. 

WMJ)RA WCLIPBOARD Sent by the system to the clipboard viewer when 
the clipboard contents change. The clipboard viewer draws the contents of the 
clipboard. 



344 MS OS/2 Programmer's Reference, Vol. 1 
!i!ijh,§f~ji!illl.iliiti.l!{gM~iii!~~~~~~ml~mll~:~i~!~~HID~I!ruill!fSiili!~H!!!U~!~Ei1~~jijlfii1§if§jjjf~t~;iiii$~iSi~Um~~Hi!!B:~~i 

WMJISCROLLCLIPBOARD Sent by the clipboard viewer to the clipboard 
owner when the clipboard data has the CFLOWNERDISPLA Y attribute and an 
event occurs in the clipboard-viewer scroll bars. The clipboard owner scrolls the 
clipboard image, invalidating the appropriate sections, and updates the scroll-bar 
values. 

W1LP AINTCLIPBOARD Sent by the clipboard viewer to the clipboard 
owner when a clipboard format with the CFLOWNERDISPLA Y flag set must 
be drawn in the clipboard viewer. The owner receives a window handle for the 
clipboard viewer and uses it as the destination window for drawing the clipboard 
d~. . 

~ENDERALLFMTS Sent by the system to the clipboard owner when the 
owner application is being destroyed. The clipboard owner should render all for­
mats that it can generate and pass a handle or selector for each format to the 
clipboard by calling the WinSetClipbrdData function. This ensures that the clip­
board contains valid data even though the application that rendered the data is 
destroyed. 

~ENDERFMT Sent by the system to the clipboard owner when clipboard 
data must be rendered. The receiver of this message renders the data and sends 
it to the clipboard by calling the WinSetClipbrdData function. 

~SIZECLIPBOARD Sent by the clipboard viewer to the clipboard owner 
when the clipboard viewer is resized and contains data with the attribute 
CFLOWNERDISPLA Y. 

~ VSCROLLCLIPBOARD Same as the WMJISCROLLCLIPBOARD 
message. 



Chapter 

27 

Dynamic Data Exchange 
27.1 Introduction... ................. ......... ..... ...... ...... ... ... ........ 347 

27.2 About Dynamic Data Exchange ............ ..... ................. 347 
27.2.1 Client and Server Interaction............................... 347 
27.2.2 Sample DDE Relationship.................................. 348 

27.3 Using Dynamic Data Exchange ................................... 349 
27.3.1 Detailed DDE Example ..................................... 349 
27.3.2 DDE Message Contents..................................... 350 
27.3.3 Unique Data Formats ........................................ 353 
27.3.4 Sample DDE Transactions ................................. 353 

27.3.4.1 Initiating an Exchange 
Between Two Applications ....................... 353 

27.3.4.2 Positive WMJ)DE-ACK Response............. 354 
27.3.4.3 Negative WMJ)DE-ACK Response............ 355 
27.3.4 .4 One-Time Data Transfer 

Between Two Applications ....................... 355 
27.3.4.5 Permanent Data Link 

Between Two Applications....................... 356 
27.3.4.6 Executing Commands 

in a Remote Application.......................... 358 
27.3.4.7 Terminating an Exchange 

Between Two Applications ....................... 359 
27.3.5 Synchronization Rules....................................... 359 

27.4 Summary................................................................ 360 
27.4.1 Functions... ............... ..... . . .. ..... ....... ... .. .. ... .. . .. 360 
27.4.2 Messages............... .. ..... .. . ..... . .. .... .. .. . .. . .. ... . . . . . 360 
27.4.3 DDE Status Flags............................................ 361 





Chapter 27: Dynamic Data Exchange 347 
~ii!i~!W!i!m~fffi~ef~jl!~imimii;1lf!it;b'iml!i:!~n~t!~n§iINiiiii~~mimim!il~~l!Iljll~~tim§j!mtl;tij~~iSIiF.R~i1iif!I~i~l~iSi?Jlir~iit:!j:iB!liifi!fi~ 

27.1 Introduction 
This chapter describes how to use dynamic data exchange (DDE) messages to 
transfer data between applications. You should also be familiar with the follow­
ing topics: 

• Standard user-interface guidelines 

• Window messages and message queues 

• MS OS/2 memory management and shared memory 

• Clipboard data-exchange model 

27.2 About Dynamic Data Exchange 
The dynamic data exchange (DDE) protocol is a set of messages and guidelines 
that allow MS OS/2 Presentation Manager applications to share data freely, 
using either one-time data transfers or ongoing exchanges, in which applications 
send updates to one another as new data becomes available. 

The DDE protocol uses messages for signaling between applications that share 
data. The DDE protocol uses shared memory as the means of transferring data 
from application to application. DDE defines some structures to store the shared 
memory objects. 

DDE is different from the clipboard data-transfer mechanism that is also part of 
MS OS/2. One difference is that the clipboard is almost always used as a one­
time response to a specific action by the user (such as choosing Paste from a 
menu). DDE, on the other hand, is often initiated by a user but typically contin­
ues without the user's further involvement. 

27.2.1 Client and Server Interaction 
DDE transactions always consist of a client application and a server application. 
The client initiates the exchange by requesting data from the server. The server 
responds to the data requests by providing data to the client. A server can have 
many clients at the same time, and a client can request data from mUltiple 
servers. 

An application can be both a client and a server. For instance, an application 
might receive data from another application as a client, and then act as a server 
by passing the data to another application. 

The important distinction between a client and a server is that the client initiates 
the DDE transaction. 



348 MS 05/2 Programmer's Reference, Vol. 1 
tiAil1Jlm~.!~~i!!!!i!!~lmm~!~i~Emm~li!i~lY~U~!~mm!iiiiiilliille~lH~~~el~Hmtfs~~;!iiiij~~~~!!~5iiSfiii!!it~ii!iii~1IiffiifiliiiliU~i!~ 

27.2.2 Sample DDE Relationship 
There are many potential uses of DDE in real-time data-acquisition applications. 
This section discusses an example of one such use: a DDE-based real-time sys­
tem for tracking portfolios. Two hypothetical Presentation Manager applications 
cooperate in this example. One application, named "Collector," is a specialized 
interface that draws data from an on-line data service. The other application is a 
spreadsheet. Both applications use the DDE protocol. In the described transac­
tions the spreadsheet application is the client-that is, the application that ini­
tiates DDE transactions-and the on-line data-collection application is the 
server. 

The sample spreadsheet has the following layout: 

A B C D 

1 Stock Shares Price Extension 

2 BTRX 1000 148 148000 

3 HLOW 2000 26 52000 

4 WRLD 200 24 4800 

5 ZMXI 2000 93 186000 

6 390800 

Without DDE, this spreadsheet could be updated by using the clipboard to man­
ually copy numbers from the screen display of the Collector application into the 
spreadsheet. This would require screen sharing or switching between applica­
tions, and would also require that the user pay attention to the price data and 
personally undertake the data exchange. 

With DDE, this system could be much more automatic, providing the spread­
shee~ with the current values for multiple data items without intervention by the 
user. DDE would allow the user to set up an exchange between the server and 
client applications that would keep the spreadsheet up-to-date whenever a 
change occurred in the value of specified stocks. Once this connection was 
established, the cell values in the spreadsheet would always reflect the most 
current data available from the server. This system would facilitate the timely 
analysis of real-time data. 

The usefulness of the DDE protocol is not restricted to specialized real-time 
data-acquisition applications. Productivity software in general can benefit signif­
icantly from the protocol. For example, suppose a monthly report is prepared 
using a graphics-and-text word processor, and that the report includes graphs 
generated in a separate business-graphics package. Without DDE, it would be 
necessary to manually copy and paste each month's new graphs into each 
month's report. With DDE, the word processor can establish a permanent link 
to the charting application,· so that any changes made by the user to the charting 
document are reflected in the word-processing document, either automatically or 
on request. This makes the routine of document preparation much simpler for 
the user. 



Chapter 27: Dynamic Data Exchange 349 
:mi!~!fmf!mi~'Iff~§JI!IJsn~if!!i~fl~i§lmiii!Mtim§irni!t:ff.~!§tlf!~!IBl~mlfiiim~lw.iii~~mli!if~i~1imraf:Iii~~l§i!mlF.Mflj!if!irtfisl§iMfimm4~!Hmaf!~~~S 

27.3 Using Dynamic Data Exchange 
A DDE transaction between two applications actually takes place between two 
windows, one for each of the participating applications. Applications open a 
window for each conversation they engage in. (Note that such windows are typi­
cally not visible.) A window is identified by its handle. The window belonging to 
the server application is the server window; the window belonging to the client 
application is the client window. 

After a conversation has been initiated by the client, the client interacts with the 
server by issuing transactions. When issuing a transaction, the client requests 
that the server perform a particular action. There are six types of transactions: 
request, advise, unadvise, poke, execute, and terminate. These transactions are 
permitted only within an exchange begun by using the WMJ)DEJNITIATE 
message. DDE transactions are one-way: the client application always issues the 
transactions. If the server issues a transaction to the client, the server must ini~ 
tiate a new exchange for that purpose. The server becomes the client in this new 
exchange. (The only exception to the one-way rule is the terminate transaction, 
which can be issued by either the client or the server.) 

27.3.1 Detailed DDE Example 
This section presents a more detailed view of the workings of the DDE protocol. 
It discusses the example of the Collector and spreadsheet interaction and illus­
trates forwarding stock quotes from the Collector application to the spreadsheet. 
For the sake of simplicity, this example will be limited to the exchange of quotes 
for a single stock, BTRX. 

The Collector DDE server application is started first. Typically, applications 
designed to operate as dedicated DDE servers have some user interface for ini­
tialization and then run as icons at the bottom of the Presentation Manager 
screen. As part of the initialization process, the Collector DDE server applica­
tion goes through whatever steps are necessary (entering passwords, testing, etc.) 
to ensure that data can be provided to clients. 

The spreadsheet is started next, and the stock-portfolio document is loaded. 
At this time, the spreadsheet calls the WinDdeInitiate function, which sends 
a WMJ)DEJNITIATE message to all current top-level frame windows. 

The WMJ)DEJNITIATE message is·a request to initiate an exchange with an 
application on a specified topic-in this case, NYSE. An application can accept 
this message by responding with a positive WMJ)DEJNITIA TEACK message, 
or can decline it by passing the message on to the WinDetWindowProc function. 
If no application accepts the request, the spreadsheet assigns an error value to 
the external reference and its DDE activity concludes. 

If the Collector application acknowledges the request, the spreadsheet can use 
the newly established exchange to request the Collector application to provide 
continuous updates on a specified data item. To make this request, the spread­
sheet posts a WMJ)DE.-ADVISE message to the Collector application (actu­
ally, to a window within the Collector application that is acting as the message 
recipient for DDE messages), indicating that updates should be sent every time 
there is a new value available for the data item named "BTRX," and that the 
updates should be in a particular format-for example, DDEFMT_TEXT. 



350 MS OS/2 Programmer's Reference, Vol. 1 
;!~~j;~~~!!ll!\~li~i~!~iiaE!Hm~Ii!i~li.i~~I~;~mmI~ii~ll~I~~ll~~~e1~!!mifsim~;iiliiijmlras.l!!~!iiiSfi1~f~!~U~!liffiiiilii~~~!~ 

Upon receiving this message, the Collector application records the request in its 
database and posts a WMJ)DE~CK message to the spreadsheet. From then 
on, the Collector application posts a WMJ)DEJ)ATA message to the spread­
sheet application (actually, to the window in the spreadsheet that initiated the 
exchange) whenever it receives a new BTRX stock quote from the server. Each 
of these messages carries a selector for a shared memory object. The object 
itself contains the data, rendered in the requested format. Whenever the 
spreadsheet receives such a message, it retrieves the data from the referenced 
memory object and uses the data to update the value of the cell containing the 
external reference. 

The periodic updates continue until the spreadsheet document is closed. At that 
point the spreadsheet application posts a WMJ)DE_UNADVISE message to 
the Collector application, indicating that further updating is not necessary. Upon 
receipt of this message, the Collector application removes the corresponding 
data request from its database and posts a positive WMJ)DE.-ACK message 
back to the spreadsheet. 

Finally, unless the spreadsheet initiates other data exchanges under this same 
topic, it posts a WMJ)DE_TERMINATE message to the Collector application, 
indicating the end of the DDE transaction. The Collector application responds 
with a WMJ)DE_TERMINATE message. 

27.3.2 ODE Message Contents 
DDE uses the three-level hierarchy-application, topic, and item-to uniquely 
identify a unit of data. An item is a data object that can be passed in a DDE 
transaction. For example, an item might be a single integer, a string, several 
paragraphs of text, or a bitmap. A topic is a logical data context. For applica­
tions that operate on file-based documents, topics are usually filenames; for 
other applications they are other application-specific strings. Using the .Collector 
and spreadsheet model described earlier, the application name is collector, the 
topic name is NYSE, and the item name is BTRX. 

There are two data structures used for DDE transactions: the DDEINIT struc­
ture and the DDESTRUCT structure. The DDEINIT structure is used for the 
WMJ)DEJNITIATE and WMJ)DEJNITIATEACK messages. DDEINIT 
contains pointers to the application-name and topic-name strings. The DDEINIT 
structure has the following form: 

typedef s.truct _DDEINIT { 
USHORT cb; 
psz pszAppName; 
psz pszTopic; 

} DDEINIT; 

An application typically does not need to fill in a DDEINIT structure, since 
the operating system fills it in automatically when the application calls the 
WinDdelnitiate or WinDdeRespond function. It is important, however, to 
understand the organization of the DDEINIT structure when receiving a 
WMJ)DEJNITIATE or WMJ)DEJNITIATEACK message, so that you 
can extract the application name and the topic name. 



Chapter 27: Dynamic Data Exchange 351 
iiiiiI2~I!f!ji!:if!fif~~l!!ii!!lIJ1I~iiSIUi!ijMlS1~1i,,~irni!!tfmn!a1t!!iii§jfifamifili'i1imi~i!i~!ffii!l1gi~l5.jiifaitii~~~~l§b'ilJ!jIDiltfi!I§jJSliiJ~r~!!fliimt~1iI!m! 

Figure 27.1 

The DDESTRUCT structure is passed with all DDE messages except 
WMJ)DEJNITIATE and WMJ)DEJNITIATEACK. It contains a byte count 
of the data, the format of the data, the item name, a status word, and the data 
being transferred. The DDESTRUCT structure has the following form: 

typedef struct _DDESTRUCT { 
ULONG cbData; 
USHORT fsStatus; 
USHORT usFormat; 
USHORT offszltemName; 
USHORT offabData; 

} DDESTRUCT; 

The data in a DDE message is contained in a shared memory segment. The 
sender allocates a segment large enough to hold one of the two data structures 
described above and the actual data to be transferred, and passes the selector 
for the memory as part of the message. The layout of a typical DDE segment is 
shown in Figure 27.1. The first part of the DDE segment is occupied by the 
DDESTRUCT structure. Next comes the item-name string. Following the name 
string is the actual data to be transferred. The offset fields of the DDESTRUCT 
structure must be set to point to the name string and the beginning of the data. 
The cbData field must also be set to indicate the number of bytes of data. 

Typical DOE Segment 

Data } Data 

ltemName } Itemname 

offabData 

offszltemName 

usFormat 

fsStatus 

cbData 

} DDESTRUCT 

The sender must allocate the segment as SEG_GIVEABLE and call the Dos­
GiveSeg function to share the segment with the receiving application. To share a 
segment, the sender needs to know the process identifier of the recipient. The 
process identifier can be obtained by calling the WinQueryWindowProcess func­
tion for the recipient's window handle. 

The sender should call the DosFreeSeg function to free its copy of the segment 
selector as soon as it has given the shared segment selector to the recipient. The 
recipient should call DosFreeSeg when it is finished using the segment. The 
sender should not try to access the segment once it has been sent to the recip­
ient in a DDE message. 



352 MS OS/2 Programmer's Reference, Vol. 1 
i!P .. !iP.!~~~~~t!Il~!~li~i!H!~ii;iE1H~~1i!il1ii~m~:~mm!raii!illiilll$1~ii!I!~U~;~i.rn~!i~m!m~l~imij~Jn.~~J!i!~~l5!fii!!U~i!!!~ID!liW~liii~fr.we!~ 

The following code fragment shows a function that creates a shared segment for 
a DDE transaction. The function parameters include the destination window for 
the DDE message, the item name for the transaction, the status word, the for­
mat of the data, the actual data to be transferred (if any), and the length of the 
data. The segment allocated by this fun<;tion must be big enough to hold the 
DDESTRUCT structure, the item name, and the actual data to be transferred. 
The function returns a pointer (PDDESTRUCT) to a shared segment that is 
ready to post as part of a DDE message. 

PDDESTRUCT MakeDDESegment(hwndDest, pszItemName, fsStatus, usFormat, 
pabData, usDataLen) 

HWND hwndDest; 
psz pszItemName; 
USHORT fsStatus; 
USHORT uSE'ormat; 
PYOID pabData; 
USHORT usDataLen; 

{ 

} 

PDDESTRUCT 
USHORT 
USHORT 

pddes; 
usItemLen; 
usTotalLen; 
selBuf; 
selShared; 
receiverPID; 
receiverTID; 

/* pointer to DDESTRUCT */ 
/* length of item name */ 
/* total length of segment */ 

SEL 
SEL 

/* local selector for segment */ 
/* shared selector for segment */ 

USHORT 
USHORT 

/* process ID of server */ 
/* thread ID of server */ 

usItemLen = FarStrLen(pszItemName) + 1; 

usTotalLen = sizeof(DDESTRUCT) + usItemLen + usDataLen; 

if (I DosAllocSeg(usTotalLen, &selBuf, SEG_GIVEABLE» { 

/* Initialize DDESTRUCT. */ 

} 

pddes = SELTOPDDES(selBuf); 
pddes->cbData = usTotalLen; 
pddes->fsStatus = fsStatus; 
pddes->usFormat = uSE'ormat; 
pddes->offszItemName = sizeof(DDESTRUCT); 
if «usDataLen) && (pabData» 

pddes->offabData = sizeof(DDESTRUCT) + usItemLen; 
else 

pddes->offabData = 0; 

/* Copy item name immediately following DDESTRUCT. */ 

FarStrCopy(DDES_PSZITEMNAME(pddes), pszItemName); 

/* Copy data immediately following item name. */ 

FarStructCopy(DDES_PABDATA(pddes), pabData, usDataLen); 

/* Get process identifier of server. */ 

WinQueryWindowProcess(hwndDest, &receiverPID, &receiverTID); 

/* Give the segment away. */ 

if (IDosGiveSeg(selBuf, receiverPID, &selShared» { 
pddes = SELTOPDDES(selShared); 
return (pddes); 

} 

/* Else could not allocate or share segment. */ 

return (NULL); 



Chapter 27: Dynamic Data Exchange 353 
~!gff#il~i~!i!1llf:l!i§~:~~i~iB~~I~~~;uII~!ila...~~~i~ilijjl!&islimmi!i~~H~alil~~~ffiUi~~~1fli§ip'!~m;~iti:iRiLiiiiffillij!til!f:!!im 

This function is used in many examples in the following sections to demonstrate 
the creation of DDE shared segments. You may want to define a similar function 
in your own programs as well. 

27.3.3 Unique Data Formats 
Whenever you exchange data by using the DDE protocols you must specify the 
format of the data in the usFormat field of the DDESTRUCT structure. The 
system-defined standard format is DDEFMT_TEXT, which indicates text data. 

Applications can define their own data formats. Each nonstandard DDE format 
must have a unique identification number. The application should register the 
name of the format in the system atom table, receiving an identification number 
for that format name. Other applications that have the name of the format can 
also query the system atom table for the format's identification number. This 
method ensures that all applications use the same atom to identify a format. 

The following code fragment shows how an application can obtain a unique 
identification number for a DDE format. This technique can be used by the 
application that creates the format and by an application that is able to use the 
format. 

hatomtbl WinQuerySystemAtomTable(); 
formatID WinAddAtom(hatomtbl, "SuperCAD_Format"); 

27.3.4 Sample DOE Transactions 
This section discusses beginning and ending a DDE transaction and the five 
basic types of interchange supported by DDE. Each of the following subsections 
provides a detailed description of the message protocols that are associated with 
the transactions it discusses. 

27.3.4.1 Initiating an Exchange Between Two Applications 
To initiate a DDE transaction, the client calls the WinDdeInitiate function, 
specifying the server application-name and topic-name strings. This function 
sends a WMJ)DEJNITIATE message to all frame windows whose parent is 
HWNDJ)ESKTOP. Because the message is sent rather than posted, WinDde­
Initiate requires all of the message's recipients to respond to the message before 
control is returned. Either the application name or the topic name can be a null 
string, in which case the server ignores that name. For example, a client could 
send a valid application name with a null topic name to request an exchange on 
all available topics for that application. 

The server applications that respond to the WMJ)DEJNITIATE message will 
call the WinDdeRespond function, as shown in the following pseudocode: 

If «specific app requested and server is instance of app) or 
(specific app not requested) { 

If (specific topic requested) 
If (server can support topic) 

acknowledge the requested topic 

Else 
acknowledge each supported topic 

} 



354 MS OS/2 Programmer's Reference, Vol. 1 
II!mlliiiims.ml~!~miiimisjfs!a:liffiP.[~iiiffglif~llli1rlJt;!~'U§!!i!!~iiGH~!!iim!~J!!!Ii§i~!iH1Ji~~n~_~1iilfdiiii1i!Bimi5=m,,~i~iifJii!~1f:iii 

To acknowledge a specific topic, the server responds with the following code 
fragment: 

WlnDdeRespond(hwndCllent, hwndServer, pszAppName, pszToplcName); 

To acknowledge more than one topic, the server makes one such response for 
each topic. This initiates an exchange on each topic. The client should post a 
WMJ)DE_TERMINATE message for all unneeded transactions. 

The System Topic 
Applications are encouraged to support the "System" topic at all times. This 
topic provides a context for information that may be of general interest to any 
partners in a DDE transaction. DDE applications should request an exchange on 
the System topic with a NULL application name when they start up, to find out 
what kinds of information other DDE-capable programs can provide. 

The System topic should support the following terms, as well as any other items 
the application may use: 

Item 

SysItems 

Topics 

ReturnMessage 

Status 

Formats 

Description 

A list of the items supported under the System 
topic by this application. 

A list of the topics supported by the application 
at the current time (this may vary from moment 
to moment). 

Supporting detail for. the most recently issued 
WMJ)DE~CK message. (This is useful when 
more than eight bits of application-specific return 
code are required.) 

An indication of the current status of the applica­
tion. 

A list of DDE format numbers that the applica­
tion can render. 

Individual elements of lists should be delimited by tabs (the DDEFMT_TEXT 
format). 

27.3.4.2 Positive WM_DDE....ACK Response 

• 

A client or server often must positively acknowledge a DDE message that it 
receives by posting a WMJ)DE~CK message with the DDEYRESPONSE 
flag set in the status word of the DDESTRUCT structure. Sending a positive 



Chapter 27: Dynamic Data Exchange 355 
!!!iiilil~i~!nlllf.~!Si~I~lIiii~!8j;§li6JF.!1~$!I~~i..Iif:!~il5imifil~siiifffii!j~~1i!ii1!ii1i?!§l~~a~n~~~miti;m~ii;1Iiffi~ilffiimntii!fi!iim 

WMJ)DE~CK message means that the sender will respond to the previous 
message. The following code fragment is an example of a positive acknowledg­
ment message: 

pddeStruct = MakeDDESegment(hwndDest, 
"BTRX" , 
DDE_E'ACKREQ, 
DDEE'MT_TEXT, 
NULL, 
0) ; 

WinDdePostMsg(hwndDest, 
hwndSource, 
WM_DDE_ACK, 
pddeStruct, 
1) ; 

27.3.4.3 Negative WM_DDE.-ACK Response 

It 
It 
It 
It 
It 
It 
It 
It 
It 
It 
It 

handle of destination tl 
item name tl 
status flags tl 
data format tl 
no data for request tl 
data length tl 
handle of destination tl 
handle of source tl 
message tl 
shared-segment pointer tl 
retry tl 

When an application receives a DDE message that it cannot respond to (such as 
a request for data in a format that it does not support), the application must 
post a WMJ)DE~CK message with the DDE_NOTPROCESSED flag set in 
the status word of the DDESTRUCT structure. The following code fragment is 
an example of a negative acknowledgment message: 

pddeStruct = MakeDDESegment(hwndDest, 
"BTRX" , 
DDE_NOTPROCESSED, 
DDEE'MT_TEXT, 
NULL, 
0) ; 

WinDdePostMsg(hwndDest, 
hwndSource, 
WM_DDE_ACK, 
pddeStruct, 
1) ; 

It handle of destination tl 
It item name tl 
It status flags tl 
It data format tl 
It no data for request tl 
It data length tl 
It handle of destination tl 
It handle of source tl 
It message tl 
It shared-segment pointer tl 
It retry tl 

If an application is busy when it receives a DDE message, it can post a 
WMJ)DE~CK message with the DDEYBUSY flag set. 

27.3.4.4 One-Time Data Transfer Between Two Applications 
A client application can use the DDE protocol to obtain a data item from 
a server (WMJ)DEJEQUEST), or to submit a data item to a server 
(WMJ)DE-POKE). In either case, the client must have already initiated 
an exchange with the server, as described earlier. 

The client posts a WMJ)DEJEQUEST message to the server, specifying an 
item and format by allocating a shared segment and filling in a DDESTRUCT 
structure and passing the structure to the WinDdePostMsg function. For exam­
ple, if a DDE exchange has been started on the NYSE topic, the client could 
request data for the BTRX item by using the following code fragment. (For an 
example of how to allocate and initialize a shared memory segment, see Section 
27.3.2.) 



356 MS OS/2 Programmer's Reference, Vol. 1 
'JlG.lt~fi1ili!ii~ii!mriimi!ilimmtiffiP.tt~..iimif!iU~ll~f.f;t!t:~§!!E!~i!miH;!lmim!~!~I§j§f~1!~~~!~.8Imlfrl~iU!sii'n~!i~~i~imii~~;i!fm! 

pddeStruct = MakeDDESegment(hwndServer, /* handle of server */ 
"BTRX", /* item name */ 
0, /* status flags */ 
DDEFMT_TEXT, /* data format */ 
NULL, /* no data for request */ 
0) ; /* data length */ 

WinDdePostMsg(hwndServer, 
hwndC 1 ient, . 
WM_DDE_REQUEST, 
pddeStruct, 
1) ; 

/* handle of server */ 
/* handle of client */ 
/* message */ 
/* shared-segment pointer */ 
/* retry */ 

If the server is unable to satisfy the request, it sends the client a negative 
WMJ)DE.-ACK message. If the server can satisfy the request, it renders the 
item in the requested format and includes it with a DDESTRUCT structure in a 
shared memory object and posts a WMJ)DEJ)ATA message to the client, as 
shown in the following code fragment: 

pddeStruct = MakeDDESegment(hwndClient, /* handle of client */ 
"BTRX", /* item name */ 
0, /* status flags */ 
DDEFMT_TEXT, /* data format */ 
pabData, /* pointer to data * / 
usDataLen) ; /* data length */ 

WinDdePostMsg(hwndClient, 
hwndServer, 
WM_DDE_DATA, 
pddeStruct, 
1) ; 

/* handle of client */ 
/* handle of server */ 
/* message */ 
/* shared-segment pointer */ 
/* retry */ 

Upon receiving a WMJ)DEJ)ATA message, the· client processes the data 
item. The DDESTRUCT structure at the beginning of the shareable segment con­
tains a status word indicating whether the sender has requested an acknowledg­
ment message. If the DDEYACKREQ bit of the status word is set, the client 
should send the server a positive WMJ)DE.-ACK message. 

Upon receiving a negative WMJ)DE.-ACK message, the client can ask for the 
same item again, specifying a different DDE format. Typically, a client will first 
ask for the most complex format it can support, then step down, if necessary, 
through progressively simpler formats until it finds one the server can provide. 

27.3.4.5 Permanent Data Link Between Two Applications 
A client application can use DDE to establish a link to an item in a server appli­
cation. When such a link is established, the server sends periodic updates about 
the linked item to the client (typically, whenever the data that is associated with 
the item in the server application has changed). A permanent "data stream" is 
established between the two applications and remains in place until it is explicitly 
disconnected. 

The client sends the server a WMJ)DE.-ADVISE message to set up the data 
link. (Of course, the client must have first initiated an exchange by using the 
WMJ)DEJNITIATE message, as described previously.) The advise message 
contains a shared-memory pointer containing a DDESTRUCT structure with the 



Chapter 27: Dynamic Data Exchange 357 
!igff~li:!i~!~l!f..j!i§ffl!Iim;Piij;'iiji;ll.!!!jjlial~fiiJ!!ItL~b7:!iii1Ii5im3in;jiiili§!lii!!j!Uif:Hiiii!P.jg!W~lm~~iliE~~mifil!iiii{it1.jj!ii~ila1iifji!tii!fi!iiJii 

item name, format information, and status information, as shown in the follow­
ing code fragment: 

pddeStruct = MakeDDESegment(hwndServer, It handle of server tl 
"BTRX", It item name tl 
DDE_FACKREQ, It status flags tl 
DDEFMT_TEXT, It data format tl 
NULL, It no data for advise tl 
0) ; It data length tl 

WinDdePostMsg(hwndServer, 
hwndClient, 
WM_DDE_ADVISE, 
pddeStruct, 
1) ; 

It handle of server tl 
It handle of client tl 
It message tl 
It shared-segment pointer tl 
It retry tl 

If the server has access to the requested item and can render it in the desired 
format, the server records the new link and then sends the client a positive 
WMJ)DE-ACK message. Until the client issues a WMJ)DR-UNADVISE 
message, the server sends data messages to the client every time the source data 
changes that is associated with the item in the server application. 

If the server is unable to satisfy the request, it sends the client a negative 
WMJ)DE-ACK message. 

When a link is established with the DDEYNODATA status bit cleared, the 
client is sent the data each time the data changes. In such cases, the server 
renders the new version of the item in the previously specified format and posts 
a WMJ)DEJ)ATA message to the client, as shown in Section 27.3.4.4. 

When the client receives a WMJ)DEJ)ATA message, it extracts data from the 
shared memory segment by using the DDESTRUCT structure at the beginning of 
the segment. If the DDEYACK status bit is set in the status word of the 
DDESTRUCT structure, the client must post a positive WMJ)DE-ACK mes­
sage to the server. 

When a link is established with the DDEYNODATA status flag set, a noti­
fication, not the data itself, is posted to the client each time the data changes. 
In this case, the server does not render the new version of the item when the 
source data changes, but simply posts a WMJ)DEJ)ATA message with zero 
bytes of data and the DDEYNODATA status flag set, as shown in the following 
code fragment: 

pddeStruct = MakeDDESegment(hwndClient, It handle of client tl 
"BTRX", It item name tl 
DDE_FNODATA, It status flags tl 
DDEFMT_TEXT, It data format tl 
NULL, It no data tl 
0) ; It data length tl 

WinDdePostMsg(hwndClient, 
hwndServer, 
WM_DDE_DATA, 
pddeStruct, 
1) ; 

It handle of client tl 
It handle of server tl 
It message tl 
It shared-segment pointer tl 
It retry tl 



358 MS OS/2 Programmer's Reference, Vol. 1 
. mm~ffii1i!ii~ijjniiiimisiff,li:!~n[~iififfim~Ji!il~r.;~~I~Iii!~iif:itla!liiimlm'Jjm!lij;m5El1i~r:~i~~afmlffdiJiHiimii§miR:=§i~$llIj~i5iif:iii 

The client can request the latest version of the data by performing a regular 
one-time WMJ)DEJEQUEST transaction, or it can simply ignore the data­
change notice from the server. In either case, if the DDEY ACK status bit is 
set, the client should send a positive WMJ)DE-ACK message to the server. 

To terminate a specific item link, the client posts a WMJ)DE_UNADVISE 
message to the server, as shown in the following code fragment: 

pddeStruct = MakeDDESegment(hwndServer, /* handle of server */ 
"BTRX"~ /* item name */ 
DDE_FACKREQ, /* status flags */ 
DDEFMT_TEXT, /* data format */ 
NULL, /* no data for unadvise */ 
0) ; /* data length */ 

WinDdePostMsg(hwndServer, 
hwndClient, 
WM_DDE_UNADVISE, 
pddeStruct, 
1) ; 

/* handle of server */ 
/* handle of client */ 
/* message */ 
/* shared-segment pointer */ 
/* retry */ 

The server checks that the client currently has a link to the specified item in this 
exchange. If the link exists, the server sends a positive WMJ)DE-ACK mes­
sage to the client and no longer sends updates on the item in this exchange. If 
the server has no such link, it sends a negative WMJ)DE~CK message. 

To terminate all links for a particular exchange, the client application posts a 
WMJ)DE_UNADVISE message with a null item name to the server. The 
server checks that the exchange has at least one link currently established. If so, 
the server posts a positive WMJ)DE~CK message to the client, and no longer 
sends any updates in the exchange. If the server has no links in the exchange, it 
posts a negative WMJ)DE~CK message. 

27.3.4.6 Executing Commands In a Remote Application 
A Presentation Manager application can use the DDE protocol to cause a com­
mand or series of commands to be executed in another application. Such remote 
executions are performed by means of the WMJ)DE-EXECUTE transaction. 

To execute a remote command, the client application posts to the server a 
WMJ)DE-EXECUTE message containing a selector for a shared-memory 
object that contains a DDESTRUCT structure and a command string, as shown 
in the following code fragment: 

pddeStruct = MakeDDESegment(hwndServer, 
"BTRX", /* 
DDE_FACKREQ, /* 
DDEFMT_TEXT, /* 
pabData, /* 
usDataLen) ; /* 

/* handle of server */ 
item name */ 
status flags */ 
data format */ 
pointer to command string */ 
data length */ 

WinDdePostMsg(hwndServer, 
hwndClient, 
WM_DDE_EXECUTE, 
pddeStruct, 

/* handle of server 
/* handle of client 
/* message 

*/ 
*/ 
*/ 
*/ 
*/ 1) ; 

/* shared-segment pointer 
/* retry 

The server attempts to execute the specified string according to some agreed­
upon protocol. If successful, the server posts a positive WMJ)DE~CK mes­
sage to the client; if unsuccessful, a negative WMJ)DE~CK message is 
posted. 



Chapter 27: Dynamic Data Exchange 359 
!igiilili!i~!~!Ii.~!i§ffliIim:~i~mj;~Iia]~~~!i~~Jmiii1il5iif!jjlU§~iijb~i!i~iit1!!ii~i~~~~1i~~I~~1ii§ip.!i:fmt1!ii~·miRiiiili.il6j~f!fi!iiJi 

27.3.4.7 Terminating an Exchange Between Two Applications 
At any time, either the client or the server may terminate an exchange by using 
the following procedure to issue a WMJ)DE_TERMINATE message. Similarly, 
both the client application and server application should be able to receive a 
WMJ)DE_TERMINATE message at any time. 

An application must end its exchanges before terminating. The application posts 
a WMJ)DE_TERMINATE message with a NULL shared-segment pointer, as 
shown in the following code fragment. A WMJ)DE_TERMINATE message 
stops all transactions for a given exchange. 

WinDdePostMsg(hwndDest, 
hwndSource, 
WM_DDE_TERMINATE, 
NULL, 
1) ; 

/* handle of destination */ 
/* handle of source */ 
/* message */ 
/* no shared-segment pointer */ 
/* retry */ 

The WMJ)DE_TERMINATE message means that the sender will send no 
further messages in that exchange and that the recipient may destroy its DDE 
window. The recipient must always send a WMJ)DE_TERMINATE message 
promptly in response; it is not permissible to send a negative, busy, or positive 
WMJ)DE-ACK message instead .. 

If the sender of the original termination request receives any other message 
before the WMJ)DE_TERMINATE message arrives from the recipient of the 
request, no response should be sent to this other message; the sender of the 
other message may already have destroyed the window to which the response 
would be sent. 

27.3.5 Synchronization Rules 
A window processing DDE requests from another window must process them 
strictly in the order in which the requests were received. 

A window does not need to apply this first-in, first-out rule between requests 
from different windows-that is, it may provide asynchronous support for multi­
ple processes. For example, a window might have the following requests in its 
queue: 

• 1: Request Message from window x 
• 2: Request Message from window y 
• 3: Request Message from window x 

The window must process request 1 before 3, but it does not need to process 2 
before 3. If Y has a lower priority than x, the window follows the order 1, 3, 2. 

If a server is unable to process an incoming request because it is waiting for an 
external process, it must post a busy WMJ)DE-ACK message to the client, to 
prevent deadlock. A busy WMJ)DE-ACK message can also be sent if the 
server is unable to process an incoming request quickly. 



360 MS OS/2 Programmer's Reference, Vol. 1 
II!al_r.1ilifml~iiinr.aimi~miim;iffip.a*ii,.iii~liii1~H~im~~§!ii!'!~iimiH;llm;m!~J!!!Ii§i§!~1Ji~ffil~.~I.infrlii1wfBim~!i:m:~iifi!fJi~m'iifill 

27.4 Summary 
This section describes the functions, messages, and status flags associated with 
the DDE protocol. 

27.4.1 Functions 
Three functions simplify the use of DDE messages: 

WinDdelnitiate Sends a WMJ)DEJNITIATE message containing the 
specified application name and topic name to all top-level frame windows in the 
system. 

WinDdePostMsg Posts a DDE message to the specified recipient window. 

WinDdeRespond Sends a WMJ)DEJNITIA TEACK message in response to 
a WMJ)DEJNITIATE message. 

27.4.2 Messages 
The predefined DDE messages are summarized below: 

WMJ)DE~CK Sent as acknowledgment to many DDE messages. 

WMJ)DE~DVISE Sent from the client to the server, requesting the serve.r 
to provide a data update whenever the specified data item changes. 

WMJ)DEJ)ATA Sent from the server to the client to notify the client that 
the data is available. 

WMJ)DE-EXECUTE Sent from the client to the server; containing a text 
string that the server should execute as a command or series of commands. 

WMJ)DEJNITIATE Sent by a client application to initiate an exchange with 
one or more server applications. This message is often sent to all current appli­
cations by calling the WinBroadcastMsg function. 

WMJ)DEJNITIATEACK Sent by a server application as a positive response 
to a WMJ)DEJNITIATE message. This message specifies the server applica­
tion name and the topic on which the server will open a DDE transaction. 

WMJ)DEYOKE Sent as an unsolicited data message for the recipient" which 
should reply with a WMJ)DE~CK message to indicate whether or not it 
accepted the data. 

WMJ)DE~EQUEST Sent from the client to the server to request that a data 
item be sent to the client. 

WMJ)DE_TERMINATE Sent by either the client or the server to terminate 
the exchange. 

WMJ)DE_UNADVISE Sent from the client to the server to indicate that the 
specified item should no longer be updated. This message requests the server to 
remove the link to the data item set up by the WMJ)DE~DVISE message. 



Chapter 27: Dynamic Data Exchange 361 
~f!i;rIl~~~a!iii!silifJffif"l!iiiru~fl!!f~ialftil~mfsg~rn!lm~i~m~m!!i!!~mm~~i!if;!iI~m:i~i~~t;sE~~~l~~fmimrrn!!ii~~r.s.i~ 

27.4.3 DDE Status Flags 
The following constant values control various aspects of a DDE transaction. 
They can be combined in the JsStatus word of the DDESTRUCT structure by 
using the OR operator. 

DDEYACK Set for positive acknowledgment. 

DDEYACKREQ Set to acknowledge DDE messages for the application. 

DDEYAPPSTATUS Upper eight bits of status word are reserved for the 
application-specific data. 

DDEYBUSY Set if application is busy. 

DDEYNODATA Set if there is no data transfer for the WMJ)DE.-ADVISE 
message. 

DDEYRESERVED Reserved; must be zero. 

DDEYRESPONSE Set if there is a response to a WMJ)DEJEQUEST 
message. 

DDE_NOTPROCESSED Set if the message is not supported. 





Hooks 

Chapter 

28 

28.1 Introduction...... ...................................................... 365 

28.2 About Hooks.......................................................... 365 

28.3 Types of Hooks....................................................... 365 
28.3.1 Input Hook .................................................... 365 

·28.3.2 Send-Message Hook......................................... 366 
28.3.3 Message-Filter Hook......................................... 367 
28.3.4 Journal-Record Hook ........................................ 368 
28.3.5 Journal-Playback Hook ...................................... 370 
28.3.6 Help Hook ..................................................... 370 

28.4 Using Hooks ..... ... ... ..... .......... ............ ....... .......... .... 372 

28.5 Hook Example......................................................... 373 
28.5.1 Installing a System Hook .................................... 373 
28.5.2 System-Hook Code........................................... 374 

28.6 Summary ................................................................ 374 
28.6.1 Functions ...................................................... 374 
28.6.2 Hook Types ................................................... 375 





Chapter 28: Hooks 365 
~i!i!i!i~~~a!i;ifiiflliiFj~rue:~ign§!!F:iim~llmm!~~~llmaa!~I~m!liI~ffim~.mI!!f:~iil~§i~~~_~~miti~!S!m!!ij!~Ii!fti!in;li:i! 

28.1 Introduction 
This chapter describes how to use hooks in your applications. You should also 
be familiar with the following topics: 

• Standard user-interface guidelines 

• Window messages and message queues 

• Focus window and input guidelines 

28.2 About Hooks 
MS OS/2 is based on a message-passing model. The behavior of most programs 
depends on the messages that the program receives. Messages can be generated 
by input devices, such as the keyboard and mouse, or they can originate within 
the system as a way of managing and communicating between system resources. 

MS OS/2 provides hooks to allow applications to monitor and modify the mes­
sage stream. Hooks can be installed in either the system queue, so that they 
affect all applications, or in an individual thread's message queue, so that only 
messages for that queue are affected. 

Because many applications may install hooks at the same time, most hooks are 
arranged in chains. The system passes a message to the first hook in the chain, 
and then to the next hook in the chain, and so on until the message is delivered 
to the destination application. Each hook may modify the message or stop its 
progress through the chain, preventing it from reaching the application. Hooks 
in a chain are called in last-installed, first-called order. 

28.3 Types of Hooks 
There are six different types of hooks. You can install the different types of 
hooks in any combination, although some of the hook types can be installed only 
in the system queue. 

The following sections describe the available types of hooks. Each type of hook 
is expressed as a function with a unique syntax. 

28.3.1 Input Hook 
This hook monitors the input queue and is called whenever a message is about 
to be returned by the WinGetMsg or WinPeekMsg function. Typically, the input 
hook is used to monitor mouse and keyboard input and other messages that are 
posted to a queue. 

The syntax for the input hook is as follows: 

BOOL CALLBACK InputHook(HAB hab, PQMSG pQmsg, USHORT Is) 

The pQmsg parameter is a far pointer to a QMSG structure that contains infor­
mation about the message. The QMSG structure has the following form: 



366 MS OS/2 Programmer's Reference, Vol. 1 
;~rml~!~!lii!fSi~§j~~!~;IW!I~Ijj~i!!if1fifi"~n~!!1!iUiiffilf~ifin~IU!iH~OOl!i§~iIW .. ~!il~iFJ~;~~~!~Efi~L;r~!!i~~[:jjilI~mi~f~~l~! 

typedef struct _QMSG { 
HWND hwnd; 
USHORT msg; 
MPARAM mpl; 
MPARAM mp2; 
ULONG time; 
POINTL ptl; 

} QMSG; 

The fs parameter of the InputHook function can contain the following flags from 
the WinPeekMsg function, indicating whether or not the message is removed 
from the queue: 

PM-NOREMOVE 
PM-REMOVE 

If this hook function returns TRUE, the message is not passed to the rest of the 
hook chain or to the application-effectively ending the message. If the function 
returns FALSE, the message is passed to the next hook in the chain, or to the 
application if no other hooks exist. 

The input hook can modify a message by changing the contents of the QMSG 
structure, then return FALSE to pass the modified message to the rest of the 
chain. The following problems may occur when a hook modifies a message: 

• If the caller uses the WinPeekMsg or WinGetMsg function with a message 
filter range (msgFilterFirst through msgFilterLast), the message is checked 
before the hooks are called, not after the hooks are called. This means the 
caller may receive messages that are not in the range of the caller's message 
filter. 

• If the hook changes a WM-CHAR message from one character into 
another-for example, if the hook modifies all TAB messages into F6 
messages-a program that depends on the key state will be unable to inter­
pret the result. (When the TAB key is translated into the F6 key, the applica­
tion receives the F6 keystroke and enters a process loop, waiting for the F6 
key to be released; the application calls the WinGetKeyState function with 
the HWNDJ)ESKTOP and VKY6 arguments). 

28.3.2 Send-Message Hook 
This hook is called whenever a message is sent by using the WinSendMsg func­
tion. The hook chain is called before the message is delivered to the recipient 
window. Typically, the send-message hook is used to monitor messages that are 
not posted to a queue. By installing an input hook and a send-message hook, you 
can effectively monitor all window messages. 

The syntax for the send-message hook is as follows: 

VOID CALLBACK SendMsgHook(HAB hab, PSMHSTRUCT psmh, 
BOOL flnterTask) 

The psmh parameter is a far pointer to an SMHSTRUCT structure that contains 
information about the message. The SMHSTRUCT structure has the following 
form: 



Chapter 28: Hooks 367 
!¥!!!HF.~m~i~!ruf~rrifjer§~l~igmmf5!i!:~~!ii~~~nmjgJi~~~i~~mi?1m~J§j!!Jf:ilifi&'Yst~:laW~:m_~lltf~~~!ii!im~iiJl~6i""ffi!: 

typedef struct _SMHSTRUCT { 
MPARAM mp2; 
MPARAM mpl; 
USHORT msg; 
HWND hwnd; 

} SMHSTRUCT; 

The flnterTask parameter of the SendMsgHook function is TRUE if the message 
is sent between two threads, or FALSE if the message is sent within a thread. 

The send-message hook does not return a value, and the next hook in the chain 
is always called. This hook can modify values in the SMHSTRUCT structure 
before returning. 

28.3.3 Message-Filter Hook 
This hook is called during system modal loops, which include tracking the win­
dow size and window movement, displaying a dialog box or message box, scroll­
bar tracking, menu-selection tracking, and window-enumeration operations. The 
message-filter hook is typically used to provide input-message filtering (such as 
monitoring hot keys) during modal dialog processing. 

The syntax of the message-filter hook is as follows: 

BOOL CALLBACK MsgFilterHook(HAB hab, USHORT msgj, PQMSG pQmsg) 

The msgj parameter has the following three values: 

Value 

MSGF J)IALOGBOX 

MSGF -MESSAGEBOX 

Meaning 

Message originated while processing a 
modal dialog window. 

Message originated while processing a 
message box. 

Message originated while tracking a con­
trol (such as a scroll bar). 

The pQmsg parameter of the MsgFilterHook function is a far pointer to a 
QMSG structure containing information about the message. 

If this hook returns TRUE, the message is not passed to the rest of the hook 
chain or to the application. If it returns FALSE, the message is passed to the 
next hook in the chain, or to the application if no other hooks exist. 

This hook allows applications to perform message filtering during modal loops 
that is equivalent to the typical filtering for the main message loop. For example, 
applications often examine a new message in the main event loop between the 
time they retrieve the message from the queue and the time they dispatch it, per­
forming special processing as appropriate. The following code fragment shows a 
main message loop that tests for the ENTER key and the ESC key before dispatch­
ing an event: 



368 MS OS/2 Programmer's Reference, Vol. 1 
;~~f~!~i~5ii~!ID~t~!~i~itiJjji~illii1§fi"~zm~!f!!~!ii!iim!f~i;n~it!iH!900i!~iii1if? .. ~!i!iii1!ilfii~~~~l~lfJm~J.ir.~~Ji!§~[~I~liIl~~~mli~! 

while (WinGetMsg(hab, (PQMSG) &qmsg, (HWND) NULL, 0, 0» { 

} 

if «qmsg.msg == WM_CHAR) && I (LOUSHORT(qmsg.mpl) & KC_KEYUP) 
&& IhwndQueue) { 

} 

switch (HIUSHORT(qmsg.mp2» { 
case VK_ESC: 

} 

1* Use the ESC key. *1 

continue; 

case VK_NEWLINE: 

1* Use the newline event. *1 

continue; 

default: 
break; 

WinDispatchMsg(hab, (PQMSG) &qmsg); 

You cannot usually do this sort of filtering during a modal loop, since the loop 
created by the WinGetMsg and WinDispatchMsg functions is executed by the 
system. If you install a message-filter hook, the hook is called by the system 
between WinGetMsg and WinDispatchMsg in the modal processing loop. 

Your application can also call the message-filter loop directly by calling the Win­
CallMsgFilter function. By using this function, you can use the same code to 
filter messages in your main message loop and during modal loops. In the exam­
ple shown previously for processing main message loops, you would encapsulate 
the filtering operations in a message-filter hook and call WinCallMsgFilter 
between the calls to the WinGetMsg and WinDispatchMsg functions, as shown 
in the following code fragment: 

while (WinGetMsg(hab, (PQMSG) &qmsg, (HWND) NULL, 0, 0» { 
if (IWinCallMsgFilter(hab, (PQMSG) &qmsg, 0» 

} 
WinDispatchMsg(hab, (PQMSG) &qmsg); 

The last argument of the WinCallMsgFilter function is simply passed to the 
hook; the application can enter any value. This value can be used by the hook to 
determine where the hook was called from, by defining a constant such as 
MSGF-.MAINLOOP. ' 

28.3.4 Journal-Record Hook. 
This hook monitors the system queue and allows the application to record input 
events. Typically, it is used to record a set of mouse and keyboard events that 
can be played back later by using the journal-playback hook. The journal-record 
hook can be installed only in the system queue. 

The syntax for the journal-record hook is as follows: 

VOID CALLBACK JoumalRecordHook(HAB hab, PQMSG pQmsg) 

The pQmsg parameter is a far pointer to a QMSG structure containing informa­
tion about the message. The hook is called after the raw input has been pro­
cessed enough to create valid WM_CHAR or double-click mouse messages and 
the window-handle field of the QMSG structure has been set. 



Chapter 28: Hooks 369 
iIl~iill!imilmf!m!U-'U~imff:~lg~Upj!!!¥.mi~!~~i!il~~lilf~~!~!i~!~~~~!Mi~ai~!iiU~~!~mii!iii1I!~Uilfmi~fiiime.!~!!s~!!lffiif~~ 

The journal-record hook does not return a value, and the next hook in the chain 
is always called. Typically, this hook saves the input event to the disk, to be 
played back later. The hwnd field of the QMSG structure is not important and is 
ignored when the message is read back. 

Character messages are passed to the journal-record hook as W1L VIOCHAR 
messages. The format of the W1LVIOCHAR message is as follows: 

fsKeyFlags = (USHORT) SHORT1FROMMP(mpl); 
uchRepeat = (UCHAR) CHAR3FROMMP(mpl); 
uchScanCode = (UCHAR) CHAR4FROMMP(mpl); 
usChr = LOBYTE(LOWORD(mp2»; 
uschKbdScan = HIBYTE(LOWORD(mp2»; 

1* key flags *1 
1* repeat count *1 
1* scan code *1 
1* character *1 
1* virtual key *1 

The W1L VIOCHAR message was chosen over the 'WM.-CHAR message 
because it preserves that raw information from the keyboard driver that is 
needed for video input and output. 

The following mouse messages are passed to the journal-record hook: 

WM.-MOUSEMOVE 
~UTTONIDOWN 
~UTTONIUP 
WMJ3UTTON2DOWN 
WMJ3UTTON2UP 
WMJ3UTTON3DOWN 
WMJ3UTTON3UP 

The positions stored in the mouse messages are in screen coordinates. The sys­
tem does not combine mouse clicks into double clicks before calling the hook, 
since there is no guarantee that both clicks will be in the same window when 
they are read back. 

A WMJOURNALNOTIFY message is passed to the journal-record hook 
whenever a program calls the WinGetPhysKeyState or WinQueryQueueStatus 
function. This message is necessary because the system is reduced to a queue 
that is only one message deep while a playback hook is active. For example, the 
user might press the A, B, and C keys while in record mode. While the program 
is processing the "A" character message, the B key might be down; WinGet­
PhysKeyState will return this information. However, during playback mode, the 
system only knows that it is currently processing the A key. 

The format of the WMJOURNALNOTIFY message is as follows: 

For the WinGetPhysKeyState function: 

ulCmd = LONGFROMMP(mpl); 1* calling function *1 
sc = SHORT1FROMMP(mp2); 1* virtual key *1 
fsPhysKeyState = SHORT2FROMMP(mp2); 1* physical-key state *1 

For the WinQueryQueueStatus function: 

ulCmd = LONGFROMMP(mpl); 
ulQueStatus = LONGFROMMP(mp2); 

1* calling function 
1* queue status 

*1 
*1 



370 MS OS/2 Programmer's Reference, Vol. 1 
iliiiiiriljmUI.iUW1~iij!~i!&p'_~iimW~rnll!n~li~!~!iHm~lffiijl!liiiii!ii!!i!I!~~;;iei;~~Jiimt~mniiJ~r~;m1ii!F~iili!n&yii!§9im!~:U~! 

28.3.5 Journal-Playback Hook 
The journal-playback hook allows an application to insert messages into the sys­
tem queue. Typically, this hook is used to play back a series of mouse and key­
board events that were recorded earlier by using the journal-record hook. This 
hook can be installed only in the system queue. 

Regular mouse and keyboard input is disabled as long as a journal-playback 
hook is installed. It is important to note that, since mouse and keyboard input 
are disabled, this hook can easily hang the system. 

The syntax for the journal-playback hook is as follows: 

ULONG CALLBACK JoumalPlaybackHook(HAB hab, PQMSG pQmsg, 
BOOLjSkip) " 

The pQmsg parameter is a far pointer to a QMSG structure that the hook fills in 
with the message to be played back. If the jSkip parameter is FALSE, the hook 
should fill in the QMSG structure with the current recorded message. The same 
message should be returned each time the hook is called, until jSkip is TRUE. 
The same message may be returned many times if an application is examining 
the queue but not removing the message. If jSkip is TRUE, the hook should 
advance to the next message without attempting to fill in the QMSG structure, 
since the pQmsg parameter is NULL when jSkip is TRUE. 

The journal-playback hook returns a ULONG time-out value. This value tells the 
system how many milliseconds to wait before processing the current message 
from the playback hook. This allows the hook to control the timing of the events 
it plays back. 

The time field of the QMSG structure is filled in with the current time before the 
playback hook is called. The hook should use the time stored in this field instead 
of the system clock to set up the delays. 

The discussion of different types of messages in Section 28.3.4 is also applicable 
to the journal-playback hook. The only exception has to do with character pro­
cessing. The journal-record hook is always passed a ~ VIOCHAR message 
for each character processed by the system. The journal-playback hook, on 
the other hand, has the option of playing back either ~ VIOCHAR or 
~CHAR messages. The preferred method is to play back ~ VIOCHAR 
messages, since they contain the information required to function in a video­
input-and-output window. If ~CHAR messages are returned, the appropriate 
KC bits must be set or cleared. 

28.3.6 Help Hook 
The help hook is called during the default processing of the WMJIELP mes­
sage. Help processing is done in two stages: creating the WMJIELP message 
and calling the help hook. The WMJIELP message can come from the follow­
ing sources: 

• From a ~CHAR message, after translation by an ACCEL structure with 
the AF JIELP style. The default system accelerator table translates the Fl 
key into a help message. The WMJIELP message is posted to the current 



Chapter 28: Hooks 371 
;ii~iim!!iiliimflm!iijflim!iP:_i~~U~!~.mia!~i!j~~~I~~~f~!~~i~~!!ffig~i~i2i~iii!i~I~!~miiiiiiil~fdiJmj~l~i~!i~~!!i~~~ 

focus window, which can be a menu, a button, a frame, or your client win­
dow. 

• From a menu-bar selection, when the MISJIELP style is specified for the 
menu-bar item. The WMJIELP message is posted to the current focus win­
dow. 

• From a dialog-box push button, when the BSJIELP style is specified for the 
push button. The WMJIELP message is posted to the button's owner win­
dow, which is normally the dialog window. 

• From a message box, when the MBJIELP style is specified for the message 
box. The WMJIELP message is posted to the message-box dialog window. 

The WMJIELP message is posted to the current focus window. The default 
processing in the WinDetWindowProc function is to pass the message up to the 
parent window. If the message reaches the client window, it can be processed 
there. If the message reaches a frame window, the default frame-window pro­
cedure calls the help hook. The help hook is also called if a WMJIELP mes­
sage is generated while the application is in menu mode-that is, while a selec­
tion is being made from a menu. 

The syntax for the help hook is as follows: 

BOOL CALLBACK HelpHook(HAB hab, USHORT usMode, USHORT idTopie, 
USHORT idSubTopie, PRECTL prePosition) 

If this hook function returns TRUE, the message is not passed to the rest of the 
hook chain or to the application. If it returns FALSE, the message is passed to 
the next hook in the chain. The arguments of the help hook provide context 
information, such as the screen coordinates of the focus window and whether 
the message originated in a message box or a menu. 

The WMJIELP message often goes to a frame window instead of to the client 
window. The frame window (including dialog boxes and message boxes) 
processes a WMJIELP message as follows: 

• If the window with the focus is the FID_CLIENT window, the frame win­
dow passes the WMJIELP message to the FID_CLIENT window. 

• If the parent of the window with the focus is the FID_CLIENT frame­
control window, the frame window calls the help hook, specifying the follow­
ing: 

Mode = HLPMYRAME 
Topic = frame-window identifier 
Subtopic = focus-window identifier 
Position = screen coordinates of focus window 

• If the parent of the focus window is not an FID_CLIENT window (it could 
be the frame window or a second-level dialog window), the frame window 
calls the help hook, specifying the following: 

Mode = HLP~ WINDOW 
Topic = identifier of parent of focus window 
Subtopic = focus-window identifier 
Position = screen coordinates of focus window 



372 MS OS/2 Programmer's Reference, Vol. 1 
lii~1i~jiDiljjUfiil~_iJim!~a;U~;~;mf!lJ~m11!!a;,;~!~!!imfa~lffiiimieliii!llimm}~!$@I~~~mt~t§Jiil§f~!fi~YiiiliSnm!§~~ID~l§~f. 

An application receives the WMJIELP message in its dialog-window procedure. 
The application can ignore the message, in which case the frame-manager action 
occurs as described, or the application can handle the WMJIELP message 
directly. 

Menu windows receive a WMJIELP message when the user presses the help 
accelerator key (Fl by default) while a menu is displayed. Menu windows process 
WMJIELP messages by calling the help hook, specifying the following: 

Mode = HLP~ENU 
Topic = identifier of pull-down menu 
Subtopic = identifier of selected item in pull-down menu 
Position = screen coordinates of selected item 

The help hook should respond to the help message by displaying information 
about the selected menu item. 

The WinDelWindowProc function processes ~HELP messages by passing 
the message to the parent window. The message typically moves up the parent 
chain until it arrives at a frame window. 

28.4 Using Hooks 
Applications install hooks by calling the WinSetHook function, specifying the 
type of hook, whether it should go into the system queue or into the queue of a 
particular thread, and a far pointer to a function entry point. 

Procedures installed as hooks in a thread's queue are called only in the context 
of that thread. This kind of hook is typically a locally defined function. 

Procedures installed as hooks in the system queue can be called in the context of 
any application. System-queue hooks must be defined in separate dynamic-link­
library (DLL) modules, because it is not possible to call application-module pro­
cedures from other applications. For a sample system-queue DLL module, see 
Section 28.5. 

A hook can be released by calling the WinReleaseHook function with the same 
arguments used when installing the hook. All hooks should be released before 
the application terminates, although the system automatically releases them if the 
application does not. 

A system hook can be released by using the WinReleaseHook function, but the 
DLL function containing the hook procedure is not freed. This is because sys­
tem hooks are called in the process context of every Presentation Manager appli­
cation in the system, causing an implicit call to the DosLoadModule function for 
all of those processes. Since a call to the DosFreeModule function cannot be 
made for another process, there is no way to free the dynamic-link libraries. 
(However, since the hook procedure is no longer called, the DLL segments may 
be discarded or swapped.) 



Chapter 28: Hooks 373 
!iii§iirn~iini~li1!!UJi'~rn~_i~~ila:'f!¥.mi~;~!Sii~~~!~i~f~!i~i~~:r:~€i~li~1i~iii!i~n~i~miiliii!I!!i!mJfflj~liii~!ii*S~~~~i~ 

28.5 Hook Example 
This section shows the main elements of installing and using a system-input­
queue hook, although many of the details of the hook are omitted. The example 
code comes from a larger program that uses a hook to monitor the input queue 
and display all input messages in an application window on the screen. This 
example has two main parts: the installing application and the hook DLL. The 
installing application identifies a hook procedure in the DLL and installs it in the 
system-queue hook chain. The application then controls the hook through other 
function calls to the DLL, performing such actions as turning the hook on and 
off and asking it for the most recent messages. 

The system hook is more than a single hook procedure; it is typically a DLL 
with several support procedures and entry points. This allows the installing appli­
cation to control and communicate with the hook procedure. 

28.5.1 Installing a System Hook 
Since this example is a system hook, the hook procedure must be in a separate 
DLL from the application that installs it. The installing application needs the 
module handle of the DLL before it can install the hook. The DosLoadModule 
function, given the name of the DLL, returns the handle of the module. Once 
the module handle is known, the application calls the WinSetHook function, 
passing the module handle, a far pointer to the hook-procedure entry point, and 
NULL for the message-queue argument, indicating that the hook should go into 
the system queue. This sequence is shown in the following code fragment: 

CHAR 
HMODULE 
BOOL 

/* 

achFailName[128]; 
hmodSpy; 
fRet; 

* This example assumes that there is a hook procedure named 
* "SpylnputHook" that resides in a DLL file named "spyhook.dll," 
* and that "spyhook.dll" is in a directory defined by the LIBPATH 
* command in the conflg.sys file. 
*/ 

if (DosLoadModule(achFailName, /* failure-name buffer 
sizeof(achFailName) , /* size of failure buffer 
"spyhook", /* module name 
&hmodSpy)== 0) { /* address of handle 

fRet WinSetHook(hab, /* anchor-block handle 
(HMQ) NULL, /* system queue 

HK_INPUT, /* hook type 
(PFN) SpylnputHook, /* far pointer to function 
hmodSpy); /* module handle for DLL 

} 

*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 

An alternative method for installing a system queue is to provide an installation 
function in the DLL along with the hook procedure. With this method, the 
installing application does not need the module handle for the DLL. By linking 
with the DLL, the application gains access to the installation function. The 
installation" function can supply the module handle and other details in the call to 
the WinSetHook function. The DLL can also contain a function that removes 
the system-hook procedure; the application can call this function when it ter­
minates. 



374 MS OS/2 Programmer's Reference, Vol. 1 
iliik1iriiJB!ill.m~iiU~ilel!~~_~~ml~rnll!:iEi~!~!infii~limilmaiiiifJ!H!lli}~!~~i~~~mtimmiiiiU~t~~!m~~i5!iil~!l~~lm!m:~~! 

28.5.2 System-Hook Code 
The hook procedure is part of the DLL module. As such, it has access to the 
resources of the module: its global variables, other support procedures, and 
any memory allocated by the module. The following code template shows the 
structure of a typical input-hook procedure. It uses a static variable to con-
trol whether or not it should examine the input messages. Although it is not 
required, the DLL would typically provide another procedure to toggle the state 
of the variable, so that an application that installs the hook can turn the hook on 
and off. 

This example could save each message in a buffer allocated during the initializa­
tion of the DLL module. The DLL module would also provide a calling inter­
face, so that the installing application could periodically request the messages 
from the buffers. 

BOOL CALLBACK PASCAL SpylnputHook(hab, lpqmsg) 
HAB hab; 
PQMSG lpqmsg; 
{ 

static BOOL fRecording; 

I' 
, The lpqmsg parameter points to a queue-message structure. 
, Returns FALSE to let the message through to the rest of the 
, hook chain. Returns TRUE to prevent further message processing. 
'I 

if (I fRecording) 
return FALSE; I' pass message to rest of chain 'I 

I' Else examine message and process as appropriate. 'I 

return FALSE; 

} 

28.6 Summary 
This section summarizes the six types of hooks and the functions related to 
hooks. 

28.6.1 Functions 
The following functions are used with hooks: 

WinCallMsgFilter Calls the currently installed message-filter chain of hooks. 
This call is useful if the same message filtering is used in the main message loop 
and the modal system-message loops. 

WinReleaseHook Removes a specified procedure from the input-hook chain. 

WinSetHook Installs a specified procedure in either the system or queue chain 
of hooks. 



Chapter 28: Hooks 375 
i!ti~iUis!millllm!PJifrumf!P:;glBiiim._s:,~.m~i~!Sil!!~~!r;{~f~!i~i~~$fi!fil~~~iii!it1!~~miiijml~fdUmj~l~i~!~~~~~l1.n~ 

28.6.2 Hook Types 
The following constants are used to identify the type of hook being installed or 
released by the WinSetHook or WinReleaseHook function: 

HKJIELP Monitors the WMJIELP message. Returns BOOL. If FALSE, the 
next hook in the chain is called. If TRUE, the next hook in the chain is not 
called. 

HKJNPUT Monitors messages in the specified message queue. Returns 
BOOL. If FALSE, the next hook in the chain is called. If TRUE, the message 
is not passed to the next hook in the chain. 

HKJOURNALPLA YBACK Allows applications to insert events into the 
system-input queue. Returns a LONG time-out value. This value is the number 
of milliseconds to wait before processing the current message. This type never 
calls the next hook in the chain. 

HKJOURNALRECORD Allows applications to record system-input-queue 
events. Returns VOID. The next hook in the chain is always called. 

HILMSGFILTER Monitors input events during system modal loops. Returns 
BOOL. If FALSE, the next hook in the chain is called. If TRUE, the message 
is not passed to the next hook in the chain. 

HICSENDMSG Monitors messages sent by using the WinSendMsg function. 
Returns VOID. The next hook in the chain is always called. 





Help 

Chapter 

29 

29.1 Introduction ............................................................ 379 

29.2 About Help ............................................................ 379 

29.3 Using Help in an Application .... ..... .... ........ ...... .......... 381 
29.3.1 Help Menu Item.............................................. 381 
29.3.2 Help in a Dialog Box ........................................ 381 
29.3.3 Help in a Message Box...................................... 382 
29.3.4 Help for a Menu Item....................................... 382 
29.3.5 The Help Hook ......•........................................ 382 

29.3.5.1 Installing a Help Hook ........ ....... ............. 384 
29.3.5.2 Help Hook for a Menu Item ...................... 384 

29.4 Summary ................................................................ 386 
29.4.1 Functions ...................................................... '386 
29.4.2 Messages.... . .... ... ... ....... ... ...... .. .. .... ... . . ... . .. ... .. 386 
29.4.3 Syntax of the Help Hook.................................... 386 





Chapter 29: Help 379 
:mi!~ll~f!mi£,"ft~f~~~i~~nlllijlUilij;1$fif~~irnimr~~i§J!!i~!lii;;m:fRll'iiiali~l5i~!Rii!4f~i~lijlrr.ffl~~~~:F.niJi!jf!il~i~/§iimi§l~~itm"liiff~~~! 

29.1 Introduction 
This chapter describes how to use the WMJIELP message in your applications. 
You should also be familiar with the following topics: 

• Standard user-interface guidelines 

• Window messages and message queues 

• Focus window and input guidelines 

• Help hook 

29.2 About Help 
One of the key elements of user-friendly software is readily available on-line 
help. MS OS/2 provides functions and messages to support the implementation 
of a help system in your application. This chapter discusses the features of MS 
OS/2 that support on-line help and suggests techniques for implementing a help 
system. The two main components of the system support for help are the 
WMJIELP message and the help hook. 

The WMJIELP message is defined by the system to notify an application when 
the user wants help. The WMJIELP message contains context information that 
allows the application to respond with information appropriate to current condi­
tions. The system posts a WMJIELP message in the following situations: 

• During accelerator-table translation for a keyboard event, if the keystroke 
corresponds to an accelerator-table entry with the AF JlELP attribute. The 
system default accelerator table translates the PI key into a WMJIELP mes­
sage. The WMJlELP message is posted to the focus window. If the PI key 
is pressed while a menu has the focus, the help message goes to the menu, 
which calls the help hook. 

• When a menu item with the MISJlELP style is chosen. All applications 
should define at least one menu item with the MISJlELP style in the menu 
bar. This menu item is typically labeled "Fl=Help," as shown in Figure 29.1. 
The WMJIELP message is posted to the focus window. 

• When a push button with the BSJlELP style is pressed. (Note that this 
includes the case in which the Help button is pressed in a message box that 
has the MBJIELP style.) The WMJIELP message is posted to the button's 
owner window, which is typically a dialog frame window. 



380 MS OS/2 Programmer's Reference, Vol. 1 
~JI"~~J;~~m!t~~Ji~t~lr~~ilHi!!~I!!iliii~~:~:~m.m!filiiillii:;iiU~ll~~~im~!i~mt~~iiimfliJ!~i'~!!~E;iSfi!il~!!~ii~!liiifilii~~ij;!~ 

Figure 29.1 
Help Menu Item 

-, 

OS/2 full-screen command prompt 
OS/2 windowed command prompt 

The Help menu item and the FI accelerator key provide a standard user-interface 
to the help system. They allow the user to get general help about the application. 
The BSJIELP push button style allows applications to provide help within dia­
log boxes. You should provide a Help push button in every dialog box; the help 
message should explain the purpose and consequence of any action that could be 
taken by using that dialog box. 

Your application should process the WMJIELP message to provide context­
appropriate help to the user. In the case of the Help menu item or the FI 
accelerator key, the ~ELP message is posted to the focus window. The 
focus window can process the message or it can pass it to the WinDetwindow­
Proc function, which sends the message to the parent window. If you have a 
client window with several child windows that can accept the focus, you can 
intercept the ~ELP message in the client window procedure as the message 
is passed up from the child window with the focus. The state of the application 
when the help message is received determines the appropriate help, which may 
be a list of help topics or information about the window that has the focus. 

There are limits to what can be accomplished by intercepting the ~ELP 
message. In particular, the application does not receive ~ELP messages 
generated while a menu item is selected. For example, if the user presses the FI 
key while selecting a menu item, the ~ELP message goes to the menu win­
dow. The menu window does not pass the message on; instead, it calls the help 
hook. 

The help hook allows you to install code that is called by menu windows and 
frame windows when they receive ~ELP messages. You must install a help 
hook for your application if you want to provide help for selected menu items, 
since there is no way to intercept the WMJIELP message that originates while a 
menu item is selected. In addition, if you don't process a ~ELP messages 
in your client window, the message is passed to the frame window, which calls 
the help hook. 

The following sections describe in more detail how to handle ~ELP mes­
sages and when to install a help hook. 



Chapter 29: Help 381 
~!i1ltiilf!mi~ijf€Jifffi~~iiI!iift~ijim!i;tW1~1b~iffli!M~~!§J~~ilifiimffilfiiiai:W.i!iJl!Rii5i!~i~li;ir.ftiiifj~~~:F.~ili!if.§il~i~l§ijm~~~~~i!flii1ifl~~!;J! 

29.3 Using Help in an Application 
There are two methods of providing help in an application. The simplest method 
provides general information to the user by processing the WMJIELP message 
in the client window. The second method, installing a help hook, provides help 
in situations in which the WMJIELP message is not available to the client win­
dow. Since installing a help hook is not difficult, most applications use both 
methods. 

29.3.1 Help Menu Item 
Every application should have a Help menu item in the menu bar of its main 
window. The text of the Help item should be "FI = Help" and it should have a 
menu-item identifier of zero. The Help menu item should have the MISJIELP 
and MISJ3UTTONSEPARATOR styles. The following resource-definition file 
shows how to place a Help item in the menu bar. 

MENU ID_MENU_RSRC 
BEGIN 

SUBMENU ""'File", IDM_FILE 
BEGIN 

MENUITEM "-QUit", IDM_FI_QUIT 
MENUITEM "", IDM_FI_SEP3, MIS_SEPARATOR 
MENUITEM ""'About Sample ... ", IDM_FI_ABOUT 

END 
SUBMENU "-Edit", 

BEGIN 
MENUITEM 
MENUITEM 
MENUITEM 
MENUITEM 
MENUITEM 
MENUITEM 

END 

""'Undo" , 
tIft 

""'Cut" 
"C-opyt. , 
"-Paste" , 
"C-lear", 

IDM_ED_UNDO, 
IDM_ED_SEP1, 
IDM_ED_CUT, 
IDM_ED_COPY, 
IDM_ED_PASTE, 
IDM_ED_CLEAR, 

O,MIA_DISABLED 
MIS_SEPARATOR 
O,MIA_DISABLED 
O,MIA_DISABLED 
O,MIA_DISABLED 
O,MIA_DISABLED 

MENUITEM "Fl=Help", OxOO, MIS_HELP I MIS_BUTTONSEPARATOR 
END 

If the user clicks the Help item in the menu bar, the system posts a WMJIELP 
message to the current focus window. If the client window has the focus, it can 
process the WMJIELP message to provide general help information for the 
user. If a child window of the client has the focus, the child window passes the 
message up the parent-window chain to the client window (by default). In this 
case, the client window can process the WMJIELP message appropriately for 
the child window that has the focus. 

If the client window passes the WMJIELP message on to the WinDelWindow­
Proc function, this function passes the message up the parent-window chain until 
it finds a frame window. The default frame window processes the WMJIELP 
message by calling the help hook. 

29.3.2 Help in a Dialog Box 
You should provide a Help button in each dialog box that your application dis­
plays. The Help button should have the BSJIELP style. When the user presses 
the Help button, a WMJIELP message is posted to the button's owner, which is 
usually the dialog window. The dialog procedure can process the message and 
give the user help pertaining to the dialog box. Alternatively, if you pass the 
WMJIELP message on to the WinDeIDlgProc function, it will call the help 



382 MS OS/2 Programmer's Reference, Vol. 1 
jiiPJw.!~~~n21~!ruU!U~!~~Em~~1i!;1iy!em!j:~iiB.m!fijjj!ilililliml~1in~~~ml~H~;ffi~liiliiimiJnt!iPJ!i!~E:~fi1iw.~i!Gilm;mii;lii_~ij1i§ 

hook; this means you can choose whether to process dialog help in the dialog 
procedure or in the help hook. 

29.3.3 Help in a Message Box 
A message box can be given a Help button by specifying MB...HELP when creat­
ing the message box. Message boxes are like dialog boxes, except that you do 
not specify your own dialog procedure. If a message box contains a Help button, 
the program does not process the WMJIELP message. The default window pro­
cedure for the message box responds to the WMJIELP message by calling the 
help hook. To provide help for message boxes, you must install a help hook. 
Because the window identifier that you specify for the message box is passed to 
the help hook, you must use unique identifiers if you want to provide help for 
multiple message boxes. 

29.3.4 Help for a Menu Item 
One of the most important functions of a help system is to provide information 
about individual menu items. The user requests help for a menu item by pressing 
the FI key while the menu item is selected. The menu receives the WMJIELP 
message, since the menu has the focus while the item is selected. The menu 
responds to the message by calling the help hook, supplying the identifier of the 
selected item. 

You must install a help hook to provide this kind of help for individual menu 
items. For an example of a help hook that supplies information about menu 
items, see Section 29.3.5.2. 

A method of supplying less comprehensive help for menu items is to use the 
WMj1ENUSELECT message. The menu system sends a WMj1ENUSELECT 
message every time the menu selection changes. The low word of the mpJ 
parameter of this message contains the identifier of the item that is changing 
state, and the high word is a 16-bit Boolean value that describes whether or not 
the item is chosen; the mp2 parameter contains the handle of the menu. 

If the Boolean value is FALSE, the menu item is selected but not chosen-for 
example, if the user moves the cursor or mouse pointer over the item while the 
button is down. An application can use this message to display brief help infor­
mation at the bottom of the application window. 

29.3.5 The Help Hook 
You must install a help hook if you want to provide help for message boxes or 
menu items. You can also use the help hook to provide help when WMJIELP 
messages are passed up to a frame window. You can install more than one help 
hook; the system will call them in last-installed, first-called order. 

The parameters for a sample help hook are shown in this code fragment: 

BOOL CALLBACK HelpHook(HAB hab, 
USHORT usMode, 
USHORT idTopie, 
USHORT idSubTopie, 
PRECTL prePosition); 



Chapter 29: Help 383 
~~~f!mi~~~f~~~ifi!ilfl~fjlur:if;1~i:1i,,~im!!§I~~!9'!!~!fifm!iflfiilliiS1i.!Ji.!!1l1milf4/~i!f,Iinr.f:fQi~~!C!li~'fJi!iff!ll!i§l§ijmeJ~r.~nflmil!~~&! 

The usMode parameter has three possible values:

Value

HLPMj1ENU

HLPMYRAME

HLP1L WINDOW

Description

The help message originated in a menu win­
dow when the user pressed the Fl key while a
menu item was selected.

The frame window received a WMJIELP
message, and the parent of the focus window
is the client window of the frame window.

The frame window received a WMJIELP
message, and the parent of the focus window
is not the client window of the frame window.

The value of the idTopie parameter depends on the value of the usMode parame­
ter. The following list shows the values of the idTopie parameter:

Value

HLPMj1ENU

HLPMYRAME

HLP1L WINDOW

Description

Identifier of submenu containing selected item.

Identifier of frame window that called the help
hook.

Identifier of parent of focus window.

The value of the idSubTopie parameter depends on the value of the usMode
parameter. The following list shows the values of the idSubTopie parameter:

Value

HLPMj1ENU

HLPMYRAME

HLP1L WINDOW

Description

Identifier of selected menu item (- 1 if menu­
bar item is selected).

Identifier of focus window.

Identifier of focus window.

The prePosition parameter of the help hook indicates the screen area from which
the help was requested. This argument may be the bounding rectangle of a menu
item or the bounding rectangle of the focus window . You should use this infor­
mation when displaying your help window to avoid covering up the correspond­
ing screen area.

The following code fragment shows a template for a help hook that handles the
three possible calling modes:

BOOL CALLBACK HelpHook(HAB hab,
USHORT usMode,
USHORT idTopie,
USHORT idSubTopie,
PRECTL prePosition);

{
CHAR szMessage[2S6];

384 MS OS/2 Programmer's Reference, Vol. 1
~~ .. ~~j~~~!I~[~Ji~ilr::~i~i!~~~Ii!i~iii!m~i~;~mmliiiiiiiil~:l$~il~~~£5l~!ifffiftmt~;iiiilijill;g~.II!~EI~~~!~!!!!~ru~I;mifj;mi~~rai~

}

switch (usMode){
case HLPM_MENU:

}

1* * idTopic: submenu identifier
* idSubTopic: item identifier
* prcPosition: boundary of item
*1

break;

case HLPM_FRAME:
1* * idTopic: frame identifier

* idSubTopic: focus-window identifier
* prcPosition: boundary of focus window
*1

break;

case HLPM_WINDOW:
1*

* idTopic: identifier of parent of focus window
* idSubTopic: focus-window identifier
* prcPosition: bounda~y of focus window
*1

break;

29.3.5.1 Installing a Help Hook
Typically, you define a help hook as a function in your program's source code.
At run time you install the help hook by calling the WinSetHook function, speci­
fying the message queue and a pointer to the help function, as shown in the fol­
lowing code fragment:

1* Install the help hook. *1

WinSetHook(hab, 1* anchor block *1
hmq, 1* message queue *1
HK_HELP, 1* hook type *1
(PFN) HelpHook, 1* function pointer *1
NULL); 1* module; NULL ;> in our .exe *1

If you install a help hook you must release it by using the WinReleaseHook
function before your program terminates. The following code fragment shows
how to release a help hook:

1* Release the help hook. tl

WinReleaseHook(hab, It anchor block *1
hmq, 1* message queue *1
HK_HELP, It hook type * I
(PFN) HelpHook, 1* function pointer *1
NULL); 1* module = NULL => in our .exe *1

29.3.5.2 Help Hook for a Menu Item
If the user presses the Fl key while a menu item is selected, the menu receives a
WMJIELP message. The menu responds to the help message by calling the help
hook with the HLP~ENU argument to the usMode parameter of the Help­
Hook function. The idTopic parameter contains the identifier of the submenu
containing the selected item. The idSubTopic parameter contains the identifier of
the selected item. If the selected item is in the menu bar instead of a submenu,
idTopic contains the identifier of the menu-bar item and idSubTopic contains
OxFFFF.

Chapter 29: Help 385
!!!§li~!~i~i~Ili.~~M!!i~~i~!ij;~I~~~iW!I~~!I:lii1ieMii1ifil!£§~is!I~i!!i~~ll!iiaii1~~~ffiia~~I~~1jl§j~!~ilii~~i:iRiffiiili.iliiltil!m!~

Your help hook can use this information to determine which menu item was
selected when the FI key was pressed. Using this information, the help hook
should display information that explains the fUIiction of the menu item. The fol­
lowing code fragment shows a help hook that is capable of giving information
about a file menu with two items and an edit menu with five items:

BOOL CALLBACK HelpHook(HAB hab,
USHORT usMode,

{

USHORT idTopic,
USHORT idSubTopic,
PRECTL prcPosition) ;

/*
* idTopic: submenu identifier
* idSubTopic: item identifier
*/

switch (usMode){

case HLPM_MENU:

sWitch(idTopic){

case IDM_FILE:
/* One of the File menu items is selected. */
switch (idSubTopic){

case OxFFFF:
/*
* A menu-bar item is selected; display
* information on all items in File menu.
*/

break;

case IDM_FI_QUIT:
/* Display information on Quit item. */
break;

case IDM_FI_ABOUT:
/* Display information on About item. */
break;

} /* ends idSubTopic switch */
break;

case IDM_EDIT:
/* One of the Edit menu items is selected. */
switch (idSubTopic) {

case OxFFFF:
/*
* A menu-bar item is selected; display
* information on all items in Edit menu.
*/

break;

case IDM_ED_UNDO:
/* Display information on Undo item. */
break;

case IDM_EO_CUT:
/* Display information on Cut item. */
break;

case IDM_ED_COPY:
/* Display information on Copy item. */
break;

case IDM_ED_PASTE:
/* Display information on Paste item. */
break;

386 MS OS/2 Programmer's Reference, Vol. 1
mm~r.iBl~i~!umii~Jit§iimm!jffiP.~~~lli1~i~.iifi!!rmI§!~imiiiiiH;t!iim!~i§li§imiif]i~~!~.Sl1mfdiiimffiim~=Ii.li§ji~iSii~~1f:m;!

case IDM_ED_CLEAR:
1* Display information on Clear item. *1
break;

}

break;
}

}

29.4 Summary

} 1* ends idSubTopic switch

break; 1* ends IDM_EDIT case

1* ends idTopic switch

1* ends HLPM_MENU case

*1
*1
*1
*1

This section lists the functions and messages associated with providing help to
the user, as well as a syntax description of the help hook.

29.4.1 Functions
The following functions work with the help hooks:

WinSetHook Installs a help hook in an application's message queue.

WinReleaseHook Releases a hook installed by using the WinSetHook function.

29.4.2 Messages
The following message is sent to notify an application that the user wants help:

WMJIELP Sent when a user requests help by pressing the PI key or choosing
a menu item or button with the help style.

29.4.3 Syntax of the Help Hook
The following syntax description is for the help hook, which is used to provide
help for message boxes and menu items:

BOOL CALLBACK HelpHook (HAB hab, USHORT usMode,
USHORT idTopic, USHORT idSubTopic, PRECTL iprcPosition)

Part 3
Graphics Programming Interface

,­
~\

2-1/2." 5ch 18 pipe Ie")" Ie)
fillet \A/elded to top ir:orn

I

I
• 1 3x3x 1/4"cc)(

\1\le I d tot 0 P cUI cl

I

II

1-3/4 x
. typiccd

8-B

389
iE!!!ii~!~i~lml!f.~mifflili!mim~U~iI;~jUiaf~fiil!!m.:iW~f!Um!!ti1i~ff!3iIUf;i~Iij!m!!i~iififi1!iii!iii~~m:iiili~~!I~~~R!ifiim~itifiHiSi1i~lii!ti;!.rn!~

Part 3

Graphics Programming Interface
Chapter 30

Chapter 31

Chapter 32

Chapter 33

Chapter 34

Chapter 35

Chapter 36

Chapter 37

Chapter 38

Chapter 39

Chapter 40

Chapter 41

Chapter 42

Presentation Spaces and Device Contexts............. 391

Coordinate Spaces and Transformations 403

Line and Arc Primitives... 425

Fonts and Character Primitives 439

Color and Mix Modes .. 467

Paths ... 479

Area Primitives... 493

Marker Primitives... 505

Bitmaps ... 511

Regions ... 527

Clipping ... 539

Metafiles .. 549

Segments and Retained Graphics.......................... 561

Presentation Spaces
and Device Contexts

Chapter

30

30.1 Introduction .. 393

30.2 About Presentation Spaces and Device Contexts 393
30.2.1 Presentation Spaces.. 393

30.2.1.1 Normal Presentation Spaces...................... 393
30.2.1.2 Micro Presentation Spaces........................ 394
30.2.1.3 Saving and Restoring Presentation Spaces. 395
30.2.1.4 Destroying Presentation Spaces 396

30.2.2 Device Contexts .. 396
30.2.2.1 Normal Device Contexts.......................... 396
30.2.2.2 Cached Device Contexts.......................... 397
30.2.2.3 Closing Device Contexts 397

30.2.3 Linking Presentation Spaces with Devices 397
30.2.4 The Presentation Page 398
30.2.5 Determining Device Capabilities........................... 398

30.3 Using Presentation Spaces and Device Contexts 399
30.3.1 Creating a Normal Presentation Space 399
30.3.2 Creating a Standard Device Context for a Printer 399
30.3.3 Creating a Standard Device Context for a Metafile..... 400
30.3.4 Reassociating a Normal Presentation Space 400
30.3.5 Associating a Device Context with a

Presentation Space... 400

30.4 Summary.. 400

Chapter 30: Presentation Spaces and Device Contexts 393
~i!liill~~~a!i.i!fffiili6J5i~I!!iiiin§!!f5ii!lNilimlii!!m~li~~i!im~l!!Ijj;!iftmm~~;!if;!~j~m"ii§i~jg!r.:Sll~ES~l~!ifi;~!rn!~r:rz~~~

30.1 Introduction
This chapter describes Microsoft Operating System/2 presentation spaces and
device contexts. You should also be familiar with the following topics:

• Coordinate spaces and transformations

• Segments

30.2 About Presentation Spaces and Device Contexts
A presentation space is a data structure maintained by MS OS/2 that describes
an application's device-independent drawing environment. A device context links
a presentation space to a device and gives an application access to important
device information.

30.2.1 Presentation Spaces
There are two kinds of presentation spaces: normal and micro. You must use a
normal presentation space to display and print output on multiple devices (a
video display and a printer, for instance) or if your application uses the segment
and retained-drawing functions to generate complex drawings. You should use a
micro presentation space only to display and print output on a single device or
if your application's output is a simple drawing. For a list of the segment and
retained-drawing functions that are not supported by a micro presentation space,
see Section 30.2.1.2.

There are two kinds of micro presentation spaces: standard and cached. Use a
standard micro presentation space to send output to a printer, a plotter, or any
device; use a cached-micro presentation space to send output to a window on
the display device.

Table 30.1 summarizes the features and restrictions of each type of presentation
space:

Table 30.1 Presentation-Space Features and Restrictions

Presentation-space
type

Normal

Micro

Cached-micro

30.2.1.1 Normal Presentation Spaces

Retained-drawing
support

Yes

No

No

Multiple-device
support

Yes

No

No (restricted to a
video-display window)

Because normal presentation spaces use more memory than micro presentation
spaces, you should use them only when they are required. To create a normal
presentation space, use the GpiCreatePS function. You can then associate the
normal presentation space with a device and reassociate it later with a new
device when you need to direct output to that second device. To associate a nor­
mal presentation space with a device when you create the presentation space,
use the GPIA-ASSOCftag when you call GpiCreatePS. To associate a normal

394 MS OS/2 Programmer's Reference, Vol. 1
a~l~iiiiiiii.~~Umlmlrnnl\~r~~!ll~af&j!~f:ii~m5!~m~\~!~,*i~]iI~i!H~!~~~~~~iiti!IEiit~lBii!!i=~i~~'5ii;milittai~l~~mm~mn~J1i\Dili

presentation space with a second or a third device l~ter while your application is
running, call the GpiAssociate function. .

30.2.1.2 Micro Presentation Spaces
You can create a standard micro presentation space by calling the GpiCreatePS
function and specifying the GPIT~ICRO flag. You must associate a standard
micro presentation space with a device when you create the presentation space
by specifying the GPI~SSOC flag as one of the options to GpiCreatePS and
by supplying a handle that identifies a device context. You cannot reassociate a
micro presentation space with another device.

The window manager maintains a cache of micro presentation spaces for win­
dows on a video display . You can access a cached-micro presentation space by
calling the WinGetPS or WinBeginPaint function. You need not associate a
cached-micro presentation space with the display; the window manager takes
care of this for you.

The following functions are not allowed in a micro presentation space:

• GpiAssociate

• GpiBeginElement

• GpiCallSegmentMatrix

• GpiCloseSegment

• GpiCorrelateChain

• GpiCorrelateFrom

• GpiCorrelateSegment

• GpiDeleteElement

• GpiDeleteElementRange

• GpiDeleteElementsBetweenLabels

• GpiDeleteSegment

• GpiDeleteSegments

• GpiDrawChain

• GpiDrawDynamics

• GpiDrawFrom

• GpiDrawSegment

• GpiErase

• GpiElement

• GpiEndElement

• GpiErrorSegmentData

• GpiGetData

• GpiLabel

• GpiOffsetElementPointer

• GpiOpenSegment

Chapter 30: Presentation Spaces and Device Contexts 395
!i!i!i!l~~~2!ii!~$irrifJiii~J!iiiill§lif5iimllliiOlil~im~lIfaUij!if!i~!i!liW:1mmff!~:!If;~~jjJii~~~:s1:_~~lmi~lm!~~8!fjglii'

• GpiPutData

• GpiQueryBoundaryData

• GpiQueryDrawControl

• GpiQueryDrawingMode

• GpiQueryEditMode

• GpiQueryElement

• GpiQueryElementPointer

• GpiQueryElementType

• GpiQuerylnitialSegmentAttrs

• GpiQueryPickAperturePosition

• GpiQueryPickApertureSize

• GpiQuerySegmentAttrs

• GpiQuerySegmentNames

• GpiQuerySegmentPriority

• GpiQueryStopDraw

• GpiQueryTag

• GpiRemoveDynamics

• GpiResetBoundaryData

• GpiSetDrawControl

• GpiSetDrawingMode

• GpiSetEditMode

• GpiSetElementPointer

• GpiSetElementPointerAtLabel

• GpiSetInitialSegmentAttrs

• GpiSetPickAperturePosition

• GpiSetPickApertureSize

• GpiSetSegmentAttrs

• GpiSetSegmentPriority

• GpiSetStopDraw

• GpiSetTag

30.2.1.3 Saving and Restoring Presentation Spaces
You can save the contents of a presentation space, modify its fields, draw in
the modified presentation space, and then restore it to its original state. The
GpiSavePS function saves the contents of a presentation space and the Gpi­
RestorePS function restores them. When you call GpiSavePS, MS OS/2 copies
the following items from the current presentation space onto a special stack:

396 MS OS/2 Programmer's Reference, Vol. 1
:ru~isr:frailm~~iii~nf!n!m!nii!lii!~Ji!iijiif5!~mB~ll~~~H~jiil§i~!!ilSlJiiiiifil!iiiiJ!iJ.ir~!i![~lm~Jiif:!imlmi¥h1miEm~~~~m~m~m!ji!f.siilil'imi~:

• Primitive attributes

• Transformation matrices

• Viewing limit

• Clip path

• Clip region

• Current position

• Loaded . logical color table

• Loaded logical font

You can push the contents of a presentation space on the stack, and you can do
so as many times as is necessary. The GpiRestorePS function pops the contents
of a presentation space off the stack.

30.2.1.4 Destroying Presentation Spaces
Because presentation spaces consume a considerable amount of memory, you
should destroy them whenever your application no longer needs them. To
destroy a normal or micro presentation space, call the GpiDestroyPS function.
Once you finish using a cached-micro presentation space that was accessed by
using the WinGetPS function, you can release it by calling the WinReleasePS
function. You need not destroy a presentation space that you accessed by using
the WinBeginPaint function; MS OS/2 does this for you when you call the
WinEndPaint function.

30.2.2 Device Contexts
Device contexts link presentation spaces to devices by converting device­
independent presentation-space information into device-dependent information.
(This conversion occurs in the device driver, a low-level program that is trans­
parent at the API level.) Device contexts also give applications access to impor­
tant device information such as screen dimensions or printer capabilities.

There are two kinds of device contexts: normal and cached. A normal device
context links a presentation space with any type of device. A cached device con­
text can link a presentation space only with a window on a video display.

30.2.2.1 Normal Device Contexts
There are five types of normal device contexts:

• Queued

• Direct

• Information

• Memory

• Metafile

Each of these device contexts serves a specific purpose. A queued device con­
text links a presentation space with a printer or plotter shared by multiple users.
Queued devices store print jobs by using a program called a print spooler that
keeps track of the order in which jobs arrive at the printer and the order in
which they are printed. A direct device context links a presentation space with a

Chapter 30: Presentation Spaces and Device Contexts 397
~i§lili~~!!:lJl!E!lSif1ffi~JiEiJiQ~I~P.1im!~i2!fial~!!ii~~~nml§i§i~~imami~l!l~Jm!iJ:§a&~si~I~W~~_~~!~~!f!lji!im~Ii'l~~~!

printer or a plotter controlled by a single user and does not queue print jobs or
other output. An information device context is a special device context that
forms a one-way link to a device. An application can use an information device
context to query a device but cannot send output to the device. A memory
device links a presentation space with system memory. Memory device contexts
are useful in applications that keep a "shadow" bitmap of the client area in a
window. A metafile device context links a presentation space with a metafile.
Applications that create complex drawings use metafiles to store the drawings.

You can create a normal device context by calling the DevOpenDC function.
This function requires you to specify one of the five types. It also requires that
you pass important device-initialization data, including a logical address, the
device-driver name, device-driver data, a description of the device type, and
information about the queue (if the device is a queued device). The device­
initialization data is passed in a DEVOPENSTRUC structure. This structure has
the following form:

typedef struct _DEVOPENSTRUC { /* dop */
psz pszLogAddress; /* logical-device address */
PSZ pszDriverName; 1* device-driver name */
PDRIVDATA pdriv; /* pointer to add'l driver data */
PSZ pszDataType; /* type of queued data */
PSZ pszComment; /* optional spooler info */
PSZ pszQueueProcName; /* queue-processor name */
PSZ pszQueueProcParams; /* queue-processor arguments */
PSZ pszSpoolerParams; /* spooler arguments */
PSZ pszNetworkParams; /* network arguments */

} DEVOPENSTRUC;

The last six fields in this structure apply only to queued devices. For more infor­
mation about the DEVOPENSTRUC structure, see the Microsoft Operating
System/2 Programmer's Reference, Volume 2.

30.2.2.2 Cached Device Contexts
You can obtain a handle to one of the cached device contexts by calling the
WinOpen WindowDC function. A cached device context is a direct device con­
text that links a presentation space with a window in a video display . You should
use a cached device context whenever a task will send output only to a window.

30.2.2.3 Closing Device Contexts
To close a device context that your application opened by calling the Dev­
OpenDC function, you can call the DevCloseDC function. However, you should
not try to close a device context that you opened by using the WinOpen­
WindowDC function; MS OS/2 will do this for you automatically when you
destroy the associated window.

30.2.3 Linking Presentation Spaces with Devices
When you call the GpiCreatePS function and pass it the GPIA.-ASSOC flag or
when you call the GpiAssociate function, MS OS/2 requires that you pass the
device-context handle returned by the DevOpenDC or WinOpen WindowDC
function. This handle identifies the device context that links a presentation space
to a device. Once you have established this link, any drawing operations per­
formed using the presentation-space handle will also be performed on the associ­
ated device. Once an application is through using a particular device, it should
disassociate the presentation space and the device by calling GpiAssociate and
passing NULL as the second argument. A presentation space can be associated

398 MS OS/2 Programmer's Reference, Vol. 1
ri~lrut;iiiiiii~Il:;liliJmn~5!U@i{mmi!fiiUlI.~filmia;'S~mgi!§§;H1U~!iiulim§jiJi§i"!iii!fI~iliGim!~:i!r.iili!iiill.iiiliiii_iml~t!afi!OO

with a new device only after it has been disassociated from the original device,
since it is not possible to associate a presentation space with more than one
device at a time.

30.2.4 The Presentation Page
One of the arguments to the GpiCreatePS function is a SIZEL structure that
specifies the dimensions of the presentation space's presentation page. A presen­
tation page is a representation of a page on a printer or a plotter or a representa­
tion of a maximized window on a video display. MS OS/2 uses presentation
pages to scale and position output on a device. For more information about
presentation pages, see Chapter 31, "Coordinate Spaces and Transformations."

The page-unit constant PS_UNITS, which is another argument to GpiCreatePS,
is related to the SIZEL structure. This constant can be one of seven values:

• PU~RBITRARY
• PUYELS

• PU~OMETRIC
• PUJIIMETRIC

• PU~OENGLISH
• PUJIIENGLISH

• PU_TWIPS

The page-unit constant defines the dimensions of each unit on the presentation
page. For example, if you specify PUYELS, the length of each page unit in the
x-direction will be identical to the width of a pel, and the length of each page
unit in the y-direction will be identical to the height of a pelon the selected out­
put device. If you specify PU-LOENGLISH, each page unit will measure 0.01
inches in the x- and y-directions.

If you link a presentation space to a device when you call GpiCreatePS, MS
OS/2 automatically assigns page dimensions to your presentation page. If you do
not link a presentation space to a device when you call GpiCreatePS, you must
assign the page dimensions.

30.2.5 Determining Device Capabilities
Once you have created a device context for a particular output device, you can
determine the capabilities of that device by calling the DevQueryCaps function.
This function retrieves the following information:

• Device technology (whether the device is a raster or vector device)

• Maximized window dimensions (if the device is a video display)

• Page dimensions (if the device is a printer or plotter)

• Character-box dimensions

• Marker-box dimensions

• Pel resolution

Chapter 30: Presentation Spaces and Device Contexts 399
~~ii!l~~~la!ji;~mir~JeifiiiSiJ~anfilF:ii!!UiI~milm~nmilii~i§~imiimfmil!~.mJrdliif:§faiil~si~I~~~R.f!;!fimifl~lS~jj!rn!!iJi'iiji~u;~

• Color capabilities

• Mix-mode capabilities

You can use this information to, for example, select fonts, set up the presenta­
tion page, or create a new logical color table.

30.3 Using Presentation Spaces and Device Contexts
You can use presentation-space and device-context functions to perform the fol­
lowing tasks:

• Create a normal, micro, or cached-micro presentation space.

• Delete, save, or restore a presentation space.

• Create a standard or cached device context.

• Associate a presentation space or device context.

• Destroy a device context.

• Retrieve information about a device's capabilities.

30.3.1 Creating a Normal Presentation Space
. The following code fragment shows how to create a presentation space with page
units of 0.01 inches and associate it with a printer device context:

HAB hab;
HPS hpsNormal;
HOC hdcPrinter;
SIZEL sizlPage;

1* anchor-block handle *1
1* presentation-space handle *1
1* device-context handle *1
1* page structure *1

hpsNormal = GpiCreatePS(hab, hdcPrinter, &sizlPage,
PU_LOENGLISH I GPIA_ASSOC);

30.3.2 Creating a Standard Device Context for a Printer
The following code fragment shows how to create a printer device context:

HOC hdcPrinter;
HAB hab;
DEVOPENSTRUC dop;

1* handle of printer device context *1
1* anchor-block handle *1
1* device information *1

dop.pszLogAddress = "lptl";
dop.pszDriverName = "PSCRIPT";
dop.pdriv = NULL;
dop.pszDataType = "PM_Q_STD";

hdcPrinter = DevOpenDC(hab,
OD_DIRECT,
"*"
4L,
(PDEVOPENDATA) &dop,
(HOC) NULL);

1* logical-device address *1
1* device-driver name *1
1* pointer to driver data *1
1* standard queued data */

1* direct device type *1
1* no data in os2.ini *1

400 MS OS/2 Programmer's Reference, Vol. 1
!iHiiiimm~il"!mmi:~u:e.~~~~m;iil~mtlm~~~i~r.ill~i~l~mrJiil~~~~§\~jmmi5~\~~~~mmrJ!!mi~Jf~ru~~~~!!~mlli

30.3.3 Creating a Standard. Device Context for a Metafile
The following code fragment shows how to create a standard device context:

HOC hdcMeta, hdcWin; /* handles of metafile and window DC */
HAS hab; /* anchor-block handle */
DEVOPENSTRUC dop; /* device information */

dop.pszLogAddress NULL;
dop.pszDriverName "DISPLAY";
dop.pdriv = NULL;
dop.pszDataType = NULL;

/* logical-device address */
/* device-driver name */
/* pointer to driver data */
/* no queued data */

hdcMeta = DevOpenDC(hab,
OD_ME TAF ILE , /* metafile DC */
"*" /* ignores os2.ini */
4L,
(PDEVOPENDATA) &dop,
NULL);

/* uses first 4 fields in dop */
/* structure for system info */
/* compatible with screen */

30.3.4 Reassociating a Normal Presentation Space
The following code fragment shows how to break the link between a normal
presentation space and a device context and reassociate the presentation space
with a metafile device context:

if (IGpiAssociate(hps, NULL» /* breaks link between PS and DC */
ReportError(...) ;

if (IGpiAssociate(hps, hdcMeta» /* reassociates PS and metafile DC */
ReportError(...) ;

30.3.5 Associating a Device Context with a Presentation Space
The following code fragment shows how to open a cached device context and
associate it with a normal presentation space:

HOC hdcWin;
HPS hpsWin;
HWND hwndClient;
HAS hab;
SIZEL sizlPage;

/* cached-device-context handle */
/* normal-presentation-space handle */
/* client-window handle */
/* anchor-block handle */
/* presentation page */

hdcWin = WinOpenWindowDC(hwndClient);
hpsWin = GpiCreatePS(hab, hdcWin, &sizlPage,

PU_LOENGLISH I GPIA_ASSOC);

30.4 Summary
The following list summarizes the MS OS/2 presentation-space and device­
context functions:

DevCloseDC Closes a device context opened by the DevOpenDC function.

DevOpenDC Opens a device context for a printer or plotter.

DevQueryCaps Retrieves information about an output device.

GpiAssociate Associates a presentation space with a device context. This func­
tion is only valid if the presentation-space type is normal; it is invalid for micro
and cached-micro presentation spaces. Remember that a presentation space can
be associated with only one device at a time. To associate a presentation space
with a second device, you should do the following:

Chapter 30: Presentation Spaces and Device Contexts 401
ii§i~jill~imiljfgfm!U_~~m~igi~~~ii.~!~.mi~!~i!ii!i~~!~~~f~!i~i~$1l!ffig~i~1i~iliiU~!i.l~m~ljmliilfdiJmj~lifii~!~*s~!lm~~i~

• Disassociate the presentation space and the original device by calling Gpi­
Associate and passing it NULL as the second argument.

• Associate the presentation space with the second device by calling Gpi­
Associate, passing it a handle that identifies the device context of the new
device.

GpiCreatePS Creates a normal or a micro presentation space. A normal pre­
sentation space is required if your application's output is sent to more than one
device or if your application's output is complex. A micro presentation space is
more useful if your application's output is sent to a single device and if the out­
put is not complex.

GpiDestroyPS Destroys a presentation space created by the GpiCreatePS
function. Do not use this function to destroy a presentation space that was
retrieved by calling the WinGetPS or WinBeginPaint function.

GpiQueryPS Retrieves the dimensions of the presentation page.

GpiResetPS Resets the attributes in a presentation space to one of the follow­
ing states:

• The original state of the presentation space.

• The original state with one exception: Any resources such as regions, loaded
color tables, or loaded fonts are saved and will not be destroyed.

• The state of the presentation space prior to the creation of any retained seg­
ments.

GpiRestorePS Restores the attributes of a presentation space that were saved
by calling the GpiSavePS function.

GpiSavePS Saves the attributes of a presentation space onto a special stack.

Coordinate Spaces
and Transformations

Chapter

31

31.1 Introduction.. 405

31.2

31.3

31.4

About Coordinate Spaces and Transformations
31.2.1 Single-Coordinate-Space Systems
31.2.2 Multiple-Coordinate-Space Systems
31.2.3 Transformations

31.2.4
31.2.5

31.2.6

31.2.7

31.2.3.1 The MATRIXLF Structure and Fixed Values .. .
31.2.3.2
31.2.3.3
31.2.3.4
31.2.3.5
31.2.3.6

Scaling Transformations
Rotation Transformations
Translation Transformations
Shear Transformations
Reft.ection Transformations

31.2.3.7 Combining Transformations
31.2.3.8 Round-off Error
World Coordinate Space
Model Coordinate Space
31.2.5.1 World-to-Model-Space Transformations
Page Coordinate Space
31.2.6.1 Model-to-Page-Space Transformations
Device Coordinate Space
31.2.7.1 Page-to-Device-Space Transformations

U sing Coordinate Spaces and Transformations
31.3.1 Setting Convenient Drawing Units
31.3.2 Zooming a Picture
31.3.3 Rotating an Object in a Picture

Summary .. .

405
406
408
408
409
410
411
411
411
412
412
412
413
414
415
417
418
418
418
421
421
421
422
423

Chapter 31: Coordinate Spaces and Transformations 405
~i§iimSim!nmlillfiim~lm~:gifi!~~ii~!~.mf_!!!!mi~!i!!¥.!;¥'~~!~!i~i~§iiiffi~~i~2i~iij;U~!~!~mijijmli&1!mJmi"lii~!~*s~!§iR1IDii!m!

31.1 Introduction
This chapter describes coordinate spaces and transformations . You should also
be familiar with the following topics:

• Presentation spaces

• Device contexts

• Retained drawing

• Clipping

31.2 About Coordinate Spaces and Transformations
A coordinate space is a two-dimensional set of points. A point is the smallest
definable location in a coordinate space. There are four coordinate spaces in
Microsoft Operating System/2 Presentation Manager:

• World coordinate space

• Model coordinate space

• Page coordinate space

• Device coordinate space

A coordinate system is a means of specifying the location of a point in a coor­
dinate space. For each of the four coordinate spaces in MS OS/2, there is a
corresponding coordinate system. The four coordinate systems for MS OS/2 are
two-dimensional systems with x- and y-axes, an origin, and dimensions. The
x-axis extends horizontally across the system; the y-axis, vertically across the
system. The origin is located at the intersection of the x- and y-axes and lies
at the center of the system. The world, model, and page coordinate systems'
x- and y-axes extend from 0 to 134,217,727 in the positive direction and from
o to -134,217,728 in the negative direction. The device coordinate system's
x- and y-axes extend from 0 to 32,767 in the positive direction and from 0 to
- 32,768 in the negative direction. Figure 31.1 shows the device coordinate sys­
tem, with its origin, axes, and dimensions:

406 MS OS/2 Programmer's Reference, Vol. 1
iiii&'ir~jif!il!IDiitiiim_it!i~!iiiP.~~!2lfgl~ml!m:jgi~!~~Urrri!liruili!ii¥iii!~fi!!!.l~!ei~1E!!~~mImimniif~ranml~~;.~~nJ!USi~i!.mfS:~~!

Figure 31.1
Device Coordinate System

-32,768

Positive y-axis
32,767

/
Origin
(0,0)

Negative x-axis Positive x-axis

-32,768
Negative y-axis

32,767

When you specify a coordinate in MS OS/2, the values you use are long integers
(32-bits).

31.2.1 Single-Coordinate-Space Systems

Figure 31.2

All graphics systems use at least one coordinate space and system to generate
output on a video display or printer. The simplest systems use a single coordi­
nate space, whose points are the pels on the display. In single-coordinate-space,
or single-space, systems, one corner of the display (usually the lower-left)
corresponds to the origin of the coordinate system; the positive x-axis extends
from the origin to the lower-right corner of the display; and the positive y-axis
extends from the origin to the upper-left corner of the display. Figure 31.2 shows
how the axes correspond to the display:

Video Display and Single-Coordinate-Space System

,....,

Origin

~ ~
:¢:<t 0

When drawing, applications written for single-coordinate-space systems must
specify distances and locations in pels. For example, when the application draws
a straight line, it specifies starting and ending points in pels. So if the display

Chapter 31: Coordinate Spaces and Transformations 407
3!ii!*iw~iii2iGl!m!iiJif~m!fil!_5~im,!!!¥.mf_!~fSil!!~i!¥.!~~~f~!!~i~!t=ii~grM~~iii!i~~~.m~iiiill~fdUm!~I~i~U;*s~~~l!Iir~

Figure 31.3

measures 100 pels by 100 pels and the application supplies a line-drawing com­
mand with a starting point of (0,0) and an ending point of (50,50), the line
shown in Figure 31.3 would appear on the display:

Diagonal Line in a Single-Coordinate-Space System

Figure 31.4

There are two fundamental drawbacks to a graphics system with a single coordi­
nate space:

• Any application written for the graphics system is device dependent.

• It is difficult to draw output in convenient units like centimeters, feet,
inches, or twips.

Since the coordinate space in a simple system is made up of pels, and since the
shape of pels varies from device to device, the output from an application writ­
ten for one device may look different on another device. Figure 31.4 demon­
strates this principle: The display on the left measures 100 pels by 100 pels, the
display on the right 640 pels by 350 pels. In each case, a rectangle has been
drawn with a lower-left corner at (10,10) and an upper-right corner at (90,90).
Note the different shapes of each rectangle.

One Rectangle Displayed on Two Different Devices

Single-coordinate-space systems are difficult to use for drawing or computer­
aided-design (CAD) applications since these applications work in units of
inches, feet, meters, and so on. For example, to draw a simple horizontal line
that is 1 inch long, you must perform the following tasks:

408 MS OS/2 Programmer's Reference, Vol. 1
nii!1ir~Jiililtil!ftU!i~i~!~~E;~;mmliimll:U!iP.j~!~!iHi~l!ruilmi~iiii!ii!Hlml~!~l!ii!~~~imt~~iii~f.*-i!1!mF.iilliSlif.imi§~iffi!~iBl~i

1 Determine the width (in inches) of the video display or printer paper.

2 Determine the width (in pels) of the video display.

3 Divide the width in pels by the width in inches to determine the ratio of pels to
inches.

4 Using this ratio, perform the line-drawing command.

31.2.2 Multiple-Coordinate-Space Systems
Single-coordinate-space systems do not provide the flexibility that most appli­
cations and application developers need. An application written for a single­
space system will create meaningful output only on a device on which the· pels
are a certain width and height. Since spreadsheet, word-processing, desktop­
publishing, and CAD applications normally draw output on video displays and
printers or plotters, it is obvious that a single-space system is impractical. In
Presentation Manager, however, you can avoid the limitations of a single­
coordinate-space system by using additional coordinate spaces and other opera­
tions, called transformations. Transformations require two coordinate spaces-a
source coordinate space and a target coordinate space.

31.2.3 Transformations
When copying objects from one coordinate space to another, MS OS/2 applies
one or more of five operations, called transformations, to the points that define
the object. These five transformations-scaling, rotation, translation, shear, and
reflection-enable you to write applications that can do the following tasks:

• Run on a variety of video displays, printers, and plotters.

• Use convenient units of measurement (centimeters, inches, feet, kilometers,
miles, etc.).

• Scroll and zoom pictures.

• Rotate and scale objects in pictures.

• Shift the positions of objects in pictures.

• Display mirror images of objects in pictures.

• Display sheared objects in pictures.

When your application copies an object from the source coordinate space to the
target coordinate space, the five transformations work as follows:

• The scaling transformation makes the object look bigger or smaller.

• The rotation transformation rotates the object.

• The translation transformation shifts the object with respect to the origin of
the coordinate system.

• The shear transformation rotates either all the vertical or all the horizontal
lines in an object.

• The reflection transformation creates a mirror image of an object with
respect to the x- or y-axis.

Chapter 31: Coordinate Spaces and Transformations 409
!T.I!flliEf!mm~~f~~l;i~I1i1~iijim!iafmiif;i.,qiml!f11~:I;"I:aJ!!iill!~lifam:mlm:mi~i.jfi~!!lii5il~iifiliiltaitmi§~!§!~lF.b'ifj!if!il~i~'§jjlW~~r.~!~lijf!~1ir:ii

Presentation Manager uses three-by-three matrices to represent the three trans­
formations. For any point (x,y) in a source coordinate space, you can determine
the corresponding point (x ',y ') in the target coordinate space by using the fol­
lowing matrix multiplication:

I
MII Ml2 M22

[x Y 1] X M21 M22 M23

M31 M32 M33

= [x' y' 1]

In the following example, the transformations are set to unity (represented by
the identity matrix). In such cases, the original point in the source coordinate
space is always identical to its corresponding point in the target coordinate
space.

[3 100 1] X I: : : I = [3 100 1]

In the next example, the identity matrix is replaced with a new matrix that
translates the point when the point is copied from the source coordinate space
to the target coordinate space:

[3 100 1] X I ~
97

o
1

- 97

o
o = [100 3 1]

1

In this example, the point (3,100) was translated to (100,3) by exchanging the
values of M31 and M32.

31.2.3.1 The MATRIXLF Structure and Fixed Values
A special data structure called the MATRIXLF structure contains nine fields that
correspond to the nine elements in a three-by-three transformation matrix. Five
of these fields are 32-bit long integer values; the remaining four are special 32-bit
fixed values.

A fixed value is a binary representation of a floating-point number. A fixed value
has two parts: the high-order 16-bits and the low-order 16-bits. The high-order
16-bits contain a signed integer in the range -32,768 through 32,767; the low­
order 16-bits contain the numerator of a fraction, in the range 0 through 65,535
(the denominator for this fraction is 65,536). Figure 31.5 shows the two parts of
a fixed value:

410 MS OS/2 Programmer's Reference, Vol. 1
;at .. Iw.!~J~~~!!I~ti§i~l~!fiji~Etnm~Ii!i1!lmi~n:!i:~mmiraiiiiliiil:i.m!~il~~~el~Hff.ifiml~!i8iiiijiJ!i§!iPj!i!~1r:5:3fii~it!!iifi1!lim~lii~~~!*

Figure 31.5
Fixed Value

- 32,768-32,767 0-65,535

II I III I I III1IIIII1 II IIII II 1III III

Signed integer Unsigned numerator

You use fixed values to store the sines and cosines of angles for the rotation
transformation. You also use fixed values to store scaling factors for the scaling
transformation. To store the cosine of 60 degrees in a fixed value, you would
multiply 0.5 by 65,536. The result, 32,768, is the value you would assign to a
fixed value in the MATRIXLF structure. To store a scaling factor of, for exam­
ple, 3 in a fixed value, you would multiply 3 by 65,536. Again, the result,
196,608, is the value you would assign to a fixed value in the MATRIXLF struc­
ture.

The MAKEFIXED macro provides a quick and convenient method for determin­
ing fixed values. This macro requires two arguments: The first is the integer part
of the fixed value, and the second is the fraction part of the fixed value. In the
following example, MAKEFIXED is used to determine the fixed-value equivalent
of 1-and-1I8:

matlf.fxM11 = MAKEFIXED(l, 8192)

The first argument, 1, is the integer part of the fixed value. The second argu­
ment, 8192, is the result of multiplying 65,536 by 1/8.

The following type definition shows each of the fields in the MATRIXLF struc­
ture. Fields with an fx prefix contain fixed values; fields with an I prefix contain
long values.

typedef struct _MATRIXLF {
FIXED fxM11; 1* M11
FIXED fxM12; 1* M12
LONG IM13; 1* M13
FIXED fxM21; 1* M21
FIXED fxM22; 1* M22
LONG IM23; 1* M23
LONG IM31; 1* M31
LONG IM32; 1* M32
LONG IM33; It M33

} MATRIXLF;

1* matI f *1
*1
*1
*1
*1
*1
*1
*1
*1
*1

31.2.3.2 Scaling Transformations
When you scale an object by using the scaling transformation, the matrix ele­
ment Mll contains the horizontal scaling component (horz), and the matrix ele­
ment M22 contains the vertical scaling component (vert):

horz 0 0

Overt 0

o 0 1

Chapter 31: Coordinate Spaces and Transformations 411
ii.i!~~~f!mm~~f!~~iif!l§il~iSlm!ij;'fW:if;i!iiffli§ff.~f§I!!ij~!lifmmffilruiffii~lii~mli!i/~i~ali!r.iii~~~~lF.b'm'if!lt~isl§ij"e~~m!!flrtmf~~~j

31.2.3.3 Rotation Transformations
When you rotate an object clockwise by using the rotation transformation, the
matrix element MIl contains the cosine of the rotation angle; M12, the negative
sine of the rotation angle; M21, the sine of the rotation angle; and M22, the
cosine of the rotation angle:

cos -sin 0

sin cos 0

o 0 1

Remember that MS OS/2 applies a transformation to all points in the source
coordinate space. This means that unless an object is drawn about the origin of
the source coordinate space, translation will occur when the object is rotated or
scaled. Figure 31.6 shows a triangle, first in its source coordinate space and then
in its target coordinate space, rotated 45 degrees clockwise. Note the translation
with respect to the origin.

Figure 31.6
Rotating an Object

31.2.3.4 Translation Transformations
When you translate an object by using the translation transformation, the matrix
element M31 contains the horizontal translation component, and the matrix ele­
ment M32 contains the vertical translation component, as follows:

1

o
o
1

o

o

horz vert 1

31.2.3.5 Shear Transformations
There are two shear transformations: vertical and horizontal. When an applica­
tion uses the vertical shear transformation, it affects only the vertical lines in the
object. In the matrix of the vertical shear transformation, the element M21 con­
tains a horizontal shear component, and the element M22 contains a vertical
shear component, as follows:

412 MS OS/2 Programmer's Reference, Vol. 1
_l~mii~m~i[i\~mi~m~~t!!!.~~-F:ltii!I~inm!§!~i§iUIM~i!§~i!tTjilimifihlgi§iiih~~J'ill~~m:d~~~,§!ii;~~r~~

When an application uses the horizontal shear transformation, it affects only the
horizontal lines in the object. In the matrix of the horizontal shear transforma­
tion, the element MIl contains a horizontal shear component, and the matrix
element Ml2 contains a vertical shear component, as follows:

horz 0 0

vert 1 0

o 0 1

If an application shears an object that contains two orthogonal vectors (two per­
pendicular lines), the vectors will no longer be orthogonal.

31.2.3.6 Reflection Transformations
The reflection transformation creates a mirror image of an object with respect
to the x- or the y-axis. The matrix element MIl contains the horizontal reflection
component, which causes reflection about the y-axis. The matrix element M22
contains the vertical reflection component, which causes reflection about the x­
axis. The reflection components are always negative.

horz 0 0

Overt 0

o o 1

31.2.3.7 Combining Transformations

Each time you call a Gpi function that sets a transformation, you can specify
whether you want to combine it with existing transformations and, if so, whether
you want MS OS/2 to apply the existing transformation before or after the new
transformation.

If you want MS OS/2 to replace any existing transformations with the new
transformation, use the TRANSFORM-.REPLACE flag when you set the
transformation. If you want MS OS/2 to apply the new transformation before
it applies the existing transformation, use the TRANSFORMJREEMPT
flag when you set the new transformation. If you want MS OS/2 to apply
the new transformation after it applies the existing transformation, use the
TRANSFORM.-ADD flag when you set the new transformation.

31.2.3.8 Round-off Error

Whenever you use transformations in your application, you should check for any
round-off error that occurs after multiple scaling, rotation, shear, or reflection
transformations. For example, if your application uses a rotation transformation

Chapter 31: Coordinate Spaces and Transformations 413
l!i1~!5!jjimiliii~f~~~i!flfi:~i!i1ifi;mii:i!fEP.Jf.ia~li~~il!f~lliiinr.ll~n~rifl!a1itr.!~U~~~!!mlS'diiiilli!m~f2i~iBiI!t~!!§~~.Mi.~~'I~

to rotate the hands of a clock, the accuracy of the clock will diminish due to
rounding off after the transformation. In order to prevent the loss of accuracy,
your application should check the results of each transformation.

31.2.4 World Coordinate Space

Figure 31.7

A world coordinate space, or world space, is where all Presentation Manager
drawing operations begin. Whenever you draw with one of the line, arc, charac­
ter, area, or image primitives, the coordinates that you specify are world coordi­
nates. World-coordinate units can be inches, fractions of an inch, meters, cen­
timeters, miles, kilometers, yards, and so on.

If your application uses the retained-drawing mode to store subpictures in
chained segments, MS OS/2 assigns a new world space to each segment. In
other words, if the segment attribute is set to ATfR-CHAINED and you call
the GpiOpenSegment function, the subpicture associated with that segment is
drawn in a new world space. The following illustration shows the subpictures in
four chained segments. Each subpicture is drawn in its own world space.

Subpictures in Four Chained Segments in World Space

~ ~ c:::=:J)

c=J I-
(~
\~

(I I)
....... ~ 1

I I I I I ~

-0 ~ \\
-t II

'-----'

0 1'1" I I I

There is a special clipping area called a clip path that you can use to define a
part of a world space that you want to copy into the next coordinate space (the
model space). The advantage of a clip path is that it is the only clipping region
that can be nonrectangular. Its edges can include arcs, curves, and straight lines.
The coordinates that define the dimensions and shape of a clip path are always
world coordinates. You can create a clip path by calling the GpiBeginPath,
GpiEndPath, and GpiSetClipPath functions and one or more Gpi primitives that
define the dimensions and location of the path. For more information, see
Chapter 40, "Clipping."

414 MS OS/2 Programmer's Reference, Vol. 1
ipi!I5P.~!I!l!iit~iiiilitlfi~jiSiii!i!lJi§~I§Jjlf;i!!§l1"1!!JiiE~i!~iiiiMii!ifgiHi!limiI5;miii~2~l~E-i}iil~i$mi:im~=~UfiH!i!lFllllilitim~ii~fitiilii1

31.2.5 Model Coordinate Space

Figure 31.8

A model coordinate space, or model space, is where you build a model, or a
complete picture, from sUbpictures in one or more world spaces. You can have
more than one model space, each corresponding to a particular model. Figure
31.8 shows two model spaces that were defined by calls to the GpiSetSegment­
TransformMatrix function:

Two ModeJ Spaces

Figure 31.9

)
D
\l 1 1 1 1 1

I~I

1 0 r-- I----t

@ ~ c::::=::J '----"

0
l-e=]

(I I)
....... ~

There is a special clipping area called a viewing limit that you can use to define a
part of a model space that you want to copy into the next coordinate space (the
page space). A viewing limit is always rectangular, and the coordinates that
define its location and dimensions are always model coordinates. You can set the
viewing limit by calling the GpiSetViewingLimit function. Figure 31.9 shows a
viewing limit set in a model space; the dashed line represents the viewing-limit
border:

Viewing Limit in ModeJ Space

Viewing limit

Chapter 31: Coordinate Spaces and Transformations 415
:fi.I~lli'ilUm!!,~UJfffi~t;ifI!li!!~iijiiji!m1fifi~;irnlf§jm;l!QU!flii!NiimilJilmiili1ii:.iimi!!liiiJf5fafi!!§liimilf&ijj~~~i~~'iJi)jm!!!i~I!fjSJ5lrmr.~imiiytl~mlii~

31.2.5.1 World-to-Model-Space Transformations
There are three transformations that operate between the world space and the
model space:

• The model transformation

• The segment transformation

• The instance transformation

Model Transformations

Figure 31.10

Model transformations are used for retained- or nonretained-drawing operations.
This means model transformations affect the output from the GpiDrawChain,
GpiDrawFrom, and GpiDrawSegment functions and any of the Gpi functions
that occur outside of a retained-drawing segment.

You can determine the values for the current model transformation by calling
the GpiQueryModelTransformMatrix function, which returns the model trans­
formation's scaling, rotation, and translation values in a three-by-three matrix.
Similarly, you can set these values by calling the GpiSetModelTransformMatrix
function, passing it the scaling, rotation, and translation values in a three-by­
three matrix.

In a retained-graphics application, you could use a model transformation to
rotate, scale, or translate parts of a subpicture. You can set and reset the model
transformation any number of times within a retained-drawing segment. Figure
31.10 shows part of a floor plan as a single subpicture stored in a retained seg­
ment. Each chair was drawn by setting a new translation component in the
model transformation before calling the GpiBox function.

Retained Subpicture Drawn Using Model Transformations

: -(gJ-- - - - - -:-Subpicture
, ' , ' , ' , '

~--©--------~~ia£J , , , , , , , , , , , ,
~---f---..J

Scale
Retained segment

:~_J __ : ,© ____ : ~
I I I I
~ ____ ! I I

416 MS OS/2 Programmer's Reference, Vol. 1
iilm~~~~~~!!!~t~1i~i~!~!~ilil~~nairuii~~1~:~~mtraji~iiilliiil~1i\~~~elI~H~iru~!ieiiiJij~~fSSJ!i!~i;iS~!s¥'~i~iiil1!liiiiliii~iU~fi1i~

Segment Transformations

Figure 31.11

Segment transformations alter retained-drawing output. Unlike a model transfor­
mation, which can be set and reset within a segment bracket, a segment transfor­
mation must be set outside of a segment bracket.

You can determine the values for the current segment transformation by calling
the GpiQuerySegmentTransformMatrix function, which returns the scaling, rota­
tion, and translation values in a three-by-three matrix and passes a segment
identifier. Similarly, you can set the values for the segment transformation by
calling the GpiSetSegmentTransformMatrix function, passing it the necessary
values (in a three-by-three matrix) and a segment identifier.

The user of a CAD or drafting application may need to zoom in on part of a
subpicture that was clipped in world space by a clip path. The application could
perform this operation by setting the segment transformation for that particular
subpicture after setting the clip path. Figure 31.11 shows a subpicture in world
space that contains a clip path; the dashed line represents the outline of the clip
path:

Clip Path in World Space

Clip path

1- - - - - - - - - - - - - -

ic:=1
Cg)

1

l_ - - - - - t,-+-+-+-+--+:--t--II

Figure 31.12 shows a zoomed view (in model space) of the clipped part of the
subpicture:

Chapter 31: Coordinate Spaces and Transformations 417
Memi~iS~:~!~i~a1\~!liU~\u~ffiilfJr:l!'llimili~~~it1imBi~~ei~l~l~l!llfii~~~m\~iil!~lml\\~~j;~i9-m~;film;m!iIi~1zi~lliit~§I~iI~I\ij~

Figure 31.12
Scaling the Clipped Part of a Subpicture in Model Space

Clip path

1- -I
1 1

il i
I· 1
1 I
I 1

~ L ____ !
1
1
1

l_ - - - - - - - - - .1.:--t--t--+--t--H

Instance Transformations
Instance transformations alter the retained-drawing output from special segments
referred to as "called" segments. A called segment usually contains a subpicture
that is duplicated several times in other subpictures. The instance transformation
positions, sizes, and rotates the subpicture each time it is duplicated. You can
set the values for the instance transformation by calling the GpiCallSegment­
Matrix function, passing it the transformation values (ina three-by-three matrix)
and a segment identifier.

31.2.6 Page Coordinate Space
A page coordinate space, or page space, is where a complete picture is prepared
for viewing in a window on a video display, printing on a page of printer paper,
or plotting on a page of plotter paper. Page-coordinate units can be increments
of an inch, a meter, several pels, a twip, or some arbitrary value. (A twip is a
standard unit in the typesetting industry that measures 1/1440 of an inch.) You
specify the units used for page coordinates when you call the GpiCreatePS func­
tion and create a presentation space.

If your application uses retained-drawing mode, the picture in page space will
contain parts of models (or pictures) from each of the model spaces that have
not been clipped; the picture will also contain any additional graphics-primitive
output (that has not been clipped) that the application generated in nonretained­
drawing mode. If your application uses nonretained-drawing mode, the picture
in page space will contain all of the graphics-primitive output that has not been
clipped.

In the page space, there is a special clipping area called a graphics field that you
can use to define the part of the page space that you want to copy into the next'
coordinate space (the device space). The graphics field is always rectangular.
The coordinates that define the location and dimensions of the graphics field are
always page coordinates.

418 MS OS/2 Programmer's Reference, Vol. 1
U!m6ms.~it!l!iimf'jnmis~rimtOOiUt~.JijjijffilH~~I~rl~~~~~~mm~H~!iiiHli~~i~!!;ii5!~lIaiIi!ii~~!iJ,IDlfd!1m!ffimii8gUil§i~~IU~1f:iii

31.2.6.1 M odel-to-Page-Space Transformations
There are two transformations that operate between the model space and the
page space:

• The default viewing transformation

• The viewing transformation

Default Viewing Transformations
Default viewing transformations scroll or zoom pictures in a window on a video
display or on a page of printer or plotter paper . You can determine the current
values for the default viewing transformation by calling the GpiQueryDefault­
ViewMatrix function, which returns the default-viewing-transformation values
in a three-by-three matrix. You can set these values by calling the GpiSet­
DefaultViewMatrix function and passing it the transformation values (in a
three-by-three matrix).

Viewing Transformations
Viewing transformations create pictures from multiple model spaces. For exam­
ple, you could copy a picture from a model space to a page space, leaving all
parts of the picture intact. Then you could copy a part of another picture from a
second model space by using a viewing limit to define the part of the picture that
you want to copy and then using the viewing transformation to scale and trans­
late that part. You can determine the current values for the viewing transforma­
tion by calling the GpiQueryViewingTransformMatrix function, which returns
the values for the viewing transformation in a three-by-three matrix. You can set
the values by calling the GpiSetViewingTransformMatrix function and passing it
the transformation values (in a three-by-three matrix).

31.2.7 Device Coordinate Space
A device coordinate space, or device space, is the final space in which a picture
is drawn before it appears in a window or on the page of a printer or plotter.
Device-coordinate units are pels if the page units are pels, twips, increments of
an inch, or increments of a meter. Device-coordinate units are arbitrary if the
page units are arbitrary.

31.2.7.1 Page-to-Device-Space Transformations
There is one transformation between the page space and the device space-it is
called the device transformation. Unlike the other transformations that rotate,
scale, and translate objects, the device transformation only scales and translates
objects; also, instead of a three-by-three matrix, the device transformation uses
two rectangles. (The location of the first rectangle is fixed; the location of the
second rectangle is movable.) These two rectangles are the presentation page
and the page viewport.

Presentation Pages
A presentation page is a rectangle in a page space. Its lower-left corner is always
positioned at the origin of the page space. You can determine the dimensions
of the presentation page by calling the GpiQueryPS function, which returns a
pointer to a SIZEL structure that contains the page dimensions. If you specify
arbitrary page units when you create a presentation space, you must also specify

Chapter 31: Coordinate Spaces and Transformations 419
i!!¥!ilil~i~~;ilf.~!iimmi!Y:~ftiii;§firu;ifiif;~~iI!iii1imufiJjjJ~~iiS!mi!iititii!iilliil~5f1mi!!1l!~n~~1U§~!~JiifdiUit.:li:iRiiiili.iij!tii!mY

Figure 31.13

the dimensions of the presentation page. If you specify any other page unit, MS
OS/2 automatically sets the dimensions of the presentation page for you. Figure
31.13 shows a presentation page:

Presentation Page in Page Space

Presentation page

___________ ~~_®:~~:~_:t~~~j~
~ A. :

t :

'J !

(0,0) i

/ i

Page Viewports

Figure 31.14

A page viewport is a rectangle in a device space. MS OS/2 always copies the
presentation-page rectangle into the page-viewport rectangle. You can determine
the current dimensions of the page viewport by calling the GpiQueryPage­
Viewport function, which returns a pointer to a RECTL structure that contains
the coordinates of the viewport. You can set the location and dimensions of
the page viewport by calling the GpiSetPage Viewport function and passing it a
pointer to a RECTL structure that contains the new values. Figure 31.14 shows
the object from Figure 31.13 as it would appear in the page viewport:

Page Viewport in Device Space

Page viewport

-------------·-----1-----------··---------------1

""'"' : , :

(0,0)

/

420 MS OS/2 Programmer's Reference, Vol. 1
njmJ~fi;mi§i~fim~ln!siifI!~!~mut~j~~IiI~J!}il~r.r~~;g~~Hmitlm!fflim!~~is.!!;m!J.:]ii~li~~aJmlffd~iliiBimi§mtR:1§i~l!f:ii~~1f:ili

Figure 31.15

The ratio of the page width to the page-viewport width defines a horizontal scal­
ing factor, and the ratio of the page height to the viewport height defines a verti­
cal scaling factor. In Figure 31.15, the presentation page measures 100 centime­
ters by 200 centimeters, and the page viewport measures 200 pels by 400 pels
(where each pel measures 0.25 centimeters by 0.5 centimeters):

Determining Scaling Factors

Figure 31.16

The image in the page space was not scaled in the device space since each cen­
timeter in the page space mapped to a centimeter in the device space.

Figure 31.16 shows the effect of shifting the page viewport in the device space.
Note the translation that this shift causes.

Translating the Page Viewport in Device Space

Page Space Device Space

Presentation page

---------------l-------------------------------,

®
Page viewport

t ______________________________ l

Chapter 31: Coordinate Spaces and Transformations 421
a!giilil~i~;~IIf.~!Sifflill~ii5j~ii!i;~!ial~tilI!i~mru....~!m!iii1iiSiiil3'iIU§~~Stm!!jiUiiH!iii!P.I~§l~~fi~;/~~l1i§imi:iHiU!iUwtililtiSi!ilfmlfjj!tir!miim

31.3 Using Coordinate Spaces and Transformations
You can perform the following tasks by using the coordinate-space and transfor­
mation functions:

• Set an application's drawing units to convenient units.

• Scroll and zoom a picture.

• Rotate, scale, and shift an object in a picture.

31.3.1 Setting Convenient Drawing Units
You can use the GpiCreatePS function to set the device transformation so that it
uses more convenient page units-for example, centimeters. Follow these steps:

1 If the output device is a screen, open a device context by calling the WinOpen­
WindowDC function. (If the output device is a printer or plotter, open a printer
or plotter device context by calling the DevOpenDC function.)

2 Create a presentation space by calling the GpiCreatePS function, specifying
low-metric page units and associating the device context with the presentation
space.

The following code fragment demonstrates these steps:

HDC hdc; I' device-context handle 'I
HWND hwndClient; I' client-window handle 'I
SIZEL sizlPage; I' presentation-page rectangle 'I
HAB hab; I' anchor-block handle 'I
HPS hps; I' presentation-space handle 'I

hdc WinOpenWindowDC(hwndClient);
sizlPage.cx = 0;
sizlPage.cy = 0;
hps = GpiCreatePS(hab,

hdc, I' device-context handle 'I
&sizlPage, I' address of SIZEL structure 'I
PU_LOMETRIC I' centimeters as page units 'I
I GPIA_ASSOC); I' associates window DC with PS 'I

31.3.2 Zooming a Picture
You can use the GpiSetDefaultViewMatrix function to zoom a picture. The fol­
lowing code fragment shows how to zoom out to 1/4 or 1/8 scale by using the
default viewing transformation:

II. Zoom 1/8 'I

matlfTransform.fxM11 = MAKEFIXED(O, 8192);
matlfTransform.fxM12 = MAKEFIXED(O, 0);
matlfTransform.1M13 = OL;
matlfTransform.fxM21 = MAKEFIXED(O, 0);
matlfTransform.fxM22 = MAKEFIXED(O, 8192);
matlfTransform.1M23 = OL;
matlfTransform.1M31 = OL;
matlfTransform.1M32 = OL;
matlfTransform.1M33 = 1L;
GpiSetDefaultViewMatrix(hps, 9L, &matlfTransform, TRANSFORM_REPLACE);

422 MS OS/2 Programmer's Reference, Vol. 1
ilitntifrilSr.l5l~;~!iiniStmi~iifrimt~P.U~i~llH~H~i:f~~§!iE!~U~~5t!iiim!~J!mli§i5f~1!i~~11l!lIYt~UsUmifdiijiU!simiii£i~ii!~i~ib~iU

I' Zoom 114 'I

matlfTransform.fxM11 = MAKEFIXED(O, 1634);
matlfTransform.fxM12 = MAKEFIXED(O, 0);
matlfTransform.lM13 = OL;
matlfTransform.fxM21 = MAKEFIXED(O, 0);
matlfTransform.fxM22 = MAKEFIXED(O, 1634);
matlfTransform.lM23 = OL;
matlfTransform.lM31 = OL;
matlfTransform.lM32 = OL;
matlfTransform.lM33 = 1L;
GpiSetDefaultViewMatrix(hps, 9L, &matlfTransform, TRANSFORM_REPLACE);

31.3.3 Rotating an Object in a Picture
To rotate an object in a world space by using the model transformation, you
must perform the following steps:

1 Translate the object over the coordinate-space origin.

2 Rotate the object.

3 Translate the object back to its original position.

4 Draw the object.

The following code fragment rotates a box 45 degrees:

I' translates, rotates 45 degrees, translates 'I

matlfTransform.fxM11 = MAKEFIXED(l, 0);
matlfTransform.fxM12 = MAKEFIXED(O, 0);
matlfTransform.lM13 = OL;
matlfTransform.fxM21 = MAKEFIXED(O, 0);
matlfTransform.fxM22 = MAKEFIXED(l, 0);
matlfTransform.lM23 = OL;
matlfTransform.lM31 = -150L;
matlfTransform.lM32 = -150L;

1* translates box 150 units left 'I
1* translates box 150 units down 'I

matlfTransform.lM33 = 1L;
GpiSetModelTransformMatrix(hps, 9L, &matlfTransform,

TRANSFORM_REPLACE);

matlfTransform.fxM11 = MAKEFIXED(O, 46340); I' cos 45 '65536 *1
matlfTransform.fxM12 = -MAKEFIXED(O, 46340); I' -sin 45 ' 65536 'I
matlfTransform.lM13 = OL;
matlfTransform.fxM21 = MAKEFIXED(O, 46350); I' sin 45 '65536 'I
matlfTransform.fxM22 = MAKEFIXED(O, 46340); I' cos 45 '65536 'I
matlfTransform.lM23 OL;
matlfTransform.lM31 = OL;
matlfTransform.lM32 = OL;
matlfTransform.lM33 = 1L;
GpiSetModelTransformMatrix(hps, 9L, &matlfTransform, TRANSFORM_ADD);

matlfTransform.fxM11 = MAKEFIXED(l, 0);
matlfTransform.fxM12 = MAKEFIXED(O, 0);
matlfTransform.lM13 = OL;
matlfTransform.fxM21 = MAKEFIXED(O, 0);
matlfTransform.fxM22 = MAKEFIXED(l, 0);
matlfTransform.lM23 = OL;
matlfTransform.lM31 = 150L;
matlfTransform.lM32 = 150L;
matlfTransform.lM33 = 1L;

I' shifts back to original pos. 'I
1* shifts back to original pos. *1

GpiSetModelTransformMatrix(hps, 9L, &matlfTransform, TRANSFORM_ADD);

Chapter 31: Coordinate Spaces and Transformations 423
rsigU~ltfiiP1!l!lllf.~!i:immi~~j~!iii;~JlliaJ~~im.i~:uru....tm!itiflmuiiljjl!l§sii§!lii!i1t~ii5iii!fij~~~liUi~n~~1fl!§im~hlt~irriliBitii~lfji!tiI!m!fm

31.4 Summary
The following list summarizes the coordinate-space and transformation func­
tions:

GpiConvert Determines the relationship between coordinates in two coordinate
systems when a transformation is in effect. For example, if the page units are
low English (0.01 inches) and an application is drawing in world units of feet, the
application can call GpiConvert to determine the ratio of world units to page
units and use this value to scale a picture down before printing.

GpiQueryDefaultViewMatrix Retrieves the scaling, rotation, and translation
values for the default viewing transformation. You can use the default viewing
transformation to scroll and zoom a picture in a page space.

GpiQueryModelTransformMatrix Retrieves the scaling, rotation, and transla­
tion values for the model transformation. You can use the model transformation
to alter retained subpictures and nonretained pictures in a world space.

GpiQueryPageViewport Retrieves the dimensions of the page viewport. You
can use the page viewport to shrink and expand pictures so that they fill the
client area of a window as it shrinks and expands.

GpiQuerySegmentTransformMatrix Retrieves the scaling, rotation, and transla­
tion values for the segment transformation. You can use the segment transforma­
tion to alter subpictures ,stored in retained segments in a world space.

GpiQueryViewingTransformMatrix Retrieves the scaling, rotation, and transla­
tion values for the viewing transformation. You can use the viewing transforma­
tion with the viewing-limit clipping region to transform part of a picture in a
model space and then copy it to a page space. You can also use the viewing
transformation to transform a complete picture in a model space before copying
it to a page space.

GpiSetDefaultViewMatrix Sets the scaling, rotation, and translation values for
the default viewing transformation. You can use the default viewing transforma­
tion to scroll and zoom a picture in a page space.

GpiSetModelTransformMatrix Sets the scaling, rotation, and translation values
for the model transformation. You can use the model transformation to alter
retained subpictures and nonretained pictures in a world space.

GpiSetPageViewport Sets the dimensions of the page viewport. You can use
the page viewport to shrink and expand pictures so that they fill the client area
of a window as it shrinks and expands.

GpiSetSegmentTransformMatrix Sets the scaling, rotation, and translation
values for the segment transformation. You can use the segment transformation
to alter subpictures stored in retained segments in a world space.

GpiSetViewingTransformMatrix Sets the scaling, rotation, and translation
values for the viewing transformation. You can use the viewing transformation
and the viewing-limit clipping region to transform part of a picture in a model
space and then copy it to a page space. You can also use the viewing transforma­
tion to transform a complete picture in a model space before copying it to a
page space. ?

Chapter

32

Line and Arc Primitives

32.1 Introduction.......... 427

32.2 About Line and Arc Primitives................................... 427
32.2.1 Drawing Straight Lines...................................... 428
32.2.2 Drawing Arcs... 428
32.2.3 Arc Parameters... 429
32.2.4 Line Attributes .. 431

32.3 Using Line and Arc Primitives 432
32.3.1 Drawing a Straight Line 432
32.3.2 Creating a Rubber-Banding Effect

with ~ Straight Line.................. 433
32.3.3 Drawing a Circle...................... 434
32.3.4 Drawing an Ellipse ~..................... 434
32.3.5 Drawing a Fillet... 435
32.3.6 Drawing a Spline... 436

32.4 Summary.. 436

Chapter 32: Line and Arc Primitives 427
~~liIl~~~a!~!§fIrIiFJiil~IHiirul§!iffliif:Uilimlmim~~lif&~j~m~lHls!m1mm~ .. lliW:il~~Ib.'ii~i~am:~nf~~mar.fm!m!rn'~J~n!!fi5lii!

32.1 Introduction
This chapter describes the line and arc primitives. You should also be familiar
with the following topics:

• Presentation spaces and device contexts

• Coordinate spaces and transformations

• Color and mix modes

32.2 About Line and Arc Primitives

Figure 32.1

Line and arc primitives are straight lines and arcs, respectively, that are drawn
by line and arc functions. These primitives are useful for creating pictures that
consist of objects such as polygons, circles, fillets, ellipses, and other geometric
figures.

Line and arc primitives are useful in many applications. Spreadsheet applications
use them to construct pie charts, bar charts, and graphs. Simple drawing appli­
cations use them as drawing tools. Computer-aided-design (CAD) applications
combine them to draw such complex pictures as schematic diagrams for electri­
cal wiring, blueprints for a building site, and cross-sectional views of machinery.
This broad range of pictures, from simple pie charts to complex blueprints,
demonstrates how these primitives can benefit your applications. Figure 32.1
shows some sample illustrations that were drawn using line and arc functions:

Sample Illustrations Using .Line and Arc Functions

428 MS OS/2 Programmer's Reference, Vol. 1
ljj~fi@i!!ifmffiii!!W~~i~i~I~~~~iijfiifl.it;;!~!i~imlE4irg~~llil1ftru!!~~!F~ .. ~iif!YfFJ~liH~I~;r~R!ir.~!!!~!Bf:;:~ifl1f~{~~~mii!!2

In addition to the line and arc functions, there are numerous other functions
that you can use to alter the appearance of lines and arcs drawn by the primitive
functions. These "other" functions are called attribute functions since they alter
the attributes, or characteristics, of lines and arcs.

32.2.1 Drawing Straight Lines
You draw straight lines by calling the GpiMove function and either the GpiLine
or GpiPolyLine function. GpiMove sets the current position to the starting point
of a line; GpiLine draws a single line from the current position to a specified
point; and GpiPolyLine draws a series of connected lines, from the current posi­
tion through successive points in an array.

When MS OS/2 draws a line, it includes the pels at the starting and ending
points of the line. The algorithm used to draw the rest of the line depends on the
device driver. For example, a driver for a raster device may use a modified
Brezenham algorithm to draw a line, but a driver for a vector device, such as a
plotter, simply connects the line's starting and ending points. In all cases, the
result is a line primitive that looks the same from device to device.

32.2.2 Drawing Arcs
You draw arcs by using GpiMove and one of the following functions:

Function

GpiFullArc

GpiPartialArc

GpiPointArc

GpiPolyFillet

GpiPolyFilletSharp

GpiPolySpline

Description

Draws a circle or an ellipse.

Draws a section of a circle or ellipse.

Draws an arc through three points.

Draws one or more fillets.

Draws one or more fillets with varying
degrees of sharpness.

Draws one or more splines.

The terms circle, ellipse, fillet, and spline are important in discussing arc primi­
tives. A circle is a closed curve with a center from which every point on the
curve is equidistant. An ellipse is a closed curve defined by two fixed points such
that the sum of the distances from any point on the curve to the two fixed points
is constant. A fillet is a curve that, given three control points, is tangent to the
first and last points. A spline is a curve that, given four control points, is tangent
to the first and last lines. Figure 32.2 shows a circle, an ellipse, a fillet, and a
spline:

Chapter 32: Line and Arc Primitives 429
!§!§lili~W.!!.~i~!!;;f~f~Ji2!!i;~n~P.1im!~ii!!fi{iia1!!ii~;!:~nmil§!§i~~imlitm1~l!!~J.i!iJf:mm~£;i~Il!W~~n.~~~~!sI§i!rnI~§fz~~-m;:

Figure 32.2
Arcs

Circle

2
~ .. ,

~ ,
~ ,

~ ,

1~3
Single fillet (3 control points)

2 3
~ ------ -- ---.

I ,

I ' I ,

I ' I ,

Single spline
(4 control points)

~

4

P, and P2 control points
C (constant)
a +b=a'+ b'

Ellipse

Po/yfillet (5 control points)

2 3 5

Polyspline
(7 control points)

6

32.2.3 Arc Parameters
When you draw an arc or an ellipse in your application, the image that appears
on the drawing surface reflects the current values of the arc parameters, p, q, r,
and s. The default value of p is 1, as is the default value of q; the default value
of r is 0, as is the default value of s. These parameters form a two-by-two matrix
that scales and shears ellipses and arcs drawn by the GpiFullArc, GpiPointArc,
and GpiPartialArc functions:

[
P=1 r=o]
s=o q=1

The parameters p and q are scaling values: p scales in the x-direction; q scales in
the y-direction. The parameters rand s are shear components. When you alter r
and s, a sheared ellipse or arc results. Figure 32.3 shows four ellipses drawn by
the GpiMove and GpiFullArc functions. In each case, one of the default arc
parameters has been changed to scale or shear the ellipse.

430 MS OS/2 Programmer's Reference, Vol. 1
;~~f;!!~iiii5iis~I~UI1~{~UiliJ~~fi!fi"_n~!!'I!ii!iiffi!f~iru~it!in~OOl!jji1a!im1Ji!i!fiJ~~'J~l~m~=t;r.~!!!~~[:ifl!ii!lfm{~~.m!l~1

Figure 32.3
Transforming the Unit Circle Using the Arc Parameters

r= 1
q=1

r= 1
q=1

r=O
q=1

All of the arc operations begin with a unit circle that lies at the origin in the
world coordinate system. The arc parameters define a transformation that is
applied to each point on the perimeter of the unit circle. For any point (x,y) on
the perimeter of the unit circle, there exists a new point (x I ,y I), as determined
by the following two algorithms:

Xl =pxx+rXy
yl =sxx+qxy

If the addition of (p X r) and (s X q) is zero, the transformation is orthogonal,
and the line from the origin (0,0) to the point (P,s) is either the radius of a circle
or half of the major or minor axis of an ellipse. The line from the origin to the
point (r,q) is either the radius of a circle or half of the minor or major axis of an
ellipse.

Additional scaling transformations in your application can change the shape of
the figure accordingly. For instance, if the page units in your application are
PUYELS and the pels on your device are rectangular (rather than square), MS
OS/2 will draw an ellipse (rather than a circle) with GpiFullArc when the arc
parameters are set to their default values.

If (p X q) is greater than (r X s), MS OS/2 draws the ellipse counterclockwise
for the GpiFullArc and GpiPartialArc functions. If (p X q) is less than (r X s),
MS OS/2 draws the ellipse clockwise, and if (p X q) is equal to (r X s), MS
OS/2 draws a straight line rath~r than an ellipse.

You can determine the current arc parameters by calling the GpiQueryArc­
Params function, which copies the current arc parameters to their correspond­
ing fields in the ARCPARAMS structure. You can set the arc parameters by call­
ing GpiSetArcParams and passing it a copy of the ARCP ARAMS structure that
contains the new arc parameters you want to use. The ARCPARAMS structure
has the following form:

Chapter 32: Line and Arc Primitives 431
~~I!!l~~!!liI!i!~fmi;lii!Ji2!§~J~:rumtrt;Ia!~lim!i;!!~naiU!j!§l~~IH!!lm!mm~.rnIt!Jf:!irJmm~si~I~~~i!iif~~n~;'fFSliit!iff~§ft~r.~lliIi

typedef struct -ARCPARAMS {
LONG 1P;
LONG 1Q;
LONG 1R;
LONG lS;

} ARCP ARAMS ;

/* arcp */

32.2.4 Line Attributes

Figure 32.4
Line Styles

Every line and arc has style, width, and color characteristics. These characteris­
tics are called line attributes. The first line attribute, line style, defines the way
the line is drawn: solid, as a series of dashes, as a series of dots, or as a combi­
nation of dashes and dots. Figure 32.4 shows the various line styles:

Dotted

Short dash

Dash dot

Double dot

Long dash

Dash double dot
______________ Solid

Invisible

The second line attribute, line width, defines the width of the line in pels. The
third line attribute, line color, defines the color used to draw the line. Usually,
this color is mixed with colors already on the drawing surface. This means that
the final color of a line or curve depends not only on the line color but on the
mix mode and the color of the drawing surface as welL If you draw a dotted or
dashed line, the color that appears between the dots or dashes is the current
drawing-surface color. The mix mode tells MS OS/2 how to combine the line
and background colors (using a bitwise operation on the bits in the correspond­
ing RGB values). For example, one mix mode combines the bits by using the bit­
wise OR operator. The resulting line has both the line and background colors.
Using this mix mode, you would make a purple line when the line color is red
and the background color is blue. For more information about color and mix­
mode attributes, see Chapter 34, "Color and Mix Modes."

When you create a normal presentation space, the line attributes are set to the
following default values:

Line attribute

Line style

Line color

Line width

Mix mode

Default value

LINETYPE_SOLID

CLLNEUTRAL

1.0

RLOVERPAINT

432 MS OS/2 Programmer's Reference, Vol. 1
;~ffjlf~!~!m!f5l~!ID~~i~ilWlltiljj!~~i1ifi"iJlSim~!~!iwiml~4i;J~i!!in~lmt!a:1~1f~ .. Eiiif§li!1f~~~l~l!j~=!Eif.~~~~~zijill~!Uiiii~~i!P.i~!

You can retrieve the current line-attribute values by calling the GpiQueryAttrs
function. This function copies the current line attributes to a LINEBUNDLE
structure. You can change the values at any time by calling the GpiSetAttrs func­
tion. To make changes, you retrieve the current line attributes, set the appropri­
ate fields in the LINEBUNDLE structure to new values, and pass the structure to
GpiSetAttrs. The LINEBUNDLE structure has the following form:

typedef struct _LINEBUNDLE { /* lbnd */
LONG lColor; /* line color */
LONG lReserved;
USHORT usMixMode;
USHORT usReserved;
FIXED fxWidth;
LONG lGeomWidth;
USHORT usType;
USHORT usEnd;
USHORT usJ'oin;

} LINEBUNDLE;

/*

/*
1*
1*
/*
/*

mix mode */

line width */
used with path functions */
line style */
used with path functions */
used with path functions */

Several of the fields in this structure apply to a special wide line that you can
construct using the path functions. For more information about paths and wide
lines, see Chapter 35, "Paths."

32.3 Using Line and Arc Primitives
You can use the line and the arc functions to perform the following tasks:

• Draw a straight line.

• Create a "rubber-banding" effect with straight lines or arcs.

• Draw a circle, ellipse, fillet, or spline.

32.3.1 Drawing a Straight Line
To draw a straight line, you must first set the current position by calling the Gpi­
Move or GpiSetCurrentPosition function, then draw the line by calling the Gpi­
Line function. The following code fragment shows how to draw straight lines:

LONG DrawLine(hps, pptlStart, pptlEnd)
HPS hps; /* presentation-space handle */
PPOINTL pptlStart; /* pointer to coordinates of line start */
PPOINTL pptlEnd; /* pointer to coordinates of line end */
{

}

POINTL ptl_start, ptl_end;

ptl_start.x = pptlStart->x;
ptl_start.y = pptlStart->y;
ptl_end.x = pptlEnd->x;
ptl_end.y = pptlEnd->y;
GpiMove(hps, &ptl_start);
if (GpiLine(hps, &ptl_end»

return (lL);
else

return (OL);

/*

/*
/*
/*
/*
/*
/*

point structures

loads starting x-coordinate
loads starting y-coordinate
loads ending x-coordinate
loads ending y-coordinate
sets current position
draws line

*/

*/
*/
*/
*/
*/
*/

The second argument to the GpiMove function is the address of a structure that
contains coordinates of the line's starting point; the second argument to the Gpi­
Line function is the address of a structure that contains the coordinates of the
last point on the line.

Chapter 32: Line and Arc Primitives 433
!m~irn!iif!i~lm!UJU~im~lgi~~~!i!i!f!i.ffli_!~~!iiiiU~~If!{~~f~H~i~~il§!i~rMi~iai~Jii;U~I[f:~miiliml!iU2iJmi~lii~!§i*s~!!iffi!W~inm!

32.3.2 Creating a Rubber-Banding Effect with a Straight Line
When lines are drawn with a rubber-banding effect, two things happen: The orig­
inalline (if one exists) is erased, and a new line is drawn in its place. This pro­
cess takes place each time the mouse is dragged and continues until the mouse
button is released. The quickest way to erase the original line is to set the fore­
ground mix mode to F~OR and redraw the line. The following code fragment
demonstrates how you can create this effect:

HPS hps; /* presentation-space handle */
POINTL ptlStart;
POINTL ptlNew;
POINTL ptlPrev;
BOOL fDraw;

/* starting point of line */
/* ending point of line */
/* previous end point of line */
/* line-drawing flag */

GpiSetColor(hps, CLR_GREEN); /* sets line-drawing color to green */

MRESULT FAR PASCAL GenericWndProc(hwnd, usMessage, mpl, mp2)
HWND hwnd;
USHORT usMessage;
MPARAM mpl;
MPARAM mp2;
{

}

case WM_BUTTONIDOWN: /* user begins drawing */
ptlStart. x = (LONG) (LOUSHORT (mpl)) ;
ptlStart.y = (LONG) (HIUSHORT (mpl» ;
GpiConvert(hps, CVTC_DEVICE, CVTC_WORLD, lL, &ptlStart);
ptlPrev.x = ptlStart~x;
ptlPrev.y = ptlStart.y;
GpiMove (hps, &ptlStart);
fDraw = TRUE;

return TRUE;

case WM_MOUSEMOVE: /* user draws line */
if (fDraw) {

ptlNew. x = (LONG) (LOUSHORT (mpl» ;
ptlNew.y = (LONG) (HIUSHORT(mpl»;
GpiConvert(hps, CVTC_DEVICE, CVTC_WORLD, lL, &ptlNew);
GpiSetMix(hps, FM_XOR);
if «ptlStart.x 1= ptlPrev.x) II (ptlStart.y 1= ptlPrev.y» {

GpiMove(hps, &ptlStart);
GpiLine(hps, &ptlPrev);

}
if «ptlStart.x != ptlNew.x) II (ptlStart.y 1= ptlNew.y» {

GpiMove(hps, &ptlStart);
GpiLine(hps, &ptlNew);
ptlPrev.x = ptlNew.x; ptlPrev.y = ptlNew.y;

}
GpiSetMix(hps, FM_OVERPAINT);

return TRUE;
}

case WM_BUTTONIUP: /* user stops drawing */
fDraw = FALSE;
return TRUE;

434 MS OS/2 Programmer's Reference, Vol. 1
iiiih'§rilijm!!lilwJlii_ilii!!~&p'.E"~imll~rnll~:i1?i~!~EiHffi~IffiiP.Hiiiii!lli!i!m}~~~I~~~mt~~i;j§f~mis;YiiiiS1~!t~~~~!~ms§§

32.3.3 Drawing a Circle
To draw a circle, all of the transformations between the world, model, page, and
device spaces must maintain square units. This means that instead of pels for
page units, the application should select metric or English page units. (On most
devices, a pel is rectangular, not square.) This also means that the x-values and
y-values for any scaling transformations should be equal. If the transformations
maintain square units, the default arc parameters will transform an ellipse drawn
by the GpiFuIlArc function into a circle.

If the page units are Low English and the default transformations are set, the
following code fragment draws a circle with a diameter of 1 inch:

ARCPARAMS arcp;
HPS hps; ,
POINTL ptlPos;
FIXED fxMult;

/* structure for arc parameters */
/* presentation-space handle */
/* structure for current position */
/* multiplier for circle */

arcp.lP = lL; arcp.lQ lL;
arcp.lR = OL; arcp.lS OL;
GpiSetArcParams(hps,

&arcp);
ptlPos.x = 100;
ptlPos.y = 100;
GpiMove(hps, &ptlPos);
fxMult = (50 * 65536);
GpiFullArc(hps, DRO_OUTLINE,

fxMult);

/* sets parameters to default */
/* loads x-coordinate */
/* loads y-coordinate */
/* sets current position */
/* sets multiplier */
/* draws circle */

The second argument to the GpiFuIlArc function, DRO_OUTLINE, specifies
that MS OS/2 should draw only the outline of the circle (rather than filling the
interior with the current fill pattern). The third argument, fxMult, specifies that
MS OS/2 should multiply the size of the circle by 50 units. Since the page units
are PU~OENGLISH and the default transformations are set, 50 units are
equivalent to 112 inch. The circle will have a 112-inch radius and a I-inch diame­
ter.

32.3.4 Drawing an Ellipse
If the world, model, page, and device transformations are set so that they main­
tain square units, you can use the arc parameters to transform the shape of the
ellipse drawn by the GpiFuIlArc function. The following code fragment alters the
arc parameter p by doubling its value, making the ellipse twice as wide horizon­
tally as it is vertically.

If the page units art(PU~OENGLISH and the default transformations are set,
the following code fragment draws an ellipse with a 2-inch major axis (parallel to
the x-axis) and a I-inch minor axis (parallel to the y-axis). The ellipse is centered
over a point in the lower-left corner of a maximized window.

ARCPARAMS arcp;
HPS hps;
POINTL ptlPos;
LONG fxMult;

/* structure for arc parameters */
/* presentation-space handle */
/* structure for current position '/
/* multiplier for ellipse '/

arcp.1P = 2L; arcp.lQ lL;
arcp.lR = OL; arcp.lS OL;
GpiSetArcParams(hps,

&arcp); /* sets parameters to default */

Chapter 32: Line and Arc Primitives 435
ili§iimsim!fJIf!in!~Jifmm!fP:;glg!!il!i!~.mia!~imifii~~!f!f~S!~!~iii~Sil!!ffi~rMi~1i~JiiU~!f:Ir;iU~I~liiJjl!lit~mj~lifii~t§i~~~~1ID.iimY

ptlPos.x = 200;
ptlPos.y = 100;

/* loads x-coordinate
/* loads y-coordinate

GpiMove(hps, &ptlPos);
fxMult = (50 * 65536);
GpiFullArc(hps, ORO_OUTLINE,

/* sets current position
/* sets multiplier
/* draws circle

*/
*/
*/
*/
*/

fxMult) ;

The arc-parameter field IP is set to 2, and the arc-parameter field IQ is set to 1.
From these parameters, MS OS/2 creates an ellipse with a major axis that is
twice as long as the minor axis.

32.3.5 Drawing a Fillet
When you draw a fillet, each curve is tangent to two lines. The curve of the first
fillet is always tangent to a line drawn between the current position and the first
control point and a line drawn between the current position and the second con­
trol point.

The following code fragment shows how to draw a single curve by using the cur­
rent position and two control points:

POINTL aptl[2]; /* structure for control pOints */
HPS hps; /* presentation-space handle */

aptl[O].x = 50;
aptl[O].y = 50;
GpiMove(hps, aptl);
aptl[O].x 75;
aptl[O].y = 75;
aptl[l].x = 100;
aptl[l].y = 50;
GpiPolyFillet(hps,

2L, aptl);

/* loads x-coord. of first control point */
/* loads y-coord. of first control point */
/* sets current position */
/* loads x-coord. of second control point */
/* loads y-coord. of second control point */
/* loads x-coord. of third control point */
/* loads y-coord. of third control point */
/* draws fillet */

When you draw a sharp fillet, the sharpness value controls the shape of the
curve: If the value is greater than 1, a hyperbola is drawn; if the value is 1, a
parabola is drawn; and if the value is less than 1, an ellipse is drawn. The follow­
ing code fragment uses a sharpness value greater than 1, which creates a hyper­
bolic curve:

POINTL aptl[2];
FIXED fxSharpness[l];
HPS hps;

/* structure for control points */
/* array with sharpness value */
/* presentation-space handle */

aptl[O].x = 50; /* loads x-coord. of first control point */
aptl[O].y = 50; /* loads y-coord. of first control point */
GpiMove(hps, aptl); /* sets current position */
aptl[O].x = 75; /* loads x-coord. of second control pOint */
aptl[O].y = 75; /* loads y-coord. of second control point */
aptl[l].x = 100; /* loads x-coord. of third control point */
aptl[l].y = 50; /* loads y-coord. of third control point */
fxSharpness[O] = 1; /* sets sharpness value */
GpiPolyFilletSharp(hps, /* draws fillet */

2L, aptl, fxSharpness);

436 MS OS/2 Programmer's Reference, Vol. 1
iiijh1iriiJii1ill.iUIiU!@f_ii!iie!!~~,;UEili.~f!aI~mll!I~U~!~EiHm~liiliimii!iiii!~Hlm}~!at~i~~~mt~~:;J~f~iii~Yii~gU~~af:!~lI~i

32.3.6 Drawing a Spline
When you use the GpiPolySpline function to draw a spline, each curve is tangent
to the first and last lines of three intersecting lines. The following code fragment
shows how to draw a spline:

POINTL aptl[3]; /* structure for control points */
HPS hps; /* presentation-space handle */

32.4 Summary

aptl[O].x = 50;
aptl[O].y = 50;
GpiMove(hps, aptl);
aptl[O].x = 75;
aptl[O].y 75;
aptl[l].x 100;
aptl[l].y 75;
aptl [2] . x 125;
aptl[2].y 50;
GpiPolySpline(hps,

3L, aptl);

/* loads x-coord. of first control point '/
/* loads y-coord. of first control point '/
/* sets current position '/
/' loads x-coord. of second control point */
/* loads y-coord. of second control point '/
/' loads x-coord. of third control point '/
/' loads y-coord. of third control point '/
/* loads x-coord. of fourth control point '/
/* loads y-coord. of fourth control point '/
/' draws spline '/

The following list summarizes the MS OS/2 line and arc functions:

GpiFullArc Draws an ellipse by translating the ellipse generated by the arc
parameters to the current position and scaling that ellipse with a specified multi­
plier. If the arc parameters are set to their default values and the page units are
LOENGLISH, HIENGLISH, LOMETRIC, or HIMETRIC, the function draws
a circle. Depending on the control argument, this function will fill the ellipse
with the current fill pattern, draw the ellipse's outline only, or fill and draw the
outline.

GpiLine Draws a straight line from the current position to a specified end
point.

GpiMove Sets the current position. MS OS/2 does not save the old position (as
it does for GpiSetCurrentPosition) if the attribute mode is AMYRESER VB.

GpiPartialArc Draws a straight line from the current position to the starting
point of an arc and then draws the arc itself, using the current arc parameters, a
sweep angle, and a multiplier. The arc parameters determine the shape of the
arc and the direction in which it is drawn; the sweep angle and multiplier deter­
mine the length of the arc.

GpiPointArc Draws an arc through three points. The first point is the current
position; the last two points are control points passed as arguments to the func­
tion. The function uses the current arc parameters to determine the size and
shape of the arc.

GpiPolyFillet Draws a fillet. A fillet is a special curve that does not fit the cir­
cumference of an ellipse. (All of the other curves drawn by the various arc func­
tions fit onto the circumference of an ellipse generated by the arc parameters.)
A minimum of three control points defines a fillet.

Chapter 32: Line and Arc Primitives 437
~~iUl~iif!!fa!flm!PJi'IDmfiP:imlf:!:Jii~illl!f!¥.iilie!ili!ii§~!!f.!f!f~S!~!!~i~$U~grMi~~~fiiU~!!f:~miiijmliilfdlJmji¥.fiiii~!;~~!i~i§Y

GpiPolyFiIletSharp Draws a special fillet, using an array of sharpness values
that correspond to each curve in the fillet. Sharpness values less than zero gen­
erate curves resembling hyperbolas; values of zero generate straight lines; and
values greater than zero generate curves resembling parts of ellipses.

GpiPolyLine Draws a series of straight lines starting at the current position.
The attributes in the current line structure determine the style and color of lines.

GpiPolySpline Draws a spline. A spline consists of one or more special curves
called Bezier curves. A minimum of four control points defines a spline.

GpiQueryArcParams Retrieves a pointer to a structure that contains the
current arc parameters. MS OS/2 uses the arc parameters when it draws an arc
using the GpiFullArc, GpiPointArc, and GpiPartialArc functions.

GpiQueryCurrentPosition Retrieves a pointer to a structure that contains the
x- and y-coordinates of the current position.

GpiQueryLineType Retrieves the current line type, which can be one of nine
possible values.

GpiQueryLineWidth Retrieves the current line width. Currently in MS OS/2,
this value should always be 65,536 decimal (OxlOOO hexadecimal).

GpiSetArcParams Sets the parameters of the arc. These parameters determine
the shape of an ellipse and the direction in which MS OS/2 draws it. There are
four arc parameters-p, s, r, and q-represented by four fields in the
ARCPARAMS structure.

GpiSetCurrentPosition Sets the current position to a point specified by an
x- and a y-coordinate. MS OS/2 uses the current position when it draws lines,
arcs, fillets, and splines.

GpiSetLineType Sets the current line type, which can be one of nine possible
values.

GpiSetLineWidth Sets the current line width. Currently in MS OS/2, this value
should always be 65,536 decimal (OxlOOO hexadecimal).

Chapter

33

Fonts and Character Primitives
33.1 Introduction .. 441

33.2 About Fonts and Character Primitives 441
33.2.1 Font Metrics... 442
33.2.2 Image and Outline Fonts 450
33.2.3 Proportional and Fixed Fonts 450
33.2-4 Glyphs, Code Pages, and Code Points.................... 451
33.2.5 Text Output.. 451

33.2.5.1 Text and Character Attributes.................... 452
33.2.5.2 Character Modes 453

33.2.6 Font Files and Dynamic-Link Libraries 456
33.2.7 Selecting New Fonts ... 457

33.2.7.1 Public Fonts.............. 457
33.2.7.2 Private Fonts....................................... 458

33.3 Using Fonts and Character Primitives 459
33.3.1 Selecting a Public Font 460
33.3.2 Drawing Text.. 461
33.3.3 Transforming T~xt from an Outline Font 461
33.3.4 Transforming Text from an Image Font.................. 462

33.4 Summary.. 462

Chapter 33: Fonts and Character Primitives 441
~!~~lU;ilmi~i~!!If!!i~~imfm;~~iii.1~l~~~~!!mmmW~H~Mii!i~lU~j~!~~!~~fd!!t~~i~iiffii1f:I~~\i~U~~rilim~~i@UUtiY:im

33.1 Introduction
This chapter defines typographic terms and concepts that are part of the MS
OS/2 application programming interface (API). You should also be familiar
with the following topics:

• Presentation spaces and device contexts

• Coordinate spaces and transformations

• Color and mix modes

33.2 About Fonts and Character Primitives

Figure 33.1
Strokes

Figure 33.2
Serifs

A font family is a collection of fonts that share common stroke-width and serif
characteristics. The term stroke width refers to the width of lines used to draw
characters and symbols from a font. Figure 33.1 shows a lowercase letter f that
consists of two strokes: a stem (the main vertical stroke) and a cross-stroke:

~ Cross-stroke

1---stem

A serif is a short cross-line drawn at the ends of main strokes that form a char­
acter or symbol. Figure 33.2 shows serifs drawn at the ends of the strokes in the
uppercase letters A and L:

Serifs

A font, part of a font family, is a collection of characters and symbols that share
a common height, line weight, and appearance. The height of a font is specified
in printer's points, or points, a point being a typographic unit of measurement
equal to 1/72 of an inch. The five categories of line weight and appearance are as
follows:

442 MS OS/2 Programmer's Reference, Vol. 1
~m1mf~~I~fWJi~ta~HIi!m!miU~~iiJf:jjj':ifi&~~I~Ifm!J£~i_'ai~15iiii!1i~i:!ii§liniL~lI1~~i§t~~ifi,~i~liii~1iIm!fiii!imi¥t..t1!~~jm

Figure 33.3
Bold Font

Figure 33.4
Italic Font

Figure 33.5
Normal Font

• Normal

• Bold
• Condensed

• Expanded

• Italic

Characters from a bold font are drawn with a heavier line weight. A 16-point
Times Roman Bold is an example of a bold font, as shown in Figure 33.3:

This is a sample of 16-point Times Roman Bold.

Characters from an italic font are drawn with a normal line weight and slanted
up and to the right. A lO-point Courier Italic is an example of an italic font, as
shown in Figure 33.4:

This is a sample of lO-point Courier Italic.

Characters from a normal font are drawn with a normal line weight. An 8-point
Helvetica is an example of a normal font, as shown in Figure 33.5:

This is a sample of B-point Helvetica.

33.2.1 Font Metrics
Every character in a font is drawn within a rectangular region called a charac­
ter cell. Through the lower half of the character cell is drawn an imaginary
horizontal line called the baseline. All uppercase letters and most lowercase
letters in a given font rest on the baseline. Some lowercase letters, such as g
or y, descend below the baseline. MS OS/2 uses the baseline to position char­
acters. When an application draws a string of text, MS OS/2 positions the left­
most point of the baseline over a predetermined point for each character in the
string. The distance from the bottom of the character cell to its top is the char­
acter-cell height, and the distance from the baseline to the top of the character
cell is the character-cell ascent. Similarly, the character-cell descent is the dis­
tance from the baseline to the bottom of the character cell, and the width of

Chapter 33: Fonts and Character Primitives 443
;~U;t!i~fW!i~ii~fm~l!fifi!ijJll~fjlmi~;:mi~~~iffl!mr~!aJ!!ii~!lifflmtfElliiial:~iiiJb~~i~/~iirrliiir.ftlifi~~~!I¥~'iiiljID!r!UllmjSJSi~~itmim!ii~~l

Figure 33.6
Character Cell

Figure 33.7
Em Height

Figure 33.8
x Height

the character cell is the distance from one side to the other. Figure 33.6 shows a
character cell, its origin, baseline, height, ascent, descent, and width:

AsL I
l ceflheight

Baseline --I----il.,-=-----I 4J
O

· . J Descent
rlgm

~Cefl-.l
I width I

The average distance from the baseline to the top of any uppercase character is
called a font's em height. This measurement was given its name because the
height of an uppercase letter M is usually equal to the average height of all
uppercase characters in the font. Figure 33.7 shows the em height:

T
Em height

Baseline -1-----.lI'---"'-'---I ~

The average distance from the baseline to the top of any lowercase character is
called a font's x height. This measurement was given its name because the height
of a lowercase letter x is usually equal to the average height of all lowercase
characters in the font. Figure 33.8 shows the x height:

1
X height

Baseline -I--------IT

444 MS OS/2 Programmer's Reference, Vol. 1
;~ .. IW.UiH~m~!I~m!i~l!r::~i~i!ili!!~Iij;~ii~~I~;~lft.ltiljili~il~I~~ti!~~~ml~tiij5~Uru~iiiibli!lji!lm~~i!~eiiSR1!!~I~i~li~ilitiiifimi~~ffti~

The maximum ascender, which is the height of the tallest character in a font, is
shown in Figure 33.9:

Figure 33.9
Maximum Ascender

.. T
Maximum ascender

Basefine--~----------~.-~~

The maximum descender, which is the depth (below the baseline) of the lowest
character in a font, is shown in Figure 33.10:

Figure 33.10
Maximum Descender

Baseline --1----.....::.""'-11-----1 ~
Maximum descender

T
The lowercase ascent, which is the height of the tallest lowercase character in a
font, is shown in Figure 33.11:

Figure 33.11
Lowercase Ascent

T
Lowercase ascent

Baseline -1-----""-=:..----1 ~

Chapter 33: Fonts and Character Primitives 445
if.l!~U~~!migjf~f~~~in!l~f/~iilmi~jMW:~1i~irni!M~~!aI!fi~!lif~fffffilliiiail.!P.l!~!Hli51/~i~!;;It.ffiiif~!§i!!~F.~'iJJljf!il!i~I~1W:¥.J;mr.dif!!ilm!~i.!ii!

The lowercase descent, which is the depth (below the baseline) of the lowest
lowercase character in a font, is shown in Figure 33.12:

Figure 33.12
Lowercase Descent

Figure 33.13
Internal Leading

Figure 33.14
External Leading

Baseline - t---.... E:-----; J.-
Lowercase dG';scent

T
Many fonts reserve part of the space in the top of each character cell for accent
marks. This reserved space, called internal leading, is shown in Figure 33.13:

• • Internal leading

T
Baseline - t---~=--:----;

Some fonts designate a certain amount of space to leave between rows of text.
This space, called external leading, is not included in the character-cell height or
ascent measurements. It is shown in Figure 33.14:

The average character width is determined by multiplying the width of each
lowercase letter by a predetermined factor, adding the results for each letter in
the alphabet, and then dividing by 1090. The average character width is deter­
mined by the setting in the lAveCharWidth field in the FONTMETRICS struc­
ture. For information about FONTMETRICS, see the Microsoft Operating
System12 Programmer's Reference, Volume 2.

446 MS OS/2 Programmer's Reference, Vol. 1
;!U~~J~~~~!f~I~U~i~:~~i!a~~Ii!i1!lY!U:~~mm!iali~iii!I~~il~~~emHR~~iii1i1§ii!I~J'ti!~~im~!!i~i!nIl!IiUii!illii=~~!tii

Figure 33.15
Em Increment

Figure 33.16

The em increment, which is the width of the uppercase letter M in a font, is
shown in Figure 33.15:

The maximum baseline extent for a font is the sum of the maximum ascender
and the maximum descender. Figure 33.16 shows an example of a maximum
baseline extent:

Maximum Baseline Extent

Figure 33.17
Character Slope

T
Maximum baseline extent

Baseline -\---_.=-::;..---1-------; ~

The character slope is an angle measured clockwise with respect to a vertical
line. The slope of a normal font is zero; the slope of an italic font is nonzero.
Figure 33.17 shows a character slope:

-!:
: :

Character slope angle

i.: - Baseline ·····f····· .. .

Chapter 33: Fonts and Character Primitives 447
mr!;t~~!mig;!Mf~~l!!ili!iiJn~iiiUi!i~m;m1,~imi!§f~fS!!!i;m!lif;fillfEliiii9fl~!iifb'!!Rii!f1$i1¥i1ml;mf.ftiiifi~~~(F.b'm!ir.il!i~I§ijSlim~~!miimfliiii~~

Figure 33.18
In-line Direction

The in-line direction is an angle measured clockwise with respect to a horizontal
line. The in-line direction for a Swiss, Helvetica, or Roman font is normally
zero; the in-line direction for a Hebrew font is normally 180. Figure 33.18 shows
the in-line direction for a Roman font:

... ,.. ... ,..
r 1 -

\
J

In-line direction angle = 0°

The character-rotation angle is an angle measured counterclockwise with respect
to a horizonta1line. The baselines of characters are aligned with a vector drawn
at the angle of rotation. Figure 33.19 shows a character-rotation angle and a
character-angle vector:

Figure 33.19
Character Rotation

Character-cell baseline

~
Jigned with character-angle vector

,..-e

_---------- (7,2)

-~-- ---- -- --- -- --- ---

Character-angle vector

The weight class specifies the thickness of each stroke that forms part of each
character in a font.

A superscript is a character drawn immediately above and to the right of a nor­
mal character in a string of text. Superscripts are identified by a width and a
height, and by vertical and horizontal offsets. Figure 33.20 shows a superscript:

448 MS OS/2 Programmer's Reference, Vol. 1
~~"~~;~iH~t2I~~~i~t~!~i~E!H~~lP.ii!lU~~:~;~m.mJ~li~iI~;~~1;Im;iil~m1~Hff.~~iUiiiih1iijin~~,i;!!~5;iS~!§t~!iiill~!liffiifilii!~iU~n5i~

Figure 33.20
Superscript

Figure 33.21
Subscript

I

Superscript ~ 2
height Tr T

Superscript Superscript y-offset
width

Baseline - 1--------------11
L Superscript -'
r- x-offset ~

A subscript is a character drawn immediately below and to the right of a normal
character in a string of text. Subscripts are identified by a width and a height,
and by vertical and horizontal offsets. Figure 33.21 shows a subscript:

Subscript

width ~

1-1 I- --L Baseline -I--------±--:....-.;,,-----I Subscript y-offset
Subscript-L- 1 1

height ---r-

I Subscript I I r-- x-offset ---j

Kerning is an adjustment to space between certain characters in a font. Some
fonts contain a kerning table, which is a table of kerning values specifying the
amount of space that should appear between certain characters. You can exam­
ine the kerning information by calling the GpiQueryKerningPairs function. You

Chapter 33: Fonts and Character Primitives 449
~!!U~l!¥i~;~jIi:4!i§~I~itil~!ijj;~jjliaf~~~fi~""~tm!iti!i~ru~I!~iSii§!fii!i~~H!iiE!P.j~~~lffl~~nia~~mifihlt~itilii§ij~mi!tiI!.rn!~

cannot set kerning for a font, but you can simulate kerning for an image font,
using MS OS/2 Font Editor, by adjusting the a-space and c-space for each char­
acter. The a-space is the space between the left edge of a character cell and the
left edge of the cell's character. The c-space is the space between the right edge
of a character cell and the right edge of its character.

Most of the terms described in the previous pages have corresponding fields in a
special structure called a FONTMETRICS structure. This structure has the fol­
lowing form:

typedef struct _EONTMETRICS { /* fm */
CHAR szEamilyname[EACESIZE];
CHAR szEacename[EACESIZE];
USHORT idRegistry;
USHORT usCodePage;
LONG lEmHeight;
LONG lXHeight;
LONG IMaxAscender;
LONG IMaxDescender;
LONG lLowerCaseAscent;
LONG lLowerCaseDescent;
LONG lInternalLeading;
LONG lExternalLeading;
LONG lAveCharWidth;
LONG IMaxCharInc;
LONG lEmInc;
LONG IMaxBaselineExt;
SHORT sCharSlope;
SHORT sInlineDir;
SHORT sCharRot;
USHORT usWeightClass;
USHORT usWidthClass;
SHORT sXDeviceRes;
SHORT sYDeviceRes;
SHORT sEirstChar;
SHORT sLastChar;
SHORT sDefaultChar;
SHORT sBreakChar;
SHORT sNominalPointSize;
SHORT sMinimumPointSize;
SHORT sMaximumPointSize;
USHORT fsType;
USHORT fsDefn;
USHORT fsSelection;
USHORT fsCapabilities;
LONG lSubscriptXSize;
LONG lSubscriptYSize;
LONG lSubscriptXOffset;
LONG lSubscriptYOffset;
LONG lSuperscriptXSize;
LONG lSuperscriptYSize;
LONG lSuperscriptXOffset;
LONG lSuperscriptYOffset;
LONG lUnderscoreSize;
LONG lUnderscorePosition;
LONG lStrikeoutSize;
LONG lStrikeoutPosition;
SHORT sKerningPairs;
SHORT sReserved;
LONG IMatch;

} EONTMETRICS;

For a complete description of each field in the FONTMETRICS structure, see
the Microsoft Operating System12 Programmer's Reference, Volume 2.

450 MS OS/2 Programmer's Reference, Vol. 1
U;m~~1s.i.mi~fiifl~mis!ifsimtiffip'[~.Jiim;llU~l~i:f;!f;~§!!i!!!l!!iiimin;J!!iim!~Jiml!ii~im~J~_iUi!lfdimlSimiil!iiiitli§li~i!fdi~m1if:fil!

33.2.2 Image and Outline Fonts

Figure 33.22
Image Font

Figure 33.23
Outline Font

Characters in a font are stored either as bitmaps or as collections of calls to
line, arc, and path functions. Fonts stored as bitmaps are image fonts. Fonts
stored as collections of line, arc, and path calls are outline fonts. Figure 33.22
shows an enlarged view of a lowercase letter a from an image font:

Figure 33.23 shows an enlarged view of a lowercase letter a from an outline font:

a
33.2.3 Proportional and Fixed Fonts

When text is drawn, MS OS/2 aligns each character by positioning its character
cell next to the previous character's cell, as shown in Figure 33.24:

Figure 33.24
Character-Cell Alignment

Figure 33.25

Some fonts adjust the width of character cells so that narrow letters like a lower­
case I or i appear closer to adjacent characters. Fonts that adjust the width of
character cells are called proportional fonts; fonts that do not are called fixed
fonts. Proportional fonts are generally easier to read than fixed fonts. Figure
33.25 shows a line of text from a proportional font, followed by a line of text
from a fixed font:

Proportional and Fixed Fonts

This is proportional.

This is fixed.

Chapter 33: Fonts and Character Primitives 451
!i~H#;l!!i~!ifinf.~!ii&:~tliiiM!8i;§liaJ;l~;;JI~~im!~I~ifljil~siiifmjgiit~-li!J~i!P.iii~~ffiii~~~:a1~f!!~mt~ilkiti!i!iilfr.ilii!tii!fi!iiJi

33.2.4 Glyphs, Code Pages, and Code Points

Figure 33.26
Code Page 437

The image or picture that you associate with each character or symbol in a font
is a glyph. A set of glyphs is called a code page. Each code page contains 256
code points (l6-bit integers), in the range 0 through 255, that correspond to the
glyphs in that code page. MS OS/2 assigns unique identifiers to each of its code
pages. A common code page is code page 437. Figure 33.26 shows the glyphs
and corresponding code points for this code page:

H .. lJIIIII

h,.. 0- 1- 2- 3- 4- 5- ~ 7-
2Dd~

-0 o @ p p

-1 A Q a q

-2 • 2 B R b

-3 • " # c s c

-4 • 4 D T d

-5 % E u e u

-6 • & 6 F v v

-7 • 7 G w g w

-8 a H x h x

-9 o 9 y y

-A z z

-8 + K k

-c < L

-D M m

-E > N n

-F o o

8- 9- A- B- C- D- E- F-

ii z

ii 11

o

¥ JJ

Pt

A f

L .JL a

...L -r

+ F a

F rr
I~ -tt- 't

e
n

-,r •
If _ 00

- I
.JL I £ -,r -L _

n

±

r
J

J

•

Each code page contains four special code points: a first character, a last charac­
ter, a default character, and a break character. The default character is the one
that appears in text when an application specifies a code point that does not lie
between the first and last character code points. The break character is the
space character and often has the same code point as the default character.

If the current font is the default system font, you can determine the current code
page by calling the GpiQueryCp function, or you can assign a new code page by
calling the GpiSetCp function. For more information about code pages, see the
Microsoft Operating System/2 Programmer's Reference, Volume 3.

33.2.5 Text Output
Text output is alphanumeric output drawn with characters and symbols from a
font. In MS OS/2, fonts are stored either in memory or on devices. Applications
access them through a device context associated with the current presentation

452 MS OS/2 Programmer's Reference, Vol. 1
mm~mlim~i~!mn~mi~iifs!!il!~~~~!i.ifil«~il~ii!~W!l~ii!!~iim;He!!iiim!~li§!:i§im~l1~~ffi!~_§lmlffdmiUlaimi5iim,~i~iGlii~~'ifffil~

space. When you create a presentation space by calling the GpiCreatePS or
WinGetPS function, MS OS/2 assigns the presentation space a default font from
one of the fonts available either in memory or on the associated device. You can
retrieve information about this default font by calling the GpiQueryFontMetrics
function.

33.2.5.1 Text and Character Attributes
There are five character attributes that affect the appearance of your
application's text output. These cha.racter attributes are listed as follows:

• Character color

• Character-color mix mode

• Character angle

• Character shear

• Character box

There are two character colors: foreground and background. The foreground
color is the color of the strokes in each character. The background color is the
color that appears behind the character.

There are two character mix modes that affect how MS OS/2 combines the char­
acter colors with the existing color(s) on your application's drawing surface. The
foreground character mix mode is overpaint; the background character mix
mode is leave-alone. If the default colors and mix modes do not suit your appli­
cation, you can change them by calling the GpiSetAttrs function. You can deter­
mine the current color and mix-mode settings by calling the GpiQueryAttrs func­
tion. For more information about color and mix modes, see Chapter 34, "Color
and Mix Modes."

A special vector, drawn from the origin of an imaginary Cartesian coordinate
system through a specified point, defines the character-angle attribute. MS OS/2
aligns the baseline with this vector . You can retrieve the point that defines the
character-angle vector by calling the GpiQueryCharAngle function, or you can
set the character angle by calling the GpiSetCharAngle function and passing it
the coordinates of a point that defines the new vector.

A character box is an imaginary rectangle that applications use to scale charac­
ters in a font. You can determine the current character-box dimensions by call­
ing the GpiQueryCharBox function . You can set new character-box dimensions
by calling the GpiSetCharBox function. The dimensions that you pass to Gpi­
SetCharBox and the dimensions that GpiQueryCharBox returns are fixed values.
A fixed value, which is a representation of a ft.oating-point number, is a 32-bit
value whose high-order 16-bits contain the integral part of the ft.oating-point
number and whose low-order 16-bits contain the fractional part. The fractional
part is the numerator of a fraction whose denominator is fixed at 65,536. If, for
example, one of the box dimensions were 7.635 world units, you could obtain
the corresponding fixed value by multiplying 7.635 by 65,536 and storing the
integer part of the result (500,367) in a fixed variable. The high-order 16-bits
would contain OXOOO7 and the low-order 16-bits would contain OxA28F.

A special vector, drawn from the origin of an imaginary Cartesian coordinate
system through a specified point, defines the character-shear attribute. MS OS/2

Chapter 33: Fonts and Character Primitives 453
~!!il!ili¥i~!Ii1j!t.~miifm!ii§l;m~;HIe~jj!i:~f§i!!~~tm!!ii1Ii5ifflilili;;ailB.b'ii!!iitif1H!ii2iiif;iWimiim~~ilm~~mifii!it~i:;·mmj$P.i~lii!tiI!fi!I~

Figure 33.27
Character Shear

aligns the vertical lines of the character box and the vertical strokes in a charac­
ter with this vector. Figure 33.27 shows the effect of shearing a character:

INoshear
Character-shear

vector

(2,4)

./ I Vertical stroke aligned
with shear vector

You can determine the current character-shear angle by calling the GpiQuery­
CharShear function. This function returns a point you can use to determine
the shear vector . You can set the character-shear angle by calling the GpiSet­
CharShear function and passing it a point structure with the appropriate values.

33.2.5.2 Character Modes

Figure 33.28

There are three character modes that determine whether MS OS/2 draws text
using the current character attributes. When character mode 1 is set and the
current font is an image font, MS OS/2 ignores the current shear, angle, and
box attributes. When character mode 2 is set and the current font is an image
font, MS OS/2 uses the current shear, angle, and box character attributes when
it draws image-font text. In the current release of MS OS/2 Presentation Man­
ager, mode 3 is reserved for outline fonts; if an application attempts to draw text
output in mode 3 using an image font, MS OS/2 issues an error.

Figure 33.28 shows a line drawn at the current character-shear angle and an
image-font character drawn after an application set the character mode to 2:

Image Font and Character Shear

(2,4)

I ,- - - - - - - - - - - -I

I I
I

I
I

I
I

, I
, I

I I
I I

I I

I I I , ,
I

I
I

I
I

I

, , , , , ,
I I ... ----------,

I
I ,

I

454 MS OS/2 Programmer's Reference, Vol. 1
l!;mJ~fl1al~i~!un~mi~mi!m!~P.!iiii!1iiiiiUilH~li~Iif;!t:~§!ii!!gmiim;Hm!milf.!~Ji!lijii!!i!1Jimf~!~~alli!lfff.~m!Bim~!ilR:~i!liif:ii~~;iW:fiii

Figure 33.29

Figure 33.29 shows a line drawn at the current character angle and a string of
image-font text drawn after an application set the character mode to 2:

Image Font and Character Angle

Figure 33.30

Figure 33.30 shows two letters of image-font text as they would appear in differ­
ent sizes of character box after an application set the character mode to 2:

Image Font and Three Sizes of Character Box

IAIBI~
L-y---J

Original character boxes

You can determine which character mode is set by calling the GpiQueryChar­
Mode function. You can set a new character mode by calling the GpiSetChar­
Mode function.

If the current font is an outline font, MS OS/2 always draws text using the
current character attributes-regardless of the current character mode.

Figure 33.31 shows a vector that corresponds to the current character-shear
angle and a character of outline-font text:

Chapter 33: Fonts and Character Primitives 455
ii!~!il!ii¥i~!ml:r.~m1~i~ii1~!8S;~jjlmfF,M~iifi~"".~!ijlIi5!iiif!ji/i~~iS!rn!!iat~'fi§jii!P.i~~~I$!~U~~1i!§iR!i:iilit~ilkili!ti~ilfr.imj~l!miim

Figure 33.31
Outline Font and Character Shear

Figure 33.32

(2,4)

I
I

I
I

I
I

I
I

I
I

,- - - - - -- - ~/"

I I
, I

I I
I I

, I
I ,

, I
I

I
I

I

a
,' ,..

I I .'._- ______ '
I , ,

Figure 33.32 shows a vector that corresponds to the current character angle and
a string of outline-font text:

Outline Font and Character Angle

Figure 33.33

Figure 33.33 shows two letters of outline-font text as they would appear in
different sizes of character box:

Outline Font and Three Sizes of Character Box

IAIBI
~

Original character boxes

456 MS OS/2 Programmer's Reference, Vol. 1
!flaJ~r.~~;~iijmFilmi~li1iim!iffi~iiiiiliiit!l:1Iif~H~iif~~fi!!ii!~iimi§~!!iim!~Ji~:i§im~1flf.~;L~=-alJ.mfrlmmf§im18mli:~i~iliiii~ru1W:fin

Figure 33.34

In addition to the character-attribute functions, you can use the Presentation
Manager transformations to scale, rotate, translate, shear, and reflect text output
drawn with an outline font. Figure 33.34 shows a bar graph labeled with outline
text that has been rotated 90 degrees:

Graph with Outline Font

3.50

3.00

2.50

2.00

1.50

1.00

.50

.00
01 02 03 04 01 02 03 04 01 02 03 04

'-----y---J ~ '-----y---J
1987 1988 1989

33.2.6 Font Files and Dynamic-Link Libraries
You can use Font Editor to alter and customize image-font files (files with a .fnt
extension). After creating a custom font tailored to your application, you need
to turn it into a dynamic-link library that your application can load. Once your
application loads this library, it can use any font within it. A dynamic-link
library is a collection of code and data segments that applications can access
at run time. The code and data in a dynamic-link library is shareable-several
applications can access it simultaneously. Dynamic-link libraries that contain
fonts are unique; they contain data segments and empty (or useless) code seg­
ments. The MS OS/2 naming convention for a dynamic-link library requires
that the library name end with a .fon extension.

The following text explains how you can create a dynamic-link library that con­
tains your custom font. To create a dynamic-link library, you must use masm,
the Microsoft Macro Assembler; link, the Microsoft Segmented-Executable
linker; and rc, the MS OS/2 Resource Compiler. For this example, assume that
your custom font file is named newfont.fnt.

After creating your custom font file, you need to create a special assembler file
with your editor . You can use the following code fragment as the source code
for this file:

code segment word
db "empty_segment"
code ends
end

;makes dummy code segment aligned on word boundary
;initializes a string in dummy segment
;dummy segment ends here
;terminates source file

Call this file generic.asm. Once you have created generic.asm, assemble it with
the following command:

masm generic

Chapter 33: Fonts and Character Primitives 457
~~!iil~~~2li.mffiirriFJeifi~lmmU§lif$1ir:Ui!illlilf~it=~lIm~!!~H!i~!m!i!!i§9m~.m!!!if:~ii),iI~i~jgil.~~iSiUmi~~!~!rn!~Ji!ft~ij§ls

After assembling the file, you create a module-definition file. Call this file
generic.def. It should contain the following statements:

LIBRARY generic
SEGMENTS CODE MOVEABLE

The first statement tells the linker that you are creating a library with the module
name generic. The second statement tells the linker that the segments in this
library are movable code segments.

Upon creating generic.def, you start the linker with the following command:

link generic""generic.def

This command creates an empty executable file called generic.exe.

After creating the empty executable file (which is the template for a dynamic­
link library), you should create a resource file and call it generic.rc. For example,
if your font file is called newfont.fnt, you would place the following statement in
generic.rc:

FONT 200 newfont.fnt

This statement assigns an identifier, 200, to the font resource newfont.fnt.

Finally, you should use Resource Compiler to add the font file (newfont.fnt)
to the empty dynamic-link library:

rc generic.rc

The executable file, generic.exe, now contains your custom fonts. You still must
rename this file generic.fon and copy it to a directory pointed to by the libpath
command in your config.sys file. After you have done so, you can load the fonts
into your application by calling the GpiLoadFonts function and passing it a
pointer to the library name, generic, as the second argument.

33.2.7 Selecting New Fonts
If you need to use a font other than the default system font in your application,
you can select a new one by calling the GpiCreateLogFont function. There are
two kinds of fonts that you can select: public fonts and private fonts.

33.2.7.1 Public Fonts

Public fonts are those that a user loads by using the MS OS/2 Presentation
Manager Control Panel. There are three dynamic-link libraries that contain
Courier, Helvetica, and Times Roman fonts. If you load each library by using
Control Panel, a total of 76 public fonts are available to any application that you
run. These fonts are available in both outline and image formats in point sizes
ranging from 8 to 24 points ..

You can determine how many public fonts· are currently loaded by calling the
GpiQueryFonts function and passing it the OF YUBLIC flag as the second argu­
ment, a NULL pointer as the third argument, and a count of 0 as the fourth
argument, as shown in the following code fragment:

FONTMETRICS fm, afm[80];
LONG lCount, IFontCount;
HPS hps;

458 MS OS/2 Programmer's Reference, Vol. 1
llimlfi@i!~f~!lif~!W~~i~i~I~~~~:ijfiifl.n~!r;:!Ii!!iilllf~ii.!§jiID!i.,li!ru!!ii{~!w~Jiii!.ii'fJ~b~~1l1§m~~~~~~~~'iJj!I~iili~~~~~a

lFontCount = GpiQueryFonts(hps,
QF_PUBLIC,
NULL, 1* queries all public fonts *1
&lCount,
(LONG) (sizeof(fm»,
(PFONTMETRICS) afm);

You can determine the characteristics of the loaded public fonts by calling
GpiQueryFonts and passing it the OF YUBLIC flag, the count of available
fonts returned by the first call, and the address of an array of FONTMETRICS
structures, as shown in the following code fragment. MS OS/2 copies the attri­
butes of the fonts into the array of FONTMETRICS structures, which you can
then examine in order to select a font.

lFontCount = GpiQueryFonts(hps,
QF_PUBLIC,
NULL,
&lCount,
(LONG) (sizeof (fm» ,
(PFONTMETRICS) afm);

Once you determine which font you need, call the GpiCreateLogFont func­
tion, which copies various fields from the FONTMETRICS structure of the
desired font into their corresponding fields in a FATTRS structure. The fields in
the FATTRS structure describe the face name, code page, maximum baseline
extent, and average character width of the font you would like to use. A special
field, IMatch, contains a unique identifier that MS OS/2 uses to match your
request to a font. Another field in the FATTRS structure specifies whether the
font should be an image font or an outline font. You can use other fields to
request that MS OS/2 synthesize an italic, underscored, strikeout, or bold font.

If MS OS/2 returns the value 2 after the call to GpiCreateLogFont, the function
was successful. You can begin using the font after you assign it to the applica­
tion's presentation space by passing the local identifier (lcid) from GpiCreate­
LogFont to the GpiSetCharSet function.

33.2.7.2 Private Fonts
Private fonts are fonts that an application loads exclusively for its own use. An
application loads a private font when it calls the GpiLoadFonts function and
passes it the name of the dynamic-link library that contains the fonts. (Note that
in order to load a dynamic-link library of fonts, the library must be in one of the
directories pointed to by the libpath command in the config.sys file.)

After the application loads the dynamic-link library of fonts, it can determine
the characteristics of the fonts in that library by calling the GpiQueryFonts func­
tion.

You can determine how many private fonts are currently loaded by calling Gpi­
QueryFonts passing it the OF YRIVATE flag as the second argument, a NULL
pointer as the third argument, and a count of 0 as the fourth argument, as shown
in .the following code fragment.

FONTMETRICS fm, afm[BO];
LONG lCount;

lFontCount = GpiQueryFonts(hps,
QF_PRIVATE,
NULL, 1* queries all private fonts *1
&lCount,
(LONG) (sizeof (fm» ,
(PFONTMETRICS) afm);

Chapter 33: Fonts and Character Primitives 459
~iliiill~~~1i!imffiirliJffii~lffiiiill§!!f51i!iftilimmf~~~Il~~i~m~ml!i!ilmm~~!lif:!if:ifam"il~i~jgll.~iRfiSiU!iii~!e;;m!rn!~mrz~ns.lli

You can determine the characteristics of the loaded private fonts by calling Gpi­
QueryFonts and passing it the OF YRIV ATE flag, the count of available fonts
returned by the first call, and the address of an array of FONTMETRICS struc­
tures, as shown in the following code fragment. MS OS/2 copies the font attri­
butes into the array of FONTMETRICS structures, which you can then examine
in order to select a font.

IFontCount = GpiQueryFonts(hps,
QF_PRIVATE,
NULL,
&lCount,
(LONG) (sizeof(fm)),
(PFONTMETRICS) afm);

Once you determine which font you need, call the GpiCreateLogFont func-
tion, which copies various fields from the FONTMETRICS structure into their
corresponding fields in a FATIRS structure. The fields in the FATIRS structure
describe the face name, code page, maximum baseline extent, and average char­
acter width of the font you would like to use. A special field, lMatch, contains a
unique identifier that MS OS/2 uses to match your request to a font. Other fields
in the FA TTRS structure specify whether the font is an outline font or an image
font and whether it is proportional or fixed. You can use another of the fields to
request that MS OS/2 synthesize an italic, underscored, strikeout, or bold font.
The FATTRS structure has the following form:

typedef struct _FATTRS { It fat tl
USHORT usRecordLength;
USHORT fsSelection;
LONG IMatch;
CHAR szFacename[FACESIZE];
USHORT idRegistry;
USHORT usCodePage;
LONG IMaxBaselineExt;
LONG lAveCharWidth;
USHORT fsType;
USHORT fsFontUse;

} FATTRS;

If MS OS/2 returns the value 2 after the call to GpiCreateLogFont, the function
was successful. You can begin using the font after you assign it to the applica­
tion's presentation space by passing the local identifier (Zcid) from GpiCreate­
LogFont to the GpiSetCharSet function. If MS OS/2 returns 1 after you call
GpiCreateLogFont, the function was not successful and the new font is the
default system font.

33.3 Using Fonts and Character Primitives
You can use the font and character functions to perform the following tasks:

• Select a font from the public fonts loaded with Control Panel.

• Select a font from a library of private fonts loaded by the application.

• Draw a string of text using the selected font.

• Scale, translate, and rotate a string of text from an outline font.

• Scale, shear, and alter the direction of a string of text from image and out­
line fonts.

460 MS OS/2 Programmer's Reference, Vol. 1
;R~U~i!~!ii::aiS!m~~!~i~i~lSIDi~mi!iitim.il~!!l!i~iffil~4i5!~~H!OOllieil!gr~Jim~1i1im~~!~!tJ~Bmr.~!!!~~;:rjjfli~fi!f~~~J~2

33.3.1 Selecting a Public Font
To select a public font, you must perform the following tasks:

• Call the GpiQueryFonts function, passing the QF YUBLIC flag, a NULL
pointer to the font's face name, and a count of 0 to determine the number of
available public fonts.

• Copy this number (the GpiQueryFonts return value) into an integer variable.

• Call GpiQueryFonts again, passing the QF YUBLIC flag, a NULL pointer
to the font's face name, and the count returned by the previous call.

• Examine the metrics, looking for the face name and attributes of the font
that your application needs.

• Copy the appropriate metrics from the font that suits your application into
a FATfRS structure.

• Initialize a local identifier (lcid) for the new font.

• Call the GpiCreateLogFont function, passing a local identifier for the font,
the address of an empty array of eight characters, and the address of the
FATTRS structure.

• Examine the return value from GpiCreateLogFont. If the function was suc­
cessful, it should be 2.

• Pass the local identifier to the GpiSetCharSet function, assigning the font to
your application's presentation space.

The following code fragment shows how to select a Helvetica public font:

1 = 0;
wh1le (lstrcomp(afm[1++] .szFacename, "Helv lt »;
lFontCount = Gp1QueryFonts(hps,

QF_PUBLIC,
NULL,
&lCount,
(LONG) (s1zeo f (fm)) ,
(PFONTMETRICS) afm);

lCount = lFontCount;
lFontCount = Gp1QueryFonts(hps,

QF_PUBLIC,
NULL,
&lCount,
(LONG) (s1zeo f (fm)) ,
(PFONTMETRICS) afm);

fat.usRecordLength = s1zeof(fat);
fat.fsSelect1on = afm[1] .fsSelect1on;
fat.1Match = afm[1] .1Match;
strcpy(fat.szFacename, afm[1] .szFacename);
fat.1dReg1stry = afm[1] .1dReg1stry;
fat.usCodePage = afm[1] .usCodePage;
fat.1MaxBase11neExt = afm[1] .1MaxBaselineExt;
fat.1AveCharWidth = afm[1] .lAveCharW1dth;
fat.fsType = afm[i].fsType;
fat.fsFontUse = 0;
GpiCreateLogFont(hps,

(PSTR8) chName,
lcid,
(PFATTRS) &fat);

GpiSetCharSet(hps, lcid);

Chapter 33: Fonts and Character Primitives 461
~~lifiE~!!Hirm;nruif~JlEJi~I!;i:mmt!f;lal~~mi~~~llmili!§i~~iH!~!~ffi!!l~J!ii!lf:~m~i;i~~lf~U!fSf~!m!~~IS!!f:!m!~H!!~~1§;!

33.3.2 Drawing Text
Before drawing text, you must determine which of the four text-output functions
you should use. The following list describes the specific purpose of each text­
output function:

Function name

GpiCharString

GpiCharStringAt

GpiCharStringPos

GpiCharStringPosAt

Purpose

This function draws a string of text starting
at the current position.

This function draws a string of text starting
at a point that you pass as a function argu­
ment. It is identical to a function sequence
of GpiMove, GpiCharString.

This function alters the intercharacter spac­
ing in a string of text in order to shade a
special rectangle that surrounds a string of
text, to draw a string of text in halftones, or
to clip a string of text to a special rectangle.
This function starts drawing the text at the
current position.

This function alters the intercharacter spac­
ing in a string of text in order to shade a
special rectangle that surrounds a string of
text, to draw a string of text in halftones, or
to clip a string of text to a special rectangle.
This function starts drawing the text at a
point that you pass as one of the function
arguments.

The following code fragment shows how to load an array of characters with the
string "MS OS/2 Presentation Manager", set the current position to the point
(100,100) by calling the GpiMove function, and then draw the string by calling
the GpiCharString function:

ptl.x = 100; ptl.y = 100;
GpiMove (hps, &ptl);
GpiCharString(hps, 28L, "MS OS/2 Presentation Manager");

33.3.3 Transforming Text from an Outline Font
The following code fragment shows how to rotate a string of text 90 degrees
counterclockwise by using the model transformation:

matlfTransform.fxM11 = MAKEFIXED(l, 0); /* translates text */
matlfTransform.fxM12 = MAKEFIXED(O, 0);
matlfTransform.1M13 = OL;
matlfTransform.fxM21 = MAKEFIXED(O, 0);
matlfTransform.fxM22 = MAKEFIXED(l, 0);
matlfTransform.1M23 = OL;
matlfTransform.1M31 = -300L;
matlfTransform.1M32 = -100L;
matlfTransform.1M33 = lL;
GpiSetModelTransformMatrix(hps, 9L, &matlfTransform,

TRANSFORM_REPLACE);

462 MS OS/2 Programmer's Reference, Vol. 1
iRtml~!~fm=§!ID~~~~i~I!ilj!i~illiiiifili~~I~i!l!ii!!imlE~i~~~H~OOi!i§iiii'~ .. Efii!iAfFJiii~lJ~l~m~~l;r.~y!~!Sr:r.zjjJlli!UliIii~~I~i

matlfTransform.fxMll = MAKEFIXED(O, 0); /* rotates text */
matlfTransform.fxM12 = MAKEFIXED(l, 0);
matlfTransform.1M13 = OL;
matlfTransform.fxM21 = -MAKEFIXED(l, 0);
matlfTransform.fxM22 = MAKEFIXED(O, 0);
matlfTransform.1M23 = OL;
matlfTransform.1M31 = OL;
matlfTransform.1M32 = OL;
matlfTransform.1M33 = lL;
GpiSetModelTransformMatrix(hps, 9L, &matlfTransform, TRANSFORM_ADD);

matlfTransform.fxMll = MAKEFIXED(l, 0); /* translates again */
matlfTransform.fxM12 = MAKEFIXED(O, 0);
matlfTransform.1M13 = OL;
matlfTransform.fxM21 = MAKEFIXED(O, 0);
matlfTransform.fxM22 = MAKEFIXED(l, 0);
matlfTransform.1M23 = OL;
matlfTransform.1M31 = 300L;
matlfTransform.1M32 = 100L;
matlfTransform.1M33 = 1L;
GpiSetModelTransformMatrix(hps, 9L, &matlfTransform, TRANSFORM_ADD);

ptl.x = 100;
ptl.y = 100;
GpiMove(hps, &ptl);
GpiCharString(hps, 28L, "MS OS/2 Presentation Manager");

33.3.4 Transforming Text from an Image Font
The following code fragment shows how to double the size of the character box,
set the character mode to 2, and then print a string of text:

GpiQuery~harBox(hps, &sizfxBox);
sizfxBox.cx = 2 * sizfxBox.cx;
sizfxBox.cy = 2 * sizfxBox.cy;
GpiSetCharBox(hps, &sizfxBox);
ptl.x = 100;
ptl.y = 100;
GpiMove(hps, &ptl);
GpiCharString(hps, 28L, "MS OS/2 Presentation Manager");

33.4 Summary
The following list summarizes the MS OS/2 font and character-primitive func­
tions:

GpiCharString Draws a string of text starting at the current position. It sets the
current position to the end of the string at the point where the next character
would be drawn. Alllext is drawn using the font assigned to the application's
presentation space.

GpiCharStringAt Draws a string of text starting at a point that you specify as a
function argument. It updates the current position after drawing each character
in the string and, upon completion, sets the current position to the point where
the next character would be drawn. All text is drawn using the font assigned to
the application's presentation space.

GpiCharStringPos Draws a string of text starting at the current position. It sets
-the current position to the end of the· string at the point where the next character
would be drawn. All text is drawn using the font assigned to the application's

Chapter 33: Fonts and Character Primitives 463
~~!i1i~~~i;!~fmir~Jlii!iE1F.trmmliP:ii!!~~mi;!!~~lImlli!§lm~im!'-mt~l!!~J.in!lf:if~m~§i~IW:~R9~~fFjlii!im~iil~~~:

presentation space. In addition to drawing a string of text, you can use this func­
tion to do the following:

• Adjust spacing between characters in the string.

• Clip the text to a small rectangle.

GpiCharStringPosAt Draws a string of text starting at a point that you specify
as one of the function arguments. It sets the current position to the end of the
string at the point where the next character would be drawn. All text is drawn
using the font assigned to the application's presentation space. In addition to
drawing a string of text, you can use this function to do the following:

• Adjust spacing between characters in the string.

• Shade the text by drawing it in halftones.

• Clip the text to a small rectangle.

GpiCreateLogFont Passes a description of a font to MS OS/2, which attempts
to select the closest possible match from available fonts in MS OS/2 or on the
device associated with the current presentation space. If the font you request is
not available, MS OS/2 selects the default system font. A FATIRS structure
contains a description of the requested font. Typically, applications call the Gpi­
QueryFonts function and examine the metrics for a number of fonts in the sys­
tem and then load the FA TIRS structure with values from the metrics of the
desired font. If MS OS/2 is successful and finds a font that matches the values
in FATIRS, the function returns a value of 2; if MS OS/2 does not find a match­
ing font and substitutes the default system font instead, the function returns a
value of 1; if the function fails completely, it returns O.

GpiDeleteSetId Frees a local identifier (lcid). A local identifier is a long integer
value that identifies a particular font that you are using in your application. Once
you free a local identifier from a particular font, that font is no longer available
for use.

GpiLoadFonts Loads private fonts from a dynamic-link library of fonts so that
an application can access them by calling the GpiQueryFonts and GpiCreate­
LogFont functions. You identify a specific dynamic-link library by passing it the
appropriate path and filename as arguments.

GpiQueryCharAngle Retrieves the current value of the character-baseline
angle. If the current font is an outline font, the baseline of each character's
cell is drawn parallel to this angle. If the current font is an image font, the
character":baseline angle uniquely affects the image-font output. If the current
font is an image font and the character mode is 1, MS OS/2 ignores the baseline
angle. If the current font is an image font, the character mode is 2, and the base­
line angle is nonzero, MS OS/2 aligns text with the baseline angle. However, the
baseline of each character remains parallel to the x-axis.

GpiQueryCharBox Retrieves the dimensions (in world coordinates) of the
character box. If the current font is an outline font, the character-cell dimen­
sions are reduced or expanded to match the character-box dimensions. If the
current font is an image font, the character-box dimensions uniquely affect the
image-font output. If the current font is an image font and .the character mode
is 1, MS OS/2 ignores the character-box dimensions when it draws text. If the
current font is an image font and the character mode is 2, MS OS/2 increases

464 MS OS/2 Programmer's Reference, Vol. 1
!~~~i!llm5iI~!ill~~~!l;Nl!lililjjf~illif1fifimiiitGm~i~!iaim!f~i~J!si!!i8~mil!i§aigr!L~miiFJgrj;~~SI~m~=!iif.~!!~~[:;mI~fili~~~~i~!

or reduces the spacing between characters (based on the box dimensions) when
it draws text.

GpiQueryCharMode Retrieves the current character-mode attribute. There are
three character modes; each affects text output with an image font. In mode 1,
MS OS/2 ignores the character angle, box, and shear attributes when drawing
text with an image font. In mode 2, MS OS/2 uses each of the attributes when
drawing text with an image font. In mode 3, MS OS/2 issues an error if the
application attempts to draw text using an image font. An application can use
outline fonts for text output in character mode 3 only.

GpiQueryCharSet Retrieves the local identifier assigned to the current font.

GpiQueryCharShear Retrieves the current character-shear attribute. The
character-shear attribute is a point that defines the angle between the x-axis of a
coordinate system and a line drawn from a system's origin through the point. If
the current font is an outline font, the sides of the character box are drawn
parallel to this angle and the character within the box is slanted accordingly. If
the current font is an image font and the character mode is 1, MS OS/2 ignores
this attribute when drawing text. If the current font is an image font and the
character mode is 2, MS OS/2 draws the sides of the character box parallel to
the angle; the character itself remains upright.

GpiQueryCharStringPos Retrieves an array of points that specify the position
(in world coordinates) that MS OS/2 would assign to each character in a string
of text if the string were drawn by the GpiCharStringPos function.

GpiQueryCharStringPosAt Retrieves an array of points that specify the posi­
tion (in world coordinates) that MS OS/2 would assign to each character in a
string of text if the string were drawn by the GpiCharStringPosAt function.

GpiQueryCp Retrieves the current code-page identifier. A code page is a char­
acter set that contains 256 characters. Each character in the code page is
assigned a value (called a code point) in the range 0 through 255. A code-page
identifier is a three-digit value in the range 0 through 999.

GpiQueryDefCharBox Retrieves the default character-box dimensions (in
world coordinates). The default dimensions are assigned by the font's designer.

GpiQueryFontFileDescriptions Retrieves the types and face names of fonts in
a file, if that file is a font file.

GpiQueryFontMetrics Retrieves the font metrics for the current logical font.

GpiQueryFonts Retrieves metrics for all of the public or private fonts if the
third argument is a NULL pointer. Otherwise, it returns the metrics for fonts
with a particular face name. The function returns the metrics in an array of
FONTMETRICS structures. A public font is one that MS OS/2 loads when a
user turns the computer on. A private font is one that an application loads.

GpiQueryKemingPairs Retrieves an array of KERNINGPAIRS structures.
Kerning is space that appears between a pair of characters when MS OS/2 draws
them. By adjusting the kerning between certain characters, you can make text
more readable. The KERNINGPAIRS structure contains three fields: The first
two identify the characters, and the third specifies the amount of kerning (mea­
sured in world coordinates). If this last field contains a negative number, the

Chapter 33: Fonts and Character Primitives 465
i!j~!t.Rf5!{i1!~iim~jf~m§ll~irni~~~!~.ffli~!~iS;i~~~!fii!~f~a~!~~~i~~i~1i~iiG!i~i~l~~~jli§:I~!iliimj~lS;;ifii{i;Si~I!i~F.mr.mi

kerning is reduced by that amount; if the last field contains a positive number,
the kerning is increased by that amount.

GpiQueryNumberSetIds Retrieves the number of current local identifiers that
an application is using. You can use this value when you call the GpiQuerySetIds
function.

GpiQueryTextBox Retrieves the dimensions of a rectangle surrounding a string
of text that an application draws using the GpiCharStringPos or GpiCharString­
PosAt function. You can use these dimensions to draw a shaded rectangle
behind the text.

GpiQueryWidthTable Retrieves width values you can use to determine the
average character width of characters in the current logical font. To determine
this average character width, you multiply the width values by the factors given
in the description of the FONTMETRICS structure.

GpiSetCharAngle Sets the current value of the character-baseline angle. If the
current font is an outline font, the baseline of each character's cell is drawn
parallel to this angle. If the current font is an image font, the character-bas~line
angle uniquely affects the image-font output. If the current font is an image font
anq the character mode is 1, MS OS/2 ignores the baseline angle. If the current
font is an image font, the character mode is 2, and the baseline angle is nonzero,
MS OS/2 aligns text with the baseline angle. However, the baseline of each char­
acter rem~ins parallel to the x-axis.

GpiSetCharBox Sets the dimensions (in world coordinates) of the character
box. If the current font is an outline font, the character-cell dimensions are
reduced or expanded to match the dimensions of the character box. If the
current font is an image font, the dimensions of the character box uniquely
affect the image-font output. If the current font is an image font and the charac­
ter mode is 1, MS OS/2 ignores the character-box dimensions when drawing
text. If the current font is an image font and the character mode is 2, MS OS/2
increases or reduces the spacing between characters (based on the box dimen-
sions) when drawing text strings. .

GpiSetCharMode Sets the current character-mode attribute. There are three
c~aracier modes; each affects text output with an image font. In mode 1, MS
OS/2 ignores the angle, box, and shear attributes when drawing text with an
image font. In mode 2, MS OS/2 uses each of the attributes when drawing text
with an 'image font. In mode 3, .MS OS/2 issues an errorif the application
attempts to draw text using an image font. An application can use outline fonts
for text output in character mode 3 only.

GpiSetCharSet Assigns a font to a presentation space. The font is identified by
a local identifier (lcid).

GpiSetCharShear Sets the current character-shear attribute. The character­
shear attribute is a point that defines an angle between the x-axis of a coordinate
system and a line drawn from a system's origin through the point. If the current
font is an outline font, the sides of the character box are drawn parallel to this
angle and the character within the. box is slanteq accordingly. If the current font
is an image font and the character mode' i~ 1, MS OS/2 ignores this attribute
when drawing text. If the current font is an image font and the character mode is
2, MS OS/2 draws the sides of the character box parallel to the angle; the char-
acter itself remains upright. '

466 MS OS/2 Programmer's Reference, Vol. 1
iilii!iirii.!mi!ljtiw!~"ij1!~;r._:lif.iH~I~i§lII:i1ii~~~HrrJi!ID.;!imif:i!!t!!!n~~~SH~§IJiiP.tlm!fmiiiUnr6ii;!itfift!~Iliif.id!li~i!i1!fi:g~~

GpiSetCp Sets the current code-page identifier. A code page is a character set
that contains 256 characters. Each character in the code page is assigned a value
(called a code point) in the range 0 through 255. A code-page identifier is a
three-digit value in the range 0 through 999. .

GpiUnloadFonts Unloads font definitions that were loaded previously from a
resource file.

Chapter

34

Color and Mix Modes
34.1 Introduction.. 469

34.2 About Color and Mix Modes 469
34.2.1 Color and RGB Values......... 470
34.2.2 Color Tables ... 470
34.2.3 Color Output and Mix Modes.............................. 471
34.2.4 Dithering... 474

34.3 Using Colors and Mix Modes 474
34.3.1 Creating a Logical Color Table. 474
34.3.2 Determining the Color-Table Format

and Index Values... 475
34.3.3 Determining an Index Value for an RGB Value 475
34.3.4 Setting the Primitive Color Attributes.................... 475

34.4 Summary.. 476

Chapter 34: Color and Mix Modes 469
~~!Uf~!~~!~ii~!PjfiiF:f!r:~!llii~~~ll!r..fiii~i5i~imii@~~I§i~~f~ii~i~~=ii~i~~i~r~~iii!i~i~~.mlBliii!l!SiWJm!~I~iffi.{i~~!i~~i!lm;

34.1 Introduction
This chapter describes color and mix modes and their use in MS OS/2 applica­
tions. You should also be familiar with the following topics:

• Presentation spaces and device contexts

• Line and arc primitives

• Area primitives

• Character primitives

• Marker primitives

34.2 About Color and Mix Modes
Color and mix modes are two primitive attributes. The color attribute describes
a line, arc, character, marker, area, or image color before it is combined with
the color on the drawing surface. The mix-mode attribute describes how the sys­
tem combines a primitive's color with the color of the drawing surface. Some
primitives have foreground and background color attributes. For instance, the
character primitive has a foreground color attribute that specifies the color of
the character and a background color attribute that specifies the color surround­
ing the character. The primitives that have foreground and background attributes
also have foreground and background mix modes.

To understand color, it is important to understand several principles of color
devices. Most color devices can generate three fundamental colors: red, green,
and blue. On some devices, each of these three colors corresponds to a color
plane-for example, a red pel is visible when a pel in the red plane is on and
the corresponding pels in the green and blue planes are off. On other devices,
there is only one color plane, and each pel contains a red, a green, and a blue
section-for example, a red pel is visible when the red section of that pel is on
and the green and blue sections are off. By combining the three fundamental
colors, a device can obtain five additional colors, for a total of eight. These eight
colors, and the combinations that produce them, are as follows:

Resulting color

Black

Red

Green

Blue

Pink

Cyan

Yellow

White

Combined colors

Red, green, and blue are off.

Red is on; green and blue are off.

Green is on; red and blue are off.

Blue is on; red and green are off.

Red and blue are on; green is off.

Blue and green are on; red is off.

Red and green are on; blue is off.

Red, green, and blue are on.

470 MS OS/2 Programmer's Reference, Vol. 1
i!iiiiifiijiililmUit!!iIf~illiiir.E;if.iHl=~~ltm!~i~~~n!fa~lmlili!iiiii!~!t!!!}~~eaii~~~mImifmiiRlftt~m!IiiI!i:~i5md!l~~~5Ufi~f

34.2.1 Color and RGB Values

34.2.2

In MS OS/2, the red, green, and blue components of a color are either stored in
an RGB structure or stored as a long integer (32-bit) value. The RGB structure
has the following format:

typedef struct _RCB { I' rgb 'I
BYTE bBlue;
BYTE bCreen;
BYTE bRed;

} RCB;

The RGB value has the following format:

OxOORRCCBB.

Each field in the RGB structure and each of the last three bytes in the RGB
value specify a color intensity in the range 0 through 255, 0 being the lowest
intensity, 255 the highest. If a field or byte contains 0, its corresponding color is
not visible; if a field or byte contains 128, the color is pale; and if a field or byte
contains 255, the color is as intense as the device allows. If all the fields or bytes
are set to 0, the corresponding color is black. Similarly, if all the fields or bytes
are set to 255, the corresponding color is white.

The following list shows the RGB value associated with each of the eight funda­
mental colors:

Color Associated RGB value

White OxOOFFFFFF

Yellow OxOOFFFFOO

Pink OxOOFFOOFF

Cyan OxOOOOFFFF

Blue OxOOOOOOFF

Green OxOOOOFFOO

Red OxOOFFOOOO

Black Ox()()()()()()()(

Color Tables
A color table is an array of RGB values. There are two kinds of color tables:
physical (used by device drivers) and logical (used by applications). The physical
color table contains RGB values representing the available colors on a device.
The logical color table contains RGB values representing the colors that an
application would prefer to use. You can determine which colors are in the phys­
ical color table by calling the GpiQueryReaIColors function. You can determine
which colors are in the current logical color table by calling the Gpi­
QueryLogColorTable function.

Chapter 34: Color and Mix Modes 471
~~!m~i~!limlmlHPifmrn~~li~if.~l~.mi~mitmifiii!@i1!mi§i~liil~ii~l1it~~!~~~li~iiiti~i~~..m!;jliiillai&~inuj~fi§i~!5~~!i~r.!.nr~

The following list contains the index values and colors found in a logical color
table:

Index Color

0 Device's background color (white)

1 Blue

2 Red

3 Pink

4 Green

5 Cyan

6 Yellow

7 Neutral color (black)

8 Dark gray

9 Pale blue

10 Pale red

11 Pale pink

12 Dark green

13 Dark cyan

14 Brown

15 Pale gray

The value you place in the color field of a primitive-attribute structure (by using
GpiSetAttrs) is an index into the logical color table. When MS OS/2 draws the
primitive, it searches the physical color table for a color that is the closest
approximation to this color index. MS OS/2 then uses this approximate color
to draw with.

You can replace the default logical color table with a new color table by calling
the GpiCreateLogColorTable function. You can also use this function to reset
the logical color table to its original values. Either way, once you create a new
logical color table (or reset it to its original values), it becomes part of the
application's presentation space.

For a given device, you can determine the maximum size of the logical color
table by using the DevQueryCaps function. This function also returns the max­
imum number of distinct colors available on a particular device.

34.2.3 Color Output and Mix Modes
When an application draws a line, arc, character, marker, area, or image, MS
OS/2 uses a mix mode to determine the color that appears on a video display,
printer, or plotter. A mix mode is a bitwise operation on the color indices in a
device's physical color table. For example, suppose an application has set the
IColor field in the LINEBUNDLE structure to CLILBLUE and the usMixMode
field in the same structure to FM.-OR. The current drawing-surface color is

472 MS OS/2 Programmer's Reference, Vol. 1
,iiiihiir~jii1!!\IDii"Jii!fBi!i~!~iP.~ImiP.~ml~~llfg:~i~!~~nFji~ltruili!~iii!~!t!!!U~!m~I~~jijimIm!miiraftr~m!mjf:j~~l!1iJ!Ii!i~!rn!~:g~j

CLR-BACKGROUND. The CLILBLUE entry corresponds to the color blue in
both the presentation space's logical color table and the device's physical color
table. The CLILBACKGROUND entry corresponds to the color white in both
the presentation space's logical color table and the device's physical color table.
The index value for blue in the device's table is OXOOO1, and the index value for
white in the device's table is OXOOOO. To determine the color of a line, MS OS/2
performs a bitwise OR operation on the two index values, as follows:

OxOOOl
Q.x.O.QQQ.
OxOOOl (Result of bitwise OR)

In this case, the result is OxOOO1, the index value for blue in the device's color
table. This means that a blue line appears when the application calls the GpiLine
or GpiPolyLine function.

Some of the primitive bundles contain foreground and background colors and
mix modes. For instance, the AREABUNDLE structure contains a foreground
color that corresponds to tile foreground color of the area fill pattern. The
AREABUNDLE structure also contains a background color that corresponds to
the background color that appears behind the area fill pattern. AREABUNDLE
also contains foreground and background mix modes that specify bitwise opera­
tions on index values in the device's physical color tabl~.

There are 16 foreground mix modes. For each mix mode, the index value for the
foreground and current drawing-surface colors (in the device's physical color
table) are combined by using one of the bitwise operators. The different fore-
ground mix modes are described in the following list: '

Mix mode

F~ND

FMJNVERT

FNLLEAVEALONE

F~ASKSRCNOT

F~ERGENOTSRC

F~ERGESRCNOT

Description

Final color's index value is determined by a
bitwise AND operation on th~ foreground
color's index value and the drawing
surface's index value.

Final color's index value is always the
inverse of the drawing surface's index value.

Final color's index value is that of the
drawing-surface color.

Final color's index value is determined by
inverting the drawing surface's index value
and performing a bitwise AND operation on
this value and the foreground color's index
value.

Final color's index value is determined by
performing a bitwise AND operation on
the drawing s~rface' s index value and the
inverse of the foreground color's index
value.

Final color's index value is determined by
performing a bitwise AND operation on
the foreground color's index value and the
inverse of the qrawing-surface color's index
value.

Chapter 34: Color and Mix Modes 473
jjfi!~!1ml!m;;~~f!1~~fijiM~fjlmi~*!jf:h1j.gjrni~f~!1!lf§Il!i~j/U!jm~IIii~I~isJtm;tii!iIEIDYi~J5J!iftftiiifi~!§!~:F.mli!i~!f~i~I,§iiijlim~r.di!flii~f~~liMl

Mix mode

flLNOTCOPYSRC

F~NOTMASKSRC

F~NOTMERGESRC

F~NOTXORSRC

F~ONE

F~OR

F~SUBTRACT

F~OR

FM.2.ERO

Description

Final color's index value is the inverse of
the foreground color's index value.

Final color's index value is the inverse of
the F~ND result.

Final color's index value is always the
inverse of the F~OR result.

Final color's index value is always the
inverse of the F~OR result.

Final color's index value is always 1.

Final color's index value is determined by
a bitwise OR operation on the foreground
color's index value and the drawing
surface's index value.

Final color's index value is that of the fore­
ground color.

Final color's index value is determined by
inverting the foreground color's index value
and performing a bitwise AND operation on
this value and the drawing surface's index
value.

Fhial color's index value is determined by a
bitwise XOR operation on the foreground
color's index value and the drawing
surface's index value.

Final color's index value is always zero.

There are four background mix modes. For each mix mode, the index value for
the background color and the current drawing-surface color (in the device's
physical color table) are combined using one of the bitwise operators. The
different background mix modes are described in the following list:

Mix mode

B~EAVEALONE

B~OR

B~OVERPAINT

B~OR

Description

Final color's index value is that of the
drawing-surface color.

Final color's index value is determined by
a bitwise OR operation on the background
color's index value and the drawing
surface's index value.

Final color's index value is that of the back­
ground color.

Final color's index value is determined by a
bitwise XOR operation on the background
color's index value and the drawing
surface's index value.

474 MS OS/2 Programmer's Reference, Vol. 1
iii!1Ji!{:.l~~n!!~I~i!§i!fi!~r.iiitH~Ii!;1!lY!i::!j!f!ifimjrali51iiiliim!.lm!~~~ll1Hff.fsal~l~iii~i1m~_!!;l§;~~i~i~~iimim~fi;~~m!~

34.2.4 Dithering
If you request a color that isn't available in the physical color table, MS OS/2
obtains the closest match by a process called dithering. For example, if the
physical color table does not contain a certain shade of gray, MS OS/2 can
create what appears to be a gray by mixing black pels and white pels. Similarly,
if the physical color table does not contain a light green color but does contain a
yellow and a green, MS OS/2 can create what appears to be light green by mix­
ing yellow pels and green pels.

Dithering is especially important on monochrome devices. By combining various
combinations of black pels with white pels, MS OS/2 can create numerous
shades of gray.

34.3 Using Colors and Mix Modes
You can use the color and mix-mode functions to perform the following tasks:

• Create a logical color table.

• Determine the format and the starting and ending index values of the current
logical color table.

• Determine the index value for an entry in the logical color table that is the
closest match to an RGB value.

• Determine the RGB value associated with a particular entry in the logical
color table.

• Determine and set the current foreground and background colors.

• Determine and set the current foreground and background mix modes.

34.3.1 Creating a Logical Color Table
To create a logical color table, you must perform the following tasks:

1 Create an array of RGB values that will replace the existing logical color table.

2 Call the GpiCreateLogColorTable function, using the LCOL~ESET and
LCOLF _CONSECRGB flags.

The following code fragment demonstrates this process:

LONG alTable[] = {
OxFFFFFF, It white tl
OxEDEDED,
OxDBDBDB,
OxC9C9C9,
OxB7B7B7,
OxA6A6A6,
Ox949494,
Ox828282,
Ox707070,
OxSESESE,
Ox4D4D4D,
Ox3B3B3B,
Ox292929,
Ox!7!7!7,
OxOSOSOS,
OxOOOOOO }; It black tl

Chapter 34: Color and Mix Modes 475
limi1!imf!mi~&f!i~~i~~fI~iSlmi~~~~iffli~"~iSllfif~flifilmtfiliiiiail~!i!HF:lRli!f1Si¥iimIiUtaf:iifj~~~l§~liIjljf!!I!iSfI§jfSlmJfm~!tfliUBf~ri&i

GpiCreateLogColorTable(hps,
LCOL_RESET, 1* begins with default *1
LCOLF_CONSECRGB, 1* consecutive RGB values *1
OL, 1* starting index in table *1
16L, 1* number of elements in table *1
alTable);

34.3.2 Determining the Color-Table Format and Index Values
To determine the format and the starting and ending index values of the current
logical color table, you can call the GpiQueryColorData function. The following
code fragment calls GpiQueryColorData to determine whether the default logical
color table is loaded and, if so, loads a new table:

LONG lClrData[3];

GpiQueryColorData(hps, 3L, lClrData);
if (lClrData == LCOLF_DEFAULT)

GpiCreateLogColorTable(hps,
LCOL_RESET, 1* begins with default *1
LCOLF_CONSECRGB, 1* consecutive RGB values *1
OL, 1* starting index in table *1
16L, 1* number of elements in table *1
alTable);

34.3.3 Determining an Index Value for an RGB Value
To determine the logical-color-table index value associated with an RGB value,
you can call the GpiQueryColorIndex function. The following code fragment
shows how to determine which index value matches the RGB value for pink
(OxOOFFOOFF) and then use that index entry to set the foreground color to pink
for each of the primitive attributes:

LONG lIndex = 255; 1* logical-color-table index *1
lIndex = GpiQueryColorIndex(hps, LCOLOPT_REALIZED, OxOOFFOOFF);
if «lIndex >= 0) && (lIndex <= 15» 1* checks for valid index *1

GpiSetColor(hps, lIndex);

34.3.4 Setting the Primitive Color Attributes
To set the color attributes for a single primitive, you can call the GpiSetAttrs
function, or you can set the color attributes for all of the primitives in a presen­
tation space by calling the GpiSetColor and GpiSetBackColor functions.

The following code fragment shows how to use GpiSetAttrs to set the line­
primitive color attribute to dark gray:

LINEBUNDLE lbnd; 1* line-primitive attribute bundle *1

lbnd.lColor = CLR_DARKGRAY;
GpiSetAttrs(hps, PRIM_LINE, LBB_COLOR, OL, &lbnd);

The next code fragment shows how to use GpiSetColor to set the foreground
color attribute for all of the primitives to dark gray:

GpiSetColor(hps, CLR_DARKGRAY);

476 MS OS/2 Programmer's Reference, Vol. 1
iIU!@!~J~~~!r.iil~imi~!~iiiii!H~~I?i1!iiiii~I!j:~mmliJii!iliiil:i$~iil~~~tm~Hmm!m~iiiliii.iill8!i;JJt\!~Eimnm~!~i!!£i.~!liii~t&i~~ffil~

34.4 Summary
The following list summarizes the MS OS/2 color and mix-mode functions:

GpiCreateLogColorTable Creates a table of colors for an application. After
you call this function, MS OS/2 creates the closest match to the ideal colors in
your logical color table by mapping colors from the device's physical color table
and then dithering them.

GpiQueryBackColor Retrieves the current background color. If the back­
ground colors were set by the GpiSetBackColor function, the color returned by
GpiQueryBackColor is the background color for line, character, marker, and
bitmap operations. If the background colors were set by the GpiSetAttrs func­
tion, the color returned by GpiQueryBackColor is the background color for
character output only.

GpiQueryBackMix Retrieves the current background mix mode. If the back­
ground mix mode was set by the GpiSetBackMix function, the mix mode
returned by GpiQueryBackMix is the background mix mode for line, character,
marker, and bitmap operations. If the background mix mode was set by the
GpiSetAttrs function, the mix mode returned by GpiQueryBackMix is the back­
ground mix mode for character output only.

GpiQueryColor Retrieves the curl'ent foreground color. If the foreground color
was set by the GpiSetColor function, the color returned by GpiQueryColor is
the foreground color for line, character, marker, and bitmap operations. If the
foreground color was set by the GpiSetAttrs function, the color returned by Gpi­
QueryColor is the foreground color for character output only.

GpiQueryColorData Retrieves information about the current logical color
table. This information includes the format and the starting and ending index
values of the current logical color table.

GpiQueryColorIndex Retrieves the index value for the logical-color-table entry
that is the closest possible match to a specified RGB value.

GpiQueryLogColorTable Retrieves information about the current logical color
table.

GpiQueryMix Retrieves the value of the current foreground-color mix-mode
attribute.

GpiQueryNearestColor Retrieves the RGB value for an available color on the
current output device that is the closest possible color match to a specified RGB
value.

GpiQueryRGBColor Retrieves the RGB value associated with a logical-color­
table index.

GpiQueryRealColors Retrieves the RGB values for actual colors in the
device's color table.

GpiRealizeColorTable Not supported in the current release of Presentation
Manager for MS OS/2.

GpiUnrealizeColorTable Not supported in the current release of Presentation
Manager for MS OS/2.

Chapter 34: Color and Mix Modes 477
:Yfr!lfiif§'!fIji!,'it!f!~l!!ifiii!l!!ifjim!i;'fliffk1i,,;i!iii!§f~iSJ!fijjj!fl.;liflfi!miai!~!iiJll!1iifSl~i!frIi.Jlrr.ffiiifil~~~:§~ii!jf!il!i~IWIifJDJmr.d!~f~~&l

GpiSetBackColor Sets the background color for line, character, marker, and
bitmap operations.

GpiSetBackMix Sets the background mix mode for line, character, marker,
and bitmap operations.

GpiSetColor Sets the foreground color for line, character, marker, and bitmap
operations.

GpiSetMix Sets the foreground mix mode for line, character, marker, and bit­
map operations.

Paths

Chapter

35

35.1 Introduction .. 481

35.2 About Paths..... 481
35.2.1 Geometric Lines.. 483
35.2.2 Polygons and Other Shapes 484
35.2.3 Fill Modes ... 485

35.2.3.1 Alternate Mode•................... 485
35.2.3.2 Winding Mode 486

35.2.4 Clip Paths ... :.. 487
35.2.5 Path Attributes.. 487

35.3 Using Paths ... 4~
35.3.1 Drawing a Geometric Line 4~
35.3.2 Drawing a Filled Polygon 491
35.3.3 Creating a Clip Path .. 491

35.4 Summary 492

Chapter 35: Paths 481
sigffJi!~~!~If.~!iii1ml:~~j~iiij;§:I~~~~'i~L~imliii1ll5iii!ifil!~iiS1ij!liif!i~~fi!iiE!P.l~!§lrmil!li!~~I~~~~!i:ihli~it1m!iLii!im1ilfji!tii!rniili

35.1 Introduction
This chapter describes a graphics object called a path. You should also be famil­
iar with the following topics:

• Presentation spaces and device contexts

• Line and arc primitives

• Color and mix modes

• Area primitives

• Clipping

35.2 About Paths

Figure 35.1

A path is a figure that is filled or outlined. You can use paths to draw geometric
(wide) lines, create nonrectangular clipping regions, and outline andlor fill irreg­
ular shapes and polygons.

Paths provide the only means of drawing lines that are wider than one pel
(pixel); the only means of clipping to circular, elliptical, or other nonrectangular
regions; and the only means of generating filled or outlined irregular shapes and
polygons (including triangles, trapezoids, rhomboids, arid other nonrectangular
regions). To generate filled or outlined rectangles, you can use the GpiBox func­
tion, and to generate filled or outlined circles and ellipses, you can use the Gpi­
FullArc function.

A path is similar to another graphics object called an area, but there are funda­
mental differences between the two objects. The interior of an area is always
filled, while the interior of a path can be empty. Even when the interior of a
path is empty, the borders are visible. Paths with empty interiors are called
stroked paths because their visible borders are drawn, or "stroked." Another
difference is in the use of paths and areas. Applications perform clipping opera­
tions by using paths but not by using areas. For more information about areas,
see Chapter 36, "Area Primitives."

There are two operations that an application can perform on a path: stroke and
fill. You use a stroked path to draw geometric lines and to outline polygons. You
use a filled path to fill the interior of polygons. Figure 35.1 shows a rectangle that
is drawn first as a stroked path and then as a filled path:

Stroked and Filled Rectangles

482 MS OS/2 Programmer's Reference, Vol. 1
mml~mi1lti;~!{!m5tmi!iiilli!i!j~Ui[~~111if~i~jo:r~~iiii!~imiH5t!mrm!!,Jlmli§i!i!5!mi~~!U.ilmliP.iij~'mrn~~;'~ii1~ii!~'ii1i1

When MS OS/2 strokes a path, it generates a geometric line along the original
line that defined the path. The end result is like the stroke of a brush. When MS
OS/2 fills a path, it fills the region surrounded by the original line that defined
the path. If this original line did not close the region, MS OS/2 automatically
closes the region and fills the path.

The functions that generate a path are always enclosed in a path bracket. The
GpiBeginPath function defines the beginning of a path bracket, and the Gpi­
EndPath function defines the end of a path bracket. The functions you can use
within a path bracket are as follows:

• GpiBeginElement

• GpiBox
• GpiCallSegmentMatrix

• GpiCharString

• GpiCharStringAt

• GpiCharStringPos

• GpiCharStringPosAt

• GpiCloseFigure

• GpiComment

• GpiCreateLogFont

• GpiDeleteElement (retain mode only)

• GpiDeleteElementRange (retain mode only)

• GpiDeleteElementsBetweenLabels (retain mode only)

• GpiDeleteSetId

• GpiElement

• GpiEndElement

• GpiEndPath

• GpiFullArc

• GpiGetData

• GpiLabel

• GpiLlne

• GplMarker

• GpiMove
• GpiOffsetElementPointer

• GpiPartialArc

• GpiPointArc

• GpiPolyFillet

• GpiPolyFilletSharp

• GpiPolyLine

Chapter 35: Paths 483
~!§H~l~~!Iml!~!iiiBi!l.i~i~~!~;{f$fi~~Jm!i!iiiiiffijJ!a\\iflSiiSb'ii£!i!t~i!!htfm~!lfrmiI!1lI!~i~~l§j~!itilm~;C;ilifiiiili1lfii.ttii!fi!iJij

• GpiPolyMarker

• GpiPolySpline

• GpiPop

• GpiPutData

• GpiQueryArcParams (not valid in retain mode)

• GpiQueryAttrMode

• GpiQueryCurrentPosition (not valid in retain mode)

• GpiSetArcParams

• GpiSetAttrMode

• GpiSetAttrs

• GpiSetCharAngle

• GpiSetCharBox

• GpiSetCharDirection

• GpiSetCharMode

• GpiSetCharSet

• GpiSetCharShear

• GpiSetColor

• GpiSetCp

• GpiSetCurrentPosition

• GpiSetEditMode

• GpiSetElementPointer (not valid in retain mode)

• GpiSetElementPointerAtLabel (not valid in retain mode)

• GpiSetLineEnd

• GpiSetLineJoin

• GpiSetLineType

• GpiSetLine Width

• GpiSetMarker

• GpiSetMarkerBox

• GpiSetMarkerSet

• GpiSetMix

• GpiSetModelTransformMatrix

35.2.1 Geometric Lines
A geometric line is a stroked path that your application can scale by using one
of the scaling transformations. Geometric lines can be wider than one pel. When
you draw geometric lines, you use the same functions you would use to draw
normal lines: GpiMove, GpiLine, GpiPolyLine, GpiPartialArc, and so on. But
you must enclose these functions in a path bracket.

484 MS OS/2 Programmer's Reference, Vol. 1
UimUfril!Wlili.fmfnl,niimi!.i~rimnllp.[~liit~lIf~ii~.Fl~rtr:I~ii!!lI!miGHitl!iim!~i!Ui§i5!g!m~~1»..f_!ilmIfiP.~;u.iimi5tiU'.i!!iiniiU~'if:iir

J=igure 35.2

In the floor plan shown in Figure 35.2, the outer walls were drawn using geo­
metric lines. All of the other objects were drawn using normal lines.

Geometric Lines and Normal Lines

After constructing a path bracket for a geometric line, you must specify a line­
end style, a line-join style, and a line width. To specify the line-end style, you
call the GpiSetLineEnd function; to specify the line-join style, you call the
GpiSetLineJoin function; and to specify the line width, you call the GpiSet­
LineWidthGeom function. Once you have completed these steps, you can draw
the line by calling the GpiStrokePath function.

35.2.2 Polygons and Other Shapes

Figure 35.3
Stroked Paths

As noted earlier, the GpiFullArc function can generate filled or outlined circles
and ellipses, and the GpiBox function can generate filled or outlined rectangles.
But to generate filled or outlined regions that are not circular, elliptical, or rec­
tangular, you should use the path functions.

Figure 35.3 shows outlines of a trapezoid, a rhomboid, and a rhombus, each
constructed by calling the GpiBeginPath, GpiPolyLine, GpiEndPath, and
GpiStrokePath functions:

L:7

Chapter 35: Paths 485
!ig!i~l~i~!lfjllf.~!Simmimi~i~mj;§:iru~~ia!i~""~i.m!!fi1liSiiifijjl~~iSflij!!i~~1!Siilliil~~~illi!~~I~~1ii§iR!i:ii1if~ititiRiLiP.ilii;ai!tii!m!iffl

Figure 35.4
Filled Paths

Figure 35.4 shows the same quadrilaterals, only this time they were filled by call­
ing the GpiFillPath function:

35.2.3 Fill Modes

Figure 35.5
Fill Modes

To fill a path, MS OS/2 uses one of two methods, called fill modes. You can
select the mode-either alternate or winding-when you call GpiFillPath. If the
path consists of multiple intersecting regions, the mode will affect the final
appearance of the path. Figure 35.5 shows two identical paths that were filled
using the two modes. Each path consists of a triangle drawn within a rectangle.
The path on the left was filled using the alternate mode, the path on the right
was filled using the winding mode.

i':::'::'::::::::1

I·

,

35.2.3.1 Alternate Mode
When an application specifies the alternate mode, MS OS/2 performs a test on
pels inside the path's boundary lines. This test involves the following steps:

1 Select a pel within the path's boundary lines.

2 Draw an imaginary ray, in the positive x-direction, from that pel towards infinity.

3 Highlight the pel if the ray intersects the boundary lines of the path an odd
number of times.

486 MS OS/2 Programmer's Reference, Vol. 1
lI!m~p!iili!ii~feffi5lmi!§ifrimt~P.tt~imffl~~i~iifi!!~.I~ni!!!!!mif:iH~!!iiliii~I~Ii§jmiiP.1Ji&I~iJ~~8U.lnfrl~m.:SifiU5jiiiR.~i;!iifdl~~iiilii!

Figure 35.6 shows how MS OS/2 would perform this test on the path shown
in Figure 35.5:

Figure 35.6
Alternate-Mode Test

35.2.3.2 Winding Mode

4
•

When an application specifies winding mode, MS OS/2 again performs a test on
pels inside the path's boundary lines. The winding-mode test, which differs from
the alternate-mode test, involves the following steps:

1 Determine the direction in which each boundary line was drawn.

2 Select a pel within the path's boundary lines.

3 Draw an imaginary ray, in the positive x-direction, from that pel towards infinity.

4 Each time the ray intersects a boundary line with a positive y-component, incre-
ment a count value, and each time the ray intersects a boundary line with a nega­
tive y-component, decrement the count value.

5 Highlight the pel if the count value is nonzero.

Figure 35.7 shows how MS OS/2 would perform this test on the path shown
in Figure 35.5:

Figure 35.7
Winding-Mode Test

4
•

Chapter 35: Paths 487
!i!iU~ll.fi~llfjllf.~!ii.~~i~i8i;~!~~~~';~~tmi~i~!lijilU§~UjUi;i!j~~1i~~jir.~~1i~~'~~l§jp'!jfii!it'~il.fri:i!uYi!iff!miltii!ftj!!J!

35.2.4 Clip Paths
Clipping is the process of discarding output that shouldn't appear in a window or .
on a page of printer paper. Normally, a clip region is a rectangle or a polygon
defined by intersecting rectangles.

You .can cre.ate rectangular clip regions by calling the GpiCreateRegion and
GpiSetClip·Region functions. But you can also create nonrectangular clip
regions, called clip paths, by generating a path that matches the nonrectangular
region and then setting that path to a clip region by calling the GpiSetClipPath
function. Figure 35.8 shows the result of clipping text by using a triangular clip
path:

Figure 35.8
Triangular Clip Path

oJ •

..affg~~s':i1R
• nunibers. dritWl1!

.. If te th roc s .
.. peWprme~ tltli'~e .. if~

.• do~ardf' YQU use "tb"Cw.n ow m ..

~"tess t at Imlts ~al:'h,c~oulputto a _ . ..ns on a Isp IIY or " e 0 r hter pa)
ara ut U oOts(de t elc IP nate S ...

••. 0 s no ear on ffi raw n au coo
..:r •• ;(~ 'erm r.i~p'ng arerfikl Silufll~llns~air J~7p ::tlbt .. 4.3ip region 18. SlJeCia n ot :l.~Plng are.:I~u'cn;. e.

35.2.5 Path Attributes
Path attributes describe or identify a path's fill pattern, its color, and how it is
drawn. If the path is a geometric line, several additional attributes describe its
w~dth, line-end style, and line-join style.

The line-width attribute specifies the width (in world units) of the geometric line.
A world unit is a unit of measure in the world coordinate system. To set the
width of a geometric line, you can use the GpiSetLineWidthGeom function.

The line-end-style attribute specifies the shape of the end of the geometric line.
You can draw geometric lines with square, fiat, or round ends. To set the line­
end style, you can use the GpiSetLineEnd function. (The round and square ends
extend past the starting and ending points of a line; a fiat end does not.) Figure
35.9 shows the three line-end styles:

488 MS OS/2 Programmer's Reference, Vol. 1
i!i~i~r.!a1~n,mim~~i~iiliim!iffiP.~miJi!~Jfilif~i~i-lt!f:effi§!!e~i~tl;!l$rmi~J!ml§i5!~1n~~mWf.amilfrrliiiiUfSimi5Uim.~i~iif:ii~~iif:ill

Figure 35.9
Geometric Line Ends

Flat end

Square end

Round end

The line-join-style attribute specifies the shape formed by two intersecting
geometric lines. You can select a beveled, rounded, or mitred line-join style. To
set the line-join style, you can use the GpiSetLineJoin function. Figure 35.10
shows the three line-join styles:

Figure 35.10
Geometric Line Joins

Beveled join

Rounded join

Mitredjoin

Chapter 35: Paths 489
~aiiill~1iiiUj!~i~UiiirIifJiif&iiif.!!iiiiiU§!!f~iif;ftilimmf$H~rn!iifl~i~i!f~!iil!i!!i§mili~~lili!il~Ib.'ti~i~um::lSE~~~l!~F.fI;mfm!~~~ns.lifl

The pattern tilat fills a path or geometric line can be a bitmap that measures
8 bits by 8 bits or a character from one of the character sets. MS OS/2 uses the
pattern or character to fill the interior of the path that defines the geometric line.
If the p~ttern is a bitmap; you can alter its appearance by shifting its reference
point, a point that the system uses to align the bitmap each time it copies the
bitmap into the pattern.

The color of the fill pattern depends on the foreground and background mix
modes as well as the foreground and background pattern colors. The mix modes
tell MS OS/2 how to combine the foreground and background pattern colors
with the existing color on the drawing surface. For more information about fore­
ground and background mix modes, see Chapter 34, "Color and Mix Modes."

When you create a presentation space, the geometric-line attributes are set to the
following ddault values: .

Geometric-line attribute

Line·width

Line-end style

Line-join style

Pattern symbol

Foreground color

Background color

Foreground mix mode

Background mix mode

Reference point

Default value

1 world unit

LINEENDYLAT

LINEJOIN..BEVEL

Solid rectangle

CLR-NEUTRAL (black on most
devices)

CLR..BACKGROUND (white on
most devices)

FM..OVERP AINT

BM..LEAVEALONE

(x = 0, y = 0)

490 MS OS/2 Programmer's Reference, Vol. 1
~iirmfiifiiml~IFJ~~~~i~I!~~i.l2:~il!~niiis'iI!~im:Sf!i!~if!limlfm!!£i{{!;~~ .. FfmsffJ~~~=I§!t'imeijfi~~:ar:;r,]!I~i!li~f:iilfff~~

You can retrieve the current geometric-line attributes by calling the GpiQuery­
Attrs function. This function copies the currtmt attributes into one of the five
attribute-bundle structures: AREABUNDLE,CH~RBUNDLE, IMAGEBUNDLE,
LINEBUNDLE, and MARKERBUNDLE. Th~LINEBUNDLE and AREA­
BUNDLE structures contain the geometric-line attributes that affect the appear­
ance of paths. The LINEBUNDLE structure has the following form:

typedef struct _LINEBUNDLE { 1* Ibnd*i
LONG lColor;
LONG lReserved;
USHORT usMixMode;
USHORT usReserved;
FIXED fxWidth;
LONG IGeomWidth; 1* geometric line width */
USHORT usType;
USHORT usEnd; 1* geometric line-end style */
USHORT usJoin; 1* geometric line-join style */

} LINEBUNDLE;

The AREABUNDLE structure has the follqwing form:

typedef struct _AREABUNDLE
LONG lColor;
LONG IBackColor;
USHORT usMixMode;
USHORT usBackMixMode;
USHORT usSet;
USHORT usSymbol;
POINTL ptlRefPoint ;

} AREABUNDLE;

{ 1* pbnd *1
1* patt~rn foreground color *1
1* pattern background color *1
1* pattern mix mode *1
1* background pattern mix mode *1
1* bi~m~p local ldentifier *1
1* charaqter identifier *1
1* pattern r~ference point *1

To change the current attributes, use lhe GpiSetAttrs function.

35.3 Using Paths·
You can use path functions to perform the following tasks:

• Draw a geometric line.

• Draw a filled polygon.

• Create a clip path.

35.3.1 Drawing a Geometric Line
To draw a geometric line, you must perform the following steps:

1 Set the geometric-line width by calling the GpiSetLine WidthGeom function.

2 Set the geometric-line-end style calling the GpiSetLineEnd function.

3 Start a path by calling the GpiBeginPath function.

4 Draw the line(s) by calling the GpiMove and GpiLine functions.

5 End the path by calling the GpiEndPath function.

6 Draw the line by calling the GpiStrokePath function.

Chapter 35: Paths 491
!i!iiili~Hin.f~a!i';U§lmifJiii~:miin§liffllif!~iiml~~~lIiiiili!i!lf!f~lHl!i!~~m~~r:if:!ifcifaiiJys~jg!i.:fS~~!6iIg!S!~!{~!~f~nf!fiSlii

The following code fragment shows how to draw a straight line that is 10 units
wide and has round ends:

GpiSetLineWidthGeom(hps, 10L) ; 1* sets line width to 10 *1
GpiSetLineEnd(hps, LINEEND_ROUND) ; 1* sets line end to round *1
GpiBeginPath(hps, 1L) ; 1* begins path *1
ptl.x = 7; ptl.y = 15;
GpiMove(hps, &ptl) ; 1* sets current position *1
ptl.x = 450; ptl.y = 15;
GpiLine(hps, &ptl); 1* draws line *1
GpiEndPath(hps); 1* ends path *1
GpiStrokePath(hps, 1L, OL); 1* draws wide line *1

35.3.2 Drawing a Filled Polygon
To draw a filled polygon, you must perform the following steps:

1 Start a path by calling the GpiBeginPath function.

2 Move to the starting point by calling the GpiMove function.

3 Draw the boundary lines by calling the appropriate line-drawing function.

4 End the path by calling the GpiEndPath function.

S Specify a fill mode and fill the path by calling the GpiFillPath function.

The following code fragment shows how to draw an empty triangle within a solid
rectangle:

POINTL aptl1 [4] = {
50, 50,

1* array of points for triangle *1
100, 100,
150, 50,
50, 50 };

POINTL apt12[5]
25, 25,

{ 1* array of points for rectangle *1
25, 200,
200, 200,
200, 25,
25, 25 };

GpiBeginPath(hps, 1L);
GpiMove(hps, aptl1);
GpiPolyLine(hps, 4,

aptll) ;
GpiMove(hps, apt12);
GpiPolyLine(hps, 5,

apt12);
GpiEndPath(hps);
GpiFillPath(hps, 1L,

FPATH_ALTERNATE) ;

35.3.3 Creating a Clip Path

1*
1*

1*
1*
1*
1*

1*

begins path
sets current position

plots points for triangle
sets current position

plots points for rectangle
ends path

draws triangle and rectangle

To create a clip path, you must perform the following steps:

1 Start a path by calling the GpiBeginPath function.

*1
*1

*1
*1
*1
*1
*1

2 Draw the border of the path by calling the appropriate line or arc functions.

3 End the path by calling the GpiEndPath function.

4 Create the clip path by calling the GpiSetClipPath function.

492 MS OS/2 Programmer's Reference, Vol. 1
iiirml;mf~i~~i!~~~i~i~U!~~:!!~:~i~.naii;lll~jf:lit-iliU~iiJ!1ib~!m!!~1i!!W~ .. ~!ilsWj~ln=l§m~eiiriP'J~:ai:iiiEill~ii!i~f~l~~a

The following code fragment shows how to create a triangular clip path and then
write text into it:

POINTL aptl[4] = {
35, 45,
100, 100,
200, 45,
35, 45 };

GpiBeginPath(hps, 1L);
GpiMove(hps, aptl);
GpiPolyLine(hps, 4, aptl);
GpiEndPath(hps);

/* array of points for triangle */

/* begins path bracket
/* sets current position
/* plots pOints for triangle
/* ends path bracket

*/
*/
*/
*/

GpiSetClipPath(hps, 1L, SCP_ALTERNATE I SCP_AND); /* sets clip path */

ptlStart.x = 50;
for (i = 50; i < 110; i i + 10) {

ptlStart.y = i;
/* write the text */

GpiCharStringAt(hps, &ptlStart, 18, "?IString of textl?");
}

35.4 Summary
The following list summarizes the MS OS/2 path functions:

GpiBeginPath Begins a path definition.

GpiEndPath Ends a path definition by closing an open path.

GpiFillPath Fills the interior of a path. MS OS/2 uses the attributes in the
current area bundle when filling the interior.

GpiModifyPath Modifies a path. Once you have modified the path, you can use
it to draw geometric-line output by calling the GpiFillPath function.

GpiStrokePath Draws a geometric line.

Chapter

36

Area Primitives
36.1 Introduction .. 495

36.2 About Areas and Area Primitives 495
36.2.1 Creating Areas.. 496
36.2.2 Outlining Areas... 499
36.2.3 Filling Areas .. 500

36.3 Using Areas and Area Primitives 501
36.3.1 Drawing a Single Closed Figure 502
36.3.2 Drawing Multiple Intersecting Closed Figures........... 502
36.3.3 Drawing Multiple Disjoint Closed Figures 502
36.3.4 Creating a Custom Fill Pattern from a Bitmap.......... 502
36.3.5 Creating a Custom Fill Pattern

from a Font Character 503

36.4 Summary .. S()4.

Chapter 36: Area Primitives 495
!mii!i~~JIm~i~f~rrifJiii§~JmiU~tiP:iii!~im!ti~~lImaii§lm~iH!~mf!tJlIl~J.i!m!liil§fi1i!~~i~I~l.!;O;!_9~!s1f:!imi1iIi'Ufing~

36.1 Introduction
This chapter describes areas and area primitives. You should also be familiar
with the following topics:

~ Presentation spaces and device contexts

• Color and mix modes

• Fonts and text output

• Paths

36.2 About Areas and Area Primitives

Figure 36.1
Two Areas

Figure 36.2
Disjoint Area

An area primitive is one or more closed figures that are filled or filled and out­
lined. You can define an area primitive as a distinct closed figure, as multiple
intersecting or disjoint closed figures, or as some combination of these. An area
primitive is the result of a collection of functions that define and draw the area.
Figure 36.1 shows two areas-a five-pointed star in the lower-left corner, and two
intersecting boxes in the upper-right corner:

Figure 36.2 shows a single area that contains three disjoint boxes:

496 MS OS/2 Programmer's Reference, Vol. 1
;~Rflf~'~!m=§!illi~U~i~ilJmll~Jj!i~illii;ati"_n~!~!i~iffilf~i;n~~H!mi!!S1liJi1ir¢~~i!iiAil~i~~~:wI~~=~~I!m~~[zjfllU!l!ati~~~mli~1

36.2.1 Creating Areas
An area bracket contains the functions that define an area primitive. A Gpi­
BeginArea function defines the beginning of an area bracket; a GpiEndArea
function defines the end of the area bracket and tells MS OS/2 to draw the
area. An area bracket has the following form:

Gpi13eginArea () ;

GpiEndArea 0 ;

/* start of area bracket

/* line and arc functions

*/

*/

/* end of area bracket, draws area */

Once you define the beginning of an area bracket, you can define its shape and
its location in your application's world space by using line and arc functions.
These area functions are described in the following list:

Area functions

GpiBox

GpiFullArc

GpiLine

GpiPartialArc

GpiPointArc

GpiPolyFillet

GpiPolyFilletSharp

GpiPolyLine

GpiPolySpline

Description

Draws a rectangle.

Draws an ellipse.

Draws a straight line.

Draws part of an ellipse defined by an
angle.

Draws part of an ellipse defined by three
points.

Draws a series of connected fillets.

Draws a series of fillets, with each curve
approximating an ellipse, a hyperbola, or
a parabola.

Draws a series of connected straight
lines.

Draws a series of connected splines.

Always use the DRO_OUTLINE constant if you call either the GpiBox or Gpi­
FullArc function to define the shape of an area; if you use the DROYILL or
DRO_OUTLINEFILL constant, MS OS/2 returns an error message.

If you do not close a figure before calling GpiEndArea, MS OS/2 automatically
closes it for you by drawing a line from the end point of the last line or curve
drawn to the starting point of the first line or curve drawn. The current position
is always updated to the endpoint of the last line drawn.

In addition to using lil1e and arc functions in an area bracket, you can also use
the following functions:

• GpiBeginElement

• GpiBox

• GpiCallSegmentMatrix

• GpiComment

Chapter 36: Area Primitives 497
;e!ii§iim!iu!!iifjf!m!iijfru~flP:RiF:!ill!i!iDi!!!¥.mf_!~!Siili!~~!tli!~f~!~~i~~l!m~rM~iii~iiij!i~!~Iir.iiiiil~iiJmj~!ii~!;~~!i~ir~

• GpiDeleteElement (retain mode only)

• GpiDeleteElementRange(retain mode only)

• GpiDeleteElenientsBetweenLabel~ (retain mode only)

• GpiElement

• GpiEndArea

• GpiEndElement

• GpiFullArc

• GpiGetData

• GpiLabel

• GpiLi~e

• GpiMove
• GpiOffsetEle~entPointer

• GpiPartbdArc

• GpiPoin~Arc

.. GpiPolyFillet

• GpiPolyFilletSharp

• GpiPolyLine

• GpiPolySpline

• GpiPop

• GpiPutData

• GpiQueryArcParams (not valid in retain mode)

• GpiQuery AttrMode

• GpiQuery Attrs (not valid in retain mode)

• GpiQueryBackColor (not valid in retain mode)

• GpiQueryB~ckM~x

• CpiQueryBoun.d~ryData

• GpiQueryCharAngle (not valid in retain mode)

• GpiQueryCl,larBox (not,valid in retain mode)

• GpiQueryCharDirection (not valid in retain mode)

• GpiQueryCharMode (not valid in retain mo4e)

• GpiQueryCharSet (not valid in retain mode)

• GpiQueryCharShear (not valid in retain mode)

• GpiQueryCharStringpos (not valid in retain mode)

• GpiQueryCharStringPosAt (not valid in retain mode)

!!II GpiQueryClipBox

• GpiQueryCJipJ,{egion

498 MS OS/2 Programmer's Reference, Vol. 1
iiii!iiiriijimm!itiI~ij!~~;w._~~Utaliiti~l!!~iSU!~EiHii~l!ruimiWiii!lli!t!l!l~~ilii~~~~mt@Jit§liiiifif.rtamfiiiiYiiii1if!ti§9~.Emi5~~

• GpiQueryColor (not valid in retain mode)

• GpiQueryColorData

• GpiQueryColorIndex

• GpiQueryCp

• GpiQueryCurrentPosition (not valid in retain mode)

• GpiQueryDefaultViewMatrix

• GpiQueryDefCharBox

• GpiQueryDevice

• GpiQueryDeviceBitmapFormats

• GpiQueryEditMode

• GpiQueryElement (valid only in retain mode)

• GpiQueryElementPointer (valid only in retain mode)

• GpiQueryElementType (valid only in retain mode)

• GpiQueryFontFileDescriptions

• GpiQueryFontMetrics

• GpiQueryFonts

• GpiQueryGraphicsField

• GpiQueryInitialSegmentAttrs

• GpiQueryKerningPairs

• GpiQueryLineEnd (not valid in retain mode)

• GpiQueryLineJoin (not valid in retain mode)

• GpiQueryLineType (not valid in retain mode)

• GpiQueryLineWidth (not valid in retain mode)

• GpiQueryLine WidthGeom (not valid in retain mode)

• GpiQueryLogColorTable

• GpiQueryMarker (not valid in retain mode)

• GpiQueryMarkerBox (not valid in retain mode)

• GpiQueryMarkerSet (not valid in retain mode)

• GpiQueryMix (not valid in retain mode)

• GpiQueryModelTransformMatrix (not valid in retain mode)

• GpiQueryNearestColor

• GpiQueryNumberSetIds

• GpiQueryPage Viewport

• GpiQueryPattern (not valid in retain mode)

• GpiQueryPatternRefPoint (not valid in retain mode)

• GpiQueryPatternSet (not valid in retain mode)

Chapter 36: Area Primitives 499
~~irn!im!~im!PJH~mffP:~l~~~!i!~.ffli_!~!mil!i~~!f!i~~!~!i~i~~~~!Mi~2i~iiii!i~I~t;I;;mUliii!I~~mj~lii~'i:S~!!i~~i!f.~

• GpiQueryPel

• GpiQueryPickAperturePosition

• GpiQueryPickApertureSize

• GpiQueryRealColors

• GpiQueryRegionBox

• GpiQueryRegionRects

• GpiQueryRGBColor

• GpiQuerySegmentAttrs

• GpiQuerySegmentNames

• GpiQuerySegmentPriority

• GpiQuerySegmentTransformMatrix

• GpiQuerySetIds

• GpiQueryStopDraw

• GpiQueryTag (not valid in retain mode)

• GpiQueryViewingLimits (not valid in retain mode)

• GpiQueryViewingTransformMatrix

• GpiQueryWidth

• GpiSetArcParams

• GpiSetAttrMode

• GpiSetAttrs

• GpiSetColor

• GpiSetCurrentPosition

• GpiSetEditMode

• GpiSetElementPointer (not valid in retain mode)

• GpiSetElementPointerAtLabel (not valid in retain mode)

• GpiSetLineEnd

• GpiSetLineJ oin

• GpiSetLineType

• GpiSetLine Width

• GpiSetMix

• GpiSetModelTransformMatrix

• GpiSetSegmentTransformMatrix

36.2.2 Outlining Areas
If you want MS OS/2 to outline an area, use the BAJ30UNDARY flag
when you call the GpiBeginArea function. MS OS/2 then draws the outline,
using a narrow line that is 1 pel wide. The default outline color is black
(CLlLNEUTRAL) on most displays and printers and the default line style is
solid (LINETYPR-SOLID). You can change the line color and line styles by

500 MS OS/2 Programmer's Reference, Vol. 1
iiiih1iliijiiiinmiru!f@f_iiJi~;i!;p'.EYif.~~Iii:imlJ~IiP.i~i~!imji~lffiijmiWiii!~H!I!n~!~~i~~Jiimt~~iS~r~m!iiffij~iiI~1im~9~~!fi~f.

calling the GpiSetAttrs function, or to determine the current line color and line
styles, you can call the GpiQueryAttrs function. For more information about
lines and line primitives, see Chapter 32, "Line and Arc Primitives."

If you do not want MS OS/2 to outline an area, use the B~OBOUNDARY
flag when you call GpiBeginArea.

36.2.3 Filling Areas
MS OS/2 fills an area by repeatedly drawing an eight-by-eight bitmap called a fill
pattern. The default fill pattern is solid (PATSY1LDENSE1), and the default
fill-pattern color is black (CLlLNEUTRAL). MS OS/2 provides 15 predefined
fill patterns, in addition to the default pattern. Figure 36.3 shows each of the 16
predefined patterns:

Figure 36.3
Predefined Fill Patterns

PATSYM_DENSEl

PATSYM_DENSEl

PATSYM_DENSE5

PATSYM_VERT

PATSYM_DIAGl

PATSYM_DIAGl

PATSYM_NOSHADE

PATSYM_BLANK

PATSYM_DENSE2

PATSYM_DENSE4

PATSYM_DENSE6

11111111111111111111 PATSYM_HORIZ

PATSYM_DIAG2

PATSYM_DIAG4

PATSYM_SOUD

PATSV~'CHAlFTONE

To determine which of the 16 patterns is currently selected, you can call the
GpiQueryPattern function, or to select a new pattern, you can call the GpiSet­
Pattern function. You can also create custom patterns by using bitmaps or char­
acters and symbols from an image font. If you do create a custom pattern,
remember that MS OS/2 uses only the first eight bits in the first eight rows of
the bitmap, starting in the lower-left corner.

You can change the foreground and background colors and mix modes for
the fill pattern by calling the GpiSetAttrs function. The foreground color
corresponds to the .color of the bits that are set in the fill-pattern bitmap. The
background color corresponds to the color of the bits that are not set in the fill­
pattern bitmap. The foreground mix mode specifies how MS OS/2 should com­
bine the foreground color with the color on the drawing surface; the background
mix mode specifies how MS OS/2 should combine the background color with the
color on the drawing surface. You can determine the. current foreground and
background color and mix-mode settings by calling the GpiQueryAttrs function.
For more information about color and mix modes, see Chapter 34, "Color and
Mix Modes."

To create a custom pattern from a hard-coded bitmap, you can call the GpiSet­
PatternSet function, passing it the local identifier (Zcid) for the bitmap. This is
the identifier you assigned when you called the GpiSetBitmapld function.
For more information about creating bitmaps; see Chapter 38, "Bitmaps."

Chapter 36: Area Primitives 501
l!~!~~~!k1iiR1tiinlPjf~F:!~iliif!!~~il!;!~.ffli~!~imii@~~I§i~fiif~li~i~$1~~rP.i~a!~ii!ifigj~~~ijiiil~iifilmj~li§ii1i$.{ii!s~!!i~ijJJi~$!!

To create a custom pattern from a character or a symbol in a font, you can call
the GpiSetPattemSet function, passing it the local identifier for the font. This is
the same identifier that you passed to the GpiCreateLogFont function when you
created the font . You then need to specify the code point for a character or sym­
bol in that font by calling the GpiSetPattem function and passing the value of
the code point. For more information about selecting and using fonts, see
Chapter 33, "Fonts and Character Primitives."

You can alter the alignment of the fill pattern in an area by altering the pattern
reference point. The default pattern reference point is (0,0). When the default
reference point is set, MS OS/2 aligns the lower-left corner of the fill pattern
with the point (0,0) in the application's world space and begins filling the area. If
you adjust the pattern reference point to (3,2), MS OS/2 aligns the lower-left
corner of the fill pattern with the point (3,2) in the application's world space and
begins filling the area. By moving the reference point from (0,0) to (3,2), the fill
pattern appears shifted up 2 pels and to the right 3 pels.

A special structure called the AREABUNDLE structure contains seven fields that
specify the current fill-pattern colors and mix modes, the local identifier for the
bitmap or font, the character code point, and the pattern reference point.

The AREABUNDLE structure has the following form:

typedef struct _AREABUNDLE { I' pbnd 'I
LONG lColor; I' foreground color 'I
LONG lBackColor; I' background color 'I
USHORT usMixMode; I' foreground mix mode 'I
USHORT usBackMixMode; I' background mix mode 'I
USHORT usSet; I' bitmap or font lcid 'I
USHORT usSymbol; I' character or symbol code point 'I
POINTL ptlRefPoint; I' pattern reference point 'I

} AREABUNDLE

To determine the current values in these fields, you can call the GpiQueryAttrs
function, or to change the values, call the GpiSetAttrs function.

When filling an area, MS OS/2 uses not only a fill pattern but a fill mode, as
well. The two fill modes, alternate and winding, affect how the area is filled. For
more information about fill modes, see Chapter 35, "Paths."

36.3 Using Areas and Area Primitives
You can use area functions to perform the following tasks:

• Draw a single closed figure.

• Draw mUltiple intersecting closed figures.

• Draw multiple disjoint closed figures.

• Draw any combination of the three.

• Create a custom fill pattern from a bitmap.

• Create a custom fill pattern from a font character.

502 MS OS/2 Programmer's Reference, Vol. 1
iiiiil1iriijii!llim~ruli!f_ifjiie!!~;p'Ei~~llm~rnll:MliJf.;~i~~ffffa~l~lniWiii!u!H!HU~\~~~~JiimIm1miiiif~r~m!liij~iilinmi!5~gEni:g~!

36.3.1 Drawing a Single Closed Figure
The following code fragment shows how to use area functions to draw a single
closed figure that is filled using the alternate mode. The closed figure in this
example is a five-pointed star.

/* Initialize the array of pOints for the 5-pointed star. */

aptl[O] .x
aptl[l].x
aptl[2] .x
aptl[31·x
aptl[4] .x
aptl[5] .x

37; aptl[O].y = 82;
400; aptl[l].y = 195;
40; aptl[2].y = 320;
260; aptl[3].y = 10;
260; aptl[4].y = 390;
37; aptl[5].y = 82;

/* Draw the star. */

GpiBeginArea(hps, BA_ALTERNATE);
GpiMove(hps, aptl);
GpiPolyLine(hps, 6L, aptl);
GpiEndArea(hps) ;

36.3.2 Drawing Multiple Intersecting Closed Figures
The following code fragment shows how to use area functions to draw two inter­
secting boxes that are filled using the winding mode:

GpiBeginArea(hps, BA_WINOING);
ptl.x = 500; ptl.y = 300;
GpiMove(hps, &ptl);
ptl.x = 700; ptl.y = 500;
GpiBox(hps, ORO_OUTLINE, &ptl, OL, OL);
ptl.x = 580; ptl.y = 370;
GpiMove(hps, &ptl);
ptl.x = 780; ptl.y = 570;
GpiBox(hps, ORO_OUTLINE, &ptl, OL, OL);
GpiEndArea(hps) ;

36.3.3 Drawing Multiple Disjoint Closed Figures
The following code fragment shows how to use area functions to draw two dis­
joint boxes that are filled using the winding mode:

GpiBeginArea(hps, BA_WINOING);
ptl.x = 100; ptl.y = 200;
GpiMove(hps, &ptl);
ptl.x = 200; ptl.y = 400;
GpiBox(hps, ORO_OUTLINE, &ptl, OL, OL);
ptl.x = 580; ptl.y = 470;
GpiMove(hps, &ptl);
ptl.x = 780; ptl.y = 570;
GpiBox(hps, ORO_OUTLINE, &ptl, OL, OL);
GpiEndArea(hps) ;

36.3.4 Creating a Custom Fill Pattern from a Bitmap
The following code fragment shows ,how to create a custom fill pattern by using a
hard-coded bitmap; which in this example creates a cross-hatch pattern:

CreatePattern () ;
GpiSetPatternSet(hps, lcidCustom);

CreatePattern ()

Chapter 36: Area Primitives 503
iE~ii5i!iiiliiIlmmOO~m~_i~~~!~.miR!~~!i~~~!~~~f~i~i~~liif1!rili~2!~iii!i~~~mi;ijiJ!liiH"aiJmj~!iiiW1!i~~!l~jiB

{

}

1* Bitmap information *1
HBITMAP hbm;
BITMAPINFOHEADER bmp;
PBITMAPINFO pbmi;
CHAR cBuffer[80];

1* bitmap handle * I
1* structure for bitmap information *1
1* pointer to structure for data *1
1* structure template *1

bmp.cbFix = 12;
bmp.cx = 8;
bmp.cy = 8;
bmp.cPlanes 1;
bmp.cBitCount = 1;

1*

1* length of structure *1
1* 8 pels wide *1
1* 8 pels high *1
1* 1 plane *1
1* 1 bit per pel *1

* Initialize the bitmap data by loading "cBuffer" with the bitmap
* information.
*1

pbmi = (PBITMAPINFO)
pbmi->cbFix = 12;
pbmi->cx = 8;
pbmi->cy = 8;
pbmi->cPlanes = 1;
pbmi->cBitCount = 1;

cBuffer;
1* length of structure *1
1* 8 bits wide *1
1* 8 bits high *1
1* 1 plane *1
1* 1 bit per pel *1

1* Initialize first two color-table entries to black and white. *1
pbmi->argbColor[O] .bRed = 0; 1* Color[O]
pbmi->argbColor[O] .bGreen = 0; 1* Color[O]
pbmi->argbColor[O] .bBlue = 0; 1* Color[O]
pbmi->argbColor[l] .bRed = 255; 1* Color[l]
pbmi->argbColor[l] .bGreen = 255; 1* Color[l]
pbmi->argbColor[l] .bBlue = 255; 1* Color[l]

1* Create a bitmap and retrieve its handle. *1
hbm = GpiCreateBitmap(hps,

&bmp,
CBM_INIT,
(PBYTE) abPattern5, 1* array of bits *1
pbmi);

= black *1
black *1
black *1
white *1
white *1
white *1

1* Tag the bitmap just created with a custom identifier (lcid). *1
GpiSetBitmapId(hps, hbm, lcidCustom);

36.3.5 . Creating a Custom Fill Pattern from a Font Character
The following code fragment shows how to create a custom fill pattern by using a
character from a font:

LoadFont 0 ;
GpiSetPatternSet(hps, lcidCustom);
GpiSetPattern(hps, lCodePoint);

LoadFont 0
{

1* Determine the number of loaded public fonts. *1
cFonts = GpiQueryFonts(hps, QF_PUBLIC, NULL, &lCount,

(LONG) (sizeof(fm», (PFONTMETRICS) afm);

1* Load the metrics for all public fonts into afm. *1
cFonts = GpiQueryFonts(hps, QF_PUBLIC, NULL, &lCount,

(LONG) (sizeo f (fm», (PFONTMETRICS) a fm) ;

504 MS OS/2 Programmer's Reference, Vol. 1
.jiiiiiiiriijmi!liliftiljfgDD!l~~iiJ.;r.~Iif.~lf{4l~mllm:i1i!~i~~HID~I!ruill!~ilif:i!!t!Hn~!1$iliill~~JiimIimmni~nrBnm!lijjji5i!flij!I!§~lii!~lfi~!

}

36.4 Summary

/* Grab the first image font with a point size larger than 8. */

for(i = 1;
(afm(i] .fsDefn % 2 1= 0) &&
(afm(i] .sNominalPointSize / 10 >= 8);
i++) ;

/* Load th~ FATTRS structure with corresponding metrics. */

fat~usRecord~engt~ = sizeof(fat);
!at.fsSelection = afm(i] .fsSelection;
fat.1Match = a~m(i] .1Match;
strcpy(fat.szFacename, a!m(i] .szFacename);
fat.idJegistry = afm[i] .idRegistry;
fat.usCodePage = afm[i] .usCodePage;
fat.1MaxBaselineExt = afm[i] .1MaxBaselineExt;
f8.t .1AveCbarWidth = afm [iJ .1AveCharWidth;
fat. fsType, =, afm[i] .fsType;
fat.f~FontUse = 0; ,

/* Ask MS OS/2 to select this font and assign it a custom lcid. */

GpiCreateLogFont(hps, (PSTR8) cBuffer, lcidCustom, (PFATTRS) &fat);
GpiSetCharSet(hps, lcidCustom);

The following list summarizes the MS OS/2 area functions:

GpiBeginArea Starts an area bracket. Its second argument is a combination of
two of four possible flags. Two of these flags affect how MS OS/2 draws the
border of the area: The BA.-NOBOUNDARY flag specifies that MS OS/2
shQuld fill the interior of the area but not its border; the B~OUNDARY flag
specifies 'that MS OS/2 should fiU the interior of the area and its border. The
other two flags determine which mode MS OS/2 uses to fill the area: The
BA.-WINDING flag specifies that MS OS/2 should fill the interior of the area by
using the winding mode; the BA.-ALTERNATE flag specifies that MS OS/2
should fill the interior ,of the area by tlsing the alternate mode.

GpiEndArea Ends an area bracket. When you call GpiE .. dArea, MS OS/2
draws an area by using the flags that you, specified when calling GpiBeginArea
and the primitives spedfied between, the GpiB~ginArea ariq GpiEndAre .. func-
tion calls. '

(;piQueryPattel1l Retrieves a value tl1at identifies the current pattern symbol.

GpiQueryPattem~etpoint Retrieves the cQordinates of the current pattern
reference PQint.

GpiQuery~attemSet Retrieves a local identifier (Zcid) that identifies a bitmap
or a font. '

GpiSetPat.em Sets the pattern-symbol attribute to a value that identifies one of
the 16 predefined patterns, or sets the attribute to a code point for a character
or symbol in ~ font. '

GpiSetPatternReiPoint Sets the pattern reference point. The default reference
point is (0,0); when you move the reference point, you shift the entire fill pattern
within the area. '

GpiSetPattemSet Sets the pattern attribu~e to a local identifier (lci4) that
identifies alJitmap or a font. "

Chapter

37

Marker Primitives
37 .1 Introduction•............. ~ " ~ 507

37.2 About M·arker Primitives ... 507
37.2.1 The Default Marker and the Default Marker Set 507
37.2.2 Custom Markers.. 508
37.2.3 Image and Vector Markers 508
37.2.4 Marker Colors ... 508
37.2.5 Drawing Markers... 5()9

37.3 Using Markers•.................. 5()9
37.3.1 Drawing a Series of Markers 5()9
37.3.2 Selecting a New Marker.•........ 5()9
37.3.3 Selecting a New Marker Set................................ 510
37.3A Changing the Marker Color•.......................... 510

37.4 Summary .. 510

Chapter 37: Marker Primitives 507
rifilf!~f!mi~~mlffi~G!iii!ljjil~iiiUi!i;Uif1S,i,,~iffiil§I~!§J!!i~!liliim:filfiiimiw.iiil!S!!f:jil!~i!mlS.lilftff~i~~~~F.~'nJ1iIDi!!i§l§ijs::m~r.llinjiiiYf!liiiiii&!

37.1 Introduction
This chapter describes a graphics object called a marker primitive. You should
also be familiar with the following topics:

• Presentation spaces and device contexts

• Color and mix modes

• Fonts

37.2 About Marker Primitives
A marker or a symbol is a character or a symbol that is always drawn centered
over a point. Applications typically use marker primitives to identify points of
interest such as points on a graph.

37.2.1 The Default Marker and the Default Marker Set
When you create a presentation space, it contains the default marker-a cross­
from the default marker set. The default marker set contains eleven image char­
acters, which are drawn by setting pels in a rectangular region called a marker
box. Figure 37.1 shows ten characters from the default marker set (the eleventh
character is an invisible marker):

Figure 37.1
Default Marker Set

X Cross

+ Plus

<> Diamond

D

• •
Square

Solid square

Solid diamond

• Six-pointed star * Eight-pointed star

• Dot

0 Small circle

Within the marker box, the color of the set pels defines the foreground color,
whose default color is neutral (black on the display and on printers); the color of
the pels that are not set defines the background color, whose default color is the
background color on the device (white on the display, and the paper color on
printers). The height and width of the default marker are device dependent. You
can retrieve these dimensions by calling the DevQueryCaps function. Figure 37.2
shows a graph drawn using the default marker:

508 MS OS/2 Programmer's Reference, Vol. 1
~~ .. ~~J~~m2t~I~!iIU~!~~ilH!!!~I?i~mBjnl~!~HBm!§ijif~I~;ii!iifil~~~el~H~im~lieimili!!~iPj!I!~1r:~!'ii!ijf~i~i~ii!!!imm;lii~~i!~

Figure 37.2
Markers Used in a Graph

60
o Worldwide

50 o United States

DonnCo 40
Annual Sales
(in millions) 30

20

10

0
1984 1985 1986 1987 1988 1989

37.2.2 Custom Markers
You can use any font's character set as a marker set and any character within
that marker set as a marker. To retrieve the value that identifies the current
marker set, call the GpiQueryMarkerSet function. To retrieve the value that
identifies the current marker character, call the GpiQueryMarker function. You
can call the GpiQueryAttrs function to retrieve both values simultaneously.

If the current marker set does not contain a symbol that suits your application,
you can load a new character set and select a marker from that set. For a
description of loading character sets, see Chapter 33, "Fonts and Character
Primitives." Once you have loaded a new character set, you can select it as a
marker set by calling the GpiSetMarkerSet function. After selecting the marker
set, call the GpiSetMarker function to select a marker from the set. You can
call the GpiSetAttrs function to set both values simultaneously.

37.2.3 Image and Vector Markers
If the current marker set contains image characters, the marker-box dimensions
are fixed, since you cannot alter the size of image markers. If the current marker
set contains vector characters (characters outlined by using line and arc func­
tions), you can change the size of the marker box by calling the GpiSetMarker­
Box or GpiSetAttrs function.

37.2.4 Marker Colors
When you draw a marker, three colors affect its appearance-the foreground
color, the background color, and the current color of the drawing surface. For
image markers, the colors were explained in Section 37.2.1. For vector markers,
the foreground color defines the color of the lines, arcs, and fill patterns that
draw the marker, and the background color defines the color of the remainder
of the marker box. The drawing-surface color is the color of the drawing surface
on the output device associated with the application's presentation space. In
addition to the foreground, background, and drawing-surface colors, two mix
modes-foreground and background-affect the appearance of the marker. The
foreground mix mode specifies a color mix mode between the foreground marker

Chapter 37: Marker Primitives 509
if.i!~Hii1f!migjf~f~~~iiI!ijjn~liSimi~;1m;if;t,~imi!M~3n:aJ!!i~ilif;Smlfiilfii1af~t!f.Jf:!!lli5af~iif;li.i!ru~lifj~!§!i~U§Nm!iID!l!i~l§fisSlfm~!lEillfl~ii&i

color and the drawing-surface color. The background mix mode specifies a color
mix mode between the background marker color and the drawing-surface color.
(For a more complete description of colors and mix modes, see Chapter 34,
"Color and Mix Modes.") You can determine the current marker colors and mix
modes by calling the GpiQueryAttrs function. You can set new colors and mix
modes by calling the GpiSetAttrs function.

37.2.5 Drawing Markers
You can draw a single marker or a series of markers. To draw a single marker,
you must set the fields in a POINTL structure to correspond to the marker posi­
tion in world coordinates and then call the GpiMarker function, passing it the
address of the POINTL structure as the second argument. To draw a series of
markers, you must set the fields in an array of POINTL structures to correspond
to the marker positions in world coordinates and then call the GpiPolyMarker
function, passing it the number of points in the array as the second argument
and the name of the array as the third argument.

37.3 Using Markers
You can use marker functions to perform the following tasks:

• Draw a single marker or a series of markers.

• Determine the local identifier (Zcid) for the current marker set.

• Select a character set as the new marker set.

• Determine the value that identifies the current marker.

• Select a character as the new marker.

• Set or change the size of the marker box.

• Set or change the color of a marker.

37.3.1 Drawing a Series of Markers
The following code fragment shows how to draw a graph by calling the GpiPoly­
Line and GpiPolyMarker functions:

HPS hps; /* presentation-space handle */
POINTL aptl[6]; /* array of points */

aptl[O].x 10; aptl[O].y = 15;
aptl[l].x 150; aptl[l].y 30;
aptl[2].x 200; aptl[2].y 32;
aptl[3].x 250; aptl[3].y 70;
aptl[4].x 360; aptl[4].y 120;
aptl[5].x 380; aptl[5].y 98;
GpiMove(hps, aptl);
GpiPolyMarker(hps, 6L, aptl);
GpiPolyLine(hps, 6L, aptl);

37.3.2 Selecting aNew Marker

/* assigns points */

/* sets current position */
/* plots points */
/* draws lines */

The following code fragment shows how to check whether the default marker set
and marker are currently being used. If they are, it replaces the default marker
with a six-pointed star:

510 MS OS/2 Programmer's Reference, Vol. 1
;!aP.!~J~~~!211~'~i!¥ii~!~i~e!a~~mi!!lYilU!j!f!mm!rajimiiili~.lm!~~~1~1iHiffi~liilmmillil!iPJ!i!~li:~minf.!!i~i;!.i!l!;m~~i~~m!~

if «GpiQueryMarker(hps) == MARKSYM_DEFAULT) &&
(GpiQueryMarkerSet(hps) == LCID_DEFAULT»

GpiSetMarker(hps, MARKSYM_SIXPOINTSTAR);

37.3.3 Selecting a New Marker Set
The following code fragment shows how to load a Helvetica vector font, use it as
the new marker set, and select the smile-face character as the new marker primi­
tive:

GpiLoadFonts (hps, "helv"); 1*
lFontCount = GpiQueryFonts(hps, 1*

Ox00000002, "Helvetica", &lCount,
(LONG) (sizeof (fm», (PFONTMETRICS) afm);

fat.usRecordLength = sizeof(fat); 1*
fat.usCodePage = 850; 1*
fat.lMatch = afm[O] .lMatch; 1*
fat.fsFontUse = FATTR_FONTUSE_TRANSFORMABLE; 1*
GpiCreateLogFont(hps, (PSTR8) buffer, ++lcid,

(PFATTRS) &fat);
mbnd.usSet = lcid; 1* uses
mbnd.usSymbol = 2; 1* uses
GpiSetAttrs(hps, PRIM_MARKER,

MBB_SYMBOL I MBB_SET,
OL, &mbnd);

37.3.4 Changing the Marker Color

loads helv.dll *1
loads array of fm *1

sets record length *1
sets code page *1
uses first metrics *1
uses vector font *1

font as marker set *1
smile character *1

The following code fragment shows how to set the marker foreground color to
green:

mbnd.lColor = CLR_GREEN;
GpiSetAttrs(hps, PRIM_MARKER, MBB_COLOR, OL, &mbnd);

37.4 Summary
The following list summarizes the MS OS/2 marker functions:

GpiMarker Draws a marker by using the current marker attributes.

GpiPolyMarker Draws a series of markers by using the current marker attri­
butes.

GpiQueryAttrs Retrieves the values of the current marker attributes.

GpiQueryMarker Retrieves the current marker-symbol attribute.

GpiQueryMarkerBox Retrieves the size of the current marker box.

GpiQueryMarkerSet Retrieves the value of the current marker-set attribute.

GpiSetAttrs Sets the fields in the MARKERBUNDLE structure.

GpiSetMarker Sets the attribute of the marker symbol.

GpiSetMarkerBox Sets the dimensions of the marker box. (This function is
only meaningful for vector markers; the width and height of raster markers are
fixed.)

GpiSetMarkerSet Sets the attribute of the marker set.

Chapter

38

Bitmaps
38.1 Introduction.. 513

38.2 About Bitmaps .. 513
38.2.1 Bitmap Dimensions .. 5~4
38.2.2 Storing Color Information in Bitmaps 515

38.2.2.1 Color Planes 515
38.2;2.2 Bitcounts 515

38.2.3 Creating Bitmaps·... 516
38.2.4 Creating and Loading Custom Bitmaps 517
38.2.5 Drawing Bitmapped Images 518
38.2.6 Copying Images from a Display into a Bitmap 519
38.2.7 Saving Bitmaps in a File 520

38.3 U sing Bitmaps :... 520
38.3.1 Copying an Image from a Video Display

to a Bitmap.. . . 520
38.3.2 Scaling and Drawing a Bitmapped Image 522
38.3.3 Creating a Custom Fill Pattern............................. 522
38.3.4 Loading a Bitmap from a File.............................. 523
38.3.5 Storing a Bitmap in a Metafile.............................. 523

38.4 Summary .. 524

Chapter 38: Bitmaps 513
i~~n~m51m~~S~i6mi1i~ii»l!~lrn~l§P.ili!i~I~l1ffii5lliiiilijJ~illiilimlj;i~lil~j~Im1.i1iilliiiliiiiiiii!!iI~iir.~I!!!ii~iWt;w.fIDJ~iim'ml1

38.1 Introduction
This chapter describes a graphic object called a bitmap. You should also be
familiar with the following topics:

• Presentation spaces and device contexts

• Coordinate spaces

• Color and mix modes

• Area primitives

• Paths

38.2 About Bitmaps
A bitmap is an array of bits that represents an image. Applications can use bit­
maps to store and display scanned images, icons, and symbols, and to create fill
patterns for area primitives and paths. You can display a bitmap image on a ras­
ter output device (a raster is a rectangular matrix of pels or picture elements on
a video display or dot matrix printer). A raster output device displays an image
by setting adjacent pels in its matrix to colors specified in a corresponding bit­
map. An image created in this way is called a "bitmapped image." Figure 38.1
shows an array of bits, on the left, and its corresponding bitmapped image, on
the right:

Figure 38.1
Bitmap and Image

Bitmapped images are device dependent. The shape of a device's pels, as well as
its color capabilities, affects the appearance of a bitmapped image. For example,
if the pels on one display measure 0.05 mm by 0.1 mmand the pels on a second
display measure 0.1 mm by 0.3 mm, a circular bitmapped pie chart that you draw
on the first display will appear elliptical on the second. If the first display sup­
ports 16 colors, the second supports 2 colors, and you created the pie chart
using 12 colors, you will lose critical color information if you draw the chart on
the second display. Figure 38.2 shows the pie chart drawn twice: The chart on
the left was drawn on the first display; the chart on the right was drawn on the
second display.

514 MS OS/2 Programmer's Reference, Vol. 1
J!;m~ifiii1i.fii~fi!m~misiiff,m;lffiii[~.Jiiiitlii1~~i~rli!im'I1§!ij!!gmjiGH~I!iiMli~i~1§;i~1Ji~~~~.81mlfiP.iJ1iU!iami8i~i;tiifdiRru1f:i;i

Figure 38.2
Bitmap Shown on Two Displays with Different Aspect Ratios

38.2.1 Bitmap Dimensions

Figure 38.3

Each row of pels in a bitmapped image corresponds to a row of bits in a bitmap.
In MS OS/2, bitmap rows are padded so that they end on ULONG (32-bit) boun­
daries. Pels in a bitmapped image are numbered beginning in the lower-left
corner, moving to the right across the first row, then proceeding up, row-by-row,
from left to right to the last row. In a bitmapped image, the first pel is in the
lower-left corner; the last pel is in the upper-right corner. The first byte of the
bitmap contains the color information for the first pel; the last byte contains the
color information for the last pel. Figure 38.3 shows the relationship between
bitmap bits and pels in a bitmapped image:

Bits and Pels in a Bitmapped Image

First bit corresponds to
pel in lower-left corner.

Last bit corresponds to
pel in upper-right corner.

Chapter 38: Bitmaps 515
a!~li~l1¥l~;~llf:l!i:im!li~~~!ij;~!ial~ti!i!!~mru...~tm~ii5iru3iI~~UjU~i!i~~1!!tiii!iij~!il1miiffi~~!lla~~Rlifihlt~iiftili!iitiilfr.ilii~!.illlim

When you create a bitmap by using the GpiCreateBitmap function, you specify
the bitmap width and height in terms of pels in the bitmapped image: The width
is the number of pels within a row; the height is the number of rows. You should
store these dimensions in the BITMAPINFO and BITMAPINFOBEADER struc­
tures and pass their addresses to the GpiCreateBitmap function when you call it.

38.2.2 Storing Color Information in Bitmaps
Graphics systems use one of two formats for storing color information in bit­
maps. The first format uses multiple color planes. The second format uses a sin­
gle plane and a multiple bit count.

38.2.2.1 Color Planes
Bitmaps are arranged in color planes. A color plane is an array of bitmap bits
that contain color information. The bitmaps in each of the previous illustrations
used the single-plane format, which is the standard format for bitmaps in MS
OS/2 applications. In this format, adjacent bitmap bits contain indices into
either a special color table of RGB values or actual RGB structures; all of the
color information resides in a single plane. Although no device drivers for MS
OS/2 Presentation Manager currently support a multi-plane format, this may
change. A common multi-plane bitmap format for a hitmapped image is the 3-
plane format in which one plane corresponds to the red pels, another to the
green pels, and a third to the blue pels. You can determine which color-plane
format a device supports by calling the· GpiQueryDeviceBitmapFormats function
and examining the first value in each pair of values that it returns.

38.2.2.2 Bitcounts
A bitcount is a value that specifies how many adjacent bitmap bits correspond to
each pel in a bitmapped image. There are four possible bitcounts:

• 1 bit per pel

• 4 bits per pel

• 8 bits per pel

• 24 bits per pel

If a device uses a bitcount of 1, 4, or 8 bits per pel, the bitmap bits contain
index values for a bitmap color table. If the device supports a bitcount of 1 bit
per pel, the color table contains two entries. If the device supports a bitcount of
4 bits per pel, the color table can contain up to 16 entries. And if the device
supports a bitcount of 8 bits per pel, the color table can contain up to 256
entries. Figure 38.4 shows a bitmap using a bitcount of 4 bits per pel and an
associated color table:

516 MS OS/2 Programmer's Reference, Vol. 1
jliml_r.!ii~;~!iim~mi~Giii~iffili~~JiifJ~Iif~ii~j:]ID!~§!i@.~f~!i;nmfm!~J!!!1i§i§!~lliw.~t~_~mlffdiiiiUiSim~*~i~iirlii~1if:fii!

Figure 38.4
A Bitcount and its Associated Color Table

101 011100101100001101000111011

The first pel is colored
dark cyan.

Color Table

Index Color

0 White
1 Blue
2 Red
3 Pink
4 Green
5 Cyan
6 Yellow
7 Black
8 Dark gray
9 Pale blue

10 Pale red
11 Pale pink
12 Dark green
13 Dark cyan
14 Brown
15 Pale gray

If the device supports a bitcount of 24 bits per pel, the bitmap bits contain the
bRed, bGreen, and bBlue fields of RGB structures. There is no color table asso­
ciated with a bitmap on a device that supports a format of 24 bits per pel (such a
device can support over 16 million colors). You can determine the bitcount for­
mat a device supports by calling the GpiQueryDeviceBitmapFormats function
and examining the second value in each pair of values that it returns. The first
pair contains the preferred color plane and bitmap format. You should create
this color table when you call the GpiCreateBitmap function by loading an array
with the appropriate number of RGB structures and passing the address of this
array as the argbColor field in the BITMAPINFO structure.

38.2.3 Creating Bitmaps
MS OS/2 requires that you associate a presentation space with a memory device
context before you perform many of the bitmap operations. A memory device
context is a special device context that lets you treat a bitmap in memory like a
device. You can copy color information from another bitmap (or copy pels on
the display) into a bitmap associated with a memory device context. You create
a memory device context with the DevOpenDC function by passing as the sec­
ond argument OD~EMORY and as the last argument a handle to a compatible
device context. For instance, if you are creating a memory device context that is
compatible with a screen device context, you would pass the handle from the
WinOpen WindowDC function as the last argument to DevOpenDC. For more
information, see the examples in Section 38.3.

When you create a bitmap, you will pass GpiCreateBitmap information about
the bitmap's color plane and bitcoullt formats, the dimension of the bitmap in
pels, and a description of the bitmap's color table. You will pass this informa­
tion in two structures: BITMAPINFO and BITMAPINFOHEADER.

Chapter 38: Bitmaps 517
!i~ff~li!j~lmllf.~miffl!li!mP!ij~iijj;~liru~~~i~"".t.:!f:!!ti1ii5iru3ili~~iS!rn~i~~fi5iii!P.jg~~im~~illEltij~mlfimt~~ilifi!ii~ifji.~!.fi!I~

The BITMAPINFO structure has the following form:

typedef struct _BITMAPINFO { I' bmi 'I
ULONG cbFix; I' length of structure in bytes 'I
USHORT cx; I' width of bitmapped image in pels 'I
USHORT cy; I' height of bitmapped image in pels 'I
USHORT cPlanes; I' format of color plane 'I
USHORT cBitCount; I' bitcount format 'I
RGB argbColor[l]; I' array of RGB structures 'I

} BITMAPINFO;

The BITMAPINFOHEADER structure has the following form:

typedef struct _BITMAPINFOHEADER { I' bmp 'I
ULONG cbFix; I' length of structure in bytes 'I
USHORT cx; I' width of bitmapped image in pels 'I
USHORT cy; I' height of bitmapped image in pels 'I
USHORT cPlanes; I' format of color plane 'I
USHORT cBitCount; I' bitcount format 'I

} BITMAPINFOHEADER;

38.2.4 Creating and Loading Custom Bitmaps
You can create a custom bitmap by setting bits in a hard-coded array and pass­
ing the array to the GpiCreateBitmap function, or by running Icon Editor and
loading the bitmap into your application by calling the GpiLoadBitmap function.
To create a custom hard-coded bitmap, you must perform the following steps:

1 Define in your application's source code an array of bytes that will set pels in an
image to the appropriate colors.

2 Set the fields in the BITMAPINFOHEADER structure to their appropriate
values.

3 Set the fields in the BITMAPINFO structure to their appropriate values.

4 Call GpiCreateBitmap, pass it the addresses of the structures and the array of
bytes you have defined already, and set the flOptions flag to TRUE.

If you want to use this bitmap as a fill pattern, assign it a local identifier by call­
ing the GpiSetBitmapId function.

To load a custom bitmap that you created by using Icon Editor, you must per­
form the following steps:

1 Copy the bitmap file to the directory in which you compile your applications.

2 Create a BITMAP entry in your application's resource file, assigning a unique
integer identifier to the bitmap.

3 In your application's source code, call the GpiLoadBitmap function, passing it
the integer identifier that you assigned to the bitmap in the resource file.

You can use GpiLoadBitmap to load any bitmap from a file that conforms to the
MS OS/2 bitmap file format. This means that you could load a bitmap created
by another application, if that application created the correct bitmap header and
stored the bitmap bits correctly. For a description of the bitmap file format, see
the Microsoft Operating System12 Programmer's Reference, Volume 2.

518 MS OS/2 Programmer's Reference, Vol. 1
miiiJ_~1mlitii~ieflifilmi!slfIimtiffiP.[~ijijf§i{~..mllli1m~~I!i!ii!!~iGtl2!!mi~!~J.i~1!i!i!~]iiI~!;~.a1iiilfd~mlBimSi!iiR.li§iii!utliiU~1W:fili

38.2.5 Drawing Bitmapped Images
You can draw bitmapped images when your application's drawing mode is
DMJ)RAW, DMJETAIN, or DMJ)RAWANDRETAIN. This means that
you can draw bitmapped images on a raster printer or video display, and you can
draw them into segments or metafiles associated with a raster device. Most of
the bitmap drawing operations occur in your application's device space; how­
ever, one drawing operation lets you draw in your application's world space.
Table 38.1 describes the functions you can use in each drawing mode:

Table 38.1 Drawing Modes and Bitmapped Output

Drawing mode Function

D~DRAW GplBltBlt

D~DRAW WlnDrawBltmap

D~DRAW GplImage

D~DRAW GplWCBltBlt

D~RETAIN GplWCBltBlt

D~DRAWANDRETAIN GplWCBltBlt

Output

Bitmapped image on a
raster display or
printer.

Monochrome bit­
mapped image on a
raster display.

Special monochrome
bitmapped image on a
raster display or
printer.

Bitmapped image on a
raster display or
printer; or bitmapped
image into a metafile.

Bitmapped image into
a metafile or segment.

Bitmapped image on a
raster display or
printer and into an
associated metafile or
segment.

The GpiBitBlt and GpiWCBitBIt functions copy a bitmapped image from a rect­
angle in a source presentation space into a rectangle in a target presentation
space. You can use these functions to scale bitmaps (shrink or expand them) by
altering the dimensions of the target and source rectangles. GpiBitBlt requires
that you use device coordinates for the dimensions of source and target rect­
angles. GpiWCBitBlt, however, requires device coordinates for the source rect­
angle and world coordinates for the target rectangle. You should use GpiWC.
BitBlt to draw a bitmap with consistent dimensions on devices with different
aspect ratios. (The aspect ratio is the ratio of a pel's width to its height.)

The WinDrawBitmap function draws a bitmapped image by copying it into a
window linked to a target presentation space. Unlike GpiBitBlt and GpiWC.
BitBlt, WinDrawBitmap does not require you to select a bitmap into a presenta­
tion space before you draw the corresponding image. You can use this function
to scale bitmaps by specifying DB~STRETCH as the last argument and the
address of a RECTL. structure as the fourth argument. The coordinates in this
structure are always device coordinates.

Chapter 38: Bitmaps 519
i!!giiii!~i~lmJlf.~!i:iffl!li~Pii~friL.limF.lff;Ji~~im!~I~eJm1iiiiiiih'ii!i1tiitii!ii';!ili~~imii9i1i~i~~~mifii1ft~iE.:fiIifiYililfr.ilii!ti1!ID~

Figure 38.5

The Gpilmage fu,nction draws a special bitmapped image. The bitmap bits for a
Gpilmage call are not stored like normal bitmap bits-for example, the first bit
in the bitmap contains color information for the pel in the upper-left (rather
than the lower-left) corner of the bitmap; the last bit in the bitmap contains
color information for the pel in the lower-right (rather than the upper-right)
corner of the bitmap. Figure 38.5 shows the correspondence between bitmap bits
for the Gpilmage call and pels in the special bitmapped image:

Bits and Pels in a Special Bitmapped Image

You cannot scale bitmapped images by calling the Gpilmage function.

You should use the GpiBitBlt or GpiWCBitBlt function to draw bitmaps that
use'color formats of 1, 4, 8, or 24 bits per pel. The Gpilmage and WinDraw­
Bitmap functions draw bitmaps using two colors. These two functions do not
use a color table; instead, they use the foreground and background colors from
the IMAGEBUNDLE structure. You can set these colors (and their correspond­
ing mix modes) by calling the GpiSetAttrs function, or you can determine the
IMAGEBUNDLE colors and mix modes by calling the GpiQueryAttrs function.

You can draw inverted bitmaps by calling the GpiBitBlt or GpiWCBitBlt func­
tion, passing it ROP _NOTSRCCOPY as the raster operation. You can also draw
inverted bitmaps by calling WinDrawBitmap, passing it DBMJNVERT as the
last argument. You can draw halftone bitmaps by calling WinDrawBitmap, pass­
ing it DBMJIALFTONE as the last argument.

38.2.6 Copying Images from a Display into a Bitmap
You can copy an image from a raster video display into a bitmap by calling the
GpiBitBlt or GpiWCBitBlt function. Before doing so, however, you must create
a memory device context by calling the DevOpenDC function. This device con­
text lets you treat a bitmap in memory like a device, by copying color informa­
tion from pels on the display into the bitmap.

520 MS OS/2 Programmer's Reference, Vol. 1
I!!ml~miUtf!~!"n~mi~lift!m!iffiF.~:i!lii~11H~H~~:f~~§!m!~iimiH5!!$fm!!Jl!mli§i§f~1n~~m!~~§lmlfditiii!Simi§Ulii,~i~~i~~1i!ii!

Once you create a memory device context, associate it with a presentation
space, and select your bitmap into the presentation space, you can use the
presentation-space handle as the first argument to the GpiBitBlt or GpiWCBitBlt
function. If you will be drawing the image (saved in the memory device context)
on devices with different aspect ratios, you should use the GpiWCBitBlt function
to preserve the original dimensions of the bitmap. For more information about
saving bitinapped images, see Section 38.3.

38.2.7 Saving Bitmaps in a File
You can save a bitmap in a file on a disk by calling the GpiQueryBitmapBits,
DosOpen, DosWrite, and DosClose functions. The GpiQueryBitniapBits func:­
tion copies bitmap bits into a buffer. After you create a file by calling DosOpen,
you can call DosWrite to copy the buffer containing the bitmap bits into the file.
After copying the bits into the file, you close it by calling DosClose.

If you have stored a bitmap on disk and need to use it again in your application,
you can copy the file's contents into a buffer by calling the DosRead function
and then set the bitmap bits by calling the GpiSetBitmapBits function. (You
must associate the bitmap with a memory device context before trying to set the
bits.)

if your application creates bitmaps another application might use, it should
create them by using the standard MS OS/2 bitmap file format. For a complete
description of the file format, see the Microsoft Operating System12 Program­
mer's Reference, Volume 2.

38.3 Using Bitmaps
You can use bitmap functions to perform the following tasks:

• Copy an image from a video display into a bitmap. •

• Scale bitmapped images.

• Create custom fill patterns for area primitives and paths.

• Load a bitmap created by Icon Editor.

• Draw bitmapped images.

• Store bitmaps in a metafile or segment.

38.3.1 Copying an Image from a Video Display to a Bitmap
To copy an image from a video display to a bitmap, you must perform the fol­
lowing steps:

1 Associate the memory device context with a presentation space.

2 Create a bitmap in a memory device context.

3 Select the bitmap into the memory device context by calling the GpiSetBitmap
function.

4 Determine the location (in device coordinates) of the image.

5 Call the GpiBitBlt function and copy the image to the bitmap.

Chapter 38: Bitmaps 521
!iSi~~~~s!i.ii!§iirIifJffifB!!iiiiin§!!f5!if:fiiilimgUim~~!lifl~n~i!~mlii!mt~m~..mt:!if;!il~1b~~~OOt~~~~~!e;;~lm!~I!i~ns.ijfi

The following code fragment demonstrates these steps:

psz pszData[4] = { "Display". NULL. NULL. NULL };
HAB hab;
HPS hpsMem. hps;
HDC hdcMem. hdc;
SIZEL sizlPage;
BITMAPINFOHEADER bmp;
BYTE abBuffer[80];
PBITMAPINFO pbmi;
HBITMAP hbm;
SHORT sWidth. sHeight;
POINTL aptl[6];
LONG alData[2];

/*
* Create the memory device context and presentation space so that they
* are compatible with the screen device context and presentation space.
*/

hdcMem = DevOpenDC(hab. OD_MEMORY. "*". 4L.
(PDEVOPENDATA) pszData. hdc);

hpsMem = GpiCreatePS(hab. hdcMem. &sizlPage.
PU_PELS I GPIA_ASSOC I GPIT_MICRO);

/* Determine the device's plane/bitcount format. */

GpiQueryDeviceBitmapFormats(hpsMem. 2L. alData);

/*
* Load the BITMAPINFOHEADER and BITMAPINFO structures. The sWidth and
* sHeight fields specify the width and height of the destination
* rectangle.
*/

bmp.cbFix = (ULONG) sizeof(bmp);
bmp.cx = sWidth;
bmp.cy = sHeight;
bmp.cPlanes = alData[O];
bmp.cBitCount = alData[l];

pbmi = (PBITMAPINFO) abBuffer;
pbmi->cbFix = bmp.cbFix;
pbmi->cx = bmp.cx;
pbmi->cy = bmp.cy;
pbmi->cPlanes = pmp.cPlanes;
pbmi->cBitCount = bmp.cBitCount;

/* Create a bitmap that is compatible with the display. */

hbm = GpiCreateBitmap(hpsMem. &bmp. FALSE. NULL. pbmi);

/* Associate the bitmap and the memory presentation space. */

GpiSetBitmap(hpsMem. hbm);

/* Copy the screen to the bitmap. */

aptl[O].x 0;
aptl[O].y 0;
aptl[l].x sWidth;
aptl[l].y sHeight;
aptl [2] .x 0;

/* lower-left corner of destination rectangle */
/* lower-left corner of destination rectangle */
/' upper-right corner of destination rectangle */
/' upper-right corner of destination rectangle */

aptl [2] .y 0;
GpiBitBlt(hpsMem.

hps.
3L.
aptl.
ROP_SRCCOPY.
BBO_IGNORE);

/* lower-left corner of source rectangle */
/* lower-left corner of source rectangle */

/* number of points in aptlPoints */

522 MS OS/2 Programmer's Reference, Vol. 1
!firllim!;i~.i!~!!li~!~i~I~IEIf!!j~iifitill_U~!!l!ii!ijmlE~il!§jimlL~£mi!ifA~if:L!f!n~JiiiklJ~~I~~~iir~!!!~!fi!i;:zJ.ffiIf!~i~f.~I!i1

38.3.2 Scaling and Drawing a Bitmapped Image
You can scale a bitmap by calling the GpiBitBlt and GpiWCBitBlt functions and
altering the dimensions of the target rectangle. The following code fragment
shows how to shrink the screen copied in the first example to half its original
size and redraw it by calling GpiBitBlt:

It target-rectangle dimensions (in device coordinates) tl
aptl[O).x = 0;
aptl[O).y = 0;
aptl[l) .x= sWidth/2;
aptl[l].y = sHeight/2;

It source-rectangle dimensions (in device coordinates) tl
aptl(2).x = 0;
aptl(2).y = 0;
aptl[3].x = sWidth;
aptl[3].y = sHeight;
GpiBitBlt(hps, hpsMem, 4L, aptl, ROP_SRCCOPY, BBO_IGNORE);

38.3.3 Creating a Custom Fill Pattern
You can create a custom fill pattern that MS OS/2 will use to fill area primitives
and paths. To create this pattern, you perform the following steps:

1 Set an array of bits for a bitmap that measures 8 bits by 8 bits (remember that
MS OS/2 pads the bitmap bits on a ULONG [32-bit] boundary).

2 Create a bitmap in a screen presentation space by calling the GpiCreateBitmap
function, passing it the address of the array of bits from Step 1.

3 Assign a local identifier (lcid) to the bitmap by calling the GpiSetBitmapld func-
tion. .

4 Set the attribute of the pattern set in the AREABUNDLE structure by calling the
GpiSetPattem function.

The following code fragment shows how to create the pattern:
It

t Define an array of bytes--this array creates
t a cross-hatch pattern.
tl

BYTE abPatternS[) = {
OxFF, OxFF,
Ox80, OxOO,
Ox80, OxOO,
Ox80, OxOO,
Ox80, OxOO,
Ox80, OxOO,
Ox80, OxOO,
Ox80, OxOO,
Ox80, OxOO,
Ox80, OxOO,
Ox80, OxOO,
Ox80, OxOO,
Ox80, OxOO,
Ox80, OxOO,
Ox80, OxOO,
Ox80, OxOO };

Chapter 38: Bitmaps 523
1iP.fl91~~t~~i~iiiift1fiif.iiE!iii~1#IJ~~~~iiiif;i!~l"l~iirmi!iiiii~iiii~il~iitiil§;m~1~2i~~~~iS1l!i1;ngn~~~lfiml!lalmliPllmiiElJii~~ij!iiii!i

LONG lcidCustom;
HPS hps;
BITMAPINFOHEADER bmp;
PBITMAPINFO pbmi;
HBITMAP hbm;

/* Create the bitmap, passing the address of the array of bytes. */

hbm = GpiCreateBitmap(hps, &bmp, CBM_INIT, (PBYTE) abPatternS,
pbmi) ;

/* Assign a local identifier to the bitmap. */

GpiSetBitmapId(hps, hbm, lcidCustom);

/* Set the pattern-set attribute in the AREABUNDLE structure. */

GpiSetPatternSet(hps, lcidCustom);

38.3.4 Loading a Bitmap from a File
You can load a bitmap from a file if the format of the file corresponds to the
standard MS OS/2 bitmap file format. (Any bitmap that you create using Icon
Editor is automatically stored in this format.) To load a bitmap, you perform the
following steps:

1 Copy the bitmap file into the directory that contains your application's resource
file and source code.

2 Create an entry in your application's resource file, assigning a unique integer
identifier to the bitmap.

3 Call the GpiLoadBitmap function in your application's source code, passing it
the integer identifier that you assigned to the bitmap in your application's
resource file.

The following code fragment, from an application's resource file, assigns the
integer value 200 to a bitmap file called custom.bmp:

BITMAP 200 custom.bmp

The following code fragment, from the application, shows how to retrieve a bit­
map handle by calling GpiLoadBitmap:

hbm = GpiLoadBitmap(hpsMem, /* presentation-space handle */
NULL, /* points to dynamic-link library */
200, /* bitmap identifier in resource file */
99L, /* bitmap width * /
99L) ; /* bitmap height * /

38.3.5 Storing a Bitmap in a Metafile
You can draw bitmaps in a metafile or segment by calling the GpiWCBitBlt func­
tion. MS OS/2 converts this function to a drawing order. The target-rectangle
dimensions that you pass to GpiWCBitBlt are in world coordinates, not device
coordinates. The following code fragment shows how to draw a bitmap in a
metafile and then play the metafile:

524 MS OS/2 Programmer's Reference, Vol. 1
l~~lii!~i~:fifi!!SU~~i~i.n.~~~i.ilii~i".n~!iil!i~imlE~im§j~!~!m!!ifJ~!f~ .. ~i!si¥J~i~~~l§H~Giir~~~~~~I~~~f.~~!

/* * Scale a custom bitmap created with Icon Editor so that it fits
* the entire screen, and draw it into a metafile.
*/

0;
0;
sWidth;
sHeight;
0;
0;

/* screen width
/* screen height

*/
*/

aptl[O] .x
aptl[O].y
aptl[l] .x
aptl[l] .y
aptl[2] .x
aptl[2].y
aptl[3] .x
aptl[3] .y

99;
99;

/* width of custom bitmap */
/* height of custom bitmap */

GpiWCBitBlt(hpsMeta, hbm, 4L, aptl, ROP_SRCCOPY, BBO_IGNORE);
GpiAssociate(hpsMeta, NULL);
hmf = DevCloseDC(hdcMeta);

/* Set the options in the GpiPlayMetaFile array. */

alOptions[O] OL; /* reserved */
alOptions[l] LT_DEFAULT; /* uses default transforms */
alOptions[2] OL; /* reserved */
alOptions[3] LC_DEFAULT; /* uses default */
alOptions[4] RES_DEFAULT; /* uses default */
alOptions[S] SUP_DEFAULT; /* uses default */
alOptions[6] CTAB_DEFAULT; /* uses default */
alOptions[7] CREA_DEFAULT; /* uses default */

/* Play the metafile. */

GpiPlayMetaFile(hps, hmf, eL, alOptions, OL, OL, NULL);

38.4 Summary
The following list summarizes the MS OS/2 bitmap functions:

GpiBitBlt Performs a bit-block transfer, copying bitmap bits from a source
presentation space to a target presentation space. You can associate the source
and target presentation spaces with memory device contexts, raster-display
device contexts, or raster-printer device contexts (prior to calling the function).
You can use GpiBitBIt to set bits in a bitmap to correspond with an image on
the screen, or to create an image on a screen (or a page of printer paper) that
corresponds to bits in a bitmap. Table 38.2 shows the effect of associating the
source and target presentation spaces with different device contexts:

Table 38.2 GpiBitBlt Output

Source presentation
space

Associated with a
memory device context.

Associated with a
memory device context.

Associated with a
screen device context.

Target presentation
space

Associated with a
memory device context.

Associated with a
screen or printer device
context.

Associated with a
memory device context.

Result

MS OS/2 copies bitmap
bits from a source
device context to a tar­
get device context.

MS OS/2 sets pels on a
screen or printer, using
bitmap bits from a
memory device context.

MS OS/2 sets bitmap
bits in a memory device
context, using pels on
the screen.

Chapter 38: Bitmaps 525
~!!i!i!i~~~iEiii!f~rrifJiaiRii~l!iiimmt!F:lir:~immi~~llmili!~ifi~I~!~mf~m~.ruJi!1f::ij1ifim~~i~I1!ff.~~mBiSne!liU~~!s!!f:f!~!i§~~m;ls!

You can also scale an image with this function by specifying different dimensions
for the source and target rectangles.

GpiCreateBitmap Creates a bitmap that is compatible with a device associated
with a presentation space. Before calling GpiCreateBitmap, you call the Gpi­
QueryDeviceBitmapFormats function and determine the color format of the
device. You will use this information to fill the fields in the BITMAPINFO and
BITMAPINFOHEADER structures that you pass as arguments to GpiCreate­
Bitmap. You can also specify zero planes with a bitcount of zero and MS OS/2
will set the appropriate values. You can set the bitmap bits when you call the
function, or you can set them later when you run your application.

GpiDeleteBitmap Decrements a bitmap's use count. If the count reaches zero,
MS OS/2 deletes the bitmap. You should delete a bitmap whenever your applica­
tion no longer needs it, in order to free system resources.

Gpilmage Draws a special bitmap called an image, which is a nonstandard
monochrome (two-color) bitmap. A data structure (IMAGEBUNDLE) contains
fields that correspond to the image foreground and background colors and mix
modes. The foreground color of the image specifies the color of pels that are
set; the background color of the image specifies the color of pels that are not
set.

GpiLoadBitmap Loads a bitmap from a file that uses the standard MS OS/2
bitmap-file format. You can load files that you created by using Icon Editor or
you can load files that your application creates-if it stores the files in the
correct file format.

GpiQueryBitmapBits Copies an array of bitmap bits into a buffer, which you
can then save in a file on disk.

GpiQueryBitmapDimension Retrieves the width and height (in O.l-mm units)
of a bitmap.

GpiQueryBitmapHandle Retrieves the handle of a bitmap with a specific local
identifier (Zcid) value. A bitmap is tagged with a local identifier when an applica­
tion uses it as a fill pattern for area primitives and paths.

GpiQueryBitmapParameters Fills a copy of the BITMAPINFOHEADER struc­
ture with information about a particular bitmap. This information includes the
bitmap's width, height, color-plane count, and bits per pel.

GpiQueryDeviceBitmapFormats Retrieves the color format that you should use
for'bitmaps generated on a specific device. MS OS/2 fills an array that you pass
as a function argument with the various color formats that the device supports.
The array contains pairs of color-plane and bitcount values. The first pair in the
array contains the values most suited to the device.

GpiQueryPel Retrieves an index value from your application's logical color
table for a pel at a specified position (in world coordinates).

GpiSetBitmap Associates a bitmap with a memory device context. If your
application had previously associated a bitmap with the memory device context,
GpiSetBitmap disassociates the original bitmap from the device context and
returns the handle that identifies the old bitmap.

526 MS OS/2 Programmer's Reference, Vol. 1
;~Hilfmi!~lii~~!iH~~f~ilW!I~lj!f~ll!iiiifim.!!ai~!i£:iim!~~i;n~~~~trul!if1i.ii?Ji!i!~j!!ii;~~~1~lfr~~!!rI~~~f.zijffi~litil~.i!ffi~2

GpiSetBitmapBits Uses information stored in a buffer to set rows of bitmap
bits. You should use GpiSetBitmapBits to restore a bitmap that you have saved
on disk in a file.

GpiSetBitmapDimension Sets the width and height (in O.l-mm units) of a
bitmap.

GpiSetBitmapId Associates a local identifier (Zcid) with a bitmap. You should
use this function to identify a bitmap that your application will use as a fill pat­
tern for area primitives and paths.

GpiSetPel Sets a pel at a location (in world coordinates), using a color from
the logical color table.

Chapter

39

Regions
39.1 Introduction 529

39.2 About Regions 529
39.2.1 Clip Regions ... 530
39.2.2 Combining Regions .. 531
39.2.3 Painting Regions.. 532

39.3 Using Regions.............. 533
39.3.1 Creating a Region .. 533
39.3.2 Combining Regions .. 534
39.3.3 Destroying a Region ... 534
39.3.4 Comparing Regions .. 534
39.3.5 Offsetting a Region ... 535
39.3.6 Painting a Region... 535
39.3.7 Locating a Point with Respect to a Region.. 535
39.3.8 Determining Coordinates of Rectangles in a Region... 536

39.4 Summary.. 537

Chapter 39: Regions 529
~i§iirn~imi~lm!iiJilrumHP:lgi~~it!i!~.mf~!!!!mi~~~!;H!iiU~!iifI;lii!!~:m~ffi~!ili~!ai~iiiiU~~!f:~~jjiiim!iIf~mi~lii~!~=sl~!!im!wiilJii!m!

39.1 Introduction
This chapter describes a graphics object called a region. You should also be
familiar with the following topics:

• Presentation spaces and device contexts

• Coordinate spaces and transformations

• Color and mix modes

• Fill patterns (areas)

39.2 About Regions

Figure 39.1
Disjoint Region

A region is a rectangle, multiple disjoint rectangles, or a polygon formed by mul­
tiple intersecting rectangles, in your application's device space. If a region con­
sists of intersecting rectangles, the intersecting sides are always perpendicular.
Since regions are always created and drawn in your application's device space,
region coordinates (the coordinates that define the location and dimensions of a
region) are always device coordin.ates. Figure 39.1 shows a region that consists of
two disjoint rectangles:

An application defined the region by passing an array containing the coordinates
for the two rectangles to the GpiCreateRegion function. The application drew
the region by calling the GpiPaintR~gion function.

530 MS OS/2 Programmer's Reference, Vol. 1
iliih1ir~jmi!!mW'Jiilf_iI1iii!~i!iiP.E:~~l=limrnllm:iliitl~!inm~lffiijl!~iWiimii!!t!mllru!;J~;~~Jiimtimmniill1r!tlli!iiiiij~iliim~n!iH!m!~:g~~

Figure 39.2 shows a region that consists of two intersecting rectangles:

Figure 39.2
Region of Two Intersecting Rectangles

This region was also defined by calling the GpiCreateRegion and GpiPaint­
Region functions.

Most of the region creation, . detection, offsetting, and filling functions use a spe­
cial RECTL structure to define the device~space coordinates of rectangles that
correspond to regions. The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

I' rcl 'I
I' x-coordinate for lower-left corner 'I
I' y-co~rdinate for lower-left corner *1
1* x-coordinate for upper-right corner *1
1* y-coordinate for upper-right corner *1

When you create a rectangle in a device space and pass its coordinates to a
region function, MS OS/2 excludes the top and rightmost edges. This means that
you will need to add 1 to the values in the xRight and yTop fields in order to
obtain the desired dimensions. For example, if your application requires a region
that measures 100-by-100 device units with a lower-left corner at (10,10), you
would need to set xRight and yTop to 111 instead of 110.

You can use regions to clip output in your application's device space, to draw a
single filled rectangle, or to draw a special filled polygon consisting of two inter­
secting rectangles . You can also use regions to repaint the background in the
client area of your application's window or to repaint part of an object in a pic­
ture.

39.2.1 Clip Regions
A clip region is a special region that MS OS/2 uses to clip output in your appli­
cation's device space. Figures 39.3 and 39.4 show the effect of setting a clip
region. In Figure 39.3, there is no clip region and text is drawn in the appli­
cation's client area:

Chapter 39: Regions 531
iii§iirn!iiflifllfm!tOO~m!iP:H1fs&Ui#il!!!~.m~!~~!ii~~~!f!i~~!~!iii!i!!Sii!!ffi~fMi~a!~iiiU~~~m~;iiJjl~diJmjii¥fiii~{~~~!!llmif~n~.m!

Figure 39.3
Text in Client Area

ABCDEFGBIJKLMNOPORSTUVWXYZAB
CDEFGBIJKLMNOPORSTUVWXYZABCD
EFGBIJKLMNOPORSTUVWXYZABCDEF
GBIJKLMNOPORSTUVWXYZABCDEFGB
IJKLMNOPORSTUVWXYZABCDEFGBIJ
KLMNOPORSTUVWXYZABCDEFGBIJKL
MNOPORSTUVWXYZABCDEFGBIJKLMN
OPORSTUVWXYZABCDEFGBIJKLMNOP
ORSTUVWXYZABCDEFGBIJKLMNOPOR
STUVWXYZABCDEFGBIJKLMNOPORST

In Figure 39.4, a clip region consisting of two disjoint rectangles is set and the
text from Figure 39.3 is clipped:

Figure 39.4
Disjoint Clip Region

::DEF
~FGB

~BIJ nur~AO.UVWA~~AD~UA~~

CJKL PORSTUVWXYZABCDEFGBI
CLMN RSTUVWXYZABCDEFGBIJK
'NOP TUVWXYZABCDEFGBIJKLM
)POR VWYV'1. ~ 'Rrn12vr.RT .TY'T.M'Nn

)RST
~'T'nv

The application created the region from two disjoint rectangles by calling
the GpiCreateRegion function. It then sets the clip region by calling the GpiSet­
ClipRegion function. For more information about using regions for clipping, see
Chapter 40, "Clipping."

39.2.2 Combining Regions
You can use the GpiCombineRegion function to combine two rectangles in one
of five ways to form a region. Figure 39.5 shows two rectangles, labeled 1 and 2,
before they are combined by GpiCombineRegion and then after they are com­
bined, using each of the five combining methods:

532 MS OS/2 Programmer's Reference, Vol. 1
iilih'iirili.!milWlimli@fiifil~iii!~i!~_I!f.~=I~mll!!~U~!~EiHia~lirui!!Iiiiii!a1!i!Dnlm!ffi~I~~jiirmmlf§1i;;~iw.1;ifiF.fj~ii~&i!I!§9~fS:iflt!.iii

Figure 39.5
Combining Regions

2

Original rectangles CRGN_OR combination

~""""""""': · . · . · .

. . . . , ... " . .J

CRGN_COPY combination CRGN_XOR combination

~ ~ :' '" ••••••..•.• """!
· . · . · . · . · . · .

.J

LJ

CRGN_AND combination CRGN_DIFF combination

39.2.3 Painting Regions

Figure 39.6

You can use regions to draw a single filled rectangle or a filled polygon (that con­
sists of multiple intersecting rectangles) by calling the GpiPaintRegion function
after you create a region. This function uses the current fill pattern to fill the
interior of the region. The default fill pattern is solid black. If this pattern is not
appropriate for your application, you can select one of fifteen other predefined
patterns, or you can create a custom pattern by using a bitmap. Figure 39.6
shows a region drawn three times, each time filled with a different predefined
pattern:

Three Square Regions and Three Fill Patterns

Chapter 39: Regions 533
i!!jiiW!!~ilmtim!tim~p:!~iiiml~i!iJ!i!!!¥.ffi_!~!SI~~:t!i~~!~iii~§Sili"~fM~1i~iii!ifI~~miiiiml;ltdlJmji'-li(ii~I;;*s~~~i~

MS OS/2 stores the fill pattern and the fill-pattern colors in the AREABUNDLE
structure. You can determine which predefined pattern is currently selected by
calling the GpiQueryPattem or GpiQueryAttrs function. You can select a differ­
ent predefined pattern by calling the GpiSetPattem or GpiSetAttrs function. For
more information about selecting a new pattern or creating a custom pattern, see
Chapter 36, "Area Primitives."

39.3 Using Regions
You can use region functions to perform the following tasks:

• Create a region.

• Combine regions.

• Destroy a region.

• Compare regions.

• Move a region.

• Fill a region.
• Locate a point with respect to a region.

• Determine coordinates of region rectangles.

• Locate a rectangle with respect to another region.

39.3.1 Creating a Region
To create a region, you must perform the following steps:

1 Create an array of RECTL structures containing the dimensions of the rectangles
that will compose the region.

2 Call the GpiCreateRegion function to create the region (this function returns a
handle that identifios the region).

The following code fragment shows how to create a region:

HPS hps; 1* presentation-space handle *1
HRGN hrgn; 1* region handle *1
RECTL rcl[] = { 25, 50, 1* rectangle 1 *1

75, 100,
50, 75, 1* rectangle 2 *1
100, 150,
75, 125, 1* rectangle 3 *1
200, 175,
150, 75, 1* rectangle 4 *1
250, 150};

hrgn = GpiCreateRegion(hps, 1* creates region *1
4L, 1* number of rectangles in region *1
rcl); 1* array of rectangle structures *1

534 MS OS/2 Programmer's Reference, Vol. 1
iiiiiit1i1lPjmi!!IDiiiii~iim!~iP.El!f.iH~;I~~I~n~i!~~~Hfsi1I!ruil!Jiiiiif:i!!t!!!l~~llWl~~~mImimiijiUftrm!mU;F.ijjlll~if!li~lim5Llfi~l

39.3.2 Combining Regions
To combine two regions, you must perform the following steps:

1 Create a region that MS OS/2 can use as the final destination region (one that
contains the two combined regions).

2 Determine which of the five available combining methods is best suited to your
application.

3 Call the GpiCombineRegion function.

The following code fragment shows how to combine two regions by using the
OR operation:

HPS hps; 1* presentation-space handle
HRGN hrgn1, hrgn2, hrgn3; 1* region handles
RECTL rcll [] = { 50, 100, 1* rectangle forming first region

200, 175};

RECTL rcl2 [] { 125, 150, /* rectangle forming second region
225, 200 };

RECTL rcI3[] = { 0, 0, /* rectangle forming destination region
0, 0 };

hrgn = GpiCreateRegion(hps, 1L, /* creates first region
rcl1);

hrgn2 = GpiCreateRegion(hps, 1L, /* creates second region
rCl2);

hrgn3 = GpiCreateRegion(hps, 1L, /* creates destination region
rcl3);

GpiCombineRegion(hps, /* creates union of hrgn and hrgn2
hrgn3, hrgn1, hrgn2, CRGN_OR) ;

39.3.3 Destroying a Region

*/
*/
*/

*/

*/

*/

*/

*/

*/

To destroy a region, you must call the GpiDestroyRegion function and pass it a
handle that identifies the region your application is no longer using, as shown in
the following code fragment:

HPS hps;
HRGN hrgn;

/* presentation-space handle */
/* region handle */

GpiDestroyRegion(hps, hrgn); /* destroys region identified by hrgn */

39.3.4 Comparing Regions
You can determine whether two regions are defined by the same rectangle by
calling the GpiEqualRegion function, as shown in the following code fragment:
HPS hps;
HRGN hrgnl;
HRGN hrgn2;
LONG lEqual;

/* presentation-space handle */
/* handle of first region */
/* handle of second region */
/* return value for GpiEqualRegion */

lEqual = GpiEqualRegion(hps,
hrgn1, hrgn2); /* compares regions 1 and 2 */

if (lEqual == EQRGN_EQUAL) {

/* regions are equal */

}

Chapter 39: Regions 535
i!!i!Ui~!~!lmtmmijf~F:!§!~lij~~~!~.mi~i~!ml~~~!§i~f~li~i~~~i~~~1!~!ii!i~~~mif~~ii~l~diim!~Ii§i~{iiiS~~~i!!ir~

if (lEqual == EQRGN_NOTEQUAL) {

. /* regions are not equal */

}
if (lEqual == EQRGN_ERROR) {

/* error occurred */

}

39.3.5 Offsetting a Region
The GpiOffsetRegion function moves a region by a specified offset in world
space. When you call this function, you pass the address of a POINTL structure
that contains an x- and a y-translation factor. The following code fragment shows
how to offset a region:

HRGN hrgn;
HPS hps;
POINTL ptlNewPos;

/* region handle */
/* presentation-space handle */
/* structure for offset value */

/*
* Set the offset here, storing the x- and
* y-components in ptlNewPos.
*/

GpiOffsetRegion(hps, hrgn, &ptlNewPos);

39.3.6 Painting a Region

/* offsets region */

The GpiPaintRegion function fills a region with the current fill pattern, using the
colors and mix modes that appear in the current AREABUNDLE structure. The
following code fragment shows how to change the fill-pattern color to green and
then paint the region:

HRGN hrgn;
HPS hps;

/* region handle */
/* presentation-space handle */

GpiSetColor(hps, CLR_GREEN);
GpiPaintRegion(hps, hrgn); /* paints region at new location */

39.3.7 Locating a Point with Respect to a Region
The GpiPtInRegion function determines whether a point lies within the borders
of a region. This function is especially useful in applications that must determine
whether the mouse pointer lies over a region.

You must perform the following steps to determine the location of the mouse
pointer with respect to a region-for example, when the user presses the left­
most mouse button:

1 Retrieve the mouse-pointer coordinates and store them in a POINTL structure.

2 Call the GpiPtInRegion function, passing it a handle that identifies the appropri­
ate region and the address of the POINTL structure from Step 1.

3 Examine the value that GpiPtInRegion returns in order to determine whether the
point lies within the region.

536 MS OS/2 Programmer's Reference, Vol. 1
.n&ih1ir~jijji!!m~fiJl!(g~i~ii!;w.E~;m=I~ffill;!!fiP.I~!~~H§i~liillili!iruiii!I~!t!HU~!~aJi~~Jiilmtii11~lm~r~f1!mi;j~iiiifa~m~~!iimit!fi~!

The following code fragment shows how to locate the mouse pointer with respect
to the region:

HPS hps; /* presentation-space handle */
POINTL ptlCurPos; /* point structure */
HRGN hrgn; /* region handle */
LONG IPosition; /* return value for GpiPtlnRegion */

/* Determine the mouse coordinates and store them in ptlCurPos. */

IPosition = GpiPtlnRegion(hps, hrgn, &ptlCurPos);

if (ptlCurPos == PRGN_INSIDE) {

/* point lies within region */

}

if (ptlCurPos == PRGN_OUTSIDE) {

/* pOint lies outside region */

}

39.3.8 Determining Coordinates of Rectangles in a Region
If a region consists of more than one rectangle, you can call the GpiQuery­
RegionRects function to retrieve the coordinates of the lower-left and upper­
right corners of each rectangle.

To determine the coordinates for the rectangles that form a region, you must
perform the following steps:

1 Create a copy of the RGNRECT structure that MS OS/2 uses when it retrieves
the rectangle coordinates.

2 Create an array of RECTL structures that MS OS/2 can load with rectangle
coordinates.

3 Determine the approximate number of rectangles that compose the region and
set the ere field in the RGNRECT structure to this number.

4 Determine the direction in which MS OS/2 traverses the region to retrieve the
rectangle coordinates and set the usDirection field in the RGNRECT structure to
the associated value. '

5 Call the GpiQueryRegionReets function to retrieve the coordinates.

The following code fragment shows how to determine the coordinates of the
rectangles in a region:

HPS hps;
HRGN hrgn;
RGNRECT rgnrc;
RECTL rcl[7];

/* presentation-space handle */
/* region handle */
/* structure for region rectangles */
/* array of RECTL structures */

rgnrc.crc = 7; /* rectangles to query */
rgnrc.usDirection = RECTDIR_RTLF_BOTTOP; /* right/left, bottom/top */
GpiQueryRegionRects(hps, hrgn,

OL, /* returns all rectangle coordinates */
&rgnrc, rcl);

Chapter 39: Regions 537
~i!!~~!iMi~mfffi~R!ill!ijjll~ji§im!iiMm1if;k~irnimr~~!aI!~ff,§ifif5m1telm1mi*!!i~~!!IlifiJf~iimiiJ!1!ffftii~~~!~UF.Mi§iJif!1l!i~lmf§imrr;4~o$irniijjl~fi~§

39.4 Summary
The following list summarizes the MS OS/2 region functions:

GpiCombineRegion Combines two regions in one of five ways. When you call
this function, you specify one of five constants that identify methods of combin­
ing the regions.

GpiCreateRegion Creates a region from one or more rectangles. If your appli­
cation creates the region from multiple rectangles, MS OS/2 uses an OR opera­
tion to combine the multiple rectangles.

GpiDestroyRegion Destroys a region and frees the memory associated with it.

GpiEqualRegion Determines whether your application created two regions
from the same rectangle(s).

GpiOffsetRegion Moves a region by a specified offset. MS OS/2 issues an error
if the specified region is a clip region.

GpiPaintRegion Fills the interior of a region. MS OS/2 fills the interior with
the current fill pattern, using the colors and mix modes in the attribute bundle.
MS OS/2 issues an error if the specified region is a clip region.

GpiPtInRegion Determines whether a point lies within a region. MS OS/2
issues an error if the specified region is a clip region.

GpiQueryRegionBox Retrieves the dimensions of the smallest rectangle that
surrounds the entire region.

GpiQueryRegionRects Retrieves the coordinates of individual rectangles that
compose a region, filling an array of RECTL structures with these coordinates.
If the number of rectangles that compose a region is unknown, you can call this
function several times, refilling the array each time with the new rectangle coor­
dinates.

GpiRectlnRegion Determines whether all or part of a rectangle lies within a
region.

GpiSetRegion Creates a region from one or more rectangles. MS OS/2 does
not include points on the top and rightmost edges of the rectangles in the region.

Chapter

40

Clipping
40.1 Introduction .. 541

40.2 About Clipping....................... 541

40.3 Using Clipping ... 543
40.3.1 Excluding a Rectangular Area from a Clip Region 544
40.3.2 Adding a Rectangular Area to a Clip Region 544
40.3.3 Determining the Size of a Clipping Area 545
40.3.4 Setting a Clip Region.. 545
40.3.5 Setting a Clip Path ... 546

40.4 Summary............ 547

Chapter 40: Clipping 541
;ii.i!fl~~I!mi£'~~f!fi~i!!iH!ljjil~fjim!i;'f$ii!1i!iirni!§f~~!!J!!i~!liffifffltiilmaJiw.~1I1Rii5ff~i~J5ilt.fiJjiifi~~~IF.b1irilif!l!!i~I!if~rmr.~ia:~ii&!

40.1 Introduction
This chapter describes a graphics process called clipping. You should also be
familiar with the following topics:

• Presentation spaces and device contexts

• Coordinate spaces and transformations

'. Regions

• Paths

40.2 About Clipping

Figure 40.1

Clipping is a process that limits graphic output to a certain region (or to cer-
tain multiple regions) on a display or a page of printer paper. If an application
attempts to draw output outside of the clipping area, MS OS/2 "clips" the output
so that it does not appear on the drawing surface of the output device. (In this
chapter, the term "clipping area" is used instead of "clip region," because in MS
OS/2, a clip region is a special kind of clipping area.)

In Figure 40.1, an application defined an elliptical clipping area before drawing
text output:

Text in an Elliptical Clipping Area

, ... Ied wltl1'i~: ~\:f'/gR~'Nins·\h~ •
... ~rj(, YO,u use the wlliJow mana~er.)In •

~ 'ess lit hilts ra ~Ie out ut to a s e I Ie r
..... nsf on a ISDIIlY'M0r~alJ!e o~rl~ter Da~~]¥ Jln •

~
draw pu~u oQtsr(e tlle.en DInJl ate S U!I'

.(oes nOl, e.ar on ~ rawln Isumee 0 1 ~,.
I. e ter In are sue n$tead 0 •
• e IP' req,Y;,n~s~f~ec,arklnii 0' e 1~'ruI II'·
're~lrnUJ ~~E~~e~;:'~~J3J !'..'!.!tle

..

Clipping areas can be polygons (closed regions with straight sides), closed
regions with curved sides, or closed regions with straight and curved sides.

An application can define a clipping area in world space, model space, page
space, or device space. (For more information about coordinate spaces, see
Chapter 31, "Coordinate Spaces and Transformations.") There are four kinds of
clipping areas in MS OS/2, each associated with a particular coordinate space.
The following list indicates the coordinate space associated with each clipping
area:

Clipping area

Clip path

Viewing limit

Graphics field

Clip region

Associated coordinate space

World space

Model space

Page space

Device space

542 MS OS/2 Programmer's Reference, Vol. 1
~m!Hm!~UU!u!!I~~ismllii!il§lleiru3i!~li'U!Yr~!tft!\~gii1aiiiiSl;;!J1iim.Ifm1!~i~ilfSmli~~~~fil!i!!5r.~'iiiiiiil~imi!l~lmL~!1immi!~U~1ii\iif~!

Figure 40.2

If the clip path is a rectangle, it is drawn inclusive/inclusive, which means that
MS OS/2 includes the bottom and leftmost edges of the rectangle in the clip
path as well as the top and rightmost edges. The viewing limit and the graphics
field are also inclusive/inclusive. The clip region is inclusive/exclusive, which
means that MS OS/2 includes the bottom and leftmost edges but excludes the
top and rightmost edges of the rectangle from the clip region.

An application can use a clip path and a viewing limit for retained-drawing
operations. The clip path is the only clipping area that can have curved sides,
while the viewing limit and the graphics field are always rectangular. The clip
region can consist of a single rectangle or any number of intersecting rectangles.
Figure 40.2 shows valid shapes for each type of clipping area:

Valid Clipping Areas

o Clip path
(may use
curved edges)

Graphics field
(always rectangular) -

I

Viewing limit
(always rectangular)

Clip region
(may consist of
intersecting rectangles)

When an application defines clipping areas in several of the coordinate spaces,
the final result is similar to combining all of the areas into a single area. This sin­
gle area is defined by the intersection of the areas in each coordinate space. Fig­
ure 40.3 shows the effect of drawing a shape when a clipping area is set in each
of the coordinate spaces:

Chapter 40: Clipping 543
;ii.i!~nmf!mi~&f!!dU~iimf~fl~jjjmiii!!iirofjiffil!flf~!§'!!~!IJiafffiflilm:mlw.!!fiOO!@11i!ft~i~l3nif.iifiiifi~~OOI§b'iJi!jf!li~&lmim~~niitf!miff~~1;il

Figure 40.3
Clipping in Four Coordinate Spaces

CD World Space ® Model Space

----------_ .. , +- Viewing limit

® PageSpace o Device Space

--+- Graphics field

----- ... _----

Final result

Device

Before you attempt to transform a clipping area in the world, model, or page
space, remember that the clip path is the only clipping area that your application
can rotate by using one of the rotation transformations. If you try to rotate the
viewing limit or the graphics field, the result will be a larger rectangle.

40.3 Using Clipping
You can use clipping functions to perform the following tasks:

• Exclude a rectangular area from a clip region.

• Intersect a rectangular area with a clip region.

• Determine the size of the smallest rectangle that will completely surround
the intersection of the current clip areas.

• Determine the size of the current clip region, graphics field, or viewing limit.

• Set a clip path, clip region, graphics field, or viewing limit.

544 MS OS/2 Programmer's Reference, Vol. 1
1A!l"~~J~~~!!~mli~i~l~i~i!H~~lij;1!ltl~~:~:~ifj.m!~iiiiil~;~ltif]I~~~~l~Hiiii~Uffi~!~iiiji!!9i~J;!!~EiiSfii!!if~!~,~~m;m~l~;~~tS!~

40.3.1 Excluding a Rectangular Area from a Clip Region
/

Some applications let you prepare output in multiple stages (for example, a
word-processor application may allow you to prepare your text first and then
add bitmaps that enhance and support the text). These applications can use the
GpiExcludeClipRectangle function to exclude an area from a clip region, pre­
venting the user from destroying output that already exists. To exclude an area
from a clip region, you must perform the following steps:

1 Determine the dimensions (in device coordinates) of the smallest rectangle that
completely surrounds the area containing original output (this is the area to
exclude from the clip region).

2 Call the GpiExcludeClipRectangle function and pass it the dimensions of the
area that contains the original output.

The following code fragment illustrates these steps:

HPS hps;
RECTL rcl;

/* presentation-space handle
/* rectangle structure

*/
*/

/* Set rectangle coordinates here. */

GpiExcludeClipRectangle(hps, &rcl);

40.3.2 Adding a Rectangular Area to a Clip Region
Some applications may need to increase the size of a clip region. For example, a
user might request that a desktop-publishing application extend a. column of text
on a page. To do this, the application can call the GpilntersectClipRectangle
function to combine a rectangular area with a clip region.

To intersect the rectangle with a clip region, you perform the following steps:

1 Determine the dimensions (in device coordinates) of the rectangular area to
intersect with the clip region.

2 Call the GpiCreateRegion function and pass it the dimensions of the rectangle
that you obtained in Step 1.

3 Call GpiCreateRegion again and create a third region that will become the final
destination region.

4 Call the GpiCombineRegion function and combine the original region with the
new one to form a final region.

5 Call the GpiCreateClipRegion function and pass it the handle returned by Gpi­
CombineRegion.

Chapter 40: Clipping 545
!i§ii#il~iml~llf:l!!i~i~~j~iiii;_I~~f~II~ma...~~~Uti.lilEllfi!ifiJ~iSiimm~i~~H!iilliil~~~~!~m~!i!il!§~!iiiiiii~~ilifi§i1i~16l~im!~

The following code fragment illustrates these steps:

HPS hps;
RECTL rcl;

/* presentation-space handle */
/* rectangle structure */

/* Create the first clipping region. */

hrgn = GpiCreateRegion(hps, lL, &rcl); /* creates rgnl */
GpiSetClipRegion(hps, hrgn, NULL);

/* Compute coordinates of second region here. */

/*
* Create second and third regions and generate a
* new clipping region, identified by hrgn3.
*/

hrgn2 = GpiCreateRegion(hps, lL, &rcl); /* creates rgn2 */
hrgn3 = GpiCreateRegion(hps, lL, &rcl); /* creates rgn3 */
GpiCombineRegion(hps, hrgn3, hrgn, hrgn2, CRGN_OR);
GpiSetClipRegion(hps, hrgn3, NULL);

40.3.3 Determining the Size of a Clipping Area
If a computer-aid ed-design (CAD) application is able to set a clip path in world
space, a viewing limit in model space, and a graphics field in page space, it may
be necessary for you to determine the size of the clipping area formed by the
intersection of the three. The GpiQueryClipBox function returns the dimensions
(in world coordinates) of the smallest rectangle that completely surrounds the
intersection of the defined clipping areas.

The following code fragment shows how to use GpiQueryClipBox to fill a rect­
angle structure with the desired coordinates:

HPS hps;
RECTL rcl;

/* presentation-space handle */
/* rectangle structure */

GpiQueryClipBox(hps, &rcl);

40.3.4 Setting a Clip Region
Clip regions are useful when an application must clip to an area shaped like a
rectangle or like a number of intersecting rectangles. To create a clip region, you
must perform the following tasks:

1 Determine the shape and dimensions of the clip region.

2 Load the coordinates for the rectangle(s) that define the clip region into an array
of rectangle structures.

3 . Create the clip region by calling the GpiCreateRegion function.

4 Set the region to a clip region with GpiSetClipRegion.

546 MS OS/2 Programmer's Reference, Vol. 1
mmlSr.:ali§;~!p.ni5tmi!iiimm!iSli~~iii~lif~f~j:li!i!i.m§!tE!~im;H;t!iim!~!!:§i!if!sp'~i~~;H!f.ijmlfdiijmt9im~m~iiiSiii!ih1flfi;~

The following code fragment shows how to create a clip region:

HPS hps; I' presentation-space handle *1
HRGN hrgn;
RECTL arcl[4];

I' region handle *1
I' array of structures for rectangle coordinates *1

1*
, Load the array of RECTL structures with the appropriate rectangle
, coordinates.
'I

hrgn = GpiCreateRegion(hps, 4L, arcl);
GpiSetClipRegion(hps, hrgn);

40.3.5 Setting a Clip Path
Drawing and computer-aided-design (CAD) applications may require clipping to
curved edges. If so, they should use a dip path to define a curved clipping area
in world coordinates. But clip paths, especially ones that clip to curved edges,
require considerable memory and processing time. So when clipping to a straight
edge, your application should use a clip region, graphics page, or viewing limit,
all of which require less memory and processing time than a clip path.

You should perform the following steps when you create a clip path:

1 Determine the shape and size (in world coordinates) of the clip path.

2 Call the GpiBeginPath function to begin the path definition.

3 Create the path.

4 Close the path by using the GpiEndPath function.

5 Create a clip path from the path definition by using the GpiSetClipPath func­
tion.

The following code fragment shows how to create an elliptic clip path:
HPS hps;
POINTL ptl1;

I'

I' presentation-space handle 'I
I' point structure 'I

, Determine the location of the clip path and load ptll with the
, appropriate coordinates.
'I

GpiBeginPath(hps, lL);
GpiMove(hps, &ptll);
GpiFullArc(hps,

I' begins path 'I
I' sets current position *1
I' defines ellipse 'I

ORO_OUTLINE, 6553600);
GpiEndPath(hps); I' end the
GpiSetClipPath(hps, lL, SCP_ALTERNATE

path
I SCP_AND);

'I

Chapter 40: Clipping 547
!igU~I~i~!mllf.~l!l~I!~i:;i~i~!ij;~lial;nilim~mru...~~1f:tifi1il5iiflifilU'i;i$iiih'ii~i~Uit-jJ!ii2iiI!?§l~~A\U1SiI~~~R!itihlt~it1.liRiLii1ilfr.ilii!il!fi!iiJj

40.4 Summary
The following list summarizes the MS OS/2 clipping functions:

GpiExcludeClipRectangle Excludes a rectangular area from a clip path, viewing
limit, graphics field, or clip region.

GpilntersectClipRectangle Combines a rectangular area with the current clip
region in order to form a new clip region. If you have not set a clip region by
calling the GpiSetClipRegion function, the rectangle you pass to Gpilntersect­
ClipRectangle becomes the current clip region (the coordinates of this rectangle
are in world coordinates).

GpiQueryClipBox Determines the dimensions of the smallest rectangle that
completely encloses the intersection of the current clip path, viewing limit,
graphics field, and clip region. This function uses only the dimensions of the clip
path, viewing limit, graphics field, and clip region that your application has set;
it does not use the dimensions of the default clipping areas (which are set to
infinity).

GpiQueryClipRegion Retrieves a handle of the currently selected clip region. If
your application has not set a clip region, this handle will be NULL.

GpiQueryGraphicsField Determines the location (in page coordinates) of the
lower-left and upper-right corners of the current graphics-field rectangle. If your
application has not set the dimensions of the graphics field, MS OS/2 returns the
dimensions of the default graphics field. If your application uses a normal pre­
sentation space and the default transformations, the graphics-field dimensions
are 268,435,455 by 268,435,455 page units.

GpiQueryViewingLimits Determines the location (in model coordinates) of the
lower-left and upper-right corners of the current viewing-limit rectangle. If your
application has not. set the dimensions of the viewing limit, MS OS/2 returns the
dimensions of the default viewing limit. If your application uses a normal presen­
tation space and the default transformations, the viewing-limit dimensions are
268,435,455 by 268,435,455 model units.

GpiSetClipPath Creates a clip path from a path that you created in your appli­
cation. The coordinates of the clip path are in world coordinates.

GpiSetClipRegion Creates a clip region from a region that you created in your
application. The coordinates of the clip region are in device coordinates.

GpiSetGraphicsField Creates a graphics field in your application. The coordi­
nates of the graphics field are in page coordinates.

GpiSetViewingLimits Creates a viewing limit in your application. The coordi­
nates of the viewing limit are in model coordinates.

Chapter

41

Metafiles
41.1 Introduction .. 551

41.2 About Metafiles 551
41.2.1 Graphics Orders............ 551
41.2.2 Creating Metafiles .. 552
41.2.3 Storing Pictures in Metafiles 552
41.2.4 Editing Metafiles 553
41.2.5 Playing Metafiles 553
41.2.6 Saving Metafiles.. 554

41.3 Using Metafiles .. 554
41.3.1 Creating and Drawing into a Metafile ' 554
41.3.2 Drawing into a Metafile in Retain Mode.................. 555
41.3.3 Copying a Metafile onto Disk 556
41.3.4 Playing a Metafile... 557

41.4 Summary.... 557

Chapter 41: Metafiles 551
sigff#il!!iif1!~llf.~!iifJOOi~lilftm;mJm1~f$fI~~!mi!ii1ll&1ifijjJU§~ii§h'fi~i!tmtii!ii~i~~~lliifi~~~i1i§jf!!iIi~1!m~itiRiiiiliilii!il!m!!ffl

41.1 Introduction
This chapter describes a special file called a metafile. You should also be famil­
iar with the following topics:

• Color tables

• Area fill patterns

• Logical fonts
• Segments and retained drawing

• Presentation spaces and device contexts

• Coordinate spaces and transformations

41.2 About Metafiles
A metafile is a file that contains a picture and information that MS OS/2 uses
when it draws the picture. The following list describes the elements found in a
metafile:

• PictUre

• Logical color table

• Logical font (optional)

• Fill pattern (optional)

• Viewing transformation

• Page units

• Page dimensions

You can display the contents of a metafile (its picture) in a window on a video
display, or you can print it on a printer. When displaying the contents of a meta­
file, you can use the logical color table, logical font, fill pattern, and trans­
formations that are in the application's presentation space, or you can use the
color table, font, fill pattern,and transformations that are in the metafile. You
can save metafiles onto a disk and load them from a disk into your application,
or you can transfer them from application to application by using the clipboard
or from user to user over a network.

41.2.1 Graphics Orders
Unlike a bitmap, which contains color information for pels in a raster image, a
metafile contains graphics orders that MS OS/2 uses to construct the picture.
MS OS/2 uses several types of graphics orders, which are low-level graphics
commands. Two such graphics orders represent, respectively, the drawing func­
tions and attribute functions for lines, arcs, characters, markers, text, and bit­
maps; a third graphics order represents miscellaneous functions that set transfor­
mations, call segments, and so forth. There are four graphics-order sizes:

552 MS OS/2 Programmer's Reference, Vol. 1
Ui;&1Br.!ij~;~n~mrilmi~lifsili!iffi~~~i~filif~H~imIDi~§!ii!!~nm;H5!I$iw.!~J!!Ii§ia~1ii~~!L~m~Unfd~iU!slmii!im,~i~lifJi~it;'iiil!

• I-byte orders

• 2-byte orders

• Long orders (maximum length of 256 bytes)

• Very long orders (maximum length of 64K bytes)

A I-byte order contains a hexadecimal identifier corresponding to a drawing
function or attribute function. A 2-byte order contains a hexadecimal identifier
in the first byte and data in the second byte. Long and very long orders contain a
hexadecimal identifier corresponding to a drawing function or attribute function,
a length value that specifies how many bytes are used by the graphics-order argu­
ments, and the actual arguments. The following example shows a long graphics
order that corresponds to the GpiLine drawing function:

81 8 100 0 0 0 100 0 0 0

The first number, 81, is the hexadecimal identifier that corresponds to the Gpi­
Line function. The second number, 8, is the length value that specifies how
many bytes are used by the graphics-order arguments. The next eight bytes con­
tain the arguments for GpiLine. In this case, these arguments specify the line's
endpoint at (100,100). For a complete list of graphics orders, see the Microsoft
Operating System/2 Programmer's Reference, Volume 2.

41.2.2 Creating Metafiles
To store graphics orders and drawing information in a metafile, you need to
create a metafile device context and associate it with your application's presenta­
tion . space. A metafile device context is a special device context that returns a
handle to a metafile when you close it. To create a metafile device context, call
the DevOpenDC function, passing it the OD.-METAFILE type as the second
argument. The following code fragment creates a metafile device context that is
compatible with a display:

DEVOPENSTRUC dop;

dop.pszLogAddress = NULL;
dop.pszDriverName = "DISPLAY";
dop.pdriv = NULL;
dop.pszDataType = NULL;

hdcMeta = DevOpenDC(hab, OD_METAFILE, ".", 4L,
(PDEVOPENDATA) &dop, hdcComp);

41.2.3 Storing Pictures in Metafiles
Once you create a metafile device context, you can associate it with your
application's presentation space and begin drawing the picture. If the drawing
mode is DMJ)RA W, MS OS/2 stores (in the metafile) the graphics orders that
correspond to drawing functions and primitive attributes. If the drawing order is
DM.-RET AIN, MS OS/2 does not store graphics orders in the metafile. Instead,
it stores them in segments. An application can then copy these orders from seg­
ments into a metafile by calling one of the following functions:

Chapter 41: Metafiles 553
!!.¥mil!i~~~a!iiU$irl4ije!!iiw.I!5iiiJi§!iffl!i!lUil~gU5!i~~lliji~j~i!i~ml~W:tmm~~!!if;~jlifaiil'ii~i~jgft~~8!~~m;im!m!~~~r.s.ls

Function Description

GpiDrawChain Copies the segment chain into the metafile.

GpiDrawFrom Copies a selected range of segments from the seg­
ment chain into the metafile.

GpiDrawSegment Copies the contents of a particular segment into the
metafile.

If the drawing mode is DMJ)RA W AND RET AIN, MS OS/2 stores the graph­
ics orders in the metafile and in any open segments. You can set the drawing
mode by calling the GpiSetDrawingMode function.

After you finish drawing into a metafile, you can obtain a handle for it by calling
the DevCloseDC function and passing the handle that identifies the metafile
device context:

GpiAssociate(hps, NULL);
hmf = DevCloseDC(hdcMeta);

The GpiAssociate call disassociates the metafile device context from the presen­
tation space identified by the hps argument. You disassociate the metafile from
the presentation space before you call DevCloseDC. Once you obtain a handle
to the metafile, you can save the metafile on disk or display its contents on an
output device.

41.2.4 Editing Metafiles
To edit graphics orders in a metafile, you must first copy them into an array of
bytes by calling the GpiQueryMetaFileBits function. The number of drawing
orders copied depends on the size of the array that you supply . You can deter­
mine the size of the metafile (in bytes) by calling the GpiQueryMetaFileLength
function. Once you finish editing the graphics orders, you can copy them back
into the metafile by calling the GpiSetMetaFileBits function.

41.2.5 Playing Metafiles
You can display or print the picture in a metafile by playing its contents with
the GpiPlayMetaFile function. When you call this function, you must specify
whether you want MS OS/2 to use the logical color table, logical font, fill pat­
tern, viewing transformation, and device transformation that are in your appli­
cation's presentation space or whether you want MS OS/2 to use the definitions
for these objects in the metafile. The following code fragment shows a call to
the GpiPlayMetaFile function that uses the definitions in the application's
presentation space and ignores the definitions in the metafile:

alOpt [0] OL; 1* reserved * I
alOpt[l] LT_DEFAULT; 1* viewing transformation in PS *1
alOpt [2] OL; 1* reserved *1
alOpt[3] LC_DEFAULT; 1* font and fill pattern in PS *1
alOpt[4] RES_DEFAULT; 1* page units and dimensions in PS *1
alOpt[S] SUP_DEFAULT; 1* draws metafile into PS *1
alOpt[6] CTAB_DEFAULT; /* logical color table in PS */
alOpt[7] CREA_DEFAULT; 1* sets realizable option in color table *1
GpiPlayMetaFile(hps, hmf, aL, alOpt , OL, OL, NULL);

554 MS OS/2 Programmer's Reference, Vol. 1
lliRi1fiiif;rnt.i!~~~i~i~n!~~~:ijfiift~ni§i~m~iimE~lmJfij~iml~!iifJ~lf~ .. ~U!!if'!~~l}~!§!fi~B~mgpJfr.Rl:;iei!l!m~if!lfJifal~~~

If you must use the fonts, fill patterns, color tables, and transformations from
the metafile, you should call the GpiPlayMetaFile function and load the options
array with the following flags:

alOpt[O] OL; /* reserved
alOpt[l] LT_ORIGINALVIEW; /* viewing transformation in metafile
alOpt [2] OL; /* reserved
alOpt[3] LC_LOADDISC; /* font and fill pattern in metafile
alOpt[4] RES_RESET; /* page units/dimensions in metafile
alOpt[S] SUP_DEFAULT; /* draws metafile into PS
alOpt [6] CTAB_REPLACE; /* color table in metafile
alOpt[7] = CREA_DEFAULT; /* set realizable option in color table
GpiPlayMetaFile(hps, hmf, 8L, alOpt, OL, OL, NULL);

When you use the definitions in the metafile, MS OSI2 resets the presentation
space using the values found in the metafile.

41.2.6 Saving Metafiles

*/
*/
*/
*/
*/
*/
*/
*/

You can save a metafile onto a disk by calling the GpiSaveMetaFile function.
This function saves the metafile in the same directory the application is in. You
cannot use this function to save a metafile into a separate directory on another
drive (or even on the same drive). Once you save a metafile onto a disk, its han­
dle is no longer valid-you cannot draw the contents of the metafile again until
you load it from disk. To load a metafile that you've saved on disk, you should
call the GpiLoadMetaFile function and pass it the name of the file. This function
returns a handle to the metafile after loading it.

41.3 Using Metafiles
You can use metafile functions to perform the following tasks:

• Create a metafile.

• Draw into a metafile.

• Load a metafile onto disk.

• Load a metafile from disk into an application.

• Playa metafile.

• Edit a metafile.

41.3.1 Creating and Drawing into a Metafile
To create a metafile, you must perform the following tasks:

1 Create a metafile device context by calling the DevOpenDC function.

2 Create a presentation space by calling the GpiCreatePS function, and associate
the presentation space with the metafile device context.

3 Draw into the metafile by calling various Gpi drawing functions.

4 Disassociate the metafile device context from the presentation space by calling
the GpiAssociate function.

5 Close the metafile device context by calling the DevCloseDC function.

Chapter 41: Metafiles 555
!~liliE~~fi!mf§flrtifJii(~J!iimU§!imliii~iimfim~liii~!!U!f~!Rlii!!i9~m~..@.Inr;!il~Ib"iis_~t.:a1i_B~II!m!m'~J!!l!~lli

The following code fragment shows how to create a simple metafile that draws
text within the borders of a three-color box:

DEVOPENSTRUC dop;

dop.pszLogAddress = NULL;
dop.pszDriverName = "DISPLAY";
dop.pdriv = NULL;
dop.pszDataType = NULL;

hdcMeta = DevOpenDC(hab,
OD_METAFILE, IA metafile device context AI
"*" IA ignores os2. ini * I
4L, IA uses first four fields *1
(PDEVOPENDATA) &dop, IA device information AI
hdC); IA compatible device context AI

hpsMeta = GpiCreatePS(hab, hdcMeta,
&sizlPage, PU_PELS I GPIA_ASSOC);

IA Draw a box in a metafile. AI
GpiSetColor(hpsMeta, CLR_CYAN);
ptl1.x = 150;
ptll.y = 200;
GpiMove(hpsMeta, &ptl1);
pt12.x = 300;
pt12.y = 275;
GpiBox(hpsMeta, DRO_FILL, &pt12, OL, OL);

GpiSetColor(hpsMeta, CLR_GREEN);
ptl1.x = 300;
ptll.y = 200;
GpiMove(hpsMeta, &ptl1);
pt12.x = 390;
pt12.y = 275;
GpiBox(hpsMeta, DRO_FILL, &pt12, OL, OL);

GpiSetColor(hpsMeta, CLR_YELLOW);
ptl1.x = 390;
ptll.y = 200;
GpiMove(hpsMeta, &ptl1);
pt12.x = 530;
pt12.y = 275;
GpiBox(hpsMeta, DRO_FILL, &pt12, OL, OL);

ptl1.x = 175;
ptll.y = 230;
GpiMove(hpsMeta, &ptl1);
GpiSetColor(hpsMeta, CLR_PINK);
GpiCharString(hpsMeta, 41L,

"METAFILE COPY METAFILE COPY METAFILE COPY");
GpiAssociate(hpsMeta, NULL);
hmf = DevCloseDC(hdcMeta);

41.3.2 Drawing into a Metafile in Retain Mode
To draw into a metafile, you set the drawing mode to the appropriate value for
your application and then perform the drawing operations. If your application is
a drafting, drawing, or computer-aided-design (CAD) application, you should
set the drawing mode to DM.-RETAIN, perform your drawing operations in
retained segments, and then copy the segments to the metafile. The following
code fragment shows how to copy the contents of a segment into a metafile:

556 MS OS/2 Programmer's Reference, Vol. 1
iIiRilfiiii!~I~:fifi!!ID!mi~i~i~l~fjjf~i!fljjfiifl~ilr;!iil!ii!!imlf4i5.!§jilf!fi..~!ru!!iiAiF.lW~JfmsifJsm!n~~I§m5iRiir~1mJ~;ar:;;'i1i!l~~~f.iil!~~!

1*
* Open a segment, assign it an identifier of 10,
* and draw some text into it.
*1

GpiSetDrawingMode(hps, DM_RETAIN);
GpiOpenSegment(hps, 10L);
ptll.x = 175; ptll.y = 230;
GpiMove(hps, &ptll);
GpiSetColor(hps, CLR_PINK);
GpiCharString(hps, 41L,

"METAFILE COPY METAFILE COpy METAFILE COPY");
GpiCloseSegment(hps);

GpiAssociate(hps, NULL);
GpiAssociate(hps, hdcMeta);
GpiDrawSegment(hps, lOL);
GpiAssociate(hps, NULL);
hmf = DevCloseDC(hdcMeta);

1* disassociates PS and screen DC *1
1* associates PS and meta DC *1
1* draws segment into metafile *1
1* disassociates PS and meta DC *1
1* closes metafile *1

GpiAssociate(hps, hdc); 1* associates PS and screen DC *1
GpiSetDrawingMode(hps, DM_DRAW); 1* sets drawing mode to DM_DRAW *1

1*
* Load the array of options for GpiPlayMetaFile
* with default values.
*1

alOpt[O] OL; 1* reserved *1
alOpt [1] LT_DEFAULT; 1* default transformations *1
alOpt[2] OL; 1* reserved *1
alOpt [3] LC_DEFAULT; 1* uses default lcids *1
alOpt[4] RES_DEFAULT; 1* uses default *1
alOpt[5] SUP_DEFAULT; 1* uses default *1
alOpt[6] CTAB_DEFAULT; 1* uses default *1
alOpt[7] CREA_DEFAULT; 1* uses default *1
GpiPlayMetaFile(hps, 1* plays metafile onto screen *1

hmf, BL, alOpt, OL, OL, NULL);

If you merely want to create a simple drawing in a metafile for repeated display,
you can set the drawing mode to DMJ)RA W and draw directly into the
metafile. The code in the first code fragment shows how to do this.

41.3.3 Copying a Metafile onto Disk
You can copy a metafile onto disk by calling the GpiSaveMetaFile function, and
you can load the file back into your application by calling the GpiLoadMetaFile
function. The following code fragment shows how to copy a metafile into a file
named meta. met , then load the same file back into the application and play it:

GpiSaveMetaFile(hmf, "meta.met"); 1* saves metafile on disk *1
hmf2 = GpiLoadMetaFile(hab, "meta.met"); 1* loads metafile *1
alOpt[O] OL; 1* reserved *1
alOpt[l] LT_DEFAULT; 1* uses default transforms *1
alOpt[2] OL; 1* reserved *1
alOpt [3] LC_DEFAULT; 1* uses default *1
alOpt[4] RES_DEFAULT; 1* uses default *1
alOpt[5] SUP_DEFAULT; 1* uses default *1
alOpt[6] CTAB_DEFAULT; 1* uses default *1
alOpt[7] CREA_DEFAULT; 1* uses default *1
GpiPlayMetaFile(hps, 1* plays metafile *1

hmf2, BL, alOpt, OL, OL, NULL);

Chapter 41: Metafiles 557
ll¥~Ii!l~~~iaiiimilirriFJ~:i~I!5iaimtifgiiii~immi~~~lImlli!§im~lm~!iln~lm~.rnI!:J!if~m~s;i~l~~o;i~m~!~ilff!!ii!im~§ft~~1m:

41.3.4 Playing a Metafile
You can play the contents of a metafile by calling the GpiPlayMetaFile function.
The following code fragment shows how to play the metafile using the font, color
table, and fill-pattern descriptions in your application's presentation space:

alOpt [0] OL;
alOpt[l] LT_DEFAULT;
alOpt [2] OL;
alOpt[3] LC_DEFAULT;
alOpt[4] RES_DEFAULT;
alOpt[S] SUP_DEFAULT;
alOpt[6] CTAB_DEFAULT;
alOpt[7] CREA_DEFAULT;
GpiPlayMetaFile(hps, hmf,

/* reserved
/* viewing transformation in PS
/* reserved
/* font and fill pattern in PS
/* page units and dimensions in
/* draws metafile into PS
/* color table in PS
/* sets realizable option

8L, alOpt, OL, OL, NULL);

*/
*/
*/
*/

PS */
*/
*/
*/

The next code fragment shows how to playa metafile using the font, color table,
and fill-pattern descriptions in the metafile:

alOpt [0] OL;
alOpt[l] LT_DEFAULT;
alOpt[2] OL;

/ * reserved * /
/* viewing transformation in PS */
/ * reserved * /
/* font and fill pattern in metafile */
/* page units and dimensions in PS */
/* draws metafile into PS */
/* color table in metafile */
/* sets realizable option */

alOpt[3] LC_LOADDISC;
alOpt[4] RES_DEFAULT;
alOpt[S] SUP_DEFAULT;
alOpt[6] CTAB_REPLACE;
alOpt[7] CREA_DEFAULT;
GpiPlayMetaFile(hps, hmf, 8L, alOpt, OL, OL, NULL);

The last code fragment shows how to playa metafile using the viewing transfor­
mation, page units, and presentation-page dimensions specified in the metafile:

alOpt [0] OL;
alOpt[l] LT_ORIGINALVIEW;
alOpt[2] OL;

/* reserved * /
/* viewing transformation in metafile */
/* reserved * /
/* font and fill pattern in PS */
/* page units/dimensions in metafile */
/* draws metafile into PS */
/* uses color table in PS */
/* sets realizable option */

alOpt[3] LC_DEFAULT;
alOpt[4] RES_RESET;
alOpt[S] SUP_DEFAULT;
alOpt[6] CTAB_DEFAULT;
alOpt[7] CREA_DEFAULT;
GpiPlayMetaFile(hps, hmf, 8L, alOpt, OL, OL, NULL);

41.4 Summary
The following list summarizes the MS OS/2 metafile functions:

DevCloseDC Closes a metafile device context and returns a handle that
identifies a metafile.

DevOpenDC Creates a metafile device context when you pass it the
OD~ETAFILE constant as the second argument.

GpiCopyMetaFile Creates a copy of a metafile.

GpiDeleteMetaFile Deletes a metafile.

GpiLoadMetaFile Loads data from disk storage into a metafile and returns
a handle that identifies the metafile.

GpiPlayMetaFile Plays the contents of a metafile into a presentation space.
The fourth argument to this function is an array of options that specify how
MS OS/2 should alter your application's presentation space before playing the
metafile. The following list describes each option and its effect on the presenta­
tion space:

558 MS OS/2 Programmer's Reference, Vol. 1
;iifffli~!;rim!iii~!ID~~i~;~itilfl!f~ii!ii~i"ii~m~im!iGiim:f~iID~it,!jH~tml!i§~!f~ .. ~if~~jgm~~~limSi~!8r.~JS~~fliffil~f!niii~'~~J~1

Option

LT_ORIGINALVIEW

LC-LOADDISC

RES.-RESET

SUP _NOSUPPRESS

CTAB-REPLACE

CREA.-REALIZE

CRE~NOREALIZE

Description

MS OS/2 uses the presentation space's
viewing transformation and ignores any
viewing transformations that are set in
the metafile.

MS OS/2 replaces the presentation
space's viewing transformation with
that of the metafile.

MS OS/2 uses the presentation space's
logical font, logical color table, and
custom fill pattern; it will ignore any
logical font, logical color table, or cus­
tom fill pattern in the metafile.

MS OS/2 loads and uses any logical
fonts, logical color tables, or custom
bitmaps (for fill patterns) from the
metafile; the new objects (fonts, color
tables, and bitmaps) replace the exist­
ing objects in the presentation space.

MS OS/2 uses the presentation space's
page units and page dimensions.

MS OS/2 replaces the page dimensions
and page units of the presentation
space with those of the metafile.

MS OS/2 draws the metafile on the
device associated with the pres~ntation
space.

MS OS/2 does not draw the metafile
on the device associated with the pre­
sentation space. This option is useful
if you need to alter the presentation
space before drawing it on an output
device.

MS OS/2 uses the color table in the
presentation space.

MS OS/2 replaces the color table in
the presentation space with the color
table in the metafile.

MS OS/2 sets the realizable option
when it loads the color table.

MS OS/2 does not set the realizable
option when it loads the color table.

Chapter 41: Metafiles 559
~i!tii!l~~~~!ir:fmirrlJ15i~Wi¥lP:iF.1iml!f$la:IiilImf.I~~lImil!i§lm~i~lliImt~m~.mJ!lII!if:!lilh~si~~~_a~!s!!f:!im~Hini!ifil;l§;:

GpiQueryMetaFileBits Copies the contents of a metafile (drawing orders, color
table description, page units, etc.) into an array of bytes. The number of bytes
copied depends on the size of the array.

GpiQueryMetaFileLength Retrieves the size of a metafile in bytes. You use this
function to determine the size of the array you'll need when you call the Gpi­
QueryMetaFileBits function.

GpiSaveMetaFile Copies a metafile onto a disk and then removes it from your
application's memory.

GpiSetMetaFileBits Copies drawing orders from an array of bytes into
a metafile . You use this function to copy edited drawing orders back into a
metafile.

Segments and
Retained Graphics

Chapter

42

42.1 Introduction.. 563

42.2 About Segments and Retained Graphics 563
42.2.1 Segments, Elements, and Graphics Orders 563
42.2.2 Segments and Subpictures 564
42.2.3 Types of Segments... 564
42.2.4 Segment Attributes... 565
42.2.5 Storing Graphics Orders in Segments 567
42.2.6 Creating Segments .. 567
42.2.7 Destroying Segments ... 567
42.2.8 Correlation.. 568
42.2.9 Editing Segments... 569

42.3 Using Segments and Retained Drawings 570
42.3.1 Creating a Chained Segment 571
42.3.2 Creating a Called Segment.................................. 571
42.3.3 Drawing a Segment Chain 572
42.3.4 Performing a Correlation Operation 572
42.3.5 Editing the Contents of a Segment........................ 572

42.4 Summary.. 573

Chapter 42: Segments and Retained Graphics 563
ii!l~!lii"!ii1!~i;~!pjfrum~~l!i~~iml~.fiiiai~imi!§~ifti§i~~f~i!~!lit~~!~¥!~1i~ifG!i~~~5iIWI~rdiimj~fii~{ii*-S~~~s.nrJ.'J!

42.1 Introduction
This chapter describes retained graphics and graphics segments. You should also
be familiar with the following topics:

• Presentation spaces and device contexts

• Coordinate spaces and transformations

• Line drawing

• Color and mix modes

42.2 About Segments and Retained Graphics
There are two kinds of graphics output in MS OS/2: retained and nonretained.
Most developers are familiar with the latter. When an application draws non­
retained output by calling a graphics function, the output appears immediately
on a video display. If part of the picture in the display is erased, or if part of
the picture is repeated in another location on the display, the application calls
the same graphics functions a second time. The fundamental drawback of non­
retained graphics in drawing or computer-aided design (CAD) applications is
obvious: These applications frequently draw pictures and parts of pictures
repeatedly, so it is important that they be able to store the primitives used to
draw the pictures. Using retained graphics, however, the developer can store
graphics primitives and redraw their associated output as necessary. Rather than
calling the individual graphics functions each time it is necessary to redraw the
picture, the application can make a single call to display the retained graphics.
In MS OS/2, applications store retained graphics in segments.

42.2.1 Segments, Elements, and Graphics Orders
A segment is a collection of elements, each element containing one or more
graphics orders. A graphics order is a low-level graphics command that corre­
sponds to a graphics function or an attribute function. There are four graphics­
order sizes in MS OS/2:

• 1-byte orders

• 2-byte orders

• Long orders (maximum length of 256 bytes)

• Very long orders (maximum length of 64K bytes)

A 1-byte order contains a hexadecimal identifier corresponding to a graphics
function or an attribute function. A 2-byte order contains a hexadecimal
identifier in the first byte and data in the second byte. The long and very long
orders each contain a hexadecimal identifier that corresponds to a graphics-:­
drawing or attribute function, a length value that specifies how many bytes are
used by the graphics-order arguments, and the actual arguments. The following
example shows a long graphics order that corresponds to the GpiLine function:

81 8 100 0 0 0 100 0 0 0

564 MS OS/2 Programmer's Reference, Vol. 1
lliib1i~Jmill.in~Ui@f_iiiiii~5I!!i_~;m'-iiiiliiml!!~;§§i~Einm~l~mem~~Hlml~!$!~ii~~~Im~~i;J§r~!iiiiiYiiHm&'!ti§~!iEtai5~~

The first number, 81, is the hexadecimal identifier that corresponds to GpiLine.
The second number, 8, is the length value that specifies how many bytes are
used by the graphics-order arguments. The next eight bytes contain the argu­
ments for GpiLine. In this case, these arguments specify the line's end point
at (100,100). For a complete list of graphics orders, see Microsoft Operating
Systeml2 Programmer's Reference, Volume 2.

42.2.2 Segments and Subpictures

Figure 42.1

In most cases, graphics orders in a segment correspond to a subpicture, which
is part of a complete, more complex picture. For example, an architectural
drafting application that draws the layout of a room could store the graphics
orders for a desk in one segment, the graphics orders for a chair in another seg­
ment, the graphics orders for a plant in a third segment, and so on. Each of
these segments contains a subpicture, which the application combines with other
subpictures to form the complete room diagram. Figure 42.1 shows a floor plan
that was drawn using segments:

Combining Subpictures to Create a Floor Plan

o

-I----t--I 0

42.2.3 Types of Segments
There are two types of segments: chained segments and called segments.

MS OS/2 links chained segments together in a segment chain. Chained segments
are sometimes called root segments. Each presentation space can contain only
one segment chain. Applications use chains to generate complete pictures from
subpictures. When MS OS/2 draws subpictures in a chain, it draws the subpic­
ture for the first segment in the chain, followed by the subpicture for the second
segment in the chain, and so on. Sometimes, it is necessary to alter the order in

Chapter 42: Segments and Retained Graphics 565
imiiirn!iii!!nmlm!ttta~m§llglgi!i!U!i!f!¥.miei~~IIi~~!~~~f~fi~i~i!Si~~rgi~i2!~ii!iel~~~m~liii1l!i1f~mi~l~iffiitii~~~~iWm

Figure 42.2

which the subpictures are drawn. You can do this by calling the GpiSetSegment­
Priority function. You can also draw the entire chain, part of the chain, or a sin­
gle segment in the chain by calling, respectively, the GpiDrawChain, GpiDraw­
From, or GpiDrawSegment function.

A dynamic segment is a chained segment that possesses special properties.
When MS OS/2 draws subpictures associated with dynamic segments, the XOR
raster operation is set. An application can move the subpicture associated with a
dynamic segment without destroying other subpictures in nondynamic segments.
Applications draw dynamic segments by calling the GpiDrawDynamics function.
Applications can remove the subpictures associated with dynamic segments by
calling the GpiRemoveDynamics function.

Called segments are not linked to the chain. Instead, applications draw them by
calling the GpiCallSegmentMatrix function from within a chained segment or
another called segment. Figure 42.2 shows a typical segment chain and its associ­
ated called segments:

Chained and Called Segments

Root segments Called segments

Segment
chain

10=27

I
10=28

I
10=29

I
10=30

42.2.4 Segment Attributes

~ID-4
V

10=51 10=52
-

Segments, whether chained or called, have characteristics, called attributes, that
you can set and change according to what your application needs. There are
seven segment attributes, each described in the following list:

Attribute

Detectable

Description

If the detectable and visible attributes
are set, your application can perform
correlation operations on segments
created in its presentation space.

566 MS OS/2 Programmer's Reference, Vol. 1
;iiIiL1iriiJi1!n\~l$.ijim~iill~~;w..mmr:Iif.~iU;I~rntlrg!~i~!~~Hrra~I!MI~!iWiii!u!!t!!!U~!i.§i!!iil~§I~mImimniilftrffiimlrnr.;J;ilU~Um~~iIf.l5J:~~

Attribute

Visible

Chained

Dynamic

Fast chain

Propagate detectable

Propagate visible

Description

If the visible attribute is set, the Gpi­
DrawChain, GpiDrawFrom, and Gpi­
DrawSegment functions will generate
output on a device.

If the chained attribute is set, MS
OS/2 adds each new segment in your
application's presentation space to the
segment chain.

If the dynamic attribute is set, MS
OS/2 draws segment output using the
XOR raster operation.

If the fast-chain attribute is set, MS
OS/2 does not reset the primitive attri­
butes to their default values before
drawing the segment.

If the propagate-detectable attribute
is set, MS OS/2 treats any called seg­
ments as though the detectable attri­
bute were set for those segments.

If the propagate-visible attribute is set,
MS OS/2 treats any called segments as
though the visible attribute were set for
those segments.

When an application creates a segment in a presentation space, MS OS/2 assigns
initial attributes to it. If you haven't altered the initial attributes with the Gpi­
SetInitialSegmentAttrs function, five of the attributes will be set and two of the
attributes will not be set. The following list describes which attributes are set and
which are not:

Attribute Default setting

Detectable OFF

Visible ON

Chained ON

Dynamic OFF

Fast chain ON

Propagate detectable ON

Propagate visible ON

You can retrieve the values of the current initial attributes by calling the Gpi­
QuerylnitialSegmentAttrs function.

After you create a segment, you may need to alter its attributes. For example,
if you created a segment using the default attributes and you want to perform
a correlation operation on the subpicture in that segment, you'll need to set

Chapter 42: Segments and Retained Graphics 567
i!ili!fl!i!i~;~~lmHlmlli~!!l!!tm~1ii~~~I~.ftii~fzitBi!mll@~~iff,~~I~i!aglii!~~;~~ii!~~!ii!i~i~lif.~l~l!eii~mi~!si~{fj~~~~OOir~

the detectable attribute by calling the GpiSetSegmentAttrs function. You can
retrieve the values of the attributes for any segment by calling the GpiQuery­
SegmentAttrs function.

42.2.5 Storing Graphics Orders in Segments
There are three drawing modes that affect how MS OS/2 stores graphics orders
in segment's. These modes are described in the following list:

Drawing mode

Draw

Retain

Draw-and-retain

Description

When the draw mode is set, it is not possi­
ble to store graphics orders in a chained
segment.

When the retain mode is set, your applica­
tion can store graphics orders in chained
and unchained segments.

When the draw-and-retain mode is set, your
application can store graphics orders in
chained and unchained segments. In this
mode, output intended for a chained seg­
ment is both drawn on the device and
stored in a segment.

When you create a presentation space, the drawing mode is set to draw. You can
set the drawing mode to retain or draw-and-retain by calling the GpiSetDrawing­
Mode function. You can determine which drawing mode is set by calling the
GpiQueryDrawingMode function.

42.2.6 Creating Segments
In MS OS/2, applications identify segments with long integer values greater than
zero. You can determine which values have already been assigned to segments by
calling the GpiQuerySegmentNames function. This function retrieves the current
segment identifiers that your application is using. Once you determine which
values are assigned, you can choose a new value for the segment you are about
to create. The first function you should call after you choose a segment identifier
is GpiOpenSegment, which defines the beginning of a segment bracket. A seg­
ment bracket is a collection of graphics-drawing and attribute functions that MS
OS/2 converts into graphics orders and stores in the segment. The graphics
orders in a segment are organized into elements, each containing one or more
graphics orders. Once you have called the necessary primitives and attribute
functions, you should close the segment bracket by calling the GpiCloseSegment
function.

42.2.7 Destroying Segments
Once you are through drawing the subpicture associated with a segment, you
should delete the segment by calling the GpiDeleteSegment function. If you are
through drawing a number of subpictures in the segment chain, you can delete

568 MS OS/2 Programmer's Reference, Vol. 1
iiiii!1ir~jif!il!,ij1iitilmf~nl!~~m!Eilif.;p'l~l~rnll;gl~i~f~~mr.~liruimfi!jiii!w.!t!!!U~\~aJ1~~Jiiimtiilif§ji~Ar~~!~F.iijl5l~iJil!~ifID~~~!

an entire range of segments by calling the GpiDeleteSegments function. In both
cases, you use the segment identifiers to identify the segment or range of seg­
ments that are no longer useful.

42.2.8 Correlation
Correlation is the process of determining whether graphic output appears in a
particular region, called a pick aperture, in your application's page space. The
pick aperture is a rectangular region that you can use to isolate part or all of
a subpicture or group of subpictures. To perform correlation operations, you
must set the segment attributes to detectable and visible by calling the GpiSet­
SegmentAttrs function.

If the drawing mode is retain or draw-and-retain, you can set the pick-aperture
position by calling the GpiCorrelateSegment, GpiCorrelateFrom, or Gpi­
Correlate Chain function. If the drawing mode is nonretained, you can set the
pick-aperture position by calling the GpiSetPickAperturePosition function,
retrieve the page-space coordinates of the center of the aperture by calling the
GpiQueryPickAperturePosition function, increase or reduce the pick-aperture
dimensions by calling the GpiSetPickApertureSize function, and determine the
current pick-aperture dimensions by calling the GpiQueryPickApertureSize func­
tion. When you perform a correlation operation, MS OS/2 returns an array of
long-integer pairs. The first value in the long-integer pair identifies a segment
containing a subpicture that intersects the pick aperture. The second value in
this pair identifies a tag. A tag identifies the specific primitiv~sand associated
graphics orders that intersect the pick aperture.

If your application will perform correlation operations, you must assign tags by
calling the GpiSetTag function. Typically, applications assign tags only to ele­
ments that correspond to primitives. You can determine the value of the last tag
assigned to an element by calling the GpiQueryTag function. Figure 42.3 shows
the diagram of the room from Figure 42.1 as it would appear in the application's
page space. In this figure, the chair intersects the pick aperture.

Figure 42.3
Correlation Operation

:-~-----;

: '
I '
1- _____ ~

Pick aperture

You can perform a correlation operation on the entire segment chain, part of
the chain, or a single segment in the chain by calling, respectively, the Gpi­
CorrelateChain, GpiCorrelateFrom, or GpiCorrelateSegment function.

Chapter 42: Segments and Retained Graphics 569
!i.i!~HmI!mj~&f!1Jjl~iif!f~!I~ijlmi;~~if!igirnl~f!.!IDial~r~!lijljlftriiilru:ml~!@.~~milel~!~JiHrf.ii~i§~~~mMilm!fr!i!fmlmim~j~liji~ml~1i~l

42.2.9 Editing Segments

Figure 42.4

MS OS/2 provides segment-editing functions you can use to write applications
that allow users to edit segments or elements in a segment. After performing a
correlation operation using your application, a user may need to alter the ele­
ments that intersected the pick aperture. If your application takes advantage of
the segment-editing capabilities, it should assign a label (in addition to a tag) to
each element that corresponds to a graphics primitive in the segment. You assign
a label, which is a long integer value, by calling the GpiLabel function. You can
access elements in a segment with the element pointer by setting the element
pointer so that it points to an element identified by a label. You can set the ele­
ment pointer so that it points to an element identified by a label by calling the
GpiSetElementPointerAtLabel function. You can also set the element pointer by
adding or subtracting an offset from its current location by calling the GpiOffset­
ElementPointer function. Or you can set the element pointer by specifying an
element number in the seglIlent and calling the GpiSetElementPointer functioh.
You can determine the current location of the element pointer by calling the
GpiQueryElementPointer function.

There are two edit modes in MS OS/2: insert mode and replace mode. You can
set the edit modes by calling the GpiSetEditMode function, or you can deter­
mine which mode is currently set by calling the GpiQueryEditMode function. If
the edit mode is set to insert, you can insert an element at the current location
of the element pointer. MS OS/2 shifts the element that'was previously at that
location into the next slot, and so on, until the last element is shifted into anew,
final slot. Figure 42.4 shows a segment before and after a new element is inserted
at position zero, the beginning of the segment:

Inserting a New Element in a Segment

Position 0

Position 1

Position 2

Position 3

Position 4

Position 5

Position 6

Position 7

Original Segment
Element pointer

I I

Element 1 - - --- ---
Element 2 --- - -
Element 3 - -- - -

- -------- ---
Element 4 --- - - ------
Element 5 - - --- - - -
Element 6 - - --- ------
Element7 --- - - - - ------- ---

New Segment

New element

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

If replace mode is set, you can replace the element at the current pointer loca­
tion with a new element. Figure 42.5 shows a segment before and after the third
element was replaced:

570 MS OS/2 Programmer's Reference, Vol. 1
illljWj~J~~!!!ll!f~limi~!!iij~itU~~I?';1!iY~!!!imifjmiiHIi1iJi!i1iialf!b1ilml~~~~H~!ffi~i~imllti!;g_i!~l~~~~~~ii!!!;m~ii;~iilijj!~

Figure 42.5
Replacing an Element with a New Element

Position 0

Position 1

Position 2

Position 3

Position 4

Position 5

Position 6

Position 7

Original Segment

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element?

EI ement pointe
~ I I

New Segment

Element 1

r Element 2

New element

Element 4

ElementS

ElementS

Element?

In addition to inserting and replacing elements in a segment, you can delete ele­
ments from a segment. You can delete a single element at the current element­
pointer location by calling the GpiDeleteElement function. You can delete a
range of elements in a segment by calling the GpiDeleteElementRange function,
and you can delete a series of elements between two labels by calling the Gpi­
DeleteElementsBetweenLabels function.

You can copy elements from one segment to another or from one position in a
segment to another position in the same segment by calling the GpiGetData and
the GpiPutData functions. GpiGetData copies one or more graphics orders from
one or more elements in a segment into a buffer of bytes. You can then copy the
order from the buffer to a new location in a segment by calling GpiPutData. In
addition to copying multiple elements from one segment to another, or from one
segment to another location in the same segment, you can copy the graphics
orders from a single element by calling the GpiQueryElement and GpiElement
functions. GpiQueryElement copies the graphics orders from an element into
an array of bytes. GpiElement copies the orders from the array back into a seg­
ment.

42.3 Using Segments and Retained Drawings
You can use segment and retained-drawing functions to perform the following
tasks:

• Create a chained, chained-dynamic, or called segment.

• Draw the subpicture(s) associated with one or more segments.

• Delete a segment.

• Perform correlation operations on the subpicture associated with a segment.

• Edit the contents of a segment.

• "Drag" the subpicture associated with a dynamic segment.

Chapter 42: Segments and Retained Graphics 571
!f.i!~t1fil/!mj~~~f!ti~(;it!!Jw.l!flijlmliiMg;;im,,~iffi!!§I~~i!JJ!i~jfil1imi!iliii~i~!!!lb~lJI:'~f~iliiIlJifaUiifi~!§!~I§Rgi!jID!l!i~lmjlWJij~r.:j!~Im1im~j

42.3.1 Creating a Chained Segment
To create a chained segment, you must perform the following tasks:

1 Set the drawing mode to retain.

2 Check to see whether the chained attribute is one of the initial segment attri­
butes by calling the GpiQuerylnitialSegmentAttrs function.

3 If the chained attribute is not set, turn it on by calling the GpiSetInitialSegment-
Attrs function.

4 Open the segment by calling the GpiOpenSegment function.

5 Perform the necessary drawing operations.

6 Close the segment by the calling the GpiCloseSegment function.

In the following example, the segment contains a box primitive and calls another
segment with the GpiCallSegmentMatrix function:

GpiSetOrawingMode(hps, OM_RETAIN);
if (ATTR_OFF == GpiQueryInitialSegmentAttrs(hps, ATTR_CHAINEO»

GpiSetInitialSegmentAttrs(hps, ATTR_CHAINEO, ATTR_ON);
GpiOpenSegment(hps, ++idSegment);
ptl.x = 150; ptl.y = 150;
GpiMove(hps, &ptl);
ptl.x = 225; ptl.y = 225;
GpiBox(hps, ORO_FILL, &ptl, OL, OL);
GpiCallSegmentMatrix(hps, --idSegment, 9L, &matlfTransform,

TRANSFORM_REPLACE) ;
GpiCloseSegment(hps);

42.3.2 Creating a Called Segment
To create a called segment, you must perform the following tasks:

1 Set the drawing mode to retain.

2 Check to see whether the chained attribute is one of the initial segment attri­
butes by calling the GpiQuerylnitialSegmentAttrs function.

3 If the chained attribute is set, turn it off by calling the GpiSetInitialSegmentAttrs
function.

4 Open the segment by calling the GpiOpenSegment function.

5 Perform the necessary drawing operations.

6 Close the segment by calling the GpiCloseSegment function.

The following code fragment shows how to draw a box in a called segment:

GpiSetOrawingMode(hps, OM_RETAIN);
if (ATTR_ON == GpiQueryInitialSegmentAttrs(hps, ATTR_CHAINEO»

GpiSetInitialSegmentAttrs(hps, ATTR_CHAINEO, ATTR_OFF);
GpiOpenSegment(hps, idSegment);
ptl.x = 50; ptl.y = 50;
GpiMove(hps, &ptl);
ptl.x = 125; ptl.y = 125;
GpiBox(hps, ORO_FILL, &ptl, OL, OL);
GpiCloseSegment(hps);

572 MS OS/2 Programmer's Reference, Vol. 1
~ilji~!fi!IS;!~1~i!!!~l!!;!iliicmif.j~tIJ~;;n!ifi~!5i!jlf:!n§1UmmiIe~i!~I~!i!ai~jl~im!l~tm~l~fi~l~i!~iElli~~~~~~J:!!!talmlin\im!~ii~i

42.3.3 Drawing a Segment Chain
To draw a segment chain, you call the GpiDrawChain function, as shown in the
following code fragment:

if (DM_DRAW 1= GpiQueryDrawingMode(hps»
GpiSetDrawingMode(hps, DM_DRAW);

GpiDrawChain(hps) ;

42.3.4 Performing a Correlation Operation
To use a correlation operation, you must perform the following tasks:

1 Size the pick aperture by calling the GpiSetPickApertureSize function.

2 Perform the correlation operation by calling the GpiCorrelateChain function,
passing it the pick-aperture position as the third argument.

The following code fragment shows how to send the segment/chain identifiers
from the correlation operation to your application's window with a message box:

HitDetect(hps, hwnd)
HPS hps;
HWND hwnd;
{

}

LONG lMaxHits = 1;
LONG lMaxDepth = 1;
LONG alSegTag[MaxHits] [MaxDepth] [2]
CHAR szChar[80];
USHORT usCount;

GpiCorrelateChain(hps, PICKSEL_VISIBLE, &ptlPick,
lMaxHits, lMaxDepth, alSegTag);

sprintf(szChar, " Segment %ld Tag %ld ", alSegTag[O] , alSegTag[l]);
WinMessageBox(HWND_DESKTOP, hwnd, szChar,

"Segment/Tag Pairs", 0, MB_OK);

for (usCount = 0; usCount < 2; usCount ++)
alSegTag[usCount] = 0;

42.3.5 Editing the Contents of a Segment
To edit the contents of a segment, you must perform the following steps:

1 Set the segment edit mode to insert or replace by calling the GpiSetEditMode
function.

2 Set the drawing mode to retain.

3 Open the segment by calling the GpiOpenSegment function, passing it the seg­
ment identifier from a previous correlation operation.

4 Set the element pointer so that it points to the position at which you will replace
or insert an element by calling the GpiSetElementPointer, GpiSetElement­
PointerAtLabel, or GpiOffsetElementPointer function.

5 Insert the new primitives by calling any of the Gpi primitive functions.

6 Delete any unnecessary primitives by calling the GpiDeleteElement or Gpi­
DeleteElementRange function.

Chapter 42: Segments and Retained Graphics 573
iw.i!fl~~~!mi~~&f~~~iii!i§il~lmim!i;iw.~1i,,~ifflj!M~:m!§J!!if~!lif;;mffilm~l~!ijlb~mii!i/~i~lillifaftti~~~~:F.~'1jj!ir.il~i~IMim~RH~i!T!iiml~~~1

The following code fragment shows how to insert three elements in a segment.
The first element contains the graphics order that sets the color to yellow; the
second element moves the current position; and the third element draws an out­
lined box with rounded corners. After inserting the three elements, the code
deletes the elements at positions five and six in the segment (these elements were
previously at positions two and three).

GplSetEdltMode(hps, SEGEM_INSERT);
GplSetOrawlngMode(hps, OM_RETAIN);
Gpl0penSegment(hps, 2L);
GplSetElementPolnter(hps, 1L);
GplSetColor(hps, CLR_YELLOW);
ptl.x = 30; ptl.y = 30;
GplMove(hps, &ptl);
ptl.x = 150; ptl.y = 150;
GplBox(hps, ORO_OUTLINE, &ptl, 40L, 40L);
GplOeleteElementRange(hps, 5L, 6L);
GplCloseSegment(hps);

42.4 Summary
The following list summarizes the MS OS/2 segment and retained-drawing func­
tions:

GpiBeginElement Defines the beginning of an element bracket. An element
bracket is a collection of graphics orders that correspond to graphics functions
and graphics-attribute functions. MS OS/2 treats the collection of graphics
orders in an element bracket like a single element. The GpiEndElement func­
tion defines the end of an element bracket.

GpiCallSegmentMatrix Temporarily sets the model transformation, transforms
the contents of a segment, and then draws the segment. You should use this
function to concatenate the contents of an unchained segment bracket onto
another chained or unchained segment bracket. For example, if your application
repeatedly draws a single object, such as a window in a house, you could define
the object (the window) in an unchained bracket and draw it repeatedly by call­
ing GpiCallSegmentMatrix from within other segment brackets.

GpiCloseSegment Defines the end of a segment bracket. A segment bracket
is a collection of elements that, when drawn, create a subpicture. Each element
contains one or more graphics orders. The GpiOpenSegment function defines
the beginning of a segment bracket.

GpiCorrelateChain Determines whether correlation hits occurred at the cur­
rent pick-aperture location for any segment in the segment chain.

GpiCorrelateFrom Determines whether correlation hits occurred at the current
pick-aperture location for any segment in a range of chained segments.

GpiCorrelateSegment Determines whether correlation hits occurred at the
current pick-aperture location for a given segment.

GpiDeleteElement Deletes the element pointed to by the element pointer, then
sets the element pointer so that it points to the previous element in the segment.
Before deleting an element, you must set the pointer by calling the GpiSet­
ElementPointer or GpiSetElementPointerAtLabel function. If the element
pointer points to the beginning of the segment (position 0), no deletion occurs.

GpiDeleteElementRange Deletes a specified range of elements from a segment.
After deleting the elements, MS OS/2 sets the element pointer so that it points
to the element preceding the first of the deleted elements.

574 MS OS/2 Programmer's Reference, Vol. 1
ii!UlP.!~J~~n21~!~1i1¥U~!~~ElH~~Ii!;1tiY~~!!jif!HB.JffJiali$ilili~~1il!!~~~~H=siii~;~iiim~it!~i!~1r:~~iSim!!!!!i~iimim~i&;~iinij!~

GpiDeleteElementsBetweenLabels Deletes all of the elements in a segment that
appear between two labels. After deleting the elements, MS OS/2 sets the ele­
ment pointer so that it points to the element preceding the first of the deleted
elements.

GpiDeleteSegment Deletes a segment. If the function call occurs within a seg­
ment bracket and the segment identifier is the identifier for the currently open
segment, MS OS/2 deletes the segment and ignores the remainder of the calls up
to, and including, the GpiCloseSegment call. If the function call occurs within a
segment bracket and the identifier is the identifier for a segment other than the
currently open segment, MS OS/2 deletes the segment, then continues process­
ing the remaining calls in the segment bracket. If the call occurs outside of a seg­
ment and references a segment in the segment chain, MS OS/2 removes the seg­
ment from the chain and links the two adjacent segments (if those segments
exist).

GpiDeleteSegments Deletes a specified range of segments. If the segments
were in the segment chain, MS OS/2 "repairs" the chain by linking the segments
immediately preceding and following the deleted segments (if those segments
exist).

GpiDrawChain Draws the subpictures stored in a presentation space's segment
chain. MS OS/2 draws the subpictures by using four of the five drawing controls
you can set by calling the GpiSetDrawControl function.

GpiDrawDynamics Redraws dynamic segments. If you called the GpiRemove­
Dynamics function prior to calling GpiDrawDynamics and you specified a
range of dynamic segments, MS OS/2 draws only that range. If you set the
DCTLJ)YNAMIC control by calling the GpiSetDrawControl function, MS
OS/2 calls the GpiRemoveDynamics function before drawing the subpictures
from the dynamic segments.

GpiDrawFrom Draws the subpictures from a specified range of segments in the
segment chain. MS OS/2 draws the subpictures by using four of the five drawing
controls that you can set by calling the GpiSetDrawControl function.

GpiDrawSegment Draws a subpicture from a single segment. MS OS/2 draws
the subpicture by using four of the five drawing controls that you can set by call­
ing the GpiSetDrawControl function.

GpiErase Clears a window identified by a screen device context and paints the
window, using the color identified by index 0 in your presentation space's color
table.

GpiElement Creates an element from graphics orders that you store in a buffer
and pass to the function. If the current drawing mode is D~ETAIN or
DMJ)RAWANDRETAIN, MS OS/2 stores the element in a segment. If the
current drawing mode is DMJ)RAW or DMJ)RAWANDRETAIN, MS OS/2
draws output by using the graphics orders in the buffer.

GpiEndElement Defines the end of an element bracket. An element bracket is
a collection of graphics orders that correspond to graphics functions and attri­
bute functions. MS OS/2 treats the collection of graphics orders in an element
bracket as a single element. The GpiBeginElement function defines the begin­
ning of an element bracket.

Chapter 42: Segments and Retained Graphics 575
!ifr!~H~I!mi~ml~~~ifi!lijtt~jjlmiij;'fIC1i&!iirsP.!if~~!9Il!i~!fifmmlfiliiiimi~!.!fifb'!miiiil~i~aii.fr.f:iii5~~i!lF.~'iJi!i~ll~is/jfiif~~~itmim!~~~i

GplErrorSegmentData Provides information about the last error that occurred
during a retained-drawing operation. It returns a pointer to the segment identifier
and a pointer to one of three constants that indicate when the error occurred:
GPIE_SEGMENT, while drawing the segment; GPIE~LEMENT, while calling
the GpiElement function; or GPIEJ)ATA, while calling the GpiPutData func­
tion.

GpiGetData Copies graphics orders from a segment into a buffer. You can
use this function to copy parts of a segment into another segment by collecting
specific graphics orders from a source segment by using the GpiGetData func­
tion, then inserting them into a target segment by calling the GpiPutData func­
tion. You can also use this function to copy graphics orders into a buffer, edit
the orders, then copy them back into the original segment by calling GpiPut­
Data.

GpiLabel Generates a special element called a label. When a segment contains
labels, you can perform the following tasks:

• Insert a new element before or after the element associated with a certain
label.

• Delete an element at a label.

• Delete each of the elements that appear between two labels.

GpiOffsetElementPointer Moves the element pointer in a segment by a speci­
fied offset. If the sum of the offset and the current pointer poSition is less than
zero, MS OS/2 sets the pointer so that it points to position 0 (preceding the first
element in the segment). If the sum of the offset and the current pointer position
is greater than the number of elements in the segment, MS OS/2 sets the pointer
so that it points to the last element in the segment.

GpiOpenSegment Defines the beginning of a segment bracket. A segment
bracket is a collection of elements that, when drawn, create a subpicture. Each
element contains one or more graphics orders. The GpiCloseSegment function
defines the end of a segment bracket.

GpiPutData Copies graphics orders from a buffer into a segment. You can use
this function to copy parts of a segment into another segment by collecting
specific graphics orders from a source segment using the GpiGetData function,
then inserting them into a target segment by calling GpiPutData. You can also
use this function to copy graphics orders into a buffer, edit the orders, then copy
them back into the original segment by calling GpiPutData.

GpiQueryBoundaryData Retrieves the size of the smallest rectangle that
completely surrounds the current segment output, if the drawing control
DCTL~OUNDARY has been set by calling the GpiSetDrawControl function.

GpiQueryDrawControl Determines whether one of the five drawing controls
is set.

GpiQueryDrawingMode Determines which of the three drawing modes is set.
The three modes are draw, retain, and draw-and-retain.

576 MS OS/2 Programmer's Reference, Vol. 1
~ilUimm~~~t!!l!i1I~li~i~!~!~i!il~~lili1!lll~!!~~mmjralilaJilililmi~1ilm!~~i51~H~fslliUm!l~~liUii~i!~lf:~~~m!!~i~iim;mm;ii!~f~tij!~

GpiQueryEditMode Determines which of the two segment-editing modes
is currently set in your application's presentation space. If the edit mode is
replace, you can replace the element at the current element-pointer location
with a new element. If the edit mode is insert, you can insert an element at
the current element-pointer location and MS OS/2 will shift each succeeding
element into the next slot, creating anew, final slot.

GpiQueryElement Retrieves the graphics orders from the element at the
current position of the element pointer and copies the orders into a buffer of
bytes. You can use this function only if the drawing mode is retain or draw-and­
retain and a segment is open.

GpiQueryElementPointer Retrieves the location of the element pointer. You
can use this function only if the drawing mode is retain or draw-and-retain and
a segment is open.

GpiQueryElementType Retrieves the type of the element at the current loca­
tion of the element pointer. If an element is generated by a single Gpi function
call, the type corresponds to the graphics-order code for that call. If an element
is generated by the application and contains a number of Gpi function calls, the
application can define a unique type for the element.

GpiQueryInitialSegmentAttrs Retrieves the setting of one of the seven initial
segment attributes. MS OS/2 assigns these attributes to a segment when you
create it in your application's presentation space.

GpiQueryPickAperturePosition Retrieves the location of the center of the pick
aperture in your application's page space. The pick aperture is a rectangle that
applications use when performing correlation operations.

GpiQueryPickApertureSize Retrieves the dimensions of the pick aperture in
presentation-page coordinates. The pick aperture is a rectangle that applications
use when performing correlation operations.

GpiQuerySegmentAttrs Retrieves the setting of one of the seven segment attri­
butes. MS OS/2 assigns these attributes to a segment after you create it in your
application's presentation space.

GpiQuerySegmentNames Retrieves a list of existing segment identifiers within
a specified range. A segment identifier is a long integer value.

GpiQuerySegmentP.riority Returns the identifier for a segment that precedes or
follows a segment in the segment chain.

GpiQueryStopDraw Determines whether the stop-draw condition is set. You
can set this condition by calling the GpiSetStopDraw function from one thread
to stop a retained-drawing operation in another thread.

GpiQueryTag Retrieves the value of the last tag set by calling the GpiSetTag
function. A tag is an integer identifier that applications use for correlation opera­
tions. When a correlation hit occurs, MS OS/2 returns the identifier for the seg­
ment containing the element that caused the correlation hit, as well as an
identifier for the tag associated with the element. If your application performs
correlation operations, you should assign a new tag to each element in a seg­
ment.

GpiRemoveDynamics Removes parts of a picture that were drawn by dynamic
segments in the segment chain.

Chapter 42: Segments and Retained Graphics 577
!i~U~1~i~!ImIf..J!ii~:~fi!j~m~!y!!j11~~~$II~L~!W:Hti1IIEiii1ifil!:§iSiii!lijjgi~~fiaii!mji?~~lliia~r~~1ii§jrn!ifiJiilliimti:i!ti~Iffi!lii~i!m!!fii

GpiResetBoundaryData Resets the boundary data to NULL. The boundary
data contains dimensions of the smallest rectangle that will completely surround
an application's retained-drawing output.

GpiSetDrawControl Sets one of the five drawing controls. These controls are
described in the following list:

Control constant

DCTL~OUNDARY

DCTL_CORRELATE

DCTL-DISPLA Y

DCTL-DYNAMIC

DCTL-ERASE

Description

If this control is set, MS OSI2 computes
the dimensions of the smallest rectangle
that would completely surround the
retained-drawing output.

If this control is set, MS OS/2 performs
correlation operations on any primitives or
any output associated with the GpiPutData
or GpiElement function.

If this control is set, MS OS/2 draws
retained output on the device identified by
the current device context. If this control
is not set, no retained output will appear
on the device.

If this control is set, MS OS/2 calls the
GpiRemoveDynamics function before
drawing any retained output and then,
after drawing the retained output, it calls
the GpiDrawDynamics function to draw
output stored in dynamic segments.

If this control is set, MS OS/2 calls the
GpiErase function before drawing any
retained output.

The DCTL-DISPLAY control is the only control set to DCTL_ON by default.
All of the other controls are set to DCTL_OFF when you create a presentation
space.

GpiSetDrawingMode Sets the drawing mode in your presentation space to one
of three possible modes: draw, retain, or draw-and-retain.

GpiSetEditMode Determines which of the two segment-editing modes is
currently set in your application's presentation space. If the edit mode is
replace, you can replace the element at the current location of the element
pointer with a new element. If the edit mode is insert, you can insert an element
at the current location of the element pointer and MS OS/2 will shift each
succeeding element into the next slot, creating anew, final slot.

GpiSetElementPointer Sets the element pointer so that it points at the nth ele­
ment in a segment.

GpiSetElementPointerAtLabel Sets the element pointer to the element iden­
tified by a particular label.

578 MS OS/2 Programmer's Reference, Vol. 1
mmiar.!ij~~!iinifiil1iiifsUij!~P.Rii!ii!fti~Iif~H~joJ~!mi§fiE!~iim;H5!!mrmi~!§I§im~1n~~l~.jlUniiUffm.'Sitni5m~iitimii~~1fiij!

GpiSetInitialSegmentAttrs Sets the default segment attributes.

GpiSetPickAperturePosition Sets the location of the center of the pick aper­
ture in your application's page space. The pick aperture is a rectangle that appli­
cations use when performing correlation operations.

GpiSetPickApertureSize Sets the dimensions of the pick aperture in
presentation-page coordinates. The pick aperture is a rectangle that applications
use when performing correlation operations.

GpiSetSegmentAttrs Sets one of the seven segment attributes. MS OS/2
assigns these attributes to a segment after you create it in your application's
presentation space. The segment attributes are described in the following list:

Attribute constant Description

ATTILCHAINED If this attribute is set, MS OS/2 adds
each new segment in your application's
presentation space to the segment
chain.

ATTlLDETECTABLE If this attribute is set, your application
can perform correlation operations on
segments created in its presentation
space.

ATTlLDYNAMIC If this attribute is set, MS OS/2 draws
segment output by using the XOR ras­
ter operation.

ATTRYASTCHAIN If this attribute is set, MS OS/2 resets
the primitive attributes to their default
values before drawing the segment
chain.

ATTRYROP J)ETECTABLE If this attribute is set, the detectable
attribute will be set in each segment
called by a chained segment.

ATTRYROP _VISIBLE If this attribute is set, the visible attri­
bute will be set in each segment called
by a chained segment.

ATTIL VISIBLE If this attribute is set, the GpiDraw­
Chain, GpiDrawFrom, and GpiDraw­
Segment functions will generate output
on a device.

GpiSetSegmentPriority Alters the order in which MS OS/2 draws and detects
segments in the segment chain.

GpiSetStopDraw Sets the stop-draw condition. You can set this condition by
calling GpiSetStopDraw from one thread to stop a retained-drawing operation
in another thread.

Chapter 42: Segments and Retained Graphics 579
e!gfllil~n!.!If:lf.~!i§~:ifi:~i!l!8D~!~\!tjj~.;m'~HiL.~i.W:U~iiSlifi~lU§ilSiSilii!i!t~-li§ji~I!i~mJiffi'ifili1¥m~~11i§jfl!iliHiU!ililhili!iiTtli.iltijl§ji!r.!iJiJi

GpiSetTag Assigns a tag to an element in a segment. A tag is an integer iden­
tifier that applications use for correlation operations. When a correlation hit
occurs, MS OS/2 returns the identifier for the segment containing the element
that caused the correlation hit, as well as an identifier for the tag associated with
the element. If your application performs correlation operations, you should
assign a new tag to each element in a segment.

Part 4
System Services

~---------

~-------. -----L-______________________________ ~ __ ~~==~==---==.~-----

583
!igU~!~i~!milf.~!ii&I!1fii;!mil_!im;!f;t'~~imUii1ii51fflll!ie~iS!ii!i1!i1:1i!t.'mli~!lifmliiii1iaifU~li1J~p.!iHmr~~iliRiiTtffmil.il!fi!!Wi

Part 4

System Services
Chapter 43

Chapter 44

Chapter 45

Chapter 46

Chapter 47

Chapter 48

Chapter 49

Chapter 50

Chapter 51

Chapter 52

Chapter 53

Chapter 54

Chapter 55

Chapter 56

Processes, Threads, and Sessions......... 585

The Memory Manager.. 601

Dynamic Linking.. 613

The File System.. 621

Video Input and Output... 637

Advanced Video Input and Output....................... 647

The Mouse.. 659

The Keyboard... 667

Interprocess Communication................................. 675

Timers ... 693

Window Timers... 697

Device Monitors ~ 703

Atom Tables ... ~ 707

System Information.. 715

Chapter

43

Processes, Threads,
and Sessions '

43.1 Introduction .. 587

43.2 About Processes, Threads, and Sessions 587
43.2.1 Processes and Threads 587
43.2.2 The Scheduler... 588
43.2.3 Child Processes... 589
43.2.4 Program Startup .. ~ 5s)()
43.2.5 Sessions............... 591

43.3 Using Processes ... 593
43.3.1 Starting a Process 593
43.3.2 Setting the Program Command Line

and Environment ... 593
43.3.3 Running an Asynchronous Child Process 594
43.3.4 Waiting for a Child Process to End 594
43.3.5 Retrieving the Termination Status

of a: Child Process.. 595
43.3.6 Ending a Process .. ~ ~ 595
43.3.7 Terminating Another Process 595
43.3.8 Cleaning Up Before Enoing a Process ~..... 596

43.4 Using Threads ... ~ 597
43.4.1 Creating a Thread ~ 597
43.4.2 Controlling the Execution of a Thread.................... 598
43.4.3 Suspending a Thread ~..................... 598
43.4.4 Changing the Priority ~....................................... 598

43.5 S~mmary............... ... 5~

Chapter 43: Processes, Threads, and Sessions 587
~a;liIi~fj=_!i;U$i~Ji!f_J!5p.iUfl!!f~I~lftilii1lr.lim~iifi~i~r!f~lBI!i!rrgmmff!..ffifi!i1i!ii~tiIjj:i~jgit~~~l~~~lmlm!~l!f!~fialiF.

43.1 Introduction
This chapter describes processes, threads, sessions, and the Microsoft Operating
System/2 multitasking functions used to create and manage them. You should
also be familiar with the following topics:

• The file system

• Dynamic linking
• The system-configuration file (config.sys)

43.2 About Processes, Threads, and Sessions
Multitasking, one of the principal features of MS OS/2, is the ability of the sys­
tem to manage the execution of more than one program at a time. A multitask­
ing system such as MS OS/2 lets users simultaneously run all the programs they
need to complete their work. This ability helps to optimize use of the computer,
since time normally spent by a program waiting for user input is distributed to
other programs that may be printing a document or recalculating a spreadsheet.
Also, running more than one program at a time makes working with multiple
programs easier, because the user can readily move from one program to
another as the work requires.

Although MS OS/2 provides multitasking in the traditional sense of having more
than one program run at a time, it also extends this concept to permit a single
program to run more than one copy of itself at the same time and to provide a
means of quickly moving between programs without disrupting the display or
execution of the programs.

43.2.1 Processes and Threads
An MS OS/2 program that has been loaded into memory and prepared for exe­
cution is called a process. Each process has at least one thread, called the main
thread or thread 1. The process consists of the program code, data, and other
resources, such as files, pipes, and queues, that belong to the program. The
thread consists of the current register values, the stack, and the state of execu­
tion of the program. When MS OS/2 executes a program, it confirms that the
process's code and data are in memory and that the thread's registers and stack
are set before it passes execution control. Each program has access to all the
computer's resources, such as memory, disk drives, screen, keyboard, and the
CPU itself. The system carefully manages these resources so that programs can
access them without conflict.

A process can have more than one thread. Each thread runs independently,
keeping its own register, stack, and execution state. Threads share the same data
segment (that is, they share the program's globally defined variables). Although a
thread can execute any part of the program, including a part being executed by
another thread, threads are typically used to execute separate parts. This distrib­
utes the available CPU time and lets a program carry out several tasks simul­
taneously-for example, loading a file and prompting the user for input at the
same time.

588 MS OS/2 Programmer's Reference, Vol. 1
ilitfi:Im;!;i~::e~!ID~~i~fi1m!I~Ijj!mill.li~I"~~U~!~!i~imlf~imr:i!f!!!!.,laOO!!~ifliW~ .. ff!i!iY~lgrji~2J~1iI~rmi~~;r.~!!!~~;:ljjtll~IiI;~f.Pr¥.i~!

Since the system can create and execute threads quickly, the preferred multi­
tasking method is to distribute tasks among parts of the same program instead of
between programs.

A process does not have to rely on MS OS/2 to control execution of its threads.
A process can use the DosSuspendThread and DosResumeThread functions to
suspend and resume the execution of a given thread. When a process suspends a
thread, the thread remains suspended until the process calls the DosResume­
Thread function.

A process or thread ends when it calls the DosExit function. MS OS/2 automati­
cally closes any files or other resources left open by the process when the pro­
cess ends, but when a thread ends, any resources it may have open remain open
until another thread closes them or the process ends. A process can direct MS
OS/2 to carry out other actions when the process ends by using the DosExitList
function to create a list of termination functions. MS OS/2 calls the termination
functions, in the order given, when the process is about to end.

Threads in a process must be given a stack when they are created. The stack can
be in the automatic data segment of the process (that is, be defined as a global
variable in the program), or it can be a segment that is explicitly allocated for
use as a stack. In either case, a program that uses multiple threads may need to
disable code used to check for available space in the stack if that code assumes
that the program has only one stack.

Although each thread in a process has its own registers, a new thread inherits
some registers, including the es register, from the thread that creates it. This
may lead to an unexpected protection violation if the selector in the es register is
later freed or invalidated by the first thread and the new thread unwittingly uses
the register. (This can happen in high-level-language programs in which the es
register is automatically saved and restored. Restoring an invalid selector may
cause a protection violation.) A new thread can avoid a protection violation by
clearing the es register when it first starts. Alternatively, an existing thread can
clear the es register before creating a new thread. The following assembly­
language routine, ClearES, clears the es register:

ClearES proc far
sub aX,ax
mov eS,ax

ClearES endp

43.2.2 The Scheduler
The MS OS/2 system scheduler determines how to distribute execution control
among the programs currently running. The scheduler uses time slicing to dis­
tribute execution control. This means the scheduler periodically gives each
thread in each process a small slice of CPU time. The thread executes until its
time is up; then the scheduler stops the thread and starts another. The amount
of time in each time slice is defined by the timeslice command in the config.sys
file. Timeslice sets a maximum and minimum number of milliseconds for the
system's time slices.

The scheduler does not share CPU time equally among all threads. It uses a
priority scheme to determine when a thread receives a time slice. The scheduler
has three priority classes: time-critical, regular, and idle-time. A time-critical
thread always receives a time slice before a regular thread, and a regular thread
always receives a time slice before an idle-time thread.

Chapter 43: Processes, Threads, and Sessions 589
~i§!i!i~~~ia!iilfmir~JiE!1iliiEl~~mlrr;ia!~im!lj~~llmjgj!§l~~iH!~mf~m~J§U!Jfliiilifilil~si~Il!W~R~Jn~~fFj!ii!iru~§ft~m;lm!

Time-critical is a special class for threads that must react to events outside the
system. Time-critical threads should execute quickly and then relinquish the
CPU for other work until another time-critical event occurs. A thread in a com­
munications program that is responsible for reading data from the communica­
tions device is a good example. The thread needs enough time to read all incom­
ing data. Since this amount of time may be more than a regular time slice, a
time-critical classification ensures that the thread gets all the time it needs.

Idle-time is a special class for threads that need very little CPU time. Idle-time
threads get CPU time only when there is no other work to do.

Regular class is for all other threads.

Within each class, the scheduler maintains a priority level for a thread. The
priority level can be from 0 through 31. A thread with priority level 31 always
receives a time slice before a thread with priority level 30, and so on. If two or
more threads have the same priority level, the scheduler distributes the CPU
time equally by using a round-robin scheme; that is, the scheduler gives a time
slice to first one, then another, and so on, and then goes back to the first. A
process can set and retrieve the priority level by using the DosSetPrty and Dos­
GetPrty functions.

Although you can set the priority level of a thread at any time, you should do so
only for programs that use more than one thread or process. The best use of
priority is to speed up threads or processes on which other threads or processes
depend. For example, you might temporarily increase the priority of a thread
loading a file if another thread is waiting for that file to be loaded.

Since the priority of a thread is relative to all other threads in the system,
increasing the priority of the threads in your program merely to get the extra
CPU time will adversely affect the overall operation of the system.

On personal computers, most programs spend a considerable amount of time
interacting with the user. A program may occasionally execute without interac­
tion for a period of time, such as when recalculating a column of numbers or
formatting a paragraph of text, but for the majority of the time the program is
either processing input from the user or waiting for more input. MS OS/2 can
dynamically alter the priority of a process based on whether the user is using it.
If the priority command in the config.sys file specifies dynamic, MS OS/2 grants
higher priority to the foreground process than to background processes. This
ensures that the foreground process-the process most likely to be in use­
receives enough CPU time to provide quick response to user input. If priority
specifies absolute, all processes receive CPU time based on the priority estab­
lished by the DosSetPrty function.

43.2.3 Child Processes
Programs can load and execute other programs by using the DosExecPgm func­
tion. The new program, once loaded, is called a child process. The process that
starts the new program is called the parent process. A child process is like any
other process. It has its own program code and data and its own threads. The
child process inherits the other resources of the parent process, such as files,
pipes, and queues. The child process can use the inherited resources without
preparing them. For example, if the parent process opens a file for reading and
then starts the child process, the child process can read from the file immedi­
ately; it does not have to open the file for itself. Once the child process has been

590 MS OS/2 Programmer's Reference, Vol. 1
~!Uii~~~1fiidm~lnm!~mtlm~¥alrnmijf.~lHfi!~;;rnim~iiif'~!itnHlIi!i!mtimi~imU~im!lli@!iW~~~ii11~~~~liil~Sii!tiiiiii.mP.i!UJiI!!'~~

created, however, any additional resources that the parent process may create
are not available to the child process. Similarly, any resources that the child pro­
cess may create are not available to the parent process.

The parent process determines how the child process should run. A child. pro­
cess can run independently of the parent process-that is, both can run at the
same time-or the parent process can wait until the child process ends before
continuing execution. A process can use the DosCwait function to retrieve the
termination status of a child process that runs independently.

43.2.4 Program Startup
Unlike MS-DOS, MS OS/2 does not prepare a program segment prefix (PSP) for
protected-mode programs. Instead, it creates an environment segment that con­
tains the definitions for environment variables and the command line used to
start the program. When a program first starts, MS OS/2 gives the program
access to this environment segment, as well as to information about the version
ofMS OS/2.

A program can retrieve definitions from the environment segment by first using
the DosGetEnv function to retrieve the segment selector. The DosSeanEnv and
DosSearehPath functions also permit the program to use the information in the
environment segment.

When MS OS/2 first starts a program, it sets the CPU registers to the following
values:

Value

es:ip

ss:sp

ds

es

ax

bx

ex

bp

Description

Contains the program's initial entry point. This is the
same as the entry point specified in the executable file.

Contains the starting address of the stack. This is the
same stack address as specified in the executable file.

Contains the segment selector of the automatic data seg­
ment. The automatic data segment is specified in the exe­
cutable file.

Contains zero.

Contains the segment selector of the environment seg­
ment. The environment segment contains the environ­
ment strings and command-line arguments for the pro­
gram.

Contains the offset to the start of the program command
line from the beginning of the environment segment.

Contains the size (in bytes) of the automatic data seg­
ment. If this value is zero, the segment is 65,536 bytes.

Contains zero.

A program written in assembly language can use these registers to access the
command line and environment string. Programs written in high-level languages
can retrieve the environment-segment selector and command-line offset by using
the DosGetEnv function.

Chapter 43: Processes, Threads, and Sessions 591
~iii!ii~!i~~i~lilll~jiii1i9m~~~i~l!{!imliiils!h~lim!i5iiii~i~~!W.~~t§li~li~!!m~t~ii!Ii.i~!ii;1lI~~t.~ml~I!~Jilrgt~iimmCij~i~ll~~IiOO9

When MS OS/2 starts a dynamic-link library, it sets the CPU registers to the fol­
lowing values:

Value

cs:ip

ss:sp

ds

ax

Description

Contains the entry-point address of the library initializa­
tion function.

Contains the address of the current system stack. The
initialization function can use the stack to define local
variables and call other functions, but it must restore the
stack to its previous state before returning.

Contains the segment selector of the library's automatic
data segment (if it has one), or contains the selector for
the data-segment program or system library that called
the DosLoadModule function to load the library.

Contains the module handle of the dynamic-link library.

All other register values are undefined.

The initialization function can carry out any task, but it must return by using an
intersegment return instruction. All registers except ax and dx must be restored
to their previous values. The function can use the ax register to indicate whether
it was successful. The system expects the function to set the ax register to a
nonzero value if the function was successful, or to zero if the function failed.

43.2.5 Sessions
MS OS/2 uses sessions to help the user move from one program to the next
without disrupting the screen display of a program. A session consists of at least
one process and either a full, character-based screen or a Presentation Manager
window. When the system creates a session, the process in the session displays
output in the screen or window. The user can view the output and supply input
by moving to the session. The user moves toa session by pressing the ALT+ESC
key combination or by selecting the title of the session from the list of program
titles in the Task Manager window.

A process creates and controls sessions by using the MS OS/2 session-manager
functions. Processes that use these functions have much the same control over
sessions as does Task Manager, but only for the sessions they create. The func­
tions are typically used by debugging programs to keep output of the program
being debugged separate from the debugger's output.

A process creates a new session by using the DosStartSession function. The
function uses a STARTDATA structure that specifies the name of the program to
start in the session. It also specifies whether the session should be full-screen or
in a window. When a session is created, MS OS/2 adds the program title for the
session to the list of titles in Task Manager.

A session can be either a child session or an unrelated session. A child session,
created by setting the Related field in STARTDATA to TRUE, is under the con­
trol of the process that created it. The process can select, set, or stop a child
session by using the DosSelectSession, DosSetSession, or DosStopSession func­
tion, respectively. DosStartSession gives the child session a unique session
identifier for use in these functions.

592 MS OS/2 Programmer's Reference, Vol. 1
fffi~iSiilil~UI~i~!~~~fij~liim,~lii!iilli!iililmif:i!n!!ru~i~iiIiHil~!ffi~~im~m~sUimft'im"iUmaifii~~=itmifiiif,~~~~1f~iifli!mI§P.~ji¥;!iffiiii!§t~!!i!

An unrelated session, created by setting the Related field to FALSE, is not
under the process's control. Once an unrelated session starts, it is controlled
entirely by the user.

A session can be either a foreground or a background session. A process can
create a foreground session only if the process is in the current foreground ses­
sion or if one of the sessions created by the process is the current foreground
session.

A process can select a child session by using the session identifier in the Dos­
SelectSession function. Selecting a child session causes that session to move to
the foreground. A process can make a child session "unselectable" by using the
DosSetSession function to change the SelectInd field in the STATUSDATA
structure. This prevents the user from selecting the session from Task Manager
but does not prevent a process from selecting the child session by using Dos­
SelectSession.

A process can also bind a child session to its own session by using the DosSet­
Session function. Binding a session causes that session to move to the fore­
ground whenever the user selects the parent session from Task Manager.

A process can use a session identifier with the DosSetSession function only if
the process created the identifier. It cannot use session identifiers created by
other processes.

Although a child session is related to the session that started it, the processes in
the child and original sessions are not related. This means that even though
DosStartSession supplies the process identifier of the process in the child ses­
sion, the identifier cannot be used with MS OS/2 functions such as DosSetPrty.

A process can stop a child session by using the DosStopSession function. Stop­
ping the session terminates the process in the session. It also stops any sessions
related to the child session. If a child session is in the foreground when it is
stopped, the parent session becomes the foreground session. The DosStop­
Session function breaks any bond that exists between the parent session and the
specified child session.

A process running in the session specified in the DosStopSession function can
refuse to terminate. If this happens, DosStopSession still returns zero (indicat­
ing success). The only way to be certain that the child session has terminated is
to wait for notification through the termination queue that is specified in the
DosStartSession function. MS OS/2 writes a data element into the specified
queue when the child session terminates. The process in the parent session must
call the DosReadQueue function to retrieve this data element, which contains
the session identifier for the child session and the result code for the process in
the child session. DosReadQueue also sets the request word to zero. Only the
process that created the child session can read the data element. After reading
and processing the data element, the process must free the segment that contains
the data element by using the DosFreeSeg function.

Because the DosStartSession function does not supply a session identifier for an
unrelated session, the process that created the unrelated session cannot select it,
bind it, stop it, or make it unselectable.

Chapter 43: Processes, Threads, and Sessions 593
ID!~lJi!!i§isnHrr.~~~91f;f;m!l~JW:Uruiill~~mu!!JUa~!;l!~!m!~~I~!~!m~ifii~Hffi§~~mJit,m!ftii!!w!!;Jj~iai!~~t;!iliUi;~~~~~~W.I~kii~

43.3 Using Processes
To work successfully with multitasking, you need to understand clearly the dif­
ference between a process and a thread. A process is simply the code, data, and
other resources of a program in memory, such as the open files, allocated mem­
ory, and so on. MS OS/2 considers every program that it loads to be a process.
A thread, which is everything else required to execute the program, consists of a
stack, the state of the CPU registers, and an entry in the execution list of the
system scheduler. Every process has at least one thread, and the program exe­
cutes when the system scheduler gives the thread execution control.

43.3.1 Starting a Process
You can start a process by using the DosExecPgm function. The process you
start is a child of the starting, or parent, process and inherits many of the
resources owned by the parent process, such as open files.

The following code fragment starts a program named abc:

CHAR achModuleName[128];
RESULTCODES resc;

DosExecPgm(achModuleName,
sizeof(achModuleName),
EXEC_SYNC,
NULL,
NULL,
&resc,
"abc.exe") ;

I' object-name buffer *1
I' length of buffer *1
I' sync flag 'I
I' argument string 'I
I' environment. string 'I
I' address of result *1
I' name of program 'I

This example starts abc so that it runs synchronously (as specified by the
EXEC_SYNC constant). This means that the parent process temporarily stops
while the child process executes and does not continue until the child process
ends.

The MS OS/2 command processor, cmd.exe, is an example of a program that
uses the EXEC_SYNC constant to start most child processes. That is, the pro­
cessor waits for each child process to end before it prompts the user for the next
command. The command processor also lets the user start asynchronous pro­
grams by using the detach command. When the user detaches a program, the
command processor places the program in the background and continues to
prompt for input.

43.3.2 Setting the Program Command Line and Environment
When you start a process, it inherits the resources of the parent. This includes
open files, such as the standard-input and standard-output files. A child process
also inherits the resources of the screen group, such as the mouse and video
modes, and the environment variables of the parent process.

The DosExecPgm function determines the command line and environment
that the child process receives. The fourth and fifth parameters of the function
are pointers to the command line and the environment, respectively. If these
pointers are NULL, the child process receives nothing for a command line and
only an exact duplicate of the parent process's environment. The parent process
can modify this information by creating a string (ending with two null characters)
and passing the address of the string to the function, as in the following code

594 MS 05/2 Programmer's Reference, Vol. 1
iimi!$~i~~Ie~t~mili~]iii.iimrui4g~lmim\l~h'S~iimtffiiHmi\1!fmii.ii5fj,!iii~i!rum~!I§i!lw.i~lm!~t~~i$illi~m~_f~~ii!fimii§~n§i§

fragment, which passes the string "test -options" to the child process as its com­
mand line:

CHAR aehModuleName[128];
RESULTCOOES rese;
CHAR ehCommandLine[] = "test -options\O";

OosExeePgm(aehModuleName,
sizeof(aehModuleName) ,
EXEC_SYNC,
ehCommandLine,
NULL,
&rese,

"abe.exe") ;

/* object-name buffer */
/* length of buffer */
/* sync flag */
/* argument string */
/* environment string */
/* address of result */
/* name of program */

In gen~ral, any number of null-terminated strings can be passed, as long as the
last string ends with two null characters.

43.3.3 Running an Asynchronous Child Process
You can use the EXEC~SYNC constant in the DosExecPgm function to start
a child process and let it run asynchronously (that is, without causing the parent
process to pause until the child process ends). If you start a process in this way,
the function copies the -process identifier of the child process to the code­
Terminate field of the RESULTCODES structure. You can use this process
identifier to check the progress of the child process or to terminate the process.

You can also run a child process asynchronously by using DosExecPgm with
the EXEC~SYNCRESULT constant. This constant has the same effect as
EXEC~SYNC, except that it also directs MS OS/2 to save a copy of the child
process's termination status when the child process terminates. This status
specifies the reason that the child process stopped. The parent process can
retrieve the termination status by using the DosCwait function.

43.3.4 Waiting for a Child Process to End
You can synchronize the execution of a process with the execution of one of its
child processes by using the DosCwait function. When a process calls the Dos­
Cwait function, the function waits until the specified child process has finished
before returning. This can be useful, for example, if the parent process needs to
ensure that the child process has completed its task before the parent process
continues with its own task.

In the following code fragment, the parent process waits for the child process
that is specified by the process identifier in the variable pidChild:

RESULTCOOES rese;
PIO pidParent;
PIO pidChild;

OosCwait(OCWA_PROCESS, OCWW_WAIT, &rese, &pidParent, pidChild);

You can cause a process to wait for all child processes to end by using the con­
stant DCW AJ>ROCESSTREE in the DosCwait function.

Chapter 43: Processes, Threads, and Sessions 595
fi~D~~I~g;e~~ii1liinl~fmEll$lgHtilIi1~,~iruii~eiill~;Ui!iiaii~;EliUE1iimmlb!!jJistl~mmi~l!iiii.e!I5!1iiE;flmi~ru~lir~~~~

43.3.5 Retrieving the Termination Status of a Child Process
MS OS/2 saves the termination status for a process if the process was started
by using DosExecPgm with the EXEC.-ASYNCRESULT constant. You can
retrieve the termination status of the most recently terminated process by using
the DCWW _NO WAIT constant with the DosCwait function. This constant
directs the function to return immediately, without waiting for a process to end.
Instead, the function retrieves the termination status from the most recent pro­
cess to end.

43.3.6 Ending a Process
You can exit from a process by using the DosExit function. When you exit from
a process, the system stops the process and frees any existing resources that it
owns. If no other invocation of the process is running, the system frees the code
and data segments of the process.

In the following code fragment, the DosExit function is used to exit from the
process if the given file does not exist:

VOID cdecl main()
{

}

HFILE hf;
USHORT usAction, cbWritten;

usError = DosOpen("sample.txt", &hf, &usAction, OL, FILE_NORMAL,
FILE_OPEN, OPEN_ACCESS_WRITEONLY I OPEN_SHARE_DENYWRITE, OL);

if (usError) {

}

DosWrite(2, "Cannot open file\r\n", 18. &cbWritten);
DosExit(EXIT_PROCESS, usError);

The EXITYROCESS constant directs the function to exit not just from the pro­
cess, but from the thread that is calling the function as well. The DosExit func­
tion includes an error code that is returned to the parent process through the
RESULTCODES structure specified in the DosExecPgm function that started
the process. If you started the program from the command line, the command
processor (cmd.exe) makes this value available through the ERRORLEVEL vari­
able. If another process started the program, that process can call the DosCwait
function to retrieve the error-code value.

If you want to exit only from a given thread, you can use the DosExit function
with the EXIT_THREAD constant. This call exits from the thread without
affecting other threads in the process. If the thread that you exit from also hap­
pens to be the last thread in the process, the process also exits. If the thread
consists of a function, the thread exits when the function returns.

43.3.7 Terminating Another Process
One process can terminate the execution of another process by using the
DosKiIlProcess function. The following code fragment terminates the specified
process and all child processes belonging to that process:
PID pidProcess;

DosKillProcess(DKP_PROCESS, pidProcess);

596 MS OS/2 Programmer's Reference, Vol. 1
il6h1ir~jmill.W~U!@fE'ii!ii!~~~.E"~;mlliili~1!I~i~~!.!iHii;llb1iimiSiilifJ!!i!!!l~!~Uii;~~~mtmimniiil~r~iif$Bitiimij!I!§9liEmJU~!

In this example, the pidProcess variable specifies which process to terminate.
Typically, you would assign the variable the process identifier for the child pro­
cess. This is the process identifier that is returned by the DosExecPgm function
when you start the child process.

43.3.8 Cleaning Up Before Ending a Process
Since in MS OS/2 any process can terminate any other process for which it has
a process identifier, there is a chance that your program may lose information if
a process terminates the program before the program can save its work. To
prevent this loss of data, you can create a list of exit functions that clean up data
and your files before MS OS/2 terminates a process. The system calls the func­
tions on the list whenever your program is being terminated, whether by another
process or by itself.

You create an exit list by using the DosExitList function. The function requires a
function code that specifies an action to take and a pointer to the function that
is to receive control upon termination. The following code fragment adds the
locally defined function SaveFiles to the exit list:

#define INCL_SUB
#define INCL_DOSPROCESS
#include <os2.h>

VOID cdecl main() {
DosExitList(EXLST_ADD, SaveFiles);

}

VOID PASCAL FAR SaveFiles(usTermCode)
USHORT usTermCode;
{

}

switch (usTermCode) {
case TC_EXIT:

}

case TC_KILLPROCESS:
VioWrtTTY("Good-bye\r\n", 10, 0);
break;

case TC_HARDERROR:
case TC_TRAP:

break;

DosExitList(EXLST_EXIT, 0);

Any function that you add to the exit list must be declared with the far attribute
and must have one parameter. The function can carry out any task, as shown in
the preceding example, but as its last action it must call the DosExitList func­
tion, specifying the EXLST.-EXIT constant. An exit-list function must not
return and must not call the DosExit function to terminate.

To execute the exit-list functions, MS OS/2 reassigns thread 1 after terminating
any other threads in the process. If thread 1 has already exited (for example, if it
called the DosExit function without terminating other threads in the process),
then the exit-list functions cannot be executed. In general, it is poor practice to
terminate thread 1 without terminating all other threads.

You can use DosExit with the EXLSTJEMOVE constant to remove a function
from the exit list.

Chapter 43: Processes, Threads, and Sessions 597
~~iUi~!ii1!la!li~~rumfiftiilml~~~!~.mi~I~!iII@~~!~~fiif~li~!~~Ii!!i!fMi~2i~!iitl~l~l~miiijiiil!mfdUmji¥.liii~!*~~~~1ll.iiiW

43.4 Using Threads
Every process has at least one thread, called the main thread or thread 1. To
execute different parts of a program simultaneously, you can start several
threads.

A new thread inherits all the resources currently owned by the process. This
means that if you opened a file before creating the thread, that file is available to
the thread. Similarly, if the new thread creates or opens a resource, such as
another file, that resource is available to the other threads in the process.

43.4.1 Creating a Thread
You can use the DosCreateThread function to create a new thread for a pro­
cess. To do so, you need the address of the code to execute, the address of the
first byte in a stack, and a variable to receive the identifier of the thread. The
address of the code is typically the address of a function that is defined within
the program. The address of the stack can be either an address within a variable
declared by using the data segment of the process or an address in a separate
segment. To ensure that the new thread's stack will not be written over by other
threads, you must not declare the stack within the stack segment of a process.
You must also be sure that there is adequate space on the stack. The amount of
space needed depends on a number of factors, including the number of function
calls the thread makes and the number of parameters and local variables used by
each function. If you plan to call MS OS/2 functions, a reasonable stack size is
4096 bytes.

The following code fragment creates a thread:

BYTE abStack[4096];
TID tidThread;

VOID main () {
DosCreateThread(ThreadFunc, &tldThread, abStack + slzeof(abStack»;

}

VOID FAR ThreadFunc(VOID)
{

VioWrtTTY("Message from new thread\r\n", 25, 0);
}

In this example, the array absStack is used for the new thread's stack. The
thread identifier is copied to the tidThread variable. The thread starts execution
with the first statement in the locally defined function ThreadFunc.

In MS OS/2, all stacks grow down in memory-that is, the first byte of the stack
is in high memory and the last byte is in low memory-so you need to specify
the last word in the stack (in this case, absStack[2048]) when you supply the
starting address of the stack in the call to DosCreateThread.

A thread continues to run until it calls the DosExit function or returns control to
the operating system. In the preceding example, the thread exits when the func­
tion implicitly returns control at the end of the function.

598 MS OS/2 Programmer's Reference, Vol. 1
iliib1if~jifii!!i&liitiii@f_~lil!~~;r.~Iif.;§lml~~liiflilii~!~~nID~I!ruili!~ilif.~!t!HU~!ijillrul~~~m1mimfiiiamrB1i~nm~J;!il~ii!I~~lm!m::u~~

43.4.2 Controlling the Execution of a Thread
The DosSuspendThread and DosResumeThread functions let you temporarily
suspend the execution of a thread if you do not need it and then resume execu­
tion when you do need it. These functions are best used when a process needs to
temporarily suspend execution of a thread that is in the middle of a task. For
example, consider a thread that opens and reads files from the disk. If other
threads in the process do not need input from these files, the process can
suspend execution of the thread so that the system scheduler does not needlessly
grant execution control to the thread.

43.4.3 Suspending a Thread
You can temporarily suspend the execution of a thread for a set interval of time
by using the DosSleep function. This function suspends execution of the thread
for the specified number of milliseconds. DosSleep is useful if you need to delay
the execution of a task. For example, you can use DosSleep to delay response
to the user's pressing a DIRECTION key. This gives the user time to observe the
results and release the key. The following code fragment uses DosSleep to sus­
pend execution of a thread for 1000 milliseconds (1 second):

DosSleep(lOOOL);

43.4.4 Changing the Priority
You can use the DosSetPrty function to change the execution priority of threads
in a process. The execution priority defines when or how often a thread receives
an execution time slice. Threads with higher priorities receive time slices before
those with lower priorities. Threads with equal priority receive time slices in a
round-robin order. If you raise the priority of a thread, the thread will execute
more frequently.

You can set the priority for just one thread in a process, for all threads in a pro­
cess (and thus for the process itself), or for all threads in a process and in its
child processes. The following code fragment uses DosSetPrty to lower the pri­
ority of a process that is intended to be used as a background process:

PIDINFO pidi;

DosGetPID(&pidi);
DosSetPrty(PRTYS_PROCESS, PRTYC_IDLETIME, 0, pidi.pid);

The DosGetPID function retrieves the process and thread identifiers and copies
them to the pid and tid fields in a PIDINFO structure. The DosSetPrty function
then uses the process identifier to change the priority to idle-time (idle-time
processes receive the least attention by the scheduler).

You can also retrieve the priority of a process or thread by using the DosGetPrty
function. For example, the following code fragment copies the priority of the
process specified by pidiInfo.pid to the usPriority variable:

DosGetPrty(PRTYS_PROCESS, &usPriority, pidilnfo.pid);

Chapter 43: Processes, Threads, and Sessions 599
iI~!i.Ri$!kl!limif~!pjf~mfW:i!i~j~~lli;!~.ffli~;~imil;!~!§1~§i~liit~i!~!~~=ii~!~~i~2!~iii!mi~tif~~liilil~djjmi~li§ifii!i~~~~~i!:'~i

43.5 Summary
MS OS/2 provides the following multitasking functions:

DosCreateThread Creates a new thread.

DosCwait Waits for a child process to terminate.

DosExecPgm Loads and starts a child process.

DosExit Ends a process or a specific thread.

DosExitList Specifies a function to be executed when the current process ends.

DosGetEnv Retrieves the addresses of the environment table and an offset into
the environment where the command line that started the process is stored.

DosGetPID Retrieves the process, thread, and parent-process identifiers for
the current process.

DosGetPrID Retrieves the parent-process identifier for the current process.

DosGetPrty Retrieves the execution priority of a process or thread.

DosKiIlProcess Terminates the specified process and, optionally, its child
processes.

DosResumeThread Restarts a thread stopped by the DosSuspendThread func­
tion.

DosScanEnv Searches an environment segment for a specific environment vari­
able.

DosSearchPath Searches the specified path for the given filenames.

DosSeledSession Switches the specified child session to the foreground.

DosSetPrty Sets the execution priority of a process or thread.

DosSetSession Sets the status of a child session.

DosSleep Suspends execution of the current thread for a specified time
interval.

DosStartSession Starts another session and specifies the program to be started
in that session.

DosStopSession Terminates a session started by the DosStartSession function.

DosSuspendThread Suspends execution of a thread until the corresponding
call to the DosResumeThread function is executed.

Chapter

44

The Memory Manager
44.1 Introduction.. 6()3

44.2 About the Memory Manager 6()3
44.2.1 Memory Limits ... 6()3
44.2.2 Protection Violations... 604

44.3 Using the Memory Manager 604
44.3.1 Segments.............. 604
44.3.2 Huge Memory... 6()S
44.3.3 Moving and Swapping '. 606
44.3.4 Discardable Segments 6()7
44.3.5 Shared Segments... 6()8

44.3.5.1 Named Shared Segments.......................... 6()8
44.3.5.2 Unnamed Shared Segments....................... 609

44.3.6 Heaps ~ ... 609
44.3.7 Code-Segment Aliases....................................... 610

44.4 Summary.. 611

Chapter 44: The Memory Manager 603
jjfl!~Umf!mi!,~~~J!n~fi~ijif~miUi1;jjflifiif!ifii!iH~f~~!1J!!ir~lIii~fiUfiim;miID!SIb~mii!if~i~lill:r.ftfliifi~~~lF.:,:'1J!lif!ll!isl§ijsiF.J;mr.di~!~~lfii

44.1 Introduction
This chapter describes the MS OS/2 memory manager. The memory manager
lets programs allocate memory for their own use or to be shared with other pro­
grams. A program can allocate a segment, a huge segment, or memory blocks
within a segment. You should also be familiar with the following topics:

• The system-configuration file (config.sys)

• Heaps
• Interprocess communication

• Module-definition files

44.2 About the Memory Manager
In MS OS/2, you allocate memory in segments of one or more bytes (up to
65,536 bytes). Each segment is identified by a unique value called a segment
selector. A segment selector, combined with a segment offset, yields the address
of a byte in the segment.

MS OS/2 lets you allocate any number of segments and then use these segments
as additional storage for your program. When MS OS/2 first loads your program,
it gives the program at least one data segment, called the automatic data seg­
ment. This segment contains the global and static data declared in the program.
It may also contain the program stack. MS OS/2 also gives your program one or
more code segments, which contain the program code. The code segments are
protected from any changes, intentional or otherwise.

44.2.1 Memory Limits
Although MS OS/2 can access no more than 16 megabytes of physical mem­
ory, it can manage segment selectors representing up to 1 gigabyte of memory.
MS OS/2 uses compaction, discarding, and swapping to manage this "virtual"
memory.

When MS OS/2 runs only protected-mode programs (the protectonly command
in theconfig.sys file is set to yes), all physical memory is available to protected­
mode code and data segments except the memory addresses from 640K to
1000K, which are reserved for system ROM and for video buffers. When MS
OS/2 runs both real-mode and protected-mode programs (protectonly is set to
no), it reserves lower memory for real-mode programs. The rmsize command in
the config.sys file specifies the size and the upper address of real-mode memory.
The system places any protected-mode code and data segments above the last
upper real-mode address. Real-mode memory is not subject to swapping or mov­
ing unless the program running in real-mode memory does so itself.

In protected mode, the system creates one local descriptor table (LDT) for each
program. All threads in a program use the same LDT, so all segment selectors
in the program are available to all threads. MS OS/2 reserves the global descrip­
tor table (GDT) for the system. Also, MS OS/2 does not permit a program to
examine or modify its own LDT.

The number of selectors available to a program depends on the number of code
and data segments in the program. Since programs cannot use the GDT, only

604 MS OS/2 Programmer's Reference, Vol. 1
~lifitif;iJr.-l:~J\~i~_!~~~~~§§ti~!'~iffi\i~~I!jmit~U!H~!milaii:iilif:iiffil~ii€miiifj~m~ilm;[q~~m!i~U~~!~!~~nlin~~~~.lim;m!!fll

the approximately 8000 selectors in the LDT are available. However, half of
these selectors are reserved for shared segments, so a program actually never
has more than about 4000 selectors.

44.2.2 Protection Violations
In MS OS/2, memory is carefully managed by the virtual-memory and memory­
protection capabilities of the Intel 80286 microprocessor. MS OS/2 grants your
program access to a segment only if the segment has been explicitly allocated by
your program or made available for your program's use.

Each segment has a unique selector that identifies the segment and grants a pro­
gram access. If a program attempts to access a segment that is not assigned to it,
uses an unknown selector, or attemptsto access bytes outside of a segment, the
system interrupts the program and executes the exception-handling routine for
protection violations. This routine determines the cause of the exception and
displays an error message to the user before terminating the program.

Protection violations are not recoverable. This means that you should be careful
about using address offsets and selectors, ensuring that they are valid. Since pro­
tection violations commonly occur during program debugging, each message
displayed for a protection violation shows the contents of the system registers
when the violation occurred. If the violation occurs as a result of passing a sys­
tem function an invalid pointer, the message also shows the parameters used in
the call.

44.3 Using the Memory Manager
This section describes how you can use the MS OS/2 memory-manager functions
and configuration commands to control the use of memory for your MS OS/2
programs.

44.3.1 Segments
You can allocate a segment of memory by using the DosAllocSeg function. You
simply specify the amount of memory that you need and a variable to receive the
selector created by DosAllocSeg to identify the new segment. The following code
fragment allocates 512 bytes of memory:

SEL selArray;

DosAllocSeg(512, &selArray, SEG_NONSHARED);

You can allocate from 1 to 65,536 bytes for a segment. (To allocate 65,536 bytes,
specify a size of 0 in DosAllocSeg.) To access a byte in the segment, you need to
create a far pointer to the segment. You can do this by using the .MAKEP
macro, which combines the selector from DosAllocSeg and an address offset to
create a pointer to the byte you want, as shown in the following code fragment:

PCH pch;

pch = MAKEP(selArray, 0);

Chapter 44: The Memory Manager 605
ijr,!;J!Hi!f!ii~ijf!1iI~~G!iii!litl~JijiUi!ij!m~1j,,~iffliJ§ff11;'m'!!iH!!ififfimffiliiiSfi*i~Jf:mij5J/~i~liilt.f:fii~~l§!~iF.b'iIJljjf!!l!iiJl§jjsiDmir.~immal~ffilii!

The selector applies only to the bytes allocated for the segment. You cannot use
the selector to access any other part of system memory. If you supply an incor­
rect offset or attempt to access a byte outside the segment, MS OS/2 displays a
"protection violation" message and terminates the program.

The initial content of a segment is undefined, so it is a good idea to initialize the
new memory segment immediately after creating it.

If a segment that you have allocated is too small or too large to meet your needs,
you can avoid protection violations or wasted space by using the DosReallocSeg
function to reallocate the segment. This function adjusts the size of the segment
to a given size without changing the segment selector. In the following code frag­
ment, the DosReallocSeg function expands the segment from 512 bytes to 1024
bytes:

SEL selBuf;

DosAllocSeg(512, &selBuf, SEG_NONSHARED);

DosReallocSeg(1024, selBuf);

If you decrease the size of a segment, you lose any data at the end of the seg­
ment, but all other data is preserved. If you increase the segment size, new,
uninitialized bytes appear at the end of the segment. You can retrieve the size
in bytes of any segment by using the DosSizeSeg function.

When you have finished using a segment, you can free it by using the DosFree­
Seg function. Freeing the segment returns that memory to the system's pool of
available memory and invalidates the selector that identifies the segment. The
data in the freed segment is lost and any attempt to access the segment by using
the selector of the freed segment is a protection violation.

44.3.2 Huge Memory
Although segments are limited to 64 kilobytes, you can allocate more than 64
kilobytes of memory at a time by using the DosAllocHuge function. This func­
tion allocates as much memory as is requested, up to the limit available in the
system. It allocates several64K segments but ensures that the segment selectors
are consecutive. (This does not mean that the segments are in consecutive
memory.) You can then access the memory by computing the appropriate seg­
ment selector and offset with the help of the DosGetHugeShift function.

With DosAllocHuge, you specify the number of 64K segments you want, instead
of the number of bytes. If the block of memory you need is not a multiple of 64
kilobytes, you can also specify 1 to 65,535 bytes for the last segment. The follow­
ing code fragment allocates 328,192 bytes:

SEL selHuge;

DosAllocHuge(5,
512,
&selHuge,
6,
SEG_NONSHARED) ;

/* allocates five 64K segments */
/* plus 512 additional bytes */
/* first segment selector */
/* reserves six selectors for reallocation */
/* allocation flags */

DosAlIocHuge supplies only one segment selector for a huge-memory block.
This is the selector for the first segment. To access bytes in the other segments,

606 MS OS/2 Programmer's Reference, Vol. 1
jll~~..!~~il2!lii!I!ili;§i~!!ilI~i!n~ml~1!lY!m!!iifiiiim!rali51i~itaf!fSIi\m!~~~~Hremlm~ilSii~ijill~ifijli!~lr:~Jii!!U~i~i;iil!!;mif&liimiYiilfiji~

you must calculate the segment selector by adding the segment-selector offset
one or more times to the selector of the first segment.

The selector offset is computed by using the huge-segment shift count retrieved
by the DosGetHugeShift function. The shift count is an exponent of 2, so a
segment-selector offset equals the value 1 shifted left by the shift count. The fol­
lowing code fragment shows how to compute the selector offset:

USHORT usShiftCount;
USHORT off Selector;

DosGetHugeShift(&usShiftCount);
off Selector = 2 « usShiftCount;

To create a pointer to bytes in huge memory, use the MAKEP macro as shown
in the following code fragment:

PCH pch;

pch = MAKEP(selHuge+offSelector, 127); 1* byte 65663 in huge memory *1

If you write MS OS/2 programs in assembly language, the global symbols
DOSHUGESHIFf and DOSHUGEINC are available for computing huge­
memory addresses. DOSHUGESHIFf is equal to the shift count retrieved by
DosGetHugeShift, and DOSHUGEINC is equal to the selector offset.

You can change the size of a huge-memory block by using the DosReallocHuge
function, and you can free a huge-memory block by using the DosFreeSeg func­
tion. Freeing the selector of the first segment in a huge-memory block frees all
segments.

You can use the DosMemA vail function to determine the size of the largest
available block of free memory. This is a reasonable size to start with if you
want to allocate the largest possible amount of memory with the DosAllocHuge
function. DosMemAvaii retrieves the available memory in bytes, so you will
need to compute the number of available segments from this value before using
DosAllocHuge. If there are many programs running that allocate memory, or if
your system is swapping, the value retrieved by DosMemA vail may not always be
accurate.

44.3.3 Moving and Swapping
The system moves data and code segments and swaps data segments whenever
necessary. Moving segments gives the system the opportunity to collect all free
space into one contiguous block so that it can offer much larger blocks of
memory than would otherwise be possible.

Swapping of segments occurs whenever a program requests more memory than is
free, thus allowing the system to handle more segments than can fit in physical
memory. If there is enough space in the system swap file, swapper.dat, the sys­
tem copies one or more data segments to the file. It copies these segments back
into memory when they are needed again, possibly swapping other data segments
out in the process.

The system can also discard segments if it needs additional space. In a sense,
discarding is similar to swapping, except that the discarded segment is not
copied to the disk. The system discards code segments if the space is needed
and if the segments were loaded originally from an executable file on a hard
disk. In MS OS/2, all code segments are pure-that is, not subject to change

Chapter 44: The Memory Manager 607
'ii.i!f1lfm~!mi~~~~RfiliJifl~i§lmlii;r:i:1jYi:m~ff.~fal!!if~!IUlimtfillii~ilii@'fb~mll!il~i~lallir.fi/jfi§~~I!!rF.~'1J1!ir.ii~mljijm~imf.dlmnBfl~~~1

during execution-so the system can always retrieve a fresh copy of a discarded
code segment from the original executable file. (For programs loaded from
floppy disks, the original disk may not be present when needed, so no code seg­
ments are discarded.) For more information on discardable segments, see Sec­
tion 44.3.4.

Although a program cannot control moving and swapping, the user can specify
whether the system may move and swap segments by including the memman
command in the config.sys file. For special-purpose programs, you can request
the user to disable swapping and/or moving. Typically, disabling these features
enhances the performance of the system when it is needed for dedicated, time­
critical tasks.

If the memman command specifies move, MS OS/2 consolidates free space in
memory by compacting the existing code and data segments. MS OS/2 compacts
memory by moving the code and data segments together so that no free memory
appears between them. If the memman command specifies swap, MS OSI2
writes selected data segments to the swapper.dat file whenever insufficient physi­
cal memory exists for a given allocation request. MS OS/2 selects the data seg­
ments to swap based on when they were last used. If a program later needs the
segments, MS OS/2 reads them from the swapper.dat file into memory, possibly
swapping other segments to make room. If the memman command specifies
no move or noswap, MS OS/2 does not move segments or does not swap seg­
ments, respectively.

Through swapping, programs can allocate more memory than actually exists
in the computer. The exact amount of memory available to a program depends
on the size of the swapper.dat file as well as on the number of other programs
already running. The size of the swapper.dat file can be specified by including
the swappath command in the config.sys file. Actually, swappath specifies how
much free space to reserve on the disk. MS OS/2 adjusts the size of swapper.dat
as needed, always leaving other files on the drive and the requested free space
untouched.

Swapping and moving do not affect the segment selectors. A selector remains
valid even though the location of the segment may change.

44.3.4 Discardable Segments
A discardable segment provides a convenient way to store data that you need
infrequently and can regenerate easily. When you use a discardable segment, the
system is free to automatically discard your segment if it needs the space. Since
the segment selector of a discarded segment remains valid, you can restore the
segment by simply reallocating it to the original size and again filling it with the
data.

You can create discardable segments by specifying the SEGJ)ISCARDABLE
option when you allocate segments by using the DosAllocSeg or DosAllocHuge
function, as shown in the following code fragment:

SEL selTempData;

DosAllocSeg(256, &selTempData, SEG_DISCARDABLE);

MS OSI2 locks a discardable segment when it allocates it. While the segment is
locked, you can examine and modify its contents without risk of the system's dis­
carding the segment. After examining or modifying the segment, you can unlock

608 MS OS/2 Programmer's Reference, Vol. 1
;!UWl~j~~~~!2Il!i!~li;!U!f:U~i~E!ili!!~Ii!i!!lii!m~i!j!~iiBmlrajf!ililil:l$~il~~~el~H~tffi~;iiiii1iji1i~iPJ!i!~l~:i~feiiSi~!!i~iiij!;m~li1i~~eim

it by using the DosUnlockSeg function. Unlocking the segment does not discard
the segment, although it does permit the system to discard the segment at any
subsequent time. To access the discardable segment again, you must first relock
it by using the DosLockSeg function.

The system discards the segment when it needs to, but only if the segment is not
locked. After the segment is discarded, any data in the segment is lost, but the
segment still exists. If the program that owns the segment attempts to access the
data without reallocating the segment, a protection violation results.

Before you attempt to read from or write to a segment, you must check to see
if the segment has been discarded. If it has, you can reallocate the segment (to
restore it to its original size) and then fill it again. You can determine whether a
segment has been discarded by checking the return value of the DosLockSeg
function. If the value is nonzero, the segment has been discarded.

44.3.5 Shared Segments
A 'shared segment is a memory segment that two or more programs can read
from and write to. Shared segments are typically used in programs as an efficient
way to share data. MS OS/2 prepares a shared segment in such a way that any
program that can retrieve its segment selector can access the data in the seg­
ment. The shared segment is still protected against access by programs that do
not have the segment selector.

There are two basic methods of using shared segments. One method allows two
or more programs to share the same segment at the same time. Both programs
read from and write to the segment, usually controlling access to the segment by
using a semaphore. The other method allows one program to prepare data in a
segment and then pass that segment on to another program for further process­
ing. The first program usually releases the segment after passing it along, so that
only one program accesses it at a time.

44.3.5.1 Named Shared Segments
A named shared segment has the special property of having a unique name. Any
program that has the segment name can use DosGetShrSeg to retrieve the seg­
ment selector and access the data in the segment. Named shared segments are
typically used to share a segment between two or more programs at the same
time.

The name of a named shared segment has the following form:

\sharelDelD\nar.ne

The nar.ne parameter must conform to the rules for an MS OS/2 filename. How­
ever, no file is actually created for the segment.

You can allocate a named shared segment by using the DosAllocShrSeg func­
tion. The segment can have from 1 to 65,536 bytes. DosAlIocShrSeg does not
initialize a shared segment, so the content of a segment when first allocated is
unknown.

You can free a named shared segment by using the DosFreeSeg function. The
segment is not removed from memory until the last program with access to the
segment frees it. You can also change the size' of the segment by using the Dos­
ReallocSeg function.

Chapter 44: The Memory Manager 609
~mIUimr:Ei~iiiai~:mI~!~~I~~imiil~5i!!§4l~~~ii~lninm!iin~j~~~ii!mtllS!~i~ilii~imif;.li~!iimlim~~mn~~Wdi~iro~~1~~~S1t!

44.3.5.2 Unnamed Shared Segments

44.3.6 Heaps

You can allocate an unnamed shared segment by using the DosAllocSeg or
DosAllocHuge function and specifying either the SEG_GEIT ABLE or
SEG_GlVEABLE option when you allocate the segment. Sharing segments in
this way is more difficult than sharing named segments, since the program creat­
ing the segment must somehow pass the segment selector to the other programs.
This is typically done by using some form of interprocess communication, such
as a queue or a named pipe.

If you allocate a segment with the SEG_GEIT ABLE option, you can pass the
segment selector to another program and that program can gain access to the
segment by using the DosGetSeg function to validate the passed selector. If you
allocate a segment with the SEG_GlVEABLE option, you must create a new
segment selector by using the DosGiveSeg function and the process identifier of
the program that is to receive the new selector. Once you pass the new selector
to the other program, it can use the selector immediately-that is, it does not
need to use the DosGetSeg function.

A heap is an area of memory, usually within a single segment, from which you
can allocate blocks of memory. A heap is useful in programs that need to allo­
cate many small blocks of memory. Since MS OS/2 programs have only a finite
number of selectors available for use, using a heap to allocate small blocks of
memory is more efficient than allocating a segment for each block. A heap lets
you reserve segment selectors for large blocks of memory while satisfying your
program's need for small blocks of memory.

MS OS/2 provides two methods of creating and using a heap. One method,
described in Chapter 25, "Heaps," lets you create a heap that supports movable
blocks of memory and fast allocation using free lists. The alternative method,
described in this section, provides a less powerful but simpler way of allocating
blocks of memory in a heap.

To use the alternative method for your program, you first create a heap by using
the DosAlIocSeg and DosSubSet functions. DosAllocSeg allocates the segment
to contain the heap, and DosSubSet sets up the segment for use as a heap. The
segment size can be up to 65,536 bytes. The following code fragment creates a
heap having 1024 bytes:

SEL selHeap;

DosAllocSeg(1024, &selHeap, SEG_NONSHARED);
DosSubSet(selHeap, /* selector for heap segment */

1, /* initialize heap */
1024) ; /* heap size * /

You can create any number of heaps for your program. Each heap is uniquely
identified by the selector of the segment containing the heap.

610 MS OS/2 Programmer's Reference, Vol. 1
Uimlar.lil~;imin~mi~iiW,3!~~~~i~~IU~H~jo:f~~§!~~iim;~5i!!iim!!,J!ml§i§fiiH~i~~!l!!I_§f!infdmiU!Simi2iiis;,~ii!iifdi~ih'iifml

Once you have the heap, you use the DosSubAlIoc function to allocate blocks
of memory and the DosSubFree function to free the memory. Each block of
memory has a unique offset from the beginning of the segment. You can com­
bine this offset with the segment selector to create a pointer to the block, as
shown in the following code fragment:

USHORT off Block;
PBYTE pb;

DosSubAlloc(selHeap, &offBlock, 256);
pb = MAKEP(selHeap, off Block) ;

DosSubFree(selHeap, off Block, 256);

/* 256 bytes in block */

/* free block */

The DosSubAlIoc function always rounds the given size to the next multiple of 4,
so a memory block is always at least 4 bytes. Also, MS OS/2 reserves 12 bytes
in the heap for its own use. Thus, even though the segment containing the heap
may have 256 bytes, only 244 are available for allocation. It is your responsibility
to ensure that you do not allocate more bytes than are available in the heap.

You must be especially careful when using pointers to the memory blocks. MS
OS/2 does not provide the protection against invalid offsets in a memory block
that it does for a segment. Using a pointer that has an invalid offset may destroy
data in another block or even destroy the heap.

If you need additional space or less space in a heap, you can always change the
size of the segment by using the DosReallocSeg function. If you do reallocate
the segment, you need to use the DosSubSet function again to adjust the heap to
the new size. The following code fragment adjusts an existing heap to 2048 bytes:

DosReallocSeg(2048, selHeap);
DosSubSet(selHeap, 0, 2048);

Whenever you use a heap, the memory blocks you allocate are completely con­
tained in the segment and any action the system carries out on the segment is
applied to all blocks in the segment. For example, the DosFreeSeg function
frees the segment and all blocks of memory in the segment. This is a quick way
to remove the heap when you no longer need it.

The HEAPSIZE statement in a program's module-definition file does not apply
to heaps created by using the DosSubSet function. HEAPSIZE specifies how
much memory to reserve in the program's automatic data segment for a heap
created by using the WinCreateHeap function. For more information about Win­
CreateHeap, see Chapter 25, "Heaps."

44.3.7 Code-Segment Aliases
A code-segment alias is a special segment selector that lets a program pass exe­
cution control to code in a data segment. Normally, MS OS/2 does not permit
control of execution to be passed to addresses in data segments, but a code­
segment alias makes the data segment appear to be a code segment. You can
create a code-segment alias for a data segment by using the DosCreateCSAlias
function.

Chapter 44: The Memory Manager 611
!igfflil!!Ii!!ifjllf.~!iaMi!i!!il~ft!8;_!ii;fF,!fti1!i~~tm!~lmumifilmi~iiitrniaii!~fiitii~i~§f~~~~i'~~l1~P.!ifiilit'liiiEi:ifiiiiliilii.!tiiml~

Code-segment aliases are useful in programs that need to create and execute
code while the program is running. Since MS OS/2 protects code segments
against changes, the only way to create and execute code in this way is to write
it to a data segment, create an alias, and use the alias to pass execution control
to the code.

44.4 Summary
MS OS/2 provides the following memory-manager functions:

DosAllocHuge Allocates a huge-memory block.

DosAllocSeg Allocates a memory segment.

DosAllocShrSeg Allocates a shared memory segment.

DosCreateCSAlias Creates an aliased code-segment selector for a specified
memory segment.

DosFreeSeg Frees a specified memory segment.

DosGetHugeShift Retrieves the shift count used to compute the segment­
selector offset for huge memory segments.

DosGetSeg Obtains access to the specified shared memory segment.

DosGetShrSeg Retrieves the selector to a shared memory segment.

DosGiveSeg Creates a new segment selector for a shared memory segment.

DosLockSeg Locks a discardable segment in memory so that it cannot be dis­
carded.

DosMemA vail Retrieves the size of the largest block of free memory currently
available.

DosReallocHvge Reallocates a huge-memory block, changing its size.

DosReallocSeg Reallocates a memory segment, changing its size.

DosSizeSeg Retrieves the size, in bytes, of the specified segment.

DosSubAlloc Allocates memory from a segment previously allocated by using
the DosAllocSeg or DosAllocShrSeg function and initialized by using the Dos­
SubSet function.

DosSubFree Frees memory previously allocated by the DosSubAlloc function.

DosSubSet Initializes a segment for suballocation or changes the size of a pre­
viously initialized segment.

DosUnlockSeg Unlocks a discardable segment so that it can be discarded if
space is needed by other segments.

Chapter

45

Dynamic Linking
45.1 Introduction .. 615

45.2 About Dynamic Linking.. 615

45.3 Building Dynamic-Link Libraries................................. 616
45.3.1 The Source File ... 616
45.3.2 The Module-Definition File 617
45.3.3 Import Libraries.. 617
45.3.4 The Initialization Function 619

45.4 Using ·Dynamic Linking... 620

45.5 Summary....... 620

Chapter 45: Dynamic Linking 615
!igUl!l~l~llfjlli.~!i:ifflmi~ifii~aij;mf!jj:iru;Uiifi~mru....tm!~iiEiifljil~~iijUa;i!iit~H5ii~1i?~~im!~m~li1i~~!~lm~~iliRiSiiiffif!ml!tiim!!!im

45.1 Introduction
This chapter describes the portions of MS OS/2 that allow you to dynamically
link functions in dynamic-link libraries to your programs. It also describes how
to build dynamic-link libraries. You should also be familiar with the following
topics:

• The system-configuration file (config.sys)

• Module-definition files

45.2 About Dynamic Linking
Dynamic linking is a way for a program to gain access at run time to functions
that are not part of the program's executable code. With dynamic linking, a pro­
gram loads a dynamic-link library (also called a module), retrieves the address of
a function in that library, and calls the function to carry out a task.

Any application can use the functions contained in a dynamic-link library. The
only requirement is that you must import the function name so that the reference
can be resolved when you run the application. There are three ways to import
the name of a dynamic-link function:

• Specify the import library of the dynamic-link library during linking.

• Specify the function name in the IMPORTS statement of the application's
module-definition file.

• Use the MS OS/2 dynamic-link functions to import the function during exe­
cution of the application.

For most applications, function names are resolved by using an import library.
For example, the file os2.lib is an import library that contains import records
for all the MS OS/2 functions. Because much of the code for MS OS/2 is in
dynamic-link libraries, the import library is needed to prepare MS OS/2 pro­
grams for execution.

The IMPORTS statement in a program's module-definition file is similar to the
import library, except that you must supply the information needed by the linker
to build the import records of the functions you use.

The MS OS/2 dynamic-link functions let a program load dynamic-link libraries
and import functions while the program runs. Although the dynamic-link func­
tions can be used to import any functions (including the MS OS/2 system func­
tions), they are more often used to import functions in device drivers or in
special-purpose libraries. Using an import library or the IMPORTS statement is
more common than using the dynamic-link functions, since in those cases MS
OS/2 automatically loads and links the specified function for you.

You can load any number of dynamic-link libraries and create links to any of the
functions in the libraries. It is a good idea to free libraries whenever you are not
using them, however, since this frees memory and avoids unnecessary swapping.

616 MS OS/2 Programmer's Reference, Vol. 1
i!!iJi~r.~i!i;~iii.mi!§~rim?iffi~il~JiiiiU~IiJ~~m~F:fJr:~I~!i!!~iif:itl5!!mim!~~1~I§iiif!i;1n~~;~_~I.inffdijiiU~imi5im.,l£§1i~ilfdi~rulf:ii!

45.3 Building Dynamic-Link Libraries
This section describes how to build a dynamic-link library. A dynamic-link
library usually contains executable code for common functions. With standard
libraries, such as the C-language run-time library, the code for common func­
tions is combined with the program code when the program is created, but
with a dynamic-link library the code is not combined. Instead, the program con­
tains nothing more than an import record of the function and the name of the
dynamic-link library containing it. The function is not linked until the program
needs it.

Using a dynamic-link library saves memory, since the library is loaded only once.
All programs that use functions in the library share the library's code. To avoid
conflicts, each program uses its own stack when calling a library function.

After creating the dynamic-link library, remember to copy it to one of the direc­
tories specified by the libpath command in your config.sys file.

45.3.1 The Source File
The following simple dynamic-link-library source file, dynlink.c, illustrates how a
dynamic-link library is built:

#include <os2.h>
int _acrtused = 0;

EXPENTRY Sample (pchString, cbLength)
peH pchString;
USHORT cbLength;
{

USHORT usBytes;

}
DosWrite(l, pchString, cbLength, &usBytes);

As with all MS OS/2 programs, the os2.h file is included in the library (since the
DosWrite function is called). Notice that the _acrtused variable is declared and
initialized to zero. This directs the linker not to load the crtO start-up module,
which is not needed with dynamic-link libraries.

The function Sample is declared with the EXPENTRY attribute. This attribute,
defined in the os2.h file, identifies the function as an export entry. Export entries
use the Pascal calling conventions and require a far call to invoke them. The far
call is necessary because a dynamic-link library always resides in a different seg­
ment from that of the calling program.

Dynamic-link libraries can contain either global or local variables. If your library
uses global variables, the data segment of the calling program must be pushed on
the stack and then reloaded with the library's own data segment. The calling
program's data segment must be restored before control returns from the library.
Compilers such as the Microsoft C Optimizing Compiler provide command-line
options and special keywords to automatically insert the code needed to push
and pop the data segment. Strings are always treated as global variables.

Dynamic-link libraries must not assume that the stack and the global data are
located in the same segment. Since a calling program must use its own stack
when calling a function in a dynamic-link library, the ss register will not be equal
to the ds register if the dynamic-link library has its own data segment.

Chapter 45: Dynamic Linking 617
~~;i!l~W~F3i~f§iirIiFJ~§i~:!iiiaU§!f5ji!lffilimmlim~~lIitl~i!ii!i~lm!i!!i§ffim~..fflI:!if;!~i~m'iiaBoot:s~~lf~fm;m!rn,~~~ns1m

You must not include stack probes when compiling a dynamic-link library.
Because the stack setup for dynamic-link libraries differs from the stack setup
for MS OS/2 programs, stack checking would cause unpredictable results.

45.3.2 The Module-Definition File
Each dynamic-link library must use export definitions to make its functions
directly available to other modules. You supply an export definition for a
dynamic-link library in its module-definition file.

A module-definition file describes the name, attributes, exports, imports, and
other characteristics of a program or library for MS OS/2. This file is optional
for MS OS/2 programs but is required for dynamic-link libraries.

For example, the dynamic-link library dynlink.dll contains the function Sample,
which can be called from other programs. To make Sample available to calling
programs, the module-definition file dynlink.dej contains the following lines:

LIBRARY DYNLINK
EXPORTS SAMPLE

The LIBRARY statement tells the linker that the file dynlink is a dynamic-link
library. The EXPORTS statement tells the linker that the function Sample in
dynlink is available for other programs to call. (The Microsoft C Optimizing
Compiler converts the names of functions that use the Pascal calling conventions
to uppercase letters.) A program that calls the dynamic-link library dynlink must
specify an import definition for Sample (unless an import library for dynlink
exists) by using the following IMPORTS statement in the program's module­
definition file:

IMPORTS DYNLINK.SAMPLE

You must list every function that will be called at run time in the module­
definition file of the dynamic-link library.

45.3.3 Import Libraries
An alternative way to specify import definitions is to create an import library. If
you have many functions in a dynamic-link library, it is usually easier to create
an import library than to use import definitions. The import library os2.lib is an
example of an import library that is linked with all MS OS/2 applications.

To generate an import library, you must first create a module-definition file for
the dynamic-link library. As in the preceding example, this file should contain
LIBRARY and EXPORTS statements. Once you have created the module­
definition file, use the Microsoft Import Library Manager (impJih) to create an
import library to use during linking.

For example, to create the import library dynlink.lib for the dynamic-link library
dynlink.dll, run implih as follows:

implib dynlink.lib dynlink.def

If your program makes calls to the newly created dynamic-link library, its
import-library name must be included in the library field of the linker command
line. For example, if the program deall calls dynlink.dll, link dealI with the
library as follows:

618 MS OS/2 Programmer's Reference, Vol. 1
lli!W~~!;ffll~~!W~~l~ilSm.!I~~!~illi!~i"_U~!~I!ii!iimlE~ifEr:iim!blfi!fiJ!!if:!iF.!r~Ji!i!~Ji!fii~~~~!§ifI~eiif~~~~;;~I~ii!i~.~~2

link Inoi dcall.obj",os2.lib dynlink.lib,dcall.def

You can also use assembly language to write a dynamic-link library. If you
choose to do so, you must declare each function in your library as follows:

functionname proc far

You should also declare the functions to be public.

Your assembly-language dynamic-link-library functions must set up a stack frame
for the parameters being passed to them. To set up the stack frame, a function
must do the following:

• Set up the frame pointer (bp).

• Set up space for local variables.

• Save the old ds register and set up the data segment for your dynamic-link
library.

• Save the si, di, and ss registers (if the values will be changed).

• Push MS OS/2 parameters on the stack.

The function must first set up a frame pointer by pushing the old bp register
value on the stack and setting the bp register equal to the sp register, as follows:

push bp
mov bp,sp

After pushing the old ds register value on the stack and setting the bp register
equal to the sp register, the function must move the stack pointer down and
push local variables on the stack in they are needed. For example, the following
lines save the old bp value, assign the bp register tosp, and move sp so that it
points to local variables:

push bp
mov bp,sp
sub sp,04

Local variables are pushed on the stack in the positions (bp-2), (bp-4), (bp-6),
and so on. Thus, you can use these addresses to access the variables.

Before returning to the calling program, the function should restore sp by setting
it equal to bp.

If you are creating a dynamic-link library that has an automatic data segment,
each function must set the ds register to the proper value when it starts. To do
this, the function should set DGROUP so that it points to the data segment of
the dynamic-link library, as follows:

DGROUP GROUP data

Each function in the dynamic-link library that needs to use the library's auto­
matic data segment must save the old data segment and reload the ds register
so that it points to the data segment of the dynamic-link library. Placed at the
beginning of the function, the following lineS of cqfle do this:

push ds
mov ax, seg DGROUP
mov dS,ax

Chapter 45: Dynamic Linking 619
"miill~~_!iilf§iiliifJ~~J!iiii1m!!f:!!~Jftilimmlr;g~Rmifiii!i~i!f~lgl~m1ffim~·mmf;!iiiif!JlIi2:il~OOi.:S';i5.~l!~~;mfm!~~@ns.~

Before the function returns to the calling program, it must restore the old ds
register value by popping it off the stack, as follows:

pop ds

Functions that use the si, di, and ss registers should save the old register values
by pushing them on the stack, after setting the frame pointer and allocating any
existing local data. The following example shows how to push these registers on
the stack:

push bp
mov bp,sp
sub sp,4
push s1
push d1
push ss

Before returning to the calling program, the function must pop the registers off
the stack in reverse order, as follows:

pop ss
pop d1
pop s1

Since MS OS/2 uses the Pascal calling convention to pass parameters to the MS
OS/2 system functions, it is recommended that you use the same convention for
the dynamic-link-library functions that you create. Although the Pascal calling
convention is not required, it provides a consistent interface for programs that
call functions in dynamic-link libraries. If the Pascal calling convention is used,
applications must push parameters on the stack before calling the dynamic-link­
library function. (Under the Pascal convention, the number of parameters
required by a given function is fixed.)

When the calling program exits from a function for which parameters were
pushed on the stack, the called function should always restore the ds and bp
registers and then use a ret nn instruction, where nn is the number of bytes
pushed upon entry.

Return values are returned in the ax (16-bit) register or in the dx:ax (32-bit)
registers, where dx holds the high 16 bits and ax holds the low 16 bits.

45.3.4 The Initialization Function
You can optionally add an initialization function to a dynamic-link library. This
function, which is called before the actual code for the dynamic-link library is
called, performs user-defined operations. As with dynamic-link-library functions,
you must push existing registers on the stack before using them in an initializa­
tion routine and restore them in reverse order before exiting from the routine.

Be aware that when MS OS/2 starts executing a dynamic-link library, it sets the
CPU registers to known values. For a list of these initial values, see Chapter 43,
"Processes, Threads, and Sessions."

Initialization functions must be written in assembly language, because the
assembly-language end statement is required to identify the start of the function.
In C, there is no equivalent end statement. You can, however, write your initiali­
zation code in assembly language and the library functions in C, assemble and
compile these files separately, and then combine them during linking.

620 MS OS/2 Programmer's Reference, Vol. 1
lemlfim!~fmfifi11!W~l'-i~i~I~~f!!ii.W~iifi".iI;S!i~I!i~jmlE.jifi!r:lif!l!!'lij1fm!!~i1i!i~JfmsiiiJ~I~2J~~!;;;r~~~~!~UI~!fif:;;:jJj!liflfiiii~~~~B

45.4 Using Dynamic Linking
All MS OS/2 programs use dynamic linking, since this is the only way programs
can link to and call the MS OS/2 system functions.

If you use the dynamic-link functions to work with dynamic-link libraries, the
first step is to load the library by using the DosLoadModule function. This func­
tion takes the name of the library as a parameter and returns a handle for the
module. If the library is not in one of the directories specified by the Iibpath
command in the config.sys file, you must supply a full path with the filename. If
the library is not found, the function returns an error.

After the library is loaded, the program can retrieve the address of a specific
function by using the DosGetProcAddr function. DosGetProcAddr takes a func­
tion name as a parameter and supplies the function's address. The function
name must be spelled exactly as it appears in the library; this is typically in all
uppercase letters if the Pascal calling convention is used. The function can be
called like any MS OS/2 system function. The calling program must provide
correct parameters in the correct order and of the correct type.

After a program has finished using a library, it can free the library by using the
DosFreeModule function. If no other program is using the library, MS OS/2
removes the library from memory. The system keeps only one copy of a library
in memory, no matter how many programs have loaded it.

You can use the DosGetModHandle and DosGetModName functions to help
manage the libraries you have loaded.

45.5 Summary
MS OS/2 provides the following dynamic-link functions:

DosFreeModule Frees the specified dynamic-link module.

DosGetModHandle Retrieves the module handle for the specified dynamic-link
library.

DosGetModName Retrieves the name and path of the module identified by the
specified module handle.

DosGetProcAddr Retrieves the address of the specified function in the given
dynamic-link module. Use this function to link to specific functions in a
dynamic-link library.

DosLoadModule Loads the specified dynamic-link library.

Chapter

46

The File System
46.1 Introduction......... 623

46.2 About the File System .. 623

46.3 U sing the File System... 626
46.3.1 Opening Files ... 626
46.3.2 Creating Files 628
46.3.3 Reading from and Writing to Files 628
46.3.4 Reading and Writing Asynchronously..................... 629
46.3.5 Closing a File ... 629
46.3.6 Using the Standard Files 630
46.3.7 Redirecting the Standard Files 631
46.3.8 Using Wildcard Characters to Search for Files 631
46.3.9 Moving the File Pointer 632
46.3.10 Accessing Devices ... 633
46.3.11 Controlling Input and Output Devices.. 634

46.4 Summary .. 634

Chapter 46: The File System 623
!¥i!i!:tl~~~a!ijif§flrriFjei~J!iiiru'§!!F:!iil~imm!~~mfi~!~m~iH!limt~m~.m!i!If::inifaiiI~§i~~~~_g~fS!m!!~I~Jiift~f!ilii~

46.1 Introduction
This chapter describes the file-system functions. These functions let a program
open, read, write, and modify disk and device files. They also let a program
access and maintain the file system-that is, the volumes, directories, and files
on the computer's disk drives. You should also be familiar with the following
topics:

• Files

• Devices

46.2 About the File System
In MS OS/2, the file system specifies how data is organized on the computer's
mass-storage devices, such as hard (fixed) and floppy (removable) disks. Each
disk drive represents a unique element of the file system through which the data
on a disk can be accessed. Each drive is assigned a unique letter to distinguish it
from other drives. On most personal computers, drive A is the first floppy-disk
drive, drive B is the second floppy-disk drive, drive C is the first hard-disk drive,
and drive D is the second hard-disk drive. A personal computer running MS
OS/2 can have up to 26 drives. For exceptionally large hard disks, the disk can
be divided into two or more "logicaJ" drives. A logical drive represents a portion
of the hard disk (up to 32 megabytes of storage) and, like a physical drive, is
assigned a unique letter to distinguish it from other physical and logical drives.

The file system organizes disks into volumes, directories, and files. A volume is
the largest file-system unit. It represents all the available storage on the disk in
the drive. An optional volume identifier or name identifies the disk. Each
volume has a root directory. The root directory lists the contents of the disk.
Each directory entry identifies the name, location, and size of a specific file or
subdirectory on the disk. A file is one or more bytes of data stored on the disk.
Subdirectories provide an additional level of organization and, like the root
directory, contain directory entries.

The MS OS/2 file-system functions identify files and directories by their names.
These functions store or search for the file or directory in the current directory
on the current drive unless the name explicitly specifies a different directory and
drive. Valid MS OS/2 filenames have the following form:

[drive:] [directory\]filename[.extension]

The drive parameter must name an existing drive and can be any letter from A
through Z. The drive letter must be followed by a colon (:).

The directory parameter specifies the directory that contains the file's directory
entry. This value must be followed by a backslash (\) to separate it from the
filename. If the specified directory is not in the current directory, directory must
include the names of all directories in the path, separated by backslashes. The
root directory is specified by using a backslash at the beginning of the name. For
example, if the directory abc is in the directory sample and sample is in the root
directory, the correct directory specification is \sample\abc. A directory name
consists of any combination of up to eight letters, digits, or the following special
characters:

$%'-_@{}"'I=It()

624 MS OS/2 Programmer's Reference, Vol. 1
;~Rflfi!!jfffii!fii~iID~f!f~i~ltilfjJ~~m;iififi".n~!~!ii!!im!f.jim~~N~rm!ii§~gr~JimBJMii~~.'~~~J!rlmu!P.~[~I~lfliff4~~i!¥,i~E

A directory name can also have an extension, which is any combination of up to
three letters, digits, or special characters, preceded by a period (.).

The filename and extension parameters specify the file. A filename can be any
combination of up to eight letters, digits, or the following special characters:

$%'-_@{}"~ I#()

An extension can be any combination of up to three letters, digits, or special
characters, preceded by a period.

Although these file-naming conventions apply to MS OS/2 versions 1.0 and 1.1,
future releases of MS OS/2 may use other conventions. Therefore, programs
written for MS OS/2 should not depend on any specific filename format.

When a program starts, it inherits the current directory and drive from the pro­
gram that starts it. A program can determine which directory and drive are
current by using the DosQCurDir and DosQCurDisk functions. A program can
change the current directory and drive of the file system by using the DosChDir
and DosSelectDisk functions.

When a program creates a new file, the system adds an entry for the file to the
specified directory. Each directory can have any number of entries, up to the
physical limit of the disk. A program can create new directories and delete exist­
ing directories by using the DosMkDir and DosRmDir functions. Before a direc­
tory can be deleted, it must be empty; if there are files or directories in that
directory, they must be deleted or moved. A program can delete a file by using
the DosDelete function or move a file to another directory by using the Dos­
Move function.

Each directory entry includes a file attribute. The file attribute specifies whether
the directory entry is for a file, a directory, or a volume identifier. It also speci­
fies whether the file is read-only, hidden, archived, or system. A read-only file
cannot be opened for writing, nor can it be deleted. A hidden file (or directory)
cannot be displayed using an ordinary directory listing. A system file is excluded
from normal directory searches. The archived attribute is for use by special­
purpose programs that need some way to mark a file for backing up or removal.
A program can retrieve and set the file attribute of a file by using the DosQFile­
Mode and DosSetFileMode functions.

A program can retrieve information about the file system on a given drive by
using the DosQFSlnfo function. The file-system information defines the amount
of storage space available on the disk. The storage space is given in number of
allocation units (clusters) on the disk. Each cluster has an associated number of
sectors; each sector contains a given number of bytes. A typical disk has 512
bytes for each sector and 4 sectors for each cluster. The DosSetFSlnfo function
lets a program change the volume identifier for the disk in the given drive.

A program can retrieve and set information about a specific file by using the
DosQFilelnfo and DosSetFilelnfo functions. File information consists of the
dates and times that the file was created, last accessed, and last written to; the
size (in bytes) of the file; the number of sectors (or clusters) the file occupies;
and the file attributes.

A program can search for all filenames that match a given pattern by using the
DosFindFirst, DosFindNext, and DosFindClose functions. These functions let a
program search the current directory for files whose names match a specified

Chapter 46: The File System 625
:ili§iirn!iii!!fmf1ill!PJ:f~im!iP:l~ig~Uj!if!l.iiiie!!~n!i!!n~r.~!~i~!~!~~i~~liffi!~i~!i~iii;!t~I~~miiijml!S~m!~lii~!~~~~~l~nrJ!!

pattern. The pattern must be an MS OS/2 filename and can include wildcard
characters. The wildcard characters are the question mark (?) and the asterisk
(*). The? matches any single character; the * matches any combination of char­
acters. For example, the pattern a* matches the names abe, a23, and abea, but
the pattern a?e matches only the name abe.

A program can open an existing file or create a new file by using the DosOpen
function. MS OS/2 identifies each open file by assigning it a file handle when the
program opens or creates the file. The file handle is a unique 16-bit integer. The
program can use the handle in functions that read from and write to the file,
depending on how the file was opened. The program can continue to use the
handle in this way until the file is closed. MS OS/2 sets the default maximum
number of file handles for a program to 20. A program can change this maxi­
mum by using the DosSetMaxFH function.

A program can increase or decrease the size of an open file by using the Dos­
NewSize function.

When a program opens a file, it must specify whether it wants to read from the
file, write to it, or both read and write. Also, since more than one program may
attempt to open a file, a program must specify how it wants to share the file (if
at all) with other programs. A file can be shared for reading only, for writing
only, for reading and writing, or not shared. A file that is not shared cannot be
opened by another program (or more than once by the first program) until it has
been closed by the first program.

A program reads from and writes to a file by using the DosRead and Dos Write
functions. These functions read and write a specified number of bytes of data.
The data is read and written exactly as given; the functions do not format the
data-that is, they do not convert binary data to decimal strings or vice versa. A
program can use the DosReadAsync and Dos WriteAsync functions to read from
and write to a file asynchronously-that is, to read and write while the rest of the
program continues carrying out other operations.

Every open file has a file pointer that specifies the next byte to be read or the
location to receive the next byte that is written. When a file is first opened, the
system places the file pointer at the beginning of the file. As each byte is read or
written, the system advances the pointer. A program can also move the pointer
by using the DosChgFilePtr function. When the pointer reaches the end of the
file and an attempt is made to read from the file, no bytes are read and no error
occurs. Thus, reading zero bytes withoulJan error means the program has
reached the end of the file."

When a program writes to a disk file, MS OS/2 usually collects the data being
written in an internal buffer and writes to the disk only when the amount of data
equals (or is a multiple of) the sector size of the disk. If there is data in the
internal buffer when the file is closed, the system automatically writes the data to
the disk before closing the file. A program can also flush the buffer (that is,
write the contents of the buffer to the disk) by using the DosButReset function.

Although MS OS/2 lets more than one program open a file and write to it, the
programs that do so must take care not to write over each other's work. A pro­
gram can protect against this problem by temporarily locking a region in a file.
The DosFileLocks function specifies a range of bytes in the file that is locked by
the program and can be accessed only by that program. The program uses the
same function to free the locked region.

626 MS OS/2 Programmer's Reference, Vol. 1
liiib1iriijiDilI.~Uitili@f_iiii~~~;p'EIif.~ml~~I!lil{i~i~tiiHi~I!ilii!mWili!ii!!t!ml~!;;j~~~~Jiilmt~~i;u~r~meF.ij~liIHfm!I!§~!if.l~~~!

Some file-system functions can also be used to access other input and output
devices, such.as serial ports, keyboard, and screen. A program can open these
devices by using the DosOpen function and specifying one of the following
device names:

clock $ con mouse$

com 1 kbd$ nul

com2 lptl pointer$

com3 Ipt2 pm

com4 Ipt3 screen $

As with a disk file, MS OS/2 supplies a unique handle that the program can use
in subsequent calls to the DosRead and DosWrite functions to read from and
write to the device. A program can determine the type of handle-device or file­
system-by using the DosQHandType function. The program uses the DosClose
function to close the handle when the device is no longer needed.

When a program opens a device, it must specify both how the device is to be
accessed (read, write, or both) and what kind of sharing is to be allowed. A
program can check or alter this state by using the DosQFHandState and Dos­
SetFHandState functions. (These functions also apply to file-system handles.)

When a program starts, it inherits all open file handles from the process that
starts it. If the system's command processor starts a program, file handles 0, 1,
and 2 represent the standard-input, standard-output, and standard-error files.
The standard-input file is the keyboard; the standard-output and standard-error
files are the screen. A program can read from the standard-input file and write
to the standard-output and standard-error files immediately; it does not have to
open the files first.

A program can create a duplicate file handle for an open file by using the Dos­
DupHandle function. A duplicate handle is identical to the original handle. Typi­
cally, duplicate handles are used to redirect the standard.:.input and standard­
output files. For example, a program can close handle 0, open a disk file, and
duplicate the disk-file handle as handle O. Thereafter, reading from handle 0
takes data from the disk file, not from the keyboard.

46.3 Using the File System
Input and output are two of the most important tasks that any program carries
out. This section explains how to read from and write to files on disks and other
input and output devices, such as printers, modems, and the system console.

46.3.1 Opening Files
Before carrying out any input or output operation, you need a file handle. A file
handle is. a 16-bit value that identifies the file or device that you want to read
from or write to. You can create a file handle by using the DosOpen function,
which opens the specified file and returns a file handle for it. For example, in the
following code fragment, DosOpen opens the existing file simple. txt for reading
and copies the file handle to the hf variable:

Chapter 46: The File System 627
;i1i!iiiUii!if2illf;m.~mffP:ai~~~!~.mia!~iSill!H~~mS~~n~!i~!;;!~l!!i!t;f~2i~ifi!i!f;~liilmi;iiijjlieUi;mj~liiili{fi!!s~!i~Hlm!

HFItE hf;
USHORT usAction;

DosOpen(tlsimple.txttl, /* name of file to open */
&hf, /* address of file handle */
&usAction, /* action taken */
OL, /* size of file * /
FILE_NORMAL, /* file attribute */
FILE_OPEN, /* open the file * /
OPEN_ACCESS_READONLY I OPEN_SHARE_DENYNONE,
OL) ; /* reserved */

If the DosOpen function successfully opens the file, it copies the file handle to
the hf variable and copies a value to the usAction variable indicating what action
was taken (for example, FILE~XISTED for "existing file opened"). A size is
not needed to open an existing file, so the fourth argument is zero. The fifth
argument, FILE_NORMAL, specifies the normal file attribute. The sixth argu­
ment, FILE_OPEN, directs DosOpen to open the file if it exists or to return an
error if it does not exist. The seventh argument directs DosOpen to open the file
for reading only and to let other programs open the file even while the current
program has it open. The final parameter is reserved and should always be set to
zero.

The DosOpen function returns zero if it successfully opened the file. You can
then use the file handle in subsequent functions to read data from the file or to
check the status or other characteristics of the file. If DosOpen fails to open the
file, it returns an error value.

As shown in the preceding example, when you open a file you must specify
whether you want to read from the file, write to it, or both read and write. You
must also specify whether you want other processes to have access to the file
while you have it open. You do this by combining an OPEN.-ACCESS value and
an OPEN_SHARE value from the following list:

Value

OPEN.-ACCESS-READONL Y

OPEN.-ACCESS_ WRITEONL Y

OPEN.-ACCESS-READWRITE

OPEN_SHARE-DENYREADWRITE

OPEN_SHARE-DENYWRITE

OPEN_SHARE-DENYREAD

OPEN_SHARE-DENYNONE

Meaning

Open a file for reading.

Open a file for writing.

Open a file for reading and
writing.

Open a file for exclusive
use, denying read and write
access by other processes.

Deny write access to a file
by other processes.

Deny read access to a file by
other processes.

Open a file with no sharing
restrictions, granting read
and write access to all
processes.

In general, you can combine any access method (read, write, or read and write)
with any sharing method (deny reading, deny writing, deny reading and writing,

628 MS OS/2 Programmer's Reference, Vol. 1
iiiiHiirilijm!nmimi~il!l~iP._:if.iP.W:I~rnllllan~i~~Hf~liiiiilniim!=:i!!t!!t!l~~~aii~~~m1mimniilntmim!mifij~J.l~if!li§~i§llfS:~~~

or grant any access). Some combinations have to be handled carefully, however,
such as opening a file for writing without denying access to it by other processes.

46.3.2 Creating Files
You can also create new files by using the DosOpen function. Once you have
created a new file, you can read from or write to it just as you would with an
existing file.

To create a new file, specify FILE_CREATE as the sixth argument. The Dos­
Open function then creates the file if it does not already exist. In the following
code fragment, the DosOpen function creates the file newfile.txt:

HI!'ILE hf;
USHORT usAction;

DosOpen("newfile.txt", /*
&hf, /*
&usAction, /*
OL, /*
FILE_NORMAL, /*
FILE_CREATE, /*
OPEN_ACCESS_WRITEONLY I
OL); /*

name of file to create
address of file handle
action taken
size of new file
file attribute
create the file
OPEN_SHARE_DENYNONE,
reserved

and open */
*/
*/
*/
*/
*/

*/

In this example, DosOpen creates the file and opens it for writing only. Note
that the sharing method allows other processes to open the file for any access.
The new file is empty (contains no data).

When you use DosOpen to create a new file, you must specify the file attribute.
In the preceding example, this value is FILE-NORMAL, so the file is created as
a normal file. Other possible file attributes include read-only and hidden, which
correspond to FILE.-READONL Y and FILEJIIDDEN, respectively.

The file attribute affects how other processes access the file. For example, if the
file is read-only, no process can open the file for writing. The one exception to
this rule is that the process that creates the read-only file can write to it immedi­
ately after creating it. After closing the file, however, the process cannot open it
for writing again.

You must also specify the original size of the new file. For example, if you
specify 256, the new file is 256 bytes long. However, these 256 bytes are unde­
fined. It is up to the program to write valid data to the file. In any case, no
matter what size you specify, subsequent calls to the Dos Write function copy
data to the beginning of the file.

46.3.3 Reading from and Writing to Files
Once you have opened a file or have a file handle, you can read from and write
to the file by using the DosRead and DosWrite functions. The DosRead function
copies a specified number of bytes (up to the end of the file) from the file to the
buffer you specify. The DosWrite function copies bytes from a buffer to the file.

To read from a file, you must open it for reading or for reading and writing. The
following code fragment shows how to open the file named sample. txt and read
the first 512 bytes from it:

HFILE hf;
USHORT usAction, usError;
BYTE abBuffer[S12];
USHORT cbRead;

Chapter 46: The File System 629
~~!i.q~l~1!umi;~!Pjf~P:!fll!iiiil~~~!~.mi.!!lm;IIi~~i§i~I~li~ilit~~l~!~'iiP.!iiinf;~Iii.i.mDiiiillleiid.iimii;lfi§iii;i!i*-S~~~mn!f~

usError = DosOpen("sample.txt", &hf, &usAction, OL, FILE_NORMAL,
FILE_OPEN, OPEN_ACCESS_READONLY I OPEN_SHARE_DENYNONE, OL);

if (lusError) {

}

DosRead(hf, abBuffer, S12, &cbRead);
DosClose(hf);

If the file does not have 512 bytes, DosRead reads to the end of the file and
copies the number of bytes read to the cbRead variable. If the file pointer is
already positioned at the end of the file when DosRead is called, the function
copies zero to the cbRead variable.

To write to a file, you must first open it for writing or for reading and writing.
The following code fragment shows how to open the file sample.txt again and
write 512 bytes to it:

HFILE hf;
USHORT usAction;
BYTE abBuffer[S12];
USHORT cbWritten, usError;

usError = DosOpen("sample.txt", &hf, &usAction, OL, FILE_NORMAL,
FILE_CREATE, OPEN_ACCESS_WRITEONLY I OPEN_SHARE_DENYWRITE, OL);

if (lusError) {

}

DosWrite(hf, abBuffer, S12, &cbWritten);
DosClose(hf);

The DosWrite function writes the contents of the buffer to the file. If it fails to
write 512 bytes (for example, if the disk is full), the function copies the number
of bytes written to the cbWritten variable.

46.3.4 Reading and Writing Asynchronously
The DosRead and Dos Write functions are synchronous input and output func­
tions, since they carry out their reading and writing operations before returning
control to the program. By using the asynchronous input and output functions,
DosReadAsync and DosWriteAsync, your program can continue with other tasks
while the function reads from or writes to a file in a separate operation. Asyn­
chronous input and output functions minimize the effect of input and output on
the speed of your applications.

46.3.5 Closing a File
You can a close a file by using the DosClose function. Since each program has a
limited number of file handles that it can have open at any given time, it is a
good practice to close a file after using it. To do so, supply the file handle in the
DosClose function, as shown in the following code fragment:
HFILE hf;
USHORT usAction;
BYTE abBuffer[BO];
USHORT cbRead;

usError = DosOpen("sample.txt", &hf, &usAction, OL, FILE_NORMAL,
FILE_OPEN, OPEN_ACCESS_READONLY I OPEN_SHARE_DENYNONE, OL);

if (lusError) {

}

DosRead(hf, abBuffer, BO, &cbRead);
DosClose(hf);

630 MS OS/2 Programmer's Reference, Vol. 1
:iiiih1i~jiD!nmirul~ie.!i~iP.-E::lif.iP.~=I~~lISU~i~~~Hm~l!ruiliUiiiili!ii!H!l!n~~~2li~~~fmi!J1miiiiifftt~m!~i$jii;liraiJ!I!~~~=fl~1

If you have opened a file for writing, the DosClose function directs the system
to flush the file buffer-that is, to write any existing data in the intermediate file
buffer to the disk or device. The system keeps these intermediate file buffers to
make file input and output more efficient. For example, it saves data from previ­
ous calls to the DosWrite function until a certain number of bytes are in the
buffer. It then writes the contents of the buffer to the disk.

46.3.6 Using the Standard Files
Every program, when first starting, has three input and output files available for
its use. These files, called the standard-input, standard-output, and standard­
error files, let the program read input from the keyboard and display output on
the screen without opening or preparing the keyboard or screen.

As the system starts a program, it automatically opens the three standard files
and makes the handles of the files-numbered 0, 1, and 2-available to the pro­
gram. You can then read from and write to the standard files as soon as your
program starts.

File handle 0 is the standard-input file. This handle lets you read characters from
the keyboard by using the DosRead function. The function reads the specified
number of characters unless the user types a turnaround character-that is, a
character that marks the end of a line. (The default turnaround character is a
carriage-return/newline character pair.) As DosRead reads the characters, it
copies them to the buffer you have supplied, as shown in the following code frag-
ment: .

BYTE abBuffer[BO);
USHORT cbRead;

DosRead(O, abBuffer, BO, &cbRead);

In this example, DosRead copies the number of characters read from standard
input to the cbRead variable. The function also copies the turnaround character,
or characters, to the buffer. If the function reads fewer than 80 characters, the
turnaround character is the last one in the buffer.

File handle 1 is the standard-output file. This handle lets you write characters on
the screen by using the DosWrite function. The function writes the characters in
the given buffer or string to the current line. If you want to start a new line, you
must insert the current turnaround character in the buffer. The following code
fragment displays a prompt, reads a string, and displays the string:
USHORT cbWritten;
USHORT cbRead;
BYTE abBuffer[BO);

DosWrite(l, "Enter a name: ", 14, &cbWritten);
DosRead(O, abBuffer, BO, &cbRead);
DosWrite(l, abBuffer, cbRead, &cbWritten);

File handle 2 is the standard-error file. This handle also lets you write characters
on the screen. Most programs use the standard-error file to display error mes­
sages, since the user can then redirect standard output to a file without also
redirecting error messages to the file.

Chapter 46: The File System 631
iI~!t.ii~!m!lmfii~!plif~rnm!ae!ml~~~!~.ffli~!~!mil'@~~l§i~~f~li~i;;'!~l~~rAfigi!i~ifi!i~I~~~~jjiJll!S!UUmj~l~i~!;;*s~!!i~~j~.§Y

46.3.7 Redirecting the Standard Files
Although the standard-input, standard-output, and standard-error files are usu­
ally the keyboard and screen, this is not always the case. For example, if the
user redirects standard output by using the greater-than (» redirection symbol
on the program command line, all data written to the standard-output file goes to
the given file. The following command line redirects standard output to the file
sample.txt and redirects error messages to the file sample.err:

type startup.cmd >sample.txt 2>sample.err

When a standard file is redirected, its handle is still available but corresponds to
the given disk file instead of to the keyboard or screen. You can still use the
DosRead and DosWrite functions to read from and write to the files.

You can redirect a standard file from within a program by closing the file and
then immediately reopening another file to be used for input or output. When­
ever you open a file, MS OS/2 uses the lowest available handle for the new file.
For example, if you close the standard-input file (handle 0) and immediately re­
open some other file, that new file receives handle O. Any subsequent calls to the
DosRead function that specify handle 0 'are read from the new file, not from the
previous standard-input file.

Redirecting in this way is especially useful if you want to start a child process
and have its standard input be a disk file rather than the keyboard. The following
code fragment shows how to redirect the standard-input file from within a pro­
gram:

DosClose(O);
DosOpen("sample.c", &hf, &usAction, OL, FILE_NORMAL, FILE_OPEN,

OPEN_ACCESS_READONLY I OPEN_SHARE_DENYNONE, OL);

46.3.8 Using Wildcard Characters to Search for Files
You cannot use the wildcard characters (* and ?) in filenames that you supply to
the DosOpen function, but you can locate files with names that match a given
pattern by using wildcard characters in the DosFindFirst and DosFindNext func­
tions.

The DosFindFirst function locates the first filename in the current directory that
matches the given pattern. The DosFindNext function locates the next matching
filename and continues to find additional matches on each subsequent call until
all matching names are found. The functions copy the file statistics on each file
located, such as name, attributes, and creation date, to a structure that you sup­
ply.

The following code fragment shows how to find all filenames that have the exten­
sion .c:

HDIR hdir;
USHORT usSearch;
FILEFINDBUF findbuf;

usSearch = 1;
hdir = HDIR_SYSTEM;
DosFindFirst("*.c",

&hdir,
FILE_NORMAL,
&f1ndbuf,
sizeof(findbuf) ,
&usSearch,
OL);

1* directory handle *1
1* file attribute to look for *1
1* result buffer * I
1* size of result buffer *1
1* number of matching names to look for *1
1* reserved value *1

632 MS OS/2 Programmer's Reference, Vol. 1
:ilih1ir~lii!il!i~liiJ!mgi1iiii!if~Ei~im~liilii51l!!n;,U~i~~Hm~liruimiEiiii!!i!!9i!!l~!;;t~i~~~imt~~iiifftr.a!mii~iiiimim~~~~;U~:

do {

/' use filename in findbuf.achName '/

usSearch = 1;
DosFindNext(hdir, &findbuf, sizeof(findbuf), &usSearch);

} while (usSearch 1= 0);
DosFindClose(hdir) ;

This example continues to retrieve matching filenames until the DosFindNext
function returns zero in the us Search variable. Before each call, tlte us Search
variable is set to the numeral in order to direct the function to look for only one
matching name ata time.

To keep track of which files have already been found, both functions use the
directory handle hdir to identify the current position iii the directory. The direc­
tory handle also identifies for DosFindNext the name of the file being sought.
This handle must be set to HDIILSYSTEM or HDIILCREATE before the
DosFindFirst function is called, and the value returned by DosFlndFirst must be
used in subsequent calls to DosFindNext.

After locating the files you need, you should use the DosFindClose function to
close the directory handle. This ensures that when you search for the same files
again, you will start at the beginning of the file. .

46.3.9 Moving the File Pointer
Every disk file has a corresponding file pointer that marks the current location in
the file. The current location is the byte in the file that will be read from or writ­
ten to on the next call to the DosRead or DosWrite function. Usually, the file
pointer is at the beginning of the file when you first open or create· the file and
advances one byte at a time as you read a byte from or write a byte to the file.
You can, however, change the position of the file pointer at any time by using
the DosChgFilePtr function.

The DosChgFilePtr function moves the file pointer a specified offset from a
given position. You can move the pointer from the beginning of the file, from
the end, or from the current position. The following code fragment shows how
to move the pointer 256 bytes from the end of the file:

HFILE hf;
USHORT usAction;
ULONG ulActual;

DosOpen("sample.txt", &hf, &usAction, OL, FILE_NORMAL, FILE_OPEN,
OPEN_ACCESS_READONLY I OPEN_SHARE_DENYNONE, OL);

DosChgFilePtr(hf, -256L, FILE_END, &ulActual);

In this example, DosChgFilePtr moves the file pointer to the 256th byte from
the end of the file (toward the beginning). If the file is not that long, the function
moves the pointer to the first byte in the file and returns the actual position
(relative to the end of the file) in the ulActual variable.

You can move the file pointer only for disk files. You cannot use DosChgFilePtr
to change the file pointer's position on the screen, nor can you use it to read
ahead from the keyboard.

Chapter 46: The File System 633
~1;!liIill!i!!i~"if!MfEfi~l!!iY!ijJlI~iij!m!iaflmif;i,.'iml!!iI!&"IfDt~f~ilijiimffjjlm1miWrLe~m1!54!~iif;lij!ruftf&i~~!§i~iF.MiJi)i~m!i~lmiSlh1Jji4!;-i!!flil~~~~mJf~

46.3.10 Accessing Devices
You can open a number of devices by using the DosOpen function. A device is
a piece of hardware, other than a disk drive, that is intended to be used for
input and output. For example, the keyboard and screen are devices, as are any
serial or parallel ports that your computer may have.

MS OS/2 lets you open and access a device just as you would open a disk file.
However, what you read from or write to a device depends on the device. (This
is not true for disk files.) For example, if you open a serial port that has a
printer connected to it, you will need to know the input format of the printer.
Writing plain text to the printer mayor may not give you the result that you
want.

The device may also behave differently depending on what driver you have
installed to support it. For example, if you write to the system console, each
byte is interpreted as a character and is subsequently displayed on the screen. If,
however, you load the ANSI display driver when you start the system, some byte
sequences may represent actions to take, such as moving the cursor.

To open a device by using the DosOpen function, you must supply the special
reserved name for that device. For example, to open the console (both keyboard
and screen), you must specify the name con. The following is a list of the
reserved device names commonly used in programs:

Device name

con

coml

pm

lptl

nul

screenS

kbd$

Description

System console. This device consists of both the key­
board and the screen. You can open con for reading
(from the keyboard), writing (to the screen), or both
reading and writing.

Serial port 1. This device is the first serial port in your
computer. You can open it for reading, writing, or
both reading and writing.

Default printer port. This device corresponds to one
of the system parallel ports. You can open it for writ­
ing but not for reading.

Parallel port 1. This device represents a parallel port.

Null device. This device provides a method of discard­
ing output. If you open this device for writing, any
data written to the file is discarded. If you open the
device for reading, any attempt to read from the file
returns an end-of-file mark.

System screen. This device is the system screen. It can
be written to but not read from. Writing to the screen
is similar to writing to the system console. Bytes are
displayed as characters unless they represent an
escape sequence. Escape sequences direct the screen
to carry out actions, such as moving the cursor.

Keyboard. This device is the keyboard. It can be read
from but not written to. Reading from the keyboard is
similar to reading from the console.

634 MS OS/2 Programmer's Reference, Vol. 1
il!UlP.!~J~~!!2I~~~limi!r:!~i~i!H~~l?i1!ill~m~:~mm!§aii~i~itml~l\~i!~ffil~Hff.ifs!ffi~lii!illiini§_i!~l~~fij~~i~nil~i!;m~ii;~iiiijj!~

The following code fragment opens serial port 1 for reading and writing:

DosOpen("coml", &hf, &usAction, OL, FILE_NORMAL, FILE_OPEN,
OPEN_ACCESS_READWRITE I OPEN_SHARE_DENYNONE, OL);

You can open some devices only if the appropriate driver is already available.
For example, you cannot open a serial port unless a communications driver,
such as comOl.sys, has been loaded by using a device command in the system­
configuration file, config.sys.

Once you have opened a device, you can use the DosRead and Dos Write func­
tions to read from and write to the device.

After using the device, you should close it by using the DosClose function.

46.3.11 Controlling Input and Output Devices
Many devices have more than one mode of operation. For example, a serial port
typically has a variety of baud rates at which it can operate. Since these modes
of operation are unique to the device (that is, they differ from device to device),
MS OS/2 does not include specific functions to set or inquire about these
modes. Instead, it provides the DosDevIOCtl function, which controls device
input and output. You can use DosDevIOCtl to set and retrieve information
about the devices in your system.

For example, you can use the ASYNC_SETBAUDRATE control function
(OxOOOl, Ox0041) to set the baud rate of serial port 1. The following code frag­
ment sets the baud rate to 9600:

USHORT usBaudRate;
usBaudRate = 9600
DosDevIOCtl(&usBaudRate, OL, Ox0041, Ox0001, hf);

46.4 Summary
MS OS/2 provides the following file-system functions:

DosButReset Clears the file buffers.

DosChDir Changes the current directory.

DosChgFilePtr Moves the file pointer a specified number of bytes in a file.

DosClose Closes a file.

DosDelete Deletes a file.

DosDevIOCtl Passes device-control functions to the specified device.

DosDupHandle Duplicates a file handle. The original handle and the duplicate
handle are interchangeable.

DosFileLocks Locks or unlocks a portion of a file.

DosFindClose Closes a search directory.

DosFindFirst Searches a directory for a file whose name and attributes match
the specified name and attributes.

Chapter 46: The File System 635
!ifr!;JI1.fi1:!mi!'~iJifffi~~ii!!ljj!I~lijlUf:iiM!S1i:1.i,,~irnimr!1.m!aJ~~!lifliffftfeliiii9fi~Uiifb~mii!f~i~a;it.iiiii~~~I~b'fJ;!j!f,il!fmlmJi;JmJ~r.~i~Bf:~m!;il

DosFindNext Continues the search begun by using the DosFindFirst function.

DosMkDir Creates a directory.

DosMove Moves a file to a new directory and/or filename location.

DosNewSize Changes the size of a file.

DosOpen Opens or creates a file.

DosQCurDir Retrieves the path of the current directory on the specified drive.

DosQCurDisk Retrieves the number of the current drive.

DosQFHandState Retrieves the access and sharing status of a handle.

DosQFileInfo Retrieves information about a file and its use.

DosQFileMode Retrieves the attributes (mode) of a file.

DosQFSInfo Retrieves information about the file system on the disk in the
specified drive.

DosQHandType Retrieves the type of a specified handle-that is, whether the
handle identifies a file, a device, or a pipe.

DosQVerify Retrieves the current write-verification mode.

DosRead Reads data from a file or device.

DosReadAsync Reads data from a file or device while the calling process con­
tinues with other tasks.

DosRmDir Removes a directory.

DosSelectDisk Selects a default disk drive.

DosSetFHandState Sets a handle's inheritance, fail-on-error, and write-through
flags.

DosSetFileInfo Modifies date-and-time information for a file.

DosSetFileMode Sets the attributes (mode) of a file.

DosSetFSInfo Sets the volume label for the disk in the specified drive.

DosSetMaxFH Sets the maximum number of file handles for the current pro­
cess.

DosSetVerify Enables or disables write verification.

DosWrite Writes data to a file or device.

DosWriteAsync Writes data to a file or device while the calling process contin­
ues with other tasks.

Chapter

47

Video Input and Output
47.1 Introduction.. 639

47.2 About Video Input and Output 639

47.3 Using Video Input and Output 640
47.3.1 Displaying a Character 640
47.3.2 Writing a Character to a Specific Location.............. 640
47.3.3 Writing a String of Characters to the Screen............ 641
47.3.4 Writing Character Cells to the Screen 641
47.3.5 Moving and Hiding the Cursor 642
47.3.6 Reading Characters from the Screen 643
47.3.7 Scrolling the Screen Contents.............................. 643
47.3.8 Using the ANSI Display Mode 643

47.4 Summary 644

Chapter 47: Video Input and Output 639
:i¥.i!~nmf!mi~iMf~~~inmfjft~mlmiii~i:1i~iffli!M~~!aJ!!jjj!ifii;imlffilfii1ffii*iifilb'imijfSfSiVi~15;lm~m~~~tF.b'j)ijf!il!i~I§jJ"§ji.J~lr.~i~UHfl£i1iIf&f!

47.1 Introduction
This chapter describes the video-input-and-output (video I/O) functions. These
functions give programs direct access to the system display . You should also be
familiar with the following topics:

• Character-based MS OS/2 programs

• Displays and display adapters

• The keyboard

• The mouse
• Advanced video input and output (A VIO)

47.2 About Video Input and Output
A program can write individual characters and strings to the screen, either at the
current cursor position by using the Vio WrtTTY function or at a specified posi­
tion by using the VioWrtNChar or VioWrtCharStr function. Strings can consist
of characters, attributes, or character-and-attribute pairs.

A character is actually specified by a character value. The. screen uses the value
to locate a character bitmap in the current screen font and then displays the bit­
map at the specified location. For some displays, a program can change the
current screen font by using the VioSetFont function. To do this, the program
typically first retrieves the screen font by using the VioGetFont function and
then modifies that font before setting it as the new font. The format of the font
bitmap depends on the display.

A program can write character attributes to the screen by using the VioWrtN­
Attr or Vio WrtCharStrAtt function. Attributes define the color and appearance
of the characters at the corresponding position. The effect of a given attribute
depends on the display. For a list of attribute values and meanings for some
common displays, see the Microsoft Operating System/2 Programmer's Reference,
Volume 2.

A program can also combine character and attribute values into a single value,
called a cell or a character-and-attribute pair, and write one or more cells to the
screen at the specified position by using the VioWrtNCell or VioWrtCellStr
function.

A program can set the position of the cursor by using the VioSetCurPos func­
tion or retrieve the current position of the cursor by using the VioGetCurPos
function. The cursor position, like any position on the screen, is specified in
screen coordinates. Screen coordinates are relative to the upper-left corner of
the screen. The x-axis values increase to the right; the y-axis values increase
downward. The screen units are either character cells or pixels, depending on
the screen mode (character cells for text mode, pixels for graphics mode). The
position never exceeds the width or height of the screen. A program can also set
the cursor type, which defines the width and height of the cursor as well as its
color and appearance, by using the VioSetCurType function.

A program can also set or retrieve the screen mode by using the VioSetMode or
VioGetMode function, respectively. Which modes can be set depends entirely on
the display. For more information, see the Microsoft Operating Systeml2
Programmer's Reference, Volume 2.

640 MS OS/2 Programmer's Reference, Vol. 1
ilJl .. ;~~U;m~~n21~~li~1~lr~~iiilYm~1!!i-ruii~!1~:~mm!miiiiij~I\$~1iI~~~eU!miUfs~~iieiii!ij~~r;:Jt!!~5i!sfii!!il~iS.uIDlliffiifiliii~~ijji~

A program can scroll the screen contents left, right, up, or down by using the
VioScrollLf, VioScrollRt, VioScrollUp, and VioScrollDn functions. The scroll
functions move the specified rectangle to the given location on the screen, filling
any area uncovered by the rectangle with the given character and attribute.

Other screen functions carry out such special tasks as adapting the screen for
country-specific or ANSI information, modifying the operation of one or more
of the screen functions, and accessing the video buffers directly.

47.3 Using Video Input and Output
Since output for Presentation Manager applications is provided by using windows
and the Gpi functions, only non-Presentation Manager programs use the MS
OS/2 Vio functions. Typically, you use these functions in character-based pro­
grams. The following sections explain how to use some of the Vio functions.

47.3.1 Displaying a Character
The KbdCharIn function does not echo a keystroke as it reads it; that is, the
function does not write the corresponding character to the screen. If you want to
display the character, you can do so by using the VioWrtTTY function. The fol­
lowing code fragment writes the letter A to the screen:

CHAR ch = 'A';

VioWrtTTY(&ch, 1, 0);

Video functions, like keyboard functions, require a handle to identify the screen
to be accessed. In the preceding example, the third argument, 0, is the default
video handle and identifies the system screen. The system screen is always avail­
able to programs and does not need to be opened to be used. Video handle 0
and standard-output handle 1 are not the same. The standard-output file can be
closed or redefined, but the system-screen handle cannot.

If the standard-output handle has not been redirected, you can also write a char­
acter to the screen by using the DosWrite function. DosWrite calls the Vio­
WrtTTY function to write the character, so when writing to the screen, these
functions are identical.

The VioWrtTTY function always writes the character to the current position of
the cursor and theri advances the cursor one position. If the cursor reaches the
end of a line, it wraps to the beginning of the next line. If the cursor reaches the
end of the screen, VioWrtTTY scrolls the screen contents up one line.

47.3.2 Writing a Character to a Specific Location
You can write a character to a specific location on the screen by using the Vio­
WrtNChar function. This function lets you specify the row and column at which
to place the character. The following code fragment writes the letter A to row
10, column 15:

CHAR ch = 'A';

VioWrtNChar(&ch, 1, 10, 15, 0);

Chapter 47: Video Input and Output 641
iigiili!~i~lmllf.~!i1ffl!1i~im~!sj;~!ml~~iii!!rn;"'~b:tr,!~li5iru3il!~¥iii!jfffii!i~~fi!iii!iiigmlimi1m~~ifi~~mlfil!ii~imiHiii~im1iiii!tii~iW~

The Vio WrtNChar function uses the coordinate system of the screen to deter­
inine where to place the character. Such a coordinate system typically divides
the screen into rows and columns. Each coordinate represents a character cell, a
rectangular area of the screen large enough to display one character. When you
write a character to a particular coordinate, it overwrites the character that was
previously there.

In MS OS/2, the upper-left corner of the screen is at position (0,0) and, for
most screen modes, the lower-right corner is at position (24,79). If you attempt
to write a character outside these boundaries, the function returns an error.

You can write the same character to the screen repeatedly by specifying a value
greater than 1 as the second argument. For example, the following code frag­
ment clears a 25 X 80 screen:

CHAR ch = ' ';
VioWrtNChar(&ch, 2000, 0, 0, 0);

If the VioWrtNChar function reaches the end of a line, it automatically wraps to
the beginning of the next line. However, it does not scroll the screen contents
when it reaches the bottom of the screen, and it does not update the cursor posi­
tion.

You can write a single attribute to the screen a specified number of times by
using the Vio WrtNAttr function.

47.3.3 Writing a String of Characters to the Screen
You can write a string of characters directly to the screen by using the Vio­
WrtCharStr function. When you write characters to the screen in this way, you
can specify the row and column at which the characters. are to start. This func­
tion is similar to the Vio WrtNChar function, except that instead of a single char­
acter, you specify an array of characters. The following code fragment writes the
string "Hello, world" to the middle of the screen:

VioWrtCharStr("Hello, world", 12, 13, 34, 0);

You can write a string of characters to the screen with a specific attribute by
using the Vio WrtCharStrAtt function.

47.3.4 Writing Character Cells to the Screen
You can write character cells to the screen by using the Vio WrtNCell or
VioWrtCellStr function. A character cell is a 2-byte value that specifies a char­
acter and its attribute. A character attribute defines the color, intensity, and
appearance of the character to be written. The following code fragment writes a
red letter A to the middle of a color screen:

BYTE abCell[2] = { 'A', Ox04 };

VioWrtNCell(abCell, 1, 13, 40, 0);

Character cells are useful in programs that take full advantage of the text-mode
capabilities of the display adapter. However, the meaning and range of values for

642 MS OS/2 Programmer's Reference, Vol. 1
Uim~if1it~~~iiifliimislifsi!i:!~r.t~.Jiiiiffiltf~ii~.rl~~~~ij!!~ilmi~;J!$lli1!~~i~l!i5!~1Ji&t~i~iM8fmlfdi11;u.:aimi5iHt~i~~fi~~1W::;ll

attributes depend on the device, so it is important that you check the display­
adapter type. You can do this by using the VioGetConfig function, as shown in
the following code fragment:

VIOCONFIGINFO vioin;
vioin.cb = sizeof(vioin);

VioGetConfig(O, &vioin, 0);
switch (vioin.adapter) {

case 0: 1* monochrome adapter *1
break;

case 1: 1* color graphics adapter (CGA) *1
break;

case 2: 1* enhanced graphics adapter (EGA) *1
break;

}

47.3.5 Moving and Hiding the Cursor
If you choose to use the VioWrtTIY or DosWrite function to write text to the
screen, you can control the placement of that text on the screen by using the
VioSetCurPos and VioGetCurPos functions to set and get the position of the
cursor. The cursor is the flashing underscore or block on the screen that marks
the location that will receive the next character written to the screen. The fol­
lowing code fragment moves the cursor to the middle of the screen and writes
the string "Hello, world":

VioSetCurPos(13, 34, 0);
VioWrtTTY("Hello, world", 12, 0);

If you choose not to use the cursor, you can remove it from. the screen by using
the VioSetCurType function, which requires a VIOCURSORINFO structure. If
you set the attr field in the VIOCURSORINFO structure to OxFFFF, as shown in
the following code fragment, the function hides the cursor:

VIOCURSORINFO vioci;

VioGetCurType(&vioci, 0);
vioci.attr = OxFFFF;
VioSetCurType(&vioci, 0);

1* retrieve current cursor type *1
1* hide the cursor *1
1* set new cursor type *1

You can restore the cursor by setting the attr field to its original value. In the
preceding example, the VioGetCurType function was used to fill the VIO­
CURSORINFO structure with the current information before the structure was
modified to hide the cursor. In general, whenever you use an MS OS/2 function
that takes values from a structure, you should be sure that all fields contain valid
values. In this case, the way to ensure valid values is to fill the structure first by
using the VioGetCurType function.

You can also use the VioSetCurType function to change the shape of the cursor.
For example, you can change the shape from an underscore to a block by setting
the yStart and cEnd fields to appropriate values. The following code fragment
creates a block cursor:

VioGetCurType(&vioci, 0);
vioci.yStart = 10;
vioci.cEnd = 0;
VioSetCurType(&vioci, 0);

1* retrieve current cursor type *1
1* start of cursor *1
1* end of cursor *1
1* set new cursor type *1

Chapter 47: Video Input and Output 643
!igUlil~iP.i!milil!iimm:~~iSii8I1~lial;fi;"~~.b~iii1if5jiilMI~iSiiS!I5i!!i~~fi!iii!P.i~~1Iilii!~~I~~l1~~!ifi&1U.~~ili!iJi!ili.i;ai!tiIm!~

47.3.6 Reading Characters from the Screen
You can read characters from the screen by using the VioReadCellStr or Vio­
ReadCharStr function. Reading characters is an easy way to determine the con­
tent of the screen. Some programs use this as a method of input. For example, a
"help" program might check the location of the cursor and read the line at that
point to provide context-sensitive help.

The following code fragment reads a character string at the current cursor posi­
tion:

CHAR achBuffer[80];
USHORT cchBuffer = 80;
USHORT usRow, usCol;

VioGetCurPos(&usRow, &usCol, 0);
VioReadCharStr(achBuffer, &cchBuffer, usRow, usCol, 0);

47.3.7 Scrolling the Screen Contents
You can scroll all or part of the screen contents by using the VioScrollDn, Vio­
ScrollUp, VioScrollLf, and VioScrollRt functions.

The following code fragment scrolls the screen contents up three lines, leaving
three blank lines at the bottom of the screen:

BYTE abCell[2] = { I I, Ox07 };

VioScrollUp(3, 0, 24, 79, 3, abCell, 0);

You can also use the scroll functions to clear the screen. Whenever the rectangle
that you specify has the same dimensions as the screen, the entire screen is
cleared. The following code fragment clears a 25 X 80 screen:

BYTE abCell [2] = { I I, Ox07 };

VioScrollUp(O, 0, 24, 79, OxFFFF, abCell, 0);

47.3.8 Using the ANSI Display Mode
You can set the video display to ANSI mode by using the VioSetAnsi function.
When in ANSI mode, the video display checks for and carries out the actions
specified by any ANSI escape sequences that are written to the screen by such
functions as Vio WrtTTY.

An ANSI escape sequence is a combination of characters, starting with the
escape character (27), that specifies a particular action to be taken by the video
display, such as moving the cursor or displaying subsequent characters in a new
display mode. For a complete listing of the available ANSI escape sequences,
see the Microsoft Operating System12 Programmer's Reference, Volume 3.

644 MS OS/2 Programmer's Reference, Vol. 1
nim~r.lil~Ui~!iim~mi~Gmm!i~!iU~iif.i~IH~ii~?]~~§!tE!~iir:;H5t!iii~I~!~I§;§fg;mi~~!~_§lUnfdiiiilifSifi!maiiit~i~imiii!fu~lili

47.4 Summary
MS OS/2 provides the following video-input-and-output functions:

VioDeRegister Restores the default Vio subsystem and removes any previously
registered Vio subsystem.

VioEndPopUp Closes a pop-up screen.

VioGetAnsi Retrieves the state of the ANSI flag.

VioGetBuf Retrieves the address of the logical video buffer.

VioGetConfig Retrieves the video-display configuration.

VioGetCp Retrieves the identifier of the code page for the current screen
group.

VioGetCurPos Retrieves the cursor position.

VioGetCurType Retrieves the cursor type.

VioGetFont Retrieves the specified screen font.

VioGetMode Retrieves the current screen mode.

VioGetPhysBuf Retrieves the address of the physical video buffer.

VioGetState Retrieves the current settings of the palette register, the overscan
(border) color, and the blink/background intensity switch.

VioModeUndo Cancels a request to be notified of a change of video mode.

VioModeWait Waits for a change of video mode.

VioPopUp Opens a pop-up screen.

VioPrtSc Copies the contents of the screen to the printer. This function is
reserved for system use.

VioPrtScToggle Enables or disables the printer-echo feature. This function is
reserved for system use.

VioReadCellStr Reads one or more character-and-attribute pairs (cells) from
the screen.

VioReadCharStr Reads a character string from the screen.

VioRegister Registers a Vio subsystem.

VioSavRedrawUndo Cancels a request to be notified of a switch of screen
group.

VioSavRedrawWait Waits for a switch of screen group.

VioScrLock Locks the physical video buffer.

VioScrollDn Scrolls the contents of the screen downward.

VioScrollLf Scrolls the contents of the screen to the left.

Chapter 47: Video Input and Output 645
!igff~l~i~!milf:J!iimm:!i~i~iiii;§:EJ;ifiJi!;m"'.im!iii1Ii5i!ii3iI~~ili!mff!iit~iiiiii!P.j!?!§f~lmfi~~I~~l1~I1!~iilt~ikilim~ilfailij!tii!f;!iiffl

VioScrollRt Scrolls the contents of the screen to the right.

VioScrollUp Scrolls the contents of the screen upward.

VioScrUnLock Unlocks the physical video buffer.

VioSetAnsi Enables or disables the process of ANSI escape sequences.

VioSetCp Sets the code page for the current screen group.

VioSetCurPos Sets the cursor position.

VioSetCurType Sets the cursor type.

VioSetFont Sets the font used to display characters on the screen.

VioSetMode Sets the screen mode.

VioSetState Sets the palette registers, the overscan (border) color, and the
blink/background intensity switch.

VioShowBuf Updates the physical screen from the logical video buffer.

VioWrtCellStr Writes one or more character-and-attribute pairs (cells) to the
screen.

Vio WrtCharStr Writes a character string to the screen.

Vio WrtCharStrAtt Writes a character string to the screen, using the specified
attribute.

VioWrtNAttr Writes a character attribute to the screen a specified number of
times.

Vio WrtNCell Writes a character-and-attribute pair (cell) to the screen a
specified number of times.

VioWrtNChar Writes a character to the screen a specified number of times.

Vio WrtTTY Writes a character string to the screen, starting at the current cur­
sor position.

Chapter

Advanced Video Input
and Output

48

48.1 Intro.duction.. 64-9

48.2 About Advanced Video Input and Output.................... 64-9
48.2~~ A VIa Presentation Spaces................................. 64-9
48.2.2 Character Formats... 650
48.2.3 Code Pages .. 652
48.2.4 Device Cell Size.. 652
48.2.5 ~SIZE Message Processing............................ 653

48.3 Using Advanced Video Input and Output..................... 653

48.4 Summary .. 654
48.4.1 Standard Vio Functions 654
48.4.2 Base Vio Functions Not Supported 656
48.4.3 Advanced Vio Functions.................................... 656

Chapter 48: Advanced Video Input and Output 649
~i!iI:li~iF~~!iiUffiiiliFJ5irui~lffiiiin§!!ffl!i:ftWimm!S!i~~llifiil:!!!im~!!!I$!!i§miU~~;1if;!~i~m"ti!;i~jgfi.~~8~~m1!m!rn!~mn~nalii

48.1 Introduction
This chapter describes the por~ions of MS OS/2 that let you create advanced
video-input-and-output (A VIa) programs. You should also be familiar with the
following topics:

• Windows
• Presentation spaces and device contexts

• Video input and output

48.2 About Advanced Video Input and Output
Advanced video input and output is a set of MS OS/2 system functions and
features that allows you to use MS OS/2 video-input-and-output (Vio) functions
in a Presentation Manager application. An A VIO presentation space is similar
to a graphics programming interface (GPI) presentation space except that the
Vi() functions can be used to display text. The Gpi functions for graphics are
also available.

An A VIa program is any program that creates and uses an A VIa presentation
space. A VIO programs are similar to Presentation Manager applications in that
they create a message queue, use a message loop, and create windows. They
differ from Presentation Manager applications in that they depend largely on
the Vio functions to display output. Many A VIa programs are a hybrid of
character-based programs and Presentation Manager applications.

48.2.1 AVIO Presentation Spaces
You create an A VIa presentation space by using the VioCreatePS function.
This function returns a handle to the A VIa presentation space. As you would
with a Gpi presentation space, you must associate the A VIa handle with a
device context-in this case, the device context of the program's window. The
following code fragment creates an A VIa presentation space and associates its
handle with ~he device context of a window:

HVPS hvps;
HOC hdc;
HWNO hwnd;

VioCreatePS(&hvps, 25, 80, 0, FORMAT_CGA, 0);
hdc = WinOpenWindowOC(hwnd);
V~oAssociate(hdc, hvps);

The presentation space consists of a character-cell grid that is similar to the
video-input-and-output grid used with full-screen programs. The dimensions of
the grid (the width and height) are measured in character cells and are set by
using the VioCreatePS function. Each character has a corresponding character
cell. The width and height of the character cell is dependent on the given font,
but a program can usually switch between the· available sizes by using the VioSet­
DeviceCellSize function.

The program sets the size of the A VIa presentation space when it creates it. If
the presentation space is smaller than the window in either direction, tlte excess

650 MS OS/2 Programmer's Reference. Vol. 1
llinilfim!;~m~i!~~~i~i~ni~~~:ijfim~iffliJ~m~I!I~imlE-iiWr:ijg!il~tru!!~iIi!f~Ji!i!s~lgrji~~~I~rmi~~~e~!faf:f.rjjj!I~mi~f~~J~2

area is left unchanged; if the presentation space is larger, the excess data is not
displayed. The size of the A VIO presentation space is typically smaller than the
maximized window. Programs should restrict the size of their maximized window
to the size of the A VIO presentation space.

You can set the origin (that is, data to be displayed in the top left of the win­
dow) by using the VioSetOrg function. If an area of the window is "exposed" by
the origin being altered such that the right or bottom edge of the presentation
space moves leftward or upward in the window, then the "exposed" area is
cleared. This would also remove any graphics present in the area.

After directly writing to an A VIO presentation space, the program can update
the screen by using the VioShowBuf or VioShowPS function. The VioShowPS
furiction updates only within a specific rectangle, so it may improve performance
by reducing the amount of drawing the system has to do for the update.

Although the A VIOpresentation space cannot be used with Gpi functions, any
Gpi presentation space associated with the same window can be used to draw
graphics along with the Vio text.

48.2.2 Character Formats

Figure 48.1

Each character to be displayed is identified by a code point and one or more
attributes. A code point is a unique number in the range 0 through 255 that
identifies the character. An attribute is a value that specifies how the character
is to be displayed. For example, an attribute may specify the color of the image,
the color of the character cell not containing the image, whether the image has
a high-intensity color, an underline, and so on.

The number of attributes required to specify a character depends on the type of
presentation space. In advanced video input and output, there are two types of
presentation space: FORMAT_eGA and FORMAT_4BYTE. In a presentation
space of the type FORMAT_eGA, each character consists of a code point, a
foreground color, and a background color. The foreground and background
colors are 4-bit fields that are combined to form an 8-bit attribute byte. Figure
48.1 shows the FORMAT_eGA character format:

2-Byte Character Format

Code point Foreground Background

In a presentation space of the type FORMAT_4BYTE, each character consists
of a code point, foreground and background colors, an intensity flag, an under­
line flag, a reverse-video flag, a transparency flag, and a font identifier. There is
also an additional 8-bit field (spare) for program-specific attribute data. Figure
48.2 shows the FORMAT_4BYTE character format:

Chapter 48: Advanced Video Input and Output 651
;i!i!ifl~~J§illfiiiiiniiirdfJiii~J!iiF.ln§!!f$iif:ltilimmfim~l~iS;~m~mlii!!f9mm~..rnti!if;!il~m=5i~oot:a~~8~~;m!mf~l~nf!milS

Figure 48.2
4-Byte Character Format

Code point Foreground Background

Extended Spare

If one attribute byte is present, MS OS/2 assumes suitable defaults (for example,
no highlighting, opaque, default font). Presentation Manager-display device
drivers do not support the blink or intensify attributes.

The color attribute defines the background and foreground color of a character.
The following list shows the bits that affect these colors:

Bit Meaning

7-4 Specifies the background color. It can be any value in the
range 0 through 7.

3-0 Specifies the foreground color. It can be any value in the
range 0 through 7.

The colors that appear on the screen depend on the current physical-color
palette. The program must ensure that the colors displayed are the colors
expected.

The extended attribute provides more information about how the character is
displayed, such as which font the character is drawn from, whether the character
is underlined, displayed in reverse video, or has a transparent background. The
following list specifies the bits that affect the extended attributes:

Bit Meaning

7 Underscore

6 Reverse video

5 Reserved

4 Background transparency (1 for transparent, 0 for opaque)

3 Reserved

2 Reserved

1-0 Font identifier (0, 1, 2, or 3)

The font identifier specifies the font in which to display the character. A pro­
gram can reference up to four fonts-the default font and three loadable fonts.
The font to be used for a particular character is controlled by the font bits,
where font 0 is the default font. The numbers 1, 2, and 3 correspond to local
identifiers created by using the VioCreateLogFont function. Unpredictable
results occur if a loadable font identifier is used in a presentation space before
being defined for the presentation space.

652 MS OS/2 Programmer's Reference. Vol. 1
1jjJWfiiii!5f~=Si!~~~I~i~Ii!~im~:~i"iimm~!~I!I~imlE~iiJ§j!ff,it~~!!~~I'~Ji!!!iY!fJi!m~'~1:!§lfi~Dlir~!13~Hit:;:'iJjll~mi~f~~J~e

The spare attribute is for use by the program.

All valid Vio functions may access all A VIa presentation spaces. The program
must ensure that data is in the correct format for a particular function. For
example, a character cell for a FORMAT_4BYTE presentation space must be
four bytes long.

48.2.3 Code Pages
MS OS/2 uses a code page to determine which character image to display on the
screen for a given code point. A code page is a table of character values. Each
character value represents the index to a specific character image in a given font.
To retrieve a character image from a font for a given code point, MS OS/2 uses
the code point to select a character value from the code page, then uses the
character value to select the image from the font. Each code point corresponds
to one character value in a code page.

When an A VIa presentation space is created, MS OS/2 assigns a default code
page to it. MS OS/2 uses this default code page as its primary code page. Typi­
cally, the system's primary code page is set during system initialization, but any
program can change the code page by using the DosSetCp function. The Dos­
GetCp function retrieves the identifier, a unique integer, of the current primary
code page.

48.2.4 Device Cell Size
MS OS/2 allows a program to use any cell size that a particular device supports.
A program sets the cell size by using the VioSetDeviceCellSize function. The
device cell size is specified in pels. A given device has a default device cell size,
so if a program does not set the size, the default is used.

If a program requests a cell size that the device does not support, the system
chooses a size that best fits the required size. The program can check the new
size by using the VioGetDeviceCellSize function. In general, the actual size will
be less than the requested size if there is not an exact match.

An A VIa program can also vary the device cell size by using the VioSetMode
function to alter the number of character rows. The number of rows requested
must be supported by the particular device. When the device cell size is altered,
the system switches to the default (lcid 0) font corresponding to the cell size.
The program must ensure that the loaded fonts are valid. If a mismatch exists
between the cell size specified in the system and the loaded font, all the charac­
ters in that font are drawn as blanks.

To retrieve a list of available fonts that can be used in the presentation space,
you use the VioQueryFonts function. The VioQuerySetIds function retrieves a
list that describes the default font plus all loaded fonts for an A VIa presenta­
tion space.

You use the DlvQueryCaps function to find out whether windows used for
advanced video input and output on a particular device must be chatacter­
aligned; whether they should be character-aligned for best performance; or
whether they may be either character- or pel-aligned, with no significant impact
on performance.

Chapter 48: Advanced Video Input and Output 653
~!!i!iIl~~~aiif:fffiirriFJiEi§i~l!iiiIDifl!!mli:UiIimliif~it=;§lImili!~m~IH!~~ffim~J!~U!f:tiiIififu~§i~~ff~~~Ee!in!!if~fS!P.i!!~!mliJll~~lii

48.2.5 WM_SIZE Message Processing
An A VIO program must pass the ~SIZE message to the WinDefA Vio­
WindowProc function. This function updates and maintains size information
stored for the A VIO presentation space. Programs should call WinDefA Vio­
WindowProc from the window procedure for each ~SIZE message.

48.3 Using Advanced Video Input and Output
This section presents the source code for a simple A VIO program. The program
creates the A VIO presentation space and associates it with the device context
for the client window. The window procedure for the client window then uses
the VioWrtTTY function to display a message.

#define INCL_WIN
#define INCL_GPI
#define INCL_VIO
#define INCL_AVIO
#include "os2.h"

HAB hab;
HMQ hmq;
HWND hwndClient;
HWND hwndFrame:
QMSG qmsg;
HDC hdc;
HVPS hvps;

/*
/*
/*
/*
/*
/*
/*

handle to the anchor block
handle to the message queue
handle to the client
handle to the frame window
message-queue structure
handle to the device context
handle to the AVIO presentation

MRESULT CALLBACK GenericWndProc(hwnd, msg, mp1, mp2)
HWND hwnd;
USHORT msg;
MPARAM mpl:
MPARAM mp2;
{

HPS hps;
RECTL rcl;
SHORT x, y;
SHORT cx, cy;

switch (msg) {
case WM_PAINT:

hps = WinBeginPaint(hwnd, NULL, NULL):
WinQueryWindowRect(hwnd, &rcl):
VioGetDeviceCellSize(&cy, &cx, hvps):
x = (rcl.xRight - rcl.xLeft) / (2 * cx):

*/
*/
*/
*/
*/
*/

space */

y = (rcl.yTop - rcl.yBottom~ / (2 * cy);
VioWrtCharStr ("Hello Worldl " 12, y, x - 6, hvps):

}

}

VioShow?S(25, 80, 0, hvps);
WinEndPaint(hps);
return (OL);

case WM_SIZE:
return (WinDefAVioWindowProc(hwnd, msg, mp1, mp2»;

return (WinDefWindowProc(hwnd, msg, mp1, mp2»;

654 MS OS/2 Programmer's Reference, Vol. 1
!ii~~i!lim~~!ID~J~I~i.ltiljjflfi~!1ifi,,~~!g!~!i£§imlf~i;~~H~!ml!i§I1m1..~i!~J~~~SI~lf~=!irI!!!!!f.~[ljjjU~filfif.m!i~1

ULONG flStyle = FCF_MINMAX I FCF_SYSMENU I FCF_TITLEBAR I
FCF_SIZEBORDER I FCF_SHELLPOSITION I FCF_TASKLIST;

VOID cdecl main()
{

}

48.4 Summary

hab = Winlnitialize(NULL);
hmq = WinCreateMsgQueue(hab, 0);

if (IWinRegisterClass(hab, "MyClass",
GenericWndProc, CS_SIZEREDRAW, 0))

DosExit(EXIT_PROCESS, 1);

hwndFrame = WinCreateStdWindow(HWND_DESKTOP, WS_VISIBLE, &flStyle,
"MyClass", "My Title", OL, NULL, 1, &hwndClient);

hdc = WinOpenWindowDC(hwndClient);
VioCreatePS(&hvps, 25, 80, 0,

FORMAT_CGA, 0);
VioAssociate(hdc, hvps);

It opens device context tl
It creates AVIO PS tl
It associates DC and AVIO PS tl

while (WinGetMsg(hab, &qmsg, NULL, 0, 0))
WinDispatchMsg(hab, &qmsg);

It message loop tl

VioAssociate(NULL, hvps);
VioDestroyPS(hvps) ;
WinDestroyWindow(hwndFrame);
WinDestroyMsgQueue(hmq) ;
WinTerminate(hab) ;
DosExit(EXIT_PROCESS, 0);

It disassociates the AVIO PS tl
It destroys the AVIO PS tl

This section lists the Vio functions that can and cannot be used with A VIO
programs.

48.4.1 Standard Vio Functions
The standard Vio functions can be used in A VIO programs. All of the following
functions must be passed a zero handle when called from a full-screen program
and a nonzero Vio handle when called from an A VIO program:

VioEndPopUp Deallocates a pop-up display screen. An error occurs if you
issue this function with a nonzero handle.

VioGetAnsi Retrieves the Ansi state.

VioGetBuf Retrieves the address and length of the A VIO presentation space.
The presentation space may be used to directly manipulate displayed informa­
tion.

VioGetConfig Retrieves the video configuration. Only the adapter type and
display type are set.

VioGetCp Retrieves the code page currently used to display text on the screen.

VioGetCurPos Retrieves the current row and column position of the cursor.

VioGetCurType Retrieves the cursor type, which consists of the cursor start
line, end line, width (assumed to be zero, which is one column width), and attri­
bute (normal or hidden).

Chapter 48: Advanced Video Input and Output 655
~i!Ii!l~~~ifa!lnf~iriFjai!i~J~P.iimt!f$ii!!~i£1!ij~~lmlgji~m~im!'-mf!iilU~.JI!!f:!f:ifaiil'Ysi~ll€W~fifg~~WS!ii!rnI~§ft~~liiI!

VioGetMode Retrieves the current mode of the video display. This mode is
valid only for default video input and output. An error occurs if you issue this
function with a nonzero handle.

VioPopUp Allocates a pop-up display screen. An error occurs if you issue this
function with a nonzero handle.

VioPtrSc Prints the contents of the screen.

VioPtrScToggle Toggles the CTRL+PRTSC flag.

VioReadCellStr Reads a string of characters/attributes (or cells) from an
A VIa presentation space, starting at the specified location.

VioReadCharStr Reads a character string from an A VIa presentation space,
starting at the specified location.

VioScrollDn Scrolls the current screen down by the specified number of lines.

VioScrollLf Scrolls the current screen left by the specified number of columns.

VioScrollRt Scrolls the current screen right by the specified number of col­
umns.

VioScrollUp Scrolls the current screen up by the specified number of lines.

VioSetAnsi Sets the ANSI state on or off.

VioSetCp Sets code page used to display text on the screen. You can use this
function to set an EBCDIC code page for advanced video input and output.

VioSetCurPos Positions the cursor to the specified row and column on the
display.

VioSetCurType Sets the cursor type, which consists of the cursor start line,
end line, width (assumed to be zero, which is one column width), and attribute
(normal or hidden).

VioSetMode Sets the mode of the video display. This mode is valid only for
default video input and output. An error occurs if you issue this function with a
nonzero handle. You can set text modes only, not graphics modes.

VioShowBuf Updates the display with the A VIa presentation space. You may
specify a subset of the presentation space for update.

VioWrtCellStr Writes a character/attribute string to an A VIa presentation
space. You must specify the starting location in the presentation space where the
string is to be written.

Vio WrtCharStr Writes a character string to an A VIa presentation space. You
must specify the starting location in the presentation space where the string is to
be written. .

Vio WrtCharStrAtt Writes a character string with a repeated attribute code to
an A VIa presentation space. You must specify the starting location in the
presentation space where the string is to be written.

Vio WrtNAttr Writes an attribute code to an A VIa presentation space a spec­
ified number of times. You must specify the starting location in the presentation
space where the attribute code is to be written.

656 MS OS/2 Programmer's Reference, Vol. 1
~liHm~i~liii~~~~J!li~ilJP.!!itiliji~~§~~r"ii!fim§i§1!i£g1jim~~i~!~iliinilii1ii:~i5'~Jili!~~i~~~i~i!i~~sm!!.F.~!§ij~~[zm!nJiniliifa;.iJ.ii!l1

VioWrtNCell Writes a cell (or character/attribute) to an A VIO presentation
space a specified number of times. You mllst specify the starting location in the
presentation space where the cell is to be written.

Vio WrtNChar Writes a chara((ter to an A VIO presentation space a specified
nUQlber of times. You must specify the starting location in the presentation
space where the character is to be written.

Vio WrtTTY Writes a character string from the current cursor position in TTY
mode to an A VIa presentation space. Once it has written the string, the func­
tion positions the cursor one .space after the end of the string.

48.4.2 Base Vio Functions Not Supported
The following functions must not be called by an A VIa program; otherwise, an
error results: '

VioDeRegister Deregisters a Vio subsystem.

VioGetFont Retrieves the current device font.

VioGetPhysBuf Retrieves the address of the physical video buffer.

VioGetState Retrieves the current setting of the video state.

VioModeUndo Cancels mode-change notification

VioMocleWait Requests mode-change notification.

VioRegister Registers a Vio subsystem within a screen group.

VioSavRedrawWait Requests screen-switch notification.

VioSavRedrawUndo Cancels screen-switch notification.

VioScrLock Locks the screen.

VioScrUnLock Unlocks the screen.

VioSetFont Sets the display font.

o VioSetState Sets the video state.

48.4.3 Advanced Vio Functions
The advanced Vio functions can be used in A VIa programs only. All of the fol­
lowing functions must be passed a nonzero Vio handle:

VioAssociate Associates an A VIa presentation space with a device context.

VioCreateLogFont Creates a logical font.

VioCreatePS Allocates an A VIa presentation space.

VioDeleteSetId Releases a font.

VioDestroyPS Destroys an A VIa presentation space.

VioGetDeviceCellSize Retrieves the current size of the device cell.

Chapter 48: Advanced Video Input and Output 657
~~irn!i~!nmmmttifmp:!~I~lg~tl.!i!~.ffli~!~;Sm!i~if.l§i~fiif~li~i~~=ii~!~~i~~!ii!iei~Iif~~ji~l~iUiimjif,lii~!fi*-S~~~~m.;.~

VioGetOrg Retrieves the origin of the presentation space.

VioQueryFonts Retrieves the available fonts.

VioQuerySetlds Queries which fonts are loaded into which font IDs. This call
is so named for consistency with its Gpi equivalent. .

VioSetDeviceCeIlSize Sets the size of the device cell.

VioSetOrg Sets the origin of the presentation space.

VioShowPS Updates the display with an A VIO presentation space for a rect­
angle.

Chapter

49

The Mouse
49.1 Introduction .. 661

49.2 About the Mouse.......... ... 661

49.3 Using the Mouse .. 662
49.3.1 Opening the Mouse .. 662
49.3.2 Drawing the Mouse Pointer 663
49.3.3 Hiding the Mouse Pointer................................... 663
49.3.4 Using the Event Queue 664
49.3.5 Specifying the Events to be Queued 665

49.4 Summary............ .. 665

Chapter 49: The Mouse 661
lii§iiUi!iminmim!1lIifLijmHP:_!g~ijJi!f!=.m_!~i!iII!!~!f.{t!~m!!~i~~l!ffi~~i~~~iii!i~f:~m1iiiml~5IjJmj~lii~'ii!8~!!i~~

49.1 Introduction
This chapter describes the mouse functions. These functions give programs
direct access to the system mouse or other pointing device. Programs can read
individual mouse events (mouse motions and button presses) and carry out
actions based on those events. You should also be familiar with the following
topics:

• The file system

• The keyboard
• Input and output control

• Shared resources

49.2 About the Mouse
In addition to using the keyboard for program input, you can use the mouse. To
use the mouse, you must first open it by using the MouOpen function (MS OS/2
does not provide a default handle for the mouse as it does for the keyboard and
screen) and then draw the mouse pointer by using the MouDrawPtr function.
Once you have opened the mouse, you can read events from the mouse-event
queue by using the MouReadEventQue function. An event defines the position
of the mouse and the state of the mouse buttons. The system copies an event to
the queue whenever the user moves the mouse or presses or releases a mouse
button.

MS OS/2 specifies the position of the mouse either in screen coordinates or as
the number of mickeys relative to the last position. Screen coordinates are rela­
tive to the upper-left corner of the screen. The x-axis values increase to the
right; the y-axis values increase downward. The screen units are either character
cells or pels, depending on the screen mode (character cells for text mode, pels
for graphics mode). The position never exceeds the width or height of the
screen.

A mickey is the mouse unit of motion. If the mouse position is specified in
mickeys, it represents the direction and distance the mouse has moved from its
last position. A program can determine how many centimeters the mouse has
moved by using the MouGetNumMickeys function to retrieve the mickey-to­
centimeter ratio. A position in mickeys is a signed value. If the x-coordinate
is negative, the mouse moved to the left; if positive, it moved to the right. If the
y-coordinate is negative, the mouse moved up; if positive, it moved down.

MS OS/2 reports only the mouse events that are defined in the mouse-event
mask. A program can set or retrieve the event mask by using the MouSet­
EventMask or MouGetEventMask function, determine how many mouse events
are in the queue by using the MouGetNumQueEI function, or flush any existing
events from the queue by using the MouFlushQue function.

MS OS/2 cannot draw the mouse pointer unless a pointer driver has been
specified in a device command in the config.sys file or a pointer-driver name is
explicitly given when the mouse is opened. The pointer driver supplied with
MS OS/2 is named pointdd.sys.

662 MS OS/2 Programmer's Reference, Vol. 1
iiiiL1iriilii1il!if!~UII~ii!til~.E;~imf!ll~mll!!~;~!~m;Hi~l!illiUnmiiiifJ!H!i!!l~!$,\lliii~~Jiimt~mniiJfi~!ii~siitl!niiit!!:i~~.E~!~i

A program can change the shape of the mouse-pointer. Typically, the program
first retrieves the current shape by using the MouGetPtrShape function and then
modifies that shape before setting it by using the MouSetPtrShape function. The
mouse-pointer shape consists of two masks: an AND mask and an XOR mask.
MS OS/2 first combines the AND mask with the contents of the screen at the
current position by using the bitwise AND operator. It then combines the result
with the XOR mask by using the bitwise XOR operator. The format of the
masks depends on the screen mode: character-and-attribute pairs for text mode
and bitmaps for graphics mode.

If a program needs to temporarily hide the mouse pointer, the MouRemovePtr
function removes the mouse pointer from all or a portion of the screen.

MS OS/2 automatically updates the mouse-pointer position as the mouse moves,
but only if the amount of motion is greater than or equal to the scaling factor.
The scaling factor, set by using the MouSetScaleFact function, defines the
number of mickeys the mouse must move before the mouse pointer moves one
screen unit. For example, in text mode, the horizontal and vertical scaling fac­
tors are usually the same as the width and height of a character cell. This means
that the mouse moves one character cell at a time, rather than moving within a
cell.

A program can move the mouse pointer by using the MouSetPtrPos function or
retrieve the current pointer position by using the MouGetPtrPos function.

Other mouse functions carry out special tasks for adapting the mouse for real­
mode operation and for modifying the operation of one or more of the mouse
functions.

As with files in the file system, the mouse is a shared resource, available to
every program in the current screen group. If two or more programs open and
use the mouse, what one does affects the other. For this reason, you should
close the mouse when you no longer need it.

49.3 Using the Mouse
Since mouse input for Presentation Manager applications is provided automati­
cally through the message queue, only non-Presentation Manager programs use
the MS OS/2 mouse functions. Typically, you use the mouse functions in
character-based programs that need mouse input. The following sections explain
how to use the mouse functions.

49.3.1 Opening the Mouse
You can open the mouse by using the MouOpen function. This function requires
the name of the device driver and a pointer to the variable that receives the
mouse handle. The following code fragment opens the mouse by using the
default device driver:

HMOU hmou;

MouOpen(NULL, &hmou);

MouClose(hmou);

Chapter 49: The Mouse 663
i!!i~im!iw!iim!m!imflim'-!_l~~U!i'I!i.mmWmli!iii!~~!§i~f~H~i~~~~fMi~lUa:f!ifii!i~~liIiaiili!l!mfdiJmj~liiiii1'iiS!i~I!i~mn!l~

In this example, NULL specifies the mouse-device driver designated in the first
device command in the config.sys file. The MouOpen function opens the mouse
and copies a handle to the variable hmou. You can use this handle in subsequent
mouse functions to carry out tasks, such as reading from the event queue.

You can close the mouse by using the MouClose function.

49.3.2 Drawing the Mouse Pointer
Once you have a mouse handle, you need to display the mouse pointer by using
the MouDrawPtr function. When the mouse is first opened, the mouse pointer is
hidden from view, so even though the user can use the mouse and your program
can process mouse input, there is nothing to tell the user where the mouse is
located. The following code fragment opens the mouse and then displays the
mouse pointer:

HMOU hmou;

MouOpen(OL, &hmou);
MouDrawPtr(hmou) ;

49.3.3 Hiding the Mouse Pointer
If you plan to write to the screen when the mouse pointer is visible, you must be
careful not to write directly over the pointer. The system displays the pointer by
combining the pointer-shape masks with the contents of the screen at the current
pointer position. When the user moves the mouse, the system restores the previ­
ous contents of the screen, destroying whatever is there. This means that if you
write to the screen while the pointer is visible, what you write will be lost when
the mouse next moves.

If you need to write to a screen position that is occupied by the mouse pointer,
you can hide the pointer temporarily by using the MouRemovePtr function. This
function specifies an exclusion rectangle. The mouse pointer, upon moving into
this rectangle, disappears. The following code fragment hides the mouse pointer
before writing to the screen:

NOPTRRECT mourt;

mourt.row = 0;
'mourt. col = 0;
mourt.cRow = 24;
mourt.cCol = 79;

MouRemovePtr(&mourt, hmou);
VioWrtNChar(&ch, 1, 10, 10, 0);
MouDrawPtr(hmou) ;

The NOPTRRECT structure takes the coordinates of the upper-left corner of the
screen and the width and height of the desired rectangle. This example specifies
the entire screen as the exclusion rectangle, so the program must use the
MouDrawPtr function to redraw the pointer after writing the character to the
screen.

664 MS OS/2 Programmer's Reference, Vol. 1
!iiiii!1iriijiilitli.§l~i!iiiBf_~iQjl!~iP..;oorulif.!in~l~mllrgl~!~f~~nID~liruil!!~iif!~H!!~utm!~i5iiI~~JilmI!Nf§ji~nrffii~m~j!tjJ;15l~H!I!§~lii1Ua:lfi~!

49.3.4 Using the Event Queue
You can use the MouReadEventQue function to read from the mouse-event
queue. This function copies the next event (if any) in the queue to a MOU­
EVENTINFO structure. The structure has four fields: fs, time, row, and col. The
fs field specifies the action that generated the event; for example, if the mouse
moved, the field is set to OxOOO1. The row and col fields specify the location of
the mouse when the event occurred. The time field specifies the system time
when the event occurred.· If there is no event in the queue when you call the
MouReadEventQue function, the function fills the structure with zeros. Since
zero is a valid value for the fs, row, and col fields, you must check the time field
to see if an event was received (if so, the field is nonzero).

The following sample program opens the mouse and reads events from the
mouse-event queue. Each time the user presses the mouse button, the program
writes the letter A to the location of the mouse pointer on the screen.

#define INCL_SUB
#include <os2.h>

NOPTRRECT mourt = { 0, 0, 24, 79 };

main ()
{

}

CHAR chi
KBDKEYINFO kbci;
HMOU hmou;
MOUEVENTINFO mouev;
USHORT fWait = MOU_NOWAIT;

ch = ' '.
VioWrtNChar(&ch, 2000, 0, 0, 0);
ch = 'A';

MouOpen(OL, &hmou);
MouDrawPtr(hmou);

do {
MouReadEventQue(&mouev, &fWait, hmou);
if (mouev.time) {

}

if (mouev.fs & MOUSE_BN1_DOWN) { /* is 1st button down? */
MouRemovePtr(&mourt, hmou);

}

VioWrtNChar(&ch, 1, mouev.row, mouev.col, 0);
MouDrawPtr(hmou);

KbdCharln(&kbci, IO_NOWAIT, 0);
} while (kbci.chChar 1= 'Q');

MouClose(hmou) ;

After retrieving an event from the queue (and verifying that it is a valid event),
this sample program checks the fs field to see if it contains the constant
MOUSEJ3NLJ)OWN. If it does, then the first mouse button (typically the left­
most button) is down. The program then hides the pointer and writes the letter
A to th~ screen. After it restores the mouse pointer, the program checks the
keyboard to determine whether the user has pressed the Q key. The program
continues to read events from the queue until the user presses the Q key.

Chapter 49: The Mouse 665
if.i1~nmf!mj~~~~~!~~fl~fjimiiilt:i!1ifiimi~f!.'!!Il!J!!~!lii~mffilru~I!H!@.~miiSjf~i~ljllrr.f:ttii§~!§'!~rE~iHj!if,!i~i§flmllif~m~ml!iiii~~~~liMl

49.3.5 Specifying the Events to be Queued
You may have noticed that the program described in the previous section
seemed to ignore some mouse events if you moved the mouse quickly. The pro­
gram was not ignoring the events-it just was not receiving them. The mouse­
event queue is small, and once it is full, any new event bumps the oldest event
from the queue. This means that you may lose information if your program can­
not read from the queue fast enough.

One way to minimize the amount of information lost is to exclude certain events
from being placed in the queue. You can do this by using the MouSetEventMask
function. This function lets you disable the mouse events that you do not wish to
process. For example, in the previous program, you do not need the mouse­
motion events, so disabling them would reduce the chances of losing a button­
down event.

You disable an event by setting the bits in the event mask for only those events
that you want to process. The following code fragment enables the first-button­
down event but disables all other events:

USHORT fsEvents;

MouSetEventMask(&fsEvents, hmou);

If you disable an event such as a button press, the system does nothing to the
queue if the user presses that button, but it internally records that button press.
If some recordable event occurs while the button is still down, the system adds
this button-down information to. the event that it passes .to the queue. In other
words, even if you have disabled button-down events, the fs field in the MOU­
EVENTINFO structure still indicates when that button is down.

You can retrieve the number of buttons on the mouse by using the MouGetNum­
Buttons function. This information can help you decide which events to enable
and which to disable.

You can use the MouGetNumQueEI function to retrieve the number of events in
the queue. This function retrieves the size of the queue, as well as a count of the
events in the queue. If you decide that you do not need the events already in the
queue, you can flush them from the queue by using the MouFlushQue function.

49.4 Summary
MS OS/2 provides the following mouse functions:

MouClose Closes a mouse device.

MouDeRegister Restores the default mouse subsystem functions for all
processes in the current screen group.

MouDrawPtr Draws the mouse pointer on the screen.

MouFlushQue Clears the mouse-event queue.

MouGetDevStatus Retrieves the current status of a mouse.

MouGetEventMask Retrieves the current mouse-event mask.

666 MS OS/2 Programmer's Reference,. Vol. 1
ml~1ih1§;&h1ii!.i~I~~~imf!i~itillia1Eii!ih1~o:a!iiUf#'!U!w'~!Uft~1iruli§iiHnfeLii.lm!§lii!.[~!!~!.!;:e;mn~!~mMsl!~eU~!_lS1iimim!ii§ilrrfiruii

MouGetNumButtons Retrieves the number of buttons on the current mouse.

MouGetNumMickeys Retrieves the number of mickeys that the mouse travels
for each centimeter of motion.

MouGetNumQueEI Retrieves the number of mouse events in the queue.

MouGetPtrPos Retrieves the current mouse-pointer position.

MouGetPtrShape Retrieves the shape for the mouse pointer.

MouGetScaleFact Retrieves the scaling factors for a mouse-that is, the
number of mickeys the mouse must travel horizontally or vertically in order to
move the mouse pointer one screen unit.

MouInitReal Initializes the real-mode mouse driver.

MouOpen Opens a mouse device.

MouReadEventQue Reads a mouse event from the queue.

MouRegister Registers a mouse subsystem.

MouRemovePtr Removes the mouse pointer from a portion of the screen.

MouSetDevStatus Sets the current status of a mouse.

MouSetEventMask Sets the mouse-event mask.

MouSetPtrPos Sets the mouse-pointer position.

MouSetPtrShape Sets the shape for the mouse pointer.

MouSetScaleFact Sets the horizontal and vertical scaling factors for a mouse.

MouSynch Synchronizes access to a mouse so that only one process accesses
the mouse at a time.

Chapter

50

The Keyboard
50.1 Introduction.. (j(j9

50.2 About the Keyboard ... (j(j9

50.3 Using the Keyboard .. 670
50.3.1 Reading Keystrokes ... 670
50.3.2 Reading Extended ASCII Keys 671
50.3.3 Reading a String of Characters from the Keyboard ... 672
50.3.4 Opening and Using Logical Keyboards 672
50.3.5 Flushing the Keyboard Buffer 673
50.3.6 Setting the Keyboard-Input Mode......................... 673

50.4 Summary .. 674

Chapter 50: The Keyboard 669
!i.i~I1.~f!ii~~fmU!n;iif!lBll~itslmiijjfml~1t,~iffiif§!mafSfffif~jliitim1fjliiiF.li!W.!!JIlMiiSlgiif.Ii_1l;fflifi~~!m!§l:'ID!jilill!ml§iiltfiiE4r.diaf=iiIi&f6

50.1 Introduction
The keyboard functions give programs direct access to the system keyboard. Pro­
grams can read individual keystrokes from a keyboard, or they can read com­
plete strings. Keystroke information includes the character value, the scan code
for the key, and the status of the keyboard, such as the state of the shift keys.
You should also be familiar with the following topics:

• The file system
• Input and output control

• Shared resources

• The mouse

50.2 About the Keyboard
MS OS/2 stores each keystroke in an input buffer for the keyboard. A program
can then use the KbdCharIn or KbdStringIn function to read the next keystroke
from the buffer and copy it to a specified structure or buffer. A program can
also use the KbdPeek function to look at the next character in the buffer without
removing it or use the KbdFlushBuffer function to flush the contents of the
buffer.

The keyboard functions require a keyboard handle that identifies the keyboard to
read from or modify. A program can always use keyboard handle 0 to read from
the system keyboard. However, if more than one process (or thread) in the same
screen group attempts to read from the system keyboard at the same time, there
is no guarantee that the correct process will receive the keystrokes. To prevent
these conflicts, a program can create a logical keyboard by using the KbdOpen
function. A logical keyboard receives no keyboard input until a process obtains
the keyboard focus for it by using the KbdGetFocus function. Only the logical
keyboard that has the focus can receive input.

The keyboard status defines how the keyboard operates. A program can change
this status by using the KbdSetStatus function. Two important features of the
status are echo mode and input mode. If echo mode is on, characters are dis­
played on the screen as they are typed; otherwise, they are not displayed. Input
mode specifies whether MS OS/2 control and editing keys are processed when
characters are typed. Input mode can be ASCII (cooked) or binary (raw). In
ASCII mode, all MS OS/2 control and editing keys, such as CTRL+C and F3, are
processed when the program reads characters by using the KbdStringIn function,
and all MS OS/2 control keys are processed when the program reads keystrokes
by using the KbdCharIn function. In binary mode, only the CTRL+BREAK key
combination is processed in either case.

670 MS OS/2 Programmer's Reference, Vol. 1
;'~"li!(E~~~!!lii~i~i~:~iiiii!~m~I!!i1!iii~n~~mffl!raiiiil~,~lif1!l~~~Em~HUIit~iiiiii!ijil!8!ff~i!~!imfii!lit;ii!£i1ID!~;m~Ii!~~ffii~

The following key combinations are MS OS/2 control keys:

CTRL+C

CTRL+H

CTRL+J

CTRL+P

CTRL+S

CTRL+Z

CTRL+BREAK

The following are MS OS/2 editing keys:

Fl

F2

F3

F4

FS

DEL

ESC

INS

BKSP

Other keyboard functions carry out such special tasks as adapting the keyboard
to receive country-specific information or modifying the operation of one or
more of the keyboard functions.

50.3 Using the Keyboard
Since keyboard input for Presentation Manager applications is provided automat­
ically through the message queue, only non-Presentation Manager programs use
the MS OS/2 keyboard functions. Typically, you use the keyboard functions in
character-based programs that need as much information as possible about each
keystroke the user makes. The following sections explain how to use the key­
board functions.

50.3.1 Reading Keystrokes
You can read keystrokes from the keyboard at any time by using the KbdCharln
function. Keystroke data includes not only the character value of the key pressed
but also the scan code, the state of the shift keys (SHIFT, CTRL, ALT, NUMLOCK,
CAPSLOCK, SCROLL LOCK, INS, SYSREQ), and the system time when the key was
pressed. KbdCharIn is typically used to process keys that the DosRead function
cannot read, such as DIRECTION keys, but it can also be used to read any key.

When the user presses a key, MS OS/2 copies the keystroke information, in the
form of a KBDKEYINFO structure, to the keyboard-input buffer. The Kbd­
Charln function removes the keystroke from the input buffer as it copies the
information to the specified structure. The following code fragment reads a key­
stroke from the keyboard:

Chapter 50: The Keyboard 671
:ii.ilf1Hmf!mi~iIJf!!Iif~iiil __ ffl!mijlmiii!f:tretiiffijmf~~ial!fi~!lif;;Rflfiliii~i~! .. JtSmiifjt~i~JSJlj!fitii~i!~I!:fr.,:'iJ1!jifil(!ijl§iImi¥.l~r.~iJiimjffii~!mij!

KBDKEYINI!'O kbci;

KbdCharln(&kbci,
IO_WAIT,

/* copies keystroke info. to this structure */
/* waits until user presses a key */

0) ; /* reads from the physical keyboard */

if (kbci.chChar 'A') /* is it the letter 'A'? */

In this example, the function reads froID the default physical keyboard (handle
0) and waits for a keystroke if none is in the input buffer. Keyboard functions,
like file functions, require a handle to identify the keyboard to be accessed. The
physical keyboard is always available to programs and does not have to be
opened to be used. Keyboard handle 0 and standard-input handle 0 are not the
same. The standard-input file can be closed or redefined, but the handle to the
physical keyboard cannot.

You can use the la_WAIT constant to direct KbdCbarIn to wait for a keystroke
if there are no keystrokes in the buffer . You can use the la_NOW AIT constant
to direct the function to return immediately, even if there is no keystroke.

You can use the KbdPeek function to look at the next character in the buffer
without removing it.

50.3.2 Reading Extended ASCII Keys
Not all keystrokes have corresponding character values. Some keys, such as the
DIRECTION keys, generate extended ASCII values. An extended ASCII value is
a 2-byte value in which the first byte is either zero or OxEO and the second byte
is the scan code of the key.

To identify a DIRECTION key, you must check both the cbChar and cbScan fields
of the KBDKEYINFO structure. The following sample program searches for
DIRECTION keys by reading keystrokes from the keyboard:

#define INCL_SUB
#include <os2.h>

VOID cdecl main()
{

CHAR ch;
KBDKEYINI!'O kbci;
USHORT usCol = 40, usRow = 13;

ch = ' ';
VioWrtNChar(&ch, 2000, 0, 0, 0);
ch = 'A';
do {

VioWrtNChar(&ch, 1, usRow, usCol, 0);

KbdCharln(&kbci, IO_WAIT, 0);

if (kbci.chChar == 0) { /* is it extended ASCII? */
switch (kbci.chScan) {

case 80: /* down */
if (usRow < 24) usRow++;
break;

case 72: /* up */
if (usRow > 0) usRow--;
break;

672 MS OS/2 Programmer's Reference, Vol. 1
ii!lJw.!~.!~~it!!!ii!I~li;§i~!!~i~itU~~Ii§;1!i5!mn!iifiifjm!iili$i~i~~ilm!il~~1~H~lffi~i~iDlili1~~_i!~!f:~~!s~i~l~iimimifiifi;~i§lm!!ii

case 77: /* right */
if (usCol < 79) usCol++;
break;

case 75: j* left * /

}
}

if (usCol > 0) usCol--;
break;

} while (kbci.chChar 1= 'q');
}

This program lipdates the usRow and usCol variables by looking for the UP,
DOWN, LEFT, and RIGHT DIRECTION keys from the keyboard. Before reading
from the keyboard, the program writes the letter A to the location specified by
the current usRow and usCol values. This means that the user can use the
DIRECTION keys to leave a trail of As on the screen. The program continues to
loop until the user presses the Q key.

50.3.3 Reading a String of Characters from the Keyboard
You can read a string of characters from the keyboard by using the KbdStringln
function. Using this function is similar to reading input from the keyboard by
using the DosRead function and the standard-input file.

The KbdStringln function, unlike the KbdCharIn function, echoes characters as
you type them, so you do not need to write the characters separately. The func­
tion reads the specified number of characters or reads up to. the end-of-line
(turnaround) character. The following code fragment reads a line of text:

CHAR achBuf [80] ;
STRINGINBUF kbsi;

kbsi.cb = 80;

KbdStringln(achBuf, &kbsi, IO_WAIT, 0);

The KbdStringIn function records the number of characters read in the· cchln
field in the STRINGINBUF structure. You can use this field to enable or disable
the MS OS/2 editing keys for your program. These editing keys let the user
recall and modify the previously typed line. If you set the cchIn field to zero
before making theilext call to KbdStringIn, you disable the editing keys. Other­
wise, you enable editing up to the number of characters that you specify.

50.3.4 Opening and Using Logical Keyboards
The keyboard, like the mouse, is a shared resource to which all programs in a
screen group have access. To avoid conflicts between programs sharing the key­
board, MS OS/2 lets programs open arid use logical keyboards. A logical key­
board is like a file in that it has a handle and corresponds to a physical device,
the physical keyboard. However, a program cannot receive input from a logical
keyboard (asit can from (t file) unless it has requested and received the key­
board focus for the logical keyboard. Since only one logical keyboard in a screen
group can have the focus at any given time, this is an effective way to manage
the keyboard access of all programs in the screen group.

A typical use of a logical keyboard is in a program that has more than one
thread reading keystrokes. By having each thread create a logical keyboard and

Chapter 50: The Keyboard 673
aig!i~l~i~!~!If:J!i1ffl!!i~~i~!ii;~jjUru;ifii!!~~~~!iiiIi5iffljl~~iijUiji!i~~H!imiii~~imil!lia~iI~~~p.!i:1;m~iimi:ifif.ii~lGi!tii!mi~

then wait for the focus before reading keystrokes, you can ensure that one
thread does not read keystrokes that are intended for another thread. Consider
an editing program that offers multiple windows through which you can edit a file
or files. If each window has a separate logical keyboard, then keyboard input
intended for one windo~ will never be inadvertently read by another.

You can open a logical keyboard by using the KbdOpen function. Once opened,
a logical keyboard receives keystrokes only when it has the keyboard focus. You
can retrieve the focus for a logical keyboard by using the KbdGetFocus function.
This function retrieves the focus only if no other logical keyboard has it. You
can request the function to wait for the focus to be freed, if it is not immediately
available.

The following code fragment opens a logical keyboard and requests the keyboard
focus for it:

HKBD hkbd;

KbdOpen(&hkbd) ;

KbdGetFocus(IO_WAIT, hkbd); /* retrieve focus; wait if necessary */

. /* read from the keyboard */

KbdFreeFocus(hkbd) ; /* release focus */

Once a logical keyboard has the focus, it keeps it until you free the focus by
using the KbdFreeFocus function, even if another thread calls the KbdGetFocus
function. This means that you must be careful to free the focus when you no
longer need it. Even if you intend to read from the logical keyboard again, you
must free the· focus in. the meantime, in order to permit other programs to
access it. The logical keyboard remains open even if it does not have the focus,
so you can request the focus again without reopening the keyboard.

If you have completely finished reading from the keyboard or are about to ter­
ininate the program, you can use the KbdClose function to close the logical key­
board.

Even though your program may use logical keyboards, the physical keyboard is
always available. That is, even if a logical keyboard has the focus, you can still
read keystrokes from the physical keyboard by using keyboard handle O.

50.3.5 Flushing the Keyboard Buffer
You can flush unwanted keystrokes from the keyboard buffer by using the
KbdFlushBuffer function. Flushing the buffer removes all existing keystrokes in
the buffer. You would typically flush the physical keyboard's buffer if you did not
want to process keystrokes that were carried over from a previous program.

50.3.6 Setting the Keyboard-Input Mode
You can set the keyboard-input mode by using the KbdSetStatus function. The
keyboard-input mode defines whether the MS OS/2 control and editing keys are
interpreted as special keys or only as keystrokes. The keyboard-input mode can
be binary or ASCII. If it is binary, then only the key combination CTRL+BREAK
is recognized by the system as a special key. All other keys and key combina­
tions are read as keystrokes. If the input mode is ASCII, the system recognizes
the special keys.

674 MS OS/2 Programmer's Reference, Vol. 1
mmlifrEr.!ilifi;~ij!ifrimi~ifsi~~H~~Ji!~ll!f~li~iifi!i[i.f:i§!ii!!~iif:iH;J!~i~!~Jiml§;eiH1Ji~~i!1!l_Slmlii!iiimImffii5mm,~i;!liiliii!m1f:iil

You can set the input mode by first retrieving the current keyboard status in a
KBDINFO structure and then setting the binary-mode constant in the fsMask
field. The following code fragment sets the keyboard to binary mode:

KBDINFO kbst;

KbdGetStatus(&kbst, 0);
kbst.fsMask =

(kbst.fsMask & -KEYBOARD_ASCI I_MODE)
I KEYBOARD_BINARY_MODE;

KbdSetStatus(&kbst, 0);

/* mask off ascii mode */
/* OR in binary mode */

This example makes no assumptions about the keyboard status; it clears the
ASCII-mode constant and then sets the binary-mode constant.

50.4 Summary
MS OS/2 provides the following keyboard functions:

KbdCharIn Reads a character from a logical keyboard.

KbdClose Closes a logical keyboard.

KbdDeRegister Restores the default Kbd subsystem and releases any previously
registered Kbd subsystem.

KbdFlushBuffer Clears the keyboard-input buffer.

KbdFreeFocus Frees the focus from a logical keyboard.

KbdGetCp Retrieves the current code-page identifier.

KbdGetFocus Retrieves the focus for a logical keyboard.

KbdGetStatus Retrieves the status of a logical keyboard.

KbdOpen Opens a logical keyboard.

KbdPeek Retrieves but does not remove character and scan-code information
from the input buffer of a logical keyboard.

KbdRegister Registers a Kbd subsystem.

KbdSetCp Sets the code-page identifier for a logical keyboard.

KbdSetCustXt Installs a custom translation table.

KbdSetFgnd Raises the priority of the foreground keyboard's thread (used by a
Kbdsubsystem, not by an application).

KbdSetStatus Sets the status for a logical keyboard.

KbdStringIn Reads a string from a logical keyboard.

KbdSynch Synchronizes access to the keyboard device driver.

KbdXlate Translates a scan code into an ASCII value.

Chapter

51

Interprocess Communication
51.1 Introduction.. 677

51.2 About Interprocess Communication..... 677
51.2.1 Semaphores ... 677

51.2.1.1 System Semaphores 677
51.2.1.2 RAM Semaphores 678
51.2.1.3 Fast-Safe RAM Semaphores 678

51.2.2 Signals. 679
51.2.3 Pipes .. 679

51.2.3.1 Named Pipes....................................... 680
51.2.3.2 Working with Named Pipes....................... 680
51.2.3.3 Using Semaphores with Named Pipes............ 682

51.2.4 Queues........................ 682

51.3 Using Interprocess Communication 683
51.3.1 Using Semaphores ... 683

51.3.1.1 Using a System Semaphore as a Signal... 684
51.3.1.2 Protecting a Resource with a

RAM Semaphore.................................. 684
51.3.1.3 Managing Fast-Safe RAM Semaphores 685

51.3.2 Using Signals .. 686
51.3.3 Using Pipes 687

51.3.3.1 Sending Output to a Child Process....... 687
51.3.3.2 Creating a Server Process......................... 687
51.3.3.3 Creating a Client Process 688

51.3.4 Using Queues ... 688

51.4 Summary .. 689
51.4.1 Semaphore Functions .. 689
51.4.2 Signal Functions .. 6~
51.4.3 Pipe Functions .. 6~
51.4.4 Queue Functions.. 6~

Chapter 51: Interprocess Communication 677
~igfflil~i~!l!iliJ!iifffill!m~i!!mil§:ililF:&ti!i!!~"'.tmUii1imuil1i1I~~iimliii!iit~1i!tii~I~§l~l!li~~n~~~miti&li~ii&;1.Ii!iiiiffajmi!ti,!.rn!~

51.1 Introduction
This chapter describes system and RAM semaphores, signals, pipes, and
queues. Semaphores let programs signal the completion of certain tasks and con­
trol access to resources that more than one thread or process may need to use.
Signals let a user or a process control the execution of another process. Pipes let
two or more related or unrelated processes communicate as if they were reading
from and writing to a file. Queues let one or more processes channel data to a
specific process. You should also be familiar with the following topics:

• The file system

• Shared memory

• Shared resources

• Processes, threads, and sessions

• MS OS/2 program models

51.2 About Interprocess Communication
The following sections describe the methods used for passing information
between processes. This exchange of data is important in a multitasking system.

51.2.1 Semaphores
A semaphore is a special variable that a program can use to signal the beginning
and ending of a given operation. Semaphores are typically used in conjunction
with a limited resource to prevent more than one process or one thread within a
process from accessing the resource at the same time. A process can create and
use three types of semaphores: system, RAM, and fast-safe RAM.

51.2.1.1 System Semaphores
System semaphores are used between processes to control access to a shared
resource. Any process can create a system semaphore by using the DosCreate­
Sem function. Once the semaphore is created, any other process can use it as
long as it knows the semaphore name.

A system semaphore has a unique name that the process creating the semaphore
must supply. The semaphore name has the following form:

\sem\name

The name parameter must conform to the rules for MS OS/2 filenames, but no
actual file is created for the semaphore.

MS OS/2 supplies a semaphore handle when a system semaphore is created. The
process can use this handle in subsequent semaphore functions to set, clear, and
wait for the semaphore.

If any other process wants to use the system semaphore, it can open the sema­
phore by using the DosOpenSem function and supplying the specified semaphore
name. When a process is finished using a system semaphore, it should close the
semaphore by using the DosCloseSem function.

678 MS OS/2 Programmer's Reference, Vol. 1
Il!Uil~mili!i;~ii!n~mi!iii1iUi'!~P.iL~iftf~lif~ii~i.fo!f;!i.f:I§!ii!!~iimiH;'lmiRl!~J!~1§im~lIi~~i11!f.~mlffdi§iilif§imi5=IR:,§i;tftf:jiUibY:liii

To use a semaphore, the process sets the semaphore by using the DosSemSet
function when it wants to access the shared resource and clears the semaphore
by using the DosSemClear function when it is finished with the shared resource.
If the semaphore is an exclusive semaphore (as specified when created), only the
process that created the semaphore can set or clear it.

Once a semaphore is set, the process can wait for that semaphore to become
clear, or for a specified time interval to elapse, by using the DosSemWait func­
tion. Ideally, one process or thread waits for the semaphore while another pro­
cess or thread carries out a task and then clears the semaphore. A process or
thread can also wait for a given semaphore to become clear by using the Dos­
SemSetWait, DosSemRequest, or DosMuxSemWait function.

51.2.1.2 RAM Semaphores
RAM semaphores are used by the threads in a given process. A RAM sema­
phore is an unsigned long variable defined as a global variable for the process.
To use a RAM semaphore, a process simply passes to the semaphore functions
a pointer to the unsigned long variable. The process does not need to create or
open the semaphore, as it does a system semaphore. However, before the pro­
cess uses a RAM semaphore for the first time, it must initialize the semaphore
to zero.

As with a system semaphore, a process sets and clears a RAM semaphore and
can wait for that semaphore to become clear before continuing.

Since a RAM semaphore is nothing more than a global variable, you must be
especially careful to prevent its value from being changed in any way other than
by using the semaphore functions. Changing the value of a RAM semaphore
while it is in use can invalidate the semaphore's status.

51.2.1.3 Fast-Safe RAM Semaphores
Fast-safe RAM semaphores combine the reliability of a system semaphore with
the performance of a RAM semaphore. These semaphores can be used between
processes or between threads in a process.

Like a RAM semaphore, a fast-safe RAM semaphore is a variable in memory. If
a fast-safe RAM semaphore is used only by the threads in a given process, it can
be declared as a global variable. If it is used by more than one process, it must
be allocated as a shared segment so that each process has access to it.

Each fast-safe RAM semaphore has a corresponding DOSFSRSEM structure
that contains information about the process and thread that have set the sema­
phore, as well as a count of the number of times the semaphore has been set
and a RAM semaphore.

typedef struct _DOSFSRSEM {
USHORT cb;
PID pid;
TID tid;
USHORT cUsage;
USHORT client;
ULONG sem;

} DOSFSRSEM;

/* size of structure in bytes */
/* process ID of owning process */
/* thread ID of owning thread */
/* use count: number of times set */
/* private ID for resource */
/* RAM seMaphore */

Before the semaphore is used for the first time, the cb field must be set to 14
and all other fields to zero.

Chapter 51: Interprocess Communication 679
gigU#il~~!mllf:J!Simm:~tiii~iHj;~lim;ff~!i~ tmi!ii1li5iru~l!~~iiSUii!!ia1m1iH5i~i~~imiim~~iI~nm~p.!ifihlt~itiIi!itiiiiIiiIiUtiI!ft!li1ii

51.2.2 Signals

51.2.3 Pipes

A signal is special input from the user or from another process that causes a
process to temporarily suspend execution while a signal-handler function is exe­
cuted. (A signal handler is simply a function that receives control when the sig­
nal occurs.) A process receives a signal whenever the user presses the CTRL+C
or CTRL+BREAK key combination while the process is running. A process also
receives a signal when another process uses the DosSendSignal, DosFlag­
Process, or DosKiIlProcess function.

When the user presses CTRL+C or CTRL+BREAK in a full-screen session or when a
full-screen program is in the active window of the Presentation Manager session,
either the current foreground process or the last process to use the DosSet­
SigHandler function receives the signal. When a process calls the DosSendSig­
nal, DosFlagProcess, or DosKiIlProcess function, the process specified by these
functions receives the signal.

When a process receives a signal, MS OS/2 suspends execution of the main
thread (thread 1) of the process and passes control to the process's signal
handler. If a process has not explicitly set a signal handler by using the DosSet­
SigHandler function, a default signal handler is used. The default signal handlers
for the CTRL+C, CTRL+BREAK, and DosKiIlProcess signals terminate the process.
Th~ default signal handlers for the flag signals ignore the signal.

A process can replace the default signal handler for any signal by using the Dos­
SdSigHandler function. Although a signal handler has a specific form, it can
carry out any action, such as cleaning up and saving files before terminating the
process. When the handler has completed its activities, it can either terminate
the program or return control to the point at which the process was suspended.

The MS OS/2 pipe function, DosMakePipe, lets a program create a pipe that
can be used to transfer information between related processes. A pipe is a spe­
cial internal file that a process can write to and read from. The DosMakePipe
function creates the pipe and supplies two file handles to the pipe: one for writ­
ing to the pipe, the other for reading from the pipe. A process can write to the
pipe by using the DosWrite function and read from the pipe by using the Dos­
Read function.

A pipe is typically used to direct the output of one process to the standard input
of another process. To do this, a process opens a pipe, duplicates the pipe read
handle as the standard-input file for a child process, and then starts the child
process. The parent process can then write to the pipe and the child process can
read what the parent process has written.

A pipe continues until both handles are closed. There can be no more than
65,535 bytes of unread data in a pipe at any given time. The DosWrite function
may wait for data to be read from the pipe before completing its operation. If
the read handle is closed before the write handle is closed, writing to the pipe
generates an error.

680 MS OS/2 Programmer's Reference, Vol. 1
iJ!ml~r.i5l~;~{iini9imij~i!i!iffili~~i~~IH~ii~?]ID!~§!~~iif:i~;t!ii:e!~!~Ii§iiH~1m~!~!~~iimlffd~iUliiimi3U1(;,li§li~imii~ib'ifili

51.2.3.1 Named Pipes
A named pipe allows communication between unrelated processes. Unlike the
case with pipes created by using DosMakePipe, any process that knows its name
can open and use a named pipe. To use a named pipe, one process, called the
server process, creates the pipe, and another process, called the client process,
opens the pipe. The server process can then connect the pipe and the server and
the client can pass data back and forth by reading from and writing to the pipe.

The server process creates a named pipe by using the DosMakeNmPipe func­
tion. The function returns a pipe handle that can be used with subsequent pipe
operations. A named pipe can be local or remote. A local named pipe can be
used between any two processes on the same computer. A remote named pipe
can be used between any two processes connected to the same local area net­
work (LAN).

Each named pipe must have a unique name that distinguishes it from other
named pipes. A local-pipe name has the following form:

\pipe\name

A remote-pipe name has the following form:

\server\pipe \name

The name parameter must conform to the rules for MS OS/2 filenames, but no
actual file is created for the pipe.

When a server process creates a pipe, the process specifies the direction of data
through the pipe. The server uses an in-bound pipe if it intends to read data
from the client process, an out-bound pipe if it intends to write data to the
client, or a duplex pipe if it intends to both read from and write to the client.

Data passes through a pipe as either bytes or messages, depending on the type of
the pipe. The server process also specifies the pipe type when it creates a named
pipe. If a pipe has byte type, the server and client process read and write bytes.
If a pipe has message type, the processes read and write messages. A message is
a block of data with a system-supplied header that is read or written as a single
unit. The size and format of a message are defined by the server and client
processes.

The server process also specifies how many instances of the named pipe can be
open. Although only one client process can be connected to the pipe at any
time, several processes (up to the number of instances specified) can open the
pipe at the same time. The instance count is useful if a process needs to restrict
access to the named pipe. A process can also specify unlimited instances.

When the server process creates a pipe, the server can also specify whether the
named pipe will be inherited by child processes and whether the process writes
data to a remote pipe immediately or waits to write the data when an internal
buffer is full.

51.2.3.2 Working with Named Pipes
The server process establishes a connection to a client process by using the Dos­
ConnectNmPipe function. The client process must open the pipe by using the
DosOpen function before the connection can be completed. If no client process
has opened the pipe when the server process calls DosConnectNmPipe, the
function either waits until a client opens the pipe or returns the error

Chapter 51: Interprocess Communication 681
;r.miili~~_!ii!!$irlifJiif~lliimU§!!fZ:i~Jftilimrul!m~~;j~1~i~m~!i!!!j!~i~mlif..ffiiiif;~~lb.:i~i~jgii.:SEi6r~~l~r.fmiiflfm!~;gns.~

ERROILPIPE_NOT_CONNECTED immediately. The action taken depends on
whether the server process created the pipe to wait for data.

If a client process receives ERROILPIPE-.BUSY from calling DosOpen, no
instances of the given pipe are available. A process can wait for one to become
available by using the DosWaitNmPipe function. The function waits until an
instance is free or until the specified interval of time elapses. When an instance
becomes free, the process can open the pipe by using the DosOpen function
again. If several processes are waiting for an instance to become available, the
system attempts to give the named pipe to the process that has been waiting the
longest.

The server process can disconnect a client from a pipe by using the DosDis­
ConnectNmPipe function. Ideally, the client process closes the pipe by using the
DosClose function before the server process disconnects the pipe. However, if
the client process does not close the pipe, DosDisConnectNmPipe disconnects
anyway and the client process receives errors if it attempts to access the closed
pipe. Note that forcing the closure of the client's pipe may discard data in the
pipe before the client reads the data.

To synchronize data through a pipe, the server process can set the pipe so that
read and write operations wait if no data is available or if there is no room in the
pipe. Waiting permits one process to add or remove bytes to let the other pro­
cess continue. The server can also set the pipe so that reading and writing do not
wait. Waiting also affects whether DosConnectNmPipe waits for a client process
to open the pipe.

A process can read and write bytes to a named pipe by using the DosRead and
DosWrite functions or by using the DosTransactNmPipe function. Depending
on access mode, the function writes a message to the pipe, reads a message from
the pipe, or both. If a named pipe contains any unread data or if the named pipe
is not in message mode, the DosTransactNmPipe function fails. If reading from
the pipe, DosTransactNmPipe does not return until a complete message is read.
This is true even if the server set the pipe so that it does not wait when reading.

A process can read data from a named pipe without also removing the data from
the pipe by using the DosPeekNmPipe function. The function copies the speci­
fied number of bytes from the pipe, supplies a count of the number of bytes of
data left in the pipe, and supplies a count of the number of bytes left in the
current message, if any.

DosPeekNmPipe also specifies the state of the pipe: connected, disconnected,
listening, or closing. A pipe is connected when a client process has opened the
pipe and the server has called DosConnectNmPipe. Only connected pipes per­
mit processes to read from and write to them. A pipe is disconnected when the
server process calls DosDisConnectNmPipe. A pipe is also disconnected when it
is first created. A pipe is listening when the server has called DosConnectNm­
Pipe but a client process has not yet opened the pipe. A pipe is closing when the
client process has closed the pipe by using DosClose but the server process has
not yet disconnected the pipe. The DosPeekNmPipe function never waits,
regardless of whether the pipe was set to wait.

A process can open, read from, write to, and close a named pipe by using the
DosCallNmPipe function. The function is equivalent to calling the DosOpen,
DosTransactNmPipe, and DosClose functions. If no instances of the pipe are
available, DosCallNmPipe waits for an instance or returns without opening the
pipe if the specified interval of time elapses.

682 MS OS/2 Programmer's Reference, Vol. 1
!Rfmfii;!~fm!f5~~~~!~ii1m\I~!j!~illii~i"_il~!~!ii!!iffilf.jifi!§jiJJ!ii,liOOi!~~!i~ .. Ef!i!!Yiliii~lJ~~l~!fj!i~!if.~~~~f.IjIDI~lni!i~f~i~fU~!

A process can retrieve information about the state of the named pipe by using
the DosQNmPHandState function. The state is a combination of the instance
count, the access mode, and the pipe typespecifled when the pipe was created.
DosQNmPHandState also specifies wheth~r the process owning the handle is a
server or client and whether the pipe waits if reading and writing cannot
proceed.'

A process can modify the state of a named pipe by using the DosSetNmPHand­
State function. For example, it can change the reading mode for the pipe, allow­
ing a process to read bytes from the pipe instead of messages.

A process can retrieve information about a named pipe by using the DosQNm­
Pipelnfo function. Information about the pipe is returned in a PIPEINFO struc­
ture and includes the name of the pipe, the instance count (the maximum num­
ber of times the pipe can be opened), the size (i)f the input and output buffers 'for
the pipe, and the client's pipe identifier, as follows:

typedef struct _PIPEINFO {
USHORT cbOut;
USHORT cbIn;
BYTE cbMaxInst;
BYTE cbCurInst;
BYTE cbName;
CHAR szName [] ;

} PIPEINFO;

51.2.3.3 USing Semaphores with Named Pipes
A server or client process can use system semaphores in conjunction with a
named pipe to control access to the pipe. System semaphores are useful for any
process that reads from several named pipes. The system clears a semaphore
whenever data is available in the pipe. This m~ans that the reading process can
use the DosSem Wait or DosMuxSem Wait function to wait for data to arrive
rather than devote a thread to periodically polling the pipe.

To use a system semaphore with a pipe, the process associates the semaphore
with the pipe by using the DosSetNmPipeSem function. One or two semaphores
can be associated with a named pipe-one for the server and one for the client.
If there is already a semaphore associated with one end of the pipe, the old
semaphore is replaced. A process can check the state of the semaphores by
using the DosQNmPipeSemState function. Using system semaphores to control
access to named pipes works only for local pipes.

51.2.4 Queues
A queue is a special linked list of data that a process can use to receive informa­
tion from other processes. Processes pass information to a queue in the form of
messages. The process that owns the queue can then read the messages from the
queue.

A program creates a queue by using the DosCreateQueue function and specify­
ing a unique queue name. The queue name has the following form:

\queues \name

The name parameter must conform to the rules for MS OS/2 filenames, but no
actual file is created for the queue.

Once the queue has been created, other processes can open it by using the Dos­
OpenQueue function and supplying the specified queue name. Processes that

Chapter 51: Interprocess Communication 683
~i!i!i!i~~:OOilra!ir:f§fJrIiPJei~:miJ~§!iF:iai~imm!~~lIfii~n~imi#iig!ij!~~m~~!!Ir:~lil'H§i$$Hi1m:~_!Hi1f!6f~fi!mni!!iIi!!'ii!!m;liii

open the queue can write messages to it by using the DosWrtteQueue function.
The format of a queue message depends entirely on the process that creates the
queue. The format and content must be understood by the processes writing
messages to the queue.

Only the process that created the queue can read messages from it, by using the
DosReadQueue function. The owner process can also examine messages without
removing them by using the DosPeekQueue function or remove all messages
from the queue by using the DosPurgeQueue function. The system automatically
supplies the process identifier of the process that adds a message to the queue,
so that the owner process can determine the origin of the message.

If the queue is empty when a process attempts to read from it, the process can
either wait for an element to become available or continue executing without
reading from the queue. If a process manages one queue, it is usually a good
idea for it to wait for an element. However, if a process manages several queues,
waiting for one queue means that other queues cannot be read. To avoid this
problem, a process can supply a semaphore when it calls the DosReadQueue or
DosPeekQueue function. The process can then continue executing without read­
ing from the queue, since the DosWriteQueue function will clear the semaphore
when an element is ready. If the process uses a unique semaphore for each
queue, it can use the DosMuxSemWait function to wait for the first queue to
receive an element. The semaphore can be either a RAM semaphore or a system
semaphore. If it is a RAM semaphore, it must be in shared memory. If it is a
system semaphore, any process that writes to the queue must also open the
semaphore by using the DosOpenSem function.

The order in which the owner process reads messages from the queue depends
on the type of queue. A queue can have first-in/first-out (FIFO), last-in/first-out
(LIFO), or priority ordering. In priority ordering, the message with the highest
priority is read first. Priority values range from 0 (lowest priority) through 15
(highest priority).

The DosReadQueue function reads either a specified element or the element at
the beginning of the queue. (The beginning of the queue is determined by the
queue priority. For example, the beginning of a queue with LIFO priority is the
last element in the queue.) A process can use the DosPeekQueue function to
examine the elements in the queue to determine which one to actually read.
Each call to DosPeekQueue returns the identifier of the next element in the
queue, so the function can be called recursively to move through the queue. The
identifier of the desired element can then be supplied to DosReadQueue, to read
that element from the queue.

51.3 Using Interprocess Communication
The following sections describe some specific ways to use semaphores, signals,
pipes, and queues to provide and control communication between processes.

51.3.1 Using Semaphores
Semaphores are often used to control access to shared resources, such as
memory, variables, and devices, or to signal other processes upon completion
of specific tasks. Semaphores are useful in all MS OS/2 programs, including
Presentation Manager applications.

684 MS OS/2 Programmer's Reference, Vol. 1
ln~fiiiinliiifif~!ID~~!~ilJmll~l5!!l!Ui!.i~i§ffi"_il~!~!ii!iimlf~im§j~ii,~!ftj!!i{~iW~J!miYi'iilimi~~~I~;r~~iir~1!i~~;;~I~iiii~f.ffJ~!

51.3.1.1 Using a System Semaphore as a Signal
You can use an exclusive system semaphore as a signal to trigger execution
of other processes. This is useful if one process provides data to many other
processes. Using a semaphore as a signal frees the other processes from the
trouble of polling to determine when new data is available. You use an exclusive
semaphore for this signal to prevent any other process from clearing the sema­
phore and sending a false signal to the other processes.

The process controlling the signal first creates an exclusive system semaphore by
using the DosCreateSem function and then immediately sets the semaphore by
using the DosSemSet function. When the process has new data available for the
other processes, it clears the semaphore. In the following code fragment, the
process uses the DosSleep function to wait momentarily, so that all processes
waiting for the semaphore get an opportunity to respond; then it sets the sema­
phore and repeats the cycle:

HSYSSEM hssm;

DosCreateSem(CSEM_PRIVATE, &chssm, "\sem\signal");

while (TRUE) {
DosSemSet(hssm);

. 1* get new data *1

1* set the semaphore *1

DosSemClear(hssm);
DosSleep(SOOL);

1* signal that data is ready *1
1* give all processes chance to respond *1

}

All other processes use the DosOpenSem function to open this semaphore and
then use the DosSemWait function to wait for the signal to be sent,as shown in
the following code fragment:

HSYSSEM hssm;

DosOpenSem(&chssm, "\sem\signal");

while (TRUE) {
DosSemWait(hssm, SEM_INDEFINITE_WAIT);

1* process new data *1

}

51.3.1.2 Protecting a Resource with a RAM Semaphore
You can use a RAM semaphore to control access to a shared resource in a pro­
cess. You simply define the semaphore as a global variable, so that all threads
have access to it, and set its initial value to zero. To gain access to the resource,
you can use the DosSem Wait function to wait for any other thread to complete
its access and then use the DosSemSet function to set the semaphore while you
work with the resource. Finally, you can use the DosSemClear function to clear
the semaphore when you are done with the resource. The following code frag­
ment uses these three functions to control access to a resource:

Chapter 51: Interprocess Communication 685
~~Ii!iE~~la!~fiilirriFjeiH;~Jr.i~W.lifeiI!1~~mi;!!i!:~1I&iili!~m~imiitmt~1Il~mr!lf:~m~si~l1!W~fiI~!m~~m;Iif:!iif~§ft~~~'

ULONG ulRAMSem = 0;

if (DosSemWait(&ulRAMSem, 6000L) 1= ERROR_SEM_TIMEOUT) {

}

/* Wait 6 seconds for resource to become free. */

DosSemSet(&ulRAMSem);

/*
* Set the semaphore, work with the resource,
* then clear the semaphore.
*/

DosSemClear(&ulRAMSem) ;

Although you can direct the DosSem Wait function to wait indefinitely, it is
usually a good idea to set a time limit, to prevent the thread from stopping per­
manently if an error in another thread is preventing the semaphore from being
cleared. If the interval elapses, the function returns ERRO~SE~TIMEOUT
instead of zero.

51.3.1.3 Managing Fast-Safe RAM Semaphores
A thread sets a fast-safe RAM semaphore by using the DosFSRamSemRequest
function. The function sets the semaphore, records the identifiers for the thread
and its process, and increases the use count of the semaphore by one. The
thread can also set the client field of the DOSFSRSEM structure to identify the
resource being controlled by the semaphore, but only after the semaphore is set.
(The values in the client field may be useful to a DosExitList function handler in
determining the appropriate cleanup action.) A thread should not change any
other fields in the structure.

In reality, DosFSRamSemRequest may wait to set the semaphore, depending
on whether the semaphore is already set and on the value you specify for the
lTimeout parameter. If the semaphore is not set, DosFSRamSemRequest sets it,
increases the use count, and returns immediately. If the semaphore is already
set, DosFSRamSemRequest may wait until the semaphore is cleared before
returning. (The function does not return unless the specified semaphore remains
clear long enough for the calling thread to obtain it.) As with other semaphores,
the process can specify how much time to wait before continuing execution.
When the given interval elapses, the function returns whether or not the sema­
phore is cleared.

A thread can clear the semaphore by using the DosFSRamSemClear function.
This function decreases the use count by one but does not actually clear the
semaphore unless the use count becomes zero. This means that a thread that
sets the semaphore several times must clear it the same number of times before
it is really cleared. Although any thread can wait for the semaphore to clear,
only the thread that created the semaphore can clear it.

The process that set a fast-safe semaphore must clear it before terminating. One
way to ensure clearing of the semaphore is to use the DosExitList function to
identify a termination function to clean up the semaphore. The termination func­
tion first calls the DosFSRamSemRequest function. The DosFSRamSemRequest
function checks the process identifier in the fast-safe RAM semaphore. If it is
the identifier of the process terminating, the function changes the thread identi­
fier to the current thread and sets the use count to 1. The termination function
then completes the cleanup by calling DosFSRamSemClear to clear the sema­
phore.

686 MS OS/2 Programmer's Reference, Vol. 1
~~!miimij!gj!if:~!ill!~':~i~iliiK!i~lijrmllgF1§iIr;ljii!fiiUg!~!iu!im!f~i;!~i!!!N~lml1~~ifj~~!i!;~~!n~t~l!i!i~eH!!f~l§Jj~~f.ri'mii!P.flit~~.~i!:!

51.3.2 Using Signals
When a full-screen program first starts, the system enables the SIG_CTRLC,
SIG_CTRLBREAK, and SIG-KILLPROCESS signals for the process. You can
disable these signals by using the DosHoldSignal function. The following code
fragment disables all signals:

DosHoldSignal(HLDSIG_DISABLE) ;

When a signal is disabled, the system prevents the signal from interrupting the
process that disabled it. The signal remains enabled for other processes, how­
ever, including other processes in the same session. You can restore signals by
using the HLDSIG~NABLE option in the DosHoldSignal function.

You can disable individual signals by using the DosSetSigHandler function to
specify that a signal should be ignored. The following code fragment disables the
SIG_CTRLC signal:

DosSetSigHandler(NULL, NULL, &fAction, SIGA_IGNORE, SIG_CTRLC);

In the preceding example, the variable fAction receives a value specifying
whether the signal was previously enabled or disabled. You can use the value to
restore the signal to its previous state.

You can also replace the default signal handler with your own signal handler by
using the DosSetSigHandler function. This is useful if your application creates
many temporary files. Creating your own signal handler lets you clean up the
files before a signal such as SIG_CTRLC terminates the application. The follow­
ing code fragment defines a signal handler and sets it by using the DosSetSig­
Handler function:

PFNSIGHANDLER pfnsig;

VOID PASCAL FAR MySigHandler(usSigArg, usSigNum)
USHORT usSigArg; /* furnished by DosFlagProcess if appropriate */
USHORT usSigNum; /* number of signals being processed */
{

if (usSlgNum == SIG_CTRLC) {

. /* delete files */

}
return;

}

DosSetSigHandler(MySlgHandler, &pfnsig, &fAction,
SIGA_ACCEPT, SIG_CTRLC);

In the preceding example, the DosSetSigHandler function copies the address of
the previous signal handler (if any) to the variable pfnsig. You can use this
address to call or restore the previous signal handler. If the previous handler was
the default handler, the variable is set to zero.

Chapter 51: Interprocess Communication 687
!I!!iI:li~~~raiif:fmirrifjei§ieJ!iiiiiimJ!f;ii!!~imlr.i~~~lI~iIi!~m~tg!liI~~m~..mIi!f:!f~m'flsi$§fOOf:!i;~.r~f!8~IS!!f:!!~f~~~fI;lm~

51.3.3 Using Pipes
Pipes are useful in programs that need to pass a continuous stream of data
between processes. Unlike other methods of interprocess communication, pipes
let one process read from and write to another process as if it were a file. Pro­
cesses can be related, unrelated, or even on different computers. The following
sections show simple examples of how pipes can be used.

51.3.3.1 Sending Output to a Child Process
You can send output to a child process by using a pipe created by the DosMake­
Pipe function, as shown in the following code fragment:

DosMakeP ipe () ;
DosDupHandle () ;
DosExecPgm () ;
DosWr i te () ;

51.3.3.2 Creating a Server Process
You can create a server process for a named pipe by using the DosMakeNmPipe
function. You need to supply a pipe name and specify the access modes, pipe
type, and sizes of the input and output buffers for the pipe.

In the following code fragment, DosMakeNmPipe creates a pipe named
\pipe\abc and supplies a unique handle identifying the pipe:

HPIPE hp;

DosMakeNmPipe("\pipe\abc". /* pipe name */
&hp. /* pipe handle * /
PIPE_DUPLEX I PIPE_PRIVATE I PIPE_NOWRITETHROUGH,
3 I PIPE_READMODE_BYTE I PIPE_BYTE_TYPE I PIPE_WAIT,
512, /* input-buffer size */
512, /* output-buffer size */
500L) ; /* default timeout for DosWaitNmPipe */

DosConnectNmPipe(hp) ;

. /* read and write data to the pipe */

DosDisConnectNmPipe(hp);
DosClose(hp);

Once the named pipe is created, you can immediately call the DosConnect­
NmPipe function to connect a client process to the pipe. In this example, the
pipe is set to wait (PIPE_WAIT) if no client process is immediately available,
so DosConnedNmPipe does not return until the connection is established.

Once the server connects to the client, the process can read from and write to
the pipe. In the preceding example, the pipe is byte type, so you can use the
DosRead and DosWrite functions to read from and write to the pipe.

After the client process finishes using the pipe, the server process can discon­
nect the pipe by using the DosDisConnectNmPipe function. The server can
either connect again or close the named pipe for good by using the DosClose
function.

688 MS OS/2 Programmer's Reference, Vol. 1
;~rmf~!~imfiii§~~~f~i!W!I~~i~illii1§fi~"!!~!~!i~imlf~i;n;liUin~trui!~i!i?J~!i!~~l~lal~I~~~ii.r.~mal!!§.!Br:[:jj}lli!l!fi!i~~.liIi~i~1

51.3.3.3 Creating a· Client Process
You can create a client process for a named pipe by using the DosOpen func­
tion. You simply supply the name of the pipe and use the appropriate access
modes to open the pipe for reading, writing, or both, as shown in the following
code fragment:

HPIPE hp;

DosOpen(U\pipe\abc U, &hp, &usAction, OL, 0, OxOl, Ox42, OL);

. 1* read and write data to the pipe *1

DosClose(hp);

The client process should check the return value from DosOpen to be sure the
pipe was actually opened. If the pipe has not yet been created by the server pro­
cess, DosOpen returns an error.

The client process can read data from the pipe, write data to the pipe, or both,
depending on the access mode used when the pipe was created. To double­
check the access mode, the client can call the DosQNmPHandState function to
retrieve the current mode. If the pipe has byte type, the client process can use
the DosRead and DosWrite functions to read from and write to the pipe. When
the client process finishes using the pipe, it should close it by using the Dos­
Close function.

51.3.4 Using Queues
Queues are useful in full-screen programs as a means for one process to manage
input from many other processes. Named pipes also permit unrelated processes
to pass data, but queues have the advantage of letting the owner process choose
which data to read and process first.

Note that Presentation Manager applications also have queues, called message
quelles. Message queues and the queues described in this chapter are not the
same.

You can create a queue by using the DosCreateQueue function, supplying the
queue name and the queue type as arguments. The following code fragment
creates the first-in/first-out queue named \queues\sample.que:

HQUEUE hqueue;

DosCreateQueue(&hqueue, QUE_FIFO, U\queues\sample.que U);

Once the owner of the queue has created it, each process that needs to use the
queue must open it by using the DosOpenQueue function. The function retrieves
the queue handle and the process identifier of the process that owns the queue.
The following code fragment opens the queue for another process:

PID pid;
HQUEUE hqueue;

DosOpenQueue(&pid, &hqueue, "\queues\sample.que tl
);

A process that has opened a queue can write to the queue by using the Dos­
Write Queue function. The format of the element written to the queue depends
entirely on what the owner·process needs. You should identify the process that

Chapter 51: Interprocess Communication 689
;iI!§iiillS!if!!ialffi1!!~JUIDmffP:_1B!ii!ll!i!f!l.fflfa!!!~!i~~~!fH~~f~!i~i~!L:r:i!ffi~~i~i2i~iii!i~nr:~miiiiiiil!il!i$jmj~fifii~!a;*s~!!i~~i!!§y

owns the queue and create elements in a form that the process can read. The
following code fragment writes an element consisting of a null-terminated string
to a queue: .

DosWriteQueue(hqueue, C, 12, "Hello, World", 0);

The queue owner can read an element frotp. the queue by using the DosRead­
Queue function. For a q~eue that has been opened using the QUEYIFO option,
the function reads the oldest element from the queue. The function retrieves a
pointer to the element and the length of the element in bytes. It also retrieves
the process identifier of the process that wrote the element to the queue~ The
following code fragment reads an element from the queue:

QUEUERESULT qresc;
USHORT cb;
PYOID pv;

DosReadQueue(
hqueue, 1* queue handle *1
&qresc, 1* queue result, incl. process ID and request *1
&cb, 1* count of bytes in element *1
&pv, 1* address of element *1
0, 1* element number (not used for QUE_FIFO) *1
DCWW_NOWAIT, 1* do not wait for element *1
&bPrty, 1* recv. element priority (not used for QUE_FIFO) *1
NULL); /~ semaphore handle (not used) */

51.4 Summary
The following sections describe the functions that can be used in MS OS/2 pro­
grams to create and manage semaphores, signals, pipes, and queues.

51.4.1 Semaphore Functions
MS OS/2 provides the following semaphore functions:

DosCloseSem Closes a system semaphore.

DosCreateSem Creates a system semaphore.

DosFSRamSemClear Releases a fast-safe RAM selfiaphore.

DosFSRamSemRequest Sets a fast-safe RAM semaphore.

DosMuxSem Wait Waits for one or more semaphores to be cleared and returns
when anyone of the semaphores is cleared, regardless of whether it remains
cleared.

DosOpenSem Opens a system semaphore.

DosSemClear Releases a system or RAM semaphore.

DosSemRequest Sets a system or RAM semaphore if the semaphore is
cleared.

DosSemSet Sets ~ system or RAM semaphore.

DosSemSetWait Sets a semaphore (if it is not alre~dy set) and waits for it to be
cleared.

DosSemWait Waits for a semaphore to be cleared.

690 MS OS/2 Programmer's Reference, Vol. 1
miiirnii~§l&g~i~~!~i!imfi:m~i;~~.m~!~sllm~!i;~lmi~~jjii~iiiwg!iji!filli§i~~~R!l§iiilP.ffiliiMJirm~!~Wrmfii~~ii..Ci~~1i

51.4.2 Signal Functions
MS OS/2 provides the following signal functions:

DosFlagProcess Sends a signal to the calling process.

DosHoldSignal Suspends or restores signal processing.

DosKillProcess Terminates a child process after sending a termination signal
to that process.

DosSendSignal Sends a CTRL+C or CTRL+BREAK signal to the last process that
has a corresponding signal handler installed.

DosSetSigHandler Installs or removes a signal handler.

51.4.3 Pipe Functions
MS OS/2 provides the following pipe functions:

DosCallNmPipe Opens a named pipe, writes to and reads from it, and closes
it. This function is equivalent to DosOpen plus DosTransactNmPipe plus Dos­
Close.

DosConnectNmPipe Waits for a client to open a named pipe.

DosDisConnectNmPipe Disconnects a named pipe.

DosMakeNmPipe Creates a named pipe.

DosMakePipe Creates a pipe.

DosPeekNmPipe Reads from a named pipe without removing data.

DosQNmPHandState Retrieves information about the state of a pipe handle.

DosQNmPipelnfo Retrieves information about a named pipe.

DosQNmPipeSemState Retrieves information about the named pipes associ­
ated with a specified semaphore.

DosSetNmPHandState Sets information about the state of a pipe handle.

DosSetNmPipeSem Associates a semaphore with a named pipe.

DosTransactNmPipe Writes data to and reads data from a named pipe.

DosWaitNmPipe Waits for a named-pipe instance to become available.

51.4.4 Queue Functions
MS OS/2 provides the following queue functions:

DosCloseQueue Closes a queue.

DosCreateQueue Creates and opens a queue.

DosOpenQueue Opens an existing queue for the current process.

Chapter 51: Interprocess Communication 691
~~it5isiii2!ImI!m!iijf~m~Rffiruiuii!ilfi!~.mi_!~i!i~~~!f!i~~f~!i~ii!!§i$1if!rMi~2!~fiii!i~!~~mii:iIDl!ilfmJmi~li5i~!~~~!i~ij1Ji~

DosPurgeQueue Removes all elements from a queue.

DosReadQueue Reads an element from a queue.

DosWriteQueue Writes an element to a queue.

Timers

Chapter

52

52.1 Introduction .. 695

52.2 About Timers.. 695

52.3 Using Timers ... 695
52.3.1 Counting Synchronously..................................... 695
52.3.2 Counting Asynchronously................................... 696

52.4 Summary.. 696

Chapter 52: Timers 695
~i§iim!i!w!Hiilfm!iOOlijmRP:gB~i~!~.mi_!~~i~~~It!{iSf~!~~i~iL:m~!igfMi~~~iiii!im!f:~truiiiiill~fdlJmj~li!'ii~!i~~~ffiifiID.i~

52.1 Introduction
This chapter describes timers. Timers let programs time events by waiting for an
interval to elapse or by watching for a semaphore to clear . You should also be
familiar with the following topics:

• Window timers

• Multitasking

• Semaphores

52.2 About Timers
A timer is a useful and reliable way for a program to count out a given number
of milliseconds. Timers are actually managed by the system. When a program
requests a timer, the system monitors the system clock for the program and
notifies the program when the interval elapses.

The system clock keeps a count of the number of system-clock interrupts that
have occurred since the system was started. System-clock interrupts occur
approximately 32 times a second, so timer intervals of less than 50 milliseconds
are not recommended. All time values are in milliseconds and are rounded up to
the next clock tick. The duration of the clock tick can be determined by using
the DosGetInfoSeg function and examining the cusecTimerInterval field in the
GINFOSEG structure to which the function points.

The GINFOSEG structure also contains the current system time. The system
time is the number of milliseconds that have elapsed since the system started. A
process that needs to know the precise time between the start and the end of a
timer can save the system time before starting the timer and compare that value
with the system time after the timer ends. The system time is reset to zero every
few weeks, so a process may need to take this into account when comparing
starting and ending times. The system time may occasionally lose a millisecond if
a process disables interrupts for periods longer than the clock-tick interval.
However, the time of day (hours, minutes, and seconds), the time in seconds
since January 1, 1970, and the date will remain accurate.

52.3 Using Timers
Timers are typically used to let a program pause before processing user input or
to let a program carry out a task at a given time. Since timers for Presentation
Manager applications are provided through the message queue, only non­
Presentation Manager programs use the MS OS/2 timer functions.

52.3.1 Counting Synchronously
You can cause your program to pause for a given number of seconds by using
the DosSleep function. The DosSleep timer function waits the specified number
of milliseconds before returning control. The following code fragment causes the
program. to pause for 60 seconds (60,000 milliseconds):

696 MS OS/2 Programmer'$ Reference, Vol. 1
niih1iiiliJiiim;f.!i~~iii!i;t!i .. ~;mifll~;mi!!iE;§§im!EiHi5Iiruilniiii~lli!fJ~}~!$~1~iijiimt~~;;i~r~~fiYiil~if!t~9~rJ~m~i

DosSleep(60000L);

DosSleep actually yields execution control to the system, so it is also a con­
venient way to let other processes or threads execute while you pause.' This is
useful if two processes' (or two threads) need to synchronize their execution.
DosSleep yields control even if you specify'zero milliseconds. As long as the
processes have equal priority, control does not return from DosSleep until the
other process has had an opportunity to execute.

52.3.2 Counting Asynchronously
If a program wants to carry out other tasks while the timer counts out the inter­
val, it can use the DosTimerAsync function~ This function sets a timer without
stopping the program. When the interval elapses, the system clears a given sema­
phore. The program must monitor the' semaphore to determine when the time
has elapsed. '

The following code fragment creates a system semaphore and then calls the Dos­
TimerAsync function to count an interval while the program performs other
activities:

DosCreateSem(CSEM_PUBLIC, &ChSem, "\\sem\\abc.sem");
DosSemSet(hSem);
DosTimerAsync(SOOOL, hSem, &cTimer); /' start timer '/

~ ;' other processing '/

DosSemWait (hSem, SEM_INDEFINITE_WAIT); /' wait until timer '/
/' clears the semaphore '/

If the program wants the timer to count out the interval repeatedly, it can use
the DosTimerStart function. Unlike the DosTimerAsync function, DosTimer­
Start does not stop after the first interval is counted. It repeats the count and
clears the semaphore each time the interval elapses. '

A process can stop a timer by using the DosTimerStop function.

52.4 Summary
MS OS/2 provides the following timer functions:

DosSleep Causes the current thread to pause for a specified interval of time.

DosTimerAsync Creates a timer th~t allows the program to carry out other
tasks during the timer interVal.

DosTimerStart Creates a timer that counts out the specified interval repeat­
edly,. until the DosTimerStop function is called.

DosTimerStop Stops a timer created by the DosTimerAsync or DosTimerStart
function.

Chapter

53

Window Timers
53.1 Introduction.. 6f)l)

53.2 About Window Timers.. 6f)l)

53.3 Using Window Timers ... 700

53.4 Summary.. 701
53.4.1 Functions•. 702
53.4.2 Messages...... 702

Chapter 53: Window Timers 699
ii.i!:!~:!iHj~~eJ!f!~&!li!!1§fI~I;a!Uiiififliik11,~irni!§fm!f!a1'!!in§!fifmiiUfiilmatiw.t~lf:miii41f.if1il!f;15Jit.ftiifi~~~lfi~'ilJ)ifll;f!i~/jjjsiSUiir.dimiiml~~~!

53.1 Introduction
This chapter describes the functions and messages that let an application post a
timer message at a specified time. You should also be familiar with the following
topics:

• Windows

• Messages

• Timers

53.2 About Window Timers
A window-timer message is an input message that the system posts to a message
queue after a specified period of time elapses. The period of time, called the
time-out value, is expressed in milliseconds. An application starts the timer for a
given window and specifies the time-out value. The system counts down approxi­
mately that number of milliseconds and then posts a ~TIMER message to
the message queue for the corresponding window.

The time-out value can be any value in the range zero through 65,535. However,
MS OS/2 cannot guarantee that all values are accurate. The actual time-out
depends on how often the application retrieves messages from the queue and on
the system clock rate. In many computers, the MS OS/2 system clock ticks
about every 50 milliseconds, but this can vary widely from computer to com­
puter. In general, a timer message cannot be posted more frequently than every
system clock tick. To make the system post a timer message as often as possi­
ble, an application can set the time-out value to zero.

Timer messages are continuous-that is, after timing out, a system starts the
countdown again. Once an application starts a timer, the system repeats the tim­
ing cycles until the application stops the timer.

An application starts a timer by using the WinStartTimer function. If a window
handle is given, the timer is created for that window. In this case, the Win­
DispatchMsg function dispatches the ~TIMER message to the given window
when the message is retrieved from the message queue. If a NULL window han­
dle is given, it is up to the application to check for ~TIMER messages and
dispatch them to the appropriate window.

The number of timers an application can start is limited; in fact, the number of
available timers for the system is limited. An application can check the total
number of available timers by reading the SV _CTIMERS system value. How­
ever, this value does not specify how many timers have already been started. In
general, an application should not use more than three or four timers at the
same time.

Every timer has a unique timer identifier, ·also called a timer ID. An application
can request that a timer be created with a particular identifier or have the system
choose a unique value. When a W~TIMER message is received, the timer
identifier is contained in the first message parameter. Timer identifiers allow an
application to determine the source of the W~TIMER message.

Three timer identifiers are reserved and should not be used by applications. The
system timer identifiers and their symbolic constants are as follows:

700 MS OS/2 Programmer's Reference, Vol. 1
illlJi!~f2n!Uel~~i~t~i~iiiiji!~m~Il!i1\ii~U~;~m.mlraif~liilllin~t'ilm;~~el~!i~w.t~l!ih1i!iji!U§~.Ii!~Eiia~~I;!i!£n~~liffiifilii~~tfii~

Value Meaning

The cursor-blinking timer. This controls
cursor blinking. Its time-out value is stored
in the os2.ini file under the CursorBlinkRate
keyname in the P~ControlPanel section.

TIDYLASHWINDOW

TID_SCROLL

The window-flashing timer.

The scroll-bar-repetition timer. This timer
controls scroll-bar response when the mouse
button or a key is held down. Its time-out
value is specified by the system value
SV _SCROLLRATE.

~TIMER messages, like ~ AINT and the semaphore messages, are not
posted to a message queue. Instead, when the time-out elapses, the system sets a
record in the queue indicating which timer message has been posted. The system
builds the ~TIMER message when the application retrieves the message
from the queue.

Although a timer message may be in the queue, if there any higher priority mes­
sages in the queue, the application retrieves the other messages first. If the
time-out elapses again before the message has been retrieved, the system does
not create a separate record for this timer. This means the application should
not depend upon the timer messages being processed at precise intervals. To
check the accuracy of the message, an application can retrieve the actual system
time by using the WinGetCurrentTime function. Comparing the actual time with
the actual time of the previous timer message can be useful in determining what
action to take for the timer.

53.3 Using Window Timers
You can start a timer with the WinStartTimer function. You supply the window
handle and a time-out value. The function associates the timer with the specified
window. The new timer starts counting down as soon as it is created. The follow­
ing code fragment demonstrates starting a timer and setting it for every half
second (500 milliseconds):

WinStartTimer(hab,
hwnd,
0,
500);

1* anchor-block handle *1
1* window handle *1
1* timer ID (not used) *1
1* 500 milliseconds *1

You can set the timer anywhere in your· application as long as you have a valid
window handle. To process the timer message, you need to add a WM_TIMER
case to the window procedure for the given window. You can use the case to
carry out any actions related to the timer. If the timer is no longer needed, you
can stop it by using the WinStopTimer function. The following code fragment
shows a typical case statement:

case WM_TIMER:

. 1* Carry out timer-related tasks. *1

WinStopTimer(hab, hwnd, 0);
return (OL);

1* stops the timer for this window *1

Chapter 53: Window Timers 701
~!;t!iEf!flji~!Mfm~~iiIil§U~iiSimiiiif!i1~1t.~irn!!§Jm;r!Bt!!iill!jfif1iruifliliiiatmU~Ib~mijfJ!~i~!ijj1t.Hliii~~~if¥h'ililjf!!r!j~/~sSJ;m~im!liifilii!

You can reset the time-out value for the timer for a given window by calling the
WinStartTimer function again. You can reset the timer without stopping it.

If you supply a window handle, you can start only one timer for that window. If
you attempt to create another timer using the same window handle, the system
just resets the time-out for the previous timer. If you need more than one timer
for a window or application, you can create multiple timers by using a NULL
window handle. The WinStartTimer function creates a timer and returns a timer
identifier that uniquely identifies it. The following code fragment creates two
timers:

USHORT idTimer1, idTimer2;

idTimer1 = WinStartTimer(hab, NULL, 0, 500);
idTimer2 = WinStartTimer(hab, NULL, 0, 1000);

Since there is no window associated with these timers, the application must pro­
cess the timer messages once they are retrieved from the message queue; since
the timer messages have no window handles, the WinDispatchMsg function in
the message loop cannot dispatch them. The following code fragment shows a
message loop that handles the window timers:

HWND hwndTimerHandler; 1* handle of window for timer messages *1
QMSG qmsg; 1* queue-message structure *1

while (WinGetMsg(hab, &qmsg, NULL, 0, 0» {
switch(qmsg.msg) {

case WM_TIMER:
qmsg.hwnd = hwndTlmerHandler;

default:
WinDispatchMsg(hab, &qmsg);

}
}

If a window receives multiple timer messages, it can use the first message param­
eter of the message to identify the timer, because the system copies the timer
identifier to this parameter.

If you need to change the time-out value for a timer, you must specify the timer
identifier with the new time-out value. The following code fragment sets the
second timer to 2 seconds:

idTimer2 = WinStartTimer(hab, NULL, idTimer2, 2000);

When you first start a timer that has no associated window, the WinStartTimer
function creates an arbitrary timer identifier unless you explicitly provide one.
You can request your own timer identifier when you first start a timer, but you
must make sure it is not one of the reserved system timers.

53.4 Summary
This section lists all the functions and messages an application can use to start,
stop, and use window timers.

702 MS OS/2 Programmer's Reference, Vol. 1
i!Ui!~J~T;~~!!uiU~i~t!Hi!iiI~E!H~~I?i1!lYi.lUi:fjiiBmlraii!iliali~~iiil~~~entH~m1~liEliliHi!!it!itPJti!~lEiiSfim!!if~i!u~!I;mifimi=iilffii~

53.4.1 Functions
The following functions allow your application to use window timers:

WinGetCurrentTime Retrieves the system time. (The system time is the
number of milliseconds since the system started.)

WinStartTimer Starts or resets a timer. A timer may be associated with a win­
dow or a thread.

WinStopTimer Stops a timer. This function should be called for every timer
that an application starts.

53.4.2 Messages
The following message is used to communicate the end of a time-out interval:

W1LTIMER Posted when a timer times out. The low word of the mpJ parame­
ter contains the timer identifier. The value returned by the application that
processes this message is zero.

Chapter

54

Device Monitors
54.1 Introduction.. 705

54.2 About Device Monitors............... 705

54.3 Using Device Monitors .. 705

54.4 Summary ... : .. 705

Chapter 54: Device Monitors 705
!!gff~1~i~!f!illf.~!Ei~:!mFtij!m!;§liru;If;;"~""~~~~llSilimifil!£§iS1i§flij~iitmr:Ha;illill~~~~!~~n~~1i$jt!!i:1<l!iiit1.Iilti!61i~15i!til!(;!!~

54.1 Introduction
The chapter describes device monitors and the device-monitor functions. These
functions examine and modify input from devices such as the keyboard and the
mouse before the input is made available to any other program. You should also
be familiar with the following topics:

• The file system

• Devices

54.2 About Device Monitors
A device monitor is a special type of program input in which a program receives
raw input directly from a device such as the keyboard or the mouse before the
input is passed on to any program that may be reading from the device. A pro­
gram can use a device monitor to inspect, modify, insert, and remove informa­
tion as it passes from the device to other programs.

54.3 Using Device Monitors
A program creates a device monitor for a given device by using the DosMon­
Open function. The program does not receive input from the device until it uses
the DosMonReg function to register the input and output buffers to be used with
the monitor. These buffers are structures into which MS OS/2 copies the input
or reads the output. The format of the structures depends on the device. Typi­
cally, a program retrieves the correct size of the input and output buffers by try­
ing to register the buffers with an incorrect size. The DosMonReg function
copies the correct size to the first field in each structure.

Once a monitor is registered, a program can retrieve input from the device by
using the DosMonRead function. It can modify this information and then pass it
on by using the DosMonWrite function. If the program does not pass the infor­
mation on by using the DosMonWrite function, that information is lost.

You can discontinue input monitoring by using the DosMonClose function.

54.4 Summary
MS OS/2 provides the following device-monitor functions:

DosMonClose Closes a device monitor.

DosMonOpen Creates or opens a device monitor.

DosMonRead Retrieves input from a device.

DosMonReg Registers the input and output buffers to be used by the monitor.

DosMon Write Writes information to a device.

Chapter

55

Atom Tables
55.1 Introduction.......................... 7(1}

55.2 About Atom Tables... 7(1}
55.2.1 String Atoms.. 7(1}
55.2.2 Integer Atoms... 710

55.3 Using Atom Tables in an Application.......................... 710
55.3.1 Obtaining an Atom-Table Handle 710
55.3.2 Creating an Atom .. 711

55.3.2.1 Creating a Unique Window-Message Atom...... 711
55.3.2.2 Creating DDE Formats and a

Unique Clipboard Format........................ 712
55.3.3 Deleting an Atom .. 713

55.4 Summary.. 713

Chapter 55: Atom Tables 709
a!!!iji!i!ina!~!f.~~ifmll~iii~!iim~!mL~~~!i~~tm!~ii5iif!i§I~~liitffii!iit~fi!imiij~i§limii§i~~ni~~m!fih1i~ifrfifti~jlfr.imiitii!fi!ii.l~

55.1 Introduction
This chapter describes how to use atom tables in your applications. You should
also be familiar with the following topics:

• Code pages
• Window messages and message queues

• Clipboard formats

55.2 About Atom Tables
The MS OS/2 atom manager provides a mechanism for converting a string (atom
name) into a 16-bit word (atom) that can be used as a constant to represent the
string in various data structures for the application and the system . You can save
space by converting strings to atoms when the same string must be kept in a
number of data structures. You can also save time when searching for a particu­
lar string, since after you convert the search string to an atom you can compare
words with the atoms stored in the data structures. There are other situations in
which you must convert a string into an atom to be sure that the atom is unique
throughout the system for example, when creating a new clipboard format of
an interapplication-message type.

The atom manager uses an atom table to hold the strings associated with atoms
and the control structures needed to query the table to determine if a string is
there. Each atom has an associated use count that specifies how many times it is
added to the table. Many different applications or threads within a single applica­
tion can add the same atom string to the system atom table. Each time an atom
string is added to the table, the use count for the corresponding atom is incre­
mented. Each time an application or thread deletes an atom, the atom's use
count is decremented. An atom is removed from the system atom table when
its use count reaches zero.

55.2.1 String Atoms
Applications pass null-terminated strings to atom tables and receive string atoms
(l6-bit integers) in return. Atom tables have the following properties:

• The maximum length of an atom name is 255 characters. A zero-length
string is not a valid atom name.

• Case is significant when searching for an atom name in an atom table and
the entire string must match that is, no substring matching is performed.

• The maximum amount of data that can be stored in an atom table is 64K.
This includes any control data needed by the atom manager to manage the
atom table.

• The maximum number of string atoms allowed is 16K. The values of string
atoms can be from OxCOOO through OxFFFF.

• A use count is associated with each string atom. The use count is incre­
mented each time the atom is added to the table and decremented each time
the atom is deleted from the table. This allows different users of the same
string atom to avoid destroying each other's atoms.

710 MS OS/2 Programmer's Reference, Vol. 1
II!GiliiE~i!!i~ii!fliFimi!iifrii!~Hii':i!JiifJfiiH~i~r.f;!f;~I§!u!!~iif:iH;J!!iim!~Ji!!l§i5!ii!1Ji~~illl_~IinfiP.~m!§im~!ii(;'~i~litiii~ru1f:iil

• Atom tables can be used only by the process that creates them. Only the sys­
tem atom table can be used by multiple processes.

55.2.2 Integer Atoms
Integer atoms differ from string atoms as follows:

• Integer atoms are values from OxOOOl through OxBFFF. The values of integer
atoms and string atoms do not overlap, so the two types of atoms can be
intermixed.

• The string representation of an integer atom is #ddddd, where ddddd are
decimal digits. Leading zeros are ignored. These strings must be specified in
the system code page.

• There is no use count or storage overhead associated with an integer atom.

• Integer atoms are useful for predefined system constants exported by a
dynamic-link library, because they behave exactly like atoms except that they
have no overhead. An example of using integer atoms is in the predefined
MS OS/2 window classes. Application-defined window-class names are
strings that are converted into atoms and then used to determine if a class
name is being defined more than once; this means the predefined window
classes implemented by MS OS/2 need to be expressible as atoms. When
these atoms are integer atoms, they can be expressed as compile-time con­
stants in an MS OS/2 header file; the application can refer to these classes
and create windows by using them without including a string constant in its
data segment.

55.3 Using Atom Tables in an Application
Applications that use atom tables can create their own atom tables or use the
system atom table. Once an atom table is created or acquired, the applications
can add and delete atoms and retrieve information about individual atoms in the
table. When the application is finished using the atom table, it should delete the
table.

There are two main reasons for using an atom table. First, registering atoms in
the system atom table ensures that the resulting atom is unique system-wide. (It
is important that atoms be unique when you define window messages or clip­
board and DDE formats that are used between applications.) The system atom
table is also useful when several applications using a common message or format
must use the same atom to identify the message or format.

The second use for an atom table is to allow an application to manage efficiently
a large number of strings that are used only within the application. The applica­
tion can create a private atom table for this purpose.

55.3.1 Obtaining an Atom-Table Handle
You must obtain a handle of an atom table before performing any atom-manager
operations. To obtain a handle of the system atom table, call the Win Query­
SystemAtomTable function. To create your own atom table, call the WinCreate­
AtomTable function. The atom-table handle returned by either of these calls
must be used for all other atom-manager functions.

Chapter 55: Atom Tables 711
!igHlil1ji~!IfiJlf.~!i§m!li!iIi;'!iii;~lilialmff!mi~"'~lm!!ii1ii5iif13il~iSiij!m!iit~1i5ii1!P.i!r~1mii9i!~!'~~~~!~Iiit~~liIiHiiiilfalltiiltil!fi1ifjJi

55.3.2 Creating an Atom
To create an atom you call the WinAddAtom function, passing an atom-table
handle and a pointer to an atom string. The atom manager searches the specified
atom table for an occurrence of the atom string. If the string already resides in
the atom table, its use count is incremented and the corresponding atom is
returned to the caller. Repeated calls to add the same atom string return the
same atom. If the atom string does not exist in the table when WinAddAtom is
called, the string is added to the table, its use count is set to one, and a new
atom is returned.

Atom strings can be specified by using a far pointer that can be interpreted in
one of the following four ways:

Format

"!",atom

#ddddd

long word: FFFF(high word)

string atom name

Description

The pointer is to a. string in which the
atom is passed indirectly, as a value.

The pointer is to an integer atom
specified as a decimal string.

The atom is passed directly in the low
word of the pszAtomName parameter
of the WinAddAtom function. This
format is used extensively by MS OS/2
to add predefined window classes and
window messages to the system atom
table. By adding the atoms as integers,
the value of the atoms for these mes­
sages can be determined before com­
piling and included as constants in the
MS OS/2 header files.

The pointer is to a string atom name.
This. is the pointer format most often
used by applications to add an atom
string to an atom table and receive an
atom in return.

The "!",atom and long word: FFFF(high word) formats areuseful when incre­
menting the use count. of an existing atom for which the original atom string is
not known. For example, the system clipboard manager uses the long word:
FFFF(high word) format to increment the use count of each clipboard-format
atom when that format is placed on the clipboard. By using this format, the
atom is not destroyed even if the original user of the atom deletes the atom,
because the use count still shows that the clipboard is using the atom.

55.3.2.1 Creating a Unique Window-Message Atom
System-defined window messages are identified by word-length constants in the
range zero through OxlOOO (~USER). An application that defines its own
window messages can use ~USER and higher values as long as it sends those
messages only to itself. If an application sends its own window messages to other
applications, either directly or by calling the WinBroadcastMsg function, it must
add its message identifiers to the system atom table to obtain a message identifier
that is unique for the entire system.

712 MS OS/2 Programmer's Reference, Vol. 1
I!lmJ.fi~£tii~ii!niimi!Siifsiij;!OOaa.!:ii.Jijm;~I1f~ll~Iif~~I§!!E!~iimi~;tliiiMi!~Ji!1i§im~1Jiet~;lH~mlmlfdmiU!Bimi3mm,~i~fffiii~~1f:fil1

Typically, an application registers its own window-message types with the system
atom table only if those types are likely to be recognized by other applications.
For e~ample, two applications might communicate with each other with an
agreed-upon message that is not defined by the system. These applications
must use the same string identifier for the shared message type-for example,
OURJ.,INICMESSAGE. Each time the applications run, they add this string to
the system atom table and receive an atom in return. Because both applications
register the same string in the system atom table, they both receive the same
atom. This atom can then be used to identify the message without conflicting
with other system-wide message identifiers.

A consequence of using atoms to identify a window message is that the message
cannot be decoded as a C-Ianguage case statement, as is typically done, because
the value of the atom cannot be known until run time. For example, typical
window-procedure code is similar to the following code fragment:

/* This procedure does not work for interapplication messages. */

switch (usMessage) {

}

case WM_PAINT:
hps = WinBeginPaint(hwnd, NULL, &rect);
WihFillRect(hpsi &rect, CLR_WHITE);
WinEndPaint(hps);
return OL;

return (WinDefWindowProc(hwnd, usMessage, mpl, mp2»;

Each case statement for a message uses a constant value to identify the message.
This is not possible for messages registered with the atom manager at run time,
since these messages cannot be determined at compile time and cannot be used
in case statements. Instead, you must add a default case that checks the value of
the message against. the value of the atoms you have registered, as shown in the
following code fragment:

switch (usMessage) {

}

case WM_PAINT:
hps = WinBeginPaint(hwnd, NULL, &rect);
WinFillRect(hps, &rect, CLR_WHITE);
WinEndPaint(hps) ;
return OL;

default:
if (usMessage == usMessageAtom)

return DoOurMessage(...);
break;

return (WinDefWindowProc(hwnd, usMessage, mpl, mp2»;

55.3.2.2 Creating DDE Formats and a Unique Clipboard Format
The system defines sever3J. standard clipboard and DDE formats, identified by
word-length constants. Applications that define their own clipboard or DDE for­
mats must register those formats in the system atom table to avoid conflicting
with the predefined formats and any formats used by other applications.

An application must register any nonstandard clipboard format, even if the for­
mat is used only for cutting and pasting within the application. This is necessary
because numbering conflicts can occur among nonstandard clipboard formats,
since all formats on the clipboard are always available to all applications in the
system. All nonstandard DDE formats must be registered in the system atom
table, since they are always used by more than one application.

Chapter 55: Atom Tables 713
~l§1!!;~~~i21;;fmi;~j!Ei§E:5i~~l~iir:~immi;m~lImUi!!!im~1~li!~~m~~!iIf:!in§fam~si~~~Rf~ifiU~IS!!f:!!if~~i!!~"llii

All applic~tions that share a clipboard or DDE format must use the same string
to identify the format. Each application adds the common atom string to the sys­
tem atom table and uses the resulting atom when using the clipboard or DDE
functions. All applications receive the same atom from the system atom table;
there is no conflict with other formats that are registered with the system atom
table.

55.3.3 Deleting an Atom
When an application is finished using an atom, it should call the WinDeleteAtom
function. This function reduces the atom's use count by one. If the use count is
greater than zero, the atom remains in the atom table, since other processes are
still accessing the atom. WinDeleteAtom removes an atom from the atom table
only if the use count is zero.

55.4 Summary
The following functions are associated with atom tables:

WinAddAtom Adds an atom string to an atom table, returning an atom. If the
atom string exists in the table, the atom's use count is increased by one.

WinCreateAtomTable Creates a new atom table of a specified size and returns
its handle.

WinDeleteAtom Reduces the use count of an atom by one. When the use count
reaches zero, the atom is removed from the atom table.

WinDestroyAtomTable Reduces the use count of an atom table by one. When
the use count reaches zero, the atom table is deleted.

WinFindAtom Finds an atom string in an atom table and returns an atom.

WinQueryAtomLength Returns the length of the atom string associated with
the specified atom. This function allows an application to determine the size of
the buffer to pass to the WinQueryAtomName function.

WinQueryAtomName Retrieves the atom string associated with the specified
atom.

WinQueryAtomUsage Returns an atom's use count.

WinQuerySystemAtomTable Returns the handle of the system atom table.

Chapter

56

System Information
56.1 Introduction.. 717

56.2 About System Information........... 717
56.2.1 The MS OS/2 Initialization File.. 717
56.2.2 The Shell ... 718

56.2.2.1 The Program List.................................. 718
56.2.2.2 The Switch List.................................... 719

56.2.3 System Colors and Values.................................. 719
56.2.3.1 System Colors..................................... 719
56.2.3.2 System Values 721

56.3 Using System Information ... 724
56.3.1 The MS OS/2 Initialization File 725
56.3.2 The Shell ... 726
56.3.3 System Colors ... 727
56.3.4 System Values ... 728

56.4 Summary .. 729
56.4.1 The MS OS/2 Initialization File 729
56.4.2 The Shell... 730
56.4.3 System Colors and Values.................................. 730

56.4.3.1 Functions... 730
56.4.3.2 Messages... 731

Chapter 56: System Information 717
lil§lili~~!!~i~I~!ft.:~J;;;~Il~l~:rum!~!~!~i~!tijs!~~llmlgj!§l!~lmam!~ll!!~.Jtit!If:i§l~li!~si~Il!W~~miiru~'~n~~~lii!m1~Iifz~~~:

56.1 Introduction
This chapter describes the portions of MS OS/2 that let you work with the MS
OS/2 initialization file, os2.ini, that let you add applications to the switch list in
Task Manager and to the program list in Start Programs, and that let you set
colors for and retrieve information about the Presentation Manager session. You
should also be familiar with the following topics:

• The file system
• Windows and window components

• Color

56.2 About System Information
The following sections describe the methods used to set and retrieve system
information.

56.2.1 The MS OS/2 Initialization File
The os2.ini file contains configuration information for both MS OS/2 and indivi­
dual applications. MS OS/2 uses information in the file to initialize the Presenta­
tion Manager session when it starts. An application can use the information to
initialize its windows and data when it starts.

The os2.ini file is a binary file, so the user cannot view or edit it directly. The file
consists of one or more sections, each section containing one or more settings,
or keys. Each key consists of two parts: a name and a value. Both section and
key names are null-terminated strings. A key value can be a null-terminated
string, a null-terminated string representing a signed integer, or individual bytes
of data.

Each section must have a unique name, and within a section, each key must
have a unique name. The file can contain up to 6120 sections, with 120 sections
reserved for the system. Each section can contain up to 6120 keys.

Section names and key names are each limited to 1024 bytes, including a
required terminating null character. Although section names and key names are
typically composed of ASCII characters in the range 0 through 255, they can
actually be any null-terminated sequence of bytes. Each key value is limited to
65,535 bytes. Individual bytes can have any value, including zero. Thus, key
values can contain any sort of binary data, including but not limited to null­
terminated character strings.

The following is an example of the PM_Colors section. It shows the key names
and values stored by Control Panel for system colors:

PM_Colors
Background = 138 117 202
AppWorkspace = 244 170 181
Window = 128 128 128
WindowText = 0 0 0
WindowStaticText = 0 0 127
Menu = 128 128 128
MenuText = 128 0 0
ActiveTitle = 255 213 138
InactiveTitle = 47 47 47

718 MS OS/2 Programmer's Reference, Vol. 1
;iinI1f~!ilim~§!iH~!~I~imH.Utiljj~~~i1Sfi"iit~im~i!l!iU!jm!mi~~~H~lmf!i§~iir~~~m~i'Fj~~~.'~l!i~=Uir.~IP.D~~[zfmlsw.lJtiS~.l!!imli~2

TitleText = 0 128 128
ActiveBorder = 0 0 0
InactiveBorder = 186 48 170
WindowFrame = 0 0 0
Scrollbar = 48 48 58
HelpBackground = 255 255 255
HelpText = 0 0 127
HelpHilite = 0 127 127

Several sections of os2.ini are maintained by the system. The names of these
system sections begin with the characters PM, as in the preceding example,
PM.-Colors. Specific applications can add additional sections to os2.ini. The
application name should be part of the section name.

Several of the os2.ini functions can be used to enumerate all of the os2.ini sec­
tion names or all of a particular section's key names. These functions copy the
section names to a buffer that the application supplies. The names are copied as
a consecutive series of null-terminated character strings, the last string marked
with an additional null byte.

56.2.2 The Shell
The Start Programs and Task Manager applications let users start and control
applications. The user uses the Start Programs window to start applications
listed in the program list and uses the Task Manager window to switch between
and terminate processes listed in the switch list. The program list contains the
titles of installed applications, organized in groups, and provides the information
the system needs to start those applications. The switch list contains a list of
currently running processes and provides the information the system needs to
switch between and terminate processes.

Both the program list and the switch list are accessible from an application. Typ­
ically, though, an application interacts with the switch list and leaves program­
list operations to the user.

56.2.2.1 The Program List

Start Programs maintains the program list, which is divided into groups. The
root group, known to the user as the Main Group, is the first group displayed
when Start Programs starts. It is specified in shell functions with the group­
handle constant SGILROOT.

Applications can create new groups for the program list, add applications to the
list, and retrieve information about applications in the list by using the Win­
CreateGroup, WinAddProgram, WinQueryDefinition, and WinQueryProgram­
Titles functions. Users can also change and delete applications from the program
list, but applications cannot.

When you use these function to create a group or add an application, the func­
tions return a unique program-list handle. The handle is used in all subsequent
shell functions to identify the group or application.

To add an application to the program list, the application must fill a program­
information-block (PIBSTRUCT) structure with information the program list
needs about an application, including a program title, a path and filename for
the executable file, a default directory, and startup parameters. A pointer to the
PIBSTRUCT structure is passed as a WinAddProgram parameter.

Chapter 56: System Information 719
~~Ii!i~~~i~i~f~rtiFjli!§&J~iiiimliF:!i!!~immi~!!~llmiHi!§lm~im~~~ll!~.mI!!lf:iinifiiil~si~Il!W~~fif~lm~~~!iif!m~§fz~~mI~

The XYWINSIZE structure, used in PIBSTRUCT, is a window-size structure.
It specifies the initial size and position of an application's main window. It also
includes a state variable that can be used to set the window to a minimized, max­
imized, invisible, or normal state, as well as to specify whether the window
closes automatically when the application terminates.

An application can use the WinQueryProgramTitles function to retrieve infor­
mation about an application or group in the program list. This function copies
the information to an array of PROGRAMENTRY structures.

56.2.2.2 The Switch List
Task Manager maintains a list of current processes, or tasks. This list is called
the switch list. An application should register with the switch list before entering
its main message loop. Task Manager displays current switch-list tasks to the
user. After an application registers with the switch list, a title string representing
the task appears in the Task Manager window.

To avoid confusion, an application's switch-list title string should match the
string that appears in its main window's title bar. If an application changes its
main window's title bar string during operation-for example, to append the
name of an open file-it should change its switch-list entry as well by using the
WinChangeSwitchEntry function.

56.2.3 System Colors and Values
MS OS/2 provides system-wide values that an application can use to help deter­
mine the color and dimensions of windows and other objects it draws in its
client area. These values are also used by frame windows to set the colors and
sizes for title bars, scroll bars, sizing borders, and other frame controls and ele­
ments associated with a frame window.

If an application changes the system colors and values, the change affects all
applications.

56.2.3.1 System Colors

The system colors are a set of colors that MS OS/2 uses to draw windows. The
system colors are associated with the elements of the Presentation Manager ses­
sion, such as the desktop, title bars, scroll bars, text, and window background.
Typically, the system sets the colors of these elements to default values when it
first starts. The user can change the values at any time by using the Control
Panel application. Any changes the user makes to the system colors are written
to both the system logical color table and the os2.ini file. Applications can use
the system color values to draw elements in their own client windows.

MS OS/2 maintains 17 system colors. A set of symbolic constants, defined in the
MS OS/2 include files identifies these colors. These symbolic constants have the
prefix SYSCLR and can be used like other color indexes when an application
draws in a client window. The following list gives the SYSCLR constants and
their meanings:

720 MS OS/2 Programmer's Reference, Vol. 1
!~~f~!~iiifii1§!§j~j~1~i~l~iiJi~illli&'i"~!l~i~!iajm:f~ifi!!~[iin~OOl!~~!S~~~m~J~;k~!:.;1.~I~~~~l~~mi~~[~liUii~'!!s!i!l!i!l~

Value

SYSCLR-BACKGROUND

SYSCLR_ WINDOWFRAME

SYSCL~TITLETEXT

SYSCL~ACTIVETITLE

SYSCLRJNACTIVETITLE

SYSCL~ENUTEXT

SYSCLR.-MENU

SYSCL~ WINDOWTEXT

SYSCL~ WINDOWSTATICTEXT

SYSCL~ WINDOW

SYSCL~PPWORKSPACE

SYSCL~SCROLLBAR

SYSCL~CTIVEBORDER

SYSCLRJNACTIVEBORDER

SYSCLRJIELPTEXT

SYSCLRJIELPHILITE

SYSCLR~ELPBACKGROUND

Meaning

Desktop background

Window frame

Title-bar text

Active window title-bar back­
ground

Inactive window title-bar back­
ground

Menu text

Menu background

Window text

Window static text

Window background

Multiple-document-interface
window background

Scroll-bar shaft

Active border

Inactive border

Help-window text

Help-window highlighted text

Help-window background

The system stores system-color data in the P~Colors section of the os2.ini file.
Each system color has a key in that section. Each key value is an ASCII string
of three integer values in the range 0 through 255, separated by spaces. The
integers represent the red, green, and blue components of an RGB color value,
in that order.

An application can query and set system colors by using the WinQuerySysColor
and WinSetSysColors functions. Changes made with WinSetSysColors are not
permanent, since they are not written to the P~Colors section of the os2.ini
file. To make permanent system-colQr changes, you must explicitly write to the
P~Colors section of the os2.ini file by using the WinWriteProfileString and
WinWriteProfileData functions. Remember that changes in the system colors
affect all applications.

MS OS/2 specifies colors with 24 bits of red-green-blue intensity information,
8 bits for each color. An intensity value can be any value in the range 0 through
255. The 3 bytes are packed into a 4-byte long integer; the fourth byte is cur­
rently unused. Although a device may be capable of producing many colors, it
typically does not give access to all colors at all times. Instead, it gives access to
the number of colors that can fit in an array called the physical palette. Each
system-color index maps to one of the entries in the physical palette. When an

Chapter 56: System Information 721
~imlffijf~I§~ffi!~liijiif~~I~!lfL'ffli~lmtf!ji!~§f!~tiBii~!i!ii!iIm:ilr.i~ii!mnfiiiiil~!iUSi~iiij;~!mffllmiiID!mmlli!jI§ii~i5liii~~~iffllffilml~!ii!~

application changes a system color, it specifies a new RGB value. The system
then finds the closest matching color in the physical palette and maps the
corresponding system-color index to the new palette entry. How closely the new
color matches the color the application requested depends on the current con­
tents of the physical palette.

When an application changes the current system colors by using the WinSetSys­
Colors function, that function sends a ~SYSCOLORCHANGE message to
all top-level windows. In addition, it invalidates the desktop window, triggering
redrawing of all windows. If color variables in your application are based on the
system colors, you can process the ~SYSCOLORCHANGE message and
adjust them.

56.2.3.2 System Values
The system values, maintained by MS OS/2, determine various system attributes
that affect the appearance and behavior of elements of the system. These system
values can be read and changed by an application.

The system values are referred to with predefined constants that have the prefix
SV. The following list shows the system-value constants:

Value

SV _CMOUSEBUTTONS

SV ~OUSEPRESENT

SV J)BLCLKTIME

SV _CXSIZEBORDER

Meaning

Specifies the number of mouse buttons:
1, 2, or 3.

Specifies whether the mouse is present.
A value of TRUE means the mouse is
present.

Specifies if the mouse buttons are
swapped. TRUE if mouse buttons are
swapped.

Specifies the mouse double-click horizon­
tal spacing. The horizontal spatial
requirement for considering two mouse
clicks a double-click is met if the hor­
izontal distance between two mouse
clicks is less than this value.

Specifies the mouse double-click vertical
spacing. The vertical spatial requirement
for considering two mouse clicks a
double-click is met if the vertical distance
between two mouse clicks is less than
this value.

Specifies the mouse double-click time in
milliseconds. The temporal requirement
for considering two mouse clicks a
double-click is met if the time between
two mouse clicks is less than this value.

Specifies the count of pels along the
x-axis in the left and right parts of a win­
dow sizing border.

722 MS OS/2 Programmer's Reference, Vol. 1
Qfriler~iiirSliili!~~li1i_~~!~~Hk:~~imlliU~1ili1limifiii6!mi~ffi1;!lj\I!iir!fJm!f!il~~{~s~~mi~il:~m~~iiu'i~~ruiiJ1!fft~IH

Value

SV~LARM

SV YIRSTSCROLLRATE

SV _SCROLLRATE

SV _NUMBERED LISTS

SV ~RRORFREQ

SV ~RRORDURATION

SV _NOTEDURATION

Meaning

Specifies the count of pels along the
y-axis in the top and bottom sections of a
window sizing border.

Specifies whether calls to WinAlarm gen­
erate a sound. A value of TRUE means
sound is generated.

Specifies the cursor blinking rate in mil­
liseconds. The blinking rate is the time
that the cursor remains visible or invisi­
ble. Twice this value is the length of a
complete cursor visible/invisible cycle.

Specifies the delay (in milliseconds) until
scroll bar autorepeat activity begins when
the mouse is held down on a scroll bar
arrow or within a scroll bar.

Specifies the delay (in milliseconds)
between scroll bar autorepeat events.

Reserved.

Specifies the frequency (in cycles per
second) of a WinAlann W A-ERROR
sound.

Specifies the frequency (in cycles per
second) of a WinAlarm W ~NOTE
sound.

Specifies the frequency (in cycles per
second) of a WinAlann W ~ WARNING
sound.

Specifies the duration (in milliseconds) of
a WinAlarm W A-ERROR sound.

Specifies the duration (in milliseconds) of
a WinAlann W~NOTE sound.

SV_WARNINGDURATION Specifies the duration (in milliseconds) of
a WinAlarm W~WARNING sound.

Specifies the count of pels along the
screen's x-axis.

Specifies the count of pels along the
screen's y-axis.

Specifies the count of pels along the
x-axis of a vertical scroll bar.

Specifies the count of pels along the
y-axis of a horizontal scroll bar.

Chapter 56: System Information 723
w.m~~!mi~~~~UMt~~lmShI§~If!i~I~Uiltij~iit!miilf!Ufljruliji~I~!~i!5m;iJm~ff.~t!ffifr.ij!~miii1j~~~i5SlU~em~iifiii;;i~n~'ili~t~iiftitifji5!1

Value Meaning

SV _CXHSCROLLARROW Specifies the count of pels along the
x-axis of a horizontal scroll-bar arrow.

SV _CYVSCROLLARROW Specifies the count of pels along the
y-axis of a vertical scroll-bar arrow.

SV _C:XBORDER Specifies the count of pels along the
x-axis of a window border.

SV _CYBORDER Specifies the count of pels along the
y-axis of a window border.

SV _CXDLGFRAME Specifies the count of pels along the
x-axis of a dialog frame.

SV _CYDLGFRAME Specifies the count of pels along the
y-axis of a dialog frame.

SV _CYTITLEBAR Specifies the count of pels along the
y-axis of a title-bar window.

SV _CXHSLIDER Specifies the count of pels along the
x-axis of a horizontal scroll-bar slider.

SV _CYVSLIDER Specifies the count of pels along the
y-axis of a vertical scroll-bar slider.

SV _CXMINMAXBUTTON Specifies the width (in pels) of a
minimize/maximize button.

SV _CYMINMAXBUTTON Specifies the height (in pels) of a
minimize/maximize button.

SV _CYMENU Specifies the height (in pels) of a menu.

SV _C:XFULLSCREEN Specifies the count of pels along the
x-axis of a maximized frame window's
client window.

SV _CYFULLSCREEN Specifies the count of pels along the
y-axis of a maximized frame window's
client window.

SV _CXICON Specifies the count of pels along an
icon's x-axis.

SV _CYICON Specifies the count of pels along an
icon's y-axis.

SV _C:XPOINTER Specifies the count of pels along the
mouse pointer's x-axis.

SV _CYPOINTER Specifies the count of pels along the
mouse pointer's y-axis.

SV ~EBUG Reserved.

SV _CURSORLEVEL Specifies the cursor display count. The
cursor is visible only when the display
count is zero.

724 MS OS/2 Programmer's Reference, Vol. 1 ,
r:Wl~~§li~ltffi~~lim~~iSf:~fliiif~;ii~-e!"jliil~i~!~l~Pjiii§i~i~~!Ul!j~~'F:li~~f1lj;i~!!;1~~~~i!a~ru!iilm~f-~iiifil5i~JU'lii~~rn

Value

SV YOINTERLEVEL

SV_TRACKRECTLEVEL

SV_CTIMERS

SV _C:XBYTEALIGN

Meaning

Specifies the mouse-pointer display
count. The mouse is visible only when
the display count is zero.

Specifies the tracking rectangle display
count. The tracking rectangle is visible
only when the display count is zero.

Specifies the number of available timers.

Set by a device driver at initialization
time to indicate any horizontal alignment
that is more efficient for the driver.

Set by a device driver at initialization
time to indicate any vertical alignment
that is more efficient for the driver.

Specifies the number of system values.

The WinQuerySysValue function lets you read a system value, and the Win Set­
Sys Value function lets you set a system value. Both functions specify the target
system value with a system-value constant.

Setting a system value with WinSetSysValue does just that, and no more. Active
processes are not automatically notified of the change. For example, if an appli­
cation changes the dimensions of frame-window sizing borders by resetting
SV _CXSIZEBORDER and SV _CYSIZEBORDER, currently existing frame
windows do not automatically reflect the change. An application must send a
~SYSV ALUECHANGED message to notify other processes of a change to
a system value. An application that relies on system values should either read
them each time they are used or process W~SYSVALUECHANGED
messages.

When the system starts, the system values are set to default values embedded in
the system code. With a few exceptions, the system does not store system values
in the os2.ini file, so any changes that you make to system values are lost when
the system shuts down.

The system values stored in os2.ini by Control Panel are SV _CXBORDER,
SV _CYBORDER, SV _CURSORRATE, SV -ALARM and
SV ~BLCLKTIME. These values are kept in the P1LControlPanel section
under the key names BorderWidth, CursorBlinkRate, and DoubleClickSpeed.

System-Value Data Types
For convenience, WinQuerySysValue and WinSetSysValue pass system values as
long integers. However, many system values are actually short integers, and oth­
ers are Boolean values. Each of these types can be cast to and from a long
integer without losing data.

56.3 Using System Information
The following sections describe some specific ways to use MS OS/2 functions in
your applications to change or retrieve system information.

Chapter 56: System Information 725
ei~r:i6i!iillr;iifiiifr:i~irJ:I~m'~fF.i~$I~lir~!iij:~li~iili\~.m~;mmfli~w.Ii!I~eJli~HiiI~iruiim~iiU~iiim~iaiii\~!~~;mJ!~iW~~I!£rdf!ii~m!S!~~

56.3.1 The MS OS/2 Initialization File
You can read and write'integers, strings, and binary data from the os2.ini file.
You can also create new sections and keys and delete existing sections and keys.
Since writing to the file can affect other applications, you should use care when
changing and deleting values.

You can determine the size of a specific value by using the WinQueryProfile­
Size function. The function returns the size, in bytes, of the value corresponding
to the given key name. This information is useful for allocating a buffer large
enough to read in a key value. Once you know the size of the key value, you can
read it by using the WinQueryProfileData function. The following code fragment
reads the Window color value from the PM.-Color section of the os2.ini file:

USHORT eb;
NPBYTE npb;

WinQueryProfileSize(hab. "PM_Color". "Window". &eb);
npb = WinAllocMem(hOurHeap. eb);
WinQueryProfileData (hab. "PM_Color". "Window". npb. &cb);

You can retrieve an integer from the initialization file by using the Win Query­
Profilelnt function, as shown in the following code fragment. The function
assumes that the key-value data is a null-terminated character string representing
an integer value in the range - 32,768 through 32,767 (for example, strings like
"12367" and "- 5438").

sValue = WinQueryProfilelnt(hab. "MySeetion". "MyKey". 0);

You can retrieve a null-terminated string from the initialization file by using the
WinQueryProfileString function, as shown in the following code fragment:

CHAR aeh[80];

WinQueryProfileString(hab. "MySeetion". "MyKey". NULL. aeh. 80);

You can also retrieve a list of the section names in the os2.ini file by using the
WinQueryProfileString function, specifying NULL for the section and key
names. The function copies all the section names to the specified buffer. Each
section name is null-terminated, and there is an extra null character at the end of
the list. The following code fragment retrieves a list of section names:

CHAR achSectionNames[1024];

WinQueryProfileString(hab. NULL. NULL. NULL, aehSeetionNames. 1024);

Once you have a list of section names, you can use the names to generate a list
of keys for a section name. To list the key names, you choose the section name
and set the key name to NULL, as shown in the following code fragment:

CHAR aehKeyNames[1024];

WinQueryProfileString(hab. "MySeetion". NULL. NULL. aehKeyNames. 1024);

You can write values to an existing key name by using the Win WriteProfileString
or Win WriteProfileData function. The following code fragment stores an integer
as a null-terminated string:

WinWriteProfileString(hab. "MySeetion". "MyKey". "123");

726 MS OS/2 Programmer's Reference, Vol. 1
!im~f~1Jm~~liiflSfi"iif.1l¥ffiiiEii!i!5i!Sii[f.i~~m;Hiiii!!lW:f~!ftUi!!F:!~1ii!iijnii~liiiiiiil~~~~~li.~mf~~~Wii!iifi!..i!1=ml!ii¥.m!!i;l§~U!~iifi;iiiJ~!

Note Some users may change the file attribute of the os2.ini file to read-only. If so, you
will need to change the attribute before writing to the file.

You can create a new key or a new section and key by using the Win Write­
Profile String or WinWriteProfileData function. If the key you specify is not in
the given section, or if the section does not exist, these functions create new
entries. For example, the following code fragment creates a new key entry in
MySection:

WinWriteProfileString(hab. ~MySection". "MyNewKey". "123");

You can also delete an existing key by using the Win WriteProfileString or Win­
WriteProfileData function. In this case, you specify NULL for the key value, as
shown in the following code fragment. The function deletes the existing key
value, effectively deleting the entry.

WinWriteProfileString(hab. "MySection". "MyKey". NULL);

Note that this is different from setting the key value to a single zero byte, as
would happen if an application called Win Write Profile String with a pointer to an
empty string.

You can delete all keys in a particular os2.ini section by invoking the WinWrite­
ProfileString or Win WriteProfileData function with the key name set to NULL,
as shown in the following code fragment:

WinWriteProfileString(hab. "MySection". NULL. NULL);

56.3.2 The Shell
Most applications use the FCF _ T ASKLIST style when creating their main win­
dows. This style automatically adds the application to the switch list. For those
applications that do not use the FCF _TASKLIST style, you can use the shell
functions to add the application to the list.

You can add a program to the switch list by using the WinAddSwitchEntry func­
tion. Before calling the function, you must fill the fields of a SWCNTRL struc­
ture. The following code fragment adds the program named My Application to
the switch list:

SWCNTRL swctl;
PID pid;
TID tid ;
HSWITCH hsw;

/* Obtain the process and thread identifiers. */

WinQueryWindowProcess(hwnd. &pid. &tid);

/* Fill in the switch-control data structure. */

swctl.hwnd = hwnd;
swctl.hwndlcon = (HWND) WinSendMsg(hwnd. WM_QUERYICON. NULL. NULL);
swctl.hprog = (HPROGRAM) NULL;
swctl.idProcess = pid;
swct 1. idSession = NULL; .
swctl.uchVisibility = SWL_VISIBLE;
swctl.fbJump = SWL_JUMPABLE;
strcpy(swctl.szSwtitle. "My Application");

hsw = WinAddSwitchEntry(&swctl);

Chapter 56: System Information 727
~!i~i!!!~~i!l!imn!i~U§lil~1Um!~m~i§ruiU~iie!i~~!a!~tm~iWEaitm~_lrei5iilii!i~~n~!1~~I!§imm.!i~l~i~~~;~5~WlJi~iiili!mlmi~lit~m!1!i

You can use the switch-list handle returned by WinAddSwitchEntry to change
the switch-list entry. For example, you can add the name of the file your applica­
tion currently has open by using the WinChangeSwitchEntry function and speci­
fying the switch-list handle, as shown in the following code fragment. You must
fill a SWCNTRL structure or use the structure you used to create the switch-list
entry.

CHAR szCurrentFile[128];
SWCNTRL swctl;
HSWITCH hsw;

/* buffer for current filename */
/* switch-control structure */
/* switch-list handle */

strcpy(swctl.szSwtitle, liMy Application: ");
strcat(swctl.szSwtitle, szCurrentFile);

WinChangeSwitchEntry(hsw, &swctl);

You can remove the switch-list entry for your application by using the Win­
RemoveSwitchEntry function.

56.3.3 System Colors
You can use a system color for elements of your own client window. Many appli­
cations use the application workspace color as the color for the client-window
background. To use this color, you simply use the SYSCLR...APPWORKSP ACE
index when filling the client window. The following code fragment shows how
this is done:

LONG iAWSColor = SYSCLR_APPWORKSPACE;
RECTL rcl;

case WM_PAINT:
hps = WinBeginPaint(hwnd, NULL, &rcl);
WinFillRect(hps, &rcl, iAWSColor);
WinEndPaint(hps) ;
return (OL);

You can use the WinQuerySysColor function to retrieve the RGB color value
for a system color, as shown in the following code fragment. This information is
useful if you want to apply the color to another color index or change the color
in some way.

COLOR clr;

clr = WinQuerySysColor(HWND_DESKTOP, SYSCLR_APPWORKSPACE, OL);

You can use the WinSetSysColors function to set a system color. The following
code fragment inverts the application workspace color for all applications in the
system:

COLOR clr;

clr = -WinQuerySysColor(HWND_DESKTOP, SYSCLR_APPWORKSPACE, OL)
& OxOOFFFFFF;

WinSetSysColors(HWND_DESKTOP, OL, LCOLF_CONSECRGB,
SYSCLR_APPWORKSPACE, lL, &clr);

You can also use the WinSetSysColors function to set several system colors at
once. As with the GpiCreateLogColorTable function, there are two ways to
specify the RGB values: as an array of consecutive RGB values or as an array of
system-color and index RGB-value pairs. The first method is useful when you

728 MS OS/2 Programmer's Reference, Vol. 1
Ib"5u!"~~iitmim1§i~iatr.!rnml!im'~~!iiti~~tif:im'~"IiJi!!t!~jL.~iIDi!~;gUfi!tlm:;~m~i~ji!Illii\I§!i~!L~~Illif1~iiiil~~ai~n§iffiml~~miw.im\~!i

want to set the entire group of system colors or any consecutive subset. The
second method is useful when you want to set nonconsecutive subsets of the sys­
tem colors. The following code fragment sets the system colors using a consecu­
tive array of RGB values:

COLOR aclr[SYSCLR_CSYSCOLORS];

aclr[O]
aclr[1]
aclr[2]
aclr[3]
aclr [4]
aclr[S]

OxOOE'E'0020L;
Ox00767676L;
Ox001AlA1AL;
Ox003ABA3AL;
OxOOFFFFFFL;
OxOOOOFFE'E'L;

WinSetSysColors(
HWND_DESKTOP,
OL,
LCOLF_CONSECRGB,
SYSCLR_WINDOWSTATICTEXT,
6L,
aclr) ;

/* desktop window */
/* color options */
/* consecutive RGB values */
/* start with window static text */
/* six elements in the array */
/* array of color values */

The following code fragment inverts the colors for the background, active bor­
der, and active title bar. It sets the colors using index-RGB pairs. Note that the
WinSetSysColors eelr parameter is set to count the number of values passed
using the pelr parameter, which is exactly twice the number of system colors
being set. Note also that the high byte of an RGB color value must be cleared to
zero.

SHORT i;
COLOR aclrlndexRgb[6] = { SYSCLR_BACKGROUND, 0, SYSCLR_ACTIVEBORDER, 0,

SYSCLR_ACTIVETITLE, 0 };

for (i = 0; i < 6; i += 2)
aclrlndexRgb[i + 1] = NWinQuerySysColor(HWND_DESKTOP,

aclrlndexRgb[i], OL) & OxOOE'E'E'E'E'E';

WinSetSysColors(HWND_DESKTOP, OL, LCOLE'_INDRGB, OL, 6L, aclrlndexRgb);

You can reset the system colors to their default values by calling the WinSetSys­
Colors function with the jlOptions parameter set to LCOL-.RESET, as shown in
the following code fragment:

WinSetSysColors(HWND_DESKTOP, LCOL_RESET, OL, OL, OL, NULL);

56.3.4 System Values
You can retrieve a system value by using the WinQuerySys Value function. The
function always returns a 32-bit value, even if the system value is smaller. You
can cast the function result to a more appropriate type. The following code frag­
ment shows two examples of the WinQuerySys Value function:

SHORT cxSizeBorder;
BOOL fRightButton;

/* Retrieve the width of a sizing-border vertical element. */

cxSizeBorder = (SHORT) WinQuerySysValue(HWND_DESKTOP, SV_CXSIZEBORDER);

/* Are the mouse buttons switched? */

fRightButton = (BOOL) WinQuerySysValue(HWND_DESKTOP, SV_SWAPBUTTON);

Chapter 56: System Information 729
~~li!llfi!fim!~W!1~.m!~r;~fID!f.iiiii~!:mffil;~~~li~1jtinij!1iU!i~!~!!!!if:!m;~!~tm~i1iHl§'"~mlt§it.iiii!IDii.~1i~imfEjliffii~mi;lif/~f~~II~i§~

You can set a system value by using the WinSetSysValue function, as shown in
the following code fragment. The value is passed as a long integer.

/* Play with the sizing border. */

WinSetSysValue (HWND_DESKTOP, SV_CXSIZEBORDER, lNewWidth);
WinSetSysValue (HWND_DESKTOP, SV_CYSIZEBORDER, lNewWidth);

You will usually follow such a call by sending the ~SYSV ALUECHANGED
message to the frame windows in the system. You can use the WinBroadcast­
Msg function to send the message, as shown in the following code fragment:

WinBroadcastMsg(

56.4 Summary

HWND_DESKTOP,
WM_SYSVALUECHANGED,
MPFROMSHORT(SV_CXSIZEBORDER),
MPFROMSHORT(SV_CYSIZEBORDER) ,
BMSG_FRAMEONLY I BMSG_SEND);

/* desktop window */
/* system value changed */
/* first system value */
/* last system value */
/* send to frame windows */

The following sections describe the MS OS/2 functions you can use to retrieve
and manage system information.

56.4.1 The MS OS/2 Initialization File
MS OS/2 provides the following initialization-file functions:

WinQueryProfileData Retrieves data from an os2.ini file as a stream of raw
bytes. The function retrieves data from key entry unless a key name or section
name is not given. If the names are not given, the function enumerates all the
section names or key names in the file.

WinQueryProfilelnt Retrieves ASCII-character-string data from an os2.ini key
value and converts it to a 2-byte signed integer. The key value is assumed to be a
number in the range -32,768 through 32,767, expressed as a null-terminated
character string.

WinQueryProfileSize Retrieves the size, in bytes, of an os2.ini key value. For
null-terminated strings, the size includes the terminal null character.

WinQueryProfileString Retrieves os2.ini key values, key names, and section
names. The function reads a key value unless a key name or section name is not
given. If the names are not given, the function enumerates all the section names
or key names in the file.

WinWriteProfileData Writes data to an os2.ini key entry unless a key name or
section name does not exist. If the names do not exist, tbe function creates a
new entry having the given section name and key name. If no key-value data is
given, the function deletes the specified entry.

Win Write Pro file String Writes a null-terminated string to an os2.ini key entry
unless a key name or section name does not exist. If the names do not exist, the
function creates a new entry having the given section name and key name. If no
key-value data is given, the function deletes the specified entry.

730 MS OS/2 Programmer's Reference, Vol. 1
m~ll!ijU.!!iFiii~~irmfJiiiffim!im~-mjmH!l1!.fi~!lf.Ii~~is~iiilj~!ifiiiiif:miiil!lli*~m~R~~JmlmjiiUtil~!mg~f~J~i!m~~:eii!~l!f!it!Si;g

56.4.2 The Shell
MS OSI2 provides the following shell functions:

WinAddProgram Adds an application to the programlist. The function returns
an HPROGRAM program handle, used to specify the application's program-list
entry in calls to the WinQueryDefinition and WinQueryProgramTitles functions.
Before calling WinAddProgram, an application must put meaningful data into at
least three fields of a PIBSTRUCT structure: progt, szTitle, and szExecutable.
The other fields, if not filled, should be set to zero.

WinAddSwitchEntry Adds a process to the switch list. An application should
do this after finishing other initialization activities, just before entering its main
message loop. The function takes a pointer to a SWCNTRL structure and
returns an HSWITCH switch-list-entry handle.

WinChangeSwitchEntry Changes a process's switch-list entry. An application
should do this when its main window's title-bar string changes, thereby keeping
its switch entry title accurate. An HSWITCH switch-list-entry handle, as
returned by the WinAddSwitchEntry function, specifies the target switch-list
entry.

WinCreateGroup Creates a program-list group. The function returns an
HPROGRAM group handle, used to specify the group in calls to the WinAdd­
Program, WinQueryDefinition, and WinQueryProgramTitles functions.

WinQueryDefinition Retrieves program-list information about an installed
application or program-list group. The function fills in the relevant fields of a
PIBSTRUCT structure.

WinQueryProgramTitles Obtains program-title information about one or more
installed applications or a program-list group. The function returns the informa­
tion in one or more PROGRAMENTRY structures.

WinQueryTaskTitle Retrieves the title under which a particular process is reg­
istered with the switch list. The process is specified by using the session identi­
fier. The system determines this value if you specify zero. The system returns the
title in a buffer whose size is specified by the function's third parameter.

WinRemoveSwitchEntry Removes a process's switch list ,entry. An application
should do this during its shutdown activities. An HSWITCH switch-list-entry
handle, as returned by the WinAddSwitchEntry function, specifies the target
switch-list entry.

56.4.3 System Colors and Values
MS OS/2 provides the following system-color and system-value functions and
messages:

56.4.3.1 Functions

An application can use the following functions to query and set system colors
and values:

WinQuerySysColor Retrieves the RGB value assigned to a particular system
color. The system color can be specified with a SYSCLR constant.

Chapter 56: System Information 731
t:!rri~UJ§i~ii§f~1~!~iiatYlililif:lm~illii~~h~!~i!rErn~~lr~1!p.~i~i!W~iW~imiiiiii!~Y~i~ii~~!1!!!it~~i~ill!1~~iI~~!f~~iimi§il~I~ii

WinQuerySysValue Retrieves a particular system value. The function returns
the system value, or OL if either the desktop-window or the system-value selector
parameter is invalid. Note that a system value might actually be OL, so it is
important to use valid parameters.

WinSetSysColors Sets one or more system colors. Function parameters are
similar to those of the GpiCreateLogColorTable function. You can set a single
color, a set of consecutive colors, or a set of nonconsecutive colors. Note that
the setting is not permanent-that is, when the machine is restarted, it reverts to
the system color values stored in the P~Colors section of the os2.ini file.

WinSetSysValue Sets a particular system value. The function returns TRUE if
you send it a valid system-value selector parameter , FALSE otherwise. In most
cases, you will follow this call by broadcasting a ~SYSV ALUECHANGED
message.

56.4.3.2 Messages
An application can use the following messages to query and set system colors
and values:

~SYSCOLORCHANGE Sent while the system is executing the WinSet­
SysColors function. An application that ties particular variables to the system
colors may want to process this message. The default window procedure and the
default frame-window procedure do nothing upon receipt of this message.

~SYSV ALUECHANGED Sent when one or more system values are
changed. The mpJ and mp2 parameters are SV values and together denote a con­
tiguous range of system values. If only one value has changed, the two parame­
ters are identical. A handler should return OL. The default window procedure
ignores this message. The frame-window procedure handles the message by
checking to see if the contiguous range includes SV _CXSIZEBORDER and
SV _CYSIZEBORDER. If so, it sends the window a ~SETBORDERSIZE
message so that it will adjust its sizing borders.

Index
A
Accelerator tables, 237-243
Advanced video 1/0, 647-657
Arc primitives, 425-437
Area primitives, 493-504
Atom table, 707-713

B
Base type, 10
Bitmap, 511-526
Bit mask, 39
B~CLICK, 165
B~LEA VEALONE, 473, 489
B~OR, 473
B~OVERPAINT, 473
B~QUERYCHECK, 165
B~QUERYCHECKINDEX, 165
B~QUERYHILITE, 165
B~SETCHECK, 88,165
B~SETDEFAULT, 165
B~SETHILITE, 165
B~XOR, 473
Button control, 157-168

C
Character primitives, 439-466
C language, 8, 40
Class, window, 91-98
Clipboard, 331-344
Clipping, 539-547
Color mode, 467-477
Command line, 37
Control

button, 157-168
entry-field, 169-178
list-box, 179-191
scroll-bar, 201-211
static, 193-199
title-bar, 151-155

Control window, 143-149
Coordinate space, 4Q3-423
CS_CLIPCIDLDREN, 95
CS_CLIPSIBLINGS, 95, 96
CS_FRAME, 95, 96
CSJIITTEST, 95, 96
CS_MOVENOTIFY, 64,94,95
CS_P ARENTCLIP, 95, 96
CS_PUBLIC, 95, 96, 97
CS_SA VEBITS, 95

CS_SIZEREDRAW, 65,95,96,
138

CS_SYNCPAINT, 55, 94, 95, 96,
268

Cursor, 295-299

D
Dev functions, 25
DevCloseDC, 273, 275, 397, 553,

554
DevEscape, 307, 312, 317
Device context, 391-401
Device monitor, 703-705
DevOpenDC, 273, 274, 275, 306,

307, 309, 313, 397, 421, 516,
519, 552, 554

DevPostDeviceModes, 307, 313, 314
DevQueryCaps, 310, 311, 316, 398,

471, 507, 652
Dialog window, 245-262
Dos functions, 25
DosAllocHuge, 35, 36, 605, 606,

607, 609
DosAllocSeg, 35, 36, 321, 322, 323,

329, 334, 604, 607, 609
DosAllocShrSeg, 608
DosBeep, 35, 42
DosBufReset, 35, 625
DosCallNmPipe, 681
DosCaseMap, 35, 36
DosChDir, 35, 624
DosChgFilePtr, 35, 625, 632
DosClose, 35, 520, 626, 629, 630,

634, 681, 687
DosCloseSem, 677
DosConnectNmPipe, 680, 681, 687
DosCreateCSAlias, 35, 36, 37, 610
DosCreateQueue, 682, 688
DosCreateSem, 677, 684
DosCreateThread, 597
DosCwait, 590, 594, 595
DosDelete, 35, 624
DosDevConfig, 35
DosDevlOCtl, 35, 36, 634
DosDisConnectNmPipe, 681, 687
DosDupHandle, 35, 626
DosErrClass, 35
DosError, 35, 36
DosExecPgm, 35, 36, 589, 593, 594,

595, 596

A-O 733

DosExit, 35, 36, 588, 595, 596, 597
DosExitList, 588, 596, 685
DosFileLocks, 35, 625
DosFindClose, 35, 624, 632
DosFindFirst, 35, 36, 624, 631, 632
DosFindNext, 35, 36, 624, 631, 632
DosFlagProcess, 679
DosFreeModule, 372, 620
DosFreeSeg, 35, 37, 329, 351, 592,

605, 606, 608, 610
DosFSRamSemClear, 685
DosGetCollate, 35, 37
DosFSRamSemRequest, 685
DosGetCp, 652
DosGetCtrylnfo, 35, 37
DosGetDateTime, 10, 35, 40
DosGetDBCSEv, 35, 37
DosGetEnv, 35, 39, 590
DosGetHugeShift, 35, 605, 606
DosGetlnfoSeg, 695
DosGetMachineMode, 35
DosGetMessage, 35, 37
DosGetModHandle, 620
DosGetModN ame, 620
DosGetPID, 598
DosGetProcAddr, 94, 620
DosGetPrty, 589, 598
DosGetSeg, 609
DosGetShrSeg, 608
DosGetVersion, 35
DosGiveSeg, 351, 609
DosHoldSignal, 35, 37, 686
DoslnsMessage, 35, 37
DosKillProcess, 595, 679
DosLoadModule, 94, 372, 373, 591,

620
DosLockSeg, 608
DosMakeN mPipe, 680, 687
DosMakePipe, 679, 680, 687
DosMemA vail, 606
DosMkDir, 35, 624
DosMonClose, 705
DosMonOpen, 705
DosMonRead, 705
DosMonReg, 705
DosMon Write, 705
DosMove, 35
DosMuxSemWait, 678, 682, 683
DosN ewSize, 35
DosOpen, 35, 37, 520, 625, 626,

627, 628, 631, 633, 680, 681, 688

734 O-G

DosOpenQueue, 688
DosOpenSem, 677, 683, 684 .
DosPeekNmPipe, 681
DosPeekQueue, 683
DosPTrace, 44
DosPurgeQueue, 683
DosPutMessage, 35, 38
DosQCurDir, 35, 624
DosQCurDisk, 35, 624
DosQFHandState, 35, 626
DosQFileInfo, 35, 624
DosQFileMode, 35, 624
DosQFSInfo, 35, 624
DosQHandType, 626
DosQNmPHandState, 682, 688
DosQNmPipeInfo, 682
DosQNmPipeSemState, 682
DosQVerify, 35
DosRead, 35, 38, 520, 625, 626,

628, 629, 630, 631, 632, 634,
670, 672, 679, 681, 687, 688

DosReadAsync, 625, 629
DosReadQueue, 592, 683, 689
DosReallocHuge, 35, 38, 606
DosReallocSeg, 35, 38, 605, 608,

610
DosResumeThread, 588, 598
DosRmDir, 35, 624
DosScanEnv, 40, 590
DosSearchPath, 590
DosSelectDisk, 35, 624
DosSelectSession, 591, 592
DosSemClear, 678, 684
DosSemRequest, 678
DosSemSet, 678, 684
DosSemSetWait, 678
DosSem Wait, 678, 682, 684, 685
DosSendSignal, 679
DosSetCp, 652
DosSetDateTime, 35
DosSetFHandState, 35, 38
DosSetFilelnfo, 35, 624
DosSetFileMode, 35, 624
DosSetFSInfo, 35, 624
DosSetMaxFH, 625
DosSetNmPHandState, 682
DosSetNmPipeSem, 682
DosSetPrty, 589, 592, 598
DosSetSession, 591, 592
DosSetSigHandler, 35, 38, 679, 686
DosSetVec, 35, 38
DosSet Verify, 35
DosSizeSeg, 605
DosSleep, 35, 598, 684, 695, 696
DosStartSession, 591, 592

DosStopSession, 591, 592
DosSubAlloc, 35, 610
DosSubFree, 35, 610
DosSubSet, 35, 609, 610
DosSuspendThread, 588, 598
DosTimerAsync, 696
DosTimerStart, 696
DosTimerStop, 696
DosTransactNmPipe, 681
DosUnlockSeg, 608
DosWaitNmPipe, 681
DosWrite, 31, 35, 41, 520, 616, 625,

626, 628, 629, 630, 631, 632,
634,640, 642, 679, 681, 687, 688

DosWriteAsync, 625, 629
DosWriteQueue, 683
Drawing, 263-286
Dynamic data exchange, 345-361
Dynamic linking, 23, 613-620

E
EM.-CLEAR, 176
EM.-COPY, 176
EM.-CUT, 176
EM.-MEMERROR, 176
EM.-P ASTE, 176
EM.-QUERYCHANGED, 176
EM.-QUERYFIRSTCHAR, 175
EM.-QUERYSEL, 173, 176
EM.-SETFIRSTCHAR, 175
EM.-SETSEL, 176, 262
EM.-SETTEXTLIMIT, 173, 176
EM.-TIMEOUT, 685
Entry-field control, 169-178

F
FAPI, 32
FCF_ACCELTABLE, 131, 133,

134, 241
FCF _BORDER, 130
FCF _DLGBORDER, 130
FCF _HORZSCROLL, 128, 130,

208
FCF_ICON, 131, 133, 134, 136
FCF-MAXBUTTON, 129,130
FCF_MENU, 128, 130, 131, 133,

134,222
FCF_MINBUTTON, 129,130
FCF _MINMAX, 129, 130, 131
FCF _MOUSEALIGN, 131
FCF _NOBYTEALIGN, 64, 131
FCF _NOMOVEWITHOWNER,

131

FCF _SCREEN ALIGN, 131
FCF_SHELLPOSITION, 130,131,

132
FCF_SIZEBORDER, 129, 130, 131
FCF_STANDARD, 131,133,134,

140, 241
FCF _SYSMENU, 128, 130, 131
FCF _SYSMODAL, 131
FCF_TASKLIST, 130, 131, 726
FCF_TITLEBAR, 128, 130, 131
FCF_VERTSCROLL, 128,130,208
File system, 23, 621-635
Font, 439-466
Frame window, 125-142
FS_ACCELTABLE, 132, 133, 134,

138,226
FS_BORDER, 94, 132
FSJ)LGBORDER, 132
FS_ICON, 132, 133, 134, 138, 270
FS_MOUSEALIGN, 132
FS_NOBYTEALIGN, 133
FS_NOMOVEWITHOWNER, 62,

133
FS_SCREEN ALIGN, 132
FS_SHELLPOSITION, 133
FS_SIZEBORDER, 132
FS_STANDARD, 133, 134
FS_SYSMODAL, 133
FS_TASKLIST, 133
Full-screen programs, 29
Functions

G

Dev, 25
Dos, 25
Gpi, 26
Kbd, 26
Mou, 26
notational conventions, 11
Vio, 26
Win, 26

Gpi functions, 26
GpiAssociate, 57, 274, 394, 397,

553, 554
GpiBeginArea, 499, 500
GpiBeginElement, 394, 482, 496
GpiBeginPath, 413, 482, 484, 490,

491, 546
GpiBitBlt, 316, 518, 519, 520, 522
GpiBox, 304, 415, 481, 482, 484,

496
GpiCallSegment, 417
GpiCallSegmentMatrix, 394, 482,

496, 565, 571

GpiCharString, 18, 21, 461, 482
GpiCharStringAt, 461, 482
GpiCharStringPos, 21, 461, 482
GpiCharStringPosAt, 461, 482
GpiCloseFigure, 482
GpiCloseSegment, 394, 567, 571,

572
GpiCombineRegion, 531, 534, 544
GpiComment, 482, 496
GpiConvert, 310, 311
GpiCorrelateChain, 394, 568, 572
GpiCorrelateFrom, 394, 568
GpiCorrelateSegment, 394, 568
GpiCreateBitmap, 515, 516, 517,

522
GpiCreateClipRegion, 544
GpiCreateLogColorTable, 471,474,

727
GpiCreateLogFont, 22, 457, 458,

459, 460, 482, 501
GpiCreatePS,. 271, 273, 274, 275,

393, 394, 397, 398,417, 421,
452, 554

GpiCreateRegion, 487, 529, 530,
531, 533, 544, 545

GpiDeleteElement, 394, 482, 497,
570, 572

GpiDeleteElementRange, 394,482,
497, 570, 572

GpiDeleteElementsBetweenLabels,
394, 482, 497, 570

GpiDeleteSegment, 394, 567
GpiDeleteSegments, 394, 568
GpiDeleteSetld, 482
GpiDestroyPS, 57, 271, 273, 275,

396
GpiDestroyRegion, 534
GpiDrawChain, 394, 415, 553, 565,

566, 572
GpiDrawDynamics, 394, 565
GpiDrawFrom, 394, 415, 553, 565,

566
GpiDrawSegment, 22, 394, 415,

553, 565, 566
GpiElement, 394, 482, 497, 570
GpiEndArea, 496, 497
GpiEndElement, 394, 482, 497
GpiEndPath, 413, 482, 484, 490,

491, 546
GpiEqualRegion, 534
GpiErase, 394
GpiErrorSegmentData, 394
GpiExc1udeClipRectangle, 544
GpiFillPath, 485, 491

GpiFullArc, 428, 429, 430, 434,
481, 482, 484, 496, 497

GpiGetData, 394, 482, 497, 570
Gpilmage, 518, 519
GpiIntersectClipRectangle, 544
GpiLabel, 394, 482, 497, 569
GpiLine, 19, 428, 432, 472, 482,

483, 490, 496, 497, 552, 563, 564
GpiLoadBitmap, 517, 523
GpiLoadFonts, 22, 457, 458
GpiLoadMetaFile, 554, 556
GpiMarker, 482, 509
GpiMove, 20, 428, 429, 432, 461,

482, 483, 490, 491, 497
GpiOffsetElementPointer, 394, 482,

497, 569, 572
GpiOffsetRegion, 535
GpiOpenSegment, 394, 413, 567,

571, 572
GpiPaintRegion, 529, 530, 532, 535
GpiPartialArc, 428, 429, 430, 482,

483, 496, 497
GpiPlayMetaFile, 553, 554, 557
GpiPointArc, 428, 429, 482, 496,

497
GpiPolyFillet, 428, 482, 496, 497
GpiPolyFilletSharp, 428, 482, 496,

497
GpiPolyLine, 428, 472, 482, 483,

484, 496, 497, 509
GpiPolyMarker, 483, 509
GpiPolySpline, 428, 436, 483, 496,

497
GpiPop, 483, 497
GpiPtlnRegion, 535
GpiPutData, 395, 483, 497, 570
GpiQueryArcParams, 430, 483, 497
GpiQueryAttrMode, 483, 497
GpiQueryAttrs, 432, 452, 490, 497,

500, 501, 508, 509, 519, 533
GpiQueryBackColor, 497
GpiQueryBackMix, 497
GpiQueryBitmapBits, 520
GpiQueryBoundaryData, 395,497
GpiQueryCharAngle, 452, 497
GpiQueryCharBox, 452, 497
GpiQueryCharDirection, 497
GpiQueryCharMode, 454, 497
GpiQueryCharSet, 497
GpiQueryCharShear, 453, 497
GpiQueryCharStringPos, 497
GpiQueryCharStringPosAt, 497
GpiQueryClipBox, 497, 545
GpiQueryClipRegion, 497
GpiQueryColor, 498

G 735

GpiQueryColorData, 475, 498
GpiQueryColorIndex, 475, 498
GpiQueryCp, 451, 498
GpiQueryCurrentPosition, 483, 498
GpiQueryDefaultViewMatrix, 312,

418,498
GpiQueryDefCharBox, 498
GpiQueryDevice, 498
GpiQueryDeviceBitmapFormats,

498, 515, 516
GpiQueryDrawControl, 395
GpiQueryDrawingMode, 395, 567
GpiQueryEditMode, 395, 498, 569
GpiQueryElement, 395, 498, 570
GpiQueryElementPointer, 395, 498,

569
GpiQueryElementType, 395, 498
GpiQueryFontFileDescriptions, 498
GpiQueryFontMetrics, 452, 498
GpiQueryFonts, 457, 458, 459, 460,

498
GpiQueryGraphicsField, 498
GpiQuerylnitialSegmentAttrs, 395,

498, 566, 571
GpiQueryKerningPairs, 448, 498
GpiQueryLineEnd, 498
GpiQueryLineJoin, 498
GpiQueryLineType, 498
GpiQueryLine Width, 498
GpiQueryLineWidthGeom, 498
GpiQueryLogColorTable, 470, 498
GpiQueryMarker, 498, 508
GpiQueryMarkerBox, 498
GpiQueryMarkerSet, 498, 508
GpiQueryMetaFileBits, 553
GpiQueryMetaFileLength, 553
GpiQueryMix, 498
GpiQueryModelTransformMatrix,

415,498
GpiQueryN earestColor, 498
GpiQueryNumberSetlds, 498
GpiQueryPage, 419
GpiQueryPage Viewport, 498
GpiQueryPattern, 498, 500, 533
GpiQueryPatternRefPoint, 498
GpiQueryPatternSet, 498
GpiQueryPel, 499
GpiQueryPickAperturePosition,

395, 499, 568
GpiQueryPickApertureSize, 395,

499,568
GpiQueryPS, 418
GpiQueryRealColors, 470, 499
GpiQueryRegionBox, 499
GpiQueryRegionRects, 499, 536

736 G-M
~i!r:i!ii§~i1r.~mili1l!l~p.i~!U~1if~;;ffill~llr1iEl:mi$~~t~iiUt~~~~~I!li!iiiiif~il~~lj~im!LE!j!§i~ii!~U5J!1~illim;!i~iiil~!imF.iilmlim~1;~fZ;l~sni~i!ii;~lil

GpiQueryRGBColor, 499
GpiQuerySegmentAttrs, 395, 499,

567
GpiQuerySegmentNames, 395,499,

567
GpiQuerySegmentPriority, 395, 499
GpiQuerySegmentTransformMatrix,

416,499
GpiQuerySetlds, 499
GpiQueryStopDr~w, 395, 499
GpiQueryTag, 395, 499, 568
GpiQueryViewingLimits, 499
GpiQueryViewingTransformMatrix,

418, '499
GpiQueryWidth, 499
GpiRemoveDynamics, 395, 565
GpiResetBoundaryData, 395
GpiRestorePS, 396
GpiSaveMetaFile, 554, 556
GpiSavePS, 395
GpiSetArcParams, 430, 483, 499
GpiSetAttrMode, 483, 499
GpiSetAttrs, 20, 432, 452, 471, 475,

483, 490, 499, 500, 501, 508,
509, 519, 533

GpiSetBackColor, 475
GpiSetBitmap, 316, 520
GpiSetBitmapBits, 520
GpiSetBitmapId, 500, 517, 522
GpiSetChar Angle, 452, 483
GpiSetCharBox, 452, 483
GpiSetCharDirection, 483
GpiSetCharMode, 454, 483
GpiSetCharSet, 22, 458, 459, 460,

483
GpiSetCharShear, 453, 483
GpiSetClipPath, 413,487, 491, 546
GpiSetClipRegion, 487, 531, 545
GpiSetColor, 20, 475, 483, 499
GpiSetCp, 451, 483
GpiSetCurrentPosition, 432, 483,

499
GpiSetDefaultViewMatrix, 312, 418,

421
GpiSetDrawControl, 395
GpiSetDrawingMode, 395, 553, 567
GpiSetEditMode, 395, 483, 499,

569, 572
GpiSetElementPointer, 395, 483,

499, 569, 572
GpiSetElementPointerAtLabel, 395,

483, 499, 569, 572
GpiSetlnitialSegmentAttrs, 395, 571

GpiSetLineEnd, 483, 484, 487, 490,
499

GpiSetLineJoin, 483, 484, 488, 499
GpiSetLineType, 483, 499
GpiSetLineWidth, 483, 499
GpiSetLineWidthGeom, 484, 487,

490
GpiSetMarker, 483, 508
GpiSetMarkerBox, 483, 508
GpiSetMarkerSet, 483, 508
GpiSetMetaFileBits, 553
GpiSetMix,483,499
GpiSetModelTransformMatrix, 415,

483,499
GpiSetPageViewport, 419
GpiSetPattern, 500, 501, 522, 533
GpiSetPatternSet, 500, 501
GpiSetPickAperturePosition, 395,

568
GpiSetPickApertureSize, 395, 568,

572
GpiSetSegment, 414
GpiSetSegmentAttrs, 395, 567, 568
GpiSetSegmentPriority, 395, 565
GpiSetSegmentTransformMatrix,

416, 499
GpiSetStopDraw, 395
GpiSetTag, 395, 568
GpiSetViewingLimit, 414
GpiSet ViewingTransformMatrix,

418
GpiStrokePath, 484, 490
GpiWCBitBlt, 316, 518, 519, 520,

522, 523
Graphics, retained, 561-579
Graphics programming interface

device context, 19

H

drawing, 21
graphics

primitives, 19
retained, 22
segments, 22
tools, 20

metafile, 22
presentation space, 19

Header files, 40
Heap, 319-330
Help, 377-386
Hook, 363-375

Icon, mouse, 287-294
Input

keyboard, 109-124
mouse, 109-124
video, 637-645, 647-657

Interprocess communication, 24,
675-691

K
Kbd functions, 26
KbdCharIn, 35, 38, 640, 669, 670,

671, 672
KbdClose, 673
KbdFlushBuffer, 35, 38, 669, 673
KbdFreeFocus, 673
KbdGetFocus, 669, 673
KbdGetStatus, 35, 38
J(bdOpen, 669, 673
KbdPeek, 35, 38, 669, 671
KbdSetStatus, 35, 38, 669, 673
KbdStringIn, 35, 38, 39, 669, 672
Keyboard, 667-674

L

full-screen operation, 24
input, 109-124

Line primitives, 425-437
List-box control, 179-191
LM-DELETEALL, 184, 189
LM-DELETEITEM, 183, 184, 188
LM-INSERTITEM, 183,188
LM-QUERYITEMCOUNT, 188
LM-QUERYITEMHANDLE, 189
LM-QUERYITEMTEXT, 186,189
LM-QUER YITEMTEXTLENGTH,

189
LM-QUERYSELECTION, 185,

189
LM-QUERYTOPINDEX, 188
LM-SEARCHSTRING, 189
LM-SELECTITEM, 188
L~SETITEMHANDLE, 189
L~SETITEMHEIGHT, 185,189
LM-SETITEMTEXT, 189
LM-SETTOPINDEX, 188

M
Marker primitives, 505-510
Memory management, 23
Memory manager, 601-611
Menu, 213-236

Messages, 77-90
Metafile, 549-559
Mix mode, 467-477
MM.-DELETEITEM, 227,228,229
MM.-INSERTITEM, 219, 227, 228,

229
MM.-QUERYITEM, 217, 219, 227
MM.-QUERYITEMATTR, 217,

226,227
MM.-QUER YITEMTEXT, 227
MM.-REMOVEITEM, 229
MM.-SETITEM, 217, 219, 227
MM.-SETITEMATTR, 217,226,

227
MM.-SETITEMTEXT, 227
Mou functions, 26
MouClose, 663
MouDrawPtr, 661, 663
MouFlushQue, 661, 665
MouGetEventMask, 661
MouGetNumButtons, 665
MouGetNumMickeys, 661
MouGetNumQueEI, 661, 665
MouGetPtrPos, ·662
MouGetPtrShape, 662
MouOpen, 661, 662, 663
MouReadEventQue, 661, 664
MouRemovePtr, 662, 663
Mouse, 659-666

full-screen operation, 24
icon, 287-294
input, 109-124
pointer, 287-294

MouSetEventMask, 661, 665
MouSetPtrPos, 662
MouSetPtrShape, 662
MouSetScaleFact, 654
MS OS/2

functions, 25, 26
initialization file, 717, 725, 730
introduction, 7-11
naming conventions, 9
overview, 13-26
programming models, 27-44

Multitasking, 22

N
Naming conventions, 9
Notational conventions, 11

o
Output

p

advanced video, 647-657
video, 637-645

Painting, 263-278
Path, 479-492
Pointer, mouse, 287-294
Prefix type, 10
Presentation Manager

applications, 30
device-independent graphics, 16
overview, 15
queued input, 16
shared resources, 16

Presentation space, 391-401
Primitives

arc, 425-437
area, 493-504
character, 439-466
line, 425~437

marker, 505-510
Printing, 301-317
Procedure, window, 99-107
Programming models

bit mask, 39
command line, 37
FAPI, 32
full-screen, 29
header files, 40
Presentation Manager, 30
shared resources, 40
structures, 38

Process, 585-596

R
Region, 527-537
Retained graphics, 561-579

S
Scroll-bar control, 201-211
SBM.-QUERYPOS, 204,209
SBM.-QUERYRANGE, 210
SBM.-SETPOS, 204, 209
SBM.-SETSCROLLBAR, 204, 209
Segment, 561-579
Session, 585-599
Shell, 718, 726, 730
SM.-QUERYHANDLE, 195, 196,

197
SM.-SETHANDLE, 195, 196, 197

M-V 737

Static control, 193-199
Structures, 38
System colors, 719, 727, 730
System information, 715-731
System services

dynamic linking, 23
file system, 23
interprocess communication, 24
keyboard operation, 24
memory management, 23
mouse operation, 24
multitasking, 22
video operation, 24

System values, 721, 728, 730

T
TBM.-QUERYHILITE, 155
TBM.-SETHILITE, 155
Thread, 585-592, 597-599
Timer, 693-702
Title-bar control, 151-155
Transformation, 403-423

V
Video

advanced ihput and output,
647-657

full-screen operation, 24
input and output, 637-645

Vio functions, 26
VioCreateLogFont, 651
VioCreatePS, 649
VioGetBuf, 35
VioGetConfig, 642
VioGetCurPos, 35; 639, 642
VioGetCurType, 35, 642
VioGetDeviceCellSize, 652
VioGetFont, 639
VioGetMode, 35, 639
VioGetPhysBuf, 35
VioQueryFonts, 652
VioQuerySetIds, 652
VioReadCellStr, 35, 643
VioReadCharStr, 35
VioScrLock, 35, 39
VioScrollDn, 35, 640, 643
VioScrollLf, 35,640, 643
VioScrollRt, 35, 640, 643
VioScrollUp, 35, 640
VioScrUnLock, 35
VioSetAnsi, 643
VioSetCurPos, 35, 639, 642
VioSetCurType, 35, 639, 642

738 V-W
~l§i!fiffii~e;i~~I~Ui1i~~~ilf;tli!1ifmslilSir~~ii!~OO~~~i~tiim;~!ffililis;1iiiI~~!mi1ll~s:itslim~mi~!OO!!?~lli!rg~~~m~~fi!ii!~~!I!!li~!~

VioSetDeviceCellSize, 649, 652
VioSetFont, 639
VioSetMode, 35, 639, 652
VioSetOrg, 650
VioShowBuf, 35, 650
VioShowPS, 650
VioWrtCellStr, 35, 639, 641
VioWrtCharStr, 35, 639
VioWrtCharStrAtt, 35, 639, 641
VioWrtNAttr, 35,639, 641
VioWrtNCell, 35, 639, 641
VioWrtNChar, 35,639,641
VioWrtTIY, 35, 639, 640, 642, 643,

653

W
WC_BUTTON, 96, 160
WC_ENTRYFIELD, 96,171, 172
WC_FRAME, 60, 62, 96, 127, 129,

247
WC_LISTBOX, 96, 182
WC_MENU, 96, 215
WC_SCROLLBAR, 62, 96, 203
WC_ST ATIC, 96, 196
WC_TITLEBAR, 62, 96
Win functions, 26
WinAddAtom, 711
WinAddProgram, 718
WinAddSwitchEntry, 726, 727
WinAlarm, 722
WinAllocMem, 324, 325, 326, 327,

328
Win AvailMem, 325, 328
WinBeginEnum Windows, 69
WinBeginPaint, 266, 269, 271, 272,

273, 274, 283, 298, 394, 396
WinBroadcastMsg, 83, 88, 711, 729
WinCalcFrameRect, 137
WinCallMsgFilter, 368
WinCatch, 43
WinChangeSwitchEntry, 719, 727
WinCloseClipbrd, 336
Win Copy AccelTable, 242
WinCreateAccelTable, 242
WinCreateAtomTable, 710
WinCreateCursor, 297, 298
WinCreateDIg, 54, 66, 130, 250
WinCreateFrameControls, 54, 137,

138
WinCreateGroup, 718
WinCreateHeap, 322, 323, 325, 328,

329, 610
WinCreateMenu, 54
WinCreateMsgQueue, 33, 52, 80, 86

WinCreatePointer, 290
WinCreateStdWindow, 54, 66, 67,

129, 130, 132, 134, 139, 140,
154, 208, 222, 223

WinCreateWindow, 52, 54, 55, 63,
66, 68, 93, 96, 97, 129, 134, 140,
145, 146, 160, 172, 173, 182,
196, 203, 205, 208, 209, 229

WinDdeInitiate, 349, 350, 353
WinDdePostMsg, 355
WinDdeRespond, 350, 353
WinDefAVioWindowProc, 653
WinDefDIgProc, 103, 253, 257, 381
WinDefWindowProc, 60, 83, 102,

103, 104, 105, 113, 114, 115,
138, 139, 155, 187, 198, 223,
290, 349, 371, 372, 380, 381

WinDeleteAtom, 713
WinDestroyCursor, 298
WinDestroyHeap, 329
WinDestroyWindow, 56, 57, 67,

254,255
WinDismissDIg, 135, 253, 254, 257,

261
WinDispatchMsg, 82, 86, 87, 173,

368, 699, 701
WinDIgBox, 54, 66, 253, 254, 255,

257
Window, 49-75

class, 91-98
control window, 143-149
dialog window, 245-262
drawing, 279-286
frame window, 125-142
procedure, 99-107
timer, 697-702

Window manager
dialog window, 18
menu, 18
message loop, 18
window, 17

WinDrawBitmap, 284, 291, 518, 519
WinDrawPointer, 291
WinDrawText, 285
WinEmptyClipbrd, 335, 339, 340
WinEnableWindow, 58, 206, 258
WinEnableWindowUpdate, 184
WinEndEnum Windows, 69
WinEndPaint, 269, 271, 272, 298,

396
WinEnumDIgltem, 260
WinFillRect, 283
WinFlash Window, 135, 153
WinFormatFrame, 137, 138, 139
WinFreeMem, 325, 328

WinGetCurrentTime, 700
WinGetKeyState, 366
WinGetMaxPosition, 64
WinGetMsg, 80, 81, 82, 85, 86, 87,

88, 111, 268, 315, 365, 366, 368
WinGetNextWindow, 69
WinGetPhysKeyState, 369
WinGetPS, 57, 270, 271, 272, 340,

394, 396, 452
WinGetSysBitmap, 291
WinInfiateRect, 182
WinInitialize, 32, 52
WinInSendMsg, 84
WinInvalidateRect, 268
WinInvalidateRegion, 268
WinInvertRect, 283
WinIsWindowEnabled, 58
WinIsWindowVisible, 72
WinLoadAccelTable, 242
WinLoadDlg, 54, 130, 254, 255, 261
WinLoadMenu, 54, 217, 223, 255
WinLoadPointer, 290
WinLockHeap, 324
WinLockWindow, 57, 58, 59, 68
WinMapDIgPoints, 250, 261
WinMap WindowPoints, 283
WinMessageBox, 54, 248, 251, 252,

261
WinOpenClipbrd, 335, 336
WinOpenWindowDC, 273, 274,

275, 397, 421, 516
WinPeekMsg, 80, 81, 86, 87, 111,

268, 315, 365, 366
WinPostMsg, 18, 83, 84, 85, 88
WinProcessDlg, 254, 255, 256, 257,

261
WinQueryAccelTable, 242
WinQueryActiveWindow, 58, 112,

114, 120
WinQueryClassInfo, 95, 97
WinQueryClassName, 97
WinQueryClipbrdData, 336
WinQueryClipbrdFmtlnfo, 338
WinQueryClipbrdOwner, 338
WinQueryClipbrdViewer, 337
WinQueryDefinition, 718
WinQueryDIgItemShort, 173, 261
WinQueryDIgItemText, 261
WinQueryFocus, 120
WinQueryProfileData, 725
WinQueryProfileInt, 725
WinQueryProfileString, 305, 306,

725
WinQueryProgramTitles, 718, 719
WinQueryQueuelnfo, 81

WinQueryQueueStatus, 81, 87, 88,
369

WinQuerySysColor, 720, 727
WinQuerySysModalWindow, 58
WinQue'rySysPointer, 290
WinQuerySystemAtomTable, 710
WinQuerySysValue, 724, 728
WinQueryWindow, 58, 68, 141
WinQueryWindowLockCount, 58
WinQueryWindowPos, 70
WinQueryWindowProcess, 351
WinQueryWindowRect, 64
WinQueryWindowText, 163, 173
WinQueryWindowULong, 67
WinQueryWindowUShort, 59, 67,

135, 136
WinReallocMem, 325, 328
WinRegisterClass, 93, 97, 98, 104
WinRegisterWindowDestroy, 57
WinReleaseHook, 372, 384
WinReleasePS, 57, 270, 271, 272,

273, 275, 396
WinRemoveSwitchEntry, 727
WinScrollWindow, 284
WinSendDlgItemMsg, 261
WinSendMsg, 83, 88, 366
WinSetAccelTable, 226, 241, 242
WinSetActiveWindow, 114
WinSetCapture, 115
WinSetClipbrdData, 335, 339, 342
WinSetClipbrdOwner, 339
WinSetClipbrdViewer, 337
WinSetDlgItemShort, 173, 256, 261
WinSetDlgItemText, 256, 261
WinSetFocus, 114, 119, 120, 262
WinSetHook, 372, 373, 384
WinSetMultWindowPos, 71, 138
WinSetOwner, 69
Win SetParent , 68
WinSetPointer, 290
WinSetSysColors, 720, 721, 727,

728
WinSetSysModalWindow, 58, 131,

133
WinSetSysValue, 724, 729
WinSetWindowPos, 64, 70, 71, 72,

132, 162, 195
WinSetWindowText, 146, 154, 163,

173, 195, 258
WinSetWindowULong, 55
WinSetWindowUShort, 59
WinShowWindow, 55, 72, 146, 184,

256
WinStartTimer, 699, 700, 701
WinStopTimer, 700

WinSubc1assWindow, 59, 60, 104
Win Sub stituteStrings , 255, 261
WinTerminate, 31
WinThrow, 43
WinTrackRect, 44
WinUpdateWindow, 269
WinWaitMsg, 88
WinWindowFromID, 69, 129, 141,

154, 161, 162, 163, 172, 183,
196, 208, 216, 217, 223, 227,
257,258

Win WindowFromPoint, 69
Win WriteProfileData, 720, 725, 726
Win WriteProfileString, 720, 725,

726
W~ACTIV ATE, 57, 68, 113, 114,

119, 120, 137
W~ADJUSTWINDOWPOS, 54,

64, 155, 175, 188, 197
W~BUTTON1DBLCLK, 137,

155, 164, 174
W~BUTTON1DOWN, 114, 137,

155, 164, 165, 174, 369
W~BUTTON1UP, 137, 164, 165,

174, 369
W~BUTTON2DBLCLK, 137
W~BUTTON2DOWN, 137, 174,

188, 369
W~BUTTON2UP, 137, 369
W~BUTTON3DBLCLK, 137
W~BUTTON3DOWN, 137, 174,

188, 369
W~BUTTON3UP, 137, 369
W~BUTTONCLICKFIRST, 86
W~BUTTONCLICKLAST, 86
W~CALCV ALIDRECTS, 65,

137, 138
W~CHAR, 16, 18, 86, 87, 115,

116, 117, 118, 119, 134, 164,
173, 174, 187, 207, 255, 366,
368, 369, 370

W~CLOSE, 66, 138
W~COMMAND, 86,119,134,

159, 160, 161, 162, 163, 164,
216, 220, 223, 224, 225, 226,
239, 240, 242, 253, 257, 315

W~CONTROL, 160, 161, 162,
163, 164, 173, 175, 176, 183,
184, 189

W~CONTROLHEAP, 138
W~CREATE, 54, 102, 103, 138,

154, 164, 174, 187, 197, 256
W~D:OE_ACK, 350, 354, 355,

356, 357, 358, 359
WM_DDE_ADVISE, 349, 356

W 739

W~DDE_DATA, 350,356,357
W~DDE_EXECUTE, 358
W~DDE_FIRST, 86
W~DDE_INITIA TE, 349, 350,

351, 353, 356
W~DDE_INITIATEACK, 349,

350, 351
W~DDE_LAST, 86
WM_DDE_POKE, 355
W~DDE_REQUEST, 355, 358
W~DDE_TERMINATE, 350,

354, 359
W~DDE_UNADVISE, 350,357,

358
W~DESTROY, 18,57,61,136,

138, 155, 164, 174, 187, 197
W~DESTROYCLIPBOARD, 339
W~DRAWCLIPBOARD, 337,

338
W~DRA WITEM, 182, 185, 186,

230, 231
W~ENABLE, 138, 165, 175, 188,

197
W~ERASEBACKGROUND,

138, 139
W~FLASHWINDOW, 135
W~FORMATFRAME, 137, 138,

139
W~HELP, 119,134,216,220,

222, 223, 224, 226, 239, 240,
242, 370, 371, 372, 379, 380,
381, 382, 383, 384

W~HITTEST, 95,113,137,155,
198

W~HSCROLL, 204
WM_HSCROLLCLIPBOARD, 340
W~INITDLG, 103, 183, 184, 253,

255, 256, 261, 262
W~JOURNALNOTIFY, 369
W~MATCHMNEMONIC, 165,

198
W~MEASUREITEM, 185, 230
W~MENUSELECT, 224, 382
W~MINMAXFRAME, 138
W~MOUSEFIRST, 86
W~MOUSELAST, 86
W~MOUSEMOVE, 114, 139,

164, 174, 175, 188, 197, 290,
291, 369

WMjfOVE, 64, 95
WM_NEXTMENU, 225
W~OTHERWINDOW-

DESTROYED, 57

740 W

W~PAINT, 56,65,81,84,86,
104, 138, 139, 155, 164, 174,
175,187,197,266,267,268,
269, 270, 272, 273, 274, 283,
284, 298, 309, 315, 338, 700

W~PAINTCLIPBOARD, 340
W~QUERYDLGCODE, 155,

165, 175, 197, 262
W~QUER YICON, 139
W~QUERYTRACKINFO, 139,

154
W~QUER YWINDOWP ARAMS,

155, 165, 175, 197
W~QUIT, 18, 19, 32, 33, 82, 83,

88
W~RENDERALLFMTS, 57, 339,

342
W~RENDERFMT, 339, 341
W~SEM1, 85
W~SEM2, 85, 86
W~SEM3, 85, 86
W~SEM4, 85, 86
W~SETFOCUS, 119, 120, 164,

175, 187, 195, 197,297
W~SETSELECTION, 119, 120,

175
W~SETWINDOWP ARAMS,

155, 165, 175, 197
W~SHOW, 64, 139
W~SIZE, 64, 139, 162, 204, 653
W~SIZECLIPBOARD, 339
W~SUBSTITUTESTRING, 255,

261,262
W~SYSCOLORCHANGE, 721
W~SYSCOMMAND, 65, 119,

134, 137, 139, 216, 220, 223,
224, 239, 240, 242

W~SYSV ALUECHANGED, 83,
88, 724, 729

W~TIMER, 86, 175, 188, 699, 700
W~TRACKFRAME, 154,155
W~TRACKMOVE, 174
W~UPDATEFRAME, 137, 139,

223, 255
W~USER, 85, 102, 711
W~ VIOCHAR, 369, 370
W~ VSCROLL, 188, 204
W~ VSCROLLCLIPBOARD, 340
WS_CLIPCHILDREN, 56, 61, 95
WS_CLIPSIBLINGS, 56, 61, 95
WS_DISABLED, 56, 58
WS_GROUP, 56, 160, 161, 248, 250
WS_MAXIMIZED, 56,65
WS_MINIMIZED, 56,65,270
WS_P ARENTCLIP, 56, 95

WS_SA VEBITS, 56, 95
WS_SYNCPAINT, 55,56,94,268,

284
WS_TABSTOP, 56,248,250
WS_ VISIBLE, 55, 63, 72, 94, 255

tepupto
Presentation Manager with

the Microsoft OS/2
Presentation Manager

Softset.
Congratulations on your purchase of the Microsoft® OS/2 Programmer's Reference Library,
a complete guide to the features of the Microsoft OS/2 Presentation Manager. Now that
you have the documentation, the next step is to purchase Microsoft OS/2 Presentation
Manager Softset version 1.1, which Microsoft designed to help software developers create
the new generation of graphically based, intuitive, easy-to-use software applications.
Softset provides a complete, fully documented set of visual software tools to help you
create popular applications for the graphical environment of Presentation Manager.

Softset Features

• Dialog Editor helps you design on-screen dialog boxes.

• Icon Editor helps you customize icons, cursors, and bitmap images for graphical
applications.

• Font Editor helps you create your own fonts.

• Resource Compiler helps you bind resource-definition files created with the Dialog,
Icon, and Font Editors to .EXE files.

• Other Softset tools help you create and maintain libraries, create message files and
dual-mode (DOS-OS/2) programs, and perform many other tasks.

Combine the Softset with the Microsoft OS/2 Programmer's Reference Library and a
programming language such as Microsoft C Optimizing Compiler or Microsoft Macro
Assembler with OS/2 support for a complete Presentation Manager software development
kit. The applications you create in Presentation Manager are fully compatible with IBM®
SAA (Systems Application Architecture). Trust the software tools from Microsoft - the
company that developed MS® OS/2.

Contact your nearest local software dealer for more information.

Also Available From Microsoft Press
Authoritative Information for OS/2 Programmers
INSIDE OS/2
Gordon Letwin
, 'The best way to understand the overall philosophy of OS/2 will be to read this book. "

-Bill Gates

Here - from Microsoft's Chief Architect of Systems Software - is an exciting
technical examination of the philosophy, key development issues, programming
implications, and role of OS/2 in the office of the future. And Letwin provides
the first in-depth look at each of OS/2' s design elements. This is a valuable and
revealing programmer-to-programmer discussion of the graphical user interface,
multitasking, memory management, protection, encapsulation, interprocess
communication, and direct device access. You can't get a more inside view.

304 pages, 73/8 X 91/4, softcover, $19.95.
[Order Code 86-96288]

ADVANCED OS/2 PROGRAMMING
Ray Duncan
Authoritative information, expert advice, and great assembly-language code
~ake this comprehensive overview of the features and structure of OS/2 in­
dispensable to any serious OS/2 programmer. Duncan addresses a range of
significant OS/2 issues: programming the user interface; mass storage; memory
management; multitasking; interprocess communications; customizing filters,
device drivers, and monitors; and using OS/2 dynamic link libraries. A valuable
reference section includes detailed information on each of the more than 250
system service calls in version 1.1 of the OS/2 kernel.

800 pages, 73/8 x 91/4, soft cover , $24.95
[Book Code 86-96106]

PROGRAMMING THE OS/2 PRESENTATION MANAGER
Charles Petzold
New! Here is the first full discussion of the features and operation of the OS/2 1.1
Presentation Manager. If you're developing OS/2 applications, this book will
guide you through Presentation Manager's system of windows, messages, and
function calls. Petzold includes scores of valuable C programs and utilities.

Endorsed by the Microsoft Systems Software group, this book is unparalleled for
its clarity, detail, and comprehensiveness. Petzold covers: managing windows _
handling input and output _ controlling child windows _ using bitmaps, icons,
pointers, and strings _ accessing the menu and keyboard accelerators _ working
with dialog boxes _ understanding dynamic linking _ and more.

864 pages, 13/8 x 91/4, softcover, $29.95
[Order Code 86-96791]

ESSENTIAL OS/2 FUNCTIONS: Programmer's Quick Reference
Ray Duncan
Concise information on the essential OS/2 function calls within the application
program interface (API). Entries are included for all kernel API functions for
OS/2 version 1.0: Dos, Kbd, Mou, and Vio. Brief descriptions of each function
are included, as well as a list of the required parameters, returned results, pro­
gramming notes and warnings, family API call identification, and error codes.
Conveniently arranged to provide quick access to the information you need.

172 pages, 43/4 x 8, softcover, $9.95
[Order Code 86-96866]

For the Windows Programmer
PROGRAMMING WINDOWS
Charles Petzold
Your fastest route to successful application programming with Windows.
Full of indispensable reference data, tested programming advice, and page after
page of creative sample programs and utilities. Topics include getting the most
out of the keyboard, mouse, and timer; working with icons, cursors, bitmaps, and
strings; exploiting Windows' memory management; creating menus; taking
advantage of child window controls; incorporating keyboard accelerators; using
dynamically linkable libraries; and mastering the Graphics Device Interface
(ODI). A thorough, up-to-date, and authoritative look at Windows' rich graphical
environment.

864 pages, 13/8 x 91/4
$24.95 (se) [Order Code 86-96049]
$34.95 (he) [Order Code 86-96130]

Solid Technical Information for MS-DOS® Programmers
ADVANCED MS·DOS~ PROGRAMMING, 2nd ed.
Ray Duncan
The preeminent source of MS-DOS information for assembly-language and
C programmers - now completely updated with new data and programming
advice covering: ROM BIOS for the IBM~ PC; PC/AT~ PS/2~ and related periph­
erals; MS-DOS through version 4.0; version 4.0 of the LIM EMS; and OS/2
compatibility considerations. Duncan addresses key topics, including character
devices, mass storage, memory allocation and management, and process man­
agement In addition, there is a healthy assortment of updated assembly-language
and C listings that range from code fragments to complete utilities. And the ref­
erence section, detailing each MS-DOS function and interrupt, is virtually a
book within a book.

512 pages, 73/8 x 91f4, softcover, $24.95
[Order Code 86-96668]

THE MS·DOS~ ENCYCLOPEDIA
General Editor, Ray Duncan
The ultimate reference for insight, data, and advice to make your MS-DOS pro­
grams reliable, robust, and efficient. 1600pages packed with version-specific
data. Annotations of more than 100 system function calls, 90 user commands,
and a host of key programming utilities. Hundreds of hands-on examples, thou­
sands of lines of code, and handy indexes. Plus articles on debugging, writing
filters, installable device drivers, TSRs, Windows, memory management, the fu­
ture of MS-DOS, and much more. Researched and written by a team of MS-DOS
experts - many involved in the creation and development of MS-DOS. Covers
MS-DOS through version 3.2, with a special section on version 3.3.

1600 pages, 73/4 x 10
hardcover $134.95 [Order Code 86-96122]
softcover $ 69.95 [Order Code 86-96833]

Programmer's Quick Reference Series
MS·DOS~ FUNCTIONS
Ray Duncan
The kind of information every seasoned programmer needs right at hand.
Includes detailed information on MS-DOS system service calls, along with
valuable programming notes. Covers MS-DOS through version 4.

128 pages, 43/4 x 8, softcover, $5.95
[Order Code 86-96411]

IBM~ ROM BIOS
Ray Duncan
Essential for every assembly-language or C programmer at any experience level.
Designed for quick and easy access to information, this guide includes all the
core information on each of the ROM BIOS services.

128 pages, 43/4 x 8, softcover, $5.95
[Order Code 86-96478]

MS·DOS@ EXTENSIONS
Ray Duncan
Brings together the hard-to-find programming information on the Lotu~ /lntel~/
Microsoft@ Expanded Memory Specification (EMS) version 4.0, the Lotus/
Intel/Microsoft/AST Extended Memory Specification (XMS) version 2.0, the
Microsoft CD-ROM Extensions version 2.1, and the Microsoft Mouse driver,
version 6. An overview of each function is accompanied by a list of its required
parameters, returned results, and applicable programming notes.

128 pages, 43/4 x 8, softcover, $6.95
[Order Code 86-97229]

Solid Language References
MICROSOFT~ C: SECRETS, SHORTCUTS & SOLUTIONS
KrisJamsa
Here is a fact-filled, example-packed resource for any current or aspiring
Microsoft C programmer working in the DOS environment. Each chapter high­
lights specific C programming facts, tips, and traps so that key information or

items of special interest are immediately accessible. Hundreds of short sample
programs support Jamsa's instruction and encourage experimentation.
If you're new to C, Microsoft C, or even Microsoft QuickC, Jamsa's fast-paced,
highly readable style will help you quickly master the fundamentals. If you're
a seasoned programmer, you'll find page after page of advanced information
that will hone your programming skills and make your Microsoft C programs
fast, clean, and efficient. Jamsa shows you how to:
access the DOS command line _ expand wildcard characters into matching
filenames _ use I/O redirection _ master dynamic memory allocation _ take
advantage of C's predefined global variables _ optimize your programs for
increased speed _ enhance your program's video appearance _ make fuUuse
of the MAKE and LIB tools
500 pages, p/s x 91/4, softcover, $24.95
[Order Code 86-97112]

PROFICIENT C
Augie Hansen
, 'A beautifully-conceived text, clearly written and logically organized ...
a superb guide." Computer Book Review

An information-packed handbook for intermediate to advanced DOS program­
mers that includes dozens of file-oriented and screen-oriented C programs and
specially developed utilities. A successful blend of programming advice and
practical example programs.
512 pages, p/s x 91/4, softcover, $22.95
[Order Code 86-95710]

VARIATIONS IN C
Steve Schustack
Foreword by Gerald Weinberg
A superb guide for experienced programmers who want to develop efficient,
portable, high-quality application software using C in the DOS environment.
In addition to an overview of the basic syntax of C, Schustack provides valuable
techniques for structured programming. A complete, ISOO-line source code
sample program illustrates key topics. Special comments and cautions are
highlighted throughout.

368 pages, 73/s x 91/4, softcover, $19.95
[Order Code 86-95249]

STANDARD C: Programmer's Quick Reference
P.I. Plauger and lim Brodie
All the basic information needed to read and write Standard C programs that
conform to the recently approved ANSI and ISO standard for the C program­
ming language. Scores of diagrams illustrate the syntax rules. Whether you're
new to C or familiar with an earlier dialect, this will prove a handy companion.

224 pages, 43/4 x 8, softcover, $7.95
[Order Code 86-96676]

MICROSOFT~ QUICKC PROGRAMMING
The Waite Group
Your springboard to the core of the Microsoft QuickC. This book is loaded with
practical information and advice on every element of QuickC, along with hun­
dreds of specially constructed listings. Included are the tools to help you master
QuickC's built-in libraries; manage file input and output; work with strings,
arrays, pointers, structures, and unions; use the graphics modes; develop and
link large C programs; and debug your source code.

624 pages, 13/8 x 91/4, softcover, $19.95
[Order Code 86-96114]

MICROSOFT~ QUICKBASIC~ 2nd ed.
Douglas Hergert
"No matter what your level ofprogramming experience, you' IIfind this book
irreplaceable when you start to program in QuickBASIC." Online Today

Here's a great introduction to all the development tools, features, and user­
interface enhancements in Microsoft QuickBASIC. And there's more-six
specially designed, full-length programs including a database manager, an
information-gathering and data-analysis program, and a chart program that
reenforce solid structured programming techniques.

464 pages, 13/8 x 91/4, softcover, $19.95
[Order Code 86-96387]

THE MICROSOFT~ QUICKBASIC PROGRAMMER'S TOOLBOX
John Clark Craig
This essential library of subprograms, functions, and utilities-developed to
supercharge your QuickBASIC programs-addresses common and unusual pro­
gramming tasks: ANSI.SYS screen control _ mouse support _ pop-up windows -
graphics _ string manipulations _ bit manipulation _ editing routines _ game
programming _ interlanguage calling _ and more. Each program takes maxi­
mum advantage of QuickBASIC's capabilities. You're guaranteed to turn to this
superb collection again and again.

512 pages, 13/8 x 91f4, softcover, $22.95
[Order Code 86-96403]

Unbeatable Programmer's References
PROGRAMMER'S GUIDE TO PC & PS/2~ VIDEO SYSTEMS
Richard Wilton
No matter what your hardware configuration, here is all the information you
need to create fast, professional, even stunning video graphics on IBM PCs,
compatibles, and PS/2s. No other book offers such detailed, specialized pro­
gramming data, techniques, and advice to help you tackle the exacting
challenges of programming directly to the video hardware. And no other book
offers the scores of invaluable source code examples included here. Whatever
graphic output you want- text, circles, region fill, alphanumeric character sets,
bit blocks, animation - you'll do it cleaner, faster, and more effectively with
Wilton's book.

544 pages, 13/8 x 91f4, softcover, $24.95
[Order Code 86-96163]

THE 80386 BOOK
Ross P. Nelson
A clear, comprehensive, and authoritative introduction for every serious pro­
grammer. Included are scores of superb assembly-language examples along with
a detailed analysis of the 80386 chip. Topics covered include: the CPU, the
memory architecture, the instructions sets of the 80386 microprocessor and the

80387 math coprocessor, the protection scheme, the implementation of a virtual
memory system through paging, and compatibility with earlier Intel micropro­
cessors. Of special note is the comprehensive, clearly organized instruction set
reference-guaranteed to be a valuable resource.

464 pages, 73/8 x 91/4, softcover, $24.95
[Order Code 86-96494]

THE PROGRAMMER'S PC SOURCEBOOK
ThomHogan
At last! A reference to save you the time required to find key pieces of technical
data. Here is important factual information- previously published in scores of
other sources - organized into one convenient reference. Focusing on IBM pes
and compatibles, PS/2s and MS-DOS, the hundreds of charts and tables cover:
_ numeric conversions and character sets _ DOS commands and utilities _
DOS function calls and support tables _ DOS BIOS calls and support tables _
other interrupts, mouse, and EMS support _ Microsoft Windows _ keyboards,
video adapters, and peripherals _ chips, jumpers, switches, and registers _ hard­
ware descriptions _ and more.

560 pages, 81/2 x 11, softcover, $24.95
[Order Code 86-96296]

THE NEW PETER NORTON PROGRAMMER'S GUIDE
TO THE IBM@ PC & PS/2@
Peter Norton and Richard Wilton
A must-have classic on mastering the inner workings of IBM micros - now
completely updated to include the PS/2 line. Sharpen your programming skills
and learn to create simple, clean, portable programs with this successful combi­
nation of astute programming advice, proven techniques, and solid technical
data. Covers 8088, 80286 and 80386 microprocessors; ROM BIOS basics and
ROM BIOS services; video, disk and keyboard basics; DOS basics, interrupts,
and functions (through version 4); interrupts, device drivers, and video pro­
gramming. Accept no substitutes; this is the book to have.

528 pages, 73/8 x 91f4, softcover, $22.95
[Order Code 86-96635]

The Microsoft Press CD-ROM Library
THE MICROSOFrr CD·ROM YEARBOOK: 1989/1990
Microsoft Press
Foreword by Bill Gates
A dynamic, fact-filled portrait and analysis of the wide-ranging, fast-paced CD­
ROM industry. Indispensable for anyone involved inthe industry as well as an
information-packed compendium for those curious about CD-ROM. Readers can
use the book as a valuable sourcebook of facts, statistics, and forecasts, or dip
into it for fascinating articles, reviews, and analyses of the industry. Articles
include:

• an absorbing history-in text and pictures-of the CD-ROM industry
• reviews of products - hardware and software - considered outstanding or

standard -setting
• profiles of the leading companies and people in the industry
• an overview of the process of developing a CD-ROM product
• a review of the legal issues of protection, rights and permissions, contracts and

royalties surrounding CD-ROM publishing
• the strategies and pitfalls involved in getting a CD-ROM product to market

The breadth of accurate, up-to-date information in THE MICROSOFT
CD-ROM YEARBOOK is impressive including:

• comprehensive reference listings of the people, equipment, available titles,
sources, and resources in the CD ROM industry

• a glossary of industry terms
• a calendar of industry events and conferences
• specialized bibliographies

This is the reference of fact and opinion on the industry.

960 pages, 'P/8 x 91/4, softcover, $79.95
[Order Code 86-97203]

CD ROM: THE NEW PAPYRUS
Edited by Steve Lambert and Suzanne Ropiequet
"This 6J9-page compendium, with contributions from more than 30 optical­
memory specialists, promises to become the bible ofeD ROM." DavidBunnell,

Mac world

This special compendium of 45 articles by leading authorities examines every
facet of compact disc read only memory technology: hardware, software,
applications, publishing systems, marketing, and the user interface. Includes
introductory as well as technical information.

608 pages, 73/s x 91/4, softcover, $21.95
[Order Code 86-95454]

CD ROM 2: OPTICAL PUBLISHING
Edited by Suzanne Ropiequet with John Einberger and Bill Zoellick
"Recommended reading for any information professional. " Online Today

This is a comprehensive overview of the entire optical publishing process.
Topics include: evaluating and defining storage and retrieval methods; collect­
ing, preparing, and indexing data; updating strategies; data protection and
copyrighting; and more. Plus information on the High Sierra Logical Format. In
addition, the editors trace the development of two CD ROM projects from initial
concept to final product. For publishers, technical managers, and entrepreneurs.

384 pages, 73/s x 91/4, softcover, $22.95
[Order Code 86-95686]

INTERACTIVE MULTIMEDIA
Foreword by John Sculley

Edited by Sueanne Ambron and Kristina Hooper
Apple Computer Corp. brought together leading researchers and developers to
produce this informative collection of21 articles. The result is a sourcebook of
ideas and inspiration for software and hardware developers, educators, pub­
lishers, and information providers. The contributors, including Doug Englebart,
Sam Gibbon, and Peter Cook, represent the industries - computers, television,
and publishing - whose products will provide the content and media for educa­
tion in the future. Filled with examples and pilot projects that define the new
meaning of multimedia. Published with Apple Computer, Inc.

352 pages, 73/s x 91/4, softcover, $24.95
[Order Code 86-96379]

Also of Note
COMPUTER LIB/DREAM MACHINES
Ted Nelson
"An exuberant, multifont compendium of computing proverbs, anecdotes, jokes,
predictions, and politics. Still asfresh and relevant as it was a dozen years ago,
Computer Lib is a browser's gold mine." PC World

Published in 1974, Ted Nelson's COMPUTER LIB was an original, off-the-wall
compendium of Nelson's visionary wisdom on the state of computing. Immedi­
ately embraced by hackers, COMPUTER LIB/DREAM MACHINES provided
inspiration to today's industry greats. Nelson anticipated the personal computer
revolution, made outlandish predictions (many of which have proven true), and
expounded on his vision of non-sequential data storage - something he dubbed
hypertext. Long unavailable, COMPUTER LIB has been updated with new
commentaries and insights from Nelson.

336 pages, 91/4 x 93/4, soft cover , $18.95
[Order Code 86-96031]

Microsoft Press books are available wherever books and software are sold.
Or you can place a credit card order by calling 1-800-638-3030 (8 AM to 4:30 PM EST).

In Maryland, call collect: 824-7300.

U.S.A.
U.K.
Austral.

M I C R 0 S 0 F T ·

OS2
Pf9grammers

Reference
Including Presentation Manager

The Microsoft· Operating System/2 Programmer's Reference Library should
be the cornerstone of every OS/2 developer's programming library. These vol­
umes are required references for professional developers creating applications
for the retail market; for corporate programmers creating in-house software pro­
grams; for hardware manufacturers creating software to support their products;
and for all other experienced programmers working in the OS/2 environment.

Each volume in the series is written by a team of OS/2 specialists - many
involved in the development and ongoing enhancement of OS/2 at Microsoft.
These books provide in-depth, accurate, and up-to-date information from the
Microsoft OS/2 Presentation Manager Toolkit - the software development kit
essential for creating OS/2 applications.

Volume 1
Volume 1 details the conceptual framework of the MS· OS/2 Application Pro­
gramming Interface (API). Included are thorough descriptions of MS· OS/2
programming models, overviews of basic programming considerations, and
explanations of the interaction between the API and the rest of the MS· OS/2
system. Sections include Introducing MS- OS/2 , Window Manager, Graphics
Programming Interface, and System Services.

Volume 2 -------------
Volume 2 is a comprehensive, alphabetic listing of MS· OS/2 Presentation
Manager functions as well as the structures and file formats used with these
functions. Each function entry includes information on syntax; descriptions of
the function ' s actions and purpose; parameters and field definitions; return
values, error values, and restrictions; source-code examples; and programming
notes. Appendix included.

Volume 3 -------------
Similar in format to Volume 2, Volume 3 is a comprehensive alphabetic listing
of MS· OS/2 base functions, including their structures and file formats.
Appendixes included.

$29.95
£24.95
$44.95

ISBN 1-55615-220-5

(recommended) 9 7

