

IBM RT PC Virtual Resource Manager Technical Reference Version 2.1

Virtual Resource Manager
Device Support

Programming Family

-~------- --_ ... ---- ~---- -- --------
-~-.-

Personal
Computer
Software

First Edition (January 1987)

This edition applies to Version 2.1 of the Virtual Resource Manager, and to all subsequent releases until otherwise indicated in
new editions or technical newsletters. Changes are made periodically to the information herein; these changes will be
incorporated in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any functionally equivalent program may be used instead.

International Business Machines Corporation provides this manual lias is," without warranty of any kind, either
express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IBM may make improvements and/or changes in the product(s) and/or the program(s) described
in this manual at any time.

Products are not stocked at the address given below. Requests for copies of this product and for technical information about
the system should be made to your authorized IBM RT Personal Computer dealer.

A reader's comment form is provided at the back of this publication. If the form has been removed, address comments to IBM
Corporation, Department 997, 11400 Burnet Road, Austin, Texas, 78758. IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1985, 1987

--------- ----
E - -:§~§: TECHNICAL NEWSLETTER

for the

RT Personal Computer Virtual Resource Manager

Virtual Resource Manager Device Support

© Copyright International Business Machines Corporation 1985, 1987

Order Numbers:
08F3319
SN20-9883
September 25, 1987
© Copyright IBM Corp. 1987

-OVER-

08F3319
Printed in U.S.A.

Summary of Changes

This technical newsletter provides additional device support for the Small Computer Systems
Interface device driver component of the Virtual Resource Manager.

A change to the text is indicated by a vertical bar to the left of the change.

Perform the following:

Remove Pages Insert Update Pages

5-95 and 5-96 5-95 and 5-96

5-101 to 5-106 5-101 to 5-106.2

5-113 and 5-114 5-113 and 5-114

Note: Please file this cover letter at the back of the manual to provide a record of changes.

September 25, 1987

--------- ----:: --~~~ TECHNICAL NEWSLETTER

for the

RT Personal Computer Virtual Resource Manager

Virtual Resource Manager Device Support

© Copyright International Business Machines Corporation 1985, 1987

Order Numbers:
79X3823
SN20-9859
June 26, 1987
© Copyright IBM Corp. 1987

-OVER-

TB79X3824
Printed in U .8.A.

Summary of Changes

This technical newsletter provides additional command and device support available with the Virtual
Resource Manager.

A change to the text is indicated by a vertical bar to the left of the change.

Perform the following:

Remove Pages Insert Update Pages

vii and viii vii and viii

2-3 and 2-4 2-3 and 2-4

3-9 and 3-10 3-9 and 3-10

3-191 to 3-198 3-191 to 3-198

4-1 to 4-4 4-1 to 4-4

4-43 and 4-44 4-43 and 4-44

4-51 to 4-56 4-51 to 4-56

4-59 to 4-68 4-59 to 4-68

4-89 and 4-90 4-89 to 4-102

5-93 and 5-94 5-93 and 5-94

5-103 to 5-114 5-103 to 5-114

Note: Please file this cover letter at the back of the manual to provide a record of changes.

June 26, 1987

About This Book

Audience and Purpose

This book describes the device support provided by the VRM, and focuses on the device
management role the VRM plays in the RT Personal Computer!. Topics discussed include
the initial program load of the VRM, coding considerations for developers who wish to add
device drivers or managers to the system, definition of the virtual terminal and block I/O
subsystems, and the programming interfaces to the predefined VRM device drivers.

Virtual Resource Manager Programming Reference describes the VRM programming
environment.

This book is intended for systems programmers and developers who need to understand the
device support provided by the VRM for the RT PC. The reader of this book is expected to
have an understanding of hardware and operating systems fundamentals.

How to Use This Book

This book describes the VRM from its own IPL and configuration to its interfaces with its
principal subsystems, the minidisk manager, and predefined device drivers. This book also
describes the coding considerations and other requirements that must be met to add code
to the VRM.

The book consists of the following sections:

Chapter 1, "Virtual Resource Manager Initial Program Load" on page 1-1 describes how
the VRM and its supported devices are IPLed and configured. This chapter also describes
how certain code modules (such as device driver modules) are loaded at IPL time. In
addition, this chapter tells how to IPL the system with a nonbase display or add code to
the VRM minidisk.

Chapter 2, "VRM Device Driver Concepts" on page 2-1 explains how. device drivers work
in the VRM. In addition to defining the common routine interface to device drivers and
managers, this section provides the information necessary to develop and install code into

RT Personal Computer, RT PC, and RT are trademarks of International Business Machines
Corporation.

About This Book iii

the VRM. This includes instructions for converting a.out format object modules to
VRM-executable object modules.

Chapter 3, "Virtual Terminal Subsystem" on page 3-1 describes the virtual terminal
subsystem interface to the virtual machine. The characteristics of the virtual terminal
subsystem are defined, as well as the commands and interrupts that cross the VMI.

Chapter 4, "Block I/O Subsystem" on page 4-1 describes how block I/O devices function in
the VRM and how they interface with the operating system. This chapter includes a
description of a generic block I/O device driver, the block I/O device manager, and some
specific block I/O device drivers.

Chapter 5, "IBM Predefined Device Drivers" on page 5-1 defines the programming
interfaces to the native VRM device drivers. This section includes information on fixed
disks, diskettes, printers, streaming tapes, and other device types.

A glossary and index follow these chapters and appendices.

A Reader's Comment Form and Book Evaluation Form are provided at the back of this
book. Use the Reader's Comment Form at any time to give IBM information that may
improve the book. After you become familiar with the book, use the Book Evaluation
Form to give IBM specific feedback about the book.

Please note the following items regarding hexadecimal notation, reserved fields, the bit
padding and numbering conventions, and highlighting conventions used in this book:

• A hexadecimal value as expressed in this publication is preceded by a zero and a
lowercase x. For example, the hexadecimal value 'F3' is represented as OxF3.

• The value of reserved fields input to the Virtual Resource Manager must be set equal
to zero. The value of reserved fields returned by the VRM is unpredictable.

• The bit-numbering convention used by IBM has the most significant bit on the left and
the least significant bit for a given field on the right. For example, in a 32-bit word, the
most significant bit (bit 0) is the leftmost bit and the least significant bit (bit 31) is the
rightmost bit.

• High-order bits in a given field not used to express a value are padded with zeroes. For
example, if an input parameter sent in a 32-bit register is only a 16-bit value, the value
occupies bits 16 through 31 of the register and bits 0 through 15 of the register are
padded with zeroes.

• Terms highlighted in bold-faced italics (such as example) are specific to the RT PC and
are included in the glossary. Terms highlighted in bold type (such as example) are
system-generated items, such as commands, file names, and so on. Terms or phrases
that appear in monospace type (such as examp 1 e) are examples of what you might see
on a display screen or what you must enter into the system to perform a given
function.

iv VRM Device Support

Related Information

The following RT PC publications provide additional information on topics related to the
VRM. Depending on the tasks you want to perform and your experience level, you may
want to refer to the following publications:

• IBM RT PC Installing and Customizing the AIX Operating System provides
step-by-step instructions for installing and customizing the Advanced Interactive
Executive2 Operating System, including how to add or delete devices from the system
and how to define device characteristics. This book also explains how to create, delete,
or change AIX and non-AIX minidisks.

• IBM RT PC Installing the Virtual Resource Manager provides step-by-step instructions
for installing the Virtual Resource Manager and shows you how to change the
IBM-recommended choices to suit your system needs. (Available as a separate volume
only when the Virtual Resource Manager is purchased separately from the AIX
Operating System.)

• IBM RT PC Hardware Technical Reference is a three-volume set. Volume I describes
how the system unit operates, including I/O interfaces, serial ports, memory interfaces,
and CPU interface instructions. Volumes II and III describe adapter interfaces for
optional devices and communications and include information about IBM Personal
Computer family options and the adapters supported by 6151 and 6150. (Available
optionally)

• IBM RT PC Assembler Language Reference describes the IBM RT PC Assembler
Language and the 032 Microprocessor and includes descriptions of syntax and
semantics, machine instructions, and pseudo-operations. This book also shows how to
link and run Assembler Language programs, including linking to programs written in
C language. (Available optionally)

• IBM RT PC AIX Operating System Programming Tools and Interfaces describes the
programming environment of the AIX Operating System and includes information
about using the operating system tools to develop, compile, and debug programs. In
addition, this book describes the operating system services and how to take advantage
of them in a program. This book also includes a diskette that includes programming
examples, written in C language, to illustrate using system calls and subroutines in
short, working programs. (Available optionally)

• IBM RT PC Messages Reference lists messages displayed by the IBM RT PC and
explains how to respond to the messages.

• IBM RT PC AIX Operating System Commands Reference lists and describes the AIX
Operating System commands.

Advanced Interactive Executive and AIX are trademarks of International Business Machines
Corporation.

About This Book V

• IBM RT PC C Language Guide and Reference provides guide information for writing,
compiling, and running C language programs and includes reference information about
C language data structures, operators, expressions, and statements. (Available
optionally)

• IBM RT PC Problem Determination Guide provides instructions for running diagnostic
routines to locate and identify hardware problems. A problem determination guide for
software and three high-capacity (1.2MB) diskettes containing the IBM RT PC
diagnostic routines are included.

• IBM RT PC Keyboard Description and Character Reference describes the national
character and keyboard support for the IOI-key, I02-key, and I06-key keyboards,
including keyboard position codes, keyboard states, control code points, code sequence
processing, and nonspacing character sequences.

• RT PC VRM/Hardware Quick Reference contains brief descriptions of the hardware
and Virtual Resource Manager. This booklet includes information on command
parameters and return codes and hardware and memory layout data.

e IBM RT PC AIX Operating System Technical Reference describes the system calls and
subroutines that a C programmer uses to write programs for the AIX Operating System.
This book also includes information about the AIX file system, special files, file
formats, GSL subroutines, and writing device drivers. (Available optionally)

Ordering Additional Copies of This Book

To order additional copies of this book (without program diskettes), use either of the
following sources:

• To order from your IBM representative, use Order Number SBOF-OI36.

• To order from your IBM dealer, use Part Number 79X3822.

Two binders and the Virtual Resource Manager Technical Reference are included with the
order. For information on ordering a binder, books, or the RT PC VRM/Hardware Quick
Reference separately, contact your IBM representative or your IBM dealer.

vi VRM Device Support

Contents

Chapter 1. Virtual Resource Manager Initial Program Load 1-1
About This Chapter ... 1-3
VRM IPL and Configuration .. 1-4
VRM IPL/lnstall with Non-Base Devices 1-14

Chapter 2. VRM Device Driver Concepts 2-1
About This Chapter ... 2-3
Device Driver Interfaces .. 2-4
Common Routine Interface ... 2-14
Developing and Adding Code to the VRM 2-27

Chapter 3. Virtual Terminal Subsystem 3-1
About This Chapter ... 3-3
Virtual Terminal Manager .. 3-4
Virtual Machine Interface to the VTRM 3-6
Virtual Machine Interface to the VTMP 3-26
Major Data Types .. 3-56
Display Device Driver Considerations 3-140
Device-specific Module Characteristics 3-141
Coding Concepts for Adapters that Generate Interrupts 3-200
Virtual Terminal Resource Manager 3-202

Chapter 4. Block I/O Subsystem 4-1
About This Chapter ... 4-4
Block I/O Device Driver Considerations 4-5
Block I/O Device Manager ... 4-38
Baseband Device Driver ... 4-47
IBM PC 3278/79 Emulation Adapter Distributed Function Terminal Device Driver .. 4-59
Multiprotocol Device Driver .. 4-69
Token Ring Device Driver ... 4-90

Chapter 5. IBM Predefined Device Drivers 5-1
About This Chapter ... 5-5
Asynchronous Device Driver .. 5-6
Diskette Device Driver .. 5-30
Fixed-Disk Device Drivers ... 5-48
Reserved Cylinders on the Fixed Disk 5-66
Graphics Asynchronous Device Driver 5-73
Parallel Device Driver .. 5-81

Contents vii

Small Computer Systems Interface Device Driver 5-90
Streaming Tape Device Driver .. 5-115

Glossary X-I

Index ... X-13

viii VRM Device Support

1-1.
1-2.
1-3.
1-4.
1-5.
1-6.
1-7.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.

2-10.
2-11.
2-12.
2-13.

3-l.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.

3-10.
3-11.
3-12.
3-13.
3-14.
3-15.
3-16.
3-17.
3-18.
3-19.
3-20.

Figures

POST Control Block Layout
PCB Entry
Directory Structure of the VRM Minidisk
Directory Structure of the VRM Install Diskette
Format of a Match List Entry
Define Device Area Entry
Control Program DDS
Define Device Structure
DDS Header .. .
DDS Hardware Characteristics
Short Error Log Format
Command Control Block
Start I/O Program Status Block
Send Command Program Status Block
Device Driver Module Entry Points
Initialize Device Data Structure
VRM Interrupt Handling
Define Options Halfword
VRM Device Driver Functions
Device Manager Module Entry Points
SVCs Directed to Virtual Terminal Components
Virtual Machine Interface to VTRM Components
Reconfigure Virtual Terminal Manager PSB
Open Virtual Terminal PSB
Close Virtual Terminal PSB
Connect to Screen Manager PSB
Terminate VTRM Request PSB
Screen Manager Ring Examples
Status Data Returned by the Screen Manager
Data Stream Format
VT Output Acknowledge Interrupt
Keyboard Mapping Structure Header
Keyboard Mapping Structure for Key Positions
Bit Positions of ASCII Controls in Echo Map
Bit Position Numbering in Echo/Break Map
VT Set Structure Acknowledge Interrupt
VT Query Acknowledge Interrupt
Unsolicited Interrupt Structure
Keyboard Data
Locator Relative Report .. .

1-5
1-5
1-8
1-8

1-12
1-13
1-22

2-4
2-5
2-6
2-7

2-12
2-12
2-13
2-16
2-17
2-19
2-21
2-24
2-25

3-5
3-7

3-12
3-14
3-16
3-18
3-20
3-21
3-24
3-28
3-30
3-34
3-34
3-40
3-41
3-42
3-44
3-45
3-46
3-49

Figures ix

3-21. Locator Absolute Report .. 3-50
3-22. Lighted Programmable Function Key Report 3-51
3-23. Dials Report .. 3-51
3-24. Virtual Terminal Data Stream Format 3-56
3-25. Virtual Terminal Data (VTD) Control Sequence 3-56
3-26. Display Data Structure ... 3-57
3-27. Input Ring Format ... 3-100
3-28. Status Partition of Input Ring 3-101
3-29. Position Codes for Remapping a 101-Key Keyboard 3-106
3-30. Code Page PO ... 3-119
3-31. Code Page PI ... 3-126
3-32. Code Page P2 ... 3-133
3-33. Code Page PO ... 3-137
3-34. Code Page PI ... 3-138
3-35. Code Page P2 ... 3-139
3-36. Display Subsystem Components 3-140
3-37. Attribute Structure for Draw Text Function 3-158
3-38. Default Color Tables ... 3-186
3-39. 5081 Display Default Color Table 3-188
3-40. Display Device Driver Entry Points 3-190
3-41. VTRM Define Device Structure 3-203

4-1. Block I/O Subsystem Components 4-5
4-2. Device Manager IODN Table 4-7
4-3. Manager-to-Driver Send Command Queue Element 4-8
4-4. Manager-to-Driver Acknowledgment Queue Element 4-9
4-5. IPL Adapter Send Command Queue Element 4-10
4-6. IPL Adapter Acknowledgment Queue Element 4-11
4-7. Start Device Queue Element 4-13
4-8. Start Device Command Extension 4-14
4-9. Start Device Acknowledgment Queue Element 4-15

4-10. Halt Device Queue Element 4-16
4-11. Halt Device Acknowledgment Queue Element 4-17
4-12. Write Long Queue Element 4-18
4-13. Write Long Acknowledgment Queue Element 4-19
4-14. Write Short Queue Element 4-20
4-15. Write (Start I/O) Queue Element 4-22
4-16. CCB Header for Write (Start I/O) 4-22
4-17. Write (Start I/O) Acknowledgment Queue Element 4-23
4-18. Device-Dependent Command Queue Element 4-24
4-19. Device-Dependent Acknowledgment Queue Element 4-25
4-20. Block I/O Operation Options Field 4-27
4-21. Device Characteristics - Block I/O Device Driver 4-29
4-22. Network ID Correlation Table 4-31
4-23. SLIH Ring Queue .. 4-32
4-24. Block I/O Communication Area 4-33
4-25. Device Ring Queue Array 4-34

x VRM Device Support

4-26.
4-27.
4-28.
4-29.
4-30.
4-31.
4-32.
4-33.
4-34.
4-35.
4-36.
4-37.
4-38.
4-39.
4-40.
4-41.
4-42.
4-43.
4-44.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.

5-10.
5-11.
5-12.
5-13.
5-14.
5-15.
5-16.
5-17.
5-18.
5-19.
5-20.
5-21.
5-22.
5-23.
5-24.

Buffer Pool Control Area
Data Buffer Structure
PSB Operation Results Field for Block I/O Requests
Block I/O Subsystem Components
LLC-to-Manager Send Command Queue Element
LLC-to-Manager Acknowledgment Queue Element
PSB Operation Results Field for Block I/O Requests
Block I/O Device Manager Error Log Format
Command Extension for the Start Device Command
Returned Command Extension for the Start Device Command
Command Extension for Query Statistics Command
Returned Command Extension for the Query Statistic Command
Query Statistics Queue Element
Acknowledgment Queue Element for the Query Statistics Command
Multiprotocol Data Transmission Rates
Multiprotocol Error Log Format
Command Extension for the Start Device Command
Automatic Poll/Response Control Block
Change Parameters Queue Element
Asynchronous Device Characteristics
Asynchronous Data Rates
PSB Operation Results Field
Device Characteristics
DDS Error Log Structure
Device Characteristics
Error Log Structure
CCB Queue Element .. .
Internal VRM Queue Element :
Cylinder 0 Layout .. .
Graphics Asynchronous Device Characteristics
Graphics Asynchronous Data Rates
Error Log Structure
SCSI Adapter Supporting 9332 DASD Attachments
SCSI Device Characteristics
SCSI Error Log Structure
SCSI General Purpose Queue Element
SCSI Command Control Block
SCSI Start I/O Queue Element ~
SCSI Acknowledgment Queue Element
Error Log Structure
Error Data for Adapter Errors
Error Data for Drive Errors
Error Data for Drive Self-Test Errors

4-35
4-36
4-37
4-39
4-41
4-42
4-42
4-44
4-51
4-51
4-53
4-53
4-55
4-56
4-69
4-72
4-75
4-79
4-82
5-14
5-20
5-25
5-34
5-36
5-52
5-54
5-58
5-61
5-67
5-74
5-77
5-85
5-91
5-95
5-97
5-99

5-101
5-103
5-113
5-118
5-119
5-120
5-122

Figures xi

xii VRM Device Support

Chapter 1. Virtual Resource Manager Initial
Program Load

VRM IPL 1-1

Contents
About This Chapter ... 1-3
VRM IPL and Configuration .. 1-4
VRM IPLfInstall with Non-Base Devices .. 1-14

Commands to Change the Install Process .. 1-15
Revising Code in the VRM ... 1-24

1-2 VRM Device Support

About This Chapter

This chapter describes the sequence of events associated with the installation of and initial
program load (IPL) of the VRM. In addition, this chapter describes the devices configured
at VRM and operating system configuration and the permission bits that determine
whether different modules are loaded, executed, and/or deleted. Also discussed is IPL with
non-base devices and the strategy for revising or reinstalling licensed program products
that reside on the VRM minidisk.

VRM IPL 1-3

VRM IPL and Configuration

The VRM, because of its role in controlling system hardware, is loaded before the operating system
code. VRM code is loaded in stages and can be done from a diskette or from a minidisk on the fixed
disk. A minidisk is a logical partition of a fixed disk. The VRM code on both the minidisk or
diskette is in the form of an AIX file system.

When you first turn on the machine, read-only memory (ROM) searches the possible IPL devices for
an IPL record. The diskette IPL device is always searched first. Therefore, when a diskette
containing an IPL record is inserted into a diskette drive, this diskette will be the IPL source (even if
a VRM minidisk already exists). Also resident in ROM and invoked when the machine is turned on
are several power-on self tests (POST). A POST performs a presence check and verifies that the
hardware is basically functional. POSTs are run on the main processor card, any random-access
memory cards, the system planar hardware (such as the keyboard) and the fixed disk and diskette
adapters.

In addition to the ROM-resident POSTs, another set of POSTs reside in a configurable directory on
the VRM minidiskand VRM diskette. These loadable POSTs perform tests similar to those performed
by the ROM-resident tests. Loadable POSTs can also supply some additional functions, such as
passing a define device structure to the VRM.

Both ROM-resident and loadable POSTs write the results of their tests to a control block called the
POST control block (PCB). The PCB is located in virtual equals real memory at address Ox800 of
RAM. The PCB format is shown in Figure I-Ion page 1-5. PCB entries from Oxl000 to Ox1800 are
written over when the VRM is installed, but the information °is preserved on the backup copy of the
PCB that is stored on the fixed disk.

1-4 VRM Device Support

Ox800

OxCOO

OxDOO

OxD10

Ox 1 000
o

Number of bad blocks

Bad block address #1

Bad block address #2

· · ·
Bad block address #255

Miscellaneous Data Area

PCB Entry for POST #00

PCB Entry for POST #01

· · ·
PCB Entry for POST n

Figure 1-1. POST Control Block Layout

Data contained in the PCB includes:

• A list of bad blocks on 128K-byte boundaries
• Miscellaneous data

31
Bits

• A four-word entry for each POST. The format of a PCB entry is shown in Figure 1-2.

o 8 16 24

o
4

8

Primary Adapter Secondary Adptr. Reserved
I POST ID

EC Level EC Level
Error codes

Adapter Slot Primary adapter
type byte address

12 Interrupt DMA Secondary adapter
byte byte address

Figure 1-2. PCB Entry

31

VRM IPL 1-5

The fields in a PCB entry are defined as follows:

• POST ID

This byte identifies the offset into the PCB starting at OxODOO.

• Error codes

Tllis word consists of two status bits and 30 bits of error information that are unique by adapter.
Bit 0 indicates good/bad status and bit 1 specifies adapter presence or absence.

• Adapter type

This byte provides a two-digit value that identifies which IBM-supplied adapter was tested. The
following values are defined:

19 RT PC Floating-Point feature (Floating-Point Accelerator, Advanced Floating-Point
Accelerator, or APC Floating-Point Coprocessor)

1A RT PC 6150 Native RS-232C Serial Adapter
20 RT PC Personal Computer AT® Coprocessor Option
23 RS-232C Serial portion of the AT® Serial/Parallel Adapter
28 RT PC Multiprotocol Adapter
2A Parallel portion of the AT Serial/Parallel Adapter or the IBM Monochrome Display and

Printer Adapter
30 RT PC Token Ring Network Adapter
31 IBM PC Network Adapter
32 RT PC 5080 Attachment Adapter
33 RT PC 3278/79 Advanced Emulation Adapter
35 RT PC 4-Port Asynchronous RS-232C Adapter
38 RT PC 5080 Peripheral Adapter
39 RT PC 4-Port Asynchronous RS-422A Adapter
3A RT PC Secondary Serial Link Adapter
40 RT PC Baseband Adapter
41 IBM PC Enhanced Graphics Display Adapter
43 RT PC Advanced Monochrome Graphics Display Adapter
45 RT PC Advanced Color Graphics Display Adapter
47 RT PC Extended Monochrome Graphics Display Adapter
49 IBM Monochrome Display and Printer Adapter
4A RT PC IBM 5081 Color Display Adapter 1
4B RT PC IBM 5081 Color Display Adapter 2
52 Fixed-disk portion, Personal Computer AT Fixed Disk and Diskette Drive Adapter
53 Diskette portion, Personal Computer AT Fixed Disk and Diskette Drive Adapter
5B RT PC Small Computer Systems Interface Adapter for IBM 9332 DASD Attachment
78 RT PC Keyboard
79 RT PC Mouse
7A IBM 5080 Dials Feature
7B IBM 5080 Lighted Program Function Keyboard Feature
80 IBM 5083 Tablet
82 RT PC ESDI Magnetic Media Adapter

1-6 VRM Device Support

83 RT PC Sound Device
85 RT PC Streaming Tape Drive Adapter
86 RT PC High-Function ESDI Magnetic Media Adapter
EE IBM Personal Computer AT Bus-Attached RAM for the Coprocessor Option.

• Slot byte

This value indicates the slot number of the adapter. The first four bits specify the slot number of
the secondary adapter and the second four bits specify the slot number of the primary adapter. A
value of OxFF indicates that no slot number was found (adapter is absent).

• Primary adapter address

This halfword indicates the primary adapter's I/O bus address (if the adapter has an I/O bus
address).

• In terru pt byte

This byte contains the interrupt level used by the primary and secondary adapters. The first four
bits indicate the interrupt level of the secondary adapter and the next four bits indicate the
interrupt level of the primary adapter. A value of Ox88 indicates the adapter uses no interrupts or
is not present.

• DMA byte

This byte contains the direct memory access (DMA) levels used by the primary and secondary
adapters. The first four bits represent the DMA level used by the secondary adapter and the
second four bits represent the DMA level used by the primary adapter. A value of OxFF indicates
that no DMA level is used.

• Secondary adapter address

This halfword specifies the secondary adapter's I/O bus address (if the adapter has an I/O bus
address).

After the ROM-resident POSTs execute, ROM must locate the IPL record, which is found at cylinder
0, head 0, sector 1 of the fixed disk or diskette. The EBCDIC character string 'IBMA' is contained in
the first word of the IPL record. ROM reads the IPL record and then reads the loadlist processor
(LLP) into memory.

The LLP is a standalone program that runs directly on the hardware. The LLP reads the AIX file
system and sequentially processes the files and subdirectories in the loadlist (ldlist) directory.
Figure 1-3 shows the directory structure of the VRM minidisk, and Figure 1-4 on page 1-8 shows the
directory structure on the VRM diskette.

VRM IPL 1-7

vrm
install
(vrinst)

Idlist

last

posts vrmbase

/vrm

load list
processor
(vriipl)

vtrm drivers

VRM code
not loaded
at IPL time

vrmdd

Figure 1-3. Directory Structure of the VRM Minidisk

Idlist

last

posts vrmbase

/vrmmnt

loadlist
processor
(vriipl)

1 1
vtrm drivers

VRM code
not loaded
at IPL time

vrmdd

vrm install
(vrinst)

Figure 1-4. Directory Structure of the VRM Install Diskette

Permission Bit Conventions
Each of the files in the loadlist have permission bits that determine whether the loadlist processor
loads, executes, and/or deletes the file. The LLP translates permission bits for files as follows:

r- - - - - Load the module

- -x - - - Execute the module

-w- --- Delete the module.

1-8 VRM Device Support

The LLP skips entries with the following permission bits:

• Files

-wx - - - (300)
-w- - - - (200) Only the first 3 bits are significant.
--x --- (100)

• Directories

rw- - - - (600)
r- - - - - (400) Only the first 3 bits are significant.
-w- --- (200)

The VRM translates permission bits for files as follows:

r- - - - - Bind the module to itself

--x --- Execute the module

-w- --- Unused.

For directories, the LLP translates permission bits as follows:

--x --- --- Search the directory.

Valid combinations of permission bits are listed and defined below.

• rwx --- --- (700)

The LLP loads, executes, and deletes these modules. The module must conform to the following
criteria:

The module must have a TOe header.
The module must be memory-location independent, at origin Ox60.
Relocation symbols must be relative to section 1 or 2 only.
The module cannot use any operating system routines.
The module must run on the stack of the LLP.
The module cannot have unresolved external references.
The module is loaded in high memory to execute.

• r-- r-- --- (440)

The LLP loads these modules. The module must conform to the following criteria:

The module must have a TOe header.
- No binding or relocating of the module is done by the LLP.
- The module is loaded in low memory.

• --- r-- --- (040)

If the IPL device is diskette, the LLP loads the module the same way it loads r- - r- - - -
modules. If the IPL device is fixed disk, the LLP does not load the module. Instead, the module is

VRM IPL 1-9

mapped. A mapped module's location on the fixed disk is entered into a table that is passed to
the VRM nucleus module.

• r-- r-x --- (450)

This is the VRM nucleus module.

The LLP transfers control to this module after allioadlist directory entries are processed. The
module must conform to the following criteria:

The module must have a TOe header.
The LLP does no relocating of the module.
A prefetch of the TOe header is done to determine the origin. If the origin is greater than
Ox60, then:

The TOe header is stripped off before the module receives control.
- An absolute memory address is allocated.
- If the origin is Ox1000, half of the 4K POST control block is deallocated.

• r-- --x --- (410)

The LLP recognizes this module as a virtual machine. The following loading requirements are
necessary:

Instead of a TOe header, the module has a 512-byte virtual machine IPL record. See VRM
Programming Reference for more information on virtual machine IPL records.
The module must start on a 2K-byte boundary.
The module size is considered the file size.
The LLP can load only one virtual machine and it must be the last module in the loadlist
directory. The VRM diskette contains a virtual machine (vrm install) that creates the page
space and VRM minidisks. This virtual machine then loads the VRM code onto the VRM
mini disk.

Standard entries in the loadlist directory include:

• POSTs (posts)

Loadable POSTs test optional features such as communications adapters, printers, additional
displays, storage adapters, and so on. Loadable POSTs in general perform the same kind of tests
as those performed by the ROM-resident POSTs. The posts directory allows for extension and
customization of the system.

• Last loadable POST (llasth.OOOO.OO)

The last POST is a file that is maintained outside and immediately following the POST directory.
Because this file indicates no more POSTs are to be processed, the POST directory can be
modified without dependencies. This file writes the information contained in the PCB to
fixed-disk sectors 34 through 49.

• VRM code (vrmbase)

This directory contains the base VRM code, including the fixed disk device driver and VRM
debugger.

1-10 VRM Device Support

• Virtual Terminal Resource Manager (vtrm)

The VTRM is a device manager responsible for the terminal subsystem devices: display,
keyboard, locator, and speaker. The code within this directory determines the terminal
subsystem configuration including type of display hardware, necessary physical and virtual
device drivers, fonts, and presence of locator hardware.

• Other device drivers (drivers)

This directory contains some of the remaining device drivers, including diskette and streaming
tape.

• Install virtual machine (vrinst.0050.00)

The file system on the VRM diskette includes an install virtual machine. When the VRM is
loaded from diskette, this file is IPLed as a virtual machine. The install virtual machine sets up
the fixed disk with VRM and page space minidisks. When these minidisks are established, the
operating system can be installed and then IPLed. Note that only one virtual machine can be
loaded from diskette and that the virtual machine module must be the last file in the loadlist
directory.

Other files that are neither located under the loadlist directory nor loaded or mapped at IPL time
include:

• Device drivers configured from the operating system (vrmdd)

This file contains device drivers for optional devices that are shipped with the VRNi but defined
and initialized when the operating system is IPLed. The VRM device drivers for printers and
asynchronous devices are located in this directory.

. • Install virtual machine (vrinst.0050.00)

This file is located under the /vrm directory on the VRM minidisk, as opposed to being located
under the loadlist directory on the diskette. See Figure 1-3 on page 1-8 and Figure 1-4 on
page 1-8 for the relative locations of this file on the VRM minidisk and diskette.

Files processed by the loadlist processor must conform to the following naming convention:

xxxxxx.yyyy.zz
Each module name is broken down into the following fields:

xxxxxx This is the module's unique identifier. Note that it must be six characters in length. Valid
characters include any alphanumeric character and any symbol with the exception of *, ?, [
and].

yyyy This field is a hexadecimal value that represents the module's IOCN. This value must be in
the range Ox0001 to Ox0400 if the module has an assigned IOCN. If the module has no IOCN
(such as power-on self tests), this value is set equal to zero. This field must be four
hexadecimal digits in length.

VRM IPL 1-11

zz This field is the module's match code.

Match codes are used to tell the loadlist processor whether to load a particular module.
When the loadlist processor executes a module (permission bits = 700), the module can
return a list of one or more match values to the loadlist processor. For any succeeding
modules in the same directory, the LLP processes the module only if its filename contains a
match value of '00' or a value already returned to the LLP by another module. The LLP
skips the remaining modules in that directory.

Match values returned from a module are kept only for the directory in which the module
resides. When the LLP completes processing all the modules in a given directory, it discards
all the match values returned from that directory's modules.

All modules executed by the loadlist processor must conform to the following register conventions.
Note that GPRs 2 through 4 are input parameters and GPRs 5 and 6 are return parameters. Both
GPR1 and GPR14 contain the address of the stack. The contents of GPRs 6 through 15 must not be
changed.

GPR2 = Contains the address of the POST control block
GPR3 = Contains the address of the ROM entry point table
GPR4 = Contains the address of the define device area (DDA)
GPR5 = Contains the 32-bit address of a pointer to the list of match values returned by the module

A called routine that does not pass a list of match values to the loadlist processor should
store a value of -1 (OxFFFFFFFF) in the address pointed to by the value in GPR5.
Figure 1-5 shows the format of an entry in the match list.

GPR6 = This register is stored on the stack and contains the 32-bit address of a pointer to an entry
to be added to the define device area.

A called routine that does not pass an entry for the DDA should store a -1 in the address
pointed to by the value in GPR6.

On return, GPR2 contains 0 for successful completion. Values not equal to zero indicate unsuccessful
completion.

If any non-zero return codes (unsuccessful processing) are returned to the loadlist processor, the code
'23' is displayed for 10 seconds on the light-emitting diodes (LEDs) to reflect this fact.

Each match list entry (as shown in Figure 1-5) is an 8-byte field. The first two bytes are reserved,
the next two bytes are the 2-character match code, and the next 4 bytes point to the next entry in the
list. The last entry in the list has a value of -1 to indicate the last entry in the list.

o .----------------------------.----------------------------~
Reserved Match code

4 r---------------------------~----------------------------~
Address of next entry

o 31

Figure 1-5. Format of a Match List Entry

1-12 VRM Device Support

The define device area (DDA) is an area built by the loadlist processor that contains the define
device structures for certain devices. Figure 1-6 shows the format of a typical entry in the DDA.

o 31
o r--~

Device class
4 r---~

Length of entry
8 r---~-------~--~

Define device structure

n ~--~

Figure 1-6. Define Device Area Entry

The fields in each DDA entry passed back from a called module are defined as follows:

• Device class (four bytes)

Valid values for this field include:

1 = This indicates the device is a fixed disk.
2 = This indicates the device is a diskette.
3 = This indicates the device is a keyboard.
4 = This indicates the device is a display.
5 = This indicates the device is the virtual terminal resource manager.
6 = This indicates the device is the VRM debugger.
7 = This indicates the device is a streaming tape.
S = This indicates the device is a locator.
9 = This indicates the device is a speaker.

• Length of entry (four bytes)

This field indicates the length of the entry in bytes. This length is simply the length of the DDS
plus eight.

• DDS
This field contains the device's DDS, including the DDS header, device characteristics, hardware
characteristics, and error log fields (if applicable). For more information on the specific fields in
a DDS, see VRM Programming Reference. The DDSs for some IBM-supplied devices are described
in Chapter 5, "IBM Predefined Device Drivers" on page 5-l.

The LEDs are the only way for you to know what is happening in the system during IPL. In addition
to the '23' return code that displays on the LEDs for unsuccessful loadlist processing, other codes
you might see on the LEDs and their meanings are defined on the following page.

VRM IPL 1-13

02 = Read error
03 = Insufficient space to load the module
04 = Insufficient space for the DDA
05 = Insufficient space for a data structure
06 = Insufficient space for a data structure
07 = Insufficient space for the match list
08 = Relocation symbol type not supported
09 = File type not supported
10 = Invalid device
11 = Invalid index for address
12 = Inode out of range
13 = Address out of range
14 = File not found
15 = No freeblock header space
16 = Freeing freespace
17 = Address already allocated
18 = Module not on a word boundary
19 = Invalid file name
20 = Invalid IOCN in the file name
21 = Invalid IOCN in the DDS
22 = Invalid length field in the DDS

23 = Execution of loaded program failed
24 = No entry point found
25 = Bad load module
45 = Base devices missing
46 = Probable programming error
47 = Error in vtcp command
48 = Define Code SVC failed for a module on

the vtcp command line
49 = Insufficient memory for segment to read

in the code
50 = Define Device SVC failed for a control

program
51 = Attach Device SVC failed for a control

program
52 = Define Device SVC failed for a new

device
53 = Define Device SVC failed for the VTRM
54 = Unsuccessful initialization of the VTRM
55 = Diskette I/O error during VRM install
99 = Machine or program check error.

After all the entries in the loadlist are processed, the LEDs are cleared and control passes to the
VRM nucleus module (permission bits = 450).

VRM IPL/Install with Non-Base Devices

The preceding IPL discussion describes how the VRM is installed and how devices are configured
when using IBM code and hardware. The RT PC system, however, can be expanded with non-IBM
code and devices. "Installing Code from a Virtual Machine" on page 2-29 describes how to add code
to an IPLed system from a virtual machine. Non-base devices required by the VRM install program,
such as displays, are added by VRM install in this way. The code for such non-base devices must be
installed by way of a separate diskette during the VRM install process. IBM RT PC Installing and
Customizing the AIX Operating System describes the steps for installing the VRM and IPLing the
system with non-base devices and code. "Display Device Driver Considerations" on page 3-140
describes how to d,evelop a device driver for a non-base display. The following section describes:

• The commands used to make permanent or temporary changes to the install process.
• The media (diskette) and formatting requirements for the new code.
• The update strategy for revised code.

1-14 VRM Device Support

Commands to Change the Install Process

The following commands can be used to make temporary or permanent changes in the RT PC
IPL/install process:

• addf - add a file to the VRM minidisk
• chmd - change the permission bits of a file on the VRM minidisk
• delf - delete a file from the VRM minidisk
• vtcp - add non-base display code at VRM install time.

These commands can be placed in a control file on a 1.2M byte or 360K byte AIX file system diskette.
The control file must be named Inst.Batch and must reside on the root of the diskette file system.
The first command begins with the first character in Inst.Batch. Each command terminates with a
newline character (OxOA) and the next command (if any) begins immediately after the newline
character. Commands may be up to 128 characters in length (including the newline character). An
asterisk (*) in column 1 indicates a comment record.

The VRM install program will read and execute the control file when the diskette is inserted during
VRM install. IBM RT PC Installing and Customizing the AIX Operating System describes when and
how to insert the device diskette during the VRM install process.

Of the preceding commands, vtcp makes a temporary change to the running copy of the VRM to
allow a non-base display to be used by the VRM install program. This is considered a temporary
change because the code is not present for subsequent IPLs. When the VRM minidisk is changed
with addf, delf, or chmd, the changes are considered permanent because they will be in effect for
subsequent IPLs. Of course, you can add non-base display code to the system with vtcp and then add
the code to the VRM minidisk with addf. The non-base display code will then be used for subsequent
IPLs.

These commands are defined on the following pages. Each definition includes the command syntax,
input parameters, and possible error conditions.

VRM IPL 1-15

addf - Add a file to the VRM minidisk

Description: The addf command reads the specified input file from a diskette and writes the output
file to the same path on the VRM minidisk. Subdirectories indicated by the path
name that do not exist on the fixed disk file system are created by this command. For
this reason, extreme care must be used when naming files to be added to the VRM
minidisk.

This command distinguishes between files added to the minidisk for the first time and
files that are being updated or reinstalled. Code added to the VRM minidisk falls into
three categories. They are:

• Code added for a program product that puts no history information on its diskette.
• Code added for a program product that does put a history file on its diskette.
• Code added to update an existing program product with a history file on the VRM

minidisk. These diskettes should contain an up dIe vel file for the program
product.

If code is added from a diskette with no history information, or if a program product
is being installed for the first time, naming conflicts result in errors.

If a program product is being updated or reinstalled, a naming conflict causes the file
to be deleted and replaced. See "Revising Code in the VRM" on page 1-24 for more
details on history files.

Files added to the VRM minidisk are given the same permission bits as the source
files on the diskette. Files for display device" drivers, device-specific modules, and
fonts should have permission set to 040 octal. See "Permission Bit Conventions" on
page 1-8 for more information on permissions.

Command format:

addf <diskette_name> [insert_name]
The input parameters are defined as follows:

• di s kette_name - indicates the full path name of the file to add from the
diskette

• insert_name - is an optional parameter that specifies the simple file name of a
file after which the added file is to be placed

This parameter allows you to place a file in a specific location in a directory and
is sometimes necessary for order-dependent modules. The specified file will be
inserted in the same directory as di s kette_name. To designate a file as the first
in a directory, insert it after the dot dot (..) entry.

If the insert option is used but the specified file is not found on the VRM
minidisk, the added file is placed in the first available directory entry (usually at
the end of the directory). No error is given.

1-16 VRM Device Support

Errors:

Errors that occur with this command cause a message with the prefix 046 to appear
on the display. These messages are described in IBM RT PC Messages Reference.

The following error conditions may occur with addf:

• The VRM file system is full (no free space).
• The VRM file system contains the maximum number of files.
• The VRM file system is corrupt.
• An invalid argument, too few arguments, or too many arguments were found on

the command line of the Inst.Batch file.
• An I/O error may result from use of a bad diskette.
• A file referenced on the command line was not found on the diskette.
• The specified file already exists on the VRM minidisk and no history file is

present.

VRM IPL 1-17

chmd - Change permission bits of a file on the VRM minidisk

Description: The chmd command allows you to change the permission bits for a file on the VRM
minidisk. "Permission Bit Conventions" on page 1-8 explains how permission bits
cause a module to be loaded, executed, ignored, and so on.

Command format:

Errors:

chmd <disk-name> <permission>
The input parameters are defined as follows:

• dis k-n arne - indicates the full path name of the file on the VRM minidisk for
which permission bits will be changed

• permi ssi on - indicates the new permission to assign to the file

This parameter consists of three octal digits representing the nine permission bits
for a file.

Errors that occur with this command cause a message with the prefix 046 to appear
on the display. These messages are described in IBM RT PC Messages Reference.

The following error conditions may occur with chmd:

• An invalid argument, too few arguments, or too many arguments were found on
the command line of the Inst.Batch file.

• The input permission value is invalid.
• An I/O error may result from use of a bad diskette.
• The file referenced on the command line was not found on the VRM minidisk.

1-18 VRM Device Support

delf - Delete a file from the VRM minidisk

Description: The delf command allows you to remove a file from the VRM minidisk. If the supplied
file name is a directory, the directory is not deleted unless it is empty. This function
should be used with extreme caution. If the wrong files are deleted from the VRM
minidisk, system performance may be severely compromised.

Command format:

Errors:

delf <disk-name>
The input parameter is defined as follows:

• dis k-n ame - indicates the full path name of the file on the VRM minidisk to
delete.

Errors that occur with this command cause a message with the prefix 046 to appear
on the display. These messages are described in IBM RT PC Messages Reference.

The following error conditions may occur with delf:

• An I/O error may result from use of a bad diskette.
• A file referenced on the command line was not found on the VRM minidisk.
• An invalid argument, too few arguments, or too many arguments were found on

the command line of the Inst.Batch file.

VRM IPL 1-19

vtcp - Add non-base display code at VRM install time

Description: The vtcp command allows you to add non-base display code at VRM install time.
Examples of non-base display code include a device-specific module of the VTMP, a
display device driver, a new font, and so on.

This command is necessary when the VRM install program cannot use the
IBM-supplied VTRM. The vtcp command requires a control program to inform VRM
install of changes to the VTRM .DDS and to supply a DDS for the non-base display
being added. The control program itself has a DDS that includes a copy of the VTRM
DDS and the DDS of the non-base device. Figure 1-7 on page 1-22 shows the control
program DDS. For a description of the IBM-supplied VTRM DDS, see "Virtual
Terminal Resource Manager" on page 3-202.

Command format:

vtcp <dds_size> <control_program> <device_driver> [more_code] ...
The input parameters are defined as follows:

• dds_s i ze - a decimal number that indicates, in bytes, the size of the non-base
display device driver DDS

• contra l_program - indicates the full path name of the control program

The control program revises certain fields in the VTRM DDS so that new device
drivers (and other code modules) are reflected there. The control program also
supplies the DDS for the non-base display. Because the control program is defined
to the system as a device driver, it must handle the following device driver entry
points:

Define device COx3C)
Initialize device (Ox3D)
Initiate I/O (Ox1E)
Terminate (Ox3E)

Other entry points, such as check parameters, are not required.

• devi ce_dri ver - indicates the full path name of the device driver code to be
added

• more_code - indicates the full path names of additional modules to be added

This parameter is necessary for any modules that must be configured in the
system with a Define Code SVC, such as a font or a device-specific module of the
VTMP. See "Display Device Driver Considerations" on page 3-140 for details on
this type of module.

The VRM install program reads the vtcp command from diskette and then assigns an
IOCN and issues a Define Code SVC for each module specified on the command line.

1-20 VRM Device Support

VRM install then builds a DDS for the control program, assigns it an IODN, and
issues a Define Device SVC for it. At this point, the control program receives control
at its define device entry point and has address ability to its DDS. The control
program must then update the copied VTRM DDS (see Figure 1-7 on page 1-22) and
supply a DDS for the non-base device being added to the system. The following
VTRM DDS fields must be updated:

• Number of displays (set to one)
• Display identifier
• IODN of the display device driver
• IOCN of the device-specific module (if any)
• Number of fonts added (if any)
• IOCN of any added fonts.

Figure 3-41 on page 3-203 shows the format of the VTRM DDS.

VRM install provides an IOCN and IODN for the device driver and places them into
the DDS. Any additional code modules are assigned the next largest IOCN and are
processed in the order in which they appear on the command line.

An Attach Device SVC is then issued for the control program, and the program
receives control at its Initialize Device entry point. Any tasks required by the
developer can be performed here. A Detach Device SVC is then issued, and the
control program gets control at its I/O Initiate entry point with a detach queue
element in register 3. The Terminate entry point is also called here. The control
program must dequeue the detach queue element and return a zero return code (for
successful completion) from both the I/O Initiate and Terminate entry points.

After successful completion of these steps, a Define Device SVC is issued for the
IODN allocated for the display device driver. VRM install then takes the updated
copy of the VTRM DDS and redefines it to the system. At this point, VRM install
should be able to write to the non-base display.

VRM IPL 1-21

o

28

56
60
64

76

236

n

IODN I

Common VRM DDS header

Hardware characteristics

Length

IOCN I Reserved
Reserved

VfRM DDS

DDS of new device

Figure 1-7. Control Program DDS. Note that bytes 56 through n represent the device characteristics
section of the control program DDS, even though this section contains two other complete
define device structures.

The fields in the control program DDS are defined as follows:

• Common VRM DDS header

This section includes the IODN and IOCN of the control program, the device type
and name, and the applicable offsets to other sections of the DDS. See Figure 2-2
on page 2-5 for a detailed definition of these fields.

• Hardware characteristics

This section describes the physical hardware features associated with the
component, such as the internal device type, pertinent addresses, interrupt
definition, and so on. See Figure 2-3 on page 2-6 for more details.

• Length

This field indicates the length of the control program DDS from offset 56 to n (the
control program device characteristics section).

• IODN
This is the IODN allocated by VRM install for the new display device driver.

1-22 VRM Device Support

Errors:

• IOCN

This is the IOCN allocated by VRM install for the new display device driver.

• VTRM DDS

This field is a copy of the VTRM DDS described in "Virtual Terminal Resource
Manager" on page 3-202. Depending on the type of code or device being added to
the system, certain fields in the VTRM DDS must be updated.

• DDS of new device

This field is filled in by the control program and contains the DDS of the device
being added to the system. It is a variable length field (indicated by a parameter
of the vtcp command) because different devices have different requirements for
the hardware characteristics and error log fields.

Errors that occur with this command cause a two-digit code to flash in the LEDs. This
code is associated with a message. These messages are described in IBM RT PC
Problem Determination Guide.

The following error conditions may occur with vtcp:

• An I/O error may result from use of a bad diskette.
• A file referenced on the command line was not found on the diskette.
• The Define Device SVC failed.
• The Attach Device SVC failed.
• A Define Code SVC cannot be issued for a module on the diskette due to

incorrect format.
• Insufficient memory to complete the command.

VRM IPL 1-23

Revising Code in the VRM

Each licensed program product (such as the VRM) shipped by IBM for RT PC contains a history file.
This file indicates the version, release, and level of the product code. As software is revised to add
function or correct errors, the program product in use on the machine must be updated or
reinstalled. "\

Revisions to existing software can be done either by reinstalling the entire program product or
updating specific modules of the product. The following section describes the facilities used by IBM
to enable updates to program products installed on the VRM minidisk. Software developers are not
obligated to use these facilities in the same way IBM does, or to use them at all. However, non-IBM
software developers must be aware of how VRM install uses and checks certain areas of update
diskettes before the revisions can be added to the system.

The History File
IBM recommends that software developers include a history file on program products used on RT PC.
One advantage to doing this is that, when a program product with a history file is installed on the
VRM minidisk, an entry is made in the VRM history file to reflect the product. If the entire VRM
must be reinstalled for any reason, the user has a record of the program products that must also be
reinstalled.

A history file should contain two records, a c and a t record, and each record must be exactly 80
bytes in length. "Record Types" on page 1-26 defines each record type. Any unused fields in a record
should be padded with blanks. The last character in each record must be a newline character and the
data cannot contain any tabs.

The history file must be contained on the same diskette as the rest of the program product code.
When a program product is installed on the VRM minidisk, the history file from the diskette is
copied to the VRM minidisk. This is done automatically, so do not issue an addf command. The file
must be called /lpp/lppJIame/lpp.hist. IppJIame is a short name (maximum of 8 characters) for
the program product and should match the LPP name field of the c record. Only one history file is
allowed per diskette, and restrictions apply to the use of the file name /Ipp. See "Restrictions on /lpp
Files" on page 1-28 for the details on these restrictions.

Note that the path names given for the history and update files are the path names from the root of
the file system on the diskette or VRM minidisk.

The fields of the 80-byte history file are defined by IBM as follows:

Bytes Description

1 Record type

This byte represents the type of record on the history file. For history files on the VRM
minidisk, this byte can contain a lowercase c, v, t, or asterisk (*). "Record Types" on
page 1-26 describes each record type in more detail. The following field descriptions apply
only to the c and v record types.

1-24 VRM Device Support

2 Blank

3-10 LPP name

This 8-character field should match the lpp-Ilame field in the path name of the history file.
Any valid AIX file name can be used for this 8-character field.

11-16 Reserved

17 Blank

18-19 Version

Valid characters are the numerals 0 through 9.

20 Period (.)

21-22 Release

Valid characters are the numerals 0 through 9.

23 Period (.)

24-27 Level

Valid characters are the numerals 0 through 9. Bytes 18 through 27 indicate the version,
release, and level of the program product. The IBM convention for the level field, which is
initially set to 0000, is to increment it by 10 for each update.

28 Blank

29-30 Day

Valid characters are the numerals 0 through 9.

31-32 Month

Valid characters are the numerals 0 through 9.

33-34 Year

Valid characters are the numerals 0 through 9.

Bytes 29 through 34 indicate the date. For c records appended to a history file or v records
added to the VRM history file, the date field is set by the system clock when the program
product is updated or installed. The date field in the original c record of a program product
is not modified.

35 Blank

36-43 System user's name

Valid characters for this field are the numerals 0 through 9 or the letters a through z (upper
or lowercase).

VRM IPL 1-25

If the VRM minidisk is changed from the AIX Operating System, this field indicates the log
name of the user making the change. When the VRM minidisk is changed by VRM install,
this field equals the characters V RM INS T.

44 Blank

45-79 Comments

80 New line character

Record Types

The record type of a re03rd in the history file is indicated by the character in the first byte of the
record. Valid characters for this byte are a lowercase c, t, v, or an asterisk (*). Each type is defined
as follows:

c indicates a committed record.

The history file for a program product diskette should have as the first record in the file a c
record that documents the version, release, and level of the program diskette. Whenever updates
are made to the program product, a new c record indicating the level of the updates is appended
to the program product's history file on the VRM minidisk. This record has the 80-byte format
described previously.

t indicates a title record.

The history file for a program product should have a title record for the second record in the file.
The title record is simply a name that can be more descriptive than the 8-character LPP name
field in a c record. Bytes 3 through 32 contain this descriptive title. Titles less than 30
characters long should be padded with ASCII blanks. An example of a title record for the VRM
might be:

t Virtual Resource Manager
v indicates a VRM minidisk update.

A v record appears only on the VRM history file (flpp/vrm/lpp.hist) for program products that
have made updates to the VRM minidisk. This record type has the same 80-character format as
the c record. The date field in a v record is updated by the system clock, however, and the user
name field is set to VRMI NST. If a v record already exists in the VRM history file for the program
product, the version, release, level, and date fields of the v record are updated.

If the VRM is reinstalled for any reason, the user receives a message based on the v records in
the VRM history file. This message informs the user of program products that should also be
reinstalled.

Note: If a program product without a history file is installed on the VRM minidisk, the message
indicating the program products that must be reinstalled with the VRM shows a name of
'UNKNOWN'.

1-26 VRM Device Support

* indicates that this record is a comment.

A comment record must also be 80 bytes in length.

The Update File
History files are useful when an entire program product needs to be revised. However, developers
may choose to send out updates of selected modules within a program product. In this case, the
diskette contains only the code that is being revised. No history file is necessary. Instead, an update
file on the diskette contains an abbreviated form of the information contained in a history file. Only
the first 17 characters of the update file are processed; the 18th character must be a newline
character.

Whenever an update is made to a program product on the VRM minidisk, the product's history file
on the VRM minidisk is updated with a new c record that indicates the current version, release, and
level of the product in use on the system.

The new c record does not replace any existing records, but is appended to the end of the history file.
The last c record in the history file contains the latest level of updates that have been installed for a
particular program product.

The update file must be called /lpp/lpp--11ame/updlevel where Ipp--11ame is the name of the LPP as
it appears on the VRM minidisk. The fields of the file named updlevel are defined as follows:

Bytes Description

1-8 Program name

9 Blank

10-11 Version number

12-13 Release number

14-17 Level number.

18 Newline character (OxOA)

Update files have restrictions not associated with history files. For example, an update diskette
(Jlpp/lpp--11ame/updlevel) will not be processed unless a corresponding history file
(Jlpp/lpp--11ame/lpp.hist) already exists on the VRM minidisk.

Also, the update diskette will not be processed unless the version and release of the update file are
equal to the version and release of the history file. The level field on the update file must then be
greater than the level shown on the last c record for the program product history file on the VRM
minidisk. For example, if the update file indicates 01010030 for the version, release, and level fields,
and the latest c record in the product's history file on the VRM minidisk shows these fields equal to
01010050, the update is unsuccessful. This avoids inadvertent replacement of a current level of
program product code with a previous level of code.

VRM IPL 1-27

Restrictions on /lpp Files
The file name /lpp on a program product diskette is a reserved name. If this name is used for a
history or update file, the following restrictions apply:

• The file /lpp must be a directory file.

• Only one entry in /lpp is allowed (with the exception of the dot (.) and dot dot (..) entries for the
directory itself and its parent).

• The single entry in the /lpp directory file must be 8 characters or less and should be an exact
match of the program product name field (lppJlame) of the c record. The file /lpp/lpP-Ilame
must be a directory file.

• Only one entry in Ipp/lppJlame is allowed. The single file in the /lpp/lpp-Ilame directory file
must be either a history file (flpp/lppJlame/lpp.hist) or an update file
(flpp/lpP-Ilame/updlevel).

1-28 VRM Device Support

Chapter 2. VRM Device Driver Concepts

Device Driver Concepts 2-1

CONTENTS
About This Chapter ... 2-3
Device Driver Interfaces .. 2-4

Define Device Structure .. 2-4
Input/Output Operations ... 2-11
Operation Completion and Status Values .. 2-12

Common Routine Interface ... 2-14
Interface for Device Drivers .. 2-15
Entry Point Types .. 2-17
Interface for Device Managers .. 2-25

Developing and Adding Code to the VRM ... 2-27
General Coding Considerations ... 2-28
Installing Code from a Virtual Machine ... 2-29

2-2 VRM Device Support

TNL SN20-9859 (26 June 1987) to SC23-0817

About This Chapter

This chapter describes the role of device drivers in the VRM. Topics discussed include
VRM device driver command and interrupt conventions, the format of device driver
modules, and some general programming considerations for those who wish to add device
driver code (or any code) to the VRM. Also discussed are the steps necessary to convert an
a.out object module to a VRM object module.

Please note that C language examples of the following device driver components are
included in the directory /usr/lib/samples, which can be installed from the Extended
Services diskettes of the AIX Operating System:

• Printer device driver

• Device-specific module for a display device attached to the IBM Color Graphics
Adapter

• A loadable power-on self test (LPOST)

o Diskette device driver (provides an example of a device driver that uses direct-memory
access).

The task of adding code to the VRM assumes a general understanding of systems
programming and should be attempted only by qualified individuals. Whenever code with
supervisor state privilege is added to the VRM, it is possible to corrupt the integrity of
code and files and have a negative impact on system performance.

If, in the course of adding code to the VRM, you determine that you need to write a
corresponding AIX Operating System device driver or want to revise the AIX Operating
System files that configure the system at IPL, you should also have IBM RT PC AIX
Operating System Technical Reference.

Device Driver Concepts 2-3

Device Driver Interfaces

A VRM device driver provides a queued interface to a physical hardware device. The driver accepts
commands from a higher level (either a VRM device manager or a virtual machine operating system
device driver) and generates the I/O instructions required to perform the enqueued request. A device
driver is also responsible for handling interrupts (usually for I/O completion or exception conditions)
from the hardware.

IBM supplies device driver code for most common device types (printers, diskette drives, tape drives)
and device management code for complex devices (display terminal, fixed disk). This code is defined
at system IPL time. Any additional or supplemental code, such as another display font, a new
protocol process, or even a new set of device managers and drivers, must be explicitly defined with a
Define Code SVC so the code is known to the VRM.

Define Device Structure

The format of device driver code is similar for all types of drivers. "Common Routine Interface" on
page 2-14 describes the required and optional entry points for device driver modules. Drivers differ
mainly by the characteristics of the devices they control. That difference is manifested in the define
device structure (DDS).

Figure 2-1 shows the basic structure of a DDS.

o .-------------------------~
Header

28r-------------------------~

Hardware Characteristics

Device Characteristics

Error Log
N ~------------------------~

Figure 2-1. Define Device Structure

Notice that only the header is a constant-length field (28 bytes). The length of the hardware
characteristics field may differ from one driver to the next depending on the number of interrupts the
driver §)upports and whether the device has any ROM. Other DDS fields, such as the device
characteristics and error log fields, vary in length and application for each particular driver. Some
drivers do not even use the error log fields, for example.

The DDS is one of the structures used to communicate information between the virtual machine and
the VRM. The virtual machine passes the DDS to the VRM as a parameter when it issues a Define
Device SVC.

2-4 VRM Device Support

DDS Header
The DDS header, which occupies the first 28 bytes of the structure, has the same format for all
drivers. Figure 2-2 shows the header structure.

o
4

8

12

16

20

24

28

N

lODN I IoeN
Define options I Device type

Device name

Reserved

Offset to hardware characteristics

Offset to device characteristics

Offset to error log

Device-dependent information

Figure 2-2. DDS Header

See Define Device SVC in VRM Programming Reference for a detailed discussion of all DDS fields.

A variable-length field of device-specific information follows the header. This field includes the
hardware characteristics, device characteristics, and error log.

DDS Hardware Characteristics
Figure 2-3 on page 2-6 illustrates the hardware characteristics structure.

Device Driver Concepts 2-5

DDS header
o

28

32

36

40

44

48

52

56

Length (in words) of hardware characteristics

N

N+4

N+8

Internal device type

I/O port address (base)

I/O port addresses (number)

Bus memory start address (RAM)

Bus memory end address (RAM)

DMA type

One interrupt definition (16 bytes)
for each interrupt level supported
by the device

Bus memory start address (ROM)

Bus memory end address (ROM)

Figure 2-3. DDS Hardware Characteristics

DDS Device Characteristics
Device characteristics fields vary widely for different devices. To see some examples of device
characteristics fields from IBM-supplied device drivers, see Chapter 5, "IBM Predefined Device
Drivers" on page 5-1.

DDS Error Log
The error log section of a DDS is used to report various types of errors that may occur during an I/O
operation. Some of this information is used by the _errvrm subroutine to create error entries.
These entries are sent to error log files which can be formatted into readable error reports. The
error log section can also be used by the Query Device SVC to obtain information.

The design of the error log depends on the needs of the device driver that uses it. Some device
drivers have relatively simple types of error information, and therefore their error log may consist of
only a few words of error data. A relatively simple implementation of a DDS error log is that used by
the streaming tape device driver (shown in Figure 5-21 on page 5-118). The error logs of other device
drivers may be much more extensive. For example, device drivers that perform error recovery
operations, such as the fixed-disk and diskette device drivers, contain much more information. There
are two basic formats for this type of error log, a short or a long form. The short and long types are
described in the following sections.

2-6 VRM Device Support

Short Error Logs
One type of error log is called a short error log. This is the type of error log used by the diskette and
fixed-disk device driver. Figure 2-4 on page 2-7 shows an example of a short error log.

o
4

8

12

16

20

24

28

32

36

40

44

48

52

56

60
64

68

72

76

80

84

88

92

96

100

Length

Class I Subclass I Mask I Type

Error Data Length

Error Indication Code I Options

Status Reg I Error Reg I Memory Segment ID

Formatted Data Capacity

Current Media Location

Previous Media Location

Memory Address

Data Transfer Length ,-

Counter Data Length

Counter Type

Bad Count

Good Count

Bad Threshold I Error Ratio Threshold

Good Threshold

Consecutive Bad Threshold I Permanent Error

Consecutive Bad Count I Reserved

Counter Length

Data ECC Errors

ID Address Not Found Errors

Abandoned Command Errors

Track Zero Errors

Data Address Mark Errors

Unrecognizable Condition Errors

Figure 2-4. Short Error Log Format

A short error log is logically divided into four sections, each of which is used for a different purpose.
The first section is always used when an error occurs. It contains three pieces of information:

• The overall length of the error log. This field remains the same for all errors encountered by a
particular device driver.

Device Driver Concepts 2-7

• The error ID, which is composed of the class, subclass, and mask fields. The error ID is part ot
the data used to create an error entry.

• The type of error entry that is being generated. The value in this field depends on the type of
error encountered.

The second section begins with the error data length field and is only used when an error occurs
during the current I/O operation. This section is usually six to eight words in length and contains
device-specific information or current operation information.

The third section begins with the counter data length field and is only used when an error causes a
predefined error ratio threshold to be exceeded. The method used to calculate the error ratio is
defined later in this section. For now, just note that this section is used when the device driver falls
below a specified level of performance.

The second field in this section is the counter type field. The first bit (bit 0) in this field must be set
to 1 to indicate that this is a short error log. The remaining bits in the counter type field are
assigned to the various error counters that are maintained by the device driver. When an error
occurs that causes the error ratio threshold to be exceeded, the proper bit is set in the counter type
field to indicate which error occurred. The remaining fields in this section contain information
about the error counter identified ·in the counter type field. This information includes the number of
errors encountered, the number of successful operations performed, the thresholds that determine
when to check the error ratio, and the error ratio that is considered acceptable for the device driver.

The fourth section begins with the counter length field and is also only used when an error causes a
predefined error ratio threshold to be exceeded. This section contains a list of error counters that
identify the total number of errors encountered for each type of error that can occur for the device
driver. The error counter value for each type of error is. one word in length.

Long Error Logs
The other type of error log is called a long error log. This error log contains the same first three
sections as a short error log, but it does not contain the fourth section. Instead, it repeats the third
section for each type of error counter maintained by the device driver. Note that each repeated
section does not include the counter length or counter type fields.

The counter type field is used to identify a long error log. The first bit (bit 0) in the counter type
field must be set to 0 to indicate that this is a long error log. The remaining bits in the counter type
field are assigned to the various error counters that are maintained by the device driver. When an
error occurs that causes the error ratio threshold to be exceeded, the proper bit is set in the counter
type field to indicate which error occurred. The bit position is used as an index to locate the rest of
the error data associated with that error counter.

2-8 VRM Device Support

Using Error Counters in Device Drivers
Due to the nature of hardware devices, some I/O operations are unsuccessful the first time they are
scheduled by the device driver. This is not necessarily an error condition. It may be possible to
perform a retry on the operation and have a successful completion; however, the device driver should
keep track of errors that cause retries and generate an error entry if the number of errors becomes
excessive. This section describes one method that can be used to track errors and report data to the
error log.

There are two basic types of errors:

• Current operation errors

These errors appear for the current I/O operation. You can define a set of variables that state
when an error entry should be generated. For example, you can say that any operation that
requires 0 to 2 retries completed without incident, 3 to 9 retries is considered a temporary error,
and 10 retries indicates a permanent error. These types of errors are reported in the second
section of the error log.

• Cumulative errors

These errors accumulate over time. The device driver keeps track of all of the errors that have
occurred for each I/O operation, and when certain conditions occur, computes the ratio of errors
to successful operations. If the error ratio is too high, the error counters and associated data are
reported to the error log and an error entry is generated. These types of errors are reported in
the third and fourth sections of the error log.

A device driver can use the following counters and variables to determine when to report an error
and which type of error to report. These counters and variables are kept in the device driver's
working area and should be available at all times during an I/O operation. The values are written to
the error log when an error ratio threshold is exceeded:

Consecutive bad count

Error counters

This is a counter that is reset to 0 at the beginning of each I/O operation. It is
incremented each time a retry is performed for any reason.

One cumulative error counter for each error type. Each time a retry is performed, the
device driver determines the reason for the retry and increments the appropriate error
counter. A counter is reset to 0 if it causes the error ratio threshold to be exceeded.

Good count One good count counter for the total number of successful operations that have
occurred. This value is used to compute the error ratio threshold.

Error ratio threshold
The value which will cause the error counter data to be reported. This value is
obtained by dividing an error counter by the good count. A typical value for this is 5,
meaning 5 percent. The error counter used to compute the error ratio is the one that
reaches the bad threshold.

Device Driver Concepts 2-9

Consecutive bad threshold
The number of consecutive retries that must occur before an error of any type is
reported.

Permanent error threshold
The number of errors that must occur before a permanent error is reported.

Bad threshold The number of retries that must occur before checking the error ratio threshold. In
general, this value should be the same as that used as the permanent error threshold.

Good threshold
The maximum number of good operations which can be used to compute the error
ratio. If the good count counter reaches this value, it is reset to 0 by the device
driver. This ensures that the good count value does not become so large that the
error ratio becomes statistically invalid. If the good count was always incremented, it
could eventually reach a level where the error ratio would never be large enough to
exceed the error ratio threshold.

The following scenario describes how the error counters are used to monitor I/O operations:

1. When the system is initialized, all of the error counters are set to O.

2. The device driver receives an I/O command, resets a current operation retry counter to 0 and
attempts to perform the command.

3. If the device driver encounters an error that cannot be retried, a permanent error is reported and
the operation is abandoned.

4. If a retry is required, the current operation retry counter is incremented by 1 and the error
counter corresponding to the type of error that caused the retry is incremented by 1.

The following sequence is performed before each retry:

a. If the number of retries is greater than or equal to the bad threshold value, and the good
count counter is greater than or equal to the minimum value needed to obtain a statistically
meaningful error ratio, an error ratio is computed by dividing the bad count by the good
count. The bad count is the value of the error counter that caused the retry.

b. If the error ratio is less than the error ratio threshold, the error counter data is not sent to
the error log.

c. If the error ratio is greater than or equal to the error ratio threshold, the error counter data
is sent to the error log. The error counter that caused the ratio to be exceeded is then reset
to O.

5. If necessary, the device driver attempts to perform the operation again. These steps are repeated
until the operation completes successfully or a permanent error condition is encountered.

2-10 VRM Device Support

6. At some point, the operation will be completed, either successfully or unsuccessfully. Operation
results include:

• Successful completion, no error reported
• Successful completion, temporary error reported

This means that the operation required some number of retries, but managed to perform its
task successflllly.

• Unsuccessful completion, permanent error reported

This means that the operation required so many retries that it exceeded its limit, or the
operation encountered an error that did not allow retries.

7. If the operation finishes successfully, regardless of the number of retries, the good count counter
is incremented by one. If this value reaches the good threshold, the good count is reset to O.

8. Finally, the device driver signals completion of the operation.

Input/Output Operations

Two SVC instructions control hardware input/output operations. They are:

• Start I/O SVC

• Send Command SVC

Whether a device uses a Start I/O SVC or a Send Command SVC depends to a large degree on
whether the designer of the code wants the command control block (CCB) facilities provided with
Start I/O SVC or the efficiency of the Send Command SVC. Both SVCs send similar types of data,
but because Send Command SVC passes its parameters in registers, it is more efficient than the
Start I/O SVC. The Start I/O SVC allows multiple data buffers to be associated with a single I/O
operation because CCBs can be linked in a chain. Figure 2-5 on page 2-12 shows the format of the
CCB and the link bit (L). A link bit that equals one means multiple command elements are being
sent.

One use of this capability is to perform scatter and gather operations. Scatter means reading data
from a device and 'scattering' it to different memory locations. Gather means taking data from
different memory locations and 'gathering' it to write to a device.

CCBs can also be used by a virtual machine to send a list of buffers to a device driver for use in
subsequent operations.

For most operations, however, the Send Command SVC is sufficient and should be used due to its
lower overhead.

Device Driver Concepts 2-11

o
4

8

24

+4

+8

+12

+16

+n

Reserved

Reserved I
Reserved I

Device - Dependent Parameters

ILl
Data Transfer Length

Memory Address

Reserved

Figure 2-5. Command Control Block

Options

lOON

Reserved

See Start I/O SVC in VRM Programming Reference for more information on CCBs.

Operation Completion and Status Values

When an I/O request completes or cannot be performed due to some error condition, the device driver
notifies the operating system. This information is returned to the operating system in the form of a
program status block (PSB). The PSB for the Start I/O SVC is shown in the following figure:

o
4

8
Reserved I Old CS

Reserved I New ICS

Operation Result

Old IAR

Old ICS

Reserved I Sublevels

New IAR

Status Flags I Overrun Count

lOON

12

16

20

24

28

32

36

Device-dependent data CCB Segment ID

CCB Address

Device-dependent data

Figure 2-6. Start 1/0 Program Status Block

I/O requests initiated with the Send Command SVC that generate interrupts also signal the
operating system of I/O completion or detected errors with PSBs. The format of the Send Command
SVC PSB, shown in the following figure, is somewhat different than the PSB of the Start I/O SVC.

2-12 VRM Device Support

o
4

8

12

16

20

24

28

32

36

Old IAR

Old ICS

Reserved I Old CS Reserved I Sublevels

New IAR

Reserved I New ICS Status Flags I Overrun Count

Operation Result lOON

Options Device Dependent/CE Seg 10

Device Dependent / Command Extension Address

Device Dependent

Figure 2-7. Send Command Program Status Block

See Send Command SVC in VRM Programming Reference for a detailed definition of PSB fields.

Regardless of the PSB format, the PSB fields that are pertinent to the virtual machine on return are
the status flags and the operations results.

These fields may be defined differently for different device types and implementations. To see how
IBM defines these fields for supported devices, see Chapter 5, "IBM Predefined Device Drivers" on
page 5-1.

Device Driver Concepts 2-13

Common Routine Interface

The VRM presents a standardized call to all modules, regardless of whether the module is part of the
base VRM or is subsequently installed. Both device manager processes and device drivers must
conform to this common interface, although the two module types require some different entry
points.

VRM modules consist of several sections (subroutines), each with a specific function to perform.
Certain functions are required of VRM modules and certain other functions may be optionally
defined. Some of the functions that can (or must) be performed by device driver or manager modules
include definition and initialization, I/O initiation, parameter checking, and exception handling.

Each module has a default main entry point from which all its defined functions can be accessed. In
addition, you can use the _change routine to define additional entry points to specific functions.

The following table lists entry points that can (or must) be defined for VRM device manager or
device driver modules. Optional functions are followed by an asterisk (*).

Device manager modules

• Process initialization
• Queue parameter checking *
• Exception handling (including timer notification) *
Device driver modules

• Device definition (default main entry point)
• Device initialization
• Device termination
• I/O initiation
• Interrupt handling (second level)
• Queue parameter checking *
• Off-level input/output processing *
• Exception handling (including timer notification) *

For both device driver or manager modules, the parameter conventions of the call from VRM are the
same. Input parameters of a call from the VRM must include a type code and the address of some
data area. The type code indicates the function being called and the data area contains the address
of operation-specific data. The data area varies with the specified type code and may be a queue
element, define device structure, exception mask, interrupt level, and so on.

The calling register conventions for a call to a device driver or manager are defined as follows:

GPR2 = Type code

GPR3 = Address of the data area

GPR4 = Length of the data area.

2-14 VRM Device Support

GPR2 contains the return code from a call. The normal return code from a call is o. Codes other
than 0 indicate further action by the VRM. The define device routine for device drivers returns -1 if
the supplied DDS is invalid.

For C language modules, the common routine interface is specified as follows:

int main (op_type~ op_data, length)
unsigned int op_type;
char *op_data;
int length;
For synchronous queued operations, the 16-bit operation results field from the acknowledgement
queue element is sign-extended to 32 bits. This 32-bit value is used as a return code. Within the
VRM, the value returns to the caller of the enqueue function. For virtual machines, the value
returns in GPR2 after an SVC instruction.

The following sections provide details of the common routine interface and pertinent information for
device drivers and device managers, respectively.

Interface for Device Drivers

The VRM tries to perform as many common device driver functions as possible. It handles such
system details as generating virtual interrupts, allocating storage for code and data areas, managing
the interrupt-controlling hardware, and overseeing interactions between components. Ideally, the
VRM allows device driver subroutines to be small, simple, and fast. The VRM does not handle
device-specific functions, however. You must handle unique device requirements within a device's
driver module.

The following chart summarizes the common routine interface for device drivers. Subsequent sectwns
provide details you may find helpful when coding device drivers.

Note that the values used in the following charts represent decimal values.

Device Driver Concepts 2-15

Function Type Data Area Ret. Code

Check 21 Send command o or 2256
parameters queue element

Check 22 Start I/O CCB o or 2256
parameters queue element

Check 23 General purpose o or 2256
parameters queue element

I/O initiate 30 Queue element 0

Interrupt 40 Bus interrupt 0,2 or
handler level pointer to

DDS for
off-level
request

Exception 50 Exception mask o or-1
handler / timer
notification

Define device 60 Define device DDS
structure address or

-1

Initialize 61 VRM passes the 0
device structure shown

in Figure 2-9 on
page 2-17.

Terminate 62 6-byte field made 0
device up of DID and

IODN

Off-level 70 DDS address 0
processing

Figure 2-8. Device Driver Module Entry Points

2-16 VRM Device Support

Initialize Device Area Data
The VRM passes the address of the following data structure to the initialize device entry
point.

o
4

8

12

16

lOON

Device identifier

I
Queue identifier

Module identifier

SLIH identifier

Figure 2-9. Initialize Device Data Structure

Entry Point Types

Reserved

All calls to device driver modules go to the module's main entry point unless the _change
routine is used to define an alternate entry point. When a call arrives at a module, the
type parameter is examined to determine the requested function. The _change routine can
also be used to define additional entry points. If you specify additional entry points, the
module can be entered directly at the requested function without having to branch from
the main entry point. A brief discussion of each entry point type follows.

Check Parameters
This subroutine can check parameters for each command queue element before the element
is placed into a device's queue.

The advantage of using check parameters subroutines is that you can filter out
unacceptable commands before they are enqueued to a device. The subroutines look at the
queue elements and return 0 if the element is acceptable or a value ~ 256 if it is
unacceptable.

The VRM will not place the queue element in a device's queue if it sees a non-zero return
code. Check parameters subroutines have address ability to the queue element, but not to
buffers or the CCB. You can use ~sr to load segment registers 1 or 2 to see these areas.

Device Driver Concepts 2-17

I/O Initiate
A virtual machine uses either the Start I/O SVC or the Send Command SVC to initiate
I/O operations. A device manager can utilize the VRM routine _enque for the same
function.

The VRM maintains a commands queue for each driver. This queue is set up when the first
user attaches to the device with the Attach Device SVC. The I/O initiate subroutine is
called once for each element in the commands queue. See VRM Programming Reference
for a description of the command queue elements.

The main task of this subroutine is to send the queued commands to the adapter. If the
queue is empty, the VRM calls the I/O initiate function immediately. If the queue is not
empty, the VRM waits until the device driver completes the current command (by calling
_deque) before calling the I/O initiate function.

Usually, a driver processes each command to completion, then takes the next command
until the driver's commands queue is empty. A copy of the top queue element is passed to
this subroutine as a parameter when I/O initiate is called. Because this copy exists on the
stack, it will disappear when I/O initiate returns to the VRM. You may want to have
access to this data in the interrupt subroutine. You can do this in one of two ways. They
are:

• Copy the 32-byte queue element to a static data area.

This may be the simpler of the two methods. However, a driver may have trouble
managing the static data areas if it tries to keep track of multiple commands at once.

• Use the ~eadq function.

This runtime routine returns a copy of the top element of a specified queue. VRM
Programming Reference describes this routine.

One other function performed by the I/O initiate routine is to call _deque when the
received queue element is a type 4 (a control queue element).

Interrupt Handler
The main processor receives interrupts on several distinct lines known as levels. Each
interrupt level has an associated first-level interrupt handler (FLIH). Within each level,
there are four device classes that can return interrupts. The device classes are defined as
follows:

o = Devices that overrun but have no recovery mechanism.
1 = Devices that overrun but can recover.
2 = Performance-sensitive devices that do not overrun.
3 = Devices that do not overrun and are not performance-sensitive.

When an adapter sends an interrupt to the processor, the FLIH corresponding to that
device's i:nterrupt level is called. Because multiple devices can share the same interrupt

2-18 VRM Device Support

level, each device also has a second-level interrupt handler (SLIH). Figure 2-10 shows
the relationship between FLIHs and the SLIHs they poll.

Interrupt level

0 -7 I FLI HI -------------;-~> IS LI HI

-7 IS LI HI ~ISLIHI

Is LI HI
n -7 IFLI HI IS LI HI IS LI H I

IS LI HI I SLIHI

ISLIH I ~ ISLIHI --~> /SLIH/

Figure 2-10. VRM Interrupt Handling

After the FLIH saves the state of the process (or other interrupt level) that was
interrupted, it polls all the SLIHs associated with that particular interrupt level until the
proper SLIH handles the interrupt.

When polled, the SLIH checks its device's status to determine if its device generated the
interrupt. If so, the SLIH processes the interrupt and sends a zero return code to the FLIH.
If its device did not cause the interrupt, the SLIH returns a 2 to tell the FLIH to continue
polling the other SLIHs on that interrupt level.

To handle an interrupt, the SLIH may just reset the device and send it the next command.
If the work requested by the current queue element is complete, the SLIH dequeues the
element with _deque. Two parameters to _deque are significant here, the QID and the
32-byte structure used to generate the acknowledge queue element. Acknowledgements are
sent to the component that issued the command. A virtual machine receives
acknowledgement by way of a virtual interrupt. A device manager receives an
acknowledgement queue element. Either way, the VRM generates and routes the
acknowledgement. The device driver must simply supply the status data to _deque.

This status data includes a halfword operation results field. Zero indicates successful
completion. Unsuccessful completion means the left-most bit of this halfword is turned on
and an error code in the range 1 to 32,767 is returned. This value is sign-extended when it
reaches the virtual manager or device manager that issued the command, thus becoming a
negative number in the range -1 to -32,767. The system reserves values Ox8000 and OxFFFF.

You can suppress the acknowledgement from _deque, although this is not usually
necessary. However, consider the example of a communications device driver. A virtual
machine or device manager may send empty receive buffers to the device driver, using a

Device Driver Concepts 2-19

command queue element for each. The device driver wants to dequeue these elements to
remove them from its queue and process other commands. However, the commands that
sent the buffers are not yet complete and will not be complete until the buffers are filled.

The device driver can dequeue the commands with the suppress option. As each buffer
fills, the driver calls _enque to send the acknowledgement queue element. These are
known as solicited acknowledgements since they correspond to a command queue element.
A bit in the flag area of the queue element reflects this situation.

A device driver may also generate unsolicited acknowledgement queue elements. For
example, a driver for a communications line may detect something on the line and want to
notify someone about it. Because no element is in its queue, the acknowledgement of this
event must be unsolicited.

Another example of unsolicited acknowledgements is seen through the keyboard device
driver. Each time you press a key, this device driver sends an unsolicited
acknow ledgemen t.

Note that if the suppress option is used, the device driver is responsible for unpinning the
CCB and any buffers associated with a completed command. Ordinarily, the _deque
routine does this unpinning when generating an acknowledgement. The _upnccb routine
can be used to unpin a CCB and its buffers. The _unpin routine is used to unpin specific
pages of memory.

Exception Handlers and Timer Notification
Both of these entry points are indicated with a type code of 50. These functions are called
as a result of a device manager using the _signal function or as the result of a timer
expiration. Timer expiration is the most common use of this function.

Device drivers can use two types of timers, device timers and interval timers. A device
timer, with a granularity of 500 milliseconds, detects device timeout conditions. You set
this timer the first time you call _setdvt. Each time the I/O initiate subroutine gets a new
command queue element, this timer starts. The _deque function stops the timer, and the
_ctldvt function can reset the timer to its original value. See VRM Programming
Reference for a detailed description of these routines.

Use the interval timer when you need a finer granularity of time. This timer can be set in
increments of 975.562 microseconds (about 1 millisecond). One drawback with using the
interval timer is that you have to call_settmr to set the interval whenever you want to
use this timer.

The device timer can handle most device driver timing needs, but if you need a finer
granularity of time and don't mind the extra overhead, use the interval timer.

2-20 VRM Device Support

Define Device
Creation of a device involves the define device subroutine. The entry point to this function
is the module's main entry point. Unlike other entry points, this cannot be changed. This
subroutine is called once with a type code of 60 when the Define Device SVC is issued.
Data passed to this routine includes the define device structure (DDS). The define
subroutine must copy the DDS to a static data area in the module, passing the address of
this area back to the VRM. When you copy the DDS, you can change certain DDS device
type values including:

• The limit on the number of paths

- Shared devices default to 0 (unlimited number of paths)
- Non-shared devices default to 1.

• The number of priority levels for the device's queue

Ordinarily, this value defaults to 1. When you copy the DDS, however, you can specify
a value in the range 2-16 for priority levels.

o The internal device flag

You can set or reset this value when copying the DDS.

You can also change the following values (from their default of zero) in the DDS device
option field:

• The maximum concurrent requests per path

• The maximum number of concurrent timer requests

• The limit on the maximum number of concurrent unsolicited interrupts per path.

o 4 8 12 15

Maximum concurrent requests per path
'---~ Maximum concurrent timer requests

'------3>0 Maximum concurrent unsolicited interrupts per path

Figure 2-11. Define Options Halfword

Each individual driver defines the parameters that must be contained in the device
characteristics section of the DDS. If applicable, the device driver must also update the
device characteristics and error handling sections of the DDS. The hardware
characteristics section must remain unchanged.

Device Driver Concepts 2-21

Initialize Device
This function is called as a result of an Attach Device SVC and initializes the adapter
from fields provided in the DDS. When the initialize device function is called (type = 61),
the module is entered at the define device function entry point. This entry point cannot be
changed.

This function performs all device-specific initialization. The VRM allocates the device's
physical resources, creates its control blocks and queues, calls the define device
subroutine, and enables interrupt levels and any required DMA channels.

Because a device is not initialized until attached, system resources are saved and hardware
resources can be used more efficiently. With this method, for example, two devices that do
not support interrupt sharing can use the same interrupt level (provided the devices are
not attached concurrently). Another important reason for not initializing a device until
you attach to it is to support the coprocessor. If you allocate serially-reusable devices to a
virtual machine, those devices cannot be used concurrently by the coprocessor.

If initialization involves sending a command to the adapter, the initialization function
must return control to the VRM, which calls the interrupt handler function when the
command completes. If initialization is unsuccessful, you won't find out until the interrupt
handler subroutine is called. You can set up an interrupt handler subroutine to send an
unsolicited interrupt to the virtual machine to notify it of unsuccessful initialization.
However, all you really have to do is wait until the virtual machine sends the first
command to the driver. The interrupt handler will then report the status.

Because this function returns only 0 to the VRM, no status information can be sent to a
virtual machine by way of other return codes.

Terminate Device
This call is made in response to a Detach Device SVC. Calls to terminate a device (type
= 62) also enter the module at the define device entry point, and this cannot be changed.
This call is made automatically when the last (or only) user of a device detaches from it.
The function must do whatever is required to shut down the device.

In order to ensure that a device driver's termination function is not called while an I/O
operation is still in progress, the VRM enqueues a control queue element (type 4) after all
I/O requests in the queue. The driver knows by convention that a control queue element
signifies completion of all pending I/O operations. After the driver dequeues the detach
element, the VRM calls the driver's termination routine.

2-22 VRM Device Support

Off-level Processing
This function allows an interrupt handler to return to the VRM quickly and process any
lengthy input/output operations off of the interrupt level. Off-level processing makes a big
difference when device drivers must handle high-speed asynchronous lines, for example.
These drivers must exit from the interrupt very quickly so they do not miss the next
interrupt. You must decide, when designing drivers, what must be done with interrupt
handler function and what can be done off-level. The VRM keeps track of off-level
processing in the device's DDS. The interrupt handling function then returns the address
of the DDS scheduled for off-level processing (instead of the usual 0 or 2 return code). A
return code that points to a DDS implies the same as a zero return code in that the SLIH
acknowledges responsibility for the interrupt. You may want to use the _sio '(schedule
off-level processing) routine if the interrupt handler has several devices that can have
interrupts pending on a single adapter.

If you decide to handle some I/O processing off of the interrupt level, the VRM will place
the affected DDS addresses in a queue. When no more interrupts are pending, the VRM
handles the off-level input/output requests in the queue. If no more interrupts are pending
and all off-level I/O requests are handled, the VRM dispatches another process to run.

In the mean time, if an interrupt occurs that reschedules a DDS before it has a chance to
run off-level, a "run again" flag is set so the off-level subroutine will be called twice in a
row.

Figure 2-12 on page 2-24 shows the entry points into a typical VRM device driver and
some of the sves that may be received from an AIX Operating System device driver.

Device Driver Concepts 2-23

Operating System ~ I
--------- VMI ________ ~~V~~~ ___________________________________ I- ri~ua' pt

n erru
SVCs Define Device SVC

Attach Device SVC SVC

I Start I/O SVC I
Detach Device SVC Return

I Send Comm~VC

VRM Device Driver

• Define Device
'-~ • Initialize Device r--

j-• Terminate Device

I/O Initiation F= r--
I Check Parameters I

First level Interrupt Handler ~ ==
Interrupt 1
Handler Off-level I/O

Processing

Exception Handler ~ Timer Management -

Figure 2-12. VRM Device Driver Functions

2-24 VRM Device Support

Interface for Device Managers

A device manager can coordinate the activities of multiple device drivers and, in some
cases, multiple VRM processes.

Most device subsystems can use the device driver model described in the preceding section.
More sophisticated subsystems, such as those that involve virtualized devices, may require
a device manager. For example, the virtual terminal subsystem merges several devices
(display, keyboard, speaker, and perhaps a locator, tablet or light pen). All of these devices,
and their accompanying drivers, are used together as a terminal. In addition, this
subsystem simulates the existence of multiple terminals that exist on a single set of
physical devices.

The following chart summarizes the common routine interface for device managers.

Function Type Area Data Ret.Code

Initialize 10 Initialization data Always 0
process

Check 20 Acknow ledgment ~256
parameters queue element

Check 21 Send command ~256
parameters queue element

Check 22 Start I/O CCB ~256
parameters queue element

Check 23 General purpose ~256
parameters queue element

Exception 50 Exception mask o or-1
handler / Timer
notification

Figure 2-13. Device Manager Module Entry Points

Initializing A Device Manager
The main entry point of the device manager's module is called when a device manager
process is initialized. The type code parameter is a 10, and the area data is the manager's
DDS. At this time, all initialization activities are performed and the device manager waits
for a command.

Waiting for a command involves calling _wait or _waitq. Both of these calls require an
ECB mask or QID as input. The VRM automatically creates a queue for the device

Device Driver Concepts 2-25

manager when the process is initialized. To determine the ECB mask and QID, use the
_queryi function.

Processing a Command
When the manager receives a command and is released from _waitq, it receives a copy of
the command queue element as a parameter. If _wait was used, you have to use ~eadq to
get a copy of the element.

To remove a command from the manager's queue, use the _deque function. Here _deque
works the same as it does for device drivers, automatically sending an acknowledgement
queue element to the sender of the command (unless the suppress option was used with
_deque).

The device manager can use _enque to generate acknowledgement queue elements or to
send commands to another device manager or driver.

If a device manager acts merely as a command router (receiving commands and sending
them to other components), you should use two queues. Use one queue to receive
commands and another queue for receiving acknowledgements after you pass the
commands on. The queue that is set up automatically for the process should be used for the
incoming commands. Use the _creatq function to set up the queue for the
acknowledgements. The _attchq function then attaches the device manager to the queues
of other components. When you specify the acknowledge QID parameter to _attchq, use
the ID of the second queue.

With two queues, the device manager should use _wait to wait for both queues at once.
When a command comes in and the manager is released from the _wait, the ECB mask can
be examined to check for elements in either queue. If so, use ~eadq to look at the top
element in either queue.

Exception Handling and Timers
Device managers can use _change to set up an exception handler subroutine, just as
device drivers can. They can also use the interval timer.

2-26 VRM Device Support

Developing and Adding Code to the VRM

This section describes how and why to add code to the VRM.

Coding a module and installing it into the VRM requires a relatively thorough
understanding of the VRM environment. You need to understand the common routine
interface definition and the general coding considerations of the VRM as you develop
device driver or manager code. If you are familiar with the overview and general coding
consideration sections of this chapter, refer to "Installing Code from a Virtual Machine"
on page 2-29 for a condensed version of the steps necessary to install code.

The primary reason for adding code to the VRM is to manage either physic~l or virtual
devices. A device driver controls a physical device through its adapter. A device manager
process controls multiple device drivers or access to a virtual device.

The VRM supports a set of devices that comprise the minimum system configuration.
These devices include a fixed disk, diskette drive, display, keyboard and streaming tape.
These devices are set up at VRM IPL time.

The VRM also contains code to support many other devices. These optional devices extend
system function. For example, printers, modems, and certain nonstandard displays can be
optionally configured to enhance the system. IBM provides device driver code to support
some of these devices. You can add these devices to the system with the devices command
described in IBM RT PC Installing and Customizing the AIX Operating System.
Chapter 5, "IBM Predefined Device Drivers" on page 5-1 describes the IBM-supplied
components, including several device drivers and a device manager.

If the device you want to add to the system is not supported by IBM-supplied code, you can
develop and install your own code into the VRM. You must issue a Define Code SVC to
add code to the VRM. Note, however, that this code does not exist in the VRM after you
shut down the machine or re-IPL the VRM. If you want the system to include your new
code automatically at each IPL, you must modify the AIX Operating System configuration
files fete/master and fete/system. The parameters in these files cause the AIX Operating
System to dynamically issue all the SVCs needed to configure VRM device drivers,
managers, and protocol procedures at each IPL. For more information on these files, see
AIX Operating System Technical Reference.

Code that has been added to the VRM by way of the Define Code SVC can be used in the
VRM environment with the various runtime routines.

For example, a device manager process in the VRM uses runtime routines to create the
additional process necessary to handle each instance of a virtual device. A VRM process
can create other processes, queues, semaphores, and so on with these calls.

Device Driver Concepts 2-27

General Coding Considerations

In order to successfully install your own module into the VRM, you must be aware of
certain restrictions imposed by the VRM environment. First, the module you install must
be capable of communicating with other VRM code. This communication relies on
well-defined entry points among all VRM modules. "Common Routine Interface" on
page 2-14 describes how to set up entry points for VRM device drivers or managers. Other
considerations that are important when developing and installing a module include:

• Modules must conform to C programming language conventions. These conventions
include the C language calling sequence and a.out module format.

• If you want your new module loaded at IPL time (module permission bits = 440 octal),
you must change the permission bits of the /vrm/ldlist/vrmbase/vrmglu.OOl1.00 file
to 440. The vrmglu.OOl1.00 file resolves linkage convention differences for a.out
modules in the VRM. See "Permission Bit Conventions" on page 1-8 for more
information on permission bits.

• The module must be designed to be memory location-independent. Hard coding of
addresses is not allowed.

• All programs must execute with address translation on. Neither the code, static data,
nor the heap or stack areas are in virtual = real memory. Program execution without
address translation yields unpredictable results. However, address translation is on by
default.

• Processor I/O interrupts must not be disabled when the path length is long. Device
overruns may result. Also, processor I/O interrupts must be enabled for all calls to
VRM services'(runtime routines). If interrupts must be disabled, it should be for the
shortest time possible.

• Processes have a maximum stack size of 60K bytes. This 60K byte maximum includes
any stack requirements of the routines called by the process.

• Device drivers have a maximum stack size of 2K bytes. This 2K maximum includes any
stack requirements of the routines called by the device driver.

• Exception handler subroutines also have a maximum stack size of 2K bytes. This 2K
maximum includes any stack requirements of the routines called by the exception
handler.

• C language modules may have only one external reference to an externally-defined
symbol. This includes VRM runtime routines, global variables, and any other
externally-defined routines or variables that are imported when binding to another C
language module using _bind. Multiple references are made when there is more than
one function in a C language module that refers to the same externally-defined symbol.

2-28 VRM Device Support

Installing Code from a Virtual Machine

This section describes how to prepare a module for addition to the VRM. Note that code
you install into the VRM remains part of the VRM only until you power off the machine.
In this case, the code is considered 'transient' because, in order to use the same code at
another time (another IPL), you must install it again. If you expect to use the added VRM
code repeatedly and not just for one IPL, you should revise the AIX Operating System files
fete/master and fete/system. The AIX Operating System reads these files at IPL time and
automatically issues the SVCs neceSE:ary to add a VRM manager or driver to the regular
configuration sequence.

Your new VRM module requires a corresponding support driver in the AIX Operating
System. If no such AIX Operating System driver exists, you have to create and install one.
In this case, revision of the configuration files alone is not adequate to add the AIX
Operating System driver to the system. You must also perform another system generation
to relink the kernel. For more information on the AIX Operating System configuration
files and writing AIX Operating System device drivers, see IBM RT PC AIX Operating
System Technical Reference.

Regardless of whether you want to install a VRM device driver, device manager, or
protocol procedure, the techniques of coding and installing the module into the VRM are
the same.

To install a driver into the VRM, you must install the actual code module and also a define
device structure (DDS). The DDS contains the definition of the device and the module
contains the program (code) associated with the component. The Define Code SVC is
used to place the module into VRM address space. The Define Device SVC passes the
address of the DDS to the VRM as a parameter. Note that this added code is placed on the
operating system minidisk, not on the VRM minidisk. If you need to add code (such as a
new device driver, power-on self test, and so on) to the VRM minidisk, use the addf ("addf
- Add a file to the VRM minidisk" on page 1-16) or the mvmd command described in IBM
RT PC AIX Operating System Commands Reference. Remember that the permission bits of
the vrmgl u. 0011. 00 file must match the permission bits of the new device driver module.

The following steps describe how to add a C language device driver or manager module
into the VRM. Please note that, although the VRM requires that added code be in a.out
object module format, the VRM itself does not use the a.out format. The VRM-executable
object module format is described in VRM Programming Reference.

In order for a.out modules to execute in the VRM, they must be converted to the
VRM-executable object module format. The conversion procedure is described in the
following section.

The following description assumes you have the AIX Operating System and that you want
your code configured at each operating system IPL.

Device Driver Concepts 2-29

Adding Code to the VRM

1. Design and write your module.
2. Compile the module with the AIX Operating System vee command.
3. Convert the output from vee with the AIX Operating System vrmfmt command.
4. Revise the AIX Operating System configuration files.
5. Issue the AIX Operating System vrmeonfig command.

The steps described above are expanded with more detail in the following section.

Please note that you may encounter error or informational messages as a result of
compiling and converting a C language module. These messages are described in IBM RT
PC Messages Reference.

1. Design and write your module.

First, you design and develop the driver, manager, or protocol code that meets your
needs. To do this, create an AIX Operating System file for the actual code. The module
must conform to the programming restrictions described in "Developing and Adding
Code to the VRM" on page 2-27. In particular, the module must be designed to be
memory location-independent.

2. Compile the module with the AIX Operating System vee command.

You can compile one or more modules with the vee command. Do not try to use
another compile command (such as ce) because the subsequent conversion will not
complete successfully.

The vee command is issued as follows:

vee filel <file2>
This AIX Operating System command compiles your program source code and produces
an a.out format object module. This a.out module will be input to the vrmfmt
command. The vrmfmt command converts the a.out module to a VRM-compatible
object module.

2-30 VRM Device Support

3. Convert the output from vee with the AIX Operating System vrmfmt command.

After successfully compiling a module with vee, you must convert it to
VRM-executable object module format. The vrmfmt command does this conversion and
is issued as follows:

vrmfmt input_file <output_file>

In the preceding example, i nput_fi 1 e is the name of the module produced by vee. As
shown by output_fi 1 e, you can optionally specify a name for the converted module.
If you do not specify a name for the converted module, the module is placed into a file
called a. vrm. If you perform successive conversions without specifying unique output
file names, you will get a message stating that the file name (a. vrm) already exists. At
this point, you can write over the existing module in a. vrm or restart the conversion,
specifying a unique output file name.

4. Revise the AIX Operating System configuration files.

IBM RT PC AIX Operating System Technical Reference describes the AIX Operating
System files that you need to revise in order to configure your added code at each
operating system IPL. If you do not revise these files, your added code will not be
configured with the VRM at the next IPL.

If you do not want your code to be configured as part of the system at every IPL, do
not revise the AIX Operating System configuration files. Instead, simply follow the
preceding instructions regarding development of the code and the use of the AIX
Operating System vee and vrmfmt commands. Then you must create a DDS for your
module, explicitly issue the Define Code SVC (to install your new code module onto
the VRM minidisk) and the Define Device SVC (to send the driver's DDS into the
VRM address space). If you do not intend to configure the module at each operating
system IPL, ignore the next step.

5. Issue the AIX Operating System vrmeonfig command.

At this point, you have coded, compiled, and converted a C language module to
VRM-executable format. Now you must install the code into VRM address space.

To do this, issue the vrmconfig command with the appropriate flags. Refer to IBM RT
PC AIX Operating System Commands Reference for a description of the flags available
for use with vrmconfig.

You can also perform a re-IPL of the system to move the new code to the VRM
minidisk. A vrmconfig command is issued automatically during each IPL. However, a
total re-IPL has the following disadvantages when compared to direct execution of
vrmeonfig from a running system:

• A re-IPL takes more time than direct execution of vrmconfig.
• Any errors you get while adding the code are written to a file 'during re-IPL. When

you issue vrmeonfig from a running system, any error messages you get are sent
to the display screen.

Device Driver Concepts 2-31

.2-32 VRM Device Support

Chapter 3. Virtual Terminal Subsystem

Virtual Terminal Subsystem 3-1

CONTENTS
About This Chapter ... 3-3
Virtual Terminal Manager .. 3-4
Virtual Machine Interface to the VTRM ... 3-6

Reconfigure Virtual Terminal Manager .. 3-8
Open a Virtual Terminal ... 3-13
Close a Virtual Terminal .. 3-15
Connect to Screen Manager .. 3-17
Terminate VTRM .. 3-19
Control Virtual Terminal Status ... 3-21
Query Virtual Terminal Status .. 3-24

Virtual Machine Interface to the VTMP .. 3-26
VT Output SVC ... 3-29
VT Output Acknowledge Interrupt ... 3-30
KSR Output Short SVC ... 3-31
VT Set Structure SVC .. 3-32
VT Set Structure Acknowledge Interrupt .. 3-42
VT Query SVC .. 3-43
VT Query Acknowledge Interrupt. .. 3-44
VT Unsolicited Interrupt .. 3-45
Adapter-Generated Interrupt Data ... 3-53
Acknowledge Interrupt Return Codes ... 3-55

Major Data Types .. 3-56
General Major Data Type .. 3-58
KSR Major Data Type .. 3-69
MOM Major Data Type ... 3-98
Keyboard Translate Table ... 3-105
Display Symbols by Code Page .. 3-118

Display Device Driver Considerations .. 3-140
Device-specific Module Characteristics ... 3-141

Device-specific module entry points .. 3-142
Shared Resource Structure ... 3-176
Display Device Driver Interface ... 3-190

Coding Concepts for Adapters that Generate Interrupts 3-200
Device-Specific Module Requirements .. 3-200
Display Device Driver Requirements ... 3-201

Virtual Terminal Resource Manager ... 3-202

3-2 VRM Device Support

About This Chapter

This chapter documents the interface between the virtual machine and the virtual terminal
manager (VTM). The VTM is comprised of the virtual terminal resource manager (VTRM),
a virtual terminal mode processor (VTMP), and device drivers. Each of these components
has a separate command interface to the virtual machine. The command interfaces and
information returned to the operating system from the components are described in the
following sections.

This chapter also includes a C language example of a device-specific module for a display
device. This type of module is required when you add code to the system to support a new
display type.

Virtual Terminal Subsystem 3-3

Virtual Terminal Manager

The virtual terminal manager is a collection of VRM components which extend the function of
interactive input/output hardware. The virtual terminal manager controls the physical terminal, a
collection of output devices (displays, speaker) and input devices (keyboard, locator), and maps
virtual terminals to virtual machines.

Each instance of a physical terminal requires a VTM. VTM components include:

• Virtual Terminal Resource Manager (VTRM) - This virtual device manager coordinates the
actions of all virtual terminals. The VTRM consists of two parts, a resource controller and a
screen manager.

The resource controller handles virtual terminal configuration, initialization, opening and
closing. The screen manager handles real input routing from the keyboard or locator and
coordinates the use of display screens and the speaker.

• Virtual Terminal Mode Processor (VTMP) - An instance of this device manager exists for each
instance of a virtual terminal. The VTMP controls operation modes, datastream information, and
other display data format and routing considerations.

• Device drivers - Each instance of a virtual terminal requires one instance of a virtual display
driver. One keyboard device driver, however, is sufficient for use by all virtual terminals. The
VTM can also support optional devices, such as a locator device, speaker, and multiple display
devices.

The VTMP is an example of a device manager model. A device"manager coordinates the actions of
multiple device drivers (and possibly of multiple processes). Typically, the operating system can send
commands directly to the device driver controlling a hardware adapter. In the case of the VTM,
however, the operating system is restricted from commanding the device drivers directly. Figure 3-1
on page 3-5 shows the SVC variations directed to the VTM. You may want to refer back to this
illustration when you read "Virtual Machine Interface to the VTRM" on page 3-6 and "Virtual
Machine Interface to the VTMP" on page 3-26.

3-4 VRM Device Support

Send Command SVC

1
Connect to Screen Manager
Reconfigure VTRM
Open Virtual Terminal

Close Virtual Terminal
Terminate VTRM

VT Output SVC
KSR Output Short SVC
VT Set Structure SVC
VT Query SVC

Control Virtual Terminal Status
Query Virtual Terminal Status j

VTMP

VTRM

Figure 3-1. SVCs Directed to Virtual Terminal Components

In the case of the VTM, the operating system communicates with sves across the VMI to the VTRM
and VTMP. These VRM processes then enqueue work requests to the appropriate processes or
hardware device drivers. In addition, the VTMP can make direct calls to device-specific code bound
to it.

The operating system sends two basic types of sves to VTM components. The Send Command
SVC, directed to the VTRM, handles virtual terminal resource requests and virtual terminal status
operations. By changing the options field of the Send Command SVC, you can use any of the
commands to the resource controller or screen manager.

The VTMP sves (such as VT Set Structure SVC and VT Output SVC) control the format and
routing of display data.

Virtual Terminal Subsystem 3-5

Virtual Machine Interface to the VTRM

The VTRM presents two distinct interfaces to a virtual machine. Both interfaces follow the
programming conventions defined by the VRM input/output subsystem. The virtual machine
communicates requests to the VTRM through Send Command SVCs. After servicing a request, the
VTRM returns results either by a synchronous return from the SVC or by a virtual interrupt,
whichever the virtual machine requests.

The first interface presents the functions of a device manager for resource control. Control functions
include opening and closing virtual terminals, querying or modifying the configuration of the
physical terminal, and so on. The resource control interface takes the form of queued Send
Command SVCs and is known as QRC (queue for resource control). See Figure 3-2 on page 3-7.

The virtual machine establishes the resource control interface by defining (if necessary) and
attaching to the VTRM. The virtual machine directs resource control request SVCs to the IODN for
the resource control interface. The VRM SVC handler queues the requests to the resource controller
of the VTRM.

Send Command SVC variations directed to the resource controller of the VTRM include:

• Reconfigure VTRM
• Open Virtual Terminal
• Close Virtual Terminal
• Connect to Screen Manager
• Terminate VTRM.

The second interface between the VTRM and the VMI presents a specialized screen manager, which
provides such functions as hiding or activating virtual terminals. This interface is established when
the resource controller attaches the screen manager process to the virtual machine. The screen
management interface is also comprised of Send Command SVCs and is known as QSM (queue for
screen management). See Figure 3-2 on page 3-7. The virtual machine directs screen management
request SVCs to the IODN for the screen management interface. The VRM SVC handler queues the
requests to the screen manager of the VTRM.

3-6 VRM Device Support

-------f-------1-----
Virtual

interrupt SVC

VMI ------1---------f----
Virtual

SVC i nterru pt

SVC Handler

VfRM
(OSM)

Figure 3-2. Virtual Machine Interface to VTRM Components. For both resource control and screen
management, the interface to the VMI consists of SVC commands issued by the virtual
machine and virtual interrupts generated by the VTRM (or synchronous returns from the
SVes).

Send Command SVC variations directed to the screen manager component of the VTRM include:

• Control Virtual Terminal Status
• Query Virtual Terminal Status

All SVC requests to the VTRM (five resource control functions and two screen management
functions) use the Send Command SVC with a different operation option. The operation option is
reflected in bits 20-31 of calling register GPR2.

Before a virtual machine can issue a Send Command SVC to the VTRM, the virtual machine must
attach to the VTRM with the Attach Device SVC. A return parameter from the attach is a path
identifier (path ID). The path ID determines to which component a command is sent.

The resource controller is also assigned an IODN. The first instance of the resource controller has
an IODN of Ox0205. The screen manager's IODN is assigned by the VRM when the resource
controller creates the screen manager interface to the virtual machine. The resource controller
returns the screen manager's IODN and path ID to the virtual machine in response to the Connect
to Screen Manager request.

The Send Command SVC variations directed to the resource controller and screen manager are
defined on the following pages. Refer to Figure 3-1 on page 3-5 to see which component handles
which SVC.

Virtual Terminal Subsystem 3-7

Reconfigure Virtual Terminal Manager

Description: The virtual machine issues a Send Command SVC with the reconfigure device
option to change the configuration of the physical terminal or to change the virtual
terminal defaults. For example, you can have up to four display devices, one locator,
one speaker, and up to 32 fonts associated with a physical terminal.

Calling Register Conventions:

GPR2 =

Bits 0-15 =
Bit 16 =
Bit 17 =
Bit 18 =
Bit 19 =
Bits 20-31

Resource controller IODN
Interrupt on completion *
Interrupt on error *
Synchronous operation *
o for no command extension
o for reconfigure devices option.
* indicates caller's option

GPR3 = Requested operation

Reconfigure operations 0 through 4 and 10 through 16 will be in effect only for
terminals opened subsequent to the reconfigure. Operations 5 through 9 and 18
will be in effect for terminals currently open as well as those opened
subsequent to the reconfigure.

o = Add a physical locator
1 = Add a physical sound device
2 = Add a physical display
3 = Delete a physical display
4 = Add a font
5 = Change keyboard typamatic rate
6 = Change keyboard typamatic delay
7 = Change locator sample rate
8 = Turn keyboard click mechanism on or off
9 = Set sound volume level

10 = Replace position code map
11 = Replace character code map
12 = Replace echo/break map
13 = Replace miscellaneous default values
14 = Set the default display for newly-opened virtual terminals.
15 = Add physical dials
16 = Add physical lighted programmable function keys
18 = Change DMA start address and length

GPR4 = Object of the operation

Operation 0 Physical locator device driver IODN

3-8 VRM Device Support

Operation 1
Operation 2
Operation 3
Operation 4
Operation 5

Operation 6

Operation 7

Operation 8

Operation 9

TNL SN20-9859 (26 June 1987) to SC23-0817

Physical sound device driver IODN
Physical display identifier
Physical display identifier
Font IOCN
Keyboard-device dependent

Bits 24-31 of GPR4 indicate the keyboard typamatic rate. For
the standard RT PC keyboard, valid values fall in the range 2 to
40 characters per second and can be changed in units of 1
character per second. The default value for the RT PC keyboard
is 14 characters per second.
Keyboard-device dependent

Bits 16-31 of GPR4 indicate the keyboard typamatic delay. For
the standard RT PC keyboard, valid values fall in the range 300
to 600 milliseconds and can be incremented in units of 100
milliseconds. The default value for the RT PC keyboard is 500
milliseconds.
Locator-device dependent

Bits 24-31 of GPR4 indicate the locator samples-per-second rate.
For the standard RT PC locator, valid values are 10, 20, 40, 60,
80, or 100 samples per second. The default value for RT PC
locators is 60 samples per second.
Keyboard-device dependent

Bit 31 of GPR4 indicates whether the speaker emits a click when
a key is pressed. Sound is suppressed when bit 31 equals zero
and emitted when bit 31 equals one. The default for the RT PC
keyboard is click on.
Speaker-device dependent

Bits 24-31 of GPR4 indicate the volume of sounds emitted by the
speaker. For the standard RT PC speaker, valid values are 0
(sound off), 1 (low volume), 2 (medium volume) and 3 (high
volume). The default for the RT PC speaker is medium volume.

Operations 10 through 13 allow you to change certain system defaults by
modifying some supplied files. These files are included with the HFT Examples
Programs on the AIX Multi-User Services diskettes and are installed in the
/usr/lib/samples/hft directory. Install the example programs and modify the
specified file before performing reconfigure operations 10, 11, 12 or 13. The
modified file you provide will be in effect for all virtual terminals after
successful completion of the reconfigure command.

Operation 10 Keyboard translate table IOCN

After installing the HFT Example Programs, modify the file
hftkbdmap.c to the desired mapping, run it through the TOC
converter with the vrmcc and vrmfmt commands, issue a

Virtual Terminal Subsystem 3-9

TNL SN20-9859 (26 June 1987) to SC23-0817

Define Code SVC, then perform the Send Command· SVC with
the reconfigure virtual terminal manager option.

See Define Code SVC in VRM Programming Reference for valid
IOCNs for the table.

Operation 11 Character code map IOCN

The character code map is a structure that includes both the
Unique 1 (:) and Unique 2 (;) display maps.

After installing the HFT Example Programs, modify the file
hftchrmap.c to the display map you want, run it through the
TOC converter with the vrmcc and vrmfmt commands, issue a
Define Code SVC, then perform the Send Command SVC with
the reconfigure virtual terminal manager option.

See Define Code SVC in VRM Programming Reference for a
valid IOCN for the new map.

Operation 12 New echo/break map IOCN

After installing the HFT Example Programs, modify the file
hftecbrmap.c to the echo/break map you want, run it through
the TOC converter with the vrmcc and vrmfmt commands,
issue a Define Code SVC, then perform the Send Command
SVC with the reconfigure virtual terminal manager option.

See Define Code SVC in VRM Programming Reference for a
valid IOCN for the new map.

The default structure is initialized so that all echo bits are set
and all break bits are not set.

Operation 13 Miscellaneous defaults IOCN

3-10 VRM Device Support

After installing the HFT Example Programs, modify the file
hftmiscdef.c to the defaults you want, run it through the TOC
converter with the vrmcc and vrmfmt commands, issue a
Define Code SVC, then perform the Send Command SVC with
the reconfigure virtual terminal manager option.

Return Codes:

See Define Code SVC in VRM Programming Reference for a
valid IOCN for the new structure.

Operation 14 Physical display identifier.
Operation 15 Physical dials device driver IODN (bits 16-31)
Operation 16 Physical lighted programmable function keys device driver

IODN (bits 16-31).
Operation 18 Start address of DMA area.

GPR5 = _Additional information required for operations 2 and 18:

• Operation 2:

Bits 0-15 = Display device driver IODN
Bits 16-31 = Device-specific module IOCN

• Operation 18: GPR5 contains the length of the DMA area.

GPR6 = This is a user field set up by the operating system device driver and returned
by the VTRM in a PSB. .

GPR7 = Path identifier

The following error codes are returned in GPR2 (for synchronous operations) or in
the Operations Results field of the PSB if the resource controller detects errors while
processing the SVC:

6405 = Specified device is already part of the physical terminal configuration
6406 = Table full
6407 = Device in use
6408 = Invalid device identifier
6409 = Device not present
6415 = Change rejected by device
6416 = Invalid dials device driver IOCN
6426 = Invalid LPF keys device driver IOCN
6431 = Invalid locator device driver IODN
6432 = Invalid locator device driver IOCN
6433 = Invalid locator device query
6434 = Locator device driver incorrectly bound
6436 = Invalid dials device driver IODN
6441 = Invalid display device driver IODN
6444 = Virtual display driver bind error
6446 = Invalid LPF keys device driver IODN
6451 = Invalid sound device driver IODN
6452 = Invalid virtual display driver IOCN

Virtual Terminal Subsystem 3-11

o
I

24

28
32

36

o

Bytes

6470 = Resources unavailable
6471 = Operation completed, cannot recover resources
6472 = Invalid font IOCN
6473 = Font module address error
6474 = Font bind error
6480 = Invalid operation
6482 = Invalid virtual terminal default IOCN
6490 = Invalid device option
6499 = Unsuccessful VTRM initialization.

The following figure shows the PSB returned from the reconfigure request.

16 31

Defined by VRM

Operation Options I Reserved

User field

Reserved

Figure 3-3. Reconfigure Virtual Terminal Manager PSB

Comments: The resource controller cannot verify the IODNs and IOCNs received with this SVC.
If the received IODN or IOCN is known to the VRM, but does not conform to the
expected component type, the results are unpredictable.

Also, the resource controller does not delete any devices or code modules rendered
useless to the VTM by the reconfigure command. The virtual machine must delete
these resources, if desired.

You can find the VTRM's current device characteristics by issuing a Query Device
SVC to the VTRM's IODN. One of the return parameters is the current physical
terminal configuration. For details on the specifics of the device characteristics fields,
see "Virtual Terminal Resource Manager" on page 3-202.

If the resource controller detects an error during a reconfiguration request, no
changes are made.

3-12 VRM Device Support

Open a Virtual Terminal

Description: The resource controller initializes the data structures, allocates the system resources,
and creates the process required for an instance of a virtual terminal. The resource
controller attaches the virtual terminal to the virtual machine. The new virtual
terminal's IODN and path ID are then returned by the resource controller to the
virtual machine.

Calling Register Conventions:

GPR2 =

Bits 0-15 =
Bit 16 =
Bit 17 =
Bit 18 =
Bit 19 =
Bits 20-31 =

Resource controller IODN
Interrupt on completion *
Interrupt on error *
Synchronous operation *
o for no command extension
2 for open virtual terminal.
* indicates caller's option.

GPR3 = Not used

GPR4 = Interrupt information

Bits 0-4 = Not used
Bits 5-7 = Solicited interrupt level
Bits 8-15 = Solicited interrupt sublevel
Bits 16-20 = Not used
Bits 21-23 = Unsolicited interrupt level
Bits 24-31 = Unsolicited interrupt sublevel

GPR5 = VTMP IOCN

Bits 0-15 = Set equal to zero

Bits 16-31 = IOCN of VTMP, or 0 for default.

GPR6 = This is a user field set up by the operating system device driver and returned
by the VTRM in a PSB.

GPR7 = Path identifier

Return Codes: contained in GPR2

The following error codes are returned in GPR2 or in the Operation Results field of
the PSB when the resource controller detects errors while processing the SVC:

6402 = Invalid VTMP IOCN
6450 = Invalid solicited interrupt level
6454 = VTMP module unsuccessfully bound to resource controller

Virtual Terminal Subsystem 3-13

o
I

24

28

32

36

o

Bytes

6460 = Invalid unsolicited interrupt level
6461 = Maximum number of virtual terminals open
6470 = Resources unavailable, no virtual terminal opened
6490 = Invalid device option
6499 = Unsuccessful VTRM initialization.

The following figure shows the returned PSB of the open virtual terminal.

16 31

Defined by VRM

Operation Options I Virtual Terminal IODN

User Field

Path Identifier

Figure 3-4. Open Virtual Terminal PSB

Comments: The IOCN of the VTMP supplied by the Send Command SVC with open virtual
terminal options must identify a code module that meets the VTMP interface
specifications. The resource controller does not make a copy of the supplied module;
the virtual machine must do this, if desired.

The virtual machine must attach to the resource controller before issuing the open
virtual terminal request.

The interrupt sublevels cannot be checked.

The screen manager activates the newly opened virtual terminal (unless the currently
active virtual terminal cannot be deactivated).

3-14 VRM Device Support

Close a Virtual Terminal

Description: Upon receiving a close request from the virtual machine, the resource controller
sends a queue element to the screen manager that identifies the virtual terminal to
close. When the screen manager acknowledges that the terminal is closed, the
resource controller frees the system resources and clears the data structures
initialized when the terminal was opened. If the target virtual terminal is active, the
screen manager activates another terminal.

Calling Register Conventions:

Return Codes:

GPR2 =

Bits 0-15
Bit 16
Bit 17
Bit 18
Bit 19
Bits 20-31

Resource controller IODN
Interrupt on completion *
Interrupt on error *
Synchronous operation *
o for no command extension
3 for close virtual terminal
* indicates caller's option.

GPR3,4 = Not used

GPR5 =

GPR6

GPR7

Bits 0-15 =
Bits 16-31 =

Not used (0)
Virtual terminal IODN

This is a user field set up by the operating system device driver and
returned by the VTRM in a PSB.

Path identifier.

The following error codes are returned in GPR2 or in the Operation Results field of
the PSB when the resource controller detects errors while processing the SVC:

6401 = Invalid virtual terminal IODN
6470 = Resources unavailable, cannot close virtual terminal
6471 = Cannot recover resources, virtual terminal closed
6490 = Invalid device option
6499 = Unsuccessful VTRM initialization.

Figure 3-5 on page 3-16 shows the PSB returned for the close request.

Virtual Terminal Subsystem 3-15

o
I

24

28

32

36

o

Bytes

Operation Options

16

Defi ned by VRM

I
User field

Reserved

Figure 3-5. Close Virtual Terminal PSB

31

Reserved

Comments: The Send Command SVC with close virtual terminal option can be issued only after
the virtual machine has attached to the VTRM.

3-16 VRM Device Support

Connect to Screen Manager

Description: This command causes the resource controller to attach the screen manager to the
virtual machine. The resource controller then returns the screen manager IODN and
the ID of the path from the screen manager to the virtual machine.

The screen manager returns both solicited and unsolicited interrupts on this path.
Solicited interrupts occur as a result of sves to the screen manager. An unsolicited
interrupt is sent to a virtual machine when its last (or only) virtual terminal is closed.
In this case, the pertinent fields in the interrupt structure are:

• Operation results field = 6489
• IODN = screen manager IODN.

Note that this unsolicited interrupt is not sent if the virtual machine issues a Detach
SVC from the screen manager.

Calling Register Conventions:

GPR2 =

Bits 0-15 =
Bit 16 =
Bit 17 =
Bit 18 =
Bit 19 =
Bits 20-31

Resource controller IODN
Interrupt on completion *
In terru pt on error *
Synchronous operation *
o for no command extension
10 for connect to screen manager
* indicates caller's option.

GPR3 = Not used

GPR4 = Interrupt information

Bits 0-4 = Not used
Bits 5-7 = Solicited interrupt level
Bits 8-15 = Solicited interrupt sublevel
Bits 16-20 = Not used
Bits 21-23 = Unsolicited interrupt level
Bits 24-31 = Unsolicited interrupt sublevel

GPR5 = Not used.

GPR6 = This is a user field set up by the operating system device driver and returned
by the VTRM in a PSB.

GPR7 = Path identifier.

Virtual Terminal Subsystem 3-17

Return Codes:

o
I

24

28

32

36

o

Bytes

The following error codes are returned in GPR2 or in the Operation Results field of
the PSB when the resource controller detects errors while processing the SVC:

6450 = Invalid solicited interrupt level
6460 = Invalid unsolicited interrupt level
6470 = Resources unavailable, screen manager not connected
6481 = Too many virtual machines attached
6490 = Invalid dAvice option
6491 = Screen manager already connected
6499 = Unsuccessful VTRM initialization.

The following figure shows the PSB returned for a connect to screen manager
request.

16 31

Defined by VRM

Operation Options l Screen Manager IODN

User Field

Path Identifier

Figure 3-6. Connect to Screen Manager PSB

Comments: As many as 32 virtual machines may be attached to the screen manager at the same
time.

This SVC can be issued only after the virtual machine has attached to the resource
controller.

If the virtual machine detaches from the screen manager (with the Detach Device
SVC), the screen manager cannot generate an unsolicited interrupt when the virtual
machine's last terminal is closed.

3-18 VRM Device Support

Terminate VTRM

Description: A virtual machine can temporarily or permanently terminate the VTRM and virtual
terminal management with this sve.
Note: If termination of IBM-supplied virtual terminal management components is to
be temporary, you should issue a Query Device SVC with the VTRM's IODN before
you issue the terminate request. This sve returns the VTRM's define device
structure (DDS). You can restart the VTM by issuing two Define Device SVCs. Issue
the first sve with the 'delete' option to delete the IBM-supplied IODN for the VTRM
(Ox0205). Issue the second sve with the 'add' option and define a new, unused IODN
to reinstate the VTM.

The resource controller will not terminate the VTRM if it detects any open virtual
terminals. If the resource controller determines that all virtual terminals are closed,
termination begins. First, the resource controller terminates the screen manager with
the VRM _signal routine. The resource controller releases any system resources used
by the screen manager, then returns, terminating itself. The resource controller
cannot delete the device drivers or any code modules, including its own code module.
The virtual machine must make any of these deletions, if desired.

After you terminate the VTRM device manager processes, only the device drivers
remain in the VRM. However, because these drivers cannot be attached to any virtual
machine, none can be activated. You must define and attach your own drivers for use
with the I/O devices previously under VTM control if you require VRM device driver
services for interrupts or direct memory access.

Calling Register Conventions:

GPR2 =

GPR3,4,5

GPR6

GPR7

Bits 0-15
Bit 16 =
Bit 17 =
Bit 18 =
Bit 19 =
Bits 20-31

Not used

Resource controller IODN
Interrupt on completion *
Interrupt on error *
Synchronous operation *
o for no command extension
9 for terminate VTRM
* indicates caller's option.

This is a user field set up by the operating system device driver and
returned by the VTRM in a PSB.

Path identifier.

Virtual Terminal Subsystem 3-19

Return Codes:

o
I

24

28

32

36

o

Bytes

The following error codes are returned in GPR2 and the Operation Results field of the
PSB when the resource controller detects errors while processing the sve:
6471 = VTRM terminated, but cannot recover all resources
6490 = Invalid device option
6497 = Virtual terminal open, cannot terminate VTRM.

The following figure shows the PSB returned for a terminate VTRM request.

16 31

Defined by VRM

Operation Options I Reserved

User field

Reserved

Figure 3-7. Terminate VTRM Request PSB

3-20 VRM Device Support

Control Virtual Terminal Status

Description: The virtual machine issues this command to the screen manager. This command
basically controls the status of virtual terminals available to a virtual machine. All
the virtual terminals owned by all the virtual machines are linked together in a group
called the screen manager ring. The screen manager places an entry in the ring for
each virtual terminal opened. The terminal that is currently active is called the
"head" of the ring; the last terminal on the ring is called the "tail." When a new
terminal is added to the ring, the terminal becomes the head of the ring.

Two multi-key sequences allow you to switch between virtual terminals and control
which terminal is currently active. The active terminal is defined as the terminal
that will accept keyboard or locator input and will update the physical display. When
you press the Alt + Action keys, the screen manager makes the next virtual
terminal active. This relationship is indicated by "a" in Figure 3-8. When you press
SH + Action, the screen manager makes the last virtual terminal active. This
relationship is indicated by "b" in Figure 3-8 .

.------- b ------,.

'------'~ a -GJ 3

Head Tail

~r--------- b ------------,.

L0-a ~I...----' GJ 3
Head Tail

Figure 3-8. Screen Manager Ring Examples. In these figures, 'a' indicates the path from the active
virtual terminal to the next virtual terminal and 'b' indicates the path from the active virtual
terminal to the last virtual terminal.

Note that when you have three entries in the ring, you can access all the terminals
with a single key sequence. With four or more entries, you have to skip from one
terminal to another in some cases to activate a particular terminal. For example, in
the preceding figure with four terminal entries, terminal #2 cannot be accessed from
the active terminal #4 without first skipping to terminal #1 or terminal #3.

You can remove a terminal from the virtual machine's working set by using the hide
option of this command. When a terminal is hidden, it is passed over when its place in
the ring would ordinarily make it the active terminal.

Virtual Terminal Subsystem 3-21

The following options are provided with this command:

• Activate

The activate command places a virtual terminal (specified by IODN) at the head of
the screen manager ring, and thus makes the terminal the active terminal. This
option also clears the terminal's hidden flag. The screen manager cannot activate
the virtual terminal if the current active virtual terminal cannot be deactivated.

• Hide
The hide command sets a flag in the terminal's ring entry indicating that the
screen manager should not activate this terminal (identified by IODN). This does
not affect the terminal's position in the ring. From the time the hidden flag is set,
the screen manager ignores the terminal's presence in the ring until an unhide
command is issued. If the virtual terminal was active when the hide command
was issued, the screen manager makes the terminal inactive (if possible) but does
not prevent the virtual machine attached to the virtual terminal from
communicating with the virtual terminal. Hiding the active virtual terminal has
the same effect as the last terminal function. If the virtual terminal hidden is the
last one hidden in the ring, the contents of the physical display screen remain the
same; no component attempts to clear the screen.

• Unhide

The unhide command resets the hidden flag. If a virtual terminal was hidden, the
unhide command restores the presence of the terminal in the ring, but does not
affect the terminal's ring position or make the terminal active. If the hidden
virtual terminal happens to be at the head of the ring when the unhide command
is issued, that terminal becomes visible and, in a sense, active.

• Set Command Virtual Terminal

The Set Command Virtual Terminal option identifies to the screen manager which
terminal to treat as the command virtual terminal. The only advantage to the
command virtual terminal is that it is immediately activated when you enter the
key sequence Cntl + Action or press both locator keys simultaneously with
locator defaults enabled.

• Enable Command Virtual Terminal from Locator

This option allows you to activate the command virtual terminal (if defined) by
pressing both locator keys simultaneously. Because this is a default function of
the locator, you do not need to issue this option unless you have previously
disabled the function with the Disable Command Virtual Terminal option.

• Disable Command Virtual Terminal from Locator

This option overrides the locator default that activates a command virtual
terminal by pressing the locator keys simultaneously. After disabling the default
locator function, you may define another locator function to the locator keys.

3-22 VRM Device Support

Calling Register Conventions:

GPR2

GPR3

GPR4 =

Bits 0-15
Bit 16 =

Bit 17 =
Bit 18 =
Bit 19 =
Bits 20-31

Bits 0-15 =

Bits 16-31

Bits 0-23 =
Bits 24-27 =

Screen manager IODN.
Interrupt on completion *
Interrupt on error *
Synchronous operation *
o for no command extension
31 for Control Virtual Terminal Status
* indicates caller's option

Not used (0)
IODN of the virtual terminal

Not used (0)
Operation option

o = Set Command Virtual Terminal
1 = Activate
2 = Hide
3 = Unhide
4 = Enable command VT activation from locator
5 = Disable command VT activation from locator

Reserved Bits 28-31 =

GPR5,6 = Not used

GPR7 = Path identifier.

Return Codes:

The following error codes are returned in GPR2 or in the Operation Results field of
the PSB when the screen manager detects an error while processing the SVC:

6401 = Invalid virtual terminal IODN
6476 = Virtual terminal cannot be deactivated
6477 = Command virtual terminal designation already exists
6480 = Invalid operation
6490 = In valid device option.

Comments: Only one command virtual terminal may be defined. This command terminal cannot
be redefined unless the original command virtual terminal is closed.

Only unhidden virtual terminals are included in your working set of virtual
terminals. Terminals in the working set can be activated using the keyboard or, for
the commmand terminal only, by pressing both locator keys or the Cntl + Action
key sequence.

Virtual Terminal Subsystem 3-23

Query Virtual Terminal Status

Description: The Query Virtual Terminal Status command allows you to determine whether an
open virtual terminal is active or hidden. In addition, you can find out if a specified
terminal is the command virtual terminal.

Calling Register Conventions:

Return Codes:

GPR2 =

Bits 0-15
Bit 16 =
Bit 17 =
Bit 18 =
Bit 19 =
Bits 20-31

GPR3,4 = Not used

Screen Manager IODN.
Interrupt on completion *
Interrupt on error *
Synchronous operation *
1 for command extension
30 for Query Virtual Terminal Status
* indicates caller's option

GPR5 = Address of area in which to return status data

GPR6 = Length of the returned data area.

The following error codes are returned in GPR2 or in the Operation Results field of
the PSB when the screen manager detects an error while processing the SVC:

6475 = Insufficient query response data
6490 = Invalid device option.

Return Data Area: The screen manager returns the status data at the address indicated in the
command extension field of the Start I/O SVC program status block. The returned
information is shown in Figure 3-9 and defined in the section that follows.

These fields are repeated 31 times.
r-------------/'~-----------~

Number of VTs VT IODN I alblcl Reserved I Entry #321
o 16 32 47

Figure 3-9. Status Data Returned by the Screen Manager

Number of VTs - This halfword indicates how many open virtual terminals are owned
by the virtual machine issuing the query.

Bits 16 through 47 of this structure are repeated for each possible virtual terminal
owned by the virtual machine, so you must reserve enough space for 32 such entries.

3-24 VRM Device Support

The 'Number of VTs' field tells you how many of the 32 entries are meaningful. The
value of the subsequent bits is unpredictable.

VT IODN - This halfword is a virtual terminal IODN.

The next three bits provide additional status information about the virtual terminal.

When bit a = 1, the terminal is hidden.
When bit b = 1, the terminal is active.
When bit c = 1, the terminal is the command virtual terminal.

Virtual Terminal Subsystem 3-25

Virtual Machine Interface to the VTMP

The VTMP provides a model of a single terminal. In the case of multiple virtual terminals, each
terminal must have a logically complete VTMP, whether that comes through shared data or copies of
VTMP modules.

The VTMP operates in one of two modes. They are:

• Keyboard Send/Receive (KSR)

• Monitored Mode (MOM).

The KSR mode processor emulates an ASCII terminal and uses ANSI 3.64 controls, the RTASCII
character set, and virtual terminal data structures. The VTMP defaults to KSR mode.

Monitored mode provides applications a direct output path to the display hardware and an optional
shortened input path for the keyboard, locator, lighted programmable function (LPF) keys, dials, and
display adapter.

Some forms of data that each mode accepts are unique to that mode. This design attempts to optimize
the transfer of data between the VTMP and the application program and supports different functions
within each mode.

Certain general functions to affect display, keyboard, locator, dials, and LPF key hardware, as well
as sound generation, are available to either mode. With these you can:

• Turn keyboard LEDs on or off

• Set locator X and Y thresholds (for relative device) so locator inputs are reported only when
thresholds are exceeded

• Set locator X and Y non-input area (for absolute device) so that locator inputs are reported only
when the locator is within the input portion of the tablet

• Provide commands to generate sound on active and inactive terminals and cancel sound on the
active terminal

• Set the LPF keys

• Set the granularities for reporting dials movement deltas

• Change the device on which a virtual terminal is displayed

• Return keyboard, display, locator, LPF key, and dials device characteristics.

For more information on these functions, see "General Major Data Type" on page 3-58.

3-26 VRM Device Support

The VTMP supplies default values for use of display, keyboard, locator, dials and LPF key hardware.
Keyboard-to-character code mapping, character-to-display symbol mapping, echo specification, tab
rack, and protocol mode flags are all provided by the VTMP. You can change these default values in
two ways:

1. Define your own set of values for use with a specific virtual terminal with a VT Set Structure
SVC or a VT Output SVC.

2. Change certain default values with a Reconfigure VTRM SVC (See "Reconfigure Virtual
Terminal Manager" on page 3-8) and provide your own data structures.

The virtual machine interface to the VTMP consists of a set of SVCs and virtual interrupts. These
include:

• VT Output SVC
• VT output acknowledge interrupt
• KSR Output Short SVC
• VT Set Structure SVC
• VT set structure acknowledge interrupt
• VT Query SVC
• VT query acknowledge interrupt
• VT unsolicited interrupts
• Acknowledge interrupt return codes.

Compared to the VTRM SVCs, which control the terminal resources, the SVCs to the VTMP deal
primarily with display output. Virtual terminals receive data in GPRs 2-7 upon SVC execution.
Register 2 contains the identifier of the path from the virtual machine to the virtual terminal. For all
but the KSR Output Short SVC, one register contains the address of an output buffer for additional
data. The VT Query SVC has two buffers, one for the query command and one for the query
response.

The output buffer may contain RTASCII characters, ANSI 3.64 escape sequences, or virtual terminal
data structures. Major data types are KSR, MOM and general (applies to both KSR and MOM). A
virtual terminal data (VTD) ASCII control sequence (a private escape sequence) indicates the
beginning of a data structure. A 32-bit length field indicates the end of a data structure, but a data
structure may span multiple output buffers. The data between the end of a structure and the next
VTD control is interpreted as ASCII codes.

Figure 3-10 on page 3-28 shows the data stream format.

Virtual Terminal Subsystem 3-27

v
T
D

I
L T
E y
N P

E

1 st
Data
Block

~
D V
A T
T D
A

I
L T
E Y
N P

E

2nd
Data
Block

D
A
T
A

t
ASCII

CODES

3rd
Data
Block

Figure 3-10. Data Stream Format

V
T
D

I
L T
E y
N P

E

4th
Data
Block

t
D
A
T
A

For more information on the characteristics and format of data structures, see "Major Data Types"
on page 3-56.

The VT Query SVC uses the output buffer to return the requested query data from the VTMP.
Interrupts return data in the old program status block (OPSB). The status field of the OPSB has bits
set to distinguish between virtual interrupts and other interrupts, as well as solicited or unsolicited
interrupts.

The following sections describe the SVCs directed to the VTMP and the interrupts returned to the
virtual machine.

3-28 VRM Device Support

VT Output SVC

Description: You can send display data to the virtual terminal by way of the VT Output SVC.

SVC Code:

The data to be processed resides in a buffer in main storage. The virtual address of
this buffer is passed in the SVC registers and will be converted to segment ID and
segment offset for queueing. Returned information from this SVC indicates whether
the SVC handler successfully queued this command for later processing by a virtual
terminal. The VTMP generates an acknowledge interrupt in response to the VT
Output SVC.

Note that the VTMP does not check the virtual machine-to-virtual terminal path ID
parameter. However, the VRM checks this path and will return an error code if the
path is invalid.

OxFFCC

Calling Register Conventions:

GPR2 =

GPR3 =

GPR4 =

Path identifier

This register contains a value that identifies the path from the virtual
machine to the virtual terminal.

Virtual address of data buffer

Length of data buffer in bytes.

Return Codes: contained in GPR2

o = Successfully queued

Comments: Since the output buffer contents, in storage, have not been queued, the virtual
machine must refrain from modifying, de allocating or moving the buffer in storage
until it receives an output acknowledge interrupt. Note also that the output buffer
cannot span a virtual memory segment. Errors detected during output data
processing can either be reported as a data stream item in an unsolicited interrupt, or
in the return code of the acknowledge interrupt.

Virtual terminal output may sometimes come in the form of data structures. In this
case, the beginning of a data structure is specified by the occurrence of a virtual
terminal data (VTD) ASCII control sequence. The end of a data structure is specified
by a length field. A data structure may span multiple output buffers. The data
between the end of a structure and the next VTD control is interpreted as ASCII
codes.

Virtual Terminal Subsystem 3-29

VT Output Acknowledge Interrupt

The output acknowledge interrupt tells you whether the data stream buffer contents were
successfully processed from virtual machine storage. Figure 3-11 shows the contents of the old PSB.

A return code of zero indicates successful processing. "Acknowledge Interrupt Return Codes" on
page 3-55 defines the unsuccessful return codes.

When you receive an output acknowledge interrupt, you know that the storage associated with the
data buffer is now free for further manipulation or de allocation by the virtual machine.

Old Program Status Block

Status

I OxOC

Return lOON
Code

I
Int. ID Segment ID
OxCC

Offset into Struc. to First Error

Segment Offset

o 8 16 18 24 31

Figure 3-11. VT Output Acknowledge Interrupt

3-30 VRM Device Support

KSR Output Short SVC

Description: The KSR Output Short SVC allows passage of up to 16 bytes of KSR ASCII data to
a single virtual terminal in registers without getting and maintaining storage buffers.
Returned information from this SVC indicates whether a virtual terminal handler
successfully queued this command for later processing. A KSR Output Short SVC
generates no acknowledge interrupt.

SVC Code: OxFFCB

Calling Register Conventions:

GPR2 = Path identifier

This register contains a value that identifies the path between the
virtual machine and the virtual terminal.

GPR3 =

GPR4,5,6,7 =

(bits 0-7) Number of characters to transfer.

Character buffer.

Up to 16 bytes of data can be sent in these four GPRs as shown in
the following chart.

KSR Output Short Registers

GPR4
GPR5
GPR6
GPR7

o

Code 0
Code 4
Code 8
Code 12

Return Codes: contained in GPR2

Code 1
Code 5
Code 9
Code 13

8

o = Successfully queued.

Code 2 Code 3
Code 6 Code 7
Code 10 Code 11
Code 14 Code 15

16 24 31

Comments: The data is interpreted as an ASCII data stream.

Virtual Terminal Subsystem 3-31

VT Set Structure SVC

Description: You can define the data in certain virtual terminal structures with the VT Set
Structure SVC. Those structures include:

SVC Code:

• Virtual terminal keyboard map
• Echo/break map.

The definition structure resides in a main storage buffer. The virtual address of the
definition structure, passed in the registers, is converted to segment ID and segment
offset for queueing to the VTMP.

Information returned from this SVC indicates whether the SVC was successfully
queued for processing. The VT Set Structure SVC generates an acknowledge
interrupt.

OxFFC8

Calling Register Conventions:

GPR2 = Path identifier

GPR3 =

GPR4 =

GPR5 =

This register contains a value indicating the path from the virtual
machine to the virtual terminal.

User's virtual address pointer to structure

Length of the structure in bytes

(bits 0-7) Structure selector

2 = Keyboard mapping
3 = Echo/break mapping

Return Codes: contained in GPR2

o = Successfully queued

Comments: Since only the register contents at the time of SVC execution are queued, ensure that
the storage allocated for the structure is not modified, moved, or deallocated until the
acknowledge interrupt is received. In addition, this buffer cannot span a virtual
memory segment.

The VT Set Structure SVC may be issued by the virtual machine's device driver in
response to certain out-of-data-stream commands.

3-32 VRM Device Support

Set Keyboard Map
The key position to code point mapping of a VTMP virtual terminal can be altered through the
keyboard map structure.

The VTMP maintains a keyboard mapping table for each virtual terminal. This table maps the
pressing of a key (as indicated by its key position, and whether the shift, control, alternate, or
alternate graphics key is also held down) to a specific character, mode-process or-defined function, or
string of characters. All or part of this mapping table can be modified by data passed in the VT KBD
MAP structure.

The keyboard mapping structure contains a 2-byte header. This header is followed immediately by a
set of key position mappings of variable length.

The keyboard mapping structure consists of three distinct mappings of its bytes, dependent on the
type of key assignment. All key position mappings must specify a key position, the applicable shift
state and the type of key assignment.

You can map four types of key assignments. Some of the types require different mapping
specifications. The types and mapping requirements are:

(1) Single character and (2) single non-escaping character

• Key position
• Shift state
• Code page
• Code point.

(3) Function

• Key position
• Shift state
• 16-bit function ID.

(4) String

• Key position
• Shift state
• Code page
• Character string length
• Character string.

Functions are translated or executed according to the mode of the virtual terminal receiving input.
The mapping types may be freely mixed but the number of mappings must match the number of key
positions specified in Figure 3-12 on page 3-34.

Virtual Terminal Subsystem 3-33

o
I

Reserved

7

I

Number of
key positions

15 ~ Bits

I Variable I

.. ~~~'~~~i~;~; ~~~~ ..]
'--___ --'-_______ --J ••••••••••••••••••••

Figure 3-12. Keyboard Mapping Structure Header

The fields in the header pictured above are defined as follows:

• Number of key positions

This value is the number of key positions to be mapped.

• Key position maps

This field contains the new mappings of key position to symbol or function.

Figure 3-13 expands on the key position maps field from Figure 3-12.

o

Key
Position

Sh itt states!
Flags

2 ~ Bytes

I Variable

Figure 3-13. Keyboard Mapping Structure for Key Positions

The fields shown in the figure above are defined as follows:

• Key position

The key position field contains the keyboard position to remap. Each key on the standard RT PC
keyboard has a numeric position code that is used for this field. Figure 3-29 on page 3-106
matches the key to its position code.

• Shift states

Bit 0 = caps lock (set this bit correctly regardless of the key state being mapped.)

o - Caps lock has no effect on this key.

1 - Caps lock state in effect for this key.

Bits 1-2

The binary value of bits 1-2 indicates whether the new key assignment applies to the key in
the base, shift, control, alternate, or alternate graphics state.

3-34 VRM Device Support

00 = base key (no shift, control, or alternate)
01 = shift plus base key
10 = control plus base key
11 = alternate plus base key.

Bit 3 - Alternate graphics

If bit 3 equals 1, bits 1 and 2 should be set to zero.

• Flags

The binary value of bits 4-7 indicates the type of key assignment.

0000 = A character is assigned to this key position. Bytes 2 and 3 contain a code page and
code point for this field.

0001 = A function is assigned to this key position. Bytes 2 and 3 contain a 16-bit internal ID.

0100 = A character string is assigned to this position. Byte 3 contains the length of the
string (minus 1) in bytes. Although the maximum number of characters allowed is 255, the
virtual machine has a maximum queue element depth of 15. Therefore, a maximum of 15
characters can be sent (assuming all 15 queue elements are available) in KSR mode or MOM
mode if no ring buffer is defined. For MOM mode with a ring buffer defined, the maximum
number of characters (255) can be accommodated if a ring buffer is defined accordingly. The
total number of codes in all character strings cannot exceed 16K.

0010 = A non-spacing character is assigned to this key position. Bytes 2 and 3 contain a
code page and code point for this field.

• Key assignment structure

A variable-length structure which contains key position assignments. The figures that follow
describe the key assignment structure for the various flag values.

When the flags field = 0000 (character), the key assignment structure is defined as follows:

o

Code
Page

Code
Point

~ Bytes

I

The fields shown in the preceding figure are defined as follows:

Code page The RT ASCII character set from which the display symbol is taken.

Code point The RTASCII code point within the specified character set.

When the flags field = 0001 (function), the key assignment structure is defined as follows:
o
I

ID

~ Bytes
I

Virtual Terminal Subsystem 3-35

The field shown in the preceding figure is defined as follows:

ID A 16-bit value that identifies the function assigned to this key position. See "Valid
Function Identifiers" on page 3-37 for a list of defined values.

When the flags field = 0100 (character string), the key assignment structure is defined as follows:
o 1 2 ~ Bytes
I I I Variable I

I ~~~: I ~!~~~h I :::::::::::::::~~~~~::::::::::]
The fields shown in the preceding figure are defined as follows:

Code page RTASCII character set the display symbol is taken from.

String length An 8-bit value that indicates the length of the string (minus 1) in bytes. Although the
maximum number of characters allowed is 255, the virtual machine has a maximum
queue element depth of 15. Therefore, a maximum of 15 characters can be sent
(assuming all 15 queue elements are available) in KSR mode or MOM mode if no ring
buffer is defined. For MOM mode with a ring buffer defined, the maximum number of
characters (255) can be accommodated if a ring buffer is defined accordingly.

String The character string to be assigned to the specified key position.

The following example uses the information provided in the preceding section. For this example, the
key position Ox31 will be remapped to the character string 'EXAMPLE' in the PO code page. The
keyboard mapping structure would be coded as follows:

Byte
o
1
2
3
4
5

6 - 12

Value
o
1

Ox31
Ox04
Ox3C
Ox07
Ox45,Ox85,
Ox41,Ox4D,
Ox50,Ox4C,
Ox45

Meaning
Reserved
Remap 1 key
Remap key position Ox31
Make the key a character string
Use the PO code page
Length of the string
the string 'EXAMPLE'

After the preceding reassignment, whenever the key at position Ox31 is pressed, the character string
EXAMPLE is displayed.

3-36 VRM Device Support

Valid Function Identifiers
The VTMP recognizes certain function identifiers, and you can assign these functions to keys.

ID Name

OxOOOO Reserved

OxOlOO Reserved

OxOlOl CUU

Move application cursor up one line

OxOl02 CUD

Move application cursor down one line

OxOl03 CUF

Move application cursor forward one character

OxOl04 CUB

Move application cursor backward one character

OxOl05 CBT

Move application cursor to the previous horizontal tab stop or beginning of field

OxOl06 CRT

Move application cursor to the next horizontal tab stop or beginning of field

OxOl07 CVT

Move application cursor down one vertical tab stop

OxOl08 HOME

Move application cursor to the first line, first character in presentation space

OxOl09 LL

Move application cursor to the last line, first character in presentation space

OxOlOA END

Move application cursor to the last line, last character in the presentation space

OxOlOB CPL

Move application cursor to the first character of the previous line

OxOlOC CNL

Move application cursor to the first character of the next line

Virtual Terminal Subsystem 3-37

Ox0151 DCH

Delete the character over the application cursor

Ox0152 IL

Insert one line following the line of the application cursor

Ox0153 DL

Delete the line of the application cursor

Ox0154 EEOL

Erase the characters from the application cursor to the end of the line

Ox0155 EEOF

Erase the characters from the application cursor to the next tab stop

Ox0156 CLEAR

Erase the entire presentation space

Ox0157 INIT

Restores the virtual terminal to the state of a newly opened virtual terminal: erases all data
in the presentation space, places the cursor at first position of first line, restores tab stops,
modes, keyboard map, character map, and echo map to default values

Ox0162 RI

Perform one line reverse index control

Ox0163 IND

Perform one line index control

OxOlFF Ignore

No information sent for this key.

3-38 VRM Device Support

Set Echo/Break Maps
"Echo" refers to sending the character associated with a keystroke to the display screen or
performing the function associated with a control. "Break" is used in monitored mode (MOM) to
switch the input path from the MOM input buffer to the unsolicited ASCII datastream flow. See "VT
Unsolicited Interrupt" on page 3-45. Break map is not operational in KSR mode.

The echo and break mode for each ASCII graphic and control function is set or reset according to
the echo/break structure. As with other mode settings, the provided default settings suffice for most
situations. The default for KSR mode is to set echo for all graphics and controls.

Each virtual terminal maintains an echo table. When send/receive mode is reset, this table
translates keyboard input to ASCII codes. Each ASCII graphic and control function has a
corresponding echo bit.

In the echo map, a bit set to one means to execute the graphic or control functions resulting from
keyboard translation as if the functions were received in the data stream from the host.

For example, if you key an 'a', and its echo bit is 1, the 'a' displays at the current cursor position of
the display screen. An echo bit set to 0 indicates the keyed graphic or control is not echoed directly
to the display until the information is received in an output data stream.

In the break map of a terminal in MOM mode, a bit set to one means to send keyboard input data
through the normal unsolicited ASCII datastream flow. If the break bit is reset in MOM mode, the
input data will be placed in the MOM input buffer ring if the ring was previously defined.

The echo/break structure consists of 32 consecutive words of storage aligned on a word boundary.
The first 16 words make up the echo map and the last 16 words make up the break map. All 512 bits
of each map have meaning. Each bit position from 0 to 255 inclusive specifies echo or break for the
codes. Bit positions 256 to 511 specify echo or break for the extended control functions. These
functions are shown in Figure 3-14 on page 3-40 and are sent as hexadecimal values. The control for
KSI, for example, is Ox13l. The 'INV' bit in each map indicates how to handle invalid or unsupported
control sequences.

The echo/break structure is shared among code pages PO, PI, and P2. For PO graphic code points,
the echo/break bit tested is the ordinal of the code point Ox20 - OxFF. For PI and P2 code points, the
bit tested is the ordinal of the code point with the high order bit always set. For example, the PO code
point Ox20 is tested against the 33rd bit in the map, but the PI code point Ox20 is tested against the
161st bit in the map. All of the following code points are tested against the 161st bit:

PO - OxAO
PI - Ox20
PI - OxAO
P2 - Ox20
P2 - OxAO

Virtual Terminal Subsystem 3-39

/~Most Significant Hex Digits 0,1--7/
Hex2 10 1 11 1 12 113 114 I. . . /1 F

0 CBT DMI RC

1 CHA EMI RI KSI

2 CHT EA INV
3 CTC ED RIS
4 CNL EF RM

5 CPL EL SD
6 CPR ECH SL

7 CUB GSM SR

8 CUD HTS SU

9 CUF HVP SGR

A CUP ICH SGO

B CUU IL SG1

C CVT IND SM

0 DCH NEL TBC

E DL PFK VTS

F DSR SC INV

Figure 3-14. Bit Positions of ASCII Controls in Echo Map. Note that bit positions Ox132 through
OxlFF are 'INV'.

The table in Figure 3-15 on page 3-41 shows the bit position numbering within the structure.

3-40 VRM Device Support

Bits
0 31

Words

0 0 31
1 32 63
2 64 95
3 96 127
4 128 159
5 160 191
6 192 223
7 224 255
8 256 287
9 288 319

10 320 351
1 1 352 383
12 384 415
13 416 447
14 448 479
15 480 511

Figure 3-15. Bit Position Numbering in Echo/Break Map

Virtual Terminal Subsystem 3-41

VT Set Structure Acknowledge Interrupt

The set structure acknowledge interrupt indicates that the new structure elements have passed from
the virtual machine to the VRM. A successful update returns a zero return code. See "Acknowledge
Interrupt Return Codes" on page 3-55 for definitions of unsuccessful return codes.

Old PSB word 6, bits 0-7, contains the structure selector value that identifies the structure. Receipt
of the set structure acknowledge interrupt tells you that the storage associated with the structure is
now free for manipulation and/or de allocation by the virtual machine.

Old Program status Block

Status

I OxOC

Return lOON
Code

Struc.

I
Int. ID Segment ID

Select OxC8

Structure Length

Segment Offset

o 8 16 18 24 31

Figure 3-16. VT Set Structure Acknowledge Interrupt

3-42 VRM Device Support

VT Query SVC

Description: You can query (read) some VTMP data by issuing a VT Query SVC. The data to be
queried is specified in the query command buffer, and the response is put in the query
response buffer. The SVC parameter registers contain the addresses of both the
command and response buffers. Information returned from this SVC indicates whether
a query command was queued.

SVC Code: OxFFC6

Calling Register Conventions:

GPR2 = Path identifier

This register contains a value which indicates the path between the virtual
machine and the virtual terminal.

GPR3

GPR4

User's virtual address pointer to query command buffer

Length of query command buffer in bytes

GPR5 User's virtual address pointer to query response buffer

GPR6 = Length of query response buffer in bytes.

Return Codes: contained in GPR2

o = Successfully queued

Comments: A successful return notifies the device driver that the query SVC is queued for
subsequent processing. A VT Query Acknowledge interrupt indicates completion of
that processing. (See Figure 3-17 on page 3-44.)

The command and response data appear in VTD data block format as described for the
VT output SVCs. However, minor type ranges for command, response, output, and
interrupt data are unique.

Query response data will not overflow the designated buffer. If the response buffer is
too small to return all of the query data, the application receives a return code of
6581 and the buffer contains as much query data as it can hold. To receive the
complete query data, you should issue another VT Query SVC with a larger response
buffer. Each query request should include only one query command. Data following
the first query in the query command buffer is ignored.

This SVC can be issued by the virtual machine's device driver in response to certain
out-of-data-stream commands.

Because only the register contents at the time of SVC execution are queued, the
storage allocated for the structure cannot be modified, moved, or deallocated until
reception of the query response interrupt. Storage for the structure must be allocated
and initialized before SVC execution.

Virtual Terminal Subsystem 3-43

VT Query Acknowledge Interrupt

The query acknowledge interrupt indicates completion of a VT Query SVC. A return code of zero
reflects a successful response; all unsuccessful return codes are defined in "Acknowledge Interrupt
Return Codes" on page 3-55.

A return code of 6581 indicates that the response buffer was not large enough to return all the query
response data. You should issue another VT Query SVC with a larger response buffer. In case of an
error, the query command data length, segment offset, and segment ID fields of the OPSB will not be
valid. The query command buffer length in the OPSB will be set to encompass the last byte of the
query data. Command buffer processing stops when an error is detected. Figure 3-17 shows the
format of the acknowledge interrupt.

Old Program Status Block

Status

I OxOC

Return lOON
Code

I
Int. 10 Query Command
OxC6 Segment ID

Query Command Processed Data Length

Query Command Segment Offset

o 8 16 18 24 31

Figure 3-17. VT Query Acknowledge Interrupt

3-44 VRM Device Support

VT Unsolicited Interrupt

The virtual terminal sends an unsolicited interrupt to the virtual machine when the VTMP receives
keyboard or locator input. Different interrupts return different amounts of information. Unsolicited
interrupts return data directly to the old PSB.

A bit in the status flag byte of the old PSB distinguishes unsolicited interrupts from interrupts
acknowledging completion of an SVC.

For unsolicited interrupts, the interrupt identifier field of the old PSB (word 6, bits 8-15) determines
the dependent data fields in words 7 and 8. See Figure 3-18.

Old Program Status Block

Status
Ox08

Byte 9 Byte 10 lOON

Number of Interrupt Reserved
Bytes ID (Set=Q)

Byte 1 Byte 2 Byte 3 Byte 4

Byte 5 Byte 6 Byte 7 Byte 8

Figure 3-1B. Unsolicited Interrupt Structure

]

Interrupt ID
Dependent
Data

In the preceding figure, the 'number of bytes' field indicates how many bytes of the 10-byte interrupt
identifier-dependent data field are actually used.

The interrupt identifier field specifies a major and minor data stream type. The two high-order bits
(bits 8 and 9) of word 6 determine the major type. The binary value of bits 8-9 determine the major
data stream type as follows:

Bit Value Major Type

00 Monitored

01 KSR

Virtual Terminal Subsystem 3-45

The six low-order bits (bits 10-15) of the interrupt identifier field determine which of 64 minor data
types to associate with the unsolicited interrupt. A minor type value range from Ox80 to OxBF is
reserved in the virtual terminal data stream architecture for unsolicited interrupt data.

Unsolicited interrupts from input to KSR screens do not inhibit further input unless errors are
reported. The returned data stream indicates errors in KSR data by way of device status report
controls.

The following list defines interrupts according to minor type. Each definition notes variations due to
major type. Interrupts 0-6 result from text cursor input. The returned interrupt type depends on data
in the active terminal and protocol mode parameters set.

Where two ID values are specified, the actual value received depends on whether the terminal is in
KSR or monitored mode.

ID=40

OPSB
Words

5

6

7

8

ASCII data stream

The VTMP translates keystrokes into RTASCII data stream codes if XLATKBD mode is
set. As many as 10 characters can be passed for each interrupt, so the
number-of-data-bytes field must be examined at each interrupt to determine how many
characters were passed for that interrupt.

Byte 9 Byte 10 Reserved

of bytes Int. 10 Reserved (Set=Q)

Byte 1 Byte 2 Byte 3 I Byte 4

Byte 5 Byte 6 Byte 7 I Byte 8

ID = 04, 44 Key position, status, and scan code

OPSB
Words

7

This interrupt is returned when keyboard input is received with XLATKBD reset. The
key position field identifies the logical key pressed. Key status bits indicate alternate,
control, shift, caps lock, and num lock key states. The scan code and make/break bytes
are hardware-dependent and require knowledge of the physical keyboard in use.

Key
status

Interrupt
ID

04,44

Figure 3-19. Keyboard Data

3-46 VRM Device Support

The fields in the preceding figure are defined as follows:

• Key position

This field reflects the position code unique to each key on the keyboard. Figure 3-29
on page 3-106 shows the values assigned to the standard RT PC keyboard.

• Scan code

This field contains a hexadecimal value sent from the keyboard that determines how
the keystroke is manifested.

• Key status

This halfword indicates if any other keys are pressed with the reported keystroke.
The bits are defined as follows:

Bit 0 = Status of the shift key

When this bit equals one, the key is pressed. When it is zero, the key is
released.

Bit 1 Status of the control key

When this bit equals one, the key is pressed. When it is zero, the key is
released.

Bit 2 = Status of the alternate key

When this bit equals one, the key is pressed. When it is zero, the key is
released.

Bit 3 = Reserved

Bit 4 = Status of the caps lock key

When this bit equals one, the caps lock key is on. When the key is pressed
again, the caps lock key is off. This also reflects the status of the keyboard
LED.

Bit 5 = Status of the num lock key

When this bit equals one, the num lock key is on. When the key is pressed
again, the num lock key is off. This also reflects the status of the keyboard
LED.

Bit 6 = Reserved

Virtual Terminal Subsystem 3-47

Bit 7 = Make/break status

1 = make, 0 = break.

Bit 8 = Repeat status

When this bit equals one, repeat is on. When it is zero, repeat is off.

Bit 9 = Left shift key status

When this bit equals one, the left shift key is pressed. When it is zero, the
key is released.

Bit 10 = Right shift key status

When this bit equals one, the right shift key is pressed. When it is zero,
the key is released.

Bit 11 = Left alt key status

When this bit equals one, the left alt key is pressed. When it is zero, the
key is released.

Bit 12 = Right alt key status

When this bit equals one, the right alt key is pressed. When it is zero, the
key is released.

Bits 13-15 = Reserved.

ID = 17, 57 Locator Report

Interrupt IDs 17 and 57 return status for the locator relative (mouse) and absolute
(tablet) devices, the lighted programmable function keys, and dials. The format of the
interrupt for each device type is similar. Bits 8-15 of old PSB word 5 indicate the device
for which interrupt information is being returned.

Old PSB word 8 provides two granularities of time stamps. The three bytes of time
stamp 1 contain the time since IPL of the machine in seconds. The time stamp 2 byte
contains the current count of the VRM 60 Hz. counter. This extension provides a finer
granularity of time-stamping facilities.

The formats of the status field and of old PSB word 7 vary by device, but provide
information on device movement or the origin of device input. The format of interrupts
17 and 57 is shown in the following figures for each of the supported devices.

3-48 VRM Device Support

OPSB Interrupt
Words ID

Locator
5 Status

17,57
Locator

I
Locator 7 X Delta Y Delta

8 Time Stamp 1 I Time
Stam~2

Figure 3-20. Locator Relative Report

When HOSTPC mode is set and a mouse device is configured, this interrupt returns
information on mouse movement and the status of the buttons on the mouse.

The fields in the preceding figure are defined as follows:

• Locator status

For a mouse (relative) device, the second byte of OPSB word 5 is set to O. In
addition, the value of bits 0-2 of OPSB word 5 indicate the mouse button being
pressed. These bits are defined as follows:

Bit 0 = 1 : mouse button 1 pressed
- Bit 1 = 1 : mouse button 2 pressed
- Bit 2 = 1 : mouse button 3 pressed

If locator buttons 1 and 2 are pressed at the same time, the command virtual
terminal (if defined) will become activated and a locator-relative report with status
showing both buttons pressed may be received by the virtual machine.

Virtual Terminal Subsystem 3-49

OPSB
Words

5

7

8

• Locator X delta

The X delta refers to accumulated horizontal locator movement since the last locator
movement. The unit of measurement is .25 mm.

• Locator Y delta

The Y delta refers to accumulated vertical locator movement since the last locator
movement. The unit of measurement is .25 mm.

Interrupt
ID

Locator
Status

17,57
Locator

I
Locator

X Position Y Position

Time Stamp 1 I Time
Stamp 2

Figure 3-21. Locator Absolute Report

When HOSTPC mode is set and a tablet device is configured, this interrupt returns
information on tablet movement and the status of the buttons (if a cursor tablet is
configured).

The fields in the preceding figure are defined as follows:

• Locator status

For a tablet (absolute) device, the second byte of OPSB word 5 is set to 1. Bit 5
indicates whether the tablet stylus or cursor is resting on the tablet (required to
report input). For a cursor tablet only, the value of bits 0-4 of OPSB word 5 indicate
the tablet buttons being pressed. For example, if bits 0-4 have a binary value of
00011, tablet button 3 is being pressed.

• Locator X Position

The X position refers to the location of stylus or cursor on the horizontal axis.

• Locator Y Position

The Y position refers to the location of stylus or cursor on the vertical axis.

3-50 VRM Device Support

OPSB
Words

5

7

8

Status

Key Number I Reserved

I
Time

Time Stamp 1 Stamp 2

Interrupt
ID

17,57

Figure 3-22. Lighted Programmable Function Key Report

OPSB
Words

5

7

8

When HOSTLPFK mode is set and the LPF key device is configured, this interrupt
returns information on key number and status.

The fields in the preceding figure are defined as follows:

• Status

For the LPF key device, the second byte of OPSB word 5 is set to 2.

• Key Number

The value of this halfword indicates which of the LPF keys is reporting data.

Status

Dial Number I
Time Stamp 1

Dial Value
Delta

I
Time
Stamp 2

Interrupt
ID

17,57

Figure 3-23. Dials Report

When HOSTDIALS mode is set and the dials device is configured, this interrupt returns
information on dial number and status.

The fields in the preceding figure are defined as follows:

• Status

For the dials, the second byte of OPSB word 5 is set to 3.

• Dial Number

The value of this halfword indicates which of the dials is reporting data.

Virtual Terminal Subsystem 3-51

• Dial Value Delta

This halfword indicates the direction and magnitude of movement for this dial since
the last report. See "Set Dials" on page 3-62.

For the following unsolicited interrupts, the interrupt ID alone determines the required action. No
other pertinent information is sent in the unsolicited interrupt control block.

ID = 20, 60 Screen grant

The VTMP returns this interrupt to advise the application (in monitored display screen
mode) that the operating system will allocate the display screen to the application.

ID = 21, 61 Screen Release

The VTMP interrupts an application (in monitored display screen mode) to request that
it relinquish control of the display screen so the operating system can allocate the
screen to another application.

The VTMP starts a timer after it issues this unsolicited interrupt. If the application
does not comply with the request before the time interval expires, the VTMP removes
the application with another unsolicited interrupt. (See interrupt ID 22.)

ID = 22, 62 Remove application

This interrupt removes the uncooperative application that failed to comply with a screen
release interrupt in the time allowed by the VTMP.

This interrupt is also sent if the virtual memory segment containing the
application-defined monitored mode ring buffer is destroyed by way of a Destroy
Segment SVC.

ID = 23, 63 Acknowledge sound data

The virtual terminal sends this interrupt to the application if the application set the
acknowledge flag in a sound data request.

ID = 24, 64 MOM input buffer status change

The VTMP returns this unsolicited interrupt to the application when the monitored
mode input ring changes from empty to non-empty. See "Screen Request and Input Ring
Addressability" on page 3-100 for more information on how the MOM input ring works.

3-52 VRM Device Support

Adapter-Generated Interrupt Data

Some adapters can return status information to MOM applications by way of a ring buffer. This
status information is placed in the ring buffer with a VTA escape sequence (ESC [r). Note that this
feature is not available to KSR mode.

The information that immediately follows the escape sequence includes a I-byte queue ID, and 20
bytes of data. Note that the hardware returns 16-bit words and that the bit-numbering conventions
are reversed. See IBM RT PC Hardware Technical Reference for details on the data returned for each
adapter status entry.

For information on special coding requirements for display adapters that generate interrupts, see
"Coding Concepts for Adapters that Generate Interrupts" on page 3-200.

Status QID Data

FIFO mode entered Ox01 Ox03 in first data byte, rest reserved.

PRIGS traversal started Ox01 Ox05 in first data byte, rest reserved.

FIFO pick mode set Ox01 Ox07 in first data byte, rest reserved.

CGA mode entered Ox01 Ox09 in first data byte, rest reserved.

Traversal stopped Ox01 OxOB in first data byte, rest reserved.

Single-step mode completed Ox01 OxOF in first data byte, rest reserved.

Echo cursor completed Ox01 Ox11 in first data byte, rest reserved.

Defined pointer echo completed Ox01 Ox13 in first data byte, rest reserved.

Remove cursor completed Ox01 Ox15 in first data byte, rest reserved.

Clear frame buffer completed Ox01 Ox17 in first data byte, rest reserved.

Load look-up table completed Ox01 Ox21 in first data byte, rest reserved.

Set pick window size completed Ox01 Ox27 in first data byte, rest reserved.

Reset FIFO pick mode completed Ox01 Ox29 in first data byte, rest reserved.

Set blink mode completed Ox01 Ox2D in first data byte, rest reserved.

Reset blink mode completed Ox01 Ox2F in first data byte, rest reserved.

Initialization complete Ox02 Ox01 in first data byte, rest reserved.

Traversal complete Ox03 No data, all 20 bytes reserved.

Pick occurred Ox04 Data words 1-5 set to reason extension words 1-10.

Virtual Terminal Subsystem 3-53

Status QID Data
Buffer error Ox05 Data words 1-5 set to reason extension words 1-10.
FIFO overflow
Illegal graphic order
Illegal request code
Invalid page
Stack error
Traversal error

PELPRO task completed Ox06 No data, all 20 bytes reserved.

PELPRO pick Ox07 Data words 1-5 set to reason extension words 1-10.

PELPRO vertical synch. Ox08 No data, all 20 bytes reserved.

FIFO half full Ox09 No data, all 20 bytes reserved.

FIFO half empty OxOA No data, all 20 bytes reserved.

Synchronize OxOB Data words 1-5 set to reason extension codes 1-10.

3-54 VRM Device Support

Acknowledge Interrupt Return Codes

The following values may be found in the 'Return Code' halfword of the various acknowledge
interrupt PSB. Note that all return code values are in the base 10 numbering system.

6516
6517
6521
6522
6523
6524
6526
6527
6528
6529
6531
6532
6533
6534 =
6535 =
6536 =
6537 =

6538 =
6539 =
6544 =
6545 =
6546 =
6548 =
6549 =
6550 =
6555 =
6556 =
6557 =
6561
6562
6563
6564
6565
6566
6570

6580 =
6581
6583 =

Unsuccessful, invalid virtual address detected by SVC handler
Unsuccessful, VTMP received an invalid queue element
Unsuccessful, invalid length specified in VTD block
Unsuccessful, invalid major type
Unsuccessful, invalid minor data
Unsuccessful, invalid minor type
Unsuccessful, invalid data type
Unsuccessful, VTD block exceeds 128K bytes
Unsuccessful, VTD block is less than the minimum length
Device not available
Unsuccessful, cannot remap a character set other than unique 1 or 2
Invalid locator type request
Unsuccessful, invalid font ID
Unsuccessful, fonts are not the same size
Unsuccessful, no font available for the designated display
Unsuccessful, virtual terminal driver returned an unexpected return code
Invalid graphics asynchronous device driver request
Specified device not configured
Specified device not selected
Unsuccessful, data received for an inactive mode
Unsuccessful, specified virtual terminal not active
Unsuccessful, invalid virtual terminal identifier
Unsuccessful, invalid coordinates specified in Query ASCII Codes command
Unsuccessful, invalid parameter detected in a control sequence
Unsuccessful, unsupported control sequence or code received
Unsuccessful, error from _enque routine
Unsuccessful, error from _bind routine
Unsuccessful, error from _copy routine
Unsuccessful, invalid structure selector
Unsuccessful, invalid echo map length
Unsuccessful, undefined function ID
Unsuccessful, cannot remap keys reserved for resource controller
Unsuccessful, invalid flags in the keyboard mapping structure
Unsuccessful, invalid key position
Unsuccessful, the previously defined monitored mode application input buffer no longer
exists.
Unsuccessful, incomplete query command
Unsuccessful, query response buffer overflowed
Unsuccessful, invalid device identifier

Virtual Terminal Subsystem 3-55

Major Data Types

The output buffer from an SVC may contain different data structures that correspond to the major
data types.

Virtual terminals accept three types of major data. They are:

• General
• Keyboard Send/Receive (KSR)
• Monitored Mode (MOM).

Each major data type presents data to the virtual terminal in the same structure. See Figure 3-24.

V
T
D

I
L T
E y
N P

E

1 st
Data
Block

~

D V
A T
T D
A

I
L T
E Y
N P

E

2nd
Data
Block

D
A
T
A

t
ASCII

CODES

3rd
Data
Block

V
T
D

I
L T
E Y
N P

E

4th
Data
Block

t
D
A
T
A

Figure 3-24. Virtual Terminal Data Stream Format

In the figure above, the 3rd data block is interpreted as type = KSR/ASCII.

Each structure is introduced by a virtual terminal data (VTD) control sequence.

The VTDcontrol sequence is defined as the ASCII codes 'ESC', '[', and 'x' (OxlB5B78). Figure 3-25
illustrates the VTD.

Bytes ~ 0

ESC
Ox1B

[

Ox5B

2

x
Ox78

I ~<---- VTD -------7) I

ASCII coded control
sequence introduces a
binary header and
associated data block.

Figure 3-25. Virtual Terminal Data (VTD) Control Sequence

The display data structure, shown in Figure 3-26 on page 3-57, follows the VTD control sequence.
Four bytes of length information follow the VTD, and two bytes of type information follow the length
field. Note that the length of any VTD (bytes 0-4) is limited to 128K bytes.

3-56 VRM Device Support

The first type byte specifies a major data type. Major data types are KSR, MOM, and general (for
either KSR or MOM). The second type byte specifies a minor type within the major type. The length
bytes are interpreted as 32-bit integers which specify the total number of bytes in the header (not
including the VTD control sequence).

If a virtual terminal receives data of a conflicting type, such as MOM data following KSR data, the
VTMP does not switch modes, but returns an error code to the virtual machine.

Bytes -) 0 2 3 7 8

o 2

9

n 0

Minor Type Data
if any

N

n

Figure 3-26. Display Data Structure

The fields in the preceding figure are defined as follows:

Length - Indicates the total number of bytes in the header and associated data (not including
the VTD control sequence). Therefore, total length in bytes equals N - 2.

Major type - Indicates the major type of data presented to the virtual terminal. Possible values
for this field are:

OxOO Reserved
Ox01 General
Ox02 KSR
Ox05 Monitored

For more information on major data types, see "General Major Data Type" on
page 3-58, "KSR Major Data Type" on page 3-69, and "MOM Major Data Type" on
page 3-98.

Minor type - Indicates a minor type within the major type. Minor type values are further defined
as follows:

0-63 Data passed for output
64-127 Data passed to specify query requests
128-191 Reserved
192-255 Query response (acknowledgement) data.

Type-dependent data - Indicates additional command-dependent data.

Virtual Terminal Subsystem 3-57

General Maj or Data Type

General data types are those that are not specific to a single (KSR or MOM) data type.

A major type value of OxOl identifies general major data. The minor data types associated with
general major data are summarized in the following table and described in subsequent sections.

Value
Ox06
Ox07
Ox08
Ox09
OxOA
OxOC
OxOD
Ox16
Ox40
Ox41
Ox42
Ox43
Ox44
Ox45
Ox46
OxCO
OxCl
OxC2
OxC3
OxC4
OxC5
OxC6

Minor Type
Keyboard light-emitting diode (LED) settings
Locator X and Y thresholds (mouse)
Set non-input zone (tablet)
Sound data
Cancel sound data
Set LPF keys
Set dials
Change physical display
Query physical device IDs
Query physical device
Query locator
Query LPF keys
Query dials
Query terminal
Query DMA
Acknowledge query physical device IDs
Acknowledge query physical display
Acknowledge query locator
Acknowledge query LPF keys
Acknowledge query dials
Acknowledge query terminal
Acknowledge query DMA.

Note: All reserved fields must be set equal to zero.

Set Light-Emitting Diodes (LEDs)
You can change the settings of the LEDs provided with the RT PC keyboard.

This field appears at the start of minor type data and is defined as follows:

Bytes Value

0-1 Set or reset LEDs

The following bits indicate whether to use the LED defaults or to set new LED values.

Bit 0

When bit 0 equals 0, the LED state remains unchanged. When bit 0 equals 1, you
specify in bit 8 whether to set or reset the leftmost LED. The leftmost LED on the
keyboard is for the Num Lock key.

3-58 VRM Device Support

Bit 1

Bit 2

Bit 8 = 0 - reset the leftmost LED
Bit 8 = 1 - set leftmost LED

When bit 1 equals 0, the LED state remains unchanged. When bit 1 equals 1, you
specify in bit 9 whether to set or reset the middle LED. The middle LED on the
keyboard is labeled Caps Lock.

Bit 9 = 0 - reset the middle LED
Bit 9 = 1 - set the middle LED

When bit 2 equals 0, the LED state remains unchanged. When bit 2 equals 1, you
specify in bit 10 whether to set or reset the rightmost LED. The rightmost LED on
the keyboard is labeled Scroll Lock.

Bit 10 = 0 - reset the rightmost LED
Bit 10 = 1 - set the rightmost LED

Locator Thresholds
The locator device driver receives notice of horizontal and vertical mouse movement. The delta of
these movement events are monitored by the driver, until the accumulated events exceed either the
horizontal or vertical thresholds, or both. The locator device driver accumulates measurements at
consecutive samplings. When a threshold is exceeded, the driver enqueues the information to the
VTMP.

The accumulated measurements can also be returned to the VTMP, even if they do not exceed a
threshold, if the status of the mouse buttons changes.

Either way, the VTMP passes the information back to the application. The VTMP provides neither
echoing nor positional management functions for the locator.

Each opened virtual terminal has its own threshold values. When a virtual terminal is opened, the
threshold values default to 2.75 mm of horizontal and 5.5 mm of vertical physical locator movement.

If you set the thresholds to zero, each event report is returned to the VTMP at the sampling rate
supported by the locator device driver.

You can disable locator input completely by using the HOSTPC bit in the protocol mode definition or
by setting both the thresholds to the maximum values.

This field appears at the start of minor type data and is defined as follows:

Bytes Value

0-1 Horizontal threshold

You can specify the horizontal threshold in values from 0 to 32K locator units. A locator unit
on the IBM-supplied locator equals .25 mm.

Virtual Terminal Subsystem 3-59

2-3 Vertical threshold

You can specify the vertical threshold in values from 0 to 32K locator units. A locator unit on
the IBM-supplied locator equals .25 mm.

Set No-Input Zone (Tablet)
A no-input zone is an area on a tablet device from which no reports can be input to the VTMP.
No-input zones are maintained for each terminal (not a global attribute) to reduce the area of the
physical tablet from which reports can be made.

The locator device driver supports both a horizontal (X delta) and a vertical (Y delta) no-input zone.
In addition, the device driver determines the units of granularity for both the X and Y values.

When a virtual terminal is opened, the no-input values in the VTMP default to zero, meaning the
entire tablet surface will report input. The following figure shows an example of a tablet with a
no-input zone defined. The shaded area represents the no-input zone.

100

90

y

10

o
o 10 x 90 100

This field appears at the start of minor type data and is defined as follows:

Bytes Value

0-1 Horizontal no-input zone

This field specifies the horizontal no-input zone in values from 0 to 32K units. The locator
device driver defines the value of each unit.

3-60 VRM Device Support

2-3 Vertical no-input zone

This field specifies the vertical no-input zone in values from 0 to 32K units. The locator
device driver defines the value of each unit.

Sound
This command sends output to the speaker. The mode byte determines whether to execute sound
commands for the active virtual terminal and whether to interrupt the application after the sound
command executes.

No range check is made for the frequency or duration values. However, frequency values below 23
hz and above 12K hz will be timed correctly but emit no sound from the speaker.

This field appears at the start of minor type data and is defined as follows:

Bytes Value

o Mode

Bits 0 and 7 determine the acknowledge data and mode, respectively.

Bit 0 = 0 - Do not acknowledge when sound command executes.
Bit 0 = 1 - Acknowledge when sound command executes or is discarded.

Bit 7 = 0 - Play sound only if terminal is active.
Bit 7 = 1 - Play all sound to this terminal.

1 Reserved

2-3 Duration in 1/128 seconds

4-5 Frequency in hertz.

Cancel Sound
The cancel sound command removes all enqueued sound requests from the speaker device driver that
have been marked 'play sound only when active'. This leaves only the commands that request 'play
all sound to this terminal' in the active terminal's queue. An inactive terminal ignores this command.
The active terminal sends the cancel command to the speaker driver in a high priority queue
element, followed by an enable sound request in a normal priority queue element. When the speaker
driver receives the cancel sound command, it purges its queue of the elements that do not have the
execute sound flag set (bit 7 of sound command byte 0 equals 1).

The speaker driver's queue is flushed whenever a virtual terminal transition occurs by sending this
cancel sound/enable sound queue element pair. Regardless of whether the sound request is executed
or purged, the virtual terminal receives an acknowledgement if the acknowledge flag is set (bit 0 of
sound command byte 0 equals 1).

A VTD header, length field, major type field and minor type field are required to issue this command.
No other parameters are necessary.

Virtual Terminal Subsystem 3-61

Set LPF Keys
You can set the LPF key lights on or off. The default setting is off.

This field appears at the start of minor type data and is defined as follows:

Bytes Value

0-3 Reserved

4-7 LPF key mask

Bits 0-31 represent 32 possible LPF keys. When any of bits 0-31 are set (equal to one), the
corresponding bit in bytes 8-11 determines whether the key is to be lit.

8-11 LPF key flags

Bits 0-31 represent 32 possible LPF keys. If any of bits 0-31 are set (equal to one), the key is to
be lit.

12-27 Reserved.

Set Dials
You can change the granularity of the dials. Dial granularity means the number of events that occur
for a full (360 degree) revolution of the dial. The dial granularity values represent powers of 2 (2n),

where 2 ~ n ~ 8. The default granularity is 4.

This field appears at the start of minor type data and is defined as follows:

Bytes Value

0-3 Reserved

4-5 Dial mask

Bits 0-16 represent 16 possible dials. When any of bits 0-16 are set (equal to one), the
corresponding byte from bytes 8-23 indicates the new granularity.

6-7 Reserved

8-23 Dial granularity values

Bytes 8-23 correspond to bits 0-16 of bytes 4-5. When any of these bits are set, the
corresponding byte contains the value to use as the number of events per full revolution of
the dial.

24-27 Reserved.

3-62 VRM Device Support

Change Physical Display
You can use this command to change the physical display to which a virtual terminal is logically
attached.

This field appears at the start of minor type data and is defined as follows:

Bytes Value

0-1 Flags

Bits 0-1 and 3-15 of these bytes are reserved. Bit 2 specifies the default or a value you specify
for the physical display.

Bit 2 = 0 - Use the current physical screen.
Bit 2 = 1 - Use the identifier specified in bytes 10-13 for the physical display.

2-9 Reserved

10-13 Physical display device identifier.

14-23 Reserved

Query Physical Device IDs
You specify this command with a VTD header, length field, major type field and minor type field. No
other parameters are needed.

Note that this command can be issued only by way of the VT Query SVC.

Acknowledge Query Device IDs
This command tells you how many devices are returned, then gives you the device ID and display
class for each returned device.

This field appears at the start of minor type data and is defined as follows:

Bytes Value

0-1 The number of devices for which data is returned

Bytes 2 through 9 are repeated for each physical device returned (the value of bytes 0-1).

2-5 Physical device ID

These four bytes uniquely identify the display adapters presently configured. The first device
ID is the active display device ID, unless the Change Physical Display command has changed
the active display ID. Possible values for this field are:

Ox0401mmnn IBM PC Monochrome Display Adapter
Ox0402mmnn IBM AP A8 Monochrome Display Adapter
Ox0403mmnn IBM EGA Monochrome Display Adapter
Ox0404mmnn IBM EGA Color Display Adapter
Ox0405mmnn IBM AP A16 Monochrome Display Adapter

Virtual Terminal Subsystem 3-63

Ox0406mmnn IBM AP A8 Color Display Adapter
Ox0408mmnn IBM 5081 Display Adapter

In the preceding list, the 'mm' value indicates if the adapter is totally functional. When 'mm'
equals OxOO, the adapter is totally functional. Any value other than OxOO in this field indicates
the adapter is less than totally functional (perhaps not working at all) but is present on the
machine.

The 'nn' value in the preceding list can be in the range Ox01 to Ox04. This value is used to
differentiate between multiple instances of the same adapter type on the machine.

6-9 Display class (Ox44)

The returned IDs can be used with the Query Physical Device and Change Physical Display
commands.

Query Physical Device
You can determine information concerning display or locator devices with this command.

This field appears at the start of minor type data and is defined as follows:

Bytes Value

0-3 Physical device ID

You can query the characteristics of the device to which you are currently attached by
specifying 0 here.

4-7 Reserved (set equal to zero)

Note that this command can be issued only by way of the VT Query SVC.

Query Locator
You specify this request with a VTD header, length field, and major and minor type field.
Information about the configured device (mouse or tablet, if any) will be returned.

Query LPF Keys
You specify this request with a VTD header, length field, and major and minor type field. Note that
LPF keys must be enabled before they can be successfully queried.

Query Dials
You specify this request with a VTD header, length field, and major and minor type field. Note that
dials must be enabled before they can be successfully queried.

3-64 VRM Device Support

Query Terminal
This query is used to determine information concerning the terminal, keyboard, font, color, and
presentation size. The presentation space size may vary from font to font. You specify this request
with a VTD header, length field, and major and minor type field.

Query DMA
This query is used to determine the starting address and length of the application's DMA area. You
specify this request with a VTD header, length field, and major and minor type field.

Acknowledge Query Physical Device
When you issue a Query Physical Device, you get the results of the query by way of an Acknowledge
Query Physical Device. This command returns the VTD header, major and minor data types, 2 bytes
of minor data header, followed immediately by a Locator Device Acknowledge, Display Device
Acknowledge, Display Device Font Acknowledge, and Display Device Color Acknowledge. The
format of this acknowledge structure is defined as follows:

Locator Device Acknowledge

This field appears at the start of minor type data and is defined as follows:

Bytes Value

0-3 Scale factor (millimeters per 100 counts)

4 Device type

Bit 0 = 0 - relative device
Bit 0 = 1 - absolute device

5-7 Reserved (set equal to 0)

Display Device Acknowledge

This structure immediately follows the locator device acknowledge structure and is defined as
follows:

Bytes Value

8-11 Display device attributes

Bit 0 = 0 - character display
Bit 0 = 1 - all-points-addressable (APA) display

Bi t 1 = 0 - no blink function
Bit 1 = 1 - blink function allowed

Bit 23 = 0 - no color capability
Bit 23 = 1 - color allowed

Virtual Terminal Subsystem 3-65

Bit 24 = 0 - cannot change display adapter's color palette
Bit 24 = 1 - can change display adapter's color palette

All other bits are reserved and set equal to zero.

12-15 Displayable width of physical screen

This value is expressed in picture elements (pels) for all displays.

16-19 Displayable height of physical screen

This value is expressed in pels for all displays.

20-23 Displayable width (in millimeters)

24-27 Displayable height (in millimeters)

28-31 Bits per pel (1, 2 or 4)

32-35 The ID of the physical device being queried.

Display Device Font Acknowledge

This structure immediately follows the display device acknowledge structure:

Bytes Value

36-39 Number of fonts available to this display

The following six fields appear for each available font.

40-43 Physical font ID

44-47 Physical font style

This field is always zero.

48-51 Physical font attribute

This field may have the following values:

o = plain
1 = bold
2 = italic.

52-55 Physical font width (the width of a character box in pels)

56-59 Physical font height (the height of a character box in pels)

60-nn Start of next font (if applicable).

Display Device Color Acknowledge

This structure immediately follows the display device font acknowledge structure and is an offset
from the end of the final font acknowledge:

3-66 VRM Device Support

Offset Value

0-3 Total number of colors possible

4-7 Number of colors that can be active at anyone time

8-11 Number of foreground color options

12-15 Number of background color options

16-19 Default setting for the color palette

For color devices, this field represents the color associated with the KSR-defined color for
SGR entries. This field is repeated for each of the currently active colors.

20-nn Next active color value (if applicable).

Acknowledge Query Locator
This command tells you whether a mouse or tablet is defined and provides threshold or no-input zone
data as appropriate. If a tablet is defined, it indicates whether the tablet sensor is a stylus or cursor.

This field appears at the start of minor type data and is defined as follows:

Bytes Value

0-3 Locator resolution

4 Locator device

Bit 0 = 0 - mouse
Bit 0 = 1 - tablet
Bits 1,2 - indicate sensor type for tablet only

= 00 - unknown
= 01 - stylus
= 11 - cursor

Bits 4-7 are reserved.

5-7 Reserved

8-9 Maximum horizontal count

10-11 Maximum vertical count

12-13 Horizontal no-input zone (tablet) or threshold (mouse)

14-15 Vertical no-input zone (tablet) or threshold (mouse)

16-23 Reserved

Virtual Terminal Subsystem 3-67

Acknowledge Query LPF Keys
This command tells you how many keys are on the LPF keyboard and also whether the light for each
key is on or off.

This field appears at the start of minor type data and is defined as follows:

Bytes Value

0-3 Number of LPF keys on the device

4-7 Reserved

8-11 LPF key flags

Bits 0-31 comprise a mask for 32 possible LPF keys. When any of the bits are set (equal to
one), the key is lighted.

12-27 Reserved

Acknowledge Query Dials
This command tells you how many dials are on the device and also the granularity of each dial.

This field appears at the start of minor type data and is defined as follows:

Bytes Value

0-3 Number of dials on the device

4-7 Reserved

8-23 Granularity values

Bytes 8-23 indicate the granularity value for up to 16 dials.

24-27 Reserved

Acknowledge Query Terminal
This command tells you the number of rows and columns that logically exist for the defined font on
the configured display.

This field appears at the start of minor type data and is defined as follows:

Bytes Value

0-3 Physical display device ID

4-7 Number of rows

8-11 Number of columns

12-15 Number of colors

3-68 VRM Device Support

16-19 Number of fonts

20-23 Physical keyboard ID

Possible values for this field include:

• 0 = 101-key keyboard
• 1 = 102-key keyboard
• 2 = 106-key keyboard

24-31 Reserved

Acknowledge Query DMA
This command tells you the starting address and the length of the application's DMA space.

This field appears at the start of minor type data and is defined as follows:

Bytes Value

0-3 Starting address of DMA space

4-7 Length of DMA space

KSR Major Data Type

KSR data is recognized by a major type field of value Ox02, or by the absence of a VTD control
following a data block. The minor data types associated with KSR major data are summarized in the
following table and described in subsequent sections.

Value Minor Type
OxOO ASCII codes (assumed in absence of VTD and header)
OxOl KSR protocol mode definition
Ox02 Character set definition
Ox05 Set KSR Color Palette
Ox06 Change fonts
Ox08 Text Cursor Representation
Ox40 Query ASCII code and attribute
Ox80 ASCII interrupt codes
Ox84 Key position, status, scan code interrupt
Ox91 Locator relative report interrupt.

Virtual Terminal Subsystem 3-69

ASCII Codes
ASCII codes represent displayable graphics or single-byte control functions. Certain sequences of
codes represent ANSI-defined multi-byte control functions. Controls tell the KSR virtual terminal
how to manage its presentation space. Presentation space is the maximum number of lines and
characters that will fit on the selected physical display screen using the selected font. Graphic codes
are converted to display symbols which are placed into the presentation space.

Character Codes
Graphic character codes passed in KSR data have the 8-bit RT ASCII format (Ox20-0xFF). These codes
are translated into a lO-bit display font code according to the active GO character set. A Shift Out
control code causes output to be translated according to the G 1 character set. The Shift In and Shift
Out codes are in effect for translating succeeding data streams until another code is received. The
single-shift codes (SSl, SS2, SS3, and SS4) affect only the next 8-bit code to be translated according
to the code page indicated by the control.

Translated input from code page PO is reported as an 8-bit code. Codes from other code pages are
preceded by one of the single-shift control codes. These codes are single shift 1 (OxlF), single shift 2
(OxlE), single shift 3 (OxlD), and single shift 4 (OxIC). The single shift codes determine the code page
to use for interpreting the code. With the exception of the single-byte controls (OxOO - OxlF), the
codes that immediately follow a single-shift control have the high-order bit set. For example, the code
Ox20 from code page PO is reported as Ox20, but Ox20 reported from code page PI is reported as
OxlF AO. Thus, a code that comes from the lower half (Ox20-0x7F) of either code page PI or P2 is
reported with its high-order bit artificially set.

The application that examines input has to strip the high-order bit to determine the code
point/graphic symbol relationship if the application is scanning for specific graphics. If the
application is not scanning for specific graphics, the input data stream reported to the virtual
machine may be redirected as output back to the VTMP without alteration (bit stripping) in order to
receive an exact copy of the display screen.

Input codes which are flagged as non-spacing characters are held for combinative processing
according to the rules specified in the following section.

Non-Escaping Codes
Escapement refers to the logical forward movement of the cursor. Some keyboard layouts (for
countries other than the United States) have certain code points that represent non-escaping
characters. These characters are members of a finite set of diacritic symbols that the VTMP supports.
These diacritics are defined as follows:

Diacritic

Acute

Grave

Code Page - Hex Value

PO - Ox27

PO - OxEF

PO - Ox60

3-70 VRM Device Support

Circumflex PO - Ox5E

Umlaut PO - OxF9

Tilde PO - Ox7E

Caron PI - Ox73

Breve PI - Ox9D

Double acute PI - Ox9E

Overcircle PI - Ox7D

Overdot PI - Ox85

Macron PI-OxA3

Cedilla PO - OxF7

Ogonek PI - Ox87

When any of these characters is defined to be non-escaping (does not cause a logical movement of the
cursor) and is entered from the keyboard, the character is not returned immediately in an interrupt,
but is held until the next keystroke is entered. In addition, if the character is normally echoed to the
display, it will not immediately appear on the display. The VTMP tries to combine these characters
with the next keystroke, which should be an alphabetic character. The VTMP will report and display
only the combined character. Echoing to the display occurs only if the combined character has its
flag set for echo.

In addition to the finite list of non-escaping characters, the following finite sets of valid
combinations are defined:

Acute Accented Characters

e
E
a
i
6
U
A
f
y,
y

Acute Accent
Apostrophe (Acute)
e Acute Small
e Acute Capital
a Acute Small
i Acute Small
o Acute Small
u Acute Small
a Acute Capital
i Acute Capital
y Acute Small
y Acute Capital

PO-OxEF
PO-Ox27
PO-Ox82
PO-Ox90
PO-OxAO
PO-OxAI
PO-OxA2
PO-OxA3
PO-OxB5
PO-OxD6
PO-OxEC
PO-OxED

Virtual Terminal Subsystem 3-71

Acute Accented Characters

6 o Acute Capital PO-OxEO
U u Acute Capital PO-OxE9
C c Acute Small PI-Ox6A
C 1 Acute Small PI-Ox6E

~ c Acute Capital PI-Ox72
1 Acute Capital PI-Ox77

S s Acute Small PI-Ox7C
n n Acute Small PI-Ox7F
S s Acute Capital PI-OxB4
i z Acute Small PI-OxBA
Z z Acute Capital PI-OxBC .,.

r Acute Small PI-Ox91 r,..
R r Acute Capital PI-Ox95 .,.

g Acute Small PI-OxBI g

Gra ve Accented Characters

Grave Accent PO-Ox60
a a Grave Small PO-OxB5
e e Grave Small PO-OxBA
1 i Grave Small PO-OxBD
0 o Grave Small PO-Ox95
U u Grave Small PO-Ox97
A a Grave Capital PO-OxB7
it e Grave Capital PO-OxD4
1 i Grave Capital PO-OxDE
0 o Grave Capital PO-OxE3
U u Grave Capital PO-OxEB

3-72 VRM Device Support

Circumflex Accented Characters

1\ Circumflex Accent PO-Ox5E
a a Circumflex Small PO-Ox83
e e Circumflex Small PO-Ox88
i i Circumflex Small PO-Ox8C
6 o Circumflex Small PO-Ox93
U u Circumflex Small PO-Ox96
A a Circumflex Capital PO-OxB6
E e Circumflex Capital PO-OxD2
i i Circumflex Capital PO-OxD7
6 o Circumflex Capital PO-OxE2
0- u Circumflex Capital PO-OxEA
C c Circumflex Small PI-OxA8
C c Circumflex Capital PI-OxA9

~
g Circumflex Small PI-OxB2
g Circumflex Capital PI-OxB3

11 h Circumflex Small PI-OxB7
H h Circumflex Capital PI-OxB8

t j Circumflex Small PI-OxC3
J j Circumflex Capital PI-OxC4
g s Circumflex Small PI-OxD6
§ s Circumflex Capital PI-OxD7
'Iv w Circumflex Small PI-OxE2
<Iv w Circumflex Capital PI-OxE3

~
y Circumflex Small PI-OxE4
y Circumflex Capital PI-OxE5

Virtual Terminal Subsystem 3-73

Umlaut Accented Characters

U
ii
a
e
1:
A
o
Y.
o
U
E
I
Y

Umlaut Accent
u Umlaut Capital
u Umlaut Small
a Umlaut Small
e Umlaut Small
i Umlaut Small
a Umlaut Capital
o Umlaut Small
y Umlaut Small
o Umlaut Capital
u Umlaut Capital
e Umlaut Capital
i Umlaut Capital
y Umlaut Capital

Tilde Accented Characters

fi
N
a
A
5
o
tv
1

i
ii
D

Tilde Accent
n Tilde Small
n Tilde Capital
a Tilde Small
a Tilde Capital
o Tilde Small
o Tilde Capital
i Tilde Small
i Tilde Capital
u Tilde Small
u Tilde Capital

3-74 VRM Device Support

PO-OxF9
PO-Ox9A
PO-Ox81
PO-OxB4
PO-OxB9
PO-OxBB
PO-OxBE
PI-Ox94
PI-Ox9B
PO-Ox99
PO-Ox9A
PO-OxD3
PO-OxDB
PI-OxE6

PO-Ox7E
PO-OxA4
PO-OxA5
PO-OxC6
PO-OxC7
PO-OxE4
PO-OxE5
PI-OxBB
PI-OxBC
PI-OxDA
PI-OxDB

Caron Accented Characters

v Caron Accent
e e Caron Small
n n Caron Small
d d Caron Small
v e Caron Capital ~
C c Caron Capital
D d Caron Capital
I 1 Caron Small
v n Caron Small n
r r Caron Small
S s Caron Small
L 1 Caron Capital
N n Caron Capital
R r Caron Capital
Z z Caron Small
Z z Caron Capital
S s Caron Capital
t t Caron Small
t t Caron Capital

Breve Accented Characters

a

!
G
u
U

Breve Accent
a Breve Small
g Breve Small
a Breve Capital
g Breve Capital
u Breve Small
u Breve Capital

PI-Ox73
PI-Ox68
PI-Ox69
PI-Ox6D
PI-Ox70
PI-Ox71
PI-Ox76
PI-Ox78
PI-Ox79
PI-Ox7B
PI-Ox80
PI-Ox81
PI-Ox82
PI-Ox83
PI-Ox89
PI-Ox8B
PI-Ox8F
PI-Ox90
PI-Ox94

PI-Ox9D
PI-Ox98
PI-Ox99
PI-Ox9B
PI-Ox9C
PI-OxDC
PI-OxDD

Virtual Terminal Subsystem 3-75

Double Acute Accented Characters

II

o
,/

U

Q
u

Double Acute Accent
o Double Acute Small
u Double Acute Small
o Double Acute Capital
Double Acute Capital

Overcircle Accented Characters

o
a
A
o
u
(J

Overcircle Accent
a Overcircle Small
a Overcircle Capital
u Overcircle Small
u Over circle Capital

Over dot Accented Characters

z
Z
i
c
C
e
E
g
G

Overdot Accent
z Overdot Small
z Overdot Capital
i Overdot Capital
c Overdot Small
c Overdot Capital
e Overdot Small
e Overdot Capital
g Overdot Small
g Overdot Capital

3-76 VRM Device Support

PI-Ox9E
PI-Ox92
PI-Ox93
PI-Ox96
PI-Ox97

PI-Ox7D
PO-Ox86
PO-Ox8F
PI-Ox6C
PI-Ox75

PI-Ox85
PI-Ox86
PI-Ox88
PI-Ox9A
PI-OxAB
PI-OxAC
PI-OxAD
PI-OxAE
PI-OxB4
PI-OxB5

Macron Accented Characters

a
X
e
R ...
1

T
o
o
u
U

Macron Accent
a Macron Small
a Macron Capital
e Macron Small
e Macron Capital
i Macron Small
i Macron Capital
o Macron Small
o Macron Capital
u Macron Small
u Macron Capital

Cedilla Accented Characters

~ Cedilla Accent
C c Cedilla Capital
C; c Cedilla Small
~ s Cedilla Small
S s Cedilla Capital
t t Cedilla Small
T t Cedilla Capital
G g Cedilla Capital
Is k Cedilla Small
15 k Cedilla Capital
1 1 Cedilla Small
~ 1 Cedilla Capital
lJ n Cedilla Small
l'j n Cedilla Capital
r r Cedilla Small
E r Cedilla Capital

PI-OxA3
PI-OxA6
PI-OxA7
PI-OxAF
PI-OxBO
PI-OxBD
PI-OxBE
PI-OxDO
PI-OxDI
PI-OxDE
PI-OxDF

PO-OxF7
PO-OxSO
PO-OxS7
PI-Ox9F
PI-OxA2
PI-OxA4
PI-OxA5
PI-OxB6
PI-OxC5
PI-OxC6
PI-OxCS
PI-OxC9
PI-OxCC
PI-OxCD
PI-OxD4
PI-OxD5

Virtual Terminal Subsystem 3-77

Ogonek Accented Characters

Ogonek Accent
a Ogonek Small
e Ogonek Small
a Ogonek Capital
e Ogonek Capital
i Ogonek Small
i Ogonek Capital
u Ogonek Small
u Ogonek Capital

Pl-Ox87
Pl-Ox67
Pl-Ox6B
Pl-Ox6F
Pl-Ox74
Pl-OxBF
Pl-OxCO
Pl-OxEO
Pl-OxEl

For more information on diacritics and other international keyboard data, see IBM RT PC Keyboard
Description and Character Reference.

If a valid non-spacing character is followed by a keystroke that does not produce one of the valid
combinations defined above, both the code and the following keystroke are returned, as is, in an
unsolicited interrupt. Note that a blank space also produces a valid combination, yielding only the
diacritic. In this case, only the diacritic is returned in the interrupt. Therefore, you should assume
that all echoed characters that have been reported have caused escapement.

The non-escaping nature of a diacritic is not inherent in the code point, but is established as a
characteristic of the code point in the default language software keyboards. If you remap a keyboard
with the VT Set Structure SVC, you can make diacritic code points escaping or non-escaping,
regardless of the attached physical keyboard.

Note that escaping character processing is an input-only function. No such concept exists for output
processing.

The VTMP recognizes five predefined character set-to-display symbol mappings for 8-bit RTASCII.
Four of the character sets contain 224 code points each, and one character set contains only 97 code
points. These five code sets map into the display symbol map of 1024 symbols, and are described
briefly below.

1. Display Symbols 32-255

This code page represents the 7-bit ASCII characters, plus many international characters and
some PCASCII line drawing characters.

2. Display Symbols 256-479

These codes specify the PCASCII graphical representation for the range OxOl through OxlF, the
teletext characters, and the EBCDIC characters from EBCDIC character sets 256,257, 258, 330,
435 and 500 which are not already represented in the first character set.

3. Display Symbols 480-703

These codes represent the portion of code page 259 that is not already represented in the display
symbols 32-479, plus the set of reserved code points for possible support of additional code pages.

3-78 VRM Device Support

4. Display Symbols 704-927

Reserved for user-defined symbols.

5. Display Symbols 928-1023

Reserved for user-defined symbols.

In addition to the predefined character sets, the VTMP maintains two unique character set mappings
that you can create from any of the predefined symbols. These sets are called 'Unique One' and
'Unique Two' and are identified by the leading characters ';' and ':', respectively. These characters
have the following meanings:

Unique One
Unique Two

Until they are first modified, both user-definable sets are identical to the PO code page. Either set
may be modified by designating its ANSI final character (';' or ':'). Any or all of the positions in a set
may be replaced with any of the 10-bit display symbols. The remap is defined to begin at position 00.
Therefore, to remap a single position, you may either send the entire character map with only one
position deviating from the current map, or you can send a map up to and including the one
remapped character. All subsequent remappings to the same unique set will be applied over the
existing map. The actual graphical representation of a display symbol is dependent on the hardware
In use.

Character Code Processing
Graphic codes input from the keyboard or received by a KSR virtual terminal across the VMI are
normally placed into the virtual terminal's data structure for viewing on a physical display device.

A KSR virtual terminal has a presentation space (PS) of a fixed number of columns per line, and a
fixed number of lines. A symbol may be placed at any column on any line in the terminal's
presentation space. Graphics from the KSR data stream are placed in the PS relative to the current
cursor position. Keyboard input also relates to the cursor position.

Two modes for displaying graphics are replace and insert. In replace mode, a graphic character sent
to a KSR terminal is placed above the cursor, writing over (replacing) whatever symbol was there. In
insert mode, a graphic character sent to a KSR terminal is also placed above the cursor, but the
symbol that had been above the cursor and all symbols on the same line are shifted right one column
position on the line. Characters shifted out of the last column on the line are lost.

Another mode determines what happens to the cursor when characters fill a line, causing the cursor
to reach the last column position on a line. This mode, automatic new line (AUTONL), determines if
the cursor wraps around to the first column position of the next line or stays at the last column on
the current line.

If AUTONL is set, the cursor moves to the first column position of the following line. If the cursor
happens to be on the bottom line of the presentation space, the presentation space scrolls up one
line. If AUTONL is reset, the cursor stays on the last column of the current line, and characters will
continue to be displayed at that position.

Virtual Terminal Subsystem 3-79

Single Code ASCII Controls (ANSI Mode)
Listed here are the ASCII single code controls and their interpretation in KSR coded data. A line
introducing each control gives its mnemonic, its code value, and its function.

• NUL OxOO Null

Has no terminal function.

• SOH OxOl Start of Header

Has no terminal function.

• STX Ox02 Start of Text

Has no terminal function.

• ETX Ox03 End of Text

Has no terminal function.

• EaT Ox04 End of Transmission

Has no terminal function.

• ENQ Ox05 Enquiry

Has no terminal function.

• ACK Ox06 Acknow ledge

Has no terminal function.

• BEL Ox07 Bell

Causes an audible alarm to sound.

• BS Ox08 Backspace

Moves the cursor position to the left one column on the same line. If the cursor is at the PS left
boundary, the cursor position does not change.

• HT Ox09 Horizontal Tab

Moves the cursor position forward to the next tab stop on the same line.

• LF OxOA Line Feed

If the LNM mode is reset, the line feed moves the cursor position down one line. If the LNM
mode is set (default), the line feed is treated as a NEL and moves the cursor position to thefirst
position of the next line. In either case, if the cursor is already on the last line of the PS, the PS
lines scroll up one line. The top line of the PS disappears and a blank line is inserted as the new
bottom line.

• VT OxOB Vertical Tab

3-80 VRM Device Support

Moves the cursor position down to the next line that is defined as a vertical tab stop. Tabs stops
are always set at the first and last lines of the PS. If the cursor was already on the last line of
the PS and WRAP mode is not set, the cursor stays on the last line in the PS. If WRAP mode is
set, the cursor moves to the top line in the PS. The column position does not change in any case.

• FF OxOC Form Feed

Treated as a line end; see NEL.

• CR OxOD Carriage Return

If the CNM mode is reset (default), the carriage return moves the cursor position to the first
character of the cursored line. If the CNM mode is set, the carriage return is treated as an NEL
and causes the cursor position to move to the first position of the next line. In this case, if the
cursor is already on the last line of the PS, the PS lines scroll up one line. The top line of the PS
disappears and a blank line is inserted as the new bottom line.

• SO OxOE Shift Out

Maps the subsequently received graphic codes to display symbols according to the active G I
character set.

• SI OxOF Shift In

Maps the subsequently received graphic codes to display symbols according to the active GO
character set.

• DLE OxlO Data Link Escape

Has no terminal function.

• DCI Oxll Device Control I

Has no terminal function.

Virtual Terminal Subsystem 3-81

• DC2 Oxl2 Device Control 2

Has no terminal function.

• DC3 Oxl3 Device Control 3

Has no terminal function.

• DC4 Oxl4 Device Control 4

Has no terminal function.

• NAK Oxl5 Negative Acknowledgment

Has no terminal function.

• SYN Oxl6 Synchronous

Has no terminal function.

• ETB Ox17 End of Block

Has no terminal function.

• CAN Oxl8 Cancel

Has no terminal function.

• EM Oxl9 End of Medium

Has no terminal function.

• SUB OxlA Substitute

Has no terminal function.

• ESC OxlB Escape

Defines the beginning of an escape or control sequence. Subsequent codes are saved until a final
character (Ox30 through Ox7F) is found. If the ESC was followed immediately by a '[' code,
subsequent codes are saved until a final character (Ox40 through Ox7F) is found. In either case
the sequence is then interpreted as defined in "Escape and Control Code Sequences" on
page 3-83. If undefined, the entire sequence including the ESC and final character is ignored on
receipt from the virtual machine. Keyed sequences are returned to the virtual machine, but
ignored when echoed. Also, if the sequence is invalid, an error Device Status Report is sent to
the virtual machine.

If ESC is keyed and not to be echoed, the ESC is returned to the virtual machine along with any
other data. The VTMP does not interpret the ESC as the first character of a function string in
this case. Subsequent received characters will be processed without any effect from the ESC.

If ESC is to be echoed, the VTMP interprets the ESC as the beginning of an ANSI function
string. Subsequent received characters are then included as part of the function until the end of
the sequence is reached or the sequence is determined to be invalid. Invalid sequences are

3-82 VRM Device Support

returned to the virtual machine as a regular, unechoed character sequence. The character that
makes the sequence invalid is treated normally with respect to echo and break mapping.

• SS4 Oxi C Single Shift 4

Indicates that the following 8-bit code is interpreted as belonging to the upper half of the P2 code
page.

• SS3 OxiD Single Shift 3

Indicates that the following 8-bit code is interpreted as belonging to the lower half of the P2 code
page.

• SS2 OxiE Single Shift 2

Indicates that the following 8-bit code is interpreted as belonging to the upper half of the PI code
page.

• SSI OxiF Single Shift 1

Indicates that the following 8-bit code is interpreted as belonging to the lower half of the PI code
page.

Escape and Control Code Sequences
This section defines the code points and effects on the virtual terminal for escape sequences and
control sequences which are recognized in KSR data. All escape sequences must begin with the ESC
code,OxiB. The end of an escape sequence is recognized by a code in the range Ox30 through Ox7F.
All control sequences must begin with the ESC code, OxIB, followed by a '[', Ox5B. The end of a
control sequence is recognized by a code in the range Ox40 through Ox7F. All escape or control
sequences not defined below are ignored on receipt from the virtual machine. Invalid sequences
return an error Device Status Report to the virtual machine. Escape or control sequences of more
than 34 codes are considered invalid on receipt of the 35th code. The next code is not considered a
part of that sequence. Also, numeric parameters in control sequences contain no more than three
digits. The numeric value of the parameter may be incorrect if more than three digits are used, and
the numeric value never exceeds 255. Controls affect a virtual terminal's presentation space (PS) and
its related cursor (pointer into the PS). The presentation space is a logical array of display symbols,
N columns by M lines.

The ASCII escape and control code sequences in ANSI mode are described below. A line introducing
each control gives its mnemonic, its code sequence, and its function.

Please note that all control sequences flow from the operating system to the VTMP, with the
following exceptions:

• KSI (keyboard status information) and PFK (PF key report) flow from the VTMP to the operating
system.

• VTA (virtual terminal addressability), VTL (virtual terminal locator), and VTR (virtual terminal
raw keyboard input) flow from the VTMP to the application by way of the MOM ring buffer only.

Virtual Terminal Subsystem 3-83

• DSR (device status report) and CPR (cursor position report) can flow in either direction. The
meaning of these controls depends on the direction.

The escape and control sequences are defined as follows:

• CBT ESC [PN Z Cursor Back Tab

Moves the cursor back the number of horizontal tab stops specified by 'PN'. Tab stops are always
set at the first and last columns of each line. If the cursor is already in the first column of a line
and WRAP mode is set, the cursor moves to the last column. If AUTONL is also set, the cursor
moves to the last column of the previous line. In this case, if the cursor is already on the first
row of the PS, it moves to the last row.

• CHA ESC [PN G Cursor Horizontal Absolute

Moves the cursor to the column specified by 'PN', unless the column exceeds the PS width. If the
column exceeds the PS width, the cursor moves to the PS column farthest to the right.

• CHT ESC [PN I Cursor Horizontal Tab

Moves the cursor position to the next tab specified by 'PN'. If the cursor is already on the last
tab of a line and WRAP mode is set, the cursor is moved to the first tab. If AUTONL is also set,
the cursor moves to the next line.

• CTC ESC [PS W Cursor Tab Stop Control

o = Set a horizontal tab at cursor
1 = Set a vertical tab at cursor
2 = Clear a horizontal tab at cursor
3 = Clear a vertical tab at cursor
4 = Clear all horizontal tabs on line
5 = Clear all horizontal tabs
6 = Clear all vertical tabs.

Sets or clears one or more tabulation stops according to the parameter specified. Tab stops on
the first or last column cannot be cleared. When horizontal tab stops are set or cleared, the
number of lines affected is all (if Tabulation Stop Mode is reset) or one (if Tabulation Stop Mode
is set). This control does not change the position of characters already in the presentation space.

• CNL ESC [PN E Cursor Next Line

Moves the cursor down the number of lines specified by 'PN', and over to the first position of
that line. If the cursor was already on the bottom PS line and WRAP mode is not set, it is
positioned at the beginning of that line. If WRAP mode is set, the cursor wraps from the bottom
line to the top PS line.

• CPL ESC [PN F Cursor Preceding Line

Moves the cursor back the number of lines specified by 'PN', and over to the first position of that
line. If the cursor was already on the top PS line and WRAP mode is not set, the cursor is
positioned at the beginning of that line. If WRAP mode is set, the cursor wraps from the top line
to the bottom line of the PS.

3-84 VRM Device Support

• CPR ESC [PN ; PN R Cursor Position Report

Reports the current cursor position. The first numeric parameter is the line number, and the
second is the column. Line and column values are sent to the virtual machine as information.
However, if the information is received by the virtual terminal, it is treated as a CUP control.

• CUB ESC [PN D Cursor Backward

Moves the cursor backward on the line the specified number of columns. If this cursor movement
exceeds the left PS boundary and WRAP mode is not set, the cursor stops at the leftmost PS
position. If WRAP mode is set, the cursor wraps from the leftmost column to the rightmost
column of the preceding PS line. In WRAP mode the cursor also wraps from the home to the
rightmost bottom position of the PS.

• CUD ESC [PN B Cursor Down

Moves the cursor down the number of lines specified by 'PN'. If this cursor movement exceeds
the bottom PS boundary and WRAP mode is not set, the cursor stops on the last PS line. If
WRAP mode is set, the cursor wraps from the bottom line to the top line of the PS.

• CUF ESC [PN C Cursor Forward

Moves the cursor forward on the line the specified number of columns. If this cursor movement
exceeds the right PS boundary and WRAP mode is not set, the cursor stops at the rightmost PS
position. If WRAP mode is set, the cursor wraps from the rightmost column to the leftmost
column of the following line in the PS. In WRAP mode, the cursor also wraps from rightmost
bottom position to the home position of the PS.

• CUP ESC [PN ; PN H Cursor Position

Moves the cursor to the line specified by the first parameter, and to the column specified by the
second parameter. If this movement crosses a PS boundary, the cursor stops at the PS boundary.

• CUU ESC [PN A Cursor up

Moves the cursor up the specified number of lines. If this cursor movement exceeds the top PS
boundary and WRAP mode is not set, the cursor stops on the first PS line. If WRAP mode is set,
the cursor wraps from the top line to the bottom line in the PS.

• CVT ESC [PN Y Cursor Vertical Tab

Moves the cursor down the number of vertical tab stops specified. Tab stops are assumed at the
top and bottom PS lines. If there are not enough vertical tab stops in the PS and WRAP mode is
not set, the cursor stops on the last line in the PS. If WRAP mode is set, the cursor wraps from
the bottom line to the top line of the PS.

• DCH ESC [PN P Delete Character

Deletes the cursor character and the following 'PN-l' characters on the cursored line. The
characters following the deleted characters on the line are shifted backward to over lay the
deleted character positions and the line is cleared from the end of the line to the edge of the
presentation space. If the number of characters to be deleted exceeds the number of columns

Virtual Terminal Subsystem 3-85

from the cursor to the PS right boundary, then all the characters from the cursor to the PS
boundary are cleared.

• DL ESC [PN M Delete Line

Deletes the line and the 'PN-1' following lines in the PS. The lines following the deleted lines are
scrolled up 'PN' lines and 'PN' blanks lines are placed at the bottom of the PS. If there are less
than 'PN' lines from the cursored line to the bottom of the PS, the cursored line and all the
following PS lines are replaced with empty lines.

• DSR ESC [PN N Device Status Report/Request

6 Request Cursor Position Report

13 Error Report.

A request cursor position report sends a cursor position report from the virtual terminal to the
virtual machine.

An error report is sent from the virtual terminal to the virtual machine when the virtual
terminal receives an invalid control sequence.

Error reports are private reports which conform to the ANSI standard for private parameters.

• DMI ESC' Disable Manual Input

This control, when received in an output data stream, causes keyboard input to this terminal to
be ignored. DMI has no terminal function when received from the keyboard.

• EMI ESC b Enable Manual Input

This control, when received in an output data stream or from the keyboard, restarts keyboard
input recognition if it was previously disabled with a DMI escape sequence.

• EA ESC [00

ESC [1 0

ESC [20

Erase to end of area

Erase from start of area

Erase all of area.

This control is treated like an EL control sequence. The final character for the EA control is a
capital 0, not a zero.

• ED ESC [0 J

ESC [1 J

ESC [2 J

Erase to end of display

Erase from start of display

Erase all of display.

Erases certain characters within the PS. Erased characters are replaced with empty spaces.
Erase to end of display erases the cursored character and all following characters in the PS.
Erase from start of display erases the first character of first line and the following characters up
to and including the cursored character. Erase all of display erases all the characters on the PS.

3-86 VRM Device Support

• EF ESC [0 N

ESC [1 N

ESC [2 N

Erase to end of Field

Erase from start of Field

Erase all of Field.

Erases certain characters between horizontal tab stops. Erased characters are replaced with
empty spaces. Erase to end of field erases the cursored character and all following characters
prior to the next tab stop. Erase from start of field erases the character at the tab stop preceding
the cursor an the following characters up to and including the cursored character. Erase all of
field erases the character at the tab stop preceding the cursor, and the following characters up to
and including the character at the tab stop following the cursor. Tab stops are assumed at the
first and last columns of the PS when executing this control.

• EL ESC [0 K

ESC [1 K

ESC [2 K

Erase to end of Line

Erase from start of Line

Erase all of Line.

Erases certain characters within a line. Erased characters are replaced with empty spaces.
Erase to end of Line erases the cursored character and all following characters on the line.
Erase from start of Line erases the first character of first line and the following characters up to
and including the cursored character. Erase all of Line erases all the characters on the line.

• ECH ESC [PN X Erase Character

Erases the cursored character and the following 'PN-l' characters on that line. Erased
characters are replaced with empty spaces. If there are less than 'PN' characters from the cursor
to the PS right boundary, then the cursored character and all the following characters on the
line are replaced empty spaces.

• HTS ESC H Horizontal Tab Stop

Sets a horizontal tab stop at the current horizontal position. If TSM is set, then the tab stop will
apply only to this line. If TSM is reset, then the tab stop applies to all PS lines. This control
does not change the positioning of characters already in the presentation space.

• HVP ESC [PN ; PN f Horizontal and Vertical Position

Moves the cursor to the line specified by the first parameter, and to the column specified by the
second parameter. If this movement would cross a PS boundary, the cursor stops at the current
PS boundary.

• ICH ESC [PN @ Insert Character

Inserts 'PN' empty spaces in front of the cursored character. The string of characters starting
with the cursored character and ending with last character of the line are shifted 'PN' columns
to the right. Characters shifted past the PS right boundary are lost. The cursor does not move.

• IL ESC [PN L Insert Line

The contents of the cursored line and all lines below it are scrolled down 'PN' lines and 'PN'
blank lines are inserted. The absolute screen position of the cursor is not affected.

Virtual Terminal Subsystem 3-87

• IND ESC D Index

Moves cursor down one line. If the cursor was already on the bottom line of the PS, then the top
line is lost, the other lines move up one line, and a blank line becomes the new bottom line.

• NEL ESC E Next Line

Moves the cursor to the first position of the following line. If the cursor was already on the
bottom line of the PS, then the top line is lost, the other lines move up one, and a blank line
becomes the new bottom line.

• KSI ESC [PS p Keyboard Status Information

The virtual terminal generates this control whenever HOSTS and XLATKBD are set and the
status of the keyboard changes. Each selective parameter is the ASCII-encoded decimal value of a
keyboard status byte. For example, if the keyboard has two status bytes, the control sequence
will be ESC [xxx;yyy p, where xxx is the value of the high-order byte and yyy is the value of
the low-order byte. This is a private control that conforms to the ANSI standards for private
control sequences. The virtual terminal display handler ignores this sequence whether it is
received from the virtual machine or echoed.

• PFK ESC [PN q PF Key Report

The control sequence is sent by the virtual terminal to the virtual machine when a program
function key (PFK) code is received from the keyboard. The parameter 'PN' is a PF key number
from 1 to 255. This is a private control which conforms to the ANSI standards for private control
sequences. This sequence is ignored by the virtual terminal display handler whether received
from the virtual machine or echoed.

• RCP ESC [u Restore Cursor Position

Moves the cursor to the position saved by the last SCP control. If no SCP has been received,
then the cursor position is set to the first character of the first line. This is a private control that
conforms to the ANSI standards for private controls. This control has no terminal function when
received from the keyboard.

• RI ESC L Reverse Index

Moves the cursor up one line, unless the cursor is already on the PS top line. In that case, if
WRAP mode is not set, then the cursor does not move. If WRAP mode is set, the cursor moves to
the bottom line of the PS. The column position does not change.

• RIS ESC c Reset to Initial State

Resets the virtual terminal to the state of a newly-opened virtual terminal: erases all PS data,
places the cursor at the home position, resets graphic rendition to normal attributes, default font
and color, and sets tab stops, modes, keyboard map, character maps and echo maps to their
default values.

• RM ESC [PS 1 Reset Mode

2 0 LNM - Line Feed - New Line Mode (default = 1)
4 IRM - Insert Replace Mode (default = 0)

3-88 VRM Device Support

1 2 SRM - Send Receive Mode (set echo on) (default = 0)
1 8 TSM - Tabulation Stop Mode (default = 0)
? 2 1 CNM - Carriage Return - New Line Mode (default = 0)
? 7 AUTONL - Wrap character to following line when end of current line reached (default =

1)

Resets the modes specified in the parameter string. Multiple parameters must be separated by
semi-colons. The modes that can be reset are listed above with the appropriate parameter code.
All other mode parameters are ignored.

TSM mode determines whether horizontal tabs apply identically to all line (TSM reset) or
uniquely to each line on which they are set (TSM set).

• SCP ESC [s Save Cursor Position

Saves the current cursor position. Any previously saved cursor position is lost. The cursor can
be restored to this position with an RCP control. This is a private control that conforms to the
ANSI standards for private controls. This control has no terminal function when received from
the keyboard.

• SD ESC [PN T Scroll Down

Moves all the PS lines down 'PN' lines. The bottom 'PN' lines are lost, and 'PN' empty lines
are put at the top of the PS. Physical cursor position does not change as a result of the scroll.

• SL ESC [PN SP @ Scroll Left

Moves all the PS characters 'PN' column positions to the left. The characters in the 'PN'
leftmost PS columns are lost, and empty spaces are put in the rightmost 'PN' columns of all lines.
Physical cursor position does not change as a result of the scroll.

• SR ESC [PN SP A Scroll Right

Moves all the PS characters 'PN' column positions to the right. The characters in the 'PN'
rightmost PS columns are lost, and empty spaces are put in the leftmost 'PN' columns of all lines.
Physical cursor position does not change as a result of the scroll.

• SU ESC [PN S Scroll Up

Moves all the PS lines up 'PN' lines. The top 'PN' lines are lost, and 'PN' empty lines are put at
the bottom of the PS. The physical cursor position does not change as a result of the scroll.

• SGR ESC [PS m Set Graphic Rendition

o Normal (none of attributes 1-9)
1 Bold or Bright
4 Underscore
5 Slow Blink
7 Negative (reverse image)
8 Cancelled On (invisible: set to background color)

10 Primary Font
11 First Alternate Font

Virtual Terminal Subsystem 3-89

12 Second Alternate Font
13 Third Alternate Font
14 Fourth Alternate Font
15 Fifth Alternate Font
16 Sixth Alternate Font
17 Seventh Alternate Font
30 Color palette entry 0 foreground (default to black)
31 Color palette entry 1 foreground (default to red)
32 Color palette entry 2 foreground (default to green)
33 Color palette entry 3 foreground (default to yellow)
34 Color palette entry 4 foreground (default to blue)
35 Color palette entry 5 foreground (default to magenta)
36 Color palette entry 6 foreground (default to cyan)
37 Color palette entry 7 foreground (default to white)
40 Color palette entry 0 background (default to black)
41 Color palette entry 1 background (default to red)
42 Color palette entry 2 background (default to green)
43 Color palette entry 3 background (default to yellow)
44 Color palette entry 4 background (default to blue)
45 Color palette entry 5 background (default to magenta)
46 Color palette entry 6 background (default to cyan)
47 Color paleLte entry 7 background (default to white)
90 Color palette entry 8 foreground (default to gray)
91 Color palette entry 9 foreground (default to light red)
92 Color palette entry 10 foreground (default to light green)
93 Color palette entry 11 foreground (default to brown)
94 Color palette entry 12 foreground (default to light blue)
95 Color palette entry 13 foreground (default to light magenta)
96 Color palette entry 14 foreground (default to light cyan)
97 Color palette entry 15 foreground (default to high-intensity white)

100 Color palette entry 8 background (default to gray)
101 Color palette entry 9 background (default to light red)
10.2 Color palette entry 10 background (default to light green)
103 Color palette entry 11 background (default to brown)
104 Color palette entry 12 background (default to light blue)
105 Color palette entry 13 background (default to light magenta)
106 Color palette entry 14 background (default to light cyan)
107 Color palette entry 15 background (default to high intensity white).

Causes the subsequent characters received in the data stream or from the keyboard to have the
display attributes specified by the parameter string. Any parameter not listed above is ignored.

The attributes corresponding to parameters 1 through 9 are cumulative. For example, if you
specify 'underscore' and then issue another SGR to specify 'blink', subsequent characters will be
underscored and blink. To reset one of these attributes, you have to specify 'normal' and then
reinstate the parameters you want. Multiple parameters are processed in the order listed ..

3-90 VRM Device Support

Whether the characters actually have the requested attributes on the display depends on the
capabilities of the physical display device used by the virtual terminal.

Note that, unlike loading new fonts with the Change Fonts command ("Change Fonts" on
page 3-95), switching between loaded fonts with the SGR sequence causes no data loss.

N ondisplayable characters do not exist in this system.

• SGOA ESC (f Set GO Character Set

SGOB ESC, f Set GO Character Set (Alternate form)

Unique One (User-defined)
Unique Two (User-defined)

< PO (Display Symbols 32-255)
PI (Display Symbols 256-479)

> P2 (Display Symbols 480-703)
? U serl (Display Symbols 704-927)
@ U ser2 (Display Symbols 928-1023)

Designates the set of characters to use as the GO set, when the GO set is invoked by SL The
default GO set is the 224-character PCASCn set (' < ') in 8-bit PCASCn mode. Unique One and
Unique Two may have unique definitions for each virtual terminal. When a virtual terminal is
opened, these two sets are equivalent to '< '. The 224-character sets (' <', '@', '= " '>', and '?')
are available for use.

• SGIA ESC) f Set G 1 Character Set

SGIB ESC - f Set Gl Character Set (Alternate)

Unique One (User-defined)
Unique Two (User-defined)

< PO (Display Symbols 32-255)
PI (Display Symbols 256-479)

> P2 (Display Symbols 480-703)
? Userl (Display Symbols 704-927)
@ User2 (Display Symbols 928-1023)

Designates the set of characters to use as the Gl set, when the Gl set is invoked by SO. The
default Gl set is the 224-character PCASCn set (' < ') for 8-bit PCASCn mode. Unique One and
Unique Two may have unique definitions for each virtual terminal. When a virtual terminal is
opened, these two sets are equivalent to '< '. The 224-character sets (' <', '@', '=', '> " and '?')
are available for use.

• SM ESC [PS h Set Mode

20 LNM - Line Feed - New Line Mode (default = 1)
4 IRM - Insert Replace Mode (default = 0)

1 2 SRM - Send Receive Mode (set echo off) (default = 0)
1 8 TSM - Tabulation Stop Mode (default = 0)
? 2 1 CNM - Carriage Return - New Line Mode (default = 0)

Virtual Terminal Subsystem 3-91

? 7 AUTONL - Wrap character to following line when end of current line reached (default =
1)

Sets the modes specified in the parameter string. Multiple parameters must be separated by
semi-colons. The modes that can be set are listed above with the appropriate parameter code. All
other mode parameters are ignored.

Note: Some display devices do not have unique display font symbols for the single-byte control
codes.

SRM mode affects translated keyboard input handling. If SRM mode is set, translated keyboard
input is never echoed by the virtual terminal, but is immediately returned to the virtual machine.

TSM mode determines whether horizontal tabs apply to all lines identically (TSM reset) or if
horizontal tabs apply uniquely to each line on which they are set (TSM set).

• TBC ESC [PS g Tabulation Clear

o Horizontal tab at cursor column
1 Vertical tab at cursored line
2 Horizontal tabs on line
3 Horizontal tabs in PS
4 Vertical tabs in PS

Clears tabulation stops specified by the parameters. Horizontal tab changes affect only the
cursored line if TSM is set, and horizontal tab changes affect all lines if TSM is reset. Any
parameters not listed above are ignored. This control does not change the positioning of
characters already in the presentation space.

• VT A ESC [r Virtual Terminal Addressability

This private control sequence precedes a binary header and associated data that provide status
information on the 5081 adapter.

• VTD ESC [x Virtual Terminal Data

This private control sequence precedes a binary header and associated data. The block of data
may be in formats other than ASCII character coded data.

Note: Some of the data following the VTD sequence is binary, not coded character data.

• VTL ESC [y Virtual Terminal Locator Information

This private control sequence precedes binary locator input data when a buffer is used to send
input from the VTMP to a virtual machine.

Note: Some of the data following the VTD sequence is binary, not coded character data.

• VTR ESC [w Virtual Terminal Raw Keyboard Input

This private control sequence precedes binary raw keyboard input data when a buffer is used to
send input from the VTMP to a virtual machine and XLATKBD is reset.

Note: Some of the data following the VTD sequence is binary, not coded character data.

3-92 VRM Device Support

• VTS ESC I Vertical Tab Stop

Sets a vertical tab stop at the cursored line. This control does not change the positioning of
characters already in the presentation space.

KSR Protocol Mode Definition
Protocol modes determine how the VTMP interprets coded data, and how the VTMP translates and
returns input data within a virtual terminal. A single word of protocol mode data follows the
parameter data.

Note that two bits control each mode; one bit indicates whether to use the current mode setting. If
the current setting is not used, the second bit indicates which specific mode value should be used.
The VTMP sets mode bits to the default value when a virtual terminal is first opened. You can
change these defaults during configuration.

If WRAP mode is set, the cursor is allowed to wrap around the presentation space.

If HOSTPC mode is set, the virtual machine may receive locator position reports.

If XLATKBD mode is set, the VTMP converts data received from the keyboard to ASCII codes. If
XLATKBD is reset, the VTMP returns key position, scan code and status.

KSR protocol modes are defined by bytes 0-3 of the minor data area.

The following section tells you how to identify KSR protocol modes and change default values.

Protocol Mode

HOSTS Specifies whether to return keyboard shift status changes

Bit 3 = 0: use current value
Bit 3 = 1: specify return in bit 19

Bit 19 = 0: do not return keyboard status change (default)
Bit 19 = 1: return private ANSI sequence with change information

XLATKBD Specifies whether to translate keyboard input to scan codes

Bit 7 = 0: use current value
Bit 7 = 1: specify translation in bit 23

Bit 23 = 0: return key position, status, scan code
Bit 23 = 1: XLATKBD (default)

HOSTPC Specifies whether to send locator input to host

Bit 8 = 0: use current value
Bit 8 = 1: specify whether to send input in bit 24

Bit 24 = 0: do not return locator input to host (default)
Bit 24 = 1: return locator input to host

Virtual Terminal Subsystem 3-93

WRAP Specifies whether text cursor wraps in presentation space

Bit 9 = 0: use current value
Bit 9 = 1: specify wrap in bit 25

Bit 25 = 0: do not wrap cursor
Bit 25 = 1: wrap cursor (default)

HOSTLPFK Specifies whether to send input from the lighted programmable function keys to the
host

Bit 10 = 0: use current value
Bit 10 = 1: specify whether to send input in bit 26

Bit 26 = 0: do not return LPF key input (default)
Bit 26 = 1: return LPF key input

HOSTDIALS Specifies whether to send input from the dials to the host

Bit 11 = 0: use current value
Bit 11 = 1: specify whether to send input in bit 27

Bit 27 = 0: do not return dials input (default)
Bit 27 = 1: return dials input

HOSTS mode specifies whether to report keyboard status changes to the virtual machine. If HOSTS
is set, the keyboard status information is returned to the virtual machine in a private ANSI control,
KSI.

Note: If the virtual machine wants to ensure against keyboard interaction between SVCs in
multiple-SVC output operations, the virtual machine should disable the keyboard (DMI). Also, the
virtual machine can request a cursor position report before sending display data. The reported cursor
position can then be restored after the data is sent so operator cursor positioning is not lost.

Character Set Definition
You can alter the ASCII character set-to-display code (font) mapping of a virtual terminal. For each
virtual terminal, the VTMP maintains character set mapping tables for 2 unique user-definable
character sets. These sets contain 256 10-bit display symbol codes, and are identified by the final
characters ';' or ':' of the SGO or SGI controls.

To modify the user-definable character sets, take any of the sets above as a source, modify all or part
of it and place the newly-defined set into either Unique One or Unique Two. Until they are first
modified, both user-definable sets are identical to the PCASCII standard set. Either set may be
modified by designating its ANSI final character (';' or ':'). Any or all of the positions in a set may be
replaced with any of the 10-bit display symbols. The remap is defined to begin at position 00.
Therefore, to remap a single position, you may either send the entire character map with only one
position deviating from the current map, or you can send a map up to and including the one
remapped character. All subsequent remappings to the same unique set will be applied over the
existing map.The actual graphical representation of a display symbol is dependent on the hardware
in use.

3-94 VRM Device Support

Note: Data is kept in display symbol form in the virtual terminal. A datastream returned in the
query ASCII codes acknowledgement uses the standard character set definitions, not Unique One or
Two.

This field appears at the start of minor type data and is defined as follows:

Bytes Value

o User-definable character set

: = Unique one
; = Unique two

1 Reserved

2-3 10-bit display symbol code

This field may be repeated up to 256 times.

Set KSR Color Palette
This command specifies the color you want to associate with certain display adapters. The default
color palette attempts to match the ANSI 3.64 palette. This may not be possible for all devices.

This field appears at the start of minor type data and is defined as follows:

Bytes Value

0-1 Number of entries in the palette

2-5 Adapter-specific settings of the first entry in the color palette. These settings must be
repeated for each entry of the color palette corresponding to the display adapter.

See "Acknowledge Query Physical Device" on page 3-65 for information on the maximum number of
entries for the active display.

Change Fonts
This data changes the assignment of physical display fonts to the SGR font attributes. When a
virtual terminal is first opened, and whenever it is changed to a different physical display, this
assignment is made to the first font in the list of configured fonts. The VTMP initially tries to select
a font that results in a presentation space of 80 columns by 25 rows. Of the fonts that meet this
criteria, the first font with a normal appearance (not italic) is chosen. If no fonts meet this criteria,
the first font that can be displayed on the particular device is selected. All alternate fonts will be
initialized to this chosen ID.

Note that if you change fonts, you will lose the data currently in the presentation space, and the
cursor reverts to the double underscore and is placed at the home position (first column, first row).
Therefore, IBM recommends that, if you want control of the fonts, you should explicitly set the fonts
you want when you open a terminal or change a display.

All eight font attributes must be assigned to fonts of the same size. If any of the requested IDs do not
exist, no changes will be made. The Change Font request will be denied and a return code will be

Virtual Terminal Subsystem 3-95

sent in the OPSB indicating that one or more non-existent IDs was requested. Otherwise, if all eight
requested fonts are not the same size, no changes will be made and a return code in the OPSB
indicates that one or more different sized IDs was requested.

If the Change Fonts request is accepted and the installed fonts are a different size than the previous
fonts, the presentation space size is adjusted to the number of rows and columns that fit on the
physical display screen for the new font size.

Note: The Query Physical Display command is used to determine the font IDs.

The following field appears at the start of minor type data and is defined as follows:

Bytes Value

0-1 Physical font ID of primary font attribute

2-3 Physical font ID of first alternate font attribute

4-5 Physical font ID of second alternate font attribute

6-7 Physical font ID of third alternate font attribute

8-9 Physical font ID of fourth alternate font attribute

10-11 Physical font ID of fifth alternate font attribute

12-13 Physical font ID of sixth alternate font attribute

14-15 Physical font ID of seventh alternate font attribute.

Text cursor representation
The text cursor representation field determines how the cursor is manifested in the display screen.

This field appears at the start of minor type data and is defined as follows:

Bytes Value

0-1 Text cursor shape

o = No cursor
1 = Single underscore
2 = Double underscore
3 = Illuminated character cell (lower half)
4 = Double mid-character line
5 = Illuminated character cell.

3-96 VRM Device Support

Query ASCII Codes and Attributes
This data determines how you define a block of characters in the presentation space to query. You
will receive attribute and character set information on the characters within the queried block in a
query ASCII codes and attributes acknowledgement.

Note: The VT Query SVC path must be used for this command.

This field appears at the start of minor type data and is defined as follows:

Bytes Value
o X upper left coordinate (first column of the block)
1 Y upper left coordinate (first row in the block)
2 X lower right coordinate (last column in the block)
3 Y lower right coordinate (last row in the block)

Acknowledge Query ASCII Codes and Attributes
The data for this minor type is an ASCII data stream that contains character codes from the queried
block. Character set changes and changes to character attributes are indicated with SGR and SGO
control sequences. A line feed control is returned after the last character code in each line of the
queried block.

Note: The returned attributes may be only a subset of the original attributes specified for query.
The subset in this case is those attributes actually supported by the physical device and associated
with a character.

The following field appears at the start of minor type data and is defined as follows:

Bytes Value

O-n ASCII data stream

This field includes all ASCII data currently associated with the input buffer.

Virtual Terminal Subsystem 3-97

MOM Major Data Type

A major type field of Ox05 identifies MOM data. Each MOM minor data type has a different
structure and interpretation.

Monitored mode provides applications with a direct output path to display hardware and a shortened
input path for the keyboard and locator. The minor types associated with MOM data are
summarized in the following table and described in subsequent sections.

Value Minor Type

OxOO ASCII Codes (assumed in absence of VTD and header)

OxOl MOM protocol mode definition

Ox02 Screen Request and Input Ring Addressability

Ox03 Screen Release Acknowledgement

Ox04 DMA Move

OxAO Screen Grant Interrupt

OxAl Screen Release Interrupt

OxA2 Application Terminated Interrupt

ASCII Codes
Monitored mode allows two ASCII controls to control the keyboard input device. These controls,
enable manual input (EMI) and disable manual input (DMI), are the only ASCII controls monitored
mode recognizes. All other codes are ignored if received.

MOM Protocol Mode Definition
Protocol modes determine how the VTMP returns input data from the input devices. The protocol
command is the first command used in monitored mode; it informs the VTMP that the application has
selected monitored, as opposed to KSR, mode.

When you run applications in monitored mode you have several options as far as protocols are
concerned. The protocol decisions you have to make in MOM mode include:

• Whether to enable or disable locator input

• Whether to place the keyboard in native or translated mode

• Whether to enable or disable dials input to the host

3-98 VRM Device Support

• Whether to enable or disable LPF key input to the host.

• Whether to return status information from display adapters.

• Whether to limit the use of the MOM input ring buffer only for display adapter-generated status
information.

Aside from the bits described above, all other bits in the 32-bit MOM protocol definition word must
be set equal to zero. If you try to set any other bits in the protocol definition word, the VTMP
rejects the command and does not allow the application to enter monitored mode.

This field appears at the start of minor type data and is defined as follows:

Protocol Mode

XLATKBD Specifies whether to translate keyboard input to scan codes

Bit 7 = 0: use current value
Bit 7 = 1: specify translation in bit 23

Bit 23 = 0: return key position, status, scan code
Bit 23 = 1: XLATKBD (default)

HOSTPC Specifies whether to send locator input to host

Bit 8 = 0: use current value
Bit 8 = 1: specify whether to send input in bit 24

Bit 24 = 0: do not return locator input to host (default)
Bit 24 = 1: return locator input to host

HOSTLPFK Specifies whether to send input from the lighted programmable function keys to the
host

Bit 10 = 0: use current value
Bit 10 = 1: specify whether to send input in bit 26

Bit 26 = 0: do not return LPF key input (default)
Bit 26 = 1: return LPF key input

HOSTDIALS Specifies whether to send input from the dials to the host

Bit 11 = 0: use current value
Bit 11 = 1: specify whether to send input in bit 27

Bit 27 = 0: do not return dials input (default)
Bit 27 = 1: return dials input

HOSTDINTR Specifies whether to send display adapter status information to the host

Bit 12 = 0: use current value
Bit 12 = 1: specify whether to send status information in bit 28

Bit 28 = 0: do not return status information to the host (default)
Bit 28 = 1: return status information to the host

Virtual Terminal Subsystem 3-99

HOSTDINTRONLY Specifies whether to use a MOM input ring buffer only for returning display
adapter status information to the host

Bit 13 = 0: use current value
Bit 13 = 1: specify whether to limit input ring buffer in bit 29

Bit 29 = 0: do not limit use of input ring buffer (default)
Bit 27 = 1: limit use of input ring buffer to display adapter status information.

Screen Request and Input Ring Addressability
When a MOM application requests ownership of the display hardware, the VTMP receives the
address and size of the associated input buffer. The input buffer ring contains status and control
information, as well as input device events. The ring, which has a width of four bytes, must be
aligned on a word boundary within the application virtual address.

If the minor type data is not included with the screen request VTD, all keyboard and locator data are
returned through the normal unsolicited interrupt flow. The length of this VTD includes the entire
length of the ring buffer, as well.

The input buffer ring, regardless of size, consists of two partitions. The first partition is a 32-byte
field reserved for status and control information. The remaining bytes comprise the second partition,
which is the actual ring buffer for keyboard and locator input entries. The second partition serves as
an event queue which receives event reports from the input devices. Input from either a keyboard or
locator enters the queue in the order they are received. The single event queue guarantees first-in
first-out queueing.

Figure 3-27 illustrates the input ring.

o 32 n

I Status I Input entries

Figure 3-27. Input Ring Format

The status partition (bytes 0 through 31) is defined in Figure 3-28 on page 3-101.

3-100 VRM Device Support

o

4

8

12

31
bytes

o 16 24

* I Interrupt Always I

VTMP Ring Offset

Application Ring Offset

*

* Reserved (Set equal to zero)

Figure 3-28. Status Partition of Input Ring

31 bits

Overflow

The following fields appear at the start of the minor type data request VTD and ring buffer and are
defined as follows:

Bytes Value

0-1 Length of input ring in bytes

2-5 Offset to the input buffer ring (offset from start of minor data)

Start of buffer ring (must start on a word boundary)

0-1 Reserved

2 Interrupt always

3 Overflow

4-7 Ring offset for the VTMP

8-11 Ring offset for the application

12-31 Reserved

32 First data byte in the ring

N Last data byte in the ring.

Virtual Terminal Subsystem 3-101

After you set up a monitored mode virtual terminal and the desired protocol, you issue this command
to request control of the display hardware. The VTMP confirms that your application has control of
the display with a screen grant short unsolicited interrupt (ID = 20).

Warning: The Screen Request and Input Ring Addressability command must be
issued by way of the VT Output sve if the application is defining the monitored
mode input ring.
The status partition contains four major fields. Bytes 0 and 1 and 12 through 31 are reserved (set
equal to zero). The remaining fields within the first partition are defined as follows:

• Interrupt always

Byte 2 of the status partition determines whether the VTMP should cause a signal to be sent to
the application each time data is placed into the ring. Note that the VTMP resets this byte after
each input.

• Overflow

Byte 3 of the status partition determines whether the input buffer ring can accommodate more
input information. A value of OxFF indicates an overflow; OxOO indicates normal operation.

• VTMP Ring Offset

The next four bytes of this partition represent the offset into the input ring to which the VTMP
enqueues keyboard and locator input. This offset starts from the beginning of the ring, so the
absolute minimum value for the VTMP offset is 32 bytes.

• Application Ring Offset

The next four bytes of the status partition indicate the offset into the input ring from which the
application reads keyboard and locator information from the event queue. This offset also starts
from the beginning of the input ring, so the minimum value for this offset is 32 bytes.

The VTMP sets the overflow flag when the VTMP offset into the input ring plus the length of the
keyboard or locator information the VTMP wants to write exceed the offset from which the
application reads. For example, suppose the VTMP offset is set at 38 bytes and the application offset
is set at 45 bytes. The VTMP receives 12 bytes of input data from the keyboard to place in the input
ring. Because the sum of these two fields exceeds the application offset (38 + 12 > 45), the buffer is
'overflowed' and the VTMP sets the overflow byte flag.

When an overflow condition exists for a buffer, the input data is not stored in the input ring, but is
lost. The VTMP will store no more data in the input ring until the application clears the overflow
flag. Therefore, the VTMP must detect a potential overflow before placing data in the input ring.
Both the application and the VTMP can read its own or the other's offset value. The VTMP or
application can prevent a potential overflow condition by modifying its offset, but should never
modify the offset of its counterpart.

3-102 VRM Device Support

Full and Empty Queues
Two other conditions describe the state of the input queue. When the VTIvIP offset is one byte less
than the application offset, the queue is said to be 'full'. When the VTMP offset is equal to the
application offset, the queue is said to be 'empty'.

When a virtual terminal is initialized to run in the monitored mode, the application sets the overflow
byte equal to OxOO and both offset values equal to 32 (Ox20). As normal operation progresses, the
offsets contain different values. The application offset typically falls behind the VTMP offset as the
application tries to keep up with input received by the VTMP.

An application can clear the input queue, therefore, by setting its offset equal to the VTMP offset.
Both offsets do not have to start from 32, and an 'empty' queue may contain data unrelated to the
present application.

If the queue is empty when the VTMP places input into the ring, the VTMP generates a short
unsolicited interrupt (ID = 24) to the operating system terminal device driver. The interrupt does not
contain the actual input data, because the VTMP places the input data into the input ring as usual
after sending the interrupt.

Keyboard Input
When the keyboard is in translate mode, the VTMP checks all keystrokes against the break map
before placing the character or function into the input ring. If the corresponding break map bit is
off, the VTMP stores the keystroke in the ring and generates no unsolicited interrupt unless the
queue was empty. If the corresponding break map bit is on or the input ring has not been defined, the
VTMP sends the input content (character or function) in an unsolicited interrupt to the virtual
terminal driver in the operating system.

If a keystroke is translated into a string and none of the corresponding break map bits are on, the
VTMP places the entire string in the input ring. If a keystroke is translated into a string with one
or more of the corresponding break map bits on, the VTMP does not place the entire string into the
input ring. Instead, the VTMP sends the string to the MOM application by way of the operating
system's terminal device driver. You should be careful, therefore, when you set the break map for
MOM applications. Because excessive use of the break map in this case degrades performance, you
should use it sparingly with MOM applications.

Regardless of the input format (character, string, or function), the input buffer (if defined) consists of
ANSI characters, controls, control sequences, and private control sequences. If the keyboard is set
in the native mode, the VTMP stores all keystrokes in the input ring as fixed-length entries
consisting of scan code, position code and shift status preceded by the private control OxlB5B77
which denotes virtual terminal raw (VTR) keyboard input. All break, echo and translate maps are
inoperative. Format of the scan codes, position codes and shift status are provided in a short
unsolicited interrupt.

An application that changes the keyboard mode in midstream is entirely responsible for keeping
track of the potential mixture of ASCII characters and controls with raw scan codes in the input
ring.

Virtual Terminal Subsystem 3-103

Locator Input
Relative locator input consists of relative horizontal and vertical distances in addition to the status
of the mouse buttons and the time stamp information. Distances are reported only when either the
horizontal or vertical threshold is exceeded or when the status of a button changes. When the status
of a button changes, the VTMP reports the change, as well as the relative distance change (if any).

Absolute locator input consists of absolute horizontal and vertical positions in addition to the status
of the four buttons on the tablet. Positions are reported only when movement occurs inside the valid
reporting area of the tablet (that area bounded by the no-input zone, if any). Positions are also
reported when the status of a tablet button changes. In the latter case, absolute positions are
reported, regardless of whether the sensor device is within the valid reporting area.

All relative locator input is stored in the buffer ring as fixed-length entries consisting of horizontal
and vertical deltas, time stamp data and status information. This information is preceded by the
private control sequence virtual terminal locator (VTL - Ox1B5B79). The last byte of relative locator
data is set to zero.

All absolute locator input is handled in like manner, except that the horizontal and vertical values
are absolute positions rather than deltas from a previous value. The last byte of absolute locator data
is set to one.

The format of locator input is described in "VT Unsolicited Interrupt" on page 3-45.

If the MOM input buffer is not defined, locator input is returned by way of the normal unsolicited
interrupt flow.

You can shut off locator event reports by manipulating the HOSTPC bit in the protocol mode
definition. Under normal circumstances, the VTMP stops accepting locator input only if the buffer
overflows.

The MOM input buffer cannot be used if the minor type data is omitted.

Screen Release Acknowledgement
When the system has to suspend ownership of the display hardware by an application, the VTMP
issues a screen release unsolicited interrupt (ID = 21). The application must send this
acknowledgement message to the VTMP before the time out interval expires. If the application does
not respond with the screen release acknowledgement, the VTMP issues the Application Terminate
Interrupt (minor type OxA2) to remove the uncooperative application. For more information on the
details of these unsolicited interrupt types, see "VT Unsolicited Interrupt" on page 3-45.

3-104 VRM Device Support

DMAMove
When an application is using DMA to move data between its space and system DMA space, this
minor type is used to change the pointer to the data. The following fields come immediately after the
major type (Ox05) and the DMA move minor type:

• 2 bytes for the segment ID of the DMA data
• 4 bytes indicating the source address
• 4 bytes indicating the length of the DMA data
• 4 bytes indicating the target address.

If the source address falls in the range OxE0800000 through OxE08FFFFF, the source of the data is
system DMA space. If the source address is outside this range, the source of the data is application
DMA space.

Note that the DMA move minor type causes the pointer to DMA data to be changed. The DMA data
range is defined as the nearest 2K boundary before and after the DMA area. Therefore, aligning and
moving DMA data on 2K boundaries eliminates the overhead of copying partial pages that are not
included in the DMA data range.

Keyboard Translate Table

The following table lists each key position and provides the scan code, assignment, and returned
string for each of the four valid key states (base, shift, control, alternate) for the lOl-key Enhanced
Personal Computer keyboard (in U.S. English). Note that the alternate graphics state is not included
in this table. Figure 3-29 shows all the key positions on the standard lOl-key RT PC keyboard. For
information on the l02-key and l06-key keyboards and the 15 available keyboard layouts, see IBM
RT PC Keyboard Description and Character Reference.

Virtual Terminal Subsystem 3-105

~
~@iJ~

Right Control Area Numeric Pad Area

Figure 3-29. Position Codes for Remapping a IOI-Key Keyboard

Note that the scan code for a particular key does not change when the key is remapped. The scan
code is returned to the virtual machine when running in untranslated mode.

Figure 3-33 on page 3-137 shows the characters available from the PO code page.

Figure 3-34 on page 3-138 shows the characters available from the PI code page.

Figure 3-35 on page 3-139 shows the characters available from the P2 code page.

3-106 VRM Device Support

The following key positions in the specified states are not redefinable on the 101-key, 102-key, or
106-key keyboards. Their functions are predefined by the VTRM or VTMP.

Key Position
and State
44 (all)
57 (all)
58 (all)
64 altern a te
64 shift
64 control
90 base
90 shift

Function
Caps lock

Left shift
Right shift
Control shift
N ext virtual terminal
Last virtual terminal
Command virtual terminal
Num lock
Num lock.

The following key positions cannot be remapped on the 101-key or 102-key keyboard:

Key Position
and State
30 (all)
60 (all)
62 (all)

Function

Caps lock
Alternate
Alternate graphics

The following key positions cannot be remapped on the 106-key keyboard only:

Key Position
and State
60 (all)
62 (all)

Function

Caps lock
Right alternate

Also note that the following positions do not appear on the 10l-key RT PC keyboard and cannot be
remapped: 14, 42, 45, 56, 59, 63, 65-74, 77-78, 82, 84, 87-88, 94, 107, 109 and Ill.

The keyboard translate table begins on the following page.

Virtual Terminal Subsystem 3-107

Key Key Scan Returned
Posn. State Code Assignment String

1 base OxOE grave accent Ox60
shift tilde Ox7e
ctrl PFK 57 ESC [057 q
alt PFK 115 ESC [11 5 q

2 base Ox16 1 one Ox31
shift ! exclamation pt. Ox21
crtl PFK 49 ESC [049 q
alt PFK 58 ESC [05 8 q

3 base OxlE 2 two Ox32
shift @ at sign Ox40
crt! NUL null OxOO
alt PFK 59 ESC [05 9 q

4 base Ox26 3 three Ox33
shift # number sign Ox23
ctrl PFK 50 ESC [050 q
alt PFK60 ESC [060 q

5 base Ox25 4 four Ox34
shift $ dollar sign Ox24
ctrl PFK 51 ESC [05 1 q
alt PFK61 ESC [06 1 q

6 base Ox2E 5 five Ox35
shift 0/0 percent sign Ox25
ctrl PFK 52 ESC [05 2 q
alt PFK 62 ESC [062 q

7 base Ox36 6 SIX Ox36
shift I circumflex Ox5e
ctrl RS Oxle
alt PFK 63 ESC [063 q

8 base Ox3D 7 seven Ox37
shift & ampersand Ox26
ctrl PFK 53 ESC [053 q
alt PFK 64 ESC [064 q

3-108 VRM Device Support

9 base Ox3E 8 eight Ox38
shift * asterisk Ox2a
ctrl PFK 54 ESC [054 q
alt PFK 65 ESC [065 q

10 base Ox46 9 nine Ox39
shift (left paren. Ox28
ctrl PFK 55 ESC [055 q
aIt PFK 66 ESC [066 q

11 base Ox45 0 zero Ox30
shift) right paren. Ox29
ctrl PFK 56 ESC [056 q
alt PFK 67 ESC [067 q

12 base Ox4E hyphen Ox2d
shift underscore Ox5f
ctrl US unit separator Oxlf
aIt PFK 68 ESC [068 q

13 base Ox55 equal sign Ox3d
shift + plus sign Ox2b
ctrl PFK 69 ESC [069 q
aIt PFK 70 ESC [070 q

15 base Ox66 BS back space Ox08
shift BS back space Ox08
ctrl DEL delete Ox7f
aIt PFK 71 ESC [07 1 q

16 base OxOD Horiz. tab Ox09
shift Cursor back tab ESC [Z
ctrl PFK 72 ESC [072 q
aIt PFK 73 ESC [073 q

17 base Ox15 q lowercase q Ox71
shift Q capital Q Ox51
ctrl DC1 device ctrl Ox11
alt PFK 74 ESC [074 q

18 base Ox1D w lowercase w Ox77
shift W capital W Ox57
ctrl ETB end trans blk Ox17
alt PFK 75 ESC [075 q

19 base Ox24 e lowercase e Ox65
shift E capital E Ox45
ctrl ENQ enquiry Ox05
aIt PFK 76 ESC [076 q

Virtual Terminal Subsystem 3-109

20 base Ox2D r lowercase r Ox72
shift R capital R Ox52
ctrl DC2 Device ctrl 2 Ox12
alt PFK 77 ESC [077 q

21 base Ox2C t lowercase t Ox74
shift T capital T Ox54
ctrl DC4 Device ctrl 4 Ox14
alt PFK 78 ESC [078 q

22 base Ox35 y lowercase y Ox79
shift y capital Y Ox59
ctrl EM End of media Ox19
alt PFK 79 ESC [079 q

23 base Ox3C u lowercase u Ox75
shift U capital U Ox55
ctrl NAK not ack. Ox15
alt PFK80 ESC [080 q

24 base Ox43 i lowercase i Ox69
shift I capital I Ox49
ctrl HT horizontal tab Ox09
alt PFK 81 ESC [08 1 q

25 base Ox44 0 lowercase 0 Ox6f
shift 0 capital 0 Ox4f
ctrl SI shift in OxOf
alt PFK 82 ESC [082 q

26 base Ox4D p lowercase p Ox70
shift P capital P Ox50
ctrl DLE data link enable Ox10
alt PFK 83 ESC [083 q

27 base Ox54 [left bracket Ox5b
shift { left brace Ox7b
ctrl ESC escape Ox1b
alt PFK 84 ESC [084 q

28 base Ox5B] right bracket Ox5d
shift } right brace Ox7d
ctrl GS group separator Ox1d
alt PFK 85 ESC [085 q

29 base Ox5C \ reverse slash Ox5c
shift I pipe symbol Ox7c
ctrl FS file separator OxIc
alt PFK 86 ESC [086 q

3-110 VRM Device Support

30 base Ox14 caps lock not returned
shift caps lock not returned
ctrl caps lock not returned
alt caps lock not returned

31 base Ox1C a lowercase a Ox61
shift A capital A Ox41
ctrl SOH start hdr. Ox01
alt PFK87 ESC [087 q

32 base Ox1B s lowercase s Ox73
shift S capital S Ox53
ctrl DC3 device ctrl 3 Ox13
alt PFK 88 ESC [088 q

33 base Ox23 d lowercase d Ox64
shift D capital D Ox44
ctrl EOT End of trans. Ox04
alt PFK 89 ESQ [089 q

34 base Ox2B f lowercase f Ox66
shift F capital F Ox46
ctrl ACK Acknowledge Ox06
alt PFK 90 ESQ [090 q

35 base Ox34 g lowercase g Ox67
shift G capital G Ox47
ctrl BEL bell Ox07
alt PFK 91 ESQ [09 1 q

36 base Ox33 h lowercase h Ox68
shift H capital H Ox48
ctrl BS backspace Ox08
alt PFK 92 ESC [092 q

37 base Ox3B lowercase j Ox6a
shift J capital J Ox4a
ctrl LF line feed OxOa
alt PFK 93 ESC [093 q

38 base Ox42 k lowercase k Ox6b
shift K capital K Ox4b
ctrl VT vertical tab OxOb
alt PFK 94 ESC [094 q

Virtual Terminal Subsystem 3-111

39 base Ox4B 1 lowercase 1 Ox6c
shift L capital L Ox4c
ctrl FF form feed OxOc
alt PFK 95 ESC [095 q

40 base Ox4C semicolon Ox3b
shift colon Ox3a
ctrl PFK 96 ESC [096 q
alt PFK 97 ESC [097 q

41 base Ox52 quote/apostro. Ox27
shift " double quote Ox22
ctrl PFK 98 ESC [098 q
alt PFK 99 ESC [099 q

43 base Ox5A CR carriage return OxOd
shift CR carriage return OxOd
ctrl CR carriage return OxOd
alt PFK 100 ESC [1 00 q

44 base Ox12 shift (left) not returned
shift shift (left) not returned
ctrl shift (left) not returned
alt shift (left) not returned

46 base Ox1A z lowercase z Ox7a
shift Z capital Z Ox5a
ctrl SUB substitute char Ox1a
alt PFK 101 ESC [1 0 1 q

47 base Ox22 x lowercase x Ox78
shift X capital X Ox58
ctrl CAN cancel Ox18
alt PFK 102 ESC [1 0 2 q

48 base Ox21 c lowercase c Ox63
shift C capital C Ox43
ctrl ETX End of text Ox03
alt PFK 103 ESC [1 0 3 q

49 base Ox2A v lowercase v Ox76
shift V capital V Ox56
ctrl SYN synch idle Ox16
alt PFK 104 ESC [1 04 q

50 base Ox32 b lowercase b Ox62
shift B capital B Ox42
ctrl STX start of text Ox02
alt PFK 105 ESC [1 05 q

3-112 VRM Device Support

51 base Ox31 n lowercase n Ox6e
shift N capital N Ox4e
ctrl SO shift out OxOe
alt PFK 106 ESC [106 q

52 base Ox3A m lowercase m Ox6d
shift M capital M Ox4d
ctrl CR carriage return OxOd
alt PFK 107 ESC [1 0 7 q

53 base Ox41 comma Ox2c
shift < less than sign Ox3c
ctrl PFK 108 ESC [1 0 8 q
alt PFK 109 ESC [1 09 q

54 base Ox49 period Ox2e
shift > greater than Ox3e
ctrl PFK 110 ESC [11 0 q
alt PFK 111 ESC [111 q

55 base Ox4A / slash Ox2f
shift ? question mark Ox3f
ctrl PFK 112 ESC [11 2 q
alt PFK 113 ESC [11 3 q

57 base Ox59 shift (right) not returned
shift shift (right) not returned
ctrl shift (right) not returned
alt shift (right) not returned

58 base Ox11 control not returned
shift control not returned
ctrl control not returned
alt control not returned

60 base Ox19 alternate shift not returned
shift alternate shift not returned
ctrl alterbate shift not returned
alt alternate shift not returned

61 base Ox29 SP space Ox20
shift SP space Ox20
ctrl SP space Ox20
alt SP space Ox20

62 base Ox39 alternate shift not returned
shift none not returned
ctrl none not returned
alt al terna te shift not returned

Virtual Terminal Subsystem 3-113

64 base Ox58 PFK 114 ESC [11 4 q
shift Last virtual terminal Last virtual terminal
ctrl Command virtual terminal Command virtual terminal
alt N ext virtual terminal N ext virtual terminal

75 base Ox67 PFK 139 INS toggle ESC [1 3 9 q
shift PFK 139 INS toggle ESC [1 3 9 q
ctrl PFK 140 ESC [140 q
alt PFK 141 ESC [1 4 1 q

76 base Ox64 DCH delete char ESC [P
shift DCH delete char ESC [P
ctrl PFK 142 ESC [1 4 2 q
alt DL delete line ESC [M

79 base Ox61 CUB cursor back ESC [D
shift PFK 158 ESC [1 5 8 q
ctrl PFK 159 ESC [1 5 9 q
alt PFK 160 ESC [1 60 q

80 base Ox6E HOME ESC [H
shift PFK 143 ESC [14 3 q
ctrl PFK 144 ESC [144 q
alt PFK 145 ESC [14 5 q

81 base Ox65 PFK 146 ESC [146 q
shift PFK 147 ESC [147 q
ctrl PFK 148 ESC [148 q
alt PFK 149 ESC [14 9 q

83 base Ox63 CUU cursor up ESC [A
shift PFK 161 ESC [16 1 q
ctrl PFK 162 ESC [162 q
alt PFK 163 ESC [1 6 3 q

84 base Ox60 CUD cursor down ESC [B
shift PFK 164 ESC [164 q
ctrl PFK 165 ESC [1 6 5 q
alt PFK 166 ESC [1 66 q

85 base Ox6F PFK 150 ESC [1 5 0 q
shift PFK 151 ESC [1 5 1 q
ctrl PFK 152 ESC [15 2 q
alt PFK 153 ESC [1 5 3 q

86 base Ox6D PFK 154 ESC [1 5 4 q
shift PFK 155 ESC [1 5 5 q
ctrl PFK 156 ESC [1 5 6 q
alt PFK 157 ESC [1 5 7 q

3-114 VRM Device Support

89 base Ox6A CUF cursor forward ESC [C
shift PFK 167 ESC [1 6 7 q
ctrl PFK 168 ESC [1 68 q
alt PFK 169 ESC [1 6 9 q

90 base Ox76 NUMLOCK not returned
shift NUMLOCK not returned
ctrl DC3 device ctrl 3 Ox13
alt PFK 170 ESC [1 70 q

91 base Ox6C r Oxda
shift 7 seven Ox37
ctrl PFK 172 ESC [1 7 2 q
alt* alt+num entry return at alt break

92 base Ox6B ~ Oxc3
shift 4 four Ox34
ctrl PFK 174 ESC [1 74 q
alt* alt+num entry return at alt break

93 base Ox69 L OxcO
shift 1 one Ox31
ctrl PFK 176 ESC [1 76 q
alt* alt + num entry return at alt break

95 base Ox77 / slash Ox2f
shift / slash Ox2f
ctrl PFK 179 ESC [1 79 q
alt PFK 180 ESC [1 80 q

96 base Ox75 T Oxc2
shift 8 eight Ox38"
ctrl PFK 182 ESC [1 82 q
alt* alt+num entry return at alt break

97 base Ox73 + Oxc5
shift 5 five Ox35
ctrl PFK 184 ESC [1 84 q
alt* alt+num entry return at alt break

98 base Ox72 J. Oxc1
shift 2 two Ox32
ctrl PFK 186 ESC [1 86 q
alt* alt+num entry return at alt break

99 base Ox70 I Oxb3
shift 0 zero Ox30
ctrl PFK 178 ESC [1 78 q
alt* alt+num entry return at alt break

Virtual Terminal Subsystem 3-115

100 base Ox7E * asterisk Ox2a
shift * asterisk Ox2a
ctrI PFK 187 ESC [1 87 q
aIt PFK 188 ESC [1 88 q

101 base Ox7D , Oxbf
shift 9 nine Ox39
ctrl PFK 190 ESC [1 90 q
alt* alt+num entry return at aIt break

102 base Ox74 ~ Oxb4
shift 6 SIX Ox36
ctrI PFK 192 ESC [1 92 q
aIt* aIt+num entry return at aIt break

103 base Ox7A J Oxd9
shift 3 three Ox33
ctrl PFK 194 ESC [1 94 q
alt* alt+num entry return at aIt break

104 base Ox71 - horizontal line Oxc4
shift period Ox2e
ctrI PFK 196 ESC [1 96 q
aIt PFK 197 ESC [1 97 q

105 base Ox84 - Hyphen (minus) Ox2d
shift - hyphen (minus) Ox2d
ctrl PFK 198 ESC [1 98 q
alt PFK 199 ESC [1 99 q

106 base Ox7C + plus Ox2b
shift + plus Ox2b
ctrl PFK 200 ESC [200 q
aIt PFK 201 ESC [201 q

108 base Ox79 CR carriage return OxOd
shift CR carriage return OxOd
ctrI CR carriage return OxOd
alt PFK 100 ESC [1 00 q

110 base Ox08 ESC Ox1b
shift PFK 120 ESC [1 20 q
ctrI PFK 121 ESC [1 2 1 q
alt PFK 122 ESC [1 22 q

112 base Ox07 PFK 1 ESC [00 1 q
shift PFK 13 ESC [0 1 3 q
ctrI PFK 25 ESC [025 q
alt PFK 37 ESC [037 q

3-116 VRM Device Support

113 base OxOF PFK 2 ESC [002 q
shift PFK 14 ESC [0 1 4 q
ctrl PFK 26 ESC [026 q
alt PFK 38 ESC [038 q

114 base Ox17 PFK 3 ESC [003 q
shift PFK 15 ESC [0 1 5 q
ctrl PFK 27 ESC [027 q
alt PFK 39 ESC [039 q

115 base Ox1F PFK 4 ESC [004 q
shift PFK 16 ESC [0 1 6 q
ctrl PFK 28 ESC [028 q
alt PFK 40 ESC [040 q

116 base Ox27 PFK 5 ESC [005 q
shift PFK 17 ESC [0 1 7 q
ctrl PFK 29 ESC [029 q
alt PFK 41 ESC [041 q

117 base Ox2F PFK 6 ESC [006 q
shift PFK 18 ESC [0 1 8 q
ctrl PFK 30 ESC [030 q
alt PFK 42 ESC [042 q

118 base Ox37 PFK 7 ESC [007 q
shift PFK 19 ESC [01 9 q
ctrl PFK 31 ESC [03 1 q
alt PFK 43 ESC [043 q

119 base Ox3F PFK 8 ESC [008 q
shift PFK 20 ESC [020 q
ctrl PFK 32 ESC [032 q
alt PFK 44 ESC [044 q

120 base Ox47 PFK 9 ESC [009 q
shift PFK 21 ESC [02 1 q
ctrl PFK 33 ESC [033 q
alt PFK 45 ESC [045 q

121 base Ox4F PFK 10 ESC [0 1 0 q
shift PFK 22 ESC [022 q
ctrl PFK 34 ESC [034 q
alt PFK 46 ESC [046 q

122 base Ox56 PFK 11 ESC [0 11 q
shift PFK 23 ESC [023 q
ctrl PFK 35 ESC [035 q
alt PFK 47 ESC [047 q

Virtual Terminal Subsystem 3-117

123

124

125

126

base
shift
ctrl
alt
base
shift
ctrl
alt
base
shift
ctrl
alt
base
shift
ctrl
alt

Ox5E

Ox57

Ox5F

Ox62

PFK 12
PFK 24
PFK 36
PFK 48
PFK 209
PFK 210
PFK 211
PFK 212
PFK 213
PFK 214
PFK 215
PFK 216
PFK 217
PFK 218
DEL
DEL

Display Symbols by Code Page

ESC [0 1 2 q
ESC [024 q
ESC [036 q
ESC [048 q
ESC [209 q
ESC [2 1 0 q
ESC [2 11 q
ESC [2 12 q
ESC [2 1 3 q
ESC [2 1 4 q
ESC [2 1 5 q
ESC [2 1 6 q
ESC [2 1 7 q
ESC [2 1 8 q
Ox7F
Ox7F

The graphic characters available from code pages 0, 1, and 2 are described in the following tables.
The organization of the code pages is illustrated in Figure 3-33 on page 3-137, Figure 3-34 on
page 3-138, and Figure 3-35 on page 3-139. Positions 0 through 31 (OxOO through Ox1F) contain
single-byte controls and are common to all three code pages.

3-118 VRM Device Support

Position Code Pagel Internal
Number Character Code Point Code

32 Space PO-32 (Ox20) Ox20
33 ! Exclamation Point PO-33 (Ox21) Ox21
34 II Double Quote PO-34 (Ox22) Ox22
35 # Number Sign PO-35 (Ox23) Ox23
36 $ Dollar Sign PO-36 (Ox24) Ox24
37 % Percent Sign PO-37 (Ox25) Ox25
38 & Ampersand PO-38 (Ox26) Ox26
39 Apostrophe, Acute Accent PO-39 (Ox27) Ox27
40 (Left Parenthesis PO-40 (Ox28) Ox28
41) Right Parenthesis PO-41 (Ox29) Ox29
42 "* Asterisk PO-42 (Ox2A) Ox2A
43 + Plus Sign PO-43 (Ox2B) Ox2B
44 Comma PO-44 (Ox2C) Ox2C
45 Hyphen, Minus Sign PO-45 (Ox2D) Ox2D
46 Period PO-46 (Ox2E) Ox2E
47 / Slash PO-47 (Ox2F) Ox2F
48 0 Zero PO-48 (Ox30) Ox30
49 1 One PO-49 (Ox31) Ox31
50 2 Two PO-50 (Ox32) Ox32
51 3 Three PO-51 (Ox33) Ox33
52 4 Four PO-52 (Ox34) Ox34
53 5 Five PO-53 (Ox35) Ox35
54 6 Six PO-54 (Ox36) Ox36
55 7 Seven PO-55 (Ox37) Ox37

. 56 8 Eight PO-56 (Ox38) Ox38
57 9 Nine PO-57 (Ox39) Ox39
58 Colon PO-58 (Ox3A) Ox3A
59 Semicolon PO-59 (Ox3B) Ox3B
60 < Less Than Sign PO-60 (Ox3C) Ox3C
61 Equal Sign PO-61 (Ox3D) Ox3D
62 > Greater Than Sign PO-62 (Ox3E) Ox3E
63 ? Question Mark PO-63 (Ox3F) Ox3F
64 @ At Sign PO-64 (Ox40) Ox40
65 A a Uppercase PO-65 (Ox41) Ox41
66 B b Uppercase PO-66 (Ox42) Ox42
67 C c Uppercase PO-67 (Ox43) Ox43
68 D d Uppercase PO-68 (Ox44) Ox44

Figure 3-30 (Part 1 of 7). Code Page PO

Virtual Terminal Subsystem 3-119

Position Code Pagel Internal
Number Character Code Point Code

69 E e Uppercase PO-69 (Ox45) Ox45
70 F f Uppercase PO-70 (Ox46) Ox46
71 G g Uppercase PO-7l (Ox47) Ox47
72 H h Uppercase PO-72 (Ox48) Ox48
73 I i Uppercase PO-73 (Ox49) Ox49
74 J j Uppercase PO-74 (Ox4A) Ox4A
75 K k Uppercase PO-75 (Ox4B) Ox4B
76 L 1 Uppercase PO-76 (Ox4C) Ox4C
77 M m Uppercase PO-77 (Ox4D) Ox4D
78 N n Uppercase PO-78 (Ox4E) Ox4E
79 0 o Uppercase PO-79 (Ox4F) Ox4F
80 P p Uppercase PO-80 (Ox50) Ox50
81 Q q Uppercase PO-8l (Ox5l) Ox5l
82 R r Uppercase PO-82 (Ox52) Ox52
83 S s Uppercase PO-83 (Ox53) Ox53
84 T t Uppercase PO-84 (Ox54) Ox54
85 U u Uppercase PO-85 (Ox55) Ox55
86 V v Uppercase PO-86 (Ox56) Ox56
87 W w Uppercase PO-87 (Ox57) Ox57
88 X x Uppercase PO-88 (Ox58) Ox58
89 y y Uppercase PO-89 (Ox59) Ox59
90 Z z Uppercase PO-90 (Ox5A) Ox5A
91 [Left Bracket PO-9l (Ox5B) Ox5B
92 \ Reverse Slash PO-92 (Ox5C) Ox5C
93] Right Bracket PO-93 (Ox5D) Ox5D
94 1\ Circumflex Accent, Up Arrow PO-94 (Ox5E) Ox5E
95 - Underline, Low Line PO-95 (Ox5F) Ox5F
96

,
Grave Accent, Left Single Quote PO-96 (Ox60) Ox60

97 a a Lowercase PO-97 (Ox6l) Ox6l
98 b b Lowercase PO-98 (Ox62) Ox62
99 c c Lowercase PO-99 (Ox63) Ox63
100 d d Lowercase PO-IOO (Ox64) Ox64
101 e e Lowercase PO-lOl (Ox65) Ox65
102 f fLowercase PO-l02 (Ox66) Ox66
103 g g Lowercase PO-l03 (Ox67) Ox67
104 h h Lowercase PO-l04 (Ox68) Ox68
105 i i Lowercase PO-l05 (Ox69) Ox69

Figure 3-30 (Part 2 of 7). Code Page PO

3-120 VRM Device Support

Position Code Pagel Internal
Number Character Code Point Code

106 J j Lowercase PO-106 (Ox6A) Ox6A
107 k k Lowercase PO-107 (Ox6B) Ox6B
lOS I I Lowercase PO-lOS (Ox6C) Ox6C
109 m m Lowercase PO-109 (Ox6D) Ox6D
110 n n Lowercase PO-110 (Ox6E) Ox6E
111 0 o Lowercase PO-Ill (Ox6F) Ox6F
112 p p Lowercase PO-112 (Ox70) Ox70
113 q q Lowercase PO-113 (Ox71) Ox71
114 r r Lowercase PO-114 (Ox72) Ox72
115 s s Lowercase PO-115 (Ox73) Ox73
116 t t Lowercase PO-116 (Ox74) Ox74
117 u u Lowercase PO-117 (Ox75) Ox75
lIS v v Lowercase PO-lIS (Ox76) Ox76
119 w w Lowercase PO-119 (Ox77) Ox77
120 x x Lowercase PO-120 (Ox7S) Ox7S
121 y y Lowercase PO-121 (Ox79) Ox79
122 z z Lowercase PO-122 (Ox7 A) Ox7A
123 { Left Brace PO-123 (Ox7B) Ox7B
124 I Logical OR PO-124 (Ox7C) Ox7C
125 } Right Brace PO-125 (Ox7D) Ox7D
126 Tilde Accent PO-126 (Ox7E) Ox7E
127 d Del PO-127 (Ox7F) Ox7F
12S C c Cedilla Capital PO-12S (OxSO) OxSO
129 ii u Umlaut Small PO-129 (OxS1) OxS1
130 e e Acute Small PO-130 (OxS2) OxS2
131 a a Circumflex Small PO-131 (OxS3) OxS3
132 it a Umlaut Small PO-132 (OxS4) OxS4
133 a a Grave Small PO-133 (OxS5) OxS5
134 a a Overcircle Small PO-134 (OxS6) OxS6
135 C; c Cedilla Small PO-135 (OxS7) OxS7
136 e e Circumflex Small PO-136 (OxSS) OxSS
137 e e Umlaut Small PO-137 (OxS9) OxS9
13S e e Grave Small PO-13S (OxSA) OxSA
139 1: i Umlaut Small PO-139 (OxSB) OxSB
140 i i Circumflex Small PO-140 (OxSC) OxSC
141 1 i Grave Small PO-141 (OxSD) OxSD
142 A a Umlaut Capital PO-142 (OxSE) OxSE

Figure 3-30 (Part 3 of 7). Code Page PO

Virtual Terminal Subsystem 3-121

Position Code Pagel Internal
Number Character Code Point Code

143 A a Overcircle Capital PO·143 (Ox8F) Ox8F
144 E e Acute Capital PO·144 (Ox90) Ox90
145 re ae Diphthong Small PO·145 (Ox91) Ox91
146 1E ae Diphthong Capital PO·146 (Ox92) Ox92
147 0 o Circumflex Small PO·147 (Ox93) Ox93
148 0 o Umlaut Small PO·148 (Ox94) Ox94
149 0 o Grave Small PO·149 (Ox95) Ox95
150 U u Circumflex Small PO·150 (Ox96) Ox96
151 U u Grave Small PO·151 (Ox97) Ox97
152 Y. y Umlaut Small PO·152 (Ox98) Ox98
153 0 o Umlaut Capital PO·153 (Ox99) Ox99
154 U u Umlaut Capital PO·154 (Ox9A) Ox9A
155 0 o Slash Small PO·155 (Ox9B) Ox9B
156 £ English Pound Sign PO·156 (Ox9C) Ox9C
157 0 o Slash Capital PO·157 (Ox9D) Ox9D
158 x Multiplication Sign PO·158 (Ox9E) Ox9E
159 f Florin Sign PO·159 (Ox9F) Ox9F
160 a a Acute Small PO·160 (OxAO) OxAO
161 i i Acute Small PO·161 (OxA1) OxA1
162 6 o Acute Small PO·162 (OxA2) OxA2
163 U u Acute Small PO·163 (OxA3) OxA3
164 fi n Tilde Small PO·164 (OxA4) OxA4
165 N n Tilde Capital PO·165 (OxA5) OxA5
166 !! Feminine Sign PO·166 (OxA6) OxA6
167 Q Masculine Sign PO·167 (OxA 7) OxA7
168 j, Inverted Question Mark PO·168 (OxA8) OxA8
169 ® Registered Trademark PO·169 (OxA9) OxA9
170 --, Logical Not PO·170 (OxAA) OxAA
171 ~ One Half PO·171 (OxAB) OxAB
172 Yt One Quarter PO·172 (OxAC) OxAC
173 i Inverted Exclamation Sign PO·173 (OxAD) OxAD
174 « Left Angle Quotes PO·174 (OxAE) OxAE
175 » Right Angle Quotes PO·175 (OxAF) OxAF
176 ... Quarter Hashed PO·176 (OxBO) OxBO
177 ;:::: Half Hashed PO·177 (OxB1) OxB1 :~:;:

178 III Full Hashed PO·178 (OxB2) OxB2
179 I Vertical Bar PO·179 (OxB3) OxB3

Figure 3-30 (Part 4 of 7). Code Page PO

3-122 VRM Device Support

Position Code Pagel Internal
Number Character Code Point Code

180 ~ Right Side Middle PO-180 (OxB4) OxB4
181 A a Acute Capital PO-181 (OxB5) OxB5
182 A a Circumflex Capital PO-182 (OxB6) OxB6
183 A a Grave Capital PO-183 (OxB7) OxB7
184 © Copyright Symbol PO-184 (OxB8) OxB8
185 ~I Double Right Side Middle PO-185 (OxB9) OxB9
186 II Double Vertical Bar PO-186 (OxBA) OxBA
187 "'iI Double Upper Right Corner Box PO-187 (OxBB) OxBB
188 ='J Double Lower Right Corner Box PO-188 (OxBC) OxBC
189 ¢ Cent Sign PO-189 (OxBD) OxBD
190 ¥ Yen Sign PO-190 (OxBE) OxBE
191 , Upper Right Corner Box PO-191 (OxBF) OxBF
192 L Lower Left Corner Box PO-192 (OxCO) OxCO
193 .L Bottom Side Middle PO-193 (OxC1) OxC1
194 T Top Side Middle PO-194 (OxC2) OxC2
195 ~ Left Side Middle PO-195 (OxC3) OxC3
196 Center Box Bar PO-196 (OxC4) OxC4
197 + Intersection PO-197 (OxC5) OxC5
198 a a Tilde Small PO-198 (OxC6) OxC6
199 A a Tilde Capital PO-199 (OxC7) OxC7
200 b Double Lower Left Corner Box PO-200 (OxC8) OxC8
201 rr Double Upper Left Corner Box PO-201 (OxC9) OxC9
202 .JL Double Bottom Side Middle PO-202 (OxCA) OxCA
203 -'i Double Top Side Middle PO-203 (OxCB) OxCB
204 If= Double Left Side Middle PO-204 (OxCC) OxCC
205 Double Center Box Bar PO-205 (OxCD) OxCD
206 ...JL Double Intersection PO-206 (OxCE) OxCE .,r

207 a International Currency Symbol PO-207 (OxCF) OxCF
208 ~ eth Icelandic Small PO-208 (OxDO) OxDO
209 D eth Icelandic Capital PO-209 (OxD1) OxD1
210 E e Circumflex Capital PO-210 (OxD2) OxD2
211 E e Umlaut Capital PO-211 (OxD3) OxD3
212 E e Grave Capital PO-212 (OxD4) OxD4
213 I Small i Dotless PO-213 (OxD5) OxD5
214 f i Acute Capital PO-214 (OxD6) OxD6
215 i i Circumflex Capital PO-215 (OxD7) OxD7
216 r i Umlaut Capital PO-216 (OxD8) OxD8

Figure 3-30 (Part 5 of 7). Code Page PO

Virtual Terminal Subsystem 3-123

Position Code Pagel Internal
Number Character Code Point Code

217 J Lower Right Corner Box PO-217 (OxD9) OxD9
218 r Upper Left Corner Box PO-218 (OxDA) OxDA
219 • Bright Character Cell PO-219 (OxDB) OxDB
220 - Brigh t Character Cell - Lower Half PO-220 (OxDC) OxDC
221 Broken Vertical Bar PO-221 (OxDD) OxDD
222 I i Grave Capital PO-222 (OxDE) OxDE
223 - Bright Character Cell - Upper Half PO-223 (OxDF) OxDF
224 0 o Acute Capital PO-224 (OxEO) OxEO
225 ~ s Sharp Small PO-225 (OxE1) OxE1
226 0 o Circumflex Capital PO-226 (OxE2) OxE2
227 0 o grave capital PO-227 (OxE3) OxE3
228 0 o Tilde Small PO-228 (OxE4) OxE4
229 0 o Tilde Capital PO-229 (OxE5) OxE5
230 ~ Mu Small, Micro Symbol PO-230 (OxE6) OxE6
231 p Thorn Icelandic Small PO-231 (OxE7) OxE7
232 I> Thorn Icelandic Capital PO-232 (OxE8) OxE8
233 11 u Acute Capital PO-233 (OxE9) OxE9
234 U u Circumflex Capital PO-234 (OxEA) OxEA
235 U u Grave Capital PO-235 (OxEB) OxEB
236 y y Acute Small PO-236 (OxEC) OxEC
237 y y Acute Capital PO-237 (OxED) OxED
238 Overbar PO-238 (OxEE) OxEE
239 Acute Accent PO-239 (OxEF) OxEF
240 Syllable Hyphen PO-240 (OxFO) OxFO
241 ± Plus Or Minus Sign PO-241 (OxF1) OxFl
242 Double Underscore PO-242 (OxF2) OxF2
243 % Three Fourths PO-243 (OxF3) OxF3
244 ~ Paragraph Symbol PO-244 (OxF4) OxF4
245 § Section Symbol PO-245 (OxF5) OxF5
246 Division Sign PO-246 (OxF6) OxF6
247 ~ Cedilla Accent PO-247 (OxF7) OxF7
248 0 Degree Symbol, Overcircle Accent PO-248 (OxF8) OxF8
249 Umlaut Accent PO-249 (OxF9) OxF9
250 Middle Dot, Product Dot PO-250 (OxF A) OxFA
251 Superscript 1 PO-251 (OxFB) OxFB
252 Superscript 3 PO-252 (OxFC) OxFC
253 2 Superscript 2 PO-253 (OxFD) OxFD

Figure 3-30 (Part 6 of 7). Code Page PO

3-124 VRM Device Support

Position Code Pagel Internal
Number Character Code Point Code

254 Vertical Solid Rectangle PO-254 (OxFE) Ox FE
255 Required Space PO-255 (OxFF) OxFF

Figure 3-30 (Part 7 of 7). Code Page PO

Virtual Terminal Subsystem 3-125

Position Code Pagel Internal
Number Character Code Point Code

256 • Spanish Middle Dot Pl-256 (Ox20) Ox1FAO
257 ~ Smiling Face Pl-257 (Ox21) Ox1FA1
258 t8 Dark Smiling Face Pl-258 (Ox22) Ox1FA2
259 • Heart Pl-259 (Ox23) Ox1FA3
260 + Diamond Pl-260 (Ox24) Ox1FA4
261 + Club Pl-261 (Ox25) Ox1FA5
262 + Spade Pl-262 (Ox26) Ox1FA6-
263 • Bullet Pl-263 (Ox27) Ox1FA7
264 a Reverse Video Bullet Pl-264 (Ox28) Ox1FA8
265 0 Circle Pl-265 (Ox29) Ox1FA9
266 &l Reverse Video Circle Pl-266 (Ox2A) Ox1FAA
267 6 Male Symbol Pl-267 (Ox2B) Ox1FAB
268 ~ Female Symbol Pl-268 (Ox2C) Ox1FAC
269 J1 Eighth Note Pl-269 (Ox2D) Ox1FAD
270 ~ Sixteenth Note Pl-270 (Ox2E) Ox1FAE
271 <:1- Sun Pl-271 (Ox2F) Ox1FAF
272 ~ Right Solid Triangle Pl-272 (Ox30) Ox1FBO
273 Left Solid Triangle Pl-273 (Ox31) Ox1FB1
274 t Bidirectional Vertical Arrow Pl-274 (Ox32) Ox1FB2
275 !! Double Exclamation Point Pl-275 (Ox33) Ox1FB3
276 ~ Paragraph Symbol Pl-276 (Ox34) Ox1FB4
277 § Section symbol Pl-277 (Ox35) Ox1FB5
278 Horizontal Solid Rectangle Pl-278 (Ox36) Ox1FB6
279 L Under lined Bidirectional Vertical Arrow Pl-279 (Ox37) Ox1FB7
280 i Up Arrow Pl-280 (Ox38) Ox1FB8
281 t Down Arrow Pl-281 (Ox39) Ox1FB9
282 ~ Right Arrow Pl-282 (Ox3A) Ox1FBA
283 +- Left Arrow Pl-283 (Ox3B) Ox1FBB
284 L Diagonally Flipped Logical Not Pl-284 (Ox3C) Ox1FBC
285 Bidirectional Horizontal Arrow Pl-285 (Ox3D) Ox1FBD
286 • Solid Upward Triangle Pl-286 (Ox3E) Ox1FBE
287 ~ Solid Downward Triangle Pl-287 (Ox3F) Ox1FBF
288 a a Tilde Small Pl-288 (Ox40) Ox1FCO
289 ~ s Sharp Small Pl-289 (Ox41) Ox1FC1
290 A a Circumflex Capital Pl-290 (Ox42) .ox1FC2
291 A a Grave Capital Pl-291 (Ox43) Ox1FC3
292 A a Acute Capital Pl-292 (Ox44) Ox1FC4

Figure 3-31 (Part 1 of 7). Code Page PI

3-126 VRM Device Support

Position Code Pagel Internal
Number Character Code Point Code

293 A a Tilde Capital Pl-293 (Ox45) OxlFC5
294 0 o Slash Small Pl-294 (Ox46) OxlFC6
295 E e Circumflex Capital Pl-295 (Ox47) OxlFC7
296 E e Umlaut Capital Pl-296 (Ox48) OxlFC8
297 E e Grave Capital Pl-297 (Ox49) OxlFC9
298 f i Acute Capital Pl-298 (Ox4A) OxlFCA
299 I i Circumflex Capital Pl-299 (Ox4B) OxlFCB
300 'j i Umlaut Capital Pl-300 (Ox4C) OxlFCC
301 I i Grave Capital Pl-30l (Ox4D) OxlFCD
302 0 Slashed 0 Capital Pl-302 (Ox4E) OxlFCE
303 b eth Icelandic Small Pl-303 (Ox4F) OxlFCF
304 " y Acute Small Pl-304 (Ox50) OxlFDO y
305 P Thorn Icelandic Small Pl-305 (Ox5l) OxlFDl
306 -:J Cedilla Accent Pl-306 (Ox52) OxlFD2
307 ~ International Currency Symbol Pl-307 (Ox53) OxlFD3
308 D eth Icelandic Capital Pl-308 (Ox54) OxlFD4 ,
309 Y y Acute Capital Pl-309 (Ox55) OxlFD5
310 1> Thorn Icelandic Capital Pl-3l0 (Ox56) OxlFD6
311 ® Registered Trademark Symbol Pl-3ll (Ox57) OxlFD7
312 % Three Quarters Pl-3l2 (Ox58) OxlFD8
313 - Overbar Accent, Macron Accent Pl-3l3 (Ox59) OxlFD9
314 Umlaut Accent Pl-3l4 (Ox5A) OxlFDA
315 Acute Accent Pl-3l5 (Ox5B) OxlFDB
316 - Double Underscore Pl-3l6 (Ox5C) OxlFDC
317 <5 o Tilde Small Pl-3l7 (Ox5D) OxlFDD
318 1 Small i Dotless Pl-3l8 (Ox5E) OxlFDE
319 0 o Circumflex Capital Pl-3l9 (Ox5F) OxlFDF
320 0 o Grave Capital Pl-328 (Ox60) OxlFEO
321 6 o Acute Capital Pl-32l (Ox6l) OxlFEl
322 0 o Tilde Capital Pl-322 (Ox62) OxlFE2
323 3 Superscript 3 Pl-323 (Ox63) OxlFE3
324 U u Circumflex Capital Pl-324 (Ox64) OxlFE4
325 U u Grave Capital Pl-325 (Ox65) OxlFE5
326 U u Acute Capital Pl-326 (Ox66) OxlFE6
327 '! a Ogonek Small Pl-327 (Ox67) OxlFE7
328 e e Caron Small Pl-328 (Ox68) OxlFE8
329 Ii n Caron Small Pl-329 (Ox69) OxlFE9

Figure 3-31 (Part 2 of 7). Code Page PI

Virtual Terminal Subsystem 3-127

Position Code Pagel Internal
Number Character Code Point Code

330 c' c Acute Small Pl-330 (Ox6A) OxlFEA
331 ~ e Ogonek Small Pl-33l (Ox6B) OxlFEB
332 U u Overcircle Small Pl-332 (Ox6C) OxlFEC
333 d d Caron Small Pl-333 (Ox6D) OxlFED
334 i I Acute Small Pl-334 (Ox6E) OxlFEE
335 ~ a Ogonek Capital Pl-335 (Ox6F) OxiFEF
336 E e Caron Capital Pl-336 (Ox70) OxlFFO
337 C c Caron Capital Pl-337 (Ox7l) OxlFFl
338 C c Acute Capital Pl-338 (Ox72) OxlFF2
339 Caron Accent Pl-339 (Ox73) OxlFF3
340 ~ e Ogonek Capital Pl-340 (Ox74) OxlFF4
341 0 u Overcircle Capital Pl-34l (Ox75) OxlFF5
342 t) d Caron Capital Pl-342 (Ox76) OxlFF6
343 L I Acute Capital Pl-343 (Ox77) OxlFF7
344 f I Caron Small Pl-344 (Ox78) OxlFF8
345 n n Caron Small Pl-345 (Ox79) OxlFF9
346 it d Stroke Small Pl-346 (Ox7 A) OxlFFA
347 r r Caron Small Pl-347 (Ox7b) OxlFFB
348 S s Acute Small Pl-348 (Ox7C) OxlFFC
349

0

Overcircle Accent Pl-349 (Ox7D) OxlFFD
350 I Slash Small Pl-350 (Ox7E) OxlFFE
351 n n Acute Small Pl-35l (Ox7F) OxlFFF
352 S s Caron Small Pl-352 (Ox80) OxlE80

" 353 L I Caron Capital Pl-353 (Ox8l) OxlE8l
354 N n Caron Capital Pl-354 (Ox82) OxlE82
355 R r Caron Capital Pl-355 (Ox83) OxlE83
356 S s Acute Capital Pl-356 (Ox84) OxlE84
357 Overdot Accent Pl-357 (Ox85) OxlE85
358 z z Overdot Small Pl-358 (Ox86) OxlE86
359 ~ Ogonek Accent Pl-359 (Ox87) OxlE87
360 Z z Overdot Capital Pl-360 (Ox88) OxlE88
361 Z z Caron Small Pl-36l (Ox89) OxlE89
362 Z z Acute Small Pl-362 (Ox8A) OxlE8A
363 Z z Caron Capital Pl-363 (Ox8B) OxlE8B
364 Z z Acute Capital Pl-364 (Ox8C) OxlE8C
365 L I Slash Capital Pl-365 (Ox8D) OxlE8D
366 N- n Acute Capital Pl-366 (Ox8E) OxlE8E

Figure 3-31 (Part 3_ of 7). Code Page PI

3-128 VRM Device Support

Position Code Pagel Internal
Number Character Code Point Code

v

367 S s Caron Capital Pl-367 (Ox8F) OxlE8F
368

v
t Caron Small Pl-368 (Ox90) OxlE90 t

369
,

r Acute Small Pl-369 (Ox91) OxlE91 r
370 " o Double Acute Small Pl-370 (Ox92) OxlE92 0

371 U u Double Acute Small Pl-371 (Ox93) OxlE93
372 t t Caron Capital Pl-372 (Ox94) OxlE94
373 ~ r Acute Capital Pl-373 (Ox95) OxlE95
374 9 o Double Acute Capital Pl-374 (Ox96) OxlE96
375 U u Double Acute Capital Pl-375 (Ox97) OxlE97
376 a a Breve Small Pl-376 (Ox98) OxlE98
377 f g Breve Small Pl-377 (Ox99) OxlE99
378 i Overdot Capital Pl-378 (Ox9A) OxlE9A
379 A a Breve Capital Pl-379 (Ox9B) OxlE9B
380 G g Breve Capital Pl-380 (Ox9C) OxlE9C
381 v Breve Accent Pl-381 (Ox9D) OxlE9D
382 " Double Acute Accent Pl-382 (Ox9E) OxlE9E
383 ~ s Cedilla Small Pl-383 (Ox9F) OxlE9F
384 t Liter Symbol Pl-384 (OxAO) OxlEAO
385 'n High Comma n Small Pl-385 (OxAl) OxlEAl
386 § s Cedilla Capital Pl-386 (OxA2) OxlEA2
387 Macron Accent Pl-387 (OxA3) OxlEA3
388 t t Cedilla Small Pl-388 (OxA4) OxlEA4
389 T t Cedilla Capital Pl-389 (OxA5) OxlEA5
390 a a Macron Small Pl-390 (OxA6) OxlEA6
391 A a Macron Capital Pl-391 (OxA 7) OxlEA7
392

A

c Circumflex Small Pl-392 (OxA8) OxlEA8 c
393 C c Circumflex Capital Pl-393 (OxA9) OxlEA9
394

,
High Reverse Solidus Pl-394 (OxAA) OxlEAA

395 C c Overdot Small Pl-396 (OxAB) OxlEAB
396 C c Overdot Capital Pl-396 (OxAC) OxlEAC
397 e e Overdot Small Pl-397 (OxAD) OxlEAD
398 E e Overdot Capital PI-398 (OxAE) OxlEAE
399 ~ e Macron Small PI-399 (OxAF) OxlEAF
400 E e Macron Capital PI-400 (OxBO) OxlEBO
401

,
g Acute Small Pl-401 (OxBl) OxlEBl g

402 ~ g Circumflex Small Pl-402 (OxB2) OxlEB2
403 b g Circumflex Capital Pl-403 (OxB3) OxlEB3

Figure 3-31 (Part 4 of 7). Code Page PI

Virtual Terminal Subsystem 3-129

Position Code Pagel Internal
Number Character Code Point Code

404
~

g Overdot Small Pl-404 (OxB4) Ox1EB4
405 g Overdot Capital Pl-405 (OxB5) Ox1EB5
406

~
g Cedilla Capital Pl-406 (OxB6) Ox1EB6

407 h Circumflex Small Pl-407 (OxB7) Ox1EB7
408 H h Circumflex Capital Pl-408 (OxB8) Ox1EB8
409 If h Stroke Small Pl-409 (OxB9) Ox1EB9
410 tt h Stroke Capital Pl-410 (OxBA) Ox1EBA
411 1 i Tilde Small Pl-411 (OxBB) Ox1EBB
412 1 i Tilde Capital Pl-412 (OxBC) Ox1EBC
413 1 i Macron Small Pl-413 (OxBD) Ox1EBD
414 j i Macron Capital Pl-414 (OxBE) Ox1EBE
415 1 i Ogonek Small Pl-415 (OxBF) Ox1EBF
416 l i Ogonek Capital Pl-416 (OxCO) Ox1ECO
417 jj ij Ligature Small Pl-417 (OxC1) Ox1EC1
418 ~ IJ Ligature Capital Pl-418 (OxC2) Ox1EC2
419 J j Circumflex Small Pl-419 (OxC3) Ox1EC3
420 j Circumflex Capital Pl-420 (OxC4) Ox1EC4
421 Is k Cedilla Small Pl-421 (OxC5) Ox1EC5
422 K k Cedilla Capital Pl-422 (OxC6) Ox1EC6
423 K k Greenlandic Small Pl-423 (OxC7) Ox1EC7
424 J I Cedilla Small Pl-424 (OxC8) Ox1EC8
425 J-. I Cedilla Capital Pl-425 (OxC9) Ox1ec9
426 1· I Middle Dot Small Pl-426 (OxCA) Ox1ECA
427 h I Middle Dot Capital Pl-427 (OxCB) Ox1ECB
428 I} n Cedilla Small Pl-428 (OxCC) OxlECC
429 i'i n Cedilla Capital Pl-429 (OxCD) OxlECD
430 () n Eng Lapp Small Pl-430 (OxCE) OxlECE
431 rJ n Eng Lapp Capital Pl-431 (OxCF) OxlECF
432 0 o Macron Small Pl-432 (OxDO) OxlEDO
433 6 o Macron Capital Pl-433 (OxDl) OxlED1
434 re oe Ligature Small Pl-434 (OxD2) OxlED2
435 CE oe Ligature Capital Pl-435 (OxD3) OxlED3
436 ~ r Cedilla Small Pl-436 (OxD4) OxlED4
437 (r Cedilla Capital Pl-437 (OxD5) OxlED5
438 s Circumflex Small Pl-438 (OxD6) OxlED6
439 S s Circumflex Capital Pl-439 (OxD7) OxlED7
440 of. t Stroke Small Pl-440 (OxD8) OxlED8

Figure 3-31 (Part 5 of 7). Code Page PI

3-130 VRM Device Support

Position Code Pagel Internal
Number Character Code Point Code

441 ~ t Stroke Capital Pl-441 (OxD9) OxlED9
442 u u Tilde Small Pl-442 (OxDA) OxlEDA
443 fJ u Tilde Capital Pl-443 (OxDB) OxlEDB
444

...,
u Breve Small Pl-444 (OxDC) OxlEDC u

445 U u Breve Capital Pl-445 (OxDD) OxlEDD
446 u u Macron Small Pl-446 (OxDE) OxlEDE
447 U u Macron Capital Pl-447 (OxDF) OxlEDF
448 V u Ogonek Small Pl-448 (OxEO) OxlEEO
449 1] u Ogonek Capital Pl-449 (OxEl) OxlEEl
450 w w Circumflex Small Pl-450 (OxE2) OxlEE2

"-
451 W w Circumflex Capital Pl-451 (OxE3) OxlEE3
452

1\
Y Circumflex Small Pl-452 (OxE4) OxlEE4 ~

453 Y y Circumflex Capital Pl-453 (OxE5) OxlEE5
454 y Y Umlaut Capital Pl-454 (OxE6) OxlEE6
455 © Copyright Symbol Pl-455 (OxE7) OxlEE7
456 Superscript One Pl-456 (OxE8) OxlEE8
457 TM Trademark Symbol Pl-457 (OxE9) OxlEE9
458 % One Eighth Pl-458 (OxEA) OxlEEA
459 % Three Eights Pl-459 (OxEB) OxlEEB
460 % Five Eighths Pl-460 (OxEC) OxlEEC
461 % Seven Eighths Pl-461 (OxED) OxlEED
462 x Multiplication Sign Pl-462 (OxEE) OxlEEE
463 Right Single Quote Pl-463 (OxEF) OxlEEF
464 " Left Double Quote Pl-464 (OxFO) OxlEFO
465 " Right Double Quote Pl-465 (OxFl) OxlEFl
466 Equal Sign Superscript Pl-466 (OxF2) OxlEF2
467 Minus Sign Superscript Pl-467 (OxF3) OxlEF3
468 + Plus Sign Superscript Pl-468 (OxF4) OxlEF4
469 r:I) Infinity symbol Superscript Pl-469 (OxF5) OxlEF5
470 II Pi Symbol Superscript Pl-470 (OxF6) OxlEF6
471 ~ Delta Symbol Superscript Pl-471 (OxF7) OxlEF7
472 Right Arrow Superscript Pl-472 (OxF8) OxlEF8
473 / Slash Superscript Pl-473 (OxF9) OxlEF9
474 t Dagger Pl-474 (OxFA) OxlEFA
475 < Left Angle Superscript Pl-475 (OxFB) OxlEFB
476 > Right Angle Superscript Pl-476 (OxFC) OxlEFC
477 ~ Prescription Symbol Pl-477 (OxFD) OxlEFD

Figure 3-31 (Part 6 of 7). Code Page PI

Virtual Terminal Subsystem 3-131

Position
Number Character

478
479

E 'Is Not An Element' Symbol
'Therefore' Symbol

Figure 3-31 (Part 7 of 7). Code Page PI

3-132 VRM Device Support

Code Pagel
Code Point

Internal
Code

Pl-478 (OxFE) OxlEFE
Pl-479 (OxFF) OxlEFF

Position Code Pagel Internal
Number Character Code Point Code

480 / Increase P2-480 (Ox20) OxlDAO
481 '\. Decrease P2-481 (Ox21) OxlDAl
482 :j: Double Dagger P2-482 (Ox22) OxlDA2
483 =1= Not Equal Symbol P2-483 (Ox23) OxlDA3
484 v OR Symbol P2-484 (Ox24) OxlDA4
485 /\ AND Symbol P2-485 (Ox25) OxlDA5
486 II Parallel P2-486 (Ox26) OxlDA6
487 L Angle Symbol P2-487 (Ox27) OxlDA7
488 < Left Angle Bracket P2-488 (Ox28) OxlDA8
489 > Right Angle Bracket P2-489 (Ox29) OxlDA9
490 =f Minus Or Plus Sign P2-490 (Ox2A) OxlDAA
491 0 Lozenge P2-491 (Ox2B) OxlDAB
492 Minutes Symbol P2-492 (Ox2C) OxlDAC
493 S Integral Symbol P2-493 (Ox2D) OxlDAD
494 U Union P2-494 (Ox2E) OxlDAE
495 c 'Is Included In' Symbol P2-495 (Ox2F) OxlDAF
496 :::> 'Includes' Symbol P2-496 (Ox30) OxlDBO
497 E9 Circle Plus, Closed Sum P2-497 (Ox31) OxlDBl
498 L Right Angle Symbol P2-498 (Ox32) OxlDB2
499 ~ Circle Multiply P2-499 (Ox33) OxlDB3
500 II Seconds Symbol P2-500 (Ox34) OxlDB4
501 Double Overline P2-501 (Ox35) OxlDB5
502 \jf Psi Small P2-502 (Ox36) OxlDB6
503 E Epsilon Small P2-503 (Ox37) OxlDB7
504 "- Lam bda Small P2-504 (Ox38) OxlDB8
505 11 Eta Small P2-505 (Ox39) OxlDB9
506 t Iota Small P2-506 (Ox3A) OxlDBA
507 (Upper Left Parenthesis Section P2-507 (Ox3B) OxlDBB
508 l Lower Left Parenthesis Section P2-508 (Ox3C) OxlDBC
509 %0 Permille Symbol P2-509 (Ox3D) OxlDBD
510 e Theta Small P2-510 (Ox3E) OxlDBE
511 K Kappa Small P2-511 (Ox3F) OxlDBF
512 0) Omega Small P2-512 (Ox40) OxlDCO
513 v Nu Small P2-513 (Ox41) OxlDCl
514 0 Omicron Small P2-514 (Ox42) OxlDC2
515 P Rho Small P2-515 (Ox43) OxlDC3
516 y Gamma Small P2-516 (Ox44) OxlDC4

Figure 3-32 (Part 1 of 4). Code Page P2

Virtual Terminal Subsystem 3-133

Position Code Pagel Internal
Number Character Code Point Code

517 oJ Theta Small P2-517 (Ox45) OxlDC5
518 1 Upper Right Parenthesis Section P2-518 (Ox46) OxlDC6
519) Lower Right Parenthesis Section P2-519 (Ox47) OxlDC7
520 '" 'Congruent To' Symbol P2-520 (Ox48) OxlDC8
521 ~ Xi Small P2-521 (Ox49) OxlDC9
522 X Chi Small P2-522 (Ox4A) OxlDCA
523 \) Upsilon Small P2-523 (Ox4B) OxlDCB
524 ~ Zeta Small P2-524 (Ox4C) OxlDCC
525 f Lower Right/Upper Left Brace Section P2-525 (Ox4D) OxlDCD
526 1 Upper Right/Lower Left Brace Section P2-526 (Ox4E) OxlDCE
527 0 Zero Subscript P2-527 (Ox4F) OxlDCF
528 One Subscript P2-528 (Ox50) OxlDDO
529 2 Two Subscript P2-529 (Ox51) OxlDDl
530 3 Three Subscript P2-530 (Ox52) OxlDD2
531 4 Four Subscript P2-531 (Ox53) OxlDD3
532 5 Five Subscript P2-532 (Ox54) OxlDD4
533 6 Six Subscript P2-533 (Ox55) OxlDD5
534 7 Seven Subscript P2-534 (Ox56) OxlDD6
535 8 Eight Subscript P2-535 (Ox57) OxlDD7
536 9 Nine Subscript P2-536 (Ox58) OxlDD8
537 J.. Perpendicular P2-536 (Ox59) OxlDD9
538 Q Total Symbol P2-537 (Ox5A) OxlDDA
539 'I' Psi Capital P2-538 (Ox5B) OxlDDB
540 II Pi Capital P2-539 (Ox5C) OxlDDC
541 A Lambda Capital P2-541 (Ox5D) OxlDDD
542 , Bottle Symbol P2-542 (Ox5E) OxlDDE
543 b Substitute Blank P2-543 (Ox5F) OxlDDF
544 a Partial Differential Symbol P2-544 (Ox60) OxlDEO
545 1... Sine Symbol P2-545 (Ox61) OxIDE 1
546 0 Open Square P2-546 (Ox62) OxlDE2
547 • Solid Square P2-547 (Ox63) OxlDE3
548 0 Slash Square P2-548 (Ox64) OxlDE4
549 '\ Upper Summation Section P2-549 (Ox65) OxlDE5
550 L Lower Summation Section P2-550 (Ox66) OxlDE6
551 ~ Xi Capital P2-551 (Ox67) OxlDE7
552 ex 'Proportional To' Symbol P2-552 (Ox68) OxlDE8
553 8 Delta Capital P2-553 (Ox69) OxlDE9

Figure 3-32 (Part 2 of 4). Code Page P2

3-134 VRM Device Support

Position Code Pagel Internal
Number Character Code Point Code

554 y Upsilon Capital P2-554 (Ox6A) Ox1DEA
555 ~ , Approximately Equal To' Symbol P2-555 (Ox6B) Ox1DEB
556 Cycle Symbol, 'Equivalent To' Symbol P2-556 (Ox6C) Ox1DEC
557 0 Zero Superscript P2-557 (Ox6D) Ox1DED
558 4 Four Superscript P2-558 (Ox6E) Ox1DEE
559 5 Five Superscript P2-559 (Ox6F) Ox1DEF
560 6 Six Superscript P2-560 (Ox70) Ox1DFO
561 7 Seven Superscript P2-561 (Ox71) Ox1DF1
562 8 Eight Superscript P2-562 (Ox72) Ox1DF2
563 9 Nine Superscript P2-563 (Ox73) Ox1DF3
564 0 Zero Slash P2-564 (Ox74) Ox1DF4
565 R Paseta Sign P2-565 (Ox75) Ox1DF5
566 r Flipped Logical Not P2-566 (Ox76) Ox1DF6
567 =9 Right Side Middle - Double Horizontal P2-567 (Ox77) Ox1DF7
568 -11 Right Side Middle - Double Vertical P2-568 (Ox78) Ox1DF8
569 II Upper Right Corner Box - Double Vertical P2-569 (Ox79) Ox1DF9
570 "l Upper Right Corner Box - Double Hor. P2-570 (Ox7 A) Ox1DFA
571 --'l Lower Right Corner Box - Double Vertical P2-571 (Ox7B) Ox1DFB
572 d Lower Right Corner Box - Double Hor. P2-572 (Ox7C) Ox1DFC
573 f= Left Side Middle - Double Horizontal P2-573 (Ox7D) Ox1DFD
574 If- Left Side Middle - Double Vertical P2-574 (Ox7E) Ox1DFE
575 .-1- Bottom Side Middle - Double Horizontal P2-575 (Ox7F) Ox1DFF
576 JL Bottom Side Middle - Double Vertical P2-576 (Ox80) Ox1C80
577 -r Top Side Middle - Double Horizontal P2-577 (Ox81) Ox1C81
578 IL Lower Left Corner Box - Double Vertical P2-578 (Ox82) Ox1C82
579 b Lower Left Corner Box - Double Hor. P2-579 (Ox83) Ox1C83
580 F Upper Left Corner Box - Double Hor. P2-580 (Ox84) Ox1C84
581 rr Upper Left Corner Box - Double Vertical P2-581 (Ox85) Ox1C85
582 -{1- Intersection - Double Vertical P2-582 (Ox86) Ox1C86
583 =4= Intersection - Double Horizontal P2-583 (Ox87) Ox1C87
584 • Bright Character Cell - Left Half P2-585 (Ox88) Ox1C88
585 I Bright Character Cell - Right Half P2-585 (Ox89) Ox1C89
586 a Alpha Small P2-586 (Ox8A) Ox1C8A
587 ~ Beta Small P2-587 (Ox8B) Ox1C8B
588 r Gamma Capital P2-588 (Ox8C) Ox1C8C
589 1t Pi Small P2-589 (Ox8D) Ox1C8D
590 L Sigma Capital/Summation Sign P2-590 (Ox8E) Ox1C8E

Figure 3-32 (Part 3 of 4). Code Page P2

Virtual Terminal Subsystem 3-135

Position Code Pagel Internal
Number Character Code Point Code

591 cr Sigma Small P2-591 (Ox8F) Ox1C8F
592 't Tau Small P2-592 (Ox90) Ox1C90
593 <l> Phi Capital P2-593 (Ox91) Ox1C91
594 0 Theta Capital P2-594 (Ox92) Ox1C92
595 Q Omega Capital/Ohm Sign P2-595 (Ox93) Ox1C93
596 8 Delta Small P2-596 (Ox94) Ox1C94
597 CIJ Infinity P2-597 (Ox95) 'Ox1C95
598 q> Phi Small P2-598 (Ox96) Ox1C96
599 E 'Is An Element Of' Symbol P2-599 (Ox97) Ox1C97
600 n Intersection P2-600 (Ox98) Ox1C98
601 - Identity Symbol P2-601 (Ox99) Ox1C99
602 ~ 'Greater Than or Equal To' Symbol P2-602 (Ox9A) Ox1C9A
603 ~ "Less Than or Equal To' Symbol P2-603 (Ox9B) Ox1C9B
604 r Upper Intregal Section P2-604 (Ox9C) Ox1C9C
605 J Lower Integral Section P2-605 (Ox9D) Ox1C9D
606 ,...., Double Equivalent P2-606 (Ox9E) Ox1C9E ,....,

607 Solid Overcircle P2-607 (Ox9F) Ox1C9F
608 ...,- Radical Symbol, Square Root P2-608 (OxAO) OxlCAO
609 Ir Top Side Middle - Double Vertical P2-609 (OxA1) Ox1CA1
610 11 Superscript n P2-610 (OxA2) Ox1CA2
611 Numeric Space P2-611 (OxA3) Ox1CA3
612 <l Center Line P2-612 (OxA4) Ox1CA4
613 U Counter Bore P2-613 (OxA5) Ox1CA5
614 v Counter Sink P2-614 (OxA6) Ox1CA6
615 T Depth P2-615 (OxA7) Ox1CA7
616 0 Diameter P2-616 (OxA8) Ox1CA8

Figure 3-32 (Part 4 of 4). Code Page P2

3-136 VRM Device Support

First Hexadecimal Digit

0 J 2 3 4 5 6 7 8 9 A B C D E F

0 INUL DLE BLANK 0 @ p , p <; E , L b 6 -(SPACE! a ...
J SOH , 1 A Q q .. , LL -D 13 + DCl a u CE :
2 STX DC2 II 2 B R b r

,
fE

,
E 6 = e 0 ~.--

=IF 3 C S ~ " ,
E

...
VI 3 ETX DC3 C S 0 U I-- 0

4 $ 4 D T d t
.. .. ~

E 0 err EOT DC4 a 0 n - I----

5 IENQ NAK 0/0 5 E U " " N A ~ 1 0 § e u a 0
6 lACK SYN & 6 F V f 0 1\ a A a I Y v a u -

7 BEL ETB
,

7 G W g w « " 0 A X i p U -J

-

ICAN (8 H X h "
.. 0

© lb: p 0 8 BS X e y G I
9 HT EM) 9 I Y

0 y .. 0 ® ~ It D U o.

1 e
0 J Z

.
" 0 iS~

A LF SUB * · J z e -, •

+ · K [k { ..
eI> Y2 1

B VT ESC , 1 nl it U
C < L "- I I " £ ~ bdJ ~ 3 FF SS4 , 1 Y
D M] } " {21

0

¢ I

I Y 2 CR SS3 - - m 1
,

I

E SO SS2 > N /\ n ~ A x « ¥ RF I - I .
F Sl SSI / ? 0 0 ~ A f' » ~ ~ ~; BLANK

· - 'Ff'

Figure 3-33. Code Page PO

Virtual Terminal Subsystem 3-137

First Hexadecimal Digit

0 I 2 3 4 5 6 7 8 9 A B C D E F

0 NUL DLE • ~ a Y
...
a E s f t E 1 0 Q "

I SOH DCI <;;) ~ p P 6 C L f '0 g .. 6 1] " 1)

2 STX DC2 - t A D C N " ~ IJ oe '" =
-.j 0 g w

• "
... 3 it " G

,.

CE \Xl 3 ETX DC3 A ~ " II - J ..

• <IT
,

S T . ,.. + 4 EaT DC4 A D U E t g J .J Y I.. ~

§ A i U
0 11 G '" 5 ENQ tNAK ... U . ! k It y :0

• P U f> 0 " ~ 6 ACK SYN - 0 z a a ~ S Y 1t

7 BEL ETB • t E ® ~ L " A fi .J U I< S © Do

8 D 1 E Yl e 1 Z C H 1 1 -+ BS CAN a l
~

...
9 HT EM 0 ! E - C n i g C -h- !t T TM I

A LF SUB [I --+ f .. C d i i ,
H I- II VB t

d I Z A
.

I; D VB B VT ESC +-- ,
~ t c 1 <

9
0 , i G C f ii Ys C FF SS4 L I = II S 0 >

~

,P
... a -

~ u Va ~ D CR SS3 +--+ I 0 0 l. e 1

~ 0
,

N I E E so SS2 ... 1 1 l " E C ii x

F S1 SS1 -0- ... b 6 4- n S ~ e ! r) 0 , . .

Figure 3-34. Code Page PI

3-138 VRM Device Support

First Hexadecimal Digit

0 I 2 3 4 5 6 7 8 9 A 8 C 0 E F

0 NUL DLE / ~ w a 6

1
I-IL T -r

I ~SOH DCl " e V '"'-'
7
IT 2 IJr 2

2 STX DC2 * L 0 D 8 lL e n
3

3 ETX DC3 =/: ~ P II 9 b n 4

4 EaT DC4 V II)' (ZJ ¢J F 0 <t 5

5 ENQ NAK 1\ - {} \' Pts - 00 U 6

6 ACK SYN II 'II "')
7 L r 1- - 0 v

7 L)
~ E ~ BEL ETB e ... 1= 1= ~ 8 ~

8 BS CAN < A !::::d. ex: l--i n 9J - 9

9 HT EM > Tl ~ .l. ~ III ---
A LF SUB + t X 0 y I~ ex: > -
B VT ESC tI (u \}J -- ~ fJ < -
C FF SS4 , l r II ~ ~ r r
0 CR SS3 f roo f A 0

~ 1T J
E so SS2 U e \. 4~ " :E ~ t-- ~

F Sl SSI C K 40 5 1== (j • 0

Figure 3-35. Code Page P2

Virtual Terminal Subsystem 3-139

Display Device Driver Considerations

A display device driver is somewhat more complex than a typical hardware device driver. Most
hardware devices, such as a diskette drive or printer, have a device driver and perhaps a device
manager that regulate the use of the device. A display device has the additional layer of software
components described in "Virtual Machine Interface to the VTRM" on page 3-6 and "Virtual
Machine Interface to the VTMP" on page 3-26. Still more software components exist between the
VTMP and the hardware device driver. Two modules, the common device utilities and
device-specific modules (both shown in Figure 3-36), provide additional support for display device
implementation. The common device utilities are available to the VTMP to perform such tasks as
querying display or locator devices, setting parameters for display and keyboard functions, and so on.
The device-specific modules (DSM) are a set of callable procedures that, along with the device driver,
manipulate and control the contents of the physical display device. In order to provide support for a
new physical display, therefore, a developer must integrate a DSM and its accompanying display
device driver into the VRM according to the specifications described here.

------ VM I .---

I Mode Processor I
I

Call interface

------ Hard war e .--

000
Displays

Figure 3-36. Display Subsystem Components

3-140 VRM Device Support

Device-specific Module Characteristics

A device-specific module can be in one of three modes and in either active or inactive state within a
mode. Valid modes include:

• Monitored mode (MOM)

In MOM mode the DSM relinquishes all control of the physical display to the calling process.
The DSM detaches from its device driver and sets its internal state to refrain from modifying the
display in any way. In MOM mode, an application uses the VTMP to take direct control of the
display without interference from the DSM. All DSMs support a MOM mode.

• Keyboard send/receive mode (KSR)

In KSR mode, all DSMs maintain a presentation space buffer that presents an application
programming interface to all displays as if the display had a character buffer. This presentation
space buffer is a two-dimensional alphanumeric character array that maps characters onto the
display when the DSM is active. In KSR mode, the calling process can freely modify the
presentation space whether the DSM is active or inactive. All DSMs support a KSR mode.

o All-points-addressable mode (AP A)

DSMs that support display devices with all-points-addressable capability can optionally
implement an APA mode. In APA mode, a virtual bit map (APA buffer) allocated and managed by
the caller can be copied to the display by the DSM. The caller has the option of specifying a
sub-rectangle of the APA buffer (known as the external raster array) to be copied to the screen.
This is useful when only~ a portion of the virtual bit map has been modified and the caller wants
to display it. Whether a DSM and its physical display can operate in APA mode is determined by
the DDS of the display device driver.

The mode can be changed at any time with the Set Mode function ("Set Mode" on page 3-170)
regardless of the DSM state.

The two states of a DSM are defined as follows:

• Active

In active state, all DSM functions result in modifications to the display hardware. Only one
instance of a DSM can be in active state at anyone time.

• Inactive

The inactive state allows multiple virtual terminals to be implemented because it allows DSM
functions to be freely called without modifying the display hardware. In KSR mode, the
application can function at will, and all output to the DSM modifies only the RAM-resident
virtual buffers. In MOM mode, the application determines the functions to implement. InAPA
mode, the caller must not issue the Update External Raster Array function ("Update External
Raster Array" on page 3-173) when inactive.

Virtual Terminal Subsystem 3-141

Device-specific module entry points

The following entry points are required for display device-specific modules added to the VRM. All
these entry points must be present in the module, even if they perform no function. Because the
VTMP calls each entry point as required (although the Initialize function is always called first),
there is no order dependency for the entry points. In addition, there must be no main entry point
defined.

3-142 VRM Device Support

Activate

Description: This function switches the DSM into active state and gives the module exclusive
access to the physical display. The mode is set according to the last Set Mode
function issued. Each mode has certain characteristics regarding hardware interrupts
and presentation space buffers. Those characteristics are:

• Monitored mode

To activate monitored mode on a device that uses hardware interrupts, the device
driver is detached from the previously active instance of the DSM.

• KSR mode

If the current state of the adapter is not KSR mode, the device is initialized to
KSR mode. For every instance of KSR mode, the Activate function causes the
current contents of the presentation space buffer to be drawn to the hardware
refresh buffer.

If the device uses hardware interrupts, the calling process is attached to the
device driver for interrupt-handling purposes, then is detached. This keeps the
VRM from calling the interrupt-handling entry point more often than necessary.

If the device has a loadable color table, the DSM's KSR mode color table is loaded
into the adapter's real color table.

• APA mode

if the current state of the adapter is not APA mode, the device is initialized to
APA mode. To complete the switch to APA mode, an Update External Raster
Array function must be called next (see "Update External Raster Array" on
page 3-173).

If the device uses hardware interrupts, the calling process is attached to the
device driver for interrupt-handling purposes, then is detached. This keeps the
VRM from calling the interrupt-handling entry point more often than necessary.

If the device has a loadable color table, the DSM's AP A mode color table is loaded
into the adapter's real color table.

Calling Sequence:

cvttact ()
This function passes no parameters.

Programming Notes:

Only one instance of the device driver can be in the activated state at anyone time.
Calling the Activate entry point when the device driver is already activated will yield
unpredictable results for subsequent operations.

Virtual Terminal Subsystem 3-143

Note that the Initialize function is called before the first call to 'Activate.

This function can be called from any of the device-specific module modes.

IBM recommends the following approach to coding this entry point:

1. Mark this instance of the device-specific module as active.

2. If the instance-unique mode of the DSM is monitored mode, then:

a. Set the device and real screen table modes to MOM for this instance of t~e DSM.

b. If a process is attached to the device driver, detach the process and set the
rscr _path [rscr _ i d-1J field of the real screen table to zero.

3. If the instance-unique mode of the DSM is KSR mode, then:

a. Set the device and real screen table modes to KSR for this instance of the DSM.

b. Ensure that a process is attached to the device driver (the rscr_path[rscr_id-1J field of
the real screen table must not equal zero). If this field is zero (no process attached), attach a
process to the device driver. If you are using interrupts, attach your own process to the
driver. If you are not using interrupts, use the vtrmJ"c process to the driver. The vtrmJ"c
ID can be obtained from the shared resource structure.

c. N ext, set the r s c r _p at h [r s c r _ i d -1] field of the real screen table to the path ID returned
from the attach.

d. Copy the contents of the RAM-resident presentation space to the physical refresh buffer,
doing any required device-specific raster conversion.

e. Draw or enable the cursor, returning it to the correct shape and position.

f. Clear any unused areas at the right edge or bottom of the presentation space.

g. Set the device's color table to the appropriate virtual color table for the current mode.

4. If the instance-unique mode of the DSM is AP A mode, then:

a. Set the device and real screen table modes to AP A for this instance of the DSM.

b. Ensure that a process is attached to the device driver (the rscr _path [rscr _ i d-1J field of
the real screen table must not equal zero). If this field is zero (no process attached), attach a
process to the device driver. If you are using interrupts, attach your own process to the
driver. If you are not using interrupts, use the vtrmJ"c process to the driver. The vtrmJ"c
ID can be obtained from the shared resource structure.

c. N ext, set the r s c r _p at h [r s c r _ i d -1] field of the real screen table to the path ID returned
from the attach.

3-144 VRM Device Support

Clear Rectangle

Description: This function allows you to specify a rectangular area in the presentation space and
store into each character position in that area any combination of the following
attributes:

• Foreground color (one of 16 colors can be specified)
• Background color (one of 16 colors can be specified)
• Font (one of eight fonts can be specified)
• Underscore
• Reverse video
• Blink
• Bright
• N ondisplay (blank).

If the physical display does not use a hardware cursor, the cursor can be optionally
displayed when this function returns to the caller. If the display has a hardware
cursor, the cursor is always displayed on return to the caller.

Calling Sequence:

cvttclr (screen_pos, attr, cursor_pos, show_cursor)
struct vtt_box_rc_parms *screen_pos;
unsigned int attr;
struct vtt_cursor *cursor_pos;
unsigned int show_cursor;

The parameters to Clear Rectangle are defined as follows:

• screen_pos
This parameter specifies the coordinates of the upper left and lower right corners
of the rectangular area to be cleared.

• attr
This indicates the attributes of each character in the specified rectangular area.

• cursor_pos
This indicates the x and y position to which the cursor is moved if show_cursor
equals true.

• show_cursor
This parameter indicates whether the cursor is redrawn at the end of the
operation. This control allows the VTMP to determine the amount of AP A display
processing used to draw and redraw cursors. A 1 in this parameter indicates show
cursor; a 0 indicates do not show cursor.

Virtual Terminal Subsystem 3-145

For displays that use a hardware sprite cursor (as the PC Monochrome A/N
display does), this parameter indicates whether to move the cursor to the location
specified by the input parameters. When cursor_show equals zero, the cursor is
not moved; when it equals one, the cursor is moved.

Programming Notes:

If an invalid rectangular area is specified (such as coordinates outside the
presentation space, upper left and lower right coordinates switched, and so on), the
results of this function are unpredictable.

This function is valid only in KSR mode.

3-146 VRM Device Support

Copy Full Lines

Description: This function copies some or all lines in the presentation space to a new location
either before or after the specified lines. The source and destination points must be
within the presentation space and any information that lies beyond the lower right
hand corner of the presentation space is truncated.

This function is used with the clear rectangular text area to allow the insertion of
new lines into the presentation space.

The cursor can be optionally removed or remain displayed on the screen.

Calling Sequence:

cvttcfl (source_row, dest_row, length, cp, vtt_cursor_show)
int source_row;
int dest_row;
int length;
struct vtt_cursor_pos *cp;
int vtt_cursor_show;

The parameters to the Copy Full Lines function are defined as follows:

• source_row
This parameter specifies the first row number to copy.

• dest_row
This parameter specifies the row number to which the copy operation will copy
the first line of the specified source.

• 1 ength
This indicates the number of lines to copy.

• cp
This parameter stands for 'code point' and consists of the cp structure defined for
the Draw Text function. For the Copy Full Lines function, however, all fields are
reserved except for vtt_cursor. This parameter represents a structure that
indicates the position to which the cursor is moved if cursor_show equals true.

Virtual Terminal Subsystem 3-147

The vtt_cursor structure is defined as follows:

struct vtt_cursor
{

}

int cursor_x;
int cursor-y;

• vtt_cursor_show
This parameter indicates whether the cursor is redrawn at the end of the
operation. This control allows the VTMP to determine the amount of AP A display
processing used to draw and redraw cursors. A 1 in this parameter indicates show
cursor; a 0 indicates do not show cursor.

For displays that use a hardware sprite cursor (as the PC Monochrome A/N
display does), this parameter indicates whether to move the cursor to the location
specified by the input parameters. When cursor_show equals zero, the cursor is
not moved; when it equals one, the cursor is moved.

Programming Notes:

This function is valid only in KSR mode.

3-148 VRM Device Support

Copy Line Segment

Description: This function copies the partial or entire contents of a specified line in the
presentation space and truncates any information that exceeds the absolute left or
right margin of the line.

The contents of lines preceding the specified line are not affected, but succeeding
lines can be copied in the same way if the number of lines specified is greater than
one.

This function is used with the clear rectangular text area to obtain the repetitive
intraline move function.

If the starting point happens to be the first column of the first row, and the number of
lines requested is equal to the number of rows in the presentation space, then the
entire screen is effectively scrolled right. Otherwise, a partial screen scroll is
achieved.

The cursor can optionally be removed or remain displayed on the screen.

Calling Sequence:

cvttcp 1 (rc, cp , cursor_show)
struct vtt_rc_parms *rc;
struct vtt_cursor_pos *cp;
int cursor_show;

The parameters to Copy Line Segment are defined as follows:

• rc
This parameter stands for 'row/column' and consists of the following structure:

struct vtt_rc_parms
{

};

short string_length;
short string_index;
int start_row;
int start_column;
int dest_row;
int dest_column;

Virtual Terminal Subsystem 3-149

The fields in the preceding structure are defined as follows:

string_length

• cp

This length value specifies the number of character/attribute pairs to be
copied in each line.

string_index
This field is reserved.

start_row
This indicates the first row number of the presentation space/buffer to copy to.

start_column
This indicates the starting position, within each line, of the column from
which to copy.

dest_row
This indicates the last row number of the presentation space/buffer to which
to copy.

dest_column
This indicates the starting position, within each line, of the destination to
copy to. If the destination column number is greater than the starting column,
the specified line segment is copied to the right. Otherwise, the line segment is
copied to the left.

This parameter stands for 'code point' and consists of the cp structure defined for
the Draw Text function. For the Copy Line Segment function, however, all fields
are reserved except for vtt_cursor. This parameter represents a structure that
indicates the position to which the cursor is moved if cursor_show equals true.
The vtt_cursor structure is defined as follows:

struct vtt_cursor
{

}

int cursor_x;
int cursor_y;

• cursor_show
This parameter indicates whether the cursor is redrawn at the end of the
operation. This control allows the VTMP to determine the amount of AP A display

3-150 VRM Device Support

processing used to draw and redraw cursors. A 1 in this parameter indicates show
cursor; a 0 indicates do not show cursor.

For displays that use a hardware sprite cursor (as the PC Monochrome A/N
display does), this parameter indicates whether to move the cursor to the location
specified by the input parameters. When cursor_show equals zero, the cursor is
not moved; when it equals one, the cursor is moved.

Programming Notes:

This function is valid only in KSR mode.

Virtual Terminal Subsystem 3-151

Deactivate

Description: This function switches the DSM into the inactive state. The display device driver
copies the contents of the hardware refresh buffer to the RAM-resident presentation
buffer, if necessary. Subsequent move, draw, or cursor movement commands operate
on the RAM-resident version of the presentation space instead of the hardware.

Calling Sequence:

cvttdact ()
This function passes no parameters.

Programming Notes:

This function can be called from any of the DSM modes.

IBM recommends the following approach to coding this entry point:

1. Mark the state of this instance of the DSM to inactive.

2. If your device support strategy calls for the presentation space to be maintained
in the device refresh buffer, then copy the RAM-resident version of the buffer
back to the presentation space.

3-152 VRM Device Support

Define Cursor

Description: This function allows the cursor to be defined in one of six predefined shapes. In
addition to the predefined shapes, the cursor can also be defined as a character box in
which all the pixels are highlighted.

In any case, the width of the cursor equals the width of the character box.

The predefined cursor shapes for the PC Monochrome A/N display and adapter are
defined as follows:

• Selection 0 - no cursor displayed (invisible)
• Selection 1 - single underscore (default)
• Selection 2 - double underscore
• Selection 3 - half blob (lower half)
• Selection 4 - mid-character double line
• Selection 5 - full blob

Selectors 6 through 254 are reserved. Selector 255 indicates that the top and bottom
parameters to Define Cursor specify the top and bottom scan lines of the character
box. The top scan line in a box is scan line 0; the bottom scan line is n, where n
equals the height of the character box minus one. If the top value is greater than the
bottom value, all scan lines in the character box are visible.

The cursor can also be repositioned with this function.

Calling Sequence:

cvttdefc (selector, cursor_pos, show_cursor, top, bot)
unsigned char selector;
struct vtt_cursor *cursor_pos;
int show_cursor;
int top;
int bot;

The parameters to Define Cursor are defined as follows:

• selector
This is the value of the cursor shape (from the preceding list).

• cursor_pos
This indicates the x and y position to which the cursor is moved if show_cursor
equals true.

• show_cursor
This parameter indicates whether the cursor is redrawn at the end of the
operation. This control allows the VTMP to determine the amount of AP A display

Virtual Terminal Subsystem 3-153

processing used to draw and redraw cursors. A 1 in this parameter indicates show
cursor; a 0 indicates do not show cursor.

For displays that use a hardware sprite cursor (as the PC Monochrome AjN
display does), this parameter indicates whether to move the cursor to the location
specified by the input parameters. When cursor_show equals zero, the cursor is
not moved; when it equals one, the cursor is moved.

• top

This parameter is valid only if the selector value is 255. In this case, top indicates
the first line in the character box to make visible.

• bot

This parameter is valid only if the selector value is 255. In this case, bot indicates
the last line in the character box to make visible.

Programming Notes:

The cursor can be made invisible by specifying a selector value of zero, regardless of
the show_cursor value.

If an invalid cursor position is specified, the results are unpredictable.

This function is valid only in KSR mode.

3-154 VRM Device Support

Draw Text

Description: This function draws a string of code-based qualified ASCII characters into the refresh
buffer and presentation space buffer of the display.

Each supplied ASCII character is drawn into the buffer/presentation space at the
specified row and column. After the character is drawn, the cursor can be redrawn at
the specified new location.

Each character drawn is mapped to the appropriate font range by two mechanisms.
They are:

• Each character is logically ANDED by the value supplied in the code point mask
parameter. This parameter should contain either OxFF or Ox7B, which effectively
wraps the code point in a 7-bit or 8-bit range.

• The code point base parameter is also added to each supplied character to find the
correct symbol in the font.

Each character is drawn with a device-specific attribute derived from the canonical
attribute specification in the vtt_attr parameter of the vtt_cp_parms structure.

The cursor can be moved or redrawn by the Draw Text function if the vtt_show
parameter bit is set to one. In this case, a cursor of the type defined by the Define
Cursor function is moved to or redrawn at the location specified in the cursor _x and
cursor -Y parameters. If the show bit is set to zero, the cursor mayor may not be
invisible after the Draw Text operation, as this is a device-dependent characteristic.

Calling Sequence:

cvttrep (ascii_string, rc, cp, vtt_show)
char *ascii_string;
struct vtt_rc_parms *rc;
struct vtt_cp_parms *cp;
int vtt_show;

The parameters to Draw Text are defined as follows:

• ascii_string
This parameter is a reference to an adjustable array of characters to be drawn on
the display. The length of this string must be greater than or equal to the length
parameter field in the vtt_rc_parms structure. This string is not null
terminated.

Virtual Terminal Subsystem 3-155

• rc
This parameter stands for 'row/column' and consists of the following structure:

struct vtt_rc_parms
{

};

short string_length;
short string_index;
int start_row;
int start_column;
int dest_row;
int dest_column;

The fields in the preceding structure are defined as follows:

string_length
This length value specifies the number of characters in the ASCII string to
draw. Note that the Draw Text function performs no end-of-line check, so
unpredictable results can occur if the string length and start column values
cause the characters to be written off the end of a line.

string_index

This indicates the first character in the ASC I I_STR I NG to display.

start_row
This indicates the row number of the presentation space/buffer of the first
character to be drawn. This parameter has a unity origin.

start_column
This indicates the column number of the presentation space/buffer of the first
character to be drawn. This parameter has a unity origin.

dest_row
This indicates the destination row number (zero based) for move operations.

dest_column
This indicates the destination column number (zero based) for move
operations.

3-156 VRM Device Support

• cp
This parameter stands for 'code point' and consists of the following structure:

struct vtt_cp_parms
{

}

unsigned int cp_mask;
int cp_base;
struct vtt_cursor cursor;
union
{

struct
{

short rsvd1_1;
unsigned short value;

} vtt_attr_val;
struct attributes
{

short rsvd_2;
unsigned fg_color : 4;
unsigned bg_color : 4;
unsigned font_select: 3;
unsigned no_disp : 1;
unsigned bright: 1;
unsigned blink: 1;
unsigned rev_video: 1;
unsigned underscore: 1;

} vtt_attr;
} attrib;

The fields in the preceding structure are defined as follows:

cp~ask

This parameter indicates the bit (8) value that is logically ANDED with each
ASCII character before font translation. Valid values for this parameter are
OxFF and Ox7F.

cp_base
This parameter contains a value that allows each ASCII character to be
translated to a final font set larger than 256 code points. The ASCII character

Virtual Terminal Subsystem 3-157

o

I
4

is masked by vtt_cp_parms. cp.J11ask. The masked ASCII character is added
to the value of vtt_cp_parms. cp_base to determine the actual character
(in a lO-bit selection) to display.

vtt_cursor
This parameter represents a structure that indicates the values to use as the
new cursor column and row positions (if the cursor is to be displayed at the
end of the Draw Text operation). In the following structure, the x value is for
the column and the y value is for the row.

struct vtt_cursor
{

int cursor_x;
int cursor_y;

. This parameter represents a structure that specifies the attributes to use when
drawing a character string on the display. The structure is defined as follows:

8 11 15

Foreground I Background I I I I I I I
Font select I

I Nondisplayed

Bright

Blink

Reverse video

Underscore

Figure 3-37. Attribute Structure for Draw Text Function

The fields in the attribute structure are defined as follows:

Foreground - indicates the foreground color to be used when writing into
the frame buffer. The default value is device-dependent. The PC
monochrome adapter returns a default value of 2 (green).
Background - indicates the background color to be used when writing
into the frame buffer. The default value is device-dependent. The PC
monochrome adapter returns a default value of 0 (black).
Font select - selects the font to use when writing into the frame buffer. A
value of 0 selects the first font ID supplied in the vtti ni t font ID array

3-158 VRM Device Support

as the active font, a value of 3 selects the fourth ID supplied in the array,
and so on. The default value is o.
Nondisplayed - determines whether the character is displayed. A value
of 0 indicates character displayed; a value of 1 indicates character not
displayed. The default value is o.
Bright - determines whether the character is displayed brightly
(intensified). A value of 0 indicates normal intensity; a value of 1 indicates
intensified display. The default value is o.
Blink - determines whether the character representation blinks. A value
of 0 indicates non-blink; a value of 1 indicates blink the character on the
display. The default value is o.
Reverse video - indicates whether the characters are displayed in reverse
video. A value of 0 indicates normal image; a value of 1 indicates reverse
video. The default value is o.
Underscore - indicates whether characters are displayed with an
underscore. A value of 0 indicates no underscore; a value of 1 indicates
display characters underscored. The default value is o.

• vtt_show
This parameter indicates whether the cursor is redrawn at the end of the Draw
Text operation. This control allows the VTMP to determine the amount of AP A
display processing used to draw and redraw cursors. A 1 in this parameter
indicates show cursor; a 0 indicates do not show cursor.

Note that if the display device uses a hardware sprite cursor (like the PC
Monochrome A/N display does), this function affects cursor movement, not
visibility. For a sprite cursor, this parameter indicates whether the cursor is
moved to the position specified by the input parameters.

Programming Notes:

This function is valid only in KSR mode and only for drawing a string to a single line
of the display at a time. Length specifications that imply a wrap to the next line in
the middle of a call are invalid.

Virtual Terminal Subsystem 3-159

Finis

Description: This function prevents interrupts from being issued to a virtual terminal and must be
called when a virtual terminal closes. If a virtual terminal closes without calling this
function, and the terminal receives a virtual interrupt, the system abends.

Calling Sequence:

cvttfins (ignore_lock)
int *ignore_lock;

The parameter to Finis is defined as follows:

• ignore_lock

This parameter is optional and should never be supplied by a VTMP or monitored
mode process. Note that this entry point is also bound to the common device
utilities modules (see Figure 3-36 on page 3-140), which can issue this call without
the activate/deactivate protocol supported by the screen manager. If this
parameter is not specified, or if it is specified and the high-order bit of the integer
field is 0, locks on internal data structures are respected. Otherwise, the locks are
ignored.

Programming Notes: For display adapters that generate interrupts serviced by the virtual terminal,
this function ensures that the adapter is not reinitialized when the virtual terminal
process terminates.

This function can be called when the DSM is in any of its three modes.

IBM recommends the following approach to coding this entry point:

1. Free any storage acquired (such as for the presentation space) with the VRM
Jllfree call.

2. Undefine the default color table definitions. See "Define Color Table" on
page 3-185 for details on how to undefine the definitions.

3. If i gnore_l ock does not equal zero, decrement the real screen usage count
(rscr _usage [rscr _i d-l]) in the resource structure. Then if rscr _usage equals
zero and rscr _path does not equal zero, detach the process that is attached to
the device driver and return.

4. Lock the resource structure with the VRM call Jecv(rs-Iock);.
5. Decrement the real screen usage count rscr _usage [rscr _i d-l] in the resource

structure.
6. If rscr _usage equals zero and rscr _path does not equal zero, detach the

process that is attached to the device driver.
7. Unlock the resource structure with the VRM call_send(rs-Iock);.

3-160 VRM Device Support

Initialize

Description: This entry point initializes the internal state of the DSM and optionally allows an
array of 8 font IDs to be passed to this procedure. If the array is passed, the following
actions occur:

• Each ID in the list is validated, and any invalid IDs are flagged in the
i nv ali d_ font_ ids parameter.

• All characters in all fonts in the array are checked to ensure that they are the
same size. Any font with a character box size that differs from the first font in the
array is flagged in the i n val i d_ f 0 n t_s i z e parameter.

• The state of the DSM remains unchanged if any font IDs are invalid or if all
characters in the selected fonts are not the same size.

If a font array is not passed to this entry point, a default font is selected according to
the following criteria:

1. An 80 character by 25 line presentation space with a plain font attribute is
searched for first.

2. If no font conforming to number 1 is found, a font of any attribute that yields a
presentation space of 80 characters by 25 lines is selected.

3. If no font conforming to numbers 1 or 2 is found, any valid font with a plain
attribute is selected. If no such font is found, any valid font is selected.

If no valid font exists, the presentation space height parameter is set to -1 and the
state of the DSM does not change.

If a font array is validated or a default font is found, the following actions occur:

• The presentation space is initialized with space characters and the canonical
attribute of each character is set to zero.

• The physical display is cleared if the virtual terminal is active. A PC
monochrome alphanumeric display, for example, is cleared to a black background.

• The KSR and PC default color palettes are allocated and initialized (see "Set
Color Table" on page 3-169).

• The cursor is placed at the upper left corner of the presentation space and
displayed on the physical display if the DSM is active.

• The default cursor shape (double underscore) is selected.

Virtual Terminal Subsystem 3-161

Calling Sequence:

cvttinit (vt_id, font_ids, ps_size, invalid_font_ids,
invalid_font_size)

short vt_id;
short *font_ids;
struct ps_s *ps_size;
char *invalid_font_ids;
char *invalid_font_size;

The parameters for this function are defined as follows:

• vt_id
This value is determined by the initialization parameters passed to the VTMP by
the VRM _initp routine.

• font_ids
This array contains the IDs of the selected fonts. Possible values for this array are
found in the real font table of the shared resource structure ("Shared Resource
Structure" on page 3-176). If this parameter is not specified, a null pointer is
passed and a default font is selected.

• ps_size
This output parameter is set to the width and height (in characters) of the
presentation space. The parameter is specified as follows:

} ;

unsigned int ps_width;
unsigned int ps_height;

If ps_wi dth equals -1, an invalid virtual terminal ID was specified. If ps_hei ght
equals -1, no valid default font could be found.

• invalid_font_ids
This parameter indicates whether any of the font IDs passed in the array are
invalid. A bit set equal to one indicates the corresponding font ID is invalid. For
example, if this parameter has a binary value of 00000111, font IDs 6, 7, and 8 in
the array are invalid. This parameter is optional and valid only when the
f 0 n t_ ids parameter is specified.

3-162 VRM Device Support

• invalid_font_size

This parameter indicates whether all specified fonts have characters of the same
size. A bit set to one indicates the corresponding font has characters of a different
size than the first font specified in the array. For example, if this parameter has a
binary value of 01000000, the second font in the array has different sized
characters than the first font in the array (and is therefore invalid). This
parameter is optional and valid only when the font_ids parameter is specified.

Programming Notes:

• Note that at least one font for the display must result in a presentation space of
80 characters by 25 lines. If no such font is available, many AIX applications will
be unusable.

• Each DSM must virtualize the set of eight active fonts, so that each instance of
the module can have its own unique set of fonts.

• The DSM must be in character mode before this entry point is called.
• Presentation space size is calculated using the following formulas:

PS height = the height of the physical screen in picture elements divided by the
number of rows in a character box.

PS width = the width of the physical screen in picture elements divided by the
number of columns in a character box.

All division is integer division.

IBM recommends the following approach to coding this entry point:

1. Validate the vt_ i d parameter by checking for a non-zero value in the vt_ i odn
field of the resource structure virtual terminal table. If this value is not valid, set
the presentation space height to zero and the width to -1. Otherwise, set the
height and width to zero.

2. If a font ID array was passed, validate that all eight entries are in the real font
table and that each font class matches your device. If any of the fonts are invalid,
set the appropriate bit in the invalid font IDs parameter and return. If all the IDs
are valid, check that all the fonts are the same size. If any of the fonts are of
different sizes, set the appropriate bits in the invalid size parameter and return. If
all the fonts are valid, record them in the instance-unique static data area for
future use. This is a good time to establish addressability to the fonts from the
fields in the resource structure real font table.

3. If a font ID array was not passed, find a font in the real font table that results in
an 80 column by 25 row presentation space. If more than one font meets this
requirement, select one with a plain attribute. If a valid font is found, set the
instance-unique static data for all eight fonts to this font ID. If no font meets this
requirement, set the presentation space height to -1 and return. This is a good
time to establish addressability to the fonts from the fields in the resource
structure real font table.

Virtual Terminal Subsystem 3-163

4. Now, save the real screen index for the current display. This index can be found
by using the vt_; d parameter value as an index into the virtual terminal table of
the resource structure.

5. Calculate the presentation space and save it in the instance-unique data field.
Allocate enough storage from the heap to contain the presentation space by using
the VRM call --1l1allc.

6. Initialize the presentation space pointer and length fields in the virtual terminal
dump table of the shared resource structure. Call the VRM _dumpthl routine to
initialize dumping this area.

7. If the dump table for your real screen index is not initialized, do it now and call
_dumptbl. If your device is an AP A device, do not attempt to dump the real
refresh buffer. In this case, set both the pointer and length fields to zero.

8. Next, initialize all data relating to the dynamic presentation space. Set all
attributes and colors to the default states and all characters to ASCII spaces.

9. Now initialize the virtual cursor.

10. If your DSM was active when the Initialize entry point was called, clear the
screen, draw the default cursor, clear any unused regions at the right side or
bottom of the presentation space, and set the physical device's virtual color table
for the current mode.

11. Convey addressability to the default color tables to the VTMP by passing the
address and length of these structures to the Define Color Table service routine
(see "Define Color Table" on page 3-185).

12. Return.

3-164 VRM Device Support

Move Cursor

Description: This function moves the cursor to the specified row and column. If the virtual
terminal is active and the cursor has been defined as a visible shape, the cursor will
always be visible after the move.

Calling Sequence:

cvttmovc (cursor_pas)
struct vtt_cursar *cursar_pos;

The parameter to Move Cursor is a structure that indicates the relative column (x
value) and row (y value) to place the cursor. The structure is defined as follows:

struct vtt_cursor
{

}

int cursor_x;
int cursor_y;

Programming Notes:

If an invalid position is specified, the results of a Move Cursor function are
unpredictable.

This function is valid only in KSR mode.

Virtual Terminal Subsystem 3-165

Read Screen Segment

Description: This function reads all or part of the each presentation space entry into a 4-byte value
(a 2-byte display symbol and a 2-byte attribute).

The internal data representation, kept by the device driver for the presentation space,
is probably different than the 4-byte format returned to the caller due to hardware
dependencies and the 6K-byte presentation space limit for each virtual terminal. Each
entry read from the presentation space must be.mapped into the 4-byte format.

Calling Sequence:

cvttrds (fb_char, fb_c_size, fb_attr, fb_a_size, rc)
unsigned short *fb_char;
int fb_c_size;
unsigned short *fb_attr;
int fb_a_size;
struct vtt_rc_parms *rc;

The parameters to Read Screen Segment are defined as follows:

• fb_char
This parameter specifies the output array for the display symbols.

• fb_c_size
This parameter specifies the size of the output array for the display symbols.

• fb_attr
This parameter specifies the output array for the attributes.

• fb_a_size
This parameter indicates the size of the output array for the attributes.

3-166 VRM Device Support

• rc
This parameter stands for 'row/column' and consists of the following structure:

struct vtt_rc_parms
{

};

short string_length;
short string_index;
int start_row;
int start_column;
int dest_row;
int dest_column;

The fields in the preceding structure are defined as follows:

string_length

Programming Notes:

This parameter indicates the number of character/attribute pairs to read from
the presentation space.

string_index
This field is reserved.

start_row
This indicates the row number from which to start the read.

start_column
This indicates the column number from which to start the read.

dest_row
This field is reserved. for move operations.

dest_column
This field is reserved.

The caller must allocate space in which to return the attributes. This space must be
large enough to contain all the information for the number of characters requested.

This function is valid only in KSR mode.

Virtual Terminal Subsystem 3-167

Scroll

Description: This function moves the contents of the presentation space up or down the specified
number of lines. When scrolling up, the lines moved off the top of the screen are
discarded. The specified number of lines added at the bottom of the screen are cleared
to blanks with the attributes provided. When scrolling down, the lines moved off the
bottom of the screen are discarded. The specified number of lines added at the top of
the screen are cleared to blanks with the attributes provided.

Calling Sequence:

cvttscr (lines, attributes, cursor_pos, show)
int lines;
unsigned int attributes;
struct vtt_cursor *cursor_pos;
unsigned int show_cursor;

The parameters to the Scroll function are defined as follows:

• 1 i nes
This parameter specifies the number of lines to scroll. A positive value moves the
screen contents upward; a negative value moves the screen contents downward.

• attributes
This specifies the attributes of the blanks to be inserted at the top or bottom of
the screen.

• cursor_pos
This indicates the x and y position to which the cursor is moved if show_cursor
equals true.

• show_cursor
This parameter indicates whether the cursor is redrawn at the end of the
operation. This control allows the VTMP to determine the amount of AP A display
processing used to draw and redraw cursors. A 1 in this parameter indicates show
cursor; a 0 indicates do not show cursor.

For displays that use a hardware sprite cursor (as the PC Monochrome A/N
display does), this parameter indicates whether to move the cursor to the location
specified by the input parameters. When cursor_show equals zero, the cursor is
not moved; when it equals one, the cursor is moved.

Programming Notes:

The Scroll function is valid only in KSR mode.

3-168 VRM Device Support

Set Color Table

Description: This function updates the DSM's KSR or APA color table when the module is in KSR
or APA mode, respectively.

Color display adapters usually support a predetermined number of colors, known as a
color palette. Because of the limitations on the number of bits per picture element
(pixel), however, these adapters can only display a subset of the colors in the palette.
The color table acts as a map between the pixel value and the color that is displayed.
The multi-bit pixel value is used as an index into the color table to generate the
actual color on the display. The Set Color Table function allows the virtual terminal
to select the set of colors· that can be displayed simultaneously when the terminal is
active.

This function is valid only when the DSM is in AP A or KSR mode. A separate virtual
color table is maintained for each mode and for each virtual terminal. The module's
mode determines whether this function modifies the AP A color table or the KSR color
table.

Calling Sequence:

cvttstct (color_table, ct_size)
struct vttcolt *color_table;
int ct_size;

The parameter'3 to Set Color Table are defined as follows:

• color_table
This parameter indicates, in a device-dependent manner, the values used to fill the
color table.

• ct_size
This parameter indicates the size in bytes of the color table structure.

Programming Notes:

The size of a color table varies from display to display. Either a default color table or
an application-supplied table can be used by this function.

IBM recommends the following approach to coding this entry point:

1. Verify that the number of color entries is exactly correct for your device,
otherwise return.

2. Verify that the number of bytes in ct_si ze is exactly correct for your device,
otherwise return.

3. If the DSM is active when this entry point is called, copy the supplied color table
values to the adapter's color table.

Virtual Terminal Subsystem 3-169

Set Mode

Description: This entry point sets the operation mode of the DSM. Valid modes are:

• Monitored mode (MOM)
• Keyboard send/receive (KSR)
• All-paints-addressable (AP A)

The mode can be changed at any time, regardless of the state (active or inactive) of
the virtual terminal.

The KSR presentation space is saved by the DSM whenever it switches out of KSR
mode and is restored when it switches back to KSR mode. If a mode switch occurs
when the DSM is in AP A mode, the presentation space is not saved by the DSM
because the application manages the presentation space in AP A mode.

The current mode for a physical display is saved globally and is available to to all
instances of the DSM. This value is known as the stored device state and is used by
the Activate function to minimize the frequency of device initializations. The current
mode for the DSM is also kept for each instance of the module and is known as the
stored driver state. The stored driver state value is used by the Set Mode and Activate
commands.

To enter monitored mode, the stored driver state of the DSM is set to not KSR mode
and not AP A mode. If the module is deactivated, the Set Mode function does not
cause the physical device to be relinquished. The Activate function does this (see
"Activate" on page 3-143).

To enter KSR mode, the stored driver state of the DSM is set to KSR mode and not
AP A mode. Setting this mode also depends on whether the module is active or
inactive. When the module is inactive and the physical display is deactivated, the Set
mode function has no effect. When the module is active, the physical display is
initialized to KSR mode and the presentation space buffer is drawn to the hardware
refresh buffer. In addition, the DSM's KSR mode color table is loaded into the display
adapter's real color table.

To enter AP A mode, the stored driver state of the DSM is set to AP A mode and not
KSR mode. Setting this mode also depends on whether the module is active or
inactive. When the module is inactive and the physical display is deactivated, the Set
mode function has no effect. When the module is active, the physical display is
initialized to APA mode. In addition, the module's APA mode color table is loaded
into the display adapter's real color table. To complete the mode switch to APA mode
when the DSM is activated, an Update External Raster Array function must be
issued. See "Update External Raster Array" on page 3-173.

Calling Sequence:

cvttsetm (adapter-ffiode)
int adapter-ffiode;

3-170 VRM Device Support

The parameter to Set Mode is defined as follows:

adapterJ10de

o = initialize the adapter in monitored mode.
1 = initialize the adapter in KSR mode.
2 = initialize the adapter in AP A mode.

All mode values greater than 2 are reserved.

Programming Notes:

The Set Mode command can be issued for subsequent use by the DSM. For example,
you can set the mode to AP A mode and deactivate the module. The next time the
module is activated, the mode is set to AP A.

The default state of the DSM is KSR mode. The Initialize function must be used to set
up the presentation space size.

This function can be called from any mode. If you try to set the adapter into an
unsupported mode (such as AP A mode with a KSR·only display) an error is logged,
the function returns, and the adapter state remains unchanged.

IBM recommends the following approach to coding this entry point:

1. If this instance of the virtual terminal is inactive, check the validity of the
requested mode. MOM, KSR, and APA are valid modes. Record the mode in the
instance-unique static data area.

2. If the virtual terminal instance is active in MOM mode, set the rscr J10de field
in the real screen table to zero (for MOM mode). Also mark your instance-unique
data to MOM mode. If a process is attached to the device driver
(rscr _path [rscr _i d-lJ field of the real screen table not equal to zero), detach
the process and set the rscr _path [rscr _i d-lJ field to zero.

3. If the virtual terminal instance is active in KSR mode, set the rscr J10de field in
the real screen table to one (for KSR mode). Also mark your instance-unique data
to KSR mode. If a process is not attached to the device driver, attach a process to
it. Attach your own process if you are using interrupts, or attach the vtrm_rc
process if you are not using interrupts. The vtr~rc process ID can be found in
the shared resource structure. Set r 5 C r _p at h [r 5 c r _ i d -1 J to the path ID
returned from the attach. Next, copy the RAM-resident presentation space to the
physical refresh buffer, doing any device-specific raster conversion required.
Define or draw the cursor, restoring it to the correct shape and position. Then
clear any unused portion of the right side or bottom of the presentation space.
Finally, set the physical device's color table to the virtual color table values for
the current mode.

4. If the virtual terminal instance is active in APA mode, set the rscr J10de field in
the real screen table to two (for APA mode). Also mark your instance-unique data

Virtual Terminal Subsystem 3-171

to APA mode. If a process is not attached to the device driver, attach a process to
it. Attach your own process if you are using interrupts, or attach the vt rm_rc
process if you are not using interrupts. The vtrm_rc process ID can be found in
the shared resource structure. Set rscr _path [rscr _; d-lJ to the path ID
returned from the attach.

3-172 VRM Device Support

Update External Raster Array

Description: The external raster array (ERA) is a rectangular array of picture elements in memory
that represent the physical screen image of a display. This function displays the ERA
on the screen if the virtual terminal is active. If the virtual terminal is inactive, the
physical display screen is unaffected by this function.

The width of the ERA always equals the number of picture elements (pixels) that can
be shown horizontally on the display. The height of the ERA always equals the
number of pixels that can be shown vertically on the display.

The pixel in the upper-left corner of the ERA is always displayed in the upper-left
corner of the display screen, and the pixel in the lower-right corner of the ERA is
always displayed in the lower-right corner of the display screen.

If the virtual terminal is in KSR mode when this function is called, or if an invalid
rectangular area is specified, the results are unpredictable. If the virtual terminal is
in APA or monitored mode, the DSM provides no support for cursor.

Calling Sequence:

cvttera (screen_pas, era)
struct vtt_era_rc_parms *screen_pos;
struct era_data_struc *era;

The parameters to Update ERA are defined as follows:

• screen_pas
This parameter specifies the coordinates of the lower-left and upper-right corners
of the upright rectangular area of the ERA to display. Note that the actual size of
the rectangular area that can be updated by this function is device dependent.
Some devices may not support partial byte, halfword, or word updates.

Virtual Terminal Subsystem 3-173

• era
This parameter represents the ERA structure. The ERA structure is defined as
follows:

struct era_data_struct
{

int era_type;
#define VTTPLANE 1

int rsvd1;
int era_size;
short era_lines;
short era_pels_per_line;
short era_era_bits_per_pel;
short rsvd2;

#ifndef ERA_SIZE
unsigned char era_pixel_values [lJ;

#else
unsigned char era_pixel_values [ERA_SIZEJ;

#endif
} ;

The fields in the preceding structure are defined as follows:

era_type
This field specifies the format of the ERA.

VTTPLANE
This value indicates that the ERA is formatted as a set of one or more planes
with one bit of each pixel stored in each of the planes. For example, if the
ERA has two bits per pixel, it has two planes.

era_size
This field indicates the number of bytes in the ERA minus one.

era_lines
This value indicates the height of the ERA.

era_pels_per_line
This value indicates the width of the ERA in pels per line.

3-174 VRM Device Support

Programming Notes:

era_era_bits_per_pel
This value indicates the number of bits per pixel.

era_pixel_values [1]
This field indicates the ERA pixel values. See Programming Notes for a
definition of ERA pixel values.

era_pixel_values [ERA_SIZE]
This field indicates the ERA pixel values. See Programming Notes for a
definition of ERA pixel values.

An ERA's pixel value is stored as a three-dimensional array of 32-bit words. This
array has the following structure:

pixel_values (bits_per_pixel, vertical_rows, horizontal_columns)
The width of the ERA is always a multiple of 32.

This function is valid only in AP A mode.

Virtual Terminal Subsystem 3-175

Shared Resource Structure

The shared resource structure contains values that indicate the current virtual terminal
configuration. The structure has information of a general nature (resource controller and screen
manager ID values, dump table information, path data, and so on) as well as terminal-specific data.
The shared resource structure contains information necessary for the resource controller, screen
manager, common device utilities and device-specific modules to work together correctly. The
structure is made available to the proper components with _bind calls issued By the resource
controller.

The modules that comprise the shared resource structure are defined on the following pages.

Common Area
This module contains information of a general nature that is required by all components.

struct common_area
{

unsigned int rs_lock;
unsigned int rs_rc_process;
unsigned int rs_vtr~mid;

unsigned int rs_sm_process;
unsigned int rs_s~to_kdd_path;

unsigned int rs_s~to_ldd_path;

unsigned int rs_kbd_did;
unsigned int rs_loc_did;
short rs_loc_resolution;
unsigned char rs_loc_type;
unsigned char rsvd;
unsigned int rsvd;
unsigned int rs_snd_did;
short int rs_active_vt;
short rs_connected_vms;
unsigned int rs_rsvd;
unsigned rs_resv2 [8J ;

};

The fields in the common area are defined as follows:

• rs_l oc k is the semaphore that locks the resource structure for a user accessing the various
tables.

• rs_rc_process is the process ID of the resource controller.

3-176 VRM Device Support

• rs_vtrm-'11i d is the module ID of the resource controller.

• rs_sm_process is the process ID of the screen manager.

• rs_sm_to_kdd_path is the ID of the path from the screen manager to the keyboard device
driver.

• rs_sm_to_l dd_path is the ID of the path from the screen manager to the locator device driver.

• rs_kbd_di d is the device ID of the keyboard device driver.

• rs_l oc_di d is the device ID of the locator device driver.

• rs_l oc_reso 1 uti on is the resolution of the locator device.

• rs_l oc_type is the report mode of the locator. A zero in this field indicates relative mode; a one
indicates absolute mode.

• rs_snd_di d is the device ID of the speaker.

• rs_acti ve_vt is the index into the virtual terminal table (see "Virtual Terminal Table" on
page 3-178) that indicates the currently active terminal. If no terminals are open, this field will
be zero.

• rs_connected_vms is the number of virtual machines connected to the screen manager.

Resource Controller Dump Table
This module tells the VRM dump function whether to dump the shared resource structure or the
resource controller environment when the dump table fills.

int
struct

rs_rc_dump_table_length;
dump_table_entry

{
char struct_name[8J;
int struct_length;
char *struc_pointer;
unsigned struc_resv;

}rs_rc_dump_table_entry[2J;

The fields in the resource controller dump table are defined as follows:

• rs_rc_dump_tab 1 e_l ength is the length of the resource controller dump table.

• struct_name is the name of the structure to dump. When this field has a value of RESOURCE,
the shared resource structure is dumped. When this field has a value of ENVRNMNT, the resource
controller environment is dumped.

• struct_l ength is the length of the structure to dump.

Virtual Terminal Subsystem 3-177

• struct_poi nter is the address of the structure.

Screen Manager Dump Table
This module tells the VRM dump function to dump the screen manager environment when the table
is filled.

int
struct

rs_sm_dump_table_length;
dump_table_entry rs_sm_dump_table_entry;

The fields in the screen manager dump table module are defined as follows:

• rs_s~dump_tab 1 e_l ength is the length of the screen manager dump table.

• struc_name is the name of the structure to dump. The screen manager environment is dumped
when this field equals ENVRNMNT.

• s t r u c_l eng this the length of the structure.

o struc_poi nter is the address of the structure.

Virtual Terminal Table
This module contains information on each virtual terminal, such as the form of its virtual input
devices and the resources used by the terminal. The structure for the virtual terminal table is shown
on the following page.

3-178 VRM Device Support

struct
{

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

vt_iodn : 16;
vt_route_kbd : 1;
vt_route_loc : 1;
vt_kbd-ffiode : 1;
vt_gate_deactivate
vt_not_copied 1;
vt_resrvd

: 1;

int
short
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
int

#ifndef
#define
#endif

3;
vt..J ed_states 8-,
vt_rscr_index;
vt_loc_threshold[2J;
vt_queue_id;
vt_queue_ecb;
vt_process_id;
vt_kbd_input_path;
vt_loc_input_path;
vt_kbd_config_path;
vt_loc_config_path;
vt_vtmp-ffiodule;
vt_vdd-ffiodule;
vt_rsvd;
vt_dump_table_length;

NUM_VTS
NUM_VTS 32

struct dump_table_entry
unsigned int vt_resrvd2;

} vt_table_entry[NUM_VTSJ;
The fields in the virtual terminal table are defined as follows:

• vt_ i odn is the virtual terminal IODN. A queue ID of zero indicates that this table entry is not
currently assigned.

The next five fields are flags that indicate the input devices requested by the virtual terminal, the
form of keyboard input required, and the gating for the deactivate request.

• vt_route_kbd indicates whether the virtual terminal receives keyboard input. If this flag is set
(equals one), the virtual terminal receives keyboard input.

Virtual Terminal Subsystem 3-179

• vt_route_l oc indicates whether the virtual terminal receives locator input. If this flag is set
(equals one), the virtual terminal receives locator input.

• vt_kbd-'l1ode indicates the reporting mode of the virtual keyboard for an inactive terminal. The
keyboard device driver maintains the current reporting mode of the active virtual terminal.

• vt_gate_deacti vate indicates whether the virtual terminal can accept the Deactivate
command from the screen manager. If this flag is set (equals one), the screen manager will send
the Deactivate request to the virtual terminal at the proper time.

• vt_not_copi ed indicates whether the VTMP module was copied at open time. If this flag is set
(equals 1), the VTMP was copied and must be deleted when the virtual terminal is closed.

• vt_l ed_states indicates the state of the LEDs on the virtual keyboard for an inactive terminal.
When this field equals one, an LED is on. The keyboard device driver maintains the current LED
states for the active virtual terminal.

• vt_rs cr _; ndex is the index into the real screen table (see "Real Screen Table" on page 3-181)
for the real display currently used by the virtual terminal.

• vt_l oc_threshol d contains the horizontal (1) and vertical (2) thresholds for reporting locator
input.

The next two fields contain information about the queue that is serviced by the virtual terminal's
VTMP.

• vt_queue_; d is the queue ID.

• vt_queue_ecb is the ECB mask that is posted when a queue element is placed on the queue.

• vt_process_ i d is the process ID of the virtual terminal process.

• vt_kbd_; nput_path is the ID of the path from the keyboard device driver to the virtual
terminal.

• vt_l oc_; nput_path is the ID of the path from the locator device driver to the virtual terminal.

• vt_kbd_conf; g_path is the ID of the path from the virtual terminal to the keyboard device
driver.

• vt_l oc_conf; g_path is the ID of the path from the virtual terminal to the locator device
driver.

• vt_vtmp-'l1odul e is the module ID of the virtual terminal's VTMP.

• vt_vdd-'l1odul e is the module ID of the virtual terminal's device-specific module.

• vt_dump_tab 1 e_l ength is the length of the virtual terminal's dump table.

• struc_name is the name of the structure to dump. The following names are valid:

INITPARM - the initialization structure for the VTMP.

3-180 VRM Device Support

VTMSTRUC - the VTMP environment.
LIN E_DA T - the VTMP tab rack.
VTTn ENV - the device-specific module environment; the n identifies the adapter/monitor
combination.
VTTnPS - the device-specific module's presentation space when not included with the DSM
environment dump; the n identifies the adapter/monitor combination.

• s truc_l ength is the length of the structure.

• struc_pointer is the address of the structure.

Real Screen Table
This module contains information about the display device driver's physical screen and display
adapter.

struct
{

unsigned int
int
unsigned int
unsigned short
unsigned char
unsigned char
unsigned
unsigned
unsigned
unsigned
unsigned int
unsigned int
unsigned int
int

rscr-1llemory;
rscr_device_id;
rscr_iodn;
rscr-1llode;
rscr_usage : 8;
rscr_last_active_vt
rscr_default : 1;
rscr_resrvd : 7;
rscr_vdd_type : 8;
rscr_module;
rscr_path;

16;

rscr_free_area[16J;
rscr_dump_table_length;

struct
#ifndef
#define

dump_table_entry rscr_dump_table_entry;
NUM_RSCR
NUM_RSCR 4

#endif
} rscr_table_entry
The fields in the Real Screen Table module are defined as follows:

• rscr _ i dent is a real screen's external identifier, by which application programs refer to the real
screen. A zero screen ID indicates that the real screen is currently unassigned.

Virtual Terminal Subsystem 3-181

• rscr _memory is the size of the memory allocated for an adapter's frame buffer. This field, which
is set by the common device utilities module, is valid only for adapters dependent on this data.

• rscr _dey; ce_; d is the device ID of the display device driver's real screen.

• rscr _; odn is the IODN of the display device driver's real screen.

• rscr _mode indicates the current mode of the adapter for the specified real screen.

• rscr _usage is a value indicating the number of virtual terminals using the specified real screen.
The real screen is not removed from the configuration if any virtual terminal is using it.

• rscr _1 ast_act; ve_vt is the index for the last virtual terminal that was using this screen.

• rscr _defaul t indicates when set (equals one) that this display is the default display for virtual
terminals when opened.

• rscr _vdd_type indicates the implementation language of the device-specific module. For the C
language, this value is one.

• rscr _modul e is the module ID of the device-specific module for the specified real screen.

• rscr _path is the path ID from the the display device driver to either a virtual terminal or the
resource controller (for when a virtual terminal is being closed).

• rscr _free_area is an area allocated for free device-dependent usage by instances of DSMs for
this real screen.

• rscr _dump_tab 1 e_l ength is the length of dump table for the real screen.

• struc_name is the name of the structure to dump. For character-oriented adapters, this name is
VTTnDISP, where n identifies the adapter/monitor combination.

• struc_l ength is the length of the dumped structure.

• struc_po; nter is the address of the dumped structure.

3-182 VRM Device Support

Real Font Table
This module contains descriptive and address ability information about each available font.

struct
{

short
short
int
int
short
short
short
short
short
unsigned short
unsigned short
unsigned int
int

#ifndef
#define

rfnt_ident;
rfnt_class;
rfnt_font_style;
rfnt_font_attr;
rfnt_s i ze [2J;
rfnt_capline;
rfnt_baseline;
rfnt_ul_top.
rfnt_ul_bot.
rfnt_resrvd;
rfnt_fonttab_segid;
rfnt_fonttab_baseaddr;
rfnt_fonttab_size;

NUM_RFNT
NUM_RFNT 32

#endif
}rfnt_table_entry[NUM_RFNTJ;
}extern struct common_area vttrs;
The fields in the Heal Font Table are defined as follows:

• rfnt_ i dent is the external identifier of the real font. A zero ID indicates that this real font
entry is unassigned.

• rfnt_cl ass identifies the class of displays that can display this font type.

• rfnt_font_styl e is the style of the font.

• rfnt_font_attr is the attribute of the font.

• rfnt_s i ze is the horizontal (0) and vertical (1) size of the font in device coordinates (for
monospace font) or the horizontal and vertical size of the largest character in the font (variable
space font).

• rfnt_cap 1 i ne is the row number of the font's capline.

• rfnt_base 1 i ne is the row number of the font's baseline.

• rfnt_u l_top is the row number of the top scan line in the underscore.

Virtual Terminal Subsystem 3-183

• rfnt_ul_bot is the row number of the bottom scan line in the underscore.

The following fields contain addressing information for device-specific modules to access the font.

• rfnt_fonttab_segi d is the segment ID for the area that contains the font.

• rfnt_fonttab_baseaddr is the base address for the area that contains the font.

• rfnt_fonttab_si ze is the size of the font.

3-184 VRM Device Support

Define Color Table

Description: This is a service routine referenced by the Initialize and Finis entry points that
allows the DSM to define the two default color tables to the VTMP. These color
tables can be modified with the Set Color Table function (see "Set Color Table" on
page 3-169).

Note that this is not an entry point to a device-specific module.

The DSM must define two default color tables, one for character (KSR) displays and
one for AP A displays, so the VTMP can use the Set Color Table function to return
the terminal to default state. Define Color Table is called by the Initialize function
with address and length values for the color tables. The Finis function calls Define
Color Table with address and length values of zero to release the tables before the
device-specific module is terminated.

Calling Sequence:

cvttdct (color_table_k, ct_size_k, color_table_a, ct_size_a)
struct vttcolt *color_table_k;
int ct_size_k;
struct vttcolt *color_table_a;
int ct_size_a;

The parameters to Define Color Table are defined as follows:

• co 1 or_tab 1 e_k and co 1 or_tab 1 e_a specify the values used to fill the color
table for the KSR and APA defaults, respectively. The structures pointed to by
this parameter must be static, as no copies are made. These structures have the
following format:

struct vttcolt
{

int ct_num;
#ifndef COLORTAB

unsigned int ct_entry[lJ;
#else

unsigned int ct_entry_COLORTAB;
#endif
} ;

The fields in the preceding structure are defined as follows:

ct_num is the number of color table entries for a device. This is a fixed,
device-dependent value.

Virtual Terminal Subsystem 3-185

ct_entry is an entry in the color table array. The number of entries in an
array varies between devices, but is fixed for a particular device.

ct_entry_COLORTAB is an entry in the color table array. The number of
entries in an array varies between devices, but is fixed for a particular device.

• c t_s i z e_ k and C t_s i z e_a specify the size in bytes of the KSR and AP A color
table structures, respectively.

Programming Notes:

The size of the color table varies from device to device.

Default Color Table Structures
Two default color tables, one for KSR and one for AP A mode, are provided for all supported display
types. These tables allow you to establish an ANSI 3.64-compatible color definition for KSR mode or
a PC-compatible color definition for AP A and coprocessor modes. The size and organization of color
tables is strictly device-dependent. The tables are initialized with values that establish the following
colors for the indicated display.

Display Color Table Hex KSR APA
Type Index Value Mode Mode

PC Mono A/N 1 0 Black Black
2 2 Green Green

APA-8 1 0 Black Black
2 7 White White

EGA/PC Mono 1 0 Black Black
2 2 Green Green

EGA/Enhanced 1 00 Black Black
Color Display 2 04 Red Blue

3 02 Green Green
4 3E Yellow Cyan
5 01 Blue Red
6 05 Magenta Magenta
7 03 Cyan Brown
8 07 White White
9 38 Gray Gray

Figure 3-38 (Part 1 of 3). Default Color Tables

3-186 VRM Device Support

Display Color Table Hex KSR APA
Type Index Value Mode Mode

10 3C Light red Light blue
11 3A Light green Light green
12 06 Brown Light cyan
13 39 Light blue Light red
14 3D Light magenta Light magenta
15 3B Light cyan Yellow
16 3F High intensity High intensity

white white

APA-8 Color 1 00 Black Black
2 02 Red Blue
3 08 Green Green
4 OF Yellow Cyan
5 20 Blue Red
6 22 Magenta Magenta
7 28 Cyan Brown
8 2A White White
9 15 Gray Gray

10 17 Light red Light blue
11 ID Light green Light green
12 05 Brown Light cyan
13 35 Light blue Light red
14 37 Light magenta Light magenta
15 3D Light cyan Yellow
16 3F High intensity High intensity

white white

PC Color 1 00 Black Black
Display 2 01 Blue Blue

3 02 Green Green
4 03 Cyan Cyan
5 04 Red Red
6 05 Magenta Magenta
7 06 Brown Brown
8 07 White White
9 08 Gray Gray

10 09 Light blue Light blue

Figure 3-38 (Part 2 of 3). Default Color Tables

Virtual Terminal Subsystem 3-187

Display Color Table Hex KSR APA
Type Index Value Mode Mode

11 OA Light green Light green
12 OB Light cyan Light cyan
13 OC Light red Light red
14 OD Light magenta Light magenta
15 OE Yellow Yellow
16 OF High intensity High intensity

white white

APA-16 1 0 Black Black
2 2 White White

Figure 3-38 (Part 3 of 3). Default Color Tables

When the DSM is in KSR mode, the first eight colors in the preceding tables can be used as either
foreground or background colors; the last eight colors can only be used as foreground colors.

When the DSM is in AP A mode, the color corresponding to a pixel value can be calculated by adding
one to the pixel value; the result is the index into the preceding tables.

The default color table for the 5081 Megapel Display is shown in the following table. Note that APA
mode is not supported for this display. The colors are formed by combinations of red, green, and
blue, indicated in the table as R, G, and B.

Display Color Table Color KSR
Type Index Value Mode

RGB

5081 1 000000 Black
2 FOOOOO Red
3 OOFOOO Green
4 FOFOOO Yellow
5 OOOOFO Blue
6 BOOOBO Magenta
7 OOFOFO Cyan
8 DODODO White
9 404040 Gray

10 F04040 Light red

Figure 3-39 (Part 1 of 2). 5081 Display Default Color Table

3-188 VRM Device Support

Display Color Table Color KSR
Type Index Value Mode

RGB

11 70FOOO Light green
12 C08020 Brown
13 0070FO Light blue
14 E030EO Light magenta
15 70FODO Light cyan
16 FOFOFO High intensity

white

Figure 3-39 (Part 2 of 2). 5081 Display Default Color Table

Virtual Terminal Subsystem 3-189

Display Device Driver Interface

Although display devices have more layers of software between the operating system and the
hardware as compared to other devices (see Figure 3-36 on page 3-140), the actual hardware device
drivers are similar for all devices. Of the typical device driver entry points described in "Common
Routine Interface" on page 2-14, the display device driver must define the following:

Entry Point Op Code Parameters

Define device Ox3C Define device structure

Initialize device Ox3D Device ID

Interrupt handler Ox28 Bus interrupt level

I/O initiate Ox1E Queue element

Terminate device Ox3E Device ID

Figure 3-40. Display Device Driver Entry Points

Define Device Entry Point
This function disables the adapter's interrupts, accepts a DDS from the VRM, copies the DDS to a
static data area, and returns the address of the area to the VRM.

This function is called in the following manner:

rc = main(Ox3C, def_dev_struct, sizeaf_def_dev_struct)
The parameters to this entry point are defined as follows:

• Ox3C is the define device op code.
• def_dev_struct is a pointer to the DDS.
• s i zeaf _def _dev_struct is the length of the DDS.

The DDS used by a display device device driver has the same three parts (header, hardware
characteristics section, and device characteristics section) as a DDS for any other device. Note that
display device drivers do not have error log sections. The header has the fields shown in Figure 2-2
on page 2-5.

Header fields defined by IBM for supported displays include:

• Display IODNs:
PC Monochrome A/N - Ox100
AP A-8 - Ox101
EGA/PC Monochrome - Ox102
EGA/Enhanced Color - Ox103
APA-16 - Ox104
AP A-8 Color - Ox105
5081 - Ox107

3-190 VRM Device Support

• IOCN of hardware display device driver:
PC Monochrome A/N - Ox201
AP A-8 - Ox202
EGA/PC Monochrome - Ox214
EGA/Enhanced Color - Ox214
APA-16 - Ox215
AP A-8 Color - Ox216
5081 - Ox218

TNL SN20-9859 (26 June 1987) to SC23-0817

The format of the hardware characteristics fields are shown in Figure 2-3 on page 2-6. Note that the
APA-16 and 5081 display adapters are the only display adapters that support DMA. As such, the
high-order bit of the DMA Type field is set to 1. In addition, the alternate DMA bit is set to define

I these adapters as alternate DMA devices. The DMA channel number field is set to 7 for the AP A-16
I and 5081 adapters.

The device characteristics section is defined on the following page.

Virtual Terminal Subsystem 3-191

struct vtt_dds_dev_char
{

int
unsigned int
unsigned short
short
int
int
short
short
int
int
short
short
int
unsigned
unsigned
unsigned
unsigned
int
struct
{

unsigned
unsigned
unsigned
int
int
int
int
unsigned

#ifndef DEVNMMOD
#define DEVNMMOD1
#endif

deY_length;
dev_rdev_id;
dev_vdd_iocn;
dev_iocn_rsvd;
dev-"1onitor;
dev_adapter-"1emory;
dev_font_class;
dev_font_rsvd;
dev_font_width;
dev_font_height;
dev_avt_format;
dev_avt_rsvd;
dev_bits_per_pel;
dev-"1onitor_type :1;
dev_vlt-"1odify :1;
dev_adapter_status :1;

dev_apa
dey_blink

: 1 ;
: 1;

:30;
dev_width_pel;
dev_height_pel;
dev_width_mm;
dev_height-"1m;
dev_color_ref;

} dev_mode [DEVNMMOD];
};

:29;

The device characteristics fields of a display device driver are defined as follows:

• dev_l ength is the length of the device characteristics section.

3-192 VRM Device Support

• dev_rdev_ i d is the ID of the adapter/monitor combination. The most significant byte of this
field always equals Ox04, and the ID is in the next byte. The least significant halfword always
equals OxOO. Values < 128 are reserved. Values defined by IBM include:

Ox04010000 - PC Monochrome A/N
Ox04020000 - APA-8
Ox04030000 - EGA/PC Monochrome
Ox04040000 - EGA/Enhanced Color
Ox04050000 - APA-16
Ox04060000 - AP A-8 Color
Ox04080000 - 5081 display
Ox04070000 - Sample PC Color

This ID accompanies the sample display device driver that can be found in the AIX directory
/usr/lib/samples.

• dev_vdd_ i ocn contains the IOCN of the device-specific module that runs with the
adapter/monitor combination. This value must match the IOCN value established for the module
with the Define Code SVC. Values defined by IBM include:

OxOOA1 - PC Monochrome A/N
OxOOA2 - APA-8
OxOOA3 - EGA/PC Monochrome
OxOOA4 - EGA/Enhanced Color
OxOOA5 - AP A-16
OxOOA6 - AP A-8 Color
OxOOA8 - 5081 display
OxOOAF - Sample PC Color.

• dev-1Tloni tor is the device ID of the display monitor. IDs defined by third parties (not IBM)
should be > 256. Values defined by IBM include:

OxOOOO - PC Monochrome A/N
Ox0001 - AP A-8
OxOOOO - EGA/PC Monochrome
Ox0002 - EGA/Enhanced Color

Note that the lposts determine which monitor is attached to the EGA adapter by reading the
on-card switches.
Ox0004 - APA-16
Ox0003 - APA-8 Color
Ox0005 - Sample PC Color
Ox0006 - 5081 display.

• dey_adapter -1TIemory indicates the size in bytes of the adapter's refresh buffer. Values defined
by IBM include:

PC Monochrome A/N - 4K bytes
EGA (both) - 64K bytes, expandable to 128K or 256K with Graphics Memory Expansion
Adapter

Virtual Terminal Subsystem 3-193

TNL SN20-9859 (26 June 1987) to SC23-0817

AP A-8 - 64K bytes
AP A-8 Color - 256K bytes
APA-16 - 128K bytes
5081 - 256K bytes.

• dev_font_c1 ass indicates the class of font that this device can use. Three classes are defined,
AP A display fonts (set to one), KSR display fonts (set to zero), and 5081 display fonts (set to two).
Font values defined by third parties (not IBM) should be > 256.

• dev_font_wi dth is a value used only by KSR displays that specifies the width of the character
box in pixels. Values defined for IBM adapters are defined as follows:

PC Monochrome A/N - 9 pixels
EGA/Color - 8 pixels
EGA/PC Monochrome - 9 pixels
PC Color sample - 8 pixels
5081 display - 8 pixels
AP A adapters set this field to zero.

• dev_font_hei ght is a value used only by KSR displays that specifies the height of the
character box in pixels. The height values defined by IBM for the PC Monochrome and EGA are
14 pixels. The PC Color sample and the 5081 display have a height value of 8 pixels. AP A
adapters set this field equal to zero.

• dev_avt_format indicates, for APA adapters only, the format of the APA data buffer. Two
formats are supported. When this value is set to one, a raster plane data format is specified. This
means that the raster array must be formatted as a set of one or more bit planes with one bit of
each pixel value stored in each of the bit planes. The number of bit planes equals
dev_bi ts_per _pe 1. When this value is set to zero, the APA terminal mode is unsupported. Only
the APA-8, APA-16, and APA-8 Color adapters support APA mode.

• dev_bi ts_per _pe 1 indicates the total number of bits in each pixel value. This value is always
set to one for adapters that run in KSR mode. For the APA adapters, the APA-8 and APA-16
adapters have one bit per pixel, and the AP A-8 Color adapter has four bits per pixel. The 5081
display has eight bits per pixel.

• dev_moni tor_type indicates whether the monitor supports color. A one indicates a color
monitor; a zero indicates a monochrome monitor.

• dev_v1 t~odi fy indicates whether an adapter's raster array can be modified. Of the
IBM-supported adapters, the APA-8 Color, EGA/Enhanced Color, and 5081 adapters have
modifiable raster arrays.

• dey_adapter _status is a value filled in by the adapter's loadable POST that indicates if the
adapter is working properly. If this value equals one, the adapter is working properly; a zero
indicates the adapter is not working properly.

• dev_nu~mode_struc specifies the number of modes supported by the adapter. If the adapter
supports only AP A or KSR mode, this value equals one. It is set to two for adapters that can

3-194 VRM Device Support

TNL SN20-9859 (26 June 1987) to SC23-0817

support both modes (such as the EGA/PC Monochrome and EGA/Enhanced Color adapters). If
the adapter supports two modes, the first element in the structure describes the KSR
characteristics of the adapter and the second element describes the AP A characteristics.

• dev_apa is set to one if the mode structure describes an APA mode and to zero if the structure
describes a KSR mode.

• dev_b 1 ink is set to one if the adapter supports blinking characters. The KSR mode adapters
support blinking and the AP A adapters do not support blinking.

• dey_wi dth_pe 1 indicates the width of the displayable presentation surface in pixels. All
IBM-supplied adapters are "defined as 720 pixels wide except the EGA/Enhanced Color display,
which is set at 640 pixels, and the APA-16 and 5081 adapters, which are set at 1024 pixels.

• dev_hei ght_pe 1 indicates the height of the displayable presentation surface in pixels. The
KSR-mode adapters are defined as 350 pixels high. The AP A-8 adapters are defined as 512 pixels,
and the AP A-16 adapter is 768 pixels. The 5081 display adapter is defined as 1024 pixels.

• dey_wi dth_mm indicates the width of the displayable presentation surface in millimeters. Values
defined by IBM include:

PC Monochrome A/N - 204 mm.
EGA/PC Monochrome - 204 mm.
EGA/Enhanced Color - 240 mm.
AP A-8 - 210 mm.
APA-8 Color - 240 mm.
APA-16 - 267 mm.
5081 - 284 mm.

• dev_hei ght~m indicates the height of the displayable presentation surface in millimeters.
Values defined by IBM include:

PC Monochrome A/N - 135 mm.
EGA/PC Monochrome - 135 mm.
EGA/Enhanced Color - 160 mm.
AP A-8 - 149 mm.
AP A-8 Color - 171 mm.
APA-16 - 203 mm.
5081 - 284 mm.

Virtual Terminal Subsystem 3-195

• dey_co 1 or_ref contains the offset in bytes from the beginning of vttdev_char _struct to the
following structure:

struct
{

}

int
int
int
int
#ifndef
#define
#endif;
int

dev_color_total;
dev_color_active;
dev_color_fg;
dev_color_bg;
DEVNMCOL;
DEVNMCOL 1;

dev_color_value [DEVNMCOL];

3-196 VRM Device Support

TNL SN20-9859 (26 June 1987) to SC23-0817

The fields in the preceding structure are defined as follows:

• dev_co lor _tota 1 contains the total number of real colors that can be displayed (not necessarily
simultaneously). The PC Monochrome A/N, EGA/PC Monochrome, APA-16 and APA-8 can
display two colors; the AP A-8 Color and EGA/Enhanced Color can display 64 colors. The 5081
display can display 4,096 colors.

• dev_co lor _acti ve indicates the number of colors that can be displayed simultaneously. The PC
Monochrome A/N, EGA/PC Monochrome, APA-16 and APA-8 can display two colors
simultaneously; the AP A-8 Color and EGA/Enhanced Color can display 16 colors simultaneously.
The 5081 display can display 256 colors simultaneously.

• dev_co lor _ fg indicates the number of foreground colors that can be displayed simultaneously.
The PC Monochrome A/N, EGA/PC Monochrome, APA-16 and APA-8 can display two foreground
colors simultaneously; the AP A-8 Color and EGA/Enhanced Color can display 16 foreground
colors simultaneously. The 5081 display can display 256 colors simultaneously.

• dev_co lor _bg indicates the number of background colors that can be displayed simultaneously.
The PC Monochrome A/N, EGA/PC Monochrome, APA-16 and APA-8 can display two
background colors simultaneously; the AP A-8 Color and EGA/Enhanced Color can display 16
background colors simultaneously. The 5081 display can display 256 colors simultaneously.

• dev_co lor is an array that specifies the colors that can be displayed simultaneously for a given
device. For example, the AP A-8 Color adapter can display 16 colors simultaneously, so the
number of elements in its array is 16.

• dev_co lor _val is a hexadecimal value from 0 to dev_co lor _tota 1 - 1 that indicates the color
to display. The color that corresponds to a particular dev_co 1 or_va 1 is device dependent. A
table with the colors and corresponding hex values for the particular adapters is shown in
Figure 3-38 on page 3-186.

Initialize Device Entry Point
This function activates the display adapter. The adapter's control registers are initialized with
information from the DDS, the frame buffer is cleared, and the device driver's queue ID is saved in a
static data area so any queue elements sent to the driver can be dequeued. For the EGA adapter, the
RAM character generator is also loaded.

This function is called in the following manner:

rc = main(Ox3D, init_parms_struct, sizeof_init_parms_struct)

The parameters to this entry point are defined as follows:

• Ox3D is the initialize device op code.
• i ni t_parms_struct is a pointer to the structure shown on the following page.

Virtual Terminal Subsystem 3-197

struct
{

unsigned int device_id;
unsigned short iodn;
short rsvd;
unsigned int queue_id;
unsigned int module_id;
unsigned int slih_id;

} init_parms;

• s i zeof _ in i t_p a rms_s t ruct is the length of the structure.

Interrupt Handler Entry Point
This function processes interrupts generated by the display adapter. Since display adapters should
never cause an interrupt under normal circumstances, this entry point is called by a FLIH when the
display adapter shares a hardware bus interrupt level with another device.

When called, this entry point does the following:

• Determines if its display adapter caused the interrupt.
• If the adapter did cause the interrupt, the interrupt handler disables the interrupt and returns a

zero to the FLIH, indicating successful processing of the interrupt.
• If the adapter did not cause the interrupt, the interrupt handler returns a two to the FLIH,

informing the FLIH to continue to search other devices on the same bus interrupt level.

This function is called in the following manner:

rc = main(Ox28, int_level, reserved}
The parameters to this entry point are defined as follows:

• Ox28 is the interrupt handler op code.
• i nt_l eve 1 is a pointer to an integer that contains the hardware bus interrupt level.
• The length parameter is not used by this entry point.

Initiate I/O Entry Point
This function removes a queue element from the device driver's queue. When a process detaches from
the device driver's queue, the VRM enqueues an element in the driver's queue. This function does
nothing more than dequeue that queue element.

This function is called in the following manner:

rc = main(OxlE, reserved, reserved}

3-198 VRM Device Support

The parameters to this entry point are defined as follows:

• Ox 1 E is the initiate I/O op code.
• The data parameter is not used by this entry point.
• The length parameter is not used by this entry point.

Terminate Device Entry Point
This function disables the display adapter and its interrupts and is called in the following manner:

rc = main(Ox3E, device_id, reserved)
The parameters to this entry point are defined as follows:

• Ox3 E is the terminate device op code.
• devi ce_i d is a pointer to the 32-bit device ID that is being disabled.
• The length parameter is not used by this entry point.

Virtual Terminal Subsystem 3-199

Coding Concepts for Adapters that Generate Interrupts

Display adapters that generate interrupts (such as the IBM 5081 Megapel adapter) have special
coding requirements in order to utilize the interrupts in the RT PC. These requirements consist of
additional code or function in certain entry points of the device-specific module (described in
"Display Device Driver Considerations" on page 3-140) and the display device driver (described in
"Display Device Driver Interface" on page 3-190).

Device-Specific Module Requirements

Some of the entry points of device-specific modules require additional code or function to utilize
adapter-generated interrupts. These entry points are described in the following sections.

Activate
If you are activating a monitored mode virtual terminal, first perform any _detach operations based
on the rscr _path count. Then issue _attach calls to attach the virtual terminal's VTMP to the
device driver and the device driver to the VTMP. Next, issue an _enque with a general purpose
queue element to the device driver, specifying the VTMP-to-device driver path returned from the
_attach. ~

Deactivate and Finis
If your virtual terminal is in monitored mode and you want to perform the deactivate or finis
routines, issue _detach calls, specifying the IDs of the paths from the device driver to the VTMP and
the VTMP to the device driver.

Set Mode
If you are switching to a monitored mode virtual terminal, first perform any _detach operations
based on the rscr _path count. Then issue _attach calls to attach the virtual terminal's VTMP to
the device driver and the device driver to the VTMP.

Next, issue an _enque with a general purpose queue element to the device driver, specifying the
VTMP-to-device driver path returned from the _attach.

When switching to a KSR mode virtual terminal, issue _detach calls, specifying the IDs of the paths
.from the device driver to the VTMP and the VTMP to the device driver.

3-200 VRM Device Support

Display Device Driver Requirements

Some of the entry points of display device driver modules require additional code or function to
utilize adapter-generated interrupts. These entry points are described in the following sections.

Initialize and Terminate
At both initialize and terminate times, the path ID of the device driver-to-VTMP field should be set to
o. Also, interrupts should be disabled if the display adapter is able to do so.

Interrupt Handler
If the device driver-to-VTMP path ID is not set to zero, _enque a general purpose queue element on
the device driver-to-VTMP path. The operation options of this queue element must be in the range
OxOl to OxOB. As many as 20 bytes of data can be sent in a general purpose queue element to an
application by way of a monitor mode input ring using these display adapter-generated interrupts.

Initiate I/O
You must modify this entry point to handle the queue elements (generated by the activate and set
mode routines of a device-specific module) that inform the device driver of a new device
driver-to-VTMP path ID. The initiate I/O routine must update the path ID and enable interrupts if
the display adapter is capable of doing so.

Virtual Terminal Subsystem 3-201

Virtual Terminal Resource Manager

The virtual terminal resource manager is a virtual device manager that controls the display screen
and handles configuration and initialization of physical terminal components. A virtual device is
typically one or more VRM processes that execute in a more privileged environment than a device
driver. For example, a virtual device can page fault, can issue wait operations, and has access to all
VRM services.

The command interface and return status information for the VTRM is described in "Virtual
Machine Interface to the VTRM" on page 3-6.

The following section describes the fields in the define device structure of the VTRM. This
information is useful if you want to change any of the virtual terminal default parameters. Also, if
you issue a Query Device SVC, you need to know the definitions of the device characteristics fields.
N ate that the VTRM DDS has no hardware characteristics or error log section.

Figure 3-41 on page 3-203 shows the format of the VTRM DDS header and device characteristics
section. The fields are described in the section that follows.

3-202 VRM Device Support

o 16 31
VTRM IODN VTRM IOCN

Define Options Device Type

Device Name

Reserved

Offset to hardware characteristics

Offset to device characteristics

Offset to error log
28 Length of Device-dependent information

Return code from IPL or Define Device SVC

Screen manager IOCN VTMP IOCN

Reserved Keyboard IODN

Locator IODN Speaker IODN

Number of fonts

Font IOCN Font IOCN

116~--~

Number of physical displays

Physical device ID
124~--------------------------~--------------------------~

Display device driver IODN I Virtual display driver IOCN

•
•
•

152
IOCN of Key position code IOCN of character code

to character code map to display code map
156

IOCN of character IOCN of miscellaneous VTMP
echo/break map initialization parameters

160

IODN of Dials IODN of LPF KEYS

Figure 3-41. VTRM Define Device Structure

The first 28 bytes of the DDS make up the DDS header. Values of particular interest include:

• VTRM IODN = Ox0205
• VTRM IOCN = Ox0082
• Options = not applicable
• Device type = Ox0002 (shared device)
• Device name = 'VTRM' A
• Offsets:

Virtual Terminal Subsystem 3-203

To hardware characteristics = 0
To device characteristics = 28
To error log = O.

The device characteristics fields are defined as follows:

• Length of device-dependent information = 33 words

• Return code from IPL = 0 for successful IPL, 6499 for unsuccessful IPL

• Screen manager IOCN = Ox0084

• VTMP IOCN = Ox0081

• Keyboard IODN = filled in at IPL time

• Locator IODN = filled in at IPL time

The locator device is optional. If the locator is not used, this field should be set equal to zero.

• Speaker IODN = filled in at IPL time

The speaker device is optional. If the speaker is not used, this field should be set equal to zero.

• Number of fonts

At IPL time, this value is 1. However, you can define up to 31 additional fonts. After IPL time,
this field reflects the actual number of configured fonts.

• Font IOCN = Ox0101 for default font, Ox0108 for the 5081 font

This halfword is repeated 31 times to accomodate the IOCNs of fonts you may define. Initially,
these 31 halfwords are set equal to zero.

• Number of physical displays = filled in at IPL time

The VRM supports as many as four physical displays. The next three fields (physical display
identifier, display device driver IODN, virtual display driver IOCN) are repeated four times to
accommodate additional displays. Unused fields in this array are set equal to zero.

• Physical display identifier

This value is a code which identifies the particular display adapter/monitor combination.

• Display device driver IODN

This value represents the IODN for the driver of the physical display device.

• Virtual display driver IOCN

This value represents the IOCN for the virtual display driver.

• IOCN of key position code to character code map

This field represents the IOCN of the code that currently defines how key position codes map to
character codes. This value is OxCO.

3-204 VRM Device Support

• IOCN of character code to display code map

This field represents the IOCN of the code that currently defines how character codes map to
display codes (the current font). This value is OxC2.

• IOCN of echo/break map

This field represents the IOCN of the code that currently defines the character echo and break
maps. This value is OxCl.

• IOCN of VTMP initialization parameters.

This field represents the IOCN of the code that currently defines the VTMP initialization
parameters. Examples of these parameters include protocol modes, tab rack, and so on. This value
is OxC3.

• IODN of Dials

This field represents the IODN for the IBM 5080 Dials Feature. The value is defined as Ox39.

• IODN of LPF Keys

This field represents the IODN of the IBM 5080 Lighted Program Function Keyboard Feature.
The value is defined as Ox3A.

Virtual Terminal Subsystem 3-205

3-206 VRM Device Support

Chapter 4. Block I/O Subsystem

Block I/O Subsystem 4-1

TNL SN20-9859 (26 June 1987) to SC23-0817

CONTENTS

About This Chapter ... 4-4
Block I/O Device Driver Considerations .. 4-5

Block I/O Programming Interfaces .. 4-6
Block I/O Device Manager-to-Device Driver Interface 4-6
LLC Process-to-Device Driver Interface ... 4-12
Receive Data Mechanism .. 4-28
VRM Block I/O Device Driver DDS .. 4-29
Block I/O Communication Area ... 4-33
Operation Results .. 4-36

Block I/O Device Manager ... 4-38
LLC Process-to-Block I/O Device Manager Interface 4-40
Operation Results .. 4-42
Block I/O Device Manager Error Logging 4-44

Baseband Device Driver ... 4-47
Define Device Header ... 4-47
Hardware Characteristics .. 4-47
Device Characteristics .. 4-48
Block I/O Device Ring Queue ... 4-50
Data Buffer Structure ... 4-50
LLC Process-To-Baseband Device Driver Interface 4-50
Receive Data .. 4-57
Operation Results .. 4-57

IBM PC 3278/79 Emulation Adapter Distributed Function Terminal Device Driver 4-59
Define Device Header ... 4-59
Hardware Characteristics .. 4-60
Device Characteristics .. 4-61
Error Log .. 4-66
LLC Process-To-DFT Device Driver Interface 4-66
Block I/O Device Ring Queue .. 4-66.2
Data Buffer Structure .. 4-66.2
Receive Data ... 4-66.2
Operation Options ... 4-66.3
Operation Results .. 4-67

Multiprotocol Device Driver .. 4-69
Define Device Header ... 4-70
Hardware Characteristics .. 4-70
Device Characteristics .. 4-71
Error Log .. 4-72
LLC Process-To-Multiprotocol Device Driver Interface 4-74
Block I/O Device Ring Queue ... 4-82

4-2 VRM Device Support

TNL SN20-9859 (26 June 1987) to SC23-0817

Data Buffer Structure ... 4-83
Receive Data .. 4-87
Opera tion Options .. 4-88
Operation Results .. 4-88

I Token Ring Device Driver ... 4-90
I Define Device Header ... 4-90
I Hardware Characteristics .. 4-90
I Device Characteristics .. 4-91
I Block I/O Communication Area ... 4-93
I Data Buffer Structure ... 4-93
I LLC Process-To-Token Ring Device Driver Interface 4-94
I Receive Data .. 4-100
I Operation Results .. 4-100

Block I/O Subsystem 4-3

About This Chapter

This chapter describes the block I/O subsystem of the VRM. The block I/O subsystem
includes a device manager, device drivers, and VRM or operating system processes that
work together in a variety of networks to transfer blocks of data.

4-4 VRM Device Support

Block I/O Device Driver Considerations

This section describes the interfaces necessary to code a block I/O device driver. A block I/O device
driver is a component of the block I/O subsystem. Other subsystem components include a block I/O
device manager (described in "Block I/O Device Manager" on page 4-38), logical link control
processes, and hardware adapters. The role of the device drivers in this subsystem is to service
hardware interrupts and control the communications and local area network adapters. "Baseband
Device Driver" on page 4-47 describes a specific driver in this subsystem.

The components of the block I/O subsystem are shown in the following figure.

--------------------- ------------------- ---VMI-------

Device Driver E

---------------------------------1-- Hardware ------

~
Figure 4-1. Block I/O Subsystem Components

The device driver module consists of the entry points described in "Common Routine Interface" on
page 2-14. Specific processing done by some of the entry points of a block I/O device driver includes:

• Define device - this routine is called once for each port or device the device driver controls.
Each port or device has a unique define device structure. When the driver is defined, it uses the
_dalct to obtain an area of memory large enough to contain the DDS, network ID correlation
table, and SLIH ring queue.

• Initialize device - in this routine the driver defines its check parameters, I/O initiate, interrupt
handler, off-level interrupt handler, and exception handler routines. The driver may also
initialize its data areas and adapter in this routine, or in the I/O initiate routine as part of the
processing performed when it receives an open command from the device manager.

Block I/O Subsystem 4-5

• I/O initiate - a block I/O device driver must support the open command from the device
manager, as well as the start device, halt device, and write commands from an LLC process.
Device-dependent commands may also be supported.

• Interrupt handlers - the device driver must determine whether its adapter (or which port on an
adapter that supports multiple ports) caused the interrupt. The second-level interrupt handler
makes this determination and, if its port or adapter caused the interrupt, performs the minimum
amount of processing necessary to clear the interrupt. The off-level interrupt handler routine can
then be used to perform any additional processing off of the interrupt level. The off-level routines
should be set up to handle as much of the processing as possible, leaving the SLIH path as short
as possible.

Block I/O Programming Interfaces

The block I/O subsystem has three programming interfaces. They are:

• LLC process to block I/O device manager (described in "Block I/O Device Manager" on
page 4-38)

• Block I/O device manager to device driver

• LLC process to device driver.

The device driver interfaces are described in the following sections.

Block I/O Device Manager-to-Device Driver Interface

Because both the device manager and the device drivers are contained within the VRM, only the
following runtime routines are required for communication:

• _attchq

When the device manager receives the first open command from an LLC for a device driver's
IODN, the device manager must first attach itself to the device driver. The device manager uses
the _attchq routine with the following parameters:

From ID - the process ID of the device manager
To ID - the device ID of the device driver
Acknowledge parameters - indicates a long acknowledge type, the QID of the device
manager's receive queue as the Return QID, an enqueue priority of zero, and a maximum
interrupt depth of zero.

Because this is the first attach to the device driver, the driver's Initialize Device routine is called
as a result of the attach.

The returned information from the _attchq indicates the ID of the device manager-to-device
driver path.

4-6 VRM Device Support

o
4

8

o

After the device manager attaches to the device driver, the device manager sets up a path
between the LLC process and the device driver with another _attchq. The parameters to this call
are as follows:

From ID - the process ID of the LLC
To ID - the device ID of the device driver
Acknowledge parameters - depends on whether the LLC is in the VRM or operating system
space.

For VRM LLCs, the long acknowledge type, the Return QID, and the LLC's requested
maximum interrupt depth are specified. The enqueue priority is set to zero.

For operating system LLCs, the interrupt type and LLC's requested interrupt level/sublevel
are specified. The maximum interrupt depth is set to 15 and the return QID is set to zero.

In order for the device manager to keep track of the total number of IODNs opened (22 is the
maximum), as well as to determine when to detach from the various IODNs, the device manager
maintains an internal table of IODNs. The table is fixed in size at 22 entries. If there is no unused
entry in the table, the device manager returns an error for the open request. The structure of
this table is shown in Figure 4-2.

31

lOON I Use Count I VM Use Count

DDS Address

VM Path 1D

Figure 4-2. Device Manager IODN Table

The fields in the preceding figure are defined as follows:
IODN - indicates the IODN of the port or device. A value of zero indicates an unused entry.
Use Count - indicates the total number of times the IODN has been opened. This value is
increased by one for each open of the IODN and decreased by one for each close of the
IODN. If the count reaches zero, the device manager detaches from the IODN and marks the
table entry as unused.
VM Use Count - indicates the total number of times the IODN has been opened by virtual
machine LLC processes. This value is increased and decreased the same way as the Use
Count. If this value reaches zero, the virtual machine-to-device driver path is detached.
Because all LLCs from a virtual machine share the same path to the device driver, the device
manager uses this value to determine when to delete the path.
DDS Address - indicates the location of the DDS associated with the IODN.
VM Path ID - contains the ID of the virtual machine-to-device manager path (if the IODN
has been opened by a virtual machine LLC).

• _detchq

The device manager uses the _detchq routine when it receives the last close command for a
given IODN.

Block I/O Subsystem 4-7

The first task the manager performs is to detach the LLC process from the device driver. The
parameter to this call is defined as follows:
- Path ID - ID of the LLC-to-device driver path.

When the LLC is detached, the device manager then detaches from the driver's IODN. Because
this is the last detach from the device driver, the driver's Terminate function will also be called.
The parameter to this call is:
- Path ID - ID of the device manager-to-device driver path.

• _enque

o
4

8

12

16

20

24

28

After the device manager establishes the appropriate paths with _attchq, the device manager can
send commands to the driver with the _enque routine and Send Command queue elements. The
commands available to this interface are open and IPL adapter. All block I/O device drivers
must support the open, but only those drivers for adapters that require a microcode load must
support IPL adapter. In addition, acknowledgment queue elements are required by the device
manager for both commands.

The commands are defined as follows:
open

o

The open command is the first command passed to the device driver from the manager. This
command is used primarily to allow the driver to provide its DDS address to the manager. At
this time the device driver can also initialize its data structures and adapter.

The following figure shows the Send Command queue element used for the open command.

31

Reserved

Path ID

Type I Priority I Operation Options

lODN I Reserved

ECB Post Mask

Manager Process ID

Reserved

Reserved

Figure 4-3. Manager-to-Driver Send Command Queue Element

The fields in the preceding figure are defined as follows:
Path ID - indicates the ID of the device manager-to-device driver path
Type - set to 1 for Send Command queue element
Priority - always set to zero
Operation Options:

The device option field for an open command is 2. The Command Extension bit is set to
zero; the Interrupt on Completion and Interrupt on Error bits are set to one.

4-8 VRM Device Support

o
4

8

12

16

20

24

28

o

IODN - indicates the IODN of the adapter port
ECB Mask - indicates the ECB mask which will be used by the driver when it performs a
_post to request additional buffers.
Manager Process ID - indicates the manager's PID used by the driver when doing a
_post to request additional buffers.

The acknowledgment queue element for an open request is shown in the following figure.

31

Reserved

Path ID

Type = 0 I Solicited Options Flags I Reserved

Operation Results lODN

Operation Options Reserved

Reserved

DDS Address

Reserved

Figure 4-4. Manager-to-Driver Acknowledgment Queue Element

The fields in the preceding figure are defined as follows:
Path ID - indicates the ID of the device manager-to-device driver path
Type - set to 0 for acknowledgment queue element
Solicited Options - contains the high-order byte of the Operation Options field
Flags - always set to Ox14, solicited acknowledgment
Operation Results - see "Operation Results" on page 4-42
IODN - indicates the IODN of the adapter port
Operation Options - contains the Operation Options field from the Send Command queue
element
DDS Address - indicates the address of the adapter port's DDS.

IPL adapter

The IPL adapter command is used to pass adapter microcode to the VRM device driver. The
device driver returns operation results of Ox01 when opened if it requires microcode to IPL
the adapter.

The Send Command queue element for IPL adapter requires a command extension. The data
in the command extension is the microcode required by the adapter.

Figure 4-5 on page 4-10 shows the Send Command queue element used for the IPL adapter
command.

Block I/O Subsystem 4-9

o
4

8

12

16

20

24

28

o

Type I
lODN

31

Reserved

Path ID

Priority I Operation Options

I Command Extension Segment ID

Reserved

Reserved

Command Extension· Address

Command Extension Length

Figure 4-5. IPL Adapter Send Command Queue Element

The fields in the preceding figure are defined as follows:
Path ID - indicates the ID of the device manager-to-device driver path
Type - set to 1 for Send Command queue element
Priority - always set to zero
Operation Options:

The device option field is set to 5 for the IPL adapter command. The Command
Extension bit is set to one; the Interrupt on Completion and Interrupt on Error bits are
set to one.
IODN - indicates the IODN of the adapter port
Command Extension Seg. ID - indicates the segment ID of the buffer that contains the
adapter microcode
Command Extension Address - indicates the address of the buffer that contains the
adapter microcode
Command Extension Length - indicates the length of the buffer that contains the adapter
microcode.

The acknowledgment queue element for the IPL adapter request is shown in the figure on
the following page.

4-10 VRM Device Support

o
4

8

12

16

20

24

28

o 31

Reserved

Path ID

Type = 0 I Solicited Options Flags I Reserved

Operation Results IODN

Operation Options Command Extension Segment ID

Command Extension Address

Reserved

Reserved

Figul'e 4-6. IPL Adapter Acknowledgment Queue Element

The fields in the preceding figure are defined as follows:
Path lD - indicates the lD of the device manager-to-device driver path
Type - set to 0 for acknowledgment queue element
Solicited Options - contains the high-order byte of the Operation Options field
Flags - always set to Ox14, solicited acknowledgment
Operation Results - see "Operation Results" on page 4-42
lODN - indicates the lODN of the adapter port
Operation Options - contains the Operation Options field from the input Send Command
queue element field is reserved for acknowledgment to a close request.
Command Extension Seg. lD - indicates the segment lD of the buffer that contains the
adapter microcode
Command Extension Address - indicates the address of the buffer that contains the
adapter microcode.

For adapters that require a microcode load, the following conventions must be followed:
The configuration process must install the microcode in the system as a code module. The
lOCN assigned to this module must be placed in each DDS associated with a port on the
adapter.
The device driver for adapters that require a microcode load must respond to the first open
command with operation results of OxOOOl to indicate to the device manager that the
microcode is required.
The device manager then obtains the microcode lOCN from the port's DDS. The manager
determines the virtual address of the code and issues the IPL adapter command. The
command extension area contains the microcode.
The adapter microcode must have an export symbol associated with it so the device manager
can determine the code's virtual address. This export symbol must be "IPLCODE" or
"-IPLCODE" for all adapters that require a microcode load. The first word of the code
module must indicate the length in bytes of the microcode (including the length word itself).
The actual microcode can be of any length, but must begin on a fullword boundary.

Block I/O Subsystem 4-11

• _post

The block I/O device driver uses the _post routine to notify the device manager that additional
pinned receive buffers are required. The parameters consist of the device manager's process ID
and the assigned ECB mask passed to the driver with the open command. The ECB mask
identifies the device that needs the additional pinned buffers and is converted to an index into
the device manager's IODN table (see Figure 4-2 on page 4-7). The device manager does not
notify the device driver when the requested buffers are allocated.

The device manager uses _wait to be notified of the _post from the device driver.

LLC Process-to-Device Driver Interface

After the device manager sets up the paths, allocates the buffers, and performs the rest of its tasks,
the LLC process can send commands directly to the device driver. The following commands can be
used:

• Start device

This command notifies the device driver of a network ID that it can use. After a device driver
receives this command, data can be sent and received for the specified network ID. Operating
system LLC processes use the Send Command SVC to issue this command. VRM LLC processes
use the _enque routine with Send Command queue elements to issue this command.

• Write

This command is used to send data. Three forms of this command are available. Depending on the
amount of data you want to send, use one of the following forms of write:

Write short

This form of the write command allows you to pass up to 8 bytes of data to the device driver
without using a buffer. This form uses the Send Command SVC (for operating system LLCs)
or _enque routines (for VRM LLCs) to send the data.

Write long

This form allows you to send a single buffer of data to the device driver. The maximum
amount of data the buffer can contain is device-dependent. This form uses the Send
Command SVC to send the data buffer from an operating system LLC and the _enque
routine to send data from VRM LLCs.

Start 1/0 write

This form of the write command should be used only to send multiple buffers of data to the
device driver with a single command. This form of the write command uses the Start 1/0
SVC for operating system LLCs and the Start I/O queue element of the _enque routine for
VRM LLCs.

4-12 VRM Device Support

• Halt device

This command notifies the device driver that a network ID is no longer needed. When this
command is complete, data cannot be sent or received for the specified network ID. The halt
device command is issued with a Send Command SVC for operating system LLCs and the
_enque routine for VRM LLCs.

• Device-dependent commands

In addition to the commands defined above, other commands can be defined by cooperating LLC
processes and device drivers. The Send Command SVC (for operating system LLCs) and the
Send Command queue element of the _enque routine (for VRM LLCs) allow you to define any
device-specific operation that you require.

The following sections describe each command in more detail.

Start Device
The Start device command establishes a session between an LLC process and the device driver for a
specific device. A network ID determines to which LLC the driver passes receive data. The driver
must ensure that the ID is not already in use and that the number of IDs supported is not exceeded.

A driver can route all received data to a single LLC by specifying zero for the network ID length
field in the driver's DDS. In this case, the driver does not receive a network ID and the command
extension to the Start device consists of only the first word of Figure 4-8 on page 4-14.

The driver must ensure that an LLC is not notified of received data before the LLC's Start device is
complete. Before an LLC can receive data, it must obtain the device ring queue address, which is
returned in the Start device acknowledgment queue element.

Because the.device driver correlator is also returned in the Start device acknowledgment queue
element, this command should not be issued synchronously (the synchronous operation bit in the
operation options field should be set to zero).

For VRM LLCs, this command is issued with the _enque routine's Send Command queue element.
The following figure shows the queue element for this command.

o
4

8

12

16

20

24

28

32

Type I
lOON

Reserved

Path ID

Priority I Operation Options

I Command Extension Segment ID

Receive Post Mark

PID of LLC

Command Extension Address

Command Extension Length

Figure 4-7. Start Device Queue Element

Block I/O Subsystem 4-13

The fields in the preceding figure are defined as follows:

• Path ID - ID of the LLC-to-device driver path.
• Type - set to 1 for Send Command queue element.
• Priority - set to zero.
• Operation Options - command extension bit must be 1. Device option equals 7. For other values,

see "Operation Options" on page 4-26.
• IODN - of the port or device.
• Command Extension Seg ID - segment ID of the command extension area.
• Receive POST Mask - for VRM LLCs only, indicates the bit to use to inform the LLC of received

data. For OS LLCs, this field is set to zero.
• PID of LLC - for VRM LLCs only, indicates the process ID of the LLC. For as LLCs, this field

is set to zero.
• Command Extension Address - address of the command extension area.
• Command Extension Length - length of the command extension area. This area must be large

enough to hold both input and returned parameters.

The command extension is required to pass additional parameters. The format of the command
extension is shown below.

VM Interrupt Level/Sublevel I Reserved I LLC Ring Correlator

Network 10

Device-Dependent Area

Figure 4-8. Start Device Command Extension. Note that the command extension area also returns
data to the LLC process. Therefore, the area must be large enough to pass parameters to and
from the device driver.

The fields in the preceding figure are defined as follows:

• VM Interrupt Level/Sublevel- for OS LLCs only, indicates the level and sublevel on which to
return virtual interrupts. For VRM LLCs, this field must be set to zero.

• LLC Ring Correlator - a value assigned by the LLC to acknowledgment queue elements or
virtual interrupts returned for the indicated network ID.

• Network ID - specifies an LLC process on the network. The length of this field is specified in the
device's DDS.

• Device-Dependent Area - used to pass additional device-dependent data, if any.

The figure on the following page shows a returned queue element for this command.

4-14 VRM Device Support

o
4

8

Reserved

Path ID

Type=O I Solicited Options

Operation Results

Flags I Reserved

lOON
12

16

20

24

Operation Options Command Extension Segment ID

28

32

Reserved

I

Command Extension Address

Device Driver Reserved
Correlator

I nterrupt Level/Sublevel
I

LLC Ring
Correlator

Figure 4-9. Start Device Acknowledgment Queue Element

The fields in the preceding figure are defined as follows:

o Path ID - ID of the LLC-to-device driver path.
o Type - equals zero for an acknowledgment queue element.
• Solicited Options - contains the high-order byte of the operation options field.
o Flags - set to Ox14 to indicate a solicited interrupt.
• Operation Results - see "Operation Results" on page 4-36.
• IODN - of the device or port.
• Operation Options - operation options from the input queue element.
• Command Extension Seg ID - segment ID of the command extension area.
• Command Extension Address - address of the command extension area.
• Device Driver Correlator - correlator value assigned by the driver.
• LLC Ring Correlator - value supplied in the input queue element.
• Interrupt LeveljSublevel- for OS LLCs only, indicates the level and sublevel on which to return

virtual interrupts. For VRM LLCs, this field is set to zero. .

The returned command extension area for this command (if any) consists of a 32-bit device queue ring
address. This address is assigned to the network ID that was passed with the Start device command.

After the ring queue address is a variable-length field of device-dependent data that consists of the
portions of the command extension area used to pass the network ID and device-dependent data to
the driver.

For OS LLCs, this command is issued with a Send Command SVC. Input parameters are defined as
follows:

• GPR2 = device driver IODN (bits 0-15), operation options (bits 16-31). The device option for a
Start command is 7. See "Operation Options" on page 4-26 for other values.

• GPR3,4 = reserved.
• GPR5 = command extension address.
• GPR6 = command extension length.
• GPR7 = ID of the device driver-to-LLC path.

Block IjOSubsystem 4-15

OS LLCs also use the command extension format shown in Figure 4-8 on page 4-14.

Returned information contained in the Send Command PSB includes:

• Status flags - set to Ox14 for a solicited interrupt.
• Overrun count - set to zero.
• Operation result - for operation results (bits 0-15) see "Operation Results" on page 4-36; device

driver IODN (bits 16-31).
• Data word 1 - operation options (bits 0-15); segment ID of the command extension (bits 16-31).
• Data word 2 - command extension address.
• Data word 3 - device driver correlator (bits 8-15); LLC ring correlator (bits 24-31); all other bits

reserved.

The returned command extension area is the same as that described for a VRM LLC.

Halt Device
The Halt device command is used by the LLC process to end a session with the device driver. The
device driver correlator is passed as an input parameter so the driver knows which network ID to
terminate.

The following figure shows an input queue element for this command.

o
4

8

Reserved

Path 10

12

16

Type I Priority I Operation Options

lODN I Reserved

20

24

28

32

Reserved

Reserved

Reserved

Reserved

Figure 4-10. Halt Device Queue Element

I

The fields in the preceding figure are defined as follows:

• Path ID - ID of the LLC-to-device driver path.
• Type - set to 1 for Send Command queue element.
• Priority - set to zero.

Device Driver
Correlator

• Operation Options - command extension bit must be 1. Device option equals 8. For other values,
see "Operation Options" on page 4-26.

• IODN - of the port or device.
• Device Driver Correlator - correlator value that was returned to the LLC process upon

completion of the Start device command.

4-16 VRM Device Support

The following figure shows a returned queue element for this command.

o
4

8

12

16

20

24

28

32

Reserved

Path ID

Type=O I Solicited Opt ions Flags

Operation Resu Its

Operation Options

Reserved

Reserved

Interrupt Level/Sublevel

I Reserved

lOON

Reserved

I
LLC Ring
Correlator

Figure 4-11. Halt Device Acknowledgment Queue Element

The fields in the preceding figure are defined as follows:

• Path ID - ID of the LLC-to-device driver path.
• Type - equals zero for an acknowledgment queue element.
• Solicited Options - contains the high-order byte of the operation options field.
• Flags - set to Ox14 to indicate a solicited acknowledgment.
• Operation Results - see "Operation Results" on page 4-36.
• IODN - of the device or port.
• Operation Options - operation options from the input queue element.
• LLC Ring Correlator - correlator value that was supplied with the Start device command.
• Interrupt Level/Sublevel - for OS LLCs only, indicates the level and sublevel on which to return

virtual interrupts. For VRM LLCs, this field is set to zero.

For OS LLCs, this command is issued with a Send Command SVC. Input parameters are defined as
follows:

• GPR2 = device driver IODN (bits 0-15), operation options (bits 16-31). The device option for the
halt command is 8. See "Operation Options" on page 4-26 for other values.

• GPR3 = device driver correlator (bits 24-31).
• GPR4,5,6 = reserved.
• GPR7 = ID of the device driver-to-LLC path.

Returned information contained in the Send Command PSB includes:

• Status flags - set to Ox14 for a solicited interrupt.
• Overrun count - set to zero.
• Operation result - for operation results (bits 0-15) see "Operation Results" on page 4-36; device

driver IODN (bits 16-31).
• Data word 1 - operation options (bits 0-15); reserved (bits 16-31).
• Data word 2 - reserved.

Block I/O Subsystem 4-17

• Data word 3 - reserved (bits 0-23); LLC ring correlator that corresponds to the deleted network
ID (bits 24-31).

Write Long
The Write long command passes a buffer of data to a block I/O device driver for transmission on a
local-area network or communications line. This command uses Send Command elements and
command extensions. The command extension area consists of the data buffer to be sent. An LLC can
use a buffer obtained from the buffer pool or from its own memory to contain the data.

The buffer format bit described in "Operation Options" on page 4-26 indicates the format of the
buffer. When the buffer format bit is set, the buffer contains only data. When the buffer format bit is
zero, the buffer is of the format shown in Figure 4-27 on page 4-36.

If the buffer is from the buffer pool and the entire buffer is passed to the driver, the LLC can request
that the buffer be returned to the pool by setting the free buffer bit (also described in "Operation
Options" on page 4-26).

Acknowledgment to this call indicates only that the data was sent and not that it was received on
the other end. Therefore, to reduce system overhead, you can set the interrupt on completion bit of
the operation options field to zero.

The following figure shows an input queue element for this command.

o
4

8

Reserved

Path ID

12

16

Type I Priority I Operation Options

lOON I Command Extension Segment ID

20

24

28

32

Reserved

Reserved

Command Extension Address

Command Extension Length

Figure 4-12. Write Long Queue Element

I

The fields in the preceding figure are defined .as follows:

• Path ID - ID of the LLC-to-device driver path.
• Type - set to 1 for Send Command queue element.
• Priority - set to zero.

Device Driver
Correlator

• Operation Options - command extension bit must be 1. Device option equals 6. For other values,
see "Operation Options" on page 4-26.

• IODN - of the device driver.
• Command Extension Segment ID - segment ID of the command extension area.

4-18 VRM Device Support

• Device Driver Correlator - the correlator value that was returned to the LLC from the Start
device command.

• Command Extension Address - address of the data buffer.
• Command Extension Length -length of the data buffer.

The following figure shows a returned queue element for this command.

o
4

8

Reserved

Path ID

Type=O I Solicited Option.s

Operation Results

Flags I Reserved

IOON
12

16

20

24

Operation Options Command Extension Segment ID

28

32

Command Extension Address

Reserved

Interrupt Level/Sublevel
I

LLC Ring
Correlator

Figure 4-13. Write Long Acknowledgment Queue Element

The fields in the preceding figure are defined as follows:

• Path ID - ID of the LLC-to-device driver path.
• Type - equals zero for an acknowledgment queue element.
• Solicited Options - contains the high-order byte of the operation options field.
• Flags - set to Ox14 to indicate a solicited acknowledgment.
• Operation Results - see "Operation Results" on page 4-36.
• IODN - of the device driver.
• Operation Options - operation options from the input queue element.
• Command Extension Segment ID - segment ID of the data buffer.
• Command Extension Address - address of the data buffer.
• LLC Ring Correlator - correlator value that was supplied with the Start device command.
• Interrupt Level/Sublevel- for OS LLCs only, indicates the level and sublevel on which to return

virtual interrupts. For VRM LLCs, this field is set to zero.

For OS LLCs, this command is issued with a Send Command SVC. Input parameters are defined as
follows:

• GPR2 = device driver IODN (bits 0-15), operation options (bits 16-31). The device option for the
Write long command is 6. See "Operation Options" on page 4-26 for other values.

• GPR3 = device driver correlator (bits 24-31).
• GPR4 = reserved.
• GPR5 = command extension address.
• GPR6 = command extension length.
• GPR7 = ID of the device driver-to-LLC path.

Block I/O Subsystem 4-19

Returned information contained in the Send Command PSB includes:

• Status flags - set to Ox14 for a solicited interrupt.
• Overrun count - set to zero.
• Operation result - for operation results (bits 0-15) see "Operation Results" on page 4-36; device

driver IODN (bits 16-31).
• Data word 1 - operation options (bits 0-15); reserved (bits 16-31).
• Data word 2 - command extension address.
• Data word 3 - reserved (bits 0-23); LLC ring correlator (bits 24-31).

Write Short
The Write short command is similar to the Write long command, but where Write long uses a
buffer to send data, the Write short sends data within the Send Command queue element itself. This
restricts the Write short command to sending only eight bytes of data per queue element.

The Write short command has no command extension, so the command extension bit in the
operation options field is set to zero. The buffer format and free buffer fields in the operation options
area do not apply to this command.

The acknowledgment to this command indicates only that the data was sent, not that the data was
received at the other end. Therefore, to reduce system overhead, you can set the interrupt on
completion bit of the operation options field to zero.

The following figure shows an input queue element for this command.

o
4

8

Reserved

Path ID

12

16

Type I Priority I Operation Options

20

24

28

32

lOON

Reserved

I

Reserved

Data Area

Figure 4-14. Write Short Queue Element

Reserved

The fields in the preceding figure are defined as follows:

• Path ID - ID of the LLC-to-device driver path.
• Type - set to 1 for Send Command queue element.
• Priority - set to zero.

Device Driver
Correlator

Data Length

• Operation Options - command extension bit must be o. Device option equals 6. For other values,
see "Operation Options" on page 4-26.

4-20 VRM Device Support

• IODN - of the device driver.
• Device Driver Correlator - the correlator value that was returned to the LLC from the Start

device command.
• Data Length - number of data bytes (up to 8) in the data area.
• Data Area - contains the data to be sent. If fewer than 8 bytes are being passed, the data must

be left-justified within the data area.

The acknowledgment queue element for a Write short request has the same format as the
acknowledgment queue element for a Write long request, except that the command extension
segment ID and command extension address fields defined for the Write long acknowledgment are
reserved (set equal to zero) for the Write short acknowledgment.

For OS LLCs, this command is issued with a Send Command SVC. Input parameters are defined as
follows:

• GPR2 = device driver 10DN (bits 0-15), operation options (bits 16-31). The device option for the
Write long command is 6. See "Operation Options" on page 4-26 for other values.

• GPR3 = device driver correlator (bits 24-31).
• GPR4 = length of data (bits 24-31).
• GPR5 = data bytes 1 through 4, left-justified
o GPR6 = data bytes 5 through 8, left-justified.
• GPR7 = ID of the device driver-to-LLC path.

Returned information contained in the Send Command PSB includes:

• Status flags - set to Ox14 for a solicited interrupt.
• Overrun count - set to zero.
• Operation result - for operation results (bits 0-15) see "Operation Results" on page 4-36; device

driver 10DN (bits 16-31).
• Data word 1 - operation options (bits 0-15); reserved (bits 16-31).
• Data word 2 - reserved.
• Data word 3 - reserved (bits 0-23); LLC ring correlator (bits 24-31).

Write (Start I/O)
For sending multiple data buffers, the Write command can be issued with Start I/O queue elements
(VRM LLCs) or the Start I/O SVC (OS LLCs). A command control block associated with Start I/O
requests consists of a command header and one or more command elements. Each command element
defines a data buffer to be sent. The LLC can use buffers from the buffer pool or from its own
memory.

The buffer format bit described in "Operation Options" on page 4-26 indicates the format of the
buffer. When the buffer format bit is set, the buffer contains only data. When the buffer format bit is
zero, the buffer is of the format shown in Figure 4-27 on page 4-36.

If the buffer is from the buffer pool and the entire buffer is passed to the driver, the LLC can request
that the buffer be returned to the pool by setting the free buffer bit (also described in "Operation
Options" on page 4-26).

Block I/O Subsystem 4-21

Acknowledgment to this call indicates only that the data was sent and not that it was received on
the other end. Therefore, to reduce system overhead, you can set the interrupt on completion bit of
the operation options field to zero.

The following figure shows an input queue element for this command.

o
4

8

Reserved

Path ID

12

16

20

24

28

32

Type I Priority I Operation Options

lOON I CCB Segment ID

CCB Address

CCB Length

Reserved

Reserved

Figure 4-15. Write (Start I/O) Queue Element

The fields in the preceding figure are defined as follows:

• Path ID - ID of the LLC-to-device driver path.
• Type - set to 2 for Start I/O queue element.
• Priority - set to zero.
• Operation Options - command extension bit must be 1. Device option equals 1. For other values,

see "Operation Options" on page 4-26.
• IODN - of the device driver.
• CCB Segment ID - segment ID of the command control block.
• CCB Address - address of the CCB.
• CCB Length - length of the CCB.

The CCB header and elements are described in the Start I/O SVC definition in VRM Programming
Reference. Fields defined for use in the block I/O subsystem are shown below:

o
4

8

12

24

Reserved

Reserved

Reserved

I
I

Reserved

Operation Options

lOON

I
Device Driver
Correlator

Figure 4-16. CCB Header for Write (Start I/O)

4-22 VRM Device Support

The fields in the preceding figure are defined as follows:

• Operation Options - command element bit must be set, device option field equals 1 (for write).
For other values, see "Operation Options" on page 4-26.

• IODN - of the device driver.
• Device Driver Correlator - correlator value that was returned to the LLC from the Start device

command.

The CCB is followed by one or more command elements (also shown in VRM Programming
Reference). For block I/O subsystem Start I/O requests, the command element fields are defined as
follows:

• Word 1-
Bit 15 (link bit) is set to one to indicate additional command elements to follow. For the last
command element in the chain, this bit is set to zero.
Bits 16-31 contain the segment ID of the data buffer.

• Word 2 - contains the length of the data buffer, in bytes.
• Word 3 - contains the address of the data buffer.

The following figure shows a returned queue element for this command.

o
4

8
Type=O I Reserved

Operati on Resu Its

Reserved

Path ID

Flags I Reserved

IODN
12

16

20

24

Reserved cca Segment ID

28

32

cca Address

Reserved

Interrupt Level/Sublevel
I

LLC Ring
Correlator

Figure 4-17. vVrite (Start I/O) Acknowledgment Queue Element

The fields in the preceding figure are defined as follows:

• Path ID - ID of the LLC-to-device driver path.
• Type - equals zero for an acknowledgment queue element.
• Flags - set to Ox24 to indicate a solicited acknowledgment.
• Operation Results - see "Operation Results" on page 4-36.
• IODN - of the device driver.
• CCB Segment ID - segment ID of the CCB.
• CCB Address - address of the CCB.
• LLC Ring Correlator - correlator value that was supplied with the Start device command.
• Interrupt Level/Sublevel- for OS LLCs only, indicates the level and sublevel on which to return

virtual interrupts. For VRM LLCs, this field is set to zero.

Block I/O Subsystem 4-23'

For OS LLCs, this command is issued with a Start I/O SVC. Input parameters are defined as follows:

• GPR2 = CCB address.
• GPR3 = ID of the device driver-to-LLC process path.

The CCB and command elements have the same format as those defined for VRM LLCs, with one
exception: the command element field in bits 16-31 of word 1 (data buffer segment ID) is reserved (set
equal to zero) for OS LLCs.

Returned information contained in the Start I/O PSB includes:

• Status flags - set to Ox24 for a solicited interrupt.
• Overrun count - set to zero.
• Operation result - for operation results (bits 0-15) see "Operation Results" on page 4-36; device

driver IODN (bits 16-31).
• Data word 1 - reserved (bits 0-15); CCB segment ID (bits 16-31).
• Data word 2 - CCB address.
• Data word 3 - reserved (bits 0-23); LLC ring correlator (bits 24-31).

Device-Dependent Commands
The block I/O subsystem allows cooperating components to define their own commands. For VRM
LLCs, these device-dependent commands use the _enque routine with Send Command queue
elements.

The following figure shows an input queue element for a device-dependent command.

o
4

8

Reserved

Path ID

12

16

Type I Priority I Operation Options

lOON I Parameter 1

20

24

28

32

Parameter 2

Parameter 3

Parameter 4

Parameter 5

I
Device Driver
Carrelator

Figure 4-18. Device-Dependent Command Queue Element

The fields in the preceding figure are defined as follows:

• Path ID - ID of the LLC-to-device driver path.
• Type - set to 1 for Send Command queue element.
• Priority - set to zero.

4-24 VRM Device Support

• Operation Options - vary depending on the command. See "Operation Options" on page 4-26 for
possible values for this field.

• IODN - of the device driver.
• Parameter 1 - if a command extension is specified in the operation options field, this field

contains the segment ill of the command extension. Otherwise, this is a device-dependent
parameter.

• Parameter 2 - is a device-dependent parameter.
• Device driver Correlator - is the correlator value returned to the LLC from the Start Device

command.
• Parameter 3 - is a device-dependent parameter.
• Parameter 4 - if a command extension is specified in the operation options field, this field

contains the address of the command extension. Otherwise, this is a device-dependent parameter.
• Parameter 5 - if a command extension is specified in the operation options field, this field

contains the length of the command extension. Otherwise, this is a device-dependent parameter.

The following figure shows a returned queue element for a device-dependent command.

o
4

8
Type=O I Reserved

Operation Results

Reserved

Path ID

Flags I Reserved

lOON
12

16

20

24

Operation Option Parameter 1

28

32

Parameter 2

Parameter 3

Interrupt Level/Sublevel
I

LLC Ring
Correlator

Figure 4-19. Device-Dependent Acknowledgment Queue Element

The fields in the preceding figure are defined as follows:

• Path ID - ID of the LLC-to-device driver path.
• Type - equals zero for an acknowledgment queue element.
• Solicited Options - contains the high-order byte of the operation options field.
• Flags - set to Ox14 to indicate a solicited acknowledgment.
• Operation Results - see "Operation Results" on page 4-36.
• IODN - of the device driver.
• Operation Options - operation options from the input queue element.
• Parameter 1 - if a command extension is specified in the operation options field, this field

contains the segment ID of the command extension. Otherwise, this is a device-dependent value.
• Parameter 2 - if a command extension is specified in the operation options field, this field

contains the address of the command extension. Otherwise, this is a device-dependent value.
• Parameter 3 - is a device-dependent value.
• LLC Ring Correlator - correlator value that was supplied with the Start device command.

Block I/O Subsystem 4-25

• Interrupt Level/Sublevel- for OS LLCs only, indicates the level and sublevel on which to return
virtual interrupts. For VRM LLCs, this field is set to zero.

Device-dependent commands can also be defined for OS LLCs. OS LLCs use the Send Command
SVC to issue device-dependent commands. Input parameters to the SVC are defined as follows:

• GPR2 = device driver IODN (bits 0-15); operation options (bits 16-31). The possible values for this
field are defined in "Operation Options."

• GPR3 = device-dependent value (bits 0-23); device driver correlator (bits 24-31).
• GPR4 = is a device-dependent parameter.
• GPR5 = if a command extension is specified in the operation options field, this register contains

the address of the command extension area. Otherwise, GPR5 contains a device-dependent
parameter.

• GPR6 = if a command extension is specified in the operation options field, this register contains
the length of the command extension area. Otherwise, GPR6 contains a device-dependent
parameter.

• GPR7 = ID of the device driver-to-LLC path.

Returned information contained in the Send Command PSB includes:

• Status flags - set to Ox14 for a solicited interrupt.
• Overrun count - set to zero.
• Operation result - for operation results (bits 0-15) see "Operation Results" on page 4-36; device

driver IODN (bits 16-31).
• Data word 1 - operation options (bits 0-15); if a command extension was specified in the

operation options field, bits 16-31 contain the segment ID of the extension. Otherwise, bits 16-31
are device-dependent.

• Data word 2 - if a command extension was specified in the operation options field, this word
contains the address of the extension. Otherwise, this field is device-dependent.

• Data word 3 - device-dependent value (bits 0-23); LLC ring correlator (bits 24-31).

Operation Options
Operation options fields determine how command processing is performed. The Send Command
SVC indicates its operation options in GPR2. Start I/O SVC indicates its operation options in a
command control block. The Send Command and Start I/O queue elements for the _enque routine
also contain operation options fields. For block I/O requests, this field is defined as shown in the
figure on the next page.

4-26 VRM Device Support

Device Option

Reserved
Free buffer
Buffer format

L---__ -. Reserved
'-------. Command element or extension

'------. Synchronous operation
L--____ ---. Interrupt on error

'------------. Interrupt on completion

Figure 4-20. Block I/O Operation' Options Field

The bits in the preceding figure are defined as follows:

• Interrupt on completion - when set, causes the operating system to be interrupted upon
completion of the I/O operation

• Interrupt on error - when set, causes the operating system to be interrupted if the I/O operation
is terminated

• Synchronous operation - when set, places the current operating system in a wait state pending
the completion of the I/O operation. If this bit is set, GPR2 contains the operation results of the
block I/O request initiated with _enque, Send Command SYC, or Start I/O SVC. If this bit is
not set, GPR2 contains only the return code from the _enque, Send Command SVC, or Start
I/O SVC.

• Command element or extension
Command element - when set, indicates that the command control block associated with a
Start I/O request has one or more command elements
Command extension - when set, indicates that the Send Command queue element associated
with this I/O request has a command extension field.

• Buffer format - indicates the format of the data buffer for Write commands. When set, this bit
indicates that the entire command extension or command element is to be treated as data and
sent. When this bit is zero, the buffer area is of the format shown in Figure 4-27 on page 4-36.

• Free buffer - when set, indicates that the device driver should return the data buffer to the
buffer pool when a Write request is completed. This applies only if the buffer was obtained from
the buffer pool and only if the Buffer Format bit is not set.

• Device option - indicates the operation to be performed. For a Start I/O SVC, the only valid
block I/O subsystem value is 1 (for a Write request). For a Send Command SVC, the following
values are valid:

0, 1, 4 = reserved
2 = open
3 = close
5 = IPL adapter
6 = write (both short and long forms)
7 = start device
8 = halt device
> 8 = device-dependent.

Block I/O Subsystem 4-27

Receive Data Mechanism

The block I/O subsystem does not define a Read or Receive command, but a Read or Receive is
implied whenever a Start Device is completed.

Received data is automatically routed to the LLC process by way of the pinned receive buffers that
the device manager provides to the block I/O device driver. When a device driver processes an
adapter interrupt for received data, the driver gets a buffer from its SLIH ring queue, takes the data
from the adapter and places it into the buffer. By comparing the network ID included in the received
data to the IDs in the network correlation table, the driver determines to which LLC process to send
the data. The driver then places the buffer's segment offset into the appropriate LLC's device ring
queue.

If the device ring queue was empty, the LLC process is informed (by way of a _post for VRM LLCs
or a virtual interrupt for OS LLCs) that a buffer of data has been received. If the device ring queue
was not empty, no action is taken because the LLC is expected to empty the device ring queue when
it has been informed that buffers are available.

The amount of data received is indicated in the data length field of the receive buffer. The LLC uses
the data offset field to determine the actual start of the data. Figure 4-27 on page 4-36 shows the
location of these fields.

The driver increments a 'buffers used' count each time it removes a buffer from the SLIH ring queue.
The result is compared to the SLIH threshold value contained in its DDS. If the values are the same,
the driver issues a _post to the device manager, indicating the need for additional pinned receive
buffers.

If the SLIH ring queue is empty when a receive buffer is needed, or the device ring queue is full
when a receive buffer is to be added to it, an unsolicited queue element or virtual interrupt is
generated to indicate the error.

If the receive buffer has overflowed, the low-order bit of the flag field should be set. The remaining
data is discarded.

4-28 VRM Device Support

VRM Block I/O Device Driver DDS

The header and hardware characteristics sections of a block I/O device driver follow the formats
shown in Figure 2-2 on page 2-5 and Figure 2-3 on page 2-6, respectively. In order for a device driver
to work properly in the block I/O subsystem, the device characteristics section must follow the
format shown in Figure 4-21.

o
4

8

12

16

20

24

28

n

o

Length of Device Characteristics Section

Reserved Communications Area Segment ID

Communications Area Address

Buffer Size Number of Buffers

Device Ring Buffers SLIH Ring Buffers Maximum # LLC 5 I Reserved

Net ID Length Net ID Pointer Maximum # Net ID 5 I Data Offset

SLIH Threshold SLIH Count Microcode IOCN

SLIH Ring Address

Device-Dependent Characteristics

Figure 4-21. Device Characteristics - Block I/O Device Driver

The fields in the preceding figure are defined as follows:

31

• Length of Device Characteristics Section - is the length in words of this section.
• Communications Area Segment ID - is the ID of the segment where the block I/O

communications area resides.
• Communications Area Address - indicates the segment offset of the block I/O communications

area.
• Buffer Size - indicates the length of each individual buffer in the buffer pool. This value must be

a multiple of 4 so that buffers hold fullwords of data.
• Number of Buffers - indicates the number of defined buffers.
• Device Ring Buffers - is the number of buffers placed on each device ring queue.
• SLIH Ring Buffers - is the number of receive buffers placed on the SLIH ring queue.
• Maximum # LLCs - indicates how many logical link controls can attach to the device at any

one time.
• NetID Length - is the length of the network ID in bytes.
• NetID Pointer - indicates the location of the network ID in the receive data. This value is the

offset in bytes from the start of the receive data.
• Maximum # NetIDs - indicates how many network IDs the device can support.
• Data Offset - indicates an offset (in bytes) into the data area of a receive buffer at which the

device driver is to place received data. This field is not used by all device drivers.

Block I/O Subsystem 4-29

• SLIH Threshold - is the number of SLIH ring queue buffers the device driver can use before it
must request additional buffers from the block I/O device manager.

• SLIH Count - indicates how many SLIH ring queue buffers the device driver has moved to
receive ring queues. The driver initializes this field to zero and increments it each time it moves
a buffer to a receive ring queue. If the SLIH count is equal to the SLIH threshold, the driver
resets the count to zero and issues a _post call to the device manager to request additional
buffers.

• Microcode IOCN - is the IOCN of the IPL code for those adapters that require a separate IPL.
For adapters that do not require an IPL, this field is zero.

• SLIH Ring Address - is the address of the SLIH ring. This value is filled in by the device driver
when it receives an open request from the block I/O device manager.

• Device-Dependent Characteristics - is an optional area that can be defined by each individual
device.

Network ID Correlation Table
A network ID is a variable length value used to differentiate between LLC processes. The LLC passes
a network ID to the device driver so the driver can route the receive data to the proper LLC. The
device driver gets the network ID from the receive data and then determines (from the driver's
network ID correlation table) the LLC to be notified, the device ring queue and LLC ring correlator
to use.

A device or port may have more than one network ID associated with it. If multiple LLCs are
attached to the same device, each LLC must have a unique network ID. The device driver discards
any data which is received with an undefined network ID.

You can specify a network ID with a length of zero, but in this case only one entry can exist in the
network ID correlation table and no network ID comparison is done. In this case, all data is routed
to the one LLC.

The network ID correlation table is used by a device driver to associate a network ID to a device
ring queue, path ID, and LLC process ID. Each time the device driver receives a unique network ID
(from an LLC by way of a start device command) an entry is created in this table. An LLC may have
multiple network IDs and may use the same network ID on multiple ports. The same network ID
cannot be used by multiple LLCs on the same port.

Each port (IODN) has a network ID correlation table. The number of table entries and the network
ID length are specified in the port's DDS. The following figure shows the network ID correlation
table fields required by the block I/O subsystem. Additional user-defined fields may be added.

4-30 VRM Device Support

o
4

8

12

16

20

n

o
LLC Path ID

LLC Process ID

Receive Completion Mask

Device Ring Queue Address

Device Ring Queue In Pointer

VM Level/Sublevel I Reserved

Network ID

Figure 4-22. Network ID Correlation Table

I LLC Correlator

The fields in the preceding figure are defined as follows:

31

• LLC Path ID - is the ill of the LLC-to-device driver path. A value of zero in this field indicates
an unused entry.

• LLC Process ID - is the ID of the LLC that issued the start device command for this network ID
• Receive Completion Mask - is the ECB mask to use when notifying an LLC of receive data for a

network ID. This field is used only by VRM LLCs.
• Device Ring Queue Address - is a pointer to the device ring queue
• Device Ring Queue In Pointer - is a copy of the In pointer contained in the device ring queue

associated with this table entry. Because LLCs could disturb the In pointer in the device ring
queue, the VRM device driver reads the In pointer value from this location, ensuring that the
driver will never cause a page fault by accessing memory with a pointer made invalid by another
process.

• VM Level/Sublevel - is the interrupt level and sublevel to be used when notifying an operating
system LLC of receive data for this network ID or of a network failure. For operating system
LLCs, bits 5-7 contain the interrupt level and bits 8-15 contain the interrupt sublevel. For VRM
LLCs, this field is set to OxOOOO.

• LLC Correlator - is the LLC ring correlator that the LLC passed with the start device command.
This value is returned in all acknowledgment queue elements or PSBs to an LLC.

• Network ID - indicates the network ID passed on the start device command. The length of this
field is indicated in the driver's DDS. If the network ID is zero, this field can be excluded from
the structure.

Block I/O Subsystem 4-31

SLIH Ring Queue
The SLIH ring queue contains a list of pinned receive data buffers to be used by the SLIH. Each port
has a SLIH ring queue. The device manager puts the buffer addresses in the structure at open time,
and the buffers are removed from the structure when the device driver adds them to the device ring
queue. The DDS indicates the number of buffers that the SLIH ring queue can hold. The device
driver must initialize the In, Out, and End pointers, the device manager process ID, and the ECB
mask.

The device manager adds a buffer to the ring by writing the buffer address at the location indicated
by the In pointer and then incrementing the In pointer to the next entry in the ring queue. The
device driver removes a buffer from the ring by getting the buffer address at the location indicated by
the Out pointer and then incrementing the Out pointer to the next entry in the ring queue.

The ring queue is in the empty state when the In pointer is equal to the Out pointer. The queue is
full when the In pointer is one entry behind the Out pointer.

The following figure shows a SLIH ring queue.

o
4

8

12

16

20

24

n

o

Block I/O Device Manager Process ID

ECB Mask

In Pointer

Out Pointer

End Pointer

SLIH Buffer 0 Address

SLIH Buffer 1 Address

Figure 4-23. SLIH Ring Queue

The fields in the preceding structure are defined as follows:

• Device Manager Process ID - is the ID of the device manager

31

• ECB Mask - is the mask the driver uses with _post to request additional buffers for the SLIH
ring queue from the device manager

• In Pointer - is the address in the SLIH ring queue at which the device manager should place the
address of the next buffer

• Out Pointer - is the address in the SLIH ring queue that contains the address of the next buffer
to be used by a device driver

• End Pointer - is the address in the SLIH ring queue of the last SLIH buffer address entry.
• SLIH Buffer Addresses - are addresses of pinned receive buffers that have been enqueued to the

ring. The number of entries in this structure is one more than the number of SLIH ring queue
buffers specified in the driver's DDS.

4-32 VRM Device Support

Block I/O Communication Area

A block I/O communication area must be built by the operating system for each port (IODN) at
configuration time. The address of the area is passed to the device driver in the device's DDS.

The block I/O device manager obtains the address of the communication area for a device when it
opens the device. The segment ID and segment offset of the buffer pool section is returned to the LLC
by way of return parameters of the open. The LLC uses this returned information to obtain buffers
from the buffer pool with the _bfget routine.

All areas of this structure, except for the area for the buffers, are pinned by the device manager
when the device manager receives the first open request for the device driver IODN. The structure
is unpinned when the manager receives the last close request for the IODN.

The device driver accesses the device ring queue array when it passes receive data to an LLC. The
driver can access the structure only after the first start device request.

LLCs access the device queue ring array to obtain receive data and use the other areas to both
obtain buffers and return buffers to the pool.

The structure of a block I/O communication area is shown in the following figure.

o Pointer to Buffer Pool
~--~

4 Pointer to First Buffer
~--~

Device Ring Queue Array

Buffer Pool

n ~--~

Figure 4-24. Block I/O Communication Area

The fields in the preceding figure are contiguous and must start on fullword boundaries. The fields
are defined as follows:

• Pointer to Buffer Pool - indicates the address of the beginning of the buffer pool area
• Pointer to First Buffer - indicates the address of the beginning of the first buffer in the buffer

pool
• Device Ring Queue Array - is a group of device ring queues used to pass data from a device

driver to an LLC
• Buffer Pool- consists of a control area that indicates which buffers in the buffer area are used

or unused and the buffer area itself.

The following sections provide more details on the fields of the block I/O communications area.

Block I/O Subsystem 4-33

Device Ring Queue Array
The device ring queue array consists of a group of queues used to pass received data buffers from the
device driver to LLC processes. Each network ID has a device ring queue. Each ring queue contains
the addresses of receive data buffers that have been enqueued by the driver for the LLC. The device
manager pins these buffers, the device driver unpins the buffers, and the LLC returns the buffers to
the pool with the _bffree routine.

A device ring queue array is shown in the following figure.

o
4

8

12

16

20

n

o

Array Size I Number of Rings

Ring 0 In Pointer

Ring 0 Out Pointer

Ring 0 End Pointer

Address of Ring 0 Buffer #1

Address of Ring 0 Buffer #2

:
Address of Ring a Buffer #n

Ring 1 In Pointer

Ring 1 Out Pointer

Ring 1 End Pointer

Figure 4-25. Device Ring Queue Array

The fields in the preceding figure are defined as follows:

• Array Size - is the length of the array in bytes

31

• Number of Rings - is the number of device ring queues in the array (this is the same as the
number of concurrent network IDs the device driver supports)

• Ring 0 In Pointer - is the address in the first device ring queue at which the device driver should
place the address of the next buffer

• Ring 0 Out Pointer - is the address in the first device ring queue that contains the address of the
next buffer to be processed by an LLC and removed from the ring

• Ring 0 End Pointer - is the address in the first device ring queue of the last ring buffer address
entry.

• Address of Ring 0 Buffers - is a series of receive buffer addresses that have been enqueued to the
ring. The number of addresses is one more than the number of device ring queue buffers specified
in the DDS

• Remaining Ring Queue - each additional ring queue has the same format as ring o.
A driver adds a buffer to a ring by writing the buffer address at the location indicated by the In
pointer and then incrementing the In pointer to the next entry in the ring queue. The LLC removes

4-34 VRM Device Support

a buffer by getting the buffer address at the location indicated by the Out pointer and then
incrementing the Out pointer to the next entry in the ring queue. Each time a ring queue goes from
an empty to a non-empty state, the device driver enqueues an unsolicited interrupt to an operating
system LLC or does a _post to a VRM LLC.

The ring queue is at an empty state when the In pointer is equal to the Out pointer. The queue is
full when the In pointer is one entry behind the Out pointer. If the device driver attempts to add a
buffer to the ring and in doing so the In pointer equals the Out pointer, an overflow occurs. In this
condition the entry is not saved. An unsolicited interrupt is generated when an overflow condition
occurs.

Buffer Pool
The buffer pool is a control area that indicates which buffers in the buffer area are used and which
are unused and the buffer area.

a
4

8

12

n

o

Directory Size

Last Free Buffer Pointer

Buffer Size

Buffer a Flag

Buffer 2 Flag

Figure 4-26. Buffer Pool Control Area

Number of Buffers

Reserved

Buffer 1 Flag

Buffer 3 Flag

The fields in the preceding figure are defined as follows:

• Directory Size - is the length of the buffer pool in bytes

31

• Number of Buffers - indicates the number of buffers in the buffer pool
• Last Free Buffer Pointer - is the address of the buffer indicator that corresponds to the last

buffer freed or the last buffer that was returned to the pool.
• Buffer Size - indicates the length in bytes of each buffer. All buffers in the buffer area have this

length.
• Buffer Flags - are two-byte fields that indicate if a buffer is available or in use. Each buffer in

the buffer pool has a corresponding flag. A value of OxFFOO means the buffer is in use; a value of
OxOOOO means the buffer is available.

Block I/O Subsystem 4-35

Data Buffer Structure
The buffer area consists of data buffers. The first buffer begins at the start of the buffer area and
each subsequent buffer begins where the last one ends. All buffers must be the same length, must
begin on a fullword boundary, and must be a multiple of words in length.

The data buffer structure is shown in the figure on the following page.

o
4

8

76

n

o

Buffer Size

Data Length

Address of Buffer Pool

Address of Directory Entry

I
User Control Area

I

Data Area

Figure 4-27. Data Buffer Structure

Flag Field

Data Offset

The fields in the preceding figure are defined as follows:

31

• Address of Buffer Pool- points to the beginning of the buffer pool that contains the buffer.
• Address of Directory Entry - is the address of the entry in the buffer pool control area for this

buffer
• Buffer Size - is the size of the buffer in bytes. This value must be a multiple of 4 so buffers will

hold fullwords of data.
• Flag Field - is a user-defined field with the exception of the low-order bit. The low-order bit is

defined as the receive buffer overflow and is set to indicate that the buffer is not large enough to
hold the receive data.

• User Control Area - a 64-byte user-defined field.
• Data Length - is the length of the data in bytes
• Data Offset - is the offset, in bytes, of the start of the data from the start of the data area. This

value is set by the LLC for send data and by the device driver for receive data
• Data Area - is the area where the device driver places the receive data. In the case of a write,

the device driver gets the data to be written from this area.

Operation Results

The operation results returned to acknowledge a command request or as an unsolicited interrupt are
of the format shown in Figure 4-28 on page 4-37 for block I/O subsystem operations.

4-36 VRM Device Support

o 8

Interrupt Type Cause Code

Figure 4-28. PSB Operation Results Field for Block I/O Requests

The fields in the preceding figure are defined as follows:

• E - indicates whether an error occurred.

When this bit equals zero, the request was successful. When this bit equals one, an error
occurred.

• M - indicates whether device driver errors occurred for open or IPL adapter requests. This bit
is set by the block I/O device manager, not by the VRM device driver.

• Interrupt type - a 6-bit field that defines the error.
• Cause code - specifies the cause for the various interrupt types.

Device Driver-to-LLC Results
The following interrupt values are defined. Fields marked 'xx' can be defined by cooperating drivers
and LLCs.

• OxOOOO = successful completion

• Ox8100 = receive data available

• Ox82xx = timeout error

• Ox83xx = device initialization failure

• Ox8400 = SLIH ring queue underflow .

• Ox8500 = device ring queue overflow

• Ox8601 = network ID table full

• Ox8602 = duplicate network ID

• Ox8603 through Ox86FF = device-dependent network ID errors

• Ox8700 = buffer pool depleted

• Ox88xx = command parameter error

• Ox89xx through OxBFxx = device-dependent error codes.

Block I/O Subsystem 4-37

Block I/O Device Manager

This section defines the block I/O device manager. The block I/O device manager is a component of
the block I/O subsystem. The primary components of this subsystem are logical link control (LLC)
processes, a block I/O device manager, and the device drivers that control block I/O adapters.
Examples of block I/O subsystem components are the Interface Program for TCP/IP (LLC), the
Baseband Device Driver (VRM device driver), and Baseband Adapter (block I/O device adapter). See
"Block I/O Device Driver Considerations" on page 4-5 for more information on this subsystem.

The DDS of the block I/O device manager is defined at IPL time by a loadable POST. Pertinent fields
from the manager's DDS include:

• IODN = Ox300.
• IOCN = Ox310.
• Define options = OxOOOl (add).
• Device type = Ox0002 (shareable device).
• Device name = ignored by the VRM.
• Offset to hardware characteristics = 0 (device manager).
• Offset to device characteristics = 0 (device manager).
• Offset to error log = 28 bytes. This field is described in more detail in "Block I/O Device

Manager Error Logging" on page 4-44.

The primary functions of the device manager are:

• To pin the receive buffers used by the block I/O device drivers
• To set up the communication paths between the LLCs and the device drivers.

The components of the block I/O subsystem are shown in the following figure.

4-38 VRM Device Support

--------------------- ------------------- ---·VMI-------

Block I/O
Device Manager

Device Driver (

---------------------------------i-- Hard ware ------

~
Figure 4-29. Block I/O Subsystem Components

The device manager can support a maximum of 22 IODNs (ports or devices) at a time.

To set up the paths necessary for data transfer between the subsystem components, the LLC must
first attach to the device manager. Depending on the location of the LLC (in the operating system or
VRM space), this is done with either an Attach Device SVC or the _attchq routine.

The LLC then issues an open command to the device manager. The LLC specifies the IODN of the
device or port it wants to use in a Send Command queue element to the device manager. (For
operating system LLCs, these queue elements are created by VRM SVC handlers and sent to the
device manager). The IODN of the port or device opened is not returned to the LLC, but requests are
acknowledged in the same order they are received by the device manager. LLCs that issue multiple
open commands can therefore determine which commands completed by keeping track of the order in
which commands were issued.

When the device manager receives the first open command from an LLC for a device driver's IODN,
it attaches itself to the device driver with _attchq. The device manager then does the open to the
device driver. When the device driver acknowledges the open, it may indicate in the operation
results field of the acknowledge queue element that the adapter requires a separate IPL of adapter
microcode. (See "Operation Results" on page 4-42 for more details.) If so, the device manager
immediately issues the IPL adapter command.

When the open command is complete and the adapter is IPLed (if required), the device manager
issues an _attchq to attach the LLC to the device driver. The LLC is now ready to send commands
(such as start device, halt device, write, and so on) to the device driver.

The following sections provide more details on the specific programming interfaces.

Block I/O Subsystem 4-39

LLC Process-to-Block I/O Device Manager Interface

The LLC process attaches to and detaches from the block 1/0 device manager to begin the process of
accessing a specified device. As shown in Figure 4-29, LLC processes can reside in the operating
system or in the VRM. The location of the LLC determines how the device manager interface is
defined.

Interface to Operating System LLCs
For operating system LLCs, the interface to the device manager consists of the following SVCs:

• Attach Device SVC - to attach the virtual machine to the device manager
• Send Command SVC

Input parameters and return codes for this SVC are defined in VRM Programming Reference.
Pertinent values for the block 1/0 device manager include:

GPR2 = Bits 0-15 - device manager IODN (Ox300); bits 16-31 - operation options

The command extension bit of the operation options field must be zero. The synchronous
operation bit should be set to zero. The following device options are defined:

Open = 2
Close = 3

GPR3 = interrupt level and sublevel to use when notifying the LLC (by way of a virtual
interrupt) of a completed Open or Close.
GPR4 through GPR6 = reserved
GPR7 = path ID of the device manager-to-virtual machine path.

Acknowledgments to an open or close request with the Send Command SVC are contained in
the operation results field of the Send Command program status block. If the high-order bit of
this field equals zero, the request was successful. If the high-order bit equals one, an error
occurred. "Operation Results" on page 4-42 explains the errors.

The Send Command PSB also contains the following values:
- Byte offset 26 - two-byte segment ID of the device's buffer pool
- Byte offset 28 - four-byte segment offset of the device's buffer pool
- Byte offset 32 - four-byte ID of the virtual machine-to-device path.

• Detach Device SVC - to detach the virtual machine from the device manager. The detach should
not be performed until all LLC processes owned by the virtual machine are finished using the
device manager.

4-40 VRM Device Support

Interface for VRM LLCs
For VRM LLCs, the interface to the device manager consists of the following VRM runtime routines:

• _attchq to attach the LLC to the device manager
• _enque

o
4

8

12

16

20

24

28

Input parameters and return codes for this routine are described in VRM Programming
Reference. To perform an open or close request, the Send Command queue element is used.
Figure 4-30 on page 4-41 shows the queue element for block I/O requests.

Reserved

Path ID

Type I Priority Operation Options

lOON Reserved

VM Interrupt Level/Sublevel Device lOON

Maximum # Interrupts

Queue ID

Reserved

Figure 4-30. LLC-to-Manager Send Command Queue Element

The fields in the preceding figure are defined as follows:
Path ID - LLC-to-device manager path
Priority - set to zero
Operation Options - command extension bit must be set to zero. Low-order byte indicates the
requested operation.

Open = 2
Close = 3

IODN - device manager IODN (Ox300)
VM Interrupt Level/Sublevel - set to OxOOOO for VRM LLCs
Device IODN - IODN of the device to be opened or closed
Maximum # Interrupts - for the LLC-to-VRM device driver path. Note that this value affects
the amount of memory pinned for the device. For a close request, this queue element field is
reserved.
Queue ID - is the ID of the LLC queue that will receive acknowledgments to device driver
commands.

Acknowledgment of an open or close request by a VRM LLC is contained in the
acknowledgment queue element shown in Figure 4-31 on page 4-42.

Block I/O Subsystem 4-41

o
4

8

12

16

20

24

28

o 31

Reserved

Path ID

Type = 0 I Solicited Options Flags I Reserved

Operation Results lOON

Operation Options Buffer Pool Segment ID

Buffer Pool Address

LLC to Device Driver Path ID

Interrupt Level/Sublevel

Figure 4-31. LLC-to-Manager Acknowledgment Queue Element

Pertinent queue element values for the device manager include:
Path ID - LLC-to-device manager path
Solicited Options - contains the high-order byte of the Operation Options field
Flags - set to Ox14 to indicate a solicited acknowledgment to a Send Command request
Operation Results - this field is defined in "Operation Results"
IODN - block I/O device manager IODN (Ox300)
Operation Options - contains the Operation Options field of the input Send Command queue
element
Buffer Pool Segment ID - indicates the segment ID of the device's allocated buffer pool. This
field is not used for acknowledgment to a close request.
Buffer Pool Address - indicates the offset into the segment for the device's buffer pool. This
field is not used for acknowledgment to a close request.
LLC to Device Driver Path - contains the path ID of the LLC-to-device driver path. This field
is not used for acknowledgment to a close request.
Interrupt Level/Sublevel - set to zero for VRM LLCs.

• _detchq to detach the LLC from the device manager.

Operation Results

The operation results returned to acknowledge a command request or as an unsolicited interrupt are
of the format shown in Figure 4-32 for block I/O subsystem operations ..

o

Interrupt Type Cause Code

Figure 4-32. PSB Operation Results Field for Block I/O Requests

4-42 VRM Device Support

TNL SN20-9859 (26 June 1987) to SC23-0817

The fields in the preceding figure are defined as follows:

• E - indicates whether an error occurred.

When this bit equals zero, the request was successful. When this bit equals one, an error
occurred.

• M - indicates whether device driver errors occurred for open or IPL adapter requests. The M
bit is set by the block I/O device manager; the remaining bits (Interrupt Type and Cause Code)
indicate the error returned by the device driver.

• Interrupt type - a 6-bit field that defines the error.
• Cause code - specifies the cause for the various interrupt types.

Device Manager-to-LLC Results
The following interrupt values are defined:

I. OxOOOO = successful completion
I. Ox8800 = invalid queue element type
I. Ox8801 = invalid command
I. Ox8802 = invalid device IODN
I. Ox8900 = tried to open more than 22 devices
I. Ox8901 = tried to open a device already opened the maximum number of times allowed
I. Ox8902 = another virtual machine has opened the device

• Ox8903 = device already opened by the VRM LLC
• Ox8904 = another component attached to the device before the device manager
• Ox8905 = tried to close a device that is not opened
• Ox8BOO = attach to device driver failed, probably because the assigned DMA channel or

interrupt level conflicts with an existing device
• Ox8BOl = enqueue of command to device driver failed
• Ox8B02 = invalid DDS
• Ox8B03 = invalid microcode IOCN in DDS
• Ox8B04 = "IPLCODE" or "JPLCODE" are unresolved symbols in the microcode
• Ox8B05 = unable to pin device ring queues and buffer pool control area in the communication

area
• Ox8B06 = unable to fill device's SLIH ring queue
• Ox8B07 = unable to attach LLC to device driver
• Ox8COO = unable to unpin SLIH ring queue buffers, device ring queues, or buffer pool control

area.
I. OxCxxx = device driver error on open or IPL adapter command. See the description of device
I driver error Ox8xxx for details.
I. OxDxxx = device driver error on open or IPL adapter command. See the description of device
I driver error Ox9xxx for details.
I. OxExxx = device driver error on open or IPL adapter command. See the description of device
I driver error OxAxxx for details.
I. OxFxxx = device driver error on open or IPL adapter command. See the description of device
I driver error OxBxxx for details.

Block I/O Subsystem 4-43

VRM Device Driver-to-Device Manager Results
The only valid interrupt type returned by the device driver to the device manager is 000000
(successful). Any other type causes the device manager to set the 'M' bit and return the device
driver's operation results to the LLC.

If the device manager receives an unsolicited response from a device driver, both the interrupt type
and cause code are ignored.

Cause codes defined for interrupt type 000000 (successful) are:

• OxOO

This cause code is returned for all IPL adapter commands, as well as for an open command
requiring no adapter IPL.

• OxOl

This cause code is returned for open commands that also require an adapter IPL.

Block I/O Device Manager Error Logging

The format of the error log section of the block I/O device manager DDS is shown in Figure 4-33.

o
4

8

12

20

24

28

32

Class I
Length of Error Log

Subclass I Mask I
Length of Dependent Data

Module Identifier

Error Code

Device lOON

LLC Process 10

VRM Routine Return Code

Figure 4-33. Block 1/0 Device Manager Error Log Format

The fields in the preceding figure are defined as follows:

• Length of Error Log = 9 words
• Class = Ox02 (software error)

4-44 VRM Device Support

Type

• Subclass = Ox07 (VRM component)
• Mask = Ox06 (block I/O device manager error)
• Type = Ox80 (permanent error)
• Length of Dependent Data = Ox07 words
• Module Identifier

This 8-character field identifies the block I/O device manager and is set to 'BIO~M '
• Error Code

Bits 0-15 of this word are reserved; bits 16-31 specify the actual error that occurred. The following
values are defined:
Ox0001 = Unexpected queue element received from device driver.
Ox0002 = Unable to fill device's SLIH ring queue with pinned receive buffers when requested by

device driver.
Ox8BOO = Unable to attach to a device when the device was opened.
Ox8B01 = Unable to enqueue command to device driver.
Ox8B02 = Invalid DDS device characteristics section for device being opened.
Ox8B03 = Device driver that requires microcode load has an invalid IOCN for the microcode.in

its DDS.
Ox8B04 = Unable to bind microcode of a device driver that requires microcode load because

"IPLCODE" or "JPLCODE" symbol not resolved.
Ox8B05 = Device's ring queue array could not be pinned.
Ox8B06 = Unable to fill device's SLIH ring queue when the device was opened.
Ox8B07 = Unable to attach a device to the LLC process that tried to open the device.

o Device IODN

Bits 0-15 of this word are reserved; bits 16-31 contain the IODN of the device associated with the
error. For example, for error code Ox0001, the IODN is of the device that sent the unexpected
queue element to the manager. For Ox0002, the IODN is of the device requesting the buffers. For
the rest of the errors, the IODN is of the device being opened or closed.

• LLC Process ID

For all errors but Ox0001 and Ox0002, this field contains the ID of the LLC process attempting to
open or close a device. For Ox0001, this word contains the operation results (bits 0-15) and
operation options (bits 16-31) of the unexpected queue element. This field is not valid for error
code Ox0002.

• VRM Routine Return Code

Some of the errors logged by the block I/O device manager are due to errors from the VRM
runtime services called by the manager. Depending on the error code, the manager may also log
the return code from the unsuccessful VRM service. For the defined error codes, the following
values are valid:

Ox0001 - not applicable.

Ox0002 - This field contains one if there were not enough buffers in the device's buffer pool to
fill the SLIH ring. Otherwise, the ring could not be filled because a buffer could not be
pinned. In this case, this field contains the return code from the _pinpgs call.

Block I/O Subsystem 4-45

Ox8BOO - contains the return code from the _attchq call.

Ox8BOl - contains the return code from the _enque call.

Ox8B02 - not applicable.

Ox8B03 - c<?ntains the return code from the _querym call.

Ox8B04 - contains the return code from the _bind call.

Ox8B05 - contains the return code from the _pinpgs call.

Ox8B06 - This field contains one if there were not enough buffers in the device's buffer pool to
fill the SLIH ring. Otherwise, the ring could not be filled because a buffer could not be
pinned. In this case, this field contains the return code from the _pinpgs call.

Ox8B07 - contains the return code from the _attchq call.

4-46 VRM Device Support

Baseband Device Driver

The baseband device driver is a component of the block I/O subsystem. This device driver can handle
two adapters at a time, with each adapter supporting one port (one IODN). Only one virtual machine
can use an adapter at a time.

For additional information on block I/O device drivers, see "Block I/O Device Driver Considerations"
on page 4-5.

Define Device Header

The define device structure (DDS) for the baseband device driver is created at configuration time and
passed to the driver by the Define Device SVC. Each active adapter must have its own DDS.

Figure 2-2 on page 2-5 shows the format of a DDS.

Pertinent values for the baseband device driver are defined as follows:

IODN: This field contains a number that identifies the device for I/O activity.

IOCN: This field contains a number that links the device to the code that supports it.

Define options: This field contains an indication of the device definition options.

Device type: Ox0003

Define name: This field is ignored by the VRM, but it can be used to create convention names that
identify the device driver.

Offset to hardware characteristics: 28 bytes

Offset to device characteristics: 80 bytes

Offset to error log: 0 bytes.

Hardware Characteristics

The format of this field is shown in Figure 2-3 on page 2-6. Values for the baseband device driver
are defined as follows:

Length: 13 words
Internal device type:

Ox11xx4000 - indicates the first adapter
Ox11xx4001 - indicates the second adapter.

(where xx is set to the slot occupied by the adapter).

Block I/O Subsystem 4-47

I/O port address (base):
OxOOOOFFFF

I/O port addresses (number):
Set to zero (not used).

Bus memory start address (RAM):
This contains the contents of the Bus Memory Start Address (ROM) plus Ox2000.

Bus memory end address (RAM):
This contains the contents of the Bus Memory Start Address (ROM) plus Ox7FFF.

DMA type:
Set to zero (not used).

Interrupt type:
Ox800002xx

(where xx is an interrupt level, 03 through 05,07 and 09, as set by jumpers on the adapter
card).

Bus memory start address (ROM):

Ox80000
OxAOOOO
OxCOOOO
OxEOOOO

This address is determined by jumpers on the adapter card. The following addresses are
valid:

Ox88000
OxA8000
OxC8000
OxE8000

Ox90000
OxBOOOO
OxDOOOO
OxFOOOO

Ox98000
OxB8000
OxD8000
OxF8000

Bus memory end address (ROM):
This is the contents of the Bus Memory Start Address (ROM) + Ox1FFF.

Device Characteristics

Figure 4-21 on page 4-29 shows the device characteristics fields for a block I/O device driver.

The values for a baseband device are defined as follows:

Length of Device Characteristics Section:
8 words

Communications Area Segment ID:
The value is placed in the DDS by the configuration process after construction of the
communications area.

Communications Area Address:
The value is placed in the DDS by the configuration process after construction of the
communications area.

4-48 VRM Device Support

Buffer Size:
This is a user-specified value placed in the DDS by the configuration process that gives the
length of the individual buffers in the buffer pool. For information on the buffer size, see
"Data Buffer Structure" on page 4-50.

Number of Buffers:
This is a user-specified value placed in the DDS by the configuration process that gives the
number of buffers in the buffer pool.

Device Ring Buffer:
This is a user-specified value placed in the DDS by the configuration process that gives the
number of buffers to be put on each device ring queue.

SLIH Ring Buffers:
This is a user-specified value placed in the DDS by the configuration process that gives the
number of receive buffers to be put on the driver's SLIH ring queue.

Maximum # LLCs:
This is a user-specified value placed in the DDS by the configuration process that gives the
maximum number of LLCs that may attach to the device driver at one time.

N etID Length:
The length, in bytes, of the device driver network ID. This value is fixed at 2 bytes.

NetID Pointer:
This is a user-specified value placed in the DDS by the configuration process that gives the
offset, in bytes, to the received packet of the network ID. This value is fixed at 12 bytes.

Maximum # NetIDs:
This is a user-specified value placed in the DDS by the configuration process that gives the
maximum number of Network IDs that the device driver can support.

Data Offset:
This value indicates an offset (in bytes) into the data area of the receive buffer at which the
device driver is to place received data. The baseband device driver requires a value in this
field.

SLIH Threshold:
This is a user-specified value placed in the DDS by the configuration process that indicates
the number of SLIH ring queue buffers that the device driver can use before requesting
additional buffers from the device manager.

SLIH Count:
The number of SLIH ring queue buffers that the device driver used. It is initially set to 0
and is incremented each time a buffer is moved from the SLIH ring queue to a device ring
queue. When the value reaches the SLIH threshold, the device driver resets the field to 0
and issues a _post to the device manager.

Microcode IOCN:
Set to zero (not used).

Block I/O Subsystem 4-49

SLIH Ring Address:
This is the address of the driver's SLIH ring queue. It is filled in by the device driver on an
open command. The segment ID of the SLIH ring queue is the same as the DDS.

Block I/O Device Ring Queue

Each network ID has one device ring queue. This queue is described in "Device Ring Queue Array"
on page 4-34.

Data Buffer Structure

All buffers must begin on a fullword boundary, must be a multiple of words in length, and must be
large enough to hold the maximum size packet, the header, and a data offset value as specified in the
device characteristics section of the baseband DDS. For more information, see _bfget in VRM
Programming Reference. The data buffer structure is shown in Figure 4-27 on page 4-36. Specific
values for the baseband device driver include:

Flag Field: This is a user-defined field with the exception of the low-order bit. The low-order bit is
defined as the receive buffer overflow and is set to indicate that the buffer is not large
enough to hold the receive packet. If the receive buffer overflow bit is set, the reminder
of the packet is discarded.

User Control Area:
This area is 64 bytes in length and is not used by the baseband device driver.

Data offset: This value is set to the value contained in the Data Offset field of the baseband device
driver DDS device characteristics section.

The data area must be large enough to contain a packet of data of the maximum size
plus the value of the data offset field specified in the device characteristics section of
the baseband DDS.

LLC Process-To-Baseband Device Driver Interface

The baseband device driver uses the LLC-to-device driver interface (the Send Command SVC and
Start 1/0 SVC for OS LLCs and the _enque routine with Start I/O or Send Command queue
elements for VRM LLCs) described in "LLC Process-to-Device Driver Interface" on page 4-12. Some
additional baseband-specific information, including a baseband-specific device option, is defined in
the following section.

4-50 VRM Device Support

TNL SN20-9859 (26 June 1987) to SC23-0817

Start Device
For as LLCs that interface to the baseband device driver, a command extension of a least 10 bytes is
always used. Bit 19 of GPR2 is therefore set to one. The command extension area is defined as
follows:

o

4

8

VM Interrupt Level/Sublevel

Network ID

Reserved

Reserved

I
LLC Ring
Correlator

Reserved

Figure 4-34. Command Extension for the Start Device Command

VM Interrupt Level/Sublevel:
This is the level and sublevel on which virtual interrupts are returned to the LLC
process.

LLC Ring Correlator:
Byte value assigned by the LLC Process. All virtual interrupts returned for the
following network ID contain the LLC ring correlator as a return parameter.

I Network ID:
I A two-byte value that defines how the LLC identifies itself on the network.

The returned PSB information is described in "Start Device" on page 4-13. The format of the
returned command extension is shown in the following figure.

o
4

8

Device Ring Queue Address

Adapter Unique Address

Adapter Unique Address
(continued) I

Reserved

Figure 4-35. Returned Command Extension for the Start Device Command

Device Ring Queue address:
This is the segment offset of the Device Ring Queue assigned to the Network ID passed on
the Start Device command. The segment ID is the same as for the buffer pool and is not
returned.

Adapter unique address:
This 6-byte field contains the address of the adapter. The adapter reads this field and
returns it to the LLC for use in the addressing on packets.

Block I/O Subsystem 4-51

TNL SN20-9859 (26 June 1987) to SC23-0817

For VRM LLCs that interface to the baseband device driver, a command extension is always used.
The input queue element, command extension, and acknowledgment queue element are defined in
"Start Device" on page 4-13.

Halt Device
The Halt Device command ends a session with the device driver. This interface is defined in "Halt
Device" on page 4-16.

Write
The write command is issued by an LLC that wishes to send data. The baseband device driver
supports the write long and start I/O write forms of this command. See "Write Long" on page 4-18
and "Write (Start I/O)" on page 4-21 for interface definitions.

Query Statistics
The query statistics command is used by the LLC to read the counter values accumulated by the

I device driver. The counters are initialized to 0 by the open command and are cleared bysetting bit
I 21 of the operation options field.

OS LLCs use the Send Command SVC to issue this command. Input parameters are:

• GPR2 = IODN for the desired adapter (bits 0-15), operation options (bits 16-31)

Bit 16 = Interrupt on completion (optional)
Bit 17 = Interrupt on error (optional)
Bit 18 = Synchronous operation (optional)
Bit 19 = Command extension (always 1)
Bit 20 = Reserved
Bit 21 = Clear counters after query statistics
Bits 22-23 = Reserved
Bits 24-31 = 9 for query statistics.

• GPR3 = Reserved

• GPR4 = Reserved

• GPR5 = Command extension address

• GPR6 = Command extension length (minimum of 64 bytes)

• GPR7 = ID of the LLC-to-device driver path.

The command extension passes additional information as shown in the following figure.

4-52 VRM Device Support

o.---------------------------~----------------------------~
4r-__ V_M __ In_t_e_rr_u~p_t_L_ev_e_I_/_S_u_b_le_v_e_1 __ ~ _____________ R_e_s_e_rv_e_d __________ _4

60 Byte Area To Return Statistics

Figure 4-36. Command Extension for Query Statistics Command

Returned information for the SVC is contained in GPR2. Additional information is contained in the
PSB and returned command extension.

Program status block completion information includes:

Status flag: Ox14 to indicate a solicited interrupt

Overrun count: Set to o.
Operation results: Bits 0-15, see "Operation Results" on page 4-57; bits 16-31 contain the IODN for

the baseband adapter.

Data word 1:

Data word 2:

Operation options (bits 0-15); segment ID of the command extension (bits 16-31).

Command extension address.

Data word 3: Reserved (set equal to 0).

The returned command extension area is defined as follows:

o
4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

VM Interrupt Level/Sublevel Reserved

Receive Interrupts

Packets Accepted

Received Byte Count

Packets Rejected

Ring Queue Full Count

Receive Packets Overflow

SLIH Ring Queue Empty Counter

Transmit Interrupts

Bytes Transmitted

Number Of Queues Saved

Write Queues Processed Send and SIO

Collision Counter Collision 16 Counter

Short Counter Underflow Counter

Short Packet Counter Alignment Error Counter

CRC Counter Overflow Counter

Figure 4-37. Returned Command Extension for the Query Statistic Command

Block I/O Subsystem 4-53

VM Interrupt Level/Sublevel:
The interrupt level and sublevel of the LLC that initiated the query statistics
command.

Receive Interrupts:
Total number of receive interrupts processed.

Packets Received:
Total number of packets accepted.

Note: Multiple packets may be received for each receive interrupt, or no packets
may be received in the case of a receive error. Thus, the total number of packets
received may not be the same as the total number of receive interrupts.

Receive Byte Count:
Total number of bytes received and placed in the receive buffer.

Packets Rejected:
Total packets rejected, no NetID match.

Ring Queue Full Count:
Total number of times any device ring queue went full and a _post or unsolicited
interrupt was sent to the LLC. A packet is lost each time this occurs.

Receive Packet Overflows:
Total number of packets received that are too large for the receive buffer. Only the
overflow data is lost.

SLIH Ring Empty Counter:
Total number of times the SLIH ring queue went empty. This indicates that a
reconfiguration may be necessary to allocate more buffers, increase the SLIH ring
queue size, or to free up received buffers sooner.

Transmit Interrupts:
Total number of Transmit Complete interrupts.

Bytes Transmitted:
Total number of bytes transmitted.

Number Of Queues Saved:
Total number of times it was necessary to save a queue element. Both transmit buffer
were full. This is not an error condition.

Write Queues Processed Send and SIO
Total number of write queues processed.

Collision Counter:
Total number of packets that had at least one collision on transmit.

Collision 16 Counter:
Total number of packets that had 16 collisions on transmit. The data packet was not
transmitted.

4-54 VRM Device Support

Short Counter:
Total number of electrical shorts detected between a signal wire and ground.

Underflow Counter:
Total number of underflow detects. Transmission is aborted due to a hardware
failure.

Short Packet Counter:
Total packets received with less than 64-bytes (including the 4-byte CRC). This is a
receive error counter.

Alignment Error Counter:

CRC Counter:

Total number of alignment errors detected. The packet size is not an integer multiple
of 8 bits. This is an adapter line receive error counter.

Total number of CRC error detects. This is a receive error counter.

Overflow Counter:
Total number of overflows detected. This is a receive error counter that indicates
that the receive buffer is full and that the data packet from the network was lost.

Note: Multiple receive errors of the same type may accumulate before the interrupt
is processed; only one error would be indicated by the adapter. Thus, there may be
other receive errors that are not indicated in the receive error counters.

VRM LLCs use the Send Command queue element to issue the query statistics command. The input
queue element is defined as follows:

o
4

8

12

16

20

24

28

32

Type I
lOON

Reserved

Path ID

Priority I Operation Options

I Command Extension Segment ID

Receive Post Mark

PID of LLC

Command Extension Address

Command Extension Length

Figure 4-38. Query Statistics Queue Element

• Path ID - ID of the LLC-to-device driver path.

• Type - set to 1 for Send Command queue element.

• Priority - set to o.
• Operation options - The command extension bit of the operation options field must be 1. The

device option field is set to 9.

Block I/O Subsystem 4-55

TNL SN20-9859 (26 June 1987) to SC23-0817

Bit 16 = Interrupt on completion (optional)
Bit 17 = Interrupt on error (optional)
Bit 18 = Synchronous operation (optional)
Bit 19 = Command extension (always 1)
Bit 20 = Reserved
Bit 21 = Clear counters after query statistics
Bits 22-23 = Reserved
Bits 24-31 = 9 for query statistics.

• IODN - of the adapter.

• Command Extension Segment ID - segment ID of the command extension area.

• Receive Post Mask - the ECB bit used when the device driver _posts the LLC to indicate
received data.

• PID of LLC - the process ID of the LLC.

• Command Extension Address - the address of the command extension area.

• Command Extension Length - the length of the command extension

The command extension passes additional parameters (see Figure 4-36 on page 4-53). For VRM
LLCs, the VM Interrupt Level/Sublevel filed is set to o.
Returned information for _enqueue is described in VRM Programming Reference. Additional
returned information is contained in the returned command extension (see Figure 4-37 on page 4-53)
and the acknowledgement queue element.

The acknowledgement queue element is defined as follows:

o
4

8
Type=O I Reserved

Operation Resu Its

Reserved

Path ID

Flags I
IODN

Reserved
12

16

20

24

28

32

Operation Options Command Extension Segment ID

Command Extension Address

Reserved

Reserved

Figure 4-39. Acknowledgment Queue Element for the Query Statistics Command

Path ID: ID of the LLC-to-device driver path.

Type: Set to 0 for acknowledgement queue element.

Flags: Ox14 to indicate a solicited acknowledgement to a Send Command

4-56 VRM Device Support

Operation results:
See "Operation Results" on page 4-57.

IODN: Of the adapter.

Operation Options:
The operation options field from the Send Command queue element.

Command Extension Segment ID:
Segment ID of the command extension area.

Command Extension Address:
Address of the command extension area.

Receive Data

When the address of a packet matches the address of an adapter or of a multicast or broadcast
address, the adapter receives that packet and places it in the adapter receive buffer.

Note: The IBM RT PC Baseband VRM device driver does not support promiscuous addressing.

When a packet is placed in the receive buffer, an interrupt is generated. The device driver checks
the netID in the type field for a match in the network ID correlation table. If the device driver does
not find a match, the packet is purged from the adapter receive buffer. If a match is found, the data
moves to a receive buffer of the SLIH ring queue. The data is moved to an offset in the receive
buffer as specified by the Data Offset value contained in the device characteristics section of the
driver's DDS.

The buffer address is then placed in the device ring queue. If the device ring queue was empty, the
LLC is informed that a buffer was received. For VRM LLCs, a _post routine is used. For OS LLCs, a
virtual interrupt is used. If the ring queue was not empty, no action is taken as the LLC is expected
to empty the ring queue once it is informed that buffers are available.

Operation Results

Operation results for a command or unsolicited interrupt are defined in "Operation Results" on
page 4-42.

The acknowledgement by the device driver to an LLC for the start device, halt device, and write
commands are always solicited: These operation results are defined as follows:

OxOOOO:
Ox8200:
Ox8601:
Ox8602:
Ox8801:
Ox8802:

Successful operation
Timeout error on transmit
NetID table full
Duplicate NetID in table
Invalid queue element type
Invalid command

Block I/O Subsystem 4-57

Ox8803:
Ox8804:

Invalid parameter
Port is not open.

If there is receive data for an LLC or an error occurs that is not related to the specified command,
the device driver may send an unsolicited acknowledgement queue element or interrupt to the LLC.
Operation results that the device driver returns for these conditions are as follows:

Ox8100: Data available
Ox8400: SLIH ring queue empty

Ox8500:

This indicates that a reconfiguration may be necessary to allocate more buffers, increase
the SLIH ring queue size, or to free received buffers sooner.
Device ring queue full

This indicates that the LLC process is not keeping up with the receive data. A packet of
data is lost for each occurrence of this result.

The device driver always sends solicited acknowledgements to the block I/O device manager for an
open command. These operation results are defined as follows:

OxOOOO:
Ox8805:

Successful return code
Port is already open.

Unsolicited queue elements are never sent to the device manager by the device driver.

4-58 VRM Device Support

IBM PC 3278/79 Emulation Adapter Distributed Function
Terminal Device Driver

The distributed function terminal (DFT) device driver is a component of the block I/O subsystem.
This device driver supports as many as four communications adapter cards at a time, with one port
per adapter. Each port has its own define device structure (DDS) and supports up to eight sessions
at a time.

If the attached control unit does not support Extended Asynchronous Event Device Status, the
control unit port must be configured for one session only or the device driver must be configured for
one session only.

The 3278/79 Emulation Advanced Adapter is the communications adapter supported by the DFT
driver. The 3278/79 emulation adapter is available in two forms, a long card (part number 1602507)
and a short card (part number 8665789). Note that the DFT device driver supports only the short
card.

The DFT device driver supports terminals that use the BSC or non-SNA channel protocols. The
driver does not support SNA.

For additional information on the block I/O subsystem, see "Block I/O Device Driver Considerations"
on page 4-5 and "Block I/O Device Manager" on page 4-38.

Define Device Header

The define device structure (DDS) for this device driver is created at configuration time and passed
to the driver by the Define Device SVC.

Figure 2-2 on page 2-5 shows the format of a DDS.

Pertinent values for the DFT device driver are defined as follows:

IODN: This field contains a number that identifies the device for I/O activity.

IOCN: This field contains a number that links the device to the code that supports it.

Define options:
This field contains an indication of the device definition options.

Device type:
Ox0003

Define name:
This field is ignored by the VRM, but it can be used to create convention names that identify
the device driver.

Offset to hardware characteristics:
28 bytes

Block I/O Subsystem 4-59

TNL SN20-9859 (26 June 1987) to SC23-0817

Offset to device characteristics:
72 bytes

I Offset to error log:
I 192 bytes.

Hardware Characteristics

The format of this field is shown in Figure 2-3 on page 2-6. Values for the DFT device driver are
defined as follows:

Length: 11 words.

Internal device type:
OxDlxx3401

(where xx indicates the slot occupied by the adapter).

I/O port address (base):

Ox000002DO - first adapter
Ox000006DO - second adapter
OxOOOOOADO - third adapter
OxOOOOOEDO - fourth adapter.

I/O port addresses (number):
OxOOOOOOOB.

Bus memory start/end addresses (RAM):
Bus memory addresses can be assigned to any 8K-byte sector within aIM-byte range.
The default addresses are defined as follows:

• First adapter
Start - OxOOOCEOOO
End - OxOOOCFFFF

• Second adapter
Start - OxOOODOOOO
End - OxOOODIFFF

• Third adapter
Start - OxOOOD2000
End - OxOOOD3FFF

• Fourth adapter
Start - OxOOOD4000
End - OxOOOD5FFF

DMA type: Set to 0 (not used).

4-60 VRM Device Support

TNL SN20-9859 (26 June 1987) to SC23-0817

Interrupt type:
Ox80000209

The rest of the fields in this section are reserved (set to zero).

Device Characteristics

Figure 4-21 on page 4-29 shows the device characteristics fields for a block I/O device driver.

The values for the DFT device driver are defined as follows:

I Length of Device Characteristics Section:
I 30 words

Communications Area Segment ID:
The value is placed in the DDS by the configuration process after construction of the
communications area.

Communications Area Address:
The value is placed in the DDS by the configuration process after construction of the
communications area.

Buffer Size:
This is a user-specified value placed in the DDS by the configuration process that gives the
length of the individual buffers in the buffer pool. This value must be a multiple of 4 so
buffers will contain fullwords of data.

Number of Buffers:
This is a user-specified value placed in the DDS by the configuration process that gives the
number of buffers in the buffer pool.

Device Ring Buffer:
This is a user-specified value placed in the DDS by the configuration process that gives the
number of buffers to be put on each device ring queue.

SLIH Ring Buffers:
This is a user-specified value placed in the DDS by the configuration process that gives the
number of receive buffers to be put on the driver's SLIH ring queue.

Maximum # LLCs:
This is a user-specified value placed in the DDS by the configuration process that gives the
maximum number of LLCs that may attach to the device driver at one time. For the DFT
device driver, this value is one.

N etID Length:
The length, in bytes, of the device driver network ID. The DFT driver uses a null NetID, so
this value is fixed at zero.

Block I/O Subsystem 4-61

TNL SN20-9859 (26 June 1987) to SC23-0817

NetID Pointer:
Because the DFT device driver uses a null NetID, this value is set to zero.

Maximum # NetIDs:
Indicates the maximum number of network IDs that the DFT device driver supports. This
user-configurable value must be between 1 and 8. The value should be less than or equal to
the number of sessions for which the control unit is configured.

SLIH Threshold:
This is a user-specified value placed in the DDS by the configuration process that indicates
the number of SLIH ring queue buffers that the device driver can use before requesting
additional buffers from the device manager.

SLIH Count:
The number of SLIH ring queue buffers that the device driver used. It is initially set to zero
and is incremented each time a buffer is moved from the SLIH ring queue to a device ring
queue. When the value reaches the SLIH threshold, the device driver resets the field to zero
and issues a _post to the device manager.

Microcode IOCN:
Set to zero (not used).

SLIH Ring Address:
This is the address of the driver's SLIH ring queue. It is filled in by the device driver on an
open command. The segment ID of the SLIH ring queue is the same as the DDS.

I Figure 4-40 on page 4-63 shows additional device characteristics fields used by the DFT device
I driver. The fields in Figure 4-40 are defined as follows:

Machine Type:
This required field indicates the machine type of the machine that is running the 3278/79
emulation program. Possible values are the EBCDIC numerals 6150 or 6151, right-justified.

Customer ID:
This byte contains a required value that provides more information about the machine. The
only valid values (all other values are reserved) are defined on the next page.

Bits 0-3 = OxE for a customer-programmable machine

Bits 4-7 = Oxl to indicate an IBM product.

Model Number:
This optional field can be used to further identify the machine. Possible values include all
EBCDIC alphanumeric characters, right-justified and padded with Ox40 characters. If this
value is not used or unknown, it is set to zero.

4-62 VRM Device Support

32

36

40

44

48

52

64

68

72

76

80

84

88

92

96

100

104

TNL SN20-9859 (26 June 1987) to SC23-0817

Machine Type

Customer ID I Model Number

Plant of Manufacture I Serial#

Serial # (contJ

Seria I # (cant.) I Software Release Level

Engineering Change Level

Engineering Change Level

Slow Device Attach Protocol CU Support Level

Term. Addr. 1 Term. Addr. 2 Term. Addr. 3 I Term. Addr. 4

Term. Addr. 5 Term. Addr. 6 Term. Addr. 7 1 Term. Addr. 8

Data Length Data Format Controller ID

Machine Type

Customer ID Model Number

Plant of Manufacture Serial#

Serial # (cant.)

Serial # (contJ Software Release Level

Engineering Change Level

116!~ ___________________ E_n~g~in_e_e_r_in~g~C_h_an~g~e __ L_ev_e_I __________________ ~

I Figure 4-40. AdditionalUFT Device Characteristics Fields

Plant of Manufacture:
This optional field can be used to identify where the machine was produced. Possible values
include all EBCDIC alphanumeric characters, right-justified. If this value is not used or
unknown, it is set to zero.

Serial Number:
This optional field can be used to further identify the machine. Possible values include all
EBCDIC alphanumeric characters, right-justified and padded with OxFO characters. If this
value is not used or unknown, it is set to zero.

Software Release Level:
This optional field can be used to further identify the level of software used on the machine.
Possible values include all EBCDIC alphanumeric characters, right-justified and padded
with OxFO characters. If this value is not used or unknown, it is set to zero. .

Block I/O Subsystem 4-63

TNL SN20-9859 (26 June 1987) to SC23-0817

Engineering Change Level:
Bytes 52 through 67 can optionally be used to keep track of engineering change levels to the
adapter card, control unit, and so on. Possible values include all EBCDIC alphanumeric
characters, with user-defined justification and padding. If this field is not used or unknown,
it is set to zero.

Slow Device:
Bit 0 of this byte indicates whether the device driver is allowed to respond to the control
unit as if the terminal is a slow device. This support would be required for the emulator to
run slow devices, such as certain ASCII terminals. Note that the control unit must provide
the same level of support for slow devices to work properly. When bit 0 is set to 1, the
device driver supports slow devices. When bit 0 is set to 0, the device driver waits for an
immediate response from the emulator when it receives data. Bits 1-7 are reserved.

Attach Protocol:
Bits 0 and 1 of this byte contain information on the type of attachment and protocol in use
for the control unit and host. Bits 2 through 7 of this byte are reserved (set equal to zero).
When bit 0 = 0, the control unit is TP attached to the host; when bit 0 = 1 the control unit
is locally attached. When bit 1 = 0, the protocol in use between the control unit and host is
SNA; when bit 1 = 1, the protocol is non-SNA.

CU Support Level:
This two-byte field indicates the terminal control area options supported by the control unit
and is valid after successful completion of an open command. Note that multiple bits of this
field can be set simultaneously, indicating multiple options in effect. Bits 0 through 9 of this
field are reserved (set equal to zero). When bits 10 through 16 of this field are set to 0, base
terminal control area support is provided. The following options are in effect when the
specified bit is set to 1:

Bit 10: AEEB extension for END busy.

Bit 11:

Bit 12:

Bit 13:

Bit 14:

Bit 15:

Enhanced terminal control area buffer management.

Device-initiated UNBIND.

DFT network support

Read multiple (32 bytes)

Non-SNA slow device support/extended AEDV.

Term. Addr. 1 through 8:
Terminal addresses 1 through 8 indicate the session addresses configured at the control unit
for this port. These fields are valid after successful completion of an open command. The
five low-order bits of of each byte contains the address assigned by the host. A value of
OxFF in any byte indicates an undefined address.

The rest of the device characteristic fields (beginning with Data Length and ending with four
additional words of Engineering Change Level information) are optionally passed by a control unit to
the device after the first successful completion of a Start device command. These fields are defined
as follows:

4-64 VRM Device Support

TNL SN20-9859 (26 June 1987) to SC23-0817

I Data Length:
I This field indicates the length of the data (in bytes) that the control unit has sent to the
I device. If the length is greater than 40 bytes, the device truncates the remaining bytes and
I places the first 40 bytes in this structure. If the length is zero, WCDS (20) may not have been
I received from the control unit yet. In this case, a session should be activated first or the

transfer should be tried again later.

Data Format:
This field indicates whether the information presented was generated by the control unit or
the device. Information generated by the control unit is identified by the value OxOO; all
other values indicate information generated by the device.

Controller ID:
This field contains unique EBCDIC identification characters assigned to the various control
unit types.

Machine Type:
This field contains right-justified numeric EBCDIC characters (such as 3174 or 3274) that
identify the machine type on which the emulator is being run.

Customer ID:
I This byte contains a required value that provides more information about the machine.

I
I

Bits 0-3 = Ox1 for a hardware or microcode machine

OxE for a customer-programmable machine

Bits 4-7 = Ox1 to indicate an IBM product.

Ox9 to indicate a non-IBM product.

Model Number:
This optional field can be used to further identify the machine. Possible values include all
EBCDIC alphanumeric characters, right-justified and padded with Ox40 characters. If this
value is not used or unknown, it is set to zero.

Plant of Manufacture:
This optional field can be used to identify where the machine was produced. Possible values
include all EBCDIC alphanumeric characters, right-justified. If this value is not used or
unknown, it is set to zero.

Serial Number:
This optional field can be used to further identify the machine. Possible values include all
EBCDIC alphanumeric characters, right-justified and padded with OxFO characters. If this
value is not used or unknown, it is set to zero.

Software Release Level:
This optional field can be used to further identify the level of software used on the machine.
Possible values include all EBCDIC alphanumeric characters, right-justified and padded
with OxFO characters. If this value is not used or unknown, it is set to zero.

Block I/O Subsystem 4-65

TNL SN20-9859 (26 June 1987) to SC23-0817

I Engineering Change Level:
I Bytes 52 through 67 can optionally be used to keep track of engineering change levels to the
I adapter card, control unit, and so on. Possible values include all EBCDIC alphanumeric
I characters, with user-defined justification and padding. If this field is not used or unknown,
I it is set to zero.

Error Log

The error log for the DFT device driver is similar in format to that shown in Figure 5-13 on
page 5-85. The values for the DFT device driver are defined as follows:

Length: The length of the DFT error log is 4 words.

Class:

Subclass:

Mask:

Type:

Ox01 (hardware error)

Ox08 (communications adapter)

OxOF

Ox04

Error Data Length:
Ox0002

Error Data: The DFT device driver uses this area to indicate the probable cause of the error.

LLC Process-To-DFT Device Driver Interface

The DFT device driver uses the LLC-to-device driver interface (the Send Command SVC and Start
I/O SVC for OS LLCs and the _enque routine with Start I/O or Send Command queue elements for
VRM LLCs) descrlbed in "LLC Process-to-Device Driver Interface" on page 4-12. Some additional
DFT-specific information and unique device options are defined in the following sections.

Start Device
The Start device command is described in "Start Device" on page 4-13 and uses the input queue
element shown there. The command extension field for the input queue element is similar to the
extension shown there. However, the DFT device driver defines the second word of the extension as
follows:

• Byte offset 4 = network ID

This field is not used by the DFT driver, but it indicates the logical link session that is associated
with. a particular device ring queue.

• Byte offset 5 = reserved
• Byte offset 6 = 10DN of the DFT device driver.

4-:66 VRM Device Support

TNL SN20-9859 (26 June 1987) to SC23-0817

The Start device acknowledgment queue element and returned PSB information are described in
"Start Device" on page 4-13. Note that this command does not use the device driver correlator field.
The first word of the returned command extension contains the address of the device ring queue. This
is the only field of the returned command extension used by the DFT device driver.

Halt Device
The Halt Device command ends a session with the device driver. This interface and the queue
elements used are defined in "Halt Device" on page 4-16. Note that the DFT device driver does not
use the device driver--correlator field of the input queue element.

Write
The write command is issued by an LLC that wishes to send data. Three forms are available,
depending on the amount of data to be sent. See "Write Long" on page 4-18, "Write Short" on
page 4-20, and "Write (Start I/O)" on page 4-21 for interface definitions. Note that VRM LLCs do
not use the interrupt level/sublevel field or the device driver correlator field in any of the queue
elements.

For the Write long and Start I/O write forms of this command, the maximum amount of data that
can be sent in a single buffer is 32,768 bytes. If the data does not begin on a 2K-byte boundary, the
maximum amount of data that can be sent is reduced by the number of bytes from the 2K-byte
boundary to the start of the data. If the amount of data sent exceeds the size of the receive buffer,
data will be lost.

Send Status
The Send status command is used when the device driver must relay status information for a session
to the remote system. The format of the input queue element used by the device driver for this
command is similar to that shown in Figure 4-10 on page 4-16. For the Send status command,
however, the half word at byte offset 20 (bytes 20 and 21) of the queue element contain status
description information. The following values are defined for this field:

OxOOOO: Data acknowledged

This value indicates that the data or command previously received was valid and the proper
response can be made to the host.

Ox0001: Read successful

This value indicates that a read command received from the host was valid and that a
write command will follow.

IOx0002: Reset

I
I

This value indicates that the 3270 reset key has been pressed. The last write command
should be recalled (if possible).

Block I/O Subsystem 4-66.1

Ox0107: Device not selected

This value indicates a command was received for a device that was not selected.

Ox0109: Buffer error

This value indicates that a bad buffer order or a an invalid buffer address was received.

Ox0110: Bad command

This value indicates that a non-3270 command was received.

Ox0111: Unsupported command

This value indicates that an unsupported 3270 command was received.

The format of the acknowledgment queue element is similar to that shown in Figure 4-11 on
page 4-17.

Block 1/0 Device Ring Queue

This device driver implements a device ring queue as defined in "Device Ring Queue Array" on
page 4-34.

Data Buffer Structure

All buffers used by the DFT device driver must be the same length, must begin on a fullword
boundary, and must be a multiple of fullwords in length. The data buffer structure is similar to that
shown in Figure 4-27 on page 4-36. The DFT device driver defines the first byte of the User Control
Area (byte offset 12 of the data buffer structure) as a receive status byte, which indicates BSC receive
status. The remaining 63 bytes of the control area are not used by this device driver.

Receive Data

In order to receive data, the DFT device driver takes a buffer from the SLIH ring queue and waits for
an interrupt from the adapter. The interrupt indicates that data is available to be received from the
card. The driver then places the data into the buffer and generates an interrupt when complete. The
driver then places the buffer's segment offset into the device ring queue. If the device ring queue was
empty, the LLC is notified (by a _post for VRM LLCs or a virtual interrupt for OS LLCs) that a
buffer of data has been received. If the device ring queue was not empty, the LLC is expected to
process all the buffers in the device ring queue until the queue is empty. See Figure 4-27 on
page 4-36 for the format of the data buffer. The LLC must check the Data Offset field to determine
the actual start of buffer data.

4-66.2 VRM Device Support

The driver increments the Buffers Used count each time a buffer is obtained from the SLIH ring.
The number of buffers used is compared to the SLIH Threshold value of the DDS. When the Buffers
Used value equals the SLIH Threshold value, the driver does a _post to the device manager to
obtain more pinned receive buffers.

When the SLIH ring queue is empty and the driver tries to obtain a receive buffer, or when the
device ring queue is full when the driver tries to add a receive buffer to it, the LLC process is
notified by way of a virtual interrupt.

Operation Options

The operation options field for input queue elements used by the DFT device driver is defined in
"Operation Options" on page 4-26.

Block I/O Subsystem 4-66.3

4-66.4 VRM Device Support

TNL SN20-9859 (26 June 1987) to SC23-0817

Operation Results

Operation results for a command or unsolicited interrupt are defined in "Operation Results" on
page 4-42.

The acknowledgment by the device driver to an LLC for the start device, halt device, write, and
send status commands are always solicited. These operation results are defined as follows:

OxOOOO:
Ox8200:
Ox8300:
Ox8301:
Ox8302:
Ox8303:
Ox8304:
Ox8305:
Ox8306:

IOx8307:
Ox8601:
Ox8800:
Ox8801:
Ox8802:

IOx8903:
IOx8905:

Successful operation.
Open time out, control unit down.
Adapter not present.
Invalid DDS passed.
Device driver already opened.
Unsupported SNA control unit.
No session established with control unit.
Host session not established.
Unsupported control unit.
Command rejected due to host contention.
No session available - NetID table full.
Invalid queue element.
Invalid command.
Invalid device driver correlator.
Device not open yet.
Control unit down.

If there is receive data for an operating system LLC or if an error occurs that is not related to a
specific command, the device driver may send an unsolicited queue element (virtual interrupt) to the
LLC. This queue element is similar in format to Figure 4-17 on page 4-23 and is defined as follows:

Path ID: ID of the path connecting the operating system LLC to the DFT device driver.
Type: Set to zero for acknowledgment queue element.
Flags: Set to OxOO to indicate an unsolicited queue element.
Operation Results:

Possible values for this halfword are defined as follows:

Ox2xxx = Check status field valid. This is a mask value for unsolicited PSBs.

Ox0100 = Receive data available for an OS LLC.

Ox8200 = Timeout error.

Ox8400 = SLIH ring queue underflow.

Ox8500 = Device ring queue underflow.

Ox8700 = Buffer pool depleted.

Ox0900 = Device selected - indicates the host has locked the device.

OxOAOO = Selection complete - indicates the host has unlocked the device.

Block I/O Subsystem 4-67

IODN: IODN of the 3278/79 Emulation Advanced Adapter port.
Reserved field:

Byte offsets 16 through 23 are reserved.
Check status:

Byte offset 24 contains a halfword value indicating status.

This field is defined as follows:

Bit 0:

Bit 1:

Bit 2:

Bit 3:

Bits 4-7:

Bits 8-11:

Bits 12-15:

LLC Ring Correlator:

When set, indicates a fatal link error has occurred and all sessions should
be halted.

When set, indicates a communication check has occurred.

When set, indicates a program check has occurred.

When set, indicates a machine check has occurred.

Contain a 3270 error indicator in packed decimal format.

Contain a 3270 error indicator in packed decimal format.

Contain a 3270 error indicator in packed decimal format.

Correlator value that was supplied with the start command.
Interrupt Level/Sublevel:

Indicates the level and sublevel on which to send the virtual interrupt to the virtual
machine. Bit 0 is set equal to 1, bits 1-15 are reserved, bits 16-23 contain the level, and
bits 24-31 contain the sublevel.

4-68 VRM Device Support

Multiprotocol Device Driver

The multiprotocol device driver is a component of the block I/O subsystem. The device driver
controls the IBM Multiprotocol Communications Adapter. Each adapter provides three physical
communications ports (two RS-232C ports and one X.21 port). The driver supports two ports per
adapter and two adapters per machine, for a total of four possible multiprotocol ports.

This device driver supports only half-duplex data transmissions.

The multiprotocol adapter uses alternate direct memory access (DMA) on DMA channels 1 or 5. If
other adapters use the same DMA channels as the multiprotocol adapter (or if two multiprotocol
adapters on the same machine attempt to use the same DMA channel), the results are unpredictable.
See VRM Programming Reference for more information on the use of DMA on the RT PC.

For additional information on the block I/O subsystem and block I/O device drivers, see "Block I/O
Device Driver Considerations" on page 4-5 and "Block I/O Device Manager" on page 4-38.

The multiprotocol device driver is so named because it can handle any of the following
communications protocols implemented by an LLC process:

o Binary Synchronous Communication (BSC)

• Synchronous Data Link Control (SDLC).

The driver also supports the Asynchronous Communication protocol for connecting to an auto-dial
modem.

Data transmission rates for the adapter depend on the type of port and the protocol in use. The
following rates are available:

Maximum Data Rate

Protocol RS-232C X.21

BSC 9,600 bps 19,200 bps

SDLC 19,200 bps 64,000 bps

Figure 4-40. Multiprotocol Data Transmission Rates

For DTE clocking, the supported data rates are 600 and 1,200 baud. For DCE clocking (RS-232C),
supported data rates are 300 to 19,200 baud.

Block I/O Subsystem 4-69

Define Device Header

The define device structure (DDS) for the multiprotocol device driver is created at configuration time
and passed to the driver by the Define Device SVC. Each port must have its own DDS.

Figure 2-2 on page 2-5 shows the format of a DDS.

Pertinent values for the multiprotocol device driver are defined as follows:

IODN: This field contains a number that identifies the device for I/O activity. The multiprotocol
device driver does not contain code that is dependent on a particular value in this field.

IOCN: This field contains a number that links the device to the code that supports it.

Define options: This field contains flags that indicate whether the device is being added to or deleted
from the VRM.

Device type: Ox0003

Define name: This field is ignored by the VRM, but it can be used to create convention names that
identify the device driver.

Offset to hardware characteristics: 28 bytes

Offset to device characteristics: 72 bytes

Offset to error log: 104 bytes.

Hardware Characteristics

The format of this field is shown in Figure 2-3 on page 2-6. Values for the multiprotocol device
driver are defined as follows:

Length: 11 words

Internal device type:

Ox91xx4000 - indicates the first port.
Ox91xx4001 - indicates the second port.
(where xx is set to the slot occupied by the adapter).

The device width field is initialized to 8 bits, but DMA transfers are 16 bits wide.

I/O port address (base): Ox00000510 or Ox00000910, depending on how the adapter is jumpered.

I/O port addresses (number): Set to Ox00000020.

Bus memory start address (RAM): Not used (0).

Bus memory end address (RAM): Not used (0).

4-70 VRM Device Support

DMA type:

• DMA supported
o Alternate DMA
• Only use DMA
• VRM does not enable DMA
• No scatter gather support
• Number of windows field = 0010 (log of 4, which is the number of windows

supported)
• Channclnumbern:

01 for channel 1
- 05 for channel 5 .

Interrupt type:

• Interrupts enabled and shareable
• Class = 2
o Interrupt levels:

OxOA
OxOB

Do not use the same interrupt level as that used by asynchronous adapters or
unbuffered devices.

Device Characteristics

Figure 4-21 on page 4-29 shows the device characteristics fields for a block I/O device driver.

The values for the multiprotocol device driver are defined as follows:

Length of Device Characteristics Section: 8 words

Communications Area Segment ID: The value is placed in the DDS by the configuration process after
construction of the communications area.

Communications Area Address: The value is placed in the DDS by the configuration process after
construction of the communications area.

Buffer Size: This is a user-specified value placed in the DDS by the configuration process that gives
the length of the individual buffers in the buffer pool. This value must be a multiple of
4 so buffers will hold fullwords of data.

Number of Buffers: This is a user-specified value placed in the DDS by the configuration process that
gives the number of buffers in the buffer pool.

Device Ring Buffer: This is a user-specified value placed in the DDS by the configuration process
that gives the number of buffers to be put on each device ring queue.

Block I/O Subsystem 4-71

SLIH Ring Buffers: This is a user-specified value placed in the DDS by the configuration process that
gives the number of receive buffers to be put on the driver's SLIH ring queue.

Maximum # LLCs: This is set to one for the multiprotocol device driver.

NetID Length: The length, in bytes, of the device driver network ID. The multiprotocol device driver
uses a null NetID, so this field is set to o.

N etID Pointer: Set to zero.

Maximum # NetIDs: This value is initially set to 1, but may be set to other values to obtain
additional ring queues for use by the LLC process.

SLIH Threshold: This is a user-specified value placed in the DDS by the configuration process that
indicates the number of SLIH ring queue buffers that the device driver can use before
requesting additional buffers from the device manager.

SLIH Count: The number of SLIH ring queue buffers that the device driver used. It is initially set to
o and is incremented each time a buffer is moved from the SLIH ring queue to a device
ring queue. When the value reaches the SLIH threshold, the device driver resets the
field to 0 and issues a _post to the device manager.

Microcode IOCN: This value is assigned when the configuration process installs the microcode
module with the Define Code SVC. The IOCN value is then placed into that port's
DDS. The first word of the microcode module consists of a 32-bit value that indicates
the length of the module. The rest of the module is the IPL microcode itself.

SLIH Ring Address: This is the address of the driver's SLIH ring queue. It is filled in by the device
driver on an open command. The segment ID of the SLIH ring queue is the same as the
DDS.

Error Log

The format of the error log of the multi protocol device driver is shown in the following figure:

o
4

8

12

16

20

24

Class

Error Log Length

I Subclass I Mask

Error Data Length

Error Code I X.21 Timer

Profile Information

Figure 4-41. Multiprotocol Error Log Format

4-72 VRM Device Support

I Type

I X.21 State

The fields in the preceding figure are defined as follows:

Error Log Length:

Class:

Subclass:

Mask:

Type:

Set to 7 words

Set to OxOl for hardware error

Set to Ox08 for communications adapter

Set to Ox08 for an RS-232C error or Ox09 for an X.21 error

Set to Ox80 to indicate a permanent error

Error Data Length:
5 words

Error Code: Indicates the type of error logged. Possible values include:

Ox8201 = Transmit failsafe timeout.

Ox8202 = Inactivity timeout.

Ox8280 = X.21 timeout during call establishment.

Ox82CO = Data set ready timeout during call establishment.

Ox82Cl = Data set ready did not go off during call termination.

Ox8300 = Adapter not present or not functional.

Ox8301 = Adapter microcode checksum error.

Ox8302 = Adapter microcode IPL timeout.

Ox8400 = SLIH ring queue underflow.

Ox8401 = Receive overrun, receive DMA not set up.

Ox8500 = Device ring queue overflow.

Ox8601 = Transmit underrun.

Ox8602 = Clear to send timeout during transmit.

Ox8900 = Invalid interrupt.

Ox8901 = Clear to send dropped during transmit.

Ox8903 = Unexpected clear received from data communications equipment for X.21.

Ox8904 = Data set ready on for a switched line before data terminal ready.

Block I/O Subsystem 4-73

X.21 Timer:

X.21 State:

For Ox8280 errors (X.21 timeout), this field indicates the timer that timed out. If the
error logged is not Ox8280, this field is reserved. Possible values include:

Ox20 = DCE timer (DCE did not go Ready)

Ox23 = T1 - DCE did not present Proceed to Select

Ox24 = T2 - DCE did not respond after selection signals sent

Ox25 = T3B - DCE did not respond after CPS received

Ox26 = T4B - DCE did not respond after incoming call accepted

Ox27 = T5 - DCE did not respond to DTE clear request

Ox28 = T6 - DCE did not respond to DTE clear confirmation.

This field indicates the X.21 process state when an error occurs during X.21 call
establishment.

Profile Information:
This field contains a copy of the configuration profile (bytes 4-15 of the command
extension) passed with the Start device command. See Figure 4-42 on page 4-75 for
the format of this profile.

LLC Process-To-Multiprotocol Device Driver Interface

The multiprotocol device driver uses the LLC-to-device driver interface (the Send Command SVC
and Start I/O SVC for as LLCs and the _enque routine with Start 1/0 or Send Command queue
elements for VRM LLCs) described in "LLC Process-to-Device Driver Interface" on page 4-12. Some
additional multiprotocol-specific information and unique device options are defined in the following
sections.

Start Device
The Start device command is described in "Start Device" on page 4-13 and uses the input queue
element shown there. The command extension field used by the multiprotocol device driver, which
includes configuration information necessary to establish a connection, is shown in Figure 4-42 on
page 4-75.

A Start device command is issued so that a port can receive data. When a Start device completes
successfully, a receive timer is usually started in anticipation of the receive data. The timer value is
defined in the command extension.

4-74 VRM Device Support

o
4
8

12

16

20

24

28

32

36

40

44

N

VM Interrupt Level/Sublevel Reserved I LLC Ring Corr.

Data Link I Physical Link Flags

Receive Timeout Baud Rate

Reserved I Data Link Flags Address I Data Offset

The following area is required for X. 21 .

Length of Profile Data

Retry Count I Reserved Retry Delay

CPS Retry Group 0 CPS Retry Group 1

CPS Retry Group 2 CPS Retry Group 3

CPS Retry Group 4 CPS Retry Group 5

CPS Retry Group 6 CPS Retry Group 7

CPS Ret ry Group 8 CPS Retry Group 9

Length of Selection Signals

Selection Signals (~256 bytes)

Figure 4-42. Command Extension for the Start Device Command. Bytes 4 through 15 of the
command extension contain the multiprotocol configuration profile and are present for all
supported protocols. Some additional fields are appended to the header for X.21 and auto-dial
use.

The fields in the preceding figure are defined as follows:

VM Interrupt Level/Sublevel:
This is the level and sublevel on which virtual interrupts are returned to the OS LLC
process. For VRM LLCs, this field is set to zero. .

LLC Ring Correlator:
Byte value assigned by the LLC Process. All queue elements returned for the specified
port contain the LLC ring correlator as a return parameter.

Data Link: This field indicates the data link protocol. Possible values include:

o SDLC
2 = BSC

Physical Link:
This field indicates the physical link protocol. Possible values include:

o = RS-232C
2 X.21
5 = auto-dial modem

Block I/O Subsystem 4-75

Flags: This halfword contains a bit mask of information needed to establish a connection. The
bits are shown in the following figure and defined in the section that follows:

15
Reserved Reserved

Auto
Local
Leased

Connect Data Set To Line
DTE Clocking
Data Rate Select

'-----+ Select Standby
'-----+ Control Request To Send

• Leased - Bit 0 indicates whether the telephone circuit is switched (bit set to 0) or
leased (bit set to 1).

• Local - Bit 1 indicates whether the call is incoming (bit set to 0) or outgoing (bit set
to 1).

• Auto - Bit 2 indicates whether the call must be answered or dialed manually by an
operator (bit set to 0) or whether the call can be answered or dialed automatically
(bit set to 1).

• Bi ts 3 through 7 are reserved.
• Control Request to Send - Bit 8 indicates how to manage Request to Send (RTS).

When bit 8 equals 0, RTS is disabled after each transmission; when bit 8 equals 1,
RTS is enabled all the time.

• Select Standby - Bit 9 indicates, for modems that have the capability to operate on
both a primary (leased non-voice grade line) or standby (switched voice grade line)
basis. When bit 9 equals 0, standby is not selected; when bit 9 equals 1, standby is
selected. For modems that do not have this capability, this bit is set to O.

• Data Rate Select - Bit 10 indicates, for modems that support a half or alternate
transmission speed, whether the alternate speed is selected. When bit 10 equals 0,
data rate select is not enabled; when bit 10 equals 1, data rate select is enabled. For
modems that do not have this capability, this bit is set to O.

• DTE Clocking - Bit 11 indicates whether DTE clocking is selected. When bit 11
equals 0, DTE clocking is not enabled; when bit 11 equals 1, DTE clocking is
enabled, and the baud rate is indicated in the baud rate field of the command
extension.

• Connect Data Set to Line - Bit 12 indicates when DTR is enabled. When bit 12
equals 0, DTR is enabled without waiting for a ring indicate (RI); when bit 12 equals
1, DTR is enabled after an RI. Note that if DSR goes active prior to RI, DTR is
enabled regardless of RI.

• Bits 13 through 15 are reserved.

Receive Timeout:
This field indicates whether a receive timer is started in anticipation of receive data
after the Start device command completes successfully or a transmit final is detected. If
this field equals zero, no receive timer is started. Non-zero values indicate the duration
of the timer in 100 millisecond intervals. If a receive occurs that is not a receive final,

4-76 VRM Device Support

the timer is restarted until a receive final occurs. If the timer expires prior to a receive,
a receive timeout is reported to the LLC process and an inactivity timer is started. The
receive timeout value can be changed by a Change parameters command after a Start
device is completed.

Baud Rate: When DTE clocking is selected from bit 11 of the flags field, the baud rate field indicates
the data rate. The following values are defined for this field:

Ox0258 = 600 bps
Ox04BO = 1200 bps
Ox07DO = 2,000 bps
Ox0960 = 2,400 bps

Data Link Flags:
Bits 0, 1, and 7 of this byte are used as flags to further define the data link
characteristics for the various protocols. Bits 2 through 6 are reserved.

For SDLC, bit 0 indicates the type of encoding to be used. When bit 0 equals 0, the
normal non-return to zero encoding and decoding (NRZ) is used; when bit 0 equals 1,
non-return to zero inverted encoding and decoding (NRZI) is used. Bit 1 indicates
whether selective addressing is to be enabled. When bit 1 equals 0, selective addressing
is not enabled; when bit 1 equals 1, selective addressing is enabled and the specified
address is located in the Address field of the command extension. Bit 7 indicates
whether the receive timer is restarted after a receive timeout. When bit 7 equals 0, the
timer is not restarted. When bit 7 equals 1, the receive timer is restarted after a receive
timeout.

For BSC protocol, bit 0 indicates whether encoding is done in EBCDIC (bit 0 equals 0)
or in ASCII (bit 0 equals 1) and, therefore, whether the block check character is
computed by cyclic redundancy check or longitudinal redundancy check. For ASCII
encoding, odd parity checking and generation is performed on each data byte. Bit 1
indicates whether control unit address mode is enabled. When bit 1 equals 0, address
compare mode is not enabled; when bit 1 equals 1, address compare mode is enabled. If
enabled, the address to be used is contained in the Address field of the command
extension. Bit 7 indicates whether the receive timer is restarted after a receive timeout.
When bit 7 equals 0, the timer is not restarted. When bit 7 equals 1, the receive timer is
restarted after a receive timeout.

Address: This field contains the address to use for selective addressing (SDLC) or address
comparison (BSC) when bit 1 of the Data Link Flags field is set to 1. If bit 1 of the Data
Link Flags field is 0, the Address field is ignored.

Data Offset:
This field indicates an offset into the data area of a receive buffer where the
multiprotocol device driver is to begin placing data. This field can be used by the LLC
process to force word alignment of specific fields in the receive data stream.

The following fields are appended to the command extension for X.21. For auto-dial, byte offset 16
contains the length of the dial data. The dial data begins at byte offset 20 and can be up to 80 bytes
in length. The following fields are defined for X.21:

Block I/O Subsystem 4-77

Length of Profile Data:

Retry Count:

Retry Delay:

This field indicates the total length of the X.21 profile area, including the selection
signals.

For outgoing calls, this field determines the number of retries made by the device driver
to establish the call before the call is considered to have failed. Possible values for this
field range from OxOO to OxOF, and the default number of retries is Ox08. Note that some
combinations of retry count and retry delay values could produce a retry sequence that
takes more than 30 minutes to determine a failed call and notify the LLC process. The
total time of a retry sequence is important to software components that use a timer with
this SVC.

For incoming call attempts, this field indicates the number of times the device driver
enters the ready state after a Clear To Send occurs.

For outgoing calls, this field determines the number of 100 millisecond intervals between
call retries. The default value is 300 intervals (30 seconds). If the LLC process issues an
open command to listen for an incoming call, this field is ignored.

CPS Retry Group 0-9:
These fields indicate whether a retry should be attempted when a particular Call
Progress Signal (CPS) is received.

Each half word (0-9) reflects status for the corresponding CPS group 0-9. Bits 0-9 of each
halfword indicate status and error conditions within each group. Bits 10-15 are reserved.
If any of bits 0-9 are set, the call should be retried the number of times indicated in the
Retry Count field. If the Retry Count is reached, or is set to zero, the driver notifies the
LLC process that the call failed. For more information on the CPS groups and the
values defined within each group, see CCITT Recommendation for X.21, Version 24.

If more than one CPS is received at the same time, the last one received will be
considered significant and determines the prescribed course of action. For Retry Group
0, if the call is not complete after 60 seconds, no retry will be attempted.

IBM recommends that no retries be attempted for received Call Progress Signals that
are undefined by X.21 or the network. The LLC, therefore, is notified of all received
CPS.

Only outgoing calls can receive a CPS, so this field is not significant for incoming calls.

Length of Selection Signals:
This field indicates the length of the Selection Signal field. The maximum length in
bytes is 256.

Selection Signals:
This field contains the Selection Signals, stored here in International Alphabet 5 format.

The Start device acknowledgment queue element and returned PSB information are described in
"Start Device" on page 4-13. Note that the device driver correlator field is not returned by the

·4-78 VRM Device Support

multiprotocol device driver. The returned command extension contains the address of the device
ring queue in the first word, followed by a copy of the configuration profile section of the command
extension described in Figure 4-42 on page 4-75.

Halt Device
The Halt Device command ends a session with the device driver. This interface and the queue
elements used are defined in "Halt Device" on page 4-16. Note that this device driver does not use
the device driver correlator field of the input queue element.

Write
The write command is issued by an LLC that wishes to send data. Three forms are available,
depending on the amount of data to be sent. See "Write Long" on page 4-18, "Write Short" on
page 4-20, and "Write (Start I/O)" on page 4-21 for interface definitions. Note that the multiprotocol
device driver does not use the device driver correlator field of the input queue element.

For the Write long and Start I/O write forms of this command, the maximum amount of data that
can be sent in a single buffer is 32,768 bytes. If the data does not begin on a 2K-byte boundary, the·
maximum amount of data that can be sent is reduced by the number of bytes from the 2K-byte
boundary to the start of the data. If the amount of data sent exceeds the size of the receive buffer,
data will be lost.

Start List
The Start list command passes an SDLC automatic poll/response control block to the multiprotocol
device driver. The control block consists primarily of a list of stations to be processed and is shown
in Figure 4-43.

Two modes of list processing are available: auto-poll mode and auto-response mode. The specifics of
each mode are described in "List Processing Mode Descriptions" on page 4-80.

o 2 4 5 6 25 26 27

Figure 4-43. Automatic Poll/Response Control Block. Each control block is 28 bytes in length,
including 8 required address entries. Address values of OxOO indicate list items to be skipped.

The fields in the preceding figure are defined as follows:

Mode This field indicates the type of list processing to perform. A value of OxOO indicates
auto-poll mode, and a value of Ox01 indicates auto-response mode.

Timer Value This field contains the receive timeout value, expressed in increments of 5 milliseconds.
The timer determines how long to wait for a response from remote stations. If the
interval expires without response, a buffer is returned to the LLC indicating this

Block I/O Subsystem 4-79

Address

Tx Cntl

Rx Cnt!

condition. If the timer expires in auto-response mode, the mode is terminated. However,
both the adapter and device driver will continue to receive data.

This I-byte address field identifies the stations in the list to be processed. This field,
together with the Tx Cntl. and Rx Cntl. fields, identifies the 8 required entries in the
control block. An address value of OxOO indicates an entry to be skipped (not processed).

This field contains the transmit control byte for each station.

This field contains the value to be compared against a received control byte.

When the Start list command is issued, the device driver takes the received control block, passes it
on to the adapter, and returns command completion status to the LLC. Because the command
completion information indicates only that the adapter received the control block, IBM recommends
that the LLC not request an acknowledgment (bit 0 of the operation options halfword set to 0).

As soon as the adapter receives the control block, the adapter starts processing the list items. Valid
entries are processed by first transmitting a frame (poll frame for auto-poll mode or response frame
for auto-response mode), turning the line around, and checking the received control byte against the
compare value. If the compare bytes are equal, the list entry is completed and processing of the next
valid list entry begins.

The Start list command uses Send Command queue elements of the same format as that shown in
Figure 4-12 on page 4-18. The command extension address field is the address of the automatic
poll/response control block, and the command extension length is always 28. The device option for a
Start list command is 9. The multiprotocol device driver does not use the device driver correlator
field.

The acknowledgment queue element for this command has the same format as that shown in
Figure 4-13 on page 4-19.

List Processing Mode Descriptions

The multiprotocol device driver supports two modes of processing lists, auto-poll mode and
auto-response mode.

In auto-poll mode, each station in the list is sequentially polled. The primary station sends out a
poll, starts a timer, and turns the line around to await a response. If the response control byte equals
the receive control compare byte, no data is transmitted and processing proceeds to the next station
in the list. If the response control byte does not match the response byte, the frame (including data
bytes that follow the control byte), is passed to the LLC process by way of a device ring queue buffer.
All subsequent frames are also passed to the LLC until a frame with the poll final bit set is
encountered. Processing then proceeds to the next frame.

If a timeout or a transmit error occurs, a device queue ring buffer is also passed to the LLC. The
receive status byte in the buffer informs the LLC of the error condition, and processing resumes with
the next station in the list.

Stations in the list with an address of OxOO are not polled, and processing proceeds to the next entry.

4-80 VRM Device Support

Auto-poll mode stops only when the last item in the list is processed. When this occurs, a buffer is
passed to the LLC with a receive status byte value indicating end of list.

The auto-response mode is used by a secondary station which also passes an 8-item poll list to the
device driver, but only one list item is valid. The valid entry is processed by transmitting a response
frame, then waiting for a frame to be received. When a frame is received, the control byte is
compared and, if it matches the compare value, the specified response is transmitted. A timer is then
started and the line is turned around.

In auto-response mode, the list is processed repeatedly, so when the end of the list is reached,
processing continues from the top of the list.

A timeout, transmit error, or miscompare for auto-response mode is handled the same way as for
auto-poll mode, except that auto-response mode is also terminated. In addition, auto-response mode is
terminated if the LLC issues a Stop list command. This condition also returns a buffer, and the
receive status byte indicates an end-of-list condition.

Stop List
The Stop list command is used to terminate list processing for auto-response mode. As with the
Start list command, the device driver relays the command to the adapter and returns status to the
LLC. The acknowledgment to this command means only that the adapter received the command, so
IBM recommends that you do not request acknowledgment on completion.

When list processing is terminated as a result of this command, a buffer is returned to the LLC
process. The receive status byte of the buffer indicates the end-of-list condition.

The Stop list command uses Send Command queue elements of the format shown in Figure 4-10 on
page 4-16. The command extension bit is set to zero, and the device option is 10 (decimal).

The acknowledgment queue element has the format shown in Figure 4-11 on page 4-17. Note that
the device driver correlator field is not used.

Change Parameters
The Change parameters command is used by the LLC to change the receive timeout value in the
configuration profile header (shown in Figure 4-42 on page 4-75).

The receive timeout value indicates the number of 100 millisecond increments that can elapse before
the LLC is notified of a receive timeout error.

The device driver starts the receive timer when the Start device command is issued or upon receipt
of a transmit final. The timer is restarted at each receive until a receive final is detected.

A receive timeout value of 0 indicates that the receive timer is not to be run. In this case, no receive
timeout errors will be sent to the LLC.

Figure 4-44 on page 4-82 shows the Send Command queue element for the Change parameters
command.

Block I/O Subsystem 4-81

o
4

8

12

16

20

24

28

Type I Priority

lOON

Reserved

Reserved

Path ID

I Operation Options

I Reserved

Reserved

Reserved

I Timeout Value

Reserved

Figure 4-44. Change Parameters Queue Element

The fields in the preceding figure are defined as follows:

Path ID The ID of the LLC-to-device driver path.

Type

Priority

Set to 1 for a Send Command queue element.

Set to O.

Operation Options The command extension bit must be set to 0, and the device option is 11 (decimal).

IODN The IODN of the port.

Timeout Value Indicates the number of 100 millisecond increments to be measured before the LLC is
notified of a receive timeout. A value of zero indicates that the receive timer is no
longer to be run.

The format of the acknowledgment queue element is similar to that shown in Figure 4-11 on
page 4-17.

Block I/O Device Ring Queue

This device driver implements a device ring queue as defined in "Device Ring Queue Array" on
page 4-34. Because the multiprotocol device driver supports only one network ID at a time, the
number of rings field in the device ring queue array is equal to 1.

4-82 VRM Device Support

Data Buffer Structure

All buffers used by the multiprotocol device driver must be the same length, must begin on a fullword
boundary, and must be a multiple of fullwords in length. The data buffer structure is similar to that
shown in Figure 4-27 on page 4-36. When bit 15 of the flag field is set, it indicates a buffer overflow
occurred, and the overflowed data bytes are lost. In addition, the first byte of the User Control Area
(byte offset 12 of the data buffer structure) is used to indicate receive status for the various protocols.
The rest of the control area is not used by this device driver.

The receive status byte of the User Control Area is defined for the supported protocols in the
following sections.

SDLC Receive Status
For the SDLC protocols, the first bit of the receive status byte is reserved, bits 1-3 indicate an index
into the auto poll/response station address list (these bits are set to zero if the auto poll/response
mode is not in effect), and bits 4-7 indicate receive errors or status conditions detected by the
multiprotocol adapter. Errors are prioritized low (0) to high (15), so if multiple errors occur on one
frame only the highest priority error is sent. The following hexadecimal error values are defined for
bits 4-7 of the receive status byte:

o No error or status.

1 End of poll list status.

This status value indicates that the adapter has completed the auto/poll response list.

2 Poll list control mismatch.

This error value indicates that the adapter has received a frame and the frame's control byte
did not match the control byte expected. The frame is still passed in the buffer, and the adapter
processes subsequent frames until a final frame or a receive timeout occurs. For auto-response
mode, processing is then terminated; for auto-poll mode, processing continues with the next
entry.

3 = Unexpected response address.

This error value, valid only in auto-poll mode, indicates that the adapter received a frame
address that did not match an address in the auto-poll list. The adapter processes subsequent
frames until a final frame or receive timeout occurs. Processing then continues with the next
entry.

4 = Insufficient space in DMA receive buffer.

This error value indicates that received data was lost because the DMA receive buffer was not
large enough to contain the current frame. This condition is also noted in the data buffer's
flag field. The adapter processes subsequent frames until a final frame or a receive timeout
occurs. For auto-response mode, processing is then terminated; auto-poll mode, processing
continues with the next entry.

Block I/O Subsystem 4-83

5 Poll list receive timeout.

This error value indicates that the adapter polled a station that did not respond in time, or
that the station was not polled in the expected amount of time. For auto-response mode,
processing is then terminated; for auto-poll mode, processing continues with the next entry.

6 Invalid frame synchronization

The adapter detected an apparent start of a valid frame. As the data progressed, the adapter
determined that the frame was not valid, but some of the data was already DMAed to the
system. This status can be caused by noise on the line that looks like the start of a valid SDLC
frame.

7 Poll list compare with data.

This status value indicates that, for auto poll/response mode, the received control byte
matched the control byte expected and that information was also sent in the frame. The
adapter processes subsequent frames until a final frame or receive timeout occurs. For
auto-response mode, processing is then terminated; for auto-poll mode, processing continues
with the next entry.

8 Poll list Clear-To-Send timeout.

This error value indicates that, for auto-poll mode only, the Clear To Send (CTS) signal for a
transmission did not become active in the required amount of time.

9 Poll list transmit failsafe timeout.

This error value indicates that a transmission failed to complete within three seconds from the
time the first byte was loaded.

A = Off-byte boundary detected

This error value indicates that a received frame with a good frame check sequence failed to
end on a byte boundary. The adapter processes subsequent frames until a final frame or a
receive timeout occurs. For auto-response mode, processing is then terminated; for auto-poll
mode, processing continues with the next entry.

B Abort sequence detected.

This status value indicates that the adapter has detected an abort bit pattern in the received
frame. The adapter processes subsequent frames until a final frame or a receive timeout
occurs. For auto-response mode, processing is then terminated; fo~ auto-poll mode, processing
continues with the next entry.

C Poll list transmit underrun.

This error value indicates, for auto-poll mode only, that the adapter had an underrun condition
and stopped transmitting the rest of the frame. .

D Frame check sequence (FCS) error.

This error value indicates that the FCS computed by the adapter for a received frame did not
match the FCS include in the frame. The adapter processes subsequent frames until a final

4-84 VRM Device Support

frame or a receive timeout occurs. For auto-response mode, processing is then terminated; for
auto-poll mode, processing continues with the next entry.

E Receive overrun error.

This error value indicates that a receive character was lost due to an overrun condition at the
adapter level. The adapter processes subsequent frames until a final frame or a receive
timeout occurs. For auto-response mode, processing is then terminated; for auto-poll mode,
processing continues with the next entry.

F = Receive terminated due to transmit or CTS dropped (for poll/list processing)

This status value indicates that the adapter terminated a receive operation in order to allow a
transmit command to use the half-duplex facilities. In this case, the data buffer will contain
some data, but not a complete frame.

BSC/X.21 Receive Status
For the BSC/X.21 protocols, the first bit of the receive status byte is reserved, and bits 1-7 indicate
receive errors or status conditions detected by the multiprotocol adapter, or BSC message types. Th~
following hexadecimal values are defined for the receive status byte:

00 = No error or status.

04 = DMA receive buffer not large enough.

This error value indicates that receive data was lost because the DMA receive buffer was not
large enough to contain the current frame. This condition is also reflected as a receive buffer
overflow in the receive buffer's flag field.

08 = Data synchronization lost.

This error value indicates that two data synchronization characters were not detected within
three seconds.

OA = Receive parity error.

This error value indicates that at least one byte of a BSC (ASCII mode only) or X.21 frame was
received with bad parity.

OB = BSC ID field too long.

This error value indicates that a BSC frame was received with an ID of more than 15 bytes.

OD = BSC block check code (BCC) error.

This error value indicates that the BCC computed by the adapter did not match the BCC in the
received frame. This can either be a BCC error (EBCDIC) or a longitudinal redundancy check
error (ASCII).

OE = Receive overrun error.

This error value indicates that a receive character was lost due to overrun conditions at the
adapter level.

Block I/O Subsystem 4-85

OF = Receive terminated due to transmit.

This status value indicates that the adapter terminated a receive operation in order to allow a
transmit command to use the half-duplex facilities. In this case, the data buffer will contain
some data, but not a complete frame.

10 = BSC ACKO message received.

11 = BSC ACKI message received.

12 = BSC WACK message received.

13 = BSC NAK message received.

15 = BSC ENQ message received.

17 = BSC EOT message received.

18 = BSC RVI message received.

19 = BSC DISC message received.

2A = BSC SOHITB message received.

2B = BSC SOHETB message received.

2C = BSC SOHSTXITB message received.

2D = BSC SOHSTXETB message received.

2E = BSC SOHSTXETX message received.

3C = BSC STXITB message received.

3D = BSC STXETB message received.

3E = BSC STXETX message received.

3F = BSC STXENQ message received.

4C = BSC SOHXSTXITB message received.

4D = BSC SOHXSTXETB message received.

4E = BSC SOHXSTXETX message received.

5C = BSC XSTXITB message received.

5D = BSC XSTXETB message received.

5E = BSC XSTXETX message received.

60 = BSC data ACKO message received.

61 = BSC data ACKI message received.

63 = BSC data NAK message received.

4-86 VRM Device Support

65 BSC data ENQ message received.

76 BSC abort message received.

77 = BSC trailing pad not detected.

7F = BSC unrecognizable message received.

ASC Receive Status
For the ASC protocol, the receive status byte is valid only during auto-dial. AIl.receive data is
buffered until DSR goes active and is then passed to the LLC process. During auto-dial, bits 0-3 of the
receive status byte are reserved, and bits 4-7 indicate receive errors or status conditions detected by
the multiprotocol adapter. The following hexadecimal values are defined for bits 4-7 of the receive
status byte:

o No status or error.

4 DMA receive buffer not large enough.

This error value indicates that receive data was lost because the DMA receive buffer was not
large enough to contain the current frame. This condition is also reflected as a receive buffer
overflow in the receive buffer's flag field.

A = Parity error.

This error value indicates that a character was received with incorrect parity.

D Framing error.

This error value indicates that a receive character was incorrectly framed.

E Overrun error.

This error value indicates that a receive character was lost due to an overrun occurring on the
adapter level.

Receive Data

In order to receive data, the multiprotocol device driver supplies the multiprotocol adapter with a
buffer obtained from the SLIH ring queue. When the adapter receives data, the adapter places the
data into the buffer with DMA and generates an interrupt when complete. The driver then places
the buffer's segment offset into the device ring queue. If the device ring queue was empty, the LLC is
notified (by a _post for VRM LLCs or a virtual interrupt for OS LLCs) that a buffer of data has been
received. If the device ring queue was not empty, the LLC is expected to process all the buffers in the
device ring queue until the queue is empty. See Figure 4-27 on page 4-36 for the format of the data
buffer. The LLC must check the Data Offset field to determine the actual start of buffer data.

Whenever a receive is completed, the driver must obtain another buffer for the adapter from the
SLIH ring queue. The driver increments the Buffers Used count each time a buffer is obtained from

Block I/O Subsystem 4-87

the SLIH ring. The number of buffers used is compared to the SLIH Threshold value of the DDS.
When the Buffers Used value equals the SLIH Threshold value, the driver does a _post to the device
manager to obtain more pinned receive buffers.

If the device ring queue is full when the driver tries to add a receive buffer to it, the LLC process is
notified by way of a virtual interrupt.

If the SLIH ring queue is empty when the driver tries to obtain a receive buffer, the driver logs an
error but does not notify the LLC.

Operation Options

The operation options field for input queue elements used by the multiprotocol device driver is shown
in the following figure. "Operation Options" on page 4-26

11 11 11 11 10 1111 11 1 Device Option 1

~
BSC transparent mode
Free buffer
Buffer format
Reserved
Command element or extension
Synchronous operation

L--____ ---+ Interrupt on error
L--_____ ---+ Interrupt on completion

The fields in the preceding figure are defined in "Operation Options" on page 4-26. One additional
bit is defined for the multiprotocol device driver. The BSC transparent mode bit indicates whether
transmissions are made in transparent mode. This bit flag applies to Write commands only.

Operation Results

The acknowledgment by the device driver to an LLC for the start device, halt device, write, start
list, stop list, and change parameters commands are always solicited. These operation results, as
well as other unsolicited operation results, are defined as follows:

OxOOOO:
OxOlOO:
Ox8200:

Successful operation.
Receive data available.
Receive timeout.

This error occurs when a timer, started in anticipation of receiving data, expires before
data is received. When this occurs, the LLC is notified of the timeout and an inactivity
timer is started.

4-88 VRM Device Support

Ox8201:

IOx8202:
I

Ox8280:

IOx82CO:
I

Ox82Cl:
Ox8300:
Ox8301:
Ox8302:

Ox8303:
Ox8304:
Ox8305:
Ox8500:
Ox8601:
Ox8602:
Ox8800:
Ox8801:
Ox8802:
Ox8803:
Ox8900:
Ox8901:
Ox8902:
Ox8903:
Ox8904:
Ox8AOO:

IOx8A01:
Ox8A02:
Ox8A03:

IOx8A04:
OxCnnn:

TNL SN20-9859 (26 June 1987) to SC23-0817

Transmit failsafe timeout. This error occurs when a transmit command is sent to the
adapter and a timer, started in anticipation of a transmit complete signal from the
adapter, expires. In this case, the LLC is notified of the timeout and an inactivity timer
is started.
Inactivity timeout. This error occurs when a timer, started to ensure the adapter is still
functional during periods of inactivity, expires. If an interrupt occurred while the
inactivity timer was running, the adapter is known to be functional and the timer is
restarted. If no interrupt occurred, the device driver tries to force an adapter interrupt.
If the timer again expires after a retry, the LLC is notified that the adapter is inactive.
X.21 timeout during call establishment. This error occurs when the timer used to
monitor X.21 call establishment expires. In this case, the LLC is notified of the timeout
and sends a DTE clear request.
Data Set Ready (DSR) timeout. This error occurs if DSR is not indicated within 20
seconds of Data Terminal Ready. In this case, the LLC is notified of the timeout and the
inactivity timer is started.
Data Set Ready failed to go off during call termination.
Adapter not present or not functional.
Adapter microcode checksum error.
Adapter microcode IPL timeout. This error occurs when the adapter fails to notify the
LLC of successful IPL within 1 second after receiving the microcode. In this case, the
LLC is notified of the IPL timeout.
Start device command received when device already started.
Device not open or not started.
Command stopped due to Halt device command.
Device ring queue overflow.
Transmit underrun.
Clear To Send (CTS) timeout on transmit.
Invalid queue element type.
Invalid command.
Invalid transmit buffer.
Final block indicated for a Start I/O write command before all buffers transmitted.
Invalid interrupt.
CTS dropped during transmit.
DSR dropped.
Unexpected Clear received in X.21.
DSR on before DTR raised for a switched line.
Auto-dial modem data.
X.21 call progress signal - call not completed
X.21 DCE provided information.
Ready for manual dial.
X.21 call progress signal - information only
Definition is equivalent to Ox8nnn definition in this list.

Block I/O Subsystem 4-89

TNL SN20-9859 (26 June 1987) to SC23-0817

I Token Ring Device Driver

I The token ring device driver is a component of the block I/O subsystem.
I The driver supports up to four Token Ring adapters. Each adapter has a single port (IODN). Only
lone virtual machine can use an adapter at a time.

I For additional information on block I/O device drivers, see "Block I/O Device Driver Considerations"
Ion page 4-5.

I Define Device Header

I The define device structure (DDS) for the token ring device driver is created at configuration time
I and passed to the driver by the Define Device SVC. Each active adapter must have its own DDS.

I Figure 2-2 on page 2-5 shows the format of a DDS.

I Pertinent values for the token ring device driver are defined as follows:

I IODN: This field contains a number that identifies the device for I/O activity.

I IOCN: This field contains a number that links the device to the code that supports it.

I Define options: This field contains an indication of the device definition options.

I Device type: Ox0003.

I Define name: This field is ignored by the VRM, but it can be used to create convention names that
I identify the device driver.

I Offset to hardware characteristics: 28 bytes.

I Offset to device characteristics: 80 bytes.

I Offset to error log: O.

I Hardware Characteristics

I The format of this field is shown in Figure 2-3 on page 2-6. Values for the token ring device driver
I are defined as follows:

I Length: 11 words.
I Internal device type:
I OxA1xx30nn

(where xx is set to the slot occupied by the adapter and nn identifies the port number -
00, 01, 02, or 03).

4-90 VRM Device Support

TNL SN20-9859 (26 June 1987) to SC23-0817

I I/O port address (base):
I Depends on how the adapter is jumpered. Possible values, along with the corresponding
I DMA channel, include:

Base Address DMA Channel

OxOOOOOlCO 5

Ox00000140 6

OxOOOOllCO 7

OxOOOOllDO 3

I I/O port addresses (number):
I OxOOOOOOl0 for 16 addresses
I Bus memory start address (RAM):
I Not used (0).
I Bus memory end address (RAM):
I Not used (0).
I DMA type:
I Set to OxE20004nn (where nn indicates the channel that corresponds to the base I/O
I address of the adapter).
I Interrupt type:
I Ox800002xx (where xx is 11 or 12 as set by jumpers on the adapter).
I Bus memory start address (ROM):
I Not used (0).
I Bus memory end address (ROM):
I Not used (0).

I Device Characteristics

I Figure 4-21 on page 4-29 shows the device characteristics fields for a block I/O device driver. The
I token ring device driver uses two words for device-dependent characteristics. These characteristics
I are a 6-byte node address and a 2-byte area indicating options for the open command.

I The values for a token ring device are defined as follows:

I Length of Device Characteristics Section:
I 10 words.

I Communications Area Segment ID:
I The value is placed in the DDS by the configuration process after construction of the
I communications area.

I Communications Area Address:
I The value is placed in the DDS by the configuration process after construction of the
I communications area.

Block I/O Subsystem 4-91

TNL SN20-9859 (26 June 1987) to SC23-0817

I Buffer Size:
I This is a user-specified value placed in the DDS by the configuration process that gives the

length of the individual buffers in the buffer pool. For information on the buffer size, see
"Data Buffer Structure" on page 4-50.

Number of Buffers:
This is a user-specified value placed in the DDS by the configuration process that gives the
number of buffers in the buffer pool.

Device Ring Buffer:
This is a user-specified value placed in the DDS by the configuration process that gives the
number of buffers to be put on each device ring queue.

SLIH Ring Buffers:
This is a user-specified value placed in the DDS by the configuration process that gives the
number of receive buffers to be put on the driver's SLIH ring queue.

Maximum # LLCs:
This is a user-specified value placed in the DDS by the configuration process that gives the
maximum number of LLCs that may attach to the device driver at one time.

N etID Length:
The length, in bytes, of the device driver network ID. This value is fixed at 1 byte.

NetID Pointer:
This is a user-specified value placed in the DDS by the configuration process that gives the
offset, in bytes, to the received packet of the network ID.

Maximum # NetIDs:
This is a user-specified value placed in the DDS by the configuration process that gives the
maximum number of Network IDs that the device driver can support.

Data Offset:
This value indicates an offset (in bytes) into the data area of the receive buffer at which the
device driver is to place received data. Not all device drivers use this field.

SLIH Threshold:
This is a user-specified value placed in the DDS by the configuration process that indicates
the number of SLIH ring queue buffers that the device driver can use before requesting
additional buffers from the device manager.

SLIH Count:
The number of SLIH ring queue buffers that the device driver used. It is initially set to 0
and is incremented each time a buffer is moved from the SLIH ring queue to a device ring
queue. When the value reaches the SLIH threshold, the device driver resets the field to 0
and issues a _post to the device manager.

Microcode IOCN:
Set to 0 (not used).

4-92 VRM Device Support

TNL SN20-9859 (26 June 1987) to SC23-0817

SLIH Ring Address:
This is the address of the driver's SLIH ring queue. It is filled in by the device driver on an
open command. The segment ID of the SLIH ring queue is the same as the DDS.

N ode Address:
The user can specify a node address for the adapter. If no address is provided by the user,
the burned-in address of the adapter is the node address. Either way, bit 0 of byte 0 must be
set to O.

Open Options:
This two-byte field defines the options sent to the adapter when the open command is issued:

• Bit 0 = wrap interface
• Bit 1 = disable hard interrupts
• Bit 2 = disable soft interrupts
• Bit 3 = pass adapter medium access control (MAC) frames
• Bit 4 = pass attention MAC frames
• Bit 5 = pad routing field
• Bit 6 = frame hold
• Bit 7 = contender
• Bit 8 = pass beacon MAC frame
• Bits 9 through 15 are reserved.

I Block I/O Communication Area

I Each token ring adapter has a unique communication area associated with it. The format of this area
I is described in "Block I/O Communication Area" on page 4-33.

I Data Buffer Structure

I All buffers must begin on a full word boundary, must be a multiple of words in length, and must be
I large enough to hold the maximum size packet, the header, and a data offset value as specified in the
I device characteristics section of the token ring DDS. For more information, see _bfget in VRM
I Programming Reference.

I The token ring device driver implements this structure as defined in Figure 4-27 on page 4-36 with
I the exception of the low-order bit of the flag field and the user control area.

I The low-order bit of the flag field is defined as the receive buffer overflow and is set to indicate that
I the buffer is not large enough to hold the entire receive packet. If the receive buffer overflow bit is
I set, the buffer has accepted as much of the packet as will fit in the buffer. The remainder of the
I packet has been discarded.

I The 64-byte user control is not used by the token ring device driver.

Block I/O Subsystem 4-93

TNL SN20-9859 (26 June 1987) to SC23-0817

I LLC Process-To-Token Ring Device Driver Interface

I The token ring device driver uses the LLC-to-device driver interface (the Send Command SVC and
I Start 1/0 SVC for OS LLCs and the _enque routine with Start I/O or Send Command queue
I elements for VRM LLCs) described in "LLC Process-to-Device Driver Interface" on page 4-12. Some
I additional token ring-specific information, including a token ring-specific device option, is defined in
I the following section.

I Start Device
I For OS LLCs that interface to the token ring device driver, a command extension is always used. Bit
I 19 of GPR2 is therefore set to one. The command extension area is defined as follows:

o
4

8

VM Interrupt Level/Sublevel

Reserved I Network ID

Reserved LLC Ring
Correlator

Reserved MAC Frame

Reserved

I Figure 4-46. Command Extension for the Start Device Command

I VM Interrupt Level/Sublevel:
I This is the level and sublevel on which virtual interrupts are returned to the LLC
I process.

I LLC Ring Correlator:
I Byte value assigned by the LLC Process. All virtual interrupts returned for the
I following network ID contain the LLC ring correlator as a return parameter.

I Network ID:
I A I-byte value that indicates how the LLC identifies itself on the network.

I MAC Frame:
I If this start command is for MAC frame processing, this field is set to OxOl and the
I NetID field must be OxOO. Only one MAC frame start device command is allowed per
I adapter.

I The returned PSB information is described in "Start Device" on page 4-13. The format of the
I returned command extension is shown in the following figure.

4-94 VRM Device Support

o
4

8

Device Ring Queue Address

Adapter Unique Address

Adapter Unique Address
(conti nued) I

TNL SN20-9859 (26 June 1987) to SC23-0817

Reserved

I Figure 4-47. Returned Command Extension for the Start Device Command

I Device Ring Queue address:
I This is the segment offset of the Device Ring Queue assigned to the Network ID passed on
I the Start Device command. The segment ID is the same as for the buffer pool and is not
I returned.

I Adapter unique address:
I This 6-byte field contains the address of the adapter. The adapter reads this field and
I returns it to the LLC for use in the addressing on packets.

I For VRM LLCs that interface to the token ring device driver, a command extension is always used.
I The input queue element, command extension, and acknowledgment queue element are defined in
I "Start Device" on page 4-13.

I Halt Device
I The Halt Device command ends a session with the device driver. This interface is defined in "Halt
I Device" on page 4-16.

I Write
I The write command is issued by an LLC that wishes to send data. The token ring device driver
I supports the write long and start 1/0 write forms of this command. The driver uses two transmit
I buffers on the adapter to send write data. See "Write Long" on page 4-18 and "Write (Start I/O)" on
I page 4-21 for interface definitions. Level/Sublevel fields in either of the acknowledgment queue
I elements.

I Query Statistics
I The query statistics command is used by the LLC to read the counter values accumulated by the
I device driver. The counters are initialized to 0 by the open command and are cleared by setting bit
I 21 of the operation options field.

I OS LLCs use the Send Command SVC to issue this command. Input parameters are:

I. GPR2 = 10DN for the desired adapter (bits 0-15), operation options (bits 16-31)

Bit 16 = Interrupt on completion (optional)

Bit 17 = Interrupt on error (optional)

Block 110 Subsystem 4-95

TNL SN20-9859 (26 June 1987) to SC23-0817

Bit 18 = Synchronous operation (optional)

Bit 19 = Command extension (always 1)

Bit 20 = Reserved

Bit 21 = clear counters after query statistics

Bits 22-23 = Reserved

Bits 24-31 = 9 for query statistics.

I. GPR3 = Reserved

I. GPR4 = Reserved

I. GPR5 = Command extension address

I. GPR6 = Command extension length (minimum of 64 bytes)

I. GPR7 = ID of the LLC-to-device driver path.

I The command extension passes additional information as shown in the following figure.

o~------------------------~--------------------------~
4~ __ V_M_I_n_te_r_ru~p_t_L_e_ve_I~/_S_ub_l_ev_e_I __ ~ ____________ R_e_s_e_rv_e_d __________ ~

60 Byte Area To Return Statistics

I Figure 4-48. Command Extension for Query Statistics Command

I Returned information for the SVC is contained in GPR2. Additional information is contained in the
I PSB and returned command extension.

I Program status block completion information includes:

I Status flag: Ox14 to indicate a solicited interrupt.

I Overrun count: Set to O.

I Operation results: Bits 0-15, see "Operation Results" on page 4-42; bits 16-31 contain the IODN for
I the token ring adapter.

I Data word 1: Operation options (bits 0-15); segment ID of the command extension (bits 16-31).

I Data word 2: Command extension address.

I Data word 3: Reserved (set equal to 0).

I The returned command extension area is defined as follows:

4-96 VRM Device Support

TNL SN20-9859 (26 June 1987) to SC23-0817

o
4

8

12

16

20

24

28

32

36
40

44

56

VM Interrupt Level/Sublevel I Reserved

Receive Interrupts

Packets Rejected

Packets Accepted

Receive Byte Count

Ring Queue Full Count

SLIH Ring Queue Empty Counter

Transmit Interrupts

Bytes Transmitted

Packets Transmitted

Overflow Packets Received

Reserved

I Figure 4-49. Returned Command Extension for the Query Statistics Command

VM Interrupt Level/Sublevel:
The interrupt level and sublevel of the LLC that initiated the query statistics
command.

Receive Interrupts:
Total number of receive interrupts processed.

Packets Rej ected:
Total number of packets rejected, no NetID match.

Packets Accepted:
Total number of packets accepted.

Receive Byte Count:
Total number of bytes received and placed in the receive buffer.

Ring Queue Full Count:
Total number of times any device ring queue went full and a _post or unsolicited
interrupt was sent to the LLC. A packet is lost each time this occurs.

I SLIH Ring Queue Empty Counter:
I Total number of times the SLIH ring queue went empty. This indicates that a
I reconfiguration may be necessary to allocate more buffers, increase the SLIH ring
I queue size, or to free up received buffers sooner.

Block I/O Subsystem 4-97

TNL SN20-9859 (26 June 1987) to SC23-0817

I Transmit Interrupts:
I Total number of Transmit Complete interrupts.

I Bytes Transmitted:
I Total number of bytes transmitted.

I Packets Transmitted:
I Total number of packets transmitted.

I Overflow Packets Received:
I Total number of packets received whose length exceeded the size of the receive
I buffers.

I VRM LLCs use the Send Command queue element to issue the query statistics command. The input
I queue element is defined as follows:

o
4

8

12

16

20

24

28

32

Type I
lOON

Reserved

Path ID

Priority I Operation Options

I Command Extension Segment ID

Receive Post Mark

PID of LLC

Command Extension Address

Command Extension Length

I Figure 4-50. Query Statistics Queue Element

I. Path ID - ID of the LLC-to-device driver path.

I. Type - set to 1 for Send Command queue element.

I. Priority - set to o.
I. Operation options - The command extension bit of the operation options field must be 1. The
I device option field is set to 9.

I Bit 16 = Interrupt on completion (optional)

Bit 17 = Interrupt on error (optional)

Bit 18 = Synchronous operation (optional)

Bit 19 = Command extension (always 1)

Bit 20 = Reserved

Bit 21 = clear counters after query statistics

Bits 22-23 = Reserved

4-98 VRM Device Support

TNL SN20-9859 (26 June 1987) to SC23-0817

- Bits 24-31 = 9 for query statistics.

• IODN - of the adapter.

o Command Extension Segment ID - segment ID of the command extension area.

• Receive Post Mask - the ECB bit used when the device driver does a _post to the LLC to indicate
received data.

• PID of LLC - the process ID of the LLC.

• Command Extension Address - the address of the command extension area.

• Command Extension Length - the length of the command extension

The command extension passes additional parameters (see Figure 4-36 on page 4-53). For VRM
LLCs, the VM Interrupt Level/Sublevel field is set to O.

Returned information for _enqueue is described in VRM Programming Reference. Additional
returned information is contained in the returned command extension (see Figure 4-49 on page 4-97)
and the acknowledgment queue element.

The acknowledgment queue element is defined as follows:

o
4

8

12

16

20

24

28

32

Reserved

Path ID

Type=O I Reserved Flags I Reserved

Operation Results IODN

Operation Options Command Extension Segment ID

Command Extension Address

Reserved

Reserved

I Figure 4-51. Acknowledgment Queue Element for the Query Statistics Command

I Path ID: ID of the LLC-to-device driver path.

I Type: Set to 0 for acknowledgment queue element.

I Flags: Ox14 to indicate a solicited acknowledgment to a Send Command

I Operation results:
I See "Operation Results" on page 4-42.

I IODN: Of the adapter.

I Operation Options:
I The operation options field from the Send Command queue element.

Block I/O Subsystem 4-99

TNL SN20-9859 (26 June 1987) to SC23-0817

I Command Extension Segment ID:
I Segment ID of the command extension area.

I Command Extension Address:
I Address of the command extension area.

I Receive Data

I When the destination address of a packet matches the address of an adapter, the adapter receives
I that packet and places it in the adapter receive buffer. From the adapter receive buffer, the packet is
I moved (using DMA) to a buffer supplied by the token ring device driver. The data offset field of the
I driver's DDS device characteristics section indicates at what location in the device driver receive
I buffer to place the packet. This offset can be used to align the data portion of the packet on a
I fullword boundary to facilitate data transfers.

I When a packet is placed in the receive buffer, the device driver checks the NetID in the type field for
I a match in the network ID correlation table. If the device driver does not find a match, the packet is
I discarded. If a match is found, the buffer address is placed in the device ring queue.

I If the device ring queue was empty, the LLC is informed that a buffer was received. For VRM LLCs,
I a _post routine is used. For OS LLCs, a virtual interrupt is used. If the ring queue was not empty,
I no action is taken as the LLC is expected to empty the ring queue once it is informed that buffers are
I available.

I Operation Results

Operation results for a command or unsolicited interrupt are defined in "Operation Results" on
page 4-42.

The acknowledgment by the device driver to an LLC for the start device, halt device, and write
commands are always solicited. These operation results are defined as follows:

OxOOOO:
Ox8200:
Ox8300:
Ox8601:
Ox8602:
Ox8801:
Ox8802:
Ox8803:
Ox8804:
Ox8805:

IOx8806:
IOx8COO:
IOx8DOO:

4-100

Successful operation
Timeout error on transmit
Internal command reject (device driver code problem)
N etID table full
Duplicate NetID in table
Invalid queue element type
Invalid command
Invalid parameter
Port is not open
Port is already open
Packet transmit error; retry the command
Open sequence failure; adapter failure
Unpin buffer problem.

VRM Device Support

TNL SN20-9859 (26 June 1987) to SC23-0817

I If there is receive data for an LLC or an error occurs that is not related to the specified command,
I the device driver may send an unsolicited acknowledgment queue element or interrupt to the LLC.
I Operation results that the device driver returns for these conditions are as follows:

I Ox8100: Data available
IOx8400: SLIH ring queue empty.

I
I
IOx8500:

I
I

This indicates that a reconfiguration may be necessary to allocate more buffers, increase
the SLIH ring queue size, or to free received buffers sooner.
Device ring queue full.

This indicates that the LLC process is not keeping up with the receive data. A packet of
data is lost for each occurrence of this result.

I The device driver always sends solicited acknowledgments to the block I/O device manager for an
I open command. These operation results are defined as follows:

IOxOOOO:
IOx8805:

Successful return code
Port is already open.

I Unsolicited queue elements are never sent to the device manager by the device driver.

Block I/O Subsystem 4-101

TNL SN20-9859 (26 June 1987) to SC23-0817

4-102 VRM Device Support

ChapteJ; 5. IBM Predefined Device Drivers

IBM Device Drivers 5-1

Contents
About This Chapter ... 5-5
Asynchronous Device Driver .. 5-6

Operation Modes .. 5-7
The Receive Buffer .. 5-8
Define Device Header ... 5-11
Hardware Characteristics .. 5-11
Device Characteristics .. 5-14
Error Log .. 5-20
CCB Input Values .. 5-21
Output Values ... 5-24
International Considerations ... 5-28

Diskette Device Driver .. 5-30
Define Device Header ... 5-31
Hardware Characteristics ... 5-32
Device Characteristics .. 5-33
Error Log .. 5-36
CCB Input Values .. 5-40
Output Values ... 5-45

Fixed-Disk Device Drivers ... 5-48
Define Device Header ... 5-49
Hardware Characteristics .. 5-50
Device Characteristics .. 5-52
Error Log .. 5-53
CCB Input Values .. 5-58
Internal VRM Queue Element Values .. 5-61
Output Values ... 5-63

Reserved Cylinders on the Fixed Disk .. 5-66
IPL Record ... 5-68
Configuration Record ... 5-69
Minidisk Directory ... 5-70
Backup Minidisk Directory .. 5-71
Bad Block Directory ... 5-72
POST Control Block .. 5-72

Graphics Asynchronous Device Driver .. 5-73
Define Device Header ... 5-73
Hardware Characteristics .. 5-73
Device Characteristics .. 5-74
Error Log .. 5-77
Input Values .. 5-79
Output Values ... 5-80

Parallel Device Driver .. 5-81
Define Device Header ... 5-82
Hardware Characteristics .. 5-83
Device Characteristics .. 5-84

5-2 VRM Device Support

Error Log ... 5-85
CCB Input Values .. 5-86
Output Values ... 5-88

Small Computer Systems Interface Device Driver 5-90
Define Device Header ... 5-93
Hardware Characteristics .. 5-94
Device Characteristics .. 5-95
Error Log .. 5-97
Input Values .. 5-99
Output Values ... 5-113

Streaming Tape Device Driver .. 5-115
Define Device Header ... 5-116
Hardware Characteristics .. 5-117
Error Log .. 5-118
CCB Input Values .. 5-125
Output Values ... 5-129

IBM Device Drivers 5-3

5-4 VRM Device Support

About This Chapter

This chapter describes the device drivers available for many types of VRM hardware
support. These device drivers include:

• Asynchronous device driver
• Diskette device driver
• Fixed disk device driver
• Graphics asynchronous device driver
• Parallel device driver
• Small computer systems interface device driver
• Streaming tape device driver.

The define device structure of each device is defined, as well as the command interface and
possible return codes.

IBM Device Drivers 5-5

Asynchronous Device Driver

The asynchronous device driver supports several hardware adapter cards and asynchronous devices.
You can attach any supported device to any port on the adapter. This device driver supports the
following IBM adapter cards:

• The serial port of the IBM Personal Computer AT® Serial/Parallel Adapter

• IBM RT PC 4-Port Asynchronous RS-232C Adapter

• IBM RT PC 4-Port Asynchronous RS-422A Adapter

• IBM RT PC Native RS-232 ports
I,

• IBM RT PC 5080 Peripheral Adapter.

With the exception of the 5080 adapter, the asynchronous device driver allows connection of any
supported device to any supported adapter. This driver supports only plotters using full duplex and
XON/XOFF protocol from the 5080 adapter. For modems, howevel,", switched and non-switched
connection lines are supported from the other adapters.

All of the adapters support serial printers. The asynchronous device driver supports serial printers
that employ XON/XOFF protocol on either the RS-232 or RS-422 adapters. The driver also supports
RS-232-attached serial printers that use the direct connect protocol. For direct connect protocol, the
device driver monitors its eTS line as a busy indicator.

In addition, all but the 4-Port Asynchronous RS-422A Adapter support the following IBM and Other
Equipment Manufacturer (OEM) device types:

1. Modems

• Full or half duplex
• Switched or non-switched lines
• Manual or automatic answering.

2. Terminals

• ASCII
• Direct or Remote.

3. Plotters

• Full duplex
• XON/XOFF protocol.

The 4-Port Asynchronous RS-422A Adapter supports terminals with direct-attach, RS-422A interfaces
only.

Because the asynchronous device driver is device-independent, it provides no event log or problem
determination support. Software above the VMI must provide event logging and problem
determination support.

5-6 VRM Device Support

Operation Modes

The asynchronous device driver can run in either of two operation modes (mode 1 or mode' 2). The
operation mode you select determines how the driver interfaces to the virtual machine.

Mode 1 utilizes multiple types of unsolicited interrupts to inform the virtual machine of activity
occurring on an adapter port. Mode 1 strips XON and XOFF characters from the received data
stream. Mode 1 stores only received data bytes in the receive buffer.

Mode 2 uses the receive buffer to inform the virtual machine of much of the activity that occurs on
an adapter port. The driver does not strip or substitute any received data. Mode 2 stores a 2-byte
entry into the receive buffer for each received character, line status change, XON or XOFF received.

Other differences between the two operation modes can be seen in how each handles certain events.
These events include:

• Received data (not XON or XOFF)

Mode 1 stores a single data byte in the receive buffer.

Mode 2 stores the received data byte and a status byte in the receive data buffer.

The device driver generates an unsolicited interrupt any time the buffer goes from empty to not
empty.

• Transmit data or DMA completion

Both modes operate the same way. If more data remains to be sent, the device driver 'outputs the
next data byte. If no more data remains to be sent, the driver generates a solicited interrupt to
tell the virtual machine that the write command was completed.

• Received XOFF

Mode 1 discards the XOFF and suspends transmission until it receives an XON.

Mode 2 stores the XOFF and a status byte indicating that an XOFF was received in the
receive data buffer. The driver also suspends transmission until it receives an XON. If the
protocol is Direct Connect, the value stored in the data byte is OxOO.

The virtual machine can issue a Halt Transmission command to make the driver purge the
currently active write queue element.

• Received XON

Mode 1 discards the XON and resumes transmission.

Mode 2 stores the XON and a status byte indicating XON was received in the data buffer. The
d11 iver also resumes transmission. If the protocol is Direct Connect, the value stored in the
data byte is OxOO.

• Modem status

Both mode 1 and mode 2 report all modem status changes by way of an unsolicited interrupt.

IBM Device Drivers 5-7

The asynchronous device driver does not alter the state of output modem signals during a
session (with the exception of dropping DTR to automatically disconnect the line for DSR
inactive o~ a switched line connection). In any case, the driver continues to send or receive
data (if already sending or receiving) whe~ modem status changes.

• Line status

Mode 1 generates an unsolicited interrupt for all line status changes. The driver stores
received data in the receive buffer. The driver continues to transmit data if it was
transmitting data when the line status changed.

Mode 2 generates no interrupts for line status changes. The driver stores the received
character and a status byte in the receive buffer. The driver continues to transmit data if it
was transmitting data when the line status changed.

For either mode 1 or mode 2, if the receiver has not been enabled by a Read command, unsolicited
interrupts are generated only for a detected break.

If a break is received after an XOFF but before an XON is received, the driver considers the
break an XON and resumes transmission.

• Receive buffer overflow

Mode 1 generates an unsolicited interrupt when the buffer overflows. Until free space is
available in the buffer, subsequent received data bytes are placed in the last byte of the
buffer, writing over the contents of this byte rather than wrapping to the beginning of the
buffer.

Mode 2 also generates an unsolicited interrupt to indicate buffer overflow. Until free space is
available in the buffer, subsequent received data bytes are placed in the last two bytes of the
buffer.

Regardless of mode, the device driver continues to send and receive data.

The Receive Buffer

You enable the receiver of the asynchronous adapter when you issue a Start I/O SVC with the Read
option. Any data received prior to this time is discarded. The command element that follows specifies
the starting address and length of a receive buffer. The length parameter, which must be at least 128
bytes, contains a pair of 32-bit pointers at the end of the buffer. The buffer must be aligned on a full
word boundary at both its beginning and end points. The VRM pins this buffer in memory when the
Start I/O SVC executes. To prevent the buffer from becoming unpinned during a session, the
asynchronous device driver dequeues the Read command with the suppress option. The driver itself
unpins the buffer at the end of a session when the driver processes the detach command (Detach
Device SVC).

The" last two words of the buffer contain a pair of in and out pointers. The first word is the input
offset fr<?m the sta~'t of the receive buffer in which to place the next character. The driver maintains

5-8 VRM Device Support

a count for this word that increases by one each time a character is placed into the receive buffer.
This pointer is wrapped as necessary by the device driver when the end of the buffer is reached.

The second word is the output offset from the start of the receive buffer. The virtual machine must
maintain this word each time it moves or processes a character of information from the buffer and
must also wrap the pointer if necessary when the end of the buffer is reached. Note that the end of
the buffer is actually the buffer length minus the eight bytes that contain the pointer pairs. The
virtual machine must also check for an empty buffer after increasing the output pointer and should
not attempt to remove data if it detects an empty buffer.

In XON/XOFF protocol, the device driver monitors the pointers to determine when to send XON and
XOFF. If the input pointer is greater than the output pointer, XOFF is sent if:

(In_pointer - Out_pointer) ~ Buffer_size - XOFF_threshold
If the output pointer is greater than the input pointer, XOFF will be sent when:

In_pointer - Out_pointer ~ XOFF_threshold
In the examples above, buffer size is defined as the length parameter from the Read command element
minus the eight bytes required for the pointers. XON is sent whenever the buffer becomes empty after
an XOFF is sent.

Regardless of the protocol in use, the device driver checks for buffer overflow conditions and issues a
virtual interrupt if the condition is detected. The driver detects an overflow condition when the input
pointer equals the output pointer after the received character is stored and the input pointer is
increased. The virtual machine should be aware that data loss is imminent when the driver detects
an overflow condition.

The virtual machine must also protect against missing an interrupt. You can do this by updating the
output offset pointer when you receive data and checking for output offset equal to input offset when
all data is received.

The device driver notifies the virtual machine by virtual interrupt when the two pointers are equal
(buffer empty) prior to storing the new character in the receive buffer.

Selection of mode 1 or mode 2 has a direct effect on the virtual machine's use of the receive buffer.
For mode 1, the device driver stores only received data bytes in the buffer. Unsolicited modem status,
line errors, break detection, and received buffer overflow are reported to the virtual machine by way
of virtual interrupts in mode 1.

For mode 2, the device driver stores a status byte for each data byte it receives. The virtual machine
must typically set up a larger buffer for mode 2 operation, but the interface between the driver and
the virtual machine is more efficient.

In mode 2, line errors, break detection, and received XON and XOFF signals are reported to the
virtual machine through the receive buffer itself. The following figure shows the two bytes that will
be stored into the receive buffer in mode 2 operation.

IBM Device Drivers 5-9

s s s s s s s S
B B B B B B B B Data Byte
0 1 2 3 4 5 6 7

The fields in the preceding figure are defined as follows:

SBO = Reserved and set equal to zero

SBI = Reserved and set equal to zero

SB2 = Received XON

SB3 = Received XOFF

SB4 = Break detected

SB5 = Framing error

SB6 = Parity error

SB7 = Hardware-detected overrun.

When a good data byte is received, the driver sets no status bits. Only one status bit is ever set to
indicate the interrupting condition. When multiple line errors occur, only the highest priority line
error is reported. Error priority is assigned as follows:

1. Break detect (highest priority)
2. Hardware overrun
3. Framing error
4. Parity error (lowest priority).

When SB5, SB6, or SB7 are equal to one, the data byte contains the received data character that
caused the line error.

When a break condition is detected on the receive data line, SB4 is set equal to one and the data byte
is set to OxOO.

When the port is configured for a direct connect printer and the driver detects an XOFF sequence,
SB3 is set equal to one and the data byte is set to OxOO. When the driver receives an XON sequence,
SB2 is set to one and the data byte is set to OxOO.

5-10 VRM Device Support

Define Device Header

Because the asynchronous device driver supports such a variety of hardware configurations on
several ports, the header fields are generally filled in at configuration or initialization time. For a
definition of the format of the individual fields, see Figure 2-2 on page 2-5.

This device driver maintains an internal table to store the IODN and a pointer to the DDS of each
port currently defined. The _defind routine places the IODN and DDS pointer in the table at an
index based on the starting address of the port.

Because every asynchronous port is serially-reusable, only one DDS can be stored in the table for
each port. To prevent a second DDS from writing over a DDS which is in use, the _defind routine
rejects (with a 12 return code) any DDS for a port that already has a DDS defined. Only after you
delete a DDS for a port will a new DDS be accepted for that port. Any subsequent Attach Device
SVC or Start I/O SVC should be directed to the IODN of the new DDS.

Note: You must ensure that the adapters you are using with RT PC are configured correctly. In
particular, no two adapter cards may be installed at the same I/O address range. For example, if you
have two serial/parallel cards, one must be configured as a primary port, and the other one must be
configured as a secondary port. For the multiport adapter, no two cards (whether two RS-232 cards,
two RS-422 cards, or one of each) can be configured as the same card number. Valid card numbers
are 1, 2, 3, and 4. If you do not follow these configuration restrictions, a hung system or system abend
may result.

Hardware Characteristics

The asynchronous device driver can control three different adapter cards. Each adapter has slightly
different hardware characteristics. You may want to refer to Figure 2-3 on page 2-6 for a look at the
structure of this field.

Serial Port of the Serial/Parallel Adapter
Hardware characteristics for this adapter follow.

Length: OxOOOOOOOF

Internal device type:

• I/O bus device
• Switchable to coprocessor
• 8-bit device
• 2 interrupt level definitions
• Adapter type = Ox23.

IBM Device Drivers 5-11

Base I/O port address:

• Primary serial port = Ox000003F8
• Secondary serial port = Ox000002F8.

Number of I/O port addresses: 8

Bus memory start/end address: N/A

DMA type: Not supported

Interrupt definition:

• Interrupts . enabled
• Interrupts not shareable
• Primary port interrupt level = 4
• Secondary port interrupt level = 3.

Only one serial adapter can actively use a particular interrupt level at any given
time. You can have a maximum of 2 serial adapters in use at a time.

Multiport Adapters (RS-232C, RS-422A)
Hardware characteristics for this adapter follow.

Length: OxOOOOOOOF

Internal device type:

• I/O bus device
• Switch able to coprocessor
• 8-bit device
• 2 interrupt definitions
• Adapter type:

Base I/O port address:

Ox35 (RS-232C)
Ox39 (RS-422A).

You can use up to 4 of this type adapter card. The following list defines the possible
addresses, where en' represents the card number (1-4).

• OxOOOOn230 (port A of card n)
• OxOOOOn238 (port B of card n)
• OxOOOOn240 (port C of card n)
• OxOOOOn248 (port D of card n).

Number of I/O port addresses: 8

Bus memory start/end address: N/A

DMA type: Not supported

5~12 VRM Device Support

Interrupt definition:

• Interrupts enabled and shareable
• Possible interrupt levels: Ox09, OxOA, OxOB.

You select the interrupt level on the adapter card itself. Because the adapter allows
interrupt sharing, you can pick any of these ievels for use with the multiport adapter
cards.

Native RS-232C Adapters
Hardware characteristics for this .adapter follow.

Length: OxOOOOOOOF

Internal device type:

• I/O bus device
• Switchable to coprocessor
• 8-bit device
• 2 interrupt levels per adapter
• Adapter type = Ox10.

Base I/O port address:

• Ox00008001 (channel A - connector S2 on the machine)
• Ox00008000 (channel B - connector Sl on the machine).

Number of I/O port addresses: . Ox0000001D

Bus memory start/end address: N/A

DMA type:

• DMA supported
• Channel enabled
• N umber of windows = 0
• Channel numbers:

o = Channel A (Primary channel)
1 = Channel B (Primary channel)
2 = Channel A (Secondary channel)
3 = Channel B (Secondary channel).

Interrupt definition:

• Interrupts enabled and shareable
• Interrupt levels:

2 (interrupt level for the chip itself)
13 (external logic interrupt level for these ports).

IBM Device Drivers 5-13

Device Characteristics

The asynchronous device driver device characteristics fields are shown in Figure 5-1.

N

4

8

12

18

20

24

28
o

Length (in words) of Device Characteristics = 7

MASK FOR NON-DEFAULTS C N P 0 P X

alblcldl Ie flglhliljllik
* L (a) S(b) A (c) P (d) T * N

* m N B R M C F L

Tx XON(f) Tx XOFF(g) * TxBuff .Ct.(I)

Rx XON CD Rx XOFF (j) RxBuff Trig (m) Rx XOFF k
Threshold ()

Receive Clock (e) Transmit Clock(h)

Frequency Input

~I~I*I~I~ I *
8 16 24 31

* - Reserved

Figure 5-1. Asynchronous Device Characteristics

The parameters shown in the preceding figure apply to all asynchronous devices and applications
except where noted. The device characteristics fields are defined as follows:

• Length

The length of the device characteristics field for this driver is 7 words.

• Mask for non-defaults

These bits serve as flags for other device characteristics values you can specify. A 0 in any of the
fields a through m indicates that you want to use the default value for the corresponding field. A
1 in any of these bits means that you will supply a valid value for the corresponding field. For
example, if you place a 1 in bit 0 ('a' in the preceding figure) of the mask area, you must supply a
value for the corresponding field. In this case, the corresponding field is the character length
field, bits 17-18 of the second word.

• CLN (character length)

This 2-bit field indicates character length. Possible values are:

00 = 5 bits per character

01 = 6 bits per character

10 = 7 bits per character (default)

5-14 VRM Device Support

11 = 8 bits per character

In the preceding figure, 'a' is the mask bit for this field. If 'a' is 0, the 7 bits-per-character default
is used. If a is 1, select from the values defined above for this field.

The device driver expects to receive transmitted data right-justified in the byte with
non-significant, high-order bits set equal to zero. Received data characters are also right-justified
with non-significant high-order bits set equal to zero by the device driver. All data is sent or
received with the least-significant bits first.

• NSB (number of stop bits)

This 2-bit field defines the number of stop bits. Possible values are:

00 = Reserved

01 = 1 stop bit (default)

10 = 1.5 stop bits

11 = 2 stop bits

'b' represents this field's mask bit in the preceding figure.

• PAR (parity checking and generation)

This 3-bit field defines the parity checking (Rx) and generation (Tx) capabilities of this driver:
Possible values are:

000 = No parity

001 = Odd parity

010 = Mark parity

011 = Even parity (default)

100 = Space parity

101 = Reserved

110 = Reserved

111 = Reserved.

The native RS-232C ports cannot use mark or space parity. 'c' represents the bit mask for parity
checking in the preceding figure.

• OPM (operation mode)

This field defines the valid operation modes. Printer or plotter attachments must always use full
duplex operation mode. Possible operation mode values are:

00 = Reserved

01 = Reserved

IBM Device Drivers 5-15

10 = Full duplex (default)

11 = Half duplex.

In the preceding figure, 'd' represents the bit mask for this parameter.

• PTCL (protocol)

This field defines the requested protocol. In the following discussion of possible values for this
parameter, the 'x' bit designates operation mode 1 or 2. (See "Operation Modes" on page 5-7.) A
zero in the 'x' bit indicates mode 1. A one in the 'x' bit indicates mode 2. Possible values are:·

xOO = DTR modem control

x01 = CDSTL modem control

x10 = Direct connect printer protocol

xlI = Reserved.

This field has no default (or default bit mask).

• XNF
This bit indicates whether XON/XOFF protocol should be included with the selected protocol. If
you select half duplex mode, this bit must be o.

• TxXON

This byte is compared to the received data if the XNF flag equals 1 and the transmit function has
been disabled with an XOFF byte. If the comparands are equal, the driver resumes sending data.
When this field equals OxFF, the driver interprets any character following an XOFF as an XON.

The default value for this field is Ox11, and the default bit mask in Figure 5-1 on page 5-14 is 'f.

• Tx XOFF

This byte is compared to the received data if the XNF flag equals 1 and the Tx function is
enabled. If the comparands are equal, the driver stops sending data until it receives an XON
character. The default value for this field is Ox13; the default bit mask in Figure 5-1 on page 5-14
is 'g'.

• Tx Buff. Ct.

Certain asynchronous ports have the capability to buffer transmit data. Depending on the receive
device, however, some data may be lost when the RT PC receives a pacing signal and all the
buffered data is transmitted. This field allows you to specify that the device driver buffers fewer
than the maximum number of data bytes supported by the adapter. Possible values for this field
are OxOO to OxFF, and the default value is Ox10 (16 bytes buffered). The values Ox01 to OxOF
indicate 1 to 15 bytes buffered, while .OxOO ·and Ox10 and above indicate 16 bytes.

For adapters that do not allow transmit-data buffering, this field is ignored.

The default bit mask for this field is'!,.

5-16 VRM Device Support

• Rx XON

This field contains the value to transmit to inform a remote device that it can resume sending
data.

The default value for this field is Ox11, and the default bit mask in the preceding figure is 'i'.

• Rx XOFF

This field contains the value to transmit to inform a remote device to stop sending data until it
receives the XON character. The default for this field is Ox13; the default bit mask is 'j'.

• Rx Buff Trig

For asynchronous ports whose adapter provides receive data buffering, this field indicates the
number of bytes that will trigger a received data interrupt. When attaching devices that typically
send a small amount of data to the host (such as printers and plotters), IBM recommends that a
low trigger value, such as 1, be selected. When attaching to devices that typically send a large
amount of data to the host (such as full-duplex communication lines), IBM recommends that you
select a higher trigger value, such as 14. This field is ignored for adapters that do not provide a
receive data buffering. Valid values for this field are:

Rx Buff Trigger
Trigger Level (bytes)

Ox01 1

Ox04

Ox08

OxOE

4

8

14

All other values are reserved. The default value for this field is OxOE, and the default bit mask
for this field is 'm'.

• Rx XOFF Threshold

The value in this field indicates when the receive buffer is full (if the XNF flag equals 1). This
value tells you how many free bytes are in the buffer when the driver sends an XOFF to the
attached device. The receive XON threshold is fixed at 0 bytes.

The default value for this field is 20 bytes, and the bit mask is 'k'. You can specify a value for
this 8-bit field in the range 0 through 255.

IBM Device Drivers 5-17

• Receive clock

This halfword contains the receive data baud rate for the adapter. Because the receive and
transmit rates for supported adapters must be the same, this value must be set equal to the value
of the transmit clock.

The default value for this field is 9600 bits per second (bps), and Ie' represents the default bit
mask in the preceding figure. See Figure 5-2 on page 5-20 for valid data rates.

• Transmit clock

This halfword contains the transmit data baud rate for the adapter. The value in this field must
match the value set for the receive clock.

The default value for this field is 9600 bps, and the default bit mask is represented by 'h' in
Figure 5-1 on page 5-14. See Figure 5-2 on page 5-20 for valid data rates.

• Frequency input

This field contains timer input to the adapter interface. Two values are possible, depending on
the adapter in use. For serial port of the IBM Personal Computer AT® Serial/Parallel Adapter,
RS-232C and RS-422A adapters, the frequency input value is 1.8432 megahertz (Mhz.). For the
native RS-232C ports, the frequency is 3.072 Mhz.

You cannot modify these values with the change characteristics option of the Start I/O SVC.

5-18 VRM Device Support

• SW (switched or nons witched lines)

This field indicates whether the modem attachment uses switched or nonswitched lines. A 1 in
this bit means switched lines, and a 0 means nonswitched lines.

You cannot modify this field with a Start 1/0 SVC.

• AA (automatic answering)

This field indicates whether automatic or manual answering mode is in effect for
communications. A 1 in this field means automatic answering, and a 0 means manual answering.

You cannot modify this field with the change characteristics option of the Start 1/0 SVC.

• RL (remote or local device attachment)

This field indicates whether the attached device (plotter, printer, display, and so on) is attached
locally (cabled directly to the host) or remotely (through a modem to the host). A one in this bit
indicates remote attachment and a zero indicates direct attachment. Remote devices affect the
modem status information in the PSB queue element. To meet an international requirement
regulating data transmissions, all of CD, DSR, and CTS must be active in order for DSR and CD
to be reported active. The CTS and RI status bits always reflect actual status, regardless of the
RL setting. This attribute also helps the software above the VMI log errors. This field has no
default and cannot be modified with the change characteristics option of the Start 1/0 SVC.

• AS (assert DTR and RTS signals to device)

This field determines whether the device driver deactivates the DTR and RTS output control
lines at the end of sessions to a locally attached device. This option is provided so that the lines
may be left continually on (once they are activated by an Open command) for devices that
require this.

When this bit equals one, the lines are left active on Close and Detach commands. When this
bit equals zero, the lines are dropped after Close and Detach commands. If the device has a
remote connection (RL bit = 1), the lines are dropped regardless of the AS bit value. This field
has no default and cannot be modified with the change characteristics option of the Start 1/0
SVC.

IBM Device Drivers 5-19

Valid Clock Values Data Rates

OxOOOO 50
OxOOOl 75
OxOO02 110
OxOO03 134.5
OxOO04 150
OxOO05 300
OxOO06 600
OxOO07 1200
OxOO08 1800
OxOO09 2000
OxOOOA 2400
OxOOOB 3600
OxOOOC 4800
OxOOOD 7200
OxOOOE 9600
OxOOOF 19200

Figure 5-2. Asynchronous Data Rates

Error Log

Because of the number and variety of devices that can be used with the asynchronous
device driver, this driver does not determine error severity or keep an error counter. The
device driver does report changes in modem control status and line status to the virtual
machine. The virtual machine is responsible for error determination and recovery, in any
case.

5-20 VRM Device Support

CCB Input Values

The asynchronous device driver responds to a Start I/O SVC to schedule I/O. This SVC
sends as a parameter the address of the command control block (CCB) for the work
request.

The CCB contains information about the I/O operatipn. See VRM Programming Reference
for a description of the CCB.

An important field in the CCB is the options field. This field is divided into operation and
device options and indicates the type of I/O operation you want.

When the device driver r~ceives a CCB to perform work, the driver's check parameters
subroutine validates certain CCB fields. Depending on the device option you requested,
the check parameters routine may find an error and return an error code.

Any of the options can return the following return codes:

o = Operation successful

256 = Device option rejected because it is unrecognized.

257 = Device option rejected because the IODN is not valid.

Return codes that are specific to a requested device option are defined along with that
device option.

Device options for the asynchronous device driver include:

o = Read

The virtual machine must issue this command before it expects the device driver to
accept any received data. Exactly one command element must follow. If you fail to
attach a command element with this request, the check parameters routine will reject
the request (return code = 261). You can issue this command only once per session (a
session is the time from attach to detach). If you try to issue this command more than
once during a session, the check parameters routine will reject it (return code = 262).

The Read command establishes a buffer in which to place received data bytes. See
"The Receive Buffer" on page 5-8 for information on the interface to this buffer.

1 = Write

One or more command elements must follow a write command to indicate the address
and length of each transmit buffer. If you fail to attach a command element with this
request, the check parameters routine will reject the request (return code = 261). The
native RS-232C ports have a transmit buffer size limit of 62K bytes. The buffer size for
the other asynchronous adapters is unlimited. The driver outputs the data when it
receives the write command and will transmit all chained data unless it receives a
Halt Transmission command. A legal XOFF sequence suspends data transmission, and
a legal XON sequence resumes it.

IBM Device Drivers 5-21

2 = reserved

3 = reserved

4 = Change device characteristics

No command elements follow this option. As described in "Device Characteristics" on
page 5-14, you can change some of the default values found in the device
characteristics section of the DDS. If you decide to change any defaults, bytes 8-23
(device-dependent parameters) of the CCB will have the same values as bytes 4-19 of
the device characteristics.

Two restrictions govern the use of the change option. First, you cannot change the
operation mode field (OPM) during a device session. A device session is the time
between the issuance of the Open and Close commands. You must close a device
session if you want to change the mode. The new mode goes into effect when you open
the next device session. The other restriction involves the mode bit of the PTCLF
field. This bit should not be changed during a device session. If this bit is changed
during a device session, a system abend may result. You can change all of the other
fields during a session.

You may receive the following return codes from the driver's check parameters routine
when you request the change characteristics option:

280 = You chose a reserved (and therefore invalid) parameter for the number of stop
bits field.

281 = You chose a reserved (and therefore invalid) parameter for the parity checking
and generation field.

282 = You chose a reserved or otherwise invalid parameter for the protocol field.

283 = You chose a reserved (and therefore invalid) parameter for the receive clock
field, or the receive clock value is not equal to the transmit clock value.

284 = You chose a reserved (and therefore invalid) parameter for the transmit clock
field.

285 = You chose a reserved (and therefore invalid) parameter for the operation mode
field.

286 = You chose an invalid combination of stop bits and bits per character. For
example, 2 stop bits is invalid when you select 5 bits per character, and 1.5 stop
bits is invalid when you select 6, 7, or 8 bits per character. This error does not
apply to the native RS-232 ports.

287 = You chose an invalid combination of XNF and operation mode values_ You
cannot have XON/XOFF protocol when you are in half duplex operation mode.

288 = You chose a reserved (and therefore invalid) parameter for the Rx Buff Trig
field.

5-22 VRM Device Support

289 = You chose an invalid combination of adapter port and parity checking and
generation. You cannot use mark or space parity with the native RS-232C ports.

5 = Open

No command elements follow this option. In full duplex, the device driver opens the
session by raising both data terminal ready (DTR) and request to send (RTS). The
driver then generates a solicited virtual interrupt to report current modem signal
status. Subsequent modem status changes generate an unsolicited interrupt.

A session is considered successfully opened when data set ready (DSR) and clear to
send (CTS) respond to DTR and RTS. The driver can then accept other commands for
the session. The virtual machine must set a timer to detect no modem status changes
in response to DTR and RTS.

For half duplex, the driver actions are the same as for full duplex, except that only
DTR is raised and only DSR indicates a successful open.

You can issue an open command only once per device session. If you attempt to issue
an open command more than once during a session, the check parameters routine will
reject it (return code = 258).

6 = Close

No command elements follow. For non-switched networks, the device driver closes the
session by dropping DTR and RTS and generating a solicited virtual interrupt. The
interrupt reports current modem signal status. Next, the driver disables adapter
interrupts so that no further virtual interrupts will be generated.

For switched networks, the device driver closes a session by dropping DTR and RTS
and setting a 10 second failsafe timer. If the DSR signal is detected as going inactive
before the timeout occurs, the session is considered closed. A solicited virtual
interrupt (with current modem signal status) is generated, then all adapter interrupts
are disabled. If DSR is not detected prior to the timeout, a solicited virtual interrupt
with current modem signal status is generated.

7 = Sendbreak

No command elements follow. This command forces serial output to the spacing state
for approximately 500 milliseconds. The sendbreak command executes off the queue.
Therefore, the virtual machine must clear the queue before issuing sendbreak to
ensure that the break is initiated quickly. The sendbreak command is dequeued at the
end of the time period for sending the break. A solicited interrupt indicating modem
status is then sent to the virtual machine.

8 = Halt Transmission

No command elements follow. The virtual machine can use this command to halt
transmission in the currently active write queue element. This command is used
primarily to stop transmission when the device driver detects some condition that it
cannot handle without the help of higher software levels. If the virtual machine

IBM Device Drivers 5-23

detects a condition that requires the cancellation of all pending operations, it should
use a Cancel I/O SVC before it issues the Halt Transmission command. The SVC
clears the driver's queue of all but the active queue element. Halt Transmission
purges any data remaining from a write command, ends the write operation, and issues
a solicited interrupt to report the current modem status. A Halt Transmission
command has no effect if received when no write command is active, so the driver does
not generate a virtual interrupt.

If the device driver was waiting for an XON from the device, the Halt Transmission
resets the device driver with regard to the XON. Thus, the driver begins to transmit
immediately when it receives the next write command.

You may receive the following return code with this command:

312 = Halt transmission command successful.

9 = Resync

No command elements follow. This command is processed exactly like the Close
command except that the modem control lines to the device are not affected (not
lowered as with the Close command) and the input control lines are not monitored to
determine successful closing.

10 = Resume

No command elements follow. If the device driver is waiting for an XON from the
device, the Resume command resets it with regard to the XON. Thus, the driver will
begin transmission immediately if a Write command is pending.

You may receive the following return code with this command:

330 = Resume command successful.

Output Values

The asynchronous device driver maintains certain status and operations results fields that
it can copy into the Start I/O PSB. The virtual machine then has access to this
information from the PSB.

The PSB fields that contain I/O completion information or detected error information are
the status flags and the operation results fields. Figure 2-6 on page 2-12 shows the
location of these fields in the PSB.

The status flags fields tells you right away with a bit mask if the I/O operation completed
successfully. Bit 5 of the status flags field defines whether the interrupt is solicited or
unsolicited. A solicited interrupt (bit 5 = 1) always means successful I/O completion. If the
status flags field indicates unsuccessful I/O completion (bit 5 = 0), the virtual machine
must examine the operations results field to determine the cause of the unsolicited
interrupt.

5-24 VRM Device Support

The 16-bit operation results field provides error or informational data. Figure 5-3 on
page 5-25 shows this field.

Intr. S S S S S S S S
E I * * Type B B B B B B B B

I I I o 1 2 3 4 5 6 7

* Reserved (Set equal to Q)

Figure 5-3. PSB Operation Results Field

The bits in the operation results field are defined as follows:

• E - Error

When this bit equals 1, the device driver is reporting an error. When this bit equals 0,
no error occurred.

• I - Information

When this bit equals 1, the device driver is relaying information to the virtual
machine. One or the other, but not both, of bits 0 and 1 will be set equal to one when
the driver reports operation results.

• Bits 2 and 3 are reserved.
• Intr Type - Interrupt Type

This 4-bit field, along with the status bits, helps pinpoint the error-causing condition.
• Status Bits (SBO through SB7)

Status bits (BB) define a set of interrupt-causing conditions for each 4-bit interrupt
type.

IBM Device Drivers 5-25

The following list defines the binary values of the 4-bit interrupt types and the status bit
settings for each. Interrupt types 0011, 0100, and 0111 through 1111 are reserved.

Interrupt
Type Description

0000 Receive interrupt without error

This informational message ('E' bit equals zero, 'I' bit equals one) informs the
virtual machine that a byte has been placed in an empty receive buffer. All
status bits equal zero.

0001 Receiver line status change

This informational interrupt occurs for devices operating in Mode 1 when the
device driver detects a status change in the line. This interrupt is issued in
Mode 2 only when a Break is detected before the Read command is issued.

For buffered adapters operating in Mode 1, only the last detected line status
error is reported. For Mode 2, all line status errors are detected and reported.
The status bits are defined as follows:

• SBO through SB3 - Reserved
• SB4 - Break interrupt

When SB4 equals one, the received data input was held in the spacing state
for longer than a full word of transmission time.

• SB5 -Framing error

When SB5 equals one, the received character did not have a valid stop bit.
• SB6 - Parity error

When SB6 equals one and parity checking is enabled by the Define Device
SVC, the driver detected an invalid parity on the received byte.

• SB7 - Overrun error

When SB7 equals one, a character in the hardware receive buffer was lost.
This interrupt pertains only to hardware receiver operations when the
receiver fails to read the buffer before another character arrives.

0010 Modem status change

This is an informational interrupt. The asynchronous device driver generates
modem status interrupts when any of the input modem signals (except Ring
Indicator) change state. A state change for Ring Indicator is defined only as the
transition from on to off. Modem status changes that occur during debouncing
will not be reported.

Status bits are defined as follows:

• SBO - Carrier detect status
• SB1 - Ring indicate status
• SB2 - Data set ready status

5-26 VRM Device Support

• SB3 - Clear to send status
• SB4 through SB7 - Reserved.

0101 Initialize device failed

The following error interrupts ('E' bit equals one, 'I' bit equals zero) occur when
you set invalid choices in the device characteristics field of the define device
structure (DDS). The device driver's initialize device subroutine detects these
errors.

The 8 status bits (also known as the status byte) are set in combinations to
specify errors. The hexadecimal values of the status byte and the error each
represents follow. Values Ox04, OxOA, and OxOC through OxFF are reserved.

• OxOO - The adapter you selected is not detected currently on the machine.
• Ox01 - You chose a reserved option for the number of stop bits field.
• Ox02 - You chose a reserved option for the parity checking field.
• Ox03 - You selected a reserved or invalid option for the protocol field.
• Ox05 - You selected an invalid option for the receive clock field, or the

receive clock value does not match the transmit clock value.
• Ox06 - You selected an invalid option for the transmit clock field.
• Ox07 - You selected a reserved option for the operation mode field.
• Ox08 - You selected an invalid combination of values for the number of stop

bits and character length fields for either a serial/parallel or multiport
adapter.

• Ox09 - You selected an invalid combination of values for the XON/XOFF
protocol and operation mode fields.

• OxOA - You selected a reserved value for the Rx Buff Trig. field.
• OxOB - You selected an invalid. value for the parity checking field for the

native RS-232 ports.

0110 Miscellaneous event notification

The device driver can also detect the following error interrupts. Status byte
settings follow. Any status byte value not included in the following list is
reserved.

• Ox04 - Receive buffer overflow

The driver detects this error interrupt when no more data can be received in
the input buffer.

• Ox08 - Start I/O rejected

The driver detects this error interrupt when it receives a Start I/O SVC and
the device driver is in an invalid state. In this case, a write command was
issued prior to an open command (between device sessions), or a sendbreak
command was issued before the device was successfully opened.

• OxOE - Fatal software error

The driver detects this error when it receives an invalid return code from a
system routine.

IBM Device Drivers 5-27

International Considerations

This section summarizes some of the restrictions, implementation characteristics, and
dependencies of the asynchronous device driver.

• Connect Data Set to Line (CDSTL) and Data Terminal Ready (DTR)

CDSTL and DTR are two options for operation of a single interchange circuit. In
CDSTL operation, the circuit is not set active until either RI or DSR activates from the
DCE. If RI activates without DSR, CDSTL is made active to await DSR, then dropped.
If DSR activates, CDSTL is set active and the line is seized for the duration of the
session.

For DTR operation, the circuit is driven from the time of Open, indicating to the DCE
that the DTE is re~dy to answer a call or transfer data.

Note that the asynchronous device driver does not time the period that CDSTL waits
for DSR. CDSTL can wait indefinitely for DSR. If a timer is required to await DSR
active modem status, the virtual machine must implement it.

The RT PC does not support CDSTL in Japan and Italy since those countries specify
modems that provide a level RI signal and the RT PC requires a pulsed RI signal. DTR
mode works properly with a level or a pulsed RI signal and is supported in both Japan
and Italy.

• Data Set Ready (DSR) deb ounce

For switched network operation, the asynchronous device driver provides a
50-millisecond timeout after DSR is first detected on. This allows the DSR circuit state
to be checked after it settles down.

Note that the driver de glitches the circuit only when the circuit initially comes active.
Subsequent modem or DSR changes are then passed to the virtual machine.

• Prevention of false disconnect

Typically, a 200-millisecond delay between a close and a subsequent open of a line is
provided to ensure that the line is fully released. Note that the asynchronous device
driver does not provide this delay. If such a delay is required, the virtual machine
must implement it.

• Automatic disconnect

For switched network operation, the capability to automatically disconnect a call
should be provided in the following situations:

Drop of DSR for more than 50 milliseconds when a link is in session (data security
violation)
Completion of a DISC sequence
Abnormal condition, such as excess line quiet period.

5-28 VRM Device Support

The asynchronous device driver provides automatic disconnect for a switched line if
DSR drops. If DSR drops, the device driver also drops DTR (disconnecting the line),
and reports the states of DSR and CD as inactive. Programs that monitor DSR or CD to
ensure a good connection can then terminate the transmission of data. The device
driver continues to send and receive data after a disconnection until directed to stop.
The virtual machine must issue a Close command before attempting to re-open a
session from which the driver automatically disconnected.

Manual disconnection is allowed through the AIX Operating System pdisable
command.

Note that the device driver does not attempt to time intervals of line quiet. If this
timing is required, it must be provided by any program that allows automatic
answering by an unattended connection.

IBM Device Drivers 5-29

Diskette Device Driver

This device driver supports one or two diskette drives attached to the Fixed-Disk and
Diskette Drive Adapter. The first diskette drive must be an IBM Personal Computer AT®
High Capacity Diskette Drive. The second drive can be an IBM Personal Computer AT®
High Capacity Diskette Drive or IBM Personal Computer AT® Dual-Sided Diskette Drive.
Both diskette drives are driven by a single copy of the diskette device driver. Each
diskette drive has its own IODN although they have the same hardware characteristics.
This is a nonshared device driver, which means that each diskette drive can only be
attached to one virtual machine at a time.

This device driver can read and write the following types of diskettes:

• Double sided diskettes when used with the Personal Computer AT Dual-Sided Diskette
Drive

• High capacity diskettes when used with the Personal Computer AT High Capacity
Diskette Drive.

This device driver can also read double sided diskettes using the Personal Computer AT
High Capacity Diskette Drive if the data was written using a Personal Computer AT
Dual-Sided Diskette Drive. Writing to a double sided diskette using a Personal Computer
AT High Capacity Diskette Drive is unpredictable and is not recommended.

The diskette device driver DDS is created by an lpost that passes the DDS to the loadlist
processor. For information on the loadlist processor, see "VRM IPL and Configuration" on
page 1-4. The diskette device driver is defined on the following pages.

5-30 VRM Device Support

Define Device Header

This section of the DDS is common to all device drivers. The information is defined as
follows:

IODN:

IOCN:

4 or 5

Ox0240

Define option: Ox0101

Device type: Ox0101

Device name: This field is ignored by the VRM. It can be used to store a name for the
device that uses this device driver.

Offset to hardware characteristics:
28 bytes .

Offset to device characteristics:
72 bytes

Offset to error log:
100 bytes.

IBM Device Drivers 5-31

Hardware Characteristics

This section of the DDS is common to all device drivers. The information is defined as
follows:

Length: 11 words

Internal device type:

• OxDlxx5200 for the first drive
• OxDlxx5201 for the second drive.

(where xx indicates the slot occupied by the adapter).

Base I/O port address:
Ox000003F2

Number of I/O port addresses:
6

Bus memory start address:
Not used by this device driver.

Bus memory end address:
Not used by this device driver.

DMA type: Ox8A000002

Interrupt type:
Ox20000106

• Interrupts not enabled
• Interrupts not shareable
• Interrupt level = 6.

5-32 VRM Device Support

Device Characteristics

The Personal Computer AT High Capacity Diskette Drive can read double sided or high
capacity diskettes. The device driver automatically adjusts the device characteristics
depending on the type of diskette inserted in the diskette drive. The device driver uses the
following procedure to determine which device characteristics to use in performing a read
or write operation:

1. When the machine is initialized, the loadable POST determines the type of diskette
drives installed and sets the device characteristics to match the diskette types. In most
cases, this will be the Personal Computer AT High Capacity Diskette Drive.

2. If the device driver cannot read or write to the diskette, it changes to the default
device characteristics for the Personal Computer AT Dual-Sided Diskette Drive.

3. If the device driver still cannot read or write to the diskette, it moves the read/write
head to track 0, resets the device characteristics to the original values, and returns a
-11 in the operation results field of the PSB.

4. Once the device characteristics are changed, they remain in effect until a diskette with
a different format is inserted in the drive or a change characteristics device option is
issued to the device driver through a CCB.

This automatic switching can be turned off by setting Bit 7 (the eighth bit) in the options
field of the CCB when attempting to read or write to the diskette. This tells the device
driver not to reset the device characteristics upon receiving a read or write error. Two
common causes for a read or write error are inserting the wrong diskette type in the
diskette drive and inserting an unformatted diskette in the diskette drive.

Note: As long as you are performing operations on standard double-sided or high-capacity
diskettes, you can ignore the automatic switching function as it is performed by the device
driver. However, if you perform any operation that uses non-standard device
characteristics, you should turn off the automatic switching by setting Bit 7 in the options
field of the CCB.

When bit 7 of the CCB operations option field is set and a read or write error is detected,
the device driver returns a -11 and the virtual machine must decide how to handle the
condition.

This procedure is the only checking done by this device driver with regard to device
characteristics. Any changes other than the automatic switching between the two default
diskette formats must be explicitly performed using a change characteristics device option.
This is defined in "CCB Input Values" on page 5-40.

The device characteristics for this device driver are shown in Figure 5-4 on page 5-34.

IBM Device Drivers 5-33

Length
o
4

8
Sector Size Sectors/Trk Trks/Cyl inder # of Cyls

12

16

20

Device Type Step Rate Head Load Head Unload

Motor Start Head Settle R/W Gap Format Gap

Fill Byte VFO Reserved Reserved

Figure 5-4. Device Characteristics

The default values for each characteristic are shown below. The system may change these
values with the change characteristics device option. Note that the device driver does not
check the changed characteristics for validity. It will attempt to use whichever
characteristics are given to it. To re-establish the default values, the virtual machine can
issue a change characteristics device option with the default values or perform a restart.

Length: 5 words

Sector size:

Sectors/Track:

Can be one of three values:

• 01 - 256 bytes
• 02 - 512 bytes
• 03 - 1024 bytes.

The diskette drives can use any of the three values listed. However, this
device driver only supports 02. Therefore, all diskettes used by this device
driver must use 512-byte sectors.

• 8 or 9 - Personal Computer AT Dual-Sided Diskette Drive
• 15 - Personal Computer AT High Capacity Diskette Drive.

Trks/Cylinder: Tracks per Cylinder

of Cyls:

Device Type:

• 1 - Personal Computer AT Dual-Sided Diskette Drive using single-sided
diskettes

• 2 - Personal Computer AT Dual-Sided Diskette Drive using
double-sided diskettes

• 2 - Personal Computer AT High Capacity Diskette Drive.

Number of Cylinders

• 40 - Personal Computer AT Dual-Sided Diskette Drive
• 80 - Personal Computer AT High Capacity Diskette Drive.

• 1 - Personal Computer AT Dual-Sided Diskette Drive
• 2 - Personal Computer AT High Capacity Diskette Drive.

5-34 VRM Device Support

Step Rate:

• 12 - Sets the Personal Computer AT Dual-Sided Diskette Drive step
rate to 6 milliseconds.

• 13 - Sets the Personal Computer AT High Capacity Diskette Drive step
rate to 3 milliseconds.

Head Load Time:

• 1- Sets the Personal Computer AT Dual-Sided Diskette Drive head
load time to 2 milliseconds.

• 25 - Sets the Personal Computer AT High Capacity Diskette Drive head
load time to 50 milliseconds.

Head Unload: 15 - Sets both diskette drive head unload times to 240 milliseconds.

Motor Start:

• 4 - Sets the Personal Computer AT Dual-Sided Diskette Drive motor
start time to .5 second.

• 8 - Sets the Personal Computer AT High Capacity Diskette Drive motor
start time to 1 second.

Head Settle: 25 - Sets both diskette drive head settle times to 25 milliseconds.

R/W Gap Length:

Format Gap:

Fill Byte:

VFO:

• 42 bytes - Personal Computer AT Dual-Sided Diskette Drive
• 27 bytes - Personal Computer AT High Capacity Diskette Drive.

• 80 bytes - Personal Computer AT Dual-Sided Diskette Drive
• 84 bytes - Personal Computer AT High Capacity Diskette Drive.

This value is written on all data bytes when a diskette is first formatted.
The value is OxF6 for both diskette drives.

This value specifies the frequency at which the adapter will perform a read
or write operation. It can be set to one of three values:

• 0 - 500K bytes per second. This is used to read or write high capacity
diskettes with a Personal Computer AT High Capacity Diskette Drive.

• 1 - 300K bytes per second. This is used to read double sided diskettes
with a Personal Computer AT High Capacity Diskette Drive.

• 2 - 250K bytes per second. This is used to read or write double sided
diskettes with a Personal Computer AT Dual-Sided Diskette Drive.

The default values are:

• 2 - Personal Computer AT Dual-Sided Diskette Drive
• 0 - Personal Computer AT High Capacity Diskette Drive.

IBM Device Drivers 5-35

Error Log

The format of the error log for this device driver is shown in Figure 5-5.

o
4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

Length

Class I Subclass Mask I Type

Error Data Length

Error Indication Code Options

Maximum Media Length Memory Segment ID

Status Reg 1 I Status Reg 2 Status Reg 3 I Status Reg 4

Current Media Location

Memory Address

Data Transfer Length

Counter Data Length

Counter Type

Bad Count

Good Count

Bad Threshold Error Ratio Threshold

Good Threshold

Consecutive Bad Threshold Permanent Error Threshold

Consecutive Bad Count Reserved

Counter Length

Seek Errors

CRC Errors

Data CRC Errors

ID Address Missing Errors

Data Address Missing Errors

Bad Adapter Errors

Data Overrun Errors

Unrecognizable Condition Errors

Figure 5-5. DDS Error Log Structure

5-36 VRM Device Support

This particular error log is logically divided into four sections, each of which is used for a
different purpose:

• The first section is always used when an error occurs. It contains the standard error
log information such as length, class, subclass, mask, and type.

• The second section starts at byte 8 and is only used when a temporary or permanent
error occurs. This is indicated in the type field with a value of Ox40 or Ox80. This
section contains information about the current I/O operation and the device that uses
this device driver.

• The third section starts at byte 36 and is only used when an error causes a predefined
error ratio threshold to be exceeded. This is indicated in the type field with a value of
Ox20. This section contains information about the error that caused the ratio to be
exceeded.

• The fourth section starts at byte 68 and is also only used when an error causes a
predefined error ratio threshold to be exceeded. This section contains a list of counters
that identify the total number of errors encountered for each type of error that can
occur for this device driver.

"DDS Error Log" on page 2-6 describes how device drivers can be designed to monitor
errors using this type of error log structure. You may need to read that section to
understand the purpose of the fields of this error log. The various fields of the error log
are defined as follows:

Length:

Class:

Subclass:

Mask:

Type:

26 words

Ox01 to indicate a hardware error, Ox02 to indicate a software error

Ox03

OxOO

Can be one of three values:

• Ox80 indicates that a permanent error occurred. This means that the
second section will be used.

• Ox40 indicates that a temporary error occurred. This means that the
second section will be used.

• Ox10 indicates that the error ratio threshold was exceeded. This means
that the third and fourth sections will be used.

Error Data Length:
7 words

Error Indication Code:
Uses bits 7 through 15 to represent one of ninp. different types of errors that
can occur. The bits are defined as follows:

• Bit 7 - Unrecognized condition
• Bit 8 - Data overrun error

IBM Device Drivers 5-37

Options:

• Bit 9 - Bad controller
• Bit 10 - Bad data address mark
• Bit 11- Bad ID address mark
• Bit 12 - eRe error in data
• Bit 13 - eRe error
• Bit 14 - Timeout error
• Bit 15 - Seek error.

The field contains the operation option and device option sent to the device
driver.

Maximum Media Length:
The maximum number of sectors on the diskette. This can be computed
using the following formula:

Max = (Sectors per Trk) * (Trks per Cylinder)
* (# of Cylinders)

Memory Segment ID:
The segment register contents at the time of the error.

Status Registers 1 through 4:
The values returned depend on the type of error that has occurred. The
errors that return information in the status registers are listed below along
with the register contents for each error.

• Unrecognizable condition

The status registers contain the contents of STO, ST1, ST2, and ST3.
The first three values may not reflect the current operation. ST3
contains the condition of the drive at the time of the time-out error.

• Data overrun error

Status Registers 1, 2, and 3 contain the contents of STO, ST1, and ST2.
Status Register 4 is not defined.

• Bad controller

Status Registers 1, 2, and 3 contain the contents of STO, ST1, and ST2.
Status Register 4 is not defined.

• eRe Error

Status Registers 1, 2, and 3 contain the contents of STO, ST1, and ST2.
Status Register 4 is not defined.

5-38 VRM Device Support

• Seek error

Status Register 1 contains the contents of STO. Status Register 2
contains the device driver's best estimate of the cylinder location of the
read/write head.

Current Media Address:
The location on the diskette where the error occurred. This is made up of
three bytes as shown:

• Byte 0 - Cylinder number
• Byte 1 - Head number
• Byte 2 - Sector number.

Memory Address:
Location of the memory buffer in use at the time of the error.

Data Transfer Length:
The number of bytes that were to have been transferred either to or from a
memory buffer.

Counter Data Length:

Counter Type:

The number of words used for this section of error data. For this device
driver, the value is 8 words.

The first bit in this field is always set to one. This field also uses bits 23
through 31 to represent nine different types of errors that are monitored by
this device driver. One of these bits is set to one to indicate which error
caused the error ratio threshold to be exceeded. Bits 23 through 31 are
defined as follows:

• Bit 23 - Unrecognizable condition
• Bit 24 - Data overrun error
• Bit 25 - Bad adapter card error
• Bit 26 - Bad data address mark error
• Bit 27 - Bad ID address mark error
• Bit 28 - CRC data error
• Bit 29 - CRC error
• Bit 30 - Not used
• Bit 31 - Seek error.

Bad Count: Total number of errors encountered for the type of error specified in the
counter type field.

Good Count: Number of successful I/O operations performed. The error ratio threshold
is not checked until this value reaches 40. This ensures that enough
operations have been performed to obtain meaningful results from an error
ratio check.

IBM Device Drivers 5-39

Bad Threshold:
Number of retries that must occur before checking the error ratio
threshold. The value for this device driver is 3.

Error Ratio Threshold:
The value which will cause the error counter data to be reported. This
value is obtained by dividing the number of errors for a particular type of
error by the good count. This device driver sets the threshold at 5, meaning
5 percent.

Good Threshold:
The maximum number of good operations which can be used to compute the
error ratio. If the good count counter reaches this value, it is reset to 0 by
the device driver. This ensures that the good count value does not become
so large that the error ratio becomes statistically invalid. The value for
this device driver is 800.

Consecutive Bad Threshold:
Number of consecutive retries that must occur before an error is reported.
The value for this device driver is 3.

Permanent Error Threshold:
Number of retries that must occur before logging a permanent error. The
value for this device driver is 10. If an I/O operation reaches this value, the
operation is abandoned and reported as unsuccessful.

Consecutive Bad Count:
Number of consecutive retries that occurred for the last I/O operation.
This field is only used for temporary errors. The value for this device
driver can range from 3 to 9.

Counter Length: ;
Nine words. This section is used to report the totals for each type of error
when the error ratio threshold is exceeded.

Note that all of the error counters are reported in the last 8 words, even though only one
particular type of error caused the counter data to be reported.

CCB Input Values

This device driver accepts CCBs as shown in Figure 2-5 on page 2-12. The CCB consists of
the command header and zero or more command elements, depending on the device option
used.

This device driver uses the following definitions for the bits in the options field of the
CCB.

• Bit 0 through 4 - Operation option

5-40 VRM Device Support

• Bit 5 - Reserved
• Bit 6 - Reserved
• Bit 7 - Disable automatic device characteristic switching
oBit 8 - Not used
• Bit 9 - Reserved
• Bit 10 - Enable read verification for read operations
G Bit 11 through 15 - Device option.

Most of the device options use the word that starts at byte 8 of the CCB header to define a
field called the logical block address field. This field can contain a value from zero to n,
where zero is the first sector of the first cylinder and n is the last sector of the last
cylinder. The value of n depends on the format of the diskette being operated upon. The
formula used to determine the logical address of a sector is shown below:

Logical Address = (Track Number * Sectors per Track
* Tracks per Cylinder) + Sector Number

When the device driver receives a device option that uses a logical address, it translates
the address into a sector ID. Each sector on the diskette is identified by a four-byte sector
ID that is stored in the first four bytes of that sector. The bytes are defined as follows:

• Byte 1 - Cylinder number
• Byte 2 - Head number

The head number is either 0 or 1, depending on whether you'are working with the first
or second track on the cylinder.

• Byte 3 - Current sector
• Byte 4 - Sector size. This device driver sets the sector size to 512 bytes per sector.

The value corresponding to 512-byte sectors is 2.

Device option 4, which allows you to change device characteristics, uses CCB header bytes
8 through 21 to store values for the various device characteristics.

The device options are defined below. Device options that require a command element
contain information about the command element in the definition. If there is no
information about a command element, you can assume that the device option does not use
a command element.

o = Read

This device option reads information starting at the sector identified by the logical
address field. This device option uses a CCB element with the following field
definitions:

Data Transfer Length:
Any integral multiple of 512 up to the limit of the DMA.

Memory Address:
Location of the data buffer that will receive the sector data.

IBM Device Drivers 5-41

This device option uses information supplied by the device characteristics fields in the
DDS to determine how to read the diskette. You may need to change the device
characteristics if a different diskette type has been inserted into the drive, or if the
characteristics have been altered by a previous device option.

The virtual machine can determine the diskette type by reading the diskette descriptor
on the diskette, or by trying to read sectors 8, 9, and 15 of any track. The results of
these read operations will identify the type of diskette.

1 = Write

This device option writes information starting at the sector identified by the logical
address field. This device option uses a CCB element with the following field
definitions:

Data Transfer Length:
Any integral multiple of 512 up to the limit of the DMA.

Memory Address:
Location of the data buffer that contains the data to be written to the
diskette.

See the description of the Read device option for information about device
characteristics and diskette types.

2 = Position

This device option positions the read/write head at the cylinder whose first sector is
stored in the logical address field of the CCB header. To compute the logical address
of the first sector of the cylinder, use the following formula:

Logical Address = Track Number * Sectors per Track * Tracks per Cylinder

Note that any sector on the track will position the read/write head properly. This
system uses the first sector as a matter of convenience.

3 = Format Track

This device option is used by the virtual machine to format one track of a diskette.
The track is identified by the logical address field in the CCB. This device option
writes a four-byte sector ID at the beginning of each sector on the specified track.
This sector ID is then used for all read/write operations. Since the sector IDs do not
use data space, the sector still has 512 bytes available for data.

This device option also sets each data byte in each sector to the value specified by the
fill byte device characteristic. This system uses OxF6 as the fill byte value.

The sector IDs for the track sectors are stored in memory and pointed to by a single
CCB element. There is one sector ID for each sector on the track. Each ID on a
particular track is the same except for the current sector value, which is 1 for the first
sector ID and increases by one for every additional sector on the track.

5-42 VRM Device Support

The CCB element has the following field definitions:

Data Transfer Length:
Number of bytes that contain sector ID data. This number must be a
multiple of four since each sector ID is four bytes long.

Memory Address:
Location of the data buffer that contains the sector IDs.

The virtual machine uses values stored in the device characteristics fields of the DDS
to create the sector ID buffer. The DDS fields may need to be changed to the proper
device characteristics before the buffer is created.

4 = Change Device Characteristics

This device option modifies the default device characteristics stored in the device
characteristics section of the DDS. If the system is initialized or restarted, the device
characteristics are reset to their default values.

After using the change device characteristics command, Bit 7 (disable automatic
device characteristic switching) should be set in the options field of the CCB
associated with every subsequent command. Otherwise, the device driver may
automatically change back to the default characteristics when attempting to recover
from errors.

This device option uses bytes 8 through 21 offset from the start of the CCB header to
change the device characteristics. Note that this option uses the logical address field
plus 10 additional bytes to store the device characteristics. The byte assignments are
listed below:

• Byte 8 - Sector size
• Byte 9 - Sectors/Track
• Byte 10 - Trks/Cylinder
• Byte 11 - # of cyls
• Byte 12 - Device type
• Byte 13 - Step rate
• Byte 14 - Head load time
• Byte 15 - Head unload
• Byte 16 - Motor start
• Byte 17 - Head settle
• Byte 18 - Read/Write gap length
• Byte 19 - Format gap
• Byte 20 - Fill byte
• Byte 21 - VFO.

With the exception of byte 21, a value of zero in a byte indicates that no change is
requested. For byte 21, which defines the read and write rate for data transfers, a
value of zero is a valid parameter. Therefore, byte 21 is always copied into the VFO
field of the device characteristics section of the DDS.

IBM Device Drivers 5-43

5 = Reset Drive

This device option sets the read/write head to track zero. This device option also sets
an adapter register called present cylinder number to zero.

6 = Read Status

This device option reads the status of the last device option issued to the diskette drive
adapter. This command uses a CCB element to point to an area in memory for the
status information to be read into. The data transfer length field of the CCB element
should be set to 9 bytes. The bytes are defined as shown below:

• Byte 0 - Last device option issued to the adapter by the device driver.
• Byte 1 - Status register o. Contains the completion status of the operation.
• Byte 2 - Status register 1. Contains the first byte of the operation result.
• Byte 3 - Status register 2. Contains the second byte of the operation result.
• Byte 4 - Cylinder location when finished.
• Byte 5 - Head location when finished.
• Byte 6 - Sector location when finished.
• Byte 7 - Set to 2 to indicate 512 bytes per sector.
• Byte 8 - Status register 3. Contains the status of the diskette drive. The bits are

defined as follows:
Bit 0 - Not used.
Bit 1 - Diskette is write-protected.
Bit 2 - Not used.
Bit 3 - Drive is at track o.
Bit 4 - First of two bits used to indicate head being used. Always set to o.
Bit 5 - Second of two bits used to indicate head being used. 0 indicates head 0;
1 indicates head 1.
Bit 6 - Head address.
Bit 7 - Diskette is double-sided.

7 = Check Diskette Change Status

This device option shows whether or not a diskette has been removed and a new
diskette placed in the drive. It also shows whether or not the original diskette was
removed and replaced. For this device option, removed is defined as pulling the
diskette out of the drive far enough to set a sensor switch in the drive. The drive will
signal that the diskette was removed until the read/write head is moved.

If the diskette has been removed, this device option returns a value of -15 in the
operation results field of the Start I/O PSB. If the drive does not contain a diskette, a
time-out error will occur when the next I/O operation is performed.

8 through 31 = Not used by this device driver.

Note:

This device driver does not contain a check parameters routine. Any required parameter
checking is performed by the I/O initiate routine.

5-44 VRM Device Support

After successfully completing any of the device options, the device driver issues a dequeue
function call and waits for the next command~ Tl;1e dequeue fu~ction call tells the queue
manager that it can release the current queue element.

If the device driver cannot successfully complete a device option, the device driver issues
an enqueue function call, which generates an interrupt request to the virtual machine.
The current queue element is retained for further processing.·

Output Values

This section defines the output values that may appear in GPR2 or in a PSB. The PSB
fields that contain I/O information or detected error information are the status flags field
and the operation results field. Figure 2-6 on page 2-12 shows the location of these fields
in the PSB.

The status flags field is not used for this device driver.

The I6-bit operation results field returns a value indicating the completion status of the
operation. The possible errors that can be returned are listed below:

00 = Successful completion

-02 = Seek error

A seek error was detected.

-03 = Bad DMA

Unable to resolve a DMA setup condition.

-04 = Write protect

Diskette is write-protected.

-05 = Timeout

The adapter would not respond to commands within the allowed time interval.

-06 = Bad drive

An adapter error occurred that prevented the diskette controller from operating
properly.

-07 = eRe error in data

A eRe error was detected in the data area.

-08 = eRe error not in data

A eRe error was detected in the memory address or sector ID.

IBM Device Drivers 5-45

-09 = ID not found

Unable to locate the sector ID within the allowed time interval. This could be due to
one of two reasons:

• The sector ID had a CRC error.
• The sector ID was not on the diskette or was incorrect.

If this condition occurs, the position of the read/write head is checked. If the head is
at the wrong position, it is repositioned and the operation is tried again.

-10 = Bad data address mark

Unable to locate the data address mark in the data area within the allowed time
interval. If this condition occurs, the position of the read/write head is checked. If
the head is at the wrong position, it is repositioned and the operation is tried again.

-11 = Bad ID address mark

Unable to locate an address mark in the sector ID area. This may be due to a
mismatch between the device characteristics and the diskette type. It can also occur if
an unformatted diskette is placed in the diskette drive.

-12 = Unrecognized condition

An error occurred that the diskette driver could not correct or evaluate.

-13 = Equipment check

A hardware error was detected.

-14 = Data overrun

An error occurred that caused the data to be transferred at the wrong rate.

-15 = Diskette changed

The diskette was removed and replaced by the same diskette or a different diskette.

-16 = Reserved

-17 = Threshold exceeded

An error threshold has been exceeded. The operation that receives this response may
have completed successfully; however, the command should be performed again to
ensure proper completion.

5-46 VRM Device Support

-256 = Invalid device option

The device option in the options field of the CCB was not valid for this device driver.

-257 = Undefined device option

The device option in the options field of the CCB was not defined for this device
driver.

-258 = Invalid parameters

The CCB contained an invalid parameter such as an invalid logical address.

IBM Device Drivers 5-47

Fixed-Disk Device Drivers

The RT PC supports as many as three fixed disks per machine and several fixed-disk
adapters. Supported adapters include the RT PC Personal Computer AT Fixed-Disk and
Diskette Drive Adapter, the RT PC ESDI Magnetic Media Adapter, and the RT PC
High-Function ESDI Magnetic Media Adapter. The Personal Computer AT Fixed-Disk and
Diskette Drive Adapter and ESDI Magnetic Media Adapter can run two fixed-disk drives
per adapter card, and the RT PC allows up to two of these cards per machine. The
High-Function ESDI Magnetic Media Adapter can run three fixed-disk drives and two
diskette drives.

The VRM provides device driver support for all these fixed-disk drive adapters. One VRM
device driver supports both the Personal Computer AT Fixed-Disk and Diskette Drive
Adapter and the ESDI Magnetic Media Adapter adapters, and another driver supports the
High-Function ESDI Magnetic Media Adapter. The High-Function ESDI Magnetic Media
Adapter requires a separate device driver because this adapter provides both a programmed
I/O mode and a DMA mode. The other adapters operate only in programmed I/O mode.

At IPL time, the power-on self tests (POSTs) determine the adapters that are configured on
the machine. A DDS is then built for the device driver code (and given an IOCN) and the
device is defined to the system (and given an IODN). Note that both fixed-disk device
drivers may be present in the same machine if the two types of adapters are configured.
Requests to the various fixed-disk devices are then determined by the IOCN and IODN
associated with the request.

If the High-Function ESDI Magnetic Media Adapter is configured with both fixed-disk and
diskette devices, both a fixed-disk and diskette device driver are required.

A fixed-disk device driver is different from the other device drivers in that it can receive
commands from more than one source. It can receive CCBs from a virtual machine and it
can receive internal VRM queue elements from the mini disk manager, the Personal
Computer AT Coprocessor option, and virtual memory manager. CCBs and internal VRM
queue elements contain similar information; however, there are some differences. This is
explained in greater detail in "CCB Input Values" on page 5-58.

5-48 VRM Device Support

Define Device Header

This section of the DDS is common to all device drivers. The information for the two
device drivers is defined as follows:

IODN: 01,02, or 03

IOCN: Ox0230 for the Personal Computer AT Fixed-Disk and Diskette Drive
Adapter or ESDI Magnetic Media Adapter

Ox0231 for the High-Function ESDI Magnetic Media Adapter

Ox232 for the High-Function ESDI Magnetic Media Adapter in the second
slot.

Define option: OxOl0l

Device type: OxOOF3

Device name: This field is ignored by the VRM. It can be used to store a name for the
device that uses this device driver.

Offset to hardware characteristics:
28 bytes

Offset to device characteristics:
72 bytes

Offset to error log:
132 bytes.

IBM Device Drivers 5-49

Hardware Characteristics

This section of the DDS is common to all device drivers. The information is defined as
follows:

Length: 11 words

Internal device type:
Personal Computer AT Fixed-Disk and Diskette Drive Adapter:

• Ox91xx5200 for the first drive of the first adapter card
• Ox91xx5201 for the second drive on the first adapter card
• Ox91xx5202 for the first drive on the second adapter card.

ESDI Magnetic Media Adapter:

• Ox91xx8200 for the first drive
• Ox91xx8201 for the second drive
• Ox91xx8202 for the third drive.

High-Function ESDI Magnetic Media Adapter:

• Ox91xx8600 for the first drive
• Ox91xx8601 for the second drive
• Ox91xx8602 for the third drive.

(where xx indicates the slot occupied by the adapter).

Base I/O port address:

For the Personal Computer AT Fixed-Disk and Diskette Drive Adapter and
ESDI Magnetic Media Adapter:

• OxOOOOOlFO for the primary card
• Ox00000170 for the secondary card.

For the High-Function ESDI Magnetic Media Adapter:

• OxFOOOOIFO if the card is the primary card.
• OxF0000170 if the card is the secondary card.

The High-Function ESDI Magnetic Media Adapter device driver does not
support two such adapters on the same machine. If the High-Function ESDI
Magnetic Media Adapter is the secondary card, the primary card must be a
Personal Computer AT Fixed-Disk and Diskette Drive Adapter or ESDI
Magnetic Media Adapter.

Number of I/O port addresses:
8

5-50 VRM Device Support

Bus memory start address:
Not used by these device drivers.

Bus memory end address:
Not used by these device drivers.

DMA type: Used only by the High-Function ESDI Magnetic Media Adapter:

Interrupt type:

• OxE8000301 = primary DMA channel
• OxE8000300 = alternate DMA channel
• OxE8000303 = secondary DMA channel.

The adapter has the following characteristics:

• Alternate DMA supported
• Use IOCC buffering
• Only use DMA
• Use 8 DMA windows on channels 0, 1, 2.

Depends on adapter configuration

For the PC AT or ESDI adapters, this value is set to OxB000020E and the
adapters has the following characteristics:

• Interrupts enabled
• Interrupts not shareable
• Interrupt level = 14.

For the High-Function ESDI adapters alone (no standard ESDI or PC AT
adapters on the same machine), this value is set to OxE000020E and the
adapter has the following characteristics:

• Interrupts enabled
• Interrupts shareable
• Interrupt level = 14.

For the High-Function ESDI adapters used with standard ESDI or PC AT
adapters on the same machine, this value is set to OxE000020C and the
adapter has the following characteristics:

• Interrupts enabled
• Interrupts shareable
• Interrupt level = 12.

IBM Device Drivers 5-51

Device Characteristics

The device characteristics for these device drivers are structured as shown in the figure
below:

o
4

8

12

16

20

24

28

32

36

40

44

48

52

56

Length

Formatted Data Capacity

Reserved Interleave I Sector Size

Last Cylinder Last Head I Last Sector

Precomp Va I . I Device Status CE Cylinder

End of Life Seek Profile

Seek Profi Ie

Seek Profile

Seek Profile

Seek Profile

Seek Profile

Seek Profile

Seek Profile

Manufacturer ID T Reserved

Service Request Number Drive Char. T Reserved

Figure 5-6. Device Characteristics

Length: Indicates the length of the device characteristics section (15 words).

Formatted data capacity:
The number of usable sectors that the drive contains. This does not include
the sectors on the CE cylinder.

Interleave factor:

Sector size:

• High-Function ESDI Magnetic Media Adapter - 1
• Personal Computer AT Fixed-Disk and Diskette Drive Adapter - 2
• ESDI Magnetic Media Adapter - 4

The size of sectors on the device in multiples of 256. The value for this
device is 02.

Last cylinder: The last cylinder available on the drive. This is one less than the actual
number of cylinders because the CE cylinder is not available for user data.

Last head: The last head available on the drive.

5-52 VRM Device Support

Last sector: The last sector available on the drive.

Precompensation value:
The starting cylinder where precompensation should be used. The value
used is the cylinder number divided by four. If a fixed-disk drive does not
use precompensation, this field should be set to OxFF.

Device status: Used by the POST routine after the configuration record is read from the
disk. When the configuration record is written, the value of this field is
OxOO.

CE cylinder: The cylinder used for diagnostic tests. This cylinder is always the last
cylinder on the fixed-disk drive and is never used for user data.

End of Life: Indicates the maximum number of sector defects that are allowed before the
drive is considered to be bad.

Seek profile: The parameters used to approximate the amount of time the drive will need
to perform a seek operation. This is necessary because this fixed-disk drive
does not send an interrupt upon completion of a seek request. Therefore,
the device driver calculates how long the seek operation should take and
allows the system to perform other tasks during that time. After the time
interval has passed, the device driver checks to see if the seek is actually
complete.

For the High-Function ESDI Magnetic Media Adapter, this value is set to
zero.

Manufacturer ID:
The identification number of the drive manufacturer.

Service Request Number:
Contains an SRN used by the diagnostics for this drive.

Drive Char.: Contains an ASCII character that, when combined with the drive capacity,
identifies the fixed disk.

Error Log

The error log for these device drivers is organized as shown in Figure 5-7 on page 5-54. It
is logically divided into four sections, each of which is used for a different purpose.

The first section is always used when an error occurs. It contains the standard error log
information such as length, class, subclass, mask, and type.

The second section starts at byte 8 and is only used when a permanent error occurs. This
is indicated in the type field with a value of Ox80. This section contains information about
the current I/O operation and the device that uses this device driver.

IBM Device Drivers 5-53

o
4

8

12

16

20

24

28

32

36

40

44

48

52

56

60
64

68

72

76

80

84

88

92

96

100

Length

Class I Subclass I Mask I Type

Error Data Length

Error Indication Code I Options

Status Reg I Error Reg I Memory Segment ID

Formatted Data Capacity

Current Media Location

Previous Media Location

Memory Address

Data Transfer Length

Counter Data Length

Counter Type

Bad Count

Good Count

Bad Threshold J Error Ratio Threshold

Good Threshold

Consecutive Bad Threshold I Permanent Error

Consecutive Bad Count I Reserved

Counter Length

Data ECC Errors

ID Address Not Found Errors

Abandoned Command Errors

Track Zero Errors

Data Address Mark Errors

Unrecognizable Condition Errors

Figure 5-7. Error Log Structure

The third section starts at byte 40 and is only used when an error causes a predefined error
ratio threshold to be exceeded. This is indicated in the type field with a value of Ox20.
This section contains information about the error that caused the ratio to be exceeded.

The fourth section starts at byte 72 and is also only used when an error causes a
predefined error ratio threshold to be exceeded. This section contains a list of counters
that identify the total number of errors encountered for each type of error that can occur
for this device driver.

5-54 VRM Device Support

"DDS Error Log" on page 2-6 describes how device drivers can be designed to monitor
errors using this type of error log structure. You may need to read that section to
understand the purpose of the fields of this error log.

The various fields of the error log are defined as follows:

Length: 25 words

Class:

Subclass:

Mask:

Type:

OxOl for hardware errors.

Ox02 for software errors.

Ox02

OxOO

Can be one of three values:

• Ox80 indicates that a permanent error occurred. This means that the
second section will be used.

• Ox20 indicates that an ECC error was corrected. No error occurred,
but an error entry is generated to inform the user of the event. For
these types of entries, the second section is used.

• Oxl0 indicates that the error ratio threshold was exceeded. This
means that the third and fourth sections will be used.

Error data length:
8 words.

Error indication code:

Options:

Status Reg:

Uses bits 9 ,through 15 to represent one of seven different types of ereors
that can occur. The bits are defined as follows:

• Bit 9 - Unrecognizeable condition
• Bit 10 - Bad data address mark
• Bit 11 - Track 0 error
• Bit 12 - Time Out error
• Bit 13 - Bad ID address error
• Bit 14 - Uncorrectable ECC error
• Bit 15 - Correctable ECC.

Bit 15 is used to signal that the device driver was able to correct an
ECC error. The device driver generates an error ent~ because it is a
significant event that might be of interest to the error log analysis
routines.

The operation option and device option sent to the device drivel'.

The last status register contents sent from the adapter. More than one of
the conditions may be set. They are defined below:

• Bit 0 - Adapter busy
• Bit 1- Drive ready

IB:r-1I Device Drivers 5-55

Error Reg:

• Bit 2 - Write fault
• Bit 3 - Seek complete
• Bit 4 - Data request
• Bit 5 - Corrected data
• Bit 6 - Index
• Bit 7 - Error.

The last error register contents sent from the adapter. It can be one of
the following values:

• Bit 0 - Bad block
• Bit 1 - Data ECC error
• Bit 2 - Reserved
• Bit 3 - ID not found
• Bit 4 - Reserved
• Bit 5 - Abandoned command
• Bit 6 - Track 0 error
• Bit 7 - Data address mark not found.

Memory segment ID:
The segment register contents at the time of the error.

Maximum media length:
The maximum number of sectors on the fixed disk.

Current media address:
The physical location on the fixed disk where the error occurred. This is
made up of four bytes as shown:

• Bytes 0 and 1- Cylinder number
• Byte 2 - Head number
• Byte 3 - Sector number.

Previous media address:

Mem'ory address:

The previous physical location of the fixed-disk read/write head. This is
made up of four bytes as shown:

• Bytes 0 and 1- Cylinder number
• Byte 2 - Head number
• Byte 3 - Sector number.

Location within the memory buffer where the error occurred.

Data transfer length:
The number of bytes that have been transferred either to or from a
memory buffer.

5-56 VRM Device Support

Counter data length:

Counter type:

8 words

This is the length of the error counter data returned when the error ratio
threshold is exceeded.

The first bit in this field is always set to one. This field also uses bits 10
through 15 to represent six different types of errors that are monitored by
this device driver. One of these bits is set to one to indicate which error
caused the error ratio threshold to be exceeded. Bits 10 through 15 are
defined as follows:

• Bit 10 - Unrecognizable condition
• Bit 11- Bad data address mark
• Bit 12 - Track 0 error
• Bit" 13 - Time-out error
• Bit 14 - Bad ID address error
• Bit 15 - Uncorrectable ECC error.

Bad count: Total number of errors encountered for the type of error specified in the
counter type field.

Good count: Number of successful I/O operations performed. The error ratio threshold
is not checked until this value reaches 40. This ensures that enough
operations have been performed to obtain meaningful results from an
error ratio check.

Bad threshold: Number of retries that must occur before checking the error ratio
threshold. The value for this device driver is 3.

Error ratio threshold:.
The value which will cause the error counter data to be reported. This
value is obtained by dividing the number of errors for a particular type of
error by the good count. This device driver sets the threshold at 6,
meaning 6 percent.

Good threshold: The maximum number of good operations which can be used to compute
the error ratio. If the good count counter reaches this value, it is reset to
o by the device driver. This ensures that the good count value does not
become so large that the error ratio becomes statistically invalid. The
value for this device driver is 640. ,

Consecutive bad threshold:
Number of consecutive retries that must occur before an error is reported.
The value for this device driver is 3.

Permanent error threshold:
Number of retries that must occur before logging a permanent error. The
value for this device driver is 3. If an I/O operation reaches this value,
the operation is abandoned and reported as unsuccessful.

IBM Device Drivers 5-57

Consecutive bad count:
Number of consecutive retries that occurred for the last I/O operation.
This value can range from 1 to 3.

Counter length: 7 words.

This section is used to report the totals for each type of error when the
error ratio threshold is exceeded.

Note that all of the error counters are reported in the last 6 words, even though only one
particular type of error caused the counter data to be reported.

CCB Input Values

This device driver accepts CCBs as shown in Figure 5-8:

o
4

8

12

16

20

24

28

32

Type I
IODN

Reserved for System Use

Path ID

Priority I Options

I CCB Segment ID

CCB Address

CCB Length

Logical Address

Not Used

Figure 5-8. CCB Queue Element

The CCB consists of the command header and zero or more command elements, depending
on the device option used. The fields specific to CCBs used by this device driver are
defined below:

Type:

Options:

This is set to 2 to indicate that this is a CCB queue element.

Each bit is defined below:

• Bit 0 through 4 - Operation option

• Bit 5 - Bad blocks

The minidisk manager uses this bit to tell the fixed-disk device driver
that the specified request contains references to bad blocks. When this
bit is set, the driver must call the minidisk manager to get alternate
block information when the request is initiated. This bit cannot be set
by the user.

5-58 VRM Device Support

• Bit 6 - Write verify

The minidisk manager uses this bit to tell the fixed-disk device driver
that the write operation should be followed immediately by a verify
operation. If the verify detects any errors, the driver will remap the
defective sectors to alternate sectors and retry the write operation. The
requestor receives an error only if the remap is unsuccessful. This bit
can be set only by the minidisk manager or the requestor of an internal
VRM operation.

• Bit 7 - Reserved

• Bit 8 - Not used

• Bit 9 - Disable bad block mapping

This bit can be set by a user to prevent the fixed-disk device driver from
alternate sector mapping. If a request needs to be contiguous (such as
data read by read-only memory), this bit should be set.

• Bit 10 - Memory addressing mode

This bit indicates whether an address is virtual or real. For CCBs, it is
always set to zero to indicate virtual address mode.

• Bit 11 through 15 - Device option

The device options available for this device driver are defined below.
Device options that require a command element contain information
about the command element in the definition. If there is no information
about a command element, you can assume that the device option does
not use a command element.

o = Read

This device option reads information starting at the sector
identified by the logical address field. This device option uses a
CCB element with the following field definitions:

Data transfer length:
Any integral multiple of 512 bytes.

Memory address:
Location of the data buffer that will receive the
sector data.

IBM Device Drivers 5-59

IODN:

1 = Write

This device option writes information starting at the sector
identified by the logical address field. This device option uses a
CCB element with the following field definitions:

Data transfer length:
Any integral multiple of 512 bytes.

Memory address:

2 = Position

Location of the data buffer that contains the data to
be written to the sector.

This device option positions the read/write head at the specified
logical address.

3 through 31 = Not used by this device driver.

After successfully completing any of the device options, the device
driver issues a dequeue function call and waits for the next device
option. The dequeue function call tells the queue manager that it can
release the current queue element.

If the device driver cannot successfully complete a device option, the
device driver issues a dequeue function call and reports an error to the
VRM error process and virtual machine.

Note that this is a minidisk IODN, not the actual IODN for the fixed-disk
drive.

CCB segment ID:
This field contains the segment ID of the address of the memory buffer.

CCB address: This field contains the offset within the segment to the start of the CCB.

CCB length: The length of the CCB that contained the original request.

Logical address:
Location within the minidisk where the data transfer should take place.

5-60 VRM Device Support

Internal VRM Queue Element Values

This device driver accepts internal VRM queue elements from three components within the
VRM:

• Minidisk manager

• IBM RT PC Personal Computer AT Coprocessor Option

• Virtual memory manager.

These queue elements have the structure shown in Figure 5-9:

o
4

8

12

16

20

24

28

32

Type I
lOON

Reserved for System Use

Path ID

Priority I Options

I Memory Segment ID

Memory Address

Data Transfer Length

Logical Address

Not Used

Figure 5-9. Intern~l VRM Queue Element

These queue elements can perform the same operations as a standard CCB issued by the
virtual machine. These queue elements differ from a CCB in that there is no need for a
pointer to a CCB queue element.

The fields usually defined by the CCB queue element, memory address and data transfer
length, are already stored in an internal VRM queue element. Thus, these queue elements
have no need for a CCB address or CCB length field. These two fields are replaced by the
memory address and data transfer length fields.

The fields specific to internal VRM queue elements used by this device driver are defined
below:

Type:

Options:

This is set to 3 to indicate that this is an internal VRM queue element.

Each bit is defined as follows:

• Bit 0 - Interrupt on completion
• Bit 1 - Interrupt on error
• Bit 2 - Synchronous operation
• Bit 3 - Command extension
• Bit 4 - Reserved for VRM
• Bit 5 - Bad block

IBM Device Drivers 5-61

• Bit 6 - Write verify
• Bit 7 - Reserved
• Bit 8 - Not used
• Bit 9 - Not used
• Bit 10 - Memory addressing mode

For internal VRM requests, this bit indicates whether the address is
virtual or real. A zero means the address is virtuai; a one means the
address is real.

• Bits 11 through 15 - Device option

These queue elements can contain commands for the device driver in
the device option portion of the options field. The commands are
defined below:

o = Read

This device option reads information starting at the sector
identified by the logical address field. This device option requires
the following fields to be set in the internal VRM queue element:

Memory address:
Location of the data buffer that will receive the
sector data.

Data transfer length:
Any integral multiple of 512 bytes.

1 = Write

This device option writes information starting at the sector
identified by the logical address field. This device option requires
the following fields to be set in the internal VRM queue element:

Memory address:
Location of the data buffer that contains the data to
be written to the sector.

Data transfer length:
Any integral multiple of 512 bytes.

2 = Position

This device option positions the read/write head at the specified
logical address.

3 through 31 = Not used by this device driver.

After successfully completing any of the device options, the device
driver issues a dequeue function call and waits for the next command.

5-62 VRM Device Support

IODN:

The dequeue function call tells the queue manager that it can release
the current queue element.

If the device driver cannot successfully complete a device option, the
device driver issues a dequeue function call and reports an error to the
VRM error process and virtual machine.

This is a minidisk IODN, not the actual IODN for the fixed-disk drive.

Memory segment ID:
If the memory addressing mode is virtual, this field contains the segment ID
of the address of the memory buffer. If the memory addressing mode is real,
this field is ignored.

Memory address:
If the memory addressing mode is virtual, this field contains the offset
within the segment to the start of the memory buffer. If the memory
addressing mode is real, this field contains the actual memory address of
the memory buffer.

Data transfer length:
The total number of bytes that are to be transferred by this operation.

Logical address:
Location within the minidisk where the data transfer should take place.

Output Values

This section defines the output values that may appear in GPR2 or in a PSB. The PSB
fields that contain I/O information or detected error information are the status flags field
and the operation results field. Figure 2-6 on page 2-12 shows the location of these fields
in the PSB.

The status flags field is a single byte and is defined as Ox24. This indicates that this is a
solicited I/O interrupt.

The 16-bit operation results field returns a value indicating the completion status of the
operation. The possible values that can be returned are listed below:

00 = Successful completion

256 = Initialization failed

One of the initialization routines returned an error code.

257 = Invalid device option

The CCB contained an invalid device option.

IBM Device Drivers 5-63

258 = Invalid data length

A request specified a data length that was not a multiple of 512 bytes.

259 = Invalid parameters

The command extension flag in the queue element was not set for a read or write
operation, or the buffer address is not aligned on a word boundary.

260 = Invalid IODN

The DDS contained an invalid IODN in the DDS header section.

-02 = Timeout

The adapter would not respond to commands within the allowed time interval.

-03 = Bad block mark

The adapter detected a bad block mark in a sector ID field. The bad block mark is set
during the formatting operation to identify sectors that are unusable. •

-04 = ECC error

The adapter detected an uncorrectable ECC error during a read operation.

-05 = ID not found

Unable to locate the sector ID within the allowed time interval. This could be due to
one of two reasons:

• The sector ID had a CRC error.
• The sector ID was not on the disk or was incorrect.

If this condition occurs, the position of the read/write head is checked. If the head
is at the wrong position, it is repositioned and the operation is tried again.

-06 = Abandoned command

Adapter stopped trying to process a command due to a detected exception condition.
The exception conditions are:

• Write fault
• Incomplete seek
• Drive not ready
• Invalid command.

-07 = Track 0 not detected

A restore command did not detect track 0 after issuing 1024 step pulses to the drive.

-08 = Bad Data address mark

Unable to locate the data address mark in the data area within the allowed time
interval. If this condition occurs, the position of the read/write head is checked. If
the head is at the wrong position, it is repositioned and the· operation is tried again.

5-64 VRM Device Support

-09 = Not used by this device driver.

-10 = Unrecognized condition

An error occurred that the device driver could not evaluate.

-11 = Bad block mapping abandoned

The device driver encountered a situation that required bad block mapping. However,
bit 9 of the options field of the CCB that initiated the I/O request was set to disable
bad block mapping. Therefore, the operation was abandoned.

-12 = Invalid parameters

The CCB or queue element contained invalid parameters. This could be one of the
following:

• Invalid memory segment ID
• Invalid buffer address.

-40 = Subsequent read error

This minidisk manager return code is passed back through the fixed-disk device driver.
This occurs if a read is attempted to a block previously notified as a bad block with no
intervening write since the notification. The block in question needs to be written in
order to clear the error.

Note: Corrected ECC errors are reported to the error process in the VRM; however, the
return code is set to 0, indicating successful completion.

IBM Device Drivers 5-65

Reserved Cylinders on the Fixed Disk

Each fixed disk reserves two cylinders for special use. One of the reserved cylinders is
cylinder 0, the first cylinder on any fixed disk. The disk uses the first four tracks of
cylinder 0 to store various types of disk configuration and operation information. Some of
this information is placed on the cylinder by the fixed-disk manufacturer, and some of it is
written by the operating system. This section defines the structure and contents of the
first 4 tracks of cylinder O. If cylinder 0 contains more than 4 tracks, the additional space
is used for user data.

The other reserved cylinder on the fixed disk is called the CE cylinder. This is always the
last cylinder on the fixed disk and is used for diagnostic purposes. The CE cylinder cannot
be used for user data.

A fixed-disk cylinder consists of the tracks that can be accessed from a specific arm
position. The fixed disks supported by the VRM use 512 bytes per physical sector and at
least 17 sectors per track.

The following table describes the information stored on cylinder 0 of supported fixed disks.
Fixed disks that conform to the format shown here should be compatible with the
operation of the VRM minidisk manager. The locations of the respective items are
expressed as cylinder number (C#), head number (H#), and sector number (S#). The
following formula enables you to determine the logical sector number (LSN) of the supplied
information, regardless of the number of sectors per track:

LSN = (C# times (last head + 1) times last sector)
+ (H# times last sector)
+ S# - 1

The last cylinder value, last head value and last sector value are contained in the
configuration record (see "Configuration Record" on page 5-69). Note that any reserved
blocks or bytes are assumed to be set to O.

5-66 VRM Device Support

Information C# H# S#
IPL record 0 0 1

Configuration record 0 0 2

Reserved 0 0 3

~inidisk directory 0 0 4-6

Reserved 0 0 7-8

Bad block directory 0, 0, 9 to 0, 1, 13

Backup configuration record 0 1 14

Backup mini disk directory 0 1 15-17

Reserved 0 1 l8-n

POST control block 0 2 l-n

Reserved track 0 3 l-n

Figure 5-10. Cylinder 0 Layout

Note that logical sector numbers start at 0 and go to approximately 86,000 for a 44
megabyte fixed disk and to approximately 138,000 for a 70 megabyte disk. The sector IDs on
each track are formatted 1 through the number of sectors per track, inclusive.

Each section of cylinder 0 is discussed on the following pages, with the exception of the
backup configuration record and the backup minidisk directory. The format of these two
backup sections is the same as its primary counterpart.

IBM Device Drivers 5-67

IPL Record

The IPL record consists of one block. It contains information that allows the system to
read the IPL code and initialize the system. It can be divided into three logical sections.
The first section is two words long and contains the IPL record ID. The second section is 6
words long and contains format information about the fixed disk. The third section is 4
words long and contains information about where the IPL code is located and the length of
the code. The fields are defined below:

Bytes

0-3

4-7

8-9

10

11

12-13

14-18

19

20-23

24-27

28-31

32-33

34

35

36-39

40-43

44-47

48-51

52-55

56-511

Description

IPL record ID. Identifies the type of IPL record. This field is set to OxC9C2D4Cl.

Reserved.

Number of cylinders on the disk used for IPL.

Number of heads on the disk used for IPL.

Number of sectors on each track of the disk used for IPL.

Sector size as measured in bytes. For example, if the sector size was 512 bytes,
this field would have a value of Ox0200.

Reserved.

Interleave factor.

Reserved.

Formatted disk size.

Reserved.

Cylinder containing the start of the loaded code.

Head number to be used to read the loaded code.

First sector of the loaded code.

Length of the loaded code, measured in sectors.

Offset from the start of the loaded code to the first instruction.

Block number of the VRM minidisk.

Loadlist processor block number. This is a block number that is only required for
the AIX Operating System cvid command.

Length of VRM Minidisk. This is a block number that is only required for the
AIX cvid command.

Reserved.

5-68 VRM Device Support

Configuration Record

The configuration record consists of one block. It contains information required by the
fixed disk for I/O operations. Some of the fields in the configuration record are defined in
"Device Characteristics" on page 5-52. The configuration record fields are as follows:

Bytes Description

0-3 Configuration record ID. Identifies the configuration record as present and valid.
This field is always set to OxF8E9DACB.

4-7 Formatted data capacity.

8-9 Reserved.

10 Interleave factor.

11 Sector size.

12-13 Last data cylinder

Cylinders are numbered 0 to n, where n is the value in bytes 12-13. The total
number of cylinders is n + 2, where the last cylinder is the CE cylinder.

14 Last head

Heads are numbered from 0 to n, where n is the value in byte 14. The total
number of heads is n + 1.

15 Last sector

Sectors are numbered 1 to n, where n is the value in byte 15. The number of
sectors per track is n.

16 Pre compensation value.

17 Device status. Used by the 10 ad able POST routine after the configuration record
is read from the disk. When the configuration record is written, the value of this
field is OxOO.

18-19 CE cylinder.

20-21 End-of-life.

The value in this field determines the number of defects that force a fixed disk to
be considered unusable. A value of zero allows the system to set this value; a
value of all ones disables bad block relocation for the disk.

22-51 Seek profile.

52-54 Manufacturer rD.

Bytes 52 and 53 of this field indicate the size of the fixed disk (40 megabyte, 70
megabyte, and so on). Byte 54 indicates the ID of the manufacturer. ID values from
OxOO through Ox7F are reserved for IBM-supported manufacturers and are included

IBM Device Drivers 5-69

in Diagnostic Control Program tests. ID values greater than Ox7F are not checked
by IBM diagnostics.

55 Reserved.

56-57 Service request number

This field contains a value that is used by the diagnostics facility to identify the
disk drive.

58 Drive characteristic

This field contains an ASCII character that, combined with the drive capacity,
identifies the fixed disk.

59-511 Reserved.

Minidisk Directory

The minidisk directory consists of three blocks. It is used by the VRM to describe how the
fixed disk is divided into minidisks. It is initially set to all zeroes by the fixed-disk
manufacturer. It is logically structured as an array of 48 entries, each of which is 32 bytes
long.

The first entry, with an index of 0, is the header and contains the following:

Bytes Description

0-3 The number of minidisks, including free space minidisks.

4-7 Level identifier of the minidisk directory.

8-9 Index of next unused directory entry.

10-11 Reserved.

12-13 Index of the first minidisk directory entry on the list of defined minidisks.

14-15 Index of the last minidisk directory entry on the list of defined minidisks.

16-19 Logical sector number of the start of the area reserved for bad block relocation.

20-23 Size of the bad block area in sectors.

24-27 I/O counter indicating the directory most recently used.

28-31 Reserved.

The remaining entries contain definitions of minidisks, which includes data minidisks and
free space minidisks. Each entry in the list is defined as follows:

5-70 VRM Device Support

Bytes

0-1

2-3

4-7

8-11

12-15

16-17

18

19

Description

Index of the previous entry on the list of defined minidiskr

Index of the next entry on the list of defined minidisks.

Minidisk name from create minidisk.

Reserved.

Date the minidisk was created. This is represented as the number of seconds that
have elapsed since 1970.

Minidisk IODN or 0 if it is a free space minidisk.

The minidisk logical block size where 0 = 512 bytes, 1 = 1024 bytes, and 3 = 2048
bytes. This value is stored in bits 0-3 of the byte. Bits 4-7 are reserved.

The minidisk type. This is determined by which bit is set. The bits are defined as
follows:

Bit 0 - Write verify
Bit 1 - No bad block relocation for this minidisk
Bit 2 - Paging space minidisk
Bit 3 - AIX Operating System file system minidisk
Bit 4 - AIX Operating System minidisk
Bit 5 - IBM RT PC Personal Computer AT Coprocessor Option minidisk
Bit 6 - VRM minidisk
Bit 7 - Auto IPL minidisk.

20-23 Reserved.

24-27 Logical sector number for the start of the mini disk.

28-31 Number of sectors used by the minidisk.

Backup Minidisk Directory

The backup minidisk directory is used after an error has occurred during input/output
operations to the primary minidisk directory. If errors are found on both the primary and
backup minidisk directories during VRM initialization, the fixed disk that contains those
directories will support no minidisk operations.

If no errors are found, the minidisk directory with the greater value in the fullword at
offset 24 is used.

IBM Device Drivers 5-71

Bad Block Directory

The bad block directory consists of 5 + (1 ast sector number) blocks. This directory
keeps a record of the blocks that have been diagnosed as unusable.

Each entry in the bad block directory is 8 bytes long. The first entry shows that this is the
bad block directory. It contains the ASCII letters DEFECT (Ox444546454354) in the first 6
bytes followed by 2 bytes that identify the total number of bad block entries contained in
the bad block directory.

The remaining entries identify specific bad blocks. Each entry is structured as shown
below:

Bytes

o
Description

Reason the block was marked as unusable. This can be one of three values:

OxOO = The disk manufacturer found a defect.
OxAA = The surface verification diagnostic test found a defect.
OxBB = The system found a defect.
OxCC = The manufacturing test found a defect.

1-3 Logical sector number of the bad block. This is a 24-bit unsigned number.

4-7 Initialized to zero by the manufacturer, but subsequently filled in by the system
with the logical sector number to which the bad block is relocated. A 1 in the most
significant bit indicates that the data in the relocated block is invalid.

POST Control Block

One track is reserved for this section. The track contains a copy of the POST control
block that is created in memory by POSTs and LPOSTs during initialization. The last
LPOST is specifically designed to write the POST control block onto the third track of
cylinder o.

5-72 VRM Device Support

Graphics Asynchronous Device Driver

The graphics asynchronous device driver supports the IBM 5080 Peripheral Adapter.
Devices supported by this adapter include:

• IBM 5080 Dials Feature

• IBM 5080 Lighted Program Function Keyboard Feature

The IBM 5080 Peripheral Adapter card number must be set to 4. Interrupt level 11 is
recommended for use with this driver, but you can also use levels 9 and 10. The dials and
lighted PF keys can be used only on ports 1 and 2 of the adapter, and only 1 of each device
is allowed.

Define Device Header

Pertinent fields in the DDS header for the Graphics Asynchronous Device Driver include:

IOCN: Ox260

IODN: 0 Ox39 (Dials)

• Ox3A (Lighted PF keys)

Hardware Characteristics

Hardware characteristics for this adapter are defined as follows:

Length: OxOOOOOOOF

Internal Device Type:

• I/O bus device
• Switchable to coprocessor
• 8-bit device
• 2 interrupt level definitions
• Adapter type = Ox38

Base I/O port address:

• Primary port = Ox00004230
• Secondary port = Ox00004238

Number of I/O port addresses: 8

Bus memory start/end address: N/A

IBM Device Drivers 5-73

DMA type: Not supported

Interrupt definition:

• Interrupts enabled
• Interrupts shareable
• Interrupt levels: OxOB (recommended), but Ox09 and OxOA will work.

The interrupt level applies to all ports on the adapter card.
• Device class: 3

Device Characteristics

The graphics asynchronous device driver device characteristics fields are shown in
Figure 5-11.

N

4

8

12

18

20

24

28
o

Length (in words) of Device Characteristics = 7

MASK FOR NON-DEFAULTS C N P

alblcl* * *1 d J * *Ie
L (a) S(b) A (c) Device ID

* * * * * * N B R

Number of Device Elements Reserved for Device

Reserved for Device Reserved for Device

Receive Clock(d) Transmit Clock (e)

Frequency Input

~I *
8 16 24

* - Reserved (not used)

Figure 5-11. Graphics Asynchronous Device Characteristics

31

The parameters shown in the preceding figure apply to both the IBM 5080 Dials Feature
and the IBM 5080 Lighted Program Function Keyboard Feature. The device characteristics
fields are defined as follows:

• Length

The length of the device characteristics field for this driver is 7 words.

5-74 VRM Device Support

• Mask for non-defaults

These bits serve as flags for other device characteristics values you can specify. A 0 in
any of the fields a through e indicates that you want to use the default value for the
corresponding field. A 1 in any of these bits means that you will supply a valid value
for the corresponding field. For example, if you place a 1 in bit 0 ('a' in the preceding
figure) of the mask area, you must supply a value for the corresponding field. In this
case, the corresponding field is the character length field, bits 17-18 of the second word.

• CLN (character length)

This 2-bit field indicates character length. Possible values are:

00 = 5 bits per character

01 = 6 bits per character

10 = 7 bits per character (default)

11 = 8 bits per character

In the preceding figure, 'a' is the mask bit for this field. If 'a' is 0, the 7
bits-per-character default is used. If a is 1, select from the values defined above for this
field.

The device driver expects to receive transmitted data right-justified in the byte with
non-significant, high-order bits set equal to zero. Received data characters are also
right-justified with non-significant high-order bits set equal to zero by the device
driver. All data is sent or received with the least-significant bits first.

• NSB (number of stop bits)

This 2-bit field defines the number of stop bits. Possible values are:

00 = Reserved

01 = 1 stop bit (default)

10 = 1.5 stop bits

11 = 2 stop bits

'b' represents this field's mask bit in the preceding figure.

• PAR (parity checking and generation)

This 3-bit field defines the parity checking (Rx) and generation (Tx) capabilities of this
driver. Possible values are:

000 = No parity

001 = Odd parity

010 = Mark parity

IBM Device Drivers 5-75

011 = Even parity (default)

100 = Space parity

101 = Reserved

110 = Reserved

111 = Reserved.

'c' represents the bit mask for parity checking in the preceding figure.

• Device ID

This field indicates the device type attached to the adapter. Possible ID values are:

OxOO = Device bad or not present

Ox63 = IBM 5080 Lighted Program Function Keyboard Feature

Ox64 = IBM 5080 Dials Feature

• Number of Device Elements

This field defines the number of input device elements. For the IBM 5080 Lighted
Program Function Keyboard Feature, this field indicates the number of keys on the
keyboard. For the IBM 5080 Dials Feature, this field indicates the number of dials.

• Reserved for Device

These three halfwords are reserved for graphics data provided by the device.

• Receive clock

This halfword contains the receive data baud rate for the adapter. Because the receive
and transmit rates for supported adapters must be the same, this value must be set
equal to the value of the transmit clock.

The default value for this field is 9600 bits per second (bps), and 'd' represents the
default bit' mask in the preceding figure. See Figure 5-12 on page 5-77 for valid data
rates.

• Transmit clock

This halfword contains the transmit data baud rate for the adapter. The value in this
field must match the value set for the receive clock.

The default value for this field is 9600 bps, and the default bit mask is represented by
'e' in Figure 5-11 on page 5-74. See Figure 5-2 for valid data rates.

• Frequency input

This field contains timer input to the adapter interface. For the IBM 5080 Peripheral
Adapter, the value is 1.8432 megahertz (Mhz). The hexadecimal value for this field is
OxOOl C2000.

5-76 VRM Device Support

• LE (LPOST error)

When this bit is set, the LPOST for the IBM 5080 Peripheral Adapter detected an error
at IPL time. .

Valid Clock Values Data Rates

OxOOOO 50

OxOO01 75

OxOO02 110

OxOO03 134.5

OxOO04 150

OxOO05 300

OxOO06 600

OxOO07 1200

OxOOOS lS00

OxOO09 2000

OxOOOA 2400

OxOOOB 3600

OxOOOC 4S00

OxOOOD 7200

OxOOOE 9600

OxOOOF 19200

Figure 5-12. Graphics Asynchronous Data Rates

Error Log

The graphics asynchronous device driver logs only temporary errors. The format of the
error log for this device driver is similar to the log shown in Figure 5-21 on page 5-11S.
The fields defined for the graphics asynchronous error log include:

Length:

Class:

6 words

Both hardware (Ox01) and software (Ox02) errors are logged.

For hardware errors (Ox01), the following values apply:

Subclass: Ox05 (display station)

IBM Device Drivers 5-77

Mask: Ox03 (5080 Peripheral Adapter)

Error Data Length: 4 words

For software errors (Ox02), the following values apply:

Subclass: Ox07 (VRM component)

Mask: Ox05 (5080 Peripheral Adapter software)

Error Data Length: 4 words

Error Data for the graphics asynchronous error log consists of three
additional words of data. These words are defined as follows:

Graphic Device ID:
This field indicates the device for which the error is logged.
Possible values include:

• Ox63 for the Lighted Program Function Keyboard
Feature

• Ox64 for the IBM 5080 Dials Feature.

Current Command:
The next word indicates the command that was being
processed at the time of the error. Possible values include:

• OxOO = no command active
• Ox64 = output data command active
• Ox65 = current virtual terminal command active.

Error Value: This word provides more detail on the specific error logged.

5-78 VRM Device Support

Possible values include:

• OxOl = software buffer overflow (for class Ox02 software
errors only)

• Ox02 = hardware receiver overrun
• Ox04 = received parity error
• Ox08 = received framing error
• OxlO = received break signal detected
• OxlOO = bad acknowledgment from IBM 5080 Dials

Feature
• Ox200 = received data sequence error from Lighted

Program Function Keyboard Feature
• Ox400 = transmission timeout failure.

Input Values

The graphics asynchronous device driver receives Send Command SVC instructions from
a virtual machine. The device options field of the operation options halfword in the Send
Command queue element indicates the requested function. Two functions are supported.
They are:

• Output data (device option Ox64)

This device option directs the device driver to output data in the command extension.
If the 'number of bytes to send' field is set to zero, the data in the command extension
is neither validated nor sent to the device.

• Current virtual terminal (device option Ox65)

This device option informs the device of the current virtual terminal and provides the
ID of the device-to-current virtual terminal path.

This command also directs the device driver to output the data in the command
extension. This is useful for setting new device characteristics at the same time that
the path to the new virtual terminal is established. If the 'number of bytes to send' field
is zero or if the current virtual terminal path ID is zero, the data in the command
extension is neither validated nor sent to the device.

Required queue element fields for the valid device options are defined as follows:

• Synchronous - the command must be enqueued to the device driver as a synchronous
request.

• Command extension fields

Both device options require command extension buffers. Therefore, both requests must
fill in the command extension segment ID field of the Send command queue element
(byte offset 14). Also required are the command extension address (byte offset 24) and
command extension length (byte offset 28).

• Number of bytes to send

Both the output data and current virtual terminal requests must indicate the number
of bytes to send with the request. This value is contained in byte offset 16 of the Send
Command queue element. If this value is zero, the data is neither validated nor sent to
the device.

• Path ID

For the current virtual terminal request, byte offset 20 contains the ID of the device
driver-to-virtual terminal path. For the current virtual terminal command, a zero in
this field causes the data to be neither validated nor sent to the device. For the output
data command, this field is not used.

The Send Command queue element is shown in VRM Programming Reference.

IBM Device Drivers 5-79

Output Values

The check parameters routine of the graphics asynchronous device driver can generate the
following return codes:

• 0 = successful
• -2 = transmission failed - timeout (returned from I/O initiation)
• 256 = invalid device option (any option other than Ox64 or Ox65)
• 257 = invalid device data

Valid data for the LPF keys consists of a single Set Indicator command. For the dials,
valid data consists of a single Read Dials command, or up to 16 Set Granularity
commands.

• 261 = no command extension

When the device driver is successfully attached and a valid current virtual terminal
command (with a non-zero path ID specified in byte offset 20) is received, the driver is able
to send received data from attached devices to the current virtual terminal. When the
driver receives valid input data from a device, a time stamp is appended to the data. The
first three bytes of the time stamp contain the time in seconds since IPL of the machine.
The last byte contains the current count of the VRM 60 Hz counter. The data to be
returned (including the time stamp) is placed in a general purpose queue element and
enqueued to the current virtual terminal using the path ID supplied in the last current
virtual terminal command. VRM Programming Reference shows the format of a general
purpose queue element. Data specific to this driver includes:

• Path ID - from the last current virtual terminal command
• Options - the first byte of the Options field indicates the interrupt options. The second

byte indicates the device type.
Ox63 = LPF keys
Ox64 = Dials

• Offset 14 - this halfword contains the dials delta (for dials) or 0 (for LPF keys)
• Offset 16 - this halfword contains the LPF key number or dial number. Note that the

first key or dial is number zero, the second is number one, and so on.
• Offset 20 - this fullword contains the time stamp.

The bytes at offsets 9, 12, 13, 18, 19, and 24 through 31 are reserved (set equal to zero).

5-80 VRM Device Support

Parallel Device Driver

This device driver supports a parallel communication port. In this system, the parallel port
sends data to a printer. This device driver supports the following adapter cards:

• The parallel port of the IBM Monochrome Display and Printer Adapter

• The parallel port of the IBM Personal Computer AT® Serial/Parallel Adapter.

You can install tw.o Personal Computer AT Serial/Parallel Adapter 'cards or one Personal
Computer AT Serial/Parallel Adapter and one IBM Monochrome Display and Printer
Adapter. You cannot install two IBM Monochrome Display and Printer Adapters because
they would both have the same base I/O port address and interrupt type.

The Personal Computer AT Serial/Parallel Adapter uses a jumper that allows each parallel
port on the adapter to have a unique base I/O port address and interrupt type. This is
explained in greater detail in "Hardware Characteristics" on page 5-83 and in the
documentation provided with the adapter cards.

The main point to remember is that the base I/O port address and interrupt type field
values can vary on Personal Computer AT Serial/Parallel Adapters. An IBM Monochrome
Display and Printer Adapter does not use a jumper; its base I/O port address and interrupt
type field values are always the same.

When you have, two parallel ports installed in the system, each parallel port has its own
copy of the parallel device driver and its own DDS. This is a non-shared device driver.
Therefore, only one virtual machine can be attached to this device driver at a time.
However, if you have two parallel ports, you can attach a separate virtual machine to each
port.

The parallel ports are not preconfigured devices like the diskette, display, and keyboard.
Therefore, their DDSs must be created by the operating system. This is handled by the
configuration routines. The parallel device driver is defined on the following pages.

IBM Device Drivers 5-81

Define Device Header

This section of the DDS is common to all device drivers. The information is defined as
follows:

IODN:

IOCN:

Set by the virtual machine at initialization time.

Set by the virtual machine at initialization time.

Define option: OxOOOl

Device type: OxOOOl

Device name: This field is ignored by the VRM. It can be used to store a name for the
device that uses this device driver.

Offset to hardware characteristics:
28

Offset to device characteristics:
72

Offset to error log:
80

5-82 VRM Device Support

Hardware Characteristics

The values for the fields in this section are predefined for the IBM Monochrome Display
and Printer Adapter. For the Personal Computer AT Serial/Parallel Adapter, the base I/O
port address and interrupt type fields can be one of two values.

The position of a jumper on the Personal Computer AT Serial/Parallel Adapter determines
which values apply to the parallel port on the Personal Computer AT Serial/Parallel
Adapter. When you have two parallel ports installed in the system, this jumper must be
set correctly to prevent both ports from having the same base I/O port address and
interrupt type.

The various combinations are defined in the field descriptions below:

Length: 11 words

Internal device type:

• Ox91002300 for an Personal Computer AT Serial/Parallel Adapter

o Ox91004900 for an IBM Monochrome Display and Printer Adapter.

Base I/O port address:

• Ox000003BC for the IBM Monochrome Display and Printer Adapter.

• Ox00000278 for the Personal Computer AT Serial/Parallel Adapter when
used in conjunction with an IBM Monochrome Display and Printer
Adapter.

If you have a second Personal Computer AT Serial/Parallel Adapter
installed, the first one is Ox00000278 and the second one is Ox00000378.

If a single Personal Computer AT Serial/Parallel Adapter is installed,
and no IBM Monochrome Display and Printer Adapter is installed, it
can use either of the two addresses for that adapter.

Number of I/O port addresses:
3

Bus memory start address:
Not used by this device driver.

Bus memory end address:
Not used by this device driver.

DMA type: Not used by this device driver.

IBM Device Drivers 5-83

Interrupt type:

• Ox80000305 if the Base I/O Port Address is Ox00000278

• Ox80000307 if the Base I/O Port Address is Ox000003BC or Ox00000378.

This means that:

• Interrupts are enabled.
• Interrupts are not shareable.
• This device does not overrun.
• Interrupt level = 5 or 7, depending on the base I/O port address.

Device Characteristics

The device characteristics section is two words long. The fields are defined as follows:

Length: This field is one word long and is set to 2.

Characteristics:
This field is one word long and uses bits 3 through 7 of the fourth byte to
define the device characteristics. Each bit represents a specific device
characteristic. If a bit is set to one, the corresponding device characteristic
is activated. The bits are defined below:

• Bit 0 - Not used
• Bit 1 - Not used
• Bit 2 - Not used
• Bit 3 - (IE) Enable acknowledge interrupts
• Bit 4 .:.- (SL) Select printer
• Bit 5 - (IT) Set initialization line inactive
• Bit 6 - (AF) Set auto line feed on
• Bit 7 - (ST) Set strobe active.

For printing, the bits are set to 00011100. For initialization, the bits are set
to 00001000.

5~84 VRM Device Support

Error Log

The Error Log section for this device driver is str\lctured as shown in the following figure.

Length o
4

8
Class I Subclass I Mask I Type

12

16

Error Data Length

Error Data

Figure 5-13. Error Log Structure

The fields specific to this device driver are defined as follows:

Length: 4

Class: OxOl

Subclass: Ox09

Mask:

Type:

• OxOl if the parallel port is on a Personal Computer AT Serial/Parallel
Adapter.

• Ox02 if the parallel port is on an IBM Monochrome Display and Printer
Adapter.

Ox80

Error Data Length: 2

Error Data: This field uses the third and fourth byte of the error data word. The third
byte indicates the general type of error. It can be one of three values:

• OxOl - Printer timeout
• Ox02 - Printer error
• Ox03 - Adapter initialization error.

The fourth byte defines the specific error by setting a bit:

• Bit 0 - Printer busy line is active
• Bit 1 - Acknowledge line is active
• Bit 2 - Paper end line is active
• Bit 3 - Printer is not selected
• Bit 4 - Printer error line is active
• Bit 5 - Invalid CCB
• Bit 6 - Initialization failed
• Bit 7 - Timeout occurred.

IBM Device Drivers 5-85

CCB Input Values

This device driver accepts CCBs as shown in Figure 2-5 on page 2-12. The CCB consists of
the command header and zero or more command elements, depending on the device option
used.

This device driver uses the following definitions for the bits in the options field of the
CCB. Note that this device driver uses eleven bits for device options whereas other device
drivers use only five bits for device options.

• Bit 0 through 4 - Operation option
• Bit 5 through 15 - Device option.

There is one additional field in a parallel device driver CCB called the characteristics field.
It is located at byte offset 11 from the beginning of the CCB header and is one byte long.
The characteristics field uses bits 3 through 7 of the field to define the device
characteristics. Each bit represents a specific device characteristic. If a bit is set to one,
the corresponding device characteristic is activated. The bits are defined below:

• Bit 0 - Not used
• Bit 1- Not used
• Bit 2 - Not used
• Bit 3 - (IE) Enable acknowledge interrupts
• Bit 4 - (SL) Select printer
• Bit 5 - (IT) Set initialization line inactive
• Bit 6 - (AF) Set auto line feed on
• Bit 7 - (ST) Set strobe active.

The device options are defined below. Device options that require a command element
contain information about the command element in the definition. If there is no
information about a command element, you can assume that the device option does not use
a command element.

o = Not used by this device driver

1 = Write

This device option writes data to the printer. There must be at least one command
element with each write device option. The command elements define the system data
buffers that contain the data to be sent to the printer. The characteristics field must
also be set to 00011100.

2 = Initialize

This option initializes the printer. The characteristics field must also be set to
00010000.

3 = Not used by this device driver.

5-86 VRM Device Support

4 = Change characteristics

This device option changes the characteristics of the printer. This device option
requires the characteristics field to be set to the proper values. If a bit is set to one,
the corresponding device characteristic is activated. The bit definitions are shown
below:

• Bit 0 - Not used
• Bit 1 - Not used
• Bit 2 - Not used
• Bit 3 - (IE) Enable acknowledge interrupts
• Bit 4 - (SL) Select printer
• Bit 5 - (IT) Set init line inactive
• Bit 6 - (AF) Set auto line feed on
• Bit 7 - (ST) Set strobe active.

5 through 7 = Not used by this device driver

8 = Discard current queue element

This is another device option used with the check parameters routine. The virtual
machine sends this device option to the device driver if it is unable to clear the
condition that caused the error. This device option instructs the device driver to have
the queue manager discard the current queue "element from the queue. One of the
following return codes will be synchronously sent back to the virtual machine:

311 - No current queue element.

312 - Current queue element discarded.

9 = Not used by this device driver.

10 = Resume print operation

This device option is used when an error of some sort has occurred and the device
driver has sent an enqueue function call to generate an interrupt. After receiving the
interrupt, the virtual machine examines the PSB and decides how to handle the
interrupt. The virtual machine then issues a check parameters call to the device
driver.

The check parameters call uses a new CCB to carry a command from the virtual
machine to the device driver. This command is stored in the device option portion of
the Options field of the CCB. The device driver reads the CCB and attempts to
perform the command indicated.

In this case, the device option is 8, which means to resume the print operation, if
possible. The device driver attempts to perform the device option and sends back one
of the following return codes:

330 - Successfully resumed printing operation.

331 - Unable to resume print operation.

IBM Device Drivers 5-87

When the virtual machine gets this return code, it may either try another resume
print operation device option or it can try to dequeue the current queue element.
This is explained in the definition of device option 8.

I1through 31 = Not used by this device driver.

After successfully completing any of these device options, the device driver issues a
dequeue function call and waits for the next device option. The dequeue function call tells
the queue manager that it can release the current queue element and also generates an
interrupt to the virtual machine.

If the device driver cannot successfully complete a device option, the device driver issues
an enqueue function call, which generates an interrupt request to the virtual machine.
The current queue element is retained for further processing.

Output Values

This section defines the output values that may appear in GPR2 or in a PSB. The PSB
fields that contain I/O information or detected error information are the status flags field
and the operation results field. Figure 2-6 on page 2-12 shows the location of these fields
in the PSB.

The -status flags field is a si~gle byte and is defined as follows:

• Bits 0 through 4 are always set to 00100. This indicates an I/O interrupt.

• Bit 5 is the only variable bit. If Bit 5 is set to one, the interrupt was solicited. This
means that the virtual machine was expecting this interrupt and that the I/O operation
was successfully completed.

If Bit 5 is set to 0, the interrupt was unsolicited. The virtual machine must then look
at the operation results field to try to find out why the interrupt occurred.

• Bits 6 and 7 are always set to O.

The 16-bit operation results field returns a value indicating the completion status of the
operation. If Bit 0 of the first byte is set to 0, the operation was successful. If it is set to 1,
an error of some sort occurred.

5-88 VRM Device Support

The second byte indicates the specific type of error that occurred. This is shown by setting
one of the bits. Each bit corresponds to a different type of error. They are defined as
follows:

• Bit 0 - Printer busy line is active
• Bit 1 - Acknowledge line is active
• Bit 2 - Paper end line is active
• Bit 3 - Printer is not selected
• Bit 4 - Printer error line is active
• Bit 5 - Invalid CCB
• Bit 6 - Initialization failed
• Bit 7 - Timeout occurred.

IBM Device Drivers 5-89

Small Computer Systems Interface Device Driver

This device driver supports the RT PC Small Computer Systems Interface Adapter for IBM
9332 DASD Attachment. The Small Computer Systems Interface (SCSI) device driver can
run as many as seven 9332 DASD Attachments (at a maximum of 400M bytes per
attachment), providing up to 2800M bytes of additional disk file space.

The SCSI device driver supports up to 28 9332 DASD attachments (2 SCSI adapters at 14
possible attachments per adapter). The 9332 DASD Attachments are considered external
disks, which means that no IPLable minidisks can be placed on them. The disk space
provided by the 9332 DASDs is intended for application programs and user space.

Figure 5-14 shows some 9332 DASD Attachments connected to a SCSI adapter and
introduces several points about how these devices function in the RT PC environment.

5-90 VRM Device Support

RT PC

SCSI Adapter

IBM 9332 DASD

200M byte
LUN 0

200M byte
LUN 1

IBM 9332 DASD

200M byte
LUN 0

200M byte
LUN 1

IBM 9332 DASD

200M byte
LUN 0

200M byte
LUN 1

Initiator

Target

Target

Target

Figure 5-14. SCSI Adapter Supporting 9332 DASD Attachments. As many as seven 9332
DASD Attachments can be supported by a single SCSI adapter.

The SCSI adapter serves as an initiator of operations to the target devices attached to it.
Although each 9332 DASD Attachment has its own controller, these devices merely
respond to the commands of the initiator (in this case, the SCSI adapter). Because each
SCSI adapter is by default an initiator, SCSI adapters cannot be used for communication
between two or more RT PCs.

Each SCSI component is identified by a SCSI ID and a logical unit number (LUN). Each
SCSI adapter supports eight SCSI IDs, including the ID of the adapter itself, which is
always ID 7. SCSI devices, such as 9332 DASD Attachments, are assigned IDs in the range
zero through six.

IBM Device Drivers 5-91

Figure 5-14 shows how LUNs are used to identify the disk units of the 9332 DASD
Attachments. The 9332 DASD Attachment is a single device that provides either 200M
bytes or 400M bytes of disk file space, depending on whether one or two 200M byte units
are installed in it. The SCSI ID of the 9332 DASD and the LUN of the disk unit make up
the device's IODN. If two disk units are installed in a 9332 DASD, that 9332 DASD would
have two IODNs associated with it.

Any valid IODN can be selected by the system, but the port number as found in byte 4 of
the internal device field of the DDS hardware characteristics section indicates the SCSI ID
and LUN.

Microcode on the SCSI adapter takes the commands from the device driver and routes
them to the appropriate device attached to the adapter. Each SCSI adapter has 64K bytes
of memory used for system DMA read and write operations. This 64K-byte area is divided
into 128 (0-127) buffers of 512 bytes each.

When using two SCSI adapters on the same machine, each adapter must use a different
DMA channel.

5-92 VRM Device Support

Define Device Header

This section of the DDS is common to all device drivers. The information is defined as
follows:

IODN: This field contains a value used by the input/output subsystem to reference
the device for I/O activity. For the primary adapter, this value is assigned
by the operating system. For a secondary SCSI adapter, the value is
assigned by the operating system or by the caller.

IOCN: This field contains a value that associates the DDS with the appropriate
device driver.

Define Option:
Ox0001

Device Type: Ox0003

Device Name: This field is ignored by the VRM. It can be used to store a name for the
device that uses this device driver.

Offset to Hardware Characteristics:
28 bytes

Offset to Device Characteristics:
72 bytes

Offset to Error Log:
132 bytes.

IBM Device Drivers 5-93

TNL SN20-9859 (26 June 1987) to SC23-0817

Hardware Characteristics

This section of the DDS is common to all device drivers. The information is,defined as
follows:

Length: 11 words.

Internal device type:
OxAlxx5Byz

(where xx indicates the slot occupied by the adapter, y indicates the SCSI
ID, and z indicates the LUN).

Base I/O port address:
OxOOOOOD50 for the primary adapter

Ox00000950 for the secondary adapter.

Number of I/O port addresses:
16.

Bus memory start address: .
Not used by this device driver.

Bus memory end address:

DMA type:

Interrupt type:

Not used by this device driver.

OxEC0004xx

(where 'xx' is the DMA channel).

Channels 0, 1, 3, 5, 6, and 7 are supported. For systems with multiple SCSI
adapters, note that each SCSI adapter must have a separate DMA channel
assignment.

• Device supports system DMA
• Uses IOCC buffering
• Nonshared channel, only use DMA
• Channel enabled, scatter/gather not supported.

Ox4000020C

• Interrupts not enabled
• Interrupts shareable
G Class = 1
• Interrupt level = OxOC.

5-94 VRM Device Support

TNL SN20-9883 (25 September 1987) to SC23-0817

Device Characteristics

The device characteristics section of the DDS contains device driver parameters that
indicate how the device is controlled. This section is defined as follows for the SCSI device
driver:

o
4

8

12

16

20

24

Length

Formatted Block Capacity

Descriptor Block I Reserved

Reserved

Reserved

End of Life I
Reserved

•
•
•

Sector Size

Last Sector

Reserved

561 Reserved

Figure 5-15. SCSI Device Characteristics

The fields in the preceding figure are defined as follows:

Length: 15 words

Formatted Block Capacity:
Ox0005F80E for 9332 DASD Attachments

Descriptor Block:
This block describes the generic device type as defined by the ANSI
standard for SCSI devices. The bits in this byte have the following
meanings:

Bit 0:
Bit 1:

Bit 2:
Bit 3:
Bits 4-5:
Bit 6:

Set to one for adapters, set to zero for devices
Set to one for direct access storage devices (such as 9332 DASD
Attachment)
Reserved
Set to one if the device is a tape drive
Reserved
Device stops on error (set for 9332 DASD). If an error is
detected, the SCSI device terminates the operation without
transferring additional data beyond the error.

IBM Device Drivers 5-95

TNL SN20-9883 (25 September 1987) to SC23-0817

Sector Size:

Last Sector:

End of Life:

Bit 7: Set to one if the device type is other than those described in
bits 1-5.

Bit 8: Reserved
Bit 9: Non-negotiate bit. This bit controls whether adapter-to-device

data transfer is synchronous (bit set to 0) or asynchronous (bit
set to 1).

Bits 10-15: Reserved.

Set to two for 9332 DASD Attachments (for 512-byte blocks), or to some
multiple of 512.

The operating system sets this field to indicate the last sector on the
track for disk or direct-access devices. The default value is 17.

The operating system sets this field to indicate the number of bad block
errors that will be corrected by the system before the disk will be
considered unusable. The default value is 600.

5-96 VRM Device Support

Error Log

The error log section for this device driver is structured as shown in the following figure.

o
4

8

Class I
Length

Subclass I
Error Length

Mask I Type

12

16

20

24

28

32

36

40

44

48

52

56

Error Indicotion I Operation Options

Status Reg. I Error Reg. I Memory Segment ID

Device Type I Reserved

Current Logical Address

SCSI 10 I LUN I Reserved

Memory Address

Data Length

Device Error Log Length

Error Log

Error Log

Error Log

Reserved

Figure 5-16. SCSI Error Log Structure

The fields in the preceding figure are defined as follows:

Length: 15 words

Class:

Subclass:

Mask:

Type:

Error Length:

Ox01 to indicate hardware error.

OxOE

Ox01

Can be one of the following values:

• Ox08 is an error with the processor on the 9332 DASD Attachment.
• Ox10 or Oxll is an error with the file processor.
• ' Ox20 or Ox40 is an error with the servo processor.
• Ox80 is an error from the adapter.
• OxCO is an error from another SCSI device.

Indicates the length of the header information. For this device, set to
eight words.

IBM Device Drivers 5-97

Error Indication: The first byte of this halfword is a copy of the Type field in byte offset
7. The second byte is zero for Ox80 and Ox CO errors. For all other error
types (OxlO, Oxll, Ox20, Ox40), the second byte contains an error value
from the 9332 DASD Attachment.

Operation Options:

Status Reg.:

This halfword is a copy of the Operation Options field of the request
that caused the error.

This byte contains the contents of the adapter's status register.

Error Reg.: This byte contains the contents of the adapter's error register.

Memory Segment ID:

Device Type:

This field indicates the segment ID of the data buffer from the request
that caused the error.

This byte is a copy of the Descriptor Byte field of the device
characteristics section.

Current Logical Address:

SCSI ID:

LUN:

This field indicates the logical address for the failing read or write
request.

Indicates the port address for the device that failed on this command.
For the SCSI adapter, this value is always seven. Possible values for
other SCSI devices are zero through six.

This field indicates the logical unit number associated with the SCSI ID
where the error occurred. For example, a 9332 DASD Attachment with
two 200M byte disk units would have two LUNs associated with its
SCSI ID, zero and one. Possible values are zero through eight.

Memory Address: This field indicates the location of the memory buffer.

Data Length: This field indicates the length of the failing command.

Device Error Log Length:
This field indicates the length of the error log for the device. For the
9332 DASD, the value is five (one word for length, three words of error
log data, and one reserved word).

5-98 VRM Device Support

Input Values

The SCSI device driver accepts requests both from virtual machines (by way of Start I/O
SVCs) and from such VRM components as the minidisk manager, coprocessor, and virtual
memory manager (by way of general purpose queue elements).

Requests can be divided into two general groups, input/output requests and
status/maintenance requests. Certain commands cannot be issued by VRM components,
and the queue elements and CCBs are slightly different depending on the request from the
virtual machine. The input requests for VRM components and virtual machines are all
described in the following sections.

VRM Component Requests
From within the VRM, only I/O requests can be made to the SCSI device driver. The
minidisk manager, coprocessor, and virtual memory manager use the following general
purpose queue element to request the read, write, and position disk commands:

o
4

8

12

16

20

24

28

Type = 3 I
Minidisk lOON

Reserved

Reserved for system use

Path 10

Priority I Options

I Memory Segment 10

Memory Address

Data Transfer Length

Logical Block Address

I Real lOON

Figure 5-17. SCSI General Purpose Queue Element

The fields in the preceding figure are defined as follows:

Path ID:

Type:

Priority:

Options:

ID of the requesting component-to-SCSI device driver path

3 for general-purpose queue element

Not used

Bits 16-26 of this field contain flags used to control the operation. Bits 27-31
contain the op code of the requested operation. Possible values for these fields
include:

Bit 16 - set to one for interrupt on completion
Bit 17 - set to one for interrupt on error
Bit 18 - set to one if this is a synchronous operation
Bit 19 - always set to zero (no command extension)

IBM Device Drivers 5-99

Bit 20 - reserved
Bit 21 - set to one by --1lldmchk if bad blocks are present
Bit 22 - set to one by --1lldmchk for write verify
Bits 23-25 - reserved
Bi t 26 - set to zero for a virtual address, one for a real address.

Bits 27-31 contain the op code for the request. Possible values include:

o = Read

1 = Write

2 = Position

All other op codes are invalid for use with a general-purpose queue element.

Minidisk IODN:
IODN of the minidisk on which the operation is to be performed

Memory Segment ID:
ID of the segment that contains the data buffer

Memory Address:
Address of the buffer in the segment

Data Transfer Length:
Length of bytes of the data transfer

Logical Block Address:
Location on the minidisk where the operation is to be performed.

This is a value from zero to n, where zero is the first sector on cylinder 0 of
the disk and n is the last sector on the last data cylinder: This value comes
from the virtual machine as a logical block number on a minidisk. The
minidisk manager converts this value into an offset from the start of the real
disk. The SCSI device driver converts this to the corresponding cylinder,
head, and sector values to access the data on the disk.

Real IODN: Indicates the IODN of the disk unit that contains the minidisk.

Virtual Machine Requests
Virtual machine requests to the SCSI device driver are initiated by Start I/O SVCs. One
of the parameters to the Start I/O SVC is the address of a CCB. From the data contained
in a CCB, the VRM builds a Start I/O queue element and sends it to the device driver. The
CCB received from the virtual machine will have different fields depending on the
requested operation. All the possible GCB fields for SCSI requests are shown in the
following figure. .

5-100 VRM Devi~e Support

o
4

8

8

8

12-19

20-23

24

28

32

36

TNL SN20-9883 (25 September 1987) to SC23-0817

Option Result Options

Reserved lOON

Logical Block Address

-or-

SCSI IO LUN Reserved

-or-

Reserved Time Out Value

Reserved

Parameters Mask Reserved

Reserved k Reserved

Data Transfer Length

Memory Address

Reserved

Figure 5-18. SCSI Command Control Block

The fields in the preceding figure are defined as follows:

Operation Result:

Options:

Copy of the PSB operation results field if synchronous operation is
specified.

Bits 16-26 of this field contain flags used to control the operation. These
bits are defined with each operation. Bits 27-31 contain the op code of the
requested operation. Possible values for these fields include:

o = Read

1 = Write

2 = Position

6 = Read status

11 = Basic assurance test

14' = Change parameters

16 = Diagnostic ID information

IBM Device Drivers 5-101

TNL SN20-9883 (25 September 1987) to SC23-0817

IODN:

17 = Format

18 = Device ID information

19 = Read capacity

20 = Reassign block

21 = Request sense

22 = Read server area

23 = Write server area

24 = Inquiry

25 = Reserved

26 = Wrap test

27 = Pass through

28 = Mode sense

29 = Rewind

30 = Write file marks.

Each option is described in more detail in "Virtual Machine Command
Description" on page 5-104.

Of the disk (or other SCSI device)

Bytes 8-11 can vary depending on the request. This word will have one of the following
definitions:

Logical Block Address:

SCSI ID, LUN:

Indicates the location where the operation is to be performed.

This is a value from zero to n, where zero is the first sector on cylinder 0 of
the disk and n is the last sector on the last data cylinder.

Some requests specify the SCSI ID and LUN of the disk from which
information is required.

Time Out Value:
The Time Out Value indicates the number of 6-second timer ticks to allow
before the device driver times out for the device with the specified IODN.
This field is valid only for Change Parameters operations and only if bit 0
of the Parameters Mask (byte offset 20) is set to 1. If bit 0 of the Parameters
Mask is set to 1 and the Time Out Value field contains 10, the device driver
will time out after 60 (10 times 6 seconds per tick) seconds. This value
remains in effect until the user sets a new value or the system is re-IPLed.

5-102 VRM Device Support

TNL SN20-9883 (25 September 1987) to SC23-0817

Parameters Mask:

L:

This halfword indicates whether the Time Out Value is valid and specifies
the data transfer type. When bit 0 is set to 1, the Time Out Value (byte
offset 10-11) field is valid; when bit 0 is set to 0, the Time Out Value is
ignored. Bits 2 and 3 together determine the transfer type in effect. These
bits are defined as follows (in binary):

00 Continue running at current setting.

01 Transfer data in variable lengths.

10 Transfer data in block length.

11 Invalid (do not use).

If you are transferring variable lengths, your application must start and
stop transfers on even-numbered addresses, and only multiples of four bytes
can be transferred because the adapter has a 16-bit interface.

The link bit is not used with SCSI requests because chained command
elements are not needed.

Data Transfer Length:
Length in bytes of the data buffer.

Memory Address:
Location of the data buffer.

The Start I/O queue element that is built from the data contained in the CCB is shown in
Figure 5-19 on page 5-103.

IBM Device Drivers 5-102.1

5-102.2 VRM Device Support

Reserved for system use

Path ID

o
4

8
Type - 2 I Priority Options

12

16

20

24

28

32

Minidisk IODN

Reserved

CCB segment ID

CCB address

CCB length

Logical Block Address

ReallODN

Figure 5-19. SCSI Start I/O Queue Element

The fields in the preceding figure are defined as follows:

Path ID:

Type:

Priority:

ID of the requesting component-to-SCSI device driver path

2 for Start I/O queue element.

Not used.

Options: This field is copied from the CCB.

Minidisk IODN:
IODN of the minidisk on which the operation is to be performed.

CCB Segment ID:
ID of the segment that contains the CCB.

CCB Address:
Address in the segment of the CCB.

CCB Length:
Length of bytes of the CCB.

Logical Block Address:
Location on the minidisk where the operation is to be performed.

This is a value from zero to n, where zero is the first sector on cylinder 0 of
the disk arid n is the last sector on the last data cylinder. This value comes
from the virtual machine as a logical block number on a minidisk. The
minidisk manager converts this value into an offset from the start of the real
disk. The SCSI device driver converts this to the corresponding cylinder,
head, and sector values to access the data on the disk.

Real IODN: Indicates the IODN (SCSI ID plus LUN) of the disk unit that contains the
minidisk.

IBM Device Drivers 5-103

Virtual Machine Command Description
The following operation options to the SCSI device driver can be requested by a virtual
machine. Each option is described with the CCB type (value of CCB bytes 8-11) and
operation options flags defined. The virtual machine-to-SCSI device driver commands
include:

• Read (opcode 0)

This command is the standard disk read. Bytes 8-11 of the CCB contain a logical block
address.

The operation options flags (bits 16-26) for this request are defined as follows:

Bit 16 = interrupt on completion

Bit 17 = interrupt on error

Bit 18 = synchronous operation

Bit 19 = command extension

Bit 20 = reserved for VRM

Bit 21 = bad blocks present

Bit 22 = reserved (must be 0)

Bit 23 = reserved (must be 0)

Bits 24-25 = ignored

Bit 26 = reserved (must be 0).

• Write (opcode 1)

This command is the standard disk write. Bytes 8-11 of the CCB contain a logical block
address. Bits 16-26 of the operation options field are the same as for the read command
described above, except that bit 22 is defined as write verify enabled. Write verify is
supported only for 9332 DASD attachments.

• Position (opcode 2)

. This command is the standard disk position. Bytes 8-11 of the CCB contain a logical
block address. Bits 16-26 of the operation options field are the same as for the read
command described above.

• Read status (opcode 6)

This command allows you to see the last command issued to the device and the return
status from the device and adapter. It performs no operation on the SCSI bus, but
merely copies data (16 bytes of command storage and 4 bytes of result storage) from the
device driver's storage to the user's buffer. Bytes 8-11 of the CCB are reserved.

5-104 VRM Device Support

•

TNL SN20-9883 (25 September 1987) to SC23-0817

The operation options flags (bits 16-26) for this request are defined as follows:

Bit 16 interrupt on completion

Bit 17 interrupt on error

Bit 18 synchronous operation

Bit 19 command extension

Bit 20 reserved for VRM

Bits 21-25 ignored

Bit 26 = reserved (must be 0).

Basic assurance test (opcode 11)

This command tests the adapter's registers, hardware,and memory for proper function.
This command stops any activity being done by the adapter, so this command should be
issued only when the adapter is inactive. Bytes 8-11 of the CCB are reserved for this
command.

The operation options flags (bits 16-26) for this request are defined as follows:

Bit 16 interrupt on completion

Bit 17

Bit 18

Bit 19 =

Bit 20 =

Bits 21-25

Bit 26 =

interrupt on error

synchronous operation

command extension

reserved for VRM

ignored

reserved (must be 0).

• Change parameters (opcode 14)

This command allows you to change certain selected parameters for SCSI devices.
These parameters include the number of 6-second timer ticks allowed before the device
driver times out, and the type of data transfer from the adapter to the device. This
command uses the Time Out Value and Parameters Mask fields shown in Figure 5-18
on page 5-10l.

• Diagnostic ID information (opcode 16)

This command allows you to query information about a device without being attached
to the device. Bytes 8 and 9 of the CCB contain the SCSI ID and the LUN, respectively,
of the device being queried. The device driver first does an inquiry command to the
specified device and places the first 36 bytes of the result of the inquiry into the
caller's buffer. Next, the driver does a request sense command and also places the

IBM Device Drivers 5-105

results of that request at byte offset 36 of the caller's buffer. The data length field of
the CCB should be set to 512.

The operation options flags (bits 16-26) for this request are defined as follows:

Bit 16 = interrupt on completion

Bit 17 =

Bit 18 =

Bit 19 =

Bit 20 =

interrupt on error

synchronous operation

command extension

reserved for VRM

Bits 21-25 ignored

Bit 26 = reserved (must be 0).

• Format (opcode 17)

The format command is used to physically reformat the individual disk units of a 9332
DASD Attachment. This command requires a command element. Each disk unit has a
server area and a CE area on it, but these areas are not affected. Two levels of format
are provided, depending on whether you want to preserve the disk unit's grown defect
map. A bit mask in the operation options flags field (bit 22) indicates the level. For
level 1 (bit 22 = 1), the format ignores the grown defect map of the disk unit and
rewrites the entire file using only the permanent defect map. For level 2 (bit 22 = 0),
the format uses both the grown defect and permanent defect maps. The user must
provide a defect list, specifying the address and length of the defect list in a CCB
command element. For the 9332, the defect list consists of four bytes of o.
The operation options flags (bits 16-26) for this request are defined as follows:

Bit 16 =
Bit 17 =
Bit 18 =
Bit 19 =

Bit 20 =
Bit 21 =
Bit 22 =

Bits 23-25
Bit 26 =

interrupt on completion
interrupt on error
synchronous operation
command extension
reserved for VRM
ignored
format level mask. When bit 22 = 1, a levell format is performed.
When bit 22 = 0, a level 2 format is performed.
ignored
reserved (must be 0).

• Device ID information (opcode 18)

This command allows you to determine information about a device attached to an
adapter. The device driver uses the SCSI ID and LUN specified in the CCB to get
information needed by the caller to define the device. CCB bytes 8 and 9 contain the
SCSI ID and LUN, respectively, of the device. The device driver then does an inquiry
of the specified device and uses DMA to place the first 36 bytes of the inquiry results

5-106 VRM Device Support

(these bytes include the device type as defined by the ANSI standard for SCSI devices)
in the caller's buffer. Next, the driver does a read capacity command and adds the
returned information to the caller's buffer. The operation options flags (bits 16-26) for
this request are defined as follows:

IBM Device Drivers 5-106.1

5-106.2 VRM Device Support

Bit 16 =

Bit 17 =

Bit 18 =

Bit 19 =

Bit 20 =

interrupt on completion

interrupt on error

synchronous operation

command extension

reserved for VRM

Bits 21-25 = ignored

Bit 26 = reserved (must be zero).

• Read capacity (opcode 19)

This SCSI command allows you to determine the capacity of a device attached to the
SCSI bus. Bytes 8-11 of the CCB are reserved. The data length field should be set to
512. The returned data includes four bytes for the address of the last logical block on
the LUN (Ox0005F80E for a 9332 DASD attachment) and four bytes for the block length
of the last logical block on the LUN (Ox200 for a 9332 DASD).

Bit 21 of the operations options flags indicates whether the command is performed for
the entire device or for a single track on the device.

The operation options flags (bits 16-26) for this request are defined as follows:

Bit 16 = interrupt on completion

Bit 17 =

Bit 18 =

Bit 19 =

Bit 20 =

Bit 21 =

in terru pt on error

synchronous operation

command extension

reserved for VRM

Read capacity of device or track

When bit 21 = 0, the read capacity is performed for the entire device.

When bit 21 = 1, the read capacity is done for a specified track only.
The specified track is determined by the track that contains the selected
logical block address.

Bits 22-25 = ignored

Bit 26 = reserved (must be zero).

• Reassign block (opcode 20)

This SCSI command allows you to reassign bad blocks on the 9332 DASD Attachment.
This command causes data in the area surrounding the reassigned block to be shifted
and sector IDs to be modified. The data contained in the block being reassigned will be
altered by the target, so the initiator should read and save the data before issuing this

IBM Device Drivers 5-107

command. After successfully reassigning the block, the initiator can then write the
data to the new location.

IBM recommends that you leave the 9332 DASD in auto reassign mode, allowing the
VRM to handle bad-block management tasks.

The caller must provide the address of the buffer that contains the defective block list
in the following format:

Bytes 0-1 = reserved (set to zero)
Byte 2 = defect length list MSB (0 for 9332 DASD)
Byte 3 = defect length list LSB (4 for 9332 DASD)
Byte 4 = defective logical block address MSB
Byte 5 = defective logical block address
Byte 6 = defective logical block address
Byte 7 = defective logical block address LSB.

Bytes 8-11 of the CCB contain a logical block address.

The operation options flags (bits 16-26) for this request are defined as follows:

Bit 16 = interrupt on completion

Bit 17 =

Bit 18 =

Bit 19 =

Bit 20 =

interrupt on error

synchronous operation

command extension

reserved for VRM

Bits 21-25 = ignored

Bit 26 = reserved (must be zero).

• Request sense (opcode 21)

This SCSI command allows you to discover if there are problems with a SCSI device.
This command returns sense data from a prior check condition on an LUN. The virtual
machine must supply a buffer in the CCB into which returned data is placed. The data
transfer length should be specified as 512.

This command is performed automatically by the device driver when a read or write
command is done to the disk. To obtain the results of such a request sense operation,
do a read status call.

Bytes 8-11 of the CCB are reserved.

The operation options flags (bits 16-26) for this request are defined as follows:

Bit 16 = interrupt on completion

Bit 17 = interrupt on error

5-108 VRM Device Support

TNL SN20-9859 (26 June 1987) to SC23-0817

Bit 18 = synchronous operation

Bit 19 = command extension

Bit 20 = reserved for VRM

Bits 21-25 = ignored

Bit 26 = reserved (must be zero).

• Read server area (opcode 22)

This command allows you to read the server area of a 9332 DASD Attachment. The
server area contains adapter microcode and other device-dependent data. This
command allows you to determine EC levels and other data about the device. Bytes
8-11 of the CCB contain a logical block address in the range 0-227.

The operation options flags (bits 16-26) for this request are defined as follows:

Bit 16 = interrupt on completion

Bit 17 =

Bit 18 =

Bit 19 =

Bit 20 =

Bits 21-22 =

Bit 23 =

Bit 24-25 =

in terru pt on error

synchronous operation

command extension

reserved for VRM

ignored

reserved (must be zero)

ignored

Bit 26 = reserved (must be zero).

• W rite server area (opcode 23)

This command allows you to write to the server area of a 9332 DASD Attachment. The
server area contains adapter microcode and other device-dependent data. This
command allows you to download microcode to the server area and change EC levels.
Bytes 8-11 of the CCB contain a logical block address in the range 0-227.

The operation options flags (bits 16-26) for this request are defined as follows:

Bit 16 = interrupt on completion

Bit 17 =

Bit 18 =

in terru pt on error

synchronous operation

IBM Device Drivers 5-109

TNL SN20-9859 (26 June 1987) to SC23-0817

Bit 19 =

Bit 20 =

command extension

reserved for VRM

Bits 21-25 = ignored

Bit 26 = reserved (must be zero).

• Inquiry (opcode 24)

This command allows you to find out information about a SCSI device. Returned
information includes device type and data on the device vendor. Bytes 8-11 of the CCB
are reserved.

Data transfer length should be set to 512, but the first returned byte indicates the
number of valid bytes in the transfer.

The operation options flags (bits 16-26) for this request are defined as follows:

Bit 16 = interrupt on completion

Bit 17 =

Bit 18 =

Bit 19 =

Bit 20 =

Bits 21-25 =

Bit 26 =

interrupt on error

synchronous operation

command extension

reserved for VRM

ignored

reserved (must be zero).

• Wrap test (opcode 26)

This command causes the adapter to internally connect its outputs to its inputs to
check the flow of data. All devices should be unplugged from the SCSI bus when this
diagnostic command is issued. Bytes 8-11 of the CCB are reserved.

Note that no other SCSI commands should be outstanding when you issue the wrap
test command.

The operation options flags (bits 16-26) for this request are defined as follows:

Bit 16 = interrupt on completion

Bit 17 = interrupt on error

Bit 18 = synchronous operation

Bit 19 = command extension

Bit 20 = reserved for VRM

Bits 21-25 = ignored

Bit 26 = reserved (must be zero).

5-110 VRM Device Support

TNL SN20-9859 (26 June 1987) to SC23-0817

• Passthrough (opcode 27)

This command allows you to pass a request directly to a device. SCSI commands of 6,
10, or 12 bytes are passed in the CCB. There is a 6K-byte limit on data transfers with
passthrough. Note the extensive use of the operations options flags bits below.

The operation options flags (bits 16-26) for this request are defined as follows:

Bit 16 = interrupt on completion

Bit 17 =

Bit 18 =

Bit 19 =

Bit20 =

Bit 21 =

Bit 22 =

Bit 23 =

Bit 24 =

Bit 25 =

Bit 26 =

interrupt on error

synchronous operation

command extension

reserved for VRM

6-byte command

When bit 21 = 1, a 6-byte command is contained in CCB bytes 8-13.

10-byte command

When bit 22 = 1, a 10-byte command is contained in CCB bytes 8-17.

12-byte command

When bit 23 = 1, a 12-byte command is contained in CCB bytes 8-19.

Data phase

When bit 24 = 0, there is no data phase for this command. When bit 24
= 1, there is data for the command.

Data direction

Bit 25 indicates the direction of the data when bit 24 indicates the
command has a data phase (bit 24 = 1). When bit 25 = 0, the data is
coming in from the device. When bit 25 = 1, data is going out to the
device.

reserved (must be zero).

IBM Device Drivers 5-111

• Mode sense (opcode 28)

This command allows a target device on a SCSI bus to report its medium, LUN, and
parameters to the initiator. Bytes 8-11 of the CCB are reserved.

Data transfer length should be set to 512, but the first returned byte indicates the
number of valid bytes in the transfer.

The operation options flags (bits 16-26) for this request are defined as follows:

Bit 16 = interrupt on completion

Bit 17 =

Bit 18 =

Bit 19 =

Bit 20 =

in terru pt on error

synchronous operation

command extension

reserved for VRM

Bits 21-25 = ignored

Bit 26 = reserved (must be zero).

• Rewind (opcode 29)

This command causes the device driver to issue a rewind command to the tape device.
The rewind is performed immediately, and status is returned upon completion of the
rewind.

The IODN specified in the CCB is the IODN of the tape drive. Bytes 8-11 of the CCB
are reserved.

The operation options flags (bits 16-26) for this request are defined as follows:

Bit 16 = interrupt on completion

Bit 17 =

Bit 18 =

Bit 19 =

Bit 20 =

interrupt on error

synchronous operation

command extension

reserved for VRM

Bits 21-25 = ignored

Bit 26 = reserved (must be zero).

• Write File Marks (opcode 30)

This command causes the specified number of filemarks to be written beginning at the
current medium position on the tape.

The IODN specified in the CCB is the IODN of the tape drive. Bytes 8-11 of the CCB
indicate the number of filemarks to be written.

5-112 VRM Device Support

The operation options flags (bits 16-26) for this request are defined as follows:

Bit 16 interrupt on completion

Bit 17

Bit 18

Bit 19

Bit 20

Bits 21-25

Bit 26 =

Output Values

in terru pt on error

synchronous operation

command extension

reserved for VRM

ignored

reserved (must be zero).

The SCSI device driver uses an acknowledgment queue element to inform the requestor of
the completion of the request. The format of this queue element is shown in the following
figure.

o
4

8

Reserved for system use

Path ID

12

16

20

24

28

Type = 0 I Reserved Flags I Overrun

Operation results IODN --
Buffer Segment ID (or 0) eCB Segment ID (or 0)

CCB Address (or 0)

Buffer Memory Address (or 0)

Reserved Operation Option

Figure 5-20. SCSI Acknowledgment Queue Element

The fields in the preceding figure are defined as follows:

Path Id: ID of the requestor-to-SCSI device driver path

Type:

Flags:

Overrun:

o for acknowledgment queue element

Set to Ox24 to indicate a solicited Start I/O interrupt

Al ways set to zero

Operation Results:
Contains the completion status of the operation

IODN: Of the SCSI device that completed the operation

IBM Device Drivers 5-113

TNL SN20-9883 (25 September 1987) to SC23-0817

Buffer Segment ID:
For general-purpose requests, this field contains the segment ID specified in
the input queue element. For Start I/O requests, this field contains zero.

CCB Segment ID:
For Start I/O requests, this field contains the CCB segment ID specified in
the input queue element. For general-purpose requests, this field contains
zero.

CCB Address: For Start I/O requests, this field contains the CCB address specified in the
input queue element. For general-purpose requests, this field contains zero.

Buffer Memory Address:
For general-purpose requests, this field contains the memory address
specified in the input queue element. For Start I/O requests, this field
contains zero.

Operation Option:
For general-purpose requests, this field contains a copy of the operation
options field of the input queue element. For Start I/O requests, this field
contains zero.

If the device driver is unable to perform a requested operation or an error occurs during an
operation, the interrupt handling routine returns the following values:

-02 =
-03 =
-04 =
-05 =
-06 =
-07 =
-08 =
-16 =
-17 =
-32 =
-40 =
-64 =

-128 =
-192 =
257 =
258 =
259 =

Time out
SCSI adapter busy, resubmit
No controller
Bus error from the adapter
No SCSI device
Check condition (request sense suggested)
9332 DASD interface process failure
9332 DASD file processor failure on LUN 0
9332 DASD file processor failure on LUN 1
9332 DASD servo failure for servo on LUN 0
Bad block
9332 DASD servo failure for servo on LUN 1
Adapter failed
Other SCSI device in error
Invalid or undefined opcode
Invalid data length
Invalid parameter(s).

5-114 VRM Device Support

The operation options flags (bits 16-26) for this request are defined as follows:

Bit 16 = interrupt on completion

Bit 17 = interrupt on error

Bit 18 =

Bit 19 =

Bit 20 =

Bits 21-25

Bit 26 =

Output Values

synchronous operation

command extension

reserved for VRM

ignored

reserved (must be zero).

The SCSI device driver uses an acknowledgment queue element to inform the requestor of
the completion of the request. The format of this queue element is shown in the following
figure.

o
4

8

12

16

20

24

28

Reserved for system use

Path ID

Type = 0 I Reserved Flags I Overrun

Operation results IODN

Buffer Segment ID (or 0) CCB Segment ID (or 0)

CCB Address (or Q)

Buffer Memory Address (or Q)

Reserved Operation Option

Figure 5-20. SCSI Acknowledgment Queue Element

The fields in the preceding figure are defined as follows:

Path Id:

Type:

ID of the requestor-to-SCSI device driver path

o for acknowledgment queue element

Flags: Set to Ox24 to indicate a solicited Start I/O interrupt

Overrun: Always set to zero

Operation Results:
Contains the completion status of the operation

IODN: Of the SCSI device that completed the operation

IBM Device Drivers 5-113

TNL SN20-9859 (26 June 1987) to SC23-0817

Buffer Segment ID:
For general-purpose requests, this field contains the segment ID specified in
the input queue element. For Start I/O requests, this field contains zero.

CCB Segment ID:
For Start I/O requests, this field contains the CCB segment ID specified in
the input queue element. For general-purpose requests, this field contains
zero.

CCB Address: For Start I/O requests, this field contains the CCB address specified in the
input queue element. For general-purpose requests, this field contains zero.

Buffer Memory Address:
For general-purpose requests, this field contains the memory address
specified in the input queue element. For Start I/O requests, this field
contains zero.

Operation Option:
For general-purpose requests, this field contains a copy of the operation
options field of the input queue element. For Start I/O requests, this field
contains zero.

If the device driver is unable to perform a requested operation or an error occurs during an
operation, the interrupt handling routine returns the following values:

-02 =
-03 =
-04 =
-05 =
-06 =
-07 =

-08 =
-16 =
-17 =
-32 =
-64 =

-128 =
-192 =
257 =
258 =
259 =

Time out
SCSI adapter busy, resubmit
No controller
Bus error from the adapter
No SCSI device
Check condition (request sense suggested)
9332 DASD interface process failure
9332 DASD file processor failure on LUN 0
9332 DASD file processor failure on LUN 1
9332 DASD servo failure for servo on LUN 0
9332 DASD servo failure for servo on LUN 1
Adapter failed
Other SCSI device in error
Invalid or undefined opcode
Invalid data length
Invalid parameter(s).

5-114 VRM Device Support

Streaming Tape Device Driver

This device driver supports the IBM RT PC Streaming Tape Drive Adapter, which is used
to control a single IBM RT PC Streaming Tape Drive. This is a nonshared device driver.
Therefore, only one virtual machine can be attached to this device driver at a time.

The DDS for the streaming tape device driver is created by an lpost that passes the DDS to
the load list processor. For information on the load list processor, see "VRM IPL and
Configuration" on page 1-4. The streaming tape device driver is unique in that it uses a
DDS that does not contain a device characteristics section. The streaming tape device
driver is defined on the following pages.

IBM Device Drivers 5-115

Define Device Header

This section of the DDS is common to all device drivers. The information is defined as
follows:

IODN:

IOCN:

Define Option:

11

Ox0270

OxOOOl

Device Type: OxOOOl

Device Name: This field is ignored by the VRM. It can be used to store a name for the
device that uses this device driver.

Offset to Hardware Characteristics:
28 bytes

Offset to Device Characteristics:
o bytes because this section is not used for this device driver.

Offset to Error Log:
72 bytes

5-116 VRM Device Support

Hardware Characteristics

This section of the DDS is common to all device drivers. The information is defined as
follows:

Length: 11 words

Internal device type:
OxAlxx8500

(where xx indicates the slot occupied by the adapter).

Base I/O port address:
OxOOOOOlE8

Number of I/O port addresses:
7

Bus memory start address:
Not used by this device driver.

Bus memory end address:
Not used by this device driver.

DMA type: Not used by this device driver.

Interrupt type:
OxCOOOOI0C

• Interrupts enabled
• Interrupts shareable
• Class = 1
• Interrupt level = 12.

IBM Device Drivers 5-117

Error Log

The error log section for this device driver is structured as shown in Figure 5-21:

o
4

8

12

N

Class I
Length

Subclass I Mask I Type

Error Data Length

Error Data

Figure 5-21. Error Log Structure

The various fields of the error log section of the DDS are defined as follows:

Length: 7 words

Class:

Subclass:

Mask:

Type:

OxOl to indicate hardware error.

Ox04

OxOO

Can be one of two values:

• Ox40 to indicate a temporary error
• Ox80 to indicate a permanent error.

Length of error data:

Error data:

5 words

Errors can be detected for three different components: the device driver, the
IBM RT PC Streaming Tape Drive Adapter, and the IBM RT PC Streaming
Tape Drive. Only the IBM RT PC Streaming Tape Drive performs retries
upon getting an initial error. The device driver and the IBM RT PC
Streaming Tape Drive Adapter do not have enough information or control
to perform retries. Therefore, all errors are reported back to the virtual
machine except those that are temporary drive errors.

The only information kept about temporary drive errors is the number of
errors encountered during the entire streaming task. These are called soft
errors and are kept in the soft count field of the error data.

5-118 VRM Device Support

The error data field can be structured in three different ways depending on
the type of error that occurred. The first byte of error data indicates the
type of error as follows:

• OxOO - Adapter error
• OxlO - Drive error
• Ox20 - Tape drive self-test error.

The values of the remaining bytes depend on the type of error detected.
The following sections describe the error data field structure for each of the
three types of errors.

Error Data for Adapter Errors
For IBM RT PC Streaming Tape Drive Adapter errors, the error data is structured as
shown in Figure 5-22:

12

16

20

24

28

Error Indication Code

Status Reg I CC Reg

Adapter Cmd I

I
I

Reserved

Reserved

Figure 5-22. Error Data for Adapter Errors

Options

Reserved

The various fields of the Error Data are defined as follows:

Error indication code:
The first byte indicates that this is an adapter error. It is always set to
OxOO. The second byte indicates the specific error as follows:

• OxOO - Drive not ready
• OxOl- Drive ready error
• Ox02 - Adapter parity check
• Ox03 - Adapter failure
• Ox04 - Transfer not complete
• Ox05 - Invalid adapter command
• Ox06 - Command or data sequence error
• Ox07 - Adapter ROM checksum error
• Ox08 - Adapter RAM error
• Ox09 - Data transfer logic error
• OxOA - Drive not reset error
• OxOB - Data bus error
• OxOC - Unexpected adapter power-on reset
• OxOD - Unknown adapter error
• OxOE - Read status failure.

IBM Device Drivers 5-119

Options: The operation option and device option sent to the device driver.

Status register:
Last status from the IBM RT PC Streaming Tape Drive Adapter status port.
See "Status Register Values" on page 5-123 for the complete definition.

Completion code register:
Last completion code from the IBM RT PC Streaming Tape Drive Adapter.
See "Completion Code Register Values" on page 5-124 for the complete
definition.

Adapter command:
Last command given to the IBM RT PC Streaming Tape Drive Adapter. See
"Adapter Command Values" on page 5-124 for the complete definition.

Error Data for Drive Errors
For IBM RT PC Streaming Tape Drive errors, the error data is structured as shown in
Figure 5-23:

12

16

20

24

28

Error Indication Code

Status Reg I CC Reg

Soft Count

Adapter Cmd I

Options

Drive Status

Underrun Count

Reserved

Figure 5-23. Error Data for Drive Errors

The various fields of the error data are defined as follows:

Error indication code:
The first byte indicates that this is a drive error. It is always set to OxlO.
The second byte indicates the specific error as follows:

• OxOO - Temporary read error
• Ox01 - Temporary write error
• Ox02 - Device fault
• Ox03 - Write abandoned
• Ox04 - Read abandoned
• Ox05 - Read error: bad block transfer
• Ox06 - Read Error: filler block transfer
• Ox07 - Read Error: no data detected
• Ox08 - Invalid drive command
• Ox09 - BOT not detected
• OxOA - Unexpected drive power-on reset
• OxOB - Unknown drive error
• OxOC - Drive parity error.

5-120 VRM Device Support

Options: The operation option and device option sent to the device driver.

Status register:
Last status from the IBM RT PC Streaming Tape Drive Adapter status port.
See "Status Register Values" on page 5-123 for the complete definition.

Completion code register:
Last completion code from the IBM RT PC Streaming Tape Drive Adapter.
See "Completion Code Register Values" on page 5-124 for the complete
definition.

Drive status: Last status received from the IBM RT PC Streaming Tape Drive. The drive
status field is two bytes long and uses each bit to represent a different
condition. If a bit is set to one, that condition is in effect.

The possible values for the first byte are as follows:

• Bit 0 - One or more bits set in this byte
• Bit 1 - No cartridge
• Bit 2 - Device fault
• Bit 3 - Write protected cartridge
oBit 4 - End of media
• Bit 5 - Unrecoverable data error
• Bit 6 - Bad block not located
• Bit 7 - File mark detected.

Tl).e possible values for the second byte are as follows:

• Bit 0 - One or more bits set in this byte
• Bit 1- Illegal command
• Bit 2 - No data detected
• Bit 3 - Marginal block detected
• Bit 4 - Beginning of media
• Bit 5 - Parity error
• Bit 6 - End of recorded media
• Bit 7 - Power-on reset occurred.

Soft count: The number of temporary errors that occurred.

Under run count:
The number of underruns that occurred.

Adapter command:
Last command given to the IBM RT PC Streaming Tape Drive Adapter. See
"Adapter Command Values" on page 5-124 for the complete definition.

IBM Device Drivers 5-121

Error Data for Drive Self-Test Commands
If a self-test command to the IBM RT PC Streaming Tape Drive fails, the error data section
is structured as shown in Figure 5-24:

12

16

20

24

28

Error Indication Code

Status Reg CC Reg

Reserved

Adapter Cmd

1 Options

I Reserved

Drive Self Test Command Status

Reserved

Figure 5-24. Error Data for Drive Self-Test Errors

The various fields of the error data are defined as follows:

Error indication code:
The first byte indicates that this is a self-test command error. The first byte
is set to Ox20. The second byte is set to OxOO.

Options: The operation option and device option sent to the device driver.

Status register:
Last status from the IBM RT PC Streaming Tape Drive Adapter status port.
See "Status Register Values" on page 5-123 for the complete definition.

Completion code register:
Last completion code from the IBM RT PC Streaming Tape Drive Adapter.
See "Completion Code Register Values" on page 5-124 for the complete
definition.

Drive self-test command status:
The last status returned from the drive following one of the drive self-test
commands. The status consists of three bytes whose values depend on the
test performed. The combination of the values in each byte indicates the
specific error detected. There are different errors for each of the three
tests.

The first byte can contain the following values:

• OxOO - Self-test not performed
• Ox22 - Write/Read error
• Ox23 - Sensor or speed error
• Ox24 - Memory checksum error.

The second byte can contain the following values:

• Ox01 - Speed test failed
• Ox02 - Sensor test failed
• Ox03 - Write test failed

5-122 VRM Device Support

• Ox04 - Read test failed
• Ox05 - Erase test failed
• Ox06 - Write test with single data block failed
• Ox07 - CRC test failed
• Ox08 - Write test failed
• Ox09 - Read test failed.

The third byte can contain the following values:

• OxOl - Sensor or speed error
• Ox02 - Head position error (if second byte is Ox07)
• Ox03 - Write timeout (if second byte is Ox03 or Ox06)
• Ox03 - Read timeout (if second byte is Ox04)
• Ox03 - Unable to erase (if second byte is Ox05)
• Ox03 - CRC failed (if second byte is Ox07)
• Ox04 - Unable to read
• Ox05 - Unable to read file mark
• Ox06 - Gap detect failure.

For drive self-test 1, only the first byte is used. The other two bytes are
reserved. For drive self-test 2, only the first two bytes are used if a speed
error or sensor error is detected. The third byte is reserved. In all other
cases, all three bytes contain valid status information.

Adapter command:
Last command given to the IBM RT PC Streaming Tape Drive Adapter. See
"Adapter Command Values" on page 5-124 for the complete definition.

Status Register Values
The status register field uses each bit to represent a different condition. If the bit is set to
one, that condition is in effect. The possible values for the status register field are as
follows:

• Bit 0 - Adapter busy
• Bit 1 - Drive ready
• Bit 2 - Online
• Bit 3 - Drive exception
• Bit 4 - Interrupt
• Bit 5 - Not used
• Bit 6 - Output buffer full
• Bit 7 - Input buffer full.

IBM Device Drivers 5-123

Completion Code Register Values
The possible values for the completion code register field are as follows:

• OxOO - Good completion
• OxOl - Load block count
• Ox02 - A wai ting power-on reset handshake
• OxlO - Status available
• Ox30 - Read buffer full
• Ox31 - Read buffer full, last block
• Ox40 - Write buffer empty
• Ox55 - Power-on reset/Reset successful
• Ox80 - Exception status
• Ox81- Drive not ready
• Ox82 - Ready error
• Ox83 - Drive parity check
• Ox84 - Direction error
• Ox85 - Data transfer did not complete
• Ox90 - Command reject, exception outstanding
• Ox91- Invalid adapter command
• Ox92 - Command/Data sequence error
• OxAO - ROM sumcheck
• OxAl - RAM error
• OxA2 - Data transfer logic failure
• OxA3 - Drive not reset
• OxA4 - Data bus error.

Adapter Command Values
The possible values for the adapter command field are as follows:

• OxOO - Reset
• Ox02 - Rewind
• Ox03 - Erase
• Ox04 - Retension
• Ox05 - Read status
• Ox06 - Write
• Ox07 - Write file mark
• Ox08 - Read
• Ox09 - Read file mark
• OxOC - Skip
• OxOD - Terminate
• OxOE - Drive self-test 1
• OxOF - Drive self-test 2
• OxlO - Drive self-test 3
• OxAA - Power-on reset/Reset handshake.

5-124 VRM Device Support

CCB Input Values

This device driver accepts CCBs as shown in Figure 2-5 on page 2-12. The CCB consists of
the command header and zero or more command elements, depending on the device option
used.

This device driver uses the following definitions for the bits in the options field of the
CCB. Note that this device driver uses eleven bits for the device option whereas other
device drivers use some of the option bits for flags and only five bits for the actual device
option.

• Bit 0 through 4 - Operation Option
• Bit 5 through 15 - Device Option.

A CCB header for this device driver has an additional field located at byte 12 in the CCB
header. This field is the Block Count field and is used for the Write File Mark, Read File
Mark, and Skip device options. It contains the number of file marks or blocks that the
device option should operate upon.

Note that certain options are valid only in a specific mode. This device driver supports
three mode types. They are:

• Read
• Write
• Maintenance

The Reset Device (5) and Terminate (14) options are valid in any mode. When either of
these options is executed, the drive is placed in Maintenance mode.

The following options are valid in Read or Maintenance mode. If these options are issued
from Maintenance mode, the drive is put in Read mode.

• Read (0)
• Read File Mark (11)
• Skip (13)

The following options are valid in Write or Maintenance mode. From Read mode, the
following options are valid if the last option processed was a Read File Mark or if a 'No
Data Detected' error occurred. If these options are issued from Maintenance mode, or after
a Read File Mark or 'No Data Detected' error from Read mode, the drive is put in Write
mode.

• Write (1)
• Write File Mark (10)

The following device options are valid only from Maintenance mode.

• Rewind (6)
• Erase (7)
• Retension (8)
• Drive Self Test 1 (15)

IBM Device Drivers 5-125

• Drive Self Test 2 (16)
• Drive Self Test 3 (17)
• Write Adapter Buffer Diagnostic (18)
• Read Adapter Buffer Diagnostic (19)

The device options are defined below. Device options that require a command element
contain information about the command element in the definition. If there is no
information about a command element, you can assume that the device option does not use
a command element.

o = Read

This device option reads data from the tape. There must be at least one command
element with each Read device option. The command elements define the system data
buffers used to receive the data. Each buffer element must begin on a word boundary
and be a multiple of words in length. The total amount of buffer space defined by all
the command elements must be a multiple of data blocks. A data block is 512 bytes.

This option is valid only if the tape drive is in Read or Maintenance mode.

1 = Write

This device option writes data to the tape. There must be at least one command
element with each Write device option. The command elements define the system data
buffers that contain the data to be sent to the IBM RT PC Streaming Tape Drive.
Each buffer element must begin on a word boundary and be a multiple of words in
length. The total amount of buffer space defined by all the command elements must be
a multiple of data blocks.

This option is valid if the tape drive is in Write or Maintenance mode. It is also valid
if the last option processed in Read mode was a Read File Mark or if a 'No Data
Detected' error occurred.

2 = Position

This device option is not used by this device driver.

3 = Format

This device option is not used by this device driver.

4 = Change characteristics

This device option is not used by this device driver.

5 = Reset device

This device option is valid at any time and clears error situations.

6 = Rewind

This device option is Nalid only in Maintenance mode and rewinds to the beginning of
the tape.

5-126 VRM Device Support

7 = Erase

This device option erases the entire tape, then rewinds to the beginning of the tape.
You do not need to use a retension device option after using an erase device option
because the erase device option performs the same type of function.

This option is valid only in Maintenance mode.

8 = Retension

This device option is used to -exercise the tape cartridge. This option rewinds the tape,
then winds to the end of the tape, then rewinds to the beginning of the tape. Use this
device option if you have excessive read errors during a restore or if the tape has been
exposed to environmental extremes.

This option is valid only in Maintenance mode.

9 = Read Status

This device option obtains the latest adapter and drive status information. Val~d
status is returned only after issuance of a Reset Device, Rewind, Erase, Retension,
Terminate, or Drive Self Test 1-3 command. This device option requires a command
element defining a system buffer to receive the 16 bytes of status information. The
bytes are defined as follows:

• Bytes 0 and 1 - Drive status
• Bytes 2 and 3 - Soft error count
• Bytes 4 and 5 - Underrun count
• Byte 6 - Command received by the adapter
• Byte 7 - Adapter block count
• Byte 8 - Status register
• Byte 9 - Adapter completion code
• Byte 10 - Last command given to adapter
• Byte 11 to 15 - Reserved.

10 = Write file mark

This device option writes one or more file marks on the tape. This option also uses the
block count field of the CCB Header. The block count field indicates the number of
file marks to be written. The value can be from 1 to 255.

This device option is valid only in Write or Maintenance mode. It is also valid if the
last option processed was a Read File Mark or if a 'No data detected' error occurred.

11 = Read File Mark

This device option is valid only in Read or Maintenance mode and reads one or more
file marks on the tape. This option also uses the block count field of the CCB header.
The block count field indicates the number of file marks to be read. The value can be
from 1 to 255.

12 = This option is not used by this device driver.

IBM Device Drivers 5-127

13 = Skip

This device option is valid only in Read or Maintenance mode and skips one or more
blocks on the tape. This option also uses the block count field of the CCB Header.
The block count field indicates the number of blocks to skip. The value can be from 1
to the number of blocks remaining on the tape.

14 = Terminate

This option is valid in any mode. It ends the streaming task and rewinds to the
beginning of the tape. If the tape was being written to, a file mark is placed on the
tape before it is rewound.

15 = Drive self-test 1

This device option is a diagnostic command used to perform a checksum calculation on
the program memory in the IBM RT PC Streaming Tape Drive.

This option is valid only in Maintenance mode.

16 = Drive self-test 2

This device option is a diagnostic command used to check the capstan speed and verify
the operation of the BOT, EaT, and SAFE sensors. It writes a pattern on the tape and
verifies it, verifies that the erase function is working, verifies that the CRC check
function is correct, and checks that the tape head can be positioned properly.

This option is valid only in Maintenance mode.

17 = Drive self-test 3

This device option is a diagnostic command used to check the write-protect
mechanism. You must use an erased, write-protected tape cartridge for this test.

This option is valid only in Maintenance mode.

18 = Write adapter buffer diagnostic

This device option is a diagnostic command used to write a 512-byte data pattern to the
IBM RT PC Streaming Tape Drive Adapter buffer. A command element is required to
define the 512-byte buffer containing the data pattern.

This option is valid only in Maintenance mode.

19 = Read Adapter Buffer Diagnostic

This device option is a diagnostic command used to read 512 bytes of data from the
IBM RT PC Streaming Tape Drive Adapter buffer. A command element is required to
define the 512-byte buffer that will receive the data .

. This option is valid only in Maintenance mode.

20 through 31 = These device options are not used by this device driver.

5-128 VRM Device Support

Output Values

This section defines the output values that may appear in GPR2 or in a PSB. The PSB
fields that contain I/O information or detected error information are the status flags field
and the operation results field. Figure 2-6 on page 2-12 shows the location of these fields
in the PSB.

The status flags field is a single byte and is defined as Ox24. This indicates that this is a
solicited I/O interrupt.

The 16-bit operation results field returns a value indicating the completion status of the
operation. The possible errors that can be returned are listed below:

00 = Successful completion

-02 = Invalid device option

The CCB contained an invalid device option.

-03 = Undefined device option

The CCB contained an undefined device option.

-04 = Invalid parameters

The CCB contained an invalid command parameter.

-05 = Streaming error

An invalid device option was sent to the device driver while performing a streaming
read or write operation.

-10 = Drive not ready error

The adapter timed out while waiting for the drive to come to the ready state.

-11 = Drive ready error

The adapter timed out while waiting for the drive to come to the not ready state.

-12 = Adapter parity check

An error was detected in data being read from the drive.

-13 = Adapter failure

An error occurred while transferring data to or from the drive.

-14 = Transfer not complete

Data was not completely transferred between the adapter and the drive within the
allowed time interval.

IBM Device Drivers 5-129

-15 = Invalid adapter command

The adapter received an invalid adapter command.

-16 = Command/Data sequence error

The adapter received a command when expecting data or it received data when
expecting a command.

-17 = Adapter ROM checksum error

An adapter ROM checksum failure occurred.

-18 = Adapter RAM error

An adapter RAM failure occurred.

-19 = Data transfer logic error

A data transfer logic error occurred.

-20 = Drive not reset

The drive did not reset. This could occur if the drive is turned off.

-21 = Data bus error

A data bus error occurred.

-22 = Unexpected adapter POR or RESET

The adapter indicated a POR or RESET occurred even though it should not have
occurred at this time.

-23 = Unknown adapter error

The adapter returned an undefined error code.

-24 = Read status failure

The adapter status could not be read.

-40 = Write protect

The tape cartridge is write-protected in this area.

-41 = No cartridge

The tape drive does not contain a tape cartridge.

-42 = End of media

The cartridge is positioned at the end of the tape.

-43 = File mark read

The device driver encountered a file mark block during a Read or Skip command. The
operation can continue.

5-130 VRM Device Support

-44 = Device fault

Indicates one of the following conditions:

• The cartridge has stalled.
• The tape has not moved.
• The tape has broken.
• A write sequence error has occurred.

-45 = Write abandoned

Indicates one of the following conditions occurred during a Write or Write File Mark
command:

• The same block was rewritten 16 or more times.
• An unrecoverable reposition error occurred.

The operation cannot continue.

-46 = Read abandoned

An unrecoverable reposition error occurred during a Read command. The operation
cannot continue.

-47 = Read error, bad block transfer

The same block was read 16 times and always encountered a eRe error. The last
block transferred contains data from the bad data block. The operation can continue.

-48 = Read error, filler block transfer

The same block was read 16 times and always encountered a eRe error. The last
block transferred contains filler data. The operation can continue.

-49 = Read error, no data detected

The tape did not contain any recorded data. The operation cannot continue.

-50 = Invalid drive command

The drive received an invalid drive command.

-51 = BOT not detected

The device driver did not detect the beginning of the tape after a Rewind, Retension,
Erase, or Terminate command.

-52 = Unexpected drive POR or RESET

The drive indicated a POR or RESET occurred even though it should not have
occurred at this time.

-53 = Unknown drive error

The drive returned an undefined error code.

IBM Device Drivers 5-131

-54 = Drive parity error

The drive detected a parity error while writing to the tape.

-60 = Drive self-test failure

A drive failure occurred during a drive self-test command.

5-132 VRM Device Support

addres.s. A name, label, or number identifying
a locatIon in storage, a device in a system or
network, or any other data source.

allocate. To assign a resource, such as a disk
file or a diskette file, to perform a specific task.

~ll Points Addressable (AP A) display. A
dIsplay that allows each pel to be individually
addr.essed. An AP A display allows for images to
be dIsplayed that are not made up of images
predefined in character boxes. Contrast with
character display.

American National Standard Code for
Information Interchange (ASCII). The code
developed by ANSI for information interchange
among data processing systems, data
communications systems, and ass'ociated
equipment. The ASCII character set consists of
7-bit control characters and symbolic
characters.

American National Standards Institute
(ANSI). An organization sponsored by the
Computer and Business Equipment
Manufacturers Association for establishing
voluntary industry standards.

ANSI. See American National Standards
Institute.

a.out. An output file produced by default for
certain instructions. By default, this file is
executable and contains information for the
symbolic debugger.

application. (1) A particular task such as
inventory control or accounts recei~able. (2) A
program or group of programs that apply to a
particular business area, such as the Inventory
Control or the Accounts Receivable application.

Glossary

argument. Numbers, letters, or words that
expand or change the way commands work.

array. An arrangement of elements in one or
more dimensions.

ASCII. See American National Standard Code
for Information Interchange.

assembler language. A symbolic
programming language in which the set of
instructions includes the instructions of the
machine and whose data structures correspond
directly to the storage and registers of the
machine.

asynchronous transmission. In data
communications, a method of transmission in
which the bits included in a character or block
of characters occur during a specific time
interval. However, the start of each character
or block of characters can occur at any time
during this interval. Contrast with synchronous
transmission.

att~ibute. A characteristic. For example, the
attrIbute for a displayed field could be blinking.

bad block. A portion of a disk that can never
be used reliably.

base register. A general purpose register that
the programmer chooses to contain a base
address. See also index register.

basic addressable unit (BAU). The smallest
piece of storage that can be addressed.

BAU. See basic addressable unit.

binary. (1) Pertaining to a system of numbers
to the base two; the binary digits are 0 and 1.
(2) Involving a choice of two conditions, such
as on-off or yes-no.

Glossary X-I

bit. Either of the binary digits 0 or 1 used in
computers to store information. See also byte.

block. (1) A group of records that is recorded
or processed as a unit. Same as physical record.
(2) In data communications, a group of records
that is recorded, processed, or sent as a unit.
(3) A block is 512 bytes long.

boundary alignment. The position in main
storage of a fixed-length field (such as halfword
or double word) on an integral boundary for that
unit of information. For example, a word
boundary is a storage address evenly divisible
by four.

bps. Bits per second.

branch. In a computer program an instruction
that selects one of two or more alternative sets
of instructions. A conditional branch occurs
only when a specified condition is met.

breakpoint. A place in a computer program,
usually specified by an instruction, where
execution may be interrupted by external
intervention or by a monitor program.

buffer. (1) A temporary storage unit,
especially one that accepts information at one
rate and delivers it at another rate. (2) An area
of storage, temporarily reserved for performing
input or output, into which data is read, or from
which data is written.

bus. One or more conductors used for
transmitting signals or power.

byte. The amount of storage required to
represent one character; a byte is 8 bits.

call. (1) To activate a program or procedure at
its entry point. Compare with load. (2) In data
communications, the action necessary in
making a connection between two stations on a
switched line. by plugging it into a slot in the
system unit.

X-2 VRM Device Support

channel. A path along which data passes.
Also a device connecting the processor to input
and output devices.

character. A letter, digit, or other symbol.

character display. A display that uses a
character generator to display predefined
character boxes of images (characters) on the
screen. This kind of display can not address the
screen any less than one character box at a
time. Contrast with All Points Addressable
display.

character set. A group of characters used for
a specific reason; for example, the set of
characters a printer can print or a keyboard
can support.

character string. A sequence of consecutive
characters.

C language. A general-purpose programming
language that is the primary language of the
AIX Operating System.

color display. A display device capable of
displaying more than two colors and the shades
produced via the two colors, as opposed to a
monochrome display.

command line. The area to the right of a
prompt for entering commands or program
names.

compile. (1) To translate a program written in
a high-level programming language into a
machine language program. (2) The computer
actions required to transform a source file into
an executable object file.

compiler. A program that translates
instructions written in a high-level
programming language into machine language.

concatenate. (1) To link together. (2) To
join two character strings.

configuration. The group of machines,
devices, and programs that make up a computer
system. See also system customization.

constant. A data item with a value that does
not change. Contrast with variable.

control block. A storage area used by a
program to hold control information.

control character. A non-printing character
that performs formatting functions in a text file.

control program. Part of the AIX Operating
System system that determines the order in
which basic functions should be performed.

counter. A register or storage location used to
accumulate the number of occurrences of an
event.

cursor. (1) A movable symbol (such as an
underline) on a display, used to indicate to the
operator where the next typed character will be
placed or where the next action will be directed.
In Usability Services, the cursor is called a text
cursor. (2) A marker that indicates the current
data access location within a file. See also
pointing cursor.

customize. To describe (to the system) the
devices, programs, users, and user defaults for a
particular data processing system.

cylinder. All fixed disk or diskette tracks that
can be read or written without moving the disk
drive or diskette drive read/write mechanism.

daemon. See daemon process.

daemon process. A process begun by the root
or the root shell that can be stopped only by the
root. Daemon processes generally provide
services that must be available at all times such
as sending data to a printer.

data stream. All information (data and
control information) transmitted over a data
link.

deadlock. An error condition in which
processing cannot continue due to unresolved
contention fca' the use of a resource.

debug. (1) To detect, locate, and correct
mistakes in a program. (2) To find the cause of
problems detected in software.

debugger. A device used to detect, trace, and
eliminate mistakes in computer programs or
software.

default. A value that is used when no
alternative is specified by the operator.

default value. A value stored in the system
that is used when no other value is specified.

device driver. A program that operates a
specific device, such as a printer, disk drive, or
display.

device manager. Collection of routines that
act as an intermediary between device drivers
and virtual machines for complex interfaces.
For example, supervisor calls from a virtual
machine are examined by a device manager and
are routed to the appropriate subordinate
device drivers.

device name. A name reserved by the system
that refers to a specific device.

direct memory access (DMA) device. A
component that can read or write to system
storage directly, without processor
intervention. Two device types are identified:
1) an alternate controller resides on a hardware
adapter and 2) a system DMA controller resides
on the system planar board. DMA capability
permits simultaneous use of input/output
devices and the processor.

directory. A type of file containing the names
and controlling information for other files or
other directories.

disable. To make nonfunctional.

displacement. A positive or negative number
that can be added to the contents of a base
register to calculate an effective address.

display device. An output unit that gives a
visual representation of data.

Glossary X-3

DMA. See direct memory access.

dump. (1) To copy the contents of all or part
of storage, usually to an output device.
(2) Data that has been dumped.

EBCDIC. See extended binary-coded decimal
interchange code.

ECB. See event control bit.

effective address. A real storage address that
is computed at runtime. The effective address
consists of contents of a base register, plus a
displacement, plus the contents of an index
register if one is present.

emulation. Imitation; for example, when one
computer imitates the characteristics of another
computer.

enable. To make functional.

entry point. An address or label of the first
instruction performed upon entering a computer
program, a routine, or a subroutine. A program
may have several different entry points, each
corresponding to a different function or
purpose.

escape character. A character that changes
the meaning of the characters that follow. For
example the backslash character, used to
indicate to the shell that the next character is
not intended to have the special meaning
normally assigned to it by the shell.

event. The enqueueing of an element.

event control bit (ECB). A bit assigned to
each queue to signal the arrival or departure of
an element.

exception handler. A set of routines used to
detect deadlock conditions or to process
abnormal condition processing. This allows the
normal execution of processes to be interrupted
and resumed.

X-4 VRM Device Support

expression. A representation of a value. For
example, variables and constants appearing
alone or in combination with operators.

extended binary-coded decimal interchange
code (EBCDIC). A set of 256 eight-bit
characters.

external symbol. A symbol that is defined in
a file other than the file in which the symbol
occurs. An ordinary symbol that represents
an external reference.

file. A collection of related data that is stored
and retrieved by an assigned name.

file system. The collection of files and file
management structures on a physical or logical
mass storage device, such as a diskette or
minidisk.

first level interrupt handler (FLIH). A
routine that receives control of the system as a
result of a hardware interrupt. One FLIH is
assigned to each of the six interrupt levels.

flag. A modifier that appears on a command
line with the command name that defines the
action of the command. Flags in the AIX
Operating System almost always are preceded
by a dash.

FLIH. See first level interrupt handler.

font. A family or assortment of characters of a
given size and style.

format. (1) A defined arrangement of such
things as characters, fields, and lines, usually
used for displays, printouts, or files. (2) The
pattern which determines how data is recorded.

function. A synonym for procedure. The C
language treats a function as a data type that
contains executable code and returns a single
value to the calling function.

gather. For input/output operations, reading
data from noncontiguous memory I locations to
write to a device. See scatter (antonym).

general purpose register (GPR). An
explicitly addressable register that can be used
for a variety of purposes (for example, as an
accumulator or an index register). IT has
sixteen 32-bit GPRs. See register.

generation. For some remote systems, the
translation of configuration information into
machine language.

global variable. A symbol defined in one
program module, but used in other
independently assembled program modules.

GPR. See general purpose register.

granularity. The extent to which a larger
entity is subdivided. For example, a yard
broken into inches has finer granularity than a
yard broken into feet.

graphic character. A character that can be
displayed or printed.

header record. A record at the beginning of a
file that details the sizes, locations, and other
information that follows in the file.

hex. See hexadecimal.

hexadecimal. Pertaining to a system of
numbers to the base sixteen; hexadecimal digits
range from 0 (zero) through 9 (nine) and A (ten)
through F (fifteen).

high-order. Most significant; leftmost. For
example, bit 0 in a register.

history file. (1) A file that exists for each
licensed program product supplied by IBM that
documents the version, release, and level of the
product. Because information is added to this
file whenever updates are made to the program
product, the history file reflects all changes
made to the currently installed version and
release of the program product. (2) A file
containing a log of system actions and operator
responses. (3) A file that displays all versions
of a structured file.

IAR. See instruction address register.

I/O. See input/output.

ID. Identification.

immediate data. Data appearing in an
instruction itself (as opposed to the symbolic
name of the byte of data). The data is
immediately available from the instruction and
therefore does not have to be read from
memory.

index. (1) A table containing the key value
and location of each record in an indexed file.
(2) A computer storage position or register,
whose contents identify a particular element in
a set of elements.

informational message. A message providing
information to the operator, that does not
require a response.

initial program load (IPL). The process of
loading the system programs and preparing the
system to run jobs. See initialize.

initialize. To set counters, switches, addresses,
or contents of storage to zero or other starting
values at the beginning of, or at prescribed
points in, the operation of a computer routine.

input-output channel controller (IOCC). A
hardware component that supervises
communication between the input/output bus
and the processor.

input-output code number (IOCN). A value
supplied by the virtual machine to a VRM
component. This number uniquely identifies
the code associated with a component and can
be considered a module name.

input-output device number (IODN). A
value assigned to a device driver by the virtual
machine or to a virtual device by the Virtual
Resource Manager. This number uniquely
identifies the device regardless of whether it is
real or virtual.

input/output subsystem. That part of the
VRM comprised of processes and device

Glossary X-5

managers that provides the mechanisms for
data transfer and I/O device management and
control.

instruction address register (IAR). A
system control register containing the address
of the next instruction to be executed. The IAR
(sometimes called a "program counter") can be
accessed via a supervisor call in supervisor
state, but cannot be directly addressed in
problem state.

integer. A positive or negative whole number
or zero.

interactive. Pertains to an activity involving
requests and replies as, for example, between a
system user and a program or between two
programs.

interface (n). A shared boundary between two
or more entities. An interface might be a
hardware component to link two devices
together or it might be a portion of storage or
registers accessed by two or more computer
programs.

interrupt. (1) To temporarily stop a process.
(2) In data communications, to take an action
at a receiving station that causes the sending
station to end a transmission. (3) A signal sent
by an I/O device to the processor when an error
has occurred or when assistance is needed to
complete I/O. An interrupt usually suspends
execution of the currently executing program.

invoke. To start a command, procedure, or
program.

IOCC. See input-output channel controller.

IOCN. See input-output code number.

IODN. See input-output device number.

IPL. See initial program load.

kernel. The memory-resident part of the AIX
Operating System containing functions needed
immediately and frequently. The kernel

X-6 VRM Device Support

supervises the input and output, manages and
controls the hardware, and schedules the user
processes for execution.

key pad. A physical grouping of keys on a
keyboard (for example, numeric key pad, and
cursor key pad).

load. (1) To move data or programs into
storage. (2) To place a diskette into a diskette
drive, or a magazine into a diskette magazine
drive. (3) To insert paper into a printer.

local. Pertaining to a device directly
connected to your system without the use of a
communications line. Contrast with remote.

log. To record; for example, to log all messages
on the system printer. A list of this type is
called a log, such as an error log.

logical link control. In RT PC, a protocol
process that allows data transfer on a given
physical link. A logical link control (LLC) may
reside in the operating system or the VRM and
is controlled by the block I/O device manager.

loop. A sequence of instructions performed
repeatedly until an ending condition is reached.

low-order. Least significant; rightmost. For
example, in a 32 bit register (0-31), bit 31 is the
low-order bit.

main storage. The part of the processing unit
where programs are run.

mask. A pattern of characters that controls
the keeping, deleting, or testing of portions of
another pattern of characters.

menu. A displayed list of items from which an
operator can make a selection.

minidisk. A logical division of a fixed disk
that may be further subdivided into one or more
partitions. See partition.

mm. Millimeter.

modem. See modulator-demodulator.

modulator-demodulator (modem). A device
that converts data from the computer to a
signal that can be transmitted on a
communications line, and converts the signal
received to data for the computer.

module. A discrete programming unit that
usually performs a specific task or set of tasks.
Modules are subroutines and calling programs
that are assembled separately, then linked to
make a complete program. See object module.

multiprogramming. The processing of two or
more programs at the same time.

nonswitched line. A connection between
computers or devices that does not have to be
established by dialing. Contrast with switched
line.

nonvolatile random access memory
(NVRAM). A portion of random access
storage that retains its contents after electrical
power to the machine is shut off.

null. Having no value, containing nothing.

null character (NUL). The character hex 00,
used to represent the absence of a printed or
displayed character.

NVRAM. See nonvolatile random access
memory.

object module. A set of instructions in
machine language.' The object module is
produced by a compiler or assembler from a
subroutine or source module and can be input
to the linker. The object module consists of
object code. See module.

octal. A base eight numbering system.

op code. See operation code.

operand. An instruction field that represents
data (or the location of data) to be manipulated
or operated upon. Not all instructions require
an operand field.

operating system. Software that controls the
running of programs; in addition, an operating
system may provide services such as resource
allocation, scheduling, input/output control,
and data management.

operating system state. One of two virtual
machine protection states that run in the
processor's unprivileged state. The kernel is
the only entity that runs in the operating
system state. See problem state.

operation code. A numeric code indicating to
the processor which operation should be
performed.

overflow condition. A condition that occurs
when a portion of the result of an operation
exceeds the capacity of the intended unit of
storage.

pad. To fill unused positions in a field with
dummy data, usually zeros or blanks.

page. (1) A block of instructions, data, or
both.

page fault. A program interruption that
occurs when a page that is not in memory is
referred to by an active page.

page space minidisk. The area on a fixed
disk that temporarily stores instructions or data
currently being run. See also minidisk.

paging. The action of transferring
instructions, data, or both between real storage
and external page storage.

parameter. Information that the user supplies
to a panel, command, or function.

partition. A logical division of a minidisk.

path name. See full path name and relative
path name.

PEL. See picture element

picture element (pel). In computer graphics,
the smallest element of a display space that can
be independently assigned color and intensity.

Glossary X-7

PID. See process ID.

POST. See power-on self test.

power-on self test (POST). An internal
diagnostic program activated each time the
system is turned on.

priority. The relative ranking of items. For
example,. a job with high priority in the job
queue wIll be run before one with medium or
low priority.

privileged instructions. System control
instructions that can only run in the
process~r's privileged state. Privileged
InstructIons generally manipulate virtual
ma?hines or the memory manager; they
tYPIcally are not used by application
programmers. See privileged state.

privileged state. A hardware protection state
~n whic~ the processor can run privileged
InstructIons.

problem state. One of two virtual machine
prot~c~ion states that run in the processor's
unprIvIleged state. User-written application
programs typically run in the problem state.
See operating system state.

process. (1) A sequence of actions required to
produce a desired result. (2) An entity
receiving a portion of the processor's time for
executing a program. (3) An activity within the
system begun by entering a command, running
a shell program, or being started by another
process.

process ID (PID). A unique number assigned
to a process that is running.

program status block (PSB). A control
block that describes a virtual interrupt
condition.

protection state. An arrangement for
restricting access to or use of all or part of the
hardware instruction set. Hardware protection
states are privileged state and unprivileged

X-8 VRM Device Support

state. Virtual machine protection states are
operating system state and problem state.

protocol. I? data communications, the rules
for transferrIng data.

protocol procedure. A proceaure that
implements a function for a device manager.
For example, a virtual terminal manager may
use a protocol procedure to interpret the
meaning of keystrokes.

PSB. See program status block.

queue. A line or list formed by items waiting
to be processed.

raster array. In computer graphics a
predetermined arrangement of lines that
provide uniform coverage of a display space.

reentrant module. A module that allows the
same copy of itself to be used concurrently by
two or more tasks. Contrast with serially
reusable.

register. (1) A storage area, in a computer,
capable of storing a specified amount of data
sl!ch as a bit or an address. Each register is 32
bIts long. (2) See general purpose register.

relative address. An address specified
relative to the address of a symbol. When a
program is relocated, the addresses themselves
will change, but the specification of relative
addresses remains the same.

relocatable. A value, expression, or address is
relocatable if it does not have to be changed
when the program is relocated.

remote. Pertaining to a system or device that
is connected to your system through a
communications line. Contrast with local.

retry. To try the operation again that caused
the device error message.

return code. A value that is returned to a
subroutine or fu"nction to indicate the results of
an operation issued by that program.

routine. A set of statements in a program
causing the system to perform an operation or a
series of related operations.

scatter. For input/output operations, reading
data from a device and locating it in
noncontiguous memory addresses. See gather
(antonym).

SDT. See static debugger trap.

second level interrupt handler (SLIH). A
routine that handles the processing of an
interrupt from a specific adapter. An SLIH is
called by the first level interrupt handler
associated with that interrupt level.

sector. (1) An area on a disk track or a
diskette track reserved to record information.
(2) The smallest amount of information that
can be written to or read from a disk or diskette
during a single read or write operation.

segment. A contiguous area of virtual storage
allocated to a job or system task. A program
segment can be run by itself, ·even if the whole
program is not in main storage.

semaphore. Entity used to control access to
system resources. Processes can be locked to
a resource with semaphores if the processes
follow certain programming conventions.

serially reusable module. A module that can
be accessed by only one task at a time.
Contrast with reentrant.

session. (1) The period of time during which
programs or devices can communicate with
each other. (2) A name for a type of resource
that controls local LU's, remote LU's, modes,
and attachments.

single-step instruction execution. A method
of operating a computer in which each
instruction is performed in response to a single
manual operation. No sequential execution of
instructions is allowed.

SLIH. See second level interrupt handler.

special character. A character other than a
letter or number. For example; *, +, and % are
special characters.

stack. An area in storage that stores
temporary register information and returns
addresses of subroutines.

stack parameter. A parameter to a VRM
subroutine that must be passed on the stack.
Usually, VRM subroutines pass parameters in
general purpose registers.

stack pointer. A register providing the
current location of the stack.

static debugger trap (SDT). A trap
instruction placed in a pre-defined point in code
invokes the debugger at that point. The trap
instruction causes a program check when
executed; debugger is invoked as a result of the
program check.

string. A linear sequence of entities such as
characters or physical elements. Examples of
strings are alphabetic string, binary element
string, bit string, character string, search
string, and symbol string.

subroutine. (1) A sequenced set of statements
that may be used in one or more computer
programs and at one or more points in a
computer program. (2) A routine that can be
part of another routine.

subsystem. A secondary or subordinate
system, usually capable of operating
independently of, or synchronously with, a
controlling system.

supervisor call (SVC). An instruction that
interrupts the program being executed and
passes control to the supervisor so it can
perform a specific service indicated by the
instruction.

Svc. See supervisor call.

switched line. In data communications, a
connection between computers or devices

Glossary X-9

established by dialing. Contrast with
nons witched line.

synchronous. (1) Pertaining to two or more
processes that depend upon the occurrences of
specific events such as common timing signals.

system customization. A process of
specifying the devices, programs, and users for
a particular data processing system.

system dump. A printout of storage from all
active programs (and their associated data)
whenever an error stops the system. Contrast
with task dump.

thrashing. A condition in which the system is
doing so much paging that little useful work
can be done.

TLB. See translation lookaside buffer.

trace. To record data that provides a history
of events occurring in the system.

track. A circular path on the surface of a
fixed disk or diskette on which information is
magnetically recorded and from which recorded
information is read.

translation lookaside buffer (TLB).
Hardware that contains the virtual-to-real
address mapping.

trap. An unprogrammed, hardware-initiated
jump to a specific address. Occurs as a result of
an error or certain other conditions.

typematic key. A key that repeats its
function multiple times when held down.

type declaration. The specification of the
type and, optionally, the length of a variable or
function in a specification statement.

typestyle. Characters of a given size, style
and design.

unprivileged instruction. Ordinary
instructions such as load store, add, and shift
typically used by application programs.

X-tO VRM Device Support

unprivileged state. A hardware protection
state in which the processor can only run
unprivileged instructions. The processor's
unprivileged state supports the virtual
machine's operating system state and problem
state.

update file. A file that adds or revises
information in a program product already
resident on the VRM minidisk. An update file
documents the version, release, and level of
updates to be installed and is required for
program product update diskettes that use VRM
Install update facilities. This file is not used for
programs updated from the AIX Operating
System.

variable. A name used to represent a data
item with a value that can change while the
program is running. Contrast with constant.

vector. An array of one dimension.

virtual device. A device that appears to the
user as a separate entity but is actually a
shared portion of a real device. For example,
several virtual terminals may exist
simultaneously, but only one is active at any
given time.

virtual machine. A functional simulation of a
computer and its related devices. A virtual
machine usually includes an operating system
and one or more virtual devices.

virtual machine interface (VMI). A software
interface between work stations and the
operating system The VMI shields operating
system software from hardware changes and
low-level interfaces and provides for concurrent
execution of multiple virtual machines.

virtual memory manager. Hardware that
manages virtual memory by providing
translation from a virtual address to a real
address.

virtual resource manager (VRM). A set of
programs that manage the hardware resources

(main storage, disk storage, display stations
and printers) of the system so that these '
resources can be used independently of each
other.

virtual storage. Addressable space that
appears to be real storage. From virtual
storage, instructions and data are mapped into
real storage locations.

VMI. See virtual machine interface.

VRM. See virtual resource manager.

word. A contiguous series of 32 bits (four
bytes) in storage, addressable as a unit. The
address of the first byte of a word is evenly
divisible by four.

Glossary X-II

X-12 VRM Device Support

I Special Characters I

/lpp file restrictions 1-28
/usr/lib/samples directory 2-3

accent characters
acute 3-71
breve 3-75
caron 3-75
cedilla 3-77
circumflex 3-73
double acute 3-76
grave 3-72
macron 3-77
ogonek 3-78
overcircle 3-76
overdot 3-76
tilde 3-74
umlaut 3-74

acknowledge
query device identifiers 3-63
query dials 3-68
query DMA 3-69
query locator 3-67
query LPF keys 3-68
query physical device 3-65
query terminal 3-68

activate
device-specific module 3-143
virtual terminal 3-22

active state of device-specific module 3-141

acute accent character 3-71
acute diacritic 3-70
addf command 1-16
adding code to the VRM 1-14, 2-27
all-points-addressable mode 3-141
ANSI 3.4 character codes 3-70
area, define device 1-12
ASCII

codes 3-70
single code controls 3-80

Index

asynchronous communication protocol 4-69
attributes of displayed characters 3-158
automatic new line mode (AUTONL) 3-79
AUTONL mode 3-79

backup mini disk directory 5-71
batch commands 1-15
binary synchronous communication
protocol 4-69

bit position numbering 3-41
block I/O subsystem

baseband device driver 4-47
device driver coding 4-29
device driver considerations 4-5
device manager 4-38
distributed function terminal device
driver 4-59

IODN table 4-7
multiprotocol device driver 4-69

breve accent character 3-75
breve diacritic 3-71
buffer pool, block I/O subsystem 4-35

Index X-IS

C language 2-28
c record 1-26
cancel

sound 3-61
caron accent character 3-75
caron diacritic 3-71
ce cylinder 5-53
cedilla accent character 3-77
cedilla diacritic 3-71
change

fonts 3-95
parameters, multiprotocol device
driver 4-81

character
code processing 3-79
codes 3-70
set definition 3-94
set, ASCII standard 3-79

characters
accent 3-72, 3-73, 3-74, 3-75, 3-76, 3-77, 3-78

chmd command 1-18
circumflex accent character 3-73
circumflex diacritic 3-71
class, device 1-13
clear rectangle 3-145
close

virtual terminal 3-15, 3-160
code

installing 2-27
match 1-12

coded data, ASCII 3-70
coding

block I/O device drivers 4-29
display device drivers 3-140
VRM device drivers 2-1

color 3-185
palette, setting the 3-95
table, default structure 3-186
table, defining the 3-185

command
query buffer 3-43
to change the install process 1-15
virtual terminal, how to set 3-22

X-14 VRM Device Support

comment record, history file 1-27
committed history file record 1-26
common

area, shared resource structure 3-176
device utilities module 3-140

concepts, device driver 2-1
configuration, VRM 1-4
connect to screen manager 3-17
control

program 1-22
program, diagnostic 1-10
sequence 3-83
sequence, virtual terminal data 3-56
virtual terminal status 3-21

control blocks
power-on self test (PCB) 1-5

copy
full lines 3-147
line segment 3-149

correlation table, block I/O subsystem network
IDs 4-30

cursor definition 3-153
cylinders, reserved on fixed disk 5-66

data
area 2-14
buffer structure, block I/O subsystem 4-36
stream format 3-28, 3-56

data types, major
general 3-58
keyboard send/receive (KSR) 3-69
monitored mode (MOM) 3-98

deactivate device-specific module 3-152
default color table structures 3-186
define

color table 3-185
cursor 3-153
device area 1-12

de If command 1-19
device

class. 1-13
directory 2-4

ring queue array, block I/O subsystem 4-34
state of display 3-170
virtual 3-202

device drivers
asynchronous 5-6
base band 4-47
block I/O 4-5
block I/O device manager 4-38
concepts 2-1
diskette 5-30
distributed function terminal 4-5f
fixed disk 5-48
graphics asynchronous 5-73
multiprotocol 4-69
parallel 5-81
small computer systems interface 5-90
streaming tape 5-115 '
virtual terminal resource manager 3-202
where to find examples of 2-3

device-specific module 3-140
diacritics 3-70
diagnostic control program 1-10
dials, setting 3-62
direct connect protocol 5-6
directories, permission bits for 1-9
directory, device 2-4
diskette device driver 5-30

CCB input values 5-40
define device header 5-31
device characteristics 5-33
error log 5-36
hardware characteristics 5-32
output values 5-45

display
adapter, interrupts from 3-200
changing physical 3-63
data structure 3-57
device driver

coding considerations 3-140
entry points 3-190.

subsystem components· 3-140
symbol set 3-79

distributed function terminal device
driver 4-59

data buffer structure 4-66
device characteristics 4-61

device ring queue 4-64, 4-66
hard ware characteristics 4-60
interface to LLC process 4-64
operation results 4-67
receive data 4-66

double acute accent character 3-76
double acute diacritic 3-71
draw text 3-155
driver state, stored 3-170
dump table

screen manager 3-178
shared resource structure 3-177

ECC errors 5-65
entry points, device-specific module 3-142
escape sequences 3-83
escapement 3-70
examples of C language code, where to find 2-3
external

raster array 3-173

files, permission bits for 1-8
finis 3-160
fixed-disk device driver

CCB input values 5~58
define device header 5-49
device characteristics 5-52
Error log 5-53
hardware characteristics 5-50
output values 5-63
queue element values 5-61

fixed-disk reserved cylinders 5-66
font

attributes 3-158
changing 3-95
selection 3-161
symbols, display 3-79

format, data stream 3-56

Index X-I5

gather 2-11
graphic codes 3-79
graphics asynchronous device driver 5-73
grave accent character 3-72
grave diacritic 3-70

halt device, block I/O subsystem 4-16
handling interrupts

from device drivers 2-19
head, of screen manager ring 3-21
hide virtual terminal 3-22
history file record types, VRM 1-26

inactive state of device-specific module 3-141
initial program load, VRM 1-4
initialize

device-specific module 3-161
insert mode 3-79
install virtual machine 1-11
international considerations

asynchronous device driver 5-19,5-28
interrupt

from display adapter, coding concepts
for 3-200

handling, from device drivers 2-19
unsolicited 3-45

IODN table, block I/O device manager 4-7
IPL

devices 1-4
with non-base devices 1-14

X-16 VRM Device Support

keyboard map 3-33
keyboard send/receive mode 3-26, 3-141

LED codes 1-13
level of program product code 1-25
light-emitting diodes, setting 3-58
lighted PF keys, settihg 3-62
LLP (loadlist processor) 1-7
loadable POST (LPOST) 1-10
loadlist 1-8
loadlist processor (LLP) 1-7
locator thresholds 3-59
logical unit number 5-92

macron accent character 3-77
macron diacritic 3-71
maintenance mode 5-125
major data types

See data types, major
map

keyboard 3-33
match code 1-12
match list 1-12
memory

read-only 1-4
minidisk 1-4

backup directory 5-71
directory 5-70
file system, VRM 1-8

modes, protocol 3-93
MOM major data type 3-98
MOM protocol mode definition 3-98
monitored mode 3-26, 3-141
move cursor 3-165

multiprotocol device driver
adapters 4-70
data buffer structure 4-83
device characteristics 4-71
device ring queue 4-82
hardware characteristics 4-70
in terface to LLC process 4-74
operation results 4-88
receive data 4-87

network ID correlation table, block I/O
subsystem 4-30

newline character 1-15
no-input zone, setting 3-60
non-base devices, IPL with 1-14

ogonek accent character 3-78
ogonek diacritic 3-71
open

virtual terminal 3-13
operation

options, block I/O subsystem 4-26
other equipment manufacturer (OEM) 5-6
overcircle accent character 3-76
overcircle diacritic 3-71
overdot accent character 3-76
overdot diacritic 3-71

palette, setting color 3-95
parallel device driver

CCB input values 5-86
define device header 5-82
device characteristics 5-84
error log 5-85

hardware characteristics 5-83
output values 5-88

permission bits 1-8
changing 1-18

picture elements 3-66
power-on self test (POST) 1-4
power-on self test control block (PCB) 1-5
presentation space scroll 3-168
processor

loadlist (LLP) 1-7
promiscuous addressing, baseband device
driver 4-57

protocol mode definition 3-93

query
ASCII codes and attributes 3-97
buffers 3-43
physical device 3-64
physical device identifiers 3-63
virtual terminal status 3-24

query statistics command, baseband device
driver 4-52

queue
for resource control 3-6
for screen management 3-6

raster array, external 3-173
read

screen segment 3-166
real

font table, shared resource structure 3-183
screen table, shared resource
structure 3-181

receive
buffer, asynchronous device driver 5-8
data mechanism, block I/O device
driver 4-28

reconfigure virtual terminal manager 3-8

Index X-17

record types, VRM history file 1-26
reinstalling code on the VRM minidisk 1-24
release of program product code 1-25
replace mode 3-79
reserved

fixed disk cylinders 5-66
resource controller 3-4
response buffer, query 3-43
restrictions on /lpp files 1-28
revising code on the VRM miniaisk 1-27
ring queue, SLIH 4-32
ring, screen manager 3-21
RT ASCII character codes 3-70

scatter 2-11
screen manager 3-4

connecting to 3-17
dump table 3-178
ring 3-21

scroll 3-168
SCSI identifier 5-91
send status command, DFT device driver 4-65
sequence

set
control 3-56

color table 3-169
command virtual terminal 3-22
echo map 3-39
keyboard map 3-33
mode 3-170

shared resource structure 3-176
single code ASCII controls 3-80
SLIH

ring queue 4-32
small computer systems interface device
driver 5-90

sound data 3-61
start

device, block I/O subsystem 4-13
list command, multiprotocol device
driver 4-79

X-IS VRM Device Support

stop list command, multiprotocol device
driver 4-81

stored driver/device state 3-170
streaming tape device driver

CCB input values 5-125
define device header 5-116
error log 5-118
hardware characteristics 5-117
output values 5-129

supervisor call instructions
KSR output short 3-31
VT output 3-29
VT query 3-43
VT set structure 3-32

suppress option 2-20
synchronous data link control protocol 4-69

t record 1-26
table, default color 3-186
table, of IODNs for device manager 4-7
tail, of screen manager ring 3-21
terminate

VTRM '3-19
text cursor representation 3-96
thresholds, locator 3-59
tilde accent character 3-74
tilde diacritic 3-71
title history file record 1-26
type code 2-14

umlaut accent character 3-74
umlaut diacritic 3-71
unhide virtual terminal 3-22
unsolicited interrupts 3-45
update

diskette 1-27
external raster array 3-173

use count, for block I/O device drivers 4-7

v record 1-26
version of program product code 1-25
virtual

device 3-202
terminal

control status 3-21
data (VTD) 3-29, 3-56
data control sequence 3-56
data stream format 3-56
manager 3-4
mode processor 3-4
query acknowledge interrupt 3-44
query status 3-24
resource manager 3-4
resource manager DDS 3-202
resource manager, terminating 3-19
set structure acknowledge interrupt 3-42
shared resource structure 3-176
shared resource structure table 3-178

VRM
update history file record 1-26

vrmdd file 1-11
vtcp command 1-20
VTRM

define device structure 3-202
IODNs 3-7

world trade considerations
asynchronous device driver 5-19, 5-28

write
long, block I/O subsystem 4-18
short, block I/O subsystem 4-20
start I/O, block I/O subsystem 4-21

I Numerics I

9332 DASD Attachment 5-91

Index X-19

X-20 VRM Device Support

--------- ----
:: ?:.~~E:

Reader's Comment Form

IBM RT PC Virtual
Resource Manager Device
Support

IBM RT PC Programming
Family

SC23-0817

Your comments assist us in improving our products. IBM may
use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

For prompt resolution to questions regarding set up, operation,
program support, and new program literature, contact the
authorized IBM RT PC dealer in your area.

Comments:

L __ _

tll
C

:.J
Cl
c
o
~
"0
"0
u..

o ...
:J

U

adBl PUB PIO~

ade.l

IIIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

aldelS ION 00 aseald

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

adBl PUB PIO.::J

ade.l

IBM RT PC VRM Device Support SC23-0817
Book Title Order No.

Book Evaluation Form

Your comments can help us produce better books. You may use this form to communicate your comments about this book, its
organization, or subject matter, with the understanding that IBM may use or distribute whatever information you supply in any
way it believes appropriate without incurring any obligation to you. Please take a few minutes to evaluate this book as soon as
you become familiar with it. Circle Y (Yes) or N (No) for each question that applies and give us any information that may
improve this book.

Y N Is the purpose of this book clear?

Y N Is the table of contents helpful?

Y N Is the index complete?

Y N Are the chapter titles and other headings
meaningful?

Y N Is the information organized appropriately?

Y N Is the information accurate?

Y N Is the information complete?

Y N Is only necessary information included?

Y N Does the book refer you to the appropriate
places for more information?

Y N Are terms defined clearly?

Y N Are terms used consistently?

Y N Are the abbreviations and acronyms
understandable?

Y N Are the examples clear?

Y N Are examples provided where they are needed?

Y N Are the illustrations clear?

Y N Is the format of the book (shape, size, color)
effective?

Other Comments

What could we do to make this book or the entire set of
books for this system easier to use?

Your name

Company name

Street address

City, State, ZIP

Optional Information

No postage necessary if mailed in the U.S.A.

L __ _

Q)

c:
:J
Cl
c:
o
~
"C
(5
U.

o
::J

U

adel pue PIO.::!

ade.l

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

aldetS tON 00 aseald

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

adel pue PIO.::!

ade.l

© IBM Corp. 1987
All rights reserved .

International Business
Machines Corporation
Department 997, Building 998
11400 Burnet Rd .
Austin , Texas 78758

Printed in the
United States of America

SC23-0817-0

-~------- -------- ----- - - --------
-~- . -

SC23 -0817 -00

92X1297

