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PREFACE 

This book is based on the sixth in a series of meetings organized by IBM to provide 

an opportunity for information exchange among leaders in various fields of mathe

matical and scientific computer usage. As in the earlier meetings, our aim has been 

to bring together those people who have broad experience and who have made 

significant contributions on the use of digital computing equipment in their fields 

of specialty. Similar volumes are planned for meetings covering other topics of 

interest to the scientist, mathematician, and engineer. 

The IBM Scientific Computing Symposium on Man-Machine Communication 

was held at the Thomas J. Watson Research Center in Yorktown Heights, New 

York, on May 3,4, and 5, 1965. The symposium was organized into five half-day 

sessions covering scientific problem-solving, man-computer interface, languages 

and communication, new areas of application, and man-computer interaction in 

the laboratory. Papers were presented by leading members of the scientific com

munity from universities, government, and industry. After each presentation, the 

floor was open for periods of informal discussions, some of which have been included 

in modified form in these proceedings. 

This book could not have been published without the cooperation of the speakers 

who presented papers and made them available for publication. Special thanks 

are due the technical planning coordinators, whose intimate knowledge of the 

field was invaluable in planning and organizing the sessions. 

We wish to thank the participants in this symposium for spending their time 

with us and for helping us get a closer view of the contemporary picture of the state 

of the art in their areas of specialization. 
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Solving Problems with Long Run Times' 

CLEMENS C. J. ROOTHAAN 

University of Chicago 

When the first digital computers became available in the early 1950's, 
their use was primarily restricted to problems of the highest priority, 
which usually meant problems connected with national defense. Since 
the middle 1950's, however, computers have become so plentiful that 
their application to many other problems has now become commonplace. 
From this time on, I have involved myself heavily in the use of computers 
for solving theoretical problems in atomic and molecular physics. I have 
always tried to use computers to the limit of what they could yield, and 
in the process I have also become very interested in computers themselves. 
I'd like to share with you some of the many interesting things I have 
learned during the last ten years about the use and organization of com
puter facilities. 

Let me first present to you briefly some background about the field 
of physics I am active in. In a sense, it all started in 1913 when Bohr 
proposed his radically new concept of how electrons move in the shells 
of atoms. According to Bohr's theory, the electrons move in orbits which 
can be calculated by applying Newton's equations of motion of classical 
mechanics, which had been established several hundred years before. 
However, out of all possible motions determined in this way, a much 
more limited, and usually discrete, set was actually permitted; the principle 
for making this selection was provided by the so-called quantum postulate. 

The next milestone in the development of atomic theory was the year 
1925, when Bohr's model, which was still rooted to some extent in classical 
mechanics, was replaced by a still more radical concept. This time, classical 
mechanics was completely swept away, and Newton's equations of motion 
were replaced by the now famous Schrodinger equation, or the mathe
matically equivalent matrix formulation of Heisenberg. In the formulation 
of Schrodinger, an electron orbit is replaced by a function in three-dimen
sional space, called a wave function; the Schrodinger equation is nothing 
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but the differential equation which such wave functions satisfy. The 
connection with Bohr's theory is provided by the fact that the wave 
functions have large values at and around the points traversed by the 
Bohr orbits, and much smaller values outside of these regions. 

Strictly speaking, this sketch as outlined above applies to the motion 
of a single electron in a force field, the most important case being the 
Hydrogen atom. However, the extension to many-electron problems is 
a very natural process for the Schrodinger equation, whereas the Bohr 
model poses many ambiguities when this generalization is attempted. 
The Schrodinger equation, then, becomes a partial differential equation 
for a wave function in which the position coordinates of all the participating 
electrons are the arguments. To the best of our knowledge, a wave function 
which satisfies this equation correctly represents an electronic system in 
a well defined stationary state, to the extent that observable chemical 
and spectroscopic properties of such a system can be reliably and accurately 
calculated. 

Unfortunately, although the Schrodinger equation provides the correct 
equation of motion for the electrons in atoms and molecules, its solution 
is a mathematical problem of staggering proportions. It is easy to see 
that exact numerical solutions are out of the question, and will probably 
remain so for all time. Dealing with an average molecule, or an atom 
at the upper end of the periodic table, we have roughly 100 electrons. 
This is still a long way from large organic molecules or solid state devices, 
where a very much larger number of electrons is involved. Continuing 
with the case of 100 electrons, the wave function contains 300 independent 
variables. Since the Schrodinger equation is not separable, if we assume 
about 100 points for each coordinate as a satisfactory mesh, we are led 
to a numerical tabulation of 10600 entries. This number is literally super
astronomical, since it exceeds by a very large factor the number of particles 
in the universe. 

It is clear, then, that in order to arrive at practical results for many
electron systems, one has to be satisfied with approximate solutions of 
the Schrodinger equation. Such approximations are usually put forward 
intuitively by physicists, and their most important character deals with 
reducing the many-particle aspect of the problem as much as possible, 
without destroying all correspondence with physical reality. The most 
successful model of wide scope has been the factorization of the wave 
function into one-electron functions; this was introduced by Hartree and 
Fock for atoms, and by Hund and Mulliken for molecules. Of course, 
the correct wave function cannot be factored; what the model proposes is 
to find the best approximation of factored form. This requirement then 
yields for an N-electron problem N partial differential equations in 3 
dimensions; in each such equation, the solutions of the other N - 1 
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equations appear in coupling terms, most of which include integrations. 
The physical interpretation of this model is closely akin to the Bohr 
concept for many-electron atoms: each electron moves in a force field 
of its own, which represents, besides the attraction of the nucleus, the 
repulsion by a negative-charge distribution calculated from the average 
positions of all the other electrons. This physical interpretation has been 
reflected in the name coined for this mathematical model, namely, the 
method of the self-consistent field. 

Let me now review the history of actual computations in this special 
area of theoretical physics. In the case of atoms, one further simplification 
is provided by the central symmetry. Namely, if the one-electron functions 
are expressed in terms of spherical coordinates, the angular dependence 
of these functions is given by spherical harmonics, and only a radial 
function remains to be determined. Thus the coupled partial differential 
equations in three-dimensional space reduce to coupled ordinary differential 
equations in a single variable. These equations are quite manageable 
even for hand computations, and calculations of this type have been 
carried out since the early 1930's. However, the calculations are quite 
laborious, and without computers it would hardly be feasible to obtain 
the self-consistent field functions for all the desired or interesting atomic 
cases. The situation is quite different for molecules. Only for one very 
simple case was the self-consistent field function determined by hand 
computation, namely, for the Hydrogen molecule in 1938 by Coulson. 
For anything beyond this two-electron molecule, the aid of the computer 
is absolutely essential to obtain self-consistent field functions; during 
the last five years, they have been obtained for several dozen diatomic 
molecules, and calculations on triatomic molecules are in progress. To 
properly appreciate the need for computers, it is quite possible that 
such a calculation, for just one molecule in one particular state, would 
require 100-1,000 man-years if done by hand; with present computers, 
this result can be obtained in something like 10-100 hours. 

The length and complexity of such calculations poses several interesting 
problems. It requires, first of all, that the mathematical procedure by 
which the end result is achieved be understood to much greater depth 
than was necessary for hand calculations. Namely, if one proceeds with 
a really complex calculation, one may find that at a particular stage in 
the computation a certain algorithm does not yield all the accuracy 
desired, or does not converge efficiently, etc. Since many of these occur
rences depend on the actual numerical situation of the particular case 
at hand, effective means have to be designed to let the program make the 
necessary choices while the computation proceeds. One might hope that 
man-machine interaction would help this situation, letting the user make 
these choices from time to time at appropriate breakpoints. However, 
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in a molecular calculation lasting only several hours, such interaction 
would occur too often if all these choices were to be settled by man-machine 
interaction, and would make the total time span of the computation 
impractically large. 

Another interesting aspect of this type of calculation is the extra
ordinary complexity of the arrays to be handled. Quantities with six 
indices or more are commonplace, and the ranges of these indices do not 
obey the simple rule that they fill a parallelepiped of grid points in multi
dimensional space. Also, often the same array is used several times, but 
the order in which the elements are to be acquired may be very different 
for subsequent passes. If such a problem is coded in any of the currently 
available compilers, the inefficient use of storage for such complex arrays, 
and the slow speed of execution caused by other than sequential manipula
tion of the elements, will render the computation prohibitively expensive, 
and often even impossible. Current compilers simply lack the power and 
flexibility necessary for these applications. I am furthermore of the opinion 
that even as compilers improve significantly, there will always be a need 
for assembly language coding for certain problems which tax the resources 
of a computer system to the limit. In this respect, I consider the prevailing 
pressure to write all user programs in compiler language a disservice to 
the computing public. 

My remaining remarks will be concerned with the organization of a 
computer system as a service facility. Before the University of Chicago 
obtained its own IBM 7090 in October, 1962, I had used off-campus facil
ities, often hundreds of miles away from Chicago. My general experience 
during this period was that computation centers are organized to be of 
benefit to the large number of users who do not tax the computer to the 
limit. My frequent needs for somewhat unusual procedures were often 
frustrated by operating rules and systems conventions which prevented 
me from getting my work done efficiently. The computation center manage
ment usually found my requests for such procedures unjustified and in
convenient, and could not understand that these demands constituted 
a legitimate need, in order that an application of unusual complexity 
be accomplished efficiently. Aside from being wasteful of the scientist's 
time, and therefore very annoying to him, this is also very short-sighted 
from the management's point of view. For it is precisely these users who 
are most creative with computers, and their knowledge and experience 
are likely to be of considerable value for designing and implementing 
better systems and operating procedures, from which even the occasional 
or light user will benefit. 

A similar situation prevails in the relationship between computer 
manufacturers and sophisticated users. In many instances, new hardware 
or software features are designed by engineers or scientists who lack the 
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experience of having designed and/or written truly complex applications 
programs. Feedback from the latter to the former is absolutely essential 
for good hardware and software design; if this does not exist, such a 
design can have flaws which are not apparent until a machine is "put 
through its paces." A typical example of such a failure can be seen if 
one follows the history of the data channels on the IBM 709-7090-7094. 
Data channels were, of course, conceived to attain overlap between input, 
output, and computing. However, it was at first not realized that the 
main program must be able to receive signals from the input-output 
operations after they have been triggered off; the channels on the 709 
lacked this capability. Again, the 7090-7094 channels had most but not 
all of this required capability. Furthermore, when our systems staff at 
the University of Chicago attempted to use the full power of channels 
in a general-purpose tape handler, in which the channel chains its com
mands, it was found that for certain sequences of commands error recovery 
was impossible, since the exact command on which the error occurred 
was ambiguous. This state of affairs clearly demonstrated a lack of under
standing on the part of the designers of the channels. It furthermore 
brings into focus the crucial importance of simultaneous hardware and 
software design of new computer systems. A global overview of program
ming systems architecture is simply not an adequate substitute for this, 
since it is often the details in software implementation which point up 
the flaws in hardware design. 

When the University of Chicago established its own Computation 
Center, my persistent dissatisfaction with the quality of service in many 
other installations was probably the reason I became its director. In this 
capacity, I considered it my task to eliminate those organizational short
comings which had so often plagued me as a user. Perhaps the single most 
important impediment to the usefulness of a computer is the job turn
around time. It is ironical that as computers became faster and more 
powerful, the turn-around time increased steadily. This has become such 
an impediment that hardware is now being built to give many users 
simultaneous rapid access to the computer. However, with current equip
ment vast improvements are possible. At our center, a unique IBM 7094-
7040 system has recently been installed, and the necessary software to 
support this configuration is being implemented. This arrangement differs 
from the direct-couple system inasmuch as the 7094 remains entirely 
compatible with a stand-alone 7094. The 7040 functions as the input
output computer and handles all the necessary job scheduling; the 7094 
continues to operate as a standard two-channel tape machine. When the 
software is fully implemented, we expect to achieve a job turn-around 
time of about t hour, even during heavy work loads, and a few minutes 
when the traffic is somewhat less. 
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On Time-Sharing Systems, Design and Use 

A. H. TAuB 

University of California, Berkeley 

1. Introduction 

During the past decade computer hardware has been greatly improved. 
Machines have become faster, more reliable and have been provided with 
larger random-access memories at more reasonable costs. A major portion 
but not all of this improvement is accounted for by advances made in 
obtaining faster and more reliable computer components. Novel ideas 
in the logical organization of computer sub-units have also contributed 
to the improvement of computers and in some cases have necessitated a 
departure from the classical organization of The Institute for Advanced 
Study type of machine. 

Thus the speed of arithmetic units has been increased in good part 
because novel arithmetic algorithms have been discovered, and hardware 
has been organized to implement these algorithms. Present-day arithmetic 
units are not only faster than they used to be but are faster relative to 
memory speeds. In the early days of computers, machines had a multiply 
time of 40 main memory accesses. Quite a few of today's computers 
can multiply in times less than five times the memory access time. 

In order to redress the unbalance due to the unevenness in our progress 
in these two areas of computer development, machine designers have 
organized computers so that the need for memory accesses has been de
creased. This has been accomplished by a variety of means including 
changes in memory-addressing schemes and the introduction of complicated 
instructions. Such implementation makes use of storage registers outside 
the main memory-and additional hardware-so that it is possible to 
carry out red-tape calculations outside of the main arithmetic unit and 
at the same time as that unit is otherwise engaged. l?y using additional 
storage outside of the main memory and by providing additional control 
units, various look-ahead, or look-behind, units have been devised to 
further decrease the number of main memory accesses and to increase 
the amount of work being done concurrently. 
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Thus present-day "advanced" computers are designed to gamble on 
the predictability in small or local parts of a scientific numerical calculation. 
The gamble is hopefully of the sort in which gains are made when it is 
successful, but losses are minimized or non-existent when the gamble 
is unsuccessful. The designer tries to playa sure thing at the price of 
introducing additional hardware. It is important to remember that this 
implementation of the idea of achieving speed in computing by doing 
things concurrently is connected with local predictability in a computa
tion. The state of the control and processor portions of the computer 
at any instant of time is highly dependent on the immediate past; and 
the expectation is that this dependency is useful in expediting what is 
desired to be done in the immediate future. This point must be borne in 
mind when we consider using such a computer as a central processor 
for a time-sharing system. 

Not only has computer hardware changed in the last decade but so 
has computer software. Many computer languages have been devised 
along with assemblers and compilers. It is not clear that progress in 
software has kept up with progress in hardware. In particular it seems 
difficult to create a compiler capable of producing a program which exploits 
the concurrency of an advanced computer as well as can be done by a 
programmer. On the other hand, many executive systems do manage to 
keep input-output going efficiently and concurrently with the use of the 
central processor on other problems. These developments have had a 
number of aims, including the aim of making the computer more accessible 
to the user. This aim has not been fully realized because in practice the 
user is forced to deal with the computer via a monitor system-a practice 
dictated by efficiency of operation considerations. The monitor, however, 
introduces barriers between the problem poser and the computer which 
in many cases do not allow the machine to be fully or easily exploited 
in dealing with a particular problem. 

2. Reasons for Considering Time-Sharing Systems 

The need for removing barriers between the problem poser and the 
computer-or, more positively stated, the need for providing better 
man-machine interaction-is one of the major reasons for considering 
time-sharing systems. In order to see why this need exists, we must review 
some of the fact and fiction concerning the use of computers in dealing 
with large-scale scientific computations. 

Such a use of a computing machine has been characterized by saying 
that "there is a relatively large amount of arithmetic done on relatively 
small amounts of data, and the output volume is also relatively small." 
Let us look in some detail at what is involved in finding the numerical 
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"solution" of an m( = 1, 2, or 3)-dimensional time-dependent problem 
in hydrodynamics when Lagrangian coordinates are used. There are 
m + 1 independent variables and 2m + 1 dependent variables, since 
the Eulerian coordinates of the particle paths must be computed, the 
velocity field must be determined, and one thermodynamic variable must 
be calculated in addition to the density. The density is of course known 
if the particle paths are known. Each dependent variable must be de
termined as a function of the time. 

It is not unreasonable to require that the extent of each spatial variable 
be divided into between 10 and 100 mesh points. The amount of data 
D which has to be stored in the computer at a given time (not necessarily 
in the high-speed memory) is then 

(1) 

words, where the lower limit holds for a one-dimensional problem with 
a lO-point spatial mesh and the upper limit holds for a three-dimensional 
problem with a cubical mesh having 100 points to the side. 

The amount of calculation involved in determining the values of all 
the dependent variables at a mesh point in the time step from t to t + f:..t 
depends on the number of dimensions. We may assume that 75 arithmetic 
operations take place in computing all the dependent variables for a 
one-dimensional problem, 125 for a two-dimensional one, and 175 for a 
three-dimensional one. Hence n, the total number of operations per time 
step, will be 

7.5 X 102 ::; n ::; 1.75 X 108 • 

The number of time steps taken in a given problem is usually a multiple 
K of the number of mesh points on a side. Hence for the whole problem 
the total number of operations is KN, where 

(2) 

and K may be as large as 30. (The quantity K is the number of times a 
sound wave will traverse one dimension of the fluid under consideration.) 

Now, if a calculation similar to the one described above is done by 
inputting the amount of data D and performing KN operations, where 
D and N satisfy the inequalities (1) and (2), and then outputting an amount 
of data less than or equal to D, then it is indeed true that "there is a 
relatively large amount of arithmetic done on relatively small amounts 
of data, and the output volume is also relatively small." Note that the 
amount of computation per input data word varies from 250K for a 
one-dimensional problem to 2,500K for a three-dimensional one. 

The method described above of inputting, running, and outputting 
does obtain when the physics of the problem is understood, the mathe-
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matical· method of solving is stable, and the code is debugged. Even in 
such cases the run time of the problem may be so long that it must be 
interrupted before completion, and thus there may have to be a number 
of input and output stages instead of one of each. Further, when the 
problem poser desires to "interact" with the calculation-that is, desires 
to modify some parameter (e.g., the time step) in the problem or to change 
the course of the computation in some other way (a way he may not 
be able to foresee when he is writing his program)-he may want to do 
this on the basis of results achieved to date, and this will require output 
and further input. 

However, computations in hydrodynamics are not all done on problems 
in which the physics is understood; nor are foolproof methods known 
or foolproof codes written without a trying period of debugging. When 
the user is working toward the ideal state described above, the input
output demands are very much increased and may rise to the level of 
one input and one output for a relatively small number of time steps. 

When one operates a computation facility in a batch-processing mode 
in which the user is provided the output on a printed page which he 
must use in some manner before he interacts again with the computer, 
very serious problems arise. The fact that at least one installation acquires 
its paper for such use in freight car lots (and measures the output in the 
height in feet of the stack of folded paper provided to the user) gives 
an indication of the seriousness of the problem and raises questions as 
to how efficient is batch processing and what is a true measure of efficiency. 

Partly because a part of the input-output function can be done off-line, 
there is a tendency to rate the capacity of a computing system by the 
speed and memory capacity of the central processor or processors involved. 
It is certainly true that these quantities playa role of overriding importance 
in the "production" phase of a computation. Many problems now being 
done as a matter of routine could not be considered for numerical solution 
until computers were provided with sufficiently fast arithmetic units. 
We are, however, faced with the following situation: At present, in order 
to interact with such a computer, either in getting ready for production 
or even during the course of a production run, a large and perhaps un
acceptable amount of time must elapse because we are using batch-proc
essing methods to keep the central processor working. 

It is important to decrease the time it now takes a scientific problem 
poser to interact with a computer when he is in the debugging phase 
of his work. This need may ,also exist in the production phase because 
the speed of present-day computers is such that a very large problem 
can now be done in the time that it previously took to do a moderate
sized one. I submit that we are not yet accustomed to properly formulating 
very large problems-or any large-scale endeavors-and must depend 
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on a certain amount of intervention in the course of the computation. 
In evidence of this I quote my own feelings, that I am convinced are 
shared by many people, on the completion of a large-scale computation. 
These feelings are summarized by the statement: "I now know how that 
computation should have been organized." Usually, the situation is left 
at that, and nothing is done about reorganizing the computation. If there 
had been more possibility of interacting with the computer even in the 
production phase, these afterthoughts would not have to be afterthoughts. 

Time-sharing offers the promise of providing the scientific problem 
solver with faster interaction times-that is, with better man-machine 
interaction capabilities-and proposes to keep the computer busy during 
the time he is cogitating about the nature of the interaction. This double 
offer is therefore of great interest to the problem solver and to the manager 
of the computation facility. 

Many facilities are faced with another serious problem which time
sharing offers a promise of alleviating. This problem is the following one: 
Some users of the facility have problems which demand computers of the 
greatest speed and capacity. However, such users do not provide enough 
work to saturate the computer all day, every day. The nature of the com
puting equipment acquired is determined by the nature of these problems 
which constitute the peak-load on the facility. The smaller problems can 
be, and of course are, done on the computer. If they are done in a manner 
where each user has sole access to the computer, the capacity of the 
computer is not fully utilized, and the user is faced with long turn-around 
times. It is proposed that under time-sharing the capacity of the computer 
be distributed to a number of smaller users whose total demand is com
mensurate with the capacity of the computer, who will be dealt with 
almost simultaneously, and who will be provided with response times 
of the order of seconds instead of hours. 

The problem of providing shorter response times to solvers of smaller 
problems can of course be met by providing groups of these with separate 
computers of smaller capacity. It is an article of faith that needs to be 
examined in great detail-that one large computer is cheaper to build, 
maintain, and operate than a number of smaller ones. Even if one argues 
that, when the cost of the peripheral equipment and operating system 
overhead is taken into account, the economics of the situation are not 
in favor of the single large installation versus a number of small ones, 
one is left with two major advantages of the large system. One of these 
is the added ability to handle large problems of the type discussed above. 
The other is economical provision of a large library of programs and even 
data. If separate computer installations are going to share software and 
data by using modern communication networks, then the cost of each 
installation will rise, and the assumed economic unbalance will be redressed. 
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3. Design Problems for Time-Sharing Computers 

If one accepts as one reason for the existence of a time-sharing system 
the provision of better man-machine interaction capability, then one is 
immediately led to the following questions: How shall the information 
to which the problem solver is to react be presented? How shall the problem 
solver communicate with the machine, that is, what language should 
he use and what communication channels should be made available to 
him? 

In answering these questions, we may distinguish between the two 
phases of problem solving mentioned earlier-production and debugging. 
The· distinction is not an absolute one, and remarks made concerning one 
phase may apply to the other. 

Let us return to the hydrodynamics problem and suppose that the 
code is generating data purporting to describe the state of the fluid as 
a·function of the time. The problem solver may wish to assure himself 
that the numerical method he is using is stable for the time-step size 
he has prescribed. In many non-linear partial differential equation problems 
this assurance cannot be provided by a prior mathematical analysis. 
Recent results enable us to state criteria for the linear variable coefficient 
case, but the non-linear case is still beyond analysis. As a result, the 
numerical values of the dependent variables must be monitored and 
watched for oscillations or other suspicious behavior. Suspicious behavior 
may be hard to describe, especially if the problem involved may have 
a physical instability which is being studied. 

In any case there is a need for examining thousands of numbers, and 
it is clear that the reaction time cannot be small, if even before these 
numbers can be examined they all have to be printed. 

The obvious thing is for the problem solver to have the machine do 
those mechanical things that he would do with the data-plot it, scan 
it to determine the "interesting" things about the data, and then present 
those portions to him in some quickly absorbable form. The difficulty 
here is to define "interesting," for if this could be defined in an a priori 
fashion, there would be no need to interact with the computer. 

The existence of graphical devices and lightpens suggests one method 
of interacting with a computer in scientific problem solving: that the 
computer be asked to graph a portion of the data, and the problem solver 
be given the ability to circle a portion of the graph which he wishes to 
view in more detail. After the portion is circled, the computer presents 
him with the expanded graph he desires. He should of course be provided 
with the ability to set the scales used in graphing. The graphical techniques 
for talking to the computer should supplement other methods of making 
requests to the computer. We should have a graphing device responsive 
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to a specific request such as "plot the contents of memory positions 
x = n, ... , n + k as a function of x" or "plot the array called X as a 
function of the one called Y." We would also like it to be responsive 
to a vague request such as "plot the array X(n) as a function of n for 
those values of n where X is changing rapidly." 

The graphical display problem is an old one, and many ingenious dis
plays have been developed. The software problems associated with them 
are also in an advanced state of solution. There are, however, some novel 
software and hardware problems involved in incorporating these develop
ments in a time-sharing scheme-especially one in which the displays 
are located at a site remote from the central computer. In such a case 
we are faced with a data transmission problem and the provision of hard
ware to buffer the data and generate the display. If transmission lines 
with low speeds of transmission are to be used, the amount of data sent 
from the central computer should be relatively small; yet one may be 
interested in displaying widely varying quantities. An elaborate computer 
is not needed for the graphical display generation. A very large memory 
which can communicate to the graphical display and to the central com
puter is of course needed. 

The debugging phase of solving a hydrodynamics problem is usually 
considered to involve relatively small amounts of data or programs which 
can be communicated to and from the computer by use of a typing device. 
If this device is located at a remote site and if low transmission rates 
are to be used, then the central facility must have a large back-up memory. 
This is so because, even though relatively little information is to be 
transmitted, if this is to be meaningful, it must be part of a larger amount 
of information. The latter must be available to the central computer. 
It is already available to the problem solver, for he presumably has a 
record of the previous communications to the central computer and has 
some idea of what he is trying to do. 

The back-up memory must pave the capacity to store all the information 
pertinent to all the users sharing the computer and be able to make the 
information for a particular job available for use within prescribed time 
limits. Indeed, the number of users that can use a time-sharing facility 
is limited by the capacity of this memory and by the time it takes to 
make a portion of its contents available to the main memory of the system. 

If the problem solver is going to interact with the computer, and if 
the machine is going to be shared by other users, it is evident that the 
language used by the problem solver must be quite different from the 
machine language. In particular, physical memory addresses of data and 
instructions will not be known to him. Since he is interested in the behavior 
of certain variables, he would like to refer to these by name and not be 
burdened with anything else. This suggests that the software and hardware 
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design allow this and be designed so that memory relocation and protection 
are done for him. 

The hardware and software must have another characteristic: that they 
be as capable of dealing with non-numeric data as they are with numeric 
data. For, in the interaction phase, a great portion of the central facility's 
effort will be devoted to translating the general statements made by the 
problem solver into strings of machine instructions. 

It must however be remembered that the problem solver must be 
concerned with what is going on in the arithmetic unit. If he is anxious 
about the stability of a numerical procedure, he may need to know the 
size of both the most significant and the least significant portion of the 
product before it is rounded and stored. Thus the language provided 
to the user must include the capability of referring to the inner parts 
of the computer as well as the capability of referring to "arrays" or 
"variables. " 

A large part of the nostalgia some computer users have for the good 
old days of the von Neumann machine without monitors is due to the 
fact that language creators and system programmers have not provided 
users with the ability to query sub-units of computers. This type of query 
is essential when one is trying to disentangle mathematical method 
stability from phenomenological stability; and unless it can be decided 
which instability is being manifested, the whole computation may be 
worthless. 
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Computer Utility: Objectives and Problems* 

R. M. FANO 

Massachusetts Institute of Technology 

[ABSTRACT] 

The original motivation for the development of time-sharing systems 
was to make it possible for several people to access simultaneously a 
powerful computer in a manner that would give each of them the illusion 
of having a private computer at his disposal. Actual experience with 
the operation and use of time-sharing systems has brought to light other 
virtues of such systems that will be in the long run much more significant, 
namely, their use as "thinking tools" and their role as powerful means 
of intellectual communication between people. These virtues are responsible 
for the growing interest in computer utilities. The concept of a computer 
utility was discussed from the point of view of the user, the manager, the 
designer, and society as a whole. 

* The manuscript of this paper was not available at the time this book was published. 
A paper by Professor Fano on the same general topic appeared in the IEEE Spectrum, 
January 1965, pages 56-64. Work reported therein was supported by Project MAC, 
an M.LT. research program sponsored by the Advanced Research Projects Agency, 
Department of Defense, under Office of Naval Research Contract Number Nonr-
4102(01). 
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A User's View of a Functionally Oriented 
On-Line System* 

G. J. CULLER 

University of California, Santa Barbara 

[ABSTRACT] 

With systems of the type considered here, a user has control directly over 
the mathematical organization of his problem. There is presently operating 
at TRW Systems a four station on-line system which is functionally 
oriented. It is highly interactive in the sense that each user gets service 
upon immediate depression of a console key. This system is an outgrowth 
of earlier systems used experimentally at Bunker-Ramo in Canoga Park. 
At present the University of California at Santa Barbara has a similar 
system containing further developments operating with a classroom of 
sixteen (16) coni/oles and, in addition, remote users at Harvard University 
and at the University of California at Los Angeles. The remote users enter 
the system through the use of Western Union data sets. The style and 
character of the system have been developed in response to a need ex
pressed by a very in-group of users (mostly physicists) with mathematical 
applications. 

* The manuscript of this paper was not available at the time this book was published. 
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JOSS: Experience with an Experimental Computing 
Service for Users at Remote Typewriter Consoles* 

J. C.SHAW 
The RAND Corporation 

INTRODUCTION 

In discussions of on-line versus off-line use of computers, attention fre
quently focuses on relative costs to the neglect of relative benefits. An 
experimental computing service, at remote typewriter consoles, was made 
available to the staff of The RAND Corporation to explore the value 
of on-line use of a computer. JOSS** (Johnniac Open-Shop System) 
monitors ten typewriters and serves up to eight users concurrently. It has 
been in daily use since January 1964. (An earlier version saw limited 
use beginning in May 1963.) 

Since 1963, and even earlier, other on-line, time-shared, general-purpose 
computing systems have come to fruition. The largest of these, at the 
Massachusetts Institute of Technology [1] and at the System Development 
Corporation [2], provide computing services for a broad spectrum of 
computing requirements. 

In contrast, JOSS is limited by the capacities of the Johnniac, a Prince
ton-class computer constructed in 1950-53. T. O. Ellis and M. R. Davis 
painstakingly designed a communication system to connect familiar 
typewriters i and the author worked hard to design a smooth language 
for specifying small numerical computations. We believe the resulting 
improved access-not raw computing power-leads users to prefer JOSS 
to alternative conventional computing services for many problems. 

* Copyright © 1965 by The RAND Corporation. Any views expressed in this 
paper are those of the author. They should not be interpreted as reflecting the views 
of The RAND Corporation or the official opinion or policy of any of its governmental 
or private research sponsors. 

** JOSS is the trademark and service mark of The RAND Corporation for its 
computer program and services using that program. 
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Descriptions of the Johnniac, the typewriter communication system, 
and the language appear elsewhere [3-7]. Here, we deal primarily with 
the philosophy of the system and our users' experiences with it. 

HARDWARE 

The existence of an in-house computer nearing the end of its useful life 
provided the opportunity to experiment. Indeed, the Johnniac was used 
experimentally as soon as commercial computers became better able to 
meet RAND's computing needs. The 4,096-word magnetic-core memory, 
12,288-word magnetic drum, and an austere order code presented a stiff 
challenge to produce any workable on-line time-shared system. It was 
necessary to construct a communication system to monitor and control 
remote typewriters and to buffer data transmissions. (In modern equip
ment, of course, this communication requirement may, in some cases, 
be better met by interrupting the central processor than by using a com
munications processor.) 

The typewriter chosen was the IBM Model 868 with a paging control. 
(Teletypewriters were judged unsatisfactory, and the IBM SELECTRlC@ 
appeared too late for consideration.) Cooperative maintenance has over
come the initial troubles with the typewriters. The character set was 
carefully chosen to preserve all the standard punctuation marks. However, 
brackets and the symbols for arithmetic operations and numerical relations 
replaced the less frequently used special characters. A two-color ribbon 
switches automatically to black for output and to green for input. These 
features facilitate typing and reading the JOSS language and contribute 
to the philosophy that the user shall interact with JOSS as with a comput
ing aide, using a natural, high-level language at all times. 

SOFTWARE 

To carry out the philosophy of presenting JOSS to the user as a computing 
aide and the only active agent with which he communicates, it was necessary 
to "hide" the J ohnniac from the user and to present instead the image 
of a person interpreting instructions and remaining in control of the 
situation, no matter how senseless those instructions may be. This con
trasts with a code-checking session in which one is concerned with machine
language instructions and representations of objects at the bit level. 
There, one is reminded of nothing so much as an experimenter carefully 
setting up an elaborate electronic apparatus, then throwing the switch 
for a smoke test-because the machine-language interpreter is prepared 
to manipulate only pieces of complex representations. The programmer 
who tries to repair the damage of a first test in preparation for a second 
is really doing it himself, because the available interpreter operates at 
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too low a level for him to get any feeling of linguistically directing an 
agent. This effect is so strong that in programmers' jargon routines are 
personified as active agents, seldom the machine-language interpreter. 

Not so with JOSS. The programs the user gives JOSS are strictly 
static, passive specifications of computing and typing processes that JOSS 
carries out (Figure 1). If the user specifies a process imperfectly, JOSS 
will call it to his attention with an error message and stand by to help 
with the changes. Frequently the user can direct JOSS to make the correc
tion and continue without having to start over at the beginning of the 
program. Sometimes the user directs JOSS to carry out a sensible process 
but not the one intended. Then he himself must detect this from JOSS's 
actions and results. 

JOSS lacks the problem-solving capacity to carryon a sophisticated 
conversation. For its comments, it simply selects from a stock of forty 
"canned" messages. But the timeliness and appropriateness of its remarks 

'* PRIME NUMBERS 

1.1 for d : 2(i)ip[sqrt(x)] if x > 3. 
1.2. x;;' o. 
2.1 Set X = 0 if fp(x/d) c O. 

Do 1 for x -= 2(1)50. 
x = 2 
x = 3 
x = 5 
x = 7 
x = 11 
x = 13 
x = 17 
x = 19 
x = 23 
x = 29 
x = 31 
x=- 37 
x = 41 
x = 43 
x = 47 

Type all steps. 

1.1 Do part 2 for d =- 2(1)ip[sqrt(x)] if x> 3. 
1.2 Type x if x';' o. 
2.1 Set x = 0 if fp(x/d) = O. 

Delete all. 

FIGURE 1 
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1.1 == I 
1.2 = I 
1.3 
Set 
Set c 
Do part1. 
Eh? 
Do 1.1. 
Error above: Part number must be integer and O<part<10*9. 
Do 1. 
Error at step 1.1: a is undefined. 
Set a "'" O. 
Go. 
Error at step 1.1: I have a zero divisor. 
Set a '"' ~1. 
Go. 
Error at step 1.1: I have a negative argument for sqrt. 
Set a "" 1. 
Go. 
Error at step 1.3: I can't find the required form. 
Form 1: 
a "" h ""__ c ""__ roots: 
Go.-- "--
Error at step 1.3: I have too few values 
1.3 a, hI c, xCi), x(2) in form 1. 

for the form. 

Go. 
Error at step 1.3: I can't express value in your form. 
Form 1: 
.11.== b ""_ 
Go.--

C "" roots: __ 0 ____ 0_ 

Error at step 1.3: Your fields run together in the form. 
Form 1: 
a = h =___ c = 
Go.-
a = 1 b = -1 c = -6 
Do part 1 for c = -1(1)-4. 

roots: 3.0000 -2.0000 

Error above: Illegal set of values for iteration. 
Do part 1 for c ~ -1(-1)-4. 
a = 1 b = -1 c = -1 roots: 
a = 1 b = -1 c = -2 roots: 
a = 1 b = -1 c = -3 roots: 
a = 1 b = -1 c = -4 roots: 
2.1 Do 2.1 for i : 1(1)100. 
Do step • 
I need more storage space. 
Delete step 2.1. 
Go. 
It's a mess. Let's start over. 
Go. 

1.6180 
2.0000 
2.3028 
2.5616 

-.6180 
-1.0000 
-1.3028 
-1.5616 

Error above: You haven't told me to do anything yet. 
Do 1 for c = -5. 
a = 1 b = -1 c = -5 roots: 2.7913 -1.7913 
Please wind up your work and turn off as soon as possible. 
Delete 

FIGURE 2 
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give a feeling of interacting with a person. After a year's experience with 
neutral, impersonal messages, we introduced personal pronouns and some 
informal diction (Figure 2). This was done not facetiously but rather 
to reinforce the model. No objections to the more personal messages 
have been voiced. 

JOSS not only permits but requires high-level interaction between 
man and machine. The user has no way of referring to the internal rep
resentation of any of the objects JOSS deals with: value assignments, 
steps, or forms. The details of the representation are completely sealed 
off. Thus, except for hardware malfunctions, no JOSS "experts" are 
required to explain the behavior of the system in terms of machine-level 
operations. Inside knowledge is of no advantage to the user. 

JOSS hides the binary nature of the Johnniac by performing arithmetic 
such that the user sees floating-decimal operations with nine digits. No 
conversion errors are introduced on input or output, and internal arithmetic 
is familiar. The user may ask JOSS to add .1 ten times, and the result 
is indeed 1. Exact arithmetic is performed so long as results do not exceed 
nine decimal digits. Longer results are rounded in the conventional way. 

The user directs JOSS in three basic activities: numerical processing, 
editing, and typing. The language contains elements to facilitate all three. 
The specification of forms for typing out results is done by presenting 
JOSS with a pattern for the output line. This is only one component 
of the many that are used in sophisticated report generators. The remark
able thing about these forms is the general adequacy of just two types 
of field specification: one for fixed-point output and one for scientific 
notation. If the user fails to specify a form for the output, JOSS chooses 
a reasonable one: JOSS types in fixed-point form if the magnitude of 
the result is between .001 and 1,000,000; otherwise, JOSS types in scientific 
notation. 

TRAINING 

The use of the JOSS system is best taught by example. Though several 
documents and a motion picture show the uses of JOSS in standard 
types of numerical work (Figure 3 serves as a check list of what the system 
can do), an hour's demonstration at a typewriter console is still the most 
effective introduction. With such a demonstration and access to the 
documents, a new user enters a phase in which he can use the system 
productively for solving simple problems. Meanwhile he familiarizes 
himself with the full power of the system by informal exploring. 

The user receives no formal description of the language, .. since such a 
description would be at least as difficult to learn as the JOSS language 
itself. A JOSS representative (not a computer expert) is available in each 
department to assist new users. 
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DD!CT or INDIIBCT 

Set x=a. 

Do step 1.1. 
Do step 1.1 for x - a, b, c(d)e. 
Do part 1. 
Do part 1 for x - a(b)c(d)e, f, g. 

Type a,b,c,_. 
Type a,b in form 2. 
Type "ABCDE". 
Type step 1.1. 
Type part 1. 
Type form 2. 
Type all steps. 
Type all "arts. 
Type aU forms. 
Type all values. 
Type aU. 
Type size. 
Type time. 
Type user •• 

Delete x,y. 
Delete all values. 

Line. 

Page. 

nug (only): 

Cancel. 

Delete step 1.1. 
Delete Itart 1. 
Delete form 2. 
Delete all steps. 
Delete all Itarts. 
Delete all forma. 
Delete all. 

Go. 

Form 2: 
dist. - •••••••••• accel. 

x-a 

RELATIONS: 

-"S;~<> 

OPERATIONS: 

+-·/*()[)II 

CONDITIONS: 

if a<b<c and dEe or f,Eg 

FUNCTIONS: 

--'-

INDIRECT (only): 

1.1 To step 3.1. 
1.i To part 3. 

1.1 Done. 

sqrt(a) (square root) 
log(ai (natural logarithm) 
exp(a 
sin~a cos a 
arg a,b) largument of point Ea,b]) 1.1 Stop. 

1.1 Demand x. iPfa~ integer part) fp a fraction part) 
dp a digit part) 
xp a exponent part) 
sgn~a) sign) 
max a,b) 
min a,b,c) 

PUNCTUATION and SPECIAL CHARACTERS: 

.,;:'''_#$1 
• indicates a field for a number in a form. 

::7.::::7 indicates scientific notation in a form. 
# is the strike-out symbol. 
$ carries the value of the current line number. * at the beginning or end kills an instruction line. 
Brackets may be used above in place of parentheses. 
Indexed letters (e.g. v(a), wla,b]) may be used above in place of x, 1. 
Arbitr~ expressions ( e.g. 3· (sin(2'p+3)-q]+r ) may be used above 

in place of ~, k, £ ••••• 

FIGURE 3 

Most of the nearly 200 JOSS users had no prior direct programming 
experience. Those who had experience betrayed this fact by the style 
in which they first used JOSS. They frequently worked on a program 
till they felt that all eventualities were covered before telling JOSS to 
do any processing. 
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The novice has no conflicts with other programming systems and so 
has an easier time. Even grade-school children have shown an ability 
and eagerness to use JOSS on problems they understand. 

The JOSS language is easy to learn. During the development of JOSS, 
its use was restricted to a select group of cooperative users who were 
asked to test the system during a period of rapid change. Near the end 
of that period, an unauthorized senior staff member was observed using 
JOSS before any training program had been set up. It turned out that 
he was taught by another unauthorized senior staff member who was 
taught by still another unauthorized senior staff member who learned 
by looking over the shoulder of an authorized user. 

EXPERIENCE 

JOSS users face three serious limitations in the experimental system: 
frequent malfunctions in the Johnniac; an irregular schedule; and no 
provision for filing programs for use in a later session. Speed limits the 
user only occasionally. 

The Johnniac performs perfectly about 95 per cent of the time scheduled 
for JOSS service. This is perhaps better than one should expect of an 
aging vacuum-tube computer. In conventional service it is adequate, 
but in on-line work the system usually "crashes" every other day. The 
loss is limited by the size constraints on programs (about three type
written pages), but any disruption is irritating. 

JOSS is incompatible with other uses of the Johnniac. No background 
processing occurs to absorb otherwise idle time. At the beginning of the 
experiment, we expected to dedicate the computer to JOSS service. 
But other experimental work led to important applications that could 
not be "bumped." So, the regular schedule for JOSS is only from 10 a.m. 
to 6 p.m., Monday through Friday. 

The Johnniac has no magnetic tape or disk file for program storage. 
We rejected paper tape punches and readers at the remote stations as 
expensive and inconsistent with the desired central files. We also rejected 
a punched card file because it would require an operator, and punching 
and reading would interfere with the basic service. 

These shortcomings in reliability, schedule, and filing should be kept 
in mind while interpreting the following statistics for a week that was 
free of malfunctions: 

Statistics for April 1-7, 1965, 10:00 a.m. to 6:00 p.m. (40 hrs.) 

1. JOSS worked for 77 different users in the week. 
2. On the average day, 31 users conducted 49 sessions. 
3. The sessions averaged 58 minutes, with 50 per cent less than 35 minutes. 
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4. The system was saturated with 8 users 18 per cent of the time, and 4 per cent of 
the time someone was waiting in the queue. 

5. There were 5.7 simultaneous users, on the average. 
6. The input rate was 1.9 lines per minute per user. The output rate was 3.9 lines per 

minute per user. That is, there was a line of input or output every 10 seconds for 
every user on average. 

7. JOSS worked on user blocks in core memory 57 per cent of the time. (This tends 
to 75 per cent during busy periods.) 

The statistics are objective though indirect evidence of the usefulness 
of JOSS. Direct but subjective evidence is found in the comments of the 
users. One said he was "ready to give up the slide rule." Another mathe
matician claimed to have used the service for "everything from finding 
the product of two real numbers to solving fifteen simultaneous trans
cendental equations" but then told how, on one problem, the easy access 
to computing power led him to postpone a more thoughtful approach 
that finally succeeded. A senior electronics engineer, arguing for a replace
ment of the J ohnniac, wrote: 

JOSS is becoming essential to our output like paper, or coffee. It speeds up calcula
tions; makes it easy to try experiments. It is the greatest, when it works. I have 
heard it compared favorably to beer and referred to as RAND's most important 
fringe benefit. People adjust their lives to fit around JOSS .... No use coming 
to RAND before 10:00 a.m. when JOSS arrives, in fact noon or after 5:00 p.m. is a 
better time, JOSS is less busy. When JOSS starts typing answers, the titillating 
pleasure is equalled only by the ensuing anguish when JOSS breaks off into gibberish 
or goes away commending your program to oblivion. We can hardly live with JOSS, 
but we can't live without it. We're hooked. 

CONCLUSION 

Sixteen months should be long enough for the novelty of JOSS service 
to have worn off. Most RAND staff members having at least occasional 
computing problems have been exposed to the system. The statistics 
developed from the minute-by-minute log of activity show that many 
users find the investment of their time and effort in the on-line direction 
of JOSS to be rewarding. 

At this point, several challenges arise: 

To take the system out of the experimental stage and into a regular 
economical service on modern reliable equipment; 

To extend input-output capabilities to devices other than type
writers; 

To extend the range of application beyond small numerical problems 
while preserving the best features of JOSS. 
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DISCUSSION 

J. C. MCPHERSON: What, in the light of experience,are the most im
portant changes you would like to make in a follow-on system? 

J. C. SHAW: I would like to get out, myself. Fortunately, this is a 
very clean breaking point. Mr. C. L. Baker heads a team with the re
sponsibility for JOSS-II on a PDP-6 which has been ordered to replace 
the Johnniac. One of the obvious additions to the language is the summa
tion operator, which is very powerful in compressing programs. 

Function definition is another. It is quite easy to define procedures 
for JOSS, but the ability to define a function and use the function name 
in other expressions would be a useful extension. These can come easily 
with modern equipment and greater storage capacity, but it is a challenge 
to preserve the smoothness of the system while extending the language. 

J. M. BENNETT: Is it proposed to be able to pass the programs across 
to the normal computing queue? 

J. C. SHAW: The PDP-6 will be dedicated to JOSS service. There 
will ultimately be ways, other than via the typewriter, of getting data 
out, but, at the moment, there are no plans for taking a JOSS program 
out and, say, compiling it for another system. 
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D. FARBER: In JOSS-II you are going to have filing of programs. 
Have you thought how to do that without needlessly complicating the 
language or the operation of the language? 

J. C. SHAW: Filing will be very simple-minded: just ask JOSS to 
file the program, get a name for it, and call for it by name at another 
session. 

QUESTION: In this system, do you give any priority to any particular 
station or particular users in considering how to get it on-line as soon 
as possible? 

J. C. SHAW: No, they are all treated equally-first come, first serve. 
H. KRENN: How much core space is required for your system? 
J. C. SHAW: Johnniac has a 4,096-word core, and the system is 6,000 

words. Only half of the system resides in core storage. JOSS goes to the 
drum to get infrequently used routines such as output routines. 

R. R. FENICHEL: I wonder how reliable your statistics are. I don't 
mean to criticize you in this regard, because statistics gathering for 
time-sharing systems is certainly a very difficult thing to do. But in the 
case of JOSS, I think the problem may be more severe than usual. 

The several users of JOSS are not each permanently associated with a 
priority, a set of privileges for using various parts of the system, a dollars
and-cents time account, and a set of personal program and data files. 
Thus, there is no incentive, as I see it, for one JOSS user ever to announce 
to the system that he is taking a console over from another user. 

I suppose that the real basis of my question is this: I was out at RAND 
during the week when you were gathering statistics. 

J. C. SHAW: Didn't you use your own initials? 
R. R. FENICHEL: No, I didn't. I used JOSS for about an hour, and 

I never signed on. Whatever else should be done with your statistics, 
the "77" should be upped to "78." 

J. C. SHAW: It is true, perhaps, that the statistics on users are cluttered 
a little by demonstrations, but I think that is in the noise level. 

E. E. DAVID, JR: I guess one of the questions Mr. Fenichel had in mind 
was why two or three or ten users can't use the system under one log-in. 
Actually the number you gave might be conservative. 

J. C. SHAW: Yes, they can. But we feel vanity will impel them to 
use their own initials. 
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Linguistic Problems of Man-Computer Interaction* 

ANTHONY G. OETTINGER 

Harvard University 

It's a great pleasure to follow Messrs. Fano, Culler, and Shaw in this 
symposium. The time sequence has symbolic significance for me, since 
I choose to interpret it as paralleling my standing on their shoulders 
in the research on man-computer interaction now going on in my lab
oratory. We are at this moment using Project MAC console and display 
facilities to embody as much as we can of the spirit of the on-line computer 
already realized in several forms by Culler. Our implementation, however, 
incorporates what would, I think, appear to Culler as certain heresies, 
for instance, in the direction of JOSS. 

Before concentrating on differences which reveal certain of the key 
problems in man-computer communication, let me first comment on the 
common enthusiasm linking us with these people and many others, such 
as Roberts, Ross, and Sutherland, in the common enterpri~e of exploring 
the processing by men and computers of mixtures of graphic, symbolic, 
and conventional linguistic messages. The words I shall use are not my 
own, since I recently discovered that Marshall McLuhan, far from being 
the alien Madison Avenue type I took him for, when I ran across reviews 
of his books The Gutenberg Revolution and Understanding Media, is indeed 
a kindred spirit and perhaps the strongest exponent of sensible views 
on automation outside the sensible portion of the computer profession. 

With an eye particularly to television, but explicitly with other implica
tions in mind, here is what McLuhan says: 

* The preparation of this paper was supported in part by Advanced Research 
Projects Agency under Contract SD-265 and by National Science Foundation under 
Grant GN-329. ' 
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The term "literature," presupposing the use of letters, assumes that verbal 
works of imagination are transmitted by means of writing and reading. The 
expression "oral literature" is obviously a contradiction in terms. Yet we live 
at a time when literacy itself has become so diluted that it can scarcely be 
invoked as an esthetic criterion. The Word as spoken or sung, together with 
a visual image of the speaker or singer, has meanwhile been regaining its hold 
through electrical engineering. A culture based upon the printed book, which 
has prevailed from the Renaissance until lately, has bequeathed to us-along 
with its immeasurable riches-snobberies which ought to be cast aside. We 
ought to take a fresh look at tradition, considered not as the inert acceptance 
of a fossilized corpus of themes and conventions, but as an organic habit of 
re-creating what has been received and is handed on. 

Although we may not yet have formed and may never form that "organic 
habit of re-creating what has been received and is handed on," the need 
to do so fortunately is overtly thrust upon us. 

I alluded earlier to our Shavian deviationism from the Culler line, 
a matter concerned with what is perhaps one of the strongest of the dynamic 
oppositions that shape natural languages. With respect to these opposi
tions, natural languages seem to have achieved a kind of dynamic stability, 
which, in the past ten years, has been described primarily by Mandelbrot. 
The means of reaching stability are still obscure to linguists and psychol
ogists alike. Zipf attempted, 30 years ago, to explain them by his quasi
mystical Principle of Least Effort. With few exceptions, notably Jakobson, 
serious (read "stuffy") linguists continue to ignore the problem of the 
dynamics of change and stability in language. 

Quine has given eloquent and concise expression of one fundamental 
aspect of the problem: 

In logical and mathematical systems either of two mutually antagonistic types 
of economy may be striven for, and each has its peculiar practical utility. 
On the one hand we may seek economy of practical expression-ease and 
brevity in the statement of multifarious relations. This sort of economy calls 
usually for distinctive concise notations for a wealth of concepts. Second, 
however, and oppositely, we may seek economy in grammar and vocabulary; 
we may try to find a minimum of basic concepts such that, once a distinctive 
notation has been appropriated to each of them, it becomes possible to express 
any desired further concept by mere combination and iteration of our basic 
notations. 

The most clear-cut and quantitative description of the range of choices 
available in resolving the antagonism Quine describes is given to us in 
Shannon's Mathematical Theory ot Communication. Given the need to 
transmit or store a message worth b bits of information, we can calculate 
precisely how many characters of a large alphabet or how many more 
characters ofa smaller alphabet would be needed to encode the same 
message. If messages are selected from a population according to some 
probability distribution, a well-known algorithm of Huffman tells us how 
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to encode each message in a given alphabet so as to minimize the cost 
of transmission. Contemporary coding theory is an elaboration of these 
basic ideas to accommodate a variety of other side conditions including, 
for example, the desire to minimize the transmission error rate. 

I think it is fair to say that Shaw leans toward the side of small vocabu
lary but long expressions, while Culler enlarges his basic vocabulary to 
obtain shorter expressions. Beyond this kind of statement, however, there 
is nothing in this realm approaching even the limited theoretical under
standing that Shannon's theory has given us of the information transmis
sion process. 

How does one, for example, trade off the ease of punching a single 
button in Culler's system to evaluate the sine-not of a single number, 
but of a whole interval-as opposed to the need in JOSS, first, to type 
several characters to name the function (a process requiring one to remem
ber the name of the function and to spell it correctly at the time of punching 
several keys) and, second, the need to write explicitly some kind of loop 
expression to turn what is basically a point operation into a function 
operation? How to compare the value of some mnemonic name invoked 
with several key strokes to call in a main subroutine in FORTRAN against 
the ease of pushing the one button on level 13 where the subroutine is 
attached when, however, we may find it hard to remember which button 
we attached it to when we constructed it? How does one define a syntax 
maximizing the advantages offered by prefix notation at one extreme 
and fully parenthesized infix notation at the other? 

In any case, either system is relatively easy to learn, and either is 
far more foolproof than many that preceded it. Ease of learning complicates 
the matter of value judgment, since once a subject is accustomed to 
either system, the other will seem repulsive, or at least more difficult. 
Objective analysis of such questions may therefore take us far from the 
austere mathematical simplicity of the noiseless communication channel 
into murky and controversial realms of experimental psychology. 

Yet even here lies an opportunity. 
In The Act of Creation, Arthur Koestler asks the question: "What lesson, 

for instance, could one expect neurophysiology to derive from astronomy?" 
Koestler then answers himself, by relating how Bessel, the astronomer 
of Bessel-function fame, having read about the dismissal of an assistant 
of the Astronomer Royal at Greenwich for consistently making observations 
differing from those of the Astronomer Royal by a half second to a whole 
second, was moved to compare his own records over a ten-year period 
with those of several astronomers and thereby to prove that "there 
existed systematic and consistent differences between the speed with 
which each of them reacted to observed events; he also succeeded in 
establishing the characteristic reaction time-called 'the personal equa-
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tion'-of several of his colleagues." Fifty years later, Helmholtz, who 
had become acquainted with the work of astronomers on "personal 
equations," determined "that the rate of conduction of impulses in nerves 
was of a definite, measurable order-and not, as had previously been 
assumed, practically instantaneous." 

I suspect that our common concern with man-computer communication, 
especially with its increasing attention to the pictorial and a continuing 
profound concern with processes rather than with the static snapshots 
of classical mathematics, will be a fertile source of new psychological 
discovery for those alert and lucky enough to be discerning at the right 
time. 

While at present we are merely rediscovering what the psychologists 
already know about the value of direct and immediate control and direct 
and immediate response, two factors which largely account for the ease 
of learning systems even with embarrassingly thorny conventions con
cerning parentheses, we have new opportunities for attacking these 
questions with apparatus and from a point of view on the whole alien 
to the psychological community. 

I think also that the expanding use of MAC, JOSS, or Culler-like 
facilities will lend itself to the study of problem-solving behavior in a 
setting far more natural than the artificial experiments of the psychologists 
or the unobservable activities of problem solvers at their desks. 

What saves both Culler and Shaw from paying the high price of exces
sive economy, either of alphabet or of expression length and complexity, 
is the provision in both systems of a facility that obviously has played 
a major role in stabilizing both natural and artificial languages but whose 
nature is adequately understood by neither philosophers, linguists, psychol
ogists, nor computer scientists. This facility is the ability to define new 
entities in terms of old and the closely related and equally ill-defined 
and ill-understood process labeled in mathematics as "simplification." 

The "list" or "program" operation in Culler's system is such a defini
tional capability. Concomitant with definition comes abbreviation. What 
was a long sequence of button pushes is, through the act of attaching 
it to a single button, both defined as a new operation and abbreviated 
to a single button push. So, in natural language, neologisms supplant 
elaborate circumlocutions and descriptive statements, once a concept or 
object has become fixed enough for it to become clear that frequent 
naming will be required. A similar role is played by the numbering facility 
in JOSS which enables what is essentially a subroutine to be identified 
by a part number that subsequently may be referred to in a statement 
such as "do part 3." JOSS lacks means for defining a function of one or 
more arguments invokable by name elsewhere, but the LISP language, 
for example, has an explicit and extremely useful "define" operation, 
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and, on the MAC/CTSS system, new processes defined in terms of any 
of the languages available on the system may, once accepted, be called 
for by any member of a growing community in highly abbreviated form 
as system commands. 

The need for conscious or unconscious abbreviation is recognized also 
in the design specification of PL/I stating" that ... every attribute of 
a variable, every option, every specification was given a default interpreta
tion, and this was chosen to be the one most likely to be required by the 
programmer who does not know that the alternatives exist." The spirit 
is most laudable, but Oh, what problems are raised by the phrase "the 
one most likely to be required by the programmer who does not know 
that the alternatives exist"! 

There is a great need for putting order in the chaos of definitional 
facilities, whether in the shape of subroutines and call statements, macros, 
explicit definition statements, and so on. The odds are about even for 
linguistics to contribute to computer sciences in this matter, or vice versa. 

Similar obscurities range in the realm of simplification and the related 
matter of evaluation. Everyone is familiar with examples such as one 
recently given by Hamming, who points out that 9th-grade students may 
be required to "simplify" 1/ V~ + 1/ Vb to Vab (V~ + Vb)/ab, 
although what is meant here by "simplicity" is by no means clear. Most 
of those who have worked on automatic algebraic manipulators have 
stubbed their toes on this wall. The shift to man-computer interaction 
simplifies the problem in the sense that a well-designed system should 
permit the man to use his uncanny intuitive faculties for making some 
kind of simplification, but it has not yet deepened our understanding 
of the notion itself. In fact, it is tempting to speculate that by treating 
ordering on a scale of simplicity in a manner akin to the treatment 
of the notion of computability-by Turing, Church, and others-one might 
prove that whatever definition of ordering one seeks, such an ordering 
cannot be more than a pre-order; that is, in any ordering of simplicity 
there will always be at least two statements such that if one precedes 
the other, the second also precedes the first. Such a result would at least 
let one proceed with muddling through in special cases with a clear con
science that no general solution can be found. 

The importance of symbol manipulation in man-computer interaction, 
as elsewhere, emphasizes once again the key importance of the distinction 
between use and mention, as exemplified by the explicit use of a QUOTE 

statement in LISP and by the LIST operation in Culler's system which 
distinguishes the mention of a sequence of operations from the use or 
execution of this sequence. The complexity of the whole problem is well 
illustrated by certain elegant solutions of certain aspects of it in the 
new version of formula ALGOL developed by Perlis and his associates at 
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Carnegie Tech. In this system, expressions in their natural state are 
mentioned or manipulated, but they are used only as arguments of an 
evaluation operator which, in a natural way that seems to synthesize 
several hitherto unrelated notions, may (1) collapse a formula into a 
single number in the usual way when all its members are themselves 
completely specified as numbers, or (2) expand it when the values of 
parameters or variables in the expression are specified not as numbers 
but as formulas, and, finally, (3) simplify it, for instance, by making a 
substantial portion of a formula vanish if it consists of zero-multiplying 
an arbitrarily complicated formula. 

In any of these three cases, however, the formula is used but not men
tioned in the sense that the original formula is untouched and the result 
of the evaluation is stored elsewhere unless the address for the result 
happens to be that of the formula itself-an interesting case of self
reference, whose consequences need careful clarification. 

Beside the matter of choosing the size of an alphabet, vast realms 
of unanswered questions appear when one considers further dimensions 
of the problem of what is good notation. It has long been recognized 
that the development of an apt notation is, in many instances, half the 
battle, for good notations, so to speak, have a life of their own and may 
often lead rather than follow thought, or notations may inhibit it, as 
exhibited in the following humorous example of Henle. 

Henle, in an analysis of the persistent complaint of mystics that language 
is inadequate to express their insights, poses in a very amusing way 
a serious problem of symbolic geometry. He postulates a primitive tribe 
in the process of developing a rudimentary conception of algebra. Where 
we use letters of the alphabet, they use little triangles and squares, for 
example, "!:::,." for "a" and "0" for "b." Where we would distinguish 
between lower-case and capital letters, they would distinguish, for example, 
between "!:::,." and "!:::,.." Instead of representing a + b by "a + b," they 
superimpose the symbols for the two variables as follows: ~. Henle 
goes on: 

A curious result ensues, from the use of this symbolism. Whereas we can easily 
state the very simple rule of arithmetic that a + b = b + a, this is impossible in 
their symbolism. If one tries to write it, one comes out with ~ = ~ and this 
of course is indistinguishable from the formulations of a + b = a + b. Hence, 
they are bound to regard it as an immediate consequence of the law of identity: 
!:::,. = !:::,., obtained by substituting "~" for" !:::,.". This result is inevitable and 
inescapable. With the symbolism at hand there is no way of distinguishing between 
"a + b" and "b + a". At first one might be tempted to write one "k" and the 
other "~"; but this will not succeed. By the convention established, "LY.' and 
"!:::,." are different symbols so that if one complex is equivalent to a + b, the other 
is equivalent to b + c. You may object that this is a very poor symbolism: I shall 
not dispute the point. All I claim is that it is a symbolism which might be used. 
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Henle then goes on: 

Not long ago, a young genius tried to treat subtraction generally, to work out laws 
of subtraction for all numbers. Using the notation "~" for "b - a," he wished 
to enunciate the rule that in general b - a ~ a-b. He wrote that, in general, 
~ ~ ~. He was accused, of course, of violating the law of identity, the most 
sacred law of logic, and was promptly condemned to death. He met his end rather 
pensively, confusedly shaking his head. He admitted that what he wrote seemed 
to contradict itself, but somehow, he was sure, it didn't. 

The matter of choice of notation is one where it is of prime importance 
to establish a "habit of re-creating what has been received and is handed 
on." The prevalent assumption that it is most natural, since men com
municate with one another in a vernacular such as English, for them 
to communicate in English to a computer needs careful examination. First 
of all, it is not wholly true that men communicate with one another in 
English under all circumstances. One need only witness the helplessness 
of two chemists or mathematicians in conversation away from a black
board to understand this. We rebel against the constraints that badly 
designed computer languages impose on users, but the inference that the 
solution is English, rather than a well-designed but nevertheless specialized 
language, is unwarranted even where generals or chairmen of boards are 
concerned. Even if English is involved, it should not be taken for granted 
that both the human user and the machine must use English. In fact, 
it may be most advantageous for the machine to use English while the 
person uses footpedals, buttons, pointings with lightpens, grunts, or other 
devices that linguists deprecatingly refer to as pre-linguistic. Along with 
McLuhan, I view such deprecations merely as snobberies induced by our 
culture based upon the printed book, "snobberies which ought to be 
cast aside." 

A recent paper by Goodenough, for example, describes a lightpen
controlled program for on-line data analysis in which the computer displays 
a list of operator statements such as 

CORR BETWEEN (x) AND (Y) 

and a list of operands which Goodenough appropriately enough calls 
"menus." The user orders his computation by pointing with the lightpen. 
The machine takes care of all syntactic problems and displays operator 
and operand menus in proper alternation, and, while the user feels he is 
being addressed in English, he need never be bothered with details like 
whether "correlation" was spelled out or abbreviated with one "r" or 
two or whether the abbreviation was followed by a period or not. 

Certainly the description of a complicated two- or three-dimensional 
object as in the systems of Sutherland, Roberts, or Jacks is not an easy 
matter in English. Consequently, designers of such systems have resorted 
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to elaborate network-like representations suitable for internal manipula
tion, such as the plexes of Ross and kindred devices, while reference by 
people is made through button-pushings, lightpen-pointings, and so on. 
There is occasional despair that the matter cannot be carried out in English 
by people, but I suspect it is better to pay close attention to the syntax 
of pre-linguistic modes of expression rather than to attempt to force-fit 
the arbitrary linear conventions of printing, which mirror the necessary 
basic linearity of speech but which are hardly essential when two- or 
higher-dimensional media are available. The description of which of a 
set of building blocks pushed together on a screen should be considered 
henceforth as a single entity would be odious in English, while the matter 
of drawing a line around them with the lightpen and pushing a button, 
setting off some kind of abbreviation mechanism in the internal representa
tion system, is far more likely of success and is indeed representative 
of the lines along which current implementations are made. 

Linguists and psychologists are, I think, quite unprepared for the 
implications on human communication of the effects of easily used two
dimensional dynamic representations. Nevertheless, snobbery should not 
blind us to the value, in a conversation between two people concerning 
which of a set of objects they mean, of substituting, for some elaborate 
oral description, coincident lightpen-pointings which brighten or set 
flashing the portion of a drawing referred to on a screen. I prefer to para
phrase McLuhan with the statement that "a visual image [of objects 
or concepts] has meanwhile been regaining its hold through electrical 
engineering. " 

In conclusion, I would like to cite one more statement of McLuhan, 
reflecting more aptly than anything I have seen in the computer literature 
the excitement and opportunity of the work in which we are engaged: 

Automation is information and it not only ends jobs in the world of work, it 
ends subjects in the world of learning. It does not end the world of learning. 
The future of work consists of earning a living in the automation age. This is 
a familiar pattern in electric technology in general. It ends the old dichotomies 
between culture and technology, between art and commerce, and between 
work and leisure. Whereas in the mechanical age of fragmentation leisure had 
been the absence of work, or mere idleness, the reverse is true in the electric age. 
As the age of information demands the simultaneous use of all our faculties, we 
discover that we are most at leisure when we are most intensely involved, 
very much as with the artists in all ages. 
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INTRODUCTION 

The purpose of this paper is to describe some of the means for providing 
closer cooperation between men and computers. The paper is restricted 
to engineering applications, although the ideas and methods may be 
equally applicable to other areas, notably command-and-control and 
management systems. 

Typically, in performing a design, an engineer starts with a loosely 
defined set of needs, criteria, concepts, and models and converges to a 
feasible and-hopefully-optimum solution. The conventional (batch) 
mode of computer use, immensely helpful in engineering analysis, is 
poorly suited for such design applications. First, the engineer dealing 
with a new problem must concern himself both with new procedures 
and new data. Thus, the conventional partitioning of problem-solving 
into programming and production is too artificial. When the use of pre
viously prepared programs is attempted, it often results in stereotyping 
or "canning" of problem types and actually hampers the engineer's 
creativity. Second, the batch mode does not allow for the exercise of the 
unavoidable non-quantifiable decisions except at the expense of one decision 
per turn-around period. This lack of flexibility either forces wasted machine 
time and voluminous output to cover all possibilities or leads to searches, 
often futile, for "automated" design procedures based entirely on stored 
quantitative data. 

Improvements in man-machine communication fall into two categories. 
The first category concerns the improvement in the rate of communication 
so as to reduce the turn-around time to minutes or seconds, such as pro
vided by time-sharing and other direct-access facilities. However, time
sharing hardware per se is of little value to the engineer. Also needed 
is a second category of improvement concerned with raising the level of 
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communication essentially from the level of the machine to that of the 
user. Here, two approaches are available, namely, non-verbal communica
tion, such as graphical or audio, and communication based on more 
suitable problem-oriented languages. An ideal man-machine system should 
incorporate both facilities, especially in engineering, where so much of 
the day-to-day communication is graphical. 

Problem-oriented languages, however, being hardware-independent, have 
two points in their favor. First, from an economic point of view, they are 
evolutionary and can be used to advantage even if only the conventional 
mode is available. Second, from a philosophical standpoint, they possess 
an element of elegance, in that they use the logical capability of a general
purpose computer to transform itself into a special-purpose machine 
through appropriate programming, without the need for special-purpose 
devices such as lightpens or special keyboards. 

DEFINITION OF PROBLEM-ORIENTED LANGUAGES 

The most difficult problem concerning problem-oriented languages, or 
POL's, is to find a suitable definition. This is due to the simple fact that 
different people have different problems and therefore need different levels 
of languages. As a simple illustration, consider the problem of computing 
an integral by the trapezoidal rule. A programmer, charged with the 
task of devising a detailed algorithm, will find any algebraic procedural 
language suitable and could write, for example (in FORTRAN II): 

DIMENSION V (1 00) 

SUM = (v(1) + V(N»/2. 

M = N-l 

DO 1 I = 2,M, 1 

1 SUM = SUM + V(I) 

A = H*SUM 

A numerical analyst who has an integral to evaluate as a part of 
a larger problem may find a closed subroutine to be the most closely 
"problem-oriented" and would prefer to simply write: .. 

A = TRAPEZ{V,N,H) 

A working definition of a POL may be the following: A language is 
problem-oriented if it relieves the programmer from the necessity of specifying 
all the details which the associated processor can automatically provide. 

In the field of engineering, at least, a POL and its associated processor 
can best be defined in terms of its desirable attributes, which may be 
summarized as follows: 
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1. A unique program is written for each new problem. This fundamental 
property of a POL implies that there is no distinction between procedures 
and data and recognizes that new solutions are obtained by applying 
one's accumulated knowledge in novel combinations. 

2. The source program is meaningful to the user in the sense that it 
is its own document in the user's language. 

3. The POL contains provisions for exercising judgment. It permits 
ease of change or modification of the problem being worked on, and the 
output provides meaningful measures of the consequences of a decision. 

4. No constraints on input format. The language is designed with the 
engineer, not the keypunch operator, in mind. 

5. No constraints on problem size or complexity. The processor should 
have none of the irritating restrictions, inevitably due to unimaginative 
programming, which so often plague canned programs. 

6. Efficiency over entire range of problems. Execution of small or simple 
problems should not be penalized by the facility for doing large or com
plex jobs. 

7. Expandable scope. The language and its associated processor must 
provide for ease in expansion of the vocabulary and scope. 

The points raised above will be further discussed and exemplified in 
the remainder of this paper. An illustrative example of a relatively simple 
system which has the first four attributes is taken from the University 
of Illinois Statistical Service Unit Library. * The following is the complete 
specification for a linear programming problem: 

LINEAR PROGRAM FOR (I) PROBLEM. 

MAXIMIZE THE FUNCTION = .5X(I) + 6X(2) + 5X(3), 

CONSTRAINT (I) 4X(I) + 6X(2) + 3X(3) LE 24, 

CONSTRAINT (2) X(I) + 1.5X(2) + 3X(3) LE 12, 

CONSTRAINT (3) 3X(I) + x(2) lE 12, 
END OF PROBl EM. 

Admittedly, the vocabulary is limited (the only other acceptable words 
are MINIMIZE and the MAD-FORTRAN IV logical connectives). Within this 
context, however, the language is readable and meaningful and requires 
no instruction. 

Before going into details, a comment about input formats seems to 
be in order. There exists today a tremendous disparity between pro
grammers' languages (source programs) and users' languages (data). The 
FORTRAN programmer takes full advantage of the free-field facility of 
his source language, but he does not pass on his labor-saving devices 

* "Manual of Computer Programs for Statistical Analysis," Statistical Service 
Unit, University of Illinois, Urbana, Illinois, 1964. 
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to the user, who is. constrained to an absolute fixed format, with disastrous 
results if he trespasses. Thus, a FORTRAN programmer may freely write 
two similar statements in entirely different formats, e.g.: 

but if he uses 

READbbbINPUTbbbTAPEb7,bblOObb,I,bbA 

RIT7,lOO,J,B 

100 FORHAT(13,F 8.2) 

the user must fill in his typical data as 

b12bbb23.45 

bb3bI234.00 

and a card punched as 

bb12bb23.45 

will immediately cause a fatal error ill the input routine. 
The consequence of this inequity is that for many users the computer 

means only the drudgery of filling out dreary input forms. This approach 
can only lead to a degradation of the engineer's work. A POL designed 
to be used by engineers must eliminate this feature and allow for completely 
free-field input, even at the expense of slightly longer running times. 

THE COMPONENTS OF A POL 

In the remammg discussion, the system consisting of both the source 
language and the associated processor will be considered as an entity. 
Thus, the system consists essentially of three components: 

1. The language itself, in which the problem is communicated; 
2. The application programs, or subroutines, which perform pieces of 

execution directed by or implied in the language; 
3. The systems program which exercises control over the entire process. 

Although these three components are closely interrelated, it is profitable 
to examine each of them separately. 

The Source Language 

The specification of the input language for a POL is a major engineering 
design job. It requires a thorough analysis of the computational, logical, 
and data-processing operations within the discipline for which the POL 
is being created to ascertain what is actually being done and how these 
operations are interpreted in the profession. 
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Fortunately, the specification of a language for an engineering discipline 
is facilitated by three factors. First, anyone engineering discipline deals 
with only a relatively small number of distinct computational processes. 
All problems can then be formulated as an appropriate, and not necessarily 
unique, combination of these basic processes. As an example, an extremely 
comprehensive POL in hydraulic engineering being developed is to contain 
an estimated 137 basic processes. * This number is probably quite high 
in comparison with the working repertoire of most practicing hydraulic 
engineers. 

Second, each of the basic processes has an accepted name within the 
discipline, used in everyday communication between engineers. Adapting 
this terminology as the input language makes it thus possible to "squeeze" 
into a word the information content of hundreds of algebraic and logical 
statements. Of course, this engineering language has to be augmented 
by a few computer-oriented words. It also must be admitted that we are 
concerned here with a highly professional language, acquired after 16 to 
20 years of formal schooling, and that the same conciseness may not 
apply elsewhere. 

As an example, the table below shows an abbreviated list of the available 
words (commands) in CO GO (COordinate GeOmetry), ** a POL for plane 
geometry computations in surveying. 

ADJUST/AZIMUTH LOCATE/AZIMUTH 

ANGLE OFFSET/POINT/LINE 
AREA PARALLEL/LINE 

AZIMUTH/INTERSECT PAUSE 

CLEAR POINTS/INTERSECT 

CURVE/LINE/AZIMUTH ROTATE/TRANSLATE 

DEFLECTION SEGMENT 
DUMP SIMPLE/CURVE 
EQUIDIVI DE/LINE STOP 
FIT/CURVE STORE 

INVERSE/AZIMUTH SUBDIVIDE/LINE 

It can be seen that the words reflect closely the surveyor's operations, 
such as ADJUsTing traverses and computing AREAS. The four computer
oriented commands shown (DUMP, PAUSE, STOP, and STORE) are also self
explanatory. With this vocabulary, problems in surveying can be quickly 
and conveniently built up. 

* G. Bugliarello, "Toward a Computer Language for Hydraulic Engineering," 
Proceedings, IX General Meeting, International Assn. for Hydraulic Research, Belgrade, 
1961. 

** "COG01-A Programming System for Civil Engineering Problems," IBM 1620 
Program Library, Program No. 1620-UG-01X, IBM Corp., White Plains, N. Y. 
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For example, in Figure 1, given the coordinates of point 1, the length 
and azimuth (clockwise angle from north) of lines 1-7 and 1-95, it is 
required to compute the coordinates of points 7 and 95 and the area 
of the triangle. The CO GO program is as follows: 

STORE 1 1000. 2000. 
LOCATE/AZIMUTH 7 256.17 45 00 00 
LOCATE/AZIMUTH 95 1 350.0 102 35 12.35 
AREA 7 95 
PAUSE 

The second line above reads: Locate point 7 by going from point 1 a 
distance of 256.17 at an azimuth of 45 degrees 00 minutes 00 seconds. 
The remaining lines are equally self-explanatory. 

Area l:: ? 

Point 7 
(?, ?) 

\ 
\ 
\ 
\ 
\ 
\ 

FIGURE 1. Sample CO GO problem 

\ 
\ 
\ 
\ 
\ Point 95 

(?, ?) 

The third factor facilitating the selection of the language is the fact 
that a well-designed POL allows for an open-ended repertoire of basic 
processes so that new terms and their corresponding execution routines 
can easily be inserted. This is a feature that seems somewhat novel to 
professional systems programmers, who are accustomed to having the 
entire system under their own control and who like to deal with relatively 
stable systems. However, this flexibility is essential, both because it 
reflects the evolutionary nature of engineering and because it is the only 
way to overcome the restriction of scope that is unavoidable in any pro-
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gramming language. As an indication of the dynamic nature of POL's, 
organizations making heavy use of COGO report alternations between 
periods of expansion of the language, when new commands are added 
at a rapid rate, and periods of consolidation, when redundant or seldom
used commands are removed from the system. Thus the system becomes 
a dynamic entity, much like a natural language. 

A pplications Programming 

In the simplest sense, the execution program of a POL can be thought 
of as a series of subroutines in a one-to-one correspondence with the 
language elements. In practice, of course, the system is considerably 
more complex, and extensive chaining and logical cross-connecting must 
be established to achieve the desired generality and flexibility. 

Just as the design of the language, the development of the execution 
subroutines must be the responsibility of engineers engaged in the discipline 
for which the POL is being written. First, the engineers understand the 

. underlying mathematical or physical model with its inherent assumptions 
and limitations. Second, the generality, the flexibility, and especially the 
efficiency needed for a large-scale system come from a formulation based 
on thorough understanding of the problem, and not from clever coding 
of a mediocre formulation. 

The flexibility and the efficiency that result from a general formulation 
are best illustrated by STRESS (STRuctural Engineering Systems Solver), 
a POL written for the analysis of elastic structures. * Over the years, 
structural engineers have evolved many special-purpose algorithms for 
analyzing various types of structures. Many of these algorithms have 
been programmed and used extensively both for analysis and for design. 
However, in developing STRESS, the decision was made to formulate 
a single procedure which encompasses the majority, if not all, of the 
special methods. 

The present version of STRESS is restricted to the static analysis 
of elastic framed structures, but efforts are under way to extend the 
capabilities in several directions. The description of a problem in STRESS 
consists of procedure descriptors (such as the method of analysis to be 
used, type of structure, kinds of output desired), size descriptors, and 
data descriptors. 

The three types of data (geometry, topology, and mechanical properties) 
describing the structure are carefully separated. Furthermore, in describing 
the member properties, the word PRISMATIC is used to designate the 
procedure to be used by the program in converting the input data (in this 

* S. J. Fenves, R. D. Logcher, S. P. Mauch, and K. R. Reinschmidt, "STRESS
A User's Manual," Cambridge, Mass., M. 1. T. Press, 1964. 
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case, the cross-sectional area A,,) into the required properties (in. this case, 
the stiffness coefficient of the bar). As an example, the STRESS program 
for analysis of the space truss shown in Figure 2 is given on left below. 
STRUCTURE SAMPLE TOWER 
TYPE SPACE TRUSS 
NUMBER OF JOINTS 7 
NUMBER OF SUPPORTS 3 
NUMBER OF MEMBERS 12 
METHOD STIFFNESS 
JOINT COORDINATES 
1 X 0.0 Y 16.0 Z 0.0 
2 X 0.0 Y 8.0 Z 0.0 
3 x 4.0 Y 8.0 Z 4.0 
4 x 4.0 Y 8.0 Z -4.0 
5 x 0.0 Y 0.0 Z 0.0 SUPPORT 
6 X 8.0 Y 0.0 Z 8.0 SUPPORT 
7 X 8.0 Y 0.0 Z -8.0 SUPPORT 
MEMBER INCIDENCES 
1 2 1 
2 3 1 
34 1 
423 
5 34 
642 
7 5 2 
853 
963 

1064 
11 74 
12 7 2 
MEMBER PROPERTIES, PRISMATIC 

1 AX 1.0 
2 AX 1.0 
3 AX 1.0 
4 AX 1.0 
5 AX 1.0 
6 AX 1.0 
7 AX 1.0 
8 AX 1.0 
9 AX 1.0 

10 AX 1.0 
11AX 1.0 
12 AX 1.0 
NUMBER OF LOADINGS 
LOADING ARBITRARY 

z 

TABULATE FORCES, JOINT DISPLACEMENTS, 
JOINT LOADS 
1 FORCE Y -10.0, FORCE Z 5.0 
4 FORCE X 6.0 
SOLVE THIS PART 

f tlO,ooo lb •• o Joint Numbers 

o Member Numbers 

8' 

6,000 lb •• 

8' 

--+-+-----.,;F------- X 

FIGURE 2. Sample STRESS problem 

REACTIONS 

The advantage of such an approach is not just that any structure 
can be conveniently analyzed, but that any portion of the structure can be 
singled out for modification by the STRESS-vocabulary words ADDITIONS, 

DELETIONS, and CHANGES. This facility, especially in a time-shared environ
ment, brings us quite close to the crucial attribute mentioned earlier, 
namely, that the system output provides meaningful measures of the 
engineer's decisions. 



Problem-Oriented Languages for Communication in Engineering 51 

Systems Programming 

The third ingredient of a POL is the system or control program which 
ties the previous two components together. Here we begin to get out of 
the usual area of competence of engineers and must rely heavily on work 
done in systems programming and other areas of applications. Unfor
tunately, it appears that in the past the needs of POL's have always 
been a few steps ahead of current state-of-art, and most POL's in existence 
have been designed and coded entirely by applications programmers. 

There are essentially two components of systems programming involved. 
The first one deals with input processing and decoding. This phase ob
viously bears close resemblance to the first pass of any compiler. In most 
cases, the source language is actually simpler in structure than a procedural 
language. On the other hand, the data structures generated are often more 
complex than in the present algebraic procedural languages. 

The second component of the control program deals with the execution 
control, where the actual execution is performed by precoded subroutines. 
There are several major constraints on this phase of the problem. First, 
as mentioned earlier, efficiency over the entire range of problem sizes 
is a major consideration. This overriding consideration requires a usable 
dynamic memory allocation scheme, both for the complex data structures 
involved and for the hierarchically arranged subroutines. Second, the 
system must adjust to the fact that the execution subroutines will be written 
by average applications programmers, and not by systems programmers. 
Thus, many of the system functions, such as the dynamic memory alloca
tion process, must be performed by the control program. And third, the 
time-shared environment imposes additional considerations which must 
be satisfactorily dealt with. 

POL's in existence today employ a wide range of implementations, 
ranging from preprocessors through interpreters and assemblers to com
pilers. The control system for COGO (Figure 3) is essentially a pure 
interpreter. This much-maligned word has to be taken in its most general 
sense, however. Specifically, in COGO, about 25 machine instructions 
are needed to interpret a statement, but some of these can cause several 
hundred FORTRAN statements to be executed. The simplicity of the CO GO 
control program comes from the fact that its language is essentially 
context-free and that its commands communicate with each other only 
through the table of coordinates. 

On the other hand, the control program of STRESS is considerably 
more complex and consists of an input decoder and syntax checker, a 
semantics checker, and a sequence of execution drivers (Figure 4). The 
boxes marked with an asterisk show the parts of the program omitted 
in the time-shared version. This illustrates a point which came as a surprise 
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Yes 

Yes 

Go to Subroutine for COGO Command 

FIGURE 3. Simplified flow diagram of CO GO 

to US: namely, that it is actually simpler to write an on-line control system 
than an off-line one, since the user at the console can immediately take 
action if an error is detected. 

Because of the open-ended nature of POL's, we have come to the 
conclusion that it is a hopeless task to keep the system up to date and 
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Yes 

Check problem 
for consistency. 

Execute Problem 

A To read new problem 

No 

No 

No 

Translate rest of 
statement. 

Store data. 

* 

If not last part, 
set to scan 
remaining 
statements 

Set flag to 
stop execution. 

To read next 
statement. 

Repeated for each 
majOl' block of 
operations. 

To read 
modifications of 
problem solved 

To scan remaining 
statements, or to 
read new problem 

FIGURE 4. Simplified flow diagram of STRESS 
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in pace with the emerging additions. An ideal framework for a dynamically 
expanding POL would be one where the generation of the system itself 
is mechanized. We are currently working on such a system for STRESS-like 
languages (Figure 5), consisting of a translator-generator which produces 
the input decoder from a formal description of the source language and 
a preprocessor which will convert subroutines written in a procedural 
language into equivalent subroutines compatible with the internal data 
organization. 

Language 
Description 

Procedure 
Descriptions 

Utility 

Routines 

POL Output 

FIGURE 5. Proposed POL system 

CONCLUSIONS 

In conclusion, two topics' should be briefly mentioned. One is the fear 
expressed by some that the proliferation of languages will be more harmful 
than beneficial. I believe that this fear is largely unfounded. First, if the 
language is truly problem-oriented, there need be no distinction what
soever between learning one's profession and learning its associated POL. 
Second, with a general system such as the one mentioned above, it should 
be a straightforward process to merge two or more POL's into a common 
frame of reference, should a need arise. 

The second topic concerns the future of engineering. It is becoming 
clear that the combination of time-sharing and POL's will have a revolu
tionary effect on engineering and will make it the challenging, creative 
profession that it ought to be. Rather than being burdened with lengthy 

./ 
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calculations and routine decisions, the engineer will be able to concentrate 
on his problem and will have access to all the procedures and data which 
have relevance to his task. Thus, the computer will work as a partner 
by properly matching its best capabilities to the creative and synthesizing 
abilities of the engineer. The opportunity and challenge of this combination 
will make the world an exciting place for all of us. 

DISCUSSION 

F. G. WITHINGTON: I have a two-part question, based on Professor 
Oettinger's paper (paper 6). One, do you expect that graphic outputs 
will increase in importance in those disciplines with which you are familiar? 
Two, if so, will lightpens, buttons, or "grunts" tend to become part of 
the problem-oriented language? 

S. J. FENVES: There is a very close interrelationship between graphical 
language and problem-oriented languages. As a matter of fact, at M. 1. T., 
both COGO and STRESS have been combined with SKETCHPAD, and 
it is obvious that such interconnections will become more frequent. As 
far as button pushing is concerned, I am a little bit concerned. Unless 
there is an easily implemented mechanism to record internally the settings 
of the switches or the sequence of buttons pushed, I would hesitate to 
involve in a complex procedure anything that cannot later be documented 
and retrieved. 

H. W. BROUGH: In this process with COGO that you describe, of adding 
to and then consolidating the language, does the language permit inclusion 
of new syntax by nesting or compounding the existing syntax? If so, 
does the language include iteration? 

S. J. FENVES: Yes, the system is built in this fashion. Most of these 
changes are made by nesting sequences of individual operations and giving 
them a name, but even some of the basic parts of the system are nested. 
In CO GO, the first part of the traverse adjustment routine is simply 
an iteration on the LOCATE routine. Thus, internally the system uses 
nesting and iteration, and changing the nesting is very simply done. 

H. KRENN: Apparently your system consists of two parts: the control 
program and the application programs. How independent is the control 
program from the application programs? Would it, for instance, be possible 
to use the same control program in connection with completely different 
sets of application programs, and would this control program thus process 
completely different languages? 

S. J. FENVES: This depends upon the complexity of the problem. 
COGO is essentially a context-free language where no information gets 
passed from one statement to another except the data in the common 
area containing the coordinates of points previously defined and where 
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all routines either create new coordinates or operate on previous coor
dinates. If you have a similar problem, then you can take the fifty-word 
COGO control routine and write an entirely new set of operations. 

This is not quite true of STRESS, but, within the present framework 
of STRESS, any network-type operation can be performed. We have 
not programmed electrical networks because it is inefficient to handle 
one-dimensional networks with a mechanism that is built entirely for 
variably-dimensioned networks, but this could easily be included. Also, 
we are looking into handling CPM (Critical Path Method) and other 
operational networks within the same framework as structural analysis. 
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Some Methods of Graphical Debugging* 

THOMAS G. STOCKHAM, JR. 

Massachusetts Institute of Technology 

In the days of the cathode-ray electrostatic storage tube, computer users 
were aware of the fact that they could often extract important information 
about the behavior of their programs by observing the luminescent 
patterns produced on the storage grid by the read-write scan. Perhaps 
this was the earliest form of graphical program analysis. Debugging 
techniques based upon this principle did not evolve into common practice 
for a variety of technical and economic reasons. However, over the years 
a few modest experiments in on-line program analysis using similar ideas 
have been performed. As computational power becomes more accessible 
and the equipment for man-machine interaction continues to evolve, a 
re-awakening of the techniques exposed by these experiments is being 
stimulated. In this paper we discuss some of these experiments and then 
suggest methods for reviving their techniques in a modern atmosphere. 

Undoubtedly the first experiments in program analysis that involved 
graphical methods were those involving high-speed core dumps via dis
plays. Programs such as these were well known at installations with the 
appropriate facilities as early as ten years ago. Certainly it can be argued 
that strictly speaking there is very little graphical about a simple display 
dump, but we mention it here since its speed and flexibility are charac
teristic of important graphical debugging methods. Also, displayed text 
is a basic building block in most graphical debugging schemes. The author's 
own version of a core display was written for the TX-O computer in 

* Work reported herein was supported in part by Project MAC, an M. I. T. research 
program sponsored by the Advanced Research Projects Agency, Department of De
fense, under Office of Naval Research contract number Nonr-4102(Ol). Reproduction 
in whole or in part is permitted for any purpose of the United States government. 
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FIGURE 1 

[This and the following eight other illustrations are much-reduced rough 
facsimiles, reproduced from photographic "snapshots" of actual graphic dis
plays. The original displays not only were much larger, but also had greater 
clarity and resolution of 'detail. The grey frame represents the cathode-tube 
medium of visual output.] , 

September 1958. Some typical output of this program is presented in 
Figure 1. This primitive octal dump used a point display and required 
about five seconds for generation. The present state-of-the-art in computer 
displays permits the display of this quantity of text on the order of 100 
milliseconds. There has been one main lesson learned from using core 
displays such as these. It is that when engaged in on-line debugging 
other more conventional methods of program communication are greatly 
reinforced by the insight and confidence-building impressions that can 
be obtained from a swift perusal of large arrays of data or from the 
rapid redisplay of smaller arrays in a dynamic state. 

Another experiment which used the basic core-display idea to place 
in evidence the dynamic patterns of a program in operation was performed 
on the TX-O compu~er in Marc.h 1959. A similar endeavor called MEMORY 

COURSE was reported by Licklider and Clark in 1962. [11 A program was 
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written to perform a full interpretation of any TX-O code and to display 
all machine conditions after the completion of each instruction. The 
machine conditions included the states of the accumulator, the live register 
(similar to a multiplier-quotient register), the index register, and the 
program counter. The contents of the program counter were displayed 
at scope locations which corresponded to their numerical values, and thus 
a pattern similar to those formerly achieved on storage tubes was obtained. 
In addition, a few instructions at and in the vicinity of the program 
counter location were displayed. At that time symbolic debugging was 
virtually unknown, and all quantities were displayed as octal equivalents. 
Figure 2 shows the program being used to analyze the display dump 
program discussed earlier. 

Two important features of this program were the abilities to assign 
a breakpoint to any core location and to inhibit display except at in
structions to which the breakpoint was assigned. In this manner it was 
possible to run a program at full interpretive speed and to strobe the 
machine conditions at specific program locations. The effect was very 
roughly the same as that obtained when stroboscopic light is used to slow 
or stop mechanical motion. By strobing the accumulator, it was possible 

FIGURE 2 
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for one user to spot some peculiar arithmetic faults in the middle of a 
double-precision subroutine as it scanned a table of data. These faults 
had gone unnoticed during design checkouts. The most common and a 
very powerful use of this feature was in following the state of a particular 
program variable responsible for subsequent endless· looping or faulty 
conditioning. In a majority of situations, it proved quite simple to watch 
a speeding index count and to sneak up on a faulty phase of logic without 
paying the price of a trace or of stepping through each new variable state 
at manual rates. 

An experiment called PROGRAM GRAPH, which carried the idea of dis
playing program parameters in a slightly different direction,. was imple
mented by Licklider and Clarkl1J for the PDP-l computer. This program 
was designed to display program parameters versus time as conventional 
graphs. Later I. E. Sutherland modified this attempt for use on the TX-2 
computer by concentrating on displays of the program counter. The 
resulting plotted function was composed of segments of straight . lines. 
Each discontinuity corresponded to some form of transfer instruction. 
Figure 3 shows typical output from this display. The program under test 
contained one loop which called a single subroutine containing no loops 
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and was run periodically to create a more or less continuous display. In 
addition, by varying the parameters of the program under test, the various 
patterns of flow could be sampled and compared with the intended logic 
in a convenient, rapid manner. 

An important characteristic of Sutherland's experiment was that the 
program achieved its end without having to interpret the program under 
analysis. This was accomplished by multi-programming met~ods which 
effectively forced an interrupt after each analyzed instruction. The time 
savings implied are important, especially when considering a widespread 
use of any kind of dynamic program analysis. 

In recent years some attempts to deduce program-control flow from 
source-language statements and object codes have met with encouraging 
success. Among these are the efforts of L. M. Haibt l2 ! of IBM, P. Shermann 
of Bell Telephone Laboratories, and W. R. Sutherland of the Lincoln 
Laboratory. Sutherland's efforts, completed in 1963, produce a flow
chart display from TX-2 object code with auxiliary information supplied 
by the translator. Figure 4 shows some typical output. Seven seconds 
were required to produce this display, which corresponds to forty machine
language statements. Of the seven seconds, roughly one second was 

FIGURE 4 
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spent performing the actual flow analysis. The rest of the time was required 
to create the actual displayed image via the drawing facilities of the 
SKETCHPAD program of 1. E. Sutherland, [31 which does not make use 
of recent advances in line and curve drawing display technology. 

A most important point involved here is that the data which is produced 
by the flow analysis program and which is used to create the flow-chart 
drawing is in the form of a list-structure. This circumstance provides 
several important facilities. First, only part of the structure need be 
expanded into the final drawing, and this may be done for different parts 
of the program without repeating the basic analysis. Second, the structure 
places in evidence the actual topology of the associated program. Third, 
the structure permits a convenient path for associating any demonstrative 
action that may be taken in reference to the flow-chart drawing with the 
corresponding portion of the analyzed program. The latter point will 
become most important in our subsequent discussion. 

In October 1964 the author completed work on a displaying text-editing 
program for the TX-2 on-line programming system. This facility allows 
the user to select up to two or three dozen lines of source-language program 
for display at one time and provides for convenient insertion of characters 
at or near a moveable marker-character or cursor. In order to minimize 
the time required to effect changes, the characters are strung in a threaded 
list, using a separate list element for each character. 

An important feature of a displaying edit program is that it allows 
faster cursor positioning than conventional methods. During any edit, 
a search for position requires a time proportional to the length of the 
text unless that text is placed in a list-structure to facilitate searching. 
To add to the problem, people always want some form of context search 
to help them compute a position that they could point to if they could 
see the text. This constitutes a somewhat inappropriate use of context 
searching and multiplies linear search times by factors roughly propor
tional to the frequency of the first character of the context string and to 
the relative inefficiency of a more general searching algorithm. In a time
shared system where one expects to find a large quantity of editing taking 
place, such inefficiencies should be eliminated. A displaying edit simplifies 
the problem in one of two ways. 

When a lightpen or similar device can be used to sense the time at 
which a specific character is displayed, positioning may be achieved by 
interrupting the data channel at the time and examining its position in 
the output table. The corresponding list element can then be found in a 
list-pointer table. This method really uses the channel processor to perform 
the required linear search computation. 

When a lightpen is not available, the user can serve as a comparator 
in a tree-like search for position by line, word, and character. By a word 
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we mean a group of characters separated by blanks, tabs, etc. Even if the 
text is not structured, this method is fast, since end-of-line and end-of-word 
tests are fast compared with the multi-character comparison algorithms 
required by identifier or context string searches. What is more, it is very 
simple to structure the text by line, word, and character when it is threaded 
for editing. 

Out of these experiments, one can select five important characterizing 
techniques or philosophies. They are as follows: 

1. The display of the dynamics of program state 
II. The display of topological information about program-control flow 

III. The maintenance of complete control over a program under dynamic 
analysis without an unreasonable increase in time required to run 
that program 

IV. The graphical association of breakpoints and the strobing of the 
corresponding program states 

V. The plotting of program variables as conventional graphs 

It is the present objective to discuss the organization of these techniques 
in a modern atmosphere. As a matter of review, let us first examine a 
list of the most important on-line debugging techniques that are enjoying 
popular use today. [4.5.6.7.8.91 

1. Fully symbolic two-way communications between the programmer 
and the program under test[6.7.8.91 

2. Interrogation of program variables in a variety of formats[4.5.6.7.8.91 
3. Modification of program variables, constants, and instructions [4.5.6.7.81 

or statements[91 
4. Facilities for preserving program state to facilitate back-tracking 
5. Automatic comparison of program states for the detection of state 

changes [4. 5. 6. 7.8.91 

6. Editing including word and context searching l1o •111 
7. BreakpointI6.7.8.91 or trace testing 

A blend of these techniques might take a variety of forms in the produc
tion of a suitable graphical debugging package. Efforts to this end at 
Project MAC take a form implied in the hypothetical example which 
follows. 

After a first attempt at running a program, a user discovers that a 
fault has occurred somewhere in the early part of his code. He then asso
ciates a breakpoint with one of his early program statements and initiates 
a second run. After several successful commands to reposition the break
point and proceed, the programmer learns that control is proceeding 
logically through a modest section of commands. Finally, having issued 
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a final command to reposition and proceed, the programmer finds that 
some uncontrolled action has ensued, and he stops the run. Now he calls for 
a graphical debugging feature to be known as FLOW-MAPPING. FLOW-MAPS 

are like flow-charts except that they are derived from actual control flow 
at run time. The programmer commands that when control first reaches 
the last successful breakpoint that he found above, a FLOW-MAP be con
structed for T1r second of computation time or until the 10th new transfer 
of control takes place. Again he starts his program from a fresh beginning. 
Soon a picture as shown in Figure 5 appears on his display, placing in 
evidence that portion of the program that was reached by the program 
flow after it passed into an uncontrolled state. After a few moments 
of examination, the programmer decides that something is not completely 
right with a certain area of the code as represented by the FLOW-MAP, 

and he makes the enlargement of Figure 6 in order to further his theory. 
Finally, the enlargement to Figure 7 is made when the conditional com
putation on the left is felt to be most suspect. 

The mechanism needed for producing FLOW-MAPS is relatively simple. 
First the computer is placed in a mode where a testing supervisor can 
oversee the code under test and detect when control first passes the 

FIGURE 5 
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FIGURE 6 

FIGURE 7 



66 Thomas G. Stockham, Jr. 

critical point. Then all transfers of control are supervised and reported 
to a portion of the debugging facility which builds a list-structure in 
analogy with the flow-path topology. This list-structure grows rapidly 
at first and then more slowly as control is passed to completely new code 
less and less often. After the allotted time this process stops, and displays 
(such as Figures 5, 6, and 7) are produced from the resulting list-structure. 
The testing supervisor mentioned above need never be conceptually more 
elaborate than a machine-language interpreter, but it is important that 
appropriate hardware beused instead, for speed reasons. 

Next the programmer decides that a program variable, specifically the 
contents of index register 2, is being treated improperly during the condi
tional computation mentioned above. With a lightpen he points to a 
flow line leaving that decision element and presses a button allocated 
to the selection of a data probe. After the symbolic name of index register 2 
is typed, the display of Figure 8 is produced. Thereafter, whenever control 
passes the selected point, the display of the probed variable is adjusted 
to agree with its current value. Breakpoints would be associated with 
the code under test in a similar manner. 

The form in which probed data is displayed can of course be varied 
to suit any standard format. In some cases it might be accumulated for 
display in graphical form. Such a display is shown in Figure 9. This 
example is typical of the history of a variable associated with a numerical 
computation. Programming faults often show up as marked discontinuities 
or as a similar lack of smoothness in plots of numeric variables. 

The mechanism for graphically associating a data probe or a breakpoint 
is not as complex as it might seem. When the lightpen sees the flow line 
in question, the display channel is interrupted, and the program notes the 
member of the FLOW-MAP list-structure that is responsible for that par
ticular display item. Since that list-structure member was created with 
a knowledge of program flow location, that information can be and is 
stored as part of the data contained in the member. When the button 
for selecting a data probe is pressed and the lightpen has singled out a 
FLOW-MAP list-structure member, that member is examined for the asso
ciated program location, and the hardware is adjusted to trap to the 
data-probing procedure whenever control reaches that location. Also, 
the FLOW-MAP display is augmented to include the data-probe symbol 
needed to provide suitable communication to the user as to its presence 
and data assignment. 

After the program is allowed to run with the data probe attached, 
it is observed that index register 2 is indeed responsible for the faulty 
behavior. Knowing this, the user desires to modify his source-language 
program. To effect this, he could point his lightpen at a flow box above 
the conditional computation and press a button a1focated to the initiation 
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of the display of source-language text. Soon those statements corresponding 
to the flow box selected are displayed, and subsequent depressions of 
another button cause successive sections of text to be selected for display. 
When the faulty statements are displayed, they may be edited directly. 
After a suitable complete or partial recompilation, the analysis processes 
begin again. 

There are some interesting prospects which are a by-product of this 
discussion. The association of input and output statements with a given 
procedure almost always presents a difficult consideration in programming. 
It is an interesting thought to contemplate inserting these aspects of a 
procedure graphically via a FLOW-MAP or flow-chart after a basic algo
rithm is designed. The basic advantages envisioned are flexibility and 
simplicity. If it is easy to explore the state of a variable that would not 
ordinarily be explored, better understanding of program performance is 
the result. Also, there would be a certain elegance gained by being able 
to divorce the input-output phases of programming from the purely 
algorithmic ones. 

The thought of being able to specify a portion of a procedure by graphical 
means naturally leads to the idea of specifying entire procedures in that 
manner. The concept of a graphical compiler (i.e., a compiler which uses 
pictures as a source language) is not a new one. For instance, people 
have been thinking of compiling flow-charts for some time and have 
made some primitive attempts in this direction. Efforts to this end are 
now in progress at the Lincoln Laboratory and at The RAND Corporation. 
As these efforts mature and evolve, some processes of program specifica
tions, program maintenance, and program debugging will tend to take 
place in a common language that in all probability will enrich and facilitate 
all three. 
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DISCUSSION 

o. M. ABU-GHEIDA: You mentioned that SKETCHPAD was used 
to construct the flow-charts. Was this done by just utilizing the drawing 
ability of SKETCHPAD, or did you have to add blocks for the flow 
lines and various parts of the flow-chart? 

T. G. STOCKHAM, JR.: Certain blocks had to be added, but, basically, 
just the drawing ability of SKETCHPAD was used. SKETCHPAD has 
a lot more capabilities than those implied here, but in this case it was 
just used as a drawing device. 

G. T. THOMPSON: I wonder if you'd planned from the flow-chart to 
go directly into some compiling language. 

T. G. STOCKHAM, JR.: What you are suggesting is that you could 
take a flow-chart, go into, let's say, FORTRAN, and then go through the 
FORTRAN compilation. The graphical compilation efforts of the Lincoln 
Laboratory are characterized by an entirely different approach in which 
the flow-chart drawing is the language, not a vehicle for an already
existing language. 

J. C. R. LICKLIDER: You didn't say much about one principle and 
one subprinciple, and I'd like to ask you about them. The principle 
is that of having the computer examine stated expectations, written out 
ahead of time by the programmer, and then, when these expectations 
aren't made good by the operation of the program, go into a diagnostic 
mode. The subprinciple is subject to your statement about traps. In my 
opinion, the times at which subprograms are "called" and control is 
returned from subprograms to their "callers" are very important phases 
in the operation of a computer program, and they are therefore strategic
they are also convenient times to trap. Do you have any experience with 
what can be done by shifting into an interpretive mode at just those 
times? 

T. G. STOCKHAM, JR.: I don't have any such experience, but I would 
agree that it is an important principle. 

J. C. R. LICKLIDER: What about the expectation? 
T. G. STOCKHAM, JR.: The concept of expectation fulfillment had not 

occurred directly to me, except in the sense that you could put an un
conditional breakpoint at one place, some conditional breakpoints logically 
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before it, and then achieve more or less the goal that you are describing. 
We recognize that an investigation of sophisticated methods of program 
interruption for debugging purposes is one of the most important tasks 
facing us. 

F. W. BLAIR: In the list processing that you are doing, are you by any 
chance using LISP? 

T. G. STOCKHAM, JR.: No. This brings me to an important factor. 
The type of topology and abstract relationships to be kept track of in 
this particular form of work can't be conveniently modeled with a simple, 
one-way list. One needs to have a threaded list, a two-way list, and, 
what is more important than that, one needs to have a fast path from 
any other place in a list to the top of the list. In a two-way list that is 
closed, there is no bottom or top, but there is a key member. If one wants 
to form trees and go backward through the forks, one has to have a way 
of getting from any place on a branch to the next joint. 

F. W. BLAIR: Two one-way lists would do. 
T. G. STOCKHAM, JR.: Two one-way lists will do, but you will have 

to go arithmetically from the midpoint to any key member. You don't 
want to do that. You want to go in a fixed amount of time from anywhere 
in the list to the head of it. That requires an additional pointer. 

R. R. FENICHEL: I have two questions. First of all, given that you 
are not using LISP, [11 what language are you using? 

T. G. STOCKHAM, JR.: You are asking me what SKETCHPAD uses, 
then? 

R. R. FENICHEL: I didn't realize that all of your work was built 
on top of SKETCHPAD. 

T. G. STOCKHAM, JR.: Yes, it is. 
R. R. FENICHEL : You're not using AED then, to get the maximum 

flexibility? 
T. G. STOCKHAM, JR.: No. SKETCHPAD uses a list-structure with 

the characteristics I just described. Similar list-structures can be imple
mented via the AED-O compiler at Project MAC. This compiler is an 
ALGOL implementation, but it also supplies some features which enable 
the user to construct any kind of list. There is also a language being 
completed at the Lincoln Laboratory called "CORAL." This language 
manipulates an improved version of the original SKETCHPAD list
structure by means of a very concise and neat set of macro-instructions. 

R. R. FENICHEL: Secondly, I should like to speak on Dr. Licklider's 
question about a possible interpretive system which could run at full 
machine speed until the junction between independent routines. It is 
almost correct to say that the IBM 7090 LISP interpreter can be run in 
exactly this mode. There are a few details of non-correspondence, but 
I don't imagine that they would be of general interest here. 
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T. G. STOCKHAM, JR.: Let me turn to a new thought. An important 
factor seldom taken into account is the need for special debugging hard
ware. Computers being designed now should be provided with a mechanism 
that may be adjusted under program control to allow interruption due 
to a variety of program states. This mechanism should allow a processor 
to proceed at or very near full speed while looking for special conditions 
that have been specified by a person debugging a program. In computers 
designed for time-sharing, similar checks are made for violations which 
trespass upon memory security, and the like. The Lincoln Laboratory 
TX-2 computer has such debugging hardware that has been in operation 
for many years. Unfortunately some of its controls are through toggle 
switches, and thus they cannot be adjusted by a program. Until this 
situation is corrected in the near future, time-consuming interpretation 
is the only means for implementing sophisticated debugging mechanisms. 

J. M. BENNETT: I am very interested in your original remarks about 
the use of brightening. About eighteen months ago, we moved from an 
old cathode-ray tube machine, which had this convenient brightening 
effect in its monitoring display as a by-product of the way in which its 
memory was accessed, to one which had no comparable display facilities. 
With the old machine, we got some advantage from the brightening in 
that it often showed where data and instructions were coming from. 

T. G. STOCKHAM, JR. : You mention data. One can, if one wishes, 
perform a data flow analysis on a program. Dan Wilde at M. 1. T. is doing 
this sort of thing, not with the intention of making any drawings, but 
just from the analysis point of view. One can display data flow-charts 
and hang one's data probes on them and one's breakpoints on control 
flow-charts. 
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Control Language* 

A. J. PERLIS 
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[ABSTRACT] 

A language was described for carrying out simultaneously large-scale 
ALGOL computation, program editing, and on-line desk calculator com
putation. The intent is to specify a single programming structure for all 
of the communication required by a programmer to work at any or all 
of these three levels of computation. 

* The manuscript of this paper was not available at the time this book was published. 
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Computer Graphics and 
Innovative Engineering Design* 

STEVEN A. COONS 

Massachusetts Institute of Technology 

It is rapidly becoming clear that graphical communication with a computer 
is of very great importance in man-machine interactive systems. At the 
beginning of an innovative engineering (or scientific) investigation, 
graphical modes of thought are natural; the engineer instinctively draws 
a sketch of a mechanism, or a diagram of a circuit, or possibly a flow 
diagram of a computational procedure, or a block diagram of transfer 
functions for a system. Indeed, graph theory itself is a study of graphs 
and their application to all of these abstract information structures. 

The engineer's sketch serves as a mnemonic device that greatly assists 
him in fixing and focussing his ideas. It is superfluous to point out, for 
example, that an incidence matrix, while completely describing a graph, 
is a poor substitute when it comes to being an aid to human intuition 
and understanding. A similar reflection applies to tables of values that 
describe functional relationships; a graph is immediately clear, while 
numbers are not. 

The early stages of innovative engineering activity in design are largely 
unstructured; there is no detailed algorithm that describes the heuristic, 
unpredictable process of creative engineering, or creative thought for that 
matter, for the same reason that there is no universal algorithm for con
structing algorithms to solve problems, and it is certain that there never 
will be. This is not to say that certain intellectual procedures that men 
perform today by an exercise of art cannot in the future be formalized 
and subsequently mechanized, but it is to assert that there will always 
be an indefinitely extended hierarchy of intellectual procedures that 

* The lecture originally presented at the symposium was entitled "Computer-Aided 
Design." This amplified version of a similar paper is used here at the suggestion of the 
author. It is reprinted with permission from the May 1966 issue of Datamation, copy
right ® 1966 by F. D. Thompson Publications, Inc.-
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remain above the boundary of mechanizable tasks, no matter how far 
we succeed in expanding the boundary. It is at the interface between art 
and algorithm that the man-machine interactive computer system has 
meaning and potential. And one of the important modes of manipulation 
of ideas by mutual action of man and computer is the graphical mode. 

As is no doubt well known, the actual physical implementation of 
computer graphics usually involves a cathode ray tube or 'scope, a light 
pen or equivalent device for drawing and manipulation of the graph, 
an associated keyboard, and possibly an array of push buttons and toggle 
switches for designation of certain frequently used subroutines and macro 
instructions, all of this peripheral equipment being tied to a computer. 
The state of the art is one of vigorous change, improvement and growth, 
and there are many human engineering problems yet to be resolved about 
the best, simplest, least expensive, and most convenient console con
figuration that produces ideal coupling between man and machine. 

The Sketchpad System 

The classic step toward graphical communication with a computer was, 
of course, Ivan Sutherland's SKETCHPAD program/ written for the MIT 
Lincoln Laboratory TX-2 computer, completed in 1962 and probably 
familiar to most computer people. Sutherland, far beyond merely modeling 
his graphics capabilities on traditional paper and pencil methods, intro
duced many transcendental notions into the system. SKETCHPAD is not 
a passive drawing system, an expensive and precise replacement for 
traditional devices and methods; it is instead a system that actively 
participates and assists the user. 

The notion of applying a set of constraining relationships between 
elements of a graph, and the subsequent automatic relaxation of the 
geometry of the graph or drawing until these constraints are satisfied 
or until the discrepancies are at a minimum, makes it possible to perform 
many very sophisticated constructions with SKETCHPAD that would be 
quite difficult or at best tedious and confusing by conventional geometric 
or graphical processes. 

For example, it is possible in principle to perform graphical field
mapping, the delineation of the potential field of ideal fluids (like electrical 
flow in conducting plate or magnetic fields, or heat flow, or water flow 
through earth). Briefly, this consists of sketching an array of flow curves 
within some flow boundary, and an orthogonal array of equi-potential 
curves, and modifying and resketching these curves until the resulting 
net consists everywhere of small squares. 

1 1. E. Sutherland, "Sketchpad, a Man-Machine Graphical Communication System," 
Lincoln Laboratory Technical Report ~296, 30 January 1963. 
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In practice, this graphical procedure is extremely tedious and confusing; 
if the two families of curves are kept orthogonal, the small rectangles 
will not at first be geometrically similar. Some will be square, but others 
will be long and narrow, while still others will be short and wide. This 
violates the requirement, and further readjustment must be done until 
the square condition is met. With SKETCHPAD, the computer maintains 
the constraints on all the small quadrilaterals automatically, and eventually 
achieves a proper map. Of couse, such a procedure is not a very efficient 
way to solve such problems on a computer, but it is illustrative of the 
power of the notion of constraint satisfaction. 

Compound Con8traint8 

Again, in SKETCHPAD we see the germ of the idea of building compound 
constraints out of what might be called primitive or atomic constraints. 
Furthermore, such compound constraints are constructed graphically by 
a process that could be called "ostensive definition"; that is to say, the 
computer is shown how to do something for a special case, and then it is 
possible to copy the picture of the definition of the procedure and apply 
it to other cases. 

For instance, suppose we wish to make six lines parallel and also equal, 
by pairs. We set aside temporarily the drawing of the six lines, and start 
with a fresh "sheet of paper" on which we draw two lines. These will 
serve as dummy variables. We now call for the constraint that makes 
lines parallel. This can be caused to appear as an abstract symbol or ikon, 
on the 'scope, and consists of a small circle containing the letter P, with 
four radiating lines or tentacles. 

We attach the ends of the tentacles to the four ends of the two lines. 
The computer has been instructed to apply the "make parallel" constraint 
to the lines. Next we call for the "make equal" constraint. This also appears 
as an ikon, and resembles the "make parallel" constraint. When we attach 
its tentacles to the four end-points of the lines, the computer has been 
instructed to perform a compound operation on the lines. In Sutherland's 
system, no action will be taken to satisfy these constraints until the 
operator specifically commands that it be done, by pushing an appropriate 
button. 

We now store the ikon of the applied compound constraint, and recall 
the drawing of the three pairs of lines. We can now call for an instance 
(loosely, a copy) of the ikon of the compound constraint, and can "merge" 
or attach it to each of the two lines of each pair. In this operation, the 
computer replaces the dummy lines of the ikon with the actual line of the 
problem. When finally the constraint has been applied to all three pairs 
of lines, a push of the "satisfy constraints" button will cause the lines to 
become parallel. 
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SKETCHPAD deals entirely with geometry; although by artifice, it is 
possible to solve some problems that are not inherently geometric, there 
are many cases where it is either very awkward or even impossible to 
communicated meaning. William Sutherland (Ivan's brother) addressed 
himself to the broad problem of computer graphics, with the aim of 
making it possible to communicate abstract procedures of any kind to 
the computer, including not only the geometric ones of SKETCHPAD, but 
others that the user may in the future define for himself, either through 
the keyboard or by construction from a base of primitive operations 
already in graphical form. 

In this program, a graph or diagram can be drawn composed of any 
constituent elements whatever; the meaning of these elements can then 
be defined, and the diagram can then be "activated." For instance, one 
can draw a diagram of the arithmetical procedure for extracting the 
square root of a number, and then can introduce a specific number at 
the input terminal of the procedure graph on the 'scope of the computer, 
and obtain the result at the output terminal of the diagram if one wishes, 
by causing the computer to halt after each step; in this case, the various 
elements of the graph blink as they perform an operation on information. 
This makes it quite easy to "debug" the graphical procedure diagram. 

This graphical technique has already been used with a programmed elec
trical network simulator, so that a sketch of an electrical network is 
sufficient to provide machine code for the simulation computations. 

Computer graphics differs from pencil and paper graphics in another 
extremely important aspect; it permits dynamic behavior of the graph. 
The moving parts of a mechanism can be shown in motion, and such 
motion adds immeasurably to the information content of the drawing 
as far as the observer is concerned. It is possible not only to design and 
delineate a device, but one can actually "make it work" and observe 
its behavior. In principle we might not only watch the moving geometry 
of a mechanism, but we might also observe the deformations of the parts 
of the device under the influence of varying inertial forces superimposed 
on the static loading. 

Free-Form Design 

The design and subsequent detailed description of the objects with 
doubly-curved free-form surfaces is a very important and fruitful field 
for implementation by computer graphics. Airplanes, ships, and auto
mobiles are examples of such free-form or "sculptured" shapes, and tradi
tional methods for the design and production of such shapes are extremely 
tedious and slow. Sculptured shapes also occur around us in the small 
as well as in the large; the hand-set on a telephone is such a shape, as is 
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the cream pitcher on the table, the differential housing on an automobile, 
and the walnut stock on a shotgun. 

Small objects usually are produced by artisans who sculpt models or 
patterns or sink forming dies based upon drawings furnished by the 
designer. These drawings usually consist of a few definitive design curves 
that depict and define the important aspects of the shape the designer 
has in mind, and leave to the artisan the job of interpolating the surface 
that will contain and agree with the intent of these curves. Of course the 
artisan and the designer can be in frequent communication with one 
another, so that if the designer has failed to be explicit enough about 
his intentions, he can add information, or can correct a misinterpretation 
in case the artisan goes astray. 

In the case of the large sculptured shapes like airplanes, ships, and 
automobiles, such a procedure is of course out of the question; the designer 
must in some way define the surface explicitly and completely to a sufficient 
degree of detail so that further interpolation is mechanical and hopefully 
unique. Traditionally this has been done in the shipbuilding industry 
by an extremely long and tedious graphical process called "lines fairing" 
or "lines lofting," in which the ship is essentially drawn full size in several 
views or projections, and represented by a large number of plane sections 
or contours, somewhat like a topographic contour map. In lines fairing, 
it is by no means a simple, straightforward process to draw the section 
contours at intervals along the hull and thus generate a smooth "fair" 
surface. Instead, it requires many weeks or even months of drawing, 
cutting trial longitudinal sections, and smoothing of these sections by 
readjustment of points along the curves before the shape is free of un
wanted bumps and hollows. 

In the aircraft industry these traditional shipbuilding techniques were 
employed up until about 20 years ago, but have since been replaced by 
certain mathematical techniques that remove all of the older graphical 
trial-and-error procedure. But even so, the delineation of an airplane 
fuselage is a fairly complicated and time-consuming operation. 

The design or "styling" of an automobile body is done by still another 
technique. Usually the designer creates sketches of a proposed new auto
mobile, the best sketch is selected, a full-size drawing is prepared in color, 
and then a full-size clay model is made, with scrupulous attention paid 
to surface quality and overall authenticity. After changes are made on 
the model and it is finally approved, it is measured by elaborate and tedious 
processes and converted into section contours on a full-size drawing or 
"body draft." The measurement of the model and subsequent conversion 
to contour curves inevitably introduce errors into the information, and 
this "noise" has to be smoothed out by a process resembling roughly 
the fairing "procedures of the ship loft. Eventually the body draft furnishes 
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information to enable dies to be sunk to form the panels of the body. 
This entire process is one-dimensional' and very long and articulated, 
and at every joint of the articulation the information is contaminated 
as though through a leaky pipe. It is remarkable that the finished auto~ 
mobile resembles as closely as it does the original intent of the designer. 

The Sympathetic Patternmaker 

In all of these instances of shape design and description, traditional 
methods are long, tedious, and subject to error. Computer graphics will, 
in the near future, permit the designer to create the shape of an automobile 
body, a ship's hull, an airplane fuselage, or a tobacco pipe with con
summate ease. This computer will behave like a skilled, sympathetic, and 
experienced patteriunaker, or like an incredibly fast loftsman, or like 
a super-sculptor, working from meager information furnished by the 
designer at the computer console. This potentiality has come about fairly 
recently through the development of very general and powerful methods 
for the design and description of the entire class of sculptured shapes 
'with the aid of the computer.2 It is now possible for the designer to draw 
a few salient design curves and to have the computer automatically fit 
a sUrface to these curves. If the first computer interpretation of the de
signer's intention is not satisfactory, the designer can modify the curves 
already drawn, or he can add new curves to make his description more 
explicit. The computer will then automatically modify the original surface 
to accommodate the new information. The computer can calculate sufficient 
information about the surface to enable the shape to be displayed to the 
designer on the 'scope in somewhat less than a second, and subsequent 
modification of the shape takes comparably short computation time. 
Once the shape has been defined, it can be displayed in perspective rotated 
into any position,and moved about in space in real time. 

The same shape-descriptive algorithmic structure in the computer can 
be ,used not only to produce the graphical display, but can furnish much 
more detailed information to run a plotter to draw the shape to any 
desired scale on paper, or to carve a full-sized model of the shape in some 
soft 'plastic, like styrofoam, or to run a numerically-controlled machine 
to sink the dies for the final fabrication of the parts. At present it is fairly 
standard practice to calculate points on such surfaces to a precision of 
about 21 bits, or about seven decimal places. This is entirely adequate 
precision for virtually all engineering purposes. Of course the precision 
of the arithmetic could easily be increased. 

, IS; A. Coons, "Surfaces for Computer-Aided Design of Space Figures," Internal 
PJ"oject MAC memorandum, MAC-M-255, July 21, 1965 (to be published later). 
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The shape-descriptive information also forms the data base for other 
geometric calculations. It is possible to cut plane sections through the 
object, to obtain projected areas, surface areas, volumes, and to calculate 
the curve of intersection of two arbitrary shapes. The same data base 
also can furnish input to special programs for fluid dynamics calculations, 
three-dimensional stress analysis, and other analytical processes that 
require shape description and environmental description as inputs. 

There is also a class of information structures which might be called 
quasi-graphical, consisting of mixtures of abstract symbols like words 
and numbers, but arranged in some familiar array or pattern. Matrices 
are excellent examples; we can cite also another example so common 
to us that if might be overlooked: the positional notation of our decimal 
number system itself, in which the geometry of position of digits is a 
means of conveying meaning concerning magnitude. The conventional 
integral sign with the appended upper and lower limits, followed by the 
integrand, followed by the differential operator and the independent 
dummy variable, is still another example of a quasi-graphical structure 
in which the array is a device for conveying meaning to the eye. Much 
of text-book mathematical notation has this quasi-graphical character, 
and it is important to preserve this structure when we are using a computer.3 

The keyboard with its one-dimensional input-output string and its 
rigidly limited set of characters is certainly not well adapted to such forms 
of communication; a large encrustation of circumlocutions and makeshift 
techniques has formed around computer languages in an attempt to make 
them compatible both with people and with machines. The reason that 
quasi-graphical arrays on the printed page are easy for people to under
stand is probably that they make it easy for the human information 
processing system to construct efficient data structure models of their 
content, and these data structures are easy to manipulate and to remember. 
It is possible that similarly the two-dimensional array on the computer 
console can lead to a more easily constructed information model within 
the computer; this implies an enhanced transparency at the interface 
between man and machine. The man can more easily look into the com
puter, and the computer can more easily look back. We often use the ex
pression "problem-oriented languages." It might be appropriate to say 
instead "people-oriented languages" to emphasize the goal of making 
communication with the machine truly natural. A measure of the degree 
to which some form of communication approaches the ideal is the degree 

3 Klerer and May, "A User Oriented Programming Language," The Computer 
Journal, July 1965, British Computer Society, pp. 103-108. 
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to which it is understandable weeks or months after it is written, not 
statement by statement, but in the structure of meaning that it reveals 
or conceals. Graphical communication is inherently structural; it seems 
likely that a truly fundamental effort toward implementation of such a 
way of man-computer conversation is the most important step to be taken 
in computer technology. 
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INTRODUCTION 

This paper presents some results from a continuing review of operational 
information systems. The study is being conducted to develop guidelines 
for evaluating the performance capabilities of existing systems and to 
obtain information which will be of value in planning modifications to 
existing systems. It is expected that the study will also provide a better 
picture of the environment in which systems under development must 
operate at some future point in time. This, too, will help identify the 
"cultural" factors likely to be encountered in implementing new systems 
and will aid preparation of effective implementation techniques. 

Because there is often some question about what is considered to be 
an operational system, let me state the simple definition that I have 
used: a system which is reported to be used for some productive purpose. 
Further, I have been interested primarily in systems which are dedicated 
or committed for a significant portion of their time to the support of 
decision processes at some level of management or command-that is, 
those which are used to provide information in support of planning or 
operations. Because these definitions are quite general, selection of systems 
that satisfy these conditions has been somewhat arbitrary. But, since 
I have been interested in general conditions and in trends, this has not 
been considered to be critical. 

While there has been no intent to make the study more restrictive 
than just described, the availability of and access to certain categories 
of information have influenced, so far, the direction and scope of the 
effort. Readily available information about military command-and-control 
and intelligence systems (as well as some personal familiarity with them) 
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and the opportunity to contact people familiar with military systems, 
have resulted in the command/intelligence group being reviewed first. 
The present report is concerned only with operational military information 
systems. The study is incomplete and, even when complete, will by no 
means be exhaustive. It is believed, however, that the results will generally 
represent what might be called the "state of the practice." 

To indicate the orientation given to this report, let me indicate more 
specifically the kinds of things that have been of primary interest (also 
those things that have not been of interest). They fall into two categories. 
The first is simply the overall system environment, including such sub
jects as development history and trends and current modes of operation. 
I have not been concerned with particular hardware or hardware con
figurations. 

The second category includes user/system interaction and performance 
capability. I have not been concerned with programming systems or the 
working programs as such, but more with the way and extent to which 
the systems permit expression or solution of information-handling problems 
from the point of view of those who create or use the information. To be 
more explicit, I have arbitrarily grouped subjects into the following 
categories, which seem to be common to all management or military 
information systems: 

1. Creation and maintenance of information structures and organizations 
2. Maintenance of information sets 
3. Selection and presentation of information 

Within each of these categories, or subdivisions of them, the objective 
has been to summarize the method or technique and the extent of expres
sion. This has been done by comparing systems against an open-ended 
checklist with explicit parameters noted whenever applicable or possible. 
The present report presents only a summary of results. After briefly describ
ing development approaches and current system environments, I will 
describe and illustrate what might be typical of existing systems. An 
attempt will be made to point out those features which are exceptions 
or not common to most systems. 

DEVELOPMENT BACKGROUND 

One of the most common ways of describing a military information system 
is to discuss the way in which it was developed. This is often of interest 
because the development approach has affected and does affect the end 
product and, in many cases, the capability of the system to respond to 
changes in its environment. It therefore affects the degree to which a 
system might reflect performance requirements in that environment. 
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System development approaches have gone through a number of cycles, 
which have been summarized by Ruth Davis* as follows: 

1. The "Hardware" Era: 1953-57. 
2. The "Damn the User-Full Speed Ahead" Era: 1957-60. 
3. The "Don't Make a Move Without Calling Everyone" Era: 1960-63. 

Another name for the last period might be the era of the "evolutionary 
system." All of the systems which have been reviewed to date were orig
inated and have been developed during this period. All have had a some
what similar development history in that they have evolved over a number 
of years. They do seem to fall, however, into three groups representing 
the origin of somewhat different species. 

Figure 1 represents a system developed on a single basic equipment 
configuration, within a single operational environment. The system has 
been carried through more than one iteration or cycle of refinement within 
that situation. 

SYSTEM 
MODEL 

Time 

FIGURE 1. Typical system development process 

Another type of development is depicted in Figure 2. It represents 
a system originally developed in one environment with one equipment 
configuration, but with a second-generation system planned for that 

* Ruth M. Davis, Chapter 2, "Military Information Design Techniques," Military 
Information Systems, ed. E. Bennett et al. (New York: Praeger, 1964). 



STEM 
)DEL 

88 J. H. Bryant 

SYSTEM 
MODEL 

Time 

FIGURE 2. Typical system development process 

environment with different equipment. It would not be surprrsmg to 
find the pilot model "evolving," even though specifications for the more 
advanced model would be based on the first generation as shown here. 

Figure 3 illustrates another group-an entire family of systems which 
have had interrelated courses of development. While this represents perhaps 
an uncommon situation, in the one instance encountered, it accounted 

Time 

FIGURE 3. Typical system development process 
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for a large number (over ten) of operational or partially operational 
systems in different services and commands. 

The systems reviewed so far have all been developed along one of 
these lines. All have been through one or more cycles of refinement based 
on successive experiences. They are, therefore, considered to represent 
some degree of responsiveness, because of this, to the requirements of 
the environments in which they have been developed and are being used. 
The extent to which and the order in which performance capabilities have 
been added are also indicative (holding technological capability constant) 
of the relative priority actually placed on classes of performance capabilities. 

OPERATIONAL ENVIRONMENT 

Before describing a composite military information system as it would 
currently look from the point of view of those factors mentioned earlier, 
let me comment about the operational environment in which the systems 
were developed and in which they operate and about some of their general 
characteristics. It is believed that this will help create an overall picture 
of the current state of technological practice. 

Common to all of the systems reviewed is the concept of a centralized 
collection of information or data base accessible to all users within ap
plicable security constraints. The data base is subdivided into logical 
information sets or files which serve some specialized purpose or support 
some specialized set of functions. The data base may be, but is most 
likely not, integrated so that logical relationship or interdependent informa
tion can be associated. Rather, information sets are typically created, 
maintained, and used independently by means of common facilities. 

Most of the systems support the command in which they operate at 
a staff-planning level of organization. The typical user is an operations 
or intelligence analyst with little or no knowledge of or experience with 
data processing. A user may interact with the system directly but most 
likely will interact with an intermediary from the "system support 
organization.' , 

The system support organization is most likely to be established, as 
a normal data processing organization, as a staff organization itself. 
The support staff will usually include, in addition to operating personnel, 
specialists capable of providing help in creating processable information 
sets, as well as in using the data base and, occasionally, in interpreting 
results. 

Information sets are centrally cataloged by the system, and the catalogs 
are used as a means of interacting with the data. The catalogs are main
tained at a detail level; that is, all elements of the set are specified in 
detail and provide dictionaries for translating user symbolic or textual 
terms into internal conventions, and vice versa. The catalogs may be 
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created in single or multiple physical counterparts, depending on the 
system. While the number varies from system to system, a typical system 
might maintain 6 to 20 major information sets which vary in complexity 
and extent from a few thousand to several million logical lines. 

Most of the systems perform the basic functions of information storage, 
selective retrieval, and presentation in more or less general fashion. While 
they are by no means uniform, they have many characteristics in common. 

Since most of the systems reviewed were started around or since 1960, 
most tend to be oriented toward serial storage devices. Direct access 
storage is used, however; in some capacity on most systems. Terminal 
devices, ordinarily typewriters, are used in some capacity on most sys
tems. The number, typically small, provides the means of operator com
munication rather than serving as the normal means of user interaction. 
In some cases, terminals are available for analyst use, but these are 
mostly on an experimental basis or for training. Dynamic visual displays· 
are rare, and even auxiliary graphic devices (such as plotters) are un
common. 

Most systems operate in a batch process mode, but it is not unusual 
to find blocks of time during prime shift reserved for open inquiry or 
analytical use. There are exceptions, but the usual situation is to find 
most (what may be called spontaneous) questions answered in a one- or 
two-day response period. Most inquiries are handled on a routine or stand
ing basis as standard reports. These are prepared and periodically modified 
and processed-daily, weekly, or monthly. 

In most of the systems the volume of incoming information is high, 
and, therefore, a large proportion of the time and effort is devoted to 
maintaining information. The rate of change in information sets does not 
appear to be unusual in comparison with other types of data processing 
installations but is, nevertheless, a significant factor in the situation. 
The rate of change seems higher in the way in which the data is used-that 
is, different information is selected, and it may be organized differently. 
New information sets are established not too frequently for a given 
installation. 

This, then, is the overall characteristic of the systems and their en
vironment. Now, let me describe how information problems can be ex
pressed and solved with these systems. 

PERFORMANCE FACTORS 

The first category considered is the extent of information structures and 
organizations possible and the method used to establish or maintain 
them. This is considered to be an important factor, because it is assumed 
that there is no natural structure or organization which is inherent in 
all information and that structures are imposed principally for utilitarian 
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purposes-meaningfulness or efficiency. They may be meaningful in many 
forms but will be more or less efficient depending on the relationships 
established between elements and their use. In discussing this category, 
I am using the term "element" to mean the smallest useful information 
unit consisting of one or more bits. An information line consists of one 
or more elements which are always associated with each other. 

Structures and Organizations 

All of the military systems reviewed provide some means of explicitly 
expressing, establishing, and often maintaining structures and organiza
tions. That is, structures are created and maintained explicitly at a detail 
level rather than existing as implicit controls in compiled programs. Most 
are oriented toward what are usually called formatted files, where a file 
or information set is composed of lines which, in turn, are composed 
of one or more elements. The lines may be of fixed length, but most systems 
provide some flexibility in structuring lines. 

Figure 4 illustrates the concepts common to the typical information 
system in the current sample. As shown, it is composed of fixed-format 
line segments, some of which may occur a number of times in the line. 

Line 

~----------~~-----------~, 
Element Set Set 

L--->~} "",-1-,, 
Group 

L...-_--'~ 1-.1 _~ 

Hierarchic 
,--______ --, Group 

FIGURE 4. Variable-length, fixed format 
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All like segments compose a set or section. In some cases, but not usually, 
there may be multiple sets; and, further, a section may be made sub
ordinate to some other segment to create some level of hierarchic rela
tionships. In the typical system, data relationships must be maintained 
in contiguous physical space. It is an exception to permit more than one 
or two hierarchic levels. While the extent of a segment may vary, most 
systems do not provide for variable-length elements, although this is 
done in some cases. 

File organizations are usually restricted to either an unordered collection 
of lines or a physically sorted collection. Indexing and chaining of lines 
or elements are permitted only in exceptional cases. 

All of the systems provide facilities for defining such structures and 
organizations as might be desired, using some variety of card-creation 
forms or fixed-format statements. Shown in Figure 5 are typical job 
statements which might be used to create a data set in a typical system. 
The statements perform several functions related to the job and the 
elements of the job. The first entry in this illustration identifies the 
type of job which is being performed. The first few statements identify 
the data set to be constructed and provide control information for that 
set. The other statements name or identify controls for each element. 
In this particular example, the term FMOD is a convention which indicates 
that this is a file-creation job. The file is named and some priority assigned 
to the job. The numbers of fields and sets and groups considered to be 

• Job Identification FMOD, FILE, PRIORITY, ID ~ 
NAME FIELDS GROUPS f • Data Identification 

• Process Control s NAME SORTS I 1 
• Elements Definition Element I Position I Length I Type I Control ~ 

NAME I Output ~ • Output Controls 

I ~ Element Controls Heading 

Element Match I Value ~ 
FIGURE 5. Expression of data relationship 
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a part of that file are indicated. Organization controls which pertain to 
the entire data set are also specified, such as might be used for determining 
the sort order of the file. Most of the systems reviewed provide for this 
type of function in one form or another, there usually being some limitation 
on the numbers of elements or at least the numbers of characters which 
could be used in creating a sort order. Specifications for composition and, 
in some cases, content checking are entered with the data definitions 
and are used to establish automatic legality checks as information is 
entered into a set. Finally, most of the systems provide some facility 
for specifying at data-definition time the headings and element values 
that will be used at presentation time. Essentially, the procedures followed 
in current systems are no different from what might be involved in defining 
or writing operating procedures for punched-card or manual files, other 
than that extra steps are required to create and name elements. They 
might be more systematic because of the fixed-format demands of the 
particular system. While the forms differ in detail between systems, they 
are generally similar, and the process of entering definitions into forms 
and/or processing such forms is roughly equivalent. It is significant, 
however, that once the definition is done, no further knowledge of it, 
as such, is required. It is used to translate references to the established 
element, group, set, and file by means of symbolic names. 

The typical system provides some facility for altering established 
structures and relationships. This is done, in those systems where it is 
provided, by simply re-entering the data definitions in a fashion similar 
to that just described, with the actual data set being revised as an auto
matic function of the re-entry. In most cases, revision of the information 
set will require a specialized program. 

MAINTENANCE OF INFORMATION 

The next category to be discussed is the extent to which information 
sets themselves can be maintained and the methods that are used for 
expressing or accomplishing this function. Most of the systems distinguish 
between normal or routine and special maintenance, and they are per
formed in completely different manners. The typical system today will 
provide for the usual one-to-one maintenance situation: a single incoming 
line structure is transformed into a single system line structure .. Provision 
is made for defining a single input and, as has been described, the system 
data set, as well as for making the transformation between the two. 
In some of the systems, provision is made to accommodate several in
coming line structures and to convert them into a single data structure. 
This, however, is an exception. Only one of the systems offers a facility for 
receiving multiple incoming lines and transforming them into multiple 
storage lines, and this is not a generalized capability. 
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To summarize then, normal data maintenance-the adding of new lines 
to an established set-is set up at the time that the data definitions are 
prepared and is usually restricted to the case of a single incoming line 
being transformed into a single system data set. On an exceptional basis, 
additional facilities are provided for multiple inputs but none is provided 
for multiple inputs to be transformed into multiple files. 

The definition typically provides for encoding from external language 
to a systems storage convention, in most cases checking the composition 
of incoming lines and in many cases checking for legal values. Most of 
the techniques involve straightforward checking of field length and 
character set, and looking up legal entries in a table. Programmed error 
correction is provided on an exceptional basis as "special" rather than 
as general cases. 

A feature provided in the typical system, in one form or another, is 
the provision to add lines to an existing data set either on a routine batch 
basis, as I have just described, or in an on-line fashion from either cards 
or a terminal device. Figure 6 illustrates one of the ways in which this might 
be performed in one of the systems. As previously illustrated, the format 
for entering and the procedure used to enter such jobs are generally 
uniform, with three main elements contained in the job statement: (1) 
the job identification which addresses a specific data set, (2) the control 
statement which regulates or identifies the remaining information to follow 
in the job statement, and (3) the identification of an operation. In this 
case the operation is ADD, meaning add lines to an existing file, with 
the information elements to be added contained as a part of the statement. 
In this illustration there is no requirement to use a fixed format, even 
though the elements must appear in their proper relative order for the 
data set being addressed. 

What might be considered special information maintenance operations 
are provided for in the typical system. Included in the category of special 

• Job ID i FMUP, File, Nor, ID } 
• Controls ~ Format Comma, IFTN ~ 
• Operation f ADD, Element, Element } 
• Data 

FIGURE 6. Expression of routine data maintenance 
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maintenance are those operations required to conditionally select and 
modify the contents of previously stored lines or to delete them altogether. 
In the typical system these operations are performed on a job basis as a 
result of detection of errors or the receipt of new or revised information. 
Conditional statements might be more or less involved, depending on the 
complexity of the problem. The typical system provides considerable 
flexibility in conditional expression. Since the conditional expressions used 
in special maintenance operations are more or less identical with those 
permissible in selective retrieval, more will be said about this later. 

A typical job statement of this type is shown in Figure 7. The statement 
consists of three parts: 

1. The job identification and control 
2. A set of conditional expressions 
3. The operations to be performed 

The two types of maintenance commands typically permissible, however, 
are those of delete, as indicated here, and change. A change would be 
addressed to a specific element by name-such as, change the element A 
to some literal value. In some cases, the option is provided to change the 
contents of an element as a function of an algebraic expression. 

• Job ID Modify, File, Nor, ~ 
• Conditions If Element A = XXX ~ 

and Element Y I yy ~ 
Delete. ~ 

• Operation 

FIGURE 7. Expression of special maintenance operation 

INFORMATION UTILIZATION 

The subject of information utilization can be addressed with respect to 
three functional capabilities. The first topic concerns the facilities for 
expressing selection requirements or the retrieval aspect of data utilization. 
The second concerns the orginization of selected lines for presentation, 
and the third concerns the composition and presentation itself. These 
three functions are treated in all the systems. 
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In the typical system, the three functions are accomplished in a single 
job statement, as shown in Figure 8 for a simple case. As usual, the job 
statement addresses a data set. This is followed, as in the last example, 
by a given group of conditional statements which in combination express 
the selection requirements or retrieval requirements for that job. Following 
this are instructions for preparing the selected information for summary 
or presentation. In the case illustrated, this includes simply sorting on 
two elements in ascending order and a request for subtotals. No report 
instructions are provided, but rather a statement which indicates that 
the answer is to be returned on the typewriter rather than on a printer. 

Identification Query, File, EXP, LD 

Conditional If Element A = Element B 

or Element C = XX 

or Element D + Element D = KKK 

Prepare Report SORT, Element E, ASCD 

SORT, Element F, ASCD 

Subtotal, Element F, Element E 

Report TYPE 

FIGURE 8. Expression of selecting and reporting 

The typical system provides considerable flexibility in expressing con
ditional logic for information selection. Figure 9 shows the usual type 
of operators provided. As indicated earlier, elements are addressed by 
names combined by logical operators. In the typical system, the logical 
operators addressed to a particular element are related to a literal by 
connectors such as EQUAL, GREATER THAN, and LESS THAN. In some cases, 
usually in a very restricted form, provision is made for comparing one 
element with another element. In some cases, provision is made for com
paring an element with an algebraically derived element. Most of the 
systems offer a number of specialized expressions (added at some time 
during the life of the system) to overcome the limitations that were 
built into the original programs. For example, in one system a logical 
operator, ALL, is used to indicate that the statements following will apply 
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AND = Literal 

Conditions OR > Element 

NOT < Algebraic 

Specials Specials 

Report Sort E I ements/Leve Is 
Preparation 

Count 
Elements/Contra I s 

Total 
Element Count 

Specials 

Report Select Element 
Control 

Position Element 

Title Reports, Headers 

Control Formats 

FIGURE 9. Inquiry and report expressions 

to all succeeding exclusive-oR conditions. As in another example, capability 
is provided to express the concept "within the boundaries of a convex 
geographic polygon." These special operators provide considerable exten
sion to the logic capability of the system but compound the language. 

In data preparation usually a small number of verbs or commands 
are provided. Those shown here are typical operations to be found in 
existing systems-sorting, counting, distributing, totaling, and so forth. 
In a typical case, a number of restrictions will apply to these commands, 
such as the amount or levels of sorting, distributing, or subtotaling. 
Obviously, some systems provide more verbs (processing commands) than 
other systems do, but those shown are typical. 

In only one system is provision made for addressing multiple files in 
a single statement and for combining lines retrieved from each of the 
files. That is, new lines may be created which are composed of elements 
of both data sets, or a new data set may be created in which the lines 
are simply merged. In the same system, provision is also made for using 
the results of a retrieval as a basis for a secondary search. Computation 
that might be required to prepare or present information, above and 
beyond the types of general organizing and summarizing shown here, 
is provided on a specialized basis only. One system has an elaborate 
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set of special programs which display and compare existing status with 
plans, but this is an exception. 

In preparation of information for presentation, the typical system 
provides two or more options. One option is for a normal report which 
simply presents information lines as they were stored with proper con
version to text and with headings as defined in the data set catalogs. 
A second option provided is to select only the elements which are of interest. 
This would be done by naming the elements in the last line of the job 
statement-Type, Element A, Element B, etc. In either of the above 
options, special headings and titles could be inserted. Full report generation 
is provided in some cases, but it is more typical to find systems which 
have stored special-purpose report programs which are called and executed 
when needed. In one or two cases, provision is made for graphing and 
plotting. These, however, are unusual features. 

SUMMARY AND CONCLUSIONS 

This report has summarized a collection of information relating to opera
tional military information systems. The intent has been to depict the 
"state of the practice" as an aid to assessing proposed system performance 
capabilities and to planning implementation techniques. An attempt was 
made to describe the overall background and environment of existing 
systems, as well as the techniques and capabilities provided for user 
interaction or user problem solving. In planning new systems for these 
requirements, it is assumed that all these factors will have to be taken 
into account. 

DISCUSSION 

R. W. TAYLOR: What specifically have you found in this investigation 
to help you in future systems? 

J. H. BRYANT: I think the things I have been specifically looking for, 
most of which are apparent in a simple review of this type, are the limita
tions with respect to logic and expressive capability provided in existing 
systems. I haven't tried to summarize the limitations here. This has been 
simply an attempt to summarize the way they look today. 

H. B. GOERTZEL: What capabilities do you find that the user wants 
that are not handled by this type of operation? 

J. H. BRYANT: In general, I think they fall into two categories. First, 
there is a need for additional data logic. I think most users that I have 
talked with would like to be able to express their data in a form that's 
more like the way they typically handle it, rather than having to force 
it into some limited structure along the lines described. Most of the sys
tems reviewed are quite rigid in their requirements for data structure, 
and users want additional flexibility to express their data logic and data 
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relationships. The other category is directly related: they want an easy 
method of defining input to storage transformations which would permit 
them to accomplish data maintenance functions without having to write 
specialized programs. That kind of capability doesn't exist in the current 
systems. 

A. V AZSONYI: Is there any estimate of the required response time? 
Can you say something about how fast do users want answers? 

J. H. BRYANT: In talking with people in military systems, if you 
ask "What kind of response time do you want?" you get an answer like 
"Instantaneous!" But, I think more and more people are trying to express 
their response requirements in relation to their need to take an action. 
This is a more realistic approach than asking for a blanket two-second 
or five-second response time. 

A. VAZSONYI: What are the indications that on-line systems are 
required? 

J. H. BRYANT: Most of the people in these environments expect to 
have on-line devices of one form or another in those systems as well 
as in the advanced systems which they are planning. Most of them are 
going through a straightforward, evolutionary cycle, starting from type
writers and going on to more grandiose, dynamic devices. 

H. W. BROUGH: On any of the systems that you have looked at, are 
the files of dictionary, for the elements or groups or sets, themselves 
searchable files? Are they used for interrogation to find out what the 
system capabilities are? 

J. H. BRYANT: In most of these situations they are themselves created 
as any other data set and are, therefore, addressable by using part of 
the system. It is surprising that they haven't been used for the purpose 
you indicate since it is possible to do so. 

It is also possible to do a good deal of the publication work associated 
with systems development; one could publish all the data catalogs and 
coding conventions directly from data dictionaries, but this typically 
has not been done. 
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Computer Applications in Biomedical Libraries 

FREDERICK G. KILGOUR 

Yale Medical Library 

Three biomedical libraries have developed computer applications to 
mechanize procedures, and two of these libraries are working on com
puterized retrieval of bibliographic references. First to enter the field was the 
National Library of Medicine (NLM) with its widely known MEDLARS 
project which Scott Adams has decribed in the April 1965 issue of the 
Bulletin of the Medical Library Association [1]. The Washington University 
School of Medicine Library has computerized acquisitions, serials, and 
circulation procedures [2, 3], and the Columbia, Harvard, and Yale 
medical libraries have computerized the production of catalogue cards 
and monthly accession lists. The Columbia-Harvard-Yale group looks 
forward to establishing a real-time bibliographic information retrieval 
system employing the same machineable information used to produce 
catalogue cards and accession lists. 

The principal product of the MEDLARS project is the Index Medicus, 
a monthly subject and author index of about 3,000 biomedical journals. 
The Index M edicus is an indispensable bibliographic tool for every bio
medical library, for it makes available the articles in the journals to 
which each library subscribes. The MEDLARS project also produces 
recurring bibliographies, each of which is a "periodic listing of citations 
pertinent to a given field of medical science selected from editions to 
the computer store" [4]. Examples of recurring bibliographies are Rheu
matology Bibliography and Cerebral Vascular Bibliography. The MED LARS 
project also performs demand searches of the magnetic tapes on which 
are stored the article citations with their respective subject headings. 
Requests for demand searches must be sent in to the National Library 
of Medicine through the local medical library. The principal value of 
this type of retrieval lies in the ability to search complex coordinations 
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of subject headings. Early in 1965, NLM was receiving requests for demand 
searches at the rate of about 20 a day. Currently, NLM is computerizing 
its technical procedures for processing books and serials. 

The Washington University School of Medicine Library first com
puterized its serial records and next its circulation records. Subsequently, 
the library has computerized its acquisition procedures and is working 
on the production of book-form catalogues. The Biomedical Library at 
the University of California at Los Angeles is also computerizing its 
serial records. 

Other computer applications of importance are a union list of serials, 
Selected List of Biomedical Serials in Metropolitan Detroit [5], and a similar 
publication which the Medical Library Center of New York is preparing 
[6]. 

The Columbia-Harvard-Yale Medical Libraries Computerization Project 
is based on the alluring premise that it is possible to prepare catalogue 
cards from machineable information which can also be used for the prep
aration of accession lists, book-form catalogues, and special bibliographies. 
Moreover, this same machineable information can be accumulated until 
there is a sufficient amount on hand to activate a real-time bibliographic 
information retrieval system employing a central computer. In other words, 
Columbia, Harvard, and Yale are continuing the production of their 
card catalogues while accumulating information for real-time computer 
usage. 

Briefly, computerized catalogue card production begins with the 
cataloguer writing cataloguing information on an 8!-by-ll-inch worksheet. 
This data is then keypunched with a punched card being produced for 
each line of text to be on the catalogue card; groups of punched cards 
for each worksheet or title are called decklets. These decklets are then 
processed on an IBM 1401 computer having a 4K core and two tape drives. 
Depending on the last program employed, either the computer produces 
a set of punched cards which drive an IBM 870 Document Writer to produce 
the catalogue cards, or the catalogue cards are produced directly on the 
IBM 1403 printer, using an upper- and lower-case print chain. 

In general, there are three principles to be followed in the preparation 
of bibliographic data for computer processing. First, each category of 
information must be identified by an exclusive code; second, the computer 
must be able to detect when it passes from one category of data to another; 
and third, there should be non-printing flags that can identify portions 
of data within each category. When these three principles are followed, 
the data is, in effect, locked into the programming. 

In its Index Medicus, the National Library of Medicine employs its 
Medical Subject Headings (MeSH), and the Columbia-Harvard-Yale group 
has adopted these subject headings for its real-time bibliographic informa-
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tion retrieval operation. Thereby, it is possible to use NLM's indexing 
in machineable form in the Columbia-Harvard-Yale system. However, 
the Columbia, Harvard, and Yale medical libraries use subject heading 
systems differing from MeSH for their card catalogues. Columbia uses 
Library of Congress headings, as does Yale, while Harvard uses an earlier 
version of MeSH. In the cataloguing process, subject headings to be 
used in the card catalogue are placed on the body of the card-as is 
the practice in most American libraries-while the MeSH subject headings 
are written on the worksheet below the bottom of the card. Formerly, 
the Yale Medical Library was using 1.65 subject headings per title in 
its card catalogue, but more recently it has been employing 10.4 MeSH 
headings for computer retrieval [7]. This increased depth of subject 
indexing of books should improve the retrieval process. Each decklet 
of punched cards contains the MeSH headings as well as the data for 
catalogue card production. 

There are five main programs which process decklets. The first program 
writes the data to go on the catalogue card onto magnetic tape. It also 
sets up a sort control for each entry under which a card is to appear 
in the catalogue. In addition, it establishes the address where that entry 
can be located in the data. For instance, the entry may be a subject 
heading at the bottom of the card or a short title within the title category 
on the card. Finally, this first program sets up various error messages 
for certain types of incorrect data submitted to the program. 

Perhaps the most difficult programming area is that of establishing 
the sort control under which cards will be alphabeted and, ultimately, 
entries alphabeted in a book-form catalogue. It is the book-form catalogue 
for which the alphabeting must be particularly precise, for the alphabeting 
of cards is only for the purpose of arranging them for manual filing. 
Characters having diacritical marks must be altered in some languages 
for filing and not in others. If a diaeresis occurs over an "a," "0," or "u" 
in German, this character is set up as "AE," "OE," or "UE" in the sort 
control. However, English characters with a diaeresis, such as the second 
"0" in "cooperate," are not so altered in the sort control. Similarly, 
"M' " and "Mc" are converted to "MAC." In setting up the sort control 
for titles or short titles, it is necessary to remove an article if it is the first 
word. Once again, this article removal is accomplished according to the 
language. Otherwise, the English first-person pronoun would be dropped 
along with the Italian article "1." However, some configurations of abbre
viations and all numbers must be converted to achieve correct alphabetiza
tion. There is no way to program a computer so that it can recognize 
whether "St." should be alphabeted under "Saint" or "Street," or whether 
"2" should be filed as "two" or "zwei." When these impossibilities occur 
in the area on which sorting is to be done, a special flag indicates to the 
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computer that it will find the exact sort control at the bottom of the card. 
Here the cataloguer spells out the sort control for the computer. 

The second program has a control card which determines the number 
of packs of catalogue cards to be produced and the types of catalogue 
cards to be in each pack. This second program then explodes the tape 
record produced by the first program into the total number of tape records 
equivalent to the number of catalogue cards needed. The program also 
sets up the pack control number for each card record. 

The third program is a modified IBM package program "TTSORT"-two 
tape sort. There being no alpha-numeric sort for a 4K 1401 with but two 
tapes, it is only possible to sort the cards into their various packs, but 
they are not alphabeted within each pack. A larger configuration having 
four tape drives could achieve the alphabetical sort. 

The fourth program then sets up tape images of each card in its final 
format and produces certain codes for the operation of the fifth program, 
which may be a program for producing punched cards for the 870 Docu
ment Writer or one for writing out the cards on card stock directly on 
the 1403 printer. In the latter case, cards can be printed, depending 
on the setting of a sense switch, either one at a time or two at a time, 
side by side. Of course the cards printed side by side are different cards. 

If catalogue cards are to be written on an 870 Document Writer, com
puter-produced punched cards are used. An 870 Document Writer consists 
of a keypunch connected to an electric typewriter. The punched cards 
are placed in the feed hopper of the keypunch, and a plugboard for 
catalogue card production is placed in the machine. Starting the 870 
Document Writer causes the cards to be fed into the keypunch, and as 
these cards pass the reading head of the keypunch, they activate the 
typewriter, which writes cards on continuous-feed card stock. The 870 
Document Writer has one advantage-albeit a small one-over the 1403, 
since it can type in red. 

The cost of 1403-produced cards appears to be about the same as 
those written on the 870 Document Writer, although there has not yet 
been sufficient experience with 1403 production to be able to make a 
firm statement. However, cards produced on the 870 Document Writer 
probably cost less than those generated by traditional techniques. At the 
present time, with 1401 time being charged at the rate of $30 an hour, 
cards are being produced for about 9 cents apiece. 

Once a month at Columbia, Harvard, and Yale, the decklets produced 
during the month are put through a program which prepares tape records 
for an accession list. These accession lists do not consist of lists of cards 
but rather of entries which vary from 70 characters a line at Columbia 
to over 100 in the Yale list. The first subject heading is placed first and 
the call number last, rather than first as it is on a catalogue card. The 
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tape records are then sorted by subject and printed out either for multilith 
or photo-offset reproduction. Each month about an hour of personnel 
time and minutes of computer time are used to produce the copy for these 
accession lists. Formerly at Yale it required the time of one person for 
one week to set up the list. Computer charges have been about $20 for 
each list. 

A working copy of a book-form catalogue was produced in the autumn 
of 1964 from the Yale data containing some 1,400 entries together with 
their MeSH headings. Once again, the lines for each heading were extended 
to over 120 characters, demonstrating the flexibility in handling the 
original data. Ultimately, the Columbia-Harvard-Yale project will produce 
book-form author, title, and subject catalogues for dissemination that 
will contain the listing of books in each library with imprint date of 1960 
and later. 

The Harvard Medical Library has been working on a technique for 
producing a KWIC index from decklets for the publications of congresses, 
symposia, and the like. It is particularly difficult for reference people 
in medical libraries to identify such publications when a user asks for one, 
but it is hoped that with a KWIC index (whereby the work will be indexed 
under each word in the name of the congress and the title, as well as the 
place and the date) it will be possible to identify rapidly the volume sought. 

Librarians at Columbia, Harvard, and Yale medical libraries have been 
convinced that the primary process with which to begin mechanization 
is the cataloguing procedure. It is also fundamental to computerized 
bibliographic information retrieval. However, once the mechanized cata
loguing has been achieved, it will then be possible to move in the direction 
of a total system by computerizing such activities as acquisitions proce
dures, serials procedures, and circulation records. Indeed, the group has 
already begun to consider and to test the mechanization of acquisitions 
procedures. 

It is hoped that the real-time bibliographic information retrieval sys
tem will be activated toward the end of 1966. The principal goal of this 
system will be to effect an increased speed and completeness with which 
the library user is supplied with cataloguing or bibliographic information. 
The sponsors of the Columbia-Harvard-Yale proj ect feel that it has the 
potential for producing the first major step in supplying cataloguing and 
indexing information since the introduction of the card catalogue in the 
last quarter of the nineteenth century and since the earlier nineteenth
century introduction of the abstract and index journal. 

There are three categories of bibliographic information retrieval cur
rently in existence, and the qualities which differentiate among the 
categories are the times involved in effecting retrieval. A library-type 
service is fast, and it is now possible often to obtain needed references 
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in a matter of minutes. However, sometimes if an extensive literature 
search is involved, these minutes may extend into days. Such an extensive 
bibliographic search is typified by the demand searches of the MEDLARS 
project, where the writing of instructions for the program and the sequential 
searching of tapes can be most efficiently performed over a period of a 
day or two. Finally, there is the type of search which intends to point 
at specific data within a document, and here the search may extend into 
a week or two. It is the first category of retrieval with which the Columbia
Harvard-Yale project is concerned, and the system designed by IBM for 
the project would have an elapsed time of but 4t seconds between the 
completion of an inquiry at a typewriter terminal and the beginning of 
the return of the answer to that terminal if the coordinate search were 
to be on four subject headings. 

The real-time system will consist of a computer configuration with 
remote terminals. The computer will possibly be located in New Haven 
and will have associated with it a high-speed printer printing in upper 
and lower case, a card reader/punch, random access storage, and a multi
plexer through which the terminals will communicate with the computer. 
The terminals will consist of a typewriter and a card reader so that the 
data from cards can be read into the central system from a remote ter
minal. Requests into the system will be entered through the typewriter, 
and lists of references will be typed back on the typewriter. 

If a user were interested in obtaining references on the use of computers 
for information retrieval in science, he would look up "Computers," 
"Information retrieval," and "Science" in a list of MeSH headings. 
Here he would obtain a code number for each heading. He would then 
type into the typewriter "SS" (subject search) followed immediately by 
the first code, which might be "09632." Next he would type a pound 
sign (#) to indicate the end of that code. Then would come the second 
code followed by a pound sign, then the third code followed by a pound 
sign, and then another signal to indicate the end of the inquiry. The 
typewriter would promptly type back three subject headings so that the 
user could determine whether or not he entered the right codes. At this 
juncture, he could enter parameters limiting the search to the holdings 
of one library, to references in but one or more languages, and to titles 
published in certain years. If he did not wish to enter any of these param
eters, he would then type "go," and the computer would start its search 
and begin to type back the references in less than four seconds. Those 
references which were books would also have the call number of the book. 
The number of references typed out will have an arbitrary limit, such as 
15. If more than 15 references are turned up in a search, the first 15 will 
be typed out and the rest set aside for special call from the terminal, 
perhaps during a slow period. 
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Anticipated achievements of the real-time system include greatly in
creased speed and completeness in supplying references, as mentioned 
above. Moreover, it will be possible to search the catalogues of three 
libraries simultaneously. There will be, and already has been, an increased 
depth of subject indexing of books, and the computer can be taught 
always to search "See also references." 

Book-form catalogues produced by the project will be catalogues of 
the whole network rather than of just one library. Prior to the introduction 
of the card catalogue in the nineteenth century, printed book catalogues 
were popular, and these were useful in libraries other than those which 
generated them. With the advent of the card catalogue, free flow of biblio
graphic information among libraries was stopped, for the card catalogue 
exists usually in but one copy [8]. But with printed book catalogues it 
will be possible to make the listings of library contents much more widely 
available. The library at Florida Atlantic University has already taken 
a lead in the dissemination of printed book catalogues and has been 
closely followed by the Toronto University Library. 

In general, it is anticipated that computers will continue to be used 
in biomedical libraries to mechanize library processes and, similarly, to 
mechanize the retrieval of cataloguing or bibliographic information. This 
second mechanization is really computerization of the user's activity, 
not the library's processes, and should immensely increase the efficiency 
of the borrower's use of the library. It can be expected that, following 
these applications, it will then be possible to computerize searching through 
texts of documents, much as the user now does once he has a list of ref
erences, to select those containing information which the user needs. 
Activation of this procedure depends on development of techniques for 
mechanically reading books and journals into random access stores that 
are huge and inexpensive. Finally, it can be expected that data retrieval 
systems will be developed which will supply the user only with the data 
he needs to have and not with references to the documents from which 
he can extract data. 
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DISCUSSION 

H. W. BROUGH: In a very similar environment, we have remarkably 
similar systems. I wonder if you have encountered two things we have 
found need for. One is the use of pseudonyms in subject headings; the 
other is the use of generic headings-e.g., "Automatic Data Processing" 
as a code automatically implies "Computers," this relationship being 
built into the coding rather than into the assignment of subject headings. 

F. G. KILGOUR: To answer your comment on generic headings, we 
are using, as far as the real-time system is concerned, the MeSH subject 
headings of the National Library of Medicine. This is a pre-coordinated 
list of headings with "See" references and "See also" references. As for 
the use of pseudonyms, we run into two problems. First, we have to 
construct an additional list of subject headings which are the names of 
people and places. The second problem arises when there isn't a topical 
subject heading, which we need, in the MeSH list, so we invent one and 
suggest it to the National Library of Medicine. If it doesn't accept our 
suggestion but adopts another heading, no major problem arises. If we 
used "Infantile paralysis" and the National Library of Medicine said: 
"Wait a minute! Back in the 1930s we found out that more than infants 
had the disease; 'Poliomyelitis' is what to use," then we would change 
to "Poliomyelitis," but we wouldn't have to make a major alteration 
in the real-time random access file. We would just put a pointer at the 
end of the "Poliomyelitis" file to go to "Infantile paralysis." 

M. TuROFF: I infer that you are establishing your own identification 
number for each item. 

F. G. KILGOUR: Correct. 
M. TuROFF: Are you attempting to use it for books? You aren't 

attempting to use Library of Congress catalogue card numbers? 
F. G. KILGOUR: No, we are using our own. 
M. TUROFF: In the real-time system, have you established how much 

random memory you are going to need for how many items? 
F. G. KILGOUR: You are talking about the random access memory 

to be holding the two files? 
M. TuROFF: Yes. 
F. G. KILGOUR: We have worked this out. The National Library of 

Medicine has figures for the number of characters in its journal article 
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entries, and we have done a study with Peter Sprenkle of the New Haven 
IBM office to determine the number of characters on library 3-by-5 cards. * 
If we begin operations with seven years of book cataloguing and three 
or four years of journal indexing in the random access memory unit, 
we are going to need a capacity of over 30 million characters. One re
quirement of the system is that it be readily expandable. Of course in 
the future, we could publish in permanent printed form and erase from 
the memory unit, but I think that with the development of hardware 
this procedure will not be necessary. In fact, it isn't necessary now if 
you can afford huge devices. 

v. O. McBRIEN: In mathematical circles, we have been having great 
difficulty in the past 15 years in the cataloguing of books. Several months 
ago this matter again became an issue in the American Mathematical 
Society Notices. In a letter to the editor a set of ten contemporary books 
was listed with the question: "Where would you catalogue these books?" 
One of the big problems is that of terminology. For example, a mathe
matician mentions orbit theory, and it doesn't have a thing to do with 
the technical "orbits" of a chemist, physicist, or engineer. This makes 
the problems of cataloguing and retrieval of mathematical works extremely 
difficult. Do you think that there is any hope of getting computer assistance 
to make a wider spread of Library of Congress numbers so that, for 
example, books on topology might get a decent catalogue number? 

F. G. KILGOUR: This is a problem which machines aren't going to 
solve in the immediate future; actually, you have to subject-head and 
classify for the user, not for the content of the book. In many libraries, 
a book is classified in vacuo. For instance, at the Yale Medical Library 
we get quite a few books on statistics which are really on business statistics, 
but they are for the use of biometricians. We don't classify them under 
business in the social sciences area of the classification scheme. Nobody 
would look for them there. They look for them with the rest of the works 
on statistics, although the Library of Congress quite properly puts volumes 
on business statistics in another place. All kinds of subject classification 
problems of this nature are generated because of the different uses to 
which books are put. 

J. R. BRATHOVDE: We seem to be embarking on a new venture as 
far as the automation of libraries is concerned. The staff of the Library 
and Computer Center at the State University of New York at Binghamton 
has been doing some serious thinking about this problem, also. 

I'd like to throw out for the consideration of this group a few comments 
on, and to have your comments on, the apparent bottleneck to which 

* F. G. Kilgour and P. M. Sprenkle. "A Quantitative Study of Characters on 
Biomedical Catalogue Cards-A Preliminary Study," American Documentation, 
14:202-206, July 1963. 
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reference has been made. Cataloguing is done by abstracters in a back 
room, as you mentioned, who are not professionals like ourselves, but 
three-, four-, or five-thousand-dollar-a-year cataloguers or abstracters who 
do not understand or appreciate much of the content of the material 
to be catalogued. 

I wonder if the professional societies might help solve this dilemma 
by suggesting to their member authors a mechanism to abstract their 
own books or articles. Some form of source-abstracting is both necessary 
and timely because the libraries are on the threshold of seriously con
templating machine manipulation of acquisitions and cataloguing. Now, 
an author should know better than anyone else what is implied or ex
pressed in his work. The mechanism would be for the author to list ten 
to twenty-five descriptors, and the publishers could merely print the 
descriptors near the preface or, better yet, could key-punch the descriptors 
and include the five to ten key-punched cards in a pocket attached to 
each book. This might add ten or fifteen cents or even fifty cents to the 
price of each book, but it would be cheaper than having each library 
staff, first of all, abstract the book and, secondly, perform the manual 
operation of key-punching. The advantages would be uniformity, a 
necessary factor in efficient information retrieval, and, most important, 
having in the abstract the concepts desired by the author. 

I realize that this is a formidable task, that of soliciting cooperation 
among publishers, but a solution of the problem demands positive action 
taken now while we are still on this threshold of the information explosion. 

F. G. KILGOUR: Librarians have been working on similar arrangements 
for a long time. One procedure is known as "cataloguing in source." 
It was in part begun back in the 1880s but couldn't be made to work 
then; it has been tried since without outstanding success. In some learned
society publications, like the Federation Proceedings, authors do submit 
subject headings for their papers; they are given a list of subject headings 
and select certain headings, which are submitted with their abstract 
that is to be published. The index to the publication is set up by machine 
using the author-assigned headings, but there are real troubles because, 
although the author knows what he is writing about and for whom he 
is writing it, he cannot anticipate all of the uses to which his work will 
be put. For instance, the author of a book on business statistics, as I 
have already mentioned, would undoubtedly assign subject headings in 
that field and could not anticipate that some library would acquire it 
for the use of biometricians. 

The complexity of the procedures involved in your suggestion is 
alarming, and some publishers certainly will not cooperate. The important 
goal for the foreseeable future is to have cataloguers who have substantial 
knowledge of the information in the books they are cataloguing. 
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Computation and Control in Complex Experiments 

w. F. MILLER 

Stanford University 

1. INTRODUCTION 

Most of the work presented in this symposium has been concerned with 
problems that arise in the development of systems that permit a man 
rapid access to computational results. This paper is concerned with 
problems that arise in the development of systems that are employed 
for data analysis and control in complex experiments. Such systems might 
be represented schematically by the block diagram in Figure 1. Such 
a diagram has the same general structure as a guidance system, and, 
indeed, it should, since its function is to guide an experiment. Such systems, 
of course, give rise to many of the same problems already discussed; but, 
on the other hand, they introduce some additional ones. 

The motivation for on-line data analysis and control systems for experi
ments is very much the same as the motivation for rapid access to com
putational results. Both developments are motivated in part by the 
hypothesis that rapid feedback is essential to learning. It is clearly hoped, 
and by now it may already have happened, that a researcher sitting at 
his console will make discoveries by seeing his results fed back practically 
instantly. In the experimental systems, it is also expected that a researcher, 
by having his data quickly analyzed and by having intimate control over 
his experiment, can make discoveries and direct the course of the experi
ment in a more profitable way. 

Let us look at the scope of the problem. As physics experiments probe 
deeper and deeper into the fundamental constituents of matter, the experi
ments become much more complex, and the interpretation of the data 
becomes more subtle. A single experiment involving a high-energy particle 
accelerator and a piece of detection apparatus, such as a spark chamber 
or a bubble chamber, may take several weeks or even months to set up 
and may run continuously for equal lengths of time. The accelerators 
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FIGURE 1. General schematic of integrated data analysis and control system for 
complex experiments 

themselves are quite costly (several tens of millions of dollars), and they 
are expensive to keep in operation (several million dollars per year). 
The detection equipment is also quite expensive. A bubble chamber may 
cost several million dollars, and a spark chamber may cost several hundred 
thousand dollars. Clearly, there is an economic motive to provide data 
analysis systems that facilitate effective use of such expensive equipment. 
Rapid feedback of analyzed results is particularly important during the 
setting-up stage. 

It may be worth pointing out that a typical spark chamber experiment 
conducted over a few weeks will generate 500,000 to 700,000 stereo views 
of events taking place in the spark chamber. The stereo views may be 
generated in pairs or triads, depending on the experiment. The manual 
and semi-automatic data analysis systems now in use require weeks and 
months to analyze this data. The Lawrence Radiation Laboratory at the 
University of California at Berkeley has had long experience on this 
problem and, by now, has good information on what it takes to analyze 
the data. Recent summaries [Reference 1] indicate that it takes about 
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seventy-five people to do the scanning, measuring, and maintaining of the 
equipment in order to process 250,000 events per year from the Berkeley 
72-inch bubble chamber. 

It is hardly necessary to pursue this motivational discussion further. 
It can be simply summarized by the statement that in the current era 
of experimental physics a disproportionate amount of time and effort 
is spent on the analysis of data and the control of the experiment. As a 
consequence, the experimentalist is removed farther and farther from 
intimate contact with the essential elements of his experiment. The goal 
of rapid data analysis and control systems in complex experiments is 
to bring the experimenter back into intimate contact with his experiments. 
Man-machine communication is required at a rather sophisticated level. 

Over the last few years, I have been concerned with computer methods 
to achieve this goal. In particular, I have been concerned with the elements 
that would be contained in boxes 3, 4, and 5 of Figure 1. 

II. CURRENT SYSTEMS 

An example of a data analysis and control system of the kind depicted 
in Figure 1 is given in Figure 2. The system shown is a closed-loop analysis 
and control system involving a 3.0 MeV Van de Graaff Accelerator and 
its nucleonic measuring equipment. I shall not discuss this system in 
detail here, since it has been described elsewhere [Reference 2]. I should 

BUFFER HOLD 

TRANSMIT ALL INFO. r-t¢.QTL--':=---.=-Jfct;Mtj 
'--------' 

FIGURE 2. Closed-loop analysis and control system being utilized in low-energy nuclear 
physics experiments 
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like to point out, however, that this system has all the essential ingredients 
of the general system shown in Figure 1. It has, indeed, accomplished 
all the objectives that the physicists who were developing it expected. 

The type of control that this system provides the physicist is shown 
in Figure 3. This flow chart represents the first experiment programmed 
on the system [Reference 3]. It provided the physicist a running statistical 
sequential analysis, configuration control over the sample, and energy 
control over the accelerator. The system has evolved very rapidly, and 
there are now several experiments programmed for the system [Reference 4]. 

This system is utilized in low-energy nuclear physics experiments of 
a type relatively well understood. As a consequence, the data analysis 
codes and the experiment programmer were not required to have the 
generality that would be required of such a system in high-energy particle 
physics. Nonetheless, some quite valuable experience was gained in 
programmed control of experiments. 
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FIGURE 3. Schematic flow chart of first program run on the system depicted by Figure 2 
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Now, how do we stand in the very complex experiments such as we 
encounter in high-energy particle physics? Weare certainly making 
progress in all areas indicated in Figure 1. At present, there are no high
energy particle accelerators operating under computer control. [By com
puter, here, I mean internally-stored program computer.] At two centers, 
however, computer controls are being developed. A digital control system, 
employing a CDC 924, has been developed for the Zero Gradient Syn
chrotron (ZGS) at the Argonne National Laboratory. It is expected that 
this system will soon be "hooked up" and that the ZGS will operate 
under its control. At the Stanford Linear Accelerator Center (SLAC) 
a computer control system is being developed for the beam switchyard. 
The beam switchyard will employ bending magnets to deflect the electron 
beam from the accelerator into different experimental areas. 

The problems represented by box 3 of Figure 1 are in somewhat better 
shape. Several on-line data analyzers have been employed in low-energy 
nuclear physics [References 5, 6, 7, and 8], and one system has been 
developed in high-energy physics with great success [Reference 9]. At 
Stanford we are also developing a system similar to that described in 
Reference 9. This system is intended to analyze on line the data generated 
by the 20 BeV IC Magnetic Spectrometer. 

We are also developing a computer system that will permit on-line 
analysis of graphic data of the kind we shall get from filmless spark cham
bers. There are two large general problems that have to be dealt with: 
(1) the control programs to permit processing of data from devices with 
high burst rates and (2) the data analysis techniques for handling the 
graphic data. Both of these areas are getting a great deal of attention 
and are important to the development of integrated systems. I shall 
give below a discussion of the type of programs developed to handle 
the data analysis part. 

III. GRAPHIC DATA PROCESSING 

A. General Description 

In our work at Stanford, we are taking as a point of departure the 
Argonne work on automatic film data processing. That work was the 
collaborative effort of several people in the development of a film digitizer, 
programs for running the film digitizer on line to a large computer (CDC 
3600), and the analysis programs for handling the digitized film data 
[Reference 2]. "-

Although the Argonne work was done explicitly for film data,rthe 
programs maintained sufficient generality so that they can be used for 
any graphic data from spark chambers, no matter how the data is pre-
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sented to the programs. Figure 4 shows the structure of these programs. 
The scanning and measuring program AROMA prepares, for the AIRWICK 
programs, the digitized information from the photographs. The AIRWICK 
programs identify the corresponding sparks in the two stereo views, 
calculate their positions in three space, and then link these sparks into 
tracks. 
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FIGURE 4. Schematic of the flow of data in the Argonne system 

Figure 5 shows a stereo pair of photographs of an event taking place 
in a spark chamber, and Figure 6 shows the results of two stages of proc
essing-after AROMA and after AIRWICK 

One of the most pleasing aspects of this work is that we can give a 
formal description of each step. Formally, the problem is presented as 
(a) the generation of a graph, the vertices of which are given by the 
three space coordinates of the sparks, and (b) the selection of the proper 
tree (or forest of trees for multiple events) to represent the event_ The 
processes-physically described as (1) scanning, measuring, and image 
transformation, (2) pairing in the stereo views, and (3) linking into tracks
have their counterparts in the formal description_ The first two of these 

[Text resumes on page 121] 
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FIGURE 5. Photograph of spark chamber event in two views 
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(6a) Measurements from the same two photographs after processing by AROMA 
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(6b) The event after processing by AIRWICK, showing the reconstructed tracks. 
Random sparks not on the tracks have now been eliminated. 

FIGURE 6. Output of AROMA and AIRWICK for event shown in Figure 5 
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processes (scanning, etc., and pairing, etc.) are concerned with the genera
tion of the graph, and the third (linking, etc.) is concerned with the tree 
selection. Figure 7 shows the relationship between the physical processes 
and the formal description. The essential elements of the system are 
described in brief detail below. 

Let me first give some data on the rates of manual systems and then 
those of our automatic system. Using the manual systems and skilled 
human operators, one can expect to scan and measure at the rate of about 
20 to 30 events per hour. Weare able to scan and measure at about an 
order of magnitude greater speed. We can process a stereo view of complex 
nature in about 20 seconds and simple ones in 10 to 12 seconds. 

PHYSICAL PROCESS 

SCANNING, MEASURING, AND 

IMAGE TRANSFORMATION 

I 

PAIRING SPARK IMAGES IN 

STEREO VIEWS 

2 

LINKING SPARKS INTO TRACKS 

3 

FORMAL DESCRIPTION 

GRAPH GENERATION ,--------------, 
I 

I 
I 
I 
I 

I 2 

I 
I 
I 

EXECUTION OF THE SCANNING ALGORITHM 

GENERATION OF RELATIONSHIP MATRIX 

GIVING PAIRED SPARK IMAGES. REDUCTION 

OF AMBIGUITIES BY ITERATIVE APPLICATION 

OF A PAl R DECISION FUNCTION AND ITS 

CQ·MATRIX. 
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L ______________ ---.l 

FIGURE 7. Schematic of the relationship of physical processes to formal description 

B. Scanning, Measuring, and I mage Transformation 

The CHLOE film digitizer is described elsewhere [References 2, 10] 
and will be described only briefly here. CHLOE is a hardware system 
for digitizing data recorded on transparent 35-mm film. The hardware 
consists of (1) a controlling computer, (2) an optical scanner (CRT) 
operating under the control of the computer, and (3) a data link to a 
larger computer. A spot from the cathode-ray tube is projected on the 
film, and the transmitted light is measured by a photo-multiplier. From 
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this measurement a decision is made concerning the density of any rec
tangular portion of a 4,096 X 4,096 raster measuring 1.25 inches on a 
side. In practice, one scans only a small portion of this raster. 

The scanning and measuring functions are carried out in the CHLOE 
LIBERATOR program which resides in the controlling computer (an 
Advanced Scientific Instruments 210) and in the AROMA program which 
resides in the CDC 3600. The principal feature of these codes is the 
CELL CONSTRUCTION ALGORITHM. The CELL CONSTRUCTION ALGORITHM may 
be described as follows. 

Let us assume we are engaged in horizontal scans. The computer per
mits a left-to-right scan across a window defined on the raster by left-right 
limits and top-bottom limits. A point of interest is recorded when the 
scanner detects a change in intensity of transmitted light. As a con
sequence, in scanning across a spark, one gets first the left and then 
the right end of a line segment, the left end of which is the first point 
in the spark and the right end of which is the first point out of the spark 
(see Figure 8). If several sparks are encountered in one horizontal scan, 
one obtains ordered pairs of left-right coordinates of line segments, i.e., 

XI.1eft < XI.right < X 2 .1eft < X2.right ••• 

The CELL CONSTRUCTION ALGORITHM sorts these line segments into cells, 
eliminates some of the cells as clearly not being sparks, and calculates 
certain spark parameters such as area, centroid, and average width. 

WINDOW 

SPARK 

· . . . . . . . . . . . . . . . . . . . · . . . . . . . . . . . . . . . . . . . · . . . . . . . . . . . . . . . . . . . · . . . . . . . . . . . . . . . . . 
• •••• yo;=~," ••••••••• · . . . . . ....... . 

\---0-+0 ••••••••• · . . · ..... . · ..... . r---+ . ....... . · . . · ..... . 
~....!..f!-:~----~ • • • • • • • • • . . . . . . · . . . . . . . . . . . . . . . . . .-. · ...... . . · ..... . · ...... . · . . . . . . . . . . . . . . . . . . . · . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

I X LEFT I X RIGHT 

Y UPPER 

Y LOWER 

FIGURE 8. Line segments and cells generated by CELL CONSTRUCTION ALGORITHM 
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The AROMA program also provides information on the fiducial marks 
which are used to provide the orientation of the film coordinates to the 
spark chamber coordinates. 

The next step is to identify the corresponding spark images in the 
different stereo views and to generate the three space coordinates of the 
sparks. Before this is done, the data is passed through a program (PREPOS) 
whose function is to remove optical distortions and to transform CHLOE 
film coordinates of spark centroids into real-space coordinates on the 
surface of the spark chamber. 

C. Pairing in the Stereo V iew8 

Since the separate gaps of a spark chamber are easily discernible, the 
pairing problem need only be concerned with pairing spark images in 
the same gap. The first step in the pairing is the generation of an n-dimen
sional relationship array-one dimension for each view. Figure 9 shows 
the two-view relationship matrix that would be generated for the five 
sparks generated in the spark chamber. The relationship matrix contains 
a 1 if it were geometrically possible for the rays to have originated in 

VIEW I 

I 

TOP VIEW OF CHAMBER 

VIEW I VIEW 2 

RELATIONSHIP MATRIX 

j -VIEW 2 

1 I 0 0 0 

1 1 0 0 0 

0 0 1 0 0 

0 0 0 1 1 

0 0 0 1 1 

FIGURE 9. Schematic of top of spark chamber with five sparks and corresponding 
relationship matrix 
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the chamber and a 0 if it were not geometrically possible. The PAIRING 

ALGORITHM removes the ambiguities from the relationship matrix. The 
ambiguities are removed by application of a pair decision function 

and its co-matrix 

. . 
A(i, j) = L D(n, j) + L D(i, m) - 2D(i, j) (2) 

n=l m=l 

where v is the number of rows in a block and s is the number of columns. 
It should be noted that the ordering of the sparks is responsible for the 
break up of the relationship matrix into block diagonal form. Pairings 
may occur only within sub blocks, so the decision function may be applied 
to each block separately. The decision function is constructed to take 
into account both intrinsic parameters and extrinsic or contextual pa
rameters. The intrinsic parameter is width and enters through F I: 

(3) 

where WI and W 2 are normalized widths. The contextual parameters are 
order and interference, and these parameters enter D(i, j) through F2 and 
Fa, respectively: 

F ( .. ) = 1 _ Ii - jl 
2 '/" J P (4) 

where P + 1 is the maximum dimension of the block and 

(5) 

where R is the maximum dimension of the block, SCi) is the number 
of geometrically possible pairings of spark i, and T(j) is the number of 
geometrically possible pairings of spark j. The F's are all normalized 
to yield values in the interval (0, 1). The weights WI, W 2 , and W3 are 
experiment-dependent. Large values of D(i, j) mean high probability 
of pairing. On the other hand, low values of A(i, j) mean high probability 
of pairing-a low value of A(i, j) means that there is low probability 
that the ith spark of view one could be paired with any spark other than 
the jth spark of view two or that the jth spark of view two could be paired 
with any spark other than the ith spark of view one. 

By repeated application of D(i, j) and A(i, j), successful pairings are 
determined. With each determination, the relationship matrix is reduced 
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by one row and one column until all ambiguities are resolved. It is possible 
that all ambiguities are not resolved and that some are left unresolved 
until the linking operation. 

The PAIRING ALGORITHM then passes on to the LINKING ALGORITHM 

a relationship matrix with almost all ambiguities removed. 

D. Linking Into Tracks 

The output of the PAIR program is a set of three space coordinates 
that form a graph. The LINK program selects the proper tree (or forest 
in the case of multiple events) to represent the particle tracks. The detailed 
tree-selecting algorithm is given in Reference 2. Briefly, edges are estab
lished between the various vertices of the graph on the basis of a number 
of criteria, such as Euclidean distance, number of vertices, direction of 
the edge, linear and helical extrapolation, and geometry of the spark 
chamber. Finally, the subgraph selected is the minimal connector tree 
that contains no circuits. The determination of the minimal connector 
tree is accomplished by an algorithm due to Kruskal [Reference 11]. 

The graph data are stored in memory in a multi-word list. Each list 
item contains all the necessary information about a given spark. Each 
list item contains seventeen words in all, including the three space coor
dinates of the spark, its gap number, its chamber number, the local 
degree of the vertex, pointers to as many as seven connecting sparks, 
distance and pointer to the closest spark, and distance and pointer to 
the second-closest spark. 

Now that we have arrived at a set of coordinates that represent the 
paths of particles participating in the event, the data are sent on to fitting 
programs and programs that extract the physics information from the data. 

IV. CONCLUSIONS 

In order to develop more complete systems of the type depicted in Figure 1, 
it will be necessary to incorporate complex analysis programs of the type 
described in Section III above. This is by no means all of the story. The 
kinematic analysis programs and the hypothesis-testing programs that 
follow are also very complex. However, progress is being made, and 
physics data are being analyzed at a very rapid rate. Moreover, work is 
independently proceeding on the control aspects. 

One development which I feel is not getting its full share of attention 
in these problems is in the area of displays, control consoles, and the 
system control languages. That is, the command posts are not being 
developed as thoroughly as they should be. The splendid use of graphics 
that we have seen in other areas could be put to excellent use in these 
large analysis and control systems. 
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DISCUSSION 

A. P. BATSON: Does your decision process take account of the situation 
where, on one stereo view, you only have one track, whereas two exist? 

W. F. MILLER: We are only pairing sparks, now, individual sparks. 
A. P. BATSON: I thought you used this on film. 
W. F. MILLER: We did. 
A. P. BATSON: Bubble chamber pictures, too? 
W. F. MILLER: Spark chamber film, only! These were spark film, 

where the sparks have individual character, and you identify them in 
stereo view, first. This has considerable advantage for the next step, 
because many of the ambiguities which might be not obvious in one 
view (for example, crossing tracks) are not present in three-space; so 
doing the pairing operation first removes the ambiguity and permits the 
linking operation to go much faster. 

H. J. BARNHARD: Going back to your original premise, I wonder if, 
eventually, this whole system doesn't go through a complete cycle. You 
introduce man at the bottom of the scheme, and man makes certain 
changes. Eventually, man goes through enough potential tries, some of 
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which are correct and some of which are wrong, and the machine learns 
which are the desirable routes to try. Then, the machine can try the 
available techniques and look at the problem without man's assistance. 

In brief, I don't think you have carried the idea far enough. Man 
entered the process, and man can eventually leave it. 

W. F. MILLER: In the first programmed experiment I showed, it's 
certainly true that he goes home, writes a program, cogitates, goes back 
to the lab, key-punches and runs in the paper tape, and walks away. He 
certainly does leave the process in many experiments, particularly those 
having the character of a measurement, that is, not much experimenting. 
But most of us still feel that the best decision box is a human, that by 
putting the human back in the loop you give him a chance to guide his 
experiment. [In a console system like Project MAC, the real hope is that, 
some day, a man will be sitting at the console and make a discovery; 
maybe it's happened already.] Then, what one expects is that a man 
is in control of the experiment; he sees what's happening and whether 
there is something that doesn't fit his model; he may come up with an 
invention. The experimenter has no chance of changing the experiment 
if the analysis is done many days or weeks later. Our experience on the 
Van de Graaff was that it paid to put the man back into the experiment. 

A. H. GOTT: At the beginning, you made some comment about digitiz-
ing 20 to 30 events per hour with the human observer? 

W. F. MILLER: Quite right. 
A. H. GOTT: And 200 to 300 with your scanning equipment? 
W. F. MILLER: Yes, when connected to a computer of the 3600/7094 II 

class. The analysis goes at the rate of less than 20 seconds per stereo view. 
A. H. GOTT: Who selects the stereo views? 
W. F. MILLER: We scan all pictures. Incidentally, these spark chambers 

are triggered by external information; so in spark chambers, if you know 
a little of what's happening, your success ratio is relatively high, maybe 
one in four or one in three. In bubble chambers this is not the case. 

A. H. GOTT : You are digitizing 300 events per hour? 
W. F. MILLER: The digitization of one frame takes about four seconds, 

that is, a stereo view, in eight seconds. So digitization without any analysis 
can go at a rate of about 450 stereo views per hour. The analysis rate 
is the limiting factor. 

A. H. GOTT: The rest of the time is occupied in this? 
W. F. MILLER: The analysis is overlapped, actually, on the system. 

Actually, they are limping along right now, doing it serially, but the 
provision is there for overlapping and scanning and analysis, which is 
something less than 20 seconds on a machine of the 3600 category. We 
are thinking now of a machine that will reduce this to a fraction of a 
second. 
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Applications of a Computing Facility in 

Experiments on Human Visual Perception* 

DEREK H. FENDER 

California Institute of Technology 

INTRODUCTION 

The gradual development of computer science throughout the United 
States and the world has been marked by a series of advances as first 
one discipline and then another have found it possible to weld together 
their own experimental techniques and methods of analysis with the 
potentialities of a digital data processing device. One of the more recent 
entrants to this field is the life sciences, and already it is possible to name 
many areas of biological or biomedical research where computing facilities 
are used as an experimental ancillary. The purpose of this paper is not 
to explore this aspect of the whole field of biological research but rather 
to concentrate on a very narrow area, the uses of a computing facility 
as an active participant in experiments on visual perception. 

Biological experiments are usually not as well ordered as experiments 
in the physical sciences; small differences between one preparation and 
the next often mean that the investigator cannot proceed by rote but 
has to direct the work by a series of decisions involving future strategy; 
usually these are procedural or logical decisions; sometimes they may 
involve calculations, but always they have to be made against the harass
ment of a dying preparation or a tiring experimental subject. It is in a 
context such as this that a computer can be a powerful scientific assistant, 
provided only that a free flow of information is possible back and forth 
between the experimenter, the experiment, and the computing device. 

Within the field of visual research, there is still a wide compass of 
methodology; the efficient design and usage of the computing system 

* This research is supported by the National Institutes of Health, Grant No. 
USPHS NB 03627-04, United States Public Health Service. 
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turn very strongly on the details of these techniques, and thus it is profit
able at this juncture to outline the range of experiments which might 
be found in a laboratory devoted to the examination of visual processes. 

TYPICAL EXPERIMENTS IN VISUAL PERCEPTION 

Experiments may be made at many levels; for example, a neurophysio
logical examination of the visual system is essentially an input-output 
type of experiment in which the output data consists of parameters 
describing the neural impulse traffic at some point in the optic pathways; 
the input may be stimulation by light entering through the normal optics 
of the eye, or it may involve electrical, chemical, or mechanical stimulation 
at some other point in the system. These experiments in general involve 
surgical procedures on animals; the duration of the experiment is of 
necessity short, ranging from a few minutes up to about one day, depending 
on the species. The possibility of replicating the experiment on the same 
animal over a long period of time is remote. 

A second form of experimental procedure examines the motor response 
of the subject, or of a sub-system of the subject, to various external 
stimuli. As examples we might quote eye-hand coordination tasks; the 
stimulus is a moving target in the visual field, while the system output 
is the motor activity producing motion of the arm, hand, and wrist as 
the target is tracked with a pointer. In this case the dynamics of the 
limb probably represent the dominant member of the system, and thus 
the amount of information which can be gathered concerning the visual 
system is sparse. But the experiment may also be performed on a sub
system, such as the motion of the eyeball when tracking a moving target. 
In this case the dynamics of the eyeball do not constitute the limiting 
feature, and considerable information concerning visual function can be 
obtained from experiments of this type. 

Psychophysical experiments are also powerful in the evaluation of 
visual function; a perceptual task is presented, and the subject's report 
of the situation supplies the output data for the experiment. For example, 
a dim flash of light near the visual threshold may be presented and the 
subject asked to respond when he sees it; or a fine line may be presented 
in the visual field and the subject asked to identify the orientation of 
the line as a test of resolution. This use of a sUbjective response always 
lays the experiment open to a number of criticisms [Brindley, 1960]; 
control presentations must always be made in order to assess the reliability 
of the subject. It is sometimes possible, however, to bypass the subjective 
response by measuring a concomitant parameter which is well correlated 
with the perceptual task; for example, evoked potentials recorded on 
the surface of the cornea or of the scalp may be used as indicators of 
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events entering the visual system and proceeding to the cortex. Similarly, 
the synkinetic movements of convergence and divergence may be used as 
indicators of accommodative changes to resolve a visual image. 

EXPERIMENTAL CHARACTERISTICS WHICH DICTATE THE MODES 

OF DATA PROCESSING 

While a large general-purpose computing system can in general handle 
any data reduction task, the process can be made much more facile if 
the computer, or at least the peripheral equipment, is tailored to the 
job in hand. In a teaching and research institution such as the California 
Institute of Technology, it is hardly possible to include special facilities 
in the central computer, for there are many users with widely diversified 
requirements. Instead, each user with a direct connection to the computing 
system provides his own special facilities in his peripheral equipment. 
The purpose of this section is to review the characteristics of experiments 
on the visual system and to outline their special requirements. 

Neurophysiological experiments on the visual pathways usually use 
a well-defined function as the stimulus, such as a flash of light of known 
brightness, hue, saturation, and temporal wave form, to illuminate the 
photoreceptor. The output, however, is much less well defined; it may 
either be a small potential generated in or near the receptor itself and 
varying only slowly in time, or it may consist of rapidly changing repetitive 
potentials (nerve impulses) in the axon leading from the receptor; it is 
sometimes possible, by careful placement of the electrodes, to record 
these two potentials simultaneously (Figure 1). In either case, the re
sponse is contaminated with added noise, is not repeatable in detail on 
replication of the experiment, and is probably quickly adapting. 

These points of themselves impose experimental problems: the noise 
can be reduced by averaging techniques, but so will the fine detail of 
the response be reduced, since this is often not accurately time-locked 
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FIGURE 1. Generator potential and nerve impulses recorded in an ommatidium of the 
compound eye of Limulus [Redrawn with modifications from Ratliff, 1961] 
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to the major component. Correlation methods applied before averaging 
may avoid this difficulty, but the many repetitions of the stimulus which 
are required if an averaging process is to be applied may well cause the 
response to adapt right out. Adaptation, however, is a systematic process; 
hence allowance can be made for it, provided the complete time history 
of the experiment is preserved. These features indicate that the experiment 
should be automated: run on a pre-programmed schedule with the pres
entation of the stimulus and the data-gathering regimes fully integrated. 
If possible, the data analysis should run concurrently with the experiment, 
for then the adaptation of the preparation can be monitored and the 
repetition rate of the stimulus adjusted accordingly, or the experiment 
may be terminated if the preparation proves unreliable. 

The output of a neurophysiological experiment is copious, even for a 
single channel; and in general many output channels (nerves) will be 
active for every receptor stimulated. Each nerve impulse is of about 
2 msec duration and thus should be sampled at least every 0.1 msec 
if the pulse wave shape is to be accurately represented. This means a 
data inflow rate to the computer of 10,000 samples per second per channel, 
and it may well be necessary to examine 5 to 10 channels in relatively 
simple interaction experiments. The recording accuracy of this data is 
not high, and it can be adequately represented by about 10 bits; thus 
a number of data-points can be packed into each computer word; but 
even so, an experiment of this sort fills up available storage space in a 
computer at a great rate. 

We do not know for certain where the information resides in the train 
of nerve impulses which constitutes the output of a neurophysiological 
experiment, but it is presumed that the important parameter is the time 
sequence of the impulses. Many forms of analysis are based entirely 
on the time history of the nerve impulses; hence, it is often adequate 
to extract this parameter alone from the experimental output in peripheral 
equipment before transmission to the central processor. 

Already it is evident that a hierarchy of control and analytical devices 
is necessary for experiments on the visual pathways. First a local control 
stage is required at the experiment itself; this equipment is particular 
to each experiment and is responsible for the detailed sequencing of the 
experimental procedure, under command from some higher level in the 
data processing chain. Next we require a data abstraction level, possibly 
common to all biological experiments. This permits a certain pre-processing 
of the data, so that only the information which is required for the final 
analysis is sent to the central processor. The data abstraction level must 
also have an information route to the experimental control equipment so 
that it can interact in the presentation of the stimulus and primary 
analysis of the data. The last stage is represented by the general-purpose 
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computing facility; this must be available on-line at least for data-gathering 
purposes, for a biological preparation deteriorates from the moment it 
is made and cannot "wait its turn" on the computer. If on-line analysis 
is also possible, then the power of the experimental system gains con
siderably, for now direct feedback of information is available from the 
computer as an immediate experimental control and as a guide to strategy. 

Stimulus-versus-motor-response types of experiment can be handled 
with equipment of this sort but demand a few refinements. The input is 
well defined, but for a human subject the interaction between sense 
modalities may be subtle. For example, the reaction time for fixating on 
a light suddenly switched on in an empty visual field is shortened if a 
noise occurs at the same time. Great care must be taken that the pre
programmed stimulus unit excites only the sub-system under examination. 
Similarly, although the output analysis may easily be confined to a single 
channel, the response may well occur in several; in the fixation example 
quoted above, the eyes turn to look at the target-the tension in the 
extraocular muscles might thus be the output. But in general the head 
also turns; flexure of the neck should therefore be eliminated by fixing 
the head or should be examined as well. It is thus necessary to record 
all sub-system responses elicited by a certain stimulus and to look for 
their interactions. Biological systems may even have several modes of 
response for the same external stimulus. This is shown in Figure 2, which 
records the eye movements* of a subject when following a target moving 
sinusoidally from side to side. In the lefthand section of the diagram 

2 cps I cps 

FIGURE 2. Different modes of eye movements used by subjects in horizontal tracking 
of moving stimulus 

the subject's direction of gaze follows the target smoothly (with some 
noise), but in the righthand portion the response consists largely of 
saccades. The analytical system must be aware that such switching of 
modes is possible and should be ready to apply the analysis appropriate 
to each mode. 

* Most of the examples quoted in this paper refer to human eye motions. The 
method of measuring these movements is treated shortly in the appendix,which also 
explains some of the terminology. 
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Psychophysical experiments pose a further problem. In this case the 
subject is presented with a visual task and asked to respond to a question 
such as "Did you see a flash of light?"; his responses constitute the output 
data of the experiment. The difficulty here is to ensure that the subject 
and the experimenter both have the same understanding of the task, 
i.e., to standardize the mental sets of experimenter and subject. Cornsweet 
and Pinsker [1965] have argued that this is achieved if the subject gets 
immediate feedback concerning the correctness of his responses; from this 
he will be able to deduce the interpretation placed upon the task by the 
experimenter; thus after an appropriate training session they will experi
ment from a common viewpoint. In an automated experiment it is thus 
essential that this feedback of information should be handled by the 
computing complex. Psychophysical tasks always represent a decision 
process in the subject and should be analyzed as such; this means that 
an interspersal of false presentations of the stimulus must be made in 
order to establish the reliability or criterion level of the subject. 

COMPUTING FACILITIES REQUIRED FOR BIOLOGICAL EXPERIMENTS 

Bearing in mind the points outlined above, we can now draw together 
some of the requirements for a data processing device for experiments in 
the neurophysiology and psychophysics of vision. The short life of some 
biological preparations or the restricted tolerance times of human experi
mental subjects makes it essential that the experimenter has immediately 
available an on-line means of data collection. Analog magnetic tape is 
not highly satisfactory in this respect, for it halts the flow of data analysis. 
It is better if the information can be stored directly in the computer 
memory, for then analysis may proceed concurrently with data collection 
or at least immediately after it. This is a real necessity in biological work, 
for the experimenter needs an immediate display of his raw data (or 
derived parameters) as a guide for experimental~i~trategy-biological 
preparations are not sufficiently reproducible from one animal to the 
next for this feedback of information to be unnecessary. 

Once the experimenter has established his preparation and formed 
an experimental plan, then he must be provided with a hierarchy of data 
abstraction stages carrying out progressive compression of information 
before it reaches the central processor. Biological experiments are so 
prolific in the production of data that it is only in this way that one can 
avoid saturating any computing system with input data; this would slow 
down the speed of computation and reduce the value of any resulting 
feedback to the experimenter. But it is also desirable that the raw data 
should be stored in its original form, for hindsight is a most powerful 
experimental tool, and the experimenter should be able to recover and 
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work over data gathered in previous experiments. Finally, feedback to 
the experiment should be available from all levels in this hierarchy: 
from the lowest levels to control the experimental regime, from higher 
levels to give guidance to the experimenter or to the experimental subject, 
and from the highest levels to monitor the outcome of the experiment. 

COMPUTING SYSTEM FOR BIOLOGICAL RESEARCH AT THE 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

There are obviously many ways of implementing the computing strategy 
outlined above. The method adopted at the California Institute of Tech
nology has been described by McCann and Fender [1964]. The present 
computing complex consists of an IBM 7040 and an IBM 7094 interconnected 
through switchable tape units, disk files, and a trap-line which gives 
direct core-to-core transfer of small amounts of information between the 
computers (Figure 3); broadly speaking, the 7040 handles all the ad
ministrative side of a program while the actual computation is carried 

1500 char/sec 
150 char/sec --~-f 

Typewriter Control 
Console 

Plotter 

Card Readers 

Printers 

Burroughs 
220 Computer 

150,000 char/sec 
to other remote stations 

Digitized records either directly 
interplexed or from analog topes 

2. Analyzed data for plotter or display 

Analog 
Tapes 

FIGURE 3. Schematic diagram of computer layout for research in visual perception 
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out on the 7094. Access to the computing system is through a multiplexor 
unit on a time-sharing basis, and the 7040 is always available for on-line 
data collection. Control of the computer for this purpose is effected from 
remote typewriter consoles located at the sites of the experiments. A 
typical experimental routine would be: (i) enter the equivalent of a few 
control cards on the typewriter console; this transfers the appropriate 
data collection programs from the disk files to part of the 7040 memory; 
(ii) transmit data; this will generally be stored on digital tape after a 
certain amount of editing by the central processor; (iii) at the conclusion 
of data gathering, enter the equivalent of an "execute" card on the type
writer console, naming the analysis program to be used; this initiates 
a train of events as follows. 

The job is allotted a priority depending upon its predicted running 
time and amount of output; normally, biological experiments fall within 
the highest priority. The job is then entered at the bottom of the first
priority queue. When the job reaches the head of the queue, the 7040 
transmits a disk-map of the data analysis program (which already exists 
on the disk files) through the trap-line to the 7094; this in turn reads 
the program from the disk, the data from tape, carries out the analysis, 
and then returns the results to the disk. The 7040 receives a disk-map 
of the results from the 7094 through the trap-line and handles the output 
via high-speed printers, the typewriter console at the experiment, x-y 
plotters, or other suitable media. The average turn-around time for this 
process at present is 8 minutes. 

Information is transmitted from the experiment to the computing 
complex by a special-purpose computer (the Biological Systems Data 
Terminal). This device can operate in a number of primitive modes; the 
simplest merely records analog data from the experiment together with 
a local system clock track on a multichannel FM tape recorder. Alterna
tively, the analog data from the experiment may be passed through an 
A/D converter, gated by the local system clock, and then transmitted 
to the 7040. Both of these operations may be performed simultaneously. 
Signals derived from the analog tape may also be pJayed back through the 
Data Terminal, converted to digital form, and then transmitted to the 7040. 

In these primitive modes the whole of the experimental data is trans
mitted to the central computer; but it has been pointed out earlier that 
a biological system can easily saturate even a large computer if all of the 
data is transmitted; thus certain levels of data abstraction are needed 
before the information reaches the central processor in order to avoid 
this possibility. To provide this facility, the Data Terminal contains a 
large number of logical element modules. The experimenter has access 
to these through interchangeable patchboards; he can then wire up the 
Data Terminal to perform any data abstraction his ingenuity can devise 
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with the logic available. Examples of this will be given in the paragraphs 
which follow. These logical elements may also be used to derive timed 
control signals from the system clock for programming the experiment 
or to transmit information concerning the data flow back to the exper
imenter. 

TYPICAL EXPERIMENTS IN VISUAL PERCEPTION 

The realization of some of the desiderata considered above can best 
be illustrated by the case histories of a few experiments in visual perception. 

Fixation Studies 

The human eye is never at rest; even in examining a small point object 
closely, the direction of gaze sweeps around the fixation area with in
voluntary motion and very rarely points directly at the target. 

The underlying reasons for these apparently spontaneous movements 
are of considerable interest for theories of muscular activity and of the 
neurophysiology of vision; insight into both of these processes can be 
obtained from a consideration of the statistics of the motion. 

Both the horizontal and vertical motions of the visual axis of each eye 
are needed for this study; thus four channels have to be recorded. Except 
for the flicks, which last about 30 msec, the eye movements are of low 
frequency, so sampling the analog data at 20-msec intervals is adequate. 
The logical modules in the Biological Systems Data Terminal are therefore 
set up to multiplex these four channels through the AjD converter and 
transmit them to the 7040 at a total rate of 200 data-points per second-a 
very low figure compared with the capabilities of the system. The exper
iment is automatically timed for a two-minute run by the Data Terminal, 
which also inserts a displacement calibration step in each eye-movement 
channel at the beginning and end of each experimental run. 

The primary analysis carried out on this data consists of unpacking 
the multiplexed data into four separate channels, scaling each one from 
the calibration pulses, and then generating a two-dimensional histogram 
similar to Figure 4 for each eye [Fender, 1964aJ. The numbers printed 
on this diagram show the amount of time the subject spent in the examina
tion of each cell of a rectangular network centered on the target. Supple
mentary analyses examine this distribution to see if it can be partitioned 
into sub-distributions. In general this proves to be true; a search is then 
made for the transfer mechanisms between these areas; flicks are usually 
found to be responsible. 

From the description of the experiment it seems that there is no man
machine interaction; the computing complex is running the experiment 
entirely on its own. This is true; the experimenter is performing another 
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FIGURE 4. Two-dimensional fixation histogram-left eye 
[Record obtained by Dr. G. W. Beeler] 

experiment concerned with perception on the same subject at the same 
time. This is cooperation of a high order, for in psychophysical experi
ments the rate of acquisition of meaningful data is pitifully slow, and 
any artifice which extracts more information during the period of subject 
viability represents a real gain. 
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Dynamic8 of Flick8 

The dynamics of the flick motion is of interest, for it permits in vivo 
measurements to be made related to the biophysics of the eye muscles, 
a study which can normally only be done in vitro. 

For this purpose, horizontal and vertical components of eye movements 
from one eye are recorded on two tracks of the analog tape recorder. 
At the same time, electronic equipment at the site of the experiment 
detects the occurrence of flicks in each channel and records square· pulses 
on two corresponding channels; the polarity of the pulses indicates the 
direction of the flicks-up or down, temporalward or nasalward. The 
Data Terminal is now interconnected so that when the analog tape is 
played back into the computer, multiple read-heads are used; those which 
read the pulse tracks are merely used to sense the rising edge of a pulse 
and then to transfer control to another head placed earlier in time on the 
track containing the wave form of the flick. This head reads the analog 
signal and transmits it through the AID sampler (at 1,000 samples per 
second for a fixed number of samples) to the central computer; thereupon 
the system returns to the head which is monitoring the pulse track, and so 
on. The lead time and the number of samples are chosen so that the whole 
of the profile of the flick is transmitted. 

On entering the computer, the flicks are sorted-by subject, by left 
or right eye, and by visual task-from information inserted at the console 
before each experiment; by direction (temporalward or nasalward, up 
or down) from the flick detector circuits; and by type (magnitude, damped 
or overshot, spontaneous or target-following) from programming. Once 
the flick has been categorized, it is matched by a chi2 test against the 
average profile of all other flicks collected so far in that category. If it 
meets a criterion, it in turn is averaged into the template; if it does not, 
then it is printed out for the experimenter's examination; a reject is shown 
in Figure 5. 

When anyone category has collected 100 flicks, data collection in that 
class is terminated by the program, and the following analysis is initiated. 
The phase portraits (displacement against velocity) of all the flicks in 
a class are overprinted as a two-dimensional histogram (as in Figure 6) 
where the figures now indicate the number of trajectories which go through 
each cell in the phase plane. A smoothed crest-following routine converts 
this to a single trajectory from which the natural frequency and damping 
of the eyeball as a function of time can be evaluated; this permits the 
changes in tension and viscosity of the eye muscles during the flick to be 
calculated [Fender, 1964b]. 

The form of interaction between man and machine illustrated by this 
example is the interchange which takes place whenever anything abnormal 
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visual axis plotted against time during a saccade (up = left). The velocity is illustrated 
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of the velocity. Total time illustrated is 40 msec. 

happens; one of the dangers of computerized biology is that information 
which would normally be examined visually disappears into the maw 
of the computer and only emerges in a highly digested form-anything 
abnormal (which may therefore be of considerable interest) stands a high 
chance of being lost in this process. It is important that the data analysis 
programs should be so written that anything abnormal is detected and 
referred back to the experimenter for his further consideration. 

[Text resumes on next lelthand page] 
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Suppression of Vision During a Saccade 

The last experiment to be described by way of illustration turns on 
the' question of whether vision is suppressed during a saccade, for we 
certainly do not get the impression of great movement of the visual 
scene during a flick, even though the image is moving across the retina 
with considerable velocity. There are a number of theories to account 
for this apparent stability of the visual world; one of them is that the 
threshold for brightness discrimination is elevated considerably during 
a flick, sufficient to suppress perception for a short period. One way to 
test this is to flash a light (which is suprathreshold in normal vision) 
during the 30-msec period of a flick and to test if the light is still visible. 
It turns out that the effect which we are seeking begins some 60 msec 
before the flick and lasts about 100 rusec after it. Events occurring during 
and after a flick can of course be explored, using normal electronic tech
niques to trigger the flash from the flick, but the period before a flick 
presents a rather different problem. Fortunately, the flicks occur at a 
mean repetition rate of about 2 per second with a normal distribution 
about this period-so that if the flick detector circuits are used to sense 
one flick and then to trigger the flash about 500 msec later, the flash 
will coincide approximately with the next flick. A histogram of times 
of occurrence of the flash with respect to the next flick would now be 
normally distributed, whereas we require the same number of observations 
(50) in all cells 10 msec wide from 100 msec before the flick until 100 msec 
after it. 

It is at this point that the computer begins to interact with the experi
ment. The time constant of the flash-generating circuit is set to be 100 msec 
shorter than the mean interflick period for the subject. The Biological 
Systems Data Terminal programs the experiment in two-minute runs 
as follows. At t = 0, it arms the electronic equipment at the experimental 
site; this equipment then generates a flash following the first spontaneous 
flick. At t = 2 sec, the Data Terminal illuminates a lamp in the peripheral 
visual field, inviting the subject to RESPOND; the subject presses a key 
reporting "seen" or "not seen." At t = 6 sec, the Data Terminal, in 
conjunction with the local electronics, lights another sign announcing 
CORRECT or WRONG; some false negative presentations are used in order 
to test the reliability of the subject and to keep his motivation at a high 
level, but this is only effective if he receives feedback concerning the 
correctness of his judgments. From t = 7 sec to t = 10 sec, the subject 
prepares for the next presentation, and then the sequence repeats. We 
normally obtain 96 observations in the 8 runs which constitute an ex
perimental session. 

The logical units of the Data Terminal are wired so that only the times 
of occurrence of the pulses of light, the time of the associated flick, and 
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the subject's report are transmitted to the computer. At the end of each 
experimental session a histogram is formed of the times of occurrence 
of the flash with respect to the flick; a normal distribution is fitted to this 
histogram. The program then calculates the change which is required 
in the time constant of the flash generator in order to move the mean 
of the normal distribution to 100 msec before the flick. This information 
is signalled back to the experimenter, and an appropriate adjustment is 
made. This cycle is repeated until the histogram cell at 100 msec before 
the flick contains at least 50 entries; now the computer indicates the cor
rection necessary to fill later cells in the histogram, until at least 50 ob
servations have been obtained in each cell up to the time of occurrence 
of the flick. At this point the computer indicates that the experimental 
regime should be changed, and the flash is merely triggered at pseudo
random integral multiples of 10 msec after the present flick until all 
the cells in the histogram up to 100 msec after the flick are filled, whereupon 
the experiment is terminated. It remains then to calculate and graph 
the probability of seeing the flash stimulus during each interval, as shown 
in Figure 7. It will be observed that the chance of seeing a flash of light 
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FIGURE 7. Plots showing time course of brightness threshold change relative to time of 
flick initiation. Vertical points around data-points indicate 99 percent confidence 
intervals. [Record obtained by Dr. G. W. Beeler] 

is reduced if it occurs at about the same time as a flick, but if the curves 
of Figure 7 are cast into threshold measurements, it will be found that 
the threshold rises by only about 0.5 log units during a flick; this is in
sufficient to account for the apparent stability of the visual world. 
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CONCLUSION 

This paper did not set out to cover man-machine communication in the 
form of verbal messages, written text, or diagrammatic information, but 
rather the form of communication which is required between members 
of a research team. In the work which has been described here, the com
puter is one member of this team. It is possible to regard the computer 
as playing a rather lowly role in the research group-it is the member 
which records the data, makes quick calculations to see how the experiment 
is going, jogs the experimenter's memory when some experimental con
dition has to be changed, and presents for his evaluation some atypical 
event which may have occurred amongst the data. 

In biological or psychophysical research, however, this is not a trivial 
role. Rarely, in work of this nature, can the theorist set up such a clear-cut 
dichotomy that it can be resolved by one crucial experiment; painstaking 
observation and the sifting of limitless information are the normal occur
rences. With a few notable exceptions, the general participants in biological 
research are not skilled in the techniques of handling numerical data; 
possibly this is one of the reasons why quantitative biology is such a 
young member of one of the oldest sciences. 

APPENDIX 

Human Eye Movements 

The majority of the remarks in this paper have been concerned with 
the use of a computing facility as an experimental aid in the examination 
of the interaction between scanning patterns of eye movements and 
various forms of visual perception. A few words are therefore appropriate 
on the techniques of eye-movement recording and transmission of data 
to the computer. 

The subject wears a tightly fitting contact lens (Figure 8) which follows 
the movements of his eyeball quite faithfully. A stalk is attached to the 
lens and protrudes between the eyelids (Figure 9). A small mirror is 
attached to the end of the stalk, and a beam of light may be reflected 
from this mirror to give direct photographic recording of the eye rotation. 
This is useful for display purposes; but, for analysis, the information 
concerning eye position is obtained in another way [Byford, 1961]. Two 
small medical lamps are mounted around the periphery of the mirror 
(the power leads can be seen in Figures 8 and 9). One lamp shadow casts 
a straight edge onto a photomultiplier tube mounted as shown in Figure 10. 
Horizontal motion of the lamp changes the position of the shadow and 
so generates a voltage which is proportional to side-to-side rotation of 



FIGURE 8. Contact lens used for 
eye-movement recording 
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FIGURE 9. A subject wearing the 
special contact lens 

FIGURE 10. Contact lens and photomultiplier used for recording horizontal component 
of eye movements 
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the visual axis. A similar tube mounted horizontally and energized by 
the other lamp on the mirror records up-and-down motion of the visual 
axis. The voltages arising from the photomultipliers are digitized and 
transmitted directly to the computer by the equipment described pre
viously. 
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FIGURE 11. Eye movements during fixation. The pairs of horizontal dotted lines 
represent displacements of 6 minutes arc 

Typical eye movements when the subject is fixating a small-point 
target are shown in Figure 11. The characteristics to be noted are slow 
changes in the position of the visual axis, called "drifts," and sudden 
impulsive changes lasting about 30 msec, called "saccades" or "flicks." 
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DISCUSSION 

QUESTION: How long is it practical for a human subject to wear the 
contact lens? 

D. H. FENDER: Half an hour, at the most. We use very tightly fitting 
contact lenses; this is against the best optometric practice. Since the 
lenses fit so tightly, they interfere with the limbal circulation of the blood 
and with the oxygen exchange between the cornea and the atmosphere; 
all of this produces an increased water uptake in the cornea, so as to 
thicken it. The cornea is built up of parallel layers of collagen fibers, spaced 
much closer together than the wavelength of visible light so that a trans
parent film is formed. Too much water in the system moves the collagen 
fibers apart irregularly, and the cornea becomes turbid. 
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Man-Machine Interaction in Man-Machine 
System Experimentation* 

G. H. DOBBS 

System Development Corporation 

[ABSTRACT] 

In recent years System Development Corporation has been conducting 
a series of man-machine system experiments in two large-scale laboratory 
facilities designed for this purpose. The majority of the man-machine 
system experiments conducted have been characterized by the fact that 
groups of people are required to interact with or are supported by auto
matic information-processing systems usually as a team or organization 
in order to accomplish a mission or achieve an objective. Typically, the 
information-processing tasks performed in reaching experiment objectives 
require user access to large data bases. Historically, fixed procedure ap
proaches to the processing and utilization of data-based data has limited 
the user's ability to react to, control, and modify his information-processing 
environment. As a result of recognizing this limitation, SDC has been 
developing and experimenting with a variety of software techniques and 
aids designed to give individuals the capability to design, control, and 
change the user system interface in near real-time. To date, these tech
nologies have concentrated on two major facets of the user system inter
action problem: 

1. The Data and Information Input Problem 
It has become clear that techniques that allow an unsophisticated user to 
describe, define, and organize his data without resort to a computer specialist are 
vital. Considerable effort has been devoted to the development of languages and 
automatic processing aids to facilitate this kind of user/system communication. 

2. Information Access and Presentation 
Experience in the laboratory has indicated that use of information is highly 
personal. In addition to the requirement for information need to be matched to 
the task or function, there is a need to match the technique of information access 
and presentation to individual users. To this end SDC has under development 

* The manuscript of this paper was not available at the time this book was published. 

149 



150 G. H. Dobbs 

several programming aids allowing the user a high degree of control over the 
accessing, retrieval, and presentation of data from structured data bases. 

Experience to date in the laboratory indicates that although improvements 
are being and will be made in terms of easier physical access to and inter
action with information processing systems, dramatic improvement in 
intellectual access and interaction is likely to come from the application 
of next generation software technology. This technology will assume, as 
opposed to the algorithm tradition of computation and data processing, 
that few fixed procedures exist for solving a potential user's problem. 
These technologies will attempt to provide tools, therefore, which will 
be useful in supporting heuristic approaches to problem solving. 


