
I BM SAA AD/Cycle PUI Package/2 SC26-4823-00

Language Reference

Release 1

--------- ----- - -- - ---- - - --- IBM SAA AD/Cycle PL/I Package/2 SC26-4823-00

-r;;;,1L1-mv"1tlllll'1 '"' '""W"J ---·-
Language Reference

Release 1

Before using this information and the product it supports, be sure to read the general information under
"Notices" on page xvi.

First Edition (September 1992)

This edition applies to Version 1 Release 1 of IBM SAA AD/Cycle PUI Package/2, 5601-388, and to any subsequent
releases until otherwise indicated in new editions or technical newsletters. Make sure you are using the correct
edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your
comments to:

I BM Corporation, Department J58
P.O. Box 49023
San Jose, CA, 95161-9023
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1992. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

© Copyright IBM Corp. 1992

Notices
Trademarks

Chapter 1. About this book
How PUI Package/2 fits in the AD/Cycle framework
Using your documentation

Where to look for more information .
Notation conventions used in this book

How to read the syntax diagrams
Semantics

Industry standards used

Chapter 2. Program elements
Single-byte character set

Alphabetic and extralingual characters
Decimal digits
Binary digits
Hexadecimal digits
Special characters
Composite symbols
Case sensitivity

Statement elements for SBCS
Identifiers
Delimiters and operators

Statements
Simple statements . .
Compound statements

Groups
Double-byte character set

DBCS identifiers
Statement elements for DBCS
DBCS continuation rules

Chapter 3. Data elements
Data items .

Variables
Constants
Using quotation marks
Punctuating constants

Data types and attributes
Computational data types and attributes

Coded arithmetic data and attributes
String data and attributes
Named constants

Program control data types and attributes
Label data and LABEL attribute . .
Format data and FORMAT attribute
VARIABLE attribute

xvi
xvi

2
3
4
4
4
4
6
6

10
10
10
11
12
12
12
13
13
14
14
15
17
18
18
19
19
19
20
21

24
24
24
24
25
25
25
30
30
37
45
46
46
47
48

iii

Chapter 4. Expressions and references
Evaluation order
Targets

Variables
Pseudovariables
Intermediate results

Operational expressions
Arithmetic operations
Bit operations
Comparison operations
Concatenation operations
Combinations of operations

Array expressions
Prefix operators and arrays
Infix operators and arrays

Restricted expressions

Chapter 5. Data conversion
Built-in functions for computational data conversion
Converting string lengths
Converting arithmetic precision
Converting mode
Converting other data attributes
Source-to-target rules
Examples

DECIMAL FIXED to BINARY FIXED with fractions
Arithmetic-to-bit-string conversion
Arithmetic-value-to-character-string conversion
A conversion error

Chapter 6. Program organization
Programs

Program structure .
Program activation
Program termination

Blocks
Block activation
Block termination

Packages
PACKAGE statement

Procedures
PROCEDURE statement
Parameter attribute
Procedure activation
Procedure termination
Recursive procedures
Dynamic loading of an external procedure

Subroutines
Functions

Examples
Built-in functions

Passing arguments to procedures
Using BYVALUE and BYADDR
Dummy arguments

iv PUI Package/2 Language Reference

50
52
52
52
52
53
53
54
60
61
63
64
66
67
67
68

72
73
74
75
75
75
77
84
84
84
85
85

89
89
89
90
90
91
91
92
92
92
94
94
95
98
99

100
101
104
106
107
108
108
109
109

Passing arguments to the MAIN procedure
Begin biocks

BEGIN statement
Begin block activation .
Begin block termination

Entry data
Entry constants
Entry variables
ENTRY attribute
OPTIONAL attribute
LIMITED attribute
Generic entries
GENERIC attribute

Entry invocation or entry value
CALL statement
RETURN statement

Return from a subroutine .
Return from a function

OPTIONS option and attribute
RETURNS option and attribute

Chapter 7. Data declaration
Explicit declaration

DECLARE statement
Factoring attributes

Implicit declaration
Scope of declarations

INTERNAL and EXTERNAL attributes
RESERVED attribute
Data alignment

ALIGNED and UNALIGNED attributes
Defaults for attributes

Language-specified defaults
DEFAULT statement
Restoring language-specified defaults

Arrays
DIMENSION attribute
Examples of arrays
Subscripts
Cross sections of arrays

Structures
Unions

UNION attribute
Structure/union qualification
LI KE attribute

Combinations of arrays, structures, and unions
Cross sections of arrays of structures or unions
Structure and union operations
Structure and union mapping

Chapter 8. Statements
%ACTIVATE statement
ALLOCATE statement
Assignment statement

110
111
111
111
111
112
112
113
114
116
117
118
118
120
120
121
121
121
121
126

128
128
129
130
131
132
134
138
138
139
141
141
142
144
144
144
145
146
147
147
149
149
150
151
153
154
154
154

167
167
167
167

Contents V

Target variables
How assignments are performed
Multiple assignments
Example of moving internal data
Example of assigning expression values
Example of assigning a structure using BY NAME

%assignment statement
BEGIN statement
CALL statement
CLOSE statement
%DEACTIVATE statement
DECLARE statement .
%DECLARE statement
DEFAULT statement
DELAY statement
DELETE statement
DISPLAY statement
DO statement . .

Type 1
Types 2 and 3
Type 4
Examples of basic repetitions
Example of DO with WHILE, UNTIL
Example of REPEAT

%DO statement .
END statement
%END statement
EXIT statement .
FETCH statement
FORMAT statement
FREE statement
GET statement
GO TO statement
%GO TO statement
IF statement .

Examples
%IF statement
%INCLUDE statement
ITERATE statement
LEAVE statement .

Example
LOCATE statement
%NOPRINT statement
%NOTE statement .
null statement .
%null statement .
ON statement . .
OPEN statement
PACKAGE statement
%PAGE statement
%POP statement . .
%PRINT statement .
PROCEDURE statement
%PROCESS statement

Vi PUI Package/2 Language Reference

168
168
170
170
170
171
171
171
171
171
171
171
172
172
172
172
172
173
174
174
179
179
181
182
182
183
183
183
183
184
184
184
184
185
185
186
186
187
187
187
188
188
188
188
189
189
190
190
190
190
190
190
191
191

*PROCESS statement
%PUSH statement
PUT statement
READ statement
RELEASE statement
RESIGNAL statement
RETURN statement
REVERT statement
REWRITE statement
SELECT statement

Examples
SIGNAL statement
%SKIP statement
STOP statement
WRITE statement

Chapter 9. Storage control
Storage classes, allocation, and deallocation
Static storage and attribute
Automatic storage and attribute
Controlled storage and attribute

ALLOCATE statement for controlled variables
FREE statement for controlled variables
Multiple generations of controlled variables
Adjustable extents
Built-in functions for controlled variables

Based storage and attribute
Locator data
POINTER variable and attribute
Built-in functions for based variables
ALLOCATE statement for based variables
FREE statement for based variables
REFER Option (Self-Defining Data)

Area data and attribute
Offset data and attribute
Area assignment
lnpuVoutput of areas

List processing
ASSIGNABLE and NONASSIGNABLE attributes
NORMAL and ABNORMAL attributes
CONNECTED and NONCONNECTED attributes
DEFINED and POSITION attributes
INITIAL attribute

Initializing array variables
Initializing unions
Initializing static variables
Initializing automatic variables
Initializing based and controlled variables
Examples

Chapter 10. Input and output
Data sets

Consecutive
Indexed ...

191
191
192
192
192
192
192
192
193
193
194
194
195
195
195

198
198
199
200
201
202
202
203
203
203
204
205
208
208
208
209
210
211
213
214
214
215
216
217
217
218
220
222
223
223
224
224
224

228
229
229
229

Contents Vii

Relative
Regional

Files
FILE attribute
RECORD and STREAM attributes
INPUT, OUTPUT, and UPDATE attributes
SEQUENTIAL and DIRECT attributes
BUFFERED and UNBUFFERED attributes
ENVIRONMENT attribute
KEYED attribute
PRINT attribute

Opening and closing files
OPEN statement
Implicit opening
CLOSE statement

Chapter 11. Record-oriented data transmission
Data transmitted

Unaligned bit strings
VARYING strings
Area variables

Data transmission statements
READ statement . .
WRITE statement
REWRITE statement
LOCATE statement
DELETE statement

Options of data transmission statements
FILE option . .
FROM option .
IGNORE option
INTO option
KEY option ..
KEYFROM option
KEYTO option
SET option ..

Processing modes
Move mode
Locate mode .

Chapter 12. Stream-oriented data transmission
Data transmission statements

GET statement
PUT statement

Options of data transmission statements
COPY option
Data specification options
FILE option .
LINE option
PAGE option
SKIP option
STRING option

Transmission of data-list items
Data-directed data specification

Viii PUI Package/2 Language Reference

229
230
230
230
233
233
234
234
235
235
235
235
236
237
239

242
242
242
242
243
243
243
244
244
245
245
245
245
246
246
247
247
247
248
248
249
249
249

1252
252
253
253
254
254
254
256
256
256
257
257
259

..... 259

Syntax of data-directed data
GET data-directed
PUT data-directed

Edit-directed data specification
GET edit-directed
PUT edit-directed
FORMAT statement

List-directed data specification
Syntax of list-directed data
GET list-directed
PUT list-directed . . .

PRINT attribute
DBCS data in stream 1/0

Chapter 13. Edit-directed format items
A-format item
8-format item
C-format item
COLUMN Format item
E-format item
F-format item
G-format item
L-format item
LINE format item
P-format item
PAGE format item
A-format item
SKIP format item
X-format item

Chapter 14. Picture specification characters
Picture repetition factor
Picture characters for character data
Picture characters for numeric character data

Digits and decimal points
Zero suppression
Insertion characters
Defining currency symbols
Signs and currency symbols
Credit, debit, and zero replacement characters.
Exponent characters
Scaling factor

Chapter 15. Condition handling
Condition prefixes

Scope of the condition prefix
Raising conditions with OPTIMIZATION

ON-units
ON statement
Null ON-unit
Scope of the ON-unit
Dynamically descendent ON-units
ON-units for file variables

REVERT statement

260
261
262
263
265
266
267
267
268
268
269
270
272

274
274
274
275
276
276
278
280
281
281
282
282
282
283
284

286
286
287
288
290
291
292
294
296
298
298
299

302
302
304
305
305
305
306
306
307
307
308

Contents ix

SIGNAL statement
RESIGNAL statement
Multiple conditions
CONDITION attribute

Chapter 16. Conditions
AREA condition
ATTENTION condition .
CONDITION condition .
CONVERSION condition
ENDFILE condition .
EN DPAG E condition
ERROR condition . .
FINISH condition
FIXEDOVERFLOW condition
INVALIDOP condition
KEY condition
NAME condition
OVERFLOW condition
RECORD condition .
SIZE condition
STORAGE condition .
STRINGRANGE condition
STRINGSIZE condition
SUBSCRIPTRANGE condition
TRANSMIT condition
UNDEFINEDFILE condition
UNDERFLOW condition .
ZERODIVIDE condition
Condition codes

309
309
309
310

312
312
313
314
315
316
317
318
318
319
320
320
321
322
322
323
324
324
325
326
326
327
328
329
329

Chapter 17. Built-in functions, pseudovariables, and subroutines 371
Declaring built-in functions 371

BUILTIN attribute 371
Invoking built-in functions and pseudovariables 372
Invoking built-in subroutines 373

Specifying arguments for built-in functions 373
Aggregate arguments 373
Null and optional arguments 373

Accuracy of mathematical functions 373
Categories of built-in functions 37 4

Arithmetic built-in functions 374
Array-handling built-in functions . 375
Condition-handling built-in functions 375
Date/time built-in functions 375
Floating-point inquiry built-in functions 376
Floating-point manipulation built-in functions 376
Input/output built-in functions 376
Integer manipulation built-in functions 377
Mathematical built-in functions 377
Miscellaneous built-in functions 378
Precision-handling built-in functions . 378
Pseudovariables 379
Storage control built-in functions 379

X PUI Package/2 Language Reference

String-handling built-in functions . 380
Subroutines . ;j81

ABS . 381
ACOS . 382
ADD . 382
ADDR . 383
ALL . 383
ALLOCATION . 384
ANY . 384
ASIN . 384
ATAN . 385
ATAND . 385
ATANH .. .
BINARY
BINARYVALUE

BIT ·
BOOL .. .
CEIL
CENTERLEFT .
CENTRELEFT .
CENTERRIGHT .
CENTRERIGHT .
CHARACTER
COLLATE
COMPARE
COMPLEX
CONJG
COPY .. .
cos
COSD .. .
GOSH .. .
COT AN
COTAND
COUNT
CURRENTSIZE
CURRENTSTORAGE
DATAFIELD
DATE
DATETIME
DECIMAL
DIMENSION
DIVIDE .. .
EMPTY
ENDFILE
ENTRYADDR
ENTRY ADDR pseudovariable .
EPSILON
ERF
ERFC .. .
EXP · ·. · · · ·
EXPONENT
FILEOPEN
FIXED .. .
FLOAT .. .

386
386
387
387
387
388
388
389
389
390
390
391
391
391
392
392
393
393
393
393
394
394
394
395
395
396
396
397
397
397
398
398
399
399
399
399
400
400
400
401
401
401

Contents Xi

FLOOR . 402
GAMMA . 402
GRAPHIC . 403
HBOUND . 404
HEX . 404
HEXIMAGE . 405
HIGH . 406
HUGE . 406
IAND . 406
IEOR . 407
IMAG . 407
IMAG pseudovariable . 407
INDEX . 407
IOR . 408
LBOUND . 409
LEFT . 409
LENGTH . 409
LINENO . 410
LOG . 410
LOGGAMMA . 410
LOG2 . 411
LOG10 . 411
LOW . 411
LOWER2 . 411
MAX . 412
MAXEXP . 412
MAXLENGTH . 413
MIN . 413
MINEXP . 414
MOD . 414
MPSTR . 415
MULTIPLY . 416
NULL . 416
OFFSET . 416
OFFSETADD . 417
OFFSETDI FF . 417
OFFSETSUBTRACT . 417
OFFSETVALUE . 418
OMITTED . 418
ONCHAR . 418
ONCHAR pseudovariable . 419
ONCODE . 419
ONCOUNT . 419
ONFILE . 420
ONGSOURCE . 420
ONGSOURCE pseudovariable . 420
ONKEY . 421
ONLOC . 421
ONSOURCE . 422
ON SOURCE pseudovariable . 422
PAGENO . 423
PLACES . 423
PLIDUMP . 423
PLIFILL . 424

Xii PUI Package/2 Language Reference

PLI MOVE . 424
PLI RETC . 425
PLIRETV . 425
POINTER . 425
POINTERADD . 426
POINTERDIFF . 426
POINTERSUBTRACT . 427
POINTERVALUE . 427
PRECISION . 427
PRED . 428
PROD . 428
RADIX . 428
RAISE2 . 429
RANDOM . 429
REAL . 429
REAL pseudovariable . 430
REM . 430
REPEAT . 430
REVERSE . 431
RIGHT . 431
ROUND . 432
SAMEKEY . 433
SCALE . 433
SEARCH . 433
SEARCHR . 434
SIGN . 435
SIGNED . 435
SIN . 435
SINO . 436
SINH . 436
SIZE . 436
SQRT . 437
STORAGE . 438
STRING . 438
STRING pseudovariable . 439
SUBSTR . 439
SUBSTR pseudovariable . 440
SUBTRACT . 440
succ . 440
SUM . 441
TAN . 441
TAND . 441
TANH . 442
TIME . 442
TINY . 442
TRANSLATE . 442
TRIM . 443
TRUNC . 444
UNSIGNED . 444
UNSPEC . 445
UNSPEC pseudovariable . 446
VALID . 447
VERIFY . 447
VERIFYR . 448

Contents Xiii

Chapter 18. Macro facility
Macro facility scan
Character sets
Reserved keywords
Data types and attributes

Fixed point data
Character data

Expressions
Conversions
Macro facility statements

%ACTIVATE ...
%assignment . . .
%DEACTIVATE .
%DECLARE
%DO
%END
%GOTO
%IF
%INCLUDE
%NOTE
%null

Macro facility built-in functions
COLLATE
COMMENT
COMPILETIME
COUNTER
INDEX
LENGTH
MAX ...
MIN
QUOTE
REPEAT
SUBSTR
SYSPARM
SYSTEM
SYSVERSION
TRANSLATE .
VERIFY

Macro facility examples
Example 1
Example 2

Appendix A. Limits

Bibliography
IBM SAA AD/Cycle PUI Package/2 publications .. .
IBM OS PUI Version 2 publications
IBM Systems Application Architecture publications
IBM OS/2 2.0 technical library
Other books you might need

Glossary

Index ..

XiV PUI Package/2 Language Reference

450
450
451
452
453
453
453
453
453
453
453
454
454
455
455
456
456
456
457
458
458
458
459
459
460
460
461
461
461
461
461
461
461
461
462
463
463
463
464
464
464

465

468
468
468
468
468
468

469

484

Contents XV

Notices

Trademarks

xvi

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any func
tionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, New York 10577, U.S.A.

The following terms, denoted by an asterisk (*) where they first occur in this publi
cation, are trademarks of the IBM Corporation in the United States or other coun
tries or both:

AD/Cycle
IBM
Language Environment
OS/2

Presentation Manager
PS/2
SAA
Systems Application Architecture

© Copyright IBM Corp. 1992

© Copyright IBM Corp. 1992

Chapter 1. About this book

Chapter 1. About this book
How PUI Package/2 fits in the AD/Cycle framework
Using your documentation

Where to look for more information . .
Notation conventions used in this book

How to read the syntax diagrams
Semantics

Industry standards used

2
3
4
4
4
4
6
6

1

Chapter 1. About this book

2

This book is a reference for programmers using IBM* Systems Application Architec
ture* AD/Cycle* PUI Package/2. It is not a tutorial, but is designed for the reader
who already has a knowledge of the language and who requires reference informa
tion needed to write a program that will be processed by PUI compiler for OS/2*. It
contains guidance information and general-use programming interfaces.

Because this book is a reference manual, it is not intended to be read from front to
back, and terms may be used before they are defined. Terms are shown in italics
where they are defined in the book, and definitions are indexed.

© Copyright IBM Corp. 1992

How PU; Package/2 fits in the AD/Cycle framework
PUI Package/2 is a participating product in the AD/Cycle framework, IBM 1s com
posite application for developing and maintaining applications in Systems Applica
tion Architecture* environments. The AD/Cycle framework consists of tools that
support the full range of application development activities, plus an application
development platform of specifications and services for integrating those tools.
Tools that conform to these specifications and services operate in concert with
other conforming tools. They present a common user interface, use common func
tions when appropriate, and share common application development information.

Cross-Life Cycle Tools

Requirements
Analysis!

Produce Build/Test Production/
Design Maintenance Phase Phase Phase Phase

Phase

Enterprise Languages

Modeling
Tools

I I

Test/
Maintenance/

Generators Redevelopment
Tools

Analysis/
Design

Knowledge-Based Tools
Systems

Application Development Platform

Figure 1. AD/Cycle Framework

AD/Cycle tools are grouped according to the type of application development activ
ities they help perform. Figure 1 shows the AD/Cycle tool sets and their relation
ship to the traditional development phases. Each tool set is a collection of
products, from IBM and members of the IBM International Alliance for the AD/Cycle
framework. PUI Package/2 is part of the languages tool set, indicated by the
shaded box. PUI Package/2 consists of a powerful new language compiler and a
Language Environment* that work together to provide solutions for your application
development needs.

For more information about the AD/Cycle framework, see the publication Systems
Application Architecture: AD/Cycle Concepts, GC26-4531.

Chapter 1. About this book 3

Using your documentation
The publications provided with PUI Package/2 are designed to help you do PUI
programming on a personal workstation. Each publication helps you perform a dif
ferent task.

Where to look for more information
Figure 2. How to Use the Publications You Receive with PU/ Package/2

To... Use ...

Evaluate the product

Understand warranty information

Install the compiler and run-time
library

Prepare and test your programs
and get details on compiler mes
sages

Get details on PL/I syntax and
specifications of language ele
ments

Get details on run-time messages

PU/ Package/2 Fact Sheet

PU/ Package/2 Licensed Program Specifications

PU/ Package/2 Installation

PU/ Package/2 Programming Guide

PU/ Package/2 Language Reference
PU/ Package/2 Reference Summary

PU/ Package/2 Language Environment Run-Time
Messages

For the complete titles and order numbers of these and other related publications,
see the "Bibliography'' on page 468.

Notation conventions used in this book
The following sections describe how information is presented in this book. Exam
ples and user-supplied information are presented in mixed-case characters.

How to read the syntax diagrams
Throughout this book, syntax is described using the following structure:

• Read the syntax diagrams from left to right, from top to bottom, following the
path of the line. The following table shows the meaning of symbols at the
beginning and end of syntax diagram lines.

Symbol Indicates

ll>ll>- the syntax diagram starts here

the syntax diagram is continued on the next line

·- the syntax diagram is continued from the previous line

the syntax diagram ends here

• Required items appear on the horizontal line (the main path).

••-STATEMENT-required- ite111------------------•

4 PUI Package/2 Language Reference

• Optional items appear below the main path .

.,..,._STATEMENT---.-----~---------------••
'-optional-iterrr-J

• When you can choose from two or more items, the items appear vertically, in a
stack. If you must choose one of the items, one item of the stack appears on
the main path. The default, if any, appears above the main path and is chosen
by the compiler if you do not specify another choice.

-f
defauit-a·te

.,..,._STATEMENT choice 1---+->'"""'1>---------------••
choice 2

Note:
1 Because choice 1 appears on the horizontal bar, one of the items must be included in

the statement. If you don't specify either choice 1 or choice 2, the compiler implements
the default for you.

If choosing one of the items is optional, the entire stack appears below the
main path .

.,..,._STATEMENT---.-------..---------------••
'-optional-choice l~
'-optional-choice z_J

• An arrow returning to the left above the main line is a repeat arrow, and it indi
cates an item that can be repeated .

.,..,._STATEMENT _l_repea table- i tem~I~------~--------• •

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items, or repeat a single choice.

• If there is a comma as part of the repeat arrow, you must use a comma to
separate items in a series .

.,..,._STATEMENT _£~epeatab le- itemc......JI.__ ______________ • •

If the comma appears below the repeat arrow line instead of on the line as
shown in the previous example, the comma is optional as a separator of items
in a series.

• A syntax fragment is delimited in the main syntax diagram by a set of vertical
lines. The corresponding meaning of the fragment begins with the name of the
fragment followed by the syntax, which starts and ends with a vertical line.

Chapter 1. About this book 5

Semantics

.,..,._STATEMENT-i fragment

fragment:
~syntax items---------------------1

• Keywords appear in uppercase (for example, STATEMENT) They must be
spelled exactly as shown. Variables appear in all lowercase letters (for
example, item). They represent user-supplied names or values.

• If punctuation marks, parentheses, arithmetic operators, or other symbols are
shown, you must enter them as part of the syntax.

To describe the PUI language, the following conventions are used:

• The descriptions are informal. For example, we usually write "x must be a vari
able" instead of the more precise "x must be the name of a variable." Similarly,
we may sometimes write "x is transmitted" instead of "the value of x is trans
mitted." When the syntax indicates "reference," we may later write "the variable"
instead of "the referenced variable."

• When we say that two different source constructs are equivalent, we mean that
they produce the same result, and not necessarily that the implementation is
the same.

• Unless specifically stated in the text following the syntax specification, the
unqualified term "expression" or "reference" refers to a scalar expression. · For
an expression other than a scalar expression, the type of expression is noted.
For example, the term "array expression" indicates that neither a scalar
expression nor a structure expression is valid.

• When a result or behavior is undefined, it is something you "must not" do. Use
of an undefined feature is likely to produce different results on different imple
mentations or releases of a PUI product. The application program is consid
ered to be in error.

• Default is used to describe an alternative value, attribute, or option that is
assumed by the system when no explicit choice is specified.

• Implicit is used to describe the action taken in the absence of an explicit spec
ification by the program.

• The blank symbol (b) indicates a blank character.

Industry standards used
The PUI Package/2 compiler compiler is designed according to the specifications of
the following industry standards as understood and interpreted by IBM as of
December 1987:

• American National Standard Code for Information Interchange (ASCII),
X3.4 - 1977

• American National Standard Representation of Pocket Select Characters in
Information Interchange, level 1, X3.77 - 1980 (proposed to ISO, March 1,
1979)

6 PUI Package/2 Language Reference

• The draft proposed American National Standard Representation of Vertical Car
riage Positioning Characters in Information Interchange, level 1, dpANS X3.78
(also proposed to ISO, March 1, 1979)

• Selected features of the American National Standard PUI General Purpose
Subset (ANSI X3.74-1987).

Chapter 1. About this book 7

8 PUI Package/2 Language Reference

© Copyright IBM Corp. 1992

Chapter 2. Program elements

Chapter 2. Program elements 1 O
Single-byte character set 1 O

Alphabetic and extralingual characters 1 O
Alphabetic characters 1 O
Extralingual characters 11
Alphanumeric characters 11

Decimal digits 11
Binary digits 12
Hexadecimal digits 12
Special characters 12
Composite symbols 13
Case sensitivity 13

Statement elements for SBCS 14
Identifiers 14

PUI keywords 14
Programmer-defined names 14

Delimiters and operators 15
Blanks 16
Comments 16

Statements 17
Simple statements
Compound statements

Groups
Double-byte character set

DBCS identifiers
Single-byte identifiers in DBCS form
DBCS identifiers containing double-byte characters
Uses for double-byte character identifiers

Statement elements for DBCS
DBCS continuation rules

18
18
19
19
19
20
20
20
20
21

9

Program elements

Chapter 2. Program elements

This chapter describes the basic elements that are used to write a PUI program.
The elements include character sets, programmer-defined identifiers, keywords,
delimiters, and statements.

PUI supports the Single Byte Character Set (SBCS) and the Double Byte Character
Set (DBCS).

The implementation limits for PUl's language elements are listed in the
Appendix A, "Limits" on page 465.

Single-byte character set
PUI supports the ASCII Character Set 0850, which contains the English alphabet,
digits, special characters, and other national language and control characters. Con
stants and comments can contain any SBCS character value. PUI elements (for
example, statements, keywords and delimiters) are limited to the characters
described in the following sections.

Alphabetic and extralingual characters

10

The default alphabet for PUI is the English alphabet plus the extralingual charac
ters.

Alphabetic characters
There are 26 base alphabetic characters that comprise the English alphabet. They
are shown in Figure 3 with the equivalent ASCII and EBCDIC values in
hexadecimal notation.

Figure 3 (Page 1 of 2). Alphabetic equivalents

EBCDIC EBCDIC ASCII ASCII
Uppercase Lowercase Uppercase Lowercase

Character Hex Value Hex Value Hex Value Hex Value

A C1 81 41 61

8 C2 82 42 62

c C3 83 43 63

0 C4 84 44 64

E C5 85 45 65

F C6 86 46 66

G C7 87 47 67

H ca 88 48 68

C9 89 49 69

J 01 91 4A 6A

K 02 92 48 68

L 03 93 4C 6C

M 04 94 40 60

© Copyright IBM Corp. 1992

Decimal digits

Decimal digits

Figure 3 (Page 2 of 2). Alphabetic equivalents

EBCDIC EBCDIC ASCII ASCII
Uppercase Lowercase Uppercase Lowercase

Character Hex Value Hex Value Hex Value Hex Value

N DS 9S 4E 6E

0 06 96 4F 6F

p 07 97 so 70

a DB 9B S1 71

R 09 99 S2 72

s E2 A2 S3 73

T E3 A3 S4 74

u E4 A4 SS 7S

v ES AS S6 76

w E6 A6 57 77

x E7 A7 5B 7B
y EB AB 59 79

z E9 A9 SA 7A

Extralingual characters
The default extralingual characters are the number sign (#) the at sign (@), and the
currency sign ($). The hexadecimal values for these characters vary across code
pages. You can use the NAMES compiler option to define your own extralingual
characters. For more information on defining extralingual characters, refer to the
PU/ Package/2 Programming Guide.

Alphanumeric characters
An alphanumeric character is either an alphabetic or extralingual character, or a
digit.

PUI recognizes the 10 decimal digits, O through 9. They are also known simply as
digits and are used to write decimal constants and other representations and
values. The following table shows the digits and their hexadecimal values.

Figure 4 (Page 1 of 2). Decimal digit equivalents

EBCDIC ASCII
Character Hex Value Hex Value

0 FO 30

F1 31

2 F2 32

3 F3 33

4 F4 34

s F5 3S

6 F6 36

Chapter 2. Program elements 11

Binary digits

Binary digits

Figure 4 (Page 2 of 2). Decimal digit equivalents

EBCDIC ASCII
Character Hex Value Hex Value

7 F7 37

8 F8 38

9 F9 39

PUI recognizes the 2 binary digits, O and 1 . They are also known as bits and are
used to write binary and bit constants.

Hexadecimal digits
PUI recognizes the 16 hexadecimal digits, O through 9 and A through F. A through
F represent the decimal values 10 through 15, respectively. They are also known
as hex digits or just hex and are used to write constants in hexadecimal notation.

Special characters
Figure 5 shows the special characters, their PUI meanings, and their ASCII and
EBCDIC values in hexadecimal notation.

Figure 5 (Page 1 of 2). Special character equivalents

Default Default
EBCDIC ASCII

Character Meaning Hex Value Hex Value

b Blank 40 20

Equal sign or assignment symbol 7E 30

+ Plus sign 4E 28

Minus sign 60 20

Asterisk or multiply symbol 5C 2A

I Slash or divide symbol 61 2F

Left parenthesis 40 28

Right parenthesis 50 29

Comma 68 2C

Point or period 48 2E

Single quotation mark 70 27

Double quotation mark 7F 22

% Percent 6C 25

Semicolon 5E 38

Colon 7A 3A

Not symbol, exclusive-or symbol
(Note 1) 5F 5E

& And symbol 50 26

Or symbol (Note 1) 4F 7C

12 PUI Package/2 Language Reference

Composite symbols

Figure 5 (Page 2 of 2). Special character equivalents

Default Default
EBCDIC ASCII

Character Meaning Hex Value Hex Value

> Greater than symbol 6E 3E

< Less than symbol 4C 3C

Break character (underscore) 60 SF

? Question mark 6F 3F

Note 1:

The or (I) and the not(-.) symbols have variant code points. You can use the compiler
options OR and NOT to define alternate symbols to represent these operators. For more
information about defining symbols, refer to the PU/ Package/2 Programming Guide.

Composite symbols
You can combine special characters to create composite symbols. The following
table describes these symbols and their meanings. Composite symbols cannot
contain blanks.

Figure 6. Composite symbol description

Composite Symbol Meaning

Concatenation

Exponentiation

Not less than

-.> Not greater than

Not equal to

<= Less than or equal to

>= Greater than or equal to

I* Start of a comment

*/ End of a comment

-> Locator

Case sensitivity
You can use a combination of lowercase and uppercase characters in a PUI
program.

When used in keywords or identifiers, the lowercase characters convert to the cor
responding uppercase characters. This is true even if yoLJ entered a lowercase
character as a DBCS character.

When used in a comment or in a character, mixed, or a graphic string constant,
lowercase characters remain lowercase.

Chapter 2. Program elements 13

SBCS Statement elements

Statement elements for SBCS

ldentif iers

This section describes the elements that make up a PUI program when using
SBCS.

A PUI statement consists of identifiers, delimiters, operators, and constants. Con
stants are described in Chapter 3, "Data elements" on page 24.

An identifier is a series of characters, not contained in a comment or a constant.
Except for P, PIC, and PICTURE, identifiers must be preceded and followed by a
delimiter. (P, PIC, and PICTURE identifiers can be followed by a character string.)
The first character of an identifier must be one of the alphabetic or extralingual
characters. Other characters, if any, can be alphabetic, extralingual, digit or the
break (_) character.

Identifiers can be PUI keywords or programmer-defined names. Because PUI can
determine from the context if an identifier is a keyword, you can use any identifier
as a programmer-defined name. There are no reserved words in PUI.

PUI keywords
A keyword is an identifier that has a specific meaning in PUI. Keywords can
specify such things as the action to be taken or the attributes of data. For
example, READ, DECIMAL, and ENDFILE are keywords. Some keywords can be
abbreviated. The keywords and their abbreviations are shown in uppercase letters.

Programmer-defined names
In a PUI program, names are given to variables and program control data. There
are also built-in names, condition names, and generic names. Any identifier can be
used as a name. A name can have only one meaning in a program block. For
example, the same name cannot be used for both a file and a floating-point vari
able in the same block.

To improve readability, the break character (_) can be used in a name, such as
Gross_Pay.

Examples of names are:

A Rate_of _pay

Record Loop_3

Additional requirements for programmer-defined external names are given in
"INTERNAL and EXTERNAL attributes" on page 134.

An asterisk (*) may be used as an identifier name in situations where a name is
required but you have no need to refer to it.

14 PUI Package/2 Language Reference

Delimiters and operators

Delim~ters and operators
Delimiters and operators are used to separate identifiers and constants. Figure 7
shows delimiters, and Figure 8 shows operators.

Figure 7. Delimiters

Name

Comment

Comma

Period

Semicolon

Assignment
symbol

Colon

Blank

Parentheses

Locator

Percent

Single quote

Double quote

Delimiter

/* */

b

()

->

%

Use

The/* and*/ enclose commentary (this delimiter
includes the/* and the */and any characters
between them.)

Separates elements of a list; precedes the BY NAME
option

Connects elements of a qualified name; decimal or
binary point

Terminates a statement

Indicates assignment

Connects prefixes to statements; connects lower
bound to upper-bound in a dimension attribute; used
in RANGE specification of DEFAULT statement

Separates elements

Enclose lists, expressions, iteration factors, and
repetition factors; enclose information associated
with various keywords

Denotes locator qualification

Indicates% statements

Encloses constants (indicates the beginning and end
of a constant)

Encloses constants (indicates the beginning and end
of a constant)

Note: Omitting certain symbols can cause errors that are difficult to trace. Common errors
are unbalanced quotes, unmatched parentheses, unmatched comment delimiters, and
missing semicolons.

Figure B (Page 1 of 2). Operators

Operator type Character(s) Description

Arithmetic + Addition or prefix plus
Subtraction or prefix minus

* Multiplication
Division

** Exponentiation

Comparison Equal to
--,= Not equal to
< Less than
-.< Not less than
> Greater than
--,> Not greater than
<= Less than or equal to
>= Greater than or equal to

Chapter 2. Program elements 15

Blanks

Figure 8 (Page 2 of 2). Operators

Operator type

Logical

String

Character(s)

&
I

Description

Not, Exclusive-or
And
Or

Concatenation

The characters used for delimiters can be used in other contexts. For example, the
period is a delimiter when used in name qualification (for example,
Weather. Temperature), but is a decimal point in an arithmetic constant (for example,
3 .14).

Blanks
You can surround each operator or delimiter with blanks (b). One or more blanks
must separate identifiers and constants that are not separated by some other
delimiter. Any number of blanks can appear wherever one blank is allowed.

Blanks cannot occur within identifiers, composite symbols, or constants (except in
character, mixed, and graphic string constants).

Some examples are:

ab+bc
Tabl e(lG)
First.Second
AtoB

is equivalent to
is equivalent to
is equivalent to
is not equivalent to

Ab + Be
TABLEb(blGbbb)
first,bsecond
AbtobB

Other cases that require or allow blanks are noted where the feature of the lan
guage is discussed.

Comments
Comments are allowed wherever blanks are allowed as delimiters in a program. A
comment is treated as a blank and used as a delimiter. Comments are ignored
and do not affect the logic of a program. The syntax for a comment is:

.,.,_/*~--~*/---------------------<Ill
ltextJ

/* specifies the beginning of a comment.

text specifies any sequences of characters except the*/ composite symbol,
which would terminate the comment.

*/ specifies the end of the comment.

A comment can be entered on one or more lines. For example:

A= I* This comment is on one line */ 21;

I* This comment spans
two lines */

16 PUI Package/2 Language Reference

Statements

Statements

In the following example, what appears to be a comment is actually a character
string constant because 1t is enclosed in quotes.

A= '/*This is a constant, not a comment*/' ;

You use identifiers, delimiters, operators, and constants to construct PUI state
ments.

Although your source program consists of a series of records or lines, PUI views
the program as a continuous stream of characters. There ,are few restrictions in the
format of PUI statements, and programs can be written without considering special
coding rules or checking to see that each statement begins in a specific column. A
statement can begin in the next position after the previous statement, or it can be
separated by any number of blanks.

Some statements begin with a % symbol. These statements are either control
statements that direct the compilation (controlling listings, including program source
text from a library, and so on) or are PUI Macro Facility statements. A control
statement must be on a line by itself.

To improve program readability and maintainability and to avoid unexpected results
caused by loss of trailing blanks in source lines, the following recommendations
should be followed:

• Do not split a basic language element across lines. If a string constant must be
written on multiple lines, use the concatenation operator (II).

• Do not write more than one statement on a line.

• Do not split % control statements across lines.

The PUI statements and the control statements are alphabetically listed in
Chapter 8, "Statements" on page 167. The Macro Facility statements are alpha
betically listed in "Macro facility statements" on page 453.

The syntax for a statement is:

~~~l~co-n-d1-.t-io_n_-p_r_e_f1_.x_J~-l-1-ab_e_l_-p_r-ef_i_xJ~~l~st-a-te_m_e-nt-J~~~~~~~--•~ 

The syntax for a % statement is: 

Every statement must be contained within some enclosing group or block. 

condition-prefix 
A condition prefix specifies the enabling or disabling of a PUI condition. 
For more information, refer to Chapter 15, "Condition handling" on 
page 302. 

Chapter 2. Program elements 17 



Simple statements 

label-prefix 
A label prefix is one or more statement labels. It identifies a statement so 
that it can be referred to at some other point in the program. Statement 
labels are either label constants (discussed in "Label data and LABEL 
attribute" on page 46), entry constants (discussed in "Entry data" on 
page 112), or format constants (discussed in "Format data and FORMAT 
attribute" on page 4 7). 

Any statement, except DECLARE, DEFAULT, WHEN, OTHERWISE and 
ON statements, can have a label prefix. 

The syntax of a label prefix is: 

.,..,._f_ i denUfi er-:--'------------------+., ~ 

The syntax for individual statements throughout this book generally does 
not show the condition prefix or the label prefix. 

statement 
A simple or a compound statement. 

Simple statements 
The types of simple statements are: keyword, assignment, and null. 

A keyword statement is a statement that begins with a keyword. 
This keyword indicates the function of the statement. In the following example, 
READ and DECLARE are keywords: 

READ file(In) into(Input); 
%DECLARE text char; 

I* keyword statement 
I* keyword % statement 

*/ 
*/ 

The assignment statement contains one or more identifiers on the left side of the 
assignment symbol (=)and an expression on the right. It does not begin with a 
keyword: 

A = B + C; 
%size= 15; 

I* assignment statement */ 
I*% assignment statement */ 

The null statement consists of only a semicolon and is a nonoperational statement: 

. 
Label : ; 

% ; 

Compound statements 

I* null statement */ 
I* labeled null statement*/ 
I*% null statement */ 

Compound statements are all keyword statements. Each begins with a keyword 
which indicates the function of the statement. A compound statement contains one 
or more simple or compound statements. There are four compound statements: 
IF, ON, WHEN, and OTHERWISE. A compound statement is terminated by the 
semicolon that also terminates the final statement of the compound statement. 

18 PUI Package/2 Language Reference 



Groups 

The following are examples of compound statements: 

on conversion 
onchar() = '8'; 

if Text = 'stmt' then 
do; 

se l ect(Type); 
when('if') call If_stmt; 
when( 'do') call do_stmt; 
when('') /* do nothing */ 
otherwise 

ca 11 Other _stmt; 
end; 
call print; 

end; 
end; 

%if type= 'AREA' %then 
%size= size+ 16; 

%else; 

Groups 

Statements can be contained within larger program units called groups. A group is 
either a do-group or a select-group. A do-group is a sequence of statements delim
ited by a DO statement and a corresponding END statement. A select-group is a 
sequence of WHEN statements and an OTHERWISE statement delimited by a 
SELECT statement and a corresponding END statement. The delimiting state
ments are considered to be part of the group. 

When a group is used in a compound statement, control either flows into the group 
or bypasses it, effectively treating the group as if it were a single statement. 

The flow of control within a group is discussed for do-groups under "DO statement" 
on page 173 and for select-groups under "SELECT statement" on page 193. 

Every group must be contained within some enclosing group or block. Groups can 
contain none, one, or more statements or groups. 

Double-byte character set 
Each character in the double-byte character set (DBCS) is stored in 2 bytes. 
DBCS characters can be used anywhere in the source program where a comment, 
statement label, identifier, or a constant can be used. 

When the GRAPHIC compiler option is in effect, source language elements can be 
written using DBCS and SBCS. 

DBCS identifiers 
DBCS identifiers can be composed of single-byte characters in DBCS form, double
byte characters, or a combination of both. 

Chapter 2. Program elements 19 



DBCS statement elements 

Single-byte identifiers in DBCS form 
DBCS identifiers containing only single-byte characters must conform to the normal 
PUI naming conventions, including the first-character rule. A DBCS identifier con
taining single-byte characters expressed as DBCS equivalents is a synonym of the 
same identifier in SBCS. 

Notes: 

1. This book uses the symbol "." (bold period) to represent the first byte of a 
double-byte character that can also be represented as SBCS. 

2. This book uses "kk" to represent a double-byte character. 

Example: 

.I.B.M = 3; I* is the same as IBM=3; */ 

DBCS identifiers containing double-byte characters 
The sum of the number of SBCS characters plus 2 times the number of DCBS 
characters in a DBCS name cannot exceed 31. Names containing one or more 
DBCS characters are considered to be all DBCS. For example, 

AkkB 
Akk.B 
.AkkB /*are all .Akk.B (3 DBCS characters)*/ 

Uses for double-byte character identifiers 
A DBCS identifier can be used wherever an SBCS identifier is allowed. When 
DBCS identifiers are used for EXTERNAL names and %INCLUDE file names, you 
must ensure that the identifiers are acceptable to the operating system, or are 
made acceptable by one of the following: 

• The EXTERNAL attribute with an environment-name is used. 
• The TITLE option of OPEN or FETCH statement is used. 

Statement elements for DBCS 
This section provides supplemental information about writing PUI language ele
ments using DBCS. Definitions of the language elements in this section and 
general usage rules appear in corresponding sections in "Statement elements for 
SBCS" on page 14. The following is a list·of the language elements, an explana
tion of the rules, and examples of usage. 

Identifiers 
Use SBCS, DBCS or both. 

dcl Eof 
dcl .E.o.f 

dcl kkkkX 
dcl kkkk.X 
dcl kkkkx 
dcl kkkk.x 

Comments 
Use SBCS, DBCS or both. 

I* comment */ 
I* .T.y.p.e kk */ 

20 PUI Package/2 Language Reference 

I* in SBCS, is the same as 
I* this in DBCS. 

*/ 
*/ 

I* these are all the same, where */ 
/* kk is a valid */ 
I* DBCS character */ 
I* */ 

I* a 11 SBCS *I 
I* DBCS text */ 



Mixed Character String Constant 
Enclose in SBCS quotes. 

DBCS continuation rules 

Data can be expressed in SBCS or DBCS or both. The DBCS portion is 
not converted to SBCS. 

'.a .b.c'M stored as .a.b.c 6 bytes 
I. I.B.M. I .s'M stored as .I.B.M. I .s 1 O bytes 
I . I.B.M' I .s'M stored as . I.B.M' .S 9 bytes 
I IBMkk IM stored as IBMkk 5 bytes 

Graphic Constant 
Enclose in SBCS quotes. 

Examples: 

'.a .b.c' G /* 6 byte graphic constant */ 
I .I.B.M. I .S'G /* 18 byte graphic constant .I.B.M.' .S */ 

DBCS continuation rules 
If a DBCS character (not a DBCS semicolon) is separated from the right margin by 
a single SBCS blank, then the blank is ignored and the statement is continued at 
the left margin of the next input record. 

Chapter 2. Program elements 21 



DBCS continuation rules 

22 PUI Package/2 Language Reference 



© Copyright IBM Corp. 1992 

Chapter 3. Data elements 

Chapter 3. Data elements . . . . . 
Data items . 

Variables ...... . 
Constants 
Using quotation marks 
Punctuating constants . . . . . . 

Data types and attributes . . . . . . 
Computational data types and attributes 

Coded arithmetic data and attributes . 
BINARY and DECIMAL attributes 
FIXED and FLOAT attributes . . . . 
PRECISION attribute . . . . . . . . 
REAL and COMPLEX attributes .. 
SIGNED and UNSIGNED attributes 
Binary fixed-point data . . . . . . . . 
Binary fixed-point constant . . . . . 
XN (hex) binary fixed-point constant 
Decimal fixed-point data . . . . . . . . . 
Decimal fixed-point constant . . . . . 
Binary floating-point data . . . . . . . 
Binary floating-point constant . . . . . 
Decimal floating-point data . . . . . . 
Decimal floating-point constant . . . . 

String data and attributes . . . . . . . . 
BIT, CHARACTER, and GRAPHIC attributes 
VARYING and NONVARYING attributes 
PICTURE attribute 
Character data 
Character constant . . . . . . . . . . . 
Z (null-terminated) character constant 
X (hex) character constant 
Bit data ........ . 
Bit constant . . . . . . . 
B4 (hex) bit constant . . 
Graphic data . . . . . . 
Graphic constant ..... 
GX (hex) graphic constant 
Mixed character data 
M (Mixed) character constant 
Numeric character data 

Named constants 
VALUE attribute 
Examples of named constants . 

Program control data types and attributes 
Label data and LABEL attribute . . 
Format data and FORMAT attribute 
VARIABLE attribute . . . . . . . . . 

24 
24 
24 
24 
25 
25 
25 
30 
30 
31 
31 
32 
32 
33 
34 
34 
34 
35 
35 
36 
36 
36 
36 
37 
37 
38 
38 
39 
39 
40 
40 
41 
41 
41 
42 
42 
42 
42 
43 
43 
45 
45 
45 
46 
46 
47 
48 

23 



Data elements 

Chapter 3. Data elements 

Data items 

Variables 

Constants 

24 

This chapter introduces the kinds of data you can use in PUI programs and the 
attributes you use to describe them. The discussion covers: 

• A review of data items 
• A review of variables and constants 
• The types of data that are available and the attributes that define them. 

For information on how to declare data, refer to Chapter 7, "Data declaration" on 
page 128. 

A data item is the value of either a variable or a constant. (These terms are not 
exactly the same as in general mathematical usage. They are discussed further in 
the next section.) Data items can be single items, called scalars, or they can be a 
collection of items called data aggregates. 

Data aggregates are groups of data items that can be referred to either collectively 
or individually. The kinds of data aggregates are arrays, structures, and unions. 
You can use any type of computational or program control data to form a data 
aggregate. 

Arrays are discussed in "Arrays" on page 144, structures in "Structures" on 
page 147, unions in "Unions" on page 149, and arrays of structures and unions 
starting in "Combinations of arrays, structures, and unions" on page 153. 

A variable has a value or values that may change during execution of a program. 
A variable is introduced by a declaration, which declares the name and certain attri-
h11toc nf tho \/!:lri!:!hlo /l \/!:lrk1hlo h!:!Hinn tho 1\1(")1\IJ\CCl~l\IJ\CI C: ,,.H .. ih .. +,.. ;,... """"""""'"""'""' "' '°''""' v~1n."""""'""• I' Y""ll\,.4.Ul\J IU.AYlll~ t.llV '"'-'1"1.f""'\VVl'-41".f""'\LILL.. QLLllLJULU Ii:> 

assumed not to change during execution. (Refer to "ASSIGNABLE and NONAS
SIGNABLE attributes" on page 216 tor more information.) A variable reference is 
one of the following: 

• A declared variable name 
• A reference derived from a declared name through: 

- Pointer qualification 
- Structure qualification 
- Subscripting. 

(See Chapter 4, "Expressions and references" on page 50.) 

A constant has a value that cannot change. Constants for computational data are 
referred to by stating the value of the constant or naming the constant in a. 
DECLARE statement. For more information on declaring named constants, see 
"Named constants" on page 45. 

Constants tor program control data are referred to by name. 

© Copyright IBM Corp. 1992 



Quotation marks 

Using quotation marks 
String constants, hexadecimal constants, and the picture-specification are enclosed 
in either single or double quotation marks. 

The following rules apply to quotation marks within a string: 

• If the included quotation marks are the same type as those used to enclose the 
string, you must enter two quotation marks (that is, ' ' or "") for each occur
rence to be included. 

• If the included quotation marks are the type that is not used to enclose the 
string, enter only one quotation mark for each instance to be included. The 
single occurrence is treated as data. 

Examples: 

'Shakespeare' 's "Hamlet"' is identical to 
"Shakespeare's ""Hamlet""" 

PICTURE "99V9" is identical to 
PICTURE '99V9' 

Note: The syntax diagrams in this book show single quotation marks. Double 
quotation marks can be sub.stituted unless otherwise noted. 

Punctuating constants 
To improve readability, arithmetic, bit, and hexadecimal constants can use the 
break character ( _ ). For example: 

I 1188_1818'8 
1188_18188 
'C_A'84 
'C_A'XN 
16_777_216 

Data types and attributes 

is the same as 
is the same as 
is the same as 
is the same as 
is the same as 

I 11881818 I 8 

118818188 
'ca'b4 
'ca'XN 
16777216 

Data used in a PUI program can be classified as computational data and program 
control data: 

Computational data represents values that are used in computations to produce 
desired result. It consists of arithmetic and string data. 

Arithmetic data is either coded arithmetic data or numeric 
picture data. 

Coded arithmetic data items are rational numbers. They 
have the data attributes of base (BINARY or DECIMAL), 
scale (FLOAT or FIXED), precision (significant digits and 
decimal point placement), and mode (REAL or COMPLEX). 

Numeric picture data is numeric data that is held in character 
form and is discussed under "Numeric character data" on 
page 43. 

A string is a sequence of contiguous characters, bits, or 
graphics that are treated as a single data item. 

Chapter 3. Data elements 25 



Data types and attributes 

Program control data 
represents values that are used to control execution of your 
program. It consists of the data types: area, entry, label, file, 
format, pointer, and offset. 

For example: 

Area = (Radius**2) * 3.1416; 

Area and Radius are coded arithmetic variables of computational data. The 
numbers 2 and 3 .1416 are coded arithmetic constants of computational data. 

If the number 3 .1416 is to be used in more than one place in the program, or if it 
requires specific data or precision attributes, you should declare it as a named con
stant. Thus, the above statement can be coded as: 

dcl Pi FIXED DEC (5,4) VALUE(3.1416); 
area= (radius**2) *Pi; 

Constants for program control data have a value that is determined by the compiler. 
In the following example, the name loop represents a label constant of program 
control data. The value of l oop is the address of the statement A=2*B;. 

loop: A=2*B; 
C=B+6; 

To work with a data item, PUI needs to know the type of data and how to process 
it. Attributes provide this information. The kinds of attributes are: 

Data attributes 
describe both computational and program control data items. 

AREA ENTRY NONVARYING SIGNED 
BINARY FILE OFFSET STRUCTURE 
BIT FIXED PICTURE UNSIGNED 
CHARACTER FLOAT POINTER UNION 
COMPLEX FORMAT PRECISION VARYING 
DECiMAL GRAPHIC REAL 
DIMENSION LABEL RETURNS 

Descriptive attributes 
describe both computational and program control data items. They can be 
specified only in DECLARE statements (including ENTRY and GENERIC 
descriptor lists), and are the only attributes that can be specified after an 
asterisk in an ENTRY or GENERIC descriptor list. 

ALIGNED 
ASSIGNABLE 
BYADDR 
BYVALUE 

26 PUI Package/2 Language Reference 

CONNECTED OPTIONAL 
CONTROLLED UNALIGNED 
NONASSIGNABLE 
NONCONNECTED 



Data types and attributes 

Non-data attributes 
describe non-data elements (for example, built-in functions) or provide 
additional description for elements that have other data attributes. They 
can be specified only in DECLARE statements (excluding ENTRY and 
GENERIC descriptor lists). 

ABNORMAL 
AUTOMATIC 
BASED 
BUFFERED 
BUILTIN 

CONDITION 
DEFINED 
DIRECT 
ENVIRONMENT 
EXCLUSIVE 

EXTERNAL 
GENERIC 
INITIAL 
INPUT 
INTERNAL 

KEYED 
LIKE 
NORMAL 
OPTIONS 
OUTPUT 

PARAMETER 
POSITION 
STATIC 

For example, the keyword CHARACTER is a data attribute for the string type of 
computational data. The keyword FILE is a data attribute for the file type of 
program control data. The INTERNAL scope attribute specifies that the data item 
is known only within its declaring block. 

The details of how you use keywords and expressions to specify the attributes are 
in Chapter 7, "Data declaration" on page 128. Briefly, they are: 

• Explicitly, using a DECLARE statement 
• Contextually, letting PUI determine them 
• By using programmer-defined or language-specified defaults. 

Figure 9 on page 28 and Figure 1 O on page 29 help you correlate PUI' variety of 
attributes with its variety of computational and program control data types. The 
tables show that the constants and the named constants can only have the indi
cated data and scope attributes (Figure 9 on page 28). Variables can specify 
additional attributes (Figure 1 O on page 29). 

In the example, 

Area = (Radius**2)*3.1416; 

the constant 3.1416 is given the attributes: 

• DECIMAL because it is not explicitly a binary constant 
• FIXED because it is fixed point number 
• PRECISION(5,4) - 5 significant digits with 4 to the right of the decimal point 
• REAL because it does not have an imaginary part 
• INTERNAL and ALIGNED. 

(See the "Coded arithmetic" row, and "Data Attributes" and "Scope Attributes" 
columns of Figure 9 on page 28.) 

The constant 1.0 (a decimal fixed-point constant) is different from the constants 1 
(another decimal fixed-point constant), '1 'B (a bit constant), '1' (a character con
stant), 1 B (binary fixed-point constant), or 1 EO (a decimal floating-point constant). 

In the following example, the variable Pi has the programmer-defined data attri
butes of FIXED and DECIMAL with a PRECISION of five digits, four to the right of 
the decimal point. 

declare Pi fixed decimal(5,4) initial(J.1416); 

Chapter 3. Data elements 27 



Data types and attributes 

Because this DECLARE statement contains no other attributes for Pi, PUI applies 
the defaults for the remaining attributes: 

• REAL from the Data Attributes column 
• ALIGNED from the Alignment Attributes column 
• INTERNAL from the Scope Attributes column 
• AUTOMATIC from the Storage Attributes column 
• SIGNED from the data attributes column. 

(See the coded arithmetic row of Figure 10 on page 29.) 

Figure 9 (Page 1 of 2). Classification of attributes by constant types 

Constant Type Data Attributes Scope Attributes 
(Notes 1 and 2) (Notes 1 and 2) 

Coded REAL I imaginary internal 
arithmetic FLOAT I FIXED 

BINARY I DECIMAL 
PRECISION 

Named coded REAL I COMPLEX internal 
arithmetic FLOAT I FIXED 

BINARY I DECIMAL 
PRECISION 
VALUE 
SIGNED I UNSIGNED 

String BIT I CHARACTER I GRAPHIC internal 
(length) 

Named string BIT I CHARACTER I GRAPHIC internal 
[(length)] 
[VARYING I NONVARYING] 
VALUE 

Named locator POINTER I OFFSET internal 
VALUE 

Named picture PICTURE intern a! 
REAL I COMPLEX 
VALUE 

File(Note 4) FILE ENVIRONMENT INTERNAL I EXTERNAL 
STREAM I RECORD 
INPUT I OUTPUT I UPDATE 
SEQUENTIAL I DIRECT 
BUFFERED I UNBUFFERED(Note 5) 

KEYED 
PRINT 

Entry(Note 6) ENTRY [RETURNS] INTERNAL I EXTERNAL 

Format(Note 6) FORMAT internal 

28 PUI Package/2 Language Reference 



Figure 9 (Page .2 of 2). Classification of attributes .by constant types 

Constant Type 

Label(Note 6) 

Notes: 

Data Attributes 
(Notes 1 and 2) 

LABEL 

Data types and attributes 

Scope Attributes 
(Notes 1 and 2) 

internal 

1. Attributes in this table that appear in uppercase can be explicitly declared. Attributes that are in lower case are 
implicitly given to the data type. 

2. Defaults for data attributes are underlined. Because the data attributes for literal constants are contextual, 
defaults are not applicable. Named constants and file constants have selectable attributes, so defaults are shown. 

3. All constants are internal. 

4. File Attributes are described in Chapter 10, "Input and output" on page 228. 

5. BUFFERED is the default for SEQUENTIAL files. UNBUFFERED is the default for DIRECT files. 

6. Format and label constants, and INTERNAL entry constants cannot be declared in a DECLARE statement. 

Figure 1 O (Page 1 of 2). Classification of attributes by variable types 

Variable Data Attributes Alignment Scope Storage Attributes 
Type Attributes Attributes 

Area AREA( size) ALIGNED INTERNAL I AUTOMATIC I STATIC I 

Coded REAL I COMPLEX ALIGNED I 
EXTERNAL BASED I 

CONTROLLED 
arithmetic FLOAT I FIXED UNALIGNED 

(INTERNAL is (Note 1) BINARY I DECIMAL 
PRECISION 

mandatory for (AUTOMATIC is 

[SIGNED I 
AUTOMATIC the default for 
BASED INTERNAL; 

UNSIGNED] 
DEFINED STATIC is the 

Entry ENTRY [RETURNS] PARAMETER) default for 
[LIMITED] EXTERNAL) 

File FILE 
Defined variable: 

Format FORMAT DEFINED 

Label LABEL [POSITION] 

Locator POINTER I {OFFSET Parameter: 
[ (area-variable)]} PARAMETER 

Picture PICTURE ALIGNED I [CONNECTED I 

REAL I COMPLEX UNALIGNED NONCONNECTED] 

String BIT I CHARACTER I 
[CONTROLLED] 

GRAPHIC [INITIAL 
[(length)] [CALL)] 
[VARYING I 
NONVARYINGJ [VARIABLE] 

[NORMAL I 
ABNORMAL] 

ASSIGNABLE I 
NONASSIGNABLE 

Arrays: DIMENSION may be added to the declaration of any variable. Refer to "Arrays" on page 144 for more 
information. 

Chapter 3. Data elements 29 



Computational data 

Figure 1 O (Page 2 of 2). Classification of attributes by variable types 

Variable Data Attributes Alignment Scope Storage Attributes 
Type Attributes Attributes 

Structures and unions: 

• For a major structure or union: scope, storage {except INITIAL), alignment, STRUCTURE or UNION, and the 
LIKE attributes may be specified. 

• For a member that is a structure or a union: alignment, STRUCTURE or UNION, and the LIKE attributes may be 
specified. 

• Members always have the INTERNAL scope attribute. 

Refer to "Structures" on page 147 and "Unions" on page 149 for more information. 

Notes: 

1 . Undeclared names, or names declared without a data type, default to coded arithmetic variables. Default attri
butes are described in "Defaults for attributes" on page 141. Defaults shown are IBM defaults. ANS defaults are 
FIXED and BINARY rather than FLOAT and DECIMAL. 

2. POSITION can be used only with string overlay defining. 

Computational data types and attributes 
This section describes the data types classified as computational data and the attri
butes associated with them. 

Coded arithmetic data and attributes 
Refer to "Data types and attributes" on page 25 for general information about 
coded arithmetic data. 

30 PUI Package/2 Language Reference 



BINARY and DECIMAL 

Syntax for coded arithmetic data is shown in the following diagram: 

fl oat sequence 1----~ 

fixed sequence 

float sequence: 
~FLOAT----.----------....-------------y PRECISION for FLOAT ~ 
•----.-,--------------~-,---------------t 

DECIMAL 
PRECISION for FLOAT 

BI NARY---.-------------r---' 
PRECISION for FLOAT 

fixed sequence: 
~FIXED II 

~ PRECISION for FIXED ~ 
DEC I MAL---.------------.-------. 

PRECISION for FIXED 

PRECISION for FIXED 

PRECISION for FLOAT: 
I [ J ( number-of-dj gHs) 

PRECISION 

PRECISION for FIXED: 
I . ( number-of-dj gHs 

LPRECISION_J L, sea Ung-factor_J 

Figure 11. Abbreviations for coded arithmetic data attributes 

Attribute Abbreviation 

BINARY 
COMPLEX 
DECIMAL 
PRECISION 

BIN 
CPLX 
DEC 
PREC 

BINARY and DECIMAL attributes 
The base of a coded arithmetic data item is either decimal or binary. 

Default: DECIMAL. 

Refer to "PRECISION attribute" on page 32 for information about the precision
attribute. 

FIXED and FLOAT attributes 
The scale of a coded arithmetic data item is either fixed-point or floating-point. 

A fixed-point data item is a rational number in which the position of the decimal or 
binary point is specified, either by its appearance in a constant or by a scaling 
factor declared for a variable. 

Floating-point data items are rational numbers in the form of a fractional part and 
an exponent part. 

Chapter 3. Data elements 31 



PRECISION 

PRECISION attribute 
The precision of a coded arithmetic data item includes the following factors. The 
scaling factor is used only for floating point items. 

number of digits 
is an ~nteger that specifies how many digits the value can have. For fixed 
point items the integer is the number of significant digits. For floating point 
items the integer is number of significant digits to be maintained excluded 
the decimal point. 

scaling factor 
is an optionally-signed integer that specifies the assumed position of the 
decimal or binary point, relative to the rightmost digit of the number. If no 
scaling factor is specified, the default is o. 

The precision attribute specification is often represented as (p,q), where p repres
ents the number of digits and q represents the scaling factor. 

A negative scaling factor (-q) specifies an integer, with the point assumed to be 
located q places to the right of the rightmost actual digit. A positive scaling factor 
(q) that is larger than the number of digits specifies a fraction, with the point 
assumed to be located q places to the left of the rightmost actual digit. In either 
case, intervening zeros are assumed, but they are not stored; only the specified 
number of digits is actually stored. 

If PRECISION is omitted, the precision attribute must follow, with no intervening 
attribute specifications, the scale (FIXED or FLOAT), base (DECIMAL or BINARY), 
or mode (REAL or COMPLEX) attributes at the same factoring level. 

If included, PRECISION( ) can appear anywhere in the declaration. 

Integer value means a fixed-point value with a scaling factor of zero. 

REAL and COMPLEX attributes 
The mode of an arithmetic data item (coded arithmetic or numeric character) is 
either real or complex. 

A real data item is a number that expresses a real value. 

A complex data item consists of two parts-the first a real part and the second an 
imaginary part. For a variable representing complex data items, the base, scale, 
and precision of the two parts are identical. 

Default REAL for arithmetic variables. Complex arithmetic variables must be 
explicitly declared with the COMPLEX attribute. 

An imaginary constant is written as a real constant of any type immediately fol
lowed by the letter I. Examples are: 

271 
3. 968E18I 
11811. 81BI 

32 PUI Package/2 Language Reference 



SIGNED and UNSIGNED attributes 

Each of these has a real part of zero. A complex value with a nonzero real part is 
.·eprest:mted uy an dXpressi0r. with the following syntax. 

11>11>--.-E-+-_ -j...--rea 1-constant--C ~ T jmagjnary_constant 

For example, 38+271. 

Given two complex numbers, y and z: 

y = complex(A,8); 
z = complex(C,0); 

x=y I z is calculated by: 

real(x) = (A*C + B*O)/(C**2 + 0**2); 
imag(x) = (B*C - A*O)/(C**2 + 0**2); 

x=y*z is calculated as follows: 

real(x) = A*C - B*O; 
imag(x) = B*C + A*O; 

Computational conditions can be raised during these calculations. 

SIGNED and UNSIGNED attributes 
The SIGNED and UNSIGNED attributes can be used only with FIXED BINARY var
iables. SIGNED indicates that the variable can assume negative values. 
UNSIGNED indicates that it can assume only nonnegative values. The UNSIGNED 
attribute permits the compiler to generate more efficient code in some situations, 
such as the BY expression in a type 3 DO loop or the second argument to the 
MOD built-in function. 

SIGNED and UNSIGNED have no effect on the semantics of fixed point operations. 
All intermediate results are SIGNED. For example, the following declaration 
produces a result of SIGNED FIXED BINARY(8). 

dcl U7 unsigned fixed bin(?); 
call X(U7 + U7); 

X is, therefore, passed a 2-byte signed integer unless the entry descriptor for X indi
cates otherwise. 

The built-in functions REAL and IMAG, when applied to an unsigned argument, 
have an unsigned result. All other built-ins, except UNSIGNED, have a signed 
result. 

These attributes also affect the storage requirements, as shown in Figure 12 on 
page 34 and Figure 13 on page 34. 

Chapter 3. Data elements 33 



Binary fixed-point data 

Figure 12. FIXED BIN SIGNED data storage requirements 

This precision: Occupies this amount of storage: 

precision <= 7 
7 < precision <= 15 

15 < precision <= 31 

1 
2 
4 

Figure 13. FIXED BIN UNSIGNED data storage requirements 

This precision: Occupies this amount of storage: 

precision <= 8 
8 < precision <= 16 

16 < precision <= 31 

Binary fixed-point data 

1 
2 
4 

The data attributes for declaring binary fixed-point variables are BINARY and 
FIXED. For example: 

declare Factor binary fixed (28,2); 

Factor is declared as a variable that can represent binary fixed-point data of 20 
data bits, two of which are to the right of the binary point. 

Refer to "SIGNED and UNSIGNED attributes" on page 33 for information on how 
much storage signed and unsigned fixed binary data occupy. 

The declared number of data bits is in the low-order positions, but the extra high
order bits participate in any operation performed upon the data item. Any arith
metic overflow into such extra high-order bit positions can be detected only if the 
SIZE condition is enabled. 

Binary fixed-point constant 
A binary fixed-point constant consists of one or more bits with an optional binary 
point, followed immediately by the letter B. Binary fixed-point constants have a pre
cision (p,q), where p is the total number of data bits in the constant, and q is the 
number of bits to the right of the binary point. Examples are: 

Constant 
1811_8B 
llll_lB 
181B 
1811. lllB 

Precision 
( 5' 8) 
( 5' 8) 
(3,8) 
(7,3) 

XN (hex) binary fixed-point constant 
The XN constant describes a REAL FIXED BINARY(31,0) constant in hexadecimal 
notation. The specified value may be 1 to 8 hexadecimal digits. The syntax is: 

••-'_j_hex-digitl• XN------------------- .. 

34 PUI Package/2 Language Reference 



Decimal fixed-point data 

Its hexadecimal value is the given value padded on the left with hex zeros if neces
sary. For example: 

I 188 I XN 
'8888'XN 
'FFFF'XN 
"ffff _ffff"XN 

I* same as '88888188'XN with value 256 */ 
I* same as '88888888'XN with value 32,768 *I 
I* same as '8888FFFF'XN with value 65,535 */ 
/* is the value -1 */ 

Decimal fixed-point data 
The data attributes for declaring decimal fixed-point variables are DECIMAL and 
FIXED. For example: 

declare A fixed decimal (5,4); 

specifies that A represents decimal fixed-point data of 5 digits, 4 of which are to the 
right of decimal point. 

These two examples: 

declare B fixed (7,8) decimal; 
declare B fixed decimal(?); 

both specify that B represents integers of 7 digits. 

declare C fixed (7,-2) decimal; 

specifies that C has a scaling factor of -2. This means that C holds 7 digits that 
range from -9999999*100 to 9999999*100, in increments of 100. 

declare D decimal fixed real(3,2); 

specifies that D represents fixed-point data of 3 digits, 2 of which are fractional. 

Decimal fixed-point data is stored two digits per byte, with a sign indication in the 
rightmost 4 bits of the rightmost byte. Consequently, a decimal fixed-point data 
item is always stored as an odd number of digits, even though the declaration of 
the variable may specify the number of digits, p, as an even number. 

When the declaration specifies an even number of digits, the extra digit place is in 
the high-order position, and it participates in any operation performed upon the data 
item, such as in a comparison operation. Any arithmetic overflow or assignment 
into an extra high-order digit place can be detected only if the SIZE condition is 
enabled. 

Decimal fixed-point constant 
A decimal fixed-point constant consists of one or more decimal digits with an 
optional decimal point. Decimal fixed-point constants have a precision (p,q), where 
p is the total number of digits in the constant and q is the number of digits specified 
to the right of the decimal point. Examples are: 

Constant Precision 
3.1416 ( 5 '4) 
455.3 ( 4, 1) 

732 (3,8) 
883 (3,8) 
5288 (4,8) 
.8812 (4,4) 

Chapter 3. Data elements 35 



Binary floating-point data 

Binary floating-point data 
The data attributes for declaring binary floating-point variables are BINARY and 
FLOAT. For example: 

declare S binary float (16); 

S represents binary floating-point data with a precision of 16 binary digits. 

The exponent cannot exceed five decimal digits. Binary floating-point data is stored 
as IEEE normalized. If the declared precision is less than or equal to (21 ), short 
floating-point form is used. If the declared precision is greater than (21) and less 
than or equal to (53), long floating-point form is used. If the declared precision is 
greater than (53), extended floating-point form is used. 

Binary floating-point constant 
A binary floating-point constant is a mantissa followed by an exponent and the 
letter B. The mantissa is a binary fixed-point constant. The exponent is the letter 
E, S, D, or Q followed by an optionally-signed decimal integer (meaning 2 to the 
power of this integer). Constants using E have a precision (p) where pis the 
number of binary digits of the mantissa. Constants using S, D, and Q always have 
maximum single, double, and extended precisions respectively. Examples are: 

Constant 
181181E5B 
181.181E2B 
11181E -288 
11.81E+42B 
1S8b 
1D8b 
108b 

Precision 
( 6) 

( 6) 

(5) 
(4) 
(21) 

(53) 
( 64) 

Decimal floating-point data 
The data attributes for declaring decimal floating-point variables are DECIMAL and 
FLOAT. For example: 

declare Light_years decimal float(!:>); 

in which Li ght_yea rs represents decimal floating-point data of 5 decimal digits. 

Decimal floating-point data is stored as IEEE normalized. If the declared precision 
is less than or equal to (6), short floating-po.int form is used. If the declared preci
sion is greater than (6) and less than or equal to (16), long floating-point form is 
used. If the declared precision is greater than (16), extended floating-point form is 
used. 

Decimal floating-point constant 
A decimal floating-point constant is a mantissa followed by an exponent. The 
mantissa is a decimal fixed-point constant. The exponent is the letter E, S, D, or Q 
followed by an optionally-signed decimal integer of four or less digits (meaning 10 
to the power of this integer). Constants using E have a precision (p) where pis the 
number of digits of the mantissa. Constants using S, D, and Q always represent 
single, double, and extended precision respectively. Examples are: 

36 PUI Package/2 Language Reference 



String data and attributes 

Constant Precision 
l~t.-l:'.3 (L) 

15E23 ( 2) 
4E-3 (1) 
1.96E+87 (3) 
438E8 (3) 
3_141_593E -6 ( 7) 

.883_141_593E3 (9) 
ls8 (6) 
ld8 (16) 
lq8 (18) 

The last two examples represent the same value (although with different pre
cisions). 

String data and attributes 
Refer to "Data types and attributes" on page 25 for general information about 
strings. 

BIT, CHARACTER, and GRAPHIC attributes 
The BIT attribute specifies a bit variable. 

The CHARACTER attribute specifies a character variable. Character strings can 
also be declared using the PICTURE attribute. 

The GRAPHIC attribute specifies a graphic variable. 

The syntax for the BIT, CHARACTER, and GRAPHIC attributes is: 

~~tB IT( 7 ength ) 
CHARACTER_J L L._REFER(variab7e)_J 
GRAPHIC~ (*)-----------' 

Figure 14. Abbreviations for string data attributes 

Attribute 

CHARACTER 
GRAPHIC 
NONVARYING 
VARYING 

Abbreviation 

CHAR 
G 
NONVAR 
VAR 

NONVARYIN~ 
VARY I NG--_...__ ____ ., ~ 

length specifies the length of a NONVARYING string or the maximum length of a 
VARYING string. The length is in bits, characters, or graphics (DBCS 
characters), as appropriate. 

You can specify the length as an expression or an asterisk. If the length 
is not specified, the default is 1. For named constants, length is deter
mined from the length of the value expression. 

For a parameter, an expression is valid only if it is CONTROLLED. An 
asterisk specification for a parameter indicates that the length is to be 
taken from the argument that is passed. 

Chapter 3. Data elements 37 



VARYING and NONV ARYING attributes 

If the length specification is an expression, it is evaluated and converted to 
FIXED BINARY, which must be positive, when storage is allocated for the 
variable. 

For STATIC data, length must be a restricted expression. 

For BASED data, length must be a restricted expression, unless the string 
is member of a structure or a union and the REFER option is used. 

REFER See "REFER Option (Self-Defining Data)" on page 210 for the description 
of the REFER option. 

The statement below declares User as a variable that can represent character data 
with a length of 15: 

declare User character (15); 

The following example shows the declaration of a bit variable: 

declare Symptoms bit (64); 

VARYING and NONVARVING attributes 
The VARYING attribute specifies that a variable can have a length varying from 0 
to the declared maximum length. NONVARYI NG specifies that a variable always 
has a length equal to the declared length. 

The storage allocated for VARYING strings is 2 bytes longer than the declared 
length. The leftmost 2 bytes hold the string 1s current length. 

The following DECLARE statement specifies that User represents varying-length 
character data with a maximum length of 15: 

declare User character (15) varying; 

The length for User at any time is the length of the data item assigned to it at that 
time. You can determine the declared and the current length by using the 
MAXLENGTH and LENGTH built-in functions, respectively. 

PICTURE attribute 
The PICTURE attribute specifies the properties of a character data item by associ
ating a picture character with each position of the data item. A picture character 
specifies a category characters that can occupy that position. 

The syntax for the PICTURE attribute is: 

••-PICTURE-'-picture-specification-'-------------

Abbreviation PIC 

picture-specification 
describes is either a character data item or a numeric character data item. 
Refer to "Picture characters for character data" on page 287 or "Picture 
characters for numeric character data" on page 288 for the valid charac
ters. 

38 PUI Package/2 Language Reference 



Character data 

An numeric picture specification specifies arithmetic attributes of numeric character 
data in much the same way that they are specified by the appearance of a con
stant. 

Numeric character data has an arithmetic value but is stored in character form. 
Numeric character data is converted to coded arithmetic before arithmetic oper
ations are performed. 

The base of a numeric character data item is decimal. Its scale is either fixed-point 
or floating-point (the Kor E picture character denotes a floating-point scale). The 
precision of a numeric character data item is the number of significant digits 
(excluding the exponent in the case of floating-point). Significant digits are speci
fied by the picture characters for digit positions and conditional digit positions. The 
scaling factor of a numeric character data item is derived from the V or the F 
picture character or the combination of V and F. 

Only decimal data can be represented by picture characters. Complex data can be 
declared by specifying the COMPLEX attribute along with a single picture specifica
tion that describes either a fixed-point or a floating-point data item. 

For more information on numeric character data, see "Numeric character data" on 
page 43. 

Character data 
Data with the CHARACTER attribute can contain any of the 256 characters sup
ported by the character set. Data with the PICTURE attribute must have characters 
that match the picture-specification characters. Each character occupies 1 byte of 
storage. 

Character constant 
A character constant is a contiguous sequence of characters enclosed in single or 
double quotation marks. 

Quotation marks included in the constant follow the rules listed in "Using quotation 
marks" on page 25. The length of a character constant is the number of charac
ters between the enclosing quotation marks counting any doubled quotation marks 
as a single character. 

A null character constant is written as two quotation marks with no intervening 
blank. The syntax for a character constant is: 

Chapter 3. Data elements 39 



Z character constant 

Examples of character constants are: 

Constant 
'Shakespeare' 's "Hamlet"' 
"Shakespeare's ""Hamlet""" 
"Page 5" 
'/*This is not a comment*/' 

( 2) 'Wa 11 a ' 

Length 
22 
22 
6 
27 
(:) 

12 

In the last example, the number in parentheses is a string repetition factor, which 
indicates repetition of the characters that follow. This example is equivalent to the 
constant "Wa 11 a Wa 11 a ". The string repetition factor must be a constant and 
enclosed in parentheses. 

Z (null-terminated) character constant 
The Z constant describes a character constant that will be terminated by 
hexadecimal '00'. 

It is written like a character constant but with a Z suffix. The length of a Z constant 
is the same as a character constant plus 1 for the 'OO'x supplied by PUI. 

A null Z constant is written as two single or double quotation marks followed by the 
Z suffix. 

The syntax is: 

..,..,_•__,.-----~~·z....__ ___________________ .. 
LcharacterJ 

Examples of Z constants are: 

Constant 
'Shakespeare' 's "Hamlet"'z 
""Z 

X (hex) character constant 

Length 
23 
1 

The X character constant is a contiguous sequence of an even number of hex 
digits enclosed in single or double quotation marks and followed immediately by the 
letter X. Each pair of hex digits represents one character. 

The length of an X constant is half the number of hex digits specified. 

A null X constant is written as two quotation marks followed by the X suffix. 

The syntax is: 

l ··-· + I 'X----------------+<11 
lhex-djgjt hex-djgft] 

40 PUI Package/2 Language Reference 



Examples of X constants are: 

Constant 
"8d8A"x 
I 'X 

Length 
2 
8 

Note: The use of X constant can limit the portability of a program. 

Bit data 

Bit data 

Data with the BIT attribute permits manipulation of storage in terms of bits. A col
lection of 8 or fewer unaligned bits occupy 1 byte of storage. 

Bit constant 
A bit constant is a contiguous sequence binary digits enclosed in single or double 
quotation marks and followed immediately by the letter B. The syntax for a bit con
stant is: 

.,,..,,._._Lbinary-digit=:L·s------------------• 

A null bit constant is written as two quotation marks, followed by B. 

Examples of bit constants are: 

Constant Length 
'l'B 1 
"1188_1818_11 "B 18 
( 64) I 8 I B 64 
I 'B 8 
'8'B 1 

The number in parentheses in the third example is a string repetition factor which 
specifies that the following series. of bits is to be repeated the specified number of 
times. The example shown would result in a string of 64 zero bits. 

(See "Source-to-target rules" on page 77 for a discussion on the conversion of bit
to-character data and character-to-bit data.) 

B4 (hex) bit constant 
The B4 bit constant is a contiguous sequence of hex digits enclosed in single or 
double quotation marks and followed immediately by 84. Each hex digit represents 
four bits. BX is a synonym for B4. The syntax for a bit constant is: 

.,,..,,._. • I I 84.--.------------------· 
lhex-digit] Lsx 

Chapter 3. Data elements 41 



Graphic data 

Some examples of 84 constants are: 

CA'B4 is the same as "1188_1818"B 
88'B4 is the same as '1888_8888'B 
'l'B4 is the same as '8881 'B 
(2) I F'B4 is the same as 'llll_llll'B 
(2) IF' B4 is the same as 'FF'BX 
'B4 is the same as ""B 

Graphic data 
GRAPHIC data can contain any DBCS character. Each DBCS character occupies 
2 bytes of storage. 

Graphic constant 
A graphic constant is a contiguous sequence of DBCS characters enclosed in 
single or double quotation marks. Graphic constants take up 2 bytes of storage for 
each DBCS character in the constant. 

The syntax for a graphic constant is: 

~~-· + I 'G---------------------...i 
LkkJ 

The GRAPHIC compiler option must be in effect for graphic constants to be 
accepted. If the GRAPHIC ENVIRONMENT option is not specified for STREAM 1/0 
files that include graphic constants, the CONVERSION condition is raised. 

GX (hex) graphic constant 
The GX graphic constant is a contiguous sequence of hex digits, in multiples of 4, 
enclosed in single or double quotation marks and followed immediately by GX. 
Each group of 4 hex digits represents one DBCS character. 

The syntax for a GX constant is: 

~~-· + I 'GX------------------...i 
lhex-digit] 

Examples: 

'Blal'gx 
""gX 

represents one DBCS character 
is the same as ' ' g 

Note: The use of GX can limit the portability of a program. 

Mixed character data 
Mixed character data can contain SBCS and DBCS characters. Mixed data is 
represented by the CHARACTER data type, and follows the processing rules for 
CHARACTER data. 

The CHARGRAPHIC option of the OPTIONS attribute and the MPSTR built-in func
tion can be used to assist in mixed data handling. For more information on 

42 PUI Package/2 Language Reference 



M (Mixed) 

CHARGRAPHIC and MPSTR see "OPTIONS option and attribute" on page 121 
and "MPSTR" on page 415. 

M (Mixed) character constant 
An M constant is a contiguous sequence of DBCS and/or SBCS characters 
enclosed in quotation marks (single or double), followed immediately by the letter 
M. Quotations marks included in the constant follow the rules listed in "Using quo
tation marks" on page 25. The length of an M constant is the number of SBCS 
characters between the enclosing quotation marks counting any doubled quotation 
marks as a single character, plus twice the number of DBCS characters in the 
string. 

A null M constant is written as two quotation marks followed by M. 

The syntax for the M constant is: 

. .,..,._. + 'M-------------------<4 
E~~aracterj 

Examples of mixed character constants are: 

Constant 
'IBM kkkk'M 
'.l.B.M'M 
''M 

Length 
8 bytes on PS/2*, 1 O on S/370 
6 bytes on PS/2, 8 on S/370 
0 

The GRAPHIC compiler option must be in effect for mixed constants to be 
accepted. If the GRAPHIC ENVIRONMENT option is not specified for STREAM 1/0 
files having mixed constants, the CONVERSION condition is raised. 

Note: Because of the use of shift-codes on some computers, the use of mixed 
data and M constants can limit program portability. 

Numeric character data 
A numeric character data item is the value of a variable that has been declared 
with the PICTURE attribute with a numeric picture specification. The data item is 
the character representation of a decimal fixed-point or floating-point value. 

Numeric picture specification describes a character string that can be assigned only 
data that can be converted to an arithmetic value. 

For example: 

declare Price picture '999V99'; 

specifies that any value assigned to Price is maintained as a character string of five 
decimal digits, with an assumed decimal point preceding the rightmost two digits. 
Data assigned to Price is aligned on the assumed point in the same way that point 
alignment is maintained for fixed-point decimal data. 

Numeric character data has arithmetic attributes, but it is not stored in coded arith
metic form. Numeric character data is stored as a character string. Before it can 
be used in arithmetic computations, it must be converted either to decimal fixed-

Chapter 3. Data elements 43 



Numeric character data 

point or to decimal floating-point format. Such conversions are done automatically, 
but they require extra processing time. 

Although numeric character data is in character form, like character strings, and 
although it is aligned on the decimal point like coded arithmetic data, it is processed 
differently from the way either coded arithmetic items or character strings are proc
essed. Editing characters can be specified for insertion into an numeric character 
data item, and such characters are actually stored within the data item. Conse
quently, when the item is printed or treated as a character string, the editing char
acters are included in the assignment. However, if a numeric character item is 
assigned to another numeric character or arithmetic variable, the editing characters 
are not included in the assignment-only the actual digits, signs, and the location of 
the assumed decimal point are assigned. For example: 

declare Price picture '$99V.99', 
Cost character (6), 
value fixed decimal (6,2); 

Price = 12.28; 
Cost = '$12.28'; 

In the picture specification for PRICE, the currency symbol ($) and the decimal 
point (.) are editing characters. They are stored as characters in the data item. 
However, they are not a part of its arithmetic value. After both assignment state
ments are executed, the actual internal character representation of Price and Cost 
can be considered identical. If they were printed, they would print exactly the 
same; but they do not always function in the same way. For example: 

Value= Price; 
Cost = Price; 
Value= Cost; 
Price= Cost; 

After the first two assignment statements are executed, the value of Value is 
0012.28 and the value of Cost is '$12.28'. In the assignment of Price to Value, the 
currency symbol and the decimal point are editing characters, and they are not part 
of the assignment. The nurneric vaiue of Price is converted to internai coded arith
metic form. In the assignment of Price to Cost, however, the assignment is to a 
character string, and the editing characters of a numeric picture specification 
always participate in such an assignment. No conversion is necessary because 
Price is stored in character form. 

The third and fourth assignment statements would raise the CONVERSION condi
tion. The value of Cost cannot be assigned to Value because the currency symbol 
in the string makes it invalid as an arithmetic constant. The value of Cost cannot 
be assigned to Price for the same reason. Only values that are of arithmetic type, 
or that can be converted to arithmetic type, can be assigned to a variable declared 
with a numeric picture specification. 

Although the decimal point can be an editing character or an actual character in a 
character string, it will not raise the CONVERSION condition in converting to arith
metic form, since its appearance is valid in an arithmetic constant. The same is 
true for a valid plus or minus sign, because converting to arithmetic form provides 
for a sign preceding an arithmetic constant. 

Other editing characters, including zero suppression characters, drifting characters, 
and insertion characters, can be used in numeric picture specifications. For a com-

44 PUI Package/2 Language Reference 



Named constants 

plete discussion of picture characters, see Chapter 14, "Picture specification 
characters." 

Named constants 
A named constant is a scalar identifier declared with the VALUE attribute along with 
other data attributes. All references to the name are logically treated as a refer
ence to the appropriate constant but with the complete set of attributes, whether 
explicitly declared or defaulted. 

Note: The effect of the use of a named constant may not be exactly the same as 
the use of an unnamed constant. The attributes for a named constant are 
taken from the declaration which includes explicit and default attributes. 
The attributes for an unnamed constant are deduced from the shape, form, 
and size of the constant. For string data, if the length is not specified, or is 
specified with an asterisk, the length is determined from the length of the 
restricted expression. 

Named constants can be more precise to use in an application program, 
and they can offer more predictable results. For example, if the named 
constant Unit is defined as FIXED BIN VALUE(1), it has the attributes 
FIXED BINARY(15) VALUE(1). If you simply use the digit 1, its attributes 
are FIXED DECIMAL(1,0). See Figure 15 on page 46 for other differences 
that can occur. 

In addition, named constants allow you to set parameters in your application, which 
makes it easier to debug and maintain. 

Named constants can be used wherever a constant is required. They can also be 
used in restricted expressions that appear later in the program permitting evaluation 
of a dependent constant. 

Named constants can be declared for arithmetic data, string data, and for pointers 
and offsets. For arithmetic and string data and their attributes, see "String data and 
attributes" on page 37 and "Coded arithmetic data and attributes" on page 30 
respectively. A named constant must be declared before it is used. 

VALUE attribute 
The syntax for the VALUE attribute is: 

.... -VALUE ( restricted-expression)----------------- .. 

restricted expression 
the expression must evaluate to a scalar value. For information on 
restricted expressions see "Restricted expressions" on page 68. 

Examples of named constants 
Figure 15 shows named constants and the differences in attributes and precisions 
that can occur between named and unnamed constants. 

Chapter 3. Data elements 45 



Program control data 

Del a4 value(148) fixed bin, 
c4 value(261) fixed bin, 
whole value(888) fixed bin; 

Del notes (4) static, 
init(a4, (whole/4), /* 148, 288 */ 

c4, (whole*2)); /* 261, 1688 */ 

/* note that "Head" gets length equal to length of VALUE */ 

Del Head char VALUE( 'Feel the Power of PL/I'); /* char(22) */ 
Del Headsize fixed bin value(length(Head)); /* 22 */ 
Del 1 Headl static, 

2 * char(Headsize) initial(Head), /* char(22) */ 
.2 * char(28) init( ''), 
2 * char(5) init('Page '), 
2 Page_number pie 'zz9', 
2 * char(8); 

Del TwoHeads char(2*Headsize); /* char(44) */ 
Del Page8 Picture 'zz9' value(8); 
Del MyNullPtr ptr value(ptrvalue( 'ffff_ffff'xn)); 

/* Differences in attributes/results of 
named and unnamed constants */ 

Del pi float bin value (3.1416); /*is FLOAT BIN(21) but */ 
3.1416 /* is FIXED DECIMAL(5,4) */ 

Del Unit fixed bin value(l); 
1 
1.8 
1B 
8888_8888_8888_8818 

I* is FIXED BIN(15) but ... *I 
I* is FIXED DECIMAL(l,8) */ 
I* is FIXED DECIMAL(2,1) */ 
I* is FIXED BIN(l) */ 
I* is FIXED BIN(15) */ 

Del title char(28) value( 'SCIDS' ); /*is CHAR(28) but *I 
*I 
*I 

Del title2 char value('SCIDS');/* is CHAR(5) 
'SCIDS' /* is CHAR(5) 

Figure 15. Named constants 

Program control data types and attributes 
This section describes program control data and associated attributes. Use 
program control data to indicate values that control the execution of your program. 

Label data and LABEL attribute 
A label data item is a label constant or the value of a label variable. 

The LABEL attribute specifies that the declared name is a label variable and can 
have label constants as values. 

11>11>-LABEL---------------------------

A label constant is a name written as the label prefix of a statement (other than 
PROCEDURE, PACKAGE, or FORMAT) so that during execution, program control 
can be transferred to that statement through a reference to it. ("Statements" on 
page 17 discusses the syntax of the label prefix.) 

46 PUI Package/2 Language Reference 



Format data and FORMAT attribute 

In the example: 

Abcde: Miles = Speed*Hours; 

Abcde is a label constant. The labelled statement can be executed either by normal 
sequential execution of instructions or by using the GO TO statement to transfer 
control to it from some other point in the program. 

A label variable can have another label variable or a label constant assigned to it. 
When such an assignment is made, the environment of the source label is 
assigned to the target. 

I 

A label variable used in a GO TO statement must have as its value a label co'nstant 
that is used in a block that is active at the time the GO TO is executed. If the 
variable has an invalid value, the detection of such an error is not guaranteed. For 
example: 

declare Lbl_x label; 
Lbl_a: statement; 

Lbl_b: statement; 

Lbl_x = Lbl_a; 

go to Lbl_x; 

Lbl_a and Lbl_b are label constants, and Lbl_x is a label variable. By assigning 
Lb l _a to Lb l _x, the statement GO TO Lb l _x transfers control to the Lb l _a statement. 
Elsewhere, the program can contain a statement assigning Lb l _b to Lb l _x. Then, 
any reference to Lb l _x would be the same as a reference to Lb l _b. This value of 
Lb l _x is retained until another value is assigned to it. 

In the following example, transfer is made to a particular element of the array Z 
based on the value of I. 

go to Z(l); 

Z( 1): if X = Y then return; 

Z(2): A= A+ B + C * O; 

Z(3): A= A+ 18; 

If Z( 2) is omitted, GO TO Z(l) when I =2 raises the ERROR condition. GO TO Z( I) 
when I < LBOUND( Z) or I > HBOUND( Z) causes unpredictable results if the 
SUBSCRIPTRANGE condition is disabled. 

Format data and FORMAT attribute 
A format data item is a format constant or a format variable. A format constant is a 
name written as the label prefix of a FORMAT statement. 

The FORMAT attribute specifies that the name being declared is a format variable. 
Its syntax is: 

11>11>-FORMAT------------------------..i 

Chapter 3. Data elements 47 



VARIABLE 

A name declared with the FORMAT attribute can have another format variable or a 
format constant assigned to it. When such an assignment is made, the environ
ment of the source label is assigned to the target. 

In the example: 

Prntexe: format 
( column(28),A(l5), column(48),A(l5), column(68),A(l5) ); 

Prntstf: format 
( column(28),A(l8), column(35),A(l8), column(58),A(l8) ); 

Prntexe and Prntstf are the format constants. 

Consider the example: 

dcl Print format; 
Ill put edit (X,Y,Z) (R(Prntexe) ); 
121 put edit (X,Y,Z) (R(Prntstf) ); 

Print = Prntexe; 
131 put edit (X,Y,Z) (R(Print) ); 

Print = Prntstf; 
141 put edit (X,Y,Z) (R(Print) ); 

in which Ill and 131 have the same effect, as do 121 and 141. 

VARIABLE attribute 
The VARIABLE attribute establishes the name as a variable and is needed only for 
scalar ENTRY and FILE variables. 

Refer to "Entry variables" on page 113 or "File variable" on page 232 for informa
tion about these items. 

The syntax for the VARIABLE attribute is: 

••-VARIABLE-----------------------"' 

The VARIABLE attribute is implied if the name is a member of a structure or union, 
or if any of the following attributes is specified: 

Storage class attribute 
DIMENSION 
PARAMETER 
Alignment attribute 
INITIAL 

In the following declaration, Accountl and Account2 are file variables and Fil el and 
Fil e2 are file constants. 

declare Accountl file variable, 
Account2 file automatic, 
Filel file, 
File2 file; 

Fil el and Fil e2 can subsequently be assigned to Accountl or to Account2. 

48 PUI Package/2 Language Reference 



© Copyright IBM Corp. 1992 

Chapter 4. Expressions and references 

Chapter 4. Expressions and references 
Evaluation order 
Targets ...... . 

Variables 
Pseudovariables 
Intermediate results 

Operational expressions 
Pointer Operations 

Arithmetic operations 
Data conversion in arithmetic operations 
Results of arithmetic operations 

Bit operations . . . . . . 
BOOL built-in function 

Comparison operations . 
Concatenation operations 
Combinations of operations 

Priority of operators 
Array expressions . . . . . . 

Prefix operators and arrays 
Infix operators and arrays 

Array-and-element operations 
Array-and-array operations 

Restricted expressions . . . . . . . 

50 
52 
52 
52 
52 
53 
53 
54 
54 
55 
56 
60 
61 
61 
63 
64 
65 
66 
67 
67 
67 
67 
68 

49 



Expressions and references 

Chapter 4. Expressions and references 

50 

This chapter discusses the various types of expressions and references. 

An expression is a representation of a value. An expression can be the following: 

• A single constant, variable or function reference 

• Any combination of constants, variables or function references, including opera-
tors and parentheses used in the combination. 

An expression that contains operators is an operational expression. The constants 
and variables of an operational expression are called operands. See "Operational 
expressions" on page 53 for more information on operational expressions. 

The syntax for expressions and references is: 

.,.,--i unary-expression I--~·~-------------''--------~~ ltnfix-operator!Jlunary-expression-.J 

unary-expression: 

I + I I elementary-expression 
lprefix-operator=:ilLl 

elementary-expression: 
(express~ion) 

reference 
constant 

reference: 
1-i --r-----------.----1! basic- reference y locator-qualifier ~ 

IJ>----.[-H--s u-b-s-cr_i_p_t --1-i-s t-~-)-J-.-- --.y--a-rg_u_m-en-t---1 i-s-t-~--.-- ----------1 

locator-qualifier: 

basic-reference: 
1-j --r------------r--f den ti f i er:.....=.13'----------------1 y qualified- reference ~ 
subscript-list: 

~~xpression-1 1-------------------------1 
argument-list: 

~~~~~ioo~-----------------------
qualified-reference:
~basic-reference L

H subscript-list HJ
Notes:
1 Operators are shown in Figure 8 on page 15.

2 Locator-qualifier is described under "Locator qualification" on page 206.

3 Identifiers are described under "Identifiers" on page 14.

4 Qualified-reference is described under "Structure/union qualification" on page 150.

s Subscripts are described under "Arrays" on page 144.

a Arguments are described in "Passing arguments to procedures" on page 108.

© Copyright IBM Corp. 1992

Expressions and references

Any expression can be classified as an element expression (also called a scalar
expression) or an array expression. Element variables and array variables can
appear in the same expression.

An element expression
represents an element value. This definition includes an elemen
tary name within a structure or a union or a subscripted name that
specifies a single element of an array.

An array expression
represents an array of values. This definition includes a member
of a structure or union that has the dimension attribute.

Given the following example:

dcl A(l8,18) bin fixed(31),
8(18,18) bin fixed(31),
1 Rate,

2 Primary dee fixed(4,2),
2 Secondary dee fixed(4,2),

1 Cost(2),
2 Primary dee fixed(4,2),
2 Secondary dee fixed(4,2),

C bin fixed(15),
D bi n f i x ed (15) ;

dcl Pi bin float value(3.1416);

The following expressions are element expressions:

Pi
27
c
C * D
A(3,2) + 8(4,8)
Rate.Primary - Cost.Primary(l)
A(4,4) * C
Rate.Secondary I 4
A(4,6) * Cost.Secondary(2)
sum(A)
addr(Rate)

The following expressions are array expressions:

A
A + 8
A * C - D
8 I 188

The syntax of many PUI statements allows expressions, provided the result of the
expression conforms with the syntax rules. Unless specifically stated in the text
following the syntax specification, the unqualified term expression or reference
refers to a scalar expression. For expressions other than a scalar expression, the
type of expression is noted. For example, the term array expression indicates that
a scalar expression is not valid.

Chapter 4. Expressions and references 51

Evaluation order

Evaluation order

Targets

Variables

PUI statements often contain more than one expression or reference. Except as
described for specific instances (for example, the assignment statement), evaluation
can be in any order, or (conceptually) at the same time.

For example:

dcl (X,Y,Z) entry returns(float), (F,G,H) float;
F = X(Y(G,H), Z(G,H));

The functions Y and Z may change the value of the arguments passed to them.
Hence, the value returned by X may be different depending on which function is
invoked first. You should not presume that the first parameter is evaluated first. In
some situations, it is more optimal to evaluate the last first.

Assuming that the INC function increments the value of the argument passed to it
and returns the updated value, the example that follows could put out BO, 2) or
B(2, 1) depending on which subscript is evaluated first. You should not presume
which subscript is evaluated first.

dcl B(2,2);
I = 8;
put list (B(INC(I), INC(I)));

The results of an expression evaluation or of a conversion are assigned to a target.
Targets can be variables, pseudovariables, or intermediate results.

In the case of an assignment, such as the statement:

A= B;

the target is the variable on the left of the assignment symbol (in this case A).
Assignment to variables can also occur in stream 1/0, DO, DISPLAY, and record
110 statements.

Pseudovariables
A pseudovariable represents a target field. For example:

declare A character(18),
B character(38);

substr(A,6,5) = substr(B,28,5);

In this assignment statement, the SUBSTR built-in function extracts a substring of
length 5 from the string B, beginning with the twentieth character. The SUBSTR
pseudovariable indicates the location, within string A, that is the target. Thus, the
last 5 characters of A are replaced by characters 20 through 24 of B. The first 5
characters of A remain unchanged.

Pseudovariables can be used only in assignment statements. They are discussed
in Chapter 17, "Built-in functions, pseudovariables, and subroutines."

52 Pl/I Package/2 Language Reference

Intermediate results

~ntermediate results
When an expression is evaluated, the target attributes usually are partly derived
from the source, partly from the operation being performed, and partly from the
attributes of a second operand. Some defaults may be used, and some implemen
tation restrictions (for example, maximum precision) and conventions exist. An
intermediate result may undergo conversion if a further operation is to be per
formed. After an expression is evaluated, the result may be further converted for
assignment to a variable or pseudovariable. These conversions follow the same
rules as the conversion of programmer-defined data. For example:

declare A character(8),
B fixed decimal(3,2),
C fixed binary(lG);

A = B + C;

During the evaluation of the expression B + C and during the assignment of that
result, there are four different results:

1 . The intermediate result to which the converted binary equivalent of B is
assigned

2. The intermediate result to which the binary result of the addition is assigned

3. The intermediate result to which the converted decimal fixed-point equivalent of
the binary result is assigned

4. A, the final destination of the result, to which the converted character equivalent
of the decimal fixed-point representation of the value is assigned.

The attributes of the first result are determined from the attributes of the source B,
from the operator, and from the attributes of the other operand. If one operand of
an arithmetic infix operator is binary, the other is converted to binary before evalu
ation.

The attributes of the second result are determined from the attributes of the source
(C and the converted representation of B).

The attributes of the third result are determined in part from the source (the second
result) and in part from the attributes of the eventual target A. The only attribute
determined from the eventual target is DECIMAL (a binary arithmetic representation
must be converted to decimal representation before it can be converted to a char
acter value).

The attributes of A are known from the DECLARE statement.

Operational expressions
An operational expression consists of one or more single operations. A single
operation is either a prefix operation (an operator preceding a single operand) or an
infix operation (an operator between two operands). The two operands of any infix
operation normally should be the same data type when the operation is performed.

The operands of an operation in a PUI expression are converted, if necessary, to
the same data type before the operation is performed. Detailed rules for conver
sion can be found in Chapter 5, "Data conversion" on page 72.

Chapter 4. Expressions and references 53

Arithmetic operations

There are few restrictions on the use of different data types in an expression.
However, these mixtures imply conversions. If conversions take place at run time,
the program takes longer to run. Also, conversion can result in loss of precision.
When using expressions that mix data types, you should understand the relevant
conversion rules.

There are five classes of operations-pointer, arithmetic, bit, comparison, and con
catenation.

Pointer Operations
The following pointer support extensions can be used.

• Add an expression to or subtract an expression from a pointer expression. The
expression type must be computational. If necessary, the nonpointer operand
is converted to FIXED BIN(M,O). For example:

PTRl = PTRl - 16;
PTR2 = PTRl + (I*J);

You can also use the built-in function, POINTERADD, to perform these oper
ations. You must use POINTERADD if the result is to be used as a locator
reference. For example:

(PTRl + 16) -> BASED_PTR is invalid

POINTERADD(PTRl,16) -> BASED_PTR is valid

• Subtract two pointers to obtain the logical difference. The result is a FIXED
BIN(M,O) value. For example:

BIN31 = PTR2 - PTRl;

• Compare pointer expressions using infix operators. For example:

IF PTR2 > PTRl THEN
BIN31 = PTR2 - PTRl;

• Use pointer expressions in arithmetic contexts using the built-in function,
BINARYVALUE. For example:

BIN31 = BIN31 + BINARYVALUE(PTRl);

• Use computational expressions in pointer contexts using the built-in function,
POINTERVALUE. For example:

DCL 1 CVTPTR POINTER BASEDCPOINTERVALUE(16));
DCL 1 CVT BASEDCCVTPTR),

2 CVT ... ;

If necessary, the expressions will be converted to FIXED BIN(M,O).

A PUI block can use pointer arithmetic to access any element within a structure or
an array variable. However, the block must be passed the containing structure or
array variable, or have the referenced aggregate within its name scope.

Arithmetic operations
An arithmetic operation is specified by combining operands with one of these oper
ators:

+ * I **

The plus sign and the minus sign can appear as prefix operators or as infix opera
tors. All other arithmetic operators can appear only as infix operators. (Arithmetic

54 PUI Package/2 Language Reference

Data conversion in arithmetic operations

operations can also be specified by the ADD, SUBTRACT, DIVIDE, and MULTIPLY
built-in functions.)

Prefix operators can precede and be associated with any of the operands of an
infix operation. For example, in the expression A *-B, the minus sign indicates that
the value of A is to be multiplied by -1 times the value of B.

More than one prefix operator can precede and be associated with a single vari
able. More than one positive prefix operator has no cumulative effect, but two neg
ative prefix operators have the same effect as a single positive prefix operator.

Data conversion in arithmetic operations
The two operands of an arithmetic operation may differ in type, base, mode, preci
sion, and scale. When they differ, conversion takes place as described below.
(For coded arithmetic operands, you can also determine conversions using
Figure 16 on page 57. Each operand is converted to the type, base, and mode of
the result. It is not necessarily converted to the result's precision and scale.)

Note: Scaled FIXED BINARY operands are converted to scaled FIXED DECIMAL
before any operations on them are performed.

Type: Character operands are converted to FIXED DECIMAL(N,O). Bit operands
are converted to FIXED BIN(M,O). (Refer to Appendix A, "Limits" on page 465 for
the maximums.) Numeric character operands are converted to DECIMAL with
scale and precision determined by the picture-specification. Graphic variables and
strings are allowed in all computational contexts. If conversion is necessary, the
rules followed are the same as for character.

The result of an arithmetic operation is always in coded arithmetic form. Type con
version is the only conversion that can take place in an arithmetic prefix operation.

Base: If the bases of the two operands differ, the decimal operand is converted to
binary.

Mode: If the modes of the two operands differ, the real operand is converted to
complex mode by acquiring an imaginary part of zero with the same base, scale,
and precision as the real part. The exception to this is in the case of
exponentiation when the second operand (the exponent of the operation) is fixed
point real with a scaling factor of zero. In such a case, conversion is not neces
sary.

Precision: If only precisions and/or scaling factors vary, type conversion is not
necessary.

Scale: If the scales of the two operands differ, the fixed-point operand is con
verted to floating-point scale. The exception to this is in the case of exponentiation
when the first operand is of floating-point scale and the second operand (the expo
nent of the operation) is fixed-point with a scaling factor of zero, that is, an integer
or a variable that has been declared with precision (p,O). In such a case, conver
sion is not necessary, but the result is floating-point.

If both operands of an exponentiation operation are fixed-point, conversions can
occur in one of the following ways:

• Both operands are converted to floating-point if the exponent has a precision
other than (p,O).

Chapter 4. Expressions and references 55

Results of arithmetic operations

• The first operand is converted to floating-point unless the exponent is an
unsigned integer.

• The first operand is converted to floating-point if precisions indicate that the
result of the fixed-point exponentiation would exceed the maximum number of
digits allowed.

Results of arithmetic operations
After any necessary conversion of the operands in an expression has been carried
out, the arithmetic operation is performed and a result is obtained. This result can
be the value of the expression, or it can be an intermediate result upon which
further operations are to be performed, or a condition can be raised.

Figure 16 shows the attributes and precisions that result from various arithmetic
operations, and Figure 18 shows the attributes of the result for the special cases of
exponentiation noted in the right-hand column of Figure. 16.

Conversion of operands: In Figure 17 on page 58, if both operands are FIXED
and either has a nonzero scale factor, any FIXED BIN operands are converted to
FIXED DECIMAL using the following rules:

Given And

q<O p >= q

q<O

And

ceil((p-q/3.32) +9) < N

ceil((p-q)/3.32) + 9) < N

ceil((p-q)/3.32) > N

ceil((p-q)/3.32) < N

The results are

r = N
s = ceil((p-q)/3.32) + q - N
r = ceil((p-q)/3.32) + q
S=q
r =min(N,q)
S=r
r = N
s = N - ceil((p-q)/3.32)
r = ceil((p-q)/3.32)
s=O

For example, FIXED BIN(15,2) is converted to FIXED DEC(6,2). FIXED BIN(15,-2)
is converted to FiXED DECiiviAL(6,0).

56 PUI Package/2 Language Reference

Results of arithmetic operations

Figure 16. Results of arithmetic operations for one or more FLOAT operands

Attributes of
the Result for
Addition, Multipli- Attributes

1st 2nd Subtraction, Addition or cation of the
Operand Operand Multiplication, Subtraction Preci- Division Result for
(p1,q1) (p2,q2) or Division Precision sion Precision Exponentiation

FLOAT FLOAT
DECIMAL DECIMAL

(P1) (P2)

FLOAT FLOAT
FLOAT DECIMAL (p)

DECIMAL DECIMAL
FLOAT (unless special case

(P1) (P2,q2)
DECIMAL (p) C applies)

p = MAX(P1 .P2)
FIXED FLOAT
DECIMAL DECIMAL
(P1 ,q1) (P2)

p = MAX(p1 ,p2)
FLOAT FLOAT
BINARY BINARY
(P1) (P2)

FLOAT FIXED
FLOAT BINARY (p)

BINARY BINARY
FLOAT (unless special case

(P1) (P2,q2)
BINARY (p) C applies)

p = MAX(P1 ,p2)
FIXED FLOAT
BINARY BINARY

(P1.q1) (P2,q2)

FIXED FLOAT
DECIMAL BINARY
(P1 ,q1) (P2) FLOAT BINARY (p)
FLOAT FLOAT

FLOAT
(unless special case A

DECIMAL BINARY
BINARY (p)

p = MAX(CEIL(P1 *3.32},P2) or C applies)
(P1) (P1 ,q2) P=

FLOAT FLOAT MAX(CEIL(P1-3.32),P2)

DECIMAL BINARY
(P1) (P2)

FIXED FLOAT
BINARY DECIMAL
(P1 ,q1) (P2) FLOAT BINARY (p)
FLOAT FIXED

FLOAT
(unless special case B

BINARY DECIMAL
BINARY (p)

p = MAX(P1 ,CEIL(p2*3.32}} or C applies)
(P1) (P2,q2) P=

FLOAT FLOAT MAX(p1 ,CEIL(p2-3.32))

BINARY DECIMAL
(P1) (P2)

Notes:

1. Special cases of exponentiation are described in Figure 18 on page 59.

2. For a table of CEIL(N*3.32} values, see "Conversion of operands" on page 56.

Chapter 4. Expressions and references 57

Results of arithmetic operations

Figure 17. Results of arithmetic operations between two FIXED operands

Attributes of
the Result for
Addition, Multipli-

1st 2nd Subtraction, Addition or cation
Operand Operand Multiplication, Subtraction Preci- Division
(p1 ,q1) (p2,q2) or Division Precision sion Precision

FIXED FIXED
p = 1 p=

p=N
FIXED +MAX(P1-q1 1P2-q2) P1+P2+1 DECIMAL DECIMAL q=

(P1 ,q1) (P2,q2)
DECIMAL (p,q) +q q=

N-p1+qrq2
q = MAX(q1 ,q2) q1+q2

FIXED FIXED
p = 1

p=
BINARY BINARY

FIXED +MAX(P1-q1 1P2-q2)
P1+P2+1

p=M
BINARY (p,O) +q q=O

(P1 ,0) (P2,0) q=O
q=O

FIXED FIXED
FIXED p = 1 +MAX(r,p2)

p=
p=M

DECIMAL BINARY 1+r+P2
(P1 ,0) (P2,0)

BINARY (p,O) q=O
q=O

q=O

FIXED FIXED p=1
FIXED

p=
p=N

DECIMAL BINARY
DECIMAL (p,q)

+MAX(P1-q1,v) +q 1+P1+V q = N-q1
(P1,q1) (P2,0) q = q1 q = q1

FIXED FIXED
FIXED p = 1 +MAX(p1, t)

p=
p=M

BINARY DECIMAL 1+P1+t
(P1 ,0) (P2,0)

BINARY (p,O) q=O
q=O

q=O

FIXED FIXED p = 1
FIXED

p=
p=N

BINARY DECIMAL
DECIMAL (p,q)

+MAX(p2-q2, w) +q 1+W+P2
q = N-q2

(P1 ,0) (p2,q2) q = q2 q = q1

t = 1 + CEIL(p2-3.32) M is the maximum precision for FIXED BIN.
N is the maximum precision for FIXED DEC.
r = 1 + CEIL(P1-3.32)

u = CEIL(ABS(q2*3.32)) * SIGN(q2)
v = CEIL(p2/3.32)

s = CEIL(ABS(q1-3.32)) * SIGN(q1) w = CEIL(p1/3.32)

Notes:

The scaling factor must be in the range -128 through +127.

1. Special cases of exponentiation are described in Figure 18 on page 59.

2. For a table of CEIL(N*3.32) values, see Figure 23 on page 76.

58 PUI Package/2 Language Reference

Attributes
of the
Result for
Exponentiation

FLOAT DECIMAL (p)
(unless special case
A applies)
P = MAX(P1 ,p2)

FLOAT BINARY (p)
(unless special case
B applies)
P = MAX(P1 ,p2)

FLOAT BINARY (p}
(unless special case A
or C applies)
p = MAX(CEIL
(p1-3.32),p2)

FLOAT BINARY (p)
(unless special case A
or C applies)
p = MAX(CEIL

(P1-3.32).P2)

Results of arithmetic operations

FigurA 1 R. Special cases for exponentiation

Case First Operand Second Operand Attributes of Result

A FIXED DECIMAL Integer with FIXED DECIMAL (p,q)
(p1 ,q1) value n (provided p <= N)

where p = (p1 + 1)*n-1
and q = q1*n

B FIXED BINARY Integer with FIXED BINARY (p,q)
(p1 ,q1) value n (provided p <= M)

where p = (p1 + 1)*n-1
and q = p1*n

c FLOAT (p1) FIXED (p2,0) FLOAT (p1)
with base of first operand

Special cases of x**y in real/complex modes:

Real mode: Complex mode:

If x=O and y>O, result is 0. If X=O, and real part of y>O and imaginary part of
y=O, result is 0.

If x=O and Y<=O, ERROR condition is raised. If x=O and real part of y<=O or
imaginary part of y -.=0, ERROR condition is raised.

If x<O and y not FIXED (p,O), ERROR condition is raised. If x-.=0 and real and imagi-
nary parts of y=O, result is 1 .

Consider the expression:

A * B + C

The operation A * B is performed first, to give an intermediate result. Then the
value of the expression is obtained by performing the operation (intermediate result)
+ c.

PUI gives the intermediate result attributes the same way it gives attributes to any
variable. The attributes of the result are derived from the attributes of the two oper
ands (or the single operand in the case of a prefix operation) and the operator
involved. The way the attributes of the result are derived is further explained under
"Targets" on page 52.

The ADD, SUBTRACT, MULTIPLY, and DIVIDE built-in functions allow you to over
ride the implementation precision rules for addition, subtraction, multiplication, and
division operations.

FIXED division: FIXED division can result in overflows or truncation. For
example, the result of evaluating the expression:

25+1/3

is undefined and the FIXEDOVERFLOW condition is raised because FIXED division
results in a value of maximum implementation defined precision.

For the following expression, however:

25+81/3

Chapter 4. Expressions and references 59

Bit operations

Bit operations

The result is 25.3333333333333 (when the maximum precision is 15) because con
stants have the precision with which they are written. The results of the two evalu
ations are reached as shown in Figure 19:

Figure 19. Comparison of FIXED division and constant expressions

Item Precision Result

3
1/3
25

25+1/3

01
3

01/3
25

25+01/3

(1,0)
(1,0)

(15,14)
(2,0)

(15,14)

(2,0)
(1,0)

(15,13)
(2,0)

(15, 13)

1
3

0.33333333333333
25

undefined
(truncation on left;

FIXEDOVERFLOW is raised
when the maximum

precision is 15)

01
3

00.3333333333333
25

25.3333333333333

The PRECISION built-in function can also be used. For example:

25+prec(l/3,15,13)

Note: Named constants are recommended for situations that require exact pre
cisions.

A bit operation is specified by combining operands with one of the following logical
operators:

---, &

The not/exclusive-or symbol (---,), can be used as a prefix or infix operator. The and
(&)symbol and the or (I) symbol, can be used as infix operators only. (The opera
tors have the same function as in Boolean algebra.)

Operands of a bit operation are converted, if necessary, to bit strings before the
operation is performed. If the operands of an infix operation do not have the same
length, the shorter is padded on the right with 'O' B.

The result of a bit operation is a bit string equal in length to the length of the oper
ands.

Bit operations are performed on a bit-by-bit basis. Figure 20 illustrates the result
for each bit position for each of the operators. Figure 21 on page 61 shows some
examples of bit operations.
I

60 PUI Package/2 Language Reference

Comparison operations

Figure 20. Bit operations

A B -.A -,8 A&B AIB A-.B

1 1 0 0 1 1 0

1 0 0 1 0 1 1

0 1 1 0 0 1 1

0 0 1 1 0 0 0

Figure 21. Bit operation examples

For these operands and values This operation Yields this result

A = '010111 '8 -, A '101000'8
8= '111111'8 -, c '001 '8 c = '110'8
D= 5 C & B '110000' 8

A I B '111111 '8

A -, B "101000" 8

A -, C '100111'8

c I B '111111 '8

A I (-,() '011111'8

-,((-,C) I (-,B)) '110111'8

SUBSTR(A,1,1)1(0=5) '1'8

BOOL built-in function
In addition to the not, exclusive-or, and, and or operations using the operators -,, &,
and I, Boolean operations can be performed using the BOOL built-in function dis
cussed in "BOOL" on page 387.

Comparison operations
A comparison operation is specified by combining operands with one of the fol
lowing infix operators:

< -,(<= -,) >= > -,)

The result of a comparison operation is always a bit string of length 1 . The value is
' 1 'B if the relationship is true, or 'O' B if the relationship is false.

Note: Scaled FIXED BINARY operands are converted to scaled FIXED DECIMAL
before any operations on them are performed. Given a variable with the attributes
FIXED BIN(p,q) where q is nonzero, the variable will be converted to FIXED
DEC(r,s) where rands are determined as described in "Conversion of operands"
on page 56.

Comparisons are defined as follows:

Algebraic is the comparison of signed arithmetic values in coded arith
metic form. If operands differ in base, scale, precision, or
mode, they are converted in a manner analogous to arith
metic operation conversions. Numeric character data is con
verted to coded arithmetic before comparison. Only the

Chapter 4. Expressions and references 61

Comparison operations

Character

Bit

Graphic

operators = and -,= are valid for comparison of operands that
are complex numbers.

is a left-to-right, character-by-character comparison of char
acters according to the binary value of the bytes.

is a left-to-right, bit-by-bit comparison of binary digits.

is a left-to-right, symbol-by-symbol comparison of DBCS
characters. The comparison is based on the binary values of
the DBCS characters.

Pointer and offset data
is a comparison of pointer and offset values containing any
relational operators. However, the only conversion that can
take place is offset to pointer.

Program control data
is a comparison of the internal coded forms of the operands.
Only the comparison operators = and -,= are allowed; area
variables cannot be compared. No type conversion can take
place; all type differences between operands for program
control data comparisons are in error.

Comparisons are equal for the following operands:

Entry In a comparison operation, it is not an error to
specify an entry variable whose value is an entry
point of an inactive block.

Format Format labels on the same FORMAT statement
compare equal.

File

Label

If the operands represent file values, all of whose
parts are equal.

Labels on the same statement compare equal. In
a comparison operation, it is not an error to
specify a label variable whose vaiue is a iabei
constant used in a block that is no longer active.

The label on a compound statement does not
compare equal with that on any label contained in
the body of the compound statement.

If the operands of a computational data comparison have data types that are appro
priate to different types of comparison, the operand of the lower precedence is con
verted to conform to the comparison type of the other. The precedence of
comparison types is (1) algebraic (highest), (2) graphic, (3) character, (4) bit. For
example, if a bit string is compared with a fixed decimal value, the bit string is con
verted to fixed binary for algebraic comparison with the decimal value. The decimal
value is also converted to fixed binary.

In the comparison of strings of unequal lengths, the shorter string is padded on the
right. This padding consists of:

• Blanks in a character comparison
• 'O' B in a bit comparison
• A graphic (DBCS) blank in a graphic comparison.

62 PUI Package/2 Language Reference

Concatenation operations

The following example shows a comparison operation in an IF statement:

if A= B
then action-if-true;
else action-if-false;

The evaluation of the expression A = B yields either ' 1' B, for true, or '8' B, for false.

In the following assignment statement:

X = A <= B;

the value ' 1' B is assigned to X if A is less than B; otherwise, the value '8' B is
assigned.

In the following assignment statement:

X =A= B;

the first equal symbol is the assignment symbol; the second equal symbol is the
comparison operator. The value ' 1' B is assigned to X if A is equal to B; otherwise,
the value '8' B is assigned.

An example of comparisons in an arithmetic expression is:

(X<8)*A + (8<=X & X<=l88)*B + (188<X)*C

The value of the expression is A, B, or C and is determined by the value of X.

Concatenation operations
A concatenation operation is specified by combining operands with the concat
enation infix operator:

Concatenation signifies that the operands are to be joined in such a way that the
last character, bit, or graphic of the operand to the left immediately precedes the
first character, bit, or graphic of the operand to the right, with nothing intervening.

The concatenation operator can cause conversion to a string type because concat
enation can be performed only upon strings-either character, bit, or graphic. The
results differ according to the setting of the DEFAULT compiler option:

Results under DEFAUL T{IBM)

• If one operand is graphic, the result is graphic.
• If either operand is bit or binary, ·the result is bit.
• Otherwise the result is character.

For example:

dcl B bin(4) initial(4),
C bit(l) initial('l'b);

put skip list (B ~ C);

I* Produces '81881' not 'bbb41' */

Chapter 4. Expressions and references 63

Combinations of operations

Results under DEFAUL T(ANS)

• If one operand is graphic, the result is graphic.
• If both operands are bit, the result is bit.
• Otherwise the result is character.

For example:

dcl B bin(4) initial(4),
C bit(l) initial('l'b);

put skip list (B ~ C);

I* Produces 'bbb41', not '81881' */

The result of a concatenation operation is a string whose length is equal to the sum
of the lengths of the two operands, and whose type (that is, character, bit, or
graphic) is the same as that of the two operands.

If an operand requires conversion for concatenation, the result depends upon the
length of the string to which the operand is converted.

For these operands and This operation Yields this result
values

A= '010111'8 A II B '010111_ 101 'B
8 = '101 '8 A II A II B I 010111_010111 101 '8
C = 'xy,Z' -

D = 'aa/88' c II D 'xy ,Zaa/88'

D II c 'aa/88xy ?z'
B II D '101aa/88'

In the last example, the bit string '101 '8 is converted to the character string '101 '
before the concatenation is performed. The result is a character string.

Combinations of operations
Different types of operations can be combined within the same operational
expression. Any combination can be used.

For example:

declare result bit(3),
A fixed decimal(l),
B fixed binary (3),
c character(2), D bit(4);

Result =A+ B < C & D;

Each operation within the expression is evaluated according to the rules for that
kind of operation, with necessary data conversions taking place before the opera
tion is performed, as follows:

• The decimal value of A is converted to binary base.

• The binary addition is performed, adding A and B.

• The binary result is compared with the converted binary value of C.

• The bit result of the comparison is extended to the length of the bit variable D,
and the & operation is performed.

64 PUI Package/2 Language Reference

Priority of operators

• The result of the & operation, a bit string of length 4, is assigned to Result
without conversion, but with truncation on the nght.

The expression in this example is evaluated operation-by-operation, from left to
right. The order of evaluation, however, depends upon the priority of the operators
appearing in the expression.

Priority of operators
The priority of the operators in the evaluation of expressions is shown in Figure 22.

Figure 22. Priority of operations and guide to conversions

Priority Operator Type of Operation Remarks

1 ** Arithmetic Result is in coded arithmetic form

prefix+, - Arithmetic No conversion is required if operand is in coded arith-
metic form

Operand is converted to FIXED DECIMAL if it is a
CHARACTER string or numeric character (PICTURE)
representation of a fixed-point decimal number

Operand is converted to FLOAT DECIMAL if it is a
numeric character (PICTURE) representation of a
floating-point decimal number

Operand is converted to FIXED BINARY if it is a BIT
string

prefix-, Bit string All non-BIT data converted to BIT

2 *, I Arithmetic Result is in coded arithmetic form

3 infix+, - Arithmetic Result is in coded arithmetic form

4 II Concatenation Refer to "Results under DEFAUL T(ANS)" on page 64
and "Results under DEF AUL T(IBM)" on page 63

5 <, -.<, <=, =, Comparison Result is always either ' 1 'B or 'O' B
-,=, >=, >, -.>

6 & Bit string All non-BIT data converted to BIT

7 Bit string All non-BIT data converted to BIT

infix-, Bit string All non-BIT data converted to BIT

Notes:

1. The operators are listed in order of priority, group 1 having the highest priority and group 7 the lowest. All operators in the same
priority group have the same priority. For example, the exponentiation operator ** has the same priority as the prefix + and prefix
- operators and the not operator -..

2. For priority group 1, if two or more operators appear in an expression, the order of priority is right to left within the expression;
that is, the rightmost exponentiation or prefix operator has the highest priority, the next rightmost the next highest, and so on.
For all other priority groups, if two or more operators in the same priority group appear in an expression, their order or priority is
their order left to right within the expression.

The order of evaluation of the expression

A + B < C & D

is the same as if the elements of the expression were parenthesized as

(((A+ 8) < C) & 0)

The order of evaluation (and, consequently, the result) of an expression can be
changed through the use of parentheses. Expressions enclosed in parentheses are
evaluated first, to a single value, before they are considered in relation to sur
rounding operators.

Chapter 4. Expressions and references 65

Array expressions

The above expression, for example, might be changed as follows:

(A + 8) < (C & 0)

The value of A converts to fixed-point binary, and the addition is performed, yielding
a fixed-point binary result (result_ 1). The value of C converts to a bit string (if valid
for such conversion) and the and operation is performed. At this point, the
expression is reduced to:

result_l < result_2

result_2 is converted to binary, and the algebraic comparison is performed, yielding
a bit string of length 1 for the entire expression.

The priority of operators is defined only within operands (or sub-operands). Con
sider the following example:

A+ (8 < C) & (0 ~ E ** F)

In this case, PUI specifies only that the exponentiation will occur before the concat
enation. It does not specify the order of the evaluation of (O II E ** F) in relation to
the evaluation of the other operand (A + (8 < C)) .

Any operational expression (except a prefix expression) must eventually be reduced
to a single infix operation. The operands and operator of that operation determine
the attributes of the result of the entire expression. In the following example, the &
operator is the operator of the final infix operation.

A+8<C&O

The result of the evaluation is a bit string of length 4.

In the next example, because of the use of parentheses, the operator of the final
infix operation is the comparison operator:

(A + 8) < (C & 0)

The evaluation yields a bit string of length 1.

Array expressions
Array expressions (unlike array references) are allowed only in assignment state
ments. If the source is an array expression, then the target must be an array of
scalars. Arrays of structures can be assigned to like arrays of structures.

Evaluation of an array expression yields an array result. All operations performed
on arrays are performed element-by-element, in row-major order. Therefore, all
arrays referred to in an array expression must have the same number of dimen
sions, and each dimension must be of identical bounds.

Array expressions can include operators (both prefix and infix), element variables,
and constants. The rules for combining operations and for data conversion of oper
ands are the same as for element operations.

66 PUI Package/2 Language ~eference

Prefix operators and arrays

Prefix operators and arrays
The operation of a prefix operator on an array produces an array of identical
bounds. Each element of this array is the result of the operation performed on
each element of the original array. For example:

If A is the array 5 3 -9
1 2 7
6 3 -4

then -A is the array -5 -3 9
-1 -2 -7
-6 -3 4

Infix operators and arrays
Infix operations that include an array variable as one operand can have an element
or another array as the other operand.

Array-and-element operations
The result of an expression with an element, an array, and an infix operator is an
array with bounds identical to the original array. Each element of the resulting
array is the result of the operation between each corresponding element of the ori
ginal array and the single element. For example:

If A is the array 5 18 8

then A*3 is the array

12 11 3

15 38 24
36 33 9

and 9>A is the array of 1 8 1
bit strings of length 1 8 8 1

The element of an array-element operation can be an element of the same array.
Consider the following assignment statement:

A= A* A(l,2);

Again, using the above values for A, the newly assigned value of A would be:

58 188 888
1288 1188 . 388

That is, the value of AO, 2) is fetched again.

Array-and-array operations
If the two operands of an infix operator are arrays, the arrays must have the same
number of dimensions, and corresponding dimensions must have identical lower
bounds and identical upper bounds. The result is an array with bounds identical to
those of the original arrays; the operation is performed upon the corresponding ele
ments of the two original arrays. For example:

If A is the array 2 4 3
6 1 7
4 8 2

and if B is the array 1 5 7
8 3 4
6 3 1

Chapter 4. Expressions and references 67

Restricted expressions

then A+B is the array 3 9 18
14 4 11
18 11 3

and A*B is the array 2 28 21
48 3 28
24 24 2

and A>B is the array of 1 8 8
bit strings of length 1 8 8 1

8 1 1

Restricted expressions
Where PUI requires a (possibly signed) constant, a restricted expression can be
used. A restricted expression is an expression whose value is calculated at
compile time and used as a constant. For example, you can use expressions to
define constants required for:

• Extents in static, parameter, and based declarations
• Extents in entry descriptions
• Values and iteration factors to be used in static initialization.

A restricted expression is identical to a normal expression but requires that each
operand be:

• A constant or a named constant. A named constant must be declared before it
is used.

• A built-in function applied to a restricted expression(s), where the built-in func
tion is from the following categories:

- String-handling

- Arithmetic (MAX and MIN must have only two arguments. RANDOM is not
allowed.)

- Mathematical

- Floating-point inquiry

- Floating-point manipulation

Integer manipulation

- Precision-handling

- Array-handling functions DIMENSION, LBOUND, and HBOUND

- Storage-control functions BINARYVALUE, LENGTH, NULL,
OFFSETVALUE, POINTERVALUE, SIZE, STORAGE, and SYSNULL.

68 PUI Package/2 Language Reference

Examples

dcl Max_names fixed bin value (1888),
Name_size fixed bin value (38),
Addr_size fixed bin value (28),
Addr_lines fixed bin value (4);

dcl 1 Name_addr(Max_names),
2 Name char(Name_size),
2 * union,

3 address char(Addr_lines*Addr_size), /* address */
3 addr(Addr_lines) char(Addr_size),

2 * char(8);
dcl One_Name_addr char(size(Name_addr(l))); /* 1 name/addr*/
dcl Two_Name_addr char(length(One_Name_addr)

2); / 2 name/addrs */
dcl Name_or_addr char(max(Name_size,Addr_size)) based;

dcl Ar(l8) pointer;
dcl Ex entry(dim(lbound(Ar):hbound(Ar)) pointer);
dcl Identical_to_Ar(lbound(Ar):hbound(Ar)) pointer;

If you change the value of any of the named constants in the example, all of the
dependent declarations are automatically re-evaluated.

Chapter 4. Expressions and references 69

70 PUI Package/2 Language Reference

Chapter 5. Data conversion

Chapter 5. Data conversion 72
Built-in functions for computational data conversion 73
Converting string lengths 7 4
Converting arithmetic precision 75
Converting mode 75
Converting other data attributes 75
Source-to-target rules 77
Examples 84

DECIMAL FIXED to BINARY FIXED with fractions 84
Arithmetic-to-bit-string conversion 84
Arithmetic-value-to-character-string conversion 85
A conversion error 85

© Copyright IBM Corp. 1992 71

Data conversion

Chapter 5. Data conversion

72

This chapter discusses data conversions for computational data. PUI converts data
when a data item with a set of attributes is assigned to another data item with a
different set of attributes. In this chapter, source refers to the data item to be con
verted, and target refers to the attributes to which the source is converted. Topics
discussed for these data conversions include:

Built-in functions
String lengths
Arithmetic precision
Mode
Source-to-target rules.

Examples of data conversion are included at the end of the chapter.

Data conversion for locator data is discussed in "Locator conversion" on page 205.

Conversion of the value of a computational data item can change its internal repre
sentation, precision or mode (for arithmetic values), or length (for string values).

The tables that follow summarize the circumstances that can cause conversion to
other attributes.

Case

Assignment

Operand in an expression

Stream input (GET statement)

Stream output (PUT statement)

Argument to PROCEDURE

Argument to built-in function or
pseudovariable

INITIAL attribute

RETURN statement expression

DO statement, BY, TO, or REPEAT
option

Target Attributes

Attributes of variable on left of assignment
symbol

Determined by rules for evaluation of
expressions

Attributes of receiving field

As determined by format list if stream is edit
directed, otherwise character-string

Attributes of corresponding parameter

Depends on the function or pseudovariable

Other attributes of variable being initialized

Attributes specified in PROCEDURE statement

Attributes of control variable

The following can cause conversion to character values:

Statement

DISPLAY

Record 1/0

OPEN

Option

KEY FROM
KEY

TITLE

© Copyright IBM Corp. 1992

Built-in functions for computational data conversion

The following can cause conversion to a BINARY value:

Statement

DECLARE, ALLOCATE, DEFAULT

DELAY

FORMAT (and format items in GET and
PUT)

OPEN

1/0

Most statements

Option/ Attribute/Reference

length, size, dimension, bound, repetition factor

milliseconds

iteration factor
w, d, s, p

LINESIZE, PAGESIZE

SKIP, LINE, IGNORE

subscript

All attributes for source and target data items (except string length) must be speci
fied at compile time. Conversion can raise one of the following conditions: CON
VERSION, OVERFLOW, SIZE, or STRINGSIZE. (Refer to Chapter 16,
"Conditions.")

Constants can be converted at compile time as well as at run time. In all cases the
conversions are as described here.

More than one conversion might be required for a particular operation. The imple
mentation does not necessarily go through more than one. To understand the con
version rules, it is convenient to consider them as being separate. For example:

dcl A fixed dec(3,2) init(l.23);
dcl B fixed bin(15,5);
B = A;

In this example, the decimal representation of 1.23 is first converted to binary
(11,7), as 1.0011101 B. Then precision conversion is performed, resulting in a
binary (15,5) value of 1.00111 B.

Additional examples of conversion are provided at the end of this chapter.

Built-in functions for computational data conversion
Conversions can take place during expression evaluation, 1/0 GET and PUT oper
ations, and assignment operations, and between arguments and parameters. Con
versions can also be initiated with the following built-in functions:

BINARY
BIT
CHAR
COMPLEX
DECIMAL

FIXED
FLOAT
GRAPHIC
IMAG
PRECISION

REAL
SIGNED
UNSIGNED

Each is discussed in Chapter 17, "Built-in functions, pseudovariables, and
subroutines."

Each function returns a value with the attribute specified by the function name, per
forming any required conversions.

With the exception of the conversions performed by the COMPLEX, GRAPHIC, and
IMAG built-in functions, assignment to a PUI variable having the required attributes

Chapter 5. Data conversion 73

Converting string lengths

can achieve the conversions performed by these built-in functions. However, you
might find it easier to use a built-in function than to create a variable solely to carry
out a conversion.

Converting string lengths
The source string is assigned to the target string from left to right. If the source
string is longer than the target, excess characters, bits, or graphics on the right are
ignored, and the STRINGSIZE condition is raised. For fixed-length targets, if the
target is longer than the source, the target is padded on the right. If STRINGSIZE
is disabled, and the length of the source and/or the target is determined at run time,
and the target is too short to contain the source, unpredictable results might occur.

Note: If you use SUBSTR with variables as the parameters, and the variables
specify a string not contained in the target, unpredictable results can occur.

Character strings are padded with blanks, bit strings with 'O' B, and graphic strings
with DBCS blank. For example:

declare Subject char(18);
Subject= 'Transformations';

Transformations has 15 characters. Therefore, when PUI assigns the string to
Subject, it truncates 5 characters from the right end of the string. This is equivalent
to executing:

Subject= 'Transforma';

The first two of the following statements assign equivalent values to Subject and
the last two assign equivalent values to Code:

Subject= 'Physics';
Subject= 'Physics
declare Code bit(18);
Code= '118811'8;
Code= '1188118888'8;

I•

'

The following statements do not assign equivalent values to Subject:

Subject= '118811'8;
Subject= '1188118888'8;

When the first statement is executed, the bit constant on the right is first converted
to a character string and is then extended on the right with blank characters rather
than zero characters. This statement is equivalent to:

Subject= '11881lbbbb';

The second of the two statements requires only a conversion from bit to character
type and is equivalent to:

Subject= '1188118888';

A string value is not extended with blank characters or zero bits when it is assigned
to a string variable that has the VARYING attribute. Instead, the length of the
target string variable is set to the length of the assigned string. However, trun
cation will occur if the length of the assigned string exceeds the maximum length
declared for the varying-length string variable.

7 4 PUI Package/2 Language Reference

Converting arithmetic precision

Converting arithmetic precision
When an arithmetic value has the same data attributes, except for precision, as the
target, precision conversion is required.

For fixed-point data items, decimal or binary point alignment is maintained during
precision conversion. Therefore, padding or truncation can occur on the left or
right. If nonzero bits or digits on the left are lost, the SIZE condition is raised.

For floating-point data items, truncation on the right, or padding on the right with
zeros, can occur.

Converting mode
If a complex value is converted to a real value, the imaginary part is ignored. If a
real value is converted to a complex value, the imaginary part is zero.

Converting other data attributes
Source-to-target rules are given, following this section, for converting data items
with the following data attributes:

• Coded arithmetic:
FIXED BINARY
FIXED DECIMAL
FLOAT BINARY
FLOAT DECIMAL

• Arithmetic character PICTURE
• CHARACTER
• BIT
• GRAPHIC.

Changes in value can occur in converting between decimal repres~ntations and
binary representation. In converting between binary and decimal, the factor 3.32 is
used as follows:

• n decimal digits convert to CEIL (n*3.32) binary digits.
• n binary digits convert to CEIL (n/3.32) decimal digits.

A table of CEIL values is provided in Figure 23 to calculate these conversions.

Chapter 5. Data conversion 75

Converting other data attributes

Figure 23. CEIL (n*3.32) and CEIL (n/3.32) values

CEIL CEIL
n (n*3.32) n (n/3.32)

1 4 1-3 1
2 7 4-6 2
3 10 7-9 3
4 14 10-13 4
5 17 14-16 5
6 20 17-19 6
7 24 20-23 7
8 27 24-26 8
9 30 27-29 9

10 34 30-33 10
11 37 34-36 11
12 40 37-39 12
13 44 40-43 13
14 47 44-46 14
15 50 47-49 15
16 53(1) 50-53 16
17 57 54-56 17
18 60 57-59 18
19 64 60-63 19
20 67 64-66 20
21 70 67-69 21
22 74 70-73 22
23 77 74-76 23
24 80 77-79 24
25 83 80-83 25
26 87 84-86 26
27 90 87-89 27
28 93 90-92 28
29 97 93-96 29
30 100 97-99 30
31 103 100-102 31
32 107 103-106 32
33 110 107-109 33

110-112 34
113-116 35

Note 1: While ceil(16*3.32) = 54, the value 53 is
used. If it were not, a float dec(16), when converted
to binary, would have to be converted from long
floating-point to extended floating-point (because
float bin(54) is represented as extended floating-
point).

For fixed-point integer values, conversion does not change the value. For fixed
point fractional values, the factor 3.32 provides only enough digits or bits so that
the converted value differs from the original value by less than 1 digit or bit in the
rightmost place.

For example, the decimal constant .1, with attributes FIXED DECIMAL (1, 1), con
verts to the binary value .0001 B, converting 1/10 to 1/16. The decimal constant
.10, with attributes FIXED DECIMAL (2,2), converts to the binary value .00011008,
converting 10/100 to 12/128.

76 PUI Package/2 Language Reference

Source-to-target rules

I Target: Coded Arithmetic

Source:

FIXED BINARY, FIXED DECIMAL,
FLOAT BINARY, and FLOAT DECIMAL

Source-to-target rules

These are all coded arithmetic data. Rules for conversion between them are
given under each data type taken as a target.

Arithmetic character PICTURE
Data first converts to decimal with scale and precision determined by the corre
sponding PICTURE specification. The decimal value then converts to the base,
scale, mode, and precision of the target. See the specific target types of coded
arithmetic data using FIXED DECIMAL or FLOAT DECIMAL as the source.

CHARACTER
The source string must represent a valid arithmetic constant or complex
expression; otherwise, the CONVERSION condition is raised. The constant can
be preceded by a sign and can be surrounded by blanks. The constant cannot
contain blanks between the sign and the constant, or between the end of the
real part and the sign preceding the imaginary part of a complex expression.

The constant has base, scale, mode, and precision attributes. It converts to the
attributes of the target when they are independent of the source attributes, as in
the case of assignment. See the specific target types of coded arithmetic data
using the attributes of the constant as the source.

If an intermediate result is necessary, as in evaluation of an operational
expression, the attributes of the intermediate result are the same as if a decimal
fixed-point value of precision had appeared in place of the string. (This allows
the compiler to generate code to handle all cases, regardless of the attributes of
the contained constant.) Consequently, any fractional portion of the constant
might be lost. See the specific target types of coded arithmetic data using
FIXED DECIMAL as the source.

It's possible that, during the initial conversion of the character data item to an
intermediate fixed decimal number, the value might exceed the default size of
the intermediate result. If this occurs, the SIZE condition is raised if it is
enabled.

If a character string representing a complex number is assigned to a real target,
the complex part of the string is not checked for valid arithmetic characters and
CONVERSION cannot be raised, since only the real part of the string is
assigned to the target.

A null string gives the value zero; a string of blanks is invalid.

BIT
If the conversion occurs during evaluation of an operational expression, the
source bit string is converted to an unsigned value that is FIXED BIN(M,O) See
the specific target types of coded arithmetic data using FIXED BINARY as the
source.

Chapter 5. Data conversion 77

Source-to-target rules

If the source string is longer than the allowable precision, bits on the left are
ignored. If nonzero bits are lost, the SIZE condition is raised.

A null string gives the value zero.

GRAPHIC
Graphic variables and strings are converted to CHARACTER, and then follow
the rules for character source described on page 77.

Target: FIXED BINARY (p2,q2)

Source:

FIXED DECIMAL (p1 ,q1)
The precision of the result is p2 = min(N, 1 +CEIL(p1 *3.32)) and
q2=CEIL(ABS(q1 *3.32))*SIGN(q1).

FLOAT BINARY (p1)
The precision conversion is as described under "Converting arithmetic precision"
on page 75 with p1 as declared or indicated and q1 as indicated by the binary
point position and modified by the value of the exponent.

FLOAT DECIMAL (p1)
The precision conversion is the same as for FIXED DECIMAL to FIXED
BINARY with p1 as declared or indicated and q1 as indicated by the decimal
point position and modified by the value of the exponent.

Arithmetic character PICTURE
CHARACTER
BIT
GRAPHIC

See Target: Coded Arithmetic on page 77.

I Target: FIXED DECIMAL (p2,q2)

Source:

FIXED BINARY (p1 ,q1)
The precision of the result is p2=1 +CEIL(p1/3.32) and
q2=CEIL(ABS(q1 /3.32))*SIGN(q1).

FLOAT BINARY (p1)
The precision conversion is the same as for FIXED BINARY to FIXED
DECIMAL with p1 as declared or indicated and q1 as indicated by the binary
point position and modified by the value of the exponent.

FLOAT DECIMAL (p1)
The precision conversion is as described under "Converting arithmetic precision"
on page 75 with p1 as declared or indicated and q1 as indicated by the decimal
point position and modified by the value of the exponent.

78 PUI Package/2 Language Reference

Arithmetic character PICTURE
CHARACTER
BIT
GRAPHIC

See Target: Coded Arithmetic on page 77.

Target: FLOAT BINARY (p2)

Source:

FIXED BINARY (p1 ,q1)

Source-to-target rules

The precision of the result is p2=p1. The exponent indicates any fractional part
of the value.

FIXED DECIMAL (p1 ,q1)
The precision of the result is p2=CEIL(p1 *3.32). The exponent indicates any
fractional part of the value.

FLOAT DECIMAL (p1)
The precision of the result is p2=CEIL(p1 *3.32).

Arithmetic character PICTURE
CHARACTER
BIT
GRAPHIC

See Target: Coded Arithmetic on page 77.

Target: FLOAT DECIMAL (p2)

Source:

FIXED BINARY (p1 ,q1)
The precision of the result is p2=CEIL(p1/3.32). The exponent indicates any
fractional part of the value.

FIXED DECIMAL (p1 ,q1)
The precision of the result is p2=p1. The exponent indicates any fractional part
of the value.

FLOAT BINARY (p1)
The precision of the result is p2=CEIL(p1/3.32).

Arithmetic character PICTURE
CHARACTER
BIT
GRAPHIC

See Target: Coded Arithmetic on page 77.

Chapter 5. Data conversion 79

Source-to-target rules

Target: Arithmetic character PICTURE

The arithmetic character PICTURE data item is the character representation of a
decimal fixed-point or floating-point value. The following descriptions for source to
arithmetic character PICTURE target show those target attributes that allow assign
ment without loss of leftmost or rightmost digits.

Source:

FIXED BINARY (p1 ,q1)
The target must imply:

fixed decimal (l+x+q-y,q) or
fl oat decimal (x)

where x>=CEIL(p1/3.32), y=CEIL(q1/3.32), and q>=y.

FIXED DECIMAL (p1 ,q1)
The target must imply:

fixed decimal (x+q-ql,q) or
fl oat decimal (x)

where X>=p1 and q>=q1.

FLOAT BINARY (p1)
The target must imply:

fixed decimal (p,q) or
float decimal (p)

where p>=CEIL(p1/3.32) and the values of p and q take account of the range of
values that can be held by the exponent of the source.

FLOAT DECIMAL (p1)
The target must imply:

fixed decimal (p,q) or
float decimal (p)

where P>= p1 and the values of p and q take account of the range of values
that can be held by the exponent of the source.

Arithmetic character PICTURE
The implied attributes of the source will be either FIXED DECIMAL or FLOAT
DECIMAL. See the respective entries for this target.

CHARACTER
See Target: Coded Arithmetic on page 77.

BIT(n)
The target must imply:

fixed decimal (l+x+q,q) or
float decimal (x)

where X>=ceil(n/3.32) and q>=O.

GRAPHIC
See Target: Coded Arithmetic on page 77.

80 PUI Package/2 Language Reference

Target: CHARACTER

Source:

FIXED BINARY, FIXED DECIMAL,
FLOAT BINARY, and FLOAT DECIMAL

Source-to-target rules

The coded arithmetic value is converted to a decimal constant (preceded by a
minus sign if it is negative) as described below. The constant is inserted into an
intermediate character string whose length is derived from the attributes of the
source. The intermediate string is assigned to the target according to the rules
for string assignment.

The rules for coded-arithmetic-to-character-string conversion are also used for
list-directed and data-directed output, and for evaluating keys (even for
REGIONAL files).

FIXED BINARY (p1,q1)
The binary precision (p1 ,q1) is first converted to the equivalent decimal preci
sion (p,q), where p=1 +CEIL(p1/3.32) and q=CEIL(ABS(q1/3.32))*SIGN(q1).
Thereafter, the rules are the same as for FIXED DECIMAL to CHARACTER.

FIXED DECIMAL (p1 ,q1)
If p1>=q1>=0 then:

• The constant is right adjusted in a field of width p1 +3. (The 3 is necessary
to allow for the possibility of a minus sign, a decimal or binary point, and a
leading zero before the point.)

• Leading zeros are replaced by blanks, except for a single zero that imme
diately precedes th~ decimal point of a fractional number. A single zero
also remains when the value of the source is zero.

• A minus sign precedes the first digit of a negative number. A positive value
is unsigned.

• If q1=0, no decimal point appears; if q1>0, a decimal point appears and the
constant has q fractional digits.

If p1 <q1 or q1 <0, a scaling factor appends to the right of the constant; the con
stant is an optionally-signed integer. The scaling factor appears even if the
value of the item is zero. The scaling factor has the syntax:

F{+l-}nn

where {+1-}nnn has the value of -q1.

The length of the intermediate string is p1 +k+3, where k is the number of digits
necessary to hold the value of q1 (not including the sign or the letter F).

If the arithmetic value is complex, the intermediate string consists of the imagi
nary part concatenated to the real part. The left-hand, or real, part is generated
as a real source. The right-hand, or imaginary, part is always signed, and it has
the letter I appended. The generated string is a complex expression with no
blanks between its elements. The length of the intermediate string is:

2*pl+7 for pl>=ql>=8
2*(pl+k)+7 for pl>ql or ql>8

Chapter 5. Data conversion 81

Source-to-target rules

The following examples show the intermediate strings that are generated from
several real and complex fixed-point decimal values:

Precision Value String

(5,8)
(4, 1)

(4,-3)
(2, 1)

2947
-121. 7
-3279888
1. 2+8 .31

'bbbb2947'
'b-121. 7'
'-3279F+3'
'bbbl.2+8.31'

FLOAT BINARY (p1)
The floating-point binary precision (p1) first converts to the equivalent floating
point decimal precision (p), where p=CEIL(p1/3.32). Thereafter, the rules are
the same as for FLOAT DECIMAL to CHARACTER.

FLOAT DECIMAL (p1)
A decimal floating-point source converts as if it were transmitted by an E-format
item of the form E(w,d,s) where:

w, the length of the intermediate string, is pl+6.

d, the number of fractional digits, is pl-1.

s, the number of significant digits, is pl.

If the arithmetic value is complex, the intermediate string consists of the imagi
nary part concatenated to the real part. The left-hand, or real, part is generated
as a real source. The right-hand, or imaginary, part is always signed, and it has
the letter I appended. The generated string is a complex expression with no
blanks between its elements. The length of the intermediate string is 2*p+ 13.

The following examples show the intermediate strings that are generated from
several real and complex floating-point decimal values:

Precision Value String

(5)

(5)

(3)
(5)

1735*18**5
-.881663
1
17. 3+ 1. SI

Arithmetic character PICTURE

'bl.7358E+88'
'-1. 6638E -83'
'bl.88E+88'
'bl.7388E+81+1.5888E+88I'

A real arithmetic character field is interpreted as a character string and assigned
to the target string according to the rules for converting string lengths. If the
arithmetic character field is complex, the real and imaginary parts are concat
enated before assignment to the target string. Insertion characters are included
in the target string.

BIT
Bit 0 becomes the character 0 and bit 1 becomes the character 1. A null bit
string becomes a null character string. The generated character string is
assigned to the target string according to the rules for converting string lengths.

GRAPHIC
DBCS to SBCS conversion is possible only if there is a corresponding SBCS
character. Otherwise, a CONVERSION condition is raised.

82 PUI Package/2 Language Reference

Target: BIT

Source:

FIXED BINARY, FIXED DECIMAL,
FLOAT BINARY, and FLOAT DECIMAL

Source-to-target rules

If necessary, the arithmetic value converts to binary and both the sign and any
fractional part are ignored. (If the arithmetic value is complex, the imaginary
part is also ignored.) The resulting binary value is treated as a bit string. It is
assigned to the target according to the rules for string assignment.

FIXED BINARY (p1 ,q1)
The length of the intermediate bit string is given by:

min(n,(pl-ql))

If (p1-q1) is negative or zero, the result is a null bit string.

The following examples show the intermediate strings that are generated from
several fixed-point binary values:

Precision Value String

(1)

(3)

(4,2)

1
-3

1.25

FIXED DECIMAL (p1 ,q1)

'1'8
'811 '8
'81'8

The length of the intermediate bit string is given by:

min(n,CEIL((pl-ql)*3.32))

If (p1-q1) is negative or zero, the result is a null bit string.

The following examples show the intermediate strings that are generated from
several fixed-point decimal values:

Precision Value String

(1)
(2, 1)

1
1.1

FLOAT BINARY (p1)

'8881'8
'8881'8

The length of the intermediate bit string is given by:

min(n,pl)

FLOAT DECIMAL (p1)
The length of the intermediate bit string is given by:

min(n,ceil(pl*3.32))

Arithmetic character PICTURE
Data is first interpreted as decimal with scale and precision determined by the
corresponding PICTURE specification. The item then converts according to the
rules given for FIXED DECIMAL or FLOAT DECIMAL to BIT.

CHARACTER
Character O becomes bit 0 and character 1 becomes bit 1. Any character other
than 0 or 1 raises the CONVERSION condition. A null string becomes a null bit
string. The generated bit string, which has the same length as the source char-

Chapter 5. Data conversion 83

Examples

Examples

acter string, is assigned to the target according to the rules for string assign
ment.

GRAPHIC
Graphic variables and strings are converted to CHARACTER, and then follow
the rules for character source described on page 83.

Target: GRAPHIC

Nongraphic source is first converted to character according to the rules in Target:
Character on page 81. The resultant character string is then converted to a DBCS
string.

DECIMAL FIXED to BINARY FIXED with fractions
dcl I fixed bin(31,5) init(l);

I= I+.1;

The value of I is now 1.0625. This is because .1 is converted to FIXED
81NARY(5,4), so that the nearest binary approximation is 0.0001 B (no rounding
occurs). The decimal equivalent of this is .0625. The result achieved by specifying
.1000 in place of .1 would be different.

Arithmetic-to-bit-string conversion
DCL A bit(l),

D bit(5);
A=l; I* A has value '8'8 */
D=l; /* D has value '88818'8 */
D='l'B; /* D has value '18888'8 */
if A=l then go to Y;

else go to X;

The branch is to X, because the assignment to A resulted in the following sequence
of actions:

1. The decimal constant, 1, has the attributes FIXED DECIMAL (1,0) and is
assigned to temporary storage with the attributes FIXED 81N(4,0) and the value
00018.

2. This value now converts to a bit string of length (4), so that it becomes
'0001 '8.

3. The bit string is assigned to A. Since A has a declared length of 1, and the
value to be assigned has acquired a length of 4, truncation occurs at the right,
and A has a final value of '0' 8.

For the comparison operation in the IF statement, '0' B and 1 convert to FIXED
BINARY and compared arithmetically. They are unequal, giving a result of false for
the relationship A=1.

84 PUI Package/2 Language Reference

In the first assignment to D, a sequence of actions similar to that described for A
takes place, except that the value is extended at the nght with a zero, because D
has a declared length that is 1 greater than that of the assigned value.

Arithmetic-value-to-character-string conversion
In the following example, the three blanks are necessary to allow for the possibility
of a minus sign, a decimal or binary point, and provision for a single leading zero
before the point:

dcl A char(4),
Behar(?);

A='8'; /*A has value '8bbb'*/
A=8; /*A has value 'bbb8'*/
B=l234567; /*B has value 'bbbl234'*/

A conversion error
dcl Ctlno char(8) init('8');
do I=l to 188;

Ctlno=Ctlno+l;

end;

For this example, FIXED DECIMAL precision 15 was used for the implementation
maximum. The example raises the CONVERSION condition because of the fol
lowing sequence of actions:

1. The initial value of CTLNO, that is, 'Obbbbbbb' converts to FIXED
DECIMAL(15,0).

2. The decimal constant, 1, with attributes FIXED DECIMAL(1,0), is added; in
accordance with the rules for addition, the precision of the result is (16,0).

3. This value now converts to a character string of length 18 in preparation for the
assignment back to CTLNO.

4. Because CTLNO has a length of 8, the assignment causes truncation at the
right; thus, CTLNO has a final value that consists entirely of blanks. This value
cannot be successfully converted to arithmetic type for the second iteration of
the loop.

Chapter 5. Data conversion 85

86 PUI Package/2 Language Reference

©Copyright IBM Corp. 1992

Chapter 6.

Chapter 6. Program organization
Programs

Program structure .
Program activation
Program termination

Blocks
Block activation
Block termination

Packages
PACKAGE statement

Procedures
PROCEDURE statement
Parameter attribute

Parameters and array arguments
Procedure activation
Procedure termination
Recursive procedures

Program Organization

89
89
89
90
90
91
91
92
92
92
94
94
95
96
98
99

Effect of recursion on automatic variables
100
101
101
102
103
103
104
106
106
107
108
108
109
109
109
110
110
111
111
111
111
112
112
113
114

Dynamic loading of an external procedure
Rules
FETCH statement
RELEASE statement

Subroutines
Built-in subroutines

Functions
Examples
Built-in functions . . .

Passing arguments to procedures
Using BYVALUE and BYADDR
Dummy arguments

Deriving dummy argument attributes
Rules for dummy arguments

Passing arguments to the MAIN procedure
Begin blocks

BEGIN statement
Begin block activation .
Begin block termination

Entry data
Entry constants
Entry variables
ENTRY attribute
OPTIONAL attribµte
LIMITED attribute
Generic entries
GENERIC attribute

Entry invocation or entry value
CALL statement
RETURN statement

Return from a subroutine
Return from a function

' 116
117
118
118
120
120
121
121
121

87

OPTIONS option and attribute
RETURNS option and attribute

88 PUI Package/2 Language Reference

121
126

Program organization

Chapter 6. Program organization

Programs

This chapter discusses how statements can be organized into different kinds of
blocks to form a PUI program, how control flows among blocks, and how different
blocks can make use of the same data.

Proper division of a program into blocks simplifies the writing and testing of the
program, particularly when many programmers are writing it. Proper division can
also result in more efficient use of storage, since automatic storage is allocated on
entry to the block in which it is declared and released when the block is terminated.

Program structure

© Copyright IBM Corp. 1992

PUI is a block-oriented language, consisting of packages, procedures, begin
blocks, statements, expressions, and built-in functions.

A PUI application consists of one or more separately loadable entities, known as a
load module. An OS/2 load module has the file extension of EXE or DLL. Each
load module may consist of one or more separately compiled entities, known as a
compilation unit (CU). Unless otherwise stated, a program refers to a PUI applica
tion or a compilation unit.

A compilation unit is a PUI PACKAGE or an external PROCEDURE. Each
package may contain zero or more procedures, some or all of which may be
exported. A PUI external or internal procedure contains zero or more blocks. A
PUI block is either a PROCEDURE or a BEGIN block, which contains zero or more
statements and/or zero or more blocks.

A PUI block allows you to produce highly-modular applications, because blocks can
contain declarations that define variable names and storage class. Thus, you can
restrict the scope of a variable to a single block or a group of blocks, or can make it
known throughout the compilation unit or a load module.

By giving you freedom to determine the degree to which a block is self-contained,
PUI makes it possible to produce blocks that many compilation units and applica
tions can share, leading to code reuse.

Figure 24 on page 90 shows an application structure.

89

Program activitation

!Load Modulej

!Load Modulej+-------

Compilation
Unit

Compilation
Unit

Figure 24. A PU/ application structure

Package

Level-1
Procedure

Level-1
4-l------1-- Procedure

Packages are discussed in "Packages" on page 92.

Procedures are discussed in "Procedures" on page 94.

Begin blocks are discussed in "Begin blocks" on page 111.

Program activation

External
Procedure

Internal
Procedures

t
I BEGIN Blocks I

t
l

Other
Statements

A PUI program becomes active when a calling program invokes the main proce
dure. This calling program usually is the operating system, although it could be
another program. The main procedure is the external procedure for which the
PROCEDURE statement has the OPTIONS(MAIN) specification. In the following
example, Contrl is the main procedure and it invokes other external procedures in
the program. The main procedure remains active for the duration of the program.

Contrl: procedure options(main);
call A;
ca 11 B;
ca 11 C;

end contrl ;

Program termination
A program is terminated when the main procedure is terminated. Whether termi
nation is normal or abnormal, control returns to the calling program. In the previous
example, when control transfers from the C procedure back to the Cont r l proce
dure, Contrl terminates. See "Procedure termination" on page 99 for more infor
mation.

90 PUI Package/2 Language Reference

Blocks

Blocks

A block is a delimited sequence of statements that does the following:

• Establishes the scope of names declared within it

• Limits the allocation of automatic variables

• Determines the scope of DEFAULT statements (as described in "Defaults for
attributes" on page 141) .

The kinds of blocks are:

• Package
• Procedure
• Begin.

These blocks can contain declarations that are treated as local definitions of
names. This is done to establish the scope of the names and to limit the allocation
of automatic variables. These declarations are not known outside their own block,
and the names cannot be referred to in the containing block. See "Scope of
declarations" for more information.

Storage is allocated to automatic variables upon entry to the block where the
storage is declared, and is freed upon exit from the block. See "Scope of
declarations," for more information.

Block activation
Each block plays the same role in the allocation and freeing of storage and in
delimiting the scope of names. How activation occurs is discussed in "Procedures"
on page 94 and "Begin blocks" on page 111. Packages are neither activated nor
terminated.

During block activation, the following are performed:

• Expressions that appear in declare statements are evaluated for extents and
initial values (including iteration factors).

• Storage is allocated for automatic variables. Their initial values are set if speci
fied.

• Storage is allocated for dummy arguments and compiler-created temporaries
that might be created in this block.

Initial values and extents for automatic variables must not depend on the values or
extents of other automatic variables declared in the same block. For example, the
following initialization can produce incorrect results for J and K:

dcl I init(lG).J init(K),K init(l);

Declarations of data items must not be mutually interdependent. For example, the
following declarations are invalid:

dcl A(B(l)), B(A(l));

dcl D(E(l)), ECF(l)), F(O(l));

Errors can occur during block activation, and the ERROR condition (or other condi
tions) can be raised. If so, the environment of the block might be incomplete. In

Chapter 6. Program organization 91

Block termination

particular, some automatic variables might not have been allocated. Statements
referencing automatic variables executed after the ERROR condition has been
raised may reference unallocated storage. The results of referring to unallocated
storage are undefined.

Block termination

Packages

There are a number of ways a block can be terminated. How termination occurs is
discussed in "Procedures" on page 94 and "Begin blocks" on page 111. Packages
are neither activated nor terminated.

During block termination:

• The ON-unit environment is re-established as it existed before the block was
activated.

• Storage for all automatic variables allocated in the block is released.

A package is a block that can only contain declarations, default statements, and
procedure blocks. The package forms a name scope that is shared by all declara
tions and procedures contained in the package, unless the names are declared
again. Some or all of the level 1 procedures can be exported and made known
outside of the package as external procedures. A package can be used for imple
menting multiple entry point applications.

PACKAGE statement
The syntax for the PACKAGE statement is:

••-condition-prefix-:-PACKAGE___,.--------------...--

LEXPORTS-<----cfj procedure &iJ
• ;t+ declare-statement I

Lopti ons-opti onJ defaul t-statement__J
procedure-statementJ

•-END
L 7 abe 7 -prefixJ

procedure:
f--procedure-namt-'-e ---.------------.-------------1

LEXTERNAL(environment-name)J

condition-prefix
Condition prefixes specified on a PACKAGE statement apply to all procedures
contained in the package unless overridden on the PROCEDURE statement.
For more information on condition prefixes, refer to "Condition prefixes" on
page 302.

name
The name of the package.

92 PUI Package/2 Language Reference

PACKAGE statement

EXPORTS
Specifies ihai all (EXPORTS(*)) or the named procedures arc to be experted
and thus made externally known outside of the package.

procedure name
Is the name of a level 1 procedure within the package.

EXTERNAL (environment name)
is a scope attribute discussed in "Scope of declarations" on page 132.

options option
For OPTIONS options applicable to a package statement, refer to "OPTIONS
option and attribute" on page 121.

declare statement
All variables declared within a package but outside any contained level 1 proce
dure must have the storage class of static, based, or controlled. Automatic
variables are not allowed. Default storage class is STATIC. Refer to
Chapter 7, "Data declaration" on page 128.

default statement
Refer to "Defaults for attributes" on page 141 .

procedure statement
Refer to "PROCEDURE statement" on page 94.

An example of the package statement appears in Figure 25.

*Process S ACF) LANGLVLCSAA2) LIMITSCEXTNAMEC31)) NUMBER;
Package_Demo: Package exports (Factorial);

/***/
I* Common Data */
/***/

Del n fixed bin(l5);
Del message char(*) value('The factorial of ');

/***/
I* Main Program */
/***/

Factorial: Proc Options (main);

Del result fixed bin(31);

put skip list('Please enter a number whose factorial ' I I
'must be computed ');

get list(n);

result= Compute_factorial(n);

put list(message I I trim(n) I I ' is ' I I trim(result));

end Factorial;

Figure 25 (Part 1 of 2). Package statement

Chapter 6. Program organization 93

Procedures

Procedures

/***/
I* Subroutine */
/***/

Compute_factorial: proc (input) recursive returns (fixed bin(31));

dcl input fixed bin(15);

if input <= 1 then
return(l);

else
return(input*Compute_factorial(input-1));

end Compute_factorial;

end Package_Demo;

Figure 25 (Part 2 of 2). Package statement

A procedure is a sequence of statements delimited by a PROCEDURE statement
and a corresponding END statement. A procedure can be a main procedure, a sub
routine, or a function. An application must have exactly one external procedure
that has OPTIONS(MAIN). In the following example, the name of the procedure is
Name and represents the entry point of the procedure.

Name:
procedure;

end Name;

A procedure must have a name. A procedure block nested within another proce
dure or begin block is called an internal procedure. A procedure block not nested
within another procedure or begin block is called an external procedure. Level 1
exported procedures from a package also become external procedures. External
procedures can be invoked by othei pmcedUies in other compilation units. Proce
dures can invoke other procedures.

A procedure can be recursive, which means that it can be reactivated from within
itself or from within another active procedure while it is already active. You can
pass arguments when invoking a procedure.

For more information on these subjects, see the following sections:

• "Scope of declarations" on page 132
• "Subroutines" on page 104
• "Functions" on page 106
• "Passing arguments to procedures" on page 108.

PROCEDURE statement
A procedure statement identifies the procedure as a main procedure, a subroutine,
or a function. Parameters expected by the procedure and other characteristics are
also specified on the procedure statement.

94 PUI Package/2 Language Ref ere nee

Parameter attribute

The syntax for the PROCEDURE statement is:

11>11>-entry-label:-PROCEDURE L J + Lreturns-option-l
(-parameter__l_)

"'~L-op_t_i o-n-s--o-p-t 1-. o-nJ~~l-re-c-ur_s_i_on---a t_t_r_i b-u-teJ~~l-e-x-te-r-na-l--a-t_t_n_· b-ut-eJ~-;---+

..
1

statement----.-'--END
grou Lentry-labelJ
internal-procedur
begin-block-----'

Abbreviations: PROC for PROCEDURE

entry-label
Is the entry point to the procedure. External entries are explicitly declared
in the invoking procedure. Refer to "Entry data" on page 112 for more
information.

parameter
Refer to "Parameter attribute" and "Passing arguments to procedures" on
page 108.

returns-option
applies only to function procedures. Refer to "Functions" on page 106
and "RETURNS option and attribute" on page 126

options-option
Refer to "OPTIONS option and attribute" on page 121.

recursion-attribute
Refer to "Recursive procedures" on page 100.

external-attribute
Refer to "Scope of declarations" on page 132.

Parameter attribute
A parameter is contextually declared with the parameter attribute by its specification
in the PROCEDURE statement. The parameter should be explicitly declared with
appropriate attributes. The PARAMETER attribute may also be specified in the dec
laration. If attributes are not supplied in a DECLARE statement, default attributes
are applied. The parameter name must not be subscripted or qualified.

The syntax of the parameter attribute is:

11>11>-PARAMETER.-----------------------<11

Figure 10 on page 29, and the following discussion, describe the attributes that
can be declared for a parameter.

A parameter always has the INTERNAL attribute.

If the parameter is a structure or union, it must specify the level-1 name.

Chapter 6. Program organization 95

Parameter attribute

A parameter cannot have any storage class attributes except CONTROLLED. A
controlled parameter must have a controlled argument, and can also have the
INITIAL attribute.

Parameters used in record-oriented input/output, or as the base variable for
DEFINED items, must be in connected storage. The CONNECTED attribute must
be specified both in the declaration in the procedure and in the descriptor list of the
procedure entry declaration.

Parameters and array arguments
If an argument is an array, a string, or an area, the bounds of the array, the length
of the string, or the size of the area must be declared for the corresponding param
eter. The number of dimensions and the bounds of an array parameter, or the size
and length of an area or string parameter, must be the same as the current gener
ation of the corresponding argument.

Noncontrolled parameter extents: Extents of noncontrolled parameters must be
specified either by asterisks or by constants. When the actual extents could be
different for different occasions, each can be specified in a DECLARE statement by
an asterisk. When an asterisk is used, the extents are taken from the current gen
eration of the associated argument.

Controlled parameter extents: The extents of a controlled parameter can be
specified in a DECLARE statement either by asterisks or by element expressions.

Asterisk notation

Expression notation

When asterisks are used, extents of the controlled parameter
is taken from the current generation of the associated argu
ment. Any subsequent allocation of the controlled parameter
uses the same extents. Unless the argument in the calling
procedure is a controlled parameter, it must be declared with
nonrestricted expressions for its extents.

Each time the parameter is allocated, the expressions are
evaluated to give current extents for the new allocation.

Example of array argument with parameters: In Figure 26 on page 97, when
Subl is invoked, A and B, which have been allocated, are passed.

96 PUI Package/2 Language Reference

'Ynrror:Pss or('l'l num maroins(l.72):
Package:package exports(*);

Main: procedure options(Main);
declare (A(NA), BCNB), CCNC), DCND)) controlled;
declare (NA init(28), NB init(38), NC initOGG),

ND init(lGG)) fixed bin(31);
declare Subl entry((*) controlled, (*) controlled);
declare Sub2 entry((*) ctl, (*) ctl, fixed bin);
allocate A,B; /* a(28), b(38) */

Parameter attribute

display C'Genl: DIM(A)=' II dim(a) II',' II "DIM(B)=" II dim(b));
call Subl(A,B);
display ('Gen2: Allocn(A)=' II allocn(a) II ', ' II

'Allocn(B)=' I I allocn(b));
display ('Gen2: DIM(A)=' 11 dim(a) 11 ', ' 11 "DIM(B)=" 11 dim(b));
free A,B;
display ('Genl: Allocn(A)=' 11 allocn(a) 11 ', ' 11

'Allocn(B)=' I I allocn(b));
display ('Genl: DIM(A)=' II dim(a) II',' II "DIM(B)=" II dim(b));
free A,B;
display ('GenG: Allocn(A)=' I I allocn(a) I I ' ' I I

'Allocn(B)=' I I allocn(b));
call Sub2 (C,D,18);
display ('Genl: Allocn(C)=' I I allocn(c) I I ' ' I I

'Allocn(D)=' I I allocn(d));
display ('Genl: DIM(C)=' II dim(c) II',' II "DIM(D)=" II dim(d));
free C,D;
display ('Gen8: Allocn(C)=' I I allocn(c) I I '. ' I I

'Allocn(D)=' I I allocn(d));
end Main;

Subl: procedure (U,V);
dcl (U(UB), V(*)) controlled,

UB fixed bin(31);
display ('Genl: Allocn(U)=' 11 allocn(u) 11 ', ' 11

'Allocn(V)=' I I allocn(v));
display ('Genl: DIM(U)=' 11 dim(u) 11 ', ' 11 "DIM(V)=" 11 dim(v));
UB=2GG;
allocate U,V; /* u(2GG), v(38) */
display ('Gen2: Allocn(U)=' 11 allocn(u) 11 '. ' 11

'Allocn(V)=' I I allocn(v));
display C'Gen2: DIM(U)=' I I dim(u) I I ', ' I I "DIM(V)=" I I dim(v));

end Subl;

Sub2: procedure (X,Y,N);
declare (X(N),Y(N)) controlled,

N fixed bin;
display ('GenG: Allocn(X)=' 11 allocn(x) 11 ' ' 11

'Allocn(Y)=' I I allocn(y));
allocate X,Y; /* x(lG), y(lG) */
display ('Genl: Allocn(X)=' I I allocn(x) I I ' ' I I

'Allocn(Y)=' I I allocn(y));
display ('Genl: DIM(X)=' 11 dim(x) 11 '. ' 11 "DIM(Y)=" 11 dim(y));

end Sub2;

end Package;

Figure 26. Array argument with parameters

The ALLOCATE statement in Subl allocates a second generation of A and B. B has
the same bounds for both generations, and A has different bounds for the second
generation.

On return to Main, the first FREE statement frees the second generation of A and B
(allocated in Subl). The second FREE statement frees the first generation of A and
B (allocated in Main).

In Sub2, X and Y are declared with bounds that depend on the value of N. When X
and Y are allocated, their values determine the bounds of the allocated arrays.

Chapter 6. Program organization 97

Procedure activation

On return to Main from Sub2, the FREE statement frees the only generation of C and
D (allocated in Sub2).

Procedure activation
Sequential program flow passes around a procedure, from the statement before the
PROCEDURE statement to the statement after the END statement of that proce
dure. The only way that a procedure can be activated is by a procedure reference.
("Program activation" on page 90 tells how to activate the main procedure.) The
execution of the invoking procedure is suspended until the invoked procedure
returns control to it.

A procedure reference is the appearance of an entry expression in one of the fol
lowing contexts:

• Using a CALL statement to invoke a subroutine as described in "CALL
statement."

• Invoking a function as described in "Functions."

The information in this section is relevant to each of these contexts. However, the
examples in this chapter use CALL statements.

When a procedure reference occurs, the procedure containing the specified entry
point is said to be invoked. The point at which the procedure reference appears is
called the point of invocation and the block in which the reference is made is called
the invoking block. An invoking block remains active even though control is trans
ferred from it to the procedure it invokes.

When a procedure is invoked, arguments and parameters are associated and exe
cution begins with the first statement in the invoked procedure.

This procedure:

Readin: procedure;
statement-I
statement-2
statement-3

end readin;

can be activated by this entry reference:

call Readin;

The entry constant (Readi n) can also be assigned to an entry variable that is used
in a procedure reference. For example:

declare Readin entry,
Entl entry variable;

Entl = Readi n;
call Entl;
ca 11 Read in;

The two CALL statements have the same effect.

98 PUI Package/2 Language Reference

Procedure termination

Procedure termination
A procedure is terminated when, by some means other than a procedure reference,
control passes back to the invoking program, block, or to some other active block.

Procedures normally terminate when:

• Control reaches a RETURN statement within the procedure. The execution of
a RETURN statement returns control to the point of invocation in the invoking
procedure. If the point of invocation is a CALL statement, execution in the
invoking procedure resumes with the statement following the CALL. If the point
of invocation is a function reference, execution of the statement containing the
reference is resumed.

• Control reaches the END statement of the procedure. Effectively, this is equiv
alent to the execution of a RETURN statement.

Procedures abnormally terminate when:

• Control reaches a GO TO statement that transfers control out of the procedure.
The GO TO statement can specify a label in a containing block, or it can
specify a parameter that has been associated with a label argument passed to
the procedure.

• A STOP statement is executed.

• An EXIT statement is executed.

• The ERROR condition is raised and there is no established ON-unit for ERROR
or FINISH. Also, if one or both of the conditions has an established ON-unit,
ON-unit exit is by normal return, rather than by a GO TO statement.

• The procedure calls or invokes another procedure that terminates abnormally.

Transferring control out of a procedure using a GO TO statement can sometimes
result in the termination of several procedures and/or begin-blocks. Specifically, if
the transfer point specified by the GO TO statement is contained in a block that did
not directly activate the block being terminated, all intervening blocks in the acti
vation sequence are terminated.

Chapter 6. Program organization 99

Recursive procedures

In the following example:

A: procedure options(main);
statement-1
statement-2
B: begin;

statement-bl
statement-b2
ca 11 C;
statement-b3

end B;
statement-3
statement-4
C: procedure;

statement-cl
statement-c2
statement-c3
D: begin;

statement-dl
statement-d2
go to Lab;
statement-d3

end D;
statement-c4

end C;
statement-5

Lab: statement-6
statement-7

end A;

A activates B, which activates C, which activates D. In D, the statement go to Lab
transfers control to statement-6 in A. Since this statement is not contained in D, C,
or B, all three blocks are terminated; A remains active. Thus, the transfer of control
out of D results in the termination of intervening blocks B and C as well as the termi
nation of block D.

Recursive orocedures - - - - - - - - - .- - - - - -- -- - - -

An active procedure that is invoked from within itself or from within another active
procedure is a recursive procedure. Such an invocation is called recursion.

A procedure that is invoked recursively must have the RECURSIVE attribute speci
fied in the PROCEDURE statement. The syntax for the RECURSIVE attribute is
shown in "PROCEDURE statement" on page 94.

The environment (that is, values of automatic variables, and so on) of every invoca
tion of a recursive procedure is preserved in a manner analogous to the stacking of
allocations of a controlled variable (see "Controlled storage and attribute" on
page 201). Think of an environment as being pushed down at a recursive invoca
tion, and popped up at the termination of that invocation. A label constant in the
current block is always a reference to the current invocation of the block that con
tains the label.

If a label constant is assigned to a label variable in a particular invocation, and the
label variable is not declared within the recursive procedure, a GO TO statement
naming that variable in another invocation restores the environment that existed
when the assignment was performed, terminating the current and any intervening
procedures and begin blocks.

100 PUI Package/2 Language Reference

Effect of recursion on automatic variables

The environment of a procedure that was invoked from within a recursive procedure
oy means of an entry variable is ihe one ihat wati t;uneni when U1e entiy constant
was assigned to the variable. Consider the following example:

I=l;
call A; I* First invocation of A */

A: proc recursive;
declare Ev entry variable static;
if I=l then

do;
I=2;
Ev=B;
ca 11 A;

end;
else call Ev;

B: proc;
go to Out;

end B;
Out: end A;

/* 2nd invocation of A */

I* Invokes B with environment*/
/*of first invocation of A */

The GO TO statement in the procedure B transfers control to the END A statement in
the first invocation of A, and terminates B and both invocations of A.

Effect of recursion on automatic variables
The values of variables allocated in one activation of a recursive procedure must be
protected from change by other activations. This is arranged by stacking the vari
ables. A stack operates on a last-in, first-out basis. The most recent generation of
an automatic variable is the only one that can be referenced. Static variables are
not affected by recursion. Thus, they are useful for communication across recur
sive invocations. This also applies to automatic variables that are declared in a
procedure that contains a recursive procedure and to controlled and based vari
ables. In the following example:

A: proc;
dcl X;

B: proc recursive:
dcl Z,Y static;
call B;

end B;
end A;

A single generation of the variable X exists throughout invocations of procedure B.
The variable Z has a different generation for each invocation of procedure B. The
variable Y can be referred to only in procedure B and is not reallocated at each
invocation. (The concept of stacking variables is also of importance in the dis
cussion of controlled variables in "Controlled storage and attribute" on page 201)

Dynamic loading of an external procedure
A DLL can be dynamically fetched (loaded) or released (deleted) by a PUI program
using FETCH and RELEASE statements.

A procedure invoked by a procedure reference usually is resident in main storage
throughout the execution of the program. However, a procedure can be loaded into
main storage for only as long as it is required. The invoked procedure can be

Chapter 6. Program organization 101

Rules

dynamically loaded into, and dynamically deleted from, main storage during exe
cution of the calling procedure.

Dynamic loading and deletion of procedures is particularly useful when a called pro
cedure is not necessarily invoked every time the calling procedure is executed, and
when conservation of main storage is more important than a short execution time.

The PUI statements that initiate the loading and deletion of a procedure are
FETCH and RELEASE statements respectively.

The appearance of an entry constant in a FETCH statement indicates that the ref
~renced procedure needs to be loaded into main storage before it can be executed,
unless a copy already exists in main storage. Provided the name is referenced in a
FETCH statement, a procedure may also be loaded from the disk by:

• Execution of a CALL statement or the CALL option of an INITIAL attribute
• Execution of a function reference.

It is not necessary that control passes through a FETCH or RELEASE statement,
either before or after execution of the CALL or function reference.

Whichever statement loaded the procedure, execution of the CALL statement or
option or the function reference invokes the procedure in the normal way.

It is not an error if the procedure has already been loaded into main storage. The
fetched procedure can remain in main storage until execution of the whole program
is completed. Alternatively, the storage it occupies can be freed for other purposes
at any time by means of the RELEASE statement.

Rules
FETCH and RELEASE have the following restrictions:

• Only external procedures can be fetched.

• EXTERNAL CONDITION conditions are shared across the entire application
(main and fetched modules). EXTERNAL files are shared in a iimited way:

- A FILE constant in an 1/0 statement (for example, OPEN, CLOSE READ,
WRITE, PUT, or GET) is shared across the application.

- Any FILE conditions (for example, ENDFILE), must be trapped in one
linked unit.

Other external variables are shared only within a single module.

• A dynamic link library (DLL) contains one or more segments. Each segment
contains one or more fetched procedures. A segment is loaded into memory
when a procedure is fetched from a segment that is not already in memory.
The memory will not be freed until all of the fetched procedures within a DLL
have been released.

• Storage for STATIC variables in the fetched procedure is allocated when the
segment containing the procedure is loaded into memory. Each time a
segment is loaded into memory, the STATIC variables are given the initial
values indicated by their declarations.

• The FETCH and RELEASE statements must specify entry constants. An entry
constant for a fetched procedure may be assigned to an entry variable provided
the procedure has been fetched.

1 02 PUI Package/2 Language Reference

FETCH

FETCH statement
The FETCH statement checks main storage tor the named procedures. Proce
dures not already in main storage are loaded from the disk. COBOL, FORTRAN,
or C routines cannot be fetched. The syntax for the FETCH statement is:

.,..,._FETCH-------------------------

.,._L~ntry-cons tant.----.----------r---.----------.--~;----+"'
lsET(pointer-reference)_J [TITLE(char-expr)_J

entry-constant
specifies the name by which the procedure to be fetched is known to the
operating system. Details of the linking considerations for fetchable proce
dures are given in the PU/ Package/2 Programming Guide.

The entry-constant must be the same as the one used in the corre
sponding CALL statement, CALL option, or function reference.

SET SET specifies a pointer reference that will be set to the address of the
entry point of the loaded module. This option can be used to load tables
(non-executable load modules). It can also be used for entries that are
fetched and whose address needs to be passed to non-PUI procedures.

If the load module is later released by the RELEASE statement, and the
load module is accessed (through the pointer), unpredictable results can
occur.

TITLE If TITLE is specified, the load module name specified is searched for and
loaded. If it is not specified, the load module name used is the environ
ment name specified in the EXTERNAL attribute for the variable (if
present) or the entry constant name itself. For example:

dcl a entry;
dcl b entry ext('C');

fetch a title('X');
fetch a;
fetch b title('Y');
fetch b;

/* X is loaded
I* A is loaded
I* Y is loaded
I* C is loaded

*/
*I
*/
*/

For information on the types of title strings, refer to PU/ Package/2 Pro
gramming Guide.

RELEASE statement
The RELEASE statement frees the main storage occupied by procedures identified
by its specified entry-constants.

The syntax for the RELEASE statement is:

.,..,._RELEASE_L~ntry-constant=i_;----------------<11

entry-constant
must be the same as the one used in the corresponding CALL statement,
CALL option, or function reference, and FETCH statements.

Chapter 6. Program organization 103

Subroutines

Subroutines

Consider the following example, in which ProgA and ProgB are entry names of pro
cedures resident on disk:

Prag: procedure;

Ill fetch ProgA;
121 ca 11 ProgA;
131 release ProgA;

141 ca 11 ProgB;
go to Fin;

fetch ProgB;
Fin: end Prag;

Ill ProgA is loaded into main storage by the first FETCH statement

121 ProgA executes when the first CALL statement is reached.

131 Storage for ProgA is released when the RELEASE statement is executed.

141 ProgB is loaded and executed when the second CALL statement is reached,
even though the FETCH statement referring to this procedure is never exe
cuted.

The same results would be achieved if the statement FETCH ProgA were omitted.
The appearance of P rogA in a RELEASE statement causes the statement CALL
ProgA to load the procedure, as well as invoke it.

The fetched procedure is compiled and linked separately from the calling proce
dure. You must ensure that the entry constant specified in FETCH, RELEASE, and
CALL statements and options, and in function references, is the name known on
the disk. This is discussed in your PU/ Package/2 Programming Guide.

A subroutine is an internal or external procedure that is invoked by a CALL state
rnent. The syniax for a subroutine is in "Procedures" on page 94.

The arguments of the CALL statement are associated with the parameters of the
invoked procedure. The subroutine is activated, and execution begins. The argu
ments (zero or more) can be input only, output only, or both.

A subroutine is normally terminated by the RETURN or the END statement.
Control is then returned to the invoking block. A subroutine can be abnormally
terminated as described in "Procedure termination" on page 99.

A subroutine procedure must:

• Not have the RETURNS option on the procedure statement.

• Not be declared as an entry with the RETURNS attribute if it is an external
procedure.

• Be invoked using the CALL statement, not a function reference.

• Not return a result value using the RETURN statement.

The following examples illustrate the invocation of subroutines that are internal to
and external to the invoking block.

1 04 PUI Package/2 Language Reference

Example 1

Prma in: procedure;
declare Name character (28),
Item bit(5),

141 Outsub entry;
Ill ca 11 outsub (Name, Item);

end Prmain;

121 Outsub: procedure (A,B);
declare A character (28),
B bit(5);

131 put list (A,B);
end Outsub;

Subroutines

Ill The CALL statement in Prmai n invokes the procedure Outsub in 121 with the
arguments Name and I tern.

121 Outsub associates Name and Item passed from Prmai n with its parameters, A
and B. When Outsub is executed, each reference to A is treated as a refer
ence to Name. Each reference to B is treated as a reference to Item.

131 The put list (A, B) statement transmits the values of Name and Item to the
default output file, SYSPRINT.

141 In the declaration of Outs ub as an entry constant, no parameter descriptor has
to be given with the ENTRY attribute, because the attributes of the arguments
and parameters match. Also see "ENTRY attribute" on page 114.

Example 2

A: procedure;
declare Rate float (18),

Time fl oat(5),
Distance float(15),
Master file;

Ill call Readcm (Rate, Time, Distance, Master);

131 Readcm:
121 procedure (W,X,Y,Z);

declare W float (18),
X float(5),
Y float(15), Z file;

get File (Z) list (W,X,Y);
Y = W*X;
if Y > 8 then

return;
else

put list('ERROR READCM');
end Readcm;

end A;

Ill The arguments Rate, Time, Di stance, and Master are passed to the procedure
Read cm in 131 and associated with the parameters W, X, Y, and Z.

121 A reference to W is the same as a reference to Rate, X the same as Ti me, Y the
same as : Di stance, and Z the same as Master.

131 Note that Readcm is not explicitly declared in A. It is implicitly declared with the
ENTRY attribute by its specification on the PROCEDURE statement.

Chapter 6. Program organization 105

Built-in subroutines

Functions

Built-in subroutines
You can use built-in subroutines, which provide ready-made programming tasks.
Their built-in names can be explicitly declared with the BUil TIN attribute. (For
more information on the BUil TIN attribute refer to "Declaring built-in functions" on
page 371.)

Each built-in subroutine is described in Chapter 17, "Built-in functions,
pseudovariables, and subroutines."

A function is a procedure that has zero or more arguments and is invoked by a
function reference in an expression. The function reference transfers control to a
function procedure, and returns a value, and control, to replace the function refer
ence in the evaluation of the expression. Aggregates cannot be returned, and
ENTRY variables cannot be returned unless they have the LIMITED attribute. The
evaluation of the expression then continues.

A function procedure must:

• Have the RETURNS option on the procedure statement.

• Be declared as an entry with the RETU ANS attribute if it is an external proce
dure.

• Be invoked using a function reference. The CALL statement can be used to
invoke it only if the returned value has the OPTIONAL attribute. In this case,
the returned value is discarded upon return.

• Have matching attributes in the RETURNS option and in the RETURNS attri
bute.

• Use the RETURN statement to return control and the result value.

Whenever a function is invoked, the arguments in the invoking expression are
associated with the parameters of the entry point. Control is then passed to that
entry point. The function is activated and execution begins.

The RETURN statement terminates a function and returns the value specified in its
expression to the invoking expression. See "RETURN statement" on page 121 for
more information.

A function can be abnormally terminated as described in "Procedure termination" on
page 99. If this method is used, evaluation of the expression that invoked the
function is not completed, and control goe~ to the designated statement.

In some instances, a function can be defined so that it does not require an argu
ment list. In such cases, the appearance of an external function name within an
expression is recognized as a function reference only if the function name has been
explicitly declared as an entry name. See "Entry invocation or entry value" on
page 120 for additional information.

106 Pl/I Package/2 Language Reference

Examples

Functions

The following examples illustrate the invocation of functions that are internal to and
external to the invoking block.

Example 1: In the following example, the assignment statement contains a refer
ence to the Sprod function:

Mainp: procedure;
get list (A, B, C, Y);

Ill X = Y**3+Sprod(A,B,C);

121 Sprod: procedure (U,V,W)
returns (bin float(21));
dcl (U,V,W) bin float(53);
if U > V + W then

131 return (8);
else

131 return (U*V*W);
end Sprod;

Ill When Sprod is invoked, the arguments A, B, and C are associated with the
parameters U, V, and W in 121, respectively.

121 Sprod is a function because RETURNS appears in the procedure statement.
It is internal, and therefore needs no explicit entry declaration. If Sprod were
external, Mai np would contain an entry declaration with RETURNS specified.

131 Sprod returns either 0 or the value represented by U*V*W, along with control to
the expression in Mai np. The returned value is taken as the value of the func
tion reference, and evaluation of the expression continues.

Example 2

Mainp: procedure;
dcl Tprod entry (bin float(53),

bin float(53),
bin float(53),
label) external

returns (bin float(21));
get list (A,B,C,Y);
X = Y**3+Tprod(A,B,C,Labl);

Labl: call Errt;
end Mainp;

Tprod: procedure (U,V,W,Z)
returns (bin float(21));
dcl (U,V,W) bin float(53);
declare Z label;

if U > V + W then
go to Z;

else
return (U*V*W);

end Tprod;

Ill When Tprod is invoked, Labl is associated with parameter Z.

121 If U is greater than V + W, control returns to Mai np at the statement labeled
Labl. Evaluation of the assignment in Ill is discontinued.

131 If U is not greater than V + W, U*V*W is calculated and returned to Mai np in the
normal fashion. Evaluation of the assignment in Ill continues.

Chapter 6. Program organization 107

Built-in functions

Notice that Tprod is an external procedure. It has an explicit entry declaration in
Mai np, which contains RETURNS.

Built-in functions
Besides allowing programmer-written function procedures, PUI provides a set of
built-in functions. Built-in functions include commonly used arithmetic functions and
others, such as functions for manipulating strings and arrays. Built-in functions are
invoked in the same way that you invoke programmer-defined functions. However,
many built-in functions can return an array of values, whereas a programmer
defined function can return only an element value. The built-in names for built-in
functions can be explicitly declared with the BUil TIN attribute. (For more informa
tion on the BUil TIN attribute, refer to "Declaring built-in functions" on page 371.)

Each built-in function is described in Chapter 17, "Built-in functions,
pseudovariables, and subroutines."

Passing arguments to procedures
When a function or a subroutine is invoked, parameters are associated, from left to
right, with the passed arguments. The number of arguments and parameters must
be the same.

In general:

• Computational data arguments can be passed to parameters of any computa
tional data type.

• Program control data arguments must be pa.ssed to parameters of the same
type, with these exceptions.

- Pointer and offset can be passed to each other.

- LIMITED ENTRY can be passed to ENTRY, but ENTRY cannot be passed
to LIMITED ENTRY.

- An array of label constants cannot be used as an argument.

Arguments that require aggregate temporaries are not allowed. For example, the
following statements are invalid as arguments if a, b, or c is an array.

call X(cos(a))

call X(cos(b+c)

For example, instead of coding:

dcl A(l(:)) float bin(53), X entry;
call X(cos(A));

you could code:

dcl temp(hbound(A,1)) float bin(53);
temp = cos(A);
call X(temp);

Expressions in the argument list are evaluated in the invoking block before the sub
routine or function is invoked. A parameter has no storage associated with it. It is
merely a means of allowing the invoked procedure to access storage allocated in
the invoking procedure.

108 PUI Package/2 Language Reference

BYVALUE and BYADDR

Using BYV.ALUE and BVADDR
Unless an argument is passed BYVALUE, a reference to an argument, not its
value, is generally passed to a subroutine or function. This is known as passing
arguments by reference or BYADDR. A reference to a parameter in a procedure is
a reference to the corresponding argument. Any change to the value of a param
eter is actually a change to the value of the corresponding argument. However,
this is not always possible or desirable. Constants, for example, should not be
altered by an invoked procedure. For arguments that should not change, a dummy
argument containing the value of the original argument is passed. Any reference to
the parameter then is a reference to the dummy argument and not to the original
argument.

Dummy arguments
A dummy argument is created when the argument is any of the following:

• A constant.

• An expression with operators, parentheses, or function references.

• A variable whose data attributes or alignment attributes or connected attribute
are different from the attributes declared for the parameter.

This does not apply to noncontrolled parameters when only bounds, lengths, or
size differ and these are declared with asterisks

This does not apply when an expression other than a constant is used to define
the extents of a controlled parameter. In this case, argument and parameter
extents are assumed to match.

In the case of arguments and parameters with the PICTURE attribute, a
dummy argument is created unless the picture specifications match exactly,
after any repetition factors are applied. The only exception is that an argument
or parameter with a+ sign in a scaling factor matches a parameter or argument
without the +sign.

• A controlled string or area (because an ALLOCATE statement could change
the length or extent).

• A string or area with an adjustable length or size, associated with a noncon
trolled parameter whose length or size is a constant.

Deriving dummy argument attributes
PUI derives the attributes of a dummy arguments as follows:

• From the attributes declared for the associated parameter in an internal proce
dure.

• From the attributes specified in the parameter descriptor for the associated
parameter in the declaration of the external entry. If there was not a descriptor
for this parameter, the attributes of the constant or expression are used.

• From the extents (when specified by an asterisk in a declaration) of the argu
ment for the bounds of an array, the length of a string, or the size of an area.

Chapter 6. Program organization 109

Passing arguments to the MAIN procedure

Rules for dummy arguments
The following rules apply to dummy arguments:

• If a parameter is an element (that is, a variable that is neither a structure nor
an array) the argument must be an element expression.

• When a VARYING string element is passed to a NONVARYING parameter,
whose length is undefined (that is, specified by an asterisk), a dummy argu
ment with the current length of the original

• Entry variables passed as arguments are assumed to be aligned, so that no
dummy argument is created when only the alignments of argument and param
eter differ. See "Generic entries" on page 118, for a description of generic
name arguments for entry parameters.

• If the parameter is of the program control data type (except locator), the argu
ment must be a reference of the same data type.

• If a parameter is a locator (pointer or offset), the argument must be a locator.
If the types differ, a dummy argument is created. The parameter descriptor of
an offset parameter must not specify an associated area.

• A noncontrolled parameter can be associated with an argument of any storage
class. However, if more than one generation of the argument exists, the
parameter is associated only with that generation existing at the time of invoca
tion.

• If the parameter is controlled, you must explicitly state this in the parameter
descriptor for the ENTRY declaration.

In addition, a controlled parameter must always have a corresponding con
trolled argument that cannot be subscripted, cannot be an element of a struc
ture, and cannot cause a dummy to be created. If more than one generation of
the argument exists at the time of invocation, the parameter corresponds to the
entire stack of generations in existence. Consequently, at the time of invoca
tion, a controlled parameter represents the current generation of the corre
sponding argument. A controlled parameter can be allocated and freed in the
invoked procedure, allowing the manipulation of the allocation stack of the
associated argument.

If the extents of the controlled parameter are specified as asterisks or nonre
stricted expressions, the original declaration must have extents declared as
nonrestricted expressions.

Passing arguments to the MAIN procedure
The PROCEDURE statement for the main procedure can have a parameter list.
Such parameters require no special considerations in PUI. However, you must be
aware of any requirements of the invoking program (for example, not to use a
parameter as the target of an assignment).

When the invoking program is the operating system, a single argument is passed to
the program. If this facility is used, the parameter must be declared as a VARYING
character string within the procedure. The current length is set equal to the argu
ment length at run-time. In the following example:

Tom: proc (Param) options (main);
dcl Param char(188) varying;

storage is allocated only for the current length of the argument.

110 PUI Package/2 Language Reference

Begin blocks

Begin blocks

When the MAIN and NOEXECOPS options are specified, the main procedure can
have a single parameter that 1s a VARYING CHARACTER siring. The parameter
passes as is, and a descriptor is set up. (The slash (/) symbol, if contained in the
string, is treated as part of the string). For example:

main: proc(Parm) options(main noexecops);
dcl Parm char(n) varying;

A begin block is a sequence of statements delimited by a BEGIN statement and a
corresponding END statement. For example:

B: begin;
statement-1
statement-2

statement-n
end B;

BEGIN statement
The BEGIN statement and a corresponding END statement delimit a begin block.

The syntax for the BEGIN statement is:

.... -BEGIN ;------------------
lapti ons-opti onJ

options-option
For the BEGIN block options, refer to "OPTIONS option and attribute" on
page 121.

Begin block activation
Begin blocks are activated through sequential flow or as a unit in an IF, ON,
WHEN, or OTHERWISE statement.

You can transfer control to a labeled BEGIN statement by issuing the GO TO state
ment.

Begin block termination
A begin block is terminated when control passes to another active block by some
means other than a procedure reference. The methods are:

• The END statement for the begin block is executed. Control continues with the
statement physically following the END, except when the block is an ON-unit.

• A GO TO statement within the begin block (or within any block internal to it) is
executed. Control transfers to the point outside the block.

• A STOP or an EXIT statement is executed.

• Control reaches a RETURN statement that transfers control out of the begin
block and out of its containing procedure. A RETURN statement in a begin
block cannot contain an expression.

Chapter 6. Program organization 111

Entry data

Entry data

A GO TO statement can also terminate other blocks if the transfer point is con
tained in a block that did not directly activate the block being terminated. In this
case, all intervening blocks in the activation sequence are terminated. For an
example of this, see the example in "Procedure termination" on page 99.

The entry data can be an entry constant or the value of an entry variable.

An entry constant is a name prefixed to a PROCEDURE statement, or a name
declared with the ENTRY attribute and not the VARIABLE attribute. It can be
assigned to an entry variable. In the following example, P, El, and E2 are entry
constants. Ev is an entry variable.

P: procedure;
declare Ev entry variable,
(El,E2) entry;

Ev = El;
call Ev;
Ev = E2;
call Ev;

The first CALL statement invokes the entry point El. The second CALL invokes the
entry point E2.

The following example declares F (5), a subscripted entry variable.

The five entries A, B, C, O, and E are each invoked with the parameters X, Y, and Z.

declare (A,B,C,0,E) entry,
declare F(5) entry variable initial (A,B,C,0,E);
do I = 1 to 5;

call F(l) (X,Y,Z);
end;

\tVhen an entry constant that is an entry point of an internal procedure is assigned
to an entry variable, the assigned value remains valid only as long as the block that
the entry constant was internal to remains active (and, for recursive procedures,
remains current).

Entry constants
The appearance of a label prefix to a PROCEDURE statement explicitly declares
an entry constant. A parameter-descriptor list is obtained from the parameter dec
larations, if any, and by defaults.

External entry constants must be explicitly declared. This declaration:

• Defines an entry point to an external procedure.

• Optionally specifies a parameter-descriptor list (the number of parameters and
their attributes), if any, for the entry point.

• Specifies the attributes of the value that is returned by the procedure if the
entry is a function.

112 PUI Package/2 Language Reference

Entry variables

Entry variables

The syntax for an entry constant is:

.,..,._ENTRY
L(parameter-descriptor- l f st)J lRETURNS-attribute:J

"'--...L-o_P_TI_O_N S-(-c-ha_r_a c-t-e r-i-s t-i-c--l-i s-t-)]-,..--.....,[,.---E X_T_ER_N-AL-(-en_v_i r-o-nm_e_n_t --n-am_e_)J--r------~ .,.

The attributes can appear in any order.

ENTRY attribute
For complete ENTRY attribute syntax, refer to "ENTRY attribute" on
page 114.

OPTIONS attribute
For complete OPTIONS attribute syntax, refer to "OPTIONS option and
attribute" on page 121.

RETURNS attribute
For complete RETURNS attribute syntax, refer to "RETURNS option and
attribute" on page 126.

EXTERNAL attribute
For a complete description of the EXTERNAL attribute refer to "INTERNAL
and EXTERNAL attributes" on page 134.

An entry variable can contain both internal and external entry values. It can be part
of an aggregate. For structuring and array dimension attributes, refer to "Arrays" on
page 144 and "Structures" on page 147.

The syntax for an entry variable is:

.,..,._ENTRY
L(parameter-descriptor- l ist)J loPTIONS(characteristic-list)]

"' lvARIABLEJ luMnrnJ LRETURNS-attribute:J

.. ---.-----------.-----------------~--
LExTERNAL(environment-name)J

The options can appear in any order.

ENTRY attribute
Refer to "ENTRY attribute" on page 114.

OPTIONS attribute
Refer to "OPTIONS option and attribute" on page 121.

VARIABLE attribute
The VARIABLE attribute establishes the name as an entry variable. This
variable can contain entry constants and variables. Refer to "VARIABLE
attribute" on page 48 for syntax information.

LIMITED attribute
Refer to "LIMITED attribute" on page 117.

Chapter 6. Program organization 113

ENTRY

RETURNS attribute
Refer to "RETURNS option and attribute" on page 126.

EXTERNAL attribute
Refer to "Scope of declarations" on page 132.

ENTRY attribute
The ENTRY attribute specifies that the name being declared is either an external
entry constant, or an entry variable. It also describes the attributes of the parame
ters of the entry point.

The syntax for the ENTRY attribute is:

11>11>-ENTRY-------------------------

II>-...-------------------------.----.~~

L(+j parameter-descriptor H structure-union-descriptor ~)J
parameter-descriptor:

f---c!=attribut

ALIGNED
UNALIGNED

structu re-u n ion-descriptor:

OPTIONAL

~1 + I , leve1__,+...,..[___ --.-Ll---------1
lattributeJ loPTIONALJ attribute.J

ENTRY The ENTRY attribute, without a parameter descriptor list, is implied by the
RETURNS attribute.

parameter-descriptor
A parameter descriptor list can be given to describe the attributes of the
parameters of the associated external entry constant or entry variable. It
is used for argument and parameter attribute matching and the creation of
dummy arguments.

If no parameter descriptor list is given, the default is for the argument attri
butes to match the parameter attributes. Thus, the parameter descriptor
list must be supplied if argument attributes do not match the parameter
attributes.

Each parameter descriptor corresponds to one parameter of the entry
point invoked and, if given, specifies the attributes of that parameter.

The parameter descriptors must appear in the same order as the parame
ters they describe. If a descriptor is absent, the default is for the argument
to match the parameter.

114 PUI Package/2 Language Ref ere nee

If a descriptor for a parameter is not required, the absence of the
descriptor must be indicated by an a.sterisk. ror example:

entry(character(l8),*,*,fixed dee) Indicates four arguments.

entry(*)

entry(

entry

entry(float binary,*)

Indicates one argument.

Specifies that the entry name must never
have any arguments.

Specifies that it can have any number of
arguments.

Indicates two arguments.

ENTRY

attribute

*

The attributes can appear in any order in a parameter descriptor. For an
array parameter-descriptor, the dimension attribute must be the first speci
fied.

An asterisk specifies that, for that parameter, any data type is allowed.
The valid attributes following the asterisk are:

• ALIGNED or UNALIGNED
• ASSIGNABLE or NONASSIGNABLE
• BYADDR or BYVALUE
• CONNECTEDorNONCONNECTED
• OPTIONAL

No conversions will be done.

OPTIONAL
is discussed in "OPTIONAL attribute" on page 116.

structure-union-descriptor
For a structure union descriptor, the descriptor level numbers need not be
the same as those of the parameter, but the structuring must be identical.
The attributes for a particular level can appear in any order.

Defaults are not applied if an asterisk is specified. For example, in the following
declaration defaults are applied only for the second parameter.

dcl X entry(* optional, aligned); /*defaults applied for 2nd parm */

Extents (lengths, sizes, and bounds) in parameter descriptors must be specified as
constants or as asterisks. Controlled parameters must have asterisks.

Chapter 6. Program organization 115

OPTIONAL

RETURNS attribute implies the ENTRY attribute. For example:

Example parameter descriptors

Test: procedure (A,B,C,D,E,F);

declare A fixed decimal (5),
B float binary (21),
C pointer,
1 0,

2 p'
2 o.

3 R fixed decimal,
1 E,

2 X,
2 Y,

3 Z,
F(4) character (18);

end Test;

Declarations for example descriptors

declare Test entry

* '

(decimal fixed (5),
binary float (21),

1,
2,
2,
3 decimal fixed,

* ' (4) char(l8));

In the previous example, the parameter C, and the structure parameter E do not
have descriptors.

OPTIONAL attribute
OPTIONAL can be specified as part of the parameter-descriptor list or as an attri
bute in the parameter declaration.

OPTIONAL arguments can be omitted in calls and function references by specifying
an asterisk for the argument. An omitted item can be anywhere in the argument
list, including at the end. However, the omitted item is counted as an argument.
With its inclusion in an entry, the number of arguments must not exceed the
maximum number allowed for the entry.

Using OPTIONAL and BYVALUE for the same item is invalid.

The receiving procedure can use the OMITTED built-in function to determine if an
OPTIONAL parameter/argument was omitted in the invocation of the entry. (For
more information on the OMITTED built-in function, refer to "OMITTED" on
page 418.)

116 PUI Package/2 Language Ref ere nee

LIMITED

Figure 27 shows both valid and invalid CALL statements for the procedure Vrtn.
Vrtn determines if OPTIONAL parameters were omitted, and takes the appropriate
action.

Caller: proc;
dcl Vrtn entry (

fixed bin,
ptr optional,
fl oat,
* opt i on al) ;

/* The following calls are valid: */

call Vrtn(l8, *, 15.5, 'abed');
call Vrtn(lG, *, 15.5, *);
call Vrtn(lG, addr(x), 15.5, *);

/* The following calls are invalid: */

call Vrtn(lG, addr(x), *, 'display');
call Vrtn(lG, addr(x), 15.5);
call Vrtn(*, addr(x));
call Vrtn(lG,addr(x));
call Vrtn(lG);
call Vrtn;

end Call er;

Vrtn: proc (Fb, P, Fl, Cl);
de l Fb fixed bin,

P ptr optional,
Fl float,
Cl char(8) optional;

if •omitted(Cl) then display (Cl);
if •omitted(P) then P=P+lG;

end;

Figure 27. Valid and invalid call statements

LIMITED attribute
The LIMITED attribute indicates that the entry variable will have only non-nested
entry constants as values. A entry variable that is not LIMITED can have entry
constants as values.

A LIMITED static entry variable may be initialized with the value of a non-nested
entry constant, thus permitting generation of more efficient code. It also uses less
storage than a non-LIMITED entry variable.

The syntax for the LIMITED attribute is:

~~~LIMITED ~ 

Chapter 6. Program organization 117 



Generic entries 

Generic entries 

Example: 

Example: proc options( reorder reentrant); 
dcl (Read, Write) entry; 
dcl FuncRtn(2) entry limited 

static init (Read, Write); 

dcl (prtl) entry; 
dcl PrtRtn(2) entry variable limited 

static init (Prtl, /* legal */ 

Prt2: proc; 

end Prt2; 
end Example; 

Prt2); /* illegal */ 

A generic entry declaration specifies a generic name for a set of entry references 
and their descriptors. During compilation, invocation of the generic name is 
replaced by one of the entries in the set. 

GENERIC attribute 
The generic name must be explicitly declared with the GENERIC attribute. 

The syntax for declaring generic entry data is: 

11>-11>--generjc-name-GENERIC-(------------------

r· •. 11>--en try- ref erence-WHEN-(--r--'-.__,_ ________ ...,..........~ __ ....___ __ _ L* y generic-descriptor ~ 

II'- )-·-------------

l,-entry-reference-OTHERWISEJ ' 

generic-descriptor: 
f-data -attd but es 

l_ALIGNED___J l_ASSIGNABLE_____J l_CONNECTED_____J 
l_UNALIGNED_J l_NONASSIGNABLE__Lll_J l_NONCONNECTED__Lll_J 

11>- [OPTIONAL] 

Note: 
1 If specified, this keyword is ignored. 

Abbreviation: OTHER for OTHERWISE 

For the general declaration syntax, see page "DECLARE statement" on page 129. 

entry-reference 
must not be subscripted or defined. The same entry-reference can appear 
more than once within a single GENERIC declaration with different lists of 
descriptors. 

generic-descriptor 
corresponds to a single argument. It specifies an attribute that the corre
sponding argument must have so that the associated entry reference can 
be selected for replacement. 

118 PUI Package/2 Language Reference 



GENERIC attribute 

Structures or unions cannot be specified. 

Where a descriptor is not required, its absence must be indicated by an 
asterisk. 

The descriptor that represents the absence of all arguments in the 
invoking statement is expressed by omitting the generic descriptor in the 
WHEN clause of the entry. It has the form: 

generic( ... entryl when( ) ... ) 

data-attributes 
The data attributes are listed in "Data types and attributes" on page 25. 

ALIGNED and UNALIGNED 
are discussed in "ALIGNED and UNALIGNED attributes" on page 139. 

ASSIGNABLE and NONASSIGNABLE 
are discussed in "ASSIGNABLE and NONASSIGNABLE attributes" on 
page 216. 

CONNECTEDandNONCONNECTED 
are discussed in "CONNECTED and NONCONNECTED attributes" on 
page 217. 

OPTIONAL 
is discussed in "OPTIONAL attribute" on page 116. 

When an invocation of a generic name is encountered, the number of arguments 
specified in the invocation and their attributes are compared with descriptor list of 
each entry in the set. The first entry reference for which the descriptor list matches 
the arguments both in number and attributes replaces the generic name. 

In the following example, an entry reference that has exactly two descriptors with 
the attributes DECIMAL or FLOAT, and BINARY or FIXED is searched for. 

declare Cale generic ( 
Fxdcal when (fixed.fixed), 
Flocal when (float.float), 
Mixed when (float.fixed), 
Error otherwise); 

Del X decimal float (6), 
Y binary fixed (15,8); 

Z = X+Calc(X,Y); 

If an entry with the exact number of descriptors with the exact attributes is not 
found, the entry with the OTHERWISE clause is selected if present. In the pre
vious example, Mixed is selected as the replacement. 

In a similar manner, an entry can be selected based on the dimensionality of the 
arguments. 

dcl D generic (01 when((*))), 
02 when((*,*))), 

A( 2), 
8(3, 5); 

call D(A); 
call 0(8); 

/* 01 selected because A has one dimension */ 
I* 02 selected because B has two dimensions */ 

Chapter 6. Program organization 119 



Entry invocation or entry value 

If all of the descriptors are omitted or consist of an asterisk, the first entry reference 
with the correct number of descriptors is selected. 

An entry expression used as an argument in a reference to a generic value only 
matches a descriptor of type ENTRY. If there is no such description, the program 
is in error. 

Entry invocation or entry value 
There are times when it may not be apparent whether an entry value itself will be 
used or the value returned by the entry invocation will be used. The following table 
and example help you understand which happens when. 

If the entry reference . . . 
Is a built-in function 

Has an argument list, even if null 

Is referenced in a CALL statement 

Has no argument list and is not refer
enced in a CALL statement 

It is ... 
Invoked 

Invoked 

Invoked 

Not Invoked 

In the following example, A is invoked, B( C) passes C as an entry value, and 
0( C() ) invokes C. 

dcl (A, B, C returns (fixed bin), 0) entry; 

call A; 
call B(C); 
call 0( C() ); 

I* A is invoked 
I* C is passed as an entry value 
I* C is invoked 

*I 
*I 
*I 

In the following example, the first assignment is invalid because it represents an 
attempt to assign an entry constant to an integer. The second assignment is valid. 

dcl P.. fixed bin, 
B entry returns ( fixed bin ); 

A= B; 
A= B(); 

CALL statement 
The CALL statement invokes a subroutine. 

The syntax for the CALL statement is: 

entry-reference 
specifies that the name of the subroutine to be invoked is declared with 
the ENTRY attribute (discussed in "Entry data" on page 112). 

120 PUI Package/2 Language Reference 



RETURN 

generic-name 
specifies that the name ot the subroutine w be invoked is deda.reu wiU 1 

the GENERIC attribute (discussed in "Generic entries" on page 118). 

built-in name 
specifies the name of the subroutine to be invoked is declared with the 
BUil TIN attribute, (discussed in "Declaring built-in functions" on 
page 371). 

argument 
Element or an element expression or an aggregate to be passed to the 
invoked subroutine. See "Passing arguments to procedures" on 
page 108. 

References and expressions in the CALL statement are evaluated in the block in 
which the call is executed. This includes execution of any ON-units entered as the 
result of the evaluations. 

RETURN statement 
The RETURN statement terminates execution of the subroutine or function proce
dure that contains the RETURN statement and returns control to the invoking pro
cedure. Control is returned to the point immediately following the invocation 
reference. 

Return from a subroutine 
To return from a subroutine, the RETURN statement syntax is: 

11o11o-RETURN-;-----------------------+~ 

If the RETURN statement terminates the main procedure, the FINISH condition is 
raised prior to program termination. 

Return from a function 
To return from a function, the RETURN statement syntax is: 

11o11o-RETURN-( expression)-;------------------+~ 

The value returned to the function reference is the value of the expression speci
fied, converted to conform to the attributes specified in the RETURNS option of the 
procedure statement. You cannot specify an expression for the RETURN state
ment in a BEGIN block. 

OPTIONS option and attribute 
The OPTIONS option can be specified on PACKAGE, PROCEDURE, and BEGIN 
statements. The OPTIONS attribute can be specified on ENTRY declarations. It is 
used to specify processing characteristics that apply to the block and the invocation 
of a procedure. The options shown in the following syntax diagrams are listed 
alphabetically and discussed starting on page 123. 

Chapter 6. Program organization 121 



OPTIONS option and attribute 

BEGIN statement --------------------. 

ORDER ENOCHARGRAPH=iIC ) .,..,._oPTIONS(-+-E--=1-+--+--------~ ----------
REORoER-J CHARGRAPHIC 

ENTRY declaration ------------------~ 

11>11>-0PTI ONS-(----.-_.......,.--.-------------...,..........._.__,-)--."" 
ASSEMBLER ............... -----.----.-----.--__. 

RETCODE INTER 

DESCRIPTOR 
NODESCRIPTOR 

(OPTLINK) 

REDUCIBLE 

PACKAGE statement ---------------------. 

! ENOCHARGRAPH=il c 
11>11>-0PTIONS-( t - -

CHARGRAPH IC 

ORDER 

EREORDJ LREENTRANrJ )--+. 

I PROCEDURE statement 

I 11>11>-0PTIONS(--.-----------...- ----------

122 PUI Package/2 Language Reference 

ASSEMBLER~-----.----1 
MAIN--.-------.----1 

NOE XE COPS 
COBOL--------1 
FORTRAN----
BYADDR 
BYVALLJE_..._---------1 
NOCHARGRAPHIC 

CHARGRAPH IC 

DESCRIPTOR 
NODE SC RI PTOR 

( OPTLINK) 

REDUCIBLE 
REENTRANT---------1 
WINPROC-------



OPTIONS option and attribute 

The options are separated by blanks or commas. They can appear in any order. 

ASSEMBLER 
Abbreviation: ASM 

The ASSEMBLER option is a synonym for NODESCRIPTOR. 

BYADDR or BYVALUE 
specify how arguments and parameters are passed and received. 
BY ADDR is the default. 

BYVALUE may be specified only for scalar arguments and parameters that 
have known lengths and sizes. 

The BYVALUE and BYADDR attributes can also be specified in the 
description list of an entry declaration and in the attribute list of a param
eter declaration. Specifying BYVALUE or BYADDR in an entry or a 
parameter declaration overrides the option specified in an OPTIONS state
ment. 

The following examples show BYVALUE and BYADDR in both entry decla
rations and in the OPTIONS statement. The examples assume that the 
compiler option DEFAUL T(BYADDR) is in effect. 

Example 1 

dcl D entry (fixed bin byaddr, 
ptr, 
char(4) byvalue) 

options(byvalue); 

D: p roe ( I, P, C) 
options(byvalue); 

dcl I fixed bin byaddr, 
P ptr, 
C char(4) byvalue; 

call E2(P); 

Example 2 

dcl F entry (fixed bin byaddr, 
ptr, 
char(4) byvalue) 

options(byaddr); 

F: proc(I,P,C) options(byaddr); 
dcl I fixed bin byaddr; 
dcl P ptr byaddr; 
dcl C char(4) byvalue; 

call E3( C); 

dcl E4 entry(fixed bin byvalue); 

call E4(1); 

/* byvalue not needed 

/* P is passed BYADDR 

I* byaddr not needed 

I* byaddr not needed 
I* byaddr not needed 
I* byvalue needed 

*/ 

*I 

*I 

*I 
*I 
*/ 

/* C is passed by address */ 

/* is passed by value *I 

CHARGRAPHIC or NOCHARGRAPHIC 
Abbreviations: CHARG, NQCHARG 

The default for an external procedure is NOCHARG. Internal procedures and 
begin blocks inherit their defaults from the containing procedure. 

Chapter 6. Program organization 123 



OPTIONS option and attribute 

When CHARG is in effect, the following semantic changes occur: 

• All character string assignments are considered to be mixed character 
assignments. 

• STRINGSIZE condition causes MPSTR built-in function to be used. 
STRINGSIZE must be enabled for character assignment that can cause 
truncation and intelligent DBCS truncation is required. (For information on 
the MPSTR BUil TIN see "MPSTR" on page 415.) For example: 

Name: procedure options(chargraphic; 
dcl A char(5); 
dcl B char(8); 

I* the following statement ... 

(stringsize): A=B; 

/* ... is logically transformed into ... 

A=mpstr(B. 'vs'. length( A)); 

When NOCHARG is in effect, no semantic changes occur. 

COBOL 
has the same effect as NODESCRIPTOR. 

DESCRIPTOR or NODESCRIPTOR 

*/ 

*I 

indicates whether the procedure specified in the entry declaration or procedure 
statement will be passed a descriptor list when it is invoked. 

If DESCRIPTOR appears, the compiler will pass a descriptor list, if necessary. 

If NODESCRIPTOR appears, the compiler will not pass a descriptor list. 

If neither appears, DESCRIPTOR is assumed only when one of the invoked 
procedure1s parameters is a string, array, area, structure, or union. 

it is an error for NODESCRiPTOR to appear on a procedure statement or entry 
declaration in which any of the parameters or elements use the asterisk ( * ) to 
indicate the extents, length, or size, or if any parameter is NONCONNECTED. 

FORTRAN 
has the same effect as NODESCRIPTOR. 

LINKAGE 
specifies the calling convention to be used for the procedure. 

OPTLINK 
is the default, and provides a faster alternative to the SYSTEM linkage con
vention. It is not standard for all OS/2 applications, however. 

SYSTEM 
is the calling convention normally used for calls to the operating system. 
Although it is slower than OPTLINK, it is standard for all OS/2 applications 
and is used for calling OS/2 application programming interfaces. 

For more information about calling conventions, refer to PU/ Package/2 
Programming Guide. 

124 PUI Package/2 Language Reference 



OPTIONS option and attribute 

MAIN 
indicates that this external procedure ls the initial procedure of a rui program. 
MAIN is valid, and required, only on one external procedure per program. The 
operating-system control program invokes it as the first step in the execution of 
that program. 

NOEXECOPS 
The NOEXECOPS option is valid only with the MAIN option. It specifies that 
the run-time options will not be specified on the command or statement that 
invokes the program. Only parameters for the main procedure will be specified. 

ORDER or REORDER 
ORDER and REORDER are optimization options that are specified for a proce
dure or begin block. 

ORDER indicates that only the most recently assigned values of variables mod
ified in the block are available for ON-units that are entered because of compu
tational conditions raised during statement execution and expressions in the 
block. 

The REORDER option allows the compiler to generate optimized code to 
produce the result specified by the source program when error-free execution 
takes place. 

For more information on using the ORDER and REORDER options, refer to 
PU/ Package/2 Programming Guide. 

If neither option is specified for the external procedure, the default is set by the 
DEFAULT compiler option. Internal blocks inherit ORDER or REORDER from 
the containing block. 

REDUCIBLE or IRREDUCIBLE 
Abbreviations: RED, IRRED 

REDUCIBLE indicates that a procedure or entry need not be invoked multiple 
times if the argument(s) stays unchanged, and that the invocation of the proce
dure has no side effects. 

For example, a user-written function that computes a result based on 
unchanging data should be declared REDUCIBLE. A function that computes a 
result based on Gb§nging data, such as a random number or time of day, 
should be declared IRREDUCIBLE. 

REENTRANT 
PUI compiler for OS/2 programs are always reentrant. 

RETCODE 
has no effect. 

Chapter 6. Program organization 125 



RETURNS 

WINPROC 
indicates that this procedure is a window procedure in a Presentation Manager* 
(PM) application. It gets control from PM and returns control to it. If any 
exceptions occur in this procedure or any of its descendants, normal condition 
handling actions will be taken as if this were the main procedure. That is, only 
on-units established in this procedure and any blocks activated by this proce
dure will be able to get control. 

The PUI implicit action following the FINISH condition normally results in termi
nating the program, but in this case, the implicit action is to return normally to 
PM with an appropriate return code. 

The WINPROC option must be used to avoid system crashes if a window pro
cedure could incur an exception and does have an not an appropriate ON-unit 
to handle it. 

RETURNS option and attribute 
If a procedure is a function procedure, you must specify the RETURNS option on 
the procedure statement. Further, in the invoking procedure or package, you must 
declare such a procedure as an entry with the RETURNS attribute. The RETURNS 
option and the RETURNS attribute are used to specify the attributes of the value 
that is being returned. The attributes in the RETURNS option must match the attri
butes in the RETURNS attribute. 

Procedures that are subroutines (and are therefore invoked using the CALL state
ment) must not have the RETURNS option on the procedure statement and their 
entry declaration must not have the RETURNS attribute. 

The syntax for RETURNS is: 

.,..,._RETURNS-( ___£_~ttri butE?J-)---------------- ~ 

The attributes are specified in the same way as they are in a declare statement. 
Defaults are applied in the normal way. 

The attributes that can be specified are any of the data attributes and alignment 
attributes for scalar variables as shown in Figure 10 on page 29. ENTRY vari
ables must have the LIMITED attribute. 

String lengths and area sizes must be specified by constants. The returned value 
has the specified length or size. 

126 PUI Package/2 Language Reference 



© Copyright IBM Corp. 1992 

Chapter 7. Data declaration 
Explicit declaration 

DECLARE statement 
Factoring attributes 

Implicit declaration 
Scope of declarations 

Chapter 7. 

INTERNAL and EXTERNAL attributes 
RESERVED attribute ........... . 
Data alignment . . . . . . . . . . . . . . . 

ALIGNED and UNALIGNED attributes 
Defaults for attributes 

Language-specified defaults ...... . 
DEFAULT statement ........ . 
Restoring language-specified defaults 

Arrays ......... . 
DIMENSION attribute 
Examples of arrays 
Subscripts . . . . . . 
Cross sections of arrays 

Structures .... . 
Unions .......... . 

UNION attribute 
Structure/union qualification 
LI KE attribute . . . . . . . . 

Combinations of arrays, structures, and unions 
Cross sections of arrays of structures or unions 
Structure and union operations 
Structure and union mapping 

Rules for order of pairing 
Rules for mapping one pair 
Effect of UNALIGNED attribute 
Example of structure mapping 

Data declaration 

128 
128 
129 
130 
131 
132 
134 
138 
138 
139 
141 
141 
142 
144 
144 
144 
145 
146 
147 
147 
149 
149 
150 
151 
153 
154 
154 
154 
156 
156 
157 
157 

127 



Explicit declaration 

Chapter 7. Data declaration 

When a PUI program is executed, it can manipulate many different data items. 
Each data item, except a literal arithmetic or string constant, is referred to in the 
program by a name. Each data name is given attributes and a meaning by a dec
laration (explicit or implicit). 

Most attributes of data items are known at the time the program is compiled. For 
nonstatic items, attribute values (the bounds of the dimensions of arrays, the 
lengths of strings, area sizes, initial values) and some file attributes can be deter
mined during execution of the program. Refer to "Block activation" on page 91 for 
more information. 

Data items, types, and attributes are introduced in Chapter 3, "Data elements" on 
page 24 

This chapter discusses explicit and implicit declarations, scalar, array, structure, 
and union declarations, scope of names, data alignment, and default attributes. 

Explicit declaration 

128 

A name is explicitly declared if it appears: 

• In a DECLARE statement. The DECLARE statement explicitly declares attri
butes of names. 

• As an entry constant. Labels of PROCEDURE statements constitute declara
tions of the entry constants within the containing procedure. 

• As a label constant. A label constant explicitly declares a label. 

• As a format constant. A label on a FORMAT statement constitutes an explicit 
declaration of the label. 

The scope of an explicit declaration of a name is the block containing the declara
tion. This includes all contained blocks, except those blocks (and any blocks con
tained within them) to which another explicit declaration of the same name is 
internal. In the following diagram, the lines indicate the scope of the declaration of 
the names. 

© Copyright IBM Corp. 1992 



DECLARE 

[ 

[ 

r c n n R 

P: PROC; 

DCL A, B; 

O:D::O:: C; ~ 
R: PROC; ] ] 

DCL C,D; 

END R; 

END O; J 
END P; 

B and B' indicate the two distinct uses of the name B; C and C' indicate the two 
uses of the name C. 

For more information about scope, refer to "Scope of declarations" on page 132. 

DECLARE statement 
The DECLARE statement specifies some or all of the attributes of a name. If the 
attributes are not explicitly declared and cannot be determined by context, default 
attributes are applied. 

DECLARE statements can be an important part of the documentation of a program. 
Consequently, you can make liberal use of declarations, even when default attri
butes suffice or when an implicit declaration is possible. Because there are no 
restrictions on the number of DECLARE statements, you can use different 
DECLARE statements for different groups of names. Any number of names can be 
declared in one DECLARE statement. 

~~-DECLARE 
r· 

Lieved [~~ ~ Lj attributes fJ I 
attributes: 

1
,i; data-attributes l 

alignment-attributes_______, 
scope-attributes--___, 
storage-attributes---< 
complementary-attributes--' 

J 
I 

Abbreviation: DCL 

For more information about declaring arrays, structures, and unions, refer to 
"Arrays" on page 144 or "Structures" on page 147 or "Unions" on page 149. 

* cannot be used as the name of an INTERNAL or an EXTERNAL scalar or 
as the name of a level 1 EXTERNAL structure or union unless the 
EXTERNAL attribute specifies an environment name. 

Chapter 7. Data declaration 129 



Factoring attributes 

attributes 
The attributes can appear in any order. 

All attributes given explicitly for the name must be declared together in a 
DECLARE statement, except that: 

• Names having the FILE attribute can also be given attributes in an 
OPEN statement (or have attributes implied by an implicit opening). 
For more information on the OPEN statement, see "OPEN statement" 
on page 236. 

• The parameter attribute is contextually applied by the appearance of 
the name in a parameter list. A DECLARE statement internal to the 
block can specify additional attributes. 

Attributes of external names, in separate blocks and compilations, must be 
consistent. 

For more information about attributes and the members of the given 
groups, refer to "Data types and attributes" on page 25. 

level A nonzero integer. If a level number is not specified, level 1 is the default 
for element and array variables. Level 1 must be specified for major struc
ture and union names. 

name Each level-1 name must be unique within a block. For more information 
on level-1 names, refer to "Structures" on page 147. 

Condition prefixes and labels cannot be specified on a DECLARE statement. 

Factoring attributes 
Attributes common to several names can be factored to eliminate repeated specifi
cation of the same attributes. Factoring is achieved by enclosing the names in 
parentheses followed by the set of attributes which apply to all of the names. Fac
toring can be nested. The dimension attribute can be factored. Factoring can also 
be used on elementary names within structures and unions. A factored level 
number must precede the parenthesized list. 

Names within the parenthesized list are separated by commas. No factored attri
bute can be overridden for any of the names, but any name within the list can be 
given other attributes as long as there is no conflict with the factored attributes. 

The following examples show factoring. The last declaration in the set of examples 
shows nested factoring. 

declare (A,B,C,D) binary fixed (31); 

declare (E decimal(6,5), F character(18)) static; 

declare 1 A, 2(8,C,D) (3,2) binary fixed (15); 

declare ((A,B) fixed(18),C float(5)) external; 

130 Pl/I Package/2 Language Reference 



Implicit declaration 

Implicit declaration 
If a name appears in a program and is not explicitly declared, it is implicitly 
declared. The scope of an implicit declaration is determined as if the name were 
declared in a DECLARE statement immediately following the PROCEDURE state
ment of the external procedure in which the name is used. 

With the exception of files, entries, and built-in functions, implicit declaration has the 
same effect as if the name were declared in the outermost procedure. For files and 
built-in functions, implicit declaration has the same effect as if the names were 
declared in the logical package outside any procedures. 

Note: Using implicit declarations for anything other than built-in functions and the 
files SYSIN and SYSPRINT is in violation of the 1987 ANSI standard and should be 
avoided. 

Some attributes for a name declared implicitly can be determined from the context 
in which the name appears. These cases, called contextual declarations, are: 

• A name of a built-in function. 

• A name that appears in a CALL statement or the CALL option of INITIAL, or 
that is followed by an argument list, is given the ENTRY and EXTERNAL attri
butes. 

• A name that appears in the parameter list of a PROCEDURE statement is 
given the PARAMETER attribute. 

• A name that appears in a FILE or COPY option, or a name that appears in an 
ON, SIGNAL, or REVERT statement for a condition that requires a file name, is 
given the FILE attribute. 

• A name that appears in an ON CONDITION, SIGNAL CONDITION, or REVERT 
CONDITION statement is given the CONDITION attribute. 

• A name that appears in the BASED attribute, in a SET option, or on the left
hand side of a locator qualification symbol is given the POINTER attribute. 

• A name that appears in an IN option, or in the OFFSET attribute, is given the 
AREA attribute. 

Examples of contextual declaration are: 

read file ( PREO) into (Q); 

a 11 ocate X in ( S); 

In these statements, PREO is given the FILE attribute, and S is given the AREA attri
bute. 

Implicit declarations that are not contextual declarations acquire all attributes by 
default, as described in "Defaults for attributes" on page 141 . Because a contex
tual declaration cannot exist within the scope of an explicit declaration, it is impos
sible for the context of a name to add to the attributes established for that name in 
an explicit declaration. 

Chapter 7. Data declaration 131 



Scope of declarations 

Scope of declarations 
The part of the program to which a name applies is called the scope of the declara
tion of that name. In most cases, the scope of the declaration of a name is deter
mined entirely by the position where the name is declared within the program. 
Implicit declarations are treated as if the name were declared in a DECLARE state
ment immediately following the PROCEDURE statement of the external procedure. 

It is not necessary for a name to have the same meaning throughout a program. A 
name explicitly declared within a block has a meaning only within that block. 
Outside the block, the name is unknown unless the same name has also been 
declared in the outer block. Each declaration of the name establishes a scope and 
in this case, the name in the outer block refers to a different data item. This 
enables you to specify local definitions and, hence, to write procedures or begin
blocks without knowing all the names used in other parts of the program. 

In the following example, the output for A is actually C .A, which is 2. The output for 
B is 1, as declared in procedure X. 

X: proc options(main); 
"dcl (A,B) char(l) init('l'); 
ca 11 Y; 
return; 

Y: proc; 
dcl 1 C, 

3 A char(l) init( '2' ); 
put data(A,B); 
return; 

end Y; 
end X; 

Thus, for nested procedures, PUI uses the variable declared within the current 
block before using any variables that are declared in containing blocks. 

ln Oidei to understand the scope of the declaration of a name, you musi under
stand the terms contained in and internal to. 

All of the text of a block, from the PACKAGE, PROCEDURE, or BEGIN statement 
through the corresponding END statement (including condition prefixes of BEGIN, 
PACKAGE, and PROCEDURE statements), is said to be contained in that block. 
However, the labels of the BEGIN or PROCEDURE statement heading the block 
are not contained in that block. Nested blocks are contained in the block in which 
they appear. 

Text that is contained in a block, but not contained in any other block nested within 
it, is said to be internal to that block. Entry names of a procedure (and labels of a 
BEGIN statement) are not contained in that block. Consequently, they are internal 
to the containing block. Entry names of an external procedure are treated as if 
they were external to the external procedure. 

132 PUI Package/2 Language Reference 



Scope of declarations 

Figure 28 illustrates the scopes of data declarations. 

11. 21 

121 
131 

131 
141 

151 

A_and_D: package exports(*); 
dcl X static, 

Y based; 

A: procedure; 
declare P, 0; 
B: Procedure; 

declare O; 
R = O; 

[ 
C: begin; 

declare R; 
do I = 1 to 18; 
end; 

end C; 
end B; 

[ 
D: procedure; 

declare S; 
end D; 

end A; 

end A_and_D; 

p Q Q' R R' s 
J 

J 
J 

J J J 

Figure 28. Scopes of data declarations 

The brackets to the left indicate the block structure; the brackets to the right show 
the scope of each declaration of a name. The scopes of the two declarations of O 
and Rare shown as O and O' and Rand R'. 

Note that X and Y are visible to all of the procedures contained in the package. 

Ill P is declared in the block A and known throughout A because it is not rede
clared. 

121 O is declared in block A, and redeclared in block B. The scope of the first 
declaration of O is all of A except B; the scope of the second declaration of 
O is block B only. 

131 R is declared in block C, but a reference to R is also made in block B. The 
reference to R in block B results in an implicit declaration of R in A, the 
external procedure. Therefore, two separate names (R and R' in 
Figure 28) with different scopes exist. The scope of the explicitly declared 
R is block C; the scope of the implicitly declared R in block B is all of A 
except block C. 

141 I is referred to in block C. This results in an implicit declaration in the 
external procedure A. As a result, this declaration applies to all of A, 
including the contained procedures B, C, and D. 

151 S is explicitly declared in procedure D and is known only within D. 

Figure 29 illustrates the scopes of entry constant and statement label declarations. 

Chapter 7. Data declaration 133 



INTERNAL and EXTERNAL 

A_and_D: package exports(*); 
L1 Ll I L2 A B 

I
A: procedure; 

dee l a re E entry; 
Ll: P=O; 

[ 

B: L~~ced~~~i C; 

[ 

C: proc~dure; 
Ll: X=Y; 
ca 11 E: 

end C; 
go to Ll; 

end B; 

[ D: procedure; 
end D; 

ca 11 B; 
end A; 

[ E: procedure; 
end E; 

end A_and_D; 

l 
J 

J 

J 

Figure 29. Scopes of entry and label declarations 

] 

Figure 29 shows two external procedures, A and E. 

l 
C D E 

] 
J 

Ill The scope of the declaration of the name A is only all of the block A, and 
not E. 

121 E is explicitly declared in A as an external entry constant. The explicit 
declaration of E applies throughout block A. It is not linked to the explicit 
declaration of E that applies throughout block E. The scope of the declara
tion of the name E is all of block A and all of block E. 

131 The label L1 appears with statements internal to A and to C. Two separate 
declarations are therefore established; the first applies to all of block A 
except block C, the second applies to block Conly. Therefore, when the 
GO TO statement in block B executes, control transfers to L1 in block A, 
and block B terminates. 

141 D and B are explicitly declared in block A and can be referred to anywhere 
within A; but because they are INTERNAL, they cannot be referred to in 
block E. 

151 C is explicitly declared in B and can be referred to from within B, but not 
from outside B. 

161 L2 is declared in B and can be referred to in block B, including C, which is 
contained in B, but not from outside B. 

INTERNAL and EXTERNAL attributes 
The INTERNAL and EXTERNAL attributes define the scope of a name. 

INTERNAL specifies that the name can be known only in the declaring block. Any 
other explicit declaration of that name refers to a new object with a different scope 
that does not overlap. 

A name with the EXTERNAL attribute can be declared more than once, either in 
different external procedures or within blocks contained in external procedures. All 
declarations of the same name with the EXTERNAL attribute refer to the same 
data. The scope of each declaration of the name (with the EXTERNAL attribute) 

134 PUI Package/2 Language Reference 



INTERNAL and EXTERNAL 

includes the scopes of all the declarations of that name (with EXTERNAL) within 
the application. 

The syntax for the INTERNAL and EXTERNAL attributes is: 

••~INTE~AL~---------~-----------~~~ 
LEXTERNAL---.----------.--' 

c=(~environment-name--):J 

Abbreviations: INT for INTERNAL, EXT for EXTERNAL 

environment-name 
specifies the name by which the procedure or variable is known outside of the 
compilation unit. 

When so specified, the name being declared effectively becomes internal and 
is not known outside of the compilation unit. The environment name is known 
instead. 

Note: Use of environment names can limit the portability of your application. 

INTERNAL is the default for entry names of internal procedures and for variables 
with any storage class except controlled. 

EXTERNAL is the default for file constants, entry constants, programmer-defined 
conditions, and controlled variables. 

When a major structure or union name is declared EXTERNAL in more than one 
block, the attributes of the members must be the same in each case, although the 
corresponding member names need not be identical. 

In the following example: 

ProcA: procedure; 
declare 1 A external, 

2 B, 
2 C; 

end ProcA; 

%process; 
ProcB: procedure; 

declare 1 A external. 
2 B, 
2 D; 

end ProcB; 

If A. B is changed in ProcA, it is also changed for ProcB, and vice versa; if A. C is 
changed in ProcA, A. D is changed for ProcB, and vice versa. 

Members of structures and unions always have the INTERNAL attribute. 

Chapter 7. Data declaration 135 



INTERNAL and EXTERNAL 

Because external declarations for the same name all refer to the same data, they 
must all result in the same set of attributes. When EXTERNAL names are declared 
in different external procedures, the user has the responsibility to ensure that the 
attributes are matching. Figure 30 illustrates a variety of declarations and their 
scopes. 

111 
121 
171 
171 

191 
181 
14. 51 

19. 51 

112. 21 

161 

IBI 

191 

12. 31 

Scope_Example: package exports(*); 
A: procedure; 

declare S character (28); 
dcl Set entry(fixed decimal(l)), 

Out entry( label); 
ca 11 Set ( 3) ; 

E: get list (S,M,N); 
B: begin; 

declare X(M, N), Y(M); 
get list (X,Y); 
call C(X,Y); 

C: procedure (P,Q); 
declare 

P(*, *)' 
Q(*), 

S binary fixed external; 
s = (:); 
do I = 1 to M; 

if sum (P(l,*)) = Q(l) then 
go to B; 

S = S+ 1; 
if S = 3 then 

ca 11 Out ( E) ; 
Ca 11 O(l); 

B: end; 
end C; 

D: procedure (N); 
put list ('Error in row ', 

N, 'Table Name ', S); 
end D; 
end B; 
go to E; 
~·~ ,J A . 
t:llU /-\; 

191 Out: procedure (R); 
Declare 

R Label, 
llll ( K static internal, 
lll.71 L static external) init ((:)), 
1121 S binary fixed external, 

Z fixed decimal(l); 
K = K+l; S=G; 
if K<L then 

stop; 
1181 else go to R; 

end; 
Set: procedure (Z); 

declare Z fixed dec(l); 
171 L =Z; 

declare L external init(8); 
return; 
end; 

end Scope_Example; 

Figure 30. Example of scopes of various declarations 

Ill A is an external procedure name. Its scope is all of block A, plus any other 
blocks where A is declared as external. 

136 PUI Package/2 Language Reference 



INTERNAL and EXTERNAL 

121 Sis explicitly declared in block A and block C. The character variable dec
laration applies to all ot block A except block C. The fixed binary declara
tion applies only within block C. Notice that although o is called from within 
block C, the reference to S in the PUT statement in O is to the character 
variable S, and not to the S declared in block c. 

131 N appears as a parameter in block O, but is also used outside the block. 
Its appearance as a parameter establishes an explicit declaration of N 
within 0. The references outside o cause an implicit declaration of N in 
block A. These two declarations of the name N refer to different objects, 
although in this case, the objects have the same data attributes, which 
are, by default, FIXED BIN(15,0) and INTERNAL. Under DFT(ANS), the 
precision is (31,0). 

141 X and Y are known throughout B and can be referred to in block C or o 
within B, but not in that part of A outside B. 

151 P and O are parameters, and therefore if there were no other declaration of 
these names within the block, their appearance in the parameter list would 
be sufficient to constitute a contextual declaration. However, a separate, 
explicit declaration statement is required in order to specify that P and O 
are arrays. Although the arguments X and Y are declared as arrays and 
are known in block C, it is still necessary to declare P and O in a DECLARE 
statement to establish that they, too, are arrays. (The asterisk notation 
indicates that the bounds of the parameters are the same as the bounds 
of the arguments.) 

161 I and M are not explicitly declared in the external procedure A. Therefore, 
they are implicitly declared and are known throughout A, even though I 
appears only within block C. 

171 The Out and Set external procedures in the example have an external dec
laration of L that is common to both. They also must be declared explicitly 
with the ENTRY attribute in procedure A. Because ENTRY implies 
EXTERNAL, the two entry constants Set and Out are known throughout 
the two external procedures. 

IBI The label B appears twice in the program-first in A, as the label of a 
begin-block, which is an explicit declaration, and then redeclared as a 
label within block C by its appearance as a prefix to an END. statement. 
The go to B statement within block C, therefore, refers to the label of the 
END statement within block C. Outside block C, any reference to B is to 
the label of the begin block. 

191 Blocks C and O can be called from any point within B but not from that part 
of A outside B, nor from another external procedure. Similarly, because 
label E is known throughout the external procedure A, a transfer to E can 
be made from any point within A. The label B within block C, however, can 
be referred to only from within C. Transfers out of a block by a GO TO 
statement can be made; but such transfers into a nested block generally 
cannot. An exception is shown in the external procedure Out, where the 
label E from block C is passed as an argument to the label parameter R. 

Note that, with no files specified in the GET and PUT statements, SYSIN 
and SYSPRINT are implicitly declared. 

IHJI The statement else go to R; transfers control to the label E, even though 
E is declared within A, and not known within Out. 

Chapter 7. Data declaration 137 



RESERVED 

llll The variables K (INTERNAL) and L (EXTERNAL) are declared as STATIC 
within the Out procedure block; their values are preserved between calls to 
Out. 

1121 In order to identify the S in the procedure Out as the same S in the proce
dure C, both are declared with the attribute EXTERNAL. 

RESERVED attribute 

Data alignment 

RESERVED indicates that the compilation unit containing the declared variable is 
linked with at least one other compilation unit that declares the same variable with 
the STATIC and EXTERNAL attributes and without the RESERVED attribute. The 
RESERVED attribute implies STATIC and EXTERNAL attributes, but does not allo
cate or initialize storage for the variable. 

The syntax for the RESERVED attribute is: 

11>11>-RESERVED------------------------111 

The computer holds information in multiples of units of 8 bits. Each 8-bit unit of 
information is called a byte. 

The computer accesses bytes singly or as halfwords, words, or doublewords. A 
halfword is 2 consecutive bytes. A fullword is 4 consecutive bytes. A doubleword 
is 8 consecutive bytes. Byte locations in storage are consecutively numbered 
starting with O; each number is the address of the corresponding byte. Halfwords, 
words, and doublewords are addressed by the address of their leftmost byte. 

Your programs can execute faster if halfwords, words, and doublewords are located 
in main storage on an iniegrai boundary for that unit of information. That is, the 
unit of information's address is a multiple of the number of bytes in the unit, as can 
be seen in Figure 31. 

Figure 31. Alignment on integral boundaries of halfwords, words, and doublewords 

ADDRESSES IN A SECTION OF STORAGE 

5000 5001 5002 5003 5004 5005 5006 5007 

byte byte byte byte byte byte byte byte 

halfword halfword halfword halfword 

fullword fullword 

doubleword 

PUI permits data alignment on integral boundaries. However, unused bytes 
between successive data elements can increase storage use. For example, when 
the data items are members of aggregates used to create a data set, the unused 
bytes increase the amount of auxiliary storage required. The ALIGNED and UNA
LIGNED attributes allow you to choose whether or not to align data on the appro
priate integral boundary. 

138 PUI Package/2 Language Reference 



ALIGNED and UNALIGNED attributes 

ALIGNED and UNALIGNED attributes 
ALIGNED specifies that the data element is aligned on the storage boundary corre
sponding to its data-type requirement. These requirements are shown in 
Figure 32. 

Figure 32 (Page 1 of 2). Alignment requirements 

Storage Require-
Alignment Requirements 

ments (Bytes) ALIGNED Data 
UNALIGNED 

Variable Type Stored Internally as: Data 

ALIGNED: 
One byte for each group of 8 ALIGNED: 
bits (or part thereof) CEIL(n/8) Bit 

(Data may begin on any bit 
UNALIGNED: UNALIGNED: in any byte, O through 7) 
As many bits as are required, n bits 

BIT (n) regardless of byte boundaries 

CHARACTER (n) One byte per character n 

GRAPHIC (n) Two bytes per graphic 2n Byte 
(Data may begin on any 

One byte for each PICTURE 
Number of byte, 0 through 7) 
PICTURE charac-

PICTURE character (except V, K, and the 
ters other than V, K, 

F scaling factor specification) 
and F specification 

Packed decimal format (1 /2 
DECIMAL FIXED (p,q) byte per digit, plus 1/2 byte for CEIL((p+1)/2 

sign) 

BINARY FIXED(p,q) 

SIGNED 1 <= p <= 7 One byte 1 

UNSIGNED 1 <= p <= 8 

Two-byte prefix plus 1 byte for ALIGNED: 

BIT(n) VARYING 
each group of 8 bits (or part 2+CEIL(n/8) 

thereof) of the declared UNALIGNED: Byte 
maximum length 2 bytes + n bits (Data may begin on any 

Two-byte prefix plus 1 byte per 
byte, 0 through 7) 

CHARACTER(n) 
VARYING 

character of the declared 2+n Halfword (Data may 
maximum length begin on byte 0, 2, 4, or 

GRAPHIC(n) 
Two-byte prefix plus 2 bytes 6) 

VARYING 
per graphic of the declared 2+2n 
maximum length 

BINARY FIXED(p,q) 

SIGNED 7 <= p <= 15 Halfword 2 

UNSIGNED 8 <= p <= 16 

BINARY FIXED(p,q) 

SIGNED 15 <= p <= 31 Fullword 

UNSIGNED 16 <= p <= 31 

BINARY FLOAT (p) 4 
Fullword (Data may begin 

1 <=P<=21 
on byte 0 or 4) 

Short floating-point 
DECIMAL FLOAT (p) 
1<=P<=6 

POINTER -

OFFSET -
4 

Fullword Byte FILE -
ENTRY LIMITED 

(Data may begin on byte (Data may begin on any 
- 0 or 4) byte, 0 through 7) 

ENTRY -
8 

LABEL or FORMAT -

Alignment and storage requirements for program control data can vary across supported systems. 

Complex data requires twice as much storage as its real counterpart, but the alignment requirements are the same. 

Chapter 7. Data declaration 139 



ALIGNED and UNALIGNED attributes 

Figure 32 (Page 2 of 2). Alignment requirements 

Storage Require-
Alignment Requirements 

ments (Bytes) ALIGNED Data 
UNALIGNED 

Variable Type Stored Internally as: Data 

16+size 
AREA data cannot be una-

AREA - ligned 

BINARY FLOAT (p) 
22<=p<=53 

Long floating-point 
DECIMAL FLOAT (p) Doubleword (Data may 
7<=p<=16 begin on byte 0) Byte 

8 (Data may begin on any 
BINARY FLOAT(p) byte, 0 through 7) 

54<=p<=64 
Extended floating-point 

DECIMAL FLOAT(p) 
17<=p<=18 

Alignment and storage requirements for program control data can vary across supported systems. 

Complex data requires twice as much storage as its real counterpart, but the alignment requirements are the same. 

UNALIGNED specifies that each data element is mapped on the next byte 
boundary, except for fixed-length bit strings, which are mapped on the next bit. 
The syntax for the ALIGNED and UNALIGNED attributes is: 

••~ALIGNED'-~----------------------<111 
LLJNALIGNED 

Defaults are applied at element level. UNALIGNED is the default for bit data, char
acter data, graphic data, and numeric character data. ALIGNED is the default for 
all other types of data. 

ALIGNED or UNALIGNED can be specified for element, array, structure or union 
variables. The application of either attribute to a structure or union is equivalent to 
applying the attribute to all contained elements that are not explicitly declared 
ALIGNED or UNALIGNED. 

The following example illustrates the effect of ALIGNED and UNALIGNED declara
tions for a structure and its elements: 

declare 1 S, 
2 x bit(2), 
2 A aligned, 

3 B, 
3 C unaligned, 

4 D, 
4 E aligned, 
4 F, 

3 G, 
2 H; 

/*unaligned by default */ 
I* aligned explicitly */ 
I* aligned from A *I 
I* unaligned explicitly */ 
I* unaligned from C */ 
I* aligned explicitly */ 
I* unaligned from C */ 
I* aligned from A */ 
I* aligned by default */ 

For more information about structures and unions, refer to "Structures" on 
page 147 and "Unions" on page 149. 

140 PUI Package/2 Language Reference 



Defaults for attributes 

Defaults for attr;butes 
Every name in a PUI program requires a complete set of attributes. Arguments 
passed to a procedure must have attributes matching the procedure's parameters. 
Values returned by functions must have the attributes expected. However, the attri
butes that you specify need rarely include the complete set of attributes. 

The set of attributes for: 

• Explicitly declared names 
• Implicitly (including contextually) declared names 
• Attributes to be included in parameter descriptors 
• Values returned from function procedures 

can be completed by using the language-specified defaults, or by defaults that you 
can define (using the DEFAULT statement) either to modify the language-specified 
defaults or to develop a completely new set of defaults. 

Attributes applied by default cannot override attributes applied to a name by explicit 
or contextual declaration. 

Language-specified defaults 
When a variable has not been declared with any data attributes, it is given arith
metic attributes by default. If mode, scale and base are not specified by a 
DECLARE or DEFAULT statement, the DEFAULT compiler option determines its 
attributes as follows: 

• If DEFAUL T{IBM) is in effect, variables with names beginning with the letters I 
through N are given the attributes REAL FIXED BIN(15,0); all other variables 
are given the attributes REAL FLOAT DEC(6). 

• If DEFAUL T(ANS) is in effect, all variables are given the attributes REAL 
FIXED BIN(31,0) 

If a scaling factor is specified in the precision attribute, the attribute FIXED is 
applied before any other attributes. Therefore, a declaration with the attributes 
BIN(p,q) is always equivalent to a declaration with the attributes FIXED BIN(p,q). 

If a precision is not specified in an arithmetic declaration, the DEFAULT compiler 
option determines the precision as indicated in Figure 33 on page 142. The 
language-specified defaults for scope, storage and alignment attributes are shown 
in Figure 10 on page 29 and Figure 9 on page 28. 

If no description list is given in an ENTRY declaration, the attributes for the argu
ment must match those specified for the corresponding parameter in the invoked 
procedure. For example, given the following declaration: 

dcl x entry; 
call x( 1 ); 

The argument has the attributes REAL FIXED DEC(1,0). This would be an error if 
the procedure x declared its parameter with other attributes, as shown in the fol
lowing example: 

x: proc( y ); 
dcl y fixed bin(15); 

Chapter 7. Data declaration 141 



DEFAULT 

This potential problem can be easily avoided if the entry declaration specifies the 
attributes for all of its parameters. 

Figure 33. Default arithmetic precisions 

Attributes DEFAUL T(IBM) DE FAUL T(ANS) 

DECIMAL FIXED (5,0) (10,0) 

BINARY FIXED (15,0) (31,0) 

DECIMAL FLOAT (6) (6) 

BINARY FLOAT (21) (21) 

DEFAULT statement 
The DEFAULT statement specifies data-attribute defaults (when attribute sets are 
not complete). Any attributes not applied by the DEFAULT statement for any 
partially-complete explicit or contextual declarations, and for implicit declarations, 
are supplied by language-specified defaults. 

The DEFAULT statement overrides all other attribute specifications. 

Structure and union elements are given default attributes according to the name of 
the element, not the qualified element name. The DEFAULT statement cannot be 
used to create a structure or a union. 

The syntax for the DEFAULT statement is: 

~~-DEFAULT-RANGE-(--rL* fdentifier 
L*_ L: identifierJ 

~-attribute-specification-;-----------------

Abbreviation: OFT 

RANG E(identifier) 
specifies that the defaults apply to names that begin with or exactly match 
the identifier specified. Identifier can be a complete or partial identifier. 
For example: 

range (ABC) 

applies to these names: 

ABC 
abed 
ABC OE 

but not to: 

ABO 
acb 
AB 
A 

Hence, a single character in the range-specification applies to all names 
that start with that character. 

142 PUI Package/2 Language Reference 



DEFAULT 

RANG E(identifier: identifier) 
specifies thai ihe defctuli~ aµply to names that begin with or exactly match 
the identifiers in the range specified. Identifier can be a complete or 
partial identifier but should not have any DBCS characters. The second 
identifier in the range must be greater than or equal to the first identifier. 
For example: 

range(A:C, Fred : Harry) 

applies to these names: 

ABC 
BCA 
c 
FRED 
George 
Harrison 

but not to: 

OBA 
FLAG 
HarrysWorld 

RANGE(*) 
specifies all names (including * names) in the scope of the DEFAULT 
statement. For example: 

dft range (*) fixed bin; 

This statement specifies default attributes FIXED BIN, with default preci
sion for all names. 

attribute-specification 
specifies a list of attributes from which selected attributes are applied to 
names in the specified range. (Attributes are listed in "Data types and 
attributes" on page 25.) Attributes in the list can appear in any order and 
must be separated by blanks. 

Only those attributes that are necessary to complete the declaration of a 
data item are taken from the list of attributes. 

Attributes that conflict, when applied to a data item, do not necessarily 
conflict when they appear in an attribute specification. Consider the fol
lowing statement: 

default range(S) binary varying; 

Given the declaration dcl sl real, sl would get the BINARY attribute, but 
with the declaration dcl s2 bit, s2 would get the VARYING attribute. 

There can be more than one DEFAULT statement within a block. The scope of a 
DEFAULT statement is the block in which it occurs, and all blocks within that block 
which neither include another DEFAULT statement with the same range, nor are 
contained in a block having a DEFAULT statement with the same range. 

A DEFAULT statement in an internal block affects only explicitly declared names. 
This is because the scope of an implicit declaration is determined as if the names 
were declared in a DECLARE statement immediately following the PROCEDURE 
statement of the external procedure in which the name appears. 

Chapter 7. Data declaration 143 



Restoring defaults 

It is possible for a containing block to have a DEFAULT statement with a range that 
is partly covered by the range of a DEFAULT statement in a contained block. In 
such a case, the range of the DEFAULT statement in the containing block is 
reduced by the range of the DEFAULT statement in the contained block. For 
example: 

P: procedure; 
default range (XY) fixed; 

0: begin; 
default range (XYZ) float; 
end P; 

I* First */ 

I* Second */ 

The scope of the first DEFAULT statement is procedure P and the contained block 
0. The range of the first DEFAULT statement is all names in procedure P beginning 
with the characters XY, together with all names in begin block O beginning with the 
characters XY, except for those beginning with the characters XYZ. 

Restoring language-specified defaults 
The following statement: 

Arrays 

dft range(*) system; 

overrides, for all names, any programmer-defined default rules established in a con
taining block. It can be used to restore language-specified defaults for contained 
blocks. 

An array is an n-dimensional collection of elements that have identical attributes. 
Only the array itself is given a name. An individual item of an array is referred to 
by giving its position within the array. You indicate that a name is an array variable 
by providing the dimension attribute. 

DIMENSION attribute 
The dimension attribute specifies the number of dimensions of an array and upper 
and lower bounds of each. 

Bounds that are nonrestricted expressions are evaluated and converted to FIXED 
BINARY(M,O) when storage is allocated for the array. 

The extent is the number of integers between, and including, the lower and upper 
bounds. 

144 PUI Package/2 Language Reference 



Examples of arrays 

The syntax for the dimension attribute is: 

--r-----.--(~ bound ~)-----------
...... lorMENSIONJ 

bound: 
I L*I upper-bound I b. lower-bound r-:j 
lower-bound: 

[1 
I lexpression.____,. ______ ...,..._., 

[REFER( variable)] 

upper-bound: 
~expression 

LREFERC variable)J 

Abbreviation: DIM 

If the DIMENSION keyword is omitted, the dimension must immediately follow the 
name (or the parenthesized list of names) in the declaration. 

The number of bounds specifications indicates the number of dimensions in the 
array, unless the declared variable is in an array of structures or unions. In this 
case it inherits dimensions from the containing structure or union. 

The bounds specification indicates the bounds as follows: 

• If only the upper bound is given, the lower bound defaults to 1. 

• The lower bound must be less than or equal to the upper bound. 

• An asterisk (*) specifies that the lower and/or the upper bound is to be taken 
from the argument associated with the parameter. 

Examples of arrays 
Consider the following declaration: 

declare List fixed decimal(3) dimension(8); 

List is declared as a one-dimensional array of eight elements, each one a fixed
point decimal element of three digits. The one dimension of Li st has bounds of 1 
and 8, and its extent is 8. 

In the example: 

declare Table (4,2) fixed dee (3); 

Table is declared as a two-dimensional array of eight fixed-point decimal elements. 
The two dimensions of Table have bounds of 1 and 4 and 1 and 2, and the extents 
are 4 and 2. 

Other examples are: 

declare List_A dimension(4:11); 
declare List_B (-4:3); 

Chapter 7. Data declaration 145 



Subscripts 

Subscripts 

In the first example, the bounds are 4 and 11 ; in the second they are -4 and 3. 
The extents are the same for each, 8 integers from the lower bound through the 
upper bound. 

In the manipulation of array data (discussed in "Array expressions" on page 66) 
involving more than one array, the bounds-not merely the extents-must be iden
tical. Although Li st, Li st_A, and Li st_B all have the same extent, the bounds are 
not identical. 

The bounds of an array determine the way elements of the array can be referred 
to. For example, when the following data items: 

28 5 18 38 638 158 318 78 

are assigned to the array Li st, as declared above, the different elements are 
referred to as follows: 

Reference Element 
LIST (1) 20 
LIST (2) 5 
LIST (3) 10 
LIST (4) 30 
LIST (5) 630 
LIST (6) 150 
LIST (7) 310 
LIST (8) 70 

Each of the parenthesized numbers following LIST is a subscript. A parenthesized 
subscript following an array name reference identifies a particular data item within 
the array. A reference to a subscripted name, such as LIST(4), refers to a single 
element and is an element variable. The entire array can be referred to by the 
unsubscripted name of the array-for example, LIST. 

The same data can be assigned to Li st_A and Lis t_B deciared previousiy. in this 
case it is referenced as follows: 

Reference Element Reference 
LIST_A (4) 20 LIST _B (-4) 
LIST_A (5) 5 LIST _B (-3) 
LIST _A (6) 10 LIST _B (-2) 
LIST_A (7) 30 LIST _B (-1) 
LIST_A (8) 630 LIST _B (0) 
LIST_A (9) 150 LIST _B (1) 
LIST_A (10) 310 LIST _B (2) 
LIST_A(11) 70 LIST _B (3) 

Assume that the same data is assigned to TABLE, which is declared as a two
dimensional array. TABLE can be illustrated as a matrix of four rows and two 
columns: 

TABLE(m,n) 
(1,n) 
(2,n) 
(3,n} 
(4,n) 

(m,1) 
20 
10 

630 
310 

(m,2) 
5 

30 
150 
70 

146 PUI Package/2 Language Reference 



Cross sections of arrays 

An element of TABLE is referred to by a subscripted name with two parenthesized 
subscripts, separated by a comma. For exarnpie, TABLE (2, 1) would specify the 
first item in the second row, the data item 10. 

The use of a matrix to illustrate TABLE is purely conceptual. It has no relationship 
to the way the items are actually organized in storage. Data items are assigned to 
an array in row major order. This means that the subscript that represents rows 
varies most rapidly. For example, assignment to TABLE would be to TABLE(1,1), 
TABLE(1,2), TABLE(2,1), TABLE(2,2), and so forth. 

A subscripted reference to an array must contain as many subscripts as there are 
dimensions in the array. 

Any expression that yields a valid arithmetic value can be used for a subscript. If 
necessary, the value is converted to FIXED BINARY(31,0). Thus, TABLE(l,J*K) 
can be used to refer to the different elements of TABLE by varying the values of I, 
J, and K. 

Cross sections of arrays 

Structures 

Cross sections of arrays can be referred to by using an asterisk for a subscript. 
The asterisk specifies that the entire extent is used. For example, TABLE(*, 1) 
refers to all of the elements in the first column of TABLE. It specifies the cross 
section consisting of TABLE(1,1), TABLE(2,1), TABLE(3,1), and TABLE(4,1). The 
subscripted name TABLE(2, *) refers to all of the data items in the second row of 
TABLE. TABLE(*,*) refers to the entire array, as does TABLE. 

A subscripted name containing asterisk subscripts represents not a single data 
element, but an array with as many dimensions as there are asterisks. Conse
quently, such a name is not an element expression, but an array expression. 

A reference to a cross section of an array can refer to two or more elements that 
are not adjacent in storage. The storage represented by such a cross section is 
known as nonconnected storage. (See "CONNECTED and NONCONNECTED 
attributes" on page 217.) The rule is as follows: if a nonasterisk bound appears to 
the right of the leftmost asterisk bound, the array cross section is in nonconnected 
storage. Thus A(4,*,*) is in connected storage; A(*,2,*) is not. 

A structure is a collection of member elements that may be structures, unions, ele
mentary variables and arrays. 

The structure variable is a name that can be used to refer to the entire aggregate 
of data. Unlike an array, however, each member of a structure also has a name, 
and the attributes of each member may differ. An asterisk may be used as the 
name of a structure or a member when it will not be referred to. For example, 
reserved or filler items may be named asterisk. 

A structure has different levels. The name at level-1 is called a major structure. 
Names at deeper levels may be minor structures or unions. Names at the deepest 
level are called elementary names, which can represent an elementary variable or 
an array variable. Unions are described in "Unions" on page 149. 

Chapter 7. Data declaration 147 



Structures 

A structure is described in a DECLARE statement through the use of level numbers 
preceding the associated names. Level numbers must be integers. 

A major structure name is declared with the level number 1 . Minor structures, 
unions, and elementary names are declared with level numbers greater than 1. A 
delimiter (usually a blank) must separate the level number and its associated name. 
For example, the items of a payroll record could be declared as follows: 

declare 1 Payroll, /* major structure name *I 
2 Name, I* minor structure name */ 

3 Last char(28), /* elementary name */ 
3 First char(15), 

2 Hours, 
3 Regular fixed dec(5,2), 
3 Overtime fixed dec(5,2), 

2 Rate, 
3 Regular fixed dec(3,2), 
3 Overtime fixed dec(3,2); 

In the example, Payro 11 is the major structure and all other names are members of 
this structure. Name, Hours, and Rate are minor structures, and all other members 
are elementary variables. You can refer to the entire structure by the name 
Payro 11, or to portions of the structure by the minor structure names. You can refer 
to a member by referring to the member name. 

Indentation is only for readability. The statement could be written in a continuous 
string as: 

Declare 1 Payroll, 2 Name, 3 Last char(28), ... 

The level numbers you choose for successively deeper levels need not be consec
utive. A minor structure at level n contains· all the names with level numbers 
greater than n that lie between that minor structure name and the next name with a 
level number less than or equal to n. 

The description of a major structure is usually terminated by a semicolon teimi
nating the DECLARE statement. It can also be terminated by comma, followed by 
the declaration of another item. 

For example, the following declaration results in exactly the same structure as the 
declaration in the previous example. 

Declare 1 Payroll, 
4 Name, 

5 Last char(28), 
5 First char(15), 

3 Hours, 
6 Regular fixed dec(5,2), 
5 Overtime fixed dec(5,2), 

2 Rate, 
9 Regular fixed dec(3,2), 
9 Overtime fixed dec(3,2); 

148 PUI Package/2 Language Reference 



Unions 

Unions 

A union is a collection of member elements that overlay each other, occupying the 
same storage. The members may be structures, unions, elementary variables, and 
arrays. They need not have identical attributes. 

The entire union is given a name that can be used to refer to the entire aggregate 
of data. Like a structure, each element of a union also has a name. An asterisk 
may be used as the name of a union or a member, when it will not be referred to. 
For example, reserved or filler items may be named asterisk. 

Like a structure, a union may be at any level including level 1. All elements of a 
union at the next deeper level are members of the union and occupy the same 
storage. The storage occupied by the union is equal to the storage required by the 
largest member. Normally, only one member is presumed to be active and valid at 
any time. The determination of which member is active is entirely under pro
grammer control. 

A union, like a structure, is declared through the use of level numbers preceding 
the associated names. 

Unions may be used to declare variant records that would typically contain a 
common part, a selector part, and variant parts. For example, records in an client 
file may be declared as follows: 

Declare 1 Client, 
2 Number pie '999999', 
2 Type bit(l), 
2 * bit(7), 
2 Name union, 

3 Individual, 
5 Last_Name union, 

7 Last char(28), 
7 Initial char(l), 

5 First_Name char(l5), 
3 Company char(35), 

2 * char(8); 

/*Client is an individual */ 
/* reserved */ 

In this example, Client is a major structure. The structure Individual, and the 
element Company are members of the union Name. One of these members is active 
depending on Type. The structure Indi vi dual contains the union Fi rst_name and 
the element Last_name. Fi rst_name union has First and Initial as its members, 
both of which are active. The example also shows the use of asterisk as a name. 
The description of a union is terminated by the semicolon that terminates a 
DECLARE statement or by a comma, followed by the declaration of another item. 

UNION attribute 
The UNION attribute allows you to specify that a variable is a union and that its 
members are those that follow it and are at the next logically higher level. 

The syntax is: 

~~~UNION ~ 

Chapter 7. Data declaration 149

Structure/union qualification

Structure/union qualification
A member of a structure or a union can be referred to its name alone if it is unique.
If another member has the same name, whether at the same or different level,
ambiguity occurs. Where ambiguity occurs, a qualified reference is required to
uniquely identify the correct member.

A qualified reference is a member name that is qualified with one or more names of
parent members connected by periods. (See the qualified reference syntax in
Chapter 4, "Expressions and references" on page 50.) Blanks may appear sur
rounding the period.

The qualification must follow the order of levels. That is, the name at the highest
level must appear first, with the name at the deepest level appearing last.

While the level 1 structure or union name must be unique within the block scope,
member names need not be unique as long as they do not appear at same logical
level within their most immediate parent. Qualifying names must be used only so
far as necessary to make the reference unique within the block in which it appears.
In the following example, the value of x .y (19) is displayed, not the value (17).

dcl 7 fixed init(l7);

begin;
de l
1 x,

2 y fixed init(l9);
di s pl ay (y) ;

end;

A reference is always taken to apply to the declared name in the innermost block
containing the reference.

The following examples illustrate both ambiguous and unambiguous references. In
the following example. A. C refers to C in the inner block; D. E refers to E in the outer
block.

declare 1 A, 2 C, 2 D, 3 E;
begin;
declare 1 A, 2 B, 3 C, 3 E;

A.C = D.E;

In the following example, D has been declared twice. A reference to A. D refers to
the second D, because A. D is a complete qualification of only the second D. The
first D is referred to as A. C. D.

declare 1 A,
2 B,
2 C,

3 D,
2 D;

In the following example, a reference to A. C is ambiguous because neither C can be
completely qualified by this reference.

150 PUI Package/2 Language Reference

LI KE attribute

declare 1 A.
2 B,

3 C,
2 D,

3 C;

LIKE

In the following example, a reference to A refers to the first A, A. A to the second A,
and A.A.A to the third A.

declare 1 A,
2 A,

3 A;

In the following example, a reference to X refers to the first DECLARE statement.
A reference to Y . Z is ambiguous. Y . Y . Z refers to the second Z, and Y . X. Z refers to
the first Z.

declare X;
declare 1 Y,

2 X,
3 Z,
3 A,

2 Y,
3 Z,
3 A;

For more information about name qualification, refer to "Scope of declarations" on
page 132.

The LIKE attribute specifies that the name being declared has an organization that
is logically the same as the referenced structure or union (object of the LIKE attri
bute). The object variable's member names and their attributes, including the
dimension attribute, are effectively copied and become members of the name being
declared. If necessary, the level numbers of the copied members are automatically
adjusted. The object variable name and its attributes, including the dimension attri
bute, are ignored.

The syntax for the LIKE attribute is:

.,..,._LI KE-object-vari ab lf-'-------------------- ...

object-variable
can be a major structure, a minor structure, or a union. It must be known
in the block containing the LIKE attribute specification. It can be qualified
but must not be subscripted. The object or any of its members must not
have the LIKE attribute or the REFER option.

The objects in all LIKE attributes are associated with declared names
before any LIKE attributes are expanded.

New members cannot be added to the created structure or union. Any level
number that immediately follows the object variable in the LIKE attribute must be
equal to or less than the level number of the name with the LIKE attribute.

Chapter 7. Data declaration 151

LIKE

The following declarations yield the same structure for X.

dcl
1 A(18) aligned static,

2 B bit(4),
2 c bit(4),

1 X like A;

dcl
1 X,

2 B bit(4),
2 c bit(4);

Notice that the dimension (DIM(10)), ALIGNED, and STATIC attributes are not
copied as part of the LIKE expansion.

The LIKE attribute is expanded before the defaults are applied and before the
ALIGNED and UNALIGNED attributes are applied to the contained elements of the
LIKE object variable.

Examples

Declare 1 A,
2 C,

3 E(3) union,
5 El,
5 E2,

3 F;
Declare 1 B(l8) union,

2 C, 3 G, 3 H,
2 D;

BEGIN;
Declare 1 C LIKE B;
Declare 1 D(2),

5 BB LIKE A.C;
END;

Deciarations C and O have the resuits shown in the foiiowing example.

dcl
1 C,

2 C, 3 G, 3 H,
2 D;

dcl 1 D(2),
5 BB,

6 E(3) union,
7 El,
7 E2,

6 F;

I* DIM and UNION not copied. */

I* DIM(3) and UNION copied. */
I* Note adjusted level numbers. */

The following example is invalid because C. E has the LIKE attribute.

declare 1 A like C,
1 B,

2 C,
3 D,
3 E like X,

2 F,
1 X,

2 Y,
2 Z;

152 PUI Package/2 Language Reference

Combinations of arrays, structures, and unions

The following example is invalid because the LIKE attribute of A specifies a sub
structure, G. C, of a structure, G, declared with the LIKE attribute.

declare 1 A like G.C,
1 B,

2 C,
3 D,
3 E,

2 F,
1 G like B;

The following example is invalid because the LIKE attribute of A specifies a struc
ture, C, within a structure, B, that contains a substructure, F, having the LIKE attri
bute.

declare 1 A like C,
1 B,

2 C,
3 D,
3 E,

2 F like X,
1 x.

2 Y,
2 Z;

Combinations of arrays, structures, and unions
Specifying the dimension attribute on a structure or union results in an array of
structures or an array of unions respectively. The elements of such an array are
structures or unions having identical names, levels, and members. For example, if
a structure were used to hold meteorological data for each month of the years for
the twentieth and the twenty-first centuries, it might be declared as follows:

Declare 1 Year(1981:2188),
3 Month(12),

5 Temperature,
7 High decimal fixed(4,l),
7 Low decimal fixed(4,l),

5 Wind_velocity,
7 High decimal fixed(3),
7 Low decimal fixed(3),

5 Precipitation,
7 Total decimal fixed(3,l),
7 Average decimal fixed(3,1),

3 * char(8);

You could refer to the weather data for July 1991 by specifying YearC1991, 7).

Portions of this data could be referred to by Temperature(1991, 7) and
Wi nd_Ve l ocityC1991, 7). Preci pita ti on. Total (1991, 7) or Total(1991, 7) would both
refer to the total precipitation during July 1991.

Temperature.High(1991,3), which would refer to the high temperature in March
1991, is a subscripted qualified reference.

Chapter 7. Data declaration 153

Cross sections of arrays of structures or unions

The need for subscripted qualified references becomes apparent when an array of
structures or unions contains members that are arrays. In the following example,
both A and 8 are structures.

declare 1 A (2,2),
(2 B (2),

3 C,
3 D,

2 E) fixed bin;

To refer to a data item, it may be necessary to use as many as three names and
three subscripts. For example:

A(1, 1). B refers to B, an array of structures.
A(l, 1) refers to a structure.
AO, 1). BO) refers to a structure.
AO, 1). B(2). C refers to an element.

As long as the order of subscripts remains unchanged, subscripts in such refer
ences can be moved to names at a lower or higher level. In the previous example,
A. B.C(l, 1, 2) and AO, 1, 2). 8.C have the same meaning as A(l, 1). 8(2) .C for the
above array of structures. Unless all of the subscripts are moved to the lowest
level, the reference is said to have interleaved subscripts, so A. 8(1, 1, 2). C has
interleaved subscripts.

Any item declared within an array of structures or unions inherits dimensions
declared in the parent. In the previous declaration for the array of structures A, the
array 8 is a three-dimensional structure, because it inherits the two dimensions
declared for A. If 8 is unique and requires no qualification, any reference to a par
ticular 8 would require three subscripts, two to identify the specific A and one to
identify the specific 8 within that A.

Cross sections of arrays of structures or unions
A reference to a cross section of an array of structures or unions is not allowed.
That is, the asterisk notation cannot be used in a reference uniess aii of the sub
scripts are asterisks.

Structure and union operations
Structures can be referenced in most contexts that any elementary variable can be
referenced. For example, you can have structure references in assignments, 1/0
statements, and so on. References to unions or structures that contain unions,
however, are limited to the following:

• Parameters and arguments

• Storage control and those built-in functions and subroutines that permit struc
tures.

Structure and union mapping
Individual members of a union are mapped the same way as members of the struc
ture. That is, each of the members, if not a union, is mapped as if it were a
member of a structure. This means that the first storage location for each of the
membe.rs of a union will not overlay each other if each of the members requires
different alignment and therefore different padding before the beginning of the
member.

154 PUI Package/2 Language Reference

Consider the following union:

dcl
1 A union,

2 B,
3 C char(l),
3 D fixed bin(31),

2 E,
3 F char(2),
3 G fixed bin(31);

Structure and union mapping

Three bytes of padding are added between A and B. Two bytes are added between
A and E.

In order to ensure that the first storage location of each of the members of a union
is the same, make sure that the first member of each has the same alignment
requirement and it is the same as the highest alignment of any of its members (or
its member's members).

The remainder of the discussion applies to members of a structure or union, which
may be minor structures or elementary variables.

For any major or minor structure, the length, alignment requirement, and position
relative to an 8-byte boundary depend on the lengths, alignment requirements, and
relative positions of its members. The process of determining these requirements
for each level and for the complete structure is known as structure mapping.

You can use structure mapping for determining the record length required for a
structure when record-oriented input/output is used, and determining the amount of
padding or rearrangement required for correct alignment of a structure for locate
mode input/output.

The structure mapping process minimizes the amount of unused storage (padding)
between members of the structure. It completes the entire process before the
structure is allocated, according (in effect) to the rules discussed in the following
paragraphs.

Structure mapping is not a physical process. Terms such as shifted and offset are
used purely for ease of discussion, and do not imply actual movement in storage.
When the structure is allocated, the relative locations are already known as a result
of the mapping process.

The mapping for a complete structure reduces to successively combining pairs of
items (elements, or minor structures whose individual mappings have already been
determined). Once a pair has been combined, it becomes a unit to be paired with
another unit, and so on until the complete structure is mapped. The rules for the
process are categorized as:

• Rules for determining the order of pairing
• Rules for mapping one pair.

These rules are described below, and an example shows an application of the rules
in detail. It is necessary to understand the difference between the logical level and
the level number of structure elements. The logical levels are immediately
apparent if the structure declaration is written with consistent level numbers or suit
able indentation (as in the detailed example given after the rules). In any case, you
can determine the logical level of each item in the structure by applying the fol-

Chapter 7. Data declaration 155

Rules for order of pairing

lowing rule to each item in turn, starting at the beginning of the structure declara
tion:

Note: The logical level of a given item is always one unit deeper than that of its
immediate containing structure.

In the following example, the lower line shows the logical level for each item in the
declaration.

dcl 1 A, 4 B, 5 C, 5 D, 3 E, 8 F, 7 G;

1 2 3 3 2 3 3

Rules for order of pairing
The steps in determining the order of pairing are as follows:

1. Find the minor structure at the deepest logical level (which we will call logical
level n).

2. If more than one minor structure has the logical level n, take the first one that
appears in the declaration.

3. Pair the first two elements appearing in this minor structure, thus forming a unit.
Use the rules for mapping one pair. (See "Rules for mapping one pair.")

4. Pair this unit with the next element (if any) declared in the minor structure, thus
forming a larger unit.

5. Repeat step 4 until all the elements in the minor structure have been combined
into one unit. This completes the mapping for this minor structure; its alignment
requirement and length, including any padding, are now determined and will not
change (unless you change the structure declaration). Its offset from a
doubleword boundary is also now determined; note that this offset will be signif
icant during mapping of any containing structure, and it may change as a result
of such mapping.

6. Repeat steps 3 through 5 for the next minor structure (if any) appearing at
!ogica! !eve! n in the declaration.

7. Repeat step 6 until all minor structures at logical level n have been mapped.
Each of these minor structures can now be thought of as an element for struc
ture mapping purposes.

8. Repeat the pairing process for minor structures at the next higher logical level;
that is, make n equal to (n-1) and repeat steps 2 through 7.

9. Repeat step 8 until n = 1; then repeat steps 3 through 5 for the major structure.

Rules for mapping one pair
For purposes of this explanation, think of storage as contiguous doublewords, each
having 8 bytes, numbered O through 7, which indicate the offset from a doubleword
boundary. Think of the bytes as numbered continuously from 0 onwards, starting at
any byte, so that lengths and offsets from the start of the structure can be calcu
lated.

1. Begin the first element of the pair on a doubleword boundary; or, if the element
is a minor structure that has already been mapped, offset it from the
doubleword boundary by the amount indicated.

2. Begin the second element of the pair at the first valid position following the end
of the first element. This position will depend on the alignment requirement of

156 PUI Package/2 Language Reference

Effect of UNALIGNED attribute

the second element. (If the second element is a minor structure, its alignment
requirement wiil have been determined already.)

3. Shift the first element towards the second element as far as the alignment
requirement of the first allows. The amount of shift determines the offset of this
pair from a doubleword boundary.

After this process has been completed, any padding between the two elements has
been minimized and will not change throughout the rest of the operation. The pair
is now a unit of fixed length and alignment requirement; its length is the sum of the
two lengths plus padding, and its alignment requirement is the higher of the two
alignment requirements (if they differ).

Effect of UNALIGNED attribute
The example of structure mapping given below shows the rules applied to a struc
ture declared ALIGNED. Mapping of aligned structures is more complex because
of the number of alignment requirements. The effect of the UNALIGNED attribute
is to reduce to 1 byte the alignment requirements for halfwords, fullwords, and
doublewords, and to reduce to 1 bit the alignment requirement for bit strings. The
same structure mapping rules apply, but the reduced alignment requirements are
used. The only unused storage will be bit padding within a byte when the structure
contains bit strings.

AREA data cannot be unaligned.

If a structure has the UNALIGNED attribute and it contains an element that cannot
be unaligned, UNALIGNED is ignored for that element; the element is aligned and
an error message is put out. For example, in a program with the following declara
tion, C is given the attribute ALIGNED because the inherited attribute UNALIGNED
conflicts with AREA.

DECLARE 1 A UNALIGNED,
2 B,
2 C AREA(188);

Example of structure mapping
The following example shows the application of the structure mapping rules for a
structure with the specified declaration.

Chapter 7. Data declaration 157

Structure mapping example

declare 1 A aligned,
2 B fixed bin(31),
2 C,

3 D float decimal(l4),
3 E,

4 G,
5 H character(2),
5 I float decimal(l3),

4 J fixed binary(31,8),
3 K character(2),
3 L fixed binary(28,8),

2 M,
3 N,

4 P fixed binary(l5),
4 0 character(5),
4 R float decimal(2),

3 S,
4 T float decimal(l5),
4 u bit(3),
4 V char(l),

3 W fixed bin(31),
2 X picture '$9V99';

The minor structure at the deepest logical level is G, so this is mapped first. Then E
is mapped, followed by N, S, C, and M, in that order.

For each minor structure, a table in Figure 34 shows the steps in the process, and
a diagram in Figure 35 shows a visual interpretation of the process. Finally, the
major structure A is mapped as shown in Figure 36. At the end of the example, the
structure map for A is set out in the form of a table (Figure 37) showing the offset
of each member from the start of A.

158 PUI Package/2 Language Reference

Step 1

Step 2

Minor
Structure

Step 1

Step 2

Step 3

Minor
Structure

Step 1

Step 2

Minor
Structure

Step 1

Step 2

Minor
Structure

Step 1

Step 2

Step 3

Minor
Structure

Step 1

Step 2

Step 3

Minor
Structure

Name of Alignment
Element Requirement

H Byte
I Doubleword

*H Byte
I Doubleword

G Doubleword

F Fullword
G Doubleword

*F Fullword
G Doubleword

F & G Doubleword
J Fullword

E Doubleword

p Halfword
0 Byte

p & 0 Halfword
R Fullword

N Fullword

T Doubleword
u Byte

T & U Doubleword
v Byte

s Doubleword

D Doubleword
E Doubleword

D & E Doubleword
K Byte

D, E, & K Doubleword
L Fullword

c Doubleword

N Fullword
s Doubleword

*N Fullword
s Doubleword

N & S Doubleword
w Fullword

M Doubleword

*First item shifted right

Length

2
8
2
8

18

8
18
8

18
28
4

24

2
5
7
4

12

8
1
9
1

18

8
24
36
2

38
4

44

12
18
12
18
22
4

28

Figure 34. Mapping of example structure

Structure mapping example

Offset from
Doubleword Off set

Length of from Minor
Begin End Padding Structure

8 1
8 7
6 7 8
8 7 8 2

6 7

8 7
6 7
4 3 8
6 7 2 18
4 7
8 3 8 28

4 3

8 1 8
2 6 2
8 6
8 3 1 8

8 3

8 7 8
8 8 8 8
8 8
1 1 8 9

8 1

8 7 8
4 3 4 12
8 3
4 5 8 36
8 5
8 3 2 48

8 3

8 3
8 1
4 7 8
8 1 8 12
4 1
4 7 2 24

4 7

Chapter 7. Data declaration 159

Structure mapping example

Mapping of minor structure G

r---I---,

Step 1

Step 2

Mapping of minor structure E

Step 1

Step 2

Step 3

Mapping of minor structure N

Step 1

Step 2

Figure 35 (Part 1 of 2). Mapping of minor structures

160 PUI Package/2 Language Reference

Mapping of !T!iror strur,turP. ~

r--T-----,-U1

Step 1

Step 2

'-----S----'

Mapping of minor structure C

r--D------,

Step 1

Step 2

Step 3

Mapping of minor structure M

Step 1

Step 2

Step 3

r-E (length 24)""1

Figure 35 (Part 2 of 2). Mapping of minor structures

Structure mapping example

Chapter 7. Data declaration 161

Structure mapping example

Offset from
Doubleword

Name of Alignment Length of Offset
Item Required Length Begin End Padding from A

Step 1 B Fullword 4 0 3
c Doubleword 44 0 3

Step 2 B* Fullword 4 4 7 0
c Doubleword 44 0 3 0 4

Step 3 B & C Doubleword 48 4 3
M Doubleword 28 4 7 0 48

Step 4 B, C, & M Doubleword 76 4 7
x Byte 4 0 3 0 76

A Doubleword 80 4 3

*First item shifted right

C (length 44)
I

Step 1

C (length 44)

Step 2

C (length 44) M (length 28)

Step 3

C (length 44) M (length 28)

101111131415161718111 131415161710111 1314151617101111131415161718

I I I I I I I I I

Step 4

'--~~~~~~~A~~~~~~~--'

(length 80)

Figure 36. Mapping of major structure A

162 PUI Package/2 Language Reference

I A From A
B (:)

c From C 4
D (:) 4
padding (4) 8 12
E From E 12 16

F (:) 12 16
padding (2) 8 2(:) 24
G From G 1(:) 22 26

H (:) 1(:) 22 26
I 2 12 24 28

J 2(:) 32 36
K 36 4(:)
padding (2) 38 42
L 48 44

M From M 48
N From N (:) 48

p (:) (:) 48
0 2 2 5(:)
padding (1) 7 7 55
R 8 8 56

s From S 12 6(:)
T (:) 12 6(:)
u 8 2(:) 68
v 9 21 69

padding (2) 22 7(:)
w 24 72

x 76

Figure 37. Offsets in final mapping of structure A

Chapter 7. Data declaration 163

164 PUI Package/2 Language Reference

©Copyright IBM Corp. 1992

Chapter 8. Statements

Chapter 8. Statements
%ACTIVATE statement
ALLOCATE statement
Assignment statement

Target variables
Array targets
Union targets
Structure targets

How assignments are performed
Element assignments
Aggregate assignments . . .

Multiple assignments
Example of moving internal data
Example of assigning expression values
Example of assigning a structure using BY NAME

%assignment statement
BEGIN statement
CALL statement
CLOSE statement
%DEACTIVATE statement
DECLARE statement .
%DECLARE statement
DEFAULT statement
DELAY statement
DELETE statement
DISPLAY statement
DO statement . .

Type 1
Types 2 and 3 .

Using type 2 WHILE and UNTIL
Using type 3 with one specification
Using type 3 with two or more specifications
Using type 3 with TO, BY, REPEAT

Type 4
Examples of basic repetitions

Repetition using the reference as a subscript
Repetition with TO and BY

Example of DO with WHILE, UNTIL
Example of REPEAT

%DO statement .
END statement
%END statement .
EXIT statement . .
FETCH statement
FORMAT statement
FREE statement
GET statement
GO TO statement
%GO TO statement
IF statement

167
167
167
167
168
168
168
168
168
168
168
170
170
170
171
171
171
171
171
171
171
172
172
172
172
172
173
174
174
176
176
177
177
179
179
180
180
181
182
182
183
183
183
183
184
184
184
184
185
185

165

Examples
%1 F statement
%INCLUDE statement
ITERATE statement
LEAVE statement

Example
LOCATE statement
%NOPRINT statement
%NOTE statement
null statement
%null statement
ON statement . .
OPEN statement
PACKAGE statement
%PAGE statement
%POP statement . .
%PRINT statement
PROCEDURE statement
%PROCESS statement
*PROCESS statement
%PUSH statement
PUT statement
READ statement
RELEASE statement
RESIGNAL statement
RETURN statement
REVERT statement
REWRITE statement
SELECT statement

Examples
SIGNAL statement
%SKIP statement
STOP statement
WRITE statement

166 PUI Package/2 Language Reference

186
186
187
187
187
188
188
188
188
189
189
190
190
190
190
190
190
191
191
191
191
192
192
192
192
192
192
193
193
194
194
195
195
195

Statements

Chapter 8. Statements

This chapter lists all of the PUI and macro facility statements. Statements that are
described in other chapters are listed with cross-references to the full descriptions.

o/oACTIVATE statement
The %ACTIVATE macro facility statement is described in "%ACTIVATE" ·on
page 453.

ALLOCATE statement
The ALLOCATE statement is described in Chapter 9, "Storage control" on
page 198.

Assignment statement

© Copyright IBM Corp. 1992

The assignment statement evaluates an expression and assigns its value to one or
more target variables.

This statement is used for internal data movement, as well as for specifying compu
tations. (The GET and PUT statements with the STRING option can also be used
for internal data movement. Additionally, the PUT statement can specify computa
tions to be done. See Chapter 12, "Stream-oriented data transmission.")

Because the attributes of the target variable or pseudovariable can differ from the
attributes of the source (a variable, a constant, or the result of an expression), the
assignment statement might require conversions (see Chapter 5, "Data
conversion").

The syntax for the assignment statement is:

H__£~ef erence::::L- = -expression'--..-----.-- ----------<11

L,BY NAMEJ

Area assignment is described in "Area data and attribute" on page 211.

The remaining text discusses:

• The requirements for target variables
• How element and aggregate assignments are performed
• How BY NAME assignments are performed
• How multiple assignment are performed.

Examples of assignments begin on page 170.

167

Target variables

Target variables
The target variables can be element, array, or structure variables; or
pseudovariables.

Array targets
For array assignments, each target variable must be an array of scalars or struc
tures. The source must be a scalar or an expression with the same number of
dimensions and the same bounds for all dimensions as for the target.

Union targets
Union assignments are not permitted.

Structure targets
For structure assignments, each target variable must be a structure. The right
hand side can be a structure reference or element expression.

If the target in an assignment statement without the BYNAME option is a structure,
the source must be either a scalar or a structure with the same structuring as the
target structure. That is, the source must have the same number of members.
Members that are structures must have the same number of members and the
same dimensions.

How assignments are performed

Element assignments
Element assignments are performed as follows:

1. First to be evaluated are subscripts, POSITION attribute expressions, locator
qualifications of the target variables, and the second and third arguments of
SUBSTR pseudovariable references.

2. The expression on the right-hand side is then evaluated.

3. For each target variabie (in ieft to right order), the expression is converted to
the characteristics of the target variable according to the rules for data conver
sion. The converted value is then assigned to the target variable.

Aggregate assignments
Aggregate assignments (array and structure assignments) are expanded into a
series of element assignments as follows:

1. The label prefix of the original statement is applied to a null statement pre
ceding the other generated statements.

2. Array and structure assignments, when there are more than one, are done iter
atively.

3. Any assignment statement can be generated by a previous array or structure
assignment. The first target variable in an aggregate assignment is known as
the master variable. (It can also be the first argument of a pseudovariable). If
the master variable is an array, an array expansion is performed; otherwise, a
structure expansion is performed.

4. If an aggregate assignment meets a certain set of conditions, it can be done as
a whole instead of being expanded into a series of element assignments. Two

168 PUI Package/2 Language Reference

Aggregate assignments

conditions are if the arrays are not interleaved, or if the structures are contig
uous and have the same format.

In array assignments, all array operands must have the same number of dimen
sions and identical bounds. The array assignment is expanded into a loop as
follows:

do Jl = lbound(Master-variable,l) to
hbound(Master-variable,l);

do J2 = lbound(Master-variable,2) to
hbound(Master-variable,2);

do jn = lbound(Master-variable,n) to
hbound(Master-variable,n);

generated assignment statement

end;

In this expansion, n is the number of dimensions of the master variable that are to
participate in the assignment. In the generated assignment statement, all array
operands are fully subscripted, using (from left to right) the dummy variables j 1 to
j n. If an array operand appears with no subscripts, it will only have the subscripts
j 1 to j n. If cross-section notation is used, the asterisks are replaced by j 1 to j n. If
the original assignment statement has a condition prefix, the generated assignment
statement is given this condition prefix.

If the generated assignment statement is a structure assignment, it is expanded as
described next.

In structure assignments where the BY NAME option is not specified:

• None of the operands can be arrays, although they can be structures that
contain arrays.

• All of the structure operands must have the same number, k, of immediately
contained items.

• The assignment statement is replaced by k generated assignment statements.

- The ith generated assignment statement is derived from the original assign
ment statement by replacing each structure operand by its ith contained
item; such generated assignment statements can require further expansion.

- All generated assignment statements are given the condition prefix of the
original statement.

In structure assignments where the BY NAME option is given, the structure
assignment is expanded according to the steps below, which can generate further
array and structure assignments. None of the operands can be arrays.

1. The first item immediately contained in the master variable is considered.

2. If each structure operand and target variable has an immediately contained
item with the same name, an assignment statement is generated as follows:

a. The statement is derived by replacing each structure operand and target
variable with its immediately contained item that has this name. If any
structure contains no such name, no statement is generated.

b. If the generated assignment is a structure or array-of-structures assign
ment, BY NAME is appended.

Chapter 8. Statements 169

Multiple assignments

c. All generated assignment statements are given the condition prefix of the
original assignment statement.

d. A target structure must not contain unions.

3. Step 2 is repeated for each of the items immediately contained in the master
variable. The assignments are generated in the order of the items contained in
the master variable.

Multiple assignments
Assignments can be made to multiple variables in a single assignment statement.
For example:

A,X=B+C;

The value of B + C is assigned to both A and X. In general, it has the same effect
as the following statements:

Temporary = B + C;
A = Temporary;
X = Temporary;

The source in the assignment statement must be scalar. If the source is a con
stant, it is assigned to each of the targets from left to right. If the source is not a
constant, it is assigned to a temporary variable, which is then assigned to each of
the targets from left to right.

The target can be any reference permitted in a simple assignment.

BY NAME is not permitted in multiple assignments.

Example of moving internal data
The following example of the assignment statement can be used for internal data
movement. The value of the expression on the right of the assignment symbol is to
be assigned to the variable on the left.

NTOT=TOT;

Example of assigning expression values
The following example includes an expression whose value is to be assigned to the
variable on the left of the assignment symbol:

Av=(Av*Num+Tav*Tnum)/(Num+Tnum);

170 PUI Package/2 Language Reference

Assigning a structure using BY NAME

Example of assigning a structure using BY NAME
The following example illustrates structure assignment using the BY NAME option:

declare
1 one,
2 Pa rtl,
3 Red,
3 Orange,

2 Part2,
3 Yellow,
3 Blue,
3 Green;

declare
1 two,
2 Pa rtl,
3 Blue,
3 Green,
3 Red,

2 Part2,
3 Brown,
3 Yell ow;

declare
1 three,
2 Partl,
3 Red,
3 Blue,
3 Brown,

2 Part2,
3 Yellow,
3 Green;

Ill One = Two, by name;
121 One.Partl = Three.Partl, by name;

Ill The first assignment statement is the same as the following:

One.Partl.Red = Two.Partl.Red;
One.Part2.Yellow = Two.Part2.Yellow;

121 The second assignment statement is the same as the following:

One.Partl.Red = Three.·Partl.Red;

o/oassignment statement
The %assignment macro facility statement is discussed in "%assignment" on
page 454.

BEGIN statement
The BEGIN statement is described in Chapter 6, "Program organization" on
page 89.

CALL statement
The CALL statement is described in "CALL statement" on page 120.

CLOSE statement
The CLOSE statement is described in Chapter 10, "Input and output" on page 228.

0/oDEACTIV ATE statement
The DEACTIVATE statement is described in "%DEACTIVATE" on page 454.

DECLARE statement
The DECLARE statement is described in "DECLARE statement" on page 129.

Chapter 8. Statements 171

DELAY

%DECLARE statement
The %DECLARE macro facility statement is discussed in "%DECLARE" on
page 455.

DEFAULT statement
The DEFAULT statement is described in "DEFAULT statement" on page 142.

DELAY statement
The DELAY statement suspends the execution of the next statement in the applica
tion program for the specified period of time.

The syntax for the DELAY statement is:

11>11>-DELAY-(expression)-;------------------ ..

expression
specifies an expression that is evaluated and converted to FIXED
BIN(M,O). Execution is suspended for the number of milliseconds speci
fied.

The maximum wait time is 23 hours and 59 minutes.

For example:

delay (28);

suspends execution for 20 milliseconds.

delay (18**3);

delay (18*18**3);

suspends execution for 1 O seconds.

DELETE statement
The DELETE statement is described in "DELETE statement" on page 245.

DISPLAY statement
The DISPLAY statement displays a message on the user's screen and optionally
requests the user to enter a response to the message.

The syntax for the DISPLAY statement is:

11>11>-DISPLAY-(expression) . [J
REPLY-(char-ref)

----------..

172 PUI Package/2 Language Reference

DO statement

DO

expression
is converted, where necessary, to a character string. l'h1s character string
is displayed. It can contain mixed character data. If the expression has
the GRAPHIC attribute, it is not converted. ·

REPLY (char-ref)
specifies a character variable that receives the user entere9 response.
You cannot use pseudovariables. The response can contain CHAR
ACTER, GRAPHIC, or mixed data.

The REPLY option will suspend program execution until the user enters a
response. In some environments (for example, OS/2 Presentation Manager), the
DISPLAY statement, even without the REPLY option, suspends execution of the
application until the user acknowledges the message.

If GRAPHIC data is entered in the REPLY, it is received as character data that
contains mixed data. Such character data can be converted to GRAPHIC data
using the GRAPHIC BUil TIN.

Example:

display ('Communication link established.');

displays the message

Communication link established.

The DO statement and its corresponding END statement, delimit a group of state
ments collectively called a do-group.

Note: Condition prefixes are invalid on DO statements.

The syntax for the DO statement is:

Notes:

1. expn is an abbreviation for expression n.

2. Condition prefixes are invalid on DO statements.

Type2--~~~~~~~~~~~~~~~~~~~---.

...... -ooLWH I LE-(-exp4-)

~UNTIL-(-exp5-)~ UNTI L-(-exp5-)---------~----'
WHILE-(-exp4-)

Chapter 8. Statements 173

DO

Type 1

Types 2 and 3

~~~DO-reference--=~ specification ~;----I: 
Type 3 

specification: 
~expl----..--------~------------

expn 

TO-exp2----..---____,..--i 

BY-exp.r--......-----.....----1 

WHILE-(-exp4-)--..----------.--1 
UNTIL-(-exp5--) 

UNTIL-(-exp5--)----.----------.--' 
WHILE-(-exp4-) 

an abbreviation for expression n 

The type 1 do-group specifies that the statements in the group are executed. It 
does not provide for the repetitive execution of the statements within the group. 

Types 2 and 3 provide for the repetitive execution of the statements within the do
group. 

\AIUll C /...,.., ... A\ 
WW I .. ._._ \lWOAIJ"T/ 

specifies that, before each repetition of do-gro'up, exp4 is evaluated and, if 
necessary, converted to a bit string. If any bit in the resulting string is 1, 
the do-group is executed. If all bits are 0, or the string is null, execution of 
the Type 2 do-group is terminated. For Type 3, only the execution associ
ated with the specification containing the WHILE option is terminated. 
Execution for the next specification, if one exists, then begins. 

UNTIL {exp5) 
specifies that, after each repetition of do-group, exp5 is evaluated, and, if 
necessary, converted to a bit string. If all the bits in the resulting string 
are 0, or the string is null, the next iteration of the do-group is executed. If 
any bit is 1, execution of the Type 2 do-group is terminated. For Type 3, 
only the execution associated with the specification containing the UNTIL 
option is terminated. Execution for the next specification, if one exists, 
then begins. 

reference 
Pseudovariables cannot be used as a reference. All data types are 
allowed. 

The generation, g, of a reference is established once at the beginning of 
the do-group, immediately before the initial value expression (exp1) is 

17 4 PUI Package/2 Language Reference 



DO 

evaluated. If the reference generation is changed to h in the do-group, the 
do-group continues to execute with the reference derived rmn 1 ihe gene1·
ation g. However, any reference to the reference inside the do-group is a 
reference to generation h. It is an error to free generation g in the do
group. 

If a reference is made to a reference after the last iteration is completed, 
the value of the variable is the value that was out of range of the limit set 
in the specification. That is, if: 

• The BY value is positive and the reference is greater than the TO 
value 

• The BY value is negative and the reference is less than the TO value 

of the limit set in the specification. 

If reference is a program-control data variable other than a locator, the BY 
and TO options cannot be used in specification. 

exp1 specifies the initial value of the reference. 

TO exp2 

BY exp3 

If TO, BY,· and REPEAT are all omitted froni a specification, there is a 
single execution of the do-group, with the reference having the value of 
exp1. If WHILE(exp4) is included, the single execution does not take 
place unless exp4 is true. 

exp2 is evaluated at entry to the specification and saved. This saved 
value specifies the terminating value of the reference. Execution of the 
statements in a do-group terminates for a specification as soon as the 
value of the reference, when tested at the end of the do-group, is out of 
range. Execution of the next specification, if one exists, then begins. 

If TO exp2 is omitted from a specification, and if BY exp3 is specified, 
repetitive execution continues until it is terminated by the WHILE or UNTIL 
option, or until another statement transfers control out of the do-group. 

exp3 is evaluated at entry to the specification and saved. This saved 
value specifies the increment to be added to the reference after each exe
cution of the do-group. 

If BY exp3 is omitted from a specification, and if TO exp2 is specified, 
exp3 defaults to 1 . 

If BY O is specified, the execution of the do-group continues indefinitely 
unless it is halted by a WHILE or UNTIL option, or control is transferred to 
a point outside the do-group. 

REPEAT exp6 
exp6 is evaluated and assigned to the reference after each execution of 
the do-group. Repetitive execution continues until it is terminated by the 
WHILE or UNTIL option, or another statement transfers control out of the 
do-group. 

The following sections give more information about using Type 2 and Type 3 DO 
groups. Examples of DO groups begin on page 179. 

Chapter 8. Statements 175 



DO 

Using type 2 WHILE and UNTIL 
If a Type 2 DO specification includes both the WHILE and UNTIL option, the DO 
statement provides for repetitive execution as defined by the following: 

Label: do while Cexp4) 
until Cexp5) 
statement-I 

statement-n 
end; 

Next: statement /*Statement following the do group*/ 

The above is equivalent to the following expansion: 

Label : if ( exp4) then: 
else 

go to Next; 
statement-1 

statement-n 
Label2: if Cexp5) then; 

else 
go to Label; 

Next: statement /* Statement following the do group */ 

If the WHILE option is omitted, the IF statement at label Label is replaced by a null 
statemen Note that if the WHILE option is omitted, statements 1 through n are exe
cuted at least once. 

If the UNTIL option is omitted, the IF statement at label La be 12 in the expansion is 
replaced by the statement GO TO Label. 

Using type 3 with one specification 
The following sequence of event$ summarizes the effect of executing a do-group 
with one specification: 

1. If iefemnce is specified and BY and TO options are also specified, exp1, exp2, 
and exp3 will be evaluated prior to the assignment of exp1 to the reference. 
Then the initial value is assigned to reference. For example: 

do reference = expl to exp2 by exp3; 

For a variable that is not a pseudovariable, the above action of the do-group 
definition is equivalent to the following expansion: 

el=expl; 
e2=exp2; 
e3=exp3; 
V=El; 

The variable v is a compiler-created based variable with the same attributes as 
the reference. el, e2, and e3 are compiler-created variables. 

2. If the TO option is present, test the value of the control variable against the 
previously-evaluated expression C e2) in the TO option. 

3. If the WHILE option is specified, evaluate the expression in the WHILE option. 
If it is false, leave the do-group. 

4. Execute the statements in the do-group. 

176 PUI Package/2 Language Reference 



DO 

5. If the UNTIL option is specified, evaluate the expression in the UNTIL option. If 
it is true, leave the do-group. 

6. If there is a reference: 

a. If the TO or BY option is specified, add the previously-evaluated exp3 ( e3) 
to the reference. 

b. If the REPEAT option is specified, evaluate the exp6 and assign it to the 
reference. 

c. If the TO, BY, and REPEAT options are all absent, leave the do-group. 

7. Go to 2 on page 176. 

Using type 3 with two or more specifications 
If the DO statement contains more than one specification, the second expansion is 
analogous to the first expansion in every respect. However, the statements in the 
do-group are not actually duplicated in the program. A succeeding specification is 
executed only after the preceding specification has been terminated. 

When execution of the last specification terminates, control passes to the statement 
following the do-group. 

Control can transfer into a do-group from outside the do-group only if the do-group 
is delimited by the DO statement in Type 1 . Control can also return to a do-group 
from a procedure or ON-unit invoked from within that do-group. 

Using type 3 with TO, BY, REPEAT 
The TO and BY options let you vary the reference in fixed positive or negative 
increments. In contrast, the REPEAT option, which is an alternative to the TO and 
BY options, lets you vary the control variable nonlinearly. The REPEAT option can 
also be used for nonarithmetic control variables (such as pointer). 

If the Type 3 DO specification includes the TO and BY options, the action of the 
do-group is defined by the following: 

Label: do variable= 
ex pl 
to exp2 
by exp3 
while ( exp4) 
until(exp5); 
statement-1 

statement-m 
La be 11: end; 
Next: statement 

Chapter 8. Statements 177 



DO 

The action of the previous do-group definition is equivalent to the following expan
sion. In this expansion, v is a compiler-created variable with the same attributes as 
va ri able; and el, e2, and e3 are compiler-created variables: 

Label: el=expl; 
e2=exp2; 
e3=exp3; 
V=el; 

Label2: if (e3>=8)&(v>e2)1(e3<8)&(v<e2) then 
go to Next; 

if (exp4) then; 
else 

go to Next; 
statement-1 

statement-m 
Labell: if (exp5) then 

go to Next; 
Label3: V=V+e3; 

go to Label2; 
Next: statement 

If the specification includes the REPEAT option, the action of the do-group is 
defined by the following: 

Label: do variable= 
expl 
repeat exp6 
wh i l e ( exp4) 
until( exp5) ; 
statement-1 

statement-m 
Labe 11 : end; 
Next: statement 

The action of the previous do-group definition is equivalent to the following expan
sion: 

Label: el=expl; 

Label2: 

Labell: 

Labe 13: 

Next: 

V=el; 
' 
if (exp4) then; 
else 

go to Next; 
statement-1 

statement-m 
if ( exp5) then 

go to Next; 
V=exp6; 

go to Label2; 
statement 

178 PUI Package/2 Language Reference 



Type 4 

DO 

Additional rules for the sample expansions are as follows: 

1. The previous expansion only shows the result of one specification. If the DO 
statement contains more than one specification, the statement labeled NEXT is 
the first statement in the expansion for the next specification. The second 
expansion is analogous to the first expansion in every respect. Note, however, 
that statements 1 through m are not actually duplicated in the program. 

2. If the WHILE clause is omitted, the IF statement immediately preceding 
statement-1 in each of the expansions is also omitted. 

3. If the UNTIL clause is omitted, the IF statement immediately following 
statement-m in each of the expansions is also omitted. 

LOOP specifies infinite iteration. FOREVER is a synonym of LOOP. 

The only way to exit this loop is by a LEAVE or GO TO, or by terminating 
a procedure or the program. 

For example: 

dcl payroll file; 
dcl 1 payrec, 

2 type char, 
2 subtype char, 
2 * char( 188); 

Readfile: 
Do loop; 

Read file( payro 11 ) into( pay rec); 

If payrec.type = 'E' 
then leave; /*like goto After_ReadFile */ 

If payrec.type = 'l' then 
Do; 

/*process first part of record*/ 

If payrec.subtype = 'S' 
then iterate Readfile; /*like goto End_ReadFile */ 

I* process remainder of record */ 
End; 

End_ReadFile: 
End; 

After _Read File:; 

Examples of basic repetitions 
In the following example, the do-group is executed ten times, while the value of the 
reference I progresses from 1 through 10. 

do I = 1 to 18; 

end; 

Chapter 8. Statements 179 



DO 

The effect of this DO and END statement is equivalent to: 

I = l; 
A: if I > 18 then go to B; 

I = I +l; 
go to A; 

B: next statement 

The following DO statement executes the do-group three. times: once for each 
assignment of 'Tom', 'Di ck', and 'Harry' to Name. 

do Name= 'Tom', 'Dick', 'Harry'; 

The following statement specifies that the do-group executes thirteen times: ten 
times with the value of I equal to 1 through 10, and three times with the value of I 
equal to 13 through 15: 

do I = 1 to 18, 13 to 15; 

Repetition using the reference as a subscript 
The reference of a DO statement can be used as a subscript in statements within 
the do-group, so that each execution deals with successive elements of a table or 
array. 

In the following example, the first ten elements of A are set to 1 through 1 O in 
sequence: 

do I = 1 to 18; 
A(I) =I: 

end; 

Repetition with TO and BY 
The following example specifies that the do-group is executed five times, with the 
value of I equal to 2, 4, 6, 8, and 1 O: 

do I = 2 to 18 by 2; 

If negative increments of the reference are required, the BY option must be used. 
For example, the following is executed with I equal to 10, 8, 6, 4, 2, 0, and -2: 

do I = 18 to -2 by -2; 

In the following example, the do-group is executed with I equal to 1, 3, 5: 

I=2; 
do I=l to I+3 by I; 

end; 

It is equivalent to the following: 

do I=l to 5 by 2; 

end; 

180 PUI Package/2 Language Reference 



Example of DO 'Nith WHILE~ UNTIL 
The WHILE and UNTIL options make successive executions of the do-group 
dependent upon a specified condition. For example: 

do while ( A=B); 

end; 

is· equivalent to the following: 

S: if A=B then; 
else goto R; 

goto S; 
R: next statement 

The example: 

do until ( A=B); 

end; 

is equivalent to the following: 

S: 

if (A=B) then goto R; 
goto S; 

R: next statement 

DO 

In the absence of other options, a do-group headed by a DO UNTIL statement is 
executed at least once, but a do-group headed by a DO WHILE statement might 
not be executed at all. That is, the statements DO WHILE (A=B) and DO UNTIL 
( A-.=B) are not equivalent. 

In the following example, if A-.=B when the DO statement is first encountered, the 
do-group is not executed at all. 

do while(A=B) until(X=18); 

However, if A=B, the do-group is executed. If X=18 after an execution of the do
group, no further executions are performed. Otherwise, a further execution is per
formed provided that A is still equal to B. 

In the following example, the do-group is executed at least once, with I equal to 1: 

do I=l to 18 until(Y=l); 

If Y= 1 after an execution of the do-group, no further executions are performed. Oth
erwise, the default increment (BY 1) is added to I, and the new value of I is com
pared with 10. If I is greater than 10, no further executions are performed. 
Otherwise, a new execution commences. 

The following statement specifies that the do-group executes ten times while C( I) 

is less than zero, and then (provided that A is equal to B) once more: 

do I = 1 to 18 while (C(I)<8), 
11 while (A= B); 

Chapter 8. Statements 181 



Example of REPEAT 
In the following example, the do-group is executed with I equal to 1, 2, 4, 8, 16, 
and so on: 

do I = 1 repeat 2*I; 

end; 

This is equivalent to the following: 

A: 
I=l; 

I=2*I; 
goto A; 

In the following example, the first execution of the do-group is performed with I= 1. 

do I=l repeat 2*I until(I=256); 

After this and each subsequent execution of the do-group, the UNTIL expression is 
tested. If 1=256, no further executions are performed. Otherwise, the REPEAT 
expression is evaluated and assigned to I, and a new execution commences. 

The following example shows a DO statement used to locate a specific item in a 
chained list: 

do P=Phead repeat P -> Fwd 
while(P•=null()) 
until(P->Id=Id_to_be_found); 

end; 

The value Phead is assigned to P for the first execution of the do-group. Before 
each subsequent execution, the value P -> Fwd is assigned to P. The value of P is 
tested before the first and each subsequent execution of the do-group. If it is null, 
no further executions are performed. 

The foiiowing statement specifies that the do-group is to be executed nine times, 
with the value of I equal to 1 through 9; then successively with the value of I equal 
to 10, 20, 40, and so on. Execution ceases when the do-group has been executed 
with a value of I greater than 10000. 

do I = 1 to 9, 18 repeat 2*I 
until (I> 18888); 

end; 

o/oDO statement 
The %DO macro facility statement is discussed in "%DO" on page 455. 

182 PUI Package/2 Language Reference 



END statement 

END 

The END statement ends a DO, SELECT, PACKAGE, BEGIN or PROCEDURE. 
Every block or group must have an END statement. 

The syntax for the END statement is: 

11>11>-END ;----------------~ 
Lstatement- 7abe7J 

statement-label 
cannot be subscripted. If a statement-label follows END, the END state
ment closes the unclosed group or block headed by the nearest preceding 
DO, SELECT, PACKAGE, BEGIN, or PROCEDURE statement having that 
statement-label. Every block with a DO, SELECT, PACKAGE, BEGIN or 
PROCEDURE statement must have a corresponding END statement. 

If a statement-label does not follow END, the END statement closes the 
one group or block headed by the nearest preceding DO, SELECT, 
PACKAGE, BEGIN, or PROCEDURE statement for which there is no other 
corresponding END statement. 

Execution of a block terminates when control reaches the END statement for the 
block. However, it is not the only means of terminating a block's execution, even 
though each block must have an END statement. (See Chapter 6, "Program 
organization" on page 89 for more details.) 

If control reaches an END statement for a procedure, it is treated as a RETURN 
statement. 

Normal termination of a program occurs when control reaches the END statement 
of the main procedure. 

0/oEND statement 

EXIT statement 

The %END macro facility statement is discussed in "%END" on page 456. 

The EXIT statement is identical to STOP. Refer to "STOP statement" on 
page 195. 

FETCH statement 
The FETCH statement is described in "FETCH statement" on page 103. 

Chapter 8. Statements 183 



GOTO 

FORMAT statement 
The FORMAT statement is described in Chapter 12, "Stream-oriented data 
transmission" on page 252. 

FREE statement 

GET statement 

The FREE statement is described in Chapter 9, "Storage control" on page 198. 

The GET statement is described in Chapter 12, "Stream-oriented data 
transmission" on page 252. 

GO TO statement 
The GO TO statement transfers control to the statement identified by the specified 
label reference. The GO TO statement is an unconditional branch. 

The syntax for the GO TO statement is: 

...... -Go TO-label-;----------------------+..i 

Abbreviation: GOTO 

label specifies a label constant, a label variable, or a function reference that 
returns a label value. Since a label variable can have different values at 
each execution of the GO TO statement, control might not always transfer 
to the same statement. 

if a GO TO statement transfors controi from within a biock to a point not contained 
within that block, the block is terminated. If the transfer point is contained in a 
block that did not directly activate the block being terminated, all intervening blocks 
in the activation sequence are also terminated (see "Procedure termination" on 
page 99). 

When a GO TO statement specifies a label constant contained in a block that has 
more than one activation, control is transferred to the activation current when the 
GO TO is executed (see "Recursive procedures" on page 100). 

A GO TO statement cannot transfer control: 

• To an inactive block. Detection of such an error is not guaranteed. 

• From outside a do-group to a statement inside a Type 2 or Type 3 do-group, 
unless the GO TO terminates a procedure or ON-unit invoked fro.m within the 
do-group. 

• To a FORMAT statement. 

184 PUI Package/2 Language Reference 



IF 

If the destination of the GO TO is specified by a label variable, it can then be used 
as a switch by assigning label constants to the label variable. If the label variable 
is subscripted, the switch can be controlled by varying the subscript. By using label 
variables or function references, quite complex switching can be effected. It is 
usually true, however, that simple control statements are the most efficient. GOTO 
operations from one block to another block hinder many optimizations in the target 
block, unless the target label is the last statement in its block. 

o/oGO TO statement 

IF statement 

The %GO TO macro facility statement is discussed in "%GO TO" on page 456. 

The IF statement evaluates an expression and controls the flow of execution 
according to the result of that evaluation. The IF statement thus provides a condi
tional branch. 

Note: Condition prefixes are invalid on IF and ELSE statements. 

The syntax for the IF statement is: 

11>11>-I F-express ion-THEN-uni tl---.L-----J-.-----------__.~ ,. 
ELSE-unit2 

expression 
is evaluated and, if necessary, converted to a bit string. 

When expressions involve the use of the & and/or I operators, they can be 
evaluated in any order. For more information on evaluations of 
expression, see Chapter 4, "Expressions and references" on page 50. 

unit Each unit is either a valid single statement, a group, or a begin block. All 
single statements are considered valid and executable except DECLARE, 
DEFAULT, END, FORMAT, PROCEDURE, or a % statement. If a nonex
ecutable statement is used, the result can be unpredictable. Each unit can 
contain statements that specify a transfer of control (for example, GO TO). 
Hence, the normal sequence of the IF statement can be overridden. 

Each unit can be labeled and can have condition prefixes. 

IF is a compound statement. The semicolon terminating the last unit also termi
nates the IF statement. 

If any bit in the string expression has the value ' 1 'B, unit1 is executed and unit2, if 
present, is ignored. If all bits are '0' B, or the string is null, unit1 is ignored and 
unit2, if present, is executed. 

Chapter 8. Statements 185 



Examples 

o/olF statement 

IF statements can be nested. That is, either unit can itself be an IF statement, or 
both can be. Since each ELSE is always associated with the innermost unmatched 
IF in the same block or do-group, an ELSE with a null statement might be required 
to specify a desired sequence of control. For example, if B and C are constants, the 
following example: 

if A = B then 

else 
if A = C then 

else 

is equivalent to and would be better coded as: 

select( A ); 
when ( B ) 

when C 

end; 

In the following example, if the comparison is true (if A is equal to B), the value of D 
is assigned to C, and the ELSE unit is not executed. 

if A = B then 
C = D; 

else 
C = E; 

If the comparison is false (A is not equal to B), the THEN unit is not executed, and 
the value of E is assigned to C. 

Either the THEN unit or the ELSE unit can contain a statement that transfers 
control, either conditionally or unconditionally. If the THEN unit ends with a GO TO 
statement there is no need to specify an ELSE unit. For example: 

if all(Arrayl = Array2) then 
go to LABEL_l; 

next-statement 

If the expression is true, the GO TO statement of the THEN unit transfers control to 
LABEL_l. If the expression is not true, the THEN unit is not executed and control 
passes to the next statement. 

The %IF macro facility statement is discussed in "%IF" on page 456. 

186 PUI Package/2 Language Reference 



%INCLUDE 

o/o~NCLUDE statement 
The %INCLUDE statement is used to incorporate external text into the source 
program. 

The syntax for the %INCLUDE statement is: 

.,..,._%INCLUDE-member-;-------------------<111 

member 
specifies the first part of an OS/2 file name. 

The included member can also contain %INCLUDE statements. 

For information on using the %INCLUDE statement in applications, refer to PU/ 
Package/2 Programming Guide 

ITERATE statement 
The ITERATE statement transfers control to the END statement that delimits its 
containing iterative do-group. The current iteration completes and the next iter
ation, if needed, is started. It is valid only within an iterative do-group. 

The syntax of the ITERATE statement is: 

.,..,._ITERATE ;---------------"" 
L1abel-constantJ 

label-constant 
Must be the label of a containing do-group. If omitted, control transfers to 
the END statement of the most recent iterative do-group containing the 
ITERATE statement. 

For an example, see "Type 4" on page 179. 

LEA VE statement 
The LEAVE statement transfers control from within a do-group to the statement fol
lowing the END statement that delimits the group and terminates the do-group. 
LEAVE is valid only within a do-group. 

The syntax for the LEAVE statement is: 

.,..,._LEAVE ;-----------------.<11 
L 7 abe 7-constantJ 

label-constant 
must be a label of a containing do-group. The do-group that is left is the 
do-group that has the specified label. If label-constant is omitted, the do
group that is left is the group that contains the LEAVE statement. 

Chapter 8. Statements 187 



%NO PRINT 

Example 

The LEAVE statement and the referenced or implied DO statement must not be in 
different blocks. 

In addition to the following examples, see the example in "Type 4" on page 179. 

In the following example, the statement leave A; transfers control to statement after 
group A: 

A: do I = 1 to 18; 
do J = 1 to 5; 

if X( I, J )=8 then 
leave A; 

else I* ... *I ; 
end; 
statement within group A; 

end; 
statement after group A; 

LOCATE statement 
The LOCATE statement is described in Chapter 11, "Record-oriented data 
transmission" on page 242. 

0/oNOPRINT statement 
The %NOPRINT statement causes printing of the source listings to be suspended 
until a %PRINT statement is encountered or until a %POP statement is encount
ered that restores the previous %PRINT statement. 

The syntax for the %NOPRINT statement is: 

••-%NOPRINT-;----------------------.,.. 

For an example of the %NOPRINT statement, refer to "%PUSH statement" on 
page 191. 

o/oNOTE statement 
The %NOTE statement generates a diagnostic message of specified text and 
severity. 

The syntax for the %NOTE statement is: 

••-%NOTE-(-message [ 1 )-;-------------- .... 
, code--i 

188 PUI Package/2 Language Reference 



null statement 

null 

message 
a charactei" expression whose value is tr1e required diagnostic message. 

code a fixed expression whose value indicates the severity of the message, as 
follows: 

Code Severity 

0 
4 w 
8 E 

12 s 
16 u 

If code is omitted, the default is 0. 

If code has a value other than those listed above, a diagnostic message is 
produced and a default value is taken. If the value is less than O or 
greater than 16, severity U is the default. Otherwise, the next lower 
severity is the default. 

Generated messages are filed together with other preprocessor messages. 
Whether or not a particular message is subsequently printed depends upon its 
severity level and the setting of the compiler FLAG option (as described in the PU/ 
Package/2 Programming Guide). 

Generated messages of seve.rity U cause immediate termination of preprocessing 
and compilation. Generated messages of severity S, E, or W might cause termi
nation of compilation, depending upon the setting of various compiler options. 

DBCS messages can be generated by using mixed data when the GRAPHIC com
piler option is in effect. 

The null statement causes no operation to be performed and does not modify 
sequential statement execution. It is often used to denote null action for THEN and 
ELSE clauses and for WHEN and OTHERWISE statements. 

The syntax for the null statement is: 

0/onull statement 
The %null macro facility statement is discussed in "%null" on page 458. 

Chapter 8. Statements 189 



%PAGE 

ON statement 
The ON statement is described in Chapter 15, "Condition handling" on page 302. 

OPEN statement 
The OPEN statement is described in Chapter 10, "Input and output" on page 228. 

PACKAGE statement 
The PACKAGE statement is described in "Packages" on page 92. 

o/oPAGE statement 
The %PAGE statement allows you to start a new page in the compiler source 
listings. 

The syntax for the %PAGE statement is: 

~~-%PAGE-;----------------------<11 

%POP statement 
The %POP statement allows you to restore the status of the %PRINT and 
%NOPRINT statements saved by the most recent %PUSH statement. 

The most common use of the %PUSH and %POP statements is in included files 
and macros. 

The syntax of the %POP statement is: 

~~-%POP-;-----------------------+<11 

For an example, see "%PUSH statement" on page 191. 

%PRINT statement 
The %PRINT statement causes printing of the source listings to be resumed. 

The syntax for the %PRINT statement is: 

~~-%PRINT-;----------------------<11 

%PRINT is in effect, provided that the relevant compiler options are specified. For 
an example of the %PRINT statement, refer to "%PUSH statement" on page 191. 

190 PUI Package/2 Language Reference 



PROCEDURE statement 
The PROCEDURE statement is described in "PROCEDURE statement" on 
page 94. 

0/oPROCESS statement 
The %PROCESS statement is used to override compiler options. 

~~-%PROCESS t I 
lcompj ler-opuonJ 

The % or* must be the first data byte of a source record. Any number of 
%PROCESS and *PROCESS statements can be specified, but they must all 
appear before the first language element appears. Refer to the PU/ Package/2 
Programming Guide for more information. 

*PROCESS statement 
The *PROCESS statement is a synonym for the %PROCESS statement. For infor
mation on the %PROCESS statement, refer to on page 191. 

o/oPUSH statement 
The %PUSH statement allows you to save the current status of the %PRINT and 
%NOPRINT statements in a "push down" stack on a last-in, first-out basis. You 
can restore this saved status later, also on a last-in, first-out basis, by using the 
%POP statement. 

A common use of %PUSH and %POP statements is in included files and macros. 

The syntax of the %PUSH statement is: 

~~-%PUSH-;----------------------• 

In the following example, statements 1, 2, 3, S1, S2, and 4 are printed in the 
listings. All others are not printed. 

Chapter 8. Statements 191 



PUT statement 

.-----Source Progra111----~ 

statement l; 
statement 2; 
%include First; /*statement 3 */ 
.-------Fi rst.---------. 

%push; 
%noprint; 
statement F4; 
statement F5; 
%include Second; /* stmt F6 */ 

.-----Second-----. 
%push; 
%print; 
statement Sl; 
statement S2; 
%pop; 

statement F7; 
%pop; 

statement 4; 

The PUT Statement is described in Chapter 12, "Stream-oriented data 
transmission" on page 252. 

READ statement 
The READ statement is described in Chapter 11, "Record-oriented data 
transmission" on page 242. 

RELEASE statement 
The RELEASE statement is described in "RELEASE statement" on page 103. 

RESIGNAL statement 
The RESIGNAL statement is described in "RESIGNAL statement" on page 309. 

RETURN statement 
The RETURN statement is described in "RETURN statement" on page 121. 

REVERT statement 
The REVERT statement is described in Chapter 15, "Condition handling" on 
page 302. 

192 PUI Package/2 Language Reference 



SELECT 

REWRITE statement 
The REWRITE statement is described in Chapter 11, "Record-oriented data 
transmission" on page 242. 

SELECT statement 
A select-group provides a multiple path conditional branch. A select-group contains 
a SELECT statement, optionally one or more WHEN statements, optionally an 
OTHERWISE statement, and an END statement. 

Note: Condition prefixes are invalid on SELECT, OTHERWISE, or WHEN state
ments. 

The syntax for the select-group is: 

lll-lll--SELECT----- -~•-.----------........... I ________ _ 
l(expl)J L J 

WHEN(~~~)unit; 
Ill---.--------.--------------------~· 

LoTHERWISE-unit-;J 

Abbreviation: OTHER for OTHERWISE 

SELECT (exp1) 
and its corresponding END statement, delimit a group of statements col
lectively called a select-group. The expression in the SELECT statement 
is evaluated and its value is saved. 

WHEN (exp2, exp2 ... ) unit 
specifies an expression or expressions that are evaluated and compared 
with the saved value from the SELECT statement. If an expression is 
found that is equal to the saved value, the evaluation of expressions in 
WHEN statements is terminated, and the unit of the associated WHEN 
statement is executed. If no such expression is found, the unit of the 
OTHERWISE statement is executed. 

The WHEN statement must not have a label or condition prefix. 

OTHERWISE unit 
specifies the unit to be executed when every test of the preceding WHEN 
statements fails. 

If the OTHERWISE statement is omitted and execution of the select-group 
does not result in the selection of a unit, the ERROR condition is raised. 

The OTHERWISE statement must not have a label or condition prefix. 

unit Each unit is either a valid single statement, a group, or a begin block. 
DECLARE, DEFAULT, END, FORMAT, PROCEDURE, and % statement 
statements are not valid. Each unit can contain statements that specify a 
transfer of control (for example, GO TO). Hence, the normal sequence of 
the SELECT statement can be overridden. 

If exp1 is omitted, each exp2 is evaluated and converted, if necessary, to a bit 
string. !f any bit in the resulting string is '1 'B, the unit of the associated WHEN 

Chapter 8. Statements 193 



Examples 

statement is executed. If all bits are O or the string is null, the unit of the OTHER
WISE statement is executed. 

After execution of a unit of a WHEN or OTHERWISE statement, control passes to 
the statement following the select-group, unless the normal flow of control is altered 
within the unit. 

If exp1 is specified, each exp2 must be such that the comparison expression 

( expl) = ( exp2) 

has a scalar bit value. 

Array, structure, and union operands cannot be used in either exp1 or exp2. 

In the following example, E, El, and so on, are expressions. When control reaches 
the SELECT statement, the expression E is evaluated and its value is saved. The 
expressions in the WHEN statements are then evaluated in turn (in the order in 
which they appear), and each value is compared with the value of E. 

If a value is found that is equal to the value of E, the action following the corre
sponding THEN statement is performed; no further WHEN statement expressions 
are evaluated. 

If none of the expressions in the WHEN statements are equal to the expression in 
the SELECT statement, the action specified after the OTHERWISE statement is 
executed. 

select (e); 
when (el,e2,e3) action-1; 
when (e4,e5) action-2; 
otherwise action-n: 

end; 
Nl: next statement; 

An example of exp 1 being omitted is: 

select: 
when (A>B) call Bigger; 
when (A=B) call Same: 
otherwise ca 11 Sma 11 er; 

end; 

If a select-group contains no WHEN statements, the action in the OTHERWISE 
statement is executed unconditionally. If the OTHERWISE statement is omitted, 
and execution of the select-group does not result in the selection of a WHEN state
ment, the ERROR condition is raised. 

SIGNAL statement 
The SIGNAL statement is described in Chapter 15, "Condition handling" on 
page 302. 

194 PUI Package/2 Language Reference 



%SKIP 

o/oSKIP statement 
The %SKIP statement causes the specified number of lines to be left blank in the 
compiler source listings. 

The syntax for the %SKIP statement is: 

11>11>-%SKIP L J ;--------------------~ 
(n) 

n specifies the number of lines to be skipped. It must be an integer in the 
range 1 through 999. If n is omitted, the default is 1. If n is greater than 
the number of lines remaining on the page, the equivalent of a %PAGE 
statement is executed in place of the %SKIP statement. 

STOP statement 
The STOP statement immediately terminates the program. 

The syntax for the STOP statement is: 

11>11>-STOP-;-----------------------~ 

Prior to any termination activity, the FINISH condition is raised. On normal return 
from the FINISH ON-unit the program terminates. 

WRITE statement 
The WRITE statement is described in Chapter 11, "Record-oriented data 
transmission" on page 242. 

Chapter 8. Statements 195 



STOP 

196 PUI Package/2 Language Reference 



©Copyright IBM Corp. 1992 

Chapter 9. Storage Control 

Chapter 9. Storage control . . . . . . . . . 
Storage classes, allocation, and deallocation 
Static storage and attribute 
Automatic storage and attribute . . . . . . . 
Controlled storage and attribute . . . . . . . 

ALLOCATE statement for controlled variables 
FREE statement for controlled variables . 

Implicit freeing ............. . 
Multiple generations of controlled variables 
Adjustable extents . . . . . . . . . . . . . 
Built-in functions for controlled variables 

Based storage and attribute 
Locator data . . . . . 

Locator conversion 
Locator reference 
Locator qualification 
Levels of locator qualification 

POINTER variable and attribute 
Built-in functions for based variables . 
ALLOCATE statement for based variables 
FREE statement for based variables . 

Implicit freeing ......... . 
REFER Option (Self-Defining Data) 

Area data and attribute 
Offset data and attribute 

Setting offset variables 
Examples of offset variables 

Area assignment 
Input/output of areas ..... 

List processing . . . . . 
ASSIGNABLE and NONASSIGNABLE attributes 
NORMAL and ABNORMAL attributes . . . . . . 
CONNECTED and NONCONNECTED attributes 
DEFINED and POSITION attributes 
INITIAL attribute 

Initializing array variables 
Initializing unions 
Initializing static variables 
Initializing automatic variables 
Initializing based and controlled variables 
Examples ................. . 

198 
198 
199 
200 
201 
202 
202 
203 
203 
203 
203 
204 
205 
205 
206 
206 
207 
208 
208 
208 
209 
210 
210 
211 
213 
213 
213 
214 
214 
215 
216 
217 
217 
218 
220 
222 
223 
223 
224 
224 
224 

197 



Storage control 

Chapter 9. Storage control 

All variables require storage. The attributes specified for a variable describe the 
amount of storage required and how it is interpreted. In the following example a 
reference to X is a reference to a piece of storage that contains a value to be inter
preted as fixed-point binary. 

dcl X fixed binary(31,G) automatic; 

Since X is automatic, the storage for it is allocated when its declaring block is acti
vated, and the storage remains allocated until the block is deactivated. 

Storage classes, allocation, and deallocation 

198 

Storage allocation is the process of associating an area of storage with a variable 
so that the data item(s) represented by the variable can be recorded internally. 
When storage is associated with a variable, the variable is allocated. Allocation for 
a given variable can take place statically, (before the execution of the program) or 
dynamically (during execution). A variable that is allocated statically remains allo
cated for the duration of the application program. A variable that is allocated 
dynamically relinquishes its storage either upon the termination of the block con
taining that variable, or at an explicit request from the application. 

The storage class assigned to a variable determines the degree of storage control 
applied to it and the manner in which the variable's storage is allocated and freed. 
There are four storage classes: automatic, static, controlled, and based. You 
assign the storage class using its corresponding attribute in an explicit, implicit, or 
contextual declaration: 

• AUTOMATIC specifies that storage is allocated upon each entry to the block 
that contains the storage declaration. The storage is released when the block 
is exited. If the block is a procedure that is invoked recursively, the previously 
allocated storage is pushed down upon entry; the latest allocation of storage is 
popped up in a recursive procedure when each generation terminates. (For a 
discussion of push-down and pop-up stacking, see "Recursive procedures" on 
page 100.) 

• STATIC specifies that storage is allocated when the program is loaded. The 
storage is not freed until program execution is completed. The storage for a 
fetched procedure is not freed until the procedure is released. 

• CONTROLLED specifies that you use the ALLOCATE and FREE statements to 
control the allocation and freeing of storage. Multiple allocations of the same 
controlled variable in the same program, without intervening freeing, will stack 
generations of the variable. You can access earlier generations only by freeing 
the later ones. 

• BASED, like CONTROLLED, specifies that you control storage allocation and 
freeing. One difference is that multiple allocations are not stacked but are 
available at any time. Each allocation can be identified by the value of a 
pointer variable. Another difference is that based variables can be associated 
with an area of storage and identified by the value of an offset variable. 

Storage class attributes can be declared explicitly for element, array, and major 
structure and union variables. For array and major structure and union variables, 

© Copyright IBM Corp. 1992 



Static storage and attribute 

the storage class declared for the variable applies to all of the elements in the array 
or structure or union. 

Storage class attributes cannot be specified for: 

• Entry constants 
• File constants 
• Format constants 
• Label constants 
• CONDITION conditions 
• Members of structures and unions 
• Defined data items. 

Allocation of storage for variables is managed by PUI. You do not specify where in 
storage the allocation is to be made. You can, however, specify that a variable be 
allocated in an existing AREA. For more information, refer to "Area data and 
attribute" on page 211 . 

Static storage and attribute 
Variables declared with the STATIC attribute are allocated prior to running a 
program. They remain allocated until the program terminates. The program has no 
control on the allocation of static variables during execution. 

The syntax for the STATIC attribute is: 

1>1>-STATIC------------------------<11 

STATIC is the default for external variables, but internal variables can also be 
static. It is also the default for variables declared in a package, outside of any 
procedure. Static variables follow the normal scope rules for the validity of refer
ences to them. In the following example the variable X is allocated for the life of 
the program, but it can be referenced only within procedure B or any block con
tained in B. The variable Y gets the STATIC attribute and is also allocated for the 
life of the program. 

Package: Package exports (*); 
dcl Y char(l8); 

A: proc options(main); 
B: proc; 

declare X static internal; 
end B; 

end A; 

C: proc; 
y = I he 110 I ; 

end C; 

end Package; 

If static variables are initialized using the INITIAL attribute, the initial values must be 
restricted expressions. Extent specifications must also be restricted expressions. 

Chapter 9. Storage control 199 



Automatic storage and attribute 

Automatic storage and attribute 
Automatic variables are allocated on entry to the block in which they are declared. 
They can be reallocated many times during the execution of a program. You 
control their allocation by your design of the block structure. 

The syntax for the AUTOMATIC attribute is: 

.,...,._AUTOMATIC-----------------------..,. 

Abbreviation: AUTO 

AUTOMATIC is the default. Automatic variables are always internal. 

In the following example, Each time procedure B is invoked, the variables X and Y 
are allocated storage. When B terminates, the storage is released, and the values 
X and Y contain are lost. 

A: proc; 

ca 11 B; 
B: proc; 

declare X,Y auto; 

end B; 

ca 11 B; 

The storage that is freed is available for allocation to other variables. Thus, when
ever a block (procedure or begin) is active, storage is allocated for all variables 
declared automatic within that block. Whenever a block is inactive, no storage is 
allocated for the automatic variables in that block. Only one allocation of a partic
ular automatic variable can exist, except for those procedures that are called 
recursively or by more than one program. 

Extents for automatic variables can be specified as expressions. This means that 
you can allocate a specific amount of storage when you need it. In the following 
example the character string STR has a length defined by the value of the variable N 
when procedure B is invoked. 

A: proc; 
declare N fixed bin; 

B: proc; 
declare STR char(N); 

If the declare statements are located in the same block, PUI requires that the vari
able N be initialized either to a restricted expression or to an initialized static vari
able. In the following example, the length allocated is correct for Strl, but not for 
Str2. PUI does not resolve this type of declaration dependency. 

dcl N fixed bin (15) init(l8), 
M fixed bin (15) init(N), 
Strl char(N), 
Str2 char(M); 

200 PUI Package/2 Language Reference 



Controlled storage and attribute 

Controiied storage and attribute 
Variables declared as CONTROLLED are allocated only when you specify them in 
an ALLOCATE statement. A controlled variable remains allocated until a FREE 
statement that names the variable is encountered or until the end of the program. 

Controlled variables are partially independent of the program block structure, but 
not completely. The scope of a controlled variable can be internal or external. 
When it is declared as internal, the scope of the variable is the block in which the 
variable is declared and any contained blocks. Any reference to a controlled vari
able that is not allocated is in error. 

The syntax for the CONTROLLED attribute is: 

11>11>-CONTROLLED'----------------------.. 

Abbreviation: CTL 

In the following example the variable X can be validly referred to within procedure B 
and that part of procedure A that follows execution of the CALL statement. 

A: proc; 
dcl X controlled; 
ca 11 B; 

B: proc; 
allocate X; 

end B; 
end A; 

Generally, controlled variables are useful when a program requires large data 
aggregates with adjustable extents. Statements in the following example allocate 
the exact storage required depending on the input data and free the storage when 
it is no longer required. 

dcl A(M,N) ctl; 
get list(M,N); 
allocate A; 
get list(A); 

free A; 

This method is more efficient than the alternative of setting up a begin block, 
because block activation and termination are not required. 

Chapter 9. Storage control 201 



ALLOCATE for controlled variables 

ALLOCATE statement for controlled variables 
The ALLOCATE statement allocates storage for controlled variables, independent 
of procedure block boundaries. Controlled parameters may also be allocated. 

The syntax for the ALLOCATE statement for controlled variables is: 

11>11>-ALLOCATE_£~ontro77ed-variab7e.J_;------------- .. 

Abbreviation: ALLOC 

controlled-variable 
a controlled variable must be a level-1 unsubscripted variable. 

Both controlled and based variables can be allocated in the same statement. For 
the syntax of based variables, refer to "ALLOCATE statement for based variables" 
on page 208. 

Bounds for arrays, lengths of strings, and sizes of areas are evaluated at the exe
cution of an ALLOCATE statement. A DECLARE statement must specify any nec
essary dimension, size, or length attributes for a variable. Any expression taken 
from a DECLARE statement is evaluated at the point of allocation using the condi
tions enabled at the ALLOCATE statement. However, names in the expression 
refer to variables whose scope includes the DECLARE or DEFAULT statement. 

Initial values are assigned to a variable upon allocation, if the variable has an 
INITIAL attribute in the DECLARE statement. Expressions in the INITIAL attribute 
are evaluated at the point of allocation, using the conditions enabled at the ALLO
CATE statement, although the names are interpreted in the environment of the dec
laration. If initialization involves reference to the variable being allocated, the 
reference is to the new generation of the variable. For more information on initial
ization, refer to "INITIAL attribute" on page 220. 

Any evaluations performed at the time the ALLOCATE statement is executed (for 
example, evaluation of expressions in an INITIAL attribute) must not be interde
pendent. 

If storage for the controlled variable is not available, the STORAGE condition is 
raised. 

FREE statement for controlled variables 
The FREE statement frees the storage allocated for controlled variables. The freed 
storage is then available for other allocations. The previously allocated controlled 
variable is made available, and subsequent references refer to that allocation. 

The syntax for the FREE statement for controlled variables is: 

11>11>-FREE_£~ontro77ed-variab7e.J_;--------------- .. 

202 PUI Package/2 Language Reference 



Multiple generations of controlled variables 

controlled-variable 
is a level-1 , unsubscripted variable. 

Both based and controlled variables can be freed in the same statement. For the 
syntax of based variables, Refer to "FREE statement for based variables" on 
page 209. 

Implicit freeing 
A controlled variable need not be explicitly freed by a FREE statement. However, it 
is a good practice to explicitly FREE controlled variables. 

All controlled storage is freed at the termination of the program. 

Multiple generations of controlled variables 
An ALLOCATE statement for a variable for which storage was previously allocated 
and not freed pushes down or stacks storage for the variable. This stacking 
creates a new generation of data for the variable. The new generation becomes 
the current generation. The previous generation cannot be directly accessed until 
the current generation has been freed. When storage for this variable is freed, 
using the FREE statement or at termination of the program in which the storage 
was allocated, storage is popped up or removed from the stack. 

Adjustable extents 
Controlled scalars, arrays, and members of structures and unions may have adjust
able array extents, string lengths, and area sizes. In the following example, when 
the structure is allocated, A. B has the extent -18 to + 18 and A. C is a VARYING 
character string with maximum length 5. 

dcl 1 A ctl, 
2 B(N:M), 
2 C char(L) varying; 

N = -18; 
M = 18; 
L = 5; 
a 11 oc A; 
free A; 

Built-in functions for controlled variables 
The ALLOCATION built-in function can be used to determine the number of gener
ations that have been allocated for a given controlled variable. If the variable is not 
allocated, the function returns the value zero. 

Chapter 9. Storage control 203 



Based Storage and Attribute 

Based storage and attribute 
A declaration of a based variable is a description of the generation: the amount of 
storage required and its attributes. (A based variable does not identify the location 
of a generation in main storage.) A locator value identifies the location of the gen
eration. Any reference to a based variable that is not allocated is in error. 

The syntax for the BASED attribute is: 

••-BASED~--------~----------------•"" 
L( 7 oca tor- reference )J 

locator-reference 
identifies the location of the data 

When reference is made to a based variable, the data and alignment attributes 
used are those of the based variable, while the qualifying locator variable identifies 
the location of data. 

A based variable cannot have the EXTERNAL attribute, but a locator reference for 
a based variable can have any storage class, including based. 

A based structure or union can be declared to contain adjustable area sizes, array
bounds, and string-length specifications, by using the REFER option. See "REFER 
Option (Self-Defining Data)" on page 210. 

A BASED VARYING string must have a maximum length equal to the maximum 
length of any string upon which it is defined. 
For example: 

declare A char(58) varying based(Q), 
B char(58) varying; 
O=addr( B); 

A based variable can be used to obtain storage by using the ALLOCATE statement 
or the LOCATE statement. A based variable can also be used to access existing 
data by using the READ statement (with SET option), or the FETCH statement 
(with SET option), or the ADDA built-in function. 

Because a locator variable identifies the location of any generation, you can refer at 
any point in a program to any generation of a based variable by using an appro
priate locator value. The following example declares that references to X, except 
when the reference is explicitly qualified, use the locator variable P to locate the 
storage for X. 

dcl X fixed bin based(P); 

The association of a locator reference in this way is not permanent. The locator 
reference can be used to identify locations of other based variables and other 
locator references can be used to identify other generations of the variable X. 
When a based variable is declared without a locator reference, any reference to the 
based variable must always be explicitly locator-qualified. 

In the following example, the arrays A and C refer to the same storage. The ele
ments Band C( 2, 1) also refer to the same storage. 

204 PUI Package/2 Language Reference 



Locator data 

dcl A(3,2) character(5) based(P), 
~ char(S) based(Q), 
C(3,2) character(5); 

P = addr(C); 
0 = addr(A(2,l)); 

Locator Data 

Note: When a based variable is overlaid in this way, no new storage is allocated. 
The based variable uses the same storage as the variable on which it is overlaid 
(C( 3, 2) in the example). 

You can also use the DEFINED and UNION attributes to overlay variable storage, 
but DEFINED and UNION overlay the storage permanently. When based variables 
are overlaid with a locator reference, the association can be changed at any time in 
the program by assigning a new value to the locator variable. 

For more information on the DEFINED and UNION attributes, refer to "DEFINED 
and POSITION attributes" on page 218, and "Unions" on page 149. 

The INITIAL attribute can be specified for a based variable. The initial values are 
assigned only upon explicit allocation of the based variable with an ALLOCATE or 
LOCATE statement. 

There are two types of locator data: pointer and offset. 

The value of a pointer variable is an address of a location in storage. It can be 
used to qualify a reference to a variable with allocated storage in several different 
locations. 

The value of an offset variable specifies a location within an area variable and 
remains valid when the area is assigned to a different part of storage. 

A locator value can be assigned only to a locator variable. When an offset value is 
assigned to an offset variable, the area variables named in the OFFSET attributes 
are ignored. 

Locator conversion 
Locator data cannot be converted to other data types, except as follows: 

• To and from REAL FIXED BINARY (p,O) by using the BINARYVALUE, 
POINTERVALUE, and OFFSETVALUE built-in functions 

• Between pointer and offset implicitly or explicitly using the POINTER and 
OFFSET built-in functions. 

When an offset variable is used in a reference, it is implicitly converted to a pointer 
value by using the address of the area variable designated in the OFFSET attribute 
and the offset variable. Explicit conversion of an offset to a pointer value is accom
plished using the POINTER built-in function. For example, the following statement 
assigns a pointer value to P, giving the location of a based variable, identified by 
offset O in area B. 

dcl P pointer, O offset(A),B area; 
P = pointer(O,B); 

Chapter 9. Storage control 205 



Locator Data 

Because the area variable is different from that associated with the offset variable, 
you must ensure that the offset value is valid for the different area. It is valid, for 
example, if area A is assigned to area B prior to the invocation of the function. 

The OFFSET built-in function, in contrast to the POINTER built-in function, returns 
an offset value derived from a given pointer and area. The given pointer value 
must identify the location of a based variable in the given area. 

A pointer value is converted to offset by using the pointer value and the address of 
the area. This conversion is limited to pointer values that relate to addresses within 
the area named in the OFFSET attribute. 

Except when assigning the NULL or the SYSNULL built-in function value, it is an 
error to attempt to convert from or to an offset variable that is not associated with 
an area. 

There is no implicit locator conversion in multiple assignments. 

Locator reference 
A locator reference is either a locator variable that can be qualified or subscripted, 
or a function reference that returns a locator value. 

A locator reference can be used in the following ways: 

• As a locator qualifier, in association with a declaration of a based variable 
• In a comparison operation, as in an IF statement 
• As an argument in a procedure reference. 

Because PUI implicitly converts an offset to a pointer value, offset references can 
be used interchangeably with pointer references. 

Locator qualification 
Locator qualification is the association of one or more locator references with a 
based reference to identify a particular generation of a based variable, This is 
called a locator-qualified reference. The composite symbol -> represents "qualified 
by" or "points to." 

The syntax for explicit qualified reference is: 

~~~locator-reference -> 

locator-reference
based-locator-reference

t I
L..based-locator-reference -> ~

identify the location of the data.

based-variable--+~

In the following example, X is a based variable, P is a locator variable, and O is a
based locator variable.

p -> 0 -> x

The reference means that it is that generation of X that is identified by the based
locator 0 that is also identified by the value of the locator P. X and O are said to be
explicitly locator-qualified.

206 PUI Package/2 Language Reference

Locator Data

When more than one locator qualifier is used, they are evaluated from left to right.

Reference to a based variable can also be implicitly qualified. The locator refer
ence used to determine the generation of a based variable that is implicitly qualified
is the one declared with the based variable. In the following example, the ALLO
CATE statement sets the pointer variable P so that the reference X applies to allo
cated storage.

dcl X fixed bin based(P) init(8);
allocate X;
x = x + l;

The references to X in the assignment statement are implicitly locator-qualified by P.
References to X can also be explicitly locator-qualified as shown in the following
example.
The following assignment statements have the same effect as the previous
example:

P->X = P->X + l;
0 = P;
O->X = O->X + l;

Because the locator declared with a based variable can also be based, a chain of
locator qualifiers can be implied. For example, the following pointer and based var
iables can be used:

declare (P(l8),Q) pointer,
R pointer based (Q),
V based (P(3)),
W based (R),

Y based;
allocate R,V,W;

Given the previous declaration and allocation, the following references are valid:

P(3) -> V
v
0 -> R -> W
R -> W
w

The first two references are equivalent, and the last three are equivalent. Any ref
erence to Y must include a qualifying locator variable.

Levels of locator qualification
A pointer that qualifies a based variable represents one level of locator qualification.
An offset represents two levels because it is implicitly qualified within an area. The
number of levels is not affected by a locator being subscripted and/or an element of
a structure or union. In the following example the references X, P -> X, and O
-> P -> X represent three levels of locator qualification.

declare X based (P),
P pointer based (Q),
0 offset (A);

Chapter 9. Storage control 207

POINTER

POINTER variable and attribute
A pointer variable is declared contextually if it appears in the declaration of a based
variable, as a locator qualifier, in a BASED attribute, or in the SET option of an
ALLOCATE, LOCATE, READ, or FETCH statement. It can also be declared explic
itly.

The syntax for the POINTER att(ibute is:

ll>ll>-POINTER-----------------------<1

Abbreviation: PTR

The value of a pointer variable that no longer identifies a generation of a based
variable is undefined (for example, when a based variable has been freed). Before
a reference is made to a pointer-qualified variable, the pointer must have a value.

Built-in functions for based variables
The ADDR built-in function returns a pointer value that identifies the first byte of a
variable. The ENTRYADDR built-in function returns a pointer value that is the
address of the first executed instruction if the entry were to be invoked.

Note: The NULL and SYSNULL built-in functions ca'l, but do not necessarily,
compare equally. Your application program must not depend on the functions'
equality.

ALLOCATE statement for based variables
The ALLOCATE statement allocates storage for based variables and sets a locator
variable that can be used to identify the location, independent of procedure block
boundaries.

The syntax for the ALLOCATE statement for based variables is:

••-ALLO[ATE___Lbased ~ va ri ab I e Lj
location-reference ~

location-reference:

I lrn(area-variable)J lsET(locator-variable)]

Abbreviation: ALLOC

based variable
is a level-1 unsubscripted variable.

IN specifies the area variable in which the storage is allocated. For more
information on areas, refer to "Area data and attribute" on page 211.

SET specifies a locator variable that is set to the location of the storage allo
cated. If the SET option is not specified, the locator used will be that
specified in the declaration of the based variable. For syntax information
about declaring based variables, refer to "Based storage and attribute" on
page 204 and "Locator data" on page 205.

208 PUI Package/2 Language Reference

FREE for based variables

Both based and controlled variables can be allocated in the same statement. For
the syntax of controlled variables, see "ALLOCATE statement for controlled
variables" on page 202.

Storage is allocated in an area when the IN option is specified or the SET option
specifies an offset variable. These options can appear in any order. For allo
cations in areas:

• If sufficient storage for the based variable does not exist within the area, the
AREA condition is raised.

• If the IN option is not used when using an offset variable, the declaration of the
offset variable must specify an area reference.

When an area is not used, the locator variable must be a pointer variable. If
storage for the based variable is not available, the STORAGE condition is raised.

The amount of storage allocated for a based variable depends on its attributes, and
on its dimensions, length, or size specifications if these are applicable at the time of
allocation. These attributes are determined from the declaration of the based

A based structure or union can contain adjustable array bounds or string lengths or
area sizes (see "REFER Option (Self-Defining Data)" on page 210). The asterisk
notation for extents is not allowed for based variables.

FREE statement for based variables
The FREE statement frees the storage allocated for based and controlled variables.

The syntax for the FREE statement for based variables is:

.,..,._FREE~ option~;------------------~
option:

I l1ocator-reference -> J

locator-reference ->

based-vari ab 1 e ~------~---___,
Lr N(area-variable)]

frees a particular generation of a based variable. The composite symbol
-> means "qualified by" or "points to." If the based variable is not explicitly
locator-qualified, the locator variable declared in the BASED attribute is
used to identify the generation of data to be freed. If no locator has been
declared, the statement is in error.

based variable
must be a level-1 unsubscripted based variable.

IN must be specified or the based variable must be qualified by an offset
declared with an associated area, if the storage to be freed was allocated
in an area. The IN option cannot appear if the based variable was not
allocated in an area. Area assignment allocates based storage in the
target area. These allocations can be freed by the IN option naming the
target area.

Chapter 9. Storage control 209

REFER

Both based and controlled variables can be freed in the same statement. For the
syntax of controlled variables, see "FREE statement for controlled variables" on
page 202.

A based variable can be used to free storage only if that storage has been aiio
cated for a based variable having identical data attributes.

The amount of storage freed depends upon the attributes of the based variable,
including bounds and/or lengths at the time the storage is freed. The user is
responsible for determining that this amount coincides with the amount allocated. If
the variable has not been allocated, the results are unpredictable.

Implicit freeing
A based variable need not be explicitly freed by a FREE statement, but it is a good
practice to do so.

All based storage is freed at the termination of the program.

REFER Option (Self-Defining Data)
A self-defining structure or union contains information about its own fields, such as
the length of a string. A based structure or union can be declared to manipulate
this data. String lengths, array bounds, and area sizes can all be defined by vari
ables, known as the refer object, declared within the structure or union. When the
structure or union is allocated (by either an ALLOCATE statement or a LOCATE
statement), the value of an expression is assigned to the refer object variable. For
any other reference to the structure or union, the value of the refer object is used.

The REFER option is used in the declaration of a based structure or union to
specify that, on allocation of the structure or union, the value of an expression is
assigned to the refer object and represents the length, bound, or size of another
variable in the structure or union.

The syntax for a length, bound, or size 'Nith a REFER option is:

ti>ti>-expression-REFER-(member-variable)-------------- ..

expression
The value of this expression defines the length, bound, or size of the
member when the structure or union is allocated (using ALLOCATE or
LOCATE). The expression is evaluated and converted to FIXED BINARY
(M,O). Any variables used as operands in the expression must not belong
to the structure or union containing the REFER option.

Subsequent references to the structure or union obtain the REFER option
member1s length, bound, or size from the current value of member-variable
(refer object).

member-variable
The refer object must conform to the following rules:

• It must be a member of the same level-1 structure or union.

• It must be REAL FIXED BINARY (p,O).

210 PUI Package/2 Language Reference

Area data and attribute

• It cannot be locator-qualified (see "Locator qualification" on page 206)
or subscripted.

• It cannot be part of an array.

• Explicit assignment to it is not allowed. That is, the variable is given
the NONASSIGNABLE attribute.

• It must precede all members that have the REFER option.

In the following example, the declaration specifies that the based structure STR con
sists of an array Y and an element X.

declare 1 STR based(P),
2 X fixed binary(31,8),
2 Y (L refer (X)),

L fixed binary(31,8) init(1888);

When STR is allocated, the upper bound is set to the current value of L which is
assigned to X. For any other reference to Y, such as a READ statement that sets P,
the bound value is taken from X.

If the INITIAL attribute is specified for the member with the REFER option, initializa
tion of the member occurs after the refer object has been assigned its value.

Any number of REFER options can be used in the declaration of a structure or
union.

The value of the refer object should not be changed during program execution. It is
an error to free such an aggregate if the value of the refer object has changed.

Area data and attribute
Area variables describe areas of storage that are reserved for the allocation of
based variables. This reserved storage can be allocated to, and freed from, based
variables by the ALLOCATE and FREE statements. Area variables can have any
storage class and must be aligned.

When a based variable is allocated and an area is not specified, the storage is
obtained from wherever it is available. Consequently, allocated based variables
can be scattered widely throughout main storage. This is not significant for internal
operations because items are readily accessed using the pointers. However, if
these allocations are transmitted to a data set, the items have to be collected
together. Items allocated within an area variable are already collected and can be
transmitted or assigned as a unit while still retaining their separate identities.

You might want to identify the locations of based variables within an area variable
relative to the start of the area variable. Offset variables are provided for this
purpose.

An area can be assigned or transmitted complete with its contained allocations;
thus, a set of based allocations can be treated as one unit for assignment and
inpuVoutput while each allocation retains its individual identity.

The size of an area is adjustable in the same way as a string length or an array
bound and therefore it can be specified by an expression or an asterisk (for a con
trolled area parameter) or by a REFER option (for a based area).

Chapter 9. Storage control 211

Area data and attribute

A variable is given the AREA attribute contextually by its appearance in the
OFFSET attribute or an IN option, or by explicit declaration.

The syntax for the AREA attribute is:

.,..,._AREA--.--------------.------------•~

b:~pression j
LREFER(variable)J

expression

*

specifies the size of the area. If expression, or an asterisk is not specified,
the default is 1000.

An asterisk can be used to specify the size if the area variable is declared
is a parameter.

REFER For a description of the REFER option, refer to "REFER Option (Self
Defining Data)" on page 210.

The area size for areas that have the storage classes AUTOMATIC or CON
TROLLED is given by an expression whose value specifies the number of reserved
bytes.

If an area has the BASED attribute, the area size must be a constant unless the
area is a member of a based structure or union and the REFER option is used.

The size for areas of static storage class must be specified as a restricted
expression.

Examples of AREA declarations are:

declare areal area(2888),
area2 area;

In addition to the declared size, an extra 16 bytes of control information precedes
the reserved size of an area. The 16 bytes contain such details as the amount of
storage in use.

The amount of reserved storage that is actually in use is known as the extent of the
area. When an area variable is allocated, it is empty, that is, the area extent is
zero. The maximum extent is represented by the area size. Based variables can
be allocated and freed within an area at any time during execution, thus varying the
extent of an area.

When a based variable is freed, the storage it occupied is available for other allo
cations. A chain of available storage within an area is maintained; the head of the
chain is held within the control information. Inevitably, as based variables with dif
ferent storage requirements are allocated and freed, gaps will occur in the area
when allocations do not fit available spaces. These gaps are included in the extent
of the area.

No operators, including comparison, can be applied to area variables.

212 PUI Package/2 Language Reference

Offset data and attribute

Offset data and attribute
Offset data is used exclusively with area variables. The value of an offset variable
indicates the location of a based variable within an area variable relative to the start
of the area. Because the based variables are located relatively, if the area variable
is assigned to a different part of main storage, the offset values remain valid.

Offset variables do not preclude the use of pointer variables within an area. The
syntax for the OFFSET attribute is:

I
••-OFFSET--..-----------.------------••

. L__(~area-variable~)_J

The association of an area variable with an offset variable is not permanent. An
offset variable can be associated with any area variable by means of the POINTER
built-in function (see "Locator conversion" on page 205). The advantage of making
such an association in a declaration is that a reference to the offset variable implies
reference to the associated area variable. If no area variable is specified, the offset
can be used as a locator qualifier only through use of the POINTER built-in func
tion.

Setting offset variables
The value of an offset variable can be set in any one of the following ways:

• By an ALLOCATE statement

• By assignment of the value of another locator variable, or a locator value
returned by a user-defined function

• The NULL, SYSNULL, ADDR, ENTRYADDR, OFFSETADD,
OFFSETSUBTRACT, OFFSETVALUE, or OFFSET built-in function

If no area variable is specified, the offset can be used only as a locator qualifier
through use of the POINTER built-in function.

Examples of offset variables
Consider the following example:

dcl X based(O),
Y based(P),
A area,
0 offset(A);

a 11 ocate X;
allocate Y in(A);

The storage class of area A and offset 0 is AUTOMATIC by default. The first
ALLOCATE statement is equivalent to:

ALLOCATE X IN(A) SET(O);

The second ALLOCATE statement is equivalent to:

ALLOCATE Y IN(A) SET(P);

Chapter 9. Storage control 213

Area assignment

The following example shows how a list can be built in an area variable using offset
variables:

dcl A area,
(T,H) offset(A),
1 STR based(H),

2 P offset(A),
2 data;

allocate STR in(A);
T=H;

do loop;
allocate STR set(T->P);
T=T->P;

end;

Area assignment
The value of an area reference can be assigned to one or more area variables by
an assignment statement. Area-to-area assignment has the effect of freeing all
allocations in the target area and then assigning the extent of the source area to
the target area, so that all offsets for the source area are valid for the target area.
In the following example:

declare X based (0(1)),
0(2) offset (A),
(A, B) area;

a 11 oc X in (A) ;
x = l;
alloc X in (A) set (0(2));
0(2) -> x = 2;
B = A;

Using the POINTER built-in function, the references POINTER (0(2), 8)->X and
0(2)->X represent the same value allocated in areas Band A respectively.

If an area containing no allocations is assigned to a target area, the effect is to free
all allocations in the target area.

Area assignment can be used to expand a list of based variables beyond the
bounds of its original area. If you attempt to allocate a based variable within an
area that contains, insufficient free storage to accommodate it, the AREA condition
is raised. The ON-unit for this condition can be to change the value of a pointer
qualifying the reference to the inadequate area, so that it points to a different area;
on return from the ON-unit, the allocation is attempted again, within the new area.
Alternatively, the ON-unit can write out the area and reset it to EMPTY.

Input/output of areas
Areas allow input and output of complete lists of based variables as one unit, to
and from RECORD files. On output, the area extent, together with the 16 bytes of
control information, is transmitted, except when the area is in a structure or union
and is not the last item in it-then, the declared size is transmitted. Thus the
unused part of an area does not take up space on the data set.

214 PUI Package/2 Language Reference

List processing

Because the extents of areas can vary, varying length records should be used.
The maximum record length required is governed by the area length (area size+
16).

List processing
List processing is the name tor a number of techniques to help manipulate col
lections of data. Although arrays, structures, and unions are also used for manipu
lating collections of data, list processing techniques are more flexible since they
allow collections of data to be indefinitely reordered and extended during program
execution. The purpose here is not to illustrate these techniques but is to show
how based variables and locator variables serve as a basis for this type of proc
essing.

In list processing, a number of based variables with many generations can be
included in a list. Members of the list are linked together by one or more pointers
in one member identifying the location of other members or lists. The allocation of
a based variable cannot specify where in main storage the variable is to be allo
cated (except that you can specify the area that you want it allocated in). In prac
tice, a chain of items can be scattered throughout main storage, but by accessing
each pointer the next member is found. A member of a list is usually a structure or
union that includes a pointer variable.
The following example creates a list of structures:

dcl 1 STR based(H),
2 P pointer,
2 data,

T pointer;

allocate STR;
T=H;

do loop;
allocate STR set(T->P);

T=T->P;
T->P=null;

end;

The structures are generations of STR and are linked by the pointer variable P in
each generation. The pointer variable T identifies the previous generation during
the creation of the list. The first ALLOCATE statement sets the pointer H to identify
it. The pointer H identifies the start, or head, of the list. The second ALLOCATE
statement sets the pointer P in the previous generation to identify the location of
this new generation. The assignment statement T = T ->P; updates pointer T to iden
tify the location of the new generation. The assignment statement T- >P=NULL; sets
the pointer in the last generation to NULL, giving a positive indication of the end of
the list.

Figure 38 on page 216 shows a diagrammatic representation of a one-directional
chain.

Chapter 9. Storage control 215

ASSIGNABLE and NONASSIGNABLE

ITEM 1 ITEM 2 ITEM 3

j:l-. ~F o_r_wa_r_d_P_o_i n_t_er-1

I I

1

1 ...__ Data-1

Forward Pointer f------> I NULL I

Data2 l::J
Figure 38. Example of One-Directional Chain

Unless the value of P in each generation is assigned to a separate pointer variable
for each generation, the generations of STR can be accessed only in the order in
which the list was created. For the above example,· the following statements can
be used to access each generation in turn:

do T=H
repeat(T ->P)
while (T•=null);

T->data ... ;

end;

The foregoing examples show a simple list processing technique, the creation of a
unidirectional list. More complex lists can be formed by adding other pointer vari
ables into the structure or union. If a second pointer is added, it can be made to
point to the previous generation. The list is then bidirectional; from any item in the
list, the previous and next items can be accessed by using the appropriate pointer
value. Instead of setting the last pointer value to the value of NULL, it can be set
to point to the first item in the list, creating a ring or circular list.

A list need not consist only of generations of a single based variable. Generations
of different based structure or unions can be included in a list by setting the appro
priate pointer values. Items can be added and deleted from a list by manipulating
the vaiues of pointers. A iist can be restructured by manipulating the pointers so
that the processing of data in the list can be simplified.

ASSIGNABLE and NONASSIGNABLE attributes
The ASSIGNABLE and NONASSIGNABLE attributes specify whether the associ
ated variable can be the target of an assignment.

The syntax for the ASSIGNABLE and NONASSIGNABLE attributes is:

ASSIGNABLE
~~_[NONASSI GNABLE-L---------------------+..,.

Abbreviations: ASGN, NONASGN

Default: ASSIGNABLE

If a variable has the NONASSIGNABLE attribute, the variable cannot be assigned
to.

216 Pl/I Package/2 Language Reference

NORMAL and ABNORMAL

If an entry descriptor has the NONASSIGNABLE attribute, the argument is
assumed not to change when the associated ENTRY is invoked. If the argument is
a constant, no dummy argument is created.

The ASSIGNABLE and NONASSIGNABLE attributes are propagated to members
of structures or unions.

NORMAL and ABNORMAL attributes
The NORMAL and ABNORMAL attributes specify whether the associated variable
is subject to change any time.

The ABNORMAL attribute specifies that the value of the variable can change
between statements or within a statement. An abnormal variable is fetched from or
stored in storage each time it is needed or each time it is changed. All optimization
is inhibited for an abnormal variable.

The syntax for the NORMAL and ABNORMAL attributes is:

NORMAL
.,..,._[ABNORMAL-.L----------------------<11

Default: NORMAL

The NORMAL and ABNORMAL attributes are propagated to members of structures
or unions.

CONNECTED and NONCONNECTED attributes
Elements, arrays, and major structure or unions are always allocated in connected
storage. References to unconnected storage arise only when you refer to an
aggregate that is made up of noncontiguous items from a larger aggregate. (See
"Cross sections of arrays" on page 147.) For example, in the following structure
the interleaved arrays A. B and A. C are both in unconnected storage.

1 A(l8),
2 8,
2 C;

The syntax for the CONNECTED and UNCONNECTED attributes is:

_[
NONCONNECTED

.,..,. CONNECTED-~---------------------<11

Abbreviations: CONN, NONCONN

Default: NONCONNECTED

The CONNECTED attribute is applicable only to noncontrolled aggregate parame
ters and can be specified only on level-1 names. It specifies that the parameter is
a reference to connected storage only, and therefore, allows the parameter to be
used as a target or source in record-oriented 1/0, or as a base in string overlay

Chapter 9. Storage control 217

DEFINED and POSITION

defining. When the parameter is connected and the CONNECTED attribute is
used, more efficient object code is produced for references to the connected
parameter.

NONCONNECTED must be specified or defaulted if a parameter occupies noncon
tiguous storage. In the following example the NONCONNECTED attribute specifies
that the sum_Sl ice routine handles 1-dimensional arrays in which the elements may
not be contiguous. In the first invocation, sum_Sl ice is passed the first row, which
is in connected storage. In the second invocation, however, sum_Sl ice is passed
the first column, which is in nonconnected storage.

dcl A(lG,18) fixed bin(31);

display(sum_Slice(A(l,*)));
display(sum_Slice(A(*,l)));

I* first row */
I* first column*/

sum_Slice:proc(X) returns(fixed bin(31));

dcl X (*) fixed bin(31) nonconnected: /*default*/
return(sum(X));

end;

DEFINED and POSITION attributes
The DEFINED attribute specifies that the declared variable is associated with some
or all of the storage associated with the designated base variable. The UNION
attribute allows you to achieve this and also permits variables with different attri
butes and precisions to be overlaid. Another difference is that DEFINED guaran
tees that access through defined or base variables is reflected in all defined
variables. In a union only one member of the union is valid at any given time. For
syntax information on the UNION attribute, refer to "UNION attribute" on page 149.

The POSITION attribute, which can be used only with string-overlay defining, speci
fies the bit, character, or graphic within the base variable at which the defined vari
able is to begin. The syntax for the DEFiNED attribute is:

••-DEFINED-rreference
L(reference)J Lpos IT I ON (expression)J

Abbreviation: DEF for DEFINED, POS for POSITION

reference
refers to the "base" variable, for which the storage is associated with the
declared (defined) variable. The base variable can be EXTERNAL or
INTERNAL. It can be a connected parameter. It cannot be BASED,
DEFINED or CONTROLLED. A change to the base variable's value is a
corresponding change to the value of the defined variable, and vice versa.
The base variable can have adjustable extents. It should be specified as
NONVARYING, with a data type of CHARACTER, BIT, or GRAPHIC.
Other data types produce unpredictable results.

expression
specifies the position relative to the start of the base variable. If the POSI
TION attribute is omitted, POSITION(1) is the default. The value specified
in the expression can range from 1 to N. The value N is defined as

218 PUI Package/2 Language Reference

DEFINED and POSITION

N = N (B) - N (0) + 1 where N (B) is the number of bits, characters, or
graphics in the base variable, and N(l)) is the number of bits, characters,
or graphics in the defined variable.

The expression is evaluated and converted to an integer value at each
reference to the defined item.

When the defined variable is a bit aggregate:

• The POSITION attribute can contain only a restricted expression.
• The base variable must not be subscripted.

The defined variable does not inherit any attributes from the base variable. It can
have the dimension attribute. The defined variable:

• Must be INTERNAL and a level-1 identifier

• Cannot have INITIAL, AUTOMATIC, BASED, CONTROLLED, STATIC,
PARAMETER, or ALIGNED attributes.

In references to defined data, the STRINGRANGE, SUBSCRIPTRANGE, and
STRINGSIZE conditions are raised for the array bounds and string lengths of the
defined variable, not the base variable.

Values are determined and names are interpreted as follows:

• The array bounds, string lengths, and area sizes of a defined variable must be
known at compile time.

• A reference to a defined variable is a reference to the current generation of the
base variable. When a defined variable is passed as an argument without the
creation of a dummy argument, the corresponding parameter refers to the base
variable when the argument is passed.

Both the defined and the base variables must belong to:

• The bit class, including:

NONVARYI NG bit variables
Aggregates of NONVARYING bit variables.

• The character class, including:

NONVARYI NG character variables
Character pictured and numeric pictured variables
Aggregates of the previous two.

• The graphic class, including:

NONVARYING graphic variables
Aggregates of NONVARYING graphic variables.

Examples:

dcl A char(180),
V(10,10) char(l) def A;·

V is a two-dimensional array that consists of all elements in the character string A.

dcl B(10) char(l),
W char(10) def B;

W is a character string that consists of all the elements in the array B.

Chapter 9. Storage control 219

INITIAL

dcl C char(18),
X char(4) pos(7) def(C);

X is a character string representing the 4 rightmost characters of C.

dcl 0(18,18) char(l8),
YC5,5) char(2) pos(l) def(O),
Y2(5,2,2) char(2) def(O);

Y and D match, so the POSITION attribute is required. However, POSITION is not
required for Y2 because Y2 and D do not match.

de l 1 E,
2 (F,G,H) char(l6),

1 Z def(E) pos(l),
2 (F,G,H) char(l),

1 Z2 def(E),
2 (F,G,H) char(l),
2 (I,J) char(l);

Z and E match; therefore, POSITION is required. However, Z2 and E do not match.

dcl C(l8,18) bit(l),
X bit(48) def(C) pos(28);

X is a bit string that consists of 40 elements of C, starting at the twentieth element.

dcl E pic'99V.999',
Z1(6) char(l) def(E),
Z2 char(3) def(E) pos(4),
Z3(4) char(l) def(E) pos(2);

Zl is a character string array that consists of all the elements of the numeric picture
E. Z2 is a character string that consists of the elements '999' of the picture E. Z3
is a character-string array that consists of the elements '9.99' of the picture E.

dcl A(28) char(l8),
B(l8) char(5) def A position(l);

The first 50 characters of B consist of the first 50 characters of A. POSITION(1)
must be explicitly specified because A and B match.

INITIAL attribute
The INITIAL attribute specifies an initial value or values assigned to a variable at
the time storage is allocated for it. Only one initial value can be specified for an
element variable. More than one can be specified for an array variable. A struc
ture or union variable can be initialized only by separate initialization of its elemen
tary names, whether they are element or array variables. The INITIAL attribute
cannot be given to constants, defined data, noncontrolled parameters, and
non-LIMITED static entry variables.

The INITIAL attribute has two forms. The first form, INITIAL, specifies an initial
constant, expression, or function reference, for which the value is assigned to a
variable when storage is allocated to it. The second form, INITIAL CALL, specifies
(with the CALL option) that a procedure is invoked to perform initialization. The
variable is initialized by assignment during the execution of the called routine. (The
routine is not invoked as a function that returns a value to the point of invocation.)

220 PUI Package/2 Language Reference

INITIAL

The syntax for the INITIAL attribute is:

11>11>-INITIAL-(_q item ~)------------------•
item:

1 initial-constant ~
referencf.ii-----------1
(expression)---------<

iteration-specification ~

iteration-specification:
~(iteration-factor)~ iteration-item

iteration-item:

E initial -constant 8
ref e renccf-'------

1
--l

(_£f-;,;;J.__)----'

initial-constant:
1--....--.---.----a r i thmct i c-cons tant----------.----------i-{

+

bit-constant------------------i
cha racter-cons tan t---------------1
graphi c-constant----------------1
entry-constant--------------......
fil e-constant-----------------1
7 abe 7 -constant----------------1

+ real-constant---r= ~~imaginary-constant-

.,..,._INITIAL cALLtentry~referancr:---.---,,.....--------..........,.-------11 •
genenc-nam L r J
built-in-nam (...:!....~rgument_l_)

Abbreviations: INIT and INIT CALL

* specifies that the element is to be left uninitialized.

iteration factor
specifies the number of times the iteration item is to be repeated in the
initialization of elements of an array.

The iteration factor can be an expression or an asterisk.

• An expression is converted to FIXED BIN(31). For static variables, it
must be a constant.

• An asterisk indicates that the remaining elements should be initialized
to the specified value.

A negative or zero iteration factor specifies no initialization.

constant
reference
expression

specify an initial value to be assigned to the initialized variable.

Chapter 9. Storage control 221

Initializing arrays

INITIAL CALL
For INITIAL CALL, the entry reference and argument list passed must
satisfy the condition stated for block activation as discussed under "Block
activation" on page 91 .

INITIAL CALL cannot be used to initialize static data.

The following example initializes all of the elements of A to X' 00' without the need
for the INITIAL attribute on each element:

dcl 1 A automatic,
2
2
2 *char((:)) initial call plifill(addr(A), '(:)(:)'X, stg(A));

If the procedure invoked by the INITIAL CALL statement has been specified in a
FETCH or RELEASE statement and it is not present in main storage, the INITIAL
CALL statement initiates dynamic loading of the procedure. (For more information
on dynamic loading, refer to "Dynamic loading of an external procedure" on
page 101.)

Initializing array variables
Initial values specified for an array are assigned to successive elements of the
array in row-major order (final subscript varying most rapidly). If too many initial
values are specified, the excess values are ignored; if not enough are specified, the
remainder of the array is not initialized.

The initialization of an array of strings can include both string repetition and iter
ation factors. Where only one of these is given, it is taken to be a string repetition
factor unless the string constant is placed in parentheses.

The iteration factor may be specified as *, which means that all of the remaining
elements will be initialized with the given value.

In thA fnllrnMinn ov!:lmnloc-· _·-··-·····:::SI,,, t''"""""'"
((2) 'A') is equivalent to ('AA')

((2) ('A')) is equivalent to ('A' , 'A')

((2) (1) 'A') is equivalent to ('A', 'A')

((*)(1) 'A') is equivalent to ('A', 'A' ... 'A')

An area variable is initialized with the value of the EMPTY built-in function, on allo
cation. Any INITIAL clause for an area variable will be ignored.

If the attributes of an item in the INITIAL attribute differ from those of the data item
itself, conversion is performed, provided the attributes are compatible.

INITIAL is not allowed on objects of REFER clauses.

If the variable has the REFER option and the item involves a base element or a
substructure or union of the current generation of the variable, the result of the

222 PUI Package/2 Language Reference

Initializing unions

INITIAL attribute is undefined. In the following example the result of initializing o is
undefined.

dcl 1 A based(Q),
2 B fixed bin(15),
2 C char(N refer(B))

init('AAB'),
2 D char(5) init(C);

allocate A;

Initializing unions
The members of a union can have initial values. However, if the union is static,
only one member of the union can have the initial attribute. For nonstatic unions,
initial attributes are applied in order of appearance. Subsequent initial values over
write previous ones.

In the following example, the declaration for NTl would be invalid if it had the static
storage attribute. However, the declaration for NT2 is valid even though it has static
storage class. Furthermore, the NT2 declaration is portable across EBCDIC and
ASCII machines.

de l
1 NTl union automatic,

de l

2 Numeric_translate_tablel char(256)
init((256) '88'X),

2 * '
3 * char(248),
3 * char(18) init('8123456789'),

2*char((:));

1 NT2 union static,
2 Numeric_translate_table2 char(256),
2 *,

3 * char(index(col late(), '8')-1)
init((l)(low(index(collate(), '8')-1))),

3 * char(18) i nit(' 8123456789'),
3 *char((256-(index(collate(), '8')-1)-18))

init((l)(low((256-(index(collate(), '8')-1)-18)))),

Initializing static variables
For a variable that is allocated when the program is loaded, that is, a static vari
able, which remains allocated throughout execution of the program, any value spec
ified in an INITIAL attribute is assigned only once. (Static storage for fetched
procedures is allocated and initialized each time the procedure is loaded.)

If static variables are initialized using the INITIAL attribute, the initial values must be
specified as restricted expressions. Extent specifications must be restricted
expressions.

Chapter 9. Storage control 223

The restrictions on initializing static variables are as follows:

• STATIC ENTRY variables must have the LIMITED attribute (see "LIMITED
attribute" on page 117).

• INITIAL is not allowed for static format variables.

• INITIAL is allowed for label variables that are not part of structures or unions.
In this case, the label variable gets the CONSTANT attribute.

• INITIAL is not allowed for static unaligned bit variables with inherited dimen-
sions, unless initial values are all bit strings consisting solely of zeros.

• INITIAL is not valid for AREA variables.

• Only one element of a static union may specify INITIAL.

• If a STATIC EXTERNAL item without the RESERVED attribute is given the
INITIAL attribute in more than one declaration, the value specified must be the
same in every case.

Initializing automatic variables
For automatic variables, which are allocated at each activation of the declaring
block, any specified initial value is assigned with each allocation.

Initializing based and controlled variables

Examples

For based and controlled variables, which are allocated at the execution of ALLO
CATE statements (also LOCATE statements for based variables), any specified
initial value is assigned with each allocation.

In the following example, when storage is allocated for Name, the character constant
'John Doe' (padded on the right to 10 characters) is assigned to it.

dcl Name char(lG) init('John Doe');

In the following example, when Pi is allocated, it is initialized to the value 3 .1416.

dcl Pi fixed dec(5,4) init(3.1416);

The following example specifies that A is to be initialized with the value of the
expression B*C:

declare A init((B*C));

The following example results in each of the first 920 elements of A being set to 8.
The next 80 elements consist of 20 repetitions of the sequence 5, 5, 5, 9.

declare A (188,18) initial
((928)8, (28) ((3)5,9));

In the following example, only the first, third, and fourth elements of A are initialized;
the rest of the array is not initialized. The array B is fully initialized, with the first 25
elements initialized to 8, the next 25 to 1, and the remaining elements to 8. In the
structure C, where the dimension (8) has been inherited by D and E, only the first
element of D is initialized. All the elements of E are initialized.

224 PUI Package/2 Language Reference

declare A(15) character(l3) initial
('John Doe',
* ' 'Richard Row',
'Mary Smith'),

B (lG,lG) decimal fixed(5)
init((25)G,(25)1,(*)8),

1 C(8),
2 D initial (8),
2 E initial((*)8);

When an array of structures or unions is declared with the LIKE attribute to obtain
the same structuring as a structure or union whose elements have been initialized,
only the first structure or union is initialized.

In the following example only J (1). H and J (1). I are initialized in the array of struc
tures.

declare 1 G,
2 H initial(8),
2 I initial(8),

1 J (8) l i ke G;

Chapter 9. Storage control 225

226 PUI Package/2 Language Reference

Chapter 10. Input and Output

Chapter 10. Input and output 228
Data sets 229

Consecutive 229
Indexed 229
Relative 229
Regional 230

Files 230
Fl LE attribute 230

File constant 230
File variable 232
Specifying a file reference 233

RECORD and STREAM attributes 233
INPUT, OUTPUT, and UPDATE attributes 233
SEQUENTIAL and DIRECT attributes 234
BUFFERED and UNBUFFERED attributes 234
ENVIRONMENT attribute 235
KEYED attribute 235
PRINT attribute 235

Opening and closing files 235
OPEN statement 236
Implicit opening 237
CLOSE statement 239

© Copyright IBM Corp. 1992 227

Input and output

Chapter 10. Input and output

228

PUI input and output statements (such as READ, WRITE, GET, PUT) let you
transmit data between the main and auxiliary storage of a computer. A collection of
data external to a program is called a data set. Transmission of data from a data
set to a program is called input. Transmission of data from a program to a data set
is called output. (If you are using a terminal, "data set" can also mean your ter
minal.)

PUI input and output statements are concerned with the logical organization of a
data set and not with its physical characteristics. A program can be designed
without specific knowledge of the input/output devices that will be used when the
program is executed. To allow a source program to deal primarily with the logical
aspects of data rather than with its physical organization in a data set, PUI employs
models of data sets, called files. A file can be associated with different data sets at
different times during the execution of a program.

PUI uses two types of data transmission: stream and record.

In stream-oriented data transmission, the organization of the data in the data set is
ignored within the program, and the data is treated as though it were a continuous
stream of individual data values in character form. Data is converted from char
acter form to internal form on input, and from internal form to character form on
output.

For more information on stream-oriented data transmission, refer to Chapter 12,
"Stream-oriented data transmission" on page 252

Stream-oriented data transmission can be used for processing input data prepared
in character form and for producing readable output, where editing is required.
Stream-oriented data transmission allows synchronized communication with the
program at run time from a terminal, if the program is interactive.

Stream-oriented data transmission is more versatile than record-oriented data trans
mission in its data-formatting abilities, but is less efficient in terms of run time.

In record-oriented data transmission, the data set is a collection of discrete records.
The record on the external medium is generally an exact copy of the record as it
exists in internal storage. No data conversion takes place during record-oriented
data transmission. On input the data is transmitted exactly as it is recorded in the
data set, and on output it is transmitted exactly as it is recorded internally.

For more information on record-oriented data transmission, refer to Chapter 11,
"Record-oriented data transmission" on page 242

Record-oriented data transmission can be used for processing files that contain
data in any representation, such as binary, decimal, or character.

Record-oriented data transmission is more versatile than stream-oriented data
transmission, in both the manner in which data can be processed and the types of
data sets that it can process. Since data is recorded in a data set exactly as it
appears in main storage, any data type is acceptable, No conversions occur, but
you must have a greater awareness of the data structure.

© Copyright IBM Corp. 1992

Data sets

Consecutive

Indexed

Relative

Data sets

It is possible for the same data set to be processed at different times by either
stream or record data transmission. However, all items in the data set must be in
character form.

The following sections in this chapter discuss the kinds of data sets, the attributes
for describing files, and how you open and close files in order to transmit data. For
more information about the types of data set organizations that PUI recognizes,
refer to PU/ Package/2 Programming Guide.

In addition to being used as input from and output to your terminal, data sets are
stored on a variety of auxiliary storage media, including magnetic tape and direct
access storage devices (DASDs). Despite their variety, these media have charac
teristics that allow common methods of collecting, storing, and transmitting data.
The organization of a data set determines how data is recorded in a data set and
how the data is subsequently retrieved so that it can be transmitted to the program.
Records are stored in and retrieved from a data set either sequentially on the basis
of successive physical or logical positions, or directly by the use of keys specified in
data transmission statements.

PUI supports the following types of data set organizations:

Consecutive
Indexed
Relative
Regional

The data set organizations differ in the way they store data and in the means they
use to access data.

In the consecutive data set organization, records are organized solely on the basis
of their successive physical positions. When the data set is created, records are
written consecutively in the order in which they are presented. The records can be
retrieved only in the order in which they were written.

In the indexed data set organization, records are placed in a logical sequence
based on the key of each record. An indexed data set must reside on a direct
access device. A character string key identifies the record and allows direct
retrieval, replacement, addition, and deletion of records. Sequential processing is
also allowed.

In the relative data set organization, numbered records are placed in a position rel
ative to each other. The records are numbered in succession, beginning with one.
A relative data set must reside on a direct-access device. A key that specifies the
record number identifies the record and allows direct retrieval, replacement, addi
tion, and deletion of records. Sequential processing is also allowed.

Chapter 10. Input and output 229

Files

Regional

Files

FILE attribute

The regional data set organization is divided into numbered regions, each of which
can contain one record. The regions are numbered in succession, beginning with
zero. A region can be accessed by specifying its region number, and perhaps a
key, in a data transmission statement. The key specifies the region number and
identifies the region to allow optimized direct retrieval, replacement, addition, and
deletion of records.

To allow a source program to deal primarily with the logical aspects of data rather
than with its physical organization in a data set, PUI employs models of data sets,
called files. These models determine how input and output statements access and
process the associated data set. Unlike a data set, a file data item has significance
only within the source program and does not exist as a physical entity external to
the program.

A name that represents a file has the FILE attribute.

The FILE attribute specifies that the associated name is a file constant or file vari
able.

The syntax for the FILE attribute is:

11>11>-FILE--------------------------.,.

The FILE attribute can be implied for a file constant by any of the file description
attributes. A name can be contextually declared as a file constant through its
appearance in the FILE option of any input or output statement, or in an ON state
ment for any inpuVoutput condition.

File constant
Each data set processed by a PUI program must be associated with a file constant.

The individual characteristics of each file constant are described with file description
attributes. These attributes fall into two categories: alternative attributes and addi
tive attributes.

An alternative attribute is one that is chosen from a group of attributes. If no
explicit or implied attribute is given for one of the alternatives in a group and if one
of the alternatives is required, a default attribute is used.

Figure 39 lists the PUI alternative file attributes.

Figure 39 (Page 1 of 2). Alternative file attributes

Group Type Alternative Attributes Default Attribute

Usage

Function

STREAM or RECORD

INPUT or OUTPUT or UPDATE

STREAM

INPUT

230 PUI Package/2 Language Reference

Figure 39 (Page 2 of 2). Alternative file attributes

Group Type Alternative Attributes Default Attribute

Access

Buffering

SEQUENTIAL or DIRECT

BUFFERED or UNBUFFERED

SEQUENTIAL

BUFFERED

File constant

(for SEQUENTIAL files);
UNBUFFERED (for DIRECT files)

Scope EXTERNAL or INTERNAL EXTERNAL

An additive attribute is one that must be stated explicitly or is implied by another
explicitly stated attribute. The additive attributes are ENVIRONMENT, KEYED and
PRINT. The additive attribute KEYED is implied by the DIRECT attribute. The
additive attribute PRINT can be implied by the output file name SYSPRINT.

Figure 40 show the attributes that apply to each type of data transmission:

Figure 40. Attributes by data transmission type

Type of transmission Attribute

Stream-oriented

Record-oriented

ENVIRONMENT

INPUT and OUTPUT

PRINT

STREAM

BUFFERED and UNBUFFERED

DIRECT and SEQUENTIAL

ENVIRONMENT

INPUT, OUTPUT, and UPDATE

KEYED

RECORD

Figure 41 shows the valid combinations of file attributes.

Figure 41 (Page 1 of 2). Attributes of PU/ file declarations
s RECORD
T

File R
Type E SEQUENTIAL

A Legend:
M DIRECT

I Must be specified
c c or implied
0 0

R R D Default
n n I I
s s

e
n

e
n 0 Optional

I I
Data e e d

a
d s Must be specified

Set
a

c c
t

e
t

e
Organization u u x x Invalid

i i
t t e e
i i

v
d

v
d

e e
v v
e e

File Attributes Attributes Implied

FILE I I I I I I
INPUT1 D D D D D D FILE
OUTPUT 0 0 0 0 0 0 FILE
ENVIRONMENT 0 0 0 0 0 0 FILE
STREAM D FILE
PRINT1 0 FILE STREAM OUTPUT
RECORD I I I I I FILE
UPD.6.IE_ _Q_ _Q_ _Q_ _Q_ _Q_ FILE RECORD

Chapter 10. Input and output 231

File variable

Figure 41 (Page 2 of 2). Attributes of PU/ file declarations
s RECORD
T

File R
Type E SEQUENTIAL

A Legend:
M DIRECT

I Must be specified
c c or implied
0 0 R R D Default
n n I I
s s

e
n

e
n 0 Optional

I I
Data e e

a
d d s Must be specified

Set
a

c c t
e

t
e

Organization u u x x Invalid
i i

t t e e
v

i i d
v

d
e e

v v
e e

SEQUENTIAL D D D FILE RECORD
KEYED' 0 0 I I FILE RECORD
DIRECT s s FILE RECORD KEYED

Notes:

1 A file with the INPUT attribute cannot have the PRINT attribute
' KEYED is required for indexed and relative output

Scope is discussed in "Scope of declarations" on page 132.

The FILE attribute can be implied for a file constant by any of the file description
attributes discussed in this chapter. A name can be contextually declared as a file
constant through its appearance in the FILE option of any input or output state
ment, or in an ON statement for any input/output condition.

In the following example, the name Master is declared as a file constant:

declare Master file;

Fi le variable
A file variable has the attributes FILE and VARIABLE. It cannot have any of the file
constant description attributes. File constants can be assigned to file variables.
After assignment, a reference to the file variable has the same significance as a

The value of a file variable can be transmitted by record-oriented transmission
statements. The value of the file variable on the data set might not be valid after
transmission.

The VARIABLE attribute is implied under the circumstances described in "VARI
ABLE attribute" on page 48.

In the following declaration Account is declared as a file variable, and Acct 1 and
Acct2 are declared as file constants. The file constants can subsequently be
assigned to the file variable.

declare Account file variable,
Acctl file,
Acc2 file;

For syntax information, refer to "VARIABLE attribute" on page 48.

232 PUI Package/2 Language Reference

RECORD and STREAM

Specifying a file reference
A file reference can be a file constant, a file variable, or a function reference which
returns a value with the FILE attribute. It can be used in the following ways:

• In a FILE or COPY option
• As an argument to be passed to a function or subroutine
• To qualify an input/output condition for ON, SIGNAL, and REVERT statements
• As the expression in a RETURN statement.

On-units can be established for a file constant through a file variable that repres
ents its value (see "ON-units for file variables" on page 307). In the following
example, the statements labelled L1 and L2 both specify null ON-units for the same
file.

dcl F file,
G file variable;
G=F;

Ll: on endfile(G);
L2: on endfile(F);

RECORD and STREAM attributes
The RECORD and STREAM usage attributes specify the kind of data transmission
used for the file.

RECORD indicates that the file consists of a collection of physically separate
records, each of which consists of one or more data items in any form. Each
record is transmitted as an entity to or from a variable.

STREAM indicates that the data of the file is a continuous stream of data items, in
character form, assigned from the stream to variables, or from expressions into the
stream.

The syntax for the RECORD and STREAM attributes is:

STREAM
~~~RECORD~~~~~~~~~~~~~~~~~~~~~~~ 

Default: STREAM. 

A file with the STREAM attribute can be specified only in the FILE option of the 
OPEN, CLOSE, GET, and PUT input/output statements. 

A file with the RECORD attribute can be specified only in the FILE option of the 
OPEN, CLOSE, READ, WRITE, REWRITE, LOCATE, and DELETE input/output 
statements. 

INPUT, OUTPUT, and UPDATE attributes 
The INPUT, OUTPUT and UPDATE function attributes specify the direction of data 
transmission allowed for a file. INPUT specifies that data is transmitted from a data 
set to the program. OUTPUT specifies that data is transmitted from the program to 
a data set, either to create a new data set or to extend an existing one. UPDATE, 
which applies to RECORD files only, specifies that the data can be transmitted in 
either direction. A declaration of UPDATE for a SEQUENTIAL file indicates the 
update-in-place mode. 

Chapter 10. Input and output 233 



SEQUENTIAL and DIRECT 

The syntax for the INPUT, OUTPUT, and UPDATE attributes is: 

INPUT 
~~-fouTPITT~--------------------~~ 

UPDATE 

Default: INPUT. 

SEQUENTIAL and DIRECT attributes 
The SEQUENTIAL and DIRECT access attributes apply only to RECORD files, and 
specify how the records in the file are accessed. 

The syntax for the SEQUENTIAL and DIRECT attributes is: 

_[
SEQUENTIAL 

~~ DIRECT---'---------------------~ 

Abbreviation: SEQL for SEQUENTIAL 

Default: SEQUENTIAL. 

The DIRECT attribute specifies that records in a data set are directly accessed. 
The location of the record in the data set is determined by a character-string key. 
Therefore, the DIRECT attribute implies the KEYED attribute. The associated data 
set must be on a direct-access storage device. 

The SEQUENTIAL attribute specifies that records in a consecutive or relative data 
set are accessed in physical sequence, and that records in an indexed data set are 
accessed in key sequence order. For certain data set organizations, a file with the 
SEQUENTIAL attribute can also be used for direct access or for a mixture of 

bute KEYED. Existing records of a data set in a SEQUENTIAL UPDATE file can 
be modified, ignored, or, if the data set is indexed, deleted. 

BUFFERED and UNBUFFERED attributes 
The buffering attributes apply only to RECORD files. 

The syntax for the BUFFERED and UNBUFFERED attributes is: 

~~--rBUFFERED'-~--------------------~ 
LUNBUFFERED 

Abbreviations: BUF for BUFFERED, and UNBUF for UNBUFFERED 

Defaults: BUFFERED is the default for SEQUENTIAL files. UNBUFFERED is the 
default for DIRECT files. 

The BUFFERED attribute specifies that during transmission to and from a data set, 
each record of a RECORD file must pass through intermediate storage buffers. 
This allows both move and locate mode processing. 

234 PUI Package/2 Language Reference 



ENVIRONMENT 

The UNBUFFERED attribute indicates that a record in a data set need not pass 
through a buffer but can be transmitted directly to and from the main storage asso
ciated with a variable. This allows only move mode processing. 

ENVIRONMENT attribute 
The characteristic list of the ENVIRONMENT attribute specifies various data set 
characteristics that are not part of PUI. For a full description of the characteristics 
and their uses, refer to the PU/ Package/2 Programming Guide 

Note: Because the characteristics are not part of the PUI language, using them in 
a file declaration can limit the portability of your application program. 

The following characteristics can be specified on the ENVIRONMENT attribute. For 
descriptions of the characteristics, refer to PU/ Package/2 Programming Guide. 

BKWD 
CONSECUTIVE 
CTLASA 
GEN KEY 

GRAPHIC 
KEYLENGTH 
KEYLOC 
ORGANIZATION 

RECSIZE 
REGIONAL(1) 
SCALARVARYING 
VSAM 

KEYED attribute 

PRINT attribute 

The KEYED attribute applies only to RECORD files, and must be associated with 
indexed and relative data sets. It specifies that records in the file can be accessed 
using one of the key options (KEY, KEYTO, or KEYFROM) of record ,J/O state
ments. The syntax for the KEYED attribute is: 

""""-KEYED------------------------<11 

The KEYED attribute need not be specified unless one of the key options is used. 

The PRINT attribute is described in "PRINT attribute" on page 270. 

Opening and closing files 
Before a file can be used for data transmission, by input or output statements, it 
must be associated with a data set. Opening a file associates the file with a data 
set and involves checking for the availability of external media, positioning the 
media, and allocating required operating system support. When processing is com
pleted, the file must be closed. Closing a file dissociates the file from the data set. 

PUI provides two statements, OPEN and CLOSE, to perform these functions. 
However, use of these statements is optional. If an OPEN statement is not exe
cuted for a file, the file is opened implicitly during the execution of first data trans
mission statement for that file. In this case, the file opening uses information about 
the file as specified in a DECLARE statement (and defaults derived from the trans
mission statement). Similarly, if a file has not been closed before PUI termination, 
PUI will close it during the termination process. 

When a file for stream input, sequential input, or sequential update is opened, the 
associated data set is positioned at the first record. 

Chapter 10. Input and output 235 



OPEN 

OPEN statement 
The OPEN statement associates a file with a data set. It merges attributes speci
fied on the OPEN statement with those specified on the DECLARE statement. It 
also completes the specification of attributes for the file, if a complete set of attri
butes has not been declared for the file being opened. 

The syntax for the OPEN statement is: 

~~-OPEN~ options-group~;---------------
options-group: 

STREAM INPUT 
~FILE( fi 7e-reference)-E---]--~--g-------------

RECORD::J OUTPUT 
UPDATE 

KEYED PRINT 

~ lnnE( expression)] luNESIZE( expression)] 

~ LPAGESIZE( expression)] 

The options of the OPEN statement can appear in any order. 

FILE specifies the name of the file that is to be associated with a data set. 

STREAM, RECORD, 
INPUT, OUTPUT, UPDATE, 
DIRECT, SEQUENTIAL, 
BUFFERED, UNBUFFERED, 
KEYED, and PRINT 

options specify attributes that augment the attributes specified in the file 
declaration. The same attributes need not be listed in both OPEN and 
DECLARE statements for the same file. For a list of attributes for record 
and stream input and output, see Figure 40 on page 231. 

When a STREAM file is opened, the first GET or PUT statement can 
specify, with a statement option or format item, the first record to be 
accessed. The statement option or format item indicates that n lines are 
skipped before a record is accessed. The file is then positioned at the 
start of the nth record. If no statement option or format item is encount
ered, the initial file position is the start of the first line or record. If the file 
has the PRINT attribute, it is physically positioned at column 1 of the first 
line or record 

Opening a file that is already open does not affect the file. 

TITLE The content of expression determines what is being designated. For more 
information on the TITLE attribute refer to PU/ Package/2 Programming 
Guide. 

236 PUI Package/2 Language Reference 



Implicit opening 

LINESIZE 
converted to an integer value, specifies the iength in byies of a line during 
subsequent operations on the file. New lines can be started by use of the 
printing and control format items or by options in a GET or PUT statement. 
If an attempt is made to position a file past the end of a line before explicit 
action to start a new line is taken, a new line is started, and the file is 
positioned to the start of this new line. The default line size for PRINT file 
is 120. 

The LINESIZE option can be specified only for a STREAM OUTPUT file. 
The line size taken into consideration whenever a SKIP option appears in 
a GET statement is the line size that was used to create the data set. 
Otherwise, the line size is taken as the current length of the logical record 
minus control bytes. 

PAGESIZE 

Implicit opening 

is evaluated and converted to an integer value, and specifies the number 
of lines per page. The first attempt to exceed this limit raises the 
ENDPAGE condition. During subsequent transmission to the PRINT file, a 
new page can be started by use of the PAGE format item or by the PAGE 
option in the PUT statement. The default page size is 60. 

The PAGESIZE option can be specified only for a file having the PRINT 
attribute. 

An implicit opening of a file occurs when a GET, PUT, READ, WRITE, LOCATE, 
REWRITE, or DELETE statement is executed for a file for which an OPEN state
ment has not already been executed. 

If a GET statement contains a COPY option, execution of the GET statement can 
cause implicit opening of either the file specified in the COPY option or, if no file 
was specified, of the output file SYSPRINT. Implicit opening of the file specified in 
the COPY option implies the STREAM and OUTPUT attributes. 

Figure 42 shows the attributes that are implied when a given statement causes the 
file to be implicitly opened : 

Figure 42. Attributes implied by implicit open 

Statement Implied Attributes 

GET STREAM, INPUT 

PUT STREAM, OUTPUT 

READ RECORD, INPUT(Note 1) 

WRITE RECORD, OUTPUT(Note 1) 

LOCATE RECORD, OUTPUT, SEQUENTIAL 

REWRITE RECORD, UPDATE 

DELETE RECORD, UPDATE 

Note 1: 

INPUT and OUTPUT are default attributes for READ and WRITE state
ments only if UPDATE has not been explicitly declared. 

Chapter 10. Input and output 237 



Implicit opening 

When one of the statements listed in Figure 42 opens a file implicitly, it is func
tionally equivalent to using an explicit OPEN statement for the file with the same 
attributes specified. · 

There must be no conflict between the attributes specified in a file declaration and 
the attributes implied as the result of opening the file. For example, the attributes 
INPUT and UPDATE are in conflict, as are the attributes UPDATE and STREAM. 

The implied attributes discussed earlier are applied before the default attributes 
listed in Figure 42 on page 237 are applied. Implied attributes can also cause a 
conflict. If a conflict in attributes exists after the application of default attributes, the 
UNDEFINEDFILE condition is raised. 

Figure 43. Merged and implied attributes 

Merged Attributes Implied Attributes 

UPDATE RECORD 

SEQUENTIAL RECORD 

DIRECT RECORD, KEYED 

PRINT OUTPUT, STREAM 

KEYED RECORD 

The following two examples illustrate attribute merging for an explicit opening using 
a file constant and a file variable: 

Example of file constant 

declare Listing file stream; 
open file(Listing) print; 

Attributes after merge caused by execution of the OPEN statement are STREAM 
and PRINT. Attributes after implication are STREAM, PRINT, and OUTPUT. Attri-
butes after default application are STREAM, PRINT, OUTPUT, and EXTERNAL. 

Example of file variable 

declare Account file variable, 
(Acctl,Acct2) file 
output; 

Account= Acctl; 
open file(Account) print; 

Account= Acct2; 
open file(Account) record unbuf; 

The file Acctl is opened with attributes (explicit and implied) STREAM, EXTERNAL, 
PRINT, and OUTPUT. The file Acct2 is opened with attributes RECORD, 
EXTERNAL, OUTPUT, 

Example of implicit opening 

declare Master file keyed internal; 

real file (Master) 
into (Master_Record) 
keyto(Master_Key); 

238 PUI Package/2 Language Reference 



CLOSE 

Attributes after merge (from the implicit opening caused by execution of the READ 
statement) are KEYED, INTERNAL, RECORD, and INPUT. (No additional attri
butes are implied.) Attributes after default application are KEYED, INTERNAL, 
RECORD, INPUT, and SEQUENTIAL. 

Examples of declarations of file constants 

declare File3 input direct env~ronment( regional(l) 

This declaration specifies three file attributes: INPUT, DIRECT, and ENVIRON
MENT. Other implied attributes are FILE (implied by each of the attributes) and 
RECORD and KEYED (implied by DIRECT). Scope is EXTERNAL, by default. 
The ENVIRONMENT attributes specifies that the data set is of the REGIONAL(1) 
organization. 

For the previous declaration, all necessary attributes are either stated or implied in 
the DECLARE statement. None of the stated attributes can be changed (or over
ridden) in an OPEN statement. 

If the declaration is written as shown in the following example, i nvntry can be 
opened for different purposes. 

declare invntry file; 

In the following example, the file attributes are the same as those specified (or 
implied) in the DECLARE statement in the previous example. 

open file (Invntry) 
update sequential; 

The file might be opened in this way, then closed, and then later opened with a 
different set of attributes. For example, the following OPEN statement allows 
records to be read with either the KEYTO or the KEY option. 

open file (Invntry) 
input sequential keyed; 

Because the file is SEQUENTIAL, the data set can be accessed in a purely 
sequential manner. It can also be accessed directly by means of a READ state
ment with a KEY option. A READ statement with a KEY option for a file of this 
description obtains a specified record. Subsequent READ statements without a 
KEY option access records sequentially, beginning with the next record in KEY 
sequence. 

CLOSE statement 
The CLOSE statement dissociates an opened file from its data set. 

The syntax for the CLOSE statement is: 

11>11>-CLOSE_£F I LE( ff le-reference )l;--------------.. 

FILE specifies the name of the file that is to be dissociated from the data set. 

The CLOSE statement also dissociates from the file all attributes established for it 
by the implicit or explicit opening process. If desired, new attributes can be speci-

Chapter 10. Input and output 239 



tied for the file in a subsequent OPEN statement. However, all attributes explicitly 
given to the file constant in a DECLARE statement remain in effect. 

Closing a file that was previously closed has no effect. A closed file can be reo
pened. If a file is not closed by a CLOSE statement, it is closed at the termination 
of the program. 

240 PUI Package/2 Language Reference 



© Copyright IBM Corp. 1992 

Chapter 11. Record-oriented data transmission 

Chapter 11. Record-oriented data transmission . . . . 
Data transmitted . . . . . . . . . . . . . . 

Unaligned bit strings 
VARYING strings 
Area variables . . . . 

Data transmission statements 
READ statement . . . . . . . . 
WRITE statement . . . .... 
REWRITE statement 
LOCATE statement . 
DELETE statement 

Options of data transmission statements 
FILE option . . . . . . . . . . . . 
FROM option . . . . . . . . . . . . . . . 
IGNORE option . . . . . . . . . . . . 
INTO option . . . . . . . . . . . . . . . 
KEY option .... 
KEYFROM option 
KEYTO option . 
SET option ... 

Processing modes . . . . . . 
Move mode 
Locate mode . . 

242 
242 
242 
242 
243 
243 
243 
244 
244 
245 
245 
245 
245 
246 
246 
247 
247 
247 
248 
248 
249 
249 
249 

241 



Record-oriented data transmission 

Chapter 11. Record-oriented data transmission 

This chapter describes features of the input and output statements used in record
oriented data transmission. Those features of PUI that apply generally to record
oriented or stream-oriented data transmission, including declaring files, file 
attributes, and opening and closing files, are described in Chapter 10, "Input and 
output." For syntax information about the ENVIRONMENT attribute refer to "ENVI
RONMENT attribute" on page 235. For details about environment characteristics 
and record 1/0 data transmission statements for each data set organization refer to 
the PU/ Package/2 Programming Guide. 

In record-oriented data transmission, data in a data set is a collection of records 
recorded in any format acceptable to the operating system. No data conversion is 
performed during record-oriented data transmission. On input, the READ statement 
either transmits a single record to a program variable exactly as it is recorded in the 
data set, or sets a pointer to the record. On output, the WRITE, REWRITE, or 
LOCATE statement transmits a single record from a program variable exactly as it 
is recorded internally. If the information transmitted to the file has a length N which 
is less than the established rncoid length M, the resulting value oi the last ivi-N 
bytes of the record is undefined. 

Data transmitted 
Most variables, including parameters and DEFINED variables, can be transmitted 
by record-oriented data transmission statements. In general, the information given 
in this chapter can be applied equally to all variables. 

Note: A data aggregate must be in connected storage. If a graphic string is speci
fied for input or output, the SCALARVARYING option must be specified for the file. 
Other data considerations are described in the following sections. 

• ·-~•i------ a...i+ .... +.,.=--UI IQll~l l~U UIL ..::JLI 111~.::» 

The following cannot be transmitted: 

• BASED, DEFINED, parameter, subscripted, or structure-base-element variables 
that are unaligned nonvarying bit strings 

• Minor structures whose first or last base elements are unaligned nonvarying bit 
strings (except where they are also the first or last elements of the containing 
major structure) 

• Major structures that have the DEFINED attribute or are parameters, and that 
have unaligned nonvarying bit strings as their first or last elements. 

VARYING strings 

242 

A locate mode output statement (see "LOCATE statement" on page 245) specifying 
a VARYING string transmits a field having a length equal to the maximum length of 
the string, plus a 2-byte prefix denoting the current length of the string. The 
SCALARVARYING option of the ENVIRONMENT attribute must be specified for the 
file. 

A move mode output statement (see "WRITE statement" on page 244 and 
"REWRITE statement" on page 244) specifying a VARYING string variable trans-

© Copyright IBM Corp. 1992 



Area variables 

Area variables 

mits only the current length of the string. A 2-byte prefix is included only if the 
SCALARVARYING option of the ENVIRONMENT attribute is specified for the file. 

Reading and writing using varying strings allows you to access records that may 
have undefined or unknown lengths. 

A locate mode output statement specifying an area variable transmits a field whose 
length is the declared size of the area, plus a 16-byte prefix containing control infor
mation. 

A move mode statement specifying an element area variable or a structure whose 
last element is an area variable transmits only the current extent of the area plus a 
16-byte prefix. 

Data transmission statements 
The data transmission statements that transmit records to or from a data set are 
READ, WRITE, LOCATE, and REWRITE. The DELETE statement deletes records 
from an UPDATE file. The attributes of the file determine which data transmission 
statements can be used. Statement options are described in "Options of data 
transmission statements" on page 245. For information about variables in data 
transmission statements, see the PU/ Package/2 Programming Guide. 

READ statement 
The READ statement can be used with any INPUT or UPDATE file. It either trans
mits a record from the data set to the program variable or sets a pointer to the 
record in storage. 

The syntax for the READ statement is: 

(1) 
IGNORE--'----'~-----~-~ 

(expression) 
.,..,._READ FI LE-( file-reference)--+----------------

INTO ( ref)---r--------.------l 
KEY( expression) 
KEYTO (reference) 

SET( pointer- re f)--.-------.----i 
KEY( expression) 
KEYTO(reference) 

.. -;-----------------------------

The keywords can appear in any order. A READ statement without an INTO, SET, 
or IGNORE option is equivalent to a READ with an IGNORE(1 ). 

Chapter 11. Record-oriented data transmission 243 



WRITE 

WRITE statement 
The WRITE statement can be used with any OUTPUT file, DIRECT UPDATE file, 
or SEQUENTIAL UPDATE file. It transmits a record from the program and adds it 
to the data set. 

The syntax for the WRITE statement is: 

~~-WRITE FILE-( ff le-reference)-FROM-( reference)--------~
LKEYFROM( expressf Gn)_j 
LKEYTO( reference)~ 

The keywords can appear in any order. 

REWRITE statement 
The REWRITE statement replaces a record in an UPDATE file. For SEQUENTIAL 
UPDATE files, the REWRITE statement specifies that the last record read from the 
file is to be rewritten; consequently a record must be read before it can be 
rewritten. For DIRECT UPDATE files, any record can be rewritten whether or not it 
has first been read. 

The syntax for the REWRITE statement is: 

~~-REWRITE FILE-( ff le-reference)-------~-------
[FROM-( reference)] 

~ ;-------------~~---~ 
c=KEY-(expressfon)J 

The keywords can appear in any order. The FROM option must be specified for 
UPDATE files with the DIRECT attribute, or with both the SEQUENTIAL and 
UNBUFFERED attributes. 

A REWRITE statement that does not specify the FROM option has the following 
effect: 

• If the last record was read by a READ statement with the INTO option, 
REWRITE without FROM has no effect on the record in the data set. 

• If the last record was read by a READ statement with the SET option, the 
record is updated by whatever assignments were made in the variable identi
fied by the pointer variable in the SET option. 

244 PUI Package/2 Language Reference 



LOCATE 

LOCATE statement 
The LOCATE statement can be used only with an OUTPUT SEQUENTIAL BUF
FERED file for locate mode processing. It allocates storage within an output buffer 
for a based variable and sets a pointer to the location of the next record. For 
further description of locate mode processing, see "Locate mode" on page 249. 

The syntax for the LOCATE statement is: 

.,,..,,._LOCATE-based-variable-FILE-( file-reference)---------

.,,. lsET-(pointer-reference)J LKEYFROM-( expression)] 

The keywords can appear in any order. 

based-variable 
must be an unsubscripted level-1 based variable. 

DELETE statement 
The DELETE statement deletes a record from an UPDATE file. 

The syntax for the DELETE statement is: 

.,,..,,._DELETE FILE-( file-reference)~------~-------
[KEY-(expression)J 

The keywords can appear in any order. If the KEY option is omitted, the record to 
be deleted is the last record that is read. No subsequent DELETE or REWRITE 
statement without a KEY is allowed until another READ statement is processed. If 
the KEY option is included, that record addressed by the key will be deleted if 
found. 

Options of data transmission statements 

FILE option 

Options that are allowed for record-oriented data transmission statements differ 
according to the attributes of the file and the characteristics of the associated data 
set. 

The FILE option must appear in every record-oriented data transmission statement. 
It specifies the file upon which the operation takes place. An example of the FILE 
option is shown in each of the statements in this section. If the file specified is not 
open in the current process, it is opened implicitly. 

Chapter 11. Record-oriented data transmission 245 



FROM 

FROM option 

IGNORE option 

The FROM option specifies the element or aggregate variable from which the 
record is written. The FROM option must be used in the WRITE statement for any 
OUTPUT or DIRECT UPDATE file. It can also be used in the REWRITE statement 
for any UPDATE file. 

If the variable is an aggregate, it must be in connected storage. Certain uses of 
unaligned nonvarying bit strings are disallowed (for details, see "Data transmitted" 
on page 242). 

The FROM variable can be an element string variable of varying length. When 
using a WRITE statement with the FROM option, only the current length of a 
VARYING string is transmitted to a data set, and a 2-byte prefix specifying the 
length can be attached. It is attached only if the SCALARVARYING option of the 
ENVIRONMENT attribute is specified for the file. 

Records are transmitted as an integral number of bytes. If a bit string (or a struc
ture that starts or ends with a bit string) that is not aligned on a byte boundary is 
transmitted, the record is padded with bits at the start or the end of the string, and 
.. .__ ---··· .. _:_._ .. .__ =-------.. 
Ult: lt:;:)Ull 1111y11l Ut: lllliUllt:lil. 

The FROM option can be omitted from a REWRITE statement for SEQUENTIAL 
UPDATE files. If the last record was read by a READ statement with the INTO 
option, REWRITE without FROM has no effect on the record in the data set. If the 
last record was read by a READ statement with the SET option, the record 
(updated by whatever assignments were made) is copied back onto the data set. 

In the following examples, the statements specify that the value of the variable 
Mas_Rec is written into the output file Master. 
write file (Master) from (Mas_Rec); 

The REWRITE statement specifies that Mas_Rec replaces the last record read from 
an UPDATE fi!e. 

rewrite file (Master) from (Mas_Rec); 

The IGNORE option can be used in a READ statement for any SEQUENTIAL 
INPUT or SEQUENTIAL UPDATE file. 

The expression in the IGNORE option is evaluated and converted to an integer 
value n. If n is greater than zero, n records are ignored. A subsequent READ 
statement for the file will access the (n+ 1 )th record. If n is less than 1, the READ 
statement has no effect. 

The following example specifies that the next three records in the file are to be 
ignored: 

real file (In) ignore (3); 

246 PUI Package/2 Language Reference 



INTO option 

KEY option 

INTO 

The INTO option specifies an element or aggregate variable into which the logical 
record is read. The INTO option can be used in the READ statement for any 
INPUT or UPDATE file. 

If the variable is an aggregate, it must be in connected storage. Certain uses of 
unaligned nonvarying bit strings are disallowed (for details, see "Data transmitted" 
on page 242). 

The INTO variable can be an element string variable of varying length. If the 
SCALARVARYING option of the ENVIRONMENT attribute was specified for the file, 
each record contains a 2-byte prefix that specifies the length of the string data. 

If SCALARVARYING was not declared then, on input, the string length is calculated 
from the record length and attached as a 2-byte prefix. For VARYING bit strings, 
this calculation rounds up the length to a multiple of 8 and therefore the calculated 
length might be greater than the maximum declared length. 

The following example specifies that the next sequential record is read into the vari
able RECORD_l: 

read file (Detail) into ( Record_l); 

The KEY option specifies a character or graphic key that identifies a record. It can 
be used in a READ statement for an INPUT or UPDATE file, or in a REWRITE 
statement for a DIRECT UPDATE file. 

The KEY option applies only to KEYED files. The KEY option is required if the file 
has the DIRECT attribute and optional if the file has the SEQUENTIAL and KEYED 
attributes. 

The expression in the KEY option is evaluated and, if not character or graphic, is 
converted to a character value that represents a key. It is this character or graphic 
value that determines which record is read. 

The following example specifies that the record identified by the character value of 
the variable Stkey is read into the variable Item: 

read file (Stpck) into (Item) key (Stkey); 

KEYFROM option 
The KEYFROM option specifies a character or graphic key that identifies the record 
on the data set to which the record is transmitted. It can be used in a WRITE 
statement for any KEYED OUTPUT or DIRECT UPDATE file, or in a LOCATE 
statement. 

The KEYFROM option applies only to KEYED files. The expression is evaluated 
and, if not character or graphic, is converted to a character string and is used as 
the key of the record when it is written. 

Relative data sets can be created using the KEYFROM option. The record number 
is specified as the key. 

Chapter 11. Record-oriented data transmission 247 



KEVTO 

KEYTO option 

SET option 

REGIONAL(1) data sets can be created using the KEYFROM option. The region 
number is specified as the key. 

For indexed data sets, KEYFROM specifies a recorded key whose length must be 
equal to the key length specified tor the data set. 

The following example specifies that the value of Loan rec is written as a record in 
the file Loans, and that the character string value of Loanno is used as the key with 
which it can be retrieved: 

write file (Loans) from (Loanrec) keyfrom (Loanno); 

The KEYTO option specifies the character or graphic variable to which the key of a 
record is assigned. The KEYTO option can specify any string pseudovariable other 
than STRING. It cannot specify a variable declared with a numeric picture specifi
cation. The KEYTO option can be used in a READ statement for a SEQUENTIAL 
INPUT or SEQUENTIAL UPDATE file. 

The KEYTO option applies only to KEYED files. 

Assignment to the KEYTO variable always follows assignment to the INTO variable. 
If an incorrect key specification is detected, the KEY condition is raised. The value 
assigned is as follows: 

• For indexed data sets, the record key is padded or truncated on the right to the 
declared length of the character variable. 

• For relative data sets, a record number is converted to a character string with 
leading zeros suppressed, truncated, or padded on the left to the declared 
length of the character variable. 

• For REGIONAL(1) data sets, the 9-character region-number, padded or trun
cated on the left to the declared length of the character variable. If the char
acter variable is of varying length, any leading zeros in the region number are 
truncated and the string length is set to the number of significant digits. An 
all-zero region number is truncated to a single zero. 

The KEY condition is not raised tor this type of padding or truncation. 

The following example specifies that the next record in the file Detail is read into 
the variable Invntry, and that the key of the record is assigned to the variable 
Keyfl d: 

read file (Detail) into (Invntry) keyto (Keyfld); 

The SET option can be used with a READ statement or a LOCATE statement. For 
the READ statement, it specifies a pointer variable that is set to point to the record 
read. For the LOCATE statement, it specifies a pointer variable that is set to point 
to the next record for output. 

If the SET option is omitted for the LOCATE statement, the pointer declared with 
the record variable is set. If a VARYING string is transmitted, the 
SCALARVARYING option must be specified tor the file. 

248 PUI Package/2 Language Reference 



Processing modes 

The following example specifies that the value of the pointer variable P is set to the 
iocation in the buffer of the next sequential record: 

read file (X) set (P); 

Processing modes 

Move mode 

Locate mode 

Record-oriented data transmission has two modes of handling data: 

Move mode processes data by moving it into or out of the variable. 

Locate mode processes data while it remains in a buffer. The execution of a 
data transmission statement assigns a pointer variable for the 
location of the storage allocated to a record in the buffer. Locate 
mode is applicable only to BUFFERED files. 

The data transmission statements and options that you specify determine the proc
essing mode used. 

In move mode, a READ statement transfers a record from the data set to the vari
able named in the INTO option. A WRITE or REWRITE statement transfers a 
record from the variable named in the FROM option to the data set. The variables 
named in the INTO and FROM options can be of any storage class. 

The following is an example of move mode input: 

Eof _In = 'G'b; 
on endfile(In) Eof_In = 'l'B; 
read file( In) into(Data); 
do while (•Eof_In); 

/* process record */ 
read file( In) into(Data); 

end; 

Locate mode assigns to a pointer variable the location of the buffer. A based vari
able described the record. The same data can be interpreted in different ways by 
using different based variables. Locate mode can also be used to read self
defining records, in which information in one part of the record is used to indicate 
the structure of the rest of the record. For example, this information could be an 
array bound or a code identifying which based structure should be used for the 
attributes of the data. 

A READ statement with a SET option sets the pointer variable in the SET option to 
a buffer containing the record. The data in the record can then be referenced by a 
based variable qualified with the pointer variable. 

The pointer value is valid only until the execution of the next READ or CLOSE 
statement that refers to the same file. 

Chapter 11. Record-oriented data transmission 249 



The pointer variable specified in the SET option or, if SET was omitted, the pointer 
variable specified in the declaration of the based variable, is used. The pointer 
value is valid only until the execution of the next LOCATE, WRITE, or CLOSE 
statement that refers to the same file. It also initializes components of the based 
variable that have been specified in REFER options. 

The LOCATE statement sets a pointer variable to a large enough area where the 
next record can be built. 

After execution of the LOCATE statement, values can be assigned directly into the 
based variables qualified by the pointer variable set by the LOCATE statement. 

The following example shows locate mode input: 

dcl 1 Data based(P), 
2 

on endfile(In) 

' read file(In) set(P); 
do while (•endfile(ln)); 

I* process record */ 
read file(In) set(P); 

end; 

The following example shows locate mode output: 

dcl 1 Data based(P); 
2 

do while (More_records_to_write); 
locate Data lile(OuL); 

/*build record*/ 
end; 

250 PUI Package/2 Language Reference 



© Copyright IBM Corp. 1992 

Chapter 12. Stream-oriented data transmission 

Chapter 12. Stream-oriented data transmission 
Data transmission statements 

GET statement ............ . 
PUT statement . . . . . . . . . . . . . . 

Options of data transmission statements 
COPY option . . . . . . . 
Data specification options 
Fl LE option . 
LINE option 
PAGE option 
SKIP option 
STRING option 

Transmission of data-list items 
Data-directed data specification 

Syntax of data-directed data 
GET data-directed ..... . 
PUT data-directed . . . . . . 

Edit-directed data specification 
GET edit-directed 
PUT edit-directed ..... 
FORMAT statement . . . . 

List-directed data specification 
Syntax of list-directed data 
GET list-directed 
PUT list-directed .. . 

PRINT attribute .... . 
DBCS data in stream 1/0 

252 
252 
253 
253 
254 
254 
254 
256 
256 
256 
257 
257 
259 
259 
260 
261 
262 
263 
265 
266 
267 
267 
268 
268 
269 
270 
272 

251 



Stream-oriented data transmission 

Chapter 12. Stream-oriented data transmission 

This chapter describes the input and output statements used in stream-oriented 
data transmission. Features that apply to stream-oriented and record-oriented data 
transmission, including files, file attributes, and opening and closing files, are 
described in Chapter 10, "Input and output" on page 228. 

Stream-oriented data transmission treats a data set as a continuous stream of data 
values in character, graphic, or mixed character data form. Within a program, 
record boundaries are generally ignored. However, a data set consists of a series 
of lines of data, and each data set created or accessed by stream-oriented data 
transmission has a line size associated with it. In general, a line is equivalent to a 
record in the data set, but the line size does not necessarily equal the record size. 

The stream-oriented data transmission statements can also be used for internal 
data movement, by specifying the STRING option instead of specifying the FILE 
option. Although the STRING option is not an input/output operation, its use is 
described in this chapter. 

Stream-oriented data transmission can be list-directed, data-directed, or edit
directed. 

List-directed data transmission 
transmits the values of data-list items without your having to specify the 
format of the values in the stream. The values are recorded externally as 
a list of constants, separated by blanks or commas. 

Data-directed data transmission 
transmits the names of the data-list items, as well as their values, without 
your having to specify the format of the values in the stream. The 
GRAPHIC option of the ENVIRONMENT attribute must be specified if any 
variable has a DBCS name, even if no DBCS data is present. 

c..1: ... ...1: .............. -1 ...................... ---=--=--1..uu-u11c"'Lcu uaLa ua11;:,1111;:,;:,1u11 

transmits the values of data-list items and requires that you specify the 
format of the values in the stream. The values are recorded externally as 
a string of characters or graphics to be treated character by character (or 
graphic by graphic) according to a format list. 

The following sections detail the data transmission statements and their options, 
and how to specify the list-, data-, and edit-directed data. How to accommodate 
double-byte characters is discussed in "DBCS data in stream 1/0" on page 272. 

Data transmission statements 

252 

Stream-oriented data transmission uses GET and PUT statements. Only consec
utive files can be processed with the GET and PUT statements. 

The variables or pseudovariables to which data values are assigned, and the 
expressions from which they are transmitted, are generally specified in a data
specification with each GET or PUT statement. The statements can also include 
options that specify the origin or destination of the data values or indicate where 
they appear in the stream relative to the preceding data values. Options for the 

© Copyright IBM Corp. 1992 



GET statement 

PUT statement 

GET 

stream-data transmission statements are described in "Options of data transmission 
statements" on page 254. 

The GET statement is a STREAM input data transmission statement that can 
either: 

• Assign data values from a data set to one or more variables 
• Assign data values from a string to one or more variables. 

The syntax of the GET statement for a stream input file is: 

.... -GET 
LFr LE-( expression)J ldata- specificati of1J 

.. __,.L_c_O_P_Y ________ ~,----..-L-s-KI-P=:============r-------~ 
l( file-reference)] l( expression)] 

The keywords can appear in any order. The data specification must appear unless 
the SKIP option is specified. 

The syntax of the GET statement for transmission from a string is: 

.... -GET STRING-(expression)-data-specification-;----------

If FILE or STRING option is not specified FILE(SYSIN) is assumed and SYSIN is 
implicitly declared FILE STREAM INPUT EXTERNAL. 

The PUT statement is a STREAM output data transmission statement that can: 

• Transmit values to a stream output file 
• Assign values to a character variable. 

The syntax of the PUT statement for a stream output file is: 

.... -PUT 
[FILE-( file-reference)] ldata-specificatiof1J 

• 
.. ; ... ~ 

1-PAGE 
LLINE-(expression)J 

1-SKIP 
L( expression)~ 

'-LINE-( expression) 

The keywords can appear in any order. The data specification can be omitted only 
if one of the control options (PAGE, SKIP, or LINE) appears. 

The syntax of the PUT statement for transmission to a chara~ter string is: 

.... -PUT STRING-(expression)-data-specification-;----------

Chapter 12. Stream-oriented data transmission 253 



COPY 

Options of data transmission statements 

COPY option 
The COPY option specifies that the source data stream will be written on the speci
fied STREAM OUTPUT file without alteration. If no file reference is given, the 
default is the output file SYSPRINT. Each new record in the input stream starts a 
new record on the COPY file. For example: 

get file(sysin) data(A,B,C) copy(DPL); 

not only transmits the values assigned to A, B, and C in the input stream to the 
variables with these names, but also writes them exactly as they appear in the 
input stream, on the file DPL. Data values that are skipped on input, and not trans
mitted to internal variables, copy intact into the output stream. 

If a condition is raised during the execution of a GET statement with a COPY 
option and an ON-unit is entered in which another GET statement is executed for 
the same file, and if control is returned from the ON-unit to the first GET statement, 
that statement executes as if no COPY option was specified. If, in the ON-unit, a 
PUT statement is executed for the ti!e associated with the COPY option, the posi-
tion of the data transmitted might not immediately follow the most recently
transmitted COPY data item. 

If the COPY option file is not open in the current program, the file is implicitly 
opened in the program for stream output transmission. 

Data specification options 
Data specifications in GET and PUT statements specify the data to be transmitted. 
The syntax for a data specification is: 

~~ I L J H data-list H-----~----------<11 
LIST 

[

lJAIA J f (~data- 7 is t- ite/T}J_ J 
EDIT---H data-list j-)-(format-list) 

data-list: 

~data- l'ist item I 

L( -fci~ta- 7 i st- itemLtype-3-DO)J 

If a GET or PUT statement includes a data list that is not preceded by one of the 
keywords LIST, DATA, or EDIT, LIST is the default. 

Important: In a statement without LIST, DATA, or EDIT preceding the data list, 
the data list must immediately follow the GET or PUT keyword. Any options 
required must be specified after the data list. 

DATA Refer to "Data-directed data specification" on page 259. 

EDIT Refer to "Edit-directed data specification" on page 263. 

LIST Refer to "List-directed data specification" on page 267. 

254 PUI Package/2 Language Reference 



Data specification 

data-list item 
On input, a data-list itern for edit-directed and list-directed iransmission 
can be one of the following: an element, array, or structure variable. For 
a data-directed data specification, a data-list item can be an element, 
array, or structure variable. None of the names in a data-directed data list 
can be subscripted or locator-qualified. However, qualified (that is, 
structure-member) or string-overlay-defined names are allowed. 

On output, a data list item for edit-directed and list-directed data specifica
tions can be an element expression, an array expression or a structure 
expression. For a data-directed data specification, a data-list item can be 
an element, array, or structure variable. It must not be locator-qualified. It 
can be qualified (that is, a member of a structure) or string-overlay
defined. 

The data types of a data-list item can be any computational data. In this 
case, the name of the variable is transmitted, but not its value. 

An array or structure variable in a data-list is equivalent to n items in the 
data list, where n is the number of element items in the array or structure. 
For edit-directed transmission, each element item is associated with a sep
arate use of a data-format item. 

data-I ist item type-3-DO 
The syntax for the Type 3 DO specification is described under "DO 
statement" on page 173. Data list items with Type 3 DO specifications 
are not permitted in data-directed data lists. 

When the last repetitive specification is completed, processing continues 
with the next data-list item. 

Each repetitive specification must be enclosed in parentheses, as shown 
in the syntax diagram. If a data specification contains only a repetitive 
specification, two sets of outer parentheses are required, since the data 
list is enclosed in parentheses and the repetitive specification must have a 
separate set. 

When repetitive specifications are nested, the rightmost DO is at the outer 
level of nesting. For example: 

get list (((A(I,J) 
do I = 1 to 2) 
do J = 3 to 4) ) ; 

There are three sets of parentheses, in addition to the set used to delimit 
the subscripts. The outermost set is the set required by the data specifi
cation. The next set is that required by the outer repetitive specification. 
The third set of parentheses is required by the inner repetitive specifica
tion. 

This statement is equivalent in function to the following nested do-groups: 

do J = 3 to 4; 
do I = 1 to 2; 

get list (A (l,J)); 
end; 

end; 

It assigns values to the elements of the array A in the following order: 

A(l,3), A(2,3), A(l,4), A(2,4) 

Chapter 12. Stream-oriented data transmission 255 



FILE 

FILE option 

LINE option 

PAGE option 

format list 
For a description of the format list, see "Edit-directed data specification" on 
page 263. 

The FILE option specifies the file upon which the operation takes place. It must be 
a STREAM file. For information on how to declare a file type data item, see "Files" 
on page 230. 

If neither the FILE option nor the STRING option appears in a GET statement, the 
input file SYSIN is the default; if neither option appears in a PUT statement, the 
output file SYSPRINT is the default. 

The LINE option can be specified only for PRINT files. The LINE option defines a 
new current line for the data set. The expression is evaluated and converted to an 
integer value, n. The new current line is the nth line of the current page. If at least 
n lines have already been written on the current page or if n exceeds the limits set 
by the PAGESIZE option of the OPEN statement, the ENDPAGE condition is 
raised. If n is less than or equal to zero, a value of 1 is used. If n specifies the 
current line, ENDPAGE is raised except when the file is positioned on column 1, in 
which case the effect is the same as if a SKIP(O) option were specified. 

The LINE option takes effect before the transmission of any values defined by the 
data specification (if any). If both the PAGE option and the LINE option appear in 
the same statement, the PAGE option is applied first. For example: 

put file( List) data(P,Q,R) line(34) page; 

prints the values of the variables P, Q, and R in data-directed format on a new 
page, commencing at line 34. 

For the effect of the LINE option when specified in the first GET statement following 
the opening of the file, see "OPEN statement" on page 236. 

For output to a terminal in interactive mode, the LINE option skips three lines. 

The PAGE option can be specified only for PRINT files. It defines a new current 
page within the data set. If PAGE and LINE appear in the same PUT statement, 
the PAGE option is applied first. The PAGE option takes effect before the trans
mission of any values defined by the data specification (if any). 

The page remains current until the execution of a PUT statement with the PAGE 
option, until a PAGE format item is encountered, or until the ENDPAGE condition is 
raised, resulting in the definition of a new page. A new current page implies line 
one. 

For output to a terminal in interactive mode, the PAGE option skips three lines. 

256 PUI Package/2 Language Reference 



SKIP option 

STRING option 

SKIP 

The SKIP option specifies a new current line (or record) within the data set. The 
expression is evaluated and converted to an integer value, n. The data set is posi
tioned to the start of the nth line (record) relative to the current line (record). If 
expression is not specified, the default is SKIP(1 ). 

The SKIP option takes effect before the transmission of values defined by the data 
specification (if any). For example: 

put list(X,Y,Z) skip(3); 

prints the values of the variables X, Y, and Z on the output file SYSPRINT com
mencing on the third line after the current line. 

For non-PRINT files and input files, if the expression in the SKIP option is less than 
or equal to zero, a value of 1 is used. For PRINT files, if n is less than or equal to 
zero, the positioning is to the start of the current line. 

For the effect of the SKIP option when specified in the first GET statement following 
the opening of the file, see "OPEN statement" on page 236. 

If fewer than n lines remain on the current page when a SKIP(n) is issued, 
ENDPAGE is raised. 

When printing at a terminal in conversational mode, SKIP(n) with n greater than 3 
is equivalent to SKIP(3). No more than three lines can be skipped. 

The STRING option in GET and PUT statements transmits data between main 
storage locations rather than between the main and a data set. DBCS data items 
cannot be used with the STRING option. 

The GET statement with the STRING option specifies that data values assigned to 
the data list items are obtained from the expression, after conversion to character 
string. Each GET operation using this option always begins at the leftmost char
acter position of the string. If the number of characters in this string is less than 
the total number of characters specified by the data specification, the ERROR con
dition is raised. 

The PUT statement with the STRING option specifies that values of the data-list 
items are to be assigned to the specified character variable or pseudovariable. The 
PUT operation begins assigning values at the leftmost character position of the 
string, after appropriate conversions are performed. Blanks and delimiters are 
inserted as in normal 1/0 operations. If the string is not long enough to accommo
date the data, the ERROR condition is raised. 

The NAME condition is not raised for a GET DATA statement with the STRING 
option. Instead, the ERROR condition is raised for situations that raise the NAME 
condition for a GET DATA statement with the FILE option. 

The following restrictions apply to the STRING option: 

• The COLUMN control format option cannot be used with the STRING option. 
• No pseudovariables are allowed in the STRING option of a PUT statement. 

Chapter 12. Stream-oriented data transmission 257 



STRING 

The STRING option is most useful with edit-directed transmission. It allows data 
gathering or scattering operations performed with a single statement, and it allows 
stream-oriented processing of character strings that are transmitted by record
oriented statements. 

For example: 

read file (Inputr) into (Temp); 
get string(Temp) edit (Code) (F(l)); 
If Code = 1 then 

get string (Temp) Edit (X,Y,Z) 
(X(l), 3 F(18,4)); 

The READ statement reads a record from the input file Inputr. The first GET 
statement uses the STRING option to extract the code from the first byte of the 
record and assigns it to Code. If the code is 1, the second GET statement uses the 
STRING option to assign the values in the record to X, Y, and Z The second GET 
statement specifies that the first character in the string Temp is ignored (the X ( 1) 
format item in the format list). This ignored character is the same one assigned to 
Code by the first GET statement. 

An exampie of the STRii\iG option in a PUT statement is: 

put string (Record) edit 
(Name) (X(l), A(12)) 
(Pay{f) (X(18), A(7)) 
( Hours*Rate) ( X(18), P' $999V. 99'); 

write file (Outprt) from (Record); 

The PUT statement specifies, by the X ( 1) spacing format item, that the first char
acter assigned to the character variable is to be a single blank, which is the ANS 
vertical carriage positioning character that specifies a single space before printing. 
Following that, the values of the variables Name and Pay# and of the expression 
Hours*Rate are assigned. The WRITE statement specifies that record transmission 
is used to write the record into the file Outprt. 

The variable referenced in the STRING option should not be referenced by name or 
by alias in the data list. For example: 

declare S char(8) init( 'YYMMDD' ); 
put string (S) edit 

(substr (S, 3, 2), '/', 
substr (S, 5, 2), '/', 
substr (S, l, 2)) 
(A); 

The value of S after the PUT statement is 'MM/Db/MM' and not 'MM/DD/YY' 
because S is blanked after the first data item is transmitted. The same effect is 
obtained if the data list contains a variable based or defined on the variable speci
fied in the STRING option. 

258 PUI Package/2 Language Reference 



Transmission of data-list items 

Transmission of data-list items 
If a data-list item is of complex mode, the real part is transmitted before the imagi
nary part. 

If a data-list item is an array expression, the elements of the array are transmitted 
in row-major order; that is, with the rightmost subscript of the array varying most 
frequently. 

If a data-list item is a structure expression, the elements of the structure are trans
mitted in the order specified in the structure declaration. 

For example, the statements 

declare 1 A (18), 
2 B, 
2 C; 

put file(X) list(A); 

result in the output being ordered as follows: 

A.B(l) A.C(l) A.B(2) A.C(2) A.B(3) 
A.C(3) ... 

If, however, the declaration is: 

declare 1 A, 
2 BOG), 
2 C(lG); 

the same PUT statement results in the output ordered as follows: 

A.B(l) A.B(2) A.B(3) A.B(lG) 
A.C(l) A.C(2) A.C(3) ... A.C(lG) 

If an input statement for list- or edit-directed transmission assigns a value to a vari
able in a data list, the assigned value is used if the variable appears in a later 
reference in the data list. For example: 

get list (N,(X(I) do I=l to N),J,K,); 
substr (Name, J,K)); 

When this statement is executed, values are transmitted and assigned in the fol
lowing order: 

1. A new value is assigned to N. 

2. Elements are assigned to the array X as specified in the repetitive specification 
in the order XO), X( 2), ... X(N), with the new value of N specifying the number 
of assigned items. 

3. A new value is assigned to J. 

4. A new value is assigned to K 

Data-directed data specification 
For a description of the syntax of the DATA data specification, refer to "Data spec
ification options" on page 254. 

Names of structure elements in the data-list item need only have enough qualifica
tion to resolve any ambiguity. Full qualification is not required. 

Chapter 12. Stream-oriented data transmission 259 



Syntax of data-directed data 

Omission of the data list results in a default data list that contains all computational 
variables that could be named in a data-directed statement. 

On output, all items in the data list are transmitted. If two or more blocks con
taining the PUT statement each have declarations of items that have the same 
name, all the items are transmitted. The item in the innermost block appears first. 
Parameters, based variables, defined variables, and subscripted variables are not 
permitted in data-directed lists. 

Syntax of data-directed data 
The stream associated with data-directed data transmission is in the form of a list 
of element assignments. The element assignments that have optionally signed 
constants, like variable names and equal signs, are in character or graphic form. 
The syntax for the element assignments is: 

.,,.,,_k~lement-variable- = -data-valu:il;-----------.-. 

On input, the element assignments can be separated by either a blank or a comma. 
Blanks can surround periods in qualified names, subscripts, subscript parentheses, 
and the assignment symbols. On output, the assignments are separated by a 
blank. For PRINT files, items are separated according to program tab settings. 

Each data-value in the stream has one of the syntaxes described for list-directed 
transmission. For a description of list-directed transmission syntax, refer to "Syntax 
of list-directed data" on page 268. 

The length of the data value in the stream is a function of the attributes declared for 
the variable and, because the name is also included, the length of the fully qualified 
subscripted name. The length for output items converted from coded arithmetic 
data, numeric character data, and bit-string data is the same as that tor list-directed 
output data, and is governed by the rules for data conversion to character type as 
described in Chapter 5, "Data conversion." 

Qualified names in the input stream must be fully qualified. 

Interleaved subscripts cannot appear in qualified names in the stream. For 
example, assume that Y is declared as follows: 

declare 1 Y(5,5), 
2 A(18), 

3 B, 
3 C, 
3 D; 

An element name has to appear in the stream as follows: 

Y.A.8(2,3,8)= 8.72 

260 PUI Package/2 Language Reference 



GET data-directed 

GET data-directed 
For more information about the GET statement, see "GET statement" on page 253. 

If a data list is used, each data-list item must be an element, array, or structure 
variable. Names cannot be subscripted, but qualified names are allowed in the 
data list. All names in the stream should appear in the data list; however, the order 
of the names need not be the same, and the data list can include names that do 
not appear in the stream. 

If the data list contains a name that is not included in the stream, the value of the 
named variable remains unchanged. 

If the stream contains an unrecognizable element-variable or a name that does not 
have a counterpart in the data list, the NAME condition is raised. 

Transmission ends when a semicolon that is not enclosed in quotation marks or an 
end-of-file is reached. The recognition of the semicolon or end-of-file determines 
the number of element assignments that are actually transmitted by a particular 
statement, whether or not a data list is specified. 

For example, consider the following data list, where A, B, C, and Dare names of 
element variables: 

Data (B, A, C, 0) 

This data list can be associated with the following input data stream: 

A= 2.5, B= .8847, D= 125, Z= 'ABC'; 

Because C appears in the data list but not in the stream, its value remains unal
tered. Z, which is not in the data list, raises the NAME condition. 

If the data list includes the name of an array, subscripted references to that array 
can appear in the stream although subscripted names cannot appear in the data 
list. The entire array need not appear in the stream; only those elements that actu
ally appear in the stream will be assigned. If a subscript is out of range, or is 
missing, the NAME condition is raised. 

For example: 

dee la re X ( 2, 3) ; 

Consider the following data list and input data stream: 

Data Specification Input Data Stream 

data (X) x ( 1, 1 )= 7. 95, 

x ( 1, 2 )= 8885, 

X(l,3)= 73; 

Although the data list has only the name of the array, the input stream can contain 
values for individual elements of the array. In this case, only three elements are 
assigned; the remainder of the array is unchanged. 

Chapter 12. Stream-oriented data transmission 261 



PUT data-directed 

If the data list includes the names of structures, minor structures, or structure ele
ments, fully qualified names must appear in the stream, although full qualification is 
not required in the data list. For example: 

dcl 1 In, 
2 Partno, 
2 Descrp, 
2 Price, 

3 Retail , 
3 Whsl; 

If it is desired to read a value for In.Price. Retail, the input data stream must have 
the following form: 

In.Price.Retail=l.23; 

The data specification can be any of: 

data(ln) 
data( Price) 
data( In.Price) 
data (Retail ) 
data( Price.Retail) 
data( In.Retail) 
data(ln.Price.Retail) 

PUT data-directed 
For more information about the PUT statement, see "PUT statement" on page 253. 

A data-list item can be an element, array, or structure variable, or a repetitive spec
ification. Subscripted names are not allowed. The names appearing in the data 
list, together with their values, are transmitted in the form of a list of element 
assignments separated by blanks and terminated by a semicolon. For PRINT files, 
items are separated according to program tab settings; see "PRINT attribute" on 
page 270. 

A semicolon is written into the strearn after the iast daia item iransmitied by each 
PUT statement. 

Names are transmitted as all SBCS or all DBCS, regardless of how they are speci
fied in the data list. If a name contains only SBCS characters, it is transmitted as 
all SBCS; otherwise, it is transmitted as DBCS. Each name in a qualified reference 
is handled independently. For example: 

put data (.A.B.C.Skk); 

would be transmitted as: 

ABCSkk=value-of-variable 

Note: In the previous example, .A.B.C.Skk is a scalar variable. 

Data-directed output is not valid for subsequent data-directed input when the 
character-string value of a numeric character variable does not represent a valid 
optionally signed arithmetic constant, or a complex expression. 

For character data, the contents of the character string are written out enclosed in 
quotation marks. Each quotation mark contained within the character string is 
represented by two successive quotation marks. 

262 PUI Package/2 Language Reference 



Edit-directed data specification 

The following example shows data-directed transmission (both input and output): 

declare (A(6), 8(7)) fixed; 
get file (X) data (8); 
do I = 1 to 6; 

A (I) = 8 (I+l) + 8 (I); 
end; 
put file (Y) data (A); 

input stream: 

8(1)=1, 8(2)=2, 8(3)=3, 
8(4)=1, 8(5)=2, 8(6)=3, 8(7)=4; 

output stream: 

A(l)= 3 A(2)= 5 A(3)= 4 A(4)= 3 
A(5)= 5 A(6)= 7; 

In the following example: 

de l 1 A, 
2 8 FIXED, 
2 C, 

3 D FIXED; 
A.8 = 2; 
A.D = 17; 
put data (A); 

the data fields in the output stream are as follows: 

A.8= 2 A.C.D= 17; 

Edit-directed data specification 
For information on the syntax of the EDIT data specification, refer to "Data specifi
cation options" on page 254. 

The syntax for an edit-directed format list specification is: 

~~ifumat-it~~~~'~~~~~~~~~~~~~~~~~-~~ 
n-format- i tem.___J 
n-(format-li;t)_J 

n specifies an iteration factor, which is either an expression enclosed in 
parentheses or an integer. If it is the latter, a blank must separate the 
integer and the following format item. 

The iteration factor specifies that the associated format item or format list 
is used n successive times. A zero or negative iteration factor specifies 
that the associated format item or format list is skipped and not used (the 
data-list item is associated with the next data-format item). 

If an expression is used to represent the iteration factor, it is evaluated 
and converted to an integer, once for each set of iterations. 

The associated format item or format list is that item or list of items imme
diately to the right of the iteration factor. 

Chapter 12. Stream-oriented data transmission 263 



Edit-directed data specification 

format item 
specifies either a data-format item, a control-format item, or the remote 
format item. Syntax and detailed discussions of the format items appear 
in Chapter 13, "Edit-directed format items." 

Data-format items 
describe the character or graphic representation of a single data item. 
They are: 

A character 
B bit 
C complex 
E floating point 
F fixed point 
G graphic 
P picture 

Control-format items 
specify the layout of the data set associated with a file. They are: 

COLUMN 
LINE 
PAGE 
SKIP 
x 

The remote-format item 
specifies a label reference whose value is the label constant of a FORMAT 
statement located elsewhere. The FORMAT statement contains the 
remotely situated format items. The label reference item is: 

R(label-reference) 
where label is the label constant name of the FORMAT statement. 
For information on specifying the A-format item, see "A-format item" 
on page 282. 

The first data-format item is associated with the first data-list item, the second data
format item with the second data-list item, and so on. If a format list contains fewer 
data-format items than there are items in the associated data list, the format list is 
reused. If there are excessive format items, they are ignored. 

Suppose a format list contains five data-format items and its associated data list 
specifies ten items to be transmitted. The sixth item in the data list is associated 
with the first data-format item, and so forth. Suppose a format list contains ten 
data-format items and its associated data list specifies only five items. The sixth 
through the tenth format items are ignored. 

If a control-format item is encountered, the control action is executed. 

The PAGE and LINE control-format items can be used only with PRINT files and, 
consequently, can appear only in PUT statements. The SKIP, COLUMN, and 
X-format items apply to both input and output. 

The PAGE, SKIP, and LINE format items have the same effect as the corre
sponding options of the PUT statement (and of the GET statement, in the case of 
SKIP), except that the format items take effect when they are encountered in the 
format list, while the options take effect before any data is transmitted. 

264 PUI Package/2 Language Reference 



GET edit-directed 

The COLUMN format item cannot be used in a GET STRING or PUT STRING 
statement. 

For the effects of control-format items when specified in the first GET or PUT state
ment following the opening of a file, see "OPEN statement" on page 236. 

A value read into a variable can be used in a format item that is associated with 
another variable later in the data list. 

get edit (M,String_A,I,String_B)(F(2),A(M),X(M),F(2),A(I)); 

In this example, the first two characters are assigned to M The value of M specifies 
the number of characters assigned to Stri ng_A and the number of characters being 
ignored before two characters are assigned to I, whose value is used to specify the 
number of characters assigned to St ri ng_B. 

The value assigned to a variable during an input operation can be used in an 
expression in a format item that is associated with a later data item. An expression 
in a format item is evaluated and converted to an integer each time the format item 
is used. 

The transmission is complete when the last data-list item has been processed. 
Subsequent format items, including control-format items, are ignored. 

GET edit-directed 
For more information about the GET statement, see "GET statement" on page 253. 

Data in the stream is a continuous string of characters and graphics with no delim
iters between successive values. The number of characters for each data value is 
specified by a format item in the format list. The characters are interpreted 
according to the associated format item. When the data list has been processed, 
execution of the GET statement stops and any remaining format items are not proc
essed. 

Each data-format item specifies the number of characters or graphics to be associ
ated with the data-list item and how to interpret the data value. The data value is 
assigned to the associated data-list item, with any necessary conversion. 

Fixed-point binary and floating-point binary data values must always be represented 
in the input stream with their values expressed in decimal digits. The F-, P-, and 
E-format items can then be used to access them, and the values are converted to 
binary representation upon assignment. 

All blanks and quotation marks are treated as characters in the stream. Strings 
should not be enclosed in quotation marks. Quotation marks should not be 
doubled. The letter B should not be used to identify bit strings or G to identify 
graphic strings. If characters in the stream cannot be interpreted in the manner 
specified, the CONVERSION condition is raised. 

Example: 

get edit (Name, Data, Salary)(A(N), X(2), A(6), F(6,2)); 

Chapter 12. Stream-oriented data transmission 265 



PUT edit-directed 

This example specifies the following: 

• The first N characters in the stream are treated as a character string and 
assigned to Name. 

• The next two characters are skipped. 

• The next six characters are assigned to Data in character format. 

• The next six characters are considered an optionally signed decimal fixed-point 
constant and assigned to Sal a ry. 

PUT edit-directed 
For more information about the PUT statement, see "PUT statement" on page 253. 

The value of each data-list item is converted to the character or graphic represen
tation specified by the associated data-format item and placed in the stream in a 
field whose width also is specified by the format item. When the data list has been 
processed, execution of the PUT statement stops and any remaining format items 
are not processed. 

On output; binary items are converted to decimal values and the associated F- or 
E-format items must state the field width and point placement in terms of the con
verted decimal number. For the P-format these are specified by the picture specifi
cation. 

On output, blanks are not inserted to separate data values in the output stream. 
String data is left-adjusted in the field to the width specified. Arithmetic data is 
right-adjusted. Because of the rules for conversion of arithmetic data to character 
type which can cause up to 3 leading blanks to be inserted (in addition to any 
blanks that replace leading zeros), generally there is at least 1 blank preceding an 
arithmetic item in the converted field. Leading blanks do not appear in the stream, 
however, unless the specified field width allows for them. Truncation, due to inade
quate field-width specification, is on the left for arithmetic items, and on the right for 
string items. SIZE or STRINGSIZE is raised if truncation occurs. 

Example 1 

put edit(' Inventory=' llinum, Invcode)(A, F(5)); 

This example specifies that the character string 'Inventory=' is concatenated with 
the value of Inum and placed in the stream in a field whose width is the length of 
the resultant string. Then the value of Invcode is converted to character, as 
described by the F-format item, and placed in the stream right-adjusted in a field 
with a width of five characters (leading characters can be blanks). 

Example 2: The following example shows the use of the COLUMN, LINE, PAGE, 
and SKIP format items in combination with one another: 

put edit ('Quarterly Statement') 
(page, line(2), A(19))(Acct#, Bought, Sold, Payment, Balance) 
(skip(3), A(6), column(14), F(7,2), column(30), F(7,2), 
column(45), F(7,2), column(60), F(7,2)); 

This PUT statement specifies the following: 

1. The heading Quarterly Statement is written on line two of a new page in the 
output file SYSPRINT. 

266 PUI Package/2 Language Reference 



FORMAT 

2. Two lines are skipped. The next line in the output is the third line following the 
heading, or the fifth line of the report. 

3. The following values are written: 

Acct#, beginning at character position 1 
Bought, beginning at character position 14 
Sold, beginning at character position 30 
Payment, beginning at character position 45 
Balance at character position 60. 

Example 3: In the following example, the value of Name is inserted in the stream 
as a character string left-adjusted in a field of N characters. 

put edit (Name.Number.City) (A(N),A(N-4),A(l8)); 

Number is left-adjusted in a field of N-4 characters; and City is left-adjusted in a field 
of 1 O characters. 

FORMAT statement 
The FORMAT statement specifies a format list that can be used by edit-directed 
data transmission statements to control the format of the data being transmitted . 

..,..,_~FORMAT-( format-list)-;--------------- ... 

label This label constant is the same as the label-reference of the remote-format 
. item, R, discussed in "A-format item" on page 282. 

format list 
is specified as described under "Edit-directed data specification" on 
page 263. 

A GET or PUT EDIT statement can include an A-format item in its format-list 
option. That portion of the format list represented by the A-format item is supplied 
by the identified FORMAT statement. 

A condition prefix associated with a FORMAT statement is invalid. 

List-directed data specification 
For information on the syntax of the LIST data specification, refer to "Data specifi
cation options" on page 254. 

Examples of list-directed data specifications are: 

list (Card_Rate, Dynamic_Flow) 

list ((Thickness(Distance) 
do Distance= 1 to 1888)) 

list (P, Z, M, R) 

list (A*B/C, (X+Y)**2) 

Chapter 12. Stream-oriented data transmission 267 



Syntax of list-directed data 

The specification in the last example can be used only for output, since it contains 
expressions. These expressions are evaluated when the statement is executed, 
and the result is placed in the stream. 

Syntax of list-directed data 
Data values in the stream, either input or output, are character or graphic represen
tations. The syntax for data values is: 

.... --.---..----.--arithmetic-constant---------...--------+ ... 
+ 

real-constant~~ ~imaginary-constant---<. 

character-constant--------------. 
b i t-constant----------------1 
g raph i c-cons tant----------""-----' 

String repetition factors are not allowed. A blank must not follow a sign preceding 
a real constant, and must not precede or follow the central positive (+) or negative 
(-)symbol in complex expressions. 

The length of the data value in the stream is a function of the attributes of the data 
value, including precision and length. Detailed discussions of the conversion rules 
and their effect upon precision are listed in the descriptions of conversion to char
acter type in Chapter 5, "Data conversion" on page 72. 

GET list-directed 
For information about the GET statement, see "GET statement" on page 253. 

On input, data values in the stream must be separated either by a blank or by a 
comma. This separator can be surrounded by one or more blanks. A null field in 
the stream is indicated either by the first nonblank character in the data stream 
being a comma, or by two commas separated by an arbitrary number of blanks. A 
null field specifies that the value of the associated data-list item remains 
unchanged. 

Transmission of the list of constants or complex expressions on input is terminated 
by expiration of the list or at the end-of-file. For transmission of constants, the file 
is positioned in the stream ready for the next GET statement. 

If the items are separated by a comma, the first character scanned when the next 
GET statement is executed is the one immediately following the comma: 

Xbb,bbbXX 
t 

If the items are separated by blanks only, the first item scanned is the next non
blank character: 

XbbbbXXX 
t 

268 PUI Package/2 Language Reference 



PUT list-directed 

unless the end-of-record is encountered, in which case the file is positioned at the 
end of the record: 

Xbb-bbXXX 

However, if the end-of-record immediately follows a nonblank character (other than 
a comma), and the following record begins with blanks, the file is positioned at the 
first nonblank character in the following record: 

X-bbbXXX 
t 

If the record does terminate with a comma, the next record is not read until the next 
GET statement requires it. 

If the data is a character constant, the surrounding quotation marks are removed, 
and the enclosed characters are interpreted as a character string. A double quota
tion mark is treated as a single quotation mark. 

If the data is a bit constant, the enclosing quotation marks and the trailing character 
B are removed, and the enclosed characters are interpreted as a bit string. 

If the data is a hexadecimal constant (X, BX, 84, GX), the enclosing quotation 
marks and the suffix are removed, and the enclosed characters are interpreted as a 
hexadecimal representation of a character, bit, or graphic string. 

If the data is a mixed constant, the enclosing quotation marks and the suffix M are 
removed, and the enclosed constant is interpreted as a character string. 

If the data is a graphic constant, the enclosing quotation marks and the trailing 
character G are removed, and the enclosed graphics are interpreted as a graphic 
string. 

If the data is an arithmetic constant or complex expression, it is interpreted as 
coded arithmetic data with the base, scale, mode, and precision implied by the con
stant or by the rules for expression evaluation. 

PUT list-directed 
For more information about the PUT statement, see "PUT statement" on page 253. 

The values of the data-list items are converted to character representations (except 
for graphics) and transmitted to the data stream. A blank separates successive 
data values transmitted. For PRINT files, items are separated according to 
program tab settings (see "PRINT attribute" on page 270). 

Arithmetic values are converted to character. 

Binary data values are converted to decimal notation before being placed in the 
stream. 

For numeric character values, the character value is transmitted. 

Bit strings are converted to character strings. The character string is enclosed in 
quotation marks and followed by the letter B. 

Chapter 12. Stream-oriented data transmission 269 



PRINT 

PRINT attribute 

Character strings are written out as follows: 

• If the file does not have the attribute PRINT, enclosing quotation marks are 
supplied, and contained single quotation marks or apostrophes are replaced by 
two quotation marks. The field width is the current length of the string plus the 
number of added quotation marks. 

• If the file has the attribute PRINT, enclosing quotation marks are not supplied, 
and contained single quotation marks or apostrophes are unmodified. The field 
width is the current length of the string. 

Mixed strings are enclosed in SBCS quotation marks and followed by the letter M. 
Contained SBCS quotes are replaced by two quotes. 

Graphic strings are written out as follows: 

• If the file does not have the attribute PRINT, SBCS quotation marks, and the 
letter Gare supplied. Because the enclosing quotation marks are SBCS, con
tained graphic quotation marks are represented by a single graphic quotation 
mark (unmodified). 

• If the file has the attribute PRINT, graphic quotation marks are represented by 
a single graphic quotation mark (unmodified). 

The PRINT attribute applies to files with the STREAM and OUTPUT attributes. It 
indicates that the file is intended to be printed; that is, the data associated with the 
file is to appear on printed pages, although it can first be written on some other 
medium. 

The syntax for PRINT is: 

~~-PRINT--------------------------. 

When PRINT is specified, the first data byte of each record of a PRINT file is 
reserved for an American National Standard (ANS) printer control character. The 
control characters are inserted by PUI. 

Data values transmitted by list- and data-directed data transmission are automat
ically aligned on the left margin and on implementation-defined preset tab positions. 

The layout of a PRINT file can be controlled by the use of the options and format 
items listed in Figure 44. 

Figure 44 (Page 1 of 2). Options and format items for PRINT files 

Statement 

OPEN 

OPEN 

PUT 

PUT 

Edit 
directed Statement 

Option format item Effect 

LINESIZE(n) 

PAGESIZE(n) -

PAGE 

LINE(n) 

PAGE 

LINE(n) 

Established line width 

Establishes page length 

Skip to new page 

Skip to specified line 

270 PUI Package/2 Language Reference 



Figure 44 (Page 2 of 2). Options and format items for PRINT files 

Edit 
Statement directed 

Statement Option format item Effect 

PUT SKIP[(n)] SKIP[(n)] Skip specified number of lines 

PRINT 

PUT COLUMN(n) Skip to specified character position in line 

Places blank characters in line to estab-
PUT X(n) lish position. 

LINESIZE and PAGESIZE establish the dimensions of the printed area of the page, 
excluding footings. The LINESIZE option specifies the maximum number of char
acters included in each printed line. If it is not specified for a PRINT file, a default 
value of 120 characters is used. There is no default for a non-PRINT file. The 
PAGESIZE option specifies the maximum number of lines in each printed page; if it 
is not specified, a default value of 60 lines is used. For example: 

open file( Report) output stream print PAGESIZEC55) LINESIZEC118); 
on endpage(Report) begin; 

end; 

put file( Report) skip list (Footing); 
Pageno = Pageno + l; 
put file( Report) page list ('Page ' I I Pageno); 
put file( Report) skip (3); 

The OPEN statement opens the file Report as a PRINT file. The specification 
PAGESIZE(55) indicates that each page contains a maximum of 55 lines. An 
attempt to write on a page after 55 lines have already been written (or skipped) 
raises the ENDPAGE condition. The implicit action for the ENDPAGE condition is 
to skip to a new page, but you can establish your own action through use of the 
ON statement, as shown in the example. 

LINESIZE(110) indicates that each line on the page can contain a maximum of 110 
characters. An attempt to write a line greater than 110 characters places the 
excess characters on the next line. 

When an attempt is made to write on line 56 (or to skip beyond line 55), the 
ENDPAGE condition is raised, and the begin block shown here is executed. The 
ENDPAGE condition is raised only once per page. Consequently, printing can be 
continued beyond the specified PAGESIZE after the ENDPAGE condition has been 
raised. This can be useful, for example, if you want to write a footing at the bottom 
of each page. 

The first PUT statement specifies that a line is skipped, and the value of Footing, 
presumably a character string, is printed on line 57 (when ENDPAGE is raised, the 
current line is always PAGESIZE+1). The page number, Pageno, is incremented, 
the file Report is set to the next page, and the character constant 'Page' is concat
enated with the new page number and printed. The final PUT statement skips 
three lines, so that the next printing will be on line 4. Control returns from the 
begin block to the PUT statement that raised the ENDPAGE condition. However, 
any SKIP or LINE option specified in that statement has no further effect. 

Chapter 12. Stream-oriented data transmission 271 



DBCS data in stream 1/0 

DBCS data in stream 1/0 
If DBCS data is used in list-directed or data-directed transmission, the GRAPHIC 
option of the ENVIRONMENT attribute must be specified for that file. It also must 
be specified if data-directed transmission uses DBCS names even though no DBCS 
data is present. DBCS continuation rules are applied and are the same rules as 
those described in "DBCS continuation rules" on page 21. For information on how 
graphics are handled for edit-directed transmission, see "Edit-directed data 
specification" on page 263. 

272 PUI Package/2 Language Reference 



© Copyright IBM Corp. 1992 

Chapter 13. Edit ... directed format items 

Chapter 13. Edit-directed format items 
A-format item . . . . . . . . . . . . . . . 
B-format item 
C-format item . . . . . . 
COLUMN Format item . 
E-format item 
F-format item 
G-format item 
L-format item 
LINE format item 
P-format item 
PAGE format item 
R-format item 
SKIP format item ...... . 
X-format item 

274 
274 
274 
275 
276 
276 
278 
280 
281 
281 
282 
282 
282 
283 
284 

273 



Edit-directed format items 

Chapter 13. Edit-directed format items 

A-format item 

B-format item 

274 

This chapter describes each of the edit-directed format items that can appear in the 
format list of a GET, PUT, or FORMAT statement. (See also "Edit-directed data 
specification" on page 263.) The format items are described in alphabetic order. 

The character (or A) format item describes the representation of a character value. 

field-width 
specifies the number of character positions in the data stream that contain 
(or will contain) the string. It is an expression that is evaluated and con
verted to an integer value, which must be nonnegative, each time the 
format item is used. 

On input, the specified number of characters is obtained from the data stream and 
assigned, with any necessary conversion, truncation, or padding, to the data-list 
item. The field width is always required on input and, if it is zero, a null string is 
obtained. If quotation marks appear in the stream, they are treated as characters 
in the string. 

In the example: 

get file (lnfile) edit (Item) (A(28)); 

The GET statement assigns the next 20 characters in I nfi le to Item The value is 
converted from its character representation specified by the format item A( 28). to 
the representation specified by the attributes declared for I tern. 

On output, the data-list item is converted, if necessary, to a character string and is 
truncated or extended with blanks on the right to the specified field-width before 
being placed into the data stream. If the field-width is zero, no characters are 
placed into the data stream. Enclosing quotation marks are never inserted, nor are 
contained quotation marks doubled. If the field width is not specified, the default is 
equal to the character-string length of the data-list item (after conversion, if neces
sary, according to the rules given in Chapter 5, "Data conversion"). 

The bit (or B) format item describes the character representation of a bit value. 
Each bit is represented by the character zero or one. 

© Copyright IBM Corp. 1992 



C-format item 

C-format 

field-width 
specifies the number of data-stream character positions that contain (or 
will contain) the bit string. It is an expression that is evaluated and con
verted to an integer value, which must be nonnegative, each time the 
format item is used. 

On input, the character representation of the bit string can occur anywhere within 
the specified field. Blanks, which may appear before and after the bit string in the 
field, are ignored. Any necessary conversion occurs when the bit string is assigned 
to the data-list item. The field width is always required on input, and if it is zero, a 
null string is obtained. Any character other than 0 or 1 in the string, including 
embedded blanks, quotation marks, or the letter B, raises the CONVERSION condi
tion. 

On output, the character representation of the bit string is left-adjusted in the speci
fied field, and necessary truncation or extension with blanks occurs on the right. 
Any necessary conversion to bit-string is performed. No quotation marks are 
inserted, nor is the identifying letter B. If the field width is zero, no characters are 
placed into the data stream. If the field width is not specified, the default is equal 
to the bit-string length of the data-list item (after conversion, if necessary, according 
to the rules given in Chapter 5, "Data conversion"). 

In the example: 

declare Mask bit(25); 
put file(Maskfle) edit (Mask) (B); 

The PUT statement writes the value of Mask in Maskfl e as a string of 25 characters 
consisting of zeros and ones. 

The complex (or C) format item describes the character representation of a 
complex data value. You use one real-format-item to describe both the real and 
imaginary parts of the complex data value in the data stream. 

11>11>-C-( rea l-format-item)-------------------<11 

real-format-item 
specified by one of the F-, E-, or P-format items. The P-format item must 
describe numeric character data. 

On input, the letter I in the input raises the CONVERSION condition. 

On output, the letter I is never appended to the imaginary part. If the second real 
format item (or the first, if only one appears) is an F or E item, the sign is trans
mitted only if the value of the imaginary part is less than zero. If the real format 
item is a P item, the sign is transmitted only if the S or - or + picture character is 
specified. 

If you require an I to be appended, it must be specified as a separate data item in 
the data list, immediately following the variable that specifies the complex item. 

Chapter 13. Edit-directed format items 275 



COLUMN 

The I, then, must have a corresponding format item (either A or P). If a second 
real format item is specified, it is ignored. 

COLUMN Format item 

E-format item 

The COLUMN format item positions the file to a specified character position within 
the current or following line. 

11>11>-COLUMN-( character-pas i ti on)----------------~ 

character-position 
specifies an expression which is evaluated and converted to an integer 
value, which must be nonnegative, each time the format item is used. 

The file is positioned to the specified character position in the current line, provided 
it has not already passed this position. If the file is already positioned after the 
specified character position, the current line is completed and a new line is started; 
the format item is then applied to the following line. 

Then, if the specified character position lies beyond the rightmost character position 
of the current line, or if the value of the expression for the character position is less 
than one, the default character position is one. 

The rightmost character position is determined as follows: 

• For output files, it is determined by the line size. 

• For input files, it is determined using the length of the current logical record to 
determine the line size and, hence, the rightmost character position. 

COLUMN must not be used in a GET STRING or PUT STRING statement. 

COLUMN cannot be used with input or output lines that contain graphics. 

On input, intervening character positions are ignored. 

On output, intervening character positions are filled with blanks. 

The floating-point (or E) format item describes the character representation of a real 
floating-point decimal arithmetic data value. 

11>11>-E-(-field-width, fractional-digits [ J 
,significant-digits 

field-width 
specifies the total number of characters in the field. It is evaluated and 
converted to an integer value w each time the format item is used. 

276 PUI Package/2 Language Reference 



E-format 

fractional-digits 
specifies the number of digits in the mantissa that follow the decimal point. 
It is evaluated and converted to an integer value d each time the format 
item is used. 

significant-digits 
specifies the number of digits that must appear in the mantissa. It is eval
uated and converted to an integer value s each time the format item is 
used. 

The following must be true: 

w >= s = d+l or w = 8 

and, when w ---,= 0 

s > 8, d >=8 

Note: The maximum allowed value for d is 16 for PUI compiler for OS/2. This 
can limit the portability of your application. 

On input, either the data value in the data stream is an optionally signed real 
decimal floating-point or fixed-point constant located anywhere within the specified 
field or the CONVERSION condition is raised. (For convenience, the E preceding a 
signed exponent can be omitted.) 

The field width includes leading and trailing blanks, the exponent position, the posi
tions for the optional plus or minus signs, the position for the optional letter E, and 
the position for the optional decimal point in the mantissa. 

The data value can appear anywhere within the specified field; blanks can appear 
before and after the data value in the field and are ignored. If the entire field is 
blank, the CONVERSION condition is raised. When no decimal point appears, 
fractional-digits specifies the number of character positions in the mantissa to the 
right of the assumed decimal point. If a decimal point does appear in the number, 
it overrides the specification of fractional-digits. 

If field-width is 0, there is no assignment to the data-list item. 

The statement: 

get file(A) edit (Cost) (E(l8,6)); 

obtains the next 10 characters from A and interprets them as a floating-point 
decimal number. A decimal point is assumed before the rightmost 6 digits of the 
mantissa. The value of the number is converted to the attributes of COST and 
assigned to this variable. 

On output, the data-list item is converted to floating-point and rounded if necessary. 
The rounding of data is as follows: if truncation causes a digit to be lost from the 
right, and this digit is greater than or equal to 5, 1 is added to the digit to the left of 
the truncated digit. This addition might cause adjustment of the exponent. 

Chapter 13. Edit-directed format items 277 



F-format 

F-format item 

The character string written in the stream for output has one of the following syn
taxes: 

Note: Blanks are not permitted between the elements of the character strings. 

• Ford=O 

[ _ J t s-digHslEL ~ Texponent----------

w must be >=s+6 for positive values, or >=s+ 7 for negative values. 

When the value is nonzero, the exponent is adjusted so that the leading digit of 
the mantissa is nonzero. When the value is zero, zero suppression is applied 
to all digit positions (except the rightmost) of the mantissa . 

• ForO<d<S 

lll-lll--..,..------,--.--•-s-d-digitsl . _j_d-digitslE-,- +_ -,-exponent---
[_] L _J 

1-N must be >=s+ 7 foi positive values, or >=s+8 for negative vaiues. 

When the value is nonzero, the exponent is adjusted so that the leading digit of 
the mantissa is nonzero. When the value is zero, zero suppression is applied 
to all digit positions (except the first) to the left of the decimal point. All other 
digit positions contain zero. 

• Ford=s 

w must be >=d+8 for positive values, or >=d+9 for negative values. 

When the value is nonzero; the exponent is adjusted so that the first fractional 
digit is nonzero. When the value is zero, each digit position contains zero. 

The exponent is a 4-digit integer, which can be 4 zeros. 

If the field width is such that significant digits or the sign are lost, the SIZE condi
tion is raised. If the character string does not fill the specified field on output, the 
character string is right-adjusted and extended on the left with blanks. 

The fixed-point (or F) format item describes the character representation of a real 
fixed-point decimal arithmetic value. 

~~-F-(-fi e 7 d-wi dth~----------------.-- ---
L, f ra ct i ona 7 -digits,--.----------.---' 

l, sea 7 ing-factorJ 

278 PUI Package/2 Language Reference 



F-format 

field-width 
specifies the totai number of characters in the field. it is evaluated and 
converted to an integer value w each time the format item is used. The 
converted value must be nonnegative. 

fractional-dig its 
specifies the number of digits in the mantissa that follow the decimal point. 
It is evaluated and converted to an integer value d each time the format 
item is used. The converted value must be nonnegative. If fractional
digits is not specified, the default value is 0. 

sea Ii ng-factor 
specifies the number of digits that must appear in the mantissa. It is eval
uated and converted to an integer value p each time the format item is 
used. 

On input, either the data value in the data stream is an optionally signed real 
decimal fixed-point constant located anywhere within the specified field or the CON
VERSION condition is raised. Blanks can appear before and after the data value in 
the field and are ignored. If the entire field is blank, it is interpreted as zero. 

If no scaling-factor is specified and no decimal point appears in the field, the 
expression for fractional-digits specifies the number of digits in the data value to the 
right of the assumed decimal point. If a decimal point does appear in the data 
value, it overrides the expression for fractional-digits. 

If a scaling-factor is specified, it effectively multiplies the data value in the data 
stream by 1 O raised to the integer value (p) of the scaling-factor Thus, if p is posi
tive, the data value is treated as though the decimal point appeared p places to the 
right of its given position. If pis negative, the data value is treated as though the 
decimal point appeared p places to the left of its given position. The given position 
of the decimal point is that indicated either by an actual point, if it appears, or by 
the expression for fractional-digits, in the absence of an actual point. 

If the field-width is 0, there is no assignment to the data-list item. 

On output, the data-list item is converted, if necessary, to fixed-point. Floating point 
data converts to FIXED DECIMAL (N,q) where q is the fractional-digits specified. 
The data value in the stream is the character representation of a real decimal fixed
point number, rounded if necessary, and right-adjusted in the specified field. 

The conversion from decimal fixed-point type to character type is performed 
according to the normal rules for conversion. Extra characters may appear as 
blanks preceding the number in the converted string. And, since leading zeros are 
converted to blanks (except for a O immediately to the left of the point), additional 
blanks may precede the number. .If a decimal point or a minus sign appears, either 
will cause one leading blank to be replaced. 

If only the field-width is specified, only the integer portion of the number is written; 
no decimal point appears. 

If both the field-width and fractional-digits are specified, both the integer and frac
tional portions of the number are written. If the value (d) of fractional-digits is 
greater than 0, a decimal point is inserted before the rightmost d digits. Trailing 
zeros are supplied when fractional-digits is less than d (the value d must be less 

Chapter 13. Edit-directed format items 279 



G-format 

G-format item 

than field-width). If the absolute value of the item is less than 1, a 0 precedes the 
decimal point. Suppression of leading zeros is applied to all digit positions (except 
the first) to the left of the decimal point. 

The rounding of the data value is as follows: if truncation causes a digit to be lost 
from the right, and this digit is greater than or equal to 5, 1 is added to the digit to 
the left of the truncated digit. 

On output, if the data-list item is less than 0, a minus sign is prefixed to the char
acter representation; if it is greater than or equal to 0, no sign appears. Therefore, 
for negative values, the field-width might need to include provision for the sign, a 
decimal point, and a 0 before the point. 

If the field-width is such that any character is lost, the SIZE condition is raised. 

In the example: 

declare Total fixed(4,2); 
put edit (Total) (F(6,2)); 

The PUT statement specifies that the value of Total is converted to the character 
representation of a fixed-point number and written into the output file SYSPRINT. 
A decimal point is inserted before the last two numeric characters, and the number 
is right-adjusted in a field of six characters. Leading zeros are changed to blanks 
(except for a zero immediately to the left of the point), and, if necessary, a minus 
sign is placed to the left of the first numeric character. 

For the compiler, the graphic (or G) format item describes the representation of a 
graphic string. 

L-( field-width)-1 

field-width 
specifies the number of 2-byte positions in the data stream that contain (or 
will contain) the graphic string. It is an expression that is evaluated and 
converted to an integer value, which must be nonnegative, each time the 
format item is used. End-of-line must not occur between the 2 bytes of a 
graphic. 

On input, the specified number of graphics is obtained from the data stream and 
assigned, with any necessary truncation or padding, to the data-list item. The field
width is always required on input, and if it is zero, a null string is obtained. 

On output, the data-list item is truncated or extended (with the padding graphic) on 
the right to the specified field-width before being placed into the data stream. No 

. enclosing quotation marks are inserted, nor is the identifying suffix, G, inserted. If 
the field-width is zero, no graphics are placed into the data stream. If the field
width is not specified, it defaults to be equal to the graphic-string length of the data
list item. 

280 PUI Package/2 Language Reference 



L-format item 

L-format 

In the following example, if OUT does not have the GRAPHIC option, six bytes are 
transmitted. 

declare A graphic(3); 
put file(Out) edit (A) (G(3)); 

On input, L indicates that all data up to the end of the line is to be assigned to the 
data item. 

On output, L indicates that the data item, padded on the right with blanks, if neces
sary, is to fill the remainder of the output line. 

The syntax for the L format is: 

LINE format item 
The LINE format item specifies the line on the current page of a PRINT file upon 
which the next data-list item will be printed, or it raises the ENDPAGE condition . 

.,..,._LINE-( l ine-number)-------------------<11 

line-number 
can be represented by an expression, which is evaluated and converted to 
an integer value, which must be nonnegative, each time the format item is 
used. 

Blank lines are inserted, if necessary. 

If the specified line-number is less than or equal to the current line number, or if the 
specified line is beyond the limits set by the PAGESIZE option of the OPEN state
ment (or by default), the ENDPAGE condition is raised. An exception is that if the 
specified line-number is equal to the current line number, and the column 1 char
acter has not yet been transmitted, the effect is as for a SKIP(O) item, that is, a 
carriage return with no line spacing. 

If line-number is zero, it defaults to one (1 ). 

Chapter 13. Edit-directed format items 281 



P-format 

P-format item 
The picture (or P) format item describes the character representation of real 
numeric character values and of character values. 

The picture specification of the P-format item, on input, describes the form of the 
data item expected in the data stream and, in the case of a numeric character 
specification, how the item's arithmetic value is to be interpreted. If the indicated 
character does not appear in the stream, the CONVERSION condition is raised. 

On output, the value of the associated element in the data list is converted to the 
form specified by the picture specification before it is written into the data stream . 

.,..,._p_'picture-specification'-------------------

picture-specification 
is discussed in detail in Chapter 14, "Picture specification characters." 

get edit (Name, Total) (P'AAAAA' ,P'9999' ); 

When this statement is executed, the input file SYSIN is the default. The next five 
characters input from SYSIN must be alphabetic or blank and they are assigned to 
Name The next four characters must be digits and they are assigned to Total . 

PAGE format item 

R-format item 

The PAGE format item specifies that a new page is established. It can be used 
only with PRINT files. 

,.,._PAGE---------------------------

Starting a new page positions the file to the first line of the next page. 

The remote (or R) format item specifies that the format list in a FORMAT statement 
is to be used (as described under "FORMAT statement" on page/267) . 

.,..,._R-( label-reference)---------------------

label-reference 
has as its value the label constant of a FORMAT statement. 

The R-format item and the specified FORMAT statement must be internal to the 
same block, and they must be in the same invocation of that block. 

282 PUI Package/2 Language Reference 



SKIP format 

A remote FORMAT statement cannot contain an A-format item that references itself 
as a label reterence, nor can it reference another remote FORMAT statement that 
will lead to the referencing of the original FORMAT statement. 

Conditions enabled for the GET or PUT statement must also be enabled for the 
remote FORMAT statement(s) that are referred to. 

If the GET or PUT statement is the single statement of an ON-unit, that statement 
is a block, and it cannot contain a remote format item. 

Example 

declare Switch label; 
get file( In) list(Code); 
if Code = 1 then 

Switch = L1; 
else 

Switch = L2; 
get file(In) edit (W.X.Y,Z) 

(R(Switch)); 
L1: format ( 4 F( 8, 3)); 
L2: format (4 E(12,6)); 

Switch has been declared a label variable. The second GET statement can be 
made to operate with either of the two FORMAT statements. 

SKIP format item 
The SKIP format item specifies that a new line is to be defined as the current line. 

11>11>-SKIP~------.-------------------., .._ 
L( rel au ve-1 ine)J 

relative-Ii ne 
specifies an expression, which is evaluated and converted to an integer 
value, n, each time the format item is used. The converted value must be 
nonnegative and less than 32,768. It must be greater than zero for 
non-PRINT files. If it is zero, or if it is omitted, the default is 1. 

The new line is the nth line after the present line. 

If n is greater than one, one or more lines are ignored on input; on output, one or 
more blank lines are inserted. 

The value n can be zero for PRINT files only, in which case the positioning is at the 
start of the current line. Characters previously written can be overprinted. 

For PRINT files, if the specified relative-line is beyond the limit set by the 
PAGESIZE option of the OPEN statement (or the default), the ENDPAGE condition 
is raised. 

If the SKIP format item is the first item to be executed after a file has been opened, 
output commences on the nth line of the first page. If n is zero or 1, it commences 
on the first line of the first page. 

Chapter 13. Edit-directed format items 283 



X-format 

X-format item 

For example: 

get file( In) edit(Man,Overtime) 
(skip(l), A(6), COL(68), F(4,2)); 

This statement positions the data set associated with file In to a new line. The first 
6 characters on the line are assigned to Man, and the 4 characters beginning at 
character position 60 are assigned to Overtime. 

The spacing (or X) format item specifies the relative spacing of data values in the 
data stream. 

••-X-( field-width)---------------------+ .. 

field-width 
specifies an expression that is evaluated and converted to an integer 
value, which must be nonnegative, each time the format item is used. Thn 

I llt;; 

integer value specifies the number of characters before the next field of 
the data stream, relative to the current position in the stream. 

On input, the specified number of characters are spaced over in the data stream 
and not transmitted to the program. 

For example: 

get edit (Number, Rebate) 
(A(5), X(5), A(5)); 

The next 15 characters from the input file, SYSIN, are treated as follows: the first 
five characters are assigned to Number, the next five characters are ignored, and 
the remaining five characters are assigned to Rebate. 

On output, the specified number of blank characters are inserted into the stream. 

In the example: 

put file(Out) edit (Part, Count) (A(4), X(2), F(5)); 

Four characters that represent the value of Pa rt, then two blank characters, and 
finally five characters that represent the fixed-point value of Count, are placed in the 
file named Out. 

284 PUI Package/2 Language Reference 



© Copyright IBM Corp. 1992 

Chapter 14. Picture specification characters 

Chapter 14. Picture specification characters 
Picture repetition factor ........... . 
Picture characters for character data 
Picture characters for numeric character data 

Digits and decimal points . 
Zero suppression . . . . . . . . . . . . . 
Insertion characters ........... . 

Insertion and decimal point characters 
Defining currency symbols . . . . . . . . 
Signs and currency symbols . . . . . . . 
Credit, debit, and zero replacement characters. 
Exponent characters 
Scaling factor . . . . . . . . . . . . . . . . . . . 

286 
286 
287 
288 
290 
291 
292 
293 
294 
296 
298 
298 
299 

285 



Picture specification characters 

Chapter 14. Picture specification characters 

A picture specification consists of a sequence of picture characters enclosed in 
single or double quotation marks. The characters describe the contents of each 
position of the character or numeric character data item, and the contents of the 
output. The specification can be made in two ways: 

• As part of the PICTURE attribute in a declaration 

• As part of the P-format item (described in "P-format item" on page 282) for 
edit-directed input and output. 

A picture specification describes either a character data item or a numeric character 
data item. The presence of an A or X picture character defines a picture specifica
tion as a character picture specification; otherwise, it is a numeric character picture 
specification. 

A character pictured item can consist of alphabetic characters, decimal digits, 
blanks, currency and punctuation characters. 

A numeric character pictured item can consist only of decimal digits, an optional 
decimal point, an optional letter E, and, optionally, one or two plus or minus signs. 
Other characters generally associated with arithmetic data, such as currency 
symbols, can also be specified, but they are not a part of the arithmetic value of the 
numeric character variable, although the characters are stored with the digits and 
are part of the character value of the variable. 

Figures in this section illustrate how different picture specifications affect the repre
sentation of values when assigned to a pictured variable or when printed using the 
P-format item. Each figure shows the original value of the data, the attributes of 
the variable from which it is assigned (or written), the picture specification, and the 
character value of the numeric character or pictured character variable. 

The concepts of the two types of picture specifications are described separately 
below. 

Picture repetition factor 
Repeating picture characters 

A picture repetition factor specifies the number of repetitions of the next picture 
character in the specification. 

The syntax is: 

11>11>-(n)-------------------------.. 

n is an integer. No blanks are allowed within the parentheses. If n is 0, the 
picture character is ignored. 

286 ©Copyright IBM Corp. 1992 



Picture characters for character data 

For example, the following picture specifications result in the same description: 

'999V99' 
'(3)9V(2)9' 

Picture characters for character data 
A character picture specification describes a nonvarying character data item. You 
can specify that any position in the data item can contain only characters from 
certain subsets of the complete set of available characters. The data can consist of 
alphabetic characters, decimal digits, blanks, 

The only valid characters in a character picture specification are X, A, and 9. Each 
of these specifies the presence of one character position in the character value, 
which can contain the following: 

X Any character of the 256 possible bit combinations represented by the 
8-bit byte. 

A Any alphabetic or extralingual (#, @, $)character, or blank. 

9 Any digit, or blank. (Note that the 9 picture specification character allows 
blanks only for character data.) 

When a character value is assigned, or transferred, to a picture character data 
item, the particular character in each position is validated according to the corre
sponding picture specification character. If the character data does not match the 
specification for that position, the CONVERSION condition is raised for the invalid 
character. (However, if you change the value by record-oriented transmission or by 
using an alias, there is no checking.) For example: 

declare Part# picture 'AAA99X'; 
put edit (Part#) (P'AAA99X' ); 

The following values are valid for Part#: 

'ABC12M' 
'bbb89/' 
'XYZb13' 

The following values are not valid for Pa rt# (the invalid characters are 
underscored): 

'AB123M' 
'ABC1.L2' 
'Mb#6_5; I 

Chapter 14. Picture specification characters 287 



Picture characters for numeric character data 

Figure 45 shows examples of character picture specifications. 

Figure 45. Character picture specification examples 

Source Data 
Source Attributes (in constant form) Picture Specification Character Value 

CHARACTER(5) '9B/2L' xxxxx 9B/2L 
CHARACTER(5) '9B/2L' xxx 98/ 
CHARACTER(5) '9B/2L' xxxxxxx 9B/2Lbb 

CHARACTER(5) 'ABCDE' AAAAA ABCDE 
CHARACTER(5) 'ABCDE' AAAAAA ABCDEb 
CHARACTER(5) 'ABCDE' AAA ABC 

CHARACTER(5) '12/34' 99X99 12/34 
CHARACTER(5) 'L26.7' A99X9 L26.7 

Picture characters for numeric character data 
Numeric character data represents numeric values. The picture specification 
cannot contain the character data picture characters X or A. The picture characters 
for numeric character data can also specify editing of the data. 

A numeric character variable can have two values, depending upon how the vari
able is used. The types of values are as follows: 

Arithmetic 
The arithmetic value is the value expressed by the decimal digits of the 
data item, the assumed location of a decimal point, possibly a sign, and an 
optionally-signed exponent or scaling factor. The arithmetic value of a 
numeric character variable is used: 

• Whenever the variable appears in an expression that results in a 
coded arithmetic value or bit value (this includes expressions with the 
--,, &, I, and comparison operators; even comparison with a character 
string wiii use the arithmetic value of a numeric character variable) 

• Whenever the variable is assigned to a coded arithmetic, numeric 
ch~racter, or bit variable 

• When used with the C, E, F, 8, and P (numeric) format items in edit
directed 1/0. 

The arithmetic value of the numeric character variable is converted to internal 
coded arithmetic representation. 

288 PUI Package/2 Language Reference 



Picture characters for numeric character data 

Character value 
The character value is the value expressed by the decimal digits of the 
data item, as well as all of the editing and insertion characters appearing 
in the picture specification. The character value does not, however, 
include the assumed location of a decimal point, as specified by the 
picture characters V, K, or F. The character value of a numeric character 
variable is used: 

• Whenever the variable appears in a character expression 

• In an assignment to a character variable 

• Whenever the data is printed using list-directed or data-directed output 

• Whenever a reference is made to a character variable that is defined 
or based on the numeric character variable 

• Whenever the variable is printed using edit-directed output with the A 
or P (character) format items. 

No data conversion is necessary. 

Numeric character data can contain only decimal digits, an optional decimal point, 
an optional letter E, and one or two plus or minus signs. Other characters gener
ally associated with arithmetic data, such as currency symbols, can also be speci
fied, but they are not a part of the arithmetic value of the numeric character 
variable, although the characters are stored with the digits and are part of the char
acter value of the variable. 

A numeric character specification consists of one or more fields, each field 
describing a fixed-point number. A floating-point specification has two fields-one 
for the mantissa and one for the exponent. The first field can be divided into sub
fields by inserting a V picture specification character. The data preceding the V (if 
any) and that following it (if any) are subfields of the specification. 

A requirement of the picture specification for numeric character data is that each 
field must contain at least one picture character that specifies a digit position. This 
picture character, however, need not be the digit character 9. Other picture charac
ters, such as the zero suppression characters (Z or*), also specify digit positions. 

Note: All characters except K, V, and F specify the occurrence of a character in 
the character representation. 

The picture characters for numeric character specifications are discussed in the fol
lowing sections: 

• "Digits and decimal points" on page 290 describes data specified with the 
picture characters 9 and V. 

• "Zero suppression" on page 291 describes picture data specified with the 
picture characters Zand asterisk (*). 

• "Insertion characters" on page 292 discusses the use of the insertion charac
ters (point, comma, slash, and B). 

• "Insertion and decimal point characters" on page 293 describes the use of the 
decimal point and insertion characters with the V picture character. 

Chapter 14. Picture specification characters 289 



Digits and decimal points 

• "Defining currency symbols" on page 294 describes how to define your own 
character(s) as a currency symbol, and "Signs and currency symbols" on 
page 296 describes the use of signs and currency symbols. 

• "Credit, debit, and zero replacement characters." on page 298 discusses the 
picture characters CR, DB, and Y used for credit, debit, and zero replacement 
functions. 

• "Exponent characters" on page 298 discusses the picture characters K and E 
used for exponents. 

• "Scaling factor'' on page 299 describes the picture character F used for scaling 
factors. 

• "Picture repetition factor'' on page 286 describes the picture repetition char
acter. 

Digits and decimal points 
The picture characters 9 and V are used in numeric character specifications that 
represent fixed-point decimal values. 

9 specifies that the associated position in the data item contains a decimal 
digit. (Note that the 9 picture specification character for numeric character 
data is different from the specification for character data because the cor
responding character cannot be a blank for character data.) 

A string of n 9 picture characters specifies that the item is a nonvarying 
character-string of length n, each of which is a digit (0 through 9). For 
example: 

dcl digit picture'9', 
Count picture'999', 
XYZ picture '(18)9'; 

An example of use is: 

dcl 1 Record, 
2 Data char(72), 
2 Identification char(3), 
2 Sequence pic'99999'; 

dcl Count fixed dec(5); 

Count=Count+l; 
Sequence=Count; 
write file(Output) from(Record); 

V specifies that a decimal point is assumed at this position in the associated 
data item. However, it does not specify that an actual decimal point or 
decimal comma is inserted. The integer value and fractional value of the 
assigned value, after modification by the optional scaling factor F(±x), are 
aligned on the V character. Therefore, an assigned value can be trun
cated or extended with zero digits at either end. (If significant digits are 
truncated on the left, the result is undefined and the SIZE condition is 
raised if enabled). 

If no V character appears in the picture specification of a fixed-point 
decimal value (or in the first field of a picture specification of a floating
point decimal value), a V is assumed at the right end of the field specifica
tion. This can cause the assigned value to be truncated, if necessary, to 
an integer. 

290 PUI Package/2 Language Reference 



Zero suppression 

The V character cannot appear more than once in a picture specification. 

For example: 

dcl Value picture 'Z9V999'; 
Value= 12.345; 
dcl Cvalue char(5); 
Cvalue =Value; 

Cva l ue, after assignment of Value, contains '12345'. 

Figure 46 shows examples of digit and decimal point characters. 

Figure 46. Examples of digit and decimal point characters 

Source Data 
Source Attributes (in constant form) Picture Specification Character Value 

FIXED(5) 12345 99999 12345 
FIXED(5) 12345 99999V 12345 
FIXED(5) 12345 999V99 undefined 

FIXED(5) 12345 V99999 undefined 
FIXED(7) 1234567 99999 undefined 
FIXED(3) 123 99999 00123 

FIXED(5,2) 123.45 999V99 12345 
FIXED(7,2) 12345.67 9V9 undefined 
FIXED(5,2) 123.45 99999 00123 

Note: When the character value is undefined, the SIZE condition is raised. 

Zero suppression 
The picture characters Zand asterisk (*). specify conditional digit positions in the 
character value and can cause leading zeros to be replaced by asterisks or blanks. 
Leading zeros are those that occur in the leftmost digit positions of fixed-point 
numbers or in the leftmost digit positions of the two parts of floating-point numbers, 
that are to the left of the assumed position of a decimal point, and that are not 
preceded by any of the digits 1 through 9. The leftmost nonzero digit in a number 
and all digits, zeros or not, to the right of it represent significant digits. 

z 

* 

specifies a conditional digit position and causes a leading zero in the asso
ciated data position to be replaced by a blank. Otherwise, the digit in the 
position is unchanged. The picture character Z cannot appear in the same 
field as the picture character * or a drifting character, nor can it appear to 
the right of any of the picture characters in a field. 

specifies a conditional digit position. It is used the way the picture char
acter Z is used, except that leading zeros are replaced by asterisks. The 
picture character asterisk cannot appear in the same field as the picture 
character Z or a drifting character, nor can it appear to the right of any of 
the picture characters in a field. 

Chapter 14. Picture specification characters 291 



Insertion characters 

Figure 47 shows examples of zero suppression characters. 

Figure 47. Examples of zero suppression characters 

Source Data 
Source Attributes (in constant form) Picture Specification Character Value 

FIXED(5) 12345 zzz99 12345 
FIXED(5) 00100 zzz99 bb100 
FIXED(5) 00100 zzzzz bb100 

FIXED(5) 00000 zzzzz bbbbb 
FIXED(5,2) 123.45 zzz99 bb123 
FIXED(5,2) 001.23 ZZZV99 bb123 

FIXED(5) 12345 ZZZV99 undefined 
FIXED(5,2) 000.08 zzzvzz bbb08 
FIXED(5,2) 000.00 zzzvzz bbbbb 

FIXED(5) 00100 ***** **100 
FIXED(5) 00000 
FIXED(5,2) 000.01 ***V** ***01 

FIXED(5,2) 95 $**9.99 $**0.95 
i::1vi::n1i:: "' 12350 <l'**n nn Ll'ol l'\I'\ """ 
I 11'\.L......,\V,'-/ .P o::J.•:n:J \pl~v.OU 

Note: When the character value is undefined, the SIZE condition is raised. 

If one of the picture characters Z or asterisk appears to the right of the picture 
character V, all fractional digit positions in the specification, as well as all integer 
digit positions, must use the Z or asterisk picture character, respectively. When all 
digit positions to the right of the picture character V contain zero suppression 
picture characters, fractional zeros of the value are suppressed only if all positions 
in the fractional part contain zeros and all integer positions have been suppressed. 
The character value of the data item will then consist of blanks or asterisks. No 
digits in the fractional part are replaced by blanks or asterisks if the fractional part 
contains any significant digit. 

Insertion characters 
The picture characters comma (,), point (.), slash (/), and blank (B) cause the speci
fied character to be inserted into the associated position of the numeric character 
data. They do not indicate digit or character positions, but are inserted between 
digits or characters. Each does, however, actually represent a character position in 
the character value, whether or not the character is suppressed. The comma, 
point, and slash are conditional insertion characters and can be suppressed within 
a sequence of zero suppression characters. The blank is an unconditional insertion 
character, It always specifies that a blank appears in the associated position. 

Insertion characters are applicable only to the character value. They specify 
nothing about the arithmetic value of the data item. They never cause decimal 
point or decimal comma alignment in the picture specifications of a fixed-point 
decimal number and are not a part of the arithmetic value of the data item. 
Decimal alignment is controlled by the picture characters V and F. 

292 PUI Package/2 Language Reference 



Insertion characters and decimal points 

Comma (,), point (.), or slash (/) 
inserts a character into the associated position of the numeric character data 
when no zero suppression occurs. If zero suppression does occur, the char
acter is inserted only under the following conditions: 

• When an unsuppressed digit appears to the left of the character's position 

• When a V appears immediately to the left of the character and the frac
tional part of the data item contains any significant digits 

• When the character is at the start of the picture specification 

• When the character is preceded only by characters that do not specify digit 
positions. 

In all other cases where zero suppression occurs, a comma, point, or slash 
insertion character is treated as a zero suppression characters identical to the 
preceding character. 

B specifies that a blank character be inserted into the associated position of the 
character value of the numeric character data. 

Insertion and decimal point characters 
The point, comma, or slash can be used in conjunction with the V to cause 
insertion of the point (or comma or slash) in the position that delimits the end of the 
integer portion in and the beginning of the fractional portion of a fixed-point (or 
floating-point) number, as might be desired in printing, since the V does not cause 
printing of a point. The point must immediately precede or immediately follow the 
V. If the point precedes the V, it is inserted only if an unsuppressed digit appears 
to the left of the V, even if all fractional digits are significant. If the point imme
diately follows the V, it is suppressed if all digits to the right of the V are sup
pressed, but it appears if there are any unsuppressed fractional digits (along with 
any intervening zeros). 

The following example shows decimal conventions that are used in different coun
tries. 

declare A picture 'Z,ZZZ,ZZZV.99', 
B picture 'Z.ZZZ.ZZZV,99', 
C picture 'ZBZZZBZZZV,99'; 

A,B,C = 1234; 
A,B,C = 1234.88; 

A, B, and C represent nine-digit numbers with a decimal point or decimal comma 
assumed between the seventh and eighth digits. The actual point specified by the 
decimal point insertion character is not a part of the arithmetic value. It is, 
however, part of its character value. The two assignment statements assign the 
same character value to A, B, and C as follows: 

1, 234. 88 
1.234,88 
1 234,88 

/* value of A*/ 
I* value of B */ 
I* value of C *I 

In the following example, decimal point alignment during assignment occurs on the 
character V. If Rate is printed, it appears as '762. 88', but its arithmetic value is 
7. 6288. 

declare Rate picture '9V99.99'; 
Rate= 7.62; 

Chapter 14. Picture specification characters 293 



Currency symbols 

Figure 48 shows examples of insertion characters. 

Figure 48. Examples of insertion characters 

Source Data 
Source Attributes (in constant form) Picture Specification Character Value 

FIXED(4) 1234 9,999 1,234 
FIXED(6,2) 1234.56 9,999V.99 1,234.56 
FIXED(4,2) 12.34 zz.vzz 12.34 

FIXED(4,2) 00.03 zz.vzz bbb03 
FIXED(4,2) 00.03 zzv.zz bb.03 
FIXED(4,2) 12.34 zzv.zz 12.34 

FIXED(4,2) 00.00 zzv.zz bbbbb 
FIXED(9,2) 12345667.89 9, 999 ,999 .V99 1,234,567.89 
FIXED(7,2) 12345.67 **,999V.99 12,345.67 

FIXED(7,2) 00123.45 **,999V.99 ***123.45 
FIXED(9,2) 1234567.89 9.999.999V,99 1.234.567,89 
FIXED(6) 123456 99199199 12/34/56 
FIXED(6) 101288 99-99-99 10-12-88 

i::1vi::nte::\ 
I ll't.'--'-'\'V/ 123456 nn f'\/nn. n 

:::J:::J.:::J/:::J:::J.:::J 12.3/45.6 
FIXED(6) 001234 ZZIZZ!ZZ bbb12/34 
FIXED(6) 000012 ZZIZZIZZ bbbbbb12 

FIXED(6) 000000 ZZ/ZZ/ZZ bbbbbbbb 
FIXED(6) 000000 **/**/** 
FIXED(6) 000000 **8**8** **b**b** 

FIXED(6) 123456 99899899 12b34b56 
FIXED(3) 123 9889889 1bb2bb3 
FIXED(2) 12 988/988 1bb/2bb 

Defining currency symbols 
A currency symbol can be used as a picture character denoting a character value 
of numeric character data. This symbol can be the Do!!ar sign ($) or any symbol 
you choose. The symbol can be any sequence of characters enclosed in <and > 
characters. 

The syntax is for generalized currency symbol is: 

~~- < _Lehar I > _____________________ .,. 

< indicates the start of the currency symbol It acts as an escape character. If 
you want to use the character <, you must specify <<. 

char 
is any character that will be part of your currency symbol(s). 

> indicates the end of the currency symbol If you want to use the character>, 
you must specify<>. 

More than one > indicates a drifting string (discussed on page 296). 

294 PUI Package/2 Language Reference 



Currency symbols 

Examples of general insertion strings include the following: 

<OM> represents the Deutschemark 

<Fr> represents the French Franc 

<K$> represents the Khalistan Dollar 

<Sur. f> represents the Surinam Guilder 

<$> represents the Dollar sign 

If the character< or> must be included in the sequence, it must be preceded by 
another <. Therefore, < acts as an escape character also. 

The entire sequence enclosed in < > represents one "symbol" and therefore repres
ents the character value for one numeric character. If the symbol needs to be 
represented as a drifting picture character, you specify> following the "< >" to rep
resent each occurrence. 

For example, 

Pie '<OM>>>.>>9,V99' 
represents a 1 O character numeric picture, yielding 11 char
acters after assignment. 

Pie '<Sur.f>999,V99' 
represents a 7 character numeric picture, yielding 11 charac
ters after assignment. 

Pie '<K$>>>.>>9.V99' 
represents a 10 character numeric picture, yielding 11 char
acters after assignment. 

Pie '<$> », »9. V99' represents a 1.0 character numeric picture, yielding 10 char
acters after assignment. 

Pie '$$$,$$9.V99' has the same value as the previous picture specification. 

More examples of currency symbol definition include the following: 

del p pie'<DM>9.999,V99'; 
p = 1234.48; /*Yields 'DMl.234,48' */ 

del p pie'<DM>9.999,V99'; 
p = 34.48; 

del p pie'<DM>>.>>9,V99'; 
p = 1234.48; 

del p pie'<DM>>.>>9,V99'; 
p = 34.48; 

del p pie'9.999,V99<K&dollar>'; 
p = 1234.48; 

I* Yields 'OM 34,48' */ 

I* Yields 'OMl.234,48' */ 

/*Yields ' OM34,48' */ 

/*Yields '1.234,48K$'*/ 

In this chapter, the term currency symbol and the$ symbol refer to the dollar sign 
or any user-defined currency symbol. 

Chapter 14. Picture specification characters 295 



Signs and currency symbols 

Signs and currency symbols 
The picture characters S, +, and - specify signs in numeric character data. The 
picture character$ (or the currency symbol) specifies a currency symbol in the 
character value of numeric character data. Only one type of sign character can 
appear in each field. 

currency symbol 
specifies the currency symbol. 

In the following example: 

dcl Price picture '$99V.99'; 
Price= 12.45; 

The character value of Price is '$12.45'. Its arithmetic value is 12.45. 

For information on specifying a character as a currency symbol, refer to 
"Defining currency symbols" on page 294. 

S specifies the plus sign character(+) if the data value is >=0; otherwise, it 
specifies the minus sign character(-). The rules are identical to those for 
the currency symbol. 

In the following example: 

dcl Root picture 'S999'; 

The value 58 is held as '+858', the value 8 as '+888' and the value -243 
as '-243'. 

+ specifies the plus sign character(+) if the data value is >=0; otherwise, it 
specifies a blank. The rules are identical to those for the currency symbol. 

specifies the minus sign character (-) if the data value is <0; otherwise, it 
specifies a blank. The rules are identical to those for the currency symbol. 

Signs and currency symbols can be used in either a static or a drifting manner. 

Static use: Static use specifies that a sign, a currency symbol, or a blank appeais 
in the associated position. An S, +, or - used as a static character can appear to 
the right or left of all digits in the mantissa and exponent fields of a floating-point 
specification, and to the right or left of all digit positions of a fixed-point specifica
tion. 

Drifting use: Drifting use specifies that leading zeros are to be suppressed. In 
this case, the rightmost suppressed position associated with the picture character 
will contain a sign, a blank, or a currency symbol (except that where all digit posi
tions are occupied by drifting characters and the value of the data item is zero, the 
drifting character is not inserted). 

A drifting character is specified by multiple use of that character in a picture field. 
The drifting character must be specified in each digit position through which it can 
drift. Drifting characters must appear in a sequence of the same drifting character, 
optionally containing a V and one of the insertion characters comma, point, slash, 
or B. Any of the insertion characters slash, comma, or point within or immediately 
following the string is part of the drifting string. The character B always causes 
insertion of a blank, wherever it appears. A V terminates the drifting string, except 
when the arithmetic value of the data item is zero; in that case, the V is ignored. A 
field of a picture specification can contain only one drifting string. A drifting string 

296 PUI Package/2 Language Reference 



Signs and currency symbols 

cannot be preceded by a digit position nor can it occur in the same field as the 
picture characters * and z. 

The position in the data associated with the characters slash, comma, and point 
appearing in a string of drifting characters will contain one of the following: 

• Slash, comma, or point if a significant digit appears to the left 

• The drifting symbol, if the next position to the right contains the leftmost signif
icant digit of the field 

• Blank, if the leftmost significant digit of the field is more than one position to the 
right. 

If a drifting string contains the drifting character n times, the string is associated 
with n-1 conditional digit positions. The position associated with the leftmost drifting 
character can contain only the drifting character or blank, never a digit. Two dif
ferent picture characters cannot be used in a drifting manner in the same field. 

If a drifting string contains a V within it, the V delimits the preceding portion as a 
subfield, and all digit positions of the subfield following the V must also be part of 
the drifting string that commences the second subfield. 

In the case in which all digit positions after the V contain drifting characters, sup
pression in the subfield occurs only if all of the integer and fractional digits are zero. 
The resulting edited data item is then all blanks (except for any insertion characters 
at the start of the field). If there are any nonzero fractional digits, the entire frac
tional portion appears unsuppressed. 

If, during or before assignment to a picture, the fractional digits of a decimal 
number are truncated so that the resulting value is zero, the sign inserted in the 
picture corresponds to the value of the decimal number prior to its truncation. 
Thus, the sign in the picture depends on how the decimal value was calculated. 

Figure 49 on page 297 shows examples of signs and currency symbol characters. 

Figure 49 (Page 1 of 2). Examples of signs and currency characters 

Source Data 
Source Attributes (in constant form) Picture Specification Character Value 

FIXED(5,2) 123.45 $999V.99 $123.45 
FIXED(5,2) 012.00 99$ 12$ 
FIXED(5,2) 001.23 $ZZZV.99 $bb1 .23 

FIXED(5,2) 000.00 $ZZZV.ZZ bbbbbbb 
FIXED(1) 0 $$$.$$ bbbbbb 
FIXED(5,2) 123.45 $$$9V.99 $123.45 

FIXED(5,2) 001.23 $$$9V.99 bb$1.23 
FIXED(2) 12 $$$,999 bbb$012 
FIXED(4) 1234 $$$,999 b$1,234 

FIXED(5,2) 2.45 SZZZV.99 +bb2.45 
FIXED(5) 214 SS,SS9 bb+214 
FIXED(5) -4 SS,SS9 bbbb-4 

FIXED(5,2) -123.45 +999V.99 b123.45 
FIXED(5,2) -123.45 -999V.99 -123.45 
FIXED(5,2) 123.45 999V.99S 123.45+ 

Chapter 14. Picture specification characters 297 



Credit, debit, and zero replacement 

Figure 49 (Page 2 of 2). Examples of signs and currency characters 

Source Data 
Source Attributes (in constant form) Picture Specification Character Value 

FIXED(S,2) 
FIXED(S,2) 
FIXED(S,2) 

001.23 
001.23 
-001.23 

++8+9V.99 
---9V.99 
SSS9V.99 

Credit, debit, and zero replacement characters. 

bbb+1.23 
bbb1 .23 
bb-1.23 

The picture characters CR, and DB cannot be used with any other sign characters 
in the same field. 

The character pairs CR (credit) and DB (debit) specify the signs of real numeric 
character data items. 

CR specifies that the associated positions will contain the letters CR if the 
value of the data is <0. Otherwise, the positions will contain two blanks. 
The characters CR can appear only to the right of all digit positions of a 
field. 

DB specifies that the associated positions will contain the letters DB if the 
value of the data is <0. Otherwise, the positions will contain two blanks. 
The characters DB can appear only to the right of all digit positions of a 
field. 

Y specifies that a zero in the specified digit position is replaced uncondi
tionally by the blank character. 

Figure 50 shows examples of credit, debit, overpunched, and zero replacement 
characters. 

Figure 50. Examples of credit, debit, and zero replacement characters 

Source Data 
Source Attributes (in constant form) Picture Specification Character Value 

FIXED(3) 
FIXED(4,2) 
FIXED(4,2) 

FIXED(4,2) 
FIXED(4) 
FIXED(4) 

FIXED(4) 
FIXED(S) 
FIXED(S) 

FIXED(S,2) 

Exponent characters 

-123 
12.34 
-12.34 

12.34 
1021 
-1021 

1021 
00100 
10203 

000.04 

$Z.99CR 
$ZZV.99CR 
$ZZV.99D8 

$ZZV.99D8 
9991 
Z99R 

99T9 
yyyyy 

9Y9Y9 

YYYVY9 

$1.23CR 
$12.34bb 
$12.3408 

$12.34bb 
102A 
102J 

1081 
bb1bb 
1b2b3 

bbbM 

The picture characters Kand E delimit the exponent field of a numeric character 
specification that describes floating-point decimal numbers. The exponent field is 
the last field of a numeric character floating-point picture specification. The picture 
characters Kand E cannot appear in the same specification. 

298 PUI Package/2 Language Reference 



Scaling factor 

Scaling factor 

K specifies that the exponent field appears to the right of the associated posi
tion. It does not specify a character in the numeric character data item. 

E specifies that the associated position contains the letter E, which indicates the 
start of the exponent field. 

The value of the exponent is adjusted in the character value so that the first signif
icant digit of the first field (the mantissa) appears in the position associated with the 
first digit specifier of the specification (even if it is a zero suppression character). 

Figure 51 shows examples of exponent characters. 

Figure 51. Examples of exponent characters 

Source Data 
Source Attributes (in constant form) Picture Specification Character Value 

FLOAT(5) .12345E06 V.99999E99 .12345E06 
FLOAT(5) .12345E-06 V .99999ES99 .12345E-06 
FLOAT(5) .12345E+06 V .99999KS99 .12345+06 

FLOAT(5) -123.45E+ 12 S999V.99ES99 -123.45E+ 12 
FLOAT(5) 001.23E-01 SSS9. V99ESS9 + 123.00Eb-3 
FLOAT(5) 001.23E+04 ZZZV. 99KS99 123.00+02 

FLOAT(5) 001.23E+04 SZ99V .99ES99 +123.00E+02 
FLOAT(5) 001.23E+04 SSSSV .99E-99 + 123.00Eb02 

The picture character F specifies a picture scaling factor for fixed-point decimal 
numbers. It can appear only once at the right end of the picture specification. The 
syntax for F is: 

.... -F(-.--E-~-jr-f nteger)-------------------- .. 

F specifies the picture scaling factor. The picture scaling factor specifies 
that the decimal point in the arithmetic value of the variable is that number 
of places to the right (if the picture scaling factor is positive) or to the left 
(if negative) of its assumed position in the character value. 

The number of digits following the V picture character minus the integer 
specified with F must be between -128 and 127. 

Figure 52 shows examples of the picture scaling factor character. 

Figure 52. Examples of scaling factor characters 

Source Attributes 

FIXED(4,0) 
FIXED(7,0) 
FIXED(5,5) 

FIXED(6,6) 

Source Data 
(in constant form) Picture Specification Character Value 

1200 
-1234500 
.00012 

.012345 

99F(2) 
S999V99F(4) 
99F(-5) 

999V99F(-4) 

12 
-12345 
12 

12345 

Chapter 14. Picture specification characters 299 



Scaling factor 

300 PUI Package/2 Language Reference 



© Copyright IBM Corp. 1992 

Chapter 15. Condition handling 

Chapter 15. Condition handling . . . . . . . . 
Condition prefixes . . . . . . . . . . . . . . . . . 

Scope of the condition prefix . . . . . . . . 
Raising conditions with OPTIMIZATION 

ON-units . . . . . . . ...... . 
ON statement 
Null ON-unit 
Scope of the ON-unit . . . . . . . . . . . . . . 
Dynamically descendent ON-units 
ON-units for file variables . . . . . . . 

REVERT statement ...... . 
SIGNAL statement . . . 
RESIGNAL statement 
Multiple conditions 
CONDITION attribute 

302 
302 
304 
305 
305 
305 
306 
306 
307 
307 
308 
309 
309 
309 
310 

301 



Condition handling 

Chapter 15. Condition handling 

While a PUI program is running, a variety of events can occur that you can test for, 
respond to, and recover from. These events are called conditions, and are raised 
when detected. The conditions can be unexpected errors, such as overflow, an 
input/output transmission error, or the end of a page when output is sent to be 
printed but does not print. Conditions can also be expected (for example, the end 
of an input file). A condition is also raised when a SIGNAL statement for that con
dition is executed. 

A condition is enabled when raising it will execute an on-unit or perform a system
defined action. 

An action specified to be executed when an enabled condition is raised is estab
lished. You control condition handling by enabling conditions and specifying the 
required action for raised conditions. 

The established action can be an ON-unit or the implicit action defined for the con
dition. 

When an ON-unit is invoked, it is treated as a procedure without parameters. To 
assist you in making use of ON-units, built-in functions and pseudovariables are 
provided that you can use to inquire about the cause of a condition. They are 
listed in Chapter 17, "Built-in functions, pseudovariables, and subroutines" on 
page 371. 

The implicit action for many conditions is to raise the ERROR condition. This pro
vides a common condition that can be used to check for a number of different con
ditions, rather than checking each condition separately. 

The condition handling built-in functions provide information such as the name of 
the entry point of the procedure in which the condition was raised, the character or 
character string (or graphic string) that raised a CONVERSION condition, the value 
of the key used in the last record transmitted, and so on. Some can be used as 
pseudovariables for error correction. 

The ONCODE built-in function returns an integer indicating the cause of the last 
condition. ON CODE can be used to identify the specific circumstances that raise a 
particular condition (for example, the ERROR condition). The codes corresponding 
to the conditions and errors detected are listed in "Condition codes" on page 329. 

Condition prefixes 

302 

You can specify whether or not some conditions are enabled or disabled. If a con
dition is enabled, the raising of the condition executes an action. If a condition is 
disabled, the raising of the condition does not execute an action. 

Enabling and disabling can be specified for the eligible conditions by a condition 
prefix. 

© Copyright IBM Corp. 1992 



Condition prefixes 

The syntax for the condition prefix is: 

••_J_(_L~ondit i olJ_ )-:~~tatement-1.---------~---... ~ ~ 

condition 
Some conditions are always enabled, and cannot be disabled. Some are 
enabled unless you disable them, and some are disabled unless you 
enable them. The conditions are listed in Chapter 16, "Conditions" on 
page 312. 

statement 
Condition prefixes are not valid for DECLARE, DEFAULT, DO, SELECT, 
WHEN, OTHERWISE, END, IF, ELSE, and % statements. For information 
on the scope of condition prefixes, refer to "Scope of the condition prefix" 
on page 304. 

In the following example (size): is the condition prefix. The conditional prefix indi
cates that the corresponding condition is enabled within the scope of the prefix. 

(size): Ll: X=CI**N) I (M+L); 

Conditions can be enabled using the condition prefix specifying the condition name. 
They can be disabled using the condition prefix specifying the condition name pre
ceded by NO without intervening blanks. Types and status of conditions are shown 
in Figure 53. 

Figure 53 (Page 1 of 2). Classes and status of conditions 

Class and conditions Status 

Computational (for data handling, expression evaluation, and computation) 
CONVERSION. Enabled by default 
FIXEDOVERFLOW Enabled by default 
INVALIDOP Enabled by default 
OVERFLOW Enabled by default 
UNDERFLOW Disabled by default 
ZERODIVIDE Enabled by default 

Input/Output 
ENDFILE 
ENDPAGE 
KEY 
NAME 
RECORD 
TRANSMIT 
UNDEFINEDFILE 

Always enabled 
Always enabled 
Always enabled 
Always enabled 
Always enabled 
Always enabled 
Always enabled 

Chapter 15. Condition handling 303 



Scope of condition prefix 

Figure 53 (Page 2 of 2). Classes and status of conditions 

Class and conditions Status 

Program checkout (for debugging a program) 
SIZE Disabled by default 
STRINGRANGE Disabled by default 
STRINGSIZE Disabled by default 
SUBSCRIPTRANGE Disabled by default 

Miscellaneous 
AREA 
ATTENTION 
CONDITION 
ERROR 
FINISH 
STORAGE 

Always enabled 
Always enabled 
Always enabled 
Always enabled 
Always enabled 
Always enabled 

When an enabled condition is raised; it causes the established or implicit action to 
be performed. 

When a condition is disabled, its raising causes no action; the program is unaware 
that the event has occurred. 

For information about the performance effects of enabling and disabling conditions, 
refer to the PU/ Package/2 Programming Guide. 

Scope of the condition prefix 
The scope of a condition prefix (the part of the program to which it applies) is the 
statement or block to which the prefix is attached. The prefix does not necessarily 
apply to any procedures or ON-units that can be invoked in the execution of the 
statement. 

A condition prefix attached to a PACKAGE, PROCEDURE, or BEGIN statement 
applies to all the statements up to and including the corresponding END statement. 
This includes other PROCEDURE or BEGIN statements nested within that block. 

Condition status can be redefined within a block by attaching a prefix to statements 
within the block, including PROCEDURE and BEGIN statements (thus redefining 
the enabling or disabling of the condition within nested blocks). The redefinition 
applies only to the execution of the statement to which the prefix is attached. In 
the case of a nested PROCEDURE or BEGIN statement, it applies only to the block 
the statement defines, as well as any blocks contained within that block. 

304 PUI Package/2 Language Reference 



ON-units 

Raising conditions with OPTIMIZATION 

ON-units 

ON statement 

When OPTIMIZATION is in effect, conditions for the same expression that appear 
multiple times may be raised only once. In the following example, 
SUBSCRIPTRANGE for IX may be raised only once: 

Ca 11 P ( 55); 
(subscriptrange): P: proc (IX); 

Del (Ar, Br, Cr) (18); 
Ar(IX) = Ar(IX) +Br( IX); 
t=Cr(IX); 

End P; 

An implicit action exists for every condition. When an enabled condition is raised, 
the implicit action is executed unless an ON-unit for the enabled condition is estab
lished. 

The ON statement establishes the action to be executed for any subsequent raising 
of an enabled condition in the scope of the established condition. 

The syntax for the ON statement is: 

,..,.._ON_L~ondition I lOsNAPOJ LOSYSTEM; 
ON-unit 

condition 
is any one of those described in Chapter 16, "Conditions" on page 312 or 
defined with the CONDITION attribute. 

SNAP specifies that when the enabled condition is raised, diagnostic information 
relating to the condition is printed. The action of the SNAP option pre
cedes the action of the ON-unit. 

If SNAP and SYSTEM are specified, the implicit action is followed imme
diately by SNAP information. 

SYSTEM 

ON-unit 

specifies that the implicit action is taken. The implicit action is not the 
same for every condition, although for most conditions a message is 
printed and the ERROR condition is raised. The implicit action for each 
condition is given in Chapter 16, "Conditions" on page 312. 

specifies the action to be executed when the condition is raised and is 
enabled. The action is defined by the statement or statements in the 
ON-unit itself. The ON-unit is not executed at the time the ON statement 
is executed; it is executed only when the specified enabled condition is 
raised. 

The ON-unit can be either a single unlabeled simple statement or an unla
beled begin block. If it is a simple statement, it can be any statement 
except BEGIN, DECLARE, DEFAULT, DO, END, FORMAT, ITERATE, 

Chapter 15. Condition handling 305 



Null ON-unit 

Null ON-unit 

LEAVE, OTHERWISE, PROCEDURE, RETURN, SELECT, WHEN, or% 
statements. If the ON-unit is a begin block, a RETURN statement can 
appear only within a procedure nested within the begin block; a LEAVE 
statement can appear only within a do group nested within the begin 
block. 

An ON-unit is treated as a procedure (without parameters) that is internal 
to the block in which it appears. Any names referenced in an ON-unit are 
those known in the environment in which the ON statement for that 
ON-unit was executed, rather than the environment in which the condition 
was raised. 

When execution ·of the ON-unit is complete, control generally returns to the 
block from which the ON-unit was entered. Just as with a procedure, 
control can be transferred out of an ON-unit by a GO TO statement. In 
this case, control is transferred to the point specified in the GO TO, and a 
normal return does not occur. 

The specific point to which control returns from an ON-unit varies for dif
ferent conditions. Normal return for each condition is described in 
Chapter 16, "Conditions" on page 312. 

The effect of a null statement ON-unit is to execute normal return from the condi
tion. 

Use of the null ON-unit is different from disabling a condition for two reasons: 

• A null ON-unit can be specified for any condition, but not all conditions can be 
disabled. 

• Disabling a condition, if possible, can save time by avoiding any checking for 
this condition. (If a null ON-unit is specified, the PUI must still check for the 
raising of the condition.) 

Scope oi the ON-unii 
The execution of an ON statement establishes an action specification for a condi
tion. Once this action is established, it remains established throughout that block 
and throughout all dynamically descendent blocks until it is overridden by the exe
cution of another ON statement or a REVERT statement or until termination of the 
block in which the ON statement is executed. (For information on dynamically 
descendent ON-units, refer to "Dynamically descendent ON-units" on page 307.) 

When another ON statement specifies the same conditions: 

• If a later ON statement specifies the same condition as a prior ON statement 
and this later ON statement is executed in a block which is a dynamic 
descendant of the block containing the prior ON statement, the action specifica
tion of the prior ON statement is temporarily suspended, or stacked. It can be 
restored either by the execution of a REVERT statement, or by the termination 
of the block containing the later ON statement. 

When control returns from a block, all established actions that existed at the 
time of its activation are reestablished. This makes it impossible for a subrou
tine to alter the action established for the block that invoked the subroutine. 

306 PUI Package/2 Language Reference 



Dynamically descendent ON-units 

• If the later ON statement and the prior ON statement are internal to the same 
invocation of the same block, the effect of the prior ON statement is logically 
nullified. No reestablishment is possible, except through execution of another 
ON statement (or re-execution of an overridden ON statement). 

Dynamically descendent ON-units 
It is possible to raise a condition during execution of an ON-unit that specifies 
another ON-unit. An ON-unit entered because a condition is either raised or sig
nalled in another ON-unit is a dynamically descendent ON-unit. A normal return 
from a dynamically descendent ON-unit reestablishes the environment of the 
ON-unit in which the condition was raised. 

A loop can occur if an ERROR condition raised in an ERROR ON-unit executes the 
same ERROR ON-unit, raising the ERROR condition again. To avoid a loop 
caused by this situation, use the following technique: 

on error begin; 
on error system; 

end; 

ON-units for file variables 
An ON statement that specifies a file variable refers to the file constant that is the 
current value of the variable when the ON-unit is established. 

Example 1 

dcl F file, 
G file variable; 
G = F; 

Ll: on endfile(G); 
L2: on endfi le( F); 

The statements labeled L1 and L2 are equivalent. 

Example 2 

declare FV file variable, 
FCl file, 
FC2 file; 

FV = FCl; 
on endfile(FV) go to Fin; 

FV = FC2; 
read file(FCl) into (Xl); 
read file(FV) into (X2); 

An ENDFILE condition raised during the first READ statement causes the ON-unit 
to be entered, because the ON-unit refers to file FCl. If the condition is raised in 
the second READ statement, however, the ON-unit is not entered, because this 
READ refers to file FC2. 

Chapter 15. Condition handling 307 



REVERT statement 

Example 3 

E: procedure; 
declare Fl file; 
on endfile (Fl) goto Ll; 
ca 11 El (Fl); 

El: procedure (F2); 
declare F2 file; 
on endfile (F2) go to L2; 
read file (Fl); 
read file ( F2); 
end El; 

An end-of-file encountered for Fl in E 1 causes the ON-unit for F2 in El to be 
entered. If the ON-unit in El was not specified, an ENDFILE condition encountered 
for either Fl or F2 would cause entry to the ON-unit for Fl in E. 

Example 4 

declare FV file variable, 
FCl file, 
FC2 file; 

do FV=FCl, FC2; 
on endfile(FV) go to Fin; 

end; 

If an ON statement specifying a file variable is executed more than once, and the 
variable has a different value each time, a different ON-unit is established at each 
execution. 

REVERT statement 
Execution of the REVERT statement in a given block cancels the ON-unit for the 
condition that executed in that block. The ON-unit that was established at the time 
the biock was activated is then reestablished. REVERT affects only ON statements 
that are internal to the block in which the REVERT statement occurs and that have 
been executed in the same invocation of that block. 

The syntax for the REVERT statement is: 

••-REVERT_.£.~onditionL;-----------------"" 

condition 
is any one of those described in Chapter 16, "Conditions" on page 312 or 
defined with the CONDITION attribute. 

The REVERT statement cancels an ON-unit only if both of the following conditions 
are true: 

1. An ON statement that is eligible for reversion, and that specifies a condition 
listed in the REVERT statement, was executed after the block was activated. 

308 PUI Package/2 Language Reference 



SIGNAL statement 

2. A REVERT statement with the specified condition was not previously executed 
in the same block. 

If either of these two conditions is not met, the REVERT statement is treated as a 
null statement. 

SIGNAL statement 
You can raise a condition by means of the SIGNAL statement. This statement can 
be used in program testing to verify the action of an ON-unit and to determine 
whether the correct action is associated with the condition. The established action 
is taken unless the condition is disabled. 

If the specified condition is disabled, the SIGNAL statement becomes equivalent to 
a null statement. 

The syntax for the SIGNAL statement is: 

.,..,._SIGNAL-condition-;-------------------~ 

condition 
is any condition described in Chapter 16, "Conditions" on page 312 or 
defined with the CONDITION attribute. 

RESIGNAL statement 
The RESIGNAL statement terminates the current ON-unit and allows another 
ON-unit to get control. The processing continues as if the ON-unit executing the 
RESIGNAL did not exist and was never given control. It allows multiple ON-units to 
get control for the same condition. It is valid only within an ON-unit or its dynamic 
descendants. 

The syntax for RESIGNAL is: 

.,..,._RESIGNAL-;-----------------------~ 

Multiple conditions 
A multiple condition is the simultaneous raising of two or more conditions. 

The conditions for which a multiple condition can occur are: 

RECORD, discussed on page 322 
TRANSMIT, discussed on page 326. 

The TRANSMIT condition is always processed first. The RECORD condition is 
ignored unless there is a normal return from the TRANSMIT ON-unit. 

Chapter 15. Condition handling 309 



CONDITION 

Multiple conditions are processed successively. When one of the following events 
occurs, no subsequent conditions are processed: 

• Condition processing terminates the program, through implicit action for the 
condition, normal return from an ON-unit, or abnormal termination in the 
ON-unit. 

• A GO TO statement transfers control from an ON-unit, so that a normal return 
is not allowed. 

CONDITION attribute 
The CONDITION attribute specifies that the declared name identifies a 
programmer-defined condition. 

The syntax for the CONDITION attribute is: 

..,..,_CONDITION-----------------------.,. 

A name that appears with the CONDITION condition in an ON, SIGNAL, or 
REVERT statement is contextually declared to be a condition name. 

The default scope is EXTERNAL. An example of the CONDITION condition 
appears on page 314. 

310 PUI Package/2 Language Reference 



© Copyright IBM Corp. 1992 

Chapter 16. Conditions 
AREA condition . . . . . . . . 
ATTENTION condition . . . . 
CONDITION condition . 
CONVERSION condition 
ENDFILE condition ... 
ENDPAGE condition 
ERROR condition . . . . . . . . 
FINISH condition ...... . 
FIXEDOVERFLOW condition 
INVALIDOP condition 
KEY condition . . . . . . 
NAME condition 
OVERFLOW condition . 
RECORD condition . 
SIZE condition . . . . . 
STORAGE condition .... 
STRINGRANGE condition . 
STRINGSIZE condition ....... . 
SUBSCRIPTRANGE condition 
TRANSMIT condition .... 
UNDEFINEDFILE condition 
UNDERFLOW condition 
ZERODIVIDE condition 
Condition codes 

Chapter 16. Conditions 

312 
312 
313 
314 
315 
316 
317 
318 
318 
319 
320 
320 
321 
322 
322 
323 
324 
324 
325 
326 
326 
327 
328 
329 
329 

311 



Conditions 

Chapter 16. Conditions 

This chapter describes conditions in alphabetic order. In general, the following 
information is given for each condition: 

• Status-an indication of the enabled/disabled status of the condition at the 
start of the program, and how the condition can be disabled (if possible) or 
enabled. Figure 53 on page 303 classifies the conditions into types, shows 
their status, and lists the conditions for disabling an enabled one. 

• Result-the result of the operation that raised the condition. This applies when 
the condition is disabled as well as when it is enabled. In some cases, the 
result is undefined. 

• Cause and syntax-A discussion of the condition, including the circumstances 
under which the condition can be raised. Raising conditions with the SIGNAL 
statement is discussed in "SIGNAL statement" on page 309. 

• Implicit action-the action taken when an enabled condition is raised and no 
ON-unit is currently established for the condition. 

• Normal return-the point to which control is returned as a result of the normal 
termination of the ON-unit. A GO TO statement that transfers control out of an 
ON-unit is an abnormal ON-unit termination. If a condition (except the ERROR 
condition) has been raised by the SIGNAL statement, the normal return is 
always to the statement immediately following SIGNAL. 

• Condition codes-the codes corresponding to the conditions and errors for 
which the program is checked. An explanation for each code is given under 
"Condition codes" on page 329. 

AREA condition 

312 

Status: AREA is always enabled. 

Result: An attempted allocation or assignment that raises the AREA condition has 
no effect. 

Cause and syntax: The AREA condition is raised in either of the following circum
stances: 

• When an attempt is made to allocate a based variable within an area that con
t tains insufficient free storage for the allocation to be made. 

• When an attempt is made to perform an area assignment, and the target area 
contains insufficient storage to accommodate the allocations in the source area. 

The syntax for AREA is: 

11>11>-AREA-------------------------<11 

Implicit action: A message is printed and the ERROR condition is raised. 

© Copyright IBM Corp. 1992 



ATTENTION 

Normal return: On normal return from the ON-unit, the action is as follows: 

• If the condition was raised by an allocation and the ON-unit is a null ON-unit, 
the allocation is not attempted again. 

• If the condition was raised by an allocation, the allocation is attempted again. 
Before the attempt is made, the area reference is reevaluated. Thus, if the 
ON-unit has changed the value of a pointer qualifying the reference to the inad
equate area so that it points to another area, the allocation is attempted again 
within the new area. 

• If the condition was raised by an area assignment, or by a SIGNAL statement, 
execution continues from the point at which the condition was raised. 

Condition codes: 360, 361 , 362 

ATTENTION condition 
Status: ATTENTION is always enabled. 

Result: Raising the condition causes an ATTENTION ON-unit to be entered. If 
there is no ATTENTION ON-unit, the condition is ignored, and there is no change 
in the flow of control. 

Cause and syntax: The ATTENTION condition is raised when the user hits 
CTRL-BRK or CTRL-C to interrupt a non-Presentation Manager application. (The 
Presentation Manager does not recognize CTRL-BRK and CTRL-C.) The condition 
can also be raised by a SIGNAL ATTENTION statement. 

The MAIN procedure must be a PUI procedure compiled with the INTERRUPT 
option. The runtime option INTERRUPT must be also be set to INTERRUPT(ON) 
to enable the ATTENTION interrupt capability. If the runtime option 
INTERRUPT(ON) is not set, use of the INTERRUPT option to enable the ATTEN
TION interrupt capability is invalid. 

An ATTENTION ON-unit is entered when: 

• The environment passes an interrupt request to the application program, and 
the program was compiled using the INTERRUPT option. 

• A SIGNAL ATTENTION statement is executed. In this case the compiler 
INTERRUPT option is not required. 

The syntax for ATTENTION is: 

1!>1!>-ATTENTION-----------------------<11 

Abbreviation: ATTN 

Implicit action: The attention is ignored. 

Chapter 16. Conditions 313 



CONDITION 

Normal return: On return from an ATTENTION ON-unit, processing is resumed at 
a point in the program immediately following the point at which the condition was 
raised. 

Condition code: 400 

CONDITION condition 
Status: CONDITION is always enabled. 

Result: The CONDITION condition allows you to establish an ON-unit that will be 
executed whenever a SIGNAL statement for the appropriate CONDITION condition 
is executed. 

As a debugging aid, the CONDITION condition can be used to establish an ON-unit 
that prints information about the current status of the program. 

Cause and syntax: The CONDITION condition is raised by a SIGNAL statement. 
The name specified in the SIGNAL statement determines which CONDITION condi
tion is raised. The O!'J-unit can be executed from any point in the program through 
placement of a SIGNAL statement. Normal rules of name scope apply. A condi
tion name is external by default, but can be declared INTERNAL. 

The syntax for CONDITION is: 

1>1>-CONDITION-Cname)--------------------<11 

Abbreviation: COND 

The following example shows the use of the CONDITION condition. 

dcl Test condition; 

on condition (Test) 
begin; 

end; 

The begin block is executed whenever the following statement is executed: 

signal condition (Test); 

Implicit action: A message is printed and execution continues with the statement 
following SIGNAL. 

Normal return: Execution continues with the statement following the SIGNAL 
statement. 

Condition code: 500 

314 PUI Package/2 Language Reference 



CONVERSION 

CONVERSION condition 
Status: CONVERSION is enabled throughout the program, except within the 
scope of the NOCONVERSION condition prefix. You can use the ONSOURCE, 
ONCHAR, and ONGSOURCE pseudovariables in CONVERSION ON-units to 
correct conversion errors. 

Result: When CONVERSION is raised, the contents of the entire result field are 
undefined. 

Cause and syntax: The CONVERSION computational condition is raised when
ever an invalid conversion is attempted on character data. This attempt can be 
made internally or during an input/output operation. For example, the condition is 
raised when: 

• A character other than 0 or 1 exists in character data being converted to bit 
data. 

• A character value being converted to a numeric character field, or to a coded 
arithmetic value, contains characters which are not the representation of an 
optionally signed arithmetic constant, or an expression to represent a complex 
constant. 

• A value being converted to a character pictured item contains characters not 
allowed by the picture specification. 

The syntax for CONVERSION is: 

11>11>-CONVERSION-----------------------.,. 

Abbreviation: CONV 

All conversions of character data are carried out character-by-character in a left-to
right sequence. The condition is raised for each invalid character. The condition is 
also raised if all the characters are blank, with the following exceptions: 

• For input with the F-format item, a value of zero is assumed 

• For input with the E-format item, be aware that sometimes the ON-unit will be 
repeatedly entered. 

When an invalid character is encountered, the current action specification for the 
condition is executed (provided that CONVERSION is not disabled). If the action 
specification is an ON-unit, the invalid character can be replaced within the unit. 
For nongraphic source data, use the ONSOURCE or ONCHAR pseudovariables. 
For graphic source data, use the ONGSOURCE pseudovariable. 

If the CONVERSION condition is raised and it is disabled, the program is in error. 

Chapter 16. Conditions 315 



ENDFILE 

If the CONVERSION condition is raised during conversion from graphic data to 
nongraphic data, the ONCHAR and ONSOURCE built-in functions do not contain 
valid source data. The ONGSOURCE built-in function contains the original graphic 
source data. The graphic conversion will be retried if the ONGSOURCE 
pseudovariable is used in the CONVERSION ON-unit to attempt to fix the graphic 
data that raised the CONVERSION condition. If the ONGSOURCE pseudovariable 
is not used in the CONVERSION ON-unit, the ERROR condition will be raised. 

Implicit action: A message is printed and the ERROR condition is raised. 

Normal return: If CONVERSION was raised on a character string source (not 
graphic source) and either ONSOURCE or ONCHAR pseudovariables are used in 
the ON-unit, the program retries the conversion on return from the ON-unit. 

If CONVERSION was raised on a graphic source and the ONGSOURCE 
pseudovariable is used in the ON-unit, the program retries the conversion on return 
from the ON-unit. 

If the conversion error is not corrected using these pseudovariables, the program 
will loop. 

Condition codes: 600-666 

ENDFILE condition 
Status: The ENDFILE condition is always enabled. 

Result: If the specified file is not closed after the condition is raised, subsequent 
GET or READ statements to the file are unsuccessful and cause additional 
ENDFILE conditions to be raised. 

Cause and syntax: The ENDFILE inpuVoutput condition can be raised during a 
operation by an attempt to read past the end of the file specified in the GET or 
READ statement. It applies only to SEQUENTIAL INPUT, SEQUENTIAL UPDATE, 
and STREAM INPUT files. 

The syntax for ENDFILE is: 

••-ENDFILE-( fj le-reference)------------------"' 

In record-oriented data transmission, ENDFILE is raised whenever an end of file is 
encountered during the execution of a READ statement. 

In stream-oriented data transmission, ENDFILE is raised during the execution of a 
GET statement if an end of file is encountered either before any items in the GET 
statement data list have been transmitted or between transmission of two of the 
data items. If an end of file is encountered while a data item is being processed, or 
if it is encountered while an X-format item is being processed, the ERROR condi
tion is raised. 

Implicit action: A message is printed and the ERROR condition is raised. 

316 PUI Package/2 Language Reference 



ENDPAGE 

Normal return: Execution continues with the statement immediately following the 
GET or READ statement that raised the ENDFILE. 

If a file is closed in an ON-unit for this condition, the results of normal return are 
undefined. Exit from the ON-unit with the closed file must be achieved with a GO 
TO statement. 

Condition code: 70 

ENDPAGE condition 
Status: ENDPAGE is always enabled. 

Result: When ENDPAGE is raised, the current line number is one greater than 
that specified by the PAGESIZE option (default is 61) so that it is possible to con
tinue writing on the same page. The ON-unit can start a new page by execution of 
a PAGE option or a PAGE format item, which sets the current line to one. 

If the ON-unit does not start a new page, the current line number can increase 
indefinitely. If a subsequent LINE option or LINE format item specifies a line 
number that is less than or equal to the current line number, ENDPAGE is not 
raised, but a new page is started with the current line set to one. An exception is 
that if the current line number is equal to the specified line number, and the file is 
positioned on column one of the line, ENDPAGE is not raised. 

If ENDPAGE is raised during data transmission, on return from the ON-unit, the 
data is written on the current line, which might have been changed by the ON-unit. 
If ENDPAGE results from a LINE or SKIP option, on return from the ON-unit, the 
action specified by LINE or SKIP is ignored. 

Cause and syntax: The ENDPAGE input/output condition is raised when a PUT 
statement results in an attempt to start a new line beyond the limit specified for the 
current page. This limit can be specified by the PAGESIZE option in an OPEN 
statement; if PAGESIZE has not been specified, a default limit of 60 is applied. 
The attempt to exceed the limit can be made during data transmission (including 
associated format items, if the PUT statement is edit-directed), by the LINE option, 
or by the SKIP option. ENDPAGE can also be raised by a LINE option or LINE 
format item that specified a line number less than the current line number. 
ENDPAGE is raised only once per page, except when it is raised by the SIGNAL 
statement. 

The syntax for ENDPAGE is: 

11>11>-ENDPAGE-( fi 7 e-reference)----------------- ... 

Implicit action: A new page is started. If the condition is signaled, execution is 
unaffected and continues with the statement following the SIGNAL statement. 

Normal return: Execution of the PUT statement continues in the manner 
described above. 

Condition code: 90 

Chapter 16. Conditions 317 



ERROR 

ERROR condition 
Status: ERROR is always enabled. 

Result An error message is issued if no ON-unit is active when the ERROR condi
tion arises or if the ON-unit does not use a GOTO (to exit the block) to recover 
from the condition. 

Cause and syntax: The ERROR condition is the implicit action for many condi
tions. This provides a common condition that can be used to check for a number 
of different conditions, rather than checking each condition separately. 

The ERROR condition is raised under the following circumstances: 

• As a result of the implicit action for a condition, which is to raise the ERROR 
condition. 

• As a result of the normal return action for some conditions, such as 
SUBSCRIPTRANGE CONVERSION or when no retry is attempted. 

• As a result of an error (for which there is no other PUl-defined condition) during 
pmgram execution. 

The syntax for ERROR is: 

~~-ERROR-------------------------..i 

Implicit action 

The FINISH condition is raised. 

Normal return: The implicit action is taken. 

Condition codes: All codes 1000 and above are ERROR conditions. 

FINISH condition 
Status: FINISH is always enabled. 

Result: Control passes to the FINISH ON-unit and processing continues. 

Cause and syntax: The FINISH condition is raised during execution of a state
ment that would terminate the procedures. The following actions take place: 

• If the termination is normal: 

- The FINISH On-Unit, if established, is given control only if the main proce
dure is PUI. 

• If the termination is abnormal: 

- The FINISH On-Unit, if established in an active block, is given control. 

318 PUI Package/2 Language Reference 



FIXEDOVERFLOW 

The syntax for FINISH is: 

.,..,._FINISH------------------------.. 

Implicit action: No action is taken and processing continues from the point where 
the condition was raised. 

Normal return: Processing resumes at the point where the condition was raised. 
This point is the statement following the SIGNAL statement if the conditions was 
signalled. 

Condition code: 4 

FIXEDOVERFLOW condition 
Status: FIXEDOVERFLOW is enabled throughout the program, except within the 
scope of the NOFIXEDOVERFLOW condition prefix. 

Result: The result of the invalid fixed-point operation is undefined. 

Cause and syntax: The FIXEDOVERFLOW computational condition is raised 
when the length of the result of a fixed-point arithmetic operation exceeds the 
maximum length allowed by the implementation. 

The FIXEDOVERFLOW condition differs from the SIZE condition in that SIZE is 
raised when a result exceeds the declared size of a variable, while 
FIXEDOVERFLOW is raised when a result exceeds the maximum allowed by the 
computer. 

The syntax for FIXEDOVERFLOW is: 

.,..,._FIXEDOVERFLOW--------------------- ... 

Abbreviation: FOFL 

If the FIXEDOVERFLOW condition is raised and it is disabled, the program is in 
error. 

Implicit action: A message is printed and the ERROR condition is raised. 

Normal return: Control returns to the point immediately following the point at 
which the condition was raised. 

Condition code: 31 O 

Note: If the SIZE condition is disabled, an attempt to assign an oversize number 
to a fixed decimal variable can raise the FIXEDOVERFLOW condition. 

Because checking the result lengths requires a substantial overhead in both 
storage space and run time, the FIXEDOVERFLOW condition is primarily used for 
program testing. It can be removed for production programs. For more information 

Chapter 16. Conditions 319 



INVALIDOP 

on testing and production application programs, refer to the PU/ Package/2 Pro
gramming Guide. 

INVALIDOP condition 

KEY condition 

Status: INVALIDOP is enabled throughout the program, except within the scope 
of the NOINVALIDOP condition prefix. 

Result: The result of the invalid operation is undefined. 

Cause and syntax: The I NVALI DOP computational condition is raised when any 
of the following are detected during the evaluation of floating-point expressions. 

• Subtraction of two infinities 
• Multiplication of infinity by O 
• Division of two infinities 
• Division of zero by zero 
• 387 coprocessor invalid operations 
• 387 coprocessor stack faults 
• Other 387 coprocessor exceptions. 

The syntax for I NVALI DOP is: 

~~-INVALIDOP----------------------- ... 

Implicit action: The ERROR condition is raised. 

Normal return: Control returns to the point immediately following the point at 
which the condition was raised. If INVALIDOP was not signalled, continued use of 
the data related to the invalid operation can raise additional conditions. If a 387 
hardware exception occurs, continued program execution can raise additional con
ditions. 

Condition code: 290 

Status: KEY is always enabled. 

Result: The keyed record is undefined, and the statement in which it appears is 
ignored. 

Cause and syntax: The KEY input/output condition is raised when a record with a 
specified key cannot be found. The condition can be raised only during operations 
on keyed records. It is raised for the condition codes listed below. 

The syntax for KEY is: 

~~-KEY-( ff le-reference)------------------- ... 

320 PUI Package/2 Language Reference 



NAME 

When a LOCATE statement is used for data set, the KEY condition for this 
LOCATE statement is not raised until the next WRITE or LOCATE statement for 
the file, or when the file is closed. 

Implicit action: A message is printed and the ERROR condition is raised. 

Normal return: Control passes to the statement immediately following the state
ment that raised KEY. 

If a file is closed in an ON-unit for this condition, the results of normal return are 
undefined. Exit from the ON-unit with the closed file must be achieved with a GO 
TO statement. 

Condition codes: 50-58 

NAME condition 
Status: NAME is always enabled. 

Result: The named data is undefined. 

Cause and syntax: The NAME input/output condition can be raised only during 
execution of a data-directed GET statement with the FILE option. It is raised in any 
of the following situations: 

• The syntax is not correct, as described under "Syntax of data-directed data" on 
page 260. 

• The name is missing or invalid: 

- No counterpart is found in the data list. 
- If there is no data list, the name is not known in the block. 
- A qualified name is not fully qualified. 
- More than 256 characters have been specified for a fully qualified name. 
- DBCS contains a byte outside the valid range X' 41 ' to X' FE' . 

• A subscript list is missing or invalid: 

- A subscript is missing. 
- The number of subscripts is incorrect. 
- More than 10 digits are in a subscript (leading zeros ignored). 
- A subscript is outside the allowed range of the current allocation of the vari-

able. 

You can retrieve the incorrect data field by using the built-in function DATAFIELD in 
the ON-unit. 

The syntax for NAME is: 

.,..,._NAME-( file-reference)------------------- ... 

Implicit action: The incorrect data field is ignored, a message is printed, and exe
cution of the GET statement continues. 

Chapter 16. Conditions 321 



OVERFLOW 

Normal return: The execution of the GET statement continues with the next name 
in the stream. 

Condition code: 10 

OVERFLOW condition 
Status: OVERFLOW is enabled throughout the program, except within the scope 
of the NOOVERFLOW condition prefix. 

Result: The value of such an invalid floating-point number is undefined. 

Cause and syntax: The OVERFLOW computational condition is raised when the 
magnitude of a floating-point number exceeds the maximum allowed. 

The OVERFLOW condition differs from the SIZE condition in that SIZE is raised 
when a result exceeds the declared size of a variable, while OVERFLOW is raised 
when a result exceeds the maximum allowed by the computer. 

The syntax for OVERFLOW is: 

.,..,._OVERFLOW----------------------- ... 

Abbreviation: OFL 

If the OVERFLOW condition is raised and it is disabled, the program is in error. 

Implicit action: A message is printed and the ERROR condition is raised. 

Normal return: Control returns to the point immediately following the point at 
which the condition was raised. 

Condition code: 300 

RECORD condition 
Status: RECORD is always enabled. 

Result: The length prefix for the specified file can be inaccurately transmitted. 

Cause and syntax: The RECORD input/output condition is raised if the specified 
record is truncated. The condition can be raised only during a READ, WRITE, 
LOCATE, or REWRITE operation . 

.,..,._RECORD-( file-reference)----------------- ... 

If the SCALARVARYING option is applied to the file (It must be applied to a file 
using locate mode to transmit varying-length strings.), a 2-byte length prefix is 
transmitted with an element varying-length string. The length prefix is not reset if 
the RECORD condition is raised. If the SCALARVARYING option is not applied to 
the file, the length prefix is not transmitted. On input, the current length of a 

322 PUI Package/2 Language Reference 



SIZE condition 

SIZE 

varying-length string is set to the shorter of the record length and the maximum 
length of the string. 

Implicit action: A message is printed and the ERROR condition is raised. 

Normal return: Execution continues with the statement immediately following the 
one for which RECORD was raised. 

If a file is closed in an ON-unit for this condition, the results of normal return are 
undefined. Exit from the ON-unit with the closed file must be achieved with a GO 
TO statement. 

Condition codes: 20-24 

Status: SIZE is disabled throughout the program, except within the scope of the 
SIZE condition prefix. 

Result: The result of the assignment is undefined. 

Cause and syntax: The SIZE computational condition is raised only when high
order (that is, leftmost) significant binary or decimal digits are lost in an attempted 
assignment to a variable or an intermediate result or in an input/output operation. 
This loss can result from a conversion involving different data types, different 
bases, different scales, or different precisions. The size condition is not enabled 
unless it appears in a condition prefix. 

The syntax for SIZE is: 

~~-SIZE-------------------------+~ 

SIZE is raised when the size of the value being assigned to a data item exceeds 
the declared (or default) size of the data item, even if this is not the actual size of 
the storage that the item occupies. For example, a fixed binary item of precision 
(20) will occupy a fullword in storage, but SIZE is raised if a value whose size 
exceeds FIXED BINARY(20) is assigned to it. 

Because checking sizes requires substantial overhead in both storage space and 
run time, the SIZE condition is primarily used for program testing. It can be 
removed from production programs. For more information on test and production 
application programs, refer to the PU/ Package/2 Programming Guide. 

The SIZE condition differs from the FIXEDOVERFLOW condition in that 
FIXEDOVERFLOW is raised when the size of a calculated fixed-point value 
exceeds the maximum allowed by the implementation. SIZE can be raised on 
assignment of a value regardless of whether or not FIXEDOVERFLOW was raised 
in the calculation of that value. 

If the SIZE condition is raised and it is disabled, the program is in error. 

Implicit action: A message is printed and the ERROR condition is raised. 

Chapter 16. Conditions 323 



STORAGE 

Normal return: Control returns to the point immediately following the point at 
which the condition was raised. 

Condition codes: 340, 341 

STORAGE condition 
Status: STORAGE is always enabled. 

Result: The result depends on the type of variable for which attempted storage 
allocation raised the condition. 

• After an ALLOCATE statement for a controlled variable, that variable's gener
ation is not allocated. A reference to that controlled variable results in 
accessing the generation (if any) before the ALLOCATE statement. 

• After an ALLOCATE statement for a based variable, the variable is not allo
cated and its associated pointer is undefined. 

Cause and syntax: The STORAGE condition allows the program to gain control 
for the failure of an ALLOCATE statement that attempted to a!!ocate BASED or 
CONTROLLED storage outside of an AREA. Failure of an ALLOCATE statement 
in an AREA raises the AREA condition. 

The ON-unit for the STORAGE condition can attempt to free allocated storage. If 
the ON-unit is unable to free sufficient storage, it can provide the necessary steps 
to terminate the program without losing diagnostic information. 

The syntax for STORAGE is: 

1>1>-STORAGE-----------------------• 

!mp!icit action: ThA 1=1:u~r.R l"nnnitinn ic- ... ~ic-o~ 
1 11- -• 11 ,......,., I "''-'llUll.1"'11 1"'1 IU,l...;lUU. 

Normal return Control returns to the point immediately following the point at which 
the condition was raised. If the STORAGE condition was not signalled, but was 
caused by an ALLOCATE statement, the ALLOCATE statement that failed is 
retried. 

Condition codes: 450, 451 

STRINGRANGE condition 
Status: STRINGRANGE is disabled throughout the program, except within the 
scope of the STRINGRANGE condition prefix. 

Result: The value of the specified SUBSTR is altered. 

, Cause and syntax: The STRINGRANGE program-checkout condition is raised 
whenever the values of the arguments to a SUBSTR reference fail to comply with 
the rules described for the SUBSTR built-in function. It is raised for each reference 
to an invalid argument. 

324 PUI Package/2 Language Reference 



STRINGSIZE 

The syntax for STRINGRANGE is: 

11>11>-STRINGRANGE-----------------------+<11 

Abbreviation: STRG 

Implicit action: A message is printed and processing continues as described for 
normal return. 

Normal return: Execution continues with a revised SUBSTR reference. for which 
the value is defined as follows: 

Assuming that the length of the source string (after execution of the ON-unit, if 
specified) is k, the starting point is i, and the length of the substring is j; 

• If i is greater than k, the value is the null string. 

• If i is less than or equal to k, the value is that substring beginning at the mth 
character, bit, or graphic of the source string and extending n characters, 
bits, or graphics, where m and n are defined by: 

M = max( I, 1 ) 

N =max( 8,min( J + min(l,l) - l,K - M + 1 )) 

if J is specified. 

N = K - M + 1 

if J is not specified. 

This means that the new arguments are forced within the limits. 

The values of i and j are established before entry to the ON-unit. They are not 
reevaluated on return from the ON-unit. 

The value of k might change in the ON-unit if the first argument of SUBSTR is a 
varying-length string. The value n is computed on return from the ON-unit using 
any new value of k. 

Condition code: 350 

STRINGSIZE condition 
Status: STRINGSIZE is disabled throughout the program, except within the scope 
of the STRINGSIZE condition prefix. 

Result: After the condition action, the truncated string is assigned to its target 
string. The right-hand characters, bits, or graphics of the source string are trun
cated so that the target string can accommodate the source string. 

Cause and syntax: The STRINGSIZE program-checkout condition is raised when 
you attempt to assign a string to a target with a shorter maximum length. 

Chapter 16. Conditions 325 



SUBSCRIPTRANGE 

The syntax for STRINGSIZE is: 

••-STRINGSIZE----------------------~ 

Abbreviation: STRZ 

Implicit action: A message is printed and processing continues. 

Normal return: Execution continues from the point at which the condition was 
raised. 

Condition codes: 150, 151 

SUBSCRIPTRANGE condition 
Status: SUBSCRIPTRANGE is disabied throughout the program, except within the 
scope of the SUBSCRIPTRANGE condition prefix. 

Resuit: \tVhen SUBSCRiPTRANGE has been raised, the value of the invalid sub
script is undefined, and, hence, the reference is also undefined. 

Cause and syntax: The SUBSCRIPTRANGE program-checkout condition is 
raised whenever a subscript is evaluated and found to lie outside its specified 
bounds. The order of raising SUBSCRIPTRANGE relative to evaluation of other 
subscripts is undefined. 

The syntax for SUBSCRIPTRANGE is: 

••-SUBSCRIPTRANGE---------------------~ 

Abbreviation: SUBRG 

Implicit action: A message is printed and the ERROR condition is raised. 

Normal return: Normal return from a SUBSCRIPTRANGE ON-unit raises the 
ERROR condition. 

Condition codes: 520 

TRANSMIT condition 
Status: TRANSMIT is always enabled. 

Result Raising the TRANSMIT condition indicates that any data transmitted is 
potentially incorrect. 

Cause and syntax: The TRANSMIT input/output condition can be raised during 
any input/output operation. It is raised by an uncorrectable transmission error of a 
record (or of a block, if records are blocked), which is an input/output error that 
could not be corrected during execution. It can be caused by a damaged recording 
medium, or by incorrect specification or setup. 

326 PUI Package/2 Language Reference 



UNDEFINEDFILE 

The syntax for TRANSMIT is: 

.,,..,,._TRANSMIT-( file-reference)----------------- ... 

During input, TRANSMIT is raised after transmission of the potentially incorrect 
record. If records are blocked, TRANSMIT is raised for each subsequent record in 
the block. 

During output, TRANSMIT is raised after transmission. If records are blocked, 
transmission will occur when the block is complete rather than after each output 
statement. 

When a spanned record is being updated, the TRANSMIT condition is raised on the 
last segment of a record only. It is not raised for any subsequent records in the 
same block, although the integrity of these records cannot be assumed. 

Implicit action: A message is printed and the ERROR condition is raised. 

Normal return: Processing continues as though no error had occurred, allowing 
another condition (for example, RECORD) to be raised by the statement or data 
item that raised the TRANSMIT condition. 

If a file is closed in an ON-unit for this condition, the results of normal return are 
undefined. Exit from the ON-unit with the closed file must be achieved with a GO 
TO statement. 

Condition codes: 40-46 

UNDEFINEDFILE condition 
Status: UNDEFINEDFILE is always enabled. 

Result: Specified files are undefined to the application program. 

Cause and syntax: The UNDEFINEDFILE input/output condition is raised when
ever an unsuccessful attempt to open a file is made. If the attempt is made by 
means of an OPEN statement that specifies more than one file, the condition is 
raised after attempts to open all specified files. 

The syntax for UNDEFINEDFILE is: 

ll>ll>-UNDEF I NED FI LE-( fj 7 e-reference )---------------... 

Abbreviation: UNDF 

If UNDEFINEDFILE is raised for more than one file in the same OPEN statement, 
ON-units are executed according to the order of appearance (taken from left to 
right) of the file names in that OPEN statement. 

If UNDEFINEDFILE is raised by an implicit file opening in a data transmission 
statement, upon normal return from the ON-unit, processing continues with the 

Chapter 16. Conditions 327 



UNDERFLOW 

remainder of the data transmission statement. If the file was not opened in the 
ON-unit, the statement cannot continue and the ERROR condition is raised. 

The UNDEFINEDFILE condition is raised not only by conflicting attributes (such as 
DIRECT with PRINT), but also by: 

• Block size smaller than record size (except when records are spanned) 

• LINESIZE exceeding the maximum allowed 

• KEYLENGTH zero or not specified for creation of INDEXED data sets 

• Specifying a KEYLOC option, for an INDEXED data set, with a value resulting 
in KEYLENGTH + KEYLOC exceeding the record length 

• Specifying a V-format logical record length of less than 18 bytes for STREAM 
data sets 

• Specifying a block size that is not an integral multiple of the record size for 
FB-format records 

• Specifying a logical record length that is not at least 4 bytes smaller than the 
specified block size for VB-format records. 

Implicit action: A message is printed and the ERROR condition is raised. 

Normal return: Upon the normal completion of the final ON-unit, control is given 
to the statement immediately following the statement that raised the condition. 

Condition codes: 80-89, 91-95 

UNDERFLOW condition 
Status: UNDERFLOW is enabled throughout the program, except within the scope 
of the NOUNDERFLOW condition prefix. 

Result: The invalid floating-point value is set to 0. 

Cause and syntax: The UNDERFLOW computational condition is raised when 
the magnitude of a floating-point number is smaller than the minimum allowed. 

JJ>JJ>-UNDERFLOW-----------------------...i 

Abbreviation: UFL 

UNDERFLOW is not raised when equal numbers are subtracted (often called signif
icance error). 

The expression )((- Yl (where Y>O) can be evaluated by taking the reciprocal of XV; 
hence, the OVERFLOW condition might be raised instead of the UNDERFLOW 
condition. 

Implicit action: A message is printed, and execution continues from the point at 
which the condition was raised. 

328 PUI Package/2 Language Reference 



ZERO DIVIDE 

Normal return: Control returns to the point immediately following the point at 
which the condition was raised. 

Condition code: 330 

ZERODIVIDE condition 
Status: ZERODIVIDE is enabled throughout the program, except within the scope 
of the NOZERODIVIDE condition prefix. 

Result: The result of a division by zero is undefined. 

Cause and syntax: The ZERODIVIDE computational condition is raised when an 
attempt is made to divide by zero. This condition is raised for fixed-point and 
floating-point division. If the numerator of a floating-point divide is also zero, 
INVALIDOP is raised. 

The syntax for ZERODIVIDE is: 

11>11>-ZERODIVIDE----------------------~ 

Abbreviation: ZDIV 

If the ZERODIVIDE condition is raised and it is disabled, the program is in error. 

Implicit action: A message is printed and the ERROR condition is raised. 

Normal return: Control returns to the point immediately following the point at 
which the condition was raised. 

Condition code: 320 

Condition codes 
Condition codes listed in this section reflect an aggregate of condition codes gener
ated by all implementations. Some might not be generated for a particular platform. 

The following is a summary of all condition codes in numerical sequence. 

3 This condition is raised if, in a SELECT group, no WHEN clause is selected 
and no OTHERWISE clause is present. 

4 SIGNAL FINISH, or STOP statement executed. 

9 SIGNAL ERROR statement executed. 

10 SIGNAL NAME statement executed. 

20 SIGNAL RECORD statement executed. 

21 Record variable smaller than record size. Either: 

• The record is larger than the variable in a READ INTO statement; the 
remainder of the record is lost. 

• The record length specified for a file with fixed-length records is larger 
than the variable in a WRITE, REWRITE, or LOCATE statement; the 

Chapter 16. Conditions 329 



Condition codes 

remainder of the record is undefined. If the variable is a varying-length 
string, RECORD is not raised if the SCALARVARYING option is applied 
to the file. 

22 Record variable larger than record size. Either: 

• The record length specified for a file with fixed-length records is smaller 
than the variable in a READ INTO statement; the remainder of the vari
able is undefined. If the variable is a varying-length string, RECORD is 
not raised if the SCALARVARYING option is applied to the file. 

• The maximum record length is smaller than the variable in a WRITE, 
REWRITE, or LOCATE statement. For WRITE or REWRITE, the 
remainder of the variable is lost; for LOCATE, the variable is not trans
mitted. 

• The variable in a WRITE or REWRITE statement indicates a zero 
length; no transmission occurs. If the variable is a varying-length string, 
RECORD is not raised if the SCALARVARYING option is applied to the 
file. 

23 Record variable length is either zero or too short to contain the embedded 
1.-a" ''""1. 

The variable in a WRITE or REWRITE statement is too short to contain the 
data set embedded key; no transmission occurs. (This case currently 
applies only to indexed key-sequenced data sets.) 

24 Zero length record was read from a REGIONAL data set. 

40 SIGNAL TRANSMIT statement executed. 

41 Uncorrectable transmission error in output data set. 

42 Uncorrectable transmission error in input data set. 

43 Uncorrectable transmission error on output to index set. 

44 Uncorrectable transmission error on input from index set. 

45 Uncorrectable transmission error on output to indexed consecutive data set. 

46 Uncorrectable transmission error on input from consecutive data set. 

50 SIGNAL KEY statement executed. 

51 Key specified cannot be found. 

52 Attempt to add keyed record that has same key as a record already present 
in data set; or, in a REGIONAL(1) data set, attempt to write into a region 
already containing a record. 

53 Value of expression specified in KEYFROM option during sequential cre
ation of INDEXED or REGIONAL data set is less than value of previously 
specified key or region number. 

54 Key conversion error, possibly due to region number not being numeric 
character. 

55 Key specification is null string or begins (8)' 1 'B or a change of embedded 
key has occurred on a sequential REWRITE[FROM] for an INDEXED or 
key-sequenced data set. 

56 Attempt to access a record using a key that is outside the data set limits. 

330 PUI Package/2 Language Reference 



Condition codes 

57 No space available to add a keyed record on INDEXED insert. 

58 Key of record to be added lies outside the range(s) specified for the data 
set. 

70 SIGNAL ENDFILE statement executed. 

80 SIGNAL UNDEFINEDFILE statement executed. 

81 Conflict in file attributes exists at open time between attributes in DECLARE 
statement and those in explicit or implicit OPEN statement. 

82 Conflict between file attributes and physical organization of data set (for 
example, between file organization and device type), or indexed data set 
has not been loaded. 

83 After merging ENVIRONMENT options with DD statement and data set 
label, data set specification is incomplete; for example, block size or record 
format has not been specified. 

84 No DD statement associating file with a data set. 

85 During initialization of a DIRECT OUTPUT file associated with a 
REGIONAL data set, an input/output error occurred. 

86 LINESIZE greater than implementation-defined maximum, or invalid value in 
an ENVIRONMENT option. 

87 After merging ENVIRONMENT options with DD statement and data set 
label, conflicts exist in data set specification; the value of LRECL, BLKSIZE 
or RECSIZE are incompatible with one another or the DCB FUNCTION 
specified. 

88 After merging ENVIRONMENT options with DD statement and data set 
label, conflicts exist in data set specification; the resulting combination of 
MODE/FUNCTION and record format are invalid. 

89 Password invalid or not specified. 

90 SIGNAL ENDPAGE statement executed. 

91 ENVIRONMENT option invalid for file accessing indexed data set. 

92 During opening of an index data set with the BKWD option, the attempt to 
position the data set at the last record failed. 

93 Unidentified error detected by the operating system while opening a data 
set. 

94 REUSE specified for a nonreusable data set. 

95 Alternate index specified for an index data set is empty. 

96 Incorrect OS/2 environment variable. 

99 File cannot be opened. 

150 SIGNAL STRINGSIZE statement executed or STRINGSIZE condition 
occurred. 

151 Truncation occurred during assignment of a mixed character string. 

290 SIGNAL INVALIDOP statement was executed or INVALIDOP exception 
occurred. 

Chapter 16. Conditions 331 



Condition codes 

300 SIGNAL OVERFLOW statement executed or OVERFLOW condition 
occurred. 

310 SIGNAL FIXEDOVERFLOW statement executed or FIXEDOVERFLOW 
condition occurred. 

320 SIGNAL ZERODIVIDE statement executed or ZERODIVIDE condition 
occurred. 

330 SIGNAL UNDERFLOW statement executed or UNDERFLOW condition 
occurred. 

340 SIGNAL SIZE statement executed; or high-order nonzero digits have been 
lost in an assignment to a variable or temporary, or significant digits have 
been lost in an input/output operation. 

341 High order nonzero digits have been lost in an input/output operation. 

350 SIGNAL STRINGRANGE statement executed or STRINGRANGE condition 
occurred. 

360 Attempt to allocate a based variable within an area that contains insufficient 
free storage for allocation to be made. 

361 Insufficient space in targei area for assignment of source area. 

362 SIGNAL AREA statement executed. 

400 SIGNAL ATTENTION statement executed. 

450 SIGNAL STORAGE statement was executed. 

451 ALLOCATE statement failed; insufficient storage to satisfy request. 

500 SIGNAL CONDITION (name) statement executed. 

520 SIGNAL SU8SCRIPTRANGE statement executed, or subscript has been 
evaluated and found to lie outside its specified bounds. 

600 SIGNAL CONVERSION statement executed. 

601 Invalid conversion attempted during input/output of a character string. 

603 Error during processing of an F-format item for a GET STRING statement. 

604 Error during processing of an F-format item for a GET FILE statement. 

605 Error during processing of an F-format item for a GET FILE statement fol-
lowing a TRANSMIT condition. 

606 Error during processing of an E-format item for a GET STRING statement. 

607 Error during processing of an E-format item for a GET FILE statement. 

608 Error during processing of an E-format item for a GET FILE statement fol-
lowing a TRANSMIT condition. 

609 Error during processing of a 8-format item for a GET STRING statement. 

610 Error during processing of a 8-format item for a GET FILE statement. 

611 Error during processing of a 8-format item for a GET FILE statement fol
lowing TRANSMIT condition. 

612 Error during character value to arithmetic conversion. 

613 Error during character value to arithmetic conversion for a GET or PUT 
FILE statement. 

332 PUI Package/2 Language Reference 



Condition codes 

614 Error during character value to arithmetic conversion for a GET or PUT 
FiLE statement following a TRANSMIT condition. 

615 Error during character value to bit value conversion. 

616 Error during character value to bit value conversion for a GET or PUT FILE 
statement. 

617 Error during character value to bit value conversion for a GET or PUT FILE 
statement following a TRANSMIT condition. 

618 Error during character value to picture conversion. 

619 Error during character value to picture conversion for a GET or PUT FILE 
statement. 

620 Error during character value to picture conversion for a GET or PUT FILE 
statement following a TRANSMIT condition. 

621 Error in decimal P-format item for a GET STRING statement. 

622 Error in decimal P-format input for a GET FILE statement. 

623 Error in decimal P-format input for a GET FILE statement following a 
TRANSMIT condition. 

624 Error in character P-format input for a GET FILE statement. 

625 Error exists in character P-format input for a GET FILE statement. 

626 Error exists in character P-format input for a GET FILE statement following 
a TRAN SM IT condition. 

627 A graphic or mixed character string encountered in a nongraphic environ
ment. 

628 A graphic or mixed character string encountered in a nongraphic environ
ment on input. 

629 A graphic or mixed character string encountered in a nongraphic environ-
ment on input after TRANSMIT was detected. 

633 An invalid character detected in a X, BX, or GX string constant. 

634 An invalid character detected in a X, BX, or GX string constant on input. 

635 An invalid character detected in a X, BX, or GX string constant on input 
after TRANSMIT was detected. 

636 A shift character detected in a graphic string. 

639 During processing of a mixed character string, one of the following 
occurred: 

• A shift-in present in the SBCS portion. 
• A shift-out present in the graphic (double-byte) portion. (A shift-out 

cannot appear in either byte of a graphic character). 
• A shift-in present in the second byte of a graphic character. 

640 Conversion from picture contained an invalid character. 

641 Conversion from picture contained an invalid character on input or output. 

642 Conversion from picture contained an invalid character on input after 
TRANSMIT was detected. 

Chapter 16. Conditions 333 



Condition codes 

643 Error during processing of a graphic F-format item for a GET STRING 
statement. 

644 Error during processing of a graphic F-format item for a GET FILE state
ment. 

645 Error during processing of a graphic F-format item for a GET FILE state
ment following a TRANSMIT condition. 

646 Error during processing of a graphic E-format item for a GET STRING 
statement. 

647 Error during processing of a graphic E-format item for a GET FILE state
ment. 

648 Error during processing of a graphic E-format item for a GET FILE state
ment following a TRANSMIT condition. 

649 Error during processing of a graphic B-format item for a GET STRING 
statement. 

650 Error during processing of a graphic B-format item for a GET FILE state
ment. 

651 Error during processing of a graphic B-format item for a GET FILE state
ment following TRANSMIT condition. 

652 Error during graphic character value to arithmetic conversion. 

653 Error during graphic character value to arithmetic conversion for a GET or 
PUT FILE statement. 

654 Error during graphic character value to arithmetic conversion for a GET or 
PUT FILE statement following a TRANSMIT condition. 

655 Error during graphic character value to bit value conversion. 

656 Error during graphic character value to bit value conversion for a GET or 
PUT FILE statement. 

657 Error during graphic character va!ue to bit va!ue conversion for a GET oi 
PUT FILE statement following a TRANSMIT condition. 

658 Error during graphic character value to picture conversion. 

659 Error during graphic character value to picture conversion for a GET or PUT 
FILE statement. 

660 Error during graphic character value to picture conversion for a GET or PUT 
FILE statement following a TRANSMIT condition. 

661 Error in decimal graphic P-format item for a GET STRING statement. 

662 Error in decimal graphic P-format input for a GET FILE statement. 

663 Error in decimal graphic P-format input for a GET FILE statement following 
a TRANSMIT condition. 

664 Error in character graphic P-format input for a GET FILE statement. 

665 Error exists in character graphic P-format input for a GET FILE statement. 

666 Error exists in character graphic P-format input for a GET FILE statement 
following a TRANSMIT condition. 

1002 GET or PUT STRING specifies data exceeding size of string. 

334 PUI Package/2 Language Reference 



Condition codes 

1003 Further output prevented by TRANSMIT or KEY conditions previously 
raised for the data set. 

1004 Attempt to use PAGE, LINE, or SKIP<= O for nonprint file. 

1005 In a DISPLAY(expression) REPLY (character-reference) statement, 
expression or character-reference is zero length. 

1007 A REWRITE or a DELETE statement not preceded by a READ. 

1008 Unrecognized field preceding the assignment symbol in a string specified in 
a GET STRING DATA statement. 

1009 An input/output statement specifies an operation or an option which con
flicts with the file attributes. 

1010 A built-in function or pseudovariable referenced an unopened file. 

1011 Data management detected an input/output error but is unable to provide 
any information about its cause. 

1013 Previous input operation incomplete; REWRITE or DELETE statement 
specifies data which has been previously read in by a READ statement with 
an EVENT option, and no corresponding WAIT has been executed. 

1014 Attempt to initiate further input/output operation when number of incomplete 
operations equals number specified by ENVIRONMENT option NCP(n) or 
by default. 

1015 Event variable specified for an input/output operation when already in use. 

1016 After UNDEFINEDFILE condition raised as a result of an unsuccessful 
attempt to implicitly open a file, the file was found unopened on normal 
return from the ON-unit. 

1018 End of file or string encountered in data before end of data-list or in edit
directed transmission format list. 

1019 Attempt to close file not opened in current process. 

1020 Further input/output attempted before WAIT statement executed to ensure 
completion of previous READ. 

1021 Attempt to access a record locked by another file in this process. 

1022 Unable to extend indexed data set. 

1023 Exclusive file closed while records still locked in a subtask 

1024 Incorrect sequence of 1/0 operations on device-associated file. 

1025 Insufficient virtual storage available to complete request. 

1026 No position established in index data set. 

1027 Record control interval already held in exclusive control. 

1028 Requested record lies on unmounted volume. 

1029 Attempt to reposition in index data set failed. 

1030 An error occurred during index upgrade on a index data set. 

1031 Invalid sequential write attempted on index data set. 

1040 A data set open for output used all available space. 

1041 An attempt was made to write a record containing a record delimiter. 

Chapter 16. Conditions 335 



Condition codes 

1042 Record in data set is not properly delimited. 

1102 An error occurred in PUI storage management. Storage to be freed was 
pointed to by an invalid address. 

1104 An internal error occurred in PUI library. 

1105 Unable to create an object window. 

1500 Computational error; short floating-point argument of SQRT built-in function 
is less than zero. 

1501 Computational error; long floating-point argument of SQRT built-in function 
is less than zero. 

1502 Computational error; extended floating-point argument of SQRT built-in 
function is less than zero. 

1503 Computational error in LOG, LOG2, or LOG10 built-in function; extended 
floating-point argument is less than zero. 

1504 Computational elioi in LOG, LOG2, or LOG10 buiit-in function; short 
floating-point argument is less than zero. 

1505 Computational error in LOG, LOG2 or LOG10 built-in function; !ong floating= 
point argument is less than zero. 

1506 Computational error in SIN, COS, SINO, or COSD built-in function; absolute 
value of short floating-point argument exceeds (2**63) (SIN and COS) or 
(2**63)*180 (SINO and COSD). 

1507 Computational error in SIN, COS, SINO, or COSD built-in function; absolute 
value of long floating-point argument exceeds (2**63) (SIN and COS) or 
(2**63)*180 (SINO and COSD). 

1508 Computational error; absolute value of short floating-point argument of TAN 
or TAND built-in function is greater than or equal to (2**63). 

1509 Computational error; absolute value of long floating-point argument of TAN 
or TAND built-in function exceeds, respectively, (2**63) or (2**63)*180. 

1510 Computational error; short floating-point arguments of ATAN or ATAND 
built-in function both invalid. 

1511 Computational error; long floating-point arguments of ATAN or AT AND 
built-in function both invalid. 

1514 Computational error; absolute value of short floating-point argument of 
ATANH built-in function >1. 

1515 Computational error; absolute value of long floating-point argument of 
ATANH built-in function >1. 

1516 Computational error; absolute value of extended floating-point argument of 
ATANH built-in function >1. 

1517 Computational error in SIN, COS, SINO, or COSD built-in function; argu
ment of extended floating-point argument exceeds (2**64). 

1518 Computational error; absolute value of short floating-point argument of ASIN 
or ACOS built-in function exceeds 1. 

1519 Computational error; absolute value of long floating-point argument of ASIN 
or ACOS built-in function exceeds 1. 

336 PUI Package/2 Language Reference 



Condition codes 

1520 Computational error; absolute value of extended floating-point argument of 
ASIN, ACOS built-in function exceeds 1. 

1521 Computational error; extended floating-point arguments of AT AN or AT AND 
built-in function both invalid. 

1522 Computational error; absolute value of extended floating-point argument of 
TAN or TAND built-in function>= (2**64) or (2**64)*180, respectively. 

1523 Computational error; absolute value of real short floating-point argument of 
SINH or COSH built-in function greater than 89.41. 

1524 Absolute value of real long floating-point argument of SINH or COSH argu
ment greater than or equal to 710.47. 

1525 Absolute value of real extended floating-point argument of SINH or COSH 
than or equal to 11357 .22. 

1526 Computational error; absolute value of real short floating-point argument of 
COTAN or COTAND was greater than or equal to (2**63). 

1527 Computational error; absolute value of real long floating-point argument of 
COTAN or COTAND was greater than or equal (2**63). 

1528 Computational error; absolute value of real extended floating-point argu
ment of COTAN or COTAND was greater than or equal to (2**64). 

1529 Computational error in SIN, COS, SINO, or COSD built-in function; absolute 
value of the re.al part of complex short floating-point argument greater than 
or equal to (2**63) 

1530 Computational error in SIN, COS, SINO, or COSD built-in function; absolute 
value of the real part of complex long floating-point argument greater than 
or equal to (2**63). 

1531 Computational error in SIN, COS, SINO, or COSD built-in function; absolute 
value of the real part of complex extended floating-point argument was 
greater than or equal to (2**64). 

1550 Computational error; during exponentiation, real short floating-point base is 
zero and integer exponent is not positive. 

1551 Computational error; during exponentiation, real long floating-point base is 
zero and integer exponent is not positive. 

1552 Computational error; during exponentiation, real short floating-point base is 
zero and the floating-point or noninteger exponent is not positive. 

1553 Computational error; during exponentiation, real long floating-point base is 
zero and the floating-point or noninteger exponent is not positive. 

1554 Computational error; during exponentiation, complex short floating-point 
base is zero and integer exponent is not positive. 

1555 Computational error; during exponentiation, complex long floating-point 
base is zero and integer exponent is not positive. 

1556 Computational error; during exponentiation, complex short floating-point 
base is zero and floating-point or noninteger exponent is not positive and 
real. 

1557 Computational error; during exponentiation, complex long floating-point 
base is zero and floating-point or noninteger exponent is not positive and 
real. 

Chapter 16. Conditions 337 



Condition codes 

1558 Computational error; complex short floating-point argument of ATAN or 
ATANH built-in function has value, respectively, of ±11 or ±1. 

1559 Computational error; complex long floating-point argument of ATAN or 
ATANH built-in function has value, respectively, of ±11 or ±1. 

1560 Computational error; during exponentiation, real extended floating-point 
base is zero and integer exponent not positive. 

1561 Computational error; during exponentiation, real extended floating-point 
base is zero and floating-point or noninteger exponent is not positive. 

1562 Computational error; during exponentiation, complex extended floating-point 
base is zero and integer exponent is not positive. 

1563 Computational error; complex extended floating-point base is zero and 
floating-point or nonintegral exponent is not positive. 

1564 Computational error; complex extended floating-point argument of ATAN or 
ATANH built-in function has value, respectively, of ±11 or ±1. 

1565 Computational error; real short floating-point argument of EXP built-in func
tion was less than -87 .33. 

1566 Compuiaiionai error; reai iong fioating-point argument of EXP built-in func
tion was less than -708.39. 

1567 Computational error; real extended floating-point argument of EXP built-in 
function was less than -11355.13. 

1568 Computational error EXP built-in function; absolute value of the imaginary 
part of the complex short floating-point short argument greater than or equal 
to (2**63). 

1569 Computational error EXP built-in function; absolute value of the imaginary 
part of the complex long floating-point short argument greater than or equal 
to (2**63). 

1570 Computational error EXP built-in function; absolute value of the imaginary 
part of the complex extended f!oating~point short argument grnater than or 
equal to (2**64). 

1571 Computational error GAMMA or LOGGAMMA built-in function; real short 
floating point argument is greater than 35.04 (GAMMA) or 4.085E+36 
(LOGGAMMA). 

1572 Computational error GAMMA or LOGGAMMA built-in function; real long 
floating point argument is greater than 171.62 (GAMMA) or 2.559E+305 
(LOG GAMMA). 

1573 Computational error GAMMA or LOGGAMMA built-in function; real 
extended floating point argument is greater than 1755.54 (GAMMA) or 
1.048E+4928 (LOGGAMMA). 

1574 Computational error TANH built-in function; absolute value of the imaginary 
part of the complex short floating-point short argument greater than or equal 
to (2**63). 

1575 Computational error TANH built-in function; absolute value of the imaginary 
part of the complex long floating-point short argument greater than or equal 
to (2**63). 

338 PUI Package/2 Language Reference 



Condition codes 

1576 Computational error TANH built-in function; absolute value of the imaginary 
part of the complex extended floating-point short argument greater than or 
equal to (2**64). 

1577 Computational error in LOG, LOG2, or LOG10 built-in function; real short 
floating-point argument equal to plus or minus zero. 

1578 Computational error in LOG, LOG2, or LOG10 built-in function; real long 
floating-point argument equal to plus or minus zero. 

1579 Computational error in LOG, LOG2, or LOG10 built-in function; real 
extended floating-point argument equal to plus zero. 

1600 Computational error in EXP built-in function; for complex long floating-point 
arguments, the real argument was not plus or minus infinity, and the imagi
nary argument was not zero. 

1601 Computational error in EXP built-in function; for complex extended floating
point arguments, the real argument was not plus or minus infinity, and the 
imaginary argument was not zero. 

1602 Computational error; real part of the complex short floating-point argument 
for the EXP built-in function was not a valid IEEE number. 

1603 Computational error; real part of the complex long floating-point argument 
for the EXP built-in function was not a valid IEEE number. 

1604 Computational error; real part of the complex extended floating-point argu
ment for the EXP built-in function was not a valid IEEE number. 

1605 Computational error; imaginary part of the complex short floating-point argu
ment for the EXP built-in function was not a valid IEEE number. 

1606 Computational error; imaginary part of the complex long floating-point argu
ment for the EXP built-in function was not a valid IEEE number. 

1607 Computational error; imaginary part of the complex extended floating-point 
argument for the EXP built-in function was not a valid IEEE number. 

1608 Computational error; both parts of the complex short floating-point argument 
for the EXP built-in function were not valid IEEE numbers. 

1609 Computational error; both parts of the complex long floating-point argument 
for the EXP built-in function were not valid IEEE numbers. 

1610 Computational error; both parts of the complex extended floating-point argu
ment for the EXP built-in function were not valid IEEE numbers. 

1611 Computational error; real short floating-point argument for EXP built-in func
tion greater than or equal to 88.73. 

1612 Computational error; real long floating-point argument for EXP built-in func
tion greater than or equal to 709.79. 

1613 Computational error; real extended floating-point argument for EXP built-in 
function greater than or equal to 11356.53. 

1614 Computational error; real short floating-point argument for EXP built-in func
tion is not a valid IEEE number. 

1615 Computational error; real long floating-point argument for EXP built-in func
tion is not a valid IEEE number. 

Chapter 16. Conditions 339 



Condition codes 

1616 Computational error; real extended floating-point argument for EXP built-in 
function is not a valid IEEE number. 

1617 Computational error in LOG built-in function; for complex short floating-point 
arguments, the real argument was not plus or minus infinity, and the imagi
nary argument was not zero. 

1618 Computational error in LOG built-in function; for complex long floating-point 
arguments, the real argument was not plus or minus infinity, and the imagi
nary argument was not zero. 

1619 Computational error in LOG, LOG2, or LOG10 built-in function; for complex 
extended floating-point arguments, the real argument was not plus or minus 
infinity, and the imaginary argument was not zero. 

1620 Computational error in LOG, LOG2, or LOG10 built-in function; real part of 
complex short floating-point argument was not a valid IEEE number. 

1621 Computational error in LOG, LOG2, or LOG10 built-in function; real part of 
complex long floating-point argument was not a valid !EEE number. 

1622 Computational error in LOG, LOG2, or LOG10 built-in function; real part of 
complex extended floating-point argument was not a valid IEEE number. 

1623 Computational error in LOG, LOG2, or LOG10 built-in function; imaginary 
part of complex short floating-point argument was not a valid IEEE number. 

1624 Computational error in LOG, LOG2, or LOG10 built-in function; imaginary 
part of complex long floating-point argument was not a valid IEEE number. 

1625 Computational error in LOG, LOG2, or LOG10 built-in function; imaginary 
part of complex extended floating-point argument was not a valid IEEE 
number. 

1626 Computational error in LOG, LOG2, or LOG10 built-in function; both parts of 
complex short floating-point argument were not valid IEEE numbers. 

1627 Computational error in LOG, LOG2, or LOG10 built-in function; both parts of 
complex long floating-point argument were not valid IEEE numbers. 

1628 Computational error in LOG, LOG2, or LOG10 built-in function; both parts of 
complex extended floating-point argument were not valid IEEE numbers. 

1629 Computational error in LOG, LOG2, or LOG10 built-in function; real short 
floating-point argument is not a valid IEEE number. 

1630 Computational error in LOG, LOG2, or LOG10 built-in function; real long 
floating-point argument is not a valid IEEE number. 

1631 Computational error in LOG, LOG2, or LOG10 built-in function; real 
extended floating-point argument is not a valid IEEE number. 

1650 Computational error; during exponentiation, real long floating-point base is 
plus or minus infinity, and real long floating-point exponent is zero. 

1651 Computational error; during exponentiation, real extended floating-point 
base is plus or minus infinity, and real extended floating-point exponent is 
zero. 

1652 Computational error; during exponentiation for a real short floating-point 
base with a real short floating-point exponent, the first argument was not a 
valid IEEE number. 

340 PUI Package/2 Language Reference 



Condition codes 

1653 Computational error; during exponentiation for a real long floating-point 
base with a real long floating-point exponent, the first argument was not a 
valid IEEE number. 

1654 Computational error; during exponentiation for a real extended floating-point 
base with a real extended floating-point exponent, the first argument was 
not a valid IEEE number. 

1655 Computational error; during exponentiation for a real short floating-point 
base with a real short floating-point exponent, the second argument was not 
a valid IEEE number. 

1656 Computational error; during exponentiation for a real long floating-point 
base with a real long floating-point exponent, the second argument was not 
a valid IEEE number. 

1657 Computational error; during exponentiation for a real extended floating-point 
base with a real extended floating-point exponent, the second argument 
was not a valid IEEE number. 

1658 Computational error; during exponentiation for a real short floating-point 
base with a real short floating-point exponent, both arguments were not 
valid IEEE numbers. 

1659 Computational error; during exponentiation for a real long floating-point 
base with a real long floating-point exponent both arguments were not valid 
IEEE numbers. 

1660 Computational error; during exponentiation for a real extended floating-point 
base with a real extended floating-point exponent, both arguments were not 
valid IEEE numbers. 

1661 Computational error; during exponentiation for complex short floating-point 
base with integer value exponent, an argument plus or minus infinity is 
specified. 

1662 Computational error; during exponentiation for complex long floating-point 
base with integer value exponent, an argument plus or minus infinity is 
specified. 

1663 Computational error; during exponentiation for complex extended floating
point base with integer value exponent, an argument plus or minus infinity 
is specified. 

1664 Computational error; during exponentiation for complex short floating-point 
base with integer value exponent, the real part of the complex argument is 
not a valid IEEE number. 

1665 Computational error; during exponentiation for complex long floating-point 
base with integer value exponent, the real part of the complex argument is 
not a valid IEEE number. 

1666 Computational error; during exponentiation for complex extended floating
point base with integer value exponent, the real part of the complex argu
ment is not a valid IEEE number. 

1667 Computational error; during exponentiation for complex short floating-point 
base with integer value exponent, the imaginary part of the complex argu-
ment is not a valid IEEE number. · 

Chapter 16. Conditions 341 



Condition codes 

1668 Computational error; during exponentiation for complex long floating-point 
base with integer value exponent, the imaginary part of the complex argu
ment is not a valid IEEE number. 

1669 Computational error; during exponentiation for complex extended floating
point base with integer value exponent, the imaginary part of the complex 
argument is not a valid IEEE number. 

1670 Computational error; during exponentiation for complex short floating-point 
base with integer value exponent, both parts of the complex argument are 
not valid IEEE numbers. 

1671 Computational error; during exponentiation for complex long floating-point 
base with integer value exponent, both parts of the complex argument are 
not valid IEEE numbers. 

1672 Computational error; during exponentiation for complex extended floating
point base with integer value exponent, both parts of the complex argument 
are not valid IEEE numbers. 

1673 Computational error; during exponentiation, integer base is zero and integer 
exponent is not positive. 

1674 Computational error; during exponentiation, integer base is not plus or 
minus 1 and integer exponent is not positive. 

1675 Computational error; during exponentiation, real short floating-point base 
was plus or minus infinity and integer exponent is equal to plus or minus 
zero. 

1676 Computational error; during exponentiation, real long floating-point base 
was plus or minus infinity and integer exponent is equal to plus or minus 
zero. 

1677 Computational error; during exponentiation, real extended floating-point 
base was plus or minus infinity and integer exponent is equal to plus or 
minus zero. 

1578 Computational eimr; during exponentiation for a reai short fioating-point 
base with an integer exponent, the first argument was not a valid IEEE 
number. 

1679 Computational error; during exponentiation for a real long floating-point 
base with an integer exponent, the first argument was not a valid IEEE 
number. 

1680 Computational error; during exponentiation for a real extended floating-point 
base with an integer exponent, the first argument was not a valid IEEE 
number. 

1681 Computational error in the EXP built-in function; for complex short floating
point arguments, the real argument was not plus or minus infinity, and the 
imaginary argument was not zero. 

1700 Computational error; during exponentiation for a complex long floating-point 
base with a complex long floating-point exponent, imaginary parts of both 
complex arguments are not valid IEEE numbers. 

1701 Computational error; during exponentiation for a complex extended floating
point base with a complex extended floating-point exponent, imaginary parts 
of both complex arguments are not valid IEEE numbers. 

342 PUI Package/2 Language Reference 



Condition codes 

1702 Computational error; during exponentiation for a complex short floating-point 
base with a complex short floating-point exponent, real part of first complex 
argument and imaginary part of second complex argument are not valid 
IEEE numbers. 

1703 Computational error; during exponentiation for a complex long floating-point 
base with a complex long floating-point exponent, real part of first complex 
argument and imaginary part of second complex argument are not valid 
IEEE numbers. 

1704 Computational error; during exponentiation for a complex extended floating
point base with a complex extended floating-point exponent, real part of first 
complex argument and imaginary part of second complex argument are not 
valid IEEE numbers. 

1705 Computational error; during exponentiation for a complex short floating-point 
base with a complex short floating-point exponent, imaginary part of first 
complex argument and real part of second complex argument are not valid 
IEEE numbers. 

1706 Computational error; during exponentiation for a complex long floating-point 
base with a complex long floating-point exponent, imaginary part of first 
complex argument and real part of second complex argument are not valid 
IEEE numbers. 

1707 Computational error; during exponentiation for a complex extended floating
point base with a complex extended floating-point exponent, imaginary part 
of first complex argument and real part of second complex argument are 
not valid IEEE numbers. 

1708 Computational error; during exponentiation for a complex short floating-point 
base with a complex short floating-point exponent, real part of first complex 
argument was the only valid IEEE number. 

1709 Computational error; during exponentiation for a complex long floating-point 
base with a complex long f_loating-point exponent, real part of first complex 
argument was the only valid IEEE number. 

1710 Computational error; during exponentiation for a complex extended floating
point base with a complex extended floating-point exponent, real part of first 
complex argument was the only valid IEEE number. 

1711 Computational error; during exponentiation for a complex short floating-point 
base with a complex short floating-point exponent, imaginary part of first 
complex argument was the only valid IEEE number. 

1712 Computational error; during exponentiation for a complex long floating-point 
base with a complex long floating-point exponent, imaginary part of first 
complex argument was the only valid IEEE number. 

1713 Computational error; during exponentiation for a complex extended floating
point base with a complex extended floating-point exponent, imaginary part 
of first complex argument was the only valid IEEE number. 

1714 Computational error; during exponentiation for a complex short floating-point 
base with a complex short floating-point exponent, real part of second 
complex argument was the only valid IEEE number. 

1715 Computational error; during exponentiation for a complex long floating-point 
base with a complex long floating-point exponent, real part of second 
complex argument was the only valid IEEE number. 

Chapter 16. Conditions 343 



Condition codes 

1716 Computational error; during exponentiation for a complex extended floating
point base with a complex extended floating-point exponent, real part of 
second complex argument was the only valid IEEE number. 

1717 Computational error; during exponentiation for a complex short floating-point 
base with a complex short floating-point exponent, imaginary part of second 
complex argument was the only valid IEEE number. 

1718 Computational error; during exponentiation for a complex long floating-point 
base with a complex long floating-point exponent, imaginary part of second 
complex argument was the only valid IEEE number. 

1719 Computational error; during exponentiation for a complex extended floating
point base with a complex extended floating-point exponent, imaginary part 
of second complex argument was the only valid IEEE number. 

1720 Computational error; during exponentiation for a complex short floating-point 
base with a complex short floating-point exponent, both parts of both 
complex arguments were not valid IEEE numbers. 

1721 Computational error; during exponentiation for a complex long floating-point 
base with a complex long floating-point exponent, both parts of both 
compiex arguments were not valid IEEE numbers. 

1722 Computational error; during exponentiation for a complex extended floating
point base with a complex extended floating-point exponent, both parts of 
both complex arguments were not valid IEEE numbers. 

1723 Computational error; during exponentiation, real short floating-point base 
plus or minus infinity and real short floating-point exponent is an invalid 
32-bit integer. 

1724 Computational error; during exponentiation, real long floating-point base is 
plus or minus infinity and real long floating-point exponent is an invalid 
32-bit integer. 

1725 Computational error; during exponentiation, real extended floating-point 
base p!us or minus infinity and real extended floating-point exponent is an 
invalid 32-bit integer. 

1726 Computational error; during exponentiation, real short floating-point base 
plus 1 and real short floating-point exponent is plus or minus infinity. 

1727 Computational error; during exponentiation, real long floating-point base + 1 
and real long floating-point exponent is plus or minus infinity. 

1728 Computational error; during exponentiation, real extended floating-point 
base is + 1 and real extended floating-point exponent is plus or minus 
infinity. 

1729 Computational error; during exponentiation, real short floating-point base is 
zero and real short floating-point exponent is not positive or zero. 

1730 Computational error; during exponentiation, real long floating-point base is 
zero and real long floating-point exponent is not positive or zero. 

1731 Computational error; during exponentiation, real short floating-point base 
plus or minus infinity and real short floating-point exponent is zero. 

1750 Computational error; the first real short floating-point argument for SCALE 
was not a valid IEEE number. 

344 PUI Package/2 Language Reference 



Condition codes 

1751 Computational error; the real short floating-point argument for ASIN(X) or 
ACOS(X) was not a valid IEEE number. 

1752 Computational error; the real long floating-point argument for ASIN(X) or 
ACOS(X) was not a valid IEEE number. 

1753 Computational error; the real extended floating-point argument for ASIN(X) 
or ACOS(X) was not a valid IEEE number. 

1754 Computational error; during exponentiation for a complex short floating-point 
base with a complex short floating-point exponent, an argument exceeded 
the limit. 

1755 Computational error; during exponentiation for a complex long floating-point 
base with a complex long floating-point exponent, an argument exceeded 
the limit. 

1756 Computational error; during exponentiation for a complex extended floating
point base with a complex extended floating-point exponent, an argument 
exceeded the limit. 

1757 Computational error; during exponentiation for a complex short floating-point 
base with a complex short floating-point exponent, plus or minus infinity 
was specified as an argument. 

1758 Computational error; during exponentiation for a complex long floating-point 
base with a complex long floating-point exponent, plus or minus infinity was 
specified as an argument. 

1759 Computational error; during exponentiation for a complex extended floating
point base with a complex extended floating-point exponent, plus or minus 
infinity was specified as an argument. 

1760 Computational error; during exponentiation for a complex short floating-point 
base with a complex short floating-point exponent, the real part of the first 
complex argument is not a valid IEEE number. 

1761 Computational error; during exponentiation for a complex long floating-point 
base with a complex long floating-point exponent, the real part of the first 
complex argument is not a valid IEEE number. 

1762 Computational error; during exponentiation for a complex extended floating
point base with a complex extended floating-point exponent, the real part of 
the first complex argument is not a valid IEEE number. 

1763 Computational error; during exponentiation for a complex short floating-point 
base with a complex short floating-point exponent, the real part of the 
second complex argument is not a valid IEEE number. 

1764 Computational error; during exponentiation for a complex long floating-point 
base with a complex long floating-point exponent, the real part of the 
second complex argument is not a valid IEEE number. 

1765 Computational error; during exponentiation for a complex extended floating
point base with a complex extended floating-point exponent, the real part of 
the second complex argument is not a valid IEEE number. 

1766 Computational error; during exponentiation for a complex short floating-point 
base with a complex short floating-point exponent, the imaginary part of the 
first complex argument is not a valid IEEE number. 

Chapter 16. Conditions 345 



Condition codes 

1767 Computational error; during exponentiation for a complex long floating-point 
base with a complex long floating-point exponent, the imaginary part of the 
first complex argument is not a valid IEEE number. 

1768 Computational error; during exponentiation for a complex extended floating
point base with a complex extended floating-point exponent, the imaginary 
part of the first complex argument is not a valid IEEE number. 

1769 Computational error; during exponentiation for a complex short floating-point 
base with a complex short floating-point exponent, the imaginary part of the 
second complex argument is not a valid IEEE number. 

1770 Computational error; during exponentiation for a complex long floating-point 
base with a complex long floating-point exponent, the imaginary part of the 
second complex argument is not a valid IEEE number. 

1771 Computational error; during exponentiation for a complex extended floating
point base with a complex extended floating-point exponent, the imaginary 
part of the second complex argument is not a valid IEEE number. 

1772 Computational error; during exponentiation for a complex short floating-point 
base with a complex short floating-point exponent, both parts of the first 
complex argurnent are not vaiid iEEE numbers. 

1773 Computational error; during exponentiation for a complex long floating-point 
base with a complex long floating-point exponent, both parts of the first 
complex argument are not valid IEEE numbers. 

1774 Computational error; during exponentiation for a complex extended floating
point base with a complex extended floating-point exponent, both parts of 
the first complex argument are not valid IEEE numbers. 

1775 Computational error; during exponentiation for a complex short floating-point 
base with a complex short floating-point exponent, both parts of the second 
complex argument are not valid IEEE numbers. 

1776 Computational error; during exponentiation for a complex long floating-point 
base with a complex !ong floating-point exponent, beth parts of the second 
complex argument are not valid IEEE numbers. 

1777 Computational error; during exponentiation for a complex extended floating
point base with a complex extended floating-point exponent, both parts of 
the second complex argument are not valid IEEE numbers. 

1778 Computational error; during exponentiation for a complex short floating-point 
base with a complex short floating-point exponent, real parts of both 
complex arguments are not valid IEEE numbers. 

1779 Computational error; during exponentiation for a complex long floating-point 
base with a complex long floating-point exponent, real parts of both 
complex arguments are not valid IEEE numbers. 

1780 Computational error; during exponentiation for a complex extended floating
point base with a complex extended floating-point exponent, real parts of 
both complex arguments are not valid IEEE numbers. 

1781 Computational error; during exponentiation for a complex short floating-point 
base with a complex short floating-point exponent, imaginary parts of both 
complex arguments are not valid IEEE numbers. 

346 PUI Package/2 Language Reference 



Condition codes 

1800 Computational error in SIN, COS, SINO, or COSO built-in function; for 
complex extended floating-point argument both parts of the argument was 
not a valid IEEE number. 

1801 Computational error in SIN, COS, SINO, or COSO built-in function; absolute 
value of real short floating-point argument is not a valid IEEE number. 

1802 Computational error in SIN, COS, SINO, or COSO built-in function; absolute 
value of real long floating-point argument is not a valid IEEE number. 

1803 Computational error in SIN, COS, SINO, or COSO built-in function; absolute 
value of real extended floating-point argument is not a valid IEEE number. 

1804 The calculated result of real extended floating-point arguments for TANH 
overflowed the output field. 

1808 Computational error; for real short floating-point arguments of AT AN or 
ATANO built-in function, the first argument was not a valid IEEE number. 

1809 Computational error; for real long floating-point arguments of AT AN or 
ATANO built-in function, the first argument was not a valid IEEE number. 

1810 Computational error; for real extended floating-point argument of AT AN or 
ATANO built-in function, the first argument was not a valid IEEE number. 

1811 Computational error; for real short floating-point arguments of AT AN or 
ATANO built-in function, the second argument was not a valid IEEE 
number. 

1812 Computational error; for real long floating-point arguments of AT AN or 
ATANO built-in function, the second argument was not a valid IEEE 
number. 

1813 Computational error; for real extended floating-point argument of AT AN or 
ATANO built-in function, the second argument was not a valid IEEE 
number. 

1814 Computational error; both real short floating-point arguments of AT AN or 
ATANO built-in function were not valid IEEE numbers. 

1815 Computational error; both real long floating-point arguments of AT AN or 
ATANO built-in function were not valid IEEE numbers. 

1816 Computational error; both real extended floating-point arguments of AT AN 
or ATANO built-in function were not valid IEEE numbers. 

1817 Computational error; complex short floating-point argument of AT AN or 
ATANO built-in function does not have value of (plus infinity, Oi) or (minus 
infinity, Oi). 

1818 Computational error; complex long floating-point argument of AT AN or 
ATANO built-in function does not have value of (plus infinity, Oi) or (minus 
infinity, Oi). 

1819 Computational error; complex extended floating-point argument of AT AN or 
ATANO built-in function does not have value of (plus infinity, Oi) or (minus 
infinity, Oi). 

1820 Computational error; real part of complex short floating-point argument of 
ATAN or ATANO built-in function is not a valid IEEE number. 

1821 Computational error; real part of complex long floating-point argument of 
ATAN or ATANO built-in function is not a valid IEEE number. 

Chapter 16. Conditions 347 



Condition codes 

1822 Computational error; real part of complex extended floating-point argument 
of ATAN or ATAND built-in function is not a valid IEEE number. 

1823 Computational error; imaginary part of complex short floating-point argu
ment of ATAN or ATAND built-in function is not a valid IEEE number. 

1824 Computational error; imaginary part of complex long floating-point argument 
of ATAN or ATAND built-in function is not a valid IEEE number. 

1825 Computational error; imaginary part of complex extended floating-point 
argument of ATAN or ATAND built-in function is not a valid IEEE number. 

1826 Computational error; both parts of complex short floating-point argument of 
ATAN or ATAND built-in function were not valid IEEE numbers. 

1827 Computational error; both parts of complex long floating-point argument of 
ATAN or ATAND built-in function were not valid IEEE numbers. 

1828 Computational error; both parts of complex extended floating-point argu
ment of ATAN or ATAND built-in function were not valid IEEE numbers. 

1829 Computational error; the real short floating-point argument of ATAN(X) or 
ATAND(X) built-in function was not a valid IEEE number. 

1830 Computational error; the real long floating-point argument of ATAN(X) or 
ATAND(X) built-in function was not a valid IEEE number. 

1831 Computational error; the real extended floating-point argument of ATAN(X) 
or ATAND(X) built-in funcfon was not a valid IEEE number. 

1850 Computational error; real short floating-point argument of COTAN or 
COTAND was not a valid IEEE number. 

1851 Computational error; real long floating-point argument of COTAN or 
COTAND was not a valid IEEE number. 

1852 Computational error; real extended floating-point argument of COT AN or 
COTAND was not a valid IEEE number. 

1853 Computational error in TAN or TAND; for complex short floating-point argu
ment, absolute value of the real part of argument greater than or equal to 
(2**63). 

1854 Computational error in TAN or TAND; for complex long floating-point argu
ment, absolute value of the real part of argument greater than or equal to 
(2**63). 

1855 Computational error in TAN or TAND; for complex extended floating-point 
argument, absolute value of the real part of argument greater than or equal 
to (2**64). 

1856 Computational error in TAN or TAND; for complex short floating-point argu
ment both parts of the argument were plus or minus infinity. 

1857 Computational error in TAN or TAND; for complex long floating-point argu
ment both parts of the argument were plus or minus infinity. 

1858 Computational error in TAN or TAND; for complex extended floating-point 
argument both parts of the argument were plus or minus infinity. 

1859 Computational error in TAN or TAND; for complex short floating-point argu
ment real part of argument not a valid IEEE number. 

348 PUI Package/2 Language Reference 



Condition codes 

1860 Computational error in TAN or TAND; for complex long floating-point argu
ment real part of argument not a valid IEEE number. 

1861 Computational error in TAN or TAND; for complex extended floating-point 
argument real part of argument not a valid IEEE number. 

1862 Computational error in TAN or T AND; for complex short floating-point argu
ment imaginary part of argument not a valid IEEE number. 

1863 Computational error in TAN or TAND; for complex long floating-point argu
ment imaginary part of argument not a valid IEEE number. 

1864 Computational error in TAN or TAND; for complex extended floating-point 
argument imaginary part of argument not a valid IEEE number. 

1865 Computational error in TAN or TAND; for complex short floating-point argu
ment both parts of the argument were not valid IEEE numbers. 

1866 Computational error in TAN or TAND; for complex long floating-point argu
ment both parts of the argument were not valid IEEE numbers. 

1867 Computational error in TAN or TAND; for complex extended floating-point 
argument both parts of the argument were not valid IEEE numbers. 

1868 Computational error in TAN or TAND; real short floating-point argument not 
a valid IEEE number. 

1869 Computational error in TAN or TAND; real long floating-point argument not 
a valid IEEE number. 

1870 Computational error in TAN or TAND; real extended floating-point argument 
not a valid IEEE number. 

1871 Computational error in SIN, COS, SINO, or COSD built-in function; for 
complex short floating-point argument both parts of the argument were plus 
or minus infinity. 

1872 Computational error in SIN, COS, SINO, or COSD built-in function; for 
complex long floating-point argument both parts of the argument were plus 
or minus infinity. 

1873 Computational error in SIN, COS, SINO, or COSD built-in function; for 
complex extended floating-point argument both parts of the argument were 
plus or minus infinity. 

1874 Computational error in SIN, COS, SINO, or COSD built-in function; for 
complex short floating-point argument the real part of the argument was not 
a valid IEEE number. 

1875 Computational error in SIN, COS, SINO, or COSD built-in function; for 
complex long floating-point argument the real part of the argument was not 
a valid IEEE number. 

1876 Computational error in SIN, COS, SINO, or COSD built-in function; for 
complex extended floating-point argument the real part of the argument was 
not a valid IEEE number. 

1877 Computational error in SIN, COS, SINO, or COSD built-in function; for 
complex short floating-point argument the imaginary part of the argument 
was not a valid IEEE number. 

1878 Computational error in SIN, COS, SINO, or COSD built-in function; for 
complex long floating-point argument the imaginary part of the argument 
was not a valid IEEE number. 

Chapter 16. Conditions 349 



Condition codes 

1879 Computational error in SIN, COS, SINO, or COSO built-in function; for 
complex extended floating-point argument the imaginary part of the argu
ment was not a valid IEEE number. 

1880 Computational error in SIN, COS, SINO, or COSO built-in function; for 
complex short floating-point argument both parts of the argument were not 
valid IEEE numbers. 

1881 Computational error in SIN, COS, SINO, or COSO built-in function; for 
complex long floating-point argument both parts of the argument were not 
valid IEEE numbers. 

1900 Computational error in TANH; for complex long floating-point argument the 
real part of the argument was not equal to plus or minus infinity, and the 
imaginary part of the argument was not zero. 

1901 Computational error in TANH; for complex extended floating-point argument 
the real part of the argument was not equal to plus or minus infinity, and 
the imaginary part of the argument was not zero. 

1902 Computational error in TANH; for complex short floating-point argument real 
part of argument not a valid IEEE number. 

1903 Computational error in TANH; for complex long floating-point argument real 
part of argument not a valid IEEE number. 

1904 Computational error in TANH; for complex extended floating-point argument 
real part of argument not a valid IEEE number. 

1905 Computational error in TANH; for complex short floating-point argument the 
imaginary part of the argument was not a valid IEEE number. 

1906 Computational error in TANH; for complex long floating-point argument the 
imaginary part of the argument was not a valid IEEE number. 

1907 Computational error in TANH; for complex extended floating-point argument 
the imaginary part of the argument was not a valid IEEE number. 

1908 Computational error in TANH; for complex short floating-point argument 
both parts of the argument were not valid IEEE numbers. 

1909 Computational error in TANH; for complex long floating-point argument both 
parts of the argument were not valid IEEE numbers. 

1910 Computational error in TANH; for complex extended floating-point argument 
both parts of the argument were not valid IEEE numbers. 

1911 Computational error; real short floating-point argument of TANH built-in 
function not a valid IEEE number. 

1912 Computational error; real long floating-point argument of TANH built-in func
tion not a valid IEEE number. 

1913 Computational error; real extended floating-point argument of TANH built-in 
function not a valid IEEE number. 

1914 Computational error; absolute value of imaginary part of complex short 
floating-point argument of SINH or COSH built-in function was greater than 
or equal to (2**63). 

1915 Computational error; absolute value of the imaginary part of complex long 
floating-point argument of SINH or COSH built-in function was greater than 
or equal to (2**63). 

350 PUI Package/2 Language Reference 



Condition codes 

1916 Computational error; absolute value of the imaginary part of complex 
extended floating-point argument of SINH or GOSH built-in function was 
greater than or equal to (2**64). 

1917 Computational error; for complex short floating-point argument of SINH or 
COSH built-in function real argument was not plus or minus infinity and 
imaginary argument was not zero. 

1918 Computational error; for complex long floating-point argument of SINH or 
COSH built-in function real argument was not plus or minus infinity and 
imaginary argument was not zero. 

1919 Computational error; for complex extended floating-point argument of SINH 
or COSH built-in function real argument was not plus or minus infinity and 
imaginary argument was not zero. 

1920 Computational error; for complex short floating-point argument of SINH or 
COSH built-in function real part of argument not valid IEEE number. 

1921 Computational error; for complex long floating-point argument of SINH or 
COSH built-in function real part of argument not valid IEEE number. 

1922 Computational error; for complex extended floating-point argument of SINH 
or COSH built-in function real part of argument not valid IEEE number. 

1923 Computational error; for complex short floating-point argument of SINH or 
COSH built-in function imaginary part of argument not valid IEEE number. 

1924 Computational error; for complex long floating-point argument of SINH or 
COSH built-in function imaginary part of argument not valid IEEE number. 

1925 Computational error; for complex extended floating-point argument of SINH 
or COSH built-in function imaginary part of argument not valid IEEE 
number. 

1926 Computational error; for complex short floating-point argument of SINH or 
COSH built-in function both parts of argument not valid IEEE numbers. 

1927 Computational error; for complex long floating-point argument of SINH or 
COSH built-in function both parts of argument not valid IEEE numbers. 

1928 Computational error; for complex extended floating-point argument of SINH 
or COSH built-in function both parts of argument not valid IEEE numbers. 

1929 Computational error; real short floating-point argument of SINH or COSH 
built-in function was not a valid IEEE number. 

1930 Computational error; real long floating-point argument of SINH or COSH 
built-in function was not a valid IEEE number. 

1931 Computational error; real extended floating-point argument of SINH or 
COSH built-in function was not a valid IEEE number. 

1950 Computational error in SQRT; for complex extended floating-point argument 
real part was not equal to plus cir minus infinity, and imaginary part was not 
equal to zero. 

1951 Computational error in SQRT; real part of complex short floating-point argu
ment was not a valid IEEE number. 

1952 Computational error in SQRT; real part of complex long floating-point argu
ment was not a valid IEEE number. 

Chapter 16. Conditions 351 



Condition codes 

1953 Computational error in SQRT; real part of complex extended floating-point 
argument was not a valid IEEE number. 

1954 Co~putational error in SQRT; imaginary part of complex short floating-point 
argument was not a valid IEEE number. 

1955 Computational error in SQRT; imaginary part of complex long floating-point 
argument was not a valid IEEE number. 

1956 Computational error in SQRT; imaginary part of complex extended floating
point argument was not a valid IEEE number. 

1957 Computational error in SQRT; both parts of complex short floating-point 
argument were not valid IEEE numbers. 

1958 Computational error in SQRT; both parts of complex long floating-point 
argument were not valid IEEE numbers. 

1959 Computational error in SQRT; both parts of complex extended floating-point 
argument were not valid IEEE numbers. 

1960 Computational error in SQRT; real short floating-point argument is equal to 
minus zero. 

1961 Computationai error in SQRT; reai iong fioating-point argument is equai to 
minus zero. 

1962 Computational error in SQRT; real extended floating-point argument is 
equal to minus zero. 

1963 Computational error in SQRT; real short floating-point argument was not a 
valid IEEE number. 

1964 Computational error in SQRT; real long floating-point argument was not a 
valid IEEE number. 

1965 Computational error in SQRT; real extended floating-point argument was 
not a valid IEEE number. 

1966 Computational error; complex short floating-point argument of ATANH 
included plus or minus infinity. 

1967 Computational error; complex long floating-point argument of ATANH 
included plus or minus infinity. 

1968 Computational error; complex extended floating-point argument of ATANH 
included plus or minus infinity. 

1969 Computational error; real part of complex short floating-point argument of 
ATANH was not a valid IEEE number. 

1970 Computational error; real part of complex long floating-point argument of 
AT ANH was not a valid IEEE number. 

1971 Computational error; real part of complex extended floating-point argument 
of ATANH was not a valid IEEE number. 

1972 Computational error; imaginary part of complex short floating-point argu
ment of ATANH was not a valid IEEE number. 

1973 Computational error; imaginary part of complex long floating-point argument 
of ATANH was not a valid IEEE number. 

1974 Computational error; imaginary part of complex extended floating-point 
argument of ATANH was not a valid IEEE number. 

352 PUI Package/2 Language Reference 



Condition codes 

1975 Computational error; both parts of complex short floating-point argument of 
ATANH were not valid IEEE numbers. 

1976 Computational error; both parts of complex long floating-point argument of 
ATANH were not valid IEEE numbers. 

1977 Computational error; both parts of complex extended floating-point argu
ment of ATANH were not valid IEEE numbers. 

1978 Computational error; floating-point argument of ATANH was not a valid 
IEEE number. 

1979 Computational error; long floating-point argument of ATANH was not a valid 
IEEE number. 

1980 Computational error; of extended floating-point argument of AT ANH was not 
a valid IEEE number. 

1981 Computational error in TANH; for complex short floating-point argument the 
real part of the argument was not equal to plus or minus infinity, and the 
imaginary part of the argument was not zero. 

2002 WAIT statement cannot be executed because of restricted system facility. 

2101 Greenwich mean time was not available for the RANDOM built-in function. 

2102 An invalid seed value was detected in the RANDOM built-in function. The 
random number was set to -1. 

2103 Local time was unavailable. 

2150 Computational error; in MOD(x,y) built-in function the second argument was 
equal to zero. 

2151 Computational error in ABS built-in function; real part of complex short 
floating-point argument was not a valid IEEE number. 

2152 Computational error in ABS built-in function; real part of complex long 
floating-point argument was not a valid IEEE number. 

2153 Computational error in ABS built-in function; real part of complex extended 
floating-point argument was not a valid IEEE number. 

2154 Computational error in ABS built-in function; imaginary part of complex 
short floating-point argument was not a valid IEEE number. 

2155 Computational error in ABS built-in function; imaginary part of complex long 
floating-point argument was not a valid IEEE number. 

2156 Computational error in ABS built-in function; imaginary part of complex 
extended floating-point argument was not a valid IEEE number. 

2157 Computational error in ABS built-in function; both parts of complex short 
floating-point argument were not valid IEEE numbers. 

2158 Computational error in ABS built-in function; both parts of complex long 
floating-point argument were not valid IEEE numbers. 

2159 Computational error in ABS built-in function; both parts of complex 
extended floating-point argument were not valid IEEE numbers. 

2160 Computational error in ABS built-in function; integer argument is equal to 
(-2**31 ). 

Chapter 16. Conditions 353 



Condition codes 

2161 Computational error in ABS built-in function; real short floating-point argu
ment was not a valid IEEE number. 

2162 Computational error in ABS built-in function; real long floating-point argu
ment was not a valid IEEE number. 

2163 Computational error in ABS built-in function; real extended floating-point 
argument was not a valid IEEE number. 

2164 Computational error GAMMA or LOGGAMMA built-in function; real 
extended floating point argument is less than zero. 

2165 Computational error GAMMA or LOGGAMMA built-in function; real short 
floating point argument is less than or equal to zero. 

2166 Computational error GAMMA or LOGGAMMA built-in function; real long 
floating point argument is less than or equal to zero. 

2167 Computational error GAMMA or LOGGAMMA built-in function; real 
extended floating point argument is equal to zero. 

2168 Computational error GAMMA or LOGGAMMA built-in function; real short 
floating point argument is not a valid IEEE number. 

2169 Computational error GAMMA or LOGGAMMA built-in function; real long 
floating point argument is not a valid IEEE number. 

2170 Computational error GAMMA or LOGGAMMA built-in function; real 
extended floating point argument is not a valid IEEE number. 

2171 Computational error in ERFC built-in function; real short floating-point argu
ment was greater than 9.19. 

2172 Computational error in ERFC built-in function; real long floating-point argu
ment was greater than 26.54. 

2173 Computational error in ERFC built-in function; real .extended floating-point 
argument was greater than 106.53. 

2174 Computational error in ERFC built-in function; real short floating-point argu
ment was not a valid IEEE number. 

2175 Computational error in ERFC built-in function; real long floating-point argu
ment was not a valid IEEE number. 

2176 Computational error in ERFC built-in function; real extended floating-point 
argument was not a valid IEEE number. 

2177 Real short floating-point argument in ERF was not a valid IEEE number. 

2178 Real long floating-point argument in ERF was not a valid IEEE number. 

2179 Real extended floating-point argument in ERF was not a valid IEEE 
number. 

2180 Computational error in SQRT; for complex short floating-point argument, 
real part was not equal to plus or minus infinity, and imaginary part was not 
equal to zero. 

2181 Computational error in SQRT; for complex long floating-point argument, real 
part was not equal to plus or minus infinity, and imaginary part was not 
equal to zero. 

2200 Computational error; during multiplication real part of first complex long 
floating-point argument was the only valid IEEE number. 

354 PUI Package/2 Language Reference 



Condition codes 

2201 Computational error; during multiplication real part of first complex extended 
floating-point argument was the only valid IEEE number. 

2202 Computational error; during multiplication the imaginary part of the first 
complex short floating-point argument was the only valid IEEE number. 

2203 Computational error; during multiplication the imaginary part of the first 
complex long floating-point argument was the only valid IEEE number. 

2204 Computational error; during multiplication the imaginary part of the first 
complex extended floating-point argument was the only valid IEEE number. 

2205 Computational error; during multiplication the real part of the second 
complex short floating-point argument was the only valid IEEE number. 

2206 Computational error; during multiplication the real part of the second 
complex long floating-point argument was the only valid IEEE number. 

2207 Computational error; during multiplication the real part of the second 
complex extended floating-point argument was the only valid IEEE number. 

2208 Computational error; during multiplication the imaginary part of the second 
complex short floating-point argument was the only valid IEEE number. 

2209 Computational error; during multiplication the imaginary part of the second 
complex long floating-point argument was the only valid IEEE number. 

2210 Computational error; during multiplication the imaginary part of the second 
complex extended floating-point argument was the only valid IEEE number. 

2211 Computational error; during multiplication both parts of both complex short 
floating-point arguments were not valid IEEE numbers. 

2212 Computational error; during multiplication both parts of both complex long 
floating-point arguments were not valid IEEE numbers. 

2213 Computational error; during multiplication both parts of both complex 
extended floating-point arguments were not valid IEEE numbers. 

2214 The real short floating-point argument for TRUNC was plus or minus infinity. 

2215 The real long floating-point argument for TRUNC was plus or minus infinity. 

2216 The real extended floating-point argument for TRUNC was plus or minus 
infinity. 

2217 The real short floating-point argument for TRUNC was not a valid IEEE 
number. 

2218 The real long floating-point argument for TRUNC was not a valid IEEE 
number. 

2219 The real extended floating-point argument for TRUNC was not a valid IEEE 
number. 

2220 Computational error; in MOD(x,y) built-in function real short floating-point 
arguments, the first argument was plus or minus infinity, or the second 
argument was plus or minus zero. 

2221 Computational error; in MOD(x,y) built-in function real long floating-point 
arguments, the first argument was plus or minus infinity, or the second 
argument was plus or minus zero. 

Chapter 16. Conditions 355 



Condition codes 

2222 Computational error; in MOD(x,y) built-in function real extended floating
point arguments, the first argument was plus or minus infinity, or the second 
argument was plus or minus zero. 

2223 Computational error; in MOD(x,y) built-in function real short floating-point 
arguments, the first argument was not a valid IEEE number. 

2224 Computational error; in MOD(x,y) built-in function real long floating-point 
arguments, the first argument was not a valid IEEE number. 

2225 Computational error; in MOD(x,y) built-in function real extended floating-· 
point arguments, the first argument was not a valid IEEE number. 

2226 Computational error; in MOD(x,y) built-in function real short floating-point 
arguments, the second argument was not a valid IEEE number. 

2227 Computational error; in MOD(x,y) built-in function real long floating-point 
arguments, the second argument was not a valid IEEE number. 

2228 Computational error; in MOD(x,y) built-in function real extended floating
poini argumenis, ihe second argument was not a vaiid iEEE number. 

2229 Computational error; in MOD(x,y) built-in function real short floating-point 
arguments, both arguments Were not valid IEEE numbers 

2230 Computational error; in MOD(x,y) built-in function real long floating-point 
arguments, both arguments were not valid IEEE numbers 

2231 Computational error; in MOD(x,y) bulit-in function real extended floating
point arguments, both arguments were not valid IEEE numbers. 

2250 Computational error; during multiplication for complex extended floating
point arguments plus or minus infinity was specified. 

2251 Computational error; during multiplication the real part of the first complex 
short floating-point argument was not a valid IEEE number. 

2252 Computational error; during multiplication the real part of the first complex 
long floating-point argument was not a valid IEEE number. 

2253 Computational error; during multiplication the real part of the first complex 
extended floating-point argument was not a valid IEEE number. 

2254 Computational error; during multiplication the real part of the second 
complex short floating-point argument was not a valid IEEE number. 

2255 Computational error; du ring multiplication the real part of the second 
complex long floating-point argument was not a valid IEEE number. 

2256 Computational error; during multiplication the real part of the second 
complex extended floating-point argument was not a valid IEEE number. 

2257 Computational error; during multiplication the imaginary part of the first 
complex short floating-point argument was not a valid IEEE number. 

2258 Computational error; during multiplication the imaginary part of the first 
complex long floating-point argument was not a valid IEEE number. 

2259 Computational error; during multiplication the imaginary part of the first 
complex extended floating-point argument was not a valid IEEE number. 

2260 Computational error; during multiplication the imaginary part of the second 
complex short floating-point argument was not a valid IEEE number. 

356 PUI Package/2 Language Reference 



Condition codes 

2261 Computational error; during multiplication the imaginary part of the second 
complex long floating-point argument was not a valid IEEE number. 

2262 Computational error; during multiplication the imaginary part of the second 
complex extended floating-point argument was not a valid IEEE number. 

2263 Computational error; during multiplication both parts of first complex short 
floating-point arguments were not valid IEEE numbers. 

2264 Computational error; during multiplication both parts of first complex long 
floating-point arguments were not valid IEEE numbers. 

2265 Computational error; during multiplication both parts of first complex 
extended floating-point arguments were not valid IEEE numbers. 

2266 Computational error; during multiplication both parts of second complex 
short floating-point arguments were not valid IEEE numbers. 

2267 Computational error; during multiplication both parts of second complex 
long floating-point arguments were not valid IEEE numbers. 

2268 Computational error; during multiplication both parts of second complex 
extended floating-point arguments were not valid IEEE numbers. 

2269 Computational error; during multiplication real parts of both complex short 
floating-point arguments were not valid IEEE numbers. 

2270 Computational error; during multiplication real parts of both complex long 
floating-point arguments were not valid IEEE numbers. 

2271 Computational error; during multiplication real parts of both complex 
extended floating-point arguments were not valid IEEE numbers. 

2272 Computational error; during multiplication imaginary parts of both complex 
short floating-point arguments were not valid IEEE numbers. 

2273 Computational error; during multiplication imaginary parts of both complex 
long floating-point arguments were not valid IEEE numbers. 

2274 Computational error; during multiplication imaginary parts of both complex 
extended floating-point arguments were not valid IEEE numbers. 

2275 Computational error; during multiplication real part of first complex short 
floating-point argument and imaginary part of second complex short 
floating-point argument were not valid IEEE numbers. 

2276 Computational error; during multiplication real part of first complex long 
floating-point argument and imaginary part of second complex long floating
point argument were not valid IEEE numbers. 

2277 Computational error; during multiplication real part of first complex extended 
floating-point argument and imaginary part of second complex extended 
floating-point argument were not valid IEEE numbers. 

2278 Computational error; during multiplication imaginary part of first complex 
short floating-point argument and real part of second complex short floatin$
point argument were not valid IEEE numbers. 

2279 Computational error; during multiplication imaginary part of first complex 
long floating-point argument and real part of second complex long floating
point argument were not valid IEEE numbers. 

Chapter 16. Conditions 357 



Condition codes 

2280 Computational error; during multiplication imaginary part of first complex 
extended floating-point argument and real part of second complex extended 
floating-point argument were not valid IEEE numbers. 

2281 Computational error; during multiplication real part of first complex short 
floating-point argument was the only valid IEEE number. 

2300 Computational error; during division real parts of both complex short 
floating-point arguments were not valid IEEE numbers. 

2301 Computational error; during division real parts of both complex long floating
point arguments were not valid IEEE numbers. 

2302 Computational error; during division real parts of both complex extended 
floating-point arguments were not valid IEEE numbers. 

2303 Computational error; during division imaginary parts of both complex short 
floating-point arguments were not valid IEEE numbers. 

2304 Computational error; during division imaginary parts of both complex long 
floating-point argurnents were not vaiid iEEE numbers. 

2305 Computational error; during division imaginary parts of both complex 
extended floating-point arguments were not valid IEEE numbers. 

2306 Computational error; during division real part of first complex short floating
point argument and imaginary part of second complex short floating-point 
argument were not valid IEEE numbers. 

2307 Computational error; during division real part of first complex long floating
point argument and imaginary part of second complex long floating-point 
argument were not valid IEEE numbers. 

2308 Computational error; during division real part of first complex extended 
floating-point argument and imaginary part of second complex extended 
floating-point argument were not valid IEEE numbers. 

2309 Computational error; during division imaginary part of first complex short 
floating-point argument and real part of second complex short floating-point 
argument were not valid IEEE numbers. 

2310 Computational error; during division imaginary part of first complex long 
floating-point argument and real part of second complex long floating-point 
argument were not valid IEEE numbers. 

2311 Computational error; during division imaginary part of first complex 
extended floating-point argument and real part of second complex extended 
floating-point argument were not valid IEEE numbers. 

2312 Computational error; during division real part of first complex short floating
point argument was the only valid IEEE number. 

2313 Computational error; during division real part of first complex long floating
point argument was the only valid IEEE number. 

2314 Computational error; during division real part of first complex extended 
floating-point argument was the only valid IEEE number. 

2315 Computational error; during division imaginary part of first complex short 
floating-point argument was the only valid IEEE number. 

2316 Computational error; during division imaginary part of first complex long 
floating-point argument was the only valid IEEE number. 

358 PUI Package/2 Language Reference 



Condition codes 

2317 Computational error; during division imaginary part of first complex 
extended floating-point argument was the only valid IEEE number. 

2318 Computational error; during division real part of second complex short 
floating-point argument was the only valid IEEE number. 

2319 Computational error; during division real part of second complex long 
floating-point argument was the only valid IEEE number. 

2320 Computational error; during division real part of second complex extended 
floating-point argument was the only valid IEEE number. 

2321 Computational error; during division imaginary part of second complex short 
floating-point argument was the only valid IEEE number. 

2322 Computational error; during division imaginary part of second complex long 
floating-point argument was the only valid IEEE number. 

2323 Computational error; during division imaginary part of second complex 
extended floating-point argument was the only valid IEEE number. 

2324 Computational error; during division both parts of both complex short 
floating-point argument were not valid IEEE numbers. 

2325 Computational error; during division both parts of both complex long 
floating-point argument were not valid IEEE numbers. 

2326 Computational error; during division both parts of both complex extended 
floating-point argument were not valid IEEE numbers. 

2327 Computational error; during multiplication complex short floating-point argu
ments equal to the limits. 

2328 Computational error; during multiplication complex long floating-point argu
ments equal to the limits. 

2329 Computational error; during multiplication complex extended floating-point 
arguments equal to the limits. 

2330 Computational error; during multiplication for complex short floating-point 
arguments plus or minus infinity was specified. 

2331 Computational error; during multiplication for complex long floating-point 
arguments plus or minus infinity was specified. 

2350 Computational error; the first real long floating-point argument for SCALE 
was not a valid IEEE number. 

2351 Computational error; the first real extended floating-point argument for 
SCALE was not a valid IEEE number. 

2352 X in CEIL(X) or FLOOR(X) was invalid for a real short floating-point argu
ment because the argument was plus or minus infinity. 

2353 X in CEIL(X) or FLOOR(X) was invalid for a real long floating-point argu
ment because the argument was plus or minus infinity. 

2354 X in CEIL(X) or FLOOR(X) was invalid for a real extended floating-point 
argument because the argument was plus or minus infinity. 

2355 X in CEIL(X) or FLOOR(X) was invalid for a real short floating-point argu
ment because the argument was not a valid IEEE number. 

2356 X in CEIL(X) or FLOOR(X) was invalid for a real long floating-point argu
ment because the argument was not a valid IEEE number. 

Chapter 16. Conditions 359 



Condition codes 

2357 X in CEIL(X) or FLOOR(X) was invalid for a real extended floating-point 
argument because the argument was not a valid IEEE number. 

2358 Computational error; during division complex short floating-point arguments 
equal to the limits. · 

2359 Computational error; during division complex long floating-point arguments 
equal to the limits. 

2360 Computational error; during division complex extended floating-point argu
ments equal to the limits. 

2361 Computational error; during division for complex short floating-point argu
ments plus or minus infinity was specified. 

2362 Computational error; during division for complex long floating-point argu
ments plus or minus infinity was specified. 

2363 Computational error; during division for complex extended floating-point 
arguments plus or minus infinity was specified. 

2364 Computational error; during division real part of first complex short floating
point argument was not a valid IEEE number. 

2365 Computational error; during division real part of first complex long floating
point argument was not a valid IEEE number. 

2366 Computational error; during division real part of first complex extended 
floating-point argument was not a valid IEEE number. 

2367 Computational error; during division real part of second complex short 
floating-point argument was not a valid IEEE number. 

2368 Computational error; during division real part of second complex long 
floating-point argument was not a valid IEEE number. 

2369 Computational error; during division real part of second complex extended 
floating-point argument was not a valid IEEE number. 

2370 Computational error; during division imaginary part of first complex short 
floating-point argument was not a valid IEEE number. 

2371 Computational error; during division imaginary part of first complex long 
floating-point argument was not a valid IEEE number. 

2372 Computational error; during division imaginary part of first complex 
extended floating-point argument was not a valid IEEE number. 

2373 Computational error; during division imaginary part of second complex short 
floating-point argument was not a valid IEEE number. 

2374 Computational error; during division imaginary part of second complex long 
floating-point argument was not a valid IEEE number. 

2375 Computational error; during division imaginary part of second complex 
extended floating-point argument was not a valid IEEE number. 

2376 Computational error; during division both parts of first complex short 
floating-point argument were not valid IEEE numbers. 

2377 Computational error; during division both parts of first complex long floating
point argument were not valid IEEE numbers. 

2378 Computational error; during division both parts of first complex extended 
floating-point argument were not valid IEEE numbers. 

360 PUI Package/2 Language Reference 



Condition codes 

2379 Computational error; during division both parts of second complex short 
floating-point argument were not valid IEEE numbers. 

2380 Computational error; during division both parts of second complex long 
floating-point argument were not valid IEEE numbers. 

2381 Computational error; during division both parts of second complex extended 
floating-point argument were not valid IEEE numbers. 

2403 Computational error; real extended floating point argument of GAMMA or 
LOGAMMA built-in function was less than or equal to minus zero. 

2404 Computational error; real extended floating point argument of GAMMA or 
LOGAMMA built-in function was equal to zero. 

2407 The calculated result of real short floating-point arguments for EXP over
flowed the output field. 

2408 The calculated result of real long floating-point arguments for EXP over
flowed the output field. 

2409 The calculated result of real extended floating-point arguments for EXP 
overflowed the output field. 

2410 The calculated result of real short floating-point arguments for SCALE over
flowed the output field. 

2411 The calculated result of real long floating-point arguments for SCALE over
flowed the output field. 

2412 The calculated result of real extended floating-point arguments for SCALE 
overflowed the output field. 

2413 Computational error; complex short floating-point argument in LOG, LOG2, 
or LOG10 built-in function was zero. 

2414 Computational error; complex long floating-point argument in LOG, LOG2, 
or LOG10 built-in function was zero. 

2415 Computational error; complex extended floating-point argument in LOG, 
LOG2, or LOG1 O built-in function was zero. 

2416 The calculated result of real short floating-point arguments for SINH or 
COSH calculated result overflowed output field 

2417 The calculated result of real long floating-point arguments for SINH or 
COSH calculated result overflowed output field 

2418 The calculated result of real extended floating-point arguments for SINH or 
COSH calculated result overflowed output field 

2419 The calculated result of real short floating-point arguments for COTAN or 
COT AND calculated result overflowed output field 

2420 The calculated result of real long floating-point arguments for COT AN or 
COT AND calculated result overflowed output field 

2421 The calculated result of real extended floating-point arguments for COTAN 
or COT AND calculated result overflowed output field 

2422 Computational error in SIN, COS, SINO, or COSD built-in function; for 
complex short floating-point argument the calculated result overflowed 
output field. 

Chapter 16. Conditions 361 



Condition codes 

2423 Computational error in SIN, COS, SINO, or COSO built-in function; for 
complex long floating-point argument the calculated result overflowed output 
field. 

2424 Computational error in SIN, COS, SINO, or COSO built-in function; for 
complex extended floating-point argument the calculated result overflowed 
output field. 

2425 Computational error in SIN, COS, SINO, or COSO built-in function; real 
short floating-point argument is equal to plus or minus infinity. 

2426 Computational error in SIN, COS, SINO, or COSO built-in function; real long 
floating-point argument is equal to plus or minus infinity. 

2427 Computational error in TAN or TANO built-in function; real short floating
point argument equal to plus or minus infinity. 

2428 Computational error in TAN or TANO built-in function; real long floating
point argument equal to plus or minus infinity. 

2429 Computational error in COTAN or COTAND built-in function; ieal short 
floating-point argument is equal to plus or minus zero, or plus or minus 
infinity. 

2430 Computational error in COTAN or COTANO built-in function; real long 
floating-point argument is equal to plus or minus zero, or plus or minus 
infinity. 

2431 Computational error in COTAN or COTANO built-in function; real extended 
floating-point argument is equal to plus or minus zero. 

2450 Computational error in EXPONENT built-in function; for complex long 
floating-point base with integer exponent, the calculated result was infini~y. 

2451 Computational error in EXPONENT built-in function; for complex extended 
floating-point base with integer exponent, the calculated result was infinity. 

2452 Computational error in EXP built-in function; for complex short floating-point 
argument, the calculated result was infinity. 

2453 Computational error in EXP built-in function; for complex long floating-point 
argument, the calculated result was infinity. 

24~4 Computational error in EXP built-in function; for complex extended floating
point argument, the calculated result was infinity. 

2455 Computational error during division; for complex short floating-point argu
ment, the calculated result was infinity. 

2456 Computational error during division; for complex long floating-point argu
ment, the calculated result was infinity. 

2457 Computational error during division; for complex extended floating-point 
argument, the calculated result was infinity. 

2458 Computational error in SQRT built-in function; for real short floating-point 
arguments, the ONCODE value was infinity. 

2459 Computational error in SQRT built-in function; for real long floating-point 
arguments, the ONCODE value was infinity. 

2460 Computational error in SQRT built-in function; for real extended floating
point arguments, the ONCOOE value was infinity. 

362 PUI Package/2 Language Reference 



Condition codes 

2461 Computational error in LOG built-in function; for real short floating-point 
arguments, the calculated result was infinity. 

2462 Computational error in LOG built-in function; for real long floating-point 
arguments, the calculated result was infinity. 

2463 Computational error in LOG built-in function; for real extended floating-point 
arguments, the calculated result was infinity. 

2464 Computational error in ERFC built-in function; for real short floating-point 
arguments, the ONCODE value was infinity. 

2465 Computational error in EFRC built-in function; for real long floating-point 
arguments, the ONCODE value was infinity. 

2466 Computational error in EFRC built-in function; for real extended floating
point arguments, the ONCODE value was infinity. 

2467 Computational error in ABS built-in function; for real short floating-point 
arguments, the ONCODE value was infinity. 

2468 Computational error in ABS built-in function; for real long floating-point argu
ments, the ONCODE value was infinity. 

2469 Computational error in ABS built-in function; for real extended floating-point 
arguments, the ONCODE value was infinity. 

2470 Computational error in GAMMA or LOGGAMMA built-in function; for real 
short floating-point argument, the calculated result was infinity. 

2471 Computational error in GAMMA or LOGGAMMA built-in function; for real 
long floating-point argument, the calculated result was infinity. 

2472 Computational error in GAMMA or LOGGAMMA built-in function; for real 
extended floating-point argument, the calculated result was infinity. 

2473 Computational error in EXPONENT built-in function; for real short floating
point base with real short floating-point exponent, the calculated result was 
infinity. 

2474 Computational error in EXPONENT built-in function; for real long floating
point base with real long floating-point exponent, the calculated result was 
infinity. 

2475 Computational error in EXPONENT built-in function; for real extended 
floating-point base with real extended floating-point exponent, the calculated 
result was infinity. 

2476 Computational error in EXPONENT built-in function; for real short floating
point base with integer exponent, the calculated result was infinity. 

2477 Computational error in EXPONENT built-in function; for real long floating
point base with integer exponent, the calculated result was infinity. 

2478 Computational error in EXPONENT built-in function; for real extended 
floating-point base with integer exponent, the calculated result was infinity. 

2479 Computational error in EXP built-in function; for real short floating-point 
argument, the calculated result was infinity. 

2480 Computational error in EXP built-in function; for real long floating-point argu
ment, the calculated result was infinity. 

Chapter 16. Conditions 363 



Condition codes 

2481 Computational error in EXP built-in function; for real extended floating-point 
argument, the calculated result was infinity. 

2513 Computational error in SQRT built-in function; for complex short floating
point arguments, the ONCODE value was infinity. 

2514 Computational error in SQRT built-in function; for complex long floating
point arguments, the ONCODE value was infinity. 

2515 Computational error in SQRT built-in function; for complex extended 
floating-point arguments, the ONCODE value was infinity. 

2516 Computational error during multiplication; for complex short floating-point 
argument, the calculated result was infinity. 

2517 Computational error during multiplication; for complex long floating-point 
argument, the calculated result was infinity. 

2518 Computational error during multiplication; for complex extended floating
point argument, the calculated result was infinity. 

2519 Computational error in LOG built-in function; for complex short floating-point 
arguments, the calculated result was infinity. 

2520 Computational error in LOG built-in function; for complex long floating-point 
arguments, the calculated result was infinity. 

2521 Computational error in LOG built-in function; for complex extended floating
point arguments, the calculated result was infinity. 

2522 Computational error in EFRC built-in function; for complex short floating
point arguments, the ONCODE value was infinity. 

2523 Computational error in EFRC built-in function; for complex long floating
point arguments, the ONCODE value was infinity. 

2524 Computational error in EFRC built-in function; for complex extended 
floating-point arguments, the ONCODE value was infinity. 

2525 Computational error in ABS built-in function; for complex short floating-point 
arguments, the ONCODE value was infinity. 

2526 Computational error in ABS built-in function; for complex long floating-point 
arguments, the ONCODE value was infinity. 

2527 Computational error in ABS built-in function; for complex extended floating
point arguments, the ONCODE value was infinity. 

2528 Computational error in EXPONENT built-in function; for complex short 
floating-point base with complex short floating-point exponent, the calcu
lated result was infinity. 

2529 Computational error in EXPONENT built-in function; for complex long 
floating-point base with complex long floating-point exponent, the calculated 
result was infinity. 

2530 Computational error in EXPONENT built-in function; for complex extended 
floating-point base with complex extended floating-point exponent, the cal
culated result was infinity. 

2531 Computational error in EXPONENT built-in function; for complex short 
floating-point base with integer exponent, the calculated result was infinity. 

364 PUI Package/2 Language Reference 



Condition codes 

3000 Field width, number of fractional digits, and number of significant digits (w,d, 
and s) specified for E-format item in edit-directed input/output statement do 
not allow transmission without loss of significant digits or sign. 

3006 Picture description of target does not match noncharacter-string source. 

3009 A mixed character string contained a shift-out, then ended before a shift-in 
was found. 

3010 During processing of a mixed character constant, one of the following 
occurred: 

• A shift-in present in the SBCS portion. 
• A shift-out present in the graphic (double-byte) portion. (A shift-out 

cannot appear in either byte of a graphic character). 
• A shift-in present in the second byte of a graphic character. 

3011 MPSTR built-in function contains an invalid character (or a null function 
string, or only blanks) in the expression that specifies processing rules. 
(Only V, v, S, s, and blank are valid characters). 

3012 Retry for graphic conversion error not allowed. 

3013 An assignment attempted to a graphic target with a length greater than 
16,383 characters (32,766 bytes). 

3014 A graphic or mixed string did not conform to the continuation rules. 

3015 A X or GX constant has an invalid number of digits. 

3016 Improper use of graphic data in stream 1/0. Graphic data can only be used 
as part of a variable name or string. 

3017 Invalid graphic, mixed, or DBCS continuation when writing Stream 1/0 to a 
file containing fixed-length records. 

3797 Attempt to convert to or from graphic data. 

3798 ONCHAR or ONSOURCE pseudovariable used out of context. 

3799 The source was not modified in the CONVERSION ON-unit. Retry was not 
attempted. An ON-unit was entered as a result of the CONVERSION con
dition being raised by an invalid character in the string being converted. 
The character was not corrected in an ON-unit using the ONSOURCE or 
ONCHAR pseudovariables. 

3800 Length of data aggregate exceeds system limit of 2**24 bytes. 

3808 Aggregate cannot be mapped in COBOL or FORTRAN. 

3809 A data aggregate exceeded the maximum length. 

3810 An array has an extent that exceeds the allowable maximum. 

3901 Attempt to invoke process using a process variable that is already associ
ated with an active process. 

3904 Event variable referenced as argument to COMPLETION pseudovariable 
while already in use for a DISPLAY statement. 

3906 Assignment to an event variable that is already active. 

3907 Attempt to associate an event variable that is already associated with an 
active process. 

Chapter 16. Conditions 365 



3909 Attempt to create a subtask (using CALL statement) when insufficient main 
storage available. 

3910 Attempt to attach a process (using CALL statement) when number of active 
processes was already at limit defined by ISASIZE parameter of EXEC 
statement. 

3911 WAIT statement in ON-unit references an event variable already being 
waited for in process from which ON-unit was entered. 

3912 Attempt to execute CALL with TASK option in block invoked while executing 
PUT FILE(SYSPRINT) statement. 

3913 CALL statement with TASK option specifies an unknown entry point. 

3914 Attempt to call FORTRAN or COBOL routines in two processes simultane
ously. 

3915 Attempt to call a process when the multitasking library was not selected in 
the link-edit step. 

3920 An out-of-storage abend occurred. 

8091 Operation exception. 

8092 Privileged operation exception. 

8093 EXECUTE exception. 

8094 Protection exception. 

8095 Addressing exception. 

8096 Specification exception. 

8097 Data exception. 

9002 Attempt to execute GO TO statement referencing label in an inactive block. 

9003 Attempt to execute a GO TO statement to a non-existent label constant 

9050 Program terminated by an abend. 

9200 Program check in SORT/MERGE program. 

9201 SORT not supported in CMS. 

9250 Procedure to be fetched cannot be found. 

9251 Permanent transmission error when fetching a procedure. 

9252 FETCH/RELEASE not supported in CMS. 

9253 PLITEST unavailable. 

9999 A failure occurred in invocation of a Language Environment service. Use 
the ONFEEDBACK built-in function to determine the precise Language 
Environment error. 

366 PUI Package/2 Language Reference 



Chapter 17. Built=ln Functions, Pseudovariables, and 
Subroutines 

©Copyright IBM Corp. 1992 

Chapter 17. Built-in functions, pseudovariables, and subroutines . 371 
Declaring built-in functions . . . . . 371 

BUil TIN attribute . . . . . . . . . . . . . . . . . 371 
Example 1 ........ . 
Example 2 ........ . 

Invoking built-in functions and pseudovariables 
Invoking built-in subroutines ...... . 

Specifying arguments for built-in functions 
Aggregate arguments . . . . . . . . 
Null and optional arguments . . . . 

Accuracy of mathematical functions 
Categories of built-in functions 

Arithmetic built-in functions ..... 
Array-handling built-in functions .. 
Condition-handling built-in functions 
Date/time built-in functions ..... 
Floating-point inquiry built-in functions . 
Floating-point manipulation built-in functions 
lnpuVoutput built-in functions ...... . 
Integer manipulation built-in functions 
Mathematical built-in functions ... 
Miscellaneous built-in functions 
Precision-handling built-in functions 
Pseudovariables . . . . . . . . . 
Storage control built-in functions 
String-handling built-in functions 
Subroutines . . . . . 

ABS . . . . . . . ...... . 
ACOS . . . . . . ...... . 
ADD .... . 
ADDR .... . 
ALL ...... . 
ALLOCATION .. . 
ANY .... . 
ASIN .... . 
ATAN ........... . 
ATAND .... . 
ATANH ........... . 
BINARY ........... . 
BINARYVALUE .......... . 
BIT ................. . 
BOOL ............... . 
CEIL ................ . 
CENTERLEFT . . . . . . . . . . . 
CENTRELEFT . . . . . . . . . . . 
CENTERRIGHT . . . . . . . . . . . 
CENTRERIGHT . . . . . . . . . . . 
CHARACTER . . . . . . . . . . . . 
COLLATE ............. . 

372 
372 
372 
373 
373 
373 
373 
373 
374 
374 
375 
375 
375 
376 
376 
376 
377 
377 
378 
378 
379 
379 
380 
381 
381 
382 
382 
383 
383 
384 
384 
384 
385 
385 
386 
386 
387 
387 
387 
388 
388 
389 
389 
390 
390 
391 

367 



COMPARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 
COMPLEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 
CONJG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 
COPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 
cos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 
COSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 
COSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 
COTAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 
COTAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 
COUNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 
CURRENTSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 
CURRENTSTORAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 
DATAFIELD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 
DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396 
DATETIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396 
DECIMAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 
DIMENSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 
DiViDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 
EMPTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 
ENDFILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 
ENTRYADDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 
ENTRYADDR pseudovariable . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 
EPSILON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 
ERF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 
ERFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 
EXP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 
EXPONENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 
FILEOPEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 
FIXED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 
FLOAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 
FLOOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 
GAMMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 
GRAPHIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 
HBOUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 
HEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 
HEXIMAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 
HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 
HUGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 
IAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 
IEOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 
IMAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 
IMAG pseudovariable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 
INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 
IOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 
LBOUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 
LEFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 
LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 
LINENO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 
LOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 
LOGGAMMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 
LOG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 
LOG10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 
LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 
LOWER2· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 

368 PUI Package/2 Language Reference 



MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 
MAXEXP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 
MAXLENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 
MIN . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 
MINEXP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 
MOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 
MPSTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 
MULTIPLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 
NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 
OFFSET ................. , . . . . . . . . . . . . . . . . . . . . . . 416 
OFFSET ADD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 
OFFSETDIFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 
OFFSETSUBTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 
OFFSETVALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 
OMITTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 
ONCHAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 
ONCHAR pseudovariable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 
ONCODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 
ONCOUNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 
ONFILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 
ONGSOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 
ONGSOURCE pseudovariable . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 
ONKEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 
ONLOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 
ONSOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 
ONSOURCE pseudovariable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 
PAGENO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 
PLACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 
PLIDUMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 
PLIFILL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 
PLI MOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 
PLI RETC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 
PLI RETV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 
POINTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 
POINTERADD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 
POINTERDIFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 
POINTERSUBTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 
POINTERVALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 
PRECISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 
PRED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428 
PROD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428 
RADIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428 
RAISE2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 
RANDOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 
REAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 
REAL pseudovariable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 
REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 
REPEAT ... ·. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 
REVERSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431 
RIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431 
ROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 
SAMEKEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 
SCALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 
SEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 

Chapter 17. Built-In Functions, Pseudovariables, and Subroutines 369 



SEARCHR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 
SIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 
SIGNED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 
SIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 
SINO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 
SINH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 
SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 
SQRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437 
STORAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 
STRING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 
STRING pseudovariable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 
SUBSTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 
SUBSTR pseudovariable . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 
SUBTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 
succ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 
SUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 
TAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 
TAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 
TANH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 
TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 
TINY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 
TRANSLATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 
TRIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 
TRUNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 
UNSIGNED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 
UNSPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 
UNSPEC pseudovariable 
VALID ............. . 
VERIFY ............ . 
VERIFYR ........... . 

370 PUI Package/2 Language Reference 

446 
447 
447 
448 



Built-in functions, pseudovariables, and subroutines 

Chapter 17. Built-in functions, pseudovariables, and 
subroutines 

A large number of common tasks are available in the form of built-in functions, sub
routines and pseudovariables. Using them lets you write less code more quickly 
with greater reliability. 

The built-in functions, subroutines, and pseudovariables are listed in alphabetic 
order later in this chapter. In general, each description has the following format: 

• A heading showing the syntax of the reference 
• A description of the value returned or, for a pseudovariable, the value set 
• A description of any arguments 
• Any other qualifications on using the function or pseudovariable. 

Note that the abbreviations for built-in functions have separate declarations (explicit 
or contextual) and name scopes. In the following example: 

dcl (Dim, Dimension) builtin; 

is not a multiple declaration, and 

dcl Binary file; 
X = Bin (var, 6,3); 

is valid even though Bin is an abbreviation of the Binary built-in function. 

Declaring built-in functions 
Built-in functions, pseudovariables, and subroutines can be contextually or explicitly 
declared. 

BUil TIN attribute 

© Copyright IBM Corp. 1992 

The BUil TiN attribute specifies that the name is a built-in function, pseudovariable, 
or a subroutine. 

The syntax of the BUil TiN attribute is: 

Built-in names can be used as programmer-defined names. BUil TIN can be 
declared for a built-in name in any block that has inherited, from a containing block, 
a programmer-defined declaration or use of the same name. The following exam
ples show built-in names with the BUil TIN attribute. 

371 



Invoking built-in functions and pseudovariables 

Example 1 
Ill A: procedure; 

declare Sqrt float binary; 
121 X = Sqrt; 

131 B : Beg i n ; 
Declare Sqrt builtin; 
Z = Sqrt(P); 

end B; 

end A; 

Example 2 
A: procedure; 

Ill Sqrt: proc(Param) returns(fixed(6,2)); 
declare Param fixed (12); 
end Sqrt; 

121 X = Sqrt(Y); 

131 B : beg i n ; 
declare Sqrt builtin; 
Z = Sqrt ( P); 

end B; 

end A; 

In both examples: 

Ill Sqrt is a programmer-defined name. 

121 The assignment to the variable X is a reference to the programmer-defined 
name Sqrt. 

131 Sqrt is declared with the BUil TIN attribute so that any reference to Sqrt 
within B is recognized as a reference to the built-in function and not to the 
programmer-defined name Sq rt declared in 1. 

in Exampie 2, if the procedure Sqrt is externai, procedure A must deciare '.:)qrt 
explicitly as an entry name, and to specify the attributes of the values passed to 
and returned from this programmer-written function procedure. The declaration for 
Example 2 would be: 

dcl Sqrt entry (fixed (12)) 
returns (fixed(6,2)); 

Invoking built-in functions and pseudovariables 
The syntax used to invoke built-in functions and pseudovariables is as follows: 

••-naml-'-c ...,...L-------J-.-----------------~ • 
( +· I) 

largumentJ 

372 PUI Package/2 Language Reference 



Invoking built-in subroutines 

Invoking built-in subroutines 
The syntax used to invoke built-in subroutines is as follows: 

.,..,._cALL-naml-'-e ~L-(-------~ ------------- ... 
+· I )j 

largumentJ 

Specifying arguments for built-in functions 
Arguments, which can be expressions, are evaluated and converted to a data type 
suitable for the built-in function according to the rules for data conversion. 

Aggregate arguments 
All built-in functions and pseudovariables that can have arguments can have array 
arguments (if more than one is an array, the bounds must be identical). ADDA, 
ALLOCATION, CURRENTSIZE, SIZE, STRING, and the array-handling functions 
return an element value. All other functions return an array of values. Specifying 
an array argument is equivalent to placing the function reference or pseudovariable 
in a do-group where one or more arguments is a subscripted array reference that is 
modified by the control variable. 

For example: 

dcl A(2) char(2) varying; 
dcl 8(2) char(2) 

init( 'AB', 'CD'); 
dcl C(2) fixed bin 

init(l,2); 
A=substr(B,l,C); 

results in A( 1) having the value A and A( 2) having the value CD. 

The built-in functions and pseudovariables that can accept structure or union argu
ments are ADDA, ALLOCATION, CURRENTSIZE, SIZE, STRING, and UNSPEC. 

Null and optional arguments 
Some built-ins do not require arguments. You must either explicitly declare these 
with the BUILTIN attribute or contextually declare them by including a null argument 
list in the reference-for example, ONCHAR(). Otherwise, the name is not recog
nized as a built-in. 

Accuracy of mathematical functions 
The accuracy of a result is influenced by two factors: 

• The accuracy of the argument 
• The accuracy of the algorithm. 

Chapter 17. Built-in functions, pseudovariables, and subroutines 373 



Categories 

Most arguments contain errors. An error in a given argument can accumulate over 
several steps before the evaluation of a function. Even data fresh from input con
version can contain errors. The effect of argument error on the accuracy of a result 
depends entirely on the nature of the mathematical function, and not on the algo
rithm that computes the result. This book does not discuss argument errors of this 
type. 

Categories of built-in functions 
The following sections list built-in functions, subroutines, and pseudovariables. 

Only full function names are listed in these tables. Abbreviation that exist are pro
vided in the sections that describe each built-in function, subroutine, and 
pseudovariable. 

Arithmetic built-in functions 
The arithmetic built-in functions allow you to do the following: 

• Determine properties of arithmetic values. For example, the SIGN function indi
cates the sign of an arithmetic variable. 

• Perform routine arithmetic operations. 

Figure 54 lists the arithmetic built-in functions. 

Some of the arithmetic functions derive the data type of their results from one or 
more arguments. When the data types of the arguments differ, they are converted 
as described in Chapter 5, "Data conversion" on page 72. When a data attribute 
for the result cannot agree with that of the argument, the rules are given in the 
function description. 

Figure 54. Arithmetic built-in functions 

Function 

ABS 

CEIL 

COMPLEX 

CONJG 

FLOOR 

IMAG 

MAX 

MIN 

MOD 

RANDOM 

REM 

REAL 

ROUND 

SIGN 

TRUNC 

37 4 PUI Package/2 Language Reference 

Description 

Calculates the absolute value of a value 

Calculates the smallest integer value greater than or equal to a value 

Returns the complex number with given real and imaginary parts 

Returns the complex conjugate of a value 

Calculates the largest integer value less than or equal to a value 

Returns the imaginary part of a complex number 

Calculates the maximum of 2 or more values 

Calculates the minimum of 2 or more values 

Returns the modular equivalent of the remainder of one value divided 
by another 

Returns a pseudo-random value 

Calculates the remainder of one value divided by another 

Returns the real part of a complex number 

Rounds a value at a specifiect digit 

Returns a -1, O or 1 if a value is,negative, zero or positive respectively 

Calculates the nearest integer for value rounded towards zero 



Array-handling 

Array-handling built-in functions 
The array-handling built-in functions operate on array arguments and return an 
element value. Any conversion of arguments required for these functions is noted 
in the function description. Figure 55 lists the array-handling built-in functions. 

Figure 55. Array-handling built-in functions 

Function Description 

ALL Calculates the bitwise "and" of all the elements of an array 

ANY Calculates the bitwise "or" of all the elements of an array 

DIMENSION Returns the number of elements in a dimension of an array 

HBOUND Returns the upper bound for a dimension of an array 

LBOUND Returns the lower bound for a dimension of an array 

PROD Calculates the product of all the elements of an array 

SUM Calculates the sum of all the elements of an array 

Condition-handling built-in functions 
The condition-handling built-in functions allow you to determine the cause of a con
dition that has occurred. 

Use of these functions is valid only within the scope of an ON-unit or dynamic 
descendant for the condition specific to the built-in function, or within an ON-unit or 
a dynamic descendant for the ERROR or FINISH condition when raised as an 
implicit action. All other uses are out of context. 

Figure 56. Condition-handling built-in functions 

Function 

DAT AFIELD 

ONCHAR 

ONCODE 

ONCOUNT 

ON FILE 

ONGSOURCE 

ON KEY 

ONLOC 

ONSOURCE 

Date/time built-in functions 

Description 

Returns the value of a string that raised the NAME condition 

Returns the value of a character that caused a conversion condition 

Returns the condition code value 

Returns the number of outstanding conditions 

Returns the name of a file for which a condition is raised 

Returns a double-byte DBCS character string containing the DBCS 
character that caused the CONVERSION condition to be raised. 

Returns the key of a record that raised a condition 

Returns the name of the procedure in which a condition occurred 

Returns the value of a string that caused a conversion condition 

The date/time built-in functions return date and time information as a timestamp. 
Figure 57 lists the supported date/time built-in functions. 

Figure 57 (Page 1 of 2). Date/time built-in functions 

Function Description 

DATE Returns the current date in the pattern YYMMDD 

Chapter 17. Built-in functions, pseudovariables, and subroutines 375 



Floating-point inquiry 

Figure 57 (Page 2 of 2). Date/time built-in functions 

Function 

DATETIME 

TIME 

Description 

Returns the current date and time in the pattern 
YYYYMMDDHHMISS999 

Returns the current time in the pattern HHMMSS999 

Floating-point inquiry built-in functions 
The floating-point inquiry built-in functions return information about a the floating
point variable arguments that you specify. Figure 58 lists these built-in functions. 

Figure 58. Floating-point inquire built-in functions 

Function 

EPSILON 

aa 11.vr-vn 
IVl/"\/\C::/\r 

MIN EXP 

HUGE 

PLACES 

RADIX 

TINY 

Description 

Returns the spacing around 1 

Returns tt-1e rnaxirnurn value for an exponent 

Returns the minimum value for an exponent 

Returns the largest positive finite value that a floating-point variable can 
hold 

Returns the model precision for a floating point value 

Returns the model base for a floating point value 

Returns the smallest positive value that a floating-point variable can 
hold 

Floating-point manipulation built-in functions 
The floating-point manipulation built-in functions perform mathematical operations 
on floating-point variables that you specify and return the result of the operation. 
Figure 59 lists the floating-point manipulation functions. 

Figure 59. Floating-point manipulation built-in functions 

Function Description 

EXPONENT Returns the exponent part of a floating point value 

SCALE Multiplies a floating-point number by an integral power of 2 

PRED Returns the next representable value before a floating-point value 

succ Returns the next representable value after a floating-point value 

Input/output built-in functions 
The input/output built-in functions allow you to determine the current state of a file. 
Figure 60 lists these functions. 

Figure 60 (Page 1 of 2). Input/output built-in functions 

Function 

COUNT 

ENDFILE 

376 PUI Package/2 Language Reference 

Description 

Returns the number of data items transmitted during the last GET or 
PUT 

Indicates if a file is open and end-of-file has been reached for it 



Integer manipulation 

Figure 60 (Page 2 of 2). Input/output built-in functions 

Function Description 

FILEOPEN Indicates if a file is open 

LINENO Returns the current line number associated with a print file 

PAGE NO Returns the current page number associated with a print file 

SAME KEY Indicates if a record is followed by another with the same key 

Integer manipulation built-in functions 
The integer manipulation built-in functions perform operations on integer variables 
and return the result of the operation. Figure 61 lists the integer manipulation func
tions. 

Figure 61. Integer manipulation built-in functions 

Function Description 

IAND Calculates the bitwise "and" of 2 fixed binary values 

IEOR Calculates the bitwise "exclusive-or" of 2 fixed binary values 

IOR Calculates the bitwise "or" of 2 fixed binary values 

LOWER2 Divides a fixed binary value by an integral power of 2 

RAISE2 Multiplies a fixed binary value by an integral power of 2 

Mathematical built-in functions 
All of these functions operate on floating-point values to produce a floating-point 
result. Any argument that is not floating-point is converted. The accuracy of these 
functions is discussed in "Accuracy of mathematical functions" on page 373. 
Figure 62 lists the mathematical built-in functions. 

Figure 62 (Page 1 of 2). Mathematical built-in functions 

Function Description 

ACOS Calculates the arc cosine 

ASIN Calculates the arc sine 

ATAN Calculates the arc tangent 

AT AND Calculates the arc tangent in degrees 

ATANH Calculates the hyperbolic arc tangent 

cos Calculates the cosine 

COSD Calculates the cosine for a value in degrees 

COSH Calculates the hyperbolic cosine 

COT AN Calculates the cotangent 

COT AND Calculates the cotangent for a value in degrees 

ERF Calculates the error function 

ERFC Calculates the complement of the error function 

EXP Calculates e to a power 

GAMMA Calculates the gamma function 

Chapter 17. Built-in functions, pseudovariables, and subroutines 377 



Miscellaneous 

Figure 62 (Page 2 of 2). Mathematical built-in functions 

Function Description 

LOG Calculates the natural logarithm 

LOGGAMMA Calculates the log of the gamma function 

LOG10 Calculates the base 1 O logarithm 

LOG2 Calculates the base 2 logarithm 

SIN Calculates the sine 

SINO Calculates the sine for a value in degrees 

SINH Calculates the hyperbolic sine 

SQRT Calculates the square root 

TAN Calculates the tangent 

TAND Calculates the tangent for a value in degrees 

TANH r.::ilr.1 il::iti:i~ thi:i h\/ni:irhnlir. t::inni:int --·--·-·-- •. ·- . 'Jr--· __ ,,_ ·-· ·;:1-· .. 

Miscellaneous built-in functions 
The built-in functions that do not fit into any of the previous categories are those 
listed in Figure 63. 

Figure 63. Miscellaneous built-in functions 

Function 

COLLATE 

COMPARE 

HEX 

HEXIMAGE 

OM!TTED 

PLIRETV 

STRING 

UNSPEC 

VALID 

Description 

Returns a character(256) string specifying the collating order 

Compares n bytes at two addresses 

Returns a character string that is the hex representation of a value 

Returns a character string that is the hex representation of a specified 
number of bytes at a given address 

Returns the PUI return code value 

Returns a string that is the concatenation of all the elements of a string 
aggregate 

Returns a bit string that is the internal representation of a value 

Indicates if the contents of a variable are valid for its declaration 

Precision-handling built-in functions 
The precision-handling built-in functions allow you to manipulate variables with 
specified precisions, and they return the value resulting from the operation. 

Figure 64 (Page 1 of 2). Precision-handling built-in functions 

Function Description 

ADD1 Adds, with a specified precision, two values 

BINARY Converts a value to binary 

DECIMAL Converts a value to decimal 

DIVIDE Divides, with a specified precision, two values 

378 PUI Package/2 Language Reference 



Pseudovariables 

Figure 64 (Page 2 of 2). Precision-handling built-in functions 

Function Description 

FIXED Converts a value to fixed 

FLOAT Converts a value to float 

MULTIPLY Multiplies, with a specified precision, two values 

SIGNED Converts a value to signed fixed binary 

PRECISION Converts a value to specified precision 

SUBTRACT Subtracts, with a specified precision, two values 

UNSIGNED Converts a value to unsigned fixed binary 

Pseudovariables 
Pseudovariables represent receiving fields. They cannot be nested, and can be 
used only on the left side of an assignment statement. For example, the following 
is invalid: 

unspec(substr(A,1,2)) = 'GG'B; 

The pseudovariables are: 

Figure 65. Built-in pseudovariables 

Function 

ENTRYADDR 

IMAG 

ONCHAR 

ONGSOURCE 

ONSOURCE 

REAL 

STRING 

SUBSTR 

UNSPEC 

Description 

Sets an entry variable with the address of the entry to be invoked. 

Assigns the imaginary part of a complex number 

Sets the value of a character that caused a conversion condition 

Sets a double-byte DBCS character string containing the DBCS char
acter that caused the CONVERSION condition to be raised. 

Sets the value of a string that caused a conversion condition 

Assigns the real part of a complex number 

Assigns a string that is the concatenation of all the elements of a string 
aggregate 

Assigns a substring of a string 

Assigns a bit string that is the internal representation of a value 

Storage control built-in functions 
The storage control built-in functions allow you to determine the storage require
ments and location of variables, to assign special values to area and locator vari
ables, to perform conversion between offset and pointer values, and to obtain the 
number of generations of a controlled variable. Figure 66 lists the storage control 
built-in functions. 

Figure 66 (Page 1 of 2). Storage control built-in functions 

Function Description 

ADDR Returns the address of a variable 

ALLOCATION Returns the current number of generations of a controlled variable 

BINARYVALUE Converts a pointer or offset to an integer 

Chapter 17. Built-in functions, pseudovariables, and subroutines 379 



String-handling 

Figure 66 (Page 2 of 2). Storage control built-in functions 

Function Description 

CURRENTSIZE Returns the current size of a variable 

EMPTY Returns an "empty" area 

ENTRYADDR Returns the address of the routine associated with an entry 

NULL Returns a null pointer value 

OFFSET Converts a pointer to an offset 

OFFSET ADD Adds an integer to an offset 

OFFSETDIFF Subtracts two offsets 

OFFSETSUBTRACT Subtracts an integer from an offset 

OFFSETVALUE Converts an integer to an offset 

POINTER Converts an offset to a pointer 

PO!!'JTERADD Adds an integer to a pointer 

POINTERDIFF Subtracts two pointers 

POINTERSUBTRACT Subtracts an integer from a pointer 

POINTERVALUE Converts an integer to a pointer 

SIZE Returns the maximum size of a variable 

SYSNULL Returns a system null pointer value 

String-handling built-in functions 
The string-handling built-in functions simplify the processing of bit, character, and 
DBCS strings. The character- and bit-string arguments can be represented by an 
arithmetic expression that will be converted to string either according to data con
version rules or according to the rules given in the function description. 

Note: The functions CENTERLEFT, CENTERRIGHT, LEFT, RIGHT, TRANS
LATE, and TR!M do not support GRAPHIC data. 

Figure 67 (Page 1 of 2). String-handling built-in functions 

Function 

BIT 

BOOL 

CENTERLEFT 

CENTERRIGHT 

CENTRELEFT 

CENTRERIGHT 

CHARACTER 

COPY 

GRAPHIC 

HIGH 

INDEX 

LEFT 

380 PUI Package/2 Language Reference 

Description 

Converts a value to bit 

Performs boolean operation on 2 bit strings 

Returns a string with a value centered (to the left) in it 

Returns a string with a value centered (to the right) in it 

Returns a string with a value centered (to the left) in it 

Returns a string with a value centered (to the right) in it 

Converts a value to character 

Returns a string consisting of n copies of a string 

Converts a value to graphic 

Returns a string consisting of n copies of the highest character in the 
collating sequence 

Finds the location of one string within another 

Returns a string with a value left-justified in it 



Subroutines 

ABS 

Subroutines 

Figure 67 (Page 2 of 2). String-handling built-in functions 

Function 

LENGTH 

LOW 

MAX LENGTH 

MPSTR 

REPEAT 

REVERSE 

RIGHT 

SEARCH 

SEARCHR 

SUBSTR 

TRANSLATE 

TRIM 

VERIFY 

VERIFYR 

Description 

Returns the current length of a string 

Returns a string consisting of n copies of the lowest character in the 
collating sequence 

Returns the maximum length of a string 

Truncates a string at a logical boundary and returns a mixed character 
string. 

Returns a string consisting of n+ 1 copies of a string 

Returns a reversed image of a string 

Returns a string with a value right-justified in it 

Searches for the first occurrence of any one of the elements of a string 
within another string 

Searches for the first occurrence of any one of the elements of a string 
within another string but the search starts from the right 

Assigns a substring of a string 

Translates a string based on two translation strings 

Trims specified characters from the left and right sides of a string 

Searches for first non-occurrence of any one of the elements of a string 
within another string 

Searches for first non-occurrence of any one of the eiements of a string 
within another string but the search starts from the right 

Built-in subroutines perform miscellaneous operations that do not necessarily return 
a result as built-in functions do. Figure 68 lists the built-in subroutines. 

Figure 68. Built-in subroutines 

Function 

PLIDUMP 

PLIFILL 

PLIMOVE 

PLIRETC 

Description 

Dumps information about currently open files, the calling path to the 
current location, etc 

Fills n bytes at an address with a specified byte value 

Moves n bytes from one address to another 

Sets the PUI return code value 

ABS returns the absolute value of x. It is the positive value of x. 

The syntax for ABS is: 

~~~ABS(x) ~ 

Chapter 17. Built-in functions, pseudovariables, and subroutines 381

ACOS

ACOS

ADD

x expression.

The mode of the result is REAL. The result has the base, scale, and precision of x.
The precision for FIXED COMPLEX is min(N,P+ 1).

ACOS returns a real floating-point value that is an approximation of the inverse
(arc) cosine in radians of x.

The syntax for ACOS is:

••-ACOS(x)------------------------+<1

x real expression, where ABS(x) <= 1.

The result is in the range:

0 ::; ACOS(x) ::; n

and has the base and precision of x.

ADD returns the sum of x and y with a precision specified by p and q. The base,
scale, and mode of the result are determined by the rules for expression evaluation.

The syntax for ADD is:

••-ADD(x,y,p [nJ
_____________________ .,.

•'1

x and y
expressions.

p restricted expression. It specifies the number of digits to be maintained
throughout the operation.

q restricted expression specifying the scaling factor of the result. For a
fixed-point result, if q is omitted, a scaling factor of zero is the default. For
a floating-point result, q must be omitted.

ADD can be used for subtraction by prefixing a minus sign to the operand to be
subtracted.

382 PUI Package/2 Language Reference

ADDA

ALL

ADDR

ADDA returns the pointer value that identifies the generation of x.

The syntax for ADDA is:

••-ADDR(x)------------------------•

x reference. It refers to a variable of any data type, data organization, align
ment, and storage class except:

• A subscripted reference to a variable that is an unaligned fixed-length
bit string

• A reference to a DEFINED or BASED variable or simple parameter,
which is an unaligned fixed-length bit string

• A minor structure or union whose first base element is an unaligned
fixed-length bit string (except where it is also the first element of the
containing major structure or union)

• A major structure or union that has the DEFINED attribute or is a
parameter, and that has an unaligned fixed-length bit string as its first
element

• A reference that is not to connected storage.

If xis a reference to:

• An aggregate parameter, it must have the CONNECTED attribute.

• An aggregate, the returned value identifies the first element

• A component or cross section of an aggregate, the returned value
takes into account subscripting and structure or union qualification

• A varying string, the returned value identifies the 2-byte prefix

• An area, the returned value identifies the control information

• A controlled variable that is not allocated in the current program, the
null pointer value is returned

• A based variable, the result is the value of the pointer explicitly quali
fying x (if it appears), or associated with x in its declaration (if it
exists), or a null pointer

• A parameter, and a dummy argument has been created, the returned
value identifies the dummy argument.

ALL returns a bit string in which each bit is 1 if the corresponding bit in each
element of x exists and is 1. The length of the result is equal to that of the longest
element.

Chapter 17. Built-in functions, pseudovariables, and subroutines 383

ALLOCATION

ALLOCATION

ANY

ASIN

The syntax for ALL is:

~~-ALL(x)------------------------•

x array expression that must be either a NONVARYI NG BIT array reference
or an expression that compares an array reference and an expression.

ALLOCATION returns a FIXED BIN(M,O) value specifying the number of gener
ations that can be accessed in the current program for x.

The syntax for ALLOCATION is:

~~-ALLOCATION(x)---------------------•

Abbreviation: ALLOCN

x level-one unsubscripted controlled variable.

If xis not allocated in the current program, the result is zero.

ANY returns a bit string in which each bit is 1 if the corresponding bit in any
element of x exists and is 1 . The length of the result is equal to that of the longest
element.

The syntax for ANY is:

~~-ANY(x)------------------------•

x array expression that must be either a NO NV ARY I NG BIT array reference
or an expression that compares an array reference and an expression.

ASIN returns a real floating-point value that is an approximation of the inverse (arc)
sine in radians of x.

The syntax for ASIN is:

~~-ASIN(x)-----------------------•

384 PUI Package/2 Language Reference

ATAN

AT AND

ATAN

x real expression, where ABS(x) <= 1.

The result is in the range:

- rt/2 ~ ASIN(x) ~ rt/2

and has the base and precision of x.

ATAN returns a floating-point value that is an approximation of the inverse (arc)
tangent in radians of x or of a ratio xly.

The syntax for ATAN is:

1>1>-ATAN(x [J)---------------------...
,y

x and y
expressions.

If x alone is specified, the result has the base and precision of x, and is in
the range:

- rt/2 < ATAN(x) < rt/2

If x and y are specified, each must be real. An error exists if x and y are
both zero. The result for all other values of x and y has the precision of
the longer argument, a base determined by the rules for expressions, and
a value given by:

ATAN(x/y)
rt/2
-rt/2
rt+ ATAN(x/y)
- rt+ ATAN(x/y)

for y>O
for y=O and x>O
for y=O and x<O
for y<O and X>=O
for y<O and x<O

ATAND returns a real floating-point value that is an approximation of the inverse
(arc) tangent in degrees of x or of a ratio x/y.

The syntax for ATAND is:

1>1>-ATAND(x [J)---------------------...
,y

Chapter 17. Built-in functions, pseudovariables, and subroutines 385

AT ANH

ATANH

BINARY

x and y
expressions.

If x alone is specified it must be real. The result has the base and preci
sion of x, and is in the range:

- 90 < ATAND(x) < 90

If x and y are specified, each must be real. The value of the result is
given by:

(180ht)*ATAN(x,y)

For argument requirements and attributes of the result see "AT AN" on page 385.

A.TANH returns a floating-point va!ue that has the base, mode, and precision of x,
and is an approximation of the inverse (arc) hyperbolic tangent of x.

The syntax for ATANH is:

11>11>-ATANH(x)------------------------<11

x expression. ABS(x)<1.

The result has a value given by:

LOG((1 + x)/(1 - x))/2

BINARY returns the binary value of x, with a precision specified by p and q. The
result has the mode and scale of x.

The syntax for BINARY is:

11>11>-BINARY(x-c.------~ __________________ ..

• p L J
,q

Abbreviation: Bl N

x expression.

p restricted expression. Specifies the number of digits to be maintained
throughout the operation; it must not exceed the implementation limit.

q restricted expression. It specifies the scaling factor of the result. For a
fixed-point result, if p is given and q is omitted, a scaling factor of zero is
the default. For a floating-point result, q must be omitted.

386 PUI Package/2 Language Reference

BINARYVALUE

BIT

BOOL

BINARYVALUE

If both p and q are omitted, the precision of the result is determined from the rules
ror base conversion.

BINARYVALUE returns a FIXED BIN(M,O) value that is the converted value of its
pointer expression, x.

The syntax for BINARYVALUE is:

11>11>-BINARYVALUE(x)---------------------•

Abbreviation: BINVALUE

x expression.

BIT returns the bit value of x, with a length specified by y.

The syntax for BIT is:

11>11>-BIT(x [J)---------------------•
,y

x expression.

y expression. If necessary, y is converted to a real fixed-point binary value.
If y is omitted, the length is determined by the rules for type conversion. If
y = 0, the result is the null bit string. y must not be negative.

BOOL returns a bit string that is the result of the Boolean operation z, on x and y.
The length of the result is equal to that of the longer operand, x or y.

The syntax for BOOL is:

11>11>-BOOL(x,y,z)----------------------•

x and y
expressions. x and y are converted to bit strings, if necessary. If x and y
are of different lengths, the shorter is padded on the right with zeros to
match the longer.

Chapter 17. Built-in functions, pseudovariables, and subroutines 387

CEIL

CEIL

CENTER LEFT

z expression. z is converted to a bit string of length 4, if necessary. When
a bit from x is matched with a bit from y, the corresponding bit of the result
is specified by a selected bit of z, as follows:

x
0
0

y
0
1
0
1

Result
bit 1 of z
bit 2 of z
bit 3 of z
bit 4 of z

CEIL determines the smallest integer value greater than or equal to x, and assigns
this value to the result.

The syntax for CEIL is:

ll>ll>-CEIL(x)-------------------------

x real expression.

The result has the mode, base, scale, and precision of x, except when xis fixed
point with precision (p,q). The precision of the result is then given by:

(min(N,max(p-q+l,1)),8)

where N is the maximum number of digits allowed.

CENTERLEFT returns a string that is the result of inserting string x in the center (or
one position to the left of center) of a string with length y and padded on the left
and on the right with the character z as needed. If z is omitted. a blank is used as
the padding character.

The syntax for CENTERLEFT is:

..... ~CENTERLEFT-i-(X,y L J
1-CENTRELEFT_J ,z

Abbreviation: CENTER

x expression that is converted to character.

y expression that is converted to FIXED BIN(M,O).

z optional expression. If specified, z must be CHARACTER(1) NON
VARYING type.

388 PUI Package/2 Language Reference

CENTRE LEFT

CENTER RIGHT

Example

dcl source char value('Feel the Power');
dcl target28 char(28);
dcl target21 char(21);

target28 = center (source, length(target28), '*');
/* '***Feel the Power***' - exactly centered */

target21 =center (source, length(target21), '*');
I* '***Feel the Power****' - leaning left! */

Abbreviation: CENTRE

CENTRELEFT is a synonym for CENTERLEFT.

CENTRELEFT

CENTERRIGHT returns a string that is the result of inserting string x in the center
(or one position to the right of center) of a string with length y and padded on the
left and on the right with the character z as needed. If z is omitted, a blank is used
as the padding character.

The syntax for CENTERRIGHT is:

••-,--CENTERRIGHT--r-(x,y [J
L.CENTRERIGHT_J ,z

x expression that is converted to character.

y expression that is converted to FIXED BIN(M,O).

z optional expression. If specified, z must be CHARACTER(1) NON
VARYING type.

Example

dcl source char value('Feel the Power');
dcl target28 char(28);
dcl target21 char(21);

target28 = centerright (source, length(target28), '*');
I* '***Feel the Power***' - exactly centered */

target21 = centerright (source, length(target21), '*');
I* '****Feel the Power***' - leaning right! */

Chapter 17. Built-in functions, pseudovariables, and subroutines 389

CENTRERIGHT

CENTRERIGHT

CHARACTER

CENTRERIGHT is a synonym for CENTERRIGHT.

CHARACTER returns the character value of x, with a length specified by y. CHAR
ACTER also supports conversion from graphic to character type.

The syntax for CHARACTER is:

••-CHARACTERCx [J)-------------------""
,y

Abbreviation: CHAR

x expression.

x must have a computational type.

When xis nongraphic, CHARACTER returns x converted to character.

When xis GRAPHIC, CHARACTER returns x converted to mixed char
acter.

The values of x are not checked.

y expression. If necessary, y is converted to a real fixed-point binary value.

If y is omitted, the length is determined by the rules for type conversion.

y cannot be negative.

If y = 0, the result is the null character string.

The following apply only when xis GRAPHIC:

If y = 1, the result is a character string of 1 blank.

If y is greater than the length needed to contain the character string,
the result is padded with SBCS blanks.

If y is less than the length needed to contain the character string, the
result is truncated. The integrity is preserved by truncating after a
graphic, and appending an SBCS blank if necessary, to complete the
length of the string.

Example 1: Conversion from graphic to character, where "y" is long enough to
contain the result:

dcl X graphic(6);
dcl A char (14);
A = char(X);

For X with value: Intermediate Result: A is assigned:

.A.B.C.D.E.F .A.B.C.D.E.F .A.B.C.D.E.F

390 PUI Package/2 Language Reference

COLLATE

COMPARE

COMPLEX

COLLATE

Example 2: Conversion from graphic to character, where "y" is too short:

For X with value: Intermediate Result: A is assigned:

.A.B.C.D.E.F .A.B.C.D.E.F .A.B.C.D.Eb

COLLATE returns a CHARACTER(256) string comprising the 256 possible
CHARACTER(1) values one time each in the collating order.

The syntax for COLLATE is:

11>11>-COLLATE---.----~--------------------<11
()

COMPARE returns a FIXED BIN(M,O) string that is:

• Zero, if the z bytes at the addresses x and y are identical
• Negative, if the z bytes at x are less than those at y
• Positive, if the z bytes at x are greater than those at y.

The syntax for COMPARE is:

11>11>-COMPARECx,y,z)---------------------<11

x and y
expressions. Both must have the POINTER or OFFSET type. If OFFSET,
the expression must be declared with the AREA qualification.

z expression that is converted to FIXED BIN(M,O).

COMPLEX returns the complex value x + yl.

The syntax for COMPLEX is:

11>11>-COMPLEXCx,y)----------------------<11

Abbreviation: CPLX

x and y
real expressions.

If x and y differ in base, the decimal argument is converted to binary. If
they differ in scale, the fixed-point argument is converted to floating-point.
The result has the common base and scale.

Chapter 17. Built-in functions, pseudovariables, and subroutines 391

CONJG

CONJG

COPY

The precision of the result, if fixed-point, is given by:

(min(N,max(pl-ql,p2-q2)+max(ql,q2)),max(ql,q2))

where (p1 ,q1) and (p2,q2) are the precisions of x and y, respectively, and N is the
maximum number of digits allowed.

After any necessary conversions have been performed, if the arguments are
floating-point, the result has the precision of the longer argument.

CONJG returns the conjugate of x: the value of the expression with the sign of the
imaginary part reversed.

The syntax for CONJG is:

.,..,._CONJG(x)------------------------•

x expression.

If xis real, it is converted to complex. The result has the base, scale,
mode, and precision of x.

COPY returns a string consisting of y concatenated copies of the string x.

The syntax for COPY is:

...... -coPY(x,y)-----------------------•

x expression.

x must have a computational type and should have a string type. If not, it
is converted to character.

y an integer expression with a nonnegative value. It specifies the number of
repetitions. It must have a computational type and is converted to FIXED
BIN(M,O).

If y is zero, the result is a null string.

For example:

copy('Walla ',1)

repeat('Walla ',l)

I* returns 'Walla ' */

/* returns 'Walla Walla ' *I

repeat(x,n) is equivalent to copy(x,n+l).

392 PUI Package/2 Language Reference

cos

COSD

COSH

COT AN

cos

COS returns a floating-point value that has the base, precision, and mode of x, and
is an approximation of the cosine of x.

The syntax for COS is:

11>11>-COS(x)------------------------~

x expression with a value in radians.

COSD returns a real floating-point value that has the base and precision of x, and
is an approximation of the cosine of x.

The syntax for COSD is:

11>11>-COSD(x)------------------------~

x real expression with a value in degrees.

COSH returns a floating-point value that has the base, precision, and mode of x,
and is an approximation of the hyperbolic cosine of x.

The syntax for COSH is:

11>11>-COSH(x)------------------------~

x expression.

COT AN returns a floating-point value that has the base, mode, and precision of x,
and is an approximation of the cotangent of x.

The syntax for COT AN is:

11>11>-COTAN(x)------------------------~

x expression. x must have a computational, arithmetic type. If xis numeric,
it must be real. If x is not float, it is converted to float.

The value of x is in radians.

Chapter 17. Built-in functions, pseudovariables, and subroutines 393

COT AND

COTAND

COUNT

CURRENTSIZE

COTAND returns a floating-point value that is an approximation of the cotangent of
x. It has the base, mode, and precision of x.

The syntax for COTAND is:

11>11>-COTAND(x)-----------------------..i

x expression. x must have a computational, arithmetic type. If xis numeric,
it must be real. If x is not float, it is converted to float.

The value of x is in degrees.

COUNT returns a real binary fixed-point value specifying the number of data items
transmitted during the last GET or PUT operation on x.

The syntax for COUNT is:

11>11>-COUNT(x)------------------------+..i

x file-reference. The file must be open and have the STREAM attribute.

The count of transmitted items for a GET or PUT operation on xis initialized to
zero before the first data item is transmitted, and is incremented by one after the
transmission of each data item in the list. If xis not open in the current program, a
value of zero is returned.

If an ON-unit or procedure is entered during a GET or PUT operation, and ;,vithin
that ON-unit or procedure, a GET or PUT operation is executed for x, the value of
COUNT is reset for the new operation. It is restored when the original GET or PUT
is continued.

CURRENTSIZE returns a FIXED BIN(M,O) value giving the implementation-defined
storage, in bytes, required by x.

The syntax for CURRENTSIZE is:

11>11>-CURRENTSIZE(x)---------------------..i

x a variable of any data type, data organization, and storage class except:

• A BASED, DEFINED, parameter, subscripted, or structure or union
base-element variable that is an unaligned fixed-length bit string

394 PUI Package/2 Language Reference

CURRENTSTORAGE

• A minor structure or union whose first or last base element is an una
ligned fixed-length bit string (except where it is also the first or !ast
element of the containing major structure or union)

• A major structure or union that has the BASED, DEFINED, or param
eter attribute, and which has an unaligned fixed-length bit string as its
first or last element

• A variable not in connected storage.

The value returned by CURRENTSIZE(x) is defined as the number of bytes that
would be transmitted in the following circumstances:

declare F file record output
environment(scalarvarying);

write file(F) from(x);

If x is a scalar varying-length string, the returned value includes the length-prefix of
the string and the number of currently-used bytes. It does not include any unused
bytes in the string.

If x is a scalar area, the returned\yalue includes the area control bytes and the
current extent of the area. It does not include any unused bytes at the end of the
area.

If x is an aggregate containing areas or varying-length strings, the returned value
includes the area control bytes, the maximum sizes of the areas, the length prefixes
of the strings, and the number of bytes in the maximum lengths of the strings. The
exception to this rule is:

If x is a structure or union whose last element is a nondimensioned area, the
returned value includes that area 1s control bytes and the current extent of that
area. It does not include any unused bytes at the end of that area.

For examples of the CURRENTSIZE built-in function, refer to the "SIZE" on
page 436 and "MAXLENGTH" on page 413.

CURRENTSTORAGE

DAT AFIELD

Abbreviation: CSTG

CURRENTSTORAGE is a synonym for CURRENTSIZE. For more information,
refer to "CURRENTSIZE" on page 394.

DATAFIELD is in context in a NAME condition ON-unit (or any of its dynamic
descendants). It returns a character string whose value is the contents of the field
that raised the condition. It is also in context in an ON-unit (or any of its dynamic
descendants) for an ERROR or FINISH condition raised as part of the implicit
action for the NAME condition.

Chapter 17. Built-in functions, pseudovariables, and subroutines 395

DATE

DATE

DATETIME

The syntax for DAT AFIELD is:

.,..,._DATAFIELD'--r--.,..----------------------+.-
()

If the string that raised the condition contains DBCS identifiers, GRAPHIC data, or
mixed character data, DATAFIELD returns a mixed character string.

If DATAFIELD is used out of context, a null string is returned.

DATE returns a character string timestamp (length 6) with the format YYMMDD, in
which:

VY is the current year
MM is the current month
DD is the current day

The time zone and accuracy are system dependent.

The syntax for DATE is:

.,..,._DATE--.---....----------------------.-
()

DATETIME returns a character string timestamp of today's data in the default
format.

The syntax for DATETIME is:

.,..,._DATETIME-----------------------.-

The format of the timestamp is 'YYYYMMDDHHMISS999', in which

YYYY is the current year.
MM is the current month.
DD is the current day.
HH is the current hour.
MI is the current minute.
SS is the current second.
999 is the current millisecond.

If today's date is not available from the system, the ERROR condition is raised.

396 PUI Package/2 Language Reference

DECIMAL

DIMENSION

DIVIDE

DECIMAL

DECIMAL returns the decimal value of x, with a precision specified by p and q.
The result has the mode and scale of x.

The syntax for DECIMAL is:

.,..,._DECIMALCx~[~---~ -----------------•

,p L J ,q

Abbreviation: DEC

x reference.

p restricted expression specifying the number of digits to be maintained
throughout the operation.

q restricted expression specifying the scaling factor of the result. For a
fixed-point result, if p is given and q is omitted, a scaling factor of zero is
assumed. For a floating-point result, q must be omitted.

If both p and q are omitted, the precision of the result is determined from the rules
for base conversion.

DIMENSION returns a FIXED BIN(M,O) value specifying the current extent of
dimension y of x.

The syntax for DIMENSION is:

.,..,._DIMENSION(x,L":r)-------------------•
y

Abbreviation: DIM

x array reference. x must not have less than y dimensions.

y expression specifying a particular dimension of x. If necessary, y is con
verted to a FIXED BIN(M,O). y must be greater than or equal to 1. If y is
not supplied, it defaults to 1.

If y exceeds the number of dimensions of x, the DIMENSION function returns an
undefined value.

DIVIDE returns the quotient of xly with a precision specified by p and q. The base,
scale, and mode of the result follow the rules for expression evaluation.

Chapter 17. Built-in functions, pseudovariables, and subroutines 397

EMPTY

l""""lllll"'\"'I"',,
CIVIi'"' I I

ENDFILE

The syntax for DIVIDE is:

~~-DIVIDE(x,y,p [J
,q

x expression.

y expression. If y = 0, the ZERODIVIDE condition is raised.

p restricted expression specifying the number of digits to be maintained
throughout the operation.

q restricted expression specifying the scaling factor of the result. For a
fixed-point result, if q is omitted, a scaling factor of zero is the default. For
a floating-point result, q must be omitted.

EMPTY returns an area of zero extent. It can be used to free all allocations in an
area.

The syntax for EMPTY is:

~~-EMPTY---.----.-----------------------. <111

()

The value of this function is assigned to an area variable when the variable is allo
cated. For example:

dee la re A area,
I based (P),
J based (Q);

a 11 oca te I i n (A) , J i n (A) ;
A = empty();

I* Equivalent to: free I in (A), Jin (A); */

ENDFILE returns a '1 'B when the end of the file is reached; '0' B if the end is not
reached. If the file is not open, the ERROR condition is raised.

The syntax for ENDFILE is:

H-ENDFILE(x)-----------------------<111

x file reference.

398 PUI Package/2 Language Reference

ENTRVADDR

ENTRVADDR

ENTRYADDR returns a pointer value that is the address of the first executed
instruction if the entry xis invoked. The entry x must represent a non-nested pro
cedure.

The syntax for ENTRY ADDA is:

11>11>-ENTRYADDR(x)----------------------""

x entry reference.

If x is a fetchable entry constant, it must be fetched before ENTRYADDR is exe
cuted.

ENTRY ADDA pseudovariable

EPSILON

ERF

The ENTRY ADDR pseudovariable initializes an entry variable, x, with the address
of the entry to be invoked.

The syntax for the ENTRY ADDA pseudovariable is:

11>11>-ENTRYADDR(x)----------------------""

x entry reference.

Note: If the address supplied to the ENTRYADDR variable is the address of an
internal procedure, the results are unpredictable.

EPSILON returns a floating-point value that is the spacing between x and the next
positive number when xis 1. It has the base, mode, and precision of x.

The syntax for EPSILON is:

11>11>-EPSILON(x)----------------------""

x expression declared as REAL FLOAT.

EPSILON(x) is a constant and may be used in restricted expressions.

ERF returns a real floating-point value that is an approximation of the error function
of x.

Chapter 17. Built-in functions, pseudovariables, and subroutines 399

ERFC

ERFC

EXP

EXPONENT

The syntax for ERF is:

.... -ERF(x)-------------------------.i

x real expression.

The result has the base and precision of x, and a value given by:

(2/functio~) r EXP(- (f-))dt
0

ERFC returns a real floating-point value that is an approximation of the complement
of the error function of x.

The syntax for ERFC is:

.... -ERFC(x)------------------------.i

x real expression.

The result has the base and precision of x, and a value given by:

1 - ERF(x)

EXP returns a floating-point value that is an approximation of the base, e, of the
naturai logariihm system raised to the power x.

The syntax for EXP is:

.... -EXP(x)-------------------------.i

x expression.

The result has the base, mode, and precision of x.

EXPONENT returns a FIXED BIN(M,O) value that is the exponent part of x.

The syntax for EXPONENT is:

.... -EXPONENT(x)-----------------------.i

400 PUI Package/2 Language Reference

FILEOPEN

FIXED

FLOAT

Fl LEO PEN

x expression. x must be declared as REAL FLOAT.

EXPONENT(x) is not the "mathematical" exponent of x.
If x = 0, EXPONENT(x) = 0. For other values of x, EXPONENT(x) is the unique
number e such that:

radix(x)(e- 1) ~ abs(x) < radix(x)e

Consequently, EXPONENT(1 eO) equals 1 and not 0.

FILEOPEN returns '1 'B if the file x is open; 'O' B if the file is not open.

The syntax for FILEOPEN is:

H-FILEOPEN(x)-----------------------4

x file reference.

FIXED returns the fixed-point value of x, with a precision specified by p and q. The
result has the base and mode of x.

The syntax for FIXED is:

11>11>-FIXED(x---.[----.- _________________ _.,..

,p L J
,q

x expression.

p restricted expression that specifies the total number of digits in the result.
It must not exceed the implementation limit.

q restricted expression that specifies the scaling factor of the result. If q is
omitted, a scaling factor of zero is assumed.

If both p and q are omitted, the precision of the result is determined from the rules
for base conversion.

FLOAT returns the approximate floating-point value of x, with a precision specified
by p. The result has the base and mode of x.

Chapter 17. Built-in functions, pseudovariables, and subroutines 401

FLOOR

FLOOR

""Aa•a•A
U 1-\ IVI IVI 1-\

The syntax for FLOAT is:

••-FLOAT(x l,pJ)--------------------~

x expression.

p restricted expression that specifies the minimum number of digits in the
result.

If p is omitted, the precision of the result is determined from the rules for
base conversion.

FLOOR determines the largest integer value less than or equal to x, and assigns
this value to the result

The syntax for FLOOR is:

••-FLOOR(x)------------------------+~

x real expression.

The mode, base, scale and precision of the result match the argument. Except
when xis fixed-point with precision (p,q), the precision of the result is given by:

(min(N,max(p-q+l,1)),8)

where N is the maximum number of digits allowed.

GAMMA is an approximation of the gamma of x.

GAMMA returns a floating-point value that has the base, mode, and precision of x.

The syntax for GAMMA is:

••-GAMMA(x)------------------------~

x expression. x must have a computational, arithmetic type. If xis numeric,
it must be real and greater than zero. If x is not float, it will be converted
to float.

402 PUI Package/2 Language Reference

GRAPHIC

GRAPHIC

GRAPHIC can be used to explicitly convert character (or mixed character) data to
GRAPHIC data. All other data first converts to character, and then to the
GRAPHIC data type.

GRAPHIC returns the graphic value of x, with a length in graphic symbols specified
by y.

Characters convert to graphics. The content of x is checked for validity during con
version, using the same rules as for checking graphic and mixed character con
stants.

The syntax for GRAPHIC is:

.,.,_GRAPHIC(x [J)-------------------"'
,y

x expression. When xis GRAPHIC, it is subject to a length change, with
applicable padding or truncation. When x is nongraphic, it is converted to
character, if necessary. SBCS characters are converted to equivalent
DBCS characters.

y expression. If necessary, y is converted to a real fixed-point binary value.
If y is omitted, the length is determined by the rules for type conversion.

y must not be negative.

If y = 0, the result is the null graphic string.

If y is greater than the length needed to contain the graphic string, the
result is padded with graphic blanks.

If y is less than the length needed to contain the graphic string, the result
is truncated.

Example 1: Conversion from CHARACTER to GRAPHIC, where the target is long
enough to contain the result:

dcl X char (11) varying;
dcl A graphic (11);
A= graphic(X,8);

For X with values

ABCDEFGHIJ
123
123A.B.C

where .b is a DBCS blank.

Intermediate Result

.A.B.C.D.E.F.G.H.I.J

.1.2.3

.1.2.3.A.B.C

A is assigned

.A.B.C.D.E.F.G.H.b.b.b

.1.2.3.b.b.b.b.b.b.b.b

.1.2.3.A.B.C.b.b.b.b.b

Chapter 17. Built-in functions, pseudovariables, and subroutines 403

HBOUND

HBOUND

HEX

Example 2: Conversion from CHARACTER to GRAPHIC, where the target is too
short to contain the result.

dcl X char (18) varying;
dcl A graphic (8);
.A= graphic(X);

For X with Values Intermediate Result A Is Assigned

ABCDEFGHIJ .A.B.C.D.E.F.G.H.I.J .A.B.C.D.E.F.G.H

HBOUND returns a FIXED BIN(M,O) value specifying the current upper bound of
dimension y of x.

The syntax for HBOUND is:

~~-HBOUNDCx,y)----------------------<11

x array reference. x must not have less than y dimensions.

y expression specifying a particular dimension of x. If necessary, y is con
verted to FIXED BIN(M,O). y must be greater than or equal to 1. If yis not
supplied, it defaults to 1.

HEX returns a character string that is the hexadecimal representation of the storage
that contains x.

Note: This function does not return an exact image of x in storage. If an exact
image is required, use the HEXIMAGE built-in function.

The syntax for HEX is:

.,.,_HEX(x [J)---------------------...
,Z

HEX(x) returns a character string of length 2* size(x).

HEX(x,z) returns a character string that contains x with the character z inserted
between every set of eight characters in the output string. Its length is
2* size(x) + ((size(x) - 1)/4).

x expression that represents any variable. The whole number of bytes that
contain x are converted to hexadecimal.

z expression. If specified, z must result in CHARACTER(1) NONVARYING.

404 PUI Package/2 Language Reference

HEXIMAGE

Example
dcl Sweet char(5) init('Sweet');
dcl Sixteen fixed bin(31) init(16);
dcl XSweet char(size(Sweet)*2+(size(Sweet)-1)/4);
dcl XSixteen char(size(Sixteen)*2+(size(Sixteen)-1)/4);

XSweet = hex(Sweet, '-');
I* '53776565-74' */

XSweet = heximage(addr(Sweet),length(Sweet), '-');
I* '53776565-74' */

XSixteen = hex(Sixteen, '-');
/* '88888818' - bytes reversed */

XSixteen = heximage(addr(Sixteen),stg(Sixteen), '-');
/* '18888888' - bytes NOT reversed*/

HEXIMAGE

HEXIMAGE returns a character string that is the hexadecimal representation of the
storage at a specified location.

The syntax for HEXIMAGE is:

••-HEXIMAGE(p,n [J)------------------"'
,Z

HEXIMAGE(p,n) returns a character string that is the hexadecimal representation of
n bytes of storage at location p. Its length is 2*n.

HEXIMAGE(p,n,z) returns a character string that is the hexadecimal representation
of n bytes of storage at location p with character z inserted between every set of
eight characters in the output string. Its length is (2*n) + ((n - 1)/4).

p restricted expression that must have a locator type (POINTER or
OFFSET). If pis OFFSET, it must have the AREA attribute.

n expression. n must have a computational type and is converted to FIXED
BIN(M,O).

z If specified, z must result in CHARACTER(1) NONVARYING.

For examples of the HEXIMAGE built-in function, see "HEX" on page 404.

Chapter 17. Built-in functions, pseudovariables, and subroutines 405

HIGH

HIGH

HUGE

IAND

HIGH returns a character string of length x, where each character is the highest
character in the collating sequence (hexadecimal FF).

The syntax for HIGH is:

li>li>-HIGHCx)------------------------<11

x expression. If necessary, xis converted to a positive real fixed-point
binary value. If x = 0, the result is the null character string.

HUGE returns a f!oating=polnt value that ls the laigest positive value x can assume.
It has the base, mode, and precision of x.

The syntax for HUGE is:

li>li>-HUGE(x)------------------------<11

x expression. x must have the attributes REAL FLOAT.

HUGE(x) is a constant and can be used in restricted expressions.

IAND returns the logical AND of x and y. The result of IAND(x,y) for x and y fixed
is the value that a REAL FIXED BIN(M,O) variable z would have after the assign
ment:

unspec(z) = unspec(bin(x,31,0))&unspec(bin(y,31,0))

The syntax for IAND is:

li>li>-IANDCx,y)-----------------------<11

x expression. x must have a computational type and is converted to FIXED
BIN(M,O).

y expression. y must have a computational type and is converted to FIXED
BIN(M,O).

406 PUI Package/2 Language Reference

!EOR

IMAG

IEOR

IEOR returns the logical exclusive-OR of x and y. The result of ieor(x,y) for x and y
fixed is the value that a FIXED BIN(M,O) variable z has after the assignment:

unspec(z) = unspec(bin(x,31,0))-.unspec(bin(y,31,0))

The syntax for I EOR is:

~~-IEOR(x,y)-----------------------+•

x expression. x must have a computational type and is converted to FIXED
BIN(M,O).

y expression. y must have a computational type and is converted to FIXED
. BIN(M,O).

IMAG returns the coefficient of the imaginary part of x. The mode of the result is
real and has the base, scale, and precision of x.

The syntax for IMAG is:

~~-IMAG(x)-----------------------•

x expression. If xis real, it is converted to complex.

IMAG pseudovariable

INDEX

The IMAG pseudovariable assigns a real value or the real part of a complex value
to the coefficient of the imaginary part of x.

The syntax for IMAG is:

~~-IMAG(x)------------------------+•

x complex reference.

INDEX returns a real fixed-point binary value indicating the starting position within x
of a substring identical toy. You can also specify the location within x where proc
essing begins.

Chapter 17. Built-in functions, pseudovariables, and subroutines 407

IOR

iOR

The syntax for INDEX is:

.,,.,,_INDEX(x,y [J)-------------------...i
,n

x string-expression to be searched.

y string-expression to be searched for.

n n specifies the location within x at which to begin processing. It must have
a computational type and is converted to FIXED BIN(M,O).

If y does not occur in x, or if either x or y have zero length, the value zero is
returned.

If n is less than 1 or if n is greater than 1 + length(x), the STRINGRANGE condition
will be raised, and the result will be 0.

Example

dcl greet char value ('Waheguru Ji Ka Khalsa, '
'Waheguru Ji Ka Fateh');

dcl pos fixed bin init(l);

pos = index (greet, 'Ji '' pos);
I* 18 *I

pos = index (greet, 'Ji '' pos+ 1);
/* 33 *I

pos = index (greet, 'Ji '' pos+l);
/* (:) */

IOR returns the logical OR of x and y. The result of IOR(x,y) for x and y fixed is
the value that a REAL FIXED BIN(M,O) variable z would have after the assignment:

unspec(z) = unspec(bin(x,31,0)) I unspec(bin(y,31,0)).

The syntax for IOR is:

.,,.,,_IOR(x,y)-----------------------...i

x expression. x must have a computational type and is converted to FIXED
BIN(M,O).

y expression. y must have a computational type and is converted to FIXED
BIN(M,O).

408 PUI Package/2 Language Reference

LBOUND

LEFT

LENGTH

LBOUND

LBOUND returns a FIXED BINARY (M,O) value specifying the current lower bound
of dimension y of x.

The syntax for LBOUND is:

H-LBOUND(x,y)---------------------- ..

x array reference. x must not have less than y dimensions.

y expression specifying a particular dimension of x. If necessary, y is con
verted to FIXED BIN(M,O). y must be greater than or equal to 1. If yis not
supplied, it defaults to 1.

LEFT returns a string that is the result of inserting string x at the left end of a string
with length n and padded on the right with the character z as needed. If z is
omitted, a blank is used as the padding character.

The syntax for LEFT is:

~~-LEFT(x, n [J)--------------------..
,z

x expression. x must have a computational type and should have a char
acter type. If not, it is converted to CHARACTER.

n expression. n must have a computational type and should have a char
acter type. If n does not have the attributes FIXED BIN(M,O), it is con
verted to them.

z expression. If specified, z must result in a CHARACTER(1) NON
VARYING type.

Example

dcl source char value('One Hundred Dollars');
dcl target char(25);

target= left (source, length(target), '*');
/* 'One Hundred Dollars******' *I

LENGTH returns a real fixed-point binary value specifying the current length of x.

The syntax for LENGTH is:

~~-LENGTH(x) .,.

Chapter 17. Built-in functions, pseudovariables, and subroutines 409

LIN ENO

LINE NO

LOG

LOGGAMMA

x string-expression. If xis binary, it is converted to bit string; otherwise, any
other conversion required is to character string.

For examples of the LENGTH built-in function, refer to "SIZE" on page 436 and
"MAXLENGTH" on page 413.

LINENO returns a real fixed-point binary value specifying the current line number of
x.

The syntax for LINENO is:

.,..,._LINENO(x)-----------------------+<11

x file-reference.

The file must be open and have the PRINT attribute. If the file is not open or does
not have the PRINT attribute, '0' B is returned.

LOG returns a floating-point value that is an approximation of the natural logarithm
(the logarithm to the base e) of x. It has the base, mode, and precision of x.

The syntax for LOG is:

.,..,._LOG(x)------------------------<11

x expression. x must be greater than zero.

LOGGAMMA returns a floating-point value that is an approximation of the log of
gamma of x.

GAMMA(x) = ((u<x- 1» exp(u)du

It has the base, mode, and precision of x.

The syntax for LOGGAMMA is:

.,..,._LOGGAMMA(x)----------------------<11

x expression. x must have a computational type and should have an arith
metic type. If x is numeric, it must be real and greater than zero. The
expression x is converted to FLOAT.

410 PUI Package/2 Language Reference

LOG2

LOG10

LOW

LOWER2

LOG2

LOG2 returns a real floating-point value that is an approximation of the binary loga
rithm (the logarithm to the base 2) of x. It has the base and precision of x.

The syntax for LOG2 is:

11>11>-LOG2(x)-----------------------.,..

x real expression. The value of x must be greater than zero.

LOG1 O returns a real floating-point value that is an approximation of the common
logarithm (the logarithm to the base 10) of x. It has the base and precision of x.

The syntax for LOG 1 O is:

11>11>-LOGHl(x)-------------------------4

x real expression. It must be greater than zero.

LOW returns a character string of length x, where each character is the lowest
character in the collating sequence (hexadecimal 00).

The syntax for LOW is:

••-LOW(x)-------------------------4

x expression. If necessary, xis converted to a positive real fixed-point
binary value. If x = 0, the result is the null character string.

LO,WER2(x,n) returns the value of floor(x*(2-n)).

The syntax for LOWER2 is:

11>11>-LOWER2(x, n)-----------------------.-

Note: LOWER2(x,n) is equivalent to the assembler SRA(x,n).

Chapter 17. Built-in functions, pseudovariables, and subroutines 411

MAX

MAX

MAX EXP

x and n
expressions. Both are converted to FIXED BIN(M,O).

The result is F!XED BIN(M,O). The result is undefined if n is negative or if n is
greater than M.

Examples

l ower2 (+6, 1) /* Produces 3 */

l ower2 (-6, 1) /* Produces -3 */

l ower2 (-7, 1) /* Produces -4 *I

MAX returns the largest value from a set of two or more expressions. When used
in restricted expressions, exactly two arguments must be specified.

The syntax for MAX is:

.,..,._MAX(x,L;J_)---------------------<11

x and n expressions.

All the arguments must be real. The result is real, with the common base and
scale of the arguments.

If the arguments are fixed-point with precisions:

(pl,ql),(p2,q2), ... ,(pn,qn)

the precision of the result is given by:

(min(N,max(pl-ql,p2-q2, ... ,pn-qn) + max(ql,q2, ... ,qn)),max(ql,q2, ... ,qn))

where N is the maximum number of digits allowed.

If the arguments are floating point with precisions:

p 1, p2, p3, ... pn

then the precision of the result is given by:

max(pl,p2,p3, ... pn)

MAXEXP returns a FIXED BIN(M,O) value that is the maximum value that
EXPONENT(x) could assume.

The syntax for MAXEXP is:

ll>ll>-MAXEXP(x)----------------------... <11

412 PUI Package/2 Language Reference

MAXLENGTH

MIN

x expression. x must have the REAL and FLOAT attributes.

MAXEXP(x) is a constant and can be used in restricted expressions.

maxexp(x) = 128 for x float bin(p), p <= 21
maxexp(x) = 1824 for x float bin(p), 21 < p <= 53
maxexp(x) = 16384 for x float bin(p), 53 < p

maxexp(x) = 128
maxexp(x) = 1824
maxexp(x) = 16384

for x float dec(p), p <= 61
for x float dec(p), 6 < p <= 16
for x float dec(p), 16 < p

MAXLENGTH returns the maximum length of a string.

The syntax for MAXLENGTH is:

MAX LENGTH

.,..,._MAXLENGTH(x)-------------------------."'

x expression. x must have a computational type and can have a string type.
If not, it is converted to character.

Example

dcl scids char value('See you at SCIDS!');
dcl vscids char(28) varying init('See you at SCIDS!');
dcl len fixed bin(31);

len =length (scids); I* 17 characters */

len = length (vscids); I* 17 characters */

len = maxlength (vscids); /* 28 characters */

len = length (l en): /* 31 bits *I

len = maxlength (l en); /* 31 bits */

For more examples, refer to "SIZE" on page 436.

MIN returns the smallest value from a set of two or more expressions. When used
in restricted expressions, exactly two arguments must be specified.

The syntax for MIN is:

.,..,._MIN(x,.L~)----------------------..<11

Chapter 17. Built-in functions, pseudovariables, and subroutines 413

MIN EXP

MIN EXP

MOD

x and n expressions.

All the arguments must be real. The result is real with the common base and scale
of the arguments.

The precision of the result is the same as that described in "MAX" on page 412.

MINEXP returns a FIXED BIN(M,O) value that is the minimum value that
EXPONENT(x) could assume.

The syntax for MINEXP is:

.,..,._MINEXP(x)-----------------------+~

x expression. x must have the REAL and FLOAT attributes

MINEXP(x) is a constant and can be used in restricted expressions.

minexp(x) = -125 for x float bin(p), p <= 21
minexp(x) = -1821 for x float bin(p), 21 < p <= 53
minexp(x) = -16381 for x float bin(p), 53 < p

minexp(x) = -125
minexp(x) = -1821
minexp(x) = -16381

for x float dec(p), p <= 6
for x float dec(p), 6 < p <= 16
for x float dec(p), 16 < p

MOD returns the smallest nonnegative value, R, such that:

(x - R) /y = n

where n is an integer value. That is, R is the smallest nonnegative value that must
be subtracted from x to make it divisible by y.

The syntax for MOD is:

.,..,._MOD(x,y)------------------------~

x real expression.

y real expression. If y = 0, the ZERODIVIDE condition is raised.

The result, R, is real with the common base and scale of the arguments. If the
result is floating-point, the precision is the greater of those of x and y. If the result
is fixed-point, the precision is given by:

(min(N,p2-q2+max(ql,q2)),max(ql,q2))

where (p1 ,q1) and (p2,q2) are the precisions of x and y, respectively, and N is the
maximum number of digits allowed.

414 PUI Package/2 Language Reference

MPSTR

MPSTR

If x and y are fixed-point with. different scaling factors, the argument with the
smaller scaling factor is converted to the larger scaling factor before R is calcu
lated. If the conversion fails, the result is unpredictable.

The following example contrasts the MOD and REM built-in functions.

rem(+18, +8) = 2
mod(+18, +8) = 2

rem(+18, -8) = 2
mod(+18, -8) = 2

rem(-18, +8) = -2
mod(-18, +8) = 6

rem(-18, -8) = -2
mod(-18, -8) = 6

For information on the REM built-in function, see "REM" on page 430.

MPSTR truncates a string at a logical boundary and returns a mixed character
string. For example, it does not truncate a double-byte character between bytes.
The length of the returned string is equal to the length of the expression x, or to the
value specified by y. The processing of the string is determined by the rules
selected by the expression r, as described below.

The syntax for MPSTR is:

"'"'-MPSTR(x, r [J)----------------------<11
,y

x expression that yields the character string result. The value of x cannot be
GRAPHIC, and xis converted to character if necessary.

r expression that yields a character result. The expression cannot be
GRAPHIC and is converted to character if necessary.

The expression r specifies the rules to be used for processing the string.
The characters that can be used in rand the rules for them are as follows:

V or v Validates the mixed string x and returns a mixed string.

S or s Removes any null DBCS strings and creates a new string.
Returns a mixed string.

If both V and Sare specified, V takes precedence over S, regardless of
the order in which they were specified.

If S is specified without V, the string x is assumed to be a valid string. If
the string is not valid, undefined results occur.

y expression. If necessary, y is converted to a real fixed-point binary value.
If y is omitted, the length is determined by the rules for type conversion.
The value of y cannot be negative. If y = 0, the result is the null character
string. If y is greater than the length needed to contain x, the result is
padded with blanks. If y is less than the length needed to contain x, the

Chapter 17. Built-in functions, pseudovariables, and subroutines 415

MULTIPLY

MULTIPLY

NULL

OFFSET

result is truncated by discarding excess characters from the right (if they
are SBCS characters), or by discarding as many DBCS characters (2-byte
pairs) as needed.

MULTIPLY returns the product of x and y, with a precision specified by p and q.
The base, scale, and mode of the result are determined by the rules for expression
evaluation.

The syntax for MULTIPLY is:

11>11>-MULTIPLY(x,y,p l,qJ)------------------..

"
A GllU y

expressions.

p restricted expression that specifies the number of digits to be maintained
throughout the operation.

q restricted expression that specifies the scaling factor of the result. For a
fixed-point result, if q is omitted, a scaling factor of zero is assumed. For
a floating-point result, q must be omitted.

NULL returns the null pointer value. The null pointer value does not identify any
generation of a variable. The null pointer value can be converted to OFFSET by
assignment of the built-in function value to an offset variable.

The syntax for NULL is:

11>11>-NULL---r----.------------------------. <1

()

OFFSET returns an offset value derived from a pointer reference x and relative to
an area y. If x is the null pointer value, the null offset value is returned.

The syntax for OFFSET is:

11>11>-0FFSET(x,y)----------------------... <1

x pointer reference. It must identify a generation of a based variable within
the area y, or be the null pointer value.

416 PUI Package/2 Language Reference

OFFSET ADD

OFFSETDIFF

OFFSET ADD

y area reference.

If xis an element reference, y must be an element variable.

OFFSETADD returns the sum of the arguments.

The syntax for OFFSET ADD is:

••-OFFSETADD(x,y)--------------------•

x expression. x must be specified as OFFSET.

y expression. y must have a computational type and is converted to FIXED
BIN(M,O).

OFFSETDIFF returns a FIXED BIN(M,O) value that is the arithmetic difference
between the arguments.

The syntax for OFFSETDIFF is:

••-OFFSETDIFF(x,y)--------------------•

x and y
expressions. Both must be specified as OFFSET.

OFFSETSUBTRACT
OFFSETSUBTRACT is equivalent to OFFSETADD(x,-y).

The syntax for OFFSETSUBTRACT is:

••-OFFSETSUBTRACT(x,y)-------------------•

x expressions. x must be specified as OFFSET.

y expression. y must have a computational type and is converted to FIXED
BIN(M,O)

Chapter 17. Built-in functions, pseudovariables, and subroutines 417

OFFSETVALUE

OFFSETVALUE

OMITTED

ONCHAR

OFFSETVALUE returns an offset value that is the converted value of x.

The syntax for OFFSETVALUE is:

11>11>-0FFSETVALUE(x)--------------------<1

x expression. x must have a computational type and is converted to FIXED
BIN(M,O).

OMITTED returns a BIT(1) value that is '1 'B if the parameter named x was omitted
in tho inHt"\l"'!:lltinn tn itc:- l"'t"\ntaininn nrnl"'orl11ro
111 t.llV lllVVV"'"4.\.IVll '""' "·""' VVll\.""'4.111111~ t-'IV\J\J\.AUI'"'•

The syntax for OMITTED is:

11>11>-0MITTED(x)----------------------<1

x level-one unscripted parameter with the BY ADDR attribute.

ONCHAR returns a 1-character string containing the character that caused the
CONVERSION condition to be raised. It is in context in an ON-unit (or any of its
dynamic descendants) for the CONVERSION condition or for the ERROR or
FINISH condition raised as the implicit action for the CONVERSION condition.

The syntax for ONCHAR is:

11>11>-0NCHAR~-~--------------------<1
()

If the ONCHAR built-in function is used out of context, a blank is returned.

418 PUI Package/2 Language Reference

ONCHAR pseudovariable

ONCHAR pseudovariable

ONCODE

ONCOUNT

The ONCHAR pseudovariable sets the current value of the ONCHAR built-in func
tion. The element value assigned to the pseudovariable is converted to a character
value of length 1. The new character is used when the conversion is re-attempted.
(See "CONVERSION condition" on page 315.)

The syntax for ONCHAR pseudovariable is:

ll>ll>-ONCHAR---.---r----------------------... ..,.
()

The pseudovariable must not be used out of context.

The ONCODE built-in function provides a fixed-point binary value that depends on
the cause of the last condition. ONCODE can be used to distinguish between the
various circumstances that raise a particular condition (for instance, the ERROR
condition). For codes corresponding to the conditions and errors detected, see the
specific condition in Chapter 16, "Conditions" on page 312.

ONCODE returns a real fixed-point binary value that is the condition code. It is in
context in any ON-unit or its dynamic descendant. All condition codes are defined
in Chapter 16, "Conditions" on page 312.

The syntax for ONCODE is:

ll>ll>-ONCODE---.---r-----------------------..,.
()

If ONCODE is used out of context, zero is returned.

ONCOUNT returns a FIXED BIN(M,O) value specifying the number of conditions
that remain to be handled when an ON-unit is entered. Multiple conditions are dis
cussed under "Multiple conditions" on page 309. It is in context in any ON-unit, or
any dynamic descendant of an ON-unit.

The syntax for ONCOUNT is:

ll>ll>-ONCOUNT--,---.----------------------..,.
()

If ONCOUNT is used out of context, zero is returned.

Chapter 17. Built-in functions, pseudovariables, and subroutines 419

ONFILE

ON FILE

ONGSOURCE

ONFILE returns a character string whose value is the name of the file for which an
input/output or CONVERSION condition is raised. If the name is a DBCS name, it
will be returned as a mixed character string. It is in context in the following circum
stances:

• In an ON-unit, or any of its dynamic descendants

• For any input/output or CONVERSION condition

• For the ERROR or FINISH condition raised as implicit action for an input/output
or the CONVERSION condition.

The syntax for ONFILE is:

..,..,_ONFILE--..--......----------------------<1
()

If ONFILE is used out of context, a null string is returned.

ONGSOURCE returns a graphic string containing the DBCS character that caused
the CONVERSION condition to be raised. It is in context in an ON-unit (or any of
its dynamic descendants) for the CONVERSION condition or for the ERROR or
FINISH condition raised as the implicit action for the CONVERSION condition.

The syntax for ONGSOURCE is:

..,..,_ONGSOU.RCE--..--......---------------------<1
()

If the ONGSOURCE built-in function is used out of context, a DBCS blank is
returned.

ONGSOURCE pseudovariable
The ONGSOURCE pseudovariable sets the current value of the ONGSOURCE
built-in function. The element value assigned to the pseudovariable is converted
graphic. The string is used when the conversion is re-attempted. (See "CONVER
SION condition" on page 315.)

The syntax for ONGSOURCE pseudovariable is:

..,..,_ONGSOURCE--..--......---------------------+<1
()

The pseudovariable must not be used out of context.

420 PUI Package/2 Language Reference

ON KEY

ONLOC

ON KEV

ONKEY returns a character string whose value is the key of the record that raised
an input/output condition. For indexed files, if the key is GRAPHIC, the string is
returned as a mixed character string. ONKEY is in context for the following:

• An ON-unit, or any of its dynamic descendants

• Any input/output condition, except ENDFILE

• The ERROR or FINISH condition raised as implicit action for an input/output
condition.

ONKEY is always set for operations on a KEYED file, even if the statement that
raised the condition has not specified the KEY, KEYTO, or KEYFROM options.

The syntax for ONKEY is:

.,..,._QNKEY--------------------------111
()

The result of specifying ONKEY is:

• For any input/output condition (other than ENDFILE), or for the ERROR or
FINISH condition raised as implicit action for these conditions, the result is the
value of the recorded key from the 1/0 statement causing the error.

• For relative data sets, the result is a character string representation of the rela
tive record number. If the key was incorrectly specified, the result is the last 8
characters of the source key. If the source key is less than 8 characters, it is
padded on the right with blanks to make it 8 characters. If the key was cor
rectly specified, the character string consists of the relative record number in
character form padded on the left with blanks, if necessary.

• For a REWRITE statement that attempts to write an updated record on to an
indexed data set when the key of the updated record differs from that of the
input record, the result is the value of the embedded key of the input record.

If ONKEY is used out of context, a null string is returned.

ONLOC returns a character string whose value is the name of the entry-point used
for the current invocation of the procedure in which a condition was raised.

ONLOC always returns the first name of a multiple label specification, regardless of
which name appears in the CALL or GOTO statement.

If the name is a DBCS name, it is returned as a mixed character string. It is in
context in any ON-unit, or in any of its dynamic descendants.

Chapter 17. Built-in functions, pseudovariables, and subroutines 421

ONSOURCE

ONSOURCE

The syntax for ONLOC is:

.,..,._QNLOC~-~---------------------<11
()

If ONLOC is used out of context, a null string is returned.

ONSOURCE returns a character string whose value is the contents of the field that
was being processed when the CONVERSION condition was raised. It is in
context in an ON-unit, or any of its dynamic descendants, for the CONVERSION
condition or for the ERROR or FINISH condition raised as the implicit action for the
CONVERSION condition.

Tho C\/nt!:lv fnr ()l\l~()l ll:~r.i:: ic· , " .. .

.,..,._QNSOURCE~--r----------------------<11
()

If ONSOURCE is used out of context, a null string is returned.

ONSOURCE pseudovariable
The pseudovariable sets the current value of the ONSOURCE built-in function. The
element value assigned to the pseudovariable is converted to a character string
and, if necessary, is padded on the right with blanks or truncated to match the
length of the field that raised the CONVERSION condition. The string is used when
the conversion is re-attempted. For information about conversion refer to "CON
VERSION condition" on page 315.

The syntax for ONSOURCE pseudovariable is:

H-ONSOURCE---.---r---------------------- ...
()

When conversion is re-attempted, the string assigned to the pseudovariable is proc
essed as a single data item. For this reason, the error correction process must not
assign a string containing more than one data item when the conversion occurs
during the execution of a GET LIST or GET DATA statement. The presence of
blanks or commas in the string could raise CONVERSION again.

The pseudovariable must not be used out of context.

422 PUI Package/2 Language Reference

PAGENO

PLACES

PLIDUMP

PAGENO

PAGENO returns a FIXED BIN(M,O) value that is the current page number associ
ated with file x.

The syntax for PAGENO is:

li>li>-PAGENO(x)----------------------- ...

x an open PRINT file.

If the file is not a PRINT file, the ERROR condition is raised.

PLACES returns a FIXED BIN(M,O) value that is the model-precision used to repre
sent the floating point expression x.

The syntax for PLACES is:

li>li>-PLACES(x)----------------------- ...

x expression. x must be declared REAL FLOAT.

PLACES(x) is a constant and can be used in restricted expressions.

places(x) = 24 for x float bin(p), p <= 21
places(x) = 53 for x float bin(p), 21 < p <= 53
places(x) = 64 for x float bin(p), 53 < p

places(x) = 24
places(x) = 53
places(x) = 64

for x float dec(p), p <= 61
for x float dec(p), 6 < p <= 16
for x float dec(p), 16 < p

This built-in subroutine allows you to obtain a formatted dump of selected parts of
storage used by your program.

The syntax for PLIDUMP is:

.,..,._PLIDUMP(argument [J
,argument

_______________ ...

For more information about using PLIDUMP, see PU/ Package/2 Programming
Guide.

Chapter 17. Built-in functions, pseudovariables, and subroutines 423

PLIFILL

PLIFILL

PLIMOVE

PLIFILL moves z copies of the byte y to the location x without any conversions,
padding, or truncation.

The syntax for PLIFILL is:

.,..,._,,PLIFILL(x,y, z)---------------------+<11

x expression. x must be declared POINTER or OFFSET. If it is OFFSET, x
must be declared with the AREA attribute.

y must be declared CHARACTER(1) NONVARYING.

z expression that is converted to FIXED BIN(M,O).

If!!!., ___ ,_

J;;ACllll/Jlf:#

dcl 1 strl,
2 b fixed bin(31),
2 c pointer,
2 * union,

3 d char(4),
3 e fixed bin(31),
3 *,

4 * char(3),
4 f fixed bin(8) unsigned,

2 * char(0)
initial call plifill(addr(strl), '00'x, stg(strl));

PLIMOVE moves z storage units (bytes) from location y to location x, without any
conversions. padding, or truncation.

The syntax for PLIMOVE is:

••-PLIMOVE(x,y,z)---------------------+<11

x and y
expressions declared as POINTER or OFFSET. If the type is OFFSET, x
or y must be declared with the AREA attribute.

z expression. z must have a computational type and is converted to FIXED
BIN(M,0).

Storage at locations x and y is assumed to be unique. If storage overlaps, unpre
dictable results can occur.

424 PUI Package/2 Language Reference

PLIRETC

PLIRETV

POINTER

Example

dcl 1 strl,
2 b fixed bin(31),
2 c pointer,
2 * union,

3 d char(4),
3 e fixed bin(31),
3 *,

4 * char(3),
4 f fixed bin(8) unsigned,

2 *char((:));
dcl 1 template nonasgn static,

2 *fixed bin(31) init(200),
2 *pointer init(null()),
2 * char(4) init(''),
2 *char((:));

call plimove(addr(strl), addr(template), stg(strl));

PLIRETC

This built-in subroutine allows you to set a return code that can be examined by the
program that invoked this PUI program or by another PUI procedure via the
PLIRETV built-in function.

The syntax for PLI RETC is:

11>11>-PLIRETC(x)----------------------~

x an expression yielding a FIXED BINARY(M,O) return code.

PLIRETV returns a FIXED BIN(M,O) value that is the PUI return code.

The syntax for PLIRETV is:

11>11>-PLIRETV~-~--------------------~
()

The value of the PUI return code is the most recent value specified by a CALL
PLI RETC statement.

POINTER returns a pointer value that identifies the generation specified by an
offset reference x, in an area specified by y. If xis the null offset value, the null
pointer value is returned.

Chapter 17. Built-in functions, pseudovariables, and subroutines 425

POINTE RA DD

POINTE RADO

POINTERDIFF

The syntax for POINTER is:

••-POINTER(x,y)----------------------.<11

Abbreviation: PTA

x offset reference. It can be the null offset value. If it is not, x must identify
a generation of a based variable, but not necessarily in y. If it is not in y,
the generation must be equivalent to a generation in y.

y area reference.

Generations of based variables in different areas are equivalent if, up to the allo
cation of the latest generation, the variables have been allocated and freed the
same number of times as each other.

POINTERADD returns a pointer value that is the sum of its arguments.

The syntax for POINTERADD Is:

••-POINTERADD(x,y)--------------------<11

Abbreviation: PTRADD

x pointer expression.

y expression that must have a computational type and is converted to
FIXED BIN(M,O).

POINTERADD can be used as a locator for a based variable.

POINTERADD can be used for subtraction by prefixing the operand to be sub
tracted with a minus sign.

POINTERDIFF returns a FIXED BIN(M,O) result that is the difference between the
two pointers x and y.

The syntax for POINTERDIFF is:

••-POINTERDI FF(x,y)--------------------<11

x and y
expressions declared as POINTER.

426 PUI Package/2. Language Reference

POINTERSUBTRACT

POINTERSUBTRACT
POINTERSUBTRACT is equivalent to POINTERADD(x,-y).

The syntax for POINTERSUBTRACT is:

H-POINTERSUBTRACT(x,y)-------------------•

x must be a pointer expression.

y expression that must have a computational type and is converted to
FIXED BIN(M,O).

POINTERVALUE

PRECISION

POINTERVALUE returns a pointer value that is the converted value of x.

The syntax for POINTERVALUE is:

1J-1J--POINTERVALUE(x)--------------------•

Abbreviation: PTRVALUE

x expression that must have a computational type and is converted to
FIXED BIN(M,O).

POINTERVALUE(x) can be used to initialize static pointer variables if x is a con
stant.

PRECISION returns the value of x, with a precision specified by p and q. The
base, mode, and scale of the returned value are the same as that of x.

The syntax for PRECISION is:

.,..,._PRECISION(x,p [J
,q

Abbreviation: PREC

x expression.

-------------------·

p restricted expression. p specifies the number of digits that the value of the
expression xis to have after conversion.

q restricted expression. It specifies the scaling factor of the result. For a
fixed-point result, if q is omitted, a scaling factor of zero is assumed. For
a floating-point result, q must be omitted.

Chapter 17. Built-in functions, pseudovariables, and subroutines 427

PRED

PRED

PROD

RADIX

PRED returns a floating-point value that is the biggest representable number
smaller than x. It has the base, mode, and precision of x. OVERFLOW will be
raised if there is no such number.

The syntax for PRED is:

••-PRED(x)------------------------.._

x expression declared REAL FLOAT. ·

PROD ietums the pmduct of all the elements in x.

The syntax for PROD is:

••-PROD(x)------------------------.,.

x array reference. If the elements of x are strings, they are converted to
fixed-point integer values.

If the elements of x are not fixed-point integer values or strings, they are
converted to floating-point and the result is floating-point.

The result has the precision of x, except that the result for fixed-point integer values
and strings is fixed-point with precision (n,O), where n is the maximum number of
digits allowed. The base and mode match the converted argument x.

RADIX returns a FIXED BIN(M,O) value that is the model-base used to represent
the floating point expression x.

The syntax for RADIX is:

••-RADIX(x)-----------------------... .,.

x expression declared REAL FLOAT.

RADIX(x) is 2 and can be used in restricted expressions.

428 PUI Package/2 Language Reference

RAISE2

RANDOM

REAL

RAISE2

RAISE2(x,n) returns the value of X*(2n).

The syntax for RAISE2 is:

1>1>-RAISEZ(x,n)-----------------------<11

Note: RAISE2(x,n) is equivalent to the assembler SLA(x,n).

x and n
expressions that must have a computational type and is converted to
FIXED BIN(M,O).

The result has the type FIXED BIN(M,O). It is undefined if n is negative or if n is
greater than M.

Example

raise2(6,1) /* produces 12 */

RANDOM returns a FLOAT BIN(53) random number generated using x as the
given seed. If xis omitted, the random number generated is based on the seed
provided by the last RANDOM invocation with a seed, or on a default initial seed of
1 if RANDOM has not previously been invoked with a seed.

The syntax for RANDOM is:

1>1>-RANDOM1---.----.---------------------<11
(x)

x expression. x must have a computational type and should have an arith
metic type. If x is numeric, it must be real. If x is not specified FIXED
BIN(M,O), it is converted.

REAL returns the real part of x. The result has the base, scale, and precision of x.

The syntax for REAL is:

1>1>-REAL(x)-----------------------<11

x expression. If xis real, it is converted to complex.

Chapter 17. Built-in functions, pseudovariables, and subroutines 429

REAL pseudovariable

REAL pseudovariable

REM

REPEAT

The pseudovariable assigns a real value or the real part of a complex value to the
real part of x.

The syntax for REAL pseudovariable is:

11>11>-REAL(x)-----------------------~

x complex reference.

REM returns the remainder of x divided by y. This can be calculated by:

x - Y*trunc(x/y)

The syntax for REM is:

11>11>-REM(x,y)-----------------------~

x and y
expressions. x and y must be computational and can be arithmetic.

For examples that contrast the REM and MOD built-in functions, refer to "MOD" on
page 414.

REPEAT returns a bit or character string consisting of x concatenated to itself the
number of times specified by y. That is, there will be (y + 1) occurrences of x.

The syntax for REPEAT is:

11>11>-REPEAT(x,y)----------------------~

x bit- or character-expression to be repeated. If xis arithmetic, the following
conversions occur:

• If it is binary, xis converted to bit string
• If it is decimal, xis converted to character string.

y expression. If necessary, y is converted to a real fixed-point binary value.

If y is zero or negative, the string x is returned. For an example of the REPEAT
built-in function, see "COPY" on page 392.

430 PUI Package/2 Language Reference

REVERSE

RIGHT

REVERSE

REVERSE returns a nonvarying string that contains the elements of x in reverse
order.

The syntax for REVERSE is:

11>11>-REVERSE(x)-----------------------~

x expression. x must have a computational type and should have a string
type. If x does not have a string type, it is converted to string (that is, from
numeric to bit or character), according to the rules for concatenation.

Example

dcl source char value('HARPO');
dcl target char(length(source));

target= reverse (source); /* 'OPRAH' */

RIGHT returns a string that is the result of inserting string x at the right end of a
string with length n and padded on the left with the character z as needed. If z is
omitted, a blank is used as the padding character.

The syntax for RIGHT is:

11>11>-RIGHTCx,n [J)--------------------~
,Z

x expression. x must have a computational type and can have a character
type. If not, it is converted to character.

n expression that must have a computational type and is converted to
FIXED BIN(M,O).

z expression. If specified, z must result in a CHARACTER(1) NON
VARYING type.

Example

dcl source char value('One Hundred Dollars');
dcl target char(25);

target= right (source, length(target), '*');
I* '******One Hundred Dollars' */

Chapter 17. Built-in functions, pseudovariables, and subroutines 431

ROUND

ROUND
The value of x is rounded at a digit specified by n. The result has the mode, base,
and scale of x.

The syntax for ROUND is:

..,..,_RQUNDCx,n)----------------------<11

x real expression. If xis negative, the absolute value is rounded and the
sign is restored.

n optionally-signed integer. It specifies the digit at which rounding is to
occur. n must conform to the limits of scaling-factors for FIXED data. If n
is greater than 0, rounding occurs at the (n)th digit to the right of the point.
If n is zero or negative, rounding occurs at the (1-n)th digit to the left of the
point.

The precision of a fixed-point result is given by:

(max(l,min(p-q+l+n,N)),n)

where (p,q) is the precision of x, and N is the maximum number of digits allowed.
Thus, n specifies the scaling factor of the result.

In the following example:

dcl X fixed dec(5,4) init(6.6666);
put (round(X,2));

the value 6.67 is output.

If xis FIXED,

round(x,n)=sign(X)*(b-n)*floor(abs(X)*(bn-e)+l/2)

where b = 2 if xis BINARY; b = 10 if xis DECIMAL.

If x is FLOAT and not equal to 0,

round(x,n) = sign(X)*(b(e-n))* floor(abs(x)*(b(e- n)) + 1/2)

where b = radix(x) and e = exponent(x).

If xis FLOAT and equal to 0,

function round (x,n) = 8

432 PUI Package/2 Language Reference

SAME KEY

SCALE

SEARCH

SAME KEY

SAMEKEY returns a bit string of length 1 indicating whether a record that has been
accessed is followed by another with the same key.

The syntax for SAMEKEY is:

11>11>-SAMEKEY(x)----------------------.,.

x file reference. The file must have the RECORD attribute.

Upon successful completion of an input/output operation on file x, or immediately
before the RECORD condition is raised, the value accessed by SAMEKEY is set to
'1 'B if the record processed is followed by another record with the same key, and
set to ' 0' B if it is not.

The value accessed by SAME KEY is also set to '0' B if:

• An input/output operation that raises a condition other than RECORD also
causes file positioning to be changed or lost

• The file is not open

• No current cursor position exists in the file.

SCALE returns a floating-point value based on the formula X*(radix(x)n). The result
has the base, mode, and precision of x.

The syntax for SCALE is:

11>11>-SCALE(x,n)----------------------.,.

x expression declared REAL FLOAT.

n expression that must have a computational type and is converted to
FIXED BIN(M,O).

SEARCH returns the first position in one string at which a character, bit, or graphic
element of another string appears. It also allows you to specify the location at
which to start searching.

The syntax for SEARCH is:

11>11>-SEARCH(x,y l, f7J)-------------------.,.

Chapter 17. Built-in functions, pseudovariables, and subroutines 433

SEARCHR

SEARCHR

x and y
expressions. x specifies the string in which to search for any character,
bit, or graphic in y.

n expression. n specifies the location within x at which to begin searching.
It must have a computational type and is converted to FIXED BIN(M,O). If
n is less than 1 or if n is greater than 1 + length(x), the STRINGRANGE
condition is raised, and the result is zero.

Example

dcl source char value(' PL/I is the Power ');
dcl (first, last) char(25) varying;
dcl wordlen fixed bin(31);
dcl pos fixed bin(31);
dcl start fixed bin(31);
dcl end fixed bin(31);

/* Find the first and the last word in "source", assuming */
I* it contains at least one word */
start= verify(source, ' '); /* find start of 1st word */
end = search(source, ' ',start+l);/* find end of word */
if end = 8 then

end = length(source)+l;
wordlen = end-start;
first = substr(source,start,wordlen); /* 'PL/I' */

end = verifyr(source, ' '); /*find end of last word */
start= searchr(source, ' ',end-1); /*find start of word */
wordlen = end-start;
last = substr(source,start+l,wordlen); /* 'Power' */

The SEARCHR function performs the same operation as the SEARCH built-in func
tion except that

• The search is done from right to left
• The default value for n is LENGTH(x).

The syntax for SEARCH R is:

11>11>-SEARCHR(x,y [J)-~-----------------"'
,n

For argument descriptions and an example, refer to "SEARCH" on page 433.

434 PUI Package/2 Language Reference

SIGN

SIGNED

SIN

SIGN

SIGN returns a FIXED BIN(M,O) value that indicates whether xis positive, zero, or
negative.

The syntax for SIGN is:

1J>1J>-SIGN(x)------------------------+<11

x real expression.

The returned value is given by:

Value of x
X>O
X=O
X<O

Value Returned
+1

0
-1

SIGNED returns a signed FIXED BIN value of x, with a precision specified by p and
q.

The syntax for SIGNED is:

H-SIGNED(x,---..-[----.....- __________________ .,.

,p L J
,q

x expression.

p restricted expression that specifies the number of digits to be maintained
throughout the operation.

q restricted expression that specifies the scaling factor of the result. For a
fixed-point result, if p is given and q is omitted, a scaling factor of zero is
the default.

SIN returns a floating-point value that is an approximation of the sine of x. It has
the base, mode, and precision of x.

The syntax for SIN is:

1J>1J>-SIN(x)------------------------<11

x expression whose value is in radians.

Chapter 17. Built-in functions, pseudovariables, and subroutines 435

SINO

SINO

SINH

SIZE

SIND returns a real floating-point value that is an approximation of the sine of x. It
has the base and precision of x.

The syntax for SIND is:

••-SINDCx)------------------------~

x real expression whose value is in degrees.

SINH returns a floating-point value that represents an approximation of the
hyperbolic sine of x. It has the base, mode, and precision of x.

The syntax for SINH is:

••-SINH(x)------------------------~

x expression whose value is in radians.

SIZE returns a FIXED BIN(M,O) value giving the implementation-defined storage, in
bytes, allocated to a variable x.

The syntax for SIZE is:

••-SIZE(x)------------------------~

x a variable of any data type, data organization, alignment, and storage
class, except as listed below.

x cannot be:

• A BASED, DEFINED, parameter, subscripted, or structure or union
base-element variable that is an unaligned fixed-length bit string

• A minor structure or union whose first or last base element is an una
ligned fixed-length bit string (except where it is also the first or last
element of the containing major structure or union)

• A major structure or union that has the BASED, DEFINED, or param
eter attribute, and which has an unaligned fixed-length bit string as its
first or last element

• A variable not in connected storage.

436 PUI Package/2 Language Reference

SQRT

SQRT

The value returned by SIZE(x) is the maximum number of bytes that could be
transmitted in the following circumstances:

declare F file record input
environment(scalarvarying);

read file(F) into(x);

If xis:

• A varying-length string, the returned value includes the length-prefix of the
string and the number of bytes in the maximum length of the string

• An area, the returned value includes the area control bytes and the maximum
size of the area

• An aggregate containing areas or varying-length strings, the returned value
includes the area control bytes, the maximum sizes of the areas, the length
prefixes of the strings, and the number of bytes in the maximum lengths of the
strings.

Example

dcl scids char(17) init('See you at SCIDS!') static;
dcl vscids char(28) varying init('See you at SCIDS!') static;
dcl stg fixed bin(31);

stg =storage (scids); /* 17 bytes */

stg = currentsize (scids); /* 17 bytes */

stg =size (vscids); I* 22 bytes */

stg = currentsize (vscids); /* 19 bytes */

stg =size (stg); /* 4 bytes */

stg = currentsize (stg); I* 4 bytes */

For other built-in functions that set extents, refer to "CURRENTSIZE" on page 394
and "MAXLENGTH" on page 413.

SQRT returns a floating-point value that is an approximation of the positive square
root of x. It has the base, mode, and precision of x.

The syntax for SQRT is:

.,..,._SORT(x)------------------------+•

x expression. If xis real, it must not be less than zero.

Chapter 17. Built-in functions, pseudovariables, and subroutines 437

STORAGE

STORAGE

STRING

Abbreviation: STG

STORAGE is a synonym for SIZE.

STRING returns an element bit or character string that is the concatenation of all
the elements of x.

The syntax for STRING is:

••-STRING(x)-----------------------~

x aggregate or element reference.

STRING is restricted as follows:

• It cannot be applied to unions or structures containing unions

• If applied to a scalar, the scalar must be a nonvarying bit string, a nonvarying
character string, a pictured character string, a pictured numeric string, or a non
varying graphic string.

• If applied to a structure, the structure must contain no padding bytes and the
elements of the structure must be either:

- All unaligned nonvarying bit strings

- All character strings, each of which is either a nonvarying character string,
a pictured string, or a pictured numeric string.

- All nonvarying graphic strings

• If applied to an array, the array must be connected and all the elements in the
array are subject to the restrictions for STRING.

The following are valid STRING targets:

dcl
1 A,

dcl

2 B bit(8),
2 c bit(2),
2 D bit(8);

1 W,

dcl

2 X char(2),
2 Y pic'aa',
2 Z char(6);

1 W,
2 X char(2),
2 Y pic'99',
2 Z char(6);

438 PUI Package/2 Language Reference

The following are invalid STRING targets:

dcl
1 A,

2 B bit(8) aligned,
2 c bit(2),
2 D bit(8) aligned;

STRING pseudovariable

STRING pseudovariable

SUBSTR

The STRING pseudovariable assigns a string to x as if x were a string scalar. Any
remaining strings in x are filled with blanks or zero bits, or, if varying-length, are
given zero length.

The syntax for STRING pseudovariable is:

1J>1J>-STRING(x)-----------------------~

x aggregate or element reference. Each base element of x must be either
all bit-string or all character-string.

The STRING pseudovariable must not be used out of context.

The pseudovariable is also subject to the restrictions of the STRING built-in func
tion. For more information on the restrictions, refer to 438.

SUBSTR returns a substring, specified by y and z, of x.

The syntax for SUBSTR is:

1J>1J>-SUBSTR(x,y [J)------------------~~
.z

x string expression. It specifies the string from which the substring is to be
extracted. If xis not a string, it is converted to character.

y expression that is converted to FIXED BIN(M,O). y specifies the length of
the substring in x.

z expression that is converted to FIXED BIN(M,O). z specifies the length of
the substring in x. If z is zero, a null string is returned. If z is omitted, the
substring returned is position y in x to the end of x.

The STRINGRANGE condition is raised if z is negative or if the values of y and z
are such that the substring does not lie entirely within the current length of x. It is
not raised when y = LENGTH(x)+ 1 and z = 0. For an example of the SUBSTR
built-in function, see "SEARCH" on page 433.

Chapter 17. Built-in functions, pseudovariables, and subroutines 439

SUBSTR ps.eudovariable

SUBSTR pseudovariable

SUBTRACT

succ

The pseudovariable assigns a string value to a substring, specified by y and z, of x.
The remainder of xis unchanged. (Assignments to a varying string do not change
the length of the string.)

The syntax for SUBSTR pseudovariable is:

H-SUBSTR(x,y [J)-------------------•
,z

x string-reference. x must not be a numeric character.

y expression. y specifies the starting position of the substring in x. It can
be converted to a real fixed-point binary value.

z expression. z specifies the iength of the substring in x. it can be con
verted to a real fixed-point binary value. If z is zero, a null string is
returned. If z is omitted, the substring returned is position yin x to the end
of x.

y and z can be arrays only if xis an array.

SUBTRACT is equivalent to ADD(x,-y,p,q).

The syntax for SUBTRACT is:

••-SUBTRACT(x,y,p [J
,q

For details about arguments, refer to "ADD" on page 382 for argument
descriptions.

SUCC returns a floating-point value that is the smallest representable number
larger than x. It is the base, mode, and precision of x. The OVERFLOW condition
is raised if there is no such number.

The syntax for SUCC is:

••-SUCC(x)-----------------------•

x expression declared REAL FLOAT.

440 PUI Package/2 Language Reference

SUM

TAN

TAND

SUCC satisfies the following relationships:

pred(succ(x)) = x
succ(pred(x)) = x
succ(x) = -pred(-x)
succ(8d8) = tiny(8d8)

SUM

SUM returns the sum of all the elements in x. The base, mode, and scale of the
result match those of x.

The syntax for SUM is:

1J>1J>-SUM(x)--------------------------+<11

x array expression. If the elements of x are strings, they are converted to
fixed-point integer values.

If the elements of x are fixed-point, the precision of the result is (N,q),
where N is the maximum number of digits allowed, and q is the scaling
factor of x.

If the elements of x are floating-point, the precision of the result matches
x.

TAN returns a floating-point value that is an approximation of the tangent of x. It
has the base, mode, and precision of x.

The syntax for TAN is:

1J>1J>-TAN(x)------------------------<11

x expression whose value is in radians.

TAND returns a real floating-point value that is an approximation of the tangent of
x. It has the base and precision of x.

The syntax for TAND is:

1J>1J>-TAND(x)-------------------------<11

x real expression whose value is in ~egrees.

Chapter 17. Built-in functions, pseudovariables, and subroutines 441

TANH

TANH

TIME

TINY

TRANSLATE

TANH returns a floating-point value that is an approximation of the hyperbolic
tangent of x. It has the base, mode, and precision of x.

The syntax for TANH is:

lil>lil>-TANH(x)-----------------------<11

x expression whose value is in radians.

TIME returns a character string timestamp in the format HHMMSSTTT, in which:

HH current hour
MM current minute
SS current second

The syntax for TIME is:

lil>lil>-TIME--r--~---------------------<11
()

The time zone and accuracy are system dependent.

TINY returns a floating-point value that is the smallest positive value x can assume.
ii has the base, mode, and precision, of x.

The syntax for TINY is:

lil>lil>-TINY(x)-----------------------<11

x expression declared REAL FLOAT.

Tiny(x) is a constant and can be used in restricted expressions.

TRANSLATE returns a character string of the same length as x.

The syntax for TRANSLATE is:

lll>lil>-TRANSLATE(x,y [J)------------------.,.
,z

442 PUI Package/2 Language Reference

TRIM

TRIM

x character expression to be searched for possible translation of its charac
ters.

y character expression containing the translation values of characters.

z character expression containing the characters that are to be translated. If
z is omitted, it defaults to collate().

TRANSLATE operates on each character of x as follows:

If a character in x is found in z, the character in y that corresponds to that in z is
copied to the result; otherwise, the character in x is copied directly to the result. If
z contains duplicates, the leftmost occurrence is used.

y is padded with blanks, or truncated, on the right to match the length of z.

Any arithmetic or bit arguments are converted to character. TRANSLATE does not
support GRAPHIC data.

Example

dcl source char value("If it's Tuesday, it must be Deutsche abend!")
dcl target char(length(source));
dcl (to value ('ABCDEFGHIJKLMNOPORSTUVWXYZ'),

from value ('abcdefghijklmnopqrstuvwxyz')) char(26);

target = translate(source. to, from);
/*"IF IT'S TUESDAY, IT MUST BE DEUTSCHE ABEND!"*/

TRIM returns a nonvarying character string with characters trimmed from one or
both ends.

The syntax for TRIM is:

~~-TRIM(x.~c----~ ___________________ .,.

,y L J

x, y, and z
expressions.

,z

Each must have a computational type and should have the attribute
CHARACTER. If not, they are converted.

xis the string from which the characters defined by y are trimmed from the
left, and the characters defined by z are trimmed from the right.

If z is omitted, it defaults to a CHARACTER(1) NONVARYING string con
taining one blank.

If y and z are both omitted, they both default to a CHAR(1) NONVARYING
string containing one blank.

Chapter 17. Built-in functions, pseudovariables, and subroutines 443

TRUNC

TRUNC

UNSIGNED

Example

dcl source char value("*** PL/I's got the Power! *** ");
dcl target char(length(source)) varying;

target= trim(source, ' ', '* ');
I* "***PL/I's got the Power!"*/

TRUNC returns an integer value that is the truncated value of x. If xis positive or
0, this is the largest integer value less than or equal to x. If x is negative, this is
the smallest integer value greater than or equal to x. This value is assigned to the
result.

The syntax for TRUNC is:

11>11>-TRUNC(x)------------------------+.-

x real expression.

The base, mode, scale, and precision of the result match those of x. Except when
x is fixed-point with precision (p,q), the precision of the result is given by:

(min(N,max(p-q+l,1)),8)

where N is the maximum number of digits allowed.

UNSIGNED returns an unsigned FIXED BINARY value of x, with a precision speci
fied by p and q.

The syntax for UNSIGNED is:

11>11>-UNSIGNED(x,--.-[----~ -----------------.-

, p L J ,q

x expression.

p integer. It specifies the number of digits to be maintained throughout the
operation.

q optionally-signed integer. It specifies the scaling factor of the result. For a
fixed-point result, if pis given and q is omitted, a scaling factor of zero is
the default.

444 PUI Package/2 Language Reference

UNSPEC

UNSPEC

UNSPEC returns a bit string that is the internal coded form of x.

The syntax for UNSPEC is:

"'"'-UNSPEC(x)-----------------------<11

x scalar, array, structure, or union expression.

The UNSPEC built-in function is subject to the following rules:

• For aggregates, UNSPEC is allowed only for those that contain no padding
bytes or bits.

• The result will always be BIT(*) scalar. UNSPEC of an array does not yield an
array of BIT(*).

Note: Use of UNSPEC can affect the portability of your application program.

The length of the returned bit string depends on the attributes of x, as shown in
Figure 69.

Figure 69 (Page 1 of 2). Length of bit string returned by UNSPEC

Bit-String length

8

16

32

64

128

n

8*n or 32767

16*n

16+n

16+(8*n)

Attribute of x

SIGNED FIXED BIN (p,q), 1 <= p <= 7
UNSIGNED FIXED BIN (p,q), 1 <= p <= 8

SIGNED FIXED BINARY (p,q), 8 <= p <= 15
UNSIGNED FIXED BINARY (p,q), 9 <= p <= 16

ENTRY LIMITED
SIGNED FIXED BINARY (p,q), 16 <= p <= 31
UNSIGNED FIXED BINARY (p,q), 17 <= p <= 31
FLOAT DECIMAL (p), 1 <= p <= 6
FLOAT BINARY (p), 1 <= p <= 21
OFFSET2
FILE· constant or variable
POINTER

FLOAT BINARY(p), 21 < p < 53
FLOAT DECIMAL(p), 7 <= p <= 16
LABEL constant or variable
ENTRY constant or variable

FLOAT BINARY(p), 54 <= p <= 109
FLOAT DECIMAL(p), 17 <= p <= 33

BIT (n)

CHARACTER (n)
PICTURE (with character-string-value length of n)
(when n>4096, a length of 32767 is returned)

GRAPHIC (n)

BIT VARYING where n is the maximum length of x

CHARACTER VARYING where n is the maximum length
of x

Chapter 17. Built-in functions, pseudovariables, and subroutines 445

UNSPEC pseudovariable

Figure 69 (Page 2 of 2). Length of bit string returned by UNSPEC

Bit-String length Attribute of x

16+(16*n) GRAPHIC VARYING where n is the maximum length of x

8*(n+ 16) AREA (n)2

8*FLOOR(n) FIXED DECIMAL (p,q) where n = (p+2)/2

Alignment and storage requirements for program control data can vary across sup
ported systems.

If x is a varying-length string, its two-byte prefix is included in the returned bit string.
If xis an area, the returned value includes the control information.

UNSPEC pseudovariable
The UNSPEC pseudovariable assigns a bit value directly to x; that is, without con
version. The bit value is padded, if necessary, on the right with '0' B to match the
length of x, according to Figure 69.

The syntax for the UNSPEC pseudovariable is:

••-UNSPEC(x)-----------------------.,.

x reference.

If x is a varying length string, its 2-byte prefix is included in the field to which the bit
value is assigned. If xis an area, its control information is included in the receiving
field.

The pseudovariable is subject to the rules for the UNSPEC built-in function
described in "UNSPEC" on page 445.

Example

dcl 1 strl nonasgn static,
2 * fixed bin(15) init(l6), /* '1888'X */
2 * char init('33'x),
2 * bit init('l 'b),
2 ba(4) bit init('1 'b, '8'b, '1 'b, '8'b),
2 b3 bit (3) in it (I 111 I b) '
2 * char(8);

dcl bit_strl bit(size(str1)*8);
dcl bit_ba bit(dim(ba)*length(ba(l)));
dcl bit_b3 bit(length(b3));

bit_ba = unspec(ba); /* result is scalar '1818'8 not an array*/
bit_b3 = unspec(b3); /* '111'8 */
bit_strl = unspec(strl); /* '18883307'84 or

·100033'84 11 ·11010111·8 *I

446 PUI Package/2 Language Reference

VALID

VERIFY

VALID

VALID returns a BIT(1) value that is '1 'B under the following conditions:

• If xis PICTURE and its contents are valid for x's picture specification.
• If xis FIXED DECIMAL and the data in xis valid fixed decimal data.

If these conditions are not met, the result is '0' B.

The syntax for VALID is:

1>1>-VALID(x)-----------------------<11

x reference with either picture or fixed decimal type.

VERIFY returns a real fixed-point binary value indicating the position in x of the
leftmost character or bit that is not in y. It also allows you to specify the location
within x at which to begin processing.

If all the characters or bits in x do appear in y, a value of zero is returned. If xis
the null string, a value of zero is returned. If x is not the null string and y is the null
string, a value of one is returned.

The syntax for VERIFY is:

1>1>-VERIFY(x,y [J)-------------------.,.
,n

x string-expression.

y string-expression.

n expression. n specifies the location within x where processing begins. It
must have a computational type and is converted to FIXED BIN(M,O).

The STRINGRANGE condition, if enabled, is raised if 1 > n > length(x) + 1. Its
implicit action and normal return give a result of 0. Refer to "Results under
DEFAUL T(ANS)" on page 64 and "Results under DEFAUL T(IBM)" on page 63 for
the results of any necessary conversions.

For an example of the VERIFY built-in function, see "SEARCH" on page 433.

Chapter 17. Built-in functions, pseudovariables, and subroutines 447

VERIFYR

VERIFYR
The VERIFYR function performs the same operation as the VERIFY built-in function
except that

• The verification is done from right to left
• The default value for n is LENGTH(x).

The syntax for VERIFYR is:

~~-VERIFYR(x,y l, f7J)-------------------~

For argument descriptions, refer to "VERIFY" on page 447. For an example, see
"SEARCH" on page 433.

448 PUI Package/2 Language Reference

©Copyright IBM Corp. 1992

Macro facility

Chapter 18. Macro facility

Chapter 18. Macro facility .
Macro facility scan
Character sets .
Reserved keywords .
Data types and attributes .

Fixed point data
Character data .

Expressions .
Conversions .
Macro facility statements .

%ACTIVATE
%assignment _.
%DEACTIVATE
%DECLARE
0/oDO
0/oEND
0/oGO TO
0/olF .. .
%INCLUDE
0/oNOTE
o/onull

Macro facility built-in functions .
COLLATE
COMMENT
COMPILETIME .
COUNTER
INDEX
LENGTH
MAX · · .. · · · · · · · ·
MIN .. .
QUOTE
REPEAT
SUBSTR
SYSPARM
SYSTEM
SYSVERSION .
TRANSLATE
VERIFY

Macro facility examples .
Example 1
Example 2

450
450
451
452
453
453
453
453
453
453
453
454
454
455
455
456
456
456
457
458
458
458
459
459
460
460
461
461
461
461
461
461
461
461
462
463
463
463
464
464
464

449

Macro facility

Chapter 18. Macro facility

The PUI Package/2 compiler provides a macro facility for source program alteration
and conditional compilation. It is executed prior to compilation when you specify
the MACRO compiler option. The macro facility scans the input source text and
produces potentially modified output source text. The output can serve as input to
the compiler or another source processor.

The description of the macro facility assumes that you know the PUI language
described in this publication. Terms, syntax, and semantics are consistent with PUI
rules unless otherwise noted.

Input source text is a stream of characters consisting of:

• Macro facility statements.

Macro facility statements are executed as they are encountered during the
scan. Macro facility statements and clauses begin with a percent symbol (%).

The macro facility executes these statements and alters the source text accord
ingly. Macro facility statements can cause alteration of the source text in any
of the following ways:

- Any identifier appearing in the source text can be changed to arbitrary text.

- Portions of the source text can be conditionally selected as the output
source text.

- Source files can be included into the source text.

• Control statements. These direct compilation process.

• Source text. Text that is not one of· the above.

Macro facility output 1 is a stream of characters consisting of:

= Coniroi statements. Controi staternents that are processed and generally
copied to the output source text.

• Source text. Possibly altered source.

You can specify compiler options for printing the input source text or writing the
output source text to a file. Compiler options are described in PU/ Package/2 Pro
gramming Guide.

Macro facility scan
The macro facility starts its scan at the beginning of the source input and scans
each character sequentially. Scanning proceeds as follows, for:

Macro facility statements: These statements are executed when encountered.
You can:

• Declare identifiers using the %DECLARE statement and make them eligible for
replacement.

1 Macro facility replacement output is shown in a formatted style, while the actual output is unformatted.

450 © Copyright IBM Corp. 1992

Character sets

• Change values of macro facility variables using the %assignment statement.

• Make an identifier eligible for replacement, by its value, in the source text using
the %ACTIVATE statement.

• Make an identifier ineligible for replacement, by its value, in the source text
using the %DEACTIVATE statement.

• Generate a message using, the %NOTE statement.

• Include a file using %INCLUDE.

• Cause the macro facility to continue the scan at a different point in the source
input using the %GO TO or %IF statement.

Control statements: Control statements are generally copied into the macro
facility output. A control statement must be on a line by itself.

Replacing identifiers in source text: The source text, after replacement of any
active identifiers by new values, is copied into the output text. The source text is
scanned for:

• Characters in the PUI character set. Characters that are outside of the PUI
character set and are not part of constants and comments are treated as delim
iters and are copied unchanged to the output text.

• PUI constants or PUI comments. These are copied unchanged to output text.

• Active Identifiers. For an identifier to be replaced its value, the identifier must
be active. A %DECLARE statement implicitly activates the identifier being
declared. It can be deactivated by a %DEACTIVATE statement and reacti
vated by an %ACTIVATE statement.

An identifier in the source text that matches the name of an active macro
facility identifier is replaced in the output text by the value of that identifier.

Identifiers can be activated with either the RESCAN or the NORESCAN
options. If the NORESCAN option applies, the value is immediately placed into
the output text. If the RESCAN option applies, the replaced value is rescanned
to determine whether it contains any active identifiers that should be replaced.
This rescanning and replacement activity continues until no further replace
ments can be made, at which time the replacement text is placed into the
output text. Thus, insertion of a value into the output text takes place only after
all possible replacements have been made.

Replacement values must not contain % symbols, unmatched comments, or
unmatched single or double quotation marks that enclose constants.

The scan terminates when all source input has been processed. The macro facility
output is then complete for processing by the compiler or another processor.

The macro facility supports only the single-byte character set, as defined in "Single
byte character set" on page 10.

Chapter 18. Macro facility 451

Reserved keywords
The macro facility reserves some keywords that have specific meaning to it.
Reserved keywords cannot be used as identifier names.

Macro facility keywords are shown in Figure 70.

Figure 70. Macro facility keywords

Keyword Abbreviation Status

ACTIVATE ACT Reserved
ANSWER ANS
BY
CHARACTER CHAR Unreserved
CODE
COLUMN COL
DEACTIVATE DEA CT Reserved
DECLARE DCL Reserved
DO Reserved
ELSE Reserved
END Reserved
EXTERNAL EXT Unreserved
FIXED Unreserved
GOTO GOTO Reserved (Note 1)

IF Reserved
INCLUDE Reserved
INTERNAL INT Unreserved
ITERATE
LEAVE
LOOP
KEYS Unreserved
MACRO Reserved
MARGINS MAR
MESSAGE MSG
MSG LEVEL
II. ''°''"'"""or"\" A 11. I 1'\func:.::>v/"\l'll

NOSCAN Reserved
NOTE Reserved
OTHERWISE OTHER Reserved
PAGE
PROCEDURE PROC Reserved
RESCAN Reserved
RETURN
RETURNS Unreserved
REPEAT
SELECT Reserved
Reserved
SKIP
STATEMENT STMT Unreserved
THEN Reserved
TO
TRACE
UNTIL
WHEN Reserved
WHILE
Note 1: Neither GO nor TO when used by itself is reserved.

452 PUI Package/2 Language Reference

Data types and attributes

Data types and attributes
The data types supported by the macro facility are:

• Fixed point arithmetic data
• Character string data

For more information on data types refer to "Data types and attributes" on page 25.

Fixed point data

Character data

Expressions

Conversions

Fixed point data has the FIXED attribute and the implied base and precision of
BINARY(31,0). Attributes other than FIXED cannot be specified. It is used for
arithmetic computation.

Fixed point constants are written as FIXED DECIMAL constants, but without the
decimal point. For more information on fixed point data, refer to "Coded arithmetic
data and attributes" on page 30.

Character data has the CHARACTER attribute and the implied VARYING attribute
with length that has no logical upper limit. Attributes other than CHARACTER
cannot be specified. It is used for text manipulation.

Character constant and the X character constant are allowed. For more information
on character data, refer to "Coded arithmetic data and attributes" on page 30.

Expressions may use the concatenate operator and all arithmetic operators except
exponentiation (**).

Implicit conversions between FIXED and CHARACTER follow normal PUI rules,
except that FIXED always converts to exactly 8 characters. That is, for conversion
purposes, FIXED data is treated as if it were declared as FIXED DECIMAL(5,0).

Macro facility statements

o/oACTIV ATE

This section describes the macro facility statements in alphabetical order.

The %ACTIVATE statement makes an identifier eligible for replacement by its value
when the identifier is encountered in subsequent source text.

The syntax for the %ACTIVATE statement is:

ll>ll>-%-ACTIVATE_£f dentifi er----r----...--~ -----------
RESCAN
SCAN

Chapter 18. Macro facility 453

%assignment

0/oassignment

o/oDEACTIV ATE

Abbreviation: %ACT

identifier
specifies the name of a macro facility identifier.

RESCAN
specifies that the identifier is replaced as many times as necessary.

SCAN specifies that the identifier is replaced only once. (The keyword
NORESCAN is a synonym for SCAN.)

Issuing the %ACTIVATE statement for an identifier that is already active has no
effect, except to change the scanning status.

A %assignment statement evaluates a macro facility expression and assigns the
result to a macro facility variable. The variable need not be active nor have any
specific scanning status.

The syntax is:

~~-%-reference-- = -expression-;---------------..i

reference
specifies the name of a macro facility variable.

The %DEACTIVATE statement makes an identifier ineligible for replacement when
the identifier is encountered in subsequent source text.

Tho cHnt~v fnr tho o;_ni:: ~rTI\/ ~Tl= ct~tomont ic·
I 11\J ~,I I\'""" 1...,1 \11\J /U....,._I ,......,. I I YI' I._ '-''""""""''°"''I'"""' Ill. ,....,.

~~-%-DEACTIVATE__£fdentifierl;---------------..i

Abbreviation: %DEACT

identifier
specifies the name of the macro facility identifier.

The deactivation of an identifier causes it to be ineligible for replacement, but does
not affect its value. Consequently, the reactivation of a deactivated identifier does
not require the assignment of a replacement value.

Deactivation of an inactive identifier has no effect.

454 PUI Package/2 Language Reference

0/oDECLARE

o/oDO

%DECLARE

The %DECLARE statement establishes an identifier as a macro facility built-in func
tion or variable, and specifies the identifier's scanning status.

Note: Before your application program refers to an identifier in macro facility state
ments, it must be declared, and the %DECLARE statement for the identifier must
not be skipped as the result of a %GO TO statement, or an %IF-% THEN-%ELSE
statement.

The syntax for the %DECLARE statement is:

11>11>-%-DECLAREL+· ident.ifier J y
attributes ~

(____f:identifier:J.___)

attributes:
BUILTIN-------------------------l

F I XED'---..--..----..--'
CHARACTER

Abbreviations: %DCL for %DECLARE, CHAR for CHARACTER

identifier

BUILTIN

specifies the name of a macro facility identifier or built-in function

specifies that the identifier is a macro facility built-in function. For more
information on macro facility built-in functions refer to 458.

CHARACTER
specifies character data. For more information on macro facility character
data, refer to 453.

FIXED specifies fixed point data. For more information on macro facility fixed
point data, refer to "Fixed point data" on page 453.

RESCAN
specifies that the identifier is replaced as many times as necessary.

SCAN specifies that the identifier is replaced only once. (The keyword
NORESCAN is a synonym for SCAN.)

NOSCAN
specifies that the identifier is inactive and not replaced.

The %DO statement, and its corresponding %END statement, delimit a macro
facility do group.

Macro facility statements and source text contained in the do group are processed
only when the %DO statement is executed.

Chapter 18. Macro facility 455

o/oEND

%END

o/oGO TO

0/olF

The syntax for the %DO statement is:

The %END statement delimits a %DO statement.

The syntax for the %END statement is:

IJl>IJl>-%-END L _J :-------------------..
label

label must be the label of the most recent open %DO statement.

The %GO TO statement causes the scan to be resumed in the source text at the
statement with the specified label. The target statement must appear after the
%GO TO statement.

The syntax for the %GO TO statement is:

.,..,._%-GO TO-label-;--------------------<111

Abbreviation: %GOTO

label label on the target statement

Macro facility statements between the %GO TO statement and the point where the
scan is resumed are skipped and should be syntactically correct.

The %IF statement controls the flow of the macro facility scan.

The syntax for the %IF statement is:

..,,..,,_%-IF-relaUonal-expression-%THEN-unitl---.-----......-------11 <111

L%ELSE-unit2_J

relational-expression
specifies the relational expression that is evaluated to true or false. If true,
the % THEN clause is executed and the %ELSE clause, if present, is
skipped. If false, the % THEN clause is skipped and the %ELSE clause, if
present, is executed.

456 PUI Package/2 Language Reference

o/olNCLUDE

%INCLUDE

%THEN clause
specifies unit1 as a %DO group or any macro facility statement, except
%INCLUDE, %END, and %DECLARE. %INCLUDE and %DECLARE
statements must be enclosed in a %DO group.

%ELSE clause
specifies unit2 as a %DO group or any macro facility statement other than
%INCLUDE, %END, and %DECLARE. %INCLUDE and %DECLARE
statements must be enclosed in a %DO group.

Scanning resumes immediately following the %IF statement, unless, of course, a
%GO TO statement in one of the clauses causes the scan to resume elsewhere.
Macro facility statements between the %IF statement and the point where the scan
is resumed are skipped, and should be syntactically correct.

%IF statements can be nested in the same manner as described under "IF
statement" on page 185 for nesting IF statements.

For the syntax and a description, refer to "%INCLUDE statement" on page 187.

The included file is treated normally, except that all macro facility statements, %DO
groups, %GO TO targets, % THEN and %ELSE clauses must be fully contained
with the same file.

The scan then continues with the first character in the included file. The included
file is scanned in the same manner as the input source text. Hence, included files
contribute to the output source text being formed.

%INCLUDE statements can be nested. In other words, included files can contain
%INCLUDE statements.

Example
For example, assume that the external file named PAYRL contains the following:

declare 1 Payroll,
2 Name,

3 Last character (38) varying,
3 First character (15) varying,
3 Middle character (3) varying,

2 Curr,
3 (Regular, Overtime) fixed decimal (8,2),

2 * char(8);

Then the following macro facility statements generate two structure declarations in
the output source text. The only difference between them is their names, Cum_Pay
and Payro 11.

%declare Payroll character;
%Payroll='Cum_Pay';
%include PAYRL;
%deactivate Payroll;
%include PAYRL;

Execution of the first %INCLUDE statement incorporates the file in PAYRL into the
input source text. When the macro facility scan encounters the identifier Payro 11 in
this included file, it replaces it with the current value of the active macro facility

Chapter 18. Macro facility 457

%NOTE

%NOTE

%null

identifier Payroll, which is Cum_Pay. Further scanning of the included file results in
no additional replacements. The macro facility scan then encounters the %DEAC
TIVATE statement and deactivates the macro facility identifier Pay ro 11 . When the
second %INCLUDE statement is executed, the file in Payro 11 once again is incor
porated into the input source text. This time, however, scanning of the included file
results in no replacements.

Refer to "%NOTE statement" on page 188.

The %null statement causes no operation to be performed and does not modify the
flow of macro facility scan.

The syntax for the %null statement is:

Macro facility built-in functions
These functions can be used in macro facility statements. The macro facility does
not recognize these if they appear in the source text.

When the name of a macro facility built-in function is encountered, it is processed
as a built-in unless the name has already been declared with attributes other than
BUil TiN. Once implicitly or explicitly declared as a built-in function, all subsequent
appearances of the name will be treated as built-in function references.

If the name is declared as something other than a built-in function, the name
cannot be used as a built-in function.

Function

COLLATE

COMMENT

COMPILETIME

COUNTER

INDEX

LENGTH

MAX

MIN

QUOTE

458 PUI Package/2 Language Reference

Description

Returns a character string consisting of all the 256 possible
CHARACTER(1) values just once in an order known as the col
lating order.

Converts a character string into a valid PUI comment.

Returns a character string containing the compilation date and time.

Returns a character string containing a numeric value that starts at
'00001' and is incremented by 1 each time that COUNTER is ref
erenced.

Returns a value that indicates the starting position of a character
string within another character string.

Returns the current length of a string.

Returns the maximum arithmetic value from a set of two or more
arithmetic expressions.

Returns the minimum arithmetic value from a set of two or more
arithmetic expressions.

Converts a character string to a quoted character string.

COLLATE

COMMENT

REPEAT

SUBSTR

SYS PARM

SYSTEM

SYSVERSION

TRANSLATE

VERIFY

COLLATE

Description

Repeats a character string a specified number of times.

Returns a substring from a string.

Returns the character string value of the SYSPARM compiler
option.

Returns a character string representation of the SYSTEM option
value in effect.

Returns a character string indicating the version and release of the
compiler.

Returns a character string that is the translation of an input char
acter string.

Finds the position of the first character in the input string that is not
present in the verification string.

Refer to "COLLATE" on page 391.

COMMENT returns a character string that represents x as a valid PUI comment.

If x contains I* or*/ composite symbols, they are replaced by/> and </respectively.

The syntax is:

...... -coMMENT(x)------------------------<11

x specifies the expression that is to be converted to a comment.

Example
In this example, the CHARACTER macro facility identifiers A and Bare assigned
character strings that are comments:

Test: proc;
dcl S_Varl character(35);
dcl S_Var2 character(35);

%dcl A character;
%dcl B character;
%A= comment('What');
%8 =comment('Name /* Ain' 't

A;
it sweet?*/');

/*What*/
B
/*Name I> Ain't it sweet? <!*/

end;

I* Generates the next line *I

/*Generates the next line *I

Chapter 18. Macro facility 459

COMPILETIME

COMPILETIME

COUNTER

COMPILETIME returns a character string (of length 18) that contains the date and
the time of compilation.

The format of the timestamp is DDbMMMbYYbHH.Ml.SS, where:

n is a blank character.
DD is the current day. A leading zero in DD is replaced by a blank.
MMM is the current month (abbreviated as JAN, FEB, and so on)
VY is the current year.
HH is the current hour.

is a separator.
Ml is the current minute.
SS is the current second.

The syntax for COMPILETIME is:

~~-COMP I LETIME---r---r---------------------<11
()

Example
For the following example, if the compilation date and time are September 2, 1991,
2:15 am, the result is 2 SEP 91 82.15.88.

Test: proc;
%dcl C char;
%C = compiletime;

end;
I*= ' 2 SEP 91 82.15.88' *I

COUNTER returns a character string (of length 5) containing a numeric value with
leading zeros. The first reference returns a value of '00001 '. Each subsequent
reference returns a number one greater than the previous reference.

The syntax for COUNTER is:

~~-COUNTER---r---r----------------------<11

Example
Test: proc;

()

%dcl (C,d) char;
%C = counter;
%d = counter;

end;

/* = '88881'
I* = '88882'

*I
*/

460 PUI Package/2 Language Reference

INDEX

LENGTH

MAX

MIN

QUOTE

REPEAT

SUBSTR

SYSPARM

INDEX

Refer to "INDEX" on page 407.

Refer to "LENGTH" on page 409.

Refer to "MAX" on page 412.

Refer to "MIN" on page 413.

QUOTE returns a character string that represents x as a valid quoted string.

If x contains single quotation marks, each is replaced by two consecutive single
quotation marks.

The syntax is:

~~-QUOTE(x)----------------------~

x character expression that is to be converted to a quoted string.

Example
This: proc;

dcl Book char;
%dcl Title char;
%Title= "Shakespeare's ""Hamlet"""; /* Shakespeare's "Hamlet" */
Book = quote(Tit le); /* Generates . . . *I
Book= 'Shakespeare' 's "Hamlet"';

end;

Refer to "REPEAT" on page 430.

Refer to "SUBSTR" on page 439.

SYSPARM returns the character string value of SYSPARM compiler option. See
the description of the SYSPARM compiler option in the PU/ Package/2 Program
ming Guide for more information.

SYSPARM allows information external to the program to be accessed without modi
fying the source program.

Chapter 18. Macro facility 461

SYSTEM

SYSTEM

The syntax is:

ll>ll>-SYSPARM---.----.---------------------""
()

Example
pli mypgm (sysparm('TEST') macro

Mypgm: proc;
dcl Dept_num char(ll);
%dcl Group_id char;
%dcl Group_num char;
%if (sysparm = 'DEVELOPMENT') %then

%Group_ id = 'G32/881/DEV';
%else

%do;
%if sysparm = 'SHIPPING' %then

%Group_id = 'G35/882/SHP';
%else

%do;
%if (sysparm = 'TEST') %then

%Group_IO = 'G37/886/TST';
%else

%Group_ id = 'G99/888/MSC';
%end;

%end;
Group_num = quote(Group_id_);
Dept_num = Group_num; /* Generates
Dept_num = 'G37/886/TST';

end;

/* false */

/* false */

/* true */

*I

SYSTEM returns a character string that contains of the value of the SYSTEM com
piler option that is in effect. See the description of the SYSTEM compiler option in
the PU/ Package/2 Programming Guide.

The syntax is:

ll>ll>-SYSTEM---.----.----------------------""
()

Example
For the following example, assume that OS/2 is active.

%process system(os2);
This: proc;

%dcl P_Varl char;
dcl S_Varl character(28);
%P_Varl = Quote(system);
S_Varl = P_Varl;
S_VARl = I OS2 I ;

end;

I* Generates ... *I

462 PUI Package/2 Language Reference

SVSVERSION

TRANSLATE

VERIFY

SYSVERSION

SYSVERSION returns a character string (of length 31) indicating the name of the
compiler and the version, release, and modification level.

The format of the string is:

nnnnnnnnbvvrrmmbxxxxxxxxxxxxxxx

in which:

nnnnnnnn
is the compiler name (PUI)

t> indicates a single blank

vvrrmm
is the compiler version (vv), release (rf), and modification level (mm)

xx ... xx Reserved for future use

The syntax is:

~~-SYSVERSION--r--...----------------------<11

Example
This: proc;

()

%dcl P_Varl char;
dcl S_Varl character(31);
%P_Varl = Quote(sysversion);

S_Varl = P_Varl; /*Generates */
S_Varl = 'PL/I V1R1M8 xxxxxxxxxxxxxxx';

end;

Refer to "TRANSLATE" on page 442.

Refer to "VERIFY" on page 447.

Chapter 18. Macro facility 463

Macro facility examples

Macro facility examples

Example 1

Example 2

Assume the input source text contains the following statements.

%declare A character, B fixed;
%A = 'B+C';
%8 = 2;
X = A;

The macro facility produces the following output source text.

X = 2+C;

The macro facility statements declare A and B with the default status of RESCAN,
assign the character string 'B+C' to A, and assign the constant 2 to B.

The fourth line is source text. The current value of A, which is 'B+C', replaces A in
the output source text. But this string contains the macro facility identifier B. Upon
rescanning B, the macro facility finds that it is active. Hence, the value 2 replaces
B in the output source text. Since identifier B has a data type of FIXED, it converted
to an 8-character character string ('bbbbbbb2').

Further rescanning shows that 2 cannot be replaced. Scanning resumes with +C
which, again, cannot be replaced.

If, in the above example, the macro facility identifier A was activated by the fol
lowing statement:

%activate A norescan;

The output source text would be:

X = B+C;

The input source text contains the following statements.

%declare I fixed, T character;
%deactivate I;
%I = 15;
%T = 'A(l)';
S = I*T*3;
%I = I+5;
%activate I;
%deactivate T;
R = I*T*2;

The output source text is as follows. (Replacement blanks for conversion from
fixed to character are not shown.)

S = I*A(l)*3;
R = 28*T*2;

464 PUI Package/2 Language Reference

Appendix A. Limits

© Copyright IBM Corp. 1992

Figure 71 summarizes the implementation limits for the PUI Package/2 language
elements.

Figure 71 (Page 1 of 3). Language element limits

Language Description Limit
Element

Arrays Maximum number of dimensions for an array 15

Minimum lower bound -2147483647

Maximum upper bound +2147483646

Structures Maximum number of levels in a structure 15

Maximum level number in a structure 255

Arithmetic Maximum precision for FIXED DECIMAL 31
Precisions Maximum precision for FIXED BINARY 31

Maximum precision for FLOAT DECIMAL 18

Maximum precision for FLOAT BINARY 64

Maximum scale factor for FIXED data 127

Minimum scale factor for FIXED data -128

String and Maximum length of CHARACTER 32767
AREA Variables Maximum length of BIT 32767

Maximum length of GRAPHIC 16383

Maximum size of AREA 16777216

Built-In Fune- Maximum number of arguments to the MAX and 64
tions MIN functions

Maximum values for the precision (p) in the ADD, same as corre-
BINARY, DECIMAL, DIVIDE, FIXED, FLOAT, sponding limit
MULTIPLY, PRECISION, and SUBTRACT func- for arithmetic
tions precision

Maximum values for the scale (q) in the ADD, same as corre-
BINARY, DECIMAL, DIVIDE, FIXED, MULTIPLY, sponding limit
PRECISION, and SUBTRACT functions for arithmetic

precisions

Maximum number of digits (N) in the CEIL, same as corre-
FLOOR, MAX, MIN, MOD, ROUND and TRUNC sponding limit
functions for arithmetic

precisions

465

Figure 71 (Page 2 of 3). Language element limits

Language Description Limit
Element

Program Size Maximum length of an identifier 31

Maximum number of procedures in a program 255

Maximum number of lexical units (keywords, iden- 511
tifiers, delimiters, etc) before a statement type can
be resolved

Maximum number of DEFAULT-statements in a 31
block

Maximum number of %PUSH statements 63

Maximum number of LIKE-attributes in a block 63

Maximum number of output expressions in a data- 60
list

Maximum number of repetitive DO-specifications in 15
a data-list

Maximum size of a data aggregate 2147483647

Maximum number of arguments in a CALL or func- 255
tion reference

Maximum number of parameters for a procedure 255

Maximum nesting of factored attributes 15

Maximum nesting of BEGIN and PROCEDURE 30
statements

Maximum nesting of DO-groups 49

Maximum nesting of IF statements 49

Maximum nesting of SELECT-statements 49

466 PUI Package/2 Language Reference

Figure 71 (Page 3 of 3). Language element limits

Language Description Limit
Element

Miscellaneous Maximum number of picture characters in a char- 511
acter picture

Maximum number of bytes in a numeric picture 253

Maximum number of numeric picture characters in 15
a numeric picture

Maximum number of bytes in the external repre- 3072
sentation of CHARACTER, X, BIT, BX, GRAPHIC,
GX and M string constants

The external representation includes all quotes
and string suffixes. For example, the string
'0101011 O'S has 11 bytes in its external specifica-
tion, but only 1 byte in its internal representation.
Similarly, the string 'Ain"t Misbehavin'" has 21
bytes in its external specification, but only 17 in its
internal representation.

Maximum length for a KEYTO character string 120

Maximum length for a KEYTO graphic string 60

Maximum line size for LINESIZE 32,000

Minimum line size for LINESIZE 1

Maximum page size for PAGESIZE 32,767

Minimum page size for PAGESIZE compiler option 1

Maximum size of DISPLAY character string 126

Maximum DISPLAY reply message. 72 bytes

Range of IEEE normalized floating-point numbers +3.30E-4932 to
+1.21 E+4932, 0,
-3.30E-4932 to
-1.21 E+4932

Range of hex floating-point numbers +10E-78 to
+10E75, 0,
-10E-78 to
+10E+75

Appendix A. Limits 467

Bibliography

IBM SAA AD/Cycle PUI
Package/2 publications

• PU/ Package/2 Fact Sheet, GC26-3090

• PU/ Package/2 Programming Guide, 5C26-4822

• PU/ Package/2 Language Reference, 5C26-4823

• PU/ Package/2 Reference Summary, 5X26-3793

• PU/ Package/2 Installation, 5X26-3822

• PU/ Package/2 Language Environment Run-Time
Messages, 5C26-3133

• PU/ Package/2 Licensed Program Specifications,
GC26-4821

IBM OS PUI Version 2
publications

• Programming Guide, 5C26-4307

• Programming: Language Reference, 5C26-4308

• Programming: Reference Summary, 5X26-3759

IBM Systems Application
Architecture publications

• An Overview, GC26-4341

• Common User Access: Panel Design and User
Interaction, SC26-4351

• Writing Applications: A Design Guide, 5C26-4362

• CPI PU/ Reference, 5C26-4381

• CPI Communications Reference, 5C26-4399

• CPI Database Reference, 5C26-4353

• CPI Dialog Reference, 5C26-4356

• CPI Presentation Reference, SC26-4359

• CPI Procedures Language Reference, 5C26-4358

• CPI Query Reference, 5C26-4349

IBM OS/2 2.0 technical library

• Application Design Guide, 51 OG-6260

• Programming Guide, Volume 1, 510G-6261

• Programming Guide, Volume 2, 51 OG-6494

• Programming Guide, Volume 3, 510G-6495

468

• Information Presentation Facility Guide and Refer
ence, 51 OG-6262

• System Object Model Guide and Reference,
510G-6309

• Control Program Programming Reference,
510G-6263

• Presentation Manager Programming Reference
Volume 1, 51 OG-6264

• Presentation Manager Programming Reference
Volume 2, 510G-6265

• Presentation Manager Programming Reference
Volume 3, 510G-6272

• Physical Device Driver Reference, 51 OG-6266

• Virtual Device Driver Reference, 51 OG-631 O

• Presentation Manager Driver Reference,
510G-6267

• Procedures Language 2/REXX Reference,
510G-6268

• Procedures Language 2/REXX User's Guide,
510G-6269

• SAA Common User Access Guide to User Interface
Design, 5C34-4289

• SAA Common User Access Advanced User Inter
face Design Guide, 5C34-4290

Other books you might need

The following list contains the titles of IBM books that
you might find helpful.

• IBM BookManager READ/2: General Information,
GB35-0800

• IBM BookManager READ/2: Getting Started and
Quick Reference, 5X76-0146

• IBM BookManager READ/2: Displaying Online
Books, 5B35-0801

• IBM BookManager READ/2: Installation,
GX76-0147

The following PUI Package/2 publications can be
ordered as a set using the bill of forms order number
5BOF-3014: Programming Guide, Reference Summary,
Language Reference, and Language Environment Run
Time Messages.

You can order these publications through your IBM rep
resentative.

©Copyright IBM Corp. 1992

Glossary

A
access. The act of referencing or retrieving data.

action specification. In an ON statement, the on-unit
or the single keyword SYSTEM, either of which speci
fies the action to be taken whenever an interrupt results
from the raising of the named condition. The action
specification can also include the keyword SNAP.

activate (a block). To initiate the execution of a block.
A procedure block is activated when it is invoked at an
entry point. A begin block is activated when it is
encountered in the normal flow of control, including a
branch.

active. The establishment of the validity for replace
ment of the value of a variable or the returned value of
an entry name. The first activation must be the result of
the appearance of the name in a %DECLARE state
ment. If an active variable or entry name is made inac
tive by the. %DEACTIVATE statement it may be
activated again by an %ACTIVATE statement.

active. (1) The state of a block after activation and
before termination. (2) The state in which a pre
processor variable or preprocessor entry name is said
to be when its value can replace the corresponding
identifier in source program text.

additive attribute. A file description attribute for which
there are no defaults, and which, if required, must be
stated explicitly or implied by another explicitly stated
attribute. Contrast with alternative attribute.

adjustable extent. Bound (of an array), length (of a
string), or size (of an area) that might be different for
different generations of the associated variable. Adjust
able extents are specified as expressions or asterisks
(or by REFER options for based variables), which are
evaluated separately for each generation. They cannot
be used for static variables.

aggregate. See data aggregate.

aggregate expression. An array, structure, or union
expression.

aggregate type. For any item of data, the specification
whether it is structure, union, or array.

allocated variable. A variable with which internal
storage is associated and not freed.

allocation. (1) The reservation of main storage for a
variable. (2) A generation of an allocated variable.

© Copyright IBM Corp. 1992

alignment. The storing of data items in relation to
certain machine-dependent boundaries (for example, a
fullword or halfword boundary).

alphabetic character. Any of the characters A through
Z of the English alphabet and the alphabetic extenders
#, $, and @ (which may have a different graphic repre
sentation in different countries).

alphameric character. An alphabetic character or a
digit.

alternative attribute. A file description attribute that is
chosen from a group of attributes. If none is specified,
a default is assumed. Contrast with additive attribute.

ambiguous reference. A reference that is not suffi
ciently qualified to identify one and only one name
known at the point of reference.

area. A declared portion of storage identified by an
area variable with the AREA attribute. Its values may
only be areas.

area variable. A variable with the AREA attribute. Its
values may only be areas.

argument. An expression in an argument list as part
of an invocation of a subroutine or function.

argument list. A parenthesized list of one or more
arguments, separated by commas, following an entry
name constant, an entry name variable, a generic
name, or a built-in function name. The list is passed to
the parameters of the entry point.

arithmetic comparison. A comparison of signed
numeric values. See also bit comparison, character
comparison.

arithmetic constant. A fixed-point constant or a
floating-point constant. Although most arithmetic con
stants can be signed, the sign is not part of the con
stant.

arithmetic conversion. The transformation of a value
from one arithmetic representation to another.

arithmetic data. Data that has the characteristics of
base, scale, mode, and precision. Coded arithmetic
data and pictured numeric character data are included.

arithmetic operators. Either of the prefix operators+
and-, or any of the following infix operators: + - *I**

469

arithmetic picture data. Decimal picture data con
taining the following types of picture specification
characters:

• Decimal digit characters
• Zero suppression characters
• Sign and currency symbol characters
• Insertion characters
• Commercial characters
• Exponent characters.

array. A named, ordered, collection of one or more
data elements with identical attributes, grouped into one
or more dimensions.

array expression. An expression whose evaluation
yields an array of values.

array of structures. An ordered collection of identical
structures specified by giving the dimension attribute to
a structure name.

array variable. A variable that represents an aggre
gate of data items that must have identical attributes.
Contrast with structure variable.

ASCII. (American National Standard Code for Informa
tion Interchange). The standard code, using a coded
character set consisting of 7-bit coded characters (the
8th bit for parity check) that is used for information inter
change among data processing systems, data commu
nication systems, and associated equipment. The ASCII
set consists of control characters and graphic charac
ters.

assignment. The process of giving a value to a vari
able.

asynchronous operation. The overlap of an
input/output operation with the execution of statements
or the concurrent execution of procedures using multiple
flows of control for different tasks.

attachment of a task. The invocation of a procedure
and the establishment of a separate flow of control to
execute the invoked procedure (and procedures it
invokes) asynchronously, with execution of the invoking
procedure.

attention. An occurrence, external to a task, that could
cause an interrupt to the task.

attribute. (1) A descriptive property associated with a
name to describe a characteristic represented. (2) A
descriptive property used to describe a characteristic of
the result of evaluation of an expression.

automatic storage allocation. The allocation of
storage for automatic variables.

470 PUI Package/2 Language Reference

automatic variable. A variable whose storage is allo
cated automatically at the activation of a block and
released automatically at the termination of that block.

B
base. The number system in which an arithmetic value
is represented.

base element. The name of a structure member that
is not a minor structure.

base item. The automatic, controlled, or static variable
or the parameter upon which a defined variable is
defined. The name may be qualified and/or sub
scripted.

based reference. A reference that has an explicit or
implicit locater qualifier as its object. The name con
tained in a based reference necessarily refers to a
based variable (that is, variable declared with the
BASED attribute).

based storage allocation. The allocation of storage
for based variables.

based variable. A variable that provides attributes for
data (for example, data located in a buffer) for which
the storage address is provided by a locater. Multiple
generations of the same variable are accessible. It
does not identify a fixed location in storage.

begin-block. A collection of statements delimited by
BEGIN and END statements. It is part of a program
that delimits the scope of names. A begin-block is acti
vated either by error-handling ON-conditions or through
the nonnai fiow of controi inciuding any branch resuiting
from a GOTO statement.

binary. A number system whose only numerals are O
and 1.

binary fixed-point value. An integer consisting of
binary digits and having an optional binary point. Con
trast with decimal fixed-point value.

binary floating-point value. An approximation of a
real number in the form of a significand, which can be
considered as a binary fraction, and an exponent, which
can be considered as an integer exponent to the base
of 2. Contrast with decimal floating-point value.

bit. (1) A string composed of zero or more bits.
(2) The smallest amount of space of computer storage.

bit comparison. A left-to-right, bit-by-bit comparison of
binary digits. See also arithmetic comparison, character
comparison.

bit constant. A series of binary digits enclosed in
apostrophes and followed immediately by B or B1.
Contrast with character constant.

bit string constant. A series of hexadecimal digits
enclosed in apostrophes and followed immediately by
84 or BX.

bit value. A sequence of binary digits stored in con
secutive bits.

bit string. A string composed of zero or more bits.

bit string operators. The logical operators --. (not), &
(and), and I (or).

block. A sequence of statements, processed as a unit,
that specifies the scope of names and the allocation of
storage for names declared within it.

block heading statement. The PROCEDURE, BEGIN
or PACKAGE statement that heads a block of state
ments.

bound-pair list. A list specifying the lower and upper
bounds of the valid indexes used to select elements of
an array.

bounds. The upper and lower limits of an array dimen
sion.

break character. The underscore symbol (_). It can
be used to improve the readability of identifiers. For
instance, a variable could be called
OLD_INVENTORY _TOTAL instead of
OLDINVENTORYTOTAL.

built-in function. A predefined function supplied by
the language, such as a commonly used arithmetic
function or a function needed by language facilities (for
example, a function for manipulating strings or con
verting data). It is called by a built-in function refer
ence, such as SQRT (square root).

built-in function reference. A built-in function name,
having an optional and possibly empty argument list,
that represents the value returned by the built-in func
tion.

buffer. Intermediate storage, used in input/output oper
ations, into which a record is read during input and from
which a record is written during output.

bug. Generic term that encompasses anything that a
program does that it was not designed to do.

c
call. (1) (verb) To invoke a subroutine use the CALL
statement or CALL option (2) (noun) The using of the
CALL statement or CALL option to invoke a subroutine.

character comparison. A left-to-right, character-by
character comparison according to the collating
sequence. See also arithmetic comparison, bit compar
ison.

character constant. A sequence of characters
enclosed in apostrophes; for example, 'CONSTANT'.

character set. A defined collection of characters. See
language character set and data character set.

character string. A string composed of zero or more
characters enclosed in single quotes.

character string picture data. Data described by a
picture specification that must have at least one A or X
picture specification character.

closing (of a file}. The dissociation of a file from a
data set.

coded arithmetic data. Data items that represent
numeric values and are characterized by their base
(decimal or binary), scale (fixed-point or floating-point),
and precision (the number of digits each can have).
This data is stored in a form that is acceptable, without
conversion, for arithmetic calculations.

code inspection. Debugging technique that involves
selecting a written piece of source code and reading
through it from the perspective of the computer.

combined nesting depth. The sum of all
PROCEDURE/BEGIN/ON, DO, SELECT, and
IF ... THEN ... ELSE nestings in the program.

comment. A string of zero or more characters used for
documentation that are delimited by/* and */.

commercial character.

• CR (credit) picture specification character
• DB (debit) picture specification character

Glossary 471

comparison operator. An operator that can be used
in an arithmetic, string, or logical relation to indicate the
comparison to be done between the terms in the
relation. The comparison operators are:

= (equal to)
> (greater than)
< (less than)
>= (greater than or equal to)
<= (less than or equal to)
-,= (not equal to)
-,> (not greater than)
-,< (not less than).

compile time. In general, the time during which a
source program is translated into an object module. In
PUI, it is the time during which a source program can
be altered (preprocessed), if desired, and then trans
lated into an object program.

compiler options. Keywords that are specified to
control certain aspects of a compilation, such as: the
nature of the load module generated by the compiler,
the types of printed output to be produced, the efficient
use of the compiler, and the destination of error mes
sages.

complex data. Arithmetic data, each item of which
consists of a real part and an imaginary part.

composite operator. An operator that consists of
more than one special character, such as<=,**, and/*.

compound statement. A statement that contains
other statements. In PUI, IF, SELECT, and ON are the
only compound statements. See statement body.

ccncster.3tion. The operation that joins t'vvo strings in
the order specified, forming one string whose length is
equal to the sum of the lengths of the two original
strings. It is specified by the operator II.

condition. An exceptional situation, either an error
(such as an overflow), or an expected situation (such as
the end of an input file). When a condition is raised
(detected), the action established for it is processed.
See also established action and implicit action.

condition list. A list of one or more condition prefixes.

condition name. Name of a PUl-defined or
programmer-defined condition

condition prefix. A parenthesized list of one or more
condition names prefixed to a statement. It specifies
whether the named conditions are to be enabled. A
condition list may be attached to any statement except
DECLARE, DEFAULT, ENTRY, or % statements.

472 PUI Package/2 Language Reference

connected aggregate. An array or structure that has
no inherited dimensions.

connected reference. A reference to connected
storage. It must be apparent, prior to execution of the
program, that the storage is connected.

connected storage. Main storage of an uninterrupted
linear sequence of items that can be referred to by a
single name.

constant. (1) An arithmetic or string data item that
does not have a name and whose value cannot change.
(2) An unsubscripted label prefix of a file name or an
entry name.

constant reference. A value reference which has a
constant as its object

contained text. (1) All text in a procedure (including
nested procedures) except its entry names and condi
tion prefixes of the PROCEDURE statement; (2) All text
in a begin block except labels and condition prefixes of
the BEGIN statement that heads the block. Internal
blocks are contained in the external procedure.

contextual declaration. The appearance of an identi
fier that has not been explicitly declared (in a DECLARE
statement, as a label prefix, or in a parameter list), in a
context that allows the association of specific attributes
with the identifier.

control character. A nonprinting character in a char
acter set whose occurrence in a particular context spec
ifies a control function.

control code. A code point and its assigned control
function meaning, for example, "end of transmission."
For 7-bit codes such as ASCII, the first 32 code points
are reserved for control purposes. For EBCDIC 8-bit
codes, the first 64 code points are reserved.

control format item. A specification used in edit
directed transmission to specify positioning of a data
item within the stream or printed page.

control variable. A variable that is used to control the
iterative execution of a group, as in a DO statement.

controlled parameter. A parameter for which the
CONTROLLED attribute is specified in a declare state
ment. It can be associated only with arguments that
have the CONTROLLED attribute.

controlled storage allocation. The allocation of
storage for controlled variables.

controlled variable. A variable whose allocation and
release are controlled by the ALLOCATE and FREE
statements, with access to the current generation only.

conversion. The transformation of a value from one
representation to another to conform to a given set of
attributes.

cross section of an array. The elements represented
by the extent of at least one dimension of an array. An
asterisk in the place of a subscript in an array reference
indicates the entire extent of that dimension.

current generation. That generation (of an automatic
or controlled variable) currently available by reference to
the name of the variable.

D
data testing. Debugging technique that involves using
test data to verify that a program operates as designed.

DBCS. Double-byte character set. Each hexadecimal,
2-byte DBCS code identifies a double-byte character.
For example, Japanese extended Kanji characters are
encoded in DBCS.

data. Representation of information or of value in a
form suitable for processing.

data aggregate. A group of data items that can be
referred to either individually or collectively. The types
of aggregates are: arrays, unions and structures.

data attribute. A keyword that specifies the type or
kind of data to process.

data character set. All of those characters whose rep
resentation is recognized by the computer in use.

data-directed transmission. The type of stream
oriented transmission in which data is transmitted as a
group, ended by a semicolon, where each item is of the
form:

name = constant

data item. A single unit of data. It is synonymous with
element.

data list. In stream oriented data transmission, a
parenthesized list of the data items used in GET EDIT
and PUT EDIT statements. Contrast with format list.

data set. A collection of data external to the program
that can be accessed by reference to a single file name.

data specification. The portion of a stream-oriented
data transmission statement that specifies the mode of
transmission (DATA, LIST, or EDIT) and includes the
data list(s) and, for edit-directed mode, the format list(s).

data stream. Data being transferred from or to a data
set by stream-oriented transmission, as a continuous
stream of data elements in character form.

data transmission. The transfer of data from a data
set to the program or vice versa.

data type. A set of data attributes.

deactivated. The state in which an identifier is said to
be when its value cannot replace the corresponding
identifier in source program text.

debugging. Process of removing bugs from a
program.

decimal. The number system whose numerals are O
through 9.

decimal digit character. The picture specification
character 9.

decimal fixed-point constant. A constant consisting
of one or more decimal digits with an optional decimal
point.

decimal fixed-point value. A rational number con
sisting of a sequence of decimal digits with an assumed
position of the decimal point. Contrast with binary tixed
point value.

decimal floating-point constant. A value made up of
a significand that consists of a decimal fixed-point con
stant, and an exponent that consists of the letter E fol
lowed by an optionally signed integer constant not
exceeding three digits.

decimal floating-point value. An approximation of a
real number, in the form of a significand, which can be
considered as a decimal fraction, and an exponent,
which can be considered as an integer exponent to the
base of 10. Contrast with binary floating-point value.

decimal picture data. Arithmetic picture data specified
by picture specification characters containing the fol
lowing types of picture specification characters:

• Decimal digit characters
• The virtual point picture character
• Zero-suppression characters
• Sign and currency symbol characters
• Insertion characters
• Commercial characters
• Exponent characters.

declaration. (1) The establishment of an identifier as
a name and the specification of a set of attributes
(partial or complete) for it. (2) A source of attributes of
a particular name.

default. Describes a value, attribute, or option that is
assumed when none has been specified.

Glossary 473

defined item. A variable which is to be associated
with some or all of the storage associated with the des
ignated base variable.

delimit. To enclose one or more items or statements
with preceding and following characters or keywords.

delimiter. All comments and the following characters:
percent, parentheses, comma, period, semicolon, colon,
assignment symbol and blank. They define the limits of
identifiers, constants, picture specifications, and
keywords.

descriptor. A skeletal form of a declaration in which
declared names are omitted. See parameter descriptor.

digit. One of the characters O through 9.

dimension attribute. An attribute that specifies the
number of dimensions of an array and indicates the
bounds of each dimension.

directive. A statement that directs the operation of the
compiler.

disabled. The state of a condition in which no interrupt
occurs and no established action commences.

do group. A sequence of statements delimited by a
DO statement and ended by its corresponding END
statement, used for control purposes. Contrast with
block.

do-loop. See iterative do-group.

dummy argument. Temporary storage that is created
automatically to hold the value of an ar,gument that
cannot be passed by reference.

dump. Printout of all or part of the storage used by a
program as well as other program information, such as
a trace of an error's origin.

E
EBCDIC. (Extended Binary-Coded Decimal Inter
change Code). A coded character set consisting of
8-bit coded characters.

edit-directed transmission. The type of stream
oriented transmission in which data appears as a con
tinuous stream of characters and for which a format list
is required to specify the editing desired for the associ
ated data list.

element. A single item of data as opposed to a col
lection of data items such as an array; a scalar item.

element expression. An expression whose evaluation
yields an element value.

47 4 PUI Package/2 Language Reference

element variable. A variable that represents an
element; a scalar variable.

elementary name. See base element.

enabled. The state of a condition in which a particular
on-unit results in a program interrupt that causes an
established action to commence.

entry constant. The label prefix of a PROCEDURE
statement (an entry name).

entry data item. A data item that represents an entry
point to a procedure.

entry expression. An expression whose evaluation
yields an entry name.

entry name. (1) An identifier that is explicitly or con
textually declared to have the ENTRY attribute (unless
the VARIABLE attribute is given) or (2) Has the value
of an entry variable with the ENTRY attribute implied.

entry point. A point in a procedure at which it may be
invoked.

entry reference. An entry constant, an entry variable
reference, or a function reference that returns an entry
value.

entry variable. A variable to which an entry value can
be assigned. It must have both the ENTRY and VARI
ABLE attributes.

entry value. The entry point represented by an entry
constant; the value includes the environment of the acti
vation that is associated with the entry constant.

environment (of an activation). Information associ
ated with and used in the invoked block regarding data
declared outside the block.

environment (of a label constant). Identity of the par
ticular activation of a block to which a reference to a
statement-label constant applies. This information is
determined at the time a statement-label constant is
passed as an argument or is assigned to a statement
label variable, and it is passed or assigned along with
the constant.

established action. The action taken when a condi
tion is raised. See also implicit action and
ON-statement action.

epilogue. Those processes that occur automatically at
the termination of a block or task.

evaluation. The reduction of an expression to a single
value, an array of values, or a structured set of values.

explicit declaration. The appearance of an identifier
(a name) in a DECLARE statement, as a label prefix, or
in a parameter list. Contrast with implicit declaration.

exponent characters. The following picture specifica
tion characters:

1. K and E, which are used in floating-point picture
specifications to indicate the beginning of the expo
nent field.

2. F, the scaling factor character, specified with an
integer constant that indicates the number of
decimal positions the decimal point is to be moved
from its assumed position to the right (if the con
stant is positive) or to the left (if the constant is neg
ative).

expression. (1) A notation, within a program, that
represents a value, an array of values, or a structured
set of values; (2) A constant or a reference appearing
alone, or a combination of constants and/or references
with operators.

extended alphabet. Upper and lower case alphabetic
characters A through Z, $, @ and#.

extent. (1) The range indicated by the bounds of an
array dimension, by the length of a string, or by the size
of an area (2) The significant allocations in an area.

external name. A name (with the EXTERNAL attri
bute) whose scope is not necessarily confined only to
one block and its contained blocks.

external procedure. A procedure that is not contained
in any other procedure.

extralingual character. Characters (such as $, @,

and #) that are not classified as alphanumeric or
special. This group can include characters that are
determined with the NAME compiler option.

F
factoring. The application of one or more attributes to
a parenthesized list of names in a DECLARE statement,
eliminating the repetition of identical attributes for mul
tiple names

field (in the data stream). That portion of the data
stream whose width, in number of characters, is defined
by a single data or spacing format item.

field (of a picture specification). Any character-string
picture specification or that portion (or all) of a numeric
character picture specification that describes a fixed
point number.

file. A named representation, within a program, of a
data set or data sets. A file is associated with the data
set(s) for each opening.

file constant. A name declared for a file and for which
a complete set of file description attributes exists during
the time that the file is open, and with which each file
must be associated.

file description attributes. Keywords that describe
the individual characteristics of each file constant. See
also alternative attribute and additive attribute.

file expression. An expression whose evaluation
yields a file name.

file name. A name declared for a file.

file variable. A variable to which file constants can be
assigned. It has the attributes FILE and VARIABLE and
cannot have any of the file description attributes.

fixed-point constant. See arithmetic constant.

floating-point constant. See arithmetic constant.

flow of control. Sequence of execution.

footprints. Output markers in a program that indicate
where a program is in its execution flow or display the
values of identifiers. Used as a debugging technique.

format item. A specification used in edit-directed data
transmission to describe the representation of a data
item in the stream (data format item) or the specific
positioning of a data item within the stream (control
format item).

format list. In stream oriented data transmission, a list
specifying the format of the data item on the external
medium. Contrast with data list.

fully-qualified name. A qualified name that includes
all the names in the hierarchical sequence above the
structure member to which the name refers, as well as
the name of the member itself.

function (programmer-specified or built-in). A pro
cedure that has a RETURNS option in the PROCE
DURE statement. It is invoked by the appearance of
one of its entry names in a function reference and it
returns a scalar value to the point of reference. Con
trast with subroutine.

function reference. An entry constant or an entry vari
able, either of which must represent a function, followed
by a possibly empty argument list. Contrast with sub
routine call.

Glossary 475

G
generation (of a variable). The allocation of a static
variable, a particular allocation of a controlled or auto
matic variable, or the storage indicated by a particular
locator qualification of a based variable or by a defined
variable or parameter.

generic descriptor. A descriptor used in a GENERIC
attribute.

generic key. A character string that identifies a class
of keys. All keys that begin with the string are
members of that class. For example, the recorded keys
"ABCD," "ABCE," and "ABDF," are all members of the
classes identified by the generic keys "A" and "AB," and
the first two are also members of the class "ABC"; and
the three recorded keys can be considered to be unique
members of the classes "ABCD," "ABCE," "ABDF,"
respectively.

generic name. The name of a family of entry names.
A reference to the generic name is replaced by the
entry name whose parameter descriptors match the
attributes of the arguments in the argument list at the
point of invocation.

group. A collection of statements contained within
larger program units. A group is either a do-group or a
select-group and it can be used wherever a single
statement can appear, except as an on-unit.

H
hexadecimal. Pertaining to a numbering system with a
base of sixteen; valid numbeis use the digits O thiough
9 and the characters A through F, where A represents
1 O and F represents 15.

identifier. A string of characters, not contained in a
comment or constant, and preceded and followed by a
delimiter. The first character of the identifier must be
one of the 29 extended alphabetic characters. The
others, if any, can be extended alphabetic, digit, or the
break character.

IEEE. Institute of Electrical and Electronics Engineers.

implicit. The action taken in the absence of an explicit
statement.

implicit action. The action established for a condition
when the program is activated and that remains estab
lished unless overridden by disabling the condition or by
the processing of an ON statement for the same condi
tion. Contrast with ON-statement action.

476 PUI Package/2 Language Reference

implicit declaration. The appearance of a name in a
program when it has not been explicitly declared. A
default set of attributes is assumed for the name.

implicit opening. The opening of a file as the result of
an input or output statement other than the OPEN state
ment.

infix operator. An operator that appears between two
operands.

inherited dimensions. For a structure field, those
dimensions that are derived from the containing struc
tures. If the structure field is a scalar variable, the
dimensions consist entirely of its inherited dimensions.
If the structure field is an array, its dimensions consist
of its inherited dimensions plus its explicitly declared
dimensions. A structure field with one or more inherited
dimensions is referred to as an unconnected aggregate.
Contrast with connected aggregate.

initial procedure. See main procedure.

input/output. The transfer of data between auxiliary
medium and main storage.

insertion point character. A picture specification
character that is, on assignment of the associated data
to a character string, inserted in the indicated position.
When used in a P-format item for input, an insertion
character serves as a checking picture character.

instruction pointer. A pointer that provides address
ability for a machine instruction in a program.

integer. A sequence of digits.

integral boundary. The multiple of any 8-bit unit of
information on which data can be aligned.

interleaved array. An array whose name refers to
non-connected storage.

interleaved subscripts. A subscript notation used with
subscripted qualified names in which not all of the nec
essary subscripts immediately follow the same compo
nent name.

internal block. A block that is contained in another
block.

internal name. A name that is not known outside the
block in which it is declared.

internal procedure. A procedure that is contained in
another block. Contrast with external procedure.

internal text. Text that is contained in a block, but not
contained in any other block nested within it.

interrupt. The redirection of the program's flow of
control (possibly temporary) as the result of raising a
condition or attention.

invocation. The activation of a procedure.

invoke. To activate a procedure.

invoked procedure. A procedure that has been acti
vated.

invoking block. A block containing a statement that
activates a procedure.

iteration factor. (1) In an INITIAL attribute specifica
tion, an expression that specifies the number of consec
utive elements of an array that are to be initialized with
a given constant. (2) In a format list, an expression
that specifies the number of times a given format item
or list of items is to be used in succession.

iterative do-group. A do-group whose DO statement
specifies a control variable and/or a WHILE or UNTIL
option.

K
key. Data that identifies a record within a direct-access
data set. See source key and recorded key.

keyword. An identifier that has a specific meaning to
the compiler when used in a defined context.

keyword statement. A simple statement that begins
with a keyword, indicating the function of the statement.

known. (applied to a name) Recognized with its
declared meaning. A name is known throughout its
scope.

L
label. A name used to identify a statement other than
a PROCEDURE or an ENTRY statement. A statement
label.

label data item. A label constant or the value of a
label variable.

label constant. A name written as the label prefix of a
statement (other than PROCEDURE or ENTRY) so that,
during execution, program control can be transferred to
that statement through a reference to its label prefix.

label list (of a statement). All of the label prefixes of
a statement.

label list (of a label variable declaration). A paren
thesized list of one or more statement-label constants
immediately following the keyword LABEL to specify the

range of values that the declared variable may have.
Names in the list are separated by commas. When
specified for a label array, it indicates that each element
of the array may assume any of the values listed but no
other.

label prefix. A label prefixed to a statement.

label variable. A variable declared with the LABEL
attribute so that it can assume as its value a label con
stant at some other point in the program.

language character set. A set of characters that has
been defined to represent program elements in the
source language.

leading zeroes. Zeros that have no significance in the
value of an arithmetic integer. All zeros to the left of
the first significant integer digit of a number.

level-number. A number that precedes a name in a
DECLARE statement and specifies the organization of
the structure in that statement.

level-one variable. A major structure name. Any
unsubscripted variable not contained within a structure.

lexically. Relating to the left-to-right order of units.

list-directed. The type of stream-oriented transmission
in which data in the stream appears as constants sepa
rated by blanks or commas and for which formatting is
provided automatically.

locator. A type of variable that identifies a location in
storage.

locator qualification. In a reference to a based vari
able, either a locator variable or function reference con
nected by an arrow to the left of a based variable to
specify the generation of the based variable to which
the reference refers, or the implicit connection of a
locator variable with the based reference.

locator value. A value that identifies the storage
address.

locator variable. A variable whose value identifies the
location in main storage of a variable or a buffer. It has
the POINTER or OFFSET attribute.

locked record. A record in an EXCLUSIVE DIRECT
UPDATE file that is available to only one task at a time.

logical level (of a structure member). The depth
indicated by a level number when all level numbers are
in direct sequence (when the increment between suc
cessive level numbers is one).

logical operators. The bit-string operators--, (not), &
(and), and I (or).

Glossary 477

loop. A sequence of instructions that is executed iter
atively.

lower bound. The lower limit of an array dimension.

M
main procedure. An external procedure whose PRO
CEDURE statement has the OPTIONS (MAIN) attribute.
This procedure is invoked automatically as the first step
in the execution of a program.

major structure. A structure whose name is declared
with level number 1 .

manifest declaration. The declaration of a name in a
DECLARE statement.

member. A subdivision of a structure consisting either
of a minor structure or of a scalar.

minor structure. A structure that is contained within
another structure. The name of a minor structure is
declared with a level number greater than one.

mode (of arithmetic data). An attribute of arithmetic
data-it is either real or complex.

multiple declaration. (1) Two or more declarations of
the same identifier internal to the same block without
different qualifications. (2) Two or more external decla
rations of the same identifier with different attributes in
the same program.

multiprocessing. The use of a computing system with
two or more processing units to execute two or more
programs simultaneously.

multiprogramming. The use of a computing system to
execute more than one program concurrently, using a
single processing unit.

multitasking. A facility that allows a programmer to
execute more than one PUI procedure simultaneously.

N
name. Any identifier that the user assigns to a variable
or to a constant. An identifier appearing in a context
where it is not a keyword. Sometimes called a user
defined name.

nesting. The occurrence of:

• A block within another block

• A group within another group

• An IF statement in a THEN clause or in an ELSE
clause

478 PUI Package/2 Language Reference

• A function reference as an argument of a function
reference

• A remote format item in the format list of a
FORMAT statement

• A parameter descriptor list in another parameter
descriptor list

• An attribute specification within a parenthesized
name list for which one or more attributes are being
factored.

non-connected storage. Separate locations in
storage containing related items of data that can be
referred to by a single name but that are separated by
other data items not referred to by that name.

normal default. The default for an attribute (or set of
attributes) that occurs in the absence of one or more
DEFAULT statements in a program.

nonprintable types. A type describing data that
cannot be transmitted using the PUT LIST statement.
Nonprintable types are all scalar types including the
graphic type, other than the printable scalar types.

null locator value. A special locator value that cannot
identify any location in internal storage. It gives a posi
tive indication that a locator variable does not currently
identify any generation of data.

null statement. A statement that contains only the
semicolon symbol (;). It indicates that no action is to be
taken.

null string. A character or bit string with a length of
zero.

numeric-character data. See decimal picture data.

0
object. A collection of data referred to by a single
name.

offset variable. A locator variable with the OFFSET
attribute, whose value identifies a location in storage
relative to the beginning of an area.

ON-condition. An occurrence, within a PUI program,
that could cause a program interrupt. It may be the
detection of an unexpected error or of an occurrence
that is expected, but at an unpredictable time.

ON-statement action. The action explicitly established
for a condition when the condition is raised. The
ON-statement action overrides or suspends any previ
ously established action unless it is overridden by a
further ON-statement for the same condition or the

block it was processed in ends. Contrast with implicit
action.

on-unit. The specified action to be executed on
detection of the enabled condition named in the con
taining ON statement. This excludes SYSTEM and
SNAP.

opening (of a file). The association of a file with a
data set and the completion of a full set of attributes for
the file name.

operand. An expression to whose value an operator is
applied.

operational expression. An expression that consists
of one or more operators.

operator. A symbol specifying an operation to be per
formed.

option. A specification in a statement that may be
used to influence the execution or interpretation of the
statement.

p

packed decimal. The internal representation of a
fixed-point decimal data item.

padding. (1) One or more characters or bits concat
enated to the right of a string to extend the string to a
required length. For character strings, padding is with
blanks. For bit strings, padding is with zeros. (2) One
or more characters or bits inserted in a structure so that
the structure elements have the required alignment.

parameter. A name in a procedure that is represents
an argument passed to that procedure.

parameter descriptor. The set of attributes specified
for a single parameter in an ENTRY attribute specifica
tion.

parameter descriptor list. The list of all parameter
descriptors in an ENTRY attribute specification.

parameter list. A parenthesized list of one or more
parameters, separated by commas and following either
the keyword PROCEDURE in a procedure statement or
the keyword ENTRY in an ENTRY statement. The list
corresponds to a list of arguments passed at invocation.

partially-qualified name. A qualified name that is
incomplete. It includes one or more, but not all, of the
names in the hierarchical sequence above the structure
member to which the name refers, as well as the name
of the member itself.

path testing. Debugging technique that involves
selecting test data that will enable the testing of all parts
of a program.

picture data. Arithmetic data represented in character
form.

picture specification. A data item that has a numeric
value but that can also be represented as a character
value according to the editing characters specified in
the item's declaration.

picture specification character. Any of the charac
ters that can be used in a picture specification.

point of invocation. The point in the invoking block at
which the procedure reference to the invoked procedure
appears.

pointer. A type of variable that identifies a location in
storage.

pointer value. A value that identifies the storage
address.

pointer variable. A locator variable with the POINTER
attribute, whose value identifies an absolute location in
main storage.

precision. The number of digits contained in a fixed
point data item, or the minimum number of significant
digits (excluding the exponent) maintained for a floating
point data item.

prefix. A label or a parenthesized list of one or more
condition names included at the beginning of a state
ment.

prefix operator. An operator that precedes an
operand and applies only to that operand. The prefix
operators are + (plus), - (minus), and --, (not).

preprocessor. A program that examines the source
program for preprocessor statements which are then
executed, resulting in the alteration of the source
program.

preprocessor statement. A special statement
appearing in the source program that specifies how the
source program text is to be altered. It is executed as it
is encountered by the preprocessor.

problem data. Coded arithmetic, bit, character, and
picture data that represents values processed by the
program.

procedure. A collection of statements, delimited by
PROCEDURE and END statements. A procedure is a
program or a part of a program, delimits the scope of
names, and is activated by a reference to its entry

Glossary 479

name. See also external procedure and internal proce
dure.

procedure reference. An entry constant or variable or
a built-in function name. The variable may be followed
by one or more argument lists. It may appear in a
CALL statement or CALL option, or as a function refer
ence.

processor. A program that prepares source program
text for execution.

program. A set of one or more external procedures,
one of which must have the OPTIONS(MAIN) specifica
tion in its procedure statement.

program control data. Area, locator, label, format,
entry, and file data that is used to control the proc
essing of a PUI program.

printable type. A type describing data that can be
transmitted using the PUT LIST statement. Printable
types are the numeric types, the bit and character
types, and the pictured types.

prologue. The processes that occur automatically on
block activation.

pseudovariable. Any of the built-in function names
that can be used to specify a target variable.

pseudovariable reference. A value reference which
has a pseudovariable as its object.

Q

structure members, connected by periods, used to iden
tify a component of a structure. Any of the names may
be subscripted.

R
range (of a default specification). A set of identifiers
and/or parameter descriptors to which the attributes in a
default specification of a DEFAULT statement apply.

record. The logical unit of transmission in a record
oriented input or output operation.

recorded key. An identifier within a set of data ele
ments recorded in a direct-access volume to identify an
associated data record.

record-oriented data transmission. The transmission
of data in the form of separate records. Contrast with
stream data transmission.

480 PUI Package/2 Language Reference

recursive procedure. An active procedure that can be
called from within itself or from within another active
procedure.

reentrant procedure. A procedure that can be reacti
vated while it is still active in another active procedure.

REFER expression. The expression preceding the
keyword REFER, from which an original bound, length,
or size is taken when a based variable containing a
REFER option is allocated, either by an ALLOCATE or
LOCATE statement.

REFER object. The variable in a REFER option that
specifies the current bound, length, or size for a
member of a based structure. The REFER object must
be a member of the structure. It must not be locator
qualified or subscripted, and it must precede the
member declared with the REFER option.

reference. The appearance of a name, except in a
context that causes explicit declaration.

remote format item. The letter R specified in a format
list together with the label of a separate format state
ment. The format statement is used by edit-directed
data transmission statements to control the format of
data being transmitted.

repetition factor. A parenthesized unsigned decimal
integer constant that specifies:

1 . The number of occurrences of a string configuration
that make up a string constant.

2. The number of occurrences of a picture specifica
tion character in a picture specification.

repetitive specification. An element ~fa data list that
specifies controlled iteration to transmit one or more
data items, generally used in conjunction with arrays.

restricted expression. An expression whose value is
calculated at compile-time and used as a constant.

returned value. The value returned by a function pro
cedure to the point of invocation.

returns descriptor. A descriptor used in a RETURNS
attribute, and in the RETURNS option of the PROCE
DURE and ENTRY statements.

run unit. A set of PUI programs, each of which is
called by some other PUI program within the set,
except for the initially called program, which is called
from outside the set. A PUI run unit is suspended
when a program in the run unit calls a non-PUI
program, and is resumed when the called program
returns control to the PUI program that called it. A PUI
run unit ends when the initially called PUI program
returns control to the non-PUI program that originally
called the initial program and so started the run unit.

s
scalar. A type of program object that contains either
string or numeric data. It provides the byte string it is
mapped to with representation and operational charac
teristics. Contrast with pointer.

scalar item. A single item of data; an element.

scalar type. The type describing scalar data.

scalar variable. A variable that represents a single
data item.

scale. A system of mathematical notation whose rep
resentation of an arithmetic value is either fixed-point or
floating-point.

scale factor. A specification of the number of frac
tional digits in a fixed-point number.

scope (of a condition prefix). The portion of a
program throughout which a particular condition prefix
applies.

scope (of a declaration). The portion of a program
throughout which the meaning of a particular name
does not change.

scope (of a name). The portion of a program
throughout which the meaning of a particular name
does not change.

select-group. A sequence of selection clauses delim
ited by SELECT and END statements. The select
group is used for control purposes.

selection clause. A WHEN or OTHERWISE clause of
a select-group.

self-defining data. A data item, or an aggregate of
data items, that includes descriptive information about
the attributes of the data, such as values for adjustable
bounds or lengths.

separator. See delimiter.

sign and currency symbol characters. The picture
specification characters. S, +, -, and $ (or other national
currency symbols). They can be used:

• As static characters in which case they are speci
fied only once in a picture specification and appear
in the associated data item in the position in which
they have been specified.

• As drifting characters, in which case they are speci
fied more than once (as a string in a picture specifi
cation) but appear in the associated data item at
most once, immediately to the left of the significant
portion of the data item.

significant allocation. Any unfreed allocation in an
area and any freed allocation that lies between the start
of the area and the end of the unfreed allocation that is
farthest from the start of the area. If a subsequent allo
cation of the same size is made in the same allocation
the original allocation ceases to be significant. '

simple statement. See statement body.

source key. A key referred to in a record-oriented
transmission statement that identifies a particular record
within a direct-access data set.

source program. A program that serves as input to
the compiler. The source program may contain pre
processor statements.

source variable. A variable whose value is to be
assigned or to take part in some other operation.

standard default. The alternative attribute or option
assumed when none has been specified and there is no
applicable DEFAULT statement.

standard file. A file assumed by the processor in the
absence of a FILE or STRING option in a GET or PUT
statement. SYSIN is the standard input file and
SYSPRINT is the standard output file.

standard system action. Action specified by the lan
guage to be taken for an enabled condition in the
absence of an on-unit for that condition.

statement. A grouping of identifiers, constants, and
delimiters that makes up do groups and blocks. The
end of a statement is indicated by a semicolon (;). See
also keyword statement, assignment statement, and null
statement.

statement body. A statement body can be either a
simple or a compound statement. (1) A simple state
ment is a statement with a simple body. There are
three types of simple statements: keyword, assignment
and null. Each type contains a statement body that is
terminated by a semicolon. (2) A compound statement
begins with a keyword. All compound statements are
keyword statements. There are four compound
statements: IF, ON, WHEN, and OTHERWISE. A com
pound statement is terminated by a semicolon that also
terminates the statement body.

statement identifier. The PUI keyword that indicates
the purpose of a statement.

statement-label constant. See label constant.

statement-label expression. See label expression.

statement-label variable. See label variable.

Glossary 481

static storage allocation. The allocation of storage for
static variables.

static variable. A variable that is allocated before exe
cution of the program begins and that remains allocated
for the duration of execution.

stream-oriented data transmission. The transmission
of data in which the organization of the data into
records is ignored and the data is treated as though it
were a continuous stream of individual data values in
character form. Contrast with record-oriented data
transmission.

string. (1) A series of things, such as characters, in a
line. (2) In PUI, a contiguous sequence of characters
or bits that is treated as a single data item. (3) A group
of auxiliary storage devices connected to a system.
The order and location in which each device is con
nected to the system determines the physical address
of the device.

string variable. A variable declared with the BIT or
CHARACTER attribute, whose values can be either bit
strings or character strings.

structure. A collection of data items that need not
have identical attributes. Contrast with array.

structure expression. An expression whose evalu
ation yields a structure set of values.

structure of arrays. A structure containing arrays
specified by declaring individual members names with
the dimension attribute.

structure members. Any of the minor structures or
eiementary names in a structure.

structuring. The makeup of a structure, in terms of
the number of members, the order in which they
appear, their attributes, and their logical level (but not
necessarily their names or declared level numbers).

structure variable. A variable that represents an
aggregate of data items that might not have identical
attributes. Contrast with array variable and scalar vari
able.

subfield (of a picture specification). That portion of
a picture specification field that appears before or after
a V picture specification character.

subroutine. A procedure that has no RETURNS
option in the PROCEDURE statement. Contrast with
function.

subroutine call. An entry reference that must repre
sent a subroutine, followed by an optional and possibly
empty argument list that appears in a CALL statement.
Contrast with function reference.

482 PUI Package/2 Language Reference

subscript. An element expression that specifies a
position within a dimension of an array. A subscript can
also be an asterisk, in which case it specifies the entire
extent of the dimension.

subscript list. A parenthesized list of one or more
subscripts, one for each dimension of an array, which
together uniquely identify either a single element or
cross section of the array.

synchronous. Using a single flow of control for serial
execution of a program.

T
target reference. A reference that designates a gener
ation to receive an item of data.

target variable. A variable to which a value is
assigned.

termination (of a block). Cessation of execution of a
block, and the return of control to the activating block by
means of a RETURN or END statement, or the transfer
of control to the activating block or to some other active
block by means of a GO TO statement.

truncation. The removal of one or more digits, charac
ters, or bits from one end of an item of data when a
string length or precision of a target variable has been
exceeded.

type. The set of data attributes and storage attributes
that apply to a generation, a value, or an item of data.

II -
unconnected aggregate. See inherited dimensions.

undefined. Indicates something that is not defined by
the language and that may change without notice. Thus,
programs that seem to work correctly when referencing
undefined results do so by chance and are in error.

union. A set of variants.

upper bound. The upper limit of an array dimension.

v
value reference. A reference used to obtain the value
of an item of data.

variable. A named entity used to refer to data and to
which values can be assigned. Its attributes remain
constant, but it can refer to different values at different
times.

variable reference. A reference that designates all or
part of a variable.

virtual point picture character. The V picture specifi
cation character, which is used in picture specifications
to indicate the position of an assumed decimal or binary
point.

z
zero-suppression characters. The picture specifica
tion characters Z and *, which are used to suppress
zeros in the corresponding digit positions and replace
them with blanks or asterisks respectively.

Glossary 483

Index

Special Characters
_ (underscore, break) 12
, (insertion character) 292
, (separator) 12, 15
: (prefix, dimension, and range delimiter) 12, 15
? (question mark) 12
I (division) 12, 15, 54
I (insertion character) 292
/* *I (comment) 15, 16
. (insertion character) 292
. (name qualifier, decimal point) 12, 15
() (enclose symbols) 12, 15
$ (picture character) 296
* (multiplication) 12, 15, 54
* zero suppression picture character 291
** (exponentiation) 13, 15, 54
*PROCESS statement 191
& (and symbol) 12, 15
& (bit operator: AND) 60
% (for % statements) 12, 15
%INCLUDE statement 187
%NOPRINT statement 188
%NOTE statement 188
%PAGE statement 190
%POP statement 190
%PRINT statement 190
%PROCESS statement 191
%PUSH statement 191
%SKIP statement 195
- (subtraction) 12, 15, 54
<= (less than or equal to symbol) 15, 61
<= (less than or equal to) 13
+ (addition) 12, 15, 54
< (less than symbol) 12, 15, 61
+ (picture character) 296
>= (greater than or equal to symbol) 15
>=(greater than or equal to) 13
> (greater than symbol) 12, 15
I (bit operator: OR) 60
I (logical OR symbol) 12, 15

Numerics
9 picture specification character 287, 290

A
A picture specification character 287
A-format item 274
ABNORMAL attribute 217
abnormal termination of a program 90

484

ABS built-in function 381
accuracy of the mathematical built-in functions 373
ACOS built-in function 382
ACTIVATE 453
activation

begin block 111
block 91
procedure 98
program 90

AD/Cycle framework 3
ADD built-in function 382
additive attributes

definition of 231
ENVIRONMENT 235
KEYED 235

ADDA built-in function 383
adjustable extents

controlled 203
aggregate

assignments 168
aggregate arguments 373
aggregates 163
algebraic comparison operations 61
ALIGNED attribute 139
alignment attributes for data 138
ALL built-in function 383
ALLOC (ALLOCATE) statement 202
ALLOCATE statement (abbr: ALLOC) 202, 208

for based variables 208
for controlled variables 202
IN option 208
SET option 208

ALLOCATION built-in function (abbr: ALLOCN) 384
alphabetic characters 1 O
alphanumeric characters 11
alternative attributes 230

BUFFERED and UNBUFFERED 234
definition of 230
INPUT, OUTPUT, and UPDATE 233
RECORD and STREAM 233
SEQUENTIAL and DIRECT 234

ANY built-in function 384
application

for PUI 89
area

ALLOCATE statement with IN option 208
assignment 214
attributes 29
data 211
EMPTY built-in function 398
inpuVoutput of 214

© Copyright IBM Corp. 1992

area (continued)
transmission of variables 243

AREA attribute 211
AREA condition 312
arguments

aggregate 373
argument lists 373
dummy 109
null list 373
passing

to procedures 108
to the main procedure 11 O

specifying how passed and received 123
arithmetic built-in functions 374

ABS 381
CEIL 388
COMPLEX 391
CONJG 392
FLOOR 402
IMAG 407
MAX 412
MIN 413
MOD 414
RANDOM 429
REAL 429
REM 430
ROUND 432
SIGN 435
TRUNC 444

arithmetic character data 39, 43
conversion to 80
inserting editing characters 44

arithmetic operations 54
data conversion 55
results 56

arithmetic operators 15, 54
arithmetic picture specification 38, 43
array

assignments 168
array argument with parameters

example 96
array variable, definition of 144
array-and-array operations 67
array-and-element operations 67
array-handling built-in functions 375

ALL 383
ANY 384
DIMENSION 397
HBOUND 404
LBOUND 409
PROD 428
SUM 441

arrays
array-and-array operations 67
array-and-element operations 67
assignment 168, 169

arrays (continued)
attributes 29
bounds of 144
cross sections of 14 7
definition of 144
DIMENSION attribute 144
examples 145
expression 51 , 66
extent 144
infix operators and 67
of structures/unions 153
prefix operators and 67
subscripts of 146
targets 168

ASIN built-in function 384
ASM (ASSEMBLER) option 123
ASSEMBLER (abbr: ASM) option 123
ASSIGNABLE attribute 216
assignment 454

area 214
assignment statement 18, 167

BY NAME option 167
requirements for target variables 168

assignments
aggregate 168
array 168, 169
element 168
how performed 168
multiple 170
structure 168

association of arguments and parameters 108
asterisk 14, 291

arithmetic operators 54
as identifiers 14
use for a subscript 14 7

AT AN built-in function 385
ATAND built-in function 385
ATANH·built-in function 386
ATTENTION condition (abbr: ATTN) 313
ATTN (ATTENTION) condition 313
attributes 25

ABNORMAL 217
additive 231
ALIGNED 139
alternative 230
area 29
array data 29
ASSIGNABLE 216
AUTOMATIC 200
BINARY 31
BIT 37
BUFFERED 234
BUILTIN 371
BYADDR 123
BYVALUE 123
CHARACTER 37

Index 485

attributes (continued)
CHARGRAPHIC 123
classification according to data types 27
coded arithmetic 28, 29
COMPLEX 32
computational data 25
CONDITION 310
CONNECTED 217
CONTROLLED 201
data 25, 26
DECIMAL 31
defaults for data 141
DEFINED 218
descriptive 26
DIMENSION 144
DIRECT 234
entry 28, 29, 114
ENVIRONMENT 235
EXTERNAL 134
FETCHABLE
FILE 230
file data 28, 29
FIXED 31
FLOAT 31
for parameters 95
FORMAT 29, 47
GENERIC 118
GRAPHIC 37
INITIAL 220
INPUT 233
INTERNAL 134
KEYED 235
LABEL 46
label data 29
LIKE 151
LIMITED 117

merging of 238
named coded arithmetic 28
named string data 28
NOCHARGRAPHIC 123
non-data 27
NONASSIGNABLE 216
NONCONNECTED 217
NORMAL 217
OPTIONAL 116
OPTIONS 121
OUTPUT 233
PARAMETER 95
PICTURE 38
picture data 29
PRECISION 32
PRINT 270
program control data 26
REAL 32
RECORD 233

486 PUI Package/2 Language Reference

attributes (continued)
RESERVED 138
SEQUENTIAL 234
SIGNED 33
STATIC 199
STREAM 233
string data 28, 29
structure data 30
UNALIGNED 139
UNBUFFERED 234
UNION 149
union data 30
UNSIGNED 33
UPDATE 233
VALUE 45
VARIABLE 48
VARYING 38

AUTO (AUTOMATIC) attribute 200
AUTOMATIC attribute (abbr: AUTO) 200
automatic storage 198, 200
automatic variables, effect of recursion on 101

B
B (insertion character) 292
B-format item 27 4
B4 (bit hex) bit string constant 41
BASED attribute 204
based storage 198, 204
based variables 204, 208

ALLOCATE statement 208
FREE statement 209
input/output of lists 214

begin block
termination 111

begin blocks 111
BEGIN statement 111

valid OPTIONS options for 121
BINARY attribute (abbr: BIN) 31
BINARY built-in function (abbr: BIN) 386
binary fixed-point constant 34
binary fixed-point data 34

conversion to 78
binary floating-point data 36

conversion to 79
BINARYVALUE built-in function 54, 387
bit

conversion to 72, 83
data 41
format item 27 4
operators 15, 60

BIT attribute 37
BIT built-in function 387
bit constant 41
bit operations

examples 61

bit strings, transmission of unaligned 242
BKWD environment characteristic 235
blanks 15, 16
blocks 91

activation 91
begin 111
packages 92
procedures 94
termination 92
types of 91

books, PUI and Language Environment 4
BOOL built-in function 387
Boolean operators 60
bounds, definition of 144
break(_) character, punctuating constants with 25
BUF (BUFFERED) attribute 234
BUFFERED attribute (abbr: BUF) 234
built-in functions 371

ABS 381
accuracy of mathematical functions 373
ACOS 382
ADD 382
ADDR 383
ALL 383
ALLOCATION 384
and aggregate arguments 373
and null argument lists 373
ANY 384
arithmetic 37 4
array-handling 375
ASIN 384
ATAN 385
ATAND 385
ATANH 386
BINARY 386
BINARYVALUE 54, 387
BIT 387
BOOL 387
CEIL 388
CENTERLEFT 388
CENTERRIGHT 389
CHARACTER 390
COLLATE 391
COMMENT 459
COMPARE 391
COMPILETIME 460
COMPLEX 391
computational data c 73
condition-handling 375
CONJG 392
COPY 392
cos 393
COSD 393
COSH 393
COTAN 393
COTAND 394

built-in functions (continued)
COUNT 394
COUNTER 460
CURRENTSIZE 394
CURRENTSTORAGE 395
DATAFIELD 395
DATE 396
date/time 375
DATETIME 396
DECIMAL 397
definition 108
DIMENSION 397
DIVIDE 397
EMPTY 398
ENDFILE 398
ENTRYADDR 399
EPSILON 399
ERF 399
ERFC 400
EXP 400
EXPONENT 400
FILEOPEN 401
FIXED 401
FLOAT 401
floating-point inquiry 376
floating-point manipulation 376
FLOOR 402
for controlled variables 203
GAMMA 402
GRAPHIC 403
HBOUND 404
HEX 404
HEXIMAGE 405
HIGH 406
HUGE 406
IAND 406
IEOR 407
IMAG 407
INDEX 407
input/output 376
integer manipulation 377
IOR 408
LBOUND 409
LEFT 409
LENGTH 409
LINENO 410
LOG 410
LOG10 411
LOG2 411
LOGGAMMA 410
LOW 411
LOWER2 411
macro facility 458
mathematical 377
MAX 412
MAXEXP 412

Index 487

built-in functions (continued)
MAXLENGTH 413
MIN 413
MINEXP 414
miscellaneous 378
MOD 414
MPSTR 415
MULTIPLY 416
NULL 416
OFFSET 416
OFFSETADD 417
OFFSETDIFF 417
OFFSETSUBTRACT 417
OFFSETVALUE 418
OMITTED 418
ONCHAR 418
ONCODE 419
ONCOUNT 419
ON FEEDBACK
ONFILE 420
ONGSOURCE 420
ONKEY 421
ONLOC 421
ONSOURCE 422
PAGENO 423
PLACES 423
PLIRETV 425
POINTER 425
POINTERADD 54, 426
POINTERDIFF 426
POINTERSUBTRACT 427
POINTERVALUt= 54, 427
PRECISION 427
precision-handling 378
PRED 428
PROD 428

RADIX 428
RAISE2 429
RANDOM 429
REAL 429
REM 430
REPEAT 430
REVERSE 431
RIGHT 431
ROUND 432
SAMEKEY 433
SCALE 433
SEARCH 433
SEARCHR 434
SIGN 435
SIGNED 435
SIN 435
SINO 436
SINH 436
SIZE 436

488 PUI Package/2 Language Reference

built-in functions (continued)
SQRT 437
STORAGE 438
storage control 379
STRING 438
string-handling 380
subroutines 381
SUBSTR 439
SUBTRACT 440
succ 440
SUM 441
SYSPARM 461
SYSTEM 462
SYSVERSION 462
TAN 441
TAND 441
TANH 442
TIME 442
TINY 442
TRANSLATE 442
TRIM 443
TRUNC 444
UNSIGNED 444
UNSPEC 445
VALID 447
VERIFY 447
VERIFYR 448

built-in names 106, 108
built-in pseudovariables 379
built-in subroutines 106, 381

PLIDUMP 423
PLIFILL 424
PLIMOVE 424
PLIRETC 425

BUil TIN attribute 371
BX (bit hex) string constant 41
BY NAME option of assignment statement 167

when not specified in structure assignment 169
when specified in structure assignment 169

BY option of DO statement 175
BYADDR attribute 123
byte 138
BYVALUE attribute 123

c
Clanguage

FINISH condition 318
C-format item 275
CALL option on INITIAL attribute 222
CALL statement 120
case sensitivity 13
CEIL built-in function 388
CENTERLEFT built-in function 388
CENTERRIGHT built-in function 389

CENTRELEFT
See PARM

CENTRERIGHT
See string-handling built-in functions,

CENTERRIGHT
CHAR (CHARACTER) attribute 37
CHARACTER attribute (abbr: CHAR) 37
CHARACTER built-in function (abbr: CHAR) 390
CHARACTER macro facility variables 453
character string constant 40
characters

alphabetic 1 O
alphanumeric 11
character data 39

conversion to 72, 81, 85
picture specifiers for 287

comparison operations 62
constant 39, 41 , 43
extralingual 10
format item 27 4
picture specification 38
sets

double-byte 19
single-byte 1 O

special 12
CLOSE statement 239
COBOL option 124
coded arithmetic data

attributes 25, 28, 29
abbreviations 31

BINARY and DECIMAL attributes 31
binary fixed-point data 34
binary floating-point 36
conversion 72, 85
conversion to 77
decimal fixed-point 35
decimal floating-point 36
FIXED and FLOAT attribute 31
PRECISION attribute 32
REAL and COMPLEX attributes 32

complex data item 32
real data item 32
variable representing complex data items 32

syntax 31
COLLATE built-in function 391
colon symbol 15
COLUMN format item 276
combinations of operations 64
comma 15
COMMENT built-in function 459
comments 15, 16
COMPARE built-in function 391
comparison operations

algebraic 61
bit 62
character 62

comparison operations (continued)
conversion of operands in 61
graphic 62
pointer and offset data 62
program control data 62

comparison operators 15
compilation unit 89
COMPLEX attribute (abbr: CPLX) 32
COMPLEX built-in function (abbr: CPLX) 391
complex format item 275
composite symbols 13
compound statements 18
computational conditions

CONVERSION 315
FIXEDOVERFLOW 319
INVALIDOP 320
OVERFLOW 322
SIZE 323
UNDERFLOW 328
ZERODIVIDE 329

computational data
attributes 25
coded arithmetic data 25
conversion 73
string data 25

concatenation operations 63
concatenation operators 15
COND (CONDITION) condition 314
CONDITION attribute 310
condition codes 302, 329, 419
CONDITION condition (abbr: COND) 314
condition handling 302

CONDITION attribute 310
enabling/disabling 302
established action 305
multiple conditions 309
ON statement 305

dynamically-descendant ON-units 307
null ON-unit 306
ON-units for file variables 307
scope of established action 306

RESIGNAL statement 309
REVERT statement 308
scope of condition prefix 304
SIGNAL statement 309

condition prefix 17, 302
condition-handling built-in functions 375

DATAFI ELD 395
ONCHAR 418
ONCODE 419
ONCOUNT 419
ON FEEDBACK
ONFILE 420
ONGSOURCE 420
ONKEY 421
ONLOC 421

Index 489

condition-handling built-in functions (continued)
ONSOURCE 422

conditions 312, 329
AREA 312
ATTENTION 313
computational 303
CONDITION 314
CONVERSION 315
ENDFILE 316
ENDPAGE 317
ERROR 318
FINISH 318
FIXEDOVERFLOW 319
input/output 303
INVALIDOP 320
KEY 320
miscellaneous 303
NAME 321
OVERFLOW 322
program checkout 303
raising under OPTIMIZATION 305
RECORD 322
SIZE 323
status of 303
STORAGE 324
STRINGRANGE 324
STRINGSIZE 325
SUBCRIPTRANGE 326
TRANSMIT 326
UNDEFINEDFILE 327
UNDERFLOW 328
ZERODIVIDE 329

CONJG buHt-in function 392
CONNECTED attribute (abbr: CONN) 217
connected storage 217
consecutive data sets 229
CONSECUTIVE environment chaiacteilstic 235
constants

84 (bit hex) string 41
84 string 41
bit 41
BX string 41
character 39, 41 , 43
character string 40
definition 24
entry 112
file 230
graphic 42
GX (graphic) string 42
imaginary 32
M (mixed) string 43
named 24
XN (binary hex) 34
Z (null-terminated) character string 40

contained in, definition 132

490 PUI Package/2 Language Reference

contextual declarations 131
continuation rules for DBCS 21
control

of storage 198
control (%) statements

DCL (DEACTIVATE) 454
DCL(DECLARE) 455
DEACTIVATE 454
DECLARE 455
DO 455
END 456
GO TO 456
INCLUDE 457
null 458

controlled
storage 198, 201
structures 203
variables 201

ALLOCATE statement 202
FREE statement 202
multiple generations of 203

CONTROLLED attribute (abbr: CTL) 201
CONV (CONVERSION) condition 315
conversion 72

arithmetic operations 55
arithmetic precision 75
built-in functions 73
in concatenation operations 63
mode 75
operands 56
source to target rules 77, 84
string lengths 7 4
to other data attributes 75

CONVERSION condition (abbr: CONV) 315
CONVERSION condition prefix 303
COPY built-in function 392
COPY option 254
corresponding data sets 229
COS built-in function 393
COSD built-in function 393
COSH built-in function 393
COTAN built-in function 393
COTAND built-in function 394
COUNT built-in function 394
COUNTER macro facility built-in function 460
CPLX (COMPLEX) attribute 32
CPLX (COMPLEX) built-in function 391
credit (CR) picture character 298
cross sections of arrays 14 7
cross sections of arrays of structures/unions 154
CTL (CONTROLLED) attribute 201
CTLASA environment characteristic 235
currency symbol 296
CURRENTSIZE built-in function 394
CURRENTSTORAGE built-in function 395

D
data

aggregates 24, 163
alignment of 138
arithmetic character 43
attributes 25, 26
B4 (bit hex) bit string constant 41
binary fixed-point 34
binary floating-point 36
bit 41
bit constant 41
BX (bit hex) string constant 41
character 39
character constant 39
computational 25
conversion 72, 85
decimal fixed-point 35
decimal floating point 36
elements 24
entry 112
format items 27 4
graphic 42
items 24
label 46
mixed 42
numeric character 288
program control 26

types and attributes 46
specifications 254
transmission 228
types 25
X (Hex) character string constant 40

data conversion 55
data declaration 128

array 144
explicit 128
implicit 131
structure 14 7
union 149

data items
aggregates 24
definition 24
expression 51
scalar 24

data sets 228, 229
consecutive 229
direct 229
indexed 229
regional 230
relative 229

data specification options for stream i/o 254
data transmitted 242
data-directed 259
definition of 252
edit-directed 263

data specification options for stream i/o (continued)
list-directed 267
repetitive specification 255
transmission of data list items 259

data transmission 242
area variables 243
data aggregates 242
data-directed 252
edit-directed 252
graphic strings 242
input 228, 240
of data-list-items 259
output 228, 240
record-oriented 228, 242
record-oriented statements 243, 252

DELETE 245
LOCATE 245
READ 243
REWRITE 244
WRITE 244

stream-oriented 228, 252
stream-oriented statements 252

GET 253
PUT 253

TRANSMIT condition 326
unaligned bit strings 242
varying length strings 242

data transmission statements options 254
COPY 254
FILE 256
LINE 256
PAGE 256
SKIP 257
STRING 257

data-directed data 260
syntax of 260

data-directed data specification 259
GET 261
PUT 262

data-directed data transmission 252
DATAFIELD built-in function 395
DATE built-in function 396
date/time built-in functions 375

DATE 396
DATETIME 396
TIME 442

DATETIME built-in function 396
DB (debit) picture character 298
DBCS (double-byte character set) 19

continuation rules 21
elements 20
identifiers, uses for 20

DCL (DECLARE) statement 129
debit (DB) picture character 298
DECIMAL attribute (abbr: DEC) 31

Index 491

DECIMAL built-in function (abbr: DEC) 397
decimal fixed-point data 35

conversion to 78
decimal floating-point data 36

conversion to 79
decimal-point and digit specifiers 290
declarations

array 144
contextual 131
explicit 128
implicit 131
scope of 132

DECLARE statement (abbr: DCL) 129
declaring data 128

factoring of attributes 130
DEF (DEFINED) attribute 218, 219
DEFAULT statement (abbr: OFT) 142
defaults for attributes 141

DEFAULT statement 142
for data attributes 141
language-specified 141
restoring language-specified 144

DEFINED attribute (abbr: DEF) 218, 219
DELAY statement 172
DELETE statement 245
delimiters 15
descriptive attributes 26
descriptor list, parameter 114
DESCRIPTOR option 124
OFT (DEFAULT) statement 142
digits

and decimal-point specifiers 290
binary 12
decimal 11
hexadecimal 12

DIM (DIMENSION) attribute 144
DIMENSION attribute (abbr: DIM) 144
DIMENSION built-in function (abbr: DIM) 397
DIRECT attribute 234
direct data set 229
direct entry declaration 112
DISPLAY statement 172
DIVIDE built-in function 397
DLL (file extension)

with load modules 89
DO statement 173
do-groups 173

examples 179
type 3 do-group 174, 176

double-byte character set (DBCS) 19
continuation rules 21
data in stream i/o 272
elements 20
identifiers, uses for 20
using in source program 19

492 PUI Package/2 Language Reference

doubleword 138
drifting character 296
dummy arguments 109

rules 110
dynamic allocation 198
dynamic loading of an external procedure 101
dynamically-descendant ON-units 307

E
E picture character 298
E-format item 276
EDIT option 263
edit-directed

data specification 263
data transmission 252
format items 27 4

effect of recursion on automatic variables 101
elementary names 14 7
elements

assignment 168
data 24
DBCS 20
expression 51
parameter 11 O
program 10
scalar 24
statement 14
variable 24

ELSE clause of %IF statement 456
ELSE clause of IF statement 185
EMPTY built-in function 398
enabled condition 302, 304
END statement 183
ENDFILE built-in function 398
ENDFILE condition 316
ENDPAGE condition 317
ENTRY attribute 114

valid OPTIONS options for 122
entry data 112

attributes 28, 29
constants 112
direct entry declaration 112
generic entry declaration 118
invocation of references 120
variables 113

entry points 94
entry reference invocation 120
ENTRYADDR built-in function 399
ENTRY ADDA pseudovariable 399
ENV (ENVIRONMENT) attribute 235
ENVIRONMENT attribute (abbr: ENV) 235
EPSILON built-in function 399
equal sign 15
ERF built-in function 399

ERFC built-in function 400
ERROR condition 318
established action 305
established condition 302, 304
evaluation order for expressions and references 65
evaluation order of expressions 52
EXE (file extension)

with load modules 89
EXP built-in function 400
explicit declaration 128
explicitly locator-qualified reference 206
EXPONENT built-in function 400
exponent specifiers 298
exponentiation, special cases for 59
expressions 50

array 51, 66
element 51
evaluation order 52
of targets 52
operational 50, 53
restricted 68
scalar 51
structure 51
syntax 50

EXT (EXTERNAL) attribute 134
extent (of bounds) 144
EXTERNAL attribute (abbr: EXT) 134
external procedure

definition of 94
dynamic loading of 101

extralingual characters 1 O

F
F picture character 299
F-format item 278
factoring of attributes 130
FETCH statement 103

FETCHABLE attribute
restrictions 102

fields 289
file

option of data transmission statements
record-oriented data transmission 245

reference
specifying 233

Fl LE attribute 230
FILE option 256

stream-oriented data transmission 243
FILE specification in OPEN statement 236
FILEOPEN built-in function 401
files 230

additive attribute 231
alternative attributes 230
attributes 28, 29
constant 230

files (continued)
declaration 230
definition of 228, 230
describing a file constant 230
describing a file variable 232
description attributes 230
FILE attribute 230
implicit opening 237
opening and closing 235
PRINT 270
variable 232

FINISH condition 318
FIXED attribute 31
FIXED built-in function 401
FIXED macro facility variables 453
fixed-point

binary data 34
decimal data 35
format item 278

FIXEDOVERFLOW condition (abbr: FOFL) 319
FIXEDOVERFLOW condition prefix 303
FLOAT attribute 31
FLOAT built-in function 401
floating-point

binary data 36
data conversion 79
decimal data 36
format item 276
inquiry built-in functions 376

EPSILON 399
HUGE 406
MAXEXP 412
MINEXP 414
PLACES 423
RADIX 428
TINY 442

manipulation built-in functions 376
EXPONENT 400
PRED 428
SCALE 433
succ 440

FLOOR built-in function 402
FOFL (FIXEDOVERFLOW) condition 319
FORMAT attribute 29, 47
format data 47
format items 264

A 274
B 274
c 275
COLUMN 276
E 276
F 278
G 280
L 281
LINE 281
p 282

Index 493

format items (continued)
PAGE 282
R 282
SKIP 283
x 284

FORMAT statement 267
FORTRAN option 124
FREE statement 202, 209

for based variables 209
for controlled variables 202
IN option 209

FROM
option of data transmission statements 246

fullword 138
functions 106, 120

G

See also built-in functions
definition 106
examples 107
returning from 121

G (GRAPHIC) attribute 37
G-format item 280
GAMMA built-in function 402
GENERIC attribute 118
generic entry declaration 118
generic name 118
generic selection 119
GENKEY environment characteristic 235
GET statement

data-directed 261
edit-directed 265
list-directed 268
strings 265

GET STRING statement 253
GO TO statement (abbr: GOTO) 184
GRAPHiC attribute (abbr: G) 37
GRAPHIC built-in function 403
graphic constant 42

comparison operations 62
format item 280
strings 242

graphic conversion 390
graphic data 42

conversion to 84
graphic constant 42
GX (graphic hex) string constant 42
transmission 242

GRAPHIC environment characteristic 235
graphic string constant 42
groups

of statements 19
GX (graphic hex) string constant 42

494 PUI Package/2 Language Ref ere nee

H
halfword 138
HBOUND built-in function 404
hex (X) character string constant 40
HEX built-in function 404
HEXIMAGE built-in function 405
HIGH built-in function 406
HUGE built-in function 406

IAND built-in function 406
identifiers

asterisk 14
DBCS 19
DBCS with double-byte characters 20
definition 14
keywords 14
programmer-defined names 14
single-byte in DBCS form 20

IEOR built-in function 407
IF statement 185
IGNORE

option of data transmission statements 246
IMAG built-in function 407
IMAG pseudovariable 407
imaginary constant 32
implementation limits 465
implicit

declaration 131
freeing 203
opening of files 237

implicit action 302, 304
implicitly locator-qualified reference 207
IN option

ALLOCATE statement 208
FREE statement 209

IN option with FREE statement
for based variables 209

INDEX built-in function 407
indexed data sets 229
industry standards 6
infix operation 53
infix operators and arrays 67
INITIAL attribute (abbr: INIT) 220
initial value 220

on STATIC variables 223
initializing

array variables 222
automatic variables 224
based and controlled variables 224
static variables 223
unions 223

input and output 228, 240
built-in functions 376

COUNT 394

input and output (continued)
built-in functions (continued)

ENDFILE 398
FILEOPEN 401
LINENO 410
PAGENO 423
SAMEKEY 433

conditions
ENDFILE 316
ENDPAGE 317
KEY 320
NAME 321
RECORD 322
TRANSMIT 326
UNDEFINEDFILE 327

of area 214
INPUT attribute 233
input, definition of 228
insertion characters 292
INT (INTERNAL) attribute 134
integer

definition of 11 , 12
restricted 219

integer manipulation built-in functions 377
IAND 406
IEOR 407
IOR 408
LOWER2 411
RAISE2 429

integer value, definition 32
integral boundary 138
interleaved subscripts 154
intermediate results of expressions 53

example 59
INTERNAL attribute (abbr: INT) 134
internal procedure 94
internal to, definition 132
INTO

option of data transmission statements 247
INVALIDOP condition 320
INVALIDOP condition prefix 303
invocation of entry references 120
invoked procedure 98
invoking block 98
IOR built-in function 408
IRREDUCIBLE option (abbr: IRRED) 125
ITERATE statement 187

K
K picture character 298
KEY

option of data transmission statements 247
KEY condition 320
KEYED attribute 235

KEY FROM
option of data transmission statements 247

KEYLENGTH environment characteristic 235
KEYLOC environment characteristic 235
KEYTO

option of data transmission statements 248
keyword statements 18
keywords 14

macro facility 452

L
L format item 281
LABEL attribute 46

valid OPTIONS options for 46
label data 46

attributes 29
label prefixes

syntax
labels

on language statements 18, 46
language-specified defaults 141

defining 141
restoring 144

LBOUND built-in function 409
LEAVE statement 187
LEFT built-in function 409
LENGTH built-in function 409
level number (of structure elements) 155
levels of structures 14 7, 149
levels of unions 149
LIKE attribute 151
LIMITED attribute 117
limits 465
LINE format item 281
LINE option 256
LINENO built-in function 41 O
LINESIZE specification in OPEN statement 237
LINKAGE option 124
list

bidirectional 216
chained 215
processing 215
unidirectional 216

list-directed
data specification 267
data transmission 252
GET statement 268
input 268
output 269
PUT statement 269

list, parameter descriptor 114
listing control statements 450
load module 89
locate mode 249

definition of 249

Index 495

LOCATE statement 245
locator

conversion 205
levels of qualification 207
qualification 206
qualifier 15
reference 206

locator data 205
attributes 29
off set variable 205
pointer variable 205
qualification 206

locator parameter 11 O
LOG built-in function 41 O
LOG 10 built-in function 411
LOG2 built-in function 411
LOG GAMMA built-in function 410
logical level (of structure elements) 155
logical operators 15, 60
LOW built-in function 411
LOWER2 built-in function 411

M
M (mixed) string constant 43
macro facility 450

built-in functions 458
expressions 453
input 450
input text 450
keywords 452
output 450
scan 450
statements 450
statements, list of 453
variables 453

CHARACTER data type 453
data types 453
FIXED data type 453
replacement 451

macro facility statements 453
scanning 450

MAIN option 125
main procedure 90

passing an argument to 110
major structure names 147
mathematical built-in functions 377

accuracy of 373
ACOS 382
ASIN 384
ATAN 385
ATAND 385
ATANH 386
cos 393
COSD 393
COSH 393

496 PUI Package/2 Language Reference

mathematical built-in functions (continued)
COTAN 393
COTAND 394
ERF 399
ERFC 400
EXP 400
GAMMA 402
LOG 410
LOG10 411
LOG2 411
LOGGAMMA 410
SIN 435
SINO 436
SINH 436
SQRT 437
TAN 441
TAND 441
TANH 442

MAX built-in function 412
MAXEXP built-in function 412
MAXLENGTH built-in function 413
MIN built-in function 413
MINEXP built-in function 414
m.inor structure names 14 7
miscellaneous built-in functions 378

COLLATE 391
COMPARE 391
HEX 404
HEXIMAGE 405
OMITTED 418
PLIRETV 425
STRING 438

miscellaneous conditions
AREA 312
ATTENTION 313
CONDITION 314
r-nn"r. "" .. ,.. i=nnvn v 10

FINISH 318
STORAGE 324
UNSPEC 445
VALID 447

mixed data 42
MOD built-in function 414
modes of processing 249

locate 249
move 249

move mode 249
MPSTR built-in function 415
multiple assignment 170
multiple conditions 309
multiple generations of controlled variables 203
MULTIPLY built-in function 416

N
NAME condition 321
named coded arithmetic data

attributes 28
named constants 24

example 45
named string data

attributes 28
NODESCRIPTOR option 124
NOEXECOPS option 125
non-data attributes 27
NONASSIGNABLE attribute 216
NONCONNECTED attribute (abbr: NONCONN) 217
nonconnected storage 147
NONVAR (NONVARYING) attribute 38
NONVARYING attribute (abbr: NONVAR) 38
NOPRINT statement 188
NORMAL attribute 217
normal termination of a program 90
NOTE statement 188
NULL built-in function 416
null ON-unit 306
null statement 18, 189
null-terminated character string constant 40
numeric character data

See also arithmetic character data
See also PARM
conversion to 72, 80, 85
definition 43
picture specifiers for 288

numeric character pictured item 286, 289

0
OFFSET attribute 213
OFFSET built-in function 416
offset data 213
offset variable 205
OFFSETADD built-in function 417
OFFSETDIFF built-in function 417
OFFSETSUBTRACT built-in function 417
OFFSETVALUE built-in function 418
OFL (OVERFLOW) condition 322
OMITTED built-in function 418
ON statement 305
ON-units 305

dynamically-descendant 307
for file variables 307
null 306
scope 306

ONCHAR built-in function 418
ONCHAR pseudovariable 419
ONCODE built-in function 302, 419
ONCOUNT built-in function 419

ONFEEDBACK buiit-in function
ONFILE built-in function 420
ONGSOURCE built-in function 420
ONGSOURCE pseudovariable 420
ONKEY built-in function 421
ONLOC built-in function 421
ONSOURCE built-in function 422
ONSOURCE pseudovariable 422
OPEN statement 236
opening and closing files 235
operands 50

conversion 56
operational expressions 50, 53
operations

arithmetic 54
bit 60
combinations of 64
comparison 61
concatenation 63
infix 53
logical 60
pointer 54
pointer support extensions with 54
prefix 53

operators 15
arithmetic 15, 54
bit 15
comparison 15
infix 67
logical 15
string 15

OPTIMIZATION, raising conditions under 305
OPTIONAL attribute 116
OPTIONS attribute 121
options of data transmission statements 245, 254
OPTIONS options 121

ASSEMBLER 123
BYADDR 123
BYVALUE 123
characteristic-list 121
CHARGRAPHIC 123
COBOL 124
DESCRIPTOR 124
FETCHABLE
for BEGIN statement 121
for ENTRY declaration 122
for PROCEDURE statements 122
FORTRAN 124
IRREDUCIBLE 125
LINKAGE 124
MAIN 125
NOCHARGRAPHIC 123
NODESCRIPTOR 124
NOEXECOPS 125
ORDER 125
RECURSIVE 100

Index 497

OPTIONS options (continued)
REDUCIBLE 125
REENTRANT 125
REORDER 125
RETCODE 125
WINPROC 126

order of evaluation 65
ORDER option 125
ORGANIZATION environment characteristic 235
OTHERWISE option of GENERIC attribute 118
OTHERWISE option of SELECT statement 193
output and input 228, 240

built-in functions 376
conditions 303
of area 214

OUTPUT attribute 233
output, definition of 228
OVERFLOW condition (abbr: OFL) 322
OVERFLOW condition prefix 303

p
P-format item 282, 286
PACKAGE statement 92

valid OPTIONS options for 122
packages 92
PAGE format item 282
PAGE option 256
PAGE statement 190
PAGENO built-in function 423
PAGESIZE specification in OPEN statement 237
PARAMETER attribute 95
parameter descriptor list 114
parameters

and arguments 108
and array arguments 96

example 96
element 110
locator 110

parentheses 15
passing an argument

to the main procedure 11 O
passing an argument to the MAIN procedure 11 O
passing arguments 108

by BYVALUE and BYADDR 109
percent symbol 15
period 15
PIG (PICTURE) attribute 38
PICTURE attribute (abbr: PIC) 38
picture data

attributes 29
format item 282
repetition factors 286
scaling factor 299
specification 38
specifiers for character data 287

498 PUI Package/2 Language Reference

picture data (continued)
specifiers for numeric character data 288
syntax for PICTURE attribute 38

picture specification characters 286
292

I 292
. 292
$ 295
* 291
- 296
+ 296
9 290
B 292
CR 298
DB 298
E 298
F 299
K 298
s 296
v 290, 293
y 298
z 291

PUI Package/2
publications 4

PLACES built-in function 423
PLIDUMP built-in subroutine 423
PLIFILL built-in subroutine 424
PLIMOVE built-in subroutine 424
PLIRETC subroutine 425
PLIRETV built-in function 425
point of invocation 98
POINTER attribute (abbr: PTR) 208
POINTER built-in function (abbr: PTR) 425
pointer operations 54
pointer symbol 15
pointer variable 205, 208
POINTERADD built-in function (abbr: PTRADD) 54,

426
POINTERDIFF built-in functions 426
POINTERSUBTRACT built-in functions 427
POINTERVALUE built-in function (abbr:

PTRVALUE) 54, 427
POP statement 190
POS (POSITION) attribute 218
POSITION attribute (abbr: POS) 218
PRECISION attribute 32
PRECISION built-in function (abbr: PREC) 427
precision-handling built-in functions 378

ADD 382
BINARY 386
DECIMAL 397
DIVIDE 397
FIXED 401
FLOAT 401
MULTIPLY 416
PRECISION 427

precision-handling built-in functions (continued)
SIGNED 435
SUBTRACT 440
UNSIGNED 444

PRED built-in functions 428
prefix operation 53
prefixes, condition 302
PRINT attribute 270
PRINT statement 190
priority of operators 65
PROC(PROCEDUR~~~eme~ 94
PROCEDURE statement (abbr: PROC) 90, 94

valid OPTIONS options for 122
procedures 94

activation 98
blocks 91
dynamic loading 101
passing an argument to main 11 O
passing arguments 108
recursive 100
termination 99

PROCESS statement 191
processing modes 249

locate 249
move 249

processing, list 215
PROD built-in function 428
program 10, 89

activation 90
definition of (for PUI) 89
structure 89
termination 90

program block definition 89
program control data 26
program organization 89
program-checkout conditions

STRINGRANGE 324
STRINGSIZE 325
SUBSCRIPTRANGE 326

programmer-defined names 14
pseudovariables 371 , 379

definition 52
ENTRY ADDA 399
IMAG 407
ONCHAR 419
ONGSOURCE 420
ONSOURCE 422
REAL 430
STRING 439
SUBSTR 440
UNSPEC 446

PTR (POINTER) attribute 208
PTR (POINTER) built-in function 425
PTRADD (POINTERADD) built-in function 54, 426
PTRVALUE (POINTERVALUE) built-in function 54,

427

publications, PUI Package/2 4
punctuating constants 25
PUSH statement 191
PUT statement

Q

data-directed 262
edit-directed 266
list-directed 269
STREAM output 253
strings 266

qualification
locator 206
structure 150
unions 150

qualified reference 150
quotation marks 25

using in strings 25
QUOTE macro facility built-in function 461
quote, double 12, 15
quote, single 15

R
A-format item 282
RADIX built-in function 428
RAISE2 built-in function 429
RANDOM built-in function 429
RANGE option 142
READ statement 243
REAL attribute 32
REAL built-in function 429
REAL pseudovariable 430
recognition of names 128
RECORD attribute 233
RECORD condition 322
record-oriented data transmission 242

definition of 228
statements 243

RECSIZE environment characteristic 235
recursion, effect on automatic variables 101
RECURSIVE option 100
recursive procedures 100
REDUCIBLE option (abbr: RED) 125
REENTRANT option 125
REFER option 210

on AREA attribute 212
reference

locator 206
references 50
regional data set 230
REGIONAL(1) environment.characteristic 235
relative data sets 229
relative line 283

Index 499

RELEASE statement 103
restrictions 102

REM built-in function 430
remote format item 282
REORDER option 125
REPEAT built-in function 430
REPEAT option 175
repetition factor

picture 286
strings 40

repetitive execution (DO statement) 17 4, 179
replacing macro facility variables 451
REPLY option 172, 173
RESCAN option 454
RESERVED 138
RESIGNAL statement 309
restoring language-specified defaults 144
restricted expressions 68
restricted integer 219
restrictions on FETCH and RELEASE 102

data conversion 85
results of arithmetic operations 56
RETCODE option 125
RETURN statement 99, 121
REVERSE built-in function 431
REVERT statement 308
REWRITE statement 244
RIGHT built-in function 431
ROUND built-in function 432

s
S picture character 296
SAMEKEY built-in function 433
scalar data, definition of 24
SCALARVARYING environment characteristic 235
SCALARVARYING option 242
scale 31
SCALE built-in function 433
scaling factor 32
scaling factor character 299
scan, macro facility 450

control statements 451
statements 450

scope 132
of condition prefix 304
of declaration 132
of established action 306

SEARCH built-in function 433
SEARCHR built-in function 434
SELECT statement 193
select-groups 193
self-defining data (REFER option) 21 O
semicolon 15
SEQL (SEQUENTIAL) attribute 234

500 PUI Package/2 Language Reference

SEQUENTIAL attribute (abbr: SEQL) 234
SET

option of data transmission statements 248
SET option 208

ALLOCATE statement 208
LOCATE statement 245
READ statement 243

sets, data 228
See also data sets

SIGN built-in function 435
SIGNAL statement 309
signalling a condition 309
SIGNED attribute 33
SIGNED built-in function 435
signs 296, 298
simple statements 18
SIN built-in function 435
SINO built-in function 436
single-byte character set (SBCS) 10
single-byte statement elements (SBCS)

statement elements 14
SINH built-in function 436
SIZE built-in function 436
SIZE condition 323
SIZE condition prefix 303
SKIP format item 283
SKIP option 257
SKIP statement 195
SNAP 305
source-to-target conversion rules

bit 83
character 81
coded arithmetic 77
fixed binary 78
fixed decimal 78
float binary 79

graphic 84
numeric character PICTURE 80

spacing format item 284
special characters 12
specification characters 286
SQRT built-in function 437
stacking 101
standards 6
statement elements 14

DBCS 20
statements 167

See also PARM
See also statez
*PROCESS 191
%INCLUDE 187
%NOPRINT 188
%NOTE 188
%PAGE 190
%POP 190

statements (continued)
%PRINT 190
%PROCESS 191
%PUSH 191
%SKIP 195
assignment 18, 167
BEGIN 111
CALL 120
CLOSE 239
coding recommendations 17
compound 18
DECLARE 129
DEFAULT 142
DELAY 172
DELETE 245
DISPLAY 172
DO 173
END 183
FETCH 103
FORMAT 267
FREE 202
GET

data-directed 261
edit-directed 265
list-directed 268
STREAM input 253

GET STRING 253
GO TO 184
group 19
IF 185
ITERATE 187
keyword 18
LEAVE 187
LOCATE 245
null 18, 189
ON 305
OPEN 236
PACKAGE 92
PRINT 190
PROCEDURE 94
PROCESS 191
PUSH 191
PUT

data-directed 262
edit-directed 266
list-directed 269
STREAM output 253

READ 243
RELEASE 103
RESIGNAL 309
RETURN 99, 121
REVERT 308
REWRITE 244
SELECT 193
SIGNAL 309
simple 18

statements (continuedj
SKIP 195
STOP 195
syntax, general 17
WRITE 244

% statements
%ACTIVATE 453
%assignment 454
%DEACTIVATE 454
%DECLARE 455
%DO 455
%END 456
%GOTO 456
%IF 456
%INCLUDE 457
%null 458

static allocation 198
STATIC attribute 199

with INITIAL attribute 223
static storage 198, 199
STG (STORAGE) built-in function 438
STOP statement 195
storage

allocation 198
automatic 200
classification 198
connected 217
control 198
controlled 201
nonconnected 14 7
static 199

STORAGE built-in function (abbr: STG) 438
STORAGE condition 324
storage control built-in functions 379

ADDA 383
ALLOCATION 384
BINARYVALUE 387
CURRENTSIZE 394
CURRENTSTORAGE 395
EMPTY 398
ENTRYADDR 399
NULL 416
OFFSET 416
OFFSET ADD 417
OFFSETDIFF 417
OFFSETSUBTRACT 417
OFFSETV ALU E 418
POINTER 425
POINTERADD 426
POINTERDIFF 426
POINTERSUBTRACT 427
POINTERVALUE 427
SIZE 436
STORAGE 438

STREAM attribute 233

Index 501

stream-oriented data transmission 252
definition of 228
list directed 252

STAG (STRINGRANGE) condition 324
STRING built-in function 438
string data

arithmetic graphic 43
attributes 28, 29
bit 41
BIT attribute 37
CHARACTER attribute 37
character data 39
definition 25
graphic 42
GRAPHIC attribute 37
mixed 42
NONVARYING attribute 38
PICTURE attribute 38
repetition factor 40
transmission of varying length 242
using quotation marks with 25
VARYING attribute 38

string operator (II) 15
STRING option 257

GET statement 253
PUT statement 253

string overlay defining 218
STRING pseudovariable 439
string-handling built-in functions 380

BIT 387
BOOL 387
CHAR 390
COPY 392
GRAPHIC 403
HIGH 406
INDEX 407
LEFT 409
LENGTH 409
LOW 411
MAXLENGTH 413
MPSTR 415
REPEAT 430
REVERSE 431
RIGHT 431
SEARCH 433
SEARCHR 434
SUBSTR 439
TRANSLATE 442
TRIM 443
VERIFY 447
VERIFYR 448

STRINGRANGE condition (abbr: STAG) 219, 324
STRINGRANGE condition prefix 303
STRINGSIZE condition (abbr: STRZ) 325, 219
STRINGSIZE condition prefix 303

502 PUI Package/2 Language Reference

structure mapping 154
effect of UNALIGNED attribute 157
example of 157
rules for mapping one pair 156
rules for order of pairing 156

structures
assignment 168
attributes 30
controlled 203
cross sections of arrays of 154
declaration of 14 7
definition of 147, 149
expression 51
highest level number 148, 149
levels 147, 149
LIKE attribute 151
maximum number of levels 148, 149
names 147, 149
qualification 150
specifying organization of 147
variable 151

STRZ (STRINGSIZE) condition 325
subfields 289
SUBRG (SUBSCRIPTRANGE) condition 219, 326
subroutines 94, 104, 120, 381

See also bisr
See also built-in subroutines
definition 104
definition of 371
returning from 121

subscripted qualified reference 153
SUBSCRIPTRANGE condition (abbr: SUBRG) 219,

326
SUBSCRIPTRANGE condition prefix 303
subscripts

definition of 146
inteileaved 154
of arrays 146

SUBSTR built-in function 439
SUBSTR pseudovariable 440
SUBTRACT built-in function 440
SUCC built-in function 440
SUM built-in function 441
suppression characters 291
symbols, composite 13
syntax of data-directed data 260
SYSPARM macro facility built-in function 461
SYSTEM macro facility built-in function 462
SYSTEM option of ON statement 305
SYSVERSION macro facility built-in function 462

T
TAN built-in function 441
TAND built-in function 441

TANH built-in function 442
targets 52

array, requirements for 168
intermediate results 53
pseudovariables 52
requirements for target variables 168
structure, requirements for 168
variables 52

termination
begin block 111
block 92, 183
procedure 99
program 90

THEN clause of %IF statement 456
THEN clause of IF statement 185
TIME built-in function 442
TINY built-in function 442
TITLE specification in OPEN statement 236
TO option 175
TRANSLATE built-in function 442
TRANSMIT condition 326
TRIM built-in function 443
TRUNC built-in function 444
type 3 do-group 255

u
UFL (UNDERFLOW) condition 328
UNALIGNED attribute 139

effect on structure mapping 157
UNBUF (UNBUFFERED) attribute 234
UNBUFFERED attribute (abbr: UNBUF) 234
unconnected storage 14 7
UNDEFINEDFILE condition (abbr: UNDF) 327
UNDERFLOW condition (abbr: UFL) 328
UNDERFLOW condition prefix 303
UNDF (UNDEFINEDFILE) condition 327
UNION attribute 149
unions

attribute 30
cross sections of arrays of 154
declaration 149
levels 149
qualification 150

UNSIGNED attribute 33
UNSIGNED built-in function 444
UNSPEC built-in function 445
UNSPEC pseudovariable 446
UNTIL option 174, 176
UPDATE attribute 233

v
V picture specification character 290
VALID built-in function 447

VALUE attribute 45
VAR (VARYING) attribute 38
VARIABLE attribute 48
variables

array 144
controlled 201
definition 24
entry 113
reference 24
structure 147

VARYING attribute (abbr: VAR) 38
VERIFY built-in function 447
VERIFYR built-in function 448
VSAM environment characteristic 235

w
WHEN option of GENERIC declaration 118
WHEN option of SELECT statement 193
WHILE option 174, 176
WINPROC option 126
WRITE statement 244

x
X (hex) character string constant 40
X picture specification character 287
X-format item 284
XN (binary hex) constant 34

v
Y zero replacement picture character 298

z
Z (null-terminated) character string constant 40
Z zero suppression picture character 291
ZDIV (ZERODIVIDE) condition 329
zero replacement character 298
zero suppression characters 291
ZERODIVIDE condition (abbr: ZDIV) 329
ZERODIVIDE condition prefix 303

Index 503

Readers• Comments

IBM SAA AD/Cycie PUi Packagei2
Language Reference
Release 1

Publication No. SC26-4823-00

Please use this form to tell us what you think about the accuracy, clarity, organization, and appearance of
this manual. Any suggestions you have for its improvement will be welcome.

In sending information to IBM, you grant IBM a non-exclusive right to use or distribute the information in
any way it believes appropriate without incurring any obligation to you.

Note: Do not use this form to request IBM publications. Please direct any requests for copies of publica
tions, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office
serving your locality.

Mail the completed form to the address on the reverse side. If you mail it from a country other than the
United States, give it to your IBM representative or to the IBM branch office serving your locality for
postage-paid mailing.

If you prefer to send comments by fax, use this U.S. number: (408) 463-4393

If you would like a reply, be sure to print your name, and your address or phone number, below.

_ _ _ _Name~ _ Address

Company or Organization

Phone No.

Readers' Comments
SC26-4823-00

Fold and Tape

Fold and Tape

SC26-4823-00

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department J58
PO BOX 49023
SAN JOSE CA 95161-9945

11.1 ... 1.1 •••• 11.11 ••••• 111.1 •• 1.1 ... 1 •• 1.1.1 •••• 111

Please do not staple

--------- ----- ---= ::-:. ::§'f ~ ®

Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

Fold and Tape

C1
Al

Cu
Ale

Readers• Comments

IBM SAA ADiCycie Plii Packagei2
Language Reference
Release 1

Publication No. SC26-4823-00

Please use this form to tell us what you think about the accuracy, clarity, organization, and appearance of
this manual. Any suggestions you have for its improvement will be welcome.

In sending information to IBM, you grant IBM a non-exclusive right to use or distribute the information in
any way it believes appropriate without incurring any obligation to you.

Note: Do not use this form to request IBM publications. Please direct any requests for copies of publica
tions, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office
serving your locality.

Mail the completed form to the address on the reverse side. If you mail it from a country other than the
United States, give it to your IBM representative or to the IBM branch office serving your locality for
postage-paid mailing.

If you prefer to send comments by fax, use this U.S. number: (408) 463-4393

If you would like a reply, be sure to print your name, and your address or phone number, below.

Name Address

Company or Organization

Phone No.

Readers' Comments
SC26-4823-00

Fold and Tape

Fold and Tape

SC26-4823-00

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department J58
PO BOX 49023
SAN JOSE CA 95161-9945

11.1 ... 1.1 11.11 111.1 .. 1.1 ... 1 •• 1.1.1 111

Please do not staple

--..------- ----- - -= ::-::. ::§~§: ®

Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

Fold and Tape

Cu
Ale

Cu1
Alo

Readers' Comments

IBM SAA ADiCycie PUi Packagei2
Language Reference
Release 1

Publication No. SC26-4823-00

Please use this form to tell us what you think about the accuracy, clarity, organization, and appearance of
this manual. Any suggestions you have for its improvement will be welcome.

In sending information to IBM, you grant IBM a non-exclusive right to use or distribute the information in
any way it believes appropriate without incurring any obligation to you.

Note: Do not use this form to request IBM publications. Please direct any requests for copies of publica
tions, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office
serving your locality.

Mail the completed form to the address on the reverse side. If you mail it from a country other than the
United States, give it to your IBM representative or to the IBM branch office serving your locality for
postage-paid mailing.

If you prefer to send comments by fax, use this U.S. number: (408) 463-4393

If you would like a reply, be sure to print your name, and your address or phone number, below.

Name Address

Company or Organization

Phone No.

Readers• Comments
SC26-4823-00

--------- ----- - -..:.. ..:::::E'f~@

Fold and Tape Please do not staple Fold and Tape
--r

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department J58
PO BOX 49023
SAN JOSE CA 95161-9945

11.1 ••• 1.1 •••• 11.11 ••••• 111.1 •• 1.1 ••• 1 •• 1.1.1 •••• 1.11

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

--.L.
Fold and Tape Please do not staple Fold and Tape

SC26-4823-00

C1
Al

Cu
Ale

Readers• Comments

iBivi SAA ADiCycie Pi.Ji Package/2
Language Reference
Release 1

Publication No. SC26-4823-00

Please use this form to tell us what you think about the accuracy, clarity, organization, and appearance of
this manual. Any suggestions you have for its improvement will be welcome.

In sending information to IBM, you grant IBM a non-exclusive right to use or distribute the information in
any way it believes appropriate without incurring any obligation to you.

Note: Do not use this form to request IBM publications. Please direct any requests for copies of publica
tions, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office
serving your locality.

Mail the completed form to the address on the reverse side. If you mail it from a country other than the
United States, give it to your IBM representative or to the IBM branch office serving your locality for
postage-paid mailing.

If you prefer to send comments by fax, use this U.S. number: (408) 463-4393

If you would like a reply, be sure to print your name, and your address or phone number, below.

Name Address

Company or Organization

Phone No.

Readers' Comments
SC26-4823-00

Fold and Tape Please do not staple

--------- ----- - -..:.. ..::: ::§~§: ®

Fold and Tape
·---r

Fold and Tape

SC26-4823-00

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department J58
PO BOX 49023
SAN JOSE CA 95161-9945

11.1 ••• 1.1 11.11 ••••• 111.1 •• 1.1 ••• 1 •• 1.1.1 111

Please do not staple

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

Fold and Tape

Cu
Ale

Cut
Alor

---------- ----- ---.=. =::§~§::®

Program Number: 5601-388 * Printed in U.S.A. on Recycled Paper

PL/I Package/2 Library

GC26-3090 Fact Sheet
GC26-4821 Licensed Program Specifications
SX26-3822 Installation
SC26-4822 Programming Guide
SC26-4823 Language Reference
SX26-3793 Reference Summary
SC26-3133 Language Environment Run-Time Messages

