SE=STE | Series/1

GA34-0021-2

File No. S1-01

IBM Series/1
Model 5 4955 Processor
and Processor Features
Description - o

|. &_—.

(i
-

N

i

1% [@|°

(m] \ —

4955 PROCESSOR DESCRIPTION

nmmmmmmmmmmmmmmm

Third Edition (November 1977)

This is a major revision of, and obsoletes, GA34-0021-1 and Technical Newsletter GN34-0386.
Significant changes in this new edition are:

1. Addition of seven new assembler instructions. Mnemonics for the new instructions are AA,
CA, SA, SBTB, SBTD, SBTW, and SBTWI.

2. Expahsion of the device control block (DCB) parameters.

Changes are periodically made to the information herein; any such changes will be reported in
subsequent revisions or Technical Newsletters. Before using this publication in connection with the
operation of IBM systems, have your IBM representative confirm editions that are applicable and
current. Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your locality.

A form for readers’ comments is provided at the back of this publication. If the form as been
removed, send your comments to IBM Corporation, Systems Publications, Department 27T,
P.O. Box 1328, Boca Raton, Florida 33432. Comments become the property of IBM.

¥

©Copyright International Business Machines Corporation 1976, 1977

ii GA34-0021

Preface vii
Summary of Publication vii
Related Publications viii

Chapter 1. Introduction 1-1
IBM 4955 Processor 1-1
Processor Optional Features/Storage Addition 1-1
Processor Description 1-1
Input/Output Units and Features 1-5
Communications Features 1-5
Sensor Input/Output Options 1-5
Packaging and Power Options 1-5
Other Options 1-5

Chapter 2. Processing Unit Description 2-1
Main Storage 2-1
Addressing Main Storage 2-1
Arithmetic and Logic Unit (ALU) 2-3
Numbering Representation 2-3
Registers 2-4
Per-system Registers 24
Per-level Registers 2-5
Indicator Bits 2-5
Even, Negative, and Zero Result Indicators 2-6
Even, Carry, and Overflow Indicators — Condition Code for
Input/Output Operations 2-6
Carry and Overflow Indicators — Add and Subtract
Operations 2-6
Carry and Overflow Indicators — Shift Operations 2-7
Indicators — Compare Operations 2-7
Indicators — Multiple Word Operands 2-8
Testing Indicators with Conditional Branch and Jump
Instructions 2-8
Supervisor State Bit 2-10
In-process Bit 2-10
Trace Bit 2-10
Summary Mask Bit 2-10
Program Execution 2-10
Instruction Formats 2-10
Effective Address Generation 2-12
Processor State Control '2-19
Initial Program Load (IPL) 2-22
Sequential Instruction Execution 2-22
Jumping and Branching 2-23
Level Switching and Interrupts 2-23
Stack Operations 2-23

Chapter 3. Interrupts and Level Switching 3-1
Introduction 3-1
Interrupt Scheme 3-1
Automatic Interrupt Branching 3-2
1/O Interrupts 3-3
Prepare 1/O Device for Interrupt 3-3
Present and Accept I/O Interrupt 3-3
Class Interrupts 3-5
Priority of Class Interrupts 3-5
Present and Accept Class Interrupt 3-6
Summary of Class Interrupts 3-9

Contents

Recovery from Error Conditions 3-9
Program Check 3-9
Storage Parity Check 3-10
CPU Control Check 3-10
1/0 Check 3-10
Soft Exception Trap 3-10
Processor Status Word 3-10
Program Controlled Level Switching 3-12
Selected Level Lower Than Current Level and In-process

FlagOn 3-13
Selected Level Equal to Current Level and In-process
FlagOn 3-13

Selected Level Higher Than Current Level and In-process
FlagOn 3-13

Selected Level Lower Than Current Level and In-process
Flag Off 3-14

Selected Level Equal to Current Level and In-process
Flag Off 3-14

Selected Level Higher Than Current Level and In-process
Flag Off 3-14

Interrupt Masking Facilities 3-15

Summary Mask 3-15

Interrupt Level Mask Register 3-15

Device Mask (I-bit) 3-15

Chapter 4. Input/Output Operations 4-1
Operate I/0O Instruction 4-2
Immediate Device Control Block (IDCB) 4-3
Device Control Block (DCB) 4-5
I/O Commands 4-6
DPC Operation 4-8
Cycle Steal 4-10
Start Operation 4-10
Start Cycle Steal Status Operation 4-12
Cycle-Steal Device Options 4-13
Burst Mode 4-13
Chaining 4-13
Extended DCB 4-13
Programmed Controlled Interrupt (PCI) 4-13
Suppress Exception (SE) 4-14
Cycle-Steal Termination Conditions 4-15
I/O Condition Codes and Status Information 4-15
IO Instruction Condition Codes 4-19
Interrupt Condition Codes 4-19
1/0 Status Information 4-20

Chapter 5. Storage Protection 5-1
Storage Protection During Initial Program Load $-3
Storage Protection in Supervisor State 5-3
Address Space Management 5-3
Active Address Key 5-3
Equate Operand Spaces (EOS) 5-3
Address Space 54
Address Key Values After Interrupts 5-5

Chapter 6. Storage Address Relocation Translator Feature 6-1
Translator Description 6-1

Storage Mapping 6-2
Relocation Addressing 6-4

Contents iii

Storage Protection When Usingkthe Relocation Translator 6-5
1/0 Storage Access Using the Rélocation Translator 6-5
Compatibility Between the Relocation Translator and the
Storage Protection Mechanism 6-5

Characteristics. That Are Similar 6-6

Characteristics That Are Dissimilar 6-6
Error Recovery Considerations 6-6

Invalid Storage Address 6-6

Protect Check 6-6
Status of Translator After Power Transitions and Resets 6-6
Instruction Execution Time When Using the Translator 6-7

Chapter 7. Console 7-1

Basic Console 7-2
Keys and Switches 7-2
Indicators 7-2

Programmer Console 7-3
Console Display 7-3
Indicators 74
Comeinsticn Reys/indicators 7-§
Keys and Switches 7-7 ‘
Displaying Main Storage Locations 7-10
Storing Into Main Storage 7-10
Displaying Registers 7-11
Storing Into Registers . 7-11

Chapter 8. Instructions 8-1
Exception Conditions 8-1

Program Check Conditions 8-1

Soft Exception Trap Conditions 8-1
Instruction Termination or Suppression 8-2

Instruction Descriptions 8-2

Add Address (AA) 8-3
Register Immediate Long Format 8-3
Storage Immediate Format 8-4

Add Byte (AB) 8-5

Add Byte Immediate (ABI) 8-6

Add Carry Register (ACY) 8-6

Add Doubleword (AD) 8-7
Register/Storage Format 8-7
Storage/Storage Format 8-7

Add Word (AW) 8-8
Register/Register Format 8-8
Register/Storage Format 8-8
Storage to Register Long Format 8-9
Storage/Storage Format 8-9

Add Word With Carry (AWCY) 8-10

Add Word Immediate (AWI) 8-10
Register Immediate Long Format 8-10
Storage Immediate Format 8-11

Branch Unconditional (B) 8-12

Branch and Link (BAL) 8-13

Branch and Link Short (BALS) 8-13

Branch on Condition (BC) 8-14

Branch on Condition Code (BCC) 8-15

Branch on Not Condition (BNC) 8-16

Branch on Not Condition Code (BNCC) 8-17

Branch on Not Overflow (BNOV) 8-18

Branch on Overflow (BOV) 8-18

Branch Indexed Short (BXS) 8-19

Compare Address (CA) 8-20
Register Inmediate Long Format 8-20
Storage Immediate Format 8-20

Compare Byte (CB) 8-21
Register/Storage Format 8-21
Storage/Storage Format 8-21

iv. GA34-0021

Compare Byte Inmediate (CBI) 8-22

Compare Doubleword (CD) 8-23
Register/Storage Format 8-23
Storage/Storage Format 8-23

Compare Byte Field Equal and Decrement (CFED) 8-24

Compae Byte Field Equal and Increment (CFEN) 8-24

Compare Byte Field Not Equal and Decrement (CFNED) 8-25

Compare Byte Field Not Equal and Increment (CFNEN) 8-25

Complement Register (CMR) 8-26

Copy Address Key Register (CPAKR) 8-27
System Register/Storage Format 8-27
System Register/Register Format 8-27

Copy Current Level (CPCL) 8-28

Copy Console Data Buffer (CPCON) 8-28

Copy Interrupt Mask Register (CPIMR) 8-29

Copy In-process Flags (CPIPF) 8-29

Copy Level Block (CPLB) 8-30

Copy Level Status Register (CPLSR) 8-30

Copy Processor Status and Reset (CPPSR) 8-31

Copy Storage Key (CPSK) 8-31

Copy Segmentation Register (CPSR) 8-32

Compare Word (CW) 8-33
Register/Register Format 8-33
Register/Storage Format 8-33
Storage/Storage Format 8-33

Compare Word Immediate (CWI) 8-34
Register Immediate Long Format 8-34
Storage Immediate Format 8-34

Divide Byte (DB) 8-35

Divide Doubleword (DD) 8-36

Diagnose (DIAG) 8-37

Disable (DIS) 8-38

Divide Word (DW) 8-39

Enable (EN) 8-40

Fill Byte Field and Decrement (FFD) 8-41

Fill Byte Field and Increment (FFN) 8-41

Operate I/O (I0) 8-42

Interchange Operand Keys (I0OPK) 8-42

Interchange Registers (IR) 8-43

Jump Unconditional (J) 8-43

Jump and Link (JAL) 8-44

Jump on Condition (JC) 8-45

Jump on Count (JCT) 8-46

Jump on Not Condition (JNC) 847

Level Exit (LEX) 8-48

Load Multiple and Branch (LMB) 8-48

Multiply Byte (MB) 8-49

Multiply Doubleword (MD) 8-50

Move Address (MVA) 8-51
Storage Address to Register Format 8-51
Storage Immediate Format 8-51

Move Byte (MVB) 8-52

" Register/Storage Format 8-52

Storage/Storage Format 8-52

Move Byte Immediate (MVBI) 8-53

Move Byte and Zero (MVBZ) 8-53

Move Doubleword (MVD) 8-54
Register/Storage Format 8-54
Storage/Storage Format 8-54

Move Doubleword and Zero MVDZ) 8-55

Move Byte Field and Decrement (MVFD) 8-56

Move Byte Field and Increment MVFN) 8-56

Move Word (MVW) 8-57
Register/Register Format 8-57
Register/Storage Format 8-57
Register to Storage Long Format 8-57

—

Storage to Register Long Format 8-58
Storage/Storage Format 8-58
Move Word Immediate MVWI) 8-59

Storage to Register Format 8-59
Storage Immediate Format 8-59
Move Word Short (MVWS) 8-60
Register to Storage Format 8-60
Storage to Register Format 8-60
Move Word and Zero MVWZ) 8-61
Multiply Word (MW) 8-62
No Operation (NOP) 8-63
AND Word Immediate NWI) 8-63
OR Byte (OB) 8-64
Register/Storage Format 8-64
Storage/Storage Format 8-64
OR Doubleword (OD) 8-65
Register/Storage Format 8-65
Storage/Storage Format 8-65
OR Word (OW) 8-66
Register/Register Format 8-66
Register/Storage Format 8-66
Storage to Register Long Format 8-67
Storage/Storage Format 8-67
OR Word Immediate (OWI) 8-68

Register Inmediate Long Format 8-68

Storage Immediate Format 8-69

Pop Byte (PB) 8-70

Pop Doubleword (PD) 8-70

Push Byte (PSB) 8-71

Push Doubleword (PSD) 8-71

Push Word (PSW) 8-72

Pop Word (PW) 8-72

Reset Bits Byte (RBTB) 8-73
Register/Storage Format 8-73
Storage/Storage Format 8-73

Reset Bits Doubleword (RBTD) 8-74
Register/Storage Format 8-74
Storage/Storage Format 8-74

Reset Bits Word (RBTW) 8-75
Register/Register Format 8-75
Register/Storage Format 8-75
Storage to Register Long Format 8-76
Storage/Storage Format 8-76

Reset Bits Word Immediate (RBTWI) 8-77
Register Immediate Long Format 8-77
Storage Immediate Format 8-77

Subtract Address (SA) 8-78
Register Immediate Long Format 8-78
Storage Immediate Format 8-79

Subtract Byte (SB) 8-80

Set Bits Byte (SBTB) 8-81
Register/Storage Format 8-81
Storage/Storage Format 8-81

Set Bits Doubleword (SBTD) 8-82
Register/Storage Format 8-82
Storage/Storage Format 8-82

Set Bits Word (SBTW) 8-83
Register/Register Format 8-83
Register/Storage Format 8-83
Storage to Register Long Format 8-84
Storage/Storage Format 8-84

Set Bits Word Immediate (SBTWI) 8-85
Register Inmediate Long Format 8-85
Storage Immediate Format 8-86

Subtract Carry Indicator (SCY) 8-87

Subtract Doubleword (SD) 8-88

Register/Storage Format 8-88
Storage/Storage Format 8-88
Set Address Key Register (SEAKR) 8-89
System Register/Storage Format 8-89
System Register/Register Format 8-89
Set Console Data Lights (SECON) 8-90
Set Interrupt Mask Register (SEIMR) 8-90
Set Indicators (SEIND) 8-91
Set Level Block (SELB) 8-92
Set Storage Key (SESK) 8-93
Set Segmentation Register (SESR) 8-94
Scan Byte Field Equal and Decrement (SFED) 8-95
Scan Byte Field Equal and Increment (SFEN) 8-95
Scan Byte Field Not Equal and Decrement (SFNED) 8-96
Scan Byte Field Not Equal and Increment (SFNEN) 8-96
Shift Left Circular (SLC) 8-97
Immediate Count Format 8-97
Count in Register Format 8-97
Shift Left Circulaz Double (SLCD) 898
Immediate Count Format 858
Count in Register Format 8-99
Shift Left Logical (SLL) 8-100
Immediate Count Format 8-100
Count in Register Format 8-100
Shift Left Logical Double (SLLD) 8-101
Immediate Count Format 8-101
Count in Register Format 8-101
Shift Left and Test (SLT) 8-102
Shift Left and Test Double (SLTD) 8-102
Shift Right Arithmetic (SRA) 8-103
Immediate Count Format 8-103
Count in Register Format 8-103
Shift Right Arithmetic Double (SRAD) 8-104
Immediate Count Format 8-104
Count in Register Format 8-104
Shift Right Logical (SRL) 8-105
Immediate Count Format 8-105
Count in Register Format 8-105
Shift Right Logical Double (SRLD) 8-106
Immediate Count Format 8-106
Count in Register Format 8-106
Store Multiple (STM) 8-107
Stop (STOP) 8-108
Supervisor Call (SVC) 8-108
Subtract Word (SW) 8-109
Register/Register Format 8-109
Register/Storage Format 8-109
Storage to Register Long Format 8-110
Storage/Storage Format 8-110
Subtract Word With Carry (SWCY) 8-111
Subtract Word Immediate (SWI) 8-112
Register Immediate Long Format 8-112
Storage Immediate Format 8-112
Test Bit (TBT) 8-113
Test Bit and Reset (TBTR) 8-113
Test Bit and Set (TBTS) 8-114
Test Bit and Invert (TBTV) 8-114
Test Word Immediate (TWI) 8-115
Register Inmediate Long Format 8-115
Storage Immediate Format 8-115
Invert Register (VR) 8-116
Exclusive OR Byte (XB) 8-116
Exclusive OR Doubleword (XD) 8-117
Exclusive OR Word (XW) 8-118
Register/Register Format 8-118
Regsiter/Storage Format 8-118

Contents

Storage to Register Long Format 8-119
Exclusive OR Word Immediate (XW1) 8-119

Chapter 9. Floating-Point Feature 9-1
Data Format 9-1
Number Representation 9-1
Floating-Point Numbers 9-1
Binary Integers in Main Storage 9-2
Normalization 9-2
Programming Considerations 9-2
Floating-Point Feature Not Installed 9-2
Floating-Point Registers 9-2
Arithmetic Indicators 9-2
Floating-Point Exceptions 9-2
Level Control 9-3
Instruction Termination or Suppression 9-3
Floating-Point Instructions 9-3
Instruction Formats 9-4
Exception Conditions 94
Program Check Conditions 9-4
Soft Exception Trap Conditions 9-5

Instruction Descriptions 9-6
Copy Floating Level Block (CPFLB) 9-6
Floating Add (FA) 9-7
General Description (Short Precision) 9-7
Storage/Register Format 9-7
Register to Register Format 9-7
Floating Add Double (FAD) 9-8
General Description (Double Precision) 9-8
Storage/Register Format 9-8
Register to Register Format 9-8
Floating Compare (FC) 9-9
Floating Compare Double (FCD) 9-9
Floating Divide (FD) 9-10
Storage/Register Format 9-10
Register to Register Format 9-10
Floating Divide Double (FDD) 9-11
Storage/Register Format 9-11
Register to Register Format 9-11
Floating Multiply (FM) 9-12
General Description (Short Precision) 9-12
Storage/Register Format 9-12
Register to Register Format 9-12
Floating Multiply Double (FMD) 9-13
General Description (Double Precision) 9-13
Storage/Register Format 9-13
Register to Register Format 9-13
Floating Move (FMV) 9-14
Storage to Register Format 9-14
Register to Storage Format 9-14
Register to Register Format 9-14
Floating Move and Convert (FMVC) 9-15
Storage to Register Format 9-15
Register to Storage Format 9-15

Floating Move and Convert Double (FMVCD) 9-16

Storage to Register Format 9-16
Register to Storage Format 9-16
Floating Move Double (FMVD) 9-17
Storage to Register Format 9-17
Register to Storage Format 9-17
Register to Register Format 9-17
Floating Subtract (FS) 9-18
General Description (Short Precision) 9-18
Storage/Register Format 9-18
Register to Register Format 9-18
Floating Subtract Double (FSD) 9-19

vi GA34-0021

General Description (Double Precision) 9-19
Storage/Register Format 9-19
Register to Register Format 9-19

Set Floating Level Block (SEFLB) 9-20

Appendix A. Instruction Execution Times A-1

Table 1. Instruction Times — Relocation Translator Not Installed
or Disabled A+4

Table 2. Instruction Times — Relocation Translator Enabled A-14

Appendix B. Instruction Formats B-1

Appendix C. Assembler Syntax C-1
Coding Notes C-1
Legend for Machine Instruction Operands C-1

Appendix D. Numbering Systems and Conversion Tables D-1

Binary and Hexadecimal Number Notations D-1
Binary Number Notation D-1
Hexadecimal Number System D-1

Hexadecimal — Decimal Conversion Tables D-2

Appendix E. Character Codes E-1

Appendix F. Carry and Overflow Indicators F-1
Signed Numbers F-1
Unsigned Numbers F-2
Carry Indicator Setting F-3
Add Operation Examples F-3
Subtract Operation Examples F-4
Overflow Indicator Setting F-4
Examples F-5

Appendix G. Reference Information G-1
Address Key Register (AKR) G-1
Condition Codes G-1

I/O Instruction Condition Codes G-1

Interrupt Condition Codes G-1
General Registers G-1
Interrupt Status Byte (ISB) G-1

DPC Devices - G-1

Cycle Steal Devices G-2
Level Status Register (LSR) G-2
Processor Status Word (PSW) G-2

Index X-1

Index of Instructions by Format X-10

- Index of Instructions by Name X-13

This publication describes the functional characteristics of

the IBM 4955 Processor and the processor optional features.

It assumes that the reader understands data processing
terminology and is familiar with binary and hexadecimal
numbering systems. The publication is intended
primarily as a reference manual for experienced program-

mers who require machine code information to plan, correct,

and modify programs written in the assembler language.

Summary of Publication
® Chapter 1. Introduction is an introduction to the

system architecture. It contains a general description of

the processor, storage, features, and a list of attachable
I/O devices. .
® Chapter 2. Processing Unit Description contains a
description of the processor hardware including
registers and indicators.
Main storage data formats and addressing are
presented in this chapter.

A section titled “Program Execution’'is included and

covers:

— Basic instruction formats

— Effective address generation
— Processor state control

Initial program load (IPL)

— Jumping and branching

— Level switching and interrupts
— Stack operations

® Chapter 3. Interrupts and Level Switching describes the
priority interrupt levels and the interrupt processing for

(1) I/O devices, and (2) class interrupts. Related topics
are:

— Program controlled level switching

— Interrupt masking facilities

— Recovery from error conditions

Preface

Chapter 4. Input/Qutput Operations describes the I/O
commands and control words that are used to operate
the I/O devices. Condition codes and status information
relative to the I/O operation are also explained. Specific
command and status-word bit structures are contained
in the I/O device description books.

Chapter 5. Storage Protection describes the operation of
the storage protection mechanism.

Chapter 6. Storage Address Relocation Translator
Feature describes the optional relocation translator
feature including:

— Relocation addressing

— Effects on storage protection mechanism

— Error recovery considerations

Chapter 7. Console describes the keys, switches, and
indicators for the basic console and the optional
programmer console. Typical manual operations such as
storing into and displaying main storage are presented.
Chapter 8. Instructions describes the basic instruction
set, including indicator settings and possible exception
conditions. Individual instruction word formats are
included and contain bit combinations for the operation
code and function fields. The instructions are arranged
in alphabetical sequence based on assembler mnemonics.
Chapter 9. Floating-Point Feature describes the optional
floating-point feature including the floating-point
instruction set.

Appendixes:

— Instruction execution times

— Instruction formats

— Assembler syntax

— Numbering systems and conversion tables
Character codes

Carry and overflow indicators

Reference. information

Preface vii

Related Publications

IBM Series/1 System Summary. GA34-0035

IBM Series/1 Configurator, GA34-0042

IBM Series/1 Installation Manual — Physical Planning,
GA34-0029

IBM Series/1 4962 Disk Storage Unit and 4964 Diskette
Unit Description, GA34-0024

IBM Series/1 4973 Line Printer Description, GA34-0044

IBM Series|1 4974 Printer Description, GA34-0025

IBM Series/1 4979 Display Station Description,

GA34-0026

IBM Series/1 4982 Sensor Input/OQutput Unit Description,
GA34-0027

1BM Series/1 4987 Programmable Communications Sub-
system Description, GA34-0049

IBM Series/1 Communications Features Description,
GA34-0028

IBM Series/1 Attachment Features Description, GA34-0031
IBM Series/1 Battery Backup Unit Description, GA34-0032
IBM Series/1 User’s Attachment Manual, GA34-0033

viii GA34-0021

N

The IBM 4955 Processqr is a compact, general purpose
computer and has the following general characteristics:

® Four priority interrupt levels — independent registers
and status indicators for each level. Automatic and
program controlled level switching.

® Four processor models are available:

— Model A: 16K bytes basic storage. Additional
storage in 16K byte increments up to 64K bytes
maximum.

— Model B: 16K bytes basic storage. Additional
storage in 16K byte increments up to 128K bytes
maximum. .

— Model C: 32K bytes basic storage. Additional
storage in 32K* byte increments up to 64K bytes
maximum.

— Model D: 32K bytes basic storage. Additional
storage in 32K * byte increments up to 128K bytes
maximum.

® FET (field effect transistor) main storage. Read or
write time is 300 nanoseconds (660 nanoseconds
required between two storage access cycles). Odd
parity by byte is maintained throughout storage.

® TTL (transistor-transistor logic) processor technology.

® Microprogram control — microcycle time: 220 nano-
seconds.

® Instruction set that includes: stacking and linking
facilities, multiply and divide, variable field-length byte
operations, and a variety of arithmetic and branching
instructions.

® Supervisor and problem states.

® Packaged in a 19-inch rack mountable unit — full width.

® Basic console standard in processor unit. Programmer
console optional.

® Channel capability.

— Asynchronous, multidropped channel.

— 256 1/0 (input/output) devices can be addressed.

— Direct program control and cycle steal operations.

— Maximum burst data rate is 1.8 megabytes per
second for storage input cycles, and 1.5 megabytes
per second for storage output cycles. When multiple
cycle stealing devices are interleaved, the maximum
aggregate data rate is 1.65 megabytes per second. .

*Models C and D may have one 16K byte storage card installed as
the last storage card.

Chapter 1. Introduction

The processor unit contains power and space for addi-
tional features and storage. The IBM 4959 Input/Output
Expansion Unit is available for additional features.

The processor unit is described in the following sections
of this chapter.

IBM 4955 Processor

Processor Optional Features/Storage Addition

e Storage Address Relocation Translator (permits
addressing of main storage larger than 64K bytes).
® Storage Addition — 16,384 bytes.

— provides storage in 16K byte increments for all
processor models.

— Model A has a limit of four 16K cards (64K bytes
total).

— Model B has a limit of eight 16K cards (128K bytes
total).

— Models C and D have a limit of one 16K card and it
must be installed as the last storage card. That is:
any 32K cards would be installed between the 16K
card and the processor cards.

® Storage Addition — 32,768 bytes.

— provides storage in 32K byte increments for processor
Models C and D.

— Model C has a limit of two 32K cards (64K bytes
total).

— Model D has a limit of four 32K cards (128K bytes
total).

® Programmer Console.
® Floating-Point.

Processor Description

The basic IBM 4955 Processor includes the processor,
basic storage, and a basic console. These items are
packaged in a unit, called the processor unit. Figure 1-1
shows a block diagram of an IBM 4955 Processor and an
IBM 4959 Input/Output Expansion Unit.

Introduction 1-1

\£ I/O Device

To additional 1/O
expansion units

IBM 4955 Processor
Optional
Storage Relocation
Translator
Processor | Channel
| R R
I I Optional I/0
c) Floating Attachment
onsole Point Feature
1/O Device
IBM 4959 I/O Expansion Unit
Channel 1/0 13-maximum 1/0
Repower Attachment ——— — — — — o Attachment
Feature Feature Feature
I/O Device

Figure 1-1. Block diagram of an IBM 4955 Processor and an IBM
4959 Input/Output Expansion Unit

The processor is microprogram controlled, utilizing a
220 nanosecond microcycle. Circuit technology is TTL
(transistor-transistor logic). '

Four priority interrupt levels are implemented in the
processor. Each level has an independent set of machine
registers. Level switching can occur in two ways: (1) by
program control, or (2) automatically upon acceptance of
an I/O interrupt request. The interrupt mechanism
provides 256 unique entry points for I/O devices.

12 GA34-0021

The processor instruction set contains a variety of
instruction types. These include: shift, register to
register, register immediate, register to (or from) storage,
bit manipulation, multiple register to storage, variable
byte field, and storage to storage. Supervisor and problem
states are implemented, with appropriate privileged
instructions for the supervisor.

A floating-point feature is available that supplements
the standard instruction set. The floating-point instructions
include single and double precision types for: add,
subtract, multiply, divide, compare, and move.

The basic console is intended for dedicated systems
that are used in a basically unattended environment. Only
minimal controls are provided. A programmer console can
be added as a feature; this console provides a variety of
indicators and controls for operator-oriented systems.

Main storage technology is FET (field-effect transistor).
Basic storage supplied is model dependent. Two storage
additions provide additional storage in 16K or 32K byte
increments. The maximum total storage is model
dependent. Beyond 64K bytes the storage address
relocation translator feature is required. This feature
increases the addressing capability beyond 64K bytes and
* allows a maximum total storage of 128K bytes. The
read/write access time for main storage is 300 nanoseconds.
However, the minimum duration of time between successive
storage cycles is 660 nanoseconds. Storage protection is
standard. It protects against (1) access (reading and
writing) to defined blocks of storage by software or by an
I/0O operation, and (2) writing in an undesired location
within a defined block by software.

I/0 devices are attached to the processor through the
processor I/O channel. The channel directs the flow of
information between the I/O devices, the processor, and
main storage. This channel accommodates a maximum of
256 addressable devices.

The channel supports:

® Direct program control operations. Each Operate I/O
instruction transfers a byte or word of data between
main storage and the device. The operation may or may
not terminate in an interrupt.

® (Cycle Steal operations. Each Operate /O instruction
initiates multiple data transfers between main storage
and the device (65,535 bytes maximum). Cycle steal
operations are overlapped with processing operations
and always terminate in an interrupt.

® Interrupt Servicing. Interrupt requests from the devices,
along with cycle steal requests, are presented and
polled concurrently with data transfers.

The processor is packaged in a standard 48.3 cm (19 in)
rack-mountable unit, called the processor unit. All
processor units contain an integral power supply, fans,
and the basic console. Refer to the Series/] Installation
Manual — Physical Planning, GA34-0029, for environ-
mental characteristics. Four processor models are
available. Figure 1-2 shows the IBM 4955 Processor models
and the card plugging assignments.

IBM 4955 Processor Models

Model A B C D
Storage capacity (bytes)* 64K 128K 64K 128K
1/0O feature cards** 8 3 10 7

* The relocation translator feature is required when the total
storage exceeds 64K bytes.
The floating-point feature can be substituted for one of the I/O
feature cards and must be installed adjacent to the processor.

Introduction 1-3

ABCDE FGHJK LMNPQ

Power
Supply
300w
Nt N N —
1/0 Feature Processor Storage Cards
Cards 64 KB Maximum
I/0 or
Floating Point
4955 Model A Card Plugging Assignments
ABCDE FGHIJK LMNPQ
Power
Supply
300w
4 A N st _’-\/\/
1/0 Processor Storage Cards
/O or Relocation Translator
Floating Point (Required after 64 KB

is exceeded.)

4955 Model B Card Plugging Assignments

ABCDE FGHIJK LMNPQ

Power
Supply
300w
e v . N el
1/0 Processor Storage
1/0 or Cards
Floating Point
4955 Model C Card Plugging Assignments
ABCDE FGHJK LMNPQ
Power
Supply
300w .
\ Nt N — A
1/0 Processor Storage
Cards
I/O or Relocation Translator

Floating Point (Required after 64 KB
is exceeded.)

4955 Model D Card Plugging Assignments

The A position for all models is reserved for the I/O cables or (due
to voltage limitations) one of the following I/O feature cards:

Teletypewriter Adapter Feature using TTL voltage levels
Teletypewriter Adapter Feature using isolated current loop
where customer supplies external +12V power

Timer Feature

Customer Direct Program Control Adapter Feature

4982 Sensor Input/OQutput Unit Attachment Feature
Integrated Digital Input/Qutput Non-Isolated Feature
Channel Repower Feature

Figure 1-2. IBM 4955 Processor with a Programmer Console

14 GA34-0021

Input/Output Units and Features
o IBM 4962 Disk Storage Unit

— Requires 4962 Disk Storage Unit Attachment Feature

o IBM 4964 Diskette Unit
— Requires 4964 Diskette Unit Attachment Feature
o IBM 4979 Display Station
— Requires 4979 Display Station Attachment Feature
o IBM 4973 Line Printer
— Requires 4973 Printer Attachment Feature
o [BM 4974 Printer
— Requires 4974 Printer Attachment Feature
o Timers Feature (2 timers)
o Teletypewriter Adapter Feature
o Customer Direct Program Control Adapter Feature

The feature cards for attaching the I/O units can be
housed in either the processor unit or the I/O expansion
unit.

Information about these units and features can be
found in separate publications. The order numbers for
these publications are listed in the preface of this manual.

Integrated Communications Features

o Asynchronous Communications Single Line Control

o Asynchronous Communications 8 Line Control

o Asynchronous Communications 4 Line Adapter

o Binary Synchronous Communications Single Line
Control

© Binary Synchronous Communications Single Line

Control/High Speed

Synchronous Data Link Control Single Line Control

Binary Synchronous Communications 8 Line Control

Binary Synchronous Communications 4 Line Adapter

Communications Power Feature

Communications Indicator Panel

© 00 0 O

The integrated communications features are housed in the
processor or the I/O expansion unit. Refer to the publication,

IBM Series/1, Communications Features Description,
GA34-0028.

Programmable Communications System

o IBM 4987 Programmable Communications Subsystem
— Requires Programmable Communications Subsystem
Controller Feature

This system can include a variety of features that are
described in the publication, IBM Series/1 4987 Program-
mable Communications Subsystem Description,
GA34-0049.

Sensor Input/Output Options

o Integrated Digital Input/Output Non-Isolated Feature
® 4982 Sensor Input/Qutput Unit Attachment Feature

The integrated digital input/output non-isolated feature
provides digital sensor I/O and simple attachment for non-
IBM equipment. The feature card can be housed in either
the processor unit or the I/O expansion unit. Refer to
the publication, IBM Series/1 Attachment Features
Description, GA34-0031, for a description of this feature.

The 4982 sensor input/output attachment unit feature
card is housed in either the processor or the I/O
expansion unit. Refer to the publication, IBM Series/I,
4982 Sensor Input{Output Unit Description, GA34-0027,
for a description of the 4982 and associated features.

Packaging and Power Options

IBM 4959 Input/QOutput Expansion Unit

IBM 4999 Battery Backup Unit

IBM 4997 Rack Enclosure (1 metre) — 2 models
IBM 4997 Rack Enclosure (1.8 metre) — 2 models

The IBM 4959 Input/Output Expansion Unit is
available for adding I/O feature cards beyond the capacity
of the processor unit. I/O cables (for the I/O channel) are
used to attach this unit to the processor. The capacity
of the I/O expansion unit is either (1) fourteen I/O
feature cards, or (2) thirteen I/O feature cards plus a
channel repower card. A channel repower card is
required to power each additional I/O expansion unit.

The IBM 4999 Battery Backup Unit permits the processor
unit (excluding external devices) to operate from a user-
supplied battery when a loss or dip in line power occurs.
The battery backup unit is explained in a separate
publication. Refer to the preface of this manual for the
order number.

® 0 o

Other Options

All options are not described in this publication. For a list
and description of system units and features, refer to the
IBM Series/1 Configurator, GA34-0042, and the IBM
Series/1 System Summary, GA34-0035.

Introduction 1-5

1-6 GA34-0021

Figure 2-1 shows the general data flow for the IBM 4955
Processor. The major functional units shown in the data
flow are discussed in the following sections.

Main Storage

Main storage holds data and instructions for applications
to be processed on the system. The data and instructions
are stored in units of information called a byte. Each byte
consists of eight binary data bits. Associated with each
byte is a parity bit. Odd parity by byte is maintained
throughout storage; even parity causes a machine check
error. Formats shown in this manual exclude the parity
bit(s) because they are not a part of the data flow
manipulated by the instructions.

The bits within a byte are numbered consecutively, left
to right, O through 7. When a format consists of multiple
bytes, the numbering scheme is continued; for example, the
bits in the second byte would be numbered 8 through 15.
Leftmost bits are sometimes referred to as high-order bits
and rightmost bits as low-order bits.

Bytes can be handled separately or grouped together. A
word is a group of two consecutive bytes, beginning on an
even address boundary, and is the basic building block of
instructions. A doubleword is a group of four consecutive
bytes beginning on an even address boundary.

Chapter 2. Processing Unit Description

Addressing Main Storage

Each byte location in main storage is directly addressable,
Byte locations in storage are numbered consecutively,
starting with location zero; each number is considered the
address of the corresponding byte. Storage addresses are
16-bit unsigned binary numbers. This permits a direct
addressing range of 65,536 bytes:

Address Range
16-bit binary address Hexadecimal Decimal
0000 0000 0000 0000 0000 0
to to to
1111 1111 1111 1111 FFFF 65,535

Note. Addresses that overflow or underflow the addressing
range address wrap modulo 65,536.

When the Storage Address Relocation Translator Feature
is installed, the 16-bit address is used as a logical address to
generate a 24-bit physical address.

Instruction and Operand Address Boundaries

As previously stated, all storage addressing is defined by
byte location. Instructions can refer to bits, bytes, byte
strings, words, or doublewords as data operands. All word
and doubleword operand addresses must be on even byte
boundaries. All word and doubleword operand addresses
point to the most significant (leftmost) byte in the
operand, Bit addresses are specified by a byte address and
a bit displacement.

Byte

0 00O0O0O0O0CI1

0 7

Word

0 000O0O0OGOC0O0O0OOCOOT10

0 7 8

Doubleword
000O0OOOO|OO0OOOOOO|O0OO0O0OOOOOOIOOOOO0OT1I OO
0 7 8 15 16 23 24 31

Processing Unit Description 2-1

Processor bus (16 bits)

Error or
status Storage
bus out
Local
storage 0
. Proc Op -— WA . S
Main SDR| reg reg ||h
storage i
IAR ' f
Lea/el AKR t
LSR cs [cs | | | Y
Registers07 F’ SAR SDR reg (]
Storage 31
Level [AR bus in
1 JAKR
LSR
Registers0- Z %
~p1
re,
Level [IAR &
2 |AKR
LSR —————
Registers0-" I Read-only |
Level AR CIAR | Storase
3 |AKR I ROS) |
- ILSR | Micro- |
Registers0-7 | program
l | |
1/0 bus I/0 bus
(16 bits + __to console (16 bits +
2 parity bits) = w—s data display 2 parity bits) —s

I/O address bus (16 bits) -a—m

I/O address bus (16 bits) -e—a

Legend:

AKR — Address key register -

ALU — Arithmetic and logic unit
CIAR — Current instruction address register
CS — Cycle steal

Ctr — Counter

IAR ~ Instruction address register
LSR — Level status register

Mask — Interrupt level mask register
Op — Operation register

Proc — Processor

PSW — Processor status word

SAR ~ Storage address register
SDR — Storage data register

WA — Work/shift register

Y — Work/shift register

Z — Console data

2-2 GA34-0021

Figure 2-1. Data flow for the IBM 4955 Processor

To provide maximum addressing range, some instructions
refer to a word displacement that is added to the contents
of a register. In these cases, the operand is a word and the
register must contain an even byte address for valid results.
Effective address generation is described in a subsequent
section of this chapter.

All instructions must be on an even byte boundary. This
implies that the effective address for all branch type
instructions must be on an even byte boundary to be valid.

If any of the aforementioned rules are violated, a
program check interrupt occurs with specification check
set in the processor status word (PSW). The instruction is
suppressed.

Arithmetic and Logic Unit (ALU)

The arithmetic and logic unit (ALU) contains the hardware
circuits that perform: addition; subtraction; and logicat
operations such as AND, OR, and exclusive OR. The ALU
performs address arithmetic as well as the operations
required to process the instruction operands. Operands
may be regarded as signed or unsigned by the programmer.
However, the ALU does not distinguish between them.
Numbering representation is discussed in a subsequent
section of this chapter. For many instructions, indicators
are set to reflect the result of the ALU operation. The
indicators are discussed in a subsequent section of this
chapter.

Numbering Representation

Operands may. be signed or unsigned depending on how they
are used by the programmer. An unsigned number is a
binary integer in which all bits contribute to the magnitude.
A storage address is an example of an unsigned number. A
signed number is one where the high-order bit is used to
indicate the sign, and the remaining bits define the
magnitude. Signed positive numbers are represented in

true binary notation with the sign bit (high-order bit) set to
zero. Signed negative numbers are represented in two’s’
complement notation with the sign bit (high-order bit) set
to one. The two’s complement of a number is obtained

by inverting each bit of the number and adding a one to

the low-order bit position. Two’s complement notation
does not include a negative zero. The maximum positive
number consists of an all-one integer field with a sign bit of
zero; whereas, the maximum negative number (the negative
number with the greatest absolute value) consists of an
all-zero integer field with a one-bit for the sign.

The following examples show: (1) an unsigned 16-bit
number, (2) a signed 16-bit positive number, and (3) a
signed 16-bit negative number.

Example of an unsigned 16-bit number:

1111111111111 11 1| Binary number

0 15 Bit position
Decimal value 65535 (The largest unsigned number
Hexadecimal value FFFF representable in 16 bits.)

Example of a signed 16-bit positive number:

0 1111111111111 1 1] Binary number

0 15 Bit position
I-—- Sign (+)

Decimal value +32767 (The largest positive signed

Hexadecimal value 7FFF number representable in 16 bits.)

When the number is positive, all bits to the left of the
most significant bit of the number, including the sign bit,
are zero:

00000O0OOOOGOOO O 0 1| Binary number

0 15 Bit position
l—— Sign (+)

Decimal value +1

Hexadecimal value 0001

Example of a signed 16-bit negative number:

1 0000O0O0OOOOGOCOO O 0 Of Binary number

0 15 Bit position
|——- Sign (—)
Decimal value —32768 (The largest negative signed
Hexadecimal value 8000 number representable in 16 bits.)

Note, This form of representation yields a negative range
of one more than the positive range.

Processing Unit Description -2-3

When the number is negative, all bits to the left of the
most significant bit of the number, including the sign bit,
are set to one: : -

1111111111111 1 1 0fBinarynumber
0 - 15 Bit position

|——Sign (-)

Decimal value -2
Hexadecimal value FFFE

When a signed-number operand must be extended with
high-order bits, the expansion is achieved by prefixing a
field with each bit set equal to the high-order bit of the
operand.

Example of an 8-bit field extended to a 16-bit field:

1 1 11 1 1 0 1{Binary number
0 7 Bit position
I——Sign (=)
Decimal value -3
Hexadecimal value FD
1111111111111 1 0 1|Binarynumber
0 15 Bit position
I———Sign (—)
Decimal value -3

Hexadecimal value FFFD

It must be emphasized that when performing the add
and subtract operations, the machine does not regard the
number as either signed or unsigned, but performs the
designated operation on the values presented. Whether a
given add or subtract operation is to be regarded as a
signed operation or an unsigned operation is determined
by the programmer’s view of the values being presented as
operands. The carry indicator and the overflow indicator
of the LSR are changed on various operations to reflect the
result of that operation. This allows the programmer to
make result tests for the number representation involved.
The carry and overflow indicator settings are explained in a
subsequent section. |

2-4 GA34-0021

Registers
Registers in the processor are provided in two categories:

1. Per-system register (the register is provided only once
and is used by all priority interrupt levels)

2. Per-level register (the register is duplicated for each
priority interrupt level)

Information that must be saved when a level is
preempted is retained in registers supplied for a specific
level. Information that pertains only to the current
process is kept in registers common to all levels. The
registers in each category are listed in this section.
Descriptions for each of the registers appear in subsequent
sections. Only registers accessible to the program or the
operator (via console operations) are discussed.

Registers supplied on a per-system basis:

Console address key register

Console data buffer

Current-instruction address register (CIAR)
Mask register (interrupt level)

Processor status word (PSW)

Segmentation registers (optional) see Chapter 6,
Storage Address Relocation Translator Feature,
® Storage address register (SAR)

Registers supplied on a per-level basis:

Address key register (AKR)

Floating-point registers (optional) see Chapter 9,
Floating-Point Feature,

® General registers (8 per level)

® Instruction address register (IAR)

® Ievel status register (LSR)

Note. For a specific level, the contents of the AKR, IAR,
LSR, and the general registers are known as a level status

block (LSB). The LSB is a 22 byte entity used by hardware
and software for task control and task switching.

Per-system Registers

Console Address Key Register

The Console AKR is not addressable by software. When
the programmer console is installed, this register is used
for certain console operations. Refer to Programmer
Console in Chapter 7.

Console Data Buffer

The console data buffer is a 16-bit register associated with
the programmer console feature. Details of how the
buffer is used are explained in the programmer console
section of Chapter 7. The contents of the console data
buffer can be loaded into a specified general register by
using the Copy Console Data Buffer (CPCON) instruction
(see Chapter 8).

Current-Instruction Address Register (CIAR)

When the processor enters the stop state, the current-
instruction address register (CIAR) contains the address
of the last instruction that was executed. The CIAR is not
addressable by software. It may be displayed from the
optional programmer console. Refer to Stop State in this
chapter for methods of entering stop state.

Mask Register
The mask register is a 4-bit register used for control of
interrupts. Bit O controls level 0, bit 1 controls level 1,
and so on.

A one bit enables interrupts on a level, while a zero bit
disables interrupts. For example if bit 3 is set to a one,
interrupts are enabled on level 3.

Processor Status Word (PSW)

The processor status word (PSW) is a 16-bit register used
to (1) record error or exception conditions that may
prevent further processing, and (2) hold certain flags that
aid in error recovery. Error or exception conditions
recorded in the PSW result in a class interrupt. Each bit
in the PSW is described in detail in Chapter 3. The PSW
can be accessed by using the Copy Processor Status and
Reset (CPPSR) instruction (see Chapter 8).

Storage Address Register (SAR)

The storage address register (SAR) is a 16-bit register
that contains the main-storage address for the last
attempted processor storage cycle. This register is
addressable by the Diagnose instruction and may be

altered or displayed from the optional programmer console.

Per-level Registers

Address Key Register (AKR)

The address key register (AKR) is a 16-bit register that
contains three address keys and an address-key control bit.
This register is associated with the storage protection
mechanism. Separate 3-bit fields contain an address key
for (1) instruction address space, (2) operand-1 address
space, and (3) operand-2 address space. Refer to Storage
Protection and Address Space Management in Chapter 5
for further information.

General Registers

Subsequently referred to simply as registers, the general
registers are 16-bit registers available to the program for
general purposes. Eight registers are provided for each
level. The R and RB fields in the instructions control the
selection of these registers.

Instruction Address Register (IAR)

The instruction address register (IAR) is a 16-bit register
that holds the main storage address used to fetch an
instruction. After an instruction has been fetched, the
IAR is updated to point to the next instruction to be
fetched.

Note. These registers are sometimes referred to as IARO,
IAR1, IAR2, and IAR3. The numbers represent the
priority level associated with the register.

Level Status Register (LSR)
The level status register (LSR) is a 16-bit register that holds:

® Indicator bits
— Set as a result of arithmetic, logical, or I/O operations
® A supervisor state bit
® An in-process bit
® A trace bit
® A summary mask bit

These bits are further discussed in the following sections.
Seven other bits in the LSR are not used and are always
set to zero.

Indicator Bits

The indicators are located in bits 0—4 of the level status
register (LSR). Figure 2-2 shows the indicators and how
they are set for arithmetic operations. The indicator bits
are changed or not changed depending on the instruction
being executed. Some instructions do not affect the
indicators, other instructions change all of the indicators,
and still other instructions change only specific indicators.
Refer to the individual instruction descriptions in Chapter
8 for the indicators changed by each instruction.

Processing Unit Description 2-5

Level status register (LSR)

E|C{O|N|Z
01 2 3 4

15

L-Zero — Set to 1 if result is all zeros;
otherwise, set to 0.

Negative — Set to 1 if bit-0 of result is 1;

otherwise, set to 0.

Overflow — Set to 1 if result of arithmetic
operation (with the operands
regarded as signed numbers)
cannot be represented as a signed
number in the operand size
specified; otherwise set to 0.

Carry — Set to 1 if the result of add or
subtract operations (with the
operands regarded as unsigned
numbers) cannot be represented
as an unsigned number in the
operand size specified; otherwise,
set to 0.

Even — Set to 1 if the low-order bit of the
result is 0; otherwise, set to 0.

Figure 2-2. How indicators are set for signed and unsigned (logical)
operations

The indicators are changed in a specialized manner for
certain operations. These operations are described
briefly. Additional information is provided in subsequent
sections for those operations where more detail is
required.

® Add, subtract, or logical operations. The even, negative,
and zero indicators are result indicators. For add and
subtract operations, the carry and overflow indicators
are changed to provide information for both signed and
unsigned number representations.

® Multiply and divide operations. Signed number operands
are always assumed for these operations. The carry
indicator is used to provide a divide by zero indication
for the divide instruction. The overflow indicator
defines an unrepresentable product for multiply
operations. Refer to the individual instruction descrip-
tions in Chapter 8.

® Priority interrupts and inputfoutput operations.” The
even, carry and overflow indicators are used to form a
three-bit condition code that is set as a binary value.

® (Compare operations. The indicators are set in the same
manner as a subtract operation.

® Shift operations. The carry and overflow indicators
have a special meaning for shift left logical operations.

® Complement operations. The overflow indicator is set
if an attempt is made to complement the maximum
negative number. This number is not representable.

2-6 GA34-0021

e Ser Indicators (SEIND) and Set Level Block (SELB)
instructions. All indicators are changed by the data
associated with these instructions.

® Floating-point operations. The optional floating-point
instructions set the indicators as described in Chapter
9, Floating-Point Feature.

Even, Negative, and Zero Result Indicators

The even, negative, and zero indicators are called the

result indicators. A positive result is indicated when the

zero and negative indicators are both off (set to zero).

These indicators are set to reflect the result of the last
arithmetic, or logical operation performed. A logical
operation in this sense includes data movement instruc-
tions. See the individual instruction descriptions in

Chapter 8 for the indicators changed for specific instructions.

Even, Carry, and Overflow Indicators — Condition
Code for Input/Output Operations
The even, carry, and overflow indicators contain the I/O
condition code: (1) following the execution of an
Operate I/0 instruction and (2) following an I/O
interrupt.

These indicators are used to form a 3-bit binary number
that results in a condition code value. For additional
information about condition codes, refer to:

1. Branch on Condition Code (BCC) and Branch on Not
Condition Code (BNCC) instructions in Chapter 8.
2. Condition codes in Chapter 4.

Carry and Overflow Indicators — Add and
Subtract Operations

A common set of add and subtract integer operations
performs both signed and unsigned arithmetic. Whether a
given add or subtract operation is to be regarded as a
signed operation or an unsigned operation is determined
by the programmer’s view of the values being presented as
operands. The carry and overflow indicators are set to
reflect the result for both cases.

Carry Indicator Setting

The carry indicator is used to signal overflow of the result
when operands are presented as unsigned numbers.

Overflow Indicator Setting

The overflow indicator is used to signal overflow of the
result when the operands are presented as signed numbers.

Note. Appendix F explains the meaning of these indicators
for signed and unsigned numbers. The appendix also
provides examples for setting the carry indicator and for
setting the overflow indicator.

Carry and Overflow Indicators — Shift Operations

The carry and overflow indicators are changed for shift
left logical operations and shift left and test operations.
These operations affect the indicators as follows:

1. The carry indicator is set to reflect the value of the
last bit shifted out of the target register (register where
bits are being shifted).

2. The overflow indicator is set to one if bit-0 of the
target register was changed during the shift. Otherwise
it is set to zero.

Indicators — Compare Operations

A compare operation sets the indicators in the same
manner as a subtract operation. The even, negative, and
zero indicators reflect the result. The carry and overflow
indicators are set as described previously.

Compare instructions provide a test between two oper-
ands (without altering either operand) so that conditional
branch and jump instructions may be used to control the
programming logic flow. The conditions specified in
branch and jump instructions are named such that, when
the condition of the “subtracted from” operand relative
to the other operand is true the jump or branch occurs.
Otherwise, the next sequential instruction is executed.
This is illustrated in the following example.

o Compare operation example

Instruction Assembler

name mnemonic Operands

Compare word Ccw R3,R4
Operation code R1I R2 Function
01110]011|1 0000101
0 4 5 7 8 10 11 15

————————— Nt
R3 R4

In this example, the contents of register 3 are subtracted
from register 4:

Decimal

Unsigned Signed
R4 contents 0000 0000 0000 0010 2 +2
R3 contents 11111111 11111011 _65531 -5
Subtract result : -65529 +1
Machine operation:
Minuend 0000 0000 0000 0010
Subtrahend 0000 0000 0000 0100 one’s complement
Constant 1 for two’s complement
Result 0000 0000 0000 0111

Indicator Settings:

c o N
0

| I—- Result is not zero.
Result is positive.

Result fits operand size as a
signed number.

(=4
—
[=]
S N

A negative result for an un-
signed number,

Result is not even (low-order
bit = 1).

If the programmer is comparing unsigned numbers, such
as storage addresses, he should use the logical conditional
tests (refer to Figure 2-3). In this example, assuming
unsigned number representation, R4 is logically less than
R3 and unequal to R3. Therefore, the following branch
instructions would cause a transfer to symbolic location A
(assuming register values shown in the example).

cw R3,R4
BLLT A

or
cw R3,R4
BNE A

The complementary tests (BLGT and BE) would not cause
a transfer in this case.

If the programmer is comparing signed numbers, he
should use the arithmetic conditional tests (refer to
Figure 2-3). In the previous compare word example,
assuming signed number representation, R4 is greater
than R3 and unequal to R3. The following branch
instructions would cause a transfer to symbolic location A.

Ccw R3,R4
BGT A

or .
CcwW R3,R4
BNE A

The complementary tests (BLT and BE) would not cause a
transfer.

Note. Jump instructions are also available for the logical
and arithmetic conditional tests.

It must be emphasized again that the machine does not
regard the numbers as either signed or unsigned. The
compare word instruction results in a subtract operation
being performed on the values presented. The programmer
must then choose the correct conditional test (logical or
arithmetic) for the number representation involved.

Processing Unit Description 2-7,

Indicarors — Multiple Word Operands

A programmer may desire to work with numbers that
cannot be represented in one word or in a doubleword. It
may take three or more words to represent the number.

Certain register to register instructions allow the
programmer to add or subtract these multi-word operands
and then have the indicators reflect the multi-word result.
These instructions are:

Add Carry Register (ACY)

Add Word With Carry (AWCY)
Subtract Carry Register (SCY)
Subtract Word With Carry (SWCY)

The following two examples show how the add instructions
are used. A subtract operation would be similar. See
Chapter 8 for details of the individual instructions.

Example 1. (Equal length operands)

) ' Operand 1/
R R3

R1 2 Result

R4 RS R6 Operand 2

Program steps:

AW R6,R3
"AWCY RS5,R2
AWCY R4,R1

Explanation:

Step 1: The contents of R6 are added to the contents of R3.

Step 2: . The contents of RS are added to the contents of R2
plus any carry from the previous operation,

Step 3: The contents of R4 are added to the contents of R1
plus any carry from the previous operation,

Example 2. (Unequal length operands)

Operand 1/
R1 R
2 R3 Result

RS R6 Operand 2

Note. In this example, operand 2 must be an unsigned number or
must be positive.

2-8 GA34-0021

Program Steps:

AW R6,R3

AWCY R5,R2

ACY R1

Explanation:

Step 1: The contents of R6 are added to the contents of R3.

Step 2: The contents of RS are added to the contents of R2
plus any carry from the previous operation.

Step 3: Any carry from the previous operation is added to the

contents of R1.

Note, In both examples the final indicator settings reflect the
status of the 3-word result.
Even Set on if the result low-order bit of R3 is zero.

Carry Set on if the result cannot be represented as an unsigned
3-word number.

Overflow Set on if the result cannot be represented as a signed
3-word number.

Negative Set on if the result high-order bit of R1 is one.
Zero Set on if all three result registers contain zeros.

Testing Indicators with Conditional Branch and
Jump Instructions

The indicators are tested according to a selected condition
when a conditional branch or a conditional jump instruc-
tion is executed. The conditions and the indicators
tested for each condition are shown in Figure 2-3.

The conditional instructions are:

Branch on Condition (BC)
Branch on Not Condition (BNC)
Jump on Condition (JC).

Jump on Not Condition (JNC)

The assembler also provides extended mnemonics for the
conditions shown in Figure 2-3. Refer to the individual
instructions in Chapter 8.

Indicators
tested
Condition tested by Assembler 0l1)12]3)4
conditional branch or extended
jump instruction mnemonics E|C|Oo|N|Z
Zero or equal BE, BZ,JE,JZ 1
Not zero or unequal BNE, BNZ, INE, INZ 0
Positive and not zero BP,JP 0|0
Not positive BNP, JNP 1
1
Negative BN, JN 1
Not negative BNN, JNN 0
Even BEV, JEV 1
Not even BNEV,INEV 0
Arithmetically less than BLT,JLT 01
1{0
Arithmetically less than- BLE, JLE 0]1
or equal 110
1
Arithmetically greater than | BGE, JGE 111
or equal 0]0
Arithmetically greater than | BGT, JGT 11110
o[of|oO
Logically less than or equal | BLLE, JLLE 1
1
Logically less than (carry) BLLT,JLLT 1
Logically greater than BLGT, JLGT 0
Logically greater than or BLGE, JLGE
equal (no carry)
Legend: LSR bit Indicator
0 E — Even
1 C — Carry
2 O — Overflow
3 N — Negative
4 Z — Zero

Figure 2-3. Indicators tested by conditional branch and jump instructions

Processing Unit Description

2.9

Supervisor State Bit

LSR bit 8, when set to one, indicates that the processor is
in the supervisor state. This state allows privileged
instructions to be executed. It is set by any of the follow-
ing:
1. Class interrupt
Machine check condition
. Program check condition
. Power/thermal warning
. Supervisor Call (SVC) instruction
Soft exception trap condition
Trace
g. Console interrupt
2. 1/O interrupt
3. Initial program load (IPL)

When LSR bit 8 is set to zero, the processor is in problem
state. For a selected priority level, the supervisor can alter
the supervisor state bit by using a Set Level Block (SELB)
instruction. For additional information, refer to Processor
State Control in this chapter.

Class interrupts and I/O interrupts are described in Chap-
ter 3. IPL is discussed in a subsequent section of this
chapter.

[ar IR CINE = NN e B~

In-process Bit ‘
LSR bit 9, when set to one, indicates that a priority level
is currently active or was preempted. by a higher priority
level before completing its task. Bit 9 is turned off by a
Level Exit (LEX) instruction. Bit 9 can also be turned on
or off by a Set Level Block (SELB) instruction. The in-
process bit also affects level switching under program
control. Refer to Chapter 3. Interrupts and Level
Switching.

Trace Bit

LSR bit 10, when set to one, causes a trace class interrupt
at the beginning of each instruction. The bit can be
turned on or off with the Set Level Block (SELB)
instruction. The trace bit aids in debugging programs. See
Class Interrupts in Chapter 3. ’

2-10 GA34-0021

Summary Mask Bit

LSR bit 11, when set to zero (disabled), inhibits all
priority interrupts on all levels. When this bit is set to one
(enabled), normal interrupt processing is allowed. Refer
to Summary Mask in Chapter 3 for details relating to
control of the summary mask.

Program Execution

Instruction Formats

The processor instruction formats are designed for efficient
use of bit combinations to specify the operation to be
performed (operation code) and the operands that
participate. Some formats also include (1) an immediate
data field or word, (2) an address displacement or address
word, and (3) a function field that further modifies the
operation code. Various combinations of these fields are’
used by the individual instructions. Some typical instruc-
tion formats are presented in this section. All formats are
shown in the section Instruction Formats in Appendix B.

One Word Instructions

The basic instruction length is one word (16 bits). The
operation code field (bits 0—4) is the only common field
for all formats. This field, unless modified by a function
field, specifies the operation to be performed. Fora
format without a function field, bits 5—15 specify the
location of operands or data associated with an operand:

Example:
Instruction Assembler.

name mnemonic Syntax

Add Byte Immediate ABI byte,reg

Operation code R Immediate

0 00O0TGO

[4] 4 5 7 8 15
Bits 0—4 Operation code (specifies ABI instruction).
Bits 5-7 General register (0—7).

This register contains data for the second operand.

Bits 8—15 Immediate data for the first operand.

In some cases the operation code is the same for a group
of instructions. The format for this group includes a
function field. The bit combinations in the function field
then determine the specific operation to be performed.

Example:

Instruction Assembler

name mnemonic Syntax

Add Word AW reg,reg
Operation code R1 R2 Function
01110 01000

0 4 5 7 8 10 11 15

Bits 0—4 Operation code for a group of instructions.
Bits 5-7 General register (0—7).

This register contains data for the first operand.

Bits 8—10 General register (0—7).

This register contains data for the second operand.
Bits 11-15 Function field.

Modifies the operation code to specify the Add
Word instruction.

Note. For other instruction groups, the function field may vary as
to location within the format, and also the number of bits used.

Two Word Instructions

The first word of this format is identical to the one-word
format. The second word (bits 16—31) contains either
immediate data, an address, or a displacement. This word
is used to (1) provide data for an operand, or (2) provide

a main storage address or displacement for effective address
generation (see Effective Address Generation in this
chapter).

Example:

Instruction Assembler

name mnemonic Syntax

Branch and Link BAL longaddr,reg
Operation code R1 R2 X| Function
01101 0011

0 4 5 7 8 10 11 12 15

Address or displacement

16 31

Bits 0—4 Operation code.

Bits 57 General register (0—7) for the second operand.
Bits 8—10 General register (0—7) for the first operand.

Bit 11 Indirect addressing bit.
Bits 12—15 Function field.
Bits 16—31 A main storage address used for the first operand.

Note. In this example, the register designated R1 is associated
with the second operand in assembler syntax.

Variable Length Instructions

Some instructions use a selectable encoded technique for
generating effective addresses. This method is referred to
as an address argument technique in subsequent sections.
These instruction formats contain a base register (RB)
field and an address mode (AM) field. If both operands
are using this technique, the format contains an RB and
associated AM field for each. These fields are in the first
instruction word. The AM field consists of two bits and is
referred to in binary notation (AM=00, 01, 10, or 11).

If AM is equal to 10 or 11 an additional word is appended
to the normal instruction word. For a format that
contains two AM fields, two additional words may be
appended. See Effective Address Generation in this
chapter for a description of the appended words and how
they are used.

For instructions with a single storage address argument,
the RB field consists of two bits. An RB field of two bits
with its associated AM field of two bits are referred to
as a 4-bit address argument or addr4 in assembler syntax.

Example:

Instruction Assembler

name mnemonic Syntax
Compare byte CB addr4, reg
Operation code R RB | AM |Function
11000 0100
0 4 5 7 8 9 101112 15

Appended word, AM=10 or 11

16 31
Bits 0—4 Operation code..
Bits 5-7 General register (0—7) for the second operand.
Bits 8—-9 Base register (0-3).

Bits 10—11 Address mode,
Bits 12—15 Function.
Bits 16—31 Appended word for the first operand.

Note. The register specified by the RB field is a general register
that is used as a base register for effective address generation.

Processihg Unit Description 2-11

Some instruction formats have two storage address
arguments. In this case, the first operand has a 3-bit RB
field giving a 5-bit address argument (addrS5 in assembler
syntax) and the second operand has a 4-bit address
argument.

Example:

Instruction Assembler

name menmonic Syntax

Add Word AW addr5,addr4

Operation code RB1 |RB2 |AMI1 |AM2 | Fun
1 0101 00
0 4 5 7 8 9 101112131415

Appended word for operand 1

16 31

Appended word for operand 2

32 47
Bits 0—4 Operation code.
Bits 57 Base register (0—7) for the first operand.
Bits 8-9 Base register (0—3) for the second operand.

Bits 10—-11 Address mode for the first operand.

Bits 12—13 - Address mode for the second operand.
Bits 14—15 Function.

Bits 16—31 Appended word for the first operand.
Bits 32—47 Appended word for the second operand.

Notes.

1. If there is no appended word for the first operand
(AM1=00 or 01), the second operand word is appended
to the instruction word in bits 16—31.

2. Registers specified by the RB fields are general registers.

Names of Instruction Formats

Names have been established for several categories of
instructions. Each category has the same basic instruction
format, therefore, the name is related to the format. In
most cases, the name indicates the location of the operands
or the type of instruction.

2-12 GA34-0021

Examples:

® Register/Register Instructions.
General registers are used by both operands.

e Storage/Storage Instructions.
Both operands reside in main storage.

® Register/Storage Instructions.
One operand uses a general register. The other
operand resides in main storage.

® Register Immediate Instructions.
One operand uses a general register. The other operand
uses an immediaté data field. The immediate data field
is the low order byte of a one-word format or the second
word of a two-word (long) format.

e Shift Instructions with Immediate Count.
This is a shift instruction with the count field contained
within the instruction word.

® Storage Immediate Instructions.
One operand is in main storage. The other operand uses
an immediate data field. The immediate data field is
the second word of a two-word format.

® Parametric Instructions.
For this instruction format, a parameter field (bits
8—15) is contained within the instruction word.

Effective Address Generation

For purposes of storage efficiency, certain instructions
formulate storage operand addresses in a specialized
manner. These instructions have self-contained fields that
are used when generating effective addresses. Standard
methods for deriving effective addresses are included in
this section. Other methods such as bit displacements, are
explained in the individual instruction descriptions in
Chapter 8.

Programming note: For certain instructions, the effective
address points to a control block rather than an operand.
These instructions are:

® Copy Floating Level Block (CPFLB) (optional
floating-point feature)

Copy Level Block (CPLB)

Load Multiple and Branch (LMB)

Pop Byte (PB)

Pop Doubleword (PD)

Push Byte (PSB)

Push Doubleword (PSD)

Push Word (PSW)

Pop Word (PW)

Set Floating Level Block (SEFLB) (optional floating
point feature)

Set Level Status Block (SELB)

Store Multiple (STM)

N

Base Register Word Displacement Short

Instruction format

Operation code RB WD
0 4 & 9 11 15
_—— N

Base register _____._]

00 Register O
01 Register 1
10 Register 2
11 Register 3

Word displacement
Range 0 to 31 (decimal)

The five-bit unsigned integer (WD) is doubled in magnitude
to form a byte displacement then added to the contents of
the specified base register to form the effective address.
The contents of the base register must be even.

Example:
Operation code RB WD

0 1 00100
0 4 8 9 11 15

Hex Dec
Contents of register 1 (RB) 0000 0000 0110 0000 0060 0096
Word displacement (WD)

doubled + 01000 8 8

The eight-bit signed integer (WD) is doubled in magnitude
to form a byte displacement then added to the contents of
the specified base register to form the effective address.
The contents of the base register must be even.

The word displacement can be either positive or
negative; bit 8 of the instruction word is the sign bit for the
displacement value. If this high-order bit of the displacement
field is a 0, the displacement is positive with a maximum
value of +127 (decimal). If the high-order bit of the
displacement field is a 1, the displacement is negative with
a maximum value of -128. The negative number is repre-
sented in two’s complement form.

Effective address 0000 0000 0110 1000 0068 0104

Base Register Word Displacement

Instruction format .

Operation code | RB WD

0 ' 45 78 15
e ™ N mm—

Base register __I

000 Register 0
001 Register 1
010 Register 2
011 Register 3
100 Register 4
101 Register S
110 Register 6
111 Register 7

Word displacement
Range +127 to —128 (decimal)

Example:

Operation code| RB wD
11011101001

0 45 78 15

Note. This example uses a negative word displacement (-17 hex)
shown in two’s complement, Hex Dec
Contents of register 6 (RB) 0000 0000 1000 0110 0086 0134
Word displacement (WD)

doubled
(sign bit is propagated left) +11111111 1101 0010 -2E = 46
Effective address 0000 0000 0101 1000 0058 0088

Four-Bit Address Argument

Instruction format

Operation code RB AM

0 4 8 9 1011 15
-~ S~

Base register —-————I

00 Register 0
(AM=00 or 01)

00 No register
(AM=10or 11)

01 Register 1

10 Register 2

11 Register 3

Address mode

Processing Unit Description 2-13

The Address Mode (AM) has the following significance:

AM=00. The contents of the selected base register form
the effective address.

AM=01. The contents of the selected base register form
the effective address. After use, the base register contents
are incremented by the number of bytes in the operand.
For some instructions, the effective address points to a
control block rather than an operand. When the effective
address points to a control block, the base register
contents are incremented by two.

Example:
Operation code RB AM
01/01
0 4 8 9 1011 15
Hex Dec

Effective address
(contents of register 1) 0000 0000 1000 0000 0080 0128
Contents of register 1
after instruction execution

Byte operand 0000 0000 1000 0001 0081 0129

Word operand 0000 0000 1000 0010 0082 0130

Double word operand 0000 0000 1000 0100 0084 0132

Notes.

1. For register to storage instructions, if the specified
register is the same for both operands, then the register
is incremented prior to using it as an operand.

2. Certain instructions (storage to storage) have two
address arguments. Operand 1 has a 3-bit RB field with
its associated AM field. Operand 2 has a 2-bit RB field
with its associated AM field. If both RB fields specify
the same register and both AM fields are equal to 01,
the base register contents are incremented prior to
fetching operand 2 and again after fetching operand 2.
Assuming the same conditions but with the operand 2
AM field not equal to 01, the base register contents
are incremented prior to calculating the effective
address for operand 2. '

3. If the effective address points to a control block rather
than an operand, the base register contents are incre-
mented by two.

2-14 GA34-0021

/

AM=10. An additional word is appended to the instruction.

The word has the following format.

Address or displacement

16

o If RBis zero, the appended word contains the effective

address.

31

o If RB is non-zero, the contents of the selected base
register and the contents of the appended word (dis-
placement) are added to form the effective address.

Example:

Operation code

RB | AM
1 11 0

0 0 0O0OO0OOO1000000O0OO0OO00O

Address

0 4

Contents of register 3

Effective address

AM=11. An additional word is appended to the instruction.

8 9 101112

0000 1000 0000 0000 0800 2048
Contents of appended word +0000 0001 0000 0000 0100 0256

15

16

Hex Dec

0000 1001 0000 0000 0900 2304

o If RBis zero, the appended word has the format:

Indirect address

1o

31

This address points to a main storage location, on an

even byte boundary, that contains the effective address.

Example:

31

Operation code

RB | AM
0 0j1 1

Indirect address

0 00000O0OO0OO0O1O01000O00O0

0 4

Contents of appended word 0000 0000 0101 0000 0050 0080

Effective address equals
contents of storage
at address 0080 (decimal)

8 9 101112

0000 0100 0000 0000 0400 1024

15

16

Hex Dec

o [f RB is non-zero, the appended word has the format:

Displacement 1

Displacement 2

16 23 24

31

The two displacements are unsigned eight-bit integers.
Displacement 2 is added to the contents of the selected
base register to generate a main storage address. The
contents of this storage location are added to

y Displacement 1 resulting in the effective address.

31

Processing Unit Description 2-15

Example:

Operation code| RB | AM Displacement 1 ' Displacement 2
10111 0 0100101101 0040010
0 .4 8 9 101112 1516 23 24 31
Hex Dec
Contents of register 2 0000 0101 0011 0101 0535 1333
Displacement 2 + 0100 0010 42 66
Storage address 00000101 0111 0111 0577 1399
Contents of storage
at address 1399 (decimal) 0000 0100 0001 0000 0410 1040
Displacement 1 + 0010 0101 25 - 37
Effective address 0000 0100 0011 0101 0435 1077
Note. This example is invalid for other than a byte operand.
Programming Note. This addressing mode (AM=11, RB is
non-zero) is useful for the directorized data concept. For
the addr4 or addrS assembler syntax, the programmer
codes the form displacement 1 (register, displacement 2)*.
For addr4, the specified register is 1—3. For addr5, the
specified register is 1—7. The asterisk denotes indirect
addressing.
Register Directory Data sets
Address of .| Address of A
directory A data set A
]
: ! Address of
dlsplace'ment 2 data set B
ly Address of
data set C
B
—-‘ C
I
|
displacement 1
'
|
' .
—_— Data

2-16 GA34-0021

Five-Bit Address Argument

Instruction format

Operation code| RB AM
0 4 5 7 1011 15
N ! R e d

Base register—,

000 Register 0
(AM=00 or 01)

000 No register
(AM=10or 11)

001 Register 1

010 Register 2

011 Register 3

100 Register 4

101 Register 5

110 Register 6

111 Register 7

Address mode

Operation of this mode is identical to the four-bit argu-
ment, but provides additional base registers.

Base Register Storage Address

Instruction format
Operation code RB X Address/displacement

0 4 8 1011 12 15 16 31
S——— - e T —

Base register ————_I Address field

000 No register

001 Register 1

010 Register 2

011 Register 3 0 = direct address

100 Register 4 1 = indirect address
101 Register §

110 Register 6
111 Register 7

e If RB is zero, the address field contains the effective
address.

e If RB is non-zero, the contents of the selected base
register and the contents of the address field are added
together to form the effective address.

Note. Bit 11, if a one, specifies that the effective
addressing is indirect.

Processing Unit Description 2-17

Example: Indirect address

Operation code RB Address
1 0011 0 00 0010000010000
0 4 8 101112 1516 31
Hex Dec

Contents of register 4

Address field
Storage address

Effective address

0000 0001 0000 0000 0100 0256

+0000 0100 0001 0000 0410 1040

0000 0101 0001 0000 0510 1296

Contents of storage at

address 1296 (decimal)

0000 0110 0100 0000 0640 1600

Instruction Length Variations for Address Arguments

® One-word instructions that contain a single AM field
become two words in length if AM is equal to 10 or 11.
The AM appended word follows the instruction word.

" Example:

AM=00 or 01

AM=10 or 11

Instruction word

0

15

No appended word

Instruction word

AM appended word

third word of the instruction.

Example:

AM=00 or 01

AM=10 or 11

0 15 16 3T
® Two-word instructions that contain a single AM field

become three words in length if AM is equal to 10 or

11. The AM word is appended to the first instruction

word. The data or immediate field then becomes the
Instruction word Immediate field
0 1516 31
Instruction word AM appended word Immediate field
0 1516 31 32 47

® One-word instructions that contain two AM fields (AM1
and AM2) may be one, two, or three words in length
depending on the values of AM1 and AM2. The AM1
word is appended first, then the AM2 word is appended.

2-18 GA34-0021

-

Example:

AM1=00 or 01
AM2=00 or 01 Instruction word No appended word
0 15
AMIi=10or 11
AM2=00 or 01 Instruction word AM1 appended word
0 1516 31
AM1=00 or 01
AM2=10or 11 Instruction word AM2 appended word
0 1516 31
AM1=10or 11
AM2=10or 11 Instruction word AM1 appended word AM?2 appended word
0 1516 31 32 47
Processor State Control 5. An error occurs and the error control on the program-
The processor is always in one of the following mutually mer console is in the Stop on Error position.
exclusive states: — When the processor stops, the .check indicator is
f on and the appropriate PSW bits are set to one.
© FPower off — A subsequent depression of any console key turns
® Stop off the check indicator but does not affect the
° Load PSW
© Wait . . — The next depression of the Start key (assuming no
® Run — when in run state, programs can be executed in system reset) allows a class interrupt to occur
either: based on the PSW bit of the highest priority.
- IS)UP&T visor state or 6. The Reset key on the programmer console is pressed.
— Problem state 7. Power-on reset occurs.
Stop State While the processor is in the stop state: (1) the Stop

light on the programmer console is on, (2) the functions

The stop state is entered when: provided on the console can be activated, and (3) no

1. The Stop key on the programmer console is pressed. interrupt requests can be accepted by the processor.

2. The STOP instruction is executed and (a) the mode Note that the check indicator.on the programmer con-
switch on the basic console is in the Diagnostic posi- sole is used solely as an indication of main storage parity
tion, and (b) the optional programmer console is when the processor is in stop state (after the first key
installed. depression). Refer to Chapter 7 for console information.

3. An address-compare occurs and the rate control on Certain error or exception conditions cannot occur
the programmer console is in the Stop on Address during stop state. These are; specification check,
position. privilege violate, invalid function, floating-point

4. An instruction has completed execution and the rate ~ exception, stack exception, and CPU control check. These
control on the programmer console is in the Instruction conditions are explained in the PSW section of Chapter 3.

Step position.

Processing Unit Description 2-19

If an I/O check condition occurs during stop state,
PSW bits 11 and 12 are set to one and the condition is
preserved by hardware. The check indicator is not
turned on. A subsequent depression of the Start key
(assuming no system reset) allows a machine check class
interrupt to occur.

If a power/thermal warning condition occurs during
stop state, PSW bit 15 is set to one and remains set for
the duration of the condition. A subsequent depression of
the Start key allows a power/thermal warning class
interrupt to occur assuming the condition is still active
and no system reset has occurred.

The processor exits the stop state when:

1. The Load key on the basic console is pressed.
The Start key on the programmer console is pressed.
When the Start key is pressed, the processor returns
to the state that was exited before entering stop state.
If the run state is entered, one instruction is executed
before interrupts are accepted by the processor. If
the stop state was entered because of a reset (power-
on reset or reset key), pressing the start key causes
program execution to begin on level zero-with the
instruction in location zero of main storage. If the
stop state was entered because of an error, with the
Stop on Error switch turned on, a system reset or
class interrupt can clear the error condition. For more
information about system reset, see State of Processor
Following a Reset.

Nozes.

1. Any manual entry into Stop State is via the program-
mer console. :

2. The STOP instruction performs no operation if the
programmer console is not installed.

Wait State

The processor enters wait state when: (1) a Level Exit
(LEX) instruction is executed and no other level is pending,
or (2) a Set Level Block (SELB) instruction is executed
that sets the current in-process bit off and no level is
pending. While the processor is in the wait state, (1) the
Wait light on the basic console is on and (2) interrupts
can be accepted under control of the system mask register
and the summary mask as defined by the LSR of the last
active level.

The processor exits the wait state when:

The Stop key on the programmer console is pressed.

. The Reset key on the programmer console is pressed.

3. AnI/O interrupt is accepted (the level must be enabled
by the summary mask and the mask register).

4. A class interrupt occurs. (See Class Interrupts in

Chapter 3.)

N =

2-20 GA34-0021

Load State

The processor enters the load state when initial program
load (IPL) begins. This occurs:

1. When the Load key on the basic console is pressed.

2. After a power-on reset if the Mode switch is in the
Auto IPL position.

3. When an IPL signal is received from a host system.

While the processor is in load state, the Load light on
the basic console is on.

The processor exits the load state and enters the run
state upon successful completion of the IPL. See Initial
Program Load (IPL).

Run State

The processor enters the run state when not in the stop,
wait, or load state. Run state is entered:

1. From load state upon successful completion of IPL.

2. From wait state when an interrupt is accepted.

3. From stop state when the start key is pressed. (See
Stop State.)

The processor exits run state when entering stop, wait, or
load states as previously described.

Supervisor State and Problem State

While in run state, instructions can be executed in either
supervisor state or problem state. This is determined by
bit 8 of the level status register (LSR):

State LSR Bit 8
Supervisor 1
Problem 0

Supervisor and problem states are discussed in the follow-
ing sections.

Supervisor State. The processor enters supervisor state
when:

1. A class interrupt occurs. This type of interrupt is
caused by the following:

. Machine check condition

. Program check condition

. Power/thermal warning

. Supervisor Call (SVC) instruction

. Soft exception trap condition

Trace bit (LSR bit 10) set to one

. Console Interrupt key on the programmer console

2. An I/O interrupt is accepted.

3. After initial program load (IPL) has been completed.

R e A0 o

Class interrupts and I/O interrupts are discussed in Chapter
3. Initial program load is discussed in a subsequent section
of this chapter.

TN

When the processor is in supervisor state, the full
instruction set may be executed. The following privileged
instructions may only be executed in supervisor state:

Copy Address Key Register (CPAKR)
Copy Console Data Buffer (CPCON) Note 1
Copy Current Level (CPCL)

Copy In-Process Flags (CPIPF)

Copy Interrupt Mask Register (CPIMR)
Copy Instruction Space Key (CPISK)

Copy Floating Level Block (CPFLB) Note 2
Copy Level Status Block (CPLB)

Copy Operand 1 Key (CPOOK)

Copy Operand 2 Key (CPOTK)

Copy Processor Status and Reset (CPPSR)
Copy Segmentation Register (CPSR) Note 3
Copy Storage Key (CPSK)

Diagnose (DIAG)

Disable (DIS)

Enable (EN)

Interchange Operand Keys (IOPK)

Level Exit (LEX)

Operate I/0 (10)

Set Address Key Register (SEAKR)

Set Console Data Lights (SECON) Note 4
Set Floating Level Block (SEFLB) Note 2
Set Instruction Space Key (SEISK)

Set Interrupt Mask Register (SEIMR)

Set Level Status Block (SELB)

Set Operand 1 Key (SEOOK)

Set Operand 2 Key (SEOTK)

Set Segmentation Register (SESR) Note 3
Set Storage Key (SESK)

Notes.

1. The resultant data is unpredictable if the programmer
console feature is not installed.

2. Invalid (soft exception trap) if the floating-point
feature is not installed.

3. Invalid (program check) if the relocation translator
feature is not installed.

4. Performs no operation if the programmer console
feature is not installed.

Supervisor State overrides the storage protection
mechanism. This permits unlimited access to all of main
storage regardless of address keys or storage keys (see
- Chapter 5). When the Storage Address Relocation Trans-
lator Feature is installed and enabled, storage protection
works differently. Supervisor State can only access the

storage defined by the active address keys (see Chapter 6),

Address key 0 is implicitly assigned to the supervisor for
handling interrupts.

Problem State. This is a state that does not allow the
processor to execute the privileged instructions. The
processor enters the problem state when the supervisor
state bit (LSR bit 8) is turned off. This can be
accomplished with a Set Level Status Block (SELB)
instruction. This instruction can change the contents of
the registers for a selected priority interrupt level.

While the processor is in problem state, privileged
instructions cannot be executed. If a privileged instruction
execution is attempted, the instruction is suppressed and
a program check class interrupt occurs, with privilege
violate (bit 2) set in the processor status word.

State of Processor Following a Reset

The term reset used in the following sections denotes
the reset action that occurs during:

1. Power-on reset

2. [Initial program load (IPL) reset

3. System reset initiated by pressing the Reset key on
the programmer console

The following registers and conditions are not affected
by a reset and must be initialized by the program or
operator before they become valid:

AKR on levels 1-3

Console data buffer (programmer console feature)
General registers

IAR onlevels 1-3

Storage key registers (storage protection)

Main storage

Segmentation registers (relocation translator feature)
Floating-point registers (floating-point feature)

The following registers and conditions are affected by
a reset:

® CIAR - set to zeros
® JAR on level zero — set to zeros
® Mask register — set to ones (all levels enabled)
® LSR on level zero
— Indicators — set to zeros
Supervisor state (bit 8) — set on
In-process (bit 9) — set on
Trace (bit 10) — set to zero (disabled)
Summary mask (bit 11) — set on (enabled)
All other bits — set to zeros
® AKR on level zero is set to zeros
® PSW — set to zeros except as noted
— Auto-IPL (bit 13) — set to zero unless the reset
was caused by an Auto-IPL
— Power/thermal (bit 15) — reflects the status of
the power/thermal condition
® ISR onlevels 1-3 — set to zeros
® SAR —set to zeros

|

Processing Unit Description 2-21

Initial Program Load (IPL)

An initial program load function is provided to (1) read
an IPL record (set of instructions) from an external storage
media, and (2) automatically execute a start-up program.
An IPL record is read into storage from a local I/O device
or host system. The I/O attachments for the desired IPL
sources are prewired at installation time. Two local
sources, primary and alternate, can be wired and either
can be selected by using the IPL Source switch on the
console.

IPL can be started by three methods:

Manually, by pressing the Load key on the console.
Automatically, after a power-on condition.

3. Automatically, when a signal is received from a host
system. The host system can be connected through a
communications adapter.

N

The automatic power-on IPL is selected by a Mode switch
on the console. When thg Mode switch is in the Auto-IPL
position, IPL occurs whenever power turns on (either
initially or after a power failure). Auto IPL is useful for
unattended systems. A manual IPL can be initiated at
any time by pressing the Load key on the console (even
when in run state). The Mode switch has no effect on the
manual IPL. For Auto-IPL and manual IPL, the local IPL
source (primary or alternate) is selected. IPL from a host
system can occur at any time and is initiated by the host
system. The IPL record is transferred through the host-
system device; for example, the communications adapter.
When an auto-IPL occurs, bit 13 of the PSW is turned on
to indicate the condition to the software. When a manual
or host-system IPL occurs, this bit is set to zero.

During IPL, the storage protection mechanism is
disabled and main storage is loaded starting at location
zero. The length of the IPL record depends on the media
used by the IPL source.

2-22 GA34-0021

Upon successful completion of an IPL, the processor
enters supervisor state and begins execution on priority
level zero. The summary mask is enabled and all priority
interrupt levels in the mask register are enabled. The level
zero AKR is set to all zeros. The first instruction to be
executed is at main storage location zero. The IPL source
has a pending interrupt request on level zero. The system
program must:

1. Perform housekeeping; for example, load vector table
addresses in the reserved area of storage (see
Automatic Interrupt Branching in Chapter 3).

2. Issue a Level Exit (LEX) instruction. This allows the
processor to accept the interrupt from the IPL source.
When the interrupt is accepted, a forced branch is
taken using the device-address vector table. The vector
table entry is determined by the device address of the
IPL source and results in a branch to the proper program
routine for handling the interrupt. The device address
of the IPL source is set into bits 8—15 of register 7
on level zero. Condition code 3, device end, is reported
by the IPL source. For additional information, see
I/O Interrupts in Chapter 3.

A system reset always occurs prior to an IPL. However,
if any errors occur during the IPL, the results are un-
predictable.

Sequential Instruction Execution

Normally, the operation of the processor is controlled by
instructions taken in sequence. An instruction is fetched
from the main storage location specified in the instruction
address register (IAR). The instruction address in the
IAR is then increased by the number of bytes in the
instruction just fetched. The IAR now contains the
address of the next sequential instruction. After the
current instruction is executed, the same steps are
repeated using the updated address in the IAR.

A change from sequential operation can be caused by
branching, jumping, interrupts, level switching, or manual
intervention.

Jumping and Branching

The normal sequential execution of instructions is changed
when reference is made to a subroutine; when a two-way
choice is encountered; or when a segment of coding, such
as a loop, is to be repeated. All of these tasks can be
accomplished with branching and jumping instructions.
Provision is also made for subroutine linkage, permitting
not only the introduction of a new instruction address,
but also the preservation of the return address and
associated information.

The conditional branch and jump instructions are used
to test the indicators in the LSR. These indicators are set
as the result of I/O operations and most arithmetic or
logical operations. Single or multiple indicators are tested
as determined by the value in a three-bit field within the
instruction. Refer to: (1) Indicators and (2) Testing
Indicators with Conditional Branch and Jump
Instructions. :

Jumping

Jump instructions are used to specify a new instruction
address relative to the address in the IAR. The new address
must be within -256 to +254 of the byte following the
jump instruction.

Note. The jump instruction contains a word displacement
that is converted to a byte displacement when the
instruction is executed. However, when using the
assembler, the programmer specifies a byte value that is
converted to a word displacement by the assembler.

Branching

Branch instructions are used to specify a new full-width
16-bit address. A 16-bit value, range 0 to 65535, is
contained in the second word of the instruction or in a
register. The value in the second word can be used as the
effective branch address or added to the contents of a base
register to form an effective address. (See Base Register
Storage Address in this chapter.)

Level Switching and Interrupts

The processor can execute programs on four different
interrupt priority levels. These levels, listed in priority
sequence, are numbered 0, 1, 2, and 3 with level 0 having
highest priority. The processor switches from one level to
another in two ways:

1. Automatically, when an interrupt request is accepted
from an I/O device operating on a higher priority level
than the current level.

2> Under program control, by using the Set Level Block
(SELB) instruction.

Both types of level switching are discussed in detail in
Chapter 3. Class Interrupts and Interrupt Masking Facilities
are also discussed in Chapter 3.

Stack Operations

The processing unit provides two types of stacking facilities.
Each facility is briefly described in this section. Additional
information appears in subsequent sections. The two types
of stacking facilities are:

1. Data Stacking, This facility provides an efficient and
simple way to handle last-in first-out (LIFO) queues
of data items and/or parameters in main storage. The
data items or parameters are called stack elements. For
a given queue (or stack), each element is one, two, or
four bytes wide. Instructions for each element size
(byte, word, or doubleword) are provided to:

a. Push an element into a stack (register to storage).
b. Pop an element from a stack (storage to register).

2. Linkage stacking. This facility provides an easy
method for linking subroutines to a calling program.
A word stack is used for saving and restoring the
status of general registers and for allocating dynamic
work areas. The Store Multiple (STM) instruction
stores the contents of the registers into the stack and
reserves a designated number of bytes in the stack as
a work area. The Load Multiple and Branch (LMB)
instruction reloads the registers, releases the stack
elements, and causes a branch via register 7 back to the
calling program.

Note, The Store Multiple instruction pushes a block
of information into a stack. This block is referred to
as a register block. The Load Multiple and Branch
iristruction pops a register block from a stack.

Processing Unit Description 2-23

Data Stacking Description
Any contiguous area of main storage can be defined as a
stack. Each stack is defined by a stack control block.
Figure 2-4 shows a data stack and its associated stack
control block. Stack control blocks must be aligned on a
word boundary.

The words in the stack control block are used as follows:

Main Storage

Address 0000

(4

»

[72
»

Stack control block

Top element address (TEA) Word 0
High limit address (HLA) Word 1
Low limit address (LLA) Word 2
Stack

________ F El.l_st_acﬁ ’}"__f& Stack element

Stack element

Empty
stack TEA
> () 15
The TEA for an empty Stack element shown is 1
stack points to the word; element can be 1,
same place as the HLA 2, or 4 bytes wide

Figure 2-4. Relationship of stack control block to data stack

2-24 GA34-0021

High Limit Address (HLA). This word contains the
address of the first byte beyond the area being used for the
stack. All data in the stack has a lower address than the
contents of the HLA. Note that the HLA points to the
first byte beyond the bottom of an empty stack.

Low Limit Address (LLA). This word designates the
lowest storage location that can be used for a stack element.
Note that the LLA points to the top of a stack.

Top Element Address (TEA). This word points to the
stack element that is currently on top of the stack. For
empty stacks, the TEA points to the same location as the
high limit address (HLA).

Notes,

1. Forword, double word, and register block operations,
the HLA, LLA, and TEA must all contain an even
address to ensure data alignment on a word boundary.

2. The HLA and LLA define a contiguous range of
addresses. These addresses must not cross the 64K
byte boundary that causes storage to wrap.

Push Operation. When a new element is pushed into a
stack, the address value in the TEA is decremented by the
length of the element (one, two, or four bytes) and
compared against the LLA. If the TEA is less than the
LLA, a stack overflow exists. A soft exception trap
interrupt occurs with stack exception set in the PSW. The
TEA is unchanged. If the stack does not overflow, the
TEA is updated and the new element is moved to the top
location defined by the TEA.

The following diagram shows how elements are pushed
into a stack. Note that each push operation always places
an element at a lower address in the stack than the
preceding element.

LLA ——s]

Empty
stack

TEA
and HLA

Refer to Chapter 8 for descriptions of the following
instructions:

e Push Byte (PSB)
® Push Word (PSW)
® Push Doubleword (PSD)

Note. For a push doubleword operation, the TEA points
to the high-order word of the doubleword operand.

Pop Operation. When an element is popped from a stack,
the TEA is compared against the HLA. If it is equal to or
greater than the HLA, an underflow condition exists. A
soft exception trap interrupt occurs with stack exception
set in the PSW. If the stack does not underflow, the stack
element defined by the TEA is moved to the specified
register and the TEA is incremented by the length of the
element.

The following diagram shows how elements are popped
from a stack.

LLA

TEA

HLA —

Refer to Chapter 8 for descriptions of the following
instructions:

® Pop Byte (PB)
o Pop Word (PW)
® Pop Doubleword (PD)

Note, 1t is possible to pop data from beyond a stack
boundary if (1) the TEA is less than the HLA, and (2) the
operand size is greater than HLA minus TEA.

Data Stacking Example — Allocating Fixed Storage Areas

Many programs require temporary main storage work areas.
It is very useful to be able to dynamically assign such work-
area storage to a program only when that storage is

needed. Conversely, when work-area storage is no longer
needed by a program, it is desirable to free that resource so
it may be used by other programs. Use of the stacking
mechanism can assist in the programming of the dynamic
storage management function.

The following is an example of how storage areas could
be allocated using the stacking mechanism.

A stack is initialized with addresses that point to fixed
areas of storage. Each element in the stack represents the
starting address of a block of storage consisting of 512
bytes; e.g., addresses 0200 through 03FF. As storage is
needed, the starting address for a block of storage is popped
from the stack. When the block of storage is no longer
needed, the starting address is pushed back into the stack.

Processing Unit Description 2-25

The stack control block, stack, and storage areas appear Notice that each stack element is one word long; addresses
initially as follows: of storage areas are the stack elements; the TEA points to
the lowest location of the last element because the initial-
ized stack is full. Contrast this with an empty stack, in

Stack control block which the TEA points to the same location as the HLA.
Now assume that program A requires a block of
TEA 0800 storage. Program A (or a storage management function at
HLA BOS the request of program A) issues a pop word instruction
0 against the stack control block. The TEA is updated as
LLA — 0B00 follows:
Full stack Stack control block
TEA ——~|
TEA = LLA = 0B00 ~—— 0200 0B02
0400 HLA ~— 0BO8
0600 LLA —> 0BOO
0800
HLA = 0B08 =
Storage areas Stack
0200 ——1
Available LLA = 0B00 ==
storage
TEA = 0B02 —| 0400
0400 ——» -
Available 0600
storage
0600 = Available : 0800
storage
HLA = 0B08 —
0800 —> Available
storage

Storage areas

0400 =
Available
storage
0600 —
Available
storage
0800 Available
storage

2-26 GA34-0021

The word element popped is placed in the register specified
by the pop word instruction executed by program A. This
is the address of the 512-byte storage area beginning at
address 0200.

At this time, assume that program B (operating on a
different hardware level than program A) also requires a
storage area. It too executes a pop word instruction
against the stack. The next element is moved to the register
specified and points to the next available storage area
and the TEA is updated:

Stack control block

TEA ——> 0B04 < TEA after
second Pop
HLA ——— 0BO8
LLA ———> 0B0O
Stack

LLA = 0BO0 ——

TEA = 0B04 ~—— 0600

0800

HLA = 0B08—>

Storage areas

0200 =——
0400
0600 ———>
Available
storage
0800 ——
Available
storage

Now, before any further requests occur, program A
terminates its need for a work area. Program A then issues a
push word instruction against the stack and returns the
address of the area it was using for use by other programs:

Stack control block

TEA after
TEA ———>} 0B02 program A
Push operation
HLA =———> 0B0O8
LLA ———p 0B00
Stack

LLA = 0BO0——

TEA = 0B02 —— 0200

0600

0800

HLA = 0B0§ ——>

Storage areas

0200 -———]
Available

storage

0400 ———

0600 ——} X
Available

storage

0800 ———
Available

storage

A similar operation will be performed by program B
when it releases its storage to the stack, popping address
0400 into location 0BOO. While the addresses are
obviously shuffled in the stack (from the values initially
established), this presents no problem since each program
requires only an area of storage — it is not important
where that area is located.

Processing Unit Description 2-27

Linkage Stacking Description The Store Multiple (STM) instruction specifies:

As previously described a word-stack mechanism may be Stack control block address
used for subroutine linkage. This mechanism saves and [Limit register (RL) number
restores registers and allocates dynamic work areas. Number (N) of words to allocate for work areas

The letters in the following description correspond to

the letters in Figure 2-5. When the STM instruction is executed, the allocate value

(N), plus the number of registers saved, plus one control word,
is the requested block size in words. The block size
Stack control block (converted to bytes) is used to decrement the TEA before

an overflow check is made. If no overflow occurs the
operation proceeds. The link register (R7) and register 0

TEA through the specified limit register (RL) are saved
sequentially in the stack. If register 7 is specified as the
HLA limit register, only register 7 is stored in the stack. The

dynamic work space is allocated and a pointer to the work
area is returned in register RL. If no work area is
specified, the returned pointer contains the location of R7
in the stack. The values of RL and N are also saved as
an entry in the stack. The TEA is updated to point to the
Stack new top of stack location.
When a Load Multiple and Branch (LMB) instruction is
E : executed, the values of RL and N are retrieved from the
New TEA RL N stack and an underflow check is made. The value of RL
o 2|3 15 controls the reloading of the registers; the values of RL
and N are used to restore the stack pointer (TEA) to its
Dynamic former status. The contents of register 7 are then loaded
work N into the instruction address register, returning program
area control to the calling routine.

LLA

New RL——>

R7 contents Linkage Stacking Example — Reenterable Subroutine

A subroutine may be used by programs that operate on
different interrupt levels. Rather than providing copies of
the subroutine, one copy for each program that needs it,
the subroutine can be made reenterable. Here, only one
copy of the subroutine is provided; the single copy is used
by all requesting programs. Two items must be considered
in the reenterable subroutine code:

RO contents

RL contents

® Saving the register contents of each calling program.

The subroutine is then free to use the same registers,
0Old TEA —> restoring their contents to the calling-program’s values
and HLA just prior to returning to the calling program.

' ® Preserving the applicable variable data (generated by

Figure 2-5. Word stack for subroutine linkage the subroutine) that is related to each call of the
subroutine. That is, data associated with one call must
not be disturbed when subroutine execution is
restarted due to another call from a higher priority
program.

2-28 GA34-0021

The stacking mechanism, by means of the STM and

LMB instructions, handles the two items just mentioned.
As an example, operation could proceed as follows:

1.

Program A calls the subroutine by means of a
branch and link instruction (return address is in R7).

BAL SUBRT,7

The subroutine, in this example, uses registers R3 and
R4 during its execution. The subroutine receives
(from program A) a parameter list address in RO and
the address of the stack control block in R1. Also,
the subroutine requires 20 bytes of work space. Thus,
the subroutine executes, upon entry, the following
store multiple instruction:

SUBRT STM 4,(1),20

After execution of the STM, the stack contains the
following:

Stack

20 bytes N=10

R7

RO

R1

R2

R3

R4

HLA ——>

*The last word contains a value that specifies the last register

stored (e.g., R4 in this example) and the size of the dynamic
work area (in words).

R4 (the last register stored in the stack) is automati-
cally loaded, during the STM operation, with the
address of the work area to be used by the subroutine
to hold its work data.

When subroutine processing for this call is completed
the subroutine executes a single load multiple
instruction in order to reload the registers and return
(via R7) to the calling program:

LMB (1)

If a second call to the subroutine has occurred prior
to execution of the LMB, action similar to that just
stated would occur again. However, another stack
area would be used. Then, when subroutine execution
is completed for the second call, and all higher
priority interrupt level processing is completed, a
return would be made to the interrupted subroutine
for completion of processing for the first call.

Thus, multiple calls to a single subroutine are
processed without interfering with the integrity of
data associated with any other call to the subroutine.

Processing Unit Description 2-29

2-30 GA34-0021

Chapter 3. Interrupts and Level Switching

Introduction

Efficient operation of a central processor depends on
prompt response to I/O device service requests. This is
accomplished by an interrupt scheme that stops the cur-
rent processor operation, branches to a device service
routine, handles device service, then returns to continue
the interrupted operation. One processor can control
many I/O devices; therefore, an interrupt priority is
established to handle the more important operations before
those of lesser importance. Certain error or exception
conditions (such as machine check) also cause interrupts.
These are called class interrupts and are processed in a
manner similar to I/O interrupts. Both I/O and class inter-
rupts are explained further in the following sections.

1/0 interrupt priority is established by four priority
levels of processing. These levels, listed in priority sequence,

are numbered 0, 1, 2, and 3 with level O having highest priority.

Interrupt levels are assigned to 1/O devices via program
control. This provides flexibility for reassighing device
priority as the application changes.

Each of the four priority levels has its own set of
registers. These consist of an address key register (AKR),
a level status register (LSR), eight general registers (RO—R7),
and an instruction address register (IAR). Information
pertaining to a level is automatically preserved in these
hardware registers when an interrupt occurs.

Processor level switching, under program control, may
be accomplished by use of the Set Level Block (SELB)
instruction. Details of this method are presented in a
separate section of this chapter.

I/0 and class interrupts cause automatic branching to a
service routine. Fixed locations in main storage are
reserved for branch addresses or pointers that are referenced
during interrupt processing. This storage allocation is shown
in the section Automatic Interrupt Branching in this chapter.

Interrupt masking facilities provide additional program
control over the four priority levels. System and level mask-

ing are controlled by the Summary Mask and the Interrupt

Level Mask Register. Device masking is controlled by the
Device Mask. Manipulation of the mask bits can enable
or disable interrupts on all levels, a specific level, or for a
specific device. See Interrupt Masking Facilities in this
chapter.

Interrupt Scheme

As previously stated, four priority interrupt levels exist.
Each I/O device is assigned to a level, dependent on the
application. When an interrupt on a given level is accepted,
that level remains active until (1) a Level Exit (LEX) instruc-
tion is executed, (2) a Set Level Block (SELB) instruction
causes a level switch, or (3) a higher priority interrupt is
accepted. In the first two cases, the active level at the time
is cleared. In the latter case, the processor switches to the
higher level, completes execution (including a LEX or
SELB instruction), then automatically returns to the
interrupted-from level. This automatic return can be de-
layed by other higher priority interrupts.

If an interrupt request is pending on the currently active
level, it will not be accepted until the level is cleared by a
LEX or SELB instruction. If no other level of interrupt
is pending when a program exits the current level, the
processor enters the wait state. In the wait state no pro-
cessing is performed, but the processor can accept inter-
rupts that are expected to occur. See Figure 3-1.

Class interrupts take precedence over I/O interrupts and
do not change priority levels. They are processed at the cur-
rently active level. If the processor is in the wait state when
a class interrupt occurs, priority level O is used to process
the interrupt.

interrupts and Level Switching 3-1

Requests for interrupts

Level 0
Level 1
Level 2

Level 3

M

Priority level processing

Prﬁority
level 0

Priority
level 1

Priority
level 2 \

Priority
level 3

*

R

This interrupt request cannot be honored until

after a LEX instruction has been executed on
level 3 to clear the previous interrupt service.

Figure 3-1. Interrupt priority scheme

Automatic Interrupt Branching

Hardware processing of an interrupt includes automatic
branching to a service routine. The processor uses a
reserved storage area for branch information. The

reserved area begins at main storage address 0000. The
total size of the area depends on the number of interrupting
devices attached. One word (two bytes) is reserved for
each interrupting device and is related to a particular device
by the device address. For example: device 00 causes a
reference to location 0030, device 01 to location 0032,

and so on. The device area begins at address 0030 (Hex);
the reserved area is 0000 through 022F (Hex) if 256 devices
{maximum number) are attached. These storage locations
and contents are shown in Figure 3-2.

Note that the reserved storage area is subject to relocation
addressing if the optional relocation translator feature is
installed and enabled. Segmentation register O in stack 0 is
used for this purpose. Refer to Storage Address Relocation
Translator Feature in Chapter 6.

3-2 GA34-0021

i
TTICEXTT TTTTICEX]

Wait state

AN

Main storage

address (Hex) Contents of word
022E Device FF DDB pointer

Y 2
0032 Device 01 DDB pointer
0030 Device 00 DDB pointer
002E Reserved
002C Reserved
002A Reserved
0028 Reserved
0026 Reserved
0024 Reserved
0022 Soft exception trap SIA
0020 Soft exception trap LSB pointer
001E Console interrupt SIA
001C Console interrupt LSB pointer
001A Trace SIA
0018 Trace LSB pointer
0016 Power failure SIA
0014 Power failure LSB pointer
0012 SVC SIA
0010 SVC LSB pointer
000E Program check SIA
000C Program check LSB pointer
000A Machine check SIA
0008 Machine check LSB pointer
0006 Reserved
0004 Reserved
0002 Restart instruction word 2
0000 Restart instruction word 1
Figure 3-2. Reserved storage locations

\
'

‘/’

The reserved storage locations are described as follows:

Storage Location Contents

(Hex)

0000-0003 Restart instruction. Following IPL a forced
branch is made to location 0000.

0004-0005 Reserved.

0006-0007 Reserved.

0008-0023 Addresses used for class interrupts. The Level
Status Block (LSB) pointer is the first address
of an area where a level status block will be
stored. The Start Instruction Address (SIA)
points to the first instruction of a service
routine.

0024-002F Reserved.

0030-022F Addresses used for I/O interrupts. The Device

Data Block (DDB) pointer is the address of the
first word of a device data block. This word is
used to obtain the start instruction address for
the service routine. See I/0 Interrupts in this
chapter.

Note. The area reserved for I/O devices varies in size
depending on the number of devices. The device address
determines the fixed location to be accessed. For example:
Interrupts for device 01 always vector to main storage
address 0032.

A device address is established by installing the appropri-
ate connectors on the I/O feature card for the device.

I/O Interrupts

Prepare 1/0 Device for Interrupt

1/0 device interrupt parameters are established via program
control. The Operate I/O (I0) instruction initiates the
device operation and in conjunction with the “Prepare”
1/0O command tells the device:

1. If the device can interrupt.

2. What priority level to use for interrupts. See Chapter
8 Instructions and Chapter 4 Input/Qutput Operations
for details of the Operate I/O instruction.

Execution of the Prepare command transfers a word to
the addressed device that controls its interrupt parameters.
This word has the format:

L Zero | Level II I
0 10 11 14 15
Bits Contents
010 Set to zeros.
11-14 Level. A four-bit encoded field that assigns an interrupt

priority level to the device (see note).

Example: 0000 — level 0, 0001 — level 1, 0010 — level 2,
0011 — level 3.

15 Device mask or I-bit. This bit sets the interrupt mask in
the device. When sct to one, the device can interrupt.
When set to zero, the device cannot request an interrupt.

Note. The 4955 Processor does not recognize priority levels
other than zero through three; therefore, bits 11 and 12
must always be set to zero or the interrupt is lost.

An interrupting device is always able to accept and exe-
cute a Prepare command, even if it is presently busy or has
an interrupt request pending from a previous command.
This allows the software to change the device mask and
interrupt level at any time. Any pending interrupt request
is then serviced on the new interrupt level. '

Present and Accept I/O Interrupt

For 1/0 interrupts the device must have its Device Mask bit
on (enabled). The 1/O device presents an interrupt request
on its assigned priority level. This request is applied to the
interrupt algorithm for acceptance determination.

For an I/O interrupt to be serviced, the following condi-
tions must exist:

1. The summary mask must be on (enabled).

2. The mask bit (Interrupt Level Mask Register) for the -
interrupting level must be on (enabled).

3. The interrupt request must be the highest priority of
the outstanding requests and higher than the current
level of the processor.

4. The processor must not be in the stop state.

5. No class interrupt is pending.

Supervisor state is entered upon acceptance of all priority
interrupts.

Following acceptance, the device sends an interrupt ID
word and a condition code to the processor. The condition
code is placed in the even, carry, and overflow indicators
for the interrupted-to level. The ID word is placed into
register 7 of the interrupted-to level. The interrupt ID
word consists of an interrupt information byte (bits 0-7)
and the device address (bits 8—15). See Chapter 4 for
condition codes and interrupt information byte (IIB)
details. Hardware causes the following events to occur after
the processor receives the interrupt ID word and the condi-
tion code (Figure 3-3):

Interrupts and Level Switching 3-3

I)evice 01] New level 2 |) I\Iext .) Interrupted
interrupts 1 registers ' Main storage l instruction level 3
|
on level 2 | l __|_ address
________ l..._.___...____....._..l___.___.__._._ |—-———.-—-—T——_———_
l l l IAR3
I |
Interrupt ID I I | 0900 | 0900
1B Do) | | | |
XX 1 o1 | | I |
I I | | |
I Reg 7 l
| _II_B_ _ _Dgici | ' I
: XX 101 I | |
| ' ' |
| | DDB pointer : |
I : 00324 0100 | |
, ! | |
| Reg 1 | DDB : |
: 0100 —>:- 0100 1 0200 (SIA) | :
| D B
| ¥ I !
| I I |
I | | '
IAR2 , 1/O routine I I
I I | I
| 0200 0200 ! ------------ 0200 |
(el l
| | ¢ S I
{ | 0240 LEX efe 0240 |
| | I |
I | | |
| : : | IAR3
|
I I I 0900 [+ e | b 0900
| | I I
| | | |

Figure 3-3. Example of I/O interrupt with automatic branching

3-4 GA34-0021

—~

77N

e The processor hardware switches from the registers and
status of the interrupted-from level to those of the
interrupted-to level.

e The interrupt ID word is placed in register 7 of the
interrupted-to level.

e The condition code is placed in LSR positions 0—2.

Supervisor state is entered (LSR bit 8 is set to one).

® The processor executes an automatic branch.

— The device address is used by hardware to fetch the
DDB pointer from reserved storage.

— The DDB pointer is placed in register 1 of the
interrupted-to level. ‘

— The DDB pointer is used by hardware to fetch the
start instruction pointer.

— The Start Instruction Address (SIA) is loaded into
the IAR of the interrupted-to level.

e Execution begins on the new level.

Class Interrupts

System error or exception conditions can cause seven types
of class interrupts:

1. Machine check, caused by a hardware error.

2. Program check, caused by a programming error.

3. Power/thermal warning, caused by a power or thermal
irregularity.

4. Supervisor call, caused by execution of an SVC

instruction.

Soft exception trap, caused by software.

6. Trace, caused by instruction execution (trace
enabled in the current LSR).

7. Console, caused by a console interrupt when the -
optional programmer console is installed.

w

Machine check, program check, soft exception trap, and
power/thermal warning are defined by bits in the processor
status word. Software can refer to the processor status
word for a specific condition and any related status
information. See Processor Status Word in this chapter.

Class interrupts take precedence over 1/O interrupts and
do not cause a change in priority level. The interrupt is
serviced on the level that is active when the condition oc-
curs. If the processor is in the wait state, the interrupt is
serviced on priority level zero. Independent routines are
used to handle each type of class interrupt regardless of
priority level.

All class interrupts cause the processor to enter super-
visor state. Refer o a subsequent section, Present and
Accept Class Interrupt, for details of the hardware
processing.

Programming Notes.

1. Two class interrupts (power/thermal warning and
console) can be disabled by the summary mask.

2. If the optional programmer console is installed and
Check Restart is selected, machine check, power/
thermal warning, and program check interrupts do not
occur. If Stop on Error is selected, a stop occurs before
a machine check, power/thermal warning, or program
check interrupt is serviced. See Programmer Console
Feature in Chapter 7.

Priority of Class Interrupts

Although class interrupts are serviced on the current priority
level, they are serviced according to an exception condition
priority.

The following table lists the exception conditions in
priority sequence with zero being the highest priority. Two
exception conditions of the same priority, such as protect
check and specification check, may be reported to the PSW
simultaneously. The table also shows the associated class
interrupt vector for the exception conditions.

Class Interrupt

Priority | Exception Condition Routine

0 CPU control check
I/O check

Machine check

Invalid function (Note 1)

Privilege violate

Invalid function (Note 2)

BN LTS N

Protect check
Specification check

Program check

5 Invalid storage address
Specification check

Storage parity Machine check

Power/thermal
warning

Power warning
Thermal warning

Supervisor call Supervisor call

Invalid function (Note 3)

Soft exception

10 Floating-point exception trap

11 Stack exception

12 Trace Trace
13 Console Console

Note 1. Caused by an illegal operation code or function
combination.

Note 2. A Copy Segmentation Register (CPSR) or Set
Segmentation Register (SESR) instruction is attempted
and the translator feature is not installed.

Note 3. A floating-point instruction is attempted and the
floating-point feature is not installed.

Interrupts and Level Switching 3-5

Present and Accept Class Interrupt

When a class interrupt occurs, it is serviced on the currently
active level or on level zero (if in the wait state). Hardware
processing of the interrupt causes the following:

® Register contents are saved

Supervisor state is entered (LSR bit 8 is set to one)
Trace is reset (LSR bit 10 is set to zero)

Summary mask is disabled (LSR bit 11 is set to zero)
The address key register is set to pre-determined values
dependent on the type of class interrupt

® An automatic branch is taken to a service routine

Each type of class interrupt has an associated LSB pointer
and SIA in the reserved area of main storage (see Figure
3-2). Reference is made to the reserved area to:

1. Store current level IAR, AKR, registers, and LSR into
a level status block (LSB) in main storage.

2. Automatically branch to a service routine by using the
start instruction address (SIA).

Notes.

1. Priority level zero is forced active when a class interrupt
occurs in the wait state. The level zero LSB is stored
into main storage. The in-process flag (LSR bit 9) is
zero in the stored LSB.

2. Address key values are set in anticipation of the address
spaces required by the interrupt service routine. See
Address Space Management in Chapter 5.

Contents of the level status block are as follows:

Main storage
address (LSB)
pointer)

Instruction address register
Address key register

Level status register
Register 0

Register
Register
Register
Register
Register
Register
Register
0 15

B KoY %0 SN ST BN

"+14 (Hex)

3-6 GA34-0021

The instruction address (contents of IAR) stored in the
LSB depends on the type of class interrupt and is shown in
the following chart.

Type of Class
Interrupt

Contents of IAR
(Stored in LSB)

Program check Address of instruction that

Soft exception trap caused the interrupt.

Supervisor call Address of the next
Trace instruction.
Console

Power/thermal warning

Machine check (with Address of instruction
Sequence indicator that caused the
off) interrupt.

Machine check (with Address of instruction
Sequence indicator that was being executed
on) at the time of the error.

Machine Check

A machine check interrupt is caused by a hardware mal-
function and is considered a system-wide incident. The
three types are: (

1. Storage parity check (PSW bit 08)
2. CPU control check (PSW bit 10)
3. /O check (PSW bit 11)

A level status block is stored, starting at the location in
main storage designated by the machine check LSB pointer
(contents of storage locations hex 0008 and 0009). The
contents of the storage address register (SAR) are loaded
into register seven. The last active processor address key
is placed into the OP1K address key of the AKR; then,
OP2K, EOS bit and ISK are set to zero. The machine
check SIA (contents of storage locations hex 000A and
000B) is then loaded into the IAR, becoming the address
of the next instruction to be fetched.

Note. When the error condition occurs:

1. The IAR contains the true address of the first word of
the instruction; it is not incremented if the error occurs
in the second or third word of a long instruction.

2. For a storage parity check, the last active processor key
defines the address space corresponding to the storage
address loaded into R7. For a CPU control check or an
1/0 check, this key and R7 provide no useful
information.

Program Check

A program check interrupt is caused by a programming
error. The types are:

Specification check (PSW bit 00).
Invalid storage address (PSW bit 01).
Privilege violate (PSW bit 02).
Protect check (PSW bit 03).

Invalid function (PSW bit 04).

A level status block is stored, starting at the location in
main storage designated by the program check LSB pointer
(contents of storage locations hex 000C and 000D). The
contents of the storage address register (SAR) are loaded
into register seven. The last active processor address key is
placed into the OP1K address key of the AKR; then,
OP2K, EOS bit, and ISK are set to zero. The program
check SIA (contents of storage locations hex 000E and
000F) is then loaded into the IAR, becoming the address
of the next instruction to be fetched.

Note.

1. A program check interrupt condition on one priority
level does not affect software on other levels.

2. For a specification check, an invalid storage address,
and a protect check, the last active processor key
defines the address space corresponding to the storage
address loaded into R7. For privilege violate, this key
and R7 provide no useful information.

MRS

Power/Thermal Warning (PSW Bit 15)
A power/thermal warning class interrupt is initiated by:

1. A power warning signal that is generated when the
power line decreases to about 85% of its rated value.

2. A thermal warning that occurs if the temperature limits
inside the closure are exceeded.

In both cases, the instruction address that is stored in
the LSB points to the next instruction to be executed.

A level status block is stored, starting at the location in
main storage designated by the power failure LSB pointer
(contents of storage locations hex 0014 and 0015). The
EOS bit and all address keys in the AKR are set to zero.
The power failure SIA (contents of storage locations hex
0016 and 0017) is then loaded into the IAR, becoming
the address of the next instruction to be fetched.

A power/thermal warning interrupt can occur when the
system is running or in the wait state, assuming (1) the
summary mask is enabled and (2) the programmer console
is not set to Check Restart. These interrupts are not taken
by the processor if either of the two conditions are not
met.

If the optional battery backup unit is installed and a
power warning occurs, PSW bit 15 remains on as long as
power is supplied by the battery. If a thermal warning
occurs, the processor will power down regardless of the
battery backup unit. The minimum time before the
processor powers down is 20 milliseconds. The IBM 4999
Battery Backup Unit is explained in a separate publica-
tion; IBM Series/1 Battery Backup Unit Description,
GA34-0032.

Power/thermal warning interrupts are not taken by the
processor until the first instruction is executed following a
power-on reset, an IPL, or exit from stop state.

Note. 1If the processor is in the wait state when the
power/thermal condition occurs:

1. The interrupt is serviced on priority level 0. The level
0 LSB is stored into main storage. Additional power/
thermal interrupts, along with priority interrupts, are
disabled at this time because the summary mask is set
to zero by the class interrupt.

2. The instruction address stored in the LSB is
unpredictable.

Supervisor Call

A supervisor call class interrupt is initiated by executing an
SVC instruction. The SVC instruction is described in
Chapter 8. A level status block is stored, starting at the
main storage location designated by the supervisor call LSB
pointer (contents of storage locations hex 0010 and 0011).
The OP2K address key is placed into the OP1K address key
in the AKR; then, OP2K, EOS bit, and ISK are set to zero.
The supervisor call SIA (contents of storage locations 0012
and 0013) is then loaded into the IAR, becoming the
address of the next instruction to be fetched.

Interrupts and Level Switching 3-7

Soft Exception Trap

A soft exception trap interrupt is caused by software. The
types are:

1. Invalid function (PSW bit 4)
2. Floating-point exception (PSW bit 5)
3. Stack exception (PSW bit 6)

These exception conditions may be handled by software;
therefore, they do not constitute an error condition.

A level status block is stored, starting at the location in
main storage designated by the soft-exception-trap LSB
pointer (contents of storage locations hex 0020 and 0021).
The contents of the storage address register (SAR) are
loaded into register seven. The OP2K address key is placed
into the OPI1K address key in the AKR; then, OP2K, EOS
bit, and ISK are set to zero. The soft-exception-trap STA
(contents of storage locations hex 0022 and 0023) is then
loaded into the IAR, becoming the address of the next
instruction to be fetched.

Note. The contents of R7 are unpredictable.

Trace

The trace class interrupt provides an instruction trace
facility for software debugging. Instruction tracing may
occur on any priority level, and is enabled by the trace bit
(LSR bit 10). The tracing occurs when bit 10 of the
current LSR is set to one. When trace is enabled, a trace
class interrupt occurs at the beginning of each instruction.
This action causes a trace of the next instruction fo be ex-
ecuted. A level status block is stored, starting at the location
in main storage designated by the trace LSB pointer (con-
tents of storage locations hex 0018 and 0019). The ISK ad-
dress key is placed into the OP1K address key in the AKR,;
then, OP2K, EOS bit, and ISK are set to zero. The trace SIA
(contents of storage locations hex 001A and 001B) is then
loaded into the IAR, becoming the address of the next
instruction to be fetched.

Note. After the LSB is stored, and before the next
instruction is fetched, supervisor state is set on (LSR bit 8),
trace is turned off (LSR bit 10), and the summary mask is
disabled (LSR bit 11).

Programming Note. When trace is enabled, a trace class
interrupt occurs prior to executing each instruction. Hard-
ware processing of the interrupt provides an automatic
branch to the programmer’s trace routine. To prevent
retracing the same instruction, the program should exit the
trace routine by using the Set Level Block (SELB) instruc-
tion with the inhibit trace (IT) bit set to one. The inhibit
trace bit prevents a trace interrupt from occurring for the

3-8 GA34-0021

duration of one instruction (see SELB instruction in
Chapter 8). A double trace of an instruction can also
occur when the instruction is interrupted and must be
reexecuted. For example: a class interrupt occurs during
execution of a variable field length instruction. Under this

" condition, exit from the class interrupt routine should be

via a SELB instruction with the inhibit trace bit set to one.

The occurrence of any class interrupt or priority interrupt
causes the trace bit (LSR bit 10) to be set to zero. This
action permits tracing only problem state code. If the
programmer desires to trace supervisor code, he must make
provisions within the service routine to enable the trace bit.

The following three conditions inhibit a trace class
interrupt:

1. A Set Level Block (SELB) instruction sets the trace bit
on and the in-process bit on in the LSR of a selected
level lower than the current level; then; when the
selected level becomes active, the first instruction exe-
cuted is not preceded by a trace interrupt.

2. The programmer console is in diagnose mode and a stop
instruction is encountered while tracing; then, when
the Start Key is depressed, a trace interrupt does not
occur prior to executing the first instruction.

3. When a level is exited by either a LEX or a SELB
instruction and processing is to continue on a pending
level, one instruction is executed on the pending level
prior to sampling for a trace interrupt.

Console

A console interrupt function is provided when the optional
programmer console is installed. To recognize the interrupt,
the processor must have the summary mask enabled and be
in the run state or wait state. A level status block is stored,
starting at the main storage location designated by the
console interrupt LSB pointer (contents of storage loca-
tions hex 001C and 001D). The EOS bit and all address
keys are set to zero. The console interrupt SIA (contents
of storage locations hex 001E and 001F) is then loaded
into the IAR, becoming the address of the next instruction
to be fetched.

Notes.

1. If the processor is in the wait state when a console
interrupt occurs, the interrupt is serviced on priority
level 0.)

2. If the summary mask is disabled, the console interrupt
is ignored since it is not buffered.

Summary of Class Interrupts

The following chart is a summary of class interrupt
processing. Each class interrupt is fully explained in
separate sections of this chapter.

Branch
Error or Store Set Set to
ex cel?tlon LSB R7 AKR service
condition routine
[] [} ® [) o
L4 ° L] °)
o ° o ° L4
° ° o ° L
LSB Reg SIA
Class Interrupt Pointer 7 EOS OPIK OP2K ISK | Pointer
Machine check 0008-0009 |SAR | O * 0 000A-000B
Program check 000C-000D [SAR| O * 0 000E-000F
Power/thermal 0014-0015 0 0 0 0016-0017
warning
svC 0010-0011 ** 0 0012-0013
Soft exception 0020-0021 {SAR| O ** 0 0022-0023
trap
Trace 0018-0019 Fkk 0 001A-001B
Console 001C-001D 0 0 001E-001F

*Last active processor address key
**QP2K at time of interrupt
**¥*IGK at time of interrupt

Recovery from Error Conditions

Error recovery procedures, initiated by software, depend
on several factors:

1. Application involved..
2. Type of error.
3. Number of recommended retries.

The error class interrupt provides an automatic branch to
a service routine. This routine can interrogate the PSW for
specific error and status information. The routine can then
initiate corrective action or retry the failing instruction(s).
If an error occurs during a priority interrupt sequence, the
priority level switch is completed before the error class
interrupt is processed. This facilitates automatic register
retention. A reset is generated by machine check class
interrupts caused by an I/O check or a CPU control check.
No reset is generated by program check or power/thermal
warning class interrupts. Error conditions along with error

recovery information are presented in the following sections.

Program Check

A program check is caused by a programming error and
initiates a program check class interrupt. Error retry de-
pends on the application. All necessary parameters are

made available for locating and, if required, correcting the
invalid condition. There is no change to operands or priority
level during a program check class interrupt. The stored
LSB reflects conditions at the time the interrupt occurred
and contains:

® The contents of all general registers.
o Status information (AKR and LSR contents).
® The address of the failing instruction (IAR contents).

The contents of the storage address register (SAR) are
loaded into R7, but has meaning only for specification
check, invalid storage address, and protect check. The
programmer must reference the PSW to determine the type
of program check.

Interrupts and Level Switching 3-9

Storage Parity Check

A storage parity error initiates a machine check class inter-
rupt. The error may occur when accessing a storage loca-
tion that has not been validated since power on. Any retry
procedure should include refreshing data in the failing
location. Two unsuccessful retries are considered a
permanent failure and the storage location should not be
used.

CPU Control Check

A CPU control check occurs if hardware detects a malfunc-
tion of the processor controls. It is a machine-wide error
and initiates a machine check class interrupt. A reset is
generated to the channel, the I/O attachment features, and
all attached I/O devices. The processor, sensor-based
output points, and timer values are not reset. The gener-
ated reset should clear the error condition, but validity of
any previous execution is not guaranteed. No retry is
recommended. An IPL should be initiated.

I/0 Check

An I/O check condition occurs if a hardware error is
detected that may prevent further communication with I/O
devices. A machine check class interrupt is initiated and

a reset is generated to the I/O attachment features, the
channel, and all I/O devices. Error recovery from an I/O
check depends on the sequence indicator setting (PSW

bit 12).

Sequence Indicator Set to Zero. The error occurred during
an Operate I/O instruction. The address of the failing
instruction (IAR contents) is available in the stored LSB.
Retry should be attempted twice. After two unsuccessful
retries, use of the device should be discontinued.

Sequence Indicator Set to One. The error occurred during
an interrupt or cycle steal operation. The instruction
address (IAR contents) stored in the LSB is not related to
the error. The sequence of events leading to the I/O check
is lost, along with all pending interrupt requests within the
devices. Retry is not recommended.

Soft Exception Trap
A soft exception trap interrupt is the result of an exception

condition that software may choose to handle dynamically.

All necessary parameters are available to locate and correct
the condition. The address of the instruction (IAR
contents) causing the exception is preserved in the level
status block in main storage. The processor is not reset.
The programmer must reference the PSW to determine the
soft-exception type.

3.10 GA34-0021

Processor Status Word

The processor status word (PSW) is used to record error or
exception conditions in the system that may prevent
further processing. It also contains certain status flags
related to error recovery. Error or exception conditions
recorded in the PSW cause four of the possible seven class
interrupts to occur. These are machine check, program
check, soft exception trap, and power/thermal warning.
See Class Interrupts in this chapter.

The Copy Processor Status and Reset (CPPSR) instruc-
tion can be used to examine the PSW. This instruction
stores the contents of the PSW into a specified location
in main storage.

The PSW is contained in a 16-bit register with the
following bit representation:

Class

Interrupt

Program check
Program check
Program check
Program check
Program check or
Soft exception trap
0s Floating-point exception Soft exception trap
06 Stack exception Soft exception trap

Bit Condition Remarks
00 Specification check

01 Invalid storage address
02 Privilege violate

03 Protect check

04 Invalid function

07 Not used always zero
08 Storage parity check Machine check
09 Not used always zero

10 CPU control check
11 1/O check

Machine check
Machine check

12 Sequence indicator None Status flag
13 Auto-IPL None Status flag
14 Translator enabled None Status flag
15 Power/thermal warning Power/thermal Note 1

Note 1. The power/thermal warning class interrupt is controlled by
the summary mask.

Bit 00 Specification Check. Set to one if (1) the storage
address violates the boundary requirements of the specified
data type, or (2) the effective address is odd when attempt-
ing to execute a floating-point instruction and the floating-
point feature is not installed.

Bit 01 Invalid Storage Address. Set to one when an attempt
is made to access a storage address outside the storage size
of the system. This can occur on an instruction fetch, an
operand fetch, or an operand store.

Bit 02 Privilege Violate. Set to one when a privileged
instruction is attempted in the problem state (supervisor
state bit in the level status register is not on).

Bit 03 Protect Check. In the problem state, this bit is set
to one when (1) an instruction is fetched from a storage

- area not assigned to the current operation, (2) the instruc-
tion attempts to access a main storage operand in a storage
area not assigned to the current operation, or (3) the
instruction attempts to change a main storage operand in
violation of the read-only control.

Bit 04 Invalid Function. Set to one by one of the following

conditions:

1. Attempted execution of an illegal operation code or
function combination. These are:

Op code Function

00101 All (when register 7 is specified in the R1 or R2 field

of the instruction)

00111 All

01000 0001, 0010, 0011, 0101, 0110, 0111

01011 0001, 1001 (When relocation translator feature
is not installed)

01011 0101, 0111

01100 111

01110 11000, 11010, 11011, 11100, 11110, 11111

01111 1X1XX, 01XXX, 1X011, 10001

11011 All

10110 All

11101 1100,1101,1110,1111

Note. The preceding illegal conditions cause a program check
class interrupt to occur.

2. The processor attempts to execute an instruction
associated with an uninstalled feature. These are:

Op code Function

00100 All (Floating-point feature not installed)

01011 0011, 1011 (If the floating-point feature is not
installed and the processor is in supervisor state).

Note. The preceding condition causes a soft-exception-trap
class interrupt to occur.

Bit 05 Floating-Point Exception. Set to one when an excep-

tion condition is detected by the optional floating-point
processor. The arithmetic indicators (carry, even, and
overflow) define the specific condition.

Bit 06 Stack Exception. Set to one when an attempt has

been made to pop an operand from an empty main storage
stack or push an operand into a full main storage stack. A
stack exception also occurs when the stack cannot contain

the number of words to be stored by a Store Multiple (STM)

instruction.

Bit 08 Storage Parity. Set to one when a parity error has
been detected on data being read out of storage by the
processor. This error may occur when accessing a storage
location that has not been validated since power on.

Bit 10 CPU Control Check. A control check will occur if
no levels are active but execution is continuing. Thisisa
machine-wide error. (See I/O check note.)

Bit 11 I/O Check. Set to one when a hardware error has
occurred on the I/O interface that may prevent further
communication with any I/O device. PSW bit 12 (sequence
indicator) is a zero if the error occurred during an Operate
I/O instruction and is set to one if the error occurred
during a non-DPC transfer. The sequence indicator bit is
not an error in itself but reflects the last interface

sequence at any time. An I/O check cannot be caused by

a software error. (See note.)

Note. The machine check class interrupt initiated by a
CPU control check or I/O check causes a reset. The I/O
channel and all devices in the system are reset as if a Halt
1/0 (channel directed command) had been executed. The
processor, sensor-based output points, and timer values
are not reset.

Bit 12 Sequence Indicator. This bit reflects the last I/O
interface sequence to occur. See “I/O Check” described
above.

Bit 13 Auto IPL. Set to one by hardware when an auto-
matic IPL occurs.
Set to zero by:

® A power on reset when Auto IPL mode is not selected.
® Pressing the Load key.
@ An IPL initiated by a host system.

Refer to Initial Program Load (IPL) in Chapter 2.

Bit 14 Translator Enabled. When the Storage Address
Relocation Translator Feature is installed this bit is set to
one or zero as follows:

1. Set to one (enabled)
® An Enable (EN) instruction is executed with bit 12
of the instruction word set to zero and bit 14
set to one.
2. Set to zero (disabled)
o A Disable (DIS) instruction is executed with bit 14
of the instruction word set to one.
o An Enable (EN) instruction is executed wtih bit 12
of the instruction word set to one.
® A processor reset (power-on reset, check restart,
IPL, or system reset key).

Bit 15 Power Warning and Thermal Warning. Set to one
when these conditions occur (see Power/Thermal Warning
class interrupt in this chapter). The power/thermal class
interrupt is controlled by the summary mask.

Interrupts and Level Switching 3-11

Program Controlled Level Switching

Level switching under program control may be accomplished
by using the Set Level Block (SELB) instruction. This
instruction is covered in detail in Chapter 8, Instructions,
and in general it will:

® Specify the location of a level status block (LSB) at
an effective address in main storage.

® Specify a selected priority level associated with the
main storage LSB.

® Ioad the main storage LSB into the hardware LSB for
the selected level.

Note. The hardware LSB consists of the following hard-
ware registers for the selected level:

1. Instruction address register
2. Address key register

3. Level status register

4. Eight general registers (0—7)

The system programmer should become thoroughly familiar
with other effects on the processor caused by execution of
the SELB instruction. These effects are determined by
three factors:

1. The current execution level.

2. The selected level specified in the SELB instruction.

3. The state of the in-process flag (Bit 9 of the LSR)
contained in the main storage LSB.

Note. Interrupt masking, provided by the summary mask
and the interrupt level mask register, does not apply to
program controlled level switching.

The main storage LSB and the location of the in-process
flag bit are shown in the following diagram:

Main storage
effective

address IAR
AKR
LSR [+]
- |Register
Register
Register
Register
Register
Register
Register
EA+14 (Hex) |Register

N[njn|hlwIN|F]|O

*In-process flag (bit 9)
’ 0 = off
1 =on

Execution of the SELB instruction may result in level

switching or a change in the pending status of a level as
described in the following sections.

3-12 GA34-0021

Selected Level Lower Than Current Level and
In-process Flag On

These conditions cause the selected level to be pending.
The main storage LSB is loaded into the hardware LSB

for the selected level. Execution of a LEX instruction on
the current level causes the selected level to become active
providing no higher priority interrupts are being requested.

Curent level s E L B] [[[[[][] [LEX
Load
LSB
X |
Selected level W _ Pending LI LTTTTITl]

Selected Level Equal to Current Level and
In-process Flag On
These conditions cause the selected level to become the

current level. The main storage LSB is loaded into the
hardware LSB for the selected level.

Load

LSB
C t and £ '
sercotod tovet L L T T T T T [[SCEY B TTTTTTT]

Selected Level Higher Than Current Level and
In-process Flag On

These conditions cause the selected level to become the
current level. The main storage LSB is loaded into the
hardware LSB for the selected level. This is a level switch
to the higher (selected) level and causes the lower level to

be pending.
/"\

Selected level INEEEEREEEEREE
Load
LSB

Carrent tevel [| | [[] [[T] JS & L B[__ _ _Pending i

Interrupts and Level Switching 3-13

Selected Level Lower Than Current Level and
In-process Flag Off

These conditions cause the selected level to be not pending.
The main storage LSB is loaded into the hardware LSB for
the selected level.

Curentlevel { [| [[[[[[[| {sELB}f [[| {[][]f]]|
Load
LSB

Selected level Il'_‘ :::__:szn:di;g:_—::__j \,"Not pending

-

Selected Level Equal to Current Level and
In-process Flag Off

These conditions cause an exit from the selected (current)
level. This exit is identical to executing a LEX instruction
with the exception that the main storage LSB is loaded
into the hardware LSB for the selected level. Refer to the
LEX Instruction in Chapter 8.

Load

LSB
Current and Ei\‘ Exi vl
Selected levell I | | | I | | l | IS _‘I;,B] Xit current leve

Selected Level Higher Than Current Level and
In-process Flag Off

The main stdrage LSB is loaded into the hardware LSB for
the higher (selected) level.

' re T g T - T e e e e — "l
Selected level | Notpending | { ‘_r‘\ _____ Notpending r
Load
LSB

cument et [T T T T T T T T T T I5 L o[T[] HEEEER

3-14 GA34-0021

Interrupt Masking Facilities
Three levels of priority interrupt masking are provided to

the programmer for control of the interrupt processing.
These consist of:

1. Summary Mask (LSR bit 11)
2. Interrupt Level Mask Register
3. Device Mask (I-bit)

Each masking facility has specific control as explained in
the following sections.

Summary Mask

The summary mask provides a masking facility for priority
interrupts and certain class interrupts. The state of the
summary mask (enabled or disabled) is controlled by bit 11
in the level status register (LSR) of the active priority level.
When bit 11 is set to zero, the summary mask is disabled
and prevents (1) all priority interrupts regardless of priority
level, and (2) power/thermal and console class interrupts.
All other class interrupts are not masked. When bit 11 is
set to one, the mask is enabled and the interrupts are
allowed.

The summary mask is disabled and enabled as follows:

® Disabled (Set to Zero)

1. When a Supervisor Call (SVC) instruction is exe-
cuted, the summary mask for the active level is
disabled.

2. Execution of a Disable (DIS) instruction, with bit
15 of the instruction equal to one, causes the
summary mask for the active level to be disabled.

3. Al class interrupts disable the active level summary
mask.

4. The summary mask for a selected level is disabled
by executing a Set Level Block (SELB) instruction
with bit 11 of the LSR to be loaded equal to zero.

5. The summary mask bits for priority levels 1—3 are
set to zero by a system reset, power-on reset, or
IPL.

® Enabled (Set to One)

1. Execution of an Enable (EN) instruction, with bit
15 of the instruction equal to one, causes the active
level summary mask to be enabled.

2. The summary mask for a selected level is enabled
by executing a Set Level Block (SELB) instruction
with bit 11 of the LSR to be loaded equal to one.

3. The level zero summary mask is enabled by a
system reset, power-on reset, or IPL.

4. The summary mask for the interrupted-to level is
enabled by a priority interrupt.

Note. If the processor is in the wait state, the summary
mask is enabled or disabled as defined by bit 11 in the
LSR of the last active priority level.

Interrupt Level Mask Register

The interrupt level mask register is a 4-bit register used for
control of interrupts on specific priority levels. Each level
is controlled by a separate bit of the mask register as shown
below:

~ Interrupt Level Mask Register

Bit position 012 3
Priority level 0123
With a bit position set to one, the corresponding priority
level is enabled and permits interrupts. With a bit position
set to zero, the corresponding priority level is disabled.
The Set Interrupt Mask Register (SEIMR) instruction is
used to control bit settings in the interrupt level mask
register. The Copy Interrupt Mask Register (CPIMR)
instruction may be used to interrogate the register.

Note. All levels are enabled (Set to one) by a system reset,
power-on reset, or IPL.

Device Mask (I-bit)

Each interrupting device contains a one-bit mask called the
device mask or interrupt bit (I-bit). Interrupts by the
device are permitted when its device mask is enabled (set
to one). With the device mask bit disabled (set to zero),
that device cannot cause an interrupt. The device mask is
controlled by a Prepare command in conjunction with

an Operate I/O instruction. See Chapter 8, Instructions,
and Chapter 4, Input/Output Operations.

Interrupts and Level Switching 3-15

3-16 GA34-0021

TN

Input/output (I/0) operations involve the use of
input/output devices. These devices are attached to the
processor and main storage via the I/O channel with the
channel directing the flow of information. The I/O channel
can accommodate a maximum of 256 addressable devices.
The general data flow is shown in Figure 4-1.

Main
Storage
Proces Channel 1/0 Device 1/0 Device
sot Controls’ o1 FF
52
1/0 Channel

Figure 4-1. Block diagram of Series/1 Model § system

The channel supports three basic types of operations:

® Direct Program Control (DPC) Operations — An
immediate data transfer is made between main storage
and the device for each Operate I/O instruction. The
data may consist of one byte or one word. The opera-
tion may or may not terminate with an interrupt.

® Cycle Steal Operations — An Operate 1/O instruction
can initiate cycle-stealing data transfers of up to
65,535 bytes between main storage and the device.
Cycle steal operations are overlapped with processing
operations. Word or byte transfers, DCB chaining,
burst mode, and program controlled interrupt can be
supported. All cycle stealing operations terminate with

an interrupt.

® Interrupt Servicing — Four preemptive priority interrupt
levels are available to facilitate device service. The
device interrupt level is assignable by the program. In
addition, the device interrupt capability may be masked
under program control. Interrupt requests, along with
cycle steal requests, are presented and polled concur-

| rently with DPC and cycle-steal data transfers.

Chapter 4. Input/Output Operations

The channel provides comprehensive error checking

including time-outs, sequence checking, and parity check-

ing. Error, exception, and status reporting are facilitated
by (1) recording condition codes in the processor during
execution of Operate I/O instructions, and (2) recording
condition codes and an Interrupt Information Byte (IIB)
in the processor during interrupt acceptance. Additional
status words may be used by the device as necessary to
describe its status (see I/O Condition Codes and Status
Information in this chapter).

Input/Output Operations

4-1

Operate I/O Instruction

The Operate I/O instruction initiates all I/O operations
from the processor. It is a privileged instruction and is
independent of specific I/O parameters. The generated
effective address points to an immediate device control
block (IDCB) in main storage. The IDCB consists of two
words that contain an I/O command, a device address, and
an immediate data field. For DPC operations, the immedi-
ate data field is used as a device data word. For cycle steal
operations, the immediate data field points to a device
control block (DCB) that provides additional information
needed for the operation. For more details of the Operate
I/O Instruction refer to Chapter 8. '

Operate I/O Instruction

R2 Address
011010 00 *11. 1. 0 0
L Effective address J
IDCB
Command Device address Immediate data field
0 7 8 15 16 31

Cycle steal operations !

L ¢

1)

*Indirect addressing bit

4-2 GA34-0021

Immediate Device Control Block (IDCB)

The location in storage specified by the Operate I/O instruc-
tion contains the first word of the IDCB. The IDCB con-
tains an I/O command that describes the specific nature of
the I/O operation. This command is used by the channel
for execution of the operation. The IDCB must always be
on a word address boundary and has the following format:

IDCB (immediate device control block)

Command field Device address field

0 7 8 15
Immediate data field

16 31

Command field (bits 0—7)

Bit 0 Channel directed. If this bit is equal to one, the I/O
command is directed to the channel rather than to a
specific device. The Halt I/0O command is the only
valid channel directed command. Any other com-
mand with bit 0 set to one causes a command reject
exception condition.

Bit 1 Read/Write. If this bit is equal to one, the data
contained in the immediate field is transferred to the
addressed I/O device. If this bit is equal to zero, the
immediate field contains the data received from the
1/O device at the conclusion of the IO instruction.

Bits 2—3 Function. This field specifies the general type of
I/0O operation to be performed (see Figure 4-2).

Bits 4—7 Modifier. This field contains four bits for further
specification of a function, if required (see Figure 4-2).

Device address field (bits 8—15)

This byte contains the I/O device address. The address
range is 00 through FF (hex).

Immediate data field (bits 16—-31)

This field contains a device data word for DPC operations.
It contains the address of a device control block for cycle
steal operations.

Figure 4-2 shows the relationship of the IDCB and the
Operate I/0 instruction. It also contains a chart of the
various I/O commands. The Start command and the Start
Cycle Steal Status command are used to initiate cycle steal
operations. The remaining commands are used for DPC
operations only. '

Input/Output Operations

43

Operate 1/O Instruction

***To avoid future code obsolescence, this command format must not be used.

44 GA34-0021

.R2 Address
011010 00 *I1 1 0 0
0 4 5 7 8 1011 12 15 16 31
L Effective address J
IDCB (immediate device control block)
Command Device address Immediate field
8 1516 31

0 0 00 Read XXXX
0 0 01 Read XXXX
0 0 10 Read status 0000
0 0 10 Read status XXXX
0 0 11

0 1 00 Write XXXX
0 1 01 Write XXXX
0 1 10 Control 0000
0 1 10 Control XXXX
0 1 10 Control 1111
0 1 11 Start XXXX
0 1. 11 Start 1111

1 1 11 Channel 0000

*Indirect addressing bit.

0X
1X
20
2X
3X
4X
5X
60
6X
6F
7X
7F
FO

Hex Specific command

Read

Read

Read ID
Read status
Unused ***
Write

Write
Prepare
Control
Device reset
Start

Start cycle steal status
Halt I/O

**Modifier XXXX is device dependent. Other modifiers are system defined.

Figure 4-2. IDCB and I/O commands

Type of operation

DPC

DPC

DPC

DPC
Unused
DPC

DPC

DPC

DPC

DPC

Cycle steal
Cycle steal
Channel

Device Control Block (DCB)

This section describes the standard device control block that
is used for a cycle steal operation. The actual cycle steal
operation is explained in a later section of this chapter. The
DCB is an eight-word control block residing in the super-
visor area of main storage. It contains the specific param-
eters of a cycle steal operation. The device fetches the DCB
using the cycle steal mechanism.

All devices use the standard DCB format (see Figure 4-3).
Some devices may also use additional formats that are ex-
plained in the individual device publications. The extended
DCB bit (bit 3) of the DCB control word is set to one when
an additional DCB type is specified. This bit is always zero
for a standard DCB.

Word DCB (device control block)

0 | Control word

1 | Device parameter word 1

2 | Device parameter word 2

3 | Device parameter word 3

4 | Device parameter word 4

5 | Device parameter word S

6 | Count

7 | Data address

Control word format (DCB word 0)
Addr key|Modifier bits

01 2 3 435 7 8

\ Burst mode * -———]

Suppress exception (SE)*
Extended DCB (XD)*

Input flag

Program controlled interrupt (PCI)*
Chaining flag *

*Device option bits

Figure 4-3. Device control block

The DCB words have the following meanings:

Control Word

Bit 0* Chaining flag. If this bit is equal to one, a DCB
chaining operation is indicated.

Bit 1* Programmed controlled interrupt (PCI). If this bit

is equal to one, the device presents a programmed
controlled interrupt (PCI) at the completion of the
DCB fetch.

Bit 2 Input flag. The setting of this bit tells the device
the direction of data transfer.
0 = Output (main storage to device)
1 = Input (device to main storage)
For bidirectional data transfers under one DCB
operation, this bit must be set to one. For control
operations involving no data transfer, this bit must be

set to zero.

Bit 3* Extended DCB (XD). This bit, when set to one,
specifies that the DCB is a non-standard type.

Bit 4* Suppress exception (SE). If this bit is equal to one,

the device is allowed to suppress the reporting of
certain exception conditions. The device can then
take alternative action depending on the condition.

Bits 5—7 Cycle steal address key. This key is presented by the
device during data transfers. It is used to ascertain
storage access authorization (see Chapter 5, Storage
Protection).

Bit 8—15 Modifier. These are device dependent bits with the

following exceptions (1) when XD=1, bits 8—11
further identify the DCB type, and (2) when a device
uses burst mode, it is specified in bit 15. Otherwise,
these bits may be used for functions that are unique to
a particular device.
*These bits are used with device options that are available on a device
feature basis. Any bits not used by the device are set as follows:

1. Bits 0, 1, and 4 should be set to zero although they are not
checked by the device.

2. Bit 3 must be set to zero or the device reports a DCB specification
check.

Device Parameter Words 1-2

These parameter words are device-dependent control words
and are implemented as required. Refer to the individual
device publications for definition.

Device Parameter Word 3

When PCl is specified, the high-order byte (bits 0—7) of
this word is used for a DCB identifier. The device places
the identifier in the interrupt information byte when the
PCI is processed. The low-order byte (bits 8—15) is always
device dependent. The high-order byte is device dependent
when PCI is not specified.

Input/Output Operations 4-5

Device Parameter Word 4

If suppress exception (SE) is used by a device, this word
specifies a 16-bit main storage address called the status
address. This address points to a residual status block that
is stored by the device following completion of the DCB
operation.

If suppress exception is not used by a device, a residual
status block is not stored. In this case, parameter word 4
is device dependent. Refer to Cycle-Steal Device Options
in this chapter.

Device Parameter Word 5

If the DCB chaining bit (bit 0 of the control word) is equal
to one, this word specifies a 16-bit main storage address of
the next DCB in the chain. If chaining is not indicated, this
parameter word is device dependent.

Count

The count word contains a 16-bit unsigned integer repre-
senting the number of data bytes to be transferred for the
current DCB. Count is specified in bytes with a range of 0
through 65,535. The count specification must be even for
word-only devices.

Data Address

This word contains the starting main storage address for
the data transfer.

Programming Considerations When Using the DCB

1. Only those words required for the cycle stealing opera-
tion are fetched by the device and they may be fetched
in any order. Contents of the words must be specified
correctly; if not, the device records a DCB specification
check in the interrupt status byte and terminates the
cycle steal operation with an exception interrupt.

2. The DCB address (in the IDCB), the chain address, and
the status address must be even (word boundary). If
the DCB address is odd, the device records a command
reject condition code and terminates the cycle steal
operation. An odd chain address or status address
results in a DCB specification check.

Note. Condition code and status recording are explained
in detail in a separate section of this chapter.

I/O Commands

This section describes each I/O command and shows the
related IDCB. The command field (bits 0—7) of the IDCB
contains the binary value of the command. An X in this
field means the value is device dependent.

4-6 GA34-0021

Read

IDCB (immediate device control block)

Command field Device address field
0 0 0 X XXXXIXXXXXXXX
0 7 8 15
0X 00—-FF
1X

Immediate data field
Data word
16 31

This command transfers a word or byte from the addressed
device to the data word of the IDCB. If a single byte is
transferred, it is placed in bits 24—31 of the data word with
bits 16—23 set to zeros. Correct parity is always main-
tained and checked for both bytes on the I/O channel. The
individual devices may use either the 0X or 1X type of

read command. The two commands operate the same in
the channel.

Read ID

IDCB (immediate device control block)

Command field Device address field
001 000O0O0IXXXXXXXX
0 7 8 115
20 00-FF . (

Immediate data field

Data word

16 31

This command transfers an identification (ID) word from
the device to the data word of the IDCB. The device
identification word contains physical information about
the device and may be used to determine the devices that
are attached to the system. This word is not related to

the interrupt ID word associated with interrupt processing.
The device ID word format is:

IES?DT Assigned Code]CS | DI
0 345 13 14 15
Bits 0-3 Assigned class code

Bit 4 Reserved—always zero

Bits 5-13 Assigned code

Bit 14 Zero — not a cycle steal device

One — cycle steal device
Bit 15 Zero — I1BM device
One — OEM device

Read Status

IDCB (immediate device control block)

Command field Device address field
001 0 XXXXIXXXXXXXX
0 7 8 15
2X 00-FF
Immediate data field
Data word
16 31

This command transfers a device status word from the
device to the data word of the IDCB. Contents of the
status word are device dependent.

Write

IDCB (immediate device control block)

Command field Device address field
01 0 XXXXX|IXXXXXXXX
0 417 8 15
4x 00—FF
5X

Immediate data field
Data word
16 31

This command transfers a word or byte to the addressed
device from the data word of the IDCB. The individual
device may use either format of the command. If a single
byte is to be transferred, it must be placed in bits 24—31
of the data word and bits 16—23 must be set to zero. A
byte oriented device may ignore bits 16—23 (including the
parity bit) on the I/O channel but these bits should be
zeros to avoid future code obsolescence.

Note. Both bytes of the IDCB data word are fetched by
the channel and placed on the I/O data bus (in good
parity) even if not required by the device.

Prepare

IDCB (immediate device control block)

Command field Device address field

01100000 XXXXXXXX

0 7 8 15
60 00—FF

Immediate data field
Zeros I Level I 1
16 26 27 30 31

This command transfers a word (to the addressed device)
that controls the device interrupt parameters. The word is
transferred from the immediate data field of the IDCB in
the format shown. A priority interrupt level is assigned to
the device by the level field. The I-bit (device mask) con-
trols the device interrupt capability. If the I-bit equals 1,
the device is allowed to interrupt. If the I-bit equals O, the
device cannot interrupt. See Prepare I/O Device for
Interrupt in Chapter 3.

Note. The IBM 4955 Processor does not recognize a
priority level other than 0—3. Lost interrupts result if a
device is prepared for a level other than 0—3.

Control

IDCB (immediate device control block)

Command field Device address field
011 0 XXXXfXXXXXXXX
0 7 8 15
6X 00-FF
Immediate data field
Data word
16 31

This command initiates a control action in the addressed
device. A word, or byte, transfer from the data word of the
IDCB to the addressed device may or may not occur,
depending on device requirements. If a single byte is to be -
transferred it must be placed in bits 24—31 of the data word
and bits 16—23 must be set to zero.

Note. Both bytes of the IDCB data word are fetched by
the channel and placed on the I/O data bus (in good
parity) even if not required by the device.

Input/Output Operations 4-7

Device Reset

IDCB (immediate device control block)

Commaend field Device address field
01 10111T1|IXXXXXXXX
0 7 8 15
6F 00-FF
Immediate data field
Zeros
16 31

This command resets the addressed device. A pending
interrupt from this device (or a busy condition) is cleared.
The device mask (I-bit) is not changed. There is no change
to the assigned priority level for the device. The residual
address (device status) and output sensor points are not
affected. Parity checking of the IDCB data word is not
performed.

Start

IDCB (immediate device control block)

Command field Device address field
0111 XXXXIXXXXXXXX
0 7 8 15
7X 00-FF
Immediate data field
DCB address
16 31

This command initiates a cycle steal operation for the
addressed device. The second word of the IDCB is trans-
ferred to the device. It contains a 16-bit logical storage
address of a device control block (DCB) to be used by the
device. See Cycle Steal in this chapter.

Start Cycle Steal Status

IDCB (immediate device control block)

Command field Device address field

0111111I1IXXXXXXXX

[} 7 8 15
7F 00-FF

Immediate data field
DCB address
16 31

This command initiates a cycle steal operation for the
addressed device. Its purpose is to collect status informa-
tion from the addressed device. The second word of the
IDCB is transferred to the device and contains a 16-bit
logical address of a device control block (DCB). See
Start Cycle Steal Status Operation in this chapter.

4-8 GA34-0021

Halt I/O

IDCB (immediate device control block)

Command field Device address field
11110000
0 7 8 15
- .
FO
Immediate data field
16 31

This is a channel directed command that causes a halt of
all I/O activity on the I/O channel and resets all devices.
No data is associated with this command. All pending
device interrupts are cleared. Device priority-interrupt-
level assignments and device masks (I-bits) are unchanged.
The residual address (device status) and output sensor
points are not affected.

Notes.
1. The channel is always able to accept and execute this
command.

2. Halt I/O is the only valid channel directed command.

DPC Operation

A DPC operation causes an immediate transfer of data or
control information to or from an I/O device. An Operate
I/0 instruction must be executed for each data transfer

and causes the following events to occur (refer to Figure
4-4).

1. The Operate I/O instruction points to an IDCB in
main storage.

2. The I/O channel uses the IDCB to select the addressed
device and to determine the operation to perform. [}

3. The I/O channel sends data to the device from main
storage, or from the device to main storage.

4. The device sends an IO instruction condition code to
the level status register (LSR) in the processor. [}

Notes.

1. The DPC operation may end with a priority interrupt
if the device has this capabiltiy. Refer to /O Inter-
rupts in Chapter 3.

2. There are two types of condition codes: the first is
an I/O instruction condition code and is available

immediately after completion of an Operate I/O instruc-

tion; the second is an interrupt condition code and is

presented upon acceptance of a priority interrupt. The

code significance is different for the two cases. Refer
to I/O Condition Codes and Status Information in this
chapter.

Operate I/O Instruction

R2 Address
01101000 *11. 1. 0 0

l Effective address

Hex Command IDCB immediate field
Read Data (word or byte)
Read ID Device ID word
Read status : Device status word
Write Data (word or byte)
Prepare Interrupt parameters

Data (word or byte)

Control
i Z

\
IDCB
Command Device address Immediate field
01 2 3 4 7 8 15 16 31

[/O device

LSR (note 1)

ZE O

N —
f 10 instruction CC E

Note, LSR Bit 0 even indicator
Bit 1 carry indicator
Bit 2 overflow indicator

Figure 4-4, Direct program control I/O operation

Input/Output Operations 4-9

Cycle Steal

The cycle steal mechanism allows data service to or from
an I/O device while the processor is processing instructions.
This overlapped operation allows multiple data transfers
to be started by one Operate I/O instruction. The processor
executes the Operate I/O instruction, then continues
processing instructions while the 1/0 device steals main
storage data cycles when needed. The channel resolves
contention among multiple devices requesting cycle steal
transfers. The operation always ends with a priority inter-
rupt from the device. Note that the highest priority opera-
tion is interrupt handling. The next highest is cycle stealing,
while the lowest is DPC.

The cycle steal operation includes certain capabilities
that are provided on a device feature basis:

Burst mode

DCB chaining

Extended DCB

Programmed controlled interrupt (PCI)

Suppress exception (SE)

Storage addresses and data transfers by byte or word

v AW

.o\v

See the Cycle-Steal Device Options section of this chapter
for details of these facilities.

All cycle steal operations terminate with a priority inter-
rupt, providing, the device has executed a successful Prepare
command, with the device mask (I-bit) enabled. If the
device mask is disabled, the interrupt presentation is
blocked and the device remains busy until (1) the condi-
tion is cleared by a reset, or (2) the proper Prepare com-
mand is executed.

All cycle steal operations are started by an Operate I/O
instruction that points to an IDCB. The immediate data
field of the IDCB contains the address of a device control
block (DCB). The DCB is fetched by the device using a
cycle-steal address key of zero. Within the DCB are
specific parameters of the cycle steal operation. See Device
Control Block in this chapter.

There are two types of cycle steal commands:

® Start
o Start Cycle Steal Status

Start Operation

A cycle steal operation begihs after successful execution of
the Start command. The IDCB, pointed to by an Operate
I/O instruction, has the format:

IDCB (immediate device control block)

Command field Device address field

0111 XXXXIXXXXXXXX

0 7 8¥ 15
7X 00-FF

Immediate data field

DCB address
16 31

4-10 GA34-0021

The command modifier (X) is device dependent. The DCB
address always specifies a word boundary and is the start-
ing storage address of the DCB. This address is used by the
device to fetch the DCB, using the cycle steal mechanism.
A cycle steal operation is presented in the following
chart. Use Figure 4-5 in conjunction with this chart.
Condition codes used in the chart are fully explained in
the section I/0 Condition Codes and Status Information
in this chapter.

Note. An I/O device must be properly prepared (using a
Prepare command), before it is allowed to interrupt. -

Cycle steal major steps Remarks

Start cycle steal 1. Execute IO instruction.

2. IDCB contains Start command and
points to a DCB. The DCB address is
sent to the device.

3. Device presents condition code 7
(bits 0—2 in the LSR). [}

Device fetches DCB 1. Device uses cycle steal mechanism to
fetch DCB.

2. Cycle steal address key of zero is used.

Data transfer 1. Data is transferred to or from the device
in word or byte format.
2. Transfer continues until count in DCB
is exhausted.
3. DCB specifies cycle steal address key for

data area.
Termination (no 1. Device presents interrupt request.
error condition) 2. Channel polls I/O attachment feature

and accepts request.
3. Device sends interrupt ID word and
. interrupt condition code 3 (device end).
Termination 1. Device presents interrupt request.
(Exception condition) Channel polls 1/O attachment feature
and accepts request.
3. Device sends interrupt ID word and
interrupt condition code 2 (exception).

1

Note. Other events that might occur during the cycle steal
operation are:

Chaining 1. Device completes the current DCB opera-
tion but does not present an interrupt
request.

2. Device fetches next DCB in the chain.

Program controlled 1. Device fetches DCB (PCI bit = 1).

interrupt 2. Device initiates an interrupt and sends
an interrupt ID word and interrupt

. condition code 1 (PCI).

Suppress Exception 1. Device completes current operation.

2. Device stores status at the main storage
location defined by DCB parameter
word 4.

Operate I/O Instruction

Device

R2 ' Address
011011000 *11 100
Effective address
IDCB
Command Device address DCB address
0200 0500
0 7 8 15 16 j]
LSR
22
0 2 3 15
\.\/—J
R
0500 Control word >
~_ —~.
—NP__ b
€0 L Data area m
050A 0600 7 ‘ 0800 - .
Count : E
050E 0800 } T e -
|
|
l Chained DCB
L —— w0600
*Indirect addressing bit

Figure 4-5. Example of cycle steal control information

Input/Output Operations

Start Cycle Steal Status Operation

The purpose of this operation is to obtain data from the
device if the previous cycle steal operation terminates due
to an error or exception condition. The operation is
initiated by a Start Cycle Steal Status command. The
IDCB format is:

IDCB (immediate device control block)

Command field Device address field

01111111 XXXXXXXX

0 J? 8 15
7F 00-FF

Immediate data field

DCB address
16 31

This command uses a special DCB format with some words
and fields set to zeros (see Figure 4-6).

DCB (device control block)
Control word
0 01 0 Oldaddrkey]0 0 0 0 0 0 0 O

Word

1 | Not used (zeros)

2 | Not used (zeros)

3 | Not used (zeros)

4 | Not used (zeros)

5 | Not used (zeros)

6 Byte count

7 | Data address

0 T s

Figure 4-6. DCB for start cycle steal status operation

4-12 GA34-0021

Programming Note. ,
Concerning the DCB for the start cycle steal status
operation:

1. Bits designated as zero are not checked by hardware
(see Figure 4-6).

2. The count is specified in bytes.

3. The maximum count is device dependent.

4. The validity of a count value less than the maximum
value is device dependent.

5. If the maximum count is exceeded, or a count value is
specified that indicates the partial storing of a word
length parameter, the device records a DCB specifica-
tion check in the ISB and terminates the operation.

6. An odd data address also results in a DCB specification
check.

Data is transferred to main storage starting at the data
address specified in the DCB. This data consists of residual
parametets and device dependent status information and
has the following formats:

Word 0 Residual address
Word 1 Device cycle steal status word 1
Word 2 Device dependent status word
° 0 15

Ve /l/

Residual Address. This word contains the main storage
address of the last attempted cycle steal transfer associated
with a Start command. It may be a data address, a DCB
address, or a residual-status-block address. It is updated

to the current cycle-steal storage address upon execution

of cycle steal transfers. For word transfers, the residual
address points to the higher address (low-order) byte of the
word. If an error occurs during a start cycle steal status oper-
ation, this address (as contained within the device) is not

altered. Device reset, Halt I/O, machine check, and system re-

set have no effect on the residual address in the device. It is
cleared by a power-on reset. Following a power-on reset
the residual address is:

® (000 (Hex) for a byte-oriented device.
e (0001 (Hex) for a word-oriented device.

Device Cycle-Steal-Status Word 1. This word contains the
residual byte count of the previous cycle steal operation
associated with a start command. The byte count is
initialized by the count field of a DCB associated with a
Start command, and is updated as each byte of data is
successfully transferred via a cycle steal operation. It is not
updated by cycle-steal transfers into the residual status
block. The residual byte count is not altered if an error
occurs during a start cycle steal status operation. Itis
reset by (1) power-on reset, (2) system reset, (3) device
reset, (4) Halt I/0, and (5) machine check condition.

Note. The contents of the device cycle-steal-status word

1 are device dependent if the device does not: (1) imple-
ment suppress exception (SE), or (2) store a residual byte
count as part of its cycle-steal status. ‘

Device Dependent Status Words. The number and contents
of these words are specified by the individual device.

Three conditions can cause bits to be set in the device
dependent status words (refer to individual device
publications).

1. Execution of an I/O command that causes an exception
interrupt. ‘

2. Asynchronous conditions in the device that indicate an
error, exception, or a state condition.

3. As defined by the individual device.

The bits are reset as follows:

1. For the first condition listed above, the bits are reset
by the acceptance of the next I/O command (except
Start Cycle Steal Status) following the exception
interrupt. These bits are also reset by a power-on
reset, system reset, or execution of a Halt I/O
command.

2. For the second condition, the bits are reset on a device
dependent basis. 5

3. For the third condition, the bits are reset as defined by
the individual device.

Cycle-Steal Device Options

The I/O channel supports operations such as burst mode
and chaining when required by individual devices. Bits in
the DCB control word are used to activate these operations.
Refer to the individual device publications for the device
options used. The following sections explain the
operations.

Burst Mode

Burst mode, when used by a device, is specified in bit 15
of the DCB control word. If bit 15 is equal to one, the
transfer of data takes place in burst mode. This mode
dedicates the I/O channel to the device until the last data
transfer for the DCB is completed. Cycle steal interleave,
by other devices, is prevented. Burst mode also prevents
any priority interrupt request from being accepted by the
processor.

The maximum burst rate for the 4955 channel is:

® 1.8 megabytes per second for storage input cycles.
® 1.5 megabytes per second for storage output cycles.

Chaining

The purpose of chaining is to allow the programmer to
sequence an I/O device through a set of operations by using.
a chain of DCBs. Bit 0 of the DCB control word (when set
to one) indicates a chaining operation. This means that the
chained DCB, fetched by the device, is interpreted as a

new operation (or function) to be performed. The DCB
may be equal to, but not a continuation of, the operation
specified by the previous DCB.

When the current DCB indicates a chaining operation,
device parameter word 5 of the DCB must contain a main
storage address that points to the next DCB in the chain.
The device completes the current operation but does not
present an interrupt request (excluding PCI) to the
processor. Instead, the device fetches the next DCB in
the chain and continues operation.

Note. The chaining operation has no effect on programmed
controlled interrupt (PCI). These interrupts, when specified
in the DCB, still occur at the completion of the DCB fetch
operation.

Extended DCB

This option allows a device to use additional DCB types.
Each type is designed to support a specific operation such as
data chaining, and is assigned a unique name in order to
distinguish it from a standard DCB. Bit settings in the con-
trol word determine the type. For example; with the XD
bit equal to 1 and bits 8—11 equal to 1000, the DCB type
is called a Directorized Data Descriptor (DDD). The ex-
tended DCBs, if used by a device, are explained in the
device publication.

The directorized data descriptor referred to in this ex-
ample is explained in the IBM Series/1 4987 Programmable
Communications Subsystem Description, GA34-0049.

Programmed Controlled Interrupt (PCI)

Bit 1 of the DCB control word (when set to one) tells the
device to present a PCI to the processor at the completion
of the DCB fetch prior to data transfer.

When the PCI is serviced, a DCB identifier byte is
returned to the processor in the interrupt information byte
(IIB). Refer to DCB device parameter word 3 in this
chapter. Two conditions should be noted by the
programmer:

1. Chaining and data transfers associated with the DCB
may commence even if the PCI is pending.

2. If the PCI is pending when the device encounters the
next interrupt causing condition, the PCI condition is
discarded by the device and replaced with the new
interrupt condition.

Input/Output Operations 4-13

Suppress Exception (SE)

When a device uses this option it is allowed to suppress the
reporting of certain exception conditions that would
normally cause an exception interrupt. The device is then
allowed to take alternative action depending on the condi-
tion. The suppressed exception conditions are reported to
the programmer as status information upon completion of
the operation. Refer to a subsequent section, Suppression
of Exceptions, for details of the various actions a device
might take.

The suppress exception option also provides for-auto-
matic logging of status information (including suppressed
exceptions) into main storage. When the SE bit for a DCB
is set to one, the device always stores a residual status block
into main storage after successful completion of the data
transfer for the DCB. Devgce parameter word 4 of the DCB
must be used to specify the starting main storage address
for the residual status block. Note that a residual status
block is stored even if there are no exception conditions
to be suppressed.

The following section shows the residual status block
that is stored.

Residual Status Block

The residual status block is stored into main storage at the
location pointed to by the status address (DCB word 4).
The device uses an address key for this operation that
corresponds to the DCB address space. The size of a
residual status block is fixed for each device with a limit
of 8 words total. For a standard DCB, the format is:

Word
0 residual count -
1 EOCIRTI reserved l status flags INE
0 1 2 7 8 14 151
:;.' : # Maximum
| | of 8 words
| |
I |
! |
d- oy _d ________________ =
pdevice dependent status | [A
0 : : 15
Word 0 Contains the residual byte count associated with the DCB.
Word 1 EOC is the End of Chain bit and is set to one for all

conditions that would terminate a chaining operation.

RT is the retry bit and is set to one when the device has
attempted a retry operation. NE is the No Exception bit
and is set to one when the operation is completed and no'
exceptions are reported. The Status Flags are device
dependent flags that indicate suppressed exception con-
ditions..

Any additional words are device dependent as to
number and content. Refer to the individual device
publications for the additional status information and,
also, the bit significance of the status flags.

4-14 GA34-0021

Note. The words in a residual status block for a non-stand-
ard DCB may have different meanings. Refer to the individ-
ual device publication.

Suppression of Exceptions

An exception condition can be suppressed by a device
only when it occurs during a data transfer operation. It
cannot be suppressed if it occurs during (1) a DCB fetch,
(2) storing of a residual status block, or (3) a cycle steal
status operation. A second requirement of a suppressible
exception is that the device be capable of continuing
operation in a normal and predictable manner after
occurrence of the exception. If these conditions are not
met, the exception condition causes an exception interrupt.
When a suppressible exception is encountered, the device
initiates one of a possible four types of action depending
on the device and the exception condition. Note that the
number of action types used by a device and the suppress-
ible exceptions for each type are a device specification.
Refer to the individual device publication. The four

action types are:

1. Suppress Exception and Continue. The exception
condition occurs but data transfer is allowed to pro-
ceed. At the completion of the data transfer (defined
by the DCB) a residual status block is stored. The
device may then continue with the next DCB if chain-
ing is specified.

2. Supress Exception and Retry. Upon detecting the ex-
ception condition, the device restarts the data transfer
defined by the DCB. The number of retries to be at-
tempted is a device specification. A residual status block

is stored after a successful retry or after all retries have
failed.

3. Suppress Exception and Terminate Data Transfer. Upon
detecting the exception condition, the device terminates
the data transfer for this DCB. It then stores a residual
status block and continues with the next DCB if chain-
ing is specified.

4. Suppress Exception and Terminate Chain. Upon
detecting this exception condition, the device termin-
ates the data transfer for this DCB. It ignores any
commands specifying further chaining.

The device stores a residual status block then pre-
sents a device end interrupt. Refer to Interrupt Condi-
tion Codes in a subsequent section of this chapter.

Priority of Suppress Exception Actions. Multiple excep-
tions that are suppressible can occur during an operation.
They are noted in the residual status block by setting
multiple status flags. The type of action taken by a device
depends on the exception/action combination with highest
priority. The priority sequence is type 4, type 3, type 2,
and type 1 with type 4 having the highest priority.

Cycle-Steal Termination Conditions
The following chart shows the action that occurs at the
end of a DCB operation depending on (1) specification of
chaining and/or suppress exception, and (2) the exception
conditions encountered:

Suppressible Non-Suppressible No

CHN SE exception exception exception
0 0 I(XCT) I(XCT) I(DE)

0 1 I(PDE) I(XCT) I(DE)

1 0 I(XCT) I(XCT) . CC

1 1 *I(PDE)/CC I(XCT) I(DE)

CC — DCB chaining

CHN - Chaining flag (bit 0 of the DCB control word)

I(DE) — Device end interrupt

I(PDE) — Permissive device end interrupt (see device end interrupt)
I(XCT) — Exception interrupt

SE — Suppress exception (bit 4 of the DCB control word)

*PDependent on the specific exception condition in the individual
device.

1/O Condition Codes and Status Information

Each time an Operate I/O instruction is issued, the device,
controller, or channel immediately reports to the processor
one of seven condition codes pertaining to execution of
the I/O command. These codes are called IO instruction
condition codes. Three bits are used to encode a condition
code value (range O through 7). The bits are recorded in
the even, carry, and overflow positions of the LSR and may
be interrogated by specific instructions such as Branch on
Condition Code and Branch on Not Condition Code. (See
BCC and BNCC in Chapter 8.)

For interrupting devices, condition codes are also
reported during a priority interrupt. These codes are called
Interrupt condition codes and pertain to operations that
continue beyond execution of the Operate I/O instruction
(such as cycle stealing of data). The interrupt condition
codes are recorded in the LSR and interrogated in the
same manner as the I/O instruction codes. Along with the
interrupt condition code, the device also transfers an inter-
rupt ID word to the processor. Bits O through 7 of the
interrupt ID word contain status information related to
the interrupt processing and are called the interrupt infor-
mation byte (see Interrupt ID Word in this chapter).

Figure 4-7 presents an overall view of condition code
reporting along with status information. Details of the
condition codes and status information are discussed in
the following sections. Note that there are two unique
sets of condition codes (IO instruction and interrupt) and
that most status information is device dependent.

Input/Qutput Operations 4-15

4-16 GA34-0021

Operate 1/0 (10)

instruction

Device dependent status word

s b g s g S o s]

Returned by the device if this
is a Read Status operation

Device reports I0
instruction condition
code’

Interrupt No

o000 Device dependent status

0
IDCB

l 15

Immediate data field

16

31

LSR bits 02

o000 00O cc

N bsWN=O

Device not attached
Busy

Busy after reset
Command reject
Intervention required
Interface data check
Controller busy
Satisfactory

causing
command

End operation

Figure 4-7. Condition codes, status words, and status bytes received
from a device (Part 1)

DPC or DPC
cycle steal B
operation \/
Cycle steal
Residual parameters DCB word 7 data address
and device dependent l
status ‘
Returned by the device $esce -
if this is a Start Cycle residual address
Steal Status operation cycle steal status word 1
i device dependent status |
1 device dependent status _:
A
0 15
DCB word 4 status address
Residual status block .
R ,]
Stored into main storage l
if the device uses SE and eecee Lresidual byte count
the SE bit is set to one {EOCIRTLIeservedIStat“S flagslNEi
j:_device dependent status l
0 15

Figure 4-7. Condition codes, status words, and status bytes received
from a device (Part 2)

Input/Qutput Operafion’s 4-17

4-18 GA34-0021

I/O Interrupt

The device reports an
interrupt condition
code

Interrupt ID word

Presented by the device
and placed in register 7
of the interrupted-to
level

*The available status is returned

LSR bits 0—-2

cC

NN DW= O

Controller end

PCI

Exception

Device end

Attention

Attention and PCI
Attention and exception
Attention and device end

.CC # 2 or 6 (DPC or cycle steal)

00000 IIB

device address

0

78 15

Bits 0—7 Device dependent status

or special meaning for
some condition codes

CC=2or6 (DPC)

oo ISB

device address

0

78 15

by the device when the following

commands are used:
Read Status—DPC

Start Cycle Steal Status—cycle steal

Bit

0 Device status available*
1 Delayed command reject

2—7 Device dependent

CC =2 or 6 (cycle steal)

ISB device address

Bit

78 15
Device status available*
Delayed command reject
Incorrect length record
DCB specification check

- Storage data check
Invalid storage address
Protect check
Interface data check

N AWM BAWNDERO

- Figure 4-7. Condition codes, status words, and status bytes received
from a device (Part 3)

10 Instruction Condition Codes

These co

des are reported during execution of an Operate

I/0O instruction.

Condition
code (CC)
value

NV B W=D

CC=0

CC=1

CcC=2

CC=3

CC=4

CC=5

CC=6

CC=7

LSR position

Over- Reported
Even Carry flow by Meaning
0 0 0 channel Device not attached
0 0 1 device Busy
0 1 0 device Busy after reset
0 1 1 chan/dev Command reject
1 0 0 device Intervention required
1 0 1 chan/dev Interface data check
1 1 0 controller Controller busy
1 1 1 chan/dev Satisfactory

Device not attached. Reported by the channel when the
addressed device is not attached to the system.

Busy. Reported by the device when it is unable to exe-
cute a command because it is in the busy state. The
device enters the busy state upon acceptance of a
command that requires an interrupt for termination. It
exits the busy state when the processor accepts the
interrupt. Certain devices also enter the busy state when
an external event occurs that results in an interrupt.
When this condition code is reported, a subsequent
priority interrupt from the addressed device always occurs.
Busy after reset. Reported by the device when it is
unable to execute a command because of a reset and the
device has not had sufficient time to return to the
quiescent state. No interrupt occurs to indicate termin-
ation of this condition.

Command reject. Reported by the device or the channel
when:

1. A command is issued (in the IDCB) that is outside
the device command set.

2. The device is in an improper state to execute the
command.

3. The IDCB contains an incorrect parameter. For
example: an odd byte DCB address, or an incorrect
function/modifier combination.

When a cycle-steal device reports command reject, it
does not fetch the DCB.

Intervention required. Reported by the device when it

is unable to execute a command due to a condition

requiring manual intervention to correct.

Interface data check. Reported by the device or the
channel when a parity error is detected on the 1/O

data bus during a data transfer.

Controller busy. This condition is reported by a device
controller, not the addressed device, when the controller
is busy. It is reported only by controllers that have two
or more devices attached (each device having a unique
address). When this condition code is reported, a subse-
quent controller-end interrupt always occurs.
Satisfactory. Reported by the device or the channel
when it accepts the command.

These condition codes are mutually exclusive and have a
priority sequence. That is; beginning with CC=7, each
successive condition code through CC=0 takes precedence
over the prévious code. For example, if a device cannot
accept a command because it is busy, it reports CC=1,
irrespective of error conditions encountered.

Note. The only exception is CC=6 (controller busy). This
condition code may have a variable priority depending on
the particular controller.

Interrupt Condition Codes

These condition codes are reported by the device or
controller during priority interrupt acceptance.

Condition LSR position

code (CC) Over- Reported

value Even Carry flow by Meaning

0 0 0 0 controller Controller end

1 0 0 1 device Program controlled
interrupt (PCI)

2 0 1 0 device Exception

3 0 1 1 device Device end

4 1 0 0 device Attention

5 1 0 1 device Attention and PCI

6 1 1 0 device Attention and
exception

7 1 1 1 device Attention and
device end

CC=0 Controller end. Reported by a controller when controller

CC=1

CC=2

CC=3

CC=4

CC=5

busy (10 instruction condition code) has been previously
reported one or more times. It signifies that the controller
is now free to accept I/O commands for devices under its
control. The device address reported with controller end
is always the lowest address (numerical value) of the

group of devices serviced by the controller. The interrupt
information byte, in the interrupt ID word, is set to zero.

Program controlled interrupt. Reported when the inter-
rupt indicates that a DCB with the PCI bit set to one has
been transferred by cycle steal to the device and no error
or exception condition has occurred. The device places a
DCB identifier into the interrupt information byte.

Exception. Reported when an error or exception condi-
tion is associated with the interrupt. The condition is
described in the interrupt status byte (ISB) or in device
dependent status words.

Device end. Reported when no error, exception, or
attention condition has occurred during the 1/O opera-
tion, and the interrupt is not the result of a PCI. For
example: an operation has terminated normally.

Note. If the device has come to a normal end while using
suppress exception (SE bit set to one) and an exception
was suppressed since the last Start command, then bit
zero of the interrupt status byte is set to one. This
condition is called permissive device end (PDE) and indi-
cates that errors or exceptions have been suppressed.
Related status information is contained in the residual
status block.

Attention. Reported when the interrupt was caused by
an external event rather than execution of an Operate
I/O instruction. Additional status information is not
provided unless the event requires further definition; for
example, code bits for a keyboard function.

Attention and PCI. Reported when attention and PCI
are both present. In this case, the interrupt information
byte contains the DCB identifier, and the attention must
be singular in meaning.

Input/Output Operations 4-19

CC=6 Attention and exception. Reported when attention and
exception are both present.)
CC=17 Attention and device end. Reported when attention and

device end are both present. For this condition code,
device end could also mean permissive device end. Refer
to interrupt condition code 3.
The interrupt condition codes are mutually exclusive
with each other but have no priority sequence.

I/0 Status Information

Some form of status information is transferred from the
device to the processor as a result of:

® A read status operation (see Read Status command in
this chapter).

® A start cycle steal status operation (see Start Cycle Steal
Status Operation in this chapter).

® Storing a residual status block (see Cycle-Steal Device
Options in this chapter).

® A priority interrupt.
The interrupt status information is detailed in the follow-

ing two sections (Interrupt ID Word and Interrupt Status
Byte).

Interrupt ID Word

Acceptance of an I/O interrupt causes the device to present
an interrupt ID word to the processor. Presentation of

the interrupt ID word is explained in Chapter 3 (see I/O
Interrupts). This word has the following format:

Interrupt ID word

IIB Device address
0 7 8 15

Bits 0—7 Interrupt information byte (IIB). For interrupt condi-
tion codes 2 and 6, the IIB has a special format and is
called an interrupt status byte (ISB). Refer to inter-
rupt status byte in this section. For other interrupt

condition codes reported by a device, the IIB contains:

1. CC=0. The IIB is set to zero.

2. CC=1 or 5. The IIB contains a DCB identifier.

3. CC=3 or 7. Bit zero may be set to one if suppress
exception is in effect. Other bits are device
dependent.

4. CC=4. All bits are device dependent.

Device address. This byte contains the address of the
interrupting device.

Bits 8—-15

Interrupt Status Byte (ISB)

The ISB is a special format of the interrupt information
byte (IIB) and contains detailed information on the nature
of the interrupt. The ISB is reported only for error or
exception conditions (interrupt condition codes 2 or 6).
The ISB bits are normally set as a result of:

4-20 GA34-0021

1. Status errors that occur during a DPC operation that
cannot be indicated via a condition code.

2. Status errors that occur during a cycle steal operation.
The ISB is never reported as zero unless the condition code
presentation of 2 or 6 is singular in meaning for devices that
do not cycle steal. After the processor has accepted the
interrupt request, the device resets the ISB.

Bits 0—7 of the two special formats are explained in the
following sections.

ISB (devices that do not cycle steal):

Bit 0 Device dependent status available. This bit set to one
signifies that additional status information is available
from the device. The information content and
method of reading is described in the individual device
publications.

Bit 1 Delayed Command refect. This bit is set to one if the
device cannot execute the command (specified in the
IDCB) due to an incorrect parameter in the IDCB, or
it cannot execute the command due to its present
state. For example: (1) the IDCB specifies an incor-
rect function/modifier combination, or (2) the device
is temporarily not ready. The operation in progress
is terminated. Command reject is set in the ISB only
if the device cannot report IO instruction condition
codes for the condition.

Device dependent. These bits, if used, are described
in the individual device publications.

Bits 2—7

ISB (cycle stealing device):

Bit 0 Device dependent status available. This bit, when set
to one, signifies that: (1) additional status informa-
tion is available from the device, or (2) the device is
in an improper state to execute a function specified
by a DCB.

The operation is terminated. The content and
method of reading the additional status information
is described in the individual device publications.

Note. When bit 0 of the ISB is equal to one and
bits 2—7 are zeros, the contents of the residual-
address word (cycle steal status) are defined by the
device.

Bit 1 Delayed command reject. This bit is set to one if the
device cannot execute the command due to one of the
following conditions:

1. The IDCB contains an incorrect parameter.
Examples are (a) an odd-byte DCB address, or
(b) an incorrect function/modifier combination.

2. The present state of the device, such as a not
ready condition, prevents execution of an I/O
command specified in the IDCB.

Delayed command reject is set in the ISB only if
the device cannot report IO instruction condition
codes for the condition. The operation is terminated.
The DCB is not fetched.

—~

Bit 2

Bit 3

Bit 4

Bit$S

Bit 6

Bit 7

Incorrect length record. This bit is set to one when
the device encounters a mismatch between byte count
and actual record length after beginning execution of
the DCB. For example: the byte count is reduced to
zero (with chaining flag off) and no end of record

- encountered. Incorrect length record is not reported

when the SE bit in the control word is set to one.
Reporting of incorrect length record is a device
dependent feature and may be implemented regard-
less of the suppress exception feature. The operation
is terminated.
DCB specification check. This bit is set to one when
the device cannot execute a command due to an
incorrect parameter specification in the DCB.
Examples are (1) an odd-byte DCB chaining or status
address, (2) the byte count is odd for a word-only
device, (3) an odd-byte data address for a word-only
device, (4) an invalid command or invalid bit settings
in the control word, or (5) an incorrect count.

The operation is terminated.

Storage data check. This error condition applies to
cycle steal output operations only. If the bit is set
to one, it indicates that the main storage location
accessed during the current output cycle contained
bad parity. Parity in main storage is not corrected.
The device terminates the operation. The bad parity
data is not transferred to the I/O data bus. No
machine check condition occurs.

Invalid storage address. When set to one, this bit
indicates one of the following conditions:

1. During a cycle steal operation, the device has
presented a main storage address that is outside
the storage size of the system.

2. A cycle stealing device has attempted to access
storage through a segmentation register and the
valid bit in the segmentation register is set to zero.
Note that the relocation translator feature must
be installed and enabled before this condition can
occur.

Invalid storage address can occur on a data transfer
or on a DCB fetch operation. In either case, the cycle
steal operation is terminated.

Protect check. When set to one, this bit indicates that
the I/O device attempted to access a main storage
location and presented an incorrect address key.

Interface data check. This bit set to one indicates

that a parity error has been detected on the 1/O data bus
during a cycle steal data transfer. The condition may be

detected by the channel or the I/O device. In either
case, the operation is terminated.

Input/Output Operations 4-21

4-22 GA34-0021

TN

The storage protection mechanism is provided as a basic
part of the IBM 4955 Processor. This chapter describes
the operation of the storage protection mechanism when
the Storage Address Relocation Translator Feature is not
installed or is disabled and, therefore, applies only to the
first 64K bytes of storage. When the relocation
translator feature is installed and enabled, the storage
protection mechanism, as described in this chapter, is
disabled and all storage protection is controlled by the
relocation translator. See Chapter 6, Storage Address
Relocation Translator Feature.

The state of the storage protection mechanism is
controlled by the Enable (EN) and the Disable (DIS)
instructions described in Chapter 8. When enabled, it
protects against: (1) access (reading and writing) to
defined blocks of storage by software or by an I/O
operation, and (2) writing in an undesired location within
a defined block by software.

Storage is divided into blocks of 2048 bytes (Figure -
5-1). Thirty-two storage key registers are installed; one
for each block of storage up to the maximum storage size
of 64K bytes. Each block has an associated 8-bit storage
key register containing a three-bit storage key and a read-
only bit. The storage key and the read-only bit are set
into a storage key register by the Set Storage Key (SESK)
instruction. The Copy Storage Key (CPSK) instruction
can be used to read out the storage key register. Both
instructions are described in Chapter 8. The SESK
instruction can specify a main storage block greater than
the amount of storage installed on the system without
causing a program check (if the installed storage is less
than 64K bytes).

Chapter 5. Storage Protection

The processor determines storage-access authorization
by comparing a storage key against an address key. Each
priority level has an associated address key register (AKR).
This register contains three address-key fields for: (1)
operand 1, (2) operand 2, and (3) instruction space
(Figure 5-1). Each address-key field is three bits long.
The address key used for a particular storage access is
determined by the type of operand being accessed and is
called the active address key. Proper access is determined
by comparing the active address key against the storage
key. If writing into storage is involved, the access is
further controlled by the read-only bit associated with the
storage block. See the Address Space Management
section of this chapter for more details on the active
address key and the AKR. The address keys in the AKR are
assigned by the supervisor using the appropriate system
register instructions: (1) Set Address Key Register
(SEAKR), (2) Set Instruction Space Key (SEISK), (3)

Set Operand 1 Key (SEOOK), and (4) Set Operand 2 Key
(SEOTK). They can be read by the Copy Level Block
(CPLB) instruction or the appropriate system register
instructions: (1) Copy Address Key Register (CPAKR),
(2) Copy Instruction Space Key (CPISK), (3) Copy
Operand 1 Key (CPOOK), and (4) Copy Operand 2 Key
(CPOTK). '

Storage Protection 5-1

Storage Key
Registers*

One for each
storage block

Main Storage

0000

Main Storage
Block Number

0000

i\
44

0000

Blocks of 2048 bytes Decimal Binary
Key | R |e=+«+++1 Addresses 0-2047 freeceece 0 00000
Hex 0000 - 07FF
Key | R Jeeeeceve| Addresses 2048-4095 [++-+++++ 1 00001
Hex 0800 - OFFF
-J'\ % —JL
— -r Tr—
Key | R [se+eere| Addresses 63488 - 65535 [+++++++ 31 11111
F800 - FFFF
4 6 7
\— Read-only bit
Address Key Register
OP1K OP2K ISK
0 5 7 9 11 13 15
One of the three keys is selected as the active
address key

0 Value 0 - 7

eValue0-7

e For a main storage access, the storage key 0 must match the active address key e except as noted

below:

—Supervisor state. Access to any area of storage, regardless of address keys or storage keys.
—Storage key of 7. Unprotected - any address key can be used.

e The read-only control is ignored by an I/O cycle-steal access or when in supervisor state.

*The information is shown jin the storage key register as it appears to the programmer.

Figure 5-1. Storage protection mechanism

When the storage protection mechanism is enabled,

one or more of the following conditions must be true to

authorize an attempt to access storage:
1. The machine is in supervisor state.

2. The storage key of the addressed block must be set to
seven. If attempting to write into storage, the read-

only bit must be set to zero.

3. The storage key of the addressed block must equal the

active address key. If attempting to write into
storage, the read-only bit must be set to zero.

If none of the three conditions is true:

® The storage access is prevented.
® The contents of main storage are not changed.

® A program check interrupt occurs with protect check

set in the processor status word.

52 GA34-0021

Programming Notes.

1. A storage key of seven allows access to any storage
location within the block regardless of the active
address key. However, the read-only control cannot
be violated.

2. An active address key of zero is not a master key. The
storage protection mechanism (if enabled) should be
disabled prior to dumping the contents of storage to
an I/O device.

For certain hardware functions that involve the access
of main storage, the storage protection mechanism is
suppressed. In the following cases, no storage protection
checking is performed until the hardware function is
complet